

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943-B008

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
REAL TIME PROGRAMMING

OF A ROBOT

by

Paulo R. Souza

December 1986

Thesis Advisor G. J. Thaler

Approved for public release; distribution is unlimited.

f233055

CURifY Classification Of Thi$ page

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb RESTRICTIVE MARKINGS

SECURITY CLASSIFICATION AUTHORITY

DECLASSIFICATION / DOWNGRADING SCHEDULE

3 DISTRI8UTION/AVAILA8ILITY OF REPORT

Approved for public release;
distribution is unlimited

PERFORMING ORGANIZATION REPORT NUM8ER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NAME OF PERFORMING ORGANIZATION

aval Postgraduate School

6b OFFICE SYM80L
(If applicable)

32

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

ADDRESS (Cry. State, and ZIP Code)

onterey, California 93943-5000

7b AODRESS(Ofy. State, and ZIP Code)

Monterey, California 93940-5000

NAME OF FUNDING /SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUM8ERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

TITLE (Include Security Clarification)

REAL TIME PROGRAMMING OF A ROBOT

PERSONAL AUTHOR(S)
Souza, Paulo R.

i TYPE OF REPORT
Master's Thesis

13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month. Day)

1986 December
15 PAGE COUNT

118
SUPPLEMENTARY NOTATION

COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Robot - Real Time Programming
Autoadaptive model

A8STRACT (Continue on reverse if necessary arid identify by block number)

Two difficulties that arise in controlling a robot arm (plant) are the changes in
inertia and the lack of a velocity feedback. The inertia of the arm varies when the
robot picks up or releases a load and the velocity would need a tachometer to be
measured (expensive and not practical). One way to overcome those problems is to use
an autoadaptive model to represent the plant. If the model "follows" the plant
transfer function and both have the same input, the model can have velocity feedback
and the effects will be reflected in the plant. The solution presented above was
investigated and simulated in DSL by Kenneth R. Wikstrom, in his thesis from NPS in
September of 1986. In the present research, a hardware and assembly software was
designed and implemented based on the same structure mentioned in that thesis. The
block diagram and autoadaptive algorithm were slightly modified and the plant was
simulated in a dedicated analog computer. Two transfer functions were tested in the
analog plant: a disk drive motor and a robot motor.

Distribution /AVA1LA81L1TY of abstract
29 UNCLASSIFIED/UNLIMITED SAME AS RPT OTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
NAME OF RESPONSIBLE INDIVIDUAL

G. J. Thaler
22b TELEPHONE (Include Area Code)

408-6247980
22c OFFICE SYMBOL

62Tr
FORM 1473. 84 mar 83 APR edition may be used until exhausted

All other editions are obsolete

1

SECURITY CLASSIFICATION OF THIS PAGE

Approved for public release; distribution is unlimited.

Real Time Programming
of a Robot

by

Paulo R. Souza
Captain. Brazilian Air Force

B.S., Instituto Tecnoloaico de Aeronautica. Brazil, 1979

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1986

ABSTRACT

Two difficulties that arise in controlling a robot arm (plant) are the changes in

inertia and the lack of a velocity feedback. The inertia of the arm varies when the robot

picks up or releases a load and the velocity would need a tachometer to be measured

(expensive and not practical). One way to overcome those problems is to use an

autoadaptive model to represent the plant. If the model "follows" the plant transfer

function and both have the same input, the model can have velocity feedback and the

effects will be reflected in the plant. The solution presented above was investigated and

simulated in DSL by Kenneth R. Wikstrom, in his thesis from NPS in September of

19S6. In the present research, a hardware and assembly software was designed and

implemented based on the same structure mentioned in that thesis. The block diagram

and autoadaptive algorithm were slightly modified and the plant was simulated in a

dedicated analog computer. Two transfer functions were tested in the analog plant: a

disk drive motor and a robot motor.

TABLE OF CONTENTS

I. INTRODUCTION 9

II. THE PROPOSED SYSTEM 13

A. INTRODUCTION 13

B. MODEL AND CONTROLLER 13

C. THE PLANT 15

D. THE IDENTIFICATION ALGORITHM 15

III. SOFTWARE DESIGN - 16 BITS 18

A. INTRODUCTION IS

B. MAIN PROGRAM IS

C. SUBROUTINES 29

1. The Subroutine ANALOG 30

2. The Subroutines of Basic Operations 33

3. The Subroutines OUTOP and INOP 33

4. The Subroutine CURVE 34

5. The Subroutine WALG 34

6. The Subroutine STORE 35

7. The Subroutine DISPLAY 35

S. The Subroutine TRANSFER 37

IV. HARDWARE 53

A. GENERAL 53

B. THE MICROPROCESSOR 53

C. THE ARITHMETIC PROCESSING UNIT 55

1. Subtraction Routine 60

2. Multiply Routine 60

3. Square Root Routine 60

D. THE INTERFACES 61

E. THE PLANT 66

V. PERFORMANCE OF THE SYSTEM 76

A. THE SCALING PROBLEM 76

B. RESULTS 77

VI. CONCLUSIONS . AREAS FOR FURTHER STUDIES 89

APPENDIX A: PROGRAM MODEL - 16 BITS 91

APPENDIX B: MONITOR 98

1. MONITOR FEATURES 9S

2. MONITOR PROGRAMS 99

APPENDIX C: EQUIPMENT AND OPERATIONAL PROCEDURES 113

1. EQUIPMENT 113

2. PROCEDURE 113

LIST OF REFERENCES 115

INITIAL DISTRIBUTION LIST 116

LIST OF TABLES

1. MEMORY ORGANIZATION 55

2. DATA ENTRY AND DATA REMOVAL PROCESS 59

3. SUBTRACTION ROUTINE FOR TESTING THE APU 61

4. MULTIPLICATION ROUTINE FOR TESTING THE APU 62

5. SQUARE ROOT ROUTINE FOR TESTING THE APU 63

6. NUMBERS INSIDE AND OUTSIDE THE MICROPROCESSOR 65

7. COMPATIBILITY TEST BETWEEN ADC AND DAC 66

S. THE SCALE PROBLEM 77

LIST OF FIGURES

1.1 Simplified Block Diagram of the System 10

1.2 The Central Computer and the Terminal Microprocessors 12

2.1 The Proposed System 14

2.2 The Simple Model 15

2.3 Curve Following Process 16

3.1 The Main Program - Flowchart A 19

3.2 Data Storage Control 22

3.3 The Main Program - Flowchart B 24

3.4 The Main Program - Flowchart C 26

3.5 The Mam Program - Flowchart D 2S

3.6 Trapezoidal Integration 29

3.7 The Main Program - Flowchart E 30

3.8 Velocity Integration Using the Corrector Factor 31

3.9 The Main Program - Flowchart F 32

3.10 The Main Program - Flowchart G 3S

3.1

1

The Main Program - Flowchart H 39

3.12 The Subroutine Analog 40

3.13 The Subroutine of Basic Operations 41

3.14 The Subroutine Outop 42

3.15 The Subroutine Inop 43

3.16 The Subroutine Curve 44

3.17 The Subroutine Walg 45

3. IS The Subroutine Store 46

3.19a The Subroutine Display 47

3. 19b The Subroutine Display 4S

3. 19c The Subroutine Display 49

3. 1 9d The Subroutine Display 50

3. 19e The Subroutine Display 51

3.20 The Subroutine LONGDIV 52

4.1 The Microprocessor and Interfaces 54

4.2 32 Bit Floating Point Register 57

4.3 Example of a 32 Bit Floating Point Number 58

4.4 Stack Configuration for APU S23 1 58

4.5 Digital to Analog Converter 64

4.6 Plant Transfer Function 67

4.7 Analog Plant 6S

4.S Double Integrator 70

4.9 Comparison between Digital and Analog Integrators 71

4. 10 The Second Integrator 73

4. 1

1

Testing the First Block of the Plant 74

5.1 Position and Velocity for a Disk Driver Motor. R = 0.31 rad 79

5.2 Position and Velocity for a Disk Driver Motor, R = 0.62 rad SO

5.3 Position and Velocity for a Disk Driver Motor. R = 1.25 rad SI

5.4 Position and Velocity for a Disk Driver Motor. R = 2.50 rad 82

5.5 Position and Velocity for a Disk Driver Motor, R = 3.11 rad S3

5.6 Position and Velocity for a Disk Driver Motor, R = 4.38 rad S4

5.7 Position and Velocity for a Robot Motor, R = 0.62 rad 85

5.S Position and Velocity for a Robot Motor, R = 1.25 rad 86

5.9 Position and Velocity for a Robot Motor, R = 2.50 rad 87

5.10 Position and Velocitv for a Robot Motor, R = 3.11 rad SS

I. INTRODUCTION

The positioning of a robot arm with just one degree of freedom can be a hard

task if some constraints are imposed by the problem. Some of the requirements and or

restrictions can be:

1

.

Accuracy.

2. Minimum time.

3. No overshoot.

4. Velocity measurements are not available.

5. Loads can be changed during operation.

The accuracy and overshoot are common requirements and will not be discussed.

The minimum time requirement is,in a way, incompatible with the lack of a tachometer

to provide velocity measurements. How can the motor achieve the required position

with no overshoot and minimum time without the knowledge of the velocity along the

trajectory? It cannot be done unless the velocity can be guessed using the position

information that is readily available. In this case the curve following method can be

used and the arm will be decelerated after some suitable point in the trajectory.

What is the effect of changes in the loads? They will modify the inertia of the

system and the transfer function of the plant. So. a real time identification algorithm is

needed to detect inertia changes and update the controller.

With these constraints and solutions in mind let us analyze the scheme proposed

in Figure 1.1 . The plant represents the arm and motor of the robot. The model is a

very simple approximation of the plant. Both model and plant are driven by the same

input. The identification algorithm receives both outputs, identifies the actual plant

parameters and updates the model in order to keep CM and CS as close as possible.

The theoretical scheme was treated in [Ref. 1] and will not be detailed here.

However, the block diagram will be explained in Chapter II. The purpose of this

research was to implement the real time system using a microprocessor, in a

protoboard level. The model and controller were implemented by software in the

microprocessor and the plant was simulated using analog hardware.

When the desired position is achieved the controller, that was in "bang-bang"

mode, can be switched to a linear compensator. This feature is important but was not

INPUT

CM
V, MOn^Lp

CS

1
/ IDENTIFICATION-

ALGORITHM

hfc PLANT
1

W

Figure l.l Simplified block diagram of the system.

implemented in this thesis since our goal was to prove the feasibility of the

autoadaptive algorithm using a servo system as a controller.

The identification algorithm was chosen to be efficient and simple. The algorithm

used in this thesis is found in [Ref. 1] and will be referred as "The Wikstrom

Algorithm". It will be briefly discussed in Chapter II and the software implementation

will be presented in Chapter III (subroutine "Walg").

The proposed system studied on a block diagram basis is presented in Chapter II.

The 16 bits software design is discussed in Chapter III. Chapter IV presents the

hardware for the analog plant and the microprocessor. The results are presented in

Chapter V. The conclusions and some possible areas to be studied are treated in

Chapter VI. The 16 bit program (called "Model") and the monitor program are

presented in Appendices A and 13. respectively. The procedures to operate the hardware

are discussed in Appendix C.

The Z-S<) microprocessor was chosen to implement the system for three main

reasons:

1. The monitor was alreadv developed and, with small chanties, could provide all

the support needed to run and debug the software.

10

2. The author is very familiar with this microprocessor.

3. The time requirements to operate a robot arm are not a constraint to the use of
this microDrocessor. On the other hand, the idea behind the model. controller
and algorithm is still valid for a faster microprocessor.

All the software was developed using the Z-100 and Data 1,0 in the Digital Lab.

The programs were stored on floppy disks, under CP/M operational system, and

transferred to EPROM's via Data 10. Once in EPROM's they were installed in the

protoboards and then executed using the monitor. The debugging process was done

using some features of the monitor that will be explained later on.

The microprocessor and interfaces treated in this research can be considered as

individual parts of a large system. Suppose a robot with multiple arms, mechanically

coupled by joints. Each arm will have a terminal microprocessor (TM). This

microprocessor implements the model, controller and updating algorithm accomplished

in this thesis. The position input for each arm is commanded by a central computer.

This command is applied directly to the corresponding Terminal Microprocessor, as

shown in Figure 1.2 .

The inputs to the central computer (CO are the actual and desired (future)

position of each arm. Based on this data it calculates the best trajectory for each arm

and sends the individual position command for the TM's. The central computer does

not worn' about changes in the inertias or other factors that can occur in the

individual arms. These problems are solved by the terminal microprocessors.

11

\RM2

«? :>

1

TM2

*

i

tta

CENTRAL

COMPUTER *"
<

^

<

f)
d -> ~f——Pi «E

1

w ii ^ w

A

T

TM4

A

A R M A

Figure 1.2 The Central Computer and the Terminal Microprocessors.

12

II. THE PROPOSED SYSTEM

A. INTRODUCTION

The entire system can be separated in three different areas: model, plant and

algorithm, as presented in Figure 1.1 . However, physically, there are two main parts:

the digital microprocessor that contains the model and algorithm, and the analog

implementation of the plant that represents the robot arm.

The whole system is depicted in Figure 2. 1 and the only difference between this

one and that presented in [Ref. 1] is the input of the plant. In [Ref. 1] the plant input is

XDOTE and here is V. This choice simplifies the hardware of the plant and still keeps

the requirement that both model and plant have to have identical inputs.

B. MODEL AND CONTROLLER
The simple model that tries to approximate the plant consists of two integrators

and a constant gain. Km, as shown in Figure 2.2 . The servo mechanism with velocity

curve following and "bang bang" amplifier that was shown in Figure 2.1 belongs to the

controller.

Now that the controller is separated from the model, let us go back to Figure 2.1

and examine every block. The input of the regulator, R. is a step command that

determines the angular movement of the robot arm. The error. E, is the input of the

curve . The curve approximates the deceleration curve of the motor and is a parabola.

Mathematicallv. we have

XDOT = AV E .where A = KlV 2.Km.Vsat

Vsat= saturation limit of the amplifier

Thus, from the servo error and the knowledge of the system, the desired velocity
,

XDOT, is computed by taking the square root of the error and multiplying by A. This

velocity is compared with the actual velocity, CDOT, to generate the velocity error,

XDOTE, that drives the amplifier (limiter). If the actual voltage, CDOT. is less than

the theoretical one, XDOT, the limiter is set to + Vsat (+ 10 volts), that means, the

system keeps applying "full power" to get to the desired position. The curve following

process is illustrated in Figure 2.3 . When CDOT reaches XDOT the deceleration

process starts and the limiter alternates -Vsat and + Vsat at its output in a bang bang

process. The gain K2 is very large to guarantee the full acceleration.

13

r "~l

\f

IDENTIFICATION ALGORITHM

c

<

>
-l»

ii

•c
t

o
o

w
Q
O
2

-l«
L J fc

E
m

4 _JL

L Js
J k

w
•X

s

1

7\|

+

<

t

îi

w

y«

5
J*

Figure 2.1 The Proposed System.

14

INPUT
> Km

CDDOT> CDOT
* —2--_$

OUTPUT

Figure 2.2 The simple model.

C. THE PLAiNT

In this research two plants were tested, a disk driver and a robot motor. The

transfer function of the disk driver was implemented first and in order to compare with

the results obtained in [Ref. 1] the motor and load parameters were assumed to be the

same, that is, the motor of a disk driver and a very small arm. As presented in Figure

2.1 it is a second order system with a mechanical pole at 20.55 rad. sec , a pole at the

origin and a gain equal to 13.3.

D. THE IDENTIFICATION ALGORITHM
The identification algorithm is represented in a separate block in Figure 2.1

because it has a specific function and "connects" plant and model. However, it is a

piece of software included in the microprocessor and imbedded in the program Model.

The specific function of the algorithm is to measure the plant output and update

the model parameters in such a way that the model approximates the plant the best it

can. Since both model and plant have the same input, if they have identical transfer

functions thev will have the same behavior. This is what we need because the model is

15

CDOT

XDOT

Figure 2.3 Curve Following Process.

perfectly controllable with position and velocity feedback. Thus, controlling the model,

the plant will be controlled.

In an ideal case the model will be exactly the same as the plant during the entire

trajectory. This was the case when, as an experience to observe the behavior of the

analog plant, it was set up as a double integrator and a gain, becoming a copy of the

model. The results were fine and will be presented in detail in Chapter IV. where the

piant hardware is discussed.

As mentioned in Chapter I the algorithm used in this thesis was developed by

Wikstrom in [Ref.
1

J for a disk driver system whose transfer function is that of the

plant studied in Chapter IV. Wikstrom considered two mandatory requirements to

implement the autoadaptive algorithm:

1. The calculations must be reasonablv accurate to allow the model states to
approximate the trajectorv of the servo motor during the seek mode. The seek
mode occurs in the full acceleration phase of the trajectory.

2. The calculations must be simple to minimize the computation time.

16

In the algorithm, the gain Km. the model output CS and the model velocity

CDOT are updated. In the ideal model if C is the position and Vsat the saturation

voltase of the amplifier we can write:

C- Km.V
sat

(t
2
/2) - Km = 2C/V

sat
.t
2

For a sampling interval equal to T, t = NT, where N is the number of sampling

intervals that occured up to time t. Letting C = CS :

2CS
Km

V
sat

(NT)2

The velocity of the plant can be computed as

CS-CSCN- 1)

CSDOT = -
T

Or, more accurately

2[CS-CS(N-D]
CSDOT = -CSDOT(N-l.

17

III. SOFTWARE DESIGN - 16 BITS

A. INTRODUCTION

As pointed out in Chapter II. the model is just a double integrator with a

constant gam Km. The controller is the servo system with position and velocity

feedback and a velocity curve following. The block diagram of this system is depicted

in Figure 2. 1 .

In order to simplify the task for the microprocessor the amplifier was assumed to

be just a limit er without any linear region and the gain K2 that appears in Figure 2.1 is

not needed anymore. The system will have a "bang-bang" control, that is. V will be

+ 10 or -10 depending upon the value of XDOTE.

The software for this digital servo was designed following the natural sequence of

the servo itself, from R to CM. In order to keep a uniform notation, equations, block

diagrams, flowcharts and programs have the same name for the corresponding

variables. The only difference is that in flowcharts and programs the dot above the

letter, indicating derivative, is literally written. For instance. C or CDOT represent the

derivative of C. Another point that must be clarified is that the output of the model is

cailed CM in the assembly program, rather than C, to avoid confusion with the C

register. Thus, the derivative of CM should be CMDOT but is called CDOT to simplify

the notation. The flowcharts presented in this Chapter are directly related with the 16

bit program "Model", presented in Appendix A. The instructions used in the program

are based in [Ref. 2].

B. MAIN PROGRAM
The two first blocks of Figure 3.1 initialize the parallel port and some variables .

The parallel port organizes the traffic between the discrete and continuous world

involved in this research. The function of each port will be explained in detail in

Chapter IV where the hardware is presented. The variables used in the mam program

are discussed in the following paragraphs.

The step input. R. is the position to be achieved by the robot arm. Its value can

be entered from the keyboard and is requested by the program. The maximum value

allowed is 127. limited by the eight bit A D converter. CM is the output of the model

and represents its actual position. CM1 is the position at tune t minus one. that is. the

18

cMnnFT \

PARALLEL PORT SET UP
PORT A IS OUTPUT
PORT B IS INPUT

PORT C/HIGH IS OUTPUT
PORT C/LOW IS INPUT

I
VARIABLES INITIALIZATION

CM,CDOT,CDDOT,CDMl ,CDDM1 , CSMI-*
CMCF , MFLAG , NS , KMFLAG , KM •*

CF <4 100, NN *4 i,IY -* I500H

"AUTOADAPTIVE CONTROL
FOR A ROBOT ARM"

I
<^ SCRLF ^>

3

r

/
» INPUT ANGLE "

/

J '

<(SCRLF ^>

I

< GETSTRIN >

) t

< HEXCONV >

6
Fisure 3.1 The Main Prosram - Flowchart A.

19

previous value of CM. The actual velocity of the model is CDOT. This velocity is

fedback to be compared with XDOT as shown in Figure 2.1 . CDM1 is the model

velocity at time t minus one or the last value of CDOT. CDDOT is the actual

acceleration of the model. CDDM1 is the previous value of the acceleration.

The output of the plant is called CS and represents the actual position of the

robot arm. CMCF represents the product between CM and CF, where CF is a

correction factor used to raise the value of CM before integration. This will be

explained later in this Chapter. XDOT is the velocity computed on the basis of the

deceleration curve of the motor, as mentioned in Chapter II. XDOTE is the difference

between the desired and actual velocity of the model. KM is the motor gain. X is a

temporary memory for the index register IV. This register points to the next position of

the memory available for data storage and its value is copied into the memory location

N in order to check the end of memory. The memory available to store data goes from

1600H to 23FFH. So. the storage process must finish when the most significant byte

oi' IY reaches 24H. N~N counts the number of sampling intervals which have occured

up to the present time and is used in the Wikstrom algorithm to compute the value of

Km.

During the development of the software, all important variables were presented

on the screen on-line, using a routine called WRITE. This routine was called after an

operation as. for instance, an addition, and displayed the result stored in the register

pair HL. In this fashion, the following variables were monitored in each loop: Error,

square root of error. XDOT. XDOTE. CDDOT. CDOT. CM and CS. They were

presented on the screen in hexadecimal codes. The only problem with this routine is

that more than 400 microseconds were required to display one variable and this caused

too much delay to the program .When the analog plant is part of the system we cannot

afford such delays since the continuous system does not stop working. The alternative

solution is to display the partial results off-line using the routine DISPLAY. But.

before using this routine, the data must be stored in the memory. Thus, the routine

WRITE was replaced by the routine STORE. This routine takes the value of the

variable stored in the register pair HL and stores it into the data memory (from 1600H

to 23FFH).

In some cases we do not need to store the variables in each consecutive loop but.

for instance, store them each fifth loop. Thus, a Rag must tell the STORE routine

when a data is to be stored. This is the role of MFLAG. If MFLAG is zero the data is

20

stored and when it is different than zero no data is stored. NS is the variable which

controls the number of loops that will not be displayed. When the memory is full the

flag is disabled and no more data is stored. However, the program continues running

normally. The operation scheme of M FLAG is shown in Figure 3.2 . At the beginning

of the program MFLAG is initialized to zero. So,during the first loop the data is stored

by routine STORE. At the end of the loop NS is incremented and checked. Since its

value is not 5 yet, MFLAG becomes FFH and no data is stored in the next four loops.

In the fifth loop NS is 5 and the flag is inverted, becoming zero again and the sixth

loop has data storage. But NS is set to zero again and the process is repeated until the

memory available for data storage is full. At this point the flag is converted to 55H and

from this point the inversion that occurs when NS is 5 does not convert the flag to

zero anymore. That is. no more data is stored.

The main program is structured with many subroutines. Some of them belong to

the monitor and will be briefly discussed here. The monitor, whose program is

presented in Appendix B. is the operational system that supervises the microcomputer.

The remaining subroutines will be discussed in the next paragraphs.

The subroutine STRING (monitor) receives characters from the keyboard and

stores them in a stack . The subroutine HEXCONV (monitor) converts the data

stored in the stack from ASCII to hexadecimal and stores them into the register pair

DE. The subroutine SCRLF (monitor) provides carriage return and line feed.

The subroutines SUBTRACT, ADDITION. MULTIPLY, DIVIDE and CURVE

when performed store the result in the register pair HL. The operands must be in

register pairs DE and HL before the subroutine is called. In the case of the subroutine

CURVE (input is the position error and output is XDOT). the operand must be in HL.

In the subroutine SUBTRACTION the operand stored in DE is subtracted from the

operand stored in FIL. In the subroutine DIVIDE the operand stored in FIL is divided

by the operand stored in DE.

In order to be stored by subroutine STORE the data must be in register pair HL.

This is very convenient since all operations send the result to these registers and all

important variables come up from some operation.

All variables and subroutines that appear in Figure 3.1 were discussed in the

previous paragraphs. Summarizing the operation of these first blocks :

1. The Parallel interface is set up

2. Variables are initialized

21

PLOOP

MFLAG

MFLAG

<(STORE)>

NS + 1

MFLAG FFH

MFLAG 55H

MFLAG

NS

MFLAG

Fieure 3.2 Data Stcrase Control.

22

3. Messages are sent to the screen introducing the svstem and askine for the anele
input (R).

4. GETSTRIN eets the characters from the kevhoard. HEXCONV transforms
them from ASCII to hexadecimal.

The main program continues in the flowchart of Figure 3.3 . The value of the

input position R is saved as an hexadecimal quantity. Between this block and the next

is located the position feedback of the servo loop. The actual position is subtracted

from the input position and the result is stored for future presentation (off-line).

Register C is set as a flag to indicate if the position error is positive or negative. The

error is tested. If it is negative, C is set to 1 and the number is converted to positive. If

it is positive, no action is taken. XDOT is computed by subroutine CURVE and the

result is stored into the register pair HL.

The flowchart of Figure 3.4 starts with register C being tested. If it is zero, the

error was positive and no action is taken. If it is different than zero, the error was

negative and XDOT is converted to negative. In both cases, XDOT is stored for

future presentation on the screen. The actual velocity, CDOT is subtracted from

XDOT resulting XDOTE. which is stored.

Continuing the description of the main program, the blocks of Figure 3.5 can be

described in the following way. XDOTE, computed in the last operation is available in

HL. Its value is checked. If it is positive, the variable V is set to 4-Vsat and if it is

negative, V is set to -Vsat and the flag KM FLAG is set to 1. The value of V is the

input of the model and also the input of the analog plant and must be sent to the

digital to analog converter. The gain Km is multiplied by V and the result is stored.

The product of V and Km just computed represents the acceleration (CDDOT)

of the model and its integration yields the velocity . Before discussing the flowchart

that shows this computation, let us explain briefly the trapezoidal integration used in

this program. Mathematically we have CDOT = CDOT + (CDDM1 + CDDOT)

T/2 . where the previous value of CDOT is added to the trapezoidal area formed by the

actual and previous value of CDDOT and the time lapsed between them, as illustrated

by the shaded area in Figure 3.6 .

A very important point in the integration process is the integration step. T. It

was- determined by simply replacing the instructions "JR PLUS" and "JR VOLTS" by

"NOP" instructions. Thus, the ± 10 Volts are sent to the analog input and the time

interval can be measured with an oscilloscope. It turned out to be 1.1 msec.

23

PLOOP
•DE

DE-* CM

< SUETRACT

<

>

STORE >

C-*

HL^ -HL

< CURVE >

Fieurc 3.3 The Main Proeram - Flowchart B.

24

In Figure 3.7 the flowchart of the trapezoidal integration of the acceleration is

presented and can be described as follows: The acceleration CDDOT . just computed,

is saved. The previous value of CDDOT is loaded into the register pair DE and the

actual value of CDDOT is stored in CDDM1, that is. CDDM1 is updated. The actual

and previous value of the acceleration are added. The register pair DE receives Tl =

2/T. This transformation is necessary because T is a very small value and cannot be

represented by a 16 bit integer number. So. instead of a multiplication by T/2, we can

divide by 2/T = Tl. The sum. CDDOT + CDDM1. is divided by Tl. The last value

of CDOT is added to the above result yielding: CDOT +
(CDDOT 4- CDDM1) T 2

The actual value of CDOT is saved and stored for posterior presentation. This

integration was first designed as a 16 bit computation and then modified to a 32 bit

floating point program. The actual and previous value of the acceleration (CDDOT

and CDDM1) are kept as 16 bit variables and the 32 bit value of CDOT is saved in

temporary variables to be used in the next step. CDOT is also saved as a 16 bit

number to be displayed on the screen.

The conversions from integer to iloating point and vice-versa are not detailed in

the flowchart but each number that goes to the Arithmetic Processing Unit is

converted to a 32 bit floating point number before the operation.

The integration of CDOT just computed gives the actual value of the position.

CM. However, there is a computational problem due to the fact that the integration

step is very small. Since the first values of CDOT are also small and the computer is

working with integer variables, all values of CM that are less than one are rounded to

zero and not accumulated by the trapezoidal integration:

CM = CM + (CDOT 4- CDM1)T2
As can be seen from the above equation, as far as the second term (CDOT +

CDM1)T 2 is zero (or rounded to zero) the value of CM will stay at zero. The way to

bypass this problem was to magnify the value of the variable to be integrated (CDOT)

multiplying it by an amplifier factor before the integration. After the integration the

output is attenuated by the same factor. As shown in Figure 3.S the corrector factor

(CF) was set up to 100 and the output of the integrating block is CMCF that stands

for CM times CF. This was the first approach to compute CM and could be modified

to work with 32 bit floating point numbers as in the CDOT computation. However.

CM is being updated even' loop and the result o[this computation is not taken into

account. If this is not the case, the integration instructions can be easily modified by

looking at the CDOT computation.

25

HL HL

c STORE >

DE)OT

<c SUBTRACT

<

>
XDOTE

STORE >

Figure 3.4 The Main Proeram Flowchart C.

26

With this introduction to the integration of the velocity the flowchart presented

in Figure 3.9 is easily understood. This flowchart is a continuation of that studied in

Figure 3.7 where CDOT was computed and loaded into the HL register. The last value

of CDOT (CDM1) is loaded into the register pair DE and the actual value of CDOT

updates CDM1 for the next loop. CDOT (in HL) and CDM1 (in DE) are added. The

register pair DE is loaded with T10CF that stands for Tl over CF. This parameter is

created by the fact that, as mentioned in the first integration. Tl = 2/T and the

corrector factor multiplies the input variables. The division rather than multiplication

was explained in the last flowchart. The last value of CMCF is loaded into DE and

added with (CDOT + CDM1)(T/2)CF yielding the new value oi^ CMCF. CMCF is

saved, DE is loaded with CF and after the division the new value of CM is obtained,

that is CM = CMCF CF.

The main program continues in the flowcharts presented in Figures 3.10 and 3.11

The idea behind this section of the program is to get the plant output and, using the

Wikstrom algorithm, update the parameters of the model. Since these two flowcharts

are at the end of the main program they also test the variables that control the end of

the memory available for data storage and the frequency of storage . The flowcharts

can be described as follows. CM, the actual model output just computed, is saved for

future calculations and stored for off-line presentation. The subroutine ANALOG
loads the plant output into the register pair HL and the subroutine STORE saves it at

the data memory. The subroutine WALG applies the Wikstrom algorithm to update

Km and CM based upon the actual and previous plant outputs.

The variable NS, whose function is to control the frequency of storage, is

incremented and checked. In the example presented in the flowchart the desired

frequency of storage is 5. This means that the data are to be storage every five loops.

As explained before during the discussion of the MFLAG scheme, if NS = 5, MFLAG
is complemented and becomes zero, enabling the storage process and NS is set to zero

to restart the procedure. On the other hand, if NS is not zero MFLAG is set to FFH.

disabling the storage process. The data memory is checked. If it is full MFLAG is set

to 55H and from this point no more data is stored, since the complement of 55H is

AAH and MFLAG will never be zero again. If the memory is not full, no action is

taken. In both cases the program is addressed to the beginning to close the loop.

27

- VSAT

KMFLAG

I
DAC

<

<

si*

V «< HL

t 1

DE «« KM

i J

MULTIPLY >
CDDOT

STORE >

HL

DAC

Figure 3.5 The Main Program -Flowchart D.

28

CDDOT

CDDM1

time

Figure 3.6 Trapezoidal Integration.

C. SUBROUTINES

The main program "MODEL" was structured to be easily understood and

followed. Since it is written in Assembly language some simple operations need lots of

instructions. In order to overcome this problem, all repetitive operations were

implemented in subroutines.

Each time a subroutine is invoked, 13.5 microseconds are added to the program:

S.5 due to the instruction "CALL" and 5 microseconds due to the instruction "RET".

In the present program there are 3S calls to subroutines yielding a total time of 513

microseconds. This reasonable "delay" is not affecting this experiment but could affect

a practical application. However, if necessary, this time can be reduced to zero by just

imbedding all the subroutines into the main program.

29

CDDOT

CDDOT ~m KL

DE «* CDDM1

CDDM1 <« KL

<C
ADDITION >

DE

<^ DIVIDE y

JL

DE -* CDOT

<c ADDITION >
CDOT

CDOT -» KL

2

\ STORE /

Ficure 3.7 The Main Program - Flowchart E.

30

CDOT
100

1 CMCF 1
CM

s 100

Figure 3.8 Velocity Integration using the Corrector Factor.

1. The Subroutine ANALOG
The objective of this subroutine is to sample the plant output, CS, at the end

of each loop. This is done through port B of the parallel interface and the analog to

digital converter (ADC). Port B of the interface is at address 02H as determined at the

beginning of the main program.

Some of the instructions presented in this subroutine need a little knowledge

of the hardware to be completely understood. However, the main idea can be absorbed

from the flowchart presented in Figure 3.12 The blocks are now described in the

sequence they appear in the flowchart. The ADC is enabled and starts converting the

actual analog output to a corresponding eight bit number. The DATA READY pin of

the ADC is polled and if data is available (conversion is completed), it is transferred to

the A register. Otherwise the status is checked again. The incoming data is converted

in a two's complement number by adding SOH. This is explained in detail in Chapter

IV.

After conversion in a two's complement number the data sign is checked. If it

is negative a conversion to positive is executed. The reason to justify this procedure is

quite simple. In this research the movement of the robot arm is restricted to just one

direction and negative numbers are not expected. However, at the beginning of the

31

CDOT

DE -*a CDM1

CDM1 «4 KL

<(ADDITION ^>

DE TIOCF

I
< DIVIDE >

DE CMCF

< ADDITION >

CMCF **i HL

DE *m CF

E
/ DIVIDE ^>

CM

Figure 3.9 The Main Proeram - Flowchart F.

movement, when CS is still a very small number the noise can drive the output to a

negative value and this would introduce an error in the system, since the program is

not prepared to deal with negative numbers coming from the analog plant. Since the

data is equal to or less than 127 and a positive number, it is loaded into register L and

register H is set to zero. The ADC is disabled to allow the repetition of the process.

This step will be detailed in Chapter IV.

2. The Subroutines of Basic Operations

The subroutines that perform addition, subtraction, multiplication and division

will be called basic operations subroutines. They all use the Arithmetic Processing Unit

(APU) Intel S231 to perform the operations. The procedure is the same for these

subroutines as shown in Figure 3.13 . The operands are sent to the APU by subroutine

OUTOP. Then the appropriate command (each operation has its particular code) tells

the APU what operation is to be performed with those operands. Finally, the

subroutine INOP (input operand) retrieves the result from the APU. In all talks

between APU and microprocessor the operands and commands must pass through

register A of the CPU. The APU operands and commands are addressed to outputs

OSH and 09H, respectively. An important point to be noticed in the program is that

the operands must be loaded in register pairs HL and DE before calling a basic

operation subroutine. In order to get correct results in the subtraction and division

subroutines we have to keep in mind that the registers will be manipulated in the

following way:

Subtraction is given by HL <*— HL — DE

Division is given by HL -*— HL/'DE

3. The Subroutines OUTOP and INOP

As mentioned above the subroutines OUTOP and INOP communicate with

the arithmetic processing unit in order to send operands before an operation and

retrieve the result after the operation. The flowchart of the subroutine OUTOP is

shown in Figure 3.14 . The contents of the registers HL and DE are sent to the APU in

this order. Also notice that the low bytes are sent first in both cases. The subroutine

INOP is presented in Figure 3.15 The result obtained in the APU after an operation is

transfered to register A and then to registers H and L. in this order, one byte at a time.

Notice that the high order bvte of the sixteen bit result is the first to be retrieved.

33

4. The Subroutine CURVE

This subroutine uses the APU to compute XDOT from the position error and

the constant SQRT(2.V ..Km). The computation is all done inside the processing unit

to avoid the error caused by converting the square root to an integer. Even' variable or

constant that is sent to the APU is converted to a 32 bit floating point number. After

the computation XDOT is converted back, to integer (refer to Figure 3.16).

5. The Subroutine WALG
This subroutine implements the autoadaptive algorithm described in [Ref. 1].

In that algorithm, the position, velocity and gain of the model are updated. However.

the velocity CDOT is not being updated in this subroutine, for the following reason:

the program was written for 16 bits but the interfaces were built to work, with just eight

bits, in order to simplify the plant. So. the biggest positive number the plant can deal

with is 127 and the smallest is I.

As a consequence of the above restrictions, the differences between an actual

value of the plant output (CS) and its last value can not be always detected due to the

round off problem. Since the computation of CDOT is based upon this difference, the

result would be wrong most of the time. For instance, let's consider that the exact

value of CS is 54.S2 and the last value of the plant output (CSM1) was 54.17.

Assuming that the velocity is computed using the simple formula CSDOT = (CS-

CSMD.'T and working with integers the result will be CSDOT = 0. since CS and CSM1

were both rounded to 54.

The flowchart of this subroutine is presented in Figure 3.17 and will be

described in the following paragraphs. All the operations are done using the Arithmetic

Processing Unit and integer numbers (16 bits).

The variable KM FLAG is set to zero at the beginning of the main program

and when the full acceleration phase ends, that is CDOT is greater than XDOT for the

first time, it is set to 1. In the subroutine, the flag is checked and if it is one. KM is not

computed anymore, remaining with its last value.

In the full acceleration phase KM is computed and updated each time the

subroutine is called. The formula used to compute KM is the following:

KM = 2CS Vsat(NT)2 .

The values of Vsat and T are known and representing the constants by the parameter

KMC we have:

KMC = 2/10Vsat(T)2 = 16529 for T = 1.1 ms and Vsat = 10.

34

The extra constant in the denominator (10) was introduced because the numbers

cannot be greater than 32767. So, after the division by N (represented by NN in the

program) and the multiplication by CS. KMC must be multiplied by 10. This is shown

in the eight blocks that follow the KM FLAG block, ending with KM being updated.

The reason KMC is not divided by NN first (saving instructions) and then multiplied

by CS and 10 is that when NN becomes a big number and KMC/NN becomes less

than one it is rounded to zero. So, after the first division (KMC/NN), there is a

multiplication by CS to raise the result before dividing by NN again.

6. The Subroutine STORE

This subroutine transfers the data from register pair HL to the data memory.

The purpose of this storage is to make those data available for an off-line presentation

on the screen. As mentioned in the previous subroutines all operations send the result

to the register pair HL. So, this routine is always called after some important

operation. The flowchart is presented in Figure 3. IS and can be described as follows:

The flag is checked and if it is zero the data is loaded into the memory and the pointer

is incremented. Otherwise, no action is taken.

7. The Subroutine DISPLAY

The mam purpose of this subroutine is the off- line presentation of the data

stored by subroutine STORE on the screen off-line. That is. after the complete

displacement of the robot arm, the program can be reset and the intermediate steps can

be analyzed by calling the subroutine DISPLAY. The operation procedure is discussed

in Appendix C. The variables that are set up to be stored by the actual program are: E,

XDOT, XDOTE, CDDOT, CDOT. CM, CS and NN (the number of loops). They are

stored from address 1600H to 23FFH, with a total of 35S4 bytes. Since each variable

has 16 bits and eight variables are stored each loop, the memory is able to store 224

loops of the main program. If the data are stored in consecutive loops, only the first

246 milliseconds of data will be stored. If all the loops are not stored this time can be

increased. For instance, if the data are stored even." fifth loop the program will be

documented for 1.23 sec. The number of loops to be stored can be changed if the

program is transferred to the RAM (refer to Appendix C).

Another important feature of this subroutine is the conversion from

hexadecimal to decimal before displaying the numbers on the screen. This would be

impossible to implement on line due to the amount of time required to implement this

complex operation. The data is displayed in eight columns, ten rows at a time, and they

35

can be scrolled up by pressing the space bar or any other key. The number of rows to

be presented at a time can be changed if the program is transfered to the RAM.

The flowchart of the DISPLAY routine is presented in Figures 3.19a through

3. 19e . The blocks can be described as follows, the memory pointer index IY is loaded

with the first data address, 1600H. N is leaded with the number of rows (or loops) to

be displayed (224) and N = indicates the end of memory. NS controls the number of

rows to be displayed at a time. After the initialization process the loop is started by

loading the first data (the position error of the first loop) into the register pair HL.

The data is checked. If it is positive a space is displayed on the screen and if it is

negative a minus sign is displayed. The data is saved in a variable called NUMBER
and the register pair DE is loaded with the decimal 10. The data (in HL) is divided by

10 (in DE) and the quotient (in HL) is saved in the variable QUOT.

The quotient (in HL) is multiplied by 10 (in DE). The result is transferred to

DE and the data that was saved in NUMBER is loaded into HL. So, recalling that the

subtraction does:

HL = HL (previous) -DE
and after this operation HL will be equal to the least significant bit of the decimal

data. This value is saved in the variable ONES. Thus,

ONES = dividend (data)- 10 QUOT

The LONGDIV subroutine .presented in Figure 3.20 uses the same procedure

mentioned above with the actual quotient being the dividend of the next division. The

new reminder will be the second decimal digit (saved in the variable TENS). The

process is repeated to get the next digits, saved in HUNDREDS, THOUS and

TTHOUS. The biggest possible decimal number is 32767.

The decimal digits are converted to ASCII and displayed on the screen using

the monitor subroutine ASCONV (refer to Appendix C). After the presentation of the

least significant digit, register B is loaded with the number two and the monitor

subroutine SPACES is called to display two spaces between the number just shown and

the next.

Even' time a conversion is completed the pointer is checked to verify if the

row ended. At the end of the first row, for instance, the pointer (IY) will be 1610H,

that is, the rightmost four digits are zero. The same happens every time a row is

completed since eight two byte variables make a complete row. Thus, if this situation is

detected, meaning that a row is completed, the monitor subroutine SCRLF is called to

36

provide carriage return and line feed. Otherwise, a new data is converted. The loop

continues until the end of the row.

Whenever a row is completed the end of memory must be checked. As

mentioned earlier the number of rows left is controlled by the variable N. So. each time

a row is completed. N is decremented and checked. If it is zero the program is ended,

otherwise it continues.

The program is set up to present 10 rows at a time. The variable NS counts

the number of rows and while NS is different of 10 the loop continues. When NS

reaches 10 the program polls the keyboard input. While there is no input the program

keeps polling the keyboard. When any key is typed, NS is set to zero and the loop

continues.

8. The Subroutine TRANSFER

This subroutine is used to transfer the program MODEL from the EPROM to

the RAM in order to debug the program. The starting address in the RAM is 1000H.

The procedure to use this feature will be discussed in Appendix C. The subroutine is

very simple and can be understood from the program.

37

CM HL

I
<^STORE y

< ANALOG ^>

V
<(STORE y

<(WALG y

NS NS + 1

MFLAG

NS

MFLAG

MFLAG FFII

Figure 3.10 The Main Procram - Flowchart G.

38

TO PLOOP

MFLAG «4- 5H

Fieure 3.11 The Main Program - Flowchart H.

39

ANALOG

ENABLE ADC /
7

i
/ INPUT ADC STATUS f

L «#-

H Mr

cs <
A

KL

DISABLE ADC

RET

yf

A < A+80H

Figure 3.12 The subroutine Analog.

40

BASIC OPERATION

< OUTOP >

OPERATION CODE

APU OPERATION CODE

< I NOP >

C ret)

Figure 3.13 The Subroutine of Basic Operations.

41

Figure 3.14 The Subroutine Outop.

42

Figure 3.15 The Subroutine Inop.

43

(CURVE J

APU •* ERROR

3L

INTEGER TO FLOAT CONVERSION

\f

SQRT (ERROR)

w
APU •* - Kl . SQRT(2 .VSAT.KM)

v
INTEGER TO FLOAT CONVERSION

I
MULTIPLY

FLOAT TO INTEGER CONVERSION

I
HL *m XDOT

7

(RET)

Figure 3.16 The Subroutine Curve.

44

HL * KMC

DE ~m NN

NN -« NN+1

/ DIVIDE ~\

DE CS

c MULTIPLY >
DE NN

C DIVIDE >
DE OAH

c MULTIPLY >
KM HL

HL

DE

CS

CF

< MULTIPLY >
CMCF HL

C RET
)

Figure 3.17 The Subroutine Walg.

45

(STORE J

" * MFLAG

MEMORY)ATA

MEMORY POINTER

IS INCREMENTED

(
RET)

Figure 3. IS The Subroutine Store.

46

DLOO?

DISPLAY

IY

N «.

NS

1500H

EFH

-

KL (IY)

1
HL -KL

DISPLAY ONE

SPACE ON SCREEN

DISPLAY
ON SCREEN

NUMBER -^ HL

DE «*— OAH

c DIVIDE >

Figure 3.19a The Subroutine Display.

47

©
QUOT -* HL

< MULTIPLY

I
>

DE <4 HL

HL ^ NUMBER

c
1

SUBTRACT >

ONES -4 HL

<^ LONG DIV ^>

TENS -* HL

AoNGDIvJ)

HUNDREDS *+ HL

Figure 3.19b The Subroutine Display.

48

©
<^ LONG DIV y

THOUS •* KL

<^ LONG DIV ^>

V
T THOU 9 .* FT

1 t

A <+ T THOUS

1l_

< ASCONV >

TKOUS

<
I

ASCONV >

HUNDREDS

<̂ ASCONV y

Figure 3.19c The subroutine Display.

49

©
A ^ TE \'S

i

< ASCON'V >

5£
A <4 ON ES

< ASCONV >

\ r

b -«— :

)

i r

<7SPACES >

< SCRLF >

Figure 3.19d The subroutine Display,

50

RET

CHECK KEYBOARD
INPUT

NS

Figure 3.19e The subroutine Display.

51

(long divJ

T

DE «* OAH
HL ^ QUOT

NUMBER M QUOT

I

<^ DIVIDE /

V
QUOT •+ HL

i

<^ MULTIPLY >
i t

DE < HL

HL •< NUMBER

1 r

y\ SUBTRACT

\ t

C RET
J

Figure 3.20 The Subroutine LONGDIV

52

IV. HARDWARE

A. GENERAL

The hardware consists basically of two major parts, the microprocessor and the

analog plant. Interconnecting them we have the digital to analog and analog to digital

interfaces. A video terminal is coupled to the microprocessor and all inputs and

outputs are accessed by using this facility. An oscilloscope connected to the output of

the plant measures the analog output. This voltage is also available in a digital form

using (off-line) the routine Display. The whole hardware is mounted in three

protoboards. one for the microprocessor, one for the analog plant and a third one for

the extra memories used to store data.

B. THE MICROPROCESSOR

The microprocessor is a general term used to refer to the digital system that

implements the model, controller and the identification algorithm. The circuit that

shows all the digital system and interfaces is presented in Figure 4.1 .

The central processing unit is the Z-80, the memories are two EPROMS (2716)

and five RAM's (MK 4118). The memory and interface decoders are three 74LS138.

The parallel interface is the M8255 and the serial interface is the MC68661. Besides

the mentioned chips that are normally found in microprocessors there is the Arithmetic

Processing Unit (APU), Intel 8231, that performs all the mathematical operations

needed in the digital system.

The organization of the memories is shown in Table 1 . The monitor and model

(including the controller and algorithm) are loaded into the EPROM's. The RAM
addresses from 1000H to 13A0H are used for scratch. This is an important point in the

development of the system because it allows the whole program "Model" to be

transfered from a non-erasable memory to an erasable one. Once the program is

transfered it can be modified and run in the RAM using the monitor features for

debugging purposes. This procedure will be detailed in Appendix C.

The RAM addresses from 13A0H to 1600H are used to store the data segment.

that is, all variables defined in the monitor and program Model. Also, every byte

originated by typing a key in the keyboard goes to a particular stack in this memory

area. The microprocessor stack pointer is initialized at 1600H.

53

' H
I i I I I i t I I

2 :t ;: :::: :

~
eO 10 .

* 5
'

2
<

+-f "SU7
;.

i*>

' o "I— I <

,,,,
-

!

u
-J
-i

uHi; ::L*.- I!/f\BJ

5 It

'Mh <s
! :

'

' ,;>,;,. ,-,g">

»& it

<
s

O

a
-« ri j

TTTTT~
,»-£! j '_

"'J -

a

00

O

*n
in

c 5

tu

H

n

:: eo

o
w
eo

i

D
CL

<

2
m-

00 ic;

1 2
III (0

E

2
O
s
Q.

U "

n

r*

I— I li £ is .— ..,,,, I ! , , , , . , , 1 : i 2 u I

a
t

00

2 :.

00 I!
t

i
I

<

i 'Ezt;

2
o

£
J

r:

CPU-Z80
.

* -- i -i

.

_Li!i *1U

/

n
Figure 4.1 The Microprocessor and Interfaces.

54

TABLE 1

MEMORY ORGANIZATION

START END TYPE FUNCTION

Mi 0000 07FF EPROM 2715 monitor + model

M2 0800 OFFF EPROM 2716 model (cont.

)

M3 1000 13FF RAM MK4118 scratch/data seg

M4 1400 17FF RAM MK4118 data seg/storage

M5 1800 1BFF RAM MK4118 data storage

M6 1C00 1FFF RAM MK4118 data storage

M7 2000 23FF RAM MK4118 data storage

The memory from 1600H to 23FFH is the so called "data memory". It stores the

intermediate results of program Model for future presentation on the screen. After a

run the subroutine Display can be invoked to show these data. The RAM memories

M4. M5. \I6 and M7 (refer to Figure 4.1). used for data storage, were created to allow

the off-line display of the mentioned data. When the digital servo was first tested

(without the analog plant) it used on-line routines to show the results on the screen.

However, each time the routine was called to present one variable it spent more than

400 microseconds. This would consist in a major problem for incorporating the analog

plant. So. the extra memories were added to the system in order to provide room for

the massive data record generated by the subroutine Store.

As shown in the circuit, the decoder Dl addresses the EPROM 's Ml and M2 and

the RAM M7. The decoder D2 addresses the serial and parallel interfaces and the

APU. Decoder D3 addresses the data memories M3, M4. M5 and M6.

Decoder D2 is selected by addresses A2. A3 and A4 and its outputs YO (pin 15).

Yl (pin 14) and Y2 (pin 13) are the chip select commands for the S255 (parallel port).

6S661 (serial port) and APU. respectively. So. depending on the addresses Al and AO.

the parallel interface will be at addresses 00. 01, 02 and 03 and the serial interface will

be at addresses 04. 05. 06 and 07. The APU will be at addresses OS. 09, OA and OB.

C. THE ARITHMETIC PROCESSING UNIT

This integrated circuit deserves a special attention in this research. First of all. it

played a very important role on the software development in taking over all of the

55

mathematical operations. Secondly, it is a preliminary chip and its application consists

in a parallel research.

The Arithmetic Processing Unit (APU) S231, as referred in [Ref. 5} has the

following features:

1. Fixed point, single and double precision (16 32 bits).

2. Floating point single precision (32 bits).

3. Binary data formats.

4. Add, subtract, multiply and divide.

5. Trigonometric and inverse trigonometric functions.

6. Square roots, logarithms, exponentiation.

7. Float to fix and fix to float conversions.

S. Stack, oriented operand storage.

9. Direct memory access or programmed I/O data transfer.

10. General purpose 8 bits data bus interface.

In the 16 bit program this chip is used to perform the following operations:

addition, subtraction, multiplication, division, square root, fix to floating point

conversion and vice versa. In general the operations were done with fixed point

operands to keep the program working with 16 bit variables. However, some

operations where the APU stack could be used as a temporary register, were done in 32

bit floating point. This happened in the subroutine CURVE and in the trapezoidal

integration in the main program. The advantage of this method is that the accuracy of

the computations is increased without defining 32 bit variables.

The 16 bit format is straight forward. It works with binary operands represented

in two's complement values. The sign of the operand is located in the most significant

bit (at the leftmost position). Positive values are represented by zero and negative

values are represented by one. This format can represent numbers in the range from

-32768 to 32767.

The 32 bit floating point format permits us to represent positive and negative

numbers from 2.7 x 10"-V to 9.2 x [0 iO and zero. As depicted in Figure 4.2, the 32

bit numbers consist of four parts: mantissa, exponent, exponent signal and mantissa

signal. The mantissa uses the 24 rightmost bits (0-23). the exponent uses the next six

bits (24-29). the exponent sign uses the next bit (bit 30) and the mantissa sign is

represented at the leftmost bit (bit 31).

56

exponent man 1 1 ssa

M E

S S

3130 2-423

Figure 4.2 32 Bit Floating Point Register.

A requirement of this processor is that the data, when using 32 bit floating point

format, be represented by a fractional mantissa value between 0.5 and 1.0 multiplied by

two raised to an appropriate power, that is. value = mantissa x 2
exPon

.

Illustrating the explanation above with an example, let's take the number 624

and convert it to 32 bit floating point:

624 = 512 + 64 + 32 + 16 = 2
9 + 2

6
4- 2

5 + 2
4 =

= 0.1 x 2
10

4- 0.0001 x 2
10

4- 0.00001 x 2
10 + 0.000001 x 2

l ° =

= 2
10 x (0.100111)

The binary representation of the above example is shown in Figure 4.3 . The

hexadecimal representation of this four byte number is 0A9C0000H. This is the code

to be sent to the APU in order to create the floating point equivalent to the decimal

624.

The APU uses a stack, to store the operands and results. It is an eight level 16 bit

wide data stack, as shown in Figure 4.4 . The same stack is used to deal with 32 bits

but, in this case, the configuration changes to a four level stack. The upper level is

called TOS (top of stack) and the level below the TOS is called NOS (next on stack).

Data are written onto the stack, eight bits at a time in the order Al. A2. A3, etc.

and are removed in the reverse order. For instance, suppose the operation B - A = C,

where B = B2 Bl. A = A2 Al and C = C2 CI. In a subtraction the operand in the

TOS is subtracted from the operand in the NOS and the result is stored onto the TOS.

Thus, the bvtes must be sent in the following order: Bl, B2, Al, A2. The result is

57

exponent mant lssa

1 1 1 1 1 1

3130 2423

Figure 4.3 Example of a 32 Bit Floating Point Number.

TOS

NOS

A2 Al

B2 31
T

4 levels

8 levels 1

16 BITS

A4 A3 A 2 Al

34 B3 32 31

32 BITS

TCS

NCS

Figure 4.4 Stack. Configuration for APL' S231.

retrieved in the order C2, CI. Considering the way the software was designed, the

operand B would be onto the register pair HL and the operand A onto the register pair

58

DE. The result would be in HL. So, the data from the registers would be sent to the

APU in the following order: L. H. E. D and the result would be received in the order

H, L.

The data entry and data removal process is illustrated in Table 2 . Data entry" is

accomplished by bringing the chip select (CS), the command, data line (AO) and the

write line (WR) low. A new entry occupies the TOS. pushing the previous TOS to

NOS. Data removal is performed by setting CS. AO and RD low. The data in TOS is

removed and the data in NOS is moved to TOS.

TABLE 2

DATA ENTRY AND DATA REMOVAL PROCESS

WR RD CS AO OPERATION INSTRUCTION

1 Read IN A,(08H)

1 Write OUT (08H),A

1 1 Command OUT (09H),A

1 1 Read Status IN A,(09H)

After the data have been entered the required operation can be performed by

issuing a command. The command operation is accomplished by bringing the chip

select line low, command, data line high and write line low.

It can be seen in Figure 4.1 that the READY line of the APU (pin 17) is

connected to the WAIT line of the CPU (Z-SO). The READY line is normally high and

is pulled low by the APU when certain conditions occur. Basically, the READY line

goes low when the APU is busy and either data or command operation is requested. If

this happens, the WAIT line of the CPU goes low and it waits. When the operation is

completed the READY line goes high and the result is available at the TOS. Then the

CPU can retrieve the data from the APU. The process of removing data is illustrated in

the first row of Table 2 .

The software for the the APU is quite simple and can be easily understood from

the- program. However, in order to figure out how the operations work and to have a

complete knowledge of the chip, some small routines were written to test individual

operations. These routines were written in machine language using the features

available in the monitor.

59

As pointed out earlier in this Chapter, the memory addresses from 13A0H to

1600H are used for the data segment, that is, to store the variables used in the

program. But this section of memory is not completely filled and there is some space

available. The test program can start at address 15A0H. for instance. The sequence to

write the program is the following:

1. Turn on the system (video terminals and power supplies).

2. Reset the system by pressing the reset switch.

3. In the keyboard, type: CT5A0.xxxx <ret>. This will be the segment of
memory to' be used (xxxx is the end address of the small program).

4. Type in the machine lansuase proaram. entering one bvte at a time, that is.

type two hexadecimal numbers and hit the returnltey.

The procedure to run the routines and get the results is as follows:

1. Tvpe G15A0.yyw <ret>. where yyvy is the end address plus one of the
routine, that is.'yyyy is equal to xxxx '-f ' 1.

2. When the execution is completed the registers will be automaticallv displaved
on the screen and the result of the operation under test will be shown in 'the

register HL.

1. Subtraction Routine

The APU performs NOS - TOS and stores the result onto the TOS. The

result is removed from the TOS and stored into the register pair IIL. where it can be

checked after the execution of the routine. In the example shown in Table 3 the

operands are 0002 (TOS) and 0007 (NOS). So. the expected result is 0005. Other

examples can be done by just changing the operands. In this particular example the

last address is 15B9H and the execution command should be: G15A0.15BA < ret> .

With this command the program will run and the CPU registers will be displayed on

the screen.

2. Multiply Routine

The APU performs NOS x TOS and stores the result onto the TOS. The

result is removed from TOS and stored in HL where it can be checked after the

execution. The routine is presented in Table 4 using the operands: FFFAH = — 6 and

0001H = 1. Thus, the expected result is FFFAH = — 6 . Other operands were used

to check the routine: FFFAH = — 6 as first and second operand with result 0024H =

36 and FFFAH = -6 and 0002H = 2 with result FFF4H = - 12.

3. Square Root Routine

Tins routine is performed using 32 bit (floating point) format. Therefore, the

16 bit integer operands must be converted to floating point and the result, converted

60

TABLE 3

SUBTRACTION ROUTINE FOR TESTING THE APU

Assembly
Language Address

Machine
Language Comments

LD A,07H 15A0 3E07 APU <-- first operand

OUT (08H),A 15A2 D308

LD A,00H 15A4 3E00

OUT (08H),A 15A6 D308

LD A,02H 15A8 3E02 APU <-- second operand

OUT (08H),A 15AA D308

LD A,OOH 15AC 3E00

OUT (08H),A 15AE D308

LD A,6DH 15B0 3E6D APU <-- subtraction

OUT (09H),A 15B2 D309

IN A,(08H) 15B4 DB08 HL <-- result

LD H , A 15B6 67

IN A,(08H) 15B7 D308

LD L,A 15B9 6F

back to integer. In the example shown in Table 5 the operand is 0270H = 624 and the

expected result is 1SH = 24, that is. the square root is rounded off to the next less

integer. As in the previous routines the result can be checked at the HL register after

execution. Since the start address is 15A0H and the end address is 15B9H, the

execution command will be : G15A0.15BA < ret> .

D. THE INTERFACES

The serial and parallel interfaces, MC6S661 and M8255, respectively, are largely

used with eight bit microprocessors and will have just a short explanation. The serial

interface interchanges information with the video terminal. So, all the commands

coming from the terminal keyboard and all information going to the screen are

formatted by this chip. The parallel interface connects the microprocessor with the

analog plant. So, the plant input (V) and the plant output (CS) pass through this

interface, in digital format. As shown in Figure 4.1 the three ports available in the

8255 are used in the following wav:

61

TABLE 4

MULTIPLICATION ROUTINE FOR TESTING THE APU

Assembly
Language Address

Machine
Language Comments

LD A,FAH 15A0 3EFA APU<--first operand

OUT (08H) ,A 15A2 D308

LD A,FFH 15A4 3EFF

OUT (08H) ,A 15A5 D308

LD A,01H 15A8 3E01 A?U<--second operand

OUT (08H),A 15AA D308 1
LD A,OOH 15 AC 3E00

OUT (08K) ,A 15AS D3G8

LD A,6EH 15B0 3E6E APU<--mult. command

OUT (09H) ,A 1532 D309

IN A,(08H) 1534 D308 HL<--result from APU

LD u ^ 15B6 57 1

IN A,(08H) 1537 DB08

LD L,A 15B9 6F

1. Port A provides the digital output (V) to the digital to analog converter (DAC
0S00)

~

2. Port B receives digital input (CS) from the analog to digital converter (AD570)

3. Port C is used to control the AD converter

The digital to analog converter (refer to Figure 4.5) is always converting the

digital input to a continuous voltage output between pins 2 and 4. The reference

voltages, applied at pins 14 and 15 are +5 V and -5 V. respectively. The resistors

connected to these terminals are called reference resistors.

The full scale output current (Ir
s
), represented by the sum of the currents at pins

2 and 4. is related to the reference voltages and resistors in the following way:

I r =(-i- V r R r)
x (255 ^56)l

fs l ref ref ll-JJ "
•'

*fs
= I<> + l

V
ref

= +5- (-5) = 10 V I

fs
- 2 mA

62

TABLE 5

SQUARE ROOT ROUTINE FOR TESTING THE APU

Assembly
Language Address

Machine
Language Comments

LD A,70H 15A0 3E70 APU <-- operand

OUT (08H) ,A 15A2 D308

LD A,02H 15A4 3E02

OUT (08H) ,A 15A6 D308

LD A, 1DH 15A8 3E1D int. /float command

OUT (09H) ,A 15AA D309

LD A,01H 15AC 3E01 sq. root command

OUT (09H) ,A 15AE D309

LD A, 1FH 15B0 3F float/int. command

OUT (09H),A 15B2 D309

IN A,(08H) 15B4 DB08 HL <-- result

LD H,A 15B6 67

IN A,(08H) 1537 DB08

LD L,A 15B9 6F

In full scale, that is. with all digital inputs equal to 1. the current Iq is 2 mA and

the current Iq is 0. So, to get + 5 V at the operational amplifier output, R2 must be 2.5

Kfl . In zero scale, that is. with all TTL inputs equal to 0. Iq = and Iq = 2 mA.

Thus, to obtain -5 V at the output Rl must also be 2.5 K£l . In the actual design,

the plant is being driven by an input of ± 10 Volts and the resistors are both 5KH .

In the ADC, located at the plant output, the input can van' from — 5 V to +5

V. providing digital outputs from 00H to FFH, respectively. This is not compatible

with the two's complement format of the microprocessor, where 001 1 corresponds to

and FFH corresponds to - 1. In order to correct this discrepancy, every time a

number comes from the ADC, the program adds SOU. The effect of this correction is

illustrated in Table 6 . Looking at the Table one can see that a difference of 1 inside

the microprocessor corresponds to a difference of 0.039 volts in the analog plant (5

volts' 2 ; because we are dealing with eight bit numbers. There is a difference of S0H

between the second and third columns, that is, between the binary numbers at the

63

-5v 5K

TTL INPUTS

ID
DAC-0800

R2
AVNAr

UA741
V

+

Rl

Figure 4.5 Digital to Analog Converter.

interfaces and the two's complement numbers inside the microprocessor. This is the

reason why the software adds SOH when a number is received from the ADC (refer to

subroutine Analog in Chapter III).

In the case of the "bang-bang" input of the plant (± 10 Volts) the software sends

00H or FFH directly to the DAC and there is no problem with conversions.

The analog to digital converter. AD570, receives the analog output of the plant

(CS) and convert it to an eight bit number. As shown in Figure 4.1 the output of the

ADC is connected with port B (pins 18 through 25) o^ the parallel interface MS255.

Port C of S255 (pins 10 and 17) is used to control the sampling process. When the

BLANK and CONVERT input (pin 1") of the ADC goes low the conversion is started.

Upon completion of the conversion the DATA READY terminal (pin 11) goes low and

the data is available at the output. The BLANK and CONA'ERT input must become

high again to prepare the device for the next conversion. Thus, the software has to

control these two lines to get the data at the appropriate time.

Table 6 can be used to relate the data inside of the micro and at the ADC

output. The two converters must be adjusted to have the same correspondence between

64

TABLE 6

NUMBERS INSIDE AND OUTSIDE THE MICROPROCESSOR

Analog ADC Inside Micro (2's compl.

)

(volts) Binary Binary Hex Decimal

+ 4. 96 11111111 01111111 7F + 127

+ 0. 39 10001010 00001010 OA + 10

+ 0. 039 1000C001 00000001 01 + 1

o 10000000 oooocooo 00

-0. 039 01111111 11111111 FF -1

-4. 61 00001010 10001010 8A -118

-5 00000000 10000C00 80 -128

the numbers since the whole system must be compatible. In order to guarantee that

DAC and ADC are tuned, some simple tests were done. One test consists in applying a

DC voltage at the ADC input and send this voltage to the DAC output using a small

program. This program is written in machine language and can be loaded into the

RAM, using the monitor. An example is presented in Table 7 . The voltage measured

at the analog output (V) must be the same as that applied at the analog input (CS), if

the resistors in the operational amplifier are equal to 2.5KH . This voltage can be

varied and observed at the plant input (V).

The small program is executed with the command G15B0.FFFF< ret> . This

command guarantees that the last address is included and the program will be in loop.

The second address in the command could be anyone greater than 15C9. Some lines of

this routine need more explanation:

1. Lines 1 and 2 set up the S255 to transmit data through ports A and C and
receive data in port B. In other words, ports A and C are outputs and port B is

input.

2. In lines 3 and 4 a zero is sent to port C (PC7 or pin 17). in order to drive the
BLANK CONVERT control of the ADC to low, enabling the conversion.

3. In line 5 the DATA READY pin is checked to verify if the data is already
converted. If it is not. the polling process continues in the loop described in
lines 5.6 and 7.

c
'

}

4. In line 8 the data is retrieved from port B and in line 9 thev are sent to port A.
where the DAC is connected.

5. In line 11. port C receives SOH. That means, pin PC7 receives 0, disabling the
conversion and preparing the ADC for the next one.

65

TABLE 7

COMPATIBILITY TEST BETWEEN ADC AND DAC

#
Assembly
Language Comments Address

Mach.
Lang.

|

1 LD A,83 control word 15B0 3E83

2 OUT (03H) ,A 8255<--c. word 15B2 D303

3 LOOP: LD A,00H A<— 00H 15B4 3E00

4 OUT (02H) ,A start conversion 15B6 D302

5 WAIT: IN A, (02H) A<--DATA READY 1538 DB02

6 CP IS DATA READY? 15BA FEOO

7 JP NZ,WAIT if not, try again 15BC C2B815

8 IN A,(01H) A<-- data 15BF DB01

9 OUT (00H) ,A DAC<-- data 15C1 D300

10 LD A,80H A<— 80H 15C3 3E80

11 OUT (02H) , A disable ADC 15C5 D302

12 JP LOOP repeat process 15C7 C33415

E. THE PLANT

The plant is represented by an analog simulator as depicted in Figure 4.7 . The

input of the plant is a "bang bang" control voltage. The output is a voltage that

represents the robot arm position. CS. The input V comes from the DAC as discussed

in the last section and can be + V or - V_
at (± 10 Volts in our case).

The design of the analog plant is straight forward and the method is found in

most of the classical control books. The approach chosen is based in [Ref. 3]. As

shown in Figure 4.6 the plant transfer function can separated in two blocks.

Mathematically we have:

X(s) 1

U(s) s+ 20.55
X(s)(s + 20.55) = U(s)

sX(s)4-20.55X(s) = L'(s) -> x-20.55x = u.

« _ ,.

Then, x = u - 20. 55x and y = 273.3
1 xdx

66

FROM TO
MICROPROCESSORMICROPROCESSOR

i i

> '

DAC ADC

ii

V 1 X
273.3 1 cs

u S+20.55 S
y

Figure 4.6 Plant Transfer Function.

The above equations provide all the information needed to implement the

hardware. If x is assumed to be available (refer to Figure 4.7). the next step is to design

an integrator to obtain x. Using a capacitor of ljiF and a resistor of 1MH the output

of the integrator will be — x. The 10 K£l potenciometers that appear in all operational

amplifiers are used for off-set adjustments.

Since — x and V are available, a summer with a gain of 20.55 for — x and 1 for V

yields — x at the output. An inverter changes the sign of — x and the result is the x

needed for the feedback to the starting point. The output y or CS is obtained from - x

by integrating this variable with gain 273.3.

The design of the plant was quite simple, but the implementation needed special

attention. If the components are just put together without any care the result is

catastrophic. Oscillations and drifts are the common problems. In the particular case of

the integrators the critical points are the capacitor leakage and the input offset error.

The integral of the DC offset voltage appears at the output like a ramp voltage, as

explained in [Ref. 6]. The power supply can be a source of noise and each pin that is

connected to a positive or negative voltage must have a capacitor to the ground. The

67

Figure 4.7 Analog Plant.

68

material the capacitors are made of is a very- important topic as pointed out by

Roberge in [Ref. 4]. According to the specific application the capacitors must be:

1. Teflon or polystirene for the feedback capacitors (integrators)

2. Solid tantalum electrolytic (greater than ljxF) for the positive and negative
terminals of the power supply"

3. Mica or glass (0.01 or 0.1 jiF) for the power connections of each individual chip.

The offset adjustments were done by connecting the inputs of the particular chip

to the ground and adjusting the 10 KH potentiometer to obtain zero volts at the

output. The inputs were grounded before the input resistors to guarantee that the drift

voltage produced at the input due to these resistors were cancelled by the appropriate

adjustment. In the case of the integrators, the capacitors must be discharged before

the adjust. The switches in parallel with these capacitors (shown in Figure 4.7) are used

for this purpose. They are also used to reset the integrators just before running the

system. In this case, an analog switch, automatically commanded by the software

should be desired and was designed. The recommended switch is the LF 11332. The

supply could not provide this component.

The plant was submitted to some tests to make sure the transfer function is being

implemented. One of the tests consists in building a double integrator with an overall

gain of 100. This particular implementation tests the integrator blocks in terms of

drifting, oscillations and the integral operation itself. Each integrator has a gain of 10

as shown in Figure 4.S .

The first integrator is driven by the square wave v(t) with a frequency of 100 Hz.

The integration of the square wave results in an inverse triangular wave due to the

minus sign of the integrator. Computing the output value of the first integrator at time

t = 5 msec:

1 rT ,0.005
x(t)= fidt = - 10 5dt= -0.25

RC J J

x(t) = - at. where a= 50 V. sec or 0.05 V msec

1
r
T aT2

v(t)= 1 -atdt = 10 = 0.625 mV
RC J

2

69

(t)
100K

_T

1COK

x(t)

_E

y(t)

v(t)
volts

-5

t (rr.s

x(t) f

vol ts

y (t

)

voles

0.625

{ i.13)

{ ms

Figure 4.S Double Integrator.

70

Once the double integrator is working well, a good test can be done to compare

the performance of the digital model and the analog double integrator, since the model

is also a double integrator with a gain (Km). So, if the gain Km is set to 100, both

double integrators are supposed to have the same behavior. This is a very interesting

test because the whole digital servo and interfaces are also checked. The test was

carried out and the results displayed on the screen. In despite o[the manual reset of

the integrators the test was a success, that is, the values of CS (analog double

integrator output) and CM (digital model output) were pretty close during all the time.

The set up for this test is is shown in Figure 4.9 . The differences between this

implementation and the whole system is that in this scheme the plant is just a double

integrator and the model parameters are not being updated.

Position Feedback

Velocity Feedback

i ' <
r

R CONTROLLER V Km CM

s
2

100 CS

s
2

Figure 4.9 Comparison between Digital and Analog Integrators.

The entire analog plant can be tested and the results compared with the theory.

Refenng to Figure 4.6 one can see that the plant can be separated in two blocks. The

71

first block, has input u and output x and the second block, has input x and output y.

These points are directly available in the circuit (refer to Figure 4.7).

The second block, can be tested in the same way used to test the double

integrator. Applying a square wave at input x we obtain a triangular wave at output y.

The theoretical results are presented in Figure 4.10 and can be obtained as follows:

,.T
r
0.005

v(t) = -273.3 x(t)dt = -273.3 [5dt = -6.S3 V
J J

The test of the first block, is not so trivial. The output is an exponential function

for a step input as shown in Figure 4.11 . The Laplace transfer function of the block,

is:

Xs 1 1

- = > X(s) = U(s)
U(s) s + 20.55 s + 20.55

Applying a step input of 10 V, U(s) = 10 s, we obtain:

10 10 1

X(s) = = (—
s(s+ 20.55) 20.^5 s

Then. x(t) = (10/20.55)[l(t) - exp(- 20.550] = 0.49[1 - exp(- 20.550]

The theoretical results are presented in Figure 4.11 . The input frequency was set

to 1Hz to permit the total excursion of the exponential wave. It is important to

sincronize the oscilloscope with the output to obtain a stable image on the screen. The

results found in the practical experiment matched very well with those encountered in

the theory. In all the tests the integrators are supposed to be reset right before the test.

The gain of 273.3 can be splited between the last integrator and the adder to

improve the performance of the analog computer. In this case the circuit presented in

72

fX 272.2
s

x(t) 4
volts

+ 5

'

**•

t (ms)

BE

i

y(t)
\volts

5

t(ms)

-6.83

Figure 4.10 The Second Integrator.

Figure 4.7 would have the 3K6 resistor replaced by a 36K.H resistor in the last

integrator (the gain will be 27.3) and the 200KH resistor at the adder replaced by a

20KH resistor (the gain will be 10).

Another good and easy test that can be done to verify the plant design is to

apply a step input, say 1 Volt, and measure the output with a strip recorder. The

equivalent plot can be done in the mainframe using the programs "Controls" or

"Ewald" and the results can be compared. This test was carried out and the plots

turned out to be verv similar.

73

Xu 1

s-r20 . 55

u(t)
volts

i

+ 10
i

1 t(sec)

-10

x(t)
volts ,

0.49

i

f V.
0.5 i

i

^
t(sec)

Figure 4.11 Testing the First Block of the Plant.

The analog plant just discussed represents a motor of a disk, driver. A second

transfer function, representing a robot motor, was also implemented and tested. This

transfer function was studied in [Ref. 7] and can be written as

G(s) =
q.ss

s s

s(- — + 1)(-

9100 0.019
1)

74

This transfer function has a real pole at —9100 that can be neglected and

another real pole very close to the origin (
— 0.019) that can be approximated to zero.

Therefore, for practical applications, the transfer function can be written as

10
G(s) - —,

-

s

This plant was implemented in hardware by using two operational amplifiers in a

very similar way as that showed in Figure 4.S . The only difference is that in the second

integrator the resistor is 1 MH. rather than 100 KQ . The gain of 10 is obtained in the

first integrator to allow a direct test point for the velocity at the output of this stage.

75

V. PERFORMANCE OF THE SYSTEM

A. THE SCALING PROBLEM
As discussed in Chapter II, the input of the system is a commanded step that

determines the position to be achieved by a robot arm or a disk driver arm. The actual

position of the arm (CS) is represented in this research by the voltage at the analog

plant output, which simulates the transfer function of the motor and load. So. this

voltage is a parameter to be measured and converted to an angle in order to compare

with the desired position and determine the performance of the system.

Another requirement of the system is the curve following process, that is. the

acceleration of the arm must be maximum until the velocity reaches the deceleration

curve of the motor and from this point it must follow the curve. The velocity can be

obtained from the analog plant by connecting an inverter at the input of the last

integrator.

At this point, it becomes necessary to explain the scaling problem between the

analog and the digital world involved in this research. The plant input dimension is

volts and the output dimension is radians. Therefore, one volt at the plant output

represents an angle of one radian. Since the analog to digital converter is an eight bit

interface driven by a 5 Volts source, 39 millivolts in the plant output is converted to 1

at the digital output of the ADC. This conversion and other examples are illustrated in

Table 8 .

Based on this table the input R applied to the system is a multiple of 2.23

degrees. Also, the number that represents the gain constant, Km, in the program must

take the scaling factor into account. Thus, for a Km equal to 300 radians per second

we will have, in decimal representation:

Km = 300 x 57.2 / 2.23 = 7708

With the actual ADC the system can handle angles from 2.23 degrees to 2S4.2

degrees. This resolution can be improved by increasing the number of bits in the

interface. For instance, if a 12 bit interface is used and the reference voltage is kept the

same (5 V), the minimum angle will be 0.14 degrees and the maximum will be 2S6.34

decrees.

76

TABLE 8

THE SCALE PROBLEM

ADC Input ADC Output

CS(Volts) CS(radians

)

CS(degrees

)

Decimal Hexadec.

0. 039 0. 039 2. 23 1 1

0. 31 0. 31 17.9 8 8

0. 62 0. 62 35. 8 16 10

1. 25 1. 25 71. 6 32 20

2. 50 2. 50 142. 7 64 40

3.11 i - -i3. ll 179. 80 50

4. 38 4. 38 250. 7 112 70

4. 96 4. 96 284. 2 127 7F

B. RESULTS

As pointed out earlier, the system receives an input command from the keyboard

and the analog output of the plant must respond as quickly as possible by using a

curve following scheme for the velocity. In the case of this research, the performance of

the system was checked by several means.

During the development phase, while the system was not working as in its final

version, the tests were done by using the routine Display, off-line (refer to Appendix

O. After a run. all the important variables were presented on the screen and we could

analyze what happened in even -

loop of the program. Also, the output of the analog

plant was observed in the oscilloscope just to verify if the final position was reached or

not. In this phase the velocity of the model was considered to be the same as the

velocity of the plant. They are supposed to be similar if the algorithm works well.

After the system started operating well under the verification tests mentioned

above, a strip recorder was used to check the position and velocity of the plant. The

position is readily available from the analog plant output and the velocity is obtained

by taking the input of the last integrator (
- CSDOT 27.3) and driving it through a

amplifier (and inverter) to get the actual velocity.

The voltages obtained in both cases
,
position and velocity, are then converted to

radians and radians per second, respectively. The tests were carried out for both plants

77

(disk driver motor and robot motor), using several inputs (R). The results are

summarized in Figures 5.1 through 5.10 . In all plots the velocity of the strip recorder

was fixed in 125 mm sec (maximum available). The plots are presented in the same

scale they were obtained from the plotter.

Looking at Figure 5.1 we can see that there is some overshoot in the position

(CS) plot. In a real application the bang-bang control would be replaced by a linear

compensator when the position is reached and this would prevent the overshoot or

would reduce it to an acceptable value. In all the velocity plots it can be noticed that

the full acceleration process occurs approximately over half of the trajectory. At the

maximum point of the curve the actual velocity of the model (CDOT) or plant

(CSDOT) crosses the curve of the desired velocity (XDOT). From this point, the

deceleration curve of the motor is followed and the velocity drops following XDOT.

In some cases the actual velocity (CSDOT) stays a little bit greater than XDOT
and no "chattering" is observed as can be seen in Figures 5.1 and 5.2. for instance. In

other cases CSDOT alternates being greater or less than XDOT and the "chattering'

can be noticed as in Figures 5.4 and 5.5 , for instance.

The commanded input in the keyboard is an hexadecimal quantity (last column

of Table 8) and using the conversion presented in the Table we can label the plots in

radians and radians per second. It is easily seen from the plots that the robot plant is

much slower than the disk driver plant, as can be confirmed by comparing the abcissas

(time) in the position plots and the ordinates in the velocity plots.

7S

cs
(rad)

0. 4

0. 3

0. 2

0. 1

CSDOT
(rad/s

)

160 240 t (ms)

160 t (ms)

Figure 5.1 Position and Velocity for a Disk. Driver Motor, R = 0.31 rad.

79

cs
(rad)j i

0.8

0.6 /

0.4 f

0.2 /

o i i

l3 80 160 240
t(Bls)

< i

CSDOT
(rad/s)

15 •

A
10 A
5

•

/\
'

V,
C 80 160

t (ms)

Figure 5.2 Position and Velocity for a Disk Driver Motor. R = 0.62 rad.

SO

cs
(rad)

60 t (ms

CSDOT ^
(rad/s)

20

10

60 t(ms)

Figure 5.3 Position and Velocity for a Disk. Driver Motor. R = 1.25 rad.

cs

(rad)

3 -

80 iOU t (ms

)

CSDOT
(rad/s)

30

10

30 160 t (ms)

Fisure 5.4 Position and Velocity for a Disk Driver Motor, R = 2.50 rad.

cs
(rad)

160 t (ms)

CSDOT
(rad/s) 30

20

10

80 160 (ms)

Figure 5.5 Position and Velocity for a Disk Driver Motor, R = 3.11 rad.

160 240 t(ms)

CSDOT A
(rad/s)

i4U
(ms)

Fisure 5.6 Position and Velocity for a Disk Driver Motor, R = 4.3S rad.

84

cs
(rad)

i

0.8

0.6

0.4 /

0.2 /

C

•»

) 80 160 240 t (ms
)

CSDOT
(rad/s) i i

8

6

4

2

t w^

80 160 240
^

T9ms)

Figure 5.7 Position and Velocity for a Robot Motor, R = 0.62 rad.

S5

cs
(rad

CSDOT
(rad/s)

160 240 t (ms)

160 240
O

(ms)

Figure 5.S Position and Velocitv for a Robot Motor. R = 1.25 rad.

86

cs
(rad)

2.0

1.5

1.0

0.5

CSDOT
(rad/s)

A

X
160 240 320 400 t (ms

20 400 t (ins)

Fisure 5.9 Position and Velocitv for a Robot Motor, R = 2.50 rad.

87

cs
rad)

4

3

CSDOT A
(rad/s

)

20

10

80 160 240 320 400 480 t(ms)

80 160 240 320 400 480 t (ms

Fieure 5.10 Position and Velocity for a Robot Motor, R = 3.11 rad.

SS

VI. CONCLUSIONS / AREAS FOR FURTHER STUDIES

The control of a robot arm or disk driver arm in minimum time (curve following)

and autoadaptive was implemented using a microprocessor. The software was designed

to work as a servo mechanism with curve following and to implement the algorithm

that updates the model based on samples coming from the arm position. An analog

computer simulated the motor and load of the arm.

Two different transfer functions for the analog plant were tested, one for a disk

driver motor and other for a robot motor. The first plant (disk driver) is found in

[Ref. 1] and the second comes from [Ref. 7].

The initial goal of this research was to build a model to roughly represent the

device (plant) to be actuated and by sampling its output to update the model in order

to minimize the error between them (model and device). Once the model is a "copy" of

the plant it can be controlled by using velocity feedback, position feedback and curve

following in the model and then applying the same input to both plant and device.

The actual algorithm that updates the output of the model and the "gain

constant" Km. does not update the velocity. The technical reasons why the velocity is

not being updated were explained in Chapter III, but the fact is that the lack of

velocity updating did not influence the performance of the system at all since the

velocity computed for the model is based upon the updated value of Km and in an

indirect way, the velocity is being updated.

The commanded input was applied from the keyboard in order to easily check

the system for different inputs. However, as pointed out in Chapter I, this input can

come from a central computer and. in this case, several systems like the one described

here could be used to actuate different arms.

The results presented in Chapter V show that the system works and can be used

in a real application. It was also pointed out that it can be improved. One of the

aspects that can be worked out is the interface. The system can go from a resolution

of 2.23 degrees (eight bits) to a resolution of 0.14 degrees by just changing the interface

(ADC) to a twelve bit ADC. For a sixteen bit ADC the resolution would go to 0.0087

degrees. The problem here is that at this level the noise starts corrupting the results

and additional arrangements (filters, isolations, etc.) must be incorporated.

89

Another improvement in the performance of the system would be to transform

the whole program to a 32 bit program. The impact of this change would be in the

accuracy of the system. The actual program does several operations using 32 bit

floating point features of the Arithmetic Processing Unit as in the curve computation

and in the trapezoidal integration. One concern about the use a 32 bit program is the

time. However, a good measure to minimize the execution time is to cut off all the

subroutine calls and imbed them into the main program.

Another important topic for a future research is to connect the microprocessor

with a real motor and arm and increase the resolution to 12 bits. Al^o, the movement

of the arm coud have two stages: a large movement, using a resolution of 2.23 degrees

(8 bits) and a fine adjustment using a resolution of 0.1-4 degrees (12 bits). The S bit

interface would allow a faster manipulation of the data during most of the trajectory.

The basic idea and the skills necessary to implement a new hardware , software

or improve the one reported here were provided in this research. However, the best

legacy of this thesis is the proof that, an autoadaptive algorithm applied in a real time

programming for disk drivers and robots can be used succesfully.

90

APPENDIX A

PROGRAM MODEL - 16 BITS

.Z80
EXTRN
EXTRN
EXTRN
EXTRN
PUBLIC
)

ZERO
Tl
PVSAT
MVSAT
T1CCF
KMC
K1A

SCRLF, GETSTRIN,HEXCONV,GHEXERR,R, CM, CDOT, CDDOT, CDM1,CD0M1, KM
N,V,CS,CSM1,CSM2, NUMBER, QUOT, ONES, TENS, HUNDREDS, THOUS,TTHOUS
RSSTAT, RECV, MESSAGE, MONITOR, HELLO, BOUT, TRAP30 ,MONLOOP ,SPACES
ECHC,ASCONV,TEMPIY,CMCF,CF,MFLAG,NN,KMFLAG,NS
MODEL, TRANSFER, DISPLAY

EQU
EQU
EQU
EQU
EQU
EQU
EQU

06BCH
OAH
0FFF6H
12H
381CH
8CH

^INTEGRATION STEP <T1=2/T)
iPOSITIVE SATURATION LIMIT=+10
^NEGATIVE SATURATION LIMIT=-10
}T1/CF=18, Tl=1800 AND CF=100
>KMC=CONSTANT IN THE ALGORITHM
>0.8*SQRT12.VSAT.KM)

>THIS PROGRAM SIMULATES A SERVO SYSTEM.
jTHE VARIABLES HAVE THE FOLLOWING MEANING:
R

CM . . .

CDOT .

CDDOT
CDM1 .

CDOM1

MODEL:

LOOP:

STEP INPUT OR POSITION TO BE ACHIEVED BY THE OUTPUT
POSITION OUTPUT
VELOCITY
ACCELERATION
PREVIOUS VALUE OF THE VELOCITY
PREVIOUS VALUE OF THE ACCELERATION

CALL SCRLF
LD A,83H
OUT <03H),A
LD A,7FH
OUT (00H),A
LD A,80H
OUT (02H),A
LD B,10H
LD HL,CM
LD (HL J, ZERO
INC HL
DJNZ LOOP

LD HL,0064H
LD (CF),HL
LD A,OOH
LD (MFLAG),A
LD (NS),A
LD (KMFLAG),A
LD HL,0500H
LD (KM),HL
LD HL,0001H
LD (NN),HL
LD HL,00H
LD (NUMBER),HL
LD (QUOT),HL
CALL SCRLF
LD IX, HELLO
CALL MESSAGE
CALL SCRLF
CALL GETSTRIN
CALL HEXCONV
JP CGHEXERR
LD (R),DE
CALL SCRLF
LD IY,1600H

PORT A IS OUTPUT TO D/A,
PORT B IS INPUT FROM A/D , PORT C

UPPER IS OUTPUT, LOWER IS INPUT
RESET THE D/A OUTPUT, XDOTE=0

DISABLE A/D CONVERTER
THIS BLOCK RESETS THE VARIABLES
CM, CDOT, CDDOT, CDM1 ,CDDM1 ,CSM1 ,CSM2
>AND CMCF

CORRECTOR FACTOR<- 100

MODEL FLAG IS SET TO ZERO
NS(STORAGE CONTROL X---
ALGORITHM FLAG
KM=256*5=1280

SET COUNTER TO ONE TO BE USED BY
WIKSTROM ALGORITHM
HL<— 00H
NUMBER<
QUOT<---
LINE FEED
SET UP POINTER TO MESSAGE
ASK FOR POSITION INPUT

GET CHARACTER FROM KEYBOARD
CONVERT INTO HEX
IF ERROR IN THE INPUT
SAVE POSITION IN R

jINIT. DISPLAY ROUTINE POINTER

91

PLOOP: LD DE,(CM)
LD HL,(R)
CALL SUBTRACT
CALL STORE
LD CO
BIT 7,H
JR Z, POSITIVE
LD CI
LD A,L
NEG
LD L,A
LD A,H
CPL
LD H,A

POSITIVE: CALL CURVE
BIT 0,C
JR Z,OK
LD A,

I

NEG
LD L,A
LD A,H
CPL
LD H,A

OK: CALL STORE
LD DE,(CDOT)
CALL SUBTRACT
CALL STORE
BIT 7,H
JR Z,PLUS
LD HL.MVSAT
LD A, OOH
OUT (OOH),A

LD A,01H
LD (KMFLAG),

A

JR VOLTS
PLUS: LD HL,PVSAT

LD A,OFFH
OUT (OOH),

A

VOLTS: LD (V),HL
LD DE,(KM)
CALL MULTIPLY
CALL STORE
LD (CDDOT),HL

jOE< OUTPUT POSITION
HL<— -INPUT POSITION
POSITION ERROR=HL<---HL-DE
SAVE POSITION ERROR
SET FLAG TO ZERO FOR POS. NUMBERS
IF NUMBER IS POSITIVE,
GO TO LOCATION "POSITIVE"
IF NUMBER IS NEG., SET FLAG TO 1

CONVERT IT IN A POSITIVE NUMBER
>A<--- O-A (INVERTS THE A SIGN)

HL< SQRTI ERROR)*K1*SQRT(2KM.VSAT

)

IF FLAG IS 0,(THE ERROR WAS POS.)
GO TO "OK"
THE ERROR WAS NEGATIVE! SO, ...

CONVERT IT BACK TO NEGATIVE

iSAVE XDOT
>DE<— - CDOT
XDOTE< XDOT-CDOT
SAVE XDOTE
IF XDOTE IS POSITIVE . . .

GO TO PLUS
HL<--- -10

A<
DAC< -10 VOLTS
SET KMFLAG TO 1 WHEN XDOTE< 0.

KMFLAG <--- A

GO TO VOLTS
DAC<--- +10
>A<— - FF

iDAC< 10V
>V IS SAVED
>DE<— KM
>HL<--- CDDOT=KM*V
iSTORE CDDOT (FOR DISPLAY PURPOSES
iSAVE NEW VALUE OF CDDOT

^TRAPEZOIDAL INTEGRATION : INPUT IS ACCE
jTHIS BLOCK DOES CDCT=CDMl + (CDDM1+CD0OT I

>THE INTEGER IS COMPUTED TO BE DISPLAYED
LD

LD

LD

OUT
LD

OUT
LD
OUT
LD

OUT
LD

OUT
LD

OUT
LD
OUT
LD

LD
OUT
LD

OUT
LD

DE,(CDDM1)
(CD0M1),HL
A,L
(08H),A
A,H
(08H),A
A,1DH
(0<?H) ,A

A,E
(08H),A

A,D
(08H),A

A,1DH
(09H),A

A,10H
(

QH),A
DE,T1
A,E
(08H),A
A,D
(08H),A
A.1DH

LERATION, OUTPUT IS VELOCITY.
*T/2 IN 32 BIT FLOATING POINT
OFF LINE.

iDE<-— CDDM1
jCDDMK CDDOT
>APU< CDDOT

>TOS(APUX FLOAT! CDDOT)

jAPU< CD0M1

iTOSIAPUX FLOAT(CDDMl)

lTOS<--- CDD0T+CDDM1

;DE<--- 2/T
UPU< Tl

;TOS< FLOAT (Tl

92

OUT (09H),A
LD A,13H
OUT (09H),A

LD DE , (QUOT)

LD HL, (NUMBER!
LD A,E
OUT (03H),A
LD A,D
OUT (08H),A

LD A,L
OUT (08H),A
LD A,H
OUT (08H),A

LD A.IOH
OUT <09H),A
IN A,(08H)
LD H,A
IN A , (08H)

LD L,A
IN A,(08H)
LD D,A
IN A,(08H)

LD E,A
LD (NUMBER)>HL

LD (QUOT),DE
LD A,E
OUT (08H),A
LD A,D
OUT (03H),A
LD A,L
OUT (OSH),A
LD A,H
OUT (08H),A
LD A,1FH
OUT <09H),A
IN A,(08H 1

LD H,A
IN A,(08H)

LD L,A
LD (CDOT),HL
CALL STORE

>TOS< (CDDOT+CDDMDT/2

DE<— LSBYTE OF CDOT (FLOATING)
HL< MSBYTE OF CDOT (FLOATING)
TOS< CDOT (FLOATING POINT)

>TOS< CDOT + I CDDOT+CDDM1)T/2=CDOT

>NUMBER,QUOT< FLOAT! CDOT)

^RETURN CDOT (FLOAT) TO APU

>TOS<— INTEGER! CDOT)

VHL<— INTEGER! CDOT)

>SAVE CDOT
jCDOT IS STORED TO BE DISPLAYED

jTRAPEZOIDAL INTEGRATION
jTHIS BLOCK DOES: CM=CM1
V

LD
LD

CALL
LD
CALL
LD
CALL
LD

LD
CALL

> LD

> CALL
CALL
CALL
CALL
LD

CALL
INC
LD

LD

INC
LD

CP
JR

INPUT IS VELOCITY
+ICDMI+CDOT)*T/2

DE,(CDM1)
(CDM1),HL
ADDITION
DE.TIOCF
DIVIDE
DE,(CMCF)

ADDITION
(CMCF),HL
DE,(CF)

DIVIDE
(CM),HL
STORE
ANALOG
STORE
WALG
HL,(NN)
STORE
HL
(NN),HL
A , ! NS

)

A

(NS),A
01H
Z, RESET

>DE<— CDM1
>CDM1 IS UPDATED (CDMK CDOT)
}HL< CDM1+CDOT
}DE< T1/CF=18
>HL<— (CDOT+CDM1)/T10F=CDOT*CF/TI
DE<— - CMCF (CM *100)

HL=CMCF=CMCF+(CDN1+CDOT)*T/2
CMCF IS UPDATED
DE<-— CF
HL< CMCF/CF = CM
CM IS UPDATED
SAVE CM (MODEL OUTPUT)
HL< CS FROM ANALOG PLANT
STORE CS FOR DISPLAY PURPOSES
KM AND CM ARE UPDATED
HL< LOOP COUNTER
STORE LOOP COUNTER
INCREMENT LOOP COUNTER
SAVE LOOP COUNTER
A<™ NS

>NS<— NS+1
as ns=i?
VlF YES, GO TO RESET.

93

LD A,OFFH
LD (MFLAG)>A

JR SCREEN
RESET: LD

CPL
A,tMFLAG)

LD (MFLAG),A
LD A,0
LD (NS),A

SCREEN: LD (N),IY
LD A,(N+1)
C? 24H
JR NZ, CONTINUE
LD A,S5H
LD (MFLAG),

A

CONTINUE

:

J? PLOOP

(A<--- FF
MFLAG<--- 11111111
GO TO SCREEN
A< MFLAG
COMPLEMENT THE FLAG
MFLAG IS COMPLEMENTED
>A<—
•>NS<

(N<--- IY

>A< HIGH BYTE OF IY
IS IT 2<+? (MEMORY ENDS AT 23FFH)

IF IT IS NOT, GO TO CONTINUE
SET MFLAG TO AVOID FURTHER STORAGES
SINCE THE MEMORIES ARE FULL.

S ENDLESS LOOP

j ***
j ******************* END OF MAIN PROGRAM *************************************
j***
(

(THIS SUBROUTINE INPUTS THE ANALOG OUTPUT FROM THE PLANT (CS

)

ANALOG: LD A,0
OUT (02H),A

HOLD: IN A,(02H)

CP
JR NZ,HOLD
IN A,(01H)
ADD A,30H
BIT 7,

A

JR Z,GOOO
lD A,0

GOOD: LD L,A
LD H,0
LD (CS),HL
LD A,80H
OUT (02H),A
RET

i

(THIS SUBROUTINE IMP
(THE ANALOG OUTPUT F

(KM=2CS/VSAT(NT)**2

}T=1.1 MS AND VSAT=1

(ENABLE THE ADC CONVERTER
(PORTC<--- 00

>A<--- READY LINE FROM A/D VIA P.C
>IS A/D READY?
(IF NOT, VERIFY AGAIN.
>A< CS FROM PORT B

CS IS CONVERTED TO 2'S COMPLEMENT
CHECK OVERFLOW DUE TO NEGATIVE
VOLTAGE FROM A/D. IF THERE IS
OVERFLOW, A<
L<— - CS
H<---0
(SAVE CS
(A<--- CONTROL WORD TO DISABLE ADC
(PORT C<--- 30H

LEMENTS WIKSTRON ALGORITHM TO COMPUTE KM AND COOT USING
ROM THE PLANT! CS). THEN,CM,CDOT AND KM ARE UPDATED
AND CD0T = (CS-CSM1)/T. OR, KM=(16529/N**2)*CS*10 , WHERE

WALG: LD A,(KMFLAG)
CP
JR NZ, KMFIX
LD HL,KMC
LD DE , (NN)

CALL DIVIDE
LD DE,(CS)
LD A,E
CP
JR Z, KMFIX
CALL MULTIPLY
LD DE,(NN)
CALL DIVIDE
LD DE ,0AH

CALL MULTIPLY
LD A,H
CP OCH
JP M, KMSMALL
LD DE,0CCCH
LD (KM),DE
JR KMFIX

KMSMALL: LD (KM),HL
KMFIX: LD HL,ICS)

LD ICM),HL
CALL STORE

(VERIFY FLAG. IF IT IS 1 DO NOT
(COMPUTE KM ANYMORE. KEEP THE
(LAST VALUE.
)HL< KMC=2/VSAT*T**2*10
(DE<-— COUNTER
(HL<-~ KMC/N
DE< CS
A< CS

IF CS=0, KEEP INITIAL KM
HL< (KMC/N)*CS

DE< NN
HL< (KMC/N**2)*CS
DE<--- 10

HL< (KMC/N**2)*CS*10=KM
A< MSBYTE OF KM
(IF KM > 3072, SET KM TO OCCCH
(ELSE, GO TO KMSMALL
(DE< OCCCH = 3276
(KM<--- 3276
(GO TO KMFIX (DO NOT GO TO KMSMALL)
(KM IS UPDATED
(HL< CS
}CM< CS, CM IS UPDATED
(STORE NEW VALUE OF CM

94

RET

^ADDITION ROUTINE USING THE INTEL APU 8231 : HL< HL+OE

ADDITION: CALL OUTOP
LD A,6CH
OUT (09H),A
CALL INOP
RET

\ SEND OPERANDS TO 8231
yADD COMMAND

; GET RESULT AND STORE IN HL

i

^SUBTRACTION ROUTINE USING THE APU 8231: HL<- HL-DE

SUBTRACT: CALL OUTOP
LD A,6DH
OUT (09H),A
CALL INOP
RET

>SEND OPERANDS TO 8231 STACK
>SEND COMMAND SUBTRACT TO 8231

jGET THE RESULT FROM 8231

iMULTIPLICATION ROUTINE USING THE APU 8231: HL<— HL*DE

LY: CALL OUTOP
LD A,6EH
OUT (09H),A
CALL INOP
RET

.SEND OPERANDS TO 8231
>SEND COMMAND MULTIPLY TO 8231

>GET THE RESULT AND STORE IN HL

jTHIS SUBROUTINE COMPUTES (SQRT(ERROR))*K1*SQRT< 2 . VSAT .KM) USING 32 BITS
^FLOATING POINT OPERATIONS OF THE ARITHMETIC PROCESSING UNIT (APU).
CURVE LD A,L

OUT (08H),A
LD A,H
OUT (08H),A

LD A,1DH
OUT (09H),A
LD A,01H
OUT <09H),A
LD DE,K1A
LD A,E
OUT (08H),A
LD A,D
OUT <08H),A
LD A,1DH
OUT (09H),A
LD A,12H
OUT 109H),A

LD A.1FH
OUT (09H),A

IN A.108H)
LD H,A
IN A>< 08H)

LD L,A
RET

;SEND DATA TO 3231 (16 BITS)

SEND COMMAND TO CONVERT 16 BITS
INTEGER TO 32 BITS FLOATING POINT
SEND SQRT COMMAND

i

DE< K1A=K1.SQRT(2. VSAT. KM)
APU< K1A

y

;TOS(APU)<-— FLOAT! K1A)
J

MULTIPLY K1A*SQRT(E

)

CONVERT THE RESULT TO 16 BITS

STORE THE RESULT IN HL

;THIS ROUTINE STORES INTERMEDIATE RESULTS TO BE DISPLAYED OFF LINE

STORE: LD A,(MFLAG)
CP
JR NZ,NOSTOR
LD (IY),L

INC IY
LD (IY),H
INC IY
RETNOSTOR:

^DIVISION ROUTINE USING THE APU 8231: HL<-

jVERIFY MFLAG STATUS.
}IF IT IS 0, STORE DATA.
}ELSE, DO NOT STORE.
}MEMORY< DATA (LOW)
-,IY IS INCREMENTED
$MEMORY< DATA (HIGH)
HY IS INCREMENTED

HL/DE

DIVIDE: CALL
LD
OUT

OUTCP
A,6FH
(09H),A

iOUTPUT OPERANDS TO 8231 STACK
> EXECUTION COMMAND FOR DIVISION
>IS SENT TO 8231

95

CALL
RET

INOP >INPUT THE RESULT FROM 8231

-.THIS ROUTINE OUTPUTS OPERANDS TO 8231 STACK: NOS< HL , TOS< DE

i

CUTOP: LD A,L
OUT (08H) ,A

LD A,H
OUT (08H) »A

LD A,E
OUT (08H) ,A

LD A,D
OUT (03H) ,A

RET

;HL IS SENT TO 8231 STACK

;DE IS SENT TO 8231 STACK

i

STHIS ROUTINE INPUTS THE RESULT FROM 8231 APU: HL< TOS OF 8231

INOP:

i

IN A,(08H)
LD H,A
IN A,(08H)
LD L,A
RET

;HL<- TOP OF STACK

VTHIS ROUTINE CONVERTS THE DATA FROM HEXADECIMAL TO DECIMAL AND DISPLAY THEM.

DISPLAY:

DLOOP:

POS:

CONVERT:

LD
LD

LD
LD

LD

LD

INC
LD

INC
BIT
JR
LD

CPL
LD

LD
NEG
LD

LD
CALL
JR
LD

CALL
LD

LD

CALL
LD

CALL
EX
LD
CALL
LD

CALL
LD

CALL
LD

CALL
LD

CALL
LD

LD

CALL
LD

CALL
LD

IY.1600H
A,0DFH
(N),A
A,OOH
(NS),A
L,(IY)
IY

H,(IY)
IY

7,H
Z,POS
A,H

H,A
A,L

L,A
A,2DH
ECHO
CONVERT
B,01H
SPACES
(NUMBER:
DE,0AH
DIVIDE
(QUOT),HL

MULTIPLY
DE.HL
HL,(NUMBER)

SUBTRACT
IONES),HL
LONGDIV
(TENS),HL
LONGDIV
(HUNDREDS),HL
LONGDIV
(THOUS).HL
LONGDIV
<TTHOUS),HL
A,(TTHOUS)
ASCONV
A,lTHOUS)
ASCONV
A, (HUNDREDS)

vPOINTER<— - 1400H (DATA LOCATION)
>A< AMOUNT OF MEMORY AVAILABLE
VSAVE THE INFO AT COUNTER N

,HL

>NS<-

;L<--

;H<-

- DATA (LOW)

DATA (HIGH

VCHECK MSB (IS THE NUMBER NEGATIVE?)
ilF IT IS POSITIVE, GO TO POS
vIF NOT,A< H(DATA-HIGH)
iCOMPLEMENT MS3YTE
>PUT IT BACK TO H

>A< L (DATA-LOW)
;A<— - O-A (2'S COMPLEMENT)
>PUT IT BACK TO L

jA<— ASCII FOR - SIGN
^DISPLAYS - SIGN
5GO TO CONVERT
; B< oiH, TO PROVIDE ONE SPACE

(NUMBER<-—DATA TO BE CONVERTED
>DE<-— 10 (BASE FOR CONVERTION)
>HL< NUMBER/10
>QUOTIENT< NUMBER/10
HL< QUOTIENT*10
V 0E< QUOT^IO
HL< NUMBER! DIVIDEND

)

HL< NUMBER-QUOT*10=REMAINDER
ONES< REMAINDER
HL< NEXT REMAINDER (TENS)
TENS< REMAINDER

jHUNDREDS< REMAINDER

;THOUSANDS<---REMAINDER

>TENTHOUSANDS< REMAINDER
>A< TTHOUS
^CONVERT A TO ASCII AND DISPLAY
jSAME THING WITH THE 5 DIGITS

96

CALL ASCONV
LD A, (TENS)
CALL ASCONV
LD A, (ONES)
CALL ASCONV
LD B,02H
CALL SPACES
LD (TEMPIY),IY
LD A,(TEMPIY)
AND OFH
CP
JP NZ, DLOOP
CALL SCRLF
LD A,(N)
DEC A

LD (N),A
CP
JR Z,END
LD A , (NS)

INC A

LD (NS) , A

CP OAH
JP NZ,DLOOP

WAIT: IN A,(RSSTAT)
AND 2

JR Z.WAIT
IN A,(RECV)
LD A,0
LD (NS),A
JP DLOOP

END : RET

>THIS SUBROUTINE COMPUTES THE LONG D

i

LONGDIV: LD DE,OAH
LD HL,(QUOT)
LD (NUMBER),HL
CALL DIVIDE
LD (QUOT),HL
CALL MULTIPLY
EX DE,HL
LD HL,(NUMBER)
CALL SUBTRACT
RET

jB< 02H TO PROVIDE 2 SPACES
iPUT TWO SPACES BETWEEN NUMBERS
iSTORE POINTER
;A< POINTER. LOW
;CHECK LSB OF THE POINTER
>COMPARE WITH ZERO. IF IT IS NOT
;0, THIS ROW IS NOT COMPLETED , REPEAT
>IF IT IS, GO TO THE NEXT LINE
>A<--- COUNTER (MEMORY SPACE)

;N<— - N-l
; END OF MEMORY?
;IF YES, GO TO END.
;A<--- NS (DISPLAY CONTROL)

• Ns< NS+1
;IS NS=10 ?(IF 10 RUNS HAS ELAPSED)
ilF NOT, GO TO DLOOP
jCHECK THE KEYBOARD INPUT. IF NO KEY
;WAS HIT, WAIT.
jELSE, RESET AND REPEAT PROCESS

>A<---
;SET NS TO ZERO AGAIN

)DE<— BASE FOR CONVERSION
>HL<— QUOTIENT
iSAVE NEXT DIVIDEND! LAST QUOTIENT)
>HL< QUOTIENT/10
j SAVE NEXT QUOTIENT
jHL<— - QUOT*10
;DE< QUOT*10
•HL< NEW DIVIDEND
jHL<—DIVIDEND-QUOT*10=REMAINDER

5

iTHIS BLOCK TRANSFERS THE ROUTINE MODEL FROM EPROM TO RAM, ADDRESS 0A00

TRANSFER: LD HL, MODEL
LD DE,1000H
LD BC03AOH
LDIR

RET
DS 1

END

>HL<~-SOURCE ADDRESS
>DE<---DESTINATION ADDRESS
• BC <---BLOCK SIZE
^TRANSFER, INCREMENT HL AND DE
^DECREMENT BC,IF IS NOT ZERO ,

iREPEAT PROCESS.

97

APPENDIX B

MONITOR

1. MONITOR FEATURES

The monitor is a program that provides all the software support for the

microprocessor. It works as a supervisor of the system. When the reset switch is hit.

the monitor takes over. The program counter is loaded with address zero and the

monitor starts performing the initialization routines. The stack pointer is initialized, the

serial port (video terminal communication) is set up and some messages are sent to the

screen. After that the monitor (program "Main") waits for a command from the

keyboard.

The first message sent to the screen is a presentation of the system and the

second one asks for a command (E. D or H). Taking the first choice, that is. typing'T".

forces the program counter to be loaded with the program Model address and the

program will be executed. If "D" is chosen, the results of the last run will be displayed

on the screen (program counter is loaded with routine Display address) .If key H

(Help) is typed, a list of features provided by the operational system is presented on the

screen. All the possible utilizations of the monitor are included in the mentioned list.

These features wiil be detailed in the next paragraphs.

The "List" command permits us to list a portion of the memory. For instance, to

look at the memory from addresses 1000H to 1100H the appropriate command is:

L1000,1100<ret>.

The "change" command allows us to make changes in the memories (RAM).

Thus, even small routines can be written in the spaces available. It is a powerful tool

for debugging programs. For instance, to change data between addresses I5B0H and

15BFH the command should be : C15B0.15BF< ret> . After this command the data

contained at memory location 15 BOM will be displayed and the cursor will be at the

first nibble of this data. To change the actual data, just type the new one. To skip this

address, type return.

The "Go" command permits us to run a program that is already in the RAM.

Suppose a program was written in the example just mentioned between the addresses

15B0H and 15BFH. The command to run this program is the following:

G15B0.15C0 < ret> . Notice that the end address is one address above the last

98

instruction location. The program will run and the CPU registers will be displayed at

the end. So, if the program has loaded some results into these registers, they will be

available. Also, all the memories addresses can be checked by using the "List"

command. The end address of the "Go" command is called "breakpoint" and can be

any address inside the program. This allows a valuable debugging process of the

program.

The "Registers" command is used to look at the CPU registers (on the screen).

The command is issued by typing : < R> .

The "Transfer" command is used to transfer the program "Model" from the

EPROM to the RAM (address 1000H). It is issued by typing <T> . Once the program

is in the RAM it can be modified by using the "Change" command and can be

debugged and executed by using the "Go" command.

When the program "Model" is transfered to the RAM it can be executed by

typing <M>. In order to run the program "Model" in the RAM it is necessary to

change the address of the last instruction of the main program. This instruction is a

jump to the beginning (JP PLOOP) of the program that is now at a different address

(the original address is in the EPROM). So, we have to find out the new address of

"PLOOP" in the RAM using the PRN file of program "Model" and then change the

instruction "JP PLOOP".

The "Display" command is a feature that permits the presentation of the

variables of program "Model" on the screen after the execution of the program. The

variables are stored in the data memory every time the program is executed in the

EPROM or RAM. This command is issued by typing <D>. The variables to be

presented on the screen are : Error, XDOT. XDOTE. CDDOT, CM. CS and NX
(number of loops). After the command the first ten rows are shown. To get the next

ten rows, hit any key.

2. MONITOR PROGRAMS
In this section the programs that belong to the monitor are presented. They

were developed during the EC-3S00 course and modified a little bit to be used in this

thesis.

99

.Z80
EXTRN
PUBLIC
PUBLIC
PU3LIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC

BKPT:
BUFFIN:
CHAR:
EADORESS:
FLAG:
HEXBUF:
OPCOOE:
SADDRESS:
ST AX:
MCDVAR:
MFLAG:
NS:
KMFLAG:
TEMP:
RECV
XMIT
RSSTAT
RSMODE
RSCMD
PCREG
SPREG
IYREG
IXREG
HLALT
DEALT
BCALT
AFALT
HLREG
DEREG
BCREG
AFREG
R

CM
CMCF
CDOT
CODOT
CDM1
C0DM1
CSM1
CSM2
N
V
KM
CCUNT
cs
NUMBER
QUOT
ONES
TENS
HUNDREDS
THOUS
TTHOUS
TEMPIY
CF
NN
RSTART30
FALSE
TRUE
BS

COMMAND , ERRMSG .MESSAGE ,MONMSG ,SCRLF ,TRAP30 .TRANMSG ,BOUT ,TYPMSG
BKPT, BS, BUFFIN, CHAR, CR,E ADDRESS, ESC, FALSE, FLAG, FWDARW
HEXBUF ,LF ,MCNLOOP , OPCOOE , RECV, RSSTAT ,RSTART30
SPACE .SADDRESS , TEMP ,TRUE ,XMIT
STAX, AFREG, BCREG, DEREG, HLREG, AFALT, BCALT, DEALT, HLALT
PCREG, SPREG, IXREG, IYREG, V,CS, MFLAG, NN, KMFLAG, NS
MONITOR ,MODVAR ,R ,CM ,CDOT , CODOT ,CDM1 ,CDDM1 , KM .COUNT ,CSM1 ,CSM2 ,N

NUMBER , QUOT , ONES , TENS .HUNDREDS , THOUS , TTHOUS , TEMPIY , CMCF ,CF
DSEG

2 ^BREAKPOINT ADDRESS
OFFH .INPUT BUFFER
1 >STORE CRT CHARACTER HERE
2 >END ADDRESS BUFFER
1 jBOOLEAN FLAG
2 ;HEX BUFFER
1 iCONTENTS OF BREAKPOINT LOCATION
2 sSTART ADORESS BUFFER

jREG STORAGE
>MODEL VARIABLE STORAGE
;MODEL FLAG FOR SUBROUTINE FACTOR
^COUNTER USED TO CONTROL STORAGE
VFLAG USED IN WALG
iTEMP VARIABLE
iRS-232 INPUT PORT
iRS-232 OUTPUT PORT
iRS-232 STATUS PORT

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

18H
30H
1

1

1

2

04H
04H
05H
06H
7H

STAX
STAX+2
STAX+<+
STAX+6
STAX+8
STAX+OAH
STAX+OCH
STAX+OEH
STAX+IOH
STAX+12H
STAX+14H
STAX+16H
MODVAR
MODVAR+2
MODVAR+4
MODVAR+6
MODVAR+8
MODVAR+OAH
MODVAR+OCH
MODVAR+OEH
MODVAR+10H
MODVAR+12H
M0DVAR+14H
M0DVAR+16H
M0DVAR+13H
KCOVAR+1AH
MOOVAR+1CH
MODVAR+1EH
MODVAR+20H
MODVAR+22H
MO0VAR+24H
MODVAR+26H
MODVAR+28H
MODVAR+2AH
MODVAR+2CH
MODVAR+2EH
0F7H

OFFH
8

VPC LOCATION IN STAX

IY LOCATION IN STAX
IX LOCATION IN STAX
HL' LOCATION IN STAX

)DE' LOCATION IN STAX
(BC LOCATION IN STAX
>AF' LOCATION IN STAX
;HL LOCATION IN STAX
>OE LOCATION IN STAX
BC LOCATION IN STAX
AF LOCATION IN STAX
R (STEP INPUT) LOCATION IN MOOVAR
CM (MODEL OUTPUT) LOCATION
CM * CORRECTION FACTOR
SCOOT (DERIVATIVE OF CM) LOCATION
iCDDOT (ACCELERATION)
> PREVIOUS VALUE OF VELOCITY
^PREVIOUS VALUE OF ACCELERATION
PREVIOUS VALUE OF PLANT OUTPUT
(T-2) VALUE OF OUTPUT PLANT
COUNTER
VOLTAGE AT THE LIMITER OUTPUT
MOTOR GAIN CONSTANT
COUNTER
ANALOG OUTPUT
DATA TO BE DISPLAYED
QUOTIENT
LSDIGIT OF A DECIMAL NUMBER
SECOND DIGIT OF A DECIMAL NUMBER
THIRD DIGIT
FOURTH DIGIT
FIFTH DIGIT OF A DECIMAL NUMBER
TEMPORARY STORAGE OF IY REG.
CORRECTOR FACTOR
COUNTER FOR HIKSTROM ALGORITHM
iOPCODE FOR RST30

^BOOLEAN VARIABLE
^BOOLEAN VARIABLE
;ASCII BACKSPACE

100

FWDARW EQU OCH iASCII FOREWARD ARROW
ESC EQU 1BH iASCII ESCAPE
SPACE EQU 20H iASCII SPACE
CR EQU ODH iASCII CARRIAGE RETURN
IF EQU OAH iASCII LINE FEED

>

i RS-232 PORT CONFIGURATION WORDS
i

MR1 EQU OCEH
MR2 EQU 7DH
CMD EQU 5

»

CSEG
RESET: LD SP,1600H

JP MONINIT
i

ORG 30H
RST30: JP TRAP30
J

ORG 38H
INTM1

:

i

JP 09C0H

NMINT

:

ORG
JP

66H
09A0H

MONINIT PUSHES ALL THE
ENTERING THE MONITOR

REGISTERS ONTO THE STACK BEFORE

MONINIT:

MONLOOP

:

i

MONITOR:

ORG 100H
LD A,MR1
OUT <RSMODE),A
LD A,MR2
OUT (RSMOOE),A

LD A, CMD
OUT (RSCMD),A
CALL SCRLF
LD IX,MCNMSG
CALL MESSAGE
CALL SCRLF
LD IX,TYPMSG
CALL MESSAGE
CALL SCRLF

CALL MONITOR
JR MONLOOP

LD (IXREG),IX
POP IX
LD (PCREG),IX
LD (SPREG),SP
LD (IYREG),IY
PUSH AF
POP IX
LD (AFREG)>IX
LD (BCREG),BC
LD (DEREG),DE
LD (HLREG),HL
EX AF,AF'
EXX
PUSH AF
POP IX
LD (AFALT),IX
LD (3CALT),BC

LD (DEALT), DE
LD (HLALT),HL
IN A , (RSSTAT

)

AND 2

CALL NZ, COMMAND
LD IX, (AFALT)

iMOVE CURSOR TO NEXT LINE
SET PTR TO MON MESSAGE
PRINT"HI ROBERTO, I AM READY!"
MOVE CURSOR TO NEXT LINE
SET POINTER TO TYPE MESSAGE
PRINT"TYPE . . .E,D,T ..."

5 INVOKE MONITOR
iLOOP FOREVER

•,SAVE IX AT MONITOR ENTRY
SGET PC AT MONITOR ENTRY
iSTORE PC IN STAX+PCDIS
>SAVE SP AT MONITOR ENTRY
>SAVE IY AT MONITOR ENTRY
VPUSH A 3 F

•,GET AS F

iSTORE AF
iSTORE BC
>STORE DE

jSTORE HL

iPUSH A' S F"

>IX <-- AF'
iSTORE AF'

jSTORE BC
iSTORE DE

'

iSTORE HL'

iGET CONSOLE STATUS
ilS A CHAR READY
iGO TO COMMAND DECODER
iRESTORE AF"

101

PUSH IX
POP AF
LD BC(BCALT) RESTORE BC
LD DE, (DEALT) RESTORE DE'
LD HL.IHLALT) RESTORE HL'

EX AF,AF' RESTORE ALL ALT REGS
EXX
LD HL,(HLREG) RESTORE HL
LD DE.tDEREG) RESTORE DE

LD BC.(BCREG) RESTORE BC
LD IX.IAFREG) RESTORE AF
PUSH IX
POP AF
LD IY.(IYREG) .RESTORE IY

LD SP.(SPREG) .RESTORE SP
LD IX.(PCREG) .RESTORE PC

PUSH IX
LD IX.(IXREG) .RESTORE IX

RET

DS
END

J

i

.280
PUBLIC
EXTRN
SXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
J

REGLENGHT
>

GHEXERR:

GO:

THIS PROGRAM DISPLAYS THE CONTENTS OF MEMORY FROM THE
STARTING ADDRESS TO THE END ADDRESS

GO, LIST, REG, REGDISP, GHEXERR, DIS,TRF, MOD, HELP
BACKSP ,BKPT ,BCUT ,BUFFIN , CHAR ,CHGREGS , COMMA ,CR

E ADDRESS ,EAMSG , ECHO ,ERRMSG , ESC , FALSE , FLAG , FWDARW
GETADDR,GETCHAR,GETSTRIN,HEXCNV,HEXCONV,HEXMSG,LINENO, MESSAGE
OPCODE ,REGMSG .RSTART30 ,SADDRESS ,SAMSG ,SCRLF .SCROLL .SPACES
TEMP .TRUE .DISPLAY .TRANSFER .MODEL .DISMSG.TRANMSG .MODMSG
STAX,SPREG,PCREG.AFREG,IXREG,IYREG,AFALT,H1,H2,H3>H4,H5,H6
H7.H8

EQU 8

GOEXIT:

LD B.4
CALL SPACES
LD IX.HEXMSG
CALL MESSAGE
CALL SCRLF
LD 3,2
CALL SPACES
CALL GETSTRIN
CALL HEXCONV
JR C, GHEXERR
LD (PCREG).DE
XOR A

CP (IX)
JR Z, GOEXIT
LD A, COMMA
CP 1HL 1

JR NZ, GOEXIT
INC HL

DEC (IX)
CALL HEXCNV
JR C, GHEXERR
LD A,(DE)

LD (OPCODE),A

LD (BKPT),DE

LD A.RSTART30
LD (DE l.A

CALL SCRLF
RET

SLENGHT OF REGLIST

;LOAD HEX CONVERSION MSG

;SET 2 SPACES
VPRINT 2 SPACES
GET CMO STRING FOR GO
CONVERT ASCII TO HEX
IF CARRY IS SET DISPLAY ERROR MSG
ENTER START ADDRESS
CLEAR A

as THERE A BREAKPOINT
NO, EXIT
A <-- COMMA
IS CHARACTER A COMMA ?

IF IT IS NOT, EXIT
ADJUST ?TR TO NEXT CHAR
ADJUST CHAR COUNT
CONVERT ASCII TO HEX
IF CARRY IS SET DISPLAY ERROR MSG
GET CONTENTS OF BREAKPT
AND SAVE IN OPCODE
SAVE BREAKPOINT
GET OPCODE FOR RST30
INJECT RST30 OPCODE

102

LHEXERR: LD B,<+

CALL SPACES
LD IX,HEXMSG
CALL MESSAGE
CALL SCRLF

LIST: LD B,2
CALL SPACES
CALL GETSTRIN
CALL HEXCONV
JR C, LHEXERR
LD (SADDRESS),DE
XOR A

CP (IX)
JR Z, LOADEND
IMC HL

DEC (IX)
LOADEND: CALL HEXCNV

JR C, LHEXERR
LD (EADDRESS),DE
CALL SCRLF

NEWLINE: CALL LINENO
LD HL,(SADDRESS)

GETABYTE: LD A,(HL)
CALL BOUT
LD A,(FLAG)
CP TRUE
CALL Z, CHANGE
LD 3,2
CALL SPACES
LD DE,(EADDRESS)
XOR A

SBC HL,DE
JR NC, LISTEXIT
LD HL,(SADDRESS)
INC HL
LD (SADDRESS),HL
LD A,L
AND OFH
JR NZ, GETABYTE
CALL SCRLF
CALL SCROLL
LD A, (CHAR)
CP ESC
JR Z, LISTEXIT
JR NEWLINE

LISTEXIT: CALL
RET

SCRLF

>

CHANGE: LD B,2
CHGAGIN: CALL BACKSP

CALL GETSTRIN
LD A,(BUFFIN)
CP
JR Z, NOENTRY
LD B,A
CP 1

JR Z, CHGAGIN
LD (TEMP),A

CALL HEXCONV
LD HL,(SADORESS)
LD (HL),E
LD A, (TEMP)
NEG

NOENTRY: ADD A,

2

JR Z,CHANGEX
LD B,A
CALL P, SPACES

VLOAD HEX CONVERSION MSG

SET 2 SPACES
PRINT 2 SPACES
GET CMD STRING FOR LIST
CONVERT ASCII ADDRESS
IF CARRY IS SET DISPLAY ERROR MSG
START ADDRESS <-- DE

CLEAR A

IS THERE AN END ADDRESS
NO, DEFAULT TO
ADJUST PTR TO NEXT CHAR
ADJUST CHAR COUNT
CONVERT ASCII ADDRESS
IF CARRY IS SET DISPLAY ERROR MSG
END ADDRESS <-- DE

DISPLAY ADDRESS
GET MEMORY POINTER
GET MEMORY BYTE
jDISPLAY MEMORY BYTE

>IS THE CHANGE FLAG SET
iYES, CHANGE A BYTE
iSETUP FOR 2 SPACES
iPRINT 2 SPACES
>DE <-- END ADDRESS
jCLEAR CARRY
>IS START => END
>NO, EXIT
J GET MEMORY POINTER
INCREMENT START ADDRESS

•,GET SADDRESS.LOW
}IS THIS A NEW LINE
>NO, GET A NEW BYTE
iMOVE CURSOR TO NEW LINE
jSTART S STOP SCROLLING
>GET SCROLL CHAR
>IS IT AN ESCAPE
YES, EXIT
START A NEWLINE
NO, ADJUST CURSOR & EXIT

iSETUP FOR 2 BACK SPACES
BACK SPACE 2 SPACES
GET ANY NEW CHARACTERS
GET STRING LENGTH
IS STRING LENGTH =

US STRING LENGTH <2

iYES, DO IT AGAIN
iSAVE STRING LENGTH
iCONVERT BYTE TO HEX
^RESTORE HL PTR
iSTORE CHAR IN BYTE
SSET CURSOR RESTORE BASE
^NEGATE STRING LENGTH
SADD 2 TO RESTORE BASE
;IF ADJUST EXIT

jIF PLUS RESTORE CURSOR

103

CHANGEX: LD
RET

HL,(SADDRESS)

REG: CALL SCRLF
LD IX.REGMSG
CALL REGDISP
LO IX.CHGREGS
CALL MESSAGE
CALL SCRLF
CALL GETCHAR
CALL ECHO
LD A, (CHAR)
LD (TEMP),A

CP CR
JR Z, REGEXIT
CP "S"
JR Z, CHGSP
CP "P"

JR Z, CHGPC
CP "X"
JR Z, CHGIX
CP "Y"
JR Z, CHGIY
CALL GETCHAR
CALL ECHO
LD A, (CHAR)
CP II 1 II

JR Z, CHGALT
CP CR
JR NZ, REGERR

CHGREG: LD HL,AFREG+1
JR LOADLIST

CHGALT: LD HL,AFALT+1
LOADLIST: LD IX,REGLIST

LD B.REGLENGHT-1
LD A, (TEMP)

REGSCAN: CP (IX)
JR Z, REGCONT
INC IX
DEC HL
DJNZ REGSCAN
LD IX,ERRMSG
CALL MESSAGE

REGEXIT: CALL
RET

SCRLF

REGERR: LD IX.ERRMSG
CALL MESSAGE
RET

>

CHGSP: LD HL,SPREG+1
JR REGCONT

CHGPC: LD HL,PCREG+1
J?. REGCONT

CHGIX: LD HL,IXREG+1
JR REGCONT

CHGIY: LD HL,IYREG+1
REGCONT: PUSH HL

LD B,^
CALL SPACES
CALL GETSTRIN
CALL HEXCCNV
POP HL
LD A, (TEMP

)

CP "A"
JR Z,AORF
CP "F"
JR Z,AORF
LD A,D
LD (HL),A

(RESTORE HL BEFORE RETURN

SETUP REG A MESSAGE
DISPLAY REGISTERS
SETUP REG CHANGE MESSAGE
"ENTER REG TO CHANGE"

(GET SELECTED REGISTER
(ECHO REG NAME TO CRT

(NO CHANGE?
(YES, EXIT
iCHANGE SP?
j YES, JUMP CHGSP
(CHANGE PC?
(YES, JUMP CHGPC
(CHANGE IX?
(YES, JUMP CHGIX
(CHANGE IY?
(YES, JUMP CHGIY
(GET NEXT CHAR IN CMD

(IS REG AN ALTERNATE
(YES, CHANGE ALT REG SET
END OF CMD?
NO, JUMP REGERR
GET PTR TO REGS ON STAX

(GET PTR TO REGS ON STAX
(GET IX TO "AFBZDZHZZ"
(SET REGLIST COUNT
^RETRIEVE REG NAME
•,IS REG = SELECTED REG
>YES, OUTPUT CONTENTS
; POINT TO NEXT REG
(POINT TO NEXT REG
GET NEXT REGLIST
REG NOT FOUND GET ERRMSG
"ERROR RE-ENTER"

(GET SP AT MON ENTRY
GET NEW CONTENTS
GET PC AT MON ENTRY
GET NEW CONTENTS
GET IX AT MON ENTRY
GET NEW CONTENTS
GET IY AT MON ENTRY
SAVE HL

PRINT 4 SPACES
GET NEW REG CONTENTS
CONVERT CONTENTS TO HEX
RESTORE HL

(IS REG A?
(YES, GO TO AORF
(IS REG F?

(YES, GO TO AORF
(GET HI BYTE OF HEXBUF
(LOAD REG PAIR HI BYTE

104

AORF:

REGDISP:

ONEREG:

REGPAIR:

\

REGDUMP:

DIS:

TRF:

MOD:

HELP:

DEC HL
LD A,E
LD (HL1,A
CALL SCRLF
JR REGEXIT

LD HL,AFREG+1
LD C,2
CALL ONEREG
LD C,3
CALL REGPAIR
LD HL,IXREG+1
LD C,2
CALL REGPAIR
CALL SCRLF
LD HL,AFALT+1
LD C,2
CALL ONEREG
LD C,3
CALL REGPAIR
LD HL.SPREG+1
LD C,2
CALL REGPAIR
CALL SCRLF
RET

CALL MESSAGE
CALL REGDUMP
INC IX
DEC C

JR NZ, ONEREG
RET

CALL MESSAGE
CALL REGDUMP
CALL REGDUMP
INC IX
DEC C

JR NZ, REGPAIR
RET

LD A,(HL)
CALL BOUT
DEC HL
RET
CALL SCRLF
LD IX,DISMSG
CALL MESSAGE
CALL SCRLF
CALL DISPLAY
RET
CALL SCRLF
LD IX,TRANMSG
CALL MESSAGE
CALL SCRLF
CALL TRANSFER
RET
CALL SCRLF
LD IX,MODMSG
CALL MESSAGE
CALL SCRLF
CALL MODEL
RET
CALL SCRLF
LD IX,H1
CALL MESSAGE
CALL SCRLF
CALL SCRLF
LD IX, H2

>POINT TO LOW REG PAIR
•,GET LO BYTE OF HEXBUF
iLOAD REG PAIR LOW BYTE
;OUTPUT CR AND LF

>EXIT

5POINT TO A 2 F IN STAX
;SET LOOP FOR A AND F

^DISPLAY ASF
JSET FOR 3 REGS
^DISPLAY BC,DE, 3 HL

i POINT TO IXREG IN STAX
jSET FOR 3 REGS
^DISPLAY BCDE, 3 HL

iPOINT TO A' 3 F' IN STAX
>SET LOOP FOR A' AND F'

^DISPLAY A' 3 F"

>SET FOR 3 REGS
.DISPLAY BC ,DE' , 3 HL'

iPOITN TO SP 3 PC
>SET FOR 2 REGS
^DISPLAY SP 8 PC
^GENERATE CR 3 LF

>"AF "

^DISPLAY REG CONTENTS
> POINT TO NEXT MSG
-,DEC REG LOOP COUNTER
;MORE REGS GO TO ONEREG

>"HL
^DISPLAY REG CONTENTS
^DISPLAY REG CONTENTS
•, POINT TO NEXT MSG
; DEC REG LOOP COUNTER
iMORE REGS GO TO REGPAIR

>GET REG
^OUTPUT REG TO CRT
iPOINT TO NEXT REG

>IX<--- MESSAGE ADDRESS
J" DISPLAY THE RESULTS"

jDISPLAY RESULTS ON SCREEN

HX< MESSAGE ADDRESS
^''TRANSFER MODEL TO RAM"

iTRANSFER MODEL TO RAM (1000)

iIX< MESSAGE ADDRESS
;" RUN YOUR MOOEL"

;RUN MODEL

105

REGLIST:

THIS

CALL
CALL
CALL
LD

CALL
CALL
CALL
LD

CALL
CALL
CALL
LD

CALL
CALL
CALL
LD

CALL
CALL
CALL
LD
CALL
CALL
CALL
LD

CALL
CALL
CALL
RET
DC
DS
END

PROGRAM

MESSAGE
SCRLF
SCRLF
IX, H3
MESSAGE
SCRLF
SCRLF
IX,H<+

MESSAGE
SCRLF
SCRLF
IX, H5
MESSAGE
SCRLF
SCRLF
IX, Ho
MESSAGE
SCRLF
SCRLF
IX, H7
MESSAGE
SCRLF
SCRLF
IX, H8
MESSAGE
SCRLF
SCRLF

"AFBZDZHZZ"

DECODES COMMANDS AND INVOKES THE PROPER
COMMAND ROUTINES

.Z80
PUBLIC
EXTRN
EXTRN
i

COMMAND

:

COMMAND
CHAR , ECHO , ERRMSG , FALSE , FLAG ,GETCHAR ,GO , LIST .MESSAGE ,HE LP

REG, SCRLF, TRUE, DIS,TRF, MOD

>GET A CHAR FROM CRT
;ECHO CHAR BACK TO CRT
jGET CMD CHAR
>IS CHAR A "G"
iYES, EXECUTE CODE

(SET CHANGE FLAG
;IS CHAR A "C"
VYES, CHANGE MEMORY
>CLEAR CHANGE FLAG
•,IS CHAR A "S"
>NO, LIST MEMORY
>IS CHAR AN "R"
iYES, DISPLAY REGS
>IS CHARACTER A "D"?
iYES, DISPLAY RESULTS
ilS CHARACTER A "T"?
^TRANSFER MODEL TO RAM
*IS CHARACTER AN "E"?
-,RUN MODEL
ilS CHARACTER AN "M" ?

>GO TO RAM, ADDRESS 10OOH
>IS CHARACTER AN "H" ?

>IF YES, GO TO HELP (IN LIST)
;GET ERROR MESSAGE PTR
iPRINT "ERROR RE-ENTER"
•,MOVE CURSOR TO NEXT LINE

CALL GETCHAR
CALL ECHO
LD A, (CHAR)
CP •G'

JP Z,GO
LD HL.FLAG
LD (HL),TRUE
CP c
JP Z,LIST
LD (HL), FALSE
CP 'L 1

JP Z,LIST
CP 'R'

JP Z,REG
CP D'
JP Z,DIS
CP T'
JP Z,TRF
CP 'E'

JP Z,MOD
CP 'M'

JP Z.IOOOH
CP 'H'

JP Z,HELP
LD IX, ERRMSG
CALL MESSAGE
CALL SCRLF
RET
END

THIS PROGRAM DECODES COMMANDS AND INVOKES THE PROPER

.06

.Z80
PU3LIC
EXTRN
EXTRN

COMMAND

:

COMMAND ROUTINES

COMMAND
CHAR, ECHO, ERRMSG, FALSE, FLAG, GETCHAR, GO, LIST, MESSAGE, HE LP

REG, SCRLF, TRUE, DIS,TRF, MOD

5GET A CHAR FROM CRT
>ECHO CHAR BACK TO CRT
;GET CMD CHAR
>IS CHAR A "G"
iYES, EXECUTE CODE

>SET CHANGE FLAG
ilS CHAR A "C"

; YES, CHANGE MEMORY
jCLEAR CHANGE FLAG
>IS CHAR A "S"
;NO, LIST MEMORY
ilS CHAR AN "R"
>YES, DISPLAY REGS
jIS CHARACTER A "D"?
>YES, DISPLAY RESULTS
ilS CHARACTER A "T"?
^TRANSFER MODEL TO RAM
US CHARACTER AN "E"?
J RUN MODEL
>IS CHARACTER AN "M" ?

jGO TO RAM, AODRESS 10OOH
;IS CHARACTER AN "H" ?

ilF YES, GO TO HELP (IN LIST)
;GET ERROR MESSAGE PTR
5PRINT "ERROR RE-ENTER"
>MOVE CURSOR TO NEXT LINE

CALL GETCHAR
CALL ECHO
LD A, (CHAR)
CP 'G'

JP 2, GO
LD HL,FLAG
LD (HL),TRUE
CP •c
JP Z,LIST
LD (HL), FALSE
CP L'
JP 2, LIST
CP R'
JP 2, REG
CP •D'

JP 2,DIS
CP T'
JP 2,TRF
CP •E'

JP 2, MOD
CP 'M'

JP 2,1000H
CP H'
JP 2, HELP
LD IX, ERRMSG
CALL MESSAGE
CALL SCRLF
RET
END

I

i

.280
EXTRN
PUBLIC
PUBLIC
NULL

THIS PROGRAM OUTPUTS MESSAGES TO THE CRT SCREEN

ECHO
CHGREGS ,EAMSG , ERRMSG ,HEXMSG , MESSAGE ,MONMSG ,REGMSG ,SAMSG
TRANMSG,M0DMSG,HELL0,DISMSG,TYPMSG,H1,H2,H3,H<+,H5,H6,H7,H8
EQU >ASCII NULL SYMBOL

MESSAGE

:

MSGRET:
CHGREGS:

EAMSG:

ERRMSG

HEXMSG

MONMSG

REGMSG

SAMSG:

TYPMSG:

LD

CP
JR
CALL
INC
JR
RET
DC
DC
DB
DC
OB
DC
DB
DC
D3
DC
DS
D3
D3
DB
DB
DC
DB
DC

A, (IX)
NULL
2, MSGRET
ECHO
IX
MESSAGE

>GET MESSAGE CHAR
>IS CHAR = NULL
>YES, RETURN
lOUTPUT CHAR TO CONSOLE
INCREMENT MESSAGE PTR
iGET ANOTHER CHARACTER

"ENTER REGISTER YOU WANT TO CHANGE"
" [A,F,B(BC),D(DE),H(HL),S(SP),P(PC)]"

NULL
"END ADDRESS "

NULL
"ERROR RE-ENTER"
NULL
"HEX CONVERSION ERROR ... RE-ENTER"
NULL
"AUTOADAPTIVE CONTROL FOR A ROBOT ARM"
NULL
"A=",NULL," F=",NULL," BC=",NULL," DE="
NULL," HL=",NULL," IX=",NULL," IY=",NULL
"A"', NULL," F'",NULL," BC'",NULL," DE '

"

NULL," HL'",NULL," SP=",NULL," PC=",NULL
"START ADDRESS "

NULL
"TYPE 'E' TO RUN MODEL, "

107

DC
DC
DB

TRANMSG: DC
DB

DISMSG: DC
OB

MODMSG: DC
D3

HELLO: DC
DB

HI: DC
DC
DC
DB

H2: DC
DB

H3: DC

DB
H4: DC

DB
H5: DC

DC
DB

H6: DC
DC
DC

DC
D3

H7: DC
DC
DC
DB

H8: DC
DB
END

"'D' TO DISPLAY THE RESULTS, "

"'H' TO GET HELP."
NULL
"TRANSFER MODEL FROM EPROM TO RAM ADDRESS 1000"
NULL
"DISPLAY RESULTS"
NULL
"RUN MODEL"
NULL
"PLEASE ENTER ANGLE POSITION. MAXIMUM IS 7F"
NULL
"l.TO RUN THE PROGRAM, TYPE <E>. ENTER ANGLE! HEX),"
"RESET THE INTEGRATORS IN THE ANALOG PLANT AND HIT"
"<RETURN>.TO STOP THE PROGRAM, PRESS THE RESET SWITCH"
NULL
"2. TO DISPLAY THE RESULTS OFF LINE (LAST RUN), TYPE <D>'

NULL
"3. TO TRANSFER THE PROGRAM TO RAM (AD. 1000H),TYPE <T>'

NULL
"4. TO RUN THE PROGRAM IN THE RAM, TYPE <M>."
NULL
"5. TO LIST THE MEMORY FROM ADDRESS XXXX TO YYYY , TYPE:'
"

' L<RET>XXXX ,YYYY<RET> '

"

NULL
"6. TO CHANGE DATA OR ENTER MACHINE LANGUAGE PROGRAM"
"INTO RAM BETWEEN THE ADRESSES XXXX AND YYYY, TYPE:"
'"C<RET>XXXX,YYYY<RET>. TYPE <RET> TO BROWSE THE "

"MEMORY"
NULL
"7. TO RUN A PROGRAM IN THE RAM TYPE : G<RET>XXXX ,ZZZZ"
"<RET> WHERE ZZZZ IS THE BREAKPOINT OF THE PROGRAM."
"THE CPU REGISTERS WILL BE SHOWN ON THE SCREEN."
NULL
"3. TO SEE THE CPU REGISTERS, TYPE <R>."
NULL

(THIS PROGRAM
•,KEY30ARD AND

CONTAINS THE ROUTINES TO GET CHARACTERS FROM THE CRT
SEND THEM TO THE SCREEN. FILE IS "CONSOLE"

EXTRN
PUBLIC
GETCHAR:

ECHO:
CKAGIN:

CHAR,REC
GETCHAR
IN
AND
JR
IN
AND
LD
RET
LD
IN
AND
JR
LD

OUT
RET
DS
END

,RSSTAT,XMIT
ECHO
A,(RSSTAT)

2

Z, GETCHAR
A,(RECV)
7FH
(CHAR),

A

E,A
A , (RSSTAT)

1

Z, CKAGIN
A,E
(XMIT),A

(GET CONSOLE STATUS
(IS A CHAR READY ?

(NO, CHECK AGAIN
(YES, GET RS232 DATA
(PARITY STRIP
(STORE INPUT IN CHAR

;TEMP CHAR STORE
(GET CONSOLE STATUS
(IS XMIT READY ?

(NO, CHECK AGAIN

(YES, SEND DATA OUT

THIS PROGRAM CONVERTS THE STRING IN BUFFIN INTO A HEXIDECIMAL NUMBER

EXT
PUBLIC

BUFFIN, HEXSHIFT,LF, SEVEN, THIRTY
HEXCONV,HEXCNV, COMMA

CLEAR
COMMA
HT
OLE

EQU OOH
EQU 2CH
EQU 09H
EQU 10H

(INITIALIZATION VALUE
(ASCII COMMA
(ASCII HORIZONTAL TABULATION
(ASCII DATA LINK ESCAPE

10S

HEXCONV: LD
CALL
RET

HL,BUFFIN+1
HEXCNV

^INITIATE BUFFIN PONITER TO BUFFIN(l)
^CONVERT THE START ADDRESS TO HEX

HEXCNV:

HEXLOOP:

ZEROCK:

EMPTY:
ENDCONV:
HEXERR:

THIS ROUTINE
LD

LD

LD

CP
JR
LD
CP
JR
SUB
LD
CP
JP
SUB
LD

CP
JP
CP
JP
CP
JP
CALL
INC
DEC
XOR
CP
JP
OR
RET
SCF
JR

PERFORMS THE
DE, CLEAR
IX, BUFFIN
A , (IX)

CLEAR
Z, EMPTY
A,(HL)
COMMA
Z, EMPTY
THIRTY
(HL),A
LF

M, ZEROCK
SEVEN
(HL),A
HT
M, HEXERR
DLE
P, HEXERR
CLEAR
M, HEXERR
HEXSHIFT
HL
(IX)
A

(IX)
NZ, HEXLOOP
A

ENDCONV

ASCII TO HEX CONVERSION
iCLEAR HEXIDECIMAL REGISTERS
iSET IX REG AS A STRING LENGTH POINTER
^EVALUATE STRING LENGTH
>IS THE STRING LENGTH EQUAL TO ZERO
ilF LENGTH EQUALS ZERO EXIT ROUTINE
iGET CHARACTER FROM BUFFIN
>IS CHARACTER A COMMA ?

>IF IT IS EXIT ROUTINE
;A <— CHAR -30H
>CHAR <-- A REG
jIS CHARACTER OAH ?

jIF IS LESS THAN OAH GO TO ZEROCK
>A <-- CHAR - 07H
>CHAR <-- A REG
;IS CHARACTER A 09H ?

ilF IS LESS THAN 09H GO TO HEXERR
>IS CHARACTER A 10H ?

>IF GREATER THAN 10H GO TO HEXERR
JIS CHARACTER A ZERO ?

>IF LESS THAN ZERO GO TO HEXERR
.PROVIDE THE SHIFT IN THE HEX REGISTER
^INCREMENT BUFFIN POINTER
^DECREMENT STRING LENGTH
jCLEAR ACCUMULATOR
jIS THERE MORE CHARACTERS ?

ilF YES GET NEXT CHARACTER
iNO ERROR ,SO CLEAR CARRY

jERROR ,SO SET CARRY
>EXIT SUBROUTINE

DS 1

END
i THIS PROGRAM PROVIDES THE SHIFT OF THE HEX ADDRESS INTO THE HEX REGISTERS

PUBLIC HEXSHIFT

HEXSHIFT:

SHIFT:

LD
OR
SLA
RL
DJNZ
LD

OR
LD
RET

B,0<+H

A

E

D

SHIFT
A,(HL)
E

E,A

>B <-- 04
>CLEAR CARRY
jSHIFT LEFT E CONTENTS THROUGH CARRY
>ROTATE LEFT D CONTENTS FROM CARRY
>ARE THE FOUR SHIFTS COMPLETED ?

JA <-- CONVERTED CHARACTER
^SUPERIMPOSE THE CONTENTS OF E AND A

>E <-- A REG

DS
END

THIS PROGRAM GETS STRING OF CHARACTERS FROM THE CRT THAT WILL BE
CONCATENATED BY CONCAT

EXT
PU3LIC

ZERO

BUFFIN , CONCAT ,CR .ECHO ,GETCHAR
GETSTRIN

EQU OOH ^INITIAL VALUE OF COUNTER

GETSTRIN:

BUILD:

LD CZERO
LD HL, BUFFIN
INC HL
CALL GETCHAR
CP CR
JR Z,STRINGEX

^COUNTER INITIALIZATION
jINITIATE BUFFIN POINTER
;PLACE POINTER INTO BUFFIN! I

)

SREAD CHARACTER FROM CRT
>IS THE CHARACTER A CARRIAGE RETURN
*IF IT IS JUMP TO STINGEX

109

STRINGEX:

CALL ECHO
CALL CONCAT
JR BUILD
LD A,C
LD (BUFFIN),A
RET

jDISPLAY CHARACTER
^CONCATENATE THIS CHAR WITH THE OTHERS
•,GET NEXT CHARACTER
\A REG <-- NUMBER OF CHAR IN STRING
iSTRING LENGTH IS STORED IN BUFFINt)

i

I

i

.280
PUBLIC
EXTRN

DS 1

END
THIS PROGRAM DISPLAY THE STARTING ADDRESS OF THE CURRENT
LINE

LINENO
BOUT, SADDRESS, SPACES

LINENO: LD A,(SADDRESS+1) >GET MSB CURRENT ADDRESS
jDISPLAY HI ADDRESS BYTE
}GET LSB CURRENT ADDRESS
^DISPLAY LOW ADDRESS BYTE
;SETUP FOR 4 SPACES
SPRINT <+ SPACES

THIS PROGRAM SENDS OUT A CARRIAGE RETURN AND LINE FEED

CALL BOUT
LD A,(SADDRESS)
CALL BOUT
LD B,<+

CALL SPACES
RET
DS 1

END

.Z80

PUBLIC
EXTRN
EXTRN

BACKSP:

BACKSP ,SCRLF , SCROLL , SPACES
BS, CHAR, CR, ECHO, ESC, GETCHAR ,LF ,RSSTAT
FWDARW

LD A,BS
CALL ECHO
DJNZ BACKSP
RET

>A <-- BACK SPACE
jSEND SPACE TO CRT
>YES, GOTO SPACES

SCRLF:

SPACES:

5

SCROLL:

PAUSECK

SEXIT:

LD
CALL
LD

CALL
RET

LD

CALL
DJNZ
RET

IN
CP
JR
CALL
LD

CP
JR
IN
CP
JR
CALL
RET
DS
END

THIS PROGRAM

A,CR
ECHO
A,LF
ECHO

A, FWDARW
ECHO
SPACES

A , (RSSTAT

)

2

NZ, SEXIT
GETCHAR
A, (CHAR)

ESC
Z, SEXIT
A, (RSSTAT)
2

NZ, PAUSECK
GETCHAR

SA <-- ASCII RETURN
>SEND A RETURN TO CRT
>A <-- ASCII LINE FEED
>SEND A LINE FEED TO CRT

;A <— FOREWARD ARROW
jSEND SPACE TO CRT
>YES, GOTO SPACES

iGET CONSOLE STATUS
SIS A CHAR READY
>N0, EXIT
>YES, GET THE CHARACTER
;A <— CHAR
>IS THE CHAR AN ESCAPE
>YES, TERMINATE SCROLL
GET CONSOLE STATUS
IS A CHAR READY
NO, CONTINUE PAUSE
>CLEAR REC REG

GETS AN ASCII ADDRESS AND CONVERTS IT TO HEX

.Z80
PU3LIC
EXTRN

GETADDR
BUFFIN,GETSTRIN,HEXCONV, MESSAGE, SCRLF

110

5M0VE CURSOR TO NEXT LINE
SPRINT ADDRESS MESSAGE
>GET ASCII ADDRESS
;MOVE CURSOR TO NEXT LINE
jCONVERT ADDRESS TO HEX
J ERROR, GET NEW ADDRESS

i

GETADDR: CALL SCRLF
CALL MESSAGE
CALL GETSTRIN
CALL SCRLF
CALL HEXCONV
JR C, GETADDR

ADDREXIT: RET
DS 1

END
; THIS PROGRAM IS USED BY GETSTRIN TO CONCATENATE THE CHARATER ONTO THE
i ASCII STRING BEING FORMED IN THE INPUT BUFFER
i

EXT CHAR,BS
PUBLIC CONCAT

CONCAT:

CORRECT:

CP
JR
LD
LD

INC
INC
RET
LDD
RET

BS >IS THE CHARACTER A BACK SPACE ?

Z, CORRECT }IF IT IS JUMP TO CORRECT
A, (CHAR) }A REG <— LOADED CHARACTER
(HL),A)STORE CHARACTER IN BUFFIN
C » INCREMENT COUNTER
HL *SET POINTER TO NEXT BUFFIN POSITION

;HL <-- HL-1,BC <— BC-1

DS
END

i

i

EXT
PU3LIC
i

MASK
THIRTY
COLON
SEVEN
»

BOUT:

THIS PROGRAM CONVERTS THE HEX CONTENTS OF A INTO ASCII

TEMP, ECHO
BOUT, THIRTY, SEVEN, ASCONV

EQU OFH
EQU 30H
EQU 3AH
EQU 07H

LD (TEMP),

A

SRL A

SRL A

SRL A

SRL A

CALL ASCONV
LD A, (TEMP)
AND MASK
CALL ASCONV
RET

JASCII
iASCII
>ASCII
jASCII

MASK
30

iMAKE TEMPORARY COPY OF ACCUMULATOR
5 FIRST SHIFT RIGHT OF A CONTENTS
jSECOND SHIFT RIGHT OF A CONTENTS
>THIRD SHIFT RIGHT OF A CONTENTS
J FOURTH AND LAST SHIFT RIGHT
iCONVERSION OF MS NIBBLE
>GET TEMPORARY COPY OF A

iMASK OFF MS NIBBLE
iCONVERSION OF LS NIBBLE
^RETURN TO CALLING ROUTINE

i

•y THIS SUBROUTINE WORKS WITH 'BOUT' TO PERFORM THE HEX TO ASCII CONVERSION
\

ASCONV: ADD A, THIRTY ;ADD 30H TO HEX NIBBLE
^COMPARE THE RESULT OF SUM WITH COLON
HF IT IS LESS THEN COLON JP TO ASCOUT
>ADD 7 FOR A-F OFF SET
^DISPLAY THE ASCII CHARACTER
>GO BACK TO 'BOUT'

ASCOUT

:

y

ADD A, THIRTY
CP COLON
JP M, ASCOUT
ADD A, SEVEN
CALL ECHO
RET

J

i

EXT
PUBLIC
i

TRAP30:

DS 1

END
THIS PROGRAM RESTARTS THE MONITOR AFTER A BREAKPOINT

BKPT, OPCODE, REGDISP,REGMSG,MONLOOP, MONITOR
TRAP30

iSAVE REGISTERS
jA <--OPCODE OF BREAKPOINT POSITION
}DE<—ADDRESS OF BREAKPOINT
iRESTORE OPCODE IN THE PROGRAM

CALL MONITOR
LD A, (OPCODE

)

LD DE,(BKPT)
LD (DE),A

111

ID IX,REGMSG
CALL REGDISP
JP MONLOOP
RET
DS 1

END

^PREPARE TO DISPLAY REGISTERS
^DISPLAY REGISTERS
;GO TO MONLOOP AT MAIN

112

APPENDIX C

EQUIPMENT AND OPERATIONAL PROCEDURES

1. EQUIPMENT

The experimental system consists of the following parts:

1. Three protoboards for the microprocessor, extra memories (data memories) and
analog plant

2. One video terminal

3. One +5 V / 5 A power supply

4. One -5 V / 300 mA power supply

5. One + 12 V / 300 mA power supply

6. One ± 15 V: 1 A power supply

7. One oscilloscope for measuring the analog output.

2. PROCEDURE

In the actual configuration the objective of the hardware is to receive a

commanded input from the keyboard (robot arm angle to be displaced) and provide the

corresponding voltage at the plant output. This voltage represents the actual

displacement of the robot arm and is monitored by the oscilloscope at the plant

output. The commanded input (hexadecimal), when converted to decimal represents a

multiple of 2.23 degrees. The minimum input allowed is 1 and the maximum is 7F

(hexadecimal). In decimal they represent inputs from 1 to 127 and in degrees they are

equivalent to angles between 2.23 to 284.2 dgrees. respectively.

The operational procedure to run the system, in a step by step basis can be

described as follows :

1. Turn on the main power, power supplies, monitor and oscilloscope.

2. Connect one channel of the oscilloscope to the plant output (CS). A second
channel can be used to observe the plant input (V).

3. Reset the microprocessor by pressing the reset switch. The screen will displav
three options (execution, display and help). Hit <E> to run the program.

4. The program will ask for the ansle input. Type an hexadecimal number less or
equal to 7FH (decimal 127). Adjust the oscilloscope scale accordmelv. The
biggest voltage will be equal to the decimal input multiplied by 0.039 Volt's.

5. Reset the integrators in the analog plant, the last integrator switch must be
released last to guarantee zero output at the beginning ofthe program.

6. Type < ret > right after releasing the reset switch.

113

7. The program will run and the plant output can be observed at the oscilloscope.
The voltage on the oscilloscope represents the angle position in radians.

S. Reset the microprocessor.

9. Tvpe <D> on the kevboard to displav the results. As explained in Appendix
C. the variables will be' displaved in eicht columns. From left to risht thev will
be : Error. XDOT. XDOTE. 'CDDOT. CDOT. CM. CS and NVi number of
loops accomplished by the program up to that row).

10. To scroll up the rows and look, at some more data, hit any key.

11. At the end of the data memorv the screen will show an error message to
indicate that there is no more data available. To look at the data asain. "reset
the micro and tvpe < D> .

114

LIST OF REFERENCES

1. Wikstrom. K., An Adaptive Model Based Disk File Head Positioning Servo Svstem,
Master Thesis, Naval Postgraduate School, Monterey, CA, September 19S5!

2. Zaks. R., Programming the Z80, Sybex. 19S2.

3. Ogata, K., Modern Control Engineering, Prentice Hall, 1970.

4. Roberae. J., Operational Amplifiers: Theorv and Practice. John Wilev & sons.
1975.

t M '

5. Advanced Micro Devices Inc., Am9500 Peripherical Products Interface Guide,
1980.

6. Tobev. G. E., Graeme. J. G. and Huelsman. L. P.. Operational Amplifiers. Design
and Applications, Burr-Brown Researcher Corporation. 1971.

7. Ozaslan. K., The Near Minimum Time Control of a Robot Ann, Master Thesis.
Naval Postgraduate School, Monterev. CA. December 19S6.

115

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria. VA 22304-6145

2. Librarv. Code 0142 2
Naval Postgraduate School
Monterey. CA 93943-5002

3. Professor G. J. Thaler. Code 62Tr 1

Department of Electrical & Computer Engineering
Naval Postgraduate School
Monterey. CA 93943

4. Professor H. A. Titus. Code 62Ti 1

Department of Electrical & Computer Engineering
Naval Postgraduate School
Monterey. CA 93943

5. Professor Larrv W. Abbot. Code 62At
Department of Electrical & Computer Engineering
Naval Postgraduate School
Monterey. CA 93943

6. Professor L. W. Chang. Code 69Ck 1

Department of Mechanical Engineering
Naval Postgraduate School
Monterey. CA 93943

7. Professor D. L. Smith. Code 69Sm 1

Department of Mechanical Engineering
Naval Postgraduate School
Monterey. CA 93943

8. Professor R. Werneth. Code 69Wh 1

Department ot Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943

9. Cpt. Paulo Roberto de Souza 2
Centro Tecnico Aeroespacial - IAE - ESB
12225 - S. Jose dos Campos - SP - Brasil

10. Diretor do Centro Tecnico Aeroespacial 1

Centro Tecnico Aeroespacial
12225 - S. Jose dos Campos - SP - Brasil

11. Diretor do Instituto de Atividades Espaciais 1

spacial - IAE
impos - SP - Brasil

12. Cheie da Divisao de Sistemas Belicos 1

Centro Tecnico Aeroespacial - IAE - ESB
12225 - S. Jose dos Campos - SP - Brasil

13. Biblioteca do ITA 1

Centro Tecnico Aeroespacial - ITA
12225 - S. Jose dos Campos - SP - Brasil

Centro Tecnico Aeroespacial - IAE
12225 - S. Jose dos Campos -

116

14. Diretor do IPD 1

Centro Tecnico Aeroespacial - IPD
12225 - S. Jose dos Campos - SP - Brasil

15. Reitor do ITA 1

Centro Tecnico Aeroespacial - ITA
12225 - S. Jose dos Campos - SP - Brasil

16. LT. AntonioJ. Gameiro Marques 1

D.S.I.T. Edificio da Administracao Central de Marinha
11SS. Lisboa CODEX - Portugal

17. Kemal Ozaslan 1

Celebidere Sokak
NO =23 4 Yenikoy
Istambul-Turkey

IS. Nusret Yurutucu 1

720 Trenton Place
Gilrov, CA 95020

117

180 70

DUDLEY KNOX LIBRARY ^
NAVAL POSTGRADUATE SCHOOL^^
MONTEREY, CALIFORNIA 93942-8002

221170
Thesis
S666235 Souza

.

c i
Real time programming

o£ a robot.

221170
Thesis

S666235
c.l

Souza
Real time programming

of a robot.

