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PREFACE

This volume contains a translation of the two very

iniportant memoirs of Georg Cantor on transfinite

numbers which appeared in the Mathematische

Annalen for 1895 ^^'^^ 1897* under the title:

''Beitrage zur Begriindung der transfmiten Mengen-

lehre." It seems to me that, since these memoirs

are chiefly occupied with the investigation of the

various transfinite cardinal and ordinal numbers and

not with investigations belonging to what is usually

described as *'the theory of aggregates" or "the

theory of sets " {Mengenlehre^ theorie des ensembles),

—the elements of the sets being real or complex

numbers which are imaged as geometrical " points "

in space of one or more dimensions,—the title given

to them in this translation is more suitable.

These memoirs are the final and logically purified

statement of many of the most important results of

the long series of memoirs begun by Cantor in 1870.

It is, I think, necessary, if we are to appreciate the

full import of Cantor's work on transfinite numbers,
' -> ^ave thought through and to bear in mind Cantor's

' researches on the theory of point-aggregates.

s in these researches that the need for the

^ol, xlvi, 1895, pp. 481-512 ; vol. xlix, 1897, pp. 207-246.

334640



vi PREFACE

transfinite numbers first showed itself, and it is only

by the study of these researches that the majority

of us can annihilate the feeling of arbitrariness and

even insecurity about the introduction of these

numbers. Furthermore, it is also necessary to trace

backwards, especially through Weierstrass, the

course of those researches which led to Cantor's

work. I have, then, prefixed an Introduction tracing

the growth of parts of the theory of functions during

the nineteenth century, and dealing, in some detail,

with the fundamental work of Weierstrass and others.

and with the work of Cantor from 1870 to 1895.

Some notes at the end contain a short account of the

developments of the theory of transfinite numbers

since 1897. I^ these notes and in the Introduction

I have been greatly helped by the information that

Professor Cantor gave me in the course of a long

correspondence on the theory of aggregates which

we carried on many years ago.

The philosophical revolution brought at out by

Cantor's work was even greater, perhaps, than the

mathematical one. With few exceptions, mathe-

maticians joyfully accepted, built upon, scrutinized,

and perfected the foundations of Cantor's u idying

theory; but very many philosophers combaied it.

This seems to have been because very few under-

stood it. I hope that this book may help to make

the subject better known to both philosophcs and

mathematicians.

The three men whose influence on moder;i pure

mathematics—and indirectly modern logic and the
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philosophy which abuts on it—is most marked are

Karl Weierstrass, Richard Dedekind, and Georg

Cantor. A great part of Dedekind's work has de-

veloped along a direction parallel to the work of

Cantor, and it is instructive to compare with Cantor's

work Dedekind's Stetigkeit unci irrationale Zahlen

ar^d Was sind und was sollen die Zahlen P, of which

excellent English translations have been issued by
the publishers of the present book. *

There is a French translation f of these memoirs of

Cantor's, but there is no English translation of them.

For kind permission to make the translation, 1

am indebted to Messrs B. G. Teubner of Leipzig

and Berlin, the publishers of the Matheinatische

Annalen.

PHILIP E. B. JOURDALN.

* Essays on the Theory of Numbers (I, Continuity and Irrational
Numbers; II, The Nature arid Meaning- of Numbers), translated by
W. W. Reman, Chicago, 190T. I shall refer to this as Essays on
Number.

t By F. Marotte, Sur les fondements de la theorie des ensembles
trans/mis, Paris, 1899.





TABLE OF CONTENTS
I'AGE

Preface v

Table of Contents ix

Introduction i

Contributions to the Founding of the Theory

OF Transftnite Numbers—
Article I. (1895) 85

Article II. (1897) -137

Notes 202

Index 209





CONTRIBUTIONS TO THE
FOUNDING OF THE THEORY
OF TRANSFINITE NUMBERS

INTRODUCTION

I

If it is safe to trace back to any single man the

origin of those conceptions with which pure mathe-

matical analysis has been chiefly occupied during

the nineteenth century and up to the present time,

we must, I think, trace it back to Jean Baptiste

Joseph Fourier (1768- 1830). Fourier was first and

foremost a physicist, and he expressed very defin-

itely his view that mathematics only justifies itself

.by the help it gives towards the solution of physical

problems, and yet the light that was thrown on the

general conception of a function and its ''con-

tinuity," of the ''convergence" of infinite series,

and of an integral, first began to shine as a result

of Fourier's original and bold treatment of the

problems of the conduction of heat. This it was

that gave the impetus to the formation and develop-

ment of the theories of functions. The broad-

minded physicist will approve of this refining
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development of the mathematical methods which

arise from physical conceptions when he reflects

that mathematics is a wonderfully powerful and

economically contrived means of dealing logically

and conveniently with an immense complex of data,

and that we cannot be sure of the logical soundness

of our methods and results until we make every-

thing about them quite definite. The pure mathe-

matician knows that pure mathematics has an end

in itself which is more allied with philosophy. But

we have not to justify pure mathematics here : we

have only to point out its origin in physical con-

ceptions. But we have also pointed out that

physics can justify even the most modern develop-

ments of pure mathematics.

II

During the nineteenth century, the two great

branches of the theory of functions developed and

gradually separated. The rigorous foundation of

the results of P^ourier on trigonometrical series,

which was given by Dirichlet, brought forward as

subjects of investigation the general conception of a

(one-valued) function of a real variable and the (in

particular, trigonometrical) development of functions.

On th^ other hand, Cauchy was gradually led to

recognize the importance of what was subsequently

seen to be the more special conception of function of

a complex variable ; and, to a great extent independ-

ently of Cauchy, Weierstrass built up his theory of

analytic functions of complex variables.



INTRODUCTION 3

These tendencies of both Cauchy and Dirichlet

combined to influence Riemann ;
his work on the

theory of functions of a conaplex variable carried on

and greatly developed the work of Cauchy, while

the intention of his '' Habilitationsschrift " of 1854

was to generalize as far as possible Dirichlet's partial

solution of the problem of the development of a

function of a real variable in a trigonometrical

series.

Both these sides of Riemann's activity left a deep

impression on Hankel. In a memoir of 1870,

Hankel attempted to exhibit the theory of functions

of a real variable as leading, of necessity, to the

restrictions and extensions from which we start in

Riemann's theory of functions of a complex variable
;

and yet Hankel's researches entitle him to be called

the founder of the independent theory of functions

of a real variable. At about the same time, Heine

initiated, under the direct influence of Riemann's
'* Habilitationsschrift," a new series of investigations

on trigonometrical series.

Finally, soon after this, we find Georg Cantor

both studying Hankel's me.moir and applying to

theorems on the uniqueness of trigonometrical de-

velopments those conceptions of his on irrational

numbers and the 'derivatives" of point-aggregates

or number-aggregates which developed from the

rigorous treatment of such fundamental questions

given by Weierstrass at Berlin in the introduction to

his lectures on analytic functions. The theory of

point-aggregates soon became an independent theory
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of great importance, and finally, in 1882, Cantor's

^'transfinite numbers" were defined independently

of the aggregates in connexion with which they first

appeared in mathematics.

Ill

The investigations * of the eighteenth century on

the problem of vibrating cords led to a controversy

for the following reasons. D'Alembert maintained

that the arbitrary functions in his general integral

of the partial differential equation to which this

problem led were restricted to have certain pro-

perties which assimilate them to the analytically

representable functions then known, and which would

prevent their course being completely arbitrary at

every point. Euler, on the other hand, argued for

the admission of certain of these "arbitrary"

functions into analysis. Then Daniel BernouUi

produced a solution in the form of an infnite

trigonometrical series, and claimed, on certain

physical grounds, that this solution was as general

as d'Alembert's. As Euler pointed out, this was so

only if any arbitrary f function ^(;ir) were develops

able in a series of the form

*
Cf. the references given in my papers in the Archiv der Matkematfk

liud Physik, 3rd series, vol. x, 1906, pp. 255-256, and his, vol. i,

1914, pp. 670-677. Much of this Introduction is taken frorr. my
account of "The Development of the Theory of Transfinite Number-i"

in the above-mentioned Archiv, 3rd series, vol, x, pp. 254-2S1
;

vol. xiv, 1909, pp. 289-311; vol. xvi, 1910, pp. 21-43; vol. j tii,

1913, pp. 1-21.

t The arbitrary functions chiefly considered in this connexio i by

Euler were what he called "discontinuous" functions. This ^/ord

does not mean what we now mean (after Cauchy) by it. Cj\ my paper

in his, vol. i, 191 4, pp. 661-703.
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That this was, indeed, the case, even when 0(;f)

is not necessarily developable in a power-series, was

first shown by Fourier, who was led to study the

same mathematical problem as the above one b}'

his researches, the first of which were communicated

to the French Academy in 1807, on the conduction

of heat. To Fourier is due also the determination

of the coefficients in trigonometric series,

0(;ir) =
J/^o + ^i cos^'H-<^2 ^os 2;f+ . . .

-\-a^?A\-\ x-\-a^^^\\\2x-\- . . .,

in the form

d^=- I (l>{a) cos vada, «,. = — I 0(a) sin vada.
it] ttJ

-n -7T

This determination was probably independent of

Euler's prior determination and Lagrange's analog-

ous determination of the coefficients of a Jinzte

trigonometrical series. Fourier also gave a geo-

metrical proof of the convergence of his series,

which, though not formally exact, contained the

germ of Dirichlet's proof.

To Peter Gustav Lejeune-Dirichlet (1805-1859)

is due the first exact treatment of Fourier's series.*

He expressed the sum of the first n terms of the

series by a definite integral, and proved that the

"'• "Sur la convergence des series trigonometriques qui servent a

representer une fonction arbitraire entre des liniites donnees,"y<?«;-«.

fur Math., vol. iv, 1829, pp. 157-169; Ges. Werke^ vol. i,

pp. 1 17-132,
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limit, when n increases indefinitely, of this integral

is the function which is to be represented by the

trigonometrical series, provided that the function

satisfies certain conditions. These conditions were

somewhat lightened by Lipschitz in 1864.

Thus, Fourier's work led to the contem.plation

and exact treatment of certain functions which

were totally different in behaviour from algebraic

functions. These last functions were, before him,

tacitly considered to be the type of all functions that

can occur in analysis. Henceforth it was part of

the business of analysis to investigate such non-

algebraoid functions.

In the first few decades of the nineteenth century

there grew up a theory of more special functions of

an imaginary or complex variable. This theory was

known, in part at least, to Carl Friedrich Gauss

(1777-1855), but he did not publish his results, and

so the theory is due to Augustin Louis Cauchy

(1789- 1 857).* Cauchy was less far-sighted and

penetrating than Gauss, the theory developed

slowly, and only gradually were Cauchy's prejudices

against '
' imaginaries " overcome. Through the

years from 18 14 to 1846 we can trace, first, the

strong influence on Cauchy's conceptions of Fourier's

ideas, then the quickly increasing unsusceptibility to

the ideas of others, coupled with the extraordinarily

prohfic nature of this narrow-minded genius. Cauchy

appeared to take pride in the production of memoirs

*
Cf. Jourdain, "The Theory of Functions with Cauchy and Gauss,"

Bibl.'Maih. (3), vol. vi, 1905, pp. 190-207.
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at each weekly meeting of the French Academy, and

it was partly, perhaps, due to this circumstance that

his works are of very unequal importance. Besides

that, he did not seem to perceive even approximately

the immense importance of the theory of functions

of a complex variable which he did so much to

create. This task remained for Puiseux, Briot and

Bouquet, and others, and was advanced in the

most striking manner by Georg Friedrich Bernhard

Riemann (1826-1866).

Riemann may have owed to his teacher Dirichlet

his bent both towards the theory of potential

—

which was the chief instrument in his classical

development (185 i) of the theory of functions of a

complex variable—and that of trigonometrical series.

By a memoir on the representability of a function

by 'a trigonometrical series, which was read in 1854

but only published after his death, he not only laid

the foundations for all modern investigations into the

theory of these series, but inspired Hermann Hankel

(1839- 1 873) to the method of researches from which:

we can date the theory of functions of a real variable

as an independent science. The motive of Hankel's

research was provided by reflexion on the founda-

tions of Riemann's theory of functions of a complex

variable. It was Hankel's object to show how the

needs of mathematics compel us to go beyond the

most general conception of a function, which was

implicitly formulated by Dirichlet, to introduce the

complex variable, and finally to reach that con-

ception from which Riemann started in his inaugural
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dissertation. For this purpose Hankel began his

'' Untersuchungen liber die unendlich oft oscilli-

renden und unstetigen Functionen ;
ein Beitrag zur

Feststelkmg des Begriffes der Function liberhaupt
"

of 1870 by a thorough examination of the various

possibihties contained in Dirichlet's conception.

Riemann, in his memoir of 1854, started from

the general problem of which Dirichlet had only

solved a particular case : If a function is developable

in a trigonometrical series, what results about the

variation of the value of the function (that is to say,

what is the most general way in which it can become

discontinuous and have maxima and minima) when

the argument varies continuously ? The argument

is a real variable, for Fourier's series, as Fourier had

already noticed, may converge for real x'<^ alone.

This question was not completely answered, and,

perhaps in consequence of this, the work was not

published in Riemann's lifetime ; but fortunately

that part of it which concerns us more particularly,

and which seems to fill, and more than fill, the place

of Dirichlet's contemplated revision of the principles

of the infinitesimal calculus, has the finality obtained

by the giving of the necessary and sufficient condi-

tions for the integrability of a function f{x), which

was a necessary preliminary to Riemann's investiga-

tion. Thus, Riemann was led to give the process

of integration a far wider meaning than that

contemplated by Cauchy or even Dirichlet, and

Riemann constructed an integrable function which

becomes discontinuous an infinity of times between
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any two limits, as close together as wished, of the

independent variable, in the following manner :— If,

where ;r is a real variable, (x) denotes the (positive or

negative) excess of x over the nearest integer, or

zero if x is midway between two integers, {x) is

a one-valued function of x with discontinuities at

the points ^=;^ + i, where n is an integer (positive,

negative, or zero), and with \ and — \ for upper and

lower limits respectively. Further, (la-), where v is

an integer, is discontinuous at the points vx=n-\-\

ox x—-{7i-\-\). Consequentl}-, the series

l'=l ^

where the factor \\v^ is added to ensure convergence

for all values of ;r, may be supposed to be discon-

tinuous for all values of x of the form x=p\2n^

where/ is an odd integer, relatively prime to ;^. It

was this method that was, in a certain respect,

generalized by Hankel in 1870. In Riemann's

example appeared an analytical expression—and

therefore a '' function " in Euler's sense—which, on

account of its manifold singularities, allowed of no

such general properties as Riemann's " functions of

a complex variable," and Hankel gave a method,

whose principles were suggested by this example, of

forming analytical expressions with singularities at

every rational point. He was thus led to state, with

some reserve, that every ''function" in Dirichlet's

sense is also a " function " in Euler's sense.

The greatest influence on Georg Cantor seems,
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however, not to have been that exercised by
Riemann, Hankel, and their successors—though

the work of these men is closely connected with

some parts of Cantor's work,—but by Weierstrass,

a contemporary of Riemann's, who attacked many
of the same problems in the theory of analytic

functions of complex variables by very different and

more rigorous methods.

IV

Karl Weierstrass (i8i 5-1897) has explained, in

his address delivered on the occasion of his entry

into the Berlin Academy in 1857, that, from the

time (the winter of 18 39- 1840) when, under his

teacher Gudermann, he made his first acquaintance

with the theory of elliptic functions, he was power-

fully attracted by this branch of analysis. " Now,

Abel, who was accustomed to take the highest

standpoint in any part of mathematics, established

a theorem which comprises all those transcendents

which arise from the integration of algebraic differ-

entials, and has the same signification for these as

Euler's integral has for elliptic functions . . . ; and

Jacobi succeeded in demonstrating the existence of

periodic functions of many arguments , whose funda-

mental properties are established in Abel's theorem,

and by means of which the true meaning and real

essence of this theorem could be judged. Actually

to represent, and to investigate the properties of

these magnitudes of a totally new kind, of which

analysis has las yet no example, I regarded as one
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of the principal problems of mathematics, and, as

soon as I clearly recognized the meaning and sig-

nificance of this problem, resolved to devote myself

to it. Of course it would have been foolish even

to think of the solution of such a problem without

having prepared myself by a thorough study of the

means and by busying myself with less difficult

problems.

"

VV^ith the ends stated here of Weierstrass's work

we are now concerned only incidentally : it is the

means—the '

' thorough study " of which he spoke

—

which has had a decisive influence on our subject in

common with the theory of functions. We will,

then, pass over his early work—which was only

published in 1894—o^^ the theory of analytic

functions, his later work on the same subject, and

his theory of the Abelian functions, and examine

his immensely important work on the foundations

of arithmetic, to which he was led by the needs of

a rigorous theory of analytic functions.

We have spoken as if the ultimate aim of Weier-

strass's work was the investigation of Abelian

functions. But another and more philosophical

view was expressed in his introduction to a course

of lectures delivered in the summer of 1886 and

preserved by Gosta Mittag-Leffler *
:

'* In order to

penetrate into mathematical science it is indispens-

able that we should occupy ourselves with individual

* " Sur les fondements arithmetiques cle la theorie des fonctions

d'apres Weierstrass," Congees des Alath^ma/iques ct Shnk/iohn,

1909, p. 10.
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problems which show us its extent and constitution.

But the final object which we must always keep in

sight is the attainment of a sound judgment on the

foundations of science."

In 1859, Weierstrass began his lectures on the

theory of analytic functions at the University of

Berlin. The importance of this, from our present

point of view, lies in the fact that he was naturally

obliged to pay special attention to the systematic

treatment of the theory, and consequently, to

scrutinize its foundations.

In the first place, one of the characteristics of

Weierstrass's theory of functions is the abolition of

the method of complex integration of Cauchy and

Gauss which was used by Riemann ; and, in a

letter to H. A. Schwarz of October 3, 1875,

Weierstrass stated his belief that, in a systematic

foundation, it is better to dispense with integration,

as follows :—
''.

. . The more I meditate upon the principles

of the theory of functions,—and I do this incessantly,

—the firmer becomes my conviction that this theory

must be built up on the foundation of algebraic

truths, and therefore that it is not the right way to

proceed conversely and make use of the trans-

cendental (to express myself briefly) for the establish-

ment of simple and fundamental algebraic theorems
;

however attractive may be, for example, the con-

siderations by which Riemann discovered so many
of the most important properties of algebraic

functions, That to the discoverer, qud discoverer.
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every route is permissible, is, of course, self-evident
;

I am only thinking of the systematic establishment

of the theory.

"

In the second place, and what is far more im-

portant than the question of integration, the

systematic treatment, ab initio^ of the theory of

analytic functions led Weierstrass to profound in-

vestigations in the principles of arithmetic, and the

great result of these investigations—his theory of

irrational numbers—has a significance for all mathe-

matics which can hardly be overrated, and our

present subject may truly be said to be almost

'wholly due to this theory and its development by

Cantor.

In the theory of analytic functions we often have

to use the theorem that, if we are given an infinity

of points of the complex plane in any bounded

region of this plane, there is at least one point of

the domain such that there is an infinity of the

given points in each and every neighbourhood round

it and including it. Mathematicians used to express

this by some such rather obscure phrase as :

*

' There

is a point near which some of the given points are

lriHhil;ely near to one another." If we apply, for the

proof of this, the method which seems naturally to

suggest itself, and which consists in successively

halving the region or one part of the region which

contains an infinity of points,* we arrive at what is

required,—namely, the conclusion that there is a

point such that there is another point in any neigh-

* This method was first used by Bernard Bolzano in 1817.
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bourhood of it, that is to say, that there is a so-

called "point of condensation,"—when, and only

when, we have proved that every infinite ''sum"

such that the sum of any finite number of its terms

does not exceed some given finite number defines a

(rational or irrational) number. The geometrical

analogue of this proposition may possibly be claimed

to be evident ; but if our ideal in the theory of

functions—which had, even in Weierstrass's time,

been regarded for long as a justified, and even as a

partly attained, ideal—is to found this theory on the

conception of number alone,* this proposition leads to

the considerations out of which a theory of irrational

numbers such as Weierstrass's is built. The theorem

on the existence of at least one point of condensa-

tion was proved by Weierstsass by the method of

successive subdivisions, and was specially emphasized

by him.

Weierstrass, in the introduction to his lectures on

/ analytic functions, emphasized that, when we have

admitted the notion of whole number, arithmetic

needs no further postulate, but can be built up in a

purely logical fashion, and also that the notion of a

" The separation of analysis from geometry, which appeared in the

work of Lagrange, Gauss, Cauchy, and Bolzano, was a consequence of

the increasing tendency of mathematicians towards logical exactitude

in defining their conceptions and in making their deductions, and, con-

sequently, in discovering the limits of validity of their conceptions and
methods. However, the true connexion between the founding of

analysis on a purely arithmetical basis
— " arithmetization," as it has been

called—and logical rigour, can only be definitely and convincingly

shown after the comparatively modern thesis is proved that all the con-

cepts (including that of number) of pure mathematics are wholly logical.

And this thesis is one of the most important consequences to which the

theory whose growth we are describing has forced us.
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one-to-one correspondence is fundamental in count-

ing. But it is in his purely arithmetical introduction

of irrational numbers that his great divergence from

precedent comes. This appears from a consideration

of the history of incomrtiensurables.

The ancient Greeks discovered the existence of in-

commensurable geometrical magnitudes, and there-

fore grew to regard arithmetic and geometry as

sciences of which the analogy had not a logical

basis. This view was also probably due, in part at

least, to an attentive consideration of the famous

arguments of Zeno. Analytical geometry practi-

cally identified geometry with arithmetic (or rather

with arithmetica universalis)^ and, before Weier-

strass, the introduction of irrational 'Miumber"

was, explicitly or implicitly, geometrical. The

view that number has a geometrical basis was taken

by Newton and most of his successors. To come

to the nineteenth century, Cauchy explicitly

adopted the same view. At the beginning of his

Cours d'analyse of 1821, he defined a " Hmit " as

follows: ''When the successive values attributed

to a variable approach a fixed value indefinitely

so as to end by differing from it as little as is

wished, this fixed value is called the ' limit ' of all

the others "
; and remarked that " thus an irrational

number is the Hmit of the various fractions which

furnish more and more approximate values of it."

If we consider—as, however, Cauchy does not

appear to have done, although many others have

—

the lattei* statement as a definition, so that an
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"irrational" number is defined to be the limit of

certain sums of rational numbers, we presuppose

that these sums have a limit. In another place

Cauchy remarked, after defining a series u^, u^,

u^y . . , to be convergent if the sum J„ = 2^0 + ^1 + ^2

+ . . . +2^«-i, for values of n always increasing,

approaches indefinitely a certain limit s, that, "by

the above principles, in order that the series

^oj ^^1' ^'i^ ' ' ' ^^y ^^ convergent, it is necessary

and sufficient that increasing values of n make the

sum s,, converge indefinitely towards a fixed limit

s ; in other words, it is necessary and sufficient that,

for infinitely great values of n, the sums s^, j^^+i,

s,,^2y ' • ' differ from the limit s, and consequently

from one another, by infinitely small quantities."

Hence it is necessary and sufficient that the different

sums u,,+ u,,^i-{- . . . +2/,,+;;,, for different m's, end,

when n increases, by obtaining numerical values con-

stantly differing from one another by less than any

assigned number.

If we know that the sums s,, have a limit s, we

can at once prove the necessity of this condition
;

but its sufficiency (that is to say, if, for any assigned

positive rational 6, an integer n can always be found

such that

where r is any integer, then a limit s exists) re-

quires a previous definition of the system of real

numbers, of which the supposed limit is to be one.

For it is evidently a vicious circle to define a real
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number as the limit of a "convergent" series, as

the above definition of what we mean by a ''con-

vergent " series—a series which Jias a Hmit—in-

volves (unless we limit ourselves to rational limits)

a previous definition of what we mean by a " real

number." *

It seems, perhaps, evident to "intuition" that,

if we lay off lengths j^, j,,+i, . . ., for which the

above condition is fulfilled, on a straight line, that

a (commensurable or incommensurable) "limiting"

length s exists
;
and, on these grounds, we seem to

be justified in designating Cauchy's theory of real

number as geometrical. But such a geometrical

theory is not logically convincing, and Weierstrass

showed that it is unnecessary, by defining real

numbers in a manner which did not depend on a

process of "going to the limit."

To repeat the point briefly, we have the following

logical error in all would-be arithmetical f pre-

Weierstrassian introductions of irrational numbers :

we start with the conception of the system of

rational numbers, we define the "sum" (a limit of

a sequence of rational numbers) of an infijiite series

of rational numbers, and then raise ourselves to the

conception of the system of real numbers which are

got by such means. The error lies in overlooking

the fact that the '

' sum " {b) of the infinite series of

* On the attempts of Bolzano, Hankel, and Stolz to prove arithmetic-

ally, without an arithmetical theory of real numbers, the sufficiency of
the above criterion, see Ostwald^s A'iassiker, No. 153, pp. 42, 95, 107.

t It must be remembered that Cauchy's theory was not one of these,

Cauchy did not attempt to define real numbers arithmetically, but
simply presupposed their existence on geometrical grounds.

2
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rational numbers can only be defined when we have

already defined the real numbers, of which b is one.

" I believe," said Cantor,* a propos of Weierstrass's

theory, "that this logical error, which was first

avoided by Weierstrass, escaped notice almost

universally in earlier times, and was not noticed on

the ground that it is one of the rare cases in which

actual errors can lead to none of the more important

mistakes in calculation."

Thus, we must bear in mind that an arithmetical

theory of irrationals has to define irrational numbers

not as "limits" (whose existence is not always

beyond question) of certain infinite processes, but

in a manner prior to any possible discussion of the

question in what cases these processes define limits

at all.

With Weierstrass, a number was said to be

"determined" if we know of what elements it is

composed and how many times each element

occurs in it. Considering numbers formed with

the principal unit and an infinity of its aHquot parts,

Weierstrass called any aggregate whose elements

and the number (finite) of times each element

occurs in it f are known a (determined) " numerical

quantity " {Zahlengrosse). An aggregate consisting

of a finite number of elements was regarded as equal

to the sum of its elements, and two aggregates of a

finite number of elements were regarded as equal

when the respective sums of their elements are equal.

* Math. Ann., vol. xxi, 1883, p. 566.

t It is not implied that the given elements are finite in number.
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A rational number r was said to be contained in

a numerical quantity a when we can separate from

a a partial aggregate equal to r. A numerical

quantity a was said to be ''finite" if we could

assign a rational number R such that every rational

number contained in a is smaller than R. Two
numerical quantities <:^, b were said to be "equal,"

when every rational number contained in a is con-

tained in b^ and vice versa. When a and b are not

equal, there is at least one rational number which

is either contained in a without being contained in

^, or vice versa : in the first case, a was said to be

'

' greater than " b ; in the second, a was said to be

'

' less than " b.

VVeierstrass called the numerical quantity c de-

fined by {i.e. identical with) the aggregate whose

elements are those which appear in a or ^, each of

these elements being taken a number of times equal

to the number of times in which it occurs in a

increased by the number of times in which it occurs

in b^ the '' stmi'' of a and b. The ''product'" of

a and b was defined to be the numerical quantity

defined by the aggregate whose elements are ob-

tained by forming in all possible manners the product

of each element of a and each element of b. In the

same way was defined the product of any finite

number of numerical quantities.

The "sum" of an infinite number of numerical

quantities a, ^, . . . was then defined to be the

aggregate {s) whose elements occur in one (at least)

of ^, ^, . . ., each of these elements e being taken
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a number of times (;?) equal to the number of times

that it occurs in a, increased by the number of times

that it occurs in b^ and so on. In order that s be

finite and determined, it is necessary that each of the

elements which occurs in it occurs a finite number of

times, and it is necessary and sufficient that we can

assign a number N such that the sum of any finite

number of the quantities a, b^ . . . \s less than N.

, Such is the principal point of Weierstrass's theory

y/of real numbers. It should be noticed that, with

Weierstrass, the new numbers were aggregates of

the numbers previously defined ; and that this view,

which appears from time to time in the better text-

books, has the important advantage which was first

sufficiently emphasized by Russell. This advantage

is that the existence of limits can be proved in

such a theory. That is to say, it can be proved by

actual construction that there is a number which is

the limit of a certain series fulfilling the condition

of '
' finiteness "or " convergency. " When real

numbers are introduced either without proper defini-

tions, or as "creations of our minds," or, what is

far worse, as "signs,"* this existence cannot be

proved.

If we consider an infinite aggregate of real

numbers, or comparing these numbers for the sake

of picturesqueness with the points of a straight

Hne, an infinite "point-aggregate," we have the

theorem : There is, in this domain, at least one point

such that there is an infinity of points of the aggre-

* C/; Juurdain, Math. Gazette, ]iin. 1908, vol. iv, pp. 201-209.
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gate in any, arbitrarily small, neighbourhood of it.

Weierstrass's proof was, as we have mentioned,

by the process, named after Bolzano and him,

of successively halving any one of the intervals

which contains an infinity of points. This process

defines a certain numerical magnitude, the ''point

of condensation " {Hdufungsstelle) in question. An
analogfous theorem holds for the two-dimensional

region of complex numbers.

Of real numerical magnitudes x^ all of which are

less than some finite number, there is an ''upper

limit," which is defined as : A numerical magnitude

G which is not surpassed in magnitude by any x and

is such that either certain x's are equal to G or

certain x's lie within the arbitrarily small interval

(G, . . . , G — (5), the end G being excluded. Ana-

logously for the " lower limit "^.

It must be noticed that, if we have ^ finite

aggregate of x's, one of these is the upper limit,

and, if the aggregate is infinite, one of them may

be the upper hmit. In this case it need not also,

but of course may, be a point of condensation. If

none of them is the upper limit, this limit (whose

existence is proved similarly to the existence of a

point of condensation, but is, in addition, unique]

is a point of condensation. Thus, in the above

explanation of the term "upper limit," we can

replace the words "either certain ,r's " to "being

excluded" by " certain ;r's lie in the arbitrary small

interval (G, . . ., G — S), the end G being i^icluded.''

The theory of the upper and lower limit of a
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(general or '' Dirichlet's ") real one-valued function

of a real variable was also developed and emphasized

by Weierstrass, and especially the theorem : If G is

the upper limit of those values o{ y=f{x)'^ which

belong to the values of x lying inside the interval

from a to h, there is, in this interval, at least one

point ;i = X such that the upper hmit of the j's

which belong to the ;r's in an arbitrarily small

neighbourhood of X is G ; and analogously for the

lower limit.

If the j^-value corresponding to ;r=X is G, the

upper limit is called the "maximum" of the j^'s

and, if j?^=/"(-^) is a continuous function of x^ the

upper limit is a maximum ; in other words, a con-

tinuo2is function attains its upper and lower limits.

That a continuous function also takes at least once

every value between these limits was proved by

Bolzano (1817) and Cauchy (1821), but the Weier-

strassian theory of real numbers first made these

proofs rigorous, f

It is of the utmost importance to realize that,

whereas until Weierstrass's time such subjects as

the theory of points of condensation of an infinite

aggregate and the theory of irrational numbers,

on which the founding of the theory of functions

* Even \i y is finite for every single x of the interval a^x^b, all

these jj/'s need not be, in absolute amount, less than some finite number

(for example, f{x)=\\x for jf>0, /(o)=o, in the interval o^ ^^i),

but if they are (as in the case of the sum of a uniformly convergent

series), these j/'s have a finite upper and lower limit in the sense defined.

t There is another conception (due to Cauchy and P. du Bois-

Reymond), allied to that of upper and lower limit.
_
With every infinite

aggregate, there are (attained) upper and lower points of condensation,

which we may call by the Latin name " Limites"
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depends, were hardly ever investigated, and never

with such important results, Weierstrass carried

research into the principles of arithmetic farther

than it had been carried before. But we must also

realize that there were questions, such as the nature <

of whole number itself, to which he made no valuable

contributions. These questions, though logically

the first in arithmetic, were, of course, historically

the last to be dealt with. Before this could happen,

arithmetic had to receive a development, by means ^y

of Cantor's discovery of transfinite numbers, into a
^

theory of cardinal and ordinal numbers, both finite

and transfinite, and logic had to be sharpened, as

it was by Dedekind, Frege, Peano and Russell—to

a great extent owing to the needs which this theory

made evident. y
V

Georg Ferdinand Ludwig Philipp Cantor was

born at St Petersburg on 3rd March 1845, ^"d

lived there until 1856; from 1856 to 1863 he lived

in South Germany (Wiesbaden, Frankfurt a. M.,

and Darmstadt); and, from autumn 1863 to Easter

1869, in Berlin. He became Privatdocent at Halle

a. S. in 1869, extraordinary Professor in 1872, and

ordinary Professor in 1879.* When a student at

Berlin, Cantor came under the influence of Weier-

strass's teaching, and one of his first papers on

* Those memoirs of Cantor's that will be considered here more
particularly, and which constitute by far the greater part of his writings,

are contained in : Journ. fiir Alath.^ vols. Ixxvii and Ixxxiv, 1874 and

1878; Math. Ann., vol. iv, 1871, vol. v, 1872, vol. xv, 1879, vol. xvii,

j88o, vol. XX, 1882, vol, xxi, 1883,
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mathematics was partly occupied with a theory of

irrational numbers, in which a sequence of numbers

satisfying Cauchy's condition of convergence was

I
used instead of Weierstrass's complex of an infinity

of elements satisfying a condition which, though

equivalent to the above condition, is less convenient

for purposes of calculation.

This theory was exposed in the course of Cantor's

researches on trigonometrical series. One of the

problems of the modern theory of trigonometrical

series was to establish the uniqueness of a trigono-

metrical development. Cantor's investigations re-

lated to the proof of this uniqueness for the most

general trigonometrical series, that is to say, those

trigonometrical series whose coefficients are not

necessarily supposed to have the (Fourier's) integral

form.

In a paper of 1870, Cantor proved the theorem

that, if

a^, a^, . . ., a^, . . . and b^, b., . . ., b^, . . .

are two infinite series such that the limit of

a^ sin vx-{-b^, cos vx,

for every value of x which lies in a given interval

{a<x<b) of the domain of real magnitudes, is zero

with increasing v, both a^ and b^ converge, with

increasing i/, to zero. This theorem leads to a

criterion for the convergence of a trigonometrical

series

\b^^a^^\Xix^b^QO'6x-\- . . . -\- a,,'=^\\\vx -\- b^QO^vx -\- . . .,
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that Riemann proved under the supposition of the

integral form for the coefficients. In a paper im-

mediately following this one, Cantor used this

theorem to prove that there is only one representation

oif{x) in the form of a trigonometrical series con-

vergent for every value of x, except, possibly, a

finite number of x's ; if the sums of two trigono-

metrical series differ for a finite number of ;tr's, the

forms of the series coincide.

In 1 87 1, Cantor gave a simpler proof of the

uniqueness of the representation, and extended this

theorem to : If we have, for every value of x, a

convergent representation of the value o by a

trigonometrical series, the coefficients of this re-

presentation are zero. In the same year, he also

gave a simpler proof of his first theorem that, if

lim {a^ sin vx-\-b^ cos vx) = o for a<x<b, then both

lim a^, and lim b^ are zero.

In November 1871, Cantor further extended his

theorem by proving that the convergence or equality

of the sums of trigonometrical series may be re-

nounced for certain infinite aggregates of x's in the /

interval o . . . 27r without the theorem ceasing to

hold. To describe the structure that such an

aggregate may have in this case, Cantor began

with "some explanations, or rather some simple

indications, intended to put in a full light the

different manners in which numerical magnitudes,

in number finite or infinite, can behave," in order

to make the exposition of the theorem in question

as short as possible.
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The system A of rational numbers (including o)

serves as basis for arriving at a more extended

notion of numerical magnitude. The first general-

ization with which we meet is when we have an

infinite sequence

(i) «i, a^, . . ., a,, . . ,

of rational numbers, given by some law, and such

that, if we take the positive rational number e as

small as we wish, there is an integer n^ such that

(2)
I

a,,+,„-a,,
I

<e (^>^i),

whatever the positive integer m is.* This property

Cantor expressed by the words, ''the series (i)

has a determined limit ^," and remarked particularly

that these words, at that point, only served to

enunciate the above property of the series, and,

just as we connect (i) with a special sign d, we

must also attach different signs l?\ b'\ . . ., to

different series of the same species. However,

because of the fact that the "limit" may be

supposed to be previously defined as : the number

(if such there be) d such that \b — a,\ becomes in-

finitely small as v increases, it appears better to

avoid the word and say, with Heine, in his ex-

position of Cantor's theory, the series (a^) is a

'' number-series," or, as Cantor afterwards expressed

it, (a^) is a "fundamental series."

* It may be proved that this condition (2) is necessary and sufficient

that the sum to infinity of the series corresponding to the sequence (l)

should be a " finite numerical mai^nitude " in Weierstrass's sense ; and
consequently Cantor's theory of irrational numbers has been described

as a happy modification of Weierstrass's,
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Let a second series

(i') a\, a\, . . ., a\,, . . .

have a determined limit d\ we find that (i) and

(i') have always one of the three relations, which

exclude one another: (a) a„ — a'„ becomes infinitely

small as 7i increases
;
(d) from a certain n on, it

remains always greater than e, where e is positive

and rational
;

(c) from a certain n on, it remains

always less than —e. In these cases we say,

respectively,

/; = ^', /;>//, or /?<d'.

Similarly, we find that (i) has only one of the

three relations with a rational number a : (a) a,^ — a

becomes infinitely small as n increases
;

(d) from

a certain n on, it remains always greater than e ;

(c) from a certain n on, it remains less than — e.

We express this by

l? = a, d>a, or l?<a,

respectively. Then we can prove that /; — a„ becomes

infinitely small as n increases, which, consequently,

justifies the name given to I? of ''limit of the

series (i).

"

Denoting the totality of the numerical magnitudes

d by B, we can extend the elementary operations

with the rational numbers to the systems A and B

united. Thus the formulae

l?±d' = y\ bb' = b'\ b\b' = b"
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express that the relations

lim {a„^a ,,
- a" ,^ = o, \\m (a,,a „ - a" ,) = o,

hold respectively. We have similar definitions

when one or two of the numbers belong to A.

The system A has given rise to B ; by the same

process B and A united give rise to a third system

C. Let the series

(3) K ^2. • • •' ^v, . . .

be composed of numbers from A and B (not all

from A), and such that
|

b,,^„, — bn \

becomes in-

finitely small as n increases, whatever in is (this

condition is determined by the preceding definitions),

then (3) is said to have '*a determined limit ^."

The definitions of equality, inequality, and the

elementary operations with the members of C, or

with them and those of B and A, are analogous to

the above definitions. Now, whilst B and A are such

that we can equate each <^ to a <^, but not inversely,

we can equate each ^ to a <;, and inversely. '

' Although

thus B and C can, in a certain measure, be regarded

as identical, it is essential in the theory here ex-

posed, according to which the numerical magnitude,

not having in general any objectivity at first,* only

appears as element of theorems which have a certain

objectivity (for example, of the theory that the

numerical magnitude serves as limit for the corre-

sponding series), to maintain the abstract distinction

* This is connected with Cantor's formalistic view of real numbers
(see below).
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between B and C, and also that the equivalence of

b and b' does not mean their identity, but only

expresses a determined relation between the series

to which they refer."

After considering further systems C, D, . . ., L
of numerical magnitudes which arise successively,

as B did from A and C from A and B, Cantor dealt

with the relations of the numerical magnitudes with

the metrical geometry of the straight line. If the

distance from a fixed point O on a straight line has

a rational ratio with the unit of measure, it is

expressed by a numerical magnitude of the system

A ; otherwise, if the point is known by a con-

struction, we can always imagine a series such as

(i) and having with the distance in question a

relation such that the points of the straight line to

which the distances a^^ a^^ -, ^v, • • • refer

approach, ad infinitum^ as v increases, the point to

be determined. We express this by saying : The

distance from the point to be determined to the

point O is equal to b^ where b is the numerical

magnitude corresponding to the series (i). VVe can

then prove that the conditions of equivalence,

majority, and minority of known distances agree

with those of the numerical magnitudes which

represent these distances.

It now follows without difficulty that the numerical

magnitudes of the systems C, D, . . ., are also

capable of determining the known distances. But,

to complete the connexion we observe between the

systems of numerical magnitudes and the geometry
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of the straight line, an axiom must still be added,

which runs : To each numerical magnitude belongs

falso,
reciprocally, a determined point of the straight

line whose co-ordinate is equal to this numerical

magnitude.* This theorem is called an axiom, for

in its nature it cannot be demonstrated generally.

It also serves to give to the numerical magnitudes

a certain objectivity, of which, however, they are

completely independent.

We consider, now, the relations which present them-

selves when we are given a finite or infinite system of

numerical magnitudes, or "points," as we may call

them by what precedes, with greater convenience.

If we are given a system (P) of points in a finite

interval, and understand by the word " limit-point
"

{Grenzpunkt) a point of the straight line (not

necessarily of P) such that in any interval within

which this point is contained there is an infinity of

points of P, we can prove VVeierstrass's theorem

that, if P is infinite, it has at least one limit-point.

Every point of P which is not a limit-point of P

was called by Cantor an " isolated " point.

Every point, then, of the straight line either is or

is not a limit-point of P ; and we have thus defined,

at the same time as P, the system of its limit-points,

which may be called the "first derived system"

{erste Ableitung) V . If P' is not composed of a

finite number of points, we can deduce, by the same

* To each numerical magnitude belongs a determined point, but to

each point are related as co-ordinates numberless equal numerical

magnitudes.
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process, a second derived system P'' from F ; and,

by V analogous operations, we arrive at the notion

of a i/th system P^"^ derived from P, If, for

example, P is composed of all the points of a line

whose abscissae are rational and comprised between

O and I (including these limits or not), P' is com-

posed of all the points of the interval (o . . . i),

including these limits ; and P', P", ... do not

differ from P. If P is composed of the points whose

abscissae are respectively

I, 1/2, 1/3, . , ., \\v . . .,

P' is composed of the single point o, and derivation

does not give rise to any other point. It may
happen—and this case alone interests us here

—

—that, after v operations, P^") is composed of a finite

number of points, and consequently derivation does

not give rise to any other system. In this case

the primitive P is said to be of the ^^ vX\\ species

{Art);' and thus Y\ P", ... are of the (t/-i)th,

(i/— 2)th, . . . species respectively.

The extended trigonometrical theorem is now :

If the equation

= J^Q + <a:j sin.r -1-^1 cos ^'+ . . . -\-a^^\\\vX

+ ^^cos vx-\- . . ,

is satisfied for all values of x except those which

correspond to the points of a system P of the i/th

species, where v is an integer as great as is pleased,

in the interval (o . . . 27r), then

b^ = o, c\ = b, = o.
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Further information as to the conthiuation of

these researches into derivatives of point-aggregates

was given in the series of papers which Cantor

began in 1879 under the title " Ueber unendHche,

lineare Punktmannichfaltigkeiten." Although these

papers were written subsequently to Cantor's dis-

covery (1873) of the conceptions of " enumerability "

{Abzdhlbarkeit) and "power" {Miichtigkeit), and

these conceptions formed the basis of a classification

of aggregates which, together with the classification

by properties of the derivatives to be described

directly, was dealt with in these papers, yet, since,

by Cantor's own indications,* the discovery even of

derivatives of definitely infinite order was made in

1 87 1, we shall now extract from these papers -the

parts concerning derivatives.

A point-aggregate P is said to be of the ''first

kind" (Gattung) and i^th ''species" if P^''^ consists

of merely a finite aggregate of points
;

it is said to

be of the '

' second kind " if the series

p' p" p(..)

is infinite. All the points of P", Y" , ... are always

points of P', while a point of P' is not necessarily a

point of P.

* In 1880, Cantor wrote of the " dialectic generation of conceptions,

which always leads farther and yet remains free from all arbitrariness,

necessary and logical," of the transfinite series of indices of derivatives.

"I arrived at this ten years ago [this was written in May 1880] ;
on

the occasion of my exposition of the number-conception, I did not

refer to it." And in a letter to me of 31st August 1905, Professor

Cantor wrote: "Was die transfiniten Ordnungszahlen betriftt, ist es

mir wahrscheinlich, dass ich schon 1871 eine Voistellung vcn ihnen

gehal:)t habe. Den Begrifif der Abzahlbarkeit bildete ich mir erst

1873."
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Some or all of the points of a continuous * interval

(a . . . ^), the extreme points being considered as

belonging to the interval, may be points of P ; if

none are, ? is said to be quite outside (a . . . /3). If

P is (wholly or in part) contained in (a . . . 0), a

remarkable case may present itself : every interval

(y . . . ^) in it, however small, may contain points

of P. Then P is said to be ' * everywhere dense "

in the interval (a . . .

fi).
For example, (i) the

point-aggregate whose elements are all the points

of (a . . . /3), (2) that of all the points whose

abscissa? are rational, and (3) that of all the

points whose abscissae are rational numbers of the

form zL(2n-\- i)/2"', where m and n are integers, are

everywhere dense in (a . . . ^)- It results from this

that, if a point-aggregate is not everywhere dense

in (a . . . ^), there must exist an interval (y . . . ^)

comprised in (a . . . /3) and in which there is no

point of P. Further, if P is everywhere dense

in (a . . . /3), not only is the same true for P',

but P' consists of all the points of (« . . . jS). We
might take this property of P' as the definition

of the expression :

*
' P is everywhere dense in

{a...,8y
Such a P is necessarily of the second kind, and

hence a point-aggregate of the first kind is every-

where dense in no interval. As to the question

whether inversely every point-aggregate of the

* At the beginning of the first paper, Cantor stated: "As we shall

show later, it is on this notion [of derived aggregate] that the simplest

and completest explanation respecting the determination of a continuum

rests " (see below).

3
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second kind is everywhere dense in some intervals,

Cantor postponed it.y
Point-aggregates of the first kind can, as we have

seen, be completely characterized by the notion of

derived aggregate, but for those of the second kind

this notion does not suffice, and it is necessary to

give it an extension which presents itself as it

were of its own accord when we go deeper into the

question. It may here be remarked that Paul du

Bois-Reymond was led by the study of the general

theory of functions to a partly similar development

of the theory of aggregates, and an appreciation of

its importance in the theory of functions. In 1874,

he classified functions into divisions, according to

the variations of the functions required in the theory

of series and integrals which serve for the repre-

sentation of "arbitrary" functions. He then

considered certain distributions of singularities.

An infinite aggregate of points which does not form

a continuous line may be either such that in any

line, however small, such points occur (like the points

corresponding to the rational numbers), or in any

part, a finite line in which are none of those points

exists. In the latter case, the points are infinitely

dense on nearing certain points ; "for if they are

infinite in number, all their distances cannot be

finite. But also not all their distances in an

arbitrarily small line can vanish ; for, if so, the

first case would occur. So their distances can be

zero only in points, or, speaking more correctly,

in infinitely small lines." Here we distinguish:
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(i) The points k^ condense on nearing a finite

number of points k^
; (2) the points k^ condense at

a finite number of points k^, . . . Thus, the

roots of o = sin i/jc condense near x=o, those of

o = sin I /sin i/x near the preceding roots, . . .

The functions with such singularities fill the space

between the " common " functions and the functions

with singularities from point to point. Finally,

du Bois-Reymond discussed integration over such

a line. In a note of 1879, he remarked that

Dirichlet's criterion for the integrability of a function

is not sufficient, for we can also distribute intervals

in an everywhere dense fashion {pantacJiiscJi)
; that

is to say, we can so distribute intervals D on the

interval ( — tt . . . + tt) that in any connected

portion, however small, of (
— tt . . . +7r) connected

intervals D occur. Let, now, ^(,r) be o in these

D's and i in the points of (
— tt . . . +7r) not covered

by D's ; then (^{x) is not integrable, although any

interval inside ( — tt . . . + tt) contains lines in

which it is continuous (namely, zero). *'To this

distribution of intervals we are led when we seek

the points of condensation of infinite order whose ex-

istence i announced to Professor Cantor years ago."

Consider a series of successive intervals on the

line like those bounded by the points i, 1/2, 1/3,

. . ., i/r, . . . ; in the interval (1/1/ . . . i/(i/+ i))

take a point-aggregate of the first kind and j/th

species. Now, since each term of the series of

derivatives of P is contained in the preceding ones,

and consequently each P^") arises from the preceding



36 INTRODUCTION

pC'^-i) by the falling away (at most) of points,—that

is to say, no new points arise,—then, if P is of the

second kind, P' will be composed of two point-

aggregates, Q and R
; Q consisting of those points

of P which disappear by sufficient progression in

the sequence P', P'', . . ., P^"), . . ., and R of the

points kept in all the terms of this sequence. In

the above example, R consists of the single point

zero. Cantor denoted R by P(°°\ and called it

"the derived aggregate of P of order oo (infinity)."

The first derivative of P^°°) was denoted by p(~+i),

and so on for

p(cxD+2) p(co+3)
^

^ ^

p(o +v)

Again, P(~) may have a derivative of infinite order

which Cantor denoted by P^^°°^ ; and, continuing

these conceptual constructions, he arrived at de-

rivatives which are quite logically denoted by
p(woo+«)^ where in and n are positive integers. But

he went still farther, formed the aggregate of

common points of all these derivatives, and got a

derivative which he denoted p(°°'^), and so on without

end. Thus he got derivatives of indices
S3

1^0^ +1^100 i- . . . -tv^^y ... 00 , ... CO
J

. . .

"Here we see a dialectic generation of concep-

tions,* which always leads yet farther, and remains

both free from every arbitrariness and necessary

and logical in itself."

* To this passage Cantor added the note :
" I was led to this genera-

tion ten years ago [the note was written in May i88o], but when
exposing my theory of the number-conception I did not refer to it."
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We see that point-aggregates of the first kind

are characterized by the property that P^~^ has no

elements, or, in symbols,

p(-) = o^

and also the above example shows that a point-

aggregate of the second kind need not be every-

where dense in any part of an interval.

In the first of his papers of 1882, Cantor extended

the conceptions "derivative" and "everywhere

dense " to aggregates situated in continua of 71

dimensions, and also gave some reflexions on the

question as to under what circumstances an (infinite)

aggregate is well defined. These reflexions, though

important for the purpose of emphasizing the

legitimacy of the process used for defining P^°°^,

P^^~\ . . ., are more immediately connected with

the conception of "power," and will thus be dealt

with later. The same applies to the proof that it is

possible to remove an everywhere dense aggregate

from a continuum of two or more dimensions in

such a way that any two points can be connected

by continuous circular arcs consisting of the re-

maining points, so that a continuous motion may
be possible in a discontinuous space. To this

Cantor added a note stating that a purely arith-

metical theory of magnitudes was now not onl}'

known to be possible, but also already sketched out

in its leading features.

We must now turn our attention to the develop-

ment of the conceptions of " enumerability " and
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*' power," which were gradually seen to have a

very close connexion with the theory of derivatives

and the theory, arising from this theory, of the

transfinite numbers.

In 1873, Cantor set out from the question

whether the linear continuum (of real numbers)

could be put in a one-one correspondence with the

aggregate of whole numbers, and found the rigorous

proof that this is not the case. This proof, together

with a proof that the totality of real algebraic

numbers can be put in such a correspondence, and

hence that there exist transcendental numbers in

every interval of the number-continuum, was

published in 1874.

A real number w which is a root of a non-identical

equation of the form

(4) ^0^^^ + ^!^""^+
• • • +^« = 0'

where n, a^, a^, . . ., a„ are integers, is called a real

algebraic number ; we may suppose n and a^ positive,

^0, a^, . . ., a,, to have no common divisor, and (4)

to be irreducible. The positive whole number

N = ?2 - I -F
I
^0

I

+
I
^1

I
+ • • • +

I

^«
I

may be called the 'Mieight" of w ;
and to each

positive integer correspond a finite number of real

algebraic numbers whose height is that integer.

Thus we can arrange the totality of real algebraic

numbers in a simply infinite series

by arranging the numbers corresponding to the
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height N in order of magnitude, and then the

various heights in their order of magnitude.

Suppose, now, that the totahty of the real

numbers in the interval (a . . . ,8), where a</3,

could be arranged in the simply infinite series

(5) ^1, u.^, . . .^u,, . . .

Let a', /3' be the two first numbers of (5), different

from one another and from a, /3, and such that

a <^'
\
similarly, let a\ j^'\ where a'</3'\ be the

first different numbers in (a . . . /3'), and so on.

The numbers a, a" > . . . are members of (5) whose

indices increase constantly ; and similarly for the

numbers p\ ^'\ ... of decreasing magnitude.

Each of the intervals (a . . . /3), (a . . . /3'),

{a" . . . j3"), . . . includes all those which follow.

We can then only conceive two cases : either {a)

the number of intervals is finite ;—let the last be

{a^"^ . . . /S^"^) ; then, since there is in this interval at

most one number of (5), we can take in it a number

rj which does not belong to (5) ;—or (d) there are

infinitely many intervals. Then, since a, a, a\ . . .

increase constantly without increasing ad infinituvi^

they have a certain limit a^°°\ and similarly /3, /3',

/3'',
. . . decrease constantly towards a certain

limit
Z?^"').

If a^°°) = /3(°°) (which always happens

when applying this method to the system (o))), we
easily see that the number ri

= a^"'^ cannot be in (5).*

If, on the contrary, a^°'^<^''~\ every number tj in

• For if it were, we would have y} = up, p being a determined index
;

but that is not possible, for up is not in (a^^^ . . . /S^-^^), whilst tj, by
definition, is.
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the interval {a^"^^ . . . ^(">) or equal to one of its

ends fulfils the condition of not belonging to (5).

The property of the totality of real algebraic

numbers is that the system (co) can be put in a one-

to-one or (i, i)-correspondence with the system

(i/), and hence results a new proof of Liouville's

theorem that, in every interval of the real numbers,

there is an infinity of transcendental (non-algebraic)

numbers.

This conception of (i, i)-correspondence between

aggregates was the fundamental idea in a memoir

of 1877, published in 1878, in which some import-

ant theorems of this kind of relation between various

aggregates were given and suggestions made of a

classification of aggregates on this basis.

If two well-defined aggregates can be put into

such a (i, i)-correspondence (that is to say, if,

element to element, they can be made to correspond

completely and uniquely), they are said to be

of the same '

' power " {Mdchtigkeit *) or to be
'

' equivalent " {aequivalent). When an aggregate

is finite, the notion of power corresponds to that of

number {Anzahl), for two such aggregates have the

same power when, and only when, the number of

their elements is the same.

A part {Bestandteil ; any other aggregate whose

elements are also elements of the original one) of a

finite aggregate has always a power less than that

* The word "power" was borrowed from Steiner, who used it in a

quite special, but allied, sense, to express that two figures can be put,

element for element, in projective correspondence.
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of the aggregate itself, but this is not always the

case with infinite aggregates,*—for example, the

series of positive integers is easily seen to have the

same power as that part of it consisting of the even

integers,—and hence, from the circumstance that

an infinite aggregate M is part of N (or is equiva-

lent to a part of N), we can only conclude that the

power of M is less than that of N if we know that

these powers are unequal.

The series of positive integers has, as is easy to

show, the smallest infinite power, but the class of

aggregates with this power is extraordinarily rich

and extensive, comprising, for example, Dedekind's
'* finite corpora," Cantor's ''systems of points of

the j/th species," all ;^-ple series, and the totality of

real (and also complex) algebraic numbers. Further,

we can easily prove that, if M is an aggregate of

this first infinite power, each infinite part of M has

the same power as M, and if M", M", ... is a finite

or simply infinite series of aggregates of the first

power, the aggregate resulting from the union of

these aggregates has also the first power.

By the preceding memoir, continuous aggregates

have not the first power, but a greater one ; and

Cantor proceeded to prove that the analogue, with

continua, of a multiple series—a continuum of many
dimensions—has the same power as a continuum of

" This curious property of infinite aggregates was first noticed by
Bernard Bolzano, obscurely stated (" . . . two unequal lengths [may
be said to] contain the same number of points") in a paper of 1864 in

which Augustus De Morgan argued for a proper infinite, and was used
as a definition of "infinite" by Dedekind (independently of Bolzano
and Cantor) in 1887.
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one dimension. Thus it appeared that the assump-

tion of Riemann, Helmholtz, and others that the

essential characteristic of an ;2-ply extended con-

tinuous manifold is that its elements depend on n

real, continuous, independent variables (co-ordin-

ates), in such a way that to each element of the

manifold belongs a definite system of values x^^ x^,

. . ., ;ir„, and reciprocally to each admissible system

x^^ x^, . . ., x„ belongs a certain element of the

manifold, tacitly supposes that the correspondence

of the elements and systems of values is a continuous

one. * If we let this supposition drop,t we can prove

that there is a (i, i)-correspondence between the

elements of the linear continuum and those of a

n-p\y extended continuum.

This evidently follows from the proof of the

theorem: Let x^^, x^, . . ., x,, be real, independent

variables, each of which can take any value o<x< i
;

then to this system of n variables can be made to

correspond a variable /(o</<i) so that to each

determined value of t corresponds one system of

determined values of x^^, x,^, . . ., x,„ and via versa.

To prove this, we set out from the known theorem

that every irrational number e between o and i can

be represented in one manner by an infinite con-

tinued fraction which may be written :

(«!, otg, . . ., a^, . . .)»

* That is to say, an infinitely small variation in position of the element

imphes an infinitely small variation of the variables, and reciprocally.

t In the French translation only of this memoir of Cantor's is added

here: "and this happens very often in the works of these authors

(Riemann and Helmholtz)." Cantor had revised this translation.
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where the a's are positive integers. There is thus

a (i, i)-correspondence between the ^'s and the

various series of a's. Consider, now, n variables,

each of which can take independently all the ir-

rational values (and each only once) in the interval

(o . . . I):

^i = (ai, 1, ai, 2j ' • •, cti, ^, . . .),

^a~(^2, 1) «2, 2> •••) a2, I'j •••))•• •)

^/; = (a„, 1, a„, 2> . . •> a«, V, . . •) 5

these n irrational numbers uniquely determine a

(/^+ i)th irrational number in (o . . . i),

^=(A, ft, . . . ft, . . .),

if the relation between a and /3 :

(6) ft.-i)«+A^ = a^,v* (m= I, 2, . . ., n\ 1^=1, 2, . . .CO)

is established. Inversely, such a ^t' determines

uniquely the series of fts and, by (6), the series of

the a's, and hence, again of the ^'s. We have only

to show, now, that there can exist a (i, i)-corre-

spondence between the irrational numbers o<e<\
and the real (irrational and rational) numbers

o<^'<i. For this purpose, we remark that all

the rational numbers of this interval can be written

in the form of a simply infinite series

^1, 02J • • -J V-V) • • -t

* If we arrange the n series of o's in a double series with n rows,

this nieans that we are to enumerate the a's in the order aj
^ ^

a.,
, ^

. . . a^,
J,

Oj o, a., o, . . . , and that the ^th term of this series

is /3r. '

t This is done most simply as follows : Let plq be a rational number
of this interval in its lowest terms, and put / + ^= N. To each plq
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Then in (o . . .i) we take any infinite series of

irrational numbers tji, t]2y - - -y ^vy • - • (^o^ example,

tj^= J 212"), and let /i take any of the values of

O . . . i) except the 0's and >/s, so that

and we can also write the last formula

:

Now, if we write a Oo d for '

' the aggregate of the a's

is equivalent to that of the ^'s," and notice that aooa,

a c\j 3 and d cx) c imply a c\) c, and that two aggre-

gates of equivalent aggregates of elements, where the

elements of each latter aggregate have, two by two,

no common element, are equivalent, we remark that

and
X cso e.

A generalization of the above theorem to the case

of x-^, x.^, . . ., x^, . . . being a simply infinite series

(and thus that the continuum may be of an infinity

of dimensions while remaining of the same power

as the linear continuum) results from the observa-

tion that, between the double series {a^^ „}, where

^;a = («^t, 1 , tt/x, 2, • . . , a/x, «" • • • )
^^^' M = I

J 2, ... CO

belongs a determined positive integral value of N, and to each such N
belong a finite number of fractions />/(/. Imagine now the numbers //(^

arranged so that those which belong to smaller values of N precede
those which belong to larger ones, and those for which N has the same
value are arranged the greater after the smaller.

* This notation means : the aggregate of the a's is the union of those

of the ^'s, 7;»''s, and (pyS ; and analogously for that of the ^'s.
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and the simple series {/3;y^}, a (i, i)-correspondence

can be established * by putting

\=fj.-^{fj,^V- l)(/x + j/-2)/2,

and the function on the right has the remarkable

property of representing all the positive integers,

and each of them once only, when /x and v inde-

pendently take all positive integer values.

''And now that we have proved," concluded

Cantor, "for a very rich and extensive field of

manifolds, the property of being capable of corre-

spondence with the points of a continuous straight

line or with a part of it (a manifold of points con-

tained in it), the question arises . . . : Into how

many and what classes (if we say that manifolds of

the same or different power are grouped in the same

or different classes respectively) do linear manifolds

fall ? By a process of induction, into the further

description of which we will not enter here, we are

led to the theorem that the number of classes is two :

the one containing all manifolds susceptible of being

brought to the form : functio ipsius v, where u can

receive all positive integral values ; and the other

containing all manifolds reducible to the ioxxn functio

ipsius ,r, where x can take all the real values in the

interval (o . . . i).

"

In the paper of 1879 already referred to, Cantor

* Enumerate the double series |a^^ ^,\ diagonally, that is to say,

in the order

The term of this series whose index is (/i, v) is the Ath, where

A=I+2 + 3+ . . .+()U + l/-2) + /i= (/A + l'-2)(;i + |/-l)/2 + /x.
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considered the classification of aggregates * both

according to the properties of their derivatives and

according to their powers. After some repetitions,

a rather simpler proof of the theorem that the con-

tinuum is not of the first power was given. But,

though no essentially new results on power were

published until late in 1882, we must refer to the

discussion (1882) of what is meant by a "well-

defined " aggregate.

The conception of power f which contains, as a

particular case, the notion of whole number may,

said Cantor, be considered as an attribute of every

"well-defined" aggregate, whatever conceivable

nature its elements may have. '

' An aggregate of

elements belonging to any sphere of thought is said

to be ' well defined ' when, in consequence of its

definition and of the logical principle of the excluded

middle, it must be considered as intrinsically deter-

mined whether any object belonging to this sphere

belongs to the aggregate or not, and, secondly,

whether two objects belonging to the aggregate

are equal or not, in spite of formal differences

in the manner in which they are given. In fact,

we cannot, in general, effect in a sure and precise

manner these determinations with the means at our

disposal ; but here it is only a question of intrinsic

determination, from which an actual or extrinsic

" Linear aggregates alone were considered, since all the powers of

the continua of various dimensions are to be found in them.

t "That foundation of the theory of magnitudes which we may
consider to be the most general genuine moment in the case of

manifolds."
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determination is to be developed by perfecting the

auxiliary means." Thus, we can, without any

doubt, conceive it to be intrinsically determined

whether a number chosen at will is algebraic or

not ; and yet it was only proved in 1874 that e is

transcendental, and the problem with regard to tt

was unsolved when Cantor wrote in 1882.*

In this paper was first used the word ** enumer-

able " to describe an aggregate which could be put

in a (i, i)-correspondence with the aggregate of

the positive integers and is consequently of the first

(infinite) power ; and here also was the important

theorem : In a ;/-dimensional space (A) are defined

an infinity of (arbitrarily small) continua of 11

dimensions f {a) separated from one another and

most meeting at their boundaries ; the aggregate of

the rt:'s is enumerable.

For refer A by means of reciprocal radii vectores

to an ;^-ply extended figure B within a («+ i)-

dimensional infinite space /\', and let the points of

B have the constant distance i from a fixed point

of A'. To every a corresponds a /^-dimensional

part <^ of B with a definite content, and the ^'s are

enumerable, for the number of b's greater in con-

tent than an arbitrarily small number y is finite, for

their sum is less than 2'V + (the content of B). §

* Lindemann afterwards proved that it is transcendental. In this

passage, Cantor seemed to agree with Dedekind.

t With every a the points of its boundary are considered as belong-

ing to it.

:;: In the French translation (1883) of Cantor's memoir, this num])er

was corrected to Qw(m I lyg/F^fyr-MH/g).

§ When n=i, the theorem is that every aggregate of intervals on a

2^ -i. cf,M,.tt..A..n t^Zl ^.fT'^P,

r(^-r)
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Finally, Cantor made the interesting remark that,

if we remove from an ;^-dimensional continuum any

enumerable and everywhere-dense aggregate, the

remainder (21), if ^>2, does not cease to be con-

tinuously connected, in the sense that any two

points N, N' of 51 can be connected by a continuous

line composed of circular arcs all of whose points

belong to 51.

VI

An application of Cantor's conception of enumera-

bility was given by a simpler method of condensation

of singularities, the construction of functions having
"

a given singularity, such as a discontinuity, at an

enumerable and everywhere-dense aggregate in a

given real interval. This was suggested by Weier-

strass, and published by Cantor, with Weierstrass's

examples, in 1882.* The method may be thus

indicated : Let ^p{x) be a given function with the

single singularity x—O, and (w^,) any enumerable

aggregate ;
put

00

v = l

where the ^^'s are so chosen that the series and

those derived from it in the particular cases treated

converge unconditionally and uniformly. Then

(finite or infinite) straight line which at most meet at their ends is

enumerable. The end-points are consequently enumerable, but not

always the derivative of this aggregate of end-points.
* Inaletter tome of 29th March 1905, Professor Cantor said : "Atthe

conception of enumerability, of which he [Weierstrass] heard from me at

Berlin in the Christmas holidays of 1873, l^e was at first quite amazed,

but one or two days passed over, [and] it became his own and helped him

to an unexpected development of his wonderful theory of functions."
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f{x) has at all points A'= a)^ the same kind of singu-

larity as (^{x) at;ir=o, and at other points behaves,

in general, regularly. The singularity at x= {^^ is

due exclusively to the one term of the series in

which j/ = /u ; the aggregate (co^) may be any enumer-

able aggregate and not only, as in Hankel's method,

the aggregate of the rational numbers, and the

superfluous and complicating oscillations produced

by the' occurrence of the sine in Hankel's functions

is avoided.

The fourth (1882) of Cantor's papers " (Jeber

unendliche, lineare Punktmannichfaltigkeiten " con-

tained six theorems on enumerable point-aggregatfes.

H^an aggregate O (in a continuum of n dimensions)

is such tha't none of its points is a limit-point,* it is

said to be " isolated." Then, round every point of

O a sphere can be drawn which contains no other

point of Q, and hence, by the above theorem on

the enumerability of the' aggregate of these spheres,

is enumerable.

Secondly, if P' is enumerable, P is. P'or let

^(P, P')^R, P-R^O;t

then O is isolated and therefore enumerable, and R
is also enumerable, since R is contained in P' ; so

P is enumerable.

The next three theorems state that, if P<''\ or

* Cantor expressed this X'(Q> Q') — O- Q- Dedekind's Essays on

Nuf/iber, p. 48.

t If an aggregate B is contained in A, and E is the aggregate left

when B is taken from A, we write

E = A-B.
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P^«>, where a is any one of the '
' definitely defined

symbols of infinity {bestimmt definirte Unendlich-

keitssymbole),'' is enumerable, then P is.

If the aggregates 1\, V^, . . . have, two by two,

no common point, for the aggregate P formed by

the union of these (the '' Vereinigungsmenge'') Cantor

now used the notation

P^P, + P2+. ..

Now, we have the following identity

P'^(P'-P") + (P"-P"0+ . • •
+(P(''-i)-P(''))+P^^^

and thus, since

p/_p// Y" —V" . .

p(''-i) — p('')

are all isolated and therefore enumerable, if P^'^^ is

enumerable, then P' is also.

Now, suppose that P(~> exists ;
then, if any par-

ticular point of P' does not belong to P^°°), there is a

first one among the derivatives of finite order, P^"^),

to which it does not belong, and consequently P^^-^)

contains it as an isolated point. Thus we can write

P'^(P^_p-) + (p-_p-)+ . . .

+(p(-i)-PM)

+ . . . +P(~);

and consequently, since an enumerable aggregate of

enumerable aggregates is an enumerable aggregate

of the elements of the latter, and P^"^^ is enumerable,

then P' is also. This can evidently be extended to

P^*^), if it exists, provided that the aggregate of all

the derivatives from P' to P^*^ is enumerable.

The considerations which arise from the last
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observation appear to me to have constituted the

final reason for considering these definitely infinite

indices independently * on account of their con-

nexion with the conception of ''power," which

Cantor had always regarded as the most funda-

mental one in the whole theory of aggregates.

The series of the indices found, namely, is such

that, up to any point (infinity or beyond), the

aggregate of them is always enumerable, and yet

a process exactly analogous to that used in the

proof that the continuum is not enumerable leads

to the result that the aggregate of all the indices

such that, if a is any index, the aggregate of all the

indices preceding a is enumerable, is not enumer-

able, but is, just as the power of the series of

positive integers is the next higher one to all finite

ones, the next greater infinite power to the first.

And we can again imagine a new index which is the

first after all those defined, just as after all the finite

ones. We shall see these thoughts published by

Cantor at the end of 1882.

It remains to mention the sixth theorem, in

which Cantor proved that, if P' is enumerable, P

has the property, which is essential in the theory

of integration, of being "discrete," as Harnack

called it, " integrable," as P. du Bois-Reymond did,

'' unextended," or, as it is now generally called,

" content-less."

* When considered independently of P, these indices form a series

beginning with the finite numbers, but extending beyond them; so

that it suggests itself that those other indices be considered as infinite

(or transhnite) tnanbers.
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VII

VVe have thus seen the importance of Cantor's

"definitely defined symbols of infinity" in the

theorem that if P^"^ vanishes, P', and therefore P, is

enumerable. This theorem may, as we can easily

see by what precedes, be inverted as follows : If

P' is enumerable, there is an index a such that P^"^

vanishes. By defining these indices in an inde-

pendent manner as real, and in general transfinite,

integers. Cantor was enabled to form a conception

of the enumeral * {Anza/il) of certain infinite series,

and such series gave a means of defining a series of

ascending infinite "powers." The conceptions of

"enumeral" and "power" coincided in the case of

finite aggregates, but diverged in the case of infinite

aggregates ; but this extension of the conception of

enumeral served, in the way just mentioned, to

develop and make precise the conception of power

used often already.

Thus, from the new point of view gained, we get

new insight into the theory of finite number ; as

Cantor put it : "The conception of number which,

in finito, has only the background of enumeral,

splits, in a manner of speaking, when we raise our-

selves to the infinite, into the two conceptions of

power . . . and enumeral . . . ; and, when I again

descend to the finite, I see just as clearly and

beautifully how these two conceptions again unite

to form that of the finite integer."

* I have invented this woid to translate " Anzahl," to avoid confusion

with the word " number" [Zahl).
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The significance of this distinction for the theor}'

of all (finite and infinite) arithmetic appears in

Cantor's own work * and, above all, in the later

work of Russell.

Without this extension of the conception of

number to the definitely infinite numbers, said

Cantor, " it would hardly be possible for me to

make without constraint the least step forwards in

the theory of aggregates," and, although "I was

led to them [these numbers] many years ago,

without arriving at a clear consciousness that 1

possessed in them concrete numbers of real signi-

ficance," yet " I was logically forced, almost against

my will, because in opposition to traditions which

had become valued by me in the course of scientific

researches extending over many years, to the

thought of considering the infinitely great, not

merely in the form of the unlimitedly increasing,

and in the form, closely connected with this, of

convergent infinite series, but also to fix it mathe-

matically by numbers in the definite form of a

'completed infinite.' I do not believe, then, that

any reasons can be urged against it which I am
unable to combat."

The indices of the series of the derivatives can

be conceived as the series of finite numbers

I, 2, , followed by a series of tra7isfiuite

numbers of which the first had been denoted b}- the

symbol "00." Thus, although there is no greatest

* C/:, for example, pp. 1
1 3, 1 58-159 of the translations of Cantor's

memoirs of 1895 and 1897 given below.
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finite number, or, in other words, the supposition

that there is a greatest finite number leads to con-

tradiction, there is no contradiction involved in

postulating a new, non-finite, number which is to be

the first after all the finite numbers. This is the

method adopted by Cantor * to define his numbers

independently of the theory of derivatives ; we shall

see how Cantor met any possible objections to this

system of postulation.

Let us now briefly consider again the meaning of

the word '^ MannichfaltigkeitsleJire^'" ^ which is

usually translated as " theory of aggregates." In a

note to the Gyundlagen^ Cantor remarked that he

meant by this word '

' a doctrine embracing very

much, which hitherto 1 have attempted to develop

only in the special form of an arithmetical or

geometrical theory of aggregates {Mengenlehre).

By a manifold or aggregate I understand generally

any multiplicity which can be thought of as one

(jedes Viele, welches sick als Eines denken lasst), that

is to say, any totality of definite elements which

can be bound up into a whole by means of a law."

* " Ueber unendliche, lineare Punktmannichfaltigkeiten. V."
[December 1882], Math. Ann., vol. xxi, 1883, pp. 545-591 ; reprinted,

with an added preface, with the title : Griindlagen einer allgevieinen

Mamiichfaltigkeitslehre. Ein uiathematisch-philosophischer Versiich in

der Lehre des Unendiichen,'Lit\\:>z\g, 1883 (page n of the Grnndlagenh
page w + 544 of the article in the Math. Ann.). This separate publica-

tion, with a title corresponding more nearly to its contents, was made
" since it carries the subject in many respects much farther and thus is,

for the most part, independent of the earlier essays" (Preface). In

Acta Math., ii, pp. 381-408, part of the Grundlagen was translated

into French. •

t Or •'' Manntgfaitigkeitslehre," or, more usually, " Mengenlehre "
; in

French, ^^ th^orte des ensembles." The English " theory of manifolds"
has not come into general usage.
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This character of unity was repeatedly emphasized

by Cantor, as we shall see later.

The above quotations about the slow and sure

way in which the transfinite numbers forced them-

selves on the mind of Cantor and about Cantor's

philosophical and mathematical traditions are taken

from the Grundlagen. Both here and in Cantor's

later works we constantly come across discussions

of opinions on infinity held by mathematicians and

philosophers of all times, and besides such names as

Aristotle, Descartes, Spinoza, Hobbes, Berkeley,

Locke, Leibniz, Bolzano, and many others, we find

evidence of deep erudition and painstaking search

after new views on infinity to analyze. Cantor has

devoted many pages to the Schoolmen and the

Fathers of the Church.

The Grundlagen begins by drawing a distinction

between two meanings which the word "infinity"

may have in mathematics. The mathematical

infinite, says Cantor, appears in two forms : Firstly,

as an improper infinite {Uneigentlich-Unendliches),

a magnitude which either increases above all limits

or decreases to an arbitrary smallness, but always

remains finite ; so that it may be called a variable

finite. Secondly, as a definite, a proper infinite

{Eigentlich-Unendliches), represented by certain

conceptions in geometry, and, in the theory of

functions, by the point infinity of the complex plane.

In the last case we have a single, definite point,

and the behaviour of (analytic) functions about this

point is examined in exactly the same way as it is
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about any other point.* Cantor's infinite real

integers are also properly infinite, and, to emphasize

this, the old symbol '* od ," which was and is used also

for the improper infinite, was here replaced by ''w."

To define his new numbers, Cantor employed the

following considerations. The series of the real

positive integers,

(I) I, 2, 3, . . ., V, . . .,

arises from the repeated positing and uniting of

units which are presupposed and regarded as equal
;

the number v is the expression both for a definite

finite enumeral of such successive positings and for

the uniting of the posited units into a whole. Thus

the formation of the finite real integers rests on the

principle of the addition of a unit to a number

which has already been formed ; Cantor called this

moment th^fiistprinciple ofgene^'ation {Erzeugungs-

princip). The enumeral of the number of the class

(I) so formed is infinite, and there is no greatest

among them. Thus, although it would be contra-

dictory to speak of a greatest number of the class (I),

there is, on the other hand, nothing objectionable

in imagining a new number, w, which is to express

that the whole collection (I) is given by its law in

its natural order of succession (in the same way as

V is the expression that a certain finite enumeral of

units is united to a whole), f By allowing further

* "The behaviour of the function in the neighbourhood of the

infinitely distant point shows exactly the same occurrences as in that

of any other point lying iii finito, so that hence it is completely justified

to think of the infinite, in this case, as situated in a point."

t " It is even permissible to think of the newly and created number
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positings of unity to follow the positing of the

number o), we obtain with the help of the first

principle of generation the further numbers :

w+ I, (0+2, . . ., a) + j^, ...

Since again here we come to no greatest number,we

imagine a new one, which we may call 2a), and which

is to be the first which follows all the numbers v and

o) + 1^ hitherto formed. Applying the first principle re-

peatedly to the number 2co, we come to the numbers :

g^^ 2a) + I, 2a) +2, . . ., 2a) +i', ...

The logical function which has given us the

numbers a) and 2a) is obviously different from the

first principle ; Cantor called it the second principle

of generation of real integers, and defined it more

closely as follows : If there is defined any definite

succession of real integers, of which there is no

greatest, on the basis of this second principle a new
number is created, which is defined as the next greater

number to them all.

By the combined application of both principles

we get, successively, the numbers :

30), 3a) + I , . . . ,
3a) + 1/, . . . , . . . ,

/xa), . . . ,
//a) + j/, . . .

w as the li7nit to which the numbers v strive, if by that nothing else is

understood than that « is to be the first integer which follows all the
numbers v, that is to say, is to be called greater than every »/." Cf.
the next section.

If we do not know the reasons in the theory of derivatives which
prompted the introduction of a>, but only the grounds stated in the text

for this introduction, it naturally seems rather arbitrary (not apparently^
useful) to create &j because of the mere fact that it can apparently be
defined in a manner free from contradiction. Thus, Cantor discussed

(see below) such introductions or creations, found in them the dis-

tinguishing mark of pure mathematics, and justified them on historical

grounds (on logical grounds they perhaps seem "to need no justification).
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and, since no number fxw-\-v is greatest, we create

a new next number to all these, which may be

denoted by oo^. To this follow, in succession,

numbers :

Xo)'^+ fX(Jd+ V,

and further, we come to numbers of the form

and the second principle then requires a new number,

which may conveniently be denoted by

And so on indefinitely.

Now, it is seen without difficulty that the

aggregate of all the numbers preceding any of the

infinite numbers and hitherto defined is of the

power of the first number-class (I). Thus, all the

numbers preceding w*^ are contained in the formula :

where /x, i/q, i/^, . . . , i/^ have to take all finite,

positive, integral values including zero and exclud-

ing the combination v^ = v^= . . . =v^=zO. As is

well known, this aggregate can be brought into the

form of a simply infinite series, and has, therefore,

the power of (I). Since, further, every sequence

(itself of the first power) of aggregates, each of

which has the first power, gives an aggregate of the

first power, it is clear that we obtain, by the con-

tinuation of our sequence in the above way, only

such numbers with which this condition is fulfilled.
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Cantor defined the totality of all the numbers a

formed by the help of the two principles

(II) o), CD+I, . . ., j.Qfo'^H-i/iw'^-H . . . +j/^_r+>,

such that all the numbers, from i on, preceding a

form an aggregate of the power of the first number-

class (I), as the ^^ second number-class (II)." The
power of (II) is different from that of (I), and is,

indeed, the next higher power, so that no other

power lies between them. Accordingly, the second

principle demands the creation of a new number (Q)

which follows all the numbers of (II) and is the

first of the third number-class (III), and so on.*

Thus, in spite of first appearances, a certain

completion can be given to the successive formation

of the numbers of (II) which is similar to that

limitation present with (I). There we only used

the first principle, and so it was impossible to

emerge from the series (I) ; but the second principle

must lead not only over (II), but show itself indeed

as a means, which, in combination with the first

principle, gives the capacity to break through every

limit in the formation of real integers. The above-

mentioned requirement, that all the numbers to

be next formed should be such that the aggregate

^' It is particularly to be noticed that the second principle will lake
us beyond any class, and is not merely adequate to form numbers which
are the limit-numbers of some enumerable series (so that a "third
principle " is required to form fl). The first and second principles

together form all the numbers considered, while the "principle of

limitation" enables us to define the various number-classes, of un-
brokenly ascending powers in the series of these numbers.
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of numbers preceding each one should be of a certain

power, was called by Cantor the third or limitation-

principle {Hemmungs- oder Beschrdnkungsprincip)*

and which acts in such a manner that the class (II)

defined with its aid can be shown to have a higher

power than (I) and indeed the next higher power to

it. In fact, the two first principles together define

an absolutely infinite sequence of integers, while the

third principle lays successively certain limits on

this process, so that we obtain natural segments

{Absclmitte), called number-classes, in this sequence.

Cantor's older (1873, 1878) conception of the

''power" of an aggregate was, by this, developed

and given precision. With finite aggregates the

power coincides with the enumeral of the elements,

for such aggregates have the same enumeral of

elements in every order. With infinite aggregates,

on the other hand, the transfinite numbers afford a

means of defining the enumeral of an aggregate, if

it be "well ordered," and the enumeral of such an

aggregate of given power varies, in general, with

the order given to the elements. The smallest

infinite power is evidently that of (I), and, now for

the first time, the successive higher powers also

receive natural and simple definitions ; in fact, the

power of the yth number class is the yth.

By a "well-ordered" aggregate,! Cantor under-

* "This principle (or requirement, or condition) circuaiscribes

{limits) each number-class."

t The origin of this conception can easily be seen to be the defining

of such aggregates as can be "enumerated" (using the word in the

wider sense of Cantor, given below) by the transtinite numbers. In

fact, the above definition of a wejl-ordered aggregate simply indicates
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stood any well-defined aggregate whose elements

have a given definite succession such that there is

2. first element, a definite element follows every one

(if it is not the last), and to any finite or infinite

aggregate a definite element belongs which is the

next following element in the succession to them

all (unless there are no following elements in the

succession). Two well-ordered aggregates are, now,

of the same enumeral (with reference to the orders

of succession of their elements previously given for

them) if a one-to-one correspondence is possible

between them such that, if E and F are any two

different elements of the one, and E' and F' the

corresponding elements (consequently different) of

the other, if E precedes or follows F, then E'

respectively precedes or follows F'. This ordinal

correspondence is evidently quite determinate, if it

is possible at all, and since there is, in the extended

number-series, one and only one number a such that

its preceding numbers (from i on) in the natural

succession have the same enumeral, we must put a

for the enumeral of both well-ordered aggregates, if

a is infinite, or a— I if a is finite.

The essential difference between finite and infinite

aggregates is, now, seen to be that a finite aggregate

has the same enumeral whatever the succession of

the construction of any aggregate of the class required when the first

two principles are used, but lo generate elements, not numbers.

An important property of a well-ordered aggregate,— indeed, a

characteristic property,— is that any series of terms in it, ^j , ao , . . .,

«^ , . . ., where «^+i precedes av , must be finite. Even if the well-

ordered aggregate in question is infinite, such a series as that described

can never be infinite.
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the elements may be, but an infinite aggregate has,

in general, different enumerals under these circum-

stances. However, there is a certain connexion

between enumeral and power—an attribute of the

aggregate which is independent of the order of the

elements. Thus, the enumeral of any well-ordered

aggregate of the first power is a definite number of

the second class, and every aggregate of the first

power can always be put in such an order that its

enumeral is any prescribed number of the second

class. Cantor expressed this by extending the

meaning of the word "enumerable" and saying:

Every aggregate of the power of the first class is

enumerable by numbers of the second class and only

by these, and the aggregate can always be so

ordered that it is enumerated by any prescribed

number of the second class ; and analogously for

the higher classes.

From his above remarks on the "absolute"*

* Cantor said "that, in the successive formation of number-classes,

we can always go farther, and never reach a limit that cannot be sur-

passed,—so that we never reach an even approximate comprehension
{Erfasseti) of the Absolute,— I cannot doubt. The Absolute can
only be recognized {anerkannt), but never apprehended {erkannt),

even approximately. For just as inside the first number-class, at any
finite number, however great, we always have the same ' power ' of

greater finite numbers before us, there follows any transfinite number
of any one of the higher number-classes an aggregate of numbers and
classes which has not in the least lost in ' power ' in comparison with the

whole absolutely infinite aggregate of numbers, from i on. The state

of things is like that described by Albrecht von Haller :
' ich zieh'

sie ab [die ungeheure ZahlJ und I^u [die Ewigkeit] liegst ganz vor mir.'

The absolutely infinite sequence of numbers thus seems to me to be, in

a certain sense, a suitable symbol of the Absolute ; whereas the infinity

of (I), which has hitherto served for that purpose, appears to me, just

because 1 hold it to be an idea (not presentation) that can be appre-

hended as a vanishing nothing in comparison with the former. It also

seems to me remarkable that every number-class—and therefore every
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infinity of the series of ordinal numbers and that of

powers, it was to be expected that Cantor would

derive the idea that any aggregate could be arranged

in a well-ordered series, and this he stated with a

promise to return to the subject later.*

The addition and multiplication of the transfinite

(including the finite) numbers was thus defined by

Cantor. Let M and M^ be well-ordered aggregates

of enumerals a and ^, the aggregate which arises

when first M is posited and then M^^, following it,

and the two are united is denoted M -f M^ and its

enumeral is defined to be a-\- ^. Evidently, if a

and /3 are not both finite, a + /3 is, in general,

different from /^ + a. It is easy to extend the con-

cept of sum to a finite or transfinite aggregate of

summands in a definite order, and the associative

law remains valid. Thus, in particular,

a + (/3 + y)-(a+iS) + y.

If we take a succession (of enumeral /3) of equal

and similarly ordered aggregates, of which each is

of enumeral «, we get a new well-ordered aggregate,

whose enumeral is defined to be the product y8a,

power—corresponds to a definite number of the absolutely infinite

totality of numbers, and indeed reciprocally, so that corresponding to

any transfinite number 7 there is a (7th) power ; so that the various

powers also form an absolutely infinite sequence. This is so much the

more remarkable as the number 7 which gives the rank of a power
(provided that 7 has an immediate predecessor) stands, to the numbers
of that number-class which has this power, in a magnitude-relation

whose smallness mocks all description,—and this the more 7 is taken to

be greater."
* With this is connected the promise to prove later that the power c)f

the continuum is that of (11), as stated, of course in other words, in 1878.

See the Notes at the end oi^ this book.
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where ^ is the multiplier and a the multiplicand.

Here also /3a is, in general, different from a^ ; but

we have, in general,

a(,%) = (a/3)y.

Cantor also promised an investigation of the

''prime number-property " of some of the transfinite

numbers * a proof of the non-existence of infinitely

small numbers,! and a proof that his previous

theorem on a point-aggregate P in an ^2-dimensional

domain that, if the derivate P^'^^ where « is any
integer of (I) or (11), vanishes, P', and hence P, is

of the first power, can be thus inverted : If P is

such a point-aggregate that P' is of the first power,

there is an integer a of (1) or (II) such that P('^> = o,

and there is a smallest of such a's. This last

theorem shows the importance of the transfinite

numbers in the theory of point-aggregates.

Cantor's proof that the power of (II) is different

from that of (I) is analogous to his proof of the

non-enumerability of the continuum. Suppose that

we could put (II) in the form of a simple series :

(7) ai, 02, . . ., a^, . . .,

we shall define a number which has the properties

both of belonging to (II) and of not being a member
of the series (7) ; and, since these properties are

contradictory of one another if the hypothesis be

granted, we must conclude that (II) cannot be put

* The property in question is: A "prime-number" a is such that
the resolution a. = ^y is only possible when /8= i or j8 = a.

t See the next section.
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in the form (7), and therefore has not the power of

(I). Let a^ be the first number of (i) which is

greater than ai, a^ the first greater than a^ , and
i 2

so on ; so that we have

and
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them, for any aggregate of numbers of (I) and (II)

is of the power of (I) or (II). In fact, this aggregate

Zj, when arranged in order of magnitude, is well-

ordered, and may be represented by

(a/s), (/5 = w, o) + I , . . . a, . . .

)

where we always have P<Q, where Q is the first

number of (III); and consequently (a^) is either

finite or of the power of (I) or of that of (II),

quartuin non datur. From this results the theorem :

If N is any well-defined aggregate of the second

power, M' is a part of M and M'' is a part of M',

and we know that M'' is of the same power as M,
then M' is of the same power as M, and therefore

as M'' ; and Cantor remarked that this theorem is

generally valid, and promised to return to it.*

Though the commutative law does not, in general,

hold with the transfinite numbers, the associative

law does, but the distributive law is only generally

valid in the form :

(a+ /3)y = ay+ ^y,

where a + ^, a, and /3 are multipliers, ''as we im-

mediately recognize by inner intuition."

The subtraction, division, prime numbers, and

addition and multiplication of numbers which can

be put in the form of a rational and integral function

of o) of the transfinite numbers were then dealt with

* From the occurrence of this theorem on p. 484 of the Math. Ann.,
xlvi, 1895, which we now know (see the note on p. 204 below) to have
been a forestalling of the theorem that any aggregate can be well-ordered,

we may conclude that this latter theorem was used in this instance.
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much In the same way as in the memoir of 1897
translated below. In the later memoir the subject

is|itreated far more completely, and was drawn up
with far more attention to logical form than was the

Grundlagen.

An interesting part of the Grundlagen is the

discussion of the conditions under which we are to

regard the introduction into mathematics of a new
conception, such as w, as justified. The result of

this discussion was already indicated by the way in

which Cantor defined his new numbers :
" We may

regard the whole numbers as ' actual ' in so far as|

they, on the ground of definitions, take a perfectly

determined place in our understanding, are clearly

distinguished from all other constituents of our

thought, stand in definite relations to them, and

thus modify, in a definite way, the substance of

our mind." We may ascribe *' actuality " to them
'' in so far as they must be held to be an expression

or an image {Abbild) of processes and relations in

the outer world, as distinguished from the intellect."

Cantor's position was, now, that while there is no

doubt that the first kind of reality always implies

the second,* the proof of this is often a most

difficult metaphysical problem ; but, in pure mathe-

matics, we need only consider the first kind of

reality, and consequently "mathematics is, in its

development, quite free, and only subject to the

* This, according to Cantor, is a consequence of "the unity of the

All, to which we ourselves belong," and so, in pu7'e mathematics, we
need only pay attention to the reality of our conceptions in the first

Sense, as stated in the text.
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self-evident condition that its conceptions are both

free from contradiction in themselves and stand

in fixed relations, arranged by definitions, to

previously formed and tested conceptions. In

particular, in the introduction of new numbers, it

is only obligatory to give such definitions of them

as will afford them such a definiteness, and, under

certain circumstances, such a relation to the older

numbers, as permits them to be distinguished from

one another in given cases. As soon as a number

satisfies all these conditions, it can and must be

considered as existent and real in mathematics. In

this I see the grounds on which we must regard the

rational, irrational, and complex numbers as just as

existent as the positive integers."

There is no danger to be feared for science from

this freedom in the formation of numbers, for, on

the one hand, the conditions referred to under which

this freedom can alone be exercised are such that

they leave only a very small opportunity for arbi-

trariness ; and, on the other hand, every mathe-

matical conception has in itself the necessary

corrective,—if it is unfruitful or inconvenient, it

shows this very soon by its unusability, and is

then abandoned.

To support the idea that conceptions in pure

mathematics are free, and not subject to any

metaphysical control. Cantor quoted the names

of, and the branches of mathematics founded by,

some of the greatest mathematicians of the nineteenth

century, among which an especially instructive
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example in Kummer's introduction of his *' ideal"

numbers into the theory of numbers. But " applied "

mathematics, such as analytical mechanics and

physics, is metaphysical both in its foundations

and in its ends. " If it seeks to free itself of this,

as was proposed lately by a celebrated physicist,*

it degenerates into a 'describing of nature,' which

must lack both the fresh breeze of free mathematical

thought and the power of explanation and grounding

of natural appearances.

"

The note of Cantor's on the process followed in

the correct formation of conceptions is interesting.

In his judgment, this process is everywhere the same
;

we posit a thing without properties, which is at first

nothing else than a name or a sign A, and give it

in order different, even infinitely many, predicates,

whose meaning for ideas already present is known,

and which may not contradict one another. By
this the relations of A to the conception already

present, and in particular to the allied ones, are

determined ; when we have completed this, all the

conditions for the awakening of the conception A,

which slumbers in us, are present, and it enters

completed into "existence" in the first sense; to

prove its
'

' existence " in the second sense is then

a matter of metaphysics.

This seems to support the process by which Heine,

* This is evidently Kirchhoff. As is well known, Kirchhoft" pro-

posed ( Vorlesungen iiber mathemaiische Physik, vol. i, Mechanik,
Leipzig, 1874) this. Cf. E. Mach in his prefaces to his Mechanics
(3rd ed., Chicago and London, 1907 ; Supplementary Volume, Chicago
and London, 191 5), and Popular Scientijic Lecitires, 3rd ed., Chicago
and London, 1898, pp. 236-258.
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in a paper partly inspired by his discussions with

Cantor, defined the real numbers as signs, to which

subsequently various properties were given. But

Cantor himself, as we shall see later, afterwards

pointed out emphatically the mistake into which

Kronecker and von Helmholtz fell when they started

in their expositions of the number-concept with the

last and most unessential thing—the ordinal words

or signs—in the scientific theory of number ; so that

we must, I think, regard this note of Cantor's as

an indication that, at this time (1882), he was a

supporter of the formalist theory of number,—or at

least of rational and real non-integral numbers.

In fact, Cantor's notions as to what is meant
by ''existence" in mathematics—notions which

are intimately connected with his introduction of

irrational and transfinite numbers—were in substance

identical with those of Hankel (1867) on "possible

or impossible numbers." Hankel was a formalist,

though not a consistent one, and his theory was
criticized with great acuteness by Frege in 1884.

But these criticisms mark the beginning of the

logical theory of mathematics, Cantor's earlier work
belonging to Xh^ formal stage, and his later work to

what may be called the psychological stage.

Finally, Cantor gave a discussion and exact de-

termination of the meaning of the conception of

''continuum." After briefly referring to the dis-

cussions of this concept due to Leucippus, Demo-
critus, Aristotle, Epicurus, Lucretius, and Thomas
Aquinas, and emphasizing that we cannot begin, in
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this determination, with the conception of time or

that of space, for these conceptions can only be

clearly explained by means of a continuity-concep-

tion which must, of course, be independent of them,

he started from the /^-dimensional plane aritJinietical

space G,„ that is to say, the totality of systems of

values

in which every x can receive any real value from

— 00 to -f 00 independently of the others. Every

such system is called an ''arithmetical point" of

G„, the "distance" of two such points is defined

by the expression

+ x/{(-^'i-n)'+(-^-'2-^.)'+ • • • +(;^„-^,y),

and by an ''arithmetical point-aggregate" P con-

tained in G„ is meant any aggregate of points

G;, selected out of it by a law. Thus the investi-

gation comes to the establishment of a sharp and

as general as possible a definition which should

allow us to decide when P is to be called a '

' con-

tinuum."

If the first derivative P' is of the power of (I),

there is a first number a of (I) or (II) for which

p(*) vanishes ; but if P' is not of the power of (I),

V can be always, and in only one way, divided into

two aggregates R and S, where R is "reducible,"

—that is to say, such that there is a first number y
of (I) or (II) such that

R(v)= o,—
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and S is such that derivation does not alter it. Then

and consequently also

and S is said to be "perfect." No aggregate can

be both reducible and perfect, "but, on the other

hand, irreducible is not so much as perfect, nor

imperfect exactly the same as reducible, as we
easily see with some attention."

Perfect aggregates are by no means always every-

where dense ; an example of such an aggregate

which is everywhere dense in no interval was given

by Cantor. Thus such aggregates are not fitted

for the complete definition of a continuum, although

we must grant that the continuum must be perfect.

The other predicate is that the aggregate must be

connected (zusaminenhdngend), that is to say, if t

and f are any two of its points and e a given arbi-

trarily small positive number, a finite number of

points /j, ^2? • • •) ^^ of P exist such that the dis-

tances
/^i,

t^t^^ . . ., K^' 3.re all less than e.

"All the geometric point-continua known to us

are, as is easy to see, connected ; and I believe,

now, that I recognize in these two predicates

'perfect' and 'connected' the necessary and sufficient

characteristics of a point-continuum."

Bolzano's (185 1) definition of a continuum is

certainly not correct, for it expresses only 07ie

property of a continuum, which is also possessed by
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aggregates which arise from G„ when any isolated

aggregate is removed from it, and also in those

consisting of many separated continua. Also

Dedekind * appeared to Cantor only to emphasize

rt;;/^///^;- property of a continuum, namely, that which

it has in common with all other perfect aggregates.

We will pass over the development of the theory

of point-aggregates subsequently to 1882—Ben-

dixson's and Cantor's researches on the power of

perfect aggregates. Cantor's theory of '
' adherences "

and "coherences," the investigations of Cantor,

Stolz, Harnack, Jordan, Borel, and others on the

"content" of aggregates, and the applications of

the theory of point-aggregates to the theory of

functions made by Jordan, Broden, Osgood, Baire,

Arzela, Schoenflies, and many others,—and will now
trace the development, in Cantor's hands, of the

theory of the transfinite cardinal and ordinal numbers

from 1883 to 1895.

VIII

An account of the development that the theory

of transfinite numbers underwent in Cantor's mind

from 1883 to 1890 is described in his articles

published in the ZeitscJirift fiir PJiilosophie tmd

pJiilosophiscJie Kritik for 1887 and 1888, and

collected and published in 1890 under the title Zur
Lehre vojh Transfiniten. A great part of this little

book is taken up with detailed discussions about

philosophers' denials of the possibility of infinite

* Essays on Number^ p. U.
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numbers, extracts from letters to and from philo-

sophers and theologians, and so on.* "All so-

called proofs of the impossibility of actually infinite

numbers," said Cantor, "are, as may be shown in

every particular case and also on general grounds,

false in that they begin by attributing to the

numbers in question all the properties of finite

numbers, whereas the infinite numbers, if they are

to be thinkable in any form, must constitute quite

a new kind of number as opposed to the finite

numbers, and the nature of this new kind of number

is dependent on the nature of things and is an object

of investigation, but not of our arbitrariness or our

prejudice.

"

In 1883 Cantor had begun to lecture on his view

of whole numbers and types of order as general

concepts or universals {unuvi versus alia) which

relate to aggregates and arise from these aggregates

when we abstract from the nature of the elements.

" Every aggregate of distinct things can be regarded

as a unitary thing in which the things first mentioned

are constitutive elements. If we abstract both from

the nature of the elements and from the order in

which they are given, we get the ' cardinal number

'

or * power ' of the aggregate, a general concept in

which the elements, as so-called units, have so

grown organically into one another to make a

unitary whole that no one of them ranks above the

others. Hence results that two different aggregates

have the same cardinal number when and only when

* Cy. § VII, near the beginning.
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they are what I call ' equivalent ' to one another,

and there is no contradiction when, as often happens

with infinite aggregates, two aggregates of which

one is a part of the other have the same cardinal

number. I regard the non-recognition of this fact

as the principal obstacle to the introduction of

infinite numbers. If the act of abstraction referred

to, when we have to do with an aggregate ordered

according to one or many relations (dimensions), is

only performed with respect to the nature of the

elements, so that the ordinal rank in which these

elements stand to one another is kept in the general

concept, the organic whole arising is what 1 call

' ordinal type,' or in the special case of well-ordered

aggregates an 'ordinal number.' This ordinal

number is the same thing that I called, in my
Grundlage7i of 1883, the ' enumeral (Anzahl) of a

well-ordered aggregate.' Two ordered aggregates

have one and the same ordinal type if they stand

to one another in the relation of 'similarity,'

which relation will be exactly defined. These are

the roots from which develops with logical necessity

the organism of transfinite theory of types and in

particular of the transfinite ordinal numbers, and

which I hope soon to publish in a systematic form."

The contents of a lecture given in 1883 were also

given in a letter of 1884. In it was pointed out

that the cardinal number of an aggregate M is the

general concept under which fall all aggregates

equivalent to M, and that :

" One of the most important problems of the
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theory of aggregates, which I believe I have solved

as to its principal part in my Grundlagen^ consists

in the question of determining the various powers

of the aggregates in the whole of nature, in so far

as we can know it. This end I have reached by

the development of the general concept of enumeral

of well-ordered aggregates, or, what is the same

thing, of the concept of ordinal number." The
concept of ordinal number is a special case of the

concept of ordinal type, which relates to any simply

or multiply ordered aggregate in the same way as

the ordinal number to a well-ordered aggregate.

The problem here arises of determining the various

ordinal numbers in nature.

When Cantor said that he had solved the chief

part of the problem of determining the various

powers in nature, he meant that he had almost

proved that the power of the arithmetical continuum

is the same as the power of the ordinal numbers of

the second class. In spite of the fact that Cantor

firmly believed this, possibly on account of the fact

that all known aggregates in the continuum had

been found to be either of the first power or of the

power of the continuum, the proof or disproof of

this theorem has not even now been carried out,

and there is some ground for believing that it

cannot be carried out.

What Cantor, in his Grundlagen^ had noted as the

relation of two well-ordered aggregates which have

the same enumeral was here called the relation of

*' i?imilarity," and in the laws of multiplication of



INTRODUCTION 77

two ordinal numbers he departed from the custom

followed in the Gnindlagen and wrote the multiplier

on the right and the multiplicand on the left. The

importance of this alteration is seen by the fact

that we can write : a^ .a^ = a^^'^ ;
whereas we would

have to write, in the notation of the Grundlagen :

At the end of this letter, Cantor remarked that

a) may, in a sense, be regarded as the limit to which

the variable finite whole number v tends. Here " w is

the least transfinite ordinal number which is greater

than all finite numbers ; exactly in the same way

that J 2 \s the limit of certain variable, increasing,

rational numbers, with this difference : the difference

between J 2 and these approximating fractions be-

comes as small as we wish, whereas w — v is always

equal to w. But this difference in no way alters the

fact that 0) is to be regarded as as definite and com-

pleted as J 2, and in no way alters the fact that 00

has no more trace of the numbers v which tend to it

than J 2 has of the approximating fractions. The

transfinite numbers are in a sense new h^rationalities,

and indeed in my eyes the best method of defining

finite irrational numbers is the same in principle as

my method of introducing transfinite numbers. We
can say that the transfinite numbers stand or fall

with finite irrational numbers, in their inmost being

they are alike, for both are definitely marked off

modifications of the actually infinite."

With this is connected in principle an extract from
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a letter written in 1886: ''Finally I have still to

explain to you in what sense I conceive the minimum
of the transfinite as limit of the increasing finite.

For this purpose we must consider that the concept

of ' limit ' in the domain of finite numbers has two

essential characteristics. For example, the number

I is the limit of the numbers z^=\ — \\v^ where v is

a variable, finite, whole number, which increases

above all finite limits. In the first place the

difference \—z^ is a magnitude which becomes in-

finitely small ; in the second place i is the least of

all numbers which are greater than all magnitudes z^.

Each of these two properties characterizes the finite

number i as limit of the variable magnitude z^

.

Now if we wish to extend the concept of limit to

transfinite limits as well, the second of the above

characteristics is used ; the first must here be

allowed to drop because it has a meaning only for

finite limits. Accordingly 1 call w the limit of the

increasing, finite, whole numbers v , because to is the

least of all numbers which are greater than all the

finite numbers. But co — 1/ is always equal to co, and

therefore we cannot say that the increasing numbers

V come as near as we wish to w ; indeed any number

V however great is quite as far off from co as the least

finite number. Here we see especially clearly the

very important fact that my least transfinite ordinal

number (o, and consequently all greater ordinal

numbers, lie quite outside the endless series i, 2, 3,

and so on. Thus w is not a maximum of the finite

numbers, for there is no such thing.

"
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In another letter written in 1886, Cantor empha-

sized another aspect of irrational numbers. In all

of the definitions of these numbers there is used,

as is indeed essential, a special actually infinite

aggregate of rational numbers. In both this and

another letter of 1886, Cantor returned in great

detail to the distinction between the "potential"

and "actual" infinite of which he had made a great

point under other names in his Gvundlagen. The
potential infinite is a variable finite, and in order

that such a variable may be completely known, we
must be able to determine the domain of variability,

and this domain can only be, in general, an actually

infinite aggregate of values. Thus every potential

infinite presupposes an actually infinite, and these

"domains of variability" which are studied in the

theory of aggregates are the foundations of arith-

metic and analysis. Further, besides actually infinite

aggregates, we have to consider in mathematics

natural abstractions from these aggregates, which

form the material of the theory of transfinite

numbers.

In 1885, Cantor had developed to a large extent

his theory of cardinal numbers and ordinal types.

In the fairly long paper which he wrote out, he

laid particular stress on the theory of ordinal types

and entered into details which he had not published

before as to the definition of ordinal type in general,

of which ordinal number is a particular case. In

this paper also he denoted the cardinal number of

an aggregate M by M, and the ordinal type of
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M by M ; thus indicating by lines over the letter

that a double or single act of abstraction is to

be performed.

In the theory of cardinal numbers, he defined the

addition and multiplication of two cardinal numbers

and proved the fundamental laws about them in

much the same way as he did in the memoir of

1895 which is translated below. It is characteristic

of Cantor's views that he distinguished very sharply

between an aggregate and a cardinal number that

belongs to it : "Is not an aggregate an object out-

side us, whereas its cardinal number is an abstract

picture of it in our mind ?
"

In an ordered aggregate of any number of

dimensions, such as the totality of points in space,

as determined by three rectangular co-ordinates, or

a piece of music whose dimensions are the sequence

of the tones in time, the duration of each tone in

time, the pitch of the tones, and the intensity of the

tones, then *

' if we make abstraction of the nature

of the elements, while we retain their rank in all the

n different directions, an intellectual picture, a general

concept, is generated in us, and I call this the /^-ple

ordinal type." The definition of the " similarity of

ordered aggregates " is :

"Two ;/-ply ordered aggregates M and N are

called similar if it is possible so to make their

elements correspond to another uniquely and com-

pletely that, if E and E' are any two elements of

M and F and F' the two corresponding elements of

N, then for i/= i, 2, . . . n the relation of rank of
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E to E' in the jyth direction inside the aggregate M
is exactly the same as the relation of rank of F to F'

in the v\\\ direction inside the aggregate N. We
will call such a correspondence of two aggregates

which are similar to one another an imaging of the

one on the other."

The addition and multiplication of ordinal types,

and the fundamental laws about them, were then

dealt with much as in the memoir of 1895 which is

translated below. The rest of the paper was devoted

to a consideration of problems about ;^-ple finite

types.

In 1888, Cantor, who had arrived at a very clear

notion that the essential part of the concept of number

lay in the unitary concept that we form, gave some

interesting criticisms on the essays of Helmholtz and

Kronecker, which appeared in 1887, on the concept

of number. Both the authors referred to started

with the last and most unessential feature in our

treatment of ordinal numbers : the words or other

signs that we use to represent these numbers.

In 1887, Cantor gave a more detailed proof of the

non-existence of actually infinitely small magnitudes.

This proof was referred to in advance in the Grund-

lagen, and was later put into a more rigorous form

by Peano.

We have already referred to the researches of

Cantor on point-aggregates published in 1883 and

later ; the only other paper besides those already

dealt with that was published by Cantor on an

important question in the theory of transfinite
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numbers was one Ipublished in 1892. In this paper

we can see the origins of the conception of ' * cover-

ing" {Belegmig) defined in the memoir of 1895 trans-

lated below. In the terminology introduced in this

memoir, we can say that the paper of 1892 contains

a proof that 2, when exponentiated by a transfinite

cardinal number, gives rise to a cardinal number

which is greater than the cardinal number first

mentioned.

The introduction of the concept of "covering" is

the most striking advance in the principles of the

theory of transfinite numbers from 1885 to 1895,

and we can now study the final and considered form

which Cantor gave to the theory in two important

memoirs of 1895 ^"^ 1897. The principal advances

in the theory since 1897 will be referred to in the

notes at the end of this book.
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[48i] CONTRIBUTIONS TO THE
FOUNDING OF THE THEORY OF

TRANSFINITE NUMBERS

(First Article)

" Hypotheses non fingo."

" Neque enim leges intellectui aut rebus damus
ad arl)itrium nostrum, sed tanquam scribal

fideles ab ipsius naturae voce latas et prolatas

excipimus et describimus."

"Veniet tempus, quo ista quae nunc latent, in

lucem dies extrahat et longioris xvi diligentia."

The Conception of Power or Cardinal Number

By an ^

' aggregate " {Menge) we are to understand

any collection into a whole {Zusaimnenfassung zu

einem Ganzen) M of definite and separate objects ;;/

of our intuition or our thought. These objects are

called the '

' elements " of M.

In signs we express this thus :

(i) M = {;;/}.

We denote the uniting of many aggregates M, N,

P, . . ., which have no common elements, into a

single aggregate by

(2) (M, N, P, . . .).

85
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The elements of this aggregate are, therefore, the

elements of M, of N, of P, . . ., taken together.

We will call by the name "part" or "partial

3-ggi'egate " of an aggregate M any other aggregate

Mj whose elements are also elements of M.

If M2 is a part of M^ and M^ is a part of M, then

M2 is a part of M.

Every aggregate M has a definite " power," which

we will also call its "cardinal number."

We will call by the name " power" or "cardinal

number " of M the general concept which, by means

of our active faculty of thought, arises from the

aggregate M when we make abstraction of the

nature of its various elements in and of the order

in which they are given.

[482] We denote the result of this double act of

abstraction, the cardinal number or power of M, by

(3) M.

Since every single element vi, if we abstract from

its nature, becomes a "unit," the cardinal number

M is a definite aggregate composed of units, and

this number has existence in our mind as an intel-

lectual image or projection of the given aggregate M.

We say that two aggregates M and N are '

' equi-

valent," in signs

(4) M 00 N or N fV) M,

if it is possible to put them, by some law, in such a

relation to one another that to every element of each

onelof them corresponds one and only one element
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of the other. To every part Mj of M there corre-

sponds, then, a definite equivalent part N^ of N, and

inversely.

If we have such a law of co-ordination of two

equivalent aggregates, then, apart from the case

when each of them consists only of one element, we
can modify this law in many ways. We can, for

instance, always take care that to a special element

in^ of M a special element n^ of N corresponds. For

if, according to the original law, the elements ni^

and Uq do not correspond to one another, but to the

element m^ of M the element n^^ of N corresponds,

and to the element n^ of N the element in^ of M
corresponds, we take the modified law according to

which m^ corresponds to n^ and m^ to n^ and for the

other elements the original law remains unaltered.

By this means the end is attained.

Every aggregate is equivalent to itself

:

(5) M 00 M.

If two aggregates are equivalent to a third, they are

equivalent to one another ; that is to say :

(6) from M 00 P and N 00 P follows M 00 N.

Of fundamental importance is the theorem that

two aggregates M and N have the same cardinal

number if, and only if, they are equivalent : thus,

(7) from M 00 N we get M = N,

and

(8) from M = N we get M 00 N.

Thus the equivalence of aggregates forms the neces-
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sary and sufficient condition for the equality of their

cardinal numbers.

[483] In fact, according to the above definition of

power, the cardinal number M remains unaltered if

in the place of each of one or many or even all

elements in of M other things are substituted. If,

now, M 00 N, there is a law of co-ordination by

means of which M and N are uniquely and recipro-

cally referred to one another ; and by it to the

element in of M corresponds the element n of N.

Then we can imagine, in the place of every element

m of M, the corresponding element /^ of N substi-

tuted, and, in this way, M transforms into N without

alteration of cardinal number. Consequently

M = N.

The converse of the theorem results from the re-

mark that between the elements of J^I and the

different units of its cardinal number M a recipro-

cally univocal (or bi-univocal) relation of correspond-

ence subsists. For, as we saw, M grows, so to

speak, out of M in such a way that from every

element ;;/ of M a special unit of M arises. Thus

we can say that

(9) M 00 M.

In the same way N 00 N. If then M = N, we have,

by (6), M 00 N.

We will mention the following theorem, which

results immediately from the conception of equival-



OF TRANSFINITE NUMBERS 89

ence. If M, N, P, . . . are aggregates which have

no common elements, M', N", P', . . . are also aggre-

gates with the same property, and if

M 00 M', N 00 N; P cv) P^ . . .

,

then we always have

(M, N, P, . . .) fNJ (M; N', P; . . .).

§2

*' Greater" and <* Less " with Powers

If for two aggregates M and N with the cardinal

numbers a=M and b = N, both the conditions :

{a) There is no part of M which is equivalent to N,

{b) There is a part N^ of N, suCh that N^ 00 M,

are fulfilled, it is obvious that these conditions still

hold if in them M and N are replaced by two

equivalent aggregates M' and N'. Thus they ex-

press a definite relation of the cardinal numbers

a and b to one another.

[484] P'urther, the equivalence of M and N, and

thus the equality of a and b, is excluded ; for if we
had M 00 N, we would have, because N^ f\j M, the

equivalence N^ po N, and then, because M 00 N,

there would exist a part Mj of M such that M^ oo M,

and therefore wg should have Mj oo N ; and this

contradicts the condition {a).

Thirdly, the relation of a to b is such that it

makes impossible the same relation of b to vi ; for if
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in ia) and {b) the parts played by M and N are

interchanged, two conditions arise which are con-

tradictory to the former ones.

We express the relation of a to b characterized by

{a) and ip) by saying: a is "less" than b or b is

"greater " than a ; in signs

(i) a<b or \i>(x.

We can easily prove that,

(2) if a<b and b<c, then we always have a<c.

Similarly, from the definition, it follows at once

that, if ?i is part of an aggregate P, from a<Pi

follows a < P and from P < b follows P^ < b.

We have seen that, of the three relations

a = b, (x<^, \i<(x,

each one excludes the two others. On the other

hand, the theorem that, with any two cardinal

numbers a and b, one of those three relations must

necessarily be realized, is by no means self-evident

and can hardly be proved at this stage.

Not until later, when we shall have gained a

survey over the ascending sequence of the transfinite

cardinal numbers and an insight into their connexion,

will result the truth of the theorem :

A. If a and b are any two cardinal numbers, then

either a = b or a < b or a > b.

P>om this theorem the following theorems, of

which, however, we will here make no use, can be

very simply derived :
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B. If two aggregates M and N are such that M is

equivalent to a part N^ of N and N to a part Mj of

M, then M and N are equivalent
;

C. If Mj is a part of an aggregate M, Mg is a

part of the aggregate Mj, and if the aggregates

M and Mg are equivalent, then Mj is equivalent to

both M and Mg
;

D. If, with two aggregates M and N, N is

equivalent neither to M nor to a part of M, there is

a part Nj of N that is equivalent to M
;

E. If two aggregates M and N are not equivalent,

and there is a part N^ of N that is equivalent to M,

then no part of M is equivalent to N.

[485] § 3

The Addition and Multiplication of Powers

The union of two aggregates M and N which

have no common elemeijts was denoted in § i, (2),

by (M, N). We call it the ''union-aggregate

( Vereinigungsinenge) of M and N.

"

If M' and N' are two other aggregates without

common elements, and if M 00 M' and N 00 N', we
saw that we have

(M, N) 00 (M', N').

Hence the cardinal number of (M, N) only depends

upon the cardinal numbers M = a and N = b.

This leads to the definition of the sum of vi and b.

We put '

(I) a+ b = (M7>^).
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Since in the conception of power, we abstract from

the order of the elements, we conclude at once that

(2) a+ b = b + a;

and, for any three cardinal numbers a, b, c, we have

(3) a+ (b + c) = (a + b) + c.

We now come to multiplication. Any element vi

of an aggregate M can be thought to be bound up

with any element n of another aggregate N so as

to form a new element {m, n) ; we denote by (M . N)

the aggregate of all these bindings (w, n)^ and call

it the ''aggregate of bindings {Verbindungsniejige)

ofMandN." Thus

(4) (M.N) = {K;.)}.

We see that the power of (M . N) only depends on

the powers M = a and N = b ; for, if we replace the

aggregates M and N by the aggregates

W = {m) and N' = {;/}

respectively equivalent to them, and consider in, in'

and ft, n' as corresponding elements, then the

aggregate
(M'.N') = {(^^/, n))

is brought into a reciprocal and univocal corre-

spondence with (M . N) by regarding {in, n) and

{in' , n') as corresponding elements. Thus

(5) (m;no<^^(m.n).

We now define the product vi . b by the equation

(6) a.b = (M.N).
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[486] An aggregate with the cardinal number

a . b may also be made up out of two aggregates M
and N with the cardinal numbers a and b according

to the following rule : We start from the aggregate

N and replace in it every element n by an aggregate

M„ fNJ M ; if, then, we collect the elements of all

these aggregates M„ to a whole S, we see that

(7) S ro (M . N),

and consequently

S = a.b.

For, if, with any given law of correspondence of the

two equivalent aggregates M and M,,, we denote

by in the element of M which corresponds to the

element m^ of M„, we have

(8) S^ {;;/.};

and thus the aggregates S and (M . N) can be re-

ferred reciprocally and univocally to one another by

regarding ni^ and {in, n) as corresponding elements.

From our definitions result readily the theorems :

(9) a.b = b.a,

(10) a.(b . c) = (a. b). c,

(11) a(b + c) = ab+ ac;

because :

(M.N)r>o(N.M),

(M.(N.P)) 00 ((M.N). P),

(M . (N, P)) fNj ((M . N), (M . P)).

Addition and multiplication of powers arc subject,
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therefore, to the commutative, associative, and dis-

tributive laws.

§4

The Exponentiation of Powers

By a " covering of the aggregate N with elements

of the aggregate M," or, more simply, by a ''cover-

ing of N with M," we understand a law by which

with every element n of N a definite element of M
is bound up, where one and the same element of M
can come repeatedly into application. The element

of M bound up with n is, in a way, a one-valued

function of n, and may be denoted by f{}i) ; it is

called a '' covering function of n.'' The correspond-

ing covering of N will be called /(N).

[487] Two coverings /i(N) and/2(N) are said to

be equal if, and only if, for all elements ;^ of N the

equation

(I) /lW=/2(«)

is fulfilled, so that if this equation does not subsist

for even a single element n^n^, f^{^) and/2(N) are

characterized as different coverings of N. For ex-

ample, if vi^ is a particular element of M, we may
fix that, for all n'?>

f{n) = m^;

this law constitutes a particular covering of N with

M. Another kind of covering results if ui^ and m^
are two different particular elements of M and n^ a

particular element of N, from fixing that
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/(«o) = ^'^o

for all ;2's which are different from n^.

The totality of different coverings of N with M
forms a definite aggregate with the elements /(N)

;

we call it the ** covering-aggregate (yBelegungsvienge)

of N with M " and denote it by (N
|
M). Thus :

(2) (N |M)={/(N)}.

If M 00 M' and N Oo N', we easily find that

(3) (N
I

M) 00 (N'
I

MO.

Thus the cardinal number of (N
|
M) depends only

on the cardinal numbers M = a and N = b ; it serves

us for the definition of a* :

(4) a» = (N^r).

For any three aggregates, M, N, P, we easily prove

the theorems:

. (5) ((N |M).(P|M))f\j((N, P)|M),

(6) ((P| M).(P|N))<N;(P|(M.N)),

(7) (P|(N| M))'\^((P.N)|M),

from which, if we put P = c, we have, by (4) and by

paying attention to § 3, the theorems for any three

cardinal numbers, a, b, and c

:

(8)
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[488] We see how pregnant and far-reaching

these simple formulae extended to powers are by the

following example. If we denote the power of the

linear continuum X (that is, the totality X of real

numbers x such that x>^ and <i) by 0, we easily

see that it may be represented by, amongst others,

the formula :

(II) r o = 2^\

where § 6 gives the meaning of Nq. In fact, by (4),

2^0 is the power of all representations

(-) .=^+f>+...+f>+...
(where f{v) = O or i

)

of the numbers x in the binary system. If we pay

attention to the fact that every number x is only

represented once, with the exception of the numbers

x= <i, which are represented twice over, we

have, if we denote the "enumerable" totality of

the latter by {s^],

2«o= ({j4, X).

If we take away from X any " enumerable " aggre-

gate {t^} and denote the remainder by X^, we have :

({sA, X)=({^4, {4}, X,),

so

Xco(K}, X),
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and thus (§ i)

2^"= X = 0.

From (11) follows by squaring (by § 6, (6))

and hence, by continued multiplication by 0,

(13) o''=o,

where v is any finite cardinal number.

If we raise both sides of (11) to the power* ^j^

we get ^

But since, by § 6, (8), No.^^o = ^^o,
we have

(14) o^''*° = o.

The formulae (13) and (14) mean that both the

jy-dimensional and the {s?Q-dimensional continuum have

the power of the one-dimensional continuum. Thus

the whole contents of my paper in Crelle's Journal^

vol. Ixxxiv, i878,t are derived purely algebraically

with these few strokes of the pen from the fundamental

formulae of the calculation with cardinal numbers.

[489] § 5

The Finite Cardinal Numbers

We will next show how the principles which we
have laid down, and on which later on the theory

of the actually infinite or transfinite cardinal numbers

* [In English there is an ambiguity.]

t [See Section V of the Introduction.]
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will be built, afford also the most natural, shortest,

and most rigorous foundation for the theory of

finite numbers.

To a single thing e^, if we subsume it under the

concept of an aggregate Eo = (^o)'
corresponds as

cardinal number what we call ''one" and denote by

I ; we have

(1) i = Eo.

Let us now unite with E^ another thing e^, and

call the union-aggregate E^, so that

(2) t:i = (Ko, e^ = {e^, e^).

The cardinal number of E^ is called "two" and is

denoted by 2 :

(3) 2=1,.

By addition of new elements we get the series of

aggregates

E2 = (Ei, ^2)' E3 = (E2, ^3), . . .,

which give us successively, in unlimited sequence,

the other so-called
'

' finite cardinal numbers " de-

noted by 3, 4, 5, . . . The use which we here

make of these numbers as suffixes is justified by

the fact that a number is only used as a suffix

when it has b"een defined as a cardinal number.

We have, if by i/— i is understood the number im-

mediately preceding v in the above series,

(4) j/ = E,_i,

(5) E,-(E,_i, O = (^o' ^D • • • ^^)'
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From the definition of a sum in § 3 follows :

(6) E,-E,_i+i;

that is to say, every cardinal number, except i, is

the sum of the immediately preceding one and i.

Now, the following three theorems come into the

foreground :

A. The terms of the unlimited series of finite

cardinal numbers

are all different from one another (that is to say,

the condition of equivalence established in § I is

not fulfilled for the corresponding aggregates).

[490] B. Every one of these numbers v is greater

than the preceding ones and less than the following

ones (§2).

C. There are no cardinal numbers which, in

magnitude, lie between two consecutive numbers

V and J^+ I (§ 2).

We make the proofs of these theorems rest on

the two following ones, D and E. We shall, then,

in the next place, give the latter theorems rigid

proofs.

D. If M is an aggregate such that it is of equal

power with none of its parts, then the aggregate

(M, e), which arises from M by the addition of a

single new element e^ has the same property of

being of equal power with none of its parts.

E. If N is an aggregate with the finite cardinal

number ^z, and N^ is any part of N, the cardinal
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number of Nj, is equal to one of the preceding

numbers i, 2, 3, . . . , ly— i.

Pr^^/^/D.—Suppose that the aggregate (M, e)

is equivalent to one of its parts which we will call

N. Then two cases, both of which lead to a con-

tradiction, are to be distinguished :

{(i) The aggregate N contains e as element
;

let

N = (Ml, e) ; then M^ is a part of M because N is

a part of (M, e). As we saw in § i, the law of

correspondence of the two equivalent aggregates

(M, e) and (M^, e) can be so modified that the

element e of the one corresponds to the same

element e of the other ; by that, then, M and M^

are referred reciprocally and univocally to one

another. But this contradicts the supposition that

M is not equivalent to its part M^.

{U) The part N of (M, e) does not contain e as

element, so that N is either M or a part of M. In

the law of correspondence between (M, e) and N,

which lies at the basis of our supposition, to the

element e of the former let the element / of the

latter correspond. Let N = (Mi, /) ;
then the

aggregate M is put in a reciprocally univocal relation

with Mj. But Ml is a part of N and hence of M.

So here too M would be equivalent to one of its

parts, and this is contrary to the supposition.

Proof of E.—We will suppose the correctness

of the theorem up to a certain v and then conclude

its validity for the number v\- i which immediately

follows, in the following manner :—We start from

the aggregate E„ = (^o. ^1, • • -, ^.) as an aggregate
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with the cardinal number v-\-\. If the theorem is

true for this aggregate, its truth for any other

aggregate with the same cardinal number v-\-\

follows at once by § i. Let E' be any part of E^
;

we distinguish the following cases :

{a) E' does not contain e^ as element, then E is

either E^_i [491] or a part of E^,_i, and so has as

cardinal number either v or one of the numbers

I, 2, 3, . . ., I/— I, because we supposed our theorem

true for the aggregate E^_i, with the cardinal

number v.

{b) E' consists of the single element ^„, then

E'=i.

ic) E' consists of e^ and an aggregate E'', so that

E' = (E'', e^, E'' is a part of E^_i and has there-

fore by supposition as cardinal number one of the

numbers i, 2, 3, . . ., 1/— i. But now E' = E''4-i,

and thus the cardinal number of E' is one of the

numbers 2, 3, . . . , i/.

Proof of K.—Every one of the aggregates which

we have denoted by E^ has the property of not

being equivalent to any of its parts. Eor if we
suppose that this is so as far as a certain i/, it follows

from the theorem D that it is so for the immediately

following number v-\-\. For 1/= i, we recognize at

once that the aggregate Ei = (^o, e^ is not equivalent

to any of its parts, which are here {e^ and {e^.

Consider, now, any two numbers fx and v of the

series 1,2, 3, . . . ; then, if jx is the earlier and v

the later, E^_i is a part of E^_i. Thus E^_i and
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E^_i are not equivalent, and accordingly their

cardinal numbers ^=:E^_i and i/=E^_i are not

equal.

Proof of ^.—If of the two finite cardinal numbers

fj.
and V the first is the earlier and the second the

later, then
fj.
< v. For consider the two aggregates

M = E^_i and N = E^,_i; for them each of the two

conditions in § 2 for M < N is fulfilled. The con-

dition {a) is fulfilled because, by theorem E, a part

of M = E^_i can only have one of the cardinal

numbers i, 2, 3, . . ., /x— i, and therefore, by

theorem A, cannot be equivalent to the aggregate

N=E^_i. The condition (b) is fulfilled because M
itself is a part of N.

Proof of C.—Let a be a cardinal number which

is less than v-\- i. Because of the condition (b) of

§ 2, there is a part of E,, with the cardinal number

a. By theorem E, a part of E^, can only have one

of the cardinal numbers i, 2, 3, . . . , i/. Thus a is

equal to one of the cardinal numbers I, 2, 3, . . ., i/.

By theorem B, none of these is greater than v.

Consequently there is no cardinal number a which

is less than v+ i and greater than v.

Of importance for what follows, is the following

theorem :

F. If K is any aggregate of different finite

cardinal numbers, there is one, /c^, amongst them

which is smaller than the rest, and therefore the

smallest of all.

[492] Proof—The aggregate K either contains
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the number i, in which case it is the least, «:i=i,

or it does not. In the latter case, let J be the

aggregate of all those cardinal numbers of our series,

I, 2, 3, . . ., which are smaller than those occurring

in K. If a number v belongs to J, all numbers less

than V belong to J. But J must have one element

i/j such that J'l+i, and consequently all greater

numbers, do not belong to J, because otherwise

J would contain all finite numbers, whereas the

numbers belonging to K are not contained in J.

Thus J is the segment {AbscJinitt) (1,2, 3, . . ., j/j).

The number v^-\-\=k^ is necessarily an element of

K and smaller than the rest.

From F we conclude :

G. Every aggregate K={/c} of different finite

cardinal numbers can be brought into the form of

a series

such that

K = (/Cp /C2, /C3, . . .)

/Ci *^ /C9 "^
'^Sj

• •' •

§6

The Smallest Transfinite Cardinal Number
Aleph-Zero

Aggregates with finite cardinal numbers are called

''finite aggregates," all others we will call "trans-

finite aggregates " and their cardinal numbers
*' transfinite cardinal numbers."

The first example of a transfinite aggregate is

given by the totality of finite cardinal numbers v ;
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we call its cardinal number (§ i) " Aleph-zero " and

denote it by j^q ; thus we define

(i) 5^0= {i^}-

That j^o
is a transfinite number, that is to say, is

not equal to any finite number /x, follows from the

simple fact that, if to the aggregate {v} is added a

new element e^, the union-aggregate ({i/}, e^ is

equivalent to the original aggregate {j^}. For we

can think of this reciprocally univocal correspond-

ence between them : to the element e^ of the first

corresponds the element i of the second, and to the

element v of the first corresponds the element v-\-\ oi

the other. By § 3 we thus have

(2) ^?o+I=^^o•

But we showed in § 5 that // -f- i is always different

from /x, and therefore ^^ is not equal to any finite

number fx.

The number j^^ is greater than any finite number ix :

(3) So>M-

[493] This follows, if we pay attention to § 3,

from the three facts that />t = (i, 2, 3, . . ., /x), that'

no part of the aggregate (i, 2, 3, . . ., ^) is equiva-

lent to the aggregate {v}, and that (i, 2, 3, . . ., yu)

is itself a part of {v}.

On the other hand, h^^ is the least transfinite

cardinal number. If a is any transfinite cardinal

number different from i^^, then

(4) ^0<<'^'
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This rests on the following theorems :

A. Every transfmite aggregate T has parts with

the cardinal number ^^Q.

Proof.— If, by any rule, we have taken away a

finite number of elements t^, t^^ . . .,/,,_i, there

always remains the possibility of taking away a

further element t^. The aggregate {/,,}, where v

denotes any finite cardinal number, is a part of T
with the cardinal number t^^, because {/^}f\j{i'} (§ i).

B. If S is a transfinite aggregate with the cardinal

number j^^, and S^ is any transfinite part of S, then

Proof.—We have supposed that S 00 {v\. Choose

a definite law of correspondence between these two

aggregates, and, with this law, denote by s^ that

element of S which corresponds to the element v of

{i/}, so that

The part S^ of S consists of certain elements s^

of S, and the totality of numbers k forms a trans-

finite part K of the aggregate [v). By theorem G
of § 5 the aggregate K can be brought into the

form of a series

where

consequently we have
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Hence follows that Sj oo S, and therefore Si = j^o-

From A and B the formula (4) results, if we have

regard to § 2.

From (2) we conclude, by adding i to both sides,

and, by repeating this

(5) ^*o+ ^ = «o-

We have also

(6) «o+ «o = ^*o-

[494] For, by (i) of § 3, No + «o is the cardinal number

({«J, {by)) because

Now, obviously

{.}=({2.-l}, {2.}),

({2.- I}, {2.})00(K}, {b^\

and therefore

The equation (6) can also be written

t^o- 2 = ^^0 5 .

and, by adding j^q repeatedly to both sides, we

find that

(7) ^^o•^ = I^• «o = ^^o-

We also have

(8) ^^o•No = ^^o•
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Proof.—By (6) of § 3, Nq • t^o ^-^ ^^^^ cardinal

number of the aggregate of bindings

{{p., y)],

where ^ and v are any finite cardinal numbers which

are independent of one another. If also X repre-

sents any finite cardinal number, so that {\}, (fj.),

and {v) are only different notations for the same

aggregate o( all finite numbers, we have to show

that

{(m, ^)}fX^{X}.

Let us denote ^ + 1/ by p\ then ^ takes all the

numerical values 2, 3, 4, . . ., and there are in all

p— I elements (/x, v) for which ^-|-j/ = p, namely :

(1,^-1), (2,p-2),.. , (p-I, I).

In this sequence imagine first the element (i, i),

for which p=2, put, then the two elements for

which p=3, then the three elements for which

p = 4, and so on. Thus we get all the elements

(juL, p) in a simple series :

(I, i);(i, 2),(2, i);(i,3),(2, 2),(3, i);(i,4),(2, 3)

and here, as we easily see, the element {ju, v) comes

at the Xth place, where

(9) X = /x+
2

The variable X takes every numerical value i, 2, 3,

. . ., once. Consequently, by means of (9), a
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reciprocally univocal relation subsists between the

aggregates {v} and {(/x, v)}.

[495] If both sides of the equation (8) are multi-

plied by j^o>
we get ^^^ = 'i:^^^ = ^^^ and, by repeated

multiplications by ^^^ we get the equation, valid

for every finite cardinal number v :

(lo) ^^o"
= «o•

The theorems E and A of § 5 lead to this theorem

on finite aggregates :

C. Every finite aggregate E is such that it is

equivalent to none of its parts.

This theorem stands sharply opposed to the

following one for transfinite aggregates :

D. Every transfinite aggregate T is such that it

has parts T^ which are equivalent to it.

Pi'oof.—By theorem A of this paragraph there is

a part S={^4 of T with the cardinal number «(,.

Let T = (S, U), so that U is composed of those

elements of T which are different from the elements

C Let us put Si = {/,+i}, Ti = (Si, U) ;
then T^ is

a part of T, and, in fact, that part which arises out

of T if we leave out the single element t^. Since

S 00 Si, by theorem B of this paragraph, and

UooU, we have, by § i, T rx; T^.

In these theorems C and D the essential differ-

ence between finite and transfinite aggregates, to

which I referred in the year 1877, in volume Ixxxiv

[1878] of Crelle's Journal, p. 242, appears in the

clearest way.

After we have introduced the least transfinite
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cardinal number Nq and derived its properties tliat

lie the most readily to hand, the question arises

as to the higher cardinal numbers and how they

proceed from h^^. We shall show that the trans-

finite cardinal numbers can be arranged according

to their magnitude, and, in this order, form, like

the finite numbers, a '* well-ordered aggregate" in

an extended sense of the words. Out of ^^q pro-

ceeds, by a definite law, the next greater cardinal

number j^^, out of this by the same law the next

greater n^j ^'^'^^ so o^"*- ^^t even the unlimited

sequence of cardinal numbers

No' «i' «2' • • •) «.', ...

does not exhaust the conception of transfinite

cardinal number. We will prove the existence of

a cardinal number which we denote by ^^^ and

which shows itself to be the next greater to all

the numbers ^^ ; out of it proceeds in the same

way as i^^ out of ^? a next greater ^,^+1^ ^^^^ ^^ o^''»

without end.

[496] To every transhnite cardinal number a

there is a next greater proceeding out of it accord-

ing to a unitary law, and also to every unlimitedly

ascending well-ordered aggregate of transfinite

cardinal numbers, {a}, there is a next greater pro-

ceeding out of that aggregate in a unitary way.

For the rigorous foundation of this matter, dis-

covered in 1882 and exposed in the pamphlet

Grundlagen einer allgemeitjen MannicJifaltigkeits-

lehre (Leipzig, 1883) and in volume xxi of the
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MatJiematische AnnaUn, we make use of the so-

called "ordinal types " whose theory we have to

set forth in the following paragraphs.

§ 7

The Ordinal Types of Simply Ordered

Aggregates

We call an aggregate M "simply ordered" if a

definite "order of precedence" {Rmigordnung) rules

over its elements m, so that, of every two elements

m^ and ?;^2> ^^^ takes the " lower " and the other the

'

' higher " rank, and so that, if of three elements ni^,

jn^, and Wg, nt-^, say, is of lower rank than z//^, and

7n.2^ is of lower rank than m^y then m^ is of lower

rank than m^.

The relation of two elements ///j and ;;/^, in which

m^ has the lower rank in the given order of pre-

cedence and m^ the higher, is expressed by the

formulae :

(i) m^ -< m^, in^ >- m^

Thus, for example, every aggregate P of points

defined on a straight line is a simply ordered

aggregate if, of every two points /^ and p^ belong-

ing to it, that one whose co-ordinate (an origin and

a positive direction having been fixed upon) is the

lesser is given the lower rank.

It is evident that one and the same aggregate can

be " simply ordered " according to the most different

laws. Thus, for example, witl^i the aggregate R of
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all positive rational numbers//^ (where/ and q are

relatively prime integers) which are greater than o

and less than i, there is, firstly, their "natural"

order according to magnitude ; then they can be

arranged (and in this order we will denote the

aggregate by Rq) so that, of two numbers /^/^^ and

A/^- for which the sums /i + ^i and p^ + g^ have

different values, that number for which the corre-

sponding sum is less takes the lower rank, and, if

A + ^i=/2 + ^2' then the smaller of the two rational

numbers is the lower. [497] In this order of

precedence, our aggregate, since to one and the

same value oi p-\-q only a finite number of rational

numbers//^ belongs, evidently has the form

-•^^0 \'l> '2' • • ' «" • • '/ V2' 3' 4' ."' 5 J «» 5' 4' • • VJ

where

r,< /-,+!.

Always, then, when we speak of a "simply

ordered " aggregate M, we imagine laid down a

definite order or precedence of its elements, in the

sense explained above.

There are doubly, triply, j/-ply and a-ply ordered

aggregates, but for the present we will not consider

them. So in what follows we will use the shorter

expression "ordered aggregate" when we mean

"simply ordered aggregate."

Every ordered aggregate M has a definite "ordinal

type," or more shortly a definite "type," which we

will denote by

(2) M.
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By this we understand the general concept which

results from M if we only abstract from the nature

of the elements in^ and retain the order of precedence

among them. Thus the ordinal type M is itself an

ordered aggregate whose elements are units which

have the same order of precedence amongst one

another as the corresponding elements of M, from

which they are derived by abstraction.

We call two ordered aggregates M and N
"similar" {dhnlich) if they can be put into a bi-

univocal correspondence with one another in such

a manner that, if ?n-^ and ni^ are any two elements

of M and n^ and n^ the corresponding elements of N,

then the relation of rank of in^ to m^ in M is the

same as that of n-^ to n^ in N. Such a correspond-

ence of similar aggregates we call an '* imaging"

{Abbildimg) of thes'e aggregates on one another. In

such an imaging, to every part—which obviously

also appears as an ordered aggregate—M^ of M
corresponds a similar part N^ of N.

We express the similarity of two ordered aggre-

gates M and N by the formula :

(3) MooN.

Every ordered aggregate is similar to itself.

If two ordered aggregates are similar to a third,

they are similar to one another.

[498] A simple consideration shows that two

ordered aggregates have the same ordinal type if,

and only if, they are similar, so that, of the two

formula:
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(4) M = N, MOON,

one is always a consequence of the other.

If, with an ordinal t}'pe M we also abstract from

the order of precedence of the elements, we get (§ i)

the cardinal number M of the ordered aggregate M,
which is, at the same time, the cardinal number of

the ordinal type M. From M = N always follows

M = N, that is to say, ordered aggregates of equal

types always have the same power or cardinal

number ;
from the similarity of ordered aggregates

follows their equivalence. On the other hand, two

aggregates may be equivalent without being similar.

We will use the small letters of the Greek alphabet

to denote ordinal types. If a is an ordinal type,

we understand by

(5) «

its corresponding cardinal number.

The ordinal types of finite ordered aggregates

offer no special interest. For we easily convince

ourselves that, for one and the same finite cardinal

number i/, all "simply ordered aggregates are similar

to one another, and thus have one and the same

type. Thus the finite simple ordinal types are

subject to the same laws as the finite cardinal

numbers, and it is allowable to use the same signs

I, 2, 3, . . ., Vy . . . for them, although they are

conceptually different from the cardinal numbers.

The case is quite different with the transfinite

ordiiial types ; for to one and the same cardinal

8
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number belong innumerably many different types of

simply ordered aggregates, which, in their totality,

constitute a particular '
' class of types "

( Typenclasse).

Every one of these classes of types is, therefore,

determined by the transfinite cardinal number a

which is common to all the types belonging to the

class. Thus we call it for short the class of types [a].

That class which naturally presents itself first to us,

and whose complete investigation must, accordingly,

be the next special aim of the theory of transfinite

aggregates, is the class of types [^^o]
which embraces

all the types with the least transfinite cardinal

number ^^q. From the cardinal number which

determines the class of types [a] we have to dis-

tinguish that cardinal number a' which for its part

[499] ^^ determmed by the class of types [a]. The

latter is the cardinal number which (§ i) the class

[a] has, in so far as it represents a well-defined

aggregate whose elements are all the types a with

the cardinal number a. We will see that a' is

different from a, and indeed always greater than a.

If in an ordered aggregate M all the relations of

precedence of its elements are inverted, so that

'
' lower " becomes '

' higher " and '

' higher " becomes
'

' lower " everywhere, we again get an ordered

aggregate, which we will denote by

(6) *M

and call the "inverse" of M. We denote the

ordinal type of *M, if a= M, by

(7)
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It may happen that *a = a, as, for example, in the

case of finite types or in that of the type of the

aggregate of all rational numbers which are greater

than o and less than i in their natural order of

precedence. This type we will investigate under

the notation ;/.

We remark further that two similarly ordered

aggregates can be imaged on one another either in

one manner or in many manners ; in the first case

the type in question is similar to itself in only one

way, in the second case in many ways. Not only

all finite types, but the types of transfinite "well-

ordered aggregates," which will occupy us later

and which we call transfinite "ordinal numbers,"

are such that they allow only a single imaging on

themselves. On the other hand, the type ri is

similar to itself in an infinity of ways.

We will make this difference clear by two simple

examples. By o) we understand the type of a well-

ordered aggregate

in which

and where p represents all finite cardinal numbers in

turn. Another well-ordered aggregate

with the condition

of the same type od can obviously only be imaged
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on the former in such a way that e^, and /, are

correspondhig elements. For e^, the lowest element

in rank of the first, must, in the process of imaging,

be correlated to the lowest element /^ of the second,

the next after e^ in rank {e^) to/g, the next after/^,

and so on. [500] Every other bi-univocal corre-

spondence of the two equivalent aggregates {e^} and

{/,} is not an "imaging" in the sense which we

have fixed above for the theory of types.

On the other hand, let us take an ordered

aggregate of the form

where v represents all positive and negative finite

integers-, including o, and where likewise

This aggregate has no lowest and no highest

element in rank. Its type is, by the definition of

a sum given in § 8,

It is similar to itself in an infinity of ways. For

let us consider an aggregate of the same type

where

Then the two ordered aggregates can be so imaged

on one another that, if we understand by vq a

definite one of the numbers /, to the element e,' of
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the first the element /j,^,'_^_,/ of the second corresponds.

Since j/q' is arbitrary, we liave here an infinity of

imagings.

The concept of ''ordinal type" developed here,

when it is transferred in like manner to "multiply

ordered aggregates," embraces, in conjunction with

the concept of "cardinal number" or "power"
introduced in § i, everything capable of being

numbered {Anzahlmdssige) that is thinkable, and

in this sense cannot be further generalized. It

contains nothing arbitrary, but is the natural ex-

tension of the concept of number. It deserves to

be especially emphasized that the criterion of

equality (4) follows with absolute necessity from

the concept of ordinal type and consequently

permits of no alteration. The chief cause of the

grave errors in G. Veronese's Gnuidziige der

Geoinetrie (German by A. Schepp, Leipzig, 1894)

is the non-recognition of this point.

On page 30 the '

' number {Anrjahl oder ZaJd)

of an ordered group " is defined in exactly the same

way as what we have called the "ordinal type of

a simply ordered aggregate " {Ztir Lehre vorn

Transfiniten, Halle, 1890, pp. 68-75 i reprinted

from the 'ZeitscJir. fiir Pliilos. und philos. Kritik

for 1887). [501] But Veronese thinks that he

must make an addition to the criterion of equality.

He says on page 31: "Numbers whose units

correspond to one another uniquely and in the

same order and of which the one is neither a part

of the other nor equal to a part of the other are



ii8 THE FOUNDING OF THE THEORY

equal. " * This definition of equality contains a

circle and thus is meaningless. For what is

the meaning of "not equal to a part of the

other" in this addition? To answer this question,

we must first know when two numbers are equal

or unequal. Thus, apart from the arbitrariness

of his definition of equality, it presupposes a

definition of equality, and this again presupposes

a definition of equality, in which we must know

again what equal and unequal are, and so on ad

infinitum. After Veronese has, so to speak, given

up of his own free will the indispensable foundation

for the comparison of numbers, we ought not to

be surprised at the lawlessness with which, later

on, he operates with his pseudo-transfinite numbers,

and ascribes properties to them which they cannot

possess simply because they themselves, in the

form imagined by him, have no existence except

on paper. Thus, too, the striking similarity of his

'
' numbers " to the very absurd '

' infinite numbers "

in Fontenelle's Geo7netrie de IFnfifii (Paris, 1727)

becomes comprehensible. Recently, W. Killing

has given welcome expression to his doubts con-

cerning the foundation of Veronese's book in the

Index lectionuni of the Miinster Academy for 1895-

i896.t

* In the original Italian edition (p. 27) this passage runs :
" Numeri

le unita dei quali si corrispondono univocamente e nel medesimo ordine,

e di cui 1' uno non e parte o uguale ad una parte dell' altro, sono uguali."

t [Veronese replied to this in Math. Ann., vol. xlvii, 1897, pp. 423-

432. Cf. Killing, ibid., vol. xlviii, 1897, pp. 425-432.]
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Addition and Multiplication of Ordinal Types

The union-aggregate (M, N) of two aggregates

M and N can, if M and N are ordered, be conceived

as an ordered aggregate in which the relations of

precedence of the elements of M among themselves

as well as the relations of precedence of the elements

of N among themselves remain the same as in M
or N respectively, and all elements of M have a

lower rank than all the elements of N. If M' and

N' are two other ordered aggregates, M Oo M' and

N fV) N', [502] then (M, N) cx> (M^ N') ; so the

ordinal type of (M, N) depends only on the ordinal

types M = a and N = /3. Thus, we define:

(1) a + /3 = (M, N).

In the sum ct + /3 we call a the ''augend " and /3 the

"addend."

For any three types we easily prove the associa-

tive law :

(2) a + (/3+ y)=:(a4./3) + y.

On the other hand, the commutative law is not

valid, in general, for the addition of types. We
see this by the following simple example.

If o) is the type, already mentioned in § 7, of

the well-ordered aggregate
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then I +w is not equal to (o+ i. For, if/ is a new

element, we have by (i) :

l+a) = (/E),

a,+ l=(E;7)-

But the aggregate

(/E)=(y;^i, ^2. • •-^.'•- •)

is similar to the aggregate E, and consequently

I +co = a).

On the contrary, the aggregates E and (E, f) are

not similar, because the first has no term which is

highest in rank, but the second has the highest

term /! Thus coH- i is different from a)= i +a).

Out of two ordered aggregates M and N with

the types a and /3 we can set up an ordered

aggregate S by substituting for every' element n of

N an ordered aggregate M,, which has the same

type a as M, so that

(3) M, = a;

and, for the order of precedence in

(4) S = {M„}

we make the two rules :

(i) Every two elements of S which belong to

one and the same aggregate M^, are to retain in

S the same order of precedence as in M,,
;

(2) Every two elements of S which belong to two

different aggregates M^^ and M^,.^ have the same

relation of precedence as n^ and 71^ have in N.
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The ordinal type of S depends, as we easily see,

only on the types a and /5 ; we define

(5) «./3 = S.

[503] In this product a is called the " multiplicand "

and /3 the " multiplier."

In any definite imaging of M on M„ let in^ be the

element of M„ that corresponds to the element m
of M; we can then also write

(6) S = {/«„}.

Consider a third ordered aggregate V = [p] with

the ordinal type P = y, then, by (5),

a.(/5-y) = {^^')}.

But the two ordered aggregates {(m,,) } and {^^^(n.)}

are similar, and are imaged on one another if we
regard the elements (^z^^) ^^^^ ?''^/«.\ as correspond-

ing. Consequently, for three types a, ^8, and y
the associative law

(7) (a.^).y = a.(/5.y)

subsists. From (i) and (5) follows easily the dis-

tributive law

(8) a.(^-hy) = a./3-{-a.y;

but only in this form, where the factor with two

terms is the multiplier.

On the contrary, in the multiplication of types

as in their addition, the commutative law is not

\
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generally valid. For example, 2.0) and w .2 are

different types ; for, by (5),

while

W. 2 = {e^, ^2' • • •> ^.', ...; /l,/2, ••.,/',-. •)

is obviously different from o).

If we compare the definitions of the elementary

operations for cardinal numbers, given in § 3, with

those established here for ordinal types, we easily

see that the cardinal number of the sum of two

types is equal to the sum of the cardinal numbers

of the single types, and that the cardinal number

of the product of two types is equal to the pro-

duct of the cardinal numbers of the single types.

Every equation between ordinal types which pro-

ceeds from the two elementary operations remains

correct, therefore, if we replace in it all the types

by their cardinal numbers.

[504] § 9

The Ordinal Type r] of the Aggregate R of all

Rational Numbers which are Greater than

o and Smaller than i, in their Natural

Order of Precedence

By R we understand, as in § 7, the system of

all rational numbers p\q {p and q being relatively

prime) which >o and < i, in their natural order

of precedence, where the magnitude of a number

}

/
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determines its rank. We denote the ordinal t)'pe

of R by >y :

(1) >/ = R.

But we have put the same aggregate in another

order of precedence in which we call it Rq. This

order is determined, in the first place, by the

magnitude of p-\-q, and in the second place—for

rational numbers for which p -\- q has the same value

—by the magnitude of pjq itself. The aggregate

Rq is a well-ordered aggregate of type w :

(2) Ro = (>'i,
^'2, . . ., i^.M . • •), where r,<r,+i,

(3) Ro = ^-

Both R and Rq have the same cardinal number

since they only differ in the order of precedence

of their elements, and, since we obviously have

Ro = j^o'
^^'^ ^^^° \\di\^

(4) R = 7/ = No-

Thus the type ri belongs to the class of types
[^^o].

Secondly, we remark that in R there is neither

an element which is lowest in rank nor one which

is highest in rank. Thirdly, R has the property

that between every two of its elements others lie.

This property we express by the words : R is

"everywhere dense" {uberalldicht),

VVe will now show that these three properties

characterize the type >/ of R, so that we have the

following theorem :
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If we have a simply ordered aggregate M such

that _
{a) M = «o;

{b) M has no element which is lowest in rank,

and no highest
;

{c) M is everywhere dense
;

then the ordinal type of M is ^ :

Pjvof.—Because of the condition {a), M can be

brought into the form [505] ^^ ^ well-ordered

aggregate of type w ; having fixed upon such a

form, we denote it by Mq and put

(5) Mo = (?//i,
Wg, . . ., ;//„, . . .).

We have now to show that

(6) MooR;

that is to say, we must prove that M can be imaged

on R in such a way that the relation of precedence

of any and every two elements in M is the same

as that of the two corresponding elements in R.

Let the element 7\ in R be correlated to the

element m^ in M. The element rg h^s a definite

relation of precedence to 7\ in R. Because of the

condition {b), there are infinitely many elements

vi^, of M which have the same relation of precedence

in M to m-^ as r^^ to 7\ in R ; of them we choose

that one which has the smallest index in M^, let it

be ifii and correlate it to r^. The element r, has

in R definite relations of precedence to i\ and r^
;

because of the conditions (b) and (c) there is an
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infinity of elements in^, of M which have the same

relation of precedence to m^ and nii in M as rg to }\

and r.y to R ; of them we choose that—let it be ;;/,
z

5—which has the smallest index in Mq, and correlate

it to Tg. According to this law we imagine the

process of correlation continued. If to the v

elements

^1' '''2' ^3) • • • ) ^i'

of R are correlated, as images, definite elements

m^, nu, in^, . . ., in,

which have the same relations of precedence amongst

one another in M as the corresponding elements in

R, then to the element ;v+i of R is to be correlated

that element ni,^ of M which has the smallest

index in Mq of those which have the same relations

of precedence to

;;/i,
m,^, in,^, . . .

, m,^

in M as r^+i to r^, r^, . . ., r^ in R.

In this manner we have correlated definite

elements m. of M to all the elements }\ of R, and

the elements m,^ have in M the same order of pre-

cedence as the corresponding elements i\ in R. But

we have still to show that the elements m,^ include

all the elements in^ of M, or, what is the same

thing, that the series

I
) '2' '3' • • • ' ^f

' • • •

[506] is only a permutation of the series

I, 2, 3, ....',.. .
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We prove this by a complete induction : we will

show that, if the elements m^, m^, . . ., m^ appear

in the imaging, that is also the case with the

following element m^+i.

Let X be so great that, among the elements

w,, nil, nil , . . ., lUu,as '^

the elements

m^, in,, . . ., ;;/,,

which, by supposition, appear in the imaging, are

contained. It may be that also ?;/,,+i is found

among them ; then /;2^+i appears m the imaging.

But if /;^^+i is not among the elements

m^, in,, m,, . . ., vi,^,

then ///^+i has with respect to these elements a

definite ordinal position in M ; infinitely many
elements in R have the same ordinal position in R
with respect to i\, rg, . . .

, r^, amongst which let

/'x+a be that with the least index in Rq. Then ni^^i

has, as we can easily make sure, the same ordinal

position with respect to

m^, m,, m,, . . ., nh^^^_^

in M as r^j^„ has with respect to

^'d ''2) • • •) ^^A+ a--l

in R. Since in^, in.^^, • • • , ^f^u have already appeared

in the imaging, ni^^i is that element with the smallest

index in M which has this ordinal position with

respect to
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Consequently, according to our law of correlation,

''^^,+^ = '^'^+1-

Thus, in this case too, the element ;;/^.|.i
appears in

the imaging, and r^+^ is the element of R which is

correlated to it.

We see, then, that by our manner of correlation,

the whole aggregate M is imaged on the whole

aggregate R ; M and R are similar aggregates,

which was to be proved.

From the theorem which we have just proved

result, for example, the following theorems :

[507] The ordinal type of the aggregate of all

negative and positive rational numbers, including

zero, in their natural order of precedence, is r^.

The ordinal type of the aggregate of all rational

numbers which are greater than a and less than b,

in their natural order of precedence, where a and b

are any real numbers, and a <b, is rj.

The ordinal type of the aggregate of all real alge-

braic numbers in their natural order of precedence is tj.

The ordinal type of the aggregate of all real alge-

braic numbers which are greater than a and less

than b, in their natural order of precedence, where

a and b are any real numbers and a<b, is ;/.

P^or all these ordered aggregates satisfy the three

conditions required in our theorem for M (see

CygWq' s /ou7^nal, vol. Ixxvii, p. 258).*

If we consider, further, aggregates with the types

—according to the definitions given in § 8—written

[* C/. Section V of the Introduction.]
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'/ + ';, nn^ (i+>7)'7, ('?+i)'7. (!+>?+ i>/, we find that

those three conditions are also fulfilled with them.

Thus we have the theorems :

(7)
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parts of M which have the types w and *a) appear to

be especially valuable ; we call them " fundamental

series of the first order contained in M," and the

former—of type w—we call an ''ascending" series,

the latter—of type *o)—a *

' descending " one. Since

we limit ourselves to the consideration of funda-

mental series of the first order (in later investiga-

tions fundamental series of higher order will also

occupy us), we will here simply call them ''funda-

mental series." Thus an "ascending fundamental

series " is of the form

(i) {a,}, where ^,<^,+i;

a " descending fundamental series " is of the form

(2) {b^}, where b^)^ b^+i.

The letter v, as well as /c, X, and /x, has everywhere

in our considerations the signification of an arbitrary

finite cardinal number or of a finite type (a finite

ordinal number).

We call two ascending fundamental series {a^} and

{a\) in M "coherent" {zusammengehbrig), in signs

(3) {^.} 11 {<})

if, for every element a^ there are elements a\ such

that

and also for every element a\ there are elements a^

such that

9
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Two descending fundamental series {by} and {b'

^

in M are said to be "coherent," in signs

(4) {K) II
{b'.\.

if for every element b^ there are elements b\ such

that

b. > b\,

and for every element b\ there are elements b^j, such

that

K > b,.

An ascending fundamental series {a^} and a

descending one {b^} are said to be "coherent," in

signs

[509] (5) WlllW,

if (a) for all values of v and /n

and (<^) in M exists at most one (thus either only

one or none at all) element m^^ such that, for all i/'s,

^. <^ f^h < ^>"

Then we have the theorems :

A. If two fundamental series are coherent to a

third, they are also coherent to one another.

B. Two fundamental series proceeding in the

same direction of which one is part of the other are

coherent.

If there exists in M an element m^ which has
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such a position with respect to the ascending funda-

mental series [a^] that :

{a) for every v

{b) for every element m of M that precedes m^

there exists a certain number vq such that

a„ >^ m, for v'^Vft,

then we will call iUq a "limiting element (Grenz-

element) of {^J in M " and also a " principal element

{Hauptelement) of M." In the same way we call

niQ a "principal element of M " and also " Hmiting

element of [b^ in M" if these conditions are

satisfied :

{a) for every v

ip) for every element m of M that follows m^

exists a certain number v^ such that

b^ >^ m, for v^Vf^,

A fundamental series can never have more than

one limiting element in M ; but M has, in general,

many principal elements.

We perceive the truth of the following theorems :

C. If a fundamental series has a limiting element

in M, all fundamental series coherent to it have the

same limiting element in M.

D. If two fundamental series (whether proceeding

in the same or in opposite directions) have one and

the same limiting element in M, they are coherent.
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if M and M' are two similarly ordered aggregates,

so that

(6) M = M',

and we fix upon any imaging of the two aggregates,

then we easily see that the following theorems

hold:

[510] E. To every fundamental series in M
corresponds as image a fundamental series in M',

and inversely ; to every ascending series an ascending

one, and to every descending series a descending

one ; to coherent fundamental series in M corre-

spond as images coherent fundamental series in M',

and inversely.

F. If to a fundamental series in M belongs a

limiting element in M, then to the corresponding

fundamental series in M' belongs a limiting element

in M', and inversely ; and these two limiting

elements are images of one another in the imaging.

G. To the principal elements of M correspond as

images principal elements of M', and inversely.

If an aggregate M consists of principal elements,

so that every one of its elements is a principal

element, we call it an ''aggregate which is dense

in itself {insichdichte Mengey If to every funda-

mental series in M there is a limiting element in M,

we call M a "closed {abgeschlossene) aggregate."

An aggregate which is both "dense in itself" and

"closed" is called a "perfect aggregate." If an

aggregate has one of these three predicates, every

similar aggregate has the same predicate
;

thus
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these predicates can also be ascribed to the corre-

sponding ordinal types, and so there are "types

which are dense in themselves," "closed types,"

"perfect types," and also "everywhere-dense

types "
(§ 9).

For example, >; is a type which is "dense in

itself, " and, as we showed in § 9, it is also '

' every-

where-dense," but it is not "closed." The types

ft) and *ft) have no principal elements, but w-\-v and

i/ + *ft) each have a principal element, and are

"closed" types. The type 0^.3 has two principal

elements, but is not "closed"; the type w.3-f^

has three principal elements, and is "closed."

§11

The Ordinal Type Q of the Linear

Continuum X
We turn to the investigation of the ordinal type

of the aggregate X= [x] of all real numbers x, such

that x>^o and < i, in their natural order of pre-

cedence, so that, with any two of its elements x

and x\
x^x\ if x<x'.

Let the notation for this type be

(I) x = e.

[511] From the elements of the theory of rational

and irrational numbers we know that every funda-

mental series {x^} in X has a limiting element Xq in

X, and that also, inversely, every element x of X
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is a limiting element of coherent fundamental series

in X. Consequently X is a "perfect aggregate"

and is a "perfect type."

But Q is not sufficiently characterized by that
;

besides that we must fix our attention on the

following property of X. The aggregate X contains

as part the aggregate R of ordinal type >] investi-

gated in § 9, and in such a way that, between any

two elements x^ and x^ of X, elements of R lie.

We will now show that these properties, taken

together, characterize the ordinal type Q of the linear

continuum X in an exhaustive manner, so that we

have the theorem :

If an ordered aggregate M is such that (a) it is

"perfect," and {b) in it is contained an aggregate S

with the cardinal number S = h?o ^^^ which bears

such a relation to M that, between any two elements

Wq and m^ of M elements of S lie, then M = 0.

Proof.— If S had a lowest or a highest element,

these elements, by {b), would bear the same character

as elements of M ; we could remove them from S

without S losing thereby the relation to M ex-

pressed in {b). Thus, we suppose that S is without

lowest or highest element, so that, by § 9, it has

the ordinal type t]. ¥or since S is a part of M,

between any two elements Sq and s^ of S other

elements of S must, by {b), lie. Besides, by {b) we

have S = «o' Thus the aggregates S and R are

"similar" to one another.

(2) S ro R.
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We fix on any "imaging" of R on S, and assert

that it gives a definite " imaging " of X on M in the

following manner :

Let all elements of X which, at the same time,

belong to the aggregate R correspond as images to

those elements of M which are, at the same time,

elements of S and, in the supposed imaging of

R on S, correspond to the said elements of R.

But li Xq is an element of X which does not belong

to R, Xq may be regarded as a limiting element of

a fundamental series {x^] contained in X, and this

series can be replaced by a coherent fundamental

series {r^J contained in R. To this [512] corre-

sponds as image a fundamental series [s-^^] in S and

M, which, because of {a), is limited by an element

niQ of M that does not belong to S (F, § 10). Let

this element m^ of M (which remains the same, by

E, C, and D of § 10, if the fundamental series

[x^} and [r^^] are replaced by others limited by the

same element x^ in X) be the image of x^^ in X.

Inversely, to every element m^ of M which does not

occur in S belongs a quite definite element x^ of X
which does not belong to R and of which m^ is the

image.

In this manner a bi-univocal correspondence

between X and M is set up, and we have now

to show that it gives an "imaging" of these

aggregates.

This is, of course, the case for those elements of

X which belong to R, and for those elements of M
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which belong to S. Let us compare an element r

of R with an element x^ of X which does not belong

to R ; let the corresponding elements of M be j

and niQ. If r<XQ, there is an ascending funda-

mental series {r^,,}, which is limited by x^ and, from

a certain v^ on,

r<r^^ for v^v^.

The image of {r^J in M is an ascending funda-

mental series {^a^}j which will be limited by an uZq

of M, and we have (§ lo) s^^ ^ in^ for every j/, and

•$< ^K f°^ '^^ ^0- Thus (§ 7) J < m^.

U r>XQ, we conclude similarly that s >- 7/1^.

Let us consider, finally, two elements Xq and x'q

not belonging to R and the elements m^ and m'^

corresponding to them in M ; then we show, by

an analogous consideration, that, if Xq <x'q, then

The proof of the similarity of X and M is now
finished, and we thus have

Halle, March 1895.



[207] CONTRIBUTIONS TO THE
FOUNDING OF THE THEORY OF

TRANSFINITE NUMBERS

(Second Article)

Weil-Ordered Aggregates

Among simply ordered aggregates "well-ordered

aggregates " deserve a special place ;
their ordinal

types, which we call "ordinal numbers," form the

natural material for an exact definition of the

higher transfinite cardinal numbers or powers,—

a

definition which is throughout conformable to that

which was given us for the least transfinite cardinal

number Aleph-zero by the system of all finite

numbers i/ (§ 6).

We call a simply ordered aggregate F (§ 7)

"well-ordered" if its elements /ascend in a definite

succession from a lowest f^ in such a way that :

I. There is in F an element /^ which is lowest in

rank.

II. If F' is any part of F and if F has one or

many elements of higher rank than all elements

of F', then there is an element /' of F which

follows immediately after the totality F', so

137
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that no elements in rank between f and F' occur

in F.*

In particular, to every single element / of F, if

it is not the highest, follows in rank as next higher

another definite element f ; this results from the

condition II if for F' we put the single element /
Further, if, for example, an infinite series of con-

secutive elements

e' < e" < e'" < . . . < e^^^ -< ^(^+i)
. . .

is contained in F in such a way, however, that there

are also in F elements of [2o8] higher rank than all

elements e^"^, then, by the second condition, putting

for F' the totality {^^"^}, there must exist an element

f sugh that not only

f > e^^^

for all values of v, but that also there is no element

g in F which satisfies the two conditions

g > e"^

for all values of v.

Thus, for example, the three aggregates

(^1, a^, . . ., a^, . . .),

(«i, a^,
. . ., a^,

. . ., dj^, i?2-
• -y ^fj^y • ' -^

where

* This definition of "well-ordered aggregates," apart from the

wording, is identical with that which was introduced in vol. xxi of the

A/at/i. Attn., p. 548 {Grundlas:en einer allgcfneinen Maimichfaltig-

keitslehre, p. 4). [See Section VII of the Introduction.]
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are well-ordered. The two first have no highest

element, the third has the highest element ^3; in

the second and third b^ immediately follows all

the elements a^, in the third i\ immediately follows

all the elements a^ and b'^.

In the following we will extend the use of the

signs -< and >^, explained in § 7, and there used

to express the ordinal relation of two elements, to

groups of elements, so that the formulae

M-< N,

M>N
are the expression for the fact that in a given order

all the elements of the aggregate M have a lower,

or higher, respectively, rank than all elements of

the aggregate N.

A. Every part F^ of a well-ordered aggregate F

has a lowest element.

Proof.—If the lowest element /^ of F belongs to

Fj, then it is also the lowest element of F^. In

the other case, let F' be the totality of all elements

of F"" which have a lower rank than all elements F^,

then, for this reason, no element of F lies between

F' and F^. Thus, if/' follows (II) next after F,

then it belongs necessarily to I^ and here takes the

lowest rank.

B. If a simply ordered aggregate F is such that

both F and every one of its parts have a lowest

element, then F is a well-ordered aggregate.

\20()\ Proof.—Since F has a lowest element,

the condition I is satisfied. Let F' be a part of F
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such that there are in F one or more elements

which follow F' ; let F^ be the totality of all these

elements and /' the lowest element of F^, then

obviously/' is the element of F which follows next

to F'. Consequently, the condition II is also satis-

fied, and therefore F is a well-ordered aggregate.

C. Every part F' of a well-ordered aggregate F
is also a well-ordered aggregate.

Proof.—By theorem A, the aggregate F' as well

as every part F'' of F' (since it is also a part of F)

has a lowest element ; thus by theorem B, the

aggregate F' is well-ordered.

D. Every aggregate G which is similar to a well-

ordered aggregate F is also a well-ordered aggregate.

Proof.—If M is an aggregate which has a lowest

element, then, as immediately follows from the

concept of similarity (§ 7), every aggregate N
similar to it has a lowest element. Since, now,

we are to have G rsj F, and F has, since it is a

well-ordered aggregate, a lowest element, the same

holds of G. Thus also every part G' of G has a

lowest element ; for in an imaging of G on F, to

the aggregate G' corresponds a part F' of F as

image, so that

G' 00 F'.

But, by theorem A, F' has a lowest element, and

therefore also G' has. Thus, both G and every

part of G have lowest elements. By theorem B,

consequently, G is a well-ordered aggregate.

E. If in a well-ordered aggregate G, in place of
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its elements g well-ordered aggregates are sub-

stituted in such a way that, if F^^ and F"^' are the

well-ordered aggregates which occupy the places

of the elements g and g' and g -<^ g\ then also

F^^ -< F^^', then the aggregate H, arising by com-

bination in this manner of the elements of all the

aggregates F^, is well-ordered.

Proof.—Both H and every part H^ of H have

lowest elements, and by theorem B this characterizes

H as a well-ordered aggregate. For, if g^ is the

lowest element of G, the lowest element of F^ is

at the same time the lowest element of H. If,

further, we have a part Hj of H, its elements

belong to definite aggregates F^ which form, when
taken together, a part of the well-ordered aggre-

gate {F^}, which consists of the elements F^ and

is similar to the aggregate G. If, say, F^ is the

lowest element of this part, then the lowest element

of the part of H^ contained in F^ is at the same

time the lowest element of H. .

[210] § 13

The Segments of Well-Ordered Aggregates

If / is any element of the well-ordered aggre-

gate F which is different from the initial element y^^,

then we will call the aggregate A of all elements

of F which precede /"a " segment {AbscJinitt) of F,

"

or, more fully, *' the segment of F which is defined

by the element/" On the other hand, the aggre-
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gate R of all the other elements of F, including /,

is a ''remainder of F," and, more fully, ''the

remainder which is determined by the element /!"

The aggregates A and R are, by theorem C of

§ 12, well-ordered, and we may, by § 8 and § I2,

write :

(1) F = (A, R),

(2) R = (/, R'),

(3) A < R.

R' is the part of R which follows the initial element

/ and reduces to o if R has, besides /, no other

element.

For example, in the well-ordered aggregate

the segment

and the corresponding remainder

(<^3, ^4, . . . «^+ 2, . . . ^1, <^2' • • • ^H^ ' ' ' ^V ^2' ^'3)

are determined by the element a^ ; the segment

(^1, a^, . . ., a,, . . .)

and the corresponding remainder

{b^, b^, . . ., b^, . . . q, ^2, ^3)

are determined by the element b-^ ;
and the segment

(^1, «2) • • • . ^^^» . . . b^, b^, , . ., b^, . . . q)
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"remainder
and the corresponding gogmcnt

by the element c.^.

If A and A' are two segments of F,/and/' their

determining elements, and

(4) /' </,

then A' is a segment of A. We call A' the '' less,"

and A the '' greater " segment of F :

(5) A'<A.

Correspondingly we may say of every A of F that

it is " less " than F itself :

A<F.

[211] A. If two similar well-ordered aggregates

F and G are imaged on one another, then to every

segment A of F corresponds a similar segment B of

G, and to every segment B of G corresponds a

similar segment A of F, and the elements /" and ^
of F and G by which the corresponding segments

A and B are determined also correspond to one

another in the imaging.

Proof.—If we have two similar simply ordered

aggregates M and N imaged on one another, m and

n are two corresponding elements, and M' is the

aggregate of all elements of M which precede m
and N' is the aggregate of all elements of N which

precede n^ then in the imaging M' and N' correspond

to one another. For, to every element m' of M
that precedes in must correspond, by § 7, an element
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n' of N that precedes n^ and inversely. If we apply

this general theorem to the well-ordered aggregates

F and G we get what is to be proved.

B. A well-ordered aggregate F is not similar to

any of its segments A.

Proof.—Let us suppose that F oo A, then we will

imagine an imaging of F on A set up. By theorem

A the segment A' of A corresponds to the segment

A of F, so that A' oo A. Thus also we would have

A' rsj F and A'< A. From A' would result, in the

same manner, a smaller segment A'' of F, such that

A'' oo F and A" < A' ; and so on. Thus we would

obtain an infinite series

A>A'>A". . .
A(^)>A('^+i).

. .

of segments of F, which continually become smaller

and all similar to the aggregate F. We will

denote by /, /', f'\ . . . ,
/^"^ . . . the elements of

F which determine these segments ; then we would

have

/>/' >/"> >/<-* >A+i) . .

.

We would therefore have an infinite part

of F in which no element takes the lowest rank.

But by theorem A of § 12 such parts of F are not

possible. Thus the supposition of an imaging F on

one of its segments leads to a contradiction, and

consequently the aggregate F is not similar to any

of its segments.
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Though by theorem B a well-ordered aggregate

F is not similar to any of its segments, yet, if F is

infinite, there are always [212] other parts of F to

which F is similar. Thus, for example, the aggregate

F = (^i, a^, . . ., «,,, . . .)

is similar to every one of its remainders

Consequently, it is important that we can put by the

side of theorem B the following :

C. A well-ordered aggregate F is similar to no

part of any one of its segments A.

Proof.—Let us suppose that F' is a part of a

segment A of F and F' 00 F. We imagine an

imaging of F on F' ; then, by theorem A, to a

segment A of the well-ordered aggregate F corre-

sponds as image the segment Y" of F' ; let this

segment be determined by the element f of F'.

The element /' is also an element of A, and de-

termines a segment A' of A of which F'" is a part.

The supposition of a part F' of a segment A of F
such that F' 00 F leads us consequently to a part F"

of a segment A' of A such that Y" 00 A. The same

manner of conclusion gives us a part Y'" of a

segment A" of A' such that F"' 00 A'. Proceeding

thus, we get, as in the proof of theorem B, an

infinite series of segments of F which continually

become smaller :

A>A'>A". . .
A(''>>A<''+i>.

. .,

10
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and thus an infinite series of elements determining

these segments :

in which is no lowest element, and this is impossible

by theorem A of § 12. Thus there is no part F'

of a segment A of F such that F' 00 F.

D. Two different segments A and A' of a well-

ordered aggregate F are not similar to one another.

Proof.—If A'<A, then A' is a segment of the

well-ordered aggregate A, and thus, by theorem B,

cannot be similar to A.

E. Two similar well-ordered aggregates F and G
can be imaged on one another only in a single

manner.

Proof.—Let us suppose that there are two different

imagings of F on G, and let /be an element of F to

which in the two imagings different images g and g
in G correspond. Let A be the segment of F that

is determined by/, and B and B' the segments of G
that are determined by g and g . By theorem A,

both A 00 B [213] and A 00 B', and consequently

BooB', contrary to theorem D.

F. If F and G are two well-ordered aggregates,

a segment A of F can have at most one segment

B in G. which is similar to it.

Proof—If the segment A of F could have two

segments B and B' in G which were similar to it, B

and B' would be similar to one another, which is

impossible by theorem D.

G. If A and B are similar segments of two well-
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ordered aggregates F and G, for every smaller

segment A'<A of F there is a similar segment

B' < ]^ of G and for every smaller segment W < B of

G a similar segment A' < A of F.

The proof follows from theorem A applied to the

similar aggregates A and B.

H. If A and A' are two segments of a well-

ordered aggregate F, B and B' are two segments

similar to those of a well-ordered aggregate G, and

A'<A, then B'<B.

The proof follows from the theorems F and G.

I. If a segment B of a well-ordered aggregate G
is similar to no segment of a well-ordered aggregate

F, then both every segment B' > B of D and G itself

are similar neither to a segment of F nor F itself.

The proof follows from theorem G.

K. If for any segment A of a well-ordered

aerereeate F there is a similar see^ment B of another

well-ordered aggregate G, and also inversely, for

every segment B of G a similar segment A of F,

then F 00 G.

Proof.—We can image F and G on one another

according to the following law : Let the lowest

element f^ of F correspond to the lowest element g^

of G. If f^fi is any other element of F, it

determines a segment A of F. To this segment

belongs by supposition a definite similar segment

B of G, and let the element ^ of G which determines

the segment B be the image of F. And if g is any

element of G that follows g^, it determines a

segment B of G, to which by supposition a similar
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segment A of F belongs. Let the element /"which

determines this segment A be the image of ^. It

easily follows that the bi-univocal correspondence of

F and G defined in this manner is an imaging in the

sense of § 7. For if/ and/' are any two elements

of F, g and g' [2 1 4] the corresponding elements of

G, A and A' the segments determined by/ and /',

B and B' those determined by g and g\ and if, say,

/'</-
then

A'<A.

By theorem H, then, we have

B'<B,

and consequently

L. If for every segment A of a well-ordered

aggregate F there is a similar segment B of another

well-ordered aggregate G, but if, on the other hand,

there is at least one segment of G for which there is

no similar segment of F, then there exists a definite

segment B^ of G such that B^OoF.

Proof.—Consider the totality of segments of G for

which there are no similar segments in F. Amongst

them there must be a least segment which we will call

B^. This follows from the fact that, by theorem A
of § 12, the aggregate of all the elements determin-

ing these segments has a lowest element ;
the

segment B^ of G determined by that element is the

least of that totality. By theorem I, every segment
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of G which is greater than B^ is such that no segment

similar to it is present in F. Thus the segments

B of G which correspond to similar segments of F
must all be less than Bj, and to every segment

B < B^ belongs a similar segment A of F, because

Bj is the least segment of G among those to which

no similar segments in F correspond. Thus, for

every segment A of F there is a similar segment B of

B^, and for every segment B of B^ there is a similar

segment A of F. By theorem K, we thus have

FooB^.

M. If the well-ordered aggregate G has at least

one segment for which there is no similar segment

in the well-ordered aggregate F, then every segment

A of F must have a segment B similar to it in G.

Proof.—Let B^ be the least of all those segments

of G for which there are no similar segments in F. *

If there were segments in F for which there were no

corresponding segments in G, amongst these, one,

which we will call A^, would be the least. For

every segment of Aj^ would then exist a similar

segment of B^^, and also for every segment of B^^ a

similar segment of A^. Thus, by theorem K, we
would have

B^ no A^.

[215] But this contradicts the datum that for B^

there is no similar segment of F. Consequently,

there cannot be in F a segment to which a similar

segment in G does not correspond.

* See the above proof of L.
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N. If F and G are any two well-ordered aggre-

gates, then either :

{a) F and G are similar to one another, or

{b) there is a definite segment Bj of G to which

F is similar, or

(<:) there is a definite segment A^ of F to which

G is similar
;

and each of these three cases excludes the two others.

Proof.—The relation of F to G can be any one of

the three :

(a) To every segment A of F there belongs a

similar segment B of G, and inversely, to every

segment B of G belongs a similar one A of F
;

{b) To every segment A of F belongs a similar

segment B of G, but there is at least one segment

of G to which no similar segment in F corresponds

;

{c) To every segment B of G belongs a similar

segment A of F, but there is at least one segment of

F to which no similar segment in G corresponds.

The case that there is both a segment of F to

which no similar segment in G corresponds and a

segment of G to which no similar segment in F
corresponds is not possible ; it is excluded by

theorem M.

By theorem K, in the first case we have

F cNj G.

In the second case there is, by theorem L, a definite

segment V>^ of B such that

BiOoF;
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and in the third case there is a definite segment A^

of F such that

Ai fxj G.

We cannot have F c\j G and F 00 B^ simultaneously,

for then we would have G 00 Bj, contrary to theorem

B ;
and, for the same reason, we cannot have both

F rv) G and G 00 A^. Also it is impossible that

both F 00 Bj and G 00 A^, for, by theorem A,

from F 00 B^ would follow the existence of a

segment B'^ of B^^ such that A^ 00 B\. Thus we

would have G 00 B'j, contrary to theorem B.

O. If a part F' of a well-ordered aggregate F is

not similar to any segment of F, it is similar to F
itself.

Proof.—By theorem C of § 12, F' is a well-ordered

aggregate. If F' were similar neither to a segment

of F nor to F itself, there would be, by theorem N,

a segment F'^ of F' which is similar to F. But F'^

is a part of that segment A of F which [216] is

determined by the same element as the segment F'^

of F'. Thus the aggregate F would have to be

similar to a part of one of its segments, and this

contradicts the theorem C.

§ 14

The Ordinal Numbers of Weil-Ordered

Aggregates

By § 7, every simply ordered aggregate M has a

definite ordinal type M ; this type is the general con-
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cept which results from M if we abstract from the

nature of its elements while retaining their order of

precedence, so that out of them proceed units

{Einsefi) which stand in a definite relation of pre-

cedence to one another. All aggregates which are

similar to one another, and only such, have one and

the same ordinal type. We call the ordinal type of

a well-ordered aggregate F its "ordinal number."

If a and /3 are any two ordinal numbers, one can

stand to the other in one of three* possible relations.

For if F and G are two well-ordered aggregates

such that

F= a, G = /3,

then, by theorem N of § 13, three mutually ex-

clusive cases are possible :

{a) F 00 G

;

{b) There is a definite segment Bj of G such that

FooB^;

(c) There is a definite segment Aj of F such that

Goo A^.

As we easily see, each of these cases still subsists

if F and G are replaced by aggregates respectively

similar to them. Accordingly, we have to do with

three mutually exclusive relations of the types a

and )8 to one another. In the first case a = /3; in

the second we say that a</5; in the third we say

that a>/3. Thus we have the theorem :
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A. If a and ^ are any two ordinal numbers, we

have either a = l3 or a<^ or a> /3.

From the definition of minority and majority

follows easily :

B. If we have three ordinal numbers a, /5, y, and

if a < 18 and ^ <y, then a < y.

Thus the ordinal numbers form, when arranged

in order of magnitude, a simply ordered aggregate
;

it will appear later that it is a well-ordered aggre-

gate.

[217] The operations of addition and multipli-

cation of the ordinal types of any simply ordered

aggregates, defined in § 8, are, of course, applicable

to the ordinal numbers. If a = F and /3 = G, where

F and G are two well-ordered aggregates, then

(1) a + /3 = (F, G).

The aggregate of union (F, G) is obviously a

well-ordered aggregate too ;
thus we have the

theorem :

C. The sum of two ordinal numbers is also an

ordinal number.

In the sum a + l3, a is called the "augend" and

^ the ''addend."

Since F is a segment of (F, G), we have always

(2) • a<a + /3.

On the other hand, G is not a segment but a re-

mainder of (F, G), and may thus, as we saw in

§ 13, be similar to the aggregate (F, G). If this
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is not the case, G is, by theorem O of § 13, similar

to a segment of (F, G). Thus

(3) ^<«+/3.

Consequently we have :

D. The sum of the two ordinal numbers is always

greater than the augend, but greater than or equal

to the addend. If we have a + ^ = a + y, we always

have ,8 = y.

In general a-\-^ and /3+ a are not equal. On
the other hand, we have, if y is a third ordinal

number,

(4) (a+ ^) + y = a+ (/3+ y).

That is to say :

E. In the addition of ordinal numbers the associa-

tive law always holds.

If we substitute for every element g of the

aggregate G of type /3 an aggregate F^^ of type a,

we get, by theorem E of § 12, a well-ordered

aggregate H whose type is completely determined

by the types a and /3 and will be called the product

(5)
"

i^^^=«^

(6) a.^ = H.

F. The product of two ordinal numbers is also

an ordinal number.

In the product a .^8, a is called the '' multiplicand "

and /3 the "multiplier."

In general a./^and /S.aare not equal. But we

have (§ 8)
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(7) (a.^).y = a.(/3.y).

That is to say :

[218] G. In the multipHcation of ordinal numbers

the associative law holds.

The distributive law is valid, in general (§ 8),

only in the following form :

(8) a.(/3+ y) = a.^+ a.y.

With reference to the magnitude of the product,

the following theorem, as we easily see, holds :

H. If the multipHer is greater than i, the product

of two ordinal numbers is always greater than

the multiplicand, but greater than or equal to the

multiplier. If we have a.^ = a.y, then it always

follows that /8 = y.

On the other hand, we evidently have

(9) a . I = I . a = a.

We have now to consider the operation of sub-

traction. If a and /3 are two ordinal numbers, and

a is less than /5, there always exists a definite

ordinal number which we will call /3 — a, which

satisfies the equation

(10) a + (/3-a) = ^.

For if G = ^, G has a segment B such that B = a
;

we call the corresponding remainder S, and have

G = (B, S),

/3 = a+ S;
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and therefore

(ii) /5-a = S.

The determinateness of ^-a appears clearly from

the fact that the segment B of G is a completely

definite one (theorem D of § 13), and consequently

also S is uniquely given.

We emphasize the following formulae, which

follow from (4), (8), and (lo) :

(12) (7+ /3)-(y+ a) = ^-a,

(13) y(/3-a) = y^-ya.

It is important to reflect that an infinity of

ordinal numbers can be summed so that their sum

is a definite ordinal number which depends on the

sequence of the summands. If

is any simply infinite series of ordinal numbers, and

we have

(14) ^v=^v^

[219] then, by theorem E of § 12,

(15) .G = (Gi, G2, . . ., G^, . . .)

is also a well-ordered aggregate whose ordinal

number represents the sum of the numbers /3,,.

We have, then,

(16) A + ^2+ • • • +A.+ . . . =G = /3,

and, as we easily see from the definition of a

product, we always have
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(17) y.(/5i + ^,+ ... +/'i+...)

If we put

(18) «^^^^ + /3^ + . . . +/^^,

then

(19.) a, = (Gi, G2, . . . G,).

We have

(20) a.+i>a.,

and, by (10), we can express the numbers P^, by
the numbers a^ as follows :

(21) i^i=ai; /5^+i = a^+i — a^.

The series

«!, aa, . . ., a^, . . .

thus represents any infinite series of ordinal numbers

which satisfy the condition (20) ; we will call it a

"fundamental series" of ordinal numbers (§10).

Betw^een it and ^ subsists a relation which can be

expressed m the following manner :

{a) The number /5 is greater than a, for every

J/, because the aggregate (G^, Gg, . . ., G„), whose

ordinal number is a^, is a segment of the aggregate

G which has the ordinal number ^ ;

{b) If /3' is any ordinal number less than ^, then,

from a certain v onwards, we always have

For, since S' < jS, there is a segment B' of the
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aggregate G which is of type /3'. The element of

G which determines this segment must belong to

one of the parts G^ ; we will call this part G^,^. But

then B' is also a segment of (G^, Gg, . . ., G^ ), and

consequently /3' < a^, . Thus

for v^v^.

Thus /3 is the ordinal number which follows next

in order of magnitude after all the numbers a^
;

accordingly we will call it the "limit" {Grenze) of

the numbers a^ for increasing v and denote it by

Lim a^, so that, by (i6) and (21) :

(22) Lim a^ = ai + («2 - «!> + •"
• • + (a^+i -«.) + • • .

[220] We may express what precedes in the

following theorem :

1. To every fundamental series {a,J of ordinal

numbers belongs an ordinal number Lim a,, which
V

follows next, in order of magnitude, after all the

numbers a„ ; it is represented by the formula (22).

If by y we understand any constant ordinal

number, we easily prove, by the aid of the formulae

(12), (13), and (17), the theorems contained in the

formulae :

(23) Lim (y + a„) = y + Lim a,
;

V V

(24) Lim y . ay = y . Lhn a^.
V V

We have already mentioned in § 7 that all simply
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ordered aggregates of given finite cardinal number

V have one and the same ordinal type. This may

be proved here as follows. Every simply ordered

aggregate of finite cardinal number is a well-ordered

aggregate ; for it, and every one of its parts, must

have a lowest element,—and this, by theorem B

of § 12, characterizes it as a well-ordered aggregate.

The types of finite simply ordered aggregates are

thus none other than finite ordinal numbers. But

two different ordinal numbers a and ^ cannot belong

to the same finite cardinal number v. For if, say,

a</3 and G = /3, then, as we know, there exists a

segment B of G such that B = a. Thus the aggre-

gate G and its part B would have the same finite

cardinal number v. But this, by theorem C of § 6,

is impossible. Thus the finite ordinal numbers

coincide in their properties with the finite cardinal

numbers.

The case is quite different with the transfinite

ordinal numbers ; to one and the same transfinite

cardinal number a belong an infinity of ordinal

numbers which form a unitary and connected

system. We will call this system the "number-

class Z(a)," and it is a part of the class of types

[a] of § 7. The next object of our consideration is

the number-class Z(h?Q), which we will call "the

second number-class." For in this connexion we
understand by "the first number-class" the totality

[v] of finite ordinal numbers.
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[221] % 15

The Numbers of the Second Number- Class Z({^o)

The second number-class Z(}^q) is the totality {a}

of ordinal types a of well-ordered aggregates of

the cardinal number «o (§ 6).

A. The second number-class has a least number

0) = Lim V.

V

Pi'oof.—By o) we understand the type of the

well-ordered aggregate

(1) Fo = (/i, /„ . . ., /,, . . .),

where v runs through all finite ordinal numbers and

(2) /.-</.+i^

Therefore (§ 7)

(3) w=Fo>

and (§ 6)

(4) ^ = f^o-

Thus 0) is a number of the second number-class,

and indeed the least. For if y is any ordinal

number less than o), it must (§ 14) be the type of

a segment of Fq. But F^ has only segments

A = (/i,/2, . . .,/.),

with finite ordinal number v. Thus y = v. There-

fore there are no transfinite ordinal numbers which

are less than w, and thus w is the least of them.

By the definition of Lim a^ given in § 14, we
V

obviously have a)=Lim v.
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B. If a is any number of the second number-class,

the number a+i follows it as the next greater

number of the same number-class.

Proof.—Let F be a well-ordered aggregate of

the type a and of the cardinal number Nq :

(5) F= a,

(6) a=No-

We have, where by g is understood a new element,

(7) a+i=(F, ^).

Since F is a segment of (F, g), we have

(8) a+i>a.

We also have

a+i=a+i=No+i=«o (§^)-

Therefore the number a+i belongs to the second

number-class. Between a and a+i there are no

ordinal numbers ; for every number y [222] which

is less than a+ i corresponds, as type, to a segment

of (F, g), and such a segment can only be either

F or a segment of F. Therefore y is either equal

to or less than a.

C. If ai, aa, . . ., a„ . . . is any fundamental series

of numbers of the first or second number-class, then

the number Lim a, (§ H) following them next in

V

order of magnitude belongs to the second number-

class.

Proof.—By § 14 there results from the funda-

II
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mental series {a,,} the number Lim a^ if we set up
V

another series ^j, /^g, • . ., /8^, . . ., where

If, then, Gj, Gg, . . ., G^, . . . are well-ordered aggre-

gates such that

then also

G = (^i) ^2, . . ., G^, . . .)

is a well-ordered aggregate and

Lim a^ = G.
V

It only remains to prove that

Since the numbers /^j, ^82, . . ., ft, • • . belong to

the first or second number-class, we have

and thus

G<h?o • No = ^^o-

But, in any case, G is a transfinite aggregate, and

so the case G<^?q is excluded.

We will call two fundamental series {a^} and {a^\

of numbers of the first or second number-class (§ lO)

"coherent," in signs :

(9) {«.} 11 {«'.}.

if for every v there are finite numbers Xq and ^^

such that

(10) aK>OLy, X>Xo>
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and

(11) a^>a\, At^Mo-

[223] D. The limiting numbers Lim a^ and Lim a\
V V

belonging respectively to two fundamental series

{ay} and [a\} are equal when, and only when,

{a.} II {«;}.

Proof. — For the sake of shortness we put

Lim a^, = /3, Lim a'^ = y. We will first suppose

that {a^ II {a'4 ;
then we assert that /3 = y. For

if /3 were not equal to y, one of these two numbers

would have to be the smaller. Suppose that /8<y.

From a certain v onwards we would have a'v>/3

(§ 14), and consequently, by (11), from a certain

/x onwards we would have a^>/5. But this is

impossible because /3=Lim a^. Thus for all ^'s
V

we have a^</3.

If, inversely, we suppose that /3 = y, then, because

oiv<y^ we must conclude that, from a certain X

onwards, a\>a^, and, because a\<l3, we must

conclude that, from a certain ^ onwards, afj^> a\.

That is to say, {aj
|| {a\].

E. If a is any number of the second number-

class and vq any finite ordinal number, we have

j/^-|-a = a, and consequently also a — VQ = a.

Proof.—We will first of all convince ourselves of

the correctness of the theorem when a = no. We
have

^0 = Uv <^2' • • • <rJ'
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and consequently

But if a>a), we have

a = CO + (a — w),

i/Q + a = (I'o + w) + (« "" w) = ^ + (« ~ ^^ = «•

F. If j/Q is any finite ordinal number, we have

I/q . ft) = ftj.

Ptoof,—In order to obtain an aggregate of the

type i/Q . o) we have to substitute for the single

elements /, of the aggregate (/i, Z^, ...,/„...)

aggregates {g,^ i, ^v, 2> • • • > gv, v) of the type v^. We
thus obtain the aggregate

(^1. 1' ^1, 2) • • -5 S\, V ^2. i» • • •
' ^2, "o'

• • •

'
«^*'. 1'

which is obviously similar to the aggregate {/,}.

Consequently
I/q . 0) = ft).

The same result is obtained more shortly as follows.

By (24) of § 14 we have, since ft)=Lim j/,

1/q 0)= Lim j^Q I/.

On the other hand,

and consequently

Lim j/Qy=Lim t/ = ft)
;

1/ I'

so that
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[224] G. We have always

(a+ ^0)0) = aw,

where a is a number of the second number-class

d i/q a number of 1

Proof.—We have

and Vq a number of the first number-class.

Lim i/ = ft).

V

By (24) of § 14 we have, consequently,

(a+ i/o)a) = Lim {a-\-v^v.

But
I 2 V

(a4-i/o>= (a+ i/o)+ («+ »'o)+ • • • +(« + t^o)

I 2 v—l

= a+ (^^o+ «)+K+ «) • • • (t^o+ «) + ^'o

I 2 1/

= a+ a+...+a+ i/o

= aj/+ i/q.

Now we have, as is easy to see,

{av\-VQ}
II {av},

and consequently

Lim (a + i^o)i/= Lim (ai^+ i/o) = Lim a»/ = aaj.

V V V

H. If a is any number of the second number-

class, then the totality {a] of numbers a of the

first and second number-classes which are less than

a form, in their order of magnitude, a well-ordered

aggregate of type a.
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Proof.—Let F be a well-ordered aggregate such

that F = a, and let/^ be the lowest element of F. If

a is any ordinal number which is less than a, then,

by § 14, there is a definite segment A' of F such

that _
A' = a,

and inversely every segment A' determines by its

type h! = 0! a number a <a of the first or second

number-class. For, since F = ^?Q, A' can only be

either a finite cardinal number or ^q. The segment

A' is determined by an element/' >^/i of F, and

inversely every element/' >-/i of F determines a

segment A' of F. If/' and/" are two elements of

F which follow / in rank, A' and A" are the

segments of F determined by them, a and a' are

their ordinal types, and, say/' -</", then, by § 13,

A'<A" and consequently a' < a". [225] If, then,

we put F = (/, F'), we obtain, when we make the

element/' of F' correspond to the element a of {a'},

an imaging of these two aggregates. Thus we have

R}^F'.

ButF' = a— I, and, by theorem E, a— i=a. Con-

sequently

{a)=a.

Since a = «o, we also have {a'} = t^o; thus we have

the theorems :

I. The aggregate {a'} of numbers a of the

first and second number-classes which are smaller
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than a number a of the second number-class has

the cardinal number j^^.

K. Every number a of the second number-class

is either such that {a) it arises out of the next

smaller number a.^ by the addition of i :

or {ii) there is a fundamental series {a^ of numbers

of the first or second number-class such that

a — Lim a^.
V

Proof.—Let a = F. If F has an element g which

is highest in rank, we have F = (A, g), where A is

the segment of F which is determined by g. We
have then the first case, namely,

a = A-f i=a_iH- I.

There exists, therefore, a next smaller number

which is that called %.

But if F has no highest element, consider the

totality [a] of numbers of the first and second

number-classes which are smaller than a. By
theorem H, the aggregate {a'}, arranged in order of

magnitude, is similar to the aggregate F ;
among

the numbers d, consequently, none is greatest. By
theorem I, the aggregate {a\ can be brought into

the form {ay\ of a simply infinite series. If we set

out from a'l, the next following elements ai^ a'3, . . .

in this order, which is different from the order of

magnitude, will, in general, be smaller than a^
;

but in every case, in the further course of the
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process, terms will occur which are greater than a'^
;

for a'l cannot be greater than all other terms,

because among the numbers {a'^} there is no

greatest. Let that number a^ which has the least

index of those greater than a^ be a'p. Similarly,

let a p be that number of the series {a'^} which has the

least index of those which are greater than a ^ . By

proceeding in this way, we get ani infinite series of

increasing numbers, a fundamental series in fact,

/ft I

a 1, Op^, Qp^, . . ., Op^, . . .

[226] We have

I < /)2 < Pa < • • ' <pv< pv+i . . .

,

a\ < a'p^ < ap^ < . . . < a^^ < Up^^^ . . .

,

a\<ap^ always if /ui<p,;

and since obviously v ^ p^,, we always have

a, < a'p^.

Hence we see that every number a'^, and conse-

quently every number a <a, is exceeded by numbers

a'p for sufficiently great values of v. But a is the

number which, in respect of magnitude, immediately

follows all the numbers a\ and consequently is also

the next greater number with respect to all ap . If,

therefore, we put a\ = a-^, Op^^^ = «(,+!, we have

a= Lim a^.
V

From the theorems B, C, . . ., K it is evident

that the numbers of the second number-class result
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from smaller numbers in two ways. Some numbers,

which we call "numbers of the first kind {Art),'' are

got from a next smaller number a_i by addition of 1

according to the formula

a = a-i+ I
;

The other numbers, which we call
'

' numbers of the

second kind," are such that for any one of them

there is not a next smaller number a_i, but they

arise from fundamental series [a^] as limiting

numbers according to the formula

a= Lim a^.
V

Here a is the number which follows next in order

of magnitude to all the numbers a^.

We call these two ways in which greater numbers

proceed out of smaller ones '

' the first and the

second principle of generation of numbers of the

second number-class."*

§ 16

The Power of the Second Number- Class is equal

to the Second Greatest Transfinite Cardinal

Number Aleph-One

Before we turn to the more detailed considera-

tions in the following paragraphs of the numbers of

the second number-class and of the laws which

rule them, we will answ^er the question as to the

* [Cf. Section VII of the Introduction,]
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cardinal number which is possessed by the aggregate

Z(h?o)={a} of all these numbers.

[227] A. The totality {a} of all numbers a of

the second number-class forms, when arranged in

order of magnitude, a well-ordered aggregate.

Proof.—If we denote by A„ the totality of

numbers of the second number-class which are

smaller than a given number a, arranged in order

of magnitude, then A„ is a well-ordered aggregate

of type a — o). This results from theorem H of § 14.

The aggregate of numbers d of the first and second

number-class which was there denoted by {a'}, is

compounded out of {v] and A<^, so that

Thus

and since

we have

{a1 = ({.}, AJ.

{7} = M + A,;

A„ = a — w.

Let J be any part of {«} such that there are

numbers in {a} which are greater than all the

numbers of J. Let, say, a be one of these numbers.

Then J is also a part of A^^+i, and indeed such a

part that at least the number a of A^^+i is greater

than all the numbers of J. Since A^^+i is a well-

ordered aggregate, by § 12 a number d of A^^+i,

and therefore also of {a}, must follow next to all

the numbers of J. Thus the condition II of § 12 is
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fulfilled in the case of {a} ; the condition 1 of § 12

is also fulfilled because {a} has the least number co.

Now, if we apply to the well-ordered aggregate

{a} the theorems A and C of § 12, we get the

following theorems :

B. Every totality of different numbers of the first

and second number-classes has a least number.

C. Every totality of different numbers of the first

and second number-classes arranged in their order of

magnitude forms a well-ordered aggregate.

We will now show that the power of the second

number-class is different from that of the first, which

is No-

D. The power of the totality {a} of all numbers

a of the second number-class is not equal to ^^q.

Proof.—If {a} were equal to j^q, we could bring

the totality {a} into the form of a simply infinite

series

Vp y2> • • •> y.^. • • •

such that {y^} would represent the totality of

numbers of the second [228] number-class in an

order which is different from the order of magni-

tude, and {y^} would contain, like {a}, no greatest

number.

Starting from y^, let y^ be the term of the series

which has the least index of those greater than y^,

yp the term which has the least index of those

greater than y^, and so on. We get an infinite

series of increasing numbers,

yi> yp> • • •' ypv' • • •>
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such that

yi<yp.<yp.r • • <rp„<rp,+i< • • •>

r^ ^ yp,-

By theorem C of § 15, there would be a definite

number S of the second number-class, namely,

^ = Limy,^,
V

which is greater than all numbers y^ . Consequently

we would have

S>y.

for every v. But {y^} contains all numbers of the

second number-class, and consequently also the

number S ; thus we would have, for a definite v^,

^=yv

which equation is inconsistent with the relation

^ > y^ . The supposition {a} = t^o consequently leads

to a contradiction.

E. Any totality {/3} of different numbers ^ of

the second number-class has, if it is infinite, either

the cardinal number «(, or the cardinal number {a}

of the second number-class.

Proof.—The aggregate {^}, when arranged in its

order of magnitude, is, since it is a part of the well-

ordered aggregate {a}, by theorem O of § 13,

similar either to a segment Aa , which is the totality
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of all numbers of the same number-class which are

less than a©, arranged in their order of magnitude,

or to the totality {a} itself. As was shown in the

proof of theorem A, we have

Thus we have either {^)—a^ — w or {/3} = {a}, and

consequently {^} is either equal to Qq — w or {a).

But oq — ft) is either a finite cardinal number or is

equal to «o (theorem I of § 15). The first case is

here excluded because {/3} is supposed to be an

infinite aggregate. Thus the cardinal number {^}

is either equal to j^q or {a}.

F. The power of the second number-class {a} is

the second greatest transfinite cardinal number

Aleph-one.

[229] Proof.—There is no cardinal number a

which is greater than n^ and less than {a}. For if

not, there would have to be, by § 2, an infinite part

{/3} of {a} such that {/3}=a. But by the theorem

E just proved, the part {/3} has either the cardinal

number js^q or the cardinal number {a}. Thus the

cardinal number {a\ is necessarily the cardinal

number which immediately follows «o in magnitude ;

we call this new cardinal number «j.

In the second number-class Z(«o) we possess,

consequently, the natural representative for the

second greatest transfinite cardinal number Aleph-

one.
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% 17

The Numbers of the Form a)% + a)'""\+ . . . +j/^.

It is convenient to make ourselves familiar, in the

first place, with those numbers of Z({^o) which are

whole algebraic functions of finite degree of w.

Every such number can be brought—and brought

in only one way—into the form

(I) = a,% + a)'^-V+ . . . +.^,

where ;x, v^ are finite and different from zero, but

j^i, 1^2' • • •>
'^i'*

"^^y ^^ zero. This rests on the fact

4, we

and, by theorem E of § 15,

Thus, in an aggregate of the form

. . . +w'^V + w^i/+ . . .,

all those terms which are followed towards the right

by terms of higher degree in « may be omitted.

This method may be continued until the form given

in (i) is reached. We will also emphasize that

that
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Compare, now, the number with a number \p- of

the same kind:

(4) V^ = coVo + ^')^"Vi+ • • • +P^'

If yu and X are different and, say, iu<Xy we have by

(2) + \^ = -v/r, and therefore (p<\fr.

[230] If jUL = \, vq, and Pq are different, and, say,

i'o<Poy ^^^ h^^'^ t)y (2)

+ (^Xpo-^o) + ^^"Vi+ • • • +M = \^i

and therefore

If, finally,

/x = X, V(i = Po, I'l — Pv • ' • ^<T-l = PcT-l^ (rKfXy

but i;^ is different from p^ and, say, v^<p„, we
have by (2)

and therefore again

Thus, we see that only in the case of complete

identity of the expressions ^ and yp- can the numbers

represented by them be equal.

The addition of and \/r leads to the following

result :

{a) If ^<A, then, as we have remarked above,

{b) If ^ = X, then we have
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{c) \i fx>\ we have

In order to carry out the multiplication of and i/r,

we remark that, if p is a finite number which is

different from zero, we have the formula :

(5) ^yo = a)%/D + w'^-Vi+ ... +1/^.

It easily results from the carrying out of the sum

consisting of p terms + ^+ . . . +0. By means

of the repeated application of the theorem G of

§ 15 we get, further, remembering the theorem F
of §15,

(6) 0CO = ft)'^+S

and consequently also .

(7) 9^0)^ = 60^+ ^.

By the distributive law, numbered (8) of § 14,

we have

0\/^ = 0a)^iOo + 0w^'Vi+ • • • +V^^Px-i + 0/3a.

Thus the formulae (4), (5), and (7) give the following

result :

{a) if p;^ = o, we have

{b) If Pa is not equal to zero, we have
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[231] We arrive at a remarkable resolution of

the numbers in the following manner. Let

(8.) = a)% + a)'^'/ci+ . . . -^(*r--K,,

where

and /Cq, /ci, . . ., act 3-re finite numbers which are

different from zero. Then we have

^ = (co'^'/ci + w^^/ca + . . . + ur-^K,){s^^ -
'^•/f + I ).

By the repeated application of this formula we get

= fo'^r/c^(w'"T-l-MT/f^_^+ l)(ft)'^T-2-'^T_l^^_2+ l). . .

(co'^-'^'/Co+l).

But, now,

a)\+ I =(co^+ l)/c,

if /c is a finite number which is different from zero

;

so that

:

. . . (ft)'^-'^'+I>o.

The factors 0)^+ i which occur here are all irre-

soluble, and a number can be represented in this

product-form in only one way. If fXj — o^ then

is of the first kind, in all other cases it is of the

second kind.

The apparent deviation of the formulae of this

paragraph from those which were given in Math.

Ann., vol. xxi, p. 585 (or Grundlagen, p. 41), is

merely a consequence of the different writing of the

product of two numbers : we now put the multi-

12
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plicand on the left and the multipHcator on the

right, but then we put them in the contrary way.

§i8

The Power * y* in the Domain of the Second

Number- Class

Let ^ be a variable whose domain consists of the

numbers of the first and second number-classes in-

cluding zero. Let y and (5 be two constants belong-

ing to the same domain, and let

^>0, y>l.

We can then assert the following theorem :

A. There is one wholly determined one-valued

function /(^) of the variable ^ such that :

{a) /(o) = ^.

{b) \i ^' and ^' are any two values of ^, and if

then

/(f)</(f)-

[232] ic) For every value of ^ we have

/(#+i)=/(ar-

{d) If {^^} is any fundamental series, then {/(f^)}

is one also, and if we have

^=Lim ^„
V

then

/(f) = Lini/(,^„).
V

* [Here obviously it is Potenz and not MdchHgkeit.'\
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Proof.—By {a) and {c), we have

/(l) = <5y, f{2) = Syy, f{z) = Syyy, . . .,

and, because 5>0 and y> i, we have

/(l)</(2)</(3)< . . . </(„)</(.+ I)< . . .

Thus the function f{^) is wholly determined for the

domain $<w. Let us now suppose that the theorem

is valid for all values of f which are less than a,

where a is any number of the second number-class,

then it is also vaUd for f <a. For if a is of the

first kind, we have from {c) :

/(a)=/(a-Oy>/(a.i);

SO that the conditions {b), (c), and (d) are satisfied

for f^a. But if a is of the second kind and {a^} is

a fundamental series such that Lim a^ = a, then it

follows from (d) that also {/(ay)] is a fundamental

series, and from (d) that /(a) = Lim /(a^). If we

take another fundamental series {a^} such that

Lim a\, = a, then, because of (d), the two funda-

mental series {/(a,,)} and {/(a\)} are coherent, and

thus also /(a) = Lim /(a'„). The value of /(«) is,

consequently, uniquely determined in this case also.

If a' is any number less than a, we easily convince

ourselves that /(a) < /(a). The conditions (d), (c)y

and (d) are also satisfied for ^<'a. Hence follows

the validity of the theorem /<?r all values of ^. For

if there were exceptional values of f for which it

did not hold, then, by theorem B of § 16, one of
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them, which we will call a, would have to be the

least. Then the theorem would be valid for f<a,
but not for ^^a, and this would be in contradiction

with what we have proved. Thus there is for the

whole domain of f one and only one function /(f)
which satisfies the conditions {a) to {d).

[233] If we attribute to the constant ^ the value i

and then denote the function f{£) by

we can formulate the following theorem :

B. If y is any constant greater than i Which

belongs to the first or second number-class, there

is a wholly definite function y^ of f such that :

{a) y«=i;

W If f <rthen y^'<y^";

{c) For every value of f we have y^+i = y^y ;

id) If {f^} is a fundamental series, then {y^"}

is such a series, and we have, if f=Lim f^, the
V

equation

y^ = Lim y^".

V

We can also assert the theorem :

C. If/(f) is the function of f which is characterized

in theorem A, we have

/(f) =V-
Proof.—If we pay attention to (24) of § 14,

we easily convince ourselves that the function ^y^

satisfies, not only the conditions {a), {b), and {c)

of theorem A, but also the condition {d) of this
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theorem. On account of the uniqueness of the

function /(f), it must therefore be identical with ^y^.

D. If a and ^ are any two numbers of the first

or second number-class, including zero, we have

y»+^ = y*y^.

Proof.—W& consider the function 0(f) = y«+^.

Paying attention to the fact that, by formula (23)

of § 14,

Lim (a + f,)
= a + Lim f„

V V

we recognize that ^(f) satisfies the following four

conditions :

{a) 0(0) = y*;

{b) Iff <r, then 0(f) <0(r);
{c) For every value of f we have V'(f+ = <^(f)y 5

(d) If {f } is a fundamental series such that

Lim f = f, we have

0(f) = Lim 0(f).
V

By theorem C we have, when we put (5 = y^

0(a = yy-

If we put f= ^ in this, we have

E. If a and /3 are any two numbers of the first or

second number-class, including zero, we have

[234] Proof.—Let us consider the function

^(f) = y«f and remark that, by (24) of § 14, we
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always have Lim af^ = a Lim ^^, then we can, by
V V

theorem D, assert the following :

{a) iA(o)=i
;

ib) Iff<r, thenV^(0<V^(r);
ic) For every value of f we have ^^(f+ i ) = V^(f)y* ;

{d) If {^^} is a fundamental series, then {V^(^v)} is

also such a series, and we have, if ^=Lim^j,, the
V

equation '\/r(^) = Lim ^{^^.
V

Thus, by theorem C, if we substitute in it i for (5

and y* for y,

On the magnitude of y^ in comparison with ^ we

can assert the following theorem :

F. If y > I, we have, for every value of f,

Proof.—In the cases ^ = o and ^= I the theorem

is immediately evident. We now show that, if it

holds for all values of ^ which are smaller than a

given number a> I, it also holds for ^=a.

If a is of the first kind, we have, by supposition,

a_i<y«-S
and consequently

«-iy < y''"'y = r''-

Hence
y'^>a_i + a_i(y-l).

Since both a_^ and y— i are at least equal to i, and

a_i+ I =a, we have
y" > a.



OF TRANSFINITE NUMBERS 183

If, on the other hand, a is of the second kind and

a = Lim a„,

then, because a^,<a, we have by supposition

Consequently

Lim a„ S. Lim y"",

V V

that is to say,

a < y*.

If, now, there were values of ^ for which

one of them, by theorem B of § 16, would have to

be the least. If this number is denoted by a, we
would have, for ^<a,

[235] i^y';

but

a>y%

which contradicts what we have proved above.

Thus we have for all values of ^

§ 19

The Normal Form of the Numbers of the

Second Number- Class

Let a be any number of the second number-class.

The power 00^ will be, for sufficiently great values
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of ^, greater than a. By theorem F of § i8, this is

always the case for f>a ; but in general it will also

happen for smaller values of f.

By theorem B of § i6, there must be, among the

values of ^ for which

d)^> a,

one which is the least. We will denote it by /3, and

we easily convince ourselves that it cannot be a

number of the second kind. If, indeed, we had

/5 = Lim /5j,,

V

we would have, since ^^ < /3,

CO " < a,

and consequently

Lim 0)^' ^ a.
V

Thus we would have

o)^ < a,

whereas we have

Therefore /3 is of the first kind. We denote /3_i

by Oq, so that ^ = ao+i, and consequently can

assert that there is a wholly determined number a^

of the first or second number-class which satisfies

the two conditions :

(l) (jo^<^a, o)'^o)>a.

From the second condition we conclude that
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does not hold for all finite values of v, for if it did

we would have

Lim a)% = co"«a) < a.
V

The least finite number v for which

{£) ^v> a

will be denoted hy kq-\-i. Because of (i), we have

/Co > o.

[236] There is, therefore, a wholly determined

number k^ of the first number-class such that

(2) a)''oA:o< a, a)%(/Co + l) > a.

If we put a — a)%/co = a', we have

(3) a = a)%/Co + a'

and

(4) 0<a'<a)%, 0</fo<a).

But a can be represented in the form (3) under the

conditions (4) in only a single way. For from (3)

and (4) follow inversely the conditions (2) and thence

the conditions (i). But only the number ao=|8_i
satisfies the conditions (i), and by the conditions

(2) the finite number /Cq is uniquely determined.

From (i) and (4) follows, by paying attention to

theorem F of § 18, that

a <a, Oo^a.

Thus we can assert the following theorem :

A. Every number a of the second number-class
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can be brought, and brought in only one way, into

the form

a = w^o/Cq + a
,

where
O <.a' < co%, o < /Co < Wj

and a is always smaller than a, but a^ is smaller

than or equal to a.

If a is a number of the second number-class, we

can apply theorem A to it, and we have

(5) a' = coVi + a'',

where
0<^a <i>f-h 0<Ki<(j»,

and

ai < Oq, a^ < a.

In general we get a further sequence of analogous

equations :

(6) a' = of-'^K2 + a^'j

(7) a''' = a)'^3/c3 + a^\

But this sequence cannot be infinite, but must

necessarily break off. For the numbers a, a, a\ . . .

decrease in magnitude :

a> a> a'> a" . . .

If a series of decreasing transfinite numbers were

infinite, then no term would be the least ; and this

is impossible by theorem B of § i6. Consequently

we must have, for a certain finite numerical value r.

«^^+^;=o-
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[237] If we now connect the equations (3), (5),

(6), and (7) with one another, we get the theorem :

B. Every number a of the second number-class

can be represented, and represented in only one

way, in the form

where Oq, ai , . . . a^ are numbers of the first or

second number-class, such that :

a^ > Oj > ag > . . . > ctj ^ O,

while /Co, /ci, . . . /c^, r+i are numbers of the first

number-class which are different from zero.

The form of numbers of the second number-class

which is here shown will be called their
'

' normal

form "
; a^ is called the '

' degree " and a^ the

''exponent" of a. For t = o, degree and exponent

are equal to one another.

According as the exponent a^ is equal to or greater

than zero, a is a number of the first or second kind.

Let us take another number ^ in the normal

form :

(8) ^ = a)^«Xo + a)^'Xi+ . • . +co^'^Xa.

The formulae :

(9) w'^'/c' -I- w'^'/c = w'^X'c' + /c),

(10) a)*"'/ + co*V' = w'^V, a <d\

where /c, k\ k' here denote finite numbers, serve

both for the comparison of a with ^ and for the
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carrying out of their sum and difference. Tiiese are

generalizations of the formulae (2) and (3) of § 17.

For the formation of the product a^, the following

formulae come into consideration :

(11) aX = (o'^^X + w-^'/ci + . . . +w*X, 0<X<

(12)

Od ,

= /.>«o+laa)= o)

(13) aw^' = a)'^o+^; /3'>0.

The exponentiation a^ can be easily carried out

on the basis of the following formulae :

(14) a^ = a)*o%+ . . ., 0<X<a).

The terms not written on the right have a lower

degree than the first. Hence follows readily that

the fundamental series {a^} and {co'"^^} are coherent,

so that

(15) a" = 0)^0-, ao>0.

Thus, in consequence of theorem E of § 18, we

have :

(16) a"^' = w"''"^ ao>0, ^'>0.

By the help of these formulae we can prove the

following theorems :

[238] C. If the first terms w^o/cq, w^oXq of the

normal forms of the two numbers a and /3 are not

equal, then a is less or greater than /3 according as

a)«o/c-Q is less or greater than co^^Xq. But if we have

and if w'^'^+Vp+i is less or greater than w^p-^\+i, then

a is correspondingly less or greater than ^.
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D. If the degree a^ of a is less than the degree

i8o of ^, we have

a+ /3 = /3.

If ao = /5o,
then

a + /3 = a)^o(;,^ + Xo) + a)^*Xi+ . . . +oAA,.

But if

then

a + ^ = w'^/CoH- . . . +a)"''/Cp+ a)^«Xo + ^'^i+ • • • +^"X^-

E. If ^ is of the second kind (/3^>o), then

a/3 = (o'^o+^oXQ + a)«o+^^Xi+ . . . + w'^o+^-X^ = w*o/3
;

But if /3 is of the first kind (/3, = o), then

a^ = (o«o+^oX(, + a)«^^+^^Xi+ . . .+co'^'>+^'--iX^_i + oj'^*'/CoX^

4- w'^'/ci + . . . + o/^/c^.

F. If /3 is of the second kind (/3<^>o), then

But if (3 is of the first kind (^^ = 0), and indeed

8 = ^' + Xo-, where (3' is of the second kind, we have:

G. Every number a of the second number-class

can be represented, in only one way, in the product-

form :

a = a)V(w^'+ l)Kr-lW'+ l)/Cr-2 • • • (o)^"+ iK,

and we have

70 = «T) yi = ar-i — aT5 y2 = Wr-2 — «T-1, . . •>yT = «o'~«i'
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whilst /cq, /cj, . . . K^ have the same denotation as

in the normal form. The factors (0"^+! are all

irresoluble.

H. Every number a of the second kind which

belongs to the second number-class can be repre-

sented, and represented in only one way, in the

form

a — L'd'^a i

where yo>o and a is a number of the first kind

which belongs to the first or second number-class.

[239] I. In order that two numbers a and ^ of

the second number-class should satisfy the relation

it is necessary and sufficient that they should have

the form

a = yyw, /3 = yv^

where /x and v are numbers of the first number-class.

K. In order that two numbers a and ^ of the

second number-class, which are both of the first

kind, should satisfy the relation

it is necessary and sufficient that they should have

the form

where ^ and v are numbers of the first number-class.

In order to exemplify the extent of the normal

form dealt with and the product-form immediately

connected with it, of the numbers of the second
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number-class, the proofs, which are founded on

them, of the two last theorems, I and K, may here

follow.

From the supposition

a + /3 = /3+ a

we first conclude that the degree oq of a must be

equal to the degree ^^ of ^. For if, say, Qq </3o, we

would have, by theorem D,

a+ ^ =A
and consequently

which is not possible, since, by (2) of § 14,

Thus we may put

a = (jo^fA + a', |8 = M^'ov + 13',

where the degrees of the numbers a and /3' are less

than ao, and ju and v are infinite numbers which are

different from zero. Now, by theorem D we have

a + P = w''ifjL + v) + ^\ P + a-=co'^(^ + p) + a,

and consequently

(^''Klii + 1/) + /3' = co'^ifjL + 1/) + a.

By theorem D of § 14 we have consequently

13' = a.

Thus we have

a = (jo"-"/ul -\-a, 13 = iff--v+ a\
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[240] and if we put

uf-''+ a' = 7
we have, by (11):

a = y/x, /5 = yv.

Let us suppose, on the other hand, that a and ^ are

two numbers which belong to the second number-

class, are of the first kind, and satisfy the condition

and we suppose that

We will imagine both numbers, by theorem G, in

their product-form, and let

where a and /3' are without a common factor (besides

i) at the left end. We have then

a>/3\
and

All the numbers which occur here and farther on

are of the first kind, because this was supposed of

a and /3.

The last equation, when we refer to theorem G,

shows that a and /3' cannot be both transfinite,

because, in this case, there would be a common
factor at the left end. Neither can they be both

finite ; for then S would be transfinite, and, if k is

the finite factor at the left end of S, we would have
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and thus

Thus there remains only the possibility that

a >o), P'< CO.

But the finite number /3' must be t :

because otherwise it would be contained as part in

the finite factor at the left end of «'.

We arrive at the result that /3 = (5, consequently

a = (3a ,

where a is a number belonging to the second

number-class, which is of the first kind, and must

be less than a :

a <a.

Between a and ^ the relation

afi = l3a

subsists.

[241] Consequently if also a>l3, we conclude in

the same way the existence of a transfinite number

of the first kind a' which is less than a and such that

a=Pa\ a '13= /3a'.

If also a' is greater than (3, there is such a number

a"' less than a\ such that

a =pa , a p = /5a ,

and so on. The series of decreasing numbers, a, a',

a\ a"\ . . ., must, by theorem B of § 16, break

\

i3
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off. Thus, for a definite finite index ^q, we must

have
(p. <a^'^o /3.

If

we have

the theorem K would then be proved, and we would

have

But if

then we put

and have

Thus there is also a finite number p^ such that

In general, we have analogously :

and so on. The series of decreasing numbers
/3i,

/^a, I3q, . . . also must, by theorem B of § i6, break

off. Thus there exists a finite number k such that

If we put

then
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where /x and v are numerator and denominator of

the continued fraction:

+-
p.

[242] § 20

The e-Numbers of the Second Number- Class

The degree a© of a number a is, as is immediately

evident from the normal form :

(1) a = w'^o/Cq + (o*i/Ci + . . . , «(, > ai > . . . , 0<k„<w,

when we pay attention to theorem F of § 18, never

greater than a ;
but it is a question whether there

are not numbers for which a^ = a. In such a case

the normal form of a would reduce to the first term,

and this term would be equal to w*, that is to say,

a would be a root of the equation

(2) a,^ = f.

On the other hand, every root a of this equation

would have the normal form w" ; its degree would

be equal to itself.

The numbers of the second number-class which

are equal to their degree coincide, therefore, with

the roots of the equation (2). It is our problem to

determine these roots in their totality. To dis-

tinguish them from all other numbers we will call

them the " f-numbers of the second number-class."
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That there are such e-numbers results from the

following theorem :

A. If y is any number of the first or second

number-class which does not satisfy the equation

(2), it determines a fundamental series {y} by means

of the equations

71 = ^^ y2 = w^S • • 'J y^ = w^''"S . . •

The limit Lim y^ = E(y) of this fundamental series
V

is always an e-number.

Proof.—Since y is not an e-number, we have

a)>'>y, that is to say, 7i>y. Thus, by theorem B

of § 1 8, we have also w'^'i > w'>', that is to say, y2>yi ;

and in the same way follows that y3>y2, and so

on. The series {y^} is thus a fundamental series.

We denote its limit, which is a function of y, by

E(y) and have :

^E(v) _ Lin^ ^v^^ Lin^ y^^^ — E(y).
V V

Consequently E(y) is an e-number.

B. The number eo = E(i) = Lim w^,, where
V

is the least of all the e-numbers.

[243] Proof.—Let e be any e-number, so that

Since e'>w, we have w''>w'", that is to say, e > w^.

Similarly t/xo'*'', that is to say, e'xo^, and so on.

We have in general
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and consequently
e'>.Lim a)„,

that is to say,

Thus eo = E(i) is the least of all e-numbers.

C. If e' is any e-number, e" is the next greater

e-number, and y is any number which lies between

them :

e'< y < e',

then E(y) = e".

Proof.—From
e' < y <: e'

follows

that is to say,

e' < yi < e'

.

Similarly we conclude

e' < ya < e",

and so on. We have, in general,

e < y,, < e'',

and thus

e'<E(y)<e".

By theorem A, E(y) is an e-number. Since e' is

the e-number which follows e' next in order of mag-

nitude, E(y) cannot be less than e", and thus we

must have
E(y) = e".

Since e'+i is not an e-number, simpl}- because all

6-numbers, as follows from the equation of definition
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i= w^, are of the second kind, e -{- i is certainly less

than e\ and thus we have the following theorem :

D. If e' is any e-number, then E(e'+ i) is the next

greater e-number.

To the least e-number, €q, follows, then, the next

greater one:

ei = E(eo+i),

[244] to this the next greater number :

^2 = E(6i+l),

and so on. Quite generally, we have for the

(1/+ i)th e-number in order of magnitude the formula

of recursion

(3) e, = E(e,_i-|-l).

But that the infinite series

^0' ^1) • • • 6,., . . .

by no means embraces the totality of e-numbers

results from the following theorem :

E. If e, e', e', ... is any infinite series of

e-numbers such that

e<e'<e". . . e^^^ < e^-^+i^ < . . .,

then Lim e^''^ is an e-number, and, in fact, the
I'

e-number which follows next in order of magnitude

to all the numbers eH
Proof.—

Lim eW .
,)

(0 " = Lim w* = Lim e^''^.
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That Lim e^''^ is the e-number which follows next
V

in order of magnitude to all the numbers e^"^ results

from the fact that Lim e^"^ is the number of the

second number-class which follows next in order of

magnitude to all the numbers e^^^

F. The totality of e-numbers of the second

number-class forms, when arranged in order of

magnitude, a well-ordered aggregate of the type Vt

of the second number-class in its order of magnitude,

and has thus the power Aleph-one.

Proof.—The totaHty of e-numbers of the second

number-class, when arranged in their order of magni-

tude, forms, by theorem C of § 16, a well-ordered

aggregate :

(4) €q, e^, . . ., e^,, . . . €0,+!, . . . ea' . . .,

whose law of formation is expressed in the theorems

D and E. Now, if the index a did not successively

take all the numerical values of the second number-

class, there would be a least number a which it did

not reach. But this would contradict the theorem

D, if a were of the first kind, and theorem E, if a

were of the second kind. Thus a takes all numerical

values of the second number-class.

If we denote the type of the second number-class

by Q, the type of (4) is

w+ Q = w+ o.)2+ (C2-w-^).

[245] But since a) + a)^ = w^, we have

w+ il = il\
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and consequently

o)+n = Q = ^^^.

G. If e is any e-number and a is any number of

the first or second number-class which is less than e :

a<e,

then e satisfies the three equations :

a + e = e, a^ — e^ a^ — e.

Proof.— If ao is the degree of a, we have ao^a, and

consequently, because of a<e, we also have ao<e.

But the degree of e = w^ is e; thus a has a less

degree than e. Consequently, by theorem D of

§ 19,

and thus

On the other hand, we have, by formula (13) of

§ 19,

ae = ao)" = isf-^^^ — co^ = e,

and thus

a^e = €.

Finally, paying attention to the formula (16) of

§19,

.H. If a is any number of the second number-class,

the equation

''=i

has no other roots than the e-numbers which are

greater than a.
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Proof.— Let /3 be a root of the equation

af = |.

SO that

Then, in the first place, from this formula follows

that

On the other hand, /3 must be of the second kind,

since, if not, we would have

Thus we have, by theorem F of § 19,

and consequently

[246] By theorem F of § 19, we have

and thus

But /3 cannot be greater than ao/3 ; consequently

ao/3 = ^,
and thus

Therefore ^ is an e-number which is greater than a.

Halle, March 1897.
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In a sense the most fundamental advance made in

the theoretical arithmetic of finite and transfinite

numbers is the purely logical definition of the

number-concept. Whereas Cantor (see pp. 74,

86, 112 above) defined "cardinal number" and
'* ordinal type" as general concepts which arise by

means of our mental activity, that is to say, as

psychological entities, Gottlob Frege had, in his

Grundlageti der Arithmetik of 1884, defined the

" number {Anzahl) of a class u " as the class of all

those classes which are equivalent (in the sense of

PP- 75) S6 above) to u. Frege remarked that his

" numbers " are the same as what Cantor (see pp.

40, 74, 86 above) had called "powers," and that

there was no reason for restricting "numbers" to

be finite. Although Frege worked out, in the first

volume (1893) of his Grundgesetze der AritJunetik^

an important part of arithmetic, with a logical

accuracy previously unknown and for years after-

wards almost unknown, his ideas did not become at

all widely known until Bertrand Russell, who had

arrived independently at this logical definition of

"cardinal number," gave prominence to them in his
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Principles of Mathematics of 1903.* The two chief

reasons in favour of this definition are that it

avoids, by a construction of "numbers" out of the

fundamental entities of logic, the assumption that

there are certain new and undefined entities called

*' numbers"; and that it allows us to deduce at

once that the class defined is not empty, so that

the cardinal number of u "exists" in the sense

defined in logic : in fact, since u is equivalent to

itself, the cardinal number of u has u at least as a

member. Russell also gave an analogous definition

for ordinal types or the more general "relation

numbers. " f

An account of much that has been done in the

theory of aggregates since 1897 ^n^y t)e gathered

from A. Schoenflies's reports : Die Entwickelung

der Lehre von den Pmiktmannigfaltigkeiten, Leipzig,

1900; part ii, Leipzig, 1908. A second edition

of the first part was published at Leipzig and Berlin

in 191 3, in collaboration with H. Hahn, under the

title : Entwickelung der Mengenlehre und iJirer

Anwendungen. These three books will be cited

by their respective dates of publication, and, when

references to relevant contributions not mentioned

in these reports are made, full references to the

original place of publication will be given.

* Pp. 519, 111-116. Cf. Whitehead, Amer. Jotirn. of Maih., vol.

xxiv, 1902, p. 378. For a more modern form of the doctrine, see

Whitehead and Russell, Frincipia Mathetnatica^ vol. ii, Cambridge,

1912, pp. 4, 13.

t Principles, pp. 262, 321 ; and Frtncipta, vol. ii, pp. 330,

473-510.
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Leaving aside the applications of the theory of

transfinite numbers to geometry and the theory of

functions, the most important advances since 1897

are as follows :

(i) The proof given independently by Ernst

Schroder (1896) and Felix Bernstein (1898) of the

theorem B on p. 91 above, without the supposition

that one of the three relations of magnitude must

hold between any two cardinal numbers (1900, pp.

16-18; 1913, pp. 34-41 ; 1908, pp. 10-12).

(2) The giving of exactly expressed definitions

of arithmetical operations with cardinal numbers

and of proofs of the laws of arithmetic for them by

A. N. Whitehead {Ainej\ Journ. of Math., vol.

xxiv, 1902, pp. 367-394). Cf. Russell, Principles,

pp. 1
1
7- 1 20. A more modern form is given in

Whitehead and Russell's Principia, vol. ii, pp.

66-186.

(3) Investigations on the question as to whether

any aggregate can be brought into the form of

a well-ordered aggregate. This question Cantor

{cf. 1900, p. 49; 191 3, p. 170; and p. 61 above)

believed could be answered in the affirmative.

The postulate lying at the bottom of this theorem

was brought forward in the most definite manner

by E. Zermelo and E. Schmidt in 1904, and

Zermelo afterwards gave this postulate the form of

an ''axiom of selection" (1913, pp. 16, 170-184;

1908, pp. 33-36). Whitehead and Russell have

dealt with great precision with the subject in their

Principia, vol. i, Cambridge, 19 10, pp. 500-568.
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It may be remarked that Cantor, in his proof of

theorem A on p. 105 above, and in that of theorem

C on pp. 1 6 1- 1 62 above,* unconsciously used this

axiom of infinite selection. Also G. H. Hardy
in 1903 (1908, pp. 22-23) used this axiom, un-

consciously at first, in a proof that it is possible to

have an aggregate of cardinal number j^^ in the

continuum of real numbers.

But there is another and wholly different question

which crops up in attempts at a proof that any

aggregate can be well ordered. Cesare Burali-Forti

had in 1897 pointed out that the series of all ordinal

numbers, which is easily seen to be well ordered,

must have the greatest of all ordinal numbers as its

type. Yet the type of the above series of ordinal

numbers followed by its type must be a greater

ordinal number, for /3+ i is greater than
f^.

Burali-

Forti concluded that we must deny Cantor's funda-

mental theorem in his memoir of 1897. A different

use of an argument analogous to Burali-Forti's was

made by Philip E. B. Jourdain in a paper written in

1903 and published in 1904 (Phitosophical Magazine,

6th series, vol. vii, pp. 61-75). The chief interest

of this paper is that it contains a proof which is

independent of, but practically identical with, that

discovered by Cantor in 1895, and of which some

* Indeed, we have here to prove that any enumerable aggregate of

any enumerable aggregates gives an enumerable aggregate of the

elements last referred to. To prove that Xo- Xo = Ko, it is not enough to

prove the above theorem for particular aggregates. And in the general

case we have to pick one element out of each of an infinity of classes,

no element in each class being distinguished from the others.
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trace is preserved in the passage on p. 109 above

and in the remark on the theorem A of p. 90.

This proof of Cantor's and Jourdain's consists of

two parts. In the first part it is established that

every cardinal number is either an Aleph or is greater

than all Alephs. This part requires the use of

Zermelo's axiom; and Jourdain took the "proof"

of this part of the theorem directly from Hardy's

paper of 1903 referred to above. Cantor assumed

the result required, and indeed the result seems very

plausible.

The second part of the theorem consists in the

proof that the supposition that a cardinal number

is greater than all Alephs is impossible. By a slight

modification of Burali-Forti's argument, in which

modification it is proved that there cannot be a

greatest Aleph, the conclusion seems to follow that

no cardinal number can be other than an Aleph,

The contradiction discovered by Burali-Forti is

the best known to mathematicians
; but the simplest

contradiction was discovered * by Russell {Principles,

pp. 364-368, 101-107) from an application to "the

cardinal number of all things " of Cantor's argument

of 1892 referred to on pp. 99-100 above. Russell's

contradiction can be reduced to the following : If

w is the class of all those terms x such that x is not

a member of x, then, if 21/ is a member of w^ it is

plain that w is not a member of w ; while if w is

not a member of w, it is equally plain that ze/ is a

member of w. The treatment and final solution of

* This argument was discovered in 1900 (see Monisf, Jan. 1912).
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these paradoxes, which concern the foundations of

logic and which are closely allied to the logical

puzzle known as "the Epimenides," * has been

attempted unsuccessfully by very many mathe-

maticians, f and successfully by Russell {cf. Principles,

pp. 523-528; Principia, vol. i, pp. 26-31, 39-90)-

The theorem A on p. 105 is required (see theorem

D on p. 108) in the proof that the two definitions

of infinity coincide. On this point, cf. Principles,

pp. 1 21-123 ;
Principia, vol. i, pp. 569-666; vol. ii,

pp. 187-298.

(4) Investigation of number-classes in general,

and the arithmetic of Alephs by Jourdain in 1904

and 1908, and G. Hessenberg in 1906 J (191 3»

pp. 131-136; 1908, pp. 13-14)-

(5) The definition, by Felix Hausdorff in 1904-

1907, of the product of an infinity of ordinal types

and hence of exponentiation by a type. This

definition is analogous to Cantor's definition of

exponentiation for cardinal numbers on p. 95

above. § Cf. 1913, pp. 75-80; 1908, pp. 4^-45-

(6) Theorems due to J. Konig (1904) on the

* Ephnenides was a Cretan who said that all Cretans were liars.

Obviously if his statement were true he was a liar. The remark of a

man who says, " I am lying," is even more analogous to Russell's w.

t Thus Schoenflies, in his Reports of 1908 and 1913, devotes an

undue amount of space to his "solution " of the paradoxes here referred

to. This " solution" really consists in saying that these paradoxes do
not belong to mathematics but to "philosophy." It may be remarked

that Schoenflies seems never to have grasped the meaning and extent of

Zermelo's axiom, which Russell has called the "multiplicative axiom."

+ Just as in the proof that the multiplication of Ny by itself gives Kq,

the more general theorem here considered involves the multiplicative

axiom.

§ Cf. Jourdain, Mess, of Math. (2), vol. xxxvi, May 1906, pp. 1
3- 1 6.
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inequality of certain cardinal numbers ; and the

independent generalization of these theorems,

together with one of Cantor's (see pp. 81-82

above), by Zermelo and Jourdain in 1908 (1908,

pp. 16-17; 1913, PP- 65-67).

(7) Hausdorff's contributions from 1906 to 1908

to the theory of linear ordered aggregates (19 13,

pp. 185-205 ; 1908, pp. 40-71).

(8) The investigation of the ordinal types of

multiply ordered infinite aggregates by F. Riess

in 1903, and Brouwer in 191 3 (191 3, pp. 85-87).
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