 \\ \\ \\ \\ \\ \section*{π \\ \section*{π \\ \\ NEW ANALYTIC \\ \\ NEW ANALYTIC GEOMETRY GEOMETRY \\ \\ $\frac{89}{} \frac{8}{4}+5$ \\ \\ $\frac{89}{} \frac{8}{4}+5$. .

 2} 2}

 $x=$

Fey 4 5

$7=1$

 mo fore
 Rive for do

New analytic geometry,

CORNELL UNIVERSITY LIBRARY

FROM

The C.E.College

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

NEW

ANALYTIC GEOMETRY

BY
PERCEY F. SMITH, Ph.D.
PROFESSOH OF MATHPMATIOS IN THE SHEFFIFLD SGIENTIFIC SOROOL OF YALE UNIVERSITY
AND
ARTHUR SULLIVAN GALE, Ph.D.
PROFESSOR OF MATHEMATICS IN THE UNIVERSITY OF ROCEESTER

A634948
COPVRIGH'T, 1904, 1905, BY
ARTHUR SULLIVAN GALF:
COPYRIGIT, 1012, HY
PERCEY F. SMI'PH
ALL RIGHTS RESFRVRD
917.7

PREFACE

A glance at the Table of Contents of the present volume will reveal the fact that the subject matter differs in many respects from that included in current textbooks on analytic geometry. The authors have recognized the great importance, in the applications, of the exponential and trigonometric functions, of "settiug up" and studying functions by their graphs, of parametric equations and the locus problem, and of "fitting" curves to points determined by empirically given data. To meet this need chapters have been included covering all these topics. The discussion in Chàpter VI of transcendental curves and equations is intended to be thorough, and tables are provided, whenever useful, to lighten the labor of computation. A student loses interest in a function if he is unable to calculate rapidly its numerical values. The problems of Chapter VIII provide a large variety of functions arising from applied problems, and careful "graphing" and measurement of maximum and minimum values are emphasized. The text of Chapter XII on Parametric Equations and Loci is unusually complete, and care is taken to familiarize the student with those curves which occur in applied mathematics. The study of locus problems by means of parametric equations is amply illustrated. Chapter XX presents the topic of empirical equations and contains $\&$ wide variety of problems.

The authors have not neglected to provide an adequate and thorough drill in the use of coördinates and in the employment of analytic methods. It is acknowledged that this is the primary aim of analytic geometry. The proofs will be found
simple and direct. The chapters devoted to the study of the conic sections (Chapters X and XI) are brief but contain all essential characteristics of these important curves. The examples are numerous, and many are given without answers in case any useful purpose is served by so doing. The book, like the authors' "Elements of Analytic Geometry," is essentially a drill book; but at the same time all difficulties are not smoothed out, though the student is aided in making his own way. He is taught to formulate rules descriptive of methods, and to summarize the main results. The appearance in the text of various Rules is designed expressly to encourage the student in the habit of formulating precise statements and of making clear to himself each new acquisition:

Acknowledgments are due to Dr. George F. Gundelfinger, of the department of mathematics of the Sheffield Scientific School, for many of the problems in the analytic geometry of space and for many valuable suggestions.

THE AUTHORS
New Haven, Connecticut

CONTENTS

CHAPTER I
FORMULAS AND TABLES FOR REFERENCE
SECTION PAOE

1. Formulas from geometry, algebra, and trigonometry 1
2. Three-place table of common logarithms of numbers 4
3. Squares and cubes; square roots and cube roots 5
4. Natural values of trigonometric functions 6
5. Logarithms of trigonometric functions 6
6. Natural values. Special angles 7
7. Rules for signs of trigonometric functions 7
CHAPTER II
CARTESIAN COÖRDINATES
8. Directed line 8
9. Cartesian coördinates 9
10. Rectangular coördinates 10
11. Lengths 13
12. Inclination and slope 16
13. Point of division 19
14. Areas 24
CHAPTER III
CURVE AND EQUATION
15. Locns of a point satisfying a given condition 30
16. Equation of the locus of a point satisfying a given condition 30
17. First fundamental problem 32
18. Locus of an equation 36
19. Second fundamental problem 37
20. Third fundamental problem. Discussion of an equation 42
SECTION PAGE
21. Directions for discussing an equation 47
Sign of a quadratic 49
22. Asymptotes 51
23. Points of intersection 55
CHAPTER IV
THE STRAIGHT LINE
24. The degree of the equation of any straight line 58
25. Locus of any equation of the first degree 59
26. Plotting straight lines 60
27. Point-slope form 62
28. Two-point form 03
29. Intercept form 67
30. Condition that three lines shall intersect in a common point 07
31. Theorems on projection 68
32. The normal equation of the straig! t line 70
33. Reduction to the normal form 71
34. The perpendicular distance from a line to a point 74
35. The angle which a line makes with a second line 80
36. Systems of straight lines 84
37. System of lines passing through the intersection of two given lines 87
CHAPTER V
THE CIRCLE
38. Equation of the circle 92
39. Circles determined by three conditions 94
CHAPTER VI
TRANSCENDENTAL CURVES AND EQUATIONS
40. Natural logarithms 101
Table of values of the exponential function 104
41. Sine curves 105
42. Addition of ordinates 111
43. Boundary curves 114
44. Transcendental equations. Graphical solution 116

CONTENTS
vii

CHAPTER VII

polar coördinatessection
45. Polar coördinates 119
46. Locus of an equation 120
47. Rapid plotting of polar equations 125
48. Points of intersection 127
49. Transformation from rectangular to polar coördinates 128
50. Applications. Straight line and circle 130
CHAPTER VIII
FUNCTIONS AND GRAPRSPAGE
51. Functions 134
52. Notation of functions 143
CHAPTER IX
TRANSFORMATION OF COÖRDINATES
53. Introduction 144
54. Translation of the axes 144
55. Rotation of the axes 146
56. General transformation of coördinates 148
57. Classification of loci 148
58. Simplification of equations by transformation of coörclinates 149
CHAPTER X
Parabola, ellipse, and hyperbola
59. The parabola 153
60. Construction of the parabola 157
61. Theorem 159
62. The ellipse 159
63. Construction of the ellipse 163
64. Theorem 165
65. The hyperbola 165
66. Conjugate hyperbolas and asymptotes 170
67. Equilateral or rectangular hyperbola 173
SECTION PAGE
68. Construction of the hyperbola 173
69. Theorem 175
70. Locus of any equation of the second degree 176
71. Plotting the locus of an equation of the second dugree 180
72. Conic sections 185
Systems of conics 188
CHAPTER XI
TANGENTS
73. Equation of the tangent 190
74. Theorem 194
75. Equation of the normal 195
76. Subtangent and subnormal 196
77. 'Tangent whose slope is given 198
78. Formulas for tangents when the slope is given 200
79. Properties of tangents and normals to conics 201
CHAPTER XII
PARAMETRIC EQUATIONS AND LOCI
80. Plotting parametric equations 205
81. Various parametric equations for the same curve 208
82. Locus problems solved by parametric equations 211
83. Loci derived by a construction from a given curve 218
84. Loci using polar coördinates 220
85. Loci defined by the points of intersection of systems of lines 223
Diameters of conics 226
CHAPTER XIII
CARTESIAN COÖRDINATES IN SPACE
86. Cartesian coördinates 230
87. Orthogonal projections 233
88. Direction cosines of a line 236
89. Lengths 238
90. Angle between two directed lines 240
91. Point of division 242

CONTENTS

ix
CHAPTER XIVSURFACES, CURVES, AND EQUATIONS
SECTION PAGE
02. Loci in space 245
03. Equation of a surface. First fundamental problem. 245
94. Planes parallel to the coördirate planes 249
95. liquations of a curve. First fundamental problem 249
96. Locus of one equation. Second fundamental problem 253
97. Locus of two equations. Second fundamental problem 253
98. Discussion of the equations of a curve. Third fundamental problem 253
99. Discussion of the equation of a surface. Third fundamental problem 256
CHAPTER XV
THE PLANE
100. The normal form of the equation of the plane 260
101. The general equation of the first degree 261
102. Planes determined by three conditions 266
103. The equation of a plane in terms of its intercepts 269
104. The perpendicular distance from a plane to a point 269
105. The angle between two planes 271
106. Systems of planes 273
CHAPTER XVI
THE STRAIGHT LINE IN SPACE
107. General equations of the straight line 277
108. The projecting planes of a line 280
100. Various forms of the equations of a line 282
110. Relative positions of a line and plane 287
CHAPTER XVII
SPECIAL SURFACES
111. Introduction 291
112. The sphere 291
113. Cylinders 295
114. The projecting cylinders of a curve 297
SECTION PAGE
115. Parametric equations of curves in space 300
116. Cones 302
117. Surfaces of revolution 304
118. Ruled surfaces 307
CHAPTER XVIII
TRANSFORMATION OF COÖRDINATES. DIFFERENT SYSTEMS of Coördinates
119. Translation of the axes 310
120. Rotation of the axes 310
121. Polar coördinates 313
122. Spherical coördinates 313
123. Cylindrical coördinates 314
CHAPTER XIX
QUADRIC SURFACES AND EQUATIONS OF THE SECOND DEGREE in three variables
124. Quadric surfaces 316
125. Simplification of the general equation of the second degree in three variables 317
126. The ellipsoid 319
127. The hyperboloid of one sheet 320
128. The hyperboloid of two sheets 321
129. The elliptic paraboloid 324
130. The hyperbolic paraboloid 325
131. Rectilinear generators 327
CHAPTER XX
EMPPIRICAL EQUATIONS
132. Introduction 330
133. Straight-line law 330
134. Laws reduced to straight-line laws 333
135. Miscellaneous laws 338
136. Conclusion 340
INDEX 341

NEW ANALYTIC GEOMETRY

CHAPTER I

FORMULAS AND TABLES FOR REFERENCE

1. Occasion will arise in later chapters to make use of the following formulas and theorems proved in geometry, algebra, and trigonometry.
2. Circumference of circle $=2 \pi r$.*
3. Area of circle $=\pi r^{2}$.
4. Volume of prism $=B a$.
5. Volume of pyramid $=\frac{1}{3} B a$.
6. Volume of right circular cylinder $=\pi r^{2} a$.
7. Lateral surface of right circular cylinder $=2 \pi r a$.
8. Total surface of right circular cylinder $=2 \pi r(r+\alpha)$.
9. Volume of right circular cone $=\frac{1}{3} \pi r^{2} a$.
10. Lateral surface of right circular cone $=\pi r$.
11. Total surface of right circular cone $=\pi r(r+s)$.
12. Volume of sphere $=\frac{4}{3} \pi r^{3}$.
13. Surface of sphere $=4 \pi r^{2}$.
14. In a geometrical series,

$$
l=a r^{n-1} ; s=\frac{r l-a}{r-1}=\frac{a\left(r^{n}-1\right)}{r-1},
$$

$a=$ first term, $r=$ common ratio, $l=n$th term, $s=\operatorname{sum}$ of n terms.
14. $\log a b=\log a+\log b . \quad$ 17. $\log \sqrt[n]{a}=\frac{1}{n} \log a$.
15. $\log \frac{a}{b}=\log a-\log b$.
18. $\log 1=0$.
19. $\log _{a} \alpha=1$.
20. $\log \frac{1}{a}=-\log \alpha$.
16. $\log a^{n}=n \log a$.

[^0]Functions of an angle in a right triangle. In any right triangle one of whose acute angles is A, the functions of A are defined as follows:
21. $\sin A=\frac{\text { opposite side }}{\text { hypotenuse }}$,

$$
\csc A=\frac{\text { hypotenuse }}{\text { opposite side }}
$$

$$
\cos A=\frac{\text { adjacent side }}{\text { hypotenuse }},
$$

$$
\sec A=\frac{\text { hypotenuse }}{\text { adjacent side }},
$$

$$
\tan A=\frac{\text { opposite side }}{\text { adjacent side }},
$$

$$
\cot A=\frac{\text { adjacent side }}{\text { opposite side }}
$$

From the above the theorem is easily derived :
22. In a right triangle a side is equal to the product of the hypotenuse and the sine of the angle opposite to that side, or to the product of the hypotenuse and the cosine of the angle adjacent to that side.

Angles in general. In trigonometry an angle $X O A$ is considered as generated by the line $O A$ rotating from an initial position $O X$. The angle is positive when $O A$ rotates from $O X$ counter-clockwise, and negative when the direction of rotation of $O A$ is clockwise.

The fixed line $O X$ is called the initial line, the line $O A$ the terminal line.
Measurement of angles. There are two important methods of measuring angular magnitude ; that is, there are two unit angles.

Degree measure. The unit angle is $\frac{1}{36} \overline{6} 0$ of a complete revolution, and is called a degree.

Circular measure. The unit angle is an angle whose subtending are is equal to the radius of that arc, and is called a radian.

The fundamental relation between the unit angles is given by the equation
23.

$$
180 \text { degrees }=\pi \text { radians }(\pi=3.14159 \cdots)
$$

Or also, by solving this,
24.

$$
1 \text { degree }=\frac{\pi}{180}=.0174 \ldots \text { radians }
$$

25.

$$
1 \text { radian }=\frac{180}{\pi}=57.29 \ldots \text { degrees } .
$$

These equations enable us to change from one measurement to another. In the higher mathematics circular measure is always used, and will be adopted in this book.

The generating line is conceived of as rotating around O through as many revolutions as we choose. Hence the important result:

Any real number is the circular measure of some angle, and conversely, any angle is measured by a real number.
26. $\cot x=\frac{1}{\tan x} ; \sec x=\frac{1}{\cos x} ; \csc x=\frac{1}{\sin x}$.
27. $\tan x=\frac{\sin x}{\cos x} ; \cot x=\frac{\cos x}{\sin x}$.
28. $\sin ^{2} x+\cos ^{2} x=1 ; 1+\tan ^{2} x=\sec ^{2} x ; 1+\cot ^{2} x=\csc ^{2} x$.
29. $\sin (-x)=-\sin x ; \csc (-x)=-\csc x$;
$\cos (-x)=\cos x ; \sec (-x)=\sec x ;$
$\tan (-x)=-\tan x ; \cot (-x)=-\cot x$.
30. $\sin (\pi-x)=\sin x ; \sin (\pi+x)=-\sin x$; $\cos (\pi-x)=-\cos x ; \cos (\pi+x)=-\cos x ;$ $\tan (\pi-x)=-\tan x ; \tan (\pi+x)=\tan x$.
31. $\sin \left(\frac{\pi}{2}-x\right)=\cos x ; \sin \left(\frac{\pi}{2}+x\right)=\cos x ;$
$\cos \left(\frac{\pi}{2}-x\right)=\sin x ; \cos \left(\frac{\pi}{2}+x\right)=-\sin x ;$
$\tan \left(\frac{\pi}{2}-x\right)=\cot x ; \tan \left(\frac{\pi}{2}+x\right)=-\cot x$.
32. $\sin (2 \pi-x)=\sin (-x)=-\sin x$, etc.
33. $\sin (x+y)=\sin x \cos y+\cos x \sin y$.
34. $\sin (x-y)=\sin x \cos y-\cos x \sin y$.
35. $\cos (x+y)=\cos x \cos y-\sin x \sin y$.
36. $\cos (x-y)=\cos x \cos y+\sin x \sin y$.
37. $\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}$.
39. $\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}$.
39. $\sin 2 x=2 \sin x \cos x ; \cos 2 x=\cos ^{2} x-\sin 2 x ; \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$.
40. $\sin \frac{x}{2}= \pm \sqrt{\frac{1-\cos x}{2}} ; \cos \frac{x}{2}= \pm \sqrt{\frac{1+\cos x}{2}} ; \tan \frac{x}{2}= \pm \sqrt{\frac{1-\cos x}{1+\cos x}}$.
41. $\sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x ; \cos ^{2} x=\frac{1}{2}+\frac{1}{2} \cos 2 x$.
42. $\sin A-\sin B=2 \cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B)$.
43. $\cos A-\cos B=-2 \sin \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B)$.
44. Theorem. Law of cosines. In any triangle the square of a side equals the sum of the squares of the two other sides diminished by twice the product of those sides by the cosine of their included angle; that is,

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

45. Theorem. Area of a triangle. The area of any triangle equals one half the product of two sides by the sine of their included angle; that is, $a r e a=\frac{1}{2} a b \sin C=\frac{1}{2} b c \sin A=\frac{1}{2} c a \sin B$.
46. Three-place table of common logarithms of numbers.

\mathbf{N}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	000	041	079	114	146	176	204	230	255	279
$\mathbf{2}$	301	322	342	362	380	398	415	431	447	462
$\mathbf{3}$	477	491	505	518	532	544	556	568	580	591
$\mathbf{4}$	602	613	623	634	643	653	663	672	681	690
$\mathbf{5}$	699	708	716	724	732	740	748	756	763	771
$\mathbf{6}$	778	785	792	799	806	813	820	826	832	839
$\mathbf{7}$	845	851	857	863	869	875	881	886	892	898
$\mathbf{8}$	903	908	914	919	924	920	934	939	944	949
9	954	959	064	968	973	978	982	987	991	996
10	000	004	009	013	017	021	025	029	033	037
11	041	045	049	053	057	061	064	068	072	076
12	079	083	086	090	093	097	100	104	107	111
13	114	117	121	124	127	130	134	137	140	143
14	146	149	152	155	158	161	164	167	170	173
15	176	179	182	185	188	190	103	196	199	201
16	204	207	210	212	215	218	220	223	225	228
17	230	233	236	238	241	243	246	248	250	253
18	255	258	260	262	265	267	270	272	274	276
19	279	281	283	286	288	290	292	294	297	299

3. Squares and cubes; square roots and cube roots.

No.	Square	Cube	Square Root	Cube. Root	No.	Square	Cube	Square Root	Cube Root
1	1	1	1.000	1.000	51	2,601	132,651	7.141	3.708
$2 \cdot$	4	8	1.414	1.259	52	2,704	140,608	7.211	3.732
3	9	27	1.732	1.442	53	2,809	148,877	7.280	3.756
4	16	64	2.000	1.587	54	2,916	157,464	7.348	3.779
5	25	125	2.236	1.709	55	3,025	166,375	7.416	3.802
6	36	216	2.449	1.817	56	3,136	175,616	7.483	3.825
7	49	343	2.645	1.912	57	3,249	185,193	7.549	3.848
8	64	512	2.828	2.000	58	3,364	195,112	7.615	3.870
9	81	729	3.000	2.080	59	3,481	205,379	7.681	3.892
10	100	1,000	3.162	2.154	60	3,600	216,000	7.745	3.914
11	121	1,331	3.316	2.223	61	3,721	226,981	7.810	3.936
12	144	1,728	3.464	2.289	62	3,844	238,328	7.874	3.957
13	169	2,197	3.605	2.351	63	3,969	250,047	7.937	3.979
14	196	2,744	3.741	2.410	64	4,096	262,144	8.000	4.000
15	225	3,375	3.872	2.466	65	4,225	274,625	8.062	4.020
16	256	4,096	4.000	2.519	66	4,356	287,496	8.124	4.041
17	289	4,913	4.123	2.571	67	4,489	300,763	8.185	4.061
18	324	5,832	4.242	2.620	68	4,624	314,432	8.246	4.081
19	361	6,859	4.358	2.668	69	4,761	328,509	8.306	4.101
20	400	8,000	4.472	2.714	70	4,900	343,000	8.366	4.121
21	441	9,261	4.582	2.758	71	5,041	357,911	8.426	4.140
22	484	10,648	4.690	2.802	72	5,184	373,248	8.485	4.160
23	529	12,167	4.795	2.843	73	5,329	389,017	8.544	4.179
24	576	13,824	4.898	2.884	74	5,476	405,224	8.602	4.198
25	625	15,625	5.000	2.924	75	5,625	421,875	8.660	4.217
26	676	17,576	5.099	2.962	76	5,776	438,976	8.717	4.235
27	729	19,683	5.196	3.000	77	5,929	456,533	8.774	4.254
28	784	21,952	5.291	3.036	78	6,084	474,552	8.831	4.272
29	841	24,389	5.385	3.072	79	6,241	493,039	8.888	4.290
30	900	27,000	5.477	3.107	80	6,400	512,000	8.944	4.308
31	961	29,791	5.567	3.141	81	6,561	531,441	9.000	4.326
32	1,024	32,768	5.656	3.174	82	6,724	551,368	9.055	4.344
33	1,089	35,937	5.744	3.207	83	6,889	571,787	9.110	4.362
34	1,156	39,304	5.830	3.239	84	7,056	592,704	9.165	4.379
35	1,225	42,875	5.916	3.271	85	7,225	614,125	9.219	4.396
36	1,296	46,656	6.000	3.301	86	7,396	636,056	9.273	4.414
37	1,369	50,653	6.082	3.332	87	7,569	658,503	9.327	4.431
38	1,444	54,872	6.164	3.361	88	7,744	681,472	9.380	4.447
39	1,521	59,319	6.244	3.391	89	7,921	704,969	9.433	4.464
40	1,600	64,000	6.324	3.419	90	8,100	729,000	9.486	4.481
41	1,681	68,921	6.403	3.448	91	8,281	753,571	9.539	4.497
42	1,764	74,088	6.480	3.476	92	8,464	778,688	9.591	4.514
43	1,849	79,507	6.557	3.503	93	8,649	804,357	9.643	4.530
44	1,936	85,184	6.633	3.530	94	8,836	830,584 857	9.695	4.546 4.562
45	2,025	91,125	6.708	3.556	95	9,025	857,375	9.746 9.797	4.562 4.578
46	2,116	97,336	6.782	3.583 3.608	96 97	9,216 9,409	884,736 912,673	9.797 9.848	4.578 4.594
47	2,209	103,823 110,592	6.855 6.928	3.608 3.634	97 98	9,409 9,604	912,673 941,192	9.848	4.594 4.610
48	2,301	110,692	6.928 7.000	3.634 3.659	99	9,801	970,299	9.949	4.626
50	2,500	125,000	7.071	3.684	100	10,000	1,000,000	10.000	4.641

4. Natural values of trigonometric functions.

Angle in Radians	Angle in Degrees	\sin	\cos	\tan	\cot		
	.000	0°	.000	1.000	.000	∞	90°
.017	1°	.017	.999	.017	57.29	89°	1.571
.035	2°	.035	.999	.035	28.64	88°	1.536
.052	3°	.052	.999	.052	19.08	87°	1.518
.070	4°	.070	.998	.070	14.30	86°	1.501
.087	5°	.087	.996	.088	11.43	85°	1.484
.174	10°	.174	.985	.176	5.67	80°	1.396
.262	15°	.259	.966	.268	3.73	75°	1.309
.349	20°	.342	.940	.364	2.75	70°	1.222
.436	25°	.423	.906	.466	2.14	65°	1.134
.524	30°	.500	.866	.577	1.73	60°	1.047
.611	35°	.574	.819	.700	1.43	55°	.960
.698	40°	.043	.766	.839	1.19	50°	.873
.785	45°	.707	.707	1.000	1.00	45°	.785
						Angle in	Angle in
		\cos	\sin	\cot	tan	Degrees	Radians

5. Logarithms of trigonometric functions.

Angle in Radians	Angle in Degrees	$\log \sin$	$\log \cos$	$\log \tan$	$\log \cot$		
. 000	0°		0.000			90°	1.571
. 017	$1{ }^{\circ}$	8.242	9.999	8.242	1.758	89°	1.553
. 035	2°	8.543	0.999	8.543	1.457	88°	1.536
. 052	3°	8.719	9.999	8.719	1.281	87°	1.518
. 070	4°	8.844	9.999	8.845	1.155	86°	1.501
. 087	5°	8.940	9.998	8.942	1.058	85°	1.484
. 174	10°	9.240	9.993	9.246	0.754	80°	1.396
. 262	15°	9.413	9.985	9.428	0.572	75°	1.309
. 349	20°	9.534	9.973	9.561	0.439	70°	1.222
. 436	25°	9.626	9.957	9.669	0.331	65°	1.134
. 524	30°	9.699	9.938	9.781	0.239	60°	1.047
. 611	35°	9.759	9.913	9.845	0.165	55°	0.960
. 698	40°	9.808	9.884	9.924	0.086	50°	0.873
. 785	45°	9.850	9.850	0.000	0.000	45°	0.785
		$\log \cos$	$\log \sin$	$\log \cot$	$\log \tan$	Angle in Degrees	Angle in Radians

6. Natural values. Special angles.

Angle in Radians	Angle in Degrees	\sin	\cos	\tan	\cot	\sec	csc
0	0°	0	1	0	∞	1	∞
$\frac{1}{3} \pi$	90°	1	0	∞	0	∞	1
π	180°	0	-1	0	∞	-1	∞
$\frac{3}{2} \pi$	270°	-1	0	∞	0	∞	-1
2π	360°	0	1	0	∞	1	∞

Angle in Radians	Angle in Degrees	\sin	\cos	\tan	\cot	\sec	\csc
0	0°	0	1	0	∞	1	∞
$\frac{1}{6} \pi$	30°	$\frac{1}{2}$	$\frac{1}{3} \sqrt{3}$	$\frac{1}{3} \sqrt{3}$	$\sqrt{3}$	$\frac{2}{3} \sqrt{3}$	2
$\frac{1}{4} \pi$	45°	$\frac{1}{2} \sqrt{2}$	$\frac{1}{2} \sqrt{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
$\frac{1}{3} \pi$	60°	$\frac{1}{2} \sqrt{3}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{3} \sqrt{3}$	2	$\frac{2}{3} \sqrt{3}$
$\frac{1}{2} \pi$	90°	1	0	∞	0	∞	1

7. Rules for signs of the trigonometric functions.

Quadrant	sin	cos	tan	cot	sec	csc
First	+	+	+	+	+	+
Second	.	.	.	+	-	-
Third	.	.	.	-	-	+
Fourth	.	.	.	-	+	-

CHAPTER II

CARTESIAN COÖRDINATES

8. Directed line. Let $X^{\prime} I$ be an indefinite straight line, and let a point O, which we shall call the origin, be chosen upon it. Let a unit of length be adopted, and assume that lengths measured from O to the right are positive, and to the left negative.

Then any real number, if taken as the measure of the length of a line $O P$, will determine a point P on the line. Conversely, to each point P on the line will correspond a real num-
 ber, namely the measure of the length $O P$, with a positive or negative sign according as P is to the right or left of the origin.

The direction established upon $X^{\prime} X$ by passing from the origin to the points corresponding to the positive numbers is called the positive direction on the line. A directed line
 is a straight line upon which an origin, a unit of length, and a positive direction have been assumed.

An arrowhead is usually placed upon a directed line to indicate the positive direction.

If A and B are any two points of a directed line such that

$$
O A=a, \quad O B=b
$$

then the length of the segment $A B$ is always given by $b-a$; that is, the length of $A B$ is the difference of the numbers
corresponding to B and A. This statement is evidently equivalent to the following definition :

For all positions of two points A and B on a divected line, the length $A B$ is given by

$$
\begin{equation*}
A B=O B-O A \tag{1}
\end{equation*}
$$

where O is the origin.

The above definition is illustrated in each of the four figures, as follows:

1. $A B=O B-O A=6-3=+3 ; B A=O A-O B=3-6=-3$;
2. $A B=O B-O A=-4-3=-7 ; B A=O A-O D=3-(-4)=+7$;
III. $A B=O B-O A=+5-(-3)=+8 ; B A=O A-O B=-3-5=-8$;
IV. $A B=O B-O A=-6-(-2)=-4 ; B A=O A-O B=-2-(-6)=+4$.

The following properties of lengths on a directed line are obvious:
(2) $A B=-B A$.
(3) $A B$ is positive if the direction from A to B agrees with the positive direction on the line, and negative if in the contrary direction.

The phrase "distance between two points" should not be used if these points lie upon a directer line. Instead, we speak of the lengtl $A B$, remembering that the lengths $\boldsymbol{A} B$ and $B A$ are not equal, but that $A B=-B A$.
9. Cartesian* coördinates. Let $X^{\prime} X$ and $Y^{\prime} Y$ be two directed lines intersecting at O, and let P be any point in their plane. Draw lines through P parallel to $X^{\prime} X$ and $Y^{\prime} Y$ respectively. Then, if

$$
O M=a, \quad O N=b
$$

[^1]the numbers a, b are called the Cartesian coördinates of P, a the abscissa and b the ordinate. The directed lines $X^{\prime} X$ and $Y^{\prime} Y$ are called the axes of coördinates, $X^{\prime} X$ the axis of abscissas, $Y^{\prime} \boldsymbol{Y}$ the axis of ordinates, and their intersection O the origin.

The coördinates a, b of P are written (a, b), and the symbol $P(a, b)$ is to be read, "The point P, whose coördinates are a and l."

Any point P in the

plane determines two numbers, the coördinates of P. Conversely, given two real numbers a^{\prime} and b^{\prime}, then a point P^{\prime} in the plane may always be constructed whose coördinates are (a^{\prime}, b^{\prime}). For lay off $O M^{\prime}=a^{\prime}, O N^{\prime}=b^{\prime}$, and draw lines parallel to the axes through \boldsymbol{I}^{\prime} and N^{\prime}. These lines intersect at P^{\prime} (a^{\prime}, b^{\prime}). Hence

Every point determines a pair of real numbers, and, conversely, a pair of real numbers determines a point.

The imaginary numbers of algebra have no place in this representation, and for this reason elementary analytic geometry is concerned only with the real numbers of algebra.
10. Rectangular coördinates. A rectangular system of coördinates is determined when the axes $X^{\prime} X$ and $Y^{\prime} Y$ are perpendicular to each other. This is the usual case, and will be assumed unless otherwise stated.

The work of plotting points in a rectangular system is much simplified by the use of coördinate or plotting paper, constructed by ruling off the plane into equal squares, the sides beiug parallel to the axes.

In the figure several points are plotted, the unit of length being assumed equal to one division on each axis. The method is simply this :

Count off from O along $X^{\prime} X$ a number of divisions equal to the given abscissa, and then from the point so determined a

number of divisions up or down equal to the given ordinate, observing the

Rule for signs:
Alscissas are positive or negative according as they are laid off to the right or left of the origin. Ordinates are positine or negative according as they are laid off above or below the axis of x.

Rectangular axes divide the plane into four portions called quadrants; these are numbered as in the figure, in which the proper signs of the coördinates are also
 indicated.

As distinguished from rectangular coördinates, the term oblique coordinates is employed when the axes are not
perpendicular, as in the figure of Art. 9. The rule of signs given above applies to this case also. Note, however, in plotting, that the ordinate MP is drawn parallel to $O Y$.

In the following problems assume rectangular coördinates unless the contrary is stated.

PROBLEMS

1. Plot accurately the points $(3,2),(3,-2),(-4,3),(6,0),(-5,0)$, $(0,4)$.
2. What are the coorrdinates of the origin?

Ans. (0,0).
3. In what quadrants do the following points lie if a and b are positive numbers: $(-a, b) ?(-a,-b) ?(b,-a) ?(a, b)$?
4. To what quadrants is a point limited if its abscissa is positive? negative? if its ordinate is positive? negative?
5. Draw the triangle whose vertices are $(2,-1),(-2,5),(-8,-4)$.
6. Plot the points whose oblique coördinates are as follows, when the angle between the axes is $60^{\circ}:(2,-3),(3,-2),(4,5),(-6,-7),(-8,0)$, $(9,-5),(-6,2)$.
7. Draw the quadrilateral whose vertices are $(0,-2),(4,2),(0,6)$, ($-4,2$), when the angle between the axes is 60°
8. If a point moves parallel to the axis of x, which of its coördinates remains constant? If parallel to the axis of y ?
9. Can a point move when its abscissa is zero? Where? Can it move when its ordinate is zero? Where? Can it move if hoth abscissa and ordinate are zero? Where will it be?
10. Where may a point be found if its abscissa is 2 ? if its ordinate is -3 ?
11. Where do all those points lie whose abscissas and ordinates are equal?
12. Two sides of a rectangle of lengths a and b coincide with the axes of x and y respectively. What are the coördinates of the vertices of the rectangle if it lies in the first quadrant? in the second quadrant? in the third quadrant? in the fourth quadrant?
13. Construct the quadrilateral whose vertices are $(-3,6),(-3,0)$, $(3,0),(3,6)$. What kind of a quadrilateral is it? What kind of a quadrilateral is it when the axes are oblique?
14. Show that (x, y) and $(x,-y)$ are symmetrical with respect to $\mathrm{N}^{\prime} \mathrm{X}$; (x, y) and $(-x, y)$ with respect to $Y^{\prime} Y$; and (x, y) and $(-x,-y)$ with respect to the origin.
15. A line joining two points is bisected at the origin. If the coördinates of one end are $(a,-b)$, what will be the coördinates of the other end?
16. Consider the bisectors of the angles between the coördinate axes. What is the relation between the abscissa and ordinate of any point of the bisector in the first and third quadrants? second and fourth quadrants?
17. A square whose side is $2 a$ has its center at the origin. What will be the coördinates of its vertices if the sides are parallel to the axes? if the diagonals coincide with the axes?

Ans. $(a, a),(a,-a),(-a,-a),(-a, a) ;$

$$
(a \sqrt{2}, 0),(-a \sqrt{2}, 0),(0, a \sqrt{2}),(0,-a \sqrt{2})
$$

18. An eqnilateral triangle whose side is a has its base on the axis of x and the opposite vertex above $X^{\prime} X$. What are the vertices of the triangle if the center of the base is at the origin? if the lower left-hand vertex is at the origin?

$$
\text { Ans. }\left(\frac{a}{2}, 0\right),\left(-\frac{a}{2}, 0\right),\left(0, \frac{a \sqrt{3}}{2}\right) ;(0,0),(a, 0),\left(\frac{a}{2}, \frac{a \sqrt{3}}{2}\right) .
$$

11. Lengths. Consider any two givel points

$$
P_{1}\left(x_{1}, y_{1}\right), \quad P_{2}\left(x_{2}, y_{2}\right)
$$

Then in the figure $O M_{1}=x_{1}, O M I_{2}=x_{2}, M_{1} P_{1}=y_{1}, M M_{2} I_{2}=y_{2}$.
We may now easily prove the important
Theorem. The length l of the line joining two points $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$ is given by the formula
(I) $\quad l=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$.

Proof. Draw lines through P_{1} and P_{2} parallel to the axes to form the right triangle $P_{1} S P_{2}$.

Then
and hence

$$
\begin{aligned}
P_{1} S & =O M_{2}-O M_{1}=x_{2}-x_{1} \\
S P_{2} & =M_{2} P_{2}-M_{1} P_{1}=y_{2}-y_{1} \\
P_{1} P_{2} & =\sqrt{\overline{S P}_{2}^{2}+{\overline{P_{1}}{ }^{S}}^{2}}
\end{aligned}
$$

$$
l=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

Q.E.D.

The same method is used in deriving (I) for any positions of P_{1} and P_{2}; namely, we construct a right triangle by drawing lines parallel to the axes through P_{1} and P_{2}. The horizontal side of this triangle is equal to the difference of the abscissas of P_{1} and P_{2}, while the vertical side is equal to the difference of the ordinates. The required length is then the square root of the suin of the squares of these sides, which gives (I). A number of different figures should be drawn to make the method clear.

EXAMPLE

Find the length of the line joining the points $(1,3)$ and $(-5,5)$.
Solution. Call $(1,3) P_{1}$, and (-5, 5) P_{2}.
Then

$$
x_{1}=1, \quad y_{1}=3,
$$

and

$$
x_{2}=-5, \quad y_{2}=5 ;
$$

and substituting in (I), we have

$$
l=\sqrt{(1+5)^{2}+(3-5)^{2}}=\sqrt{40}=2 \sqrt{10} .
$$

It should be noticed that we are simply finding the lyppotenuse of a right triangle whose sides are 6 and 2.

Remark. The fact that formula
 (I) is true for all positions of the points P_{1} and P_{2} is of fundar mental importance. The application of this formula to any given problem is therefore simply a matter of direct substitution. In deriving such general formulas it is most convenient to draw the figure so that the points lie in the first quadrant, or, in general, so that all the quantities assumed as known sluall be positive.

PROBLEMS

1. Find the lengths of the lines joining the following points:
(a) $(-4,-4)$ and $(1,3)$.
(b) $(-\sqrt{2}, \sqrt{3})$ and $(\sqrt{3}, \sqrt{2})$.
Ans. $\sqrt{74}$.
Ans. $\sqrt{10}$.
(c) $(0,0)$ and $\left(\frac{a}{2}, \frac{a \sqrt{3}}{2}\right)$.
(d) $(a+b, c+a)$ and $(c+a, b+c)$.
Ans. u.
Ans. $\sqrt{(b-c)^{2}+(a-b)^{2}}$.
2. Find the lengths of the sides of the following triangles:
(a) $(0,6),(1,2),(3,-5)$.
(b) $(1,0),(-1,-5),(-1,-8)$.
(c) $(a, b),(b, c),(c, d)$.
(d) $(a,-b),(b,-c),(c,-d)$.
(e) $(0, y),(-x,-y),(-x, 0)$.
3. Find the lengths of the sides of the triangle whose vertices are $(4,3),(2,-2),(-3,5)$.
4. Show that the points $(1,4),(4,1),(5,5)$ are the vertices of an isosceles triangle.
5. Show that the points $(2,2),(-2,-2),(2 \sqrt{3},-2 \sqrt{3})$ are the vertices of an equilateral triangle.
6. Show that $(3,0),(6,4),(-1,3)$ are the vertices of a right triangle. What is its area?
7. Prove that $(-4,-2),(2,0),(8,6),(2,4)$ are the vertices of a parallelogram. Also find the lengths of the diagonals.
8. Show that $(11,2),(6,-10),(-6,-5),(-1,7)$ are the vertices of a square. Find its area.
9. Show that the points $(1,3),(2, \sqrt{6}),(2,-\sqrt{6})$ are equidistant from the origin ; that is, show that they lie on a circle with its center at the origin and its radius equal to the $\sqrt{10}$.
10. Show that the diagonals of any rectangle are equal.
11. Find the perimeter of the triangle whose vertices are $(a, b),(-a, b)$, $(-a,-b)$.
12. Find the perimeter of the polygon formed by joining the following points two by two in order: $(6,4),(4,-3),(0,-1),(-5,-4),(-2,1)$.
13. One end of a line whose length is 13 is the point $(-4,8)$; the ordinate of the other end is 3 . What is its abscissa? Ans. 8 or -16 .
14. What equation must the coördinates of the point (x, y) satisfy if its distance from the point $(7,-2)$ is equal to 11 ?
15. What equation expresses algebraically the fact that the point (x, y) is equidistant from the points $(2,3)$ and $(4,5)$?
16. Find the length of the line joining $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ when the coördinates are oblique.

IIInt. Usc the law of cosines, 44, p. 4.
12. Inclination and slope. The angle between two intersecting directed lines is defined to be the angle made by their positive directions. In the figures the angle between the directed lines is the angle inarked θ.

If the directed lines are parallel, then the angle between them is zero or 180°, according as the positive directions agree or do not agree.

Evidently the angle between two directed lines may have any value from 0 to 180° inclusive. Reversing the direction of either
 directed line changes θ to the supplement $180^{\circ}-\theta$. If both directions are reversed, the angle is unchanged.

When it is desired to assign a positive direction to a line intersecting $X^{\prime} X$, we shall always assume the upward direction as positive.

The inclination of a line is the angle between the axis of x and the line when the latter is given the upward direction.

This amounts to saying that the inclination is the angle above the x-axis and to the right of the given line, as in the figure.

The slope of a line is the tangent of its inclination.
The iuclination of a line will be denoted by the Greek letter α, $\alpha_{1}, \alpha_{2}, \alpha^{\prime}$, etc. ("alpha," etc.); its slope by $m, m_{1}, m_{2}, m^{\prime}$, etc., so that $m=\tan \alpha, m_{1}=\tan \alpha_{1}$, etc.

The inclination may be any angle from 0 to 180° inclusive.

The slope may be any real nrmber, since the tangent of an angle
 in the first two quadrants may be any number positive or negative. The slope of a line parallel to $X^{\prime} X X$ is of course zero, since
the inclination is 0 or 180°. For a line parallel to $Y^{\prime} Y$ the slope is infinite.

Theorem. The slope m of the line passing through two points $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$ is given by

Proof. In the figure

$$
\begin{equation*}
m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \tag{II}
\end{equation*}
$$

$$
O M_{1}=x_{1}, \quad O M_{2}=x_{2}, \quad M_{1} P_{1}=y_{1}, \quad M_{2} P_{2}=y_{2}
$$

Draw $P_{2} S$ parallel to $O X$. Then in the right triangle $P_{2} S P_{1}$, since angle $P_{1} P_{2} S=\alpha$, we have

$$
\begin{equation*}
m=\tan \alpha=\frac{S P_{1}}{P_{2} S} \tag{1}
\end{equation*}
$$

But

$$
\begin{aligned}
S P_{1} & =M_{1} P_{1}-M_{1} S \\
& =M_{1} P_{1}-M_{2} P_{2}=y_{1}-y_{2} \\
P_{2} S & =M_{2} M_{1} \\
& =O M_{1}-O M_{2}=x_{1}-x_{2}
\end{aligned}
$$

and

Substituting these values in (1) gives (II).
Q.E.D.

The student should derive (II) when α is obtuse.*
We next derive the conditions for parallel lines and for perpendicular lines in terms of their slopes.

Theorem. If two lines are parallel, their slopes are equal; if perpendicular, the slope of one is the negative reciprocal of the slope of the other, and conversely.

Proof. Let α_{1} and α_{2} be the inclinations and m_{1} and m_{2} the slopes of the lines.

If the lines are parallel, $\alpha_{1}=\alpha_{2} . \therefore m_{1}=m_{2}$.

[^2]If the lines are perpendicular, as in the figure,

$$
\begin{aligned}
\alpha_{2} & =\frac{\pi}{2}+\alpha_{1} \\
\therefore m_{2}=\tan \alpha_{2} & =\tan \left(\frac{\pi}{2}+\alpha_{1}\right) \\
& =-\cot \alpha_{1} \quad(\text { by } 31, \text { p. } 3) \\
& =-\frac{1}{\tan \alpha_{1}} \cdot(\text { By } 26, \text { p. } 3) \\
\therefore m_{2} & =-\frac{1}{m_{1}} .
\end{aligned}
$$

Q.E.D.

The converse is proved by retracing the steps with the assumption, in the second part, that α_{2} is greater than α_{1}.

PROBLEMS

1. Find the slope of the line joining $(1,3)$ and $(2,7)$.

Ans. 4.
2. Find the slope of the line joining $(2,7)$ and $(-4,-4)$. Ans. $\frac{11}{6}$.
3. Find the slope of the line joining $(\sqrt{3}, \sqrt{2})$ and $(-\sqrt{2}, \sqrt{3})$.

$$
\text { Ans. } 2 \sqrt{6}-5 .
$$

4. Find the slope of the line joining $(a+b, c+a),(c+a, b+c)$.

$$
\text { Ans. } \frac{b-a}{c-b} \text {. }
$$

5. Find the slopes of the sides of the triangle whose vertices are (1,1), $(-1,-1),(\sqrt{3},-\sqrt{3})$.

$$
\text { Ans. } 1, \frac{1+\sqrt{3}}{1-\sqrt{3}}, \frac{1-\sqrt{3}}{1+\sqrt{3}}
$$

6. Prove by means of slopes that $(-4,-2),(2,0),(8,6),(2,4)$ are the vertices of a parallelogran.
7. Prove by means of slopes that $(3,0),(6,4),(-1,3)$ are the vertices of a right triangle.
8. Prove by means of slopes that $(0,-2),(4,2),(0,0),(-4,2)$ are the vertices of a rectangle, and hence, by (I), of a square.
9. Prove by means of their slopes that the diagonals of the square in Problem 8 are perpendicular.
10. Prove by means of slopes that $(10,0),(5,5),(5,-5),(-5,5)$ are the vertices of a trapezoid.
11. Show that the line joining (a, b) and ($c,-d$) is parallel to the line joining ($-a,-b$) and ($-c, d$).
12. Show that the line joining the origin to (a, b) is perpendicular to the line joining the origin to $(-b, a)$.
13. What is the inclination of a line parallel to $Y^{\prime} Y$? perpendicular to $Y^{\prime} \boldsymbol{Y}$?
14. What is the slope of a line parallel to $Y^{\prime} Y$? perpendicular to $Y^{\prime} Y$?
15. What is the inclination of the line joining $(2,2)$ and $(-2,-2)$? Ans. $\frac{\pi}{4}$.
16. What is the inclination of the line joining $(-2,0)$ and $(-5,3)$?

$$
\text { Ans. } \frac{3 \pi}{4}
$$

17. What is the inclination of the line joining $(3,0)$ and $(4, \sqrt{3})$?

Ans. $\frac{\pi}{3}$.
18. What is the inclination of the line joining $(3,0)$ and $(2, \sqrt{3})$?

$$
\text { Ans. } \frac{2 \pi}{3}
$$

19. What is the inclination of the line joining $(0,-4)$ and $(-\sqrt{3},-5)$? Ans. $\frac{\pi}{6}$.
20. What is the inclination of the line joining $(0,0)$ and $(-\sqrt{3}, 1)$?

Ans. $\frac{5 \pi}{6}$.
21. Prove by means of slopes that $(2,3),(1,-3),(3,9)$ lie on the same straight line.
22. Prove that the points $(a, b+c),(b, c+a)$, and $(c, a+b)$ lie on the same straight line.
23. Prove that $(1,5)$ is on the line joining the points $(0,2)$ and $(2,8)$ * and is equidistant from them.
24. Prove that the line joining $(3,-2)$ and $(5,1)$ is perpendicular to the line joining $(10,0)$ and $(13,-2)$.
13. Point of division. Let P_{1} and P_{2} be two fixed points on a directed line. Any third point on the line, as P or P^{\prime}, is said "to divide the line into two segments," and is called a point of division. The division is called internal or external according as the point falls within or without $P_{1} P_{2^{\prime}}$ The position of the point of division depends upon the ratio
of its distances from P_{1} and $P_{2^{2}}$. Since, however, the line is directed, some convention must be made as to the manner of reading these distances. We therefore adopt the rule:

If P is a point of division on a directed line passing througl P_{1} and P_{2}, then P is said to divide $P_{1} P_{2}$ into the segments $P_{1} P^{\prime}$ and $P P_{2^{*}}$. The ratio of division is the value of the ratio * $\frac{P_{1} P}{P P^{P}}$.

We shall denote this ratio by λ (Greek letter "lambda"), that is,

$$
\lambda=\frac{P_{1} P}{P P_{2}}
$$

If the division is internal, $P_{1} P$ and $P P_{2}$ agree in direction and therefore in sign, and λ is therefore positive. In external division λ is negative.
 indicates whether the point of division P is within or without the segment $P_{1} P_{2}$; and the numerical whue determines whether P lies nearer P_{1} or P_{2}. The distribution of λ is indicated in the figure.

That is, λ may have any positive value between P_{1} and P_{2}, any negative value between 0 and -1 to the left of P_{1}, and ally negative value between -1 and $-\infty$ to the right of I_{2}. The value -1 for λ is excluded.

Introducing coördinates, we next prove the
Theorem. Point of division. The coördinates (x, y) ofthe point of division P on the line joining $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$, such that the ratio of the segments is

$$
\frac{P_{1} P}{P P_{2}}=\lambda
$$

are given by the formulas

$$
\begin{equation*}
x=\frac{x_{1}+\lambda x_{2}}{1+\lambda}, \quad y=\frac{y_{1}+\lambda y_{2}}{1+\lambda} . \tag{III}
\end{equation*}
$$

[^3]Proof. Given $\quad \lambda=\frac{P_{1} P}{P P_{2}}$.
Draw the ordinates $M_{1} P_{1}, M P$, and $M_{2} P_{2}$. Then, by geometry, these ordinates will intercept proportional segments on the transversals $P_{1} P_{2}$ and $O X$; that is,*

$$
\begin{equation*}
\frac{M_{1} M}{M M_{2}}=\frac{P_{1} P}{P P_{2}} \tag{1}
\end{equation*}
$$

But

$$
\begin{aligned}
& M_{1} M=O M-O M_{1}=x-x_{1} \\
& M M_{2}=O M_{2}-O M=x_{2}-x
\end{aligned}
$$

and, by hypothesis, $\quad \frac{P_{1} P}{P P_{2}}=\lambda$,
Substituting in (1), $\frac{x-x_{1}}{x_{2}-x}=\lambda$.
Clearing of fractions and solving for x,

$$
x=\frac{x_{1}+\lambda x_{2}}{1+\lambda} .
$$

Similarly, by drawing the abscissas of P_{1}, P, and P_{2} to the axis of y we may prove $y=\frac{y_{1}+\lambda y_{2}}{1+\lambda}$.
Q.E.D.

Corollary. Middle point. The coördinates (x, y) of the middle point of the line joining $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$ are found by taking the averages of the given absrissas and ordinates; that is,

$$
\begin{equation*}
x=\frac{1}{2}\left(x_{1}+x_{2}\right), \quad y=\frac{1}{2}\left(y_{1}+y_{2}\right) . \tag{IV}
\end{equation*}
$$

For if P is the middle point of $P_{1} P_{2}$, then $\lambda=\frac{P_{1} P}{P P_{2}}=1$, and
substituting $\lambda=1$ in (III) gives (IV).
To apply (III), mark the point of division P, the extremities of the line to be divided P_{1} and P_{2}, and make sure that the value of λ satisfies $\lambda=P_{1} P \div P P_{2}$.

[^4]
EXAMPLES

1. Find the point P dividing $P_{1}(-1,-6), P_{2}(3,0)$ in the ratio $\lambda=-\frac{1}{4}$.

Solution. By the statement,

$$
\frac{P_{1} P}{P P_{2}}=-\frac{1}{4}
$$

Hence, applying (III), $x_{1}=-1, y_{1}=-6$,

$$
\begin{array}{r}
x_{2}=3, y_{2}=0 . \\
\therefore \varepsilon=\frac{-1-\frac{1}{4} \cdot 3}{1-\frac{1}{4}}=\frac{-\frac{7}{4}}{\frac{3}{4}}=-2 \frac{1}{3}, \\
y=\frac{-6-\frac{1}{4} \cdot 0}{1-\frac{1}{4}}=\frac{-6}{\frac{3}{4}}=-8 .
\end{array}
$$

Hence P is $\left(-2 \frac{1}{5},-8\right)$. Ans.
The result is checked by plotting. The point P lies outside the segment $P_{1} P_{2}$ and the length of $P_{1} P$ is four times that of $P P_{2}$.
2. Center of gravity of a triangle. Find the coördinates of the point of intersection of the medians of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$.

Solution. By plane geometry we have to find the point P on the median $A D$ sucl that $A P=$ \% $A D$; that is, $A P: P D:: 2: 1$, or $\lambda=2$.

By the corollary, D is $\left[\frac{1}{2}\left(x_{2}+x_{3}\right), \frac{1}{2}\left(y_{2}+y_{3}\right)\right]$.
To find P, apply (III), remembering that A
 corresponds to (x_{1}, y_{1}) and D to (x_{2}, y_{2}).

This gives $x=\frac{x_{1}+2 \cdot \frac{1}{2}\left(x_{2}+x_{3}\right)}{1+2}, \quad y=\frac{y_{1}+2 \cdot \frac{1}{2}\left(y_{2}+y_{3}\right)}{1+2}$.

$$
\therefore x=\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right), \quad y=\frac{1}{3}\left(y_{1}+y_{2}+y_{3}\right) . \text { Ans. }
$$

Hence the abscissa of the intersection of the medians of a triangle is the average of the abscissas of the vertices, and similarly for the ordinate.

The symmetry of these answers is evidence that the particular median chosen is immaterial, and the formulas therefore prove the fact of the intersection of the medians.

The result just found admits of extension to any polygon, and, with formulas (IV), illustrates the fact that the coorrdinates of centers of gravity are found by taking average values.

PROBLEMS

1. Find the coorrdinates of the middle point of the line joining $(4,-6)$ and ($-2,-4$).

Ans. $(1,-5)$.
2. Find the coordinates of the middle point of the line joining $(a+b, c+d)$ and $(a-b, d-c)$. Ans. (a, d).
3. Find the middle points of the sides of the triangle whose vertices are $(2,3),(4,-5)$, and $(-3,-6)$. Also find the lengths of the medians.
4. Find the coördinates of the point which divides the line joining $(-1,4)$ and $(-5,-8)$ in the ratio $1: 3$.

Ans. $(-2,1)$.
5. Find the coorrdinates of the point which divides the line joining $(-3,-5)$ and $(6,9)$ in the ratio $2: 5$.

Ans. (- $\frac{8}{7},-1$).
6. Find the coördinates of the point which divides the line joining $(2,6)$ and $(-4,8)$ into segments whose ratio is $-\frac{4}{3}$. Ans. $(-22,14)$.
7. Find the coördinates of the point which divides the line joining $(-3,-4)$ and $(5,2)$ into segments whose ratio is $-\frac{2}{3}$. Ans. $(-19,-16)$.
8. Find the coobrdinates of the points which trisect the line joining the points $(-2,-1)$ and $(3,2)$. Ans. ($-\frac{1}{3}, 0$),$\left(\frac{4}{3}, 1\right)$.
9. Prove that the middle point of the hypotenuse of a right triangle is equidistant from the three vertices.
10. Show that the diagonals of the parallelogram whose vertices are $(1,2),(-5,-3),(7,-6),(1,-11)$ bisect each other.
11. Prove that the diagonals of any parallelogram bisect each other.
12. Show that the lines joining the middle points of the opposite sides of the quadrilateral whose vertices are $(6,8),(-4,0),(-2,-6),(4,-4)$ bisect each other.
13. In the quadrilateral of Problem 12 show by means of slopes that the lines joining the middle points of the adjacent sides form a parallelogram.
14. Show that in the trapezoid whose vertices are $(-8,0),(-4,-4)$, $(-4,4)$, and $(4,-4)$ the length of the line joining the middle points of the nonparallel sides is equal to one half the sum of the lengths of the parallel sides. Also prove that it is parallel to the parallel sides.
15. In what ratio does the point $(-2,3)$ divide the line joining the points $(-3,5)$ and $(4,-9)$?

Ans. $\frac{1}{b}$.
16. In what ratio does the point $(16,3)$ divide the line joining the points $(-5,0)$ and $(2,1)$?
17. In any triangle show that a line joining the middle points of any two sides is parallel to the third side and equal to one half of it.
18. If $(2,1),(3,3),(6,2)$ are the middle points of the sides of a triangle, what are the coördinates of the vertices of the triangle?

Ans. (-1, 2), (5, 0), (7, 4).
19. Three vertices of a parallelogram are (1,2) , $(-5,-3),(7,-6)$. What are the coördinates of the fourth vertex?

Ans. $(1,-11),(-11,5)$, or $(13,-1)$.
20. The middle point of a line is $(6,4)$, and one end of the line is $(5,7)$. What are the coördinates of the other end?

Ans. (7, 1).
21. The vertices of a triangle are $(2,3),(4,-5),(-3,-6)$. Find the coördinates of the point where the medians intersect (center of gravity).
14. Areas. In this section the problem of determining the area of any polygon, the coördinates of whose vertices are given, will be solved. We begin with the

Theorem. The area of a triangle whose vertices are the origin, $P_{1}\left(x_{1}, y_{1}\right)$, and $P_{2}\left(x_{2}, y_{2}\right)$ is given by the formula

$$
\begin{equation*}
\text { Area of } \triangle O P_{1} P_{2}=\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right) \tag{V}
\end{equation*}
$$

Proof. In the figure let

$$
\alpha=\angle X O P_{1}
$$

$$
\beta(\text { Greek "beta" })=\angle X O P_{2}
$$

$$
\begin{equation*}
\theta(\text { Greek "theta } ")=\angle P_{1} O P_{2} \tag{1}
\end{equation*}
$$

By 45, p. 4,

$$
\begin{equation*}
\text { Area } \triangle O P_{1} P_{2}=\frac{1}{2} O P_{1} \cdot O P_{2} \sin \theta \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{1}{2} O P_{1} \cdot O P_{2} \sin (\beta-\alpha) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{1}{2} O P_{1} \cdot O P_{2}(\sin \beta \cos \alpha-\cos \beta \sin \alpha) \tag{By34,p.3}
\end{equation*}
$$

But in the figure

$$
\begin{aligned}
& \sin \beta=\frac{M_{2} P_{2}}{O P_{2}}=\frac{y_{2}}{O P_{2}}, \quad \cos \beta=\frac{O M_{2}}{O P_{2}}=\frac{x_{2}}{O P_{2}} \\
& \sin \alpha=\frac{M_{1} P_{1}^{\prime}}{O P_{1}}=\frac{y_{1}}{O P_{1}}, \quad \cos \alpha=\frac{O M_{1}}{O P_{1}}=\frac{x_{1}}{O P_{1}}
\end{aligned}
$$

Substituting in (3) and reducing, we obtain

$$
\text { Area } \triangle O P_{1} P_{2}=\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)
$$

Q.E.D.

EXAMPLE

Find the area of the triangle whose vertices are the origin, $(-2,4)$, and ($-5,-1$).

Solution. Denote ($-2,4$) by $P_{1},(-5,-1)$ by P_{2}. Then

$$
x_{1}=-2, \quad y_{1}=4, \quad x_{2}=-5, \quad y_{2}=-1 .
$$

Substituting in (V),

$$
\text { Area }=\frac{1}{2}[-2 \cdot-1-(-5) \cdot 4]=11 .
$$

Then area $=11$ unit squares.
If, however, the formula (V) is applied by denoting $(-2,4)$ by P_{2}, and $(-5,-1)$ by P_{1}, the result will be -11 .

The two figures for this example are drawn below.
The cases of positive and negative area are distinguished by the
Theorem. Passing around the perimeter in the order of the vertices O, P_{1}, P_{2},
if the area is on the left, as in Fig.1, then (V) gives a positive result;
if the area is on the right, "s

Fig. 1

Fig. 2 in Fig. 2, then (V) gives a negative result.
Proof. In the formula

$$
\begin{equation*}
\text { Area } \Delta O P_{1} P_{2}=\frac{1}{2} O P_{1} \cdot O P_{2} \sin \theta \tag{4}
\end{equation*}
$$

the angle θ is measured from $O P_{1}$ to $O P_{2}$ within the triangle. Hence θ is positive when the area lies to the left in passing around the perimeter O, P_{1}, P_{2}, as in Fig. 1, since θ is then measured counterclockwise (p. 2). But in Fig. 2, θ is

Fig. 1 measured clockwise. Hence θ is negative and $\sin \theta$ in (4) is also negative.
Q.E.D.

We apply (V) to any triangle by regarding its area as made up of triangles with the origin as a common vertex.

Theorem. The area of a triangle whose vertices are $P_{1}\left(x_{1}, y_{1}\right)$, $P_{2}\left(x_{2}, y_{2}\right), P_{8}\left(x_{3}, y_{3}\right)$ is given by
(VI) Area $\triangle P_{1} P_{2} P_{3}=\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}+x_{2} y_{3}-x_{3} y_{2}+x_{3} y_{1}-x_{1} y_{3}\right)$.

This formula gives a positive or negative result according as the area lies to the left or right in passing around the perimeter in the order $P_{1} P_{2} P_{3}$.

Proof. Two cases must be distinguished according as the origin is within or without the triangle.

Fig. 1, origin within the triangle. By inspection,

Fig. 1

$$
\begin{equation*}
\text { Area } \Delta P_{1} P_{2} P_{8}=\triangle O P_{1} P_{2}+\triangle O P_{2} P_{3}+\triangle O P_{8} P_{1} \tag{5}
\end{equation*}
$$

since these areas all have the same sign.
Fig. 2, origin without the triangle. By inspection,

$$
\begin{equation*}
\text { Alea } \Delta P_{1} P_{2} P_{8}=\triangle O P_{1} P_{2}+\triangle O P_{2} P_{8}+\triangle O P_{8} P_{1} \tag{6}
\end{equation*}
$$

since $O P_{1} P_{2}, O P_{3} P_{1}$ have the same sign, but $O P_{2} P_{3}$ the opposite sign, the algebraic sum giving the desired area.

By (V),
and

$$
\begin{aligned}
& \triangle O P_{1} P_{2}=\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right), \\
& \Delta O P_{2} P_{8}=\frac{1}{2}\left(x_{2} y_{8}-x_{8} y_{2}\right), \\
& \Delta O P_{8} P_{1}=\frac{1}{2}\left(x_{8} y_{1}-x_{1} y_{8}\right) .
\end{aligned}
$$

Substituting in (5) and (6), we have (VI).
Also in (5) the area is positive, in (6) negative. Q.E.D.
An easy way to apply (VI) is given by the following
Rule for finding the area of a triangle. $\quad \begin{array}{lll}x_{1} & y_{1}\end{array}$
First step. Write down the vertices in two columns, $x_{2} y_{2}$ abscissas in one, ordinates in the other, repeating the $x_{8} \quad y_{8}$ coördinates of the first vertex.
$x_{1} \quad y_{1}$
Second step. Multiply each abscissa by the ordinate of the next row, and add results. This gives $x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}$.

Third step. Multiply each ordinate by the abscissa of the next row, and add results. This gives $y_{1} x_{2}+y_{2} x_{8}+y_{8} x_{1}$.

Fourth step. Subtract the result of the third step from that of the second step, and divide by 2. This gives the required area, namely formula (VI).

Formula (VI) may be readily memorized by remarking that the right-hand member is a determinant of simple form, namely

$$
\text { Area } \triangle P_{1} P_{2} P_{3}=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{8} & 1
\end{array}\right|
$$

In fact, when this determinant is expanded ly the usual rule, the result, when divided by 2 , is precisely (VI).

It is easy to show that the above rule applies to any polygon if the following caution be observed in the first step:

Write down the coördinates of the vertices in an order agreeing with that established by passing continuously around the perimeter, and repeat the coördinates of the first vertex.

EXAMPLE

Find the area of the quadrilateral whose vertices are $(1,0),(-3,-4)$, $(2,-2),(-1,3)$.

$$
\begin{array}{rr}
1 & 6 \\
-1 & 3 \\
-3 & -4 \\
2 & -2
\end{array}
$$

Solution. Plotting, we have the figure from which we choose $-1 \quad 3$ the order of the vertices as indicated by the arrows. Following $-3-4$ the rule :

First step. Write down the vertices in order. 16
Second step. Multiply each abscissa by the ordinate of the next row, and add. This gives $1 \times 3+(-1 \times-4)+(-3 \times-2)+2 \times 6=25$.

Third step. Multiply each ordinate by the abscissa of the next row, and add. This gives $6 \times-1+3 \times-3+(-4 \times 2)+(-2 \times 1)=-25$.

Fourth step. Subtract the result of the third step from the result of the second step, and divide by 2.
\therefore Area $=\frac{25+25}{2}=25$ unit squares. Ans.
The result has the positive sign, since the area is on the left.

PROBLEMS

1. Find the area of the triangle whose vertices are $(2,3),(1,5)$, $(-1,-2)$.

Ans. $\frac{1}{2}$.
2. Find the area of the triangle whose vertices are $(2,3),(4,-5)$, $(-3,-6)$.

Ans. 29.
3. Find the area of the triangle whose vertices are $(8,3),(-2,3)$, $(4,-5)$.

Ans. 40.
4. Find the area of the triangle whose vertices are $(a, 0),(-a, 0)$, $(0, b)$.

Ans. $a b$.
5. Find the area of the triangle whose vertices are $(0,0),\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right)$.

Ans. $\frac{x_{1} y_{2}-x_{2} y_{1}}{2}$.
6. Find the area of the triangle whose vertices are $(a, 1),(0, b),(c, 1)$.

$$
\text { Ans. } \frac{(a-c)(b-1)}{2}
$$

7. Find the area of the triangle whose vertices are $(a, b),(b, a)$, $(c,-c)$.

Ans. $\frac{1}{2}\left(a^{2}-b^{2}\right)$.
8. Find the area of the triangle whose vertices are $(3,0),(0,3 \sqrt{3})$, $(6,3 \sqrt{3})$.

Ans. $9 \sqrt{3}$.
9. Prove that the area of the triangle whose vertices are the points $(2,3),(5,4),(-4,1)$ is zero, and hence that these points all lie on the same straight line.
10. Prove that the area of the triangle whose vertices are the points $(a, b+c),(b, c+a),(c, a+b)$ is zero, and hence that these points all lie on the same straight line.
11. Prove that the area of the triangle whose vertices are the points $(a, c+a),(-c, 0),(-a, c-a)$ is zero, and hence that these points all lie on the same straight line.
12. Find the area of the quadrilateral whose vertices are ($-2,3$), $(-3,-4),(5,-1),(2,2)$.

Ans. 31.
13. Find the area of the pentagon whose vertices are $(1,2),(3,-1)$, $(6,-2),(2,5),(4,4) . \quad$ Ans. 18.
14. Find the area of the parallelogram whose vertices are (10,5), $(-2,5),(-5,-3),(7,-3) . \quad$ Ans. 96.
15. Find the area of the quadrilateral whose vertices are $(0,0),(5,0)$, $(9,11),(0,3)$.

Ans. 41.
16. Find the area of the quadrilateral whose vertices are $(7,0),(11,9)$, $(0,5),(0,0)$. Ans. 59.
17. Show that the area of the triangle whose vertices are $(4,6),(2,-4)$, $(-4,2)$ is four times the area of the triangle formed by joining the middle points of the sides.
18. Show that the lines drawn from the vertices $(3,-8),(-4,6)$, $(7,0)$ to the point of intersection of the medians of the triaugle divide it into three triangles of equal area.
19. Given the quadrilateral whose vertices are $(0,0),(6,8),(10,-2)$, $(4,-4)$; show that the area of the quadrilateral formed by joining the middle points of its adjacent sides is equal to one half the area of the given quadrilateral.

CHAPTER III

CURVE AND EQUATION

15. Locus of a point satisfying a given condition. The curve* (or group of curves) passing through all points which satisfy a given condition, and through no other points, is called the locus of the point satisfying that condition.

For example, in plane geometry, the following results are proved:

The perpendicular bisector of the line joining two fixed points is the locus of all points equidistant from these points.

The bisectors of the adjacent angles formed by two lines are the locus of all points equidistant from these lines.

To solve any locus problem involves two things:

1. To draw the locus by constructing a sufficient number of points satisfying the given condition and therefore lying on the locus.
2. To discuss the nature of the locus; that is, to determine properties of the curve.

Analytic geometry is peculiarly adapted to the solution of both parts of a locus problem.
16. Equation of the locus of a point satisfying a given condition. Let us take up the locus problem, making use of coördinates. We imagine the point $P(x, y)$ moving in such a manner that the given condition is fulfilled. Then the given condition will lead to an equation involving the variables x and y. The following example illustrates this.

[^5]
EXAMPLE

The point $P(x, y)$ moves so that it is always equidistant from $A(-2,0)$ and $B(-3,8)$. Find the equation of the locus.

Solution. Let $P(x, y)$ be any point on the locus. Then by the given condition

$$
\begin{equation*}
P A=P B \tag{1}
\end{equation*}
$$

But, by formula (1), p. 13,

$$
P A=\sqrt{(x+2)^{2}+(y-0)^{2}}
$$

and $P B=\sqrt{(x+3)^{2}+(y-8)^{2}}$.
Substituting in (1),

$$
\begin{align*}
& \sqrt{(x+2)^{2}+(y-0)^{2}} \tag{2}\\
= & \sqrt{(x+3)^{2}+(y-8)^{2}} .
\end{align*}
$$

Squaring and reducing,

$$
\begin{equation*}
2 x-16 y+69=0 . \tag{3}
\end{equation*}
$$

In the equation (3), x and y are variables representing the coördinates of any point on the locus; that is, of any point on the perpendicular bisector of the line $A B$. This equation is called the equation of the locus; that is, it is the equation of the perpendicular bisector $C P$. It has two important and characteristic properties:

1. The coördinates of any point on the locus may be substituted for x and y in the equation (3), and the result will be true.

For let $P_{1}\left(x_{1}, y_{1}\right)$ be any point on the locus. Then $P_{1} A=P_{1} B$, by definition. Hence, by formula (I), p. 13,

$$
\begin{equation*}
\sqrt{\left(x_{1}+2\right)^{2}+y_{1}^{2}}=\sqrt{\left(x_{1}+3\right)^{2}+\left(y_{1}-8\right)^{2}} \tag{4}
\end{equation*}
$$

or, squaring and reducing,

$$
\begin{equation*}
2 x_{1}-16 y_{1}+69=0 . \tag{5}
\end{equation*}
$$

But this equation is obtained by substituting x_{1} and y_{1} for x and y respectively in (3). Therefore r_{1} and y_{1} satisfy (3).
2. Conversely, evér'y point whose coördinates satisfy (3) will lie upon the locus.

For if $P_{1}\left(x_{1}, y_{1}\right)$ is a point whose coördinates satisfy (3), then (5) is true, and hence also (4) holds.
Q.E.D.

In particular, the coördinates of the middle point C of A and B, namely, $x=-2 \frac{1}{2}, y=4$ (IV, p. 21), satisfy (3), since

$$
2\left(-2 \frac{1}{2}\right)-16 \times 4+69=0 .
$$

This discussion leads to the definition:
The equation of the locus of a point satisfying a given condition is an equation in the variables x and y representing coördinates such that (1) the coördinates of every point on the locus will satisfy the equation ; and (2) conversely, every point whose coördinates satisfy the equation will lie upon the locus.

This definition shows that the equation of the locus must be tested in two ways after derivation, as illustrated in the example of this section. The student should supply this test in the examples and problems of Art. 17.

From the above definition follows at once the
Corollary. A point lies upon a curve when and only when its coürlinates satisfy the equation of the curve.
17. First fundamental problem. To find the equation of a curne which is defined as the locus of a point satisfying a given condition.

The following rule will suffice for the solution of this problem in many cases:

Rule. First step. Assume that $P(x, y)$ is any point satisfying the given condition, and is therefore on the curve.

Second step. Write down the given condition.
Third step. Express the given condition in coördinates and simplify the result. The final equation, containing x, y, and the given constants of the problem, will be the required equation.

EXAMPLES

1. Find the equation of the straight line passing through $P_{1}(4,-1)$ and having an inclination of $\frac{3 \pi}{4}$.

Solution. First step. Assume $P(x, y)$ any point on the line.
Second step. The given condition, since the inclination α is $\frac{3 \pi}{4}$, may be written

$$
\begin{equation*}
\text { slope of } P_{1} P=\tan \alpha=-1 \tag{1}
\end{equation*}
$$

Third step. From (II), p. 17,
(2) slope of $P_{1} P=\tan \alpha=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{y+1}{x-4}$.

[By substituting (x, y) for $\left(x_{1}, y_{1}\right)$, and (4, -1) for $\left(x_{2}, y_{2}\right)$.]
Therefore, from (1),

$$
\begin{aligned}
\frac{y+1}{x-4} & =-1, \text { or } \\
x+y-3 & =0 .
\end{aligned}
$$

2. Find the equation of a straight line parallel to the axis of y and at a distance of 6 units to the right.

Solution. First step. Assume that $P(x, y)$ is any point on the line, and draw $N P$ perpendicular to $O Y$.

Second step. The given condition may be written

$$
\begin{equation*}
N P=6 . \tag{4}
\end{equation*}
$$

Third step. Since $N P=O M=x$, (4) becomes

$$
\begin{equation*}
x=6 . \quad \text { Ans. } \tag{5}
\end{equation*}
$$

3. Find the equation of the locus of a point whose distance from $(-1,2)$ is always equal to 4 .

Solution. First step. Assume that $P(x, y)$ is any point on the locus.
Second step. Denoting $(-1,2)$ by C, the given condition is

$$
\begin{equation*}
P C=4 \tag{6}
\end{equation*}
$$

Third step. By formula (I), p. 13,

$$
P C=\sqrt{(x+1)^{2}+(y-2)^{2}} .
$$

Substituting in (6),

$$
\sqrt{(x+1)^{2}+(y-2)^{2}}=4 .
$$

Squaring and reducing,

$$
\begin{equation*}
x^{2}+y^{2}+2 x-4 y-11=0 . \tag{7}
\end{equation*}
$$

This is the required equation, namely, the equation of the circle whose center is $(-1,2)$ and radius equal to 4.

PROBLEMS

1. Find the equation of a line parallel to $O Y$ and
(a) at a distance of 4 units to the right.
(b) at a distance of 7 units to the left.
(c) at a distance of 2 units to the right of (3, 2).
(d) at a distance of 5 units to the left of $(2,-2)$.
2. Find the equation of a line parallel to $O X$ and
(a) at a distance of 3 units above $O X$.
(b) at a distance of 6 units below OX.
(c) at a distance of 7 units above ($-2,-3$).
(d) at a distance of 5 units below ($4,-2$).
3. What is the equation of $X X^{\prime}$? of $Y Y^{\prime}$?
4. Find the equation of a line parallel to the line $x=4$ and 3 units to the right of it; 8 units to the left of it.
5. Find the equation of a line parallel to the line $y=-2$ and 4 units below it ; 5 units above it.
6. What is the equation of the locus of a point which moves always at a distance of 2 units from the axis of x ? from the axis of y ? from the line $x=-5$? from the line $y=4$?
7. What is the equation of the locus of a point which moves so as to be equidistant from the lines $x=5$ and $x=9 ?$ equidistant from $y=3$ and $y=-7$?
8. What are the equations of the sides of the rectangle whose vertices are (5, 2), (5, 5), (-2, 2), (-2, 5) ?

In Problems 9 and $10, P_{1}$ is a given point on the required line, m is the slope of the line, and α its inclination.
9. What is the equation of a line if
(a) P_{1} is $(0,3)$ and $m=-3$?

Ans: $3 x+y-3=0$.
(b) P_{1} is $(-4,-2)$ and $m=\frac{1}{8}$?

Ans. $x-3 y-2=0$.
(c) P_{1} is $(-2,3)$ and $m=\frac{\sqrt{2}}{2}$?

Ans. $\sqrt{2} x-2 y+6+2 \sqrt{2}=0$.
(d) P_{1} is $(0,5)$ and $m=\frac{\sqrt{3}}{2}$?
(e) P_{1} is $(0,0)$ and $m=-\frac{2}{3}$?

Ans. $\sqrt{3} x-2 y+10=0$.
Ans. $2 x+3 y=0$.
(f) P_{1} is (a, b) and $m=0$?

Ans. $y=b$.
(g) P_{1} is $(-a, b)$ and $n=\infty$?

Ans. $x=-a$.
10. What is the equation of a line if
(a) P_{1} is $(2,3)$ and $\alpha=45^{\circ}$? Ans. $x-y+1=0$.
(b) P_{1} is $(-1,2)$ and $\alpha=45^{\circ}$?

Ans. $x-y+3=0$.
(c) P_{1} is $(-a,-b)$ and $\alpha=45^{\circ}$?

Ans. $x-y=b-a$.
(d) P_{1} is $(5,2)$ and $\alpha=60^{\circ}$?

Ans. $\sqrt{3} x-y+2-5 \sqrt{3}=0$.
(e) P_{1} is $(0,-7)$ and $\alpha=60^{\circ}$?

Ans. $\sqrt{3} x-y-7=0$.
(f) P_{1} is $(-4,5)$ and $\alpha=0^{\circ}$?

Ans. $y=5$.
(g) P_{1} is $(2,-3)$ and $\alpha=90^{\circ}$?
(h) P_{1} is $(3,-3 \sqrt{3})$ and $\alpha=120^{\circ}$?

Ans. $x=2$.
Ans. $\sqrt{3} x+y=0$.
(i) P_{1} is $(0,3)$ and $\alpha=150^{\circ}$?
(j) P_{1} is (a, b) and $\alpha=135^{\circ}$?

Ans. $\sqrt{3} x+3 y-9=0$.
Ans. $x+y=a+b$.
11. Find the equation of the straight line which passes through the points
(a) $(2,3)$ and $(-4,-5) . \quad$ Ans. $4 x-3 y+1=0$.

Hint. Find the slope by (II), p. 17, and then proceed as in Problem 9.
(b) $(2,-5)$ and $(-1,9)$.

Ans. $14 x+3 y-13=0$.
(c) $(-1,6)$ and $(6,-2)$.

Ans. $8 x+7 y-34=0$.
(d) $(0,-3)$ and $(4,0)$.
(e) $(8,-4)$ and $(-1,2)$.

Ans. $3 x-4 y-12=0$.
12. Find the equation of the circle with
(a) center at $(3,2)$ and radius $=4$. Ans. $x^{2}+y^{2}-6 x-4 y-3=0$.
(b) center at $(12,-5)$ and $r=13$. Ans. $x^{2}+y^{2}-24 x+10 y=0$.
(c) center at $(0,0)$ and radius $=r$.

Ans. $x^{2}+y^{2}=r^{2}$.
(d) center at $(0,0)$ and $r=5$.

Ans. $x^{2}+y^{2}=25$.
(e) center at $(3 a, 4 a)$ and $r=5 a$. Ans. $x^{2}+y^{2}-2 a(3 x+4 y)=0$.
(f) center at $(b+c, b-c)$ and $r=c$.

$$
\text { Ans. } x^{2}+y^{2}-2(b+c) x-2(b-c) y+2 b^{2}+c^{2}=0
$$

13. Find the equation of a circle whose conter is $(5,-4)$ and whose circumference passes through the point $(-2,3)$.
14. Find the equation of a circle having the line joining $(3,-5)$ and $(-2,2)$ as a diameter.
15. Find the equation of a circle touching each axis at a distance 6 units from the origin.
16. Find the equation of a circle whose center is the middle point of the line joining $(-6,8)$ to the origin and whose circumference passes through the point $(2,3)$.
17. A point moves so that its distances from the two fixed points $(2,-3)$ and $(-1,4)$ are cqual. Find the equation of the locus.

$$
\text { Ans. } 3 x-7 y+2=0 .
$$

18. Find the equation of the perpendicular bisector of the line joining
(a) $(2,1),(-3,-3)$.
(b) $(3,1),(2,4)$.
(c) $(-1,-1),(3,7)$.
(d) $(0,4),(3,0)$.
(e) $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$.

$$
\text { Ans. } 2\left(x_{1}-x_{2}\right) x+2\left(y_{1}-y_{2}\right) y+x_{2}^{2}-x_{1}^{2}+y_{2}^{2}-y_{1}^{2}=0
$$

19. Show that in Problem 18 the coördinates of the middle point of the line joining the given points satisfy the equation of the perpendicular bisector.
20. Find the equations of the perpendicular bisectors of the sides of the triangle $(4,8),(10,0),(6,2)$. Show that they meet in the point $(11,7)$.
21. Locus of an equation. The preceding sections have illustrated the fact that a locus problem in analytic geometry leads at once to an equation in the variables x and y. This equation having been found or being given, the complete solution of the locus problem requires two things, as already noted in Art. 15 of this chapter, namely:
22. To draw the locus by plotting a sufficient number of points whose coördinates satisfy the given equation, and through which the locus therefore passes.
23. To discuss the nature of the locus; that is, to determine properties of the curve.

These two problems are respectively called:

1. Plotting the locus of an equation (second fundamental problem).
2. Discussing an equation (third fundamental problem).

For the present, then, we concentrate our attention upon some given equation in the variables x and y (one or both) and start out with the definition :

The locus of an equation in two variables representing coördinates is the curve or group of curves passing through all points whose coördinates satisfy that equation,* and through such points only.

From this definition the truth of the following theorem is at once apparent:

Theorem I. If the form of the given equation be changed in any way (for example, by transposition, by multiplication by " constant, etc.), the locus is entirely unaffected.

We now take up in order the solution of the second and third fundamental problems.

19. Second fundamental problem.

Rule to plot the locus of a given equation.
First step. Solve the given equation for one of the variables in terms of the other. \dagger

[^6]Second step. By this formula compute the values of the variable for which the equation has been solved by assuming real values for the other variable.

Third step. Plot the points corresponding to the values so determined.

Fourth step. If the points are numerous enough to suggest the general shape of the locus, draw a smooth curve through the points.

Since there is no limit to the number of points which may be computed in this way, it is evident that the locus may be drawn as accurately as may be desired by simply plotting a sufficiently large number of points.

Several examples will now be worked out. The arrangement of the work should be carefully noted.

EXAMPLES

1. Draw the locus of the equation

$$
2 x-3 y+6=0
$$

Solution. First step. Solving for y,

$$
y=\frac{2}{3} x+2
$$

Second step. Assume values for x and compute y, arranging results in the form of the
 accompanying table :

Thus, if

$$
\begin{gathered}
x=1, y=\frac{2}{3} \cdot 1+2=2 \frac{2}{3}, \\
x=2, y=\frac{2}{3} \cdot 2+2=3 \frac{1}{3}, \\
\text { etc. }
\end{gathered}
$$

Third step. Plot the points found.
Fourth step. Draw a smooth curve through these points.

2 Plot the locus of the equation

x	y	x	y
0	2	0	2
1	$2 \frac{2}{8}$	-1	$1 \frac{1}{8}$
2	$3 \frac{1}{3}$	-2	$\frac{?}{4}$
3	4	-3	0
4	$4 \frac{2}{5}$	-4	$-\frac{?}{2}$
etc.	etc.	etc.	etc.

$$
y=x^{2}-2 x-3
$$

Solution. First step. The equation as given is solved for y.

Second step. Computing y by assuming values of x, we find the table of values below:

\boldsymbol{x}	y	x	y
0	-3	0	-3
1	-4	-1	0
2	-3	-2	5
3	0	-3	12
4	5	-4	21
5	12	etc.	etc.
6	21		
etc.	etc.		

Third step. Plot the points.

Fourth step. Draw a smooth curve through these points. This gives the curve of the figure.
3. Plot the locus of the equation

$$
x^{2}+y^{2}+6 x-16=0 .
$$

Solution. First step. Solving for y,

$$
y= \pm \sqrt{16-6 x-x^{2}}
$$

Second step. Compute y by assuming values of x. For this purpose the table of Art. 3 will be found convenient.

x	y	x	y
0	± 4	0	± 4
1	± 3	-1	± 4.6
2	0	-2	± 4.9
3	imag.	-3	± 5
4	$"$	-4	± 4.9
5	$"$	-5	± 4.6
6	$"$	-6	± 4
7	$"$	-7	± 3
		-8	0
		-9	imag.

For example, if $x=-1, y= \pm \sqrt{16+6-1}=\sqrt{21}= \pm 4.6$,

$$
\text { if } x=3, y= \pm \sqrt{16-18-9}= \pm \sqrt{-11},
$$

an imaginary number.

Third step. Plot the corresponding points.
Fourth step. Draw a smooth curve through these points.
The student will doubtless remark that the locns of Example 1, p. 38, appears to be a straight line, and also that the locus of Example 3, p. 39, appears to be a circle. This is, in fact, the case. But the proof must be reserved for later sections.

PROBLEMS

1. Plot the locus of each of the following equations:
(a) $x+2 y=0$.
(i) $x=y^{2}+2 y-3$.
(q) $x^{2}+y^{2}=25$.
(b) $x+2 y=3$.
(j) $4 x=y^{3}$.
(r) $x^{2}+y^{2}+9 x=0$.
(c) $3 x-y+5=0$.
(k) $4 x=y^{9}-1$.
(s) $x^{2}+y^{2}+4 y=0$.
(d) $y=4 x^{2}$.
(1) $y=x^{8}-1$.
(t) $x^{2}+y^{2}-6 x-16=0$.
(e) $x^{2}+4 y=0$.
(m) $y=x^{5}-x$.
(f) $y=x^{2}-3$.
(n) $y=x^{3}-x^{2}-5$.
(u) $x^{2}+y^{2}-6 y-16=0$.
(g) $x^{2}+4 y-5=0$.
(o) $x^{2}+y^{2}=4$.
(v) $4 y=x^{4}-8$.
(h) $y=x^{2}+x+1$.
(p) $x^{2}+y^{2}=9$.
(w) $4 x=y^{4}+8$.

The following problem illustrates the
Theorem. If an equation can be put in the form of a product of variable factors equat to zero, the locus is found by setting each factor equal to zero and plotting each equation separately.
2. Draw the locus of $4 x^{2}-9 y^{2}=0$.

Solution. Factoring,

$$
\begin{equation*}
(2 x-3 y)(2 x+3 y)=0 . \tag{1}
\end{equation*}
$$

Then, by the theorem, the locus consists of the straight lines (p. 59)

$$
\begin{align*}
& 2 x-3 y=0, \text { and } \tag{2}\\
& 2 x+3 y=0 . \tag{3}
\end{align*}
$$

Proof. 1. The coördinates of any point $\left(x_{1}, y_{1}\right)$ which satisfy (1) will satisfy either (2) or (3).

For if (x_{1}, y_{1}) satisfies (1),

$$
\begin{equation*}
\left(2 x_{1}-3 y_{1}\right)\left(2 x_{1}+3 y_{1}\right)=0 \tag{4}
\end{equation*}
$$

This product can vanish only when one of the factors is zero. Hence either

$$
2 x_{1}-3 y_{1}=0
$$

and therefore (x_{1}, y_{1}) satisfies (2);
or

$$
2 x_{1}+3 y_{1}=0
$$

and therefore $\left(x_{1}, y_{1}\right)$ satisfies (3).
2. A point $\left(x_{1}, y_{1}\right)$ on either of the lines defined by (2) and (3) will also lie on the locus of (1).
${ }^{\prime}$ For if $\left(x_{1}, y_{1}\right)$ is on the line $2 x-3 y=0$, then (Corollary, p. 32)

$$
\begin{equation*}
2 x_{1}-3 y_{1}=0 . \tag{5}
\end{equation*}
$$

Hence the product $\left(2 x_{1}-3 y_{1}\right)\left(2 x_{1}+3 y_{1}\right)$ also vanishes, since by (6) the first factor is zero, and therefore (x_{1}, y_{1}) satisfies (1).

Therefore every point on the locus of (1) is also on the locus of (2) and (3), and conversely. This proves the theorem for this example. Q.E.D.
3. Show that the locus of each of the following equations is a pair of straight lines, and plot the lines:
(a) $x y=0$.
(1) $x^{2}-y^{2}+x+y=0$.
(b) $x^{2}=9 y^{2}$.
(m) $x^{2}-3 x y-4 y^{2}=0$.
(c) $x^{2}-y^{2}=0$.
(n) $x^{2}-x y+5 x-5 y=0$.
(d) $y^{2}-6 y=7$.
(o) $x^{2}-4 y^{2}+5 x+10 y=0$.
(e) $x y-2 x=0$.
(p) $x^{2}+2 x y+y^{2}+x+y=0$.
(f) $9 x^{2}-y^{2}=0$.
(q) $x^{2}+3 x y+2 y^{2}+x+y=0$.
(g) $x^{2}-3 x y=0$.
(r) $x^{2}-2 x y+y^{2}+6 x-6 y=0$.
(h) $y^{2}+4 x y=0$.
(s) $3 x^{2}+x y-2 y^{2}+6 x-4 y=0$.
(i) $x^{2}-4 x-5=0$.
(t) $3 x^{2}-2 x y-y^{2}+5 x-5 y=0$.
(j) $x y-2 x^{2}-3 x=0$.
(u) $x^{2}-4 x y-5 y^{2}+2 x-10 y=0$.
(k) $y^{2}-5 x y+6 y=0$.
(v) $x^{2}+4 x y+4 y^{2}+5 x+10 y+6=0$.
4. Show that the locus of $A x^{2}+B x+C=0$ is a pair of parallel lines, a single line, or that there is no locus according as $\Delta=B^{2}-4 A C$ is positive, zero, or negative.
5. Show that the locus of $A x^{2}+B x y+C y^{2}=0$ is a pair of intersecting lines, a single line, or a point according as $\Delta=B^{2}-4 A C$ is positive, zero, or negative.
6. Show that the following equations have no locus (footnote, p. 37):
(a) $x^{2}+y^{2}+1=0$.
(e) $(x+1)^{2}+y^{2}+4=0$.
(b) $2 x^{2}+3 y^{2}=-8$.
(f) $x^{2}+y^{2}+2 x+2 y+3=0$.
(c) $x^{2}+4=0$.
(g) $4 x^{2}+y^{2}+8 x+5=0$.
(d) $x^{4}+y^{2}+8=0$.
(b) $y^{4}+2 x^{2}+4=0$.
(i) $9 x^{2}+4 y^{2}+18 x+8 y+15=0$.

Hint. Write each equation in the form of a sum of squares, and reason as in the footnote on page 37.
20. Third fundamental problem. Discussion of an equation. The method explained of solving the second fundamental problem gives no knowledge of the required curve except that it passes through all the points whose coördinates are determined as satisfying the given equation. Joining these points gives a curve more or less like the exact locus. Serious errors may be made in this way, however, since the nature of the curve between any two successive points plotted is not determined. This objection is somewhat obviated by determining before plotting certain properties of the locus by a discussion of the given equation now to be explained.

The nature and properties of a locus depend upon the form of its equation, and hence the steps of any discussion must depend upon the particular problem. In every case, however, certain questions should be answered. These questions will now be presented.

1. Is the curve symmetrical with respect to either axis of coördinates or with respect to the origin?

To answer this question we may proceed as in the following example:

EXAMPLE

Discuss the symmetry of the locus of

$$
\begin{equation*}
x^{2}+4 y^{2}=16 \tag{1}
\end{equation*}
$$

Solution. The equation contains no odd powers of x or y; hence it may be written in any one of the forms

$$
\begin{equation*}
(x)^{2}+4(-y)^{2}=16, \text { replacing }(x, y) \text { by }(x,-y) \tag{2}
\end{equation*}
$$

(3) $\quad(-x)^{2}+4(y)^{2}=16$, replacing (x, y) by $(-x, y)$;
$(-x)^{2}+4(-y)^{2}=16$, replacing (x, y) by $(-x,-y)$.
The transformation of (1) into (2) corresponds in the figure to replacing each point $P(x, y)$ on the curve by the point
$Q(x,-y)$. But the points P and Q are symmetrical with respect to $X X^{\prime}$, and (1) and (2) have the same locus (Theorem I, p. 37). Hence the locus of (1) is unchanged if each point is changed to a second point symmetrical to the first with respect to $X \mathrm{~N}^{\prime}$. Therefore the locus is symmetrical with respect to the axis of x.
 Similarly, from (3), the locus is symmetrical with respect to the axis of y, and from (4) the locus is symmetrical with respect to the origin, for the points $P(x, y)$ and $S(-x,-y)$ are symmetrical with respect to the origin, since $O P=O S$.

In plotting the equation we take advantage of our knowledge of the symmetry of the curve by limiting the calculation to points in the first quadrant, as in the table. We plot these points, mark off the points symmetrical to them with respect to the axes and the origin, and then draw the curve.

The locus is called an ellipse.
The facts brought out in the example are

x	y
4	0
8.4	1
2.7	$1^{\frac{1}{2}}$
0	2

Theorem II. Symmetry. If the locus of an equation is unaffected by replacing y by - y throughout its equation, the locus is symmetrical with respect to the axis of x.

If the loous is unaffected by changing x to $-x$ throughout its equation, the locus is symmetrical with respect to the axis of y.

If the locus is unaffected by changing both x and y to $-x$ and $-y$ throughout its equation, the locus is symmetrical with respect to the origin.

These theorems may be made to assume a somewhat different form if the equation is algebraic in x and y. The locus of
an algebraic equation in the variables x and y is called an algebraic curve. Then from Theorem II follows

Theorem III. Symmetry of an algebraic curve. If no odd powers of y occur in an equation, the locus is symmetrical with respect to $X X^{\prime}$; if no odd powers of x occur, the locus is symmetrical with respect to $Y Y^{\prime}$. If every term is of even* degree, or every term of odd degree, the locus is symmetrical with respect to the origin.

The second question arises from the following considerations :
Coördinates are real numbers. Hence all values of x which give imaginary values of y must be excluded in the calculation. Similarly, all values of y which lead to imaginary values of x must be excluded. The second question is, then :
2. What values, if any, of either coördinate will give imaginary values of the other coürdinate?

The following examples illustrate the method:

EXAMPLES

1. What values of x and y, if any, must be excluded in determining points on the locus of

$$
\begin{equation*}
x^{2}+4 y^{2}=16 ? \tag{1}
\end{equation*}
$$

Solution. Solving for x in terms of y, and also for y in terms of x,

$$
\begin{equation*}
x= \pm 2 \sqrt{4-y^{2}} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
y= \pm \frac{1}{2} \sqrt{16-x^{2}} . \tag{3}
\end{equation*}
$$

From the radical in (2) we see
 that all values of y numerically greater than 2 will make $4-y^{2}$ negative, and hence make x imaginary. Hence all values of y greater than 2 or less than -2 must be excluded.

Similarly, from the radical in (3), it is clear that values of x greater than 4 or less than -4 must be excluded.

[^7]Therefore in determining points on the locus, we need assume for y values only between 0 and 2, as on page 43 , or values of x between 0 and 4 inclusive.

A further conclusion is this: The curve lies entirely within the rectangle bounded by the four lines

$$
x=4, \quad x=-4, \quad y=2, \quad y=-2,
$$

and is therefore a closed curve.
2. What values, if any, of the coürdinates are to be excluded in determining the locus of

$$
\begin{equation*}
y^{2}-4 x+15=0 ? \tag{4}
\end{equation*}
$$

Solution. Solving for x in terms of y, and also for y in terms of x,

$$
\begin{align*}
& x=\frac{1}{4}\left(15+y^{2}\right) \tag{5}\\
& y= \pm \sqrt{4 x-15} \tag{6}
\end{align*}
$$

From (5) any value of y will give a real value of x. Hence no values of y are excluded.

x	y
3 3	0
4	± 1
$4{ }^{4}$	± 2
6	± 3
7䍃	± 4
10	± 5
129	± 6
etc.	cte.

From the radical in (6) all values of x for which $4 x-15$ is negative must be excluded ; that is, all values of x less than $3 \frac{3}{4}$.

The locus therefore lies entirely to the right of the line $x=3 \frac{3}{4}$. Moreover, since no values of y are excluded, the locus extends to infinity, y increasing as x increases.

The locus is, by Theorem III, symmetrical with respect to the x-axis, and is called a parabola.
3. Determine what values of x and y, if any, must be excluded in determining the locus of

$$
\begin{equation*}
4 y=x^{8} \tag{7}
\end{equation*}
$$

Solution. Solving for x in terms of y, and also for y in terms of x

$$
\begin{align*}
& x=\sqrt[3]{4 y} \tag{8}\\
& y=\frac{1}{4} x^{3} \tag{9}
\end{align*}
$$

From these equations it appears that no values of either coördinate need be excluded.

The locus is, by Theorem III, symmetrical with respect to the origin. The coördinates increase together; the curve extends to infinity and is called a cubical parabola.

The method illustrated in the examples is summed up in the

Rule to determine all values of x and y which must be excluded.

Solve the equation for x in terms of y,
 and from this result determine all values of y for which the computed value of x would be imaginary. These values of y must be excluded.

Solve the equation for y in terms of x, and from this result determine all values of x for which the computed value of y would be imaginary. These values of x must be excluded.

In determining excluded values of x and y we obtain also an answer to the question:
3. Is the curve a closed curve, or does it extend to infinity?

The points of intersection of the curve with the coördinate axes should be found.

The intercepts of a curve on the axis of x are the abscissas of the points of intersection of the curve and $X X^{\prime}$.

The intercepts of a curve on the axis of y are the ordinates of the points of intersection of the curve and $Y Y^{\prime}$.

Rule to find the intercepts.
Substitute $y=0$ and solve for real values of x. This gives the intercepts on the axis of x.

Substitute $x=0$ and solve for real values of y. This gives the intercepts on the axis of y.

The proof of the rule follows at once from the definitions.
The rule just given explains how to answer the question:
4. What are the intercepts of the locus?

In particular, the locus may pass through the origin, in which case one intercept on each axis will be zero. In this case the coördinates $(0,0)$ must satisfy the equation. When the equation is algebraic we have

Theorem IV. The locus of an algebraic equation passes through the origin when there is no constant term in the equation.

The proof is immediate.
21. Directions for discussing an equation. Given an equation, the following questions should be answered in order before plotting the locus.

1. Is the origin on the locus?
2. What are the intercepts?
3. Is the locus symmetrical with respect to the axes or the origin?
4. What values of x and y must be excluded?
5. Is the curve closed, or does it pass off indefinitely far?

Answering these questions constitutes what is called a general discussion of the given equation. The successive results should be immediately transferred to the figure. Thus when the intercepts have been determined, mark them off on the axes. Indicate which axes are axes of symmetry. The excluded values of x and y will determine lines parallel to the axes which the locus will not cross. Draw these lines.

EXAMPLE

Give a general discussion of the equation

$$
\begin{equation*}
x^{2}-4 y^{2}+16 y=0 \tag{1}
\end{equation*}
$$

Draw the locus.
Solution. 1. Since the equation contains no constant term, the origin is on the curve.
2. Putting $y=0$, we find $x=0$, the intercept on the axis of x. Putting $x=0$, we find $y=0$ and 4 , the intercepts on the axis of y.

Lay off the intercepts on the axes.

3. The equation contains no odd powers of x; hence the locus is symmetrical with respect to $Y Y^{\prime}$.
4. Solving for x,

$$
\begin{equation*}
x= \pm 2 \sqrt{y^{2}-4 y} \tag{2}
\end{equation*}
$$

All values of y must he excluded which make the expression heneath the radical sign negative. Now the roots of $y^{2}-4 y=0$ are $y=0$ and $y=4$. For any value of y between these roots, $y^{2}-4 y$ is negative. For example, $y=2$ gives $4-8=-4$. Hence all values of y between 0 and 4 must be excluded.

Draw the lines $y=0$ and $y=4$. The locus does not come between these lines:

Solving for y,

$$
\begin{equation*}
y=2 \pm \frac{1}{2} \sqrt{x^{2}+16} \tag{3}
\end{equation*}
$$

Hence no value of x is excluded, since $x^{2}+16$ is positive for all values of x.
5. From (3), y increases as x increases, and the curve extends out indefinitely far from both axes.

Plotting the locus, using (2), the curve is found to be as in the figure. The curve is a hyperbola.

Sign of a quadratic. In the preceding example it became necessary to determine for what values of y the quadratic expression $y^{2}-4 y$ in (2) was positive.

The fact made use of is this :
If the sign of a quadratic expression is negative (or positive) for any one value of the unknown taken between the roots, it is also negative (or positive) for every value of the unknown between the roots.

This is casily seen graphically. For take any quadratic

$$
\begin{equation*}
A x^{2}+B x+C \tag{4}
\end{equation*}
$$

Plot the equation

$$
\begin{equation*}
y=A x^{2}+B x+C \tag{5}
\end{equation*}
$$

The locus of (5) will be a parabola turned upward if A is positive, downward if A is negative (see Example 2, p. 38). The intercepts on the x-axis will be the roots of (4). The values of y from (5) will clearly all have one sign for all values of x between the intercepts, and the op-

 posite sign for all other values of x. We see, then, that the values of the quadratic (4) will have one sign for all values of x taken between the roots, and the opposite sign for all other values.

To apply this, consider the locus of

$$
\begin{equation*}
y=\sqrt{6-5 x-x^{2}} \tag{6}
\end{equation*}
$$

What values of x must be excluded? To answer this, find the roots of $6-5 x-x^{2}=0$. They are $x=-0$ and $x=1$. Take any value of x between these roots, for example, $x=0$. When $x=0$, the quadratic $6-5 x-x^{2}$ equals 6 , a positive number. Hence $6-5 x-x^{2}$ equals a positive number for all values of x between the roots -0 and 1 . Then the quadratic is negative for all other values; bence we must exclude values of $x<-6$ and also $x>1$.

PROBLEMS

1. Give a general discussion of each of the following equations and draw the locus. Make sure that the discussion and the figure agree.
(a) $x^{2}-4 y=0$.
(1) $9 y^{2}-x^{3}=0$.
(b) $y^{2}-4 x+3=0$.
(o) $9 y^{2}+x^{3}=0$.
(c) $x^{2}+4 y^{2}-16=0$.
(p) $2 x y+3 x-4=0$.
(d) $9 x^{2}+y^{2}-18=0$.
(q) $x^{2}+4 x y+3 y^{2}+8=0$.
(e) $x^{2}-4 y^{2}-16=0$.
(r) $x^{2}+x y+y^{2}-4=0$.
(f) $x^{2}-4 y^{2}+16=0$.
(s) $x^{2}+2 x y-3 y^{2}=4$.
(g) $x^{2}-y^{2}+4=0$.
(t) $2 x y-y^{2}+4 x=0$.
(h) $x^{2}-y+x=0$.
(u) $3 x^{2}-y+x=0$.
(i) $x y-4=0$.
(v) $4 y^{2}-2 x-y=0$.
(j) $9 y+x^{3}=0$.
(w) $x^{2}-y^{2}+6 x=0$.
(k) $4 x-y^{s}=0$.
(x) $x^{2}+4 y^{2}+8 y=0$.
(l) $6 x-y^{4}=0$.
(y) $9 x^{2}+y^{2}+18 x-6 y=0$.
(m) $5 x-y+y^{3}=0$.
(z) $9 x^{2}-y^{2}+18 x+6 y=0$.
2. Determine the general nature of the locus in each of the following equations. In plotting, assume particular values for the arbitrary constants, but not special values; that is, values which give the equation an added peculiarity.*
(a) $y^{2}=2 m x$.
(f) $x^{2}-y^{2}=a^{2}$.
(b) $x^{2}-2 m y=m^{2}$.
(g) $x^{2}+y^{2}=r^{2}$:
(c) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(h) $x^{2}+y^{2}=2 x x$.
(i) $x^{2}+y^{2}=2 r y$.
(d) $2 x y=a^{2}$.
(j) $a y^{2}=x^{3}$.
(e) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
(k) $a^{2} y=x^{3}$.

The loci of the equations (a) to (i) in Problem 2 are all of the class known as conics, or conic sections, - curves following straight lines and circles in the matter of their simplicity. These curves are obtained when cross sections are taken of a right circular cone. Various definitions and properties will be given later. A definition often used is the following:

A conic section is the locus of a point whose distances from a fixed point and a fixed line are in a constant ratio.

[^8]3. Show that every conic is represented by an equation of the second degree in x and y.

Hint. Take $Y Y^{\prime}$ to coincide with the fixed line, and draw $X X^{\prime}$ through the fixed point. Denote the fixed point by ($p, 0$) and the constant ratio by e.

$$
\text { Ans. }\left(1-e^{2}\right) x^{2}+y^{2}-2 p x+p^{2}=0 .
$$

4. Discuss and plot the locus of the equation of Problem 3:
(a) when $e=1$. The conic is now called a parabola (see p. 45).
(b) when $e<1$. The conic is now called an ellipse (see p. 43).
(c) when $e>1$. The conic is now called a hyperbola (see p. 48).
5. A point moves so that the sum of its distances from the two fixed points $(3,0)$ and $(-3,0)$ is constant and equal to 10 . What is the locus? Ans. Ellipse $16 x^{2}+25 y^{2}=400$.
6. A point moves so that the difference of its distances from the two tixed points $(5,0)$ and $(-5,0)$ is constant and equal to 8 . What is the locus?

Ans. Hyperbola $9 x^{2}-16 y^{2}=144$.
7. Find the equations of the following loci, and discuss and plot them.
(a) The distance of a point from the fixed point $(0,2)$ is equal to its distance from the x-axis increased by 2.
(b) The distance of a point from the fixed point $(0,-2)$ is equal to its distance from the y-axis increased by 2 .
(c) The distance of a point from the origin is equal to its distance from the y-axis increased by 2 .
(d) The distance of a point from the fixed point $(2,-4)$ is equal to its distance from the x-axis increased by $5 . \quad$ Ans. $2 y=x^{2}-4 x-5$.
(e) The distance of a point from the point $(3,0)$ is equal to half its distance from the point $(6,0)$.
(f) The distance of a point from the point $(8,-4)$ is twice its distance from the point $(2,-1)$.
(g) One third of the distance of a point from the point $(0,3)$ is equal to its distance from the x-axis increased by unity. Ans. $x^{2}-8 y^{2}-24 y=0$.
(h) The distances of a point to the fixed point $(-1,0)$ and to the line $4 x-5=0$ are in the ratio $\frac{4}{5}$ Ans. $9 x^{2}+25 y^{2}+90 x=0$.
8. Prove the statement: If an equation is nnaltered when x and y are interchanged, the locus is symmetrical with respect to the line $y=x$.

Make use of this result in drawing the loci of :
(a) $x y=4$.
(b) $x^{2}+x y+y^{2}=9$.
(c) $x^{3}+y^{3}=1$.
(d) $x^{\frac{1}{2}}+y^{\frac{1}{2}}=1$.
22. Asymptotes. The following examples elucidate difficulties arising frequently in drawing the locus of an equation.

EXAMPLES

1. Plot the locus of the equation (1)

$$
x y-2 y-4=0 .
$$

Solution. Solving for y,

$$
\begin{equation*}
y=\frac{4}{x-2} . \tag{2}
\end{equation*}
$$

We observe at once, if $x=2, y=\frac{4}{0}=\infty$. This is interpreted thus: The curve approaches the line $x=2$ as it passes off to infinity. In fact, if we solve (1) for x and write the result in the form

$$
x=2+\frac{4}{y}
$$

it is evident that x approaches 2 as y increases indefinitely. Hence the locus extends both upward and downward indefinitely far, approaching in each case

x	y	x	y
0	-2	0	-2
1	-4	-1	$-\frac{4}{3}$
$1 \frac{1}{2}$	-8	-2	-1
$1 \frac{3}{4}$	-16	-4	$-\frac{2}{8}$
2	∞	-5	$-\frac{4}{3}$
$2 \frac{1}{4}$	16	\vdots	\vdots
$2 \frac{1}{2}$	8	-10	$-\frac{1}{8}$
3	4	etc.	etc.
4	2		
5	$\frac{4}{3}$		-
6	1		
\vdots	\vdots		
12	0.4		
etc.	etc.		

In plotting, it is necessary to assume valnes of x differing slightly from 2, both less and greater, as in the table.

From (2) it appears that y diminishes and approaches zero as x increases indefinitely. The curve therefore extends indefinitely far to the right and left, approaching constantly the axis of x. The axis of x is therefore a horizontal asymptote.*

This curve is called a hyperbola.
In the problem just discussed it was necessary to learn what value x approached when y became very large, and also what value y approached when x became very large. These questions, when important, are usually readily answered, as in the following examples:
2. Plot the locus of $\quad y=\frac{2 x+3}{3 x-4}$. (Fig. 1)

When x is very great, we may neglect the 3 in the nunerator $(2 x+3)$ and the -4 in the denominator $(3 x-4)$. That is, when x is very large, $y=\frac{2 x}{3 x}=\frac{2}{3}$. Hence $y=\frac{2}{3}$ is a horizontal asymptote.

The equation shows directly that $3 x-4=0$ or $x=\frac{4}{3}$ is a vertical asymptote. Or we may solve the equation for x, which gives

$$
x=\frac{4 y+3}{3 y-2} .
$$

Hence, when y is very large, $x=\frac{4 y}{3 y}=\frac{4}{3}$.

3. The locus of

$$
y=\frac{2 x+3}{x^{2}-3 x+2}
$$

is shown in Fig. 2. There are two vertical [asymptotes, $x=1$ and $x=2$, since the denominator $x^{2}-3 x+2=(x-1)(x-2)$. A branch of the

* For oblique asymptotes, that is, asymptotes not parallel to either axis, see Art. 66.
curve lies between these lines. Furthermore, when x becomes large, we may write the equation $y=\frac{2 x}{x^{2}}=\frac{2}{x}=0$. Hence the x-axis is a borizontal asymptote. A few points of the locus are given in the table. Note that different scales are used for ordinates and abscissas.

The determination of the vertical and horizontal asymptotes of a curve should be added to the discussion of the equation as outlined in

x	y
0	$-\frac{3}{2}$
$-\frac{3}{2}$	0
3	-24
2	3
-5	$-\frac{13}{2}$

PROBLEMS

Plot each of the following, and determine the horizontal and vertical asymptotes :

1. (a) $x y+y-8=0$.
(e) $2 x y+4 x-6 y+3=0$.
(b) $x y+x+3=0$.
(f) $y^{2}+2 x y-4=0$.
(c) $2 x y+2 x+3 y=0$.
(g) $x y+x+2 y-3=0$.
(d) $x^{2}+x y+8=0$.
(l) $x y+y-x^{2}+2 x=0$.
2. (a) $x^{2} y-5=0$.
(c) $x y^{2}-4 x+6=0$.
(b) $x^{2} y-y+2 x=0$.
(d) $x^{3} y-y+8=0$.
(e) $y=\frac{5}{x^{2}-3 x}$.
(j$) y=\frac{x^{2}-4}{x^{2}+x}$.
(0) $4 x=\frac{y^{2}}{y^{2}-9}$.
(f) $y=\frac{4 x^{2}}{x^{2}-4}$.
(k) $x=\frac{y^{2}}{y-1}$.
(p) $12 x=\frac{8 y}{3-y^{2}}$.
(g) $y=\frac{x-3}{x+1}$.
(1) $x=\frac{y-2}{y-3}$.
(q) $y=\left(\frac{x-1}{x}\right)^{2}$.
(h) $y=\frac{x^{2}-4}{x^{2}-1}$.
(m) $y=\frac{x^{2}-1}{4-x^{2}}$.
(r) $y^{2}=\frac{x^{2}}{x-1}$.
(i) $y=\frac{(x-2)(x+3)}{(x+2)(x-3)}$.
(n) $y=\frac{x^{2}-3 x+2}{x^{2}+3 x+2}$.
(s) $y^{2}=\frac{x^{2}}{x^{2}-3 x+2}$.

PROBLEMS FOR INDIVIDUAL STUDY

Discuss fully and draw carefully the following loci :

1. $y^{2}-4 x y+x^{3}=0$.
2. $(y-x)^{2}-x^{2}\left(\alpha^{2}-x^{2}\right)=0$.
3. $y^{2}-2 x y-2 x^{2}+x^{3}=0$.
4. $\left(y-x^{2}\right)^{2}-\left(a^{2}-x^{2}\right)=0$.
5. $y^{2}-x^{2}+x^{4}=0$.
6. $\left(y-x^{2}\right)^{2}-x^{2}\left(a^{2}-x^{2}\right)=0$.
7. $(y-x)^{2}-\left(a^{2}-x^{2}\right)=0$.
8. $y^{2}(a-x)-x^{2}(a+x)=0$ (the strophoid).
9. $x^{4}+2 a x^{2} y-a y^{8}=0$.
10. $x^{4}-a x y^{2}+y^{4}=0$.
11. $a^{4} y^{2}-a^{2} x^{4}+x^{6}=0$.
12. $a y^{2}-b x^{4}-x^{5}=0$.
13. $a^{8} y^{2}-2 a b x^{2} y-x^{5}=0$.
14. $y^{2}-\left(a^{2}-x^{2}\right)\left(0^{2}-x^{2}\right)^{2}=0$.
15. $x^{3} y^{2}-a^{3} x^{2}+a y^{4}=0$.
16. $x(y-x)^{2}-b^{2} y=0$.
17. $\left(x^{2}+y^{2}\right)^{2}-a^{2}\left(x^{2}-y^{2}\right)=0$ (the lemniscate).
18. $\left(x^{2}-a^{2}\right)^{2}=a y^{2}(3 a+2 y)$.
19. $\left(x^{2}+y^{2}-1\right) y-a x=0$.
20. $y^{2}-x^{2}-x(x-4)^{2}=0$.
21. $\left(x^{2}+y^{2}-2 a y\right)^{2}=a^{2}\left(x^{2}+y^{2}\right)$ (the limacon).
22. $\left(x^{4}+x^{2} y^{2}+y^{4}\right)=x\left(a x^{2}-4 a y^{2}\right)$.
23. $\left(x^{2}+y^{2}+4 a y-a^{2}\right)\left(x^{2}-a^{2}\right)+4 a^{2} y^{2}=0$.
24. $\left(y^{2}-x^{2}\right)(x-1)\left(x-\frac{3}{2}\right)=2\left(y^{2}+x^{2}-2 x\right)^{2}$.
25. $\left(x^{2}+y^{2}+4 a y-a^{2}\right)\left(x^{2}-a^{2}\right)+4 a^{2} y^{2}=0$ (the cocked hat).
26. Points of intersection. If two curves whose equations are given intersect, the coördinates of each point of intersection must satisfy both equations when substituted in them for the variables. In algebra it is shown that all values satisfying two equations in two unknowns may be found by regarding these equations as simultaneous in the unknowns and solving. Hence the

Rule to find the points of intersection of two curves whose equations are given.

Consider the equations as simultaneous in the coürdinates and solve as in algebra.

Arrange the real solutions in corresponding pairs. These will be the coördinates of all the points of intersection.

Notice that only real solutions correspond to common points of the two curves, since coördinates are always real numbers.

EXAMPLES

1. Find the points of intersection of
(1) $x-7 y+25=0$,

$$
\begin{equation*}
x^{2}+y^{2}=25 . \tag{2}
\end{equation*}
$$

Solution. Solving (1) for x,

$$
\begin{equation*}
x=7 y-25 . \tag{3}
\end{equation*}
$$

Substituting in (2),
$(7 y-25)^{2}+y^{2}=25$.
Reducing,

$$
\begin{aligned}
y^{2}-7 y+12 & =0 \\
\ldots y & =3 \text { and } 4 .
\end{aligned}
$$

Substituting in (3) [not in (2)],

$$
x=-4 \text { and }+3 .
$$

Arranging, the points of intersection are (-4,3) and (3, 4). Ans.
In the figure the straight line (1) is the locus of equation (1), and the circle the locus of (2).
2. Find the points of intersection of the loci of

$$
\begin{equation*}
2 x^{2}+3 y^{2}=35 \tag{4}
\end{equation*}
$$

Solution. Solving (5) for x^{2},

$$
\begin{equation*}
x^{2}=\frac{4}{3} y . \tag{6}
\end{equation*}
$$

Substituting in (4) and reducing,

$$
9 y^{2}+8 y-105=0 .
$$

$$
\therefore y=3 \text { and }-\frac{35}{8} .
$$

Substituting in (6) and solving,

$$
x= \pm 2 \text { and } \pm \frac{1}{6} \sqrt{-210} .
$$

Arranging the real values, we find the points of intersection are (+2, 3), (-2, 3). Ans.

In the figure the ellipse (4) is the locus of (4), and the paraboia (5) the locus of (5).

PROBLEMS

Find the points of intersection of the following loci :

1. $\left.\begin{array}{l}7 x-11 y+1=0 \\ x+y-2=0\end{array}\right\}$. Ans. ($\left.\frac{7}{6}, \frac{5}{6}\right)$.
2. $\left.\begin{array}{l}x^{2}+y^{2}=41 \\ x y=20\end{array}\right\}$.
3. $\left.\begin{array}{l}x+y=7 \\ x-y=5\end{array}\right\}$. Ans. $(6,1)$.
4. $\left.\begin{array}{l}y=3 x+2 \\ x^{2}+y^{2}=4\end{array}\right\}$.

Ans. $(\pm 5, \pm 4),(\pm 4, \pm 5)$.
8. $\begin{aligned} & y^{2}=2 p x \\ & x^{2}= 2 p y \\ & \text { Ans. }(0,0),(2 p, 2 p) \text {. }\end{aligned}$

$$
\text { Ans. }(0,2),\left(-\frac{6}{5},-\frac{8}{5}\right)
$$

4. $\left.\begin{array}{l}y^{2}=16 x \\ y-x=0\end{array}\right\}$.

Ans. $(0,0),(16,16)$.
9. $\left.\begin{array}{l}4 x^{2}+y^{2}=5 \\ y^{2}=8 x\end{array}\right\}$.

Ans. $\left(\frac{1}{2}, 2\right),\left(\frac{1}{2},-2\right)$.
10. $\left.\begin{array}{l}x^{2}+y^{2}=100 \\ y^{2}=\frac{9 x}{2}\end{array}\right\}$.

Ans. $(8,6),(8,-6)$.
5. $\left.\begin{array}{l}x^{2}+y^{2}=a^{2} \\ 3 x+y+a=0\end{array}\right\}$.
$+y+a=0$
Ans. $(0,-a),\left(-\frac{3 a}{5}, \frac{4 a}{5}\right)$.
6. $\left.\begin{array}{l}x^{2}-y^{2}=16 \\ x^{2}=8 y\end{array}\right\}$.

Ans. $(\pm 4 \sqrt{2}, 4)$.
11. $\begin{aligned} & x^{2}+y^{2}=5 a^{2} \\ & x^{2}=4 a y \\ & \text { Ans. }(2 a, a),(-2 a, a) .\end{aligned}$

Find the area of the triangles and polygons whose sides are the loci of the following equations:
12. $3 x+y+4=0,3 x-5 y+34=0,3 x-2 y+1=0$. Ans. 36 .
13. $x+2 y=5,2 x+y=7, y=x+1$.

Ans. $\frac{8}{2}$.
14. $x+y=a, x-2 y=4 a, y-x+7 a=0$.

Ans. $12 a^{2}$.
15. $x=0, y=0, x=4, y=-6$.
16. $x-y=0, x+y=0, x-y=a, x+y=b$.

Ans. 24.
Ans. $\frac{a b}{2}$.
17. $y=3 x-9, y=3 x+5,2 y=x-6,2 y=x+14$. Ans. 56.
18. Find the distance between the points of intersection of the curves $3 x-2 y+6=0, x^{2}+y^{2}=9$.

Ans. $\frac{18}{1} \frac{8}{3} \sqrt{13}$.
19. Does the locus of $y^{2}=4 x$ intersect the locus of $2 x+3 y+2=0$?

Ans. Yes.
20. For what value of a will the three lines $3 x+y-2=0$, $a x+2 y-3=0,2 x-y-3=0$ meet in a point? Ans. $a=5$.
21. Find the length of the common chord of $x^{2}+y^{2}=13$ and $y^{2}=3 x+3$. Ans. 6.
22. If the equations of the sides of a triangle are $x+7 y+11=0$, $3 x+y-7=0, x-3 y+1=0$, find the length of each of the medians. Ans. $2 \sqrt{5}, \frac{5}{2} \sqrt{2}, \frac{1}{2} \sqrt{170}$.

CHAPTER IV

THE STRAIGHT LINE

24. The degree of the equation of any straight line. It will now be shown that any straight line is represented by an equation of the first degree in the variable coorrdinates x and y.

Theorem. The equation of the straight line passing through a point $B(0, b)$ on the axis of y and having its slope equal to m is

$$
\begin{equation*}
y=m x+b \tag{I}
\end{equation*}
$$

Proof. Assume that $P(x, y)$ is any point on the line.
The given condition may be written

$$
\text { slope of } P B=m
$$

Since by (II), p. 17,

$$
\text { slope of } P B=\frac{y-b}{x-0}
$$

[Substituting (x, y) for $\left(x_{1}, y_{1}\right)$ and $(0, b)$ for $\left(x_{2}, y_{2}\right)$.]
then

$$
\frac{y-b}{x}=m, \text { or } y=m x+b . \quad \text { Q.E.D. }
$$

In equation (I), m and b may have any values, positive, negative, or zero.

Equation (I) will represent any straight line which intersects the y-axis. But the equation of any line parallel to the y-axis has the form $x=$ a constant, since the abscissas of all points on such a line are equal. The two forms, $y=m x+b$ and $x=$ constant, will therefore represent all lines. Each of these equations being of the first degree in x and y, we have the

Theorem. The equation of any straight line is of the first degree in the coördinates x and y.
25. Locus of any equation of the first degree. The question now arises: Given an equation of the first degree in the coördinates x and y, is the locus a straight line?

Consider, for example, the equation

$$
\begin{equation*}
3 x-2 y+8=0 \tag{1}
\end{equation*}
$$

Let us solve this equation for y. This gives

$$
\begin{equation*}
y=\frac{3}{2} x+4 \tag{2}
\end{equation*}
$$

Comparing (2) with the formula (I),

$$
y=m x+b
$$

we see that (2) is obtained from (I) if we set $m=\frac{3}{2}, b=4$. Now in (I) m and b may have any values. The locus of (I) is, for all values of m and b, a straight line. Hence (2), or (1), is the equation of a straight line through $(0,4)$ with the slope equal to $\frac{3}{2}$. This discussion prepares the way for the general theorem.

The equation

$$
\begin{equation*}
A x+B y+C=0 \tag{3}
\end{equation*}
$$

where A, B, and C are arbitrary constants, is called the general equation of the first degree in x and y because every equation of the first degree may be reduced to that form.

Equation (3) represents all straight lines.
For the equation $y=m x+b$ may be written $m x-y+b=0$, which is of the form (3) if $A=m, B=-1, C=b$; and the equation $x=$ constant may be written x - constant $=0$, which is of the form (3) if $A=1$, $B=0, C=-$ constant.

Theorem. The locus of the general equation of the first degree

$$
A x+B y+C=0
$$

is a straight line.
Proof. Solving (3) for y, we obtain

$$
\begin{equation*}
y=-\frac{A}{B} x-\frac{C}{B} \tag{4}
\end{equation*}
$$

Comparison with (I) shows that the locus of (4) is the straight line for which

$$
m=-\frac{A}{B}, \quad b=-\frac{C}{B}
$$

If, however, $B=0$, the reasoning fails.
But if $B=0$, (3) becomes
or

$$
\begin{aligned}
A x+C & =0, \\
x & =-\frac{C}{A} .
\end{aligned}
$$

The locus of this equation is a straight line parallel to the y-axis. Hence in all cases the locus of (3) is a straight line.

> Q.E.D.

Corollary. The slope of the line

$$
A x+B y+C=0
$$

is $m=-\frac{A}{B}$; that is, the coefficient of x with its sign changed divided by the coefficient of y.
26. Plotting straight lines. If the line does not pass through the origin (constant term not zero, p. 47), find the intercepts (p. 47), mark them off on the axes, and draw the line. If the line passes through the origin, find a second point whose coorrdinates satisfy the equation, and draw a line through this point and the origin.

EXAMPLE

Plot the locus of $3 x-y+6=\mathbf{0}$. Find the slope.
Solution. Letting $y=0$ and solving for x, $x=-2=$ intercept on x-axis.
Letting $\quad x=0$ and solving for y, $y=6=$ intercept on y-axis.
The required line passes through the points $(-2,0)$ and $(0,6)$.

To find the slope: Comparison with the general equation (3) shows that $A=3, B=-1, C=6$. Hence $m=-\frac{A}{B}=3$.

Otherwise thus: Reduce the given equation to the form $y=m x+b$ by solving it for y. This gives $y=3 x+6$. Hence $m=3, b=6$, as before.

PROBLEMS

1. Find the intercepts and the slope of the following lines, and plot the lines:
(a) $2 x+3 y=6$.

Ans. 3,$2 ; m=-\frac{7}{3}$.
(b) $x-2 y+5=0$.

Ans. $-5,2 \frac{1}{2} ; m=\frac{1}{2}$.
(c) $3 x-y+3=0$.

Ans. $-1,3 ; m=3$.
(d) $5 x+2 y-6=0$.

Ans. $\frac{6}{5}, 3 ; m=-\frac{5}{2}$.
2. Plot the following lines and find the slope:
(a) $2 x-3 y=0$.
(c) $3 x+2 y=0$.
(b) $y-4 x=0$.
(d) $x-3 y=0$.
3. Find the equations, and reduce them to the general form, of the inics for which
(a) $m=2, b=-3$.
(b) $m=-\frac{1}{2}, b=\frac{3}{2}$.
(c) $m=\frac{2}{5}, b=-\frac{5}{2}$.
(d) $\alpha=\frac{\pi}{4}, b=-2$.
(e) $\alpha=\frac{3 \pi}{4}, b=3$.

Hint. Substitute in $y=m x+b$ and transpose.
4. Select pairs of parallel and perpendicular lines from the following :

$$
\begin{aligned}
& \text { (a) } \begin{cases}L_{1}: y=2 x-3 . \\
L_{2}: y=-3 x+2 . \\
L_{3}: y=2 x+7 . \\
L_{4}: y=\frac{1}{3} x+4 .\end{cases} \\
& \text { (b) } \begin{cases}L_{1}: x+3 y=0 . & \text { Ans. } L_{1} \| L_{3} ; L_{2} \perp L_{4} . \\
L_{2}: 8 x+y+1=0 . \\
L_{3}: 9 x-3 y+2=0 .\end{cases} \\
& \text { (c) } \begin{cases}L_{1}: 2 x-5 y=8 . \\
L_{2}: 5 y+2 x=8 . & \text { Ans. } L_{1} \perp L_{3} . \\
L_{3}: 35 x-14 y=8 . & \text { Ans. } L_{2} \perp L_{3} .\end{cases}
\end{aligned}
$$

Ans. $2 x-y-3=0$.
Ans. $x+2 y-3=0$.
Ans. $4 x-10 y-25=0$.
Ans. $x-y-2=0$.
Ans. $x+y-3=0$.
5. Show that the quadrilateral whose sides are $2 x-3 y+4=0$, $3 x-y-2=0,4 x-6 y-9=0$, and $6 x-2 y+4=0$ is a parallelogram.
6. Find the equation of the line whose slope is -2 , which passes through the point of intersection of $y=3 x+4$ and $y=-x+4$. Ans. $2 x+y-4=0$.
7. Write an equation which will represent all lines parallel to the line
(a) $y=2 x+7$.
(c) $y-3 x-4=0$.
(b) $y=-x+9$.
(d) $2 y-4 x+3=0$.
8. Find the equation of the line parallel to $2 x-3 y=0$ whose intercept on the Y-axis is -2 .

Ans. $2 x-3 y-6=0$.
9. Show that the following loci are straight lines and plot them:
(a) The locus of a point whose distances from the axes $X X^{\prime}$ and $Y Y^{\prime}$ are in a constant ratio equal to $\frac{2}{3}$.

Ans. $2 x-3 y=0$.
(b) The locus of a point the sum of whose distances from the axes of coördinates is always equal to 10 . Ans. $x+y-10=0$.
(c) A point moves so as to be always equidistant from the axes of coördinates.

Ans. $x-y=0$.
(d) A point moves so that the difference of the squares of its distances from $(3,0)$ and $(0,-2)$ is always equal to 8.

Ans. The parallel straight lines $6 x+4 y+3=0,6 x+4 y-13=0$.
(e) A point moves so as to be always equidistant from the straight lines $x-4=0$ and $y+5=0$.

Ans. The perpendicular straight lines $x-y-9=0, x+y+1=0$.
10. A point moves so that the sum of its distances from two perpendicular lines is constant. Show that the locus is a straight line.

Hint. Choosing the axes of coördinates to coincide with the given lines, the equation is $x+y=$ constant.
11. A point moves so that the difference of the squares of its distances from two fixed points is constant. Show that the locus is a pair of straight lines.

Hint. Draw $X X^{\prime}$ through the fixed points, and $Y^{\prime} 1^{\prime \prime}$ through their middle point. Then the fixed points may be written ($a, 0$), ($-a, 0$), and if the "constant difference" be denoted by k, we find for the locus $4 « x=k$ and $4 a x=-k$.
12. A point moves so that the difference of the squares of its distances from two perpendicular lines is zero. Show that the locus is a pair of perpendicular lines.
13. A point moves so that its distance from a fixed line is in a constant ratio to its distance from a fixed point on the line. For what values of the ratio is the locus real? What is the locus?
27. Point-slope form. If it is required that a straight line shall pass through a given point in a given direction, the line is determined.

The following problem is therefore definite:
To find the equation of the straight line passing through a given point $P_{1}\left(x_{1}, y_{1}\right)$ and having a given slope m.

Solution. Let $P(x, y)$ be any other point on the line. By the hypothesis,

$$
\begin{equation*}
\text { slope } P P_{1}=m . \tag{II,p.17}
\end{equation*}
$$

$$
\begin{equation*}
\therefore \frac{y-y_{1}}{x-x_{1}}=m . \tag{1}
\end{equation*}
$$

Clearing of fractions gives the formula

$$
\begin{equation*}
y-y_{1}=m\left(x-x_{1}\right) . \tag{II}
\end{equation*}
$$

28. Two-point form. A straight line is determined by two of its points. Let us theu solve the problem:

To find the equation of the line passing through two given points $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$.

Solution. The slope of the given line is

$$
\text { slope } P_{1} P_{2}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \text {. }
$$

Let $P(x, y)$ be auy other point on the line $P_{1} P_{2}$. Then

$$
\text { slope } P P_{1}=\frac{y-y_{1}}{x-x_{1}}
$$

Since P, P_{1}, and P_{2} are on one line, slope $P P_{1}=$ slope $P_{1} P_{2}$. Hence we have the formula

$$
\begin{equation*}
\frac{y-y_{1}}{x-x_{1}}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} . \tag{III}
\end{equation*}
$$

Equation (III) may be written in the determinant form

$$
\left|\begin{array}{lll}
x & y & 1 \tag{2}\\
x_{1} & y_{1} & I \\
x_{2} & y_{2} & I
\end{array}\right|=0
$$

For the determinant, when expanded, is of the first degree in x and y. Hence (2) is the equation of a line. But (2) is satisfied when $x=x_{1}$, $y=y_{1}$, and also when $x=x_{2}, y=y_{2}$, for then two rows become identical and the determinant vanishes. Otherwise thus: Comparison of (2) with the formula at the close of Art. 14 shows that the area of the triangle $P P_{1} P_{2}$ is zero. Hence these three points lie on a line.

EXAMIPLES

1. Find the equation of the line passing through $P_{1}(3,-2)$ whose slope is $-\frac{1}{4}$.

Solution. Use the point-slope equation (I1), substituting $x_{1}=3$, $y_{1}=-2, m=-\frac{1}{4}$. This gives

$$
y+2=-\frac{1}{4}(x-3)
$$

Clearing and reducing,

$$
x+4 y+5=0 .
$$

2. Find the equation of the line through the two points $P_{1}(5,-1)$ and $P_{2}(2,-2)$.

Solution. Use the two-point equation (III), substituting $x_{1}=5, y_{1}=-1$, $x_{2}=2, y_{2}=-2$. This gives

$$
\frac{y+1}{x-5}=\frac{-1+2}{5-2}=\frac{1}{3} .
$$

Clearing and reducing,

$$
x-3 y-8=0 .
$$

The answer should be checked. To do this, we must prove that the coordinates of the given points satisfy the answer. Thus for P_{1}, substituting $x=5, y=-1$, the answer holds. Similarly for P_{2}. The student should supply checks for Examples 1, 3, and 4.
3. Find the equation of the line through the point $P_{1}(3,-2)$ parallel to the line $L_{1}: 2 x-3 y-4=0$.

Solution. The slope of the given line L_{1} equals $\frac{2}{3}$. Hence the slope of the required line also equals $\frac{2}{3}$ (Theorem, p. 17), and it passes through $P_{1}(3,-2)$. Using the point-slope equation (11), we have $y+2$ $=\frac{2}{3}(x-3)$, or $2 x-3 y-12=0$.

4. Find the equation of the line through the point $P_{1}(-1,3)$ perpendicular to the line $L_{1}: 5 x-2 y+3=0$.

Solution. The slope of the given line L_{1} equals $\frac{5}{2}$. Hence the slope of the required line equals $-\frac{2}{5}$ (Theorem, p. 17). Since we know a point $P_{1}(-1,3)$ on the line, we use the point-slope equation (II), and obtain $y-3=-\frac{2}{5}(x+1)$, or $2 x+5 y-13=0$.

PROBLEMS

1. Find the equation of the line satisfying the following conditions, and plot the line. Check the answers:
(a) Passing through $(0,0)$ and $(8,2) . \quad$ Ans. $x-4 y=0$.
(b) Passing through $(-1,1)$ and $(-3,1)$ Ans. $y-1=0$.
(c) Passing through $(-3,1)$ and slope $=2$. Ans. $2 x-y+7=0$.
(d) Having the intercepts * $a=3$ and $b=-2$. Ans. $2 x-3 y-6=0$.
(e) Slope $=-3$, intercept on x-axis $=4$.

Ans. $3 x+y-12=0$.
(f) Intercepts $a=-3$ and $b=-4$.
(g) Passing through $(2,3)$ and $(-2,-3)$. Ans. $4 x+3 y+12=0$.
(h) Passing through $(3,4)$ and $(-4,-3)$. Ans. $3 x-2 y=0$.
(i) Passing through $(2,3)$ and slope $=-2$. Ans. $2 x+y-7=0$.
2. Find the equation of the line passing through the origin parallel to the line $2 x-3 y=4$.

Ans. $2 x-3 y=0$.
3. Find the equation of the line passing through the origin perpendicular to the line $5 x+y-2=0$.

Ans. $x-5 y=0$.
4. Find the equation of the line passing through the point (3,2) parallel to the line $4 x-y-3=0$.

Ans. $4 x-y-10=0$.
5. Find the equation of the line passing through the point $(3,0)$ perpendicular to the line $2 x+y-5=0$. Ans. $x-2 y-3=0$.
6. Find the equation of the line whose intercept on the y-axis is 5 , which passes through the point (6, 3). Ans. $x+3 y-15=0$.
7. Find the equation of the line whose intercept on the x-axis is 3 , which is parallel to the line $x-4 y+2=0$. Ans. $x-4 y-3=0$.
8. Find the equation of the line passing through the origin and through the intersection of the lines $x-2 y+3=0$ and $x+2 y-9=0$.

$$
\text { Ans. } x-y=0 .
$$

9. Find the equations of the sides of the triangle whose vertices are $(-3,2),(3,-2)$, and $(0,-1)$.

$$
\text { Ans. } 2 x+3 y=0, x+3 y+3=0, \text { and } x+y+1=0 .
$$

10. Find the equations of the medians of the triangle in Problem 9 , and show that they meet in a point.

$$
\text { Ans. } x=0,7 x+9 y+3=0, \text { and } 5 x+9 y+3=0 .
$$

Hint. To show that three lines meet in a point, find the point of intersection of two of them and prove that it lies on the third.

* Intercept on x-axis $=a$, intercept on y-axis $=b$. The given points are (3,0) and (0, - 2).

11. Determine whether or not the following sets of points lie on a straight line:

(a) $(0,0),(1,1),(7,7)$.	Ans. Yes.
(b) $(2,3),(-4,-6),(8,12)$.	Ans. Yes.
(c) $(3,4),(1,2),(5,1)$.	Ans. No.
(d) $(3,-1),(-6,2),\left(-\frac{3}{2}, 1\right)$.	Ans. No.
(e) $(5,6),(5,1),\left(-1,-\frac{6}{5}\right)$.	Ans. Yes.
(f) $(7,6),(2,1),(6,-2)$.	Ans. No.
(g) $(3,-2),(6,-4),(-5,4)$.	
(b) $(1,0),(0,1),(7,-8)$.	
(i) $(-3,-1),(6,2),(8,3)$.	

12. Find the equations of the lines joining the middle points of the sides of the triangle in Problem 9, and show that they are parallel to the sides. Ans. $4 x+6 y+3=0, x+3 y=0$, and $x+y=0$.
13. Find the equation of the line passing through the origin and through the intersection of the lines $x+2 y=1$ and $2 x-4 y-3=0$.

Ans. $x+10 y=0$.
14. Show that the diagonals of a square are perpendicular.

Hint. Take two sides for the axes and let the length of a side be α.
15. Show that the line joining the middle points of two sides of a triangle is parallel to the third.

Hint. Choose the axes so that the vertices are (0,0), ($a, 0$), and (b, c).
16. Two sides of a parallelogram are given by $2 x+3 y-7=0$ and $x-3 y+4=0$. Find the other two sides if one vertex is the point (3,2). Ans. $2 x+3 y-12=0$ and $x-3 y+3=0$.
17. Find the equations of the lines drawn through the vertices of the triangle whose vertices are $(-3,2),(3,-2)$, and $(0,-1)$, which are parallel to the opposite sides. Find the vertices of the new triangle.

$$
\text { Ans. } 2 x+3 y+3=0, x+3 y-3=0, x+y-1=0 .
$$

18. Find the equations of the lines drawn throngh the vertices of the triangle in Problem 17, which are perpendicular to the opposite sides, and show that they meet in a point.

$$
\text { Ans, } 3 x-2 y-2=0,3 x-y+11=0, x-y-5=0 \text {. }
$$

19. Find the equations of the perpendicular bisectors of the sides of the triangle in Problem 17, and show that they meet in a point.

$$
\text { Ans. } 3 x-2 y=0,3 x-y-6=0, x-y+2=0 \text {. }
$$

20. The equations of two sides of a parallelogram are $3 x-4 y+6=0$ and $x+5 y-10=0$. Find the equations of the other two sides if one vertex is the point $(4,9)$. Ans. $3 x-4 y+24=0$ and $x+5 y-49=0$.
21. The vertices of a triangle are (2, 1), (-2, 3), and (4, -1). Find the equations of (a) the sides of the triangle, (b) the perpendicular bisectors of the sides, and (c) the lines drawn through the vertices perpendicular to the opposite sides. Check the results by showing that the lines in (b) and (c) meet in a point.
22. Intercept form. A line is determined if its intercepts on the axes are given. If these intercepts are a on $X X^{\prime}$ and b on $I^{\prime} Y^{\prime}$, then the line passes through $(a, 0)$ and $(0, b)$, and the twopoint form (III) gives (writing $x_{1}=a, y_{1}=0, x_{2}=0, y_{2}=b$)

$$
\frac{y-0}{x-a}=\frac{b-0}{0-a}=-\frac{b}{a}
$$

Clearing of fractions, transposing, and dividing by $a b$, we obtain

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}=1 . \tag{IV}
\end{equation*}
$$

30. Condition that three lines shall intersect in a common point. It is shown in algebra that three linear equations in two unknowns x and y, for example,

$$
\begin{equation*}
A x+B y+C=0, \quad A_{1} x+B_{1} y+C_{1}=0, \quad A_{0} x+B_{2} y+C_{2}=0 \tag{1}
\end{equation*}
$$

will have a common solution when and only when the determinant formed on the coefficients vanishes; that is, when

$$
\left|\begin{array}{lll}
A & B & C \tag{2}\\
A_{1} & B_{1} & C_{1} \\
A_{2} & D_{2} & C_{2}
\end{array}\right|=0
$$

Hence the three lines (1) will intersect in a common point when and only when (2) holds, provided always that the lines are not parallel, however. But this latter fact may always be determined by inspection of the equations.
31. Theorems on projection. In preparation for deriving additional theorems of this and later chapters, some simple facts in regard to projection will now be discussed.

The orthogonal projection of a point upon a line is the foot of the perpendicular let fall from the point upon the line.

Thus in the figure
M is the orthogonal projection of P on X^{\prime}, X;
N is the orthogonal projection of P on $Y^{-1} Y$;
P^{\prime} is the orthogonal projection of P^{\prime} on $\mathrm{X}^{\prime} \mathrm{X}$.

If A and B are two points of a directed line, and M and N their projections upon a second directed line $C D$, then $M N$ is called the projection of $A B$ upon $C D$.

First Theorem of Projection. If A and B are points upon a directed line making an angle a with a second directed line $C D$, then the
projection of the length $A B$ upon $C D=A B \cos a$.
Proof. In the figures projection of $A B$ upon $C D=M N$.

Fig. 1

Fig. 2

Now in Fig. 1, from the right triangle $B A S$,

$$
A S=A B \cos B A S
$$

But $A S=M N$, and $\angle B A S=\alpha$.

$$
\therefore M N=A B \cos \alpha
$$

In Fig 2 (p.68), α is obtuse and $M N$ is a negative number. Numerically, $A S$ and $M N$ are equal, but they differ in sign, $A S$ not being directed. As before, $A S=A B \cos B A S$. But

$$
\angle B A S=180^{\circ}-\alpha . \quad \therefore \cos B A S=-\cos \alpha(30, \text { p. } 3)
$$

Hence $A S=-A B \cos \alpha$.

$$
\therefore M N=A B \cos \alpha .
$$

Q.E.D.

Consider next a broken line made up of directed parts, as in the figures. The line joining the first and last points of a broken line is called the closing line.

Fia. 1

F1g. 2

Thus in Fig. 1 the closing line is $P_{1} P_{3}$; in Fig. 2 the closing line is $P_{1} P_{5}$.

With reference to such broken lines, the following theorem, of frequent application, holds.

Second Theorem of Projection. If each segment of a broken line be given the direction determined in passing continuously from one extremity to the other, then the algebraic sum of the projections of the segments upon any directed line equals the projection of the closing line.

Proof. The proof results immediately. For, in Fig. 1,

$$
\begin{aligned}
& M_{1} M_{2}=\text { projection of } P_{1} P_{2} \\
& M_{2} M_{3}=\text { projection of } P_{2} P_{8} \\
& M_{1} M_{3}=\text { projection of closing line } P_{1} P_{8}
\end{aligned}
$$

But obviously $\quad M_{1} M_{2}+M_{2} M_{3}=M_{1} M_{8}$, and the theorem follows.

Similarly in Fig. 2.
Q.E.D. .

Corollary. If the sides of a closed polygon le given the direction estallished by passing continuously around the perimeter, the sum of the projections of the sides upon any directed line is zero.

For the closing line is now zero.
32. The normal equation of the straight line. In the preceding sections the lines considered were determined by two points or by a point and a direction. Both of these methods of determining a line are frequently used in elementary geometry, but we have now to consider a line determined by two conditions which belong essentially to analytic geometry. Let $A B$ be any line, and let $O N$ be drawn from the origin perpendicular to $A B$ at C. Let the positive direction on $O N$ be from O toward N, that is, from the origin toward the line, and denote the positive directed length $O \subset$ by p, and the positive angle $\mathcal{X} O N$, measured, as in trigonometry, from $O X$ as initial line to $O N$ as ter-
 minal line, by ω (Greek letter "omega"). Then it is evident from the figures that the position of any line is determined ly a pair of values of p and ω, both p and ω leing positive and $\omega<360^{\circ}$.

On the other hand, every line which does not pass through the origin determines a single positive value of p and a single positive value of ω which is less than 360°.

The problem now is this: Given for the line $A B$ of the figure the perpendicular distance $O C(=p)$ from the origin and the angle $\operatorname{XOC}(=\omega)$; to find the equation of $A B$.

Solution. Let $P(x, y)$ be any point on the given line $A B$.
Then since $A P$ is perpendicular to $O N$, the projection of $O P$ on $O N$ is equal to p. Consider the broken line $O D P$. The
closing line is $O P$. By the second theorem of projection (p. 69), the projection of $O P$ on $O N$ is equal to the sum of the projections of $O D$ and $D P$ on $O N$. Then
(1) projection of $O D$ oll $O N+$ projection of $D P$ on $O N=p$.

By the first theorem of projection (p. 68),
(2) projection of $O D$ on
$O V=O D \cos \omega=x \cos \omega$, and
(3) projection of $D P$ on
$O N=D P \cos \left(\frac{\pi}{2}-\omega\right)=y \sin \omega$.

[For the angle between the directed lines $D P$ and $O N$ equals that between $O Y$ and $O N=\frac{\pi}{2}-\omega$.]

Substituting from (2) and (3) in (1),

$$
\begin{equation*}
x \cos \omega+y \sin \omega-p=0 \tag{V}
\end{equation*}
$$

Q.E.D.

This equation is known as the nommal equation.
When $p=0$, however, $A B$ passes through the origin, and the rule given above for the positive direction on $0 \mathrm{I}^{2}$ becomes meaningless. From the figures we see that we can choose for ω either of the angles $X O N$ or $X O N^{\prime}$. When
 $p=0$ we shall always suppose that $\omega<180^{\circ}$ and that the positive direction on $O N$ is the upward direction.
33. Reduction to the normal form. In Art. 25 it appeared that the slope of any line could be found after its equation was reduced to the form $y=m x+b$. If now the equation of any line can be reduced to the normal form (V), we shall be able to find the perpendicular distance p from the origin to the line, as well as the angle ω which this perpendicular makes with $O X$.

To reduce a given equation

$$
\begin{equation*}
A x+B y+C=0 \tag{1}
\end{equation*}
$$

to the normal form, it is necessary to determine ω and p so that the locus of (1) is identical with the locus of

$$
\begin{equation*}
x \cos \omega+y \sin \omega-p=0 \tag{2}
\end{equation*}
$$

This is the case when corresponding coefficients are proportional.* Hence we must have

$$
\frac{\cos \omega}{A}=\frac{\sin \omega}{B}=\frac{-p}{C} .
$$

Denote the common value of these ratios by r; then

$$
\begin{align*}
\cos \omega & =r t \tag{3}\\
\sin \omega & =r B, \text { and } \tag{4}\\
-p & =r C \tag{5}
\end{align*}
$$

To find r, square (3) and (4) and add; this gives

$$
\sin ^{2} \omega+\cos ^{2} \omega=r^{2}\left(A^{2}+B^{2}\right)
$$

But

$$
\begin{equation*}
\sin ^{2} \omega+\cos ^{2} \omega=1 \tag{28,p.3}
\end{equation*}
$$

and hence

$$
r^{2}\left(A^{2}+B^{2}\right)=1, \text { or }
$$

$$
\begin{equation*}
r=\frac{1}{ \pm \sqrt{A^{2}+B^{2}}} \tag{6}
\end{equation*}
$$

Equation (5) shows which sign of the radical to use; for since p is positive, r and C must have opposite signs.

Substituting the value of r in (3), (4), and (5),
$\cos \omega=\frac{A}{ \pm \sqrt{A^{2}+B^{2}}}, \sin \omega=\frac{B}{ \pm \sqrt{A^{2}+B^{2}}}, p=-\frac{C}{ \pm \sqrt{A^{2}+B^{2}}}$.
Hence (2) becomes

$$
\begin{equation*}
\frac{A}{ \pm \sqrt{A^{2}+B^{2}}} x+\frac{B}{ \pm \sqrt{A^{2}+B^{2}}} y+\frac{C}{ \pm \sqrt{A^{2}+B^{2}}}=0 \tag{7}
\end{equation*}
$$

* The proof of this obvious fact is left to the student.
which is the normal form of (1). The result of the discussion may be stated in the following

Rule to reduce $A x+B y+C=0$ to the normal form.
Find the numerical value of $\sqrt{A^{2}+B^{2}}$ and give it the sign opposite to that of C. Divide the given equation by this number. The result is the required equation.

For example, to reduce the equation

$$
\begin{equation*}
3 x-y+10=0 \tag{8}
\end{equation*}
$$

to the normal form, divide the equation by $-\sqrt{10}$, since $A=3, B=-1$, $\sqrt{A^{2}+B^{2}}=\sqrt{10}$, and this radical must be given the negative sign, since $C(=10)$ is positive. The normal form of (8) is accordingly

$$
-\frac{3}{\sqrt{10}} x+\frac{1}{\sqrt{10}} y-\sqrt{10}=0 .
$$

Here $\cos \omega=-\frac{3}{\sqrt{10}}, \sin \omega=\frac{1}{\sqrt{10}}, p=\sqrt{10}=3.1+$.
If $C=0$, then $p=0$, and hence $\omega<180^{\circ}$ (p. 71); then $\sin \omega$ is positive, and from (4) r and B must have the same signs.

The advantages of the normal form of the equation of the straight line over the other forms are twofold. In the first place, every line may have its equation put in the normal form; whether it is parallel to one of the axes or passes through the origin is immaterial. In the second place, as will be seen in the following section, it enables us to find immediately the perpendicular distance from a line to a point.

PROBLEMS

1. In what quadrant will $O N$ (see figure on page 70) lie if $\sin \omega$ and $\cos \omega$ are both positive? both negative? if $\sin \omega$ is positive and $\cos \omega$ negative? if $\sin \omega$ is negative and $\cos \omega$ positive?
2. Find the equations and plot the lines for which
(a) $\omega=0, p=5$.
(b) $\omega=\frac{3 \pi}{2}, p=3$.
(c) $\omega=\frac{\pi}{4}, p=3$.

Ans. $x=5$.
Ans. $y+3=0$.
Ans. $\sqrt{2} x+\sqrt{2} y-6=0$.
(d) $\omega=\frac{2 \pi}{3}, p=2$.
(e) $\omega=\frac{7 \pi}{4}, p=4$.
3. Reduce the following equations to the normal form and find p and ω :
(a) $3 x+4 y-2=0 . \quad$ Ans. $p=\frac{2}{5}, \omega=\cos ^{-1} \frac{8}{5}=\sin ^{-1} \frac{4}{5}$.
(b) $3 x-4 y-2=0$.

Ans. $p=\frac{2}{5}, \omega=\cos ^{-1} \frac{3}{5}=\sin ^{-1}\left(-\frac{4}{5}\right)$.
(c) $12 x-5 y=0$.

Ans. $p=0, \omega=\cos ^{-1}\left(-\frac{1}{1} \frac{2}{3}\right)=\sin ^{-1} \frac{5}{13}$.
(d) $2 x+5 y+7=0$.

$$
\text { Ans. } p=\frac{7}{+\sqrt{29}}, \omega=\cos ^{-1}\left(\frac{2}{-\sqrt{29}}\right)=\sin ^{-1}\left(\frac{5}{-\sqrt{29}}\right) \text {. }
$$

(e) $4 x-3 y+1=0$. Ans. $p=\frac{1}{5}, \omega=\cos ^{-1}\left(-\frac{4}{5}\right)=\sin ^{-1} \frac{3}{5}$.
(f) $4 x-5 y+6=0$.

$$
\text { Ans. } p=\frac{6}{+\sqrt{41}}, \omega=\cos ^{-1}\left(\frac{4}{-\sqrt{41}}\right)=\sin ^{-1}\left(\frac{5}{+\sqrt{41}}\right) \text {. }
$$

(g) $x-4=0$.
(h) $y-3=0$.
(i) $x+2=0$.
(j) $y+4=0$.
4. Find the perpendicular distance from the origin to each of the following lines :
(a) $12 x+5 y-26=0$.
(b) $x+y+1=0$.

Ans. 2.
Ans. $\frac{1}{2} \sqrt{2}$.
(c) $3 x-2 y-1=0$.

Ans. $\frac{1}{13} \sqrt{13}$.
(d) $x+4=0$.
(e) $y-5=0$.
5. Derive (V) when (a) $\frac{\pi}{2}<\omega<\pi$; (b) $\pi<\omega<\frac{3 \pi}{2}$; (c) $\frac{3 \pi}{2}<\omega<2 \pi$; (d) $p=0$, and $0<\omega<\frac{\pi}{2}$.
6. For what values of p and ω will the locus of (V) be parallel to the x-axis? the y-axis? pass through the origin?
7. Find the equations of the linos whose slopes equal -2 , which are at a distance of 5 from the origin.

Ans. $2 \sqrt{5} x+\sqrt{5} y-25=0$ and $2 \sqrt{5} x+\sqrt{5} y+25=0$.
8. Find the lines whose distance from the origin is 10 , which pass through the point $(5,10)$.

Ans. $y=10$ and $4 x+3 y=50$.
9. Write an equation representing all lines whose perpendicular distance from the origin is 5 .
34. The perpendicular distance from a line to a point. The positive direction on the line $O N$ drawn through the origin perpendicular to $A B$ is from O to $A B$ (Art. 32). The positive
direction on $O N$ will now be assumed to determine the positive dircetion on all lines perpendicular to $A B$. Hence the perpendicular distance from the line $A B$ to the puint P_{1} is positive if P_{1} and the origin are on opposite sides of $A B$, and negative if P_{1} and the origin are on the ssame side of $A B$. Thus in the figure the distance from $A B$ to P_{1} is positive, and from $A B$ to P_{2} is negative.

Let us now solve this problem: Given the equation of any line $A B$ and a point P_{1}; to find the perpendicular distance from
 $A B$ to P_{1}.

Solution. Assume that the equation of $A B$ is in the normal form
(1) $x \cos \omega+y \sin \omega$ $-p=0$.

Let the coördinates of P_{1} be (x_{1}, y_{1}) and denote the perpendicular distance from $A B$ to P_{1} by d. In the figure project the broken line $O D P_{1}$ upon the normal $O N$. Then
 since $O P_{1}$ is the closing line, by the second theorem of projection (p. 69), projection of $O P_{1}$ on $O N=$ projection of $O D$ on $O N+$ projection of $D P_{1}$ on $O N$.

From the figure,
projection of $O P_{1}$ on $O N=O E=p+d$.
By the first theorem of projection (p. 68),
projection of $O D$ on $O N=O D \cos \omega=x_{1} \cos \omega$,
projection of $D P_{1}$ on $O N=D P_{1} \cos \left(\frac{\pi}{2}-\omega\right)$

$$
=y_{1} \sin \omega
$$

Hence

$$
\begin{aligned}
p+d & =x_{1} \cos \omega+y_{1} \sin \omega \\
d & =x_{1} \cos \omega+y_{1} \sin \omega-p .
\end{aligned} \quad \text { Q.E.D. } \quad \text {. } \quad \text {. }
$$

and therefore
In words: The perpendicular distance d is the result obtained by substituting the coördinates of P_{1} for x and y in the left-hand member of the normal equation (1).

Hence the
Rule to find the perpendicular distance d from a given line to a given point.

Reduce the equation of the given line to the normal form (Art. B3), place d equal to the left-hand member of this equation, and then substitute the coördinates of the given point for x and y. The result is the required distance.

The sign of the result will show if the origin and the given point are on the same side (d is negative) or opposite sides (d is positive) of the line.

The perpendicular distance d from the line $A x+B y+C=0$ to the point $\left(x_{1}, y_{1}\right)$ will be, by this rule, equal to

$$
\begin{equation*}
d=\frac{A x_{1}+B y_{1}+C}{ \pm \sqrt{A^{2}+B^{2}}}, \tag{2}
\end{equation*}
$$

the sign of the radical being opposite to
 the sign of C.

When the given line $A B$ passes through the origin, the positive direction on the normal $O N$ is the upward direction. Hence the rule just stated will give a positive result for d when the perpendicular drawn from the line to the point has the upward direction, and a negative result in the contrary case. Thus in the figure the distance to P_{1} is positive and to P_{2} is negative.

Formula (2) may be used to find the perpendicular distance, but it is recommended that the rule be applied instead.

EXAMPLES

1. Find the perpendicular distance from the line $4 x-3 y+15=0$ to the point $(2,1)$.

Solution. The equation is reduced to the normal form by dividing by $-\sqrt{16+9}=-5$. Placing d equal to the left-hand member thus obtained,

$$
d=\frac{4 x-3 y+15}{-5}
$$

Substituting $x=2, y=1$, then $d=\frac{8-3+15}{-5}=-4$. Hence the length of the perpendicular distance is
 4 and the point is on the same side of the line as the origin.
2. Find the equations of the bisectors of the angles formed by the lines

$$
\begin{aligned}
& L_{1}: x+3 y-6=0, \\
& L_{2}: 3 x+y+2=0 .
\end{aligned}
$$

Solution. Let $P_{1}\left(x_{1}, y_{1}\right)$ be any point on the bisector L_{3}. Then, by geometry, P_{1} is equally distant from the given lines. Thus, if

$$
\begin{aligned}
& d_{1}=\text { distance from } L_{1} \text { to } P_{1}, \\
& d_{2}=\text { distance from } L_{2} \text { to } P_{1},
\end{aligned}
$$

then d_{1} and d_{2} are numerically equal. Since, however, P_{1} is on the same side of both lines as the origin, d_{1} and d_{2} are both negative. Hence for every point on the bisector L_{3},

$$
\begin{equation*}
d_{1}=d_{2} . \tag{1}
\end{equation*}
$$

By the rule for finding d,

$$
\begin{aligned}
& d_{1}=\frac{x_{1}+3 y_{1}-6}{\sqrt{10}}, \\
& d_{2}=\frac{3 x_{1}+y_{1}+2}{-\sqrt{10}} .
\end{aligned}
$$

Substituting in (1) and reducing,

$$
\begin{equation*}
x_{1}+y_{1}-1=0 . \tag{2}
\end{equation*}
$$

Dropping the subscripts in or-
 der to follow the usual custom of baving (x, y) denote any point on the line, we have for the equation of

$$
\begin{equation*}
L_{\mathrm{a}}: x+y-1=0 . \text { Ans. } \tag{3}
\end{equation*}
$$

For any point on the bisector L_{4} the distances d_{1} and d_{2} will be equal numerically but will differ in sign. Hence, along L_{4},

$$
\begin{equation*}
d_{1}=-d_{2} . \tag{4}
\end{equation*}
$$

Proceeding as before, the equation of L_{4} is found to be

$$
\begin{equation*}
L_{4}: x-y+4=0 . \text { Ans } \tag{5}
\end{equation*}
$$

We note that (3) and (5) represent perpendicular lines.
Regarded as a formal process, equations (3) and (5) of the bisectors are found by reducing the equations of L_{1} and L_{2} to the normal form and then adding and subtracting these equations.

PROBLEMS

1. Find the perpendicular distance from the line
(a) $x \cos 45^{\circ}+y \sin 45^{\circ}-\sqrt{2}=0$ to $(5,-7)$.
Ans. $-2 \sqrt{2}$.
(b) $\frac{3}{5} x-\frac{1}{5} y-1=0$ to $(2,1)$.
Ans. $-\frac{3}{5}$.
(c) $3 x+4 y+15=0$ to $(-2,3)$.
Ans. $-{ }_{2}^{2 \lambda}$.
(d) $2 x-7 y+8=0$ to $(3,-5)$.
Ans. $-\frac{49}{+\sqrt{53}}$.
(e) $x-3 y=0$ to $(0,4)$.
Ans. $\frac{12}{+\sqrt{10}}$.
2. Do the origin and the point $(3,-2)$ lie on the same side of the line $x-y+1=0$?

Ans. Yes.
3. Does the line $2 x+3 y+2=0$ pass between the origin and the point ($-2,3$)?

Ans. No.
4. Find the lengths of the altitudes of the triangle formed by the lines $2 x+3 y=0, x+3 y+3=0$, and $x+y+1=0$.

$$
\text { Ans. } \frac{3}{\sqrt{13}}, \frac{6}{\sqrt{10}} \text {, and } \sqrt{2} \text {. }
$$

5. Find the length of the altitudes of the triangles whose vertices are
\longrightarrow (a) $(7,8),(-8,4),(-2,-10)$.
(b) $(8,0),(0,-8),(-3,-3)$.
(c) $(5,-4),(-4,-5),(0,8)$.
6. Find the equations of the bisectors of the angles formed by

$$
\begin{aligned}
& 3 x-4 y+1=0 \text { and } 4 x+3 y-1=0 . \\
& \text { Ans. } 7 x-y=0 \text { and } x+7 y-2=0 .
\end{aligned}
$$

\longrightarrow. Find the locus of all points which are twice as far from the line $12 x+5 y-1=0$ as from the y-axis.

$$
\text { Ans. } 14 x-5 y+1=0 .
$$

8. Find the locus of points which are k times as far from $4 x-3 y+1=0$ as from $5 x-12 \bar{y}=0 . \quad$ Ans. $(52-25 k) x-(39-60 k) y+13=0$.
9. Find the bisectors of the angles formed by the lines in Problem 8. Ans. $77 x-99 y+13=0$ and $27 x+21 y+13=0$.
10. Find the distance between the parallel lines

(a) $\left\{\begin{array}{l}y=2 x+5, \\ y=2 x-3 .\end{array}\right.$
Ans. $\frac{8}{\sqrt{5}}$.
(b) $\left\{\begin{array}{l}y=-3 x+1, \\ y=-3 x+4 .\end{array}\right.$
Ans. $\frac{3}{\sqrt{10}}$.
(c) $\left\{\begin{array}{l}2 x-3 y+4=0, \\ 4 x-6 y+9=0 .\end{array}\right.$
Ans. $\frac{1}{2 \sqrt{13}}$.
(d) $\left\{\begin{array}{l}y=m x+3, \\ y=m x-3 .\end{array}\right.$
Ans. $\frac{6}{\sqrt{1+m^{2}}}$.

11. Find the equations of the bisectors of the angles of the following triangles, and prove that these bisectors meet in a common point:
(a) $x+2 y-5=0, \quad 2 x-y-5=0, \quad 2 x+y+5=0$.
(b) $3 x+y-1=0, \quad x-3 y-3=0, \quad x+3 y+11=0$.
(c) $3 x+4 y-22=0$,
$4 x-3 y+29=0, \quad y-5=0$.
(d) $x+2=0$,
(e) $x=0$,
$y-3=0$,
$x+y=0$.
$y=0$,
$x+y+3=0$.
12. Find the bisectors of the angles formed by the lines $4 x-3 y-1=0$ and $3 x-4 y+2=0$, and show that they are perpendicular.

Ans. $7 x-7 y+1=0$ and $x+y-3=0$.
13. Find the equations of the bisectors of the angles formed by the lines $5 x-12 y+10=0$ and $12 x-5 y+15=0$.
14. Find the locus of a point the ratio of whose distances from the lines $4 x-3 y+4=0$ and $5 x+12 y-8=0$ is 13 to 5. Ans. $9 x+9 y-4=0$.
-15. Find the bisectors of the interior angles of the triangle formed by the lines $4 x-3 y=12,5 x-12 y-4=0$, and $12 x-5 y-13=0$. Show that they meet in a point.

Ans. $7 x-9 y-16=0,7 x+7 y-9=0,112 x-64^{+} y-221=0$.
16. Find the bisectors of the interior angles of the triangle formed by the lines $5 x-12 y=0,5 x+12 y+60=0$, and $12 x-5 y-60=0$. Show that they meet in a point.

$$
\text { Ans. } 2 y+5=0,17 x+7 y=0,17 x-17 y-60=0 .
$$

17. The sides of a triangle are $3 x+4 y-12=0,3 x-4 y=0$, and $4 x+3 y+24=0$. Show that the bisector of the interior angle at the vertex formed by the first two lines and the bisectors of the exterior angles at the other vertices meet in a point.
18. Find the equations of the lines parallel to $3 x+4 y-10=0$, and at a distance from it equal numerically to 3 units.

Ans. $3 x+4 y=25$ or -10 .
35. The angle which a line makes with a second line. The angle between two directed lines has been defined (Art. 12) as the angle between their positive directions. When a line is given by means of its equation, no positive direction along the line is fixed. In order to distinguish between the two pairs of equal angles which two intersecting lines make with each other, we define the angle which a line makes with a second line to be the positive angle (p. 2) from the
 second line to the first line.

Thus the angle which L_{1} makes with L_{2} is the angle θ. We speak always of the "angle which one line makes with a second line," and the use of the phrase "the angle between two lines" should be avoided if those lines are not directed lines.

Theorem. If m_{1} and m_{2} are the slopes of two lines, then the angle θ which the first line makes with the second is given by

$$
\begin{equation*}
\tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}} . \tag{VI}
\end{equation*}
$$

Proof. Let α_{1} and α_{2} be the inclinations of L_{1} and L_{2} respectively. Then, since the exterior angle of a triangle equals the sum of the two opposite interior angles, we have

$$
\begin{equation*}
\alpha_{1}=\theta+\alpha_{2}, \quad \text { or } \quad \theta=\alpha_{1}-\alpha_{2} \tag{Fig.1}
\end{equation*}
$$

(Fig. 2)

$$
\alpha_{2}=\pi-\theta+\alpha_{1}, \quad \text { or } \quad \theta=\pi+\left(\alpha_{1}-\alpha_{2}\right) .
$$

And since (30, p. 3), $\quad \tan (\pi+x)=\tan x$,
we have, in either case,

$$
\begin{align*}
\tan \theta & =\tan \left(\alpha_{1}-\alpha_{2}\right) \\
& =\frac{\tan \alpha_{1}-\tan \alpha_{2}}{1+\tan \alpha_{1} \tan \alpha_{2}} . \tag{By38,p.3}
\end{align*}
$$

Fig. 1

Fig. 2

But $\tan \alpha_{1}$ is the slope of L_{1}, and $\tan \alpha_{2}$ is the slope of L_{2}; hence, writing $\tan \alpha_{1}=m_{1}$, $\tan \alpha_{2}=m_{2}$, we have (VI).

In applying (VI) we remember that $m_{2}=$ slope of the line from which θ is measured in the positive direction. (The Greek letter θ used here is named "theta.")

EXAMPLES

1. Find the angles of the triangle formed by the lines whose equations are

$$
\begin{array}{r}
L: 2 x-3 y-6=0, \\
M: 6 x-y-6=0, \\
N: 6 x+4 y-25=0 .
\end{array}
$$

Solution. To see which angles formed by the given lines are the angles of the triangle, we plot the lines, obtaining the triangle $A B C$.

Let us find the angle A. In the figure, A is measured from the line L. Hence in (VI), $m_{2}=$ slope of $L=\frac{2}{3}, m_{1}=$ slope of $M=6$.

$$
\therefore \tan A=\frac{6-\frac{2}{8}}{1+4}=\frac{16}{15} \text {, and } A=\tan ^{-1} \frac{18}{15} .
$$

Next find the angle at B. In the figure, B is measured from N. Hence ${ }^{\prime \prime} t_{2}=$ slope of $N=-\frac{3}{2}, m_{1}=$ slope of $L=\frac{2}{3}$. Hence $m_{2}=-\frac{1}{m_{1}}$, and $\mathcal{B}=\frac{\pi}{2}$.

Finally, the angle at C is measured from the line M. Hence in (VI) $m_{2}=$ slope of $M=6, m_{1}=$ slope of $N=-\frac{3}{2}$.

$$
\therefore \tan C=\frac{-\frac{3}{2}-6}{1-9}=\frac{15}{16}, \text { and } C=\tan ^{-1} \frac{15}{16} .
$$

We may varify these results. For if. $B=\frac{\pi}{2}$, then $A=\frac{\pi}{2}-C$; and hence (3I, p. 3; and 26, p. 3) $\tan A=\cot C=\frac{1}{\tan C}$, which is true for the valnes found.
2. Find the equation of the line through $(3,5)$ which makes an angle of $\frac{\pi}{3}$ with the line $x-y+6=0$.

Solution. Let m_{1} be the slope of the required line. Then its equation is by (II), Art. 27,

$$
\begin{equation*}
y-5=m_{1}(x-3) . \tag{1}
\end{equation*}
$$

The slope of the given line is $m_{2}=1$, and since the angle which (1) makes with the given line is $\frac{\pi}{3}$, we have by (VI), since $\theta=\frac{\pi}{3}=60^{\circ}$,

$$
\begin{aligned}
\tan \frac{\pi}{3} & =\frac{\pi_{1}-1}{1+m_{1}}, \\
\sqrt{3} & =\frac{m_{1}-1}{1+m_{1}} .
\end{aligned}
$$

or

$$
m_{1}=\frac{1+\sqrt{3}}{1-\sqrt{3}}=-(2+\sqrt{3}) .
$$

Substituting in (1), we obtain
or

$$
\begin{gathered}
y-5=-(2+\sqrt{3})(x-3) \\
(2+\sqrt{3}) x+y-(1 I+3 \sqrt{3})=0
\end{gathered}
$$

In plane geometry there wonld be two solutions of this problem, - the line just obtained and the dotted line of the figure. Why must the latter be excluded here?

In working out the following problems the student should first draw the figure and mark by an are the angle desired, remembering that this angle is measured from the second line to the first in the counterclockwise direction.

PROBLEMS

1. Find the angle which the line $3 x-y+2=0$ makes with $2 x+y-2=0$; also the angle which the second line makes with the first, and show that these angles are supplementary.

Ans. $\frac{3 \pi}{4}, \frac{\pi}{4}$.
2. Find the angle which the line
(a) $2 x-5 y+1=0$ makes with the line $x-2 y+3=0$.
(b) $x+y+1=0$ makes with the line $x-y+1=0$.
(c) $3 x-4 y+2=0$ makes with the line $x+3 y-7=0$.
(d) $6 x-3 y+3=0$ makes with the line $x=6$.
(e) $x-7 y+1=0$ makes with the line $x+2 y-4=0$.

In each case plot the lines and mark the angle found by a small arc.
Ans. (a) $\tan ^{-1}(-12)$;
(b) $\frac{\pi}{2}$;
(c) $\tan ^{-1}\left(\frac{13}{9}\right)$;
(d) $\tan ^{-1}\left(-\frac{1}{2}\right)$;
(e) tanl^{-1} (${ }^{9}{ }^{9}$) .
3. Find the angles of the triangle whose sides are $x+3 y-4=0$, $3 x-2 y+1=0$, and $x-y+3=0$.

$$
\text { Ans. } \tan ^{-1}\left(-\frac{11}{3}\right), \tan ^{-1}\left(\frac{1}{3}\right), \tan ^{-1}(2) .
$$

Hint. Plot the triangle to see which angles formed by the given lines are the angles of the triangle.
4. Find the exterior angles of the triangle formed by the lines $-y+3=0, y=2, x-4 y+3=0$.

$$
\text { Ans. } \tan ^{-1}(5), \tan ^{-1}\left(-\frac{1}{4}\right), \tan ^{-1}\left(-\frac{19}{9}\right) .
$$

5. Find one exterior angle and the two opposite interior angles of the triangle formed by the lines $2 x-3 y-6=0,3 x+4 y-12=0$, $x-3 y+6=0$. Verify the results by formula 37 , p. 3 .
6. Find the angles of the triangle formed by $3 x+2 y-4=0$, $x-3 y+6=0$, and $4 x-3 y-10=0$.
7. Find the equation of the line passing through the given point and making the given angle with the given line.
(a) $(2,1), \frac{\pi}{4}, 2 x-3 y+2=0$.

Ans. $5 x-y-9=0$.
(b) $(1,-3), \frac{3 \pi}{4}, x+2 y+4=0$.

$$
\text { Ans. } 3 x+y=0 .
$$

(c) $\left(x_{1}, y_{1}\right), \phi, y=m x+b$.

Ans. $y-y_{1}=\frac{m+\tan \phi}{1-m \tan \phi}\left(x-x_{1}\right)$.
36. Systems of straight lines. An equation of the first degree in x and y which contains a single arbitiary constant will represent an infinite number of lines, for the locus of the equation will be a straight line for any value of the constant, and the locus will be different for different values of the constant.

The lines represented by an equation of the first degree which contains an arbitrary constant are said to form a system. The constant is called the parameter of the system.

Thus the equation $y=2 x+b$, where b is an arbitrary constant, represents the system of lines having the slope 2 ; and the equation $y-5=m(x-3)$, where m is an arbitrary constant, represents the system of lines passing through (3,5).

The methods already explained suffice for solving problems involving straight lines, but shorter methods result in some cases by using systems of lines, as will now be explained.

Given the line

$$
\begin{equation*}
3 x+2 y-4=0 \tag{1}
\end{equation*}
$$

Now every line of the system

$$
\begin{equation*}
3 x+2 y=k \tag{2}
\end{equation*}
$$

is parallel to (1), for the slopes of (1) and (2) are equal.
Again, every line of the system

$$
\begin{equation*}
2 x-3 y=k \tag{3}
\end{equation*}
$$

is perpendicular to (1); for the slope of $(3)=\frac{2}{3}$, the negative reciprocal of the slope of (1).

Note that the coefficients of x and y in (1) and (2) are the same, while the coefficients in (1) and (3) are interchanged and also the sign of one of them is changed.

Next, consider the line

$$
y-2=3(x+2) .
$$

It passes through the point $(-2,2)$. Now every line of the system

$$
\begin{equation*}
y-2=k(x+2) \tag{4}
\end{equation*}
$$

passes through this point, since the equation is satisfied by its coördinates for all values of k.

Again, all the lines in the system

$$
\begin{equation*}
x \cos k+y \sin k-5=0 \tag{5}
\end{equation*}
$$

are at a distance of five units from the origin.
The value of the parameter k will depend upon the condition imposed upon the line (2), (3), (4), or (5).

Thus, if (2) must pass through ($1,-3$), these coördinates must satisfy (2), and hence

$$
3-6=k . \quad \therefore k=-3
$$

That is, the equation of the line passing through $(1,-3)$ and parallel to $3 x+2 y-4=0$ is $3 x+2 y+3=0$.

Again, if (4) must form with the coördinate axes a triangle of unit area, we set one half the product of its intercepts equal to 1. Hence
or

$$
\begin{aligned}
\frac{1}{2}\left(\frac{-2 k-2}{k}\right)(2 k+2) & =1 \\
k^{2}+\frac{5 k}{2}+1 & =0 . \\
\therefore k & =-2,-\frac{1}{2} .
\end{aligned}
$$

Substituting these values in (4), we obtain

$$
2 x+y+2=0, \quad x+2 y-2=0
$$

both lines satisfying the above conditions.
Again, if (5) must pass through the point (10,0), then
$10 \cos k=5, \cos k=\frac{1}{2}, \sin k= \pm \sqrt{1-\cos ^{2} k}= \pm \frac{\sqrt{3}}{2} ;$
and substitution gives the two lines

$$
x \pm \sqrt{3} y-10=0
$$

In general, we may say this: In finding the equation of a straight line defined by two conditions, we may begin by writing down the equation of the system of lines which satisfy one of these conditions, and then determine the value of the parameter so as to meet the second condition.

PROBLEMS

1. Write the equations of the systems of lines defined by the conditions :
(a) Passing through $(-2,3)$.
(b) Having the slope $-\frac{2}{5}$.
(c) Distance from the origin is 3.
(d) Having the intercept on the y-axis $=-3$.
(e) Passing through ($6,-1$).
(f) Having the intercept on the x-axis $=6$.
(g) Having the slope $\frac{1}{2}$.
(h) Having the intercept on the y-axis $=5$.
(i) Distance from the origin $=4$.
(j) Having one intercept double the other.
(k) Sum of the intercepts $=4$.
(1) Length intercepted by the coördinate axes $=3$.
(m) Forming a triangle of area 6 with the coordinate axes.
2. Determine k so that
(a) the line $2 x-3 y+k=0$ passes through ($-2,1$). Ans. $k=7$.
(b) the line $2 k x-5 y+3=0$ has the slope 3 .
(c) the line $x+y-k=0$ passes through $(3,4)$.

Ans. $k=\frac{1}{2}$.
(d) the line $3 x-4 y+k=0$ has intercept on the x-axis $=2$.

Ans. $k=-6$.
(e) the line $x-3 k y+4=0$ las intercept on the y-axis $=-3$.

Ans. $k=-\frac{4}{9}$.
(f) the line $4 x-3 y+6 k=0$ is distant three units from the origin.

Ans. $k= \pm \frac{5}{2}$.
(g) the line $2 x+7 y-k=0$ forms a triangle of area 3 with the coördinate axes.

Ans. $k= \pm 2 \sqrt{21}$.
3. Find the equation of the straight line which passes through the point
(a) $(0,0)$ and is parallel to $x-3 y+4=0$. Ans. $x-3 y=0$.
(b) $(3,-2)$ and is parallel to $x+y+2=0$. Ans. $x+y-1=0$.
(c) $(-5,6)$ and is parallel to $2 x+4 y-3=0$. Ans. $x+2 y-7=0$.
(d) $(-1,2)$ and is perpendicular to $3 x-4 y+1=0$. Ans. $4 x+3 y-2=0$.
(e) $(-7,2)$ and is perpendicular to $x-3 y+4=0$.

$$
\text { Ans. } 3 x+y+19=0
$$

4. The equations of two sides of a parallelogram are $3 x-4 y+6=0$ and $x+5 y-10=0$. Find the equations of the other two sides if one vertex is the point $(4,9)$. Ans. $3 x-4 y+24=0$ and $x+5 y-49=0$.
5. Find the equation of the straight line at a distance of three units from the origin, and which in addition satisfies the condition given :
(a) Parallel to the line $2 x+y-2=0$. Ans. $2 x+y \pm 3 \sqrt{5}=0$.
(b) Perpendicular to the line $x+y-1=0$. Ans. $x-y \pm 3 \sqrt{2}=0$.
(c) Passing through the point $(0,8)$. Ans. $\pm \sqrt{55} x+3 y-24=0$.
(d) Passing through the point $(1,5)$.
(e) Forming a triangle with the coördinate axes whose area is 9 .
(f) Making an angle of $\frac{3 \pi}{4}$ with the line $x+2 y+4=0$.

$$
\text { Ans. } 3 x+y \pm 3 \sqrt{10}=0 .
$$

6. Find the equation of the straight line parallel to the line $3 x+4 y-7=0$, and satisfying the additional condition given :
(a) Passing through the point $(2,-6)$.
(b) Forming a triangle of area 2 with the coördinate axes.
(c) Forming a triangle of perimeter 5 with the coördinate axes.
(d) The middle point of the intercepted part has unit abscissa.
(e) At a distance of three units from the origin.
(f) One unit nearer to the origin.
7. Find the equation of the line passing through the point $(3,-2)$ and satisfying the additional condition:
(a) Parallel to the line $x-7 y-8=0$.
(b) Perpendicular to the line $3 x-5 y=7$.
(c) Passing through the point $(4,1)$.
(d) Having the intercept ($-7,0$).
(e) The sum of its intercepts is 6 .

$$
\text { Ans. } x-3 y-9=0, y+2 x-4=0 .
$$

(f) The given point bisects the part intercepted by the coordinate axes.
(g) Making an angle of 45° witl the line $2 x-3 y+2=0$.
8. Find the equation of the line parallel to the line $3 x+4 y-15=0$, such that the point $(2,-4)$ shall lie midway between the two lines.

Ans. $3 x+4 y+35=0$.
9. Find the equation of the straight line which forms a triangle of area 2 with the coördinate axes, and whose intercepts differ by 3 .
37. System of lines passing through the intersection of two given lines. Given the two lines

$$
\begin{align*}
& L_{1}: x+2 y-5=0 \tag{1}\\
& L_{2}: 3 x-y-2=0 \tag{2}
\end{align*}
$$

Consider the system of lines whose equation is

$$
\begin{equation*}
x+2 y-5+k(3 x-y-2)=0, \tag{3}
\end{equation*}
$$

where k is an arbitrary number.
It is easy to see that the line (3) will pass through the intersection of the given lines L_{1} and $L_{2^{2}}$. In fact, by solving (1) and (2) for x and y, we find $x=1, y=2$, and these values satisfy (3).

Note that the equation (3) is formed from the left-hand members of (1) and (2) by multiplying one of them by the parameter k and adding. The method of forming (3) shows at once that the line it represents must pass through the intersection of the given lines.

Problems requiring the equation of a line which passes through the intersection of two given lines are often much shortened by forming the equation of the system (3) and determining k to meet the given condition. The advantage of this method is that we do not need to know the coördinates of the point of intersection of L_{1} and L_{2}.

EXAMPLES

1. Find the equation of the line passing through $P_{1}(2,1)$ and the intersection of $L_{1}: 3 x-5 y-10=0$ and $L_{2}: x+y+1=0$.

Solution. The system of lines passing through the intersection of the given lines is represented by

$$
3 x-5 y-10+k(x+y+1)=0
$$

If P_{1} lies on this line, then

$$
6-5-10+k(2+1+1)=0
$$

whence

$$
k=\frac{9}{4} .
$$

Substituting this value of k and simplifying, we have the required equation

$$
21 x-11 y-31=0
$$

2. Find the equation of the line passing through the intersection of $L_{1}: 2 x+y+1=0$ and $L_{2}: x-2 y+1=0$ and parallel to the line whose equation is $L_{3}: 4 x-3 y-7=0$.

Solution. The equation of every line through the intersection of the first two given lines has the form

$$
2 x+y+1+k(x-2 y+1)=0,
$$

or

$$
(2+k) x+(1-2 k) y+(1+k)=0
$$

The slope of this line is $-\frac{2+k}{1-2 k}$. This must equal the slope of L_{3}; that is, $\frac{4}{3}$.

$$
\therefore-\frac{2+k}{1-2 k}=\frac{4}{3}, \text { or } k=2 .
$$

Substituting and simplifying, we obtain

$$
4 x-3 y+3=0 . \text { Ans. }
$$

Solve the following problems without finding the point of intersection of the two lines given.

PROBLEMS

1. Find the equation of the line passing through the intersection of $2 x-3 y+2=0$ and $3 x-4 y-2=0$, and which
(a) passes through the origin;
(b) is parallel to $5 x-2 y+3=0$;
(c) is perpendicular to $3 x-2 y+4=0$.

Ans. (a) $5 x-7 y=0$; (b) $5 x-2 y-50=0$; (c) $2 x+3 y-58=0$.
2. Find the equations of the lines which pass through the vertices of the triangle formed by the lines $2 x-3 y+1=0, x-y=0$, and $3 x+4 y-2=0$, which are
(a) parallel to the opposite sides;
(b) perpendicular to the opposite sides.

Ans. (a) $3 x+4 y-7=0,14 x-21 y+2=0,17 x-17 y+5=0$;
(b) $4 x-3 y-1=0,21 x+14 y-10=0,17 x+17 y-9=0$.
3. Find the equation of the line passing through the intersection of $x+y-2=0$ and $x-y+6=0$ and through the intersection of $2 x-y+3=0$ and $x-3 y+2=0 . \quad$ Ans. $19 x+3 y+26=0$.

Hint. The systems of lines passing through the points of intersection of the two pairs of lines are
and

$$
\begin{array}{r}
x+y-2+k(x-y+6)=0 \\
2 x-y+3+k^{\prime}(x-3 y+2)=0
\end{array}
$$

These lines will coincide if the coefficients are proportional ; that is, if

$$
\frac{1+k}{2+k^{\prime}}=\frac{1-k}{-1-3 k^{\prime}}=\frac{-2+6 k}{3+2 k^{\prime}}
$$

Letting r be the common value of these ratios, we obtain

$$
\begin{aligned}
1+k & =2 r+r k^{\prime}, \\
1-k & =-r-3 r k^{\prime} \\
-2+6 k & =3 r+2 r k^{\prime}
\end{aligned}
$$

From these equations we can eliminate the terms in $r k^{\prime}$ and r, and thus find the value of k which gives that line of the first system which also belongs to the second system.
4. Find the equation of the line passing through the intersection of $2 x+y-8=0$ and $3 x+2 y=0$ and
(a) parallel to the y-axis. Ans. $x-16=0$.
(b) parallel to the x-axis.

Ans. $y+24=0$.
5. The equations of the sides of a parallelogram are $x+3 y+2=0$, $x+3 y-8=0,3 x-2 y=0,3 x-2 y-16=0$. Fiud the equations of the diagonals.
6. Find the equations of the lines through the point of intersection of the lines $x+3 y-10=0,3 x-y=0$, which are at unit distance from the origin. Ans. $x-1=0,4 x-3 y+5=0$.
7. Find the equations of the lines through the point of intersection of the two lines $7 x+7 y-24=0, x-y=0$, which form with the coördinate axes a triangle of perimeter 12 .

$$
\text { Ans. } 4 x+3 y-12=0 ; 3 x+4 y-12=0
$$

REVIEW. TRIANGLE PROBLEMS

1.. In the following problems the coorrdinates of the vertices of a triangle are given. Find (1) the equations of the sides, (2) the equations of the perpendicular bisectors of the sides, (3) the equations of the medians, (4) the equations of the lines drawn from the vertices perpendicular to the opposite sides, (5) the equations of the lines drawn through the vertices parallel to the opposite sides, (6) the lengths of the three medians, (7) the lengths of the three altitudes, (8) the area, (9) the three angles, (10) the equation of the circumscribed circle.
(a) $(8,2),(6,6),(-1,5)$.
(f) $(0,-4),(6,-2),(4,-5)$.
(b) $(-4,5),(-3,8),(4,1)$.
(g) $(-3,-3),(-2,0),(5,-7)$.
(c) $(4,13),(16,5),(-1,-12)$.
(b) $(0,2),(8,0),(5,5)$.
(d) $(2,4),(8,4),(6,0)$.
(i) $(3,-1),(3,-5),(0,-2)$.
(e) $(4,0),(2,4),(-5,3)$.
(j) $(-1,15),(11,7),(-6,-10)$.
2. In the following problems the coördinates of the vertices of a triangle are given. Find (1) the equations of the sides, (2) the equations of the perpendicular bisectors of the sides, (3) the equations of the bisectors of the interior angles, (4) the equation of the circumscribed circle, (5) the equation of the inscribed circle.
(a) $(8,1),(2,4),(-2,-4)$.
(b) $(6,30),(36,-10),(-24,-10)$.
(c) $(3,3),(-3,6),(-7,-2)$.
(d) $(0,32),(30,-8),(-30,-8)$.
3. In the following problems the equations of the sides of a triangle are given. Find (1) the angles, (2) the equations of the bisectors of the interior angles, (3) the equations of the bisectors of the exterior angles, (4) the equation of the inscribed circle.
(a) $4 x-3 y-4=0,3 x+4 y-8=0,5 x-12 y-60=0$.
(b) $5 x+12 y-24=0,12 x+5 y+7=0,5 x-12 y-48=0$.
(c) $5 x-12 y-42=0,12 x+5 y-2=0,5 x+12 y-66=0$.
(d) $12 x+5 y+50=0,5 x-12 y-81=0,5 x+12 y-33=0$.
(e) $4 x-3 y+25=0,5 x-12 y+1=0,3 x+4 y-5=0$.
(f) $5 x+12 y-123=0,12 x+5 y+21=0,5 x-12 y-27=0$.
(g) $5 x-12 y-3=0,12 x+5 y+24=0,5 x+12 y-75=0$.
(h) $12 x+5 y+50=0,5 x+12 y-16=0,5 x-12 y-16=0$ 。

CHAPTER V

THE CIRCLE

38. Equation of the circle. Every circle is determined when its center and radius are known.

Theorem. The equation of the circle whose center is a given point (α, β) and whose radius equals r is

$$
\begin{equation*}
(x-\alpha)^{2}+(y-\beta)^{2}=r^{2} \tag{I}
\end{equation*}
$$

Proof. Assume that $P(x, y)$ is any point on the locus.
If the center (a, β) be denoted by C, the given condition is

$$
P C=r
$$

By (I), p. 13, $\quad P C=\sqrt{(x-\alpha)^{2}+(y-\beta)^{2}}$.

$$
\therefore \sqrt{(x-\alpha)^{2}+(y-\beta)^{2}}=r
$$

Squaring, we have (I).
Q.E.D.

Corollary. The equation of the circle whose center is the origin $(0,0)$ and whose radius is r is

$$
x^{2}+y^{2}=r^{2}
$$

If (I) is expanded and transposed, we obtain

$$
\begin{equation*}
x^{2}+y^{2}-2 a x-2 \beta y+\alpha^{2}+\beta^{2}-r^{2}=0 . \tag{1}
\end{equation*}
$$

The form of this equation is clearly

$$
x^{2}+y^{2}+\text { terms of lower degree }=0
$$

In words: Any circle is defined by an equation of the second degree in the variables x and y, in which the terms of the second degree consist of the sum of the squares of x and y.

Equation (1) is of the form

$$
\begin{equation*}
x^{2}+y^{2}+D x+E y+F=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
D=-2 \alpha, E=-2 \beta, \text { and } F=\alpha^{2}+\beta^{2}-r^{2} . \tag{3}
\end{equation*}
$$

Can we infer, conversely, that the locus of every equation of the form (2) is a circle? To decide this question transform (2) into the form of (I) as follows: Rewrite (2) by collecting the terms in x and the terms in y thus:

$$
\begin{equation*}
x^{2}+D x+y^{2}+E y=-F \tag{4}
\end{equation*}
$$

Complete the square of the terms in x by adding $\left(\frac{1}{2} D\right)^{2}$ to both sides of (4), and do the same for the terms in y by adding $\left(\frac{1}{2} E\right)^{2}$ to both members.

Then (4) may be written

$$
\begin{equation*}
\left(x+\frac{1}{2} D\right)^{2}+\left(y+\frac{1}{2} E\right)^{2}=\frac{1}{4}\left(D^{2}+E^{2}-4 F\right) . \tag{5}
\end{equation*}
$$

In (5) we distinguish three cases :
If $D^{2}+E^{2}-4 F$ is positive, (5) is in the form (I), and hence the locus of (2) is a circle whose center is $\left(-\frac{1}{2} D,-\frac{1}{2} E\right)$ and whose radius is $r=\frac{1}{2} \sqrt{D^{2}+E^{2}-4 F}$.

If $D^{2}+E^{2}-4 F=0$, the only real values satisfying ${ }^{\circ}(5)$ are $x=-\frac{1}{2} D, y=-\frac{1}{2} E$ (footnote, p. 37). The locus, therefore, is the single point $\left(-\frac{1}{2} D,-\frac{1}{2} E\right)$. In this case the locus of (2) is often called a point circle, or a circle whose radius is zero.

If $D^{2}+E^{2}-4 F$ is negative, no real values satisfy (5), and hence (2) has no locus.

The expression $D^{2}+E^{2}-4 F$ is called the discriminant of (2), and is denoted by Θ (Greek letter "Theta"). The result is given by the

Theorem. The locus of the equation

$$
\begin{equation*}
x^{2}+y^{2}+D x+E y+F=0 \tag{II}
\end{equation*}
$$

whose discriminant is $\Theta=D^{2}+E^{2}-4 F$, is determined as follows :
When Θ is positive, the locus is the circle whose cienter is $\left(-\frac{1}{2} D,-\frac{1}{2} E\right)$ and whose radius is $r=\frac{1}{2} \sqrt{D^{2}+E^{2}-4 F}=\frac{1}{2} \sqrt{\Theta}$.

When Θ is zero, the locus is the point circle $\left(-\frac{1}{2} D,-\frac{1}{2} E\right)$.
When \oplus is negative, there is no locus.
Corollary. When $E=0$, the center of (II) is on the x-axis, and when $D=0$, the center is on the y-axis.

EXAMPLE

Find the locus of the equation $x^{2}+y^{2}-4 x+8 y-5=0$.
First solution. The given equation is of the form (II), where

$$
D=-4, \quad E=8, \quad F=-5
$$

and hence

$$
\theta=16+64+20=100>0
$$

The locus is therefore a circle whose center is the point $(2,-4)$ and whose radius is $\frac{1}{2} \sqrt{100}=5$.

Second solution. The problem may be solved without applying the theorem if we follow the method by which the theorem was established.

Collecting terms,

$$
\left(x^{2}-4 x\right)+\left(y^{2}+8 y\right)=5
$$

Completing the squares,

$$
\left(x^{2}-4 x+4\right)+\left(y^{2}+8 y+16\right)=25
$$

Or, also,

$$
(x-2)^{2}+(y+4)^{2}=25
$$

Comparing with (I) $, \quad \alpha=2, \beta=-4, r=5$.
The equation $A x^{2}+B x y+C y^{2}+D x+E y+F=0$ is called the general equation of the second degree in x and y because it contains all possible terms in x and y of the second and lower degrees. This equation can be reduced to the form (II) when and only when $A=C$ and $B=0$. Hence the locus of an equation of the second degree is a circle only when the coefficients of x^{2} and y^{2} are equal and the $x y$-term is lacking.
39. Circles determined by three conditions. The equation of any circle may be written in either one of the forms
or

$$
\begin{array}{r}
(x-\alpha)^{2}+(y-\beta)^{2}=r^{2}, \\
x^{2}+y^{2}+D x+E y+F=0
\end{array}
$$

Each equation has three arbitrary constants. To determine these constants three equations are necessary. Such an equation means that the circle satisfies some geometrical condition. Hence a circle may be determined to satisfy three conditions.

Rule to determine the equation of a circle satisfying three conditions.

First step. Let the required equation be

$$
\begin{equation*}
(x-\alpha)^{2}+(y-\beta)^{2}=r^{2}, \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
x^{2}+y^{2}+D x+E y+F=0 \tag{2}
\end{equation*}
$$

as may be more convenient.
Second step. Find three equations between the constants α, β, and r [or D, E, and $F]$ which express that the circle (1)[or (2)] satisfies the three given conditions.

Third step. Solve the equations found in the second step for r, β, and r [or D, E, and $F]$.

Fourth step. Substitute the results of the third step in (1) [or (2)]. The result is the required equation.

In some problems, however, a more direct method results by constructing the center of the required circle from the given conditions and then finding the equations and points of intersection of the lines of the figure.

EXAMPLES

1. Find the equation of the circle passing through the three points $P_{1}(0,1), P_{2}(0,6)$, and $P_{3}(3,0)$.
First solution. First step. Let the required equation be

$$
\begin{equation*}
x^{2}+y^{2}+D x+E y+F=0 . \tag{3}
\end{equation*}
$$

Second step. Since P_{1}, P_{2}, and P_{3} lie on (3), their coördinates must satisfy (3). Hence we have

$$
\begin{array}{r}
1+E+F=0, \\
36+6 E+F=0, \tag{5}
\end{array}
$$ and

$$
\begin{equation*}
9+3 D+F=0 . \tag{6}
\end{equation*}
$$

Third step. Solving (4), (5), and (6), we obtain

$$
E=-7, \quad F=6, \quad D=-5 .
$$

Fourth step. Substituting in (3), the required equation is

$$
x^{2}+y^{2}-5 x-7 y+6=0 .
$$

The center is $\left(\frac{\overline{3}}{2}, \frac{7}{2}\right)$, and the radius is $\frac{5}{2} \sqrt{2}=3.5$.
Second solution. A second method which follows the geometrical construction for the circumscribed circle is the following. Find the equations of the perpendicular bisectors of $P_{1} P_{2}$ and $P_{1} P_{3}$. The point of intersection is the center. Then find the radius by the length formula.
2. Find the equation of the circle passing through the points $P_{1}(0,-3)$ and $P_{2}(4,0)$ which has its center on the line $x+2 y=0$.

First solution. First step. Let the required equation be

$$
\begin{equation*}
x^{2}+y^{2}+D x+E y+F=0 . \tag{7}
\end{equation*}
$$

Second step. Since P_{1} and P_{2} lic on the locus of (7), we have

$$
\begin{equation*}
9-3 E+F=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
16+4 D+F=0 . \tag{9}
\end{equation*}
$$

The center of (7) is $\left(-\frac{D}{2},-\frac{E}{2}\right)$, and since it lies on the given line,

$$
-\frac{D}{2}+2\left(-\frac{E}{2}\right)=0
$$

or

$$
\begin{equation*}
D+2 E=0 . \tag{10}
\end{equation*}
$$

Third step. Solving (8), (9), and (10),

$$
D=-\frac{14}{3}, E=\frac{5}{5}, F=-\frac{24}{3} .
$$

Fourth step. Substituting in (7), we obtain the required equation,
or

$$
\begin{aligned}
x^{2}+y^{2}-1_{5}^{4} x+\frac{7}{5} y-{ }_{5}^{2} & =0 \\
5 x^{2}+5 y^{2}-14 x+7 y-24 & =0
\end{aligned}
$$

The center is the point ($\frac{7}{5},-\frac{7}{10}$), and the radius is $\frac{1}{2} \sqrt{29}$.
Second solution. A second solution is suggested by geometry, as follows:
Find the equation of the perpendicular bisector of $P_{1} P_{2}$. The point of intersection of this line and the given line is the center of the required circle. The radius is then found by the length formula.
3. Find the equation of the circle inscribed in the triangle whose sides are

$$
\begin{array}{r}
A B: 3 x-4 y-19=0, \\
B C: 4 x+3 y-17=0, \tag{11}\\
C A: x+7=0 .
\end{array}
$$

Solution. The center is the point of intersection of the bisectors of the angles of the triangle. We therefore find the equations of the bisectors of the angles A and C.

Reducing equations (11) to the normal form,

$$
\begin{gather*}
A B: \frac{3 x-4 y-19}{5}=0 ; \tag{12}\\
B C: \frac{4 x+3 y-17}{5}=0 ; \\
C A: \frac{x+7}{-1}=0 .
\end{gather*}
$$

Then, by Example 2, Art. 34, the bisectors are

$$
\begin{equation*}
\text { or } \quad 2 x-y+4=0, \tag{13}
\end{equation*}
$$

$$
C E: \frac{4 x+3 y-17}{5}=\frac{x+7}{-1},
$$

or

$$
3 x+y+6=0 .
$$

The point of intersection of $A D$ and $C E$ is $(-2,0)$. This is therefore the center of the inscribed circle. The radius is the perpendicular

distance from any of the lines (11) to ($-2,0$). Taking the side $A B$, then, from (12),

$$
r=\frac{3(-2)-4(0)-19}{5}=-5 .
$$

Hence, by (I), the equation of the required circle is

$$
(x+2)^{2}+(y-0)^{2}=25, \quad \text { or } x^{2}+y^{2}+4 x-21=0 . \quad \text { Ans. }
$$

PROBLEMS

1. Find the equation of the circle whose center is
(a) $(0,1)$ and whose radius is 3 .
(b) $(-2,0)$ and whose radius is 2 .
(c) $(-3,4)$ and whose radius is 5 .
(d) $(\alpha, 0)$ and whose radius is α.
(e) $(0, \beta)$ and whose radius is β.
(f) $(0,-\beta)$ and whose radins is β.

Ans. $x^{2}+y^{2}-2 y-8=0$.
Ans. $x^{2}+y^{2}+4 x=0$.
Ans. $x^{2}+y^{2}+6 x-8 y=0$.
Ans. $x^{2}+y^{2}-2 \alpha x=0$.
Ans. $x^{2}+y^{2}-2 \beta x=0$.
Ans. $x^{2}+y^{2}+2 \beta x=0$.
2. Draw the locus of the following equations:
(a) $x^{2}+y^{2}-6 x-16=0$.
(f) $x^{2}+y^{2}-6 x+4 y-5=0$.
(b) $3 x^{2}+3 y^{2}-10 x-24 y=0$.
(g) $(x+1)^{2}+(y-2)^{2}=0$.
(c) $x^{2}+y^{2}=8 x$.
(h) $7 x^{2}+7 y^{2}-4 x-y=3$.
(d) $x^{2}+y^{2}-8 x-6 y+25=0$.
(i) $x^{2}+y^{2}+2 a x+2 b y+a^{2}+b^{2}=0$.
(e) $x^{2}+y^{2}-2 x+2 y+5=0$.
(j) $x^{2}+y^{2}+16 x+100=0$.
3. Show that the following loci are circles, and find the radius and the coördinates of the center in each case :
(a) A point moves so that the sr:m of the squares of its distances from $(3,0)$ and $(-3,0)$ always equals 68 .

Ans. $x^{2}+y^{2}=25$.
(b) A point moves so that its distances from $(8,0)$ and $(2,0)$ are always in a constant ratio equal to 2.

Ans. $x^{2}+y^{2}=16$.
(c) A point moves so that the ratio of its distances from $(2,1)$ and $(-4,2)$ is always equal to $\frac{1}{2}$.

Ans. $3 x^{2}+3 y^{2}-24 x-4 y=0$.
(d) The distance of a moving point from the fixed point $(-1,2)$ is twice its distance from the origin.

$$
\text { Ans. } \alpha=\frac{1}{3}, \beta=-\frac{2}{3}, r=\frac{2 \sqrt{5}}{3}
$$

(e) The distance of a moving point from the fixed point $\left(2,-\frac{1}{2}\right)$ is half its distance from the fixed point $(0,3)$.
(f) The square of the distance of a moving point from the origin is proportional to the sum of its distances from the coordinate axes.
(g) The square of the distance of a moving point from the fixed point $(-4,3)$ is proportional to its distance from the line $3 x-4 y-5=0$.
(h) The sum of the squares of the distances of a point from the two lines $x-2 y=0,2 x+y-10=0$, is unity.
4. Find the equation of a circle passing through any three of the following points:

$(0,2)$	$(3,3)$	$(0,2)$	$(7,1)$	$(8,-2)$	$(7,-5)$
$(6,-6)$	$(3,-7)$	$(0,-6)$	$(-1,-5)$	$(-2,-2)$	$(-1,1)$

Ans. $x^{2}+y^{2}-6 x+4 y-12=0$.
5. Find the equation of the circle which
(a) has the center $(2,3)$ and passes through $(3,-2)$.

$$
\text { Ans. } x^{2}+y^{2}-4 x-6 y-13=0
$$

(b) has the line joining $(3,2)$ and $(-7,4)$ as a diameter.

Ans. $x^{2}+y^{2}+4 x-6 y-13=0$.
(c) passes through the points $(0,0),(8,0),(0,-6)$.

Ans. $x^{2}+y^{2}-8 x+6 y=0$.
(d) passes through $(0,1),(5,1),(2,-3)$.

Ans. $2 x^{2}+2 y^{2}-10 x+y-3=0$.
(e) circunscribes the triangle $(4,5),(3,-2),(1,-4)$.
(f) has the center $(-1,-5)$ and is tangent to the x-axis.

$$
\text { Ans. } x^{2}+y^{2}+2 x+10 y+1=0
$$

(g) has the center $(3,-5)$ and is tangent to the line $x-7 y+2=0$. Ans. $x^{2}+y^{2}-6 x+10 y+2=0$.
(h) passes through the points $(3,5)$ and $(-3,7)$ and has its center on the x-axis.

Ans. $x^{2}+y^{2}+4 x-46=0$.
(i) passes through the points $(4,2)$ and $(-6,-2)$ and has its center' on the y-axis. $\quad A n s . x^{2}+y^{2}+5 y-30=0$.
(j) passes through the points $(5,-3)$ and $(0,6)$ and has its center on the line $2 x-3 y-6=0$. Ans. $3 x^{2}+3 y^{2}-114 x-64 y+276=0$.
(k) passes through the points $(0,2),(-1,1)$ and has its center in the line $3 y+2 x=0$.

Ans. $x^{2}+y^{2}-6 x+4 y-12=0$.
(l) circumscribes the triangle $x-6=0, x+2 y=0, x-2 y=8$.

$$
\text { Ans. } 2 x^{2}+2 y^{2}-21 x+8 y+60=0
$$

(m) is inscribed in the triangle $(0,6),(8,6),(0,0)$.

$$
\text { Ans. } x^{2}+y^{2}-4 x-8 y+16=0
$$

(n) passes through $(1,0)$ and $(5,0)$ and is tangent to the y-axis.

$$
\text { Ans. } x^{2}+y^{2}-6 x \pm 2 \sqrt{5} y+5=0
$$

(0) passes through the points $(-3,-1),(1,1)$ and is tangent to the line $4 x+3 y+25=0$.
6. Find the equations of the inscribed circles of the following triangles :
(a) $x+2 y-5=0$,
$2 x-y-5=0$
$2 x+y+5=0$.
(b) $3 x+y-1=0$,
$x-3 y-3=0, \quad x+3 y+11=0$.
(c) $3 x+4 y-22=0$,
$4 x-3 y+29=0$,
$y-5=0$.
(d) $x+2=0$,
$y-3=0$,
$x+y=0$.
(e) $x=0$,
$y=0$,
$x+y+3=0$.
7. What is the equation of a circle whose radius is 10 , if it is tangent to the line $4 x+3 y-70=0$ at the point whose abscissa is 10 ?

In the proofs of the following theorems the choice of the axes of coördinates is left to the student, since 110 mention is made of either coördinates or equations in the problem. In such cases always choose the axes in the most convenient manner possible.
8. A point moves so that the sum of the squares of its distances from two fixed points is constant. Prove that the locus is a circle.
9. A point moves so that the sum of the squares of its distances from two fixed perpendicular lines is constant. Prove that the locus is a circle.
10. A point moves so that the ratio of its distances from two fixed points is constant. Determine the nature of the locus.

Ans. A circle if the constant ratio is not equal to unity, and a straight line if it is.
11. A point moves so that the square of its distance from a fixed point is proportional to its distance from a fixed line. Show that the locus is a circle.

CHAPTER VI

TRANSCENDENTAL CURVES AND EQUATIONS

In the preceding chapters the emphasis has been laid chiefly on algebraic equations ; that is, equations involving only powers of the coordinates. We now turn our attention to equations such as

$$
y=\log x, \quad y=2^{x}, \quad x=\sin y
$$

- * which are called transcendental equations, and their loci, transcendental curves.

40. Natural logarithms. The common logarithm of a given number N is the exponent x of the base 10 in the equation

$$
\begin{equation*}
10^{x}=N ; \text { that is, } x=\log _{10} N \tag{1}
\end{equation*}
$$

A second system of logarithms, known as the natural system, is of fundamental importance in mathematics. The base of this system is denoted by e, and is called the natural base. Numerically to three decimal places, the natural base is always

$$
\begin{equation*}
e=2.718 \tag{2}
\end{equation*}
$$

The natural logarithm of a given number N is the exponent y in the equation

$$
\begin{equation*}
e^{y}=N ; \text { that is, } y=\log _{e} N \tag{3}
\end{equation*}
$$

To find the equation connecting the common and natural logarithms of a given number, we may take the logarithms of both members of (3) to the base 10 , which gives

$$
\begin{equation*}
\log _{10} e^{y}=\log _{10} N, \text { or } y \log _{10} e=\log _{10} N . \quad(16, \text { p. 1) } \tag{4}
\end{equation*}
$$

(5) $\quad \therefore \log _{10} N=\log _{10} e \cdot \log _{e} N$ (using the value of y in (3))

The equation shows that the common logarithm of any number equals the product of the natural logarithm by the constant $\log _{10} e$. This constant is called the modulus $(=M)$ of the common system. That is (Table, Art. 2),

$$
\begin{equation*}
M=\log _{10} e=0.434 ; \text { also } \frac{1}{M}=2.302 \tag{6}
\end{equation*}
$$

We may summarize in the equations,

$$
\begin{aligned}
\text { Common } \log & =\text { natural } \log \text { times } 0.434, \\
\text { Natural } \log & =\text { common } \log \text { times } 2.302 .
\end{aligned}
$$

These equations show us how to find the natural logarithm from the common logarithm, or vice versa.

Exponential and logarithmic curves. The locus of the equation (7)

$$
y=e^{x}
$$

is called an exponential curre. From the preceding we may write (7) also in the form

$$
\begin{equation*}
x=\log _{e} y=2.302 \log _{10} y \tag{8}
\end{equation*}
$$

The locus of (7) is therefore the curve whose abscissas are the natural logarithms of the ordinates. Let us now discuss and plot (7). (Figure, p. 103.)
Discussion. Since negative numbers and zero have no logarithms, y is necessarily positive. Moreover, x increases as y increases. The coördinates of a few points on the locus are set down in the table. The discussion and figure illustrate the fact that

x	y	x	y
0	1	0	1
1	$e=2.7$	-1	$\frac{1}{e}=.37$
2	$e^{2}=7.4$	-2	$\frac{1}{e^{2}}=.14$
etc.	etc.	etc.	etc.

$$
\log _{e} 0=-\infty
$$

For clearly, as y approaches zero, x becomes negatively larger and larger, without limit. Hence the x-axis is a horizontal asymptote.
lf the curve is carefully drawn, natural logarithms may be measured off. Thus, by measurement in the figure, if

$$
y=4, x=1.38=\log _{e} 4
$$

More generally, the locus of

$$
\begin{equation*}
y=e^{k x} \tag{9}
\end{equation*}
$$

where k is a given constant, is an exponential curve. The discussion of the difference of this locus from that in the figure is left to the reader.

The locus of the equation

$$
\begin{equation*}
y=\log _{10} x \tag{10}
\end{equation*}
$$

which is called a logarithmic curve, differs essentially from the locus of (7) only in its relation to the axes. In fact, both curves are exponential or logarithmic curves, depending upon the point of view.

The locus of (10) is given in the figure below. Clearly, since $\log _{10} 0=$ $-\infty$, the y-axis is a vertical asymptote. The scales chosen are

unit length on $X X^{\prime}$ equals 2 divisions, unit length on $Y Y^{\prime}$ equals 4 divisions.

Compound interest curve. The problem of compound interest introduces exponential curves. For, if $r=$ rate per cent of interest, and $n=$ number of years, then the amount $(=A)$ of one dollar in n years, if the interest is compounded annually, is given by the formula

$$
A=(1+r)^{n}
$$

For example, if the rate is 5 per cent, the formula is

$$
\begin{equation*}
A=(1.05)^{n} . \tag{11}
\end{equation*}
$$

If we plot years as abscissas and the amount as ordinates, the corresponding curve will be an exponential curve. For, by Art. $2, \log _{10} 1.05=.021$.
Hence, from (A), $\quad \log _{e} 1.05=2.302$ times .021

$$
=.048 \text { (to three decimal places). }
$$

Hence, by (3), $\quad e^{.048}=1.05$, and the equation (11) becomes

$$
\begin{equation*}
A=e^{.048 n} \tag{12}
\end{equation*}
$$

which is in the form of (9) ; that is, $k=.048$.
For convenience in plotting exponential curves accurately the following table is inserted.

Table of values of the exponential function e^{x}.

x	. 0	. 1	. 2	. 3	. 4
	$e^{x} \quad e^{-x}$	$e^{x} \quad e^{-x}$	$e^{x} \quad e^{-x}$	$e^{x} e^{-x}$	$e^{x} e^{-x}$
0	1.001 .00	1.110 .90	1.220 .82	1.350 .74	1.490 .67
1	2.720 .37	3.000 .33	3.320 .30	3.670 .27	4.060 .25
2	7.390 .14	8.170 .12	9.030 .11	9.970 .10	11.00 .09
3	20.10 .05	22.20 .05	24.50 .04	27.10 .04	30.00 .03
4	54.60 .02	60.30 .02	66.70 .01	73.70 .01	81.50 .01
5	1480.01	1640.01	1810.01	2000.00	2210.00

\boldsymbol{x}	. 5	. 6	. 7	. 8	. 9
	$e^{x} \quad e^{-x}$	$e^{x} \quad e^{-x}$	$e^{x} \quad e^{-x}$	$e^{x} e^{-x}$	$e^{x} e^{-x}$
0	1.650 .61	1.820 .55	2.010 .50	2.230 .45	2.460 .41
1	4.480 .22	4.950 .20	5.470 .18	6.050 .17	6.690 .15
2	12.20 .08	13.50 .07	14.90 .07	16.40 .06	18.20 .06
3	33.10 .03	36.60 .03	40.40 .02	44.70 .02	49.40 .02
4	90.00 .01	99.50 .01	1100.01	1220.01	1340.01
5	2450.00	2700.00	2990.00	3300.00	3650.00

For example, to find the value of $e^{2.8}$, we look in the column with the caption x for the value 2 and then pass to the right under the caption .3. The value sought is found in the column under e^{x} to be 9.97. The next value to the right of this under e^{-x} is $e^{-2.8}=0.10$.

PROBLEMS

Draw * the loci of each of the following :

1. $y=e^{-x}$.
2. $y=e^{-\frac{1}{2} x}$.
3. $y=e^{2 x}$.
4. $y=e^{-2 x}$.
5. $y=2 e^{-x}$.
6. $y=2 e^{-\frac{1}{4} x}$.
7. $y=x e^{-x}$.
8. $s=t^{2} e^{-t}$.
9. $v=2 e^{-\frac{1}{2} u}$.

10. $y=e^{-x^{2}}$.

PROBABILITY CURVE
11. $y=2 \log _{10} x$.
12. $y=\log _{e}(1+x)$.
13. $y=2 \log _{10} \frac{1}{2} x$.
14. $y=\log _{10} \sqrt{x}$.
15. $y=\log _{e}\left(1+e^{x}\right)$.
16. $s=\log _{10}(1+2 t)$.
17. $v=\log _{e}\left(1+t^{2}\right)$.
18. $x=\log _{10}(1-y)$.
41. Sine curves. As already explained (p. 2), the two common methods of angular measurement, namely circular measure and degree measure, employ as units of measurement the radian and the degree respectively. The relation between these units is

$$
1 \text { radian }=\frac{180}{\pi} \quad \text { or } \quad 57.29 \text { degrees }
$$

$$
\begin{equation*}
1 \text { degree }=0.0174 \text { radiaus } \quad \text { or } \frac{\pi}{180} \tag{1}
\end{equation*}
$$

in which $\pi=3.14$ (or $\frac{7}{7}^{2}$ approximately), as usual.

Equations (1) may be written

$$
\begin{equation*}
\pi \text { radians }=180 \text { degrees } \tag{2}
\end{equation*}
$$

Thus $\frac{\pi}{2}$ radians $=90^{\circ}, \frac{\pi}{4}$ radians $=45^{\circ}$, etc. The two scales laid off on the same line give the figure.

[^9]In advanced mathematics it is assumed that circular measure is to be used. Thus the numerical values of

$$
\sin 2 x, \quad x \tan \frac{\pi x}{4}, \quad \frac{\cos \frac{\pi x}{6}}{2 x}
$$

for $x=1$, are as follows:

$$
\begin{aligned}
\sin 2 x & =\sin 2 \text { radians }=\sin 114^{\circ} .59=0.909, \\
x \tan \frac{\pi x}{4} & =1 \cdot \tan \left(\frac{\pi}{4} \text { radians }\right)=\tan 45^{\circ}=1, \\
\frac{\cos \frac{\pi x}{6}}{2 x} & =\frac{\cos \left(\frac{\pi}{6} \text { radians }\right)}{2}=\frac{\cos 30^{\circ}}{2}=0.433 .
\end{aligned}
$$

Let us now draw the locus of the equation

$$
\begin{equation*}
y=\sin x \tag{3}
\end{equation*}
$$

in which, as just remarked, x is the circular measure of an angle.

Solution. In making the calculation for plotting, it is convenient to choose angles at intervals of, say, 30°, and then find x, the circular measure of this angle, in radians, and y from the Table of Art. 4.

Angle in degrees	\boldsymbol{x} radians	\boldsymbol{y}	Angle in degrees	\boldsymbol{x} radians	\boldsymbol{y}
0	0	0	0	0	0
30	.52	.50	-30	-52	-.50
60	1.04	.86	-60	-1.04	-.86
90	1.56	1.00	-90	-1.56	-1.00
120	2.08	.86	-120	-2.08	-.86
150	2.60	.50	-150	-2.60	-.50
180	3.14	0	-180	-3.14	0

Thus, for $30^{\circ}, y=\sin 30^{\circ}=.50$. For $150^{\circ}, y=\sin 150^{\circ}=\sin \left(180^{\circ}-30^{\circ}\right)=$ $\sin 30^{\circ}=.50(30$, p. 3$)$.

To plot, choose a convenient unit of length on $X X^{\prime}$ to represent 1 radian, and use the same unit of length for ordinates. The divisions laid off on the x-axis in the figure are 1 radian, 2 radians, etc. Plotting the points (x, y) of the table, the curve $A P O Q B$ is the result.

The course of the curve beyond B is easily determined from the relation

$$
\begin{aligned}
\sin (2 \pi+x) & =\sin x \\
y=\sin x & =\sin (2 \pi+x)
\end{aligned}
$$

that is, the curve is unchanged if $x+2 \pi$ be substituted for x. This means, however, that every point is moved a distance 2π to the right. Hence the arc $A P O$ may be moved parallel to $X Y^{\prime}$ until A falls on B, that is, into the position BRC, and it will also be a part of the curve in its new position. This property is expressed by the statement: The curve $y=\sin x$ is a periodic curve with a period equal to 2π. Also, the arc $O Q B$ may be displaced parallel to $X X^{\prime}$ until O falls upon C. In this way it is seen that the entire locus consists of an indefinite number of congruent arcs, alternately above and below $X X^{\prime}$.

General discussion. 1. The curve passes through the origin, since $(0,0)$ satisfies the equation.
2. In (3), if $x=0, y=\sin 0=0=$ intercept on the axis of y.

Solving (3) for x,

$$
\begin{equation*}
x=\arcsin y \tag{4}
\end{equation*}
$$

$\ln (4)$, if $\quad y=0, x=\arcsin 0=n \pi, n$ being any integer.
Hence the curve cuts the axis of x an indefinite number of times both on the right and left of O, these points being at a distance of π from one another.
3. Since $\sin (-x)=-\sin x$, clanging signs in (3),

$$
\begin{aligned}
& -y=-\sin x \\
& -y=\sin (-x)
\end{aligned}
$$

or
Hence the locus is unchanged if (x, y) is replaced by $(-x,-y)$, and the curve is symmetrical with respect to the origin (Theorem II, p. 43).
4. In (3), x may have any value, since any number is the circular measure of an angle.

In (4), y may have values from -1 to +1 inclusive, since the sine of an angle has values only from -1 to +1 inclusive.
5. The curve extends out indefinitely along $X \mathrm{X}^{\prime \prime}$ in both directions, but is contained entirely between the lines $y=+1, y=-1$.

The locus is called the wave curve, from its shape, or the sine curve, from its equation (3). The maximum value of y is called the amplitude.

Again, let us construct the locus of

$$
\begin{equation*}
y=2 \sin \frac{\pi x}{3} \tag{5}
\end{equation*}
$$

Solution. We now choose for x the values $0, \frac{1}{2}, 1,1 \frac{1}{2}$, etc., radians, and arrange the work of calculation as in the table.

x radians	$\frac{1}{3} \pi x$ radians	$\frac{1}{3} \pi x$ degrees	$\sin \frac{\pi x}{3}$	y
0	0	0	0	0
	0	30	.50	1.00
$\frac{1}{3} \pi$	$\frac{1}{6} \pi$	60	.86	1.72
1	$\frac{1}{8} \pi$	90	1.00	2.00
$1 \frac{1}{2}$	$\frac{1}{2} \pi$	90	.86	1.72
2	$\frac{2}{3} \pi$	120	.50	1.00
$2 \frac{1}{2}$	$\frac{5}{6} \pi$	150	.5	
3	π	180	0	0

The figure represents a sine curve of period 6 and amplitude 2. For the curve crosses the x-axis at intervals of 3 , and the maximum value of y equals 2 .

Equation (5) is of the form

$$
y=a \sin 7 x .
$$

The amplitude in this case equals a. To find the period, set $k x=2 \pi$. Solving for $x, x=\frac{2 \pi}{k}=$ period.

As it is important to sketch sine curves quickly, the follow ing directions are useful:

1. Find the amplitude and the period.
2. Choose the same scales on both axes.
3. Lay off points on $X X^{\prime}$ at intervals of a quarter-period. The highest and lowest points are at the odd quarter-periods. The intersections with $\mathrm{NX}^{\prime \prime}$ are at the even quarter-periods.

PROBLEMS

Plot the loci of the equations:

1. ${ }^{*} y=\cos x$ (see figure).

2. $y=\sin 2 x$.
3. $y=\cos 2 x$.
4. $y=\sin \frac{1}{2} x$.
5. $y=\cos \frac{1}{2} x$.
6. $y=\cos \frac{\pi x}{3}$.
7. $y=\sin \frac{\pi x}{4}$.
8. $y=3 \cos \frac{\pi x}{4}$.
9. $y=3 \sin \frac{\pi x}{5}$.
10. $y=2 \sin \frac{\pi x}{2}$.

11. $y=\sec x$.

[^10]13. $y=\tan \frac{\pi \bar{x}}{4}$.
14. $y=2 \tan x$.
15. $y=2 \tan \frac{\pi x}{3}$.
16. $y=3 \tan \frac{\pi x}{4}$.
17. $y=\cot x$.
18. $y=\cot \frac{\pi x}{4}$.
19. $y=4 \cot \frac{\pi x}{6}$.
20. $y=\csc x$.
21. $y=\sec \frac{1}{2} x$.
22. $y=\csc \frac{1}{2} x$.
23. $y=\sec \frac{\pi x}{4}$.
24. $y=\csc \frac{\pi x}{4}$.
25. $x=\sin y$. Also written $y=\operatorname{arc} \sin x$ or $\sin ^{-1} x$, and read "the angle whose sine is x."
26. $x=2 \cos y$, or $y=\arccos \frac{1}{2} x$.
27. $x=\tan y$, or $y=\arctan x$ (see figure).
28. $x=2 \sin \frac{8}{8} \pi y$.
29. $x=\frac{1}{2} \cos \frac{1}{3} \pi y$.
30. $y=\arctan \frac{1}{2} x$.
31. $y=2 \operatorname{arc} \cos \frac{1}{3} x$.

The locus of the equation

$$
\begin{equation*}
y=2 \sin \left(\frac{\pi x}{3}+\frac{\pi}{6}\right) \tag{6}
\end{equation*}
$$

is also a sine curve. For, by taking the coefficient of x, namely $\frac{\pi}{3}$, outside the parenthesis, (6) becomes

$$
\begin{equation*}
y=2 \sin \frac{\pi}{3}\left(x+\frac{1}{2}\right) \tag{7}
\end{equation*}
$$

Now set $x+\frac{1}{2}=x^{\prime}$. Substituting in (7), the latter becomes

$$
\begin{equation*}
y=2 \sin \frac{\pi x^{\prime}}{3} \tag{8}
\end{equation*}
$$

But this is equation (5) except that x^{\prime} takes the place of x. Hence to draw the locus of (6), proceed thus: Mark the point $x=-\frac{1}{2}$ (or $x^{\prime}=0$) on the x-axis. Using this point as the new origin, plot the locus of equation (8).

The figure obtained is obviously precisely that on page 108, if the y-axis is moved to the right a distance equal to $\frac{1}{2}$.

Observe that the period of (6) is determined, as before, by the coefficient of. x. The added term $\left(\frac{\pi}{6}\right)$ simply affects the
intercepts on the x-axis.

PROBLEMS

Plot the curves:

1. $y=\sin \left(x+\frac{1}{2}\right)$.
2. $y=2 \cos (2 x-1)$.
3. $y=2 \sin \left(\frac{2 \pi x}{3}+\frac{\pi}{4}\right)$.
4. $y=2 \sin \left(2 \pi x+\frac{\pi}{6}\right)$.
5. $y=3 \cos \left(\frac{\pi x}{2}-\frac{2 \pi}{3}\right)$.
6. $y=\tan \left(\frac{\pi x}{4}+\frac{\pi}{2}\right)$.
7. $y=\frac{1}{2} \sin \left(\frac{1}{2} x+\frac{1}{3}\right)$.
8. $y=\cos \left(x+\frac{\pi}{3}\right)$.
9. $s=a \sin (k x+\pi)$.
10. $x=2 \cos \left(\frac{2 \pi y}{5}-\frac{\pi}{2}\right)$.
11. $x=\sin \left(\frac{2 \pi y}{3}-\pi\right)$.
12. $s=\alpha \cos \left(\frac{2 \pi t}{P}+\beta\right)$.
13. Addition of ordinates. When the equation of a curve has the form

$$
y=\text { the algebraic sum of two expressions, }
$$

as, for example, $y=\sin x+\cos x, y=\frac{1}{2} x+\sin ^{2} x, s=e^{t}+e^{-t}$, etc., the principle known as addition of ordinates may with advantage be employed. For example, to construct the locus of

$$
\begin{equation*}
y=2 \sin \frac{\pi x}{4}+\frac{1}{2} x \tag{1}
\end{equation*}
$$

we employ the auxiliary curves

$$
\begin{align*}
& y_{1}=2 \sin \frac{\pi x}{4} \tag{2}\\
& y_{2}=\frac{1}{2} x \tag{3}
\end{align*}
$$

Plot these curves one below the other, keeping the y-axes in a straight line. The same scales must be used in both figures. The locus of (2) is the sine curve of Fig. 1, p. 112. The locus of (3) is the straight line in Fig. 2.

The ordinates of Fig. 1 are now added to the corresponding ones in Fig. 2, attention being given to the algebraic signs. The derived curve $A_{1} B_{1} O B_{2} A_{2}$ has the equation

$$
\begin{equation*}
y=y_{1}+y_{2}=2 \sin \frac{\pi x}{4}+\frac{1}{2} x \tag{4}
\end{equation*}
$$

as required. The locus winds back and forth across the line $y=\frac{1}{2} x$, crossing the line at $x=0, \pm 4, \pm 8, \pm 12$, etc. ; that is, directly under the points where the sine curve in Fig. 1 crosses the x-axis.

Fig. 1

Fig. 2

PROBLEMS

Draw the following curves and calculate y accurately for the given value of x :

1. $y=\cos x+\frac{1}{3} x . \quad x=1$.
2. $y=\frac{e^{x}+e^{-x}}{2} . \quad x=\frac{8}{2}$.
3. $y=\sin 2 x+\frac{x^{2}}{10} . \quad x=\frac{1}{2}$.
4. $y=e^{x}-\sin 2 x . \quad x=-\frac{1}{2}$.
5. $y=\sin x+\cos x . \quad x=-\frac{1}{2}$.
6. $y=\frac{e^{t}-e^{-t}}{2}, \quad x=3$.
7. $y=\frac{1}{4} x-3 \sin \frac{\pi x}{3} \cdot x=2$.
8. $y=e^{\frac{5}{4}}-\cos 4 x . \quad x=\frac{1}{2} \pi$.
9. $y=\frac{x^{2}}{16}-4 \cos \frac{\pi x}{4} . \quad x=-2$.
10. $y=\sin x+\sin 2 x$. $\quad x=0.8$.
11. $y=\sin \frac{\pi x}{4}+\cos \frac{\pi x}{3} \cdot x=-\frac{1}{2}$.
12. $y=\frac{\alpha}{2}\left(e^{\frac{x}{\bar{a}}}+e^{-\frac{x}{a}}\right) . \quad x=2 \frac{1}{5} a$.
13. $y=\sin a x+\cos a x . x=\frac{9}{10} a$.
14. $y=2 \sin x+5 \cos x$. $x=0.5$.
15. $y=2 \sin 2 x+3 \cos \frac{1}{2} x . \quad x=2$.
16. $y=\sin a x+\sin b x$.
17. $y=\sqrt{9-x^{2}}+\sin 2 \pi x . \quad x=2 \frac{1}{2}$.
18. $y=e^{-x}+4 x^{2} \cdot x=-2.4$.

19. $y=\log _{10} x+\sin \frac{2 \pi x}{3} . x=2$.
20. $y=2 \sqrt{x}+\frac{1}{2} \cos \left(\frac{\pi x}{2}+\frac{\pi}{3}\right)$.

The locus in Problem 20 is called the catenary (see figure). The shape of the curve is that assumed by a heavy flexible cord freely suspended from its extremities.

The student may have observed from the preceding examples the truth of the following

Theorem. The curve obtained by adding corresponding ordinates of sine curves with the same period is also a sine curve with equal period.

For example, consider the equation

$$
\begin{equation*}
y=a \sin \left(\frac{2 \pi t}{P}+\alpha\right)+b \sin \left(\frac{2 \pi t}{P}+\beta\right) \tag{5}
\end{equation*}
$$

in which α, β, and P are constants. The period of both sine curves equals P. Expand the right-hand member by the rule (33, p. 3) for $\sin (x+y)$ and collect the terms in $\sin \frac{2 \pi t}{P}$ and $\cos \frac{2 \pi t}{P}$. Then equation (5) assumes the form

$$
\begin{equation*}
y=A \sin \frac{2 \pi t}{P}+B \cos \frac{2 \pi t}{P} \tag{6}
\end{equation*}
$$

where A and B are constants, independent of t.
 Let us now introduce the angle γ of the right triangle whose legs are A and B. Let the hypotenuse $\sqrt{A^{2}+B^{2}}=C$. Then $B=C \sin \gamma$,
$A=C \cos \gamma$. Substituting these values in (6) gives
(7) $y=C\left(\sin \frac{2 \pi t}{P} \cos \gamma+\cos \frac{2 \pi t}{P} \sin \gamma\right)=C \sin \left(\frac{2 \pi t}{P}+\gamma\right)$.

This is a sine curve with period P and amplitude $C=\sqrt{A^{2}+B^{2}}$. Q.E.D.

The curve resulting from the addition of ordinates of sine curves with unequal periods is, however, not a sine curve.
43. Boundary curves. In plotting the locus of an equation of the form

$$
\begin{equation*}
y=\text { product of two factors } \tag{1}
\end{equation*}
$$

one of which is a sine or cosine, as, for example,

$$
y=e^{x} \sin x, \quad \text { or } \quad s=t^{2} \cos \frac{\pi t}{4}
$$

much aid is obtained by the following considerations:
For example, consider the locus of

$$
\begin{equation*}
y=e^{-\frac{1}{2} x} \sin \frac{\pi x}{2} \tag{2}
\end{equation*}
$$

We now make the following observations:

1. Since the numerical value of the sine never exceeds unity, the values of !/ in (2) will not exceed in numerical value the value of the first factor $e^{-\frac{1}{4} x}$. Moreover, the extreme values of $\sin \frac{1}{2} \pi x$ are +1 and -1 respectively. Hence y las the extreme values $e^{-\frac{1}{d} x}$ and $-e^{-\frac{1}{2} x}$.

Consequently, if the curves

$$
\begin{equation*}
y=e^{-\frac{1}{2} x} \quad \text { and } \quad y=-e^{-\frac{1}{4} x} \tag{3}
\end{equation*}
$$

are drawn, the locus of (2) will lie entirely between these curves.
They are accordingly called boundary curves.
Draw these curves. The second is obviously symmetrical to the first with respect to the x-axis. To plot, find three points on the first curve, as in the table. (Use the Table, p. 104.)

x	y
0	1
2	$e^{-\frac{1}{2}}=.61$
4	$e^{-1}=.37$

2. When $\sin \frac{1}{2} \pi x=0$, then in (2) $y=0$, since the first factor is always finite. Hence the locus of (2) meets the x-axis in the same points as the auxiliary sine curve

$$
\begin{equation*}
y=\sin \frac{1}{2} \pi x . \tag{4}
\end{equation*}
$$

3. The required curve touches * the boundary curves when the second factor, $\sin \frac{1}{2} \pi x$, is +1 or -1 ; that is, when the ordinates of the auxiliary curve (4) have a maximum or minimum value.

Hence draw the sine curve (4). The period is 4 and the amplitude is 1 . This curve is the dotted line of the figure.

The discussion shows these facts:
The locus of (2) erosses KX^{\prime} at $x=0, \pm 2, \pm 4, \pm 6$, etc., and touches the boundary curves (3) at $x= \pm 1, \pm 3, \pm 5$, etc.

We may then readily sketch the curve, as in the figure; that is, the winding curve between the boundary curves (3).
4. For a check remember that the ordinate of (2) is the product of the ordinates of the boundary curve $y=e^{-\frac{1}{4} x}$ and the sine curve (4). In the figure, for example, the required curve lies above $X X^{\prime}$ between $x=0$ and $x=2$, for the ordinates of $y=e^{-\frac{1}{2} x}$ and of the sine curve are now all positive. But between $x=2$ and $x=4$ the required curve lies below $X X^{\prime}$, for the ordinates of $y=e^{-\frac{1}{d} x}$ and the sine curve now have unlike signs.

[^11]
PROBLEMS

Draw the following loci and calculate y accurately for the given values of x :
$\begin{array}{lll}\text { 1. } y=\frac{x}{4} \sin x . & x=2 ; \frac{1}{2} \pi . & \text { 11. } y=\frac{\sin x}{x}\left(=\frac{1}{x} \sin x\right) . x=0.1 .\end{array}$
2. $y=\frac{x^{2}}{16} \cos 2 x . \quad x=1 ; \pi$.
12. $\quad y=\frac{\sin 2 x}{2 x} . \quad x=0.1 ; 1$.
3. $y=\frac{x}{3} \sin \frac{\pi x}{3} . \quad x=3 ; \frac{1}{2}$.
13. $y=\frac{\cos x}{x}, x=1 ; \pi$.
4. $y=\frac{x^{2}}{10} \cos \frac{\pi x}{5} . \quad x=3 ; 2 \frac{1}{2}$.
14. $y=\frac{\sin x}{x^{2}} . \quad x=0.2 ; \frac{1}{2} \pi$.
5. $y=e^{-x} \sin x . \quad x=\frac{1}{4} \pi ; \frac{5}{4} \pi$.
15. $y=\frac{\sin \frac{\pi x}{4}}{x} . \quad x=0.1 ; 2$.
6. $y=e^{-x} \cos 2 x . \quad x=\frac{1}{2} \pi ; 2$.
16. $y=\sin \frac{1}{2} x \cos 2 x . \quad x=\frac{1}{2} \pi$.
8. $y=e^{-\frac{1}{4} x} \cos \frac{\pi x}{3} . \quad x=3 ;-\frac{1}{2}$.
17. $y=\left(x+\frac{1}{2}\right) \sin \frac{1}{2} x$.
9. $y=4 e^{-\frac{1}{10} x} \cos \left(\frac{\pi x}{3}+\frac{\pi}{4}\right)$.
18. $y=\frac{x^{2}}{4} \cos \frac{1}{2} x-\frac{1}{4} \cos \frac{1}{2} x$.
10. $y=a e^{-a^{2} x} \cos \left(\frac{2 \pi x}{P}+\alpha\right)$.
19. $y=e^{-t} \sin \pi t+e^{-\frac{1}{2} t} \sin \frac{\pi t}{2}$.
20. Draw the two loci obtained (1) by adding and (2) by multiplying the ordinates in the following pairs of curves:
(a) $\left\{\begin{array}{l}y=x-\pi \\ y=\sin x\end{array}\right.$
(c) $\left\{\begin{array}{l}y=e^{-\frac{x}{3}}, \\ y=\sin \pi x .\end{array}\right.$
(e) $\left\{\begin{array}{l}y=2+\frac{x^{2}}{16}, \\ y=\cos \frac{\pi x}{3}\end{array}\right.$
(b) $\left\{\begin{array}{l}y=e^{\frac{x}{3}}, \\ y=\cos \pi x .\end{array}\right.$
(d) $\left\{\begin{array}{l}y=3+\frac{x^{2}}{16}, \\ y=\sin \frac{\pi x}{2}\end{array}\right.$
(f) $\left\{\begin{array}{l}y=\frac{16-x^{2}}{8}, \\ y=\cos \frac{\pi x}{2} .\end{array}\right.$
44. Transcendental equations. Graphical solution. The solution of certain equations of frequent occurrence may be simplified by using graphical methods.

Consider the equation
(1) $\cot x=x$, or $\cot x-x=0$.

To find values of x (in radians) for which this equation holds.

To aid in determining the roots, let us draw the curves (2) $y=\cot x$ and $y=x$.

Now the alscissa of each point of intersection is a root of equation (1), for, obviously, at each point of intersection of the curves (2) we must have $\cot x=x$; that

$y=\cot \boldsymbol{x}$		
Degrees	\boldsymbol{x} radians	y
0	0	∞
10	.174	5.67
20	.342	2.75
30	.524	1.73
40	.698	1.19
45	.785	1.000
50	.873	.839
60	1.047	.577
70	1.222	.364
80	1.396	.176
90	1.571	.0

In plotting it is well to lay off carefully both scales (degrees and radians) on O.J.

Number of solutions. The curve $y=\cot x$ consists of an infinite number of branches congruent to $A Q B$ of the figure.

The line $y=x$ will obviously cross each branch. Hence the equation (1) has an infinite number of solutions.

Smallest solution. From the figure this solution lies between 45° and 50°, or, in radians, between $x=.785$ and $x=.873$. Hence the first significant figure of the smallest root is 0.8 . Interpolation is necessar'y to determine subsequent figures.

For this purpose arrange the work thus, using the preceding table.

table.	x (radians)	$\cot x$	$\cot x-x$
	.873	.839	-.034
	. .785	1.000	+.215
difference	+.088		-.249

We wish to know what change in x above .785 will produce a decrease in $\cot x-x$ equal to .215 ; that is, make $\cot x-x$ equal to zero. Call this change z. Then, by proportion,

$$
\frac{z}{.088}=\frac{-.215}{-.249} . \quad \therefore z=.076
$$

Hence $x=.785+.076=.86$ (to two decimal places).

PROBLEMS

Determine graphically the number of solutions in each of the following, and find the smallest root (different from zero).

1. $\cos x=x$.

Ans. One solution; $x=0.74$.
2. $\sin 2 x=x$.
3. $\tan x=x$.
4. $\sin x=\frac{1}{2} x$.
5. $\sin x=x^{2}$.
6. $\cos x=x^{2}$.

Ans. Three solutions; $x=0.95$
7. $\tan x=x^{2}$.
18. $3 \sin x=2 \cos 4 x$.
19. $e^{x}=\tan x$.
8. $\cot x=x^{2}$.
14. $2 \sin \frac{x}{2}=\cos 2 x$.
20. $\sin x=\log _{10} x$.
9. $\cos x=\frac{x}{3}$.
15. $\sin 3 x=\cos 2 x$.
21. $\cos x=\log _{10} x$.
10. $\tan x=1-x$.
16. $e^{-x} \doteq x$.
11. $\cos x=1-x$.
17. $e^{x}=\sin x$.
22. $\tan x=\log _{10} x$.
12. $3 \sin x=\cos x-\frac{1}{2}$.
18. $e^{-x}=\cos x$.
23. $e^{-x}=\log _{e} x$.
24. $e^{-x^{2}}=x^{2}$.

CHAPTER VII

POLAR COÖRDINATES

45. Polar coördinates. In this chapter we shall consider a second method of determining points of the plane by pairs of real numbers. We suppose given a fixed point O, called the pole, and a fixed line $O A$, passing through O, called the polar axis. Then any point P determines a length $O P=\rho$ (Greek letter "rho") and an angle $A O P=\theta$. The numbers ρ and θ are called the polar coördinates of P, ρ is called the
 radius vector and θ the vectorial angle. The vectorial angle θ is positive or negative as in trigonometry. The radius vector is positive if P lies on the terminal line of θ, and negative if P lies on that line produced through the pole 0 .

Thus in the figure the radius vector of P is positive, and that of P^{\prime} is negative.

It is evident that every pair of real numbers (ρ, θ) determines a single point, which may be plotted by the

Rule for plotting a point whose polar coördinates (ρ, θ) are given.

First step. Construct the terminal line of the vectorial angle θ, as in trigonometry.

Second step. If the radius vector is positive, lay off a length $O P=\rho$ on the terminal line of θ; if negative, produce the termi nal line through the pole and lay off OP equal to the numerical value of ρ. Then P is the required point.

In the figure on page 119 are plotted the points whose polar coördinates are $\left(6,60^{\circ}\right),\left(3, \frac{5 \pi}{4}\right),\left(-3,225^{\circ}\right),\left(6,180^{\circ}\right)$, and $\left(7,-\frac{2 \pi}{3}\right)$.

Every point determines an infinite number of pairs of numbers (ρ, θ).

Thus, if $O B=\rho$, the coördinates of B may be written in any one of the forms $(\rho, \theta),\left(-\rho, 180^{\circ}+\theta\right)$, $\left(\rho, 360^{\circ}+\theta\right),\left(-\rho, \theta-180^{\circ}\right)$, etc.

Unless the contrary is stated, we shall always suppose that θ is positive, or zero, and less than 360°; that is, $0 \leqq \theta<360^{\circ}$.

PROBLEMS

1. Plot the points $\left(4,45^{\circ}\right),\left(6,120^{\circ}\right),\left(-2, \frac{2 \pi}{3}\right),\left(4, \frac{\pi}{3}\right),\left(-4,-240^{\circ}\right)$, $(5, \pi)$.
2. Plot the points $\left(6, \pm \frac{\pi}{4}\right),\left(-2, \pm \frac{\pi}{2}\right),(3, \pi),(-4, \pi),(6,0),(-6,0)$.
3. Show that the points (ρ, θ) and $(\rho,-\theta)$ are symmetrical with respect to the polar axis.
4. Show that the points $(\rho, \theta),(-\rho, \theta)$ are symmetrical with respect to the pole.
5. Show that the points $\left(-\rho, 180^{\circ}-\theta\right)$ and (ρ, θ) are symmetrical with respect to the polar axis.
6. Locus of an equation. If we are given an equation in the variables ρ and θ, then the locus of the equation is a curve such that
7. Every point whose coördinates (ρ, θ) satisfy the equation lies on the curve.
8. The coördinates of every point on the curve satisfy the equation.
The curve may be plotted by solving the equation for ρ and finding the values of ρ for particular values of θ until the coördinates of enough points are obtained to determine the form of the curve.

The plotting is facilitated by the use of polar coördinate paper, which enables us to plot values of θ by lines drawn through the pole and values of ρ by circles having the pole as center. The tables on page 6 are to be used in constructing tables of values of ρ and θ.

EXAMPLES

1. Plot the locus of the equation

$$
\begin{equation*}
\rho=10 \cos \theta \tag{1}
\end{equation*}
$$

Solution. The calculation is made by assuming valnes for θ, as in the table, and calculating ρ, making use of the natural values of the cosine given in Art. 4. For example, if

$$
\theta=105^{\circ}, \rho=10 \cos 105^{\circ}=10 \cos \left(180^{\circ}-75^{\circ}\right)=-10 \cos 75^{\circ}=-2.6
$$

$\rho=10 \cos \theta$			
θ	ρ	θ	ρ
0	10	105°	-2.6
15°	9.7	120°	-5
30°	8.7	135°	-7
45°	7	150°	-8.7
60°	5	165°	-9.7
75°	2.6	180°	-10
90°	0		

The complete locus is found in this example without going beyond 180° for θ. The curve is a circle (Art. 50).

Since $\cos (-\theta)=\cos \theta$ (29, p. 3), equation (1) may be written $\rho=10 \cos (-\theta)$; that is, for every point (ρ, θ) on the locus there is also
a second point $(\rho,-\theta)$ on the locus. Since these points are symmetrical with respect to the polar axis, we have the result: The locus of (1) is symmetrical with respect to the polar axis.
2. Draw the locus of
(2)

$$
p^{2}=a^{2} \cos 2 \theta .
$$

Solution. Before plotting, we make the following observations:

1. Since the maximum value of $\cos 2 \theta$ is 1 , the maximum value of ρ is a, and the curve must be closed.
2. When $\cos 2 \theta$ is negative, ρ will be imaginary. Now $\cos 2 \theta$ is negative when 2θ is an angle in the second or third quadrant. That is, when

$$
90^{\circ}<2 \theta<270^{\circ}, \text { that is, } 45^{\circ}<\theta<135^{\circ},
$$

ρ is imaginary. There is no part of the curve between the 45° and 135° lines.
3. We may change θ to $-\theta$ in (2) without affecting the equation, and hence the locus is symmetrical with respect to the polar axis.

The complete curve is obtained if θ is given values from 0° to 45°, as in the table.

$\rho^{2}=a^{2} \cos 2 \theta$			
θ	2θ	$\cos 2 \theta$	ρ
0	0	1	$\pm a$
15°	30°	.866	$\pm .03 a$
30°	60°	.500	$\pm .7 a$
45°	90°	0	0

The complete curve results by plotting these points and the points symmetrical to them with respect to the polar axis. The curve is called a lemniscate. In the figure a is taken equal to 9.5.
3. Discuss and plot the locus of the equation

$$
\begin{equation*}
\rho=a \sec ^{2} \frac{1}{\lambda} A . \tag{8}
\end{equation*}
$$

For convenience we change the form of the equation. Using (26), p. 3,

$$
\rho=\frac{a}{\cos ^{2} \frac{1}{2} \theta} .
$$

Tben by (41), p. 4, $\cos ^{2} \frac{1}{2} \theta=\frac{1}{2}+\frac{1}{2} \cos \theta$. Hence the result :

$$
\rho=\frac{2 a}{1+\cos \theta} .
$$

$\rho=2 \div(1+\cos \theta)$							
θ	$\cos \theta$	$1+\cos \theta$	ρ	θ	$\cos \theta$	$1+\cos \theta$	ρ
0	1	2	1	105°	-.259	.741	2.7
15°	.966	1.966	1.02	120°	-.500	.500	4
30°	.866	1.866	1.07	135°	-.707	.293	6.7
45°	.707	1.707	1.2	150°	-.868	.134	14
60°	.500	1.500	1.3	165°	-.966	.034	50
75°	.259	1.259	1.6	180°	-1	0	∞
90°	0	1	2				

Solution. Before plotting, we note

1. The curve is symmetrical with respect to the polar axis, since θ may be replaced by $-\theta$.
2. ρ becomes infinite when $1+\cos \theta=0$, or $\cos \theta=-1$, and hence $\theta=180^{\circ}$. The curve recedes to infinity in the direction $\theta=180^{\circ}$.
3. ρ is never imaginary.

On account of 1 the table of values is computed only to $\theta=180^{\circ}$, and the rest of the curve is obtained from the symmetry with respect to the polar axis. Take $a=1$. The locus is a parabola.

Before plotting polar equations, the student should establish such simple facts as result from a discussion, as illustrated above.

PROBLEMS

Plot the loci of the following equations:

1. $\rho=10$.
2. $\theta=45^{\circ}$.
3. $\rho=16 \cos \theta$.
4. $\rho \cos \theta=6$.
5. $\rho \sin \theta=4$.
6. $\rho=\frac{4}{1-\cos \theta}$.
7. $\rho=\frac{8}{2-\cos \theta}$.
8. $\rho=\frac{8}{1-2 \cos \theta}$.
9. $\rho=a \sin \theta$.
10. $\rho=\frac{10}{1+\tan \theta}$.
11. $\rho^{2} \sin 2 \theta=16$.
12. $\rho^{2} \cos 2 \theta=a^{2}$.
13. $\rho \cos \theta=a \sin ^{2} \theta$.

14. $\rho=a \sec \theta \pm b . \quad b<a$. conchoid of nicomedes

15. $\rho=a(1-\cos \theta)$. cardioid

16. $\rho^{2}=a^{2} \sin 2 \theta$. TWO-LEAVED ROSE LEMNISCATE

17. $\rho=b-a \cos \theta . \quad b<\alpha$. limaçon
18. Plot the conchoid (Problem 14) for $b=a ; b>a$.
19. Plot the limaçon (Problem 17) for $b>a$.
20. The student should acquire skill in plotting polar equations rapidly when a rough diagram will serve.

For example, to draw the locus of

$$
\begin{equation*}
\rho=a \sin 3 \theta, \tag{1}
\end{equation*}
$$

we proceed as follows :
Let θ increase from 0°. Follow the variation of ρ from (1) as 3θ tescribes the successive quadrants.

When 3θ varies from	0° to 90°	90° to 180°	180° to 270°	270° to 360°	360° to $450^{\circ} 440^{\circ}$ to 540°	
then θ varies from	0° to 30°	30° to 60°	co 0° to 90	90° to 120°	120° to $150^{\circ} 150^{\circ}$ to 180°	
and ρ varies from	0 to a	a to 0	0 to $-a$	$-a$ to 0	0 to a	a to 0

For example, when 3θ varies from 270° to 360°, that is, is an angle in the fourth quadrant, then ρ is negative and increases from $-a$ to 0 .

Now draw the radial lines corresponding to the intervals of θ; that is, $0^{\circ}, 30^{\circ}, 60^{\circ}$, $90^{\circ}, 120^{\circ}, 150^{\circ}, 180^{\circ}$.

Noting the variation of ρ, we sketch the curve as follows :

The curve starts from the pole in the direction 0°, crosses the 30° line perpendicularly at $\rho=a$, returns to and passes through the pole on the 60° line, crosses the 90° line produced at $\rho=-a$,
 returns to and passes through the pole on the 120° line (produced), crosses the 150° line at $\rho=a$, and returns to the pole on the 180° line.

This gives the complete locus. The pencil point has moved continuonsly without abrupt change in direction, and has returned to the original position and direction.

The curve is called the three-leaved rose.

PROBLEMS

Draw rapidly the locus of each of the following equations:

1. $\rho=a \cos 3 \theta$.

THREE-LEAVED ROSE
2. $\rho=a \sin 2 \theta$.

FOUR-LEAVED ROSE
3. $\rho=a \cos 2 \theta$.

FOUR-LEAVED ROSE
4. $\rho=a \sin 4 \theta$.

EIGHT-LEAVED ROSE
5. $\rho=a \cos 4 \theta$.
6. $\rho=a \sin 5 \theta$.
7. $\rho=a \cos 5 \theta$.
8. $\rho=a(1+\sin \theta)$.
9. $\rho=a(1+\cos \theta)$.
10. $\rho=a \cos \left(\theta+45^{\circ}\right)$.
14. $\rho=a \sin 6 \theta$.
15. $\rho=a \sin ^{2} \frac{1}{2} \theta$.
16. $\rho=a \cos ^{2} \frac{1}{2} \theta$.
17. $\rho=a \sin ^{3} \frac{1}{3} \theta$.
18. $\rho=a \cos ^{3} \frac{1}{3} \theta$.
48. Points of intersection. By a method analogous to that used in rectangular coördinates we find the coördinates of the points of intersection of two polar curves by solving their equations simultaneously. This is best done by eliminating ρ, which will give rise in general to a transcendental equation in θ which can be solved either by inspection or by the graphical method employed in Art. 44.

The following example will illustrate the method.

EXAMPLE

Find the points of intersection of

$$
\begin{align*}
& \rho=1+\cos \theta, \tag{1}\\
& \rho=\frac{1}{2(1-\cos \theta)} . \tag{2}
\end{align*}
$$

Solution. Eliminating ρ,

$$
1+\cos \theta=\frac{1}{2(1-\cos \theta)}
$$

$$
1-\cos ^{2} \theta=\frac{1}{2},
$$

$$
\begin{aligned}
\cos ^{2} \theta & =\frac{1}{2}, \\
\cos \theta & = \pm \frac{\sqrt{2}}{2} .
\end{aligned}
$$

$$
\therefore \theta= \pm 45^{\circ}, \pm 135^{\circ} .
$$

Substituting these values in either equation, we obtain the following four points,

$$
\left(1+\frac{\sqrt{2}}{2}, \pm 45^{\circ}\right),\left(1-\frac{\sqrt{2}}{2}, \pm 135^{\circ}\right) .
$$

The result checks in the figure. The locus of (1) is a cardioid ; of (2), a parabola.

PROBLEMS

Find the points of intersection of the following pairs of curves and check by drawing the figure:

1. $\left\{\begin{array}{l}4 \rho \cos \theta=3, \\ 2 \rho=3 .\end{array}\right.$
2. $\left\{\begin{array}{l}4 \rho \cos \theta=3, \\ \rho=3 \cos \theta .\end{array}\right.$
3. $\left\{\begin{array}{l}2 \rho=3, \\ \rho=3 \sin \theta .\end{array}\right.$
4. $\left\{\begin{array}{l}\rho=\sqrt{3}, \\ \rho=2 \sin \theta .\end{array}\right.$
5. $\left\{\begin{array}{l}\rho=\cos \theta, \\ 4 \rho=3 \sec \theta .\end{array}\right.$
6. $\left\{\begin{array}{l}\rho=1+\cos \theta, \\ 2 \rho=3 .\end{array}\right.$
7. $\left\{\begin{array}{l}2 \rho=\sec ^{2} \frac{\theta}{2}, \\ \rho=2 .\end{array}\right.$
8. $\left\{\begin{array}{l}3 \rho=4 \cos \theta, \\ 2 \rho \cos ^{2} \frac{\theta}{2}=1 .\end{array}\right.$
9. $\left\{\begin{array}{l}\rho=\sin \theta, \\ \rho=\cos 2 \theta .\end{array}\right.$ Ans. $\left(\frac{1}{2}, 30^{\circ}\right),\left(\frac{1}{2}, 150^{\circ}\right)$.
10. $\left\{\begin{array}{l}\rho=1+\cos \theta, \\ \rho(1+\cos \theta)=1 .\end{array}\right.$

$$
\text { Ans. }\left(1, \pm 90^{\circ}\right) .
$$

11. $\left\{\begin{array}{l}\rho=2(1-\sin \theta), \\ \rho(1+\sin \theta)=1 .\end{array}\right.$

Ans. $\left(2 \mp \sqrt{2}, \pm 45^{\circ}\right)$, ($2 \mp \sqrt{2}, \pm 135^{\circ}$).
12. $\left\{\begin{array}{l}\rho=4(1+\cos \theta), \\ \rho(1-\cos \theta)=3 .\end{array}\right.$

Ans. $\left(6, \pm 60^{\circ}\right),\left(2, \pm 120^{\circ}\right)$.
13. $\left\{\begin{array}{l}\rho=5-2 \sin \theta, \\ \rho=\frac{6}{1+\sin \theta} .\end{array}\right.$
14. $\left\{\begin{array}{l}\rho=3-2 \cos \theta, \\ \rho=\frac{8}{3+2 \cos \theta} .\end{array}\right.$
15. $\left\{\begin{array}{l}\rho^{2}=9 \cos 2 \theta, \\ \rho=\sqrt{6} \cos \theta .\end{array}\right.$
16. $\left\{\begin{array}{l}\rho^{2}=\sin 2 \theta, \\ \rho=\sqrt{2} \sin \theta .\end{array}\right.$
17. $\left\{\begin{array}{l}\rho=\cos 3 \theta, \\ 2 \rho=\cos \theta .\end{array}\right.$
18. $\left\{\begin{array}{l}\rho=\theta, \\ \rho=\cos \theta .\end{array}\right.$
49. Transformation from rectangular to polar coördinates. Let $O X$ and $O Y$ be the axes of a rectangular system of coördinates, and let O be the pole and $O X$ the polar axis of a system of

polar coördinates. Let (x, y) and (ρ, θ) be respectively the rectangular and polar coördinates of any point P. It is necessary to distinguish two cases according as ρ is positive or negative.

When ρ is positive (Fig. 1) we have, by definition,

$$
\cos \theta=\frac{x}{\rho}, \quad \sin \theta=\frac{y}{\rho}
$$

whatever quadrant P is in.
Hence-

$$
\begin{equation*}
x=\rho \cos \theta, \quad y=\rho \sin \theta \tag{1}
\end{equation*}
$$

When ρ is negative (Fig. 2) we consider the point P^{\prime} symmetrical to P with respect to O, whose rectangular and polar coördinates are respectively $(-x,-y)$ and $(-\rho, \theta)$. The radius vector of $P^{\prime},-\rho$, is positive, since ρ is negative, and we can therefore use equations (1). Hence for P^{\prime}

$$
-x=-\rho \cos \theta, \quad-y=-\rho \sin \theta
$$

and hence for P
as before.

$$
x=\rho \cos \theta, \quad y=\rho \sin \theta
$$

Hence we have the
Theorem. If the pole coincides with the origin and the polar axis with the positive x-axis, then

$$
\left\{\begin{array}{l}
x=\rho \cos \theta \tag{I}\\
y=\rho \sin \theta
\end{array}\right.
$$

where (x, y) are the rectangular coördinates and (ρ, θ) the polar coördinates of any point.

Equations (I) are called the equations of transformation from rectangular to polar coördinates. They express the rectangular coördinates of any point in terms of the polar coördinates of that point and enable us to find the equation of a curve in polar. coördinates when its equation in rectangular coördinates is known, and vice versa.

From the figures we also have

$$
\left\{\begin{align*}
\rho^{2} & =x^{2}+y^{2}, & \theta & =\tan ^{-1} \frac{y}{x} \tag{2}\\
\sin \theta & =\frac{y}{ \pm \sqrt{x^{2}+y^{2}}}, & \cos \theta & =\frac{x}{ \pm \sqrt{x^{2}+y^{2}}}
\end{align*}\right.
$$

' $'$ hese equations express the polar coördinates of any point in terms of the rectangular coördinates. They are not as convenient for use as (I), although the first one is at times very convenient.

EXAMPLES

1. Find the equation of the circle $x^{2}+y^{2}=25$ in polar coordinates.

Solution. From the first equation of (2), we have at once $\rho^{2}=25$; hence $\rho= \pm 5$, which is the required equation. It expresses the fact that the point (ρ, θ) is five units from the origin.
2. Find the equation of the lemniscate (Ex. 2, p. 122) $\rho^{2}=a^{2} \cos 2 \theta$ in rectangular coördinates.

Solution. By 39, p. 4, since $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$,

$$
\rho^{2}=a^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
$$

Substituting from (2),

$$
\begin{aligned}
x^{2}+y^{2} & =a^{2}\left(\frac{x^{2}}{x^{2}+y^{2}}-\frac{y^{2}}{x^{2}+y^{2}}\right) \\
\therefore\left(x^{2}+y^{2}\right)^{2} & =a^{2}\left(x^{2}-y^{2}\right) . A n s
\end{aligned}
$$

50. Applications. Straight line and circle.

Theorem. The general equation of the straight line in polar coördinates is

$$
\begin{equation*}
\rho(A \cos \theta+B \sin \theta)+C=0 \tag{II}
\end{equation*}
$$

where A, B, and C are arbitrary constants.
Proof. The general equation of the line in rectangular coördinates is

$$
A x+B y+C=0
$$

By substitution from (I) we obtain (II).
Q.E.D.

Special cases of (II) are $\rho \cos \theta=a, \rho \sin \theta=b$, which result respectively when $B=0$, or $A=0$; that is, when the line is parallel to $O Y$ or $O X$.

In like manner we obtain from (II), p. 93, the

Theorem. The general equation of the circle in polar coördinates is (III) $\rho^{2}+\rho(D \cos \theta+E \sin \theta)+F=0$, where D, E, and F are arbitrary constants.

We may easily show further that if the pole is on the circumference and the polar axis is a diameter, the equation of the circle is

$$
\rho=2 r \cos \theta
$$

where r is the radius of the circle.

For if the center lies on the polar axis, or x-axis, $\mathrm{E}=0$, and if the circle passes through the pole, or origin, $F=0$. The abscissa of the center equals the radins, and hence $-\frac{D}{2}=r$, or $D=-2 r$. Substituting these values of D, E, and F in (III) gives $\rho-2 r \cos \theta=0$.

This result is easily seen also directly from the figure on page 130.

Similarly, if the circle touches the polar axis at the pole, the equation is $\rho=2 r \sin \theta$.

Theorem. The length l of the line joining two points $P_{1}\left(\rho_{1}, \theta_{1}\right)$ and $P_{2}\left(\rho_{2}, \theta_{2}\right)$ is given by

$$
\begin{equation*}
l^{2}=\rho_{1}^{2}+\rho_{2}^{2}-2 \rho_{1} \rho_{2} \cos \left(\theta_{1}-\theta_{2}\right) . \tag{IV}
\end{equation*}
$$

Proof. Let the rectangular coördinates of P_{1} and P_{2} be respectively (x_{1}, y_{1}) and (x_{2}, y_{2}). Then by (I), p. 129,

$$
\begin{array}{ll}
x_{1}=\rho_{1} \cos \theta_{1}, & x_{2}=\rho_{2} \cos \theta_{2}, \\
y_{1}=\rho_{1} \sin \theta_{1}, & y_{2}=\rho_{2} \sin \theta_{2} .
\end{array}
$$

But

$$
l^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2},
$$

and hence $l^{2}=\left(\rho_{1} \cos \theta_{1}-\rho_{2} \cos \theta_{2}\right)^{2}+\left(\rho_{1} \sin \theta_{1}-\rho_{2} \sin \theta_{2}\right)^{2}$.
Removing parentheses and using 28 and 36 , p. 3, we obtain (IV).
Q.E.D.

Formula (IV) may also be derived directly from a figure by using the law of cosines (44, p. 4).

PROBLEMS

1. Find the polar coördinates of the points $(3,4),(-4,3),(5,-12),(4,5)$.
2. Find the rectangular coördinates of the points $\left(5, \frac{\pi}{2}\right)\left(-2, \frac{3 \pi}{4}\right)$, (3, π).
3. Transform the following equations into polar coördinates and plot their loci:
(a) $x-3 y=0$.

Ans. $\theta=\tan ^{-1} \frac{1}{8}$.
(b) $y^{2}+5 x=0$.

Ans. $\rho=-5 \cot \theta \operatorname{cosec} \theta$.
(c) $x^{2}+y^{2}=16$.
(d) $x^{2}+y^{2}-a x=0$.
(e) $2 x y=7$.
(f) $x^{2}-y^{2}=a^{2}$.
(g) $x \cos \omega+y \sin \omega-p=0$.

Ans. $\rho= \pm 4$.
Ans. $\rho=a \cos \theta$.
Ans. $\rho^{2} \sin 2 \theta=7$.
Ans. $\rho^{2} \cos 2 \theta=a^{2}$.
Ans. $\rho \cos (\theta-\omega)-p=0$.
4. Transform equations 1 to 18, p. 124, iuto rectangular coördinates.

LOCUS PROBLEMS

The locus should be drawn in each case (see the figures below).

1. Find the locus of a point such that
(a) its radius vector is proportional to its vectorial angle.

Ans. The spiral of Archimedes, $\rho=a \theta$.

$\rho=\mu \theta$.
SPIRAL OF ARCHIMEDES

$\rho \theta=a$.
HYPERBOLIC OR RECIPROCAL SIIRAL

$\rho^{2} \theta=a^{2}$.
hituus

$\log \rho=a \theta$.
LOGARITHMIC OR EQUIANGULAR SPIRAL
(b) its radius vector is inversely proportional to its vectorial angle.

Ans. The hyperbolic or reciprocal spiral, $\rho \theta=a$.
(c) the square of its radius vector is inversely proportional to its vectorial angle.

Ans. The lituus, $\rho^{2} \theta=a^{2}$.
(d) the logarithm of its radius vector is proportional to its vectorial angle.
$A n s$. The logarithmic spiral, $\log \rho=a \theta$.
Theorem on the logarithmic spirat. When two points, P_{1} and P_{2}, have been plotted on a logarithmic spiral, points between them on the locus may be constructed geometrically by the following theorem:

If the angle $\mathrm{P}_{2} \mathrm{OP}_{1}$ is bisected, and if on this bisector OP_{3} is laid off equal to a mean propontional between $O P_{1}$ and $O P_{2}$, then P_{3} is on the locus.

Proof. By hypothesis, since P_{1} and P_{3} are on
the curve $\log \rho=a \theta$,

$$
\log \rho_{1}=a \theta_{1} \text { and } \log \rho_{2}=a \theta_{2}
$$

Adding and dividing by 2 ,

$$
\frac{1}{2} \log \rho_{1}+\frac{1}{2} \log \rho_{2}=a\left(\frac{\theta_{1}+\theta_{2}}{2}\right), \text { or }
$$

$$
\log \sqrt{\rho_{1} \rho_{2}}=a\left(\frac{\theta_{1}+\theta_{2}}{2}\right) \cdot(14 \operatorname{and} 17, \text { p. } 1)
$$

If P_{3} is $\left(\rho_{3}, \theta_{3}\right)$, then, by construction, $\theta_{2}-\theta_{3}=\theta_{3}-\theta_{1}$, or $\theta_{3}=\frac{\theta_{1}+\theta_{2}}{2}$, and $\rho_{3}=\sqrt{\rho_{1} \rho_{2}}$.

Hence, by (2), $\log \rho_{3}=a \theta_{3}$, and P_{3} is also on the locus.
Q.E.D.

PROBLEIMS FOR INDIVIDUAL STUDY

Plot carefully the following loci :

1. $\boldsymbol{\rho}=a \sin \theta+b \sec \theta$.
2. $\rho=\cos 3 \theta+\cos \theta+1$.
3. $\left(\rho-\frac{a}{2}\right)^{2}=a^{2} \cos 2 \theta$.
4. $\rho=\cos 3 \theta+\cos 2 \theta$.
5. $\rho=\cos 3 \theta-\sin 2 \theta$.
6. $\rho=a(\cos 2 \theta+\sin 2 \theta)$.
7. $p=a \cos 2 \theta+\frac{a}{2} \sec \theta$.
8. $\rho=a \sin 2 \theta+\frac{a}{2} \sec \theta$.
9. $\rho=a \sin ^{3} \frac{\theta}{3}$.
10. $\rho=a \cos ^{2} \frac{\theta}{2}$.
11. $\rho^{2} \cos \theta=a^{2} \sin 3 \theta$.
12. $\rho=a \cos 2 \theta+b \cos \theta$.
13. $\rho=a \sin 2 \theta+b \cos \theta$.
14. $\rho=a \cos 2 \theta+b(\sin \theta+1)$.
15. $\rho=a \cos 3 \theta-b \cos \theta$.
16. $\rho^{2}=\frac{2 \cos \theta}{\cos 2 \theta}+1$.
17. $\boldsymbol{\rho}^{2}=\frac{2 \cos 2 \theta}{\cos \theta+2}+1$.

CHAPTER VIII

FUNCTIONS AND GRAPHS

51. Functions. In many practical problems two variables are involved in such a manner that the value of one depends upon the value of the other. For example, given a large number of letters, the postage and the weight are variables, and the amount of the postage depends upon the weight. Again, the premium of a life-insurance policy depends upon the age of the applicant. Many other examples will occur to the student.

This relation between two variables is made precise by the definition:

A variable is said to be a function of a second variable when its value depends upon the value of the latter and is determined when a definite value is assumed for the second variable.

Thus the postage is determined when a definite weight is assumed; the premium is determined when a definite age is assumed.

Consider another example:
Draw a circle of diameter 5 in . An indefinite number of rectangles may be inscribed within this circle. But the student will notice that the entire rectangle is determined as soon as a side is drawn. Hence the area of the rectangle is a function of its side.

Let us now find the equation ex-
 pressing the relation between a side and the area of the rectaugle.

Draw any one of the rectangles and denote the length of its base by x in. Then by drawing a diagonal (which is, of 134
course, a diameter of the circle), the altitude is found to be equal to $\left(25-x^{2}\right)^{\frac{1}{2}}$. Hence if A denotes the area in square inches, we have

$$
\begin{equation*}
A=x\left(25-x^{2}\right)^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

This equation gives the functional relation between the function A and the variable x. From it we are enabled to calculate the value of the function A corresponding to any value of the variable x. For exampie:
if

$$
x=1 \mathrm{in} ., \quad A=(24)^{\frac{1}{2}}=4.9 \mathrm{sq} . \text { in. } ;
$$

if $\quad x=3$ in., $A=12$ sq. in.;
if $\quad x=4$ in., $A=12$ sq. in.; etc.
To obtain a representation of the equation (1) for all vaıues of x, we draw a graph of the equation. This we do by drawing rectangular axes and plotting
the values of the variable (x) as abscissas,
the values of the function (A) as ordinates.
Any functional relation may be graphed in this way. We must, however, first discuss the equation (1).

The values of x and A are positive from the nature of the problem.

The values of x range from zero to 5 , inclusive.

The student should now choose a suitable scale on each axis and draw the graph. In this case, unit length on the axis of abscissas represents 1 in., and unit length on the axis of ordinates represents 1 sq.in. These two unit lengths need not be the same.

What do we learn from the graph?

1. If carefully drawn, we may measure from the graph the area of the inscribed rectangle corresponding to any side we choose to assume.
2. There is one horizontal tangent. The ordinate at its point of contact is greater than any other ordinate. Hence this discovery : One of the inscribed reetangles is greater in area than any of the others; that is, there is a maximum rectangle. In other words, the function defined by equation (1) has a maximum value.

Careful measurement will give for the base of the maximum rectangle, $x=3.5$, and for the area, $A=12.5$. These results, as may be shown by the methods of the differential calculus, are, in fact, correct to one place of decimals. The maximum rectangle is a square ; that is, of all rectangles inscribed in a given circle, the square has the greatest area.

The fact that a maximum rectangle exists can be seen in advance by reasoning thus: Let the base x increase from zero to 5 in. The area A will then begin with the value zero and return to zero. Since A is always positive, the graph must have a "highest point." Hence there is a maximum value of A, and therefore a maximum rectangle.

Take one more example: A wooden box, open at the top, is to be built to contain $108 \mathrm{cu} . \mathrm{ft}$. The base must be square. This is the only condition. It is evident that under this condition any number of such boxes may be built, and that the number of square feet of lumber used will vary accordingly. If, however, we choose any length for a side of the square base, only one
 box with this dimension can be built, and the material used is determined. Hence the material used is a function of a side of the square base.

Let us now find the functional relation between the number of square feet of lumber necessary and the length of one side of the square base measured in feet.

Consider any one box.

Let $\quad M=$ amount of lnmber in square feet,
$x=$ length of side of the square base in feet,
and

$$
h=\text { leight of the box in feet. }
$$

Then \quad area of base $=x^{2}$ sq. ft.,
and \quad area of sides $=4 \mathrm{kx} \mathrm{sq} . \mathrm{ft}$.
Hence

$$
M=x^{2}+4 h x .
$$

But a relation exists between h and x, for the value of M must depend upon the value of x alone. In fact, the volume equals $108 \mathrm{cu} . \mathrm{ft}$.

Hence

$$
h x^{2}=108, \text { and } h=\frac{108}{x^{2}} .
$$

Therefore

$$
\begin{equation*}
M=x^{2}+\frac{432}{x} . \tag{2}
\end{equation*}
$$

This equation enables us to calculate the number of square feet of lumber in any box with a given square base which has a capacity of $108 \mathrm{cu} . \mathrm{ft}$. The calculation is given in the table:

x	0	1	2	3	4	5	6	7	8	\cdots	20	etc.	feet
M	∞	433	220	153	124	111	108	111	118	\cdots	421	etc.	sq. ft.

Thus, if $\quad x=1 \mathrm{ft} ., \quad M=433 \mathrm{sq} . \mathrm{ft}$;
if
$x=4 \mathrm{ft} ., \quad M=124 \mathrm{sq} . \mathrm{ft} . ;$
if
$x=8 \mathrm{ft} ., \quad M=118 \mathrm{sq} . \mathrm{ft} . ;$ etc.
The student should now graph equation (2), choosing units thus:
unit length on the axis of abscissas represents 1 ft ; unit length on the axis of ordinates represents 1 sq . ft .
We must, however, choose a very small unit ordinate, since the values of M are large.
A preliminary discussion of (2) shows that x may have any value (positive).

What do we learn from the graph?

1. If carefully drawn, we may measure from the graph the number of square feet of lumber in any box which contains $108 \mathrm{cu} . \mathrm{ft}$. and has a square base.
2. There is one horizontal tangent. The ordinate at its point of contact is less than any other ordinate. Hence this discovery: One of the boxes takes less lumber than any other; that is, M has a minimum value. This point on the graph can be determined exactly by calculus, but
 careful measurement will in this case give the correct values, namely, $x=6, M=108$. That is, the construction will take the least lumber (108 sq . ft.) if the base is 6 ft . square.

The fact that a least value of M must exist is seen thus. Let the base increase from a very small square to a very large one. In the former case the height must be very great, aud hence the annount of lumber will be large. In the latter case, while the height is small, the base will take a great deal of lumber. Hence M varies from a large value to another large value, and the graph must have a "lowest point."

In the following problems the student will work out the functional relation, draw the graph, and state any conclusions to be drawn from the figure. Care should be exercised in the selection of suitable scales on the axes, especially in the scale adopted for plotting values of the function (compare p. 137). The graph should be neither very flat nor very steep. To avoid the latter we may select a large unit of length for the variable. The plot should be accurate and the maximum and minimum values of the function should be measured and calculated, additional values of the variable being used, if necessary.

PROBLEMS

1. Rectangles are inscribed in a circle of radius 2 in . Plot the perimeter P of the rectangles as a function of the breadth x.

$$
\text { Ans. } P=2 x+2\left(16-x^{2}\right)^{\frac{1}{2}} .
$$

2. Right triangles are constructed on a line of length 5 in . as hypotenuse. Plot (a) the area A and (b) the perimeter P as a function of the length x of one leg.

Ans. (a) $A=\frac{1}{2} x\left(25-x^{2}\right)^{\frac{1}{2}}$; (b) $P=x+5+\left(25-x^{2}\right)^{\frac{1}{2}}$.
3. Right cylinders* are inscribed in a sphere of radius r. Plot as functions of the altitude x of the cylinder, (a) the volume I^{r} of the cylinder, (b) the curved surface S.
Ans. (a) $V=\frac{\pi}{4}\left(4 r^{2} x-x^{3}\right) ;$
(b) $S=\pi x\left(4 r^{2}-x^{2}\right)^{\frac{1}{2}}$.
4. Right cones* are inscribed in a sphere of radius r. Plot as functions of the altitude x of the cone, (a) the volume T^{\top} of the cone, (b) the curved surface S.

$$
\text { Ans. (a) } V=\frac{\pi}{3}\left(2 r x^{2}-x^{3}\right) ; \text { (b) } S=\pi\left(4 r^{2} x^{2}-2 r x^{3}\right)^{\frac{1}{2}} \text {. }
$$

5. Right cylinders are inscribed in a given right cone. If the height of the cone is h and the radius of the base r, plot (a) the volume V of the cylinder, (b) the curved surface S, (c) the entire surface T, as functions of the altitude x of the cylinder.

$$
\begin{gathered}
\text { Ans. (a) } V=\frac{\pi r^{2} x}{h^{2}}(h-x)^{2} ;(\mathrm{b}) S=\frac{2 \pi r x}{\hbar}(h-x) \text {; } \\
\text { (c) } T=\frac{2 \pi r}{h^{2}}(h-x)[r h+(h-r) x] .
\end{gathered}
$$

6. Right cones are circumscribed about a sphere of radius r. Plot as a function of the altitude x of the cylinder, the volume V^{r} of the cone.

$$
\text { Ans, } \quad V=\frac{1}{3} \pi \frac{r^{2} x^{2}}{x-2 r}
$$

7. Right cones are constructed with a given slant height L. Plot as functions of the altitude x of the cone, (a) the volume V of the cone, (b) the curved surface S, (c) the entire surface T.

$$
\text { Ans. (a) } V=\frac{1}{3} \pi\left(L^{2} x-x^{8}\right) ; \text { (b) } S=\pi L\left(L^{2}-x^{2}\right)^{\frac{1}{2}} \text {. }
$$

8. A conical tent is to be constructed of given volume V. Plot the amount A of canvas required as a function of the radius x of the base.

$$
\text { Ans. } A=\frac{\left(\pi^{2} x^{6}+9 V^{2}\right)^{\frac{1}{2}}}{x}
$$

* Use formulas 5-9, p. 1.

9. A cylindrical tin can is to be constructed of given volume I. Plot the amount A of tin required as a function of the radius x of the can.

$$
\text { Ans. } A=2 \pi x^{2}+\frac{2 V}{x}
$$

10. An open box is to be made from a sheet of pasteboard 12 in . square by cutting equal squares from the four corners and bending up the sides. Plot the volume V as a function of the side x of the square cut out.

Ans. $V=x(12-2 x)^{2}$.
11. The strength of a rectangular beam is proportional to the product of the cross section by the square of the depth. Plot the strength S as a function of the depth x for beams which are cut from a $\log 12 \mathrm{in}$. in diameter.

Ans. $S=k x^{3}\left(144-x^{2}\right)^{\frac{1}{2}}$.
12. A rectangular stockade is to be built to contain an area of 1000 sq. yd. A stone wall already constructed is available for one of the sides. Plot the length L of the wall to be built as a function of the length x of the side of the rectangle parallel to the wall.

$$
\text { Ans. } \quad L=\frac{2000}{x}+x
$$

13. A tower is 100 ft . high. Plot the angle y subtended by the tower at a point on the ground as a function of the distance x from the foot of the tower.

$$
\text { Ans. } y=\tan ^{-1} \frac{100}{x}
$$

14. A tower 55 ft . high is surmounted by a statue 10 ft . high, If an observer's eyes are 5 ft . above the ground, plot the angle y subtended by the statue as a function of the observer's distance x from the tower.

$$
\text { Ans. } y=\tan ^{-1} \frac{60}{x}-\tan ^{-1} \frac{50}{x}
$$

15. A line is drawn through a fixed point (a, b). Plot as a function of the intercept on $X X^{\prime}(=x)$ of the line, the area A of the triangle formed with the coördinate axes.

Ans. $A=\frac{b x^{2}}{2(x-a)}$.
16. A ship is 41 mi . due north of a second ship. The first sails south at the rate of 8 mi . an hour, the second east at the rate of 10 mi . an hour. l'lot their distance d apart as a function of the time t which has elapsed since they were in the position given. Ans. $d=\left(164 t^{2}-656 t+1681\right)^{\frac{1}{2}}$.
17. Plot the distance e from the point $(4,0)$ to the points (x, y) on the parabola $y^{2}=4 x$.

Ans. $e=\left(x^{2}-4 x+16\right)^{\frac{1}{2}}$.
18. A gutter is to be constructed whose cross section is a broken line made up of three pieces, each 4 in . long, the middle piece being horizontal, and the two sides being equally inclined. (a) Plot the area A of
a cross section of the gutter as a function of the width x of the gutter across the top. (b) Plot the area A as a function of the angle of inclination of the sides to the horizontal.

Ans. (a) $A=\frac{1}{4}(x+4)\left(48+8 x-x^{2}\right)^{\frac{1}{2}}$; (b) $A=8(\sin 2 \theta+2 \sin \theta)$.
19. A Norman window consists of a rectangle surmounted by a semicircle. Given the perimeter P, plot the area A as a function of the width x.

$$
\text { Ans. } A=\frac{1}{2} x P-\frac{1}{2} x^{2}-\frac{\pi}{8} x^{2} .
$$

20. A person in a boat 9 mi . from the nearest point of the beach wishes to reach a place 15 mi . from that point along the shore. He can row at the rate of 4 mi . an hour and walk at the rate of 5 mi . an hour. The time it takes him to reach his destination depends on the place at which he lands. Plot the time as a function of the distance x of his landing place from the nearest point on the beach.

$$
\begin{aligned}
& \text { on the beach. } \\
& \text { Ans. Time }=\frac{\sqrt{81+x^{2}}}{4}+\frac{15-x}{5} .
\end{aligned}
$$

21. The illumination of a plane surface by a luminous point varies directly as the cosine of the angle of incidence, and inversely as the square of the distance from the surface. Plot the illumination I at a point on the floor 10 ft . from the wall as it function of the height x of a gas burner on,the wall.

$$
\text { Ans. } I=\frac{k x}{\left(100+x^{2}\right)^{\frac{8}{2}}} \text {. }
$$

22. A Gothic window has the shape of an equilateral triangle mounted on a rectangle. The base of the triangle is a chord of the window. The total length of the frame of the window is constant. Express, plot, and discuss the area of the window as a function of the width.
23. A printed page is to contain 24 sq . in. of printed matter. The top and bottom margins are each $1 \frac{1}{2}$ in., the side margins 1 in. each. Express, plot, and discuss the area of the page as a function of the width.
24. A manufacturer has 96 sq . ft . of lumber with which to make a box with a square base and a top. Express, plot, and discuss the contents of the box as a function of the side of the base.
25. (a) Isosceles triangles of the same perimeter, 12 in ., are cut out of rubber. Express, plot, and discuss the area as a function of the base. (b) Isosceles triangles of the same area, 10 sq . in., are cut out of rubber. Express, plot, and discuss the perimeter as a function of the base.
26. Small cylindrical boxes are made each with a cover whose breadth and height are equal. The cover slips on tight. Each box is to hold $\pi \mathrm{cu} . \mathrm{in}$. Express, plot, and discuss the amount of material used as a function of the length of the box.
27. A circular filter paper has a diameter of 11 in . 1 t is folded into a conical shape. Express the volume of the cone as a function of the angle of the sector folded over. Plot and discuss this function.
28. Two sources of heat are at the points A and B. Remembering that the intensity of heat at a point varies inversein as the square of the distance from the source, express the intensity of heat at any point between A and B as a function of its distance from A. Plot and discuss this function.
29. A submarine telegraph cable consists of a central circular part, called the core, suryounded by a ring. If x denotes the ratio of the radius of the core to the thickness of the ring, it is known that the speed of signaling varies as $x^{2} \log \frac{1}{x}$. Plot and discuss this function.
30. A wall 10 ft . high surrounds a square house which is 15 ft . from the wall. Express the length of a ladder placed without the wall, resting upon it and just reaching the house, as a function either of the distance of the foot of the ladder from the wall, or of the inclination of the ladder to the horizoutal. Plot and discuss this function.
31. The volume of a right prism having an equilateral triangular base is 2. Express its total surface as a function of the edge of the base. Plot and discuss.
32. A letter Y stands $a \mathrm{ft}$. high and measures $b \mathrm{ft}$. across the top. Express the total length of the leg and two arms as a function of the length of the leg. Plot and discuss.
33. The sum of the perimeters of a square and a circle is constant. Express their combined areas as a function of the radius of the circle. Plot and discuss.
34. A water tank is to be constructed with a square base and open top, and is to hold 64 crr . yd. The cost of the sides is $\$ 1$ a square yard, and of the bottom $\$ 2$ a square yard. Plot and discuss the cost.
35. A rectangular tract of land is to be bought for the purpose of laying out a quarter-mile track with straightaway sides and semicircular ends. In addition a strip $35 \bar{y}$. wide along each straightaway is to be bought for grand stands, training quarters, etc. If the land costs $\$ 200$ an acre, plot and discuss the cost of the land required.
36. A cylindrical steam boiler is to be constructed having a capacity of $1000 \mathrm{cu} . \mathrm{ft}$. The material for the side costs $\$ 2$ a square foot, and for the ends $\$ 3$ a square foot. Plot and discuss the cost.
37. In the corner of a field bounded by two perpendicular roads a spring is situated 6 rd . from one road and 8 rd . from the other. How
should a straight road be run by this spring and across the corner so as to cut off as little of the field as possible?

Ans. 12 and 16 rd . from the corner.
38. When the resistance of air is taken into account, the inclination of a pendulum to the vertical is given by the formula

$$
\theta=\alpha e^{-k t} \cos (n t+\epsilon) .
$$

Plot θ as a function of the time t.
52. Notation of functions. The symbol $f(x)$ is used to denote a function of x, and is read " f of x." In order to distinguish between different functions, the prefixed letter is changed, as $F(x), \phi(x)$ (read "phi of $x "$), $f^{\prime}(x)$, etc.

During any investigation the same functional symbol always indicates the same law of dependence of the function upon the variable. In the simpler cases this law takes the form of a series of analytical operations upon that variable. Hence, in such a case, the same functional symbol will indicate the same operations or series of operations, even though applied to different quantities. Thus, if

$$
f(x)=x^{2}-9 x+14
$$

then

$$
f(y)=y^{2}-9 y+14 .
$$

Also

$$
\begin{aligned}
f(a) & =a^{2}-9 a+14 \\
f(b+1) & =(b+1)^{2}-9(b+1)+14=b^{2}-7 b+6, \\
f(0) & =0^{2}-9 \cdot 0+14=14 \\
f(-1) & =(-1)^{2}-9(-1)+14=24, \\
f(7) & =7^{2}-9 \cdot 7+14=0, \text { etc. }
\end{aligned}
$$

PROBLEMS

1. Given $\phi(x)=\log _{10} x$. Find $\phi(2), \phi(1), \phi(5), \phi(a-1), \phi\left(b^{2}\right)$, $\phi(x+1), \phi(\sqrt{x})$.
2. Given $\phi(x)=e^{2 x}$. Find $\phi(0), \phi(1), \phi(-1), \phi(2 y), \phi(-x)$.
3. Given $f(x)=\sin 2 x$. Find $f\left(\frac{\pi}{2}\right), f\left(\frac{\pi}{4}\right), f(-\pi), f(-x), f(\pi-x)$, $f\left(\frac{1}{2} \pi-A\right), f\left(\frac{3}{2} \pi+B\right)$.
4. Given $\theta(x)=\cos x$. Prove

$$
\theta(x)+\theta(y)=2 \theta\left(\frac{x+y}{2}\right) \theta\left(\frac{x-y}{2}\right)
$$

CHAPTER IX

TRANSFORMATION OF COÖRDINATES

53. When we are at liberty to choose the axes as we please we generally choose them so that our lesults shall have the simplest possible form. When the axes are given, it is important to be able to find the equation of a given curve referred to some other axes. The operation of changing from one pair of axes to a second pair is known as a transformation of coördinates. We regard the axes as moved from their givel position to a new position and we seek formulas which express the old coördinates in terms of the new coördinates.
54. Translation of the axes. If the axes be moved from a first position $O X$ and $O Y$ to a second position $O^{\prime} X^{\prime}$ and $O^{\prime} Y^{\prime}$ such that $O^{\prime} X^{\prime}$ and $O^{\prime} Y^{\prime}$ are respectively parallel to $O X$ and $O Y$, then the axes are said to be translated from the first to the second position.

Let the new origin be $O^{\prime}(h, k)$ and let the coördinates of any point P before and after the translation be respectively (x, y)
 and $\left(x^{\prime}, y^{\prime}\right)$. Then, in the figure,

$$
\begin{aligned}
& O A=h, \quad O M=x, \quad O^{\prime} M^{\prime}=x^{\prime} \\
& O B=k, \quad M P=y, \quad M A^{\prime} P=y^{\prime}
\end{aligned}
$$

Projecting $O P$ and $O O^{\prime} P$ on $O x$, we obtain (Art. 31)

$$
\begin{aligned}
O M I & =O A+O^{\prime} M^{\prime} ; \\
\therefore x & =x^{\prime}+h . \\
y & =y^{\prime}+k .
\end{aligned}
$$

Similarly,

Hence the

Theorem. If the axes be translated to a new origin (h, k), and if (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are respectively the coördinates of any point P before and after the translation, then

$$
\left\{\begin{array}{l}
x=x^{\prime}+h, \tag{I}\\
y=y^{\prime}+k .
\end{array}\right.
$$

Equations (I) are called the equations for translating the axes. To find the equation of a curve referred to the new axes when its equation referred to the old axes is given, substitute in the given equation the values of x and y given by (1) and reduce.

EXAMPLE

Transform the equation

$$
x^{2}+y^{2}-6 x+4 y-12=0
$$

when the axes are translated to the new origin $(3,-2)$.
Solution. Here $h=3$ and $k=-2$, so equations (I) become

$$
x=x^{\prime}+3, \quad y=y^{\prime}-2 .
$$

Substituting in the given equation, we obtain

$$
\begin{aligned}
\left(x^{\prime}+3\right)^{2} & +\left(y^{\prime}-2\right)^{2}-6\left(x^{\prime}+3\right) \\
& +4\left(y^{\prime}-2\right)-12=0
\end{aligned}
$$

or, reducing, $x^{\prime 2}+y^{\prime 2}=25$.
This result could easily be foreseen. For the locus of the given equation is a circle whose center is
 $(3,-2)$ and whose radius is 5 . When the origin is translated to the center the equation of the circle must necessarily have the form obtained.

PROBLEMS

1. Find the new coördinates of the points $(3,-5)$ and $(-4,2)$ when the axes are translated to the new origin (3,6).
2. Transform the following equations when the axes are translated to the new origin indicated and plot both pairs of axes and the curve :
(a) $3 x-4 y=6,(2,0)$.
(b) $x^{2}+y^{2}-4 x-2 y=0,(2,1)$.

Ans. $3 x^{\prime}-4 y^{\prime}=0$.
Ans. $x^{\prime 2}+y^{\prime 2}=5$.
(c) $y^{2}-6 x+9=0,\left(\frac{3}{2}, 0\right)$.
(d) $x^{2}+y^{2}-1=0,(-3,-2)$.
(e) $y^{2}-2 k x+k^{2}=0,\left(\frac{k}{2}, 0\right)$.
(f) $x^{2}-4 y^{2}+8 x+24 y-20=0,(-4,3)$. Ans. $x^{2}-4 y^{\prime 2}=0$.
3. Derive equations (I) if O^{\prime} is in (a) the second quadrant; (b) the third quadrant; (c) the fourth quadrant.
55. Rotation of the axes. Let the axes $O X$ and $O Y$ be rotated about O through an angle θ to the positions $O X^{\prime}$ and $O Y^{\prime}$. The equations giving the coördinates of any point referred to $O X$ and $O Y$ in terms of its coördinates referred to $O X^{\prime}$ and $O Y^{\prime}$ are called the equations for rotating the axes.

Theorem. The equations for rotating the axes through an angle θ are

$$
\left\{\begin{array}{l}
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \tag{II}\\
y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
\end{array}\right.
$$

Proof. Let P be any point whose old and new coördinates are respectively (x, y) and $\left(x^{\prime}, y^{\prime}\right)$. Draw $O P$, and draw $P . M^{\prime}$ perpendicular to $O \mathrm{~N}^{\prime}$. Project $O P$ and $O M^{\prime} P$ on $O X$.

The projection of $O P$ on $O X=x$.
(Art. 31)
The projection of $O M^{\prime}$ on $O X=x^{\prime} \cos \theta$. (Art. 31)
The projection of $M^{\prime} P$ on $O X=y^{\prime} \cos \left(\frac{\pi}{2}+\theta\right)$
(Art. 31)

$$
=-y^{\prime} \sin \theta . \quad(\text { By } 31, \text { p. 3) }
$$

But by Art. 31,
projection of $O P=$ projection of $O M I^{\prime}+$ projection of $M^{\prime} P$.

$$
\therefore x=x^{\prime} \cos \theta-y^{\prime} \sin \theta
$$

In like manner, projecting $O P$ and $O M^{\prime} P$ on $O Y$, we obtain

$$
\begin{aligned}
y & =x^{\prime} \cos \left(\frac{\pi}{2}-\theta\right)+y^{\prime} \cos \theta \\
& =x^{\prime} \sin \theta+y^{\prime} \cos \theta
\end{aligned}
$$

If the equation of a curve in x and y is given, we substitute from (II) in order to find the equation of the same curve referred to $O X^{\prime}$ and $O Y^{\prime}$.

EXAMPLE

Transform the equation $x^{2}-y^{2}=16$ when the axes are rotated through 45°.

Solution. Since

$$
\sin 45^{\circ}=\frac{1}{2} \sqrt{2}=\frac{1}{\sqrt{2}}
$$

and

$$
\cos 45^{\circ}=\frac{1}{\sqrt{2}},
$$

equations (II) become

$$
x=\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}, y=\frac{x^{\prime}+y^{\prime}}{\sqrt{2}} .
$$

Substituting in the given equation, we obtain

$$
\left(\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}\right)^{2}-\left(\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}\right)^{2}=16
$$

or, simplifying,
 $x^{\prime} y^{\prime}+8=0$.

PROBLEMS

1. Find the coördinates of the points $(3,1),(-2,6)$, and $(4,-1)$ when the axes are rotated through $\frac{\pi}{2}$.
2. Transform the following equations when the axes are rotated through the indicated angle. Plot both pairs of axes and the curve.
(a) $x-y=0 ; \frac{\pi}{4}$.
(b) $x^{2}+2 x y+\underset{y^{2}}{2}=8 ; \frac{\pi}{4}$.
(c) $y^{2}=4 x ;-\frac{\pi}{2}$.
(d) $x^{2}+4 x y+y^{2}=16 ; \frac{\pi}{4}$.
(e) $x^{2}+y^{2}=r^{2} ; \theta$.

Ans. $y^{\prime}=0$.
Ans. $x^{\prime 2}=4$.
Ans. $x^{\prime 2}=4 y^{\prime}$.
Ans. $3 x^{\prime 2}-y^{\prime 2}=16$.
Ans. $x^{\prime 2}+y^{2}=r^{2}$.
(f) $x^{2}+2 x y+y^{2}+4 x-4 y=0 ;-\frac{\pi}{4}$. Ans. $\sqrt{2} y^{\prime 2}+4 x^{\prime}=0$.
(g) $3 x^{2}-4 x y-1=0$; arctan 2 .
(h) $x^{2}+3 x y-3 y^{2}=2$; $\arctan \frac{1}{3}$.

Ans. $x^{\prime 2}-4 y^{\prime 2}+1=0$
(i) $x^{2}+3 x y+5 y^{2}=11$; arctan 3 .

Ans. $3 x^{\prime 2}-7 y^{\prime 2}=4$.
(j) $3 x^{2}-3 x y-y^{2}=5 ; \arctan 3$.
(k) $x^{2}+4 x y+4 y^{2}+12 x-6 y=0$; arctan 2 .
56. General transformation of coördinates. If the axes are moved in any manner, they may be brought from the old position to the new position by translating them to the new origin and then rotating them through the proper angle.

Theorem. If the axes be translated to a new origin (h, k) and then rotated through an
 angle θ, the equations of the transformation of coördinates are

$$
\left\{\begin{array}{l}
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta+h \tag{III}\\
y=x^{\prime} \sin \theta+y^{\prime} \cos \theta+k
\end{array}\right.
$$

Proof. To translate the axes to $O^{\prime} \mathrm{X}^{\prime \prime}$ and $O^{\prime} Y^{\prime \prime}$ we have, by (I),

$$
\begin{aligned}
& x=x^{\prime \prime}+h \\
& y=y^{\prime \prime}+k
\end{aligned}
$$

where $\left(x^{\prime \prime}, y^{\prime \prime}\right)$ are the coördinates of any point P referred to $O^{\prime} X^{\prime \prime}$ and $O^{\prime} Y^{\prime \prime}$.

To rotate the axes we set, by (II),

$$
\begin{aligned}
& x^{\prime \prime}=x^{\prime} \cos \theta-y^{\prime} \sin \theta \\
& y^{\prime \prime}=x^{\prime} \sin \theta+y^{\prime} \cos \theta
\end{aligned}
$$

Substituting these values of $x^{\prime \prime}$ and $y^{\prime \prime}$, we obtain (III). Q.E.D.
57. Classification of loci. The loci of algebraic equations are classified according to the degree of the equations. This classification is justified by the following theorem, which shows that the degree of the equation of a locus is the same, no matter how the axes are chosen.

Theorem. The degree of the equation of a locus is unchanged by a transformation of coördinates.

Proof. Since equations (III) are of the first degree in x^{\prime} and y^{\prime}, the degree of an equation cannot be raised when the values of x and y given by (III) are substituted. Neither can the degree be lowered; for then the degree must be raised if we transform back to the old axes, and we have seen that it cannot be raised by changing the axes.*

As the degree can neither be raised nor lowered by a transformation of coördinates, it must remain unchanged. Q.E.D.
58. Simplification of equations by transformation of coördinates. The principal use made of transformation of coördinates is to simplify a given equation by choosing suitable new axes. The method of doing this is illustrated in the following examples.

EXAMPLES

1. Simplify the equation $y^{2}-8 x+6 y+17=0$ by translating the axes.

Solution. Set $x=x^{\prime}+h$ and $y=y^{\prime}+k$.
This gives $\left(y^{\prime}+k\right)^{2}-8\left(x^{\prime}+h\right)+6\left(y^{\prime}+k\right)+17=0$, or

$$
\begin{gather*}
y^{\prime 2}-8 x^{\prime}+2 k \tag{1}\\
+6
\end{gather*}\left|\begin{array}{c}
y^{\prime}+k^{2} \\
\\
\\
\\
\\
\\
\\
+6 k \\
+17
\end{array}\right| \dagger=0
$$

If, now, we choose for h and k such numbers that the coefficient of y^{\prime} shall be zero, that is,

$$
\begin{equation*}
2 k+6=0, \tag{2}
\end{equation*}
$$

and also the constant term shall be zero, that is,

$$
\begin{equation*}
k^{2}-8 h+6 k+\mathbf{1 7}=0, \tag{3}
\end{equation*}
$$

the transformed equation is simply

$$
\begin{equation*}
y^{\prime 2}-8 x^{\prime}=0 \tag{4}
\end{equation*}
$$

* This also follows from the fact that when equations (III) are solved for x^{\prime} and y^{\prime}, the results are of the first degree in x and y.
\dagger These vertical bars play the part of parentheses. Thus $2 k+6$ is the coefticient of y^{\prime} and $k^{2}-8 h+6 k+17$ is the constant term. Their use enables us to collect like powers of x^{\prime} and y^{\prime} at the same time that we remove the parentheses in the preceding equation.

From (2) and (3) we obtain $h=1, k=-3$, and these are the coördinates of the new origin.

The locus may be readily plotted by drawing the new axes and then plotting (4) on these axes.

A second method often used is the following:

Rewrite the given equation, collecting the terms in y,

$$
\begin{equation*}
\left(y^{2}+6 y\right)=8 x-17 \tag{5}
\end{equation*}
$$

Complete the square in the left-hand member,
(6) $\left(y^{2}+6 y+9\right)=8 x-17+9=8 x-8$.

Writing this equation in the form

$$
\begin{equation*}
(y+3)^{2}=8(x-1), \tag{7}
\end{equation*}
$$

it is obvious by inspection that if we substitute in this equation

$$
\begin{equation*}
x=x^{\prime}+1, \quad y=y^{\prime}-3, \tag{8}
\end{equation*}
$$

the transformed equation is $y^{\prime 2}=8 x^{\prime}$. But equations (8) translate the axes to the new origin ($1,-3$), as before.
2. Simplify $x^{2}+4 y^{2}-2 x-16 y+1=0$ by translating the axes.

Solution. Set $x=x^{\prime}+h$ and $y=y^{\prime}+k$. This gives

$$
\left.\begin{align*}
x^{\prime 2}+4 y^{\prime 2}+2 h \tag{9}\\
-\overline{2}
\end{align*}\left|\begin{array}{cc}
x^{\prime}+8 k \\
-10
\end{array}\right| \begin{gathered}
y^{\prime}+h^{2} \\
\\
+4 k^{2} \\
\\
-2 h \\
\\
-16 k \\
\\
\end{gathered} \right\rvert\,=0 .
$$

Let us choose the new origin so that in (9) the coefficients of x^{\prime} and y^{\prime} shall be zero ; that is, so that

$$
\begin{equation*}
2 h-2=0 \text { and } 8 k-16=0 . \tag{10}
\end{equation*}
$$

From (10), $h=1, k=2$, and these values substituted in (9) give the transformed equation

$$
\begin{equation*}
x^{\prime 2}+4 y^{\prime 2}=16 \tag{11}
\end{equation*}
$$

The locus of the given equation is now readily drawn by constructing parallel axes through (1,2) and plotting equation (11) on these axes.

A second method is the following:
Collect corresponding terms in the given equation thus:

$$
\begin{equation*}
\left(x^{2}-2 x\right)+4\left(y^{2}-4 y\right)=-1 . \tag{12}
\end{equation*}
$$

Complete the squares within the parentheses, adding the corresponding numbers to the right-liand member,
(13) $\left(x^{2}-2 x+1\right)+4\left(y^{2}-4 y+4\right)$

$$
=-1+1+16=16 .
$$

Writing (13) in the form

$$
(x-1)^{2}+4(y-2)^{2}=16
$$

it is obvious by inspection that by substituting

$$
\begin{equation*}
x=x^{\prime}+1, \quad y=y^{\prime}+2, \tag{14}
\end{equation*}
$$

the simple new equation $x^{\prime 2}+4 y^{\prime 2}=16$ results. But equations (14) translate the axes to the new origin (1,2), the same as in the first method.
3. Remove the $x y$-term from $x^{2}+4 x y+y^{2}=4$ by rotating the axes.

Solution. Set $x=x^{\prime} \cos \theta-y^{\prime} \sin \theta$ and $y=x^{\prime} \sin \theta+y^{\prime} \cos \theta$, whence | $\cos ^{2} \theta$ | $x^{\prime 2}-2 \sin \theta \cos \theta$ | $x^{\prime} y^{\prime}+\sin ^{2} \theta$ |
| :---: | :---: | :---: |
| $\quad+4 \sin \theta \cos \theta$ | $+4\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$ | $-4 \sin \theta \cos \theta$ |
| $+\sin ^{2} \theta$ | $+2 \sin \theta \cos \theta$ | $+\cos ^{2} \theta$ |\(| \begin{aligned} \& y^{\prime 2}=4,

\& \end{aligned}\) or, since $\quad 2 \sin \theta \cos \theta=\sin 2 \theta$ and $\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta$,

$$
\begin{equation*}
(1+2 \sin 2 \theta) x^{\prime 2}+4 \cos 2 \theta \cdot x^{\prime} y^{\prime}+(1-2 \sin 2 \theta) y^{\prime 2}=4 . \tag{15}
\end{equation*}
$$

The new equation is to contain no $x^{\prime} y^{\prime}$-term. Hence, setting the coefficient of $x^{\prime} y^{\prime}$ equal to zero,

$$
\cos 2 \theta=0
$$

$\therefore 2 \theta=\frac{\pi}{2}$ and $\theta=\frac{\pi}{4}$.
Substituting in (15), since $\sin \frac{\pi}{2}=1$, the transformed equation is

$$
3 x^{\prime 2}-y^{\prime 2}=4
$$

The locns of thisequation is the hyperbola plotted on the new axes in the figure.

These examples show that it is often wise not to
 plot the locns of an equation as it stands, but rather to endeavor first to simplify by transformation to new axes.

PROBLEMS

1. Simplify the following equations by translating the axes. Plot both pairs of axes and the curve.
(a) $x^{2}+6 x+4 y+8=0$.
(b) $x^{2}-4 y+8=0$.
(c) $x^{2}+y^{2}+4 x-6 y-3=0$.
(d) $y^{2}-6 x-10 y+19=0$.
(e) $x^{2}-y^{2}+8 x-14 y-35=0$.
(f) $x^{2}+4 y^{2}-16 x+24 y+84=0$.
(g) $y^{8}+8 x-40=0$.

$$
\text { Ans. } x^{\prime 2}+4 y^{\prime}=0
$$

Ans. $x^{2}=4 y^{\prime}$.
Ans. $x^{\prime 2}+y^{\prime 2}=16$.
Ans. $y^{\prime 2}=6 x^{\prime}$.
Ans. $x^{\prime 2}-y^{2}=2$.
Ans. $x^{\prime 2}+4 y^{2}=16$.
Ans. $8 x^{\prime}+y^{\prime 8}=0$.
2. Remove the $x y$-term from the following equations by rotating the axes. Plot both pairs of axes and the curve.
(a) $x^{2}-2 x y+y^{2}=12$.
(b) $x^{2}-2 x y+y^{2}+8 x+8 y=0$.
(c) $x y=18$.
(d) $25 x^{2}+14 x y+25 y^{2}=288$.
(e) $3 x^{2}-10 x y+3 y^{2}=0$.

Ans. $y^{\prime 2}=6$.
Ans. $\sqrt{2} y^{\prime 2}+8 x^{\prime}=0$.
Ans. $x^{\prime 2}-y^{\prime 2}=36$.
Ans. $16 x^{\prime 2}+9 y^{2}=144$.
Ans. $x^{\prime 2}-4 y^{\prime 2}=0$.
3. Translate the axes so that each of the following equations is transformed into a new equation without any terms of the first degree in the new coördinates. Draw the locus.
(a) $x^{2}-4 x y+6 y=0$. Ans. $h=\frac{3}{2}, k=\frac{3}{4}$.
(b) $y^{2}-2 x y+3 x=0$.
(e) $3 x^{2}-x y-y^{2}+4 x=0$.
(c) $x^{2}+x y+y^{2}+6 x=0$.
(f) $2 x y+6 x-8 y=0$.
(d) $x^{2}-x y+2 y^{2}+6 y=0$.
(g) $3 x y+4 y-2=0$.

CHAPTER X

PARABOLA, ELLIPSE, AND HYPERBOLA

59. The parabola. Consider the following locus problem.

A point moves so that its distances from a fixed line and a fixed point are equal. Determine the nature of the locus.

Solution. Let $D D^{\prime}$ be the fixed line and F the fixed point. Draw the x-axis through F perpendicular to $D D^{\prime}$. Take the origin midway between F and $D D^{\prime}$.

Let
(1) distance from F^{\prime} to $D D^{\prime}=p$.

Then, if $P(x, y)$ is any point on the locus,

$$
\begin{equation*}
F P=M P \tag{2}
\end{equation*}
$$

But $\quad F P=\sqrt{\left(x-\frac{1}{2} p\right)^{2}+y^{2}}, \quad M P=M N+N I^{\prime}=\frac{1}{2} p+x$. Substituting in (2),

$$
\sqrt{\left(x-\frac{1}{2} p\right)^{2}+y^{2}}=\frac{1}{2} p+x
$$

Squaring and reducing,

$$
\begin{equation*}
y^{2}=2 p x \tag{3}
\end{equation*}
$$

The locus is called a parabola. The fixed line $D D^{\prime}$ is called the directrix, the fixed point F, the focus. From (3), it is clear that the x-axis is an axis of symmetry. For this reason, the x-axis is called the axis of the parabola. Furthermore, the origin is on the curve. This point, midway between focus and directrix, is called the vertex.

Theorem. If the origin is the vertex and the x-axis the axis of a parabola, then its equation is

$$
\begin{equation*}
y^{2}=2 p x \tag{I}
\end{equation*}
$$

The focus is the point $\left(\frac{p}{2}, 0\right)$, and the equation of the directrix is $x=-\frac{p}{2}$.

A discussion of (I) gives us the following properties of the parabola in addition to those already obtained.

1. Values of x having the sign opposite to that of p are to be excluded. Hence the curve lies to the right of $Y Y^{\prime}$ when p is positive and to the left when p is negative.
2. No values of y are to be excluded; hence the curve extends indefinitely up and down.

The chord drawn through the focus parallel to the directrix is called the latus rectum. To find its length, put $x=\frac{1}{2} p$ in (I). Then $y= \pm p$, and the length of the latus rectum $=2 p$; that is, equals the coefficient of x in (I).

It will be noted that equation (I) contains two terms only; namely, the square of one coördinate and the first power of the other. Obviously, the locus of

$$
x^{2}=2 p y
$$

is also a parabola, and thus we have the
Theorem. If the origin is the vertex and the y-axis the axis of a parabola, then its equation is

$$
\begin{equation*}
x^{2}=2 p y \tag{II}
\end{equation*}
$$

The focus is the point $\left(0, \frac{p}{2}\right)$, and the equation of the directrix is $y=-\frac{p}{2}$.

Equations (I) and (II) are called the typical forms of the equation of the parabola.

Equations of the forms

$$
A x^{2}+E y=0 \text { and } C y^{2}-D x=0
$$

wheie A, E, C, and D are different from zero, may, by transposition and division, be written in one of the forms (I) or (II).

To plot a parabola quickly from its typical equation, its position (above or below $X X^{-1}$, to the right or left of
 $Y Y^{\prime}$) is best determined by discussion of the equation. The value of $2 p$ is found by comparison with (I) or (II), and the focus and directrix are then plotted.

EXAMPLES

1. Plot the locus of $x^{2}+4 y=0$ and plot the focus and directrix.

Solution. The given equation may be written

$$
x^{2}=-4 y
$$

The y-axis is an axis of symmetry; positive values of y must be excluded. Hence the parabola lies below the x-axis. The table gives a few points on the curve.

Comparing with (II), $p=-2$. The focus is therefore the point $(0,-1)$ and the directrix the line $y=1$. The length of the latus rectum is 4 . Every point on the locns is equidistant from $(0,-1)$ and the line $y=1$.
2. Find the equation of the parabola whose focus is $(4,-2)$ and directrix the line $x=1$.

Solution. In the figure, by definition,

$$
\begin{equation*}
F P=P M \tag{1}
\end{equation*}
$$

But $\quad F P=\sqrt{(x-4)^{2}+(y+2)^{2}}$, and $\quad P M=x-1$.

Substituting in (1) and reducing, (2) $y^{2}-6 x+4 y+19=0$. Ans.

If the axes are translated to the vertex ($\frac{5}{2},-2$) as a new origin, that is, if we substitute in (2) $x=x^{\prime}+\frac{5}{2}$ and $y=y^{\prime}-2$, the equation reduces to the typical form $y^{\prime 2}-6 x^{\prime}=0$.

A second and useful method is the following:

Draw the axis $V X^{\prime}$ of the parabola and the tangent $V Y^{\prime}$ at the vertex. Referred to these lines as temporary axes, the equation must have the typical form

$$
\begin{equation*}
y^{2}=6 x, \tag{3}
\end{equation*}
$$

since $p=3$.
Now translate the temporary axes so that they will coincide with the given axes. The coördinates of O referred to the temporary axes are ($-\frac{5}{2}, 2$). Substituting in (3) $x=x^{\prime}-\frac{5}{2}, y=y^{\prime}+2$, and reducing, we obtain the equation (2).

PROBLEMS

1. Plot the locus of the following equations. Draw the focus and directrix in each case and find the length of the latus rectum.
(a) $y^{2}=4 x$.
(d) $y^{2}-6 x=0$.
(b) $y^{2}+4 x=0$.
(e) $x^{2}+10 y=0$.
(c) $x^{2}-8 y=0$.
(f) $y^{2}+x=0$.
2. Find the equations of the following parabolas:
(a) directrix $x=0$, vertex $(3,4)$.
Ans. $(y-4)^{2}=12(x-3)$.
(b) focus $(0,-3)$, vertex $(2,-3)$.
Ans. $y^{2}+8 x+6 y-7=0$.
(c) axis $x=0$, vertex $(0,-4)$, passes through $(6,0)$. Ans. $x^{2}=9 y+36$.
(d) axis $y=0$, vertex $(6,0)$, passes through $(0,4)$.

Ans. $3 y^{2}=48-8 x$.
(e) directrix $x+2 y-1=0$, focus $(0,0)$.

Ans. $(2 x-y)^{2}+2 x+4 y-1=0$.
3. Transform each of the following equations to one of the typical forms (I) or (II) by translation of the axes. Draw the figure in each case.
(a) $y^{2}+4 x+4 y-2=0$.

Ans. $y^{2}+4 x^{\prime}=0$.
(b) $x^{2}+6 x+y-2=0$.

Ans. $x^{\prime 2}+y^{\prime}=0$.
(c) $x^{2}+3 x+4 y-1=0$.
(d) $y^{2}+3 x+8 y=0$.
(e) $2 x^{2}+5 y+4=0$.
(i) $2 y^{2}+3 x-8=0$.
(f) $y^{2}+6 x-9=0$.
(j) $5 x^{2}+10 y+12=0$.
(g) $7 x^{2}+8 y+10=0$.
(k) $3 x^{2}-6 y+8=0$.
(h) $x^{2}+4 y+4=0$.
(1) $2 x^{2}-6 x+y=0$.
4. Show that abscissas of points on the parabola (I) are proportional to the squares of the ordinates.
5. Find the equation in polar coördinates of a parabola if the focus is the pole, and if the axis of the parabola is the polar axis.

$$
\text { Ans, } \rho=\frac{p}{1-\cos \theta} \text {. }
$$

60. Construction of the parabola. A parabola whose focus and directrix are given is readily constructed by rule and compasses as follows:

Draw the axis $M X$. Construct the vertex V, the middle point of MF. Through any point A to the right of V draw a line $A B$ parallel to the directrix. From F as a center with a radius equal to $M A$ strike arcs to intersect $A B$ at P and Q. Then P and Q are points
 on the parabola. For $F P=M A$, by construction, and hence P is equidistant from focus and directrix.

By changing the position of A we may construct as many points on the curve as desired.

Parabolic arch. When the span $A B$ and height $O H$ of a parabolic arch are given, points on the arch may be constructed as follows:
Draw the rectangle $A B C D$.
Divide $A H$ and $A C$ into the same number of equal parts.

Starting from A, let the successive points of division be
 on
$A H, \quad a, b, c$,
on

$$
A C, \quad l, m, n .
$$

Now draw the perpendicular $a a^{\prime}$ to $A B$, and draw ol. Mark the intersection. Do likewise for the points b and m, c and n. The intersections are points on the parabola required.

Proof. Take axes OX and $O Y$, as in the figure. Let
(1)
$\begin{aligned} & O M^{\prime}=x, \quad M^{\prime} P=y, \\ &\end{aligned}$

By construction, $N C$ and $A H$ are equal parts of $A C$ and $A H$ respectively.

$$
\begin{equation*}
\therefore \frac{N C}{A C}=\frac{M H}{A H}, \quad \text { or } \quad \frac{N C}{h}=\frac{x}{a} . \tag{2}
\end{equation*}
$$

From the similar triangles $O M^{\prime} P$ and $O C N$,

$$
\begin{equation*}
\frac{y}{x}=\frac{N C}{O C}=\frac{N C}{a} . \tag{3}
\end{equation*}
$$

Substituting the value of $N C$ from (2) into (3), and reducing,

$$
\begin{equation*}
x^{2}=\frac{a^{2}}{h} y . \tag{4}
\end{equation*}
$$

This is the typical form (II), and the locus passes through $O, A(-a, h)$ and $B(a, h)$, as required.
Solving (4) for y, we get

$$
\begin{equation*}
y=\frac{h}{a^{2}} x^{2} \tag{5}
\end{equation*}
$$

showing that y varies as the square of x, and giving a simple formula for computing y, as in the table.
61. Equations (I) and (II) are extraordinarily simple types of equations of the second degree. The question,

To derive a test for determining if the locus of a given equation of the second degree is a parabola,
will be answered in Art. 70; but at this point, if the previous results are borne in mind, we may state the

Theorem. The locus of an equation of the second degree is a parabola if the only term of the second degree* is the square of one coördinate, and if also the first power of the other coördinate is present in the equation.

For illustration, see Problem 3, p. 157.
62. The ellipse. Let us solve the following locus problem :

Given two fixed points F and F^{\prime}. A point P moves so that the sum of its distances from F and F^{\prime} remains constant. Determine the nature of the locus.

Solution. Draw the x-axis through F and F^{\prime}, and take for origin the middle point of $F^{\prime} F$. By definition,

$$
\begin{equation*}
P F+P F^{\prime}=\text { a constant } \tag{1}
\end{equation*}
$$

[^12]Let us denote this constant by 2π. Then (1) becomes

$$
\begin{equation*}
P F+P F^{\prime}=2 a . \tag{2}
\end{equation*}
$$

Let $F F^{t}=2 c$. Then

$$
P F=\sqrt{(x-c)^{2}+y^{2}}, \quad P F^{\prime}=\sqrt{(x+c)^{2}+y^{2}}
$$

since the coördinates of F are $(c, 0)$, and of $F^{\prime},(-c, 0)$.
Hence (2) becomes

$$
\begin{equation*}
\sqrt{(x-c)^{2}+y^{2}}+\sqrt{(x+c)^{2}+y^{2}}=2 a . \tag{3}
\end{equation*}
$$

Transposing one of the radicals, squaring and reducing, the result is

$$
\begin{equation*}
\left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{2}\left(a^{2}-c^{2}\right) \tag{4}
\end{equation*}
$$

For added simplicity, set *

$$
\begin{equation*}
a^{2}-c^{2}=b^{2} \tag{5}
\end{equation*}
$$

Then (4) becomes the simple equation

$$
\begin{equation*}
b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2} \tag{6}
\end{equation*}
$$

Discussion. The intercepts are,

$$
\text { on } X X^{\prime}, \pm a ; \text { on } Y Y^{\prime}, \pm b
$$

The axes $X I^{\prime \prime}$ and $Y Y^{\prime}$ are axes of symmetry and O is a center of symmetry.

Solving (6) for x and for y,

$$
\begin{aligned}
x & = \pm \frac{a}{b} \sqrt{b^{2}-y^{2}} \\
y & = \pm \frac{b}{a} \sqrt{a^{2}-x^{2}}
\end{aligned}
$$

Hence the values of x cannot exceed a numerically, nor can the values of y
 exceed b numerically. The curve is therefore closed.

The locus is called an ellipse. The point O, which bisects every chord passing through it, is called the center. The given fixed points F and F^{\prime} are called the foci. The longest chord

[^13]$A A^{\prime}$ through O is called the major axis; the shortest chord $B B^{\prime}$, the minor axis. Obviously,
major axis $=2 a, \quad$ minor axis $=2 b$.
Dividing (6) through by $a^{2} b^{2}$, and summarizing, gives the
Theorem. The equation of an ellipse whose center is the origin and whose foci are on the x-axis is
\[

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{III}
\end{equation*}
$$

\]

where $2 a$ is the major axis and $2 b$ the minor axis. If $c^{2}=a^{2}-b^{2}$, then the foci are ($\pm c, 0$).

If the foci are on the y-axis, and if we keep the above notation, the equation of the ellipse is obviously

$$
\begin{equation*}
a^{2} x^{2}+b^{2} y^{2}=a^{2} b^{2}, \quad \text { or } \quad \frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1 \tag{8}
\end{equation*}
$$

Equations (6), (8), and (III) are typical equations of the ellipse, and are of the form

$$
\begin{equation*}
A x^{2}+B y^{2}=C \tag{9}
\end{equation*}
$$

where A, B, and C agree in sign.
In the figure $\overline{B F}^{2}=b^{2}+c^{2}$. Substituting the value of c^{2} from (5), then $\overline{B F}^{2}=a^{2}$. Hence the property: The distance from either focus to the end of the minor axis
 equals the semimajor axis.

The chord drawn through either focus perpendicular to the major axis is called the latus rectum. Its length is determined by setting $x=c$ in (III), and solving for y. This gives $y=\frac{b}{a} \sqrt{a^{2}-c^{2}}=\frac{b^{2}}{a}$. Hence
length of latus rectum $=\frac{2 b^{2}}{a}$.

Eccentricity. When the foci are very near together the ellipse differs but little from a circle. The value of the ratio $O F$: $O A$ may, in fact, be said to determine the divergence of the ellipse from a circle. The value of this ratio is called the eccentricity of the ellipse, and is denoted by e. Hence

$$
\begin{equation*}
e=\frac{O F}{O A}=\frac{c}{a} \tag{11}
\end{equation*}
$$

The value of e varies from 0 to 1 . If the major axis $A A^{\prime}$ remains of fixed length, then the "flatness" of the ellipse increases as e increases from 0 to 1 , the limiting forms being a circle of diameter $A A^{\prime}$ and the line segment $A A^{\prime}$.

From (11) and (5),

$$
\begin{equation*}
b^{2}=a^{2}-c^{2}=a^{2}\left(1-e^{2}\right) \tag{12}
\end{equation*}
$$

To draw an ellipse quickly when its equation is in the typical form, proceed thus:

1. Find the intercepts, mark them off on the coördinate axes, and set the larger one equal to a, the smaller equal to b. Letter the major axis $A A^{\prime}$ and the minor axis $B B^{\prime}$.
2. Find c from $c^{2}=a^{2}-b^{2}$. Mark the foci F and F^{\prime} on the major axis.
3. Calculate directly one or more sets of values of the coördinates, and sketch in the curve.

EXAMPLE

Draw the ellipse $4 x^{2}+y^{2}=16$.
Solution. The intercepts are, on $X X^{\prime}, \pm 2$; on $Y^{\prime} Y^{\prime}, \pm 4$. Hence the major axis falls on $Y Y^{\prime}$, and $\alpha=4, b=2, c=\sqrt{12}=2 \sqrt{3}=3.4$. The foci are on the y-axis. The length of the latus rectum equals $\frac{2 b^{2}}{a}=2$. The eccentricity $e=\frac{c}{a}=\frac{1}{2} \sqrt{3}$. The points found in the table are the ends of the latus rectum. If P is any point on the ellipse, then $P F+P F^{\prime}=2 a=8$.

x	y
± 1	± 3.4

PROBLEMS

1. Plot each of the following equations. Letter the axes and mark the foci. Find the eccentricity, the length of the latus rectum, and draw the latus rectum.
(a) $x^{2}+9 y^{2}=9$.
(e) $9 x^{2}+4 y^{2}=36$.
(b) $9 x^{2}+16 y^{2}=144$.
(f) $2 x^{2}+y^{2}=25$.
(c) $2 x^{2}+y^{2}=4$.
(g) $4 x^{2}+8 y^{2}=32$.
(d) $4 x^{2}+9 y^{2}=36$.
(h) $7 x^{2}+3 y^{2}=21$.
2. Transform each of the following equations by translation of the axes so that the transformed equation shall lack terms of the first degree in the new coördinates. Draw the figure.
(a) $x^{2}+4 y^{2}+6 x-8 y=0 . \quad$ Ans. $x^{\prime 2}+4 y^{\prime 2}=13$.
(b) $0 x^{2}+4 y^{2}+36 x-4 y+1=0$.
(c) $x^{2}+5 y^{2}+10 y=20$.
(d) $5 x^{2}+y^{2}+10 x+4 y=6$.
(e) $3 x^{2}+y^{2}+6 x-4 y=2$.
(f) $4 x^{2}+5 y^{2}+4 x+20 y=20$.
3. Find the equation of each of the following ellipses:
(a) major axis $=8$, foci $(5,2)$ and $(-1,2)$.

Ans. $7(x-2)^{2}+16(y-2)^{2}=112$.
(b) major axis $=10$, foci $(0,0)$ and $(0,6)$.

Ans. $25 x^{2}+16(y-3)^{2}=400$.
(c) minor axis $=8$, foci $(-1,0)$ and $(4,0)$.
(d) minor axis $=4$, foci $(0,-2)$ and $(0,4)$.
63. Construction of the ellipse. The definition (2) of the preceding section affords a simple method of drawing an ellipse.

Place two tacks in the drawing board at the foci F and F^{\prime} and wind a string about them as indicated. If now a pencil be placed in the loop $F P F^{\prime}$ and be moved so as to keep the string taut, then $P F+P F^{\prime}$ is constant and P describes an ellipse. If the
 major axis is to be $2 a$, then the length of the loop $F P F^{t}$ must be $2 a+2 c$.

A useful construction of an ellipse by rule and compasses is the following:

Draw circles on the axes $A A^{\prime}$ and $B B^{\prime}$ as diameters. From the center O draw any radius intersecting these circles in M and N respectively. From M draw a line $M R$ parallel to the minor axis, and from N a line $N S$ parallel to the major axis. These lines will intersect in a point P on the ellipse.

Proof. Take the coördinate axes as in the figure below. Let

$$
O A=x, \quad A P=y=O D, \quad \angle M O X=\phi .
$$

Clearly,

$$
\begin{aligned}
& O B=\text { semimajor axis }=a \\
& O C=\text { semiminor } \mathrm{axis}=b
\end{aligned}
$$

Then in the right triangle $O A B$,

$$
\begin{equation*}
\cos \phi=\frac{O A}{O B}=\frac{x}{a} . \tag{1}
\end{equation*}
$$

Similarly, in the right triangle $O D C, \angle O C D=\angle C O A=\phi$, and

$$
\begin{equation*}
\sin \phi=\frac{O D}{O C}=\frac{y}{b} \tag{2}
\end{equation*}
$$

But $\cos ^{2} \phi+\sin ^{2} \phi=1$. Hence, from (1) and (2), $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, and $P(x, y)$ lies on the ellipse whose semiaxes are a and b. Q.E.D.

The angle ϕ is called the eccentric angle of P.

The construction circles used
 in this problem are called, respectively, the major and minor auxiliary circles.
64. Equations (6) and (8) of Art. 62 are simple equations of the second degree. We may ask the question,

What is the test that the locus of a given equation of the second degree shall be an ellipse?

Reserving for a later section the answer to this question, we have, however, some light on it now. For we have observed in Problem 2, p. 163, that the locus was in each case an ellipse. These equations agree in the respect that there is $n o x y$-term, and the squares of x and y have unequal positive coefficients. Consider such an equation, for example,

$$
\begin{equation*}
x^{2}+4 y^{2}+4 x-8 y+N=0 \tag{1}
\end{equation*}
$$

where N is some number. If we translate the axes to the new origin ($-2,1$), the transformed equation is

$$
\begin{equation*}
x^{\prime 2}+4 y^{12}=8-N \tag{2}
\end{equation*}
$$

If N is less than 8 , the locns is an ellipse.
If $N=8$, the locus is the single point (0,0), often called a point-ellipse.

If N is greater than 8, there is no locus.
This discussion is general, and may be summarized in the
Theorem. If an equation of the second degree contains no $x y$-term, and if x^{2} and y^{2} occur with coefficients having like signs, the locus is necessarily an ellipse or point-ellipse.

The case when x^{2} and y^{2} have equal coefficients has been discussed in Art. 38. The circle and point-circle may, of course, be regarded as special cases of the ellipse and point-ellipse.
65. The hyperbola. Let us next turn our attention to a third locus problem.

Given two fixed points F and F^{\prime}. A point P moves so that the difference of its distance from F and F^{\prime} remains constant. Determine the nature of the locus.

Solution. Draw the x-axis through the fixed points, and take for origin the middle point of $F^{\prime} F$. By definition

$$
\begin{equation*}
P F^{\prime}-P F=\text { a constant. } \tag{1}
\end{equation*}
$$

Let us denote this constant by $2 a$. Then (1) becomes

$$
\begin{equation*}
P F^{\prime}-P F=2 a \tag{2}
\end{equation*}
$$

Let $\quad F F^{\prime}=2 c$.
Then $P F=\sqrt{(x-c)^{2}+y^{2}}$, and $P F^{\prime \prime}=\sqrt{(x+c)^{2}+y^{2}}$, since the coördinates of F are $(c, 0)$, and of $F^{\prime},(-r, 0)$.

Substituting in (2),

$$
\begin{equation*}
\sqrt{(x+c)^{2}+y^{2}}-\sqrt{(x-c)^{2}+y^{2}}=2 a . \tag{3}
\end{equation*}
$$

Transposing either radical, squaring and reducing, the result is

$$
\begin{equation*}
\left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{2}\left(a^{2}-c^{2}\right) \tag{4}
\end{equation*}
$$

For added simplicity, * set

$$
\begin{equation*}
a^{2}-c^{2}=-l^{2}, \quad \text { or } \quad e^{2}-a^{2}=b^{2} \tag{5}
\end{equation*}
$$

Then (4) becomes the simple equation

$$
\begin{equation*}
b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2} \tag{6}
\end{equation*}
$$

Discussion. The intercepts are, on $X X^{\prime}, \pm a$; on $Y Y^{\prime}$, $\pm 6 \sqrt{-1}$; that is, the locus does not cross the y-axis. The coefficient of the $\sqrt{-1}$ in the imaginary intercept on the y-axis is, however, b. The axes $X X^{\prime}$ and $Y Y^{\prime}$ are axes of symmetry and O is a center of symmetry.

[^14]Solving (6) for x and for y,

$$
x= \pm \frac{a}{b} \sqrt{b^{2}+y^{2}}, \quad y= \pm \frac{b}{a} \sqrt{x^{2}-a^{2}}
$$

whence we conclude that all values of x between $-a$ and a must be excluded, but no values of y.

When x increases, y also increases, and the curve extends out to infinity, consisting of two distinct branches.*

The locus is called a hyperbola, the point O, which bisects every chord drawn through it, is called the center. The given fixed points F and F^{\prime} are the foci. The chord $A A^{\prime}$ is named the transverse axis. Marking off on $Y Y^{\prime}$ from O the lengths $\pm \ell$, the line $B B^{\prime}$ (Fig. p. 166) is called the conjugate axis. Thus the transverse axis $=2 a$, conjugate axis $=2 b$.
Dividing (6) through by $a^{2} b^{2}$, and summarizing, gives the
Theorem. The equation of a hyperbola whose center is the origin and whose foci are on the x-axis is
(IV) $\quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$,
where $2 a$ is the transverse axis and $2 b$ the conjugate axis. If $c^{2}=a^{2}+b^{2}$, then the foci are ($\pm c, 0$).

If the foci are on the y-axis, and if we preserve the notation, the equation of the hyperbola is obviously

(8) $a^{2} x^{2}-b^{2} y^{2}=-a^{2} b^{2}$, or $\frac{x^{2}}{b^{2}}-\frac{y^{2}}{a^{2}}=-1$.

Equations (6) and (8) are typical equations of the hyperbola. They are of the form

$$
\begin{equation*}
A x^{2}+B y^{2}=C, \tag{9}
\end{equation*}
$$

where A and B differ in sign.

[^15]In the preceding figures $\overline{A B}^{2}=a^{2}+b^{2}$. Substituting the value of b^{2} from (5), $\overline{A B}^{2}=c^{2}$. Hence the property: The distance letween the extremities of the axes equals half the distance between the foci.

The chord drawn through a focus and perpendicular to the transverse axis is called the latus rectum. We may determine its length by setting $x=c$ in (IV) and solving for y. Thus, by (5) we obtain $y= \pm \frac{b}{a} \sqrt{c^{2}-a^{2}}= \pm \frac{b^{2}}{a}$. Hence (10) length of latus rectum $=\frac{2 b^{2}}{a}$.

Eccentricity. The value of the ratio $O F: O A$ in the hyperbola is called the eccentricity of the curve, as in the case of the ellipse. Denoting the eccentricity by e, then

$$
\begin{equation*}
e=\frac{O F}{O A}=\frac{c}{a} . \tag{11}
\end{equation*}
$$

For a hyperbola, $e>1$. The relation of the value of e to the shape of the curve will be made clear later. From (5) and (11),

$$
\begin{equation*}
\zeta^{2}=\varepsilon^{2}-a^{2}=a^{2}\left(e^{2}-1\right) \tag{12}
\end{equation*}
$$

To draw a hyperbola quickly when its equation is in the typical form (9), proceed thus:

1. Find the intercepts and mark them off on the proper axis. Set a equal to the real intercept and b equal to the coefficient of $\sqrt{-1}$ in the imaginary intercept. Lay off the conjugate axis; letter it $B B^{\prime}$ and the transverse axis $A A^{\prime}$.
2. Find c from $c^{2}=a^{2}+b^{2}$. Mark the foci F and F^{\prime} on the transverse axis.
3. Calculate directly one or more sets of values of the coördinates, and sketch the curve.

EXAMPLE

Draw the hyperbola

$$
4 x^{2}-5 y^{2}+20=0 .
$$

Solution. The intercepts are, on $X X^{\prime}, \pm \sqrt{-5}= \pm \sqrt{5} \sqrt{-1} ;$ on $Y Y^{\prime}, \pm 2$. Hence $b=\sqrt{5}, \quad a=2$, $c=\sqrt{a^{2}+b^{2}}=3$, and the transverse axis and the foci are on $Y Y^{\prime}$. The eccentricity is $\frac{8}{2}$. The length of the latus rectum is $\frac{2 b^{2}}{a}=5$. If P is any point on the hyperbola, then $P F^{\prime}-P F=4$.

x	y
0	± 2
$\pm \frac{5}{2}$	± 3

PROBLEMS

1. Plot each of the following equations, letter the axes, and mark the foci. Find the eccentricity, the length of the latus rectum, and draw the latus rectum.
(a) $5 x^{2}-4 y^{2}=20$.
(e) $x^{2}-3 y^{2}+3=0$.
(b) $x^{2}-8 y^{2}+8=0$.
(f) $7 x^{2}-9 y^{2}=63$.
(c) $9 x^{2}-y^{2}=9$.
(g) $2 x^{2}-7 y^{2}=18$.
(d) $3 x^{2}-y^{2}=12$.
(h) $7 x^{2}-2 y^{2}=-8$.
2. Transform each of the following equations by translation of the axes so that the transformed equation shall lack terms of the first degree in the new coördinates. Draw the figure.
(a) $4 x^{2}-y^{2}+8 x-2 y-1=0$.
(d) $4 x^{2}-y^{2}-6 x-4 y=0$.
(b) $9 x^{2}-y^{2}+18 x-4 y+14=0$.
(e) $x^{2}-5 y^{2}+6 x-10 y=0$.
(c) $3 x^{2}-y^{2}+12 x+2 y+14=0$.
(f) $x^{2}-2 y^{2}+10 y=0$.
3. Find the equations of the following hyperbolas:
(a) transverse axis $=6$, foci $(-2,0)$ and $(6,0)$.

Ans. $7(x-2)^{2}-9 y^{2}=63$
(b) conjugate axis $=6$, foci $(0,2)$ and $(0,-8)$.
(c) conjugate axis $=4$, foci $(1,2)$ and $(-4,2)$.
(d) transverse axis $=2$, foci $(0,0)$ and $(-4,0)$.
66. Conjugate hyperbolas and asymptotes. Two hyperbolas are called conjugate hyperbolas if the transverse and conjugate axes of one are respectively the conjugate and transverse axes of the other.
If the equation of a hyperbola is given in typical form, then the equation of the conjugate hyperbola is found by changing the signs of the coefficients of x^{2} and y^{2} in the given equation.
Thus the loci of the equations

$$
\begin{equation*}
16 x^{2}-y^{2}=16 \text { and }-16 x^{2}+y^{2}=16 \tag{1}
\end{equation*}
$$

are conjugate hyperbolas. They may be written

$$
\frac{x^{2}}{1}-\frac{y^{2}}{16}=1 \text { and }-\frac{x^{2}}{1}+\frac{y^{2}}{16}=1 .
$$

The foci of the first are on the x-axis, those of the second on the y-axis. The transverse axis of the first and the conjugate axis of the second are equal to 2 , while the conjugate axis of the first and the transverse axis of the second are equal to 8 .

The foci of two conjugate hyperbolas are equally distant from the origin. For c^{2} equals the sum of the squares of the semitransverse and semiconjugate axes, and that sum is the same for two conjugate hyperbolas.

Thus in the first of the hyperbolas above $c^{2}=1+16$, while in the second $c^{2}=16+1$.

If in one of the typical forms of the equation of a hyperbola we replace the constant term by zero, then the locus of the new equation is a pair of lines (Theorem, p. 40) which are called the asymptotes of the hyperbola.

Thus the asymptotes of the hyperbola

$$
\begin{equation*}
b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2} \tag{2}
\end{equation*}
$$

are the lines

$$
\begin{equation*}
b^{2} x^{2}-a^{2} y^{2}=0, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
b x+a y=0 \text { and } b x-a y=0 . \tag{4}
\end{equation*}
$$

These may be written

$$
\begin{equation*}
y=-\frac{b}{a} x \text { and } y=\frac{b}{a} x . \tag{5}
\end{equation*}
$$

They pass through the origin and their slopes are respectively $-\frac{b}{a}$ and $\frac{b}{a}$.
The property of these lines which they have in common with the vertical or horizontal asymptotes of Art. 22 is expressed in the

Theorem. The branches of the hyperbola approach indefinitely near its asymptotes as they recede to infinity.

Proof. Let $P_{1}\left(x_{1}, y_{1}\right)$ be a point on either branch of (2) near the asymptote $\quad b x-a y=0$.

The perpendicular distance from this line to P_{1} is

$$
\begin{equation*}
d=\frac{b x_{1}-a y_{1}}{-\sqrt{l^{2}+a^{2}}} . \tag{6}
\end{equation*}
$$

We may find a value for the numerator as follows:

Since P_{1} lies on (2),

$$
b^{2} x_{1}^{2}-a^{2} y_{1}^{2}=a^{2} b^{2} .
$$

Factoring and dividing,

$$
b x_{1}-a y_{1}=\frac{a^{2} b^{2}}{b x_{1}+a y_{1}}
$$

Substituting in (6), $\quad d=\frac{a^{2} b^{2}}{-\sqrt{b^{2}+a^{2}}\left(l x_{1}+a y_{1}\right)}$.
As P_{1} recedes to infinity in the first quadrant, x_{1} and y_{1} become infinite and d approaches zero.

Hence the curve approaches closer and closer to its asymptotes.
Q.E.D.

Two conjugate hyperbolas have the same asymptotes.
Thus the asymptotes of the conjugate hyperbolas (1) are respectively the loci of $\quad 16 x^{2}-y^{2}=0$ and $-16 x^{2}+y^{2}=0$, which are the same.

A hyperbola may be drawn with fair accuracy by the following

Construction. Lay off $O A=O A^{\prime}=a$ on the axis on which the foci lie, and $O B=O B^{\prime}=b$ on the other axis. Draw lines through $A, A^{\prime}, B, B^{\prime}$, parallel to the axes, forming a rectangle. Draw the diagonals of the rectangle. Then the length of each diagonal is obviously $2 c$ (since $a^{2}+b^{2}=c^{2}$). Moreover, the diagonals produced are the asymptotes. For the equations of the diagonals are readily seen to be $b x-a y=0$ and $b x+a y=0$, and these are the same as (4). Construct the circle which circumscribes the
 rectangle. Draw the branches of the hyperbola tangent to the sides of the rectangle at A and A^{\prime} and approaching nearer and nearer to the diagonals. The conjugate hyperbola may be drawn tangent to the sides of the rectangle at B and B^{\prime} and approaching the diagonals. The foci of both are the points in which the circle cuts the axes.

From this construction the influence of the value of the eccentricity upon the shape of the hyperbola can be easily discussed. In the figure, let $A A^{\prime}$ be fixed. Now from (12), Art. 65,

$$
b^{2}=a^{2}\left(e^{2}-1\right)
$$

When e diminishes towards unity, b decreases, the altitude $B B^{\prime}$ of the rectangle diminishes, the asymptotes turn towards the x-axis, and the hyperbola flattens.

When e increases, the asymptotes turn from the x-axis, and the hyperbola broadens.
67. Equilateral or rectangular hyperbola. When the axes of a hyperbola are equal $(a=b)$, the hyperbola is said to be equilateral. If we set $a=b$ in equation (IV), we obtain

$$
\begin{equation*}
x^{2}-y^{2}=a^{2} \tag{1}
\end{equation*}
$$

which is accordingly the equation of an equilateral hyperbola whose transverse axis lies on $Y X^{\prime}$.

Its asymptotes are the lines

$$
x-y=0 \text { and } x+y=0
$$

These lines are perpendicular, and hence they may be used as coördinate axes. The designation "rectangular" hyperbola arises from this fact.

Theorem. The equation of an equilateral hyperbola referred to its asymptotes is

$$
\begin{equation*}
2 x y=a^{2} \tag{V}
\end{equation*}
$$

Proof. The axes must be rotated through -45° to coincide with the asymptotes. Hence we substitute (Ar't. 55)
in (1). This gives

$$
x=\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}, \quad y=\frac{-x^{\prime}+y^{\prime}}{\sqrt{2}}
$$

$$
\frac{\left(x^{\prime}+y^{\prime}\right)^{2}}{2}-\frac{\left(-x^{\prime}+y^{\prime}\right)^{2}}{2}=a^{2}
$$

Reducing and dropping primes we have (V).
Q.E.D.

It is important to observe that (V) has the simple form

$$
\begin{equation*}
x y=\mathrm{a} \text { constant. } \tag{2}
\end{equation*}
$$

68. Construction of the hyperbola. A mechanical construction, depending upon the definition (1) of Art. 65, is the following:

Fasten thumb tacks at the foci. Pass over F^{\prime} and around F a string whose ends are held together (Fig. 1, p. 174).

If a pencil be tied to the string at P, and both strings be pulled in or let out together, then $P F^{\prime}-P F$ will be constant
and P will describe a hyperbola. If the transverse axis is to be $2 a$, the strings must be adjusted at the start so that the difference between $P F^{\prime}$ and $P F$ equals $2 a$.

A construction often used for an equilateral hyperbola when the asymptotes and one point A are given, is as follows (Fig. 2):

Let $O X$ and $O Y$ be the asymptotes and A the given point. Draw any line through A to meet $O \mathrm{X}$ at M and $O Y$ at N.

Lay off $M P=A N$. Then P is a point on the required hyperbola.

Proof. Choose the asymptotes as axes. Let the coorrdinates of A be (a, b) and of $P,(x, y)$. Then $O S=x, S P=y, O B=b, B A=a$.

By construction, $A N=M P$.
\therefore triangle $P S M=$ triangle $N B A$, and $B N=S P=y, S M=A B=a$.

Since the triangles $O M N$ and $A B N$ are similar,

$$
\therefore \frac{B N}{A B}=\frac{O N}{O M}=\frac{O B+B N}{O S+S M}
$$

Substituting,

$$
\frac{y}{a}=\frac{b+y}{a+x}, \quad \text { or } \quad x y=a b
$$

Comparing with (V), we see that $P(x, y)$ lies upon an equilateral hyperbola which has $O X$ and

Fig. 2

Fig. 3 $O Y$ for its asymptotes and which passes through (a, b). Q.e.D.

By drawing different lines through A, and laying off $M_{1} P_{1}=A N_{1}, M_{2} P_{2}=A N_{2}$, etc., we determine as many points P_{1}, P_{2}, etc., as we wish on the hyperbola (Fig. 3).

PROBLEMS

1. Find the equations of the asymptotes and of the hyperbolas conjugate to the following hyperbolas, and plot:
(a) $4 x^{2}-y^{2}=36$.
(c) $16 x^{2}-y^{2}+64=0$.
(b) $9 x^{2}-25 y^{2}=100$.
(d) $8 x^{2}-16 y^{2}+25=0$.
2. The distance from an asymptote of a hyperbola to either focus is numerically equal to b.
3. The distance from the center to a line drawn through a focus of a hyperbola perpendicular to an asymptote is numerically equal to a.
4. The product of the distances from the asymptotes to any point on the hyperbola is constant.
5. The focal radius of a point $P_{1}\left(x_{1}, y_{1}\right)$ on the parabola $y^{2}=2 p x$ is $\frac{p}{2}+x_{1}$.
6. The ordinates of points on an ellipse and the major auxiliary circle which bave the same abscissas are in the ratio of $b: a$.
7. The area of an ellipse is $\pi a b$.

Hint. Divide the major axis into equal parts. With these as bases inscribe rectangles in the ellipse and major auxiliary circle (p. 164). Apply Problem 6 and increase the number of rectangles indefinitely.
69. The examples of Problem 2, p. 169, illustrated the fact that any equation of the second degree lacking an $x y$-term, but containing x^{2} and y^{2} with coefficients of unlike signs, can by translation of the axes be transformed into the form (9)

$$
A x^{2}+B y^{2}=C
$$

in which A and B differ in sign.
From the preceding it is, clear that the locus of this equation is a hyperbola if C is not zero, and a pair of intersecting lines if C is zero. Hence the

Theorem. If an equation of the second degree contains no $x y$-term, and if x^{2} and y^{2} occur with coefficients differing in sign, the locus is either a hyperbola or a pair of intersecting lines.
70. Locus of any equation of the second degree. The locus problems of this chapter have led to the equations of the second degree,

$$
\begin{equation*}
y^{2}=2 p x \text { and } x^{2}=2 p y, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2} \text { and } b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2} \tag{2}
\end{equation*}
$$

These are simple types, of course. The question is, however, this:

Given an equation of the second degree, can the equation be transformed by translating and rotating the axes so that the transformed equation will reduce to one of these simple types?

To answer this question, take the general equation of the second degree, namely,

$$
\begin{equation*}
A x^{2}+B x y+C y^{2}+D x+E y+F=0 . \tag{3}
\end{equation*}
$$

This equation contains every term that can appear in an equation of the second degree.

We begin by rotating the axes through an angle θ. To do this, set in (3),
and

$$
\begin{aligned}
& x=x^{\prime} \cos \theta-y^{\prime} \sin \theta, \\
& y=x^{\prime} \sin \theta+y^{\prime} \cos \theta .
\end{aligned}
$$

This gives, after squaring, multiplying, and collecting, the transformed equation
(4) $A \cos ^{2} \theta$

$$
\begin{aligned}
& +D \cos \theta\left|\begin{array}{l}
x^{\prime}-D \sin \theta \\
+E \sin \theta \\
+E \cos \theta
\end{array}\right| y^{\prime}+F=0 .
\end{aligned}
$$

The angle θ is, as yet, any angle at all. But let us now, if possible, choose this angle so that the equation (4) shall not contain the $x^{\prime} y^{\prime}$-term. To do this, we must set the coefficient of $x^{\prime} y^{\prime}$ equal to zero; that is,
(5) $-2 A \sin \theta \cos \theta+B\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+2 C \sin \theta \cos \theta=0$.

But $2 \sin \theta \cos \theta=\sin 2 \theta, \quad \cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta$.

Hence (5) becomes

$$
\begin{equation*}
(C-A) \sin 2 \theta+B \cos 2 \theta=0 \tag{6}
\end{equation*}
$$

Dividing through by $\cos 2 \theta$, and transposing,

$$
\begin{equation*}
\tan 2 \theta=\frac{B}{A-C} . \tag{7}
\end{equation*}
$$

Since any number may be the tangent of an angle, it is always possible to find a value for θ from this equation. If, then, the axes are rotated through the angle θ determined by (7), equation (3) reduces to

$$
\begin{equation*}
A^{\prime} x^{\prime 2}+C^{\prime} y^{\prime 2}+D^{\prime} x^{\prime}+E^{\prime} y^{\prime}+F=0 \tag{8}
\end{equation*}
$$

where from (4),

$$
\begin{equation*}
A^{\prime}=A \cos ^{2} \theta+B \sin \theta \cos \theta+C \sin ^{2} \theta \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
C^{\prime}=A \sin ^{2} \theta-B \sin \theta \cos \theta+C \cos ^{2} \theta \tag{10}
\end{equation*}
$$

The discussion gives the
Theorem. The term in $x y$ may always be removed from an equation of the second degree,

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

by rotating the axes through an angle θ such that

$$
\begin{equation*}
\tan 2 \theta=\frac{B}{A-C} \tag{VI}
\end{equation*}
$$

Now equation (8) is of a form which we have met frequently in this chapter, and we have learned to simplify it by translation of the axes. We saw in Art. 61 that if only one square ($A^{\prime}=0$, or $C^{\prime}=0$) and the first power of the other coördinate were present, the equation could be transformed into one of the typical forms (1) of the parabola.

Suppose, however, that the first power of the other coördinate does not appear. For example, suppose in (8) that $A^{\prime}=0$. and $D^{\prime}=0$. Then the equation is

$$
C^{\prime} y^{\prime 2}+E^{\prime} y^{\prime}+F=0
$$

This is an ordinary quadratic in y. If the roots are real, the locus will be two lines parallel to the x^{\prime}-axis. These lines will coincide if the roots are equal. There will be no locus if the roots are imaginary.

If neither A^{\prime} nor C^{\prime} is zero, we may, by translation to the new origin $\left(-\frac{D^{\prime}}{2 A^{\prime}},-\frac{E^{\prime}}{2 C^{\prime}}\right)$, transform the equation into

$$
\begin{equation*}
A^{\prime} x^{\prime \prime 2}+C^{\prime} y^{\prime \prime 2}+F^{\prime}=0 \tag{11}
\end{equation*}
$$

The locus of this equation has been discussed in Arts. 64 and 69.

The result we have established is expressed in the
Theorem. The locus of an equation of the second degree is either a parabola, an ellipse, a hyperbola, two straight lines (which may coincide), or a point.
The following conclusion also may be drawn: The presence of the exy-term indicates that the axes of the curve are not parallel to the axes of coördinates.

We seek now a test to apply to an equation containing an $x y$-term in order to decide in advance the nature of the locus. To do this we eliminate the angle θ from equations (9) and (10), making use of (6). The result is the simple equation,

$$
\begin{equation*}
-4 A^{\prime} C^{\prime}=B^{2}-4 A C . \tag{VII}
\end{equation*}
$$

The steps in the elimination process are as follows:
Adding and subtracting (9) and (10),

$$
\begin{equation*}
A^{\prime}+C^{\prime}=A+C\left(\text { since } \sin ^{2} \theta+\cos ^{2} \theta=1\right) \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
A^{\prime}-C^{\prime}=(A-C) \cos 2 \theta+B \sin 2 \theta \tag{13}
\end{equation*}
$$

Squaring (13),
(14) $\left(A^{\prime}-C^{\prime}\right)^{2}=(A-C)^{2} \cos ^{2} 2 \theta+2 B(A-C) \sin 2 \theta \cos 2 \theta+B^{2} \sin ^{2} 2 \theta$.

Squaring (6),

$$
\begin{equation*}
0=(A-C)^{2} \sin ^{2} 2 \theta+2 B(C-A) \sin 2 \theta \cos 2 \theta+B^{2} \cos ^{2} 2 \theta . \tag{15}
\end{equation*}
$$

Adding (14) and (15),

$$
\begin{equation*}
\left(A^{\prime}-C^{\prime}\right)^{2}=(A-C)^{2}+B^{2} \tag{16}
\end{equation*}
$$

Squaring (12),

$$
\begin{equation*}
\left(A^{\prime}+C^{\prime}\right)^{2}=(A+C)^{2} \tag{17}
\end{equation*}
$$

Subtracting (16) and (17), we obtain (VII).
If the locus of (8) is a parabola, $A^{\prime}=0$ or $C^{\prime}=0$. Hence from (VII), $B^{2}-4 A C=0$.

If the locus of (8) is an ellipse, A^{\prime} and C^{\prime} agree in sign. Hence $A^{\prime} C^{\prime}$ is positive, and from (VII), $B^{2}-4 A C$ is negative.

If the locus of (8) is a hyperbola, A^{\prime} and C^{\prime} differ in sign. Hence $A^{\prime} C^{\prime}$ is negative, and from (VII), $B^{2}-4 A C$ is a positive number.

Collecting all the results in tabular form, we have the
Theorem. Given any equation of the second degree,

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0 .
$$

The possible loci may be classified thus:

Test	General case	Exceptional cases*
$B^{2}-4 A C \dagger$ zero	parabola	two parallel lines one line
$B^{2}-4 A C$ negative	ellipse	point-ellipse
$B^{2}-4 A C$ positive	hyperbola	two intersecting lines

A point-ellipse is often called a " degenerate ellipse," two intersecting lines a "degenerate hyperbola," and two parallel lines a "degenerate parabola."

Note that $B^{2}-4 A C$ is the discriminant of the terms of the second degree in the equation.

[^16]The exceptional cases are recognizable by the condition that the equation is then factorable into two factors of the first degree in x and y. A number of problems of this kind were given on page 41. When the equation is not readily factored by trial, it may appear by the first method of the following section (Art. 71) that factors do nevertheless exist. Moreover, under the two first cases in the table (parabola and ellipse) there may be no locus. This fact will also readily appear by the first method of Art. 71.
71. Plotting the locus of an equation of the second degree. In this section we discuss methods of plotting second-degree equations which contain $x y$-terms.

First Method. By direct plotting. Test by the theorem at the end of the preceding section, and then plot the equation directly.

EXAMPLES

1. Plot the locus of

$$
\begin{equation*}
x^{2}-2 x y+4 y^{2}-4 x=0 . \tag{1}
\end{equation*}
$$

Solution. Here

$$
A=1, \quad B=-2, \quad C=4
$$

$\therefore B^{2}-4 A C=4-16=-12=$ a negative number.
Hence the locus is an ellipse.

x	y
$y^{\frac{4}{3}}$	$-\frac{7}{8}$
0,4	0
$3 \pm \sqrt{5}$	1
4	2
$5 \frac{1}{3}$	$\frac{4}{3}$

Solve the equation for x as follows:

$$
\begin{equation*}
x^{2}-(2 y+4) x+\left(\frac{2 y+4}{2}\right)^{2}=-4 y^{2}+\left(\frac{2 y+4}{2}\right)^{2} \tag{2}
\end{equation*}
$$

[Collecting terms in x and completing the square.]
(3)

$$
\begin{equation*}
\therefore x=y+2 \pm \sqrt{(2-y)(2+3 y)} . \tag{3}
\end{equation*}
$$

Solving also for y,

$$
\begin{equation*}
y=\frac{1}{4} x \pm \frac{1}{4} \sqrt{x(16-3 x)} . \tag{4}
\end{equation*}
$$

From the radicals in (3) and (4) we see that (see p. 49)

$$
y \text { may have values from }-\frac{2}{3} \text { to } 2 \text { inclusive ; }
$$

$$
x \text { may have values from } 0 \text { to } \frac{16}{8} \text { inclusive. }
$$

Hence the ellipse lies within the rectangle

$$
y=-\frac{2}{3}, \quad y=2, \quad x=0, \quad x=\frac{16}{3} .
$$

Points on the locus may be found from (3) as in the table.
2. Determine the locus of

$$
5 x^{2}+4 x y-y^{2}+24 x-6 y-5=0 .
$$

Solution. $A=5, \quad B=4, \quad C=-1 . \quad \therefore B^{2}-4 A C=16+20=36$. Hence, from the table of Art. 70, we may expect a hyperbola or a pair of intersecting lines.

Solve the equation for y as follows :

$$
\begin{aligned}
y^{2}-(4 x-6) \dot{y}+(2 x-3)^{2} & =5 x^{2}+24 x-5+(2 x-3)^{2} \\
& =9 x^{2}+12 x+4=(3 x+2)^{2} .
\end{aligned}
$$

[Collecting terms in y and completing the square.]

$$
\therefore y-(2 x-3)= \pm(3 x+2) .
$$

Hence the locus is the intersecting lines

$$
y=5 x-1 \text { and } y=-x-5
$$

PROBLEMS

1. Test and plot the following equations:
(a) $x^{2}-2 x y+y^{2}-5 x=0$.
(c) $4 x y+4 y^{2}+4 y+4=0$.
(b) $4 x y+4 y^{2}-2 x+3=0$.
(d) $2 x^{2}+4 x y+4 y^{2}+2 x-3=0$.
(e) $x^{2}+2 x y+2 y^{2}+2 x+2 y-1=0$.
(f) $3 x^{2}-12 x y+9 y^{2}+8 x-12 y+5=0$.
(g) $5 x^{2}-12 x y+9 y^{2}+8 x-12 y+3=0$.
(h) $x^{2}+x y+y^{2}+3 y=0$.
(i) $x^{2}+2 x y+4 y^{2}+6 y=0$.
(j) $4 x^{2}+4 x y+y^{2}+6 x-9=0$.
(k) $3 x^{2}-2 x y+y^{2}-4 x-6=0$.
(1) $x^{2}-2 x y+5 y^{2}-8 y=0$.
(m) $x^{2}-4 x y+4 y^{2}+4 x+2 y=0$.
(n) $3 x^{2}+4 x y+y^{2}-2 x-1=0$.
(o) $3 x^{2}+8 x y+4 y^{2}+2 x+4 y=0$.

Second Method. By transformation. If the $x y$-term is lacking, we have seen that the equation may be simplified by translating the axes. The transformed equation is then readily plotted on the new axes.

When the $x y$-term is present, rotate the axes through the angle θ given by (VI),

$$
\begin{equation*}
\tan 2 \theta=\frac{B}{A-C} . \tag{5}
\end{equation*}
$$

The term in $x y$ will then disappear and further simplification is accomplished by translation.

To rotate, we substitute

$$
\begin{equation*}
x=x^{\prime} \cos \theta-y \sin \theta, \quad y=x^{\prime} \sin \theta+y^{\prime} \cos \theta . \tag{6}
\end{equation*}
$$

We find $\sin \theta$ and $\cos \theta$ as follows. First compute $\cos 2 \theta$ from

$$
\begin{equation*}
\cos 2 \theta= \pm \frac{1}{\sqrt{1+\tan ^{2} 2 \theta}} \cdot \quad(26 \text { and } 28, \text { p. } 3) \tag{7}
\end{equation*}
$$

From (5), 2θ must lie in the first or second quadrant, so the sign in (7) must be the same as in (5). θ will then be acute; and from 40, p. 4, we have

$$
\begin{equation*}
\sin \theta=+\sqrt{\frac{1-\cos 2 \theta}{2}}, \quad \cos \theta=+\sqrt{\frac{1+\cos 2 \theta}{2}} . \tag{8}
\end{equation*}
$$

EXAMPLES

1. Construct and discuss the locus of

$$
\begin{equation*}
x^{2}+4 x y+4 y^{2}+12 x-6 y=0 . \tag{9}
\end{equation*}
$$

Solution. Here

$$
A=1, \quad B=4, \quad C=4
$$

$\therefore B^{2}-4 A C=0$, and the locus is a parabola.
Write the equation (9) in the form

$$
\begin{equation*}
(x+2 y)^{2}+12 x-6 y=0 . \tag{10}
\end{equation*}
$$

We rotate the axes through an angle θ, such that

$$
\tan 2 \theta=\frac{4}{1-4}=-\frac{4}{3} .
$$

Then by (7), and by (8),

$$
\cos 2 \theta=-\frac{5}{5}
$$

$$
\begin{equation*}
\sin \theta=\frac{2}{\sqrt{5}} \text { and } \cos \theta=\frac{1}{\sqrt{5}} . \tag{11}
\end{equation*}
$$

The equations for rotating the axes are therefore

$$
x=\frac{x^{\prime}-2 y^{\prime}}{\sqrt{5}}, \quad y=\frac{2 x^{\prime}+y^{\prime}}{\sqrt{5}}
$$

Substituting in the equation (10), we obtain

$$
x^{\prime 2}-\frac{6}{\sqrt{5}} y^{\prime}=0
$$

Hence the locus is a parabola for which $p=\frac{3}{\sqrt{5}}$, and whose focus is on the y^{\prime}-axis.

The figure shows both sets of axes, the parabola, its focus and directrix. The axis $O X^{\prime}$ has the slope $\tan \theta=\frac{\sin \theta}{\cos \theta}=2$, from (11). Hence to draw $O X^{\prime}$, simply draw a line through the origin whose slope equals 2.

In the new coorrdinates the focus is the point $\left(0, \frac{3}{2 \sqrt{5}}\right)$ and the directrix is the line $y^{\prime}=-\frac{3}{2 \sqrt{5}}$.
2. Constrnct the locus of

$$
5 x^{2}+6 x y+5 y^{2}+22 x-6 y+21=0
$$

Solution. Here

$$
A=5, \quad B=6, \quad C=5
$$

$$
\therefore B^{2}-4 A C=36-100=-64=\text { a negative number. }
$$

Hence the locus is an ellipse.
We rotate the axes through the angle θ, given by

$$
\begin{aligned}
& \tan 2 \theta=\frac{6}{5-5}=\infty \\
& \therefore 2 \theta=90^{\circ}, \quad \theta^{*}=45^{\circ}
\end{aligned}
$$

Hence the equations of the transformation are

$$
x=\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}, \quad y=\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}
$$

$$
\text { *If } A=C \text {, the angle } \theta \text { always equals } 45^{\circ}
$$

Substituting in the given equation and reducing,

$$
4 x^{\prime 2}+y^{\prime 2}+4 \sqrt{2} x^{\prime}-7 \sqrt{2} y^{\prime}+\frac{2 x}{2}=0
$$

Translating to the new origin $\left(-\frac{1}{2} \sqrt{2}, \frac{7}{2} \sqrt{2}\right)$, the final equation is

$$
4 x^{\prime / 2}+y^{\prime 2}=16
$$

Hence the locns is an ellipse whose major axis is 8 , whose minor axis is 4 , and whose foci are on the $Y^{\prime \prime}$-axis.

The figure shows the three sets of axes and the ellipse. The coördinates of the new origin $O^{\prime}\left(-\frac{1}{2} \sqrt{2}, \frac{7}{2} \sqrt{2}\right)$ refer to the axes $O X^{\prime}$ and $O Y^{\prime}$, and this must be remembered in plotting.

The equation

$$
\begin{equation*}
B x y+D x+E y+F=0 \tag{12}
\end{equation*}
$$

in which x^{2} and y^{2} are lacking, offers an exception to the above process, for, by translation, the equation may be reduced to

$$
\begin{equation*}
B x^{\prime} y^{\prime}+F^{\prime}=0 ; \tag{13}
\end{equation*}
$$

and the locus of (13) is, by (V), Art. 67, an equilateral hyperbola referred to its asymptotes as axes. Hence to plot (12), translate so that the terms of the first degree disappear and then plot the new equation.

To show that (12) may be transformed into (13) by translation. proceed thus:

Substitute $x=x^{\prime}+h, y=y^{\prime}+k$, in (12), multiply out and collect the terms. We obtain

$$
\left.\begin{array}{c|c|c}
B x^{\prime} y^{\prime}+B k \tag{14}\\
+D & \begin{array}{c}
x^{\prime}+B h \\
+E
\end{array}\left|\begin{array}{c}
y^{\prime}+B h k \\
+D h \\
+E k \\
+F
\end{array}\right|=0
\end{array} \right\rvert\,=
$$

Choose the new origin (h, k) so that the

$$
\begin{aligned}
& \text { coefficient of } x^{\prime} \text { vanishes; that is, } B k+D=0 \text {, } \\
& \text { coefficient of } y^{\prime} \text { vanishes; that is, } B h+E=0 \text {. }
\end{aligned}
$$

Solving these equations, $h=-\frac{E}{B}, k=-\frac{D}{B}$, and (14) reduces to the form (13).

PROBLEMS

1. Simplify the following equations and construct the loci. Check the figure by finding the intercepts on the original axes.
(a) $x^{2}+\dot{x} y+y^{2}=3$.
(b) $x^{2}+3 x y+y^{2}+4 y=0$.
(c) $x^{2}+2 x y+y^{2}+3 x-3 y=0$.
(d) $3 x^{2}-4 x y+8 x-1=0$.
(e) $4 x^{2}+4 x y+y^{2}+8 x-16 y=0$.
(f) $3 x y+4 x+6 y+1=0$.
(g) $17 x^{2}-12 x y+8 y^{2}-68 x+24 y-12=0$.

Ans. $x^{\prime 2}+4 y^{\prime 2}-16=0$.
(h) $y^{2}+6 x-6 y+21=0$.
(i) $6 x y+4 x-12 y+3=0$.
(j) $12 x y-5 y^{2}+48 y-36=0$. Ans. $4 x^{\prime \prime 2}-9 y^{\prime 2}=36$.
(k) $4 x^{2}-12 x y+9 y^{2}+2 x-3 y-12=0$.

$$
\text { Ans. } 52 y^{\prime \prime 2}-49=0 .
$$

(1) $12 x^{2}+8 x y+18 y^{2}+48 x+16 y+43=0$.

$$
\text { Ans. } 4 x^{2}+2 y^{2}=1 .
$$

(m) $7 x^{2}+50 x y+7 y^{2}=50 . \quad$ Ans. $16 x^{2}-9 y^{\prime 2}=25$.
(n) $x^{2}+3 x y-3 y^{2}+6 x=0$. Ans. $21 x^{\prime \prime 2}-49 y^{\prime \prime 2}=72$.
(o) $16 x^{2}-24 x y+9 y^{2}-60 x-80 y+400=0$.

$$
\text { Ans. } y^{\prime \prime 2}-4 x^{\prime \prime}=0 .
$$

2. Show that the general equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

may he simplified by translation only, so that the new equation contains no terms of the first degree in x and y, if the coördinates of the new origin (h, k) satisfy the equations

$$
2 A h+B k+D=0, \quad B h+2 C k+E=0 .
$$

Hence show that the new origin (h, k) is the center of the locus, unless $B^{2}-4 A C=0$. In the latter case the transformation fails.
72. Conic sections. Historically, the parabola, ellipse, and hyperbola were discovered as plane sections of a right circular cone. Hence the generic term used for them, - conic sections or conics.

A definition often used, which will include all conic sections, is the following: When a point P moves so that its distances
from a given fixed point and a given fixed line are in a constant ratio, the locus is a conic.

The given fixed line is called the directrix, the fixed point the focus, and the number representing the ratio of the distances of P from the focus and directrix is called the eccentricity.

In Problem 3, p. 51, we found the equation for any conic to be

$$
\begin{equation*}
\left(1-e^{2}\right) x^{2}+y^{2}-2 p x+p^{2}=0 \tag{1}
\end{equation*}
$$

if e is the eccentricity, $Y Y^{\prime}$ is the directrix, and $(p, 0)$ is the focus. Now (1) has no $x y$-term. Hence we see at once by comparison with our previous results that a conic is

$$
\begin{aligned}
& \text { a parabola when } \quad e=1, \\
& \text { an ellipse when } \quad e<1, \\
& \text { a hyperbola when } e>1 .
\end{aligned}
$$

Clearly, when $e=1$ the definition of the conic agrees with that already given for the parabola.

The ellipse and hyperbola, each having a center, are called central conics.

Focus and eccentricity, as used in this section, agree with these terms as already introduced. This fact is left to the student to prove in the following problems.

The equation of a conic in polar coordinates is readily found. We may
 show that if the pole is the focus and the polar axis the principal axis of a conic section, then the polar equation of the conic is

$$
\begin{equation*}
\rho=\frac{e p}{1-e \cos \theta} \tag{2}
\end{equation*}
$$

where e is the eccentricity and p is the distance from the directrix to the focus.

For let P be any point on the conic. Then, by definition,

$$
\frac{F P}{E P}=e .
$$

From the figure, $\quad F P=\rho$,
and $\quad E P=H M=p+\rho \cos \theta$.
Substituting these values of $F P$ and $E P$, we have

$$
\frac{\rho}{p+\rho \cos \theta}=e ;
$$

or, solving for $\rho, \quad \rho=\frac{e p}{1-e \cos \theta}$.

PROBLEMS

1. Simplify (1), p. 186, by translation of the axes when $e \neq 1$.

$$
\begin{aligned}
& \text { the axes when } e \neq 1 . \\
& \text { Ans. }\left(1-e^{2}\right) x^{2}+y^{2}=\frac{e^{2} p^{2}}{1-e^{2}} .
\end{aligned}
$$

2. Show that in a central conic the focus coincides with the focus already adopted. Hence show that a central conic has two directrices, one associated by the above definition with each focus.
3. Prove that e in Problem 1 agrees with e as defined in Arts. 62 and 65.
4. Prove that the focal radii of a point (x, y) on the ellipse (III), p. 161, are $a+e x$ and $a-e x$.
5. Prove that the focal radii of a point on the hyperbola (IV), p. 167, are $e x-a$ and $e x+a$.

LOCUS PROBLEMS

It is expected that the locus in each problem will be constructed and discussed after its equation is found.

1. The base of a triangle is fixed in length and position. Find the locus of the opposite vertex if
(a) the sum of the other sides is constant. Ans. An ellipse.
(b) the difference of the other sides is constant.

Ans. A hyperbola.
(c) one base angle is double the other.
(d) the sum of the base angles is constant.

Ans. A hyperbola.
Ans. A circle.
(e) the difference of the base angles is constant. Ans. A conic.
(f) the product of the tangents of the base angles is constant.

Ans. A conic.
(g) the product of the other sides is equal to the square of half the base. Ans. A lemniscate (Ex. 2, p. 122).
(h) the median to one of the other sides is constant. Ans. A circle.
2. Find the locus of a point the sum of the squares of whose distances from (a) the sides of a square, (b) the vertices of a square, is constant. Ans. A circle in each case.
3. Find the locus of a point such that the ratio of its distance from a fixed point $P_{1}\left(x_{1}, y_{1}\right)$ to its distance from a given line $A x+B y+C=0$ is equal to a constant k.

$$
\text { Ans. } \begin{aligned}
\left(A^{2}\right. & \left.+B^{2}-k^{2} A^{2}\right) x^{2}-2 k^{2} A B x y+\left(A^{2}+B^{2}-k^{2} B^{2}\right) y^{2} \\
& -2\left(A^{2} x_{1}+B^{2} x_{1}+k^{2} A C\right) x-2\left(A^{2} y_{1}+B^{2} y_{1}+k^{2} B C\right) y \\
& +\left(x_{1}^{2}+y_{1}^{2}\right)\left(A^{2}+B^{2}\right)-k^{2} C^{2}=0 .
\end{aligned}
$$

4. Find the locus of a point such that the ratio of the square of its distance from a fixed line to its distance from a fixed point equals a constant k.

Ans. $x^{4}-k^{2}(x-p)^{2}-k^{2} y^{2}=0$ if the y-axis is the fixed line and the x-axis passes through the fixed point, p being the distance from the line to the point.

Systems of conics. When an equation of the second degree contains one arbitrary constant, the locus is a system of conies.

EXAMPLE

Discuss the system represented by $\frac{x^{2}}{25-k}+\frac{y^{2}}{9-k}=1$.
Solution. When $k<9$ the locus is an ellipse whose foci are ($\pm \mathrm{c}, 0$), where $c^{2}=(25-k)-(9-k)=16$. When $9<k<25$ the locus is an hyperbola whose foci are $(\pm c, 0)$, where $\mathrm{c}^{2}=(25-k)-(9-k)=16$. When $k>25$ there is no locus. Since the ellipses and hyperbolas have the same foci ($\pm 4,0$), they are called confocal.

In the figure the locus is plotted for $k=-56,-24,0,7,9,11,16,21$, 24,25 . As k increases and approaches 9 , the ellipses flatten out and finally degenerate into the x-axis, and as k decreases and approaches 9 , the hyperbolas flatten out and degenerate into the x-axis. As k increases and approaches 25 , the two branches of the hyperbolas lie closer to the y-axis, and in the limit they coincide with the y-axis.

PROBLEMS

1. Plot the following systems of conics and show that the conics of each system belong to the same type. Draw enough conics so that the degenerate conics of the system appear as limiting cases.
(a) $\frac{x^{2}}{16}+\frac{y^{2}}{9}=k$.
(c) $\frac{x^{2}}{16}-\frac{y^{2}}{9}=k$.
(b) $y^{2}=2 k x$.
(d) $x^{2}=2 k y-6$.
2. Plot the following systems of conics and show that all of the conics of each system are confocal. Discuss degenerate cases and show that two conics of each system pass through every point in the plane.
(a) $\frac{x^{2}}{16-k}+\frac{y^{2}}{36-k}=1$.
(c) $\frac{x^{2}}{64-k}+\frac{y^{2}}{16-k}=1$.
(b) $y^{2}=2 k x+k^{2}$.
(d) $x^{2}=2 k y+k^{2}$.
3. Plot and discuss the systems :
(a) $16(x-k)^{2}+9 y^{2}=144$.
(c) $(y-k)^{2}=4 x$.
(b) $x y=k$.
(d) $4(x-k)^{2}-9(y-k)^{2}=36$.
4. Plot the following systems and discuss the locus as k approaches zero and infinity:
(a) $\frac{(x-k)^{2}}{k^{2}}+\frac{y^{2}}{36}=1$.
(b) $\frac{(x-k)^{2}}{k^{2}}-\frac{y^{2}}{36}=1$.

CHAPTER XI

TANGENTS

73. Equation of the tangent. A tangent to a curve at a point P_{1} is obtained as follows. Take a second point P_{2} on the curve near P_{1}. Draw the secant through P_{1} and P_{2}.

Now let P_{2} move along the curve toward P_{1}. The secant will turn around P_{1}. The limiting position of the secant when P_{2} reaches P_{1} is called the tangent at P_{1}.

We wish to calculate the slope of the tangent at a point on a curve. Let the coördinates of P_{1} be $\left(x_{1}, y_{1}\right)$ and of $P_{2}\left(x_{1}+h\right.$, $y_{1}+k$). Then slope of secant $P_{1} P_{2}=\frac{k}{h}$.
To find the slope of the tangent, we begin by finding a value for $\frac{k}{h}$, the slope of the secant, as in the following example.

EXAMPLE

Find the slope of the tangent to the curve $C: 8 y=x^{8}$ at any point $P_{1}\left(x_{1}, y_{1}\right)$ on C (see figure on page 191).

Solution. Let $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{1}+h, y_{1}+k\right)$ be two points on C. Then since these coördinates must satisfy the equation of C,
and

$$
\begin{equation*}
8 y_{1}=x_{1}^{2} \tag{2}
\end{equation*}
$$

$$
8\left(y_{1}+k\right)=\left(x_{1}+h\right)^{3} ;
$$

or

$$
\begin{equation*}
8 y_{1}+8 k=x_{1}^{3}+3 x_{1}^{2} h+3 x_{1} l^{2}+h^{3} \tag{3}
\end{equation*}
$$

Subtracting (2) from (3), we obtain $8 k=3 x_{1}^{2} h+3 x_{1} l^{2}+h^{3}$.
Factoring, $\quad 8 k=h\left(3 x_{1}^{2}+3 x_{1} h+h^{2}\right)$;
and hence

$$
\begin{aligned}
\frac{k}{h} & =\frac{3 x_{1}^{2}+3 x_{1} h+h^{2}}{8} \\
& =\text { slope of secant } P_{1} P_{2}
\end{aligned}
$$

Now as P_{2} approaches P_{1}, k and k approach zero, and when the secant becomes a tangent to the curve, h and k are both equal to zero.

Hence the slope m of the tangent at P_{1} will be obtained from the above value of the slope of the secant, namely,

$$
\frac{3 x_{1}^{2}+3 x_{1} h+7_{1}^{2}}{8},
$$

by setting $h=0$ and also $k=0$, if k appeared in the expression. Hence

$$
m=\frac{3 x_{1}^{2}}{8} \cdot A n s
$$

The method employed in this example is general and may be formulated in the following

Rule to determine the slope of the tangent to a curve C at a point P_{1} on C.

First step. Let $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{1}+h\right.$, $y_{1}+k$) be two points on C. Substitute their coördinates in the equation of C and subtract.

Second step. Find a value for $\frac{k}{h}$, the slope of the secant through P_{1} and P_{2}.

Third step. Find the limiting value of the result of the second step when
 h and k approach zero. This value is the required slope.

Having found the slope of the tangent at P_{1}, its equation is found at once by the point-slope formula. The point P_{1} is called the point of contact.

EXAMPLE

Find the equation of the tangent to the circle

$$
x^{2}+y^{2}=r^{2}
$$

at the point of contact $\left(x_{1}, y_{1}\right)$.
Solution. Let $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{1}+h\right.$, $y_{1}+k$) be two points on the circle C.

Then these coördinates must satisfy the equation of the circle. Therefore

$$
\begin{equation*}
x_{1}^{2}+y_{1}^{2}=r^{2} \tag{1}
\end{equation*}
$$

and
or

$$
\begin{equation*}
x_{1}^{2}+2 x_{1} h+h^{2}+y_{1}^{2}+2 y_{1} k+k^{2}=r^{4} \tag{2}
\end{equation*}
$$

Subtracting (1) from (2), we have

$$
2 x_{1} h+h^{2}+2 y_{1} k+k^{2}=0
$$

Transposing and factoring, this becomes

$$
\begin{aligned}
k\left(2 y_{1}+k\right) & =-h\left(2 x_{1}+h\right) \\
\frac{k}{h} & =-\frac{2 x_{1}+h}{2 y_{1}+k} \\
& =\text { slope of the secant through } P_{1} \text { and } P_{2}
\end{aligned}
$$

Whence

Letting P_{2} approach P_{1}, h and k approach zero, so that m, the slope of the tangent at P_{1}, is

$$
m=-\frac{x_{1}}{y_{1}}
$$

The equation of the tangent at P_{1} is then
or

$$
\begin{aligned}
y-y_{1} & =-\frac{x_{1}}{y_{1}}\left(x-x_{1}\right) \\
x_{1} x+y_{1} y & =x_{1}^{2}+y_{1}^{2}
\end{aligned}
$$

This equation may be simplified. For by (1),

$$
x_{1}^{2}+y_{1}^{2}=r^{2}
$$

so that the required equation is

$$
x_{1} x+y_{1} y=r^{2}
$$

Q.E.D.

Theorem. The equation of the tangent to the circle

$$
C: x^{2}+y^{2}=r^{2}
$$

at the point of contact $P_{1}\left(x_{1}, y_{1}\right)$ is

$$
\begin{equation*}
x_{1} x+y_{1} y=r^{2} \tag{I}
\end{equation*}
$$

The point to be observed in this proof is this:
Always simplify the equation of the tangent by making use of the equation oltained when x_{1} and y_{1} are substituted for x and y in the equation of the given curve.

In the equation (I) the point of contact is $\left(x_{1}, y_{1}\right)$, while (x, y) is any point on the tangent.

In like manner we may prove the following
Theorem. The equation of the tangent at the point of contact $P_{1}\left(x_{1}, y_{1}\right)$ to the
ellipse $\quad b^{2} x^{2}+a^{2} y^{2}=\dot{a}^{2} b^{2}$ is $b^{2} x_{1} x+a^{2} y_{1} y=a^{2} b^{2} ;$ hyperbola $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$ is $b^{2} x_{1} x-a^{2} y_{1} y=a^{2} b^{2}$;
parabola
$y^{2}=2 p x \quad$ is
$y_{1} y=p\left(x+x_{1}\right)$.

PROBLEMS

1. Find the equations of the tangent to each of the following curves at the point of contact $\left(x_{1}, y_{1}\right)$:
(a) $x^{2}=2 p y$. Ans. $x_{1} x=p\left(y+y_{1}\right)$.
(b) $x^{2}+y^{2}=2 r x$.

Ans. $x_{1} x+y_{1} y=r\left(x+x_{1}\right)$.
(c) $y^{2}=4 x+3$.

Ans. $y_{1} y=2 x+2 x_{1}+3$.
(d) $x y=a^{2}$.

Ans. $x_{1} y+y_{1} x=2 a^{2}$.
(e) $x^{2}+x y=4$.

Ans. $2 x_{1} x+x_{1} y+y_{1} x=8$.
(f) $x^{2}+y^{2}+D x+E y+F=0$.

Ans. $x_{1} x+y_{1} y+\frac{D}{2}\left(x+x_{1}\right)+\frac{E}{2}\left(y+y_{1}\right)+F=0$.
(g) $y=x^{3} . \quad$ Ans. $3 x_{1}^{2} x-y+2 y_{1}=0$.
(b) $y^{2}=x^{3}$.
(i) $y=A x^{2}+B x^{\prime}+C$.
(m) $x y^{2}+a=0$.
(j) $A x^{2}+B y^{2}+C x=0$.
(n) $x^{2} y+b=0$.
(k) $A x^{2}+B y^{3}=0$.
(o) $x y^{2}+a^{2} x-a^{2} b=0$.
(1) $A x y+B x+C y=0$.
(p) $y^{2}(2 a-x)=x^{3}$.
74. Taking next any equation of the second degree, we may prove the

Theorem. The equation of the tangent to the locus of

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

at the point of contact $P_{1}\left(x_{1}, y_{1}\right)$ is

$$
A x_{1} x+B \frac{y_{1} x+x_{1} y}{2}+C y_{1} y+D \frac{x+x_{1}}{2}+E \frac{y+y_{1}}{2}+F=0 .
$$

Proof. Let $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{1}+h, y_{1}+k\right)$ be two points on the conic. Then

$$
\begin{equation*}
A x_{1}^{2}+B x_{1} y_{1}+\dot{C} y_{1}^{2}+D x_{1}+E y_{1}+F=0 \text { and } \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
A\left(x_{1}+h\right)^{2}+B\left(x_{1}+h\right)\left(y_{1}+k\right)+C\left(y_{1}+k\right)^{2} & +D\left(x_{1}+h\right) \\
& +E\left(y_{1}+k\right)+F=0 .
\end{aligned}
$$

Clearing of parentheses,
(2) $A x_{1}^{2}+2 A x_{1} h+A h^{2}+B x_{1} y_{1}+B x_{1} k+B y_{1} h+B h k$

$$
+C y_{1}^{2}+2 C y_{1} k+C k^{2}+D x_{1}+D h+E y_{1}+E k+F=0 .
$$

Subtracting (1) from (2),
(3) $2 A x_{1} h+A h^{2}+B x_{1} k+B y_{1} h+B h k+2 C y_{1} k+C k^{2}+D h+E k=0$.

Transposing all the terms containing h, and factoring, (3) becomes
$k\left(B x_{1}+2 C y_{1}+C k+E\right)=-h\left(2 A x_{1}+A h+B y_{1}+B k+D\right) ;$
whence

$$
\frac{k}{h}=-\frac{2 A x_{1}+B y_{1}+D+A h+B k}{B x_{1}+2 C y_{1}+E+C k} .
$$

This is the slope of the secant $P_{1} P_{2}$.
Letting P_{2} approach P_{1}, k and k will approach zero and the slope of the tangent is

$$
m=-\frac{2 A x_{1}+B y_{1}+D}{B x_{1}+2 C y_{1}+E}
$$

The equation of the tangent line is then

$$
y-y_{1}=-\frac{2 \cdot A x_{1}+B y_{1}+D}{B x_{1}+2 C y_{1}+E}\left(x-x_{1}\right)
$$

To reduce this equation to the required form we first clear of fractions and transpose. This gives

$$
\begin{aligned}
\left(2 A x_{1}+B y_{1}+D\right) x & +\left(B x_{1}+2 C y_{1}+E\right) y \\
& -\left(2 A x_{1}^{2}+2 B x_{1} y_{1}+2 C y_{1}^{2}+D x_{1}+E y_{1}\right)=0 .
\end{aligned}
$$

But from (1) the last parenthesis in this equation equals

$$
-\left(D x_{1}+E y_{1}+2 F\right) .
$$

Substituting, the equation of the tangent line is $\left(2 A x_{1}+B y_{1}+D\right) x+\left(B x_{1}+2 C y_{1}+E\right) y+\left(D x_{1}+E y_{1}+2 F\right)=0$.

Removing the parentheses, collecting the coefficients of A, B, C, D, E, and F, and dividing by (2), we obtain the equation of the theorem. Q.e.D.

The above result enables us to write down the equation of the tangent to the locus of any equation of the second degree. For by comparing the equation of the curve and the equation of the tangent we obtain the following

Rule to write the equation of the tangent at the point of contact $P_{1}\left(x_{1}, y_{1}\right)$ to the locus of an equation of the second degree.

Substitute $x_{1} x$ and $y_{1} y$ for x^{2} and $y^{2}, \frac{y_{1} x+x_{1} y}{2}$ for $x y$, and $\frac{x+x_{1}}{2}$ and $\frac{y+y_{1}}{2}$ for x and y in the given equation.

For example, the equation of the tangent at the point of contact $\left(x_{1}, y_{1}\right)$ to the conic $x^{2}+3 x y-4 y+5=0$ is

$$
\begin{gathered}
x_{1} x+\frac{3}{3}\left(x_{1} y+y_{1} x\right)-\frac{4}{2}\left(y+y_{1}\right)+5=0 ; \\
\left(2 x_{1}+3 y_{1}\right) x+\left(3 x_{1}-4\right) y-4 y_{1}+10=0 .
\end{gathered}
$$

or, also,
75. Equation of the normal. The normal to a curve at a point P_{1} is the line drawn through P_{1} perpendicular to the tangent at P_{1}. When the equation of the tangent has been found, we may find at once the equation of the normal in the manner of Chapter IV. Thus, using the equations of the tangents given on page 193, we find the

Theorem. The equation of the normal at $P_{1}\left(x_{1}, y_{1}\right)$ to the ellipse $\quad b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2} \quad$ is $\quad a^{2} y_{1} x-b^{2} x_{1} y=\left(a^{2}-b^{2}\right) x_{1} y_{1}$; hyperbola $\quad b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2} \quad$ is $\quad a^{2} y_{1} x+b^{2} x_{1} y=\left(a^{2}+b^{2}\right) x_{1} y_{1} ;$ parabola $\quad y^{2}=2 p x$ is $\quad y_{1} x+p y=x_{1} y_{1}+p y_{1}$.

For example, for the ellipse :
The slope of the tangent

$$
b^{2} x_{1} x+a^{2} y_{1} y=a^{2} b^{2}
$$

is $m=-\frac{A}{B}=-\frac{b^{2} x_{1}}{a^{2} y_{1}}$. Hence the equation of the normal is

$$
y-y_{1}=\frac{a^{2} y_{1}}{b^{2} x_{1}}\left(x-x_{1}\right),
$$

and this reduces to the equation in the theorem.
In numerical examples the student should use the Rule given to write down the equation of the tangent, find the normal as a perpendicular line, and not use the special formulas.
76. Subtangent and subnormal. If the tangent and normal at P_{1} intersect the x-axis in T and N respectively, then we define

$$
\begin{align*}
& P_{1} T=\text { length of tangent at } P_{1}, \\
& P_{1} N=\text { length of normal at } P_{1} . \tag{1}
\end{align*}
$$

The projections on $X X^{\prime}$ of $P_{1} T$ and $P_{1} N$ are called respectively the subtangent and subnormal at P_{1}. That is, in the figure,

$$
\begin{align*}
& M_{1} T=\text { subtangent at } P_{1}, \\
& M_{1} N=\text { subnormal at } P_{1} . \tag{2}
\end{align*}
$$

The subtangent and subnormal are readily found when the equations of the tangent and normal are known. For, from the figure,

$$
\begin{align*}
M_{1} T & =O T-O M_{1} \\
M_{1} N & =O N-O M_{1} \tag{3}\\
O M_{1} & =x_{1}
\end{align*}
$$

while $O T$ and $O N$ are respectively the intercepts on $X X^{\prime}$ of the tangent and normal at $P_{\mathbf{r}}$. Since the subtangent and subnormal are measured in opposite directions from the foot of the ordinate $M_{1} P_{1}$, they will have opposite signs.

EXAMPLE

Find the equations of tangent and normal, and the lengths of subtangent and subnormal at the point on the parabola $x^{2}=4 y$ wnose abscissa equals 3 .

Solution. The point of contact $\left(x_{1}, y_{1}\right)$ is

$$
x_{1}=3, \quad y_{1}=\frac{9}{4}
$$

The formula for the tangent at $\left(x_{1}, y_{1}\right)$ is, by the Rule, p. 195,

$$
x_{1} x=2\left(y+y_{1}\right)
$$

Substituting the values of x_{1} and y_{1}, $3 x=2\left(y+\frac{9}{4}\right)$ or $6 x-4 y-9=0$.
This is the required equation of the
 tangent.

The slope of this line is $\frac{3}{2}$. Hence the equation of normal at $\left(3, \frac{9}{4}\right)$ is

$$
y-\frac{9}{4}=-\frac{2}{3}(x-3), \text { or } 8 x+12 y-51=0
$$

The intercept on $X X^{\prime}$ of the tangent is $\frac{3}{2}$; of the normal $\frac{5_{8}}{8}$. Also $x_{1}=3$.

$$
\begin{aligned}
\therefore \text { subtangent } & =\frac{3}{2}-3=-\frac{3}{2} \\
\text { subnormal } & =\frac{51}{8}-3=\frac{27}{8}
\end{aligned}
$$

and
The lengths of the tangents and normals may be found by geometry, for the lengths of the legs of the triangles $P_{1} M_{1} T$ and $P_{1} M_{1} N$ are now known.

PROBLEMS

1. Find the equations of the tangent and normal at the point indicated to each of the following. Find also the lengths of subtangent and subnormal. Draw a figure in each case.
(a) $2 x^{2}+3 y^{2}=35, x_{1}=2, y_{1}$ positive.*

Ans. Tangent, $4 x+9 y=35$; normal, $9 x-4 y=6$.

$$
\text { Subtangent }=\frac{27}{4} ; \text { subnormal }=-\frac{4}{3} .
$$

(b) $x^{2}-4 y^{2}+15=0, x_{1}=1, y_{1}$ negative.
(c) $y^{2}=4 x+3, y_{1}=2$.
(d) $x y=4, x_{1}=2$.
(e) $x^{2}+y^{2}-4 x-3=0, x_{1}=3$.
(f) $x^{2}+4 y^{2}+5 x=0, y_{1}=1$.
(g) $4 x^{2}+3 y^{2}=1$; positive extremity of latus rectum.

* Substituting $x=2$ in the given equation, we find $y= \pm 3$. Hence $y_{1}=+3$.
(l) $x^{2}+x y+4=0, x_{1}=2$.
(i) $y^{2}+2 x y-3=0, y_{1}=-1$.
(j) $x^{2}-3 x y-4 y^{2}+9=0, x_{1}$ positive, $y_{1}=2$.
(k) $x^{2}+x y+y^{2}=4, x_{1}=0, y_{1}$ negative.
(l) $x^{2}+4 y^{2}+4 x-8 y=0, x_{1}=0$.
(m) $4 y=x^{3}, x_{1}=2$.
(n) $4 y^{2}=x^{8}, x_{1}=2$.

2. Show that the subtangent in the parabola $y^{2}=2 p x$ is bisected at the vertex, and that the subnormal is constant and equals p.
3. Tangent whose slope is given. Let it be required to find the equation of a tangent to the ellipse

$$
\begin{equation*}
5 x^{2}+y^{2}=5 \tag{1}
\end{equation*}
$$

whose slope equals 2 .
Solution. Draw the system of lines whose slope equals 2 (Art. 36). We observe that some of the lines intersect the ellipse in two points, and also that some of them do not intersect the ellipse at all. Furthermore, two of them are tangent. We wish to find the equations of these two tangents.

The equation of the system of lines whose slope equals 2 is

$$
\begin{equation*}
y=2 x+k \tag{2}
\end{equation*}
$$

where k is an arbitrary parameter.
Let us now start to solve for the points of intersection. Substituting from (2) into (1),

$$
\begin{equation*}
5 x^{2}+(2 x+k)^{2}=5 \tag{3}
\end{equation*}
$$

Squaring and collecting terms, (4) $9 x^{2}+4 k x+k^{2}-5=0$.

If the line (2) is the tangent $A B$ of the figure, by solving equation (4) we shall obtain the abscissa of the point of contact. But (4) is a quadratic and has two roots. Hence these roots must be equal.

We learn in algebra that the roots of the quadratic

$$
\begin{equation*}
A x^{2}+B x+C=0 \tag{5}
\end{equation*}
$$

are equal when

$$
\begin{equation*}
B^{2}-4 A C=0 \tag{6}
\end{equation*}
$$

Comparing (4) with (5),

$$
A=9, \quad B=4 k, \quad C=k^{2}-5
$$

Substituting in (6),

$$
\begin{equation*}
16 k^{2}-36\left(k^{2}-5\right)=0, \quad \text { or } \quad k= \pm 3 \tag{7}
\end{equation*}
$$

Hence the equations of the required tangents are

$$
A B: y=2 x+3 \text { and } C D: y=2 x-3
$$

Check. Writing $k=3$ in (4), it becomes

$$
9 x^{2}+12 x+4=0, \quad \text { or } \quad(3 x+2)^{2}=0
$$

The equation is now a perfect square, and this fact constitutes the check desired. Hence the equal roots have the common value $x=-\frac{2}{3}$. This is the abscissa of the point of contact P. The ordinate is found from $y=2 x+3$ to be $y=\frac{5}{3}$. Hence P is $\left(-\frac{2}{3}, \frac{5}{3}\right)$.

Similarly, putting $k=-3$ in (4), we find Q to be ($\frac{2}{3},-\frac{5}{3}$).
The method followed in the preceding may be thus outlined.
To find the equation of the tangent to a conic when the slope of the tangent is given.

1. Write down the equation of the system of lines with the given slope ($y=m x+k$). This equation contains a parameter (k) whose value must be found.
2. Eliminate x or y from the equations of the line and conic and arrange the result in the form of a quadratic

$$
\begin{equation*}
A y^{2}+B y+C=0, \quad \text { or } \quad A x^{2}+B x+C=0 \tag{8}
\end{equation*}
$$

3. The roots of this quadratic must be equal. Hence set

$$
\begin{equation*}
B^{2}-4 A C=0 \tag{9}
\end{equation*}
$$

and solve this for the parameter k.
4. Substitute the values of the parameter k in the equation of the system of lines.
5. Check. When each value of the parameter satisfying (9) is substituted in (8), the quadratic becomes a perfect square.

PROBLEMS

1. Find the equations of the tangents to the following conics which satisfy the condition indicated, check, and find the points of contact. Verify by constructing the figure.
(a) $y^{2}=4 x$, slope $=\frac{1}{2}$. Ans. $x-2 y+4=0$.
(b) $x^{2}+y^{2}=16$, slope $=-\frac{4}{3}$. Ans. $5 x+3 y \pm 20=0$.
(c) $9 x^{2}+16 y^{2}=144$, slope $=-\frac{1}{4}$.

Ans. $x+4 y \pm 4 \sqrt{10}=0$.
(d) $x^{2}-4 y^{2}=36$, perpendicular to $6 x-4 y+9=0$.

Ans. $2 x+3 y \pm 3 \sqrt{7}=0$.
(e) $x^{2}+2 y^{2}-x+y=0$, slope $=-1$. Ans. $x+y=1,2 x+2 y+1=0$.
(f) $x y+y^{2}-4 x+8 y=0$, parallel to $2 x-4 y=7$.

$$
\text { Ans. } x=2 y, x-2 y+48=0 .
$$

(g) $x^{2}+2 x y+y^{2}+8 x-6 y=0$, slope $=\frac{4}{9}$. Ans. $4 x-3 y=0$.
(h) $x^{2}+2 x y-4 x+2 y=0$, slope $=2$. Ans. $y=2 x, 2 x-y+10=0$.
(i) $2 x^{2}+3 y^{2}=35$, slope $=\frac{4}{9} . \quad$ (1) $y^{2}+4 x-9=0$, slope $=-1$.
(j) $x^{2}+y^{2}=25$, slope $=-\frac{3}{4}$.
(m) $x^{2}-y^{2}=16$, slope $=\frac{5}{3}$.
(k) $x^{2}+4 y-8=0$, slope $=2$.
(n) $x y-4=0$, slope $=-\frac{3}{2}$.
78. Formulas for tangents when the slope is given. For later reference we collect in this section formulas giving the equations of tangents to the conics in terms of the slope m of the tangent. The student should derive these formulas, following the method of the preceding section.

Theorem. The equation of a tangent in terms of its slope m to the

$$
\begin{array}{lcl}
\text { circle } & x^{2}+y^{2}=r^{2} & \text { is } y=m x \pm r \sqrt{1+m^{2}} ; \\
\text { ellipse } & b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2} & \text { is } y=m x \pm \sqrt{a^{2} m^{2}+b^{2}} ; \\
\text { hyperbola } & l^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2} & \text { is } y=m x \pm \sqrt{a^{2} m^{2}-b^{2}} ; \\
\text { parabola } & y^{2}=2 p x \text { is } y=m x+\frac{p}{2 m} .
\end{array}
$$

79. Properties of tangents and normals to conics. If we draw the tangent $A B$ and the normal $C D$ at any point P_{1} on the ellipse, and if we draw also the focal radii $P_{1} F$ and $P_{1} F^{\prime}$, we may prove the property:

The tangent and normal to an ellipse bisect respectively the external and internal angles formed ly the focal radii of the point of contact.

Proof. In the figure we wish to
 prove $\theta=\phi$. To do this we find $\tan \phi$ and $\tan \theta$ by (VI), Art. 35 .

The slopes of the lines joining $P_{1}\left(x_{1}, y_{1}\right)$ on the ellipse

$$
b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}
$$

to the foci $F^{\prime}(c, 0)$ and $F(-c, 0)$ are

$$
\begin{aligned}
& \text { slope of } F^{\prime} P_{1}=\frac{y_{1}}{x_{1}-c} \\
& \text { slope of } F P_{1}=\frac{y_{1}}{x_{1}+c}
\end{aligned}
$$

The equation of the tangent $A B$ is (Theorem, Art. 73)

$$
\begin{aligned}
b^{2} x_{1} x+a^{2} y_{1} y & =a^{2} b^{2} \\
\therefore \text { slope of } A B & =-\frac{b^{2} x_{1}}{a^{2} y_{1}}
\end{aligned}
$$

Now $\tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$, where $m_{1}=$ slope of $A B, m_{12}=$ slope of $P_{1} F^{\prime}$.

Substituting the above values of the slopes,

$$
\begin{aligned}
\tan \theta=\frac{-\frac{b^{2} x_{1}}{a^{2} y_{1}}-\frac{y_{1}}{x_{1}-c}}{1-\frac{b^{2} x_{1} y_{1}}{a^{2} y_{1}\left(x_{1}-c\right)}} & =\frac{-b^{2} x_{1}^{2}+b^{2} c x_{1}-a^{2} y_{1}^{2}}{a^{2} x_{1} y_{1}-a^{2} c y_{1}-b^{2} x_{1} y_{1}} \\
& =\frac{\left(a^{2} y_{1}^{2}+b^{2} x_{1}^{2}\right)-b^{2} c x_{1}}{a^{2} c y_{1}-\left(a^{2}-b^{2}\right) x_{1} y_{1}}
\end{aligned}
$$

But since P_{1} lies on the ellipse,

$$
\begin{aligned}
a^{2} y_{1}^{2}+b^{2} x_{1}^{2} & =a^{2} b \\
a^{2}-b^{2} & =c^{2} .
\end{aligned}
$$

and also
Hence $\quad \tan \theta=\frac{a^{2} b^{2}-b^{2} c x_{1}}{a^{2} c y_{1}-c^{2} x_{1} y_{1}}=\frac{b^{2}\left(a^{2}-c x_{1}\right)}{c y_{1}\left(a^{2}-c x_{1}\right)}=\frac{b^{2}}{c y_{1}}$.
In like manner,

$$
\begin{aligned}
\tan \phi=\frac{-b^{2} x_{1}^{2}-b^{2} c x_{1}-a^{2} y_{1}^{2}}{-a^{2} x_{1} y_{1}-a^{2} c y_{1}+b^{2} x_{1} y_{1}} & =\frac{\left(b^{2} x_{1}^{2}+a^{2} y_{1}^{2}\right)+b^{2} c x_{1}}{a^{2} c y_{1}+\left(a^{2}-b^{2}\right) x_{1} y_{1}} \\
& =\frac{a^{2} b^{2}+b^{2} c x_{1}}{a^{2} c y_{1}+c^{2} x_{1} y_{1}}=\frac{b^{2}}{c y_{1}}
\end{aligned}
$$

Hence $\tan \theta=\tan \phi ;$ and since θ and ϕ are both less than $\pi, \theta=\phi$. That is, $A B$ bisects the external angle of $F P_{1}$ and $F^{\prime} P_{1}$, and hence, also, $C D$ bisects the internal angle. Q.E.d.

An obvious application of this theorem is to the problem:
To draw a tangent and normal at a given point P_{1} on an ellipse.
This is accomplished by connecting P_{1} with the foci and bisecting the internal and external angles formed by these lines.

The phenomenon observed in "whispering galleries" depends upon this property; namely; let the elliptic arc $A^{\prime} P A$ be a vertical section of such a gallery. The waves of sound from a person's voice at the focus F will, after meeting the ceiling of the gallery, be reflected in the direction F^{\prime}.
 For if $P N$ is the normal at P, angle $N P F=$ angle $N P F^{\prime}$, and the law of reflection of sound waves is precisely that the angles of incidence $(=\angle N P F)$ and reflection $\left(=\angle N P F^{\prime}\right)$ are equal. Hence sound waves emanating from F in all directions will converge at F^{\prime}. A whisper at F, which would not carry over the distance $F F^{\prime}$, might consequently, through reflection, be audible at $F^{\prime \prime}$.

In like manner we prove the following properties:
The tangent and normal to a hyperbola bisect respectively the internal and external angles formed by the focal radii of the point of contact.

The tangent and normal to a parabola bisect respectively the internal and external angles formed by the focal radius of the pointof contact and the line through that point parallel to the axis.

These theorems give rules for constructing the tangent and normal to these conics by means of ruler and compasses.

Construction. To construct the tangent and normal to a hyperbola at any point, join that point to the foci and bisect the angles formed by these lines. To construct the tangent and normal to a parabola at any point, draw lines through it to the focus and parallel to the axis, and bisect the angles formed by these lines.

The principle of parabolic reflectors depends upon the property of tangent and normal just enunciated; namely, the reflecting surface of such a reflector is obtained by revolving a parabolic are about its axis. If, now, a light be placed at the focus, the rays of light which meet the surface of the reflector will all be reflected in the direction of the axis of the parabola; for a ray meeting the surface at P_{1} in the figure will be reflected in a direction making with the normal $P D$ an angle equal to the angle $F P_{1} D$. But this direction is, by the above property, parallel to the axis $O X$ of the parabola.

PROBLEMS

1. Tangents to an ellipse and its major auxiliary circle (p. 164) at points with the same abscissa intersect on the x-axis.
2. The point of contact of a tangent to a hyperbola is midway between the points in which the tangent meets the asymptotes.
3. The foot of the perpendicular from the focus of a parabola to a tangent lies on the tangent at the vertex.
4. The foot of the perpendicular from a focus of an ellipse to a tangent lies on the major auxiliary circle (p. 164).
5. Tangents to a parabola from a point on the directrix are perpendicnlar to each other.
6. Tangents to a parabola at the extremities of a chord which passes through the focus are perpendicular to each other.
7. The ordinate of the point of intersection of the directrix of a parabola and the line through the focus perpendicular to a tangent is the same as that of the point of contact.
8. How may Problem 7 be used to draw a tangent to a parabola?
9. The line drawn perpendicular to a tangent to a central conic from a focus, and the line passing through the center and the point of contact intersect on the corresponding directrix (Art. 72).
10. The angle which one tangent to a parabola makes with a second is half the angle which the focal radius drawn to the point of contact of the first makes with that drawn to the point of contact of the second.
11. The product of the distances from a tangent to a central conic to the foci is constant.
12. Tangents to any conic at the ends of the latus rectum pass throngh the intersection of the directrix and principal axis.
13. Tangents to a parabola at the extremities of the latus rectum are perpendicular.
14. The equation of the parabola referred to the tangents in Problem 13 is

$$
x^{2}-2 x y+y^{2}-2 \sqrt{2} p(x+y)+2 p^{2}=0 .
$$

Show that this equation has the form $x^{\frac{1}{2}}+y^{\frac{1}{2}}=\sqrt{p \sqrt{2}}$.
15. The area of the triangle formed by a tangent to a hyperbola and the asymptotes is constant.
16. An ellipse and a hyperbola whick are confocal intersect at right angles.

CHAPTER XII

PARAMETRIC EQUATIONS AND LOCI

80. If x and y are rectangular coördinates, and if each is expressed as a function of a variable parameter, as, for example,

$$
\begin{equation*}
x=\frac{1}{2} t^{2}, \quad y=\frac{1}{4} t^{3}, \tag{1}
\end{equation*}
$$

in which t is a variable, then these equations are called the parametric equations of the curve, - the locus of (x, y).

To plot the curve, give values to t and compute values of x and y, arranging the work in a table. When the computation is finished, plot the points (x, y) and draw a sinooth curve through them.

EXAMPLES

1. Plot the curve whose parametric equations are

$$
\begin{equation*}
x=\frac{1}{2} t^{2}, \quad y=\frac{1}{4} t^{3} . \tag{2}
\end{equation*}
$$

\boldsymbol{t}	\boldsymbol{x}	\boldsymbol{y}
	$\mathbf{0}$	0
1	.5	.25
2	2	2
3	4.5	6.75
etc.	etc.	etc.
-1	.5	-.25
-2	2	-2
$-\mathbf{3}$	4.5	-6.75
etc.	etc.	etc.

Solution. The table is easily made. For example, if $t=2$, then $x=2$, $y=2$, etc.

The curve is called a semicubical parabola.
2. Draw the locus of the equations
(3) $x=2 r \cos \theta+r \cos 2 \theta$,
$y=2 r \sin \theta-r \sin 2 \theta$,
where θ is a variable parameter.
Solution. Take $r=5$. Arrange the computation as below :

The three-pointed curve thus obtained is called a hypocycloid of three cusps.

$x=10 \cos \theta+5 \cos 2 \theta$							$y=10 \sin \theta-5 \sin 2 \theta$
θ	$\cos \theta$	2θ	$\cos 2 \theta$	x	$\sin \theta$	$\sin 2 \theta$	y
0	1	0	1	15	0	0	0
30°		.86	60°	.50	11.1	.50	.86
60°	.50	120°	-.50	2.5	.86	.86	4.3
90°	0	180°	-1	-5	1	0	10
120°	-.50	240°	-.50	-7.5	.86	-.86	12.9
150°	-.86	300°	.50	-6.1	.50	-.86	9.3
180°	-1	360°	1	-5	0	0	0
210°	-.86	420°	.50	-6.1	-.50	.86	-9.3
240°	-.50	480°	-.50	-7.5	-.86	.86	-12.9
270°	0	540°	-1	-5	-1	0	-10
300°	.50	600°	-.50	2.5	-.86	-.86	-4.3
330°	.86	660°	.50	11.1	-.50	-.86	-0.7
360°	1	720°	1	15	0	0	0

To obtain the rectangular equation from the parametric equations, the parameter must be eliminated. The method used depends upon the example.

EXAMPLES

1. Find the rectangular equation of the curve whose parametric equations are

$$
\begin{equation*}
x=2 t+3, \quad y=\frac{1}{2} t^{2}-4 . \tag{4}
\end{equation*}
$$

Solution. The first equation may be solved readily for t. We find $t=\frac{1}{2}(x-3)$, and substituting in the second equation gives $y=\frac{1}{8}(x-3)^{2}-4$; or, expanding and simplifying, $x^{2}-6 x-8 y-23=0$, a parabola.
2. Find the rectangular equation of the curve whose parametric equations are

$$
\begin{equation*}
x=3+4 \cos \theta, \quad y=3 \sin \theta . \tag{5}
\end{equation*}
$$

Solution. Remembering that $\sin ^{2} \theta+\cos ^{2} \theta=1$, we solve the first equation for $\cos \theta$, the second for $\sin \theta$. This gives

$$
\begin{equation*}
\cos \theta=\frac{1}{4}(x-3), \quad \sin \theta=\frac{1}{3} y . \tag{6}
\end{equation*}
$$

Hence the rectangular equation is

$$
\begin{equation*}
\frac{(x-3)^{2}}{16}+\frac{y^{2}}{9}=1 \tag{7}
\end{equation*}
$$

an ellipse.

PROBLEMS

1. Plot the following parametric equations, t and θ being variable parameters. Find the rectangular equation in each case:
(a) $x=t-1, y=4-t^{2}$.
(i) $x=\cos \theta, y=\cos 2 \theta$.
(b) $x=2 t^{2}-2, y=t-3$.
(j) $x=\frac{1}{2} \sin \theta, y=\operatorname{sir} 2 \theta$.
(c) $x=3 \cos \theta, y=\sin \theta$.
(k) $x=1-\cos \theta, y=\frac{1}{2} \sin \frac{1}{2} \theta$.
(d) $x=3 \tan \theta, y=\sec \theta$.
(1) $x=3 t^{2}, y=3 t-t^{3}$.
(e) $x=2 t, y=\frac{4}{t}$.
(m) $x=2 \sin \theta+3 \cos \theta, y=\sin \theta$.
(f) $x=2+\sin \theta, y=2 \cos \theta$.
(n) $x=2 \cos \theta+1, y=\sin \theta+4 \cos \theta$.
(g) $x=\frac{1}{2} t^{3}, y=\frac{1}{4} t$.
(h) $x=t^{2}-2 t, y=1-t^{2}$.
(o) $x=t-t^{2}, y=t+t^{2}$.
(p) $x=3-2 t, y=1+\frac{2}{t}$.
2. Plot the following parametric equations:
(a) $x=2 r \cos \theta-r \cos 2 \theta$,

$$
y=2 r \sin \theta-r \sin 2 \theta
$$

(b) $x=3 r \cos \theta+r \cos 3 \theta$,
$y=3 r \sin \theta-r \sin 3 \theta$.
(c) $x=3 r \cos \theta-r \cos 3 \theta$,
$y=3 r \sin \theta-r \sin 3 \theta$.
(d) $x=r \cos \theta-r \cos 2 \theta$,
$y=r \sin \theta-r \sin 2 \theta$.
(e) $x=2 r \cos \theta+\frac{1}{2} r \cos 2 \theta$,
$y=2 r \sin \theta-\frac{1}{2} r \sin 2 \theta$.

cycloid, cusp at origin
(g) $\left\{\begin{array}{l}x=a(\theta+\sin \theta), \\ y=a(1-\cos \theta) .\end{array}\right.$

cycloid, vertex at origin
(h) $x=a \theta-\frac{1}{2} a \sin \theta, y=a-\frac{1}{2} a \cos \theta$.
(i) $x=\alpha \theta-2 \alpha \sin \theta, y=\alpha-2 \alpha \cos \theta$.
(j) $x=r \cos \theta+r \theta \sin \theta, y=r \sin \theta-r \theta \cos \theta$.
(k) $x=4 r \cos \theta-r \cos 4 \theta, y=4 r \sin \theta-r \sin 4 \theta$.
(1) $x=a \log t, y=\frac{1}{2} a\left(t+\frac{1}{t}\right)$.
(m) $x=t+\sin t, y=1+\cos t$.
(n) $x=2 \cos t+t, y=3 \cos t+\sin 2 t$.
(0) $x=b \cos ^{2} \theta, y=a \tan \theta$.
81. Various parametric equations for the same curve. When the rectangular equation of a curve is given, any number of parametric equations may be obtained for the curve.

For example, given the ellipse (1)

$$
4 x^{2}+y^{2}=16
$$

Let $x=2 \cos \theta$, where θ is a variable parameter. Substituting in (1),

$$
16 \cos ^{2} \theta+y^{2}=16, \text { or } y^{2}=16\left(1-\cos ^{2} \theta\right)=16 \sin ^{2} \theta
$$

Hence the equations

$$
\begin{equation*}
x=2 \cos \theta, \quad y=4 \sin \theta \tag{2}
\end{equation*}
$$

are parametric equations of the ellipse (1).
Again, substitute in (1),

$$
y=t x+4
$$

where t is a variable parameter.
This gives

$$
\begin{align*}
4 x^{2}+t^{2} x^{2}+8 t x+16 & =16, \quad \text { or }\left(4+t^{2}\right) x^{2}+8 t x=0 \tag{3}\\
\therefore x & =-\frac{8 t}{4+t^{2}} \tag{4}
\end{align*}
$$

Substituting this value in (3) and reducing,

$$
\begin{equation*}
y=-\frac{4 t^{2}}{4+t^{2}} \tag{5}
\end{equation*}
$$

Hence the equations (4) and (5) are also parametric equations of the ellipse.

The point is: We obtain parametric equations by setting one of the coördinates equal to a function of "parameter, substituting in the given rectangular equation and solving for the other coördinate in terms of the parameter.

To obtain simple parametric equations we must, of course, assume the right function for one coorrdinate. No general rule applicable to all cases can be given for this purpose, but the study of the problems below will aid the student.

Many rectangular equations difficult to plot are treated by deriving parametric equations and plotting the latter.

EXAMPLES

1. Draw the locus of the equation

$$
\begin{equation*}
x^{3}+y^{8}-3 a x y=0 \tag{6}
\end{equation*}
$$

Solution. Set $y=t x$, where t is the parameter. Then, from (6),

$$
\begin{equation*}
x^{3}+t^{3} x^{3}-3 a t x^{2}=0 . \tag{7}
\end{equation*}
$$

Dividing out the x^{2}, solving for x, and remembering that $y=t x$, we obtain the desired parametric equations

$$
\begin{equation*}
x=\frac{3 a t}{1+t^{3}}, \quad y=\frac{3 a t^{2}}{1+t^{8}} . \tag{8}
\end{equation*}
$$

The locus is the curve of the figure, called the folium of Descartes.

The line drawn in the figure is an oblique asymptote. Its equation is
 $x+y+a=0$.

The parameter t in (7) is obviously the slope of the line $y=t x$; that is, of the line joining a point on the curve and the origin.

The reason for assuming the relation $y=t, x$ in the preceding example is that x^{2} divides out in (7), leaving an equation of the first degree to solve for x. Problems 1 (a), (d), (e), (f), and (j) below are worked on the same principle. In many cases trigonometric functions are employed with advantage, as in (b) and (c).

PROBLEMS

1. Find parametric equations for each of the following curves by making the substitution indicated in the given equation. Tbe parameter is t or θ, as the case may be. Plot the locus.
(a) $y^{2}=4 x^{2}-x^{8}, y=t x$.
(b) $x^{2} y^{2}=b^{2} x^{2}+a^{2} y^{2}, x=a \sec \theta$. Ans. $x=4-t^{2}, y=4 t-t^{8}$.
(c) $x^{2} y^{2}=a^{2} y^{2}-b^{2} x^{2}, x=a \sin \theta$.

Ans. $y=b \csc \theta$.
(d) $y^{8}=2 a x^{2}-x^{8}, y=t x$.

(e) $y^{2}(2 a-x)=x^{3}, y=t x$.
cissoid of ptocles
(f) $y^{2}=x^{2} \frac{2+x}{2-x}, y=t x$.
Ans. $x=\frac{2 t^{2}-2}{1+t^{2}}, y=\frac{2 t^{3}-2 t}{1+t^{2}}$.
(g) $x^{2}+x y+2 y^{2}+2 x+1=0$,
(h) $x^{\frac{1}{2}}+y^{\frac{1}{2}}=a^{\frac{1}{2}}, x=a \cos ^{4} \theta$. PARABOLA
Ans. $y=b \tan \theta$.

 $x=t y-1$.
$x=t y-1$.
Ans. $x=-\frac{2+t^{2}}{t^{2}+t+2}, y=\frac{1}{t^{2}+t+2}$.
(i) $x^{\frac{2}{8}}+y^{\frac{2}{5}}=a^{\frac{2}{8}}, x=a \sin ^{8} \theta$. hypocycloid of four cusps
(j) $x^{4}+2 a x^{2} y-a y^{8}=0, y=t x$.
(k) $\left(x^{2}+y^{2}+4 a y-a^{2}\right)\left(x^{2}-a^{2}\right)+4 a^{2} y^{2}=0, x^{2}=t^{2} y^{2}+a^{2}$.
(l) $x^{2}=y(y-2)^{2}, y-2=t x$.
(m) $\left(x^{2}-\frac{1}{2} b^{2}\right)^{2}+y^{2}\left(x^{2}-b^{2}\right)=0, x^{2}=\frac{1}{2} b^{2}+t y$.
82. Locus problems solved by parametric equations. Parametric equations are important because it is sometimes easy in locus problems to express the coördinates of a point on the locus in terms of a parameter, when it is otherwise difficult to obtain the equation of the locus. The following examples illustrate this statement:

EXAMPLES

1. $A B P$ is a rigid line. The points A and B move along two perpendicular intersecting lines. What is the locus of the point P on $A B$?

In the figure, A moves on $X X^{\prime}, B$ moves on $Y Y^{\prime}$; required the locus of the point $P(x, y)$.

Solution. Take the coördinate axes as indicated, and consider the line in any one of its positions. Choose for parameter the angle $X A B=\theta$.

Let

$$
A P=a, \quad P B=b
$$

Now

$$
O M=x, \quad M P=y
$$

In the right triangle MPA,

$$
\begin{equation*}
\sin \theta=\frac{M P}{P A}=\frac{y}{a} \tag{1}
\end{equation*}
$$

In the right triangle $B S P, \angle P B S \leftrightharpoons \theta$.

$$
\begin{equation*}
\therefore \cos P B S=\cos \theta=\frac{B S}{B P}=\frac{x}{b} . \tag{2}
\end{equation*}
$$

From (1) and (2),

$$
\begin{equation*}
x=b \cos \theta, \quad y=a \sin \theta . \tag{3}
\end{equation*}
$$

These are the parametric equations of the locus.
Squaring (1) and (2) and adding,

$$
\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1
$$

Hence the point P moves on an ellipse whose
 axes $2 a$ and $2 b$ lie along the given perpendicular lines.

A method commonly employed for drawing ellipses depends upon this result. The instrument consists of two grooved perpendicular bars $X^{\prime} X$
and $Y Y^{\prime}$ and a crossbar $A B P$. At A and B are screw nuts fitting the grooves and adjustable along $A B P$. If the crossbar is moved, a pencil at P will describe an ellipse whose semiaxes are $P A$ and $P B$.
2. The cycloid. Find the parametric equations of the locus of a point P on a circle which rolls along the axis of x.

Solution. Take for origin a point O at which the moving point P touched the axis of x. Let the circle drawn be any position of the rolling circle. Let a be the radius of the circle and take for the variable parameter θ the variable angle $C B P$. Then

$$
P C=a \sin \theta, \quad C B=a \cos \theta
$$

By definition, $\quad O A=\operatorname{arc} A P=a \theta$.
[For an arc of a circle equals its radius times the subtended angle, from the definition of a radian.]

Hence from the figure, if (x, y) are the coorrdinates of P, $x=O D=O A-P C=a \theta-a \sin \theta, y=D P=A B-C B=a-a \cos \theta$.

$$
\therefore\left\{\begin{array}{l}
x=a(\theta-\sin \theta) \tag{4}\\
y=a(1-\cos \theta)
\end{array}\right.
$$

These are the parametric equations of the cycloid.
The cycloid extends indefinitely to the right and left and consists of ares equal to $O M N$.

Construction of the cycloid. The definition of the cycloid suggests the following simple construction:

Lay off $O N=2 \pi a=$ circumference of the generat-
 ing circle. Draw the latter touching at C, the middle point of $O N$. Divide $O C$ into any number of equal parts, and the semicircle $C M$ into
the same number of equal arcs. Letter as in the figure. Through M_{1}, M_{2}, etc., draw lines parallel to $O N$. Lay off

$$
M_{1} D_{1}=C C_{1}, \quad M_{2} D_{2}=C C_{2}, \quad M_{3} D_{3}=C C_{8}, \text { etc. }
$$

Then D_{1}, D_{2}, D_{3}, etc. are points on the cycloid.
For, let the generating circle roll to the left, the point M tracing the curve. When the circle touches $O N$ at C_{1}, M will lie on a level with M_{1}, and at a distance to the left of M_{1} equal to $C C_{1}$. Similarly for D_{2}, D_{3}, etc.

The arc $M N$ of the cycloid may be constructed by using $C M$ as an axis of symmetry.
3. The hypocycloid of four cusps. Find the parametric equations of the locus of a point P on a circle which rolls on the inside of a fixed circle of four times the radius.

Solution. Take the center of the fixed circle for the origin and let the x-axis pass through a point A where the tracing point P touched the large circle. Then $O A=4 C B$, by hypothesis. $\therefore C B=\frac{O A}{4}=\frac{a}{4}$. Draw the rolling circle in any of its positions. Take for the variable parameter θ the $\angle A O B$. Then $\angle B C P=4 \theta$.
[For, by hypothesis, arc $P B=\operatorname{arc} A B$; and, from the definition of a radian, $\operatorname{arc} P B=\frac{a}{4} \angle B C P, \operatorname{arc} A B=a \theta . \therefore \frac{a}{4} \angle B C P=\alpha \theta$, or $\angle B C P=4 \theta$.]

But

$$
\begin{aligned}
\angle O C E+\angle E C P+\angle P C B & =\pi \\
\therefore \frac{\pi}{2}-\theta+\angle E C P+4 \theta & =\pi
\end{aligned}
$$

Whence

$$
\angle E C P=\frac{\pi}{2}-3 \theta .
$$

Now

$$
O F=x, F P=y
$$

From the figure,

$$
\begin{align*}
& O F=O E+D P \\
& F P=E C-C D . \tag{5}
\end{align*}
$$

Finding the lengths of the segments in the right-hand members,

$$
\begin{align*}
& O E=O C \cos \theta=\frac{3 a}{4} \cos \theta, E C=O C \sin \theta=\frac{3 a}{4} \sin \theta \\
& D C=C P \cos \left(\frac{\pi}{2}-3 \theta\right)=\frac{a}{4} \sin 3 \theta, \tag{by31,p.3}\\
& D P=C P \sin \left(\frac{\pi}{2}-3 \theta\right)=\frac{a}{4} \cos 3 \theta .
\end{align*}
$$

Substituting in (5),

$$
\left\{\begin{array}{l}
x=\frac{8}{4} a \cos \theta+\frac{1}{4} a \cos 3 \theta, \tag{6}\\
y=\frac{8}{4} a \sin \theta-\frac{1}{4}+3 \theta
\end{array}\right.
$$

These are parametric equations for the hypocycloid of four cusps.
Another form of (6) from which the rectangular equation may easily be derived is obtained by expressing $\cos 3 \theta$ and $\sin 3 \theta$ in terms of $\cos \theta$ and $\sin \theta$ respectively. Thus,

$$
\begin{array}{rlr}
\cos 3 \theta & =\cos (2 \theta+\theta)=\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta & (\text { by } 35, \mathrm{p}, 3) \\
& =\left(2 \cos ^{2} \theta-1\right) \cos \theta-2 \sin ^{2} \theta \cos \theta \\
& =2 \cos ^{3} \theta-\cos \theta-2\left(1-\cos ^{2} \theta\right) \cos \theta \\
& =4 \cos ^{3} \theta-3 \cos \theta . & \\
\sin 3 \theta & =\sin (2 \theta+\theta)=\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta & (\text { by } 33, \mathrm{p} .3) \\
& =2 \sin \theta \cos ^{2} \theta+\left(1-2 \sin ^{2} \theta\right) \sin \theta \\
& =2 \sin \theta\left(1-\sin ^{2} \theta\right)+\sin \theta-2 \sin ^{3} \theta \\
& =3 \sin \theta-4 \sin ^{3} \theta .
\end{array}
$$

Substituting in (6) and reducing, the result is

$$
\begin{equation*}
x=a \cos ^{8} \theta, \quad y=a \sin ^{3} \theta \tag{7}
\end{equation*}
$$

From these, $x^{\frac{2}{8}}=a^{\frac{2}{8}} \cos ^{2} \theta, y^{\frac{2}{8}}=a^{\frac{2}{8}} \sin ^{2} \theta$. Adding,

$$
\begin{equation*}
x^{\frac{2}{8}}+y^{\frac{2}{3}}=a^{\frac{2}{4}} \tag{8}
\end{equation*}
$$

which is the rectangular equation of the hypocycloid of four cusps

PROBLEMS

In the following problems express x and y in terms of the parameter and the lengths of the given lines of the figure. Sketch the locus.

1. Find the parametric equations of the ellipse, using as parameter the eccentric angle ϕ, that is, the angle between the major axis and the radius of the point B on the major auxiliary circle (p. 164) which has the same abscissa as the point $P(x, y)$ on the ellipse. (See figure.)

Ans. $x=a \cos \phi, y=b \sin \phi$.

2. In the figure, $A B P$ is a rigid equilateral triangle. A moves on $Y Y^{\prime}, B$ moves on $X X^{\prime}$. Find the locus of the vertex P.

$$
\text { Ans. } x=a \cos \theta+a \cos \left(120^{\circ}-\theta\right), y=a \sin \left(120^{\circ}-\theta\right)
$$

$$
\text { Ellipse, } x^{2}-\sqrt{3} x y+y^{2}=\frac{1}{4} a^{2}
$$

3. Two vertices A and B of a rigid right triangle $A B P$ move on perpendicular lines. Find the locus of the vertex P.

Ans. $x=a \cos \theta+a \sin \theta, y=a \cos \theta . \quad$ Ellipse, $x^{2}-2 x y+2 y^{2}=a^{2}$.

4. $A B$ is a fixed line and R a fixed point. Draw $R Q$ to any point Q in $A B$ and erect the perpendicular $Q P$, making $Q P \div Q R$ equal to a constant e. What is the locus of P ? Ans. $\quad x=p \cot \theta, y=e p \csc \theta . \quad H y p e r b o l a, \frac{x^{2}}{p^{2}}-\frac{y^{2}}{p^{2} e^{2}}=1$.
5. $A B$ is a fixed line and O a fixed point. Through O draw $O X$ parallel to $A B$ and $O N$ perpendicular to $A B$. Draw a line from O through any point Q in $A B$. Mark on this line a point P such that $M P=N Q, M P$ being \perp to $O X$. What is the locus of P ?

Ans. $x=a \cot ^{2} \theta, y=a \cot \theta . \quad$ Parabola, $y^{2}=a x$.

6. Through the fixed point $R(a, b)$ lines are drawn meeting the coördinate axes in A and B. What is the locus of the middle point of $A B$? Ans. $x=a-\frac{b}{t}, y=b-a t$, where $t=$ slope of $A B$.

Equilateral hyperbola, $(x-a)(y-b)=a b$.
7. Find the locus of a point Q on the radius $B P$ (Fig., Ex. 2, p. 212) if $B Q=b$.

$$
\text { Ans. }\left\{\begin{array}{l}
x=a \theta-b \sin \theta, \\
y=a-b \cos \theta .
\end{array}\right.
$$

The locus is called a prolate or curtate cycloid according as b is greater or less than a.

Describe a construction for the curve analogons to that given for the cycloid in Art. 82.
8. Given a string wrapped around a circle; find the locus of the end of the string as it is unwound.

Hint. Take the center of the circle for origin and let the x-axis pass through the point A at which the end of the string rests. If the string is unwound to a point B, let $\angle A O B=\theta$.

(See figure.)

$$
\text { Ans. The involute of a circle }\left\{\begin{array}{l}
x=r \cos \theta+r \theta \sin \theta \\
y=r \sin \theta-r \theta \cos \theta
\end{array}\right.
$$

9. A circle of radius r rolls on the inside of a circle whose radius is r^{\prime}. Find the locus of a point on the rolling circle.

Ans. The hypocycloid

$$
\left\{\begin{array}{l}
x=\left(r^{\prime}-r\right) \cos \theta+r \cos \frac{r^{\prime}-r}{r} \theta \\
y=\left(r^{\prime}-r\right) \sin \theta-r \sin \frac{r^{\prime}-r}{r} \theta
\end{array}\right.
$$

The curve is closed when r and r^{\prime} are commensurable. The hypocycloid of four cusps, p. 213, is a special case.

Describe a construction for the curve analogous to that given for the cycloid in Art. 82.

10. A circle of radius r rolls on the outside of a circle whose radius is r. Find the locus of a point on the rolling circle.

Ans. The epicycloid

$$
\left\{\begin{array}{l}
x=\left(r^{\prime}+r\right) \cos \theta-r \cos \frac{r^{\prime}+r}{r} \theta, \\
y=\left(r^{\prime}+r\right) \sin \theta-r \sin \frac{r^{\prime}+r}{r} \theta
\end{array}\right.
$$

The curve is closed when r and r are commensurable.

Describe a construction for the curve analogous to that given for the cycloid in Art. 82.

11. Given a fixed point O on a fixed circle and a fixed line $A B$. Draw the x-axis through O perpendicular to $A B$ and the y-axis through O parallel to $A B$. Draw any line through O to meet $A B$ in L and the fixed circle in S. Draw $L P \|$ to $O X$ to meet $S M$ drawn II to $O Y$. Required the locus of P.

Ans. $x=b \cos ^{2} \theta, y=a \tan \theta$.

$$
\text { Cubic, } x y^{2}+a^{2} x-a^{2} b=0
$$

Give a full discussion of the equation. Show that the y-axis is an asymptote. What modifications, if any, are necessary in the equations when $A B$ is a tangent? when $\boldsymbol{A} \boldsymbol{B}$ does not intersect the circle?

12. $O B$ is the crank of an engine and $A B$ the comecting rod. B moves on the crank circle whose center is O, and A moves on the fixed line $O X$. What is the locus of any point P on $A B$?

Ans. $x=b \cos \theta$ $+\sqrt{r^{2}-(a+b)^{2} \sin ^{2} \theta}, y=a \sin \theta$.

Ellipse, when $r=a+b$; otherwise an egg-shaped curve.
13. $O B$ is an engine crank re-
 volving about O, and $A B$ is the connecting rod, the point A moving on $O X$. Draw $A P \perp$ to $O X$ to meet $O B$ produced at P.* What is the locus of P ?

Ans. $x=r \cos \theta+\sqrt{c^{2}-r^{2} \sin ^{2} \theta}$, $y=r \sin \theta+\tan \theta \sqrt{c^{2}-r^{2} \sin ^{2} \theta}$.
When $c=r$, the locus is the circle $x^{2}+y^{2}=4 r^{2}$.
83. Loci derived by a construction from a given curve. Many important loci are defined as the locus of a point
 obtained by a given construction from a given curve. The method of treatment of such loci is illustrated in the following examples.

EXAMPLES

1. Find the locus of the middle points of the chords of the circle $x^{2}+y^{2}=25$ which pass through $P_{2}(3,4)$.

Solution. Let $P_{1}\left(x_{1}, y_{1}\right)$ be any point on the circle.

$$
\begin{equation*}
\therefore x_{1}^{2}+y_{1}^{2}=25 . \tag{1}
\end{equation*}
$$

Then a point $P(x, y)$ on the locus is obtained by bisecting $P_{1} P_{2}$. By (IV), Art. 13,

$$
\begin{aligned}
& x=\frac{1}{2}\left(x_{1}+3\right), \quad y=\frac{1}{2}\left(y_{1}+4\right) . \\
& \therefore x_{1}=2 x-3, \quad y_{1}=2 y-4 \text {. }
\end{aligned}
$$

* P is the "instantaneous center" of the motion of the connecting rod.

Substituting in (1),
or

$$
\begin{gathered}
(2 x-3)^{2}+(2 y-4)^{2}=25, \\
x^{2}+y^{2}-3 x-4 y=0 . \quad \text { Ans. }
\end{gathered}
$$

The locus is a circle constructed upon $O P_{2}$ as a diameter.
2. The witch. Find the equation of the locus of a point P constructed as follows: Let $O A$ be a diameter of the circle $x^{2}+y^{2}-2 a y=0$, and let any line $O B$ be drawn through O to meet the circle at P_{1} and the tangent at A at B. Draw $P_{1} P \perp$ to $O A$ and $B P \|$ to $O A$. Required the locus of P.

Solution. Let (x, y) be the coördinates of P and $\left(x_{1}, y_{1}\right)$ of P_{1}.
Then the coördinates of $P_{1}\left(x_{1}, y_{1}\right)$ must satisfy the equation

$$
x^{2}+y^{2}-2 a y=0 .
$$

$$
\begin{equation*}
\therefore x_{1}^{2}+y_{1}^{2}-2 a y_{1}=0 . \tag{2}
\end{equation*}
$$

From the figure,

$$
\begin{equation*}
y_{1}=y \tag{3}
\end{equation*}
$$

From the similar triangles
 $O C P_{1}$ and $O M B$ we have

$$
\begin{gather*}
\frac{O C}{O M}=\frac{C P_{1}}{M B}, \quad \text { or } \quad \frac{x_{1}}{x}=\frac{y_{1}}{2 a} . \tag{4}\\
{\left[\text { For } O C=x_{1}, \quad O M=x, \quad C P_{1}=y_{1}, \quad M B=2 a .\right]}
\end{gather*}
$$

Solving (3) and (4) for x_{1} and y_{1}, we obtain

$$
\begin{equation*}
x_{1}=\frac{x y}{2 a}, \quad y_{1}=y \tag{5}
\end{equation*}
$$

Substituting from (5) in (2),

$$
\frac{x^{2} y^{2}}{4 a^{2}}+y^{2}-2 a y=0
$$

or

$$
\begin{equation*}
y\left(x^{2}+4 a^{2}\right)=8 a^{8} . \tag{6}
\end{equation*}
$$

The locus of this equation is known as the witch of Agnesi.
The method followed in Examples 1 and 2 may evidently be described as follows:

Rule for finding the equation of a locus devived by a construction from a given curve.

First step. The construction will give rise to a figure from which we may find expressions for the coördinates of any point $P_{1}\left(x_{1}, y_{1}\right)$ on the given curve in terms of a point $P(x, y)$ on the required curve.

Second step. Substitute the results of the first step for the coördinates x_{1} and y_{1} in the equation of the given curve and simplify. The result is the required equation.

PR0BLEMS

1. Find the locus of a point whose ordinate is half the ordinate of a point on the circle $x^{2}+y^{2}=64$. Ans. The ellipse $x^{2}+4 y^{2}=64$.
2. Find the locus of a point which cuts off a part of an ordinate of the circle $x^{2}+y^{2}=a^{2}$ whose ratio to the whole ordinate is $b: a$.

Ans. The ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$.
3. Find the locus of the middle points of the chords of (a) an ellipse, (b) a parabola, (c) a hyperbola which pass through a fixed point $P_{2}\left(x_{2}, y_{2}\right)$ on the curve.

Ans. A conic of the same type for which the values of a and b or of p are half the values of those constants for the given conic.
4. Lines are drawn from the point $(0,4)$ to the hyperbola $x^{2}-4 y^{2}=16$. Find the locus of the points which divide these lines in the ratio $1: 2$.

$$
\text { Ans. } 3 x^{2}-12 y^{2}+64 y-90 \frac{2}{3}=0 .
$$

5. A chord $O P_{1}$ of the circle $x^{2}+y^{2}-2 a x=0$ meets the line $x=2 a$ at a point A. Find the locus of a point P on the line $O P_{1}$ such that $O P=P_{1} A$.

Ans. The cissoid of Diocles $y^{2}(2 a-x)=x^{3}$ (see figure).

6. $D D^{\prime}$ is the directrix and F the focns of a given conic (Art. 72).
Q is any point on the conic. Through Q draw $Q N \perp$ to the axis of the conic and construct P on $N Q$ so that $N P=F Q$. What is the locus of P ? Ans. A straight line.
84. Loci using polar coördinates. When the required locus is described by the end-point of a line of variable length whose other extremity is fixed, polar coördinates may be employed to advantage.

EXAMPLE

The conchoid. Find the locus of a point P constructed as follows : Through a fixed point O, a line is drawn cutting a fixed line $A B$ at P_{1}. On this line a point P is taken so that $P_{1} P= \pm b$, where b is a constant.

Solution. The required locas is the locus of the end-point P of the line $O P$, and O is fixed. Hence we use polar coördinates, taking O for the pole and the perpendicular $O M$ to $A B$ for the polar axis. Then

$$
\begin{equation*}
O P=\rho, \quad \angle M O P=\theta \tag{1}
\end{equation*}
$$

By construction,

$$
\begin{equation*}
\rho=O P=O P_{1} \pm b \tag{2}
\end{equation*}
$$

But ị the right triangle $O M P_{1}$,
(3) $O P_{1}=O M \sec \angle M O P_{1}=a \sec \theta$.

Substituting from (3) in (2),

$$
\begin{equation*}
\rho=a \sec \theta \pm b \tag{4}
\end{equation*}
$$

The locus of this equation is called the conchoid of Nicomedes. It has three distinct forms according as a is greater, equal to, or less than b.

PROBLEMS

1. $O A$ is a diameter of a fixed circle, and $O B$ is any chord drawn from the fixed point O. In the figure below, $B P=A B$. Find the locus of P. Ans. The circle $\rho=a(\sin \theta+\cos \theta)$.

2. The chord $O B$ of a fixed circle drawn from O is produced to P, making $B P=$ diameter $=a$. What is the locus of P ?

Ans. The cardioid $\rho=a(1+\cos \theta)$.
3. In problem 2, if $B P=$ any length $=b$, the locus of P is the limagon of Pascal, $\rho=b+a \cos \theta$. The limaçon has three distinct forms according as $b \equiv a$. In the figure on p. 124, $b<a$. The rectangular equation is $\left(x^{2}+y^{2}+a x\right)^{2}=b^{2}\left(x^{2}+y^{2}\right)$.
4. F is the focus and $D D^{\prime}$ the directrix of a conic (figure below). Q is any point on the conic. On the focal radius $F Q$ lay off $F P=Q M$, where $Q M$ is $\|$ to $D D^{\prime}$. Find the locus of P (see Art. 72).

Ans. $\rho=\frac{e p \sin \theta}{1-e \cos \theta}$.

5. Lines are drawn from the fixed point O on a fixed circle to meet a fixed line $L M$ which is \perp to the diameter through O. On any such line $O C$ lay off $O P=B C$. What is the locus of P ? Ans. $\rho=b \sec \theta-a \cos \theta$.

Draw the locus for $b>a, b<a$, and $b=a$. In the last case the curve is the cissoid (Problem 5, p. 220).
6. O is the center of a fixed circle and A a fixed interior point. Draw any radius $O B$, connect A and B, and draw $A P \perp$ to $A B$ to mect $O B$ at P. Reguired the locus of P. Ans. $\rho=\frac{e-a \cos \theta}{e \cos \theta-a}$,
if $O B=a, O A=e$.
Draw the locus.

7. A line is drawn from a fixed point O meeting a fixed line in P_{1}. Find the locus of a point P on this line such that $O P_{1} \cdot O P=a^{2}$. Ans. A circle.
8. A line is drawn through a fixed point O, meeting a fixed circle in P_{1} and P_{2}. Find the locus of a point P on this line such that $O P=2 O P_{1} \cdot O P_{2} \div\left(O P_{1}+O P_{2}\right)$. Ans. A straight line.
9. In Ex. 1, Λ rt. 82, find the locus of the foot of the perpendicular from the origin upon $A B . \quad A n s$. The four-leaved rose $\rho=a \sin 2 \theta$ (see figure).

FOUR-LEAVED ROSE

PARABOLIC SPlRAL
10. Let the x-axis cut the circle $x^{2}+y^{2}=a^{2}$ at A. An arc $A B$ is taid off on the circle equal to the abscissa x_{0} of a point $\left(x_{0}, y_{0}\right)$ on the parabola $y^{2}=4 c x$, and the radius $O B$ is produced to P making $B P=y_{0}$. Show that the locus of P is the parabolic spiral $(\rho-a)^{2}=4 a c \theta$ (see figure).
85. Loci defined by the points of intersection of systems of lines. If two systems of lines involve the same parameter, the lines belonging to the same value of the parameter are called corresponding lines. Many loci are defined, or may be easily regarded as the locus of the points of intersection of such lines. The method of treatment will now be illustrated.

EXAMPLES

1. Find the locus of the foot of the perpendicular drawn from the vertex of a parabola to the tangent. (See the figure on p. 224).

Solution. Taking the typical equation $y^{2}=2 p x$, the equation of a tangent $A B$ in terms of the slope t is (Art. 78)

$$
\begin{equation*}
y=t x+\frac{p}{2 t} \tag{1}
\end{equation*}
$$

The equation of the perpendicular $O P$ is

$$
\begin{equation*}
y=-\frac{1}{t} x \tag{2}
\end{equation*}
$$

Equations (1) and (2) define the two systems of lines in the parameter t. The locus of the point of intersection P of corresponding lines is required.

Solving (1) and (2) for x and y,
$x=-\frac{p}{2\left(1+t^{2}\right)}, y=\frac{p}{2 t+2 t^{3}}$.
These are the parametric equations of the required locus.

The rectangular equation is found thus:

From (2), $t=-\frac{x}{y}$. Substituting in the first equation of (3) and reducing,

$$
y^{2}\left(x+\frac{1}{2} p\right)=-x^{8} .
$$

Comparison with the answer to Problem 5, p. 220, shows that the locus is a cissoid.

The method of solving Example 1 may be summed up in the
Rule to find the equation of the locus of the points of intersection of corresponding lines of two systems.

First step. Find the equations of the two systems of lines defining the locus in terms of the same parameter.

Second step. Solve these equations for x and y in terms of the parameter. This gives the parametric equations of the locus.

If only the equation in rectangular coördinates is required, it may be obtained by eliminating the parameter from the equations found in the first step, for the result will be the same as that obtained by eliminating the parameter from the equations found in the second step.
2. Find the locus of the points of intersection of two perpendicular tangents to the ellipse $b^{2} x^{2}+a^{2} y^{2}-a^{2} b^{2}=0$.

Solution. First step. The equation of a tangent in terms of its slope t is (Art. 78)

$$
\begin{equation*}
y=t x+\sqrt{a^{2} t^{2}+b^{2}} \tag{4}
\end{equation*}
$$

The slope of the tangent perpendicular to (4) is $-\frac{1}{t}$. By replacing t in (4) by $-\frac{1}{t}$, we find the equation of the perpendicular tangent to be

$$
\begin{equation*}
y=-\frac{x}{t}+\sqrt{\frac{a^{2}}{t^{2}}+b^{2}} \tag{5}
\end{equation*}
$$

Second step. As the parametric equations are not required, this step may be omitted.

To eliminate t from (4) and (5) we write them in the forms

$$
\begin{aligned}
& t x-y=-\sqrt{a^{2} t^{2}+b^{2}} \\
& x+t y=\sqrt{a^{2}+b^{2} t^{2}} .
\end{aligned}
$$

Squaring these equations, we obtain

$$
t^{2} x^{2}-2 t x y+y^{2}=a^{2} t^{2}+b^{2},
$$

$$
x^{2}+2 t x y+t^{2} y^{2}=a^{2}+b^{2} t^{2}
$$

Adding,

$$
\begin{aligned}
& \left(1+t^{2}\right) x^{2}+\left(1+t^{2}\right) y^{2} \\
& \quad=\left(1+t^{2}\right) a^{2}+\left(1+t^{2}\right) b^{2} .
\end{aligned}
$$

Dividing by $1+t^{2}$, the required equation is

$$
x^{2}+y^{2}=a^{2}+b^{2} .
$$

The locus is therefore a circle whose center is the center of the ellipse, and whose radius is $\sqrt{a^{2}+b^{2}}$. It is called the director circle.

PROBLEMS

1. Find the locus of the intersections of perpendicular tangents to (a) the parabola, (b) the hyperbola (IV), p. 167.

$$
\text { Ans. (a) The directrix; (b) } x^{2}+y^{2}=a^{2}-b^{2} \text {. }
$$

2. Find the locus of the point of intersection of a tangent to (a) an ellipse, (b) a parabola, (c) a hyperbola with the line drawn through a focus perpendicular to the tangent.

Ans. (a) $x^{2}+y^{2}=a^{2}$; (b) $x=0$; (c) $x^{2}+y^{2}=a^{2}$.
3. Find the lacus of the point of intersection of a tangent to an equilateral hyperbola and the line drawn through the center perpendicular to that tangent.

Ans. The lemniscate $\left(x^{2}+y^{2}\right)^{2}$

$$
=a^{2}\left(x^{2}-y^{2}\right)(\text { Ex. 2, Art. 46). }
$$

4. Find the locus of the point of intersection of a tangent to the circle $x^{2}+y^{2}+2 a x+a^{2}-b^{2}=0$ and the line drawn through the origin perpendicular to it.

Ans. The limaçon $\left(x^{2}+y^{2}+a x\right)^{2}=b^{2}\left(x^{2}+y^{2}\right)$ (Problem 3, p. 222).
5. Find the locus of the foot of the perpendicular drawn from the origin to a tangent to the parabola $y^{2}+4 a x+4 a^{2}=0$.

Ans. The strophoid $y^{2}=x^{2} \frac{a+x}{a-x}$ (see figure).
6. Find the locus of the intersection of the normals drawn at points on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and major auxiliary circle $x^{2}+y^{2}=a^{2}$ which have the same abscissas. Ans. Circle $x^{2}+y^{2}=(a+b)^{2}$.
7. In the figure, $L M$ is any half chord of the circle parallel to the diameter $A B$.
 Find the locus of P, the intersection of $B L$ and $O M$. Ans. Parabola $y^{2}=a^{2}-2 a x$.
8. A tangent to the ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ meets the axes of x and y in A and B respectively. From A draw a line $\|$ to $O Y$, and from B a line $\|$ to $O X$. What is the locus of their point of intersection?
Ans. $x^{2} y^{2}=a^{2} y^{2}+b^{2} x^{2}$. (Problem 1,(b), p. 210.)
9. Work out Problem 8 when the ellipse is replaced by a hyperbola.

A somewhat different class of locus problems is illustrated in the following example.

EXAMPLE

What is the locus of the middle points of a system of parallel chords of an ellipse?

Solution. Let the equation of the system of parallel chords be

$$
\begin{equation*}
y=m x+k \tag{6}
\end{equation*}
$$

where k is a parameter and $m=$ slope of chords. Let the value of k for the chord $P_{1} P_{2}$ be k_{1}; that is,

$$
\begin{equation*}
y=m x+k_{1} \tag{7}
\end{equation*}
$$

is the equation of $P_{1} P_{2}$. Assume that

the coördinates of P_{1} are $\left(x_{1}, y_{1}\right)$, and of $P_{2}\left(x_{2}, y_{2}\right)$

If $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$ is the middle point of $P_{1} P_{2}$, then

$$
\begin{equation*}
x^{\prime}=\frac{1}{2}\left(x_{1}+x_{2}\right), \quad y^{\prime}=\frac{1}{2}\left(y_{1}+y_{2}\right) \tag{8}
\end{equation*}
$$

Since $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are the points of intersection of the chord (7) and the ellipse, we shall find their values by solving .

$$
\begin{equation*}
y=m x+k_{1} \quad \text { and } \quad b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2} . \tag{9}
\end{equation*}
$$

Eliminating y, we obtain the equation

$$
\begin{equation*}
\left(a^{2} m^{2}+b^{2}\right) x^{2}+2 a^{2} k_{1} m x+a^{2} k_{1}^{2}-a^{2} b^{2}=0 \tag{10}
\end{equation*}
$$

The roots of this equation are x_{1} and x_{2}, and, from (8), x^{\prime} equals one half the sum of these roots. Hence we need to know in (10) only the sum of the roots. But, by algebra,*

Hence, from (8),

$$
\begin{equation*}
x_{1}+x_{2}=-\frac{2 a^{2} k_{1} m}{a^{2} m^{2}+b^{2}} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
x^{\prime}=-\frac{a^{2} m}{a^{2} m^{2}+b^{2}} k_{1} . \tag{12}
\end{equation*}
$$

Since (x^{\prime}, y^{\prime}) satisfy (7),

$$
\begin{equation*}
y^{\prime}=m x^{\prime}+k_{1}=\frac{-a^{2} m^{2} k_{1}}{a^{2} m^{2}+b^{2}}+k_{1}=\frac{b^{2}}{a^{2} m^{2}+b^{2}} k_{1} \tag{13}
\end{equation*}
$$

Eliminating k_{1}, from (12) and (13),

$$
\begin{equation*}
b^{2} x^{\prime}+a^{2} m y^{\prime}=0 \tag{14}
\end{equation*}
$$

Dropping the accents gives the equation of the locus,

$$
\begin{equation*}
b^{2} x+a^{2} m y=0 \tag{15}
\end{equation*}
$$

The locus is the straight line $D D^{\prime}$ in the figure.
*In the quadratic $A x^{2}+B x+C=0$, sum of roots $=-\frac{B}{A}$; product of roots $=\frac{C}{A}$

In a circle a diameter may be defined as the locus of the middle points of a series of parallel chords. The corresponding locus for a conic section is also called a diameter of the conic.

Hence we have the
Theorem. The diameter of the ellipse

$$
b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}
$$

which bisects all chords with the slope m is

$$
b^{2} x+a^{2} m y=0
$$

In like manner (see the figures on p. 227) we may prove the
Theorem. The diameter which bisects all chords with the slope m of the
hyperbola $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$ is $b^{2} x-a^{2} m y=0 ;$
parabola $\quad y^{2}=2 p x$ is $\quad m y=p$.
Every line through the center of an ellipse or hyperbola is a diameter, while in a parabola every line parallel to the axis is a diameter.

PROBLEMS

1. Find the equation of the cliameter of each of the following conics which bisects the chords with the given slope m.
(a) $x^{2}-4 y^{2}=16$,
(b) $y^{2}=4 x$,
(c) $x y=6$,
(d) $x^{2}+x y-8=0$,
$m=2$. Ans. $x-8 y=0$.
(e) $\quad m=-3$. Ans. $x-y=0$.
(e) $x^{2}-4 y^{2}+4 x-16=0, \quad m=-1$. Ans. $x+4 y+2=0$.
(f) $x y+2 y^{2}-4 x-2 y+6=0, m=\frac{2}{3}$. Ans. $2 x+11 y-16=0$.
2. Find the equation of that diameter of
(a) $4 x^{2}+9 y^{2}=36$ passing through $(3,2)$. Ans. $2 x-3 y=0$.
(b) $y^{2}=4 x$ passing through $(2,1)$.
(c) $x y=8$ passing through $(-2,3)$.
(d) $x^{2}-4 y+6=0$ passing through $(3,-4)$. Ans. $x=3$.
(e) $x y-y^{2}+2 x-4=0$ passing through $(5,2)$. Ans. $4 x-9 y-2=0$.
3. Find the equation of the chord of the locus of
(a) $x^{2}+y^{2}=25$ which is bisected at the point $(2,1)$. Ans. $2 x+y-5=0$.
(b) $4 x^{2}-y^{2}=9$ which is bisected at the point $(4,2)$.

$$
\text { Ans. } 8 x-y-30=0 .
$$

(c) $x y=4$ which is bisected at the point $(5,3)$. Ans. $3 x+5 y-30=0$.
(d) $x^{2}-x y-8=0$ which is bisected at the point $(4,0)$.

Ans. $2 x-y-8=0$.
4. Show that if two lines through the center of the ellipse

$$
b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}
$$

have slopes m and m^{\prime} such that $m m^{\prime}=-\frac{b^{2}}{a^{2}}$, then each line bisects all chords parallel to the other.

Draw two such lines. They are called conjugate diameters.
5. Through the point $\left(x_{0}, y_{0}\right)$ on the ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ a diameter is drawn; prove that the coördinates of the extremities of its conjugate diameter are $x= \pm \frac{a y_{0}}{b}, y=\mp \frac{b x_{0}}{a}$.
6. If a^{\prime} and b^{\prime} are the lengths of two conjugate semidiameters of the ellipse, prove that $a^{2}+b^{2}=a^{2}+b^{2}$ (use Example 5).
7. Prove that the tangent at any point of the ellipse is parallel to the diameter which is conjugate to the diameter through the given point; and hence that the tangents at the extremities of two conjugate diameters form a parallelogram.
8. Prove that the area of the parallelogram formed by the tangents at the extremities of two conjugate diameters of an ellipse is constant and is equal to $4 a b$.

Hint. The area in question is eight times the area of the triangle whose vertices are (0,0), (x_{0}, y_{0}), and $\left(\frac{a y_{0}}{b},-\frac{b x_{0}}{a}\right)$ (see Example 5).
9. Two tangents with the slopes m_{1} and m_{2} are drawn from a point P to an ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$. Find the locus of P
(a) when $m_{1}+m_{2}=0$.
(b) when $m_{1}+m_{2}=1$.
(c) when $m_{1} m_{2}=1$.

Ans. $x=0$ and $y=0$.
Ans. $x^{2}-2 x y-a^{2}=0$.
Ans. $x^{2}-y^{2}=a^{2}-b^{2}$.

CHAPTER XIII

CARTESIAN COÖRDINATES IN SPACE

86. Cartesian coördinates. The foundation of plane analytic geometry depends upon the possibility of determining a point in the plane by a pair of real numbers (x, y). The study of solid analytic geometry is based on the determination of a point in space by a set of three real numbers x, y, and z. This determination is accomplished as follows:

Let there be given three mutually perpendicular planes intersecting in the lines $X X^{\prime}$, $Y Y^{\prime}$, and $Z Z^{\prime}$, which will also be mutually perpendicular. These three planes are called
 the coördinate planes and may be distinguished as the $X Y$-plane, the $Y Z$-plane, and the $Z X$-plane. Their lines of intersection are called the axes of coördinates, and the positive directions on them are indicated by the arrowheads.* The point of intersection of the coördinate planes is called the origin.

Let P be any point in space and let three planes be drawn through P parallel to the coördinate planes and cutting the axes at A, B, and C. These three planes together with the

[^17]coördinate planes form a rectangular parallelepiped, of which P and the origin O are opposite vertices, as in the figure. The three edges $O A=x, O B=y$, and $O C=z$ are called the rectangular coördinates of P.

Any point P in space determines three numbers, the coördinates of P. Conversely, given any three real numbers x, y, and z, a point P in space may always be constructed whose coördinates are x, y, and z. For if we lay off $O A=x, O B=y$, and $O C=z$, and draw planes through A, B, and C parallel to the coördinate planes, they will intersect in a point P. Hence

Every point determines three real numbers, and conversely, three real numbers determine a point.

The coördinates of P are written (x, y, z), and the symbol $P(x, y, z)$ is to be read, "The point P whose coördinates are x, y, and $z . "$

From the figure we have the relations

$$
\begin{aligned}
& A P=O S=\sqrt{(O B)^{2}+(O C)^{2}} \\
& B P=O R=\sqrt{(O C)^{2}+(O A)^{2}} \\
& C P=O Q=\sqrt{(O A)^{2}+(O B)^{2}} \\
& O P=\sqrt{(O A)^{2}+(O B)^{2}+(O C)^{2}}
\end{aligned}
$$

Hence, $\operatorname{let} P(x, y, z)$ be any point in space; then its distance
from the $X Y$-plane is z,
from the $Y Z$-plane is x,
from the $Z X$-plane is y,
from the X-axis is $\sqrt{y^{2}+z^{2}}$,
from the Y-axis is $\sqrt{z^{2}+x^{2}}$,
from the Z-axis is $\sqrt{x^{2}+y^{2}}$,
from the origin is $\sqrt{x^{2}+y^{2}+z^{2}}$.

The coördinate planes diyide all space into eight parts called octants, designated by $O-X Y Z, O-X^{\prime} Y Z$, etc. The signs of the coördinates of a point in any octant may be determined by the

Rule for signs.
x is positive or negative according as P lies to the right or left of the $Y Z$-plane.
y is positive or negative according as P lies in front or in back of the $Z X$-plane.
z is positive or negative according as P lies above or below the XY-plane.

Points in space may be conveniently plotted by marking the same seale on $X X^{\prime}$ and $Z Z^{\prime}$ and a somewhat smaller scale on $Y Y^{\prime}$ Then to plot any point, for example ($7,6,10$), we lay off $O A=7$ on $O X$, draw $A Q$ parallel to $O Y$ and equal to 6 units on $O Y$, and $Q P$ parallel to $O Z$ and equal to 10 units on $O Z$.

PROBLEMS

1. What are the coördinates of the origin?
2. Plot the following sets of points :
(a) $(8,0,2),(-3,4,7),(0,0,5)$.
(b) $(4,-3,6),(-4,6,0),(0,8,0)$.
(c) $(10,3,-4),(-4,0,0),(0,8,4)$.
(d) $(3,-4,-8),(-5,-6,4),(8,6,0)$.
(e) $(-4,-8,-6),(3,0,7),(6,-4,2)$.
(f) $(-6,4,-4),(0,-4,6),(9,7,-2)$.
3. Calculate the distances of each of the following points to each of the coördinate planes and axes and to the origin :
(a) $(2,-2,1)$,
(b) $(3,-4,-3)$,
(c) $\left(\frac{1}{\sqrt{3}},-1, \frac{1}{2}\right)$.
4. Show that the following points lie on a sphere whose center is the origin and whose radius is 3 :

$$
(\sqrt{3},-2, \sqrt{2}), \quad(2 \sqrt{2}, 0,-1), \quad(-2,2,1), \quad(-\sqrt{5}, \sqrt{3}, 1) .
$$

5. Show that the following points lie, on a circular cylinder of radius 5 whose axis is the Y-axis :

$$
(3,-8,4),(2 \sqrt{5}, 6, \sqrt{5}),(-4,0,-3),\left(1, \frac{1}{3}, 2 \sqrt{6}\right) .
$$

6. Where can a point move if $x=0$? if $y=0$? if $z=0$?
7. Where can a point move if $x=0$ and $y=0$? if $y=0$ and $z=0$? if $z=0$ and $x=0$?
8. Show that the points (x, y, z) and $(-x, y, z)$ are symmetrical with respect to the $Y Z$-plane ; (x, y, z) and $(x,-y, z)$ with respect to the $Z X$ plane ; (x, y, z) and $(x, y,-z)$ with respect to the $X Y$-plane.
9. Show that the points (x, y, z) and $(-x,-y, z)$ are symmetrical with respect to $\mathrm{ZZ}^{\prime} ;(x, y, z)$ and $(x,-y,-z)$ with respect to $X X^{\prime} ;(x, y, z)$ and $(-x, y,-z)$ with respect to $Y Y^{\prime} ;(x, y, z)$ and $(-x,-y,-z)$ with respect to the origin.
10. What is the value of z if $P(x, y, z)$ is in the $X Y$-plane? of x if P is in the $Y Z$-plane? of y if P is in the $Z X$-plane?
11. What are the values of y and z if $P(x, y, z)$ is on the X-axis? of z and x if P is on the Y-axis? of x and y if P is on the Z-axis?
12. A rectangular parallelepiped lies in the octant $O-X Y Z$ with three faces in the coobrdinate planes. If its dimensions are a, b, and c, what are the coördinates of its vertices?
13. Orthogonal projections. To extend the first theorem of projection, Art. 31, we define the angle between two directed lines in space which do not intersect to be the angle between two intersecting directed lines drawn parallel to the given lines and having their positive directions agreeing with those of the given lines.

The definitions of the orthogonal projection of a point upon a line and of a directed length $A B$ upon a directed line hold when the points and lines lie in space instead of in the plane. It is evident that the projection of a point upon a line may also be regarded as the point of intersection of the line and the plane passed through the point perpendicular to the line. As two parallel planes are equidistant, then the projections of a directed length AB upon two parallel lines whose positive directions agree are equal.

First Theorem of Projection. If A and B are points upon a directed line making an angle of γ with a directed line $C D$, then the
projection of the length $A B$ upon $C D=A B \cos \gamma$.
Proof. Draw $C^{\prime} D^{\prime}$ through A parallel to $C D$. Then, by definition, the angle between $A B$ and $C^{\prime} D^{\prime}$ equals γ. Since $C^{\prime} D^{\prime}$ and $A B$ intersect we may apply the first theorem of projection in the plane, and hence the
projection of the length $A B$ upon $C^{\prime} D^{\prime}=A B \cos \gamma$.
Since the projection of $A B$ on $C D$ equals the projection of $A B$ upon $C^{\prime} D^{\prime}$ we get (I). Q.E.D.

Second Theorem of Projection. If each segment of a broken line in space be given the direction determined in passing continuously from one extremity to the other, then the algebraic sum of the projections of the segments upon any directed line equals the projection of the closing line.

The proof given on page 69 holds whether the broken line lies in the plane or in space.

Corollary I. The projections of the line joining the origin to any point P on the axes of coördinates are respectively the coördinates of P.

For the projection of $O P$ (Fig., p. 230) upon $O X$ equals $O A$, since A is the projection of P on $O X$. Similarly for the projections on $O Y$ and $O Z$.

Corollary II. Given any two points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and P_{2} $\left(x_{2}, y_{2}, z_{2}\right)$, then

$$
\begin{aligned}
& x_{2}-x_{1}=\text { projection of } P_{1} P_{2} \text { upon } X X^{\prime} \\
& y_{2}-y_{1}=\text { projection of } P_{1} P_{2} \text { upon } Y Y^{\prime} \\
& z_{2}-z_{1}=\text { projection of } P_{1} P_{2} \text { upon } Z Z^{\prime}
\end{aligned}
$$

For if we project $P_{1} O P_{2}$ and $P_{1} P_{2}$ upon $X X^{\prime}$, we have the projection of $P_{1} O+$ projection of $O P_{2}=$ projection of $P_{1} P_{2}$. But by Corollary I,
projection of $P_{1} O=-x_{1}$, projection of $O P_{2}=x_{2}$. $\therefore x_{2}-x_{1}=$ projection of $P_{1} P_{2}$ upon $X X^{\prime}$.
In like manner the other formulas are proved.
Corollary III. If the sides of a polygon be given the direction established by passing continuously around the perimeter, the sum of the projections of the sides upon any directed line is zero.

PROBLEMS

1. Find the projections upon each of the axes of the sides of the triangles whose vertices are the following points, and verify the results by Corollary III.
(a) $(-3,4,-8),(5,-6,4),(8,6,0)$.
(b) $(-4,-8,-6),(3,0,7),(6,4,-2)$.
(c) $(10,3,-4),(-4,0,2),(0,8,4)$.
(d) $(-6,4,-4),(0,-4,6),(9,7,-2)$.
2. If the projections of $P_{1} P_{2}$ on the axes are respectively $3,-2$, and 7 , and if the coördinates of P_{1} are $(-4,3,2)$, find the coördinates of P_{2}.

Ans. (-1, 1, 9).
3. A broken line joins continuously the points $(6,0,0),(0,4,3)$, $(-4,0,0)$, and $(0,0,8)$. Find the sum of the projections of the segments and the projection of the closing line on (a) the X-axis, (b) the Y-axis, (c) the Z-axis, and verify the results. Construct the figure.
4. A broken line joins continuously the points $(6,8,-3),(0,0,-3)$, $(0,0,6),(-8,0,2)$, and $(-8,4,0)$. Find the sum of the projections of the segments and the projection of the closing line on (a) the X-axis, (b) the Y-axis, (c) the Z-axis, and verify the results. Construct the figure.
5. Find the projections on the axes of the line joining the origin to each of the points in Problem 1.
6. Find the angle between each axis and the line drawn from the origin to
(a) the point $(8,6,0) . \quad$ Ans. $\cos ^{-1} \frac{4}{5}, \cos ^{-1} \frac{3}{5}, \frac{\pi}{2}$.
(b) the point $(2,-1,-2)$. Ans. $\cos ^{-1} \frac{2}{3}, \cos ^{-1}\left(-\frac{1}{3}\right), \cos ^{-1}\left(-\frac{2}{3}\right)$.
7. Find two expressions for the projections upon the axes of the line drawn from the origin to the point $P(x, y, z)$, if the length of the line is ρ and the angles between the line and the axes are α, β, and γ.
8. Find the projections of the coördinates of $P(x, y, z)$ upon the line drawn from the origin to P if the angles between that line and the axes are α, β, and γ.

Ans. $x \cos \alpha, y \cos \beta, z \cos \gamma$.
88. Direction cosines of a line. The angles α, β, and γ between a directed line and the axes of coördinates are called the direction angles of the line.

If the line does not intersect the axes, then α, β, and γ are the angles between the axes and a line drawn through the origin parallel to the given line and agreeing with it in direction.

The cosines of the direction angles of a line are called the directiont cosines of the line.

Reversing the direction of a line changes the signs of the direction cosines of the line.

For reversing the direction of a line changes α, β, and γ into $\pi-\alpha, \pi-\beta$, and $\pi-\gamma$ respectively, and (30, p. 3) $\cos (\pi-x)$ $=-\cos x$.

Theorem. If α, β, and γ are the direction angles of a line, then
(II) $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$.

That is, the sum of the squares of the direction cosines of a line is unity.

Proof. Let $A B$ be a line whose direction angles are α, β, and γ. Through O draw $O P$
 parallel to $A B$ and let $O P=\rho$. By definition $\angle X O P=\alpha$, $\angle Y O P=\beta, \angle Z O P=\gamma$. Projecting $O P$ on the axes,

$$
\begin{equation*}
x=\rho \cos x, \quad y=\rho \cos \beta, \quad z=\rho \cos \gamma . \tag{1}
\end{equation*}
$$

Projecting $O P$ and $O C Q P$ on $O P$,

$$
\begin{equation*}
\rho=x \cos \alpha+y \cos \beta+\approx \cos \gamma . \tag{2}
\end{equation*}
$$

Substituting from (1) in (2) and dividing by ρ, we obtain (II). Q.E.D.

Corollary. If $\frac{\cos \alpha}{a}=\frac{\cos \beta}{b}=\frac{\cos \gamma}{c}$, then
(III) $\cos \alpha=\frac{a}{ \pm \sqrt{a^{2}+b^{2}+c^{2}}}, \quad \cos \beta=\frac{b}{ \pm \sqrt{a^{2}+b^{2}+c^{2}}}$,

$$
\cos \gamma=\frac{c}{ \pm \sqrt{a^{2}+b^{2}+c^{2}}} .
$$

That is, if the direction cosines of a line "re proportional to three numbers, they are respectively equal to these numbers euch divided by the square root of the sum of their squares.

For if r denotes the common value of the given ratios, then

$$
\begin{equation*}
\cos \alpha=a r, \quad \cos \beta=b r, \quad \cos \gamma=c r . \tag{3}
\end{equation*}
$$

Squaring, adding, and applying (II),

$$
\begin{aligned}
\mathbf{1} & =r^{2}\left(a^{2}+b^{2}+\epsilon^{2}\right) . \\
\therefore r & =\frac{1}{ \pm \sqrt{a^{2}+b^{2}+c^{2}}} .
\end{aligned}
$$

Substituting in (3), we get the values of $\cos \alpha, \cos \beta$, and $\cos \gamma$ to be derived.

The important conclusion just derived may be thus stated:
Any three numbers a, b, and c determine the direction of a line in space. This direction is the same as that of the line joining the origin and the point (a, b, c).

If a line cuts the $X Y$-plane, it will be directed upward or downward according as $\cos \gamma$ is positive or negative.

If a line is parallel to the $X Y$-plane, $\cos \gamma=0$, and it will be directed in front or in back of the $Z X$-plane according as $\cos \beta$ is positive or negative.

If a line is parallel to the X-axis, $\cos \beta=\cos \gamma=0$, and its positive direction will agree or disagree with that of the X-axis according as $\cos \alpha=1$ or -1 .

These considerations enable us to choose the sign of the radical in the Corollary so that the positive direction on the line shall be that given in advance.

89. Lengths.

Theorem. The length l of the line joining two points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
\begin{equation*}
l=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}} . \tag{IV}
\end{equation*}
$$

Proof. Let the direction angles of the line $P_{1} P_{2}$ be α, β, and γ.
Projecting $P_{1} P_{2}$ on the axes, we get, by the first theorem of projection and Corollary II, p. 234,
(1) $l \cos \alpha=x_{2}-x_{1}, \quad l \cos \beta=y_{2}-y_{1}, \quad l \cos \gamma=z_{2}-z_{1}$.

Squaring and adding,

$$
\begin{aligned}
l^{2}\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right) & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2} \\
& =\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}
\end{aligned}
$$

Applying (II), and taking the square root, we have (IV).
Q.E.D.

Corollary. The direction cosines of the line drawn from P_{1} to P_{2} are proportional to the projections of $P_{1} P_{2}$ on the axes.

For, from (1),

$$
\frac{\cos \alpha}{x_{2}-x_{1}}=\frac{\cos \beta}{y_{2}-y_{1}^{p}}=\frac{\cos \gamma}{z_{2}-z_{1}}
$$

since each ratio equals $\frac{1}{l}$. Also the denominators are the projections of $P_{1} P_{2}$ on the axes.

If we construct a rectangular
 parallelepiped by passing planes through P_{1} and P_{2} parallel to the coorrdinate planes, its edges will be parallel to the axes and equal numerically to the projections of $P_{1} P_{2}$ upon the axes. $P_{1} P_{2}$ will be a diagonal of this parallelepiped, and hence l^{2} will equal the sum of the squares of its three dimensions. We have thus a second method of deriving (IV).

PROBLEMS

1. Find the length and the direction cosines of the line drawn from
(a) $P_{1}(4,3,-2)$ to $P_{2}(-2,1,-5)$.
Ans. $7,-\frac{6}{7},-\frac{2}{7},-\frac{3}{7}$.
(b) $P_{1}(4,7,-2)$ to $P_{2}(3,5,-4)$.
(c) $P_{1}(3,-8,6)$ to $P_{2}(6,-4,6)$.
Ans. $3,-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}$.
Ans. $5, \frac{8}{5}, \frac{4}{5}, 0$.
2. Find the direction cosines of a line directed upward if they are proportional to (a) 3,6 , and 2 ; (b) 2,1 , and -4 ; (c) $1,-2$, and 3 .

Ans. (a) $\frac{3}{7}, \frac{6}{7}, \frac{2}{7}$; (b) $\frac{2}{-\sqrt{21}}, \frac{1}{-\sqrt{21}}, \frac{4}{+\sqrt{21}}$; (c) $\frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$.
3. Find the lengths and direction cosines of the sides of the triangles whose vertices are the following points; then find the projections of the sides upon the axes by the first theorem of projection and verify by Corollary III, p. 235.
(a) $(0,0,3),(4,0,0),(8,0,0)$.
(b) $(3,2,0),(-2,5,7),(1,-3,-5)$.
(c) $(-4,0,6),(8,2,-1),(2,4,6)$.
(d) $(3,-3,-3),(4,2,7),(-1,-2,-5)$.
4. In what octant ($O-X Y Z, O-X^{\prime} Y Z$, etc.) will the positive part of a line through O lie if
(a) $\cos \alpha>0, \cos \beta>0, \cos \gamma>0$?
(e) $\cos \alpha<0, \cos \beta>0, \cos \gamma>0$?
(b) $\cos \alpha>0, \cos \beta>0, \cos \gamma<0$?
(f) $\cos \alpha<0, \cos \beta<0, \cos \gamma>0$?
(c) $\cos \alpha>0, \cos \beta<0, \cos \gamma<0$?
(g) $\cos \alpha<0, \cos \beta<0, \cos \gamma<0$?
(d) $\cos \alpha>0, \cos \beta<0, \cos \gamma>0$?
(h) $\cos \alpha<0, \cos \beta>0, \cos \gamma<0$?
5. What is the direction of a line if $\cos \alpha=0$? $\cos \beta=0$? $\cos \gamma=0$? $\cos \alpha=\cos \beta=0 ? ~ \cos \beta=\cos \gamma=0 ? ~ \cos \gamma=\cos \alpha=0$?
6. Find the projection of the line drawn from the origin to $P_{1}(5,-7,6)$ upon a line whose direction cosines are $\frac{6}{9},-\frac{3}{9}$, and $\frac{2}{9}$.

Ans. 9.
Hint. The projection of $O P_{1}$ on any line equals the projection of a broken line whose segrents equal the coorrdinates of P_{1}.
\%. Find the projection of the line drawn from the origin to $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ upon a line whose direction angles are α, β, and γ.

Ans. $x_{1} \cos \alpha+y_{1} \cos \beta+z_{1} \cos \gamma$.
8. Show that the points $(-3,2,-7),(2,2,-3)$, and $(-3,6,-2)$ are the vertices of an isosceles triangle.
9. Show that the points $(4,3,-4),(-2,9,-4)$, and $(-2,3,2)$ are the vertices of an equilateral triangle.
10. Show that the points $(-4,0,2),(-1,3 \sqrt{3}, 2),(2,0,2)$, and $(-1, \sqrt{3}, 2+2 \sqrt{6})$ are the vertices of a regular tetrahedron.
11. What does formula (IV) become if P_{1} and P_{2} lie in the $X Y$-plane? in a plane parallel to the $X Y$-plane?
12. Show that the direction cosines of the lines joining each of the points $(4,-8,6)$ and $(-2,4,-3)$ to the point $(12,-24,18)$ are the same. How are the three points situated?
18. Show by means of direction cosines that the three points $(3,-2,7)$, $(6,4,-2)$, and $(5,2,1)$ lie on a straight line.
14. What are the direction cosines of a line parallel to the X-axis? to the \boldsymbol{Y}-axis? to the Z-axis?
15. What is the value of one of the direction cosines of a line parallel to the $X Y$-plane? the YZ-plane? the ZX-plane? What relation exists between the other two?
16. Show that the point $(-1,-2,-1)$ is on the line joining the points $(4,-7,3)$ and $(-6,3,-5)$ and is equally distant from them.
17. If two of the direction angles of a line are $\frac{\pi}{3}$ and $\frac{\pi}{4}$, what is the third?

$$
\text { Ans. } \frac{\pi}{3} \text { or } \frac{2 \pi}{3}
$$

18. Find the direction angles of a line which is equally inclined to the three coördinate axes. Ans. $\alpha=\beta=\gamma=\cos ^{-1} \frac{1}{3} \sqrt{3}$.
19. Find the length of a line whose projections on the axes are respectively
(a) $6,-3$, and 2.

Ans. 7.
(b) 12,4 , and -3 .

Ans. 13.
(c) $-2,-1$, and 2 .

Ans. 3.

90. Angle between two directed lines.

Theorem. If a, β, γ and $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ are the direction angles of two directed lines, then the angle θ between them is given by

$$
\cos \theta=\cos a \cos a^{\prime}+\cos \beta \cos \beta^{\prime}+\cos \gamma \cos \gamma^{\prime}
$$

Proof. Draw $O P$ and $O P^{\prime}$ (figure, p. 241) parallel to the given lines and let $O P=\rho$. Then, by definition,

$$
\angle P O P^{\prime}=\theta
$$

Now, if the coördinates of P are (x, y, z), then, in the figure,

$$
O A=x, \quad A B=y, \quad B P=z
$$

Project $O P$ and $O A B P$ on $O P^{\prime}$. Then

$$
\begin{equation*}
\rho \cos \theta=x \cos \alpha^{\prime}+y \cos \beta^{\prime}+z \cos \gamma^{\prime} \tag{1}
\end{equation*}
$$

Projecting $O P$ on the axes,

$$
\begin{equation*}
x=\rho \cos a, \quad y=\rho \cos \beta, \quad z=\rho \cos \gamma \tag{2}
\end{equation*}
$$

Substituting in (1) from (2) and dividing by ρ, we obtain (V).
Q.E.D.

Theorem. If α, β, γ and α^{\prime}, $\beta^{\prime}, \gamma^{\prime}$ are the direction angles of two lines, then the lines are
(a) parallel and in the same direction* when and only when

$$
\alpha=a^{\prime}, \quad \beta=\beta^{\prime}, \quad \gamma=\gamma^{\prime} ;
$$

(b) perpendicular \dagger when and only when

$$
\cos \alpha \cos \alpha^{\prime}+\cos \beta \cos \beta^{\prime}+\cos \gamma \cos \gamma^{\prime}=0
$$

That is, two lines are parallel and in the same direction when and only when their direction angles are equal, and perpendicular when and only when the sum of the products of their direction cosines is zero.

Proof. The condition for parallelism follows from the fact that both lines will be parallel to and agree in direction with the same line through the origin when and only when their direction angles are equal.

The condition for perpendicularity follows from (V), for if $\theta=\frac{\pi}{2}$, then $\cos \theta=0$, and conversely Q.E.D.

[^18]In the applications we usually have given not the direction cosines, but three numbers to which they are proportional. Hence the importance of the following

Corollary. If the direction cosines of two lines are proportional to a, b, c and $a^{\prime}, b^{\prime}, e^{\prime}$, then the conditions for parallelism and perpendicularity are respectively

$$
\frac{a}{a^{\prime}}=\frac{b}{b^{\prime}}=\frac{c}{c^{\prime}}, \quad a a^{\prime}+b b^{\prime}+c c^{\prime}=0 .
$$

91. Point of division.

Theorem. The coördinates (x, y, z) of the point of division P on the line joining $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ such that the ratio of the segments is
are given by the formulas

$$
\frac{P_{1} P}{P P_{2}}=\lambda
$$

$$
\begin{equation*}
x=\frac{x_{1}+\lambda x_{2}}{1+\lambda}, \quad y=\frac{y_{1}+\lambda y_{2}}{1+\lambda}, \quad z=\frac{z_{1}+\lambda z_{2}}{1+\lambda} . \tag{VI}
\end{equation*}
$$

This is proved as in Art. 13.
Corollary. The coördinates (x, y, z) of the middle point P of the line joining $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ are

$$
x=\frac{1}{2}\left(x_{1}+x_{2}\right), \quad y=\frac{1}{2}\left(y_{1}+y_{2}\right), \quad z=\frac{1}{2}\left(z_{1}+z_{2}\right)
$$

PR0BLEMS

1. Find the angle between two lines whose direction cosines are respectively
(a) $\frac{6}{7}, \frac{8}{7},-\frac{7}{7}$ and $\frac{3}{7},-\frac{7}{7}$, $\frac{8}{7}$.
(b) $\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$ and $-\frac{3}{15}, \frac{4}{15}, \frac{12}{3}$. Ans. $\frac{\pi}{2}$.
Ans. $\cos ^{-1} \frac{1}{9} \frac{4}{9}$.
Ans. $\cos ^{-1}\left(-\frac{4}{8}\right)$.
(c) $\frac{2}{5},-\frac{2}{3}, \frac{1}{3}$ and $\frac{3}{7}, \frac{6}{7}, \frac{2}{7}$.
2. Show that the lines whose direction cosines are $\frac{8}{7}, \frac{5}{7}, \frac{2}{7} ;-\frac{3}{7}, \frac{3}{7},-\frac{6}{7}$; and $-\frac{5}{7}, \frac{2}{5}, \frac{3}{7}$ are mutually perpendicular.
3. Show that the lines joining the following pairs of points are either parallel or perpendicular.
(a) $(3,2,7),(1,4,6)$ and $(7,-5,9),(5,-3,8)$.
(b) $(13,4,9),(1,7,13)$ and $(7,16,-6),(3,4,-9)$.
(c) $(-6,4,-3),(1,2,7)$ and $(8,-5,10),(15,-7,20)$.
4. Find the coördinates of the point dividing the line joining the following points in the ratio given.

(a) $(3,4,2),(7,-6,4)$,	$\lambda=\frac{1}{2}$.	Ans. $\left(\frac{18}{3}, \frac{2}{3}, \frac{8}{8}\right)$.
(b) $(-1,4,-6),(2,3,-7), \lambda=-3$.	Ans. $\left(\frac{7}{2}, \frac{5}{2},-\frac{15}{2}\right)$.	
(c) $(8,4,2),(3,9,6)$,	$\lambda=-\frac{1}{3}$.	Ans. $\left(\frac{21}{3}, \frac{3}{2}, 0\right)$.
(d) $(7,3,9),(2,1,2)$,	$\lambda=4$.	Ans. $\left(3, \frac{7}{3}, \frac{1}{5}\right)$.

5. Show that the points $(7,3,4),(1,0,6)$, and $(4,5,-2)$ are the vertices of a right triangle.
6. Show that the points $(-6,3,2),(3,-2,4),(5,7,3)$, and $(-13,17,-1)$ are the vertices of a trapezoid.
7. Show that the points $(3,7,2),(4,3,1),(1,6,3)$, and $(2,2,2)$ are the vertices of a parallelogram.
8. Show that the points $(6,7,3),(3,11,1),(0,3,4)$, and $(-3,7,2)$ are the vertices of a rectangle.
9. Show that the points $(6,-6,0),(3,-4,4),(2,-9,2)$, and $(-1,-7,6)$ are the vertices of a rhombus.
10. Show that the points $(7,2,4),(4,-4,2),(9,-1,10)$, and $(6,-7,8)$ are the vertices of a square.
11. Show that each of the following sets of points lies on a straight line, and find the ratio of the segments in which the third divides the line joining the first to the second.
(a) $(4,13,3),(3,6,4)$, and $(2,-1,5)$.
(b) $(4,-5,-12),(-2,4,6)$, and $(2,-2,-6)$.
(c) $(-3,4,2),(7,-2,6)$, and $(2,1,4)$.

Ans. -2.
Ans. $\frac{1}{2}$.
Ans. 1.
12. Find the lengths of the medians of the triangle whose vertices are the points $(3,4,-2),(7,0,8)$, and $(-5,4,6)$. Ans. $\sqrt{113}, \sqrt{89}, 2 \sqrt{29}$.
13. Show that the lines joining the middle points of the opposite sides of the quadrilaterals whose vertices are the following points bisect each other.
(a) $(8,4,2),(0,2,5),(-3,2,4)$, and $(8,0,-6)$.
(b) $(0,0,9),(2,6,8),(-8,0,4)$, and $(0,-8,6)$.
(c) $P_{1}\left(x_{1}, y_{1}, z_{1}\right), P_{2}\left(x_{2}, y_{2}, z_{2}\right), P_{8}\left(x_{3}, y_{3}, z_{3}\right), P_{4}\left(x_{4}, y_{4}, z_{4}\right)$.
14. Show that the lines joining successively the middle points of the sides of any quadrilateral form a parallelogram.
15. Find the projection of the line drawn from $P_{1}(3,2,-6)$ to P_{2} $(-3,5,-4)$ upon a line directed upward whose direction cosines are proportional to 2,1 , and -2 .

Ans. 47
16. Find the projection of the line drawn from $P_{1}(6,3,2)$ to $P_{2}(4,2,0)$ upon the line drawn from $P_{3}(7,-6,0)$ to $P_{4}(-5,-2,3)$. Ans. $\frac{14}{1}$.
17. Find the coördinates of the point of intersection of the medians of the triangle whose vertices are $(3,6,-2),(7,-4,3)$, and $(-1,4,-7)$. Ans. (3, 2, - 2).
18. Find the coördinates of the point of intersection of the medians of the triangle whose vertices are any three points P_{1}, P_{2}, and P_{3}.

Ans. $\left[\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right), \frac{1}{3}\left(y_{1}+y_{2}+y_{3}\right), \frac{1}{3}\left(z_{1}+z_{2}+z_{3}\right)\right]$.
19. The three lines joining the middle points of the opposite edges of a tetrahedron pass through the same point and are bisected at that point.
20. The four lines drawn from the vertices of any tetrahedron to the point of intersection of the medians of the opposite face meet in a point which is three fourths of the distance from each vertex to the opposite face (the center of gravity of the tetrahedron).

CHAPTER XIV

SURFACES, CURVES, AND EQUATIONS

92. Loci in space. In solid geometry it is necessary to consider two kinds of loci :
93. The locus of a point in space which satisfies one given condition is, in general, a surface.

Thus the locus of a point at a given distance from a fixed point is a sphere, and the locus of a point equidistant from two fixed points is the plane which is perpendicular to the line joining the given points at its middle point.
2. The locus of a point in space which satisfies two conditions* is, in general, a curve. For the locus of a point which satisfies either condition is a surface, and hence the points which satisfy both conditions lie on two surfaces, that is, on their curve of intersection.

Thus the locus of a point which is at a given distance r from a fixed point P_{1} and is equally distant from two fixed points P_{2} and P_{8} is the circle in which the sphere whose center is P_{1} and whose radius is r intersects the plane which is perpendicular to $P_{2} P_{3}$ at its middle point.

These two kinds of loci must be carefully distinguished.
93. Equation of a surface. First fundamental problem. If any point P which lies on a given surface be given the coördinates (x, y, z), then the condition which defines the surface as a locus will lead to an equation involving the variables x, y, and z.

[^19]The equation of a surface is an equation in the variables x, y, and z representing coördinates such that:

1. The coördinates of every point on the surface will satisfy the equation.
2. Every point whose coördinates satisfy the equation will lie upon the surface.

If the surface is defined as the locus of a point satisfying one condition, its equation may be found in many cases by a Rule analogous to that in Art. 17.

EXAMPLE

Find the equation of the locus of a point whose distance from $P_{1}(3,0,-2)$ is 4 .

Solution. Let $P(x, y, z)$ be any point on the locus. The given condition may be written

$$
P_{1} P=4 .
$$

By (IV),

$$
\begin{aligned}
& P_{1} P=\sqrt{(x-3)^{2}+y^{2}+(z+2)^{2}} . \\
& \ldots \sqrt{(x-3)^{2}+y^{2}+(z+2)^{2}}=4 .
\end{aligned}
$$

Simplifying, we obtain as the required equation

$$
x^{2}+y^{2}+z^{2}-6 x+4 z-3=0 .
$$

That this is indeed the equation of the locus should be verified as on page 31.

PROBLEMS

1. Find the equation of the locus of a point which is
(a) 3 units above the $X Y$-plane.
(b) 4 units to the right of the $Y Z$-plaue.
(c) 5 units below the $X Y$-plane.
(d) 10 units back of the $Z X$-plane.
(e) 7 units to the left of the $Y Z$-plane.
(f) 2 units in front of the $Z X$-plane.
2. Find the equation of the plane which is parallel to
(a) the $X Y$-plane and 4 units above it.
(b) the $X Y$-plane and 5 units below it.
(c) the $Z X$-plane and 3 units in front of it.
(d) the $Y Z$-plane and 7 units to the left of it.
(e) the $Z X$-plane and 2 units back of it.
(f) the $Y Z$-plane and 4 units to the right of it.
3. What are the equations of the coördinate planes?
4. What is the form of the equation of a plane which is parallel to the $X Y$-plane? the $Y Z$-plane? the $Z X$-piane?
5. What are the equations of the faces of the rectangular parallelepiped which has one vertex at the origin, three edges lying along the coördinate axes, and one vertex at the point $(3,5,7)$?
6. Find the equation of the locus of a point whose distance from the point
(a) $(2,-2,1)$ is 3 .
(d) $\left(-2, \frac{1}{3}, 0\right)$ is $\sqrt{5}$.
(b) $\left(0, \frac{1}{2},-2\right)$ is $\frac{1}{2}$.
(e) (a, b, c) is d.
(c) $\left(-1,3, \frac{2}{3}\right)$ is $\sqrt{3}$.
(f) $(c r, \beta, \gamma)$ is r.
7. Find the equation of the sphere whose center is the point
(a) $(3,0,4)$ and whose radins is 5 .

$$
\text { Ans. } x^{2}+y^{2}+z^{2}-6 x-8 z=0 .
$$

(b) $(-3,2,1)$ and whose radius is 4 .

$$
\text { Ans. } x^{2}+y^{2}+z^{2}+6 x-4 y-2 z-2=0 \text {. }
$$

(c) $(6,4,0)$ and whose radius is 7 .
(d) (α, β, γ) and whose radius is r.

$$
\text { Ans. } x^{2}+y^{2}+z^{2}-2 \alpha x-2 \beta y-2 \gamma z+\alpha^{2}+\beta^{2}+\gamma^{2}-\gamma^{2}=0 \text {. }
$$

8. Find the equation of a sphere
(a) having the line joining $(3,0,7)$ and $(1,-2,-1)$ for a diameter.
(b) of radius 2 , which is tangent to all three coördinate planes in the first octant.
(c) of radius 3 , which is tangent to all three coördinate planes in the third octant.
(d) whose center is the point $(3,1,-2)$ and which is tangent to the $X Y$-plane.
(e) whose center is $(6,2,3)$ and which passes through the origin.
(f) passing through the four points $(-2,0,0),(0,-4,0),(0,0,4),(8,0,0)$.
9. Find the equation of the locus of a point which is equally distant from the points
(a) $(3,2,-1)$ and $(4,-3,0)$. Ans. $2 x-10 y+2 z-11=0$.
(b) $(4,-3,6)$ and $(2,-4,2) . \quad$ Ans. $4 x+2 y+8 z-37=0$.
(c) $(1,3,2)$ and $(4,-1,1)$.

Ans. $3 x-4 y-z-2=0$.
(d) $(4,-6,-8)$ and $(-2,7,9)$ Ans. $6 x-13 y-17 z+9=0$.
10. Find the equation of a plane perpendicular at the middle point to the line joining
(a) $(1,-2,1)$ and $(2,-1,0)$.
(b) $\left(-3, \frac{1}{2}, 0\right)$ and $\left(0,0, \frac{1}{3}\right)$.
(c) $\left(-2, \frac{1}{3}, \frac{1}{5}\right)$ and $\left(\frac{1}{2}, 0,0\right)$.
11. Find the equations of the six planes drawn through the middle points of the edges of the tetrahedron whose vertices are the points $(5,4,0),(2,-5,-4),(1,7,-5)$, and $(-4,3,4)$, which are perpendicular to the respective edges, and show that they all pass through the point (-1, 1, -2).
12. Find the equation of the locus of a point which is three times as far from the point $(2,6,8)$ as from $(4,-2,4)$, and determine the nature of the locus by comparison with the answer to Problem 7 (d).
13. Find the equation of the locus of a point the sum of the squares of . whose distances from $(1,3,-2)$ and $(6,-4,2)$ is 50 , and determine the nature of the locus by comparison with the answer to Problem 7 (d).
14. Find the equation of the locus of a point whose distance
(a) from the X-axis is 3 .
(b) from the Y-axis is $\frac{1}{8}$.
(c) from the Z-axis is $\sqrt{5}$.
15. Find the equation of a circular cylinder
(a) whose axis is the Y-axis and whose radius is 2 .
(b) whose axis is the Z-axis and whose radius is $\sqrt{3}$.
(c) whose axis is the X-axis and whose diameter is $\sqrt{7}$.
16. A point moves so that the sum of its distances to the two fixed points $(\sqrt{3}, 0,0)$ and $(-\sqrt{3}, 0,0)$ is always equal to 4 . Find the equation of its locus.

Ans. $x^{2}+4 z^{2}+4 y^{2}-4=0$.
17. Find the equation of the locus of a point
(a) whose distance from the point ($1,0,0$) equals its distance from the $Y Z$-plane.

Ans. $y^{2}+z^{2}-2 x+1=0$.
(b) whose distance from the point $(1,0,0)$ equals its distance from the Z-axis.

Ans. $z^{2}-2 x+1=0$.
(c) whose distance from the X-axis is one half of its distance from the $Y Z$-plane.

Ans. $4 y^{2}+4 z^{2}-x^{2}=0$.
(d) whose distance from the Z-axis is twice its distance from the Y-axis.
(e) whose distance from the origin equals the sum of its distances from the $X Z$-plane and the $Y Z$-plane. Ans. $z^{2}-2 x y=0$.
(f) the sum of whose distances from the three coördinate planes is constant.
(g) whose distance from the origin equals the sum of its distances from the three coördinate planes. Ans. $x y+y z+z x=0$.
(h) whose distance from the X-axis is half the difference of its distances from the $X Y$-plane and the $X Z$-plane.
(i) whose distance from the point $(0,0,1)$ equals its distance from the IY-plane increased by 1 .
(j) whose distance from the Z-axis equals its distance from the point ($1,1,0$).
18. Find the equation of the locus of a point the sum of whose distances from the X-axis and the Y-axis is unity.
19. Find the equation of the locus of a point the sum of whose distances from the three coördinate axes is unity.
94. Planes parallel to the coördinate planes. We may easily prove the

Theorem. The equation of a plane which is
parallel to the $X Y$-plane has the form $\quad z=$ constant;
parallel to the YZ-plane has the form $\quad x=$ constant;
parallel to the $Z X$-plane has the form $\quad y=$ constant.
95. Equations of a curve. First fundamental problem. If any point P which lies on a given curve be given the coördinates (x, y, z), then the two conditions which define the curve as a locus will lead to two equations involving the variables x, y, and \approx.

The equations of a curve are two equations in the variables x, y, and z representing coördinates such that:

1. The coördinates of every point on the curve will satisfy both equations.
2. Every point whose coördinates satisfy both equations will lie on the curve.

If the curve is defined as the locus of a point satisfying two conditions, the equations of the surfaces defined by each condition separately may be found in many cases by a Rule analogous to that of Art. 17. These equations will be the equations of the curve.

It will appear later that the equations of the same curve may have an endless variety of forms.

EXAMPLES

1. Find the equations of the locus of a point whose distance from the origin is 4 and which is equally distant from the points $P_{1}(8,0,0)$ and $P_{2}(0,8,0)$.

Solution. Let $P(x, y, z)$ be any point on the locus.

The given conditions are

$$
\begin{equation*}
P O=4, \quad P P_{1}=P P_{2} \tag{1}
\end{equation*}
$$

By (IV),

$$
\begin{aligned}
P O & =\sqrt{x^{2}+y^{2}+z^{2}} \\
P P_{1} & =\sqrt{(x-8)^{2}+y^{2}+z^{2}} \\
P P_{2} & =\sqrt{x^{2}+(y-8)^{2}+z^{2}}
\end{aligned}
$$

Substituting in (1), we get

$$
\sqrt{x^{2}+y^{2}+z^{2}}=4, \quad \sqrt{(x-8)^{2}+y^{2}+z^{2}}=\sqrt{x^{2}+\left(y-8 j^{2}+z^{2}\right.}
$$

Squaring and reducing, we have the required equations, namely,

$$
x^{2}+y^{2}+z^{2}=16, \quad x-y=0
$$

These equations should be verified as in Art. 16.
2. Find the equations of the circle lying in the $X Y$-plane whose center is the origin and whose radius is 5.

Solution. In plane analytic geometry the equation of the circle is

$$
\begin{equation*}
x^{2}+y^{2}=25 \tag{2}
\end{equation*}
$$

Regarded as a problem in solid analytic geometry we must have two equations which the coördinates of any point $P(x, y, z)$ which lies on the circle must satisfy. Since P lies in the $X Y$-plane,

$$
\begin{equation*}
z=0 \tag{3}
\end{equation*}
$$

Hence equations (2) and (3) together express that the point P lies in the $X Y$-plane and on the given circle. The equations of the circle are therefore

$$
x^{2}+y^{2}=25, \quad z=0
$$

The reasoning in Ex. 2 is general. Hence
If the equation of a curve in the XY-plane is known, then the equations of that curve regarded as a curve in space are the given equation and $z=0$.

An analogous statement evidently applies to the equations of a curve lying in one of the other coördinate planes.

From Art. 94 we have at once the
Theorem. The equations of a line which is parallel to the X-axis have the form $y=$ constant,$\quad z=$ constant; the Y-axis have the form $\approx=$ constant, $\quad x=$ constant;
the Z-axis have the form $x=$ constant,$\quad y=$ constant .

PROBLEMS

1. Find the equations of the locus of a point which is
(a) 3 units above the $X Y$-plane and 4 units to the right of the $Y Z$-plane,
(b) 5 units to the lef of the $Y Z$-plane and 2 units in front of the $Z X$-plane.
(c) 4 units back of the $Z X$-plane and 7 units to the left of the $Y Z$-plane.
(d) 9 units below the $X Y$-plane and 4 units to the right of the $Y Z$-plane.
2. Find the equations of the straight line which is
(a) 5 units above the $X Y$-plane and 2 units in front of the $Z X$-plane
(b) 2 units to the left of the $Y Z$-plane and 8 units below the $X Y$-plane.
(c) 3 units to the right of the $Y Z$-plane and 5 units from the Z-axis.
(d) 13 units from the X-axis and 5 units back of the $Z X$-plane.
(e) parallel to the Y-axis and passing through ($3,7,-5$).
(f) parallel to the Z-axis and passing through ($-4,7,6$).
3. What are the equations of the axes of coördinates?
4. What are the equations of the edges of a rectangular parallelepiped whose dimensions are a, b, and c, if three of its faces coincide with the coördinate planes and one vertex lies in $O-X Y Z$? in $O-X Y^{\prime} Z$? in $0-X^{\prime} Y^{\prime} Z$?
5. Find the equations of the locus of a point which is
(a) 5 units from the origin and 3 units above the $X Y$-plane.
(b) 5 units from the origin and 3 units from the X-axis.
(c) 6 units from the Y-axis and 3 units behind the $X Z$-plane.
(d) 7 units from the Z-axis and 2 units below the $X Y$-plane.
6. Find the equations of a circle defined as follows:
(a) center on the Z-axis, radius 4 , and lying in the $X Y$-plane.
(b) center on the X-axis, radius 7, and lying in a plane parallel to the $Y Z$-plane and 3 units to the right of it.
(c) center on the Y-axis, radius 2 ; and lying in a plane 2 units behind the $X Z$-plane.
(d) center at the point $(1,0,1)$, parallel to the $X Y$-plane, and cutting the Z-axis.
7. The following equations are the equations of curves lying in one of the coördinate planes. What are the equations of the same curves regarded as curves in space?
(a) $y^{2}=4 x$.
(e) $x^{2}+4 z+6 x=0$.
(b) $x^{2}+z^{2}=16$.
(f) $y^{2}-z^{2}-4 y=0$.
(c) $8 x^{2}-y^{2}=84$.
(g) $y z^{2}+z^{2}-6 y=0$.
(d) $4 z^{2}+9 y^{2}=36$.
(h) $z^{2}-4 x^{2}+8 z=0$.
8. Find the equations of the locus of a point which is
(a) 5 units above the $X Y$-plane and 3 units from ($3,7,1$).

Ans. $z=5, x^{2}+y^{2}+z^{2}-6 x-14 y-2 z+50=0$.
(b) 2 units from $(3,7,6)$ and 4 units from ($2,5,4$).

$$
\text { Ans. } x^{2}+y^{2}+z^{2}-6 x-14 y-12 z+90=0,
$$

$$
x^{2}+y^{2}+z^{2}-4 x-10 y-8 z+29=0 .
$$

(c) 5 units from the origin and equidistant from ($3,7,2$) and (-3, - 7, - 2). Ans. $x^{2}+y^{2}+z^{2}-25=0,3 x+7 y+2 z=0$.
(d) equidistant from ($3,5,-4$) and $(-7,1,6)$, and also from $(4,-6,3)$ and ($-2,8,5$).

$$
\text { Ans. } 5 x+2 y-5 z+9=0,3 x-7 y-z+8=0 .
$$

(e) equidistant from ($2,3,7$), $(3,-4,6)$, and $(4,3,-2)$. Ans. $2 x-14 y-2 z+1=0, x+y-8 z+16=0$.
9. Find the equations of the locus of a point which is equally distant from the points $(6,4,3)$ and ($6,4,9$), and also from ($-5,8,3$) and $(-5,0,3)$, and determine the nature of the locus. Ans. $z=6, y=4$.
10. Find the equations of the locus of a point which is equally distant from the points $(3,7,-4),(-5,7,-4)$, and $(-5,1,-4)$, and determine the nature of the locus.

Ans. $\quad x=-1, y=4$.
11. Determine the nature of each of the following loci after finding their equations. The moving point is equidistant from
(a) the three coördinate planes.
(b) the three coorrdinate axes.
(c) the three points $(1,0,0),(0,1,0)$, and $(0,0,1)$.
(d) the $X Y$-plane, the Z-axis, and the point $(0,0,1)$.
(e) the $X Y$-plane, the X-axis, and the point $(0,0,1)$.
(f) the points $(1,0,0),(0,1,0)$, and the Z-axis.
(g) the \bar{X}-axis, the Y-axis, and the point $(1,0,0)$.
(h) the Z-axis, the $X Y^{-}$-plane, and the $Y Z$-plane.
96. Locus of one equation. Second fundamental problem. The locus of one equation in three variables (one or two may be lacking) representing coördinates in space is the surface passing through all points whose coorrdinates satisfy that equation and through such points only.

The coördinates of points on the surface may be obtained as follows:

Solve the equation for one of the variables, say \approx, assume pairs of values of x and y, and compute the corresponding values of z.

A rough model of the surface might then be constructed by taking a thin board for the XY-plane, sticking needles into it at the assumed points (x, y) whose lengths are the computed values of z, and stretching a sheet of rubber over their extremities.
97. Locus of two equations. Second fundamental problem. The locus of two equations in three variables representing coördinates in space is the curve passing through all points whose coördinates satisfy both equations and through such points only. That is, the locus is the curve of intersection of the surfaces defined by the two given equations.

The coördinates of points on the curve may be obtained as follows :

Solve the equations for two of the variables, say x and y, in terms of the third, \approx, assume values for z, and compute the corresponding values of x and y.
98. Discussion of the equations of a curve. Third fundamental problem. The discussion of curves in elementary analytic geometry is largely confined to curves which lie entirely in a plane which is usually parallel to one of the coordinate planes. Such a curve is defined as the intersection of a given surface with a plane parallel to one of the coördinate planes. The method of determining its nature is illustrated as follows:

EXAMPLE

Determine the nature of the curve in which the plane $z=4$ intersects the surface whose equation is $y^{2}+z^{2}=4 x$.

Solution. The equations of the curve are, by definition,

$$
\begin{equation*}
y^{2}+z^{2}=4 x, \quad z=4 \tag{1}
\end{equation*}
$$

Eliminate z by substituting from the second equation in the first. This gives

$$
\begin{equation*}
y^{2}-4 x+16=0, \quad z=4 \tag{2}
\end{equation*}
$$

Equations (2) are also the equations of the curve.
For every set of values of (x, y, z) which satisfy both of equations (1) will evidently satisfy both of equations (2), and conversely.

If we take as axes in the plane $z=4$ the lines $O^{\prime} X^{\prime}$ and $O^{\prime} Y^{\prime}$ in which the planecutsthe $Z X$-plane and the $Y Z$-plane, then the equation of the curve when referred to these axes is the first of equations (2), namely,
(3) $y^{2}-4 x+16=0$.

The locus of (3) is a parabola. The vertex, in the plane $z=4$, is the point
 $(4,0)$; also $p=2$.

In plotting the locus of (3) in the plane $X^{\prime} O^{\prime} Y^{\prime}$ the values of x and y must be laid off parallel to $O^{\prime} X^{\prime}$ and $O^{\prime} Y^{\prime}$ respectively, as in plotting oblique coördinates (Art. 9).

From the preceding example we may state the
Rule to determine the nature of the curve in which a plane parallel to one of the coördinate planes cuts a given surface.

Eliminate the variable occurring in the equation of the plane from the equations of the plane and surface. The result is the equation of the curve referred to the lines in which the given plane cuts the other two coürdinate planes as axes. Discuss this curve by the methods of plane analytic geometry.

PROBLEMS

1. Determine the nature of the following curves and construct their loci :
(a) $x^{2}-4 y^{2}=8 z, z=8$.
(e) $x^{2}+4 y^{2}+9 z^{2}=36, y=1$.
(b) $x^{2}+9 y^{2}=9 z^{2}, z=2$.
(f) $x^{2}-4 y^{2}+z^{2}=25, x=-3$.
(c) $x^{2}-4 y^{2}=4 z, y=-2$.
(g) $x^{2}-y^{2}-4 z^{2}+6 x=0, x=2$.
(d) $x^{2}+y^{2}+z^{2}=25, x=3$.
(h) $y^{2}+z^{2}-4 x+8=0, y=4$.
2. Construct the curves in which each of the following surfaces intersects the coorrdinate planes:
(a) $x^{2}+4 y^{2}+16 z^{2}=64$.
(d) $x^{2}+9 y^{2}=10 z$.
(b) $x^{2}+4 y^{2}-16 z^{2}=64$.
(e) $x^{2}-9 y^{2}=10 z$.
(c) $x^{2}-4 y^{2}-16 z^{2}=64$.
(f) $x^{2}+4 y^{2}-16 z^{2}=0$.
3. Show that the curves of intersection of each of the surfaces in Problem 2 with a system of planes parallel to one of the coördinate planes are conics of the same species (see Art. 70).
4. Determine the nature of the intersection of the surface $x^{2}+y^{2}+$ $4 z^{2}=64$ with the plane $z=k$. How does the curve change as k increases from 0 to 4 ? from -4 to 0 ? What idea of the appearance of the surface is thus obtained?
5. Determine the nature of the intersection of the smrace $4 x-2 y=4$ with the plane $y=k$; with the plane $z=k^{\prime}$. How does the intersection change as k or k^{\prime} changes? What idea of the form of the surface is obtained ?
6. In each of the following find the equations of the locus, determine its nature, and construct it :
(a) A point is 5 units from the origin and 3 units from the Z-axis.
(b) A point is 3 units from both the X-axis and the Z-axis.
(c) The distance of a point from the Z-axis is equal to twice its distance from the $X Y$-plane and its distance from the origin is 2.
(d) A point is 5 units from the X-axis and 4 units from the $X Z$-plane.
(e) A point is equidistant from the $Y Z$-plane and the $X Z$-plane and its distance from the X-axis is 7 .

Ans. An ellipse.
(f) A point is equidistant from the Z-axis, the $Y Z$-plane, and the point $(2,0,0)$.

Ans. A parabola.
7. The ratio of the distances of a point to the Z-axis and the Y-axis respectively is $\frac{8}{5}$. Determine the nature of its locus if it is also
(a) one unit above the $X Y$-plane.
(b) one unit in front of the $X Z$-plane.
(c) one unit to the left of the $Y Z$-plane.
(d) in the $X Z$-plane.
(e) equidistant from the $X Z$-plane and the $Y Z$-plane.
(f) in the plane $4 x-3 z-12=0$.
8. Find the equations of the locus of a point whose distance from the point $(2,0,0)$ is always equal to three times its distance from the Z-axis, and whose distance from the YZ-plane is always unity. Name and draw the locus.
9. Find the equations of the locus of a point which is equidistant from the point $(1,-2,0)$ and the Z-axis, and which is $3 \frac{1}{2}$ units behind the $X Z$-plane. Name and draw the locns.
10. Find the equations of the locus of a point which is equidistant from the Y-axis and the $X Z$-plane and equidistant from the origin and the point $(0,0,-4)$. Name and draw the locus.

99. Discussion of the equation of a surface. Third fundamental problem.

Theorem. The locus of an algebraic equation passes through the origin if there is no constant term in the equation.

The proof is analogous to that on page 47.
Theorem. If the locus of an equation is unaffected by changing the sign of one variable throughout its equation, then the locus is symmetrical with respect to the coördinate plane from which that variable is measured.

If the locus is unaffected by changing the signs of two variables throughout its equation, it is symmetrical with respect to the axis along which the third variable is measured.

If the locus is unaffected by changing the signs of all three variables throughout its equation, it is symmetrical with respect to the origin.

The proof is analogous to that on page 42.

Rule to find the intercepts of a surface on the axes of coördinates.
Set each pair of variables equal to zero and solve for real values of the third.

The curves in which a surface intersects the coördinate planes are called its traces on the coördinate planes. From the Rule, p. 254 , it is seen that

The equations of the traces of a surface are obtained by successively setting $x=0, y=0$, and $\approx=0$ in the equation of the surface.

By these means we can determine some properties of the surface. The general appearance of a surface is determined by considering the curves in which it is cut by a system of planes parallel to each of the coördinate planes. This also enables us to determine whether the surface is closed or recedes to infinity.

EXAMPLE

Discuss the locus of the equation $y^{2}+z^{2}=4 x$.
Solution. 1. The surface passes through the origin since there is no constant term in its equation.
2. The surface is symmetrical with respect to the $X Y$-plane, the $Z X$ plane, and the X-axis.

For the locus of the given equation is unaffected by changing the sign of z, of y, or of both together.
3. It cuts the axes at the origin only.
4. Its traces are respectively the point-circle $y^{2}+$ $z^{2}=0$ and the parabolas $z^{2}=4 x$ and $y^{2}=4 x$.
5. It intersects the plane $x=k$ in the curve

$$
y^{2}+z^{2}=4 k .
$$

This curve is a circle whose center is the origin, that is, is on the X-axis, and whose radius is $2 \sqrt{k}$ if $k>0$, but there is no locus if $k<0$. Hence the surface lies entirely to the right of the $Y Z$-plane.

If k increases from zero to infinity, the radins of the circle increases from zero to infinity while the plane $x=k$ recedes from the YZ-plane.

The intersection with a plane $z=k$ or $y=k^{\prime}$, parallel to the $X Y$ - or the $Z X$-plane, is seen to be a parabola whose equation is

$$
y^{2}=4 x-k^{2} \quad \text { or } \quad z^{2}=4 x-k^{\prime 2} .
$$

These parabolas have the same value of p, namely $p=2$, and tbeir vertices recede from the $Y Z$ - or the $Z X$-plane as k or k^{\prime} increases numerically.

PROBLEMS

1. Discuss and draw the loci of the following equations:
(a) $x^{2}+z^{2}=4 x$.
(k) $x^{2}+y^{2}-z^{2}=0$.
(b) $x^{2}+y^{2}+4 z^{2}=16$.
(1) $x^{2}-y^{2}-z^{2}=9$.
(c) $x^{2}+y^{2}-4 z^{2}=16$.
(m) $x^{2}+y^{2}-z^{2}+2 x y=0$.
(d) $6 x+4 y+3 z=12$.
(n) $x+y-6 z=6$.
(e) $3 x+2 y+z=12$.
(o) $y^{2}+z^{2}=25$.
(f) $x+2 z-4=0$.
(p) $x^{2}+y^{2}-z^{2}-1=0$.
(g) $x^{2}+y^{2}-2 z=0$.
(q) $x^{2}+y^{2}-z^{2}+1=0$.
(h) $x^{2}+y^{2}-2 x=0$.
(r) $4 x^{2}-y^{2}-z^{2}=0$.
(i) $x^{2}+y^{2}-4=0$.
(s) $z^{2}-x-y=0$.
(j) $y^{2}+z^{2}-x-4=0$.
(t$) x^{2}+y^{2}-2 z x=0$.
2. Show that the locus of $A x+B y+C z+D=0$ is a plane by considering its traces on the coördinate planes and the sections made by planes parallel to one of the, coördinate planes.
3. In each of the following find the equation of the locus of the point and draw and discuss it :
(a) The sum of the distances of a point from the $X Z$-plane and the $Y Z$-plane equals twice its distance from the $X Y$-plane increased by 4.
(b) The square of its distance from the Z-axis is equal to four times its distance from the $X Y$-plane.
(c) Its distance from the Z -axis is double its distance from the $X Y^{-}$ plane.
(d) Its distance from the Y-axis is twice the square root of its distance from the $Y Z$-plane.
(e) It is equally distant from the point $(2,0,0)$ and the $Y Z$-plane. Ans. $y^{2}+z^{2}-4 x+4=0$.
(f) It is equally distant from the point ($0,2,0$) and the X-axis.
(g) Its distance from the Z -axis is equal to its distance from the Y Z-plane increased by 2 .
(h) Its distance from the point $(0,0,-2)$ is equal to double its distance from the $X Y$-plane increased by unity.
(i) Its distance from the point $\left(\frac{1}{2}, 0,0\right)$ is equal to half its distance from the $Y Z$-plane diminished by one. Ans. $3 x^{2}+4 y^{2}+4 z^{2}-3=0$.
(j) The product of the sum and the difference of its distances from the $X Z$-plane and the $Y Z$-plane respectively is equal to twice its distance from the $X Y$-plane.
4. Find the equation of the locus of a point whose distance from the point ($0,0,3$) is twice its distance from the $X Y$-plane, and discuss the locus.

Ans. $x^{2}+y^{2}-3 z^{2}-6 z+9=0$.
5. Find the equation of the locus of a point whose distance from the point $(0,4,0)$ is three fifths its distance from the $Z X$-plane, and discuss the locus.

Ans. $25 x^{2}+16 y^{2}+25 z^{2}-200 y+400=0$.

CHAPTER XV

THE PLANE AND THE GENERAL EQUATION OF THE FIRST DEGREE IN THREE VARIABLES

100. The normal form of the equation of the plane. Let $A B C$ be any plane, and let $O N$ be drawn from the origin perpen. dicular to $A B C$ at D. Let the positive direction on $O N$ be from O toward N, that is, from the origin toward the plane, and denote the directed length $O D$ by p and the direction angles of $O N$ by α, β, and γ. Then the position of any plane is determined by given positive values of p, α, β, and γ.

If $p=0$, the positive direction on $O N$, as just defined, becomes meaningless. If $p=0$, we shall suppose that $O N$ is directed upward, and hence $\cos \gamma>0$ since $\gamma<\frac{\pi}{2}$. If the plane passes through $O Z$, then $O N$ lies in the $X Y$-plane and $\cos \gamma=0$; in this case we shall suppose $O N$ so directed that $\beta<\frac{\pi}{2}$ and hence $\cos \beta>0$. Finally, if the plane coincides with the $Y Z$-plane, the positive direction on $O N$ shall be that on $O X$.

Let us now solve the problem:
Given the perpendicular distance p from the origin to a plane and the direction angles α, β, γ of this perpendicular, to find the equation of the plane.

Solution. Let $P(x, y, z)$ be any point on the given plane $A B C$. Draw the coördinates $O E=x, E F=y, F P=z$ of P. Project $O E F P$ and $O P$ on the line $O N$. By the second theorem of projection,
projection of $O E+$ projection of $E F+$ projection of $F P$

$$
=\text { projection of } O P \text {. }
$$

Then by the first theorem of projection and by the definition of $p, \quad x \cos a+y \cos \beta+z \cos \gamma=p$.

Transposing, we obtain the
Theorem. Normal form. The equation of a plane is

$$
\begin{equation*}
x \cos \alpha+y \cos \beta+z \cos \gamma-p=0, \tag{I}
\end{equation*}
$$

where p is the perpendicular distance from the origin to the plane, and a, β, and γ are the direction cosines of that perpendicular.
Corollary. The equation of any plane is of the first degree in x, y, and z.
101. The general equation of the first degree, $A x+B y+C z$ $+\boldsymbol{D}=\mathbf{0}$. The question now arises: Given an equation of the first degree in the coördinates x, y, z; what is the locus? This question is answered by the

Theorem. The locus of any equation of the first degree in x, y, and z,

$$
\begin{equation*}
A x+B y+C z+D=0, \tag{II}
\end{equation*}
$$

is a plane.
Proof. We shall prove the theorem by showing that (II) may be reduced to the normal form (I) by multiplying by a proper constant. To determine this constant, multiply (II) by k, which gives

$$
\begin{equation*}
k A x+k B y+k C z+k D=0 . \tag{1}
\end{equation*}
$$

Equating corresponding coefficients of (1) and (I),
(2) $k A=\cos \alpha, \quad k B=\cos \beta, \quad k C=\cos \gamma, k D=-p$.

Squaring the first three of equations (2) and adding,

$$
\begin{gather*}
k^{2}\left(A^{2}+B^{2}+C^{2}\right)=\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \\
\therefore k=\frac{1}{ \pm \sqrt{A^{2}+B^{2}+C^{2}}} \tag{3}
\end{gather*}
$$

From the last of equations (2) we see that the sign of the radical must be opposite to that of D in order that p shall be positive.

Substituting from (3) in (2), we get
(4) $\left\{\begin{aligned} \cos \alpha & =\frac{A}{ \pm \sqrt{A^{2}+B^{2}+C^{2}}}, & \cos \beta & =\frac{B}{ \pm \sqrt{A^{2}+B^{2}+C^{2}}}, \\ \cos \gamma & =\frac{C}{ \pm \sqrt{A^{2}+B^{2}+C^{2}}}, & p & =\frac{-D}{ \pm \sqrt{A^{2}+B^{2}+C^{2}}} .\end{aligned}\right.$

We have thus determined values of α, β, γ, and p such that (I) and (II) have the same locus. Hence the locus of (II) is a plane.
Q.E.D.

If $D=0$, then $p=0$; and from the third of equations (2) the sign of the radical must be the same as that of C, since when $p=0, \cos \gamma>0$. If $D=0$ and $C=0$, then $p=0$ and $\cos \gamma=0$; and from the second of equations (2) the sign of the radical must be the same as that of B, since when $p=0$ and $\cos \gamma=0, \cos \beta>0$.

Equation (II) is called the general equation of the first degree in x, y, and z. The discussion gives the

Rule to reduce the equation of a plane to the normal form.
Divide the equation by $\pm \sqrt{A^{2}+B^{2}+C^{2}}$, choosing the sign of the radical opposite to that of D.

When $D=0$, the sign of the radical must be the same as that of C, the same as that of B if $C=D=0$, or the same as that of A if $B=C=D=0$.

From (4) we have the important
Theorem. The coefficients of x, y, and z in the equation of a plane are proportional to the direction cosines of any line perpendicular to the plane.

Fron this theorem and Art. 90 we easily prove the following :
Corollary I. Twa planes whose equations are

$$
A x+B y+C z+D=0, \quad A^{\prime} x+B^{\prime} y+C^{\prime} z+D^{\prime}=0
$$

are parallel when and only when the coefficients of x, y, and \approx are proportional, that is,

$$
\frac{A}{A^{\prime}}=\frac{B}{B^{\prime}}=\frac{C}{C^{\prime}} .
$$

Corollary II. Two planes are perpendicular when andonly when

$$
A A^{\prime}+B B^{\prime}+C C^{\prime}=0 .
$$

Corollary III. A plane whose equation has the form
$A x+B y+D=0$ is perpendicular to the XY-plane;
$B y+C z+D=0$ is perpendicular to the $Y Z$-plane;
$A x+C z+D=0$ is perpendicular to the $Z X_{-p l a n e}$.
That is, if one variable is lacking, the plane is perpendicular to the coürdinate plane corresponding to the two variables which occur in the equation.
For these planes are respectively perpendicular to the planes $z=0, x=0$, and $y=0$ by Corollary II.
Corollary IV. A plane whose equation has the form
$A x+D=0$ is perpendicular to the axis of x; $B y+D=0$ is perpendicular to the axis of y;
$C z+D=0$ is perpendicular to the axis of z.
That is, if two variables are lacking, the plane is perpendicular to the axis corresponding to the variable which occurs in the equation.

For two of the direction cosines of a perpendicular to the plane are now zero, and hence this line is parallel to one of the axes and the plane is therefore perpendicular to that axis.

PR0BLEMS

1. Find the intercepts on the axes and the traces on the coorrdinate planes of each of the following planes and construct the figures:
(a) $2 x+3 y+4 z-24=0$.
(e) $5 x-7 y-35=0$.
(b) $7 x-3 y+z-21=0$.
(f) $4 x+3 z+36=0$.
(c) $9 x-7 y-9 z+63=0$.
(g) $5 y-8 z-40=0$.
(d) $6 x+4 y-z+12=0$.
(h) $3 x+5 z+45=0$.
2. What are the intercepts and the equations of the traces on the coorrdinate planes of the plane $A x+B y+C z+D=0$?
3. Find the equations of the planes and construct them by drawing their traces, for which .
(a) $\alpha=\frac{\pi}{4}, \beta=\frac{\pi}{3}, \gamma=\frac{\pi}{3}, p=6 . \quad$ Ans. $\sqrt{2} x+y+z-12=0$.
(b) $\alpha=\frac{2 \pi}{3}, \beta=\frac{3 \pi}{4}, \gamma=\frac{\pi}{3}, p=8$. Ans. $x+\sqrt{2} y-z+16=0$.
(c) $\frac{\cos \alpha_{1}}{6}=\frac{\cos \beta}{-2}=\frac{\cos \gamma}{3}, p=4 . \quad$ Ans. $6 x-2 y+3 z-28=0$.
(d) $\frac{\cos \alpha}{-2}=\frac{\cos \beta}{-1}=\frac{\cos \gamma}{-2}, p=2 . \quad$ Ans. $2 x+y+2 z+6=0$.
4. Find the equation of the plane such that the foot of the perpendicular from the origin to the plane is the point
(a) $(-3,2,6)$.
(b) $(4,3,-12)$.
(c) $(2,2,-1)$.

Ans. $3 x-2 y-6 z+49=0$.
Ans. $4 x+3 y-12 z-169=0$.
Ans. $2 x+2 y-z-9=0$.
5. Reduce the following equations to the normal form and find α, β, γ, and p :
(a) $6 x-3 y+2 z-7=0$. Ans. $\cos ^{-1} \frac{6}{7}, \cos ^{-1}\left(-\frac{3}{7}\right), \cos ^{-1} \frac{2}{7}, 1$.
(b) $x-\sqrt{2} y+z+8=0$. Ans. $\frac{2 \pi}{3}, \frac{\pi}{4}, \frac{2 \pi}{3}, 4$.
(c) $2 x-2 y-z+12=0$. Ans. $\cos ^{-1}\left(-\frac{2}{3}\right), \cos ^{-1} \frac{2}{3}, \cos ^{-1} \frac{1}{3}, 4$.
(d) $y-z+10=0 . \quad$ Ans. $\frac{\pi}{2}, \frac{3 \pi}{4}, \frac{\pi}{4}, 5 \sqrt{2}$.
(e) $3 x+2 y-6 z=0 . \quad$ Ans. $\cos ^{-1}\left(-\frac{9}{7}\right), \cos ^{-1}\left(-\frac{2}{7}\right), \cos ^{-1} \frac{8}{7}, 0$.
6. Find the distance from the origin to the plane $12 x-4 y+3 z-39=0$.
7. Find the area of the triangle which the three coördinate planes cut from each of the following planes:
(a) $2 x+2 y+z-12=0$.

Ans. 54.
(b) $6 x-2 y-3 z+21=0$.
(c) $12 x-3 y+4 z-13=0$.
(d) $x+5 y+7 z-3=0$.
(e) $x-2 y+3 z-6=0$.

Ans. $\frac{27 \sqrt{5}}{70}$.
(f) $9 x+2 y-z+18=0$.

Hint. Find the volume of the tetrabedron formed by the four planes by finding the intercepts. Set this equal to the product of the required area by one third the distance of the given plane from the origin, and solve.
8. Find the distance between the parallel planes $6 x+2 y-3 z-63=0$ and $6 x+2 y-3 z+49=0$.

Ans. 16.
9. Find the equation of a plane parallel to the plane $2 x+2 y+z-$ $15=0$ and two units nearer to the origin.
10. Show that the following pairs of planes are either parallel or perpendicular:
(a) $\left\{\begin{array}{l}2 x+5 y-6 z+8=0, \\ 6 x+15 y-18 z-5=0 .\end{array}\right.$
(c) $\left\{\begin{array}{l}6 x-3 y+2 z-7=0, \\ 3 x+2 y-6 z+28=0 .\end{array}\right.$
(b) $\left\{\begin{array}{l}3 x-5 y-4 z+7=0, \\ 6 x+2 y+2 z-7=0 .\end{array}\right.$
(d) $\left\{\begin{array}{l}14 x-7 y-21 z-50=0, \\ 2 x-y-3 z+12=0 .\end{array}\right.$
11. What may be said of the position of the plane (I), Art. 100, if
(a) $\cos \alpha=0$?
(c) $\cos \gamma=0$?
(e) $\cos \beta=\cos \gamma=0$?
(b) $\cos \beta=0$?
(d) $\cos \alpha=\cos \beta=0$?
(f) $\cos \gamma=\cos \alpha=0$?
12. For what values of α, β, γ, and p will the locus of (1), Art. 100, he parallel to the $X Y$-plane? the $Y Z$-plane? the $Z X$-plane? coincide with one of these planes?
13. For what values of α, β, γ, and p will the locus of (1), Art. 100, pass through the X-axis? the Y-axis? the Z-axis?
14. Find the coördinates of the point of intersection of the planes $x+2 y+z=0, x-2 y-8=0, x+y+z-3=0$. Ans. (2,-3, 4).
15. Show that the plane $x+2 y-2 z-9=0$ passes through the point of intersection of the planes $x+y+z-1=0, x-y-z-1=0$, and $2 x+3 y-8=0$.
16. Show that the four planes $x+y+2 z-2=0, x+y-2 z+2=0$, $x-y+8=0$, and $3 x-y-2 z+18=0$ pass through the same point.
17. Show that the planes $2 x-y+z+3=0, x-y+4 z=0,3 x+$ $y-2 z+8=0,4 x-2 y+2 z-5=0,9 x+3 y-6 z-7=0$, and $7 x-$ $7 y+28 z-6=0$ hound a parallelepiped.
18. Show that the planes $6 x-3 y+2 z=4,3 x+2 y-6 z=10,2 x+$ $6 y+3 z=9,3 x+2 y-6 z=0,12 x+36 y+18 z-11=0$, and $12 x-$ $6 y+4 z-17=0$ bound a rectangular parallelepiped.
19. Show that the planes $x+2 y-z=0, y+7 z-2=0, x-2 y-$ $z-4=0,2 x+y-8=0$, and $3 x+3 y-z-8=0$ bound a quadrangular pyramid.
20. Derive the conditions for parallelism of two planes from the fact that two planes are parallel if all their traces are parallel lines.
102. Planes determined by three conditions. The equation

$$
\begin{equation*}
A x+B y+C z+D=0 \tag{1}
\end{equation*}
$$

represents, as we know, all planes. The statement of a problem, to find the equation of a certain plane, may be such that we are able to write down three homogeneous equations in the coefficients A, B, C, D, which we can then solve for three coefficients in terms of the fourth. When these values are substituted in (1), the fourth coefficient will divide out, giving the required equation.

EXAMPLES

1. Find the equation of the plane which passes through the point $P_{1}\left(2,-7, \frac{j}{2}\right)$ and is parallel to the plane $21 x-12 y+28 z-84=0$.

Solution. Let the equation of the required plane be (2) $A x+B y+C z+D=0$.

Since P_{1} lies on (2), we may substitute $x=2, y=-7$, $z=\frac{3}{2}$, giving (3) $2 A-7 B+\frac{3}{2} C+D=0$.

Since (2) is parallel to the given plane (Corollary I, p. 263),

$$
\begin{equation*}
\frac{A}{21}=\frac{B}{-12}=\frac{C}{28} . \tag{4}
\end{equation*}
$$

Equations (3) and (4) are
 three homogeneous equations in A, B, C, D.

Solving (3) and (4) for A, B, and D in terms of C,

$$
A=\frac{3}{4} C, \quad B=-\frac{3}{7} C, \quad D=-6 C .
$$

Substituting in (2), $\frac{3}{4} C x-\frac{3}{7} C y+C z-6 C=0$.
Clearing of fractions and dividing by C,

$$
21 x-12 y+28 z-168=0 . \text { Ans. }
$$

The answer should be checked by testing whether the coördinates of P_{1} satisfy the answer.
2. To find the equation of a plane passing through three points, substitute for x, y, and z in (1) the coördinates of each of the three points. Then three equations involving A, B, C, and D will be obtained, which may be solved for three of these coefficients in terms of the fourth.

It is convenient to write down the equation of a plane passing through three given points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right),\left(x_{3}, y_{9}, z_{3}\right)$ in the form of a determinant. This is

$$
\left|\begin{array}{llll}
x & y & z & 1 \tag{5}\\
x_{1} & y_{1} & z_{1} & 1 \\
x_{2} & y_{2} & z_{2} & 1 \\
x_{3} & y_{3} & z_{3} & 1
\end{array}\right|=0
$$

In fact, when (5) is expanded in terms of the elements of the first row, an equation of the first degree in x, y, and z results. Hence (5) is the equation of a plane. Further, (5) is satisfied when the coördinates of any one of the three given points are substituted for x, y, and z, since then two rows become identical. Hence the plane (5) passes through the given points.

The equation (5) may be used also to determine whether four given points lie in a plane.

If we write (5), when expanded, in the form

$$
A x+B y+C z+D=0
$$

then the coefficients are the determinants of the third order,

$$
A=\left|\begin{array}{lll}
y_{1} & z_{1} & 1 \\
y_{2} & z_{2} & 1 \\
y_{3} & z_{3} & 1
\end{array}\right|, \quad B=-\left|\begin{array}{lll}
x_{1} & z_{1} & 1 \\
x_{2} & z_{2} & 1 \\
x_{3} & z_{3} & 1
\end{array}\right|, \quad C=\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|, \quad D=-\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right| .
$$

PROBLEMS

Check the answer in each of the following :

1. Find the equation of the plane which passes throngh the points $(2,3,0),(-2,-3,4)$, and $(0,6,0)$. Ans. $3 x+2 y+6 z-12=0$.
2. Find the equation of the plane which passes through the points $(1,1,-1),(-2,-2,2)$, and ($1,-1,2$). Ans. $x-3 y-2 z=0$.
3. Find the equation of the plane which passes through the point $(3,-3,2)$ and is parallel to the plane $3 x-y+z-6=0$.

$$
\text { Ans. } 3 x-y+z-14=0 .
$$

4. Find the equation of the plane which passes through the points $(0,3,0)$ and $(4,0,0)$ and is perpendicular to the plane $4 x-6 y-z=12$.

Ans. $3 x+4 y-12 z-12=0$.
5. Find the equation of the plane which passes through the point $(0,0,4)$ and is perpendicular to each of the planes $2 x-3 y=5$ and $x-4 z=3$.

Ans. $12 x+8 y+3 z-12=0$.
6. Find the equation of the plane whose intercepts on the axes are 3,5 , and 4.

Ans. $20 x+12 y+15 z-60=0$.
7. Find the equation of the plane which passes through the point $(2,-1,6)$ and is parallel to the plane $x-2 y-3 z+4=0$.

Ans. $x-2 y-3 z+14=0$.
8. Find the equation of the plane which passes through the points $(2,-1,6)$ and $(1,-2,4)$ and is perpendicular to the plane $x-2 y-$ $2 z+9=0$.

Ans. $2 x+4 y-3 z+18=0$.
9. Find the equation of the plane whose intercepts are $-1,-1$, and 4 .

Ans. $4 x+4 y-z+4=0$.
10. Find the equation of the plane which passes through the point ($4,-2,0$) and is perpendicular to the planes $x+y-z=0$ and $2 x-$ $4 y+z=5 . \quad$ Ans. $x+y+2 z-2=0$.
11. Show that the four points $(2,-3,4),(1,0,2),(2,-1,2)$, and $(1,-1,3)$ lie in a plane.
12. Show that the four points $(1,0,-1),(3,4,-3),(8,-2,6)$, and $(2,2,-2)$ lie in a plane.
13. Find the equation of the plane which is perpendicular to the line joining ($3,4,-1$) and ($5,2,7$) at its middle point.

$$
\text { Ans. } x-y+4 z-13=0 .
$$

14. Find the equations of the faces of the tetrahedron whose vertices are the points $(0,3,1),(2,-7,1),(0,5,-4)$, and $(2,0,1)$. Ans. $25 x+5 y+2 z=17,5 x-2 z=8, z=1,15 x+10 y+4 z=34$.
15. The equations of three faces of a parallelepiped are $x-4 y=3$, $2 x-y+z=3$, and $3 x+y-2 z=0$, and one vertex is the point $(3,7,-2)$. What are the equations of the other three faces?

$$
\text { Ans. } x-4 y+25=0,2 x-y+z+3=0,3 x+y-2 z=20 \text {. }
$$

16. Find the equation of the plane whose intercepts are a, b, c.

$$
\text { Ans. } \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 .
$$

17. What are the equations of the traces of the plane in Problem 16 ? How might these equations have been anticipated from plane analytic geometry ?
18. Find the equation of the plane which passes through the point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and is parallel to the plane $A_{1} x+B_{1} y+C_{1} z+D_{1}=0$.

$$
\text { Ars. } A_{1}\left(x-x_{1}\right)+B_{1}\left(y-y_{1}\right)+C_{1}\left(z-z_{1}\right)=0 .
$$

19. Find the equation of the plane which passes through the origin and $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and is perpendicular to the plane $A_{1} x+B_{1} y+C_{1} z+D_{1}=0$.

$$
\text { Ans. }\left(B_{1} z_{1}-C_{1} y_{1}\right) x+\left(C_{1} x_{1}-A_{1} z_{1}\right) y+\left(A_{1} y_{1}-B_{1} x_{1}\right) z=0
$$

103. The equation of a plane in terms of its intercepts.

Theorem. If a, b, and c are respectively the intercepts of a plane on the axes of $\mathrm{X}, \boldsymbol{Y}$, and \boldsymbol{Z}, then the equation of the plane is

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \tag{III}
\end{equation*}
$$

Proof. Let the equation of the required plane be

$$
\begin{equation*}
A x+B y+C z+D=0 . \tag{1}
\end{equation*}
$$

Thien we know three points in the plane, namely

$$
(a, 0,0), \quad(0, b, 0), \quad(0,0, c)
$$

These coördinates must satisfy (1). Hence

$$
A a+D=0, \quad B b+D=0, \quad C c+D=0
$$

Whence

$$
A=-\frac{D}{a}, \quad B=-\frac{D}{b}, \quad C=-\frac{D}{c}
$$

Substituting in (1), dividing by $-D$, and transposing, we obtain (III).
Q.E.D.
104. The perpendicular distance from a plane to a point. The positive direction on any line perpendicular to a plane is assumed to agree with that on the line drawn through the origin perpendicular to the plane (Art. 100). Hence the distance from a plane to the point P_{1} is positive or negative according as P_{1} and the origin are on opposite sides of the plane or not.

If the plane passes through the origin, the sign of the distance from the plane to P_{1} must be determined by the conventions for the special cases in Art. 100.

We now solve the problem: Given the equation of a plane and a point, to find the perpendicular distance from the plane to the point.

Solution. Let the point be $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and assume that the equation of the given plane is in the normal form (1) $x \cos \alpha+y \cos \beta+z \cos \gamma-p=0$.

Let d equal the required distance.
Draw $O P_{1}$. Projecting $O P_{1}$ on $O N$, we evidently get $p+d$.

Projecting $O E, E F$, and $F P_{1}$ on oN, we get respectively $x_{1} \cos \alpha$, $y_{1} \cos \beta$, and $z_{1} \cos \gamma$.

Then, by the second theorem of projection,

$$
\begin{aligned}
p+d & =x_{1} \cos \alpha+y_{1} \cos \beta+z_{1} \cos \gamma \\
\therefore d & =x_{1} \cos \alpha+y_{1} \cos \beta+z_{1} \cos \gamma-p
\end{aligned}
$$

Hence the perpendicular distance d is the number obtained by substituting the coördinates of the given point for x, y, and z in the left-hand member of (1).' Whence the

Rule to find the perpendicular distance d from a given plane to a given point.

Reduce the equation of the plane to the normal form. Place d equal to the left-hand member of this equation.

Substitute the coördinates of the given point for x, y, and \approx. The result is the required distance.

For example: To find the perpendicular distance from the plane $2 x+y-2 z+8=0$ to the point ($-1,2,3$). Dividing the equation by -3 , we have

$$
d=\frac{2 x+y-2 z+8}{-3}=\frac{2(-1)+2-2(3)+8}{-3}=-\frac{2}{3} . \quad \text { Ans. }
$$

Hence the given point is on the same side of the plane as the origin.

The rule gives for the perpendicular distance d from the plane

$$
A x+B y+C z+D=0
$$

to the point $\left(x_{1}, y_{1}, z_{1}\right)$ the result

$$
\begin{equation*}
d=\frac{A x_{1}+B y_{1}+C z_{1}+D}{ \pm \sqrt{A^{2}+B^{2}+C^{2}}}, \tag{2}
\end{equation*}
$$

the sign of the radical being determined as above (Art. 101).
105. The angle between two planes. The plane angle of one pair of dihedral angles formed by two intersecting planes is evidently equal to the angle between the positive directions of the perpendiculars to the planes. That angle is called the angle between the planes.

Theorem. The angle θ letween the two planes

$$
A_{1} x+B_{1} y+C_{1} z+D_{1}=0 \text { and } A_{2} x+B_{2} y+C_{2} z+D_{2}=0 \text { is }
$$ given by

(IV) $\quad \cos \theta=\frac{A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}}{ \pm \sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}} \times \pm \sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}}$,
the signs of the radicals being chosen as in Art. 101.
Proof. By definition the angle θ between the planes is the angle between their normals.

The direction cosines of the normals to the planes are

$$
\begin{aligned}
& \cos \alpha_{1}=\frac{A_{1}}{ \pm \sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}}}, \quad \cos \alpha_{2}=\frac{A_{2}}{ \pm \sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}}, \\
& \cos \beta_{1}=\frac{B_{1}}{ \pm \sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}}}, \quad \cos \beta_{2}=\frac{B_{2}}{ \pm \sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}}, \\
& \cos \gamma_{1}=\frac{C_{1}}{ \pm \sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}}}, \quad \cos \gamma_{2}=\frac{C_{2}}{ \pm \sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}} .
\end{aligned}
$$

By (V), Art. 90, we have

$$
\cos \theta=\cos \alpha_{1} \cos \alpha_{2}+\cos \beta_{1} \cos \beta_{2}+\cos \gamma_{1} \cos \gamma_{2}
$$

Substituting the values of the direction cosines of the normals, we obtain (IV).
Q.E.D.

PROBLEMS

1. Find the distance from the plane
(a) $6 x-3 y+2 z-10=0$ to the point $(4,2,10) . \quad$ Ans. 4.
(b) $x+2 y-2 z-12=0$ to the point $(1,-2,3)$ Ans. -7 .
(c) $4 x+3 y+12 z+6=0$ to the point $(9,-1,0)$. Ans. -3 .
(d) $2 x-5 y+3 z-4=0$ to the point $(-2,1,7)$ Ans. $\frac{4}{19} \sqrt{38}$.
2. Do the origin and the point $(3,5,-2)$ lie on the same side of the plane $7 x-y-3 z+6=0$?

Ans. Yes.
3. Does the point $(1,6,0)$ lie on the same side of the plane $x+2 y-3 z=6$ as the origin?
4. Find the length of the altitude which is drawn from the first vertex of the tetrahedron whose vertices are $(0,3,1),(2,-7,1),(0,5,-4)$, and ($2,0,1$).

Ans. $\frac{10}{2} \sqrt{29}$.
5. Find the volume of the tetrahedron formed by the point (1, 2, 1) and the points where the plane $3 x+4 y+2 z-12=0$ intersects the coördinate axes.
6. Find the volumes of the tetrahedrons having the following vertices:
(a) $(3,4,0),(4,-1,0),(1,2,0),(6,-1,4)$ Ans. 8.
(b) $(0,0,4),(3,0,0),(0,2,0),(7,7,3)$.
(c) $(4,0,0),(0,4,0),(0,0,4),(7,3,2)$.
(d) $(3,0,0),(0,-2,0),(0,0,-1),(3,-1,-1) . \quad$ Ans. 3.
(e) $(1,0,0),(0,1,0),(0,0,-2),(4,-1,3)$.
(f) $(3,0,0),(0,5,0),(0,0,-1),(3,-4,0)$.
7. Find the angles between the following pairs of planes:
(a) $2 x+y-2 z-9=0, x-2 y+2 z=0$.
(b) $x+y-4 z=0,3 y-3 z+7=0$.
(c) $4 x+2 y+4 z-7=0,3 x-4 y=0$.
(d) $2 x-y+z=7, x+y+2 z=11$.

Ans. $\cos ^{-1}\left(-\frac{4}{6}\right)$.
Ans. $\cos ^{-1} \frac{5}{6}$.
Ans. $\cos ^{-1}\left(-\frac{2}{15}\right)$.
Ans. $\frac{\pi}{3}$.
(e) $3 x-2 y+6 z=0, x+2 y-2 z+5=0$.
(f) $x+5 y-3 z+8=0,2 x-3 y+z-5=0$.
8. Show that the angle given by (V) is that angle formed by the planes which does not contain the origin.
9. Find the vertex and the dihedral angles of that trihedral angle formed by the planes $x+y+z=2, x-y-2 z=4$, and $2 x+y-z=2$ in which the origin lies. Ans. $(4,-4,2), \cos ^{-1} \frac{1}{3} \sqrt{2}, \frac{2 \pi}{3}, \cos ^{-1}\left(-\frac{1}{3} \sqrt{2}\right)$.
10. Find the equation of the plane which passes through the points $(0,-1,0)$ and $(0,0,-1)$ and which makes an angle of $\frac{2 \pi}{3}$ with the plane $y+z=7$.

$$
\text { Ans. } \pm \sqrt{6} x+y+z+1=0 .
$$

11. Find the locus of points which are equally distant from the planes $2 x-y-2 z-3=0$ and $6 x-3 y+2 z+4=0$.

$$
\text { Ans. } 32 x-16 y-8 z-9=0 .
$$

12. Find the locns of a point which is three times as far from the plane $3 x-6 y-2 z=0$ as from the plane $2 x-y+2 z=9$.

$$
\text { Ans. } 17 x-13 y+12 z-63=0
$$

13. Find the equation of the locus of a point whose distance from the plane $x+y+z-\mathbf{1}=\mathbf{0}$ is equal to its distance from the origin.
14. Find the equation of the locus of a point whose distance from the plane $x+y=1$ equals its distance from the Z-axis.

$$
\text { Ans. }(x-y)^{2}+2(x+y)-1=0
$$

15. Find the equation of the locus of a point, the sum of the squares of whose distances from the planes $x+y-z-1=0$ and $x+y+z+1=0$ is equal to unity. Ans. $2(x+y)^{2}+2 z(z+2)-1=0$.
16. Systems of planes. The equation of a plane which satisfies two conditions will, in general, contain an arbitrary constant, for it takes three conditions to determine a plane. Sucl an equation therefore represents a system of planes.

Systems of planes are used to find the equation of a plane satisfyiug three conditions in the same manner that systems of lines are used to find the equation of a line (Art. 36).

Three important systems of planes are the following:
The system of planes parallel to a given plane

$$
A x+B y+C z+D=0
$$

is represented by

$$
\begin{equation*}
A x+B y+C z+k=0 \tag{V}
\end{equation*}
$$

where k is an rrbitrary constant.
The plane (V) is obviously parallel to the given plane (Corollary I, Art. 101).

The system of planes passing through the line of intersection of two given planes

$$
A_{1} x+B_{1} y+C_{1} z+D_{1}=0, \quad A_{2} x+B_{2} y+C_{2} z+D_{2}=0
$$

is represented by
(VI) $A_{1} x+B_{1} y+C_{1} z+D_{1}+k\left(A_{2} x+B_{2} y+C_{2} z+D_{2}\right)=0$,
where k is an arbitrary constant.
Clearly, the coördinates of any point on the line of intersection will satisfy the equations of both of the given planes, and hence will satisfy (VI) also.

The equation of a system of planes which satisfy a single condition must contain two arbitrary constants. One of the most important systems of this sort is the following :

The system of 1 ,lanes passing through a given point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ is represented by

$$
\begin{equation*}
A\left(x-x_{1}\right)+B\left(y-y_{1}\right)+C\left(z-z_{1}\right)=0 . \tag{VII}
\end{equation*}
$$

Equation (VII) is the equation of a plane which passes through P_{1}, for the coördinates of P_{1} obviously satisfy it. Again, if any plane whose equation is

$$
A x+B y+C z+D=0
$$

passes through P_{1}, then

$$
A x_{1}+B y_{1}+C z_{1}+D=0
$$

Subtracting, we get (VII). Hence (VII) represents all planes passing through P_{1}.

Equation (VII) contains two arbitrary constants, namely, the ratio of any two coefficients to the third.

In the following problems write down the equation of the appropriate system of planes and then determine the unknown parameters from the remaining data.

PROBLEMS

1. Determine the value of k such that the plane $x+k y-2 z-9=0$ shall
(a) pass through the point $(5,-4,-6)$.
(b) be parallel to the plane $6 x-2 y-12 z=7$.
(c) be perpendicular to the plane $2 x-4 y+z=3$.
(d) be 3 units from the origin.

Ans. 2.
Ans. $-\frac{1}{3}$. Ans. 0.
Ans. ± 2.
(e) make an angle of $\frac{\pi}{3}$ with the plane $2 x-2 y+z=0$.

$$
\text { Ans. }-\frac{3}{7} \sqrt{35} \text {. }
$$

2. Find the equation of the plane which passes through the point $(3,2,-1)$ and is parallel to the plane $7 x-y+z=14$.

$$
\text { Ans. } 7 x-y+z-18=0
$$

3. Find the equation of the plane which passes through the intersection of the planes $2 x+y-4=0$ and $y+2 z=0$, and which (a) passes through the point $(2,-1,1)$; (b) is perpendicular to the plane $3 x+2 y-3 z=6$.

$$
\text { Ans. (a) } x+y+z-2=0 \text {; (b) } 2 x+3 y+4 z-4=0 \text {. }
$$

4. Find the equations of the planes which bisect the angles formed by the planes
(a) $2 x-y+2 z=0$ and $x+2 y-2 z=6$.

$$
\text { Ans. } 3 x+y-6=0, x-3 y+4 z+6=0 .
$$

(b) $6 x-2 y-3 z=0$ and $4 x+3 y-13 z=10$.
5. Find the equations of the planes passing through the line of intersection of the planes $2 x+y-z=4$ and $x-y+2 z=0$ which are perpendicular to the coördinate planes.

$$
\text { Ans. } 5 x+y=8,3 x+z=4,3 y-5 z=4 .
$$

6. Find the equation of a plane parallel to the plane $6 x-3 y+2 z+21=0$ and tangent to a sphere of unit radius whose center is the origin.
7. Find the equation of a plane parallel to the plane $6 x-2 y-3 z+35=0$ and such that the point $(0,-2,-1)$ lies midway between the two planes.
8. Find the equation of a plane through the point $(2,-3,0)$, and having the same trace on the $X Z$-plane as the plane $x-3 y+7 z-2=0$.
9. Find the equation of a plane parallel to the plane $2 x+y+2 z+5=0$, and forming a tetrahedron of unit volume with the three coördinate planes.
10. Find the equation of a plane parallel to the plane $5 x+3 y+z-7=0$ if the sum of its intercepts is 23 .
11. Find the equation of a plane parallel to the plane $2 x+6 y+$ $3 z-8=0$, upon which the area intercepted by the coördinate planes in the first octant is $\frac{7}{8}$. Ans. $2 x+6 y+3 z-3=0$.
12. Find the equation of a plane parallel to the plane $2 x+y+$ $2 z-5=0$ and such that the entire surface of the tetrahedron which it forms with the coördinate planes is unity. Ans. $2 x+y+2 z \pm 1=0$.
13. Find the equation of a plane having the trace $x+3 y-2=0$ and forming a tetrahedron of volume $\frac{4}{3}$ with the coördinate planes.

$$
\text { Ans. } 3 x+9 y+z-6=0 .
$$

14. Find the equation of a plane passing through the intersection of the two planes $6 x+2 y+3 z-6=0$ and $x+y+z-1=0$ and forming a tetrahedron of unit volume with the coördinate planes.

$$
\text { Ans. } 12 x-8 y-3 z-12=0
$$

15. A point moves so that the volume of the tetrahedron which it forms with the three points $(2,0,0),(0,6,0)$, and $(0,0,4)$ is always equal to 2 . Find the equation of its locus.
16. A point moves so that the sum of its distances from the three coördinate planes is unity. Determine the equation of the locus of a second point which bisects the line joining the first with the origin.
17. Find the equation of the plane passing through the intersection of the planes $A_{1} x+B_{1} y+C_{1} z+D_{1}=0$ and $A_{2} x+B_{2} y+C_{2} z+D_{2}=0$ which passes through the origin.

Ans. $\left(A_{1} D_{2}-A_{2} D_{1}\right) x+\left(B_{1} D_{2}-B_{2} D_{1}\right) y+\left(C_{1} D_{2}-C_{2} D_{1}\right) z=0$.
18. Find the equations of the planes which bisect the angles formed by the planes $A_{1} x+B_{1} y+C_{1} z+D_{1}=0$ and $A_{2} x+B_{2} y+C_{2} z+D_{2}=0$.

$$
\text { Ans. } \frac{A_{1} x+B_{1} y+C_{1} z+D_{1}}{\sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}}}= \pm \frac{A_{2} x+B_{2} y+C_{2} z+D_{2}}{\sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}}
$$

19. Find the equations of the planes passing through the intersection of the planes $A_{1} x+B_{1} y+C_{1} z+D_{1}=0$ and $A_{2} x+B_{2} y+C_{2} z+D_{2}=0$ which are perpendicular to the coördinate planes.

$$
\text { Ans. } \begin{aligned}
\left(A_{1} B_{2}-A_{2} B_{1}\right) y-\left(C_{1} A_{2}-C_{2} A_{1}\right) z+A_{1} D_{2}-A_{2} D_{1}=0, \\
\left(A_{1} B_{2}-A_{2} B_{1}\right) x-\left(B_{1} C_{2}-B_{2} C_{1}\right) z-\left(B_{1} D_{2}-B_{2} D_{1}\right)=0, \\
\left(C_{1} A_{2}-C_{2} A_{1}\right) x-\left(B_{1} C_{2}-B_{2} C_{1}\right) y+C_{1} D_{2}-C_{2} D_{1}=0 .
\end{aligned}
$$

CHAPTER XVI

THE STRAIGHT LINE IN SPACE

107. General equations of the straight line. A straight line may be regarded as the intersection of any two planes which pass through it. The equations of the planes regarded as simultaneous are the equations of the line of intersection, and hence the

Theorem. The equations of a straight line aṭ of the first degree in x, y, and z.

Conversely, the locus of two equations of the first degree is a straight line unless the planes which are the loci of the separate equations are parallel. Hence we have the

Theorem. The locus of two equations of the first degree,

$$
\left\{\begin{array}{l}
A_{1} x+B_{1} y+C_{1} z+D_{1}=0 \tag{I}\\
A_{2} x+B_{2} y+C_{2} z+D_{2}=0
\end{array}\right.
$$

is a straight line unless the coefficients of x, y, and z are proportional.

To plot a straight line we need to know only the coördinates of two points on the line. The easiest points to obtain are usually those lying in the coordinate planes, which we get by setting one of the variables equal to zero and solving for the other two, as in the following example.

The direction of a line is known when its direction cosines are known. The method of obtaining these will now be illustrated.

EXAMPLES

1. Find the direction cosines of the line whose equations are

$$
\begin{equation*}
3 x+2 y-z-1=0, \quad 2 x-y+2 z-3=0 . \tag{1}
\end{equation*}
$$

Solution. Let us find the point where the line pierces the $X Y$-plane. To do this, let $z=0$ in both equations. Then solving the resulting equations $3 x+2 y-1=0$ and $2 x-y-3=0$ for x and y, we find the required point is $(1,-1,0)$. Similarly, putting $y=0$, the point on the line in the $Z X$-plane is ($(5,0,0,7$).

Hence $A(1,-1,0)$ and $B\left(\frac{5}{8}, 0, \frac{7}{8}\right)$ are two points on the line.
Let the required direction cosines of $A B$ be $\cos \alpha, \cos \beta$, and $\cos \gamma$. Then, by the corollary of Art. 89,

$$
\begin{equation*}
\frac{\cos \alpha}{1-\frac{1}{8}}=\frac{\cos \beta}{-1-0}=\frac{\cos \gamma}{0-\frac{7}{8}} ; \tag{2}
\end{equation*}
$$

or, reducing (multiplying the denominators by 8),

$$
\begin{equation*}
\frac{\cos \alpha}{3}=\frac{\cos \beta}{-8}=\frac{\cos \gamma}{-7} . \tag{3}
\end{equation*}
$$

The direction cosines may now be found as usual (Art. 88).
A second method is the following:
(4) Assume

$$
\frac{\cos \alpha}{a}=\frac{\cos \beta}{b}=\frac{\cos \gamma}{c} .
$$

The coefficients 3, 2, and -1 in the first plane of (1) are proportional to the direction cosines of a perpendicular to that plane. The required line lies in this plane. Hence (corollary, Art. 90)

$$
\begin{equation*}
3 a+2 b-c=0 . \tag{5}
\end{equation*}
$$

For the same reason, using the second plane in (1),

$$
\begin{equation*}
2 a-b+2 c=0 \tag{6}
\end{equation*}
$$

Solving (5) and (6) for the ratios of a, b, and c, the result is

$$
\begin{align*}
8 a & =-3 b, \quad 7 a=-3 c . \\
\therefore \frac{a}{3} & =\frac{b}{-8}=\frac{c}{-7} . \tag{7}
\end{align*}
$$

Combining (7) and (4), we have the previous result (3).
2. Find the direction cosines of the line (I).

Solution. The direction cosines $\cos \alpha, \cos \beta, \cos \gamma$ must satisfy $A_{1} \cos \alpha+B_{1} \cos \beta+C_{1} \cos \gamma=0, \quad A_{2} \cos \alpha+B_{2} \cos \beta+C_{2} \cos \gamma=0$, reasoning as in Ex. 1.

Solving these equations for the ratios, we have the
Theorem. If α, β, and γ are the direction angles of the line (I), then

$$
\frac{\cos \alpha}{B_{1} C_{2}-B_{2} C_{1}}=\frac{\cos \beta}{C_{1} A_{2}-C_{2} A_{1}}=\frac{\cos \gamma}{A_{1} B_{2}-A_{2} B_{1}} .
$$

The denominators are readily remembered as the three determinants of the second order

$$
\cdot\left|\begin{array}{ll}
B_{1} & C_{1} \\
B_{2} & = \\
C_{2}
\end{array}\right|,\left|\begin{array}{ll}
C_{1} & A_{1} \\
C_{2} & A_{2}
\end{array}\right|,\left|\begin{array}{ll}
A_{1} & B_{1} \\
A_{2} & B_{2}
\end{array}\right|,
$$

formed from the coefficients of x, y, and z in (1).

PROBLEMS

1. Find the points in which the following lines pierce the coördinate planes, and construct the lines:
(a) $2 x+y-z=2, x-y+2 z=4$.
(c) $x+2 y=8,2 x-4 y=7$.
(b) $4 x+3 y-6 z=12,4 x-3 y=2$.
(d) $y+z=4, x-y+2 z=10$.
2. Find the direction cosines of the following lines:
(a) $2 x-y+2 z=0, x+2 y-2 z=4$.

Ans. $\pm \frac{{ }_{6}^{2}}{} \sqrt{65}, \mp_{65}^{6} \sqrt{65}, \mp_{1 \frac{1}{3}} \sqrt{65}$.
(b) $x+y+z=5, x-y+z=3$. Ans. $\pm \frac{1}{2} \sqrt{2}, 0, \mp \frac{1}{2} \sqrt{2}$.
(c) $3 x+2 y-z=4, x-2 y-2 z=5$. Ans. $\pm \frac{6}{25} \sqrt{5}, \mp \frac{1}{5} \sqrt{5}$, $\pm \frac{8}{25} \sqrt{5}$.
(d) $x+y-3 z=0,2 x-y+3 z=3$. Ans. $0, \pm \frac{3}{10} \sqrt{10}, \pm \frac{1}{10} \sqrt{10}$.
(e) $x+y=6,2 x-3 z=5 . \quad$ Ans. $\pm \frac{3}{22} \sqrt{22}, \mp_{22}^{32} \sqrt{22}, \pm \frac{1}{1 \mathrm{I}} \sqrt{22}$.
(f) $y+3 z=4,3 y-5 z=1$. Ans. $\pm 1, \underline{0}, 0$.
(g) $2 x-3 y+z=0,2 x-3 y-8 z=6$. Ans. $\pm \frac{3}{13} \sqrt{13}, \pm \frac{2}{13} \sqrt{13}, 0$.
(h) $5 x-14 z-7=0,2 x+7 z=19$.

Ans. $0, \pm 1,0$.
3. Slow that the lines of the following pairs are parallel and construct the lines:
(a) $2 y+z=0,3 y-4 z=7$; and $5 y-2 z=8,4 y+11 z=44$.
(b) $x+2 y-z=7, y+z-2 x=6$; and $3 x+6 y-3 z=8,2 x-y-z=0$.
(c) $3 x+z=4, y+2 z=9$; and $6 x-y=7,3 y+6 z=1$.
4. Show that the lines of the following pairs meet in a point and are perpendicular:
(a) $x+2 y=1,2 y-z=1$; and $x-y=1, x-2 z=3$.
(b) $4 x+y-3 z+24=0, z=5$; and $x+y+3=0, x+2=0$.
(c) $3 x+y-z=1,2 x-z=2$; and $2 x-y+2 z=4, x-y+2 z=3$.
5. Find the angles between the following lines, assuming that they are directed upward, or in front of the $Z X$-plane:
(a) $x+y-z=0, y+z=0$; and $x-y=1, x-3 y+z=0$. Ans. $\frac{\pi}{3}$.
(b) $x+2 y+2 z=1, x-2 z=1$; and $4 x+3 y-z+1=0,2 x+3 y=0$.

Ans. $\cos ^{-1} \frac{1}{2} \frac{1}{1}$.
(c) $x-2 y+z=2,2 y-z=1$; and $x-2 y+z=2, x-2 y+2 z=4$. Ans. $\cos ^{-1} \frac{1}{2}$.
6. Find the equations of the planes through the line

$$
x+y-z=0,2 x-y+3 z=5,
$$

which are perpendicular to the coördinate planes.
Ans. $3 x+2 z=5,3 y-5 z+5=0,5 x+2 y=5$.
7. Show analytically that the intersections of the planes $x-2 y-z=3$ and $2 x-4 y-2 z=5$ with the plane $x+y-3 z=0$ are parallel lines.
8. Verify analytically that the intersections of any two parallel planes with a third plane are parallel lines.
108. The projecting planes of a line. The three planes passing through a given line and perpendicular to the coördinate planes are called the projecting planes of the line.

If the line is perpendicular to one of the coördinate planes, any plane containing the line is perpendicular to that plane. In this case we speak of but two projecting planes, namely, those drawn through the line perpendicular to the other coördinate planes.

If the line is parallel to one of the coördinate planes, two of the projecting planes coincide.

By (VI), Art. 106, the equation of any plane through the line

$$
\begin{equation*}
3 x+2 y-z-1=0, \quad 2 x-y+2 z-3=0 \tag{1}
\end{equation*}
$$

has the form

$$
3 x+2 y-z-1+k(2 x-y+2 z-3)=0 .
$$

Multiplying out and collecting terms,

$$
\begin{equation*}
(3+2 k) x+(2-k) y+(-1+2 k) z-1-3 k=0 . \tag{2}
\end{equation*}
$$

This plane will be perpendicular to the $X Y$-plane when the coefficient of z equals zero, that is, if $k=\frac{1}{2}$. Writing this value of k in (2) and reducing,

$$
\begin{equation*}
4 x+\frac{3}{2} y-\frac{5}{2}=0, \quad \text { or } 8 x+3 y-5=0 . \tag{3}
\end{equation*}
$$

This is therefore the equation of the projecting plane of the line (1) on $X Y$, that is, of the plane $A B A_{1} b_{1}$ of the figure.
Now equation (3) is simply the result obtained by eliminating z from the equations (1); namely, we multiply the first of equations (1) by 2 and add it to the second. Hence the result:

To find the equations of the projecting planes of a line, elintinate x, y, and \approx in turn from the given equutions.
Thus, to finish the example begun, eliminating y from (1), we find $7 x+3 z-7=0$ for the projecting plane on $X Z$. Eliminating x, we get $7 y-8 z+7=0$ for the equation of the projecting plane on $Y Z$.

Special forms of the projecting planes will indicate special positions of the line relative to the coorrdinate planes. These cases should be noted in the following problems.

PROBLEMS

1. Find the equations of the projecting planes of the following lines:
(a) $2 x+y-z=0, x-y+2 z=3$.

Ans. $5 x+y=3,3 x+z=3,3 y-5 z+6=0$.
(b) $x+y+z=6, x-y-2 z=2$.

Ans. $3 x+y=14,2 x-z=8,2 y+3 z=4$.
(c) $2 x+y-z=1, x-y+z=2$.

Ans. Line parallel to YZ. $x=1, y-z+1=0$.
(d) $x+y-4 z=1,2 x+2 y+z=0$.

Ans. Line parallel to $X Y .9 x+9 y=1,9 z+2=0$.
(e) $2 y+3 z=6,2 y-3 z=18$.

Ans. Line parallel to $O X, y=6, z=-2$.
(f) $2 x-y+z=0,4 x+3 y+2 z=6$. Ans. $5 y=6,10 x+5 z=6$.
(g) $x+z=1, x-z=3$.

Ans. $x=2, z=-1$.
2. Reduce the equations of the following lines to the given answers and construct the lines:
(a) $x+y-2 z=0, x-y+z=4$. Ans. $x=\frac{1}{2} z+2, y=\frac{3}{2} z-2$.
(b) $x+2 y-z=2,2 x+4 y+2 z=5$. Ans. $z=\frac{1}{4}, y=-\frac{1}{2} x+\frac{?}{8}$.
(c) $x-2 y+z=4, x+2 y-z=6$. Ans. $x=5, y=\frac{1}{2} z+\frac{1}{2}$.
(d) $x+3 z=6,2 x+5 z=8$.

Ans. $z=4, x=-6$.
(e) $x+2 y-2 z=2,2 x+y-4 z=1$. Ans. $x=2 z, y=1$.
(f) $x-y+z=3,3 x-3 y+2 z=6$. Ans. $z=3, y=x$.
3. Find the equations of the line passing through the points $(-2,2,1)$ and $(-8,5,-2)$. Ans. $x=2 z-4, y=-z+3$.
4. Find the equations of the projection of the line $x=z+2, y=2 z-4$ upon the plane $x+y-z=0 . \quad$ Ans. $x=\frac{1}{5} z+\frac{\lambda_{5}^{4}}{5}, y=\frac{4}{5} z-\frac{4}{5}$.
5. Find the equations of the projection of the line $z=2, y=x-2$ upon the plane $x-2 y-3 z=4$. - Ans. $x=-5 z+4, y=-4 z$.
6. Show that the equations of a line may be written in one of the forms

$$
\left\{\begin{array} { l }
{ y = m x + a , } \\
{ z = n x + b , }
\end{array} \quad \left\{\begin{array} { l }
{ x = a , } \\
{ z = m y + b , }
\end{array} \quad \left\{\begin{array}{l}
x=a \\
y=b
\end{array}\right.\right.\right.
$$

according as it pierces the $Y Z$-plane, is parallel to the $Y Z$-plane, or is parallel to the Z-axis.
7. Show that the condition that the line $x=m z+a, y=n z+b$ should intersect the line $x=m^{\prime} z+a^{\prime}, y=n^{\prime} z+b^{\prime}$ is $\frac{a-a^{\prime}}{m-m^{\prime}}=\frac{b-b^{\prime}}{n-n^{\prime}}$.
109. Various forms of the equations of a straight line.

Theorem. Parametric form. The coördinates of any point $P(x, y, z)$ on the line through a given point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ whose direction angles are α, β, and γ are given by
(II) $x=x_{1}+\rho \cos \alpha, \quad y=y_{1}+\rho \cos \beta, \quad z=z_{1}+\rho \cos \gamma$; where ρ denotes the variable directed length $P_{1} P$.

Proof. The projections of $P_{1} P$ on the axes are respectively

$$
x-x_{1}, \quad y-y_{1}, \quad z-z_{1} .
$$

But, by the first theorem of projection, these are also equal to $\rho \cos \alpha, \quad \rho \cos \beta, \quad \rho \cos \gamma$.
Hence

$$
x-x_{1}=\rho \cos \alpha, \quad y-y_{1}=\rho \cos \beta, \quad z-z_{1}=\rho \cos \gamma
$$

Solving for x, y, and z, we obtain (II). Q.E.D.

Theorem. Symmetric form. The equations of the line passing through the point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ whose direction angles are α, β, and γ have the form

$$
\begin{equation*}
\frac{x-x_{1}}{\cos \alpha}=\frac{y-y_{1}}{\cos \beta}=\frac{z-z_{1}}{\cos \gamma} \tag{III}
\end{equation*}
$$

To obtain (III), solve each of the equations of (II) for ρ and equate results.

Corollary. If $\frac{\cos \alpha}{a}=\frac{\cos \beta}{b}=\frac{\cos \gamma}{c}$, then the symmetric equations of the line may be written in the form

$$
\begin{equation*}
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c} . \tag{IV}
\end{equation*}
$$

Theorem. Two-point form. The equations of the straight line passing through $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ are

$$
\begin{equation*}
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}} \tag{V}
\end{equation*}
$$

Proof. The line (III) passes through P_{1}. If it also passes through P_{2}, then the coördinates x_{2}, y_{2}, and z_{2} may be substituted for x, y, and z, and therefore

$$
\frac{x_{2}-x_{1}}{\cos \alpha}=\frac{y_{2}-y_{1}}{\cos \beta}=\frac{z_{2}-z_{1}}{\cos \gamma} .
$$

Dividing (III) by this result, we obtain (V). Q.E.D.
Equations (III)-(V) each involve three equations, namely those obtained by neglecting in turn one of the three ratios. These equations are, in different form, the equations of the projecting planes, since one variable is lacking in each. Any two of the three equations are independent and may be used as the equations of the line, but all three are usually retained for the sake of their symmetry. In (IV) and (V), note that the denominators are numbers proportional to the direction cosines of the line.

PROBLEMS

1. Find the equations of the lines which pass through the following pairs of points, reduce them to the given answers, and construct the lines :
(a) $(3,2,-1),(2,-3,4)$.
(b) $(1,6,3),(3,2,3) .{ }^{*}$
(c) $(1,-4,2),(3,0,3)$.
(d) $(2,-2,-1),(3,1,-1)$.
(e) $(2,3,5),(2,-7,5)$.

Ans. $x=-\frac{1}{5} z+\frac{14}{5}, y=-z+1$.
Ans. $z=3, y=-2 x+8$.
Ans. $x=2 z-3, y=4 z-12$.
Ans. $z=-1, y=3 x-8$.
Ans. $z=5, x=2$.
2. Show that the two-point form of the equations of a line becomes $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}, z=z_{1}$, if $z_{1}=z_{2}$. What do they become if $y_{1}=y_{2}$? if $x_{1}=x_{2}$?
3. What do the two-point equations of a line become if $x_{1}=x_{2}$ and $y_{1}=y_{2}$? if $y_{1}=y_{2}$ and $z_{1}=z_{2}$? if $z_{1}=z_{2}$ and $x_{1}=x_{2}$?
4. Do the following sets of points lie on straight lines?
(a) $(3,2,-4),(5,4,-6)$, and $(9,8,-10)$.

Ans. Yes.
(b) $(3,0,1),(0,-3,2)$, and $(6,3,0)$.

Ans. Yes.
(c) $(2,5,7),(-3,8,1)$, and $(0,0,3)$.

Ans. No.
5. Show that the conditions that the three points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$, $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$, and $P_{3}\left(x_{3}, y_{3}, z_{3}\right)$ should lie on a straight line are $\frac{x_{3}-x_{1}}{x_{2}-x_{1}}=\frac{y_{3}-y_{1}}{y_{2}-y_{1}}=\frac{z_{3}-z_{1}}{z_{2}-z_{1}}$.
6. Find the equations of the line passing throngh the point $(2,-1,-3)$ whose direction cosines are proportional to 3,2 , and 7 , and reduce them to the given answer.

Ans. $x=\frac{3}{7} z+\frac{23}{7}, y=\frac{2}{7} z-\frac{1}{7}$.
7. Find the equations of the line passing through the point $(0,-3,2)$ which is parallel to the line joining the points $(3,4,7)$ and $(2,7,5)$.

$$
\text { Ans. } \frac{x}{1}=\frac{y+3}{-3}=\frac{z-2}{2}
$$

8. Show that the lines $\frac{x-2}{3}=\frac{y+2}{-2}=\frac{z}{4}$ and $\frac{x+1}{-3}=\frac{y-5}{2}=\frac{z+3}{-4}$
are parallel.

* From (V), $\frac{x-1}{3-1}=\frac{y-6}{2-6}=\frac{z-3}{3-3}$. The value of the last ratio is infinite unless $z-3=0$. If $z-3=0$, then the last ratio may have any value and may be equal to the first two. Hence the equations of the line become $\frac{z-1}{y}=\frac{y-6}{-4}, z=3$. Geometrically it is evident that the two points lie in the plane $z=3$, and hence the line joining them also lies in that plane.

9. Find the equations of the line through the point $(-2,4,0)$ which is parallel to the line $\frac{x}{4}=\frac{y+2}{3}=\frac{z-4}{-1}$, and reduce them to the answer.
10. Show that the lines $\frac{x+2}{6}=\frac{y-3}{-3}=\frac{z-1}{2}$ and $\frac{x-3}{2}=\frac{y}{6}=\frac{z+3}{3}$ are perpendicular.
11. Find the angle between the lines $\frac{x-3}{2}=\frac{y+1}{1}=\frac{z-3}{-1}$ and $\frac{x+2}{1}=\frac{y-7}{2}=\frac{z}{1}$, if both are directed upward. $\quad 1 \quad \bar{A} \cdot \frac{2 \pi}{3}$.
12. Find the parametric equations of the line passing through the point $(2,-3,4)$ whose direction cosines are proportional to $1,-2$, and 2 .

$$
\text { Ans. } x=2+\frac{1}{3} \rho, y=-3-\frac{2}{3} \rho, z=4+\frac{2}{3} \rho \text {. }
$$

13. Construct the lines whose parametric equations are

$$
\begin{array}{lll}
\text { (a) } x=2+\frac{2}{3} \rho, & y=4-\frac{1}{3} \rho, & z=6+\frac{2}{3} \rho . \\
\text { (b) } x=-3-\frac{2}{7} \rho, & y=6-\frac{6}{7} \rho, & z=4+\frac{3}{8} \rho .
\end{array}
$$

14. Find the distance, measured along the line $x=2-\frac{3}{13} \rho, y=4+\frac{12}{13} \rho$, $z=-3+\frac{4}{13} \rho$, from the point $(2,4,-3)$ to the intersection of the line with the plane $4 x-y-2 z=6$. Ans. 15.
15. Show that the symmetric equations of the straight line become $\frac{x-x_{1}}{\cos \alpha}=\frac{y-y_{1}}{\cos \beta}, z=z_{1}$, if $\cos \gamma=0$. What do they become if $\cos \alpha=0$? if $\cos \beta=0$?
16. Show that the symmetric equations of the straight line become $z=z_{1}, x=x_{1}$, if $\cos \gamma=\cos \alpha=0$. What do they become if $\cos \alpha=$ $\cos \beta=0$? if $\cos \beta=\cos \gamma=0$?
17. Reduce the equations of the following lines to the symmetric form (IV).

$$
\text { (a) } x-2 y+z=8,2 x-3 y=13 . \quad \text { Ans. } \frac{x-\frac{13}{2}}{3}=\frac{y}{2}=\frac{z-\frac{3}{2}}{1} \text {. }
$$

Solution. Find the equations of two projecting planes. The second plane is already the projecting plane on $X Y$. Eliminating x, we get $y-2 z=-3$. Now in the two projecting planes thus found,

$$
\begin{equation*}
2 x-3 y=13 \text { and } y-2 z=-3 \tag{1}
\end{equation*}
$$

solving each for y and equating results,

$$
\begin{equation*}
\frac{2 x-13}{3}=\frac{y}{1}=\frac{2 z-3}{1} \tag{2}
\end{equation*}
$$

Multiplying the numerators through by $\frac{1}{2}$, we have the answer.

Comparison with (IV) gives $x_{1}=\frac{13}{2}, y_{1}=0, z_{1}=\frac{3}{2}, a=3, b=2, c=1$. Hence the line passes through (${ }_{2}^{13}, 0, \frac{3}{2}$) and its direction cosines are proportional to $3,2,1$.

A remark here is important. In (IV), x_{1}, y_{1}, and z_{1} are the coördinates of any fixed point on the line. Hence for a given line the numerators in (IV) may be quite different. For example, putting $z=0$ in (1), we find $x=2, y=-3$. Hence the equations $\frac{x-2}{3}=\frac{y+3}{2}=\frac{z}{1}$ represent the given line also. Notice that in equations (IV) the coefficients of x, y, and z must be unity. This explains the step, after deriving (1), of removing the 2 from the $2 x$ and the $2 z$.
(b) $4 x-5 y+3 z=3,4 x-5 y+z+9=0$. Ans. $\frac{x}{5}=\frac{y-3}{4}, z=6$.
(c) $2 x+z+5=0, x+3 z-5=0 . \quad$ Ans. $z=3, x=-4$.
(d) $x+2 y+6 z=5,3 x-2 y-10 z=7$. Ans. $\frac{x-3}{2}=\frac{y-1}{-7}=\frac{z}{2}$.
(e) $3 x-y-2 z=0,6 x-3 y-4 z+9=0$. Ans. $\frac{x-3}{2}=\frac{z}{3}, y=9$.
(f) $3 x-4 y=7, x+3 y=11$.

Ans. $x=5, y=2$.
(g) $2 x+y+2 z=7, x+3 y+6 z=11$.

Ans. $\frac{y-3}{2}=\frac{z}{-1}, x=2$
(h) $2 x-3 y+z=4,4 x-6 y-z=5$.

Ans. $\frac{x}{3}=\frac{y+1}{2}, z=1$.
(i) $3 z+y=1,4 z-3 y=10$.

Ans. $y=-2, z=1$.
(j) $x=m z+a, y=n z+b$.

Ans. $\frac{x-a}{m}=\frac{y-b}{n}=\frac{z}{1}$.
18. Find the equations of the line passing through the point ($2,0,-2$), Which is perpendicular to each of the lines $\frac{x-3}{2}=\frac{y}{1}=\frac{z+1}{2}$ and $\frac{x}{3}=\frac{y+1}{-1}=\frac{z+2}{2}$.

Ans. $\frac{x-2}{4}=\frac{y}{2}=\frac{z+2}{-5}$.
19. Find the equations of the line passing through the point $(3,-1,2)$ which is perpendicular to each of the lines $x=2 z-1, y=z+3$, and $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$.

Ans. $\frac{x-3}{1}=\frac{y+1}{-6}=\frac{z-2}{4}$.
20. Find the equations of the line through $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ parallel to
(a) $\frac{x-x_{2}}{a}=\frac{y-y_{2}}{b}=\frac{z-z_{2}}{c}$.
Ans. $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$.
(b) $x=m z+a, y=n z+b$.

$$
\text { Ans. } \frac{x-x_{1}}{m}=\frac{y-y_{2}}{n}=\frac{z-z_{1}}{1}
$$

(c) $z=a, y=m x+b . \quad$ Ans. $\frac{x-x_{1}}{1}=\frac{y-y_{1}}{m}, z=z_{1}$.
(d) $A_{1} x+B_{1} y+C_{1} z+D_{1}=0, A_{2} x+B_{2} y+C_{2} z+D_{2}=0$.

$$
\text { Ans. } \frac{x-x_{1}}{B_{1} C_{2}-B_{2} C_{1}}=\frac{y-y_{1}}{C_{1} A_{2}-A_{2} C_{1}}=\frac{z-z_{1}}{A_{1} B_{2}-A_{2} B_{1}} \text {. }
$$

21. Find the equations of the line passing through $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ which is perpendicular to each of the lines

$$
\begin{aligned}
\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}} \text { and } \frac{x-x_{8}}{a_{8}} & =\frac{y-y_{3}}{b_{3}}=\frac{z-z_{3}}{c_{3}} . \\
\text { Ans. } \frac{x-x_{1}}{b_{2} c_{3}-b_{8} c_{2}} & =\frac{y-y_{1}}{c_{2} a_{3}-c_{8} \alpha_{2}}=\frac{z-z_{1}}{a_{2} b_{3}-a_{8} b_{2}} .
\end{aligned}
$$

110. Relative positions of a line and plane. If the equations of the line have the form (IV), and if we substitute the values of two of the variables given by (IV) in the equation of the plane, then if the result is true for all values of the third variable, the line lies in the plane.

We next easily prove the
Theorem. A line whose direction angles are α, β, and γ and the plane $A x+B y+C z+D=0$ are
(a) parallel when and only when

$$
A \cos \alpha+B \cos \beta+C \cos \gamma=0 ;
$$

(b) perpendicular when and only when

$$
\frac{A}{\cos \alpha}=\frac{B}{\cos \beta}=\frac{C}{\cos \gamma}
$$

Proof. The direction cosines of a perpendicular L_{2} to the plane are proportional to A, B, and C.

The line and plane are parallel when and only when the line is perpendicular to the line L_{2}; that is, when and only when

$$
A \cos \alpha+B \cos \beta+C \cos \gamma=0
$$

The line and plane are perpendicular when and only when the line is parallel to L_{2}; that is, when and only when

$$
\frac{\cos \alpha}{A}=\frac{\cos \beta}{B}=\frac{\cos \gamma}{C} .
$$

PROBLEMS

1. Show that the line $\frac{x+3}{2}=\frac{y-4}{-7}=\frac{z}{3}$ is parallel to the plane $4 x+2 y+2 z=9$.
2. Show that the line $\frac{x}{3}=\frac{y}{2}=\frac{z}{7}$ is perpendicular to the plane $3 x+$ $2 y+7 z=8$.
3. Show that the line $x=z-4, y=2 z-3$ lies in the plane $2 x-$ $3 y+4 z-1=0$.
4. Find the equations of the line passing through $(1,-6,2)$ and perpendicular to the plane $2 x-y+6 z=0$. Ans. $\frac{x-1}{2}=\frac{y+6}{-1}=\frac{z-2}{6}$.
5. Show that the lines $x=2 z+1, y=3 z+2$, and $2 x=z+2$, $3 y=6-z$ intersect, and find the equation of the plane determined by them.

$$
\text { Ans. } 20 x-9 y-13 z-2=0
$$

6. Show that the line $\frac{x-2}{3}=\frac{y+2}{-1}=\frac{z-3}{4}$ lies in the plane $2 x+$ $2 y-z+3=0$.
7. Find the equations of the line passing through the point $(3,2,-6)$ which is perpendicular to the plane $4 x-y+3 z=5$.

$$
\text { Ans. } \frac{x-3}{4}=\frac{y-2}{-1}=\frac{z+6}{3}
$$

8. Find the equations of the line passing through the point $(4,-6,2)$ which is perpendicular to the plane $x+2 y-3 z=8$.

$$
\text { Ans. } \frac{x-4}{1}=\frac{y+6}{2}=\frac{z-2}{-3}
$$

9. Find the equations of the line passing through the point $(-2,3,2)$ which is parallel to each of the planes $3 x-y+z=0$ and $x-z=0$.

$$
\text { Ans. } \frac{x+2}{1}=\frac{y-3}{4}=\frac{z-2}{1} .
$$

10. Find the equation of the plane passing through the point $(1,3,-2)$ which is perpendicular to the line $\frac{x-3}{2}=\frac{y-4}{5}=\frac{z}{-1}$.

$$
\text { Ans. } 2 x+5 y-z=19
$$

11. Find the equation of the plane passing through the point $(2,-2,0)$ which is perpendicular to the line $z=3, y=2 x-4$. Ans. $x+2 y+2=0$.
12. Find the equation of the plane passing through the line $x+2 z=4$, $y-z=8$ which is parallel to the line $\frac{x-3}{2}=\frac{y+4}{3}=\frac{z-7}{4}$.

$$
\text { Ans. } x+10 y-8 z-84=0 .
$$

13. Find the equation of the plane passing through the point $(3,6,-12)$ which is parallel to each of the lines $\frac{x+3}{3}=\frac{y-2}{-1}=\frac{z+1}{3}$ and $\frac{x-4}{2}$ $=\frac{z+2}{4}, y=3$.

Ans. $2 x+3 y-z=36$.
14. Find the equations of the line passing through the point $(3,1,-2)$ which is perpendicular to the plane $2 x-y-5 z=6$.

$$
\text { Ans. } x=-\frac{2}{5} z+\frac{11}{5}, y=\frac{1}{3} z+\frac{7}{8} .
$$

15. Show that the lines $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z}{-2}$ and $\frac{x-2}{-1}=\frac{y+1}{3}=\frac{z}{2}$ intersect, and find the equation of the plane determined by them.

Ans. $14 x-4 y+13 z=32$.
16. Find the equation of the plane determined by the line $\frac{x-2}{2}=\frac{y+3}{-2}$ $=\frac{z-1}{1}$ and the point $(0,3,-4)$. Ans. $x+2 y+2 z+2=0$.
17. Find the equation of the plane determined by the parallel lines $\frac{x+1}{3}=\frac{y-2}{2}=\frac{z}{1}$ and $\frac{x-3}{3}=\frac{y+4}{2}=\frac{z-1}{1}$. Ans. $8 x+y-26 z+6=0$.
18. Find the equations of a line lying in the plane $x+3 y-2 z+4=0$ and perpendicular to the line $\frac{x-4}{3}=\frac{y+2}{2}=\frac{z-2}{3}$ at the point where it meets the plane.
19. Find the equations of a line tangent to the sphere $x^{2}+y^{2}+z^{2}=9$ at the point $(2,-1,-2)$, and parallel to the plane $x+3 y-5 z-1=0$.
20. Find the equations of a line tangent to the sphere $x^{2}+y^{2}+z^{2}=9$ at the point $(2,2,-1)$, and perpendicular to the line $\frac{x-2}{3}=\frac{y+1}{1}=\frac{z}{5}$.
21. Find the equations of the line passing through $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ which is perpendicular to the plane $A x+B y+C z+D=0$.

$$
\text { Ans. } \frac{x-x_{1}}{A}=\frac{y-y_{1}}{B}=\frac{z-z_{1}}{C} .
$$

22. Find the equation of the plane passing through the point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ which is perpendicular to the line $\frac{x-x_{2}}{a}=\frac{y-y_{2}}{b}=\frac{z-z_{2}}{\mathrm{c}}$.

$$
\text { Ans. } \quad a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0 .
$$

23. Find the angle θ between the line $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ and the plane $A x+B y+C z+D=0$.

$$
A n s . \quad \sin \theta=\frac{A a+B b+C c}{\sqrt{A^{2}+B^{2}+C^{2}} \sqrt{a^{2}+b^{2}+c^{2}}}
$$

Hint. The angle between a line and a plane is the acute angle between the line and its projection on the plane. This angle equals $\frac{\pi}{2}$ increased or decreased by the angle between the line and the normal to the plane.
24. Find the equation of the plane passing through $P_{3}\left(x_{3}, y_{3}, z_{3}\right)$ which is parallel to each of the lines $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}$ $=\frac{z-z_{2}}{c_{2}}$.
Ans. $\left(b_{1} c_{2}-b_{2} c_{1}\right)\left(x-x_{3}\right)+\left(c_{1} a_{2}-a_{2} c_{1}\right)\left(y-y_{3}\right)+\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(z-z_{3}\right)=0$.
25. Find the condition that the plane $A_{1} x+B_{1} y+C_{1} z+D_{1}=0$ should be parallel to the line $A_{2} x+B_{2} y+C_{2} z+D_{2}=0, A_{3} x+B_{3} y+C_{3} z+D_{3}=0$. Ans. $A_{1}\left(B_{2} C_{3}-B_{3} C_{2}\right)+B_{1}\left(C_{2} A_{9}-C_{3} A_{2}\right)+C_{1}\left(A_{2} B_{3}-A_{3} B_{2}\right)=0$.
26. Find the equation of the plane determined by the point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and the line $A_{1} x+B_{1} y+C_{1} z+D_{1}=0, A_{2} x+B_{2} y+C_{2} z+D_{2}=0$.

Ans. $\left(A_{2} x_{1}+B_{2} y_{1}+C_{2} z_{1}+D_{2}\right)\left(A_{1} x+B_{1} y+C_{1} z+D_{1}\right)$

$$
=\left(A_{1} x_{1}+B_{1} y_{1}+C_{1} z_{1}+D_{1}\right)\left(A_{2} x+B_{2} y+C_{2} z+D_{2}\right) .
$$

27. Find the equation of the plane determined by the intersecting lines $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{1}}{a_{2}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{c_{2}}$.
Ans. $\left(b_{1} c_{2}-b_{2} c_{1}\right)\left(x-x_{1}\right)+\left(c_{1} a_{2}-c_{2} a_{1}\right)\left(y-y_{1}\right)+\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(z-z_{1}\right)=0$.
28. Find the equation of the plane determined by the parallel lines $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ and $\frac{x-x_{n}}{a}=\frac{y-y_{2}}{b}=\frac{z-z_{2}}{c}$.

Ans. $\left[\left(y_{1}-y_{2}\right) c-\left(z_{1}-z_{2}\right) b\right] x+\left[\left(z_{1}-z_{2}\right) a-\left(x_{1}-x_{2}\right) c\right] y$
$+\left[\left(x_{1}-x_{2}\right) b-\left(y_{1}-y_{2}\right) a\right] z+\left(y_{1} z_{2}-y_{2} z_{1}\right) a$
$+\left(z_{1} x_{2}-z_{2} x_{1}\right) b+\left(x_{1} y_{2}-x_{2} y_{1}\right) c=0$.
29. Find the conditions that the line $x=m z+a, y=n z+b$ should lie in the plane $A x+B y+C z+D=0$.

$$
\text { Ans. } A a+B b+D=0, A m+B n+C=0 \text {. }
$$

30. Find the equation of the plane passing through the line $\frac{x-x_{1}}{a_{1}}$ $=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ which is parallel to the line $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$. Ans. $\left(b_{1} c_{2}-b_{2} c_{1}\right)\left(x-x_{1}\right)+\left(c_{1} a_{2}-c_{2} a_{1}\right)\left(y-y_{1}\right)+\left(a_{2} b_{2}-a_{2} b_{1}\right)\left(z-z_{1}\right)=0$.

CHAPTER XVII

SPECIAL SURFACES

111. In this chapter we shall cousider spheres, cylinders, and cones* (surfaces considered in elementary geometry), and surfaces which nay be generated by revolving a curve about one of the coördinate axes, or by moving a straight line.
112. The sphere. We begin with the

Theorem. The equation of the sphere whose center is the point (α, β, γ) and whose radius is r is

$$
\begin{equation*}
(x-\alpha)^{2}+(y-\beta)^{2}+(z-\gamma)^{2}=r^{2} \tag{I}
\end{equation*}
$$

Proof. Let $P(x, y, z)$ be any point on the sphere, and denote the center of the sphere by C. Then, by definition, $P C=r$. Substituting the value of $P C$ given by the length formula, and squaring, we obtain (I).
Q.E.D.

When (I) is multiplied out, it is

$$
x^{2}+y^{2}+z^{2}-2 \alpha x-2 \beta y-2 \gamma z+\alpha^{2}+\beta^{2}+\gamma^{2}-\gamma^{2}=0 ;
$$

that is, it is in the form

$$
x^{2}+y^{2}+z^{2}+G x+H y+I z+K=0
$$

The question now is, When is the locus of this equation a sphere?

To answer this, collect the terms thus :

$$
\left(x^{2}+G x\right)+\left(y^{2}+H y\right)+\left(z^{2}+I z\right)=-K .
$$

[^20]Completing the squares within the parentheses, we obtain $\left(x+\frac{1}{2} G\right)^{2}+\left(y+\frac{1}{2} H\right)^{2}+\left(z+\frac{1}{2} I\right)^{2}=\frac{1}{4}\left(G^{2}+H^{2}+I^{2}-4 K\right)$

- Comparing with (I), we have at once the

Theorem. The locus of an equation of the form

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}+G x+H y+I z+K=0 \tag{II}
\end{equation*}
$$

is determined as follows:
(a) When $G^{2}+H^{2}+I^{2}-4 K>0$, the locus is a sphere whose center is $\left(-\frac{G}{2},-\frac{H}{2},-\frac{I}{2}\right)$ and whose radius is

$$
r=\frac{1}{2} \sqrt{G^{2}+H^{2}+I^{2}-4 K}
$$

(b) When $G^{2}+H^{2}+I^{2}-4 K=0$, the locus is the point-sphere* $\left(-\frac{G}{2},-\frac{H}{2},-\frac{I}{2}\right)$.
(c) When $G^{2}+H^{2}+I^{2}-4 K<0$, there is no locus.

In numerical examples it is recommended that the theorem be not used, but that the squares be completed as in the proof, and the center and radius be found by comparison with (I).

EXAMPLE

What is the locus of the equation

$$
x^{2}+y^{2}+z^{2}-2 x+3 y+1=0 ?
$$

Solution. Collecting terms,

$$
\left(x^{2}-2 x\right)+\left(y^{2}+3 y\right)+z^{2}=-1
$$

Completing the squares,
or

$$
\begin{gathered}
\left(x^{2}-2 x+1\right)+\left(y^{2}+3 y+\frac{9}{4}\right)+z^{2}=-1+1+\frac{9}{4}, \\
(x-1)^{2}+\left(y+\frac{8}{2}\right)^{2}+z^{2}=\frac{9}{4} .
\end{gathered}
$$

This equation is in the form (I); $r=\frac{3}{2}, \alpha=1, \beta=-\frac{3}{2}, \gamma=0$. That is, the locus is a sphere of radius $\frac{3}{2}$ and center $\left(1,-\frac{3}{2}, 0\right)$.

[^21]
PROBLEMS

1. Find the equation of the sphere whose center is the point
(a) $(\alpha, 0,0)$ and whose radius is α. Ans. $x^{2}+y^{2}+z^{2}-2 \alpha x=0$.
(b) ($0, \beta, 0$) and whose radius is β. Ans. $x^{2}+y^{2}+z^{2}-2 \beta y=0$.
(c) $(0,0, \gamma)$ and whose radius is γ. Ans. $x^{2}+y^{2}+z^{2}-2 \gamma z=0$.
2. Determine the nature of the loci of the following equations and find the center and radius if the locus is a sphere, or the coördinates of the point-sphere if the locus is a point-sphere.
(a) $x^{2}+y^{2}+z^{2}-6 x+4 z=0$.
(c) $x^{2}+y^{2}+z^{2}+4 x-z+7=0$.
(b) $x^{2}+y^{2}+z^{2}+2 x-4 y-5=0$.
(d) $x^{2}+y^{2}+z^{2}-12 x+6 y+4 z=0$.
3. Where will the center of (1I) lie if
(a) $G=0$?
(c) $I=0$?
(e) $H=I=0$?
(b) $H=0$?
(d) $G=H=0$?
(f) $I=G=0$?
4. Prove that each of the following loci is a sphere, and find its radius and the coördinates of its center.
(a) The distance of a point from the origin is proportional to the square root of the sum of its distances from the three coördinate planes.
(b) The sum of the squares of the distances of a point from two fixed points $(2,4,-8)$ and $(-4,0,2)$ is equal to 52 .

$$
\text { Ans. } \alpha=-1, \beta=2, \gamma=-3, r=\sqrt{14} \text {. }
$$

(c) The distance of a point from the origin is half its distance from the point $(3,-6,9)$.
(d) The distance of a point from the point $(7,1,-3)$ is twice its distance from the point ($-\frac{5}{4},-2, \frac{8}{2}$).

$$
\begin{aligned}
& \left.2, \frac{3}{2}\right) . \\
& \text { Ans. } \alpha=-4, \beta=-3, \gamma=1, r=\frac{\sqrt{141}}{2} \text {. }
\end{aligned}
$$

(e) The sum of the squares of the distances of a point from the three planes $-x+2 y+2 z-1=0,2 x-y+2 z-1=0,2 x+2 y-z-1=0$ is unity.
5. Show that a sphere is determined by four conditions and formulate a rule by which to find its equation.
6. Find the equation of a sphere passing through the three points in any one of the following columns and through a fourth point selected from the other two.

$$
\begin{array}{lcc}
A(-1,-1,1), & D(0,0,1), & G(0,-4,5), \\
B(-1,-3,1), & E(3,0,2), & H(2,-4,5), \\
C(-1,-4,4) ; & F(2,0,1) ; & I(3,-1,5) . \\
& \text { Ans. } x^{2}+y^{2}+z^{2}-2 x+4 y-6 z+5=0 .
\end{array}
$$

7. Find the equation of a sphere which
(a) has the center $(3,0,-2)$ and passes through ($1,6,-5$). Ans. $x^{2}+y^{2}+z^{2}-6 x+4 z-36=0$.
(b) passes through the points $(0,0,0),(0,2,0),(4,0,0)$, and $(0,0,-6)$. Ans. $x^{2}+y^{2}+z^{2}-4 x-2 y+6 z=0$.
(c) is concentric with the sphere $x^{2}+y^{2}+z^{2}-6 x+4 z=0$ and passes through the point ($3,1,0$).
(d) has the line joining $(4,-6,5)$ and $(2,0,2)$ as a diameter.
(e) has the center $(2,2,-2)$ and is tangent to the plane $2 x+y-$ $3 z+2=0$.
(f) has a unit radius and is tangent to each of the coördinate planes in the first octant.
(g) passes through the three points $(1,0,2),(1,3,1)$, and $(-3,0,0)$ and has the center in the $X Z$-plane. Ans. $x^{2}+y^{2}+z^{2}-2 x+6 z-15=0$.
(h) passes through the three points $(1,-3,4),(1,-5,2)$, and $(1,-3,0)$ and has its center in the plane $x+y+z=0$.

$$
\text { Ans. } x^{2}+y^{2}+z^{2}-2 x+6 y-4 z+10=0 .
$$

(i) has its center on the Y-axis and passes through the points $(0,2,2)$ and ($4,0,0$).

Ans. $x^{2}+y^{2}+z^{2}+4 y-16=0$.
(j) passes through the points $(1,5,-3)$ and $(-3,0,0)$, and whose center lies on the line of intersection of the planes $3 x+y+z=0, x+$ $2 y-1=0$. Ans. $x^{2}+y^{2}+z^{2}-2 x+6 z-15=0$.
(k) is tangent to the three coördinate planes and to the plane $6 x+2 y+3 z-4=0$. Ans. $x^{2}+y^{2}+z^{2}-2 x-2 y-2 z-4=0$.
(1) has its center at $(3,1,1)$ and is tangent to the sphere $x^{2}+y^{2}+$ $z^{2}-2 x-4 y+2 z+2=0$. Ans. $x^{2}+y^{2}+z^{2}-6 x-2 y-2 z+10=0$;

$$
x^{2}+y^{2}+z^{2}-6 x-2 y-2 z-14=0 .
$$

(m) passes through the points $(1,1,0),(0,1,1)$, and $(1,0,1)$ and whose radius is 11. Ans. $x^{2}+y^{2}+z^{2}-14 x-14 y-14 z+26=0$.
(n) is tangent to the plane $x+y-z+1=0$ at the point $(3,-2,2)$ and has its center in the $X Y$-plane.
(0) passes through the three points $(2,0,1),(2,-1,0)$, and $(1,-1,1)$ and is tangent to the plane $2 x+2 y-z+2=0$.

Ans. $x^{2}+y^{2}+z^{2}-4 x+2 y-2 z+5=0$.
(p) passes through the intersection of the two spheres $x^{2}+y^{2}+z^{2}-$ $6 x=0, x^{2}+y^{2}+z^{2}+9 y-5 z-7=0$, and through the point $(0,1,1)$.
8. Find the equations of the tangent plane and the normal line to the sphere $x^{2}+y^{2}+z^{2}-14=0$ at the point $(3,-2,1)$.
9. Find the equations of the tangent plane and normal line to the sphere $x^{2}+y^{2}+z^{2}-2 x+4 y-6 z+5=0$ at the point $(3,-4,2)$.
10. Find the equations of the planes tangent to the sphere $x^{2}+y^{2}+z^{2}-$ $10 x+5 y-2 z-24=0$ at the points where it intersects the coördinate axes.
11. Find the equation of a sphere inscribed in the tetrahedron formed by any four of the following planes:

$$
\begin{array}{ll}
14 x+5 y-2 z-168=0, & 10 x+11 y+2 z+88=0, \\
14 x-5 y+2 z+28=0, & 2 x-y-2 z+12=0, \\
10 x-11 y+2 z+33=0, & 2 x-y+2 z+8=0 .
\end{array}
$$

12. Find the equation of the smallest sphere tangent to the two spheres $x^{2}+y^{2}+z^{2}-2 x-6 y+1=0, x^{2}+y^{2}+z^{2}+6 x+2 y-4 z+5=0$. Ans. $x^{2}+y^{2}+z^{2}+2 x-2 y-2 z+3=0$.
13. Cylinders. A surface which is generated by a straight line which moves parallel to itself and intersects a given fixed curve is called a cylinder. The fixed curve is called the directrix. We now consider equations whose loci are cylinders.

EXAMPLES

1. Determine the nature of the locus of $y^{2}=4 x$.

Solution. The intersection of the surface with a plane $x=k$, parallel to the $Y Z$-plane, is the pair of lines

$$
\begin{equation*}
x=k, \quad y= \pm 2 \sqrt{k} \tag{1}
\end{equation*}
$$

which are parallel to the Z-axis. If $k>0$, the locus of equations (1) is a pair of lines; if $k=0$, it is a single line (the Z-axis) ; and if $k<0$, equations (1) have no locus.
Similarly, the intersection with a plane $y=k$, parallel to the $Z X$-plane, is a straight line whose equations are

$$
x=\frac{1}{4} k^{2}, \quad y=k,
$$

and which is therefore parallel to the Z-axis.

The intersection with a plane $z=k$ parallel to the $X Y$-plane is the parabola

$$
z=k, \quad y^{2}=4 x .
$$

For different values of k these parabolas are equal and placed one above another. The surface is therefore a cylinder whose elements are parallel to the Z-axis and intersect the parabola $y^{2}=4 x, \quad z=0$.

It is evident from Ex. 1 that the locus of any equation which contains but two of the variables x, y, and z will intersect planes parallel to two of the coördinate planes in one or more straight lines parallel to one of the axes, and planes parallel to the third coördinate plane in congruent curves. Such a surface is evidently a cylinder. Hence the

Theorem. The locus of an equation in which one variable is lacking is a cylinder whose elements are parallel to the axis along which that variable is measured.

The student should not infer from this statement that the equations of all cylinders have one variable lacking. In case the elements are inclined, all three variables will appear in the equation. This is illustrated by the following example:
2. Determine the nature of the locus of

$$
x^{2}+2 x z+z^{2}=1-y^{2} .
$$

The intersection of this locus by the plane $y=k$ is

$$
y=k, \quad x+z= \pm \sqrt{1-k^{2}},
$$

a pair of parallel lines whose direction is independent of k. In fact, the direction cosines of these lines are proportional to $-1,0,1$; that is, they are parallel to the line joining the point $(-1,0,1)$ to the origin. We conclude then that the surface is a cylinder. To
 construct the surface, draw its traces and pass lines through them having the above direction. The trace in the $Y Z$-plane is the circle
in the $X Y$-plane, the circle

$$
y^{2}+z^{2}=1
$$

$$
x^{2}+y^{2}=1 .
$$

It is evident from Ex. 2 that in order to prove that a surface is cylindrical it is only necessary to find a system of planes which cut from it a system of parallel lines.

PROBLEMS

1. Determine the nature of the following loci, and discuss and construct them :
(a) $x^{2}+y^{2}=36$.
(f) $z^{2}+x^{2}=r^{2}$.
(b) $x^{2}+y^{2}=3 x$.
(g) $x^{2}+6 y=0$.
(c) $x^{2}-z^{2}=16$.
(h) $y z-4=0$.
(d) $y^{2}+4 z^{2}=0$.
(i) $y^{2}+z-4=0$.
(e) $x^{2}+2 y-4=0$.
(j) $y^{2}-x^{8}=0$.
2. Find the equations of the cylinders whose directrices are the following curves and whose elements are parallel to one of the axes:
(a) $y^{2}+z^{2}-4 y=0, x=0$.
(c) $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}, z=0$.
(b) $z^{2}+2 x=8, y=0$.
(d) $y^{2}+2 p z=0, x=0$.
3. Prove that the following loci are cylinders. Discuss and construct them.
(a) $x+y-z^{2}=0$.
(d) $x^{2}-4(z+y)+8=0$.
(b) $x z+y z-1=0$.
(e) $x^{2}+2 x y+y^{2}=z$.
(c) $y^{2}=3 x+z$.
(f) $x^{2}-2 x y+y^{2}=1-z^{2}$.
4. A point moves so that its distance from a fixed point is always equal to its distance from a fixed line. Prove that the locus is a parabolic cylinder.
5. A point moves so that the difference of the squares of its distances from two intersecting perpendicular lines is constant. Prove that the locus is a hyperbolic cylinder.
6. A point moves so that the sum of its distances from two planes is equal to the square of its distance from a tbird plane. The three planes are mutually perpendicular. Prove that the locus is a parabolic cylinder.
7. A point moves so that the sum of its distances from two planes is equal to the square root of its distance from a third plane. Prove that the locus is a parabolic cylinder when the three planes are mutually perpendicular.
8. The projecting cylinders of a curve. The cylinders whose elements intersect a given curve and are parallel to one of the coördinate axes are called the projecting cylinders of the curve. The equations may be found by eliminating in turn each of the variables x, y, and z from the equations of the curve. For if we eliminate z, for example, the result, by the preceding section, is
the equation of a cylinder which passes through the curve, since values of x, y, and \approx which satisfy each of two equations satisfy an equation obtained from them by eliminating one variable.

The equations of two of the projecting cylinders may be conveniently used as the equations of the curve.* Hence the problem of constructing the original curve reduces to that of constructing the curve of intersection of two cylinders whose elements are parallel to the coördinate axes. The method is illustrated in the following examples.

EXAMPLES

1. Construct the curve of intersection of the two cylinders

$$
x^{2}+y^{2}-2 y=0, \quad y^{2}+z^{2}-4=0 .
$$

Solution. Draw the trace of each cylinder on the coördinate plane to which its elements are perpendicular. Then consider a plane perpendicu-

lar to the coördinate axis to which the elements of neither cylinder are parallel. In this case such a plane is $y=k$. Let this plane intersect the

[^22]axis at the point K. It will intersect the traces at the points A, B, C, and D. Through each of these points will pass an element of the corresponding cylinder, all four elements lying in this plane. The points of intersection E, F, G, and H of these elements are points on the curve of intersection of the two cylinders. By taking several positions of the plane $y=k$, we obtain a sufficient number of points to construct the entire curve as shown in the second figure on page 298.
2. Construct the curve whose equations are
$$
2 y^{2}+z^{2}+4 x=4 z, \quad y^{2}+3 z^{2}-8 x=12 z
$$

Eliminating x, y, and z in turn, we obtain the equations of the projecting cylinders

$$
y^{2}+z^{2}=4 z, \quad z^{2}-4 x=4 z, \quad y^{2}+4 x=0
$$

The figure shows the first and third of these cylinders, intersecting in the original curve constructed by the method explained in the previous example.

It is usually wise to deduce the equations of all three of the projecting cylinders, for it may be that two of them are distinguisled for simplicity and hence are most convenient to coustruct.

If the curve lies in a plane parallel to one of the coördinate planes, then two of its projecting cylinders coincide with the plane of the curve, or part of it.

For a straight line the projecting cylinders are the projecting planes.

PROBLEMS

1. Construct the curve in which the following, in each case a plane and a cylinder, intersect:
(a) $\left\{\begin{array}{l}x^{2}+y^{2}-25=0, \\ y+z=0 .\end{array}\right.$
(c) $\left\{\begin{array}{l}x^{2}+y^{2}-4 x=0 \\ x+2 z+2 y-4=0 .\end{array}\right.$
(b) $\left\{\begin{array}{l}y^{2}+4 z^{2}-16=0, \\ x+z-1=0 .\end{array}\right.$
(d) $\left\{\begin{array}{l}x^{2}-y^{2}-4=0, \\ y+z+x=0 .\end{array}\right.$
2. Construct the curve in which the following pairs of cylinders intersect:
(a) $\left\{\begin{array}{l}x^{2}-4 y=0, \\ y^{2}+4 z=0 .\end{array}\right.$
(f) $\left\{\begin{array}{l}x^{2}+y^{2}=25, \\ 5 z+y^{2}+10 y=0 .\end{array}\right.$
(b) $\left\{\begin{array}{l}y^{2}+4 z=0, \\ x^{2}+y^{2}-4=0 .\end{array}\right.$
(g) $\left\{\begin{array}{l}y^{2}+z^{2}-36=0, \\ x^{2}+y^{2}-7 y=0 .\end{array}\right.$
(c) $\left\{\begin{array}{l}x^{2}-9 z+36=0, \\ x^{2}+y^{2}-36=0 .\end{array}\right.$
(h) $\left\{\begin{array}{l}y^{2}+z^{2}-36=0, \\ x^{2}+y^{2}-5 y=0 .\end{array}\right.$
(d) $\left\{\begin{array}{l}y^{2}+4 z=0, \\ x^{2}+y^{2}-4 y=0 .\end{array}\right.$
(i) $\left\{\begin{array}{l}y^{2}+x^{2}-36=0, \\ z^{2}+y^{2}-6 y=0 .\end{array}\right.$
(e) $\left\{\begin{array}{l}x^{2}+z^{2}-25=0, \\ y^{2}-z=0 .\end{array}\right.$
(j) $\left\{\begin{array}{l}z y=12, \\ x^{2}+y^{2}-7 y+6=0 .\end{array}\right.$
3. Find the equations of the projecting cylinders of the following curves and construct the curve as the intersection of two of these cylinders:

> (a) $x^{2}+y^{2}+z^{2}=25, x^{2}+4 y^{2}-z^{2}=0$.
> (b) $x^{2}+4 y^{2}-z^{2}=16,4 x^{2}+y^{2}+z^{2}=16$.
> (c) $x^{2}+y^{2}=4 z, x^{2}-y^{2}=8 z$.
(d) $x^{2}+2 y^{2}+4 z^{2}=32, x^{2}+4 y^{2}=4 z$.
(e) $y^{2}+z x=0, y^{2}+2 x+y-z=0$.
(h) $\left\{\begin{array}{l}y^{2}-x^{2}+2 z^{2}+7 y-72=0, \\ x^{2}-z^{2}-7 y+36=0 .\end{array}\right.$
(f) $\left\{\begin{array}{l}x^{2}-10 y-5 z-25=0 \\ x^{2}+2 y^{2}+5 z+10 y-25=0\end{array}\right.$.
(i) $\left\{\begin{array}{l}2 x^{2}+y^{2}-9 z=0, \\ y^{2}+9 z-72=0 .\end{array}\right.$
(g) $\left\{\begin{array}{l}x^{2}+2 y^{2}+4 z-4=0, \\ 2 x^{2}+5 y^{2}+12 z-8=0 .\end{array}\right.$
(j) $\left\{\begin{array}{l}2 x^{2}+2 y^{2}+z y-14 y=0, \\ x^{2}+y^{2}+2 z y-7 y-18=0 .\end{array}\right.$
4. A point is two units from the Z-axis and the sum of its distances from the $X Y$-plane and the $Y Z$-plane is equal to its distance from the $Z X$-plane increased by 2 . Construct its locus.
5. A point is equidistant from the Z-axis and the $X Y$-plane, and its distance from the origin is equal to its distance from the $Y Z$-plane increased by 2. Construct the locus.
115. Parametric equations of curves in space. If the coördinates x, y, and z of a point P in space are functions of a variable parameter, then the locus of P is a curve (compare Art. 80).

For example, if

$$
\begin{equation*}
x=\frac{1}{4} t^{2}, \quad y=1-2 t, \quad z=3 t^{3}+2, \tag{1}
\end{equation*}
$$

where t is a variable parameter, then the locus of (x, y, z) is a curve in space. This curve may be drawn by assuming values for t, computing x, y, and z, plotting the points, and then joining these points in order by a continuous curve. Equations (1) are called the parametric equations of the curve.

The equations of the projecting cylinders of the curve, the locus of (1), result when the parameter t is eliminatell from each pair of the equations. Thus, taking the first two,

$$
\begin{equation*}
x=\frac{1}{4} t^{2}, \quad y=1-2 t, \tag{2}
\end{equation*}
$$

we find from the second, $t=\frac{1}{2}(1-y)$, and substituting in the first,

$$
\begin{equation*}
4 x=\frac{1}{4}(1-y)^{2}, \quad \text { or }(y-1)^{2}-16 x=0, \tag{3}
\end{equation*}
$$

and the locus lies on this parabolic cylinder.
Similarly, eliminating t from the first and third equations of (1),

$$
x=\frac{1}{4} t^{2}, \quad z=3 t^{3}+2,
$$

we obtain the cubic cylinder

$$
\begin{equation*}
(z-2)^{2}=576 x^{3} . \tag{4}
\end{equation*}
$$

Hence the curve (1) is the curve of intersection of the cylinders (3) and (4).

In some cases it is convenient to find the equations of a curve in space by using a parameter.

EXAMPLE

Equations of the helix. A point moves on a right cylinder in such a manner that the distance it moves parallel to the axis varies directly as the
angle it turns through around the axis. Find the equations of the locus.

Solution. Choose the axes of coördinates so that the equation of the cylinder is

$$
\begin{equation*}
x^{2}+y^{2}=a^{2} \tag{5}
\end{equation*}
$$

as in the figure.
Let P_{0} on $O X$ be one position of the moving point, and P any other position. Then, by definition, the distance $N P$ $(=z)$ varies as the angle $\operatorname{XON}(=\theta)$;
 that is, $z=b \theta$, where b is a constant. Furthermore, from the figure,

$$
\begin{aligned}
& x=O M=O N \cos \theta=a \cos \theta \\
& y=M N=O N \sin \theta=a \sin \theta
\end{aligned}
$$

Hence the equations of the helix are :

$$
\begin{equation*}
x=a \cos \theta, \quad y=a \sin \theta, \quad z=b \theta, \tag{6}
\end{equation*}
$$

where θ is a variable parameter. Ans.
Eliminating θ from the first two of equations (6), we obtain (5), as we should.

Given the equations of the projecting cylinders, to find parametric equations for the curve. It was shown in Art. 81 that an indefinite number of parametric equations could be obtained for the same plane curve. The same statement holds for space curves, as illustrated in the following example.

EXAMPLE

Find parametric equations for the curve of intersection of the surfaces (see Example 2, Art. 114),

$$
2 y^{2}+z^{2}+4 x=4 z, \quad y^{2}+3 z^{2}-8 x=12 z .
$$

Solution. The projecting cylinders are

$$
\begin{equation*}
y^{2}+z^{2}=4 z, \quad z^{2}-4 x=4 z, \quad y^{2}+4 x=0 . \tag{7}
\end{equation*}
$$

If we assume $y=2 t$, then the last equation will give $x=-t^{2}$. From either of the other two cylinders we find

$$
z=2 \pm 2 \sqrt{1-t^{2}} .
$$

Hence the given curve is the locus of

$$
\begin{equation*}
x=-t^{2}, \quad y=2 t, \quad z=2 \pm 2 \sqrt{1-t^{2}} . \tag{8}
\end{equation*}
$$

Other parametric equations result when we set one of the coördinates in (7) equal to some other function of a parameter. The aim is, of course, to find simple parametric equations. The method adopted must depend upon the given problem.

PROBLEM

Find simple parametric equations for the curves of Problems 2 and 3 , p. 300 .

Ans. For Problem 2. (a) $x=2 t, \quad y=t^{2}, \quad z=-\frac{1}{4} t^{4}$.
(b) $x=2 \cos \theta, \quad y=2 \sin \theta, \quad z=-\sin ^{2} \theta$.
(c) $x=6 \cos \theta, \quad y=6 \sin \theta, \quad z=\frac{1}{4}\left(1+\cos ^{2} \theta\right)$.
116. Cones. The surface generated by a straight line turning around one of its points and intersecting a fixed curve is called a cone.

EXAMPLE

Determine the nature of the locus of the equation $16 x^{2}+y^{2}-z^{2}=0$.
Solution. Let $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ be a point on a curve C on the surface in which the locus intersects a plane, for example $z=k$. Then

$$
\begin{equation*}
16 x_{1}^{2}+y_{1}^{2}-z_{1}^{2}=0, \quad z_{1}=k \tag{1}
\end{equation*}
$$

Now the origin Olies on the surface. We shall show that the line $O P_{1}$ lies entirely on the surface. The direction cosines of $O P_{1}$ are $\frac{x_{1}}{\rho_{1}}, \frac{y_{1}}{\rho_{1}}$, and $\frac{z_{1}}{\rho_{1}}$, where $\rho_{1}^{2}=x_{1}^{2}+y_{1}^{2}+z_{1}^{2}$ $=O P_{1}^{2}$. Hence the coördinates of any point on $O P_{1}$ are, by (II), Art. 109,

$$
\begin{equation*}
x=\frac{x_{1}}{\rho_{1}} \rho, \quad y=\frac{y_{1}}{\rho_{1}} \rho, \quad z=\frac{z_{1}}{\rho_{1}} \rho . \tag{2}
\end{equation*}
$$

Substituting these values of x, y, and z in the left-hand member of the given equation, we obtain

$$
\begin{equation*}
16 \frac{x_{1}^{2} \rho^{2}}{\rho_{1}^{2}}+\frac{y_{1}^{2} \rho^{2}}{\rho_{1}^{2}}-\frac{z_{1}^{2} \rho^{2}}{\rho_{1}^{2}} ; \tag{3}
\end{equation*}
$$

or also

$$
\begin{equation*}
\frac{\rho^{2}}{\rho_{1}^{2}}\left(16 x_{1}^{2}+y_{1}^{2}-z_{1}^{2}\right) . \tag{4}
\end{equation*}
$$

But from the first of equations (1) the expression in the parenthesis in (4) equals zero. Hence the product in (4) also vanishes for any value of ρ. This means that
 every point (x, y, z) on the line (2) lies on the surface, that is, the entire line lies on the surface. Hence the surface is a cone whose vertex is the origin.

The essential thing in the above solution is that (4) may be obtained from the first of equations (1) by multiplying by a power of $\frac{\rho}{\rho_{1}}$. This may be done whenever the equation of the surface is homogeneous * in the variables x, y, and \approx. Hence the

Theorem. The locus of an equation which is homogeneous in the variables x, y, and \approx is a cone whose vertex is the origin.

[^23]To construct the locus of the equation of a cone, find the intersection of the cone with a suitably chosen plane parallel to one of the coördinate planes, construct this plane curve, and then draw the elements from the points on this curve to the vertex of the cone.

Thus in the figure for the preceding example, the cone is cut by the plane $z=8$, and the curve of intersection, namely the ellipse $16 x^{2}+y^{2}-64=0$, is drawn in this plane.

PROBLEMS

1. Determine the nature of the following loci, and discuss and construct them :
(a) $x^{2}-y^{2}+36 z^{2}=0$.
(e) $x^{2}+9 y^{2}-4 z^{2}=0$.
(b) $y^{2}-16 x^{2}+4 z^{2}=0$.
(f) $x^{2}+y z=0$.
(c) $x^{2}+y^{2}-2 z x=0$.
(g) $x y+y z+z x=0$.
(d) $x+y+z=0$.
(h) $x^{2}+y z+x z=0$.
2. Discuss the following loci:
(a) $x^{2}+y^{2}=z^{2} \tan ^{2} \gamma$.
(b) $y^{2}+z^{2}=x^{2} \tan ^{2} \alpha$.
(c) $z^{2}+x^{2}=y^{2} \tan ^{2} \beta$.
3. Find the equation of the cone whose vertex is the origin and whose elements cut the circle $x^{2}+y^{2}=16, z=2$. Ans. $x^{2}+y^{2}-4 z^{2}=0$.
4. A point is equidistant from a plane and a line perpendicular to the plane. Prove that the locus is a cone.
5. A point moves so that the ratio of its distances from two lines intersecting at right angles is constant. Prove that the locus is a cone. What is the nature of the locus when the ratio is unity?
6. The sum of the distances of a point from three mutually perpendicular planes is equal to its distance from their common point of intersection. Show that the locus is a cone.
7. Surfaces of revolution. The surface generated by revolving a curve about a line lying in its plane is called a surface of revolution.

Fanniliar examples are afforded by the sphere, and the right cylinder and cone.

EXAMPLE

Find the equation of the surface of revolution generated by revolving the ellipse $x^{2}+4 y^{2}-12 x=0, z=0$, about the X-axis.

Solution. Let $P(x, y, z)$ be any point on the surface. Pass a plane through P and $O X$ which cuts the surface along one position of the ellipse, and in this plane draw $O Y^{\prime}$ perpendicular to $O X$. Referred to $O X$ and $O Y^{\prime}$ as axes, the equation of the ellipse is evidently (1) $x^{2}+4 y^{2}-12 x=0$.

But from the right triangle $P A B$ we get

$$
y^{2}=y^{2}+z^{2}
$$

Substituting in (1),
(2) $x^{2}+4 y^{2}+4 z^{2}$

$$
-12 x=0
$$

This equation expresses the relation which any point on the surface must satisfy, and it is therefore the equation of the surface.

The method of the solution enables us to state the
Rule to find the equation of the surface generated by revolving a curve in one of the coördinate planes about one of the axes in that plane.

Substitute in the equation of the curve the square root of the sum of the squares of the two variables not measured along the axis of revolution for that one of these two variables which occurs in the equation of the curve.

The line about which the given curve is revolved is called the axis of the surface. Sections of the surface by planes perpendicular to its axis are obviously circles whose centers lie on the axis.

If the sections of a surface by all planes perpendicular to one of the coördinate axes are circles whose centers lie on that axis, then the surface is evidently a surface of revolution whose axis is this coördinate axis. This enables us to determine whether or not a given surface is a surface of revolution whose axis is one of the coördinate axes.

PROBLEMS

1. Find the equations of the surfaces of revolution generated by revolving each of the following curves about the axis indicated, and construct the figures:
(a) $y^{2}=4 x-16, X$-axis.

Ans. $y^{2}+z^{2}=4 x-16$.
(b) $x^{2}+4 y^{2}=16, Y$-axis.

Ans. $x^{2}+4 y^{2}+z^{2}=16$.
(c) $x^{2}=4 z, Z$-axis.

Ans. $x^{2}+y^{2}=4 z$.
(d) $x^{2}-y^{2}=16, Y$-axis.

Ans. $x^{2}-y^{2}+z^{2}=10$.
(e) $x^{2}-y^{2}=16, X$-axis.

Ans. $x^{2}-y^{2}-z^{2}=16$.
(f) $y^{2}+z^{2}=25, Z$-axis.

Ans. $x^{2}+y^{2}+z^{2}=25$.
(g) $y^{2}=2 p z$, Z-axis. Ans. A paraboloid of revolution, $x^{2}+y^{2}=2 p z$.
(h) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \mathrm{X}$-axis. Ans. An ellipsoid of revolution, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{b^{2}}=1$.
(i) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, Y$-axis.

Ans. A hyperboloid of revolution of one sheet, $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{a^{2}}=1$.
(j) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, X$-axis.

Ans. A hyperboloid of revolution of two sheets, $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{b^{2}}=1$.
2. Find the equations of the surfaces of revolution generated by revolving each of the following curves about the axis indicated, and construct the figures:
(a) $x^{2}=4 z ; x$-axis.
(e) $x z=4 ; ~ X$-axis.
(b) $y^{2}=x^{8} ; \quad X$-axis.
(f) $x z=4$; Z-axis.
(c) $x^{2}=z+4 ; X$-axis.
(g) $y=x^{3}-x$; X-axis.
(d) $z^{2}=x-3 ; Z$-axis.
(h) $z=\sin x ; X$-axis.
3. Find the equation of and construct the surface formed by revolving the curve $z=e^{x}$ about (a) the X-axis; (b) the Z-axis.
4. Verify analytically that a sphere is generated by revolving a circle about a diameter.
5. Find the equation of the surface of revolution generated by revolving the circle $x^{2}+y^{2}-2 \alpha x+\alpha^{2}-r^{2}=0$ about the Y-axis. Discuss the surface when $\alpha>r, \alpha=r$, and $\alpha<r$.

Ans. $\left(x^{2}+y^{2}+z^{2}+\alpha^{2}-r^{2}\right)^{2}=4 \alpha^{2}\left(x^{2}+z^{2}\right)$. When $\alpha>r$ the surface is called an anchor ring or torus.
6. Find the equations of the cylinders of revolution whose axes are the coorrdinate axes and whose radii equal r.

$$
\text { Ans. } y^{2}+z^{2}=r^{2} ; z^{2}+x^{2}=r^{2} ; x^{2}+y^{2}=r^{2} .
$$

7. Find the equations of the cones of revolution whose axes are the coördinate axes and whose elements make an angle of ϕ with the axis of revolution. Ans. $y^{2}+z^{2}=x^{2} \tan ^{2} \phi ; z^{2}+x^{2}=y^{2} \tan ^{2} \phi ; x^{2}+y^{2}=z^{2} \tan ^{2} \phi$.
8. Show that the following loci are surfaces of revolution :
(a) $y^{2}+z^{2}=4 x$.
(f) $\left(x^{2}+z^{2}\right) y=4 a^{2}(2 a-y)$.
(b) $x^{2}-4 y^{2}+z^{2}=0$.
(g) $x^{2}+y^{2}+z x^{2}+z y^{2}-z+3=0$.
(c) $4 x^{2}+4 y^{2}-z^{2}=16$.
(1) $x^{4}-y^{4}+z^{4}+2 x^{2} z^{2}=1$.
(d) $x^{2}-4 y^{2}+z^{2}-3 y=0$.
(i) $x^{2}+y^{2}+z^{3}-2 y+1=0$.
(e) $x z^{2}+x y^{2}=3$.
9. A point moves so that its distance from a fixed plane is in a constant ratio to its distance from a fixed point. Show that the locus is a surface of revolution.
10. A point moves so that its distance from a fixed line is in a constant ratio to its distance from a fixed point on that line. Prove analytically that the locus is a cone of revolution. What values of the ratio are excluded?
11. Ruled surfaces. A surface generated by a moving straight line is called a ruled surface. If the equations of a straight line involve an arbitrary constant, then the equations represent a system of lines which form a ruled surface. If we eliminate the parameter from the equations of the line, the result will be the equation of the ruled surface.

For if (x_{1}, y_{1}, z_{1}) satisfy the given equations for some value of the parameter, they will satisfy the equation obtained by eliminating the parameter; that is, the coördinates of every point on every line of the system satisfy that equation.

Cylinders and cones are the simplest ruled surfaces.

EXAMPLES

1. Find the equation of the surface generated by the line whose equations are

$$
x+y=k z, \quad x-y=\frac{1}{k} z .
$$

Solution. We may eliminate k from these equations of the line by multiplying them. This gives

$$
\begin{equation*}
x^{2}-y^{2}=z^{2} . \tag{1}
\end{equation*}
$$

This is the equation of a cone (Art. 116) whose vertex is the origin. As the sections made by the planes $x=k$ are circles, it is a cone of revolution whose axis is the X-axis.

We may verify that the given line lies on the surface (1) for all values of k as follows :

Solving the equations of the line for x and y in terms of z, we get

$$
x=\frac{1}{2}\left(k+\frac{1}{k}\right) z, \quad y=\frac{1}{2}\left(k-\frac{1}{k}\right) z .
$$

Substituting in (1),

$$
\frac{1}{4}\left(k+\frac{1}{k}\right)^{2} z^{2}-\frac{1}{4}\left(k-\frac{1}{k}\right)^{2} z^{2}=z^{2}
$$

an equation which is true for all values of k and z, as is seen by removing the parentheses. Hence every point on any line of the system lies on (1), since its coördinates satisfy (1).
2. Determine the nature of the surface $z^{3}-3 z x+8 y=0$.

Solution. The intersection of the surface with the plane $z=k$ is the straight line
$k^{3}-3 k x+8 y=0, \quad z=k$.
Hence the surface is the ruled surface generated by this line as k varies. To construct the surface consider the intersections with the planes $x=0$ and $x=8$. Their equations are respectively

$$
x=0
$$

and

$$
\begin{aligned}
8 y+z^{3} & =0 ; \\
x & =8, \\
8 y-24 z+z^{3} & =0 .
\end{aligned}
$$

Joining the points on these curves which have the same value of z gives the lines generating the surface.

The method used in Ex. 2 is adapted to the determination and construction of ruled surfaces. An examination of the equation of such a surface will suggest a system of planes whose intersections with the surface are a system of lines, as illustrated in Problem 2 on the following page.

PR0BLEMS

1. Show that the following loci are ruled surfaces whose generators are parallel to one of the coördinate planes. Construct and discuss the loci:
(a) $z-x y=0$.
(f) $y^{2}=x^{2} z$.
(b) $x^{2} y-z^{2}=0$.
(g) $y=x z(2-z)^{2}$.
(c) $z^{2}-z x+y=0$.
(h) $y^{2}=x^{2}\left(z^{2}+1\right)$.
(d) $x^{2} y+x z=y$.
(i) $y^{2}=x^{2}\left(z^{2}-1\right)$.
(e) $y-x z^{2}=0$.
(j) $y^{2}=x^{2}\left(1-z^{2}\right)$.

Remark. The surfaces may be easily constructed from string and cardboard.
2. Show that the following loci are ruled surfaces:

> (a) $(x+y) z+(x+y)^{2}-1=0$.
> (b) $x^{2}-2 x z-y^{2}+z^{2}=3$.
> (c) $y^{2}+4 z^{2}+x y-4 y z-2 x z+3=0$.
> (d) $x^{3}+3 y x^{2}-x z^{2}-3 y z^{2}-x^{2}+z^{2}=0$.
> (e) $x^{2}-y^{2}=z$.
> (f) $x^{2}-y^{2}=z^{2}-1$.

Hint. Find a system of planes which cut the surface io a system of straight lines.
3. Find the equations of the ruled surfaces whose generators are the following systems of lines, and discuss the surfaces :
(a) $x+y=k, k(x-y)=a^{2}$.
(b) $4 x-2 y=k z, k(4 x+2 y)=z$.
(c) $x-2 y=4 k z, k(x-2 y)=4$.
(d) $x+k y+4 z=4 k, k x-y-4 k z=4$.
(e) $x-y-k z=0, x-z-k y=0$.
(f) $3 x-z-k=0, k y-z=0$.
4. Given two planes, one with a variable intercept on the X-axis, the other with a variable intercept on the Y-axis. The remaining intercepts being unity, find the equation of the ruled surface generated by the line of intersection of these planes
(a) when their variable intercepts are in the ratio 1:2.
(b) when their distances from the origin are in the ratio 1:3.

Ans. $[y(z+y)]^{2}-[3 x(z+x)]^{2}=(4 x y)^{2}$.
(c) when the sum of their distances from the origin is unity.

CHAPTER XVIII

TRANSFORMATION OF COÖRDINATES. DIFFERENT SYSTEMS OF COÖRDINATES

119. Translation of the axes. Formulas applicable to space, entirely analogous to those established in Chapter IX for the plane, are derived as explained below.

Theorem. The equations for translating the axes to a new origin $O^{\prime}(h, k, l)$ are

$$
\begin{align*}
& x=x^{\prime}+h \tag{I}\\
& y=y^{\prime}+k \\
& z=z^{\prime}+l
\end{align*}
$$

Proof. Let the coördi-
 nates of any point before and after the translation of the axes be (x, y, z) and ($x^{\prime}, y^{\prime}, z^{\prime}$) respectively. Projecting $O P$ and $O O^{\prime} P$ on each of the axes, we get equations (I).
Q.E.D.
120. Rotation of the axes. Simple formulas for rotation arise if two of the axes are rotated about the third. For example, when the axes $O X$ and $O Y$ are turned through an angle θ about the Z-axis, the \approx-coördinate of any point P does not change, and the new x - and y-coorrdinates are given by formulas (II), Art. 55. Hence the

Theorem. The equations for rotating the axes about the Z-axis through an angle θ are
(II) $x=x^{\prime} \cos \theta-y^{\prime} \sin \theta$ $y=x^{\prime} \sin \theta+y^{\prime} \cos \theta, \quad z=z^{\prime}$. 310

Similar formulas result when the axes are rotated about $O Y$ or $O X$.

If the axes are rotated about the origin into the new position $O-N^{\prime} Y^{\prime} Z^{\prime}$, and if the coördinates of any point P before and after the rotation are respectively (x, y, z) and ($x^{\prime}, y^{\prime}, z^{\prime}$), we have the

Theorem. If $\alpha_{1}, \beta_{1}, \gamma_{1} ; \alpha_{2}, \beta_{2}, \gamma_{2}$; and $\alpha_{3}, \beta_{3}, \gamma_{3}$, are respectively the direction angles of the three mutually perpendicular lines $O X^{\prime}, O I^{\prime \prime}$, and $O Z$ ', then the equations for rotating the axes to the position $0-X^{\prime} Y^{\prime} Z^{\prime}$ are

$$
\left\{\begin{array}{l}
x=x^{\prime} \cos a_{1}+y^{\prime} \cos \alpha_{2}+z^{\prime} \cos a_{3} \tag{III}\\
y=x^{\prime} \cos \beta_{1}+y^{\prime} \cos \beta_{2}+z^{\prime} \cos \beta_{3} \\
z=x^{\prime} \cos \gamma_{1}+y^{\prime} \cos \gamma_{2}+z^{\prime} \cos \gamma_{3} . .^{*}
\end{array}\right.
$$

Proof. Projecting $O P$ and $O A^{\prime} B^{\prime} P$ on each of the axes $O X$, $O Y$, and $O Z$, we obtain immediately equations (III). Q.E.d.

Theorem. The degree of an equation is unchanged by a transformation of coördinates.

This may be shown by reasoning as in Art. 57.

PROBLEMS

1. Transform the equation $x^{2}+y^{2}-4 x+2 y-4 z+1=0$ by translating the origin to the point $(2,-1,-1)$. Ans. $x^{2}+y^{2}-4 z=0$.
2. Derive the equations for rotating the axes through an angle θ about (a) the X-axis; (b) the Y-axis.

[^24]3. Show that the following equations may be transformed into the given answers by translating the axes, or by rotating them about one of the coördinate axes (see Art. 71) :
(a) $x^{2}+y^{2}-z^{2}-6 x-8 y+10 z=0$. Ans. $x^{2}+y^{2}-z^{2}=0$.
(b) $3 x^{2}-8 x y+3 y^{2}-5 z^{2}+5=0$. Ans. $x^{2}-7 y^{2}+5 z^{2}=5$.
(c) $y^{2}+4 z^{2}-16 x-6 y+16 z+9=0$.

Ans. $y^{2}+4 z^{2}=16 x$.
(d) $2 x^{2}-5 y^{2}-5 z^{2}-6 y z=0$. Ans. $x^{2}-4 y^{2}-z^{2}=0$.
(e) $9 x^{2}-25 y^{2}+16 z^{2}-24 z x-80 x-60 z=0$. Ans. $x^{2}-y^{2}=4 z$.
4. Show that $A x+B y+C z+D=0$ may be reduced to the form $x=0$ by a transformation of coördinates.

Hint. Remove the constant term by translating the axes, then remove the z-term by rotating the axes about the Y-axis, and finally remove the y-term by rotating about the Z-axis.
5. Transform the equation $5 x^{2}+8 y^{2}+5 z^{2}-4 y z+8 z x+4 x y-4 x+$ $2 y+4 z=0$ by rotating the axes to a position in which their direction cosines are respectively $\frac{7}{8}, \frac{4}{8}, \frac{1}{8} ; \frac{7}{3},-\frac{7}{8}, \frac{7}{3} ; \frac{7}{3},-\frac{1}{8},-\frac{7}{8}$.

$$
\text { Ans. } 3 x^{2}+3 y^{2}=2 z .
$$

6. Show that the $x y$-term may always be removed from the equation $A x^{2}+B y^{2}+C z^{2}+F x y+K=0$ by a rotation about the Z-axis.
7. Show that the $y z$-term may always be removed from the equation $A x^{2}+B y^{2}+C z^{2}+D y z+K=0$ by rotating about the X-axis.
8. What are the direction cosines of $O X, O Y$, and $O Z$ (Fig., p. 311) referred to $O X^{\prime}, O Y^{\prime}$, and $O Z^{\prime}$? What six equations do they satisfy ?
9. Show that the six equations obtained in Problem 8 are equivalent to the six equations in the footnote, p. 311.
10. If (x, y, z) and ($x^{\prime}, y^{\prime}, z^{\prime}$) are respectively the coördinates of a point before and after a rotation of the axes, show that

$$
x^{2}+y^{2}+z^{2}=x^{\prime 2}+y^{\prime 2}+z^{\prime 2} .
$$

11. The possibilities of simplifying an equation by rotation of the axes appear in the following example. Consider the equation of the second degree

$$
A x^{2}+B y^{2}+C z^{2}+D y z+E z x+F x y+G x+H y+I z+K=0 .
$$

If the axes are rotated about $O Z$ through the angle θ given by $\tan 2 \theta=\frac{F}{A-B}$, the transformed equation will contain no $x y$-term (Art. 70). We may then rotate about $O X$ and remove the $y z$-term, and finally about $O Y$ and remove the $x z$-term. Thus the terms in $x y, y z$, and $z x$ can be made to disappear.
121. Polar coördinates. The line $O P$ drawn from the origin to any point P is called the radius vector of P. Any point P determines four numbers, its radius vector ρ, and the direction angles of $O P$, namely α, β, and γ, which are called the polar coordinates of P.

These numbers are not all independent, since α, β, and γ satisfy (II), Art. 88 . If two are known, the third may then be found, hut all three are retained for the sake of symmetry.

Conversely, any set of values of ρ, α, β, and γ which satisfy (II), Art. 88 , determine a point whose polar coördinates are ρ, α, β, and γ.

Projecting $O P$ on each of the axes, we get the
Theorem. The equations of transformation from rectungulur to polar coördinates are

$$
\begin{equation*}
x=\rho \cos \alpha, \quad y=\rho \cos \beta, \quad z=\rho \cos \gamma \tag{IV}
\end{equation*}
$$

Obviously

$$
\begin{equation*}
\rho^{2}=x^{2}+y^{2}+z^{2} \tag{1}
\end{equation*}
$$

which expresses the radius vector in terms of x, y, and \approx.
122. Spherical coördinates. Any point P determines three numbers, namely, its radius vector ρ, the angle θ between the radins vector and the Z-axis, and the angle ϕ between the projection of its radius vector on the $X Y$-plane and the X-axis. These numbers are called the spherical coördinates of P. θ is called the colatitude and ϕ the $Y \swarrow$ longitude.

Conversely, given values of ρ, θ, and ϕ determine a point P whose spherical coördinates are (ρ, θ, ϕ).

Projecting $O P$ on $O A, \quad B M=\rho \sin \theta$, and projecting $O P$ and $O M P$ on each of the axes, we prove the

Theorem. The equations of transformation frome rectangular to spherical coördinates are

$$
\begin{equation*}
x=\rho \sin \theta \cos \phi, \quad y=\rho \sin \theta \sin \phi, \quad z=\rho \cos \theta \tag{V}
\end{equation*}
$$

The equations of transformation from spherical to rectangular coördinates may be obtained by solving (V) for ρ, θ, and ϕ.
123. Cylindrical coördinates. Any point $P(x, y, z)$ determines three numbers, its distance $:=$ from the $X Y$-plane and the polar coördinates (r, ϕ) of its projection $(x, y, 0)$ on the $X Y$-plane. These three numbers are called the cylindrical coördinates of r. Conversely, given values of r, ϕ, and \because determine a point whose cylindrical coorrdinates are (r, ϕ, z). Then we have at once the

Theorem. The equations of transformation from rectangular to cylindrical coördinates are
(VI) $x=r \cos \phi, y=r \sin \phi, z=z$.

The equations of transformation from cylindrical to rectangular coördinates may be obtained by solving (VI) for r, ϕ, and \approx.

PROBLEMS

1. What is meant by the "locus of an equation" in the polar coorrdinates ρ, α, β, and γ ? in the spherical coördinates ρ, θ, and ϕ ? in the cylindrical coördinates r, ϕ, and z ?
2. How may the intercepts of a surface on the rectangular axes be found if its equation in polar coördinates is given? if its equation in spherical coördinates is given? if its equation in cylindrical coördinates is given?
3. Transform the following equations into polar coördinates:
(a) $x^{2}+y^{2}+z^{2}=25$.

Ans. $\rho=5$.
(b) $x^{2}+y^{2}-z^{2}=0$.

Ans. $\gamma=\frac{\pi}{4}$.
(c) $2 x^{2}-y^{2}-z^{2}=0$.

Ans. $\alpha=\cos ^{-1} \frac{1}{3} \sqrt{3}$.
4. Transform the following equations into spherical coordinates:
(a) $x^{2}+y^{2}+z^{2}=16$.
Ans. $\rho=4$.
(b) $2 x+3 y=0$.
(c) $3 x^{2}+3 y^{2}=7 z^{2}$.

Ans. $\phi=\tan ^{-1}\left(-\frac{2}{3}\right)$.
Ans. $\theta=\tan ^{-1} \frac{1}{3} \sqrt{21}$.
5. Transform the following equations into cylindrical coördinates:
(a) $5 x-y=0$.
(b) $x^{2}+y^{2}=4$.
Ans. $\phi=\tan ^{-1} 5$.
Ans. $r=2$.
6. Find the equation in polar coördinates of
(a) a sphere whose center is the pole.
(b) a cone of revolution whose axis is one of the coördinate axes.

Ans. (a) $\rho=$ constant; (b) $\alpha=$ constant, $\beta=$ constant, or $\gamma=$ constant.
7. Find the equation in spherical coorrdinates of
(a) a sphere whose center is the origin.
(b) a plane through the Z-axis.
(c) a cone of revolution whose axis is the Z-axis.

$$
\text { Ans. (a) } \rho=\text { constant; (b) } \phi=\text { constant; (c) } \theta=\text { constant. }
$$

8. Find the equation in cylindrical coördinates of
(a) a plane parallel to the $X Y$-plane.
(b) a plane through the Z-axis.
(c) a cylinder of revolution whose axis is the Z-axis.

$$
\text { Ans. (a) } z=\text { constant; (b) } \phi=\text { constant ; (c) } r=\text { constant. }
$$

9. In rectangular coördinates a point is determined as the intersectiom of three mutually perpendicular planes. Show that
(a) in polar coördinates a point is regarded as the intersection of a sphere and three cones of revolution which have an element in common.
(b) in spherical coördinates a point is regarded as the intersection of a sphere, a plane, and a cone of revolution which are mutually orthogonal.
(c) in cylindrical coördinates a point is regarded as the intersection of two planes and a cylinder of revolution which are mutually orthogonal.
10. Show that the square of the distance r between two points whose polar coördinates are ($\rho_{1}, \alpha_{1}, \beta_{1}, \gamma_{1}$) and ($\rho_{2}, \alpha_{2}, \beta_{2}, \gamma^{2}$) is

$$
r^{2}=\rho_{1}^{2}+\rho_{2}^{2}-2 \rho_{\mathrm{i}} \rho_{2}\left(\cos \alpha_{1} \cos \alpha_{2}+\cos \beta_{1} \cos \beta_{2}+\cos \gamma_{1} \cos \gamma_{2}\right)
$$

11. Find the general equation of a plane in polar coördinates.

$$
\text { Ans. } \rho(A \cos \alpha+B \cos \beta+C \cos \gamma)+D=0
$$

12. Find the general equation of a sphere in polar coördinates. Ans. $\rho^{2}+\rho(G \cos \alpha+H \cos \beta+I \cos \gamma)+K=0$.

CHAPTER XIX

QUADRIC SURFACES AND EQUATIONS OF THE SECOND DEGREE IN THREE VARIABLES

124. Quadric surfaces. The locus of an equation of the second degree in x, y, and z, of which the most general form is (1) $A x^{2}+B y^{2}+C z^{2}+D y z+E z x+F x y+G x+H y+I z+K=0$, is called a quadric surface or conicoid. We may learn something of the nature of such a surface by taking cross sections. We first obtain

Theorem I. The intersection of a quadric with any plane is a ronic or a degenerate conir.

Proof. By a transformation of coördinates any plane may be made the $X Y$-plane, $z=0$. Referred to any axes the equation of a quadric has the form (1) (Theorem, p. 311). Hence the equation of the curve of intersection referred to axes in its own plane $z=0$ is

$$
A x^{2}+F x y+B y^{2}+G x+H y+K=0,
$$

and the locus is therefore a conic or a degenerate conic, by Art. 70.
Q.E.D.

As already pointed out in Art. 71, the parabola, ellipse, and hyperbola were originally studied as conic sections, - plane sections of a conical surface. From the preceding theorem and by intuition, the truth of the following statement is manifest.

Corollary. The curve of intersection of a cone of revolution with a plane is an ellipse, hyperbola, or parabola, according as the plane cuts all of the elements, is parallel to two elements
(cutting the other elements - some on one side of the vertex and some on the other), or is parallel to one element (cutting all the others on the same side of the vertex).

For sections of a quadric by a set of parallel planes, the following result is important:

Theorem II. The sections of a quadric with a system of parallel planes are conics of the same species.

The truth of this statement is established in the following sections. The meaning of the theorem is this: A set of parallel sections will all be ellipses, or all hyperbolas, or all parabolas, the exceptional cases (Art.70) under each species being included.
125. Simplification of the general equation of the second degree in three variables. If equation (1) be transformed by rotating the axes, it can be shown that the new axes may be so chosen that the terms in $y z, z x$, and $x y$ will drop out (Problem 11, p. 312). Hence (1) reduces to the form

$$
A^{\prime} x^{2}+B^{\prime} y^{2}+C^{\prime} z^{2}+G^{\prime} x+H^{\prime} y+I^{\prime} z+K^{\prime}=0
$$

Transforming this equation by translating the axes, it is easy to show that the axes may be so chosen that the transformed equation will have one of the two forms

$$
\begin{gather*}
A^{\prime \prime} x^{2}+B^{\prime \prime} y^{2}+C^{\prime \prime} z^{2}+K^{\prime \prime}=0 \tag{1}\\
A^{\prime \prime} x^{2}+B^{\prime \prime} y^{2}+I^{\prime \prime} z=0 \tag{2}
\end{gather*}
$$

Note the difference in (1) and (2). In (1) all the squares and no first powers are represented, in (2) only two squares and the first power of the other variable.

If all of the coefficients in (1) and (2) are different from zero, they may, with a change in notation, be respectively written in the forms

$$
\begin{align*}
& \pm \frac{x^{2}}{a^{2}} \pm \frac{y^{2}}{b^{2}} \pm \frac{z^{2}}{c^{2}}=1 \tag{3}\\
& \frac{x^{2}}{u^{2}} \pm \frac{y^{2}}{b^{2}}=2 c z
\end{align*}
$$

The purpose of the following sections is to discuss the loci of these equations, which are called central and noncentral quadrics respectively.

If one or more of the coefficients in (1) or (2) are zero, the locus is called a degenerate quadric.

Certain cases are readily disposed of by means of former results.

If $K_{1}^{\prime \prime}=0$, the locus of (1) is a cone (Theorem, Art. 116) unless the signs of $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$ are the same, in which case the locus is a point, namely the origin.

If one of the coefficients $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$ is zero, the locus is a cylinder whose elements are parallel to one of the axes and whose directrix is a conic of the elliptic or hyperbolic type. If also $K^{\prime \prime}=0$, the locus will be a pair of intersecting planes.

If two of the coefficients $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$ are zero, the locus is a pair of parallel planes (coincident if $K^{\prime \prime}=0$), or there is no locus.

If one of the coefficients in (2) is zero, the locus is a cylinder whose directrix is a parabola, or a pair of intersecting planes.

If two of the coefficients are zero, the locus is a pair of coineident planes. ($A^{\prime \prime}$ and $B^{\prime \prime}$ cannot be zero simultaneously, as the equation would cease to be of the second degree.)

PROBI.EMS

1. Construct and discuss the loci of the following equations:
(a) $9 x^{2}-36 y^{2}+4 z^{2}=0$.
(e) $4 y^{2}-25=0$:
(b) $18 x^{2}-4 y^{2}-z^{2}=0$.
(f) $3 y^{2}+7 z^{2}=0$.
(c) $4 x^{2}+z^{2}-16=0$.
(g) $8 y^{2}+25 z=0$.
(d) $y^{2}-9 z^{2}+36=0$.
(h) $z^{2}+16=0$.
2. Show by transformation of coördinates that the following quadrics are degenerate:
(a) $x^{2}-y^{2}+z^{2}-6 z+9=0$.
(b) $x^{2}+4 y^{2}-z^{2}-2 x+8 y+5=0$.
(c) $x^{2}+y^{2}+z^{2}+2 x-2 y+4 z-6=0$.
(d) $x^{2}+y^{2}-2 z^{2}+2 y+4 z-1=0$.
(e) $x^{2}+y z=0$.
3. The ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. If all of the coefficients in (3), Art. 125, are positive, the locus is called an ellipsoid. A discussion of its equation gives us the following properties:
4. The ellipsoid is symmetrical with respect to each of the coördinate planes and axes and the origin. These planes of symmetry are called the principal planes of the ellipsoid.
5. Its intercepts on the axes are respectively

$$
x= \pm a, \quad y= \pm b, \quad z= \pm c
$$

The lines $A A^{\prime}=2 a, B B^{\prime}=2 b, C C^{\prime}=2 c$, are called the axes of the ellipsoid (see figure below).
3. Its traces on the principal planes are the ellipses $A B A^{\prime} B^{\prime}$, $B C B^{\prime} C^{\prime}$, and $A C A^{\prime} C^{\prime}$, whose equations are

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad \frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1, \quad \frac{x^{2}}{a^{2}}+\frac{z^{2}}{c^{2}}=1
$$

4. The equation of the curve in which a plane parallel to the $X Y$-plane, $z=k$, intersects the ellipsoid is
(1) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1-\frac{k^{2}}{c^{2}}, \quad$ or

$$
\frac{x^{2}}{\frac{n^{2}}{\bar{c}^{2}}\left(c^{2}-k^{2}\right)}+\frac{y^{2}}{\frac{b^{2}}{c^{2}}\left(c^{2}-k^{2}\right)}=1
$$

The locus of this equation is an ellipse. If k increases from 0 to c, or decreases from 0 to $-c$, the plane recedes from the $X Y$-plane, and the axes of the ellipse decrease from $2 a$ and $2 b$ respectively to 0 , when the ellipse degenerates into a point. If
 $k>c$ or $k<-c$, there is no locus. Hence the ellipsoid lies entirely between the planes $z_{0}= \pm c$.

In like manner the sections parallel to the $Y Z$-plane and the $Z X$-plane are ellipses whose axis decrease as the planes recede. Hence the ellipsoid lies entirely between the planes $x= \pm a$ and $y= \pm b$. The ellipsoid is therefore a closed surface.

If $a=b$, the section .(1) is a circle for values of k such that $-c<k<c$, and hence the ellipsoid is now an ellipsoid of revolution whose axis is the Z-axis. If $b=c$ or $c=a$, it is an ellipsoid of revolution whose axis is the X - or Y-axis.

If $a=b=c$, the ellipsoid is a sphere, for its equation may be written in the form $x^{2}+y^{2}+z^{2}=a^{2}$.
127. The hyperboloid of one sheet $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$. If two of the coefficients in (3), Art. 125, are positive and one is negative, the locus is called a hyperboloid of one sheet. Consider first the equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{\tilde{z}^{2}}{c^{2}}=1 . \tag{1}
\end{equation*}
$$

A discussion of this equation gives us the following properties:

1. The hyperboloid is symmetrical with respect to each of the coördinate planes and axes and the origin.
2. Its intercepts on the $\cdot \mathbf{N}$-axis and the Y-axis are respectively

$$
x= \pm a, \quad y= \pm b,
$$

but it does not meet the Z-axis.
3. Its traces on the coördinate planes are the conics

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad \frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \quad \frac{x^{2}}{a^{2}}-\frac{z^{2}}{c^{2}}=1
$$

of which the first is the ellipse whose axes are $A A^{\prime}=2 a$ and $E B^{\prime}=2 b$, and the others are the hyperbolas whose transverse axes are $B B^{\prime}$ and $A A^{\prime}$ respectively.

Hyperboloid of two sheets

Plate I

Hyperboloid of one sheet
Central Quadrics

Ellipsoid
4. The equation of the curve in which a plane parallel to the $X Y$-plane, $z=k$, intersects the hyperboloid is

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1+\frac{k^{2}}{c^{2}} \quad \text { or } \quad \frac{x^{2}}{\frac{a^{2}}{c^{2}}\left(c^{2}+k^{2}\right)}+\frac{y^{2}}{\frac{b^{2}}{c^{2}}\left(c^{2}+k^{2}\right)}=1 . \tag{2}
\end{equation*}
$$

The locus of this equation is an ellipse. If k increases from 0 to ∞, or decreases from 0 to $-\infty$, the plane recedes from the $X Y$-plane, and the axes of the ellipse increase indefinitely from $2 a$ and $2 b$ respectively. Hence the surface recedes indefinitely from the $X Y$-plane and from the Z-axis.
In like manner the sections formed by the planes $x=k^{\prime}$ and $y=k^{\prime \prime}$ are seen to be hyperbolas. As k^{\prime} and $k^{\prime \prime}$ increase numerically, the axes of the hyperbolas decrease, and when $k^{\prime}= \pm a$ or $k^{\prime \prime}= \pm b$, the hyperbolas degenerate into intersecting lines. As k^{\prime} and $k^{\prime \prime}$ increase beyond this point, the directions of the transverse and conjugate axes are interchanged, and the lengths of these axes increase indefinitely.
The hyperboloid (1) is said to "lie along the Z-axis."
The equations

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1, \quad-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1, \tag{3}
\end{equation*}
$$

are the equations of hyperboloids of one sheet which lie along the Y-axis and the X-axis respectively.
If $a=b$, the hyperboloid (1) is a surface of revolution whose axis is the Z-axis, because the section (2) becomes a circle. The hyperboloids (3) will be hyperboloids of revolution if " $=c$ and $b=c$ respectively.
128. The hyperboloid of two sheets $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$. If only one of the coefficients in (3), Art. 125, is positive, the locus is called a hyperboloid of two sheets. Consider first the, equation

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 . \tag{1}
\end{equation*}
$$

1. The hyperboloid is symmetrical with respect to each of the coördinate planes and axes and the origin.
2. Its intercepts on the X-axis are $x= \pm a$, but it does not cut the Y-axis and the Z-axis.

3 . Its traces on the $X Y$-plane and the $X Z$-plane are respectively the hyperbolas

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, \quad \frac{x^{2}}{a^{2}}-\frac{z^{2}}{c^{2}}=1
$$

which have the same transverse axis $A A^{\prime}=2 \cdot a$, but it does not cut the $Y Z$-plane.
4. The equation of the curve in which a plane parallel to the $Y Z$-plane, $x=k$, intersects the hyperboloid (1) is

$$
\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=\frac{k^{2}}{a^{2}}-1, \quad \text { or } \quad \frac{y^{2}}{\frac{b^{2}}{a^{2}}\left(k^{2}-a^{2}\right)}+\frac{z^{2}}{\frac{c^{2}}{a^{2}}\left(k^{2}-a^{2}\right)}=1
$$

This equation has no locus if $-a<k<a$. If $k= \pm a$, the locus is a point ellipse, and as k increases from a to ∞, or decreases from $-a$ to $-\infty$, the locus is an ellipse whose axes increase indefinitely. Hence the surface consists of two branches or sheets which recede indefinitely from the $Y Z$-plane and from the X-axis.

In like manner the sections formed by all planes parallel
 to the $X Y$-plane and the $Z X$-plane are hyperbolas whose axes increase indefinitely as their planes recede from the coördinate planes.

The hyperboloid (1) is said to " lie along the X-axis."
The equations

$$
\begin{equation*}
-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \quad-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \tag{2}
\end{equation*}
$$

are the equations of hyperboloids of two sheets which lie along the Y-axis and the Z-axis respectively.

If $b=c, c=a$, or $a=b$, the hyperboloids (1) and (2) are hyperboloids of revolution.

It should be noticed that the loous of (3), Art. 125, is an ellipsoid if all the terms on the left are positive, a hyperboloid of one sheet if but one term is negative, and a hyperboloid of two sheets if two terms are negative. If all the terms on the left are negative, there is no locus. If the locus is a hyperboloid, it will lie along the axis corresponding to the term whose sign differs from that of the other two terms.

PROBLEMS

1. Discuss and construct the loci of the following equations:
(a) $4 x^{2}+9 y^{2}+16 z^{2}=144$.
(e) $9 x^{2}-y^{2}+9 z^{2}=36$.
(b) $4 x^{2}+9 y^{2}-16 z^{2}=144$.
(f) $z^{2}-4 x^{2}-4 y^{2}=16$.
(c) $4 x^{2}-9 y^{2}-16 z^{2}=144$.
(g) $16 x^{2}+y^{2}+16 z^{2}=64$.
(d) $x^{2}+16 y^{2}+z^{2}=64$.
(h) $x^{2}+y^{2}-z^{2}=25$.
2. Reduce, by translation of the axes, each of the following to a standard form and determine the type of central quadric it represents:
(a) $x^{2}+2 y^{2}+2 z^{2}-2 x+4 y-8 z+10=0$.
(b) $x^{2}-y^{2}+2 z^{2}-6 x+2 y+4 z+9=0$.
(c) $y^{2}-x^{2}-2 z^{2}+6 x-2 y-4 z+6=0$.
(d) $x^{2}-2 y^{2}-4 z^{2}-2 x-8 y-8=0$.
(e) $4 x^{2}-y^{2}-z^{2}-8 x-2 y+6=0$.
(f) $4 x^{2}-y^{2}-z^{2}-8 x-2 y+4=0$.
(g) $3 x^{2}+4 y^{2}-8 y-z^{2}=0$.
3. Find the equations of the planes whose intersections with the ellipsoid $9 x^{2}+25 y^{2}+169 z^{2}=1$ are circles. - Ans. $4 x= \pm 12 z+k$.
4. The square of the distance of a point from a line is equal to the square of its distance from a perpendicular plane (a) increased by a constant ; (b) diminished by a constant. How do the two loci differ? What property have they in common?
5. A point moves so that its distances from a fixed point and a fixed line are in constant ratio μ. Determine and name the locus
(a) when $\mu<1$.
(c) when $\mu=1$.
(b) whell $\mu>1$.
(d) when the point is on the line.
6. A point moves so that its distances from a fixed point and a fixed plane are in a constant ratio. Prove that the locus is an ellipsoid of revolution when the ratio is less than unity, and a hyperboloid of revolution when greater than nnity.
7. A point moves so that the sum of the sqnares of its distances from two intersecting perpendicular lines in space is constant. Prove that the locus is an ellipsoid of revolution.
8. The elliptic paraboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2 c z$. If the coefficient of y^{2} in (4), Art. 125, is positive, the locus is called an elliptic paraboloid. A discussion of its equation gives us the following properties:
9. The elliptic paraboloid is symmetrical with respect to the $Y Z$-plane and the $Z X$-plane and the Z-axis.
10. It passes through the origin, but does not intersect the axes elsewhere.
11. Its traces on the coördinate planes are respectively the conics

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=0, \quad \frac{x^{2}}{a^{2}}=2 c \approx, \quad \frac{y^{2}}{b^{2}}=2 c \approx
$$

of which the first is a point-ellipse and the other two are parabolas.
4. The equation of the curve in which a plane parallel to the $X Y$-plane, $z=k$, cuts the paraboloid is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2 c k, \quad \text { or } \quad \frac{x^{2}}{2 a^{2} c k}+\frac{y^{2}}{2 b^{2} c k}=1
$$

The curve is an ellipse if c and k have the same sign, but there is no locus if c and k have opposite signs. Hence, if c is positive, the surface lies entirely above the $X Y$-plane. If k iucreases from 0 to ∞, the plane recedes from the $X Y$-plane
and the axes of the ellipse increase indefinitely. Hence the surface recedes indefinitely from the $X Y$-plane and from the Z-axis.

In like manner the sections parallel to the $Y Z$-plane and the $Z X$-plane are parabolas whose vertices recede from the $X Y$-plane as their planes recede from the coördinate planes.
The paraboloid is said to "lie along the Z-axis."
The loci of the equations

$$
\begin{equation*}
\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=2 a x, \quad \frac{x^{2}}{a^{2}}+\frac{z^{2}}{c^{2}}=2 b y, \tag{1}
\end{equation*}
$$

are elliptic paraboloids which lie along the X-axis and the Y-axis respectively.

If $a=b$, the first surface considered is a paraboloid of revolution whose axis is the Z-axis; and if $l=c$ and $a=r$, the paraboloids (1) are surfaces of revolution whose axes are respectively the X-axis and the Y-axis.
An elliptic paraboloid lies along the axis corresponding to the term of the first degree in its equation, and in the positive or negative direction of the axis according as that term is positive or negative.
130. The hyperbolic paraboloid $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=2 c z$. If the coefficient of y^{2} in (4), Art. 125, is negative, the locus is called a byperbolic paraboloid.

1. The hyperbolic paraboloid is symmetrical with respect to the $Y Z$-plane and the $Z X$-plane and the Z-axis.
2. It passes through the origin, but does not cut the axes elsewhere.
3. Its traces on the coördinate planes are respectively the conics

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0, \quad \frac{x^{2}}{a^{2}}=2 c z, \quad-\frac{y^{2}}{b^{2}}=2 c z,
$$

of which the first is a pair of intersecting lines and the other two are parabolas.
4. The equation of the curve in which a plane parallel to the $X Y$-plane, $z=k$, cuts the paraboloid is

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=2 c k, \text { or } \frac{x^{2}}{2 a^{2} c k}-\frac{y^{2}}{2 b^{2} c k}=1 .
$$

The locus is a hyperbola. If c is positive, the transverse axis of the hyperbola is parallel to the X - or Y-axis according as k is positive or negative. If k increases from 0 to ∞, or decreases from 0 to $-\infty$, the plane recedes from the $X Y$-plane and the axes of the hyperbolas increase indefinitely. Hence the surface recedes indefinitely from the $X Y$-plane and the Z-axis. The surface has approximately the shape of a saddle.

In like manner the sections
 parallel to the other coördinate planes are parabolas whose vertices recede from the $X Y$-plane as their planes recede from the coördinate planes.

The surface is said to "lie along the Z-axis."
The loci of the equations

$$
\frac{x^{2}}{a^{2}}-\frac{z^{2}}{c^{2}}=2 b y, \frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=2 a x,
$$

are hyperbolic paraboloids lying along the Y-axis and the X-axis respectively. A hyperbolic paraboloid also lies along the axis which corresponds to the first-degree term in its equation.

A plane of symmetry of a quadric is called a principal plane. Each paraboloid has two principal planes ; each central quadric, three. Axes of symmetry are called principal axes. A paraboloid possesses one such axis; a central quadric, three. The existence of a center of symmetry for a central quadric explains the designation "central quadric."

Elliptic Paraboloid

Hyperbolic Paraboloid

Noncentral Qutadrics

Hyperboloid of one sheet

Hyperbolic Paraboloid

PROBLEMS

1. Discnss and construct the following loci :
(a) $y^{2}+z^{2}=4 x$.
(e) $9 z^{2}-4 x^{2}=288 y$.
(b) $y^{2}-z^{2}=4 x$.
(f) $16 x^{2}+z^{2}=64 y$.
(c) $x^{2}-4 z^{2}=16 y$.
(g) $y^{2}-x^{2}=10 z$.
(d) $x^{2}+y^{2}=8 z$.
(h) $y^{2}+16 z^{2}+x=0$.
2. Reduce by transformation of coördinates each of the following to a standard form and determine the type of paraboloid it represents :
(a) $z=x y$.
(c) $x^{2}+2 y^{2}-6 x+4 y+3 z+11=0$.
(b) $z=x^{2}+x y+y^{2}$.
(d) $z^{2}-3 y^{2}-4 x+2 z-6 y+1=0$.
3. A point is equidistant from a fixed plane and a fixed point. Show that the locus is an elliptic paraboloid of revolution.
4. A point is equidistant from two nonintersecting perpendicular lines. Show that the locus is a hyperbolic paraboloid.
5. Prove that the parabolas obtained by cutting (a) an elliptic paraboloid, and (b) a hyperbolic paraboloid by planes parallel to one of the principal planes, are all congruent.
6. Show analytically that any plane parallel to the axis along which (a) an elliptic paraboloid, and (b) a hyperbolic paraboloid lies, intersects the surface in a parabola.
7. Rectilinear generators. The equation of the hyperboloid of one sheet, Art. 127, may be written in the form

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{z^{2}}{c^{2}}=1-\frac{y^{2}}{b^{2}} . \tag{1}
\end{equation*}
$$

As this equation is the result of eliminating k from the equations of the system of lines

$$
\frac{x}{a}+\frac{z}{c}=k\left(1+\frac{y}{b}\right), \quad \frac{x}{a}-\frac{z}{c}=\frac{1}{k}\left(1-\frac{y}{b}\right)
$$

the hyperboloid is a ruled surface. Equation (1) is also the result of eliminating k from the equations of the system of lines

$$
\frac{x}{a}+\frac{z}{c}=k\left(1-\frac{y}{b}\right), \quad \frac{x}{a}-\frac{z}{c}=\frac{1}{k}\left(1+\frac{y}{b}\right)
$$

and the hyperboloid may therefore be regarded in two ways as a ruled surface.

In like manner the hyperbolic paraboloid contains the two systems of lines
and

$$
\begin{aligned}
& \frac{x}{a}+\frac{y}{b}=2 c k, \quad \frac{x}{a}-\frac{y}{b}=\frac{z}{k} \\
& \frac{x}{a}+\frac{y}{b}=k z, \quad \frac{x}{a}-\frac{y}{b}=\frac{2 c}{k}
\end{aligned}
$$

These lines are called the rectilinear generators of these surfaces. Hence the

Theorem. The hyperboloid of one sheet and the hyperbolic paraboloid have two systems of rectilinear generators, that is, they may be regarded in two ways as ruled surfaces.

The two systems of generators are shown in Plate II.

REVIEW PROBLEMS

Name and draw the surfaces in each of the following groups, giving in detail all their characteristics:

1. (a) $x y=0$.
(b) $x y=1$.
(c) $x y=z$.
(d) $x y=z^{2}$.
(e) $x y=z^{2}+1$.
(f) $x y=z^{2}+z$.
2. (a) $x^{2}+y^{2}=0$.
(b) $x^{2}+y^{2}=1$.
(c) $x^{2}+y^{2}=x$.
(d) $x^{2}+y^{2}=z$.
(e) $x^{2}+y^{2}=z^{2}$.
(f) $x^{2}+y^{2}=2 x y$.
3. (a) $x+y=0$.
(b) $x+y=1$.
(c) $x+y=z$.
(d) $x+y=z^{2}$.
(e) $x+y=x y$.
4. (a) $x^{2}+y^{2}=z^{2}+1$.
(b) $x^{2}+y^{2}=z^{2}-1$.
(c) $x^{2}+y^{2}=1-z^{2}$.
5. (a) $x^{2}+y^{2}=z^{2}+2 z$.
(b) $x^{2}+y^{2}=z^{2}-2 z$.
(c) $x^{2}+y^{2}=2 z-z^{2}$.
6. (a) $x^{2}+2 y^{2}+3 z^{2}=0$.
(b) $x^{2}+2 y^{2}+3 z^{2}=1$.
(c) $x^{2}+2 y^{2}+3 z^{2}=2 x$.
(d) $x^{2}+2 y^{2}+3 z^{2}=2 x-1$.
7. (a) $x^{2}+2 y^{2}-3 z^{2}=0$.
(b) $x^{2}+2 y^{2}-3 z^{2}=1$.
(c) $x^{2}+2 y^{2}-3 z^{2}=2 x$.
(d) $x^{2}+2 y^{2}-3 z^{2}=2 x+1$.
(e) $x^{2}+2 y^{2}-3 z^{2}=2 x-1$.
(f) $x^{2}+2 y^{2}-3 z^{2}=2 x-2$.
8. (a) $x y+y z+z x=0$.
(b) $z^{2}+y z+z x=0$.
(c) $z+y z+z x=0$.
(d) $z^{2}+x^{2}+z x=0$.
(e) $z^{2}+x^{2}+x y=0$.
(f) $z^{2}+x y+=0$.

MISCELLANEOUS PROBLEMS

1. Construct the following surfaces and shade that part of the first intercepted by the second :
(a) $x^{2}+4 y^{2}+9 z^{2}=36, x^{2}+y^{2}+z^{2}=16$.
(b) $x^{2}+y^{2}+z^{2}=64, x^{2}+y^{2}-8 x=0$.
(c) $4 x^{2}+y^{2}-4 z=0, x^{2}+4 y^{2}-z^{2}=0$.
2. Construct the solids bounded by the surfaces (a) $x^{2}+y^{2}=a^{2}$, $z=m x, z=0$; (b) $x^{2}+y^{2}=a z, x^{2}+y^{2}=2 a x, z=0$.
3. Show that two rectilinear generators of (a) a hyperbolic paraboloid, and (b) a hyperboloid of one sheet, pass through each point of the surface.
4. If a plane passes through a rectilinear generator of a quadric, show that it will also pass through a second generator, and that these generators do not belong to the same system.
5. The equation of the hyperboloid of one sheet may be written in the form $\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1-\frac{x^{2}}{a^{2}}$. By treating this equation as in Art. 131, we obtain the equations of two systems of lines on the surface. Show that these systems of lines are identical with those already obtained.
6. Show that a quadric may, in general, be passed through any nine points.
7. If $a>b>c$, what is the nature of the locus of

$$
\frac{x^{2}}{a^{2}-\lambda}+\frac{y^{2}}{b^{2}-\lambda}+\frac{z^{2}}{c^{2}-\lambda}=1
$$

if $\lambda>a^{2}$? if $a^{2}>\lambda>b^{2}$? if $b^{2}>\lambda>c^{2}$? if $\lambda<c^{2}$?
8. Show that the traces of the system of quadrics in Problem 7 are confocal conics.
9. Show that every rectilinear generator of the hyperbolic paraboloid $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=2 c z$ is parallel to one of the planes $\frac{x}{a} \pm \frac{y}{b}=0$.
10. Prove that the projections of the rectilinear generators of (a) the hyperboloid of one sleet, (b) the hyperbolic paraboloid, on the principal planes are tangent to the traces of the surface on those planes.
11. A plane passed through the center and a generator of a byperboloid of one sheet intersects the surface in a second generator which is parallel to the first.
12. Show how to generate each of the central quadrics by moving an ellipse whose axes are variable.
18. Show how to generate each of the paraboloids by moving a parabola.

CHAPTER XX

EMPIRICAL EQUATIONS

132. A problem quite distinct from any thus far treated in this text arises when it is required to find the equation of a curve which shall pass through a series of empirically given points. That is, we suppose that certain values of the variable and of the function are known from an actual experiment, and the corresponding points are plotted on cross-section paper. A smooth curve is then drawn to "fit" these points, and an equation for this curve is required.

The general treatment of this important problem is beyond the scope of an elementary text,
 and the following sections are concerned with simple cases only.
133. Straight-line law. If the curve suggested by the plotted points is a straight line, assume the law

$$
\begin{equation*}
y=m x+b \tag{1}
\end{equation*}
$$

and determine the values of m and b from the observed data. The straight line representing the required law will not necessarily pass through all the points plotted, for experimental work is subject to error. It is sufficient if the line fits the points within the limits of accuracy of the experiment. In general, the straight line may be drawn through two of the plotted points, and m and l may be calculated from their coördinates.

EXAMPLE

In an experiment with a pulley, the effort, $E \mathrm{lb}$., required to raise a load of $W \mathrm{lb}$. was found to be as follows :

W	10	20	30	40	50	60	70	80	90	100
E	$3_{\frac{1}{4}}$	$4 \frac{7}{8}$	$6_{\frac{1}{4}}$	$7 \frac{1}{2}$	9	$10 \frac{1}{2}$	$12 \frac{1}{4}$	$13_{\frac{3}{4}}$	15	$16 \frac{1}{2}$

Find a straight-line law to fit these data.
Solution. Plotting the points as in the figure, it is seen that the straight line drawn through $\left(30,6 \frac{1}{4}\right)$ and $\left(100,16 \frac{1}{2}\right)$ fits the observed data very well. To find its equation, substitute these values in the equation (2) $E=m W+b$.

This gives $6 \frac{1}{4}=30 m+b$, $16 \frac{1}{2}=100 m+b$. Solving for m and b, we find $m=\frac{4}{28} \frac{1}{20}$, $b={ }_{\gamma}^{1}{ }^{2}$. Substituting in (2),
(3) $E=\frac{41}{280} W+\frac{12}{7}$,
the required equation.
For the purpose of calculation we write (3) in the form

$$
\text { (4) } E=0.146 W+1.86,
$$

keeping three decimal places in the coefficient of W in order to secure three-figure accuracy.

We now test (4) by comparing the observed values and calculated values.

W	10	20	30	40	50	60	70	80	90	100
E, observed	3.25	4.87	6.25	7.50	9	10.5	12.2	13.7	15	16.5
E, calculated	3.32	4.98	0.24	7.68	9.16	10.6	12.1	13.5	15	16.5

The formula (4) may be used for calculating values of E for values of W intermediate between 10 and 100 , and not given in the table. For example, the effort required to raise a load of 25 lb . is

$$
E=0.146 \times 25+1.86=5.51 \mathrm{lb} .
$$

PROBLEMS

The following data treated in the same way will yield laws represented by the formula $y=m x+b$.

1. V is the volume in cubic centimeters of a certain quantity of gas at the temperature $t^{\circ} \mathrm{C}$., the pressure being constant. Find the law connecting V and t.

t	27	33	40	55	68
V	109.9	112.0	114.7	120.1	125.

Ans. $V=100+0.367 t$.
2. V is the volume of a certain quantity of mercury at a temperature of $\theta^{\circ} \mathrm{C}$. Find the law connecting V and θ.

$\theta^{\circ} \mathrm{c}$.	18	36	60	72	90
V (cc.)	$\frac{100.32}{}$	100.65	101.07	101.30	101.61

Ans. $V=100+0.018 \theta$.
3. S is the weight of sodium nitrate dissolved by 100 g . of water at the temperature $t^{\circ} \mathrm{C}$. Find the law connecting S and t.

S	68.8	72.9	87.5	102
t	-6	0	20	40

Ans. $S=73.0+0.73 t$.
4. The following are corresponding values of the speed and induced volts in an arc-light dynamo. Find the law connecting volts and revolutions per minute.

Rev. per minute, n	200	320	495	621	744
Volts induced, v	165	270	410	525	625

5. S is the weight of potassium bromide which will dissolve in 100 g . of water at the temperature $t^{\circ} \mathrm{C}$. Find the law connecting S and t.

t	0	20	40	60	80
S	53.4	64.6	74.6	84.7	93.5

6. Find the equation of the straight lines that best fit the following data.
(a)

x	0.5	1	1.5	2	2.5	3
y	0.31	0.82	1.29	1.85	2.51	3.02

(b)

t	0	5	10	15	20	25	30
T	15	20	24.4	28.4	32	35.2	38.2

(c)

P	250	400	500	600	750	800	900
C	0.64	0.80	0.91	0.99	1.12	1.15	1.22

(d)

\boldsymbol{W}	3	13	23	33	43
\boldsymbol{F}	$\frac{3}{8}$	1	$1 \frac{5}{8}$	$2 \frac{1}{8}$	$2 \frac{5}{8}$

134. Laws reduced to straight-line laws. By suitable treatment of the given data many laws can be transformed into a linear relation. Some cases of this kind of frequent occurrence will now be given.

$$
\text { 1. The law } \quad y=a+b x^{2}
$$

When the points plotted suggest a vertical parabola with its vertex on the y-axis, the assumed equation will have the above form. If now we set $x^{2}=t$, and plot the valnes of t and y, these values satisfy the relation $y=a+b t$, that is, a straight-line law.

EXAMPLE

An experiment to determine the coasting resistance R in pounds per ton of a motor wagon for the speed V miles per hour gave the following data:

V	0	$2 \frac{1}{2}$	5	$7 \frac{1}{2}$	10	$12 \frac{1}{2}$	15
R	40	40	42	45	50	55	63

Plotting the points, the curve suggested (Fig. 1) appears to be a parabola with the equation

$$
\begin{equation*}
R=a+b V^{2} \tag{1}
\end{equation*}
$$

Fig. 1

Fig. 2

To check this, calculate the values of V^{2} (table, Art. 3), set $V^{2}=t$, and retabulate the data thus :

$t\left(=V^{2}\right)$	0	$6 \frac{1}{4}$	25	$56 \frac{1}{4}$	100	$156 \frac{1}{4}$	225
R	40	40	42	45	50	55	63

Plotting these points (Fig. 2), it appears that they are fitted by a straight line. By the preceding section we find the equation of this line to be $R=39.3+.107 t$. Hence the required law is

$$
\begin{equation*}
R=39.3+.107 V^{2} \tag{2}
\end{equation*}
$$

PROBLEMS

The following data satisfy laws of the form $y=a+b x^{2}$. Determine the values of a and b.
1.

x	19	25	31	38	44
y	1900	3230	4900	7330	9780

Ans. $y=5.09 x^{2}-10$.
2.

S	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{3}{4}$	1	$1_{\frac{1}{4}}$	$1_{\frac{1}{2}}^{2}$	2
P	2	$2 \frac{3}{4}$	$3 \frac{1}{2}$	5	$7 \frac{1}{2}$	$10 \frac{3}{4}$	$13 \frac{3}{4}$	$22 \frac{1}{2}$

3.

\boldsymbol{V}	10	20	30	40	50
\boldsymbol{R}	7	9.1	14.5	20	29

4.

a	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{3}$	1
S	663	1178	1841	2651	3608	4712

2. The law

$$
y=a x^{n}
$$

Taking logarithms, we have

$$
\begin{equation*}
\log y=\log a+n \log x \tag{3}
\end{equation*}
$$

that is, the logarithms of the given data satisfy a straight-line law. Hence in this case tabulate the logarithms of the given data, determine the straight-line law to fit them,* compare with (3) to find a and n, and substitute in $y=a x^{n}$.

This law, as the study of the problems on page 337 will show, has wide application.

[^25]
EXAMPLE

The following data satisfy a law of the form $y=a x^{n}$. Find the values of a and n.

x	4	7	11	15	21
y	28.6	79.4	182	318	589

Solution. Tabulating the values of $\log x$ and $\log y$ (table, p. 4),

$\log x$	0.602	0.845	1.041	1.176	1.322
$\log y$	1.456	1.900	2.26	2.50	2.77

Plotting $x^{\prime}=\log x, y^{\prime}=\log y$, it appears that x^{\prime} and y^{\prime} satisfy a straight-line law. The equation is found to be

$$
\begin{equation*}
y^{\prime}=.364+1.82 x^{\prime} \tag{4}
\end{equation*}
$$

Hence, comparing with (3), $n=1.82, \log a=.364$. Then $a=2.3$, and the required law is
(б)

$$
y=2.3 x^{1.82} . A n s
$$

PROBLEMS

1. Find a law of the form $y=a x^{n}$ for the following data:

x	2000	4000	6000	8000	10,000
y	2869	8700	16,660	26,370	37,660

2. Find a law of the form $p=a v^{n}$ to fit the following data:

v	4	4.5	5	5.5	6	7
p	110	97.1	86.8	78.4	71.5	60.7

3. The time, t seconds, that it took for water to flow through a triangular notch, under a pressure of h feet, until the same quantity was in each case discharged, was found by experiment to be as follows:

h	.043	.057	.077	.094	.100
t	1260	540	275	170	135

Find the law.
4. The indicated horse power I required to drive a vessel with a displacement of D tons at a ten-knot speed is given by the following data. Find the law connecting I and D.

D	1720	2300	3200	4100
I	655	789	1000	$\frac{1164}{}$

5. u is the volume in cubic feet of 1 lb . of saturated steam at a pressure of $p \mathrm{lb}$. per square inch. Find the law of the form $p u^{n}=$ const. connect$\operatorname{ing} p$ and u.

\boldsymbol{u}	26.43	22.40	19.08	16.32	14.04
p	14.7	17.53	$\frac{20.80}{}$	24.54	28.83

6. F is the force between two magnetic poles at a distance of d centimeters. Find the law connecting F and d.

$d \mathrm{~cm}$.	1.2	1.9	2.3	3.2	4.5
F dynes	4.44	1.77	1.21	0.625	0.316

7. D is the diameter in inches of wrought-iron slafting required to transmit H borse power when running 70 revolutions per minute.

Find a formula.

\boldsymbol{H}	10	20	30	40	50	60	70	80
\boldsymbol{D}	2.11	2.67	$\frac{8.04}{}$	3.36	3.61	3.82	4.02	$\frac{4.22}{}$

8. Q is the quantity of water in cubic feet per second flowing through a right-angled isosceles notch when the surface of quiet water is \boldsymbol{B} feet above the bottom of the notch. Find the law.

H	1	2	3	4
Q	2.63	15	41	84.4

9. A certain ship draws h feet of water and displaces V cubic feet. What is the law connecting h and V ?

Draft h	18	13	11	9.5
Displacement V	107,200	65,800	51,200	41,100

135. Miscellaneous laws. In many experiments the analytic form of the law is known in advance. If, however, such fact is unknown, and if the preceding methods fail, the points determined by the data should in any case be plotted, and then the shape of the required curve may suggest an equation to be tried. The following problems furnish a variety in this regard.

PROBLEMS

1. The curve suggested in each of the following is a vertical parabola

$$
y=a+b x+c x^{2} .
$$

The values of a, b, and c may be found from three pairs of values of the data. Determine the law in each case.
(a)

x	1	2	3	4	5	6	7
y	25	41	55	67	77	85	91

(b) The resistance, R ohms, of a wire at $t^{\circ} \mathrm{C}$. is given by the following table :

t	0	5	10	15	20	25
R	25	25.49	25.98	26.48	26.99	27.51

(c)

x	0	0.5	1	1.5	2	2.5	3
y	5.4	6.3	6.6	6.1	5.0	3.2	0.6

(d)

u	0	20	40	60	80	100
v	290	253	215	176	136	94

2. The points may be fitted by a branch of an equilateral hyperbola whose equation is

$$
y=a+\frac{b}{x}
$$

In this case plot y and $\frac{1}{x}=t$, thus transforming into a straight-line law. Find the law after this manner for the following data:
(a)

x	4	5	3	7	8
y	4410	3530	2940	2520	2210

(b)

A	1.96	2.46	2.97	3.45	3.96	4.97	5.97
V	50.25	48.7	47.9	47.5	46.8	45.7	45

(c)

S	10	11	12	13	14
W	8370	4880	-1970	-490	-2600

3. In some cases a branch of the rectangular hyperbola ((12), p. 184),

$$
x y=b x+a y
$$

will fit the points. Dividing through by $x y$, this becomes $1=\frac{a}{x}+\frac{b}{y}$. Hence if $\frac{1}{x}=u, \frac{1}{y}=v$, are plotted, u and v will satisfy a straight-line law.

Show that this is the case in the following and find the law.
(a)

x	10	20	30	40	50	60	70	80
y	12.8	17.1	20	22.2	23.1	23.8	23.8	24.2

(b)

s	1	2	3	4	5	6	7	8
t	2.05	3.23	3.95	4.49	4.87	5.20	5.40	5.60

4. Compound-interest law (p. 103). If the law sought is of the form

$$
y=a e^{k x},
$$

taking logarithms,

$$
\log y=\log a+k x \log e,
$$

where $\log e=0.434$, as usual. Hence $\log y$ and x satisfy a linear relation, and we accordingly plot x and $\log y$, determine the straight line, the values of a and k, and substitute.

Proceed in this manner in the following :
(a)

x	0	3.45	10.85	10.30	28.8	40.1	53.75
y	19.9	18.9	16.9	14.9	12.9	10.9	8.9

Hint. Plot x and $\log y$.
(b)

h	0	886	2753	4763	6942	10,593
p	30	29	27	25	23	20

Hint. Plot h and $\log p$.
(c)

t	0	10	27.4	$\frac{42.1}{}$
s	61.5	62.1	66.3	70.3

x	0	2.1	5.6	9.3	11.5
y	20	18.92	17.34	15.8	14.96

136. The problem under discussion requires for thorough solution the method of least squares, and for an exposition of this theory the student is referred to treatises on that subject.

INDEX

Δ bscissa, 10
Algebraic curve, 44
Amplitude, 108
Anchor ring, 306
Angle,eccentric, 215 ; vectorial, 119
Arch, parabolic, 158
Area of ellipse, 175
Asymptotes, 51, 170
Auxiliary circle, 164
Axis, conjugate, 167 ; major, 161 ;
minor, 161 ; transverse, 167
Axis of parabola, 153

Cardioid, 221
Catenary, 113
Center, instantaneous, 218
Center of conic, 160,167
Central conic, 186
Central quadric, 318
Circle, point-, 92
Cissoid of Diocles, 54, 210, 220
Cocked hat, 55
Colatitude, 313
Compound interest curve, 103
Compound interest law, 340
Conchoid of Nicomedes, 221
Confocal conics, 189
Conicoid, 316
Conjugate diameters, 229
Coördinates, oblique, 11
Cubical parabola, 46
Curtate cycloid, 216
Cycloid, 208, 212

Degenerate ellipse, 179
Degenerate hyperbola, 179
Degenerate parabola, 179
Degenerate quadric, 318
Director circle, 225
Directrix, 153, 186, 295
Discriminant of the equation of a circle, 93

Eccentricity, 162, 168
Ellipse, point, 165
Epicycloid, 217
Exponential curves, 102
Focal radii of conics, 187
Focus, 153, 160, 167, 186
Folium of Descartes, 202
Four-leaved rose, 126, 223
Helix, 301
Hyperbolic spiral, 132
Hypocycloid, 217; of four cusps, 210,213 ; of three cusps, 206

Intercepts, 46
Involute of a circle, 216
Latus rectum, $154,161,168$
Lemniscate of Bernoulli, 55, 122, 225
Limaçon of Pascal, 55, 222, 225
Lituus, 132
Logarithmic curves, 102
Longitude, 313

Maximum value of a function, 136
Minimum value of a function, 136
Octant, 232
Ordinate, 10
Parabola, cubical, 46; semicubical, 205
Parabolic spiral, 223
Parameter, 84
Period of sine curves, 107
Point-circle, 92
Point of contact, 191
Polar axis, 119
Pole, 119
Principal axes, 326
Principal planes, 319, 326
Probability curve, 105
Prolate cycloid, 216
Radian, 2
Radius vector, 119

Reciprocal spiral, 132
Rose, three-leaved, 125, 126 ; fourleaved, 126,223; eight-leaved, 126

Semicubical parabola, 205
Spiral, hyperbolic or reciprocal, 132 ; Iogarithmic or equiangular, 132, 133; parabolic, 223
Spiral of Archimedes, 132
Strophoid, 54, 226
Symmetry, 43
System of logarithms, common, 101 ; natural, 101

Torus, 306
Traces of a surface, 257
Triangle problems, 90
Vertex of a conic, 153
Whispering gallery, 203
Witch of Agnesi, 219

[^0]: * In formulas 1-12, r denotes radius, α altitude, B area of base, and s slant hojat.

[^1]: * So called after René Descartes, 1596-1650, who first introduced the idea of coïrdinates into the study of geometry.

[^2]: * To construct a line passing through a given point P_{1} whose slope is a positive fraction $\frac{a}{b}$, we mark a point $S b$ units to the right of P_{1} and a point P_{2} a units above S, and draw $P_{1} P_{2}$. If the slope is a negative fraction, $-\frac{a}{b}$, then plot $S a$ units to the left of P_{1}.

[^3]: * 'To assist the memory in writing down this ratio, notice that the point of division P is written last in the numerator and first in the denominator.

[^4]: * Care must be taken to read the segments on the transversals (since we are dealing with directed lines) so that they all have positive directions.

[^5]: *The word "curve" will hereafter signify any continuous line, straight or curved.

[^6]: * An equation in the variables x and y is not necessarily satisfied by the coördinates of any points. For coördinates are real numbers, and the form of the equation may be such that it is satisfied by no real values of x and y. For example, the equation

 $$
 x^{2}+y^{2}+1=0
 $$

 is of this sort, since, when x and y are real numbers, x^{2} and y^{2} are necessarily positive (or zero), and consequently $x^{2}+y^{2}+1$ is always a positive number greater than or equal to 1 , and therefore not equal to zero. Such an equatiou therefore has no locus. The expression "the locus of the equation is imaginary" is also used.

 An equation may be satisfied by the coördinates of a finite number of points only. For example, $x^{2}+y^{2}=0$ is satisfied by $x=0, y=0$, but by no other real values. In this case the group of points, one or more, whose coördinates satisfy the equation, is called the locus of the equation.
 \dagger The form of the given equation will often be such that solving for one variable is simpler than solving for the other, Always choose the simpler solution.

[^7]: * A constant term is to be regarded as of zero (even) degree, as 16 in (1), p. 42.

[^8]: * For example, in (a) and (b) $m=0$ is a special value. In fact, in all these examples zero is a special value for any constant.

[^9]: * If the shape only of the curves $1-10$ is desired, we may replace e by the approximate value 3.

[^10]: * The cosine curve differs from the sine curve only in the position of the y-axis. The highest and lowest points occur at half-periods and the intersections with $O X$ at odd quarter-periods.

[^11]: *The discussion shows merely that the curve (2) reaches the boundary curves. Tangency is shown by calculus.

[^12]: *The student should not forget that the product $x y$ is a term of the second degree.

[^13]: * This is permissible. For $P F^{\prime}+P F^{\prime}>F^{\prime} F^{\prime}$, or $2 a>2 c$; that is, $a>c$, and $a^{2}-c^{2}$ is a positive number.

[^14]: *This is permissible. For in the figure, $P F^{\prime}-P F<F^{\prime} F$, or $2 a<2 c$; that is, $a<c$, and $a^{2}-c^{2}$ is a negative number.

[^15]: * On the left-hand branch, (2) is replaced by $P F-P F^{\nu}=2 a$.

[^16]: * For tests to distinguish the exceptional cases, see Smith and Gale's "Elements of Analytic Geometry," p. 277.
 \dagger This case is recognizable by inspection, for the terms of the second degree, $A x^{2}+B x y+C y^{2}$, now will form a perfect square.

[^17]: * $X X^{\prime}$ and $Z Z^{\prime}$ are supposed to be in the plane of the paper, the positive direction on $X X^{\prime}$ being to the right, that on $Z Z^{\prime}$ being upward. $Y Y^{\prime}$ is supposed to be perpendicular to the plane of the paper, the positive direction being in front of the paper, that is, from the plane of the paper toward the reader.

[^18]: *They will be parallel and have opposite directions when and only when the direction angles are supplementary.
 \dagger Two lines in space are said to be perpendicular when the angle between them is $\frac{\pi}{2}$, but the lines do not necessarily intersect.

[^19]: * The number of conditions must be counted carefully. Thus if a point is to be equidistant from three fixed points P_{1}, P_{2}, and P_{3}, it satisfies two conditions, namely, of being equidistant from P_{1} and P_{2} and from P_{2} and P_{3}.

[^20]: *In analytic geometry the terms "sphere," "cylinder," and "cone" are usually used to denote the spherical surface, cylindrical surface, and conical surface of elementary geometry, and not the solids bounded wholly or in part by such surfaces.

[^21]: * That is, a point or sphere of radius zero.

[^22]: * In general, the equations of a curve may be replaced by any two independent equations to which they are equivalent; that is, by two independent equations which are derived by combining the given equations.

[^23]: * An equation is homogeneous in x, y, and z when all the terms in the equation are of the same degree.

[^24]: * The direction cosines of $O X^{\prime}, O Y^{\prime}$, and $O Z^{\prime}$ obviously satisfy the six equations
 $\cos ^{2} \alpha_{1}+\cos ^{2} \beta_{1}+\cos ^{2} \gamma_{1}=1, \quad \cos \alpha_{1} \cos \alpha_{2}+\cos \beta_{1} \cos \beta_{2}+\cos \gamma_{1} \cos \gamma_{2}=0$, $\cos ^{2} \alpha_{2}+\cos ^{2} \beta_{2}+\cos ^{2} \gamma_{2}=1, \quad \cos \alpha_{2} \cos \alpha_{3}+\cos \beta_{2} \cos \beta_{3}+\cos \gamma_{2} \cos \gamma_{3}=0$, $\cos ^{2} \alpha_{3}+\cos ^{2} \beta_{8}+\cos ^{2} \gamma_{3}=1, \quad \cos \alpha_{3} \cos \alpha_{1}+\cos \beta_{3} \cos \beta_{1}+\cos \gamma_{3} \cos \gamma_{1}=0$.
 Hence only three of the nine constants in (III) are independent.

[^25]: * Logarithmic squared-paper is of great convenience in this case.

