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ADVERTISEMENT
The Smithsonian Institution has maintained for many years a group of

publications in the nature of handy books of information on geographical,

meteorological, physical, and mathematical subjects. These include the

Smithsonian Geographical Tables (third edition, reprint, 1918), the Smithsonian

Meteorological Tables (fourth revised edition, 1918), the Smithsonian Physical

Tables (seventh revised edition, 1921); and the Smithsonian Mathematical

Tables: Hyperbolic Functions (second reprint, 1921),

The present volume comprises the most important formulae of many branches

of applied mathematics, an illustrated discussion of the methods of mechanical

integration, and tables of elliptic functions. The volume has been compiled by
Dr. E, P. Adams, of Princeton University. Prof. F. R. Moulton, of the Univer-

sity of Chicago, contributed the section on numerical solution of differential

equations. The tables of elliptic functions were prepared by Col. R. L. Hippisley,

C. B., under the direction of Sir George Greenhill, Bart., who has contributed the

introduction to these tables.

The compiler, Dr. Adams, and the Smithsonian Institution are indebted to

many physicists and mathematicians, especially to Dr. H. L. Curtis and col-

leagues of the Bureau of Standards, for advice, criticism, and cooperation in

the preparation of this volume.

CHARLES D. WALCOTT,

Secretary of the Smithsonian Institution.

May, igss.



PREFACE

The original object of this collection of mathematical formulae was to bring

together, compactly, some of the more useful results of mathematical analysis

for the benefit of those who regard mathematics as a tool, and not as an end in

itself. There are many such results that are difficult to remember, for one who
is not constantly using them, and to find them one is obliged to look through a

number of books which may not immediately be accessible.

A collection of formulae, to meet the object of the present one, must be

largely a matter of individual selection; for this reason this volume is issued

in an interleaved edition, so that additions, meeting individual needs, may be

made, and be readily available for reference.

It was not originally intended to include any tables of functions in this

volume, but merely to give references to such tables. An exception was made,

however, in favor of the tables of elliptic functions, calculated, on Sir George
GreenhilPs new plan, by Colonel Hippisley, which were fortunately secured for

this volume, inasmuch as these tables are not otherwise available.

In order to keep the volume within reasonable bounds, no tables of indefinite

and definite integrals have been included. For a brief collection, that of the

late Professor B. 0, Peirce can hardly be improved upon; and the elaborate

collection of definite integrals by Bierens de Haan show how inadequate any
brief tables of definite integrals would be. A short list of useful tables of this

kind, as well as of other volumes, having an object similar to this one, is appended.
Should the plan of this collection meet with favor, it is hoped that suggestions

for improving it and making it more generally useful may be received.

To Professor Moulton, for contributing the chapter on the Numerical

Integration of Differential Equations, and to Sir George Greenhill, for his Intro-

duction to the Tables of Elliptic Functions, I wish to express my gratitude.

And I wish also to record my obligations to the Secretary of the Smithsonian In-

stitution, and to Dr. C, G. Abbot, Assistant Secretary of the Institution, for the

way in which they have met all my suggestions with regard to this volume.

E. P. ADAMS
PRINCETON, NEW JERSEY
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SYMBOLS

log logarithm. Whenever used the Naperian logarithm is understood.

To find the common logarithm to base 10:

logio a = 0.43429 ... log a.

log a - 2.30259 . . . logio a.

I Factorial, nl where n is an integer denotes 1.2.3.4 n.

Equivalent notation 12

41 Does not equal.

> Greater than.

< Less than.

^ Greater than, or equal to.

^ Less than, or equal to.

Binomial coefficient. See 1.51-

Approaches.

|

Determinant where a ljs is the element in the ith row and kth column,

'
' ' '

. Functional determinant. See 1.37.

Absolute value of a. If a is a real quantity its numerical value,

without regard to sign. If a is a complex quantity, a - a + ifi,

|

a
|

= modulus of a = +Va? + /3
2

,

The imaginary = +V i.

k=n

Sign of summation, i*e,, ^a^ = a\ 4- 02 + #3 + . . . . + #n .

-n

JJ Product, i.e., JJ(i + *) -
(i + *)(i + 2x)(i + 3*) . . . . (i + nx).



I. ALGEBRA

1.00 Algebraic Identities.

1. an - b
n =

(a
-

6) (a"-
1 + a~2b + a-3

6
2 +

2. a" J" = (a + ^(a"-
1 - an~*b + a^b2 -

n odd: upper sign.

n even: lower sign.

3. (x + ai}(x + <h) ..... (x + an) = xn

Pn.

Pi =
0,1 + <h + ...... + ff.

Pj, = sum of all the products of the a's taken k at a time.

4. (a
2 + J

2
)(a

2 + /S
2
)
= (ao =F &/3)

2 + (a/3 Ja)
2
.

5. (a
2 - J

2

)(a
2 -

/3
2
)
= (ao JjS)

2 -
(aj8 6a)

2
.

6. (a
2 + 6

2 + c
2
)(a

2 + j8
2 + T

2
)
= (aa + 6/3 + cy)

2 + (67
-

fr)
2 + (ca

-

+ (o/3
-

ai)
2

.

7. (a
2 + J

2 + c
2 + <F)(a

2 + /3
2 + 72 +52

)
= (aa + J/3 + c'y + d5)

2

+ (aj8
- bo. + c8 - d^ + (aj-b8-ca + dp)* + (ad + by-c$-

. .5. (ac
- M)

1 + (ai + Jc)
2 =

(ac + W)
2 + (ad

-
bc}\

9. (a + b)(b + c)(c + a)
=

(a + b + c)(ab + bc + ca)-abc.

10. (a + J)(J + c)(c + a)
= a2(J + c) + 6

2
(c + a) + c

2
(o + 6) + sff&c.

n. (a + &)<& + c)(c + o)
= k(6 + c) + ca(c + a) + ab(a + i) + 2a6c.

12. 3 (a + J)(5 + c)(c + a)
=

(a + 5 + c)
s -

(a
3 + i3 + c

3
).

13. (5
-

a)(c
-

a)(c
-

6)
= a2(c

-
J) + J

2
(a
-

c) + c
2
(6
-

a).

14. (6
-

a)(c
-

a)(c
-

b)
= a(6

2 -
<?} + J(c

2 - a2
) + c(

2 - &
2
)-

15. (b
-

a)(c
-

a)(c -b) =
bc(c -b) + ca(a

-
c) + db(b

-
a).

16. (a,
-

J)
2 + (b

-
c)

2 + (c
-

a)
2 =

2[(
-

&)(a
-

c) + (b
-

a)(b
-

c)

17.

18. (a + 5 + c)(a
2 + J2 + c

2
)
=

Jc(6 + c) + co(c + a) + ab(a + 6) + as + &s. + c
s

.

19. ( + 6 + c) (be + ca + at>)
= a2

(J + c) +M(c + a), + c
2
(a 4

20. (J + c - a)(c + a- b)(a + b-c)= a?(b + c) + b*(c>+ a)
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21. (a 4- b + c}(
- a + b 4 c)(a - 4 + c)(a + b - c) * 2 (6V + 6V -f ^62

)

-(** + ** + <;'}.

22. (a -f i 4- ^ + </)- -f (a + 4 - c - i)
2 + (a + c - 6 - d)

3 + (a + d - 6 - c)
a

= 4(0* + i2 + c- + <P).

If .4 = (ia + i7 + c|8

B aj3 + Ja + cy

C (17 + 6/3 + ca

23. (a + & + c)(a + ]8 + 7)4 + B + C
24. [V -f &2 -f ^ -

(a& -f be + ca)] [a
2 + /3

2 + y2 -
(a/3 + /3y -f 7^)]

,12 + ^2 + p ^1B 4. sc + C4).

25. (a
3 + fi> + ? - 3afic)(a

3
4- /3

s + 7s
3dj37) - 4 8 + s + C8 -

3/lSC.

ALGEBRAIC EQUATIONS
1.200 The expression

/(.v) a<>.x:
n + aix

11"1
-f aa.v

71"*2
-f ...... + a^ia; -f &n

is an integral rational function, or a polynomial, of the th degree in x.

1.201 The equation f(x) o has roots which may be real or complex, dis-

tinct or repeated.

1*202 If the roots of the equation /(#) o are Ci, c2 ,
. .

., c n ,

f(x)
- a (x

-
ci)(x -ft) ...... (A-

- rn)

1.203 Symmetric functions of the roots are expressions giving certain com-

binations of the roots in terms of the coefficients, Among the more important

are:

#0

1.204 Newton's Theorem. If $k denotes the sum of the ith powers of all the

roots of /(#) o,
k k *

Sjfc Ci + Cfc + ...... + C

+ ^i 4*

4- $ifa 4- 5^1 +
o
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or:

01
Si = -~

#0

= _
2^2 fll

2

2
#0 #o

2

5 = 3^3
3

#0

= _ 4. _ , _

4 " 2 3 2

1.205 If Sk denotes the sum of the reciprocals of the kiln, powers of all the

roots of the equation f(x)
= o :

*J& ==
t H J -]". -j

--r
& fc k

+ 5l^n-2 +

c
01 = -

C _
2

C - tt-
,

O3 ----
I

1.220 If f(x) is divided by * - h the result is

/(*)- (a-A)Q + U.

Q is the quotient and ^ the remainder. This operation may be readily per-

formed as follows :

Write in line the values of #o, #i, . . .
., a*. If any power of x is missing

write o in the corresponding place. Multiply #o by A and place the product in

the second line under <zi; add to ai and place the sum in the third line under a\.

Multiply this sum by h and place the product in the second line under <%; add

to 0$ and place the sum in the third line under #2. Continue this series of

operations until the third line is full. The last term in the third line is the

remainder, R. The first term in the third line, which is 0o, is the coefficient of

xn
"1 in the quotient, Q; the second term is the coefficient of a;

71""2
,
and so on.
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1.221 It follows from 1.220 that /(&)
= R. This gives a convenient way of

evaluating J(x) for x = k.

1.222 To express f(x) in the form :

/(*)
- A Q (x

- hY + 4i( - A)"-
1 +....+ A^(x ~K) + 4 n .

By 1.220 form /(A)
= -4n- Repeat this process with each quotient, and the

last term of each line of sums will be a succeeding value of the series of co-

efficients A n , An-l, ? AQ.

Example :

f(x)
= 32

5 + 2#4 - 8#2 + 2X - 4 & = 2

32 =

3 = ^o

Thus:

24^ + 50

96

2)
5 + 32(0;

-
2)

4 + 136(0;
-

2)
3 + 28o(rx;

-
2)

2 + 274(3;
-

2) + 96

TRANSFORMATION OF EQUATIONS

1.230 To transform the equation f(x) = o into one whose roots all have their

signs changed: Substitute # for x.

1.231 To transform the equation f(x) o into one whose roots are all multi-

plied by a constant, m: Substitute x/m for x.

1.232 To transform the equation /(*) o into one whose roots are the

reciprocals of the roots of the given equation : Substitute i/x for x and multiply

by xn.

1.233 To transform ti^ie equation /(#) o into one whose roots are all increased

or diminished by a constant, h: Substitute x =h h for x in the given equation,
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the upper sign being used if the roots are to be diminished and the lower sign

if they are to be increased. The resulting equation will be:

/(A) + */(ft) + ^/'(iA) + /"'(A) + ---- = o

where /'(#) is the first derivative of /(#), /"(#), the second derivative, etc.

The resulting equation may also be written:

A Qx
n
-f Aix"-1 + .4 2#n

~~2 + ...... + An-ix + A n = o

where the coefficients may be found by the method of 1.222 if the roots are to

be diminished. To increase the roots by h change the sign of h.

MULTIPLE ROOTS

1.240 If c is a multiple root of f(x)
=

o, of order m, i.e.. repeated m times,

then

/(*)
- (a

- c)Q; R = o

c is also a multiple root of order m - i of the first derived equation, /'(#)
= o;

of order w - 2 of the second derived equation, /"(#) =
o, and so on.

1.241 The equation f(x)
- o will have no multiple roots if /(#) and/(#) have

no common divisor. If F(x) is the greatest common divisor of /(#) an

f(x)/F(x) -/i(#), and/i(#) will have no multiple roots.

1.250 An equation of odd degree, n, has at least one real root whose sign is

opposite to that of an .

1.251 An equation of even degree, n, has one positive and one negative real

root if an is negative.

1.252 The equation /(#)
= o has as many real roots between x = xi and x = %%

as there are changes of sign in /(#) between xi and #&.

1.253 Descartes' Rule of Signs: No equation can have more positive roots

than it has changes of sign from + to - and from - to +, in the terms of /(#).

No equation can have more negative roots than there are changes of sign in /(-#).

1.254 If f(x)
- o is put in the form

A Q (x
-

ti)
n + Ai(x - fi)

n~l + + An = o

oy 1.222, and AQ, Ai 9 ...... A n are all positive, h is an upper limit of the

positive roots.

If jT( x) - o is put in a similar form, and the coefficients are all positive,

h is a tower limit of the negative roots.
'

.
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If /(i/#) = o is put in a similar form, and the coefficients are all positive,

A is a lower limit of the positive roots. And with /(- i/x) = o, h is an upper
limit of the negative roots.

1.255 Sturm's Theorem. Form the functions:

l
-f - i

/2() - -JSi in /O) -
<?!/! (*) +

a(*) - -JSb in ./i(*)

The number of real roots of f(x)
- o between x = x\ and x ,= #2 is equal to the

number of changes of sign in the series /(#), /i(#), ft(x), . . . when ^i is sub-

stituted for x minus the number of changes of sign in the same series when #2

is substituted for #. In forming the functions /i, /2 ,
. . . . numerical factors

may be introduced or suppressed in order to remove fractional coefficients.

Example :

f(x)
= x* 2x3

3#
2
-h io# - 4

/i (a)
- 2#3 -3#2 -

32: + S

/a (a) Q^
2 - 27% + ii

/4 a; = -1433

/ /i /2 /s /4

^=-00 -f + -I-
-

3 changes

cc = o -f -f - 2 changes

x = + oo + + 4- i change

Therefore there is one positive and one negative real root.

If it can be seen that all the roots of any one of Sturm's functions are

imaginary it is unnecessary to calculate any more of them after that one.

If there are any multiple roots of]the equation /(#) o the series of Sturm's

functions will terminate with/r,
r < n. fr (x) is the highest common factor of

/ and /i. In this case the number of real roots of /(#) = o lying between x = xi

and x =
#2, each multiple root counting only once, will be the difference be-

tween the number of changes of sign in the series /, /i, /2 ,
. . .

., /> when x\ and #2

are successively substituted in them.

1.256 Routh/s rule for finding the number of roots whose real parts ate

positive. (Rigid Dynamics, Part II, Art. 297.)

Arrange the coefficients in two rows:

cc
n

ao #2 #4 ....
n~~l # ..
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Form a third row by cross-multiplication:

Form a fourth row by operating on these last two rows by a similar cross-

multiplication. Continue this operation until there are no terms left. The
number of variations of sign in the first column gives the number of roots

whose real parts are positive.

If there are any equal roots some of the subsidiary functions will vanish.

In place of one which vanishes write the differential coefficient of the last one

which does not vanish and proceed in the same way. At the left of each row

is written the power of x corresponding to the first subsidiary function in that

row. This power diminishes by 2 for each succeeding coefficient in the row.

Any row may be multiplied or divided by any positive quantity in order

to remove fractions.

DETERMINATION OF THE ROOTS OF AN EQUATION

1.260 Newton's Method. If a root of the equation f(x) = o is known to lie

between #1 and x% its value can be found to any desired degree of approximation

by Newton's method. This method can be applied to transcendental equations

as well as to algebraic equations.

If b is an approximate value of a root,

b rTr - o is a second approximation,

c - y-r
= d is a third approximation.

/ (c)

This process may be repeated indefinitely.

1.261 Homer's Method for approximating to the real roots of /(#) = o.

Let pi be the first approximation, such that pi + i > c > pi, where c is the

root sought. The equation can always be transformed into one in which this

condition holds by multiplying or dividing the roots by some power of 10

by 1.231. Diminish the roots by pi by 1.233. In the transformed equation

A Q (x
-

pi)
n + Ai(x - ^i)*-

1 + .... + A^(x -
pi} + A n = o

put

10

and diminish the roots by #2/10, yielding a second transformed equation
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If Bn and Bn-\ are of the same sign p2 was taken too large and must be dimin-

ished. Then take

JL^Z^
100 jDn-l

and continue the operation. The required root will be:

P% P$=
^>i -j 1-

h
f

IO IOO

1.262 Graeffe's Method. This method determines approximate values of all

the roots of a numerical equation, complex as well as real. Write the equation

of the ^th degree

/(#)
= a,QX

n
aix*

1"1
4- <wn"~2

. . . - =fc an = o.

The product

/(#) /(#) ^ Aox2n Aix2n~* + Ati$n~^ . . . . d= A n = o

contains only even powers of #. It is an equation of the n\h degree in x*. The

coefficients are determined by.

20,3(15

The roots of the equation

Aoy
n

Aiy
n~l + A$y

n~~*
. . . . db An o

are the squares of the roots of the given equation. Continuing this process we

get an equation

whose roots are the 2rth powers of the roots of the given equation. Put X = 2r.

Let the roots of the given equation be ci, cfc,
. . . . , cn . Suppose first that

l ^ 2 ^ 3 ^ ^ ^n

Then for large values of X,

c X ^i c X _. ^ \ ^Rn

jtvo xvi zvn_i

If the roots are real they may be determined by extracting the Xth roots of

these quantities. Whether they are
,

is determined by taking the sign which

approximately satisfies the equation f(x) = o.

Suppose next that complex roots enter so that there are equalities among
the absolute values of the roots. Suppose that
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Then if X is large enough so that cp
x

is large compared to

cp
*
approximately satisfy the equation:

RQU? - Riu?-1
-f 2w p~2 -

. . . . db Rp = o

and Cp+i
x

, Cp+2\ . . .
,

cn
^

approximately satisfy the equation:

p-* -
. . . . d= Rn -

Ci\ c2
x

,

Therefore when X is large enough the given equation breaks down into a number

of simpler equations. This stage is shown in the process of deriving the suc-

cessive equations when certain of the coefficients are obtained from those of

the preceding equation simply by squaring.

REFERENCES: Encyklopadie der Math. Wiss. I, i, 3a (Runge).
BAIRSTOW: Applied Aerodynamics, pp. 553-560; the solution of a numerical

equation of the 8th degree is given by GraeSe's Method.

1.270 Quadratic Equations.

The roots are:

If

1.271 Cubic equations.

Substitute

where

o.

a2 > b roots are real,

a2 < b roots are complex,
a2 = b roots are equal.

(i) x* + 0,$ + bx + c = o.

/ \

(2) jry--
o

(3) jy
8 -

Roots of (3) :

E P > o, q > o, q* > p
9

cosh <6

2

27
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/- !_

y1
= 2Vp COSI1

- 2L
1

:

If p > o, q < o, ?
2 > #,

cosh <A
'

-

cosh

If

sinh
3

"'

sinh

-
2\/ p sinh ~

n

.

^
+ * 3^> cos

^

yi - / r i. ^
;

= - ^v 3^ cosh
2

^
3

COS

= 2V p COS
3

y2
_ ^ .

1.272 Biquadratic equations.

Substitute

sin*
3

+^ + a& + a* = o.

ân2
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E = # #2

G = #o
2
#3

F = #o
3
#4 - 4#o

2
#i#3 H-

/ = 00^4 - 4#1#3 + 3^2

F =

= a o#2#4
"" #0#3 #1#4 #2

A =- I3 - 27/
2 = the discriminant

Nature of the roots of the biquadratic:

A = o Equal roots are present

Two roots only equal: / and / are not both zero

Three roots are equal : / = / = o

Two distinct pairs of equal roots : G - o; # 2/ *2JB2 = o

Four roots equal : H = / = /== o.

A < o Two real and two complex roots

A > o Roots are either all real or all complex:

H < o and afl - izH* < o Roots all real

H > o and atfl izH2 > o Roots all complex.

DETERMINANTS

1.300 A determinant of the nth order, with n2
elements, is written:

#21 #22 #23 #2n

#31 #32 #33 #3n

#nl #n2

1, 2, -
, n)

1.301 A determinant is not changed in value by writing rows for columns and

columns for rows.

1.302 If two columns or two rows of a determinant are interchanged the re-

sulting determinant is unchanged in value but is of the opposite sign.

1.303 A determinant vanishes- if it has two equal columns or two equal rows.

1.304 If each etement of a row or a column is multiplied by the same factor

the determinant itself is multiplied by that factor-
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1.305 A determinant is not changed in value if to each element of a row or

column is added the corresponding element of another row or column mul-

tiplied by a common factor.

1.306 If each element of the Ith row or column consists of the sum of two

or more terms the determinant splits up into the sum of two or more de-

terminants having for elements of the Ith row or column the separate terms of

the Ith row or column of the given determinant.

1.307 If corresponding elements of two rows or columns of a determinant

have a constant ratio the determinant vanishes.

1.308 If the ratio of the differences of corresponding elements in the ^>th and

gth rows or columns to the differences of corresponding elements in the rth

and sth rows or columns be constant the determinant vanishes.

1.309 If p rows or columns of a determinant whose elements are rational

integral functions of x become equal or proportional when x = A, the determinant

is divisible by (x
-

A)
p~1

.

MULTIPLICATION OF DETERMINANTS

1.320 Two determinants of equal order may be multiplied ^ together by the

scheme :

I 0*2
I

X
| hj |

=
1

c(t |

where

1.321 If the two determinants to be multiplied are of unequal order the one

of lower order can be raised to one of equal order by bordering it; i.e. :

1.322 The product of two determinarits may be written :

din

M- &nn Vnl
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#11 din O O

#nl #nn O O

O O in iln

O O inl inn

DIFFERENTIATION OF DETERMINANTS

1.330 If the elements of a determinant, A, are functions of a variable, t:

#A _
dt #21 #22 ...... #2n 02i #22 #2n

& nl #n2 #7171 #ni # n2 dnn

+ + #11 #12 Ofin

#21 #22 #'271

#nl #n2 & nn

where the accents denote differentiation by t.

EXPANSION OF DETERMINANTS

1.340 The complete expansion of a determinant of the ^th order contains n\

terms. Each of these terms contains one element from each row and one ele-

ment from each column. Any term may be obtained from the leading term :

by keeping the first suffixes unchanged and permuting the second suffixes among
1,2,3,. . .

.,
n. The sign of any term is determined by the number of inversions

from the second suffixes of the leading term, being positive if there is an even

number of inversions and negative if there is an odd number of inversions.

1,341 The coefficient of &i 3( wben the determinant A is fully expanded is:

A
A,/.
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A^J is the first minor of the determinant A corresponding to al2 and is a de-

terminant of order i. It may be obtained from A by crossing out the row

and column which intersect in ala ,
and multiplying by (~i)*

+J
.

1.342

0,1 A ,1

A

2 t A2?

^ ^
. = .

o if i ^ /

A if s = y

1.343

is the coefficient of ^a&z in the complete expansion of the determinant A. It

may be obtained from A, except for sign; by crossing out the rows and columns

which intersect in a^ and a^i.

1.344
I A I V 1 n I A 71

I *-**j I
X

I
u-r j |

-LX

I A,, |

- A-*.

The determinant A;,- 1
is the reciprocal determinant to A.

1.345

1.346

1.347

A-
da%r

A2

A., Aa

1.348 IfA = o,

aA

1.350 If at7
-

determinant

the determinant is symmetrical. In a symmetrical

1.351 If at-,

determinant

~a/t the determinant is a skew determinant. In a skew
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1.352 If 0*3
= -0j, and #tt o, the determinant is a skew symmetrical

determinant

A skew symmetrical determinant of even order is a perfect square.

A skew symmetrical determinant of odd order vanishes.
"*

1.360 A system of linear equations:

+
+

lnXn = fa

-1-

has a solution:

provided that

A -
| an |

* o.

1.361 If A =
o, but all the first minors are not o,

52A
A ss -a;,-

= x s& a , +V k r

jf^j aa 8&oa r 3

0"
=

*, 2,

where 5 may be any one of the integers i, 2, ....,.
1.362 Hfa = fa~ = kn = o, the linear equations are homogeneous,

and if A =
o,

CC j Xg t . v

A" = A" =
I, 2, ...).

IA 3 j iJ.53

1.363 The condition that n linear homogeneous equations in n variables shall

be consistent is that the determinant, A, shall vanish.

1.364 If there are n + i linear equations in n variables :

+ tilnXn = fa

+ 02nXn = fa

the condition that this system shall be consistent is that the determinant'

11 #12 &\n fa

C2
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1.370 Functional Determinants.

yij yz, 9 yn are functions of #1, x2 ,

yk -
fk(xi, #2> ' ^n -

the (feterminant:

.,
xn :

' T

dofa

is the Jacobian.

1.371 If yi, 3>2 ,

dx.

are the partial derivatives of a function

the symmetrical determinant:

T =

JdF dF_
'

' ' ' "

\

dF\

BxJ

is the Hessian.

1.372 If yi, y2 ,
. .

xn by the n equations :

Fi(yi, y2 , , yn, *i,

^(^1,^2, 5 ^n)

., yn are given as implicit functions of

then

F2> . . . ,Fn)

1.373 If the functions yi, y2 , , yn are not independent of each other

the Jacobian, /, vanishes; and if / = o the n functions yi, ya, > y are not

independent of each other but are connected by a relation



ALGEBRA 17

1.374 Covariant property. If the variables a&, &,....,#* are transformed

by a linear substitution:

and the functions 3/1, ^2, ..... , yn of #1, #2, ....... , #, become the functions

l?lj >?2, ..... , fin Of l, 2, ....... , n :

_
"*(&, & .....,"(*,*, .....,*0"

or /' = /
| 0$ |

where
|

^
3 (

is the determinant or modulus of the transformation.

For the Hessian,
Hf = H. a.,

2
.

1.380 To change the variables in a multiple integral :

I = /....... fF(yi, y* ..... , yjdyidys ..... dyn

to new variables, xi, %%, . . . ., xn when yi, y^ ..... , yn are given functions

of &i, %, ..... ,
* :

where F(x) is the result of substituting x\, %z, . . .
., xn for yi, yz ,

. . ., yn
in

PERMUTATIONS AND COMBINATIONS

1.400 Given different elements. Represent each by a number, i, 2, 3, ..... ?

w. The number of permutatioiis of the n different elements is,

nPn = n\

e.g., n = 3 :

(123), (132), (213), (231), (312), (321) = 6 = 3!

1.401 Qiven n different elements. The number of permutations in groups of

r (r<ri) 9
or the number of r-permutations, is,

e.g., n - 4, f = 3 :

(123) (135) (124) (142) (134) (143) (234) (243) (231) (213) (214) (241) (34i) (314)

(312) (321) (324) (342) (412) (421) (431) (413) (423) (432) - 24
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1.402 Given n different elements. The number of ways they can be

divided into m specified groups, with a?i, #2, ..... ,
xm in each group respec-

tively, (#1 + #2 + ..... + xm)
= n is

nl

e.g., n = 6, m =
3, #1 = 2, #2 =

3? #3 = i "

(12) (345) (6) (*3)" (245) (6) X 6 = 60

(23) (i45) (6) .
(24) (i35) (6)

(34) (125) (6)
'

(35) (124) (6)

(45) ("3) (6) (25) (234) (6)

(14) (235) (6) (i5) (234) (6)

1.403 Given n elements of which Xi are of one kind, x^ of a second kind,

Xm of an mth kind. The number of permutations is

cci + xi 4- ...... + xm = n.

1.404 Given n different elements. The number of ways they can be permuted

among m specified groups, when blank groups are allowed, is

e.g., ^ =
3, w = 2 :

(123,0) (132,0) (213,0) (231,0) (312,0) (321,0) (12,3) (21,3) (13,2) (31,2) (23,1)

(32,1) (1,23) (1,32) (2,31) (2,13) (3,12) (3,2i) (0,123) (0,213) (0,132) (0,231)

(0,3 1 2) (0,321)
= 24

1.405 Given n different elements. The number of ways they can be permuted

among m specified groups, when blank groups are not allowed, so that each group

contains at least one element, is

n\(n i)l

(n
- m)l(m - i)l

e.g., n =
$, m = 2:

(12,3) (21,3) (13,2) (31,2) (23,1) (32,1) (1,23) (1,32) (2,31) (2,13) (3,12) (3,21)
= 12

1.406 Given n different elements. The number of ways they can be combined

into m specified groups when blank groups are allowed is

mn

e.g., n =
3, m = 2 :

(123,0) (12,3) (13,2) (23,1) (1,23) (2,31) (3,12) (0,123)
= 8

1.407 Given n similar elements. The number of ways they can be combined

into m different groups when blank groups are allowed is
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(n + W> - l) 1

(w i)M
e.g., w =

6, w = 3 :

Group i 6554443333222221111110000000
Group 2 0102013021403125041326051423= 28

Group 3 0010210312041320514230615243
1.408 Given n similar elements. The number of ways they can be combined

into m different groups when blank groups are not allowed, so that each group

shall contain at least one element, is

(M
-

i) !

BINOMIAL COEFFICIENTS

1.51

n\ - ^1 _ / n \ _ r n(n - i) (n
-

2) . . . (n - k + i)
"

5. K
)

= o iif < A.

* Vl
-iAi/

+
* '

\ *

Ill/I I /

10. I - ( + I -....+(-

it.
(:)'+(:)'++(:)'=(:)
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1.52 Table of Binomial Coefficients.

o a o a G) a o a)

1.521 Glaisher, Mess, of Math. 47, p. 97, 1918, has given a complete table

of binomial coefficients, from n = 2 to n =
50, and k = o to k n.

1.61 Resolution into Partial Fractions.

If F(x) and /(#) are two polynomials in # and f(x) is of higher degree than

F(X),
F(x)

/C*)

where

The first summation is to be extended for all the simple roots, a, oif(x) and the

second summation for all the multiple roots, c, of order p, off(x).

FINITE DIFFERENCES AND SUMS.

1.811 Definitions.
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O + 3*)
-

3/(* + 2^) + 3/(* + *)
-

n

ij

1.812

i. A[gf(ff)3
= cAf(x) (c a constant).

2.

3.

,
A i i

4 "

1.813 The th difference of a polynomial of the wth degree is constant. If

f(x)
= a^n + tti^

71-1 + ..... + dn-ix + an

1.82

A*{(a?
~ &)(*

- 6 - *)(*
- & --

2A) (a;
- b -^

n(n - i) (n
- 2 ) ( w + i)^

m

2.

= (x
-

6) (
- 6 - h) (x

- b - 2*) . . , . (x-b-n-m- iK).

i

(#+ 2)

"(x + b) (x + b + K) (x + b + zh) . . . . (x + b+n + m

A / jv / ^\m * / j ^ + ir\
5. Aw sin (cap + a)

=
( 2 sin 1 sin ( ex + d + m 1

(cA\
m

/ ch -}- 7T\
2 sin

j
cos f ex + d + m

j
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1.83 Newton's Interpolation Formula.

-
g) (x-a-K) (x-a-

3! A3

(a; a) Q - a - K) (x-a-n-iK) . , .

-- I 7-M. J \ *

nl hn

(a?
-

a) ($ a ~ K) . .

where has a value intermediate between the greatest and least of a, (a + nti),

and x.

1.831

/(a + f*) -/(a) + J A/(a) +^ Ay(a) +
^"'H^

A*/(a)

1.832 Symbolicall}

*A
i. A aa; - i

1.833 If ^o /(), i -/( + A), 2 =/0 + 2*),

**A
^a, = (i -f A)

x^ = e dxUQ.

1.840 The operator inverse to the difference, A, is the sum, S.

1.841 If A?() -/(*),

2/() = F() + C,

where C is an arbitrary constant.

1.842

2. sc/i(*) +/i() + ...]- SAC*)

3
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1.843 Indefinite Sums.

i. SCO -
&) (a

- 6 - A)(* - 6 - 2A) . . .
- b - n - iA)]

=
7 ^7 (a?

-
&) (x

- 5 - A) (a;
- 6 - nh) + C.

(n 4- i)n

2.

(x + 6) (x + b + A) . . . . (a? H- & +

i i

(x + ^ (x
+ C.

sn

4. cos (

in f ca; ---\- d\

2 sin
2

COS ( CX

' + c -

2 sin
2

1.844 If /(#) is a pol}oiomial of degree n,

2 **> - srh /W -jrh A/ + (jrh

1.845 If /(;) is a polynomial of degree n,

f(x)
= a Qx

n + aix
n~l + ....

and

where
(w 4-

2 1

fw + i)(w i) 7 - (w i) 79 ,
/ N7v

.

-- A3
^o + -

;

- A2
^i -f (n

-
i)hc2 = 02

3! 2!

The coefficient Cn+i may be taken arbitrarily.



24 MATHEMATICAL FORMULAE AND ELLIPTIC FUNCTIONS

1.850 Definite Sums. From the indefinite sum,

a definite sum is obtained by subtraction,

a+nh

./(%)
- F(a + nK) F(a

a-^-mh

1.851

= F(a + nK} - F(a).

By means of this formula many finite sums may be evaluated.

1.852
a+nh

(*
- i)(* - b - h)(x

- b - ah) . . . . (*
- 6 - J~=

= (g & + nK) (a b + n ik) . . . . (a
- b + n kh)

(k + i)h

(a-b)(a-b-K) . . . . (a-b-kh)
(k + i)A

1.853
a+nh

x a) (x a h) . . . . (x a k ih)

n(n- i)(- 2) .... (n-k) it

1.864 If /(#) is a polynomial of degree m it can be expressed :

J(x) = AQ + Ai(x - a) 4- A z (x -a)(x-a-K) + .

+ Am (x a)(x a - h) , . (x a m iK),
a+nh

T- **-. t
,

\ '"

Cw + i;

1.865 If /(*) is a polynomial of degree (w - i) or lower, it can be expressed :

/(#)
= A o -f ^4i(^ + wA) + ^2(^4- wA) (j + w i

+ .... + ^im-i(^ + *A) . . . (x + 2A)

and,

K) (* + 2A) ... (x + mK) mh \ a(a + K) . . . (a
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I

(a + nh) (a -f n + m -

i

(m i)h \ a(a + h) ... (a -4- m 2&) (a + wA) ... (a + w

^m_i f i i
i

"*>-i
J _ *

A [a a + ^A

1.856 If /(a;) is a polynomial of degree w it can be expressed :

f(x) = ^4o + vli(# + wA) -1- ^2(# + wA) (x + m
+ Am (x + mK) . . . (x + K)

and,
a-\-nh

/(a?) = ^4o r i

x(x + K) . . . (x + w&) w^
[ a(a + /j) . . . . (a -f m

i

(a + wA) ..... (a + m + n ih)

a+nk

where,
a+nh

a + 2h a + n ih

1.86 Euler's Summation Formula.

S/w -
{ Aw* + ^i {/) -/w + ^* /'(

~
^^/a I

dmf(x + h-z)- --

m\4>n(z), with h = i, is the Bernoullian polynomial.

-4 1
- -^ ^2^ + 1

= 0; the coefficients Azk are connected with Bernoulli's

numbers (6.902), Bk, by the relation,
R,

A2k = (
-

i)*-

12* 720' 30240
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1.861

~
S/c*)

=
Î

1.862

s-
i i
** +

SPECIAL FINITE SERIES

1.871 Arithmetical progressions. If s is the sum, a the first term, 5 the common

difference, I the last term, and n the number of terms,

s = a + (a + 5) + (0 4- 28) + - - - [>+(- i)5]

/ = a -f (^ i) S

5 = -[20 + (^
-

i)5]

1.872 Geometrical progressions.

^ = a + ^ + ap* + ..... +

p
n - i

1.873 Harmonlcal progressions, a, b, c, d, . . . . form an harmonical progression

if the reciprocals, i/a, i/b, i/c, i/d, .... form an arithmetical progression.

1.874.

3 .

*= I #= I

3 30
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1.875 In general,

X = 7I/

s
fk\

Bi, B%) Bs ,
. are Bernoulli's numbers (6.902), I^J

are the binomial

coefficients (1.51); the series ends with the term in n if k is even, and with the

term in n2
if k is odd.

1.876

1 + 1+ i + l + .... + l_ 7 + log + .!_.1234 n '

2^ w( + i)__ __ ...

(w+ i) (w+ 2)

7 = Euler's constant = 0.5772156649 . .

I

12

JL
12

^4 =
io

fl* =
I / *(1 ""*) (2

"~
^)

20

1.877 ___
( + 1) + 2) ( + 3)

.....

1.878

^. + - , cf t- I" ' ' ' ' -r ^
2 3

-

3
3

"
' ' ' '

-

W3
( + I) ( + 3)

3____ 4>

( + i) ( + 2) (w + 3)

C = = 1.2020569032
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1.879 StL.U.lJ.5 O A VJ.-LJUUULO,.

1

log (1) -
log V27T + f

+|j log W - W

, ,,+ ' * ' ' + 2fc~2

o< d< i. The coefficients ^L A are given in 1.86.

1.88

2. I-2-3 + 2-

3. 1-2-3. . . .r + 2-3-4. . . (r+i) + ....... + n(n+ i) ( + 2)

. . . . + r - i)

y^(^ + i) (n + 2) . . . . (n + r)

r + i

4. I-# + 2(# + l) +3(# + 2) + ....... +(# + -!)

= i^(w+ i)(3# + 2- 2).

5. #-ff + (#
-

i) (?
-

i) + (?
-

a) (?
-

2) + ....... (#-)(?-

- [6#g - (
-

i) (3^ + 3^
- 2^ + i)].

6(6 + i) . . . . (6 + n)_
(6 + i - 0)0(0 -h i) . . . . (0 -h

-
x)



II. GEOMETRY
2.00 Transformation of coordinates in a plane.

2.001 Change of origin. Let #, y be a system of rectangular or oblique coor-

dinates with origin at O. Referred to x, y the coordinates of the new origin 0'

are a, b. Then referred to a parallel system of coordinates with origin at 0'

the coordinates are #', y'.

x - x' + a

y - / + J.

2.002 Origin unchanged. Directions of axes changed. Oblique coordinates.

Let co be the angle between the x y axes measured counter-clockwise from

the #- to the y-axis. Let the #'-axis make an angle a with the #-axis and the

/-axis an angle /3 with the #-axis. All angles are measured counter-clockwise

from the #-axis. Then

x sin co = x
f

sin (co a) + y' sin (co jS)

y sin co = #' sin a + y sin /3

CO' - j8
- QJ.

2.003 Rectangular axes. Let both new and old axes be rectangular, the new
axes being turned through an angle with respect to the old axes. Then

x = #' cos 6 - y
r
sin

y = #' sin + y cos

2.010 Polar coordinates. Let the ^-axis make an angle co with the #-axis and

let the #-axis be the initial line for a system of polar coordinates r, 6. All angles

are measured hi a counter-clockwise direction from the #-axis.

r sin (co 6)
OC =,-;;

-
sin co

sin
y r -

sin co

7T
2.011 If the #j y axes are rectangular, co =

,

r cos 6

y = r sin

29
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2.020 Transformation of coordinates in three dimensions.

2.021 Change of origin. Let x, y, z be a system of rectangular or oblique coor-

dinates with origin at 0. Referred to x, y, z the coordinates of the new origin

0' are a, b, c. Then referred to a parallel system of coordinates with origin at

Of

the coordinates are x', /, z'.

x = x' H- a

y =
y' + b

z = z
f + c

2.022 Transformation from one to another rectangular system. Origin un-

changed. The two systems are x, y, z and x' y
f
z

f
.

Referred to x, y, z the direction cosines of x
f
are /i, mi, n\

Referred to x, y, z the direction cosines of y
f
are Z2 > ^2? ^2

Referred to x, y }
z the direction cosines of z' are 1$, m^ n^

The two systems are connected by the scheme :

x =

y =

z ==

'

H- +
n3z

+

= o

= o

= o

+ ^2^3 -f

4- m$mi +

: O

: O

* O

2.023 If the transformation from one to another rectangular system is a rotation

through an angle about an axis which makes angles a, /3, 7 with x, y, z re-

spectively,
2 cos = k + ^2 + n$ - i



cos2 a

4- n$ li
-

GEOMETRY

COS2
j8 cos2 7

2.024 Transformation from a rectangular to an oblique system. x
t y, z rec-

tangular system: x', y', 2' oblique system.

cos xx
f = k
'

cos yx

cos zx' -

cos xy =

cos yy
f = Ws

-^'s.

cos 23;'
= ^2

cos xz =

cos yz
f =

cos 22' =

' + ^2^' + ^32'

cos y'z'
- kk +

COS Z
f
X r = hli +

COS X r

y
f =

^ife +

^i
2 + wi2 +

7 ft
, 9 i

fe + ^2 +

2.025 Transformation from one to another oblique system,

cos xx
r = k cos xy

r

k cos xz
f

cos yx' = mi cos yy
7 = mz cos yz'

cos cos cos 22 =

A-*'

A-/
A-z'

= mix' + Way' +

4- wi2
4- ^i

2
4- smi^i cos yz + 2^1/1 cos 2rc 4-

4- ^22 4 ^2
2
4- 2^2^ cos yz 4- 2^2/2 cos 2^ +

cos y2 4 2^3/3 cos zx 4-

cos xy =
i,

cos 0^3;
=

i,

cos a;y
= i.

x + y cos ry 4- 2 cos xz = ?i#' 4 fey' +
y 4- * cos #y 4- 2 cos 2y = m\x

r

4- W2y' 4- t

2 4- ^ cos 0:2 4- y cos 2y = n\x
f 4 ^y

7 +
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2.026 Transformation from one to another oblique system.

If n x, n y,
n g are the normals to the planes yz, zx, xy and n x ', n y\ n z

f
the

normals to the planes y'z', z'x
r

, x'y',

x cos xn x = x
f

cos x'n x -f y
f

cos y'n x + z
f

cos z'n x .
,

y cos yw y
= #' cos x'n y + / cos y# y + 2' cos js'w v.

z cos zw* = #' cos x'n z + y
f

cos y'n* + z
f

cos IB'W,.

r
cos #'ws' ~ a? cos xn x

' + 3^
cos yn* +z cos

'
cos y/fcy'

= ^ cos
'

4- y cos yn y
f + z cos

'
cos z'^a' == x cos ##;/ +3^ cos yn z

f + z cos

2.030 Transformation from rectangular to spherical polar coordinates.

TJ the radius vector to a point makes an angle 6 with the s-axis, the projection

of r on the x-y plane makes an angle <j> with the #-axis.

x = r sin 6 cos </>
r2 = xz + y^ + s2

y = r sin sin <p 8 = cos"1 =====

V^2 + y -f- 2
2

s = r cos 6 , ^ - y
<6 = tan""1 -

#

2.031 Transformation from rectangular to cylindrical coordinates.

p, the perpendicular from the s-axis to a point makes an angle 6 with the

x-z plane. _
x = p cos 6 p = V#2 + ;y

2

3;
= p sin 6 = tan"1 -

y
a;

2=2
2.032 Curvilinear coordinates in general.

See 4.0

2.040 Eulerian Angles.

Oxyz and Qx'y'z* are two systems of rectangular axes with the same origin 0.

OK is perpendicular to the plane zOz
f drawn so that if Oz is vertical, and the

projection of Oz' perpendicular to Oz is directed to the south, then OK is directed

to the east.

Angles z'Oz =
0,

yOK -
<f>,
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The direction cosines of the two systems of axes are given by the , following
scheme :

2.050 Trilinear Coordinates.

A point in a plane is defined if its distances

from two intersecting lines are given. Let CA,
CB (Fig. i) be these lines :

Taking CA and CB as the #-, y-axes, including

an angle C,

*-*smC
V -L
* sinC

Any curve /(,y) - o becomes :

R

VsinC sinC/

If 5 is the area of the triangle CAB (triangle of reierence;,

2S = ap + bq + cf,

and the equation of a curve may be written in the homogeneous form :

, /_2_ ^ __^_2^_\
*

\(ap + bq + cr) sin C* (a# + bq + cr) sin C/
" "

2.060 Quadriplanar Coordinates.

These are the analogue in 3 cjimensions of trilinear coordinates in a plane

(2.0M).
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Xi } xzj #3, #4 denote the distances of a point P from the four sides of a tet-

rahedron (the tetrahedron of reference), /i, wi, n\\ hj wz, W, k, WB, n$\ and

kj m^ n the direction cosines of the normals to the planes Xi =
o, #2

=
o, x% =

o,

#4 = with respect to a rectangular system of coordinates x, y, z\ and di, d2 ,
d3,

d the distances of these 4 planes from the origin of coordinates :

lix -J- mi;y 4- n\z

l%x H-

si, 2, $3, and s4 are the areas of the 4 faces of the tetrahedron of reference

and V its volume :

By means of the first 3 equations of (i) x, y, z are determined :

x = A\XI + BIX% + Ci#3 4- DI,

z A 3#i 4~ ^3^2 4~ 3^3 4~ -Qs-

The equation of any- surface,

^0,;y,z)
=

o,

may be written in the homogeneous form :

JT Z?T
"

1

|^
iffi 1^2 1^3

^ F
^a s&2 S3x3 s4x

j,FA 1
L42#l 4- -^2^2 4- C^S H 7? (^1^1 + ^2^2 + -^3^3 + ^4^4) ,

L 3 V JtDz 1 1

^3^1 4" ^3^2 4" ^3^3 H 77 (^1^1 + ^2^2 4" ^3^3 4" ^4) \ } O.

31
7 J J

PLANE GEOMETRY

2.100 The equation of a line :

Ax -f #y 4- C = o.

2.101 If ^ is the perpendicular from the origin upon the line, and a and /3 the

angles p makes with the x- and y-axes :

# = x cos a 4- :v cos /3.

2.102 If a' and j8' are the angles the line makes with the x- and 3/-axes :

^>
= y cos a' - x cos j8

;
.

2.103 The equation of a line may be written

y ax + b.

a =
tangent of angle the line makes with the #-axis,

b =, intercept of the 3/-axis by the line.
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2.104 The two lines:

intersect at the point :
*

x
#2 &i 02

2.105 If < is the angle between the two lines 2.104 :

tan <p
= d= -~

I -p $1#2

2.106 Equations of two parallel lines :

/ /iff + 5y + Ci o
or |y

= ^ + &i,

\ ^# + By -f C2 = o
[ y

- ## + b%.

2.107 Equations of two perpendicular lines :

Ax + By + Ci = o ( y = ax + bij

Bx Ay + C% o j #7
|
y = __+j2 .

2.108 Equation of line through xi} yi and parallel to the line :

Ax + By + C = o or y = ax + b,

A (x #1) + -5(y yi)
=s o or y 3/1

= a(x a?i).

2.109 Equation of line through a;i, yi and perpendicular to the line

Ax + By + C = o or y ax 4- &,

^ (^ xi) A (y yi)
= o or y yi

=

2.110 Equation of line through xi, y\ making an angle ^> with the line y = ax + b:

a + tan d> , N

y yi
= 7 T (^ ici).

i a tan <p

2.111 Equation of line through the two points, xi, y\, and x$, y2 :

2.112 Perpendicular distance from the point xi, yi to the line

Ax + By + C = o or y = ax + J,

or

s + Bz v i + <

2.113 Polar equation of the line y = ax + ^ :

- 6 cos ce
r ""

sin (6
- a)

?

where
tan a = ^
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2.114 If p, the perpendicular to the line from the origin, makes an angle

with the axis:

2.130 Area of polygon whose vertices are at %i, yi; x%, y2 ;

PLANE CURVES

2.200 The equation of a plane curve in rectangular coordinates may be given

in the forms:

(a) y -/(*)

(b) x =/iOO, y =fa(f)' The parametric form.

(c) . F(x,y)

2.201 If r is the angle between the tangent to the curve and the #-axis:

/7*. Y

,t

(b) tan r = -

dt

dx

In the following formulas,

y'
= -^ tan r (2.201).

2.202 OAf =
a, AfP =

y, angle XTP = r.

___. 'V'N/I 4- 'v''
2

rP = y csc r = :J:

yi-i- =
tangent,

y cot T = ^L =
subtangent,

FIG. 2

PN * y sec r =

Af# = y tan r =
+ 3/

/2 = normal,

= subnormal.

OT'

2.203 OT = x --
7
B

intercept of tangent on #-axis,

#y =
intercept of tangent on ;y-axis,

+ yy' =
intercept of normal on ^-axis,

02V' = y -f -7 = intercept of normal on y-axis.
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2.204 OQ =
f

= distance of tangent from origin
= PS = projection of

'^
radius vector on normal.

Coordinates of Q:

3C I 'W
2.205 OS =

fi

= distance of normal from origin
= PQ = piujcv,uuu

vi 4- y radius vector on tangent.

Coordinates of S: ,

^L

2.206 OR - 7 = polar subtangent,
yy'

*

yy
&

/- T ^ r r> ^(^
r -

y) oc(y
-

xy')
Coordinates of R: ^-^-

j^,
-^-

4"^-* + yy x + yy'

2.207 OF - ^ lar subnormal
y
-

xy
c

= _ lar normal
y-xy

Coordinates of F: y(x +^ -^^2 .

^y ^'
7

y -r xy

2.210 The. equations of the tangent at #1, yi to the curve in the three forms

of 2.200 are:

(a) y-yi-f'M (*
- O-

(b) (y

(c)
- *0 gr-ft + (y

- yO sr-* 1

= '

\u^/ 3,==^
\ L
'//y=y1

2.211 The equations of the normal at #1, y\ to the curve in the three forms

of 2.200 are:

(a) f'W (y
- yO + (*

-
*fi

- o.

(b) (y
-

yz)/2'(/0 + (*
-

*i)//(/i)
- o.
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2.212 The perpendicular from the origin upon the tangent to the curve

F(x, y)
= o at the point v, y is:

dF dF
x + y-z-

doc
'

dy

2.213 Concavity and Convexity. If in the neighborhood of a point P a curve

lies entirely on one side of the tangent, it is concave or convex upwards according

as y" = ji is positive or negative. The positive direction of the axes are shown
ax

in figure 2.

2.220 Convention as to signs. The positive direction of the normal is related

to the positive direction of the tangent as the positive y-axis is related to the

positive #-axis. The angle r is measured positively in the counter-clockwise

direction from the positive #-axis to the positive tangent.

2.221 Radius of curvature = p; curvature = i/p.

I _ ^1,

p
~

ds

where s is the arc drawn from a fixed point of the curve in the direction of the

positive tangent.

2.222 Formulas for the radius of curvature of curves given in the three forms

of 2.200.

(a)

dt df dt d$ iW/ + W/ \*V J

If s is taken as the parameter t:

^
~p

=
Js ^~Js~ds2

~
\ \ds*J

+
(dT

2
) J

F\2

dxdy dx dy dy
2
\dx)
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2.223 The center of curvature is a point C (fig. 2) on the normal at P such

that PC =
p. If p is positive C lies on the positive normal (2.213) ;

if negative,

on the negative normal.

2.224 The circle of curvature is a circle with C as center and radius =
p.

2.225 The chord of curvature is the chord of the circle of curvature passing

through the origin and the point P.

2.226 The coordinates of the center of curvature at the point x, y are
; 77:

= x p sin T

dy
tan T = -r-

dx

v = y + P cos r

I r, w' are the direction cosines of the positive normal,

= x + I'p

rj
= y + w'p.

2.227 If I, m are the direction cosines of the positive tangent and 7', m' those

of the positive normal,

dl _ V dm _ w'

ds p ds p

V = m, m' =
I,

dl
r

_ I dm' _ m
ds p ds p

2.228 If the tangent and normal at P are taken as the #- and y- axes, then

2.229 Points of Inflexion. For a curve given in the form (a) of 2.200 a point

of inflexion is a point at which one at least of and exists and is con-

tinuous and at which one at least of -r~ and -T-; vanishes and changes sign.
dx* dy* ,

If the curve is given in the form (b) a point of inflexion, ft, is a point at which

the determinant:

// (ft) /a' (ft) I

vanishes and changes sign.

2.230 Eliminating x and y between the coordinates of the center of curvature

(2.226) and the corresponding equations of the curve (2.200) gives the equation

of the evolute of the curve the locus of the center of curvature. A curve

which has a given curve for evolute is called an involute of the given curve.
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2.231 The envelope to a family of curves,

i. F(x, y, a) =
o,

where a is a parameter, is obtained by eliminating a between (i) and

dF

^ =
'

2.232 If the curve is given in the form,

1. *

2. y=*, a,

the envelope is obtained by eliminating / and a between (i), (2) and the func-

tional determinant,

3 . ff|
= o (see 1.370)

2.233 Pedal Curves. The locus of the foot of the perpendicular from a fixed

point upon the tangent to a given curve is the pedal of the given curve with

reference to the fixed point.

2.240 Asymptotes. The line

y

is an asymptote to the curve y = f(x) if

limit ,,, N

a - x^m f(x)

b

2.241 If the curve is

*=/!(*), y-/a(*),

and if for a value of 2, t\ : /i or /2 becomes infinite, there will be an asymptote if

for that value of t the direction of the tangent to the curve approaches a limit

and the distance of the tangent from a fixed point approaches a limit.

2.242 An asymptote may sometimes be determined by expanding the equation

of the curve in a series,

H

the equation of the asymptote is
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If of the first degree in #, this represents a rectilinear asymptote; if of a higher

degree, a curvilinear asymptote.

2.250 Singular Points. If the equation of the curve is F (#, y) o, singular

points are those for which

Put,

s= =
dx by

If A<o the singular point is a double point with two distinct tangents.

A>o the singular point is an isolated point with no real branch of the curve

through it.

A = o the singular point is an osculating point, or a cusp. The curve has two

branch^ a a common tangent, which meet at the singular point.

*\ 17 rJT? r)2/7 r*H
If 2, _, SL-, _, - simultaneously vanish at a point the singular

dx dy dx* dy* dx dy

point is one of higher order.

PLANE CURVES, POLAR COORDINATES
'

2.270 The equation of the curve is given in the form,

In figure 2, OP =
r, angle XOP =

0, angle XTP -
r, angle

2.271 is measured in the counter-clockwise direction from the initial line,

OXj and s, the arc, is so chosen as to increase with 0. The angle 4> is measured

in the counter-clockwise direction from the positive radius vector to the positive

tangent. Then,
r = + <p.

* , r<Z0
2.272 tan <j>

=
-^r

. . r<0
sin 6 -^

,
,

COS <p -r-

, t

'

' <*$ '



42 MATHEMATICAL FORMULAE AND ELLIPTIC FUNCTIONS

2-273
'

0^ , Q Q

tan r = ^
cos 6 -73

- r sin 6

2.274 PR = r i + - Polar tanSent

PF= r2 + = polar normal

OJ2 = f*-r = polar subtangent

7

QV = JL = polar subnormal.
d0

2 275 00 =
r = p = distance of tangent from origin.

dr

rja
OS =

,

= distance of normal from origin.

2.276 If u = -, the curve r /(fl) is concave or convex to the origin according as

is positive or negative. At a point of inflexion this quantity vanishes and changes

sign.

2.280 The radius of curvature is,

2

2.281 If w = - the radius of curvature is
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2.282 If the equation of the curve is given in the form,

where 5 is the arc measured from a fixed point of the curve,

p =

2.283 If p is the perpendicular from the origin upon the tangent to the curve,

dr
p = r- 2 .

2.284 If u =

2.285
j~

+ v = -

2.286 Polar coordinates of the center of curvature, ri; Oil

\
2
f/rff\

2 J 2

ft = + X,

tanx^

,+r
Jo

2,287 If 2C is the chord of curvature (2.225),:

dr

/du\z

/ +y
^f^ +^

\ <w*t

2.290 Rectilinear Asymptotes. If r approaches oo as 6 approaches an angle a,

and if r(a-ff) approaches a limit, b, then the straight ]ine

r sin (a - 0)
= #

is an asymptote to the curve r =/(0).
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2.295 Intrinsic Equation of a plane curve. An intrinsic equation of a plane

curve is one giving the radius of curvature, p, as a function of the arc, s,

If r is the angle between the #-axis and the positive tangent (2.271) :

ds

,T=ro+ r ds

l/-)

X = XQ -f / COS T'ds
*/ SQ

y = yo + / sin T'ds.

2.300 The general equation of the second degree:

H- 2duxy + 022^
2
4- 2fli3# H-

A #11 #12 #13
'

7

#21 #22 #23 <

#31 #32 #33

A hk = Minot of ahk.

Criterion giving the nature of the curve:

(Pascal: Repertorium der hoheren Mathematik, II, i, p. 228)
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2.400 Parabola (Fig. 3).

2.401 0, Vertex; F, Focus;

ordinate through D, Direc-

trix.

Equation of parabola,

origin at 0,

x - OM, y = MP,
OF = OD = a

FL = 2a = semi latus

rectum.

FP - D'P.

2.402 FP = FT
= x + a.

FIG. 3

, TM =
20?, MN = 2a, ON = x + 20.

FB perpendicular to tangent TP.

FB - Va(a + x), TP = 2TB = zVx(a + x).W = FTxFO = FPx FO.

The tangents TP and UP' at the extremities of a focal chord PFP f
meet

on the directrix at U at right angles.

r - angle

tan r = v -

The tangent at P bisects the angles FPD' and FZ7J9
7
.

2.403 Radius of curvature:

P =

Coordinates of center of curvature:

, rj

Equation of Evolute:

=
4(i 20)*.
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2.404 Length of arc of parabola measured from vertex,

5 - Vx(x + a) + a log (y
i + |

+ v -j

Area OPMO = -xy.
o

2.405 Polar equation of parabola:

r = FP,

6 = angle XFP,

- 2a
~~

i cos 6

2.406 Equation of Parabola in terms of p, the perpendicular fromJ upon the

tangent, and r, the radius vector FP:

L-*.
f~ r

I = semi latus rectum.

2.410 Ellipse (Fig. 4).

FIG. 4

2.411 0, Centre; F, F r

,
Foci.

Equation of Ellipse origin at O:

x = OM, y = MP, a = OA, b - OB.
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2.412 Parametric Equations of Ellipse,

x - a cos <, y = b sin <.

< = angle XOP', where P' is the point where the ordinate at P meets the

eccentric circle, drawn with O as center and radius a.

2.413 OF = OF' = ea

eccentricity =
V -

z>
2

>

*"

7? = = a(i e
2
)
= semi latus rectum.

F'P - a + ex, FP = a - as, FP + F'P = 2a.

T - angle XTT f
.

bx
tan r = -

:,
or = -, or = -,

2.414 DD' parallel to T'T; DD' and PP' are conjugate diameters:

a - FP X -F'P.

OP2 + OD2 - a2 + b\

Equation of Ellipse referred to conjugate diameters as axes:

>

2! _ ^ = an^6

^ + ^ = x
]8
= angle ZOD

a2 sin2 a + 2 cos2 a
tan a tan ]8

= -

OP
a2 sin2 j8 + &2 cos2

/3

2.415 Radius of curvature of Ellipse:

angle FPA^ = angle F'PN =
co,

eay-co

= --
p cos co FP ^ F'P

'
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Coordinates of center of curvature:

. #<& aV/
--j3 V-^"'

Equation of Evolute of Ellipse,

2.416 Area of Ellipse, nab.

Length, of arc of Ellipse,
r<t>_,

$ = a I Vi - e
2 sin2

d<[>.

2.417 Polar Equation of Ellipse,

r - F'P, '6 - angle XF'P,

a(i - e
2
)

~~

i e cos 6

2.418 r - OP, - angle ZOP,

Vi - <? cos2
(9

2.419 Equation of Ellipse in terms of f, the perpendicular from F upon the

tangent at JP, and r, the radius vector FP:

L 3 _ I.

/
=

r a*

? = semi latus rectum.

2.420 Hyperbola (Fig. 5).

2.421 0, Center; F, F 7

,
Foci.

Equation of hyperbola, origin at 0,

_2?,o
a2 ft

2
X

a? = OJf, y = MP, a = OA = OA'.

2.422 Parametric Equations of hyperbola,

x = a cosh u, y = b sinh #.

or
*

d; = a sec 0, y = b tan 0.

< angle XOP', where P' is the point where the ordinate at T meets tne

I

circle of radius a, center 0.



2.423 OF = OF' = ea.

e = eccentricity =*
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FIG 5

FL = - - a(e? i)
= semi latus rectum.

F'P = ex + a, FP = ex - a, F'P - J?P 20.

r = angle ZTP.

^^
tan r =

a-^/x
2

.

^ ^ DT -i

PS
ab

r, 05 =

2.424 OC7 = Asymptote.

b

6 * distance of vertex -4 from asymptote.
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2.425 Radius of curvature of hyperbola,-
ab

angle F'PT = angle FPT.

angle PPN = co = - - FPT.

angle P'PN = co'= - + F'PT.

aey
tan co = ~
cos co

p cos co PP F'P

Coordinates of center of curvature,

_=
-tfi

- -

Equation of Evolute of hyperbola,

2.426 In a rectangular hyperbola b = a-, the asymptotes are perpendicular to

each other. Equation of rectangular hyperbola with asymptotes as axes and

origin at 0:
a?

2.427 Length of arc of hyperbola,

_
aeo Vi-tfsitf<f> e b*

2.428 Polar Equation of hyperbola:

e cos v -

e cos - i

2.429 Equation of right:hanci branch of hyperbola in terms of p, the perpen-

dicular jrom F upon the tangent at P and r, the radius vector FP,

I = semi latus rectum.
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2.450 Cycloids and Trochoids.

If a circle of radius a rolls on a straight line as base the extremity of any

radius, a
}
describes a cycloid. The rectangular equation of a cycloid is:

x = #(0 sin 0),

y
-

a(i cos 0),

where the #-axis is the base with the origin at the initial point of contact. is

the angle turned through by the moving circle. (Fig. 6.)

FIG 6

A = vertex of cycloid.

C = center of generating circle, drawn tangent at A,

The tangent to the cycloid at P is parallel to the chord AQ
Arc AP = 2 X chord AQ.

The radius of curvature at P is parallel to the chord QD and equal to 2 x chord QD.

PQ = circular arc AQ.

Length of cycloid- s = 8a; a = CA.

Area of cycloid 5 = sira?

2.451 A point on the radius, b>a, describes a prolate

b<a, describes a curtate trochoid. The general equation of

cycloids is

x = #0 (a + <f) sin 0,

y (a -f <2) (i cos 0),

d = o Cycloid,

d>o Prolate trochoid,

d<o Curtate trochoid.

Radius of curvature:

'

ay + ad + d2
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2.452 Epi- and Hypocycloids. An epicycloid is described by a point on a

circle of radius a t&at rolls on the convex side o a fixed circle of radius b. An

hypocycloid is described by a point on a circle of radius a that rolls on the con-

cave side of a fixed circle of radius b.

Equations of epi- and hypocycloids.

Upper sign: Epicycloid,

Lower sign: Hypocycloid.

x j
b a

,

x =
(b a) cos <f> ^cos 0,

y =
(b a) sin <f>

# sin- 0.

The origin is at the center of the fixed circle. The tf-axis is the line joining the

centers of the two circles in the initial position and < is the angle turned through

by the moving circle.

Radius of curvature:

2a(& a) . & ,

P _
__^
-L sm _-.

0,H
b zfc 20 2&

^

2.453 In the epicycloid put 6 = a. The curve becomes a Cardioid:

(# + ^2 _ 6a2 (^ + y
2
) + Sa3

jt;
=

3<z
4

.

2.454 Catenary. The equation may be written:

y = ^ cosh -

3.
* = a log ^

The radius of curvature, which is equal to the length of the normal, is:

p = a cosh2 ~

^ Spiral
of Archimedes. A point moving uniformly along a line which

rotktes^uniformly about a fixed point describes a spiral of Archimedes. The

or.

f = a tan~l -

a ,

The
j^laf

*

su&tangent = polar subnormal = a.

Radius of l&irvature:
'

^
"

6(2 4-

2.456 Hyperbolic spiral:
a.



GEOMETRY 53

2.457 Parabolic spiral:

r2 - a?6.

2.458 Logarithmic or equiangular spiral:

r aene
,

n = cot a -
const.,

a = angle tangent to curve makes with the radius vector.

2.459 Lituus:

2.460 Neoid:
r = a + 60.

2.461 Cissoid:

(#
2 + 3>

2
)# =

zay*,

r = 20, tan sin 0.

2.462 Cassinoid:

(s
2 + y* + <z

2
)
2

cos 20

2.463 Lemniscate (b
= a in Cassinoid) :

r2 - 20? cos 20.

2.464 Conchoid:

2.465 Witch of Agnesi:

2.466 Tractrix:

SOLID GEOMETRY

2.600 The Plane. The general equation of the plane is:

Ax + By + Cz + D = o.

2.601 J, w, are the direction cosines of the normal to the plane and p is the

perpendicular distance from the origin upon the plane.

A, B, C
-

.

1. m, n -,

+ B2 + C2

= /# -f- w^ + ws,
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2.602 The perpendicular from the point xi, yi, zi upon the plane Ax + By +
Cz + D = o is:

i

SJ2

2.603 6 is the angle between the two planes:

A%x 4- ^y + C& 4- #2 o,

,. AiA% 4" -^1-^2 4~
cos

+ Bf 4 C2
2

2.604 Equation of the plane passing through the three points (x^ yi, 21) (#2, yg, 22)

3'!

3^2

3>3

THE RIGHT LINE

2.620 The equations of a right line passing through the point Xi, yi, 0i, and whose
direction cosines are

, w, w are:

2.621 6 is the angle between the two lines whose direction cosines are

and fe, ^2j ^2-

cos

SUl
2

-f-

2.622 The direction cosines of the normal to the plane defined by the two lines

whose direction cosines are /i, mi, n\ and /g, #Ws are:

sin 6
J

sin 6
3

sin 6

2.623 The shortest distance between the two lines:

x Xi _ y y
'l Wi

and

+ (yi
~

x #2 y y2 z

- ndi) + (zi
~

^2) (/iWa
- fewi

is:

d~

2.624 The direction cosines of the shortest distance between the two lines

are:
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2.625 The perpendicular distance from the point #2 , 3>2, %z to the line:

x xi _ y yi ^_
z Zi

k mi n\

is:

d =
{ (ocz

-
#i)

2 + (y%
-

yi)
2 + fe - si)

2

}
J -

{li(xz
-

#1) + mi(y2
-

yi) 4- wife - *i)} .

2.626 The direction cosines of the line passing through the two points xi, yi, z\

and #2, y2, ^2 are:

^)
2 + (3^2

-
yi)

2 + (22
- 20

2
}

2.627 The two lines:

x = m\z + pi, x = mtf + p2,

and

y = n& + qi, y = n& 4- ?2,

intersect at a point if,

Oi -
mz) (qi

-
52)

-
(ni

- %) (#1
-

ps)
= o.

The coordinates of the point of intersection are:

'

The equation of the plane containing the two lines is then

SURFACES

2.640 A single equation in x, y, z represents a surface:

F(x, y, 0)
= o.

2.641 The direction cosines of the normal to the surface are:

dF_
dF dF

,
dx dy dz

I, m, n =

2.642 The perpendicular from the origin upon the tangent plane at x, y, z is:

p = Ix + my + nz*

2.643 The two principal radii of curvature of the surface F (x, y, z)
= o are

given by the two soots of:
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where:

2.644 The coordinates of each center of curvature are:

2.645 The envelope of a family of surfaces:

i. F(x, y, z, a) = o

is found by eliminating a between (i) and

dF
da

= o.

2.646 The characteristic of a surface is a curve defined by the two equations

(i) and (2) in 2.645.

2.647 The envelope of a family of surfaces with two variable parameters,

a, j8, is obtained by eliminating a and /? between:

i. F(x, y, z
} a, ]8)

= o.

dF^

dF
3. Tg

=
-

2.648 The equations of a surface may be given in the parametric form:

, x = fi(u} V), y =
fo(u, v), z = fs(u, v).

The equation of a tangent plane at #1, yi, Zi is:

where

du dv

du dv

,
etc. See 1.370.
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2.649 The direction cosines to the normal to the surface in the form 2.648 aje:

3(/2, /s) 3(/8, /Q a(/!, /a)
d(w, v)

'

d(u, v)
'

d(u, v)7

I, m, n
2, /S)V , AK/3, /l)V _^

/3 (/i, /2)\
2

1 *

, *) /
+

V <3<X a) /
+

\ d(u, v) ) ]

2.650 If the equation of the surface is:

* =/fe y)>

the equation of the tangent plane at xi, yi, z\ is:

2.651 The direction cosines of the normal to the surface in the form 2.650 are:

\ + *
)'
+

dy

2.652 The two principal radii of curvature of the surface in the form 2.650

are given by the two roots of:

where
df df ay

P== te' g =dj'
r -^ y S

2.653 If pi and P2 are the two principal radii of curvature of a surface, and p
is the radius of curvature in a plane making an angle <j> with the plane of pi,

i _ cos2 <t> sin2 <j>

P
~

Pi P2

2.654 If p and p' are the radii of curvature in any two mutually perpendicular

planes, and pi and p2 the two principal radii of curvature:

1 + JE-i + JE.
P P' Pi P2

2.655 Gauss's measure of the curvature of a surface is:

SPACE CURVES

2.670 The equations of a space curve may be given in the forms:

(a) Fi(x, y, z) = o, F2 (*, y, 2) = o.

(b) *-/i(0, y-/*ft), *-/8(0-

(c) y = 4>(x), z = \f/(x).
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2.671 The direction cosines of the tangent to a space curve in the form (a) are:

dftdFsdFidFt
7 dy dz dz dy
I s---

>

dfi <3F2 _ dFi aFg

dz dx dx dz
=

dFi dFj _ dFi dFz

dx dy dy dx
n==--. _^-

,

where T is the positive root of:

.3 77 J3 77 .3 77 ^1 77 ^5 77 r5 77
uJ?i (j % u" 1 Ojf^2 Ox^ 1 "X^ 2

d# a# d;y cty 62 d#

2.672 The direction cosines of the tangent to a space curve in the form (b) are:

^C 'V Z

I, m, n =
t /2 , /a i /2U>

where the accents denote differentials with respect to t.

2.673 If s, the length of arc measured from a fixed point on the curve is the

parameter, t:

. Ax dy dz
L m, n = -r-> ~r> T"

*

' ' ^ ^ ds

2.674 The principal radius of curvature of a space curve in the form (b) is:

{ (y'z
" - Z'y)* + (

z 'x
ff -

x'*")* + (x'y"
- yV) 2

}*

where the double accents denote second differentials with respect to t, and $,

the length of arc, is a function of t.

2.675 When / = s:

2.676 The direction cosines of the principal normal to the space curve in the

form (b) are:

7/ *'(*'*"
- x'*")

-
y

f

(x'y" - y'x")
I = -

,

, _ x'b'y" yVQ - gyg" - gyp
L ;
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, y'(y'z"
-

z'y")
-

x'(z'x" - x'z")n __

where

L = U'' z /2

]*{ (yV - z'

2.677 The direction cosines of the binormal to the curve in the form (b) are:

,,/// _ /,//

IT
yz-zy

I = ~

m'
/// ///

& J(f J(f 6

*,n =

where

(ic'y''
-

yV 7

)
2
}
1
-

2.678 If 5, the distance measured along the curve from a fixed point on it is

the parameter, t:

7
. d?x , d2

y f
cPz

j/_p_, w . p_, n .p_,

where p is the principal radius of curvature; and

m dx

2.679 The radius of torsion, or radius of second curvature of a space curve is:

x' y' z'

x" y" z"

x"' y'" z'"

where 5 is given in 2.677.

2.680 When t - s:



6o MATHEMATICAL FORMULAE AND ELLIPTIC FUNCTIONS

dx dy dz

ds ds ds

"ds
2 Us2 ds*

7s* ~ds* Jsz

2.681 The direction cosines of the tangent to a space curve in the form (c) are:

i, y', z
f

m, n =
'

Vi-f y* + z'
2

where accents denote differentials with respect to x:

f d<b(x) . d\I/(x)
At' -- V f

. .

y dx
'

dx

2.682 The principal radius of curvature of a space curve in the form (c) is:

I ( r + y'2 + s /2)3

P =
( (y'z"

- z
f

y")* + y"
2 + z

f

2.683 The radius of torsion of a space curve in the form (c) ,}s:

r =

2.690 The relation between the direction cosines of the tangent, principal

normal and binormal to a space curve is:

^ n

/ M f

2.691 The tangent, principal normal and binormal all being mutually perpen-
dicular the relations of 2.00 hold among their direction cosines.



III. TRIGONOMETRY

3.00 tan x = > sec x = > esc re = . > cot x} J\^\s >V t ^_>>*_> V I ***\J i> *ns y

cos x cos x sin x tan #

sec2 # = i 4- tan2
#, csc2# =14- cot2#, sin2# 4- cos2# = i,

versin x = i cos x, coversin x = i sin x, haversin x = sin2
2

1 1 ~ COS 2iC / X X
3.01 sin * = - sin (- *) = V = 2V cos2 - - cos* -

T 2 T2 2

X
2 tan -

. x x tan # 2
= 2 sin - cos - = T==

2 2 A/7^
2

i

t _ cot ^ tan + cot
2 2

= cot -
(i
- cos x) tan -

(i 4- cos x),
2 2

= sin y cos (# y) 4- cos y sin (x y),

= cos y sin (OP 4- y} sin y cos (x 4- y),

/ T I f*OS 2iC 3t

3.02 cos x = cos (- *) = V == i - 2 sin2 ->
T 2 2

= cos2 sin2 -* = 2 cos2 i = = ,22 2 -Y/! + tan2 x

_

i 4- tan2 - i+ tan re tan - tan ^ cot - i

^x x
cot -- tan

2 2 cot x sin 2x

2 2

cos y co$ (# 4- y) 4- sin y sin, (x + y),

cOs y cos (^ y) sin y sin (#
-

y),

61
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sin 2X i cos 2x
3.03 tan x = - tan (- x)

i 4- cos 2x sin

cos 2# _ sin (x + y) + sin (# y)

+ COS 2X
~

COS (X + }>) 4- COS (#
-

3>)

7

cos (x
-

y)
- cos (x + y)

sin (# + y) sin (x y)
COt ^ - 2 COt 2B,

X X X
tan - tan - 2 tan -2.2 2

- tan -
i -|- tan - i tan2 -222

- tan -
i + tan -

2 2

. i
' i

i + e
2 **

3.04 The values of five trigonometric functions in terms of the sixth are given

m the following table. (For signs, see 3.05.)

sn x = a cos x = a tan x = a cot x = a sec # = esc a = a

tan ;

COt :

sec #

csc# =

vr=rf
\/a2 - i

+

Vi -a}
i

a

i

Vi -a2

a

a

'a^ - i

a

i

i

a

V?T7

Vi + a2

Vi + a? v, a- i

3.05 The trigonometric functions are periodic, the periods of the sin, cos, sec,

esc being 27T, and those of the tan and cot, TT. Their signs may be determined

from the following table. In using formulas giving any of the trigonometric
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functions by the root of some quantity, the proper sign may be taken from this

table.

3.10 Functions of Half an Angle. (See 3.05 for signs.)

3.101 T

3.102

3.103

sin -x
2

COS X

= -
I

Vi + sin x T Vi - sin r >

2
I J

cos ^= y/2 V

r -f- cos x

y
_._

,
-

:= -
< V i + sin x V i - sin

tan -a

=v/^7iz* 2\ .feVl

A /r - cos x
' = V

;

'

T T _1_ f^f\<2. -V.

tan2
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sin x
__

i cos x
~

i -f cos x
"~

sin x '

Vi + tan2 x - i

tan x

3.11 Functions of the Sum and Difference of Two Angles.

3.111 sin (x y)
= sin x cos y cos a; sin %
= cos # cos y (tan # tan y),

tan x tan 3; . , ^ x_-_..-1 sm (x =p y)
tan ac =F tan y

v J"

= -
< cos (x -f 3;) + cos (x y) > (tan a; tan

2
I J

3.112 cos (xy) = cos x cos 3;
=F sin x sin %

= cos x cos y (i =F tan a; tan y),

cot ^ =F tan

cot ^ =b tan

cot y ^F tan ac

/ -r.
cos (x =F

sm
cot y tan x =F i

cos ^ sin y (cot y ^F tan

3.113 , f , tan a; tan
tan (x d=

i T tan ^ tan y

_ cot y db cot x
~

cot ac cot 3;
=F i

J

__
sin 2% sin 2y"
COS 2X + COS 2y

3.114 , , x cot x cot y =r= i
cot (xy) =

i
-~

cot y cot ^

sin 2X =r= sin 2

cos 20; cos zy

3.115 THe cosine and sine of the sum of any number of angles in terms of the

sine and cosine of the angles are given by the real and imaginary parts of

COS (#1 + #2 +. . . . + *)+* Sin (Xi + #2 + + *n)

= (cos $1 + i sin #1) (cos #2 + i sin #2) ..... (cos xn + i sin #n)
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3.12 Sums and Differences of Trigonometric Functions.

3.121 sin x sin y = 2 sin %(x =t y) cos %(x =F
3;),

= (cos + cos y) tan f (# =t y),

= (cos y cos x) cot J(# =F y),

tan i (# y) , . -r- \= -
2_^
-^ (Sln x =F sm y).

tan iO=F;y)
v "

3.122
'

cos x + cos y - 2 cos J(# + y) cos f (#
-

y),

sm x =fc sin y

3.125

tan

cot i (x + y) f \= --
f-)
-^ (cos y

- cos x).
tan i(o;

-
y)

'

3.123 cos cv - cos y = 2 sin J(y + a;) sin J(y - #)

= -(sin a; sin y) tan J(a; =F y).

sin (^ y) /A _ , \
. ; = ^ (tan ^ =F tan y),

sin =

= tan y tan (a? =t y) (cot y =F tan

_ i ^ tan ag tan y
~"

cot (^ y)
'

- (i =F tan # tan y) tan (re y).

3.130
sin a? sin y ,

1.
= ta

cos x 4- cos y

sin # sin y
2 .

= -
cos x cos y

sin x + sin y _ tan^(o; + y)

sin x sin y tan f (# y)
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3.UO
1. sin2 x + sin2 y = i - cos (x -f y) cos (x

-
y).

2. sin2 x sin2 y
= cos2

y cos2 x

= sin (# + y) sin (x
-

y).

^.
cos2 x - sin2 y = cos (x + y) cos (# y).

4. sin2 (x + y) + sin2 (x
-

y)
-

i - cos 2# cos ay.

5.
sin2 (# + y)

- sin2 (x
-

y)
= sin 2x sin 2y.

6. cos2 (x + y) + cos2 (x
-

y)
= i + cos 2X cos ay.

7.
cos2 (a + y)

- cos2 -
y)

= - sin 2X sin ay.

3.150

L cos ?# cos w# = i cos (n
- m)x -f i cos (w + w).

2f sin 7# sin wa: = \ cos (w
- m)x | cos ( + m)x.

3.
cos ^^c sin mx = J sin ( + w) - J sin (n

-
w)ff.

3.160

It 6 *+2/ - e
a;

^CQS <y -|- shl _

2. a*4'* 1 ' == ^^ {cos (y log a) + i sin (y log a)}

3. (cos x ^* sin #)
w = cos ^x ^" sin ^^

[De Moivre's Theorem].

4. sin (jc iy)
= sin ^ cosh y i cos # sinh y.

5. cos (a iy)
= cos ic cosh y^i sin ^ sinh y.

6. cos = i(e
t!B -hc"

1

*).

7 sin # - -
(e

ix - e-).'* 2

8. e lx = cos ^ 4- i sin #.

. e~ ia; = cos x ^ sin #.

3.170 Sines and Cosines of Multiple Angles.

3.171 n an even integer:

f . (rc
2 - 2 2

) . s ,
Q2 - 2

2
) (n - 4

2
) 5

sin nx = cos x sin Jc -
;

- sin
3 x 4-

::

77 r sin6

I 3 ! 5i

w2
. ft ^2<y - 22) . , ^2 fe2 - 22

) (n
2 - 4

2
) .

cosw^ = i -^sin
2 ^ + ^^n -

7 sm4 ^ ^

^p ^si
2! 4! 6!
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3.172 n an odd integer:

/ . (n
2 - i

2
) .

3 ,
(n*

- i
2
) (n*

-
3
2
) .

5
sin ^# = n < sin # --

j

- sin3 x + --
f
- sms # -

. . .

V O " *

f O2 - i
2
) .

2 (^
2 - i

2
) (n

2 -
3

2
) . 4

cos #0; = cos # < i - --
j

- sin2 # + --
^-j

- sin4#...
V

"

3.173 an even integer:

sin w# = (-i)
2 cos * 2 71"1 sin91

"1 -
,

2
2 n~3 sinn

~"3 ^

n-5 ^ _
-

4) (n 5) (n
-

6)

2! 3!

cos nx = (-i)a \
z n
~l sinn x -

,

2 n
~3 sin 71

"2 # + r-^ 2 n
~5 sin

n~4

I
ii 2 '

w (
_ V) (w - , .

ftV. ^_\ V
2 n_ 7 smn-6 x _|

3.174 ^ an odd integer :

sin nx = ( i)"T" ^ 2 71
"1 sinn a;

;
2 71"3 sinn

~2
re -J

- r-^- 2 n
~5 sin71"

il 2!

^ 2
cos ^a; - (-1) 2 cos ic < 2 n

~1 sin71
"1 ^ -- 2

n~"3 sin 71
"3 x

(n - 3) (w
-

4) K . , (w
-

4) ( 5) (w 6) w 7 . y+ J^-2L- 1 2 n
~5 sin71"5 x - ---^ r^-- 2 n

~7 sin 71-7 *
2! 3!

3.175 n any integer:

sin nx = sin x < 2 71"1 cos 71"'1
oc--

j

2 n
~3 cos 71"3 x

_
2l 31

cos nx = 2 n
~1 cosn x - ^7 2

n~3 cosn
~2 x 4-

,

3
2
n~5 cos71

"4 x
ll 2!

M( -
4) (ft

-
5) 7 n_6 ,

2 CUb X -r . .
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3.176 sin 2x = 2 sin x cos x.

sin $x = sin x (3 4 sin2 x)

= sin #(4 cos2 x i).

sin 4x sin #(8 cos 3 # 4 cos #).

sin 5# = sin #(5 20 sin2 x + 16 sin4 #)

= sin #(16 cos4 x 12 cos2 # + i).

sin 6x sin #(32 cos5 x 32 cos 3 x + 6 cos #).

3.177 cos 2# = cos2 # - sin2 ^

= 1 2 sin2 x

= 2 cos2 x i.

cos 33;
= cos x(4 cos2 ^ - 3)

= cos x(i 4 sin2 x).

cos 4^c
= 8 cos4 x - 8 cos2 x + i.

cos 5# = cos x(i6 cos4 x 20 cos2 # + 5)

= cos x(i6 sin4 x 12 sin2 x + i).

cos 6# = 32 cos6 # - 48 cos4 x + 18 cos2 x - i.

* nn , 2 tan ^
3.178 tan 2x

COt 2^ =

i tan2 x

cot2 x i
..I.

2 COt #

3.180 Integral Powers of Sine and Cosine.

3.181 n an even integer:

$in
n x = ~i cos nx - n cos (n - 2)x + cos (w - 4)^

n(n -i) (n- 2) ,
1

,'
n\

2 -

s
71 s =

^jj |
cos nx + n cos (#

-
2)35 +

~
cos (^

-
4)x

, w(w -
i) (n 2) , , N-

2/
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3.182 n an odd integer:

sinn x = - ~^~ \
sin nx n sin (n

-
2)% H

-

j

- sin (n
- 4)x

n(n i) (w
-

2) . , , N , , f x*z.r !

_ _Ji LJ ism (w _ 6)^ + . . . . + (!) 2 - . . sin

if / \ n (n "*
*) / \

cosn x =
; i cos nx + n cos (w 2)x H ;

cos m - 4)x
2 n
~l

(
21

+
n ^n ~ I

\
("n ~ ^

cos (
- 6)* + + 7- v ^/' _, , x

cos a;

3.183

sin2 # = J(i
- cos 2x).

sin3 ac = J(3 sin x - sin 3^).

sin4 x = |(cos 4^ - 4 cos

sin5 x = tV(sin 5# 5 sin 3^ + 10 sin x).

sin6 ^ =
-^5- (cos 6x - 6 cos 4^4- 15 cos 2# - 10).

3184
COS2 # = 2(1 + cos

cos3 x = i(3 cos x + cos 3^)-

COS4 * = |(3 + 4 COS 2X + COS 4CC).

cos5 # == ^(lo cos x + 5 cos 3# -1- cos s#).

cos6 a; - T2-(10 + I S cos 2# + 6 cos 4^: + cos 6#).

INVERSE CIRCULAR FUNCTIONS

3.20 The inverse circular and logarithmic functions are multiple valued; i.e., if

o<sin~1 #<-,
2

the solution of x = sin 6 is :

2nw + sin""
1
#,

where n is a positive integer. In the following formulas the cyclic constants are

omitted.
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3.21

"1sn
7T

2

7T
SU1~

2

cos

7T I.i
i- - sin"1

42
- cos"1

(i 2#2
)

i

2 tan~
i - '

i - i tan"1 1 - ^ >

J
2 1 i - 2#2 J

3.22

""1 # TT cos*"1 ( x) = ~ sin""1 x = cos^1
(2^2 i)

2 tan

^" log ( + "V^2 -
i) = TT i log (VV - i - OP).

3.23

tan""1 x

i., i ix i . - ^- ^ log-- = - ^ log
-

2 I-f-^ 2 t X
i., i+io;
^ log
-

2 I IX
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3.25 _
1. sin"1 x sin""1 y = sin~1

{#V'i y* 3>Vi

2. cos 1 x cos""
1
y = cos"1^ =F V(i - #2

) (i

3. sin"1
re cos"1

y = sin"1

tan"1 # tan"1 7 = tan
I

M * cot"1
y = tan"1
^

cot

zp ^

3= x

xy

HYPERBOLIC FUNCTIONS

3.30 Formulas for the hyperbolic functions may be obtained from the corre-

sponding formulas for the circular functions by replacing x by ix and using the

following relations:

1. sin ix = \i(e
x

e~*) - i sinh x.

2. cos ix = %(e
x + &-*) = cosh x.

.
. ^ g -i) -. ,

3. tan ^ = - -- = i tanh x.
r -f- I

e2iC + I - .1.

4. cot ix - -^ -^
- = - & com a?.

6 I

5-

. ,

6. esc ^x --- = ^ csch 5C.

e x - e~ x

7. sin"1 ix = ^" sinh"1 ^ = i log (^ + Vi + ^).

8. cos"1 2# = ^ Cosh"1 x = -- i log (x + Vi 4-

s

/ T I
'

Q. tan"1 ix i tanh"1
a; = ^" log*

10. cot"1 ix = i coth"1 x = -Hog
'
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3.310 The values of five hyperbolic functions in terms of the sixth are given in

the following table :

3.311 Periodicity of the Hyperbolic Functions.

The functions sinh x, cosh x, sech x, csch x have an imaginary period airi, e.g. :

cosh # = cosh (x + 27r^W),

where n is any integer. The functions tanh x, coth x have an imaginary period wi.

TT iTri
The values of the hyperbolic functions for the argument o, i, iri,

-
>

are given in the following table :
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sinh -x = V
2 V

2. cosh

3.320

. , a. . /cosh x i
i. smh -

2

2

. /cosh as 4- i

V 2

- i cosh # i smh x A /cosh # i
tanh - ==

r-^
= r = v ;

'

2 smh x cosh x + i V cosh x 4- 1

3.33

1. sinh (as d= y)
= sinh # cosh y cosh a; sinh

2. cosh (as db y)
= cosh a; cosh y =b sinh nc sinh

tanh x tanh y,
, , N- tanh (a? dz y) =

- , ,

4. coth (x =t y) = -T
-TT^ coth y db coth x

--
:
-- r-

i =t tanh x tanh y

coth x coth y db i

3.34

1. sinh x 4- sinh y = 2 sinh J(o; 4- y) cosh |(# y)-

2. sinh a? - sinh y = 2 cosh J(# 4- y) sinh |(# y).

3. cosh # + cosh y = 2 cosh f(# 4- y) cosh \(x y).

4. cosh x cosh y = 2 sinh \(x 4- y) sinh J(# y)*

A i , j. -L sinh (^ 4- y)
c. tanh a; 4- tanh y = : ^-^ '

cosh x cosh y

, , , , sinh (x y)
6. tanh x- tanh ^ - -

*T_ , ^i.
coth x + coth

cosh x cosh y

sinh (x + y)
-r-r- f^-
sinh a; sinh y

^ ^ sinh (a;
coth B - coth y =

.. ,

sinh # suih y
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3.35

1. sinh (x + y) + sinh (x y)
= 2 sinh x cosh y.

2. sinh (x + y)
- sinh (# y) =2 cosh x sinh y.

3. cosh (x + y) + cosh (# y) = 2 cosh x cosh y.

4. cosh (x + y} cosh (x y) = 2 sinh # sinh y.

, , x . sinh x sinh y
5. tanh %(x db y) = r-

;

-
r^~" cosh x + cosh y

, i / v sinh # =T= sinh y
6. coth J(# dr y)3 v ^y

cosh x - cosh

tanh x + tanh y _ sinh (x + y). .

'' tanh a; tanh y
~"

sinh (x y).

coth a + coth y _ _ sinh (ag + y)

coth a; coth y
~~

sinh (x y)

3.36

1. sinh (x + y) + cosh (# + y) = (cosh x + sinh x) (cosh y + sinh y),

2. sinh (# + y) sinh (x y) = sinh2 x sinh2
y

= cosh2 x cosh2
y.

3. cosh (x + y) cosh (# y)
= cosh2 x + sinh2

y
= sinh2 x + cosh2

y.

. , , i + tanh \x
4. sinh x + cosh # = r^~ '^

i - tanh |^

5. (sinh x + cosh x)
n = cosh m; + sinh nx.

cosh x + sinh

sinh ^ =



3.38

i.

4-

s-

6.

TRIGONOMETRY

sinh 2x = 2 sinh a; cosh x,

2 tanh #
=

i - tanh2 *'

cosh 2X - cosh2
a: + sinh2 x = 2 cosh2 # i,

= i-j-2 sinh2
a?,

T + tanh2 x

75

^ ,

tanh 2x

i - tanh2 x'

2 tanh #

i + tanh2 x

sinh 3# =
3 sinh x + 4 sinh3 x.

cosh 3# = 4 cosh3 # 3 cosh #.

tanh # + tanh3 x,

tanh 30:
= - r

3 tanh2 x

3.40 Inverse Hyperbolic Functions.

The hyperbolic functions being periodic, the inverse functions are multiple

valued (3.311). In the foliowing"formulas the periodic constants are omitted,

the principal values only being given.

i. sinh""1 x =
log (x +

'

cosh"1 x =
log (x +

'

2.

5-

6.

- i.

csch-1 x =
log + L + j = Si

3.41

i.

2.

sinh~x x sinh"1 sinh"1

cosh""1 cosh"1
y = cosh"1

(ry v (j# i) (/ - i)).

x -v

tanh tanh"1
y = tanh""1
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3.42

1. cosh"1

^\ */ ^\

- tanh- J^ = 2 tanh"1 ^,
= log x.

2. cosh"1 csc 2# = sinlr"1 cot 2X = tann"1 cos

= log tan #.

= -
log csc x.

tanh"1 tan2 - = -
log sec x.22

3.43 The Gudermannian.

K,
1. cosh x = sec 9.

2. sinh x = tan d.

e x = sec 9 + tan = tan
(~

+ ")

4. r
= log tan +"

5.

3.44

1. sinh x = tan gd x.

2. cosh x sec gd ff.

3. tanh rx: sin gd x.

A T

4. tanh - = tan - gd x-

(* > A\i cos h gd x I

^ . \2
&

/+ sin gd x
__

cos gd x6 sm gd x\



TRIGONOMETRY
77

6. tanh"1 tan x = f gd 2x.

7. tan-1 tanh x f gd"
1

2&.

SOLUTION OF OBLIQUE PLANE TRIANGLES
3.50

a, b, c = Sides of triangle,

&> ft 7 =
angles opposite to a, b, c, respectively;

A - area of triangle,

Given Sought Formula

a, b, c

r

a, b, a

When a>J, ]Q<~ and but one value results. When b>a

j8 has two values.

7 - 180 -
(a + |8).

- g s^n 7
""

sin a

A = | ab sin 7.

, a sin ]8
:

sui a.

a sin 7 a sjn (a +^
sin a sin
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Given Sought Formula

A A I
i.

i
9 sin |8 sin 7A A = - ab sin 7 = - a2 ? L -

2 2 sin a

a sin 7
a, b

} 7 a tan a -
- a cos 7

a, J(a + /3)
= 9o-i7.

tan -(a - ]8)
= ^r cot ^7

2 a -\- o

cos 7)*.

* cos

J sin2

a - b , ^ , /-T sin J7-T where tan 9 = -
cos 9

g s^n 7
sin a

| a& sin 7.

SOLUTION OF SPHERICAL TRIANGLES

3.51 Right-angled spherical triangles.

a, b, c = sides of triangle, c the side opposite 7, the right angle.

a, /3, y ~ angles opposite a, 5, c, respectively.

3.511 Napier's Rules:

The five parts are a, b, co c, co a, co /3, where co c ~ c. The right angle

7 is omitted.

The sine of the middle part is equal to the product of the tangents of the

adjacent parts.

The sine of the middle part is equal to the product of the cosines of opposite

parts.

From these rules the following equations follow:

sin a = sin c sin a,

tan a = tan c cos /3
= sin b tan a,

sin b sin c sin ]8,

tan b = tan c cos a sin a tan /3,

cos a = cos a sin ]8,

cos ]8
= cos b sin QJ,

cos c = cot a cot /3
= cos a cos &.
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3.52 Oblique-angled spherical triangles.

a, by c = sides of triangle.

a, ]8, 7 = angles opposite to a, b
} c, respectively.

Given

a, bj c

a, c, a
Ambiguous case.

Two solutions

possible.

a, 7, c

Ambiguous case.

Two solutions

possible.

<r-i (<* + + 7),

c = a + j8+7 180 =
spherical excess,

5 = surface of triangle on sphere of radius r.

Sought Formula

a sin2 \ a = haversin a,

sin (s 5) sin ($ c)

sin & sin c

sin ($ 5) sin (s c)

sin s sin (s a)

sin s sin (s a)

sin b sin c

hav g hav (6 c)

sin 6 sin c

haversin a,

_
"" cos a CQS ^ "~

**)

sin ]8 sin 7

i - cos cr efts (or ot)
tan2 - a =

7 ^ ^7 -?
2 cos (<r

-
p) cos (<r 7)

tan2 - a =
2

cos2 -
<

2

haversin a -

sn

cos2 - a
2

cos (a*
-

j8) cos (<r 7)

sin j8 sin 7

sin 7 = sm a sin c

sin a

tan = tan a: cos c.

sin ()8 + 0) = sin tan c cot a

(cot
<p
= tan c cos a.

. /t . IN cos a sin <b
sin +

sin

cos c

sin a sin 7
sin ce
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Given Sought Formula

I
tan 6 = tan a cos 7.

\ sin (b 6)
= cot a tan 7 sin 0.

sin f (a + 7)

cos I (a 7)

cot <p
= cos a tan 7

- /o /\ cos a. sin <

sin (p <p)
-

T)
2V '

cos 7

1/5 sin \ (a 4- c) ,
.. , N

cot -
ft
= -

^ _ v tan -J(a
-

7).

cos JO + c) !, N=
^

L tan f (a + 7).
COS

"2 \& C)

a, by 7 c cos c = cos a cos b + sin a sin b cos 7.

tan = tan a cos 7 cos a cos (5
-

6)'

cos c _

tan 9 = tan b cos 7 c cos c/

cos J cos (a <t>)

cos
</>

hav c = hav (a
-

b) + sin a sin & hav 7
sin 9 tan 7

ft

sint(g-6) cot fry

c, a, ft 7 cos 7 == - cos a cos ft + sin a sin ft cos

tan = cos c tan a cos a cos (/3 + 6)
COS 7 =

tan = cos c tan /3 cos 6

__
cos )8 cos (a + 0)

cos

a A tan c sin 6
\

tan a = -r-
sin (18 + 0)
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Given Sought Formula

tan c sin 6
b tan b = -

7
-TT-

sin (a + 9)

, i cot Ja cot |6 + cos y
a, b, y e cot*e--

Sin

2

7
--'

a, 6, c tan2
|e = tan ^ tan J($

-
a) tan J(s - J)

tan f ($ c}.

TINITE SERIES OF CIRCULAR FUNCTIONS

3.60 If the sum, / (r), of the finite or infinite series:

f (r)
= ao + a1 r + 02r*+

is known, the sums of the series:

51 = ao cos x + a\ r cos (# + y) + 02 r2 cos (# + ay) + . . . .

52 = oo sin + OL r sin (* + y) + 02 r2 sin ( + 2y) + . . . .

are:

si - J{*^fr ty
) + e- li

3.61 Special Finite Series.

. nx , n+i
sin sin-

*-x sn -

cos sin
2 2

2. SjCOSkX =

sin -

2
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^^ . . n cos (n + i)# sin nx
3. > . sm2 kx --------

^w 2 2 sin #
A=I

^t^ _ _ n 4- 2 cos (w + i)#*sin n#
4. > . COS2 &# =--

1

--
2 Sin X

n~ T
.

sin

fzn i\
7Z COS (

-
] X

\ 2 /sm &# =
. 9 # . a;

4 sin2 - 2 sm -

. fzn i\
sm- I x

\ 2 / i
-

7Z sm
r \ 2 / i cos

cos kx =
. x x

2 sin - 4 sin2 -

*S^ ^
s*n2 nx

'" ^ ~~ ~~

sin x

8. sin

. f ,
ny\ . (n+Ti \

sm
(x + -fj

sm
( ^ yj

sm

cos (
x -i y } sin

9. ^7^ cos (x -|- ;y)
=

*-o sin
^

+x
/ \ l. i / 7 N / \
( ir^sm (2^ i)a; = ( i)

w

2 COS

COS
I \
X\

2 COS
2

7 r sin ac(i rn cos w#) (i r cos #Vn sin nx
12. ^7, r"5 sm kx =

5
i 2r cos x -p r2

_ (i r cos 5c) (i r n cos 7frt:) + rn+1 sin x sin w:
cos kx = -1 :LJ: =

i 2r cos # + r2

I X\* 9 /I ^
-T sec "T. = CSG ^

(
csc

2 k 2 kJ \2
n 2 n

n

is- ^ ; - *

jfe=I
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i- tan ~ = cot - 2 cot 2%.

ni . .

17. ^ cos-^ =
(i + cos + sin ^)-' ^/ W 2V 2 2 /

j&
2 27T V^ / mr - n^

,
sin =

n i

19. z}sin^T= cot^-

22n+2 _ j

3
. 22n-l

3.62

Watson (Phil. Mag. 31, p. in, 1916) has obtained an asymptotic expansion

for this sum, and has given the following Approximation:

Sn = 2^(0.7329355992 logio(2)
- 0.1806453871}

0.087266 0.01035 0.004 , 0-005
"~

n
'

^ n? n1
~~ "

Values of Sn are tabulated by integers from n = 2 to n = 30, and from n = 30

to n = 100 at intervals of 5.

The expansion of

k=I

is also obtained.
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3.70 Finite Products.

i. sn nx = n sin x cos x / i ^ \ n even.

/ !--- i w even.

cos nx = cos x I I / i ; \ n odd.

5. cos nx - cos ny = 2n
~1TT

|

cos ^ - cos f y H
j

>

k=o
nt

6. a2n - 2anbn cos a H- 62n JJ |
a2 - tab cos

(
a; +

J
+ ^2

ROOTS OF TRANSCENDENTAL EQUATIONS
3.800 tan x = x

The first 17 roots, and the corresponding maxima and minima of
x

are given in the following table (Lommel, Abh. Munch. Akad. (2) 15, 123, 1886):

n xn Max sin x
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3.801

2X
tan x =

The first three roots are:

, TT= IJ 9-26 TQ-,

_ 7T

If # is large

_ 2 16

W7T

(Rayleigh, Theory of Sound, II, p. 265.)

3.802

tan x =
^y& Q

The first two roots are:

#2 = 3-3422.

(Rayleigh, 1. c. p. 266.)

3.803

x
tan x =

i x?

The first two roots are:

x\ = o,

x2 = 2.744.

(J. J. Thomson, Recent Researches, p. 373.)

3.804

tan x -
5

3
'VJb

The first seven roots are:

XL = o,

o:2 = I.83467T,

^3 = 2.89507T,

4.9385^

X? = 6.95637T.

(Lamb, London Math. Soc. Proc. 13, 1882.)

3.805
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The first seven roots are:

Xi = 0,

Xz = O.8l6o7T,

x&

3.806

The roots are:

3.807

The roots are:

3.808

The roots are:

2.935977,

3 96587r >

4.972877,

(Lamb, 1. c.)

cos x cosh x = i.

.

= 4.7300408,

= 7.8532046,

= 10.9956078,

(

= 14.1371655,

;

= 17.2787596,

(Rayleigh, Theory of Sound, I, p. 278.)

cos x cosh x = i.

=1 875104,

= 4-694098,

= 7-854757,

= 10.995541,

= 17.278759,

= J(2w I)TT n>6.

i - (i 4- cos o.

3.809 The -smallest root of

is

= 1.102506,
= 4 75476i,

= 7-S37964,

= 11.003766,

14.132185,

= 17.282097.

(Schlomilch: Ubungsbuch, I, p. 354.)

6 - cot o,

= 49 i?' 36'
7

.5.

(1. c. p. 355.)
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3.810 The smallest root of

6 - cos 6 =
o,

0=, 422o'47".3.
(1. c. p. 353.)

3.811 The smallest root of

xe x
2 = 0,

is

x = 0.8526.

(1. c. p. 353.)
3.812 The smallest root of

log (i + x)
- ix =

o,

is

x - 0.73360.

(1. c. p. 353.)
3.813

tan x x + - = o.
00

The first roots are:

xi = 4.480,

X2 = 7-723,

#3 = lO.QO,

x4
= 14.07.

(Collo, Annalen der Physik, 65, p. 45, 1921.)

3.814

cot x + x = o.

The first roots are:

Xi O,

#2= 2.744,

#3 = 6.II7,

#4= 9-3I7,

x5 = 12.48,

X6
=

15.64,

#7
- 18.80.

(Collo, 1. c.)

3.90 Special Tables.

sin 6, cos 0: The British Association Report for 1916 contains the following

tables:

Table I, p. 60. sin 0, cos 6, 6 expressed in radians from 6 = o to 6 = 1.600,

interval o.ooi, 10 decimal places.

Table II, p. 88. 9 - sin B
3

i cos 6, 6 - o.ooooi to = o.ooioo, interval

o.ooooi, 10 decimal places.
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Table III, p. 90. sin 0, cos 6; 6 = o.i to 6 = 10.0, interval o.i, 15 decimal

places.

J. Peters (Abh. d. K. P. Akad. der Wissen., Berlin, 1911) has given sines and

cosines for every sexagesimal second to 21 places.

hav 6, logic hav 6: Bowditch, American Practical Navigator, five-place

tables, o - 180, for 15" intervals.

Tables for Solution of Spherical Triangles.

Aquino's Altitude and Azimuth Tables, London, ^191 8. Reprinted in Hydro-

graphic Office Publication, No. 200, Washington, 1918.

Hyperbolic Functions.

The Smithsonian Mathematical Tables: Hyperbolic Functions, contain the

most complete five-place tables of Hyperbolic Functions.

Table I. The common logarithms (base 10) of sinh u, cosh u, tanh M, coth u:

a = o.oooi to u = o.iooo interval o.oooi,

u = o.ooi to u =
3 ooo interval o.ooi,

u = 3.00 to u = 6 oo interval o.oi.

Table II. sinh u, cosh u, tanh u, coth u. Same ranges and intervals.

Table III. sin u, cos
, logw sin u, logio cos u:

u = o.oooi to u = o.iooo interval o.oooi,

u = o.ioo to u = i.600 interval o.ooi.

Table IV. logio
u

(7 places), e
u and e~u (7 significant figures):

u = o.ooi to u = 2.950 interval o.ooi,

u = 3.00 to u = 6.00 interval o.oi,

u = i.o to u = 100 interval i.o (9-10 figures).

Table V. five-place table of natural logarithms, log u.

u i o to u = 1000 interval i.o,

u = 1000 to u = 10,000 varying intervals.

Table VI. gd u (7 places) ;
u expressed in radians, u o.ooi to u =

3.000,

interval o.ooi, and the corresponding angular measure, u = 3.00 to u =
6.00,

interval o.oi.

Table VII. gd~
l
u, to o'.oi, in terms of gd u in degrees and minutes from

o i
;
to 89 59'.

Table VIII. Table for conversion of radians into angular measure.
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Kennelly: Tables of Complex Hyperbolic and Circular Functions.

Cambridge, Harvard University Press, 1914.

The complex argument, x + iq
= pe*

5
. In the tables this is denoted p/5.

p = Vo? + q\ tan 5 =
q/x.

Tables I, II, III give the hyperbolic sine, cosine and tangent of (pZo)

expressed as r/.y:
d = 45 to 5 = 90 interval i

p = o.oi to p =
3.0 interval o.i.

Tables IV and V give 77 , 5 expressed as rL 7, = pZ 5,

p = o.i to p =
3.0 interval o.i,

8 = 45 to 5 -90 interval i.

Table VI gives sinh (p/45)> cosh (p/45), tanh (p/45), coth (p/4S) 3

sech (p/45 ), csch (p/45) expressed as rZ 7:

p = o to p = 6.0 interval o.i,

p =
6.05 to p =

20.50 interval 0.05.

Tables VII, VIII and IX give sinh (x + iq), cosh (x + iq), tanh (x + iq),

expressed as u + iv:

x = o to x =
3.95 interval 0.05,

q
= o to q

~ 2.0 interval 0.05.

Tables X, XI, XII give sinh (x + iq), cosh (x + iq), tanh (x + iq) expressed

asr/7:
x = o to x =

3*95 interval 0.05,

q
= o to q

= 2.0 interval 0.05.

Table XIII gives sinh (4 + iq), cosh (4 + iq), tanh (4 + iq) expressed both

q
= o to q = 2.0 interval 0.05.

x e*
Table XIV gives and logu

x = 4.00 to x = 10.00 interval o.oi.

Table XV gives the real hyperbolic functions: sinh 6, cosh 6, tanh 6, coth 6,

sech 6, csch 6.

= o to 6 =
2.5 interval o.oi,

6 =
2.5 to =

7.5 interval o.i.
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Pernot and Woods: Logarithms of Hyperbolic Functions to 12 Significant

Figures. Berkeley, University of California Press, 1918.

Table I. logic sinh x, with the first three differences.

x = .0000 to x = 2 018 nterval o.ooi.

Table II. logio cosh x.

x = o.ooo to x =
2.032 interval o.ooi.

Table III. logio tanh x.

x = o.ooo to x - 2.018 interval o.ooi.

sinh x
Table IV. logio

Table V. logio

x

x - o.oo to x = 0.506 interval o.ooi.

tanh x

x

x - o.ooo to x - 0.506 interval o.ooi.

Van Orstrand, Memoirs of the National Academy of Sciences, Vol. XIV,
fifth memoir, Washington, 1921.

I db
UT

Tables of -> ex
,
e~*

3
e
nir

,
e~nir

,
e 360, sin x

}
cos x, to 23-62 decimal places or

Vll

significant figures.



IV. VECTOR ANALYSIS

4.000 A vector A has components along the three rectangular axes, x, y, z :

** Xj A y y
A. s .

A = length of vector.

A =

A A A
Direction cosines of A, p, ~, p.A. A. A.

4.001 Addition of vectors.

A + B - C.

C is a vector with components.

C x = A X + B X .

O y
= -Ti y ~\- JJ y,

4.002 6 = angle between A and B.

C-

COS AB

4.003 If a, b, c are any three non-coplanar vectors of unit length, any vector,

R, may be expressed:
R = <za + 6b + cCj

where a, b, c are the lengths of the projections of R upon a, b, c respectively.

4.004 Scalar product of two vectors:

SAB = (AB) - AB
are equivalent notations. ^

AB - AB cos AB.

4.005 Vector product of two vectors:

FAB = A x B = [AB] = C.

C is a vector whose length is ^
C = AB sin AB.

The direction of C is perpendicular to both A and B such that a right-handed

rotation about C through the angle ^4^ turns A into B.

91
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4.006 i, j, k are three unit vectors perpendicular to each other. If their direc-

tions coincide with the axes *, y, z of a rectangular system of coordinates:

A = A j. + A vj + A zk.

4.007

4.008

4.009

4.010

11

ij
=

ji

*4

I
2 =

J]
= f kk = k2 =

i,

jk = kj = ki = ik = o.

Fij = -
Fji = k,

Fjk = - Fkj =
i,

FM = - Fik =
j.

AB = BA = AB cos AB = A XB X + A +

FAB = - FBA = i j

jfl <g ^TL y

S x -By

k

4.10 If A, B, C, are any three vectors:

AFBC = BFCA = CFAB
= Volume of parallelepipedon having A, B, C as edges

B x B y B

C x C v C,

4.11

1. FA(B + C) = FAB + FAC.

2. F(A + B) (C + D) = FA(C + D) + FB(C + D).

3. FAFBC = BSAC - C5AB.

4. FAFBC + FBFCA + FCFAB = o.

5. FAB-FCD = AC-BD-BC-AD.

6. F(FAB-FCD) = C5(DFAB)-D5(CFAB)
= C5(AFBD) - D5(AFBC)
- B5(AFCD) - AS(BFCD)
= B5(CFDA) - ASCCFDB).



VECTOR ANALYSIS

4.20

i.

2.

dAB = AdB+BdA.
dVAB = VAdB + VdAB

= VAdB - VBdA.

4.21

i.
dx

2. VA = div A

J T~ ~r k ~T~ *

dy dz

dA x dA
dx dy

dx
' J

dy

4. FVA = curl A = rot A

dz

4.22

1. curl grad <f>
= curl V< = FVV< = o.

2 . div grad 4>
= VV4> = V^ =

f^ +p
3. div curl A = o.

4. curl curl A = curl2 A = V div A - V2A.

5. V2A = iV 2A ,

6.
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4.23

1. VAB - grad AB = (AV)B + (BV)A + V.A curl B + F.B curl A.

2. V FAB - div FAB = B curl A - A curl B.

3. 7V VAB - (BV)A - (AV)B + A div S - B div A.

4 div (j)A
= < div A + AV</>.

5. curl (f)A F V<A 4- ^> curl A = F-grad <p.A + curl A.

6. VA2 = 2(AV)A + 2 FA curl A.

7. C(AV)B - A(CV)B + AFC curl B.

8. BVA2 - 2A(BV)A.

4.24 R is a radius vector of length r and r a unit vector in the direction of R.

R =
nr,

r-r -V - = - ^
r r

2.

= - R == r = grad

5. FVR = curl R = o.

6. VR = div R =
3.

8.

9. (rV)A = f -

10. (AV)R = A.

4.30 dS = an element of area of a surface regarded as a vector whose direction

is that of the positive normal to the surface.

dV = an element of volume a scalar.
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ds = an element of arc of a curve regarded as a vector whose direction is

that of the positive tangent to the curve.

4.31 Gauss's Theorem:

4.32 Green's Theorem:

i. fffbVtydV +

2.

4.33 Stokes's Theorem:

ff orrl AdS = /Ads.

4.40 A polar vector is one whose components, referred to a rectangular system
of axes, all change in sign when the three axes are reversed.

4.401 An axial vector is one whose components are unchanged when the axes

are reversed.

4.402 The vector product of two polar or of two axial vectors is an axial vector.

4.403 The vector product of a polar and an axial vector is a polar vector.

4.404 The curl of a polar vector is an axial vector and the curl of an axial vector

is a polar vector.

4.405 The scalar product of two polar or of two axial' vectors is a true scalar,

i.e., it keeps its sign if the axes to which the vectors are referred are reversed

4.406 The scalar product of an axial vector and a polar vector is a pseudo-scalar,

i.e., it changes i^. sign when the axes of reference are reversed.

4.407 The product or quotient of a polar vector and a true scalar is a polar

vector; of an axial
,

vector and a true scalar an axial vector, of a polar vector

and a pseudo-scalar an axial vector; of an axial vector and a pseudo-scalar a

polar vector.
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4.408 The gradient of a true scalar is a polar vector; the gradient of a pseudo-

scalar is an axial vector.

4.409 The divergence of a polar vector is a true scalar; of an axial vector a

pseudo-scalar.

4.6 Linear Vector Functions.

4.610 A vector Q is a linear vector function of a vector R if its components,

Qij Q2 , Qz, along any three non-coplanar axes are linear functions of the com-

ponents RI, R2 , Rz of R along the same axes.

4.611 Linear Vector Operator. If co is the linear vector operator,

Q = coR.

This is equivalent to the three scalar equations,

Ql

4.612 If a, b, c are the three non-coplanar unit axes,

con = S.acoa, co 2i
= S.bcoa, co 3i = 5.c<a,

C0i2 = S.acob, co 22
= S.bcob, 0032 = S.ccob,

cois - S.afic, co23 = 5.bo;c co 3 s
= 5.ccoc.

4.613 The conjugate linear vector operator <' is obtained from < by replacing

by CO^-A; h, k =
r, 2, 3.

4.614 In the symmetrical, or self-conjugate linear vector operator, denoted

by co,
i / ^ ** /\

0) = i(co + or).

Hence by 4.612
= 5.bcoa, etc.

4.615 The general linear vector function coR may always be resolved into the

sum of a self-conjugate linear vector function of R and the vector product of

R by a vector c:

coR = coR + F.cR,
where

w = i(& + co
7

),

and
c = J(>32

- co23)i + J(WIB
-

cosi)j + i(^2i - C0i2)k,

if i, j, k are three mutually perpendicular unit vectors.

4.616 The general linear vector operator co may be determined by three non-

coplanar vectors, A, B, C, where,
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A = aeon + bcoi2 + ccoi3 ,

B = aoo 2i 4- bco22 H- C6023,

C = aco 3i + bco32 4-

and

4.617 If co is the general linear vector operator and co' its conjugate,

coR = Rco',

'co'R-Rco

4.620 The symmetrical or self-conjugate linear vector operator has three

mutually perpendicular axes. If these be taken along i, j, k,

co = LS.coii + j5.co 2j 4- kS.co 3k,

where coi, co2 ,
co3 are scalar quantities, the principal values of co.

4.621 Referred to any system of three mutually perpendicular unit vectors,

a, b, c, the self-conjugate operator, co, is determined by the three vectors (4.616):

A = coa aeon 4- bco^ 4- ccoi 3 ,

B = cob = aco2i 4- bco22 4- cco23,

C coc = aco 3i 4- bco 32

where

co - aS.A + b5.B + cS.C.

4.622 If n is one of the principal values, cox ,
co 2 ,

co 3 ,
these are given by the roots

of the cubic,

?t
s - n2

(5.Aa + S.Bb + 5.Cc) + n(S.a.VEC + 5.bFCA + S.cFAJ?)
- S.AVEC = o.

4.623 In transforming from one to another system of rectangular axes

the following are invariant:

S Aa + S.Bb + S.Cc - cox + co2 + co 3 .

SaFBC + S.bFCA + S.cVAB = co2 co 3 + co3 co! + coiC02 .

5.AFBC = C0ico2co3 .

4.624

coi + co2 + co3 = con + co22 + co33 ,

C02 C03 + C0 3 COi + COXC02 = C022 C033 + C033 COn + COn C022
~ C0

2
23
- C023i + C0

2
i2 ,

COiC02 C0 3 = COnC0 22 C033 + 2C023 C0 3iCOi2
- COnC0

2
23
- C022 C0

2
3i
- C033C0

2
i2.
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4.626 Referred to its principal axes the equation of the quadric is,

coix
2 + co 2;y

2 + k^2 ~ const.

4.627 Applying the self-conjugate operator, co, successively,

= icoiJ?i -f

= co
2R =

coco
2R

COl C02 C0 3

4.628 Applying a number of s'elf-conjugate operators, a, /3, . . .
., all with the

same axes but with different principal values (aia2a 3),

aR = ia RI + ja 2^2 + ka 37? 3 ,

/3aR = a/3R = i

4.629

5.QcoR = ^.



V. CURVILINEAR COORDINATES
5.00 Given three surfaces.

i.

2.

I

A?

I

x =
<pi(u,v,w),

z = < 3(X v, w).

_L

dw

j_
5z; dw dv dw dv dw'

a^ a^ aw du dw du'

^^ d<fti a 2 a<^>2 a<^3 a03

du dv du dv du dv
'

5.01 The linear element of arc, ds, is given by:

ds2 = dx2
-{- dy

2 + dz2 =
-j-^-i- + + 2^1 dv dw + 2g2 ^w

5.02 The surface elements, areas of parallelograms on the three surfaces, are:

. 7r, dv dw y . 07 x

dSv
dw du

dSw = dudv

99
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5.03 The volume of an elementary parallelepipedon is:

dr =
W

J ~m*
~ fe2W ""

5.04 coi, co2 ,
co3 are the angles between the normals to the surface /a, /3 ; /3,/i;

/i, /2 respectively:
cos C0i

=

COS

cos

5.05 Orthogonal Curvilinear Coordinates.

gi
=

^2
=

3 = o,

.
,

du* dv* dw*
ds* = + TT + J

du dv

/7 _

5.06 hi
2
, h?, hf are given by 5.00 (3) and also by:
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5.07 A vector, A, will have three components in the directions of the normals

to the orthogonal surfaces
, v, w:

A -

5.08

i. div A = kji

2.
<F'

~
1

~~

curl^ A

curlv A

curlu, A

5.09 The gradient of a scalar function, ^, has three components in the directions

of the normals to the three orthogonal surfaces:

5.20 Spherical Polar Coordinates.

i.

2.

5-

6.

dr

div A :

r2 sin 6

i

,-e,
[ w =

<(>.

x = r sin 6 cos <.

y = r sin 6 sin </>,

z = r cos 6.

, T - I

//2
=

-, /?3
=

: a'
r r sm u

r dSr
= r2 sin 8 d 6 d$,

dSq = r sin 6 dr d 0,
= r dr d 6.

'IHM sn
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cur!0 A =

d_ (
V^Q \ 66 V

s

I ( 6A r

r sin 9 \ d<p

0-
sin i

dAr

dActr}'

d<t> /'

**}.dr

5.21 Cylindrical Coordinates.

i.

= p,

2.

5.

6.

8.

hi =1,

% = p cos

3;
= p sin i

s 2.

_ jc""

P'
I.

<i5"0 = dz dp,

dSs - pdpdd.

div A = - -r-

curlp A

curl# A

-^9-

dA e

_ -
dz dp

6z*j
'

6.22 Ellipsoidal Coordinates.

M, V) w are the three roots of the equation:

i. i.

"^Td +
62 + (9

+
C2 + |9

a>> ?
u>v>w.

B = ^: Ellipsoid.
= z^: H}7perboloid of one sheet.

= w: Hyperboloid of two sheets.
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/y2
* \ > / \ /

(a*
-

V) (a
2 - c

2
)

'

2 ^ (C
2 + K) ( C

2 + V) (C- + '

(a
2 - c

2
) (6

2 - c
2
)

103

*r =
/ \ / \ j

(z;
-

if) (v
-

u)
'

-
u) (w

-
v)

4. div A = 2

(^
-

v) (u
-

w) du

(^
2
-f w) (6

a
4- ^) (c* 4- w)

-
z;) (w

-

+ 4-
(d

2 + w) (^^ +
(a zw) (z-z dw w)

, . 2 f
4 /(a

2 + w) (6
2 + >) (c

2 + v) d f
curltt A = < v T" A

z; w;
I
V u -

i) dv\

U W
v -

curL A =

, A
curl A ==

(a
2 + ze) (6

2 +
v w

-^

^
/ / A \
[ VU W AU]

dw\
u
)

v u
vw -

w - u du )

w v

v) d I >
-

. \
- (Vu - vA u )

ov\ I
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5.23 Conical Coordinates.

The three orthogonal surfaces are: the spheres,

the two cones:

2. T -|-
~

To ~\ o o == O.

= O.

- c2) (w
2 - c

2
)

, ,. , ,,..,
6. div A = -r (wM u) -{

u? du

v

curlv A =
u-\/v

2 w2

w2
) (c

2 - w2
)

-

cw

d^ i d I . \ \
-T--- (uA u

) } ,aw u ou \ 1 }

curl. A - i fU) -^ -b^J ^ *L
u du\ I u^tf _ ^,2 6z;

5.30 Elliptic Cylinder Coordinates.

The three orthogonal surfaces are:

i. The elliptic cylinders:

n rt "T" o / <

-I)
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2. The hyperbolic cylinders.

105

3. The planes: z - w.

2c is the distance between the foci of the confocal ellipses and hyperbolas:

4. x = cuv.

1 X 9f 9 9\ 7

6. T-g
= Tg = C (^

""
^)j ^3 = I*

r a

7. div A = -

c

8. V 2 =

^-
zr)

a2 62
>i a2

*

curLA =
a^ t

AA =

cVw2 - v2 to dz

dA z

dz c\^u
2 -tfdu

. i f a /
,

\ a / . \
}

l *L -3jr^\toV*^

5.31 Parabolic Cylinder Coordinates.

The three orthogonal surfaces are the two parabolic cylinders:

2.

And the planes:

3-

4-

5-

I U + V

^?
=
~1T J

= I.

8.
_ vW J_a_/ n ja / 1\1 ^"

; + ,1 at \n W "*"
to \u to) J

^
5z2
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i A i /
^ d-^2 ^ ".A,,

curlM A = V -^ -r~'v u + v dv u + v dz

A _ u ^ u i/
u ^A s

" 7
~

rU "aF"" V^TM) 1^ ?

curl2A = ^(*/y^^;\ |_w-h^[^\V^ + ^ / <9^

5.40 Helical Coordinates. (Nicholson, Phil. Mag. 19, 77, 1910.)

A cylinder of any cross-section is wound on a circular cylinder in the form of

a helix of angle a. a = radius of circular cylinder on which the central line of

the normal cross-sections of the helical cylinder lies. The z-axis is along the

axis of the cylinder of radius a.

u = p and v - <p are the polar coordinates in the plane of any normal section

of the helical cylinder. <f> is measured from a line perpendicular to z and to the

tangent to the cylinder.

w = d = the twist in a plane perpendicular to z of the radius in that plane
measured from a line parallel to the #-axis:

( x = (a + p cos 4>) cos 6 + p sin a sin 6 sin 0,

i.
j

y =
(a + p cos 0) sin p sin a cos 6 sin 0,

1 s = a 6 tan a + p cos ai sin <t>.

2.

-)

P

a2 sec2 a -+- 2<zp cos (p + P
2
(cos

2
< + sin2 a. sin20)

5.50 Surfaces of Revolution.

2-axis == axis of revolution.

P) = polar coordinates in any plane perpendicular to 2-axis.

1. d?2 = dz2 + dp* + p
2d02

M dv* dw*
~ W +

k?
+ ^2

'

In any meridian plane, z, p }
determine u, D, from:

2. f(z + ip) = u + &.

V W == 6.

Then w, z>, will form a system of orthogonal curvilinear coordinates.



CURVILINEAR COORDINATES 107

5.51 Spheroidal Coordinates (Prolate Spheroids):

i. z + ip = c cosh (u + iv).

z - c cosh u cos 2>,
2.

! . , .

p c smh u sin y.

The three orthogonal surfaces are the ellipsoids and hyperboloids of revolution,

and the planes, 6:

z*
,

p
2

=
c
2 cosh2 u^ c2 sinh2 ^ '

P
2

^
c
2 cos 2

z> c
2 sin2 v

I.

With cos u = \
}
cos v =

IJL :

-
i) ( i- M2

).

5.52 Spheroidal Coordinates (Oblate Spheroids):

i. p + iz = c cosh(w + iv).

z - c sinh u sin v.

2
p = c cosh u cos v.

3. cosh u = X, cos v = ju.

i - At
2

T X2 - i

5.53 Parabolic Coordinates:

i. z + ip = c(# 4

\ P = 2CW2J.

3. w2 = X, i

With curvilinear Coordinates, X, /*, 0:
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-' - -, ,
-

+//, cy X + JU 2C-VAfJt.

5.54 Toroidal Coordinates:

, z + a -\- ip
i. u -f- w log r->

z a + ^p

g sinh 34
~~

cosh ^ cos v

a sin

cosh ^ cos v

z, _.
cosh ^ ~ CQS fl

T_ _ cosh ^ cos z;

^* 12
^

93
^ sinh w *

The three orthogonal surfaces are:

(a) Anchor rings, whose axial circles have radii,

a coth u,

and whose cross-sections are circles of radii,

a csch u\

(b) Spheres, whose centers are on the axis of revolution at distances,

=t a cot v,

from the origin, whose radii are,

a esc v,

and which accordingly have a common circle,

p = a, z o;

(c) Planes through the axis,
W = Q = const.



VI. INFINITE SERIES

6.00 An infinite series:
00

S Un = #1 + Uz + UZ 4- . . . .

w=i

is absolutely convergent if the series formed of the moduli of its terms:

% -f
|

2*2 + \U2 + . . . .

is convergent.

A series which is convergent, but whose moduli do not form a convergent

series, is conditionally convergent.

TESTS FOR CONVERGENCE

6.011 Comparison test. The series S^n is absolutely convergent if
|
un

\
is

less than C vn
\

where C is a number independent of n, and vn is the Hth term

of another series which is known to be absolutely convergent.

6.012 Cauchy's test. If
i

Limit
, i

\

Mn
\

<I.
W CQ ' ' >

the series Swn is absolutely convergent.

6.013 D'Alembert's test. If for all values of n greater than some fixed value, r,

the ratio is less than p, where p is a positive number less than unity

and independent of n, the series S^n is absolutely cpnvergent.

6.014 Cauchy's integral test. Let/(#) be a steadily decreasing positive function

such that,

/()0n.

Then the positive term series S#n is convergent if,

is convergent.

6.016 Raabe's test. The positive term series San is convergent if,

w| i]^l where

It is divergent if,

109
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6.020 Alternating series. A series of real terms, alternately positive and nega-

tive, is convergent if an+i^an and

limit

_^^
an = o.

In such a series the sum of the first .$ terms differs from the sum of the series by
a quantity less than the numerical value of the (s + i)st term.

limit
6.025 If i, the series 2^n will be absolutely convergent if

there is a positive number c, independent of n, such that,

limit

n >

I > = I C

6.030 The sum of an absolutely convergent series is not affected by changing

the order in which the terms occur.

6.031 Two absolutely convergent series,

S = ui + uz + uz +
T = vi -f % 4- % +

may be multiplied together, and the sum of the products of their terms, written

in any order, is 6T,
ST = uiVi + u&i -f u&z +

6.032 An absolutely convergent power series may be differentiated or inte-

grated term by term and the resulting series will be absolutely convergent and

equal to the differential or integral of the sum of the given series.

6.040 Uniform Convergence. An infinite series of functions of x,

S(x) = ui(x) + %>( + us (x) + ......

is uniformly convergent within a certain region of the variable x if a finite number,

N, can be found such that for all values ofn^N the absolute value of the remain-

der, |

Rn
|

after n terms is less than an assigned arbitrary small quantity e at

all points within the given range.

Example. The series,

is absolutely convergent for all real values of x. Its sum is i + #2
if x is not zero.

If x is zero the sum is zero. The series is non-uniformly convergent in the neigh-

borhood of x = o.
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6.041 A uniformly convergent series is not necessarily absolutely convergent,
nor is an absolutely convergent series necessarily uniformly convergent.

6.042 A sufficient, though not necessary, test for uniform convergence is as

follows :

If for all values of x within a certain region the moduli of the terms of the

series,

S -=
ui(x) +2(#) + .....

are less than the corresponding terms of a convergent series of positive terms,

r = Mi + M2 + MS + . . . .

where Mn is independent of x, then the series S is uniformly convergent in the

given region.

6.043 A power series is uniformly convergent at all points within its circle of

convergence.

6.044 A uniformly convergent series,

S = ui(x) + ik(x) + .....

may be integrated term by term, and,

n=i

6.045 A uniformly convergent series,

S = Ui(x) + a() + . . . .

may be differentiated term by term, and if the resulting series is uniformly

convergent,
CO

d ^\ d f ,

6.100 Taylor's theorem.

/(* + h) -/(*) + ~/W + /"(*) + ....+ fV(x) + Rn .

6.101 Lagrange's form for the remainder:

6.102 Cauchy's forn^ for the remainder:
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6.103

6.104 Madaurin's theorem:

/(*) =/(o) +/(o)
fj

+/"(o) ^ + . . . . +/(o)

6.105 Lagrange's theorem. Given:

y ~*

The expansion of /(j) in powers of x is:

/GO -/w + *<(*)/(*) +

+ ..... +
,

SYMBOLIC REPRESENTATION OF INFINITE SERIES

6.160 The infinite series:

f(x)
= i + ai + ~ Oaflc

2 + ^s^
3 + . . . . +

may be written:

/(a?)
- *",

where a fc
is interpreted as equivalent to a*.

6.151 The infinite series, written without factorials,

/O) = i 4- <W

may be written:

i - ax

where ak
is interpreted as equivalent to a*.

6.162 Symbolic form of Taylor's theorem:

6.163 Taylor's theorem for functions of many variables:

f\ *\

ay 3 ay w ay
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TRANSFORMATION OF INFINITE SERIES

Series which converge slowly may often be transformed to more rapidly

converging series by the following methods.

6.20 Euler's transformation formula:

I - *

where: Ao = 01 ffo,

The second series may converge more rapidly than the first.

Example i.

AI

~2^i-3-S-jfe-o

Example 2.

2^1-3-5. . .(2* + i)
jfe-o

jfe=0

* = -!,

6.21 Markoff's transformation formida. (Differenzenrechnung, p. 180.)

S ' -
(,-^'S

"A"' - <^A'- -S (
k=o



114 MATHEMATICAL FORMULA AND ELLIPTIC FUNCTIONS

6.22 Kummer's transformation.

AQ, AI, A%, .... is a sequence of positive numbers such that

\ _ A A am+l
Am *im sim+l )

dm
and

Limit x
Amim >co

7

approaches a definite positive value. Usually this limit can be taken as unity

If not, it is only necessary to divide Am by this limit:

Limit .

a = A m dm-
m-^-co

Then:
CO 00

^am = (A nan
- a) + 2 (i

~ Xm)^m.

m~n m=n

Example i.

m Limit
m . TO ,; m -f i

a = o

(m + i)m
2

'

m i w= i

Applying the transformation to the series on the right:

. m
-^

m

Applying the transformation n times:

CO CO

2j ^2
= n[

mi + i) (m + 2) . . . . (m + n)

Example 2.

2m - i
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Applying the transformation again, with:

. i zm + i > 4W2
-f i

,
A =

;
-

j
a; = o,2 ' '

2 2m - i

w=i

Applying the transformation again, with:

5 =

Example 3.

2 2m -
3 4W2 -

9

CO

"

_ 20s * \ _ 4W2 - 4^ + i _
-^ *"

~f r\? ^w ~"
/'*.- -\ /-*. i *\ ?

CK o,

3 ) (am

6.23 Leclert's modification of Kummer's transformation. With the same

notation as in 6.22 and,
Limit A

=0

Example i.

=
2,

Q1 -3 ,^
(m
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Applying the transformation to the series on the right, with:

. 2m 4- i , (2m + i)
2

2) (2W + i)
2
(2W + 3)

6.26 Reversion of series The power series:

Z = X

may be reversed, yielding:

% - z +
where :

63
2
) 4- I2(36i

264 + 6616363 + 62
3
)

+ 60(261*63 + 36i
262

2
) + 33o6x

462 + 1326^
ci = 67 + 9 (We 4- 6265 4- 6364) 4- 45(6i

265 + 6i63
2
4- 62

263 + 2616264)

+ i65(6!
364 + 6i62

3 + 36i
26263) 4- 495(6i

463 + 26i
362

2
)

4- 1 2876^62 + 42961.7

Van Orstrand (Phil. Mag. 19, 366, 1910) gives the coefficients of the reversed

series up to c&.

6.30 Binomial series.
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6.31 Convergence of the binomial series.

The series converges absolutely for
\

x <i and diverges for
|

x
\
>i.

When x =
i, the series converges for w> i and diverges for n^ i. It is abso-

lutely convergent only for n>o.

When x i it is absolutely convergent for n>o, and divergent for n<o>

6.32 Special cases of the binomial series.

b\
n

If

6.33

<i put x = - in 6.30; if
a .

> i put x = 7 in 6.30.

n
aa M(*M M\ M(MA <vt\ ( r>*vt M\

x fif Vv\.rrlf
~~

TL) n/Vrfu ~~
lit) \.2rfif

~~
rv)

/v^m T i /y
x ' M& I _ r._];

' >. ' A
J(sJ

1 ~p Af .

2
*

i i 3
*

, v* n(w n) (2m n)
- n\

2. (i

3. (i

6.

7 .
'

s.

9 .

xo.

= I - X + X2 - #* + iC
4 -

-*-22-4 2-4 6

I
2 *4 2-46

-4-6-

2-4-0-
*_,

3- 3 6-9 3-6 9-12

3- 3-6-9 3 6-9-12

22-4 2-4-

_ x

2-4-

II.
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15.

- * + #2 ~ *3
-f

- #4 -
. . .

5 25 125 ^625

~
72

-
1296 31104

72 1296 31104

6.350

x x

6.351

i.
- M , n(n-z)(x\*

2n <i+(-]+-i -^-
\4/

-z)(x\*
j-^l-l
! w

w may be any real number.

6.352 If a is a positive integer:

i i i__
a (a + i) (a + 2)

2*
(a
-

i)
f

^
e ~

6.353 If a and are positive integers, and a<b:

a a(a+ i)
,

fl(fl + i) (a + 2)

S
+

i(6

, + ----

6 a

o - A "V *"~*

-i J2/~
(Schwatt, Phil, Mag. 31, 75, 1916)
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* 0*A
6.360

^0 4-

-f 01* 4

POLYNOMIAL SERIES

4
. . .

CQ bo = O,

,4

o0i ,

+-- 61 = O,

,

C2 -{
---

1

---
#0 #0

.

H---1

---
1

6.361

4-

6.362

= (n

300^3
= (n

-

4
4- #3#

3
4-

4- c3^3 + .

. 6.37.

2 = 02^1 +

4- 20103&2 4" 301
2
02&3 4"

6.363

0i,

02 4-
~

01
2
,

2
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Cz - az 4-

H #i
4

.4-
-

#2
2
4-

-22 24

6.364

log (i 4-

202 =
0>lC\ + 2^2,

-h

-h

3

6.365

y = #i#
v

-}- ^2^
2 + as^

3
4- . -

2 = ii# 4- &2^
2
4- ^s^

3
4-

3>2
= c%x

2 + ^s^
3
4- ^4^

4
4- ...

2
~

^i&i,

C3 = ^162 4- fl2&l,

C4 ^i&3 4- ^2^2 H- #3&1-

Ck = ^lfe-1 4- 02&fc-2 4" <J3^-3 + ..

6.37. The Multinomial Theorem.

The general term in the expansion of

(i) (ao 4- ai# + ^2^
2
4- ^s^

3
4- . - . . )

n

where w is positive or negative, integral or fractional, is,

where

^i, ^2, eg, . . . . are positive integers.

If n is a positive integer, and hence p also, the general term in the expansion

may be written,











(3)
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nl'

, ,

The coefficient of xk (k an integer) in the expansion of (i) is found by taking

the sum of all the terms (2) or (3) for the different combinations of p, c\^
c3 ,

. . . . whica satisfy

Ci + 2C2 -f $Cz + ..... =
k,

f + ci + cz 4- c3 + . = n.

d. 6.361.

In the following series the coefficients Bn are Bernoulli's numbers (6.902)

and the coefficients En ,
Euler's numbers (6.903).

6.400

3*
,

X* X*
,

N^ / N tfn

2. COS # = I
, + ,

-
. + . . .

n= o

3 IS 3 I S

22n (2
2n -

i)

i a; i , 2 , i

4. cot # = ^3 - ^
* 3 45 94S 4725

s .

2n)ni

6.41

i. sin""1 # = x H a;
8 --

. . . .

2-3 2-4-S 2-4-6-7

7T ^ _t _- COS * -
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2. tan"1 x = x-3* + 3?-oi? + . . . . (Gregory's Series)
O D /

2
i H

3

"V

1

4. tan""1 ic

nQ
7T I.I

7T= - - cot
2

,"1 ,
,

( i)^ J zn

2-4
H---

3*5
+

'^H2 /
^.2

\n
'
* I __^____ i

nQ

sec
1

7T I I I"1 # = ----- - 1-3 I

-7 H
2 X 23 X3 245^ 2-467^

CO

7T 7T
o;'

2n 1 H-

6.42

,

i. (s

2 *
2-4 2-4-6 iK

8

H--
" ---

323S33S-74
a(0* -

2.

- I //fea- 1

r 1

L J

p- 2 2 a + # - O - 2
a= i \*o=i /

(Schwatt, Phil. Mag. 31, p. 490, 1916).

x2 sin"1 # = x ---
1

--' x5--- x7

3 3-5 3-5-7

(2
-

i) ! (2 + i)

1sm'

3 3*5 3*5*7

^ ^ r2n+l
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6.43

1. log sin x -
log x - \ ^x

2 + -- #4

kg*- 2)

2. log COS # = - - X* X* XB -
45

00

-S

2n-l

2 12 45 2520

22n-l ( 2
2n _

4. log cos sin2 + - sin4 x 4-
- sin6 # + .

I .- s
n

Kl

KJ

6.44

i. log (i 4-

2. log5

^ %

+ - ^3

2 34

see 7.369.

= -
2-3

a* --
2-4-5 2-46-7

3. log
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'

. log (l + Vl + X2
) log X -f

-'- +to &
- 3

i
-

-
X 2-3 tf

3 2 4-5

-i)!

5. log a: = (*
-

i)
- i

(x
-

i)
2 +

^
(a;
-

i)
3 -

. . .

6.

- i ifx-iY ifx-+- - +-
3

+.

x -

i \ H-

8. log
i x 3 5

9 . log
+ I

no
II II

O D

10. log -x3 -
o O

4

/

12.

3 3-5 3-5-7

=o

2 ,y2 /> /y>4 o /i
/v

Ji> Z J(/ Z A. J(/
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13. | log (i + x)
- S&* - - s&* + -
2 3 4

where <> n = - + -
H---\- . . .

-123 n

14.

(See 1.876).

S\2 3 4

log(i + )
' + i) H +

+ *(+!) (w + a) (I +^ + :J^* . . .

23!

3.445 (See 6.705.)

3 i (i
-

x)
2

i i x y? \ "I

i. 5 + - r-^-losr = h 1 !- a;
2<i

4^ 2^2 2#3 i-^ 1-2-3 23434-5 L J

2.

^ I

V#
~
&I -

V.*
+ 2 2

J
1-2 3

+
3'4'S

a?

^ T/ N
1",.!

3.
- i - log (i + x)

--
T=T-

tan-1 # V =
1-2 3 3*4*5

a? _
"5-6-7

6.455

i. -log (i + *) -log (i
-

*) = x* + i - ~ + -

2

6.456

I. COS
I
& log (tf + A/I + :

= 1 Z*
2l

01
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k may be any real number.

Hog (* + vT+

6.457

i - zx cos a +

where,

6.460

(a; log a)
2

(* log a)
3

2. a*= i +aoga + -!i

^-
J- + '^-

y-
2-

_
4! 6!

,.-.-..,

24

6.470
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IT 2

4. s coth # = i-|--a 2 - ff
4
H

3 45 945

6.475

i. cosh x cos x = i
j

ar
4 + ^ xs

\

^ + - -

2. sinh*sin# =
7i*

2

-6!*
6 + ^i*

10 -'

6.476

w=o
4. sink (* cos 0)

- cos (* sin V)
=

( 2w-f i)!

5. cosh
1

(# cos 6) sin (# sin 0)
=

S^
n sin 2w>0

(2)1
w=r

_ _

a - / - a\ ^ ^n
s^n n ^s r

2. e
xc 3&

sin (x sin 0)
= /^ ^ I

^< M
W=l

CO .

S^
n COS 272v

(2n)\
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6.480

i. sinir1 x = x -- x* -\
--~ of - . . .

2-3 2-4-5

2'
22n (w!)

2
(2 4- i)

=o

2. sinbr1 x = log 20; H---5
--- 7 -h , .

2 2#2
2-4 4#

4

4. tantr1 ^-a; + -^3 -f-^-h^ + ...

. , . I I II 1-3 I

5. smbr1 - = ----^H
---

5
-

* -

o; x 2 3^
3

2-4 5^

2n ,22n (w!

. -ill i 2 IiC2 1-3 iC
4

6. cosh""1 - = log
- -----^ -- ...

a; ic 22 2-44
o

- sech-1 * = log
- -

e

. T ,
I

7
2 I JC

2 I^AT4
,

7. smb."1 - = log
-

-^
----- h' ^ e
2 2 2'4 4

oo

a; = log
- +&

8.
* a: 3ar S*

COth"1 X
in
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6.490

2 sinh x

2.
2 cosh ff

=0

i
OO

.
i
(tanh * - i) - 2J (- 1)"

"*"*
3

2

T 2C ^W \ I

4.
- -

log tanh - = y. - e~ x

6.491

(2<I+I>

By means of this formula a slowly converging series may be transformed

into a rapidly converging series.

6.495

i. tan x = 2x4

_ I 2# 2^ 2^

^ J -
l)

2
7T

2 -

-r5

W= I

By replacing x by c the corresponding series for the hyperbolic functions

may be written.
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INFINITE PRODUCTS

6.50
CO

i. sin do = #11

2.

6.51

sin x nxcos -

6.52

6.53

i. cosh *- cosy -2(1+^)
sin'

ZJj(i +
(iB/+y)t)(i

+ -

2,

6,55 The convergent infinite series:
00

I + Ml + 2 + " =* I + /^Uw
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may be transformed into the infinite product

(i-Mi) (i+%) (i + fc's)

CO

= JJ (I + fl),

n = i

where

I + Ui 4" U2 4- . . . .

6.600 The Gamma Function:

n

z may have any real or complex value, except o, -i, -2, -3,

6.601

6.602
Limit f ,

i
,

i
, .

i ,

7= ^
i H------h . H--- logOT' m > [23 OT

6.603

sin Tra

6.604 For real and positive
= *:

~*
dt,

.7.1

6.605 If z = n, a positive integer:
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6.606 The Beta Function. If x and y are real and positive:

Tir ^ T> f % Ffa) T(y)
B(*, y) = B(y, *) = F^ + yy

*~i
(i.
- I)*-* dt,

sin

6,610 For x real and positive:

6.611

\^(l it)
= ^(a:) + 7T COt

6.612

(i) = -T - 2 log 2,

i - T,

i +
\

6.613

/IT
*-1r^
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6.620

(#) =

1 / , (X + I\ . (X= < \u
(

I \u I

2
I

T
V 2 /

T
\2,

6.621

>

T
sin

'

6.622

/3(i)
- log 2,

2/ 2

6.630 Gauss's II Function:

k

1. n (M) =
,

2. n o, 2 + 1)
= n a, s)

4. n (s)
= r(s + 1).

5. II (-S) II (z l)
= 7T CSC TTZ.

6. n fi)
= -v^F.

\2/ 2

6.631 If z is an integer, n,

H fa) = n!

DEFINITE INTEGRALS EXPRESSED AS INFINITE SERIES

00

/ r7/v\ I J ^V* \ f-)KD.70U I e
^ ax /.-,.,,

Jo ^y^i(2yfe + ]
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Darling (Quarterly Journal, 49, p. 36, 1920) has obtained an approximation

to this integral:

2

Fresnel's Integrals:

S
.,= o

6.702

S <-

6.704 _
(a + rib) (a, + rib + i) (a + nb*+ 2) . . .(a + nb +

[*>o,

(Special cases, 6.446 and 6.922).

CO 00

r-^-* jyn-^-y^^-S ^^Ty) = e

n-Q

6.706 If the sum of the series,

is known, then

rib) (a + nb + i) (a + nb 4- 2) (a + nb + k -
i) C^>]

rt= o
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- sin nx-dx6.707

Example i. /(a?)

1
z,Im +

- f (IT
-

2 t/ O

Replacing k by -, and subtracting,

- , v

2
k
+ Z/ l

"
Ij

n= r

27T

Example 2. With /() = e~^ cos^ and ^"^ sin fj,x.

X
,

X
'

"'I
"

Trsinli 2\7T
O- X2 + JU,

2
-

1
X2 + (n

-
JU)

2 X2 + (^ -f- M)
2

I

COSh 2X-7T - COS 2JU7T= I I J

n - n + Trsin

X2

6.709 If the sum of the series,

X2 + ( + 2X7T - COS 2JU7T*

is known, then

rV*$"-y(o<#
0o + diy + (hy(y + i) + o^y(y 4- i) (y + 2) -f~

= J
r GO

6.710 The complete elliptic integral of the first kind:
7T

_ T / 7/J1 ax / 2 au

V(r - x2
) (i

- &V)
"
7o Vi - k* sin2

-4-

If
,

I + Vi -

^ =

-4

,

2-4-6.
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6.711 The complete elliptic integral of the second kind:

7T

=
Vi - & sin2 6 d9.

2'4'6 . . . . 2W / 2H I

If k' =
*~ v

?~^-

2(1 +*0
,

!^\2 "I I

_/ \ }y'1n \

*)/ J/

FOTJRIBR'S SERIES

6.800 If f(x) is uniformly convergent in the interval:

+c
I, . TTX , -

= -i + 61 cos + 62 cos- + i3 cos - + . . . .

2 C C C

sm h 02 sm ~
-h ^3 sin ^~ +

Yc
'<

f(x] cos <

i r+c , , v .

"
I /W sl

(7 J ~G

6.801 If /(*) is uniformly convergent in the interval:

;

- J -f &1 COS 1- bz COS '

f- #3 COS f- . . . .

2 C C C

, 27T# . 47T# . vj^
-f <3i sin (- ^2 sm f- OB sm f-

C- C C

2 rc

&m a: -
I /(^) COS

C t/ O
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6.802 Special Developments in Fourier's Series.

f(x)
= a from x = kc to x -

(k + -)c,

f(x)
= -a from x =

(k + -)c to x =
( + i)c,

2

where & is any integer, including o.

6.804

7T J~4 2H I C
n i

6.803 f(x)
= mx, ^ x ^ 4-

-
4 4

^ W- ^ x ^
4 4

f

CO

i - 2(2^ I)TT/ \ M i

i
(
-

l}

n= i

CO

\ -i)
71-1

.

* sin
7T .

w i

6.805 f(x)
= -a,

a,
- b ^ x ^ + b

}

-(x 2&), b ^ x ^ 36,

-
a, 36 ^ a; ^ 5&.

N 8\/2a f TTX I 31TX I YTTO;
,

I JTTX
x)

-^- -^-
7T

2
[ 4^ 3

2
40 5

3
4& 7^ ^

+
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6.806 /00-* + &>

85 \ i
COS

6.807 /(*)-*,

l)
n=o

a

6.815 ~-

C Q1C T * T^ X ^ Sm ^
o.olo -:

6 4
'

12 4-f
s

"= I

03

7T
4

TT^vC
2

TTiC^ X4 ^^'^ COS '

QO 12 12 48 = I

90 36 48 240 *-J n5

n = t

sn

^ (-1)--' . r i
6.810 x^2/.- - sin nx TT<X<TT\

6.811 cos &# - sin air { h a / . 5- cos w#
TT ( 2 a *-* n1 or

n*= i

TT<X<7T6.812 sin ax = sin a?r ^ .

- ^ sin w^
TT ^-^ ^2 - a2

M= X

TT 'V ^k ^ cm 'wv* I I

6.813 _= V!HL!^ o<*< 2 7r -

2, sLJ n L J

y A -i .. i ,
i '^C^ cos nx f ^ ^. 1

6.814 -log: r= 7. 0<3C<27T
2 2 (l

- COS X) *a* n L J

oo

O < X < 27T

O < X < 27T *

6.817 4-- ^+4^-^=, ?;^^
[o<fl;<27rl.

~t OHO * vi v n *v ^/ -^ * OAXJ. /fv I O \ X \ 27T I

C.818 ^~-h TT- 7= 7v "JB
'

I

J'
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6.820 [-<}
oo

6.821
ee *i e

-c
- ~

-^(-i)"'
1

n = i

oo

i . rnrx F - ^

r^ sm
|_-

f <e* < <

^ ""^

__

j [W* <>]--

oo -

^6.823 cos 2^ - f- - Ain 2^ + sin2 log (4sin
2
*)

\2 /
& \t /

6.822 e<* = (e
- _

j)
- - (-i)-

1

CT 2
cos

= r

[o ^ ^ rj.

6.824 sin 2% (TT 2^) sin
2 # sin a; cos x log (4sin

2
^) ^

sin 2(n + i)# f / x 1-^--J-. o ^ A: ^ TT

( + 1) L JW= I

CO

/ one x ^ X^ COS 2UX [ <JT"\
6.825 - sin x = / -,

-r-,- r o ^ x ^24 *J (2n-i) (2n + i) L 2 J

6.830 -
'_r^~.. , -o

= ?j rn sinm \r
2<i -

sin x

i ir cos x -f r2

6.831 tan-1 - - r" sin nx [r
|_

r cos

I r 2^ - i
n i

6.833
x-rcos. V f7. COSM;c H,

].I - 2f COS X + ^2 ^^ L J= o

00

6.834 'og /-
= Zj ~ rn cos ra r2<i5 Vi ~ 2r cos x + r2 ^ L J= i
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CO

6.835 - tan- 1
2JL^ . V (^jn-i jf!

2 I - H ^ V 2W - I
cos

6.900

NUMERICAL SERIES

Sn ~
n * n + * + n

-
7T

2

2-- ~T = 1.6449340668

7T
6

:
- 1.0173430620,

945

7T
1

2995.286

7T8

- I 0083492774

25-79436

7T
4

= 1.0823232337
7T

9

-

29749-35

5io = 1.0000945751.
5u . L000494I886.

1.0040773562,

= 1.0020083928,

6.901

S (_!)*-! L_
^ I}

(ak + i)"

7T

4

W2 = 0.9159656 . . .

W4 0.98894455 ....

Uf> 0.99868522 ....

A table of wn from w=itow = 38toi8 decimal places is given by Glaisher,

Messenger of Mathematics, 42, p. 49, 1913.

6.902 Bernoulli's Numbers.

22n~l 7r
2n II11

(2
2n - l)T

2n - __,,_!_ J_
/ \

i

** n --**

o*) 1 41
,

1 9^

i
30'

I

"42'

I

30'
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5
j>

3617
66'

B* =^
69 I R 43^7-

6.903 Euler's Numbers

TJ _ Z7 __ f * O prf

^ii = i, J&4 1305?

E2 = 5, -5) - 50521,

E3
= 61, EG 2702765.

6.901

2^(2^ - i) _
,
2^(2^ - i) (2n - 2) (2n 3)

6.905

2271
(2

2w -
i) T, /^M ,x i, _ (2^

-
i) (2

-
2) (2^ - 3)

-

w -
i) (2M

-
2) (2^

-
3) (an - 4) (m -

5)

6.910

n= i

51 =
e, S& =

526,

52 = 2c, 56 = 203^,

53 = se, S7 = 877^,

6.911

c
-

03 = 7
-

9

64

7T
4
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6.912

n i

7T
2

I ..

2 . --;aog

6.913

I. 2log 2 - I =&

'
J to 3

-

3- -3

6.914

0.9159656 .... (see 6.901)

/t 2

5 = 2 log 2 - Mg. 5-1 =1 -- >

7T 7T

51 = -^ -i, 5_2 =
I log 2 H--- (2^ 4- 1),

c 2 I I 10
OS = -- J oJ_5 = --- )

7T 2 39^
5-,- i log a 4-^- (18* + 13),

10 i i 178
04 = ---? 05 = --- J

97T 4 5 2257T

^~
-

2257T 6

When r is a negative even integer the value n - is to be^excluded in the

summation.

6,915

T A i'3-5 (a
- _ _(2

-
i) I _A /I 4}

'

2-4-6 .... 2^ 22n
~l
nl(n i)!

TT _
'

, i
2, I /.An o

"

4 ^^ 4ft
2 -
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4 . log (i

n
(2W-l) (2W+2)

n
(m -

i) (m 4 2)

00

n=i

n
(2n - i) (an 4- 2)ni

6.916

If w is an integer, and n = m is excluded from the summation:

' - *

ri. (weven)

6.917

I. I

I

2

T

3. 2 log 2& -7 ^
-rr

nfan*
-

i)
2

Ml*

6.920

+ + + ---- =2.7X828.
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I ill
2 - --'-+

6.921

4 I
.

I I

i
.

i i
2. = 1 --5 + 1 "1 +

10 3
2

3
4

3

16 ii i
f

3. =1 --
5 + ~i

--
5 + .^

17 4
2

4
4

4
6

25 I . I I
,

4- =i- + -
6 + .

6.922
"

' = -* + e-95r + e-2^ + . . . ; T(i) - 3-6256

6.923 (Special cases of 6.705) :

i.
5

H h 7^ + . . . =
log 2 - -.

1-2-3 3*4-5 S'6'7 2III I / T

1-2-3 3-4-5 5 6 *7 2

__^_i_ , __ .
. . ==3^ log2 -

(TT
^



VII. SPECIAL APPLICATIONS OF
ANALYSIS.

7.10 Indeterminate Forms.

7.101 -. If _;, \' assumes the indeterminate value - for x - a* the true value
o F(x) o

of the quotient may be found by replacing /(#) and F(x) by their developments
in series, if valid for x = a.

Example :
"

sin2 a;

cos

I

Therefore,

I COS X X^ X* L fL
2! 4!

"

2! 4!

sin2 x
i.- cos #J 3=0

7.102 L'Hospital's Rule. Iff(a + A) and F(a + A) can be developed by Taylor's

Theorem (6.100) then the true value of ^r\ for # = a is,

/'(a)
T7I/ / \
x^ v^J

provided that this has a definite value (o, finite, or infinite). If the ratio of the

first derivatives is still indeterminate, the true value may be found by taking

that of the ratio of the first one of the higher derivatives that is definite.

7.103 The true value of H?- for x = a is the limit, for h = o, of
P(X)

<?!.-

pi a

where/^ (a) and F W (a) are the first of the higher derivatives of f(x) and F(x)

f(oc]
that do not vanish for x = a. The true value of

J

(

'
for x =a is o if p>q, if

(a\

p<q, and equal to
J

p ^ ^ if p ==
j.

145
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Example:
Psinh % -

__

L smx-xcosx _U=o [_ x&mx

[sinh
x~\ f cosh #1---- = -- = -i.

sin x J^o L cos x J*=o

7.104 Failure of L'HospitaPs Rule. In certain cases this rule fails to determine

the true value of an expression for the reason that all the higher derivatives

vanish at the limit. In such cases the true value may often be found by factoring

the given expression, or resolving into partial fractions (1.61) .

Example;

7.105 In applying L'Hospital's Rule, if any of the successive quotients contains

a factor which can be evaluated at once its determinate value may be substituted.

Example:

[(i

- x)e* - il ^ I"

tan2 x J z=
~

L 2

-xe

Ltan;

Hence the given function is,

^2 tan

i.

7.106 If the given function can be separated into factors each of which is

indeterminate, the factors may be evaluated separately.

Example:

(e
* ~

i) tan2 af
"

co f(y i oo

7.110 . If, for x ~
a, J;/v takes the form

,
this quotient may be

written:

X

which takes the form - for * = a and the preceding sections will apply to it.

7.111 L'Hospital's Rule (7.102) may be applied directly to indeterminate forms
00

,
if the expansion by Taylor's Theorem is valid.
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Example:

7.112 If f(x) and ac approach o together, and if f(x + i)
- /() approaches a

definite limit, then,
Limit r/W1 = Limit r I

tf >co L X J # oo L J

7.120 oX 00 .. If
,
for x =

a, /(#) x F(x)' takes the form o x ro
,
this product

may be written,

which takes the form -
(7.101).

** -f^ i-<- Limit -/ N , Limit _,, N

7.130 co -co. If, f(%) =00 and F(x) =
7 ^ x > c

x

/(*) -F() -/(*) i -

T iTYTii" 7?f''\r\

If -77-4 is different from unity the true value of /(^)
- F(x) for ^ = a is oo .

/W
If ,/ v- = 4- i, the expression has the indeterminate form co X o which

X KX> f(x)

may be treated by 7.120.

7.140 i co
, o, co o. If { jF(#) }

^^ is indeterminate in any of these forms for x =
a,

its true value may be found by rinding the true value of the logarithm of the

given expression.

Example:

ITT1Lw J*-o.
tan *

^y* logy- -tan **log*,
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7.141 If /() and * approach together, and

limit
; then,

approaches a definite

Limit Limit f(*

7.160 Differential Coefficients of the form -. In determining the differential

coefficient -~ from an equation /(#, y) o, by means of the formula,
ctoo

__
dx~ df

I

By

it may happen that for a pair of values, x =
a, y =

b, satisfying f(x, y)
=

o,

f- takes the form -.

dx o

Writing -p
= /, and applying 7.102 to the quotient (i), a quadratic equation

U/X

is obtained for determining /, giving, in general, two different determinate values.

If y
f

is still indeterminate, apply 7.102 again, giving a cubic equation for deter-

mining /. This process may be continued until determinate values result.

Example:
/(#, y)

= O2 + y
2

)
2 - $xy = o,

For x o, y = o, y' takes the value

Applying 7.102,

Solving this quadratic equation in /, the two determinate values, y'
=

o, y'

result for # o, y = o.
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7.17 Special Indeterminate Forms and Limiting Values. In the following the

notation [/(a*)]a means the limit approached by/(#) as x approaches a as a limit.

7.171

i .
(
i -h -)

= e
c

(c a constant).
LV xl Jco

2. [Vtf + c - Vx]m = o.

4. [V (x + ci) (x + c2)
-

afjco
'

r
w/

-I
j

5.
j^y

X
^Ci

C2 Cn X
\n

~
n

Cl

7-

10. =

. ^r = o (x a positive integer).

PL-

14. (a + 66) - c (Oi).

r / \ ^
17- fa + 6^m

j

a + /s

^*J 00
=e^ (w>o)
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6.

7.173

i.

fsm x]
r.
- = i.

L ^ Jo

[tan

#~]- = i.
x Jo

sin noc\m
~]

) Jo=

7.174

i. [x*"]
= i.

2. = e .

= e.

5. Qog cos x cot oQo = o.

cot

rr /TT
, *\\

cot
*]

5.
< tan + -)}

LI \4 2/ J J
e.

[e-
- il

7 - I"IT
"

8. [^ log ^] = o

[e

x e~ x - ix\ __
i

(^-i) 3
Jo 3*

10.

6. log tan ( h -)
cot # = i. 12.

eg tan 2^1 ^ IB

log tan #J
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7.175

r 1 i r x TTX]
1. he 1-* =-

5, cos"1 --tan =00
L Ji

*
I c 2c] c

2. QTT 2#)tan #J7r
= 2. 6. [(a -{- be tana)ir-2x^]

= $ f

2 2

fi f ^ x ^^1 2 r/ 2rc\
tan:ci

3.
[lcg(

2

--jtan~Jc

= -.
? .

[(
a _) J^

=
^e

c
. 8, [(tan*)

7.18 Limiting Values of Sums,

Limit /i* + z k + 3
k
4- . . . - +-

i I ____'7 ~r . . . ~T
,

/
,

-|- 20 no, -}- (n i

log (g + 6)
-

log <

Limit/ re i
2 n 2* n 3

2

if ^ is a positive proper fraction.

if 6>o and a is a positive proper fraction.

6 .
_ _ + 3 + _ + . . . . +iM

' *

if J>o and a is a positive proper fraction.

Limitr

23 ---- + _
L

(6.602).
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7.19 Limiting Values of Products.

Limit I"/ c\/ c \f c

2.

if c>o.

Limit 17

if a, 6, c are all positive.

Limitn_w(w + i) (m + 2) (w + w i)}*" _ 2

H^coL w + j(n j)

if m>o.

Limitf/ .

7.20 Maxima and Minima.

7.201 Functions of One Variable, y = /(#) is a maximum or minimum for the

values of x satisfying the equation, f(x) = -4r^ o,dx

provided that f'(x) is continuous for these values of x.

7.202 If, for x**a, f(a) -
o,

y -/(#) is a maximum if /"(a)<o

y =/(#) is a minimum if f"(a)>o.
Example:

f(x) = o when x =
d=\//3,

/"<vi =
3

3 ()

For * - +V& /'() = ^Lj -J- Maximum,
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For s.- ;rw
-53

Minimum,

+ 2

a - 2V(3

7.203 If for x =
a, f'(a)

* o and /"O) =
o, in order to determine whether

y = y(#) is a maximum or minimum it is necessary to form the higher differential

coefficients, until one of even order is found which does not vanish for x - a.

y =
/(#) is a maximum or minimum according as the first of the differential

coefficients, /"(a), /1V
(#), /^(^ of even order which does not vanish

is negative or positive.

7.210 Functions of Two Variables. F(x, y) is a maximum or minimum for the

pair of values of x and y that satisfy the equations,
Ji 77 ^ 77\j" O J?

dx
~

'

dy
~

'

and for which

5 a;
2

'

rfif?

If both -- and
^
are negative for this pair of values of x and y, F(x} y) is

a maximum. If they are both positive F(x9 y) is a minimum.

7.220 Functions of n Variables. For the maximum or minimum of a function

of n variables, F(x^ x% ...... ,
#n), it is necessary that the first derivatives,

r) T? f\ J?

,
-r

'
dxn

all vanish; and that the lowest order of the higher deriv-

atives which do not all vanish be an even number. If this number be 2 the

necessary condition for a minimum is that all of the determinants,

where

fll /02 flk

/21 /22 f$c

./

,
k =

I, 2, .n,
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shall be positive. For a maximum the determinants must be alternately negative

d2F
and positive, beginning with D\ -

j-^ negative.

7.230 Maxima and Minima with Conditions, If F(XI, #2, ,
xn) is to

be made a maximum or minimum subject to the conditions,

I.

,*(*i,a&, , n o,

where ^<^, the necessary conditions are,

k

dF XV d<bj

a
+ 2/x

'&?- -*.*."
j=i

where the X's are k undetermined multipliers. The n equations (2) together with

the k equations of condition (i) furnish k + n equations to determine the k 4- n

quantities, %i, #2, ,
a?n , Xi, X2j , X^.

Example:

To find the axes of the ellipsoid, referred to its center as origin,

Denoting the radius vector to the surface by r, and its direction-cosines by

/, m, n, so that x = k, y mr, z = nr, it is necessary to find the maxima and

minima of

subject to the condition

This is the same as finding the minima and maxima of

F(l>m,n) - &iiP + Qvtfri* + a&n
2 + 2#i2?w + 2^23^ +

Equation (2) gives:

(011 4 X)/ 4" ^12^ 4" #13^ ^ ;

a&l 4- (^22 4- X)W + 023^ Oj

Multiplying these 3 equations by 1
9 m, n respectively and adding,
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Then by (i. 1.363) the 3 values of r are given by the 3 roots of

= o.

155

7.30 Derivatives.

7.31 First Derivatives.

i.

2.

dan

d#n

da*

7-

8.

dtf
10*'

ax

X1= (log x)

dsinx
10. =

= cos #.
#0;

dcos#
n.

12.

dx

d tan

= sin x.

= sec2 rr.

-CSC2 X.

14.

dx x

4 '

~dx

d logg ry

log a x

6.

'

loff ^ i

;x-loglog^}.

IS-
- CSC2 X- COS X.

17-

18.

19.

20.

d sin"1 x d cos"1 % _

dx dx

d tan"1 x _ __
d cot"1 x

dx dx

d sec"1 x d esc'______ :

dx

d sinh #

"1

dx

d cosh #

d#
sinh x.
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d tanh x d tanh"1 x d coth"1 x
t Sech2 #. 27. 3

=
-j

=
dx dx dx

dcoth# ._,_._ _o d sech-1 x i

doc #Vi - x*

d sech x . . , d csch"1 i
= sech x- tanh x. 29

-
, DV^^iJ. J(/ t-O/ 1 1 1 I. .V. J&VJ. 7 .

d^ a^ #Vi + ^

^o. 4 = sech x.

sec x.

. d cosh"1

20, 1
dx

7.32

* ^"^^ ^ - W*
yn

deu du
4- T~ ** e T~"

daw dw
1 w df(u) df(u) d-u

^' dx
~~ a

dx *** dx du dx

7.33 Derivative of a Definite Integral.

i. -T-

2. T"

7.35 Higher Derivatives.
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7.351 Leibnitz's Theorem. If u and v are functions of x,

dn (uv) dn v n dudn~lv n(n -
i) dzu dn

~2v

dxn
" U

dx"
+

i! dx dx""1 + 2! cfo
2 dxn~*

n(n i) (n
-

2) dhcd^v dnu
+

Jl 55? <^-3 + ...... +
*dxn

'

7.352 Symbolically,

where

7.353

7.354 If 0( j-)
is a polynomial in -T-,

7.355 Euler's Theorem. If u is a homogeneous function of the ^th degree of r

variables, xit x%, . . . xr ,

where m may be any integer, including o.

7.36 Derivatives of Functions of Functions.

7.361 If /(*)
- F(y), and y = <(*),

x - ^/w-ir^+^'^+lr^'^
where

^n * * ^ n
* i ,

-
^ T/. ._- ^jk __ ^.- -v*"1* y y y

.

iia* 2!

7.362

(
-

i) (n
-

2) n(n - i)
(jl
_

2)
/i\

a*- 2!
' U

\n-l

2!

n(n - j) (w-2) M"-*
,
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7.363

2 .

n(n -i) (n- 2) (n
-

3)
(2X)n-4 F(n-<~

l

"

2!
v ;

(
-

i) (
-

2) (ft
-

3) (n
-

4) (# - 5)/ An-6
pfr-QfrfS) + (

2 !

/jf
71

f 7^(^ i) 72 (% i) (^ 2)(w> 3)

tt(tt-i)(n~2)(*- 3)(*-4)(*-5)
,

^

-
i)O -

2) . . . . (ju
- + i) (2^)

n
f (w

-
i) (i + ax?)+

j

n( -
l)(

- 2)(n
-

3)

2 !

(/Z W + l)(/A W + 2)

4<
J^!!

(t
_ #2)m-* = (_ z)m-l

I '3'5 \2m - T ^
gjn fa CQS-1 ^ B

dxm
~l w

7.364

(+ I)(W-I)(M- 2) ^""^(V^)
2! 2 x+2

7.365

L |L
where

-

= - Ee*
sin (2 tan-'e- 1

) 3a:
sin (3

'

^1 ea? _ 17 x
cos (2 tan^g"^) ^ ^ cos

4 *

5^ i + e
2 * ^ vTrn^s

.
cos (4 tan-^
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7.366

i. j-; FQog x) = -
n {

C F(log *)
-

dx x
^

n

Co -i,

Ci = I + 2 + 3 + + (_!)

C2
= I 2

2-4+ + 2-(tt
-

i)

3-4 + +3'(- i)

2. Cft

w

3- Cfc

Co

== Ck + nCk-i.

(w i)

= C* +

=
o, C =

i,

C2 = 2 C2 = ii,

Ci=io,
4

C2
= 7 C2 = 25 C2 ==

65,

-2 -3 -4
3
= 15 C3

= 90 C3
=

350.

7.367 Table of a.
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7.368

i)(p
-

a) (log x)*~
3 -

. . .
,

where p is a positive integer. If <^> there are n terms in the series. If

np,

2. (log *) - (

"j^

7.369

- I < X < + I.

7.37 Derivatives of Powers of Functions. If y =
<j>(%).

r .

n \ip-i
dn

__
/n\

j^__ d^y _ /n\ i dny* fn\ i dn
y
z

_
'

dxn og:y ~
\i)i-ydx

"
[2) 2-f dxn

\3/3'/ rf^
n

7.38

dn (d -4-

;

d* log (a + far)
r v,t (

*'
~

^ '

(a

dn si

,-
t N

7-
dy.n

= cos (^TT + ac).
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I I

1 W I + X__ _
(2W - l)(2

-
3) W \I +CC/ (2H

-
l)(2

-
3) (2

-
5)

161

7.39 Derivatives of Implicit Functions.

7.391 If y is a function of x, and/(^, y)
= o.

I.
dx

2.

df\*
a2
/

7.392 If s is a function of and y, and f(x t y, z)
= o.

df df
^x <9g

; 6^~ = " "

dz

a,r +(

3' a,*i2
~~

a2/_ a/ a/ a2
/ /aA2

ay
2

2
as ay a^az lay/

dz \dx dydz dy dxdzf doc dy

(WW



VIII. DIFFERENTIAL EQUATIONS.

8.000 Ordinary differential equations of the first order. General form:

8.001 Variables are separable. /(#, y) is of, or can be reduced to, the form:

/(*, y)
= - Y

where X is a function of x alone and Y is a function of y alone.

The solution is:

dx + Ydy = C.

8.002 Linear equations of the form:

Solution:

y e-fp\*)d* 1 I
Q(

8.003 Equations of the form:

-~- + P(x)y ;

Solution:

yn-l*

8.010 Homogeneous equations of the form:

where P(x, y) and Q(^, y) are homogeneous functions of x and y of the same

degree. The change of variable:

y w,
gives the solution:

/
162
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8.011 Equations of the form:

dy _ a'x -f b'y 4- c'

dx~ ax + by + c

If aV a
f
b =}= o, the substitution

x = x' + p, y = / + q,

where

ap + bq + c o,

a'p + 6'tf + d = o,

renders the equation homogeneous, and it may be solved by 8.010.

If aV - a'b = o and V =fc o, the change of variables to either x and s or y
and 2 by means of

z - ax -\- by,

will make the variables separable (8.001)*

8.020 Exact differential equations. The equation,

is exact u,

dx dy
The solution is:

fp(x, y)dx + f i Q(x, y)
-

|- fp(x, y)dx
J J { " *;

or
r r ( A r \

x = C.

8.030 Integrating factors. ti(nr, y) is an integrating factor of

P(x, y) dx + Q(x, y) dy o,

if

8.031 If one only of the functions Px + Qy and Px - Qy is equal to o, the

reciprocal of the other is an integrating factor of the differential equation.

8.032 Homogeneous equations. If neither Px + Qy nor Px - Qy is equal to o,

pr-
is an integrating factor of the equation if it is homogeneous.
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8.033 An equation of the form,

P(x, y)y fa + QO, y)x dy - o,

has an integrating factor:

xP-yQ
8.034 If

dP_ dQ

y

~
dx - F(X)

is a function of x only, an integrating factor is

efF(x}dx t

8.035 If

is a function of y only, an integrating factor is

8.036 If

is a function of the product xy only, an integrating factor is

8.037 If

p y

is a function of the quotient
-

only, an integrating factor is

8.040 Ordinary differential equations of the first order and of degree higher
than the first.

Write:

?->dx *

General form of equation:

/(*, y, P)
= o.
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8.041 The equation can be solved as an algebraic equation in p. It can be

written

(p
- R^(p -R) ....... (p

- Rn) ~ o.

The differential equations:

P - ftfo y),

P - R(x, y),

may be solved by the previous methods. Write the solutions:

MX, y, $ =
; Mx

> y,d =
Q, .......

where c is the same arbitrary constant in each. The solution of the given

differential equation is:

/ifo y, c)Mx > y>d .......... /& y, $ = -

8.042 The equation can be solved for y:

i. y=f(x,P)-

Differentiate with respect to x:

#
*(*,

>,
g)-

It may be possible to integrate (2) regarded as an equation in the two variables

#, p, giving a solution

3. $0, p, c)
= o.

If p is eliminated between (i) and (3) the result will be the solution of the given

equation. ,

8.043 The equation can be solved for x:

i. # =/(%).
Differentiate with respect to y:

\-
If a solution of (2) can be found:

3 . <t> (y P, c)
=

-

Eliminate p between (i) and (3) and the result will be the solution of the given

equation-.

8.044 The equation does not contain x:

/(^)=o.
It may be solved for p, giving,

which can be integrated.
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8.045 The equation does not contain y:

/(*, p) - o.

It may be solved for p, giving,

S-
which can be integrated.

It may be solved for #, giving,
*

which may be solved by 8.043.

8,050 Equations homogeneous in x and y.

General form:

(a) Solve for p and proceed as in 8,001

(b) Solve for ^
^ ' x

y

Differentiate with respect to x:

dx ^ f(p)d
x

~
p

which may be integrated.

8.060 Clairaut's differential equation:

the solution is:

The singular solution is obtained by eliminating p between (i) and

8.061 The equation

The solution is that of the linear equation of the first order:

which may be solved by 8.002. Eliminating p between (i) and the solution of

(2) gives the solution of the given equation.
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8.062 The equation:

may be reduced to 8.061 by dividing by

DIFFERENTIAL EQUATIONS OF AN ORDER HIGHER THAN THE FIRST

8.100 Linear equations with constant coefficients. General form:

The complete solution consists of the sum of

(a) The complementary function, obtained by solving the equation with

V(x) = o, and containing n arbitrary constants, and

(b) The particular integral, with no arbitrary constants.

8.101 The complementary function. Assume y = eH The equation for

determining X is:

\n + tfiX*-
1
4- 2Xn~2 + ..... + a n = o.

8.102 If the roots of 8.101 are all real and distinct the complementary function

is:

y =s c\e**
x + c^-x + . . . . H- c ne^n

x
.

8.103 For a pair of complex roots:

M =fc iv,

the corresponding terms in the complementary function are:

e^ x
(A cos vx + B cos vx) = Ce x cos (vx - 0) = Ce sin (vx + 9),

where

C

8.104 If there are r equal real roots the terms in the complementary function

corresponding to them are:

where X is the repeated root, and -4i, A%, ..... ,
A r are the r arbitrary constants.

,8.105 If there are m equal pairs of complex roots the terms in the complementary
function corresponding to them are:

A&* + ....+ Amxm"1

) cos vx

-h (Bi + B& + B3x* + .... + BMx-1
) sin vx}

os (vx
-

0i) + C2^ cos (vx
-

2) + ..... + Cmxm~l cos (^ - M)}

sin (vx + %) -h C2^ sin (^ + 2) + ..... + Cmxm-1 sin (w + m)}
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where X d= ifi is the repeated root and

c* - VAf +

tan 9k =

The particular integral.

A cfi

8.110 The operator D stands for -02 for ^>

The differential equation 8,100 may be written:

(D* + aiD*-1
4-

/CD) - (D - Xi)(>
- X2) ...... CD -

Xn),

where Xi, X2 ,
...... ,

X are determined as in 8.101. The particular integral is:

y = eXi* CeQ*~*i)*dx Ce(^~^}
x dx ....... /fi-xnC) V(x)dx.

8.111
-ryrr may be resolved into partial fractions:

_r ^i
,

N*
,

,

^^

f(D) "D-Xi^-Xa
' * '^P-Xn

The particular integral is:

* Ce~XlxV(x)dx + N&*** je^
x
V(x)dx + .....

+ Nn
e\*Jer**V(x)dx.

THE PARTICULAR INTEGRAL IN SPECIAL CASES

8.120 V(x) == const =
c,

8.121 V(x) is a rational integral function of a of the wth degree. Expand

-~rr- in ascending powers of D, ending with D. Apply the operators A D\

,
Dw to each term of V(x) separately and the particular integral will be

the sum of the results of these operations.
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8.122 V(x)=cekx
,

unless k is a root of /(D) = o. If k is a multiple root of order r of /(>) = o

_
y ~

where

/(I?)
= (D -

8.123 V(x) = c cos (to + a).

If i& is not a root of /(>) = o the particular integral is the real part of

If ik is a multiple root of order r of /(D) = o the particular integral is the real

part of

(ik) is obtained by taking the rth derivative of f(D] with respect to D,

and substituting ik for D.

8.124 V(x) = c sin (to + a).

If ik is not a root of f(D) = o the particular integral is the real part of

If i is a multiple root of order r of /(D) = o the particular integral is the real

part of

8.125 7(ac

where X is any function of x.

,
- ry - c

If X is a rational integral function of x this may be evaluated by the method

of 8.121.

8.126 V(x) -ccosOte + cO-X,

where X is any function of x. The particular integral is the real part of

8.127 V(x) = csin (fe

The particular integral is the real part of
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8.128 V(x) = ce$ x cos (kx + a).

If (|S + ik) is not a root of /(>) * o the particular integral is the real part of

If (|8 4- ) is a multiple root of order r of /(>) = o the particular integral is

the real part of

where /r>
(]8 + i*) is formed as in 8.123.

8.129 V = ce$x sin (kx + a).

If (|8 4- ^) is not a root off(D)
= o the particular integral is the real part of

If (|8 + *) is a multiple root of order r of /(D) = o the particular integral is the

real part of

8.130 V(x) = xmX,

where X is any function of .

_
The series must be extended to the (m + i)th term.

8.200 Homogeneous linear equations. General form:

Denote the operator:

The differential equation may be written:

The complete solution is the sum of the complementary function, obtained by

solving the equation with V(x) =
o, and the particular integral.
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8.201 The complementary function.

y = ciX
Xl + cx^ + ..... + cnoc\

where Xi, X2 ,
......

,
Xn are the n roots of

o

if the roots are all distinct.

If Xfc is a multiple root of order r, the corresponding terms in the comple-

mentary function are:

a
x
*{*i + bz log x + 63 (log *)

2 + .... + br (log x)
r~ l

\
.

If X =
jit =fc s> is a pair of complex roots, of order r, the corresponding terms

in the complementary function are:

x*{ [Ai + As log x + A z (log x)
2 + . . . . 4- A r (log re)

11
-1

] cos (z> log a,)

4- [B x + ft log x + 3 (log *)
2 + . . . . + 5r (log a)*-

1

] sin (y log a) }
.

8.202 The particular integral.

If

xXl
I x^-^^dx I x^-^-i-dx ...... /

8.203 The operator ^r/z\
m^y be resolved into partial fractions:

F(8)
~

6 - Xi
T

9 - X2

T T - X.'

The particular integral in special cases.

8.210 V(x) =
c**,

unless k is a root of F(ff) = o.

If ft is a multiple root of order r of F(&) = o.

where -F(r>(^) is obtained by taking the rth derivative of ^(0) with respect to

and after differentiation substituting k for 0.
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V(x) = CX1
X,

i

172

8.211

where X is any function of x.

8.220 The differential equation:

may be reduced to the homogeneous linear equation (8.200) by the change of

variable
,

,

z = a + bx.

It may be reduced to a linear equation with constant coefficients by the

change of variable:
e* = a + bx.

8.230 The general linear equation. General form:

dny dn
~l

y dy

where Po, PI, ,
Pn ,

V are functions of x only.

The complete solution is the sum of:

(a) The complementary function, which is the general solution of the equation

with V =
o, and containing n arbitrary constants, and

(b) The particular integral.

8.231 Complementary Function. If yi, y%, . . . .
, yn are n independent solu-

tions of 8.230 with V =
o, the complementary function is

y = ciyi + Czy2 + + cnyn .

The conditions that y\, yz ,
. . . .

, yn be n independent solutions is that the

determinant A 4= o,

A-

When A dp o:

fan-l

dx dx

dxn

dyn

dx



DIFFERENTIAL EQUATIONS 1 73

fin ly
8.232 The particular integral. If A is the minor of -, n^ in A, the par-

ticular integral is:

8.233 If yi is one integral of the equation 8.230 with v = o, the substitution

- ^u

will result in a linear equation of order n i.

8.234 If 3/1, yz, , yn-i are n i independent integrals of 8.230 with

V = o the complete solution is:

n r n i
p

where A is the determinant:

dxn~2
' ' ' '

dyi dy*

dx dx
dyn-i

'

dx

yn-i

n*,
and A* is the minor of , n_^ in A.

SYMBOLIC METHODS

8.240 Denote the operators:
d n
dx

dx

8.241 If X is a function of x:
r

1. (D - w)-1 X = e
mx

I e~m * Xdx.

2. (D - m)-
1 o = ce

mx
.

3. (p fn) X = xm I x~m
~~

Xdx.
/

4. (0 w)"
1 o = cxm.
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8.242 If F(D) is a polynomial in D,

1. F(D)e
mx = emxF(m).

2. F(D}e*X = e
m*F(D + m)X.

3. emxF(D}X = F(> - m)e
mxX.

8.243 If jF(0) is a polynomial in 0,

1. F^)*
1" = xmF(m).

2. F(6}x
mX

3 . xF(9)X
/7m

8.244 a - - 0(0 - i) (ff
-

2) (0
-

INTEGRATION IN SERIES

8.250 If a linear differential equation can be expressed in the symbolic form:

where F(0) and/(0) are polynomials in 0, the substitution,

leads to the equations,

w o,

H- w) 4- 02 /(p + sw) =
o,

2m) + fls/(p + 3^) = o.

8.251 The equation

/(P) =
o,

is the "indicia! equation." If it is satisfied ao may be chosen arbitrarily, and the

other coefficients are then determined.

8.252 An equation:

may be reduced to the form 8.250, where,

/(0) = <(0 - t) 0(0 - i) (0
- 2) ..... (0

- w + i).

If the degree of the polynomial/is greater than that of F the series always con-

verges; if the degree of / is less than that of F the series always diverges.
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ORDINARY DIFFERENTIAL EQUATIONS OF SPECIAL TYPES

8.300

^y_ y
dx*

~
'

where X is a function of * only.

i r*
_ ,

,

/ (* -ty-
1 Tdt + ax*-1

'
"

c/

y = ,

^ '
"

c/

where T is the same function of t that X is of x.

8.301

<?y-Y
dtf~ '

where F is a function of y only.

If

the solution is:

dM

8.302

d*y

dxn

Put

and this equation may be solved by 8.300.

Or the equation can be solved:

r dY r dv
'

rvdY

J p (YU FW ......
J

where the integration is to be carried out from right to left and an arbitrary

constant added after each integration. Eliminating Y between this result and

F
gives the solution.

8.303
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Put

which may be solved by 8.301. If the solution can be expressed:

Y =
tf (*),

w - 2 integrations will solve the given differential equation.

Or putting

r dY r dv r

J {ci+t(TWj {fc + WF)}>
.......

J

where the integration is to be carried out from right to left and an arbitrary

constant added after each integration. The solution of the given differential

equation is obtained by elimination between this result and

F = <(*).

8.304 Differential equations of the second order in which the independent
variable does not appear. General type:

dy a

Put

dx' dy dx2

A differential equation of the first order results:

H the solution of this equation is:

#-
the solution of the given equation is,

8.305 Differential equations of the second order in which the dependent variable

does not appear. General type:

Put

_dy dp
dx' dx
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A differential equation of the first order results:

If the solution of this equation is:

#-/(*),

the solution of the given equation is:

y = <* + Sf(*)dx.

8.306 Equations of an order higher than the second in which either the inde-

pendent or the dependent variable does not appear. The substitution:

dx

as in 8.304 and 8.305 will result in an equation of an order less by unity than the

given equation.

8.307 Homogeneous differential equations. If y is assumed to be of dimensions

n, x of dimensions i. -~ of dimensions (n
-

i), -TO of dimensions (n 2),
dx ax~

then if every term has the same dimensions the equation is homogeneous.

If the independent variable is changed to 9 and the dependent variable changed

to z by the relations,
M> __ ff) At V0fWx v, y ze

,

the resulting equation will be one in which the independent variable does not

appear and its order can be lowered by unity by 8.306.

If y, --, T~, .... are, assumed all to be of the same dimensions, and the

equation is homogeneous, the substitution:

will result in an equation in u and x of an order less by unity than the given

equation.

8.310 Exact differential equations. A linear differential equation:

where P, Pa, PI, ..... Pn are functions of x is exact if:
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The first integral is:

where,

Qn P,

(>_! = P*_l -
-^f,

dPn-1

2 3 , . _, n

& = Pl ~ 1^ +
~dtf

~
' * ' ^ i; ^"~1

"

If the first integral is an exact differential equation the process may be con-

tinued as long as the coefficients of each successive integral satisfy the condition

of integrability.

8.311 Non-linear differential equations. A non-linear differential equation of

the wth order:

to be exact must contain -=-^ in the first degree only. Put
axn

dn
~~l
y dny _ d

dxn
~l
=

*' dx"~dx'

Integrate the equation on the assumption that p is the only variable and

^ its differential coefficient. Let the result be Vi. In V dx - dV
1}

,
nj[ is

ax ax

the highest differential coefficient and it occurs in the first degree only. Repeat

this process as often as may be necessary and the first integral of the exact dif-

ferential equation will be

7i + Fa + ....... ="

If this process breaks down owing to the appearance of the highest differential

coefficient in a higher degree than the first the given differential equation was

not exact.
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8.312 General condition for an exact differential equation. Write:

^ = / 5Z =/ / ^ = y(n)
dx y

dx*
> .....

dx y

In order that the differential equation:

V(x,y,y',y", ..... ,y)=o,
be exact it is necessary and sufficient that

__
dy

~
dx \dy

r

] d*2
\dy"

~ ..... ~
dx"

8.400 Linear differential equations of the second order.

General form:

where P, Q, R are, in general, functions of #.

8.401 If a solution of the equation with R = o:

^y
= w

can be found, the complete solution of the given differential equation is:

y = c&> + <w> Ce~SPdx $* + w Ce-SPd* ^CwReSP** dx .

8.402 The general linear differential equation of the second order may be

reduced to the form:

+ Iv
&A

where: y ~

7 = C -lf -I
2 a# 4

8.403 The differential equation:

by the change of independent variable to

s -

becomes : d?y

By the change of independent variable.

(fa - QeS
p**

dx,

it becomes:
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8.404 Resolution of the operator. The differential equation:

dfy dy _

may sometimes be solved by resolving the operator,

d2 d

into the product,
'

p
A + q](r A_i

The solution of the differential equation reduces to the solution of

The equations for determining p, r, <?,
s are:

pr Uj

r + *dr = v
dx '

ds
os -\- p = w.

dx

8.410 Variation of parameters. The complete solution of the differential

equation:
d2y dy _

is

where fi (x) and/2 (o:) are two particular solutions of the differential equation
with R =

o, and are therefore connected by the relation

4/1 4^
-

/l^~ /2^ = Ce '

C is an absolute constant depending upon the forms of
_/i and /2 and may be

taken as unity.

8.500 The differential equation:

(02 + b&) j^ + (i + Jiff) -jT- + (a + o^ = o.

8.501 Let
D
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Special cases.

8.502 2
= h b Q = o.

The solution is:

where:

Xi _
- a

\2 *

8.503 D -
o, bz = o,

= ^(^i + ft A
1 V ^

where:

^i t?i \ ^o
/v =~ ~~" ^W == ^"~^ A ==: ~~ T~ "

<22 2O2 ^l

8.504 D = o, bz 4= o:

where

r
c2 l e-(k+^

*/

and X is the common root of:

osX
2
4- aiX + ^o = o,

&2X
2 + ^X + ^o o.

8.505 D 4= o, 62 = ii = o. If 77
= /() is the complete solution of:

where
^1 o >v <3i

_ p = A =
T ^2 202

8.510 The differential equation 8.500 under the condition D =}= o can always
be reduced to the form:

8.511 Denote the complete solution of 8.510:

*-*{}.
8.512 52 = &i = o:

y ^

where:

20% 402
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8.513 &2 == o, bi 4= o:

where:
x bo ci^b\ 2aJ}Q & b-L

A = - T- tti =-7
-

, Pi -T?
01 0201 #2

4- #o&i
2

8.514 &2 * o,

where:

8.515 fc =fc o,6 =4= -if:
463

M2

where C& =
0%, fiz &s ? jSi

== zbzh + bi and X is one of the roots of

+ aiX 4- GO
A * *?

8.520 The solution of 8.510 -will be denoted:

4> = F(P, q, >

1. ^C^ 3 g, Q = e-f ^fe p,
-

).

2. ^(#, q,-&- F(q, p, Q
3- F(q,P,&-
4- F(p,q, e=
5- F(.-P,- 9,

6.

F(P,
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8.521 The function F(p, q, ) can always be found if it is known for positive

proper fractional values of p and q.

8.522 p and q positive improper fractions:

p = m -f r, q n + $

where m and n are positive integers and r and s positive proper fractions.

8.523 p and q both negative:

p = - O - i + r) q = -
(n

-

8.524 ^> positive, q negative:

p = m + r, q = - n + s,

flm |~ Jn

F(w + r>
_ + ,, Q =

|_^
+
l-r-.|_

ni -
5, I -r,

8.525 p negative, q positive:

p = -m + r, q = n + s,^

8.530 If either p or q is zero the relation D = o is satisfied and the complete
solution of the differential equation is given in 8.502, 3.

8.531 If p
-
m, a positive integer:

F(m, q,

8.532 If ^ = m, a positive integer and both q and are positive:

< = F(w, q, Q = ci / um~l
(i
- uY~l e~& du + c2e~^ I (i + u)

m~l u~l e~^u du.

8.533 If q
=

,
a positive integer:

8.534 If g - w, a positive integer and both p and are positive:
I

U*~I
(L
- w)

71
"1 -*" Jw -f
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8.540 The general solution of equation 8.510 may be written:

< - F(P, ft Q = ciM + czN,

M - ^Cc - u)
-le~

f
Jo

T(s) 1 s(s+i)(s

P + ?,

(p-i)(p- 2) ..... (p-n-i)(g)(q+i) ..... (q + ^ -
2)

(
-

i) I^
71'1

-
i) (p

-
2) . . . . (p

-
tt)g(g +i)(g+ 2) . . . . (q + n- i)

where o < p < i and the real part of is positive.

THE COMPLETE SOLUTION OF EQUATION 8.510 IN SPECIAL CASES

8.550 p>o, q>o, real part of >o:

/I
/*CO

W-^i -
)

-le-&du + c2e-^ / (i +
Jo

8.551 #>o, g>o, ^<o:

/i
*/

i^ 33
-1

(i
-

u)
q-le-tudu +c2 I u p~l

(i

8.552 p<o, q<o, f>o:

^G? 3 ft )
= ^""

p~ 2

(ci / (i
- M)-*u-*erb>du +c^ f(Jo Jo

8.553

u

/
^o

8.554

r, where m is a positive integer and r a proper fraction.
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ri
~ r

'
I ~ q ' }

~
C1

J*
U (I

"
U} ^ ^

-f C2e~ / (i + )

/i
u

+ C

Jo
U

8.555 p<o, q>o,

q = n + $, where n is a positive integer and 5 a proper fraction.

_ r \

F(p, n + s
y )

=
e-S-^\ &-*-F(i -

J, i - #, f) U

/CO
(

1 / ^~s
(i

- )-*$- J^
^/o

/oo
u-{-c2

8.556 ^ pure imaginary:

p =
r, g = 5, where r and 5 are positive proper fractions,

r + $ rfc i:

, 5, Q ** ci IVT
I

(L
-

u)*-
le-**du

4- ftf
1-" /Vff

(i
-

u)

r, $,
= d IUT-I

(I
- u}*~

le-&du
Jo

+ C2 I V-Ki -
wJ'-^-fr'log I ^M(I - ) 1 rfw,

./o I
I

8.600 The differential equation:

is satisfied by the confluent hypergeometric function. The complete sogtion is4.
""- -
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where
x

The series is absolutely and uniformly convergent for all real and complex values

of a, 7, x
} except when 7 is a negative integer or zero.

When 7 is a positive integer the complete solution of the differential

equation is:

'

flV-
\<x 7

a(a + 1) x2
1 1 i i i i\

_l
\ !

* ___
_j j

7(7+1) 2\\a oj+i 7 7 + i 2/

+

8.601 For large values of x the following asymptotic expansion may be used:

M(CL, % a?)

i 2!

(i-a)(7-a)i (i-a) (2-0;) (7-0;) (7--- -
8.61

1. M(a, 7, a;) e
z
Jl/(7-Q:, 7, #).

2. ^1"r lf(a - 7 + i, 2 - 7, &) = e^l

"^lf(i -
a, 2 - 7,

-

3. AT(a + i, 7 + i, )
= M(a + i, 7, x)

- If (a, 7, ).

4. aJ4"(a + i, 7 + i, x) =
(or

- y)M(a, 7 + i, a) + 7lf (QJ, 7, 3).

5. (a + a)Jlf (a + i, 7 + i, x) = (a - 7)^(, 7 + i, *) + 7^(^ + i, 7 3

6. a7^f(a + i, 7, a;)
= y(a + ^)M"(a, 7, #)

- ^(7 - a)M(a, 7+1, ^).

+ i, 7, *)-(*+ 201 - 7)^fe 7, #) + (7 - a)Jf(a - i, 7, x).

8.v
"

c?Af (a, 7 + i, a) = (x + 7 - *)M(a, % ) + (i
- 7)^(, 7 - i,

-?-9l

<^* ~. / 35

2.-\i &) I M(<XJ y, x) dx =
(i 7)If(a i, 7 i, #) + (7 i).
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SPECIAL DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS IN TERMS OFM(a, J, X)

8.630

+ 2(p + qx)
& +

I
40:? + f -

<?n? + 2qx(p + qm)
J
y =

o,

8.631

y = -<*>+<)< If (a, 7, afer).

8.632

j 7

8.633

8.634

8.635

('

*, 7,

f (#*
- ^^ + (#? + ^ - 2^)^r + ; r*(y - q)(2

-
q
- 7) )y

=
o,

I 4 J

* ;fr-)i7/ 2fo'\
a;

2 AT
^a,

y,
j-

8.640 Tables and graphs of the function M(a, 7, x) are given by Webb and

Airey (Phil. Mag. 36, p. 129, 1918) for getting approximate numerical solu-
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tions of any of these differential equations. The range in x is i to 10; in

a, 4-0.5 to +4.0 and -0.5 to -3.0; in 7, i to 7. For negative values of x the

equations of 8.61 may be used.

SPECIAL DIFFERENTIAL EQUATIONS

8.700

where X(x) is any function of x. The complete solution is:

y = aen* + c2e~
nx + - I X(Q sinh n(x-

8.701

g + c| + -i,-m
The complete solution, satisfying the conditions:

x = o y =
yo,

dy ,"*'

'
sm

/

nag
+ yQ

/ Cos
;
a; + ~^7 sin n'x

sn n^ -
o

/ /c
2

where
' = V ^2 ---

T 4

8.702

r e-Sf(

J fe-SW*
8.703

/ { Cl
-

8.704



8.705

8.706

8.707

8.708

DIFFERENTIAL EQUATIONS

dy = cife-SjW* dx + Cz.

y =

y = e-bx {ci + c fx-*#* dx}

ffiy.'ty.j-*

y =

X -

y = x 2
{ci cos (X log x) + c% sin (X log x) }

3. (a
-

i)
2 -

8.709

= X

189

I.

2.

8.710

a,

y = e i (ci cos X# + <% sin X&).

bx

bx)
f T- / r N C I r ^ 1

!

{e--(
fl +^M e^,J.
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8.711

y = (a + x)ti \<i + c2 I
'

:

8.712

8.713

y = -
i cos jus + C2 sin px + -

sn cos

sn cos

where:

2 \/22 -4^-2
2

- + d2
,

d- - c 4. ^2
?

and s is a root of

4 (a
- M)z + 4(ac ad2

^>
2
)
= o.

(Kiebitz, Ann. d. Physik, 40, p. 138, 1913)



IX. DIFFERENTIAL EQUATIONS
(continued^

9.00 Legendre's Equation:

(i #2
)
~~ 2X ~- + n(n + ^)y o.

9.001 If n is a positive integer one solution is the Legendre polynomial, or

Zonal Harmonic, P(#):

n ^ A /_ /vw 2 i __Ji ^A / V.
^ O/ ^n 4 I .

/ \ w T~^ / \/ vv -".../'

9,002 If w is even the last term in the finite series in the brackets is:

9.003 If n is odd the last term in the brackets is:

c-i)^
1

9.010 If n is a positive integer a second solution of Legendre's Equation is the

infinite series:

9.011

P2n (cos i

9.012
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9.02 Recurrence formulae for Pn (x):

i. (n+ I)PTH-I + nPn-i = (sw 4-

/ , \ 7> ^H-1 dPn-l
2.

dx

5. I-

6. (i
- x2)

ârc

7. (a* + i) (i
- *2)^ = n(n

9.028 Recurrence formulae for Qn (x). These are the same as those for Pn (x).

9.030 Special Values.

Po() =
i,

Pi() =
*,

5* - 3** + 3),

P() = I (6s*
5 -

-
35*).

6930^ - i26ox2 + 35).

9.031

-. , , i
,

x+ i

(X)
2
2W g_ z 2**
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9.032

p(l) =
I,

9.033 If z = r cos 6:

dPn (cos 8) = ni_
J pi(cos )pn(cos 0)

.

uZ
\

- *^IL \ JWcos 0)
- P+i(cos 0)

9.034 Rodrigues' Formula:

9.035 If *-r cos 0:

^!

9.036 Hmn:

where:

1-3-5 . . . (2r- i)

MEHLER'S INTEGRALS

9.040 For all values of n:

JL nvv^'J v/y f /
; prr-

Kjo V2 (COS <^>
- COS 6)

9.041 If n is a positive integer:

/2 (cos cos <p)

LAPLACE'S INTEGRALS, FOR ALL VALUES OF

9.042

_
,

, if* /^nW - ~
/ {^ + V^2 - I COS <f>}

n
d<f>.

9.043

/CO {# + V^^T cosh <}
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INTEGRAL PROPERTIES
9.044

|-1

Pm(tf)PnO) dx^oiim^n

= if m - n.

9.045

(m - n) (m -f n -f i) / PmWPnW ^
t/a:

9.046
/*!

+ 2(P!P2 + P2P3+. . .

EXPANSIONS IN LEGENDRE FUNCTIONS

9.050 Neumann's expansion:

9.051 Any pol}niomial in # may be expressed as a series of Legendre's poly-
nomials. If fn (x) is a polynomial of degree :

dx.
T /"+I

/ fn (x)
+s i

SPECIAL EXPANSIONS IN LEGENDRE FUNCTIONS

9,060 For all positive real values of n:

P>(c<>s 8) + ft(o .
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sin mr ,

Po(cos

9.061 If TZ is a positive integer:

jPn-4(cos

I.
2 2 J (2n i)

2
V 2-4-6 .... in

n=i

, ~
1 VCOb (7 / .

2 . sn = -
4 2 *J 2H- i 2H+2 2-4-6.

3 . cot g =

4. csc

9.063

i + sin -

sm-
2

. tani-(7r-^) , . 6 , f . 6\ \ i ,

- log /sing
= ~

log sm
2
" bg

V
1 + Sm

2]

=
2l n Pn(GOS

2

.

, \
s 0) + r

9.062
*

-
i) /I-3-5 . . . (an -

9.064 JT(A) and (*) denote the complete elliptic integrals of the first and

second kinds, and k sin 6:
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2. = - -
(2W -l)(2+2) 3-4-6.... 2

(Hargreaves, Mess, of Math. 26, p. 89, 1897)

9.070 The differential equation:

2
, d?y dy t , v m2

1 _

If m is a positive integer, and 1>#> + i, two solutions of this differential

equation are the associated Legendre functions

P;W . (I _^^^,

9.071 T$n,m,r are positive integers, and

~*-i-i M ,

T^"* / \ T-I"^ / \ i r iP / 'V* I P I'Vl /J'Y* r\ IT 4 1
* "*r" <M-^

V.'*/
* ^ v*/ ^*^ O ii / -f- ft}

7 :

(n m)l

9.100 Bessel's Differential Equation:

d?y i dy

9.101 One solution is:

S ^
^=o

9.102 A second independent solution when v is not an integer is:

y = /_(#).
9.103 If v =

n, an integer:

J-n (x)
- (-i)

n/nW.

9.104 A second independent solution when v = n, an integer, is:

r

v ^ST\ (M 1? T^ t //y\2A: n
- TT/X T/'Nl "^ ^^ '

\ '* ^ l^iTFn() = 2/,() -log
- -

(see 6.61).
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9.105 For all values of ^, whether integral or not:

J-v x = cos VTrJP x)
- sn

Y-v (x)
= sin virJv (x) + cos

9.106 For z> = n, an integer:

9.107 Cylinder Functions of the third kind, solutions of Bessel's differential

equation:

1. Hl

v (x) Jv (x) + iYv (x).

2. H v (x) = Jv (x}
- iYv (x).

3. Hv (x) eV7rt Hv (x).

4. H-v (x) - e~~
VTtE v (x) .

9.110 Recurrence formulae satisfied by the functions JV} YV) Hv ,
H v ,

Cv

represents any one of these functions.

d s*< f \

2V
2. C l\X) -j- Cjr+l(X) = <

X

^Lr M = C ( } - -C

4.
-j-^C

(x)
= -Cv (x)

- Cj^

S-
^

&?
"

4
"+2

9.111

i. /y() ^T^ - F,(*)^^ - 2. J^OtOFrC*) - 7F (*)FW () =
x

rfx arc TTO; TTO;

ASYMPTOTIC EXPANSIONS FOR LARGE VALUES OF X
9.120

. 7,0) = i/^ PFW sin f*
- ^ili^ + Qy (x) cos L -5Li

V TTX ( \ 4 / \ 4
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4. #
where

-
3
2
) -4* -

(2*)!

(2k
-

9.130

SPECIAL VALUES

I X\
2

.
I XY I X\

=
(log f

4

7T T
4.

-

(log I + 7) 7i(*)
-

^ 7o(*) + ^7/3 (*)
- -^-

\ * / * 1 * * * O

7 = 0.5772157 (6.602).

9.131 Limiting values for # = o:
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9.132 Limiting values for x =
:

cos (x
) sin

[
x

A=^' F.() S
4

V? VT
7T\ / 7T

sin
( )

cos
(
as

4
/

\/T

9.140 Bessel's Addition Formula:

9.141 Multiplication formula:

9.142
00

Mcv)Mfa-^(-3*A^
where

* _

fc
~

i s\(k 5)ir(^ + k - s + i)F(ju + s + i)

9143

(fl
+ V + 2k\fx*

k + I) V *

DEFINITE INTEGRAL EXPRESSIONS FOR BESSEL'S FUNCTIONS

9.150
2 1-1 /TT

Jy(o;) =
7^ r /

2 cos (x sin 6) cos21
*

d)-rf<i.

J^ ^-'

cos * cos

9.151
2 [-

*f
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9.152 fx\

/(*) = -

If n is an integer:

9.153

I /*
r 2 C-

J2n (x) - I cos (x sin 0) cos (2n<j>)d<j)
= / a

7T./0 TTjo

(-i)
n r" 2(-i)

n r
Jzn(x) = / cos (x cos <) cos (2n(p)d<p /

IT Jo 7T J o

/IT
CT?

2 I

sin (x sin <) sin (zn + i) <j> dcf>
= I

2

'7Tt/o

/2n+i(tf)
= -

/ sin (x cos 0) cos (2n + i)<f>d<f>
7T ^o 7T '

I f -ln<t>^sm <i>

27TJ

9.154

9.155

9.156

INTEGRAL PROPERTIES

9.160 If Cy(fJix) is any one of the particular integrals:

of the differential equation:

d?y idy4 j----^

r
I

Jd

\ 2 U I nv(v>i&)Cv
'

(p&) - ^Cv (^ix)Cp(^x)
I

2

9.161 If /ZA and /z? are two different roots of

=
o,

dx =
a fJ<k

9.162 If JUA and ju/ are two different roots of

i

and = o

/6
If

jL
- - a -

2
I

f
*/
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EXPANSIONS IN BESSEL'S FUNCTIONS

9.170 Schlomilch's Expansion. Any function f(x) which has a continuous

differential coefficient for all values of x in the closed range (o, TT) may be expanded
in the series:

where

9.171

where

9.172

where:

and

9.180

fir ^TT
=

/(o) + - / u I 2 f (u sin 6)d6du,^ Jo Jo

2 c* r~-= I u cos ku I 2
j'(u sin 6) dddu.

Jo Jo

/(*)

O,

= a( + i) / f(x)x
n+l

dx,

(Bridgman, Phil. Mag. 16, p. 947, 1908)

CO

f(x)
= 'AjJofakX) a<x<b,

g

-
(a

2

(Stephenson, Phil. Mag. 14, p. 547, 1907)

SPECIAL EXPANSIONS IN BESSEL'S FUNCTIONS

*s<-'

2. COS X = 7 () + 2^ (-!)*/(*).
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9.181
*

i. cos sin 6) = JQ(X) + 2/j J$h(x} cos zkQ,

2. sin (x sin 6)
= 2^ /2&+i(^) sin (aft +

9.182

A!

9.183

9.200 The differential equation:

/ . ^^4-iY,
3>
=

^/~ u/ uy> \
r

jt~

with the substitution:

2 = ^^; IJLX
- p

becomes:

which is Bessel's equation of order + -
2

9.201 Two independent solutions are:

former remains finite for p = o; the latter becomes infinite for p o.
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9.202 Special values.

9.203

9.204

9.205
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9.210 The differential equation:

d?y i dy ! iF\

dtf
+

x fa
"

V
1 +

#1
y ~

'

with the substitution,
x =

iz,

becomes Bessel's equation.

9.211 Two independent solutions of 9.210 are:

Iv O) i~v J
v-\-t -7J- TKv

(x) = e** J Hv (ioc).

9.212 If v = n, an integer:

9.213

Iv 0*0 = j f̂

~
(- )' / cosh (x cos .

9.214 If x is large, to a first approximation:

/n O) = (27 cosh jQ)-* e35 ^cosl1 - smh
ft,

JSTW () - 7r(27ra; cosh /3)-*e~*
(c s* & ~ P smh

^>,

^ = ^ sinh /3.

9.215 Ber and Bei Functions.

ber x -f bei # = 7

ber x i bei # = I

bei x
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9.216 Ker and Kei Functions:

ker x + i kei x = Kv(x^/i],

ker x i kei x =
Ko(ix-\/i,),

(4i)
2
V 2 3 4

, 2 \, . x, M2
i / i i\M 6

log-
- 7)bei* -- her a + -)

-
7-7^ (i +- + -)- + - - -6 * / 4 \2/ (3

f

)
2
\ 2 3/W

9.220 The Bessel-Clifford Differential Equation:

*S + ^ +i>2 + y-
With the substitution:

2 = x^Ay

the differential equation reduces to BesseFs equation.

9.221 Two independent solutions of 9.220 are:

C,(*) = -;/, (aV?) =

9.222

Ci44W = (v

9.223 If J' = n, an integer:

Co(*)=2(-i)*^

9.224 Changing the sign of v, the corresponding solution of:

y =
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9.226 If v is half an odd integer:

C|W . sin(2V
;.

+)
?

2v#

r f~\
d r /vi sin (zVx + e) cos (iVx + e)

CiW ~ " ^ *W--
^J
---^ '

3 cos (2V^ + e)- -/- / \ n f \ . , /-
g^ " ~ ^ * sm ^2^

= -cos

is arbitrary so as to give a second arbitrary constant.

9.226 For x negative, the solution of the equation:

,g+( F + i)g-y-o,

when v is half an odd integer, is obtained from the values in 9.225 by changing
sin and cos to sinh and cosh respectively.

9.227

(m + n + i)J Cm+i(x)C^.i(x) dx = - xCm+i(oc)Cn+i(x) - Cm (x)Cn (x),

(m + n+ i}Cx+"Cm (x}Cn (x} dx = xm+n+l

j
xCm+i(x)Cn+i(oc) + Cm (x)Cn (x)

9.228

1. f'ciiC* cos2 0) ^ = 7rC ().

2, QC^ cos2

3. I C (^ sin2 </>) sin <p d(f)

4. / Ci(* sin2 <^>) sins $ d<l>

r^t
/ o _L\ - j. -r J J COS

Ci( sin2 0) sin
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9.229 Many differential equations can be solved in a simpler form by the use

of the Cn functions than by the use of BessePs functions.

(Greenhill, Phil. Mag. 38, p. 501, 1919)

9.240 The differential equation:

d?y 2(n+ i) dy^ + ~r~i7
with the change of variable:

y = zx~n~~*

becomes BessePs equation 9.200.

9.241 Solutions of 9.240 are:

1. y = xrn

2. y = --

3: y - *r-* Hl

n^(x).

4. y = *--* <+iO).

9.242 The change of variable:

# = 2\/z,

transforms equation 9.240 into the Bessel-Clifford differential equation 9.220.

This leads to a general solution of 9.240:

When n is an integer the equations of 9.225 may be employed.

r /a?\ sin (x + e)
Ci Uy- * '

2 sin (x + e) cos (# + e)

9.243 The solution of

d2
^ 2(^+1) dy

.

-\
-- -- y

_ Q
a^2

rc dx '

may be obtained from 9.242 by writing sinh and cosh for sin ami, ctfs

respectively.
'

1 ^

9.244 The differential equation 9.240 is also satisfied by the two in<Jpe!;deM
functions (when n is an integer) :

~~ ~^

smo;
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i d \
n cos x

.3.5. - (a~l)
s<-j^n-fl j/O

^ '
2 k
kl(l 2n) (3 2?j) .... (2& 2W

* = o

9.245 The general solution of 9.240 may be written:

_ /id\*Aew

\x dx/ x

9.246 Another particular solution of 9.240 is:

n(n + i) (^ i)n(n -h i) (^ + 2_)

2^ 2 4* (^)
2

+ .

T * 2 ^-
2 4-6 .... 2n(ix)

n

9.247 The functions ^n (a?), ^(^), /n(?) satisfy the same recurrence formulae

9.260 The differential equation:

d?y

^-
with the change of variable:

y = wV^

is transformed into Bessel's equation of order n + -.

9.261 Solutions of 9.260 are:

= Cn (x)
- iSn (x}

= -

9562 The functions S(x), Cn (x), En (x) satisfy the same recurrence formulae

_ n ,_
dx x
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dSn (x) . . n _ , .-

9.30 The hypergeometric differential equation:

9.31 The equation 9.30 is satisfied by the hypergeometric series:

og(q + i) (a + 2) jg(j8 + i) (/3 + 2)
^

1-2-3 7(7 + i) (T + 2)

The series converges absolutely when x<i and diverges when #>i. When
x = +i it converges only when a + j8 7<o, and then absolutely. When
# = -i it converges only when a+j3-7 i<o, and absolutely if

9.32

9.33 Representation of various functions by hypergeometric series.

log (i + x) = xF(i, i, 2, -),

Limit-
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(,+,). + (, _)._,*(-! -2+
Ji,*),

cos nx

sin nx = n sin ;

/n+iins . 9 \
I
-

,

-
, -, sin2

*],
\ 2 22 /

tail-1 a? = *#[-, i,
-,- a?),

\2 2 /

PG) = F ~
n, n + i, i,

9.4 Heaviside's Operational Methods of Solving Partial Differential Equations.

9.41 The partial differential equation,

d2u _ du
a
dx*~ dt>

where a is a constant, may be solved by Heaviside's operational method.

Writing =
p, and - = g

2
,
the equation becomes,

whose complete solution is u = e qxA + e~qxB, where 4 and B are integration

constants to be determined by the boundary conditions. In many applications

the solution u = e~qxB, only, is required: and the boundary conditions will

lead to u = e~qx
f(q)u^ where UQ is a constant. If e~qx

f(q) be expanded in an

infinite power series in g, and the integral and fractional, positive and negative

powers of p be interpreted as in 9.42, the resulting series will be a solution of

the differential equation, satisfying the boundary conditions, and reducing to

u = o at t = o. The expansion of e~qx
f(q) rtiay be carried out in two or more

ways, leading to series suitable for numerical calculation under different

conditions.
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9.42 Fractional Differentiation and Integration.

In the following expressions, i stands for a function of t which is zero up

to t = o, and equal to i for />o.

9.421

i

ph /

Virt

9.424

9.422

p i = o

p
z
i = o p

n
i = o

3
I O

9.423

3 y TT 1-3-5 (2n +

3-5

^

where v may have any real value, except a negative integer. (Conjectural.)

9.425

p a

9.426 With # =
<uf,
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9.427

9.428 If * = -=
2V O/

2_ r"

"vw.

9.43 Many examples of the use of this method are given by Heaviside: Electro-

magnetic Theory, Vol. II. Bromwich, . Proceedings Cambridge Philosophical

Society, XX, p. 411, 1921, has justified its application by the method of contour

integration and applied it to the solution of a problem in the conduction of heat.

9.431 Herlitz, Arkiv for Matematik, Astronomi och Fysik, XIV, 1919, has

shown that the same methods may be applied to the more general partial

differential equations of the type,

and the relations of 9.42 are valid. '

9.44 Heaviside's Expansion Theorem.

The operational solution of the differential equation of 9.41, or the more

general equation, 9.431, satisfying the given boundary conditions, may be

written in the form,

F(p)=

$
where F(p) and A(>) are known functions of p = -. Then Heaviside's

Of

Expansion Theorem is:

where a is any root, except o, of A(^) =
o, A'(^) denotes the first derivative of

A(p) with respect to p, and the summation is to be taken over all the roots of

A(#) = o. This solution reduces to u = o at t = o.

Many applications of this expansion theorem are given by Heaviside,

Electromagnetic Theory, II, and III; Electrical Papers, Vol. II. Herlitz, 9.431,

has also applied this expansion theorem to the solution of the problem of the

distribution of magnetic induction in cylinders and plates.

9.45 Bromwicri's Expansion Theorem. Bromwich has extended Heaviside's

Expansion Theorem as follows. If the operational solution of the partial

differential equation of 9.41, obtained to satisfy the boundary conditions, is
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where G is a constant, then the solution of the differential equation is

Ctt

where No and Ni are defined by the expansion,

a is any root of A() =
o, A'(/>) is the first derivative of A(p) with respect to p,

and the summation is over all the roots, a. This solution reduces to u = o at

/ = o. Phil. Mag. 37, p. 407, 1919; Proceedings London Mathematical Society,

15, p. 401, 1916-

9.9 References to Bessel Functions.

Nielsen: Handbuch der Theorie der Cylinder Funktionen.

Leipzig, 1904.

The notation and definitions given by Nielsen have been adopted in the pres-

ent collection of formulae. The only difference is that Nielsen uses an upper

index, Jn
(x), to denote the order, where the more usual custom of writing /(#)

is here employed. In place of Hin and H%n used by Nielsen for the cylinder

functions of the third kind, Hn
l and Hn

11 are employed in this collection.

, Gray and Mathews: Treatise on Bessel Functions.

London, I8Q5.
1

The Bessel Function of the second kind, Fn (#), employed by Gray and

Mathews is the function

~ Fn (*) + (log 2 - 7)/w (*),

of Nielsen.

Schafheitlin: Die Theorie der Besselschen Funktionen.

Leipzig, 1908.

Schafheitlin defines the function of the second kind, F(#), in the same way
as Nielsen, except that its sign is changed.

NOTE. A Treatise on the Theory of Bessel Functions, by G. N". Watson, Cambridge

University Press, 1922, has been brought out while this volume is in press. This Treatise gives

by far the most complete account of the theory and properties of Bessel Functions that exists,

and should become the standard work on the subject with respect to notation A particularly

valuable feature is. the Collection of Tables of Bessel Functions at the end of the volume and

the Bibliography, giving references to all the important works on the subject.

9.91 Tables of Legendre, Bessel and allied functions.

Pn (x) (9.001).

1 A second edition of Gray and Mathews' Treatise, prepared by A. Gray and T. M.

MacRobert, has been published (1922) while this volume is in press. The notation of the first

edition has been altered in some respects.
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B. A. Report, 1879, PP- S4"S7- Integral values of n from i to 7; from x = o.oi

to x = i.oo, interval o.oi, 16 decimal places.

Jahnke and Emde: Funktionentafeln, p. 83; same to 4 decimal places.

P,(cos 6)

Phil. Trans. Roy. Soc. London, 203, p. 100, 1904. Integral values of n from

i to 20, from 6 = o to 6 90, interval 5, 7 decimal places.

Phil. Mag. 32, p. 512, 1891. Integral values of n from i to 7, 6 = o to

6 =
90, interval i; 4 decimal places. Reproduced in Jahnke and Emde, p. 85.

Tallquist, Acta Soc. Sc. Fennicae, Helsingfors, 33, pp. 1-8. Integral values

of n from i to 8; 6 = o to 6 =
go, interval i, 10 decimal places.

Airey, Proc. Roy. Soc. London, 96, p. i, 1919. Tables by means of which

zonal harmonics of high order may be calculated.

Lodge, Phil. Trans. Roy. Soc. London, 203, 1904, p 87 Integral values of

n from i to 20; 6 - o to 6 =
90, interval 5, 7 decimal places. Reprinted in

Rayleigh, Collected Works, Volume V, p. 162.

aPn(cos fl)

Farr, Proc. Roy. Soc. London, 64, 199, 1899. Integral values of n from i to 7;

6 = o to 6 =
90, interval i, 4 decimal places. Reproduced in Jahnke and Emde,

p. 88.

/o(*), /i(*) (9.101).

Meissel's tables, x = o.oi to x = 15.50, interval o.oi, to 12 decimal places,

are given in Table I of Gray and Mathews' Treatise on BessePs Functions.

Aldis, Proc. Roy. Soc. London 66, 40, 1900. x = o.i to x =
6.0, interval

o.i, 21 decimal places.

Jahnke and Emde, Funktionentafeln, Table III. x = o.oi to x -
15.50,

interval o.oi, 4 decimal places.

Jn(x) (9.101).

Gray and Mathews, Table II. Integral values of n from n = o to n = 60;

integral values of x from x = i to x =
24, 18 decimal places.

Jahnke and Emde, Table XXIII, same, to 4 significant figures.

B. A. Report, 1915, p. 29; n = o to n -
13.

x - 0.2 to r = 6.0 interval 0.2 6 decimal places,

x = 6.0 to x = 16.0 interval 0.5 10 decimal places.

Hague, Proc. London Physical Soc. 29, 211, 1916-17, gives graphs of Jn(x)

for integral values of n from o to 12, and n =
18, x ranging from o to 17.

- f Fo(a) = Go(*);
- Yl (x)

= ft(*).
2 2

B. A. Report, 1913, pp. 116-130. x = o.oi to x =
16.0, interval o.oi, 7

decimal places.
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B. A. Report, 1915, x =
6.5 to % =

15.5, interval 0.5, 10 decimal places.

Aldis, Proc. Roy. Soc. London, 66, 40, 1900: x o.i to x - 6.0. Interval

o.i, 21 decimal places.

Jahnke and Emde, Tables VII and VIII, functions denoted K (#) and JLi(x),

x = o.i to x = 6.0, interval o.i; x = o.oi to x =
0.99, interval o.oi; x = i.o

to x =
10.3, interval o.i; 4 decimal places.

--FnCaO-GnW.
2

B. A. Report, 1914, p. 83. Integral values of n from o to 13. x = o.oi to

x =
6.0, interval o.i; x- 6.0 to # =

16.0, interval 0.5; 5 decimal places.

~ FoO) + Gog 2 - 7)^o(*), Denoted F fo) and Fifr)

Fi(a;) + (log 2 - y)Ji(x). respectively in the tables.

B. A. Report, 1914, p. 76, x = 0.02 to x = 15 50, interval 0.02, 6 decimal

places.

B. A. Report, 1915, p. 33, x = o i to x =
6.0, interval o.i; x = 6.0 to

x =
15.5, interval 0.5, 10 decimal places.

Jahnke and Emde, Table VI, x = o.oi to x =
i.oo, interval o.oi; x = i.o

to x = 10.2, interval o.i, 4 decimal places.

FO(B), FI(B). Denoted N (V) and Ni(x) respectively.

Jahnke and Emde, Table IX, x = o.i to x =
10.2, interval o.i, 4 decimal

places.

j Fn(*) + (log 2 - 7) /(*) Denoted Fn (a) in tables.

B. A. Report, 1915. Integral values of n from i to 13. x = 0.2 to x =
6.0,

interval 0.2; x = 6.0 to x -
15.5, interval o 5, 6 decimal places.

A + *(*)

Jahnke and Emde, Table II. Integral values of n from n = o to n =
6, and

w= i to n -
7; # = oto# =

5o, interval i o, 4 figures.

Watson, Proc. Roy. Soc. London, 94, 204, 1918.

x = 0.05 to x = 2.00 interval 0.05,

x = 2.0 to # = 8.0 interval 0.2,

4 decimal places.

jFa(a),
-
j Fa^i(a). Denoted G(a) and Ga_i(a) respectively.
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- 7() + (log 2 - 7)/(a),
2

- F-i(a) + (log 2 - Denoted Fa(a) and -

Tables of these six functions are given in the B. A. Report, 1916, as follows:

Aldis, Proc. Roy. Soc. London, 64, pp. 218-223, 1899; x o.i to x -
6.0,

interval o.i; x = 6.0 to x = n.o, interval i.o, 21 decimal places.

Jahnke and Emde, Tables XI and XII, 4 places:

x = 0,01 to % = 5.10 interval o.oi,

x = 5.10 to % = 6.0 interval o.i,

x = 6.0 to x = i i.o interval i.o.

Io(*) (9.211).

B. A. Report, 1896; x = o.ooi to x - 5.100, interval o.ooi, 9 decimal

places.

Ii(*) (9.211).

B. A. Report, 1893; x o.ooi to x =
5.100, interval o.ooi, 9 decimal

places.

Gray and Mathews, Table V, x - o.oi to x = 5.10, interval o.oi, 9 decimal

places.

!(*) (9.211).

B. A. Report, 1889, pp. 28-32; integral values of n from o to 11, x = 0.2

to x = 6.0, interval o>2, 12 decimal places. These tables are reproduced in

Gray and Mathews, Table VI.

Jahnke and Emde, Table XXIV; same ranges, to 4 places.









DIFFERENTIAL EQUATIONS 217

Aldis, Proc. Roy. Soc. London, 66, 142, 1900; x = o.i to x =
6.0, interval

o.i, 21 decimal places.

Jahnke and Emde, Tables XV and XVI, same range, to 4 places.

Gray and Mathews, Table IV; x = 0.2 to x =
6.0, interval 0.2, 9 decimal

places.

(9.104) Denoted NQ(x\fy in table.

Jahnke and Emde, Tables XVII and XVIII; x = 0.2 to # =
6.0, interval

0.2, 4-7 figures.

*-

Fj(w)
= *(*),

(9.212).

Aldis, Proc. Roy. Soc. London, 64, 219-223, 1899; x = o.i to x = 12 o,

interval o.i, 21 decimal places.

Jahnke and Emde, Table XIV; same, to 4 places.

fflj(&), -#;(&) (9.107).

Jahnke and Emde, Table XIII; x = 0.12 to # -
6.0, interval 0.2, 4 figures.

her*, her'*,

bei#, bei #,

B. A. Report, 1912; x - o.i to x -
10.0, interval o.i, 9 decimal places.

*

Jahnke and Emde, Table XX; x = 0.5 to # = 6.0, interval 0.5, and # =
8,

10, 15, 20, 4 decimal places.

, ,

(g
kei a, kei

;

rv,

B. A. Report, 1915; x = o.i to x =
10.0, interval o.i, 7-10 decimal places.

ber2 x + bei2 x,

ber/2 # + bei'2 #,

ber ^ bei
7 ^ - bei x ber' #, and the corresponding ker and kei

ber oc ber' x 4- bei x bei' #, functions.

B. A. Report, 1916; x - 0.2 to =
10.0, interval 0.2, decimal places.

Cn(x), C'n(x), logC.W, logC'.C*), (9.261).

B. A. Report, 1916; integral values of n from o to 10, x = i.i to x -
1.9,

interval o.i, 7 decimal places.
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0.78012

1. 1 5407

Table I of Jahnke and Emde gives these two functions to 3 decimal places

for x = 0.2 to x =
8.0, interval 0.2, and # = 8.0 to x =

12.0, interval i.o.

Roots of /oOr) = o.

Airey, Phil. Mag. 36, p. 241, 1918: First 40 roots (p) with corresponding

values of /i(p), 7 decimal places.

Jahnke and Emde, Table IV, same, to 4 decimal places.

Roots of /i(#) = o.

Gray and Mathews, Table III, first 50 roots, with corresponding values

of /o(#), 16 decimal places.

Airey, Phil. Mag. 36, p. 241 : First 40 roots (r) with corresponding values

of /oW, 7 decimal places.

Jahnke and Emde, Table IV, same, to 4 decimal places.

Roots of Jn (x)
= o.

B. A. Report, 1917, first 10 roots, to 6 figures, for the following integral

values of n: o-io, 15, 20, 30, 40, 50, 75, 100, 200, 300, 400, 500, 750, 1000.

Jahnke and Emde, Table XXII, first 9 roots, 3 decimal places, integral

values of n 09.
Roots of:

(log 2 - y)/n(#) H Yn(x) o. Denoted Yn(x)
= o in table.

Airey: Proc. London Phys. Soc. 23, p, 219, 1910-11, First 40 roots for

n =
o, i, 2, 5 decimal places.

Jahnke and Emde, Table X, first 4 roots for n -
o, i. E decimal places.

Roots of:

YQ(X] = O
Tr , N

'

Denoted NQ (x) and NI(X) in tables.

YI(X) = o.

Airey: 1. c. First 10 roots, 5 decimal places.

Roots of:

JG (x) (log 2 - 7)/o(oO + FQ(#) = o. Denoted / (ae) =h YQ(X) = o.

/if*) + Gog 2 - 7)/i(a) + j F!(*) - o. Denoted /i(s) + Fi(a?)
= o.

/o() -
2(log 2 - 7)/ (#) + F () = o. Denoted / () - 2F (#)

= o.
2

db (log 2 - 7)/o(#) + F (#)
= o. Denoted ioJQ (x) F (o?)

= o.
2
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Airey, 1. c. First TO roots, 5 decimal places.

Roots of-

""

/(*)
""

I

Airey, 1. c. First 10 roots: n =
o, 4 decimal places, w =

i, 2, 3, 3 decimal

places.

Jahnke and Emde, Table XXV, first 5 roots for n o, 3 for w =
i, 2 for

n = 2: 4 figures.

Airey, 1. c. gives roots of some other equations involving Bessel's functions

connected with the vibration of circular plates.

Roots of:

Jahnke and Emde, Table XXVI, first 6 roots, 4 decimal places, for

V =
O, 1/2, I, 3/2, 2, 5/2: * -

1.2, 1.5, 2.0.

Table XXVIII, first root, multiplied by (k
-

i) for k =
i, 1.2, 1.5, 2-11,

19, 39, oo : p same as above.

Table XXIX, first 4 roots, multiplied by (k i) for certain irrational values

of k, and v =
o, i.



X. NUMERICAL SOLUTION OF
DIFFERENTIAL EQUATIONS

BY F. R. MOULTON, PH.D.,

Professor of Astronomy, University of Chicago;

Research Associate of the Carnegie Institution of Washington.

INTRODUCTION

Differential equations are usually first encountered in the final chapter of

a book on integral calculus. The methods which are there given for solving

them are essentially the same as those employed in the calculus. Similar methods

are used in the first special work on the subject. That is, numerous types of

differential equations are given in which the variables can be separated by

suitable devices; little or nothing is said about the existence of solutions of

other types, or about methods of finding the solutions. The false impression

is often left that only exceptionally can differential equations be solved. What-

ever satisfaction there may be in learning that some problems in geometry and

physics lead to standard forms of differential equations is more than counter-

balanced by the discovery that most practical problems do not lead to such

forms.

10.01 The point of view adopted here and the methods which are developed

can be best understood by considering first some simpler and better known

mathematical theories. Suppose

i. F(x) = xn + op*"1 + + a^-& + a "

is a polynomial equation in x having real coefficients #1, #2, . . .
,
an . If n is

i, 2, 3, or 4 the values of x which satisfy the equation can be expressed as explicit

functions of the coefficients. If n is greater than 4, formulas for the solution

can not in general be written down. Nevertheless, it is possible to prove that n

solutions exist and that at least one of them is real if n is odd. If the coefficients

are given numbers, there are straightforward, though somewhat laborious,

methods of finding the solutions. That is, even though general formulas
for

the solutions are not known, yet it is possible both to prove the existence of the

solutions and also to find them in any special numerical case.

10.02 Consider as another illustration the definite integral

i. 7- (}(oc}dx,
/

where /(*) is continuous for a ^ x ^ b. If F (a;) is such a function that

dF
.,

,

=/(*),
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then I -
F(b) -

F(d). But suppose no F(x) can be found satisfying (2). It

is nevertheless possible to prove that the integral 7 exists, and if the value of

(x) is given for every value of x in the interval a ^ * ^ b, it is possible to find the

numerical value of 7 with any desired degree of approximation. That is, it is

not necessary that the primitive of the integrand of a definite integral be known

in order to prove the existence of the integral, or even to find its value in any

particular example.

10.03 The facts are analogous in the case of differential equations. Those

having numerical coefficients and prescribed initial conditions can be solved

regardless of whether or not their variables can be separated. They need to

satisfy only mild conditions which are always fulfilled in physical problems.

It is with a sense of relief that one finds he can solve, numerically, any particular

problem which can be expressed in terms of differential equations.

10.04 This chapter will contain an account of a method of solving ordinary

differential equations which is applicable to a broad class including all those

which arise in physical problems. A large amount of experience has shown that

the method is very convenient in practice. It must be understood that there is

for it an underlying logical basis, involving refinements of modern analysis,

which fully justifies the procedure. In other words, it can be proved that the

process is capable of furnishing the solution with any desired degree of accuracy.

The proofs of these facts belong to the domain of pure analysis and will not be

given here.

10.10 Simpson's Method of Computing Definite Integrals. The method of

solving differential equations which will be given later involves the computation

of definite integrals by a special process which will be developed in this and the

following sections.

Let t be the variable of inte-

gration, and consider the definite

integral
rb

i. F =
//(*)

dt.

Ja
This integral can be interpreted

as the area between the /-axis and

the curve y =
f(f) and bounded

by the ordinates t = a and t - b,

figure i.

Let to = a, tn bj yl =/(/*), and

divide the interval a ^ t^ b up into

n equal parts, each of length h =

(b
-

a)/n. Then an approximate value of F is

a
FIG. i

2. k(yi "f 3/2 + . . . + 3>n).

This is the sum of rectangles whose ordinates, figure i, are yi, y% . . .
, yn.

10.11 'A more nearly exact value can be obtained for the first two intervals,

for example, by putting a curve of the second degree through the three points
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y0j yi} y$, and finding the area between the /-axis and this curve and bounded

by the ordinates tf and fe. The equation of the curve is

i. y = a + 0ift
- h) + az (t

- / )
2

,

where the coefficients ao, ai, and #2 are determined by the conditions that y
shall equal yo, yj, and ^2 at / equal to /

, h and fe respectively; or

2. < yi
~ 0o 4- 0i(*i

-
*o) + 02(6

-
*o)

2
,

[ 3fo
=

<zo + 0i(fe
-

*o) + ^fe -
^o)

2
.

It follows from these equations and fe
-

ft
=

fe
-

^o
= A that

The definite integral / ydt is approximately

fkr -i r
4 1

/ = I 0o + 0i ft ^o) + #2(2 ^o) \
dt = 2h

\ GQ + dih H o^h
2

.

Jib L J L 3 J

which becomes as a consequence of (3)

h

3

10.12 The value of the integral over the next two intervals, or from fe to 4 ,

can be computed in the same way. If n is even, the approximate value of the

integral from t$ to tn is therefore

Fi = -
C^o + 43;i + 2^2 + 43;s + 23/4 + + 4yn_i + yj.

This formula, which is due to Simpson, gives results which are usually remarkably
accurate considering the simplicity of the arithmetical operations.

10.13 If a curve of the third degree had been passed through the four points

3>o, yiy yz, and y$, the integral corresponding to (4), but over the first three

intervals, would have been found to be

I - T fro + yy\ + 3^2 + yj.

10.20 Digression on Difference Functions. For later work it will be necessary
to have some properties of the successive differences of the values of a function

for equally spaced values of its argument.

As before, let yl be the value of f(t) for t = fe. Then let
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yQ ,

These are the first differences of the values of the function y for successive values

of t. All the successive intervals for t are supposed to be equal.

10.21 In a similar way the second differences are defined by

10.22 In a similar way third differences are defined by

n = A2;yn
-

and obviously the process can be repeated as many times as may be desired.

10.23 The table of successive differences can be formed conveniently from the

tabular values of the function and can be arranged in a table as follows :

TABLE I

A2;y
A3;y

In this table the numbers in each column are subtracted from those

immediately below them and the remainders are placed in the next column to

the right on the same line as the minuends. Variations from this precise arrange-

ment could be, and indeed often have been, adopted.
10.24 A very important advantage of a table of differences is that it is almost

sure to reveal any errors that may have been committed in computing the yt-.

If a single y % has an error
,
it follows from 10.20 that the first difference A# *

will contain the error -he and Aiyt+i will contain the error -e. But the second

differences A2;y t ,
A2^ t+i, and A23? t+2 will contain the respective errors +e, 2,

-he. Similarly, the third differences A33/ l , AS^+I, A3y t+2, and A3^ t-h3 will contain

the respective errors -f e, -36, -h3e, -e. An error in a single yi affects j + i

differences of order j, and the coefficients of the error are the binomial coeffi-

cients with alternating signs. The algebraic sums of the errors in the affected
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numbers in the various difference columns are zero. Now in such functions

as ordinarily occur in practice the numerical values of the differences, if the

intervals are not too great, decrease with rapidity and run smoothly. If an

error is present, however, the differences of higher order become very irregular.

10.25 As an illustration, consider the function y = sin / for i equal to 10,

15, The following table gives the function and its successive differ-

ences, expressed in terms of units of the fourth decimal: 1

TABLE II

Suppose, however, that an error of two units had been made in determining

the sine of 45 and that 7073 had been taken in place of 7071. Then the part

of the table adjacent to this number would have been the following:

TABLE III

The irregularity in the numbers of the last column shows the existence of an

error, and, in fact, indicates its location. In the third differences four numbers

1 Often it is not necessary to carry along the decimal and zeros to the left of the first

significant figure.
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will be affected by an error in the value of the function. The erroneous numbers

in the last column are clearly the second, third, fourth, and fifth. The algebraic

sum of these four numbers equals the sum of the four correct numbers, or 18.

Their average is 4.5. Hence the central numbers are probably 5 and 4.

Since the errors in these numbers are -36 and +36, it follows that e is probably

+2. The errors in the second and fifth numbers are + and ~e respectively.

On making these corrections and working back to the first column, it is found

that 7073 should be replaced by 7071.

10.30 Computation of Definite Integrals by Use of Difference Functions.

Suppose the values oif(f) are known for t = tn-i, tn-i, tn ,
and /+i. Suppose

it is desired to find the integral
rtn+i

1. In - / /(*) dt.

*Jtn

The coefficients S 0> fa, 62, and fa of the polynomial can be determined," as above,

so that the function

2. y - &0 + h(t - tn] + fa(t
~ *n? + fa(t

- Q Z

shall take the same values as/() for t = tn_2 , /-i, t n ,
and tn+i.

With this approximation to the function f(f), the integral becomes (since

tn+l -tn

f*t*+i
=

/ Do
Utn

- h[b + -b!h^- bjf + -
6s*

8
].

The coefficients J
> fa, fa, and fa will now be expressed in terms of

i, and Asyn+i. It follows from (2) that

f y*-2 S - 26!*

] ^^i
= S - fah

4 -

ly. =^
[ ^n+i

= S + Ji*

Then it follows from the rules for determining the difference functions that

( Aiyn_! = bih - sfak* + 7fah*,

&iyn - fah - fah* + fah
3
,

bjt + b*h? + fah
3
.

f A23;n =

,1
= 2S2F.

i
- 663F.
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It follows from the last equations of these four sets of equations that

=
yn+l AiVn+1,

\k = Ai^n+l A23>n+l 7 As^n-fl,

8. \ i

b%h
2 = -

Aa^n+i,
2

T

J3^3
_

As^n+i.

Therefore the integral (3) becomes

[iii "I

2 12 24 J

The coefficients of the higher order terms A4y+i and As^n+i are and
7 2

4 respectively.

10.31 Obviously, if it were desired, the integral from ^_2 to /n_i, or over any
other part of this interval, could be computed by the same methods. For example,

the integral from tn-i to t n is

/n-l

NUMERICAL ILLUSTKATIONS

10.32 Consider first the application of Simpson's method. Suppose it is required

to find

f$S I" "155

/ =
/

sin t dt = - cos t =
0.3327.

J2S L J2S

On applying 10.12 with the numbers taken from Table I, it is found that

-0

/i = [.4226 + 2.0000 -f 1.1472 + 2.5712 4- 1.4142 + 3.0640 + .8191],
<j

which becomes, on reducing 5 to radians,

7i = 0.3327,

agreeing to four places with the correct result.

10.33 On applying 10.11 (4) and omitting alternate entries in Table II, it is

found that
/45 I0

I = I sin t dt = [.4226 + 2.2944 + .7071] = 0.1992,
t/as 3

which is also correct to four places*. These formulas could hardly be surpassed
in ease and convenience of application.
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10.34 Now consider the application of 10.30 (9). As it stands it furnishes the

integral over the single interval tn to tn+i. If it is desired to find the integral

from tn to /n+m, the formula for doing so is obviously the sum of m formulas

such as (9), the value of the subscript going from n + iton + m+i, or

/n, m = hi (yn+i 4 ..... 4 y n+m+l]
- -

( ^Ijn+l + ..... +

- ~
(&2yn+l 4 .... 4 A2yn

+7n+lj

-
-j-

(AS^+I 4 .... 4
Ag^n+m+lj

+ J '

On applying this formula to the numbers of Table I, it is found that

7 = /
5

sin t dt = 5[( 5000 -f .573^ 4 .6428 4 .7071 + .7660 4 .8191)
J25

- -
(.0774 4 .0736 4 .0692 -}- .0643 + .0589 + .0531)

4-- (.0032 + .0038 4 .0044 4 .0049 + .0054 4- .0058)

-i
--

(.0006 4- .0006 4 .0006 4 .0005 4- .0005 4- .0004)]

= 0.3327,

agreeing to four places with the exact value. When a table of differences is at

hand covering the desired range this method involves the simplest numerical

operations. It must be noted, however, that some of the required differences

necessitate a knowledge of the value of the function for earlier values of the

argument than the lower limit of the integral.

10.40 Reduced Form of the Differential Equations. Differential equations

which arise from physical problems usually involve second derivatives. For

example, the differential equation satisfied by the motion of a vibrating tuning
fork has the form

d?x__
dt2

"
'

where k is a constant depending on the tuning fork.

10.41 The differential equations for the motion of a body subject to gravity
and a retardation which is proportional to its velocity are

d2x dx

~df'

dy

-.-Cft ~g,

where c is a constant depending on the resisting medium and the mass and shape
of the body, while g is the acceleration of gravity.
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10.42 The differential equations for the motion of a body moving subject to

the law of gravitation are

dp

d̂f

10.43 These examples illustrate sufficiently the types of differential equations

which arise in practical problems. The number of the equations depends on

the problem and may be small or great. In the problem of three bodies there

are nine equations. The equations are usually not independent as is illustrated

in 10.42, where each equation involves all three variables x, y, and z through r.

On the other hand, equations 10.41 are mutually independent for the first does

not involve y or its derivatives and the second does not involve x or its deriva-

tives. The right members may involve x, y, and z as is the case in 10.42, or

they may involve the first derivatives, as is the case in 10.41, or they may
involve both the coordinates and their first derivatives. In some problems

they also involve the independent variable L

10.44 Hence physical problems usually lead to differential equations which are

included in the form

d2x
__ ,/ dx

dy_

dx dy

where / and g are functions of the indicated arguments. Of course, the number

of equations may be greater than two.

10.45 If we let

j - ** V - ^* ~
dt>

y
7 dt'

equations 10.44 can be written in the form

dx .

lit

- *>

dy _~~
dt

= y :



10.46 If we let * =

included in the form
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x1} x
f =

#2, y = xs , y
f = x, equations 10.45 are

This is the final standard form to which it will be supposed the differential

equations are reduced.

10.50 Definition of a Solution of Differential Equations. For simplicity in

writing, suppose the differential equations are two in number and write them in

the form
dx f , A

i.

where / and g are known functions of their arguments. Suppose x a, y

at t = o. Then

2.

is the solution of (i) satisfying these initial conditions if <j> and \f/ are

such functions that

<(o) =
a,

the last two equations being satisfied for all o ^ 2 ^ T, where T is a positive con-

stant, the largest value of / for which the solution is determined. It is not neces-

sary that 4> and ^ be given by any formulas it is sufficient that they have

the properties defined by (3). Solutions always exist, though it will not be

proved here, iff and g are continuous functions of t and have derivatives with respect

to both x and y.

10.51 Geometrical Interpretation of a Solution of Differential Equations.
Geometrical interpretations of definite integrals have been of great value not

only in leading to an understanding of their real meaning but also in suggesting
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practical means of obtaining their numerical values. The same things are true

in the case of differential equations.

For simplicity in the geometrical representation, consider a single equation

where x ~ a at t = o. Suppose the solution is

,

2

IG '

2. X

Equation (2) defines a curve whose coordinates are x and t. Suppose it is repre-

sented by figure 2. The value of the tangent to the curve at every point on it

is given by equation (i), for there

is, corresponding to each point, a

pair of values of x and t which gives

-7T, the value of the tangent, when
dt

substituted in the right member of

equation (i).

Consider the initial point on the

curve, viz. x ~ a, t = o. The tan-

gent at this point is /(a, o). The
L curve lies close to the tangent for a

short distance from the initial point.

Hence an approximate value of x

at t = h, h being small, is the ordinate of the point where the tangent at a

intersects the line t = ti, or

xi =f(a,o)h.

The tangent at #1, h is defined by (i), and a new step in the solution can be made

in the same way. Obviously the process can be continued as long as x and t

have values for which the right member of (i) is defined. And the same process

can be applied when there are any number of equations. While the steps of this

process can be taken so short that it will give the solution with any desired

degree of accuracy, it is not the most convenient process that may be employed.

It is the one, however, which makes clearest to the intuitions the nature of the

solution.

10.6 Outline of the Method of Solution. Consider equations 10.50 (i) and their

solution (2). The problem is to find functions < and \/ having the properties

(2) . If we integrate the last two equations of 10.50 (3) we shall have

i.

P
t/o

r
Jo

The difficulty arises from the fact that < and \fs are not known in advance and

the integrals on the right can not be formed. Since </> and \[/ are the solution

values of x and y, we may replace them by the latter in order to preserve the

original notation, and we have
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I

y = 6 +

Xtf(x, y, f) dt,

/ g(x, y, f) dt.

t/O

If x and y do not change rapidly in numerical value, then/0, y, J) and g(#, y, 2)

will not in general change rapidly, and a first approximation to the values of x

and y satisfying equations (2) is

i
= + r/(fl,M)#>

Jo
,.

= & + n(a,b,i)dt,
1/0

at least for values of near zero. Since a and J are constants, the integrands in

(3) are known and the integrals can be computed. If the primitives can not be

found the integrals can be computed by the methods of 10.1 or 10.3.

After a first approximation has been found a second approximation is given by

The integrands are again known functions of t because Xi and yi were determined

as functions of t by equations (3). Consequently x2 and y2 can be computed.
The process can evidently be repeated as many times as is desired. The nth

approximation is

C*
/
/o

s *

There is no difficulty in carrying out the process, but the question arises whether

it converges to the solution. The answer, first established by Picard, is that,

as n increases, %n and yn tend toward the solution for all values of t for which all

the approximations belong to those values of x, y, and t for which / and g have

the properties of continuity with respect to t and differentiability with respect

to x and y. If, for example, / = and the value of xn tends towards zero
OC""

for t = Tj then the solution can not be extended beyond t T.

It is found in practice that the longer the interval over which the integration

is extended in the successive approximations, the greater the number of approxi-

mations which must be made in order to obtain a given degree of accuracy. In

fact, it is preferable to take first a relatively short interval and to find the solution

over this interval with the required accuracy, and then to continue from the end

values of this interval over a new interval. This is what is done in actual work.

The details of the most convenient methods of doing it will be explained in the

succeeding sections.
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10,7 The Step-by-Step Construction of the Solution. Suppose the differential

equations are

t -*<..
with the initial conditions x =

a, y = b at t = o It is more difficult to start a

solution than it is to continue one after the first few steps have been made. There-

fore, it will be supposed in this section that the solution is well under way, and

it will be shown how to continue it. Then the method of starting a solution will

be explained in the next section, and the whole process will be illustrated

numerically in the following one.

Suppose the values of x and y have been found for t ='
fc, k, . . . .

,
tn . Let

them be respectively #1, yi; #a , 3V, * .
.; ff, yns care being taken not to confuse

the subscripts with those used in section 10.6 in a difierent sense. Suppose the

intervals U - h, fe fe 3
. . . ,

Jn
- fe-i are && equal to h and that it is desired

to find the values of x and y at +!, where tn+i 4 = h.

It follows from this notation and equations (2) of 10.6 that the desired

quantities are
tn+i

f (*, y } t) dt,

ntn

I f
Jtn

The values of a and y in the integrands are of course unknown. They can be

found by successive approximations, and if the interval is short, as is supposed,

the necessary approximations will be few in number.

A fortunate circumstance makes it possible to reduce the number of approxi-

mations. The values of x and y are known aU =* tn ,
Zn-i, tn~z, - - From these

values it is possible to determine in advance, by extrapolation, very close approxi-

mations to x and y for t = *+L The corresponding values of / and g can be

computed because these functions are given in terms of x, y, and t. They are

also given for t =* tn , V-i, Consequently, curves for / and g agreeing

with their values at t = 4+1, 4, k_i, .... can be constructed and the integrals

(2) can be computed by the methods of 10.1 and 10.3.

The method of extrapolating values of xn+i and yn+i must be given. Since

the method is the same for both, consider only the former. Since, by hypothesis,

* is known for t = tnt /_!, &_2 ,
.... the values of xn , Ai#, A2#nj and

A;#n are known. If the interval h is not too large the value of A8#n+i is very

nearly equal to A 3#n . As an approximation A 3^n+i niay be taken equal to A#n>
or perhaps a closer value may be determined from the way the third differences
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3 ,
A3#n-2, A 3#n_i, and A 3#n vary. For example, In Table II it is easy to see

that A 3 sin 75 is almost certainly -3. It follows from 10.20, 1, 2 that

4-

(
Xn+l

= Ai^n+i -f Xn .

After the adopted value of A^n+i has been written in its column the successive

entries to the left can be written down by simple additions to the respec-

tive numbers on the line of tn . For example, it is found from Table II that

A2 sin 75 = -72, Ai sin 75 = 262, sin 75 = 9659. This is, indeed, the correct

value of sin 75 to four places.

Now having extrapolated approximate values of x^i and yn+i it remains to

compute / and g for x = #n+i, y =
y<n+i, t = /n+i- The next step is to pass curves

through the values of/and g for t /n+i, tn , tn-ij . . . . and to compute the inte-

grals (2). This is the precise problem that was solved in 10.30, the only difference

being that in that section the integrand was designated by y. On applying

equation 10.30 (9) to the computation of the integrals (2), the latter give

~ A2/+l - A3/n+1 . . . ],

where

fn+l
=

/(in+l,
5-

The right members of (4) are known and therefore x^i and y*+i are

determined.

It will be recalled that/+j and gn+i were computed from extrapolated values

of #n+i and yn+i, and hence are subject to some error. They should now be re-

computed with the values of xn+i and yn+i furnished by (4). Then more nearly

correct values of the entire right members of (4) are at hand and the values of

Xn+i and yn+i should be corrected if necessary. If the interval h is small it will

not generally be necessary to correct x^i and y^i. But if they require correc-

tions, then new values of /n+i and gn+i should be computed. In practice it is

advisable to take the interval h so small that one correction to/n+i and gn+i is

sufficient.

After Xn+i and y<n+i have been obtained, values of x and y at 4+2 can be found

in precisely the same manner, and the process can be continued to t = fe+j, t^ 4j

.... If the higher differences become large and irregular it is advisable to

interpolate values at the mid-intervals of the last two steps and to continue with

an interval half as great. On the other hand, if the higher differences become

very small it is advisable to proceed with an interval twice as great as that used

in the earlier part of the computation.

The foregoing, expressed in words, seems rather complicated. As a matter of

fact, it goes very simply in practice, as will be shown in section 10.9.
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10.8 The Start of the Construction of the Solution. Suppose the differential

equations are again
dx ,, .v

-/(*,**),

with the initial conditions x =
a, y = b at t = o. Only the initial values of x and

y are known. But it follows from (i) that the rates of change of x and y&tt = o

are/ (a, b, o) andg (a, b
, o) respectively. Consequently, first approximations to

values of x and y at t = t\
= h are

J ^tt) = a + kf(a, b, o),
2 *

bi(1) -* + **M,o).

Now it follows from (i) that the rates of change of x and y at x =
#1, y =

3^,

=
ft are approximately/^

1
), yJU, fe) and 0i (1)

, yi
(l)

, fe). These rates will be

different from those at the beginning, and the average rates of change for the

first interval will be nearly the average of the rates at the beginning and at the

end of the interval Therefore closer approximations than those given in (2) to

the values of x and y at t = ti are

b) )

(a , 6, o)

The process could be repeated on the first interval, but it is not advisable when

the interval is taken as short as it should be.

The rates of change at the beginning of the second interval are approximately

/(#i
(2)

> yJ, *i) an-d (#i
(2)

? yi, ti) respectively. Consequently, first approxima-
tions to the values of x and y at t = fa, where fa fa

=
h, are

With these values of x and y approximate values of/2 and gi are computed. Since

/o, o; /i, gi are known, it follows that Ai/2 , A^2 ;
A 2/2 ,

and A2g2 are also known.

Hence equations (4) of 10.7, for n + i = 2, can be used, with the exception of

the last terms in the right members, for the computation of xz and 3/2.

At this stage of work X Q = a, y^ = b, x\,y\', xz , yz are known, the first pair

exactly and the last two pairs with considerable approximation. After /2 and g2

have been computed, Xi and yi can be corrected by 10.31 for n - i. Then ap-

proximate values of #3 and ys can be extrapolated by the method explained in

the preceding section, after which approximate values of /3 and #3 can be com-

puted. With these values and the corresponding difference functions, x> and y2

can be corrected by using 10.31. Then after correcting all the corresponding

differences of all the functions, the solution is fully started and proceeds by the

method given in the preceding section.

10.9 Numerical Illustration. In this section a numerical problem will be treated

which will illustrate both the steps which must be taken and also the method of
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arranging the work A convenient arrangement of the computation which pre-

serves a complete record of all the numerical work is very important.

Suppose the differential equation is

D
'^

= lat *=-

The problem of the motion of a simple pendulum takes this form when expressed

in suitable variables. This problem is chosen here because it has an actual physi-

cal interpretation, because it can be integrated otherwise so as to express t in

terms of x, and because it will illustrate sufficiently the processes which have

been explained.

Equation (i) will first be integrated so as to express t in terms of x.

dx
On multiplying both sides of (i) by 2

-j-
and integrating, it is found that the

integral which satisfies the initial conditions is

2.

On separating the variables this equation gives

3

Suppose /c
2 < i and that the upper limit x does not exceed unity. Then

i i 2 r

A. /

- = I -h
- KZX? + ~ K*X* 4- -^ K.V + . . . .4 Vi - /cV 2 ^8 16

where the right member is a converging series. On substituting (4) into (3) and

integrating, it is found that

5. t sin"1 x + IC-sVi - x2 + sin"1

x]& + f[-O^N/I - 3* - f:r(i
- x^

+ f#Vi - x2 4- f sin"1

re] /c
4 + .......].

When x = i this integral becomes

6 . T _

Equation (5) gives for any value of x between i and +i. But the problem
is to determine x in terms of /. Of course, if a table is constructed giving t for

many values of x, it may be used inversely to obtain tke value of x corresponding

to any value of t. The labor involved is very great. When /c
2
is given numerically

it is simpler to compute the integral (3) by the method of 10.1 or 10.3.

In mathematical terms, t is an elliptical integral of x of the first kind, and the

inverse function, that is, x as a function of /, is the sine-amplitude function, which

has the real period 4!".
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Suppose K? = - and let y
= ~ Then equation (i) is equivalent to the

two equations

which are of the form 10.50 (i), where

and x o, y i at t = o.

The first step is to determine the interval which is to be used in the start of

the solution. No general rule can be given. The larger / and go the smaller

must the interval be taken. A fairly good rule is in general to take h so small

that hfo and kg* shall not be greater than 1000 times the permissible error in the

results. In the present instance we may take h = o.i.

First approximations to x and y at t = o.i are found from the initial conditions

and equations 10.8 (2) to be

o = 1 .0000.

It follows from (8) and these values of Xi and yi that

10. <

^ g(xi
(l\ yc

l
\ ti)

= 0.1490.

Hence the more nearly correct values of Xi and yi, which are given by 10.8 (3), are

;X
C2) = cH [l.OOOO -f I.OOOO] = O.IOOO,

rov 0-1 r -,

^2) ! -i LO.OOOO o.i49oj = 0.9925.

Since in this particular problem x = fy dt, it is not necessary to compute
both / and g by the exact process explained in section 10.8, for after y has been

determined x is given by the integral. It follows from (7), (8), (10), and (u)
that a first approximation* to the value of y at t ~ tz

= 0.2 is

i
12, ^2

(1) =
.0025 .1490 = .9776.

With the values of y at o, .1, .2 given by the initial conditions and in equations

(9) and (12), the first trial ^-table is constructed as follows:
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First Trial y-Table

237

Since y = / it now follows from the first equations of Cn) and 10.7 (4) for n

that an approximate value of x2 is

xz
= o.iooo -\

--
-9776 + -

.0149 H-- .0074 = .1986.

With this value of xz it is found from the second of (8) that g2
= .2901. Then

the first trial g-table constructed from the values of g at / = o, o.i, 0.2, is:

First Trial ~Table

Then the second equation of 10.7 (4) gives for n = i the more nearly correct

value of 3/2,

14. y*
= .9925 + ^ -.2901 + .1411

- ^ .0079 -
.9705.

This value of 3/2 should replace the last entry in the first trial y-table. When
this is done it is found that Ai^2 - .0220, A2^2 .0145. Then the first equa-

tion of 10.7 (4) gives

15. #2
= .1000 + ~

^.9705
+

\
.0220 + ^ .oi4sj

=
.1983.

The computation is now well started although Xi, y^ #2 ,
and y* are still subject

to slight errors. The values of Xi and yi can be corrected by applying 10.31 for

n i. It is necessary first to compute a more nearly correct value of #2 by using

the value of x given in (15). The result is #2
= -.2896, Aig2

= -.1406,

A2g2
= +.0084. Then the second equation of 10.7 (4) gives

16. .9925 + ^ I -.2896 +
^
.1406 - ^ .0084! -

.9705,

agreeing with (14). This value of yz is therefore essentially correct. An applica-

tion of 10.31 then gives

= .0000 --[
10 L

- .0220 .<

2 I
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after which it is found that gi
= -.1486, Aigi = -.1486. Now the first trial y-table

can be corrected by using the value of y* given in (14). The result is:

Second Trial ^-Table

In order to correct xz and y 2 by the same method, which is the most convenient

one to follow, it is necessary first to obtain approximate values of & and ys The

trial g-table can be corrected by computing g with the values of x given by (17)

and (15). Then the line for gz can be extrapolated. The results are:

Second Trial g-Table

Then the second equation of 10.7 (4) gives for n =
2,

18. 9705 + T:
- "~

w 76
J

-934S.

When this is added to the second trial ^-table, it is found that

19. 3>3
= -934S, AiV3

- -.0357, A 2y3
= -.0137, A 3v 3

= -f .0008.

Now x* and y2 can be corrected by applying 10.31 to these numbers and those

in the last line of the second trial g-table. The results are

20.

0997 +

.9925 +

~
[.

^ [--

.9348 4- .0357
- ~ .0137 +

4230 + .1334

.0008
24 J

^.oo7
6]

= .

.1980,

9705-

The preliminary work is finished and x and y have been determined lor i ~ o,

.1, and .2 with an error of probably not more than one unit in the last place. As

the process is read over it may seem somewhat complicated, but this is largely

because on the printed page preliminary values of the unknown quantities can

not be erased and replaced by more nearly correct ones. As a matter of fact, the
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first steps are very simple and can be carried out in practice in a few minutes if

the chosen time-interval is not too great.

The problem now reduces to simple routine. There are an stable, a y-table

(which in this problem serves also as an /-table), a g-table, and a schedule for

computing g. It is advisable to use large sheets so that all the computations

except the schedule for computing g can be kept side by side on the same sheet.

The process consists of six steps: (i) Extrapolate a value of gn+i and its

differences in the g-table; (2) compute yn+i by the second equation of 10.7 (4);

(3) enter the result in the y-table and write down the differences; (4) use these

results to compute xn+i by the first equation of 10.7 (4) ; (5) with this value of

xn+i compute gn+i by the g-computation schedule; and (6) correct the extrapolated

value of grc+i in the g-table.

Usually the correction to gn+i will not be great enough to require a sensible

correction to yn+i . But if a correction is required, it should, of course, be made.

It follows from the integration formulas 10.7 (4) and the way that the difference

functions are formed that an error e in gn+i produces the error fAe in yn+1 ,
and

the corresponding error in xn+\ is ~
04

It is never advisable to use so large

a value of h that the error in xn+i is appreciable. On the other hand, if the differ-

ences in the g-table and the y-table become so small that the second differences

are insensible the interval may be doubled.

The following tables show the results of the computations in this problem
reduced from five to four places.

Final tf-
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Final y-Table

Final g-Schedule
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Final g-Table

Final ^-Schedule Continued
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As has been remarked, large sheets should be used so that the x, y, and g-tables

can be put side by side on one sheet. Then the ^-column need be written but once

for these three tables. The g-schedule, which is of a different type, should be on

a separate sheet.

The differential equation (i) has an integral which becomes for /c
2 = -

2

dx

21. y-f #-# 4 =
i,

and which may be used to check the computation because it must be satisfied at

every step. It is found on trial that (21) is satisfied to within one unit in the

fourth place by the results given in the foregoing tables for every value of t.

The value of t for which x = i and y = o is given by (6). When KZ | it is

found that T = 1.8541. It is found from the final as-table by interpolation based

on first and second differences that x rises to its maximum unity for almost exactly

this value of t\ and, similarly, that y vanishes for this value of t.
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INTRODUCTION TO THE TABLES OF ELLIPTIC
FUNCTIONS

By SIR GEORGE GREENHIIX

In the integral calculus, /
-=> and more generally, / __ dx t

J vx j p + ^/x

whereM , 2V, P, Q are rational algebraical functions of #, can always be expressed

by the elementary functions of analysis, the algebraical, circular, logarithmic or

hyperbolic, so long as the degree of X does not exceed the second. But when

X is of the third or fourth degree, new functions are required, called elliptic

functions, because encountered first in the attempt at the rectification of an

ellipse by means of an integral.

To express an elliptic integral numerically, when required in an actual

question of geometry, mechanics, or physics and electricity, the integral must

be normalised to a standard form invented by Legendre before the Tables can

be employed; and these Tables of the Elliptic Functions have been calculated

as an extension of the usual tables of the logarithmic and circular functions of

trigonometry. The reduction to a standard form of any assigned elliptic -integral

that arises is carried out in the procedure described in detail in a treatise on the

elliptic functions.

11.1. Legendre's Standard Elliptic Integral of the First Kind (E. I. I) is

_ dx

^2~r
~~

r<p d4>

J Vi K2 sirs sur
,

defining <t> as the amplitude of w, to the modulus AC, with the notation,

(p am u
x sin 4> sin am u

abbreviated by Gudermann to,

x = sn u
cos <^>

= en u

A <t> = V(i ~ K2 sin2 <^))
= A am w = dn w,

t
and sn u, en w, dn u are the three elliptic functions. Their differentiations are,

d<t> A . tf am u ,

-Z. = Ad> or 5
= dn u

du du

d sin <t> , A i dsn.M ,

T
- = cos <b- Ad> or 5

= en u dn #
du du

245
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= - sin 6 Ac6 or -J

1 = - sn u dn u^du

2 = -
/c
2 sin 6 cos or , = - /c

2 sn u en *t

7T

11.11. The complete integral over the quadrant, o /><, o< oc <i, defines

the (quarter) period, K,

K p
*K = F
2

making
sn J - i

en JT = Q

dn # - *'.

*' is the comodulus to /c, /c
2
-f /c

/2 -
i, and the coperiod, Kf

, is,

, rF ^
Jo V(i-^si

11.12.
sn2 + en2 w = i

en2 u + /c
2 sn2 u - i

dn2 - /c
2 en2 w = /c

/2
.

sn o =
o, en o = dn, o == i.

sn . i, en -fiT = o, dn ^T = /c'.

11.13. Legendre has calculated for every degree of 6, the modular angle,

K. = sin 6, the value of F< for every degree in the quadrant of the amplitude 0,

and tabulated them in his Table IX, Fonctions elliptiques, t. II, 90 x 90 = 8100

efttries.

But in this new arrangement of the Table, we take u = F<j> as the independent

variable of equal steps, and divide it into 90 degrees of a quadrant K, putting

u = eK = ^sK, r~9otf.
90

As in the ordinary trigonometrical tables, the degrees of r run down the left of

the page from o to 45, and rise up again on the right from 45 to 90. Then

columns EC, III, X, XI are the equivalent of Legendre's Table of F<f> and 0,

but rearranged so that F(j> proceeds by equal increments i in r, and the incre-

ments in are unequal, whereas Legendre took equal increments of <f> giving

unequal increments in u F<p9

The reason of this rearrangement was the great advance made in elliptic

function theory when Abel pointed out that F4> was of the nature of an inverse

function, as it would be in a degenerate circular integral with zero modular

angle. On Abel's recommendation, the notation is reversed, and
cf>

is to be



INTRODUCTION TO THE TABLES OF ELLIPTIC FUNCTIONS 247

considered a function of u, denoted already by <f>
= am u, instead of looking

at
,
in Legendre's manner, as a function, F<t>, of <j>. Jacob! adopted the idea

in his Fundamenta nova, and employs the elliptic functions

sin 4>
= sin am u, cos < = cos am M, A< = A am u

9

single-valued, uniform, periodic functions of the argument u, with (quarter)

period K, as $ grows from o to JTT. Gudermann abbreviated this notation to

the one employed usually today.

11.2. The E. I. I is encountered in its simplest form, not as the elliptic arc,

but in the expression of the time in the pendulum motion of finite oscillation,

unrestricted to the small invisible motion of elementary treatment.

The compound pendulum^ as of a clock, is replaced by its two equivalent

particles, one at in the centre of suspension, and the other at the centre of

oscillation, P; the particles are adjusted so as to have the same total weight as

the pendulum, the same centre of gravity at G, and the same moment of inertia

about G or 0; the two particles, if rigidly connected, are then the kinetic equiva-

lent of the compound pendulum and move in the same way in the same field of

force (MaxweU, Matter and Motion, CXXI),

Putting OP =
J, called the simple equivalent pendulum length, and P starting

from rest at B, in Figure i, the parti-

cle P will move in the circular arc

BAB'&s if slidingdownasmooth curve ;

and P will acquire the same velocity

as if it fell vertically KP = ND\ this

is all the dynamical theory required.

(velocity of P)
2 = 2g*KP,

(velocity of N)
2=

2g ND - sinMOP

= 2g-ND
7VP2 ?2

^ND-NA-NE,OP2
I
2

and with AD =
k, AN =

y, ND
**k-y, AE= 2l, NE= 2l- y,

where Y is a cubic in y. Then t is given

by an elliptic integral of the form

dy

FIG. i

=- This integral is normalised to Legendre's standard form of his
VY

E. I. I by putting y = h sin2 $, making AOQ = <, k - y = h cos2 <,

2 / y = 2/ (i /c
2 sin2 0),

AE
K is called the modulus, AEB trie modular angle which Legendre denoted

by 0; V(i - tf
2 sin2 <) he denoted by A0.
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With g
= In2

,
and reckoning the time t from A, this makes

in Legendre's notation. Then the angle <f>
is called the amplitude of nt, to be

denoted am nt, the particle P starting up from A at time t = o; and with u =
nt,

Velocity of P = n-AB-cn u = VBP PB f

,
with an oscillation beat of T seconds

T/~ A ^.-t- IT*
in u = eK, e ~ 2t/ 1 *

11.21. The numerical values of sn, en, dn, tn (u, K) are taken from a table

to modulus K = sin (modular angle, 6) by means of the functions Dr, Ar, Br,

Cr, in columns V, VI, VII, VIII, by the quotients,

sn eK =
yr

aieK ^
jr

dneK _ C

V?
'
D

'

tn eK = u

These D,A 9 B,C are the Theta Functions of Jacobi, normalised, defined by

-
f) C(r) - ^(90 -

r).

They were calculated from the Fourier series of angles proceeding by multiples

of r, and powers of q as coefficients, defined by

q = e-T F

Qu = i 2^ cos 2r 4- 2^ cos 4^ - 2^
9 cos 6r + . . . .

Hu 2g^ sin r - 2^^ sin 3^ + 25^ sin 5/
- ....

11.3. The Elliptic Integral of the Second Kind (E. I. II) arose first historically

in the rectification of the ellipse, hence the name. With BOP =
<t>

in Figure 2,

the minor eccentric angle of P, and 5 the arc BP from ^ to P at # = a sin 0,

= b cos <,
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-- - vV cos2
<t> + P sin2 4>

=
K),

to the modulus /c, the eccentricity of the ellipse.

Then s = a E<j>, whereJo A0 d<j> is denoted by

in Legendre's notation of his standard E. I. II;

it is tabulated in his Table EX alongside of Ftp

for every degree of the modular angle 6, and to

every degree in the quadrant of the amplitude <j>.

But it is not possible to make the inversion

and express $ as a single-valued function of E(f>.

M A

FIG 2

11.31. The E. I. II, E<j), arises also in the expression of the time, t, in the oscil-

lation of a particle, P, on the arc of a parabola, as F<j> was required on the arc

of a circle. Starting from B along the parabola

BAB', Figure 3, and with AO =
h, OB =

J,

BOQ -
$, ^4-ZV = y = A cos2 0, JVP = # = 6* cos

and with OS = 2k = b tan a, Q4' = SS
= & sec a, the parabola cutting the horizontal

at B at an angle a:, the modular angle, BRA'B
f

is a semi-ellipse, with focus at S, and eccen-

tricity K = sin a.

(Velocity of P)
2

=

- (J
2 cos2 + 4A

2 sin2 cos2
0)

- sin2 a sin2 <) cos2
< COS

- F2 cos2
0,

if F denotes the velocity of P at A
,
and 0-4' = a. Then with 5 the elliptic arc BR,

and so the point R moves round the ellipse with constant velocity F, and ac-

companies the point P on the same vertical, oscillating on the parabola from B
to Br

.

In the analogous case of the circular pendulum, the time t would be given

by the arc of an Elastica, in KirdhhofFs Kinetic Analogue, and this can be placed
as a bow on Figure i, with the cord along AE and vertex at B.

Legendre has shown also how in the oscillation of R on the semi-ellipse BRB
f

in a gravity field the time t is expressible by elliptic integrals, two of the first

and two of the second kind, to complementary modulus (Fonctions elliptiques,

I, p. 183).
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11.32. In these tables, E<t> is replaced by the columns IV, IX, of E(r) and

G(r) = (90
-

r), defined, in Jacobi's notation, by

E(r) = zn eK - E$> - eE

G(r) = zn (i
- e)K, r = goe.

This is the periodic part of E<j> after the secular term eE =
-^
u has been set

aside, E denoting the complete E. I. II,

The function zn u, or Z^ in Jacobi's notation, or E(r) in our notation, is

calculated from the series,

This completes the explanation of the twelve columns of the tables.

114 The Double Periodicity of the Elliptic Functions.

This can be visualised in pendulum motion if gravity is supposed reversed

suddenly at B (Figure i) the end of a swing; as if by the addition of a weight

to bring the centre of gravity above 0, or by the movement of a weight, as in the

metronome. The point P then oscillates on the arc BEB', and beats the elliptic

function to the complementary modulus K
f

,
as if in imaginary time, to imaginary

argument nti - jK'i: and it reaches P' on AX produced, where tan AEPf

- tan AEB-cn (nt'i, /c), or tan EAPr = tan EAB-cv. (nt', O; or with nt' - v
9

DR' = DB-<xi (iv, K'), DR - Z>-cn (, /c
;

), with DR-DR' = DB\ EPr

crossing

DB in R'.

en (iv, K)^ J 7
en (,

, , . v dn
an fw, /c)v ' j

en (, /c') sn Xx -
,

/c

where X"' denotes the complementary (quarter) period to comodulus

If m, mf
are any integers, positive or negative, including o,

sn (u -f 4mK + 2m'iK') = sn w

en [> + 4wiT -h 2w'(X" + ^03 = en w

dn ( -f 2W^ + im'iK') = dn w

11.41. The Addition Theorem of the Elliptic Functions.

sn u en i) dn v sn en u dn ^
sn (u

en

i /c
2 sn2 u sn2 v

en u en 2) =F sn w dn w sn dn

j / x dn ^ dn g =F /c
2 sn u en ^ sn v en P

i - AC
2 sn2 M sn2

zi



INTRODUCTION TO THE TABLES OF ELLIPTIC FUNCTIONS 25 1

11.42. Coamplitude Formulas, with v ~ d= K,

sn (K -
u) = -=
- = sn (^ + #)

/Tr N ic'snu , rjr ,

en (K-u) ** =
- en (X + )

=
dn^ \ i /

dn (
-

)
= = dn (K + *)

tn (K -
u) = ^ tnv '

tn u v
/c' tn #

11.43. Legendre's Addition Formula for his E. I. II,

E<f>
= /A<-d< = /dn2 ^ du, <p

= /*dnw-dw = amw.

^> + Ei/' Ecr = /c
2 sin ^> sin

if/
sin cr, ^ = am v, cr = am (fl + w)

or, in Jacobi's notation,

zn w + zn v zn ( + v) /c
2 sn w sn v sn (z> 4- w),

the secular part cancelling.

Another form of the Addition Theorem for Legendre's E. I. II,

u T?a -oi
-

E<r - E6 -
2E\f/

=-
, .

9 T .
g

.
,

= am -Y
i - /c

2 sin2 sin2 ^
or, in Jacobi's notation,

, N , x 2 /c
2 sn v en v dn z; sn2 u

zn ( + u) + zn ( v u) 2 ZD.V =-5 5
-

5
--

i - /c
2 sn2 sn2

z;

11.6. The Elliptic Integral of the Third Kind (E. I. Ill) is given by the next

integration with respect to
,
and introduces Jacobi's Theta Function, Qu,

defined by,
d log Qu-2- = Zu = zriM

du

Qu r j
TV- == exp. I zn wdu.
Qo * ^

Integrating then with respect to u,
. -. , . . ~ , v T- 2 /c

2 sn v en dn t sn2 w ,

log Q (v + u) log (v
- u) -- 2uznv = I

-
5
-

=
- du.& v ' &v j Jo i ~ /c

2 sn2 w sn2
^

and this integral is Jacobfs standard form of the E. I. Ill, and is denoted by
2li (u, if); thus,

TT / \ r^2 sn^cnzj dn^sn2 ^ .
, -,

, 6 (v u)
11 (u, v)

= I
-

5 5
-

5
- du = zn v + f log s~? ; \

'

v ; y J i - K2 sn2 u sn2 z> ( + )

Jacobins Eta Function, HT;, is defined by

H*> /-
g^

= V/c sn 0,

and then
^ log Hz; en v dn v , A , ,

f =--h zn z;, denoted by zs v;
a/u sn z>



2$ 2 3VIATHEMATICAL FORMULAE AND ELLIPTIC FUNCTIONS

SO that
cn v dn u 7

fifi

sn v cn v dn v
yj

/

^

i ~ tf
2 sn2 w sn2 z> sn z;

iiQfo-M)

2
u
*e(i> + o

This gives Legendre's standard E. I. Ill,

/M" cc/>

i -|- n sin2 Ac/>

where we put n = - /c
2 sn2 u = - K? sin2 ^,

/c
2
\ f

v cos2 ^A2^ cn2
z> dn2

z>

n) sin2 ^
""

sn2 z;

'

the normalising multiplier, M.
The E. I. Ill arises in the dynamics of the gyroscope, top, spherical pendulum,

and in Poinsot's herpolhode. It can be visualized in the solid angle of a slant

cone, or in the perimeter of the reciprocal cone, a sphero-conic, or in the mag-
netic potential of the circular base*

11.51. We arrive here at the definitions of the functions in the tables. Jacobi's

Qu arid H# are normalised by the divisors 60 and UK, and with r ^ goe,

n f
. , QeK

f
. TieK

D(r) denotes -s^r, A(r) denotes

while J5(r)
- A(go - r), C(r) - ^(90 -

r), and J5(o) - 4 (90)
- D(p) - 0(90)

-i, C(o)-J3(9o)--i=.

Then in the former definitions,

sn u = VV sn eK

C(r) __ C(o)

Then, with ^ = eK, v = /ST, f 90^, ^ 907,

0), zn (i -/) ^ E (90
-

^) - G (^).
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The Jacobian multiplication relations of his theta functions can then be

rewritten

D(r + s)Z?(r
-

s}
= DWs - tan2 6A*rA*s,

B(r + s)B(r - s)

But unfortunately for the physical applications the number 5- proves usually

to be imaginary or complex, and Jacobi's expression is useless; Legendre calls

this the circular form of the E. I. Ill, the logarithmic or hyperbolic form corre-

sponding to real s. However, the complete E. I. Ill between the limits o j> < JTT,

or o <u <K, o<e<i, can always be expressed by the E. 1. 1 and II, as Legendre

pointed out.

11.6. The standard forms are given above to which an elliptic integral must be

reduced when the result is required in a numerical form taken from the Tables.

But in a practical problem the integral arises in a general algebraical form, and

theory shows that the result can always be made, by a suitable substitution, to

depend on three differential elements, of the I, II, III kind,

.&.
Vs

n (,-.).*

TTTJ_LX 7 r

(s
- a)

where S is a cubic in the variable s which may be written, when resolved into

three factors,
,

in the sequence a>^>5-2 >^> -
oc> and normalised to a standard form of

zero degree these differential elements are

S denoting the value of S when s = cr.

The relative positions of s and cr in the intervals of the sequence require

preliminary consideration before introducing the Elliptic Functions and their

notation.
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11.7. For the E. I. I and its representation in a tabular form with

.
S2 - S3 ,o Si

- Sz

Z
/*CO, 2

^J SI, 53

i- S3

/Si
-

S;

Si
~ Sz

_.. 9

and utilizing the inverse notation, then in the first interval of the sequence,

^Vsi -
Sz ds

eK = j
a

T '*
.-" - sn~

VS s

u A -
n-*

1

!/V 5 -
dn- 1

S -

indicating the substitutions,

= sn - sn sin2 ^ = sn2 (i
-

e)K.

In the next interval 5 is negative, and the comodulus K' is required.

cn~
Si-

= C
J^2

5-

- srs - si

s -

5 is positive again in the next interval, and the modulus is /c.

S2 >S >Sz

^Vsi -
Sz ds = sn~

.

- s

eK = sn~
'*, vs

indicating the substitutions,

"

= A2^ = dn2
(i
- e)K,

en"

5

sn <) + Sz cos
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S is negative again in the last interval, and the modulus K?.

255

-

>- r
C/

Si
-

00 A/
- s

en-

11.8. For the notation of the E. I. II and the various reductions, take the

treatment given in the Trans. Am. Math. Soc., 1907, vol. 8, p. 450. The Jacobian

Zeta Function and the Er, Gr of the Tables, are defined by the standard integral

Sl
~ S

or,

F
Jsz 2

T
7 = fH'

where zn is Jacobi's Zeta Function, and H, H' the complete E. I. II to modulus

K, K', defined by,

n2 (eK}-d(eK)
, /c)H -

The function zn ^ is derived by logarithmic differentiation of Qu,

d log Qu . ,

zn w = r- ?
or concisely,du

Qu ~ exp.

and a function zs u is derived similarly from

d log
fdu

^ log sn u

= zn w -\

du

en ^ dn u

sn u

For the incomplete E. I. n in the regions,

and

<> TT 1 3
sn2 dx - -- or

S S$

S3
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.

- s v Si s3

- s3
ds = -

(i
-

/S
-

$3 ds
__

Ag

x/^rr vs~ J *-
- e)(K-H)

the integrals being at the upper limit, s = oo
9
or at the lower limit,

where e = o and zs eK = .

So also,

/>, *$ _ Sz \/si - s* , f* "2 si
- s rfs eff + zn eK

J s> Si S S3

rfs =

/?-Sij - s3

,

!

- S3 V Si
- S3

ds

^vs

J v _ $ 7/5
^
d -

/S
Sg

V/Ji 5

zn e

+ zn e^

ds -
fl")

- zn^

Similarly, for the variable a in the regions

Sixr>s2 >s3 >o*> -
S negative, and

^ fr
" ? ^ Sl

" s*
L or

Si S2 Si <T

si-cr d<r<r ^ (***
Si-

1^ /-. ^1 - '-
/)C^"

/" (T-s2

J

<r - SB do- - <r

/t
ty Si

(T VSi Sj

a- -
_

(i +

these last three integrals being infinite at the upper limit, cr = s^ or lower limit

$ = - CD
?
where / =

o, zs/JK"'
= oo .

Putting e = i or / = i any of these forms will give the complete E. I. II,



11.9. In dealing practically with an E. I. Ill it is advisable to study it firs

in the algebraical form of Weierstrass,

where S = 4-5 - sr$ - s-s - 53, S the same function of cr, and begin by ex-

amining the sequence of the quantities s, cr, Si, $2, s$

Then in the region

put
$1 3

2~ ,
<r - 53

^ _ cr =
x -

(i
-

/c
2 sn2 w sn2

2;),

V2 = V^i - s% (52 53) sn en 7) dn v, making

AVSj^ psn
g cn.

J s - cr ^/s J I - K ssn u

But in the region,

/ NO-
s, = (52

- 53) sn2
**, cr - ^3 =

<T

dn

2

0- _ s _ _I_J
(j
_ K2 Sn2 ^ Sn2 ^

making,
en dn v 7w cm

/I
^/5 ^ /" Sn ^ TT TT/ \

-?
v.^ = =

/ i ; r Hi = n(, )

cr - 5 \/5 y i ~ /c
2 sn2 ^ sn2

v sn

In a dynamical application the sequence is usually

or

making S negative, and the E. I. Ill is then called circular; the parameter 'i

is then imaginary, and the expression by the Theta function is illusory.

The complete E. I. Ill, however, was shown by Legendre to be tractable

and falls into four classes, lettered (7') OO, p. 138, (i')j (*0> PP- X33> J34 (Fonc-

tlons elliptiques, I).

5i
~

T

5i
-

<r
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A.
00 > S ^ = i^d -f)-K ZD.fK'

,
sn2 /AJ

D.

D - C



TABLES OF ELLIPTIC FUNCTIONS
BY COL. R. L. HIPPISLEY



26o ELLIPTIC FUNCTION
K = 1 5737921309, K' = 3 831742000, E = 1 5678090740, E' = 1 012663506,

SMITHSONIAN TABLES



TABLE 0~5
?=0 000476569916867, 00=0 9990468802, HCK) =0.2955029021

261

TABLES



2 6 2

1 5828428043,

ELLIPTIC FUNCTION

3 153385252, E - 1 5588871966, E' = 1 0401U396,

SMITHSONIAN TABLES



TABLE 6 = 10

q = 00191359459017, 90= 0.9961728108, HK = 418305976553

263

SMITHSONIAN TABLES



264
, 1 5981420021, K' = 2 7680631454, E

ELLIPTIC FUNCTION
= 1 5i41501939, E' = 1 076405113,











TABLE = 15

q = 004333420509983, 80 = 9913331597, HE = 5131518035

265

SMITHSONIAN TABLES



266

1 6200258991, K' - 2 5045500790, E

ELLIPTIC FUNCTIO
. 1 5237992053, E' - 1 118377738

SMITHSONIAN TABLES



TABLE B = 20

0=0 007774680416442, 00 = 9844506465, HK = 5939185400

267

SMITHSONIAN TABLES



K ~ 1 6489952185, K' = 2 3087867982, E
ELLIPTIC FUNCTION

1 4981149284, E' - 1 1638279645,

SMITHSONIAN TABLES



TABLE = 25

q = 012294560527181, 60=0 975410924642, HK = 666076159327

269

SMITHSONIAN TABLES



270 ELLIPTIC FUNCTION

K - 1 6857503548, K' - 2 1565156475, E = 1 4674622093 E' - 1 211056028,

SMITHSONIAN TABLES



272 ELLIPTIC FUNCTION
K - 1 7312451757, K' = 2 0347153122, E = 1 4322909693, E' = 1 2586796248,



TABLE B = 35

q = 024915062523981, 80 = 9501706456, KK = 7950876364
273

SMITHSONIAN TABLES



274
K = 1 7867691349, K' = 1 9355810960, E

ELLIPTIC FUNCTION
. 1 3931402485, E' = 1 3055390943,

SMITHSONIAN TABLES



TABLE = 40

' = 0.033265256695577, 00=0 9334719356, HK = 8550825245
275

iMITHSONIAN TABLES



276
ELLIPTIC FUNCTION

K - K' - 1 8540746773, E = E' = 1 3506438810,

SMITHSONIAN TABLES



TABLE B = 45

q = e-*- = 04321391826377, 60 = 0. 9135791382, HK^ 9135791382

277

SMITHSONIAN TABLES



278 ELLIPTIC FUNCTION

K - 1 9355810960, K' - 1 7867691349, E = 1 3055390943, E' = 1 3931402485,

SMITHSONIAN TABLES



TABLE (9 = 50

q - 055019933698829, 90=0 8899784604, HK = 0. 9715669451

279

SMITHSONIAN TABLES



2g ELLIPTIC FUNCTION

K - 2 0347163122, K' = 1 7312451767, E - 1.2586796248, E' - 1 4322909693,

SMITHSONIAN TABLES











TABLE = 55

q = 069042299609032, ,90=0 8619608462, HK 1. 0300875730

281

SMITHSONIAN TABLES



282 ELLIPTIC FUNCTION
K - 2 1665156475, K' = 1 6857503548, E = 1 211056028, B' = 1.4674622093,

SMITHSONIAN TABLES



TABLE 6 - 60

q - 0.085795733702195, 90=0 8285168980, HK = 1 0903895588

283

SMITHSONIAN TABLES



284
K = 2' 3087867982, K' - 1. 6489952185, E

ELLIPTIC FUNCTION
1. 1638279645, E' = 1 4981149284,

SMITHSONIAN TABLES



TABLE 6 - 65

q = 106054020185994, 90 = 7881449667, HK - 1 1541701350

285

SMITHSONIAN TABLES



2g6

K - 2 5045600790, K' - 1 6200258991, E

ELLIPTIC FUNCTION

1. 1183777380, E' = 1 5237992053,

SMITHSONIAN TABLES



TABLE 6 = 70

q = 131061824499858, 80 = 7384664407, HK = 1 22404S2555

287

SMITHSONIAN TABLES



288-

K = 2 7680631454 =KV, K' - 1 6981420021, E
ELLIPTIC FUNCTION

: 1 076405113, E7 . 1 5441504969,

SMITHSONIAN TABLES



TABLE 6 = 75

q = 163033534821580, 90 = 6753457533, HK - 1. 3046678096

289

SMITHSONIAN TABLES



290
K = 3 1533852519, K' = 1.5828428043, E

ELLIPTIC FUNCTION
: 1 0401143957, E' - 1 5588871966,

SMITHSONIAN TABLES



TABLE 6 = 80

q = 206609755200965, 60 = 590423578356, HK = 1 406061468420
2QI

SMITHSONIAN TABLES



K = 3 2553029421, K' - 1.5805409339, E

ELLIPTIC FUNCTION

-. 1 033789462, E' = 1 5611417453,

SMITHSONIAN TABLES



TABLE $ . 81
'

q 217548949699726, 90-0 5693797108, HK = 1 4306906219

293

SMITHSONIAN TABLES



2Q4 ELLIPTIC FUNCTION
K = 3 3698680267, K' = 1.5784865777, E I 027843620, E' = I 5629622295,

SMITHSONIAN TABLES



TABLE 0=82

q = 0. 229567159881194, 00 = 5464169465, HK = 1 4575481002

295

SMITHSONIAN TABLES



296
ELLIPTIC FUNCTION

K - 3 5004224992, K' = 1.5766779816, E = 1 022312588, E' - 1 5649475630,

SMITHSONIAN TABLES











TABLE B = 83

q = 0. 242912974306665, 90 = 5211317465, HK = 1 4872214813
297

SMITHSONIAN TABLES



298
K 3 6518559695, K' = 1 5751136078, E

ELLIPTIC FUNCTION
. 1 017236918, E' = 1.5664967878,

SMITHSONIAN TABLES



TABLE - 84

q = 257940195766337, 60^0 4929628191, HK = 1 5205617314

299

SMITHSONIAN TABLES



300 ELLIPTIC FUNCTION
K - 3.8317419998, K' - 1 5737921309, E - 1 0126635062, E' = 1 5678090740,

SMITHSONIAN TABLES



TABLE 6 = 85

q = 275179804873563, 60 = 4610905222,

301
1 5588714533

SMITHSONIAN TABLES



302
K 4 0527581695, K' - 1 5727124350, E

ELLIPTIC FUNCTION

1 0086479569, E' = 1 5688837196,

SMITHSONIAN TABLES



TABLE 9 = 86

q = 295488385658687, 60=0 4242361430, HK = 1 6043008048
303

SMITHSONIAN TABLES



304
K 4. 3386539760, K' - 1 5718736106, E -

ELLIPTIC FUNCTION"

1 0052585872, E' = 1.5697201504,

TARI ES



TABLE, 6 = 87

q ~ 0. 320400337134867, 60 0, 3802048484, HK = 1 6608093153

'305



306
K ~ 4 7427172663, K' _ 1 5712749524, E

ELLIPTIC FUNCTION
. 1 0025840855, B' 1 5703179199,



TABLE 0-88

q - 363165648296037, 60 = 0. 3246110213, 'HK = 1. 7370861637

307

SMITHSONIAN TABLES



38
K . 5. 4349098296, K' - 1 5709159581, E

ELLIPTIC FUNCTION
= 1 0007515777, E' - 1 5706767091,



TABLE Q - 89

g 403309306338378, 90 = 2457332317, HK = 1 8599580878
309

SMITHSONIAN TABLES
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