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PREFACE

A glance at the Table of Contents of the present volume
will reveal the fact that the subject matter differs in many
respects from that included in current textbooks on analytic

geometry. The authors have recognized the great importance,

in the applications, of the exponential and trigonometric func-

tions, of " setting up " and studying functions by their graphs,

of parametric equations and the locus problem, and of "fitting"

curves to points determined by empirically given data. To meet

this need chapters ha^e been included covering all these topics.

The discussion in Chapter VI of transcendental curves and

equations is intended to be thorough, and tables are provided,

whenever useful, to lighten the labor of computation. A stu-

dent loses interest in a function if he is unable to calculate

rapidly its numerical values. The problems of Chapter VIII

provide a large variety of functions arising from applied prob-

lems, and careful " graphing " and measurement of maximum
and minimum values are emphasized. The text of Chapter XII
on Parametric Equations and Loci is unusually complete, and

care is taken to familiarize the student with those curves which

occur in applied mathematics. The study of locus problems

by means of parametric equations is amply illustrated. Chap-

ter XX presents the topic of empirical equations and contains

a- wide variety of problems.

The authors have not neglected to provide an adequate and

thorough drill in the use of coordinates and in the employ-

ment of analytic methods. It is acknowledged that this is the

primary aim of analytic geometry. The proofs will be found
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simple and direct. The chapters* devoted to the study of the

conic sections (Chapters X and XI) are brief but contain all

essential characteristics of these important curves. The ex-

amples are numerous, and many are given without answers in

case any useful purpose is served by so doing. The book, like

the authors' " Elements of Analytic Geometry," is essentially a

drill book ; but at the same time all difficulties are not smoothed

out, though the student is aided in making his own way. He
is taught to formulate rules descriptive of methods, and to

summarize the main results. The appearance in the text of

various Rules is designed expressly to encourage the student

in the habit of formulating precise statements and of making

clear to himself each new acquisition:

Acknowledgments are due to Dr. George P. Gundelfinger,

of the department of mathematics of the Sheffield Scientific

School, for many of the problems in the analytic geometry of

space and for many valuable suggestions.

THE AUTHORS
New Haven, Connecticut
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CHAPTER I

FORMULAS AND TABLES FOR REFERENCE

1. Occasion will arise in later chapters to make use of the

following formulas and theorems proved in geometry, algebra,

and trigonometry.

1. Circumference of circle = 2it*

2. Area of circle = irr2 .

3. Volume of prism = lia.

4. Volume of pyramid = \ Ba.

5. Volume of right circular cylinder = -nr'*a.

6. Lateral surface of right circular cylinder = 2irra.

7. Total surface of right circular cylinder = 2irr(r + a).

8. Volume of right circular cone = ' irfla.

9. Lateral surface of right circular cone = irrs.

10. Total surface of right circular cone = irr(r + s).

11. Volume of sphere = § irr3 .

12. Surface of sphere = 4 7rr2 .

13. In a geometrical series,

rl— a a (rn — 1)

r — 1 r —\

a = first term, r = common ratio, / = nth term, s = sum of n terms.

14. logab = loga + log&. 17. log Va = - log a. 19. loga a = 1.

15. log- = log a— log b. 18. logl = 0. 20. log- = — loga.
b a

16. loga" = nloga.

* In formulas 1-12, r denotes radius, a altitude, B area of base, and s slant

hsiu'jt.

1
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Functions of an angle in a right triangle. In any right triangle one of

whose acute angles is A, the functions of A are defined as follows

:

21. sin .4 =

cosA =

ta.nA =

opposite side

hypotenuse

adjacent side

hypotenuse

opposite side

adjacent side

csc .4

secA =

cot .4

hypotenuse

opposite side

hypotenuse

adjacent side

adjacent side

opposite side

From the above the theorem is easily derived :

22. In a right triangle a side is equal to the product of the hypote-

nuse and the sine of the angle opposite to that side, or to the product of

the hypotenuse and the cosine of the angle adjacent

to that side.

Angles in general. In trigonometry an angle XOA
is considered as generated by the line OA rotating

from an initial position OX. The angle is positive

when OA rotates from OX counter-clockwise, and
negative when the direction of rotation of OA is

clockwise. A b C

The fixed line OX is called the initial line, the line OA the terminal line.

Measurement of angles. There are two
important methods of measuring angular

magnitude ; that is, there are two unit

angles.

Degree measure. The unit angle is 7|3 of

a complete revolution, and is called a degree.

Circular measure. The unit angle is an

angle whose subtending arc is equal to the

radius of that arc, and is called a radian.

The fundamental relation between the unit angles is given by the

equation

23. 180 degrees = ir radians (it = 3.14159 )•

Or also, by solving this,

24. 1 degree = -

180

180
1 radian = = 57.29

0174 • • radians,

degrees.



FORMULAS AND TABLES FOR REFERENCE 3

These equations enable us to change from one measurement to another.

In the higher mathematics circular measure is always used, and will be

adopted in this book.

The generating line is conceived of as rotating around through as

many revolutions as we choose. Hence the important result

:

Any real number is the circular measure of some angle, and conversely,

any angle is measured by a real number.

26. cot x = ; sec x = ; esc x = —
tana; cos a; sinx

__ .
sins cosx

27. tan x = ; cot x =
cosx sinx

28. sin2 x + cos2 x = 1 ; 1 + tan2 x = secz x ; 1 + cot2 x = csc2 x.

29. sin (— x) = — sin x ; esc (— x) = — esc x
;

cos(— x)= cosx; sec (— x) = secx;

tan(— x) = — tanx ; cot(— x) =— cotx.

30. sin (it — x) = sin x ; sin (jr + x) = — sin x
;

cos (it — x) = — cos x ; cos (w + x) = *- cos x
;

tan(ir — x) = — tan x ; tan (ir + x) = tan x.

31. sin /- — xl = cosx ; sin I- + xj = cosx
;

cos l x)= sinx ; cosl- + xl =— sinx
;

tan(- — x) = cotx; tanl - + xl =— cotx.

32. sin (2 7T — x) = sin (— x) = - sin x, etc.

33. sin (x + y) = sin x cos y + cosx sin y.

34. sin (x — y) — sin x cos y — cos x sin y.

38. cos (x + y) = cos x cos y — sin x sin y.

36. cos (x — y) = cos x cos y + sin x sin y

.

tan x + tan y
37. tan(x + y) =

3<>. tan (x — y)
—

1 — tan x tan y

tan x — tan y

1 + tanx tan y
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39. sin2x = 2sinxcosx; cos

2

x = cos2 x — sin2 x ; tan2x =
2tanx

1 — tan2x

40. sin -
X ll — cosx x /l + COSX X /l— I

- = ± a/ : cos- = ± -» /
; tan- = ± \ -.—

2 \ 2 2 \ 2 ' 2 Yl+i2 2 ~ Y 1 + cosx

41. sin2x = 4 — icos2x ; cos2x = i + icos2x.

42. sin vl — sin B = 2 cos \ (A + #) sin J (^-1 — S).

43. cos A - cos B = - 2 sin £ (.1 + £) sin \ (A - B).

44. Theorem. Law of cosines. In any triangle the square of a side

equals the sum of the squares of the two other sides diminished by twice

the product of those sides by the cosine of their included angle ; that is,

a2 = 62 + c2 - 26ccos^l.

45. Theorem. Area of a triangle. The area of any triangle equals one

half the product of two sides by the sine of their included angle ; that is,

area = i ab sin C = i be sin A = } ca sin B.

2. Three-place table of common logarithms of numbers.

N
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3. Squares and cubes ; square roots and cube roots.

Wo.
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4. Natural values of trigonometric functions.

Angle in

Radians
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6. Natural values. Special angles.

Angle in

Radians



CHAPTER II

CARTESIAN COORDINATES

8. Directed line. Let X'X be an indefinite straight line,

and let a point 0, which we shall call the origin, be chosen

upon it. Let a unit of length be adopted, and assume that

lengths measured from to the right are positive, and to

the left negative.

Then any real number, if taken as the measure of the

length of a line OP, will determine a point P on the line. Con-

versely, to each point _ 5 _ 4 _ 3 _ 2 _, 0+1+2 +3+4+6 umt

P on the line will cor- jp
—=—~»-«—

<Hr~~~~" " x T°
respond a real num-

ber, namely the measure of the length OP, with a positive

or negative sign according as P is to the right or left of

the origin.

The direction established upon X'X by passing from the

origin to the points corresponding to the positive numbers is

called the positive direction -
, >

on the line. A directed line

is a straight line upon which an origin, a unit of length, and a

positive direction have been assumed.

An arrowhead is usually placed upon a directed line to indi-

cate the positive direction.

If A and D are any two points of a directed line such that

OA = a, OB = h,

then the length of the segment AB is always given by b — a
;

that is, the length of AB is the difference of the numbers
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corresponding to B and .-1. This statement is evidently equiv-
alent to the following definition :

For all jiositions of two points A and B on a directed line, the

length AB is given by

(1) AB = OB- OA,

where Is the origin.

(HI) (IV)

+5 -6 -2

The above definition is illustrated in each of the four figures,

as follows :

I. AB=OB-OA=6-3=+3; BA = OA- OB=3-V>=-3
II. AB=OB-OA---4-3 = -7 BA = OA-OB=3-(-4) = + 7

;

III. AB=OB-OA = + 5-(-3) = + 8; BA = OA-OB=-3-r> =s
;

IV. AB=OB-OA = -0-(-2) = -4;BA = OA-OB=-2-(-6) = + 4.

The following properties of lengths on a directed line are

obvious

:

(2) AB=-BA.
(3) AB is positive if the direction from A to B agrees with

the positive direction on the line, and negative if in the con-

trary direction.

The phrase "distance between two points" should not be used if

these points lie upon a directed line. Instead, we speak of the length

AB, remembering that the lengths AB and BA are not equal, but that

AB=-BA.

9. Cartesian * coordinates. Let A"'A' and Y'Y be two directed

lines intersecting at 0, and let P be any point in their plane.

Draw lines through P parallel to X'X and Y'Y respectively.

Then
>

if OM = a, ON= b,

* So called after Rene Descartes, 1596-1650, who first introduced the idea

of coordinates into the study of geometry.
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the numbers a, b are called the Cartesian coordinates of P, a the

abscissa and b the ordinate. The directed lines X'X and FT are

called the axes of coordi-

nates, X'X the axis of

abscissas, Y'Y the axis

of ordinates, and their in-

tersection O the origin.

The coordinates a, b of

P are written (a, b), and X ' M'/

the symbol P(a, b) is to

be read, " The point P,

whose coordinates are a

and b."

Any point P in the

plane determines two numbers, the coordinates of P. Con-

versely, given two real numbers a' and h', then a point P' in

the plane may always be constructed whose coordinates are

(«', b'). For lay off OM' = a', ON' = b', and draw lines parallel

to the axes through M' and N'. These lines intersect at P'

(a', b'). Hence

Eveiij point determines a pair of real numbers, and, conversely,

a pair of real numbers determines a point.

The imaginary numbers of algebra have no place in this

representation, and for this reason elementary analytic geome-

try is concerned only with the real numbers of algebra.

10. Rectangular coordinates. A rectangular system of coordi-

nates is determined when the axes X'X and Y' Fare perpendicular

to each other. This is the usual case, and will be assumed unless

otherwise stated.

The work of plotting points in a rectangular system is much
simplified by the use of coordinate or plottingpaper, constructed

by ruling off the plane into equal squares, the sides being

parallel to the axes.
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In the figure several points are plotted, the unit of length

being assumed equal to one division on each axis. The method
is simply this

:

Count off from O along X'X a number of divisions equal to

the given abscissa, and then from the point so determined a

Y'

x'

(-9, 4)

(-4 6)

(0,

(6,

(iOJ

Y

number of divisions up or down equal to the given ordinate,

observing the

Rule for signs

:

Abscissas are positive or negative according as they are laid

off to the right or left of the origin. Ordinate* are positive or

negative according as they are laid off above

or below the axis of x.

Rectangular axes divide the plane into

four portions called quadrants ; these are

numbered as in the figure, in which the

proper signs of the coordinates are also

indicated.

As distinguished from rectangular coordinates, the term

oblique coordinates is employed when the axes are not

Second

C--+)

x' o
Third

Y

First

Fourth
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perpendicular, as in the figure of Art. 9. The rule of signs

given above applies to this ease also. Note, however, in

plotting, that the ordinate MP is drawn parallel to OY.

In the following problems assume rectangular coordinates

unless the contrary is stated.

PROBLEMS

1. Plot accurately the points (3, 2), (3, - 2), (- 4, 3), (6, 0), (- 5, 0),

(0, 4).

2. What are the coordinates of the origin ? Ana. (0, 0).

3. In what quadrants do the following points lie if a and b are posi-

tive numbers : (- a, b) ? (- a, - b) ? (b, - a) ? (a, b) ?

4. To what quadrants is a point limited if its abscissa is positive ?

negative? if its ordinate is positive ? negative?

5. Draw the triangle whose vertices are (2, — 1), (— 2, 5), (— 8,-4).

6. Plot the points whose oblique coordinates are as follows, when the

angle between the axes is 60° : (2, - 3), (3, - 2), (4, 5), (- 6, - 7), (- 8, 0),

(9, -5), (-6, 2).

7. Draw the quadrilateral whose vertices are (0, — 2), (4, 2), (0, 6),

(— 4, 2), when the angle between the axes is 60°-

8. If a point moves parallel to the axis of x, which of its coordinates

remains constant ? If parallel to the axis of y ?

9. Can a point move when its abscissa is zero ? Where ? Can it move

when its ordinate is zero ? Where ? Can it move if both abscissa and

ordinate are zero ? Where will it be ?

10. Where may a point be found if its abscissa is 2 ? if its ordinate is

-3?
11. Where do all those points lie whose abscissas and ordinates are

equal ?

12. Two sides of a rectangle of lengths a and b coincide with the axes

of x and y respectively. What are the coordinates of the vertices of the

rectangle if it lies in the first quadrant ? in the second quadrant ? in the

third quadrant ? in the fourth quadrant ?

13. Construct the quadrilateral whose vertices are (— 3, 6), (— 3, 0),

(3, 0), (3, 6). What kind of a quadrilateral is it ? What kind of a quad-

rilateral is it when the axes are oblique ?
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14. Show that (x, y) and (x, — y) are symmetrical with respect to A"' A"

;

(z, y) and (— x, y) with respect to Y'Y; and (x, y) and (— x, — y) with

respect to the origin.

15. A line joining two points is bisected at the origin . If the coordinates

of one end are (a, — 6), what will be the coordinates of the other end ?

16. Consider the bisectors of the angles between the coordinate axes.

What is the relation between the abscissa and ordinate of any point of the

bisector in the first and third quadrants ? second and fourth quadrants ?

17. A square whose side is 2 a has its center at the origin. What will

be the coordinates of its vertices if the sides are parallel to the axes ? if

the diagonals coincide with the axes ?

Arts, (a, a), (a, —a), (— a, — a), (— a, a)
;

(aV2,0), (-aV2, 0), (0, aV£), (0, - oVi).

18. An equilateral triangle whose side is a has its base on the axis of

x and the opposite vertex above X'X. What are the vertices of the tri-

angle if the center of the base is at the origin ? if the lower left-hand

vertex is at the origin ?

aVz\ .. .. . A, (a aVz\
(0, 0), (a, 0),-•(14H4(°.^>

a aVs\
2'~2/'

11. Lengths. Consider any two given points

P^v Z/i)> P&v %)•

Then in the figure OM
%
= xv OM3

= x,
2 , MJ\ =

We may now easily prove the important

Theorem. The length I of the line y|

joining two points P-
i
(xv yj, P.

2
(x

2 , y2)

is given by the formula

(I) /=V(;q -*)« + (&-*,)•

Proof. Draw lines through J\ and

P parallel to the axes to form the x ' °

right triangle P
t
SPr Y'

Vv MJ\ = Vi-

Fi&vV,)

2 X

Then

and hence

P
1
S=OM

t
- OM,

sPi M.P.-M^: Vi - Vv

+ P,S

^ = V(^-.r/+(yi -2/.
2)

2
- Q.E.D.
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The same method is used in deriving (I) for any positions of

P, and P
2 ; namely, we construct a right triangle by drawing

lines parallel to the axes through P, and P
2

. The horizontal

side of this triangle is equal to the difference of the abscissas

of Pj and P
2
, while the vertical side is equal to the difference of

the ordinates. The required length is then the square root of the

sum of the squares of these sides, which gives (I). A number

of different figures should be drawn to make the method clear.

EXAMPLE

Find the length of the line joining the points (1, 3) and (— 5, 5).

Solution. Call (1, 3) Pv and (- 5, 5) P2
.

Then x
x
= 1, yx

= 3,

and x
2
= — 5, y2

= 5
;

and substituting in (I), we have

i=V(l+ 5)
2 + (3-5) 2 =V40=2VlO.

It should be noticed that we are simply

finding the hypotenuse of a right triangle

whose sides are 6 and 2.
X

X-5

Y

|3)

X

Remark. The fact that formula

(I) is true for all positions of the points P
l
and P

2
is of funda-

mental importance. The application of this formula to any

given problem is therefore simply a matter of direct substitu-

tion. In deriving such general formulas it is most convenient

to draw the figure so that the points lie in the first quadrant,

or, in general, so that all the quantities assumed as known shall

be positive.
PROBLEMS

1. Find the lengths of the lines joining the following points

:

(a) (- 4, - 4) and (1, 3).

(b) (-V2, VS) and (V5, \f
2).

,,,„„, . /i aV3\
(c) (0, 0) and I -» I. Ans. a.

(d) (a + b, c + a) and (c + a, 6 + c).

Ans. V74.

Ans. VlO.

Ans. V(6 - c)2 + (a - 6)".
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2. Find the lengths of the sides of the following triangles

:

(a) (0, 6), (1, 2), (3, - 5).

(b) (1, 0), (- l, - 5), (- 1, - 8).

(c) (a, b), (6, c), (c, d).

(d) (a, - b), (b, - c), (c, - d).

(e) (0, y), (- x, - y), (- x, 0).

3. Find the lengths of the sides of the triangle whose vertices are

(4, 3), (2, - 2), (- 3, 5).

4. Show that the points (1, 4), (4, 1), (5, 5) are the vertices of an

isosceles triangle. » p^ y

6. Show that the points (2, 2), (- 2, — 2), (2V§, - 2V§) are the

vertices of an equilateral triangle.

6. Show that (3, 0), (6, 4), (— 1, 3) are the vertices of a right triangle.

What is its area ?

7. Prove that (- 4, - 2), (2, 0), (8, 6), (2, 4) are the vertices of a

parallelogram. Also find the lengths of the diagonals.

8. Show that (11, 2), (6, - 10), (- 6, - 5), (- 1, 7) are the vertices

of a square. Find its area.

9. Show that the points (1, 3), (2, Vo), (2, — Vo) are equidistant

from the origin ; that is, show that they lie on a circle witli its center at

the origin and its radius equal to the VlO.

10. Show that the diagonals of any rectangle are equal.

11. Find the perimeter of the triangle whose vertices are (a, b), (— a, b),

(- a, - b).

12. Find the perimeter of the polygon formed by joining the following

points two by two in order : (6, 4), (4, - 3), (0, - 1), (- 5, - 4), (- 2, 1).

13. One end of a line whose length is 13 is the point (— 4, 8) ; the

ordinate of the other end is 3. What is its abscissa ? Ans. 8 or — 16.

14. What equation must the coordinates of the point (x, y) satisfy if

its distance from the point (7, — 2) is equal to 11 ?

15. What equation expresses algebraically the fact that the point (1, y)

is equidistant from the points (2, 3) and (4, 5) ?

16. Find the length of the line joining P
x
(xv y^ and P

2
(x2 , yt)

when

the coordinates are oblique.

Hint. Use the law of cosines, 44, p. 4.
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12. Inclination and slope. The angle between two intersecting

directed lines is defined to be the angle made by their positive

directions. In the figures the angle, between the directed lines

is the angle marked 6.

If the directed lines are parallel, then the

angle between them is zero or 180°, according

as the positive directions agree or do not

agree.

Evidently the angle between two directed

lines may have any value from to 180°

inclusive. Reversing the direction of either

directed line changes 6 to the supplement 180°

directions are reversed, the angle is unchanged.

When it is desired to assign a positive direction to a line

intersecting A' 'A", we shall always assume the upward direction

as positive. *

The inclination of a line is the angle be- 8=0

tween the axis of x and the line when the

latter is given the upward direction. a _

0. If both

This amounts to saying that the inclination is the

angle above the a;-axis and to the right of the given line, as in the figure.

The slope of a line is the tangent of its inclination.

The inclination of a line will

be denoted by the Greek letter a,

av a
2 , a', etc. ("alpha," etc.); its

slope by m, mv m2 , m', etc., so

that m = tan a, m,^ = tan a , etc.

The inclination may be any

angle from to 180° inclusive.

The slope may be any real nnm-

ber, since the tangent of an angle

in the first two quadrants may be any number positive or nega-

tive. The slope of a line parallel to X 'X is of course zero since
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the inclination is or 180°. For a line parallel to Y'Y the slope

is infinite.

Theorem. The slope m of the line passing through two points

p
x(xv Vi)> pn(x2> V?) is

ff
iven hV

(II)

Proof. In the figure

, Vt - y3

OM
1
= a-,, OM

9
xv M

r
P

x
=y

x
, M

t
P
t
= Vr

Draw P
a
S parallel to OX. Then in the right triangle P

i
SPv

since angle P^S = a, we have

SP,
(1)

But

and

m = tan a =

SP
1
= M

1
P

1

-

P
2
S

=
1̂
P

l
-M

2
P

i
=y

1

-
7/i ;

P
t
8 = MJl

l

OM
1
- OM

2
= x

1

Substituting these values in (1) gives (II). o. e.d.

The student should derive (II) when a is obtuse.*

We next derive the conditions for parallel lines and for per-

pendicular lines in terms of their slopes.

Theorem. If two lines are parallel, their slopes are equal ; if

perpendicular, the slope of one is the negative reciprocal of the

slope of the other, and conversely.

Proof Let a
t
and a

2
be the inclinations and m

x
and m

2
the

slopes of the lines.

If the lines are parallel, a
1
= ar .'. w

x
= ra

2
.

* To construct a line passing through a given point Pj whose slope is a pos-

itive fraction - , we mark a, point S b units to the right of JPt and a point P2
b

a
a units above S, and draw PiP3 . If the slope is a negative fraction, -- > then

plot S a units to the left of Pt
.
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If the lines are perpendicular, as in the figure,

a= - + a..

,
= tan a

2
= tan (^ + a,

j

= - cot a
x

(by 31, p. 3)

1
.'. TO

=

' TOj

The converse is proved by retracing the steps with the

assumption, in the second part, that a
2

is greater than a

.

PROBLEMS

1. Find the slope of the line joining (1, 8) and (2, 7). Arts. 4.

2. Find the slope of the line joining (2, 7) and (—4, — 4). Ans. *f

.

3. Find the slope of the line joining (Vs, Vg) and (— V2, Va).

Ans. 2V6- 5.

4. Find the slope of the line joining (o + b, c + a), (c + a, b + c).

a b — a.

Ans.
c-b

5. Find theslopes of the sides of the triangle whose vertices are (1, 1),

(-1, -l), (A -Vs). 1+V3 i-V3
Ans. 1, —

.

—

.

1-V3 1+Vs
6. Prove by means of slopes that (- 4, - 2), (2, 0), (8, 6), (2, 4) are

the vertices of a parallelogram.

7. Prove by means of slopes that (3, 0), (6, 4), (— 1, 3) are the vertices

of a right triangle.

8. Prove by means of slopes that (0, - 2), (4, 2), (0, 6), (- 4, 2) are

the vertices of a rectangle, and hence, by (I), of a square.

9. Prove by means of their slopes that the diagonals of the square in

Problem 8 are perpendicular.

10. Prove by means of slopes that (10, 0), (5, 5), (5, — 5), (— 5, 5) are

the vertices of a trapezoid.

11. Show that the line joining (a, b) and (c, — d) is parallel to the line

joining (— a, — b) and (— c, d).
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12. Show that the line joining the origin to (a, b) is perpendicular to

the line joining the origin to (— 6, a).

13. What is the inclination of a line parallel to Y'Y? perpendicular

to Y'Y ?

14. What is the slope of a line parallel to Y'Y'} perpendicular to Y'Yl

15. What is the inclination of the line joining (2, 2) and (— 2, — 2) ?

A
"

Ans. —

.

4

16. What is the inclination of the line joining (— 2, 0) and (— 5, 3) ?

. Zw
Ans.

4

17. What is the inclination of the line joining (3, 0)and (4, V3) ?

A
"

o

18. What is the inclination of the line joining (3, 0) and (2, V3) ?

-4ns.
3

19. What is the inclination of the line joining (0, — 4) and (— a/3,— 5) ?

A
*

Ans. -
6

20. What is the inclination of the line joining (0, 0) and (— V3, 1) ?

. hir
Ans.

6

21. Prove by means of slopes that (2, 3), (1, — 3), (3, 9) lie on the

same straight line-

22. Prove that the points (a, b + c), (b, c + a), and (c, a + b) lie on the

same straight line.

.23. Prove that (1, 5) is on the line joining the points (0, 2) and (2, 8)

" and is equidistant from them.

24. Prove that the line joining (3, — 2) and (5, 1) is perpendicular to

the line joining (10, 0) and (13, - 2).

13. Point of division. Let P
t
and P

2
be two fixed points on a

directed line. Any third point on the line, as P or P', is said

" to divide the line into -

two segments," and is
'

'

called a point of division. The division is called internal or

external according as the point falls within or without P
X
P.

2
.

The position of the point of division depends upon the ratio
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of its distances from P
l
and P

2
. Since, however, the line is

directed, some convention must be made as to the manner of

reading these distances. We therefore adopt the rule

:

If P is a point of division on a directed line passing through

P
1
and P

2, then P is said to divide P
1
P

2
into the segments P

X
P

* p,
p

and PP.. The ratio of division is the value of the ratio * ——
2 Pl\

We shall denote this ratio by A. (Greek letter " lambda "),

that is, p p
X = PP

2

'

If the division is internal, 7>

]
7> and PP

2
agree iii direction

and therefore in sign, and A. is therefore positive. In external

division A is negative.

The sign 01 A. theretore

indicates whether the
' 2

point of division P is within or without the segment P
t
P

t ;

and the numerical value determines whether P lies nearer P
or Pr The distribution of A is indicated in the figure.

That is, A may have any positive value between 7* and 7>
2 ,

any negative value between and — 1 to the left of 7* , and any

negative value between — -1 and — co to the right of 7'„. The

value — 1 for A is excluded.

Introducing coordinates, we next prove the

Theorem. Point of division. The coordinates (x, y) of the point

of division P on the line joining P
1
(a;

1, y^j, P2
(x.

2 > y2),
such that

the ratio of the segments is

ppr A'

are given by the formulas

* To assist the memory in writing down this ratio, notice that the point of

division P is written last in the numerator and first in the denominator.
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Proof. Given \ = —J—^
Draw the ordinates M

X
PV MP, and M

2
P

2
. Then, by geometry,

these ordinates will intercept proportional segments on the
transversals P

X
P

2
and OX ; that is,*

(1)
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EXAMPLES

1. Find the point P dividing P
t
(-1, -6), P

2 (3, 0) in the ratio

X=-
Solution. By the statement,
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PROBLEMS

1. Find the coordinates of the middle point of the line joining (4, — 6)
and (- 2,-4). Ans. (1,-5).

2. Find the coordinates of the middle point of the line joining

(a + 6, c + d) and (a - &, d - c). Am. (a, d).

3. Find the middle points of the sides of the triangle whose vertices

are (2, 3), (4, - 5), and (- 3,-6). Also find the lengths of the medians.

4. Find the coordinates of the point which divides the line joining

(— 1, 4) and (— 5, — 8) in the ratio 1:3. Am. (— 2, 1).

5. Find the coordinates of the point which divides the line joining

(— 3, — 5) and (6, 9) in the ratio 2 : 5. Ans. (— 5, — 1).

6. Find the coordinates of the point which divides the line joining

(2, 6) and (— 4, 8) into segments whose ratio is — f . Ans. (— 22, 14).

7. Find the coordinates of the point which divides the line joining

(— 3, — 4) and (5, 2) into segments whose ratio is — § . Ans. (— IS), — 16).

8. Find the coordinates of the points which trisect the line joining

the points (- 2, - 1) and (3, 2). Am. (- ', 0), (f, 1).

9. Prove that the middle point of the hypotenuse of a right triangle

is equidistant from the three vertices.

10. Show that the diagonals of the parallelogram whose vertices are

(I, 2), (- 5, - 3), (7, - C), (1, - 11) bisect each other.

11. Prove that the diagonals of any parallelogram bisect each other.

12. Show that the lines joining the middle points of the opposite sides

of the quadrilateral whose vertices are (6, 8), (— 4, 0), (— 2, — 6), (4,— 4)

bisect each other.

13. In the quadrilateral of Problem 12 show by means of slopes that the

lines joining the middle points of the adjacent sides form a parallelogram.

14. Show that in the trapezoid whose vertices are (— 8, 0), (— 4, — 4),

(— 4, 4), and (4, — 4) the length of the line joining the middle points of

the nonparallel sides is equal to one half the sum of the lengths of the

parallel sides. Also prove that it is parallel to the parallel sides.

15. In what ratio does the point (— 2, 3) divide the line joining the

points (- 3, 5) and (4, - 9) ? ^iiis.
J.

16. In what ratio does the point (16, 3) divide the line joining the

points (- 5, 0) and (2, 1) ? Ans. - j.

17. In any triangle show that a line joining the middle points of any

two sides is parallel to the third side and equal to one half of it.
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18. If (2, 1), (3, 3), (6, 2) are the middle points of the sides of a triangle,

what are the coordinates of the vertices of the triangle ?

Am. (- 1, 2), (5, 0), (7, 4).

19. Three vertices of a parallelogram are (1, 2), (— 5, — 3), (7, — 6).

What are the coordinates of the fourth vertex ?

Ana. (1, - 11), (- 11, 5), or (13, - 1).

20. The middle point of a line is (6, 4), and one end of the line is (5, 7).

What are the coordinates of the other end ? Ana. (7, 1).

21. The vertices of a triangle are (2, 3), (4, - 5), (- 3, - 6). Find the

coordinates of the point where the medians intersect (center of gravity).

14. Areas. In this section the problem of determining the

area of any polygon, the coordinates of whose vertices are

given, will be solved. We begin with the

Theorem. The area of a triangle whose vertices are the origin,

P\(xv ?/i)>
and ^"2(^2' 2/2)

*'s 9iven by the formula

(V) Area of A OP& = %(x^ - xtyx) .

Proof In the figure let

a=Z XOPv

P (Greek " beta") = Z XOP
2 ,

(Greek "theta ") = Z P
x
OPv

(1) .-. = /?-«.

By 45, p. 4,

(2) Area A OP
x
P

2
= %OP

x
- OP

2
sin

= iOP
1
.GP

1
ain(

/
8-«)

= •£ OP
1
OP

2
(sin p cos a — cos /? sin a).

(By 34, p. 3)

P>(x„y
t )

M, M
l
X

(by (i))

(3)

But in the figure

sin/J = M2P2

OP,
'

M,Pj
.

OP,

Jh_
OP,

OP,

cos/3 :

cos a =

OM2

OK
OM

l

OP,
'

°P,

OP,

Substituting in (3) and reducing, we obtain

Area A OPJ>
2
= %(x

xy2
- ay/,). Q.E.D.
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EXAMPLE

Find the area of the triangle whose vertices are the origin, (—2, 4)
and (-5, -1).

Solution. Denote (— 2, 4) by Pv (- 5, — 1)

byP2 . Then

Substituting in (V),

Area = J [- 2 . - 1 - (- 5) • 4] = 11.

Then area =11 unit squares.

If, however, the formula (V) is applied by denoting (- 2, 4) by P
2 ,

and (—5, — 1) by Pv the result will be — 11.

The two figures for this example are drawn below.

The eases ofpositive and negative area are distinguished by the

Theorem. Passing around the

perimeter in the order of the

vertices 0,Pp P2 ,

if the area is on the left, as in

Fig.l, then (V) gives a posi-

tive result;

if the area is on the right, as

in Fig. 2, then (V) gives a negative result.

Proof. In the formula

(4) Area A OP
x
l\ = \ OP

x
OP

2
sin

the angle 6 is measured from OP
l

to OP„ within the triangle.

Tic. 1 Fig. 2

V

5
•p.

Hence 6 is positive when the area

lies to the left in passing around

the perimeter 0, Pv P2 , as in Fig. 1,

since 6 is then measured counter-

clockwise (p. 2). But in Fig. 2, 6 is

measured clockwise. Hence 6 is negative and sin 6 in (4) is

also negative. q.e.d.

We apply (V) to any triangle by regarding its area as made

up of triangles with the origin as a common vertex.

Fig. 1

O
Fig. 2
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Theorem. The area of a triangle whose vertices are P
1
(x

1 , yj,

pi(x2> Vj> p3 (
x

s > %) is 9iven hy

(VI) Area APjP.P, = §(^0, - x2 y^ + x2y3 - x3y2+ x3yx - xty3).

This formula gives a positive or negative result according as

the area lies to the left or right in passing around the perimeter

in the order P
x
P

2
P

s
. pl _, /»

1 2 ji_-—-

—

~y^ —— ^

Proof. Two cases must be distin- < ,-y

guislied according as the origin is / //
within or without the triangle. 1/

Fig. 1, origin within the triangle. p p
By inspection, Fig. 1 Fig. 2

(5) Area A P
X
P

2
P

3
= A OPjP

2
+ A OPJP

z
+ A OP

a
Pv

since these areas all have the same sign.

Fig. 2, origin without the triangle. By inspection,

(6) Area A PJ\PZ
= A OPjP, + A OP.

2
P

s
+ A OP,P

x ,

since OP P
2

, OP
3
P

l
have the same sign, but OP

3
P

t
the opposite

sign, the algebraic sum giving the desired area.

By (V), A OP^
2
= i(xlVt - x

2l/l),

^OP
2
P

s
= i(x2Vs -^y2),

and AOP^ = i (x,y
t
- x

ty8).

Substituting in (5) and (6), we have (VI).

Also in (5) the area is positive, in (6) negative. q.e.d.

An easy way to apply (VI) is given by the following

Rule for finding the area of a triangle. 1 ^1

First step. Write down the vertices in two columns,
x
% J*

abscissas in one, ordinates in the other, repeating the
x

z &*

coordinates of the first vertex.
x

\ V\

Second step. Multiply each abscissa by the ordinate of the

next row, and add results. This gives x
xy2
+ x

2ys
+ x y .

Third step. Multiply each ordinate by the abscissa of the next

row, and add results. This gives yp, + y2
x
s

-\- yx.
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Fourth step. Subtract the result of the third step from that

of the second step, and divide by 2. This gives the required

• area, namely formula (VI).

Formula (VI) may be readily memorized, by remarking that

the right-hand member is a determinant of simple form, namely

L ?1 1

Area A P^P
&
= *

In fact, when this determinant is expanded by the usual

rule, the result, -when divided by 2, is precisely (VI).

It is easy to show that the above rule applies to any polygon

if the following caution be observed in the first step

:

Write down the coordinates of the vertices in an order agreeing

with that established by passing continuously around the perim-

eter, and repeat the coordinates of the first vertex.

EXAMPLE

Find the area of the quadrilateral whose vertices are (1, 6), (— 3, —4),

(2, -2), (-1,3).

Solution. Plotting, we have the figure from which we choose

the order of the vertices as indicated by the arrows. Following

the rule :

First step. Write down the vertices in order.

Second step. Multiply each abscissa by the

ordinate of the next row, and add. This gives

lx3+(-lx-4) + (-3x-2) + 2x6 = 25.

Third step. Multiply each ordinate by the

abscissa of the next row, and add. This gives

6x-l+3x-3 + (-4 x 2) + (-2x1)= - 25.

Fourth step. Subtract the result of the third

step from the result of the second step, and

divide by 2

Area = 25 + 25
1 25 unit squares. Ans.

The result has the positive sign, since the

area is on the left.

1

-1
-3

2

1

3

-4
-2

6
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PROBLEMS

1. Find the area of the triangle whose vertices are (2, 3), (1, 5),

(- 1, -2). Ans - ¥•

'

2. Find the area of the triangle whose vertices are (2, 3), (4, - 5),

(_ 3,-6). Ans- 29.

3. Find the area of the triangle whose vertices are (8, 3), (— 2, 3),

(4, — 5). Ans. 40.

4. Find the area of the triangle whose vertices are (a, 0), (— a, 0),

(0, 6). Ana, ab.

5. Find the area of the triangle whose vertices are (0, 0), (xv y^),

2

6. Find the area of the triangle whose vertices are (o, 1), (0, b), (c, 1).

Ans
(O-CH6-0)

2

7. Find the area of the triangle whose vertices are (a, 6), (6, a),

(c, - c). Ans. I (a2 - ft
2
).

8. Find the area of the triangle whose vertices are (3, 0), (0, 3 Vs),

(6, 3V3). Ans. 9VJ3.

9. Prove that the area of the triangle whose vertices are the points

(2, 3), (5, 4), (— 4, 1) is zero, and hence that these points all lie on the

same straight line.

10. Prove that the area of the triangle whose vertices are the points

(a, b + c), (6, c + a), (c, a + b) is zero, and hence that these points all lie

on the same straight line.

11. Prove that the area of the triangle whose vertices are the points

(a, c + a), (— c, 0), (— a, c — a) is zero, and hence that these points all

lie on the same straight line.

12. Find the area of the quadrilateral whose vertices are (— 2, 3),

(-3, -4), (5,-1), (2, 2). Ans. 31.

13. Find the area of the pentagon whose vertices are (1, 2), (3, — 1),

(6, - 2), (2, 5), (4, 4). Ans. 18.

14. Find the area of the parallelogram whose vertices are (10, 5),

(-2, 5), (- 5, - 3), (7, - 3). Am. 96.

15. Find the area of the quadrilateral whose vertices are (0, 0), (5, 0),

(9, 11), (0, 3). Ans. 41.
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16. Find the area of the quadrilateral whose vertices are (7, 0), (11, 9),

(0, 5), (0, 0). Arts. 59.

17. Show that the area of the triangle whose vertices are (4, 6), (2, — 4),

(— 4, 2) is four times the area of the triangle formed by joining the

middle points of the sides.

18. Show that the lines drawn from the vertices (3, — 8), (— 4, 6),

(7, 0) to the point of intersection of the medians of the triangle divide

it into three triangles of equal area.

19. Given the quadrilateral whose vertices are (0, 0), (6, 8), (10, — 2),

(4, — 4); show that the area of the quadrilateral formed by joining the

middle points of its adjacent sides is equal to one half the area of the

given quadrilateral.



CHAPTER III

CURVE AND EQUATION

15. Locus of a point satisfying a given condition. The curve*

(or group of curves) passing through all. points which satisfy

a given condition, and through no other points, is called the

locus of the point satisfying that condition.

For example, in plane geometry, the following results are

proved

:

The perpendicular bisector of the line joining two fixed

points is the locus of all points equidistant from these points.

The bisectors of the adjacent angles formed by two lines are

the locus of all points equidistant from these lines.

To solve any locus problem involves two things

:

1. To draw the locus by constructing a sufficient number of

points satisfying the given condition and therefore lying on

the locus.

2. To discuss the nature of the locus; that is, to determine

properties of the curve.

Analytic geometry is peculiarly adapted to the solution of

both parts of a locus problem.

16. Equation of the locus of a point satisfying a given condition.

Let us take up the locus problem, making use of coordinates.

We imagine the point P(x, y) moving in such a manne.r that

the given condition is fulfilled. Then the given condition will

lead to an equation involving the variables x and y. The

following example illustrates this.

*The word "curve" will hereafter signify any continuous line, straight

or curved.

30



CURVE AND EQUATION 31

EXAMPLE

The point P (x, y) moves so that it is always equidistant from

A (— 2, 0) and B{— 3, 8). Find the equation of the locus.

Solution. Let P(x, y) be any point on the locus. Then by

the given condition

(1) PA = PB.

But, by formula (I), p. 13,

PA = V(as + 2)
2 + (y - 0)

2

,

and PB = V(x + 3)
2 + (y - 8)

2
.

Substituting in (1),

(2) V(x + 2)
2 + (y-0)2

= V(x + 3)
2 + (y-8)2

.

Squaring and reducing,

(3) 2 x - 16 y + 69 = 0.

In the equation (3), x and y are variables representing the

coordinates of any point on the locus ; that is, of any point

on the perpendicular bisector of the line AB. This equation

is called the equation of the locus ;
that is, it is the equation of

the perpendicular bisector CP. It has two important and

characteristic properties

:

1. The coordinates of any point on the locus may be sub-

stituted for x and y in the equation (3), and the result will be

true.

For let P^, t/j) be any point on the locus. Then P
X
A = P

%
B,

by definition. Hence, by formula (I), p. 13,

(4) V(x
1
+2)2 + y

2 = V^+S^ + ^-S)*,

or, squaring and reducing,

(5) 2^-16^+69 = 0.
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But this equation is obtained by substituting x^ and y x
for x

and y respectively in (3). Therefore .»-, and y l
satisfy (3).

2. Conversely, eve"ry point whose coordinates satisfy (3) will

lie upon the locus.

For if P
1
(xv 7/j) is a point whose coordinates satisfy (3), then

(5) is true, and hence also (4) holds. Q. b. d.

In particular, the coordinates of the middle point C of A

and B, namely, x = — 2£, y = 4 (IV, p. 21), satisfy (3), since

2(-2j)-16x 4 + 69 = 0.

This discussion leads to the definition

:

The equation of the locus of a point satisfying a given condi-

tion is an equation in the variables x and y representing coor-

dinates such that (1) the coordinates of every point on the

locus will satisfy the equation ; and (2) conversely, every point

whose coordinates satisfy the equation will lie upon the locus.

This definition shows that the equation of the locus must be

tested in two ways after derivation, as illustrated in the exam-

ple of this section. The student should supply this test in the

examples and problems of Art. 17.

From the above definition follows at once the

Corollary. A point lies upon a curve when and only when its

coordinates satisfy the equation of the curue.

17. First fundamental problem. To find the equation of a

curve which is defined as the locus of a point satisfying a given

condition.

The following rule will suffice for the solution of this prob-

lem in many cases

:

Rule. First step. Assume that P (x, y) is any point satisfying

the given condition, and is therefore on the curve.

Second step. Write down the given condition.

Third step. Express the given condition in coordinates and

simplify the result. The final equation, containing x, y, and the

given constants of the problem, will be the required equation.
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EXAMPLES

1. Find the equation of the straight line passing through P
l
(4, — 1)

q _
and having an inclination of

Solution. First step. Assume P (x, y) any point on the line.

Second step. The given condition, since the

. ,. ... . 3x
inclination a is— , may he written

4

(1) slope of P
1
P = tan a = — 1.

Third step. From (II), p. 17,

(2) slope of P
r
P = tan a = Vl ~ Vi = ^-±^ .

JU-t ~~~~ ti/rt <*/ ~—* ^t

[By substituting (x, y) for (x
t , yt ),

and (4, — 1) for (x
2 , y2 ).]

V + l

t
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Third step. By formula (I), p. 13,

PC = V(x + 1)« + (y

Substituting in (6),

. 2)
2

V(x+l)2 + (y-2)2 = 4.

Squaring and reducing,

(7) x2 + 2/
2 + 2x-4y-ll = 0.

This is the required equation, namely,

the equation of the circle whose center is

(— 1, 2) and radius equal to 4.

PROBLEMS

1. Find the equation of a line parallel to OY and

(a) at a distance of 4 units to the right.

(b) at a distance of 7 units to the left.

(c) at a distance of 2 units to the right of (3, 2).

(d) at a distance of 5 units to the left of (2, — 2).

2. Find the equation of a line parallel to OX and

(a) at a distance of 3 units above OX.
(b) at a distance of 6 units below OX.

(c) at a distance of 7 units above (— 2, — 3).

(d) at a distance of 5 units below (4, — 2).

3. What is the equation of XX' ? of YY' ?

4. Find the equation of a line parallel to the line x = 4 and 3 units

to the right of it ; 8 units to the left of it.

5. Find the equation of a line parallel to the line y = — 2 and 4 units

below it ; 5 units above it.

6. What is the equation of the locus of a point which moves always

at a -distance of 2 units from the axis of x ? from the axis of y ? from

the line x = — 5 ? from the line y — 4 ?

7. What is the equation of the locus of a point which moves so as to

be equidistant from the lines x = 6 and x = 9 ? equidistant from y = 3

and y = — 7 ?

8. What are the equations of the sides of the rectangle whose vertices

are (5, 2), (5, .5), (-2, 2), (-2, 5)?
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In Problems 9 and 10, P
l

is a given point on the required line, in is

the slope cf the line, and a its inclination.

9. What is the equation of a line if

(a) Pj is (0, 3) and m = - 3 ? Ans: 3x + y-3 = 0.

(b) Pj is (- 4, - 2) and m = i ? Ans. x - 3 y - 2 = 0.

V2
(c) P

t
is (- 2, 3) and m =— ? ^ns . V2x- 2^ +6 + 2 V2 = 0.

V3
(d) P

t
is (0, 5) and m = —- ? Ans. V3 x - 2 y + 10 = 0.

(e) Pj is (0, 0) and m = — j
?' Ans. 2 a; + 3 y = 0.

(f) P, is (a, 6) and m = 0?

(g) Pj is (— a, b) and m = cc?

10. What is the equation of a line if

(a) Pj is (2, 3) and a = 45° ?

(b) P
x
is (- 1, 2) and a = 45° ?

(c) ?! is (- a, - 6) and a = 45° ?

(d) P
x
is (5, 2) and a = 60° ?

(e) P, is (0, - 7) and a = 60° ?

(f) Pj is (- 4, 5) and a = 0°?

(g) P
1

is (2, - 3) and a = 90° ?

(h) Pj is (3, - 3 V3) and a = 120° ?

(i) P
t
is (0, 3) and or= 150° ?

(j) P, is (a, b) and a = 135°?

11. Find the equation of the straight line which passes through the

points

(a) (2, 3) and (- 4, - 5). Ans. ix - Zy + 1 = 0.

Hint. Find the slope by (II), p. 17, and then proceed as in Problem 9.

(b) (2, - 5) and (- 1, 9). -4ns. Ux + 3y-13 = 0.

(c) (- 1, 6) and (6, - 2). Ans. 8x+Ty-Z4 = 0.

(d) (0, - 3) and (4, 0). Ans. 3x-iy-12 = 0.

(e) (8, - 4) and (- 1, 2). Ans. 2x + Zy-i = 0.

12. Find the equation of the circle with

(a) center at (3, 2) and radius = 4. Ans. x2 + y"1 - 6 x - 4 y - 3 = 0.

(b) center at (12, - 5) and r = 13. Ans. x2 + y* - 24 x + Wy = 0.

(c) center at (0, 0) and radius = r. Ans. x2 + V
2 = r".

(d) center at (0, 0) and r = 5. -4ms. x2 + y
2 = 25.

(e) center at (3 o,4 a) and r = 5a. 4ns. x2 + y
2 - 2a(3x + 4y) = 0.

(f ) center at (6 + c, 6 — c) and r = c.

^Ins. x2 + y
2 -2(6 + c)x-2(6-c)y + 2i2 + c2 = 0.

4 ns.
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13. Find the equation of a circle whose center is (5, — 4) and whose

circumference passes through the point (— 2, 3).

14. Find the equation of a circle having the line joining (3, — 5) and

(— 2, 2) as a diameter.

15. Find the equation of a Circle touching each axis at a distance 6 units

from the origin.

16. Find the equation of a circle whose center is the middle point of

the line joining (— 6, 8) to the origin and whose circumference passes

through the point (2, 3).

17. A point moves so that its distances from the two fixed points

(2, — 3) and (— 1, 4) are equal. Find the equation of the locus.

Ana. Zx — ly + 2 = 0.

18. Find the equation of the perpendicular bisector of the line joining

(a) (2, 1), (- 3, - 3). Ans. lOx + 8y +13 = 0.

(b) (3, 1), (2, 4). Ans. x-Zy + 5 = 0.

(c) (-1, -1), (3, 7). Ans. x + 2y - 7 = 0.

(d) (0, 4), (3, 0). Ans. 6x-8y+7 = 0.

(e) (x1( ?/,), (x
2 , 2/2 ).

Ans. 2 (x
l
-x„)x + 2 (y 1

— y2)y + x
2
2 - x, 2 + y* — y* = 0.

19. Show that in Problem 18 the coordinates of the middle point of the

line joining the given points satisfy the equation of the perpendicular

bisector.

20. Find the equations of the perpendicular bisectors of the sides of the

triangle (4, 8), (10, 0), (6, 2). Show that they meet in the point (11, 7).

18. Locus of an equation. The preceding sections have illus-

trated the fact that a locus problem in analytic geometry leads

at once to an equation in the variables x and y. This equation

having been found or being given, the complete solution of the

locus problem requires two things, as already noted in Art. 15

of this chapter, namely :

1. To draw the locus by plotting a sufficient number of

points whose coordinates satisfy the given equation, and through

which the locus therefore passes.

2. To discuss the nature of the locus ; that is, to determine

properties of the curve.
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These two problems are respectively called

:

1. Plotting the locus of an equation (second fundamental
problem).

2. Discussing an equation (third fundamental problem).

For the present, then, we concentrate our attention upon some
given equation in the variables 'a; and y (one or both) and start

out with the definition :

The locus of an equation in two variables representing coordi-

nates is the curve or group of curves passing through all points

whose coordinates satisfy that equation,* and through such

points only.

From this definition the truth of the following theorem is at

once apparent

:

Theorem I. If the form, of the given equation he changed in

any way (for example, by transposition, by multiplication by a

constant, etc.), the locus is entirely unaffected.

We now take up in order the solution of the second and third

fundamental problems.

19. Second fundamental problem.

Rule to plot the locus of a given equation.

First step. Solve the given equation for one of the variables

in terms of the other.']

* An equation in the variables x and y is not necessarily satisfied by the

coordinates of any points. For coordinates are real numbers, and the form of

the equation may be such that it is satisfied by no real values of x and ?/. For
example, the equation x2 + y<i + i _ o

is of this sort, since, when x and ;/ are real numbers, x2 and j/
2 are necessarily

positive (or zero), and consequently x2 +y 2 + lis always a positive number
greater than or equal to 1, and therefore not equal to zero. Such an equation

therefore has no locus. The expression " the locus of the equation is imagi-

nary " is also used.

An equation may be satisfied by the coordinates of a finite number of points

only. For example, x2 + if- = is satisfied by x = 0, y = 0, but by no other real

values. In this case the group of points, one or more, whose coordinates sat-

isfy the equation, is called the locus of the equation.

t The form of the given equation will often be such that solving for one vari-

able is simpler than solving for the other. Always choose the simpler solution.
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Second step. By this formula compute the values of the vari-

able for which the equation has been solved by assuming real

values for the other variable.

Third step. Plot the points corresponding to the values so

determined.

Fourth step. If the points are numerous enough to suggest

the general shape of the locus, draw a smooth curve through

the points.

Since there is no limit to the number of points which may

be computed in this way, it is evident that the locus may be

drawn as accurately as may be desired by simply plotting a

sufficiently large number of points.

Several examples will now be worked out. The arrangement

of the work should be carefully noted.
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Second step. Computing y by assuming values of x, we find the table of
values below :

X
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Third step. Plot the corresponding points.

Fourth step. Draw a smooth curve through these points.

The student will doubtless remark that the locus of Example 1, p. 38,

appears to be a straight line, and also that the locus of Example 3, p. 39,

appears to be a circle. This is, in fact, the case. But the proof must be

reserved for later sections.

PROBLEMS

1. Plot the locus of each of the following equations

:

(a)x + 2j/ = 0. . ( i) x = y
2 + 2y-3. (q) x2 + V

2 = 25.

(b)x + 2i/ = 3. (j)4x = y
s

. (r) x2 + y
2 + 9x = 0.

(c) 3x-y + 5 = 0. (k) 4x = y
s -\. (s) x2 + y

2 + 4y = 0.

(d)y = 4x2
. (\)y = xs -l. (t) x2 + y

2 - 6x-16 = 0.

(ej\x2 + 4 y = 0. (m) y = xs - x. (u) x2 + y
2 - 6y — 16 = 0.

(f)y = x2 -3. (n) j/ = x3 -x2 -5. (v)4y = xi -8.

(g) x2 + 4 ?/ - 5 = 0. (o) x2 + y
2 = 4. (w) 4 x = y* + 8.

(h) 2/ = x2 + x + l. (p) x2 + i/
4 = 9. (x) 4y2 =x3 -\.

The following problem illustrates the

Theorem. // an equation can be put in the form of a product of variable

factors equal to zero, the locus is found by setting each factor equal to zero

and plotting each equation separately.

2. Draw the locus of 4 x2 — 9 y
2 = 0.

Solution. Factoring,

(1) (2x-3y)(2x + 3y) = 0.

Then, by the theorem, the locus consists of the straight lines (p. 59)

(2) 2x- 3^ = 0, and

(3) 2x + 3j/ = 0.

Proof. 1 . The coordinates ofany point (x
x , y ,) which satisfy (1) will satisfy

either (2) or (3).

For if (x
1 , 2/,) satisfies (1),

(4) (2x
l
-3y

1
)(2x

l
+ 3yl )

= 0.

This product can vanish only when one of the factors is zero. Hence

either 2x
1
-3y

1
=0,

and therefore (x1( yt ) satisfies (2)

;

or 2x
1
+ 3y1

= 0,

and therefore (x lt yx)
satisfies (3).
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2. A point (Xj, yj on either of the lines defined by (2) and (8) will also lie

on the locus o/(l).

1 For if (xi, j^) is on the line 2 x — 3 y = 0, then (Corollary, p. 32)

(5) 2x
1
-3y

1
= 0.

Hence the product (2x, — 3^) (2x
x + 3^) also vanishes, since by (t)

the first factor is zero, and therefore (x
x , y,) satisfies (1).

Therefore every point on the locus of (1) is also on the locus of (2) and

(3), and conversely. This proves the theorem for this example. Q. E. D.

3. Show that the locus of each of the following equations is a pair of

straight lines, and plot the lines :

(a) xy = 0. ( 1
) x2 — y

2 + x + y = 0.

(b).x2 = 9y2
. (m) x2 - 3xy -4y2 = 0.

(c) x2 — 2/
2 = 0. (n ) x'

2 — xy + 5 x — 5 y = 0.

(d) y
2 -6y = 7. (o) x2 - 4y2 + 5x + lOy = 0.

(e) xy — 2x = 0. (p) x2 + 2xy + y
2 + x + y = 0.

(f) 9x2 -2/2 = 0. (q) x2 + 3xy + 2y2 + x + y = 0.

(g) x2 - 3x^ = 0. (r) x2 -2xy+y2 + 6x-6y = 0.

(h) y
2 + 4xy = 0. (s) 3x2 + xy -2y2 + 6x- 4y = 0.

(i) x2 -4x- 5 = 0. (t) 3x2 ~2xy-y2 + 5x-5y = 0.

(j) xy—2x2 — 3x = 0. (u) x2 - 4xy- 5y2 + 2x — 10y = 0.

(k) ^2 — 5xj/ + 6?y = 0. (v) x2 + 4xy + 42/
2 + 5x+10y + 6 = 0.

4. Show that the locus of Ax2 + Bx + C = is a pair of parallel lines,

a single line, or that there is no locus according as A = B2 — 4 AC is

positive, zero, or negative.

5. Show that the locus of Ax2 + Bxy + Cy2 = is a pair of intersect-

ing lines, a single line, or a point according as A = B2 — 4AC is positive,

zero, or negative.

~6. Show that the following equations have no locus (footnote, p. 37):

(a) x2 + 2/
2 + l = 0. (e) (x + l) 2 + y

2 + 4 = 0.

(b) 2x2 + 3y2 =- 8. (f) x2 + y
2 + 2x + 2y + 3 = 0.

(c)x2 + 4 = 0. (g) 4x2 + 2/
2 + 8x + 5 = 0.

(d) x4 + y
2 + 8 = 0. (h) 2/* + 2x2 + 4 = 0.

(i) 9x2 + 4y2 + 18x + 82/ + 15 = 0.

Hint. Write each equation in the form of a sum of squares, and reason as

in the footnote on page 37.
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20. Third fundamental problem. Discussion of an equation.

The method explained of solving the second fundamental prob-

lem gives no knowledge of the required curve except that it

passes through all the points whose coordinates are determined

as satisfying the given equation. Joining, these points gives a

curve more or less like the exact locus. Serious errors may be

made in this way, however, since the nature of the curve between

any two successive points plotted is not determined. This objec-

tion is somewhat obviated by determining before plotting cer-

tain properties of the locus by a discussion of the given equation

now to be explained.

The nature and properties of a locus depend upon the form

of its equation, and hence the steps of any discussion must

depend upon the particular problem. In every case, however,

certain questions should be answered. These questions will

now be presented.

1. Is the curve symmetrical with respect to either axis of coor-

dinates or with respect to the or iffin?

To answer this question we may proceed as in the following

example

:

EXAMPLE

Discuss the symmetry of the locus of

(1) x2 + <Ltf =16.

Solution. The equation contains no odd powers of x or y ;

hence it may be written in any one of the forms

(2) (xf + 4 (- yf = 16, replacing (x, y) by (x, - y) ;

(3) (- xf + 4 (yf = 16, replacing (x, y) by (- x, y) ;

(4) (- xf + 4 (- yf = 16, replacing (x, y) .
by (- x, - y).

The transformation of (1) into (2) corresponds in the figure

to replacing each point P(x, y) on the curve by the point
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Q (x, — y). But the points P and Q are symmetrical with

respect to XX', and (1) and (2) have the same locus (Theo-

rem I, p. 37). Hence the locus

of (1) is unchanged if each

point is changed to a second

point symmetrical to the first

with respect to XX'. There-

fore the locus is symmetrical

with respect to the axis of x.

Similarly, from (3), the locus is symmetrical with respect to

the axis of y, and from (4) the locus is symmetrical with

respect to the origin, for the points P(x, y) and 5 (— x, — y)

are symmetrical with respect to the origin, since OP = OS.

In plotting the equation we take advantage of our knowl-

edge of the symmetry of the curve by limiting the calcula-

tion to points in the first quadrant, as in the

table. We plot these points, mark off the points

symmetrical to them with respect to the axes

and the origin, and then draw the curve.

The locus is called an ellipse.

The facts brought out in the example are

stated in

Theorem II. Symmetry. If the locus of an equation is un-

affected by replacing y by — y throughout its equation, the locus

is symmetrical with respect to the axis of x.

If the locus is unaffected by changing x to — x through-

out its equation, the locus is symmetrical with respect to the

axis of y.

If the locus is unaffected by changing both x and y to —x and

— y throughout its equation, the locus is symmetrical with

respect to the origin.

These theorems may be made to assume a somewhat differ-

ent form if the equation is algebraic in x and y. The locus of

X
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an algebraic equation, in the variables x and y is called an

algebraic curve. Then from Theorem II follows

Theorem III. Symmetry of an algebraic curve. If no odd

powers of y occur in an equation, the locus is symmetrical with

respect to XX' ; if no odd powers of x occur, the locus is sym-

metrical with respect to YY'. If every term is of even* degree,

or every term of odd degree, the locus is symmetrical with respect

to the origin.

The second question arises from the following considerations

:

Coordinates are real numbers. Hence all values of x which

give imaginary values of y must be excluded in the calculation.

Similarly, all values of y which lead to imaginary values of x

must be excluded. The second question is, then

:

2. What values, if any, of either coordinate will give imagi-

nary values of the other coordinate ?

The following examples illustrate the method

:

EXAMPLES

1. What values of x and y, if any, must be excluded in determining

points on the locus of

(1) i2 + 4v2 = 16?

Solution. Solving for x in terms

of y, and also for y in terms of x,

(2) x = ± 2V4-y\

(3) y = ±lVl6-x*.

From the radical in (2) we see

that all values of y numerically greater than 2 will make 4 — j/
a

negative, and hence make x imaginary. Hence all values of y greater

than 2 or less than — 2 must be excluded.

Similarly, from the radical in (3), it is clear that values of x greater

than 4 or less than — 4 must be excluded.

* A constant term is to be regarded as of zero (even) degree, as 16 in (1) , p. 42.
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Therefore in determining points on the locus, we need assume for y
values only between and 2, as on page 43, or values of x between and 4

inclusive.

A further conclusion is this : The curve lies entirely within the rec-

tangle bounded by the four lines

x = 4, x = — 4, y = 2, y = — 2,

and is therefore a closed curve.

2. What values, if any, of the coordinates are to be excluded in deter-

mining the locus of

(4) y2 -4x + 15 = 0?

Solution. Solving for x in terms of y, and also for y in terms of x,

(5) x= 1(15+ y%

(6) y = ± V4x-15.

From (5) any value of y will give a real value of x. Hence no values

of y are excluded.

X
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3. Determine what values of x and y, if any, must be excluded in

determining the locus of

(7) 4y = x3
.

Solution. Solving for x in terms of y, and also for y in terms of a;

(8) x = -Viy,

(9) y = lx*.

From these equations it appears that no values

of either coordinate need be excluded.

The locus is, by Theorem III, symmetrical

with respect to the origin. The coordinates in-

crease together ; the curve extends to infinity

and is called a cubical parabola.

The method illustrated in the examples

is summed up in the

Rule to determine all values of x and y
which must be excluded.

Solve the equation for x in terms of y,

and from this result determine all values

of y for which the computed value of x would be imaginary.

These values of y must be excluded.

Solve the equation for y in terms of x, and from this result

determine all values of x for which the computed value of y
would be imaginary. These values of x must be excluded.

In determining excluded values of x and y we obtain also

an answer to the question :

3. Is the curve a closed curve, or does it extend to infinity ?

The points of intersection of the curve with the coordinate

axes should be found.

The intercepts of a curve on the axis of x are the abscissas of

the points of intersection of the curve and XX'.

The intercepts of a curve on the axis of y are the ordinates

of the points of intersection of the curve and YY1
.
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Rule to find the intercepts.

Substitute ij = and solve for- real values of x. This gives the

intercepts on the axis of x.

Substitute x = and solve for real values of y. This gives the

intercepts on the axis of y.

The proof of the rule follows at once from the definitions.

The rule just given explains how to answer the question :

4. What are the intercepts of the locus ?

In particular, the locus may pass through the origin, in which
case one intercept on each axis will be zero. In this case the

coordinates (0, 0) must satisfy the equation. When the equa-

tion is algebraic we have

Theorem IV. The locus ofan algebraic equationpasses through

the origin when there is no constant term in the equation.

The proof is immediate.

21. Directions for discussing an equation. Given an equation,

the following questions should be answered in order before

plotting the locus.

1. Is the origin on the locus ?

2. What are the intercepts ?

3. Is the locus symmetrical with respect to the axes or the

origin ?

4. What values of x and y must be excluded?

5. Is the curve closed, or does it pass off indefinitely far ?

Answering these questions constitutes what is called a general

discussion of the given equation. The successive results should

be immediately transferred to the figure. Thus when the inter-

cepts have been determined, mark them off on the axes. Indicate

which axes are axes of symmetry. The excluded values of x

and y will determine lines parallel to the axes which the locus

will not cross. Draw these lines.
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EXAMPLE

Give a general discussion of the equation

(1) x2 -42/2 + 16y = 0.

Draw the locus.

Solution. 1. Since the equation contains no constant term, the origin

is on the curve.

2. Putting y = 0, we find x = 0, the intercept on the axis of x. Putting

x = 0, we find y = and 4, the intercepts on the axis of y.

Lay off the intercepts on the axes.
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5. From (3), y increases as x increases, and the curve extends out
indefinitely far from both axes.

Plotting the locus, using (2), the curve is found to be as in the figure.

The curve is a hyperbola.

9 Sign of a quadratic. In the preceding example it became necessary
to determine for what values of y the quadratic expression y

2 — i y in (2)

was positive.

The fact made use of is this :

If the sign of a quadratic expression is negative (or positive) for any
one value of the unknown taken between the roots, it is also negative

(or positive) for every value of the unknown between the roots.

This is easily seen graphically. For take any quadratic

(4)

Plot the equation

(5)

The locus of (5) will be a parabola turned upward if A is positive,

downward if A is negative (see Example 2, p. 38). The intercepts on the

x-axis will be the

roots of (4). The
'

values of y from

(5) will clearly all

have one sign for

all values of x be-

tween the inter-

cepts, and the op-

posite sign for all

other values of x. We see, then, that the values of the quadratic (4) will

have one sign for all values of x taken between the roots, and the opposite

sign for all other values.

To apply this, consider the locus of

Ax2 + Bx+ 0.

y = Ax2 + Bx + C.

(6) y = V6— 5x — x2
.

What values of x must be excluded f To answer this, find the roots of

6 — 5x — x2 = 0. They are x=— and x = 1. Take any value of x

between these roots, for example, x = 0. When x = 0, the quadratic

6— 5x —

x

z equals 6, a positive number. Hence 6— 5x —

x

2 equals a

positive number for all values of x between the roots — 6 and 1. Then

the quadratic is negative for all other values; hence we must exclude

values of x < — 6 and also x > 1.



50 NEW ANALYTIC GEOMETRY

PROBLEMS

1. Give a general discussion of each of the following equations and

draw the locus. Make sure that the discussion and the figure agree.

(a) x2 -4!/ = 0. (n) 9j/
2 -x3 = 0. #

(b) y
2 -4x + 3 = 0. (o) 9y2 + x3 = 0.

(c) x2 + 4 2/
! -l(i = 0. (p) 2xy + Sx- 4 = 0.

(d) 9x2 + ?/
2 -18.= 0. (q) x2 + ixy + 3y* + 8 = 0.

(e) x2 -4i/2 -16 = 0. (r) x2 + xy + y
2 - 4 = 0.

(f ) x2 -42/2 + 10 = 0. (s) x2 + 2x?/-3!/2 = 4.

(g) x2 -2/2 + 4 = 0. (t) 2xy-y* + 4x = 0.

(h) x2 - j/ + x = 0. (u) 3x2 -y + x = 0.

(i)zjr-4 = 0. (v) 4j/
2 - 2x - y = 0.

(j)92/ + x3 = 0. (w) x2 -!/2 + 6x = 0.

(k)4x-2/3 = 0. (x) x2 + 4?/2 + 8^ = 0.

(l)6x-j/4 = 0. (y) 9x2 + 2/
2 + 18x-6y = 0.

(m) 5x-y + y
s = 0. (z) 9x2 - y

2 + 18x + Gi/ = 0.

2. Determine the general nature of the locus in each of the following

equations. In plotting, assume particular values for the arbitrary con-

stants, but not special values ; that is, values which give the equation an

added peculiarity.*

(f) x2 -2/2 = a2
.

(g) x2 + 2/
2 = r*:

(h) x2 + i/
2 = 2rx.

(i) x2 + y* = 2ry.

(j) aj/2 = x3
.

The loci of the equations (a) to (i) in Problem 2 are all of the class

known as conks, or conic sections,— curves following straight lines and

circles in the matter of their simplicity. These curves are obtained when

cross sections are taken of a right circular cone. Various definitions and

properties will be given later. A definition often used is the following

:

A conic section is the locus of a point whose distances from a fixed

point and a fixed line are in a constant ratio.

* For example, in (a) and (b) m = is a special value. In fact, in all these

examples zero is a special value for any constant.

(a)



CURVE AND EQUATION 51

3. Show that every conic is represented by an equation of the second

degree in x and y.

Hint. Take YY' to coincide with the fixed line, and draw XX' through the
fixed point. Denote the fixed point by (p, 0) and the constant ratio by e.

Ans. (1 - e2) x2 + y
2 — 2px + p2 = 0.

4. Discuss and plot the locus of the equation of Problem 3 :

(a) when e = 1. The conic is now called a, parabola (see p. 45).

(b) when e < 1. The conicis now called an ellipse (see p. 43).

(c) when e > 1. The conic is now called a hyperbola (see p. 48).

5. A point moves so that the sum of its distances from the two fixed

points (3, 0) and (— 3, 0) is constant and equal to 10. What is the locus ?

Ans. Ellipse 16 x2 + 25 j/
2 = 400.

6. A point moves so that the difference of its distances from the two
fixed points (5, 0) and (— 5, 0) is constant and equal to 8. What is the

locus? Ans. Hyperbola Qx2 — lQy2 = 144.

7. Find the equations of the following loci, and discuss and plot them.

(a) The distance of a point from the fixed point (0, 2) is equal to its

distance from the z-axis increased by 2.

(b) The distance of a point from the fixed point (0, — 2) is equal to

its distance from the y-axis increased by 2.

(c) The distance of a point from the origin is equal to its distance

from the y-axis increased by 2.

(d) The distance of a point from the fixed point (2, — 4) is equal to its

distance from the iC-axis increased by 5. Ans. 2y = x2 — 4x — 5.

(e) The distance of a point from the point (3, 0) is equal to half its

distance from the point (6, 0).

(f ) The distance of a point from the point (8, — 4) is twice its distance

from the point (2, — 1).

(g) One third of the distance of a point from the point (0, 3) is equal to

its distance from the x-axis increased by unity. Ans. x2 — 8y2 — 24y = 0.

(h) The distances of a point to the fixed point (— 1, 0) and to the line

4a; — 5 = are in the ratio f. Ans. 9x2 + 25y2 + 90x = 0.

8. Prove the statement : If an equation is unaltered when x and y are

interchanged, the locus is symmetrical with respect to the line y = x.

Make use of this result in drawing the loci of :

(a) xy = 4. (b) x2 + xy + y
2 = 9. (c) x3 + ys = 1. (d) x^ + y% = 1.

22. Asymptotes. The following examples elucidate difficul-

ties arising frequently in drawing the locus of an equation.



52 NEW ANALYTIC GEOMETRY

EXAMPLES

1. Plot the locus of the equation

(1) xy-2y-i = 0.

Solution. Solving for y,

4
(2) y x-2
We observe at once, ifx = 2,y = %=co.

This is interpreted thus : The curve ap-

proaches the line x = 2 as it passes off to

infinity. In fact, if we solve (1) for x and

write the result in the form

„ 4
x = 2 + ->

V

it is evident that x approaches 2 as y

increases indefinitely. Hence the locus

extends both upward and downward

indefinitely far, approaching in each case

the line x = 2. The vertical line x = 2

X
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From (2) it appears that y diminishes and approaches zero as x in-

creases indefinitely. The curve therefore extends indefinitely far to the

right and left, approaching constantly the axis of x. The axis of x

is therefore a horizontal asymptote.*

This curve is called a hyperbola.

In the problem just discussed it was necessary to learn what value x

approached when y became very large, and also what value y approached

when x became very large. These questions, when important, are usually

readily answered, as in the following examples :

2. Plot the locus of
2x + 3 ._. ,,

When x is very great, we may neglect the 3 in the numerator (2 x + 3)

and the — 4 in the denominator (3x — 4). That is, when x is very large,

Hence
2
- is a horizontal asymptote.

_2x_2
V ~3x~3'

The equation shows directly that 3x— 4 = 0orx = |isa vertical

asymptote. Or we may solve the equation for x, which gives

x =
iy + 3

Sy-2

•it/ 4
Hence, when y is very large, x =~ = -

oy 3

1=1

Fig. 1 Fig. 2

3. The locus of 2s + 3

x2 -3x + 2

is shown in Fig. 2. There are two vertical [asymptotes, x = 1 and x = 2,

since the denominator x2 - 3x + 2 = (x - 1) (x - 2). A branch of the

* For oblique asymptotes, that is, asymptotes not parallel to either axis,

see Art. 66.
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curve lies between these lines. Furthermore, when x becomes large, we
2x 2

may write the equation y =— = - = 0. Hence the x-axis
x2 x

is a, horizontal asymptote. A few points of the locus

are given in the table. Note that different scales are used

for ordinates and abscissas.

The determination of the vertical and hori-

zontal asymptotes of a curve should be added

to the discussion of the equation as outlined in

Art. 21.

PROBLEMS

Plot each of the following, and determine the horizontal and vertical

asymptotes

:

X
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11. x* — axy2 +y* = 0.

12. a*y2 — a2x* + x6 = 0.

13. ay2 - fa4 - x6 = 0.

14. a*y2 - 2 abx2y - x6 = 0.

15. y
2 - (a2 - x2

)
{b2 - x2

)
2 = 0.

16. xhj2 - asx2 + ay1 = 0.

17. x (y - x)2 - b2y = 0.

18. (x 2 + y
2
)

2 - a2 (x2 - y
2
) = (the lemniscate).

19. (x2 - a2
)

2 = ay2 (3a + 2y).

20. (x2 + y
2 — 1) !/ - ax = 0.

21. 2/
2 -x2 -x(x-4) 2 = 0.

22. (x2 + y
2 -2 ay) 2 = a2 (x2 + y

2
)
(the limacon).

23. (x4 + x2
y
2 +y*) = x (ax2 - 4 a?/2).

24. (x2 + y
2 + 4 a?/ - a2

)
(x2 - a2

) + 4 a2
j/
2 = 0.

25. (y
2 - x2

)
(x - 1) (x - |) = 2 (y

2 + x2 - 2x)2
.

26. (x2 + y
2 + 4 ay - a2

)
(x2 - a2

) + 4 a2 jy
2 = (the cocked hat)

.

23. Points of intersection. If two curves whose equations

are given intersect, the coordinates of each point of intersection

must satisfy both equations when substituted in them for the

variables. In algebra it is shown that all values satisfying

two equations in two unknowns may be found by regarding

these equations as simultaneous in the unknowns and solving.

Hence the

Rule to find the points of intersection of two curves whose

equations are given.

Consider the equations as simultaneous in the coordinates

and solve as in algebra.

Arrange the real solutions in corresponding pairs. These will

be the coordinates of all the points of intersection.

Notice that only real solutions correspond to common points

of the two curves, since coordinates are always real numbers.
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PROBLEMS

Find the points of intersection of the following loci

:

7*-lly + l=<n x« + y« = 4n

„ x + 2/=7\ , .„ .,
A™- (± 5, ± 4), (± 4, ± 5).

2. . ^ • ^Ins. (6, 1). 2 o ^x-y = 5

J

v
'

y

g
y
2 = 2px\

j/ = 3x + 21 •s2 = 2p2/J'
3l

X2 + y
a = 4 |- ^ns. (0, 0), (2p, 2 j)).

Am. (0,2), (-|,-f). 9
4x2 + ^ = 51

%-x = o}- ^«. (1,2), (1,-2).

Ans. (0, 0), (16, 16). x2 + y
2 = 1001

x2 + 2/
2 = a2

1
10

-

y2 = ^l \-
e
-3x + v + a = 0|- 2

J

Am. (0, - a),(- ^, —)• ^ns. (8, 6), (8, - 6).

x2 - y
2 = 16\

V 7

n x2 + 2/
2 = 5a2 ~|

x2 = 8y j"
-

x2 = 4a2/ J"
4ns. (±4V2, 4). .Ans. (2a, a), (-2a, a).

Find the area of the triangles and polygons whose sides are the loci

of the following equations

:

12. 3x + y+ 4 = 0, 3x- 5y + 34 = 0, 3x - 2y + 1= 0. Ans. 36.

13. x + 2y = 5, 2x + y = 7, y = x + l.

14. x + y = a, x— 2y = 4a, y — x + la = 0.

15. x = 0, y = 0, x = 4, y = - 6.

16. x — y = 0, x + y = 0, x — y = a, x + y = b.

17. j/ = 3x — 9, y = 3x + 5, 2y = x— 6, 2y = x + 14.

18. Find the distance between the points of intersection of the curves

3 x - 2 y + 6 = 0, x2 + y
2 = 9. Ans. |f Vl3.

19. Does the locus of y
2 = 4 x intersect the locus of2x + 3?/ + 2 = 0?

.4ns. Yes.

20. For what value of a will the three lines 3x + y — 2 = 0,

ax + 2y — 3 = 0, 2x — y — 3 = meet in a point ? .Ans. a = 5.

21. Find the length of the common chord of x2 + y
2 = 13 and

y
2 = 3x + 3. Ans. 6.

22. If the equations of the sides of a triangle are x + ly + 11 = 0,

3x + y — 7 = 0, x — 3y + 1 = 0, find the length of each of the medi ans.

Ans. 2 VI, I
V2, 1 Vl70.

Ans.



CHAPTER IV

THE STRAIGHT LINE

24. The degree of the equation of any straight line. It will

now be shown that any straight line is represented by an equa-

tion of the first degree in the variable coordinates x and y.

Theorem. The equation of the straight line passing through a

point B (0, b) on the axis of y and having its slope equal to m is

(I) y=mx+b.

Proof. Assume that P (x, y) is any point on the line.

The given condition may be written

slope of PB = m.

Since by (II), p. 17,
^ _

slope of PB = ^7^>

[Substituting (x, y) for (xv yx)
and (0, 6) for (a;

2 , y2).]

y — b
then - = m, or y = mx 4- b. q.e.d.

x

In equation (I), m and b may have any values, positive,

negative, or zero.

Equation (I) will represent any straight line which inter-

sects the t/-axis. But the equation of any line parallel to the

y-3jds has the form x = a constant, since the abscissas of all

points on such a line are equal. The two forms, y = mx + b

and x = constant, will therefore represent all lines. Each of

these equations being of the first degree in x and y, we have the

Theorem. The equation of any straight line is of the first

degree in the coordinates x and y.

58
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25. Locus of any equation of the first degree. The question

now arises : Given an equation of the first degree in the

coordinates x and y, is the locus a straight line ?

Consider, for example, the equation

(1) 3 x - 2 y + 8 = 0.

Let us solve this equation for y. This gives

(2) y = lx + 4.

Comparing (2) with the formula (I),

y = mx + b,

we see that (2) is obtained from (I) if we set m = |, b = 4.

Now in (I) to and b may have any values. The locus of (I) is,

for all values of to and b, a straight line. Hence (2), or (1), is

the equation of a straight line through (0, 4) with the slope

equal to §. This discussion prepares the way for the general

theorem.

The equation

(3) Ax + By + C = 0,

where A, B, and C are arbitrary constants, is called the general

equation of the first degree in x and y because every equation of

the first degree may be reduced to that form.

Equation (3) represents all straight lines.

For the equation y = mx + b may be written mx — y + b = 0, which

is of the form (3) if A = ?n, B — — 1, C = b ;
and the equation x = con-

stant may be written x — constant = 0, which is of the form (3) if A = 1,

B = 0, C = — constant.

Theorem. The locus of the general equation of the first degree

Ax +By + C =
is a straight line.

Proof. Solving (3) for y, we obtain

A C

B
X ~B(4) y = - -
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Comparison with (I) shows that the locus of (4) is the

straight line for which

m = — — j b
C
B'

If, however, B == 0, the reasoning fails.

But if B = 0, (3) becomes

Ax + C = 0,

or
C
a'

The locus of this equation is a straight line parallel to the

y-axis. Hence in all cases the locus of (3) is a straight line.

Q.E.D.

Corollary. The slope of the line

Ax +By + C =
is m = — — ; that is, the coefficient of x with its sign changed

B
divided by the coefficient of y.

26. Plotting straight lines. If the line does not pass through

the origin (constant term not zero, p. 47), find the intercepts

(p. 47), mark them off on the axes, and draw the line. If the

line passes through the origin, find a second point whose

coordinates satisfy the equation, and draw a line through this

point and the origin.

EXAMPLE

Plot the locus of 3 x— 3/ + 6 = 0. Find the slope.

Solution. Letting y = and solving for x,

x =— 2 = intercept on K-axis.

Letting x = and solving for y,

y = 6 = intercept on s/-axis.

The required line passes through the points

(- 2, 0) and (0, 6).

To find the slope : Comparison with the general

equation (3) shows that A = 3, B = — 1, G .

Otherwise thus : Reduce the given equation to the form y = mx + b

by solving it for y. This gives y = 3 x + 6. Hence m = 3, 6 = 6, as before.

Hence m = = 3.

B
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PROBLEMS

1. Find the intercepts and the slope of the following lines, and plot

the lines

:

(a) 2x + 3y = 6. Ans. 3, 2 ; m = - £.

(b) x -22/ + 5 = 0. Ana. - 5, 2£ ; m = \.

(o) 3x-j/ + 3 = 0. -4ns. - 1, 3 ; to = 3.

(d) 5x + 2j/-6 = 0. J.71S. |, 3; m=-|.
2. Plot the following lines and find the slope

:

(a) 2x-3x/ = 0. (c)3x + 2j/ = 0.

(b) y - 4x = 0. (d) x - 3 j/ = 0.

3. Find the equations, and reduce them to the general form, of the

lines for which

(a) to = 2, 6 = — 3. Ans. 2x — y — 3 = 0.

(b) m=— i, b = !• ^Ins. x + 2j/ — 3 = 0.

(c) to = |,6= — f. Ans. ix — 10y — 25 = 0.

(d) or = -,& =-2.

Ans. 4x-

^ns. x — y - 2 = 0.

(e)a:
3ir

,6 = 3. .Arcs, x + y — 3 = 0.

Hint. Substitute in y = mx + 6 and transpose.

4. Select pairs of parallel and perpendicular lines from the following

:

(a)

(b)

(c)

L
1
:y = 2x-3.

L
2
:y=-3x + 2.

L
s :y = 2x+7.

i
4 :2/ = Jx + 4.

(L
l
:x+3y = 0.

-i i2 :8x + J/ + l = 0.

[i
3
:9x-3j/ + 2 = 0.

(L
l
:2x-5y = 8.

Ji
2 :52/ + 2x = 8.

X
8
:35x-142/ = 8.

^.tis. X, II L
s ; i2

JLi4

-4ns. ij X i
3

.

.4ns. in J- i.

5. Show that the quadrilateral whose sides are 2x — 3j/ + 4 = 0,

3x — y — 2 = 0, 4x— 6y — 9 = 0, and 6x — 2j/ + 4 = is a paral-

lelogram.

6. Find the equation of the line whose slope is — 2, which passes through

the point of intersection of y = 3 x + 4 and y =— x + 4.

.4ns. 2x + y — 4 = 0.
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7. Write an equation which will represent all lines parallel to the line

(a)y = 2x+7. (c) y — 3x - 4 = 0.

(b)2/=-x+9. (d) 2y-4x + 3 = 0.

8. Find the equation of the line parallel to 2 x — 3 y = whose

intercept on the Y-axis is — 2. Ans. 2 x — 3 y — 6 = 0.

9. Show that the following loci are straight lines and plot them

:

(a) The locus of a point whose distances from the axes XX' and YY'
are in a constant ratio equal to J

.

Ans. 2x — 3 y = 0.

(b) The locus of a point the sum of whose distances from the axes of

coordinates is always equal to 10. Ans. x + y — 10 = 0.

(c) A point moves so as to be always equidistant from the axes of

coordinates. Ans. x — y = 0,

(d) A point moves so that the difference of the squares of its distances

from (3, 0) and (0, — 2) is always equal to 8.

Ans. The parallel straight lines 6x + iy + 3 = 0, 6x + 4y — 13 = 0.

. (e) A point moves so as to be always equidistant from the straight

lines x — 4 = and y + 5 = 0.

Ans. The perpendicular straight lines x — y — 9 = 0, x + y + 1 = 0.

10. A point moves so that the sum of its distances from two perpen-

dicular lines is constant. Show that the locus is a straight line.

Hint. Choosing the axes of coordinates to coincide with the given lines, the

equation is x + y = constant.

11. A point moves so that the difference of the squares of its distances

from two fixed points is constant. Show that the locus is a pair of

straight lines.

Hint. Draw XX' through the fixed points, and YY" through their middle

point. Then the fixed points may be written (a, 0), (- a,0),and if the " constant

difference " be denoted by k, we find for the locus 4 ax = k and 4 ax =- k.

12. A point moves so that the difference of the squares of its distances

from two perpendicular lines is zero. Show that the locus is a pair of

perpendicular lines.

13. A point moves so that its distance from a fixed line is in a constant

ratio to its distance from a fixed point on the line. Tor what values of the

ratio is the locus real ? "What is the locus ?

27. Point-slope form. If it is required that a straight line

shall pass through a given point in a given direction, the line

is determined.
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The following problem is therefore definite

:

To find the equation of the straight line passing through a
given point P

x
(xv ?/,) and having a given slope m.

Solution. Let P(x, y) be any other point on the line. By
the hypothesis,

s lope PP
1
= W4 .

(i) y^ = m - CO.P-17)

Clearing of fractions gives the formula

(II) y-y1 = m(x-x1).

28. Two-point form. A straight line is determined by two
of Its points. Let us then solve the problem

:

To find the equation of the line passing through two given

points P^, y t
), P2

(x
2 , y^).

Solution. The slope of the given line is

slope P.P. = yi ~~y-
2

.12 *
x -*i

Let P (x, y) be any other point on the line P-J
1

^ Then

slope PP
1
= y

~
Vl

.

Since P, Pv and P
2
are on one line, slope PP

1
— slope P

X
P

2
-

Hence we have the formula

(III)
V ~ Vx = yi

~ y'
.

X— JfjL X^ — JT2

Equation (III) may be written in the determinant form

x y \

(2) x
x Vl 1=0.

X
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EXAMPLES

1. Find the equation of the line passing through P
x (3, — 2) whose

slope is - £.
i r r*

Solution. Use the point-slope

equation (II), substituting x
1
= 3,

2, m =Vi

r
\
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PROBLEMS

1. rind the equation of the line satisfying the following conditions,

and plot the line. Cheek the answers :

(a) Passing through (0, 0) and (8, 2). Ans. x — iy = 0.

(b) Passing through (— 1, 1) and (— 3, 1). Ans. y — 1 = 0.

(e) Passing through (— 3, 1) and slope = 2. Ans. 2 x — y + 7 = 0.

(d) Having the intercepts * a = 3 and b =— 2. Ans. 2 x — Zy— 6 = 0.

(e) Slope = — 3, intercept on x-axis = 4. Ans. Sx + y — 12 = 0.

(f) Intercepts a =—3 and b = — 4. Ans. ix + Sy + 12 = 0.

(g) Passing through (2, 3) and (— 2, — 3). Ans. 3x — 2 y = 0.

(h) Passing through (3, 4) and (— 4, — 3). Ans. x—y + 1=0.
(i) Passing through (2, 3) and slope =—2. Ans. 2x + y — 7 = 0.

2."Find the equation of the line passing through the origin parallel

to the line 2x — 3j/ = 4. Ans. 2x — 3y = 0.

3. Find the equation of the line passing through the origin perpen-

dicular to the line 5x + y — 2 = 0. Ans. x — 5y = 0.

4. Find the equation of the line passing through the point (3, 2) par-

allel to the line 4x — y — 3 = 0. Ans. 4x — y — 10 = 0.

5. Find the equation of the line passing through the point (3, 0) per-

pendicular to the line 2x + y — 5 = 0. Ans. x — 2y — 3 = 0.

6. Find the equation of the line whose intercept on the j/-axis is 5,

which passes through the point (6, 3). Ans. x + 3 y — 15 = 0.

7. Find the equation of the line whose intercept on the x-axis is 3,

which is parallel to the line x — iy + 2 = 0. Ans. x — 4y — 3 = 0.

8. Find the equation of the line passing through the origin and through

the intersection of the lines x — 2j/ + 3 = and x + 2y — 9 = 0.

Ans. x — y = 0.

9. Find the equations of the sides of the triangle whose vertices are

(- 3, 2), (3, - 2), and (0, - 1).

Ans. 2x+3j/ = 0, x + 3j/ + 3 = 0, andx + 2/ + l=0.

10. Find the equations of the medians of the triangle in Problem 9, and

show that they meet in a point.

Ans. x = 0, 7x + 9y + 3 = 0, and 5x + 9y + 3 = 0.

Hint. To show that three lines meet in a point, find the point of intersection

of two of them and prove that it lies on the third.

* Intercept on S!-axis = a, intercept on j/-axis = b. The given points are (3, 0)

and (0,-2).
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11. Determine whether or not the following sets of points lie on a

straight line :

(a) (0,0), (1,1), (7,7). Am. Yes.

(b) (2,3), (-4,-6), (8,12). Am. Yes.

(c) (3, 4), (1, 2), (5, 1). Am. No.

(d) (3, - 1), (- 6, 2), (- 1, 1). Am. No.

(e) (5, 6), (1, 1), (- 1, - f). Am. Yes.

(f) (7, 6), (2, 1), (6, - 2). Am. No.

(g) (3, - 2), (6, - 4), (- 5, 4).

(h) (1,0), (0,1), (7, -8).
(i) (-3,-1), (6,2), (8,3).

12. Pind the equations of the lines joining the middle points of the sides

of the triangle in Problem 9, and show that they are parallel to the sides.

Am. 4x+ Gy+ 3 = 0, x + Sy = 0, a,ndx + 'y = 0.

13. Find the equation of the line passing through the origin and through

the intersection of the lines x + 2 y = 1 and 2x — iy — 3 = 0.

Ans. x + 10 y = 0.

14. Show that the diagonals of a square are perpendicular.

Hint. Take two sides for the axes and let the length of a side be a.

15. Show that the line joining the middle points of two sides of a tri-

angle is parallel to the third.

Hint. Choose the axes so that the vertices are (0, 0), (a, 0), and (b, c).

16. Two sides of a parallelogram are given by2z + 3y— 7 = and

x — 3y + 4 = 0. Find the other two sides if one vertex is the point (3, 2).

Am. 2x + 3y-12 = and x-3y + 3 = Q.

17. Find the equations of the lines drawn through the vertices of the

triangle whose vertices are (— 3, 2), (3, — 2), and (0,— 1), which are par-

allel to the opposite sides. Find the vertices of the new triangle.

Ans. 2x + 3y + 3 = 0,x + 3y — 3 = 0,x + y — l = 0.

18. Find the equations of the lines drawn through the vertices of the

triangle in Problem 17, which are perpendicular to the opposite sides, and

show that they meet in a point.

Am, 3x-2y-2 = 0,3x-y+U=0,x-y-5 = 0.

19. Find the equations of the perpendicular bisectors of the sides of

the triangle in Problem 17, and show that they meet in a point.

Am. 3x-2y = 0, 3x-y- 6 = 0, x — y + 2 = 0.
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20. The equations of two sides of a parallelogram are 3x — 4 j/ + 6 =
and x + hy — 10 = 0. Find the equations of the other two sides if one

vertex is the point (4, 9). Arts. 3x — &y + 24 = and x + by — 49 = 0.

21. The vertices of a triangle are (2, 1), (— 2, 3), and (4, — 1). Find

the equations of (a) the sides of the triangle, (b) the perpendicular bisec-

tors of the sides, and (c) the lines drawn through the vertices perpendicu-

lar to the opposite sides. Check the results by showing that the lines in

(b) and (c) meet in a point.

29. Intercept form. A line is determined if its intercepts on

the axes are given. If these intercepts are a on A"A'' and b on

]*}'', then the line passes through (a, 0) and (0, b), and the two-

point form (III) gives (writing x
l
= a, yl

= 0, x,
2
= 0, y2

= b)

y-0 _ 6-0 _ _b
x — a — « a

Clearing of fractions, transposing, and dividing by ab, we

obtain

<"> i + J--
30. Condition that three lines shall intersect in a common

point. It is shown in algebra that three linear equations in

two unknowns x and y, for example,

(1) Ax+ B>j+C=0, A
1
x + B

1
y+ C\= 0, A,x + B.

2
i/+ C

2
=0,

will have a common solution when and only when the deter-

minant formed on the coefficients vanishes ; that is, when

A B C

A
x

B
x

C\(2)

a. n. c.

0.

Hence the three lines (1) will intersect in a common point

when and only when (2) holds, provided always that the lines

are not parallel, however. But this latter fact may always be

determined by inspection of the equations.
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Y

M
X' MX

N

31. Theorems on projection. In preparation for deriving addi-

tional theorems of this and later chapters, some simple facts,

in regard to projection will now be discussed.

The orthogonal projection of a point upon a line is the foot of

the perpendicular let fall from the point upon the line.

Thus in the figure

M is the orthogonal projection of P
on A"A"

;

N is the orthogonal projection of P
on Y'Y;

P' is the orthogonal projection of P'

on A"A*.

If A and B are two points of a directed line, and .1/ and N
their projections upon a second directed line CD, then MN is

called the projection of AB upon CD.

First Theorem of Projection. IfA and B arepoints upon

a directed line making an angle a with a second directed line

CD, then the

projection of the length AB upon CD = AB cos a.

Proof. In the figures

projection of AB upon CD = MN.

r

cs C N
Fig. 1 Fig. 2

Now in Kg. 1, from the right triangle BAS,

AS = AB cos BAS.

But AS = MN, and ABAS = a.

.'. MN = AB cos a.
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In Fig 2 (p. 68), a is obtuse and MN is a negative number.

Numerically, AS and MN are equal, but they differ in sign,

AS not being directed. As before, AS = AB cos BAS. But

Z BAS = 180° - a. .\ cos -B4S = - cos a (30, p. 3).

Hence AS =— AB cos a.

.'. A/TV = j4_B cos ar. Q.e.d.

Consider next a broken line made up of directed parts, as in

the figures. The line joining the first and last points of a

broken line is called the closing line.

P2

-P.

I'r,

1PSPlf

Fio. 1

M3D
M*.D

Thus in Fig. 1 the closing line is PjP
3

; in Fig. 2 the closing

line is P.P..
1 O

With reference to such broken lines, the following theorem,

of frequent application, holds.

Second Theorem op Projection. If each segment of a

broken line be given the direction determined inpassing continu-

ously from one extremity to the other, then the algebraic sum of

the projections of the segments upon any directed line equals

the projection of the closing line.

Proof. The proof results immediately. For, in Fig. 1,

M

M

2
= projection of P

1
P

2 ;

M
2
M

S
= projection of P

2
P

Z ;

AfjAfj = projection of closing line P
x
P

t
.

But obviously M
t
M

2
+M^ = M

X
M

Z ,

and the theorem follows.

Similarly in Fig. 2. q.e.d.
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Corollary. If the sides of a closed polygon be given the direc-

tion established bypassing continuously around theperimeter, the

sum of the projections of the sides upon any directed line is zero.

For the closing line is now zero.

32. The normal equation of the straight line. In the preceding

sections the lines considered were determined by two points or

by a point and a direction. Both of these methods of determin-

ing a line are frequently used in elementary geometry, but we

have now to consider a line determined by two conditions which

belong essentially to analytic geometry. Let AB be any line,

and let ON be drawn from

the origin perpendicular to

AB at C. Let the positive

direction on ON be from

toward N, that is, from the

origin toward the line, and

denote the positive directed

length OC by p,and the posi-

tive angle XON, measured,

as in trigonometry, from OX
as initial line to ON as ter-

minal line, by u(Greek letter "omega"). Then it is evident from

the figures that the position of any line is determined by a pair

of values ofp and a>, both p and u> being positive and w < 360°.

On the other hand, every line which does not pass through

the origin determines a single positive value ofp and a single

positive value of «> which is less than 360°.

The problem now is this : Given for the line AB of the figure

the perpendicular distance OC (=p) from the origin and the

angle XOC (= o>); to find the equation of AB.

Solution. Let P(x,y) be any point on the given line AB.

Then since AB is perpendicular to ON, the projection of

OP on ON is equal to p. Consider the broken line ODP. The
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closing line is OP. By the second theorem of projection (p. 69),

the projection of OP on OX is equal to the sum of the projec-

tions of OD and DP on ON. Then

(1) projection of OD on ON+ projection of DP on ON=p>.

By the first theorem of projec-

tion (p. 68),

(2) projection of 075 on

ON = OD cos w = x cos ai, and

(3) projection of DP on

ON = DP cost— — uA = y sin ,

[For the angle between the directed lines DP and ON equals that

between OY and ON = w.]

Substituting from (2) and (3) in (1),

(V) x cos w -f y sin o> — p = 0. Q.E. D.

This equation is known as the normal equation.

Whenj; = 0, however, AB passes through the origin, and the

rule given above for the posi-

tive direction on ON becomes

meaningless. From the fig-

ures we see that we can

choose for w either of the

angles XON or XON'. When

p = we shall always suppose that w < 180° and that the posi-

tive direction on ON is the upward direction.

33. Reduction to the normal form. In Art. 25 it appeared that

the slope of any line could be found after its equation was

reduced to the form y = mx + b. If now the equation of any

line can be reduced to the normal form (V), we shall be able to

find the perpendicular distance p from the origin to the line,

as well as the angle <» which this perpendicular makes with OX.
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To reduce a given equation

(1) Ax + By+C =

to the normal form, it is necessary to determine co and p so that

the locus of (1) is identical with the locus of

(2) x cos (o + y sin <o —p = 0.

This is the case when corresponding coefficients are propor-

tional.* Hence we must have

cos co _ sin to _ — p
A ~ B ~~C~'

Denote the common value of these ratios by r ; then

(3) cos co = rA
,

(4) sin <o = rB, and

(5) -p = rC.

To find r, square (3) and (4) and add ; this gives

sin2 co + cos2 <o = r*(A 2 + B2
).

But sin2
to + cos2 <o = 1

;

(28, p. 3)

and hence r2 (A 2
A- B2

) = 1, or

(6) r = /V ; ± Vvl 2 + B2

Equation (5) shows which sign of the radical to use ; for

since p is positive, r and C must have opposite signs.

Substituting the value of r in (3), (4), and (5),

A . B C
COS co

=
> Sin co = . ; p

± V.4 2 + B2 ± -y/A 2 + B2 ±^/A 2 + B2

Hence (2) becomes

4 B C
(7) . x-\ . y-\ . =Q,w ±^/A 2 + B2 ± s/a 2 + B2 ± s/A 2 + B2

* The proof of this obvious fact is left to the student.
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which is the normal form of (1). The result of the discussion

may be stated in the following

Rule to reduce Ax + By + C = to the normal form..

Find the numerical value of V.4 2 + .B'
2 and give it the sign

opposite to that of C. Divide the given equation by this number.

The result is the required equation.

For example, to reduce the equation

(8) 3x-?/ + 10 =
to the normal form, divide the equation by — VlO, since A = 3, B = — 1,

V.A 2 + B2 = VlO, and this radical must be given the negative sign,

since C (= 10) is positive. The normal form of (8) is accordingly

3 1,—— x + —= y - VlO = 0.

VlO VlO
g i

Here cosu = = , sinw =—= , p = VlO = 3.1 + .

VlO VlO

If C = 0, then p = 0, and hence a> < 180° (p. 71) ; then

sin o) is positive, and from (4) r and B must have the same signs.

The advantages of the normal form of the equation of the

straight line over the other forms are twofold. In the first

place, every line may have its equation put in the normal form
;

whether it is parallel to one of the axes or passes through the

origin is immaterial. In the second place, as will be seen in the

following section, it enables us to find immediately the perpen-

dicular distance from a line to a point.

PROBLEMS

1. In what quadrant will ON (see figure on page 70) lie if sin a and

cos iii are both positive ? both negative ? if sin w is positive and cos a

negative ? if sin w is negative and cos u positive ?

2. Find the equations and plot the lines for which

(a) a = 0, p — 5. Ans. x = 5.

(b) w =— ,p = 3. Ans. y + 3 = 0.

2i

(c)u = -,p = 3. Ans. V2x + V2^-6 = 0.

4
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(d) w =— ,p = 2. Ans. x-VSy + 4 = 0.

O

(e)w = — ,p = 4. 4ns. Viz -Vly- 8 = 0.

4

3. Reduce the following equations to the normal form and findp and a

:

(a) 3x + 4y — 2 = 0. 4ns. ^ = §, to = cos- 1
! = sin- 1

§.

(b) 3x — iy- 2 = 0. 4ns. jp = j, a = cos- 1
! = sin-i(-

J).

(c) 12x — 5?/ = 0. 4ns. p = 0, u = cos- 1 (— lj)= sin- 1

(d) 2x+ 5j/ + 7=0.

4ns. p = — > w = cos- 1 / — ) = sin- 1 / —

.

+ V29 V-V29/ V-V29,
(e) ix — Sy + 1 = 0. Ans. p = J, u = cos- 1 (— |) = sin- 1

!

(f) 4x-5j/ + 6 = 0.

4ns. jp
= — , u = cos- 1

( — ) = sin-' / =
+ VU V-Vil/ V+V41

(g)x-4 = 0. (h)j/-3 = 0. (i) x + 2 = 0. (j)jr+4 = 0.

4. Find the perpendicular distance from the origin to each of the

following lines

:

(a) 12 x+ 5 2/ -26 = 0. 4ns. 2.

(b) x + y + 1 = 0. Ans. | V2.

(c) 3x-2i/-l = 0. 4ns. ^Vl3.
(d) x + 4 = 0.

(e) ,,-5 = 0.

^ ^ ^
5. Derive (V) when (a) - < w <ir

;
(b) it < a <—

;
(c) —- <w<2ir;

ir MA
(d)p = 0, and0< w <-.

2t

6. For what values of p and u will the locus of (V) be parallel to the.

x-axis ? the y-axis ? pass through the origin ?

7. Find the equations of the lines whose slopes equal — 2, which are

at a distance of 5 from the origin.

4ns. 2V5x+ V5?/ — 25 = and 2V5x + VHy + 25 = 0.

8. Find the lines whose distance from the origin is 10, which pass

through the point (5, 10). 4ns. y = 10 and 4x + 3y = 50.

9. "Write an equation representing all lines whose perpendicular dis-

tance from the origin is 5.

34. The perpendicular distance from a line to a point. The

positive direction on the line ON drawn through the origin

perpendicular to AB is from O to AB (Art.' 32). The positive
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Hence p + d = x
x
cos <d + yx

sin u>,

and therefore d = x
1
cos u + ^ sin a> — ^?. Q. E.D.

In words : The perpendicular distance d is the result ob-

tained by substituting the coordinates of P
1
for x and y in the

left-hand member of the normal equation (1).

Hence the

Rule to find the perpendicular distance d from, a given line to

a given point.

Reduce the equation of the given line to the normal form

{Art. S3), place d equal to the left-hand member of this equa-

tion, and then substitute the coordinates of the given point for x

and y. The result is the required distance.

The sign of the result will show if the origin and the given

point are on the same side (d is negative) or opposite sides

(d is positive) of the line.

The perpendicular distance d from the

line Ax + By + C = to the point (xv y^
will be, by this rule, equal to

Ax
l
+By

1
+C

(2) d = -

± V/l 2 + B*

the sign of the radical being opposite to

the sign of C.

When the given line AB passes through the origin, the posi-

tive direction on the normal ON is the upward direction.

Hence the rule just stated will give a positive result for d when

the perpendicular drawn from the line to the point has the

upward direction, and a negative result in the contrary case.

Thus in the figure the distance to P
1
is positive and to P

2
is

negative.

Formula (2) may be used to find the perpendicular distance,

but it is recommended that the rule be applied instead.
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EXAMPLES

1. Mnd the perpendicular distance from the line ix — 3j/ + 15 = 0to
the point (2, 1).

Solution. The equation is reduced to the

normal form by dividing by — Vl6 + 9 = — 5.

Placing d equal to the left-hand member thus

obtained,

ix — 3y + 15
d = -5

Substituting x = 2, y = 1 , then d =
i — 3 + 15

-5 -4.

Hence the length of the perpendicular distance is

4 and the point is on the same side of the line as the origin.

2. Find the equations of the bisectors of the angles formed by the lines

L
1
:x+3y-6 = 0,

L
2
:3x + y + 2 = 0.

Solution. Let P
1
(x

x , yx)
be any point on the bisector L

s
. Then, by

geometry, P
1
is equally distant from the given lines. Thus, if

d
x
= distance from L

x
to Pu

and d„ = distance from L„ to Pv
then d

l
and d

2
are numerically equal. Since, however, P

1
is on the same

side of both lines as the origin, d
t

and d
2
are both negative. Hence

for every point on the bisector L
3 ,

(1) d, = d
2 .

By the rule for finding d,

d gt + 8yt
-6

Vib

3x
1 + y1 + 2

-Vw
Substituting in (1) and reducing,

(2^ x
x + yx

- 1 = 0.

Dropping the subscripts in or-

der to follow the usual custom of

having (x
f y) denote any point on the line, we have for the equation of

(3) X
3

: x + y - 1 = 0. Ans.

d2 = •
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For any point on the bisector L
t
the distances d

l
and d

2
will be equal

numerically but will differ in sign. Hence, along Z
4 ,

(4) d1=-d2
.

Proceeding as before, the equation of L
4

is found to be

(5) L
4

: x — y + 4 = 0. Ans.

We note that (3) and (5) represent perpendicular lines.

Regarded as a formal process, equations (3) and (5) of the bisectors

are found by reducing the equations of L x
and Z

2
to the normal form and

then adding and subtracting these equations.

PROBLEMS

1. Find the perpendicular distance from the line

(a) x cos 45° + y sin 45a - Vi = to (5, — 7). Ans. — 2 V2.

(b) | x - $y - 1 = to (2, 1). Ans. - |.

(c) 3x + iy + 15 = to (-2, 3). Ans. — *£.

(d) 2 x — 7 y + 8 = to (3, - 5). Ans
49

(e) x — 3y = to(0, 4). Ans.

+ V53
12

+ VlO

2. Do the origin and the point (3, — 2) lie on the same side of the

line x — y + 1 = 0? Ans. Yes.

3. Does the line 2x + 3j/ + 2 = pass between the origin and the

point (- 2, 3) ? Ans. No.

4. Find the lengths of the altitudes of the triangle formed by the

lines 2x + 3z/ = 0, x+ 3y + 3 = 0, and x + y + 1 = 0.

Ans. —3=, —=, and V2.
Vl3 VlO

.S. Find the length of the altitudes of the triangles whose vertices are

|Ka) (7,8), (-8,4), (-2,-10).
(b) (8,0), (0,-8), (-3,-3).
(c) (5,-4), (-4,-5), (0,8).

6. Find the equations of the bisectors of the angles formed by

3x-4?/ + l = and ix + 3y — l = 0.

Ans. Ix — y = and x + ly — 2 = 0.

—aa2. Find the locus of all points which are twice as far from the line

12x + 5y — 1 = as from the j/-axis. Ans. 14 x — 5i/ + l = 0.
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8. Find the locus of points which are k times as far from 4 x— 3 2/+ 1 =
as from 5x - \2y = 0. Ans. (52 - 25 k) x - (39 - 60 k) y + 13 = 0.

9. Find the bisectors of the angles formed by the lines in Problem 8.

Ans. 77x-99?/ + 13 = and27x + 21y + 13 = 0.

10. Find the distance between the parallel lines

, fy = 2x + b, .

(a) I
' Ans.w

[?/ = 2x — 3.

(
b
) i o T ^

^-«s -v
' L» =-3x+ 4-

. . (2x-3y + 4 = 0,

Lj/ = nm — 3.
it

Vl + i

11. Find the equations of the bisectors of the angles of the following

triangles, and prove that these bisectors meet in a common point

:

'(a) x + 2y— 5 = 0, 2x-y-b = 0, 2x + y+ 5 = 0.

(b)3x + y-l = 0, x-3y-3 = 0, x+3y+U = 0.

(c) 3x + 4^-22 = 0, 4x-3j/ + 29 = 0, y - 5 = 0.

(d) x + 2 = 0, jr - 3 = 0, x + 2/ = 0.

(e) x = 0, 2/ = 0, x + y + 3 = 0.

12. Find the bisectors of the angles formed by the lines 4x — 3y — 1 =
and 3x — 4?/ + 2 = 0, and show that they are perpendicular.

^4ns. 7x — 72/4-1 = and x + y — 3 = 0.

13. Find the equations of the bisectors of the angles formed by the lines

5x— 12y + 10 = and 12 x - by + 15 = 0.

14. Find the locus of a point the ratio of whose distances from the lines

4 x _3 2/ + 4 = 0and5x + 12 2/-8 = 0isl3to5. Ans. Ox + 00-4 = 0.

,18, Find the bisectors of the interior angles of the triangle formed by

the lines 4x-3y = 12, 5x- I2y - 4 = 0,
(

and l|x - 5# - 13 = 0.

Show that they meet in a point.
"f

4. '. ,'r ! ^_v.

-4ns. 7x- 9j/ -16 = 0, 7x + Ty - 9 = 0, 112 a - 64 2/ - 221 = 0.

16. Find the bisectors of the interior angles of the triangle formed by

the lines 5x- I2y = 0, 5x + \2 y + 60 = 0, and 12 x - by - 60 = 0.

Show that they meet in a point.

Ans. 22/+5 = 0, 17x+72/ = 0, 17x-172/-60 = 0.
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17. The sides of a triangle are 3a; + 4 y - 12 = 0, 3x - 4y = 0, and

4x + 3y + 24 = 0. Show that the bisector of the interior angle at the

vertex formed by the first two lines and the bisectors of the exterior angles

at the other vertices meet in a point.

18. Find the equations of the lines parallel to Sx + 4 y — 10 = 0, and

at a distance from it equal numerically to 3 units.

Ans. 3x + iy = 25 or — 10.

35. The angle which a line makes with a second line. The angle

between two directed lines has been defined {Art. 12) as the

angle between their positive directions. When a line is given

by means of its equation, no positive

direction along the line is fixed. In order

to distinguish between the two pairs of

equal angles which two intersecting lines

make with each other, we define the

angle which a line makes with a second line

to be the positive angle (p. 2) from the

second line to the first line.

Thus the angle which L
t
makes with L

2
is the angle 0. We

speak always of the " angle which one line makes with a second

line," and the use of the phrase " the angle between two lines
"

should be avoided if those lines are not directed lines.

Theorem. If m^ and m
2
are the slopes of two lines, then the

angle 6 which the first line makes with the second is given by

(VI) tan = ^3--'"'

1 + m1m2

Proof. Let a^ and a
2
be the inclinations of L

x
and L

2
respec-

tively. Then, since the exterior angle of a triangle equals the

sum of the two opposite interior angles, we have

(Fig. 1) a
x
= + a

3 ,
or = a

x
— a

2 ,

(Fig. 2) a
2
= 7T - + av or = ir + (^ - a^.



THE STRAIGHT LINE 81

And since (30, p. 3), tan (ir + x) = tana:,

we have, in either case,

tan = tan (a
1
— a^)

tan a, — tan a.2

1 + tan «! tan a
2

(By 38, p. 3)

Y>
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Next find the angle at B. In the figure, B is measured from N. Hence

,
=

, andU = -.
mi 2

, = slope of N=— |,m
x
= slope of i = f.

Hence m
2

-

Finally, the angle at C is measured from the line M. Hence in (VI)

m
2
= slope of M = 6,m

1
= slope of JV =
- j-6 _ 15

1-9 ~w'tan C - and C = tan- 1 ^.

We may verify these results. For if. B = -
. then A = _ — C ; and

hence (31, p. 3 ; and 26, p. 3) tan A = cot C = , which is true for

the values found.

2. Find the equation of the line through (3, 5) which makes an angle

of - with the line x — y + 6 = 0.

Q

Solution. Let m
1
be the slope of the required line. Then its equation

is by (II), Art. 27,

(1) y-6 = m
l
(x-S).

The slope of the given line is m
2
= 1, and since

the angle which (1) makes with the given line is

p, we have by (VI), since 6 = - = 60°,

tan-
-1

3 1 + m
1

V3 =

Whence

1 + nij

mi= i±_^L_ (2+ V3).

r
1
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PROBLEMS

1. Find the angle which the line 3x — y + 2 =0 makes with

2x + y — 2 = 0; also the angle which the second line makes with the

first, and show that these angles are supplementary. 3 ir 7r
ArS. ——

i -7 •

4. 4
2. Find the angle which the line

(a) 2a;— 57/4-1 = makes with the line x — 2 j/ + 3 = 0.

(b) x + y + 1 = makes with the line x — y + 1 = 0.

(c) 3x — iy + 2 = makes with the line x + Sy — 7 = 0.

(d) 6x — 3</ + 3 = makes with the line x = 6.

(e) x — 7y + 1 = makes with the line x + 2y — 4 = 0.

In each case plot the lines and mark the angle found by a small arc.

Ans. (a) tan-i(-^); (b) |; (c) tan-i(-\?)
;

(d) tan-i (- J) ;

(e)tan-i(ft).

'ifx

,3. Find the angles of the triangle whose sides are x + 3j/ — 4 = 0,

x— 2j/ + l = 0, and x — 2/ + 3 = 0.

^Ins. tan-!(— V), tan- 1
(J), tan- 1

(2).

Hint. Plot the triangle to see which angles formed by the given lines are

the angles of the triangle.

"V 4. Find the exterior angles of the triangle formed by the lines

_J* - y + 3 = 0, !/ = 2, x-4y + S = 0.

Ans. tan-i(6), tan-i(- I), tan-i(- ^).

5. Find one exterior angle and the two opposite interior angles of

the triangle formed by the lines 2x — 3j/-6 = 0, 3x + 4j/ — 12 = 0,

x — 3y+6 = 0. Verify the results by formula 37, p. 3.

6. Find the angles of the triangle formed by 3x+2j/ — 4 = 0,

x-3y + 6 = 0, and 4 x - 3 y - 10 = 0.

X . Find the equation of the line passing through the given point and

f making the given angle with the given line.

"Z (a) (2, 1), j,2x-3j/ + 2 = 0. Ans. 5x-j/-9 = 0.

S(b)
(1, - 3), ~, x + 2y + 4 = 0. Ans. 3x + y = 0.

m + tan ,

ic) (xu Vl). *> v = mx + h
-

Ans
- y~n = i-Mtiui*

(x - Xi) -
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36. Systems of straight lines. An equation of the first degree

in x and y which contains a single arbitrary constant will repre-

sent an infinite number of lines, for the locus of the equation

will be a straight line for any value of the constant, and the

locus will be different for different values of the constant.

The lines represented by an equation of the first degree

which contains an arbitrary constant are said to form a system.

The constant is called the parameter of the system.

Thus the equation y = 2 x + b, where b is an arbitrary con-

stant, represents the system of lines having the slope 2 ; and

the equation y — 5 = m (x — 3), where m is an arbitrary con-

stant, represents the system of lines passing through (3, 5).

The methods already explained suffice for solving problems

involving straight lines, but shorter methods result in some

cases by using systems of lines, as will now be explained.

Given the line

(1) 3 x + 2 y - 4 = 0.

Now every line of the system

(2) 3x + 2y = k

is parallel to (1), for the slopes of (1) and (2) are equal.

Again, every line of the system

(3) 2x-3y = />

is perpendicular to (1) ; for the slope of (3) = §, the negative

reciprocal of the slope of (1).

Note that the coefficients of x and y in (1) and (2) are the

same, while the coefficients in (1) and (3) are interchanged and

also the sign of one of them is changed.

Next, consider the line

2,-2=30 + 2).

It passes through the point (— 2, 2). Now every line of the

system

(4) y-2=Je(x + 2)
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passes through this point, since the equation is satisfied by its

coordinates for all values of k.

Again, all the lines in the system

(5) x cos k + y sin k — 5 =
are at a distance of five units from the origin.

The value of the parameter k will depend upon the condition

imposed upon the line (2), (3), (4), or (5).

Thus, if (2) must pass through (1, — 3), these coordinates

must satisfy (2), and hence

3-6 = /c. .-. k=-3.
That is, the equation of the line passing through (1, — 3) and

parallel to3z + 2'2/-4 = 0is3a: + 22/ + 3 = 0.

Again, if (4) must form with the coordinate axes a triangle

of unit area, we set one half the product of its intercepts equal

to 1. Hence
-' 2W + 2) = 1,t~

A" + ^+1=0.
.-. k=-2,-i.

Substituting these values in (4), we obtain

2x+y + 2 = 0, x + 2y-2 = 0,

both lines satisfying the above conditions.

Again, if (5) lnust pass through the point (10, 0), then_

V3
10 cos k — 5, cos k = \, sin k = ± Vl — cos2 k = ± -

and substitution gives the two lines

x± V3y-10 = 0.

In general, we may say this : In finding the equation of a

straight line defined by two conditions, we may begin by writing

down the equation of the system of lines which satisfy one of

these conditions, and then determine the value of the parameter

so as to meet the second condition.
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PROBLEMS

1. Write the equations of the systems of lines defined by the conditions

:

(a) Passing through (—2, 3).

(b) Having the slope — |.

(c) Distance from the origin is 3.

(d) Having the intercept on the ?/-axis =—3.
(e ) Passing through (6, — 1).

( f ) Having the intercept on the x-axis = 6.

(g) Having the slope £.

(h) Having the intercept on the ?/-axis = 5.

(
i
) Distance from the origin = 4.

( j
) Having one intercept double the other.

(k) Sum of the intercepts = 4.

( 1 ) Length intercepted by the coordinate axes = 3.

(m) Forming a triangle of area 6 with the coordinate axes.

2. Determine k so that

(a) the line 2x — 3y + k = passes through (— 2, 1). Ans. 4 = 7.

(b) the line 2 fee — 5 y + 3 = has the slope 3. Ans. k = %*.

(c) the line x + y — k = passes through (3, 4). Ans. k = 7.

(d) the line 3x — 4y + k = has intercept on the x-axis = 2.

Ans. k=—6.
(e) the line x — 3ky + 4 = has intercept on the y-a,xis = — 3.

Ans. fc= — f.

(f ) the line 4s — 3?/ + 6A; = 0is distant three units from the origin.

Ans. fe = ±|.

(g) the line 2x + 7y — k = forms a triangle of area 3 with the

coordinate axes. Ans. ft = ±2V21.

3. Find the equation of the straight line which passes through the point

(a) (0, 0) and is parallel to x — 3^ + 4 = 0. Ans. x — 3y = 0.

(b) (3, — 2) and is parallel to x + y + 2 = 0. Aits, x + y — 1 = 0.

(c) (— 5, 6) and is parallel to 2 x + 4 j/ — 3 = 0. Ans. x '+ 2y— 7 = 0.

(d) (— 1, 2) and is perpendicular to 3s — 4^ + 1 = 0.

Ans. 4x + 3y — 2 = 0.

(e) (— 7, 2) and is perpendicular to s — 3 y + 4 = 0.

Ans. 3x + 2/ + 19 = 0.

4. The equations of two sides of a parallelogram are 3s — 4y+6 =
and x + 5 y — 10 = 0. Find the equations of the other two sides if one

vertex is the point (4, 9). Ans. 3x — 4^ + 24 = and x + 5 y — 49 = 0.
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5. Find the equation of the straight line at a distance of three units

from the origin, and which in addition satisfies the condition given :

(a) Parallel to the line 2x + y — 2 = 0. Ans. 2x + y ± 3 Vs = 0.

(b) Perpendicular to the line x + y — 1 = 0. Ans. x - y ± 3 V2 = 0.

(c) Passing through the point (0, 8). Aw. ± V55i + 3 y — 24 = 0.

(d) Passing through the point (1, 5).

(e) Forming a triangle with the coordinate axes whose area is 9.

37T
(f ) Making an angle of — with the line z + 2i/ + 4 = 0.

Ans. Sx + y ± 3Vl0 = 0.

6. Find the equation of the straight line parallel to the line

3s + 4j/ — 7 = 0, and satisfying the additional condition given:

(a) Passing through the point (2, — 6).

(b) Forming a triangle of area 2 with the coordinate axes.

(c) Forming a triangle of perimeter 5 with the coordinate axes.

(d) The middle point of the intercepted part has unit abscissa.

(e) At a distance of three units from the origin.

(f ) One unit nearer to the origin.

7. Find the equation of the line passing through the point (3, — 2)

and satisfying the additional condition :

(a) Parallel to the line x — ly — 8 = 0.

(b) Perpendicular to the line 3x — by = 7.

(c) Passing through the point (4, 1).

(d) Having the intercept (— 7, 0).

(e) The sum of its intercepts is 6.

Ans. x — Sy — 9 = 0, y + 2x — 4 = 0.

(f ) The given point bisects the part intercepted by the coordinate axes.

(g) Making an angle of 45° with the line 2x — 3y+ 2 = 0.

8. Find the equation of the line parallel to the line 3x + 4y — 15 = 0,

such that the point (2, —4) shall lie midway between the two lines.

Ans. 3x + 4y + 35 = 0.

9. Find the equation of the straight line which forms a triangle of

area 2 with the coordinate axes', and whose intercepts differ by 3.

37. System of lines passing through the intersection of two

given lines. Given the two lines

(1) L
l
:x + 2y-B = 0,

(2) L
2

: 3 x - y - 2 = 0.
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Consider the system of lines whose equation is

(3) x + 2 y - 5 + k (3 x - y - 2) = 0,

where k is an arbitrary number.

It is easy to see that the line (3) will pass through the in-

tersection of the given lines L
x
and i

2
. In fact, by solving (1)

and (2) for x and y, we find x = 1, y = 2, and these values

satisfy (3).

Note that the equation (3) is formed from the left-hand mem-

bers of (1) and (2) by multiplying one of them by the parameter

k and adding. The method of forming (3) shows at once that

the line it represents must pass through the intersection of the

given lines.

Problems requiring the equation of a line which passes

through the intersection of two given lines are often much

shortened by forming the equation of the system (3) and de-

termining k to meet the given condition. The advantage of

this method is that we do not need to know the coordinates of

the point of intersection of L
r
and L

2
.

EXAMPLES

1. Find the equation of the line passing through P
x (2, 1) and the

intersection of ij : 3 x — 5y — 10 = and Z
2

: x + y + 1 = 0.

Solution. The system of lines passing through the intersection of the

given lines is represented by

-3x-5y-10 + k(x + y + 1) = 0.

If Pj lies on this line, then

6-5-10 + fe(2 + l + 1) = 0;

whence k = f

.

Substituting this value of k and sim-

plifying, we have the required equation

21a; -lly- 31 = 0.

2. Find the equation of the line passing through the intersection of

Li: 2x + y + l = Oand X
2
:x — 2y + 1 = and parallel to the line whose

equation is ij : 4 x — 3 y — 7 = 0.
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Solution. The equation of every line through the intersection of the

first two given lines has the form

2x + y + 1 + k(x - 2y + 1) = 0,

or (2 + fc)z + (l-2fc)y + (l + fc) = 0.

2 _1_ h
The slope of this line is — This

1-2&
must equal the slope of L

3 ; that is, £

.

... _1±1 = |, rfc = 2.
l-2fc 7 '

Substituting and simplifying, we obtain

ix-Sy + 3 = 0. Ans.

Solve the following problems without finding the point of

intersection of the two lines given.

PROBLEMS

1. Find the equation of the line passing through the intersection of

23-32/ + 2 = and 3x - iy — 2 = 0, and which

(a) passes through the origin

;

(b) is parallel to 5 x — 2 ?/ + 3 = ;

(c) is perpendicular to3x — 2j/ + 4 = 0.

Ans. (a) 5x— ly = 0; (b) 5x — 2y — 50 = ; (c) 2x + 3y - 58 = 0.

2. Find the equations of the lines which pass through the vertices

of the triangle formed by the lines 2x — 3y + 1 = 0, x— y = 0, and

3x + iy — 2 = 0, which are

(a) parallel to the opposite sides

;

(b) perpendicular to the opposite sides.

Ans. (a) 3 x + 4 ?/ - 7 = 0, 14 x - 21 J/ + 2 = 0, 17x-17?/ + 5 = 0;

(b) 4x-3y-l = 0, 21X + 142/ -10 = 0, 17x + 17y - 9 = 0.

3. Find the equation of the line passing through the intersection

of x + y — 2 = and x — y + 6 = and through the intersection of

2x-y+3 = 0andx-3j/ + 2 = 0. Ans. 19x + %y + 26 = 0.

jH2ra£. The systems of lines passing through the points of intersection of the

two pairs of lines are

f
x + y-2 + k(x-y + S) = 0,

and 2 x - y + 3 + *' (a; - 3 y + 2) = 0.
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These lines will coincide if the coefficients are proportional ; that is, if

1+k 1-fc -2 + 6fc

2 + k'~ -1-Sk'~ 3 + 2 A'
'

Letting ; be the common value of these ratios, we obtain

1 + k = 2r + rk',

l_/c = - r -3 rk',

and -2 + Gk = 3r + 2 rk'.

From these equations we can eliminate the terms in rk' and r, and thus find

the value of k which gives that line of the first system which also belongs to

the second system.

4. Find the equation of the line passing through the intersection of

2x + y — 8 = and 3 x + 2 y = and

(a) parallel to the y-axis. Ans. x — 16 = 0.

(b) parallel to the x-axis. Ans. y + 24 = 0.

5. The equations of the sides of a parallelogram are x + 3i/4-2 = 0,

x + 3y — 8 = 0, 3 x — 2 ?/ = 0, 3x — 2 ij — 16 = 0. Find the equations

of the diagonals.

6. Find the equations of the lines through the point of intersection of

the lines x + Sy — 10 = 0, 3x — y = 0, which are at unit distance from

the origin. Ans. x — 1 = 0, 4x — 3 ?/ + 5 = 0.

7. Find the equations of the lines through the point of intersection of

the two lines 1 x + 7y — 24 = 0, x — y = 0, which form with the coordi-

nate axes a triangle of perimeter 12.

Ans. 4x + 3(/-12 = 0; 3x + iy-12 = 0.

REVIEW. TRIANGLE PROBLEMS

l.t In the following problems the coordinates of the vertices of a triangle

are given. Find (1) the equations of the sides, (2) the equations of the

perpendicular bisectors of the sides, (3) the equations of the medians,

(4) the equations of the lines drawn from the vertices perpendicular to

the opposite sides, (5) the equations of the lines drawn through the vertices

parallel to the opposite sides, (6) the lengths of the three medians, (7) the

lengths of the three altitudes, (8) the area, (9) the three angles, (10) the

equation of the circumscribed circle.

(a) (8, 2), (6, 6), (- 1, 5). (f) (0, - 4), (6, - 2), (4, - 5).

(b) (- 4, 5), (- 3, 8), (4, 1). (g) (- 3, - 3), (- 2, 0), (5, - 7).

(c) (4, 13), (16, 5), (- 1, - 12). (h) (0, 2), (8, 0), (5, 5).

(d) (2, 4), (8, 4), (6, 0). (i) (3, - 1), (3, - 5), (0, - 2). ,

(e) (4, 0), (2, 4), (- 5, 3). ( j) (- 1, 15), (11, 7), (- 6, - 10).



THE STRAIGHT LINE 91

2. In the following problems the coordinates of the vertices of a triangle

are given. Find (1) the equations of the sides, (2) the equations of the

perpendicular bisectors of the sides, (3) the equations of the bisectors of

the interior angles, (4) the equation of the circumscribed circle, (5) the

equation of the inscribed circle.

(a) (8,1), (2,4), (-2, -4).
(b) (6, 30), (36, - 10), (- 24, - 10).

(c) (3,3), (-3,6), (-7,-2).
(d) (0,32), (30, -8), (-30, -8).

3. In the following problems the equations of the sides of a triangle

are given. Find (1) the angles, (2) the equations of the bisectors of the

interior angles, (3) the equations of the bisectors of the exterior angles,

(4) the equation of the inscribed circle.

(a) 4x-3)/-4 = 0, 3x+4y-8 = 0, 5x - 12 j/ - 60 = 0.

(b) 5x + 12 2/ -24 = 0, 12x + By + 7 = 0, 5x - 12 j/ - 48 = 0.

(c) 5x -12 ^-42 = 0, 12 x+ By -2 = 0, 5x4-12?/ -66 = 0.

(d) 12x+ 52/ + 50 = 0, 5x - 12 y - 81 = 0, 5x + 12 y - 33 = 0.

(e) 4x- 32/ 4- 25 = 0, 5x - \2y 4- 1 = 0, 3x 4- 4j/ - 5 = 0.

(f) 5x4- 12 2/ -123 = 0, 12x4- 52/4-21 = 0, 5x- 12 !/ -27 = 0.

(g) 5x- 12 ;/- 3 = 0, 12x4- 5 2/4-24 = 0, 5x4- 12?/- 75 = 0.

(h) 12x4-5 2/4-50 = 0, 5x4- 12 2/ - 16 = 0, 5x- 12 y - 16 = 0.



CHAPTER V

THE CIRCLE

38. Equation of the circle. Every circle is determined when

its center and radius are known.

Theorem. The equation of the circle whose center is a given

point (a, /3) and whose radius equals r is

(I) (x _«)»+ (»-^rsl-
-

Proof. Assume that P(x, y) is any point on the locus.

If the center (a, p) be denoted by C, the given condition is

PC = r.

By (I), p. 13, PC = ^/{x-a)2 + {y-p)2
.

.- V(a; - a)2 + (y- P)
2 = r.

Squaring, we have (I). q.e.d.

Corollary. The equation of the circle whose center is the origin

(0, 0) and whose radius is r is

jc
2 + y

2 = r1
.

If (I) is expanded and transposed, we obtain

(1) x2 + if - 2 ax - 2 fly + a2 + /? - r2 = 0.

The form of this equation is clearly

x2 + y
2 + terms of lower degree = 0.

In words : Any circle is defined by an equation of the

second degree in the variables x and y, in which the terms of the

second degree consist of the sum of the squares of x and y.

Equation (1) is of the form

(2) x2 + 1f + Dx + Ey + F= 0,

where

(3) D=-2a, E=-20, and F = a2 + p
2 - r2

.

92
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Can we infer, conversely, that the locus of every equation

of the form (2) is a circle ? To decide this question transform

(2) into the form of (I) as follows : Eewrite (2) by collecting

the terms in x and the terms in y thus :

(4) x2 + Dx + y
2 + Ey =- F.

Complete the square of the terms in x by adding (JD)
2 to

both sides of (4), and do the same for the terms in y by adding

(£ E)
2
to both members.

Then (4) may be -written

(5) (x + ^D) 2 + (y + ^Ey = l(D2 + E2 -iF).

In (5) we distinguish three cases

:

If D2 + E2 — 4Fis positive, (5) is in the form (I), and hence

the locus of (2) is a circle whose center is (— J D, — \E) and

whose radius is r = ^ V.D
2 + E2 — 4F.

If D2 + E2 — 4F = 0, the only real values satisfying '(5) are

x=—\D,y=—\E (footnote, p. 37). The locus, therefore, is

the single point (— \D, — \E). In this case the locus of (2)

is often called a point circle, or a circle whose radius is zero.

If D2 + E2 — 4F is negative, no real values satisfy (5), and

hence (2) has no locus.

.

The expression If + E2 — 4 F is called the discriminant of (2),

and is denoted by © (Greek letter "Theta"). The result is

given by the

Theorem. The locus of the equation

(II) xl + y
2 + Dx + Ey + F=0,

whose discriminant is ®= D2 -\-E2— 4:F,is determined asfollows :

When © is positive, the locus is the circle ivhose center is

(— I D, —% E) and whose radius is r = \ Vz»2+E2—±F=\V®.
When © is zero, the locus is thepoint circle (— £ D, — J E).

When © is negative, there is no locus.

Corollary. When E= 0, the center of (II) is on the x-axis, and

when D=0, the center is on the y-axis.
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Rule to determine the equation of a circle satisfying three

conditions.

First step. Let the required equation be

(1) (*-«)' + (?-£>' = '*.

or

(2) x2 + y
2 +Dx + Ey + F=0,

as may be more convenient.

Second step. Find three equations between the constants a, /?,

and r [or D, E, and F] ivhich express that the circle (l)[or(2)]

satisfies the three given conditions.

Third step. Solve the equations found in the second step for

a, /?, and r [or D, E, and F"].

Fourth step. Substitute the results of the third step in (1) [or

(2) ]. The result is the required equation.

In some problems, however, a more direct method results by

constructing the center of the required circle from the given

conditions and then finding the equations and points of inter-

section of the lines of the figure.

y\

6")-

^

EXAMPLES

1. Find the equation of the circle passing through the three points

P
t (0, 1), P2 (0, 6), andP8 (3, 0).

First solution. First step. Let the re-

quired equation be

(3) x2 + y
2 + Dx + Ey + F = 0.

Second step. Since Pv P
2 , and P

3
lie

on (3), their coordinates must satisfy (3).

Hence we have

(4) 1 + E + F=0,

(5) 36 + 6E+F=0,
and

(6) 9 + 3D+ P=0.

Third step. Solving (4), (5), and (6), we obtain

E=-7, F = 6, D = - 5.

(0,11

VWi

^(3,0)

/
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Fourth step. Substituting in (3), the required equation is

x* + y*~ hx -1y + 6 = 0.

The center is
( j, |), and the radius is \ V2 = 3.5.

Second solution. A second method which follows the geometrical con-

struction for the circumscribed circle is the following. Find the equations

of the perpendicular bisectors of P
X
P% and P^P

a
. The point of intersec-

tion is the center. Then find the radius by the length formula.

2. Find the equation of the circle passing through the points P
l
(0,— 3)

and P
2
(i, 0) which has its center on the line x + 2y = 0.

First solution. First step. Let the required

equation be

(7) x2 + y* + Dx + Ey + F = 0.

Second step. Since P
1
and P

2
lie on the locus

of (7), we have

(8) 9 - 3 E + F = 0,

and

(9) 16 + 4Z>+ F=0.

(T) 7^\
, 1 , and since it lies on the given line,

V*(-iH
or

(10) D + 2E = 0.

Third step. Solving (8), (9), and (10),

Z>=-V, E = \, F = -V-

Fourth step. Substituting in (7), we obtain the required equation,

z2 + J/
2 -¥x+^-¥=0,

or 5z2 + by2 — 14a; + ty — 24 = 0.

The center is the point (I,
— T

'
5), and the radius is J V29.

Second solution. A second solution is suggested by geometry, as follows

:

Find the equation of the perpendicular bisector of P^P^. The point of

intersection of this line and the given line is the center of the required

circle. The radius is then found by the length formula.
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3. Find the equation of the circle inscribed in the triangle whose

sides are , _ „ „AB:Sx-4y -19 = 0,

(11) BC:4x + 3y-17 = 0,

CA : x + 7 = 0.

Solution. The center is the point of intersection of the bisectors of the

angles of the triangle. We therefore find the equations of the bisectors

of the angles A and C.

Reducing equations (11) to \C
the normal form,

(12) AB: 3x-4?/-19

BC:
4x + 32/-17

= 0;

= 0:

(13) AB:

CA:
X-±1 = 0.
-1

Then, by Example 2, Art.

34, the bisectors are

3x—4y—19_x+7

or 2x — ?/ + 4 = 0,

4z + 3y-17 _a; + 7

5 -1 '

or 3x + y+6 = 0.

The point of intersection

of AD and CM is (- 2, 0).

This is therefore the center

of the inscribed circle. The
radius is the perpendicular

distance from any of the lines (11) to (- 2, 0). Taking the side AB,
then, from (12),

r
3(-2)-4(0)-19 _ p

5

Hence, by (I), the equation of the required circle is

(x + 2)
2 + (y - 0)

2 = 25, or x2 + 2/
2 + 4x - 21 = 0. .4 ns.
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PROBLEMS

1. Find the equation of the circle whose center is

(a) (0, 1) and whose radius is 3. Ans. x2 + y2 — 2 y — 8 = 0.

(b) (— 2, 0) and whose radius is 2. Ans. x2 + y
2 + 4 x = 0.

(c) (—3, 4) and whose radius is 5. Ans. x2 + y
2 + 6x — Sy = 0.

(d) (a, 0) and whose radius is a. Ans. x2 + y
2 — 2 ax = 0.

(e) (0, p) and whose radius is p. Ans. x- + y
2 — 2/3x = 0.

It
) (0, — /3) and whose radius is /3. .Ans. x2 + y

2 + 2 |3x = 0.

2. Draw the locus of the following equations :

(a) x2 + y
2 - Gj-]8 = 0. (f) x2 + y

2 - 6x + ±y - 5 = 0.

(b) 3x2 + 3 2/
2 -10x-24 2/ = 0. (g) (x + l) 2 + (y - 2)

2 = 0.

(c) x2 + y
2 = 8 x. (h)7x 2 + 7y2 -4x-y = 3.

(d) x2 + y°--Sx-Gy + 25 = 0. (i) x2 + j/
2 + 2ox + 2by +a2 + b2 =0.

(e) x2 + y
2 — 2 1 + 2 ?/ + 5 = 0. (j ) x2 + y

2 + 16 x + 100 = 0.

3. Show that the following loci are circles, and find the radius and the

coordinates of the center in each case :

(a) A point movos so that the sum of the squares of its distances from

(3, 0) and (— 3, 0) always equals 68. Ans. x2 + y
2 = 25.

(b) A point moves so that its distances from (8, 0) and (2, 0) are always

in a constant ratio equal to 2. Ans. x2 + y
2 — 16.

(c) A point moves so that the ratio of its distances from (2,1) and (— 4, 2)

is always equal to
J.

Ans. 3x2 + 3y2 — 24x — 4y = 0.

(d) The distance of a moving point from the fixed point (— 1, 2) is twice

its distance from the origin.
, , „ 2v5

Ans. a = \, /3=-|, r = -^-

(e) The distance of a moving point from the fixed point (2, — \) is half

its distance from the fixed point (0, 3).

(f) The square of the distance of a moving point from the origin is

proportional to the sum of its distances from the coordinate axes.

(g) The square of the distance of a moving point from the fixed point

(—4, 3) is proportional to its distance from the line 3x — 4y — 5 = 0.

(h) The sum of the squares of the distances of a point from the two lines

x — 2y = 0, 2x + y — 10 = 0, is unity.

4. Find the equation of a circle passing through any three of the fol-

lowing points

:

(0,2) (3,3) (6,2) (7,1) (8,-2) (7,-5)

(6,-6) (3,-7) (0,-6) (-1,-5) (-2,-2) (-1,1)
Ans. x2 + y

2 — 6x + 4y — 12 = 0.
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S. Find the equation of the circle which

(a) has the center (2, 3) and passes through (3, — 2).

Ans. x2 + y
2 — 4 x — 6 y — 13 = 0.

(b) has the line joining (3, 2) and (— 7, 4) as a diameter.

Ans. x2 + y
2 + 4 x - 6 y - 13 = 0.

(c) passes through the points (0, 0), (8, 0), (0, — 6).

Ans. x2 + y
2 - 8x + 6y = 0.

(d) passes through (0, 1), (5, 1), (2, - 3).

Ans. 2x2 + 2y2 - lOx + y- 3 = 0.

(e) circumscribes the triangle (4, 5), (3, — 2), (1, — 4).

(f) has the center (— 1, — 5) and is tangent to the x-axis.

Ans. x2 + y
2 + 2x + lOy + 1 = 0.

(g) has the center (3, — 5) and is tangent to the line x — 7y + 2 = 0.

Ans. x2 + y
2 - 6 x + 10 y + 2 = 0.

(h) passes through the points (3, 5) and (— 3, 7) and has its center on
the x-axis. Ans. x2 + y

2 + 4x - 46 = 0.

(i) passes through [the points (4, 2) and (—-6, — 2) and has its center

on the y-axis. Ans. x2 + y
2 + 5 y — 30 = 0.

(]) passes through the points (5, — 3) and (0, 0) and has its center on
the line 2x- 3 2/- 6 = 0. Ans. Sx2 + 3 y

2 - 114 x - 64 y + 276 = 0.

(k) passes through the points (0, 2), (— 1, 1) and has its center in the

line 3y + 2x = 0. Ans. x2 + y
2 — 6x + 4y — 12 = 0.

(1) circumscribes the triangle x — 6 = 0, x + 2j/ = 0, x — 2y = 8.

Ans. 2 x2 + 2 y
2 — 21 x + 8 y + 60 = 0.

(m) is inscribed in the triangle (0, 6), (8, 6), (0, 0).

Ans. x2 + y
2 — 4x— Sy + 16 = 0.

(n) passes through (1, 0) and (5, 0) and is tangent to the y-axis.

Ans. x2 + y
2 — 6 x ± 2 VEy + 5 = 0.

(o) passes through the points (— 3, — 1), (1, 1) and is tangent to the

line 4x + 3y+ 25 = 0.

6. Find the equations of the inscribed circles of the following triangles

:

(a) x + 2y— 5= 0, 2x-j/-5 = 0, 2x+y+5 = 0.

(b)Sx + y-l = 0, x-3y-3 = 0, x + 3j/ + ll = 0.

(c) 3x + 42/-22 = 0, 4x-3j/ + 29 = 0, y - 5 = 0.

(d) x + 2 = 0, y - 3 = 0, x + y = 0.

(e) x = 0, y = 0, x + y + 3 = 0.

7. What is the equation of a circle whose radius is 10, if it is tangent

to the line 4x+3j/— 70 = 0at the point whose abscissa is 10 ?
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In the proofs of the following theorems the choice of the axes of

coordinates is left to the student, since no mention is made of either

coordinates or equations in the problem. In such cases always choose

the axes in the most convenient manner possible.

8. A point moves so that the sum of the squares of its distances from

two fixed points is constant. Prove that the locus is a circle.

9. A point moves so that the sum of the squares of its distances from

two fixed perpendicular lines is constant. Prove that the locus is a circle.

10. A point moves so that the ratio of its distances from two fixed

points is constant. Determine the nature of the locus.

Ans. A circle if the constant ratio is not equal to unity, and a straight

line if it is.

11. A point moves so that the square of its distance from a fixed point

is proportional to 'its distance from a fixed line. Show that the locus

is a circle.



CHAPTER VI

TRANSCENDENTAL CURVES AND EQUATIONS

In the preceding chapters the emphasis has been laid chiefly

on algebraic equations ; that is, equations involving only powers

of the coordinates. We now turn our attention to equations

such as y _ i g x> y = 2
x
, x = sin y,

t» which are called transcendental equations, and their loci, tran-

scendental curves.

40. Natural logarithms. The common logarithm of a given

number N is the exponent x of the base 10 in the equation

(1) 10* = iV ; that is, x = log
10
N.

k. second system of logarithms, known as the natural system,

is of fundamental importance in mathematics. The base of this

system is denoted by e, and is called the natural base. Numer-

ically to three decimal places, the natural base is always

(2) e = 2.718.

The natural logarithm of a given number N is the exponent y
in the equation

(3) e* = N ; that is, y = log
e
N.

To find the equation connecting the common and natural

logarithms of a given number, we may take the logarithms of

both members of (3) to the base 10, which gives

(4) log
10

e" = log
10

iV, orylog
10

e = log
10

JV-. (16, p. 1)

(5) -

-

. log
10
N = log

10
e log

e
N (using the value of y in (3))

101
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The equation shows that the common logarithm of any number

equals the product of the natural logarithm by the constant

log
10

e. This constant is called the modulus (= M) of the com-

mon system. That is (Table, Art. 2),

(0)
'M

.

log,„ e = 0.434 ; also - = 2.302.

(A)

We may summarize in the equations,

Common log = natural log times 0.434,

Natural log = common log times 2.302.

These equations show us how to find the natural logarithm

from the common logarithm, or vice versa.

Exponential and logarithmic curves. The locus of the equation

(7) y = e *

is called an exponential curve. From the preceding we may
write (7) also in the form

(8) z = log, y= 2.302 log
lo2/

.

The locus of (7) is therefore the curve whose abscissas are

the natural logarithms of the ordinates. Let us now discuss

and plot (7). (Figure, p. 103.)

Discussion. Since negative num-
bers and zero have no logarithms,

y is necessarily positive. More-

over, x increases as y increases.

The coordinates of a few points

on the locus are set down in the

table. The discussion and figure

illustrate the fact that

loge = — oo.

Eor clearly, as y approaches zero, x becomes negatively larger and larger,

without limit. Hence the x-axis is a horizontal asymptote.

If the curve is carefully drawn, natural logarithms may be measured
off. Thus, by measurement in the figure, if

y = i, x = 1.38 = log, 4.

X
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More generally, the locus of

(9) y = e**,

where k is a given constant, is an exponential curve. The dis-

cussion of the difference of this locus from that in the figure is

left to the reader.

The locus of the equation

(10) y = log
]0
x,

which is called a logarithmic curve,

differs essentially from the locus of

(7) only in its relation to the axes.

In fact, both curves are exponential

or logarithmic curves, depending upon

the point of view.

The locus of (10) is given in the

figure below. Clearly, since log
10

=
— oo , the y-axis is a vertical asymp-

tote. The scales chosen are

unit length on A'A' ' equals 2 divisions,

unit length on YY' equals 4 divisions.

Compound interest curve. The problem of compound interest intro-

duces exponential curves. For, if r = rate per cent of interest, and n =
number of years, then the amount (= A) of one dollar in n years, if

the interest is compounded annually, is given by the formula

A = (1 + r)».
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For example, if the rate is 5 per cent, the formula is

(11) A = (1.05)».

If we plot years as abscissas and the amount as ordinates, the corre-

sponding curve will be an exponential curve. For, by Art. 2, logi 1.05= .021.

Hence, from (A), log,, 1.05 = 2.302 times .021

= .048 (to three decimal places).

Hence, by (3), eMa = 1.05, and the equation (11) becomes

(12) A = e-M8 »,

which is in the form of (9) ; that is, k = .048.

For convenience in plotting exponential curves accurately

the following table is inserted.

Table of values of the exponential function ex .

X
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PROBLEMS

Draw * the loci of each of the following :

y = e~ 2x .

2e~*.

2e-i T
.

10. y = e~ xl
.

PROBABILITY CURVE

7. y = xe~ x
.

8. s = i
2e- '.

9. v = 2e~i".

11. y = 21og10 z.

12. V = l0g«(l+iB).

13. 2/ = 21og
10
|x.

14. ?/ = logi V^.

15. y = log,(l + e*).

16. s = log]0 (l + 2Q.

17. » = log,(l+P).

18. x = log
l0
(l-j/).

41. Sine curves. As already explained (p. 2), the two com-

mon methods of angular measurement, namely circular measure

and degree measure, employ as units of measurement the radian

and the degree respectively. The relation between these units is

1 radian = or 57.29 degrees,

(!)
1 degree= 0.0174 radians or -rrrz >

loU

in which it = 3.14 (or ^ approximately), as usual.

i i

2-1.67-1

0°

I" 1 1.57 ±
Radians

Equations (1) may be written

(2) 7r radians = 180 degrees.

77- 77"

Thus 7T radians = 90°, — radians = 45°, etc. The two scales
2 4

laid off on the same line give the figure.

* If the shape only of the curves 1-10 is desired, we may replace e by the

approximate value 3.



106 NEW ANALYTIC GEOMETRY

In advanced mathematics it is assumed that circular measure

is to be used. Thus the numerical values of

7T.C

sin 2 x, x tan

cos —r-

7TX o

2x
for x = l, are as follows :

sin 2 x = sin 2 radians = sin 114°.59 = 0.909,

7TCC /TT \
x tan~ = 1 • tan I

— radians
J

= tan 45° = 1,

7TX lit \
cos -r- cos I 7t radians I orvo

L =_^ i = ^^_ = 0.433.
2x 2 2

Let us now draw the locus of the equation

(3) y = sin x,

in which, as just remarked, x is the circular measure of an angle.

Yi
'

VIS.

Solution. In making the calculation for plotting, it is convenient to

choose angles at intervals of, say, 30°, and then find x, the circular measure

of this angle, in radians, and y from the Table of Art. 4.

Angle in
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Thus, for 30°, y = sin 30° = .50. Forl50°,2/=sinl50°=sin(180°-30°) =
sin 30° = .50 (30, p. 3).

To plot, choose a convenient unit of length on XX' to represent 1 radian,

and use the same unit of length for ordinates. The divisions laid off on
the x-axis in the figure are 1 radian, 2 radians, etc. Plotting the points

(x, y) of the table, the curve APOQB is the result.

The course of the curve beyond B is easily determined from the

relation
sin(2?r + x) = sinx.

Hence y = sin x = sin (2 jr + x)

;

that is, the curve is unchanged ifx-\-2irbe substituted for x. This means,

however, that every point is moved a distance 2 ir to the right. Hence
the arc APO may be moved parallel to XX' until A falls on B, that

is, into the position BRC, and it will also be a part of the curve in Us

new position. This property is expressed by the statement : The curve

y = sin x is a periodic curve with a period equal to 2 ir. Also, the arc

OQB may be displaced parallel to XX' until O falls upon C. In this

way it is seen that the entire locus consists of an indefinite number of

congruent arcs, alternately above and below XX'

.

General discussion. 1. The curve passes through the origin, since (0, 0)

satisfies the equation.

2. In (3), if x = 0, y = sin = = intercept on the axis of y.

Solving (3) for x,

(4) x = arc sin y.

In (4), if y = 0, x = arc sin = nir, n being any integer.

Hence the curve cuts the axis of x an indefinite number of times both

on the right and left of O, these points being at a, distance of ir from

one another.

3. Since sin(— x) =— sinx, changing signs in (3),

— y = — sin x,

or — 2/ = sin(— x).

Hence the locus is unchanged if (x, y) is replaced by (— x, — y), and

the curve is symmetrical with respect to the origin (Theorem II, p. 43).

4. In (3), x may have any value, since any number is the circular

measure of an angle.

In (4), y may have values from — 1 to + 1 inclusive, since the sine of

an angle has values only from — 1 to + 1 inclusive.

5. The curve extends out indefinitely along IT in both directions,

but is contained entirely between the lines y = + 1, y = — 1.
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The locus is called the wave curve, from its shape, or the sine curve,

from its equation (3). The maximum value of y is called the amplitude.

Again, let us construct the locus of

y = 2sm—

•

Solution. We now choose for x the values 0, J, 1, 1^, etc., radians, and

arrange the work of calculation as in the table.

(5)

X
radians
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As it is important to sketch sine curves quickly, the follow
ing directions are useful

:

1. Find the amplitude and the period.

2. Choose the same scales on both axes.

3. Lay off points on XX' at intervals of a quarter-period.

The highest and lowest points are at the odd quarter-periods.

The intersections with XX' are at the even quarter-periods.

PROBLEMS

Plot the loci of the equations :

1. *y = cos a; (see figure).

2.
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tan-13. y

14. y

15. y = 2 tan

mt.

4

2 tan x.

7TX.

T
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17. y = cot x

18. y
7TZ

COt
4

21. y = sec£x.

22. j/ = esc i x.

TTX

19. y = 4 cot—
16. ?/ = 3 tan—

4

23. 2/ = sec -

24. y = esc— •

420. ?/ = esc a;

25. x = sin y. Also written y = arc sin x or sin-ix, and read

angle whose sine is x."

26. x = 2 cos y, or y = arc cos i x.

27. x = tan y, or y = arc tan x (see figure).

28. x = 2 sin } Try.

29. x = i cos J Try.

30. y = arc tan J x.

31. y = 2 arc cos J x.

The locus of the equation

(6) y

'the
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as required. The locus winds back and forth across the line

y = \ x, crossing the line at x = 0, ±4, ±8, ± 12, etc. ;
that

is, directly under the points where the sine curve in Fig. 1 crosses

the x-axis.

Fig. 2

PROBLEMS

Draw the following curves and calculate y accurately for the given

value of x

:

1. y = cosx + Jx. x = 1.

x2

2. y = sin 2 x + — x = J.

3. y = sin x + cosx. x=— J.

4. y = -x — 3 sin x = 2.
4 3

5. y = 4 cos— x =— 2.
;6 4

6. « =
gc _|_ g-tt

7. y = e* — sin 2 x.

e> — e~

'

8. y

9. v = e 4 — cos4x.

x = f.

* = -*.

x = 3.

10. y = sin x + sin 2 x. x = 0.8.
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11. y = sin 1- cos— x =— 1.

4 3

12. j/ = sin ax + cos ax. x = T\ a.

13. y = 2 sinx + 5 cosx. * = 0.5.

14. y = 2 sin 2 x + 3cos£x. x = 2.

15. y = sin ax + sin 6x.

20. y = -(e«+ e~a). x = 2£a.

16. 2/ = V9 - x2 + sin 27rx. x = !

17. j/ = e-* + 4x2
. x=— 2.4.

18. y = log
10x + sin

2 7TX
x = 2.

IB.^Vx + Icos^ + j).

The locus in Problem 20 is called

the catenary (see figure). The shape

of the curve is that assumed by
a heavy flexible cord freely sus-

pended from its extremities.

The student may have observed from the preceding exam-

ples the truth of the following

Theorem. The curve obtained by adding corresponding ordi-

nates of sine curves with the same period is also a sine curve

with equal period.

For example, consider the equation

(5) y = asm(^+aj+bsm(-^ + p\,

in which a,
f3,

and P are constants. The period of both sine

purves equals P. Expand the right-hand member by the rule

(33, p. 3) for sin (x -f- y) and collect the terms in sin —

—

2 nrt
and cos —— Then equation (5) assumes the form

, • 2 7rt
, „ 2irt

(6) y = A sin —— + B cos —— >

where A and B are constants, independent of t.

Let us now introduce the angle y of the right triangle whose legs

are A and B. Let the hypotenuse *vA*+B2= C. Then B =C sin y,



114 NEW ANALYTIC GEOMETRY

A = C cos y. Substituting these values in (6) gives

„l . 2-jrt 2irt . \ „ . (2irt
(7) y = Clsin—- cosy + cos—- smy I = C sin I —^- + y

This is a sine curve with period P and amplitude C = V^4 2 +-C2
.

Q.E.D.

The curve resulting from the addition of ordinates of sine

curves with unequal periods is, however, not a sine curve.

43. Boundary curves. In plotting the locus of an equation

of the form

(1) y = product of two factors

one of which is a sine or cosine, as, for example,

V = e* sin x, or s = t cos— >

much aid is obtained by the following considerations :

For example, consider the locus of

(2) y = e **sm— •

We now. make the following observations :

1. Since the numerical value of the sine never exceeds unity,

the values of y in (2) will not exceed in numerical value the

value of the first factor e~
iX

. Moreover, the extreme values of

sin \ ttx are + 1 and — 1 respectively. Hence y has the extreme

values e~*
x and — e~*

x
.

Consequently, if the curves

-lx -i»
(3) y = e *

x
and y = — e

are drawn, the locus of (2) will- lie entirely between these curves.

They are accordingly called boundary curves.

Draw these curves. The second is obviously

symmetrical to the first with respect to the

a;-axis. To plot, find three points on the first

curve, as in the table. (Use the Table, p. 104.)

X
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2. When sin £ ttx = 0, then in (2) y = 0, since the first fac-

tor is always finite. Hence the locus of (2) meets the x-axls in

the same points as the auxiliary sine curve

(4) y = sin \ ttx.

3. The required curve touches * the boundary curves when the

second factor, sin \ ttx, is + 1 or — 1 ; that is, when the ordinates

of the auxiliary curve (4) have a maximum or minimum value.

Hence draw the sine curve (4). The period is 4 and the

amplitude is 1. This curve is the dotted line of the figure.

^*

The discussion shows these facts :

The locus of (2) crosses XX' at x = 0, ± 2, ± 4, ± 6, etc., and
touches the boundary curves (3) at x = ± 1, +3, ±5, etc.

We may then readily sketch the curve, as in the figure ; that

is, the winding curve between the boundary curves (3).

4. For a check remember that the ordinate of (2) is the

product of the ordinates of the boundary curve y = e~^ x and

the sine curve (4). In the figure, for example, the required

curve lies above XX' between x = and x = 2, for the ordinates

of y = e~i x and of the sine curve are now all positive. But

between x= 2 and x= 4 the required curve lies below XX', for the

ordinates of y= e~^ x and the sine curve now have unlike signs.

*The discussion shows merely that the curve (2) reaches the boundary
curves. Tangency is shown by calculus.
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PROBLEMS

Draw the following loci and calculate y accurately for the given

values, of x

:

1. y = -sin x.
4

2. y — — cos 2 x.
" 16

X . 7TX
3. ?/ = - sin

" 3 3

a/ to
4. « = — cos—

* 10 5

sinx/ 1 . \
» = 2; jjt. 11. »= l=-sinx). a; = 0.1.

x = 1 ; 7T.

x = 3; i.

«

_

sin 2 x „ , ,
12. « = x = 0.1;l.

2x

cosx
13. y = x = 1; 7r.

x

5. y = e_I sinx.

6. j/ = e- x cos2;

7. y = e T sin-

x = 3 ; 2J.

x=Jir; J ir.

,. sinx
14. y = —^ x = 0.2

; } tt.

6. j/ = e- x cos2x. x = ^tt;2.

to

T*

18. y = x = 0.1; 2.

x=-2; 3.

8. y = e i^cos™.
3

x = 3; -,

9. j/ = 4e rs^cosl

—

+ t) -

,„ -a'x /2tx \
10. j/ = <ze cosl—— + al-

16. y = sin - x cos 2 x . x = ^ 7r.

/ 1\ 1
17. « = ( x + - 1 sin - x.

\ 2/ 2

x2 1 11
18. y = — cos-x cos-x.

4 2 4 2

19. y = e ' sin irt + e ^' sin
Trf

20. Draw the two loci obtained (1) by adding and (2) by multiplying

the ordinates in the following pairs of curves

:

= X— 7T,

= sin x.
(c)

i
y = e

.
'

jy = sin to.

(b) \ V = e 8
,

: COS TO.

(d)

« = 3H ,*
16

2/ = sin-

(«)

(f)

2/
=
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Consider the equation

(1) cot x = x, or cot x — x = 0.

To find values of x {in radians)

for which this equation holds.

To aid in determining the

roots, let us draw the curves

(2) y = cot x and y = x.

Now the abscissa of each point

of intersection is a root of equa-

tion (1), for, obviously, at each

point of intersection of the curves

(2) we must have cot x = x ;
that

is, equation (1) is satisfied.

In plotting it is well to lay off carefully both scales (degrees

and radians) on OX.

y = cot x
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The line y = x will obviously cross each branch. Hence the

equation (1) has an infinite number of solutions.

Smallest solution. From the figure this solution lies between

45° and 50°, or, in radians, between x = .785 and x = .873.

Hence the first significant figure of the smallest root is 0.8.

Interpolation is necessary to determine subsequent figures.

For this purpose arrange the work thus, using the preceding

table. x (radians) cotx < cotx — x

.873 .839 - .034

.785 1,000 +.215

difference + .088 - .249

We wish to know what change in x above .785 will produce

a decrease in cot x — x equal to .215 ; that is, make cot x — x

equal to zero. Call this change z. Then, by proportion,

* - .215

:<)88
= 37249- '• S = -°76

Hence x — .785 + .076 = .86 (to two decimal places).

PROBLEMS

Determine graphically the number of solutions in each of the following,

and find the smallest root (different from zero)

.

1. cosx = x. Ans. One solution; x = 0.74.

2. sin2x = x. Ans. Three solutions; x = 0.95

3. tanx = x. Ans. Infinite number.

4. sinx = Jx. Ans. Three.

6. sinx = x2 . Ans. Two.

6. cosx = x2
. Ans. Two.

7. tanx = x2
. 13. Ssinx = 2cos4x. 19. e* = tanx.

8. cot x = x2
. u 2 s

.

n
x = cog 2 x 20. sin x = log

10
x.

9. cosx=-- 21. cosx = log10 x.
3 15. sin 3x = cos 2 x.

10. tanx = 1 - x. 16. e- = x.
22, tanx = loZ" X -

11. cosx = 1 - x. 17. e* = sinx. 23
- e~* = log^-

12. 3sinx = cosx — J. 18. e-* = cosx. 24. tr** = x2 .



CHAPTER VII

POLAR COORDINATES

45. Polar coordinates. In this chapter we shall consider a

second method of determining points of the plane by pairs of

real numbers. We suppose given a

fixed point 0, called the pole, and

a fixed line OA, passing through 0,

called the polar axis. Then any point

P determines a length OP = p (Greek

letter " rho ") and an angle A OP = 6.

The numbers p and are called the \
polar coordinates of P. p is called the

radius vector and the vectorial angle. The vectorial angle 6 is

positive or negative as in trigonometry. The radius vector is

positive if P lies on the

terminal line of 6, and 10?°

negative if P lies on that

line produced through

the pole 0.

Thus in the figure the

radius vector of 7' is

positive, and that of P'

is negative.

It is evident that

every pair of real num-

bers (p, 6) determines a

single point, which may
be plotted by the

Ruleforplotting apoint whosepolar coordinates (p, 0) are given.

119
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First step. Construct the terminal line of the vectorial angle 0,

as in trigonometry.

Second step. If the radius vector is positive, lay off a length

OP = p on the terminal line of 6; if negative, produce the termi-

nal line through the pole and lay off OP equal to the numerical

value of p. Then P is the required point.

In the figure on page 119 are plotted the points whose polar

coordinates are (6, 60°), (3, ^) ,
(- 3, 225°), (6, 180°), and

JHoery point determines an infi-

nitenumber ofpairs of numbers (p,ff).

Thus, if OB = p, the coordinates

of B may be written in any one of

the forms (p, 6), (- P ,
180° + 0),

(p, 360° + 61), (- p, - 180°), etc.

Unless the contrary is stated, we shall always suppose that

6 is positive, or zero, and less than 360° ; that is, s $ <360°.

PROBLEMS

1. Plot the points (4, 45°), (6, 120°), /- 2,—V U, -Y (- 4, - 240°),

2. Plot the points U, * ^j, (-2, ± |Y (3,ir), (- 4,ir), (6, 0), (- 6,0).

3. Show that the points (p, 6) and (p, — 6) are symmetrical with respect

to the polar axis.

4. Show that the points (p, 0), (— p, 6) are symmetrical with respect

to the pole.

5. Show that the points (— />, 180° — 9) and (/>, 8) are symmetrical with

respect to the polar axis.

46. Locus of an equation. If we are given an equation in the

variables p and 6, then the locus of the equation is a curve such that

1. Every point whose coordinates (p, 6) satisfy the equation

lies on the curve.

(6,n)
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2. The coordinates of every point on the curve satisfy the

equation.

The curve may be plotted by solving the equation for p and
finding the values of p for particular values of 6 until the

coordinates of enough points are obtained to determine the

form of the curve.

The plotting is facilitated by the use of polar coordinate

paper, which enables us to plot values of & by lines drawn

through the pole and values of p by circles having the pole as

center. The tables on page 6 are to be used in constructing tables

of values of p and 6.

EXAMPLES

1. Plot the locus of the equation

(1) p = 10 cos 8.

Solution. The calculation is made by assuming values for 8, as in the

table, and calculating p, making use of the natural values of the cosine

given in Art. 4. For example, if

8 = 105°, p = 10 cos 105° = 10 cos (180° - 75°) = - 10 cos 75° = - 2.6.

««C—
90

°

120°^

135°.

p = 10 cos 6
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a second point (p, — 8) on the locus. Since these points are symmetrical

with respect to the polar axis, we have the result : The locus of (1) is

symmetrical with respect to the polar axis.

2. Draw the locus of

(2) p2=a2 cos2 0.

Solution. Before plotting, we make the following observations

:

1. Since the maximum value of cos 2 8 is 1, the maximum value of p is a,

and the curve must be closed.

2. When cos 2 8 is negative, p will be imaginary. Now cos 2 8 is nega-

tive when 2 8 is an angle in the second or third quadrant. That is, when

90° < 2 8 < 270°, that is, 45° < 8 < 135°,

p is imaginary. There is no part of the curve between the 45° and 135°

lines.

3. We may change 8 to — 8 in (2) without affecting the equation, and

hence the locus is symmetrical with respect to the polar axis.

The complete curve is obtained if 8 is given values from 0° to 45°, as in

the table.

p*=a2 cos26
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For convenience we change the form of the equation. Using (26), p. 8,

a
r

cos2 i 9

Then by (41), p. 4, cos2 \9 = i + i cos 9. Hence the result

:

la
P =

1 + COS0
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PROBLEMS

Plot the loci of the following equations

:

1. p = 10.

2
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18. Plot the conchoid (Problem 14) for 6 = a; b > a.

19. Plot the limacon (Problem 17) for b > a.

47. The student should acquire skill in plotting polar equa-

tions rapidly when a rough diagram will serve.

For example, to draw the locus of

(1) p = a sin 30,

we proceed as follows

:

Let 8 increase from 0°. Follow the variation of p from (1) as 30
(escribes the successive quadrants.

When 3 varies from
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PROBLEMS

Draw rapidly the locus of each of the following equations

:

1. p = acos30.

3^_ Y

THREE-LEAVED ROSE FOUR-LEAVED ROSE

FOUR-LEAVED ROSE EIGHT-LEAVED ROSE

10. p = a cos (9 + 45°). 14. p = a sin

11. p = asin/0 + -V

12. p = a sin J^.

5. p = a cos 4 5.

6. p = a sin 5 5.

1. p = a cos 50.

8. p =a(l + sin0)

9. /o = o(l+ cos 5)

13. /o = a cos
5

15. p = asini i6.

16. p = acosH0.

17. jo = a sin8 J 5.

18. p = aco&\9.
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48. Points of intersection. By a method analogous to that used

in rectangular coordinates we find the coordinates of the points

of intersection of two polar curves by solving their equations

simultaneously. This is best done by eliminating p, which will

give rise in general to a transcendental equation in 6 which

can be solved either by inspection or by the graphical method

employed in Art. 44.

The following example will illustrate the method.

EXAMPLE

Find the points of intersection of

(1) (0=1+ cos 6,

(2) P = ;

'

Solution. Eliminating p,

1 + cos 6 = -

2(1- cos 6)

2(1- cos 6)

or 1— cos2 = J,

cos 6 = ±
2

.-. 6 = ± 45°, ± 135°.

Substituting these values in either equation, we obtain the following

four points,

(
1 +

V5,
±4,),(,_^, ± „.).

The result checks in the figure. The locus of (1) is a cardioid ; of (2),

a parabola.

PROBLEMS

Find the points of intersection of the following pairs of curves and

check by drawing the figure :

f4pcos# = 3,
X

' \2p = Z.

J 4 p cos 6 = 3,

', \p = 3 cos#.

\p = 3sin0..

4. -!

!> = V3, 6

7. i
*P = eeo\

\_p = 2 sin 0.

fp = eos0, Lp = 2 -

8
' \ip = 3sec8. f3p = 4cos0,

6>
i2 P =3. r 2
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' p = sin#,

kp = cos 2 0.

Ans. (1, 30°), (4, 150°).

13.
fp

= 5-2sin0,
6

P

10.

11.

f p = 1 + cos#,

1,0(1+ cos 0) = 1

{

12.

P (1 + COS 9) :

Am. (1, ± 90°).

p = 2(l-sin#),

p(l + sin#) = l.

^Lns. (2^V2, ± 45°),

(2^V2, ±135°).

p = 4 (1 + cos (9),

p (1 — cos 0) = 3.

Ans. (6, ± 60°), (2, ± 120°).

14. <

1 + sin 5

!p = 3 — 2cos#,

1/ 3 + 2eos0
-

/P2

16.

9 cos 2 9,

IP = V6cos#.
rp2 = sin2i9,

15-n=ve

17. <

^p =V2sin#.

C p = cos 3 0,

COS0.i2p

^p = COS0.

49. Transformation from rectangular to polar coordinates. Let

OX and OF be the axes of a rectangular system of coordinates,

and let be the pole and OX the polar axis of a system of

polar coordinates. Let (x, y) and (p, 6) be respectively the rec-

tangular and polar coordinates of any point P. It is necessary

to distinguish two cases according as p is positive or negative.

When p is positive (Fig. 1) we have, by definition,

cos 6 = - , sin 6 = - >

P P
whatever quadrant P is in.

Hence

(1) x = p cos 6, y = p sin 6.
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When p is negative (Fig. 2) we consider the point P' sym-
metrical to P with respect to 0, whose rectangular and polar

coordinates are respectively (— x, — y) and (— p, &). The radius

vector of P', — p, is positive, since p is negative, and we can

therefore use equations (1). Hence for P'

— x = — p cos 6, — y = — jo sin
;

and hence for P
x = p cos 6, y = p sin 0,

as before.

Hence we have the

Theorem. If the pole coincides with the origin and the polar

axis with the positive x-axis, then

/js (x = pcosB,

{ y = p sin 8,

where (x, y) are the rectangular coordinates and (p, 6) the polar

coordinates of any point.

Equations (I) are called the equations of transformation from

rectangular to polar coordinates. They express the rectangular

coordinates of any point in terms of the polar coordinates of

that point and enable us to find the equation of a curve in polar

coordinates when its equation in rectangular coordinates is

known, and vice versa.

From the figures we also have

(2) <

p* = x? + y\ ^rrtan- 1

^,

y x
sin0=;

,
cos0= -

± V^ + y
2 ± V*2 + y

2

'.These equations express the polar coordinates of any point in

terms of the rectangular coordinates. They are not as con-

venient for use as (I), although the first one is at times very

convenient.
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EXAMPLES

1. Find the equation of the circle x2 + y
2 = 25 in polar coordinates.

Solution. From the first equation of (2), we have at once p
2 = 25 ; hence

p = ± 5, which is the required equation. It expresses the fact that the

point (p, 6) is five units from the origin.

2. Find the equation of the lemniscate (Ex. 2, p. 122) p
2 = a2 cos 2 8 in

rectangular coordinates.

Solution. By 39, p. 4, since cos 20 = cos2 — sin2 0,

p
3 = a2 (cos20-sin2

0).

Substituting from (2),

x2 + y
2 = a2 (— V—V

\x2 + y
2 x2 +W

.-. (x2 + y
2
)

2 = a2 {x2 - y
2
). Ans.

50. Applications. Straight line and circle.

Theorem. T-he general equation of the straight line in polar

coordinates is

(II) p(A cos + £ sin 0) + C = 0,

where A, D, and C are arbitrary constants.

Proof. The general equation of the line in rectangular coordi-

nates is Ax + By+C = 0.

By substitution from (I) we obtain (II). q.e.d.

Special cases of (II) are p cos 6= a, p sin 0=6, which result respectively

when B = 0, ov A = ; that is, when the line is parallel to OY or OX.

In like manner we obtain from (II),

p. 93, the

Theorem. The general equation of the

circle in polar coordinates is

(III) p
2+ p (Z> cos 6 + E sin 6) + F = 0,

where D, E, and F are arbitrary constants.

We may easily show further that if the pole is on the cir-

cumference and the polar axis is a diameter, the equation of

the circle is
p = 2rcosfl,

where r is the radius of the circle.
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For if the center lies on_ the polar axis, or aj-axis, E = 0,

and if the circle passes through the pole, or origin, F— 0. The
abscissa of the center equals the radius,

and hence — — = ?•, or D = — 2 r. Substi-

tuting these values of D, E, and F in (III)

gives p — 2 r cos 6=0.
This result is easily seen also directly

from the figure on page 130. ° X
Similarly, if the circle touches the polar axis at the pole, the

equation is p = 2 r sin 6.

Theorem. The length I of the line joining two points P (p , )

and P^(p.
2 > 2)

is given by

(IV) P = p? + pi - 2 plPt cos (Bx
- *,)

.

Proof. Let the rectangular coordinates of 1\ and P
2
be re-

spectively (xv yx)
and (x

t, y2
). Then by (I), p. 129,

ajj= px
cos 6V x

3
= p.2

cos
2 ,

tfl
=

Pl sm6l , y.2
= P,sm02

.

But P =C^-^+(y,-y^
and hence I

2 = (p l
cos ^ — p., cos 2)

2 + (p, sin
0J
— pa

sin
2)

2
.

Removing parentheses and using 28 and 36, p. 3, we ob-

tain (IV). Q.E.D.

Formula (IV) may also be derived directly from a figure by

using the law of cosines (44, p. 4).

PROBLEMS

1. Find the polar coordinates of the points (3, 4), (— 4, 3), (5, — 12), (4, 5)

.

2. Find the rectangular coordinates of the points (5,—
) ( — 2,— ),

<8,w). \ V \ 4/

3. Transform the following equations into polar coordinates and plot

their loci:

(a)x — 3y = 0. Ans. ^ = tan-!J.

(b) y
2 + 5x = 0. Ans. p = — 5 cot 9 cosec 9.
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Ans. p = ± 4.

Ans. p = acos#.-

Ans. p
2 sin 2 = 7.

,4ns. p
2 cos 2 = a2

,

(g) a; cos w + j/ sin u — p = 0. -4ns. p cos (0 — u) — p = 0.

4. Transform equations 1 to 18, p. 124, into rectangular coordinates.

(c) x2 + y
2 = 16.

(d) x2 + y
2 - ax = 0.

(e) 2xy = 7.

(f) x2 - y
2 = a2

.

LOCUS PROBLEMS

The locus should be drawn in each case (see the figures below).

1. Find the locus of a point such that

(a) its radius vector is proportional to its vectorial angle.

Ans. The spiral of Archimedes, p = aff.

= «0.

SPIRAL OF ARCHIMEDES

p6 = a.

p*V = a'.

LITUUS

log p = aO.

HYPERBOLIC OR RECIPROCAL

SPIRAL
LOGARITHMIC OR EQUIAN-

GULAR SPIRAL
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(b) its radius vector is inversely proportional to its vectorial angle.

Ans. The hyperbolic or reciprocal spiral, p8 = a.

(c) the square of its radius vector is inversely proportional to its

vectorial angle. Ans. The lituus, p
28 = a2 .

(d) the logarithm of its radius vector is proportional to its vectorial

angle. Ans. The logarithmic spiral, log p = ad.

Theorem on the logarithmic spiral. When two points, P, and P
2 , have

been plotted on a logarithmic spiral, points between them on the locus

may be constructed geometrically by the following theorem :

If the angle P
2
OP^ is bisected, and if on this bisector OP

s
is laid off equal

to a mean proportional between OP^ and OP
2 , then P

s
is on the locus.

Proof. By hypothesis, since P
1
and P

3
are on

the curve log p = a8,

(1) log Pl = a0, and log p2
= a8

2
.

Adding and dividing by 2,

i l°g/>i + i logp
2 = a

^
l

2

2

j, or

(2) 'P,P2
: 1 and 17, p. 1).

If P
3

is (ps, 83),
then, by construction,

#2 - 03 = *3 - *1, a 1" #3 =^4^ '
and ,=v,P)P2 -

R,{Pv9„)

i3(P3.03)

Hence, by (2), log p3 = a8
3 , and Ps

is also on the locus. Q.E.D.

PROBLEMS FOR INDIVIDUAL STUDY

Plot carefully the following loci

:

1. p = a sin 6 + b sec 8.

a2 cos 2 8.°.H)=-
3. p = a(cos20 + sin

2

8).

l.p: a cos 2 8 + - sec 8

.

5. p = a sin 2 8 + - sec 8.

6. p = a cos 2 8 + b cos 0.

7. p = a sin 2 + 6 cos 5.

8. p = a cos 2 (9 + 6(sin# + 1).

9. p = a cos 3 — b cos 0.

10. p = cos30 + cos0 + 1.

11. p = cos3 + cos2 0.

12. p = cos 3 8 - sin 2 6».

13. p = a sin3 --

14. p : a COS11 - .

2

15. p2 cos0 = a2 sin 30.

„ 2 cos
16. p

2

17. p
2 =

cos 2 8

2 cos 2

cos + 2

+ 1.

+ 1.
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FUNCTIONS AND GRAPHS

51. Functions. In many practical problems two variables

are involved in such a manner that the value of one depends

upon the value of the other. For example, given a large num-

ber of letters, the postage and the weight are variables, and

the amount of the postage depends upon the weight. Again, the

premium of a life-insurance policy depends upon the age of the

applicant. Many other examples will occur to the student.

This relation between two variables is made precise by the

definition

:

A variable is said to be a function of a second variable when

its value depends upon the value of the latter and is determined

when a definite value is assumed for the second variable.

Thus the postage is determined when a definite weight is as-

sumed ; the premium is determined when a definite age is assumed.

Consider another example

:

Draw a circle of diameter 5 in. An
indefinite number of rectangles may
be inscribed within this circle. But

the student will notice that the entire

rectangle is determined as soon as a

side is drawn. Hence the area of the

rectangle is a function of its side.

Let us now find the equation ex-

pressing the relation between a side and the area of the rectangle.

Draw any one of the rectangles and denote the length of its

base by x in. Then by drawing a diagonal (which is, of
134
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course, a diameter of the circle), the altitude is found to be

equal to (25 — a;
2
)*. Hence if A denotes the area in square

inches, we have

(1) A = x (25 - a,-
2)*

This equation gives the functional relation between the func-

tion A and the variable x. From it we are enabled to calculate

the value of the function A corresponding to any value of the

variable x. For example :

if x = 1 in., A = (24)* = 4.9 sq. in.

;

if x = 3 in., A =12 sq. in.

;

if x = 4 in., A =12 sq. in. ; etc.

To obtain a representation of the equation (1) for all vaiues

of x, we draw a graph of the equation. This we do by draw-

ing rectangular axes and plotting

the values of the variable (x) as abscissas,

the values of the function (A ) as ordinates.

Any functional relation may be graphed in this way. We
must, however, first discuss the equation (1).

The values of x and .4 are positive from the nature of the

problem.

The values of x range from zero to

5, inclusive.

The student should now choose a

suitable scale on each axis and draw

the graph. In this case, unit length

on the axis of abscissas represents

1 in., and unit length on the axis of

ordinates represents 1 sq. in. These

two unit lengths need not be the same.

What do we learnfrom the graph ?

1. If carefully drawn, we may measure from the graph the

area of the inscribed rectangle corresponding to any side we

choose to assume.

Inches
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2. There is one horizontal tangent. The ordinate at its

point of contact is greater than any other ordinate. Hence

this discovery : One of the inscribed rectangles is greater in area

than any of the others ; that is, there is a maximum rectangle.

In other words, the function defined by equation (1) has a

maximum value.

Careful measurement will give for the base of the maximum
rectangle, x = 3.5, and for the area, A = 12.5. These results,

as may be shown by the methods of the differential calculus,

are, in fact, correct to one place of decimals. The maximum
rectangle is a square; that is, of all rectangles inscribed in a

given circle, the square has the greatest area.

The fact that a maximum rectangle exists can be seen in

advance by reasoning thus : Let the base x increase from zero

to 5 in. The area A will then begin with the value zero and

return to zero. Since A is always positive, the graph must

have a " highest point." Hence there is a maximum value of

A, and therefore a maximum rectangle.

Take one more example : A wooden box, open at the top, is

to be built to contain 108 cu. ft. The base must be square.

This is the only condition. It is evi-

dent that under this condition any

number of such boxes may be built,

and that the number of square feet

of lumber used will vary accordingly.

If, however, we choose any length for

a side of the square base, only one

box with this dimension can be built,

and the material used is determined. Hence the material used

is a function of a side of the square base.

Let us now find the functional relation between the number

of square feet of lumber necessary and the length of one side

of the square base measured in feet.

Consider any one box.

rf-f
I

/x
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Let

and

Then

and

Hence

M = amount of lumber in square feet,

x == length of side of the square base in feet,

h = height of the box in feet,

area of base = x2 sq. ft.,

area of sides = 4 hx sq. ft.

M-. 4 hx.

But a relation exists between A and x, for the value of M
must depend upon the value of x alone. In fact, the volume

equals 108 cu. ft.

108
Hence hx2= 108, and h=—r--

xi

Therefore

(2) 3/=** + ^.

This equation enables us to calculate the number of square

feet of lumber in any box with a given square base which has

a capacity of 108 cu. ft. The calculation is given in the table :

X

M
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12 3 4 5

Feet
Wx

What do we learn from the graph ?

1. If carefully drawn, we may measure from, the graph the

number of square feet of lumber in any box which contains

108 cu. ft. and has a square base.

2. There is one horizontal

tangent. The ordinate at its

point of contact is less than

any other ordinate. Hence this

discovery: One of the boxes takes

less lumber than any other ; that

is, M has a minimum value. This

point on the graph can be deter-

mined exactly by calculus, but

careful measurement will in this

case give the correct values, namely, x = 6, M = 108. That is,

the construction will take the least lumber (108 sq. ft.) if the

base is 6 ft. square.

The fact that a least value of M must exist is seen thus.

Let the base increase from a very small square to a very large

one. In the former case the height must be very great, and

hence the amount of lumber will be large. In the latter case,

while the height is small, the base will take a great deal of

lumber. Hence M varies from a large value to another large

value, and the graph must have a " lowest point."

In the following problems the student will work out the

functional relation, draw the graph, and state any conclusions

to be drawn from the figure. Care should be exercised in the

selection of suitable scales on the axes, especially in the scale

adopted for plotting values of the function (compare p. 137).

The graph should be neither very flat nor very steep. To

avoid the latter we may select a large unit of length for the

variable. The plot should be accurate and the maximum and

minimum values of the function should be measured and calcu-

lated, additional values of the variable being used, if necessary.
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PROBLEMS

1. Rectangles are inscribed in a circle of radius 2 in. Plot the

perimeter P of the rectangles as a function of the breadth x.

Ans. P = 2x + 2 (16 -a;2)*.

2. Right triangles are constructed on a line of length 5 in. as hypote-

nuse. Plot (a) the area A and (b) the perimeter P as a function of the

length x of one leg.

Ans. (a) A =ix(25- x2)*
;

(b) P =± x + 5 + (25 - x2)i

3. Right cylinders* are inscribed in a sphere of radius r. Plot as func-

tions of the altitude x of the cylinder, (a) the volume V of the cylinder,

(b) the curved surface S.

Ans. (a) V=— (4 j*e - x8
) ;

(b) S = irx (4 r2 - x2)*.

4. Right cones* are inscribed in a sphere of radius r. Plot as func-

tions of the altitude x of the cone, (a) the volume V of the cone, (b) the

curved surface S. _ „ i

Ans. (a) V = - (2 "2 - x3
) i

(b) S = it (4 r2x2 - 2 rx")*.

o

5. Right cylinders are inscribed in a given right cone. If the height

of the cone is h and the radius of the base r, plot (a) the volume V of

the cylinder, (b) the curved surface S, (c) the entire surface T, as

functions of the altitude x of the cylinder.

Ans. (a) V = ^(h-xY; (b) S =
2-^(h-x);

(c) T = ~(h-x)[rh+(h-r)xl

6. Right cones are circumscribed about a sphere of radius r. Plot as

a function of the altitude x of the cylinder, the volume V of the cone.

Ans. V=lir
3

x - 2 r

7. Right cones are constructed with a given slant height L. Plot as

functions of the altitude x of the cone, (a) the volume V of the cone,

(b) the curved surface S, (c) the entire surface T.

Ans. (a) V = Itt(L*x - x8
) ;

(b) 8 = wL(L^ - x2)*.

8. A conical tent is to be constructed of given volume V. Plot the

amount A of canvas required as a function of the radius x of the base.

Ans.A =^ + 9V^.
x

*TJse formulas 5-9, p. 1.
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9. A cylindrical tin can is to be constructed of given volume T*. Plot

the amount A of tin required as a function of the radius x of the can.

2 V
Ans. A = 2mc2 +—

.

x

10. An open box is to be made from a sheet of pasteboard 12 in.

square by cutting equal squares from the four corners and bending up

the sides. Plot the volume V as a function of the side x of the square

cut out. Ans. V = x (12 — 2 x)2
.

11. The strength of a rectangular beam is proportional to the product

of the cross section by the square of the depth.. Plot the strength S as a

function of the depth x for beams which are cut from a log 12 in. in

diameter. Ans. S = fee8 (144 - x2)i

12. A rectangular stockade is to be built to contain an area of 1000

sq. yd. A stone wall already constructed is available for one of the

sides. Plot the length L of the wall to be built as a function of the length

x of the side of the rectangle parallel to the wall. . j _ 2000
~~

x

13. A tower is 100 ft. high. Plot the angle y subtended by the tower

at a point on the ground as a function of the distancex from the foot of

the tower. , , 100
Ans. y = tan-1

x

14. A tower 55 ft. high is surmounted by a statue 10 ft. high. If an

observer's eyes are 5 ft. above the ground, plot the angle y subtended by

the statue as a function of the observer's distance x from the tower.

a ,
60 ,50-

Ans. i/=tan-i tan-1—
x x

15. A line is drawn through a fixed point (a, b). Plot as a function of

the intercept on XX' (= x) of the line, the area A of the triangle formed

with the coordinate axes. . . 6x2
Ans. A = -

2 (x - a)

16. A ship is 41 mi. due north of a second ship. The first sails south

at the rate of 8 mi. an hour, the second east at the rate of 10 mi. an hour.

Plot their distance d apart as a function of the time I which has elapsed

since they were in the position given. Ans _ d = (164 ,2 _ 6mt+ 1681) i.

17. Plot the distance e from the point (4, 0) to the points (x, y) on the

parabola !/
2 = 4x. Ans. e = (x2 - 4x + 16)*.

18. A gutter is to be constructed whose cross section is a broken line

made up of three pieces, each 4 in. long, the middle piece being horizon-

tal, and the two sides being equally inclined, (a) Plot the area A of



FUNCTIONS AND GRAPHS 141

a cross section of the gutter as a function of the width x of the gutter

across the top. (b) Plot the area i asa function of the angle of incli-

nation of the sides to the horizontal.

Ans. (a) A = $(* + 4) (48 + 8x - x2)i
;

(b)A = 8(sin20 + 2sin0).

19. A Norman window consists of a rectangle surmounted by a semi-

circle. Given the perimeter P, plot the areaA as a function of the width x.

Ans. A = -xP x2 x2
.

2 2 8

20. A person in a boat 9 mi. from the nearest point of the beach

wishes to reach a place 15 mi. from that point along the shore. He can

row at the rate of 4 mi. an hour and walk at the rate of 5 mi. an hour.

The time it takes him to reach his destination depends on the place at

which he lands. Plot the time as a, function of the distance x of his

landing place from the nearest point on the beach. /-
. „. v81 + x2 15 - x
Ans. Time = 1

4 5

21. The illumination of a plane surface by a luminous point varies

directly as the cosine of the angle of incidence, and inversely as the

square of the distance from the surface. Plot the illumination I at a

point on the floor 10 ft. from the wall as a. function of the height x of a

gas burner on, the wall. ^ g j _ kx

(100 + x2)l

22. A Gothic window has the shape of an equilateral triangle mounted

on a rectangle. The base of the triangle is a chord of the window. The

total length of the frame of the window is constant. Express, plot, and

discuss the area of the window as a function of the width.

23. A printed page is to contain 24 sq. in. of printed matter. The top

and bottom margins are each 1^- in., the side margins 1 in. each. Express,

plot, and discuss the area of the page as a function of the width.

24. A manufacturer has 96 sq. ft. of lumber with which to make a

box with a square base and a top. Express, plot, and discuss the contents

of the box as a function of the side of the base.

25. (a) Isosceles triangles of the same perimeter, 12 in., are cut out of

rubber. Express, plot, and discuss the area as a function of the base,

(b) Isosceles triangles of the same area, 10 sq. in., are cut out of rubber.

Express, plot, and discuss the perimeter as a function of the base.

26. Small cylindrical boxes are made each with a cover whose breadth

and height are equal. The cover slips on tight. Each box is to hold

it cu. in. Express, plot, and discuss the amount of material used as a

function of the length of the box.
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27. A circular filter paper has a diameter of 11 in. It is folded into a

conical shape. Express the volume of the cone as a function of the angle

of the sector folded over. Plot and discuss this function.

28. Two sources of heat are at the points A and B. Remembering that

the intensity of heat at a point varies inversely as the square of the distance

from the source, express the intensity of heat at any point between A
and Bas a function of its distance from^l. Plot and discuss this function.

29. A submarine telegraph cable consists of a central circular part,

called the core, surrounded by a ring. If x denotes the ratio of the radius

of the core to the thickness of the ring, it is known that the speed of

signaling varies as a;
2 log-. Plot and discuss this function.

°x
30. A wall 10 ft. high surrounds a square house which is 15 ft. from

the wall. Express the length of a ladder placed without the wall, resting

upon it and just reaching the house, as a function either of the distance

of the foot of the ladder from the wall, or of the inclination of the ladder

to the horizontal. Plot and discuss this function.

31. The volume of a right prism having an equilateral triangular base

is 2. Express its total surface as a function of the edge of the base.

Plot and discuss.

32. A letter Y stands o ft. high and measures b ft. across the top.

Express the total length of the leg and two arms as a function of the

length of the leg. Plot and discuss.

33. The sum of the perimeters of a square and a circle is constant.

Express their combined areas as a function of the radius of the circle.

Plot and discuss.

34. A water tank is to he constructed with a square base and open top,

and is to hold 64 cu. yd. The cost of the sides is f 1 a square yard, and

of the bottom $2 a square yard. Plot and discuss the cost.

35. A rectangular tract of land is to be bought for the purpose of lay-

ing out a quarter-mile track with straightaway sides and semicircular

ends. In addition a strip 35 yd. wide along each straightaway is to be

bought for grand stands, training quarters, etc. If the land costs |200

an acre, plot and discuss the cost of the land required.

36. A cylindrical steam boiler is to be constructed having a capacity

of 1000 cu. ft. The material for the side costs f2 a square foot, and for

the ends $3 a square foot. Plot and discuss the cost.

37. In the corner of a field bounded by two perpendicular roads a

spring is situated 6 rd. from one road and 8 rd. from the other. How
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should a straight road be run by this spring and across the corner so as

to cut off as little of the field as possible ?

Ans. 12 and 16 rd. from the corner.

38. When the resistance of air is taken into account, the inclination of

a pendulum to the vertical is given by the formula

6 = aer kt cos(nt + e).

Plot 8 as a function of the time t.

52. Notation of functions. The symbol / (x) . is used to de-

note a function of x, and is read "/ of x." In order to distin-

guish, between different functions, the prefixed letter is changed,

as F(x),
<f>

(a;) (read "phi ofx"),f(x), etc.

During any investigation the same functional symbol always

indicates the same law of dependence of the function upon the

variable. In the simpler cases this law takes the form of a

series of analytical operations upon that variable. Hence, in

such a case, the same functional symbol will indicate the same

operations or series of operations, even though applied to

different quantities. Thus, if

/(.-*;)= a;
2 -9 a: + 14,

then /(*/)=/- 9 y + 14.

Also /(a)=a2 -9a + 14,

f(b + 1)= (b + l) 2 - 9(b + 1) + 14 = ¥ - 7 b + 6,

/(0)=02 -9-0 + 14 = 14,

/(-1)= (-1)2 - 9(-l) + 14= 24,

/(7)= V - 9 7 + 14 = 0, etc.

PROBLEMS

1. Given 0(x) = log
lo

x. Find 0(2), 0(1), 0(5), 0(a-l), 0(fc2 ),

0(x+l), 0(Vx).

2. Given 0(i) = e2*. Find 0(0), 0(1), 0(- 1), 0(2?/), 0(- x).

3. Given/(x)=sin2x. Find/(£),/(^), /(-*"), f(-x), /(tt-x),

/(J»-^),/«»+JJ).
,

W W
4. Given 9 (x) = cos x. Prove



CHAPTER IX

TRANSFORMATION OF COORDINATES

53. When we are at liberty to choose the axes as we please

we generally choose them so that our results shall have the

simplest possible form. When the axes are given, it is impor-

tant to be able to find the equation of a given curve referred

to some other axes. The operation of changing from one pair of

axes to a second pair is known as a transformation of coordinates.

We regard the axes as moved from their given position to a new

position and we seek formulas which express the old coordi-

nates in terms of the new coordinates.

54. Translation of the axes. If the axes be moved from a first

position OX and OF to a second position O'X' and O'V such that

O'X' and 0'V are respectively par-

allel to OX and Y, then the axes

are said to be translated from the

first to the second position.

Let the new origin be 0'(h, k)

and let the coordinates of any

point P before and after the

translation be respectively (x, y)
and (x\ y'). Then, in the figure,

OA = h, OM = x, O'M' = x',

OB = k, MP = y, M'P = y'.

Projecting OP and OO'P on OA', we obtain (Art. 31)

OM = OA + O'M'
;

.'.x — x' + h.

Similarly, y = y' + k.

144

r-
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Heuce the

Theorem. If the axes be translated to a new origin (A, k"), and

if (x, y) and (x\ y') are respectively the coordinates of any point

P before and after the translation, then

{) U= y> + k.

Equations (I) are called the equations for translating the axes.

To find the equation of a curve referred to the new axes when

its equation referred to the old axes is given, substitute in the

given equation the values of x and y given by (I) and reduce.

EXAMPLE
Transform the equation

x2 + V* — 6x + iy — 12 =
when the axes are translated to the new origin (3, — 2).

Solution. Here h = 3 and k = — 2,

so equations (I) become

x = x' + 3, y = y' — 2.

Substituting in the given equation,

we obtain

(x' + 3)2 + (*/'- 2)
2 - 6 (x' + 3)

+ 4(y'-2)-12 = 0,

or, reducing, x'2 + y'2 = 25..

This result could easily be fore-

seen. For the locus of the given

equation is a circle whose center is

(3, — 2) and whose radius is 5. When
the origin is translated to the center the equation of the circle must necessa-

rily have the form obtained.

PROBLEMS

1, Find the new coordinates of the points (3, — 5) and (— 4,2) when

the axes are translated to the new origin (3, 6).

2. Transform the following equations when the axes are translated to

the new origin indicated and plot both pairs of axes and the curve :

(a) 3x- iy = 6, (2,0). Ans. 3x'-4y' = 0.

(b)x2 + z/
2 -4x-22/ = 0, (2, 1). Ans. x'°- + y'2 = 5.
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(
C)y2-6X+ 9 = 0,(1,0).

(d) x* + y* - 1 = 0, (- 3, - 2).

Ans. %/"> = 6x'.

Arts. x'2+y'2-6x'-4y'+12=0.

(e) 1/2-2 4x4 fc
2 = 0, (-,oY ^.ns. 2/'2 = 2fcr'.

(f) x2-4i/2+ 8i+ 24?/-20=0,(-4,3). Ans. x'2 -4j/'2 = 0.

3. Derive equations (I) if 0' is in (a) the second quadrant
;

(b) the

third quadrant
;

' (c) the fourth quadrant.

55. Rotation of the axes. Let the axes OX and OF be rotated

about through an angle to the positions OX' and OY'.

The equations giving the

coordinates of any point r
referred to OX and OF in

terms of its coordinates re-

ferred to OA' 1 and OY' are

called the equations for ro-

tating the axes.

Theorem. The equations for rotating the axes through an

angle 6 are

fx=x' cos 6 — y' sin 0,

^ ' iy=.r'sin0 + y'cos0.

Proof. Let P be any point whose old and new coordinates

are respectively (x, y) and (x 1

,
y'). Draw OP, and draw PM'

perpendicular to OX'. Project OP and OM'P on OX.

The projection of OP on OX = x. (Art. 31)

The projection of OM' on OA' = rc'costf. (Art. 31)

The projection of M'P on OX = y'cos ("^ + 6) (Art. 31)

=-y' sin 0. (By 31, p. 3)

But by Art. 31,

projection of OP = projection of 0.1/' + projection of M'P.

.'. x = a'costf — y' sin 6.
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In like manner, projecting OP and OAI'P on OY, we obtain

y = cc'cos I— — e\ + y'cosO

= x' sin + 2/' cos 5. q.e.d.

If the equation of a curve in a; and y is given, we substitute

from (II) in order to find the equation of the same curve referred

to OX' and OY'.

EXAMPLE

Transform the equation x2 - y2 = 16 when the axes are rotated

through 45°.

Solution. Since

sin 45° = - V2 =—
2 V2

and cos 45° =

equations (II) become

x= x-zX, v = t+x.
V2 V2

Substituting in the given

equation, we obtain

or, simplifying, x'y' +8 = 0.

1
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(f) x2 + 2xy + y* + <kx- 4y = ;
--

(g) 3a;2 - ixy -1=0; arctan2.

Ans. V2y'2 + ix' = 0.

Ans. j-'2 — 4 j/"2 + 1 =0
Ans. 3x"> — 7y'2 = 4.

Ans. Ux'2 + y'2 = 22.

Y
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Theorem. The degree of the equation of a locus is unchanged

by a transformation of coordinates.

Proof. Since equations (III) are of the first degree in x' and

y', the degree of an equation cannot be raised when the values

of x and y given by (III) are substituted. Neither can the

degree be lowered; for then the degree must be raised if we

transform back to the old axes, and we have seen that it cannot

be raised by changing the axes.*

As the degree can neither be raised nor lowered by a trans-

formation of coordinates, it must remain unchanged. q.e.d.

58. Simplification of equations by transformation of coordinates.

The principal use made of transformation of coordinates is to

simplify a given equation by choosing suitable new axes. The

method of doing this is illustrated in the following examples.

EXAMPLES

1. Simplify the equation y
2 — 82 + 63/+ 17 = by translating the axes.

Solution. Set 1 = x' + h and y = y' + k.

This gives (y' + fc)
2 - 8 (x' + h) + 6 (y' + k) + 17 = 0, or

(1)
y'2 - 8 x' + 2 k

+ 6

y'+ k2
t = 0.

-8/1

+ 6fc

+ 17

If, now, we choose for h and k such numbers that the coefficient of y'

shall be zero, that is,

(2) 2fc + 6 = 0,

and also the constant term shall be zero, that is,

(3) fc
2 -8A + Gfc + 17 = 0,

the transformed equation is simply

(4) j/'
2 -8x' = 0.

* This also follows from the fact that when equations (III) are solved for

x' and y', the results are of the first degree in x and y.

t These vertical bars play the part of parentheses. Thus 2 k + 6 is the coeffi-

cient of y' and k? - 8 h + 6 k + 17 is the constant term. Their use enables us to

collect like powers of x' and y' at the same time that we remove the parentheses

in the preceding equation.
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From (2) and (3) we obtain h = 1, k = — 3, and these are the coordinates

of the new origin.

The locus may be readily plotted by draw-

ing the new axes and then plotting (4) on

these axes.

A second method often used is the fol-

lowing :

Rewrite the given equation, collecting the

terms in y,

(5) (y* + 6y) = 8x -17.

Complete the square in the left-hand

member,

(6) (2/
2 + 62/+9) = 8x-17 + 9 = 8z-8.

Writing this equation in the form

(7) (y + B)» = 8(z-l),

it is obvious by inspection that if we substitute

in this equation

(8) x = x' + l, y = y'-S,

the transformed equation is y'2 = 8 x'. But equations (8) translate the

axes to the new origin (1, — 3), as before.

2. Simplify a:
2 + 4 y* — 2x — 16 ?/ + 1 = by translating the axes.

Solution. Set x = x' + h and y = y' + k. This gives



TRANSFORMATION OF COORDINATES 151

Complete the squares within the parentheses, adding the corresponding

numbers to the right-hand member,

(13) (x2 -2x + l).+ 4(1/
2 -4

2,+ 4)

= -1 + 1 + 16 = 16.

Writing (13) in the form

(x -1)2 + 4(?/ -2)2 = 16,

it is obvious by inspection that by-

substituting

(14) x = x' + 1, y = y' + 2,

the simple new equation x'2 + 4y'2 = 16 results. But equations (14) trans-

late the axes to the new origin (1, 2), the same as in the first method.

3. Remove the xy-term from x2 + 4xy + y* = 4 by rotating the axes.

Solution. Set x = x' cos 6 — y' sin and y = x' sin 9 + ?/' cos #, whence



Ans.



CHAPTER X

PARABOLA, ELLIPSE, AND HYPERBOLA

59. The parabola. Consider the following locus problem.

A point moves so that its distances from a fixed line and a

fixed point are equal. Determine the nature of the locus.

Solution. Let DD' be the fixed

line and F the fixed point. Draw
the *-axis through F perpendicular

to DD'. Take the 'origin midway

between F and DD'.

Let

(1) distance from F to DD'= p.

Then, if P (x, y) is any point on

the locus,

(2) FP = MP.

But FP = V(z - \pf + if, MP = MN + NP

Substituting in (2),

V(a; - %pf + f=^p+x.
Squaring and reducing,

(3) if = 2px.

The locus is called a.parabola. The fixed line DD' is called the

directrix, the fixed point F, the focus. From (3), it is clear that

the x-axis is an axis of symmetry. Tor this reason, the a;-axis

is called the axis of the parabola. Furthermore, the origin is on

the curve. This point, midway between focus and directrix,. is

called the vertex.

163
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Theorem. If the origin is the vertex and the x-axis the axis

of a parabola, then its equation is

(I) y* = 2px.

Thefocus is the point I - >

J,
and the equation of the directrix

is x = — -.
2

A discussion of (I) gives us the following properties of the

parabola in addition to those already obtained.

1. Values of x having the sign opposite to that of p are

to be excluded. Hence the curve lies to the right of YY'

when p is positive and to the left when p is negative.

2. No values of y are to be excluded

;

hence the curve extends indefinitely up

and down.

The chord drawn through the focus

parallel to the directrix is called the

latus rectum. To find its length, put

x = \p in (I). Then y = ±p, and the

length of the latus rectum = 2p ;
that

is, equals the coefficient of x in (I).

It will be noted that equation (I) contains two terms only

;

namely, the square of one coordinate and the first power of the

other. Obviously, the locus of

x2 = 2py
is also a parabola, and thus we have the

Theorem. If the origin is the vertex and the y-axis the axis

of a parabola, then its equation is

(II) J = 2Py.

The focus is the point ( 0, "^ )> and the equation of the directrix

p
"

\ 2/
is y =—*-•y

2

Equations (I) and (II) are called the typical forms of the

equation of the parabola.
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Equations of the forms

Ax* + Ei/ = and Cif — Xte = 0,

where A, E, C, and D are different

from zero, may, by transposition and

division, be written in one of the

forms (I) or (II).

Td plot a parabola quickly from

its typical equation, its position (above

or below A'A"', to the right or left of

YY') is best determined by discussion

of the equation. The value of 2p is found by comparison

with (I) or (II), and the focus and directrix are then plotted.
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2. Find the equation of the parabola whose focus is (4, — 2) and

directrix the line x = 1.

Solution. In the figure, by definition,

(1) FP = PM.

But FP = V{x - 4)
2 + (y + 2)

2
,

and PM=x — 1.

Substituting in (1) and reducing,

(2) y
2 — 6x + 4j/ + 19 = 0. Arts.

If the axes are translated to the

vertex ($, — 2) as a new origin, that is,

if we substitute in (2) x = x' + f and

y — y' — 2, the equation reduces to

the typical form j/'
2 — 6 a;' = 0.

A second and useful method is the

following

:

Draw the axis VX' of the parabola

and the tangent VY' at the vertex.

Referred to these lines as temporary

axes, the equation must have the

typical form

(3) y
i = Qx,

since p = 3.

Now translate the temporary axes so

that they will coincide with the given

axes. The coordinates of referred to

the temporary axes are ( — |, 2). Sub-

stituting in (3) x=x'— |, y = y'+ 2, and
reducing, we obtain the equation (2).

PROBLEMS

1. Plot the locus of the following equations. Draw the focus and
directrix in each case and find the length of the latus rectum.

(a) y* = 4x. (d) yt-6x = 0.

(b)j/2 + 4x = 0. (e)x2 + 10y = 0.

(c) x2 -82/ = 0. (f) 2/2 + x = 0.

2. Find the equations of the following parabolas :

(a) directrix x = 0, vertex (3, 4). Ana. (y - 4)
2 = 12 (x - 3).

(b) focus (0, -3), vertex (2, -3). Ana. y* + 8x + 6y - 7= 0.
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(c) axis x = 0, vertex (0, — 4) ,
passes through (6, 0) . Ans. x2 = 9 y + 36.

(d) axis y = 0, vertex (6, 0), passes through (0, 4).

Ans. 3y2 = 48-8x.
(e) directrix x + 2y — 1 = 0, focus (0, 0).

Ans. (2x—y)2 + 2x+iy — l = 0.

3. Transform each of the following equations to one of the typical

forms (I) or (II) by translation of the axes. Draw the figure in each case.

(a) y
2 + ix + 4y-2 = 0.

(b) x2 + 6x + y-2 = 0.

(c) x2 + 3x + 4?/-l=0.
(d) y

2 +3x + 8y = 0.

(e) 2x2 4- 52/ + 4 = 0.

(f) y
2 +6x- 9 = 0.

(g) 7x2 + 82/4-10 = 0.

(h) x2 4-4?/ 4- 4 = 0.

Ans.

Ans.

y'2 + ix' = 0.

x'2 4- ?/ = 0.

(i) 2?/
2 4-3x-8 = 0.

(j) 5x2 4- 102/ 4- 12 = 0.

(k) 3x2 -62/+ 8 = 0.

(1) 2x2 -6x4-2/ = 0.

4. Show that abscissas of points on the parabola (I) are proportional

to the squares of the ordinates.

5. Find the equation in polar coordinates of a parabola if the focus is

the pole, and if the axis of the parabola is the polar axis.

Ans. p -.

1 — cos(?

A parabola whose focus and60. Construction of the parabola.

directrix are given is readily-

constructed by rule and com-

passes as follows

:

Draw the axis MX. Con-

struct the vertex V, the middle

point of MF. Through any

point A to the right of V draw

a line AB parallel to the direc-

trix. From F as a center with

a radius equal to MA strike

arcs to intersect AB at P and

Q. Then P and Q are points

on the parabola. For FP = MA, by construction, and hence

P is equidistant from focus and directrix.
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By changing the position of A we may construct as many

points on the curve as desired.

Parabolic arch. When the span AB and height OH of a para-

bolic arch are given, points on the arch may be constructed as

follows

:

Draw the rectangle ABCD.
Divide All and A C into the

same number of equal parts.

Starting from A, let the suc-

cessive points of division be

on AH,

on A C,

Now draw the perpendicular aa' to AB, and draw 01. Mark

the intersection. Do likewise for the points b and m, c and n.

The intersections are points

on the parabola required.

Proof. Take axes OX
and OY, as in the figure.

Let

(1) OM' = x, M'P = y,

AB = 2a, OH= h.

By construction, NC and MH are equal parts of AC and AH
respectively.

,„, . NC MH NC x
(*) • • -r^: = -tt^> or

A(ra,h)M
B(a,h)

(3)

AC AH' " h a

From the similar triangles OM'P and OCN,

y _NC _NC
OC

Substituting the value of NC from (2) into (3), and reducing,

(4) x' = — y.
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(5)

This is the typical form (II), and the locus passes through

0, A (— a, h) and B(a, h), as required.

Solving (4) for y, we get

h ,

y-

X
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Let us denote this constant by 2a. Then (1) becomes

(2) PF + PF' =
Let FF' = 2 c. Then

PF= V(x - cf + y% PF' = V(3J + c)
2 + if,

since the coordinates of F are (c, 0), and of .F', (— c, 0).

Hence (2) becomes

(3) V(x - c)
2 + y

2 + V(x + c)
2 + y

2 = 2 a.

Transposing one of the radicals, squaring and reducing, the

result is

(4) (a2 - c
2
) x

2 + «y = aV - c
3
)-

For added simplicity, set *

(5) a2 - c
2 = i

2
.

Then (4) becomes the simple equation

(6) 6V + a2
2/

2 = a2
S
2
.

Discussion. The intercepts are,

on XX', ± a; on FF', ± b.

The axes A"A"' and YY' are axes of symmetry and O is a center

of symmetry.

Solving (6) for x and for y,

= ±
a
--V¥= IT:

w — + - Va2 — x\J a

Hence the values of x can-

not exceed a numerically,

nor can the values of y
exceed b numerically. The curve is therefore closed.

The locus is called an ellipse. The point 0, -which bisects

every chord passing through it, is called the center. The given

fixed points jP and F' are called the foci. The longest chord

* This is permissible. For PF+ PF' > FF', or 2 a > 2 c ; that is, a>c, and
a2 — c2 is a positive number.
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(III)
'
+

b*
~ *'

AA' through is called the major axis ; the shortest chord BB\
the minor axis. Obviously,

(7) major axis — 2 a, minor axis = 2 l>.

Dividing (6) through by a2
b
2
, and summarizing, gives the

Theorem. The equation of an ellipse whose center is the origin

and whose foci are on the x-axis is

a2

ivhere 2 a is the major axis and 2 b

the minor axis. Ifc2 = a2 — lP, then

the foci are (± c, 0).

If the foci are on the y-axis,

and if we keep the above nota-

tion, the equation of the ellipse is

obviously

(8) «V + by = a2
b2, or

Equations (6), (8), and (III) are typical equations of the

ellipse, and are of the form

(9) Ax2 + Bf=C,
where A, B, and C agree in sign.

In the figure BF* = b2 + r
2

.

Substituting the value of c
2 from

(5), then BF = a2
. Hence the

property : The distancefrom either

focus to the end of the minor axis

equals the semlmajor axis.

The chord drawn through either focus perpendicular to the

major axis is called the latus rectum. Its length is' deter-

mined by setting x = e in (III), and solving for y. This gives

<?,¥).

\A*X

a
!/

(10)

= — • Hence
a

2b2

length of latus rectum, =
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Eccentricity. When the foci are very near together the ellipse

differs but little from a circle. The value of the ratio OF : OA
may, in fact, be said to determine the divergence of the ellipse

from a circle. The value of this ratio is called the eccentricity

of the ellipse, and is denoted by e. Hence

OF
(11) OA

c

a

The value of e varies from to 1. If the major axis A A'

remains of fixed length, then the " flatness " of the ellipse in-

creases as e increases from to 1, the limiting forms being a

circle of diameter^ A' and the line segment A A'.

From (11) and (5),

(12) i
2 = a2 ! =a2 (l-e2

).

To draw an ellipse quickly when its equation is in the typical

form, proceed thus

:

1. Find the intercepts, mark them off on the coordinate

axes, and set the larger one equal to a, the smaller equal to b.

Letter the major axis A A' and the minor axis BE'.

2. Find c from c
2 = a2 — b\ Mark the foci F and F' on the

major axis.

3. Calculate directly one or more sets of values of the coordi-

nates, and sketch in the curve.

EXAMPLE

Draw the ellipse 4 x2 + y* = 16,

Solution. The intercepts are, on XX', ± 2 ; on
YY', ±4. Hence the major axis fallsonYP, and
a = 4, b = 2, c = Vl2 = 2 V3 = 3.4. The foci are

on the y-axis. The length of the latus rectum
2 ft

2 „ „. .... c
equals :

a
2. The eccentricity e

a
iV3.

The points found in the table

are the ends of the_latus rectum.

If P is any point on the ellipse,

then PF + PF' = 2 a = 8.

X
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PROBLEMS

1. Plot each of the following equations. Letter the axes and mark
the foci. Find the eccentricity, the length of the latus rectum, and
draw the latus rectum.

(a) x2 + 92/
2 = 9. (e) 9x2 + 4 2/

2 = 36.

(b) 9x2 + 16 2/
2 = 144. (f) 2x2 + V

2 = 25.

(c) 2x2 + 2/
2 = 4. (g) 4x2 + 8?/2 = 32.

(d) 4x2 + 9y2 = 36. (h) 7x2 + 3j/
2 = 21.

2. Transform each of the following equations by translation of the

axes so that the transformed equation shall lack terms of the first degree

in the new coordinates. Draw the figure.

(a) x2 + 4 y
2 + 6 x - 8 y = 0. Arts, x'2 + 4 j/'2 = 13.

(b) 9x2 + 4y2 + 36x - 4y + 1 = 0.

(c) x2 + 5^ + 102/ = 20.

(d) 5x2 + V2 + 10x + 4y = 6.

(e) 3x2 + V
2 + 6x- 4j/ = 2.

(f) 4x2 + 5j/2 + 4x + 20 2/ = 20.

3. Find the equation of each of the following ellipses

:

(a) major axis = 8, foci (5, 2) and (— 1, 2).

Ans. 7 (x - 2)
2 + 16 (2/ - 2)

2 = 112.

(b) major axis = 10, foci (0, 0) and (0, 6).

Ans. 25x2 + 16(7/-3) 2 = 400.

(c) minor axis = 8, foci (— 1, 0) and (4, 0).

(d) minor axis = 4, foci (0, — 2) and (0, 4).

63. Construction of the ellipse. The definition (2) of the pre-

ceding section affords a simple method of drawing an ellipse.

Place two tacks in the drawing board at

the foci F and F' and wind a string about

them as indicated. If now a pencil be placed

in the loop FPF' and be moved so as to

keep the string taut, then PF + PF' is

constant and P describes an ellipse. If the

major axis is to be 2 a, then the length of the loop FPF' must

be 2 a -f 2 c.
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A useful construction of an ellipse by rule and compasses is

the following:

Draw circles on the axes A A' and BB' as diameters. From
the center draw any radius intersecting these circles in M
and N respectively. From M draw

a line MR parallel to the minor

axis, and from N a line NS paral-

lel to the major axis. These lines

will intersect in a point P on the

ellipse.

Proof. Take the coordinate

axes as in the figure below. Let

OA= x, AP =y=OD,

Clearly, OB = semimajor axis = *,

OC = semiminor axis = b.

/.MOX=<\>.

Then in the right triangle OAB,

(1)
OA x

cos <A = —— = —^ OB a

Similarly, in the right triangle ODC, /.OCT) = Z.COA
and

OD _ y

4>,

(2) sin
<f>
=
OC

But cos2

<f> + sin2 <£ = 1. Hence,

from (1) and (2), ~ + | =1, and

P(x, y) lies on the ellipse whose

semiaxes are a and b. Q.e.d.

The angle <j> is called the eccen-

tric angle of P.

The construction circles used

in this problem are called, respectively, the major and minor

auxiliary circles.
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64. Equations (6) and (8) of Art. 62 are simple equations of

the second degree. We may ask the question,

What is the test that the locus of a given equation of the

second degree shall be an ellipse ?

Reserving for a later section the answer to this question, we
have, however, some light on it now. For we have observed

in Problem 2, p. 163, that the locus was in each case an ellipse.

These equations agree in the respect that there is no xy-tenn,

and the squares of x and y have unequal positive coefficients.

Consider such an equation, for example,

(1) x2 +4f+4:x -8y + N=0,

where N is some number. If we translate the axes to the new
origin (— 2, 1), the transformed equation is

(2) a;'
2 + 4y2 = 8 - iV.

If N is less than 8, the locus is an ellipse.

If N = 8, the locus is the single point (0, 0), often called a

point-ellipse.

If N is greater than 8, there is no locus.

This discussion is general, and may be summarized in the

Theorem. If an equation of the second degree contains no

xy-term, and if a? and y* occur with coefficients having like

signs, the locus is necessarily an ellipse or point-ellipse.

The case when x2 and y
2 have equal coefficients has been dis-

cussed in Art. 38. The circle and point-circle may, of course,

be regarded as special cases of the ellipse and point-ellipse.

65. The hyperbola. Let us next turn our attention to a third

locus problem.

Given two fixed points F and F'. A point P moves so that

the difference of its distance from F and F' remains constant.

Determine the nature of the locus.
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Solution. Draw the x-axis through the fixed points, and

take for origin the middle point of F'F. By definition

(1) PF' — PF= a constant.

Let us denote this constant

by 2 a. Then (1) becomes

(2) PF' -PF=2a.
Let FF' =2c.

Then PF = V(z — cf -f- y-

and PF' = V(»+ c)
2 + if,

since the coordinates of F are

(c, 0), and of F', (- e, 0).

Substituting in (2),

(3) V(a: + c)
2 + 2/~2 - V(as - c)

2 + y
2 = 2 a.

Transposing either radical, squaring and reducing, the result is

(4) (a2 - c
2
) x

2 + a2/ = a2 (a2 - c
2
).

For added simplicity,* set

(5) ft
2 -c2 = -i2

, or c
2 -a2 =Z>2

.

Then (4) becomes the simple equation

(6) b
2x2 - a2f= a%2

.

Discussion. The intercepts

are, on XX', ± a; on YY',

±b V^l ; that is, the locus does

not cross the y-axis. The coef-

ficient of the' V— 1 in the im-

aginary intercept on the y-axis

is, however, b. The axes XX'
and YY' are axes of symmetry

and is a center of symmetry.

* This is permissible. For in the figure, PF' - PF < F'F, or 2 o < 2 e ; that
is, a<c, and a2 - c2 is a negative number.
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Solving (6) for x and for y,

y = + — Vx2 — a2
,

a

whence we conclude that all values of x between — a and a

must be excluded, but no values of y.

When x increases, y also increases, and the curve extends

out to infinity, consisting of two distinct branches.*

The locus is called a hyperbola, the point 0, which bisects

every chord drawn through it, is called the center. The given

fixed points F and F' are the foci. The chord AA' is named

the transverse axis. Marking off on YY' from the lengths ± b,

the line BB' (Fig. p. 166) is called the conjugate axis. Thus the

(Y) transverse axis = 2 a, conjugate axis — 2 b.

Dividing (6) through by a%*, and summarizing, gives the

Theorem. The equation of a hyperbola whose center is the

origin and whose foci are on the

x-axis is

(IV)

where 2 a is the transverse axis

and 2 b the conjugate axis. If

c2 = a2 + ft
2
, then the foci are

(± o, 0).

If the foci are on the jz-axis,

and if we preserve the notation,

the equation of the hyperbola is

obviously

(8)«V-JY aV, or ^-£= -1.

Equations (6) and (8) are typical equations of the hyper-

bola. They are of the form

(9) Ao? + Btf=C,
where A and B differ in sign.

* On the left-hand branch, (2) is replaced by PF~PF'=2a.

Jt
2 **_.
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In the preceding figures AB 2 = a2 + b
2

. Substituting the

value of b
2 from (5), AB 2 = c

2
. Hence the property : The

distance between the extremities of the axes equals half the

distance between the foci.

The chord drawn through a

focus and perpendicular to the

transverse axis is called the latus

rectum. We may determine its

length by setting x = c in (IV)

and solving for y. Thus, by (5) we
h /—

—

h
2

obtain y = ± -Vc2 — a2 = ± - •

Hence
2B2

(10) length of latus rectum =

Eccentricity. The value of the ratio OF : OA in the hyperbola

is called the eccentricity of the curve, as in the case of the

ellipse. Denoting the eccentricity by e, then

For a hyperbola, e > 1. The relation of the value of e to the

shape of the curve will be made clear later. From (5) and (11),

(12) b
2 = c

2 - «2 = a2
(e

2 - 1).

To draw a hyperbola quickly when its equation is in the

typical form (9), proceed thus :

1. Find the intercepts and mark them off on the proper axis.

Set a equal to the real intercept and b equal to the coefficient

of V— 1 in the imaginary intercept. Lay off the conjugate axis

;

letter it BB' and the transverse axis A A'.

2. Find c from c
2 = a2 + b2. Mark the foci F and F* on the

transverse axis.

3. Calculate directly one or more sets of values of the coor-

dinates, and sketch the curve.
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EXAMPLE
Draw the hyperbola

4 X2_ 5y2 + 20 = 0.

Solution. The intercepts are, on
XX', ± V- 5 = ± VI V^l ; on

YY', + 2. Hence 6 = VI, a = 2,

c = v a2 + b2 = 3, and the transverse

axis and the foci are on YY'. The ec-

centricity is f . The length of the latus

rectum is = 5.
a

If P is any point on

the hyperbola, then

PF'-PF = 4,

X .
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66. Conjugate hyperbolas and asymptotes. Two hyperbolas

are called conjugate hyperbolas if the transverse and conjugate

axes of one are respectively the conjugate and transverse axes

of the other.

If the equation of a hyperbola is given in typical form,

then the equation ofthe conjugate hyperbola isfound by changing

the signs of the coefficients of a? and y
2
in.the given equation.

Thus the loci of the equations

(1) 16 x2 -f =16 and -16 x2 + if =16

are conjugate hyperbolas. They may be written

3C It X %i

T-fe =1 and -T+S =1 -

The foci of the first are on the avaxis, those of the second

on the y-axis. The transverse axis of the first and the conju-

gate axis of the second are equal to 2, while the conjugate axis

of the first and the transverse axis of the second are equal to 8.

The foci of two conjugate hyperbolas are equally distant

from the origin. For c
2 equals the sum of the squares of the

semitransverse and semiconjugate axes, and that sum is the

same for two conjugate hyperbolas.

Thus in the first of the hyperbolas above c
2 = 1 + 16, while

in the second c
2 = 16 + 1.

If in one of the typical forms of the equation of a hyper-

bola we replace the constant term by zero, then the locus of the

new equation is a pair of lines (Theorem, p. 40) which are

called the asymptotes of the hyperbola.

Thus the asymptotes of the hyperbola

(2) tfx2 - ay = aV
are the lines

(3) b
2x2 - ahf = 0,

or

(4) bx + ay = and bx — ay = 0.
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These may be written

(5) y = -
b- X ^y = b- X .

They pass through the origin and their slopes are respectively

and —
a a
The property of these lines which they have in common with

the vertical or horizontal asymptotes of Art. 22 is expressed

in the

Theorem. The branches of the hyperbola approach indefinitely

near its asymptotes as they recede to Infinity.

Proof. Let P
x
(xv yj be a point on either branch of (2) near

the asymptote bx — ay = 0.

The perpendicular distance from this line to P
1
is

bx
t
- ay1 _

Y^
(6) d =

- Vi2 + a2

We may find a value for the

numerator as follows

:

Since P
1
lies on (2),

b
2x? - ahjl = a%\

Factoring and dividing,

a?b
2

bx, — ay, = -

i Jl bx
1
+ ay

x

Substituting in (6), d = >_
— V&2 + a2 (bx

1
+ ayj

As P recedes to infinity in the first quadrant, x
x
and y1

be-

come infinite and d approaches zero.

Hence the curve approaches closer and closer to its asymp-

totes. Q-ED -

Two conjugate hyperbolas have the same asymptotes.

Thus the asymptotes of the conjugate hyperbolas (1) are respectively

the loci of 16x2 — y2 = and — 16x2 + 2/
2 = 0,

which are the same.
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A hyperbola may be drawn with fair accuracy by the fol-

lowing

Construction. Lay off OA = OA'= a on the axis on which the

foci lie, and OB= OB'= b on the other axis. Draw lines through

A, A', B, B\ parallel to the axes, forming a rectangle. Draw

the diagonals of the rectangle. Then the length of each diago-

nal is obviously 2 c (since a2 + b* = c
2
). Moreover, the diagonals

produced are the

asymptotes. For

the equations of

the diagonals are

readily seen to be

bx — ay = and

bx + ay = 0, and

these are the same

as (4). Construct

the circle which

circumscribes the

rectangle. Draw the branches of the hyperbola tangent to the

sides of the rectangle at A and A' and approaching nearer

and nearer to the diagonals. The conjugate hyperbola may be

drawn tangent to the sides of the rectangle at B and B' and

approaching the diagonals. The foci of both are the points in

which the circle cuts the axes.

From this construction the influence of the value of the

eccentricity upon the shape of the hyperbola can be easily dis-

cussed. In the figure, let AA' be fixed. Now from (12), Art. 65,

6
2 = a2

(e
2 -l).

When e diminishes towards unity, b decreases, the altitude

BB' of the rectangle diminishes, the asymptotes turn towards

the ce-axis, and the hyperbola flattens.

When e increases, the asymptotes turn from the a;-axis, and

the hyperbola broadens.
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67. Equilateral or rectangular hyperbola. When the axes of

a hyperbola are equal (a = b), the hyperbola is said to be

equilateral. If we set a = b in equation

(IV), we obtain

(1) x*-f=a%
which is accordingly the equation of

an equilateral hyperbola whose trans-

verse axis lies on XX'
Its asymptotes are the lines

x — y = and x + y — 0.

These lines are perpendicular, and hence they may be used

as coordinate axes. The designation " rectangular " hyperbola

arises from this fact.

Theorem. The equation of an equilateral hyperbola referred

to its asymptotes is

(V) 2xy= a2
.

Proof. The axes must be rotated through — 45° to coincide

with the asymptotes. Hence we substitute (Art. 55)

x' 4- y' — x' + ?/'

in (1). This gives
V2 '

J

(x' + y'f (-x' + y'f
2 2

Reducing and dropping primes we have (V). Q.e.d.

It is important to observe that (V) has the simple form

(2) xy = a constant.

68. Construction of the hyperbola. A mechanical construction,

depending upon the definition (1) of Art. 65, is the following

:

Fasten thumb tacks at the foci. Pass over F' and around F
a string whose ends are held together (Fig. 1, p. 174).

If a pencil be tied to the string at P, and both strings be

pulled in or let out together, then PF' — PF will be constant
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andP will describe a hyperbola. If the transverse axis is to be 2 a,

the strings must be adjusted at the start so that the difference

between PF' and PF equals 2 a.

A construction often used for an

equilateral hyperbola when the asymp-

totes and one point A are given, is as

follows (Fig. 2)

:

Let OX and OF be the asymptotes

and A the given point. Draw any line

throughA to meet OX atM and Y at N.

Lay oEMP=AN. Then P is a point

on the required hyperbola.

Proof. Choose the asymptotes

as axes. Let the coordinates of A
be (a, V) and of P, (x, y). Then

OS = x, SP = y, OB = b, BA = a.

By construction, AN = MP.

.'. triangle PSM = triangle NBA,
and BN=SP = y, SM=AB = a.

Since the triangles OMN and

ABN are similar,

BN _ ON
' ' AB~ OM
Substituting,

a a + x

0B + BN
OS + SM

'

or xy = ab.

Comparing with (V), we see

that P (x, y) lies upon an equilat-

eral hyperbola which has OX and

OY for its asymptotes and which passes through (a, b). q.e.d.

By drawing different lines through A, and laying off

M,P, = AN,, M„P„ = AN
2 , etc., we determine as many points

P P1 V 2
etc., as we wish on the hyperbola (Fig. 3).
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PROBLEMS

1. Find the equations of the asymptotes and of the hyperbolas conju-

gate to the following hyperbolas, and plot

:

(a) 4

x

2 - y* = 36. (c) 16x2 - y* + 64 = 0.

(b) 9x2 - 252/2 = 100. (d) 8x2 - 16^2 + 25 = 0.

2. The distance from an asymptote of a hyperbola to either focus is

numerically equal to 6.

3. The distance from the center to a line drawn through a focus of a

hyperbola perpendicular to an asymptote is numerically equal to a.

4. The product of the distances from the asymptotes to any point on

the hyperbola is constant.

5. The focal radius of a point P
1
{x

x , yt)
on the parabola y

2 = 2px is

? + x

6. The ordinates of points on an ellipse and the major auxiliary circle

which have the same abscissas are in the ratio of 6 : a.

7. The area of an ellipse is irab.

Hint. Divide the major axis into equal parts. With these as bases inscribe

rectangles in the ellipse and major auxiliary circle (p. 164) . Apply Problem 6

and increase the number of rectangles indefinitely.

69. The examples of Problem 2, p. 169, illustrated tlie fact

that any equation of the second degree lacking an xy-term, but

containing x* and y
% with coefficients of unlike signs, can by-

translation of the axes be transformed into the form (9)

Ax*+Bf=C,

in which A and B differ in sign.

From the preceding it is clear that the locus of this equation

is a hyperbola if C is not zero, and a pair of intersecting

lines if C is zero. Hence the

Theorem. If an equation of the second degree contains no

xy-term, and ifx2 and y* occur with coefficients differing in sign,

the locus is either a hyperbola or a pair of intersecting lines.
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70. Locus of any equation of the second degree. The locus

problems of this chapter have led to the equations of the sec-

ond degree,

(1) y
2 = 2px and a? = 2py,

(2) 6V+«y=a2
*
2 and bV - a2

y
2 = a*b*

These are simple types, of course. The question is, however,

this:

Given an equation of the second degree, can the equation be

transformed by translating and rotating the axes so that the

transformed equation will reduce to one of these simple types?

To answer this question, take the general equation of the sec-

ond degree, namely,

(3) Ax2 + Bxy + Cyi + Dx + Ey + F=0.
This equation contains every term that can appear in an

equation of the second degree.

We begin by rotating the axes through an angle 0. To

do this, set in (3),

x = x' cos 6 — y' sin 0,

and y = x' sin 6 + y' cos 0.

This gives, after squaring, multiplying, and collecting, the

transformed equation

(4) .4cos2

+ JBsin0cos0

+ Csin2

x'y' + A sin2

— B sin cos

+ C cos2

V

x' — Dsvn.0

+ E cos 6

y' + F=0.

xn — 2A sin0cos0

+ 5 (cos20- sin2
0)

+ 2Csin0eos0

+ Dcos0

+ .Esin0

The angle 8 is, as yet, any angle at all. But let us now, if

possible, choose this angle so that the equation (4) shall not

contain the x'y'-teim. To do this, we must set the coefficient

of x'y' equal to zero ; that is,

(5) — 2 A sin 8 cos 8 + B (cos
20- sin2 0) + 2 C sin cos0= 0.

But 2 sin 8 cos = sin 2 0, cos2 — sin'
2 = cos 2 0.
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Hence (5) becomes

(6) (C - A) sin 2 + B cos 2 = 0.

Dividing through by cos 2 0, and transposing,

(7) tan 20 = -^-
Since any number may be the tangent of an angle, it is

always possible to find a value for from this equation. If,

then, the axes are rotated through the angle determined by

(7), equation (3) reduces to

(8) A'xn + C'y' 2 + D'x' + E'y' + F = 0,

where from (4),

(9) A'=Acos 1
e + Bsin6cosO+Csmi

6,

(10) C" = A sin2 - B sin0 cos0 + C cos2
0.

The discussion gives the

Theorem. The term in xy may always be removed from an

equation of the second degree,

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

by rotating the axes through an angle such that

(VI) tan 2* =^-
Now equation (8) is of a form which we have met frequently

in this chapter, and we have learned to simplify it by transla-

tion of the axes. We saw in Art. 61 that if only one square

(A' =0, or C" = 0) and the first power of the other coordinate

were present, the equation could be transformed into one of the

typical forms (1) of the parabola.

Suppose, however, that the first power of the other coordi-

nate does not appear. For example, suppose in (8) that A 1 =
and 73' = 0. Then the equation is

C'y'* + E'y' + F= 0.
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This is an ordinary quadratic in y. If the roots are real, the

locus will be two lines parallel to the as'-axis. These lines will

coincide if the roots are equal. There will be no locus if the

roots are imaginary.

If neither A' nor C' is zero, we may, by translation to the

new origin (
— ^—-> — 5-^7), transform the equation into

(11) A'x" 2+ C'y" 2 + F' = 0.

The locus' of this equation has been discussed in Arts. 64

and 69.

The result we have established is expressed in the

Theorem. The locus of an equation of the second degree is

either a parabola, an ellipse, a hyperbola, two straight lines

(which may coincide), or a point.

The following conclusion also may be drawn : The presence

of the xy-term indicates that the axes of the curve are not paral-

lel to the axes of coordinates.

We seek now a test to apply to an equation containing an

ay-term in order to decide in advance the nature of the locus.

To do this we eliminate the angle 6 from equations (9) and

(10), making use of (6). The result is the simple equation,

(VII) -4A'C'=B2 -4AC.

The steps in the elimination process are as follows

:

Adding and subtracting (9) and (10),

(12) A'+ C' = A + C (since sin2 + cos2 = 1).

(13) A'- C' = (A-C)cos20 + Bsin20.

Squaring (13),

(14) (A'-C')i=(A-C)2 cos!i 20+2B(A-C)sm20oos20+B2 sin2 20.

Squaring (6),

(15) = (A- Cf sin? 20 + 2 B(C - A)sin20 cos20 + B* cos* 20.

Adding (14) and (15),

(16) (A' - G'f = (A- C)2 + £2
.
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Squaring (12),

(17) (A' + C')2 = (A + Cf.

Subtracting (16) and (17), we obtain (VII).

If the locus of (8) is a parabola, A '= or C" = 0. Hence from

(VII), B2 -±AC = 0.

If the locus of (8) is an ellipse, A' and C' agree in sign.

Hence A'C' is positive, and from (VII), B2 — 4= AC is negative.

If the locus of (8) is a hyperbola, A' and C differ in sign.

Hence A'C' is negative, and from (VII), B2 — A AC is a posi-

tive number.

Collecting all the results in tabular form, we have the

Theorem. Given any equation of the second degree,

Ax2 + Bxy + Cy2 + Dx + Ey + F=0.

The possible loci may be classified thus

:

Test
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The exceptional cases are recognizable by trie condition that

the equation is then factorable into two factors of the first

degree in x and y. A number of problems of this kind, were

given on page 41. When the equation is not readily factored by

trial, it may appear by the first method of the following section

(Art. 71) that factors do nevertheless exist. Moreover, under

the two first cases in the table (parabola and ellipse) there may
be no locus. This fact will also readily appear by the first

method of Art. 71.

71. Plotting the locus of an equation of the second degree. In

this section we discuss methods of plotting second-degree

equations which contain ay-terms.

First Method. By direct jjlotting. Test by the theorem at

the end of the preceding section, and then plot the equation

directly.

EXAMPLES
1. Plot the locus of

(1) x2 — 2xy + iy2 — 4x = 0.

Solution. Here A = l, B=~2, C = 4.

.•. -B2 — 4^1C = 4 — 16= — 12 = a negative number.

Hence the locus is an ellipse.

X
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Solving also for y,

(4) 2/ = £x±iVx(16-3x).

From the radicals in (3) and (4) we see that (see p. 49)

y may have values from — $ to 2 inclusive
;

x may have values from to Af inclusive.

Hence the ellipse lies within the rectangle

V=-h V = ^ x =
> * = ¥•

Points on the locus may be found from (3) as in the table.

2. Determine the locus of

5x2 + ixy — y
2 + 24x— 6y — 5 = 0.

Solution. A = 5, B = i, C =-\. .: B2 - 4AC = 16 + 20 = 36.

Hence, from the table of Art. 70, we may expect a hyperbola or a pair

of intersecting lines.-

Solve the equation for y as follows :

y
2 -(4k - 6)y + (2x - 3)

2 = 5x2 + 24x - 5 + (2x - 3)
2

= 9x2 + 12 x + 4 =(3x + 2)
2

.

[Collecting terms in y and completing the square.]

... j,-(2x-S) = ±(3x + 2)..

Hence the locus is the intersecting lines

y = 5x — 1 and y=— x — 5.

PROBLEMS

1. Test and plot the following equations :

(a) x2 -2xy + ?/
2 -5x = 0. (c) 4xy + 4y2 + 4y + 4 = 0.

(b) 4x2/ + 42/
2 -2x + 3 = 0. (d) 2x2 + 4xy + ±y2 + 2x - 3 = 0.

(e) x2 + 2xi/ + 2y2 + 2x + 2y-l = 0.

(f) 3x2 -12x^ + 9j/2 + 8x-12y + 5 = 0.

(g) 5x2 -12K2/ + 92/
2 + 8x-12^ + 3 = 0.

(h) x2 + xy + y2 + 3y = 0.

(i) x2 + 2xy + 4y2 + 6y = 0.

(j) 4x2 + 4xy + y2 + 6x-9 = 0.

(k) 3x2 —'2xy + 2/
2 -4x-6 = 0.

(1) x2 -2xy + 5y2 -8y = 0.

(m) x2 - 4xy + iy2 + 4x + 2y = 0.

(n) 3x2 + 4x^ + l/
2 -2x-l = 0.

(o) 3x2 + 8xy + iy2 + 2x + 4y = 0.



182 NEW ANALYTIC GEOMETRY

Second Method. By transformation. If the ay-term is

lacking, we have seen that the equation may be simplified

by translating the axes. The transformed equation is then

readily plotted on the new axes.

When the a:y-term is present, rotate the axes through the

angle given by (VI),

(5) tan20 = j-^-

The term in xy will then disappear and further simplification

is accomplished by translation.

To rotate, we substitute

(6) x = x' cos 9 — y sin 6, y = x' sin 6 + y' cos 6.

We find sin# and cos# as follows. First compute cos 20 from

1
(7) cos 2 6 = ± . • (26 and 28, p. 3)

Vl+tan2 20
V l

'

From (5), 2 6 must lie in the first or second quadrant, so the

sign in (7) must be the same as in (5). 6 will then be acute;

and from 40, p. 4, we have

(8) sin*=+V^f^ costf = + X^
cos 2

EXAMPLES

1. Construct and discuss the locus of

(9) x2 + 4xy + 4y2 + 12x-6y = 0.

Solution. Here A=l, B = 4, C = 4.

. . B2 — 4 AC = 0, and the locus is a parabola.

Write the equation (9) in the form

(10) (aj + 2y)2 + 12x-62/ = 0.

We rotate the axes through an angle 8, such that

4 4
tan20= ^L_ = _*.

1-4 3



Then by (7),

and by (8),

(11)
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cos 2 6 = - i,

183

. „ 2 1sin0=-— and cos#=—=•

VI V5
The equations for rotating the axes are therefore

x' — 2 y' 2x' + y'
x =

Vl
y-

VI

and the

Substituting in the equation

(10), we obtain

6 t-

VI

Hence the locus is a parabola

for which p =— , and whose
VI

focus is on the y'-a,xis.

The figure shows both sets of axes, the parabola, its focus and directrix.

The axis OX' has the slope tan 6 = = 2, from (11). Hence to draw
cos#

OX', simply draw a line through the origin whose slope equals 2.

In the new coordinates the focus is the point 10,
'

\

directrix is the line y' = =.

2V5

2. Construct the locus of

5x2 + Qxy + 5j/
2 + 22x - 6y + 21 = 0.

Solution. Here A = 5, B = 6, C = 5.

. . B2 - 4AC = 36 - 100 = - 64 = a negative number.

Hence the locus is an ellipse.

We rotate the axes through the angle 8, given by
a

tan 20 = = 00.5-5
.-. 20 = 90°, 0* = 45°.

Hence the equations of the transformation are

x = x'—y'
y =

x'+
:

V2 V2

* If A = C, the angle 6 always equals 45°.
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Substituting in the given equation and reducing,

4a;'2 + Y2 + 4V2x'- 7 V2y' + *£ = 0.

Translating to the new origin (— \ V5, |V5), the final equation is

ix"* + y"2 = 16.

Hence the locus is an ellipse whose

major axis is 8, whose minor axis is 4, -^
and whose foci are on the T"-axis.

The figure shows the three sets of

axes and the ellipse. The coBrdinates

of the new origin 0' (— J V%, \ V2)
refer to the axes OX' and OY', and this

must be remembered in plotting.

The equation

(12) Bxy + Dx + Ey + F = 0,

in "which x2 and y
2 are lacking, offers an exception to the above

process, for, by translation, the equation may be reduced to

(13) Bx'y' + F'=0;

and the locus of (13) is, by (V), Art. 67, an equilateral hyper-

bola referred to its asymptotes as axes. Hence to plot (12),

translate so that the terms of the first degree disappear and

then plot the new equation.

To show that (12) may be transformed into (13) by translation, proceed

thus

:

Substitute x = x' + h, y = y' + k, in (12), multiply out and collect the

terms. We obtain

Y'
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PROBLEMS

1. Simplify the following equations and construct the loci. Check the

figure by finding the intercepts on the original axes.

(a) x2 + xy + j/
2 = 3. Ans. 3

x'2 + y'2 = 6.

(b) x2 + 3xy + y2 + 4y = 0. Ans. 25a;"2 - 5?/"2 + 32 = 0.

(c) x2 + 2xy + y
2 + 3x-3y = 0. Ans. 2x^ - 3 V2y' = 0.

(d) 3x2 — ixy + 8x - 1 = 0. Ans. x"a — 4j/"2 + 1 = 0.

(e) 4x2 + 4xj/ + j/
2 + 8x-16y = 0. ^.ns. 5x'2 - 8V52/' = 0.

(f ) 3xy + 4x4- 6y + l = 0. Ans. 3xY — 7 = 0.

(g) 17x2 - 12xy + 8?/2 - 68X + 242/ -12 = 0.

^Ins. x"2 + 42/"2 -16 = 0.

(h) 2/
2 + 6x- 62/ + 21 = 0. Ans. 2/'2 4-6x'=0.

(i) 6x2/ 4-4X-122/ 4-3 = 0. ylns. 6x'2/' 4- 11 = 0.

(j) 12x2/ -52/2 4- 482/ -36 = 0. Ans. 4 x"2
.
- 9 y"2 = 36.

(k) 4x2 -12x2/4- 92/2 4- 2x-3y — 12 = 0.

^.ms. 52 2/"2 - 49 = 0.

(1) 12x2 4- 8x2/ 4-18 ^2 4- 48x4- 16 2/
4- 43 = 0.

^Ins. 4x2 4-2 2/
2 = l.

(m) 7x2 4- 50x2/ 4- 7 2/
2 = 50. ^4ns. 16 x'2 - 9 2/'

2 = 25.

(n) x2 4- 3xy-3y2 + 6x = 0. ^ins. 21 x"2 - 49 y"2 = 72.

(o) 16x2 - 24x2/ + 9j/2 - 60x - 80 y + 400 = 0.

Ans. 2/"2 -4x" = 0.

2. Show that the general equation

^tx2 4- Bxy + Cy2 +Dx + Ey + F=0
may be simplified by translation only, so that the new equation contains

no terms of the first degree in x and y, if the coordinates of the new
origin (h, k) satisfy the equations

2 Ah + Bk 4- -D = 0, Bh + 2 Ck 4- E = 0.

Hence show that the new origin (h, k) is the center of the locus, unless

B2 — 4AO = 0. In the latter case the transformation fails.

72. Conic sections. Historically, the parabola, ellipse, and

hyperbola were discovered as plane sections of a right circular

cone. Hence the generic term used for them, — conic sections

or conies.

A definition often used, which will include all conic sections,

is the following: When a point P moves so that its distances
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from a given fixedpoint and a given fixed line are in a constant

ratio, the locus is a conic.

The given fixed line is called the directrix, the fixed point

the focus, and the number representing the ratio of the dis-

tances of P from the focus and directrix is called the eccen-

tricity.

In Problem 3, p. 51, we found the equation for any conic

to be

(1) (l-ei)x2 +if-2px+p2 =0,

if e is the eccentricity, YY' is the directrix, and (p, 0) is the

focus. Now (1) has no xy-term. Hence we see at once by

comparison with our previous results that a conic is

a parabola when e = 1,

an ellipse when e < 1,

a hyperbola when e > 1.

Clearly, when e = 1 the definition of the conic agrees with

that already given for the parabola.

The ellipse and hyperbola, each having a center, are called

central conies.

' Focus and eccentricity, as used in

this section, agree with these terms

as already introduced. This fact is

left to the student to prove in the

following problems.

The equation of a conic in polar co-

ordinates is readily found. We may
show that if the pole is the focus and the polar axis the principal

axis of a conic section, then the polar equation of the conic is

ep

r(p,o>

(2) P — 1 — e cos 6

where e is the eccentricity and p is the distance from the

directrix to the focus.
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For let P be any point on the conic. Then, by definition,

FP
E~P

= 6 -

From the figure, FP = p,

and EP — HM =p + P cosO.

Substituting these values of FP and EP, we have

P =e .

p+pQOSO '

or, solving for p, p = — • Q. e. d.
1 — ecos0

PROBLEMS

1. Simplify (1), p. 186, by translation of the axes when e ^ 1.
2

Ans. (l_e2)x2 +2/2 =-^--
v ' 1-e2

2. Show that in a central conic the focus coincides with the focus

already adopted. Hence show that a central conic has two directrices,

one associated by the above definition with each focus.

3. Prove that e in Problem 1 agrees with e as defined in Arts. 62 and 65.

4. Prove that the focal radii of a point (x, y) on the ellipse (III),

p. 161, are a + ex, and a — ex.

5. Prove that the focal radii of a point on the hyperbola (IV), p. 167,

are ex — a and ex + a.

LOCUS PROBLEMS

It is expected that the locus in each problem will be constructed and

discussed after its equation is found.

1. The base of a triangle is fixed in length and position. Find the

locus of the opposite vertex if

(a) the sum of the other sides is constant. Ans. An ellipse.

(b) the difference of the other sides is constant. Ans. A hyperbola.

(c) one base angle is double the other. Ans. A hyperbola.

(d) the sum of the base angles is constant. Ans. A circle.

(e) the difference of the base angles is constant. Ans. A conic.

(f ) the product of the tangents of the base angles is constant.

Ans. A conic.
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(g) the product of the other sides is equal to the square of half the

base. Ans. A lemniscate (Ex. 2, p. 122).

(h) the median to one of the other sides is constant. Arts. A circle.

2. Find the locus of a point the sum of the squares of whose distances

from (a) the sides of a square, (b) the vertices of a square, is constant.

Ans. A circle in each case.

3. Find the locus of a point such that the ratio of its distance from a

fixed point Pt
(x

x , yt)
to its distance from a given line Ax + By + C =

is equal to a constant k.

Ans. (A* + B2 - k2A2) x2 - 2 WABxy + (A2 + B* - fc
2-B2) y

2

- 2 (A*Xl + B^ + k2AC)x-2 (A2
Vl + iJ2^ + k2BC)

y

+ (x
x
2 + y?) (A* + B2

)
- k2C2 = 0.

4. Find the locus of a point such that the ratio of the square of its

distance frolh a fixed line to its distance from a fixed point equals a

constant k.

Ans. x4 — k2 (x — p)
2 — k2y

2 = if the y-axis is the fixed line and

the x-axis passes through the fixed point, p being the distance from

the line to the point.

Systems of conies. When an equation of the second degree

contains one arbitrary constant, the locus is a system of conies.
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EXAMPLE

x2 y2

Discuss the system represented by 1- —— = 1.
25 — k 9 — k

Solution. When fe< 9 the locus is an ellipse whose foci are (± c, 0),

where c2 = (25 - k) - (9 - k) = 16. "When 9 < k < 25 the locus is an

hyperbola whose foci are (± c, 0), where c2 = (25 — k) — (9 — k) = 16.

When k > 25 there is no locus. Since the ellipses and hyperbolas have

the same foci (± 4, 0), they are called confocal.

In the figure the locus is plotted for k =— 56, - 24, 0, 7, 9, 11, 16, 21,

24, 25. As k increases and approaches 9, the ellipses flatten out and finally

degenerate into the x-axis, and as k decreases and approaches 9, the hyper-

bolas flatten out and degenerate into the x-axis. As k increases and

approaches 25, the two branches of the hyperbolas lie closer to the y-axis,

and in the limit they coincide with the 2/-axis.

PROBLEMS

1. Plot the following systems of conies and show that the conies of

each system belong to the same type. Draw enough conies so that the

degenerate conies of the system appear as limiting cases.

(a) 5! + L
2

= fc . (c) ^_L2

= fc .
K

' 16 9
w

16 9

(b) y
2 = 2 kx. (d) x2 = 2 ky - 6.

2. Plot the following systems of conies and show that all of the conies

of each system are confocal. Discuss degenerate cases and show that two

conies of each system pass through every point in the plane.

'

. + -£- = !. (c) _^_ + _^_ = i."
'

w
64-fc 16-fc

(d) x2 = 2 ky + k2
.



CHAPTER XI

TANGENTS

73. Equation of the tangent. A tangent to a curve at a point

P
x
is obtained as follows. Take a second point P

2
on the curve

near P . Draw the secant through

P, and 1\.

Now let P
2
move along the

curve toward Py The secant will

turn around Pr The limiting

position of the secant when P
2

reaches P
i

is called the tangent

at Pr
We wish to calculate the s%>e of the tangent at a point on a

curve. Let the coordinates of P
1
be (xv yj and of P

2
(x^ + h,

Vx + k)- Then
,

,
f p „ *

A-fope q/ secant P
X
P

2
= y •

To find the slope of the tangent, we begin by finding a value

A;

for - > the slope of the secant, as in the following example.
tt

EXAMPLE

Find the slope of the tangent to the curve C : 8 y = x" at any

point P
x
(xv y±) on C (see figure on page 191).

Solution. Let P
x
(xv yx)

and P
2
(a;

1
+7i, 2/j+A) be two points on C.

Then since these coordinates must satisfy the equation of C,

(2) 8^ = **,

and 8(y1+k)=(x1 +hf;
or

(3) 8 Vl + 8 7c = x* + 3 sc'A + 3 xft + A8
.

190
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Factoring,

and hence

Subtracting (2) from (3), we obtain

8 k = 3x1 h + 3Xlh
2 + h\

Sk = h(3x? + 3x
1
h + h2

);

k _ 3 x? + 3 Xlh + h2

h~ 8

= slope of secant P^Pr
Now as P

2
approaches Pv h and k approach zero, and when

the secant becomes a tangent to the curve, h and h are both

equal to zero.

Hence the slope m of the tangent at P
1
will be obtained

from the above value of the slope of the secant, namely,

3^' + 3 x
t
h + IP

by setting h = and also k = 0, if k appeared in the expres-

sion. Hence 3^2
m = ~-^- Ans.

o

The method employed in this example is general and may
be formulated in the following

Rule to determine the slope of the

tangent to a curve C at a point P on C.

First step. Let P
l
(xv yj and P

2
(x

t
+ h,

i/
l
+ k) be two points on C. Substitute

their coordinates in the equation of C
and subtract.

k
Second step. Find a value for —> theJ h

slope of the secant through P
x
and P .

Third step. Find the limiting value

of the result of the second step when

h and k approach zero. This value is the required slope.

Having found the slope of the tangent at P , its equation is

found at once by the point-slope formula. The point P is called

the point of contact.
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EXAMPLE

Find the equation of the tangent to the circle

x2 + y2 = r2

at the point of contact (x
t , yx).

Solution. Let P
x
(x

x , y x )
and P

2
(x

x + ft,

yx
+ k) be two points on the circle C.

Then these coordinates must satisfy the x
equation of the circle. Therefore

(1) x* + yl = r\

and (x, + ft)
2 + (y1 + fc)

2 = r"
;

or

(2) Xj
2 + 2x

t
ft + ft

2 + y? + 2y1
k + k2 = r*.

Subtracting (1) from (2), we have

2 x
x
h + ft

2 + 2 ^fc + fc
2 = 0.

Transposing and factoring, this becomes

k(2y
x + k)=- h(2x

x + h).

k__2x
x + ft

h~ 2y
x + k

= slope of the secant through P
x
and P

2
.

Letting P
2
approach P

x , ft and fc approach zero, so that m, the slope of

the tangent at P
x , is

x,

Vi

The equation of the tangent at P
x
is then

y-V1
=- 1̂ (x-x

1),

Whence

or x
x
x + yxy = x? + y*.

This equation may be simplified. For by (1),

z 2 + y* = r2
,

so that the required equation is

Q.K.D.
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Theorem. The equation of the tangent to the circle

C : x2 + y
2 = r2

at the point of contact P
1
(xv y^) is

(I) *i* + yj) = r8
-

The point to be observed in this proof is this

:

Always simplify the equation of the tangent by making use

of the equation obtained when x and yt
are substituted for x

and y in the equation of the given curve.

In the equation (I) the point of contact is (xv y^), while

(a;, y) is any point on the tangent.

In like manner we may prove the following

Theorem. The equation of the tangent at the point of contact

p
i (xv Pi) t0 the

ellipse b
2x2 + aty2 = a2

b
2

is Wx^x + (Pyjj = (Pb2 ;

hyperbola b
2x2 — a?y2 = a%2

is b^x
xx— a2yxy= cPb2 ;

parabola y
2 = 2px is y1y = p(x + x1).

PROBLEMS

1. Find the equations of the tangent to each of the following curves

at the point of contact (xlt yj :

(a) x2 = 2py. 4ns. x-
l
x=p(y + yx ).

(b) x2 + y
2 = 2 rx. Ans. x

x
x + yxy = r(x + x

x).

(c) y
2 = 4x + 3. Ans. yxy = 2x + 2x

x + 3.

(d) xy = a2
. Ans. x

xy + yx
x = 2 a2 .

(e) x2 + xy = 4. Ans. 2 x
T
x + x

±y + y t
x = 8.

(f ) x2 + y
2 + Dx + Ey + F = 0. D g

Ans. XjX + yxy + - (x + x
x) + - (y + y x )

+ F = 0.

(g) y = Xs
. Ans. 3 x

x

2 x — y + 2 yx
= 0.

(h) y
2 = x3 .

(i) y = Ax2 + Bx'+ C. (m) xy2 + a = 0.

( j ) Ax2 + By2 + Cx = 0. (n) x2y + b = 0.

(k) Ax2 + By3 = 0. (o) xy2 + a2x - a2b = 0.

(\) Axy + Bx + Cy = 0. (p) y
! (2a - x) = Xs

.
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74. Taking next any equation of the second degree, we may

prove the

Theorem. The equation of the tangent to the locus of

Ax* + Bxy + Cf + Dx + Ey + F=0
at the point of contact P^ix^, yx)

is

Proof. Let P
x
(xv yr)

and P
2
(x

t + h,y
1 + k) be two points on the conic.

Then

(1) Ax} + BxlVl + Cy? + Dx
1
+ Ey

1 + F=0 and

A(Xl + h)2 + B (x
1 + h) fa + k)+Cfa + k)2 + D(x

1 + h)

+ Efa + k) + F=0.
Clearing of parentheses,

(2) Ax} + 2Ax
t
h + Ah2 + Bx

xyx + Bxjc + Byji + Bhk

+ Cy} + 2 Cy
x
k + Ck2 + Dx

x + Dh + Ey
1 + Ek + F = 0.

Subtracting (1) from (2),

(3) 2 Axjh + Ah2 + Bx
x
k + By

x
h + Bhk + 2 Cy

x
k + Ck2 + Dh + Ek = 0.

Transposing all the terms containing h, and factoring, (3) becomes

k(Bx
1 + 2 Cy

x + Ck + E)=-h(2Ax
x
+ Ah + By

x + Bk + D);

k 2 Ax, + By, + D + Ah + Bk
whence - = ! ^

h Bx
x + 2 Cy

x + E + Ck

This is the slope of the secant P
1
P

2 .

Letting P
2
approach P

x , h and k will approach zero and the slope of

the tangent is 2Ax.+By
1 + Dm = * — — •

Bx
x
+ 2Cy

x + E

The equation of the tangent line is then

2Ax
x
+ Byx + D

Jl Bx
x + 2Cy

x + E
y ll

To reduce this equation to the required form we first clear of fractions

and transpose. This gives

(2Ax
x
+ By

x + D)x + (Bx
x + 2Cy

1 + E)y

- (2 Ax} + 2 Bx
1y 1

+ 2 Cy 2 + Dx
x + Ey

x)
= 0.
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But from (1) the last parenthesis in this equation equals

-(Dx
1 + Ey

1 + 2F).

Substituting, the equation of the tangent line is

(2 Ax^ + By
1 + D)x + (Bx

t + 2Cy
1 + E)y+ {Dx

r + Ey
1 + 2 F) = 0.

Removing the parentheses, collecting the coefficients of A, B, C,D, E,

and F, and dividing by (2), we obtain the equation of the theorem. Q. E. D.

The above result enables us to write down the equation of

the tangent to the locus of any equation of the second degree.

For by comparing the equation of the curve and the equation

of the tangent we obtain the following

Rule to write the equation of the tangent at the point of con-

tact P
1
(xv yj) to the locus of an equation of the second degree.

Substitute x^x and yxy for x2 and y
2
,
——-—— for xy, and

x + x, y + y, .—-

—

i and -—^-^ for x and y in the given equation.

For example, the equation of the tangent at the point of contact (xv y x )

to the conic x2 + Bxy — 4 y + 5 = is

x
x
x + § (x

xy + yx
x) - f (y + yj + 5 = ;

or, also, (2x
1 + 3^)x + (3x

x
— i)y — A.y

Y + 10 = 0.

75. Equation of the normal. The normal to a curve at a point P
1

is the line drawn through P
1
perpendicular to the tangent at Pv

When the equation of the tangent has been found, we may

find at once the equation of the normal in the manner of Chap-

ter IV. Thus, using the equations of the tangents given on

page 193, we find the

Theorem. The equation of the normal at P
x
(xv y^) to the

ellipse bV+a2
y
2 = a2b2 is afyx- Wx^y= (a2 - ft

2
)X& ;

hyperbola b2x2 - a2f = a2
b
2

is a2
ytx+ b2x1y= (a2 + b2)x1y1 ;

parabola y
2 = 2px is y^x + py = X& +pyx .
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For example, for the ellipse :

The slope of the tangent

bH-^x + cpy-jj = a?b2 r

A b2x
is m = = L. Hence the equation of the normal is

B afy

and this reduces to the equation in the theorem.

In numerical examples the student should use the Rule given

to write down the equation of the tangent, find the normal as

a perpendicular line, and not use the special formulas.

76. Subtangent and subnormal. If the tangent and normal at

P, intersect the x-axis in T and N respectively, then we define

P
1
T= length of tangent at Pv Y'

(1)
P^N = length of normal at Pv

The projections on XX' of P^and
PjJV are called respectively the sub-

tangent and subnormal at P . That

is, in the figure,

(2)

M
t
T = subtangent at P

,

M^N = subnormal at Py

The subtangent and subnormal are readily found when the

equations of the tangent and normal are known. For, from the

figure,

M,T = OT - OM„
(3)

and

AfjiV=ON— OMv
OM

1
= xv

while OT and ON are respectively the intercepts on XX' of the

tangent and normal at Pr Since the subtangent and sub-

normal are measured in opposite directions from the foot of

the ordinate MJ?V they will have opposite signs.
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EXAMPLE

Find the equations of tangent and normal, and the lengths of subtan-

gent and subnormal at the point on the parabola x2 = 4j/ whose abscissa

equals 3.

Solution. The point of contact

«*'*>% = 8, yx
= l

The formula for the tangent at

(Xj, J/j) is, by the Rule, p. 195,

XyC = 2(y + yl).

Substituting the values of x
1
and yv

3x = 2(i/ + §) or 6x- iy - 9 = 0.

This is the required equation of the

tangent.

The slope of this line is $. Hence the equation of normal at (3, |) is

y-f=~f(x-3), or 8x + 12?/ - 51 = 0.

The intercept on XX' of the tangent is f ; of the normal &£ . Also x
1
= 3.

.-. subtangent = f
— 3 =— |,

and subnormal = <y — 3 = ?$-.

The lengths of the tangents and normals may be found by geometry,

for the lengths of the legs of the triangles PjMjTand P^M^ are now
known.

PROBLEMS

1. Find the equations of the tangent and normal at the point indicated

to each of the following. Find also the lengths of subtangent and subnor-

mal. Draw a figure in each case.

(a) 2x2 + 3 ?/
2 = 35, x

1
= 2, yx

positive.*

Arts. Tangent, 4 x + 9 y = 35 ; normal, 9 x — 4 y = 6.

Subtangent = y ; subnormal = —. f

.

(b ) x2 — 4 y2 + 15 = 0, x
x
= 1, yx

negative.

(c) 2/
2 = 4x4-3,2/! = 2.

(d) xy = 4, Xj = 2.

(e) x2 + ;
4x 0, x.

(f) x2 + 4j/2 + 5x = 0, ^ = 1.

(g) 4x2 + 3 j/
2 = 1 ;

positive extremity of latus rectum.

* Substituting x = 2 in the given equation, we find y = ± 3. Hence i/i =+ 3.
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(h ) x2 + xy + i = 0, x1
= 2.

(i) y* + 2xy-3 = 0, y1
=-l.

( j ) x2 — 3 xy — 4 y
2 + 9 = 0, x

x
positive, yx

= 2.

(k) x2 + xy + y1 = 4, x
1
= 0, yx

negative.

(1) x2 + 4j/2 + 4x-8^ = 0, x
1
= 0.

(m) 4 y = x3
, xx

= 2.

(n) 4y2 = x8
, a 1

= 2.

2. Show that the subtangent In the parabola y2 = 2px is bisected at the

vertex, and that the subnormal is constant and equals p.

77. Tangent whose slope is given. Let it be required to find

the equation of a tangent to the ellipse

(1) 5 x2 + if = 5

whose slope equals 2.

Solution. Draw the. system of lines whose slope equals 2

(Art. 36). We observe that some of the lines intersect the

ellipse in two points, and also that some of them do not inter-

sect the ellipse at all. Furthermore, two of them are tangent.

We wish to find the equations of

these two tangents.

The equation of the system of

lines whose slope equals 2 is

(2) y = 2x + k,

where k is an arbitrary parameter.

Let us now start to solve for the

points ofintersection. Substituting

from (2) into (1),

(3) 5 x2 + (2 x + kf = 5.

Squaring and collecting terms,

(4) 9 x2 + 4 kx + It? - 5 = 0.

If the line (2) is the tangent AB of the figure, by solving

equation (4) we shall obtain the abscissa of the point of con-

tact. But (4) is a quadratic and has two roots. Hence these

roots must be equal.
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We learn in algebra that the roots of the quadratic

(5) Ax- + Bx + C =
are equal when

(6) B2 -±AC = 0.

Comparing (4) with (5),

,4 = 9, B = £k, C = k2 -&.

Substituting in (6),

(7) 16 k2 - 36 (k2 - 5) = 0, or k = ± 3.

Hence the equations of the required tangents are

AB: y =2 x + 3 and CD : y = 2x — 3.

Check. Writing k — 3 in (4), it becomes

9 x2 + 12 x + 4 = 0, or (3 x + 2)
2 = 0.

The equation is now a perfect square, and this fact c'onstk

tutes the check desired. Hence the equal roots have the com-

mon value x = — §. This is the abscissa of the point of contact

P. The ordinate is found from y = 2 x + 3 to be y = §. Hence

r is (- h %)
Similarly, putting k = — 3 in (4), we find Q to be (§, — |).

The method followed in the preceding may be thus outlined.

To find the equation of the tangent to a conic when the slope

of the tangent is given.

1. Write down the equation of the system of lines with the

given slope (y = mx + k). This equation contains a parameter

(k) whose value must be found.

2. Eliminate x or y from the equations of the line and conic

and arrange the result in the form of a quadratic

(8) Aif + By+ C = 0, or Ax2 + Bx + C = 0.
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3. The foots of this quadratic must be equal. Hence set

(9) £S -44C = 0,

and solve this for the parameter k.

4. Substitute the values of the parameter k in the equation

of the system of lines.

5. Check. When each value of the parameter satisfying (9)

is substituted in (8), the quadratic becomes a perfect square.

PROBLEMS

1. Find the equations of the tangents to the following conies which

satisfy the condition indicated, check, and find the points of contact.

Verify by constructing the figure.

(a) y
2 = 4 x, slope = £. Ans. x — 2y + 1 = 0.

(b) x2 + y
2 = 16, slope = — f

.

Ans. 5 x + 3 y ± 20 = 0.

(c) 9x2 + 16?/2 = 144, slope = — £. Ans. x + 4 y ± 4VlO = 0.

(d) x2 — 4 y
2 = 36, perpendicular to 6 x — 4^ + 9 = 0.

Ans. 2x + 3y±3\/7 = 0.

(e.) x2 + 2y2 — x + y = 0, slope = — 1. Ans. x + y= l, 2x + 2y + l = 0.

(f ) xy + y
2 — 4x + 8y = 0, parallel to 2 x — 4 y = 7.

,4ns. x = 2 2/, x — 2j/ + 48 = 0.

(g) x2 + 2 xy + y
2 + 8 x — 6 y = 0, slope = $. Xns. 4 x — 3 y = 0.

(h) x2 + 2xy — 4x + 2 2/ = 0,slope = 2. ^Iris. y =2x,2x — y+ 10=0.

(i) 2x2 + 32/2 = 35, slope = $. (1) y2 + 4x - 9 = 0, slope =- 1.

(j) x2 + y
2 = 25, slope = - f . (m) x2 - y

2 = 16, slope = f

.

(k) x2 + iy-S = 0, slope = 2. (n) xy - 4 = 0, slope =— |.

78. Formulas for tangents when the slope is given. For later

reference we collect in this section formulas giving the equa-

tions of tangents to the conies in terms of the slope m of the

tangent. The student should derive these formulas, following

the method of the preceding section.

Theorem. The equation ofa tangent in terms ofits slope in to the

circle x2 + y
2 = r2 is y= mx± r Vl + m2

;

ellipse bV + o?y2 = a2
b
2

is y = mx± y/a2m2+ ft
2

;

hyperbola b2x2 — a2

y
2 = a%2

is y=mx± -\/a2m2 — ft
2
;

parabola y
2 = 2px is y= mx -\--=— .

2 771
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79. Properties of tangents and normals to conies. If we draw

bhe tangent AB and the normal CD at any point P
t
on the

ellipse, and if we draw also the

focal radii P
t
F and P^', we may

prove the property

:

The tangent and normal to an

ellipse bisect respectively the exter-

nal and internal angles formed

hi/ the focal radii of the point of

contact.

Proof. In the figure we wish to

prove G =
<f>.

To do this we find tan <j> and tan 6 by (VI), Art. 35.

The slopes of the lines joining P
1
(xv y%

) on the ellipse

bv + «y = a2
b
2

to the foci F' (c, 0) and F (- c, 0) are

slope of F'P, = 1Jl

;
1 x

1
— c

slope of FP, = —^

—

The equation of the tangent AB is (Theorem, Art. 73)

b*x
x
x + a*yy = aV.

.-. slope of AB = —
* •

m» . ,

> where m
x
= slope of AB, m,

2
= slopeNow tan 6 =

1 + m
1
m

2

Substituting the above values of the slopes,

of P^F'

tan 6 =

b*xx V\

a\jl

1- flfaiyi

"Vi^i-c)

_g _ - ay + feet

= (aV + 6V) - fec
t

a2cy
1
-(a2 -b'2)x

lVl
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But since
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In like manner we prove the following properties :

The tangent and normal to a hyperbola bisect respectively the

internal and external angles formed by the foca\ radii of the

point of contact.

The tangent and normal to a parabola bisect respectively the

internal and external angles formed by the focal radius of the

pointofcontact and the line through thatpointparallel to the axis.

These theorems give rules for constructing the tangent and

normal to these conies by means of ruler and compasses.

Construction. To construct the tangent and normal to a hyper-

bola at any point, join that point to the foci and bisect the angles

formed by these lines. To construct the tangent and normal to

a parabola at any point, draw lines through it to the focus and

parallel to the axis, and bisect the angles formed by these lines.

The principle of parabolic reflectors depends upon the prop-

erty of tangent and normal just enunciated ; namely, the reflect-

ing surface of such a reflector is obtained by revolving a para-

bolic arc about its axis. If, now, a light be placed at the focus,

the rays of light which meet the surface of the reflector will all

be reflected in the direction of the axis of the parabola ; for a

ray meeting the surface at P
l
in the figure will be reflected in a

direction making with the normal PD an angle equal to the angle

FP
X
D. But this direction is, by the above property, parallel to

the axis OX of the parabola.
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PROBLEMS

1. Tangents to an ellipse and its major auxiliary circle (p. 164) at

points with the' same abscissa intersect on the K-axis.

2. The point of contact of a tangent to a hyperbola is midway be-

tween the points in which the tangent meets the asymptotes.

3. The foot of the perpendicular from the focus of a parabola to a

tangent lies on the tangent at the vertex.

4. The foot of the perpendicular from a focus of an ellipse to a tangent

lies on the major auxiliary circle (p. 164).

5. Tangents to a parabola from a point on the directrix are perpen-

dicular to each other.

6. Tangents to a parabola at the extremities of a chord which passes

through the focus are perpendicular to each other.

7. The ordinate of the point of intersection of the directrix of a parab-

ola and the line through the focus perpendicular to a tangent is the same

as that of the point of contact.

8. How may Problem 7 be used to draw a tangent to a parabola ?

9. The line drawn perpendicular to a tangent to a central conic from

a focus, and the line passing through the center and the point of contact

intersect on the corresponding directrix (Art. 72).

10. The angle which one tangent to a parabola makes with a second is

half the angle which the focal radius drawn to the point of contact of

the first makes with that drawn to the point of contact of the second.

11. The product of the distances from a tangent to a central conic to

the foci is constant.

12. Tangents to any conic at the ends of the latus rectum pass through

the intersection of the directrix and principal axis.

13. Tangents to a parabola at the extremities of the latus rectum are

perpendicular.

14. The equation of the parabola referred to the tangents in Problem

13is
x2 -2xy + y*-2V2p{x + y) + 2p* = 0.

Show that this equation has the form x^ + y? = VpV2.
15. The area of the triangle formed by a tangent to a hyperbola and

the asymptotes is constant.

16. An ellipse and a hyperbola which are confocal intersect at right

angles.



CHAPTER XII

PARAMETRIC EQUATIONS AND LOCI

80. If x and y are rectangular coordinates, and if each is ex-

pressed as a function of a variable parameter, as, for example,

(1) x = \t\ y = \f,

in -which t is a variable, then these equations are called the para-

metric equations of the curve,— the locus of (x, y).

To plot the curve, give values to t and compute values of x

and y, arranging the work in a table. When the computation is

finished, plot the points (x, y) and draw a smooth curve through

them.

EXAMPLES

1. Plot the curve whose parametric equations are

(2) x = if, y = it*- iTA
'

t
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2. Draw the locus of the equa-

tions

(3) x- 2rcos0 + rcos20,

y = 2 r sin 6 — r sin 2 0,

where 6 is a variable parameter.

Solution. Take r = 5. Arrange

the computation as below :

The three-pointed curve thus

obtained is called a hypocycloid of

three cusps.

j:=10cos8-r-Scos2 9, y= 10 sin 6 — 5 sin 2 8



PARAMETRIC EQUATIONS AND LOCI 207

EXAMPLES

1. Find the rectangular equation of the curve whose parametric equa-

tions are *

(4) x = 2 1 + 3, y = $ «
2 - 4.

Solution. The first equation may be solved readily for t. We find

t = \(x — 3), and substituting in the second equation gives y= \ (x — 3)
2— 4;

or, expanding and simplifying, x2 — 6 x — Sy — 23 = 0, a parabola.

2. Find the rectangular equation of the curve whose parametric equa-

tions are

(5) x = 3 + 4 cos 0, y = 3 sin 0.

Solution. Remembering that sin2 + cos2 0= 1, we solve the first equa-

tion for cos 0, the second for sin 9. This gives

(6) cos0 = $(x-3), sind-ly.

Hence the rectangular equation is

m (x-zy y*_
(7)

16
+

9 '

an ellipse.

PROBLEMS

1. Plot the following parametric equations, t and 9 being variable

parameters. Find the rectangular equation in each case :

(a) x = t — 1, y = 4 — J
2

. (
i ) x = cos0, y = cos 2 0.

(b) x = 2 «
2 - 2, y = t - 3. ( j ) x = J sin 0, y = sirT2 0.

(c) x = 3cos0, y = sin0. (k) x = 1— eos0, y = £sin| 9.

(d) x = 3 tan 0, y = sec 9. ( 1 ) x = 3 S
2

, y = 3 1 - £«.

. _„. 4 (m) x = 2sin0 + 3cos0, y = sin0.
(e)x-: ,y-

t

'

(n) x = 2cos0 + l,y=sin0+4cos0.

(f) x = 2 + sin0, y = 2cos0. (o) x = t - £
2

, y = t + J
2

.

(h) x= «
2 -2i, y = l-«2

.

K *'
t

2. Plot the following parametric equations

:

(a) x = 2 r cos 9 — r cos 2 0, y = 2 r sin — r sin 2 0.

(b) x = 3rcos0 + r cos 30, y = 3rsin0 — r sin 30.

(c) x = 3rcos0 — rcos30, y = 3rsin0 — rsin30.

(d) x = rcos0-rcos20, y = rsin0 - rsin20.

(e) x = 2rcos0 + \ r cos 2 0, y = 2rsin0 — J r sin 2 0.
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fx = a(9— sin#),

<z(l — cos0).

Cx = a(0+sin0),
(s>

\y = a(l-cos0).

CYCLOID, CUSP AT ORIGIN CYCLOID, VERTEX AT ORIGIN

(h) x = aff — \ a sin 8, y = a — \ a cos 0.

(i) x = a 8 — 2 a sin 8, y = a — 2 a cos 8.

( j ) x = r cos 8 + r 8 sin8, y = r sin 8 — rd cos #.

( k) x = 4 r cos # — r cos 4 #, ;/ = 4 r sin — r sin 4 5.

(1) x = alog«, y = la(t +
jj-

(m) x = t + sin £, ^ = 1 + cos t.

(n) x = 2 cosi + J, y = 3 cosi + sin2t.

(o) x = 6cos2
0, y = a tan#.

81. Various parametric equations for the same curve. ' When the

rectangular equation of a curve is given, any number of para-

metric equations may be obtained for the curve.

For example, given the ellipse

(1) 4 x2 + tf = 16.

Let x = 2 cos 0, where is a variable parameter. Substitut-

ing in (1),

16cos2 + 2/

2 =16, or f= 16 (1 - cos2
0)= 16 sina

0.

Hence the equations

(2) x = 2cos0, y = 4sin0,

are parametric equations of the ellipse (1).

Again, substitute in (1),

y = tx + 4,

where t is a variable parameter.

This gives

(3) 4 x2 + tV + 8 tx + 16 = 16, or (4 + t
2)x2 + 8 tx = 0.

W
. —it?-
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(5)

Substituting this value in (3) and reducing,

4£2

y ± + ?

Hence the equations (4) and (5) are also parametric equa-

tions of the ellipse.

The point is : We obtain parametria equations by setting one

of the coordinates equal to a function of a parameter, substitut-

ing in the given rectangular equation and solving for-t'he other

coordinate in terms of the parameter.

To obtain simple parametric equations we must, of course,

assume the right function for one coordinate. No general rule

applicable to all cases can be given for this purpose, but the

study of the problems below will aid the student.

Many rectangular equations difficult to plot are treated by

deriving parametric equations and plotting the latter.

EXAMPLES

1. Draw the locus of the equation

(6) a;
s + v

a - 3 axy = 0.

Solution. Set y = tx, where t is the parameter. Then, from (6),

(7) x3 + i
sx3 — 3 aix2 = 0.

Dividing out the cc
2

, solving for x,

and remembering that y = tx, we obtain

the desired parametric equations

3 at 3 at2

(8)
1 + t*

y
l + «

s

The locus is the curve of the figure,

called the folium of Descartes.

The line drawn in the figure is an

oblique asymptote. Its equation is

x + y + a = 0.

The parameter I in (7) is obviously the slope of the line y

is, of the line joining a point on the curve and the origin.

tx ; that
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The reason for assuming the relation y = tx in the preceding

example is that' a;
2 divfdes out in (7), leaving an equation of the

first degree to solve for x. Problems 1 (a), (d), (e), (f), and (j)

below are worked on the same principle. In many cases trigo-

nometric functions are employed with advantage, as in (b)

and (c).

PROBLEMS

1. Find parametric equations for each of the following curves by

making the substitution indicated in the given equation. The parameter

is t or 8, as the case may be. Plot the locus.

(a) y
2 = 4 x2 — x3

, y = tx. Ans. x = 4 — t
2

, y = it — t
3

.

(b) x*y2 = 62x2 + a2 y2
, x = a sec 8. Ans. y = b esc 8.

(c) x2
y2 = a2

y
2 — b2x2

, x = a sin 8. Ans. y = 6tan#.

(d) y
3 = 2 ax2— x3

, y = tx.

0\ a x
(h) x$ + yi = a* a; = acos4 0.

PARABOLA

(e) y
2
(2 a — x) — x3

, y = tx.

CISSOID OF DIOCLES

(f)y2 = x2 l±±,y:2 — x
tx.

2 J
2 -2 2t3 -2t

Ans. x = , y = .

1 + t
2

ff

1 + t
2

(g) x2 + xy + 2y2 + 2x + 1=0,
X = ty — 1

Ans. x = — 2 + ,

t
2 + t + 2

- y-
1 (

i ) x%+ y$ = c$,x = a sin8 8.

t
2 + t + 2 HYPOCYCLOID OP FOUR CUSPS
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( j ) x* + 2 cufiy -ays = 0,y = tx.

(k) (x2 + j/
2 + 4 ay - a2

)
(x2 - a2

) + 4 a?y* = 0, x2 = %2 + a1.

(1) x2 = 2/(y-2) 2
,
2,-2 = to.

(m) (x2 - J 62
)
2 + y

2 (x2 - 62) = 0, x2 = i 62 + ty.

82. Locus problems solved by parametric equations. Parametric

equations are important because it is sometimes easy in locus

problems to express the coordinates of a point on the locus in

terms of a parameter, when it is otherwise difficult to obtain

the equation of the locus. The following examples illustrate

this statement

:

EXAMPLES

1. ABP is a rigid line. The points A and B move along two perpen-

dicular intersecting lines. What is the locus of the point P on AB ?

In the figure, A moves on XX', B moves on

YY' ; required the locus of the point P(x, y).

Solution. Take the coordinate axes as indi-

cated, and consider the line in any one of its

positions. Choose for parameter the angle

XAB = 6.

Let AP = a, PB = b.

Now OM = x, MP = y.

In the right triangle MPA
,

MP _y
PA~a'

In the right triangle BSP, Z PBS =.6.

x

V
From (1) and (2),

(3) x = b cos 0, y = a sin 6.

These are the parametric equations of the locus.

Squaring (1) and (2) and adding,

x2 v2

ft
2 a2 ~

Hence the point P moves on an ellipse whose

axes 2 a and 2 b lie along the given perpendicular lines.

A method commonly employed for drawing ellipses depends upon this

result. The instrument consists of two grooved perpendicular bars XX

(1)

(2) COS PBS: COS 6 = :

BP
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and YY' and a crossbar ABP. At A and B are screw nuts fitting the

grooves and adjustable along ABP. If the crossbar is moved, a pencil

at P will describe an ellipse whose semiaxes are PA and PB.

2. The cycloid. Find the parametric equations of the locus of a point

P on a circle which rolls along the axis of x.

Solution. Take for origin a point at which the moving point P
touched the axis of x. Let the circle drawn be any position of the rolling

circle. Let a be the radius of the circle and take for the variable param-

eter 8 the variable angle CBP, Then

PC = a sin 8, CB = a cos 8.

By definition, OA = avcAP = ad.

[For an arc of a circle equals its radius times the. subtended angle,

from the definition of a radian.]

Hence from the figure, if (x, y) are the coordinates of P,

x = OD = OA - PC = aff - a sin 8, y = DP = AB - CB = a - a cos 8.

(4)
f x :»= a(8 — sin 8),

ly = a(l — costf).

These are the parametric equations of the cycloid.

The cycloid extends indefinitely to the right and left and consists of

arcs equal to OMN. M
Construction of the cy-

cloid. The definition of the

cycloid suggests the follow-

ing simple construction

:

Lay off ON=2 ira = cir-

cumference of the generat-

ing circle. Draw the latter touching at C, the middle point of ON.
Divide OC into any number of equal parts, and the semicircle CM into
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the same number of equal arcs. Letter as in the figure. Through Mv
M

2 , etc., draw lines parallel to ON. Lay off

M^ = CC
t , M2

D
2
= CC

2 , MJDS
= GC

S , etc.

Then Dj, D
2 , D3 , etc. are points on the cycloid.

For, let the generating circle roll to the left, the point M tracing the

curve. When the circle touches ON at C
t , if will lie on a level with Jf,,

and at a distance to the left of M
l
equal to CC

1
. Similarly for D

2 , D3 , etc.

The arc MN of the cycloid may be constructed by using CM as an

axis of symmetry.

3. The hypocycloid of four cusps. Find the parametric equations of

the locus of a point P on a circle which rolls on the inside of a fixed

circle of four times the radius.

r-t

Solution. Take the center of the fixed circle for the origin and let the

z-axis pass through a point A where the tracing point P touched the

large circle. Then OA = 4 CB, by hypothesis. .-. CB =—- = -• Draw

the rolling circle in any of its positions. Take for the variable parameter 8

the Z A OB. Then /. BCP = 4 d .
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[For, by hypothesis, arc PB = arc AB ; and, from the definition of a

radian, a,vcPB = -ZBCP,a.TcAB=a0. .-. -ZBCP=a0, otZBCP=48.]
4 4

But ^OOE + Z.ECP + ^.PC.B = ir.

.-. --0 + ^-EOP + 40 = 7r.

Whence ZECP = --38.
2

Now OP = x, PP = j/.

From the figure,

(5)

OF= OE + DP,

FP = EC - CD.

Finding the lengths of the segments in the right-hand members,

0E= OC cos = — cos 0,EC = OC sin0 = —sin0.
4 4

DC= CP cos/|- 3 <A = ^sin30, (by 31, p. 3)

DP = CP sin (- -3 0) = j cos 3 6. (by 31, p. 3)

Substituting in (5),

(x = fa cos0 + iacos30,
(6) i „

lj/ = 4asin0- iasin30.

These are parametric equations for the hypocycloid offour cusps.

Another form of (6) from which the rectangular equation may easily

be derived is obtained by expressing cos 3 6 and sin 3 8 in terms of cos 8

and sin 8 respectively. Thus,

cos 3 8 = cos (2 8 + 8) = cos 2 8 cos 8 - sin 2 sin (by 35, p. 3)

= (2 cos2 - 1) cos - 2 sin2 cos

= 2 cos3 - cos0 - 2 (1 - cos2 0) cos 8

= 4cos80-3cos0.

sin 3 8 = sin (2 + 8) = sin 2 cos + cos 2 sin (by 33, p. 3)

= 2 sin cos2 + (1 - 2 sin2 0) sin

= 2 sin (1 - sin2.0) + sin 8 — 2 sin8

= 3sin0-4sin8 0.

Substituting in (6) and reducing, the result is

(7) x — a cos8 0, y = a sin8 0.

From these, x& = o$ cos2 0, 2/& = a&sin2 0. Adding,

(8) x* + yl = a*

which is the rectangular equation of the hypocycloid offour cusps
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PROBLEMS

In the following problems express x and y in terms of the parameter

and the lengths of the given lines of the figure. Sketch the locus.

1. Find the parametric equations of the ellipse, using as parameter

the eccentric angle $, that is, the angle between the major axis and the

radius of the point B on the major auxiliary circle (p. 164) which has

the same abscissa as the point P (x, y) on the ellipse. (See figure.)

Y Ans. x = a cos <j>, y = b sin <j>.

SO^X

2. In the figure, ABP is a rigid equilateral triangle. A moves on

YY', B moves on XX'. Find the locus of the vertex P.

Ans. x = acos6+a cos (120°- 6), y = a sin (120°- 6).

Ellipse, x2 - V3 xy + y
2 = { a2

3. Two vertices A and B of a rigid right triangle ABP move on per-

pendicular lines. Find the locus of the vertex P.

Ans. x = acos9+ asinff, y = acosfl. Ellipse, x2 - 2 xy + 2 y* = a2 .

4. AB is a fixed line and B a fixed point. Draw BQ to any point Q
in AB and erect the perpendicular QP, making QP -=- QB equal to a con-

stant e. What is the locus of P ?

Ans. x =pcot0, y = ep cscff. Hyperbola, — —
j,2 .

: = 1.
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5. AB is a fixed line and a fixed point. Through O draw OX
parallel to AB and ON perpendicular to AB. Draw a line from

through any point Q in AB. Mark on this line a point P such that

MP = NQ, MP being ± to OX. What is the locus of P?
Ans. x = a cot2 0, y = a cot 0. Parabola, y

2 = ax.

Y,,

R(a,b)

6. Through the fixed point K (a, 6) lines are drawn meeting the

coordinate axes in A and B. What is the locus of the middle point of AB ?

Ans. x = a ,y=b—at, where t = slope of AB.

Equilateral hyperbola, (x

7. Find the locus of a point Q on

the radius BP (Fig., Ex. 2, p. 212)

if BQ = b.

(x = a6—b sin 6,
Ans. \

'

(j/ = a — 6cos0.

The locus is called a prolate or cur-

tate cycloid according as b is greater

or less than a.

Describe a construction for the

curve analogous to that given for

the cycloid in Art. 82.

8. Given a string wrapped around

a circle ; find the locus of the end

of the string as it is unwound.

Hint. Take the center of the cir-

cle for origin and let the x-axis pass

through the point A at which the end
of the string rests. If the string is un-

wound to a point B, let ZA0B = 6.

(See figure.)
fx = r cos8 + r8sm»,

Ans. The involute of a circle < ,
,

" " '

\^y = r sin 6 — w cos 8.
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'9. A circle of radius r rolls on the inside of a circle whose radius

is r'. Find the locus of a point on the rolling circle.

Arts. The hypocycloid

:(f-x
Y* — Y

r)cos# + rcos 6,

y = {r' — r) sin 6 — r sin - -0.

The curve is closed when r and r' are

commensurable. The hypocycloid of

four cusps, p. 213, is a special case.

Describe a construction for the curve

analogous to that given for the cycloid

in Art. 82.

10. A circle of radius r rolls on the outside of a circle whose radius

is Y. Find the locus of a point on the

rolling circle.

Ans. The epicycloid

x = (r' + r) cos 8 — r cos -

y = (r' + r) sin 6 — r sin

r

r' + r
6.

The curve is closed when r and r~ are

commensurable.

Describe a construction for the curve

analogous to that given for the cycloid

in Art. 82.

11. Given a fixed point on a fixed circle and a fixed line AB. Draw
the i-axis through perpendicular to AB
and the ?/-axis through parallel to AB.
Draw any line through to meet AB in

L and the fixed circle in S. Draw LP II

to OX to meet SM drawn II to OY. Re-

quired the locus of P.

Ans. x = b cos2 0, y = a tan 6.

Cubic, xy2+ a?x - a?b = 0.

Give a full discussion of the equation.

Show that the y-axis is an asymptote.

What modifications, if any, are necessary

in the equations when AB is a tangent ?

when AB does not intersect the circle ?

Yi
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12. OB is the crank of an engine and AB the connecting rod. B moves

on the crank circle whose center is

0, and A moves on the fixed line

OX. What is the locus of any point

P on AB ?

A rm. x = baos8

+ Vr2 - (a + 6)
2 sin2 9, y = a sin 6.

Ellipse, when r = a + b; other-

wise an egg-shaped curve.

13. OB is an engine crank re-

volving about 0, andAB is the con-

necting rod, the point A moving on OX.
Draw AT _L to OX to meet OB produced

at P.* What is the locus of P ?

Ans. x = r cosfl+ Vc2 — f2 sin2 fl,

y = r sin + tan f)Vc2 — r2 sin2 0.

When c = r, the locus is the circle

x2 + y
2 = 4 r2 .

83. Loci derived by a construction

from a given curve. Many important

loci are defined as the locus of a point

obtained by a given construction from a given curve. The

method of treatment of such loci is illustrated in the follow-

ing examples.
EXAMPLES

1. Find the locus of the middle

points of the chords of the circle

x2 + y
2 = 25 which pass through

P
2 (3,4).

Solution. Let P
x
(xv yj be any

point on the circle.

(1) ., x 2 + y
2 = 25.

Then a pointP (x, y) on the locus

is obtained by bisecting PjP
2

. By
(IV), Art. 13,

x = l{xl + 3), y = £(2/i + 4).

.-. x
1
= 2a;-3, Vl = 2y- i.

* P is the " instantaneous center " of the motion of the connecting rod.
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Substituting in (1).
' (2z-3)2 + (2 2/-4)2 = 25,

or x2 + 2/
2 — 3x — iy = 0. Ans.

The locus is a circle constructed upon OP
2
as a diameter.

2. The witch. Find the equation of the locus of a point P constructed

as follows : Let OA be a diameter of the circle x2 + y'i — 2 ay = 0, and

let any line OB be drawn through to meet the circle at P
x
and the

tangent at A at B. Draw P
X
P J_ to OA and BP II to OA, Required

the locus of P.

Solution. Let (x, y) be the coordinates of P and (x
t , y t )

of Pv
Then the coordinates of P

1
(x

1 , 2/x )
must satisfy the equation

x2 + y2 — 2 ay = 0.

(2) .. x 2 + y*-2aVl = 0.

From the figure,

(3) y, = 2/-

From the similar triangles

OC?! and OJtfii we have

OG _ CP
X

(4)
2aOJf Jftf

[For OC = Xj, 01/ = x, CP
l
= ?j„ MB = 2 a.]

Solving (3) and (4) for x
x
and yv we obtain

(5) x
i = T7' ^1 = ^
_ xj/

1 2a

Substituting from (5) in (2),

x'y*

4a2
+ j/

2 - 2 a?/ = 0,

or

(6) 2/(x2 + 4a2
) = 8a8

.

The locus of this equation is known as the witch of Agnesi.

The method followed in Examples 1 and 2 may evidently be

described as follows

:

Rule for finding the equation of a locus derived by a construc-

tion from a given curve.
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First step. The construction will give rise to a figure from

which we may find expressions for the coordinates of any point

^i(xv V\) on the given curve in terms of a point P(x, y) on the

required curve.

Second step. Substitute the results of the first step for the coor-

dinates x
l
and yx

in the equation of the given curve and simplify.

The result is the required equation.

PROBLEMS

1. Find the locus of a point whose ordinate is half the ordinate of a

point on the circle x2 + y
2 = 64. Ans. The ellipse x2 + 4 y2 = 64.

2. Find the locus of a point which cuts off a part of an ordinate of

the circle x2 + y
2 = a2 whose ratio to the whole ordinate is 6 : a.

Ans. The ellipse b2x2 + aty2 = a?b2 .

3. Find the locus of the middle points of the chords of (a) an ellipse,

(b) a parabola, (c) a hyperbola which pass through a fixed point P2 (x2 , y2 )

on the curve.

Ans. A conic of the same type for which the

values of a and 6 or of p are half the values of those

constants for the given conic.

4. Lines are drawn from the point (0, 4) to the

hyperbola x'2 -?iy2 = 16. Find the locus of the points

which divide these lines in the ratio 1 : 2.

Ans. 3x2 -12y2 + 64y-90f = 0.

5. A chord OP
t

of the circle x2 + y2 — 2 ax =
meets the line x = 2o at a point A. Find the locus

of a point P on the line OP^^ such that OP = P^A.
Ans. The cissoid of Diodes y

2
(2 a — x) = x8 (see

figure).

6. T)jy is the directrix and F the focus of a given conic (Art. 72).

Q is any point on the conic. Through Q draw QN _L to the axis of the

conic and construct P on NQ so that NP = FQ. What is the locus of P ?

Ans. A straight line.

84. Loci using polar coordinates. When the required locus is

described by the end-point of a line of variable length whose
other extremity is fixed, polar coordinates may be employed to

advantage.
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EXAMPLE

The conchoid. Find the locns of a point P constructed as follows

:

Through a fixed point 0, a line is drawn cutting a fixed line AB at

Pr On this line a point P is taken so

that PjP = ± b, where 6 is a constant.

Solution. The required locus is the

locus of the end-point P of the line OP,

and is fixed. Hence we use polar coor-

dinates, taking for the pole and the

perpendicular OM to AB for the polar

axis. Then

(1) OP = p, ZMOP = 0.

By construction,

(2) p = 0P= OPi± b.

But in the right triangle OMP
y ,

(3) 0P
l
= OM sec Z MOP^ = a sec 6.

Substituting from (3) in (2),

(4) p = a sec 8 ± b.

The locus of this equation is called the conchoid of Nicomedes. It has

three distinct forms according as a is greater, equal to, or less than b.

PROBLEMS

1. OA is a diameter of a fixed circle, and OB is any chord drawn from

the fixed point 0. In the figure below, BP = AB. Find the locus of P.

Ans. The circle p = a (sin 6 + cos 6).

2. The chord OB of a fixed circle drawn from is produced to P,

making BP = diameter = o. What is the locus of P ?

Ans. The cardioidp = o(l + costf).
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3. In problem 2, if BP = any length = 6, the locus of P is the limacon

of Pascal, p = b+ a costf. The limacon has three distinct forms accord-

ing as o g a. In the figure on p. 124, b < a. The rectangular equation

is (x2 + y
2 + ax) 2 = b2 (x2 + y

2
).

4. F is the focus and DD' the directrix of a conic (figure below). Q is

any point on the conic. On the focal radius FQ lay off FP = QM, where

QM is II to DD'. Find the locus of P (see Art. 72). epsinff
Ans. p •

1 — e cos 6

5. Lines are drawn from the fixed point on a fixed circle to meet a

fixed line LM which is ± to the diameter through 0. On any such line OC
lay off OP = £C. What is the locus of P ? Arts, p = b sectf- acostf.

Draw the locus for

6 > o, 6 < a, and b = o.

In the last case the

curve is the cissoid

(Problem 5, p. 220).

6. is the center

of a fixed circle and A
a fixed interior point.

Draw any radius OB,

connectA and B, and

draw^P± toABto
meet OB at P. Re-

quired the locus of P.

. e — acosO
Ans. p=e ,

ecosff — a
if OB=a, OA=e.
Draw the locus.

7. A line is drawn from a fixed point meeting a fixed line in Pv Find
the locus of a point P on this line such that OP

t
OP = a2

. Ans. A circle.
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8. A line is drawn through a fixed point 0, meeting a fixed circle in

P, and P
2 . Find the locus of a point P on this line such that

OP = 2 0P
1 OPt+iOPt+OPJ. Ans. A straight line.

9. In Ex. 1, Art. 82, find the locus of the foot of the perpendicular from
the origin upon A B. Ans. The four-leaved rose p = osin 2 (see figure).
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Equations (1) and (2) define the two systems of lines in the parameter t.

The locus of the point of intersection P of corresponding lines is required.

Solving (1) and (2) for z and y,

(3) x=- ' P
y

2 (1 + t
2)

'
* 2t+2«3

These are the parametric equations of

the required locus.

The rectangular equation is found

thus

:

From (2), t = Substituting in

y
the first equation of (3) and reducing,

y
2 {x + \p)=-xi

.

Comparison with the answer to

Problem 5, p. 220, shows that the

locus is a cissoid.

The method of solving Example 1 may be summed up in the

Rule to find the equation of the locus of the points of intersec-

tion of corresponding lines of tivo systems.

First step. Find the equations of the two systems of lines

defining the locus in terms of the same parameter.

Second step. Solve these equations for x and y In terms of the

parameter. This gives the parametric equations of the locus.

If only the equation in rectangular coordinates is required, it

may be obtained by eliminating the parameter from the equa-

tions found in the first step, for the result will be the same as

that obtained by eliminating the parameter from the equations

found in the second step.

2. Find the locus of the points of intersection of two perpendicular

tangents to the ellipse bV + aV — a262 = 0.

Solution. First step. The equation of a tangent in terms of its slope t

is (Art. 78)

(4) y = tx+VaW+Vi.
1

The slope of the tangent perpendicular to (4) is By replacing t

1
*

in (4) by— , we find the equation of the perpendicular tangent to be
t

(5)
x L

kfi
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Second step. As the parametric equations are not required, this step

may be omitted.

To eliminate t from (4) and (5) we write them in the forms

tx — y=— -VaH2 + b2
,

x + ty = Va2 + 62t2 .

Squaring these equations, we
obtain

t
2x2 - 2 txy + y

2 = aH2 + b\

x2 + 2 txy + t
2
y
2 = a2 + b2t2 .

Adding,

(l + t
2
)
X2 + (l+t2

)y
2

= (1 + t
2)a2 + (1 + t

2)b2 .

Dividing by 1 + t
2

, the required

equation is

x2 + y
2 = a2 + b2 .

The locus is therefore a circle whose center is the center of the ellipse,

and whose radius is sja2 + b2 . It is called the director circle.

PROBLEMS

1. Find the locus of the intersections of perpendicular tangents to (a)

the parabola, (b) the hyperbola (IV), p. 167.

Ans. (a) The directrix
; (b) x2 + y

2 = a2 — b2 .

2. Find the locus of the point of intersec-

tion of a tangent to (a) an ellipse, (b) a pa-

rabola, (c) a hyperbola with the line drawn

through a focus perpendicular to the tangent.

Ans. (a) x2 + y
2 = a2

;
(b) x = 0;

(c)x2+y2= a2
.

3. Find the locus of the point of intersec-

tion of a tangent to an equilateral hyperbola

and the line^drawn through the center per-

pendicular to that tangent.

Ans. The lemniscate (x2 + y
2
)

2

= a2 (x2 - y
2
)
(Ex. 2, Art. 46).

4. Find the locus of the point of intersection of a tangent to the circle

x2 + y
2 + 2 ax + a2 — b2 = and the line drawn through the origin per-

pendicular to it.

Ans. The limapon (x2 + y
2 + ax)2 = b2 (x2 + y

2
)
(Problem 3, p. 222).
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5. Find the locus of the foot of the perpendicular drawn from

the origin to a tangent to the parabola

«2 + 4 ax +4 a2 =0.

Ans. The strophoid y
2 = x2 (see

. a — x
figure)

.

6. Find the locus of the intersection

of the normals drawn at points on the

ellipse —V — = 1 and major auxiliary
a2 b2

circle x2 + y
2 = a2 which have the same

abscissas. Ans. Circle

x

2 + y
2= (a + b)2 .

7. In the figure, LM is any half chord

of the circle parallel to the diameter AB.
Find the locus of P, the intersection of BL
and OM. Ans. Parabola y

2 = a2 — 2 ax.

'
8. A tangent to the ellipse Vh? + a2y'2 = a262

meets the axes of x and y in A and B re-

spectively. From A draw a line
||
to OY, and

from B a line II to OX. What is the locus

of their point of intersection ?

Ans. x2y
2 = a2y

2 + b2x*. (Problem 1,(6), p. 210.)

9. Work out Problem 8 when the ellipse is

replaced by a hyperbola.

A somewhat different class of locus problems is illustrated

in the following example.

EXAMPLE

What is the locus of the middle points of a system of parallel chords

of an ellipse ?

Solution. Let the equation of the

system of parallel chords be

(6) y = mx + k,

where J: is a parameter and m = slope

of chords. Let the value of k for the

chord P
1
P

2
be k

1 ; that is,

(7) y -mx + k
l

is the equation of P^P^. Assume that

the coordinates of P
x
are (x15 yt ),

and of P
2
(x

2 , y2)
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If P' (x', y') is the middle point of P
1
P

2 , then

(8) x' = J (x
t + 3ea), y'=\{y

x + y2).

Since (x
t , |/ l)

and (x
2 , 2/2)

are the points of intersection of the chord

(7) and the ellipse, we shall find their values by solving

(9) y = mx + fcj and 62x2 + a?y2 = a2b2 .

Eliminating y, we obtain the equation

(10) (a2m2 + b2) x
2 + 2 a2k

x
mx + a2

fc
2 - a2b2 = 0.

R

The roots of this equation are x
x
and x

2 , and, from (8), x' equals one

half the sum of these roots. Hence we need to know in (10) only the sum

of the roots. But, by algebra,*

(») x
1 + x

2
=- l

a^.
Hence, from (8),

a2m2 + b2

(12)

Since (x', 2/') satisfy (7),

arm2 + 62
V

a27?i2A;
(13) y = mx' + k

x
= _-—--i + k

x
= b2

arm2 + b2a2m2 + b2

Eliminating k
x , from (12) and (13),

(14) 62x' + army' = 0.

Dropping the accents gives the equation of the locus,

(15) 62x + army = 0.

The locus is the straight line DD' in the figure.

B C
* In the quadratic Ax2 +Bx + C = 0, sum of roots = - —

;
product of roots** —
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In a circle a diameter may be defined as the locus of the middle points

of a series of parallel chords. The corresponding locus for a conic section

is also called a diameter of the conic.

Hence we have the

Theorem. The diameter of the ellipse

bV + ahf = a2
b
2

which bisects all chords ivith the slope in is

IPx -+ a2my = 0.

In like manner (see the figures on p. 227) we may prove the

Theorem. The diameter which bisects all chords with the

slope m of the

hyperbola b
2x2 — ofy1 = a2

b
2

is Wx— a2my = ;

parabola y
2 = 2pxis my= p.

Every line through the center of an ellipse or hyperbola is a diameter,

while in a parabola every line parallel to the axis is a diameter.

PROBLEMS

1. Find the equation of the diameter of each of the following conies

which bisects the chords with the given slope m.

(a) x2 - if = 16, m = 2. Ans. x-8y = 0.

(b)?y2 = 4x, m=-\. Ans. y + 4 = 0.

(c)z?y = 6, to = 3. Ans. y + 3x = 0.

(d) x2 + xy - 8 = 0, m=-3. Ans. x - y = 0.

(e) x2 -4j/2 + 4x-16 = 0, m = - 1. Ans. x + iy + 2 = 0.

(i) xy + 2y*-4x-2y + 6 = 0,m=l. Ana. 2x + 11 y - 16 = 0.

2. Find the equation of that diameter of

(a) 4 x2 + 9 y
2 = 36 passing through (3, 2). Ans. 2x-Sy = 0.

(b) ?/ = 4x passing through (2, 1). Ans. y = l.

(c) xy = 8 passing through (- 2, 3). Ans. 3x + 2y = 0.

(d) x2 - 4.y + 6 = passing through (3, - 4). Ans. x = 3.

(e) xy--?y2 + 2x-4 = 0passingthrough(5,2). Ans. ix-9y-2=0.
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3. Find the equation of the chord of the locus of

(a) x2 + j/
2 = 25 which is bisected at the point (2, 1).

Ans. 2x + y — 5 = 0.

(b) 4x'2 — y
2 = 9 which is bisected at the point (4, 2).

Ans. 8 a; — 2/ — 30 = 0.

(c) xy = 4 which is bisected at the point (5, 3). Ans. 3x + 5^ — 30 = 0.

(d) x2 — xxj — 8 = which is bisected at the point (4, 0).

Ans. 2x-y-8 = 0.

4. Show that if two lines through the center of the ellipse

62x2 + a2y
2 = a2b2

b2

have slopes m and m' such that mm' = -, then each line bisects all

chords parallel to the other.
a

Draw two such lines. They are called conjugate diameters.

5. Through the point (x
, y ) on the ellipse 62x2 + apy2 = a2b2 a diam-

eter is drawn
;
prove that the coordinates of the extremities of its

conjugate diameter are x = ±— , y = =F —-
b a

6. If a' and b' are the lengths of two conjugate semidiameters of the

ellipse, prove that a'2 + b'
2 = a2 + o2 (use Example 5).

7. Prove that the tangent at any point of the ellipse is parallel to the

diameter which is conjugate to the diameter through the given point;

and hence that the tangents at the extremities of two conjugate diameters

form a parallelogram.

8. Prove that the area of the parallelogram formed by the tangents at

the extremities of two conjugate diameters of an ellipse is constant and

is equal to 4 ah.

Hint. The area in question is eight times the area of the triangle whose

vertices are (0, 0), (z
, yQ), and (,' -—2

)
(see Example 5).

9. Two tangents with the slopes m
1
and m

2
are drawn from a point P

to an ellipse 62x2 + a?y2 = a262 . Find the locus of P

(a) when m
1 + m„ = 0. Ans. x = and y = 0.

(b) when m
1
+ m2

= 1. Ans. x2 — 2xy — a2 = 0.

(c) when m
1
m2

= 1. Ans. x2 — y
2 = a2 — ft

2
.



CHAPTER XIII

CARTESIAN COORDINATES IN SPACE

86. Cartesian coordinates. The foundation of plane analytic

geometry depends upon the possibility of determining a point

in the plane by a pair of real numbers (x, y). The study of

solid analytic geometry is

based on the determination

of a point in space by a set

of three real numbers x, y,

and z. This determination is

accomplished as follows

:

Let there be given three

mutually perpendicular planes

intersecting in the lines XX',

YY', and ZZ', which will also

be mutually perpendicular.

These three planes are called

the coordinate planes and may be distinguished as the zy-plane,

the FZ-plane, and the ZZ-plane. Their lines of intersection

are called the axes of coordinates, and the positive directions on

them are indicated by the arrowheads.* The point of inter-

section of the coordinate planes is called the origin.

Let P be any point in space and let three planes be drawn

through P parallel to the coordinate planes and cutting the

axes at A, B, and C. These three planes together with the

* XX' and ZZ' are supposed to be in the plane of the paper, the positive

direction on XX' being to the right, that on ZZ' being upward. YY' is sup-

posed to be perpendicular to the plane of the paper, the positive direction be-

ing infront of the paper, that is, from the plane of the paper toward the reader.

230

c
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coordinate planes form a rectangular parallelepiped, of which

P and the origin are opposite vertices, as in the figure.

The three edges OA = x, OB = y, and OC = z are called the

rectangular coordinates of P.

Any point P in space determines three numbers, the coordi-

nates of P. Conversely, given any three real numbers x, y, and z,

a point P in space may always be constructed whose coordinates

are x, y, and z. For if we lay off OA = x, OB = y, and OC = z,

and draw planes through A, B, and C parallel to the coordinate

planes, they will intersect in a point P. Hence

Every point determines three real numbers, and conversely,

three real numbers determine a point.

The coordinates of P are written (x, y, z), and the symbol

P (x, y, z) is to be read, " The point P whose coordinates are

x, y, and z."

From the figure we have the relations

AP = OS = V(0£) 2 + (OC)2

BP = OR = ^(OC) 2 + (OA)2

CP = OQ = ^(OA)2 + (OB)2
;

OP = V(Ovl)2 + (OB)2 + (OC)2
.

Hence, letP (x, y, z) be any point in space ; then its distance

from the X F-plane is z,

from the FZ-plane is x,

from the -ZJT-plane is y,

from the X-axis is V«/2 + a2.

from the F-axis is Vs2 + x2

,

from the Z-axis is Vx2 + y
2

,

from the origin is Vcc2 + y
2 + z2

.
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The coordinate planes divide all space into eight parts called

octants, designated by O-XYZ, O-X'YZ, etc. The signs of the

coordinates of a point in any octant may be determined by the

Rule for signs.

x is positive or negative accord-

ing as P lies to the right or left

of the YZ-plane.

y is positive or negative accord-

ing as P lies in front or in back

of the ZX-plane.

z is positive or negative accord-

ing as P lies above or below the

X Y-plane.

Points in space may be con-

veniently plotted by marking the

same scale on A"A"' and ZZ' and

a somewhat smaller scale on YY' Then to plot any point, for

example (7, 6, 10), we lay off OA = 7 on OX, draw A Q parallel

to OFand equal to 6 units on OY, and QP parallel to OZ and equal

to 10 units on OZ.
PROBLEMS

1. What are the coordinates of the origin ?

2. Plot the following sets of points :

(a) (8, 0, 2), (- 3, 4, 7), (0, 0, 5).

(b) (4, - 3, 6), (- 4, 6, 0), (0, 8, 0).

(c) (10, 3, - 4), (- 4, 0, 0), (0, 8, 4).

(d) (3, - 4, - 8), (- 5, - 6, 4), (8, 6, 0).

(e) (-4, -8, -6), (3, 0,7), (6, -4,2).
(f) (-6,4, -4), (0,-4, 6), (9, 7, -2).

3. Calculate the distances of each of the following points to each of

the coordinate planes and axes and to the origin :

(a) (2, - 2, 1), (b) (3, - 4, - 3), (c)

(vr-^>
4. Show that the following points lie on a sphere whose center is the

origin and whose radius is 3

:

(VI, - 2, V2), (2 V2, 0, - 1), (-2, 2, 1), (- V5, V§, 1).
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5. Show that the following points lie.on a circular cylinder of radius

5 whose axis is the Taxis :

(3, - 8, 4), (2A 6, VI), (- 4, 0, - 3), (1, J, 2 V6).

6. Where can a point move if x = ? it y = 0? if z = ?

7. Where can a point move if x = and y = ? it y = and z = ?

if z = and x = ?

8. Show that the points (x, y, z) and (— x, y, z) are symmetrical with

respect to the YZ-plane
;
(x, y, z) and (x, — y, z) with respect to the ZX-

plane
;

(x, y, z) and (x, y, — z) with respect to the .XT-plane.

9. Show that the points (x, y, z) and (— x, —y,z) are symmetrical with

respect to ZZ'
;

(x, y, z) and (x, — y, — z) with respect to XX'; (x, y, z)

and (— x, y, — z) with respect to YY'\ (x, y, z) and (— x, — y, — z) with

respect to the origin.

10. What is the value of z if P (x, y, z) is in the -XT-plane ? of x if P
is in the YZ-plane ? of j/ if P is in the ZX-plane ?

11. What are the values of y and z if P (x, y, z) is on the X-axis ? of

z and x if P is on the Y-axis ? of x and y if P is on the Z-axis ?

12. A rectangular parallelepiped lies in the octant O-XYZ with three

faces in the coordinate planes. If its dimensions are a, b, and c, what are

the coordinates of its vertices ?

87. Orthogonal projections. To extend the first theorem of

projection, Art. 31, we define the angle between two directed lines

in space which do not intersect to be the angle between two

intersecting directed lines drawn parallel to the given lines

and having their positive directions agreeing with those of the

given lines.

The definitions of the orthogonal projection of a point upon

a line and of a directed length AB upon a directed line hold

when the points and lines lie in space instead of in the plane.

It is evident that the projection of a point upon a line may
also be regarded as the point of intersection of the line and

the plane passed through the point perpendicular to the line.

As two parallel planes are equidistant, then the projections of

a directed length AB upon two parallel lines whose positive direc-

tions agree are equal.



234 NEW ANALYTIC GEOMETRY



CARTESIAN COORDINATES IN SPACE 235

For if we project P
x
OP

2
and PJ3

^ upon XX', we have the

projection of P
x
O + projection of 0P

2
= projection of P P^

But by Corollary I,

projection of P^O = — xv projection of 0P
2
= x

2
.

.'. x
2
— *

1
= projection of P

X
P

2
upon XX'.

In like manner the other formulas are proved.

Corollary III. If the sides of a polygon be given the direction

established by passing continuously around the perimeter, the

sum of the projections of the sides upon any directed line is zero.

PROBLEMS

1. Find the projections upon each of the axes of the sides of the tri-

angles whose vertices are the following points, and verify the results by

Corollary III.
(a)

{_^ ^ _ % (5>
_ ^ ^ (8> ^ 0)

(b) (- 4, - 8, - 6), (3, 0, 7), (6, 4, - 2).

(c) (10, 3, - 4), (- 4, 0, 2), (0, 8, 4).

(d) (- 6, 4, - 4), (0, - 4, 6), (9, 7, - 2).

2. If the projections of P
X
P

2
on the axes are respectively 3, — 2, and 7,

and if the coordinates of P
x
are (— 4, 3, 2), find the coordinates of P

2 .

Am. (-1, 1, 9).

3. A broken line joins continuously the points (6, 0, 0), (0, 4, 3),

(— 4, 0, 0), and (0, 0, 8). Find the sum of the projections of the segments

and the projection of the closing line on (a) the .X-axis, (b) the Y-axis,

(c) the Z-axis, and verify the results. Construct the figure.

4. A broken line joins continuously the points (6, 8, — 3), (0, 0, — 3),

(0, 0, 6), (- 8, 0, 2), and (- 8, 4, 0). Find the sum of the projections of

the segments and the projection of the closing line on (a) the X-axis,

(b) the F-axis, (c) the Z-axis, and verify the results. Construct the figure.

5. Find the projections on the axes of the line joining the origin to

each of the points in Problem 1.

6. Find the angle between each axis and the line drawn from the

origin to
4 3 w

(a) the point (8, 6, 0). Am. cos- 1 -, cos-1 -, -

(b) the point (2, — 1, — 2). Ans. cos- 1 -, cos-M —
-J,

cos- 1 /— -I-
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7. Find two expressions for the projections upon the axes of the line

drawn from the origin to the point P(x, y, z), if the length of the line is

p and the angles between the line and the axes are a, j3, and y.

8. Find the projections of the coordinates of P (x, y, z) upon the line

drawn from the origin to P if the angles between that line and the axes

are a, |3, and 7. Ans. x cos a, y cos /3, z cos y.

88. Direction cosines of a line. The angles a, 8, and y between

a directed line and the axes of coordinates are called the direc-

tion angles of the line.

If the line does not intersect the axes, then a, B, and y are

the angles between the axes and a line drawn through the ori-

gin parallel to the given line and agreeing with it in direction.

The cosines of the direction angles of a line are called the

directiori cosines of the line..

Reversing the direction of a line changes the signs of the

direction cosines of the line.

For reversing the direction of a line changes a, 8, and y into

7r — a, 7r — fi, and it — y respectively, and (30, p. 3) cos (ir — x)

= — cos x.

Theorem. If a, /?, and y are

the direction angles of a line,

then

(II) cos2a + cos2/? + cos2y= 1.

That is, the sum of the

squares of the direction cosines

of a line is unity.

Proof. Let AB be a line

whose direction angles are a,

/3, and y. Through draw OP
parallel to AB and let OP = p. By definition Z. XOP = a,

Z YOP = 8, ZZOP = 7. Projecting OP on the axes,

(1) x = p cos a, y = p cos j8, z = p cos y.
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Projecting OP and OCQP on OP,

(2) p = x cos a + y cos /} + 3 cos y.

Substituting from (1) in (2) and dividing by p, we obtain

(II). Q.E.D.

_ „ T , cos a COSjS COSy
,

Corollary. If = ——£ = '-
, then

a b
(III) cos a — —

. cos /J =
± Va2 + ft

2 + c2 db Va2 + ft
2 + c2

c
cos y = —

±Va2 + 62 '+c2

17ia£ is, iy £/ie direction cosines of a line are proportional to

three numbers, th ey are respectively equal to these numbers each

divided by the square root of the sum of their squares.

For if r denotes the common value of the given ratios, then

(3) cos a = ar, cos /? = br, cos y = cr.

Squaring, adding, and applying (II),

l=r*(ai + b
2 + c

2
).

1

± Va2 + o
2 + c

2

Substituting in (3), we get the values Qf cos a, cos /?, and

cos y to be derived.

The important conclusion just derived may be thus stated :

Any three numbers a, b, and c determine the direction of a

line in space. This direction is the same as that of the line

joining the origin and the point (a, b, c).

If a line cuts the XT-plane, it will be directed upward or downward

according as cos y"is positive or negative.

If a line is parallel to the XF-plane, cos y — 0, and it will be directed

in front or in back of the ZX-plane according as cos j8 is positive or negative.

If a line is parallel to the X-axis, cos /3 = cos y = 0, and its positive

direction will agree or disagree with that of the X-axis according as

cos a = 1 or — 1.



238 NEW ANALYTIC GEOMETRY

These considerations enable us to choose the sign of the radical in the

Corollary so that the positive direction on the line shall be that given in

advance.

89. Lengths.

Theorem. The length I of the line joining two points

p
i Oi> Vv *i)

and p
2 (
x» Vv z

2> ** 9iven hV

(iv) i = V(*t
- x2y + (Vl

- y2y + (Zl - zty.

Proof. Let the direction angles of the line PjP
2
be a, /?, and y.

Projecting P^ on the axes, we get, by the first theorem of

projection and Corollary II, p. 234,

(1) I cos a = x
2
— xv I cos j8 = y2

— yv I cos y = z
2
— zv

Squaring and adding,

J
2
(cos

2 a + cos2 /8 + cos2
y) = (x

2
- xtf + (y2

- ytf + (e
t
- z^

= (^-^)2
+(2/1

-2/
2)

2 + (^-^)2
-

Applying (II), and taking the square root, we have (IV).

%
Q.E.D.

Corollary. The direction cosines of the line drawn from P to

P
2
are proportional to the projections ofP

X
P

2
on the axes.

For, from (1),

cos a cos /? cos y
V
2
~ X

X Vl~ Vx

since each ratio equals -•
1/

Also
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PROBLEMS

1. Find the length and the direction cosines of the line drawn from

(a) P, (4, 3, - 2) to P
2 (-2, 1, - 5). Ans. 7, - f , - f,

- f
(b) Pj (4, 7, - 2) to P2 (3, 5, - 4). Am. 3, - J,

-
f,
-

f.

(c) P, (3, - 8, 6) to P
2 (6, - 4, 6). .Ins. 5, f, f , 0.

2. Find the direction cosines of a line directed upward if they are

proportional to (a) 3, 6, and 2
;

(b) 2, 1, and — 4 ;
(c) 1, — 2, and 3.

. .,362.,, 2 1 4 .,1-2 3
Ans. (a) -,-,-; (b) — , — , —

;
(c) -—,__,.

7 7 7 _V21 -V21 +V21 Vli Vli Vl4

3. Find the lengths and direction cosines of the sides of the triangles

whose vertices are the following points ; then find the projections of

the sides upon the axes by the first theorem of projection and verify

by Corollary III, p. 236.

(a) (0, 0, 3), (4, 0, 0), (8, 0, 0).

(b) (3, 2, 0), (- 2, 5, 7), (1, - 3, - 5).

(c) (-4,0,6), (8,2,-1), (2,4,6).

(d) (3, - 3, - 3), (4, 2, 7), (- 1, - 2, - 5).

4. In what octant (O-XYZ, O-X'YZ, etc.) will the positive part of

a line through O lie if

(a) cosor>0, cos/3>0, cos7>0? (e) cos a<0, cos/3>0, cos7>0?
(b) cosa>0, cos/3>0, cos7<0? (f) cos a<0, cos,8<0, COS7X) ?

(c) cosa>0, cos|8<0, cos7<0? (g) cos a<0, cos/3<0, cos7<0

?

(d) cos a > 0, cos j8 < 0, cos 7 > ? (h) cos a < 0, cos p > 0, cos 7 < ?

5. What is the direction of a line if cos a = 1 cos j3 = ? cos 7 = ?

- cos a = cos /3 = ? cos /3 = cos 7 = ? cos 7 = cos a = ?

6. Find the projection of the line drawn from the origin to P
x (5,

— 7, 6)

upon a line whose direction cosines are f,
— $, and f

.

Ans. 9.

Hint. The projection of OP-i on any line equals the projection of a broken

line whose segments equal the coordinates of Pt .

7. Find the projection of the line drawn from the origin to P
1
(xv yv z

x)

upon a line whose direction angles are a, /3, and 7.

Ans. XjCOsa + 2/jCOS^ +.z
1
coS7.

8. Show that the points (- 3, 2, - 7), (2, 2, - 3), and (- 3, 6, - 2) are

the vertices of an isosceles triangle.

9. Show that the points (4, 3, - 4), (- 2, 9, - 4), and (- 2, 3, 2) are

the vertices of an equilateral triangle.
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10. Show that the points (- 4, 0, 2), (- 1, 3V5, 2), (2, 0, 2), and

(— 1, Vs, 2 + 2 Vfi) are the vertices of a regular tetrahedron.

11. What does formula (IV) become if P
x
and P2

lie in the .XT-plane ?

in a plane parallel to the .XT-plane ?

12. Show that the direction cosines of the lines joining each of the

points (4, — 8, 6) and (— 2, 4, — 3) to the point (12, — 24, 18) are the same.

How are the three points situated ?

13. Show by means of direction cosines that the three points (3, — 2, 7),

(6, 4, — 2), and (5, 2, 1) lie on a straight line.

14. What are the direction cosines of a line parallel to the X-axis ? to

the Taxis ? to the Z-axis ?

15. What is the value of one of the direction cosines of a line parallel

to the .XT-plane ? the YZ-plane ? the ZX-plane ? What relation exists

between the other two ?

16. Show that the point (— 1, — 2, — 1) is on the line joining the points

(4, — 7, 3) and (— 6, 3, — 5) and is equally distant from them.

17. If two of the direction angles of a line are — and — , what is the

third?
3

\ * 2tt
Ans. — or

3 3

18. Find the direction angles of a line which is equally inclined to the

three coordinate axes. Ans. a = p = y = cos- 1 \Vs.

19. Find the length of a line whose projections on the axes are

respectively

(a) 6, - 3, and 2. Ans. 7.

(b) 12, 4, and - 3. Ans. 13.

(c) -2,-1, and 2. Ans. 3.

90. Angle between two directed lines.

Theorem. If a, /J, y and a', fi', y' are the direction angles oftwo

directed lines, then the angle 6 between them is given by

(V) cos B = cos a cos a' + cos /? cos
fj' -f. cos y cos y'.

Proof. Draw OP and OP' (figure, p. 241) parallel to the given

lines and let OP = p. Then, by definition,

z pop' = e.
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Now, if the coordinates of P are (x, y, z), then, in the figure,

OA = x, AB = y, BP = z.

Project OP and OABP on OP'. Then

(1) p cos 6 = x cos a' + y cos
ft' + s cos y\

Projecting OP on the axes,

(2) x = p cos a, 3/ = jo cos ft,
« = p cos y.

Substituting in (1) from (2)

and dividing by p, we ob-

tain (V). Q.E.D.

Theorem. If a,
ft, y and a 1

,

ft',
y' are the direction angles

of two lines, then the lines are

(a) parallel and in the same

direction* when and only when

a = a', ft
= /3', y = /;

(b) perpendicular^ when and
only when

cos a cos a'+ cos ft cos ft' + cos y cos y' = 0.

That is, two lines are parallel and in the same direction when
and only when their direction angles are equal, and perpen-

dicular when and only when the sum of the products of their

direction cosines is zero.

Proof. The condition for parallelism follows from the fact

that both lines will be parallel to and agree in direction with

the same line through the origin when and' only when their

direction angles are equal.

The condition for perpendicularity follows from (V), for if

77"

— — , then cos 6 = 0, and conversely Q.E.D.

*They will be parallel and have opposite directions when and only when
the direction angles are supplementary.

t Two lines in space are said to be perpendicular when the angle between

them is -, but the lines do not necessarily intersect.
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In the applications we usually have given not the direction

cosines, but three numbers to which they are proportional.

Hence the importance of the following

Corollary. If the direction cosines of two lines are proportional

to a, b, c and a', b', c\ then the conditions for parallelism, and

perpendicularity are respectively

2L-i = t aa' + bb' + cc'=0.
a' b' e'

91. Point of division.

Theorem. The coordinates (x, y, z) of the point of division P
on the line joining P

1
(xv y , z^) and -P

2 (*2 , y2, z^ such that the

ratio of the segments is p p

are given by the formulas

(
VI

) '—l+T' y=
~T+r'

Z=
^+T-

This is proved as in Art. 13.

Corollary. The coordinates (x, y, z) of the middle point P of

the line joining P^iXy yv z^) and -P
2
(x

2 , y2 , »2)
are

* = 5(*i + *2)> y=\(yi + y*), z =\(zi+ z2)-

PROBLEMS

1. Find the angle between two lines whose direction cosines are

respectively

(a) f, ?, - j and f,
-

?, ?. A™. |.

(b) h - h I and - &, ft, Jf. Ans. cos-4$.

(c) f,
- |, i and f, f, f Ans. cos-i(- ft).

2. Show that the lines whose direction cosines are $, $, } ;
— }, f , — f

;

and — f , £, f are mutually perpendicular.

3. Show that the lines joining the following pairs of points are either

parallel or perpendicular.

(a) (3, 2, 7), (1, 4, 6) and (7, - 5, 9), (5, - 3, 8). \
(b) (13, 4, 9), (1, 7, 13) and (7, 16, - 6), (3, 4, - 9).

(c) (- 6, 4, - 3), (1, 2, 7) and (8, - 5, 10), (15, - 7, 20).
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4. Find the coordinates of the point dividing the line joining the fol-

lowing points in the ratio given.

(a) (3, 4, 2), (7, - 6, 4), \=l Ans. (tf, f , f).
(b) (-1, 4, - 6), (2, 3, - 7), \ = - 3. Ans. (|, |, - V).
(c) (8, 4, 2), (3, 9, 6), \ = - i. Ans. (^, f, 0).

(d) (7, 3, 9), (2, 1, 2), \ = 4. Ans. (3, £, y).

5. Show that the points (7, 3, 4), (1, 0, 6), and (4, 5, — 2) are the ver-

tices of a right triangle.

6. Show that the points (- 6, 3, 2), (3, - 2, 4), (5, 7, 3), and

(— 13, 17, — 1) are the vertices of a trapezoid.

7. Show that the points (3, 7, 2), (4, 3, 1), (1, 6, 3), and (2, 2, 2) are

the vertices of a parallelogram.

8. Show that the points (6, 7, 3), (3, 11, 1), (0, 3, 4), and (- 3, 7, 2)

are the vertices of a rectangle.

9. Show that the points (6, - 6, 0), (3, — 4, 4), (2, - 9, 2), and

(— 1, — 7, 6) are the vertices of a rhombus.

10. Show that the points (7, 2, 4), (4, - 4, 2), (9, - 1, 10), and (6,-7, 8)

are the vertices of a square.

11. Show that each of the following sets of points lies on a straight

line, and find the ratio of the segments in which the third divides the line

joining the first to the second.

(a) (4
-

, 13, 3), (3, 6, 4), and (2, - 1, 6). Ana. - 2.

(b) (4, - 5, - 12), (- 2, 4, 6), and (2, - 2, - 6). Ans. J.

(c) (- 3, 4, 2), (7, - 2, 6), and (2, 1, 4). Ans. 1.

12. Find the lengths of the medians of the triangle whose vertices are

the points (3, 4, - 2), (7, 0, 8), and (- 5, 4, 6). Ans. VIl3, V89, 2 V%).

13. Show that the lines joining the middle points of the opposite

sides of the quadrilaterals whose vertices are the following points

bisect each other.

(a) (8, 4, 2), (0, 2, 5), (- 3, 2, 4), and (8, 0,-6).
(b) (0, 0, 9), (2, 6, 8), (- 8, 0, 4), and (0, - 8, 6).

(c) P^, yv z
L),
P

2
(x

2 , y2 , z2), P8
(x

3 , y3 , z,), P
4
(x

4 , yt , z
4).

14. Show that the lines joining successively the middle points of the

sides of any quadrilateral form a parallelogram.

15. Find the projection of the line drawn from P
t (3, 2, — 6) to P2

(— 3, 5, — 4) upon a line directed upward whose direction cosines are

proportional to 2, 1, and — 2. Ans.
4J-.
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16. Find the projection of the line drawn from P
1 (6, 3, 2) to P

2 (4, 2, 0)

upon the line drawn from P
3 (7, — 6, 0) to P4 (— 5, — 2, 3). Ans. \%.

17. Find the coordinates of the point of intersection of the medians of

the triangle whose vertices are (3, 6, — 2), (7, — 4, 3), and (— 1, 4, — 7).

Ans. (3, 2, - 2).

18. Find the coordinates of the point of intersection of the medians of

the triangle whose vertices are any three points Pv P2 , and P3
.

Ans. [| (x
t + x

2 + x
3), J (y l + y% + y3 ), i (2 X + z

2 + zs)]-

19. The three lines joining the middle points of the opposite edges of a

tetrahedron pass through the same point and are bisected at that point.

20. The four lines drawn from the vertices of any tetrahedron to the

point of intersection of the medians of the opposite face meet in a point

which is three fourths of the distance from each vertex to the opposite

face (the center of gravity of the tetrahedron).



CHAPTER XIV

SURFACES, CURVES, AND EQUATIONS

92. Loci in space. In solid geometry it is necessary to con-

sider two kinds of loci :

1. The locus of a point in space which satisfies one given con-

dition is, in general, a surface.

Thus the locus of a point at a given distance from a fixed

. point is a sphere, and the locus of a point equidistant from two

fixed points is the plane which is perpendicular to the line join-

ing the given points at its middle point.

2. The locus of a point in spacewhich satisfies two conditions *

is, in general, a curve. For the locus of a point which satisfies

either condition is a surface, and hence the points which satisfy

both conditions lie on two surfaces, that is, on their curve of

intersection.

Thus the locus of a point which is at a given distance r from

a fixed point P
1
and is equally distant from two fixed points P

2

and Ps is the circle in which the sphere whose center is P
1
and

whose radius is r intersects the plane which is perpendicular

to P
2
PS at its middle point.

These two kinds of loci must be carefully distinguished.

93. Equation of a surface. First fundamental problem. If any

point P which lies on a given surface be given the coordinates

(x, y, z), then the condition which defines the surface as a locus

will lead to an equation involving the variables x, y, and z.

* The number of conditions must be counted carefully. Thus if a point is to

be equidistant from three fixed points Plt P2 , and Pa ,
it satisfies two condi-

tions, namely, of being equidistant from P1
and -P2 an(l from jP2 an(i -Ps-

246
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The equation of a surface is an equation in the variables x, y,

and z representing coordinates such that

:

1. The coordinates of every point on the surface will satisfy

the equation.

2. Every point whose coordinates satisfy the equation will

lie upon the surface.

If the surface is defined as the locus of a point satisfying

one condition, its equation may be found in many cases by a

Eule analogous to that in Art. 17.

EXAMPLE

Find the equation of the locus of a point whose distance from

Pj(3, 0, -2) is 4.

Solution. Let P (x, y, z) he any point on the locus. The given con-

dition may be written p p _ 4

By (IV), P
X
P = V(x-3) 2+ 2/

2 +(z + 2)
2

.

.-. V(x - 3)
2 + y*+{z + 2)

2 = 4.

Simplifying, we obtain1 as the required equation

x2 +y2 +z2-6x+4z-3 = 0.

That this is indeed the equation of the locus should be verified as

on page 31.

PROBLEMS

1. Find the equation of the locus of a point which is

(a) 3 units above the XT-plane.

(b) 4 units to the right of the TZ-plane.

(c) 5 units below the XT-plane.

(d) 10 units back of the ZX-plane.

(e) 7 units to the left of the TZ-plane.

(f

)

2 units in front of the ZX-plane.

2. Find the equation of the plane which is parallel to

(a) the XT-plane and 4 units above it.

(b) the XT-plane and 5 units below it.

(c) the ZX-plane and 3 units in front of it.

(d) the TZ-plane and 7 units to the left of it.

(e) the ZX-plane and 2 units back of it.

(f ) the TZ-plane and 4 units to the right of it.
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3. What are the equations of the coordinate planes?

4. What is the form of the equation of a plane which is parallel to

the XF-plane ? the FZ-plane ? the ZX-plane ?

5. What are the equations of the faces of the rectangular parallele-

piped which has one vertex at the origin, three edges lying along the

coordinate axes, and one vertex at the point (3, 5, 7) ?

6. Find the equation of the locus of a point whose distance from the

point
(a) (2 ,

- 2, 1) is 3. (d) (- 2, J, 0) is VS.

(b) (0,|, -2) is J. (e) (a, b, c) is d.

(c) (- 1, 3, f ) is VS. (f) («,ft 7)tar.

7. Find the equation of the sphere whose center is the point

(a) (3, 0, 4) and whose radius is 5.

Ann. x2 + y"- + z2 - G x - 8 z = 0.

(b) (— 3, 2, 1) and whose radius is 4.

Arts, x2 + y
2 + z2 + 6 x - iy — 2z — 2 = 0.

(c) (6, 4, 0) and whose radius is 7.

(d) (or, |8, 7) and whose radius is r.

Arts, x2 + y2 + z2 - 2 ax - 2 py - 2 yz + a2 + /3
2 + y

2 — r2 = 0.

8. Find the equation of a sphere

(a) having the line joining (3, 0, 7) and (1, —2,-1) for a diameter.

(b) of radius 2, which is tangent to all three coordinate planes in the

first octant.

(c) of radius 3, which is tangent to all three coSrdinate planes in the

third octant.

(d) whose center is the point (3, 1, — 2) and which is tangent to the

XF-plane.

(e) whose center is (6, 2, 3) and which passes through the origin.

(f
)
passing through the four points (-2, 0, 0),(0,- 4, 0),(0, 0, 4),(8, 0, 0).

9. Find the equation of the locus of a point which is equally distant

from the points

(a) (3, 2, -1) and (4, -3, 0). Ana. 2x- 10y + 2z - 11 = 0.

(b) (4, - 3, 6) and (2, - 4, 2). Am. 4a; + 2y + 8z - 37= 0.

(c) (1, 3, 2) and (4, - 1, 1). Am. 3x- 4y - z - 2 = 0.

(d) (4, -6,-8) and (- 2, 7, 9). Am. 6a:-13^-17z + 9 = 0.

10. Find the equation of a plane perpendicular at the middle point to

the line joining , ,6
(a) (1, - 2, 1) and (2, - 1, 0).

(b) (- 3, J, 0) and (0, 0, |).

(c) (- 2, I, I) and (i, 0, 0).
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11. Find the equations of the six planes drawn through the middle

points of the edges of the tetrahedron whose vertices are the points

(5, 4, 0), (2, — 5, — 4), (1, 7, — 5), and (— 4, 3, 4), which are perpendicular

to the respective edges, and show that they all pass through the point

(- 1, 1, - 2).

12. Find the equation of the locus of a point which is three times as

far from the point (2, 6, 8) as from (4, — 2, 4), and determine the nature

of the locus by comparison with the answer to Problem 7 (d).

13. Find the equation of the locus of a point the sum of the squares of .

whose distances from (1, 3, — 2) and (6, — 4, 2) is 50, and determine the

nature of the locus by comparison with the answer to Problem 7 (d).

14. Find the equation of the locus of a point whose distance

(a) from the X-axis is 3.

(b) from the Y-axis is J. _

(c) from the Z-axis is Vo.

15. Find the equation of a circular cylinder

(a) whose axis is the Y-axis and whose radius is 2. _
(b) whose axis is the Z-axis and whose radius is V§.
(c) whose axis is the A'-axis and whose diameter is V7.

16. A point moves so that the sum of its distances to the, two fixed

points (V3, 0, 0) and (— V3, 0, 0) is always equal to 4. Find the equa-

tion of its locus. Ans. x2 + 4 z2 + 4 y
2 — 4 = 0.

17. Find the equation of the locus of a point

(a) whose distance from the point (1, 0, 0) equals its distance from

the YZ-plane. Ans. y
2 + z2 ,- 2 x + 1 = 0.

(b) whose distance from the point (1, 0, 0) equals its distance from

the Z-axis. Ans. z2 — 2 x + 1 = 0.

(c) whose distance from the X-axis is one half of its distance from the

YZ-plane. Ans. 4 y
2 + 4 z2 - x2 = 0.

(d) whose distance from the Z-axis is twice its distance from the Y-axis.

(e) whose distance from the origin equals the sum of its distances

from the A'Z-plane and the YZ-plane. Ans. z2 —2xy = 0.

(f ) the sum of whose distances from the three coordinate planes is

constant.

(g) whose distance from the origin equals the sum of its distances

from the three coordinate planes. Ans. xy + yz + ex = 0.

(h) whose distance from the X-axis is half the difference of its dis-

tances from the XY-plane and the XZ-plane.
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(i) whose distance from the point (0, 0, 1) equals its distance from the

AT-plane increased by 1.

(j) whose distance from the Z-axis equals its distance from the

point (1, 1, 0).

18. Find the equation of the locus of a point the sum of whose dis-

tances from the J5f-axis and the F~-axis is unity.

19. Find the equation of the locus of a point the sum of whose dis-

tances from the three coordinate axes is unity.

94. Planes parallel to the coordinate planes. We may easily

prove the

Theorem. The equation uf a plane which is

'parallel to the XY-plane has the form z — constant;

parallel to the YZ-plane has the form x = constant;

parallel to the ZX-plane has the form y = constant.

95. Equations of a curve. First fundamental problem. If any

point P which lies on a given curve be given the coordinates

(x, y, z), then the two conditions which define the curve as a

locus will lead to two equations involving the variables x, y,

and z.

The equations of a curve are two equations in the variables

x, y, and z representing coordinates such that

:

1. The coordinates of every point on the curve will satisfy

both equations.

2. Every point whose coordinates satisfy both equations will

lie on the curve.

If the curve is defined as the locus of a point satisfying two

conditions, the equations of the surfaces defined by each condi-

tion separately may be found in many cases by a Rule anal-

ogous to that of Art. 17. These equations will be the equations

of the curve.

It will appear later that the equations of the same curve

may have an endless variety of forms.
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EXAMPLES

1. Find the equations of the locus of a point whose distance from the

origin is 4 and which is equally distant from the points P
t (8, 0, 0) and

P
2 (0,8,0).

Solution. Let P (x, y, z) be any

point on the locus.

The given conditions are

(1) PO = 4, PP,=PP
2 .

By (IV),

PO = Vx2 + y2 + z2
,

PP^ = V(x - 8)
2 + y2 + z2

,

PP
2
= Vx2 + (j/-8)2 + z2 .

Substituting in (I), we get

Vx2 + y
2 + z2 = 4, V(x - 8)

2 + 2/
2 + z2 = Vx2 + (z/-8j 2 + z2 .

Squaring and reducing, we have the required equations, namely,

x2 + y2 + z2 = 16, x-y = 0.

These equations should be verified as in Art. 16.

2. Find the equations of the circle lying in the XF-plane whose center

is the origin and whose radius is 5.

Solution. In plane analytic geometry the equation of the circle is

(2) x2 + y
2 = 25.

Regarded as a problem in solid analytic geometry we must have two

equations which the coordinates of any point P (x, y, z) which lies on the

circle must satisfy. Since P lies in the .XT-plane,

(3) z = 0.

Hence equations (2) and (3) together express that the point P lies in the

Xy-plane and on the given circle. The equations of the circle are therefore

x2 + y
2 = 25, z = 0.

The reasoning in Ex. 2 is general. Hence

If the equation of a curve in the XY-plane is known, then the

equations of that curve regarded as a curve in space are the given

equation and z = 0.
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An analogous statement evidently applies to the equations of

a curve lying in one of the other coordinate planes.

From Art. 94 we have at once the

Theorem. The equations of a line which is parallel to

the X-axis have the form, y = constant, z = constant;

the Y-axis have the form z = constant, x = constant;

the Z-axis have the form x = constant, y = constant.

PROBLEMS

1. Find the equations of the locus of a point which is

(a) 3 units above the XF-plane and 4 units to the right of the FZ-plane.

(b) 5 units to the left of the FZ-plane and 2 units in front of the ZX-plane.

(c) 4 units back of the ZX-plane and 7 units to the left of the FZ-plane.

(d) 9 units below the XF-plane~and 4 units to the right of the FZ-plane,

2.. Find the equations of the straight line which is

(a) 5 units above the .XT-plane and 2 units in front of the ZX-plane

(b) 2 units to the left of the FZ-plane and 8 units below the XF-plane.

(c) 3 units to the right of the FZ-plane and 5 units from the Z-axis.

(d) 13 units from the X-axis and 5 units back of the ZX-plane.

(e) parallel to the F-axis and passing through (3, 7, — 5).

(f) parallel to the Z-axis and passing through (—4, 7, 6).

3. What are the equations of the axes of coordinates ?

4. What are the equations of the edges of a rectangular parallelepiped

whose dimensions are a, b, and c, if three of its faces coincide with the

coordinate planes and one vertex lies in O-XYZ ? in O-XY'Z ? in

O-X'F'Z ?

5. Find the equations of the locus of a point which is

(a) 5 units from the origin and 3 units above the XF-plane.

(b) 5 units from the origin and 3 units from the X-axis.

(c) 6 units from the F-axis and 3 units behind the XZ-plane.

(d) 7 units from the Z-axis and 2 units below the XF-plane.

6. Find the equations of a circle defined as follows :

(a) center on the Z-axis, radius 4, and lying in the XF-plane.

(b) center on the X-axis, radius 7, and lying in a plane parallel to the

FZ-plane and 3 units to the right of it.

(c) center on the F-axis, radius 2,- and lying in a plane 2 units behind

the XZ-plane.
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(d) center at the point (1, 0, 1), parallel to the XY-plane, and cutting

the Z-axis.

7. The following equations are the equations of curves lying in one of

the coordinate planes. What are the equations of the same curves regarded

as curves in space ?

(a)j/2 = 4x. (e) x2 + 4z + 6x = 0.

(b) x2 + z2 = 16. (f ) y
2 - z2 - 4 y = 0.

(c) 8x2 -2/2 = 64.
, (g) yz2 + z2 -6y = 0.

(d) 4z2 + 9y2 = 36. (h) z2 - 4x2 + 8z = 0.

8. Find the equations of the locus of a point which is

(a) 5 units above the XY-plane and 3 units from (3, 7, 1).

Ans. z = 5, x2 + y
2 + z2 — 6 x - 14 y - 2 z + 50 = 0.

(b) 2 units from (3, 7, 6) and 4 units from (2, 5, 4).

Ans. x2 + y
2 + z2 - 6x - 14 y - Viz + 90 = 0,

x2 + y2 + z2 -4x-K>2/-8z + 29 = 0.

(c) 5 units from the origin and equidistant from (3, 7, 2) and

(-3, - 7, - 2). ^Ins. x2 + j/
2 + z2 -25 = 0, 3x + 7y + 2z=0.

(d) equidistant from (3, 5, — 4) and (— 7, 1, 6), and also from

(4, - 6, 3) and (- 2, 8, 5).

Ans. 5x + 2y — 5z + 9 = 0, 3x— ly — z + 8 = 0.

(e) equidistant from (2, 3, 7), (3, - 4, 6), and (4, 3, — 2).

Ans. 2x — 14y — 2z + 1 = 0, x + y— 8z + 16=0.

9. Find the equations of the locus of a point which is equally distant

from the points (6, 4, 3) and (6, 4, 9), and also from (— 5, 8, 3) and

(— 5, 0, 3), and determine the nature of the locus. Ans. z = 6, y = 4.

10. Find the equations of the locus of a point which is equally distant

from the points (3, 7, — 4), (— 5, 7, — 4), and (— 5, 1, — 4), and deter-

mine the nature of the locus. Ans. x =— 1, y = 4.

11. Determine the nature of each of the following loci after finding

their equations. The moving point is equidistant from

(a) the three coordinate planes.

(b) the three coordinate axes.

(c) the three points (1, 0, 0), (0, 1, 0), and (0, 0, 1).

(d) the -XT-plane, the Z-axis, and the point (0, 0, 1).

(e) the XT-plane, the X-axis, and the point (0, 0, 1).

(f ) the points (1, 0, 0), (0, 1, 0), and the Z-axis.

(g) the A'-axis, the Y-axis, and the point (1, 0, 0).

(h) the Z-axis, the XY-plane, and the YZ-plane.
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96. Locus of one equation. Second fundamental problem. The

locus of one equation in three variables (one or two may be

lacking) representing coordinates in space is the surface passing

through all points whose coordinates satisfy that equation and

through such points only.

The coordinates of points on the surface may be obtained

as follows

:

Solve the equation for one of the variables, say z, assume

pairs of values of x and y, and compute the corresponding

values of z.

A rough model of the surface might then be constructed by

taking a thin board for the A'Y-plane, sticking needles into it

at the assumed points (x, y) whose lengths are the computed

values of z, and stretching a sheet of rubber over their

extremities.

97. Locus of two equations. Second fundamental problem. The

locus of two equations in three variables representing coordinates

in space is the curve passing through all points whose coordi-

nates satisfy both equations and through such points only.

That is, the locus is the curve of intersection of the surfaces

defined by the two given equations.

The coordinates of points on the curve may be obtained as

follows

:

Solve the equations for two of the variables, say x and y, in

terms of the third, z, assume values for z, and compute the

corresponding values of x and y.

98. Discussion of the equations of a curve. Third fundamental

problem. The discussion of curves in elementary analytic geom-

etry is largely confined to curves which lie entirely in a plane

which is usually parallel to one of the coordinate planes. Such

a curve is defined as the intersection of a given surface with a

plane parallel to one of the coordinate planes. The method of

determining its nature is illustrated as follows

:
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EXAMPLE

Determine the nature of the curve in which the plane z = 4 intersects

the surface whose equation is y2 + z2 = 4x.

Solution. The equations of the curve are, by definition,

(1) y* + z*=ix, 2 = 4.

Eliminate z by substituting from the second equation in the first.

This gives

(2) y
2 - ix + 16 = 0, z = 4.

Equations (2) are also the equations of the curve.

For every set of values of (x, y, z) which satisfy both of equations (1) will

evidently satisfy both of equations (2), and conversely.

If we take as axes in

the plane z = 4 the lines

O'X' and O'Y' in which

the plane cuts the Z-X-plane

and the TZ-plane, then the

equation of the curve when

referred to these axes is

the first of equations (2),

namely,

(3) ^2 -4a; + i6 = 0.

The locus of (3) is a pa-

rabola. The vertex, in the

plane z = 4, is the point y
(4, 0) ; also p = 2.

In plotting the locus of (3) in the plane X'O'Y' the values of x and y

must be laid off parallel to O'X' and O'Y' respectively, as in plotting

oblique coordinates (Art. 9).

From the preceding example we may state the

Rule to determine the nature of the curve in which a plane

parallel to one of the coordinate planes cuts a given surface.

Eliminate the variable occurring in the equation of the plane

from the equations of the plane and surface. The result is the

equation of the curve referred to the lines in which the given

plane cuts the other two coordinate planes as axes. Discuss this

curve by the methods ofplane analytic geometry.
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PROBLEMS

1. Determine the nature of the following curves and construct their

loci

:

(a) x2 -4y* = 8z, z = 8. (e) x2 + 4y2 + 9z2 = 36, y = 1.

(b) x2 + $y2 = 9z2
, z = 2. (f) x2 - iy2 + z2 = 25, x =- 3.

(c) x2 - 4s/2 = 4z, 2/ =- 2. (g) x2 - y2 - 4z2 + 6x = 0, x = 2.

(d) x2 + y
2 + z2 = 25, x = 3. (h) ^2 + z2 - 4x + 8 = 0, y = 4.

2. Construct the curves in which each of the following surfaces inter-

sects the coordinate planes

:

(a) x2 + iy2 + 16z2 = 64. (d) x2 + 9?/ = lOz.

(b) x2 + iy2 - 16z2 = 64. (e) x2 - 9y2 = lOz.

(c) x2 - 4y2 - 16z2 = 64. (f) x2 + iy2 - 16z2 = 0.

3. Show that the curves of intersection of each of the surfaces in

Problem 2 with a system of planes parallel to one of the coordinate planes

are conies of the same species (see Art. 70).

4. Determine the nature of the intersection of the surface x2 + y'2 +
4z2 = 64 with the plane z = k. How does the curve change as k increases

from to 4 ? from — 4 to ? What idea of the appearance of the surface

is thus obtained ?

5. Determine the nature of the intersection of the surface 4 x — 2y = 4

with the plane y = k; with the plane z = k'. How does the intersection

change as k or ¥ changes ? What idea of the form of the surface is

obtained ?

6. In each of the following find the equations of the locus, determine

its nature, and construct it

:

(a) A point is 5 units from the origin and 3 units from the Z-axis.

(b) A point is 3 units from both the X-axis and the Z-axis.

(c) The distance of a point from the Z-axis is equal to twice its distance

from the .XT-plane and its distance from the origin is 2.

(d) A point is 5 units from the X-axis and 4 units from the XZ-plane.

(e) A point is equidistant from the FZ-plane and the XZ-plane and

its distance from the X-axis is 7. Ans. An ellipse.

(f ) A point is equidistant from the Z-axis, the FZ-plane, and the point

(2, _0, 0). Ans. A parabola,
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7. The ratio of the distances of a point to the Z-axis and the F-axis

respectively is $ . Determine the nature of its locus if it is also

(a) one unit above the AT-plane.

(b) one unit in front of the XZ-plane.

(c) one unit to the left of the YZ-plane.

(d) in the XZ-plane.

(e) equidistant from the XZ-plane and the FZ-plane.

(f) in the plane 4x-3z-12 = 0.

8. Find the equations of the locus of a point whose distance from the

point (2, 0, 0) is always equal to three times its distance from the Z-axis,

and whose distance from the FZ-plane is always unity. Name and draw

the locus.

9. Find the equations of the locus of a point which is equidistant from

the point (1, — 2, 0) and the Z-axis, and which is 3J units behind the

XZ-plane. Name and draw the locus.

10. Find the equations of the locus of a point which is equidistant from

the Y-axis and the XZ-plane and equidistant from the origin and the

point (0, 0, — 4). Name and draw the locus.

99. Discussion of the equation of a surface. Third fundamental

problem.

Theorem. The locus of an algebraic equation passes through

the origin if there is no constant term in the equation.

The proof is analogous to that on page 47.

Theorem. If the locus of an equation is unaffected by chang-

ing the sign ofone variable throughout its equation, then the locus

is symmetrical with respect to the coordinate plane from which

that variable is measured.

If the locus is unaffected by changing the signs of two variables

throughout its equation, it is symmetrical with respect to the axis

along which the third variable is measured.

If the locus is unaffected by changing the signs of all three

variables throughout its equation, it is symmetrical with respect

to the origin.

The proof is analogous to that on page 42.
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Rule tofind the intercepts ofa surface on the axes ofcoordinates.

Set each pair of variables equal to zero and solve for real

values of the third.

The curves in which a surface intersects the coordinate planes

are called its traces on the coordinate planes. From the Rule,

p. 254, it is seen that

The equations of the traces of a surface are obtained by succes-

sively setting x= 0, y = 0, and z= in the equation ofthe surface.

By these means we can determine some properties of the sur-

face. The general appearance ofa surface is determined by con-

sidering the curves in which it is cut by a system of planes

parallel to each of the coordinate planes. This also enables us

to determine whether the surface is closed or recedes to infinity.

EXAMPLE

Discuss the locus of the equation y
2 + z2 — 4 x.

Solution. 1. The surface passes through the origin since there is no

constant term in its equation.

2. The surface is symmetrical with respect to the XlT
-plane, the ZX-

plane, and the X-axis.

For the locus of the given

equation is unaffected by

changing the sign of z, of

y, or of both together.

3. It cuts the axes at the

origin only.

4. Its traces are respec-

tively the point-circle y
2 +

z2 = and the parabolas

z2 = ix and y
2 = ix.

5. It intersects the plane

x = U in the curve

y
2 + z2 = ik.

This curve is a circle whose center is the origin, that is, is on the X-axis,

and whose radius is 2Vk if k > 0, but there is no locus if k < 0. Hence the

surface lies entirely to the right of the FZ-plane.
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If A; increases from zero to infinity, the radius of the circle increases

from zero to infinity while the plane x = k recedes from the FZ-plane.

The intersection with a plane z = k or y = *;', parallel to the XY- or

the ZX-plane, is seen to be a parabola whose equation is

y
2 = ix-k2 or z2 = 4x-&'2

.

These parabolas have the same value of p, namelyp = 2, and their ver-

tices recede from the YZ- or the ZX-plane as k or k' increases numerically.

PROBLEMS

1. Discuss and draw the loci of the following equations:

(a) x2 + z2 = 4x. (k) x2 + y
2 - z2 = 0.

(b) x2 + !/
2 + 4z2 = 16. (1) x2 -^2 -z2 = 9.

(c) x2 + y
2 - 4z2 = 16. (m) x2 + y

2 - z2 + 2xy = 0.

(d) 6x + 4y + 3z = 12. (n) x + y - Qz = 6.

(e) 3x + 2y + z = 12. (o) y
2 + z2 = 25.

(f) a; + 2«- 4 = 0. (p) x2 + y
2 - z2 - 1 = 0.

(g) x2 + y
2 - 2z = 0. (q) x2 + y

2 - z2 + 1 = 0.

(h) x2 + y
2 - 2x = 0. (r) 4x2 - y2 - z2 = 0.

(i) x2 + 2/
2 -4 = 0. (s) z2 -x-y = 0.

(j) 2/
2 + z2 -x-4 = 0. (t) x2 + 2/

2 -2zx = 0.

2. Show that the locus of .Ax + By + Cz + X> = is a plane by con-

sidering its traces on the coordinate planes and the sections made by

planes parallel to one of the, coordinate planes.

3. In each of the following find the equation of the locus of the point

and draw and discuss it

:

(a) The sum of the distances of a point from the XZ-plane and the

l
T
Z-plane equals twice its distance from the XF-plane increased by 4.

(b) The square of its distance from the Z-axis is equal to four times

its distance from the XY-plane.

(c) Its distance from the Z-axis is double its distance from the XX"-

plane.

(d) Its distance from the F-axis is twice the square root of its distance

from the TZ-plane.

(e) It is equally distant from the point (2, 0, 0) and the FZ-plane.

Ans. y2 + z2 — 4x + 4 = 0.

(f) It is equally distant from the point (0, 2, 0) and the X-axis.

(g) Its distance from the Z-axis is equal to its distance from the

I"Z-plane increased by 2.
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(h) Its distance from the point (0, 0, — 2) is equal to double its distance

from the .XT-plane increased by unity.

(i) Its distance from the point (I, 0, 0) is equal to half its distance

from the FZ-plane diminished by one. Ana. 3 x2 + 4 y2 + 4 z2 — 3 = 0.

(j) The product of the sum and the difference of its distances from

the XZ-plane and the TZ-plane respectively is equal to twice its distance

from the XT-plane.

4. Find the equation of the locus of a point whose distance from the

point (0, 0, 3) is twice its distance from the .XT-plane, and discuss the

locus. Ans. x2 + y
2 — 3z2 -6z + 9 = 0.

5. Find the equation of the locus of a point whose distance from the

point (0, 4, 0) is three fifths its distance from the ZA'-plane, and discuss

the locus. Am. 26

x

2 + 16y2 + 25 z2 - 200 y + 400 = 0.



CHAPTER XV

THE PLANE AND THE GENERAL EQUATION OF THE FIRST

DEGREE IN THREE VARIABLES

100. The normal form of the equation of the plane. Let ABC
be any plane, and let ON be drawn from the origin perpen-

dicular to ABC at D. Let the positive direction on ON be from

toward N, that is,

from the origin to-

ward the plane, and

denote the directed

length OD by p and

the direction angles

of ON by a, R, and y.

Then the position of

any plane is deter-

mined by given posi-

tive values of p, a,

R, and y.

If p = 0, the positive direction on ON, as just defined, becomes mean-

ingless. Ifp = 0, we shall suppose that ON is directed upward, and hence

cos 7 > since y < - If the plane passes through OZ, then ON lies in the

XF-plane and cos 7 = 0; in this case we shall suppose ON so directed that

|3 < — and hence cos |3 > 0. Finally, if the plane coincides with the

TZ-plane, the positive direction on ON shall be that on OX.

Let us new solve the problem

:

Given the perpendicular distance^) from the origin to a plane

and the direction angles a, 8, y of this perpendicular, to find

the equation of the plane.

260
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Solution. Let P(x, y, z) be any point on the given plane

ABC. Draw the coordinates OE — x, EF — y, FP = z of P.

Project OEFP and OP on the line ON. By the second theorem

of projection,

projection of OE + projection of EF + projection of FP
= projection of OP.

Then by the first theorem of projection and by the defini-

tion of p, xcosa + ycos/3 + zcosy = p.

Transposing, we obtain the

Theorem. Normal form. The equation of a plane is

(I) x cos a -\- y cos f2 -\- z cos y — P — 0,

wherep is the perpendicular distancefrom the origin to theplane,

and a,
ft,

and y are the direction cosines of that perpendicular.

Corollary. The equation of any plane is of the first degree in

x, y, and z.

101. The general equation of the first degree, Ax + By + Cz

+ D = 0. The question now arises : Given an equation of the

first degree in the coordinates x,y,z; what is the locus ? This

question is answered by the

Theorem. The locus of any equation of the first degree in

x, y, and z,

(II) Ax + By + Cz + D = 0,

is a plane.

Proof. We shall prove the theorem by showing that (II)

may be reduced to the normal form (I) by multiplying by a

proper constant. To determine this constant, multiply (II)

by k, which gives

(1) kAx + kBy + hCz + kD = 0.
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Equating corresponding coefficients of (1) and (I),

(2) kA = cos a, kB = cos B.y kC = cosy, kD=— p.

Squaring the first three of equations (2) and adding,

k2 (A* + £2 + C2
) = cos

2a + cos2
/3 + cos2

y = 1.

1
(3) .-. k

±Vat+b*+c2

From the last of equations (2) we see that the sign of the

radical must be opposite to that of D in order that p shall be

positive.

Substituting from (3) in (2), we get

r A B
cosa = , => cosfl = -

W ±VAT+BT+C2 ±-VA 2+B2+Ca

C -D
COSy = . ) p = -

±Vat+W+~c2 ±Vat+bt+c*

We have thus determined values of a, j3, y, and p such that

(I) and (II) have the same locus. Hence the locus of (II) is a

plane. q. e. d.

If D = 0, then p —
; and from the third of equations (2) the sign of

the radical must be the same as that of C, since when p = 0, cos y > 0. If

D = and C = 0, then p = and cos 7 = 0; and from the second of

equations (2) the sign of the radical must be the same as that of B, since

when p = and cos 7 = 0, cos /3 > 0.

Equation (II) is called the general equation of the first degree

in x, y, and z. The discussion gives the

Rule to reduce the equation of a plane to the normal form.

Divide the equation by ± "vvl 2+ £2+ C2
, choosing the sign of

the radical opposite to that of D.

When D= 0, the sign of the radical must be the same as that

of C, the same as that of B if C=D— 0, or the same as that of

AiiB = C = D = 0.
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From (4) we have the important

Theorem. The coefficients of x, y, and %, in the equation of a

•plane are 'proportional to the direction cosines of any line per-

pendicular to the plane.

From this theorem and Art. 90 we easily prove the following

:

Corollary I. Two planes whose equations are

Ax + By+Cz + D = 0, A'x+B'y+C'z + D'=0
areparallel when and only when the coefficients ofx, y, and z are

proportional, that is, ABC
A~'

=
B'
=

~C''

Corollary II. Twoplanesareperpendicularwhen andonlywhen

AA'+BB'+ CC'=0.

Corollary III. A plane whose equation has the form-

Ax + By + D = is perpendicular to the X Y-plane ;

By + Cz + D = is perpendicular to the YZ-plane ;

Ax + Cz + D = is perpendicular to the ZX-plane.

That is, if one variable is lacking, the plane is perpendicular to

the coordinate plane corresponding to the two variables which

occur in the equation.

For these planes are respectively perpendicular to the planes

z — 0, x = 0, and y = by Corollary II.

Corollary IV. A plane tvhose equation has the form

Ax + D = is perpendicular to the axis ofx ;

By + D = is perpendicular to the axis of y ;

Cz + D = is perpendicidar to the axis of z.

That is, if two variables are lacking, the plane is perpendicular

to the axis corresponding to the variable which occurs in the

equation.

For two of the direction cosines of a perpendicular to the

plane are now zero, and hence this line is parallel to one of the

axes and the plane is therefore perpendicular to that axis.



264 NEW ANALYTIC GEOMETRY

PROBLEMS

1. Find the intercepts on the axes and the traces on the coordinate

planes of each of the following planes and construct the figures

:

(a) 2x + 3y + 4z-2i = 0. (e) 5x - ly - 35 = 0.

(b) 7x-3j/ + z-21 = 0. (f) 4x + 3z + 36 = 0.

(c) 9x- 7y-9z + 63 = 0. (g) 5j/-8z-40 = 0.

(d) 6x + 42/-z + 12 = 0. (h) 3x + 5z + 45 = 0.

2. What are the intercepts and the equations of the traces on the coor-

dinate planes of the plane Ax + By + Cz + D = ?

3. Find the equations of the planes and construct them by drawing

their traces, for which
,

(a) a = -, p = -, y = -,p = 6. Arts. V2x + y + z — 12 = 0.
4 o o

(b) a =— , = — , 7 = ^,j) = 8. -4ns. a; + V2y — z + 16 = 0.

, . COSH, COSB C0S7 . . „ n . o no r.
(c) = =

, p = 4. Ans. 6 x — 2y + 3z — 28 = 0.w
6 -2 3

. T . cos a cos/3 cos

7

(<*) 3y =—f = Ti ' p = 2- -Ans. 2x + 2/ + 2z + 6 = 0.

4. Find the equation of the plane such that the foot of the perpen-

dicular from the origin to the plane is the point

(a) (-3,2,6). Ans. 3x - 2?/ - 6z + 49 = 0.

(b) (4, 3, - 12). Ans. 4x + 3y-12z- 169 = 0.

(c) (2,2,-1). Ans. 2x + 2y-z-9 = 0.

5. Reduce the following equations to the normal form and find a, |3,

7, and p :

(a) 6x - 3y + 2z - 7 = 0. Ans. cos- 1
f, cos- 1 (- f),

cos- 1
f,

1.

/- . 2lT 7T 27T .

(b) x- V22/ + z + 8 = 0. 4ns. —,-,—,4.

(c) 2x-2j/-z + 12 = 0. 4ns. cos-^-f), cos-i|, cos-i|, 4.

(d)y-a+10 = 0. Ans. -,—,-, 5V2.
2 4 4

(e) 3x + 2y-6z = 0. 4ns. cos-i(-
J),

cos-i(- $), cos- 1
J, 0.

6. Find the distance from the origin to the plane 12x —4y+3z— 39=0.
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7, Find the area of the triangle which the three coordinate planes cut

from each of the following planes

:

(a) 2x + 2y + z-12 = 0. Ans.te.
(b) 6x-2y-3z + 21 = 0.

(c) 12s- 3y + 4z- 13 = 0. ,-

(d) x + 5j/+ 7z-3 = 0. Am. tLll.

(e) x-2y + 3z-6 = 0.
70

(f) 9x + 2y- z + 18 = 0.

Hint. Find the volume of the tetrahedron formed by the four planes by find-

ing the intercepts. Set this equal to the product of the required area by one

third the distance of the given plane from the origin, and solve.

8, Find the distance between the parallel planes 6 x + 2 j/— 32 — 63 =
and 6j; + 2^-32 + 49 = 0. Arts. 16.

9, Find the equation of a plane parallel to the plane 2x + 2y + z —
15 = and two units nearer to the origin.

10. Show that the following pairs of planes are either parallel or per-

pendicular :

(2x + 5y-6z + S = 0, [6x — 3y + 2z - 7 = 0,W t6x + 152/-18z-5 = 0.
(C)

\Sx + 2y-6z + 28 = 0.

(3x-5y-4z + 7 = 0, f 14x - 7 ,j - 2\z - 50 = 0,

\6x + 2y + 2z- 7 = 0.
v

' \2x - y - 3z + 12 = 0.

11. What may be said of the position of the plane (I), Art. 100, if

(a) cos a = ? (c) cos 7 = 0? (e) cos /3 = cos 7 = 0?
(b) cos/3 = 0? (d) cosa: = cos/3 = 0? (f) cos7= coso- = 0?

12. For what values of a, /3, 7, and p will the locus of (I), Art. 100, be

parallel to the XF-plane ? the FZ-plane ? the ZX-plane ? coincide with

one of these planes ?

13. For what values of ex, /3, 7, and p will the locus of (I), Art. 100,

pass through the X-axis ? the JT-axis ? the Z-axis ?

14. Find the coordinates of the point of intersection of the planes

x + 2y + z = 0,x-2y-8 = Q,x + y + z-3 = 0. Ans. (2,-3,4).

15. Show that the plane x + 2y — 2z — 9 = passes through the point

of intersection of the planes x + y + z — 1 = 0, x — y — 2 — 1 = 0, and

2x + 3y- 8 = 0.

16. Show that the four planes x + y + 2z — 2 = 0, x + y— 22 + 2 = 0,

x — V + 8 = 0, and 3x — y — 2z + 18 = pass through the same point.

17. Show that the planes 2x — y + z + 3 = 0, x — y + iz = 0, 3x +
y-22 + 8 = 0, 4x — 2^ + 22-5 = 0, 9x + 3y — 62-7 = 0, and 7x —
7^ + 282 — 6 = bound a parallelepiped.
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18. Show that the planes Qx- 3y + 2z = 4, 3x + 2y-6z=10, 2x +
6y + 3z = 9, 3x + 2y-6z = 0, 12 x + 36?/ + 18z - 11 = 0, and 12 z-
6t/ + 4z— 17 = bound a rectangular parallelepiped.

19. Show that the planes x + 2y — z = 0, y + 7z — 2 = 0, x—2y —
z — 4 = 0, 2x + y — 8 = 0, and 3x + 3y — z — 8 = bound a quadrangu-

lar pyramid.

20. Derive the conditions for parallelism of two planes from the fact

that two planes are parallel if all their traces are parallel lines.

102. Planes determined by three conditions. The equation

(1) Ax+By+ Cz + D =
represents, as we know, all planes. The statement of a problem,

to find the equation of a certain plane, may be such that we are

able to write down three homogeneous equations in the coeffi-

cients A, B, C, D, which we can then solve for three coefficients

in terms of the fourth. When these values are substituted in

(1), the fourth coefficient will divide out, giving the required

equation.
EXAMPLES

1. Find the equation of the plane which passes through the point

P, (2, — 7, |) and is parallel to the plane 21 x — 12 y + 28 z — 84 = 0.

Solution. Let the equa-

tion of the required plane be

(2) Ax + By+Oz + D = 0.

Since P, lies on (2), we
may substitute x= 2, y= — 7,

2 = |, giving

(3) 2 4-7B+| C + D = 0.

Since (2) is parallel to the

given plane (Corollary I,

p. 263),

(4) ±«^_,w
21 -12 28"

Equations (3) and (4) are

three homogeneous equations in A, B, C, D.

Solving (3) and (4) for A, B, and D in terms of O,

A = \C, B=-$C, D=-6C.
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Clearing of fractions and dividing by C,

21 x- 12 y + 28 2-168 = 0. Ans.

The answer should be checked by testing whether the coordinates of P
1

satisfy the answer.

2. To find the equation of a plane passing through three points, sub-

stitute for x, y, and z in (1) the coSrdinates of each of the three points.

Then three equations involving A, B, C, and D will be obtained, which

may be solved for three of these coefficients in terms of the fourth.

It is convenient to write down the equation of a plane passing through

three given points (x„ yv z,), (x
2 , y2 , z2), (x

3 , ys , z3) in the form of a deter-

minant. This is x y z 1

(5)

Xi y ' Zi
; =o.

K ' z
2 Vi H 1

r
3 Vs z

s
1

In fact, when (5) is expanded in terms of the elements of the first row,

an equation of the first degree in x, y, and z results. Hence (5) is the

equation of a plane. Further, (5) is satisfied when the coordinates of

any one of the three given points are substituted for x, y, and z, since

then two rows become identical. Hence the plane (5) passes through the

given points. '

The equation (5) may be used also to determine whether four given

points lie in a plane.

If we write (5), when expanded, in the form

Ax + By + Cz + D = 0,

then the coefficients are the determinants of the third order,

A:
y x

z, l
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4. Find the equation of the plane which passes through the points

(0, 3, 0) and (4, 0, 0) and is perpendicular to the plane 4 x — 6y- z=12.

Arts. 3x + 4?/-12z-12 = 0.

5. Find the equation of the plane which passes through the point

(0, 0, 4) and is perpendicular to each of the planes 2 x — 3 y = 5 and

x-4z = 3. An*. 12x + 82/ + 3z-12 = 0.

6. Find the equation of the plane whose intercepts on the axes are

3, 5, and 4. Ans. 20 x + 12 y + 15 z - 60 = 0.

7. Find the equation of the plane which passes through the point

(2, — 1, 6) and is parallel to the plane x — 2y — 3z + 4 = 0.

Ans. x-22/-3z + 14 = 0.

8. Find the equation of the plane which passes through the points

(2, — 1, 6) and (1, — 2, 4) and is perpendicular to the plane x — 2 y —
2z + 9 = 0. Ans. 2x + 4y-3z + 18 = 0.

9. Find the equation of the plane whose intercepts are — 1,-1, and 4.

Ans. 4x + 4y — z + 4 = 0.

10. Find the equation of the plane which passes through the point

(4, — 2, 0) and is perpendicular to the planes x + y — z = and 2 x —
4»/ + z = 5. Ans. x + y + 2z — 2 = 0.

11. Show that the four points (2, - 3, 4), (1, 0, 2), (2, - 1, 2), and

(1, — 1, 3) lie in a plane.

12. Show that the four points (1, 0, - 1), (3, 4, - 3), (8, - 2, 6), and

(2, 2, — 2) lie in a plane.

13. Find the equation of the plane which is perpendicular to the line

joining (3, 4, — 1) and (5, 2, 7) at its middle point.

Ans. x — y + iz — 13 = 0.

14. Find the equations of the faces of the tetrahedron whose vertices

are the points (0, 3, 1), (2, — 7, 1), (0, 5, - 4), and (2, 0, 1).

Ans. 25 x + 5 ?/ + 2 z = 17, 5x-2z = 8, z = 1, 15 x + 10 y + 4 z = 34.

15. The equations of three faces of a parallelepiped are x — 4 y = 3,

2x — y + z = S, and 3x + j/— 2 z = 0, and one vertex is the point

(3, 7, — 2). What are the equations of the other three faces ?

Ans. x- 4y + 25 = 0, 2x — y + z+3 = 0, Sx + y — 2z = 20.

16. Find the equation of the plane whose intercepts are a, b, c.

Ans. 5 + ? + Ul.
a b c

17. What are the equations of the traces of the plane in Problem 16?

How might these equations have been anticipated from plane analytic

geometry ?
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18. Find the equation of the plane which passes through the point

P, (x,, y x , z
x)
and is parallel to the plane A

x
x + B

xy + C
x
z + L>

x
= 0.

Ans. A
x
(x-x

x )
+ B

x (y
- yx ) + C

l
(z- z

x)
= 0.

19. Find the equation of the plane which passes through the origin and
P

x
(xv yx , zx )

and is perpendicular to the plane A
x
x + B

xy + C
x
z + D

t
= 0.

Ans. {B
x
z
x
- C

1y 1
)x+ (C

x
x
x
-

A

x
z
x)y + (A

xyx
-B

x
x

x
)z = 0.

103. The equation of a plane in terms of its intercepts.

Theorem. Ifa, b, and c are respectively the intercepts ofa plane

on the axes of X, Y, and Z, then the equation of the plane is

(HI) £ + | + f = i.
^ y a b c

Proof. Let the equation of the required plane be

(1) Ax + By -\-Cs + D=Q.

Then we know three points in the plane, namely

(a, 0,0), (0,&,0), (0,0, c).

These coordinates must satisfy (1). Hence

Aa + D = 0, Bb+D = 0, Cc + D = 0.

Whence A = •

Substituting in (1), dividing by — D, and transposing, we
obtain (III). q.e.d.

104. The perpendicular distance from a plane to a point. The
positive direction on any line perpendicular to a plane is

assumed to agree with that on the line drawn through the ori-

gin perpendicular to the plane (Art. 100). Hence the distance

from a plane to the point P is positive or negative according

as Pj and the origin are on opposite sides of the plane or not.

If the plane passes through the origin, the sign of the distance from
the plane to P

x
must be determined by the conventions for the special

cases in Art. 100.

D
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'Ex

We now solve the problem : Given the equation of a plane

and a point, to find the perpendicular distance from the plane

to the point.

Solution. Let the point be P
x
(xv yv a,) and assume that the

equation of the given plane is in the normal form

(1) aicosa+y cos /3+s cosy—p= 0.

Let d equal the required distance.

Draw OPv Projecting OP
1
on

ON, we evidently get p + d.

Projecting OE, EF, and FP
i
on

ON, we get respectively oleosa,

y, cos p, and z
x
cos y.

Then, by the second theorem of

projection, y*

p + d = x
x
cos a + y cos /3 + z

x
cos y.

.
"

. d = ajj cos a + yt
cos /3 + *j (?os y — p.

Hence the perpendicular distance d is the number obtained

by substituting the coordinates of the given point for x, y, and

z in. the left-hand member of (1).' Whence the

Rule to find the perpendicular distance d from a given plane

to a given point.

Reduce the equation of the plane to the normal form. Place

d equal to the left-hand member of this equation.

Substitute the coordinates of the given point for x, y, and z.

The result is the required distance.

For example : To find the perpendicular distance from the plane

2x + y — 2z + 8 = to the point (— 1, 2, 3). Dividing the equation

by — 3, we have

d =
2 x + y -2 g+ 8 = 2(-l) + 2-a(3) + 8 = _ fj Ans

— o — o

Hence the given point is on the same side of the plane as the origin.
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The rule gives for the perpendicular distance d from the plane

Ax + By + Cz + D =
to 'the point (xv -yv «

t)
the result

(2) d = AXl + BVl + gtl ± D
i

V ' ± V^l 2 + B2 + V1

the sign of the radical being determined as above (Art. 101).

105. The angle between two planes. The plane angle of one

pair of dihedral angles formed by two intersecting planes is evi-

dently equal to the angle between the positive directions of the

perpendiculars to the planes. That angle is called the angle

between the planes.

Theorem. The angle 6 between the two planes

A
x
x + By + C

x
z + D

t
= and A

2
x + Bjj + C

2
s + Z>

2
= is

given by

(IV) cos a = -

± VAf+Bj+C* x ± VA,« + B? + C*

the signs of the radicals being chosen as in Art. 101.

Proof. By definition the angle 6 between the planes is the

angle between their normals.

The direction cosines of the normals to the planes are

A
1

cos a, = . ) cos a„ =
± V^2 + Bl + Cf

cos 8, = 1
> cos i82 =

± ^a? + bi + c?

c\
COS v, = > COS y, =

± V^= + Bl +CI ± -y/A* + B2
2 + CI

By (V), Art. 90, we have

COS 6 = cos a
1
cos a

2
+ cos /8

X
cos /32 + COS y t

COS y2
.

Substituting the values of the direction cosines of the

normals, we obtain (IV). q.e.d.

±^A*
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PROBLEMS

1. Find the distance from the plane

(a) 6x - Zy + 2z - 10 = to the point (4, 2, 10). Arts. 4.

(b) x + 2 y — 2 z — 12 = to the point (1, — 2, 3). Ans. — 7.

(c) 4a; + 3y + 12z + 6 = to the point (9, — 1, 0). Ans. -3._
(d),2x- by + 3z — 4 = to the point (— 2, 1, 7). .Ans. 1*5-^38.

2. Do the origin and the point (3, 5, — 2) lie on the same side of the

plane 7x — y-3z + 6 = 0? Ans. Yes.

3. Does the point (1, 6, 0) lie on the same side of the plane

x + 2 y — 3 z = 6 as the origin ?

4. Find the length of the altitude which is drawn from the first vertex

of the tetrahedron whose vertices are (0, 3, 1), (2, — 7, 1), (0, 5, — 4), and

(2, 0, 1). -4ns. £§ V29.

5. Find the volume of the tetrahedron formed by the point (1, 2, 1)

and the points where the plane 3x+ 4y+ 2z — 12 = intersects the

coordinate axes.

6. Find the volumes of the tetrahedrons having the following vertices

:

(a) (3, 4, 0), (4, - 1, 0), (1, 2, 0), (6, - 1, 4). Ans. 8.

(b) (0, 0, 4), (3, 0, 0), (0, 2, 0), (7, 7, 3).

(c) (4, 0, 0), (0, 4, 0), (0, 0, 4), (7, 3, 2).

(d) (3, 0, 0), (0, - 2, 0), (0, 0, - 1), (3, - 1, - 1). Ans. 3.

(e) (1, 0, 0), (0, 1, 0), (0, 0, - 2), (4, - 1, 3).

(f
) (3, 0, 0), (0, 5, 0), (0, 0, - 1), (3, - 4, 0).

7. Find the angles between the following pairs of planes :

(a) 2x + y-2z- 9 = 0, x- 2y + 2z = 0. Ans. cos-^-^).

(b) x + 2/-4z = 0, Sy-Sz + 7 = 0. Ans. cos- 1
j.

(c) 4x + 2y + 4z-7 = 0, 3x- iy = 0. Ans. cos- 1 (—A).

(d) 2x — y + z = 7,x + y + 2z = ll. Ans. ^
o

(e) 3x-2y + 6z = 0, x + 2y-2z+ 5 = 0.

(f) x + 5y-3z + 8 = 0, 2x-3y + z-5 = 0.

8. Show that the angle given by (V) is that angle formed by the planes

which does not contain the origin.

9. Find the vertex and the dihedral angles of that trihedral angle

formed by the planes x + y + z = 2, x — y — 2z = 4, and 2x + y — z = 2in

which the origin lies.
Ans. (4, - 4, 2), cos- 1

J
V5, ~, cos- 1 (-

J
Vs)
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10. Find the equation of the plane which passes through the points

(0, — 1, 0) and (0, 0, — 1) and which makes an angle of — with the plane

V Z "
Arts. ±V6x + y + z + 1 = 0.

11. Find the loeus of points which are equally distant from the planes

2x-j/-2z-3 = and 6x- 3y + 2z + 4 = 0.

Ans. 32x-16y — 8z-9 = 0.

12. Find the locus of a point which is three times as far from the plane

3x — 6y — 2z = as from the plane 2x — y + 2z = 9.

Ans. 17z-13i/ + 12z-63 = 0.

13. Find the equation of the locus of a point whose distance from the

plane x + y + z — 1 = is equal to its distance from the origin.

14. Find the equation of the locus of a point whose distance from the

plane x + y = 1 equals its distance from the Z-axis.

Ans. (x — y)
2 + 2 (x + y) — 1 = 0.

15. Find the equation of the locus of a point, the sum of the squares of

whose distances from the planes x + y— z — 1 = and x + y + z + l =
is equal to unity. Ans. 2(x + y)"- + 2z(z + 2) — 1 = 0.

106. Systems of planes. The equation of a plane which sat-

isfies two conditions will, in general, contain an arbitrary con-

stant, for it takes three conditions to determine a plane. Such

an equation therefore represents a system of planes.

Systems of planes are used to find the equation of a plane

satisfying three conditions in the same manner that systems

of lines are used to find the equation of a line (Art. 36).

Three important systems of planes are the following

:

The system ofplanes parallel to a given plane

Ax + By + Cz + D —
is represented by

(V) Ax+ By+Cz + k = 0,

where k is an arbitrary constant.

The plane (V) is obviously parallel to the given plane (Corol-

lary I, Art. 101).
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The system ofplanes passing through the line of intersection

of two given planes

Ap+B# + C
1
* + 7?

1
=:0

>
Ap+By + C+ + D

%
= Q

is represented by

(VI) A^x+ BlV + C1z + D1 + k {A2x+ B2y + C2z + D2 ) = 0,

where Jc is an arbitrary constant.

Clearly, the coordinates of any point on the line of intersec-

tion will satisfy the equations of both of the given planes, and

hence will satisfy (VI) also.

The equation of a system of planes which satisfy a single

condition must contain two arbitrary constants. One of the

most important systems of this sort is the following

:

The system ofplanespassing through a givenpoint P (a;
, y, s

t)

is represented by

(VII) A(x- Xl ) + B(V - Vl)+ 0(2-2^= 0.

Equation (VII) is the equation of a plane which passes

through P , for the coordinates of P obviously satisfy it.

Again, if any plane whose equation is

Ax +By + Cx + D=
passes through P , then

Ax
1
+ BtJl +Cz1

+ D=0.

Subtracting, we get (VII). Hence (VII) represents all

planes passing through P .

Equation (VII) contains two arbitrary constants, namely, the

ratio of any two coefficients to the third.

In the following problems write down the equation of the

appropriate system of planes and then determine the unknown
parameters from the remaining data.
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PROBLEMS

1. Determine the value of k such that the plane x + ky — 2 z — 9 =
shall

' (a) pass through the point (5, — 4, — 6). Ans. 2.

(b) be parallel to the plane 6 x — 2y — 12z = 7. Ans. — 1.

(e) be perpendicular to the plane 2 x — 4 y + z = 3. Ans. 0.

(d) be 3 units from the origin. Ans. ± 2.

(e) make an angle of - with the plane 2x — 2y + z = 0.

Ans. - f V35.

2. Find the equation of the plane which passes through the point

(3, 2, — 1) and is parallel to the plane 7 x — y + z = 14.

Ans. 7 x — y + z — 18 = 0.

3. Find the equation of the plane which passes through the inter-

section of the planes 2x + y — 4 = and y + 2 z = 0, and which

(a) passes through the point (2, — 1, 1); (b) is perpendicular to the plane

3i + 2j/-3z = 6.

Ans. (a)x + 2/ + z-2 = 0; (b) 2 x + 3y + 4 z - 4 = 0.

4. Find the equations of the planes which bisect the angles formed

by the planes

(a) 2x-y + 2z-0 and x + 2 y — 2 z— 6.

Ans. 3x + y— 6 = 0, x — 3j/ + 4z + 6 =0.
(b) 6x-2y-8z = 0and4a: + 3y-13z = 10.

5. Find the equations of the planes passing through the line of inter-

section of the planes 2x + y — 2 = 4 and x— y + 2z =0 which are per-

pendicular to the coordinate planes.

Ans. 5x + y = 8, 3x + z = 4, By— 5z = 4.

'6. Find the equation of a plane parallel to the plane 6s— 3y+2z+ 21 =
and tangent to a sphere of unit radius whose center is the origin.

7. Find the equation of a plane parallel to the plane 6x—2y— 3z+ 35=
and such that the point (0, —2,-1) lies midway between the two planes.

8. Find the equation of a plane through the point (2, — 3, 0), and

having the same trace on the XZ-plane as the plane x — 3y + 7 z — 2 = 0.

9. Find the equation of aplane parallel to the plane 2x+y+ 2z+ 5= 0,

and forming a tetrahedron of unit volume with the three coordinate

planes.

10. Find the equation of a plane parallel to the plane 5x+ 3y+ z — 7=0
if the sum of its intercepts is 23.
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11. Find the equation of a plane parallel to the plane 2x + 6y +
3 z — 8 = 0, upon which the area intercepted by the coordinate planes

in the first octant is |. Ans. 2x+6y + 3z- 3 = 0.

12. Find the equation of a, plane parallel to the plane 2x + y +
2 z — 5 = and such that the entire surface of the tetrahedron which it

forms with the coordinate planes is unity. Ans. 2x + y + 2z ± 1 =0.

13. Find the equation of a plane having the trace x + 3y — 2 = and

forming a tetrahedron of volume $ with the coordinate planes.

Ans. 3x + 9y + 2-6 = 0.

14. Find the equation of a plane passing through the intersection of

the two planes 6x + 2y+3z — 6 = and x + y + z — 1 = and forming

a tetrahedron of unit volume with the coordinate planes.

Ans. 12x-Sy -3z- 12 = 0.

15. A point moves so that the volume of the tetrahedron which it

forms with the three points (2, 0, 0), (0, 6, 0), and (0, 0, 4) is always

equal to 2. Find the equation of its locus.

16. A point moves so that the sum of its distances from the three

coordinate planes is unity. Determine the equation of the locus of a

second point which bisects the line joining the first with the origin.

17. Find the equation of the plane passing through the intersection of

the planes A
x
x + B

ty + C
x
z + D

l
= and A

2
x + B

2y + G
2
z + X>

2
=

which passes through the origin.

Ans. (AJ)2
- A

2
D

t
)x + (B

t
D

2
- B

2
D

r) y + (C^ - GJDx
)z = 0.

18. Find the equations of the planes which bisect the angles formed

by the planes A
r
x + B

xy + CjZ + Dj = and A
2
x + B2y + G2z + D2

= 0.

Ans ^

A
1
x + B1

y+C
1
z + D1 =± A

2
x + B2y+G2z + I>K

VA? + Bf + Cf ^Jf+Bf+Ci
19. Find the equations of the planes passing through the intersection

of the planes A^x + B{y + CjZ + D, = and A
2
x + B2y + C

2
z + D2

= Q

which are perpendicular to the coordinate planes.

Ans. (A
X
B

2
- A

2
B

x)y - (C
X
A

2
- Gr.A^z + A

X
D

2
- AJD^ = 0,

(A,B
2
- A

2
B,)x-(B

1
C

2
- B

2C\)z- (B,D
2
- B

2
D,) = 0,

(<V 2
- C^Jx - (B

X
C

2
- Btfjy + O^, - C

2
D

t
= 0.



CHAPTER XVI

THE STRAIGHT LINE IN SPACE

107. General equations of the straight line. A straight line

may be regarded as the intersection of any two planes which

pass through it. The equations of the planes regarded as

simultaneous are the equations of the line of intersection,

and hence the

Theorem. The equations of a straight line are of the first

degree in x, y, and z.

Conversely, the locus of two equations of the first degree is a

straight line unless the planes which are the loci of the separate

equations are parallel. Hence we have the

Theorem. The locus oftiuo equations of the first degree,

{Ap + B
2y+Cf + D^=0,

is a straight line unless the coefficients of x, y, and z are

proportional.

To plot a straight line we need to know only the coordinates

of two points on the line. The easiest points to obtain are

usually those lying in the coordinate planes, which we get by

setting one of the variables equal to zero and solving for the

other two, as in the following example.

The direction of a line is known when its direction cosines

are known. The method of obtaining these will now be

illustrated.

277
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EXAMPLES

1. Find the direction cosines of the line whose equations are

(1) 3z + 2y-z- 1 = 0, 2x-y + 2^-3 = 0.

Solution. Let us find the point where the line pierces the JET-plane.

To do this, let z = in both equations. Then solving the resulting

equations Sx + 2y — 1 = and 2 x — y — 3 = for a; and y, we find the

required point is (1, — 1, 0). Similarly, putting y = 0, the point on the

line in the ZX-plane is (f, 0, £).

Hence A (1, — 1, 0) and B (£, 0, |) are two points on the line.

Let the required direction cosines of AB be cos a, cos/3, and cosy.

Then, by the corollary of Art. 89,

cos a _ cos p _ cos 7
_

() W ~-l-0~0-£'
or, reducing (multiplying the denominators by 8),

„ cos a _ cos |8 _ cos 7
( ' 3 ~ -8 ~ -7

'

The direction cosines may now be found as usual (Art. 88)

.

A second method is the following

:

. , v ,
cos or cosfl cos 7

(4) Assume = =w
a b c

The coefficients 3, 2, and — 1 in the first plane of (1) are proportional

to the direction cosines of a perpendicular to that plane. The required

line lies in this plane. Hence (corollary, Art. 90)

(5) 3a + 26-c = 0.

For the same reason, using the second plane in (1),

(G) 2 a - b + 2 c = 0.

Solving (5) and (6) for the ratios of a, 6, and c, the result is

8a=-36, 7a=-3c.

(7) ,.? = _L = _5_.w 3-8-7
Combining (7) and (4), we have the previous result (3).

2. Find the direction cosines of the line (I).

Solution. The direction cosines cos a, cos /3, cos 7 must satisfy

A
x
cos or + 2J, cos/3 + Cj cos 7 = 0, .A

2
cosa + B

2 cosfl + C
2
cos7 = 0,

reasoning as in Ex. 1.
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Solving these equations for the ratios, we have the

Theorem. If a, p, and y are the direction angles of the line (I), then

cos a cos p cos 7

B1C2—B2C1 C^A.2— C2.A1 A1B2— A$Bi

The denominators are readily remembered as the three determinants

of the second order

*1
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5. Find the angles between the following lines, assuming that they are

directed upward, or in front of the ZX-plane :

(a) x + y — z = 0, y+z = 0; and x — y = l, x — 3 y + z = 0. Ans. -.
o

(b) x + 2y + 2z=.l,x-2z=l; and ix + Zy- z + 1 = 0, 2x + 3y=0.
Ans. cos-1 !^.

(c) x — 2y + z = 2, 2y — z = l; audi — 2y + z = 2, x — 2y + 2z = 4.

Ans. cos-1 J.

6. Find the equations of the planes through the line

x + y — z = 0, 2x — y + 3 z = 5,

which are perpendicular to the coordinate planes.

Ans. Zx + 2z = b,3y — 5z+5 = 0,5x + 2y = 5.

7. Show analytically that the intersections of the planes x — 2y — z = 3

and 2x — 4y —„ 2z = 5 with the plane x + y — 3 z = 6 are parallel lines.

8. Verify analytically that the intersections of any two parallel planes

with a third plane are parallel lines. '

108. The projecting planes of a line. The three planes pass-

ing through a given line and perpendicular to the coordinate

planes are called the project-

ing planes of the line.

If the line is perpendicular to

one of the coordinate planes, any

plane containing the line is per-

pendicular to that plane. In this

-case we speak of but two project-

ing planes, namely, those drawn
through the line perpendicular

to the other coordinate planes.

If the line is parallel to one

of the coordinate planes, two of

the projecting planes coincide.

By (VI), Art. 106, the equation of any plane through the line

(1) 3x + 2y-z-l = 0, 2x-y + 2z-3 = Q

has the form

3x + 2y-z-l + h(2x-y + 2z-3) = 0.
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Multiplying out and collecting terms,

(2) (3 + 2 k)-x+(2 - k)y +(- 1 + 2k)z - 1 - 3 k = 0.

This plane will be perpendicular to the A'F-plane when the

coefficient of z equals zero, that is, if k = ^. Writing this value

of k in (2) and reducing,

(3) 4a; + |y-f = 0, or 8x + 3 y - 5 = 0.

This is therefore the equation of the projecting plane of the

line (1) on AT, that is, of the plane ABA
l
li

l
of the figure.

Now equation (3) is simply the result obtained by eliminating

zfrom the equations (1); namely, we multiply the first of equa-

tions (1) by 2 and add it to the second. Hence the result

:

To find the equations of the projecting planes of a line, elim-

inate x, y, and z in turn from the given equations.

Thus, to finish the example begun, eliminating y from (1),

we find 7 x + 3 z — 7 = for the projecting plane on XZ.

Eliminating x, we get 7y — 8z + 7=0 for the equation of

the projecting plane on YZ.

Special forms of the projecting planes will indicate special

positions of the line relative to the coordinate planes. These

cases should be noted in the following problems.

•
PROBLEMS

1. Find the equations of the projecting planes of the following lines:

(a) 2s + y-z = 0, x — y + 2z = 3.

Ans. 5a; + 2/ = 3, 3x + z = 3, 3y-5z + 6 = 0.

(b) x + y + z = 6, x — y — 2z = 2.

Ans. 3x + y = U,2x-z = 8,2y + 3z = 4.

(c) 2x + y— 2 = 1, x— y + z = 2.

Ans. Line parallel to YZ. x = 1, y — z + l = 0.

(d) x + y-4z = l, 2x + 2y + z = 0.

Ans. Line parallel to XY. 9s + 9y = l, 9z + 2 = 0.

<e) 2j/ + 3z = 6, 2y-3z = 18.

Ans. Line parallel to OX. y = 6, z=— 2.

(f) 2x-y+z = 0, ix + 3y + 2z = 6. Am. by = 6, 10s + 5z = 6.

(g) x + z = 1, x - z = 3. Ans. x = 2, z = - 1.
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2. Reduce the equations of the following lines to the given answers and

construct the lines

:

(a) x + y — 22 = 0, x — y + z = 4. Ans. x = \z + 2, y = \z — 2.

(b) x + 2y — z = 2, 2x + iy + 2z = 5. Ans. z = J, y -— { x + J.

(c) as — 2s/ + « = 4, x + 2s/ — z = 6. ^Ins. x = 5, y = Jz + i-

(d) x + 3z = 6, 2x + 5z = 8. Ans. z = i,x=-G.
(e) x + 2y — 2z = 2,2x + y — iz = l. Ans. x = 2z,y = 1.

(f)x — 2/ + z = 3, 3j;-32/ + 2z = 6. vlns. z = 3, y = x.

3. Find the equations of the line passing through the points (— 2, 2, 1)

and (— 8, 5, — 2). Ans. x = 2z — 4, 2/=— z + 3.

4. Find the equations of the projection of the line x = z + 2, y = 2z — 4

upon the plane x + y — z = 0. Ans. x = ^z + ^, y = iz — ^.

5. Find the equations of the projection of the line z = 2, y = x — 2

upon the plane x — 2 !/ — 3 z = 4. . Ans. x=— 5z + 4, y=— iz.

6. Show that the equations of a line may be written in one of the forms

jy = mx + a, fx = a, Cx = a,

\z = nx + b, \z = my + b, \y = b,

according as it pierces the YZ-plane, is parallel to the l
r
Z-plane, or is

parallel to the Z-axis.

7. Show that the condition that the line x = mz + a, y = nz + 6 should

a— a' b — b'
intersect the line x = m'z + a', y = n'z + b' is -

n — n'

109. Various forms of the equations of a straight line.

Theorem. Parametric form. The coordinates of any point

P (x, y, z) on the line through a given point P
1
(xv yv z^) whose

direction angles are a, /8, and y are given by

(II) *=*! + /> cos a, y= y1 + p cos /?, z= z1 + yocosyj

where p denotes the variable directed length P.P.

Proof. The projections of P^P on the axes are respectively

x - xv V-Vv z ~ sv

But, by the first theorem of projection, these are also equal to

p cos a, p cos /?, p cos y.

Hence

x — x
1
= pcosa, y — yx

= p cos /3, z —z
1
= p cos y.
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Solving for x, y, and z, we obtain (II). q.e.d.

Theorem. Symmetric form. The equations of the line passing

through the point P
1
(x

1, ylt
z
x)
whose direction angles are a,

ft,

and y have the form

/ttts x xi y— !/i
z— Zl

cosa cos/? cosy

To obtain (III), solve each of the equations of (II) for p and

equate results.

« 11 tj>
oos * cos fi cos y ,

Corollary. Jf = —-— = ' , then the symmetric equa-

tions of the line may be written in the form

(IV)
x-x1 = y-y1 = z-z1

*• ' a b c

Theorem. Two-point form. The equations of the straight line

passing through P
1
(x

1, yv z^) and P
2
(x

2 , y2 , z,
2)

are

Proof. The line (III) passes through P . If it also passes

through P , then the coordinates x
2 , y,2 , and z

2
may be substi-

tuted for x, y, and z, and therefore

cos a cos /5 cos y

Dividing (III) by this result, we obtain (V). q.e.d.

Equations (III)-(V) each involve three equations, namely

those obtained by neglecting in turn one of the three ratios.

These equations are, in different form, the equations of the

projecting planes, since one variable is lacking in each. Any
two of the three equations are independent and may be used

as the equations of the line, but all three are usually retained

for the sake of their symmetry. In (IV) and (V), note that the

denominators are numbers proportional to the direction cosines

of the line.
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PROBLEMS

1. Find the equations of the lines which pass through the following

pairs of points, reduce them to the given answers, and construct the lines

:

(a) (3,2, -1), (2, -3,4). Ans. x=- \s+ tf,y=-* + l.

(b) (1, 6, 3), (3, 2, 3).* Ans. z = 3,y=-2x+8.
(c) (1, - 4, 2), (3, 0, 3). Ans. x = 2z - 3, y = 4z - 12.

(d) (2, - 2, - 1), (3, 1, - 1). Ans. z=-l,y = 3x-8.
(e) (2, 3, 5), (2, - 7, 5). Ans. z = 5, i = 2.

2. Show that the two-point form of the equations of a line becomes

= -, z = z., if z, = z„. What do they become if y, = y„?^-x
t yi

-y
1

if x
1
= x

2
?

3. What do the two-point equations of a line become if x
x
= x

2
and

Vi — Vi ? i£ 2/j = 2/2
an(* z

i
=z2 ? if z, = z

2
and x

t
= x

2 ?

4. Do the following sets of points lie on straight lines ?

(a) (3, 2,-4), (5, 4,-6), and (9, 8, - 10). Ans. Yes.

(b) (3, 0, 1), (0, - 3, 2), and (6, 3, 0). Ans. Yes.

(c) (2, 5, 7), (- 3, 8, 1), and (0, 0, 3). Ans. No.

5. Show that the conditions that the three points P
l
(x

1 , y„ z
x ),

P., (x
2 , 2/2! z2)> and ^a (

x3i 2/si £3) should lie on a straight line are

x
;i
~ x

i _ 2/3 2/i _ z
a
— Z

t

'a - ^l % — Vi z2 - z
i

6. Find the equations of the line passing through the point (2, — 1,-3)
whose direction cosines are proportional to 3, 2, and 7, and reduce them
to the given answer. Ans. x = tjz+^s,y=^z— }.

7. Find the equations of the line passing through the point (0, — 3, 2)

which is parallel to the line joining the points (3, 4, 7) and (2, 7, 5).

. x y + 3 z-2
Ans. - = — '— =1-3 2

8. Show that the .lines^ = L+? = ? and 1±1 = *=± = £±?
are parallel.

3 ~ 2 4 ~ 3 2 ~ 4

x — 1 v — 6 z — 3
* From (V)

, j—- =|— =—— • The value of the last ratio is infinite unless

z - 3 = 0. If z - 3 = 0, then the last ratio may have any value and may be equal

to the first two. Hence the equations of the line become ?^i = 2£jLP, z = 3.
'2 -4

Geometrically it is evident that the two points lie in the plane z = 3, and hence •

the line joining them also lies in that plane.
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9. Find the equations of the line through the point (—2, 4, 0) which is

nc v -4- 2 z — 4
parallel to the line - = —-— =

, and reduce them to the answer.
_1

Ans. x = -4z-2,y = -3z + 4.

10. Show that the lines = = and = - = —'

—

,. , 6-32 263
are perpendicular.

™ i* _I_ 1 v 3
11. rind the angle between the lines = = and

= = - , if both are directed upward. Ans.12 1 3

12. Find the parametric equations of the line passing through the point

(2, — 3, 4) whose direction cosines are proportional to 1, — 2, and 2.

Ans. x = 2 + |p, y=-S-ip, z = 4 + fp.

13. Construct the lines whose parametric equations are

(a)x = 2 + fp, y = i-\p, z = 6 + fp.
(b)x=-3-?p, y = 6-}p, z = 4 + fp.

14. Find the distance, measured along the line a; = 2 — -jy p, 2/ = 4 + J| p,

z = — 3 +^ p, from the point (2, 4, — 3) to the intersection of the line with

the plane 4 a; —y — 2z = 6. Ans. 1\.

15. Show that the symmetric equations of the straight line become

:

y ~ ^'
, z = zv if cos 7 = 0. What do they become if cos a =0 ?

cos or cos /3

if cos /3 = 0?

16. 'Show that the symmetric equations of the straight line become

z = zv x = xv if cos 7 = cos a = 0. What do they become if cos a =
cos/3 = ? if cos/3 = C0S7 = ?

17. Reduce the equations of the following lines to the symmetric form

(a) x-22/ + z = 8,2x-3y = 13. Ans. ^-^ = | =^i •

Solution. Find the equations of two projecting planes. The second

plane is already the projecting plane on XY. Eliminating x, we get

y — 2z =— 3. Now in the two projecting planes thus found,

(1) 2x-3j/ = 13 and y-2z=-3,
solving each for y and equating results,

12)
2 a; -13 = y_ 2z-3

U
3 1 1

Multiplying the numerators through by \, we have the answer.
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Comparison with (IV) gives x
l
= V-, Vi = °i z

i
— h a — 3

i & = 2
i " = 1.

Hence the line passes through (\
3
-, 0, §) and its direction cosines are

proportional to 3, 2, 1.

A remark here is important. In (IV), xv yv and z
1
are the coordinates

of any fixed point on the line. Hence for a given line the numerators in

(IV) may be quite different. For example, putting z = in (1), we find
<r 2 y 4- 3 z

x = 2, y = — 3. Hence the equations —-— = ^—— = - represent the

given line also. Notice that in equations (IV) the coefficients of x, y, and

z must be unity. This explains the step, after deriving (1), of removing the

2 from the 2x and the 2z.

(b) 4x-5j/ + 3z = 3, 4x-5i/ + z + 9 = 0. ^ns . ?1 = 1LZ_, S = &
4

(c)2x + z + 5 = 0, x + 3z— 5 = 0. 4ns. 2 = 3, x=— 4.

(d) x + 2?/ +6z = 5, 3x-2j/-10z = 7. 4ns. ?Lll = !^l2 = 5 .

\ ; -r w -r , j 2—72
(e) 3x-?/-2z = 0, 6x-3j/-4z + 9 = 0. Ans. ?—-=-,y = 9.

(f) 3x — iy = 7, x + 3y = 11. 4ns. x = 5, 2/ = 2.

(g) 2x + y + 2z = 7, x + 3y + 6z = 11. 4ns. '^^ = -^,x = 2
— 1

(h) 2x-3j/ + z = 4, 4x-6j/-z = 5. Ans. - = 1+1, z = l.

o 2i

(i) 3z + y = 1, 4z-3j/ = 10. Ans. y = - 2, z = 1.

x — a 2/ — 6 z
(j) x = mz + a, y = nz + b. Ans.

m n '

1

18. Find the equations of the line passing through the point (2, 0, —2),

which is perpendicular to each of the lines = - = and

*_V+l_*+» 2

x-2 /z+23-1 2 A™-
4 2-5

19. Find the equations of the line passing through the point (3, — 1, 2)

which is perpendicular to each of the lines x = 2z — 1, y = z + 3, and
x y z . x — 3 y + 1 z — 2
- = - = -. Ans. = —— =
2 3 4 1 -6 4

20. Find the equations of the line through P
1
(x

1 , y t , zj parallel to

(a)
a ~ x

2 = V ~ Vn = z ~ **
-4ti3.

x - x
i = V-Vy = Z-H.

a b c a , b c

(b) x = mz + a, y = nz + 6. Ans.
!^Zll _ ^ ~ ^i = z ~ z

i
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(c) z = a, y = mx + b. Ans. ? = -

—

?±,z = z..
x m

(d) A
x
x + BlV + CjZ + Dx

= 0, ^L
2x + B

22/ + C2z + D2
= 0.

4ns
x-x

x = y-y
t = z-z

l

B
1
C2
-B

2
C

l
C

1
4

2
-^

2 1
A

l
B

2
-A

2
B

l

21. Find the equations of the line passing through P
x
(xv yv z

t)
which

is perpendicular to each of the lines

g-Zs _ V-Vs _ z-Zi
and

x-x
s _ y-y3 _ z - z3

a2 62 c
2

a
8

6
3

c
s

Ans.

110. Relative positions of a line and plane. If the equations

of the line have the form (IV), and if we substitute the values

of two of the variables given by (IV) in the equation of the

plane, then if the result is true for all values of the third vari-

able, the line lies in the plane.

We next easily prove the

Theorem. A line whose direction angles are a, /J, and y and

the plane Ax + By + Cz + D = are

(a) •parallel when and only when

A cos o + B cos /} + C cos y = ;

(b) perpendicular when and only when

A _B_ C

cos a cos ft cos y
Proof. The direction cosines of a perpendicular L

2
to the

plane are proportional to A, B, and C.

The line and plane are parallel when and only when the line

is perpendicular to the line Z
2

; that is, when and only when

A cos a + B cos R + C cos y = 0.

The line and plane are perpendicular when and only when

the line is parallel to Z
2 ; that is, when and only when

cos a cos B _ cos y

~A~
== ~1T~ C
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PROBLEMS

1. Show that the line ^L_ = V-^— = ~ is parallel to the plane

4x + 2jy + 2z = 9.
2 _

2. Show that the line - = - = - is perpendicular to the plane 3x +
2y+Tz = 8.

3 2 7

3. Show that the line x = z — 4, y = 2 z — 3 lies in the plane 2 x —

3y + 4z-l = Q.

4. Find the equations of the line passing through (1, — 6, 2 ) and per-

pendicular to the plane 2x — y + Gz = 0. . x ~^_ V + 6 _ z — 2
"*'

2
_

-1 ~ 6

5. Show that the lines x = 2z + l, ?/ = 3z + 2, and 2x = z + 2,

3 y = 6 — z intersect, and find the equation of the plane determined by

them. Ans. 20x - 9y— 13z — 2 = 0.

jw o 7/4-2 z 3
6. Show that the line = -—- = lies in the plane 2x +

2y-z + 3 = 0.
3 _1 4

7. Find the equations of the line passing through the point (3, 2, — 6)

which is perpendicular to the plane ix — y + 3z = b.

x-3_2/-2_z + 6
nS

' 4 ~ -1 ~ ~~3~~

'

8. Find the equations of the line passing through the point (4, — 6, 2)

which is perpendicular to the plane x + 2y — 3 z = 8.

x— 4 y + 6 z — 2
Ans. = =12-3

9. Find the equations of the line passing through the point (— 2, 3, 2)

which is parallel to each of the planes 3x — y + z = and x — z = 0.

x + 2 y — 3 is —

2

Ans.
4 1

10. Find the equation of the plane passing throughjthe point (1, 3, — 2)

which is perpendicular to the line = =
2t o — 1

Ans. 2x + 5y — z = 19.

11. Find the equation of the plane passing through the point (2, — 2, 0)

which is perpendicular to the line z = 3, y = 2x — 4. Ans. x + 2p + 2 = 0.
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12. Find the equation of the plane passing through the line x + 2 z = 4,
<>» ___ Q 9/ _|_ 4. y 7

y — z = 8 which is parallel to the line = =
2 3 4
Am. x + lOz/ — 8z — 84 = 0.

13. Find the equation of the plane passing through the point (3, 6, — 12)

which is parallel to each of the lines = = and
X ~

z+2 3-132
= —j— >y = 3. .4ns. 2x + 3y-z = 36.

14. Find the equations of the line passing through the point (3, 1, — 2)

which is perpendicular to the plane 2x — y — 5z = 6.

Am. x=-§z+V-, y = lz+l.

15. Show that the lines ^—^ =^ =— and— = £±i = z_
3 4-2 -13 2

intersect, and find the equation of the plane determined by thern.

Ans. 14 x — 4 j/ + 13 z = 32.

ff O y I 9

16. Find the equation of the plane determined by the line =
z-1 2 ~ 2

= —— and the point (0, 3, — 4). Am. x + 2j/ + 2z + 2 = 0.

17. Find the equation of the plane determined by the parallel lines

x+l y-2 z ,x-S y+4 z-1 . „ „„ „ „-g- =^-=
T
and-^- =0- =—— . 4ns. 8x + y- 26z + 6 = 0.

18. Find the equations of a line lying in the plane x + 3y — 2z+4 =
£ ^ v-t-2 z • 2

and perpendicular to the line =—

-

— = at the point where it

meets the plane.

19. Find the equations of a line tangent to the sphere x2 + ?/
2 + z2 = 9

at the point (2, — 1, — 2), and parallel to the plane x + 3y— 5z — 1=0.

20. Find the equations of a line tangent to the sphere x2 + y
1 + z2 = 9

fp O I, _J_
1 «

at the point (2, 2, — 1), and perpendicular to the line = = -

.

o 1 a

21. Find the equations of the line passing through P
x
(xv yv zj which

is perpendicular to the plane Ax + By + Cz + D = 0.

Ans .

x_-x
1 = y-y1 = z_-z

1 _ABC
22. Find the equation of the plane passing through the point

P
x
(aSj, yv z

t )
which is perpendicular to the line = = .

a b c

Am. a(x — x
l )
+ b(y — y t )

+ c(z — z
l )
= 0.
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T — T 1J — 7/ Z " 2
23. Find the angle 8 between the line 1 = -

l = l and the

plane Ax + By + Cz + D = 0.
a ° °

n
. „ Aa + Bb + Cc

Ans. sin 8 = —

—

=====^= •

Va* + IP + C2 Va2 + 62 + c2

.Hmi. The angle between a line and a plane is the acute angle between the

line and its projection on the plane. This angle equals — increased or decreased

by the angle between the line and the normal to the plane.

24. Find the equation of the plane passing through P
3
(x

3 , y3 , z3 ) which

is parallel to each of the lines^^ = V-^± = Z-^± and—^ = ySlIs
,_. «1 *! C

l «2 *•

C
2

4 jw. (6^2 - 62ci) (x - x
3) + (c^ - a

2
Cj) (y-

y

3) + (a
x
b2 - a

2
b
x)

(z-

z

s)
= 0.

25. Find the condition that the plane A
x
x + B

xy + C
x
z + B

x
= should

be parallel to the line A
2
x + B2y + C

2
z +D2

= 0, A s
x + Bsy + Csz + Z>

3
= 0.

Ans. A
X
(B

2
C

3
- B

S
C

2 ) + Bx
(C

2
A

S
- C

S
A

2) + C
x
(A

2
B

S
- A

S
B

2)
= 0.

26. Find the equation of the plane determined by the point P, (x
1 , yv z

x)

and the line A
x
x + B

xy + C
x
z + D

x
= 0, _A

2
x + B

2y + C
2
z + B2

= 0.

Ans. (A
2
x
x
+ B

2yx
+ C

2
z
x
+ D

2 )
(^x + B

xy + C
x
z + D,)

= (A lXl + BlVl + C
x
z
x + Dj) (^ 2

x + iJ22/ + C
2
z + Dt).

27. Find the equation of the plane determined by the intersecting lines

x ~ x
i = V - Vx = z ~ z

x and
x ~ x

i = V-Vi = z-H .

a
i 1>1 C

l
a

<2 &2 C
2

Ans. (b
x
c
2
— fi^) (x — x,) + (e^ — c2aj) (y— ?/,) + (a^— a

26,) (z— z
x)
= 0.

28. Find the equation of the plane determined by the parallel lines

iand ?-*._l'-l'._*-*.
a 6 c a 6 c

4rw. [(?/, - j/2)
c - (z, - z

2) 6] x + [(z
x
- 2

2)
a - (x

x
- x

2)
c] 2/

+ [(»i - ^ b - hi ~ Vi) «] « + (2/^2 - 2/2
z
i)
a

+ (ZjXj - z
2
x
x )

b + (x
xy2

- x
2yx)

c = 0.

29. Find the conditions that the line x — mz + a, y = nz + b should lie

in the plane Ax + By + Cz + -D = 0.

Ans. Aa + Bb + D = 0, 4?n + Bn + C = 0.

30. Find the equation of the plane passing through the line

<*i

_ V^Jh _ ?Jiii which is paranei to the iine
x ~ x2 _V - V2 _z-

%

b
i

C
l «2 6

2
C

-i

Ans. (b
x
c
2
- 6

2
c
x )

(x - x
x ) + (c

x
a
2
- c^) (y- Vl) + (a^ - a2bx ) (2

- z
x
) = 0.



CHAPTER XVII

SPECIAL SURFACES

111. In this chapter we shall consider spheres, cylinders,

and cones* (surfaces considered in elementary geometry), and

surfaces which may be generated by revolving a curve about

one of the coordinate axes, or by moving a straight line.

112. The sphere. We begin with the

Theorem. The equation of the sphere whose center is the point

(a, /}, y) and whose radius is r is

(I) (x - a) 2 + (y- PY + (z - YY = *
Proof. Let P (x, y, z) be any point on the sphere, and denote

the center of the -sphere by C. Then, by definition, PC = r.

Substituting the value of PC given by the length formula,

and squaring, we obtain (I). q.e. d.

When (I) is multiplied out, it is

x2 + y
2 + z1 - 2 ax - 2 /3y - 2 yz + a2 + 0* -f y~ - r

a =
;

that is, it is in the form

x2 + y
2 + z2 + Ox + Hy + Iz + K = 0.

The question now is, When is the locus of this equation a

sphere ?

To answer this, collect the terms thus :

(a* + Gx) + 0/ + Hy)+ (z
2 + /«)= - K.

*In analytic geometry the terms "sphere," "cylinder," and "cone" are

usually used to denote the spherical surface, cylindrical surface, and conical

surface of elementary geometry, and not the solids bounded wholly or in part

by such surfaces,

291
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Completing the squares within the parentheses, we obtain

• Comparing with (I), we have at once the

Theorem. The locus of an equation of the form

(II) x* + y
2 + z2 + Gx + Hy + Iz +K =

is determined as follows :

(a) When G2
-\- H2+ I 2— 4 K > 0, the locus is a sphere whose

center is (
— — > — — > — r 1 and whose radius is

r = $ Vc2 + H2 + I 2— 4 K.

(b) When G2+H 2+ ^2— 4 A" = 0, £Ae locus is thepoint-sphere*

I G H I\

(c) When G2 + H 2 + P — 4 K < 0, afAere is wo focws.

In numerical examples it is recommended that the theorem

be not used, but that the squares be completed as in the proof,

and the center and radius be found by comparison with (I).

EXAMPLE

What is the locus of the equation

x2 + y2 +z2 -2x + 3y + l = 0?

Solution. Collecting terms,

(x2 - 2x) + (y
2 + Zy) + z2 =- 1.

Completing the squares,

(x2 - 2x + 1) + (y
2 + 3 y + £) + z2 =- 1 + 1 + f,

Or (a;_l)2 + (y+ |)2 +z2 = |.

This equation is in the form (I); r=§, a = 1, /3 =— §, y = 0. That is,

the locus is a sphere of radius $ and center (1, — |, 0).

* That is, a point or sphere of radius zero.
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PROBLEMS

1. Find the equation of the sphere whose center is the point

(a) {a, 0, 0) and whose radius is a. Ans. x2 + y
2 + z2 — 2 ax = 0.

(b) (0, /3, 0) and whose radius is /3. Ans. x2 + j/
2 + z2 — 2 @y = 0.

(c) (0, 0, 7) and whose radius is 7. Ans. x2 + y
2 + z2 — 2 72 = 0.

2. Determine the nature of the loci of the following equations and find

the center and radius if the locus is a sphere,, or the coordinates of the

point-sphere if the locus is a point-sphere.

(a) x2+^2+z2-6x + 4z = 0. (c) x2+y2+ z2+ 4x-z + 7 = 0.

(b) x2 +2/2 + z2+2x-4y-5 = 0. (d) x2+ y2+z2-12x + 6y + 4z = 0.

3. Where will the center of (II) lie if

(a)G = 0? (c) 1 = 0? (e)jff=Z=0?
(b).ff=0? (d)G = H=0? (f)I=G = 0?

4. Prove that each of the following loci is a sphere, and find its radius

and the coordinates of its center.

(a) The distance of a point from the origin is proportional to the square

root of the sum of its distances from the three coordinate planes.

(b) The sum of the squares of the distances of a point from two fixed

points (2, 4, — 8) and (— 4, 0, 2) is equal to 52.

Ans. a=-l, /3 = 2, 7=- 3, r=Vli.
(c) The distance of a point from the origin is half its distance from

the point (3, - 6, 9).

(d) The distance of a point from the point (7, 1, — 3) is twice its dis-

tance from the point (— f , — 2, |).
,——

Ans. a=— 4,/3=— 3, 7 = 1, r = .

(e) The sum of the squares of the distances of a point from the three

planes-x + 2y + 2a-l = 0, 2x — y + 2z — 1 = 0, 2x + 2y— z-l =
is unity.

5. Show that a sphere is determined by four conditions and formulate

a rule by which to find its equation.

6. Find the equation of a sphere passing through the three points in

any one of the following columns and through a fourth point selected

from the other two.

A {-1,-1, 1), D (0,0,1), G (0,-4,5),

B(- 1, - 3, 1), E(3, 0, 2), H(2, - 4, 5),

C(- 1,-4,4); F(2,0,l); 1(8,-1,6).

Ans. x2 + y
2 +z2 -2x + 4y- 6z + 5 = 0,
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7. Find the equation of a sphere which

(a) has the center (3, 0, — 2) and passes through (1, 6, — 5).

Ans. x2 + y
2 + z2 - 6x + iz — 36 = 0.

( b ) passes through the points (0, 0, 0), (0, 2, 0), (4, 0, 0), and (0, 0,-6).

Ans. x2 +y2 +z2-4x-2y + 6z = 0.

( c ) is concentric with the sphere x2 + y
2 + a2 — 6x + iz = and passes

through the point (3, 1,0).

(d) has the line joining (4, — 6, 5) and (2, 0, 2) as a diameter.

( e ) has the center (2, 2, — 2) and is tangent to the plane 2 x + y —
3z + 2 = 0.

( f ) has a unit radius and is tangent to each of the coordinate planes

in the first octant.

(g) passes through the three points(l, 0,2), (1,3,1), and (—3,0,0) and

has the center in the JCZ-plane. Ans. x2 + y
2 + z2 — 2x + 6z — 15 = 0.

(h) passes through the three points (1, — 3, 4), (1, -r- 5, 2), and (1, — 3,0)

and has its center in the plane x + y + z = 0.

Ans. x2 + z/
2 + z2 -2x + 6j/-4z + 10 = 0.

(
i
) has its center on the Y-axis and passes through the points (0, 2, 2)

and (4, 0, 0). Ans. x2 + y
2 + z2 + 4y - 16 = 0.

( j ) passes through the points (1, 5, — 3) and (— 3, 0, 0), and whose

center lies on the line of intersection of the planes 3x + y + z = 0, x +
2y — 1=0. Ans. x2 + y

2 + z2 -2x + 6z-15 = 0.

(k) is tangent to the three coordinate planes and to the plane

6x + 2y + 3z — 4 = 0. Ans. x2 + y2 + z2 — 2x - 2y — 2z — 4 = 0.

( 1
) has its center at (3, 1, 1) and is tangent to the sphere x2 + y

2 +
z2 -2x— 4y + 2z + 2 = 0. Ans. x2 + y2 + z2 — 6x-2y - 2z +10= 0;

x2 + 2/
2 + z2 -6a;-2i/-2z-14 = 0.

(m) passes through the points (1, 1, 0), (0, 1, 1), and (1, 0, 1) and whose

radius is 11. Ans. x2 + y2 + z2 - 14x — liy — 14z + 26 = 0.

(n) is tangent to the plane x + y — z + l = 0at the point (8, — 2, 2)

and has its center in the XF-plane.

( o ) passes through the three points (2, 0, 1), (2, — 1, 0), and (1, —1,1)
and is tangent to the plane 2x + 2y — z + 2 = 0.

Ans. x2 + y2 + z2 — ix + 2y — 2z+5 = 0.

(p) passes through the intersection of the two spheres x2 + y
2 + z2 —

6x = 0, x2 + y
2 + z2 + 9y - 5z - 7 = 0, and through the point (0, 1, 1).

8. Find the equations of the tangent plane and the normal line to

the sphere x2 + y
2 + z2 - 14 = at the point (3, - 2, 1).

9. Find the equations of the tangent plane and normal line to the

sphere x2 + y2 + z2 — 2x + iy - 6z + 6 = at the point (3, — 4, 2).
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10. Find the equations of the planes tangent to the sphere x2 + y
2 + z2—

lOx + 5 j/— 2 z— 24= at the points where it intersects the coordinate axes.

11. Find the equation of a sphere inscribed in the tetrahedron formed

by any four of the following planes

:

14x + hy — 2z — 168 = 0, Wx + lly + 2z+ 88 = 0,

143- 5j/ + 2z+ 28 = 0, 2x- y-2z+ 12 = 0,

10x-ll?/+ 2z+ 33 = 0, 2x- y + 2z+ 8 = 0.

12. Find the equation of the smallest sphere tangent to the two spheres

x2 + y
2 + z2 - 2x - 6y + I = 0, x2 + y

2 + z2 + 6x + 2y - 4z + 5 = 0.

Ans. x2 + y2 + z2 + 2x-2y — 2z + 3 = 0.

113. Cylinders. A surface which is generated by a straight line

which moves parallel to itself and intersects a given fixed curve

is called a cylinder. The fixed curve is called the directrix. We
now consider equations whose loci are cylinders.

EXAMPLES

1. Determine the nature of the locus of y
2 = 4x.

Solution. The intersection of the surface with a plane x = k, parallel

to the FZ-plane, is the pair of lines

(1) x = k, y = ± 2 Vk,

which are parallel to the Z-axis. If k > 0, the locus of equations (1) is a

pair of lines ; if k = 0, it is a single line (the Z-axis) ;
and if k < 0,

equations (1) have no locus.

Similarly, the intersection

with a plane y = k, parallel

to the ZX-plane, is a straight

line whose equations are

x = I k
2
, y = k,

and which is therefore par-

allel to the Z-axis.

The intersection with a

plane z = k parallel to the

.XT-plane is the parabola

z = k, y
2 = 4 x.

For different values of k these parabolas are equal and placed one

above another. The surface is therefore a cylinder whose elements are

parallel to the Z-axis and intersect the parabola y
2 = 4 x, z = 0.
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It is evident from Ex. 1 that the locus of any equation which

contains but two of the variables x, y, and a will intersect

planes parallel to two of the coordinate planes in one or more

straight lines parallel to one of the axes, and planes parallel

to the third coordinate plane in congruent curves. Such a sur-

face is evidently a cylinder. Hence the

Theorem. The locus of an equation in which one variable is

lacking is a cylinder whose elements are parallel to the axis

along which that variable is measured.

The student should not infer from this statement that the

equations of all cylinders have one variable lacking. In case

the elements are inclined, all three variables will appear in the

equation. This is illustrated by the following example

:

2. Determine the nature of the

locus of

x2 + 2xz + z2 = l-y*.

The intersection of this locus

by the plane y = k is

y=k, x + z=±Vl-fc2
,

a pair of parallel lines whose

direction is independent of k. In

fact, the direction cosines of these

lines are proportional to — 1, 0, 1

;

that is, they are parallel to' the

line joining the point (—1, 0, 1)

to the origin . We conclude then

that the surface is a cylinder. To
construct the surface, draw its traces and pass lines through them hav-

ing the above direction. The trace in the YZ-plane is the circle

y* + z2 = 1

;

in the XY-plane, the circle

x2 + y* = 1.

It is' evident from Ex. 2 that in order to prove that a surface is

cylindrical it is only necessary to find a system of planes which cut

from it a system of parallel lines.
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PROBLEMS

1. Determine the nature of the following loci, and discuss and con-

struct them

:

,

(a) x2 + y
2 = 36. (f ) z2 + x2 = r2 .

(b) x2 + y
2 = 3z.

(g) x2 + 6y = 0.

(c) x2 - z2 = 16. (h) yz - 4 = 0.

(d) 2/
2 + 4z2 = 0. (i) y2 + z _ 4 = 0.

(e) x2 +2y-4 = 0. (j)2,
2 -xS = 0.

2. Find the equations of the cylinders whose directrices are the follow-

ing curves and whose elements are parallel to one of the axes :

(a) y
2 + z2 - 4 y =0, x = 0. (c) 62x2 - a2

y
2 = a2d2 , z = 0.

(b) z2 + 2x = 8, j/ = 0. (d) y
2 + 2pz = 0, x = 0.

3. Prove that the following loci are cylinders. Discuss and construct

thera
- (a) x + y - z2 = 0. (d) i2 -4(z + j/) + 8 = 0.

(b) zz + yz - 1 = 0. (e) x2 + 2xy + y
2 = z.

(c)y2 = 3x + z. (f) k2 -2ij/ + ?/
2 = l-z2

.

4. A point moves so that its distance from a fixed point is always equal

to its distance from a fixed line. Prove that the locus is a parabolic

cylinder.

5. A point moves so that the difference of the squares of its distances

from two intersecting perpendicular lines is constant. Prove that the

locus is a hyperbolic cylinder.

6. A point moves so that the sum of its distances from two planes is

equal to the square of its distance from a third plane. The three planes

are mutually perpendicular. Prove that the locus is a parabolic cylinder.

7. A point moves so that the sum of its distances from two planes is

equal to the square root of its distance from a third plane. Prove that

the locus is a parabolic cylinder when the three planes are mutually

perpendicular.

114. The projecting cylinders of a curve. The cylinders whose

elements intersect a given curve and are parallel to one of the

coordinate axes are called the projecting cylinders of the curve.

The equations may be found by eliminating in turn each of the

variables x, y, and z from the equations of the curve. For if we

eliminate *, for example, the result, by the preceding section, is



298 NEW ANALYTIC GEOMETRY

the equation of a cylinder which passes through the curve, since

values of x, y, and « which satisfy each of two equations satisfy

ari equation obtained from them by eliminating one variable.

The equations of two of the projecting cylinders may be

conveniently used as the equations of the curve.* Hence the

problem of constructing the original curve reduces to that of

constructing the curve of intersection of two cylinders whose

elements are parallel to the coordinate axes. The method is

illustrated in the following examples.

EXAMPLES

1. Construct the curve of intersection of the two cylinders

x2 + y
2 — 2 y = 0, y

2 + z2 — 4 = 0.

Solution. Draw the trace of each cylinder on the coordinate plane to

which its elements are perpendicular. Then consider a plane perpendicu-

lar to the coordinate axis to which the elements of neither cylinder are

parallel. In this case such a plane is y = k. Let this plane intersect the

* In general, the equations of a curve may be replaced by any two inde-
pendent equations to which they are equivalent ; that is, by two independent
equations which are derived by combining the given equations.
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axis at the point K. It will intersect the traces at the pointsA , B, C, and D.

Through each of these points will pass an element of the corresponding

cylinder, all four elements lying in this plane. The points of intersection

E, F, G, and H of these elements are points on the curve of intersection

of the two cylinders. By taking several positions of the plane y = k, we
obtain a sufficient number of points to construct the entire curve as shown
in the second figure on page 298.

2. Construct the curve whose equations are

2i/2 +

z

2 + 4x = 4z, y* + 3z2 -8x = 12z.

Eliminating x, y, and z in turn, we obtain the equations of the project-

ing cylinders
; + z2 = 4 z, z'

2 — 4 1 = 4 z, ?/
2 + 4x = 0.

The figure shows the first and third of these cylinders, intersecting

in the original curve constructed by the method explained in the

previous example.

H is usually wise to deduce the equations of all three of the projecting

cylinders, for it may be that two of them are distinguished for simplicity

and hence are most convenient to construct.

If the curve lies in a plane parallel to one of the coordinate

planes, then two of its projecting cylinders coincide with the

plane of the curve, or part of it.

For a straight line the projecting cylinders are the project

ing planes.
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PROBLEMS

1. Construct the curve in which the following, in each case a plane

and a cylinder, intersect

:

(a)
\y + z = 0.
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For example, if

(1) x = £i2
, y = l-2t, 2 = 343+2,

where J is a variable parameter, then the locus of (x, y, z) is a curve in space.

This curve may be drawn by assuming values for t, computing x, y, and z,

plotting the points, and then joining these points in order by a continuous

curve. Equations (1) are called the parametric equations of the curve.

The equations of the projecting cylinders of the curve, the locus of

(1), result when the parameter t is eliminated from each pair of the

equations. Thus, taking the first two,

(2) if2
, y = l-2t,

we find from the second, t = \ (1 — y), and substituting in the first,

(3) 4x = l(l-y)*, or(2/-l)2-16£ = 0,

and the locus lies on this parabolic cylinder.

Similarly, eliminating t from the first and third equations of (1),

x = \t2
, z = 3S8 +2,

we obtain the cubic cylinder

(4) (z-2) 2 =576x3
.

Hence the curve (1) is the curve of intersection of the cylinders (3)

and (4).

In some cases it is convenient to find the equations of a curve in space

by using a parameter.

EXAMPLE

Equations of the helix. A point moves on a right cylinder in such a man-
ner that the distance it moves parallel to the axis varies directly as the

angle it turns through around the axis.

Find the equations of the locus.

Solution. Choose the axes of coordi-

nates so that the equation of the cylin-

der is

(5) x2 + y
2 = a2

,

as in the figure.

Let P on OX be one position of the

moving point, and P any other position.

Then, by definition, the distance NP
(= z) varies as the angle XON (=8);
that is, z = b8, where 6 is a constant. Furthermore, from the figure,

x = OM = ON cos 6 = a cos 8,

y=MN= ONsin8 = asin8.
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Hence the equations of the helix are :

(6) x = a cos 8, y = a sin 8, z = bd,

where 8 is a variable parameter. Ans.

Eliminating 8 from the first two of equations (6), we obtain (5), as

we should.

Given the equations of the projecting cylinders, to find para-

metric equations for the curve. It was shown in Art. 81 that

an indefinite number of parametric equations could be obtained

for the same plane curve. The same statement holds for space

curves, as illustrated in the following example.

EXAMPLE

Find parametric equations for the curve of intersection of the surfaces

(see Example 2, Art. 114),

2y2 + z2 + 4a; = 4z, 2/
2 + 3z2 -8x = 12z.

Solution. The projecting cylinders are

(7) y2 + z2 = 4z, z2 -4x = 4z, y2 + 4x = 0.

If we assume y = 2 1, then the last equation will give x = — I
2

. Erom
either of the other two cylinders we find

z = 2 ± 2 Vl - t
2

.

Hence the given curve is the locus of

(8) I = - t
2

, y = 2 1, z = 2 ± 2 Vl - «
2

.

Other parametric equations result when we set one of the coordinates

in (7) equal to some other function of a parameter. The aim is, of course,

to find simple parametric equations. The method adopted must depend

upon the given problem.

PROBLEM

Find simple parametric equations for the curves of Problems 2 and 3,

p. 300.

Ans. For Problem 2. (a) x = 2 1, y = J
2

,
z = — \ i

4
.

(b) x = 2 cos 8, y = 2 sin 8, z = - sin2 8.

(c) x = 6 cos 8, y = 6 sin 8, z = I (1 + cos2 8).

116. Cones. The surface generated by a straight line turning

around one of its points and intersecting a fixed curve is called

a cone.
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EXAMPLE

Determine the nature of the locus of the equation 16 x2 + y
2 — z2 = 0.

Solution. Let P
x
(xv yv z

t)
be a point on a curve on the surface

in which the locus intersects a plane, for example z = k. Then

(1) 16a:/ + y* - z
2 = 0, z

1
= *.

Now the origin lies on the surface. We
shall show that the line OP

x
lies entirely on

the surface. The direction cosines of OP
t

are -1
,
^1

, and ^ , where p
2 = x 2 + V? + z?

Pi Pi Pi
ri x l 1

= OP?. Hence the coordinates of any point

on OP
x
are, by (II), Art. 109,

® *=2» »=g* -?/•
Substituting these values of x, y, and

z in the left-hand member of the given

equation, we obtain

(3)
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To construct the locus of the equation of a cone, find the

intersection of the cone with a suitably chosen plane parallel

to one of the coordinate planes, construct this plane curve, and

then draw the elements from the points on this curve to the

vertex of the cone. >

Thus in the figure for the preceding example, the cone is

cut by the plane « = 8, and the curve of intersection, namely

the ellipse 16 x2 + y
2 — 64 = 0, is drawn in this plane.

PROBLEMS

1. Determine the nature of the following loci, and discuss and con-

struct them

:

(a) x2-y2 + 36z2 = 0. (e) x2 + 9y2 -4z2 = 0.

(b) y
2 - 16x2 + 4z2 = 0. (f ) x2 + yz = 0.

(c) x2 + y
2— 2 zx = 0. (g) xy + yz + zx = 0.

(d) x + y + z = 0. (h) x2 + yz + xz = 0.

2. Discuss the following loci

:

(a) x2 + y2 = z2 tan2 7. (b) y
2 + z2 = x2 tan2 a. (c) z2 + x2 = y

2 tan2 /3.

3. Find the equation of the cone whose vertex is the origin and whose

elements cut the circle x2 + y
2 = 16,'z = 2. Ans. x2 +y2 —iz2 = 0.

4. A point is equidistant from a plane and a line perpendicular to the

plane. Prove that the locus is a cone.

5. A point moves so that the ratio of its distances from two lines inter-

secting at right angles is constant. Prove that the locus is a cone. What
is the nature of the locus when the ratio is unity ?

6. The sum of the distances of a point from three mutually perpen-

dicular planes is equal to its distance from their common point of inter-

section. Show that the locus is a cone.

117. Surfaces of revolution. The surface generated by revolv-

ing a curve about a line lying in its plane is called a surface of

revolution.

Familiar examples are afforded by the sphere, and the right

cylinder and cone.
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EXAMPLE

Find the equation of the surface of revolution generated by revolv-

ing the ellipse x2 + 4 y"1 — 12 x = 0, z = 0, about the X-axis.

Solution. Let P (x, y, z) be any point on the surface. Pass a plane

through P and OX which cuts the surface along one position of the ellipse,

and in this plane draw OY' perpendicular to OX. Referred to OX and OY'

as axes, the equation of

the ellipse is evidently Zl '

(1) x2 + 4j/'2 -12x = 0.

But from the right tri-

angle PAB we get

2/'
2 =

J/
2 + z2 .

Substituting in (1),

(2) x2 + 4^2 +4z2

-12x = 0.

This equation expresses the relation which any point on the surface

must satisfy, and it is therefore the equation of the surface.

The method of the solution enables us to state the

Rule to find the equation of the surface generated by revolving

a curve in one of the coordinate planes about one of the axes in

that plane.

Substitute in the equation of the curve the square root of the

sum of the squares of the two variables not measured along the

axis of revolution for that one of these two variables which

occurs in the equation of the curve.

The line about which the given curve is revolved is called the

axis of the surface. Sections of the surface by planes perpendicu-

lar to its axis are obviously circles whose centers lie on the axis.

If the sections of a surface by all planes perpendicular to

one of the coordinate axes are circles whose centers lie on that

axis, then the surface is evidently a surface of revolution whose

axis is this coordinate axis. This enables us to determine

whether or not a given surface is a surface of revolution whose

axis is one of the coordinate axes.
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PROBLEMS

1. Find the equations of the surfaces of revolution generated by

revolving each of the following curves about the axis indicated, and

construct the figures:

(a) y
2 = 4 x — 16, X-axis. Ana. y

2 + z2 = 4 x - 16.

(b) x2 + 4 y
2 = 16, r-axis. Ans. x2 + 4 y

2 + z2 = 16..

(c) x2 = 4 z, Z-axis. Ans. x2 + y
2 = iz.

(d) x2 - y2 = 16, F-axis. .4ns. x2 - y
2 + z2 = 16.

(e) x2 - y
2 = 16, X-axis. 4ns. x2 -y2 - z2 = 16.

(f ) y
2 + z2 = 25, Z-axis. Ans. x2 +y2 +z2 = 25.

(g) 2/
2 = 2 pz, Z-axis. Ans. A paraboloid of revolution, x2 + y

2 = 2 pz.

(h) — +— = 1 A'-axis. 4ns. An ellipsoid of revolution, — + ^- H— =1.
a2 b2 a2 b2 b2

(i) 1— — = 1, F-axis.
a2 b2

x2 y2 z2
Ans. A hyperboloid of revolution of one sheet, —

-|— = 1.

x2 v2 a b ai

X2 V2 Z2
Ans. A hyperboloid of revolution of two sheets, - = 1.'*

' a2 b2 b2

2. Find the equations of the surfaces of revolution generated by revolv-

ing each of the following curves about the axis indicated, and construct

the figures

:

(a) x2 = 4z ; A'-axis. (e) xz = 4 ; A'-axis.

(b) y
2 = x8

; X-axis. (f) xz = 4; Z-axis.

(c) x2 = z + 4 ; X-axis. (g) y = xs — x ; X-axis.

(d) z2 = x — 3 ; Z-axis. (h) z = sin x ; X-axis.

3. Find the equation of and construct the surface formed by revolv-

ing the curve z = e* about (a) the X-axis
;

(b) the Z-axis.

4. Verify analytically that a sphere is generated by revolving a circle

about a diameter.

5. Find the equation of the surface of revolution generated by revolv-

ing the circle x2 + y
2 — 2 ax + a2 — r2 = about the I'-axis. Discuss the

surface when a > r, a = r, and a < r.

Ans. (x2 + y
2 + z2 + a2 - r2

)
2 = 4 a2 (x2 + z«). When a > r the surface

is called an anchor ring or torus.

6. Find the equations of the cylinders of revolution whose axes are

the coordinate axes and whose radii equal r.

Ans. y2 + z2 = r2 ; z2 + x2 = r2 ; x2 + y2 = r2 .
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7. Find the equations of the cones of revolution whose axes are the

coordinate axes and whose elements make an angle of
<f>
with the axis of

revolution. Ans. y2+z2= x2tan2 <t>; z2+x2=y2 tan2 <p ; x2+ y
2= z2 tan2 </>.

8. Show that the following loci are surfaces of revolution :

(a) y
2 + z2 = 4x. (i\ (x2 +z2)y = 4a^(2a-y).

(b) x2 - 4y2 + z2 = 0. (g) x2 + y
2 + zx2 + zy2 - z + 3 = 0.

(c) 4x2 +4y2 -z2 = 16. (h) x4 - ?/
4 + z4 + 2x2z2 = 1.

(d) x2 -42/2 + z2 -32/ = 0. (i) x2 + y
2 + z8 - 2 j/ + 1 = 0.

(e) xz2 + xi/
2 = 3.

9. A point moves so that its distance from a fixed plane is in a con-

stant ratio to its distance from a fixed point. Show that the locus is a

surface of revolution.

10. A point moves so that its distance from a fixed line is in a constant

ratio to its distance from a fixed point on that line. Prove analytically that

the locus is a cone of revolution. What values of the ratio are excluded ?

118. Ruled surfaces. A surface generated by a moving straight

line is called a ruled surface. If the equations of a straight line

involve an arbitrary constant, then the equations represent a

system of lines which form a ruled surface. If we eliminate

the parameter from the equations of the line, the result -will be

the equation of the ruled surface.

For if (xv yv z^) satisfy the given equations for some value

of the parameter, they will satisfy the equation obtained by

eliminating the parameter; that is, the coordinates of every

point on every line of the system satisfy that equation.

Cylinders and cones are the simplest ruled surfaces.

EXAMPLES

1. Find the equation of the surface generated by the line whose

equations are ,
1^ x + y = kz, x — y=-z.

Solution. We may eliminate k from these equations of the line by

multiplying them. This gives

(1) x2-y2 = z2 .

This is the equation of a cone (Art. 116) whose vertex is the origin. As

the sections made by the planes x = k are circles, it is a cone of revolu-

tion whose axis is the X-axis.
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We may verify that the given line lies on the surface (1) for all values

of k as follows :

Solving the equations of the line for x and y in terms of z, we get

Substituting in (1),

an equation which is true for all values of k and z, as is seen by removing

the parentheses. Hence every point on any line of the system lies on (1),

since its coordinates satisfy (1).

2. Determine the nature of the surface z3 — 3 zx + 8 y = 0.

Solution. The intersec-

tion of the surface with the

plane z = k is the straight

line

fc
8 — 3kx + 8y = 0, z=k.

Hence the surface is the

ruled surface generated by

this line as k varies. To

construct the surface con-

sider the intersections with

the planes x = and x = 8.

Their equations are respec- /
tive'y x = o,

8y + zs = 0;

and x = 8,

8y-24z + z8 = 0.

Joining the points on these curves which have the same value of z gives

the lines generating the surface.

The method used in Ex. 2 is adapted to the determination

and construction of ruled surfaces. An examination of the

equation of such a surface will suggest a system of planes

whose intersections with the surface are a system of lines, as

illustrated in Problem 2 on the following page.

S
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PROBLEMS

1. Show that the following loci are ruled surfaces whose generators are

parallel to one of the coordinate planes. Construct and discuss the loci

:

(a) z-xy = 0. (f) y*=x°-z.

(b) x*y - z2 = 0. (g) y = xz (2 - z)2 .

(c) z2 - zx + y = 0. (h) y
2 = x2 (z2 + 1).

(d) x*y + xz = y. (
i ) y

2 = x2 (z2 - 1).

(e)y-xz2 = 0. (j) y
2 = a:

2 (l—

z

2
).

Remark. The surfacesmay be easily constructed from string and cardboard.

2. Show that the. following loci are ruled surfaces :

(a) (x + y)z+(x + y)*-l = 0.

(b) x2 -2xz-^2 +

z

2 = 3.

(c) y
2 + 4 z2 + xy - 4 ?/z - 2 xz + 3 = 0.

(d) x3 + 3 2/x2 - xz- - 3 ?/z
2 - x2 + z2 = 0.

(e) x2 — y
2 = z.

,

(f) x2 - y
2 = z2 - 1.

Hint. Find a system of planes which cut the surface in a system of straight

lines.

3. Find the equations of the ruled surfaces whose generators are the

following systems of lines, and discuss the surfaces

:

(a) x + y = k, k (x - y) = a2
. Ans. x2 - y

2 = a2 .

(b) ix-2y = kz, k(4x + 2y) = z. Ans. 16x2 - 4^2 =z2
.

(c) x-2y = 4kz,k(x-2y) = i. Ans. x2 - 4 j/
2 = 16 z.

(d) x + ky + 4z = 4k, kx - y - 4kz = 4. Ans. x2 + y
2 - 16z2 = 16.

(e) x — y — kz = 0, x — z — ky = 0.

(f) 3x - z - k = 0, ky - z = 0.

4. Given two planes, one with a variable intercept on the X-axis, the

other with a variable intercept on the Y-axis. The remaining intercepts

being unity, find the equation of the ruled surface generated by the

line of intersection of these planes

(a) when their variable intercepts are in the ratio 1 : 2.

(b) when their distances from the origin are in the ratio 1 : 3.

Ans. [>(z + 2/)]
2 -[3x(z-rx)] 2 = (4xj/)2 .

(c) when the sum of their distances from the origin is unity.



CHAPTER XVIII

TRANSFORMATION OF COORDINATES. DIFFERENT SYSTEMS
OF COORDINATES

119. Translation of the axes. Formulas applicable to space,

entirely analogous to those established in Chapter IX for the

plane, are derived as ex-

plained below.

Theorem. The equations

for translating the axes to

a new origin 0' (7i, k, T) are

(I) x=x> + h,

y = y' + k,

z= z' + 1.

Proof. Let the coordi-

nates of any point before

and after the translation of the axes be (x, y, z) and (x
1

,
y', s')

respectively. Projecting OP and OOP on each of the axes, we

get equations (I). q.e. d.

120. Rotation of the axes. Simple formulas for rotation arise

if two of the axes are rotated about the third. For example,

when the axes OX and OY are turned through an angle 6 about

the Z-axis, the s-coordinate of any point P does not change,

and the new x- and ^-coordinates are given by formulas (II),

Art. 55. Hence the

Theorem. The equations for rotating the axes about the Z-axis

through an angle 6 are

(II) x = x'cosB — y'sinO, y — x'sind + y'cosO, z = z'.

310
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Similar formulas result when the axes are rotated about OY
or OX.

If the axes are rotated about the origin into the new-

position O-X'Y'Z', and if the coordinates of any point P
before and after the rotation are

respectively (.r, y, z) and (x', y', z'),

we have the

Theorem. Jfav pvyii a9 fr2 , y2 ;

and a
s, /3S , ys , are respectively the

direction angles of the three mutu-

ally perpendicular lines OX', OY',

and OZ', then the equations for

rotating the axes to the position

O-X'Y'Z' are ?/ r

(x = *'cosa
1 + y' cos a

2 + z'cosa
3 ,

(III) \ y= x' cos/^ -f y' cos /?2 + z' cos /?3 ,

[_•? = J^cosyj + y'cosy
2 + z'cosy

3
.*

Proof. Projecting OP and OA'B'P on each of the axes OX,

OY, and OZ, we obtain immediately equations (III). q. e.d.

Theorem. The degree of an equation is unchanged by a trans-

formation of coordinates.

This may be shown by reasoning as in Art. 57.

PROBLEMS

1. Transform the equation a;
2 + #

2 — ±x + 2y — 4 z + 1 = by trans-

lating the origin to the point (2, —1,-1). Ans. x2 + y
1 — 4 z = 0.

2. Derive the equations for rotating the axes through an angle 6 about

(a) the X-axis
;
(b) the Y"-axis.

*The direction cosines of OX', OY', and OZ' obviously satisfy the six

equations

cos2 or, + cos2 ft + cos2 7, = 1 , cos a^ cos a2 + cos ft cos ft + cos 7, cos 72 = 0,

cos2 a.2 + cos2 ft + cos2 72 = 1, cos a2 cos as + cos ft cos ft + cos 72 cos y3 = 0,

cos2 as + cos2 ft + cos2 73 = 1, cos as cos 0"! + cos ft cos ft + cos 73 cos 7i = 0.

Hence only three of the nine constants in (III) are independent.
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3. Show that the following equations may be transformed into the

given answers by translating theaxes, or by rotating them about one of

the coordinate axes (see Art. 71) :

(a) x2 + y2 - z2 - 6x - Sy + lOz = 0. Ans. x2 + y2 - z2 = 0.

(b) 3x*-8xy + 3y2 -5z2 + 5 = 0. Ans. x2 - ly2 + 5z2 = 5.

(e) y2 + 4z2 -16x-6y + l<iz+ 9 = 0. Ans. y2 + iz2 = 16x.

(d) 2x2 - hy2 - 5z2 - 6yz = 0. Ans. x2 - 4y2 - z2 = 0.

(e) 9x2 -25z/2 + 16z2 -24zx-80x-60z = 0. Ans. x2 -y2 = 4z.

4. Show that Ax + By + Cz +D = may be reduced to the form x =
by a transformation of coordinates.

Hint. Remove the constant term by translating the axes, then remove the

z-term by rotating the axes about the 7-axis, and finally remove the y-term

by rotating about the Z-axis.

5. Transform the equation 5x2 + 8^2 + 5z2— 4yz+ 8zx + ixy— 4x +
2y+4z = 0by rotating the axes to a position in which their direction

cosines are respectively f, S, i ; 4, — I, f ; I , — i, — I-

Ans. Sx2 + 3y2 = 2z.

6. Show that the xy-term may always be removed from the equation

Ax2 + By2 + Cz2 + Fxy + K = by a rotation about the Z-axis.

7. Show that the yz-term may always be removed from the equation

Ax2 + By2 + Cz2 + Di/z + K = by rotating about the X-axis.

8. What are the direction cosines of OX, OY, and OZ (Fig., p. 311)

referred to OX', OY', and OZ' ? What six equations do they satisfy ?

9. Show that the six equations obtained in Problem 8 are equivalent

to the six equations in the footnote, p. 311.

10, If (x, y, z) and (x', y', z') are respectively the coordinates of a

point before and after a rotation of the axes, show that

i2 + y
2 + z2 = x'2 + y'2 + z'

2
.

11, The possibilities of simplifying an equation by rotation of the axes

appear in the following example. Consider the equation of the second

degree

Ax2 + By2 + Cz2 + Dyz + Ezx + Fxy + Gx + Hy + Iz + K = 0.

If the axes are rotated about OZ through the angle 8 given by
F

tan 26 = 1 the transformed equation will contain no xy-tenn
A — B

(Art. 70). We may then rotate about OX and remove the yz-term, and

finally about OY and remove the xz-term. Thus the terms in xy, yz, and

zx can be made to disappear.
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121. Polar coordinates. The line OP drawn from the origin

to any point P is called the radius vector of P- Any point

P determines four numbers, its

radius vector p, and the direction

angles of OP, namely a, /3, and y,

which are called the polar coordi-

nates of P.

These numbers are not all independ-

ent, since a, /3, and 7 satisfy (II) , Art. 88.

If two are known, the third may then be

found, hut all three are retained for the

sake of symmetry. /
Conversely, any set of values

of p, a, p, and y which satisfy (II), Art. 88, determine a

point whose polar coordinates are p, a, /J, and y.

Projecting OP on each of the axes, we get the

Theorem. The equations of transformation front, rectangular

to polar coordinates are

(IV) jr=yucosa, y=pcosp, z=yocosy.

Obviously

(1)
p^xi + yi + z*,

which expresses the radius vector in terms of x, y, and z.

122. Spherical coordinates. Any point

P determines three numbers, namely,

its radius vector p, the angle 6 be-

tween the radius vector and the Z-axis,

and the angle tp between the projection

of its radius vector on the XF-plane

and the X-axis. These numbers are

called the spherical coordinates of P.

is called the colatitude and <j> the

longitude.

Conversely, given values of p, 6, and <p determine a point

P whose spherical coordinates are (p, $, <p).
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Projecting OP on OA, OM = p sin 8,

and projecting OP and OMP on each of the axes, we prove the

Theorem. The equations of transformation from rectangular

to spherical coordinates are

(V) x = p sin cos <j>, y = p sin sin
<f>,

z — p cos 6.

The equations of transformation from spherical to rectangular

coordinates may be obtained by solving (V) for p, 6, and
<f>.

123. Cylindrical coordinates. Any point P (x, y, s) determines

three numbers, its distance z from the A'F-plane and the polar

coordinates (r, <£) of its projection (x, y, 0) on the A'y-plane.

These three numbers are called the cylindrical coordinates of P.

Conversely, given values of r,
<f>,

and s de- z , ,

termine a point whose cylindrical coordi-

nates are (r, cj>, z). Then we have at once the

Theorem. The equations of transforma*

tionfrom rectangular to cylindrical coordi-

nates are • N<y)

P

r

(VI) jr=rcos^, y=r sin $, z = z.

The equations of transformation from cylindrical to rectangu-

lar coordinates may be obtained by solving (VI) for.r, <£, and z,

PROBLEMS

1. What is meant by the "locus of an equation" in the polar coordi-

nates p, a, fi, and y ? in the spherical coordinates p, 6, and ? in the

cylindrical coordinates r, 0, and z ?

2. How may the intercepts of a surface on the rectangular axes be found

if its equation in polar coordinates is given ? if its equation in spherical

coordinates is given? if its equation in cylindrical coordinates is given?

3. Transform the following equations into polar coordinates :

(a) x2 + 2/
2 +z2 = 25. Ans. p = 5.

(b) i'+^-s^O. Ans. 7 = -.
4

(c) 2x2_ 2/
2_ 22 = _ Ans a = C0S-i^V3.
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4. Transform the following equations into spherical coordinates :

(a) z2 +j/2 +z2 = 16. A ns. p = 4

(b)2x + 3y = 0. Arts. = tan-i(-f).
(c) 3 x* +32/2 = 7

z

2
. Ans. = tan-ijVIl.

5. Transform the following equations into cylindrical coordinates

:

(a) 5x - j/ = 0. Arcs. ,/, = tan-i 5.

(b) cc
2 +j/2 =4. Ans. r = 2.

6. Find the equation in polar coordinates of

(a) a sphere whose center is the pole.

(b) a cone of revolution whose axis is one of the coordinate axes.

Ans. (a) p = constant
;

(b) a = constant, /3 = constant, or y = constant.

7. Find the equation in spherical coordinates of

(a) a sphere whose center is the origin.

(b) a plane through the Z-axis.

(c) a cone of revolution whose axis is the Z-axis.

Ans. (a) p = constant
;

(b) = constant
;

(c) 8 = constant.

8. Find the equation in cylindrical coordinates of

(a) a plane parallel to the XF-plane.

(b) a plane through the Z-axis.

(c) a cylinder of revolution whose axis is the Z-axis.

Ans. (a) z = constant; (b) = constant; (c) r = constant.

9. In rectangular coordinates a point is determined as the intersec-

tion of three mutually perpendicular planes. Show that

(a) in polar coordinates a point is regarded as the intersection of a

sphere and three cones of revolution which have an element in common.

(b) in spherical coordinates a point is regarded as the intersection of a

sphere, a plane, and a cone of revolution which are mutually orthogonal.

(c) in cylindrical coordinates a point is regarded as the intersection

of two planes and a cylinder of revolution which are mutually orthogonal.

10. Show that the square of the distance r between two points whose

polar coordinates are (pv av fiv 7 X)
and (p2 , a2 , /32 , 7

2
) is

r2 = p t

2 + pi — 2 p. p2
(cos a

x
cos a2 + cos px

cos /32 + cos 7! cos 7„)

.

11. Find the general equation of a plane in polar coordinates.

Ans. p(A cos a + Bcosfi+ C cosy) +D = 0.

12. Find the general equation of a sphere in polar coordinates.

Ans. p
2 + p (G cos a + H cos /S + 1 cos 7) + K = 0.



CHAPTER XIX

QUADRIC SURFACES AND EQUATIONS OF THE SECOND

DEGREE IN THREE VARIABLES

124. Quadric surfaces. The locus of an equation of the sec-

ond degree in x, y, and z, of which the most general form is

(1) Ax2+By2+ Cz2+Dyz+Ezx+Fxy+Gx+Hy+Iz+K=0,

is called a quadric surface or conicoid. We may learn something

of the nature of such a surface by taking cross sections. We
first obtain

Theorem I. The intersection of a quadrie with any plane is a

conic or a degenerate conic.

Proof. By a transformation of coordinates any plane may be

made the A* F-plane, z = 0. Referred to any axes the equation

of a quadric has the form (1) (Theorem, p. 311). Hence the

equation of the curve of intersection referred to axes in its

own plane z = is

A x2 + Fxy + Bif + Gx + Hy +K = 0,

and the locus is therefore a conic or a degenerate conic, by

Art. 70. q.e.d.

As already pointed out in Art. 71, the parabola, ellipse, and

hyperbola were originally studied as conic sections,—plane sec-

tions of a conical surface. Prom the preceding theorem and

by intuition, the truth of the following statement is manifest.

Corollary. The curve of intersection of a cone of revolution

with a plane is an ellipse, hyperbola, or piarabola, according as

the plane cuts all of the elements, is parallel to two elements

316



QUADRIC SURFACES 317
i

(cutting the other elements— some on one side of the vertex

and some on the other), or is parallel to one element (cutting

all the others on the same side of the vertex).

For sections of a quadric by a set of parallel planes, the

following result is important

:

Theorem II. The sections of a quadric with a system ofparal-

lel planes are conies of the same species.

The truth of this statement is established in the following

sections. The meaning of the theorem is this : A set of parallel

sections will all be ellipses, or all hyperbolas, or all parabolas,

the exceptional cases (Art. 70) under each species being included.

125. Simplification of the general equation of the second degree

in three variables. If equation (1) be transformed by rotating

the axes, it can be shown that the new axes may be so chosen

that the terms in yz, zx, and xy will drop out (Problem 11,

p. 312). Hence (1) reduces to the form

A'x2 + B'y2 + C'z2 + G'x + H'y + I'z + K' = 0.

Transforming this equation by translating the axes, it is easy

to show that the axes may be so chosen that the transformed

equation will have one of the two forms

(1)' A "x2 + B'Y + CV + K" = 0,

(2) A"x2 + B'Y + l"z = (i.

Note the difference in (1) and (2). In (1) all the squares and

no first powers are represented, in (2) only two squares and

the. first power of the other variable.

If all of the coefficients in (1) and (2) are different from

zero, they may, with a change in notation, be respectively writ-

ten in the forms
*2

y
2

*
2

-.

(4) ^ = 2 -
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The purpose of the following sections is to discuss the loci of

these equations, which are called central and noncentral quadrics

respectively.

If one or more of the coefficients in (1) or (2) are zero, the

locus is called a degenerate quadric.

Certain cases are readily disposed of by means of former

results.

If K" = 0, the locus of (1) is a cone (Theorem, Art. 116)

unless the signs of A ", B", and C" are the same, in which case

the locus is & point, namely the origin.

If one of the coefficients A", B", and C" is zero, the locus is a

cylinder whose elements are parallel to one of the axes and whose

directrix is a conic of the elliptic or hyperbolic type. If also

K" = 0, the locus will be a pair of intersecting planes.

If two of the coefficients A ", B", and C" are zero, the locus is a

pair ofparallelplanes (coincident if K"= 0), or there is no locus.

If one of the coefficients in (2) is zero, the locus is a cylinder

whose directrix is a parabola, or a pair of intersecting planes.

If two of the coefficients are zero, the locus is a. pair of coinci-

dent planes. (.4" and B" cannot, be zero simultaneously, as the

equation would cease to be of the second degree.)

PROBLEMS

1. Construct and discuss the loci of the following equations:

(a) 9x2 -36^2 +4z2 = 0. (e) 4y2 - 25 = 0'.

(b) 16a;2 -4j/2 -z2 = 0. (f) 32/
2 + 7z2 = 0.

(c) 4x2 + z2 -16 = 0. (g) 82/
2 + 25z = 0.

(d) y
2 - 9z2 + 36 = 0. (h) z2 + 16 = 0.

2. Show by transformation of coordinates that the following quadrics

are degenerate

:

(a) x2 -y2 + z2 -6z + 9 = 0.

(b) x2 +42/2 -z2 -2a: + 8y + 5 = 0.

(c) a2 + ?/
2 + z2 + 2x-2y + 4z-6 = 0.

(d) x2 + y
1 -2z2 + 2y + 4z-l = 0.

(e) x2 + yz = 0.
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126. The ellipsoid — + ^ +
Z— = 1. If all of the coefficients in

cr a* r
(3), Art. 125, are positive, the locus is called an ellipsoid. • A dis-

cussion of its equation gives us the following properties :

1. The ellipsoid is symmetrical with respect to each of the

coordinate planes and axes and the origin. These planes of

symmetry are called the principal planes of the ellipsoid.

2. Its intercepts on the axes are respectively

x=±a, y—±b, z=±c.

The lines A A' = 2 a, BB' = 2 b, CC = 2 e, are called the

axes of the ellipsoid (see figure below).

3. Its traces on the principal planes are the ellipses ABA'B',

BCB'C, and ACA'C, whose equations are

r T
- + - = 1 + -; = !, - = !•

4. The equation of the curve in which a plane parallel to the

.XT-plane, z = k, intersects the ellipsoid is

(1)
t- ¥+ v- = 1 - -

3 <<*-**)

+ V
i;
1

= 1.

C

The locus of this equation is an ellipse

from to c, or de-

creases from to

— c, the plane recedes

from the .XT-plane,

and the axes of the

ellipse decrease from

2 a and 2 b respec-

tively to 0, when
the ellipse degener-

ates into a point. If

&>c or k <— c, there is no locus,

entirely between the planes z= ± c.

(c •-¥)

If k increases

M>
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In like manner the sections parallel to the yZ-plane and the

ZA-plane are ellipses whose axis decrease as the planes recede^.

Hence the ellipsoid lies entirely between the planes x= ±a
and y = ±b. Tlie ellipsoid is therefore a closed surface.

If a = b, the section .(1) is a circle for values of k such that

— c < k < c, and hence the ellipsoid is now an ellipsoid of

revolution whose axis is the Z-a.xis. If b = c or c = a, it is an

ellipsoid of revolution whose axis is the X- or 7-axis.

If a = b = c, the ellipsoid is a sphere, for its equation may-

be written in the form x2 + y
2 + »2 = «2

.

127. The hyperboloid of one sheet — = 1. If two of
a° If c2

the coefficients in (3), Art. 125, are positive and one is negative,

the locus is called a hyperboloid of one sheet. Consider first the

equation

(1)
a
2_t

"i2
-- = 1.

c
2

A discussion of this equation

gives us the following properties

:

1. The hyperboloid is symmetri-

cal with respect to each of the coordi-

nate planes and axes and the origin.

2. Its intercepts on the A'-axis

and the F-axis are respectively

x = ±a, y = ±b,

but it does not meet the /?-axis.

3. Its traces on the coordinate

planes are the conies

°t 4. yl = 1 t. _ t. - 1
„2 "I"

7,2 ' 7,2 „2
-1-)

b* ' b2

of which the first is the ellipse whose axes are A A' = 2 a. and
BB' =2b, and the others are the hyperbolas whose transverse

axes are BB' and AA' respectively.







QUADRIC SURFACES 321

4. The equation of the curve in which a plane parallel to the

.XT-plane, z = k, intersects the hyperboloid is

The locus of this equation is an ellipse. If k increases from

to oo ,
or decreases from to — oo , the plane recedes from the

.YF-plane, and the axes of the ellipse increase indefinitely from

2 a and 2 b respectively. Hence the surface recedes indefinitely

from the .XT-plane and from the Z-axis.

In like manner the sections formed by the planes x = k' and

y = k" are seen to be hyperbolas. As k' and k" increase numer-

ically, the axes of the hyperbolas decrease, and when k' = ± a

or k" = ± b, the hyperbolas degenerate into intersecting lines.

As k' and k" increase beyond this point, the directions of the

transverse and conjugate axes are interchanged, and the lengths

of these axes increase indefinitely.

The hyperboloid (1) is said to " lie along the Z-axis."

The equations

W a2
b
2 ^ c*~ ' a2 ^ b2 ^ c

2
'

are the equations of hyperboloids of one sheet which lie along

the F-axis and the X-axis respectively.

If a = b, the hyperboloid (1) is a surface of revolution whose

axis is the Z-axis, because the section (2) becomes a circle.

The hyperboloids (3) will be hyperboloids of revolution if » — c

and b = c respectively.

x2 y2 z2

128. The hyperboloid of two sheets — — — — — = 1. If only
a2 b <r

one of the coefficients in (3), Art. 125, is positive, the locus is

called a hyperboloid of two sheets. Consider first the, equation

m S-S-S-i-
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1. The hyperboloid is symmetrical with respect to each of

the coordinate planes and axes and the origin.

2. Its intercepts on the X-axis are x = ± a, but it does not

cut the Y-axis and the Z^axis.

3. Its traces on the XY-plane and the XZ-plane are respec-

tively the hyperbolas

iL_2L — 1 _
~2 7,2

_
' "2

' 1 = 1
C
2 '

2a, but it does

a' b- or

which have the same transverse axis A A'

not cut the YZ-plane.

4. The equation of the curve in which a plane parallel to

the YZ-plane, x = k, intersects the hyperboloid (1) is

£ + •- = >C
2

-1, or

5(7c2 -«2

)

•+•

7l
{k*-a?)

= 1.

This equation has no locus if — a < Jc < a: If k = ± a, the

locus is a point ellipse, and as Jc increases from a to oo, or

decreases from — a to — oo, the locus is an ellipse whose

axes increase indefinitely. Hence the surface consists of

two branches or sheets which

recede indefinitely from the

YZ-plane and from the A'-axis.

In like manner the sections

formed by all planes parallel

to the X Y-plane and the ZX-plane are hyperbolas whose axes

increase indefinitely as their planes recede from the coordi-

nate planes.

The hyperboloid (1) is said to " lie along the A-axis."

The equations

(2)
x

i y z
i,

X

a? b2 c
m

are the equations of hyperboloids of two sheets which lie along

the Y-axis and the Z-axis respectively.
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If b = c, c = a, or a = b, the hyperboloids (1) and (2) are

hyperboloids of revolution.

It should be noticed that the locus of (3), Art. 125, is an ellip-

soid if all the terms on the left are positive, a hyperboloid of
one sheet if but one term, is negative, and a hyperboloid of two

sheets if two terms are negative. If all the terms on the left

are negative, there is no locus. If the locus is a hyperboloid,

it will lie along the axis corresponding to the term whose sign

differs from that of the other two terms.

PROBLEMS

1. Discuss and construct the loci of the following equations :

(a) 4s2 + 9i/2 + 16z2 = 144. (e) 9a;2 - y2 + 9z2 = 36.

(b) 4x2 + 9y2 -16z2 = 144. (f) z2 - 4x2 - iy2 = 16.

(c) 4x2 -92/2 -16z2 = 144. (g) 16x2 + ?y
2 + 16z2 = 64.

(d) x2 + 16 v2 + z2 = 64. (h) x2 + if- - z2 = 25.

2. Reduce, by translation of the axes, each of the following to a
standard form and determine the type of central quadric it represents

:

(a) x2 + 2y2 + 2z2 -2x + 4?/-8z + 10 = 0.

(b) x2 - y
2 + 2

z

2 - 6x + 2 y + 4 z + 9 = 0.

(c) y
2 - x2 - 2 z2 + 6 x - 2 y - 4 z + 6 = 0.

(d) x2 -2?/2 -4z2 -2x-8y-8 = 0.

(e) 4x2 -2/2 -z2 -8x-2j/ + 6 = 0.

(f) 4x2 -2/2 -z2 -8x-2?/ + 4 = 0.

(g) 3x2 + 42/2 -8y-z2 = 0.

3. Find the equations of the planes whose intersections with the ellip-

soid 9

x

2 + 25 y
2 + 169

z

2 = 1 are circles. Am. 4x = ±12z + &.

4. The square of the distance of a point from a line is equal to the

square of its distance from a perpendicular plane (a) increased by a con-

stant
;

(b) diminished by a constant. How do the two loci differ ? What
property have they in common ?

5. A point moves so that its distances from a fixed point and a fixed

line are in constant ratio /*. Determine and name the locus

(a) when/i<l. (c) when /* = 1.

(b) when it. > 1. (d) when the point is on the line.
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6. A point moves so that its distances from a fixed point and a fixed

plane are in a constant ratio. Prove that the locus is an ellipsoid of revo-

lution when the ratio is less than unity, and a hyperboloid of revolution

when greater than unity.

7. A point moves so that the sum of the squares of its distances from

two intersecting perpendicular lines in space is constant. Prove that the

locus is an ellipsoid of revolution.

129. The elliptic paraboloid — +^- = 2cz. If the coefficient

of if in (4), Art. 125, is positive, the locus is called an elliptic

paraboloid. A discussion of its equation gives us the following

properties

:

1. The elliptic paraboloid is

symmetrical with respect to the

FZ-plane and the ZA-plane and

the Z-axis.

2. It passes through the origin,

but does not intersect the axes

elsewhere.

3. Its traces on the coordi-

nate planes are respectively the

conies

.+ T_ 0, -
2
= 2cz, f-,=»2«,

of which the first is a point-ellipse and the other two are

parabolas.

4. The equation of the curve in which a plane parallel to

the A* F-plane, z = k, cuts the paraboloid is

l + l= 2^ + r
2c?ck 2b2ck

1.

The curve is an ellipse if c and k have the same sign, but

there is no locus if c and k have opposite signs. Hence, if c

is positive, the surface lies entirely above the A F-plane. If k

increases from to oo, the plane recedes from the A' F-plane
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and the axes of the ellipse increase indefinitely. Hence the

surface recedes indefinitely from the AF-plane and from the

Z-axis.

In like manner the sections parallel to the F-ZT-plane and the

£X-plane are parabolas whose vertices recede from the A' F-plane

as their planes recede from the coordinate planes.

The paraboloid is said to " lie along the Z-axis."

The loci of the equations

are elliptic paraboloids which lie along the A'-axis and the

F-axis respectively.

If a = b, the first surface considered is a paraboloid of revolu-

tion whose axis is the Z-axis ; and if b = c and a = r, the parab-

oloids (1) are surfaces of revolution whose axes are respectively

the .Y-axis and the F-axis.

An elliptic paraboloid lies along the axis corresponding to

the term of the first degree in its equation, and in the positive

or negative direction of the axis according as that term is

positive or negative.

JC
2

I/
2

130. The hyperbolic paraboloid -
i
— -^=2cz. If the coeffi-

cient of if in (4), Art. 125, is negative, the locus is called a

hyperbolic paraboloid.

1. The hyperbolic paraboloid is symmetrical with respect to

the FZ-plane and the ZA-plane and the Z-axis.

2. It passes through the origin, but does not cut the axes

elsewhere.

3. Its traces on the coordinate planes are respectively the

conies 2 ^ n x* f _

of which the first is a pair of intersecting lines and the other

two are parabolas.
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4. The equation of the curve in which a plane parallel to the

AF-plane, * = k, cuts the paraboloid is

x y
--f2

= 2ck,ov r .

2 a2ck 2 W-ck
= 1.

The locus is a hyperbola. If c is positive, the transverse

axis of the hyperbola is parallel to the A'- or T-axis accord-

ing as A; is positive or negative. If k increases from to ao,

or decreases from to — oo, the

plane recedes from the XF-plane

and the axes of the hyperbolas

increase indefinitely. Hence the

surface recedes indefinitely from

the AF-plane and the Z-axis.

The surface has approximately

the shape of a saddle.

In like manner the sections

parallel to the other coordinate planes are parabolas whose

vertices recede from the A'F-plane as their planes recede from

the coordinate planes.

The surface is said to " lie along the Z-axis."

The loci of the equations

X & It

~2-~i = 2b
I/, li-ar <? b2

^ = 2 ax,

are hyperbolic paraboloids lying along the F-axis and the A-axis

respectively. A hyperbolic paraboloid also lies along the axis

which corresponds to the first-degree term in its equation.

A plane of symmetry of a quadric is called a principal plane.

Each paraboloid has two principal planes ; each central quadric,

three. Axes of symmetry are called principal axes. A parab-

oloid possesses one such axis; a central quadric, three. The

existence of a center of symmetry for a central quadric explains

the designation " central quadric."



Plate II

Elliptic Paraboloid Hyperbolie Paraboloid

NONCENTIUL QlTADRICS

Hyperboloid of one sheet Hyperbolic Paraboloid

Ruled Quadrics
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PROBLEMS

1. Discuss and construct the following loci

:

(a) y
2 + z2 = 4x. (e) 9z2 - 4x2 = 288?/.

(b) y
2 - z2 = 4x. (f ) 16x2 + z2 = 64#.

(c) x2 - 4 z2 = 16 y. (g) 2/
2 - x2 = 10 z.

(d) x2 + y
2 = 8z. (h) y

2 + 16z2 + x = 0.

2. Reduce by transformation of coordinates each of the following to a

standard form and determine the type of paraboloid it represents

:

(a) z = xy. (c) x2 + 2y2 - 6x + 4y + 3z + 11 = 0.

(b) z = x2 + xy + y
2

. (d) z2 - 3y2 - 4x + 2z- 6y + 1 = 0.

3. A point is equidistant from a fixed plane and a fixed point. Show
that the locus is an elliptic paraboloid of revolution.

4. A point is equidistant from two nonintersecting perpendicular lines.

Show that the locus is a hyperbolic paraboloid.

5. Prove that the parabolas obtained by cutting (a) an elliptic parabo-

loid, and (b) a hyperbolic paraboloid by planes parallel to one of the

principal planes, are all congruent.

6. Show analytically that any plane parallel to the axis along which

(a) an elliptic paraboloid, and (b) a hyperbolic paraboloid lies, intersects

the surface in a parabola.

131. Rectilinear generators. The equation of the hyperboloid

of one sheet, Art. 127, may be written in the form

(*). a2 ~? = ± ~b2
'

As this equation is the result of eliminating k from the equa-

tions of the system of lines

the hyperboloid is a ruled surface. Equation (1) is also the re-

sult of eliminating k from the equations of the system of lines

;+;-*M> :-H(1+ S)'

and the hyperboloid may therefore be regarded in two ways as

a ruled surface.
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In like manner the hyperbolic paraboloid contains the two

systems of lines

a b

x

a

and - -i.y — h * _ ^ —
a b a b k

_ z
=
k'

2c

These lines are called the rectilinear generators of these

surfaces. Hence the

Theorem. The hyperboloid of one sheet and the hyperbolic

paraboloid have two systems of rectilinear generators, that is,

they may be regarded in two ways as ruled surfaces.

The two systems of generators are shown in Plate II.

REVIEW PROBLEMS

Name and draw the surfaces in

in detail all their characteristics

:

1. (a) xy = 0.

b) xy = 1.

c) xy = z.

xy = z2 .

each of the following groups, giving

: z2 + 1.

Z* + Z.

xy

xy

x* + y*

x2 + y
2 = l.

x2 + y
2 = x.

0.

x2 + y
2
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MISCELLANEOUS PROBLEMS

1. Construct the following surfaces and shade that part of the first

intercepted by the second :

(a) x2 + ±y2 + 9z2 = 36, x2 + y2 + z2 = 16.

(b) x2 + y2 + z2 = 64, x2 + y
2 - 8x = 0.

(c) 4x2 + y
2 -4z = Q, x2 + 4^2 -z2 = 0.

2. Construct the solids bounded by the surfaces (a) x2 + y
2 = a2

,

z = inx, z = ; (b) x2 + y2 = az, x2 +' y2 = 2 ax, z = 0.

3. Show that two rectilinear generators of (a) a hyperbolic paraboloid,

and (b) a hyperboloid of one sheet, pass through each point of the surface.

4. If a plane passes through a rectilinear generator of a quadric, show

that it will also pass through a second generator, and that these generatoi-s

do not belong to the same system.

5. The equation of the hyperboloid of one sheet may be written in

y2 z^ x2

the form - =1 By treating this equation as in Art. 131, we
b2 c2 a2

obtain the equations of two systems of lines on the surface. Show that

these systems of lines are identical with those already obtained.

6. Show that a quadric may, in general, be passed through any nine

points.

7. If a > 6 > c, what is the nature of the locus of

*?
,

v"
2

i

z2 -1
a2 - \ b1 - X c2-\

if X>a2 ? if o2 >X>62 ? if 62 >\>c2 ? if \<c2 ?

8. Show that the traces of the system of quadrics in Problem 7 are

confocal conies.

9. Show that every rectilinear generator of the hyperbolic paraboloid

x2 v2 x y— = 2 cz is parallel to one of the planes - ± - = 0.

a2 b2 a b

10. Prove that the projections of the rectilinear generators of (a) the

hyperboloid of one sheet, (b) the hyperbolic paraboloid, on the principal

planes are tangent to the traces of the surface on those planes.

11. A plane passed through the center and a generator of a hyper-

boloid of one sheet intersects the surface in a second generator which is

parallel to the first.

12. Show how to generate each of the central quadrics by moving an

ellipse whose axes are variable.

13. Showhow to generate each of the paraboloids by moving a parabola.
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EMPIRICAL EQUATIONS

132. A problem quite distinct from any thus far treated in this

text arises when it is required to find the equation of a curve

which shall pass through a series of empirically given points.

That is, we suppose that certain

values of the variable and of

the function are known from an

actual experiment, and the cor-

responding points are plotted on

cross-section paper. A smooth

curve is then drawn to " fit

"

these points, and an equation

for this curve is required.

The general treatment of this

important problem is beyond

the scope of an elementary text, x

and the following sections are concerned with simple cases only.

133. Straight-line law. If the curve suggested by the plotted

points is a straight line, assume the law

(1) i/ = mx + b,

and determine the values of m and b from the observed data.

The straight line representing the required law will not neces-

sarily pass through all the points plotted, for experimental work

is subject to error. It is sufficient if the line fits the points

within the limits of accuracy of the experiment. In general,

the straight line may be drawn through two of the plotted

points, and m and b may be calculated from their coordinates.

330
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EXAMPLE

In an experiment with a pulley, the effort, E lb., required to raise a
load of Wlb. was found to be as follows :

w
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PROBLEMS

The following data treated in the same way will yield laws represented

by the formula y = mx + 6.

1. V is the volume in cubic centimeters of a certain quantity of

gas at the temperature t° C, the pressure being constant. Find the

law connecting V and t.

t
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5. S is the weight of potassium bromide which will dissolve in 100 g.

of water at the temperature t° C. Find the law connecting S and t.

t
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EXAMPLE

An experiment to determine the coasting resistance E in pounds per ton

cf a motor wagon for the speed V miles per hour gave the following data

:

V
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PROBLEMS

The following data satisfy laws of the form y = a + bx2 . Determine
the values of a and b.

X
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EXAMPLE

The following data satisfy a law of the form y = ax". Find the values

of a and n. ,

X
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3. The time, t seconds, that it took for water to flow through a tri-

angular notch, under a pressure of h feet, until the same quantity was in

each case discharged, was found by experiment to be as follows :

h
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8. Q is the quantity of water in cubic feet per second flowing through

a right-angled isosceles notch when the surface of quiet water is H feet

above the bottom of the notch. Find the law.

H
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X
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INDEX

Abscissa, 10

Algebraic curve, 44

Amplitude, 108

Anchor ring, 306

Angle,eccentric,215 ; vectorial, 119

Arch, parabolic, 158

Area of ellipse, 175

Asymptotes, 51, 170

Auxiliary circle, 164

Axis, conjugate, 167 ; major, 161

;

minor, 161 ; transverse, 167

Axis of parabola, 153

Cardioid, 221

Catenary, 113

Center, instantaneous, 218

Center of conic, 160, 167

Central conic, 186

Central quadric, 318

Circle, point-, 92

Cissoid of Diodes, 54, 210, 220

Cocked hat, 55

Colatitude, 313

Compound interest curve, 103

Compound interest law, 340

Conchoid of Nicomedes, 221

Confocal conies, 189

Conicoid, 316

Conjugate diameters, 229

Coordinates, oblique, 11

Cubical parabola, 46

Curtate cycloid, 216

Cycloid, 208, 212

Degenerate ellipse, 179

Degenerate hyperbola, 179

Degenerate parabola, 179

Degenerate quadric, 318

Director circle, 225

Directrix, 153, 186, 295

Discriminant of the equation of a

circle, 93

Eccentricity, 162, 168

Ellipse, point, 165

Epicycloid, 217

Exponential curves, 102

Focal radii of conies, 187

Focus, 153, 160, 167, 186

Folium of Descartes, 209

Four-leaved rose, 126, 223

Helix, 301

Hyperbolic spiral, 132

Hypocycloid, 217; of four cusps,

210, 213 ; of three cusps, 206

Intercepts, 46

Involute of a circle, 216

Latus rectum, 154, 161, 168

Lemniscate of Bernoulli, 55, 122,

225

Limacon of Pascal, 55, 222, 225

Lituus, 132

Logarithmic curves, 102

Longitude, 313

341



342 NEW ANALYTIC GEOMETRY

Maximum value of a function, 136

Minimum value of a function, 136

Octant, 232

Ordinate, 10

Parabola, cubical, 46; semicubical,

205

Parabolic spiral, 223

Parameter, 84

Period of sine curves, 107

Point-circle, 92

Point of contact, 191

Polar axis, 119

Pole, 119

Principal axes, 326

Principal planes, 319, 326

Probability curve, 105

Prolate cycloid, 216

Radian, 2

Radius vector, 119

Reciprocal spiral, 132

Rose, three-leaved, 125, 126; four-

leaved, 126, 223; eighUeaved, 126

Semicubical parabola, 205

Spiral, hyperbolic or reciprocal,

132 ; logarithmic or equiangular,

132, 133 ;
parabolic, 223

Spiral of Archimedes, 132

Strophoid, 54, 226

Symmetry, 43

System of logarithms, common,

101 ; natural, 101

Torus, 306

Traces of a surface, 257

Triangle problems, 90

Vertex of a conic, 153

Whispering gallery, 203

Witch of Agnesi, 219
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