The Hunt Library
 Carnegie Institute of Technology
 Pittsburgh, Pennsylvania

DATE DUE

Unless this book is returned on or before the last date stamped below a fine will be charged. Fairness to other borrowers makes enforcement of this rule necessary.

ADVERTISEMENT

The Smithsonian Institution has maintained for many years a group of publications in the nature of handy books of information on geographical, meteorological, physical, and mathematical subjects. These include the Smithsonian Geographical Tables (third edition, reprint, 1918), the Smithsonian Meteorological Tables (fourth revised edition, r9x8), the Smithsonan Physical Tables (seventh revised edition, 192I); and the Smithsonian Mathematical Tables: Hyperbolic Functions (second reprint, 1921).

The present volume comprises the most important formulae of many branches of applied mathematics, an illustrated discussion of the methods of mechanical integration, and tables of elliptic functions. The volume has been compiled by Dr. E. P. Adams, of Princeton University. Prof. F. R. Moulton, of the University of Chicago, contributed the section on numerical solution of differential equations. The tables of elliptic functions were prepared by Col. R. L. Hippisley, C. B., under the direction of Sir George Greenhill, Bart., who has contributed the introduction to these tables.

The compiler, Dr. Adams, and the Smithsonian Institution are indebted to many physicists and mathematicians, especially to Dr. H. L. Curtis and colleagues of the Bureau of Standards, for advice, criticism, and coöperation in the preparation of this volume.

Charles D. Walcott, Secretary of the Smithsonian Institution.
May, 1922.

PREFACE

The original object of this collection of mathematical formulae was to bring together, compactly, some of the more useful results of mathematical analysis for the benefit of those who regard mathematics as a tool, and not as an end in itself. There are many such results that are difficult to remember, for one who is not constantly using them, and to find them one is obliged to look through a number of books which may not immediately be accessible.

A collection of formulae, to meet the object of the present one, must be largely a matter of individual selection; for this reason this volume is issued in an interleaved edition, so that additions, meeting individual needs, may be made, and be readily available for reference.

It was not originally intended to include any tables of functions in this volume, but merely to give references to such tables. An exception was made, however, in favor of the tables of elliptic functions, calculated, on Sir George Greenhill's new plan, by Colonel Hippisley, which were fortunately secured for this volume, inasmuch as these tables are not otherwise available.

In order to keep the volume within reasonable bounds, no tables of indefinite and definte integrals have been included. For a brief collection, that of the late Professor B. O. Peirce can hardly be improved upon; and the elaborate collection of definite integrals by Bierens de Haan show how inadequate any brief tables of definite integrals would be. A short list of useful tables of this kind, as well as of other volumes, having an object similar to this one, is appended.

Should the plan of this collection meet with favor, it is hoped that suggestions for improving it and making it more generally useful may be received.

To Professor Moulton, for contributing the chapter on the Numerical Integration of Differential Equations, and to Sir George Greenhill, for his Introduction to the Tables of Elliptic Functions, I wish to express my gratitude. And I wish also to record my obligations to the Secretary of the Smithsonian Institution, and to Dr. C. G. Abbot, Assistant Secretary of the Institution, for the way in which they have met all my suggestions with regard to this volume.
E. P. Adams

Princeton, New Jersey

COLLECTIONS OF MATHEMATICAL FOR'MULAE, ETC.

B. O. Peirce: A Short Table of Integrals, Boston, I899.
G. Petit Bois: Tables d'Integrales Indefinies, Paris, 1906.
T. J. I'A. Bromwich: Elementary Integrals, Cambridge, igir.
D. Bierens de Haan: Nouvelles Tables d'Integrales Definies, Leiden, 1867. E. Jahnke and F. Emde: Funktionentafeln mit Formeln und Kurven, Leipzig, 1909.
G. S. Carr: A Synopsis of Elementary Results in Pure and Applied Mathematics, London, 1880.
W. Laska: Sammlung von Formeln der reinen und angewandten Mathematik, Braunschweig, 1888-1894.
W. Ligowski: Taschenbuch der Mathematik, Berlin, r893.
O. Th. Burklen: Formelsammlung und Repetitorium der Mathematik, Berlin, 1922.
F. Auerbach: Taschenbuch fur Mathematiker und Physiker, i. Jahrgang, 1909. Leipzig, 1909.

SYMBOLS

\log logarithm. Whenever used the Naperian iogarithm is understood. To find the common logarithm to base ro:

$$
\begin{aligned}
\log _{10} a & =0.43429 \ldots \log a . \\
\log a & =2.30259 \ldots \log 10
\end{aligned}
$$

! Factorial. n ! where n is an integer denotes $1.2 \cdot 3 \cdot 4 \ldots \ldots$. Equivalent notation \mathfrak{n}^{n}
$\neq \quad$ Does not equal.
$>\quad$ Greater than.
$<\quad$ Less than.
$\geqslant \quad$ Greater than, or equal to.
$\leqslant \quad$ Less than, or equal to.
$\binom{n}{k} \quad$ Binomial coefficient. See 1.51.
$\rightarrow \quad$ Approaches.
$\left|a_{\imath k}\right|$ Determinant where $a_{\imath k}$ is the element in the i th row and k th column, $\frac{\partial\left(u_{1}, u_{2}, \ldots\right)}{\partial\left(x_{1}, x_{2} . \ldots\right)}$ Functional determinant. See 1.37.
$|a|$ Absolute value of a. If a is a real quantity its numerical value, without regard to sign. If a is a complex quantity, $a=\alpha+i \beta$, $|a|=$ modulus of $a=+\sqrt{\alpha^{2}+\beta^{2}}$.
$i \quad$ The imaginary $=+\sqrt{-\mathrm{I}}$.
$\sum \quad$ Sign of summation, i.e., $\sum_{k=1}^{k=n} a_{k}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$.
\prod Product, i.e., $\prod_{k=1}^{k=n}(\mathrm{I}+k x)=(\mathrm{I}+x)(\mathrm{I}+2 x)(\mathrm{I}+3 x) \ldots(\mathrm{I}+n x)$.

I. ALGEBRA

1.00 Algebraic Identities.

1. $a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\ldots .+a b^{n-2}+b^{n-1}\right)$.
2. $a^{n} \pm b^{n}=(a+b)\left(a^{n-1}-a^{n-2} b+a^{n-3} b^{2}-\ldots \ldots \mp a b^{n-2} \pm b^{n-1}\right)$.
n odd: upper sign.
n even: lower sign.
3. $\left(x+a_{1}\right)\left(x+a_{2}\right) \ldots\left(x+a_{n}\right)=x^{n}+P_{1} x^{n-1}+P_{2} x^{n-2}+\ldots$. $+P_{n-1} x+P_{n}$.

$$
P_{1}=a_{1}+a_{2}+\ldots \ldots+a_{n}
$$

$P_{k}=$ sum of all the products of the a 's taken k at a time. $P_{n}=a_{1} a_{2} a_{3} \ldots a_{n}$.
4. $\left(a^{2}+b^{2}\right)\left(a^{2}+\beta^{2}\right)=(a \alpha \mp b \beta)^{2}+(a \beta \pm b a)^{2}$.
5. $\left(a^{2}-b^{2}\right)\left(a^{2}-\beta^{2}\right)=(a \alpha \pm b \beta)^{2}-(a \beta \pm b a)^{2}$.
6. $\left(a^{2}+b^{2}+c^{2}\right)\left(a^{2}+\beta^{2}+\gamma^{2}\right)=(a \alpha+b \beta+c \gamma)^{2}+(b \gamma-\beta c)^{2}+(c a-\gamma a)^{2}$

$$
+(a \beta-a b)^{2}
$$

7. $\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}\right)=(a \alpha+b \beta+c \gamma+d \delta)^{2}$

$$
+(a \beta-b a+c \delta-d \gamma)^{2}+(a \gamma-b \delta-c \alpha+d \beta)^{2}+(a \delta+b \gamma-c \beta-d a)^{2} .
$$

8. $(a c-b d)^{2}+(a d+b c)^{2}=(a c+b d)^{2}+(a d-b c)^{2}$.
9. $(a+b)(b+c)(c+a)=(a+b+c)(a b+b c+c a)-a b c$.

I0. $(a+b)(b+c)(c+a)=a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)+2 a b c$.
II. $(a+b) \cdot(b+c)(c+a)=b c(b+c)+c a(c+a)+a b(a+b)+2 a b c$.
12. $3(a+b)(b+c)(c+a)=(a+b+c)^{3}-\left(a^{3}+b^{3}+c^{3}\right)$.
13. $(b-a)(c-a)(c-b)=a^{2}(c-b)+b^{2}(a-c)+c^{2}(b-a)$.
14. $(b-a)(c-a)(c-b)=a\left(b^{2}-c^{2}\right)+b\left(c^{2}-a^{2}\right)+c\left(a^{2}-b^{2}\right)$.
15. $(b-a)(c-a)(c-b)=b c(c-b)+c a(a-c)+a b(b-a)$.
16. $(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=2[(a-b)(a-c)+(b-a)(b-c)$

$$
+(c-a)(c-b)] .
$$

17. $a^{3}\left(b^{2}-c^{2}\right)+b^{3}\left(c^{2}-a^{2}\right)+c^{3}\left(a^{2}-b^{2}\right)=(a-b)(b-c)(a-c)(a b+b c+c a)$.
18. $(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)=b c(b+c)+c a(c+a)+a b(a+b)+a^{3}+b^{3}+c^{3}$.
19. $(a+b+c)(b c+c a+a b)=a^{2}(b+c)+b^{2}(a+a)+c^{2}(a+b)+3 a b c$.
20. $(b+c-a)(c+a-b)(a+b-c)=a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)$ $-\left(a^{3}+b^{3}+c^{3}+2 a b c\right)$.
21. $(a+b+c)(-a+b+c)(a-b+c)(a+b-c)=2\left(b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}\right)$ $-\left(a^{4}+b^{4}+c^{2}\right)$.
22. $(a+b+c+d)^{2}+(a+b-c-d)^{2}+(a+c-b-d)^{2}+(a+d-b-c)^{2}$

$$
\begin{aligned}
&=4\left(a^{2}+b^{2}+c^{2}+d^{2}\right) . \\
& \text { If } A=a \alpha+b \gamma+c \beta \\
& B=a \beta+b \alpha+c \gamma \\
& C=a \gamma+b \beta+c \alpha
\end{aligned}
$$

23. $(a+b+c)(a+\beta+\gamma)=A+B+C$.
24. $\left[a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right]\left[\alpha^{2}+\beta^{2}+\gamma^{2}-(\alpha \beta+\beta \gamma+\gamma a)\right]$

$$
=A^{2}+B^{2}+C^{2}-(A B+B C+C A)
$$

25. $\left(a^{3}+b^{3}+c^{3}-3 a b c\right)\left(\alpha^{3}+\beta^{3}+\gamma^{3}-3 a \beta \gamma\right)=A^{3}+B^{3}+C^{3}-3 A B C$.

Algribraic equations

1.200 The expression

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} \cdot x^{n-2}+\ldots+a_{n-1} x+a_{n}
$$

is an integral rational function, or a polynomial, of the nth degree in x.
1.201 The equation $f(x)=0$ has n roots which may be real or complex, distinct or repeated.
1.202 If the roots of the equation $f(x)=0$ are $c_{1}, c_{2}, \ldots, c_{n}$,

$$
f(x)=a_{0}\left(x-c_{1}\right)\left(x-c_{2}\right) \ldots\left(x-c_{n}\right)
$$

1.203 Symmetric functions of the roots are expressions giving certain combinations of the roots in terms of the coefficients. Among the more important are:

$$
\begin{aligned}
& c_{1}+c_{2}+\ldots \ldots+c_{n}=-\frac{a_{1}}{a_{0}} \\
& c_{1} c_{2}+c_{1} c_{8}+\ldots+c_{2} c_{3}+c_{2} c_{4}+\ldots+c_{n-1} c_{n}=\frac{a_{2}}{a_{0}} \\
& c_{1} c_{2} c_{3}+c_{1} c_{2} c_{4}+\ldots+c_{1} c_{3} c_{4}+\ldots .+c_{n-2} c_{n-1} c_{n}=-\frac{a_{3}}{a_{0}} \\
& \cdots \cdots \cdots \\
& \cdots \cdots \cdots \\
& c_{1} c_{2} c_{3} \ldots \ldots c_{n}=(-1)^{n} \frac{a_{n}}{a_{0}} .
\end{aligned}
$$

1.204 Newton's Theorem. If s_{k} denotes the sum of the k th powers of all the roots of $f(x)=0$,

$$
\begin{aligned}
& s_{k}=c_{1}^{k}+c_{2}^{k}+\ldots .+\cdots+c_{n}^{k} \\
& x a_{1}+s_{1} a_{0}=0 \\
& 2 a_{2}+s_{1} a_{1}+s_{2} a_{0}=0 \\
& 3 a_{8}+s_{1} a_{2}+s_{2} a_{1}+s_{8} a_{0}=0 \\
& 4 a_{4}+s_{1} a_{3}+s_{2} a_{2}+s_{3} a_{1}+s_{4} a_{0}=0 \\
& \cdots \cdots \cdots \\
& \cdots \cdots \cdots
\end{aligned}
$$

or:

$$
\begin{aligned}
& s_{1}=-\frac{a_{1}}{a_{0}} \\
& s_{2}=-\frac{2 a_{2}}{a_{0}}+\frac{a_{1}^{2}}{a_{0}^{2}} \\
& s_{3}=-\frac{3 a_{3}}{a_{0}}+\frac{3 a_{1} a_{2}}{a_{0}^{2}}-\frac{a_{1}^{3}}{a_{0}^{3}} \\
& s_{4}=-\frac{4 a_{4}}{a_{0}}+\frac{4 a_{1} a_{3}}{a_{0}^{2}}-\frac{4 a_{1}{ }^{2} a_{2}}{a_{0}{ }^{3}}+\frac{2 a_{2}^{2}}{a_{0}^{2}}+\frac{a_{1}^{4}}{a_{0}^{4}}
\end{aligned}
$$

1.205 If S_{k} denotes the sum of the reciprocals of the k th powers of all the roots of the equation $f(x)=0$:

$$
\begin{aligned}
& S_{k}=\frac{\mathrm{I}}{c_{1}{ }^{k}}+\frac{\mathrm{I}}{c_{2}{ }^{k}}+\ldots+\frac{\mathrm{I}}{{c_{n}{ }^{k}}^{\prime}} \\
& \mathrm{I} a_{n-1}+S_{1} a_{n}=0 \\
& 2 a_{n-2}+S_{1} a_{n-1}+S_{2} a_{n}=0 \\
& 3 a_{n-3}+S_{1} a_{n-2}+S_{2} a_{n-1}+S_{3} a_{n}=0 \\
& \cdots \cdots \\
& \cdots \\
& S_{1}=-\frac{a_{n-1}}{a_{n}} \\
& S_{2}=-\frac{2 a_{n-2}}{a_{n}}+\frac{a_{n-1}^{2}}{a_{n}^{2}} \\
& S_{3}=-\frac{3 a_{n-3}}{a_{n}}+\frac{3 a_{n-1} a_{n-2}}{a_{n}^{2}}-\frac{a_{n-1}^{3}}{a_{n}^{3}}
\end{aligned}
$$

1.220 If $f(x)$ is divided by $x-h$ the result is

$$
f(x)=(x-h) Q+R .
$$

Q^{*} is the quotient and R the remainder. This operation may be readily performed as follows:

Write in line the values of $a_{0}, a_{1}, \ldots, a_{n}$. If any power of x is missing write \circ in the corresponding place. Multiply a_{0} by h and place the product in the second line under a_{1}; add to a_{1} and place the sum in the third line under a_{1}. Multiply this sum by h and place the product in the second line under a_{2}; add to a_{2} and place the sum in the third line under a_{2}. Continue this series of operations until the third line is full. The last term in the third line is the remainder, R. The first term in the third line, which is a_{0}, is the coefficient of x^{n-1} in the quotient, Q; the second term is the coefficient of x^{n-2}, and so on.
1.221 It follows from 1.220 that $f(h)=R$. This gives a convenient way of evaluating $f(x)$ for $x=h$.

1.222 To express $f(x)$ in the form:

$$
f(x)=A_{0}(x-h)^{n}+A_{1}(x-h)^{n-1}+\ldots+A_{n-1}(x-h)+A_{n} .
$$

By 1.220 form $f(h)=A_{n}$. Repeat this process with each quotient, and the last term of each line of sums will be a succeeding value of the series of coefficients $A_{n}, A_{n-1}, \ldots, A_{0}$.

Example:

$f(x)=3 x^{5}+2 x^{4}-8 x^{2}+2 x-4$					$h=2$
3	2	-	-8	2	-4
	6	I6	32	48	100
3	8	16	24	50	$96=A_{5}$
	6	28	88	224	
	I4	44	II2	274	
	6	40	$\underline{168}$		
	20	84	280		
	6	52			
$26 \quad 136=A_{2}$					
6					
$32=A_{1}$					
$3=A_{0}$					

Thus:

$$
\begin{aligned}
Q & =3 x^{4}+8 x^{3}+16 x^{2}+24 x+50 \\
R & =f(2)=96 \\
f(x) & =3(x-2)^{5}+32(x-2)^{4}+136(x-2)^{3}+280(x-2)^{2}+274(x-2)+96
\end{aligned}
$$

1.230 To transform the equation $f(x)=0$ into one whose roots all have their signs changed: Substitute $-x$ for x.
1.231 To transform the equation $f(x)=0$ into one whose roots are all multiplied by a constant, m : Substitute x / m for x.
1.232 To transform the equation $f(x)=0$ into one whose roots are the reciprocals of the roots of the given equation: Substitute I / x for x and multiply by x^{n}.
1.233 To transform the equation $f(x)=0$ into one whose roots are all increased or diminished by a constant, h : Substitute $x \pm h$ for x in the given equation,
the upper sign being used if the roots are to be diminished and the lower sign if they are to be increased. The resulting equation will be:

$$
f(\pm h)+x f^{\prime}(\pm h)+\frac{x^{2}}{2!} f^{\prime \prime}(\pm h)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(\pm h)+\ldots .=0
$$

where $f^{\prime}(x)$ is the first derivative of $f(x), f^{\prime \prime}(x)$, the second derivative, etc. The resulting equation may also be written:

$$
A_{0} x^{n}+A_{1} x^{n-1}+A_{2} x^{n-2}+\ldots \ldots+A_{n-1} x+A_{n}=0
$$

where the coefficients may be found by the method of 1.222 if the roots are to be diminished. To increase the roots by h change the sign of h.

MULTIPLE ROOTS

1.240 If c is a multiple root of $f(x)=0$, of order m, i.e.. repeated m times, then

$$
f(x)=(x-c)^{m} Q ; \quad R=0
$$

c is also a multiple root of order $m-\mathrm{I}$ of the first derived equation, $f^{\prime}(x)=0$; of order $m-2$ of the second derived equation, $f^{\prime \prime}(x)=0$, and so on.
1.241 The equation $f(x)=0$ will have no multiple roots if $f(x)$ and $f^{\prime}(x)$ have no common divisor. If $F(x)$ is the greatest common divisor of $f(x)$ and $f^{\prime}(x)$, $f(x) / F(x)=f_{1}(x)$, and $f_{1}(x)$ will have no multiple roots.
1.250 An equation of odd degree, n, has at least one real root whose sign is opposite to that of a_{n}.
1.251 An equation of even degree, n, has one positive and one negative real root if a_{n} is negative.
1.252 The equation $f(x)=0$ has as many real roots between $x=x_{1}$ and $x=x_{2}$ as there are changes of sign in $f(x)$ between x_{1} and x_{2}.
1.253 Descartes' Rule of Signs: No equation can have more positive roots than it has changes of sign from + to - and from - to + , in the terms of $f(x)$. No equation can have more negative roots than there are changes of sign in $f(-x)$.
1.254 If $f(x)=0$ is put in the form

$$
A_{0}(x-h)^{n}+A_{1}(x-h)^{n-1}+\ldots \ldots+A_{n}=0
$$

uy 1.222, and $A_{0}, A_{1}, \ldots, A_{n}$ are all positive, h is an upper limit of the positive roots.

If $f(-x)=0$ is put in a similar form, and the coefficients are all positive, h is a lower limit of the negative roots.

If $f(\mathrm{I} / x)=0$ is put in a similar form, and the coefficients are all positive, h is a lower limit of the positive roots. And with $f(-\mathrm{I} / x)=0, h$ is an upper limit of the negative roots.
1.255 Sturm's Theorem. Form the functions:

$$
\begin{aligned}
& f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n} \\
& f_{1}(x)=f^{\prime}(x)=n a_{0} x^{n-1}+(n-1) a_{1} x^{n-2}+\ldots+a_{n-1} \\
& f_{2}(x)=-R_{1} \text { in } f(x)=Q_{1} f_{1}(x)+R_{1} \\
& f_{3}(x)=-R_{2} \text { in } f_{1}(x)=Q_{2} f_{2}(x)+R_{2}
\end{aligned}
$$

The number of real roots of $f(x)=0$ between $x=x_{1}$ and $x_{1}=x_{2}$ is equal to the number of changes of sign in the series $f(x), f_{1}(x), f_{2}(x), \ldots$ when x_{1} is substituted for x minus the number of changes of sign in the same series when x_{2} is substituted for x. In forming the functions f_{1}, f_{2}, \ldots numerical factors may be introduced or suppressed in order to remove fractional coefficients.

Example:

$$
\begin{aligned}
f(x) & =x^{4}-2 x^{3}-3 x^{2}+10 x-4 \\
f_{1}(x) & =2 x^{3}-3 x^{2}-3 x+5 \\
f_{2}(x) & =9 x^{2}-27 x+11 \\
f_{3}(x) & =-8 x-3 \\
f_{4}(x) & =-1433
\end{aligned}
$$

	f	f_{1}	f_{2}	f_{3}	f_{4}	
$x=-\infty$	+	-	+	+	-	3 changes
$x=0$	-	+	+	-	-	2 changes
$x=+\infty$	+	+	+	-	-	I change

Therefore there is one positive and one negative real root.
If it can be seen that all the roots of any one of Sturm's functions are imaginary it is unnecessary to calculate any more of them after that one.

If there are any multiple roots of 'the equation $f(x)=0$ the series of Sturm's functions will terminate with $f_{r}, r<n . f_{r}(x)$ is the highest common factor of f and f_{1}. In this case the number of real roots of $f(x)=0$ lying between $x=x_{1}$ and $x=x_{2}$, each multiple root counting only once, will be the difference between the number of changes of sign in the series $f, f_{1}, f_{2}, \ldots, f_{r}$ when x_{1} and x_{2} are successively substituted in them.
1.256 Routh's rule for finding the number of roots whose real parts are positive. (Rigid Dynamics, Part II, Art. 297.)

Arrange the coefficients in two rows:

x^{n}	a_{0}	a_{2}	a_{4}	a_{5}
x^{n-1}	a_{1}	a_{3}	a_{5}

Form a third row by cross-multiplication:
$x^{n-2} \quad \frac{a_{1} a_{2}-a_{0} a_{3}}{a_{1}} \quad \frac{a_{1} a_{4}-a_{0} a_{5}}{a_{1}} \quad \frac{a_{1} a_{6}-a_{0} a_{7}}{a_{1}}$
Form a fourth row by operating on these last two rows by a similar crossmultiplication. Continue this operation until there are no terms left. The number of variations of sign in the first column gives the number of roots whose real parts are positive.

If there are any equal roots some of the subsidiary functions will vanish. In place of one which vanishes write the differential coefficient of the last one which does not vanish and proceed in the same way. At the left of each row is written the power of x corresponding to the first subsidiary function in that row. This power diminishes by 2 for each succeeding coefficient in the row.

Any row may be multiplied or divided by any positive quantity in order to remove fractions.

DETERMINATION OF THE ROOTS OF AN EQUATION

1.260 Newton's Method. If a root of the equation $f(x)=0$ is known to lie between x_{1} and x_{2} its value can be found to any desired degree of approximation by Newton's method. This method can be applied to transcendental equations as well as to algebraic equations.

If b is an approximate value of a root,

$$
\begin{aligned}
& b-\frac{f(b)}{f^{\prime}(b)}=c \text { is a second approximation, } \\
& c-\frac{f(c)}{f^{\prime}(c)}=d \text { is a third approximation. }
\end{aligned}
$$

This process may be repeated indefinitely.
1.261 Horner's Method for approximating to the real roots of $f(x)=0$.

Let p_{1} be the first approximation, such that $p_{1}+I>c>p_{1}$, where c is the root sought. The equation can always be transformed into one in which this condition holds by multiplying or dividing the roots by some power of ro by 1.231. Diminish the roots by p_{1} by 1.233. In the transformed equation

$$
A_{0}\left(x-p_{2}\right)^{n}+A_{1}\left(x-p_{1}\right)^{n-1}+\ldots+A_{n-1}\left(x-p_{1}\right)+A_{n}=0
$$

put

$$
\frac{p_{2}}{10}=\frac{A_{n}}{A_{n-1}}
$$

and diminish the roots by p_{2} / mo, yielding a second transformed equation

$$
B_{0}\left(x-p_{1}-\frac{p_{2}}{10}\right)^{n}+B_{1}\left(x-p_{1}-\frac{p_{2}}{10}\right)^{n-1}+\ldots+B_{n}=0 .
$$

If B_{n} and B_{n-1} are of the same sign p_{2} was taken too large and must be diminished. Then take

$$
\frac{p_{3}}{100}=\frac{B_{n}}{B_{n-1}}
$$

and continue the operation. The required root will be:

$$
c=p_{1}+\frac{p_{2}}{10}+\frac{p_{3}}{100}+\ldots
$$

1.262 Graeffe's Method. This method determines approximate values of all the roots of a numerical equation, complex as well as real. Write the equation of the nth degree

$$
f(x)=a_{0} x^{n}-a_{1} x^{n-1}+a_{2} x^{n-2}-\ldots \pm a_{n}=0 .
$$

The product

$$
f(x) \cdot f(-x)=A_{0} x^{2 n}-A_{1} x^{2 n-2}+A_{2} x^{2 n-4}-\ldots \pm A_{n}=0
$$

contains only even powers of x. It is an equation of the nth degree in x^{2}. The coefficients are determined by.

$$
\begin{aligned}
& A_{0}=a_{0}^{2} \\
& A_{1}=a_{1}^{2}-2 a_{0} a_{2} \\
& A_{2}=a_{2}^{2}-2 a_{1} a_{3}+2 a_{0} a_{4} \\
& A_{3}=a_{3}^{2}-2 a_{2} a_{4}+2 a_{1} a_{5}-2 a_{0} a_{6} \\
& A_{4}=a_{4}^{2}-2 a_{3} a_{5}+2 a_{2} a_{6}-2 a_{1} a_{7}+2 a_{0} a_{8}
\end{aligned}
$$

The roots of the equation

$$
A_{0} y^{n}-A_{1} y^{n-1}+A_{2} y^{n-2}-\ldots \pm A_{n}=0
$$

are the squares of the roots of the given equation. Continuing this process we get an equation

$$
R_{0} u^{n}-R_{1} u^{n-1}+R_{2} u^{n-2}-\ldots \pm R_{n}=0
$$

whose roots are the 2^{r} th powers of the roots of the given equation. Put $\lambda=2^{r}$. Let the roots of the given equation be $c_{1}, c_{2}, \ldots, c_{n}$. Suppose first that

$$
c_{1}>c_{2}>c_{3}>\ldots \ldots>c_{n}
$$

Then for large values of λ,

$$
c_{1}^{\lambda}=\frac{R_{1}}{R_{0}}, \quad c_{2}^{\lambda}=\frac{R_{2}}{R_{1}}, \quad \ldots, \quad c_{n}^{\lambda}=\frac{R_{n}}{R_{n-1}} .
$$

If the roots are real they may be determined by extracting the λ th roots of these quantities. Whether they are \pm is determined by taking the sign which approximately satisfies the equation $f(x)=0$.

Suppose next that complex roots enter so that there are equalities among the absolute values of the roots. Suppose that

$$
\begin{gathered}
\left|c_{1}\right| \geqslant\left|c_{2}\right| \geqslant\left|c_{3}\right| \geqslant \ldots \geqslant\left|c_{p}\right| ; \quad\left|c_{p}\right|>\left|c_{p+1}\right| ; \\
\quad\left|c_{p+1}\right| \geqslant\left|c_{p+2}\right| \geqslant \ldots \geqslant\left|c_{n}\right|
\end{gathered}
$$

Then if λ is large enough so that $c_{p}{ }^{\lambda}$ is large compared to $c_{p+1}{ }^{\lambda}, c_{1}^{\lambda}, c_{2}{ }^{\lambda}, \ldots$. $c_{p}{ }^{\lambda}$ approximately satisfy the equation:

$$
R_{0} u^{p}-R_{1} u^{p-1}+R_{2} u^{p-2}-\ldots \pm R_{p}=0
$$

and $c_{p+1}{ }^{\lambda}, c_{p+2}{ }^{\lambda}, \ldots, c_{n}{ }^{\lambda}$ approximately satisfy the equation:

$$
R_{p} u^{n-p}-R_{p+1} u^{n-p-1}+R_{p+2} u^{n-p-2}-\ldots \pm R_{n}=0 .
$$

Therefore when λ is large enough the given equation breaks down into a number of simpler equations. This stage is shown in the process of deriving the successive equations when certain of the coefficients are obtained from those of the preceding equation simply by squaring.

References: Encyklopadie der Math. Wiss. I, i, 3 a (Runge). Bairstow: Applied Aerodynamics, pp. 553-560; the solution of a numerical equation of the 8th degree is given by Graeffe's Method.
1.270 Quadratic Equations.

$$
x^{2}+2 a x+b=0 .
$$

The roots are:

$$
\begin{aligned}
x_{1} & =-a+\sqrt{a^{2}-b} \\
x_{2} & =-a-\sqrt{a^{2}-b} \\
x_{1}+x_{2} & =-2 a \\
x_{1} x_{2} & =b .
\end{aligned}
$$

If

$$
\begin{array}{ll}
a^{2}>b & \text { roots are real, } \\
a^{2}<b & \text { roots are complex, } \\
a^{2}=b & \text { roots are equal. }
\end{array}
$$

1.271 Cubic equations.
(1) $x^{3}+a x^{2}+b x+c=0$.

Substitute
(2) $x=y-\frac{a}{3}$
(3) $y^{3}-3 p y-2 q=0$
where

$$
\begin{aligned}
& 3 p=\frac{a^{2}}{3}-b \\
& 2 q=\frac{a b}{3}-\frac{2}{27} a^{3}-c .
\end{aligned}
$$

Roots of (3):

$$
\text { If } \begin{aligned}
p>0, q>0, q^{2}>p^{3} \\
\qquad \cosh \phi=\frac{q}{\sqrt{p^{3}}}
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=2 \sqrt{p} \cosh \frac{\phi}{3} \\
& y_{2}=-\frac{y_{1}}{2}+i \sqrt{3 p} \sinh \frac{\phi}{3} \\
& y_{3}=-\frac{y_{1}}{2}-i \sqrt{3 p} \sinh \frac{\phi}{3}
\end{aligned}
$$

If $p>0, q<0, q^{2}>p^{3}$,

$$
\begin{aligned}
\cosh \phi & =\frac{-q}{\sqrt{p^{3}}} \\
y_{1} & =-2 \sqrt{p} \cosh \frac{\phi}{3} \\
y_{2} & =-\frac{y_{1}}{2}+i \sqrt{3 p} \sinh \frac{\phi}{3} \\
y_{3} & =-\frac{y_{1}}{2}-i \sqrt{3 p} \sinh \frac{\phi}{3}
\end{aligned}
$$

If $p<0$

$$
\begin{aligned}
\sinh \phi & =\frac{q}{\sqrt{-p^{3}}} \\
y_{1} & =2 \sqrt{-p} \sinh \frac{\phi}{3} \\
y_{2} & =-\frac{y_{1}}{2}+i \sqrt{-3 p} \cosh \frac{\phi}{3} \\
y_{3} & =-\frac{y_{1}}{2}-i \sqrt{-3 p} \cosh \frac{\phi}{3}
\end{aligned}
$$

If $p>0, q^{2}<p^{3}$,

$$
\begin{aligned}
\cos \phi & =\frac{q}{\sqrt{p^{3}}} \\
y_{1} & =2 \sqrt{p} \cos \frac{\phi}{3} \\
& = \\
y_{2} & =-\frac{y_{1}}{2}+\sqrt{3 p} \sin \frac{\phi}{3} \\
y_{3} & =-\frac{y_{1}}{2}-\sqrt{3 p} \sin \frac{\phi}{3}
\end{aligned}
$$

1.272 Biquadratic equations.

$$
a_{0} x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4}=0
$$

Substitute

$$
\begin{gathered}
x=y-\frac{a_{1}}{a_{0}} \\
y^{4}+\frac{6}{a_{0}^{2}} H y^{2}+\frac{4}{a_{0}^{3}} G y+\frac{\mathrm{I}}{a_{0}^{4}} F=0
\end{gathered}
$$

$$
\begin{aligned}
H & =a_{0} a_{2}-a_{1}{ }^{2} \\
G & =a_{0}^{2} a_{3}-3 a_{0} a_{1} a_{2}+2 a_{1}^{3} \\
F & =a_{0}{ }^{3} a_{4}-4 a_{0}{ }^{2} a_{1} a_{3}+6 a_{0} a_{1}^{2} a_{2}-3 a_{1}^{4} \\
I & =a_{0} a_{4}-4 a_{1} a_{3}+3 a_{2}{ }^{2} \\
F & =a_{0}{ }^{2} I-3 H^{2} \\
J & =a_{0} a_{2} a_{4}+2 a_{1} a_{2} a_{3}-a_{0} a_{3}^{2}-a_{1}^{2} a_{4}-a_{2}^{3} \\
\triangle & =I^{3}-27 J^{2}=\text { the discriminant } \\
G^{2} & +4 H^{3}=a_{0}^{2}\left(H I-a_{0} J\right) .
\end{aligned}
$$

Nature of the roots of the biquadratic:
$\Delta=0$ Equal roots are present
Two roots only equal: I and J are not both zero
Three roots are equal: $I=J=0$
Two distinct pairs of equal roots: $G=0 ; \quad a_{0}{ }^{2} I-\mathrm{I} 2 H^{2}=0$
Four roots equal : $H=I=J=0$.
$\Delta<0$ Two real and two complex roots
$\Delta>0$ Roots are either all real or all complex:
$H<0$ and $a_{0}{ }^{2} I-\mathrm{I}_{2} H^{2}<0$ Roots all real $H>0$ and $a_{0}{ }^{2} I-{ }_{12} H^{2}>0$ Roots all complex.

DETERMINANTS

1.300 A determinant of the nth order, with n^{2} elements, is written:

$$
\Delta=\left|\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} \ldots \ldots \ldots \ldots \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & \ldots
\end{array}\right|=\left|a_{i,}\right|,\left(i, 3,=a_{2 n}, 2, \ldots,{ }_{n}\right)
$$

1.301 A determinant is not changed in value by writing rows for columns and columns for rows.
1.302 If two columns or two rows of a determinant are interchanged the resulting determinant is unchanged in value but is of the opposite sign.
1.303 A determinant vanishes-if it has two equal columns or two equal rows.
1.304 If each element of a row or a column is multiplied by the same factor the determinant itself is multiplied by that factor.
1.305 A determinant is not changed in value if to each element of a row or column is added the corresponding element of another row or column multiplied by a common factor.
1.306 If each element of the l th row or column consists of the sum of two or more terms the determinant splits up into the sum of two or more determinants having for elements of the l th row or column the separate terms of the l th row or column of the given determinant.
1.307 If corresponding elements of two rows or columns of a determinant have a constant ratio the determinant vanishes.
1.308 If the ratio of the differences of corresponding elements in the p th and q th rows or columns to the differences of corresponding elements in the r th and sth rows or columns be constant the determinant vanishes.
1.309 If p rows or columns of a determinant whose elements are rational integral functions of x become equal or proportional when $x=h$, the determinant is divisible by $(x-h)^{p-1}$.

MULTIPLICATION OF DETERMINANTS

1.320 Two determinants of equal order may be multiplied together by the scheme:

$$
\left|a_{i j}\right| \times\left|b_{i j}\right|=\left|c_{i j}\right|
$$

where

$$
c_{i j}=a_{21} b_{\jmath 1}+a_{22} b_{32}+\ldots \ldots+a_{2 n} b_{\jmath n} .
$$

1.321 If the two determinants to be multiplied are of unequal order the one of lower order can be raised to one of equal order by bordering it; i.e.:
1.322 The product of two determinants may be written:

DIFFERENTIATION OF DETERMINANTS

1.330 If the elements of a determinant, Δ, are functions of a variable, t :
where the accents denote differentiation by t.

EXPANSION OF DETERMINANTS

1.340 The complete expansion of a determinant of the nth order contains n ! terms. Each of these terms contains one element from each row and one element from each column. Any term may be obtained from the leading term:

$$
a_{11} a_{22} a_{33} \ldots \ldots . . . a_{n n}
$$

by keeping the first suffixes unchanged and permuting the second suffixes among r, 2, 3,, n. The sign of any term is determined by the number of inversions from the second suffixes of the leading term, being positive if there is an even number of inversions and negative if there is an odd number of inversions.
1.341 The coefficient of $a_{i j}$, when the determinant Δ is fully expanded is:

$$
\frac{\partial \Delta}{\partial a_{2 j}}=\Delta_{i j} .
$$

$\Delta_{\imath \imath}$ is the first minor of the determinant Δ corresponding to a_{21} and is a determinant of order $n-\mathrm{I}$. It may be obtained from Δ by crossing out the row and column which intersect in a_{22}, and multiplying by $(-1)^{2+1}$.

1.342

$$
\begin{aligned}
a_{21} \Delta_{11}+a_{22} \Delta_{12}+\ldots+a_{2 n} \Delta_{\jmath n} & =\frac{0 \text { if } i \neq j}{\Delta \text { if } i=j} \\
a_{12} \Delta_{12}+a_{22} \Delta_{2 \imath}+\ldots+a_{n 2} \Delta_{n 2} & =\frac{0 \text { if } i \neq j}{\Delta \text { if } i=j} .
\end{aligned}
$$

1.343

$$
\frac{\partial^{2} \Delta}{\partial a_{\imath \jmath} \partial a_{k l}}=\frac{\partial \Delta_{k l}}{\partial a_{21}}=\frac{\partial \Delta_{2 \imath}}{\partial a_{k l}}
$$

is the coefficient of $a_{\imath \imath} a_{k l}$ in the complete expansion of the determinant Δ. It may be obtained from Δ, except for sign, by crossing out the rows and columns which intersect in $a_{n j}$ and $a_{k l}$.
1.344

$$
\begin{aligned}
\left|\Delta_{\imath \imath}\right| \times\left|a_{\imath \imath}\right| & =\Delta^{n} \\
\left|\Delta_{\imath \imath}\right| & =\Delta^{n-1} .
\end{aligned}
$$

The determinant $\left|\Delta_{i j}\right|$ is the reciprocal determinant to Δ.
1.345

$$
\Delta \cdot \frac{\partial^{2} \Delta}{\partial a_{22} \partial a_{k l}}=\left|\begin{array}{ll}
\Delta_{\imath j} & \Delta_{\imath l} \\
\Delta_{k j} & \Delta_{k l}
\end{array}\right|=\frac{\partial \Delta}{\partial a_{\imath 2}} \frac{\partial \Delta}{\partial a_{k l}}-\frac{\partial \Delta}{\partial a_{2 l}} \frac{\partial \Delta}{\partial a_{k j}} .
$$

1.346

$$
\Delta^{2} \frac{\partial^{3} \Delta}{\partial a_{2 \imath} \partial a_{k l} \partial a_{p q}}=\left|\begin{array}{lll}
\Delta_{i j} & \Delta_{\imath l} & \Delta_{\imath q} \\
\Delta_{k j} & \Delta_{k l} & \Delta_{k q} \\
\Delta_{p j} & \Delta_{p l} & \Delta_{p q}
\end{array}\right|
$$

1.347

$$
\frac{\partial^{2} \Delta}{\partial a_{i j} \partial a_{k l}}=-\frac{\partial^{2} \Delta}{\partial a_{\imath l} \partial a_{k j}} .
$$

1.348 If $\Delta=0$,

$$
\frac{\partial \Delta}{\partial a_{i j}} \frac{\partial \Delta}{\partial a_{k l}}=\frac{\partial \Delta}{\partial a_{i l}} \frac{\partial \Delta}{\partial a_{k j}} .
$$

1.350 If $a_{\imath j}=a_{3 i}$ the determinant is symmetrical. In a symmetrical determinant

$$
\Delta_{i j}=\Delta_{\jmath \mu} .
$$

1.351 If $a_{i_{1}}=-a_{j_{2}}$ the determinant is a skew determinant. In a skew determinant

$$
\Delta_{n}=(-I)^{n-1} \Delta_{n v} .
$$

1.352 If $a_{\imath \jmath}=-a_{\imath \imath}$, and $a_{\imath \imath}=0$, the determinant is a skew symmetrical determinant

A skew symmetrical determinant of even order is a perfect square.
A skew symmetrical determinant of odd order vanishes.
1.360 A system of linear equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots \ldots+a_{1 n} x_{n}=k_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots \ldots+a_{2 n} x_{n}=k_{2} \\
& \cdots \cdots \cdots \cdots+a_{n n} x_{n}=k_{n}
\end{aligned}
$$

has a solution:

$$
\Delta \cdot x_{2}=k_{1} \Delta_{1 \imath}+k_{2} \Delta_{2 i}+\ldots+k_{n} \Delta_{n}
$$

provided that

$$
\Delta=\left|a_{i}\right| \neq 0 .
$$

1.361 If $\Delta=0$, but all the first minors are not 0 ,

$$
\Delta_{s s} \cdot x_{j}=x_{s} \Delta_{s_{1}}+\sum_{r=\mathrm{r}}^{n} k_{r} \frac{\partial^{2} \Delta}{\partial a_{s s} \partial a_{r_{2}}} \quad(j=\mathrm{r}, 2, \ldots n)
$$

where s may be any one of the integers $\mathrm{I}, 2, \ldots, n$.
1.362 If $k_{1}=k_{2}=\ldots \ldots=k_{n}=0$, the linear equations are homogeneous, and if $\Delta=0$,

$$
\frac{x_{1}}{\Delta_{s 1}}=\frac{x_{s}}{\Delta_{s s}} \quad(j=\mathrm{x}, 2, \ldots n) .
$$

1.363 The condition that n linear homogeneous equations in n variables shall be consistent is that the determinant, Δ, shall vanish.
1.364 If there are $n+\mathrm{x}$ linear equations in n variables:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots \ldots+a_{1 n} x_{n}=k_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots \ldots+a_{2 n} x_{n}=k_{2} \\
& \text {................ } \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots \ldots+a_{n n} x_{n}=k_{n} \\
& c_{1} x_{1}+c_{2} x_{2}+\ldots \ldots+c_{n} x_{n}=k_{n+1}
\end{aligned}
$$

the condition that this system shall be consistent is that the determinant:
1.370 Functional Determinants.

$$
y_{1}, y_{2}, \ldots, y_{n} \text { are } n \text { functions of } x_{1}, x_{2}, \ldots, \ldots, x_{n} \text { : }
$$

$$
y_{k}=f_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

the detérminant:

$$
\boldsymbol{J}=\left|\begin{array}{lll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \ldots \ldots & \ldots \cdot \frac{\partial y_{1}}{\partial x_{n}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} \ldots \ldots . & \ldots \\
\cdots \cdots y_{2} \\
\cdots x_{n}
\end{array}\right|=\left|\frac{\partial y_{2}}{\partial x_{1}}\right|=\frac{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots ., x_{n}\right)}
$$

is the Jacobian.
1.371 If $y_{1}, y_{2}, \ldots \ldots, y_{n}$ are the partial derivatives of a function $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$:

$$
y_{i}=\frac{\partial F}{\partial x_{2}}(i=\mathrm{I}, 2, \ldots, n)
$$

the symmetrical determinant:

$$
H=\left|\frac{\partial^{2} F}{\partial x_{2} \partial x_{1}}\right|=\frac{\partial\left(\frac{\partial F}{\partial x_{1}}, \frac{\partial F}{\partial x_{2}} \cdots, \frac{\partial F}{\partial x_{n}}\right)}{\partial\left(x_{1}, x_{2}, \ldots, \ldots, x_{n}\right)}
$$

is the Hessian.
1.372 If y_{1}, y_{2}, \ldots., y_{n} are given as implicit functions of $x_{1}, x_{2}, \ldots, \ldots$, x_{n} by the n equations:

$$
\begin{aligned}
& F_{1}\left(y_{1}, y_{2}, \ldots \ldots, y_{n}, x_{1}, x_{2}, \ldots . . ., x_{n}\right)=0 \\
& \cdots \ldots \\
& \cdots \ldots \\
& F_{n}\left(y_{1}, y_{2}, \ldots . y_{n}, x_{1}, x_{2}, \ldots . . ., x_{n}\right)=0
\end{aligned}
$$

then

$$
\frac{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}=(-\mathrm{T})^{n} \frac{\partial\left(F_{1}, F_{2}, \ldots, F_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)} \div \frac{\partial\left(F_{1}, F_{2}, \ldots, F_{n}\right)}{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)}
$$

1.373 If the n functions $y_{1}, y_{2}, \ldots, y_{n}$ are not independent of each other the Jacobian, J, vanishes; and if $J=0$ the n functions $y_{1}, y_{2}, \ldots, y_{n}$ are not independent of each other but are connected by a relation

$$
F\left(y_{1}, y_{2}, \ldots, y_{n}\right)=0
$$

1.374 Covariant property. If the variables $x_{1}, x_{2}, \ldots, x_{n}$ are transformed by a linear substitution:

$$
x_{i}=a_{21} \xi_{1}+a_{22} \xi_{2}+\ldots \ldots+a_{i n} \xi_{n} \quad(i=\mathrm{I}, 2, \ldots, n)
$$

and the functions $y_{1}, y_{2}, \ldots \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots \ldots, x_{n}$ become the functions $\eta_{1}, \eta_{2}, \ldots \ldots, \eta_{n}$ of $\xi_{1}, \xi_{2}, \ldots \ldots$. . ξ_{n} :

$$
\begin{gathered}
J^{\prime}=\frac{\partial\left(\eta_{\mathrm{t}}, \eta_{2}, \ldots, \eta_{n}\right)}{\partial\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)}=\frac{\partial\left(y_{1}, y_{2}, \ldots, ., y_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)} \cdot\left|a_{i j}\right| \\
J^{\prime}=J \cdot\left|a_{\imath j}\right|
\end{gathered}
$$

or
where $\left|a_{i 3}\right|$ is the determinant or modulus of the transformation.
For the Hessian,

$$
H^{\prime}=H \cdot\left|a_{\Delta i}\right|^{2} .
$$

1.380 To change the variables in a multiple integral:

$$
I=\int \ldots \ldots{ }^{\prime} \ldots\left(y_{1}, y_{2}, \ldots \ldots y_{n}\right) d y_{1} d y_{2} \ldots \ldots d y_{n}
$$

to new variables, $x_{1}, x_{2}, \ldots, x_{n}$ when $y_{1}, y_{2}, \ldots, y_{n}$ are given functions of $x_{1}, x_{2}, \ldots, x_{n}$:

$$
I=\int \ldots . \ldots \int \frac{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)} F(x) d x_{1} d x_{2} \ldots . . d x_{n}
$$

where $F(x)$ is the result of substituting $x_{1}, x_{2}, \ldots, x_{n}$ for $y_{1}, y_{2}, \ldots, y_{n}$ in $\boldsymbol{F}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

PERMUTATIONS AND COMBINATIONS

1.400 Given n different elements. Represent each by a number, $\mathrm{r}, 2,3, \ldots$. . ., n. The number of permutations of the n different elements is,

$$
{ }_{n} \mathrm{P}_{n}=n!
$$

e.g., $n=3$:

$$
\left(\mathrm{I}_{2} 3\right),(\mathrm{I}, 32),(2 \mathrm{I} 3),(23 \mathrm{I}),(3 \mathrm{I} 2),(32 I)=6=3!
$$

1.401 Given n different elements. The number of permutations in groups of $r(r<n)$, or the number of r-permutations, is,

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

e.g., $n=4, r=3$:
(1.23)(132)(124)(142)(134)(143)(234)(243)(23I)(213)(214)(24I)(341)(3I4) $(312)(321)(324)(342)(412)(421)(43 I)(413)(423)(432)=24$
1.402 Given n different elements. The number of ways they can be divided into m specified groups, with $x_{1}, x_{2}, \ldots, x_{m}$ in each group respectively, $\left(x_{1}+x_{2}+\ldots+x_{m}\right)=n$ is

$$
\frac{n!}{x_{1}!x_{2}!\ldots \ldots x_{m}!}
$$

e.g., $n=6, m=3, x_{1}=2, x_{2}=3, x_{3}=\mathrm{I}$:

(I2) (345) (6)	$(\mathrm{I} 3)(245)(6)$	$\times 6=60$
$(23)(145)(6)$	$(24)(\mathrm{I} 35)(6)$	
$(34)(\mathrm{I} 25)(6)$	$(35)(\mathrm{I} 24)(6)$	
$(45)(\mathrm{I} 23)(6)$	$(25)(234)(6)$	
$(\mathrm{I} 4)(235)(6)$	$(\mathrm{I} 5)(234)(6)$	

1.403 Given n elements of which x_{1} are of one kind, x_{2} of a second kind,, x_{m} of an m th kind. The number of permutations is

$$
\begin{gathered}
\frac{n!}{x_{1}!x_{2}!\cdots \cdots x_{m}!} \\
x_{1}+x_{2}+\cdots \cdots+x_{m}=n
\end{gathered}
$$

1.404 Given n different elements. The number of ways they can be permuted among m specified groups, when blank groups are allowed, is

$$
\frac{(m+n-1)!}{(m-I)!}
$$

e.g., $n=3, m=2$:

$$
\begin{aligned}
& (\mathrm{I} 23, \mathrm{O})(\mathrm{I} 32, \mathrm{O})(2 \mathrm{I} 3, \mathrm{O})(23 \mathrm{I}, \mathrm{o})(3 \mathrm{I} 2, \mathrm{o})(32 \mathrm{I}, \mathrm{O})(\mathrm{I} 2,3)(2 \mathrm{I}, 3)(\mathrm{I} 3,2)(3 \mathrm{I}, 2)(23, \mathrm{I}) \\
& (32, \mathrm{I})(\mathrm{I}, 23)(\mathrm{I}, 32)(2,3 \mathrm{I})(2, \mathrm{I} 3)(3, \mathrm{I} 2)(3,2 \mathrm{I})(0, \mathrm{I} 23)(0,2 \mathrm{I} 3)(0, \mathrm{I} 32)(0,23 \mathrm{I}) \\
& (0,3 \mathrm{I})(0,3 \mathrm{I})=24
\end{aligned}
$$

1.405 Given n different elements. The number of ways they can be permuted among m specified groups, when blank groups are not allowed, so that each group contains at least one element, is

$$
\frac{n!(n-I)!}{(n-m)!(m-I)!}
$$

e.g., $n=3, m=2$:

$$
(\mathrm{I} 2,3)(2 \mathrm{I}, 3)(\mathrm{I} 3,2)(3 \mathrm{I}, 2)(23, \mathrm{I})(32, \mathrm{I})(\mathrm{I}, 23)(\mathrm{I}, 32)(2,3 \mathrm{I})(2, \mathrm{I} 3)(3, \mathrm{I} 2)(3,2 \mathrm{I})=\mathrm{I} 2
$$

1.406 Given n different elements. The number of ways they can be combined into m specified groups when blank groups are allowed is

$$
\begin{aligned}
\text { e.g., } n=3, m=2: \\
(\mathrm{I} 23,0)(\mathrm{I} 2,3)(\mathrm{I} 3,2)(23, \mathrm{I})(\mathrm{I}, 23)(2,3 \mathrm{I})(3, \mathrm{I} 2)(0, \mathrm{I} 23)=8
\end{aligned}
$$

1.407 Given n similar elements. The number of ways they can be combined into m different groups when blank groups are allowed is

$$
\frac{(n+m-I)!}{(m-I)!n!}
$$

e.g., $n=6, m=3$:

Group I 655444333322222 I I I I I I ○ O O O O O
 Group 3 ○○IO2IO3I2O4I32O5I42306I5243
1.408 Given n similar elements. The number of ways they can be combined into m different groups when blank groups are not allowed, so that each group shall contain at least one element, is

$$
\frac{(n-I)!}{(m-I)!(n-m)!}
$$

BINOMIAL COEFFICIENTS

1.51

I. $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\binom{n}{n-k}={ }_{n} C_{k}=\frac{n(n-\mathrm{I})(n-2) \cdots(n-k+\mathrm{I})}{k!}$.
2. $\binom{n}{k}+\binom{n}{k+\mathrm{I}}=\binom{n+I}{k+I}$.
3. $\binom{n}{0}=\mathrm{I},\binom{n}{\mathrm{I}}=n,\binom{n}{n}=\mathrm{I}$.
4. $\binom{-n}{k}=(-\mathrm{I})^{k}\binom{n+k-\mathrm{I}}{k}$.
5. $\binom{n}{k}=0$ if $n<k$.
6. $\binom{k}{k}+\binom{k+\mathrm{I}}{k}+\binom{k+2}{k}+\ldots+\binom{n}{k}=\binom{n+\mathrm{I}}{k+\mathrm{I}}$.
7. $\mathrm{I}-\binom{n}{\mathrm{I}}+\binom{n}{2}-\ldots .+(-\mathrm{I})^{k}\binom{n}{k}=(-\mathrm{I})^{k}\binom{n-\mathrm{I}}{k}$.
8. $\binom{n}{k}+\binom{n}{k-\mathrm{I}}\binom{r}{\mathrm{I}}+\binom{n}{k-2}\binom{r}{2}+\ldots+\binom{r}{k}=\binom{n+r}{k}$.
9. $\mathrm{I}+\binom{n}{\mathrm{I}}+\binom{n}{2}+\ldots .+\binom{n}{n}=2^{n}$.
10. $\mathrm{I}-\binom{n}{\mathrm{I}}+\binom{n}{2}-\ldots+(-\mathrm{I})^{n}\binom{n}{n}=0$.
II. $\mathrm{I}+\binom{n}{\mathrm{I}}^{2}+\binom{n}{2}^{2}+\ldots+\binom{n}{n}^{2}=\binom{2 n}{n}$.
1.52 Table of Binomial Coefficients.

1.521 Glaisher, Mess. of Math. 47, p. 97, 19r8, has given a complete table of binomial coefficients, from $n=2$ to $n=50$, and $k=0$ to $k=n$.
1.61 Resolution into Partial Fractions.

If $F(x)$ and $f(x)$ are two polynomials in x and $f(x)$ is of higher degree than $F(x)$,

$$
\frac{F(x)}{f(x)}=\sum \frac{F(a)}{\phi(a)} \frac{I}{x-a}+\sum \frac{I}{(p-I)!} \frac{d^{p-1}}{d c^{p-1}}\left[\frac{F(c)}{\phi(c)} \frac{I}{x-c}\right]
$$

where

$$
\begin{aligned}
& \phi(a)=\left[\frac{f(x)}{x-a}\right]_{x=a}, \\
& \phi(c)=\left[\frac{f(x)}{(x-c)^{p}}\right]_{x=c} .
\end{aligned}
$$

The first summation is to be extended for all the simple roots, a, of $f(x)$ and the second summation for all the multiple roots, c, of order p, of $f(x)$.

FINITE DIFFERENCES AND SUMS.

1.811 Definitions.
I. $\Delta f(x)=f(x+h)-f(x)$.
2. $\Delta^{2} f(x)=\Delta f(x+h)-\Delta f(x)$.

$$
=f(x+2 h)-2 f(x+h)+f(x) .
$$

3. $\Delta^{3} f(x)=\Delta^{2} f(x+h)-\Delta^{2} f(x)$.

$$
=f(x+3 h)-3 f(x+2 h)+3 f(x+h)-f(x) .
$$

4. $\Delta^{n} f(x)=f(x+n h)-\frac{n}{\mathrm{I}} f(x+\overline{n-\mathrm{I}} h)+\frac{n(n-\mathrm{I})}{2!} f(x+\overline{n-2 h})-\ldots$

$$
+(-\mathrm{I})^{n} f(x)
$$

1.812

I. $\Delta[c f(x)]=c \Delta f(x) \quad(c$ a constant $)$.
2. $\Delta\left[f_{1}(x)+f_{2}(x)+\ldots.\right]=\Delta f_{1}(x)+\Delta f_{2}(x)+\ldots$.
3. $\Delta\left[f_{1}(x) \cdot f_{2}(x)\right]=f_{1}(x) \cdot \Delta f_{2}(x)+f_{2}(x+h) \cdot \Delta f_{1}(x)$

$$
=f_{1}(x) \cdot \Delta f_{2}(x)+f_{2}(x) \cdot \Delta f_{1}(x)+\Delta f_{1}(x) \cdot \Delta f_{2}(x)
$$

4. $\Delta \frac{f_{1}(x)}{f_{2}(x)}=\frac{f_{2}(x) \cdot \Delta f_{1}(x)-f_{1}(x) \cdot \Delta f_{2}(x)}{f_{2}(x) \cdot f_{2}(x+h)}$.
1.813 The nth difference of a polynomial of the nth degree is constant. If

$$
\begin{aligned}
f(x) & =a_{0} x_{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n} \\
\Delta^{n} f(x) & =n!a_{0} h^{n} .
\end{aligned}
$$

1.82

I. $\frac{\Delta^{m}\{(x-b)(x-b-h)(x-b-2 h) \ldots . .(x-b-\overline{n-1} h)\}}{n(n-\mathrm{I})(n-2) \ldots(n-m+1) h^{m}}$

$$
=(x-b)(x-b-h)(x-b-2 h) \ldots(x-b-\overline{n-m-1} h)
$$

2. $\Delta^{m} \frac{1}{(x+b)(x+b+h)(x+b+2 h) \cdots(x+b+\overline{n-1} h)}$

$$
=(-\mathrm{I})^{m} \frac{n(n+1)(n+2) \ldots \ldots(n+m-\mathrm{I}) h^{m}}{(x+b)(x+b+h)(x+b+2 h) \ldots(x+b+\overline{n+m-1} h)} \cdot
$$

3. $\Delta^{m} a^{x}=\left(a^{h}-\mathrm{I}\right)^{m} a^{x}$
4. $\Delta \log f(x)=\log \left(I+\frac{\Delta f(x)}{f(x)}\right)$.
5. $\Delta^{m} \sin (c x+d)=\left(2 \sin \frac{c h}{2}\right)^{m} \sin \left(c x+d+m \frac{c h+\pi}{2}\right)$.
6. $\Delta^{m} \cos (c x+d)=\left(2 \sin \frac{c h}{2}\right)^{m} \cos \left(c x+d+m \frac{c h+\pi}{2}\right)$.
1.83 Newton's Interpolation Formula.

$$
\begin{aligned}
f(x)=f(a) & +\frac{x-a}{h} \Delta f(a)+\frac{(x-a)(x-a-h)}{2!h^{2}} \Delta^{2} f(a)+ \\
& +\frac{(x-a)(x-a-h)(x-a-2 h)}{3!h^{3}} \Delta^{3} f(a)+\ldots \ldots \\
& +\frac{(x-a)(x-a-h) \ldots(x-a-\overline{n-I} h)}{n!h^{n}} \Delta^{n} f(a) \\
& +\frac{(x-a)(x-a-h) \ldots(x-a-n h)}{n+I!} f^{n+1)}(\xi)
\end{aligned}
$$

where ξ has a value intermediate between the greatest and least of $a,(a+n h)$, and x.
1.831

$$
\begin{aligned}
f(a+n h)=f(a) & +\frac{n}{I!} \Delta f(a)+\frac{n(n-1)}{2!} \Delta^{2} f(a)+\frac{n(n-1)(n-2)}{3!} \Delta^{3} f(a) \\
& +\ldots \ldots+n \Delta^{n-1} f(a)+\Delta^{n} f(a)
\end{aligned}
$$

1.832 Symbolically
I. $\Delta=e^{h \frac{\partial}{\partial x}}-\mathrm{I}$
2. $f(a+n h)=(\mathrm{I}+\Delta)^{n} f(a)$
1.833 If $u_{0}=f(a), u_{1}=f(a+h), u_{2}=f(a+2 h), \ldots, u_{x}=f(a+x h)$,

$$
u_{x}=(I+\Delta)^{x} u_{0}=e^{h x \frac{\partial}{\partial x}} u_{0}
$$

1.840 The operator inverse to the difference, Δ, is the sum, Σ.

$$
\Sigma=\Delta^{-1}=\frac{I}{e^{\lambda \frac{\partial}{\partial x}}-I}
$$

1.841 If $\Delta F(x)=f(x)$,

$$
\Sigma f(x)=F(x)+C
$$

where C is an arbitrary constant.

1.842

I. $\mathbf{\Sigma} c f(x)=c \boldsymbol{\Sigma} f(x)$.
2. $\Sigma\left[f_{1}(x)+f_{2}(x)+\ldots\right]=\Sigma f_{1}(x)+\Sigma f_{2}(x)+\ldots$
3. $\Sigma\left[f_{1}(x) \cdot \Delta f_{2}(x)\right]=f_{1}(x) \cdot f_{2}(x)-\Sigma\left[f_{2}(x+h) \cdot \Delta f_{1}(x)\right]$.
1.843 Indefinite Sums.
I. $\Sigma[(x-b)(x-b-h)(x-b-2 h) \ldots(x-b-\overline{n-I} h)]$

$$
=\frac{I}{(n+\tau) h}(x-b)(x-b-h) \cdots(x-b-n h)+C .
$$

2. $\sum \frac{1}{(x+b)(x+b+h) \cdots(x+b+\overline{n-I} h)}$

$$
=-\frac{\mathrm{I}}{(n-\mathrm{I}) h} \frac{\mathrm{I}}{(x+b)(x+b+h) \cdots(x+b+\overline{n-2} h)}+C .
$$

3. $\sum a^{x}=\frac{a^{x}}{a^{h}-\mathrm{I}}+C$.
4. $\sum \cos (c x+d)=\frac{\sin \left(c x-\frac{c h}{2}+d\right)}{2 \sin \frac{c h}{2}}+C$.
5. $\sum \sin (c x+d)=-\frac{\cos \left(c x-\frac{c h}{2}+d\right)}{2 \sin \frac{c h}{2}}+C$.
1.844 If $f(x)$ is a polynomial of degree n,

$$
\begin{gathered}
\sum a^{x} f(x)=\frac{a^{x}}{a^{h}-\mathrm{I}}\left\{f(x)-\frac{a^{h}}{a^{h}-\mathrm{I}} \Delta f(x)+\left(\frac{a^{h}}{a^{h}-\mathrm{I}}\right)^{2} \Delta^{2} f(x)-\ldots\right. \\
+\left(\frac{-a^{h}}{a^{h}-\mathrm{I}}\right)^{n} \Delta^{n} f(x)+C .
\end{gathered}
$$

1.845 If $f(x)$ is a polynomial of degree n,
and

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}
$$

$$
\begin{aligned}
\Sigma f(x) & =F(x)+C \\
F(x) & =c_{0} x^{n+1}+c_{1} x^{n}+c_{2} x^{n-1}+\ldots+c_{n} x+c_{n+1}
\end{aligned}
$$

where

$$
\begin{gathered}
(n+\mathrm{I}) h c_{0}=a_{0} \\
\frac{(n+\mathrm{I}) n}{2^{!}} h^{2} c_{0}+n h c_{1}=a_{1} \\
\frac{(n+\mathrm{I}) n(n-\mathrm{I})}{3!} h^{3} c_{0}+\frac{n(n-\mathrm{I})}{2!} h^{2} c_{1}+(n-\mathrm{I}) h c_{2}=a_{2}
\end{gathered}
$$

- -

The coefficient c_{n+1} may be taken arbitrarily.
1.850 Definite Sums. From the indefinite sum,

$$
\Sigma f(x)=F(x)+C,
$$

a definite sum is obtained by subtraction,

$$
\sum_{a+m h}^{a+n h} f(x)=F(a+n h)-F(a+m h) .
$$

1.851

$$
\begin{aligned}
\sum_{a}^{a+n h} f(x) & =f(a)+f(a+h)+f(a+2 h)+\cdots+f(a+\overline{n-\mathrm{I} h}) \\
& =F(a+n h)-F(a)
\end{aligned}
$$

By means of this formula many finite sums may be evaluated.

1.852

$$
\begin{aligned}
\sum_{a}^{a++n h}(x & -b)(x-b-h)(x-b-2 h) \ldots(x-b-\overline{k-\mathrm{I} h}) \\
& =\frac{(a-b+n h)(a-b+\overline{n-\mathrm{I}} h) \ldots(a-b+\overline{n-k} h)}{(k+\mathrm{I}) h} \\
& -\frac{(a-b)(a-b-h) \ldots(a-b-k h)}{(k+\mathrm{I}) h} .
\end{aligned}
$$

1.853

$$
\begin{gathered}
\sum_{a}^{a+n h}(x-a)(x-a-h) \ldots(x-a-\overline{k-\mathrm{I}} h) \\
\quad=\frac{n(n-\mathrm{I})(n-2) \ldots(n-k)}{(k+\mathrm{I})} h^{k} .
\end{gathered}
$$

1.854 If $f(x)$ is a polynomial of degree m it. can be expressed:

$$
\begin{aligned}
f(x)= & A_{0}+A_{1}(x-a)+A_{2}(x-a)(x-a-h)+\ldots \\
& +A_{m}(x-a)(x-a-h) \cdots(x-a-\overline{m-I} h) \\
\sum_{a}^{a+n h} f(x)= & A_{0} n+A_{1} \frac{n(n-\mathrm{I})}{2} h+A_{2} \frac{n(n-\mathrm{I})(n-2)}{3} h^{2} \\
& +A_{m} \frac{n(n-\mathrm{I}) \ldots(n-m)}{(m+I)} h^{m} .
\end{aligned}
$$

1.855 If $f(x)$ is a polynomial of degree ($m-\mathrm{I}$) or lower, it can be expressed:

$$
\begin{aligned}
f(x)= & A_{0}+A_{1}(x+m h)+A_{2}(x+m h)(x+\overline{m-I} h) \\
& +\ldots+A_{m-1}(x+m h) \cdots(x+2 h)
\end{aligned}
$$

and,
$\sum_{a}^{a+n h} \frac{f(x)}{x(x+h)(x+2 h) \ldots(x+m h)}=\frac{A_{0}}{m h}\left\{\frac{\mathbf{I}}{a(a+h) \ldots(a+\overline{m-I} h)}\right.$

$$
\begin{aligned}
&\left.-\frac{\mathrm{I}}{(a+n h) \ldots(a+\overline{n+m-\mathrm{I} h})}\right\} \\
&+ \frac{A_{1}}{(m-\mathrm{I}) h}\left\{\frac{\mathrm{I}}{a(a+h) \ldots(a+\overline{m-2} h)}-\frac{\mathrm{I}}{(a+n h) \ldots(a+\overline{n+m-2} h)}\right\} \\
&+\ldots+\frac{A_{m-1}}{h}\left\{\frac{\mathrm{I}}{a}-\frac{\mathrm{I}}{a+n h}\right\} .
\end{aligned}
$$

1.856 If $f(x)$ is a polynomial of degree m it can be expressed:

$$
\begin{aligned}
f(x)= & A_{0}+A_{1}(x+m h)+A_{2}(x+m h)(x+\overline{m-I} h)+\ldots \\
& +A_{m}(x+m h) \ldots(x+h)
\end{aligned}
$$

and,

$$
\begin{aligned}
& \sum_{a}^{a+n h} \frac{f(x)}{x(x+h) \ldots(x+m h)}=\frac{A_{0}}{m h}\left\{\frac{\mathrm{I}}{a(a+h) \ldots(a+\overline{m-\mathrm{I}} h)}\right. \\
& \left.\quad-\frac{\mathrm{I}}{(a+n h) \ldots(a+\overline{m+n-\mathrm{I} h})}\right\} \\
& \quad+\ldots \ldots+\frac{A_{m-1}}{h}\left\{\frac{\mathrm{I}}{a}-\frac{\mathrm{I}}{a+n h}\right\}+A_{m} \sum_{a}^{a+n h} \frac{\mathrm{I}}{x}
\end{aligned}
$$

where,

$$
\sum_{a}^{a+n h} \frac{\mathrm{I}}{x}=\frac{\mathrm{I}}{a}+\frac{\mathrm{I}}{a+h}+\frac{\mathrm{I}}{a+2 h}+\ldots+\frac{\mathrm{I}}{a+\overline{n-\mathrm{I}} h}
$$

1.86 Euler's Summation Formula.

$$
\begin{aligned}
\sum_{a}^{b} f(x)= & \frac{\mathbf{x}}{h} \int_{a}^{b} f(z) d z+A_{1}\{f(b)-f(a)\}+A_{2} h\left\{f^{\prime}(b)-f^{\prime}(a)\right\} \\
& +\ldots+A_{m-1} h^{m-2}\left\{f^{(m-2)}(b)-f^{(m-2)}(a)\right\} \\
& -\int_{0}^{h} \phi_{m}(z) \sum_{x=a}^{x=b} \frac{d^{m} f(x+h-z)}{h d x^{m}} \cdot d z \\
\phi_{m}(z)= & \frac{z^{m}}{m!}+A_{1} \frac{h z^{m-1}}{(m-1)!}+A_{2} \frac{h^{2} z^{m-2}}{(m-2)!}+\ldots+A_{m-1} h^{m-1} z
\end{aligned}
$$

$m!\phi_{m}(z)$, with $h=1$, is the Bernoullian polynomial.
$A_{1}=-\frac{1}{2}, A_{2 k+1}=0$; the coefficients $A_{2 k}$ are connected with Bernoulli's numbers (6.902), B_{k}, by the relation,

$$
\begin{gathered}
A_{2 k}=(-\mathrm{I})^{k+1} \frac{B_{k}}{(2 k)!} \\
A_{1}=-\frac{\mathrm{I}}{2}, \quad A_{2}=\frac{\mathrm{I}}{\mathrm{I2}}, \quad A_{4}=-\frac{\mathrm{I}}{\mathbf{7 2 0}}, \quad A_{6}=\frac{\mathrm{I}}{30240} \cdots
\end{gathered}
$$

1.861

$$
\begin{aligned}
\sum_{a}^{b} f(x) & =\frac{I}{h} \int_{a}^{b} f(z) d z-\frac{I}{2}\{f(b)-f(a)\}+\frac{h}{I 2}\left\{f^{\prime}(b)-f^{\prime}(a)\right\} \\
& -\frac{h^{3}}{7^{20}}\left\{f^{\prime \prime \prime}(b)-f^{\prime \prime \prime}(a)\right\}+\frac{h^{5}}{30240}\left\{f^{v}(b)-f^{v}(a)\right\}-\ldots
\end{aligned}
$$

1.862

$$
\sum u_{x}=C+\int u_{x} d x-\frac{I}{2} u_{x}+\frac{I}{I 2} \frac{d u_{x}}{d x}-\frac{I}{7^{20}} \frac{d^{3} u_{x}}{d x^{3}}+\frac{I}{30240} \frac{d^{5} u_{x}}{d x^{5}}-\ldots .
$$

SPECIAL FINITE SERIES

1.871 Arithmetical progressions. If s is the sum, a the first term, δ the common difference, l the last term, and n the number of terms,

$$
\begin{aligned}
s & =a+(a+\delta)+(a+2 \delta)+\cdots[a+(n-x) \delta] \\
l & =a+(n-1) \delta \\
s & =\frac{n}{2}[2 a+(n-1) \delta] \\
& =\frac{n}{2}(a+l)
\end{aligned}
$$

1.872 Geometrical progressions.

$$
\begin{aligned}
& s=a+a p+a p^{2}+\ldots+a p^{n-1} \\
& s=a \frac{p^{n}-1}{p-1}
\end{aligned}
$$

If $p<I, n=\infty, s=\frac{a}{I-p}$.
1.873 Harmonical progressions. a, b, c, d, . . . form an harmonical progression if the reciprocals, $\mathrm{I} / a, \mathrm{I} / b, \mathrm{I} / c, \mathrm{I} / d, \ldots$ form an arithmetical progression.

1.874.

1. $\sum_{x=1}^{x=n} x=\frac{n(n+I)}{2}$
2. $\sum_{x=1}^{x=n} x^{2}=\frac{n(n+1)(2 n+1)}{6}$
3. $\sum_{x=1}^{x=n} x^{3}=\left[\frac{n(n+I)}{2}\right]^{2}$
4. $\sum_{x=1}^{x=n} x^{4}=\frac{n^{5}}{5}+\frac{n^{4}}{2}+\frac{n^{3}}{3}-\frac{n}{30}$.
1.875 In general,
$\sum_{x=\mathrm{I}}^{x=n} x^{k}=\frac{n^{k+1}}{k+\mathrm{I}}+\frac{n^{k}}{2}+\frac{\mathrm{I}}{2}\binom{k}{\mathrm{I}} B_{1} n^{k-1}-\frac{\mathrm{I}}{4}\binom{k}{3} B_{2} n^{k-3}+\frac{\mathrm{I}}{6}\binom{k}{5} B_{3} n^{k-5}-\ldots$
$B_{1}, B_{2}, B_{3}, \ldots$ are Bernoulli's numbers (6.902), $\binom{k}{h}$ are the binomial coefficients (1.51); the series ends with the term in n if k is even, and with the term in n^{2} if k is odd.

1.876

$$
\begin{aligned}
\frac{\mathrm{I}}{\mathrm{I}}+ & \frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\frac{\mathrm{I}}{4}+\ldots+\frac{\mathrm{I}}{n}=\gamma+\log n+\frac{\mathrm{I}}{2 n}-\frac{a_{2}}{n(n+\mathrm{I})} \\
& -\frac{a_{3}}{n(n+\mathrm{I})(n+2)}-\cdots
\end{aligned}
$$

$\boldsymbol{\gamma}=$ Euler's constant $=0.5772 \mathrm{I} 56649 \cdots$

$$
\begin{aligned}
& a_{2}=\frac{\mathrm{I}}{\mathrm{I} 2} \\
& a_{3}=\frac{\mathrm{I}}{\mathrm{I} 2} \\
& a_{4}=\frac{\mathrm{I} 9}{80} \quad a_{k}=\frac{\mathrm{I}}{k} \int_{0}^{\mathrm{I}} x(\mathrm{I}-x)(2-x) \ldots . .(k-\mathrm{I}-x) d x \\
& a_{5}=\frac{9}{20}
\end{aligned}
$$

1.877

$$
\begin{gathered}
\frac{\mathrm{I}}{\mathrm{I}^{2}}+\frac{\mathrm{I}}{2^{2}}+\frac{\mathrm{I}}{3^{2}}+\ldots+\frac{\mathrm{I}}{n^{2}}=\frac{\pi^{2}}{6}-\frac{b_{1}}{n+\mathrm{I}}-\frac{b_{2}}{(n+\mathrm{I})(n+2)} \\
\frac{b_{3}}{(n+\mathrm{I})(n+2)(n+3)}-\ldots \ldots \\
b_{k}=\frac{(k-\mathrm{I})!}{k}
\end{gathered}
$$

1.878

$$
\begin{aligned}
& \frac{\mathrm{I}}{\mathrm{I}^{3}}+\frac{\mathrm{I}}{2^{3}}+\frac{\mathrm{I}}{3^{3}}+\ldots .+\frac{\mathrm{I}}{n^{3}}=C-\frac{c_{2}}{(n+\mathrm{I})(n+2)} \\
& -\frac{c_{3}}{(n+1)(n+2)(n+3)}-\cdots . \\
& C=\sum_{k=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{k^{3}}=\mathrm{I} .2020569032 \\
& c_{k}=\frac{(k-\mathrm{I})^{\prime}}{k}\left(\frac{\mathrm{I}}{\mathrm{I}}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\ldots .+\frac{\mathrm{I}}{k-\mathrm{I}}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \log (n!)=\log \sqrt{2 \pi}+\left(n+\frac{\mathrm{I}}{2}\right) \log n-n \\
& \quad+\frac{A_{2}}{n}+\ldots+A_{2 k-2} \frac{(2 k-4)!}{n^{2 k-3}} \\
& \quad+\theta A_{2 k} \frac{(2 k-2)!}{n^{2 k-1}}
\end{aligned}
$$

$0<\theta<\mathrm{I}$. The coefficients A_{k} are given in 1.86.

1.88

r. $I+r!+2 \cdot 2!+3 \cdot 3!+\ldots+n \cdot n!=(n+r)!$
2. $I \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+3 \cdot 4 \cdot 5+\ldots+n(n+I)(n+2)=\frac{I}{4} n(n+I)(n+2)(n+3)$.
3. $\mathrm{I} \cdot 2 \cdot 3 \ldots r+2 \cdot 3 \cdot 4 \ldots(r+\mathrm{I})+\ldots \ldots+n(n+1)(n+2)$

$$
\ldots(n+r-r)
$$

$$
=\frac{n(n+1)(n+2) \ldots(n+r)}{r+1}
$$

4. $I \cdot p+2(p+1)+3(p+2)+\ldots . .+n(p+n-1)$

$$
=\frac{I}{6} n(n+1)(3 p+2 n-2)
$$

5. $p \cdot q+(p-1)(q-1)+(p-2)(q-2)+\ldots(p-n)(q-n)$

$$
=\frac{1}{6} n[6 p q-(n-x)(3 p+3 q-2 n+1)] .
$$

6. $\mathrm{I}+\frac{b}{a}+\frac{b(b+\mathrm{x})}{a(a+\mathrm{I})}+\ldots+\frac{b(b+\mathrm{I}) \ldots(b+n-\mathrm{I})}{a(a+\mathrm{I}) \ldots(a+n-\mathrm{I})}$.

$$
=\frac{b(b+1) \ldots(b+n)}{(b+1-a) a(a+1) \cdots(a+n-\mathrm{I})}-\frac{a-\mathrm{x}}{b+1-a} .
$$

II. GEOMETRY

2.00 Transformation of coordinates in a plane.
2.001 Change of origin. Let x, y be a system of rectangular or oblique coördinates with origin at O. Referred to x, y the coordinates of the new origin O^{\prime} are a, b. Then referred to a parallel system of coordinates with origin at O^{\prime} the coordinates are x^{\prime}, y^{\prime}.

$$
\begin{aligned}
& x=x^{\prime}+a \\
& y=y^{\prime}+b .
\end{aligned}
$$

2.002 Origin unchanged. Directions of axes changed. Oblique coordinates. Let ω be the angle between the $x-y$ axes measured counter-clockwise from the x - to the y-axis. Let the x^{\prime}-axis make an angle α with the x-axis and the y^{\prime}-axis an angle β with the x-axis. All angles are measured counter-clockwise from the x-axis. Then

$$
\begin{aligned}
x \sin \omega & =x^{\prime} \sin (\omega-\alpha)+y^{\prime} \sin (\omega-\beta) \\
y \sin \omega & =x^{\prime} \sin \alpha+y^{\prime} \sin \beta \\
\omega^{\prime} & =\beta-\alpha .
\end{aligned}
$$

2.003 Rectangular axes. Let both new and old axes be rectangular, the new axes being turned through an angle θ with respect to the old axes. Then $\omega=\frac{\pi}{2}, \alpha=\theta, \beta=\frac{\pi}{2}+\theta$.

$$
\begin{aligned}
& x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \\
& y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
\end{aligned}
$$

2.010 Polar coördinates. Let the y-axis make an angle ω with the x-axis and let the x-axis be the initial line for a system of polar coördinates r, θ. All angles are measured in a counter-clockwise direction from the x-axis.

$$
\begin{aligned}
& x=\frac{r \sin (\omega-\theta)}{\sin \omega} \\
& y=r \frac{\sin \theta}{\sin \omega}
\end{aligned}
$$

2.011 If the x, y axes are rectangular, $\omega=\frac{\pi}{2}$,

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& 29
\end{aligned}
$$

2.020 Transformation of coordinates in three dimensions.
2.021 Change of origin. Let x, y, z be a system of rectangular or oblique coordinates with origin at O. Referred to x, y, z the coordinates of the new origin O^{\prime} are a, b, c. Then referred to a parallel system of coördinates with origin at O^{\prime} the coordinates are $x^{\prime}, y^{\prime}, z^{\prime}$.

$$
\begin{aligned}
& x=x^{\prime}+a \\
& y=y^{\prime}+b \\
& z=z^{\prime}+c
\end{aligned}
$$

2.022 Transformation from one to another rectangular system. Origin unchanged. The two systems are x, y, z and $x^{\prime} y^{\prime} z^{\prime}$.

Referred to x, y, z the direction cosines of x^{\prime} are l_{1}, m_{1}, n_{1}
Referred to x, y, z the direction cosines of y^{\prime} are l_{2}, m_{2}, n_{2}
Referred to x, y, z the direction cosines of z^{\prime} are l_{3}, m_{3}, n_{3}
The two systems are connected by the scheme:

	x^{\prime}	y^{\prime}	z^{\prime}
x	l_{1}	l_{2}	l_{3}
y	m_{1}	m_{2}	m_{3}
z	n_{1}	n_{2}	n_{3}

$$
\begin{array}{lr}
x=l_{1} x^{\prime}+l_{2} y^{\prime}+l_{3} z^{\prime} & x^{\prime}=l_{1} x+m_{1} y+n_{1} z \\
y=m_{1} x^{\prime}+m_{2} y^{\prime}+m_{3} z^{\prime} & y^{\prime}=l_{2} x+m_{2} y+n_{2} z \\
z=n_{1} x^{\prime}+n_{2} y^{\prime}+n_{3} z^{\prime} & z^{\prime}=l_{3} x+m_{3} y+n_{3} z \\
l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=\mathrm{I} & l_{1}^{2}+l_{2}^{2}+l_{3}^{2}=\mathrm{I} \\
l_{2}^{2}+m_{2}^{2}+n_{2}^{2}=\mathrm{I} & m_{1}^{2}+m_{2}^{2}+m_{3}^{2}=\mathrm{I} \\
l_{3}^{2}+m_{3}^{2}+n_{3}^{2}=\mathrm{I} & n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=\mathrm{I} \\
l_{1} m_{1}+l_{2} m_{2}+l_{3} m_{3}=0 & l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=\mathrm{O} \\
m_{1} n_{1}+m_{2} n_{2}+m_{3} n_{3}=0 & l_{2} l_{3}+m_{2} m_{3}+n_{2} n_{3}=0 \\
n_{1} l_{1}+n_{2} l_{2}+n_{3} l_{3}=0 & l_{3} l_{1}+m_{3} m_{1}+n_{3} n_{1}=0
\end{array}
$$

2.023 If the transformation from one to another rectangular system is a rotation through an angle θ about an axis which makes angles α, β, γ with x, y, z respectively,

$$
2 \cos \theta=l_{1}+m_{2}+n_{3}-\mathbf{I}
$$

$$
\frac{\cos ^{2} \alpha}{m_{2}+n_{3}-l_{1}-\mathrm{I}}=\frac{\cos ^{2} \beta}{n_{3}+l_{1}-m_{2}-\mathrm{I}}=\frac{\cos ^{2} \gamma}{l_{1}+m_{2}-n_{3}-\mathrm{I}}
$$

2.024 Transformation from a rectangular to an oblique system. x, y, z rectangular system: $x^{\prime}, y^{\prime}, z^{\prime}$ oblique system.

$\cos \widehat{x x^{\prime}}=l_{1}$	$\cos \widehat{x y^{\prime}}=l_{2}$	$\cos \widehat{x z^{\prime}}=l_{3}$
$\cos \widehat{y x}=m_{1}$	$\cos \widehat{y y^{\prime}}=m_{2}$	$\cos \widehat{y z^{\prime}}=m_{3}$
$\cos \widehat{z x^{\prime}}=n_{1}$	$\cos \widehat{z y^{\prime}}=n_{2}$	$\cos \widehat{z z^{\prime}}=n_{3}$

$$
\begin{gathered}
x=l_{1} x^{\prime}+l_{2} y^{\prime}+l_{3} z^{\prime} \\
y=m_{1} x^{\prime}+m_{2} y^{\prime}+m_{3} z^{\prime} \\
z=n_{1} x^{\prime}+n_{2} y^{\prime}+n_{3} z^{\prime} \\
\cos \widehat{y^{\prime} z^{\prime}}=l_{2} l_{3}+m_{2} m_{3}+n_{2} n_{3} \\
\cos \widehat{z^{\prime} x^{\prime}}=l_{3} l_{1}+m_{3} m_{1}+n_{3} n_{1} \\
\cos \widehat{x^{\prime} y^{\prime}}=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} \\
l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=\mathrm{I} \\
l_{2}^{2}+m_{2}^{2}+n_{2}^{2}=\mathrm{I} \\
l_{3}^{2}+m_{3}^{2}+n_{3}^{2}=\mathrm{I}
\end{gathered}
$$

2.025 Transformation from one to another oblique system.

$$
\begin{aligned}
& \cos \widehat{x x^{\prime}}=l_{1} \\
& \cos \widehat{y x^{\prime}}=m_{1} \\
& \cos \widehat{x y^{\prime}}=l_{2} \\
& \cos \widehat{y y^{\prime}}=m_{2} \\
& \cos \widehat{z y^{\prime}}=n_{2} \\
& \Delta=\left|\begin{array}{lll}
l_{1} & l_{2} & l_{3} \\
m_{1} m_{2} m_{3} \\
n_{1} & n_{2} & n_{3}
\end{array}\right| \\
& x=l_{1} x^{\prime}+l_{2} y^{\prime}+l_{3} z^{\prime} \\
& y=m_{1} x^{\prime}+m_{2} y^{\prime}+m_{3} z^{\prime} \\
& z=n_{1} x^{\prime}+n_{2} y^{\prime}+n_{3} z^{\prime} \\
& \Delta \cdot x^{\prime}=\left(m_{2} n_{3}-m_{3} n_{2}\right) x+\left(n_{2} l_{3}-n_{3} l_{2}\right) y+\left(l_{2} m_{3}-l_{3} m_{2}\right) z, \\
& \Delta \cdot y^{\prime}=\left(m_{3} n_{1}-m_{1} n_{3}\right) x+\left(n_{3} l_{1}-n_{1} l_{3}\right) y+\left(l_{3} m_{1}-l_{1} m_{3}\right) z, \\
& \Delta \cdot z^{\prime}=\left(m_{1} n_{2}-m_{2} n_{1}\right) x+\left(n_{1} l_{2}-n_{2} l_{1}\right) y+\left(l_{1} m_{2}-l_{2} m_{1}\right) z . \\
& h_{1}^{2}+m_{1}^{2}+n_{1}^{2}+2 m_{1} n_{1} \cos \widehat{y z}+2 n_{1} l_{1} \cos \widehat{z x}+2 l_{1} m_{1} \cos \widehat{x y}=\mathrm{I}, \\
& l_{2}^{2}+m_{2}{ }^{2}+n_{2}{ }^{2}+2 m_{2} n_{2} \cos \widehat{y z}+2 n_{2} l_{2} \cos \widehat{z x}+2 l_{2} m_{2} \cos \widehat{x y}=\mathbf{1}, \\
& l_{3}{ }^{2}+m_{3}{ }^{2}+n_{3}{ }^{2}+2 m_{3} n_{3} \cos \widehat{y z}+2 n_{3} l_{3} \cos \widehat{z x}+2 l_{3} m_{3} \cos \widehat{x y}=\mathrm{I} .
\end{aligned}
$$

$$
\begin{aligned}
& x+y \cos \widehat{x y}+z \cos \widehat{x z}=l_{1} x^{\prime}+l_{2} y^{\prime}+l_{3} z^{\prime} \\
& y+x \cos \widehat{x y}+z \cos \widehat{z y}=m_{1} x^{\prime}+m_{2} y^{\prime}+m_{3} z^{\prime} \\
& z+x \cos \widehat{x z}+y \cos \widehat{z y}=n_{1} x^{\prime}+n_{2} y^{\prime}+n_{3} z^{\prime}
\end{aligned}
$$

2.026 Transformation from one to another oblique system.

If n_{x}, n_{y}, n_{z} are the normals to the planes $y z, z x, x y$ and $n_{x}{ }^{\prime}, n_{y}{ }^{\prime}, n_{z}{ }^{\prime}$ the normals to the planes $y^{\prime} z^{\prime}, z^{\prime} x^{\prime}, x^{\prime} y^{\prime}$,

$$
\begin{aligned}
& x \cos \widehat{x n}_{x}=x^{\prime} \cos \widehat{x^{\prime} n_{x}}+y^{\prime} \cos \widehat{y}^{\prime} n_{x}+z^{\prime} \cos \widehat{z^{\prime} n_{x}} \text {. } \\
& y \cos \widehat{y n}_{y}=x^{\prime} \cos {\widehat{x^{\prime}} n_{y}}+y^{\prime} \cos {\widehat{y^{\prime}} n_{y}}+z^{\prime} \cos \widehat{z}^{\prime} n_{y} \text {. } \\
& z \cos \widehat{z n_{z}}=x^{\prime} \cos \widehat{x^{\prime} n_{z}}+y^{\prime} \cos \widehat{y^{\prime} n_{z}}+z^{\prime} \cos \widehat{z^{\prime} n_{z}} \text {. } \\
& x^{\prime} \cos {\widehat{x} n_{x}}^{\prime}=x \cos \widehat{x n}_{x}^{\prime}+y \cos \widehat{y n}_{x}^{\prime}+z \cos \widehat{z n}_{x}^{\prime} . \\
& y^{\prime} \cos {\widehat{y} n^{\prime}}_{y}^{\prime}=x \cos \widehat{x n}_{y}{ }^{\prime}+y \cos \widehat{y n}_{y}{ }^{\prime}+z \cos \widehat{z n}_{y}{ }^{\prime} \text {. } \\
& z^{\prime} \cos \widehat{z}^{\prime} n_{z}^{\prime}=x \cos \widehat{x n}_{z}^{\prime}+y \cos \widehat{y n}_{z}^{\prime}+z \cos \widehat{z n}_{z}^{\prime} \text {. }
\end{aligned}
$$

2.030 Transformation from rectangular to spherical polar coördinates.
r, the radius vector to a point makes an angle θ with the z-axis, the projection of r on the $x-y$ plane makes an angle ϕ with the x-axis.

$$
\begin{array}{ll}
x=r \sin \theta \cos \phi & r^{2}=x^{2}+y^{2}+z^{2} \\
y=r \sin \theta \sin \phi & \theta=\cos ^{-1} \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
z=r \cos \theta & \phi=\tan ^{-1} \frac{y}{x}
\end{array}
$$

2.031 Transformation from rectangular to cylindrical coördinates.
ρ, the perpendicular from the z-axis to a point makes an angle θ with the $x-z$ plane.

$$
\begin{array}{ll}
x=\rho \cos \theta & \rho=\sqrt{x^{2}+y^{2}} \\
y=\rho \sin \theta & \theta=\tan ^{-1} \frac{y}{x} \\
z=z &
\end{array}
$$

2.032 Curvilinear coördinates in general.

See 4.0

2.040 Eulerian Angles.

$O x y z$ and $O x^{\prime} y^{\prime} z^{\prime}$ are two systems of rectangular axes with the same origin O. $O K$ is perpendicular to the plane $z O z^{\prime}$ drawn so that if $O z$ is vertical, and the projection of $O z^{\prime}$ perpendicular to $O z$ is directed to the south, then $O K$ is directed to the east.

$$
\text { Angles } \quad \begin{aligned}
z^{\widehat{O} Z} & =\theta, \\
\widehat{y O K} & =\phi, \\
y^{\prime} \widehat{O K} & =\psi .
\end{aligned}
$$

The direction cosines of the two systems of axes are given by the following scheme:

	x	y	z
x^{\prime}			
y^{\prime}			
z^{\prime}	$\cos \phi \cos \theta \cos \psi-\sin \phi \sin \psi$ $-\cos \phi \cos \theta \sin \psi-\sin \phi \cos \psi$ $\cos \phi \sin \theta$	$\sin \phi \cos \theta \cos \psi+\cos \phi \sin \psi$ $-\sin \phi \cos \theta \sin \psi+\cos \phi \cos \psi$ $\sin \phi \sin \theta$	$-\sin \theta \cos \psi$ $\sin \theta \sin \psi$ $\cos \theta$

2.050 Trilinear Coordinates.

A point in a plane is defined if its distances from two intersecting lines are given. Let $C A$, $C B$ (Fig. r) be these lines:

$$
P R=p, \quad P S=q, \quad P T=r .
$$

Taking $C A$ and $C B$ as the x-, y-axes, including an angle C,

$$
\begin{aligned}
& x=\frac{p}{\sin C}, \\
& y=\frac{q}{\sin C} .
\end{aligned}
$$

Fig. I

Any curve $f(x, y)=o$ becomes:

$$
f\left(\frac{p}{\sin C}, \frac{q}{\sin C}\right)=0 .
$$

If s is the area of the triangle $C A B$ (triangle of rererence),

$$
\begin{aligned}
2 s= & a p+b q+c r, \\
a & =B C, \\
b & =C A, \\
c & =A B,
\end{aligned}
$$

and the equation of a curve may be written in the homogeneous form:

$$
f\left(\frac{2 s p}{(a p+b q+c r) \sin C}, \frac{2 s q}{(a p+b q+c r) \sin C}\right)=0 .
$$

2.060 Quadriplanar Coördinates.

These are the analogue in 3 dimensions of trilinear coördinates in a plane (2.050).
$x_{1}, x_{2}, x_{3}, x_{4}$ denote the distances of a point P from the four sides of a tetrahedron (the tetrahedron of reference), $l_{1}, m_{1}, n_{1} ; l_{2}, m_{2}, n_{2} ; l_{3}, m_{3}, n_{3} ;$ and l_{4}, m_{4}, n_{4} the direction cosines of the normals to the planes $x_{1}=0, x_{2}=0, x_{3}=0$, $x_{4}=0$ with respect to a rectangular system of coordinates x, y, z; and d_{1}, d_{2}, d_{3}, d_{4} the distances of these 4 planes from the origin of coordinates:

$$
\text { (I) }\left\{\begin{array}{l}
x_{1}=l_{1} x+m_{1} y+n_{1} z-d_{1} \\
x_{2}=l_{2} x+m_{2} y+n_{2} z-d_{2} \\
x_{3}=l_{3} x+m_{3} y+n_{3} z-d_{3} \\
x_{4}=l_{4} x+m_{4} y+n_{4} z-d_{4} .
\end{array}\right.
$$

s_{1}, s_{2}, s_{3}, and s_{4} are the areas of the 4 faces of the tetrahedron of reference and V its volume:

$$
3 V=x_{1} s_{1}+x_{2} s_{2}+x_{3} s_{3}+x_{4} s_{4} .
$$

By means of the first 3 equations of (I) x, y, z are determined:

$$
\begin{aligned}
& x=A_{1} x_{1}+B_{1} x_{2}+C_{1} x_{3}+D_{1}, \\
& y=A_{2} x_{1}+B_{2} x_{2}+C_{2} x_{3}+D_{2}, \\
& z=A_{3} x_{1}+B_{3} x_{2}+C_{3} x_{3}+D_{3} .
\end{aligned}
$$

The equation of any-surface,

$$
F(x, y, z)=0,
$$

may be written in the homogeneous form:

$$
\begin{aligned}
F\{ & {\left[A_{1} x_{1}+B_{1} x_{2}+C_{1} x_{3}+\frac{D_{1}}{3 V}\left(s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}+s_{4} x_{4}\right)\right] } \\
& {\left[A_{2} x_{1}+B_{2} x_{2}+C_{2} x_{3}+\frac{D_{2}}{3 V}\left(s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}+s_{4} x_{4}\right)\right] } \\
& {\left.\left[A_{3} x_{1}+B_{3} x_{2}+C_{3} x_{3}+\frac{D_{3}}{3 V}\left(s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}+s_{4} x_{4}\right)\right]\right\}=0 . }
\end{aligned}
$$

PLANE GEOMETRY

2.100 The equation of a line:

$$
A x+B y+C=0 .
$$

2.101 If p is the perpendicular from the origin upon the line, and α and β the angles p makes with the x - and y-axes:

$$
p=x \cos \alpha+y \cos \beta .
$$

2.102 If α^{\prime} and β^{\prime} are the angles the line makes with the x - and y-axes:

$$
p=y \cos \alpha^{\prime}-x \cos \beta^{\prime}
$$

2.103 The equation of a line may be written

$$
y=a x+b
$$

$a=$ tangent of angle the line makes with the x-axis, $b=$.intercept of the y-axis by the line.
2.104 The two lines:
intersect at the point:

$$
\begin{aligned}
& y=a_{1} x+b_{1}, \\
& y=a_{2} x+b_{2},
\end{aligned}
$$

$$
x=\frac{b_{2}-b_{1},}{a_{1}-a_{2}} \quad, \quad y=\frac{a_{1} b_{2}-a_{2} b_{1}}{a_{1}-a_{2}} .
$$

2.105 If ϕ is the angle between the two lines 2.104:

$$
\tan \phi= \pm \frac{a_{1}-a_{2}}{I+a_{1} a_{2}}
$$

2.106 Equations of two parallel lines:

$$
\left\{\begin{array} { l }
{ A x + B y + C _ { 1 } = 0 } \\
{ A x + B y + C _ { 2 } = 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
y=a x+b_{1} \\
y=a x+b_{2}
\end{array}\right.\right.
$$

2.107 Equations of two perpendicular lines:

$$
\left\{\begin{array} { l }
{ A x + B y + C _ { 1 } = 0 } \\
{ B x - A y + C _ { 2 } = 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
y=a x+b_{1} \\
y=-\frac{x}{a}+b_{2}
\end{array}\right.\right.
$$

2.108 Equation of line through x_{1}, y_{1} and parallel to the line:

$$
\begin{aligned}
& A x+B y+C=0 \quad \text { or } \quad y=a x+b, \\
& A\left(x-x_{1}\right)+B\left(y-y_{1}\right)=0 \quad \text { or } \quad y-y_{1}=a\left(x-x_{1}\right) .
\end{aligned}
$$

2.109 Equation of line through x_{1}, y_{1} and perpendicular to the line

$$
\begin{aligned}
A x+B y+C=0 & \text { or } & y=a x+b \\
B\left(x-x_{1}\right)-A\left(y-y_{1}\right)=0 & \text { or } & y-y_{1}=-\frac{x-x_{1}}{a} .
\end{aligned}
$$

2.110 Equation of line through x_{1}, y_{1} making an angle ϕ with the line $y=a x+b$:

$$
y-y_{1}=\frac{a+\tan \phi}{I-a \tan \phi}\left(x-x_{1}\right)
$$

2.111 Equation of line through the two points, x_{1}, y_{1}, and x_{2}, y_{2} :

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

2.112 Perpendicular distance from the point x_{1}, y_{1} to the line

$$
\begin{array}{lll}
A x+B y+C=0 & \text { or } & y=a x+b, \\
p=\frac{A x_{1}+B y_{1}+C}{\sqrt{A_{2}+B_{2}}} & \text { or } & p=\frac{y_{1}-a x_{1}-b}{\sqrt{1+a^{2}}} .
\end{array}
$$

2.113 Polar equation of the line $y=a \dot{x}+b$:

$$
r=\frac{b \cos \alpha}{\sin (\theta-\alpha)}
$$

where

$$
\tan \alpha=a
$$

2.114 If p, the perpendicular to the line from the origin, makes an angle β with the axis:

$$
p=r \cos (\theta-\beta) .
$$

2.130 Area of polygon whose vertices are at $x_{1}, y_{1} ; x_{2}, y_{2} ; \ldots \ldots$. $x_{n}, y_{n}=A$.

$$
2 A=y_{1}\left(x_{n}-x_{2}\right)+y_{2}\left(x_{1}-x_{3}\right)+y_{3}\left(x_{2}-x_{4}\right)+\ldots+y_{n}\left(x_{n-1}-x_{1}\right) .
$$

PLANE CURVES
2.200 The equation of a plane curve in rectangular coordinates may be given in the forms:
(a)

$$
y=f(x)
$$

(b) $\quad x=f_{1}(t), y=f_{2}(t)$. The parametric form.
(c) $\quad F(x, y)=0$.
2.201 If τ is the angle between the tangent to the curve and the x-axis:
(a) $\tan \tau=\frac{d y}{d x}=y^{\prime}$.
(b) $\tan \boldsymbol{\tau}=\frac{\frac{d f_{2}(t)}{d t}}{\frac{d f_{1}(t)}{d t}}$.
(c) $\tan \tau=-\frac{\frac{\partial F(x, y)}{\partial x}}{\frac{\partial F(x, y)}{\partial y}}$.

In the following formulas,

$$
y^{\prime}=\frac{d y}{d x}=\tan \tau(2.201) .
$$

Fig. 2
2.202 $O M=x, M P=y$, angle $X T P=\tau$.
$T P=y \csc \tau=\frac{y \sqrt{I+y^{\prime 2}}}{y^{\prime}}=$ tangent,
$T M=\mathrm{y} \cot \tau=\frac{y}{y^{\prime}}=$ subtangent,
$P N=y \sec \tau=y \sqrt{I+y^{\prime 2}}=$ normal,
$M N=y \tan \tau=y y^{\prime}=$ subnormal.
$2.203 O T=x-\frac{y}{y^{\prime}}=$ intercept of tangent on x-axis,
$O T^{\prime}=y-x y^{\prime}=$ intercept of tangent on y-axis,
$O N=x+y y^{\prime}=$ intercept of normal on x-axis,
$O N^{\prime}=y+\frac{x}{y^{\prime}}=$ intercept of normal on y-axis.
2.204 $O Q=\frac{y-x y^{\prime}}{\sqrt{I+y^{\prime 2}}}=\begin{gathered}\text { distance of tangent from origin }=P S=\text { projection of } \\ \text { radius vector on normal. }\end{gathered}$

Coördinates of $Q: \frac{y^{\prime}\left(x y^{\prime}-y\right)}{I+y^{\prime 2}}, \frac{y-x y^{\prime}}{I+y^{\prime 2}}$.
$2.205 O S=\frac{x+y y^{\prime}}{\sqrt{1+y^{\prime 2}}}=\begin{gathered}\text { distance of normal from origin }=P Q=\text { prujectiviu ut } \\ \text { radius vector on tangent. }\end{gathered}$ Coordinates of $S: \frac{x+y y^{\prime}}{1+y^{\prime 2}}, \frac{\left(x+y y^{\prime}\right) y^{\prime}}{\mathrm{I}+y^{\prime 2}}$.
$2.206 O R=\frac{\sqrt{x^{2}+y^{2}}\left(y-x y^{\prime}\right)}{x+y y^{\prime}}=$ polar subtangent,

$$
P R=\frac{\left(x^{2}+y^{2}\right) \sqrt{I+y^{\prime 2}}}{x+y y^{\prime}}=\text { polar tangent },
$$

Coordinates of $R: \frac{y\left(x y^{\prime}-y\right)}{x+y y^{\prime}}, \frac{x\left(y-x y^{\prime}\right)}{x+y y^{\prime}}$.
2.207 $O V=\frac{\sqrt{x^{2}+y^{2}}\left(x+y y^{\prime}\right)}{y-x y^{\prime}}=$ polar subnormal,

$$
P V=\frac{\left(x^{2}+y^{2}\right) \sqrt{r+y^{\prime 2}}}{y-x y^{\prime}}=\text { polar normal, }
$$

Coördinates of $V: \frac{y\left(x+y y^{\prime}\right)}{y-x y^{\prime}},-\frac{x\left(x+y y^{\prime}\right)}{y-x y^{\prime}}$.
2.210 The equations of the tangent at x_{1}, y_{1} to the curve in the three forms of 2.200 are:
(a)

$$
\begin{aligned}
& y-y_{1}=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right) . \\
& \left(y-y_{1}\right) f_{1}^{\prime}\left(t_{1}\right)=\left(x-x_{1}\right) f_{2}^{\prime}\left(t_{1}\right) .
\end{aligned}
$$

(b)
(c)

$$
\left(x-x_{1}\right)\left(\frac{\partial F}{\partial x}\right)_{\substack{x=x_{1} \\ y=y_{1}}}+\left(y-y_{1}\right)\left(\frac{\partial F}{\partial y}\right)_{\substack{x=x_{1} \\ y=y_{1}}}=0 .
$$

2.211 The equations of the normal at x_{1}, y_{1} to the curve in the three forms of 2.200 are:
(a)

$$
f^{\prime}\left(x_{1}\right)\left(y-y_{1}\right)+\left(x-x_{1}\right)=0 .
$$

(b)

$$
\left(y-y_{1}\right) f_{2}^{\prime}\left(t_{1}\right)+\left(x-x_{1}\right) f_{1}^{\prime}\left(t_{1}\right)=0 .
$$

(c)

$$
\left(x-x_{1}\right)\left(\frac{\partial F}{\partial y}\right)_{\substack{x=x_{1} \\ y=y_{1}}}=\left(y-y_{1}\right)\left(\frac{\partial F}{\partial x}\right)_{\substack{x=x_{1} \\ y=y_{1}}} .
$$

2.212 The perpendicular from the origin upon the tangent to the curve $F(x, y)=0$ at the point x, y is:

$$
p=\frac{x \frac{\partial F}{\partial x}+y \frac{\partial F}{\partial y}}{\sqrt{\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}}}
$$

2.213 Concavity and Convexity. If in the neighborhood of a point P a curve lies entirely on one side of the tangent, it is concave or convex upwards according as $y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$ is positive or negative. The positive direction of the axes are shown in figure 2.
2.220 Convention as to signs. The positive direction of the normal is related to the positive direction of the tangent as the positive y-axis is related to the positive x-axis. The angle τ is measured positively in the counter-clockwise direction from the positive x-axis to the positive tangent.
2.221 Radius of curvature $=\rho$; curvature $=I / \rho$.

$$
\frac{\mathrm{I}}{\rho}=\frac{d \tau}{d s}
$$

where s is the arc drawn from a fixed point of the curve in the direction of the positive tangent.
2.222 Formulas for the radius of curvature of curves given in the three forms of 2.200 .
(a)

$$
\rho=\frac{\left\{I+\left(\frac{d y}{d x}\right)^{2}\right\}^{\prime}}{\frac{d^{2} y}{d x^{2}}}=\frac{\left(I+y^{\prime 2}\right)^{\frac{2}{2}}}{y^{\prime \prime}}
$$

(b)

$$
\rho=\frac{\left\{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}\right\}^{2}}{\frac{d x}{d t} \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t} \frac{d^{2} x}{d t^{2}}}=\frac{\left(\frac{d s}{d t}\right)^{2}}{\left\{\left(\frac{d^{2} x}{d t^{2}}\right)^{2}+\left(\frac{d^{2} y}{d t^{2}}\right)^{2}-\left(\frac{d^{2} s}{d t^{2}}\right)^{2}\right\}^{2}}
$$

If s is taken as the parameter t :
(c)

$$
\begin{gather*}
\frac{\mathrm{I}}{\rho}=\frac{d x}{d s} \frac{d^{2} y}{d s^{2}}-\frac{d y}{d s} \frac{d^{2} x}{d s^{2}}=\left\{\left(\frac{d^{2} x}{d s^{2}}\right)^{2}+\left(\frac{d^{2} y}{d s^{2}}\right)^{2}\right\}^{\frac{1}{2}} \tag{b'}\\
\rho=-\frac{\left\{\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}\right\}^{3}}{\frac{\partial^{2} F}{\partial x^{2}}\left(\frac{\partial F}{\partial y}\right)^{2}-2 \frac{\partial^{2} F}{\partial x \partial y} \frac{\partial F}{\partial x} \frac{\partial F}{\partial y}+\frac{\partial^{2} F}{\partial y^{2}}\left(\frac{\partial F}{\partial x}\right)^{2}}
\end{gather*}
$$

2.223 The center of curvature is a point C (fig. 2) on the normal at P such that $P C=\rho$. If ρ is positive C lies on the positive normal (2.213); if negative, on the negative normal.
2.224 The circle of curvature is a circle with C as center and radius $=\rho$.
2.225 The chord of curvature is the chord of the circle of curvature passing through the origin and the point P.
2.226 The coordinates of the center of curvature at the point x, y are ξ, η :

$$
\begin{array}{ll}
\xi=x-\rho \sin \tau \\
\eta=y+\rho \cos \tau & \tan \tau=\frac{d y}{d x}
\end{array}
$$

If l^{\prime}, m^{\prime} are the direction cosines of the positive normal,

$$
\begin{aligned}
& \xi=x+l^{\prime} \rho \\
& \eta=y+m^{\prime} \rho .
\end{aligned}
$$

2.227 If l, m are the direction cosines of the positive tangent and l^{\prime}, m^{\prime} those of the positive normal,

$$
\begin{aligned}
& \frac{d l}{d s}=\frac{l^{\prime}}{\rho}, \frac{d m}{d s}=\frac{m^{\prime}}{\rho} . \\
& l^{\prime}=m, m^{\prime}=-l, \\
& \frac{d l^{\prime}}{d s}=-\frac{l}{\rho}, \frac{d m^{\prime}}{d s}=-\frac{m}{\rho}
\end{aligned}
$$

2.228 If the tangent and normal at P are taken as the x - and y-axes, then

$$
\rho=\operatorname{limitit}_{x \rightarrow 0} \frac{x^{2}}{2 y}
$$

2.229 Points of Inflexion. For a curve given in the form (a) of 2.200 a point of inflexion is a point at which one at least of $\frac{d^{2} y}{d x^{2}}$ and $\frac{d^{2} x}{d y^{2}}$ exists and is continuous and at which one at least of $\frac{d^{2} y}{d x^{2}}$ and $\frac{d^{2} x}{d y^{2}}$ vanishes and changes sign.

If the curve is given in the form (b) a point of inflexion, t_{1}, is a point at which the determinant:

$$
\left|\begin{array}{ll}
f_{1}^{\prime \prime}\left(t_{1}\right) & f_{2}^{\prime \prime}\left(t_{1}\right) \\
f_{1}^{\prime}\left(t_{1}\right) & f_{2}^{\prime}\left(t_{1}\right)
\end{array}\right|
$$

vanishes and changes sign.
2.230 Eliminating x and y between the coördinates of the center of curvature (2.226) and the corresponding equations of the curve (2.200) gives the equation of the evolute of the curve - the locus of the center of curvature. A curve which has a given curve for evolute is called an involute of the given curve.
2.231 The envelope to a family of curves,
I.

$$
F(x, y, a)=0
$$

where a is a parameter, is obtained by eliminating a between (x) and
2.

$$
\frac{\partial F}{\partial \alpha}=0
$$

2.232 If the curve is given in the form,
I.

$$
\begin{aligned}
& x=f_{1}(t, a) \\
& y=f_{2}(t, \quad a)
\end{aligned}
$$

the envelope is obtained by elimmating t and α between (I), (2) and the functional determinant, 3.

$$
\frac{\partial\left(f_{1}, f_{2}\right)}{\partial(t, a)}=0 \quad(\text { see } 1.370)
$$

2.233 Pedal Curves. The locus of the foot of the perpendicular from a fixed point upon the tangent to a given curve is the pedal of the given curve with reference to the fixed point.
2.240 Asymptotes. The line

$$
y=a x+b
$$

is an asymptote to the curve $y=f(x)$ if

$$
\begin{aligned}
& a=\operatorname{limit}_{x \rightarrow \infty}^{\lim ^{\prime}(x)} \\
& b=\operatorname{limit}_{x \rightarrow \infty}^{\lim }\left[f(x)-x f^{\prime}(x)\right]
\end{aligned}
$$

2.241 If the curve is

$$
x=f_{1}(t), y=f_{2}(t),
$$

and if for a value of t, t_{1}, f_{1} or f_{2} becomes infinite, there will be an asymptote if for that value of t the direction of the tangent to the curve approaches a limit and the distance of the tangent from a fixed point approaches a limit.
2.242 An asymptote may sometimes be determined by expanding the equation of the curve in a series,

If
the equation of the asymptote is

$$
y=\sum_{k=0}^{n} a_{k} x^{k}
$$

If of the first degree in x, this represents a rectilinear asymptote; if of a higher degree, a curvilinear asymptote.
2.250 Singular Points. If the equation of the curve is $F(x, y)=0$, singular points are those for which

$$
\frac{\partial F}{\partial x}=\frac{\partial F}{\partial y}=0 .
$$

Put,

$$
\Delta=\frac{\partial^{2} F}{\partial x^{2}} \frac{\partial^{2} F}{\partial y^{2}}-\left(\frac{\partial^{2} F}{\partial x \partial y}\right)^{2}
$$

If $\Delta<0$ the singular point is a double point with two distinct tangents.
$\Delta>0$ the singular point is an isolated point with no real branch of the curve through it.
$\Delta=\circ$ the singular point is an osculating point, or a cusp. The curve has two branche ia a common tangent, which meet at the singular point. If $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial^{2} F}{\partial x^{2}}, \frac{\partial^{2} F}{\partial y^{2}}, \frac{\partial^{2} F}{\partial x \partial y}$ simultaneously vanish at a point the singular point is one of higher order.

PLaNe CURVES, POLAR COÖRDINATES ${ }^{\prime}$
2.270 The equation of the curve is given in the form,

$$
r=f(\theta)
$$

In figure $2, O P=r$, angle $X O P=\theta$, angle $X T P=\tau$, angle $p P t=\phi$.
2.271θ is measured in the counter-clockwise direction from the initial line, $O X$, and s, the arc, is so chosen as to increase with θ. The angle ϕ is measured in the counter-clockwise direction from the positive radius vector to the positive tangent. Then,
2.272

$$
\begin{aligned}
\tau & =\theta+\phi \\
\tan \phi & =\frac{r d \theta}{d r} \\
\sin \phi & =\frac{r d \theta}{d s} \\
\cos \phi & =\frac{d r}{d s}
\end{aligned}
$$

2.273

$$
\begin{aligned}
\tan \tau & =\frac{\sin \theta \frac{d r}{d \theta}+r \cos \theta}{\cos \theta \frac{d r}{d \theta}-r \sin \theta} \\
d s & =\left\{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}\right\}^{\frac{1}{2}} d \theta
\end{aligned}
$$

2.274

$$
\begin{array}{ll}
P R=r \sqrt{\mathrm{I}+\left(\frac{r d \theta}{d r}\right)^{2}} & =\text { polar tangent } \\
P V=\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} & =\text { polar normal } \\
O R=r^{2} \frac{d \theta}{d r} & =\text { polar subtangent } \\
O V=\frac{d r}{d \theta} & =\text { polar subnormal. }
\end{array}
$$

$2.275 O Q=\frac{r^{2}}{\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}}=p=$ distance of tangent from origin.
$O S=\frac{r \frac{d r}{d \theta}}{\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}}=$ distance of normal from origin.
2.276 If $u=\frac{\mathrm{I}}{r}$, the curve $r=f(\theta)$ is concave or convex to the origin according as

$$
u+\frac{d^{2} u}{d \theta^{2}}
$$

is positive or negative. At a point of inflexion this quantity vanishes and changes sign.
2.280 The radius of curvature is,

$$
\rho=\frac{\left\{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}\right\}^{2}}{r^{2}+2\left(\frac{d r}{d \theta}\right)^{2}-r \frac{d^{2} r}{d \theta^{2}}}
$$

2.281 If $u=\frac{I}{r}$ the radius of curvature is

$$
\rho=\frac{\left\{u^{2}+\left(\frac{d u}{d \theta}\right)^{2}\right\}^{\frac{3}{2}}}{u^{3}\left(u+\frac{d^{2} u}{d \theta^{2}}\right)}
$$

2.282 If the equation of the curve is given in the form,

$$
r=f(s)
$$

where s is the arc measured from a fixed point of the curve,

$$
\rho=\frac{r \sqrt{\mathrm{I}-\left(\frac{d r}{d s}\right)^{2}}}{r \frac{d^{2} r}{d s^{2}}+\left(\frac{d r}{d s}\right)^{2}-\mathrm{I}}
$$

2.283 If p is the perpendicular from the origin upon the tangent to the curve,
I. $\quad \rho=r \frac{d r}{d p}$
2. $\rho=p+\frac{d^{2} p}{d \tau^{2}}$
2.284 If $u=\frac{\mathrm{I}}{r}$

$$
\begin{aligned}
& \frac{I}{p^{2}}=u^{2}+\left(\frac{d u}{d \theta}\right)^{2} \\
& \frac{d^{2} u}{d \theta^{2}}+u=\frac{r^{2}}{p^{3}}\left(\frac{d p}{d r}\right)
\end{aligned}
$$

2.286 Polar coördinates of the center of curvature, r_{1}, θ_{1} :

$$
\begin{aligned}
r_{1}^{2} & =\frac{r^{2}\left\{\left(\frac{d r}{d \theta}\right)^{2}-r \frac{d^{2} r}{d \theta^{2}}\right\}^{2}+\left(\frac{d r}{d \theta}\right)^{2}\left\{\left(\frac{d r}{d \theta}\right)^{2}+r^{2}\right\}^{2}}{\left\{r^{2}+2\left(\frac{d r}{d \theta}\right)^{2}-r \frac{d^{2} r}{d \theta^{2}}\right\}^{2}} \\
\theta_{1} & =\theta+\chi \\
\tan \chi & =\frac{\left(\frac{d r}{d \theta}\right)^{3}+r^{2} \frac{d r}{d \theta}}{r\left(\frac{d r}{d \theta}\right)^{2}-r^{2} \frac{d^{2} r}{d \theta^{2}}}
\end{aligned}
$$

2,287 If $2 c$ is the chord of curvature (2.225):

$$
\begin{aligned}
2 c & =2 p \frac{d r}{d p}=2 \rho \frac{p}{r}, \\
& =2 \frac{u^{2}+\left(\frac{d u}{d \theta}\right)^{2}}{u^{2}\left(u+\frac{d^{2} u}{d \theta^{2}}\right)} .
\end{aligned}
$$

2.290 Rectilinear Asymptotes. If r approaches ∞ as θ approaches an angle α, and if $r(\alpha-\theta)$ approaches a limit, b, then the straight line

$$
r \sin (\alpha-\theta)=b
$$

is an asymptote to the curve $r=f(\theta)$.
2.295 Intrinsic Equation of a plane curve. An intrinsic equation of a plane curve is one giving the radius of curvature, ρ, as a function of the arc, s,

$$
\rho=f(s)
$$

If τ is the angle between the x-axis and the positive tangent (2.271):

$$
\begin{array}{ll}
d \tau=\frac{d s}{f(s)} & x=x_{0}+\int_{s_{0}}^{s} \cos \tau \cdot d s \\
\tau=\tau_{0}+\int_{s_{0}}^{s} \frac{d s}{f(s)} & y=y_{0}+\int_{s_{0}}^{s} \sin \tau \cdot d s
\end{array}
$$

2.300 The general equation of the second degree:

$$
\begin{gathered}
a_{11} x^{2}+2 a_{12} x y+a_{22} y^{2}+2 a_{13} x+2 a_{23} y+a_{33}=0 \\
A=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| ; \quad a_{h k}=a_{k h} \\
A_{h k}=\text { Minor of } a_{h k .} .
\end{gathered}
$$

Criterion giving the nature of the curve:

	$A_{33} \neq 0$			$A_{33}=0$	
$A \neq O$	$A_{33}<0$		${ }_{33}>0$	Parabola	
	Hyperbola	$\begin{array}{r} a_{11} A \\ <0 \end{array}$	or $a_{22} A$ >0		
		Ellipse	Imaginary Curve		
$A=O$	$A_{33}<0$	$A_{33}>0$		$\begin{array}{ccc} A_{11} & \text { or } & A_{22} \\ <O & >0 \end{array}$	$\begin{aligned} A_{11} & =A_{22} \\ & =O\end{aligned}$
	Pair of Real Straight Lines Intersect	Pair of n Finite	Imaginary ines	Real Imaginary . Pair of Parallel Lines	Double Line

(Pascal: Repertorium der höheren Mathematik, II, I, p. 228)
2.400 Parabola (Fig. 3).
2.401 O, Vertex; F, Focus; ordinate through D, Directrix.

Equation of parabola, origin at O,

$$
\begin{aligned}
& y^{2}=4 a x \\
& x=O M, y=M P, \\
& O F=O D=a \\
& F L=2 a=\text { semi latus } \\
& \text { rectum. } \\
& F P=D^{\prime} P .
\end{aligned}
$$

2.402 $F P=F T=M D$

$$
=x+a .
$$

Fig. 3

$$
N P=2 \sqrt{a(a+x)}, T M=2 x, M N=2 a, O N=x+2 a .
$$

$$
O N^{\prime}=\sqrt{\frac{\bar{x}}{a}}(x+2 a), O Q=x \sqrt{\frac{a}{a+x}}, O S=(x+2 a) \sqrt{\frac{x}{a+x}} .
$$

$$
F B \text { perpendicular to tangent } T P \text {. }
$$

$$
F B=\sqrt{a(a+x)}, T P=2 T B=2 \sqrt{x(a+x)} .
$$

$$
\overline{F B}^{2}=F T \times F O=F P \times F O .
$$

The tangents $T P$ and $U P^{\prime}$ at the extremities of a focal chord $P F P^{\prime}$ meet on the directrix at U at right angles.

$$
\begin{aligned}
\tau & =\text { angle } X T P . \\
\tan \tau & =\sqrt{\frac{a}{x}} .
\end{aligned}
$$

The tangent at P bisects the angles $F P D^{\prime}$ and $F U D^{\prime}$.

2.403 Radius of curvature:

$$
\rho=\frac{2(x+a)^{\frac{2}{2}}}{\sqrt{a}}=\frac{I}{4} \frac{\overline{N P}^{3}}{a^{2}} .
$$

Coördinates of center of curvature:

$$
\xi=3 x+2 a, \eta=-2 x \sqrt{\frac{x}{a}}
$$

Equation of Evolute:

$$
27 a y^{2}=\dot{4}(x-2 a)^{3}
$$

2.404 Length of arc of parabola measured from vertex,

$$
s=\sqrt{x(x+a)}+a \log \left(\sqrt{1+\frac{x}{a}}+\sqrt{\frac{x}{a}}\right)
$$

Area $O P M O=\frac{\mathrm{I}}{3} x y$.
2.405 Polar equation of parabola:

$$
\begin{aligned}
& r=F P \\
& \theta=\text { angle } X F P \\
& r=\frac{2 a}{\mathrm{I}-\cos \theta}
\end{aligned}
$$

2.406 Equation of Parabola in terms of p, the perpendicular from. F upon the tangent, and r, the radius vector $F P$:

$$
\frac{l}{p^{2}}=\frac{2}{r}
$$

$$
l=\text { semi latus rectum. }
$$

2.410 Ellipse (Fig. 4).

Fig. 4
2.411 O, Centre; F, F^{\prime}, Foci.

Equation of Ellipse origin at O :

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\mathrm{I} \\
x=O M, y=M P, a=O A, b=O B
\end{gathered}
$$

2.412 Parametric Equations of Ellipse,

$$
x=a \cos \phi, \quad y=b \sin \phi
$$

$\phi=$ angle $X O P^{\prime}$, where P^{\prime} is the point where the ordinate at P meets the eccentric circle, drawn with O as center and radius a.
2.413 $O F=O F^{\prime}=e a$

$$
\begin{aligned}
e & =\text { eccentricity }=\frac{\sqrt{a^{2}-b^{2}}}{a}, \\
F L & =\frac{b^{2}}{a}=a\left(\mathbf{I}-e^{2}\right)=\text { semi latus rectum. } \\
F^{\prime} P & =a+e x, F P=a-e x, F P+F^{\prime} P=2 a . \\
\tau & =\text { angle } X T T^{\prime} . \\
\tan \tau & =-\frac{b x}{a \sqrt{a^{2}-x^{2}}} \cdot \\
N M & =\frac{b^{2} x}{a^{2}}, O N=e^{2} x, O T=\frac{a^{2}}{x}, O T^{\prime}=\frac{b^{2}}{y}, M T=\frac{a^{2}-x^{2}}{x}, \\
P T & =\frac{\sqrt{a^{2}-x^{2}} \sqrt{a^{2}-e^{2} x^{2}}}{x}, O N^{\prime}=\frac{e^{2} a}{b} \sqrt{a^{2}-x^{2}}, P S=\frac{a b}{\sqrt{a^{2}-e^{2} x^{2}}}, \\
O S & =\frac{e^{2} x \sqrt{a^{2}-x^{2}}}{\sqrt{a^{2}-e^{2} x^{2}}} .
\end{aligned}
$$

$2.414 D D^{\prime}$ parallel to $T^{\prime} T$; $D D^{\prime}$ and $P P^{\prime}$ are conjugate diameters:

$$
\begin{aligned}
O D^{2} & =a^{2}-e^{2} x^{2}=F P \times F^{\prime} P \\
O P^{2}+O D^{2} & =a^{2}+b^{2} \\
P S \times O D & =a b
\end{aligned}
$$

Equation of Ellipse referred to conjugate diameters as axes:

$$
\begin{array}{lll}
\frac{x^{2}}{a^{\prime 2}}+\frac{y^{2}}{b^{\prime 2}}=\mathrm{I} & \begin{array}{l}
\alpha=\text { angle } X O P \\
\beta=\text { angle } X O D
\end{array} \\
a^{\prime}=O D^{\prime} & a^{\prime 2}=\frac{a^{2} b^{2}}{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha} & \tan \alpha \tan \beta=-\frac{b^{2}}{a^{2}} \\
b^{\prime}=O P & b^{\prime 2}=\frac{a^{2} b^{2}}{a^{2} \sin ^{2} \beta+b^{2} \cos ^{2} \beta} &
\end{array}
$$

2.415 Radius of curvature of Ellipse:

$$
\begin{aligned}
& \rho=\frac{\left(a^{4} y^{2}+b^{4} x^{2}\right)^{\frac{\pi}{2}}}{a^{4} b^{4}}=\frac{\left(a^{2}-e^{2} x^{2}\right)^{\frac{3}{2}}}{a b} \\
& \text { angle } F P N=\text { angle } F^{\prime} P N=\omega, \\
& \qquad \tan \omega=\frac{e a y}{b^{2}} \\
& \frac{2}{\rho \cos \omega}=\frac{I}{F P}+\frac{I}{F^{\prime} P}
\end{aligned}
$$

Coördinates of center of curvature:

$$
\xi=\frac{e^{2} x^{3}}{a^{2}}, \eta=-\frac{a^{2} e^{2} y^{3}}{b^{4}} .
$$

Equation of Evolute of Ellipse,

$$
\left(\frac{a x}{e^{2}}\right)^{\frac{3}{3}}+\left(\frac{b y}{e^{2}}\right)^{3}=x .
$$

2.416 Area of Ellipse, $\pi a b$.

Length of arc of Ellipse,

$$
s=a \int_{0}^{\phi} \sqrt{I-e^{2} \sin ^{2} \phi} d \phi
$$

2.417 Polar Equation of Ellipse,

$$
\begin{aligned}
r=F^{\prime} P, \theta & =\text { angle } X F^{\prime} P, \\
r & =\frac{a\left(\mathrm{I}-e^{2}\right)}{\mathrm{r}-e \cos \theta}
\end{aligned}
$$

2.418

$$
\begin{aligned}
r=O P, \theta & =\text { angle } X O P, \\
r & =\frac{b}{\sqrt{I-e^{2} \cos ^{2} \theta}}
\end{aligned}
$$

2.419 Equation of Ellipse in terms of p, the perpendicular from F upon the tangent at P, and r, the radius vector $F P$:

$$
\begin{aligned}
\frac{l}{p^{2}} & =\frac{2}{r}-\frac{\mathrm{I}}{a} \\
l & =\text { semi latus rectum } .
\end{aligned}
$$

2.420 Hyperbola (Fig. 5).
2.421 , Center; F, F^{\prime}, Foci.

Equation of hyperbola, origin at O,

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\mathrm{I} \\
x=O M, y=M P, a=O A=O A^{\prime} .
\end{gathered}
$$

2.422 Parametric Equations of hyperbola,

$$
x=a \cosh u, y=b \sinh u .
$$

or

$$
x=a \sec \phi, \quad y=b \tan \phi .
$$

$\phi=$ angle $X O P^{\prime}$, where P^{\prime} is the point where the ordinate at T meets tne circle of radius a, center O.
$2.423 \quad O F=O F^{\prime}=e a$.

$$
e=\text { eccentricity }=\frac{\sqrt{a^{2}+b^{2}}}{a} .
$$

Fig 5

$$
\begin{aligned}
F L & =\frac{b^{2}}{a}=a\left(e^{2}-\mathrm{I}\right)=\text { semi latus rectum } \\
F^{\prime} P & =e x+a, F P=e x-a, F^{\prime} P-F P=2 a \\
\tau & =\text { angle } X T P
\end{aligned}
$$

$$
\tan \tau=\frac{b x}{a \sqrt{x^{2}-a^{2}}}
$$

$$
N M=\frac{b^{2} x}{a^{2}}, O N=e^{2} x, O T=\frac{a^{2}}{x}, O T^{\prime}=\frac{b^{2}}{y}
$$

$$
M T=\frac{x^{2}-a^{2}}{x}, P T=\frac{\sqrt{x^{2}-a^{2}} \sqrt{e^{2} x^{2}-a^{2}}}{x}, O N^{\prime}=\frac{e^{2} a}{b} \sqrt{x^{2}-a^{2}}
$$

$$
P S=\frac{a b}{\sqrt{e^{2} x^{2}-a^{2}}}, O S=\frac{e^{2} x \sqrt{x^{2}-a^{2}}}{\sqrt{e^{2} x^{2}-a^{2}}}
$$

$$
O U=\text { Asymptote. }
$$

$$
\tan X O U=\frac{b}{a}
$$

$b=$ distance of vertex A from asymptote.
2.425 Radius of curvature of hyperbola,

$$
\rho=\frac{\left(e^{2} x^{2}-a^{2}\right)^{\frac{3}{2}}}{a b}
$$

angle $F^{\prime} P T=$ angle $F P T$.

$$
\begin{aligned}
& \text { angle } F P N=\omega=\frac{\pi}{2}-F P T \\
& \text { angle } F^{\prime} P N=\omega^{\prime}=\frac{\pi}{2}+F^{\prime} P T
\end{aligned}
$$

$$
\tan \omega=\frac{a e y}{b^{2}}
$$

$$
\cos \omega=\frac{b}{\sqrt{e^{2} x^{2}-a^{2}}}
$$

$$
\frac{2}{\rho \cos \omega}=\frac{\mathrm{I}}{F P}-\frac{\mathrm{I}}{F^{\prime} P} .
$$

Coórdinates of center of curvature,

$$
\xi=\frac{e^{2} x^{3}}{a^{2}}, \eta=-\frac{a^{2} e^{2} y^{3}}{b^{4}}
$$

Equation of Evolute of hyperbola,

$$
\left(\frac{a x}{e^{2}}\right)^{3}-\left(\frac{b y}{e^{2}}\right)^{3}=\mathrm{I}
$$

2.426 In a rectangular hyperbola $b=a$; the asymptotes are perpendicular to each other. Equation of rectangular hyperbola with asymptotes as axes and origin at O :

$$
x y=\frac{a^{2}}{2}
$$

2.427 Length of arc of hyperbola,

$$
s=\frac{b^{2}}{a e} \int_{0}^{\phi} \frac{\sec ^{2} \phi d \phi}{\sqrt{I-k^{2} \sin ^{2} \phi}}, \quad k=\frac{\mathrm{I}}{e}, \quad \tan \phi=\frac{a e y}{b^{2}} .
$$

2.428 Polar Equation of hyperbola:

$$
\begin{aligned}
& r=F^{\prime} P, \quad \theta=X F^{\prime} P, \quad r=a \frac{e^{2}-I}{e \cos \theta-I} \\
& r=O P, \quad \theta=X O P, \quad r^{2}=\frac{b^{2}}{e^{2} \cos ^{2} \theta-I}
\end{aligned}
$$

2.429 Equation of right-hand branch of hyperbola in terms of p, the perpendicular from F upon the tangent at P and r, the radius vector $F P$,

$$
\begin{aligned}
\frac{l}{p^{2}} & =\frac{2}{r}+\frac{I}{a} \\
l & =\text { semi latus rectum }
\end{aligned}
$$

2.450 Cycloids and Trochoids.

If a circle of radius a rolls on a straight line as base the extremity of any radius, a, describes a cycloid. The rectangular equation of a cycloid is:

$$
\begin{aligned}
& x=a(\phi-\sin \phi), \\
& y=a(\mathrm{I}-\cos \phi),
\end{aligned}
$$

where the x-axis is the base with the origin at the initial point of contact. ϕ is the angle turned through by the moving circle. (Fig. 6.)

Fig 6
$A=$ vertex of cycloid.
$C=$ center of generating circle, drawn tangent at A.
The tangent to the cycloid at P is parallel to the chord $A Q$
Arc $A P=2 \times$ chord $A Q$.
The radius of curvature at P is parallel to the chord $Q D$ and equal to $2 \times$ chord $Q D$.
$P Q=$ circular $\operatorname{arc} A Q$.
Length of cycloid $\cdot s=8 a ; a=C A$.
Area of cycloid $S=3 \pi a^{2}$
2.451 A point on the radius, $b>a$, describes a prolate trochoid:- A point, $=$ $b<a$, describes a curtate trochoid. The general equation of trounoids and cycloids is

$$
\begin{aligned}
& x=a \phi-(a+d) \sin \phi, \\
& y=(a+d)(\mathrm{I}-\cos \phi), \\
& d=\circ \text { Cycloid, } \\
& d>0 \text { Prolate trochoid, } \\
& d<0 \text { Curtate trochoid. }
\end{aligned}
$$

Radius of curvature:

$$
\rho=\frac{\left(2 a y+d^{2}\right)^{2}}{a y+a d+d^{2}}
$$

2.452 Epi- and Hypocycloids. An epicycloid is described by a point on a circle of radius a that rolls on the convex side o a fixed circle of radius b. An hypocycloid is described by a point on a circle of radius a that rolls on the concave side of a fixed circle of radius b.

Equations of epi- and hypocycloids.
Upper sign: Epicycloid,
Lower sign: Hypocycloid.

$$
\begin{aligned}
& x=(b \pm a) \cos \phi \neq a \cos \frac{b \pm a}{a} \phi \\
& y=(b \pm a) \sin \phi-a \sin \frac{b \pm a}{a} \phi
\end{aligned}
$$

The origin is at the center of the fixed circle. The x-axis is the line joining the centers of the two circles in the initial position and ϕ is the angle turned through by the moving circle.

Radius of curvature:

$$
\rho=\frac{2 a(b \pm a)}{b \pm 2 a} \sin \frac{a}{2 b} \phi
$$

2.453 In the epicycloid put $b=a$. The curve becomes a Cardioid:

$$
\left(x^{2}+y^{2}\right)^{2}-6 a^{2}\left(x^{2}+y^{2}\right)+8 a^{3} x=3 a^{4}
$$

2.454 Catenary. The equation may be written:
I.

$$
\begin{aligned}
& y=\frac{1}{2} a\left(e^{\frac{x}{a}}+e^{-\frac{x}{a}}\right) \\
& y=a \cosh \frac{x}{a} \\
& x=a \log \frac{y \pm \sqrt{y^{2}-a^{2}}}{a}
\end{aligned}
$$

The radius of curvature, which is equal to the length of the normal, is:

$$
\rho=a \cosh ^{2} \frac{x}{a}
$$

2.45 , Spiral of Archimedes. A point moving uniformly along a line which rotates uniformly about a fixed point describes a spiral of Archimedes. The equation is?

$$
\text { or } \quad r=a \theta,
$$

The polar subtangent = polar subnormal $=a$.
Radius of

$$
\therefore \quad \rho=\frac{r\left(\mathrm{I}+\theta^{2}\right)^{\frac{2}{2}}}{\theta\left(2+\theta^{2}\right)}=\frac{\left(r^{2}+a^{2}\right)^{\frac{3}{2}}}{r^{2}+2 a^{2}}
$$

2.456 Hyperbolic spiral:

$$
r \theta=a .
$$

2.457 Parabolic spiral:

$$
r^{2}=a^{2} \theta
$$

2.458 Logarithmic or equiangular spiral:

$$
\begin{aligned}
r & =a e^{n \theta} \\
n & =\cot \alpha=\text { const. } \\
\alpha & =\text { angle tangent to curve makes with the radius vector. }
\end{aligned}
$$

2.459 Lituus:

$$
r \sqrt{\theta}=a .
$$

2.460 Neoid:

$$
r=a+b \theta
$$

2.461 Cissoid:

$$
\begin{aligned}
\left(x^{2}+y^{2}\right) x & =2 a y^{2}, \\
r & =2 a \tan \theta \sin \theta .
\end{aligned}
$$

2.462 Cassinoid:

$$
\begin{aligned}
\left(x^{2}+y^{2}+a^{2}\right)^{2} & =4 a^{2} x^{2}+b^{4}, \\
r^{4}-2 a^{2} r^{2} \cos 2 \theta & =b^{4}-a^{4} .
\end{aligned}
$$

2.463 Lemniscate ($b=a$ in Cassinoid):

$$
\begin{aligned}
\left(x^{2}+y^{2}\right)^{2} & =2 a^{2}\left(x^{2}-y^{2}\right), \\
r^{2} & =2 a^{2} \cos 2 \theta
\end{aligned}
$$

2.464 Conchoid:

$$
x^{2} y^{2}=(b+y)^{2}\left(a^{2}-y^{2}\right)
$$

2.465 Witch of Agnesi:

$$
x^{2} y=4 a^{2}(2 a-y)
$$

2.466 Tractrix:

$$
\begin{aligned}
x & =\frac{1}{2} a \log \frac{a+\sqrt{a^{2}-y^{2}}}{a-\sqrt{a^{2}-y^{2}}}-\sqrt{a^{2}-y^{2}} \\
\frac{d y}{d x} & =-\frac{y}{\sqrt{a^{2}-y^{2}}} \\
\rho & =\frac{a \sqrt{a^{2}-y^{2}}}{y} .
\end{aligned}
$$

SOLID GEOMETRY

2.600 The Plane. The general equation of the plane is:

$$
A x+B y+C z+D=0
$$

$2.601 l, m, n$ are the direction cosines of the normal to the plane and p is the perpendicular distance from the origin upon the plane.

$$
\begin{aligned}
l, m, n & =\frac{A, B, C}{\sqrt{A^{2}+B^{2}+C^{2}}} \\
p & =l x+m y+n z \\
p & =-\frac{D}{\sqrt{A^{2}+B^{2}+C^{2}}}
\end{aligned}
$$

2.602 The perpendicular from the point x_{1}, y_{1}, z_{1} upon the plane $A x+B y+$ $C z+D=0$ is:

$$
d=\frac{A x_{1}+B y_{1}+C z_{1}+D}{\sqrt{A^{2}+B^{2}+C^{2}}} .
$$

2.603θ is the angle between the two planes:

$$
\begin{gathered}
A_{1} x+B_{1} y+C_{1} z+D_{1}=0, \\
A_{2} x+B_{2} y+C_{2} z+D_{2}=0, \\
\cos \theta=\frac{A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}}{\sqrt{A_{1}{ }^{2}+B_{1}{ }^{2}+{C C_{1}{ }^{2}}_{\sqrt{A_{2}{ }^{2}+B_{2}{ }^{2}+C_{2}^{2}}}} .} .
\end{gathered}
$$

2.604 Equation of the plane passing through the three points $\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z_{2}\right)$ $\left(x_{3}, y_{3}, z_{3}\right)$:
$x\left|\begin{array}{lll}y_{1} & z_{1} & I \\ y_{2} & z_{2} & I \\ y_{3} & z_{3} & I\end{array}\right|+y\left|\begin{array}{lll}z_{1} & x_{1} & I \\ z_{2} & x_{2} & \mathrm{I} \\ z_{3} & x_{3} & \mathrm{I}\end{array}\right|+z\left|\begin{array}{lll}x_{1} & y_{1} & \mathrm{I} \\ x_{2} & y_{2} & \mathrm{I} \\ x_{3} & y_{3} & \mathrm{I}\end{array}\right|=\left|\begin{array}{lll}x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3}\end{array}\right|$

THE RIGHT LINE

2.620 The equations of a right line passing through the point x_{1}, y_{1}, z_{1}, and whose direction cosines are l, m, n are:

$$
\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n} .
$$

2.621θ is the angle between the two lines whose direction cosines are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} :

$$
\begin{aligned}
& \cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}, \\
& \sin ^{2} \theta=\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}+\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2} .
\end{aligned}
$$

2.622 The direction cosines of the normal to the plane defined by the two lines whose direction cosines are l_{1}, m_{1}, n_{1} and $l_{2}, m_{2} n_{2}$ are:

$$
\frac{m_{1} n_{2}-m_{2} n_{1}}{\sin \theta}, \quad \frac{n_{1} l_{2}-n_{2} l_{1}}{\sin \theta}, \quad \frac{l_{1} m_{2}-l_{2} m_{1}}{\sin \theta} .
$$

2.623 The shortest distance between the two lines:

$$
\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}} \quad \text { and } \frac{x-x_{2}}{l_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{2}}{n_{2}}
$$

is:
$d=\frac{\left(x_{1}-x_{2}\right)\left(m_{1} n_{2}-m_{2} n_{1}\right)+\left(y_{1}-y_{2}\right)\left(n_{1} l_{2}-n_{2} l_{1}\right)+\left(z_{1}-z_{2}\right)\left(l_{1} m_{2}-l_{2} m_{1}\right)}{\left\{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}\right\}^{\frac{1}{2}}}$,
2.624 The direction cosines of the shortest distance between the two lines are:

$$
\frac{\left(m_{1} n_{2}-n_{2} m_{1}\right),\left(n_{1} l_{2}-n_{2} l_{1}\right),\left(l_{1} m_{2}-l_{2} m_{1}\right)}{\left[\left(m_{1} m_{n}-m_{1} m_{1} 1^{2}\right)+\left(m_{1} l_{1}-m_{2} l_{1}\right)^{2}+\left(l_{1} m_{1}-l_{1} m_{1}\right)^{23} 3^{\frac{1}{2}}\right.} .
$$

2.625 The perpendicular distance from the point x_{2}, y_{2}, z_{2} to the line:

$$
\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}}
$$

is:
$d=\left\{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right\}^{\frac{1}{2}}-\left\{l_{1}\left(x_{2}-x_{1}\right)+m_{1}\left(y_{2}-y_{1}\right)+n_{1}\left(z_{2}-z_{1}\right)\right\}$.
2.626 The direction cosines of the line passing through the two points x_{1}, y_{1}, z_{1} and x_{2}, y_{2}, z_{2} are:

$$
\frac{\left(x_{2}-x_{1}\right), \quad\left(y_{2}-y_{1}\right), \quad\left(z_{2}-z_{1}\right)}{\left\{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right\}^{\frac{1}{2}}} .
$$

2.627 The two lines:

$$
\begin{array}{ll}
x=m_{1} z+p_{1}, \\
y=n_{1} z+q_{1}, & \text { and } \quad
\end{array} \quad x=m_{2} z+p_{2},
$$

intersect at a point if,

$$
\left(m_{1}-m_{2}\right)\left(q_{1}-q_{2}\right)-\left(n_{1}-n_{2}\right)\left(p_{1}-p_{2}\right)=0 .
$$

The coordinates of the point of intersection are:

$$
x=\frac{m_{1} p_{2}-m_{2} p_{1}}{m_{1}-m_{2}}, \quad y=\frac{n_{1} q_{2}-n_{2} q_{1}}{n_{1}-n_{2}}, \quad z=\frac{p_{2}-p_{1}}{m_{1}-m_{2}}=\frac{q_{2}-q_{1}}{n_{1}-n_{2}} .
$$

The equation of the plane containing the two lines is then

$$
\left(n_{1}-n_{2}\right)\left(x-m_{1} z-p_{1}\right)=\left(m_{1}-m_{2}\right)\left(y-n_{1} z-g_{1}\right) .
$$

SURFACES

2.640 A single equation in x, y, z represents a surface:

$$
F(x, y, z)=0 .
$$

2.641 The direction cosines of the normal to the surface are:

$$
l, m, n=\frac{\frac{\partial F}{\partial x}, \quad \frac{\partial F}{\partial y}, \quad \frac{\partial F}{\partial z}}{\left\{\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}+\left(\frac{\partial F}{\partial z}\right)^{2}\right\}^{3}} .
$$

2.642 The perpendicular from the origin upon the tangent plane at x, y, z is:

$$
p=l x+m y+n z .
$$

2.643 The two principal radii of curvature of the surface $F(x, y, z)=0$ are given by the two roots of:

$$
\left|\begin{array}{cccc}
\frac{k}{\rho}+\frac{\partial^{2} F}{\partial x^{2}} & \frac{\partial^{2} F}{\partial x \partial y} & \frac{\partial^{2} F}{\partial x \partial z} & \frac{\partial F}{\partial x} \\
\frac{\partial^{2} F}{\partial x \partial y} & \frac{k}{\rho}+\frac{\partial^{2} F}{\partial y^{2}} & \frac{\partial^{2} F}{\partial y \partial z} & \frac{\partial F}{\partial y} \\
\frac{\partial^{2} F}{\partial x \partial z} & \frac{\partial^{2} F}{\partial y \partial z} & \frac{k}{\rho}+\frac{\partial^{2} F}{\partial z^{2}} & \frac{\partial F}{\partial z} \\
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} & 0
\end{array}\right|=0
$$

where:

$$
k^{2}=\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}+\left(\frac{\partial F}{\partial z}\right)^{2} .
$$

2.644 The coordinates of each center of curvature are:

$$
\xi=x+\frac{\rho}{k} \frac{\partial F}{\partial x}, \quad \quad \eta=y+\frac{\rho}{k} \frac{\partial F}{\partial y}, \quad \zeta=z+\frac{\rho}{k} \frac{\partial F}{\partial z} .
$$

2.645 The envelope of a family of surfaces:
I. $\quad F(x, y, z, \alpha)=0$
is found by eliminating α between (x) and
2. $\frac{\partial F}{\partial \alpha}=0$.
2.646 The characteristic of a surface is a curve defined by the two equations (r) and (2) in 2.645.
2.647 The envelope of a family of surfaces with two variable parameters, α, β, is obtained by eliminating α and β between:
I.
2.

$$
\begin{aligned}
F(x, y, z, \alpha, \beta) & =0 \\
\frac{\partial F}{\partial \alpha} & =0 \\
\frac{\partial F}{\partial \beta} & =0
\end{aligned}
$$

2.648 The equations of a surface may be given in the parametric form:

$$
x=f_{1}(u, v), \quad y=f_{2}(u, v), \quad z=f_{3}(u, v) .
$$

The equation of a tangent plane at x_{1}, y_{1}, z_{1} is:

$$
\left(x-x_{1}\right) \frac{\partial\left(f_{2}, f_{3}\right)}{\partial(u, v)}+\left(y-y_{1}\right) \frac{\partial\left(f_{3}, f_{1}\right)}{\partial(u, v)}+\left(z-z_{1}\right) \frac{\partial\left(f_{1}, f_{2}\right)}{\partial(u, v)}=0
$$

where

$$
\frac{\partial\left(f_{2}, f_{3}\right)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial f_{2}}{\partial u} & \frac{\partial f_{2}}{\partial v} \\
\frac{\partial f_{3}}{\partial u} & \frac{\partial f_{3}}{\partial v}
\end{array}\right|, \text { etc. See 1.370. }
$$

2.649 The direction cosines to the normal to the surface in the form 2.648 are:

$$
l, m, n=\frac{\frac{\partial\left(f_{2}, f_{3}\right)}{\partial(u, v)}, \frac{\partial\left(f_{3}, f_{1}\right)}{\partial(u, v)}, \frac{\partial\left(f_{1}, f_{2}\right)}{\partial(u, v)}}{\left\{\left(\frac{\partial\left(f_{2}, f_{3}\right)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial\left(f_{3}, f_{1}\right)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial\left(f_{1}, f_{2}\right)}{\partial(u, v)}\right)^{2}\right\}^{2}} .
$$

2.650 If the equation of the surface is:

$$
z=f(x, y)
$$

the equation of the tangent plane at x_{1}, y_{1}, z_{1} is:

$$
z-z_{1}=\left(\frac{\partial f}{\partial x}\right)_{1}\left(x-x_{1}\right)+\left(\frac{\partial f}{\partial y}\right)_{1}\left(y-y_{1}\right)
$$

2.651 The direction cosines of the normal to the surface in the form $\mathbf{2 . 6 5 0}$ are:

$$
l, m, n=\frac{-\left(\frac{\partial f}{\partial x}\right),-\left(\frac{\partial f}{\partial y}\right),+\mathrm{x}}{\left\{\mathrm{I}+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right\}^{\frac{3}{2}}}
$$

2.652 The two principal radii of curvature of the surface in the form $\mathbf{2 . 6 5 0}$ are given by the two roots of:

$$
\left(r t-s^{2}\right) \rho^{2}-\left\{\left(I+q^{2}\right) r-2 p q s+\left(I+p^{2}\right) t\right\} \sqrt{I+p^{2}+q^{2}} \rho+\left(I+p^{2}+q^{2}\right)^{2}=0
$$ where

$$
p=\frac{\partial f}{\partial x}, \quad q=\frac{\partial f}{\partial y}, \quad r=\frac{\partial^{2} f}{\partial x^{2}}, \quad s=\frac{\partial^{2} f}{\partial x \partial y}, \quad t=\frac{\partial^{2} f}{\partial y^{2}} .
$$

2.653 If ρ_{1} and ρ_{2} are the two principal radii of curvature of a surface, and ρ is the radius of curvature in a plane making an angle ϕ with the plane of ρ_{1},

$$
\frac{\mathrm{I}}{\rho}=\frac{\cos ^{2} \phi}{\rho_{1}}+\frac{\sin ^{2} \phi}{\rho_{2}}
$$

2.654 If ρ and ρ^{\prime} are the radii of curvature in any two mutually perpendicular planes, and ρ_{1} and ρ_{2} the two principal radii of curvature:

$$
\frac{\mathrm{I}}{\rho}+\frac{\mathrm{I}}{\rho^{\prime}}=\frac{\mathrm{I}}{\rho_{1}}+\frac{\mathrm{I}}{\rho_{2}}
$$

2.655 Gauss's measure of the curvature of a surface is:

$$
\frac{I}{\rho}=\frac{I}{\rho_{1} \rho_{2}}
$$

SPACE CURVES

2.670 The equations of a space curve may be given in the forms:
(a)
(b)

$$
\begin{aligned}
& F_{1}(x, y, z)=0, \quad F_{2}(x, y, z)=0 . \\
& x=f_{1}(t), \quad y=f_{2}(t), \quad z=f_{3}(t) \\
& y=\phi(x), \quad z=\psi(x)
\end{aligned}
$$

(c)
2.671 The direction cosines of the tangent to a space curve in the form (a) are:

$$
\begin{aligned}
& l=\frac{\frac{\partial F_{1}}{\partial y} \frac{\partial F_{2}}{\partial z}-\frac{\partial F_{1}}{\partial z} \frac{\partial F_{2}}{\partial y}}{T}, \\
& m=\frac{\frac{\partial F_{1}}{\partial z} \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial x} \frac{\partial F_{2}}{\partial z}}{T}, \\
& n=\frac{\frac{\partial F_{1}}{\partial x} \frac{\partial F_{2}}{\partial y}-\frac{\partial F_{1}}{\partial y} \frac{\partial F_{2}}{\partial x}}{T},
\end{aligned}
$$

where T is the positive root of:

$$
\begin{aligned}
& T^{\grave{2}=\left\{\left(\frac{\partial F_{1}}{\partial x}\right)^{2}+\left(\frac{\partial F_{1}}{\partial y}\right)^{2}+\left(\frac{\partial F_{1}}{\partial z}\right)^{2}\right\}\left\{\left(\frac{\partial F_{2}}{\partial x}\right)^{2}\right.}+\left\{\left(\frac{\partial F_{2}}{\partial y}\right)^{2}+\left(\frac{\partial F_{2}}{\partial z}\right)^{2}\right\} \\
&-\left\{\frac{\partial F_{1}}{\partial x} \frac{\partial F_{2}}{\partial x}+\frac{\partial F_{1}}{\partial y} \frac{\partial F_{2}}{\partial y}+\frac{\partial F_{1}}{\partial z} \frac{\partial F_{2}}{\partial z}\right\}^{2} .
\end{aligned}
$$

2.672 The direction cosines of the tangent to a space curve in the form (b) are:

$$
l, m, n=\frac{x^{\prime}, y^{\prime}, z^{\prime}}{\left\{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right\}^{\frac{1}{z}}},
$$

where the accents denote differentials with respect to t.
2.673 If s, the length of arc measured from a fixed point on the curve is the parameter, t :

$$
l, m, n=\frac{d x}{d s}, \frac{d y}{d s}, \frac{d z}{d s} .
$$

2.674 The principal radius of curvature of a space curve in the form (b) is:

$$
\begin{aligned}
\rho & =\frac{\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)^{\frac{3}{2}}}{\left\{\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)^{2}+\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime}\right)^{2}+\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)^{2}\right\}^{\frac{1}{2}}} \\
& =\frac{s^{\prime 2}}{\left(x^{\prime \prime 2}+y^{\prime / 2}+z^{\prime / 2}-s^{\prime \prime 2}\right)^{\frac{1}{2}}} .
\end{aligned}
$$

where the double accents denote second differentials with respect to t, and s, the length of arc, is a function of t.
2.675 When $t=s$:

$$
\frac{I}{\rho}=\left\{\left(\frac{d^{2} x}{d s^{2}}\right)^{2}+\left(\frac{d^{2} y}{d s^{2}}\right)^{2}+\left(\frac{d^{2} z}{d s^{2}}\right)^{2}\right\}^{\frac{1}{2}}
$$

2.676 The direction cosines of the principal normal to the space curve in the form (b) are:

$$
\begin{aligned}
& l^{\prime}=\frac{z^{\prime}\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}\right)-y^{\prime}\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)}{L} \\
& m^{\prime}=\frac{x^{\prime}\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)-z^{\prime}\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)}{L}
\end{aligned}
$$

$$
n^{\prime}=\frac{y^{\prime}\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)-x^{\prime}\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}\right)}{L},
$$

where

$$
L=\left\{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right\}^{\frac{1}{2}}\left\{\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)^{2}+\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}\right)^{2}+\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)^{2}\right\}^{\frac{1}{2}} .
$$

2.677 The direction cosines of the binormal to the curve in the form (b) are:

$$
\begin{aligned}
& l^{\prime \prime}=\frac{y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}}{S}, \\
& m^{\prime \prime}=\frac{z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}}{S}, \\
& n^{\prime \prime}=\frac{x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}}{S},
\end{aligned}
$$

where

$$
S=\left\{\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)^{2}+\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}\right)^{2}+\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)^{2}\right\}^{\frac{1}{2}} .
$$

2.678 If s, the distance measured along the curve from a fixed point on it is the parameter, t :

$$
l^{\prime}=\rho \frac{d^{2} x}{d s^{2}}, \quad m^{\prime}=\rho \frac{d^{2} y}{d s^{2}}, \quad n^{\prime}=\rho \frac{d^{2} z}{d s^{2}},
$$

where ρ is the principal radius of curvature; and

$$
\begin{aligned}
& l^{\prime \prime}=\rho\left(\frac{d y}{d s} \frac{d^{2} z}{d s^{2}}-\frac{d z}{d s} \frac{d^{2} y}{d s^{2}}\right), \\
& m^{\prime \prime}=\rho\left(\frac{d z}{d s} \frac{d^{2} x}{d s^{2}}-\frac{d x}{d s} \frac{d^{2} z}{d s^{2}}\right), \\
& n^{\prime \prime}=\rho\left(\frac{d x}{d s} \frac{d^{2} y}{d s^{2}}-\frac{d y}{d s} \frac{d^{2} x}{d s^{2}}\right) .
\end{aligned}
$$

2.679 The radius of torsion, or radius of second curvature of a space curve is:

$$
\begin{aligned}
\tau & =\frac{\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)^{\frac{1}{2}}}{\left\{\left(\frac{\partial l^{\prime \prime}}{\partial t}\right)^{2}+\left(\frac{\partial m^{\prime \prime}}{\partial t}\right)^{2}+\left(\frac{\partial n^{\prime \prime}}{\partial t}\right)^{2}\right\}^{\frac{1}{2}}} \\
& =-\frac{I}{S^{2}}\left|\begin{array}{lll}
x^{\prime} & y^{\prime} & z^{\prime} \\
x^{\prime \prime} & y^{\prime \prime} & z^{\prime \prime} \\
x^{\prime \prime \prime} & y^{\prime \prime \prime} & z^{\prime \prime \prime}
\end{array}\right|,
\end{aligned}
$$

where S is given in 2.677.
2.680 When $t=s$:

$$
\frac{\mathbf{I}}{\boldsymbol{\tau}}=\left\{\left(\frac{\partial l^{\prime}}{\partial s}\right)^{2}+\left(\frac{\partial m^{\prime \prime}}{\partial s}\right)^{2}+\left(\frac{\partial n^{\prime \prime}}{\partial s}\right)^{2}\right\}
$$

$$
=-\rho^{2}\left|\begin{array}{lll}
\frac{d x}{d s} & \frac{d y}{d s} & \frac{d z}{d s} \\
\frac{d^{2} x}{d s^{2}} & \frac{d^{2} y}{d s^{2}} & \frac{d^{2} z}{d s^{2}} \\
\frac{d^{3} x}{d s^{3}} & \frac{d^{3} y}{d s^{3}} & \frac{d^{3} z}{d s^{3}}
\end{array}\right|
$$

2.681 The direction cosines of the tangent to a space curve in the form (c) are:

$$
l, m, n=\frac{\mathrm{I}, y^{\prime}, z^{\prime}}{\sqrt{\mathrm{I}+y^{\prime 2}+z^{\prime 2}}}
$$

where accents denote differentials with respect to x :

$$
y^{\prime}=\frac{d \phi(x)}{d x}, \quad z^{\prime}=\frac{d \psi(x)}{d x}
$$

2.682 The principal radius of curvature of a space curve in the form (c) is:

$$
\rho=\left\{\frac{\left(\mathrm{I}+y^{\prime 2}+z^{\prime 2}\right)^{3}}{\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)^{2}+y^{\prime / 2}+z^{\prime / 2}}\right\}^{\frac{1}{2}}
$$

2.683 The radius of torsion of a space curve in the form (c) is:

$$
\tau=\frac{\left(\mathrm{I}+y^{\prime 2}+z^{\prime 2}\right)^{3}}{\rho^{2}\left(y^{\prime \prime} z^{\prime \prime \prime}-z^{\prime \prime} y^{\prime \prime \prime}\right)}
$$

2.690 The relation between the direction cosines of the tangent, principal normal and binormal to a space curve is:

$$
\left|\begin{array}{lll}
l & m & n \\
l^{\prime} & m^{\prime} & n^{\prime} \\
l^{\prime \prime} & m^{\prime \prime} & n^{\prime \prime}
\end{array}\right|=\mathrm{I}
$$

2.691 The tangent, principal normal and binormal all being mutually perpendicular the relations of 2.00 hold among their direction cosines.

III. TRIGONOMETRY

$3.00 \tan x=\frac{\sin x}{\cos x}, \sec x=\frac{\mathrm{I}}{\cos x}, \csc x=\frac{\mathrm{I}}{\sin x}, \cot x=\frac{\mathrm{I}}{\tan x}$, $\sec ^{2} x=\mathrm{I}+\tan ^{2} x, \csc ^{2} x=\mathrm{I}+\cot ^{2} x, \sin ^{2} x+\cos ^{2} x=\mathrm{I}$, versin $x=\mathrm{I}-\cos x$, coversin $x=\mathrm{I}-\sin x$, haversin $x=\sin ^{2} \frac{x}{2}$.
$3.01 \sin x=-\sin (-x)=\sqrt{\frac{1-\cos 2 x}{2}}=2 \sqrt{\cos ^{2} \frac{x}{2}-\cos ^{4} \frac{x}{2}}$,

$$
\begin{aligned}
& =2 \sin \frac{x}{2} \cos \frac{x}{2}=\frac{\tan x}{\sqrt{I+\tan ^{2} x}}=\frac{2 \tan \frac{x}{2}}{\mathrm{I}+\tan ^{2} \frac{x}{2}}, \\
& =\frac{I}{\sqrt{I+\cot ^{2} x}}=\frac{\mathrm{I}}{\cot \frac{x}{2}-\cot x}=\frac{\mathrm{I}}{\tan \frac{x}{2}+\cot x}, \\
& =\cot \frac{x}{2} \cdot(\mathrm{I}-\cos x)=\tan \frac{x}{2} \cdot(\mathrm{I}+\cos x), \\
& =\sin y \cos (x-y)+\cos y \sin (x-y), \\
& =\cos y \sin (x+y)-\sin y \cos (x+y), \\
& =-\frac{1}{2} i\left(e^{i x}-e^{-i x}\right) .
\end{aligned}
$$

$3.02 \cos x=\cos (-x)=\sqrt{\frac{I+\cos 2 x}{2}}=\mathrm{I}-2 \sin ^{2} \frac{x}{2}$,

$$
\begin{aligned}
& =\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}=2 \cos ^{2} \frac{x}{2}-\mathrm{I}=\frac{\mathrm{I}}{\sqrt{\mathrm{I}+\tan ^{2} x}}, \\
& =\frac{\mathrm{I}-\tan ^{2} \frac{x}{2}}{\mathrm{I}+\tan ^{2} \frac{x}{2}}=\frac{\mathrm{I}}{\mathrm{I}+\tan x \tan \frac{x}{2}}=\frac{\mathrm{I}}{\tan x \cot \frac{x}{2}-\mathrm{I}}, \\
& =\frac{\cot \frac{x}{2}-\tan \frac{x}{2}}{\cot \frac{x}{2}+\tan \frac{x}{2}}=\frac{\cot x}{\sqrt{I+\cot ^{2} x}}=\frac{\sin 2 x}{2 \sin x}, \\
& =\cos y \cos (x+y)+\sin y \sin (x+y), \\
& =\cos y \cos (x-y)-\sin y \sin (x-y), \\
& =\frac{1}{2}\left(e^{i x}+e^{-r x}\right) .
\end{aligned}
$$

$3.03 \tan x=-\tan (-x)=\frac{\sin 2 x}{I+\cos 2 x}=\frac{I-\cos 2 x}{\sin 2 x},=$

$$
\begin{aligned}
& \sqrt{\frac{I-\cos 2 x}{I+\cos 2 x}}=\frac{\sin (x+y)+\sin (x-y)}{\cos (x+y)+\cos (x-y)}, \\
= & \frac{\cos (x-y)-\cos (x+y)}{\sin (x+y)-\sin (x-y)}=\cot x-2 \cot 2 x, \\
= & \frac{\tan \frac{x}{2}}{I-\tan \frac{x}{2}}+\frac{\tan \frac{x}{2}}{I+\tan \frac{x}{2}}=\frac{2 \tan \frac{x}{2}}{I-\tan ^{2} \frac{x}{2}} \\
= & \frac{I}{I-\tan \frac{x}{2}}-\frac{I}{I+\tan \frac{x}{2}}, \\
= & i \frac{I-e^{2 \imath x}}{I+e^{2 \imath x}} .
\end{aligned}
$$

3.04 The values of five trigonometric functions in terms of the sixth are given in the following table. (For signs, see 3.05.)

	$\sin x=a$	$\cos x=a$	$\tan x=a$	$\cot x=a$	$\sec x=a$	$\csc x=$
$\sin x=$	a	$\sqrt{\text { I- } a^{2}}$	$\frac{a}{\sqrt{\mathrm{I}+a^{2}}}$	$\frac{\mathrm{I}}{\sqrt{\mathrm{I}+a^{2}}}$	$\frac{\sqrt{a^{2}-\mathrm{I}}}{a}$	$\frac{\mathrm{I}}{a}$
$\cos x=$	$\sqrt{1-a^{2}}$	a	$\frac{\mathrm{I}}{\sqrt{\mathrm{I}+a^{2}}}$	$\frac{a}{\sqrt{1+a^{2}}}$	$\frac{\mathrm{I}}{a}$	$\frac{\sqrt{a^{2}-\mathrm{x}}}{a}$
$\tan x=$	$\frac{a}{\sqrt{I-a^{2}}}$	$\frac{\sqrt{1-a^{2}}}{a}$	a	$\frac{\mathrm{I}}{a}$	$\sqrt{a^{2}-1}$	$\frac{\mathrm{I}}{\sqrt{a^{2}-\mathrm{I}}}$
$\cot x=$	$\frac{\sqrt{1-a^{2}}}{a}$	$\frac{a}{\sqrt{1-a^{2}}}$	$\frac{\mathrm{I}}{a}$	a	$\frac{\mathrm{I}}{\sqrt{a^{2}-\mathrm{I}}}$	$\sqrt{a^{2}-\mathrm{I}}$
$\sec x=$	$\frac{\mathrm{I}}{\sqrt{1-a^{2}}}$	$\frac{1}{a}$	$\sqrt{1+a^{2}}$	$\frac{\sqrt{I+a^{2}}}{a}$	a	$\frac{a}{\sqrt{a^{2}-\mathrm{I}}}$
$\operatorname{Csc} x=$	$\frac{I}{a}$	$\frac{I}{\sqrt{I-a^{2}}}$	$\frac{\sqrt{1+a^{2}}}{a}$	$\sqrt{I+a^{2}}$	$\frac{a}{\sqrt{a^{2}-\mathrm{I}}}$	a

3.05 The trigonometric functions are periodic, the periods of the sin, \cos , sec, \csc being 2π, and those of the \tan and \cot , π. Their signs may be determined from the following table. In using formulas giving any of the trigonometric
functions by the root of some quantity, the proper sign may be taken from this table.

	\circ°	$\left\|\begin{array}{c} 0-\frac{\pi}{2} \\ 0-90^{\circ} \end{array}\right\|$	$\frac{\pi}{2}$ 90	$\begin{gathered} \frac{\pi}{2}-\pi \\ 90^{\circ}-180^{\circ} \end{gathered}$	$\begin{gathered} \pi \\ 180^{\circ} \end{gathered}$	$\begin{gathered} \pi-\frac{3}{2} \pi \\ 180^{\circ}-270^{\circ} \end{gathered}$	$\begin{gathered} \frac{3}{2} \pi \\ 270^{\circ} \end{gathered}$	$\begin{gathered} \frac{3}{2} \pi-2 \pi \\ 270^{\circ}-360^{\circ} \end{gathered}$	$\left\lvert\, \begin{aligned} & 2 \pi \\ & 360^{\circ} \end{aligned}\right.$
\sin	\bigcirc	+	I	+	\bigcirc	-	-I	-	\bigcirc
\cos	I	+	\bigcirc	-	-I	-	\bigcirc	+	I
\tan	\bigcirc	+	$\pm \infty$	-	\bigcirc	+	$\pm \infty$	-	\bigcirc
cot	F	+	\bigcirc	-	$\mp \infty$	+	\bigcirc	-	$\mp \infty$
sec	I	+	$\pm \infty$	-	-I	-	$\pm \infty$	+	I
CSC	Fon	+	I	$+$	$\pm \infty$	-	-I	-	$\mp \infty$

3.10 Functions of Half an Angle. (See 3.05 for signs.)
3.101

$$
\begin{aligned}
\sin \frac{I}{2} x & = \pm \sqrt{\frac{I-\cos x}{2}} \\
& =\frac{I}{2}\{ \pm \sqrt{I+\sin x} \mp \sqrt{I-\sin x}\} \\
& = \pm \sqrt{\frac{I}{2}\left(I-\frac{I}{ \pm \sqrt{I+\tan ^{2} x}}\right)}
\end{aligned}
$$

3.102

$$
\begin{aligned}
\cos \frac{I}{2} x & = \pm \sqrt{\frac{I+\cos x}{2}} \\
& =\frac{I}{2}\{ \pm \sqrt{I+\sin x} \pm \sqrt{I-\sin x}\} \\
& = \pm \sqrt{\frac{I}{2}\left(I+\frac{I}{ \pm \sqrt{I+\tan ^{2} x}}\right)}
\end{aligned}
$$

3.103

$$
\tan \frac{I}{r}_{x} x= \pm \sqrt{\frac{I-\cos x}{r+m e x}}
$$

$$
\begin{aligned}
& =\frac{\sin x}{I+\cos x}=\frac{I-\cos x}{\sin x} \\
& =\frac{ \pm \sqrt{I+\tan ^{2} x}-I}{\tan x}
\end{aligned}
$$

3.11 Functions of the Sum and Difference of Two Angles.
3.111

$$
\begin{aligned}
\sin (x \pm y) & =\sin x \cos y \pm \cos x \sin y \\
& =\cos x \cos y(\tan x \pm \tan y) \\
& =\frac{\tan x \pm \tan y}{\tan x \mp \tan y} \sin (x \mp y) \\
& =\frac{\pi}{2}\{\cos (x+y)+\cos (x-y)\}(\tan x \pm \tan y) .
\end{aligned}
$$

3.112 $\quad \cos (x \pm y)=\cos x \cos y \mp \sin x \sin y$,

$$
=\cos x \cos y(I \mp \tan x \tan y),
$$

$$
=\frac{\cot x \mp \tan y}{\cot x \pm \tan y} \cos (x \mp y),
$$

$$
=\frac{\cot y \mp \tan x}{\cot y \tan x \mp \mathrm{I}} \sin (x \mp y),
$$

$$
=\cos x \sin y(\cot y \mp \tan x) .
$$

3.113

$$
\begin{aligned}
\tan (x \pm y) & =\frac{\tan x \pm \tan y}{I \mp \tan x \tan y} \\
& =\frac{\cot y \pm \cot x}{\cot x \cot y \mp x} \\
& =\frac{\sin 2 x \pm \sin 2 y}{\cos 2 x+\cos 2 y}
\end{aligned}
$$

3.114

$$
\begin{aligned}
\cot (x \pm y) & =\frac{\cot x \cot y \mp r}{\cot y \pm \cot x} \\
& =-\frac{\sin 2 x \mp \sin 2 y}{\cos 2 x-\cos 2 y} .
\end{aligned}
$$

3.115 The cosine and sine of the sum of any number of angles in terms of the sine and cosine of the angles are given by the real and imaginary parts of $\cos \left(x_{1}+x_{2}+\ldots .+x_{n}\right)+i \sin \left(x_{1}+x_{2}+\ldots .+x_{n}\right)$

$$
=\left(\cos x_{1}+i \sin x_{1}\right)\left(\cos x_{2}+i \sin x_{2}\right) \ldots\left(\cos x_{n}+i \sin x_{n}\right)
$$

3.12 Sums and Differences of Trigonometric Functions.
$3.121 \quad \sin x \pm \sin y=2 \sin \frac{1}{2}(x \pm y) \cos \frac{1}{2}(x \mp y)$,

$$
\begin{aligned}
& =(\cos x+\cos y) \tan \frac{1}{2}(x \pm y), \\
& =(\cos y-\cos x) \cot \frac{1}{2}(x \mp y), \\
& =\frac{\tan \frac{1}{2}(x \pm y)}{\tan \frac{1}{2}(x \mp y)}(\sin x \mp \sin y),
\end{aligned}
$$

3.122 - $\cos x+\cos y=2 \cos \frac{1}{2}(x+y) \cos \frac{1}{2}(x-y)$,

$$
\begin{aligned}
& =\frac{\sin x \pm \sin y}{\tan \frac{1}{2}(x \pm y)} \\
& =\frac{\cot \frac{1}{2}(x+y)}{\tan \frac{1}{2}(x-y)}(\cos y-\cos x)
\end{aligned}
$$

3.123
$\cos x-\cos y=2 \sin \frac{1}{2}(y+x) \sin \frac{1}{2}(y-x)$
$=-(\sin x \pm \sin y) \tan \frac{1}{2}(x \mp y)$.
$3.124 \quad \tan x \pm \tan y=\frac{\sin (x \pm y)}{\cos x \cdot \cos y}$.

$$
\begin{aligned}
& =\frac{\sin (x \pm y)}{\sin (x \mp y)}(\tan x \mp \tan y), \\
& =\tan y \tan (x \pm y)(\cot y \mp \tan x), \\
& =\frac{I \mp \tan x \tan y}{\cot (x \pm y)}, \\
& =(I \mp \tan x \tan y) \tan (x \pm y) .
\end{aligned}
$$

3.125 $\cot x \pm \cot y= \pm \frac{\sin (x \pm y)}{\sin x \sin y}$.
3.130
I.
2.

$$
\frac{\sin x \pm \sin y}{\cos x-\cos y}=-\cot \frac{1}{2}(x \mp y)
$$

3.

$$
\frac{\sin x \pm \sin y}{\cos x+\cos y}=\tan \frac{1}{2}(x \pm y)
$$

$$
\frac{\sin x+\sin y}{\sin x-\sin y}=\frac{\tan \frac{1}{2}(x+y)}{\tan \frac{1}{2}(x-y)}
$$

3.140
I.

$$
\sin ^{2} x+\sin ^{2} y=1-\cos (x+y) \cos (x-y)
$$

$$
\sin ^{2} x-\sin ^{2} y=\cos ^{2} y-\cos ^{2} x
$$

$$
=\sin (x+y) \sin (x-y)
$$

$\cos ^{2} x-\sin ^{2} y=\cos (x+y) \cos (x-y)$.
$\sin ^{2}(x+y)+\sin ^{2}(x-y)=I-\cos 2 x \cos 2 y$.
$\sin ^{2}(x+y)-\sin ^{2}(x-y)=\sin 2 x \sin 2 y$.
5
$\cos ^{2}(x+y)+\cos ^{2}(x-y)=I+\cos 2 x \cos 2 y$.
$\cos ^{2}(x+y)-\cos ^{2}(x-y)=-\sin 2 x \sin 2 y$.
3.150
I. $\quad \cos n x \cos m x=\frac{1}{2} \cos (n-m) x+\frac{1}{2} \cos (n+m) x$.
2. $\quad \sin n x \sin m x=\frac{1}{2} \cos (n-m) x-\frac{1}{2} \cos (n+m) x$.
3.
$\cos n x \sin m x=\frac{1}{2} \sin (n+m) x-\frac{1}{2} \sin (n-m) x$.
3.160
I.
2.

$$
\begin{aligned}
& e^{x+\imath y}=e^{x}(\cos y+i \sin \\
& a^{x+\imath y}=a^{x}\{\cos (y \log a)+i \sin (y \log a)\}
\end{aligned}
$$

3.

$(\cos x \pm i \sin x)^{n}=\cos n x \pm i \sin n x$
[De Moivre's Theorem].
4.
5.
6.
$\sin (x \pm i y)=\sin x \cosh y \pm i \cos x \sinh y$.
$\cos (x \pm i y)=\cos x \cosh y \mp i \sin x \sinh y$.
$\cos x=\frac{1}{2}\left(e^{2 x}+e^{-2 x}\right)$.
$\sin x=-\frac{i}{2}\left(e^{\imath x}-e^{-\imath x}\right)$.
8.

$$
e^{2 x}=\cos x+i \sin x
$$

9.

$$
e^{-\imath x}=\cos x-i \sin x
$$

3.170 Sines and Cosines of Multiple Angles.
$3.171 n$ an even integer:
$\sin n x=n \cos x\left\{\sin x-\frac{\left(n^{2}-2^{2}\right)}{3!} \sin ^{3} x+\frac{\left(n^{2}-2^{2}\right)\left(n^{2}-4^{2}\right)}{5!} \sin ^{5} x-\ldots\right\}$.
$\cos n x=\mathrm{I}-\frac{n^{2}}{2!} \sin ^{2} x+\frac{n^{2}\left(n^{2}-2^{2}\right)}{4!} \sin ^{4} x-\frac{n^{2}\left(n^{2}-2^{2}\right)\left(n^{2}-4^{2}\right)}{6!} \sin ^{6} x+\ldots$
$3.172 n$ an odd integer:
$\sin n x=n\left\{\sin x-\frac{\left(n^{2}-\mathrm{I}^{2}\right)}{3!} \sin ^{3} x+\frac{\left(n^{2}-\mathrm{I}^{2}\right)\left(n^{2}-3^{2}\right)}{5!} \sin ^{5} x-\ldots\right\}$.
$\cos n x=\cos x\left\{\mathrm{I}-\frac{\left(n^{2}-\mathrm{I}^{2}\right)}{2!} \sin ^{2} x+\frac{\left(n^{2}-\mathrm{I}^{2}\right)\left(n^{2}-3^{2}\right)}{4!} \sin ^{4} x-\ldots\right\}$.
$3.173 n$ an even integer:
$\sin n x=(-\mathrm{I})^{\frac{n}{2} \mathrm{x}} \cos x\left\{2^{n-1} \sin ^{n-1} x-\frac{(n-2)}{\mathrm{x}!} 2^{n-3} \sin ^{n-3} x\right.$

$$
\begin{array}{r}
\frac{(n-3)(n-4)}{2!} 2^{n-5} \sin ^{n-5} x-\frac{(n-4)(n-5)(n-6)}{3!} 2^{n-7} \sin ^{n-7} x \\
+\ldots\} .
\end{array}
$$

$\cos n x=(-I)^{\frac{n}{2}}\left\{2^{n-1} \sin ^{n} x-\frac{n}{\mathrm{I}!} 2^{n-3} \sin ^{n-2} x+\frac{n(n-3)}{2!} 2^{n-5} \sin ^{n-4} x\right.$

$$
\left.-\frac{n(n-3)(n-5)}{3!} 2^{n-7} \sin ^{n-6} x+\ldots\right\}
$$

$3.174 n$ an odd integer:
$\sin n x=(-\mathrm{I})^{\frac{n-\mathrm{I}}{2}}\left\{2^{n-1} \sin ^{n} x-\frac{n}{\mathrm{I}!} 2^{n-3} \sin ^{n-2} x+\frac{n(n-3)}{2!} 2^{n-5} \sin ^{n-4} x\right.$

$$
\left.-\frac{n(n-3)(n-5)}{3!} 2^{n-7} \sin ^{n-6} x+\ldots\right\} .
$$

$\cos n x=(-1)^{\frac{n-1}{2}} \cos x\left\{2^{n-1} \sin ^{n-1} x-\frac{n-2}{\mathrm{I}!} 2^{n-3} \sin ^{n-3} x\right.$

$$
\begin{array}{r}
+\frac{(n-3)(n-4)}{2!} 2^{n-5} \sin ^{n-5} x-\frac{(n-4)(n-5)(n-6)}{3!} 2^{n-7} \sin ^{n-7} x \\
+\ldots \ldots
\end{array}+.
$$

$3.175 n$ any integer:
$\sin n x=\sin x\left\{2^{n-1} \cos ^{n-1} x-\frac{n-2}{\mathrm{I}!} 2^{n-3} \cos ^{n-3} x\right.$

$$
\begin{array}{r}
\left.+\frac{(n-3)(n-4)}{2!} 2^{n-5} \cos ^{n-5} x-\frac{(n-4)(n-5)(n-6)}{3!}{ }_{2^{n-7} \cos ^{n-7} x}+\ldots .\right\}
\end{array}
$$

$\cos n x=2^{n-1} \cos ^{n} x-\frac{n}{1}!2^{n-3} \cos ^{n-2} x+\frac{n(n-3)}{2!} 2^{n-5} \cos ^{n-4} x$

$$
-\frac{n(n-4)(n-5)}{3!} 2^{n-7} \cos ^{n-6} x+\ldots
$$

3.176

$$
\begin{aligned}
\sin 2 x & =2 \sin x \cos x \\
\sin 3 x & =\sin x\left(3-4 \sin ^{2} x\right) \\
& =\sin x\left(4 \cos ^{2} x-1\right) \\
\sin 4 x & =\sin x\left(8 \cos ^{3} x-4 \cos x\right) \\
\sin 5 x & =\sin x\left(5-20 \sin ^{2} x+16 \sin ^{4} x\right) \\
& =\sin x\left(16 \cos ^{4} x-12 \cos ^{2} x+x\right) \\
\sin 6 x & =\sin x\left(32 \cos ^{5} x-32 \cos ^{3} x+6 \cos x\right)
\end{aligned}
$$

3.177

$$
\begin{aligned}
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =\mathrm{I}-2 \sin ^{2} x \\
& =2 \cos ^{2} x-\mathrm{I} \\
\cos 3 x & =\cos x\left(4 \cos ^{2} x-3\right) \\
& =\cos x\left(\mathrm{I}-4 \sin ^{2} x\right) \\
\cos 4 x & =8 \cos ^{4} x-8 \cos ^{2} x+\mathrm{I} \\
\cos 5 x & =\cos x\left(\mathrm{I} 6 \cos ^{4} x-20 \cos ^{2} x+5\right) \\
& =\cos x\left(\mathrm{I} 6 \sin ^{4} x-\mathrm{I} 2 \sin ^{2} x+\mathrm{I}\right) \\
\cos 6 x & =32 \cos ^{6} x-48 \cos ^{4} x+\mathrm{I} 8 \cos ^{2} x-\mathrm{I}
\end{aligned}
$$

3.178

$$
\begin{aligned}
& \tan 2 x=\frac{2 \tan x}{I-\tan ^{2} x} \\
& \cot 2 x=\frac{\cot ^{2} x-1}{2 \cot x}
\end{aligned}
$$

3.180 Integral Powers of Sine and Cosine.
3.181 n an even integer :

$$
\begin{aligned}
\sin ^{n} x= & \frac{(-1)^{\frac{n}{2}}}{2^{n-1}}\left\{\cos n x-n \cos (n-2) x+\frac{n(n-1)}{2^{!}} \cos (n-4) x\right. \\
& \left.-\frac{n(n-1)(n-2)}{3!} \cos (n-6) x+\ldots+(-1)^{\frac{n}{2} \frac{1}{2}} \frac{n!}{\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!}\right\}
\end{aligned}
$$

$$
\cos ^{n} x=\frac{\mathrm{I}}{2^{n-1}}\left\{\cos n x+n \cos (n-2) x+\frac{n(n-1)}{2!} \cos (n-4) x\right.
$$

$$
\left.+\frac{n(n-1)(n-2)}{3!} \cos (n-6) x+\ldots+\frac{1}{2} \frac{n!}{\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!} \cdot\right\}
$$

$3.182 n$ an odd integer:
$\sin ^{n} x=\frac{(-\mathrm{I})^{\frac{n-\mathrm{I}}{2}}}{2^{n-1}}\left\{\sin n x-n \sin (n-2) x+\frac{n(n-\mathrm{I})}{2!} \sin (n-4) x\right.$

$$
\left.-\frac{n(n-\mathrm{I})(n-2)}{3!} \sin (n-6) x+\ldots+(-\mathrm{I})^{\frac{n-\mathrm{I}}{2}} \frac{n!}{\left(\frac{n-\mathrm{I}}{2}\right)!\left(\frac{n+\mathrm{I}}{2}\right)!} \sin x\right\}
$$

$\cos ^{n} x=\frac{\mathrm{I}}{2^{n-1}}\left\{\cos n x+n \cos (n-2) x+\frac{n(n-1)}{2!} \cos (n-4) x\right.$

$$
\left.+\frac{n(n-\mathrm{I})(n-2)}{3!} \cos (n-6) x+\ldots \ldots+\frac{n!}{\left(\frac{n-1}{2}\right)!\left(\frac{n+1}{2}\right)!} \quad \cos x\right\}
$$

3.183

$$
\begin{aligned}
& \sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \\
& \sin ^{3} x=\frac{1}{4}(3 \sin x-\sin 3 x) \\
& \sin ^{4} x=\frac{1}{8}(\cos 4 x-4 \cos 2 x+3) \\
& \sin ^{5} x=\frac{1}{16}(\sin 5 x-5 \sin 3 x+\text { Io } \sin x) \\
& \sin ^{6} x=-\frac{1}{32}\left(\cos 6 x-6 \cos 4 x+\text { I }_{5} \cos 2 x-\text { 10 }\right) .
\end{aligned}
$$

3.184

$$
\begin{aligned}
& \cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \\
& \cos ^{3} x=\frac{1}{4}(3 \cos x+\cos 3 x) \\
& \cos ^{4} x=\frac{1}{8}(3+4 \cos 2 x+\cos 4 x) \\
& \cos ^{5} x=\frac{1}{16}(10 \cos x+5 \cos 3 x+\cos 5 x) \\
& \cos ^{6} x=\frac{1}{32}(10+15 \cos 2 x+6 \cos 4 x+\cos 6 x) .
\end{aligned}
$$

INVERSE CIRCULAR FUNCTIONS

3.20 The inverse circular and logarithmic functions are multiple valued; i.e., if

$$
0<\sin ^{-1} x<\frac{\pi}{2}
$$

the solution of $x=\sin \theta$ is:

$$
\theta=2 n \pi+\sin ^{-1} x
$$

where n is a positive integer. In the following formulas the cyclic constants are omitted.
3.21

$$
\begin{aligned}
\sin ^{-1} x & =-\sin ^{-1}(-x)=\frac{\pi}{2}-\cos ^{-1} x=\cos ^{-1} \sqrt{I-x^{2}} \\
& =\frac{\pi}{2}-\sin ^{-1} \sqrt{I-x^{2}}=\frac{\pi}{4}+\frac{I}{2} \sin ^{-1}\left(2 x^{2}-I\right) \\
& =\frac{I}{2} \cos ^{-1}\left(I-2 x^{2}\right)=\tan ^{-1} \frac{x}{\sqrt{I-x^{2}}} \\
& =2 \tan ^{-1}\left\{\frac{I-\sqrt{I-x^{2}}}{x}\right\}=\frac{I}{2} \tan ^{-1}\left\{\frac{2 x \sqrt{I-x^{2}}}{I-2 x^{2}}\right\} \\
& =\cot ^{-1} \frac{\sqrt{I-x^{2}}}{x}=\frac{\pi}{2}-i \log \left(x+\sqrt{x^{2}-I} .\right.
\end{aligned}
$$

3.22

$$
\begin{aligned}
\cos ^{-1} x & =\pi-\cos ^{-1}(-x)=\frac{\pi}{2}-\sin ^{-1} x=\frac{I}{2} \cos ^{-1}\left(2 x^{2}-I\right) \\
& =2 \cos ^{-1} \sqrt{\frac{I+x}{2}}=\sin ^{-1} \sqrt{I-x^{2}}=\tan ^{-1} \frac{\sqrt{I-x^{2}}}{x} \\
& =2 \tan ^{-1} \sqrt{\frac{I-x}{I+x}}=\frac{I}{2} \tan ^{-1}\left\{\frac{2 x \sqrt{I-x^{2}}}{2 x^{2}-I}\right\}=\cot ^{-1} \frac{x}{\sqrt{I-x^{2}}} \\
& =i \log \left(x+\sqrt{x^{2}-I}\right)=\pi-i \log \left(\sqrt{x^{2}-I}-x\right) .
\end{aligned}
$$

3.23

$$
\begin{aligned}
\tan ^{-1} x & =-\tan ^{-1}(-x)=\sin ^{-1} \frac{x}{\sqrt{I+x^{2}}}=\cos ^{-1} \frac{I}{\sqrt{I+x^{2}}} \\
& =\frac{\mathrm{I}}{2} \sin ^{-1} \frac{2 x}{\mathrm{I}+x^{2}}=\frac{\pi}{2}-\cot ^{-1} x=\sec ^{-1} \sqrt{I+x^{2}} \\
& =\frac{\pi}{2}-\tan ^{-1} \frac{\mathrm{I}}{x}=\frac{\mathrm{I}}{2} \cos ^{-1} \frac{I-x^{2}}{I+x^{2}} \\
& =2 \cos ^{-1}\left\{\frac{\mathrm{I}+\sqrt{I+x^{2}}}{2 \sqrt{I+x^{2}}}\right\}^{\frac{I}{2}}=2 \sin ^{-1}\left\{\frac{\sqrt{I+x^{2}}-\mathrm{I}}{2 \sqrt{I+x^{2}}}\right\}^{\frac{1}{2}} \\
& =\frac{I}{2} \tan ^{-1} \frac{2 x}{\mathrm{I}-x^{2}}=2 \tan ^{-1}\left\{\frac{\sqrt{I+x^{2}}-\mathrm{I}}{x}\right\} \\
& =-\tan ^{-1} c+\tan ^{-1} \frac{x+c}{\mathrm{I}-c x} \\
& =\frac{\bar{I}}{2} i \log \frac{\mathrm{I}-i x}{\mathrm{I}+i x}=\frac{\mathrm{I}}{2} i \log \frac{i+x}{i-x}=-\frac{\mathrm{I}}{2} i \log \frac{\mathrm{I}+i x}{\mathrm{I}-i x} .
\end{aligned}
$$

3.25
I.

$$
\begin{aligned}
\sin ^{-1} x \pm \sin ^{-1} y & =\sin ^{-1}\left\{x \sqrt{I-y^{2}} \pm y \sqrt{I-x^{2}}\right\} \\
\cos ^{-1} x \pm \cos ^{-1} y & =\cos ^{-1}\left\{x y \mp \sqrt{\left(I-x^{2}\right)\left(I-y^{2}\right)}\right\} \\
\sin ^{-1} x \pm \cos ^{-1} y & =\sin ^{-1}\left\{x y \pm \sqrt{\left(I-x^{2}\right)\left(I-y^{2}\right)}\right\} \\
& =\cos ^{-1}\left\{y \sqrt{I-x^{2}} \mp x \sqrt{I-y^{2}}\right\}
\end{aligned}
$$

4.

$\tan ^{-1} x \pm \tan ^{-1} y=\tan ^{-1} \frac{x \pm y}{\mathrm{I} \mp x y}$.
5. $\quad \tan ^{-1} x \pm \cot ^{-1} y=\tan ^{-1} \frac{x y \pm I}{y \mp x}$

$$
=\cot ^{-1} \frac{y \mp x}{x y \pm I}
$$

HYPERBOLIC FUNCTIONS

3.30 Formulas for the hyperbolic functions may be obtained from the corresponding formulas for the circular functions by replacing x by $i x$ and using the following relations:
I.
2.
3. $\quad \tan i x=\frac{i\left(e^{2 x}-I\right)}{e^{2 x}+\mathrm{I}}=i \tanh x$.
4. $\cot i x=-i \frac{e^{2 x}+\mathrm{I}}{e^{2 x}-\mathrm{I}}=-i \operatorname{coth} x$. $\csc i x=-\frac{2 i}{e^{x}-e^{-x}}=-i \operatorname{csch} x$
7. $\quad \sin ^{-1} i x=i \sinh ^{-1} x=i \log \left(x+\sqrt{I+x^{2}}\right)$.
8. $\quad \cos ^{-1} i x=-i \cosh ^{-1} x=\frac{\pi}{2}-i \log \left(x+\sqrt{I+x^{2}}\right)$.
9. $\tan ^{-1} i x=i \tanh ^{-1} x=i \log \sqrt{\frac{I+x}{I-x}}$.

IO. $\quad \cot ^{-1} i x=-i \operatorname{coth}^{-1} x=-i \log \sqrt{\frac{x+1}{x-I}}$
$\sin i x=\frac{1}{2} i\left(e^{x}-e^{-x}\right)=i \sinh x$.
$\cos i x=\frac{1}{2}\left(e^{x}+e^{-x}\right)=\cosh x$.

$$
\tan i x=\frac{i\left(e^{2 x}-I\right)}{e^{2 x}+I}=i \tanh x
$$

$$
\cot i x=-i \frac{e^{2 x}+\mathrm{I}}{e^{2 x}-\mathrm{I}}=-i \operatorname{coth} x
$$

$$
\sec i x=\frac{2}{e^{x}+e^{-x}}=\operatorname{sech} x
$$

6.

$$
\sin ^{-1} i x=i \sinh ^{-1} x=i \log \left(x+\sqrt{\mathrm{I}+x^{2}}\right)
$$

$$
\cos ^{-1} i x=-i \cosh ^{-1} x=\frac{\pi}{2}-i \log \left(x+\sqrt{I+x^{2}}\right)
$$

$$
\tan ^{-1} i x=i \tanh ^{-1} x=i \log \sqrt{\frac{I+x}{I-x}}
$$

$$
\cot ^{-1} i x=-i \operatorname{coth}^{-1} x=-i \log \sqrt{\frac{x+1}{x-1}}
$$

3.310 The values of five hyperbolic functions in terms of the sixth are given in the following table:

	$\sinh x=a$	$\cosh x=a$	$\tanh x=a$	$\operatorname{coth} x=a$	$\operatorname{sech} x=a$	$\operatorname{csch} x=a$
$\sinh x=$	a	$\sqrt{a^{2}-1}$	$\frac{a}{\sqrt{1-a^{2}}}$	$\frac{1}{\sqrt{a^{2}-\mathrm{I}}}$	$\frac{\sqrt{1-a^{2}}}{a}$	$\frac{1}{a}$
$\cosh x=$	$\sqrt{1+a^{2}}$	a	$\frac{I}{\sqrt{I-a^{2}}}$	$\frac{a}{\sqrt{a^{2}-\mathrm{I}}}$	$\frac{\mathrm{I}}{a}$	$\frac{\sqrt{\mathrm{I}+a^{2}}}{a}$
$\tanh x=$	$\frac{a}{\sqrt{\mathrm{I}+a^{2}}}$	$\frac{\sqrt{a^{2}-1}}{a}$	a	$\frac{\mathrm{I}}{a}$	$\sqrt{1-a^{2}}$	$\frac{\mathrm{I}}{\sqrt{\mathrm{I}+a^{2}}}$
$\operatorname{coth} x=$	$\frac{\sqrt{a^{2}+1}}{a}$	$\frac{a}{\sqrt{a^{2}-1}}$	$\frac{\mathrm{I}}{a}$	a	$\frac{I}{\sqrt{I-a^{2}}}$	$\sqrt{1+a^{2}}$
$\operatorname{sech} x=$	$\frac{I}{\sqrt{I+a^{2}}}$	- $\frac{1}{a}$	$\sqrt{I-a^{2}}$	$\frac{\sqrt{a^{2}-\mathrm{r}}}{a}$	a	$\frac{a}{\sqrt{I+a^{2}}}$
$\operatorname{csch} x=$	$\frac{\mathrm{I}}{a}$	$\begin{gathered} { }^{3} \\ \frac{I}{\sqrt{a^{2}-I}} \end{gathered}$	$\frac{\sqrt{1-a^{2}}}{a}$	$\sqrt{a^{2}-1}$	$\frac{a}{\sqrt{\text { I-a }}}$	a

3.311 Periodicity of the Hyperbolic Functions.

The functions $\sinh x, \cosh x, \operatorname{sech} x, \operatorname{csch} x$ have an imaginary period $2 \pi i$, e.g. :

$$
\cosh x=\cosh (x+2 \pi i n),
$$

where n is any integer. The functions $\tanh x, \operatorname{coth} x$ have an imaginary period πi.
The values of the hyperbolic functions for the argument $0, \frac{\pi}{2} i, \pi i, \frac{3 \pi i}{2}$, are given in the following table :

	0	$\frac{\pi}{2} i$	πi	$3 \frac{\pi}{2} i$
\sinh	0	i	0	$-i$
\cosh	I	0	-I	0
\tanh	0	$\infty \cdot i$	0	$\infty \cdot i$
coth	∞	0	∞	0
sech	I	∞	-I	∞
csch	∞	$-i$	∞	i

3.320
r.
$\sinh \frac{\mathrm{I}}{2} x=\sqrt{\frac{\cosh x-I}{2}}$
2.
$\cosh \frac{I}{2} x=\sqrt{\frac{\cosh x+I}{2}}$
3.
$\tanh \frac{\mathrm{I}}{2} x=\frac{\cosh x-I}{\sinh x}=\frac{\sinh x}{\cosh x+I}=\sqrt{\frac{\cosh x-I}{\cosh x+I}}$.
3.33
I.
2.
$\sinh (x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y$.
$\cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y$.
$\tanh (x \pm y)=\frac{\tanh x \pm \tanh y}{\mathrm{r} \pm \tanh x \tanh y}$.
$\operatorname{coth}(x \pm y)=\frac{\operatorname{coth} x \operatorname{coth} y \pm I}{\operatorname{coth} y \pm \operatorname{coth} x}$.
I.
$\sinh x+\sinh y=2 \sinh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y)$.
2. $\sinh x-\sinh y=2 \cosh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y)$. $\cosh x+\cosh y=2 \cosh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y)$.
4. $\cosh x-\cosh y=2 \sinh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y)$.
5. $\quad \tanh x+\tanh y=\frac{\sinh (x+y)}{\cosh x \cosh y}$.
6. $\quad \tanh x-\tanh y=\frac{\sinh (x-y)}{\cosh x \cosh y}$.
7. $\quad \operatorname{coth} x+\operatorname{coth} y=\frac{\sinh (x+y)}{\sinh x \sinh y}$.
8. $\quad \operatorname{coth} x-\operatorname{coth} y=-\frac{\sinh (x-y)}{\sinh x \sinh y}$.

3.35

I.
2.

$$
\sinh (x+y)-\sinh (x-y)=2 \cosh x \sinh y
$$

3.
4.
5.
6.
7.
8.

$$
\sinh (x+y)+\sinh (x-y)=2 \sinh x \cosh y .
$$

$$
\cosh (x+y)+\cosh (x-y)=2 \cosh x \cosh y .
$$

$$
\cosh (x+y)-\cosh (x-y)=2 \sinh x \sinh y
$$

$$
\tanh \frac{1}{2}(x \pm y)=\frac{\sinh x \pm \sinh y}{\cosh x+\cosh y}
$$

$$
\operatorname{coth} \frac{1}{2}(x \pm y)=\frac{\sinh x \mp \sinh y}{\cosh x-\cosh y}
$$

$$
\frac{\tanh x+\tanh y}{\tanh x-\tanh y}=\frac{\sinh (x+y)}{\sinh (x-y)}
$$

$$
\frac{\operatorname{coth} x+\operatorname{coth} y}{\operatorname{coth} x-\operatorname{coth} y}=-\frac{\sinh (x+y)}{\sinh (x-y)}
$$

3.36

I. $\sinh (x+y)+\cosh (x+y)=(\cosh x+\sinh x)(\cosh y+\sinh y)$.
2. $\quad \sinh (x+y) \sinh (x-y)=\sinh ^{2} x-\sinh ^{2} y$

$$
=\cosh ^{2} x-\cosh ^{2} y
$$

3. $\quad \cosh (x+y) \cosh (x-y)=\cosh ^{2} x+\sinh ^{2} y$

$$
=\sinh ^{2} x+\cosh ^{2} y .
$$

4.

$$
\sinh x+\cosh x=\frac{I+\tanh \frac{1}{2} x}{I-\tanh \frac{1}{2} x} .
$$

5. $(\sinh x+\cosh x)^{n}=\cosh n x+\sinh n x$.
3.37

$$
\begin{aligned}
e^{x} & =\cosh x+\sinh x . \\
e^{-x} & =\cosh x-\sinh x . \\
\sinh x & =\frac{1}{2}\left(e^{x}-e^{-x}\right) . \\
\cosh x & =\frac{1}{2}\left(e^{x}+e^{-x}\right) .
\end{aligned}
$$

3.38
I.
$\sinh 2 x=2 \sinh x \cosh x$,

$$
=\frac{2 \tanh x}{I-\tanh ^{2} x} .
$$

2.

$\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x=2 \cosh ^{2} x-I$,
$=\mathrm{I}+2 \sinh ^{2} x$,
$=\frac{I+\tanh ^{2} x}{I-\tanh ^{2} x}$.
3. $\quad \tanh 2 x=\frac{2 \tanh x}{I+\tanh ^{2} x}$.
4.
$\sinh 3 x=3 \sinh x+4 \sinh ^{3} x$.
5.
6. $\cosh 3 x=4 \cosh ^{3} x-3 \cosh x$. $\tanh 3 x=\frac{3 \tanh x+\tanh ^{3} x}{I+3 \tanh ^{2} x}$.

3.40 Inverse Hyperbolic Functions.

The hyperbolic functions being periodic, the inverse functions are multiple valued (3.311). In the following formulas the periodic constants are omitted, the principal values only being given.
I.

$$
\sinh ^{-1} x=\log \left(x+\sqrt{x^{2}+1}\right)=\cosh ^{-1} \sqrt{x^{2}+I}
$$

2.

$\cosh ^{-1} x=\log \left(x+\sqrt{x^{2}-\mathrm{I}}\right)=\sinh ^{-1} \sqrt{x^{2}-1}$.
$\tanh ^{-1} x=\log \sqrt{\frac{I+x}{I-x}}$.
4. $\quad \operatorname{coth}^{-1} x=\log \sqrt{\frac{x+I}{x-I}}=\tanh ^{-1} \frac{I}{x}$.
5. $\quad \operatorname{sech}^{-1} x=\log \left(\frac{I}{x}+\sqrt{\frac{I}{x^{2}}-I}\right)=\cosh ^{-1} \frac{1}{x}$.
6. $\quad \operatorname{csch}^{-1} x=\log \left(\frac{I}{x}+\sqrt{\frac{I}{x^{2}}+I}\right)=\sinh ^{-1} \frac{I}{x}$.

3.41

I.

$$
\sinh ^{-1} x \pm \sinh ^{-1} y=\sinh ^{-1}\left(x \sqrt{I+y^{2}} \pm y \sqrt{I+x^{2}}\right)
$$

2. $\cosh ^{-1} x \pm \cosh ^{-1} . y=\cosh ^{-1}\left(x y \pm \sqrt{\left(x^{2}-\mathrm{I}\right)\left(y^{2}-\mathrm{I}\right)}\right)$.
3. $\quad \tanh ^{-1} x \pm \tanh ^{-1} y=\tanh ^{-1} \frac{x \pm y}{I \pm x y}$.

$$
\begin{aligned}
\cosh ^{-1} \frac{I}{2}\left(x+\frac{I}{x}\right) & =\sinh ^{-1} \frac{I}{2}\left(x-\frac{I}{x}\right) \\
& =\tanh ^{-1} \frac{x^{2}-I}{x^{2}+I}=2 \tanh ^{-1} \frac{x-I}{x+I} \\
& =\log x
\end{aligned}
$$

2.

$$
\begin{aligned}
\cosh ^{-1} \csc 2 x & =-\sinh ^{-1} \cot 2 x=-\tanh ^{-1} \cos 2 x \\
& =\log \tan x
\end{aligned}
$$

3. $\quad \tanh ^{-1} \tan ^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right)=\frac{I}{I} \log \csc x$.

4

$$
\tanh ^{-1} \tan ^{2} \frac{x}{2}=\frac{1}{2} \log \sec x
$$

3.43 The Gudermannian.

If,
I.

$$
\cosh x=\sec \theta
$$

2.

$\sinh x=\tan \theta$.
3.

$$
e^{x}=\sec \theta+\tan \theta=\tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)
$$

4.

$$
x=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)
$$

$$
\theta=\operatorname{gd} x
$$

3.44

I.
2.
$\sinh x=\tan \operatorname{gd} x$.
.
$\cosh x=\sec \operatorname{gd} x$.
3.
$\tanh x=\sin \operatorname{gd} x$.
4. $\tanh \frac{x}{2}=\tan \frac{\mathrm{I}}{2} \operatorname{gd} x$.

$$
e^{x}=\frac{1+\sin \operatorname{gd} x}{\cos \operatorname{gd} x}=\frac{1-\cos \left(\frac{\pi}{2}+\operatorname{gd} x\right)}{\sin \left(\frac{\pi}{2}+\operatorname{gd} x\right)}
$$

6. $\tanh ^{-1} \tan x=\frac{1}{2} \operatorname{gd} 2 x$.
7. $\tan ^{-1} \tanh x=\frac{1}{2} \operatorname{gd}^{-1} 2 x$.

$$
\begin{aligned}
a, b, c & =\text { Sides of triangle } \\
\alpha, \beta, \gamma & =\text { angles opposite to } a, b, c, \text { respectively } \\
A & =\text { area of triangle } \\
s & =\frac{1}{2}(a+b+c)
\end{aligned}
$$

Given Sought
a, b, c
α

$$
\begin{aligned}
\sin \frac{I}{2} \alpha & =\sqrt{\frac{(s-b)(s-c)}{b c}} \\
\cos \frac{I}{2} \alpha & =\sqrt{\frac{s(s-a)}{b c}} \\
\tan \frac{\mathrm{I}}{2} \alpha & =\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\
\cos \alpha & =\frac{c^{2}+b^{2}-a^{2}}{2 b c}
\end{aligned}
$$

$$
\sin \beta=\frac{b \sin \alpha}{a}
$$

When $a>b, \beta<\frac{\pi}{2}$ and but one value results. When $b>a$ β has two values.
γ

$$
\gamma=180^{\circ}-(\alpha+\beta)
$$

$$
c=\frac{a \sin \gamma}{\sin \alpha}
$$

A

$$
A=\frac{1}{2} a b \sin \gamma
$$

$a, \alpha, \beta \quad b$

$$
b=\frac{a \sin \beta}{\sin \alpha}
$$

$\boldsymbol{\gamma}$

$$
\begin{aligned}
& \gamma=180^{\circ}-(\alpha+\beta) \\
& c=\frac{a \sin \gamma}{\sin \alpha}=\frac{a \sin (\alpha+\beta)}{\sin \alpha}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Given } \begin{aligned}
\text { Sought } & \text { Formula } \\
A & =\frac{\mathrm{I}}{2} a b \sin \gamma=\frac{\mathrm{I}}{2} a^{2} \frac{\sin \beta \sin \gamma}{\sin \alpha} . \\
a, b, \gamma \quad \alpha \quad \tan \alpha & =\frac{a \sin \gamma}{b-a \cos \gamma} . \\
\alpha, \beta \quad \frac{1}{2}(\alpha+\beta) & =90^{\circ}-\frac{1}{2} \gamma . \\
\tan \frac{1}{2}(\alpha-\beta) & =\frac{a-b}{a+b} \cot \frac{1}{2} \gamma \\
c & =\left(a^{2}+b^{2}-2 a b \cos \gamma\right)^{\frac{1}{2}} . \\
& =\left\{(a+b)^{2}-4 a b \cos ^{2} \frac{1}{2} \gamma\right\}^{\frac{1}{2}} \\
& =\left\{(a-b)^{2}+4 a b \sin ^{2} \frac{1}{2} \gamma\right\}^{\frac{1}{2}} . \\
& =\frac{a-b}{\cos \phi} \text { where } \tan \phi=2 \sqrt{a b} \frac{\sin \frac{1}{2} \gamma}{a-b} \\
A & =\frac{a \sin \gamma}{\sin \alpha} . \\
A & =\frac{1}{2} a b \sin \gamma .
\end{aligned} \\
& A
\end{aligned}
$$

SOLUTION OF SPHERICAL TRIANGLES

3.51 Right-angled spherical triangles.
$a, b, c=$ sides of triangle, c the side opposite γ, the right angle.
$\alpha, \beta, \gamma=$ angles opposite a, b, c, respectively.
3.511 Napier's Rules:

The five parts are $a, b, \operatorname{coc} c, \cos \alpha, \operatorname{co} \beta$, where $\operatorname{coc} c=\frac{\pi}{2}-c$. The right angle γ is omitted.

The sine of the middle part is equal to the product of the tangents of the adjacent parts.

The sine of the middle part is equal to the product of the cosines of opposite parts.

From these rules the following equations follow:

$$
\begin{aligned}
\sin a & =\sin c \sin \alpha \\
\tan a & =\tan c \cos \beta=\sin b \tan \alpha \\
\sin b & =\sin c \sin \beta \\
\tan b & =\tan c \cos \alpha=\sin a \tan \beta \\
\cos \alpha & =\cos a \sin \beta \\
\cos \beta & =\cos b \sin \alpha \\
\cos c & =\cot \alpha \cot \beta=\cos a \cos b
\end{aligned}
$$

3.52 Oblique-angled spherical triangles.
$a, b, c=$ sides of triangle.
$\alpha, \beta, \gamma=$ angles opposite to a, b, c, respectively.
$s=\frac{1}{2}(a+b+c)$,
$\sigma=\frac{1}{2}(\alpha+\beta+\gamma)$,
$\epsilon=\alpha+\beta+\gamma-\mathrm{I} 80=$ spherical excess,
$S=$ surface of triangle on sphere of radius r.
Given
Sought
Formula
$\alpha \quad \sin ^{2} \frac{1}{2} \alpha=$ haversin α, $=\frac{\sin (s-b) \sin (s-c)}{\sin b \sin c}$ $\tan ^{2} \frac{\mathrm{r}}{2} \alpha=\frac{\sin (s-b) \sin (s-c)}{\sin s \sin (s-a)}$. $\cos ^{2} \frac{\mathrm{I}}{2} \alpha=\frac{\sin s \sin (s-a)}{\sin b \sin c}$. haversin $\alpha=\frac{\text { hav } a-\text { hav }(b-c)}{\sin b \sin c}$.
α, β, γ
$a \quad \sin ^{2} \frac{1}{2} a=$ haversin a,

$$
\begin{aligned}
& =\frac{-\cos \sigma \cos (\sigma-\alpha)}{\sin \beta \sin \gamma} \\
\tan ^{2} \frac{\mathrm{I}}{2} a & =\frac{-\cos \sigma \cos (\sigma-\alpha)}{\cos (\sigma-\beta) \cos (\sigma-\gamma)} . \\
\cos ^{2} \frac{\mathrm{I}}{2} a & =\frac{\cos (\sigma-\beta) \cos (\sigma-\gamma)}{\sin \beta \sin \gamma} .
\end{aligned}
$$

a, c, α
Ambiguous case.
$\gamma \quad \sin \gamma=\frac{\sin \alpha \sin c}{\sin a}$.
Two solutions
possible.

$$
\begin{aligned}
\beta\left\{\begin{aligned}
\tan \theta & =\tan \alpha \cos c . \\
\sin (\beta+\theta) & =\sin \theta \tan c \cot a \\
\cot \phi & =\tan c \cos \alpha
\end{aligned}\right. \\
b\left\{\begin{aligned}
\sin (b+\phi) & =\frac{\cos a \sin \phi}{\cos c} .
\end{aligned}\right.
\end{aligned}
$$

α, γ, c
Ambiguous case.
Two solutions
$c \quad \sin c=\frac{\sin a \sin \gamma}{\sin \alpha}$.
possible.

Given Sought Formula

- $\quad b\left\{\begin{aligned} \tan \theta & =\tan a \cos \gamma . \\ \sin (b-\theta) & =\cot \alpha \tan \gamma \sin \theta .\end{aligned}\right.$
$b\left\{\begin{aligned} \tan \frac{I}{2} b & =\frac{\sin \frac{1}{2}(\alpha+\gamma)}{\sin \frac{1}{2}(\alpha-\gamma)} \tan \frac{1}{2}(a-c) \\ & =\frac{\cos \frac{1}{2}(\alpha+\gamma)}{\cos \frac{1}{2}(\alpha-\gamma)} \tan \frac{1}{2}(a+c) .\end{aligned}\right.$
$\beta\left\{\begin{aligned} \cot \phi & =\cos a \tan \gamma \\ \sin (\beta-\phi) & =\frac{\cos \alpha \sin \phi}{\cos \gamma} .\end{aligned}\right.$
$\beta\left\{\begin{aligned} \cot \frac{\mathrm{I}}{2} \beta & =\frac{\sin \frac{1}{2}(a+c)}{\sin \frac{1}{2}(a-c)} \tan \frac{1}{2}(\alpha-\gamma) . \\ & =\frac{\cos \frac{1}{2}(a+c)}{\cos \frac{1}{2}(a-c)} \tan \frac{1}{2}(\alpha+\gamma) .\end{aligned}\right.$
a, b, γ
$\tan \theta=\tan a \cos \gamma$
$\tan \phi=\tan b \cos \gamma$
c
$\cos c=\cos a \cos b+\sin a \sin b \cos \gamma$.
$\cos c=\frac{\cos a \cos (b-\theta)}{\cos \theta}$
$=\frac{\cos b \cos (a-\phi)}{\cos \phi}$.
hav $c=$ hav $(a-b)+\sin a \sin b$ hav γ
$\alpha \quad \tan \alpha=\frac{\sin \theta \tan \gamma}{\sin (b-\theta)}$.
$\beta \quad \sin \beta=\frac{\sin \gamma \sin b}{\sin c}$.
$=\frac{\sin \alpha \sin b}{\sin a}$.
$\tan \beta=\frac{\sin \phi \tan \gamma}{\sin (a-\phi)}$.
$\alpha, \underline{\beta}\left\{\begin{array}{l}\tan \frac{\mathrm{I}}{2}(\alpha+\beta)=\frac{\cos \frac{1}{2}(a-b) \cot \frac{1}{2} \gamma}{\cos \frac{1}{2}(a+b)} \\ \tan \frac{\mathrm{I}}{2}(\alpha-\beta)=\frac{\sin \frac{1}{2}(a-b) \cot \frac{1}{2} \gamma}{\sin \frac{1}{2}(a+b)} .\end{array}\right.$
$c, \alpha, \beta \quad \gamma$
$\tan \theta=\cos c \tan \alpha$
$\tan \phi=\cos c \tan \beta$

$$
\begin{aligned}
\gamma \quad \cos \gamma & =-\cos \alpha \cos \beta+\sin \alpha \sin \beta \cos c . \\
\cos \gamma & =\frac{\cos \alpha \cos (\beta+\theta)}{\cos \theta} \\
& =\frac{\cos \beta \cos (\alpha+\phi)}{\cos \phi} . \\
a \quad \tan a & =\frac{\tan c \sin \theta}{\sin (\beta+\theta)}
\end{aligned}
$$

Given
Sought
Formula

$$
\begin{aligned}
& \tan b=\frac{\tan c \sin \phi}{\sin (\alpha+\phi)} \\
& a, b\left\{\begin{aligned}
\tan \frac{1}{2}(a+b) & =\frac{\cos \frac{1}{2}(\alpha-\beta) \tan \frac{1}{2} c}{\cos \frac{1}{2}(\alpha+\beta)} \\
\tan \frac{1}{2}(a-b) & =\frac{\sin \frac{1}{2}(\alpha-\beta) \tan \frac{1}{2} c}{\sin \frac{1}{2}(\alpha+\beta)} .
\end{aligned}\right.
\end{aligned}
$$

a, b, γ
a, b, c
ϵ
$\cot \frac{1}{2} \epsilon=\frac{\cot \frac{1}{2} a \cot \frac{1}{2} b+\cos \gamma}{\sin \gamma}$.
$\epsilon \quad \tan ^{2} \frac{1}{4} \epsilon=\tan \frac{1}{2} s \tan \frac{1}{2}(s-a) \tan \frac{1}{2}(s-b)$
$\tan \frac{1}{2}(s-c)$.
ϵ, γ
S

$$
S=\frac{\epsilon}{\mathrm{I} 80^{\circ}} \pi r^{2}
$$

FINITE SERIES OF CIRCULAR FUNCTIONS

3.60 If the sum, $f(r)$, of the finite or infinite series:

$$
f(r)=a_{0}+a_{1} r+a_{2} r^{2}+\ldots
$$

is known, the sums of the series:

$$
\begin{aligned}
& S_{1}=a_{0} \cos x+a_{1} r \cos (x+y)+a_{2} r^{2} \cos (x+2 y)+\ldots \\
& S_{2}=a_{0} \sin x+a_{1} r \sin (x+y)+a_{2} r^{2} \sin (x+2 y)+\ldots
\end{aligned}
$$

are:

$$
\begin{aligned}
& S_{1}=\frac{1}{2}\left\{e^{i x} f\left(r e^{i y}\right)+e^{-\imath x} f\left(r e^{-i y}\right)\right\}, \\
& S_{2}=-\frac{i}{2}\left\{e^{i x} f\left(r e^{\imath y}\right)-e^{-\imath x} f\left(r e^{-i y}\right)\right\} .
\end{aligned}
$$

3.61 Special Finite Series.
I. $\sum_{k=1}^{n} \sin k x=\frac{\sin \frac{n x}{2} \sin \frac{n+1}{2} x}{\sin \frac{x}{2}}$.
2. $\sum_{k=0}^{n} \cos k x=\frac{\cos \frac{n x}{2} \sin \frac{n+1}{2} x}{\sin \frac{x}{2}}$.
3. $\sum_{k=1}^{n} \sin ^{2} k x=\frac{n}{2}-\frac{\cos (n+1) x \sin n x}{2 \sin x}$.
4. $\sum_{k=0}^{n} \cos ^{2} k x=\frac{n+2}{2}+\frac{\cos (n+r) x \cdot \sin n x}{2 \sin x}$.
5. $\sum_{k=1}^{n-I} k \sin k x=\frac{\sin n x}{4 \sin ^{2} \frac{x}{2}}-\frac{n \cos \left(\frac{2 n-1}{2}\right) x}{2 \sin \frac{x}{2}}$.
6. $\sum_{k=I}^{n-\mathrm{I}} k \cos k x=\frac{n \sin \left(\frac{2 n-I}{2}\right) x}{2 \sin \frac{x}{2}}-\frac{I-\cos n x}{4 \sin ^{2} \frac{x}{2}}$.
7. $\sum_{k=1}^{n} \sin (2 k-\mathrm{x}) x=\frac{\sin ^{2} n x}{\sin x}$.
8. $\sum_{k=0}^{n} \sin (x+k y)=\frac{\sin \left(x+\frac{n y}{2}\right) \sin \left(\frac{n+I}{2} y\right)}{\sin \frac{y}{2}}$.
9. $\sum_{k=0}^{n} \cos (x+k y)=\frac{\cos \left(x+\frac{n}{2} y\right) \sin \left(\frac{n+I}{2} y\right)}{\sin \frac{y}{2}}$.
10. $\sum_{k=\mathrm{I}}^{n+\mathrm{x}}(-\mathrm{I})^{k-1} \sin (2 k-\mathrm{I}) x=(-\mathrm{I})^{n} \frac{\sin (2 n+2) x}{2 \cos x}$.
II. $\sum_{k=\mathrm{I}}^{n}(-\mathrm{I})^{k} \cos k x=-\frac{\mathrm{I}}{2}+(-\mathrm{r})^{n} \frac{\cos \left(\frac{2 n+\mathrm{I}}{2} x\right)}{2 \cos _{2}^{x}}$.

I2. $\sum_{k=1}^{n-\mathrm{I}} r^{k} \sin k x=\frac{r \sin x\left(1-r^{n} \cos n x\right)-(\mathrm{I}-r \cos x) r^{n} \sin n x}{\mathrm{I}-2 r \cos x+r^{2}}$.
I3. $\sum_{k=0}^{n-\mathrm{I}} r^{k} \cos k x=\frac{(\mathrm{I}-r \cos x)\left(\mathrm{I}-r^{n} \cos n x\right)+r^{n+1} \sin x \sin n x}{\mathrm{I}-2 r \cos x+r^{2}}$.
14. $\sum_{k=\mathrm{I}}^{n}\left(\frac{\mathrm{I}}{2^{k}} \sec \frac{x}{2^{k}}\right)^{2}=\csc ^{2} x-\left(\frac{\mathrm{I}}{2^{n}} \csc \frac{x}{2^{n}}\right)^{2}$.
15. $\quad \sum_{k=\mathrm{x}}^{n}\left(2^{k} \sin ^{2} \frac{x}{2^{k}}\right)^{2}=\left(2^{n} \sin \frac{x}{2^{n}}\right)^{2}-\sin ^{2} x$.

工6. $\sum_{k=0}^{n} \frac{I}{2^{k}} \tan \frac{x}{2^{k}}=\frac{\mathrm{I}}{2^{n}} \cot \frac{x}{2^{n}}-2 \cot 2 x$.
I7. $\sum_{k=0}^{n-\mathrm{I}} \cos \frac{k^{2} 2 \pi}{n}=\frac{\sqrt{n}}{2}\left(\mathrm{I}+\cos \frac{n \pi}{2}+\sin \frac{n \pi}{2}\right)$.
I8. $\quad \sum_{k=1}^{n-I} \sin \frac{k^{2} 2 \pi}{n}=\frac{\sqrt{n}}{2}\left(I+\cos \frac{n \pi}{2}-\sin \frac{n \pi}{2}\right)$.
19. $\sum_{k=\Gamma}^{n-\Upsilon} \sin \frac{k \pi}{n}=\cot \frac{\pi}{2 n}$.
20. $\sum_{k-0}^{n} \frac{\mathrm{I}}{2^{2 k}} \tan ^{2} \frac{x}{2^{k}}=\frac{2^{2 n+2}-\mathrm{I}}{3 \cdot 2^{2 n-1}}+4 \cot ^{2} 2 x-\frac{\mathrm{I}}{2^{2 n}} \cot \frac{x}{2^{n}}$.
3.62

$$
S_{n}=\sum_{k=\mathrm{I}}^{n-\mathrm{I}} \csc \frac{k \pi}{n}
$$

Watson (Phil. Mag. 3I, p. Iri, igi6) has obtained an asymptotic expansion for this sum, and has given the following approximation:
$S_{n}=2 n\left\{0.7329355992 \log _{10}(2 n)-0.180645387 \mathrm{I}\right\}$

$$
-\frac{0.087266}{n}+\frac{0.01035}{n^{3}}-\frac{0.004}{n^{5}}+\frac{0.005}{n^{7}}-\ldots
$$

Values of S_{n} are tabulated by integers from $n=2$ to $n=30$, and from $n=30$ to $n=100$ at intervals of 5 .

The expansion of
wacse

$$
\begin{aligned}
T_{n}= & \sum_{k=\mathrm{I}}^{n-\mathrm{x}} \csc \left(\frac{k \pi}{n}-\frac{\beta}{2}\right), \\
& -\frac{2 \pi}{n}<\beta<\frac{2 \pi}{n}
\end{aligned}
$$

is also obtained.
3.70 Finite Products.
I.

2.

$$
\cos n x=\prod_{k=\mathrm{r}_{1}}^{\frac{n}{2}}\left(\mathrm{I}-\frac{\sin ^{2} x}{\sin ^{2} \frac{2 k-\mathrm{I}}{2 n} \pi}\right) n \text { even. }
$$

$$
\sin n x=n \sin x \prod_{k=1}^{\frac{n-\mathrm{I}}{2}}\left(\mathrm{I}-\frac{\sin ^{2} x}{\sin ^{2} \frac{k \pi}{n}}\right) n \text { odd }
$$

4. $\quad \cos n x=\cos x \prod_{k=1}^{\frac{n-\mathrm{I}}{n}}\left(\mathrm{I}-\frac{\sin ^{2} x}{\sin ^{2} \frac{2 k-\mathrm{I}}{2 n} \pi}\right) n$ odd.
5. $\cos n x-\cos n y=2^{n-1} \prod_{k=0}^{n-1}\left\{\cos x-\cos \left(y+\frac{2 k \pi}{n}\right)\right\}$.
6. $\quad a^{2 n}-2 a^{n} b^{n} \cos n x+b^{2 n}=\prod_{k=0}^{n-1}\left\{a^{2}-2 a b \cos \left(x+\frac{2 k \pi}{n}\right)+b^{2}\right\}$.

ROOTS OF TRANSCENDENTAL EQUATIONS

$3.800 \tan x=x$.
The first I_{7} roots, and the corresponding maxima and minima of $\frac{\sin x}{x}$ are given in the following table (Lommel, Abh. Munch. Akad. (2) 15 , 123, 1886):

n	x_{n}	$\operatorname{Max} \sin x$
		Min x
I	\bigcirc	I
2	4.4934	-0.2172
3	7.7253	+0.1284
4	10.904 I	-0.0913
5	14.0662	+0.0709
6	17.2208	-0.0580
7	20.3713	+0.0490
8	23.5195	-0.0425
9	26.666 r	+0.0375
10	29.81 I 6	-0.0335
II	32.9564	+0.0303
12	36.1006	-0.0277
13	39.2444	+0.0255
14	42.3879	-0.0236
15	45.53II	+0.0220
r6	48.674 I	-0.0205
I7	51.8170	+0.0193

3.801

$$
\tan x=\frac{2 x}{2-x^{2}}
$$

The first three roots are:

$$
\begin{aligned}
& x_{1}=0, \\
& x_{2}=119.26 \frac{\pi}{\mathrm{I} 80}, \\
& x_{3}=340.35 \frac{\pi}{\mathrm{I} 80} .
\end{aligned}
$$

If x is large

$$
\begin{aligned}
& x_{n}=n \pi-\frac{2}{n \pi}-\frac{16}{3 n^{3} \pi^{3}}+\ldots \\
& \quad \text { (Rayleigh, Theory of Sound, II, p. 265.) }
\end{aligned}
$$

3.802

$$
\tan x=\frac{x^{3}-9 x}{4 x^{2}-9}
$$

The first two roots are:

$$
\begin{aligned}
& x_{1}=0, \\
& x_{2}=3.3422 .
\end{aligned}
$$

(Rayleigh, l. c. p. 266.)
3.803

$$
\tan x=\frac{x}{1-x^{2}} .
$$

The first two roots are:

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=2.744 .
\end{aligned}
$$

(J. J. Thomson, Recent Researches, p. 373.)
3.804

$$
\tan x=\frac{3 x}{3-x^{2}}
$$

The first seven roots are:

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=1.8346 \pi \\
& x_{3}=2.8950 \pi \\
& x_{4}=3.9225 \pi \\
& x_{5}=4.9385 \pi \\
& x_{6}=5.9489 \pi \\
& x_{7}=6.9563 \pi
\end{aligned}
$$

(Lamb, London Math. Soc. Proc. 13, I882.)
3.805

$$
\tan x=\frac{4 x}{4-3 x^{2}}
$$

The first seven roots are:

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=0.8 \mathrm{I} 60 \pi \\
& x_{3}=1.9285 \pi \\
& x_{4}=2.9359 \pi \\
& x_{5}=39658 \pi \\
& x_{6}=4.9728 \pi \\
& x_{7}=5.9774 \pi
\end{aligned}
$$

(Lamb, l. c.)

3.806

$$
\cos x \cosh x=\mathrm{I}
$$

The roots are:

3.807

$$
\begin{aligned}
& x_{1}=4.7300408, \\
& x_{2}=7.8532046, \\
& x_{3}=10.9956078, \\
& x_{4}=14.1371655, \\
& x_{5}=17.2787596, \\
& x_{n}=\frac{1}{2}(2 n+1) \pi n>5 .
\end{aligned}
$$

(Rayleigh, Theory of Sound, I, p. 278.)

The roots are:

$$
\begin{aligned}
& x_{1}=1875104, \\
& x_{2}=4.694098, \\
& x_{3}=7.854757, \\
& x_{4}=10.99554 \mathrm{I}, \\
& x_{5}=14 . \mathrm{I} 37 \mathrm{I} 68, \\
& x_{8}=17.278759, \\
& x_{n}=\frac{1}{2}(2 n-\mathrm{I}) \pi n>6 .
\end{aligned}
$$

3.808

The roots are:

$$
\mathrm{I}-\left(\mathrm{I}+x^{2}\right) \cos x=0
$$

$$
x_{1}=\text { I. } 102506,
$$

$$
x_{2}=475476 \mathrm{r},
$$

$$
x_{s}=7.837964
$$

$$
x_{4}=\operatorname{Ir} .003766
$$

$$
x_{5}=14.132185,
$$

$$
x_{6}= \pm 7.282097 .
$$

(Schlomilch: Ubungsbuch, I, p. 354.)
3.809 The smallest root of

$$
\theta-\cot \theta=0,
$$

is

$$
\begin{equation*}
\theta=49^{\circ} 17^{\prime} 36^{\prime \prime} .5 . \tag{1.c.p.355.}
\end{equation*}
$$

3.810 The smallest root of

$$
\theta-\cos \theta=0
$$

is

$$
\begin{equation*}
\theta=42^{\circ} 20^{\prime} 47^{\prime \prime} \cdot 3 \tag{1.c.p.353.}
\end{equation*}
$$

3.811 The smallest root of

$$
\begin{align*}
& x e^{x}-2=0 \\
& x=0.8526 \tag{1.c.p.353.}
\end{align*}
$$

3.812 The smallest root of

$$
\begin{gather*}
\log (\mathrm{I}+x)-\frac{3}{4} x=0, \\
x=0.73360 . \tag{1.c.p.353.}
\end{gather*}
$$

is
3.813

$$
\tan x-x+\frac{\mathrm{I}}{x}=0
$$

The first roots are:

$$
\begin{aligned}
& x_{1}=4.480 \\
& x_{2}=7.723 \\
& x_{3}=10.90 \\
& x_{4}=14.07 \\
& \text { (Collo, Annalen der Physik, } 65, \text { p. } 45, \text { I92I.) }
\end{aligned}
$$

3.814

$$
\cot x+x-\frac{I}{x}=0
$$

The first roots are:

$$
\begin{aligned}
& x_{1}=0, \\
& x_{2}=2.744, \\
& x_{3}=6.1 \mathrm{I} 7, \\
& x_{4}=9.3 \mathrm{I} 7, \\
& x_{5}=\mathrm{I} 2.48, \\
& x_{6}=\mathrm{I} 5.64, \\
& x_{7}=18.80 .
\end{aligned}
$$

(Collo, 1. c.)
3.90 Special Tables.
$\sin \theta, \cos \theta$: The British Association Report for IgI6 contains the following tables:

Table I, p. 60. $\sin \theta, \cos \theta, \theta$ expressed in radians from $\theta=0$ to $\theta=\mathrm{x} .600$, interval 0.001 , to decimal places.

Table II, p. 88. $\theta-\sin \theta, \mathrm{I}-\cos \theta, \theta=0.0000 \mathrm{I}$ to $\theta=0.00100$, interval 0.00001 , Io decimal places.

Table III, p. go. $\sin \theta, \cos \theta ; \theta=0.1$ to $\theta=10.0$, interval $0.1, ~ 15$ decimal places.
J. Peters (Abh. d. K. P. Akad. der Wissen., Berlin, rgıi) has given sines and cosines for every sexagesimal second to 2I places.
hav $\theta, \log _{10}$ hav θ : Bowditch, American Practical Navigator, five-place tables, $0^{\circ}-180^{\circ}$, for $15^{\prime \prime}$ intervals.

Tables for Solution of Spherical Triangles.
Aquino's Altitude and Azimuth Tables, London,‘'1918. Reprinted in Hydrographic Office Publication, No. 200, Washington, 1918.

Hyperbolic Functions.
The Smithsonian Mathematical Tables: Hyperbolic Functions, contain the most complete five-place tables of Hyperbolic Functions.

Table I. The common logarithms (base ro) of $\sinh u, \cosh u, \tanh u, \operatorname{coth} u$:

$$
\begin{aligned}
& u=0.000 \mathrm{I} \text { to } u=0.1000 \text { interval } 0.000 \mathrm{I}, \\
& u=0.001 \text { to } u=3000 \text { interval } 0.00 \mathrm{I}, \\
& u=3.00 \text { to } u=600 \text { interval } 0.0 \mathrm{I} .
\end{aligned}
$$

Table II. $\sinh u, \cosh u, \tanh u$, $\operatorname{coth} u$. Same ranges and intervals.
Table III. $\sin u, \cos u, \log _{10} \sin u, \log _{10} \cos u$:

$$
\begin{aligned}
& u=0.000 \text { I to } u=0.1000 \text { interval } 0.0001, \\
& u=0.100 \text { to } u=1.600 \text { interval } 0.00 \mathrm{I} .
\end{aligned}
$$

Table IV. $\log _{10} e^{u}$ (7 places), e^{u} and e^{-u} (7 significant figures):
$u=0.00 \mathrm{I}$ to $u=2.950$ interval 0.001,
$u=3.00$ to $u=6.00$ interval 0.0 I ,
$u=1.0 \quad$ to $u=100$ interval $\mathrm{I} .0 \quad$ (9 -ro figures).
Table V. five-place table of natural logarithms, $\log u$.

$$
\begin{aligned}
& u=\mathrm{IO} \text { to } u=1000 \quad \text { interval } \mathrm{I} .0, \\
& u=\mathrm{I} 000 \text { to } u=10,000 \text { varying intervals. }
\end{aligned}
$$

Table VI. $g d u$ (7 places); u expressed in radians, $u=0.00 \mathrm{I}$ to $u=3.000$, interval o.00I, and the corresponding angular measure. $u=3.00$ to $u=6.00$, interval o.or.

Table VII. $g d^{-1} u$, to $o^{\prime} . o r$, in terms of $g d u$ in degrees and minutes from $0^{\circ} \mathrm{I}^{\prime}$ to $89^{\circ} 59^{\prime}$.

Table VIII. Table for conversion of radians into angular measure.

Kennelly: Tables of Complex Hyperbolic and Circular Functions. Cambridge, Harvard University Press, igr4.

The complex argument, $x+i q=\rho e^{\imath \delta}$. In the tables this is denoted $\rho<\delta$. $\rho=\sqrt{x^{2}+q^{2}}, \tan \delta=q / x$.

Tables I, II, III give the hyperbolic sine, cosine and tangent of ($\rho<\delta$) expressed as $r \angle \gamma$:

$$
\begin{array}{ll}
\delta=45^{\circ} \text { to } \delta=90^{\circ} & \text { interval } \mathrm{I}^{\circ} \\
\rho=0.0 \text { to } \rho=3.0 & \text { interval o.I. }
\end{array}
$$

Tables IV and V give $\frac{\sinh \theta}{\theta}, \frac{\tanh \theta}{\theta} \operatorname{expressed}$ as $r \angle \gamma, \theta=\rho \angle \delta$,

$$
\begin{aligned}
& \rho=0 . \mathrm{I} \text { to } \rho=3.0 \text { interval o.I, } \\
& \delta=45^{\circ} \text { to } \delta=90^{\circ} \text { interval } \mathrm{I}^{\circ} .
\end{aligned}
$$

Table VI gives $\sinh \left(\rho \angle 45^{\circ}\right), \cosh \left(\rho \angle 45^{\circ}\right), \tanh \left(\rho \angle 45^{\circ}\right), \operatorname{coth}\left(\rho \angle 45^{\circ}\right)$, $\operatorname{sech}\left(\rho \angle 45^{\circ}\right), \operatorname{csch}\left(\rho \angle 45^{\circ}\right)$ expressed as $r \angle \gamma$:

$$
\begin{array}{ll}
\rho=0 \quad \text { to } \rho=6.0 & \text { interval } 0 . \mathrm{I}, \\
\rho=6.05 & \text { to } \rho=20.50
\end{array} \text { interval } 0.05 . ~ \$
$$

Tables VII, VIII and IX give sinh $(x+i q), \cosh (x+i q), \tanh (x+i q)$, expressed as $u+i v$:

$$
\begin{array}{ll}
x=0 \text { to } x=3.95 & \text { interval } 0.05, \\
q=0 \text { to } q=2.0 & \text { interval } 0.05 .
\end{array}
$$

Tables X, XI, XII give $\sinh (x+i q), \cosh (x+i q), \tanh (x+i q)$ expressed as $r \angle \gamma$:

$$
\begin{array}{ll}
x=0 \text { to } x=3.95 & \text { interval } 0.05, \\
q=0 \text { to } q=2.0 & \text { interval } 0.05 .
\end{array}
$$

Table XIII gives $\sinh (4+i q), \cosh (4+i q), \tanh (4+i q)$ expressed both as $u+i v$ and $r \angle \gamma$:

$$
q=\circ \text { to } q=2.0 \text { interval } 0.05 .
$$

Table XIV gives $\frac{e^{x}}{2}$ and $\log _{10} \frac{e^{x}}{2}$.

$$
x=4.00 \text { to } x=10.00 \text { interval } 0.01 .
$$

Table XV gives the real hyperbolic functions: $\sinh \theta, \cosh \theta, \tanh \theta, \operatorname{coth} \theta$, $\operatorname{sech} \theta, \operatorname{csch} \theta$.

$$
\begin{aligned}
& \theta=0 \text { to } \theta=2.5 \text { interval 0.0I, }, \\
& \theta=2.5 \text { to } \theta=7.5 \text { interval o.I. }
\end{aligned}
$$

Pernot and Woods: Logarithms of Hyperbolic Functions to 12 Significant Figures. Berkeley, University of California Press, 1918.

Table I. $\log _{10} \sinh x$, with the first three differences.

$$
x=.0000 \text { to } x=2018 \text { nterval } 0.001
$$

Table II. $\log _{10} \cosh x$.

$$
x=0.000 \text { to } x=2.032 \text { interval } 0.001
$$

Table III. $\log _{10} \tanh x$.

$$
x=0.000 \text { to } x=2.018 \text { interval 0.001. }
$$

Table IV. $\log _{10} \frac{\sinh x}{x}$.

$$
x=0.00 \text { to } x=0.506 \text { interval } 0.001
$$

Table V. $\log _{10} \frac{\tanh x}{x}$.

$$
x=0.000 \text { to } x=0.506 \text { interval } 0.001
$$

Van Orstrand, Memoirs of the National Academy of Sciences, Vol. XIV, fifth memoir, Washington, I92I.

Tables of $\frac{I}{n!}, e^{x}, e^{-x}, e^{n \pi}, e^{-n \pi}, e^{ \pm \frac{n \pi}{360}}, \sin x, \cos x$, to $23-62$ decimal places or significant figures.

IV. VECTOR ANALYSIS

4.000 A vector A has components along the three rectangular axes, x, y, z : A_{x}, A_{y}, A_{z}.

$$
\begin{aligned}
& A=\text { length of vector. } \\
& A=\sqrt{A_{x}{ }^{2}+A_{y}{ }^{2}+A_{z}{ }^{2}} .
\end{aligned}
$$

Direction cosines of $\mathrm{A}, \frac{A_{x}}{A}, \frac{A_{y}}{A}, \frac{A_{z}}{A}$.
4.001 Addition of vectors.

$$
\mathrm{A}+\mathrm{B}=\mathrm{C}
$$

C is a vector with components.

$$
\begin{aligned}
& C_{x}=A_{x}+B_{x} . \\
& C_{y}=A_{y}+B_{y} . \\
& C_{z}=A_{z}+B_{z} .
\end{aligned}
$$

$4.002 \theta=$ angle between \mathbf{A} and \mathbf{B}.

$$
\begin{aligned}
C & =\sqrt{A^{2}+B^{2}+2 A B \cos \theta} . \\
\cos \theta & =\frac{A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}}{A B} .
\end{aligned}
$$

4.003 If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are any three non-coplanar vectors of unit length, any vector, R , may be expressed:

$$
\mathbf{R}=a \mathbf{a}+b \mathbf{b}+c \mathbf{c}
$$

where a, b, c are the lengths of the projections of \mathbf{R} upon $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively.
4.004 Scalar product of two vectors:

$$
S \mathrm{AB}=(\mathrm{AB})=\mathrm{AB}
$$

are equivalent notations.

$$
\mathrm{AB}=A B \cos \widehat{A B}
$$

4.005 Vector product of two vectors:

$$
V \mathbf{A B}=\mathbf{A} \times \mathbf{B}=[\mathrm{AB}]=\mathbf{C} .
$$

C is a vector whose length is

$$
C=A B \sin \widehat{A B}
$$

The direction of \mathbf{C} is perpendicular to both \mathbf{A} and \mathbf{B} such that a right-handed rotation about \mathbf{C} through the angle $\widehat{A B}$ turns \mathbf{A} into \mathbf{B}.
$4.006 \mathrm{i}, \mathrm{j}, \mathrm{k}$ are three unit vectors perpendicular to each other. If their directions coincide with the axes x, y, z of a rectangular system of coordinates:

$$
\mathbf{A}=A_{x} \mathrm{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k} .
$$

4.007

$$
\begin{aligned}
& \mathrm{ii}=\mathrm{i}^{2}=\mathrm{jj}=\mathrm{j}^{2}=\mathrm{kk}=\mathrm{k}^{2}=\mathrm{I}, \\
& \mathrm{ij}=\mathrm{ji}=\mathrm{jk}=\mathrm{kj}=\mathrm{ki}=\mathrm{ik}=0 .
\end{aligned}
$$

4.008

$$
\begin{aligned}
V \mathrm{ij} & =-V \mathrm{ji}=\mathrm{k}, \\
V \mathrm{jk} & =-V \mathrm{kj}=\mathrm{i}, \\
V \mathrm{ki} & =-V \mathrm{ik}=\mathrm{j} .
\end{aligned}
$$

4.009

$$
\mathbf{A B}=\mathbf{B A}=A B \cos \widehat{A B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} .
$$

4.010

$$
\begin{aligned}
& V \mathrm{AB}=-V \mathrm{BA}=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \\
& =\left(A_{y} B_{z}-A_{z} B_{y}\right) \mathbf{i}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \mathbf{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \mathbf{k} .
\end{aligned}
$$

4.10 If A, B, C, are any three vectors:

$$
\mathrm{A} V \mathrm{BC}=\mathrm{B} V \mathrm{CA}=\mathrm{C} V \mathrm{AB}
$$

$=$ Volume of parallelepipedon having A, B, C as edges

$$
=
$$

$$
\left|\begin{array}{lll}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|
$$

4.11

I. $V \mathrm{~A}(\mathrm{~B}+\mathrm{C})=V \mathrm{AB}+V \mathrm{AC}$.
2. $V(\mathbf{A}+\mathbf{B})(\mathbf{C}+\mathbf{D})=V \mathbf{A}(\mathbf{C}+\mathrm{D})+V \mathbf{B}(\mathbf{C}+\mathrm{D})$.
3. $V A V B C=B S A C-C S A B$.
4. $V \mathrm{~A} V \mathrm{BC}+V \mathrm{~B} V \mathrm{CA}+V C V \mathrm{AB}=0$.
5. $V \mathrm{AB} \cdot V \mathrm{CD}=\mathrm{AC} \cdot \mathrm{BD}-\mathrm{BC} \cdot \mathrm{AD}$.
6. $V(V \mathrm{AB} \cdot V \mathrm{CD})=\mathrm{C} S(\mathrm{D} V \mathrm{AB})-\mathrm{D} S(\mathrm{C} V \mathrm{AB})$

$$
=\mathbf{C} S(\mathbf{A} V \mathbf{B D})-\mathrm{D} S(\mathbf{A} V \mathbf{B C})
$$

$$
=\mathbf{B} S(\mathbf{A} V \mathbf{C D})-\mathbf{A} S(\mathbf{B} V \mathbf{C D})
$$

$=\mathrm{BS}(\mathrm{CVDA})-\mathrm{A} S(\mathrm{CVDB})$.
4.20
I.

$$
\begin{aligned}
d \mathbf{A} \mathbf{B} & =\mathbf{A} d \mathbf{B}+\mathbf{B} d \mathbf{A} . \\
d V \mathbf{A B} & =V \mathbf{A} d \mathbf{B}+V d \mathbf{A B} \\
& =V \mathbf{A} d \mathbf{B}-V \mathbf{B} d \mathbf{A} .
\end{aligned}
$$

4.21

I. $\quad \nabla=\mathrm{i} \frac{\partial}{\partial x}+\mathrm{j} \frac{\partial}{\partial y}+\mathrm{k} \frac{\partial}{\partial z}$.
2. $\nabla \mathbf{A}=\operatorname{div} \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}$.
3. $\nabla \phi=\operatorname{grad} \phi=\mathrm{i} \frac{\partial \phi}{\partial x}+\mathrm{j} \frac{\partial \phi}{\partial y}+\mathrm{k} \frac{\partial \phi}{\partial z}$.
4. $\quad V \nabla \mathbf{A}=\operatorname{curl} \mathbf{A}=\operatorname{rot} \mathbf{A}$

$$
\begin{aligned}
& =\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right| \\
& =\mathrm{i}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\mathrm{j}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\mathbf{k}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) .
\end{aligned}
$$

5. $\quad \nabla \nabla=\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$.

4.22

1. curl $\operatorname{grad} \phi=\operatorname{curl} \nabla \phi=V \nabla \nabla \phi=0$.
2. div $\operatorname{grad} \phi=\nabla \nabla \phi=\bar{\nabla}^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}$.
3. $\operatorname{div} \operatorname{curl} \mathbf{A}=0$.
4. $\operatorname{curl} \operatorname{curl} \mathbf{A}=\operatorname{curl}^{2} \mathbf{A}=\nabla \operatorname{div} \mathbf{A}-\bar{\nabla}^{2} \mathbf{A}$.
5. $\quad \bar{\nabla}^{2} \mathbf{A}=\mathbf{i} \bar{\nabla}^{2} \mathbf{A}_{x}+\mathbf{j} \bar{\nabla}^{2} A_{y}+\mathbf{k} \bar{\nabla}^{2} A_{z}$.
6. $\quad \mathrm{A} \nabla=A_{x} \frac{\partial}{\partial x}+A_{y} \frac{\partial}{\partial v}+A_{z} \frac{\partial}{\partial z}$.
4.23
I. $\quad \nabla \mathbf{A B}=\operatorname{grad} \mathbf{A B}=(\mathbf{A} \nabla) \mathbf{B}+(\mathbf{B} \nabla) \mathbf{A}+V \cdot \mathbf{A} \operatorname{curl} \mathbf{B}+V \cdot \mathbf{B}$ curl \mathbf{A}.
7. $\quad \nabla V \mathbf{A B}=\operatorname{div} V \mathbf{A B}=\mathbf{B}$ curl $\mathbf{A}-\mathbf{A}$ curl \mathbf{B}.
8. $V \nabla V \mathbf{A} \mathbf{B}=(\mathbf{B} \nabla) \mathbf{A}-(\mathbf{A} \nabla) \mathbf{B}+\mathbf{A} \operatorname{div} B-\mathbf{B} \operatorname{div} \mathbf{A}$.
$4 \quad \operatorname{div} \phi \mathbf{A}=\phi \operatorname{div} \mathbf{A}+\mathbf{A} \nabla \phi$.
9. $\operatorname{curl} \phi \mathbf{A}=V \nabla \phi \mathbf{A}+\phi \operatorname{curl} \mathbf{A}=V \cdot \operatorname{grad} \phi \cdot \mathbf{A}+\phi \operatorname{curl} \mathbf{A}$.
10. $\quad \nabla \mathbf{A}^{2}=2(\mathbf{A} \nabla) \mathbf{A}+2 V \mathbf{A} \operatorname{curl} \mathbf{A}$.
11. $\mathbf{C}(\mathbf{A} \nabla) \mathbf{B}=\mathbf{A}(\mathbf{C} \nabla) \mathbf{B}+\mathbf{A} V \mathbf{C}$ curl \mathbf{B}.
12. $\quad \mathbf{B} \nabla \mathbf{A}^{2}=2 \mathbf{A}(\mathbf{B} \nabla) \mathbf{A}$.
4.24 \mathbf{R} is a radius vector of length r and r a unit vector in the direction of \mathbf{R}.

$$
\begin{aligned}
\mathrm{R} & =r \mathrm{r} \\
r^{2} & =x^{2}+y^{2}+z^{2} \\
\nabla \frac{\mathrm{I}}{r} & =-\frac{\mathrm{I}}{r^{3}} \mathbf{R}=-\frac{\mathrm{I}}{r^{2}} \mathrm{r} .
\end{aligned}
$$

I.
2.

$$
\nabla^{2} \frac{I}{r}=0
$$

3.

$$
\nabla r=\frac{\mathrm{I}}{r} \mathrm{R}=\mathrm{r}=\operatorname{grad} r
$$

4.

$$
\bar{\nabla}^{2} r=\frac{2}{r}
$$

5.

$$
V \nabla \mathbf{R}=\operatorname{curl} \mathbf{R}=0
$$

6.

$$
\nabla \mathbf{R}=\operatorname{div} \mathbf{R}=3
$$

7.

$$
\frac{d \phi}{d r}=\mathbf{r} \nabla \phi
$$

8.

$(\mathbf{R} \nabla) \mathbf{A}=r \frac{d \mathbf{A}}{d r}$.
9.

$$
(\mathbf{r} \nabla) \mathrm{A}=\frac{d \mathrm{~A}}{d r}
$$

Iо.

$$
(\mathbf{A} \nabla) \mathbf{R}=\mathbf{A}
$$

$d V=$ an element of volume - a scalar.
$d s=a n$ element of arc of a curve regarded as a vector whose direction is that of the positive tangent to the curve.
4.31 Gauss's Theorem:

$$
\iint \mathcal{S} \operatorname{div} \mathrm{A} d V=\iint \mathrm{A} d \mathbf{S} .
$$

4.32 Green's Theorem:

I. $\iiint \int \phi \nabla^{2} \psi d V+\iiint \nabla \phi \nabla \psi d V=\iint \phi \nabla \psi d \mathrm{~S}$
2. $\iint \mathcal{S}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d V=\iint(\phi \nabla \psi-\psi \nabla \phi) d \mathbf{S}$.
4.33 Stokes's Theorem:

$$
\iint \operatorname{curl} \mathbf{A} d \mathbf{S}=\int \mathbf{A} d \mathrm{~s} .
$$

4.40 A polar vector is one whose components, referred to a rectangular system of axes, all change in sign when the three axes are reversed.
4.401 An axial vector is one whose components are unchanged when the axes are reversed.
4.402 The vector product of two polar or of two axial vectors is an axial vector.
4.403 The vector product of a polar and an axial vector is a polar vector.
4.404 The curl of a polar vector is an axial vector and the curl of an axial vector is a polar vector.
4.405 The scalar product of two polar or of two axial vectors is a true scalar, i.e., it keeps its sign if the axes to which the vectors are referred are reversed
4.406 The scalar product of an axial vector and a polar vector is a pseudo-scalar, i.e., it changes in sign when the axes of reference are reversed.
4.407 The product or quotient of a polar vector and a true scalar is a polar vector; of an axial vector and a true scalar an axial vector, of a polar vector and a pseudo-scalar an axial vector; of an axial vector and a pseudo-scalar a polar vector.
4.408 The gradient of a true scalar is a polar vector; the gradient of a pseudoscalar is an axial vector.
4.409 The divergence of a polar vector is a true scalar; of an axial vector a pseudo-scalar.

4.6 Linear Vector Functions.

4.610 A vector Q is a linear vector function of a vector R if its components, Q_{1}, Q_{2}, Q_{3}, along any three non-coplanar axes are linear functions of the components R_{1}, R_{2}, R_{3} of R along the same axes.
4.611 Linear Vector Operator. If $\hat{\omega}$ is the linear vector operator,

$$
\mathrm{Q}=\hat{\omega} \mathrm{R} .
$$

This is equivalent to the three scalar equations,

$$
\begin{aligned}
& Q_{1}=\omega_{11} R_{1}+\omega_{12} R_{2}+\omega_{13} R_{3}, \\
& Q_{2}=\omega_{21} R_{1}+\omega_{22} R_{2}+\omega_{23} R_{3}, \\
& Q_{3}=\omega_{31} R_{1}+\omega_{32} R_{2}+\omega_{33} R_{3} .
\end{aligned}
$$

4.612 If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the three non-coplanar unit axes,

$$
\begin{array}{lll}
\omega_{11}=S . \mathrm{a} \hat{\mathrm{a}}, & \omega_{21}=S . \mathrm{b} \hat{\omega} \mathrm{a}, & \omega_{31}=S . \mathrm{c} \hat{\omega} \mathrm{a}, \\
\omega_{12}=S . \mathrm{a} \hat{\mathrm{~b}}, & \omega_{22}=S . \mathrm{b} \hat{\mathrm{~b}}, & \omega_{32}=S . \mathrm{c} \hat{\mathrm{~b}}, \\
\omega_{13}=S . \mathrm{a} \hat{\mathrm{c}}, & \omega_{23}=S . \mathrm{b} \hat{\mathrm{c}} & \omega_{33}=S . \mathrm{c} \hat{\mathrm{c}} .
\end{array}
$$

4.613 The conjugate linear vector operator $\hat{\omega}^{\prime}$ is obtained from $\hat{\omega}$ by replacing $\omega_{h k}$ by $\omega_{k h} ; h, k=\mathbf{I}, 2,3$.
4.614 In the symmetrical, or self-conjugate linear vector operator, denoted by ω,

Hence by 4.612

$$
\omega=\frac{1}{2}\left(\hat{\omega}+\hat{\omega}^{\prime}\right) .
$$

$$
S . \mathrm{a} \omega \mathrm{~b}=S . \mathrm{b} \omega \mathrm{a}, \text { etc. }
$$

4.615 The general linear vector function $\hat{\omega}$ R may always be resolved into the sum of a self-conjugate linear vector function of \mathbf{R} and the vector product of R by a vector c :

$$
\omega \mathrm{R}=\omega \mathrm{R}+V . c \mathrm{R},
$$

where

$$
\omega=\frac{1}{2}\left(\hat{\omega}+\hat{\omega}^{\prime}\right),
$$

and

$$
\mathbf{c}=\frac{1}{2}\left(\omega_{32}-\omega_{23}\right) \mathbf{i}+\frac{1}{2}\left(\omega_{13}-\omega_{31}\right) \mathbf{j}+\frac{1}{2}\left(\omega_{21}-\omega_{12}\right) \mathbf{k},
$$

if $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are three mutually perpendicular unit vectors.
4.616 The general linear vector operator $\hat{\omega}$ may be determined by three noncoplanar vectors, A, B, C, where,
and

$$
\begin{aligned}
& \mathbf{A}=\mathrm{a} \omega_{11}+\mathrm{b} \omega_{12}+\mathbf{c} \omega_{13} \\
& \mathbf{B}=\mathrm{a} \omega_{21}+\mathrm{b} \omega_{22}+\mathbf{c} \omega_{23} \\
& \mathbf{C}=\mathbf{a} \omega_{31}+\mathrm{b} \omega_{32}+\mathbf{c} \omega_{33}
\end{aligned}
$$

$$
\hat{\omega}=\mathrm{a} S . \mathbf{A}+\mathrm{b} S . \mathbf{B}+\mathbf{c} S . \mathbf{c} .
$$

4.617 If $\hat{\omega}$ is the general linear vector operator and $\hat{\omega}^{\prime}$ its conjugate,

$$
\begin{aligned}
\hat{\omega} \mathrm{R} & =\mathrm{R} \hat{\omega}^{\prime} \\
\hat{\omega}^{\prime} \mathrm{R} & =\mathrm{R} \hat{\omega}
\end{aligned}
$$

4.620 The symmetrical or self-conjugate linear vector operator has three mutually perpendicular axes. If these be taken along $\mathbf{i}, \mathbf{j}, \mathbf{k}$,

$$
\omega=\mathrm{i} S . \omega_{1} \mathrm{i}+\mathrm{j} S . \omega_{2} \mathrm{j}+\mathrm{k} S . \omega_{3} \mathrm{k},
$$

where $\omega_{1}, \omega_{2}, \omega_{3}$ are scalar quantities, the principal values of ω.
4.621 Referred to any system of three mutually perpendicular unit vectors, a, b, c, the self-conjugate operator, ω, is determined by the three vectors (4.616):

$$
\begin{aligned}
& \mathbf{A}=\omega \mathrm{a}=\mathrm{a} \omega_{11}+\mathrm{b} \omega_{12}+\mathbf{c} \omega_{13}, \\
& \mathbf{B}=\omega \mathrm{b}=\mathrm{a} \omega_{21}+\mathrm{b} \omega_{22}+\mathbf{c} \omega_{23} \\
& \mathbf{C}=\omega \mathbf{c}=\mathrm{a} \omega_{31}+\mathrm{b} \omega_{32}+\mathbf{c} \omega_{33},
\end{aligned}
$$

where

$$
\begin{aligned}
\omega_{h k} & =\omega_{k h} \\
\omega & =\mathrm{a} S . \mathbf{A}+\mathrm{b} S . \mathrm{B}+\mathrm{c} S . \mathrm{C} .
\end{aligned}
$$

4.622 If n is one of the principal values, $\omega_{1}, \omega_{2}, \omega_{3}$, these are given by the roots of the cubic,

$$
n^{3}-n^{2}(S . \mathbf{A a}+S . \mathbf{B b}+S . \mathbf{C} \mathbf{c})+n(S . \mathbf{a} V \mathbf{B C}+S . \mathbf{b} V \mathbf{C A}+\mathbf{S} . \mathbf{c} V \mathbf{A} B)
$$

$$
-S . \mathbf{A} V \mathbf{B C}=0 .
$$

4.623 In transforming from one to another system of rectangular axes the following are invariant:

$$
\begin{aligned}
S \mathrm{Aa}+S . \mathrm{Bb}+S . \mathrm{C} \mathbf{c} & =\omega_{1}+\omega_{2}+\omega_{3} . \\
S \mathrm{a} V \mathbf{B C}+S . \mathrm{b} V \mathrm{CA}+S . \mathrm{c} V \mathbf{A B} & =\omega_{2} \omega_{3}+\omega_{3} \omega_{1}+\omega_{1} \omega_{2} . \\
S . \mathbf{A} V \mathbf{B C} & =\omega_{1} \omega_{2} \omega_{3} .
\end{aligned}
$$

4.624 .

$$
\begin{aligned}
& \omega_{1}+\omega_{2}+\omega_{3}=\omega_{11}+\omega_{22}+\omega_{33} \\
& \omega_{2} \omega_{3}+\omega_{3} \omega_{1}+\omega_{1} \omega_{2}=\omega_{22} \omega_{33}+\omega_{33} \omega_{11}+\omega_{11} \omega_{22}-\omega_{23}^{2}-\omega_{31}^{2}+\omega^{2}{ }_{12} \\
& \omega_{1} \omega_{2} \omega_{3}=\omega_{11} \omega_{22} \omega_{33}+2 \omega_{23} \omega_{31} \omega_{12}-\omega_{11} \omega_{23}^{2}-\omega_{22} \omega_{31}^{2}-\omega_{33} \omega_{12}^{2}
\end{aligned}
$$

4.626 Referred to its princıpal axes the equation of the quadric is,

$$
\omega_{1} x^{2}+\omega_{2} y^{2}+\omega_{3} z^{2}=\text { const. }
$$

4.627 Applying the self-conjugate operator, ω, successively,

$$
\begin{aligned}
\omega \mathrm{R} & =\mathrm{i} \omega_{1} R_{1}+\mathrm{j} \omega_{2} R_{2}+\mathrm{k} \omega_{3} R_{3}, \\
\omega \omega \mathrm{R} & =\omega^{2} \mathrm{R}=\omega_{1}{ }^{2} R_{1}+\mathrm{j} \omega_{2}{ }^{2} R_{2}+\mathrm{k} \omega_{3}{ }^{2} R_{3}, \\
\omega \omega^{2} \mathrm{R} & =\omega^{3} \mathrm{R}=\mathrm{i} \omega_{1}{ }^{3} R_{1}+\mathrm{j} \omega_{2}{ }^{3} R_{2}+\mathrm{k} \omega_{3}{ }^{3} R_{3},
\end{aligned}
$$

$$
\omega^{-1} \mathrm{R}=\mathrm{i} \frac{R_{1}}{\omega_{1}}+\mathrm{j} \frac{R_{2}}{\omega_{2}}+\mathrm{k} \frac{R_{3}}{\omega_{3}} .
$$

4.628 Applying a number of self-conjugate operators, a, β, \ldots. ., all with the same axes but with different principal values $\left(a_{1} a_{2} a_{3}\right),\left(\beta_{1} \beta_{2} \beta_{3}\right), \ldots$.

$$
\begin{aligned}
\alpha \mathrm{R} & =\mathrm{i} a R_{1}+\mathrm{j} a_{2} R_{2}+\mathrm{k} a_{3} R_{3}, \\
\beta a \mathrm{R} & =\alpha \beta \mathrm{R}=\mathrm{i} a_{1} \beta_{1} R_{1}+\mathrm{j} a_{2} \beta_{2} R_{2}+\mathrm{k} a_{3} \beta_{3} R_{3} .
\end{aligned}
$$

4.629

$$
\begin{aligned}
S . \mathrm{Q} \omega \mathrm{R} & =S . \mathrm{R} \omega Q, \\
& =\omega_{1} Q_{1} R_{1}+\omega_{2} Q_{2} R_{2}+\omega_{3} Q_{3} R_{3} .
\end{aligned}
$$

V. CURVILINEAR COÖRDINATES

5.00 Given three surfaces.
I.

$$
\left\{\begin{aligned}
u & =f_{1}(x, y, z), \\
v & =f_{2}(x, y, z), \\
w & =f_{3}(x, y, z) .
\end{aligned}\right.
$$

$$
\left\{\begin{array}{l}
x=\phi_{1}(u, v, w), \\
y=\phi_{2}(u, v, w), \\
z=\phi_{3}(u, v, w) .
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\frac{I}{h_{1}^{2}}=\left(\frac{\partial \phi_{1}}{\partial u}\right)^{2}+\left(\frac{\partial \phi_{2}}{\partial u}\right)^{2}+\left(\frac{\partial \phi_{3}}{\partial u}\right)^{2}, \\
\frac{I}{h_{2}^{2}}=\left(\frac{\partial \phi_{1}}{\partial v}\right)^{2}+\left(\frac{\partial \phi_{2}}{\partial v}\right)^{2}+\left(\frac{\partial \phi_{3}}{\partial v}\right)^{2}, \\
\frac{I}{h_{3}^{2}}=\left(\frac{\partial \phi_{1}}{\partial w}\right)^{2}+\left(\frac{\partial \phi_{2}}{\partial w}\right)^{2}+\left(\frac{\partial \phi_{3}}{\partial w}\right)^{2} .
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
g_{1}=\frac{\partial \phi_{1}}{\partial v} \frac{\partial \phi_{1}}{\partial w}+\frac{\partial \phi_{2}}{\partial v} \frac{\partial \phi_{2}}{\partial w}+\frac{\partial \phi_{3}}{\partial v} \frac{\partial \phi_{3}}{\partial w}, \\
g_{2}=\frac{\partial \phi_{1}}{\partial w} \frac{\partial \phi_{1}}{\partial u}+\frac{\partial \phi_{2}}{\partial w} \frac{\partial \phi_{2}}{\partial u}+\frac{\partial \phi_{3}}{\partial w} \frac{\partial \phi_{3}}{\partial u}, \\
g_{3}=\frac{\partial \phi_{1}}{\partial u} \frac{\partial \phi_{1}}{\partial v}+\frac{\partial \phi_{2}}{\partial u} \frac{\partial \phi_{2}}{\partial v}+\frac{\partial \phi_{3}}{\partial u} \frac{\partial \phi_{3}}{\partial v} .
\end{array}\right.
$$

5.01 The linear element of arc, $d s$, is given by:
$d s^{2}=d x^{2}+d y^{2}+d z^{2}=\frac{d u^{2}}{h_{1}{ }^{2}}+\frac{d v^{2}}{h_{2}{ }^{2}}+\frac{d w^{2}}{h_{3}{ }^{2}}+2 g_{1} d v d w+2 g_{2} d w d u+2 g_{3} d u d v$.
5.02 The surface elements, areas of parallelograms on the three surfaces, are:

$$
\begin{aligned}
& d S_{u}=\frac{d v d w}{h_{2} h_{3}} \sqrt{\mathrm{I}-h_{2}{ }^{2} h_{3}{ }^{2} g_{1}^{2}}, \\
& d S_{v}=\frac{d w d u}{h_{3} h_{1}} \sqrt{I-h_{3}{ }^{2} h_{1}{ }^{2} g_{2}{ }^{2}}, \\
& d S_{w}=\frac{d u d v}{h_{1} h_{2}} \sqrt{I-h_{1}{ }^{2} h_{2}^{2} g_{3}^{2}} . \\
& 99
\end{aligned}
$$

5.03 The volume of an elementary parallelepipedon is:

$$
d \tau=\frac{d u d v_{4} d w}{h_{1} h_{2} h_{3}}\left\{I-h_{1}{ }^{2} h_{2}{ }^{2} g_{3}{ }^{2}-h_{2}{ }^{2} h_{3}{ }^{2} g_{1}{ }^{2}-h_{3}{ }^{2} h_{1}{ }^{2} g_{2}{ }^{2}+h_{1}{ }^{2} h_{2}{ }^{2} h_{3}{ }^{2} g_{1} g_{2} g_{3}\right\}
$$

$5.04 \omega_{1}, \omega_{2}, \omega_{3}$ are the angles between the normals to the surface $f_{2}, f_{3} ; f_{3}, f_{1}$; f_{1}, f_{2} respectively:

$$
\begin{aligned}
& \cos \omega_{1}=h_{2} h_{3} g_{1} \\
& \cos \omega_{2}=h_{3} h_{1} g_{2} \\
& \cos \omega_{3}=h_{1} h_{2} g_{3}
\end{aligned}
$$

5.05 Orthogonal Curvilinear Coördinates.

$$
\begin{aligned}
g_{1} & =g_{2}=g_{3}=0, \\
d s^{2} & =\frac{d u^{2}}{h_{1}^{2}}+\frac{d v^{2}}{h_{2}^{2}}+\frac{d w^{2}}{h_{3}^{2}} \\
d S_{u} & =\frac{d v d w}{h_{2} h_{3}}, d S_{v}=\frac{d w d u}{h_{3} h_{1}}, d S_{w}=\frac{d u d v}{h_{1} h_{2}} \\
d \tau & =\frac{d u d v d w}{h_{1} h_{2} h_{3}}
\end{aligned}
$$

$5.06 h_{1}{ }^{2}, h_{2}{ }^{2}, h_{3}{ }^{2}$ are given by $5.00(3)$ and also by:

$$
\begin{aligned}
& h_{1}^{2}=\left(\frac{\partial f_{1}}{\partial x}\right)^{2}+\left(\frac{\partial f_{1}}{\partial y}\right)^{2}+\left(\frac{\partial f_{1}}{\partial z}\right)^{2}, \\
& h_{2}^{2}=\left(\frac{\partial f_{2}}{\partial x}\right)^{2}+\left(\frac{\partial f_{2}}{\partial y}\right)^{2}+\left(\frac{\partial f_{2}}{\partial z}\right)^{2}, \\
& h_{3}^{2}=\left(\frac{\partial f_{3}}{\partial x}\right)^{2}+\left(\frac{\partial f_{3}}{\partial y}\right)^{2}+\left(\frac{\partial f_{3}}{\partial z}\right)^{2} .
\end{aligned}
$$

CURVILINEAR COÖRDINATES

5.07 A vector, A, will have three components in the directions of the normals to the orthogonal surfaces u, v, w :

$$
A=\sqrt{A_{u}^{2}+A_{v}^{2}+A_{w^{2}}^{2}}
$$

5.08

I. $\operatorname{div} \mathbf{A}=h_{1} h_{2} h_{3}\left\{\frac{\partial}{\partial u}\left(\frac{A_{u}}{h_{2} h_{3}}\right)+\frac{\partial}{\partial v}\left(\frac{A_{v}}{h_{3} h_{1}}\right)+\frac{\partial}{\partial w}\left(\frac{A_{w}}{h_{1} h_{2}}\right)\right\}$.
2. $\bar{\nabla}^{2}=h_{1} h_{2} h_{3}\left\{\frac{\partial}{\partial u}\left(\frac{h_{1}}{h_{2} h_{3}} \frac{\partial}{\partial u}\right)+\frac{\partial}{\partial v}\left(\frac{h_{2}}{h_{3} h_{1}} \frac{\partial}{\partial v}\right)+\frac{\partial}{\partial w}\left(\frac{h_{3}}{h_{1} h_{2}} \frac{\partial}{\partial w}\right)\right\}$
3.

$$
\left\{\begin{array}{l}
\operatorname{curl}_{u} \mathbf{A}=h_{2} h_{3}\left\{\frac{\partial}{\partial v}\left(\frac{A_{w}}{h_{3}}\right)-\frac{\partial}{\partial w}\left(\frac{A_{v}}{h_{2}}\right)\right\}, \\
\operatorname{curl}_{v} \mathbf{A}=h_{3} h_{1}\left\{\frac{\partial}{\partial w}\left(\frac{A_{u}}{h_{1}}\right)-\frac{\partial}{\partial u}\left(\frac{A_{w}}{h_{3}}\right)\right\} \\
\operatorname{curl}_{w} \mathbf{A}=h_{1} h_{2}\left\{\frac{\partial}{\partial u}\left(\frac{A_{v}}{h_{2}}\right)-\frac{\partial}{\partial v}\left(\frac{A_{u}}{h_{1}}\right)\right\}
\end{array}\right.
$$

5.09 The gradient of a scalar function, ψ, has three components in the directions of the normals to the three orthogonal surfaces:

$$
h_{1} \frac{\partial \psi}{\partial u}, h_{2} \frac{\partial \psi}{\partial v}, h_{3} \frac{\partial \psi}{\partial w}
$$

5.20
I.

Spherical Polar Coördinates.

$$
\left\{\begin{aligned}
u & =r \\
v & =\theta \\
w & =\phi
\end{aligned}\right.
$$

2.
3.

$$
h_{1}=\mathrm{I}, h_{2}=\frac{\mathrm{I}}{r}, h_{3}=\frac{\mathrm{I}}{r \sin \theta} .
$$

4.

$$
\left\{\begin{array}{l}
d S_{r}=r^{2} \sin \theta d \theta d \phi \\
d S_{\theta}=r \sin \theta d r d \phi \\
d S_{\phi}=r d r d \theta
\end{array}\right.
$$

5. $\quad d \tau=r^{2} \sin \theta d r d \theta d \phi$.
6. $\quad \operatorname{div} \mathbf{A}=\frac{\mathrm{I}}{r^{2} \sin \theta}\left\{\sin \theta \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+r \frac{\partial}{\partial \theta}\left(\sin \theta A_{\theta}\right)+r \frac{\partial A_{\phi}}{\partial \phi}\right\}$

7

$$
\bar{\nabla}^{2}=\frac{\mathbf{I}}{r^{2} \sin \theta}\left\{\sin \theta \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{\mathrm{I}}{\sin \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right\}
$$

8.

$$
\left\{\begin{array}{l}
\operatorname{curl}_{r} \mathbf{A}=\frac{I}{r \sin \theta}\left\{\frac{\partial}{\partial \theta}\left(\sin \theta A_{\phi}\right)-\frac{\partial A_{\phi}}{\partial \phi}\right\} \\
\operatorname{curl}_{\theta} \mathbf{A}=\frac{I}{r \sin \theta}\left\{\frac{\partial A_{r}}{\partial \phi}-\sin \theta \frac{\partial\left(r A_{\phi}\right)}{\partial r}\right\} \\
\operatorname{curl}_{\phi} \mathbf{A}=\frac{I}{r}\left\{\frac{\partial}{\partial r}\left(r A_{\theta}\right)-\frac{\partial A_{r}}{\partial \theta}\right\}
\end{array}\right.
$$

5.21 Cylindrical Coordinates.
I.

$$
\begin{gathered}
\left\{\begin{array}{c}
u=\rho \\
v=\theta, \\
w=z
\end{array}\right. \\
\left\{\begin{array}{l}
x=\rho \cos \theta, \\
y=\rho \sin \theta, \\
z=z
\end{array}\right.
\end{gathered}
$$

3.
4.

$$
h_{1}=\mathrm{I}, \quad h_{2}=\frac{\mathrm{I}}{\rho}, \quad h_{3}=\mathrm{I}
$$

$$
\left\{\begin{array}{l}
d S_{r}=\rho d \theta d z \\
d S_{\theta}=d z d \rho \\
d S_{z}=\rho d \rho d \theta
\end{array}\right.
$$

5.

$$
d \tau=\rho d \rho d \theta d z
$$

6.

$$
\operatorname{div} \mathbf{A}=\frac{\mathrm{I}}{\rho}\left\{\frac{\partial}{\partial \rho}\left(\rho A_{\rho}\right)+\frac{\partial A_{\theta}}{\partial \theta}+\rho \frac{\partial A_{z}}{\partial z}\right\}
$$

7.

$$
\bar{\nabla}^{2}=\frac{\mathrm{I}}{\rho}\left\{\frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{\mathrm{I}}{\rho} \frac{\partial^{2}}{\partial \theta^{2}}+\rho \frac{\partial^{2}}{\partial z^{2}}\right\}
$$

8.

$$
\left\{\begin{aligned}
\operatorname{curl}_{\rho} \mathbf{A} & =\frac{\Psi}{\rho} \frac{\partial A_{z}}{\partial \theta}-\frac{\partial A_{\theta}}{\partial z} \\
\operatorname{curl}_{\theta} \mathbf{A} & =\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho} \\
\operatorname{curl}_{z} \mathbf{A} & =\frac{\Psi}{\rho}\left\{\frac{\partial}{\partial \rho}\left(\rho A_{\theta}\right)-\frac{\partial A_{\rho}}{\partial \theta}\right\}
\end{aligned}\right.
$$

5.22 Ellipsoidal Coórdinates. u, v, w are the three roots of the equation:
I.
$\theta=u: \quad$ Ellipsoid.
$\theta=v: \quad$ Hyperboloid of one sheet.
$\theta=w:$ Hyperboloid of two sheets.

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}+\theta}+\frac{v^{2}}{b^{2}+\theta}+\frac{z^{2}}{c^{2}+\theta}=\mathrm{I} . \\
& a>b>c, \\
& u>v>w \text {. }
\end{aligned}
$$

2.

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{2}=\frac{\left(a^{2}+u\right)\left(a^{2}+v\right)\left(a^{2}+w\right)}{\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)} \\
y^{2}=-\frac{\left(b^{2}+u\right)\left(b^{2}+v\right)\left(b^{2}+w\right)}{\left(b^{2}-c^{2}\right)\left(a^{2}-b^{2}\right)} \\
z^{2}=\frac{\left(c^{2}+u\right)\left(c^{2}+v\right)\left(c^{2}+w\right)}{\left(a^{2}-c^{2}\right)\left(b^{2}-c^{2}\right)} \\
\left\{\begin{array}{l}
h_{2}^{2}=\frac{4\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)}{(v-w)(v-u)} \\
h_{3}^{2}=\frac{4\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}{(w-u)(w-v)}
\end{array}\right.
\end{array} \begin{array}{l}
\left.h^{2}+u\right)\left(c^{2}+u\right) \\
h_{3}=\frac{4)(u-w)}{}
\end{array}\right.
\end{aligned}
$$

4. $\operatorname{div} \mathbf{A}=2 \frac{\sqrt{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)}}{(u-v)(u-w)} \frac{\partial}{\partial u}\left(\sqrt{(u-v)(u-w)} A_{u}\right)$

$$
\begin{aligned}
& +2 \frac{\sqrt{\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)}}{(v-w)(u-v)} \frac{\partial}{\partial v}\left(\sqrt{(w-v)(u-v)} A_{v}\right) \\
& +2 \frac{\sqrt{\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}}{(u-w)(v-w)} \frac{\partial}{\partial w}\left(\sqrt{(u-w)(v-w)} A_{w}\right)
\end{aligned}
$$

5. $\bar{\nabla}^{2}=4 \frac{\sqrt{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)}}{(u-v)} \frac{\partial}{\partial u-w)}\left(\sqrt{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)} \frac{\partial}{\partial u}\right)$

$$
\begin{aligned}
& +4 \frac{\sqrt{\left(a^{2}+v\right)(2+v)\left(b c^{2}+v\right)}}{(u-v)(v-w)} \\
& \frac{\partial}{\partial v}\left(\sqrt{\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)} \frac{\partial}{\partial v}\right) \\
& +4 \frac{\sqrt{\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}}{(a-w)(v-w)} \partial w \\
&
\end{aligned}
$$

$$
\left\{\begin{array}{r}
\operatorname{curl}_{u} \mathbf{A}=\frac{2}{v-w}\left\{\sqrt{\frac{\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)}{u-v}} \frac{\partial}{\partial v}\left(\sqrt{w-v} A_{w}\right)\right. \\
-\sqrt{\frac{\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}{u-w}} \frac{\partial}{\partial w}\left(\sqrt{v-w} A_{v}\right\}
\end{array}\right.
$$

$$
\left(\operatorname{curl}_{v} \mathbf{A}=\frac{2}{u-w}\left\{\sqrt{\frac{\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}{v-w}} \frac{\partial}{\partial w}\left(\sqrt{u-w} A_{u}\right)\right.\right.
$$

$$
\left.-\sqrt{\frac{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)}{v-u}} \frac{\partial}{\partial u}\left(\sqrt{w-u} A_{w}\right)\right\}
$$

$$
\operatorname{curl}_{w} \mathbf{A}=\frac{2}{u-v}\left\{\sqrt{\frac{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)}{w-u}} \frac{\partial}{\partial u}\left(\sqrt{v-u} A_{v}\right)\right.
$$

$$
\left.-\sqrt{\frac{\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)}{w-v}} \frac{\partial}{\partial v}\left(\sqrt{u-v} A_{u}\right)\right\}
$$

5.23 Conical Coordinates.

The three orthogonal surfaces are: the spheres,
I.

$$
x^{2}+y^{2}+z^{2}=u^{2}
$$

the two cones:
2.

$$
\frac{x^{2}}{v^{2}}+\frac{y^{2}}{v^{2}-b^{2}}+\frac{z^{2}}{v^{2}-c^{2}}=0
$$

3.

$$
\begin{aligned}
& \frac{x^{2}}{w^{2}}+\frac{y^{2}}{w^{2}-b^{2}}+\frac{z^{2}}{w^{2}-c^{2}}=0 \\
& \left\{\begin{array}{l}
c^{2}>v^{2}>b^{2}>w^{2} \\
x^{2}=\frac{u^{2} v^{2} w^{2}}{b^{2} c^{2}} \\
y^{2}=\frac{u^{2}\left(v^{2}-b^{2}\right)\left(w^{2}-b^{2}\right)}{b^{2}\left(b^{2}-c^{2}\right)} \\
z^{2}=\frac{u^{2}\left(v^{2}-c^{2}\right)\left(w^{2}-c^{2}\right)}{c^{2}\left(c^{2}-b^{2}\right)}
\end{array}\right.
\end{aligned}
$$

5. $\quad h_{1}=\mathrm{I}, \quad h_{2}{ }^{2}=\frac{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)}{u^{2}\left(v^{2}-w^{2}\right)}, \quad h_{3}{ }^{2}=\frac{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)}{u^{2}\left(v^{2}-w^{2}\right)}$.
6. $\operatorname{div} \mathbf{A}=\frac{\mathrm{I}}{u^{2}} \frac{\partial}{\partial u}\left(u^{2} A_{u}\right)+\frac{\sqrt{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)}}{u\left(v^{2}-w^{2}\right)} \frac{\partial}{\partial v}\left(\sqrt{v^{2}-w^{2}} A_{v}\right.$

$$
+\frac{\sqrt{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)}}{u\left(v^{2}-w^{2}\right)} \frac{\partial}{\partial w}\left(\sqrt{v^{2}-w^{2}} A_{w}\right)
$$

7. $\bar{\nabla}^{2}=\frac{I}{u^{2}} \frac{\partial}{\partial u}\left(u^{2} \frac{\partial}{\partial u}\right)+\frac{\sqrt{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)}}{u^{2}\left(v^{2}-w^{2}\right)} \frac{\partial}{\partial v}\left(\sqrt{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)} \frac{\partial}{\partial v}\right)$.

$$
+\frac{\sqrt{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)}}{u^{2}\left(v^{2}-w^{2}\right)} \frac{\partial}{\partial w}\left(\sqrt{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)} \frac{\partial}{\partial w}\right)
$$

$$
\operatorname{curl}_{u} \mathbf{A}=\frac{\mathbf{I}}{u\left(v^{2}-w^{2}\right)}\left\{\sqrt{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)} \frac{\dot{\partial}}{\partial v}\left(\sqrt{v^{2}-w^{2}} A_{w}\right)\right.
$$

$$
\begin{aligned}
& \left.-\sqrt{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)} \frac{\partial}{\partial w}\left(\sqrt{v^{2}-w^{2}} A_{v}\right)\right\} \\
& \frac{\left.v^{2}\right)}{\left.\frac{\partial A_{u}}{\partial w}-\frac{I}{u} \frac{\partial}{\partial u}\left(u A_{u}\right)\right\}} \\
& \frac{\left.v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)}{u \sqrt{v^{2}-w^{2}}} \frac{\partial A_{u}}{\partial v}
\end{aligned}
$$

5.30 Elliptic Cylinder Coördinates.

The three orthogonal surfaces are:
I. The elliptic cylinders:

$$
\frac{x^{2}}{c^{2} u^{2}}+\frac{y^{2}}{c^{2}\left(u^{2}-\mathrm{I}\right)}=\mathrm{I}
$$

2. The hyperbolic cylinders.

$$
\frac{x^{2}}{c^{2} v^{2}}-\frac{y^{2}}{c^{2}\left(I-v^{2}\right)}=I
$$

3. The planes:

$$
z=w
$$

$2 c$ is the distance between the foci of the confocal ellipses and hyperbolas:
4. $\quad x=c u v$.
5.

$$
y=c \sqrt{u^{2}-I} \sqrt{I-v^{2}}
$$

6.

$$
\frac{I}{h_{1}^{2}}=\frac{I}{h_{2}^{2}}=c^{2}\left(u^{2}-v^{2}\right), \quad h_{3}=I
$$

7. $\operatorname{div} \mathbf{A}=\frac{I}{c\left(u^{2}-v^{2}\right)}\left\{\frac{\partial}{\partial u}\left(\sqrt{u^{2}-v^{2}} A_{u}\right)+\frac{\partial}{\partial v}\left(\sqrt{\sqrt{u^{2}-v^{2}} A_{v}}\right)\right\}+\frac{\partial A_{z}}{\partial z}$.
8. $\quad \bar{\nabla}^{2}=\frac{I}{c^{2}\left(u^{2}-v^{2}\right)}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right)+\frac{\partial^{2}}{\partial z^{2}}$.
9. $\left\{\begin{array}{l}\operatorname{curl}_{u} \mathbf{A}=\frac{\mathrm{I}}{c \sqrt{u^{2}-v^{2}}} \frac{\partial A_{z}}{\partial v}-\frac{\partial A_{v}}{\partial z}, \\ \operatorname{curl}_{v} \mathbf{A}=\frac{\partial A_{u}}{\partial z}-\frac{\mathrm{I}}{c \sqrt{u^{2}-v^{2}}} \frac{\partial A_{z}}{\partial u}, \\ \operatorname{curl}_{z} \mathbf{A}=\frac{\mathrm{I}}{c\left(u^{2}-v^{2}\right)}\left\{\frac{\partial}{\partial u}\left(\sqrt{u^{2}-v^{2}} A_{v}\right)-\frac{\partial}{\partial v}\left(\sqrt{u^{2}-v^{2}} A_{u}\right)\right\} .\end{array}\right.$

5.31 Parabolic Cylinder Coórdinates.

The three orthogonal surfaces are the two parabolic cylinders:
I.

$$
\begin{aligned}
& y^{2}=4 c u x+4 c^{2} u^{2} . \\
& y^{2}=-4 c v x+4 c^{2} v^{2} .
\end{aligned}
$$

And the planes:
3.

$$
\begin{aligned}
& z=w . \\
& x=c(v-u) . \\
& y=2 c \sqrt{u v} .
\end{aligned}
$$

6.

$$
\frac{\mathrm{I}}{h_{1}^{2}}=\frac{u+v}{u}, \quad \frac{\mathrm{I}}{h_{2}^{2}}=\frac{u+v}{v}, \quad h_{3}=\mathrm{I} .
$$

7. $\operatorname{div} \mathbf{A}=\frac{\sqrt{u v}}{u+v}\left\{\frac{\partial}{\partial u}\left(\sqrt{\frac{u+v}{v}} A_{u}\right)+\frac{\partial}{\partial v}\left(\sqrt{\frac{u+v}{u}} A_{v}\right)\right\}+\frac{\partial A_{z}}{\partial z}$.
8. $\quad \bar{\nabla}^{2}=\frac{\sqrt{u v}}{u+v}\left\{\frac{\partial}{\partial u}\left(\frac{u}{v} \frac{\partial}{\partial u}\right)+\frac{\partial}{\partial v}\left(\frac{v}{u} \frac{\partial}{\partial v}\right)\right\}+\frac{\partial^{2}}{\partial z^{2}}$.
9. $\left\{\begin{array}{l}\operatorname{curl}_{u} \mathrm{~A}=\sqrt{\frac{v}{u+v}} \frac{\partial A_{z}}{\partial v}-\frac{v}{u+v} \frac{\partial A_{v},}{\partial z}, \\ \operatorname{curl}_{v} \mathrm{~A}=\frac{u}{u+v} \frac{\partial A_{u}}{\partial z}-\sqrt{\frac{u}{u+v}} \frac{\partial A_{z}}{\partial u}, \\ \operatorname{curl}_{z} \mathrm{~A}=\frac{\sqrt{u v}}{u+v}\left\{\frac{\partial}{\partial u}\left(\sqrt{\frac{v}{u+v}} A_{v}\right)-\frac{\partial}{\partial v}\left(\sqrt{\frac{u}{u+v}} A_{u}\right)\right\} .\end{array}\right.$
5.40 Helical Coördinates. (Nicholson, Phil. Mag. 19, 77, I9ro.)

A cylinder of any cross-section is wound on a circular cylinder in the form of a helix of angle α. $a=$ radius of circular cylinder on which the central line of the normal cross-sections of the helical cylinder lies. The z-axis is along the axis of the cylinder of radius a.
$u=\rho$ and $v=\phi$ are the polar coordinates in the plane of any normal section of the helical cylinder. ϕ is measured from a line perpendicular to z and to the tangent to the cylinder.
$w=\theta=$ the twist in a plane perpendicular to z of the radius in that plane measured from a line parallel to the x-axis:
I. $\quad\left\{\begin{array}{l}x=(a+\rho \cos \phi) \cos \theta+\rho \sin \alpha \sin \theta \sin \phi, \\ y=(a+\rho \cos \phi) \sin \theta-\rho \sin \alpha \cos \theta \sin \phi, \\ z=a \theta \tan \alpha+\rho \cos \alpha \sin \phi .\end{array}\right.$
2. $\left\{\begin{array}{l}h_{1}=\mathrm{I}, \quad h_{2}=\frac{\mathrm{I}}{\rho}, \\ h_{3}{ }^{2}=\frac{\mathrm{I}}{a^{2} \sec ^{2} \alpha+2 a \rho \cos \phi+\rho^{2}\left(\cos ^{2} \phi+\sin ^{2} \alpha \sin ^{2} \phi\right)} .\end{array}\right.$
5.50 Surfaces of Revolution.
z-axis $=$ axis of revolution.
$\rho, \theta=$ polar coordinates in any plane perpendicular to z-axis.
I.

$$
\begin{aligned}
d s^{2} & =d z^{2}+d \rho^{2}+\rho^{2} d \theta^{2} \\
& =\frac{d u^{2}}{h_{1}{ }^{2}}+\frac{d v^{2}}{h_{2}^{2}}+\frac{d w^{2}}{h_{3}^{2}}
\end{aligned}
$$

In any meridian plane, z, ρ, determine u, v, from:
2.
3.

$$
\begin{aligned}
f(z+i \rho) & =u+i v . \\
w & =\theta .
\end{aligned}
$$

Then u, v, θ will form a system of orthogonal curvilinear coördinates.
5.51 Spheroidal Coordınates (Prolate Spheroids):
I.

$$
z+i \rho=c \cosh (u+i v)
$$

2.

$$
\left\{\begin{array}{l}
z=c \cosh u \cos v \\
\rho=c \sinh u \sin v
\end{array}\right.
$$

The three orthogonal surfaces are the ellipsoids and hyperboloids of revolution, and the planes, θ :
3.

$$
\left\{\begin{array}{l}
\frac{z^{2}}{c^{2} \cosh ^{2} u}+\frac{\rho^{2}}{c^{2} \sinh ^{2} u}=\mathrm{I} \\
\frac{z^{2}}{c^{2} \cos ^{2} v}-\frac{\rho^{2}}{c^{2} \sin ^{2} v}=\mathrm{I}
\end{array}\right.
$$

With $\cos u=\lambda, \cos v=\mu$:
4. $\quad\left\{\begin{array}{l}z=c \lambda \mu, \\ \rho=c \sqrt{\left(\lambda^{2}-I\right)\left(I-\mu^{2}\right)} .\end{array}\right.$
5. $\quad h_{1}^{2}=\frac{\lambda^{2}-\mathrm{I}}{c^{2}\left(\lambda^{2}-\mu^{2}\right)}, \quad h_{2}^{2}=\frac{\mathrm{I}-\mu^{2}}{c^{2}\left(\lambda^{2}-\mu^{2}\right)}, \quad h_{3}{ }^{2}=\frac{\mathrm{I}}{c^{2}\left(\lambda^{2}-\mathrm{I}\right)\left(\mathrm{I}-\mu^{2}\right)}$.

5.52 Spheroidal Coördinates (Oblate Spheroids):

I.

$$
\begin{aligned}
\rho+i z & =c \cosh (u+i v) . \\
z & =c \sinh u \sin v . \\
\rho & =c \cosh u \cos v .
\end{aligned}
$$

3.

$$
\cosh u=\lambda, \quad \cos v=\mu
$$

4. $\quad h_{1}{ }^{2}=\frac{\mathrm{I}-\mu^{2}}{c^{2}\left(\lambda^{2}-\mu^{2}\right)}, \quad h_{2}{ }^{2}=\frac{\lambda^{2}-\mathrm{I}}{c^{2}\left(\lambda^{2}-\mu^{2}\right)}, \quad h_{3}{ }^{2}=\frac{\mathrm{I}}{c^{2}\left(\lambda^{2}-\mathrm{I}\right)\left(\mathrm{I}-\mu^{2}\right)}$.
5.53 Parabolic Coördinates:
I.

$$
\begin{aligned}
& z+i \rho=c(u+i v)^{2} . \\
&\left\{\begin{array}{l}
z
\end{array}=c\left(u^{2}-v^{2}\right),\right. \\
& \rho=2 c u v . \\
& u^{2}=\lambda, \quad v^{2}=\mu .
\end{aligned}
$$

With curvilinear coördinates, λ, μ, θ :
4.

$$
h_{1}=\frac{\mathrm{I}}{c} \sqrt{\frac{\lambda}{\lambda+\mu}}, \quad h_{2}=\frac{\mathrm{I}}{c} \sqrt{\frac{\mu}{\lambda+\mu}}, \quad h_{3}=\frac{\mathrm{I}}{2 c \sqrt{\lambda \mu}} .
$$

5.54 Toroidal Coòrdinates:

I.

$$
\begin{aligned}
u+i v & =\log \frac{z+a+i \rho}{z-a+i \rho} \\
\rho & =\frac{a \sinh u}{\cosh u-\cos v}
\end{aligned}
$$

2.

$$
z=\frac{a \sin v}{\cosh u-\cos v} .
$$

3.

$$
h_{1}=h_{2}=\frac{\cosh u-\cos v}{a}, \quad h_{3}=\frac{\cosh u-\cos v}{a \sinh u} .
$$

The three orthogonal surfaces are:
(a) Anchor rings, whose axial circles have radii,

$$
a \operatorname{coth} u
$$

and whose cross-sections are circles of radii,

$$
a \operatorname{csch} u
$$

(b) Spheres, whose centers are on the axis of revolution at distances,

$$
\pm a \cot v
$$

from the origin, whose radii are,

$$
a \csc v
$$

and which accordingly have a common circle,

$$
\rho=a, z=0
$$

(c) Planes through the axis,

$$
w=\theta=\text { const. }
$$

VI. INFINITE SERIES

6.00 An infinite series:

$$
\sum_{n=1}^{\infty} u_{n}=u_{1}+u_{2}+u_{3}+\ldots
$$

is absolutely convergent if the series formed of the moduli of its terms:

$$
\left|u_{1}\right|+\left|u_{2}\right|+\left|u_{2}\right|+\ldots
$$

is convergent.
A series which is convergent, but whose moduli do not form a convergent series, is conditionally convergent.

TESTS FOR CONVERGENCE

6.011 Comparison test. The series Σu_{n} is absolutely convergent if $\left|u_{n}\right|$ is less than $C\left|v_{n}\right|$ where C is a number independent of n, and v_{n} is the nth term of another series which is known to be absolutely convergent.
6.012 Cauchy's test. If

$$
\operatorname{Limit}_{n \rightarrow \infty}\left|u_{n}\right|^{\frac{x}{n}}<\mathrm{I}
$$

the series Σu_{n} is absolutely convergent.
6.013 D'Alembert's test. If for all values of n greater than some fixed value, r, the ratio $\left|\frac{u_{n+1}}{u_{n}}\right|$ is less than ρ, where ρ is a positive number less than unity and independent of n, the series Σu_{n} is absolutely convergent.
6.014 Cauchy's integral test. Let $f(x)$ be a steadily decreasing positive function such that,

$$
f(n) \geqslant a_{n}
$$

Then the positive term series Σa_{n} is convergent if,

$$
\int_{m}^{\infty} f(x) d x
$$

is convergent.
6.015 Raabe's test. The positive term series Σa_{n} is convergent if,

$$
n\left(\frac{a_{n}}{a_{n+1}}-\mathrm{I}\right) \geqslant l \text { where } l>\mathrm{I}
$$

It is divergent if,

$$
n\left(\frac{a_{n}}{a_{n+1}}-\mathrm{I}\right) \leqslant \mathrm{I}
$$

6.020 Alternating series. A series of real terms, alternately positive and negative, is convergent if $a_{n+1} \leqslant a_{n}$ and

$$
\operatorname{limit}_{n \rightarrow \infty} a_{n}=0 .
$$

In such a series the sum of the first s terms differs from the sum of the series by a quantity less than the numerical value of the $(s+\mathrm{I}) s t$ term.
6.025 If ${ }_{n \rightarrow \infty}^{\operatorname{limit}}\left|\frac{u_{n+1}}{u_{n}}\right|=\mathrm{I}$, the series Σu_{n} will be absolutely convergent if there is a positive number c, independent of n, such that,

$$
\operatorname{limit}_{n \rightarrow \infty} n\left\{\left|\frac{u_{n+1}}{u_{n}}\right|-\mathrm{I}\right\}=-\mathrm{I}-c
$$

6.030 The sum of an absolutely convergent series is not affected by changing the order in which the terms occur.
6.031 Two absolutely convergent series,

$$
\begin{aligned}
& S=u_{1}+u_{2}+u_{3}+\ldots \\
& T=v_{1}+v_{2}+v_{3}+\ldots
\end{aligned}
$$

may be multiplied together, and the sum of the products of their terms, written in any order, is $S T$,

$$
S T=u_{1} v_{1}+u_{2} v_{1}+u_{1} v_{2}+\ldots .
$$

6.032 An absolutely convergent power series may be differentiated or integrated term by term and the resulting series will be absolutely convergent and equal to the differential or integral of the sum of the given series.
6.040 Uniform Convergence. An infinite series of functions of x,

$$
S(x)=u_{1}(x)+u_{2}(x)+u_{3}(x)+\ldots \ldots
$$

is uniformly convergent within a certain region of the variable x if a finite number, N, can be found such that for all values of $n \geqslant N$ the absolute value of the remainder, $\left|R_{n}\right|$ after n terms is less than an assigned arbitrary small quantity e at all points within the given range.

Example. The series,

$$
\sum_{n=0}^{\infty} \frac{x^{2}}{\left(\mathrm{I}+x^{2}\right)^{n}},
$$

is absolutely convergent for all real values of x. Its sum is $\mathrm{I}+x^{2}$ if x is not zero. If x is zero the sum is zero. The series is non-uniformly convergent in the neighborhood of $x=0$.
6.041 A uniformly convergent series is not necessarily absolutely convergent, nor is an absolutely convergent series necessarıly uniformly convergent.
6.042 A sufficient, though not necessary, test for uniform convergence is as follows:

If for all values of x within a certain region the moduli of the terms of the series,

$$
S=u_{1}(x)+u_{2}(x)+\ldots .
$$

are less than the corresponding terms of a convergent series of positive terms,

$$
T=M_{1}+M_{2}+M_{3}+\ldots
$$

where M_{n} is independent of x, then the series S is uniformly convergent in the given region.
6.043 A power series is uniformly convergent at all points within its circle of convergence.
6.044 A uniformly convergent series,

$$
S=u_{1}(x)+u_{2}(x)+\ldots .
$$

may be integrated term by term, and,

$$
\int S d x=\sum_{n=1}^{\infty} \int u_{n}(x) d x .
$$

6.045 A uniformly convergent series,

$$
S=u_{1}(x)+u_{2}(x)+\ldots .
$$

may be differentiated tẹm by term, and if the resulting series is uniformly convergent,

$$
\frac{d}{d x} S=\sum_{n=\mathrm{I}}^{\infty} \frac{d}{d x} u_{n}(x)
$$

6.100 Taylor's theorem.

$$
f(x+h)=f(x)+\frac{h}{I!} f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\ldots+\frac{h^{n}}{n!} f^{(n)}(x)+R_{n}
$$

6.101 Lagrange's form for the remainder:

$$
R_{n}=f^{(n+\mathrm{I})}(x+\theta h) \cdot \frac{h^{n+1}}{(n+\mathrm{I})!} ; 0<\theta<\mathrm{I}
$$

6.102 Cauchy's form for the remainder:

$$
R_{n}=f^{(n+1)}(x+\theta h) \frac{h^{n+1}(\mathrm{I}-\theta)^{n}}{n!} ; 0<\theta<\mathrm{I}
$$

6.103

$$
\begin{gathered}
f(x)=f(h)+f^{\prime}(h) \cdot \frac{x-h}{I!}+f^{\prime \prime}(h) \cdot \frac{(x-h)^{2}}{2!}+\ldots+f^{(n)}(h) \frac{(x-h)^{n}}{n!}+R_{n} \\
R_{n}=f^{(n+1)}\{h+\theta(x-h)\} \frac{(x-h)^{n+1}}{(n+1)!} \quad 0<\theta<\mathrm{I}
\end{gathered}
$$

6.104 Maclaurin's theorem:

$$
\begin{aligned}
& f(x)=f(0)+f^{\prime}(0) \frac{x}{\mathrm{I}!}+f^{\prime \prime}(0) \frac{x^{2}}{2!}+\ldots+f^{(n)}(0) \frac{x^{n}}{n!}+R_{n} \\
& R_{n}=f^{(n+\mathrm{I})}(\theta x) \frac{x^{n+1}}{(n+\mathrm{I})!}(\mathrm{I}-\theta)^{n} ; 0<\theta<\mathrm{I}
\end{aligned}
$$

6.105 Lagrange's theorem. Given:

$$
y=z+x \phi(y) .
$$

The expansion of $f(y)$ in powers of x is:

$$
\begin{aligned}
f(y)=f(z)+x \phi(z) f^{\prime}(z)+\frac{x^{2}}{2!} \frac{d}{d z}[\{ & \left.\phi(z)\}^{2} f^{\prime}(z)\right] \\
& +\ldots \ldots+\frac{x^{n}}{n!} \frac{d^{n-1}}{d z^{n-1}}\left[\{\phi(z)\}^{n} f^{\prime}(z)\right]+\ldots
\end{aligned}
$$

SYMbOLIC REPRESENTATION OF INFINITE SERIES

6.150 The infinite series:

$$
f(x)=\mathrm{I}+a_{1} x+\frac{\mathrm{I}}{2!} a_{2} x^{2}+\frac{\mathrm{I}}{3!} a_{3} x^{3}+\ldots+\frac{\mathrm{I}}{k!} a_{k} x^{k}+\ldots
$$

may be written:

$$
f(x)=e^{a x},
$$

where a^{k} is interpreted as equivalent to a_{k}.
6.151 The infinite series, written without factorials,

$$
f(x)=\mathrm{I}+a_{1} x+a_{2} x^{2}+\ldots+\cdots+a_{k} x^{k}+\ldots . .
$$

may be written:

$$
f(x)=\frac{I}{I-a x},
$$

where a^{k} is interpreted as equivalent to a_{k}.
6.152 Symbolic form of Taylor's theorem:

$$
f(x+h)=e^{h \frac{\partial}{\partial x} f(x)}
$$

6.153 Taylor's theorem for functions of many variables:

$$
\begin{aligned}
& f\left(x_{1}+h_{1}, x_{2}+h_{2}, \ldots\right)=e^{h_{1}} \frac{\partial}{\partial x_{1}}+h_{2} \frac{\partial}{\partial x_{2}}+\ldots f\left(x_{1}, x_{2}, \ldots\right) \\
& =f\left(x_{1}, x_{2}, \ldots .\right)+h_{1} \frac{\partial f}{\partial x_{1}}+h_{2} \frac{\partial f}{\partial x_{2}}+\ldots \\
& +\frac{h_{1}^{2}}{2!} \frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{2}{2!} h_{1} h_{2} \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}+\frac{h_{2}^{2}}{2!} \frac{\partial^{2} f}{\partial x_{2}{ }^{2}}+\ldots . \\
& +\ldots .
\end{aligned}
$$

TRANSFORMATION OF INFINITE SERIES

Series which converge slowly may often be transformed to more rapidly converging series by the following methods.
6.20 Euler's transformation formula:

$$
\begin{aligned}
S & =a_{0}+a_{1} x+a_{2} x^{2}+\cdots \cdots \cdot \\
& =\frac{\mathrm{I}}{\mathrm{I}-x} a_{0}+\frac{\mathrm{I}}{\mathrm{I}-x} \sum_{k=\mathrm{I}}^{\infty}\left(\frac{x}{\mathrm{I}-x}\right)^{k} \Delta^{k} a_{0}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \Delta a_{0}=a_{1}-a_{0} \\
& \Delta^{2} a_{0}=\Delta a_{1}-\Delta a_{0}=a_{2}-2 a_{1}+a_{0} \\
& \Delta^{3} a_{0}=\Delta^{2} a_{1}-\Delta^{2} a_{0}=a_{3}-3 a_{2}+3 a_{1}-a_{0} \\
& \quad \cdots \cdots \cdots
\end{aligned}
$$

$$
\Delta^{k} a_{n}=\sum_{m=0}^{k}(-\mathrm{I})^{m}\binom{k}{m} a_{k+n-m}
$$

The second series may converge more rapidly than the first.
Example I.

$$
\begin{aligned}
& S=\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{\mathrm{I}}{2 k+\mathrm{I}}, \\
& x=-\mathrm{I}, \quad a_{k}=\frac{\mathrm{I}}{2 k+\mathrm{I}} \\
& S=\frac{\mathrm{I}}{2} \sum_{k=0}^{\infty} \frac{k^{\prime}}{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 k+\mathrm{I})} .
\end{aligned}
$$

Example 2.

$$
\begin{aligned}
& S=\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{\mathrm{I}}{k+\mathrm{I}}=\log 2, \\
& x=-\mathrm{I}, \quad a_{k}=\frac{\mathrm{I}}{k+\mathrm{I}} \\
& S=\sum_{k=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{k 2^{k^{k}}}
\end{aligned}
$$

6.21 Markoff's transformation formula. (Differenzenrechnung, p. 180.)

$$
\sum_{k=0}^{n} a_{k} x^{k}-\left(\frac{x}{\mathrm{I}-x}\right)^{m} \sum_{k=0}^{n} x^{k} \Delta^{m} a_{k}=\sum_{k=0}^{m} \frac{x^{k}}{(\mathrm{I}-x)^{k+1}} \Delta^{k} a_{0}-\sum_{k=0}^{m} \frac{x^{k+n}}{(\mathrm{I}-x)^{k+1}} \Delta^{k} a_{n} .
$$

6.22 Kummer's transformation.
$A_{0}, A_{1}, A_{2}, \ldots$ is a sequence of positive numbers such that

$$
\lambda_{m}=A_{m}-A_{m+1} \frac{a_{m+1}}{a_{m}}
$$

and

$$
\operatorname{Limit}_{m \rightarrow \infty} \lambda_{m}
$$

approaches a definite positive value. Usually this limit can be taken as unity If not, it is only necessary to divide A_{m} by this limit:

$$
\alpha=\operatorname{Limit}_{m \rightarrow \infty} A_{m} a_{m}
$$

Then:

$$
\sum_{m=n}^{\infty} a_{m}=\left(A_{n} a_{n}-\alpha\right)+\sum_{m=n}^{\infty}\left(\mathrm{I}-\lambda_{m}\right) a_{m}
$$

Example I.

$$
\begin{aligned}
S & =\sum_{m=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{m^{2}}, \\
A_{m} & =m, \quad \lambda_{m}=\frac{m}{m+\mathrm{I}}, \quad \operatorname{Limit}_{m \rightarrow \infty} \lambda_{m}=\mathrm{I}, \\
\alpha & =0 \\
\sum_{m=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{m^{2}} & =\mathrm{I}+\sum_{m=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{(m+\mathrm{I}) m^{2}} .
\end{aligned}
$$

Applying the transformation to the series on the right:

$$
\begin{gathered}
A_{m}=\frac{m}{2}, \quad \lambda_{m}=\frac{m}{m+2}, \quad \alpha=0 \\
\sum_{m=1}^{\infty} \frac{I}{m^{2}}=I+\frac{I}{2^{2}}+2 \sum_{m=1}^{\infty} \frac{I}{m^{2}(m+I)(m+2)} .
\end{gathered}
$$

Applying the transformation n times:

$$
\sum_{m=n+\mathrm{r}}^{\infty} \frac{\mathrm{I}}{m^{2}}=n!\sum_{m=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{m^{2}(m+\mathrm{I})(m+2) \ldots(m+n)}
$$

Example 2.

$$
\begin{aligned}
S & =\sum_{m=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{2 m-\mathrm{I}} \\
A_{m} & =\frac{\mathrm{I}}{2}, \quad \lambda_{m}=\frac{2 m}{2 m+\mathrm{I}}, \quad \alpha=0 \\
S & =\frac{\mathrm{I}}{2}+\sum_{m=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{4 m^{2}-\mathrm{I}}
\end{aligned}
$$

Applying the transformation again, with:

$$
\begin{aligned}
A_{m} & =\frac{I}{2} \frac{2 m+\mathrm{I}}{2 m-\mathrm{I}}, \quad \lambda_{m}=\frac{4 m^{2}+\mathrm{I}}{4 m^{2}-\mathrm{I}}, \quad \alpha=0 \\
S & =\mathrm{I}-2 \sum_{m=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{\left(4 m^{2}-\mathrm{I}\right)^{2}}
\end{aligned}
$$

Applying the transformation again, with:

$$
\begin{aligned}
A_{m} & =\frac{\mathrm{I}}{2} \frac{2 m+\mathrm{I}}{2 m-3}, \quad \lambda_{m}=\frac{4 m^{2}+3}{4 m^{2}-9}, \quad \alpha=0 \\
S & =\frac{4}{3}+24 \sum_{\pi n=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{\left(4 m^{2}-\mathrm{I}\right)^{2}\left(4 m^{2}-9\right)}
\end{aligned}
$$

Example 3.

$$
\begin{gathered}
S=\sum_{m=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{(2 m-\mathrm{I})^{2}}, \\
A_{m}=\frac{2 m-\mathrm{I}}{2(2 m-3)}, \quad \lambda_{m}=\frac{4 m^{2}-4 m+\mathrm{I}}{(2 m-3)(2 m+\mathrm{I})}, \quad \alpha=0, \\
S=\frac{5}{6}+4 \sum_{m=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{(2 m-\mathrm{I})(2 m+3)(2 m+\mathrm{I})^{2}} .
\end{gathered}
$$

6.23 Leclert's modification of Kummer's transformation. With the same notation as in 6.22 and,

$$
\begin{gathered}
\text { Limit } \lambda_{m}=\omega \\
\sum_{n=0}^{\infty} a_{n}=a_{0}+\frac{A_{1} a_{1}}{\lambda_{1}}-\frac{\alpha}{\omega}+\sum_{m=1}^{\infty}\left(\frac{\mathrm{I}}{\lambda_{m+1}}-\frac{\mathrm{I}}{\lambda_{m}}\right) A_{m+1} a_{m+1}
\end{gathered}
$$

Example 1.

$$
\begin{gathered}
S=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{2 n-\mathrm{I}}, \\
a_{0}=0, \quad A_{m}=\mathrm{I}, \quad \omega=2, \quad \alpha=0, \quad \lambda_{m}=\frac{4 m}{2 m+\mathrm{I}}, \\
S=\frac{3}{4}+\frac{\mathrm{I}}{4} \sum_{m=1}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{m(2 m+\mathrm{I})(m+\mathrm{I})}
\end{gathered}
$$

Applying the transformation to the series on the right, with:

$$
\begin{gathered}
a_{0}=0, \quad A_{m}=\frac{2 m+\mathrm{I}}{m-\mathrm{I}}, \quad \lambda_{m}=\frac{(2 m+\mathrm{I})^{2}}{(m-\mathrm{I})(m+2)}, \quad \omega=4, \quad \alpha=0 \\
S=\frac{\mathrm{I} 9}{24}+\frac{9}{2} \sum_{m=1}^{\infty}(-\mathrm{I})^{m} \frac{\mathrm{I}}{m(m+2)(2 m+\mathrm{I})^{2}(2 m+3)^{2}}
\end{gathered}
$$

6.26 Reversion of series The power series:

$$
z=x-b_{1} x^{2}-b_{2} x^{3}-b_{3} x^{4}-\ldots .
$$

may be reversed, yielding:
where:

$$
\begin{aligned}
& c_{1}=b_{1} \text {, } \\
& c_{2}=b_{2}+2 b_{1}{ }^{2} \text {, } \\
& c_{3}=b_{3}+5 b_{1} b_{2}+5 b_{1}{ }^{3}, \\
& c_{4}=b_{4}+6 b_{1} b_{3}+3 b_{2}^{2}+21 b_{1}{ }^{2} b_{2}+14 b_{1}^{4}, \\
& c_{5}=b_{5}+7\left(b_{1} b_{4}+b_{2} b_{3}\right)+28\left(b_{1}{ }^{2} b_{3}+b_{1} b_{2}{ }^{2}\right)+84 b_{1}^{3} b_{2}+42 b_{1}{ }^{5} \text {, } \\
& c_{6}=b_{6}+4\left(2 b_{1} b_{5}+2 b_{2} b_{4}+b_{3}{ }^{2}\right)+12\left(3 b_{1}{ }^{2} b_{4}+6 b_{1} b_{2} b_{3}+b_{2}{ }^{3}\right) \\
& +60\left(2 b_{1}{ }^{3} b_{3}+3 b_{1}{ }^{2} b_{2}{ }^{2}\right) \dot{+} 330 b_{1}{ }^{4} b_{2}+132 b_{1}{ }^{6}, \\
& c_{7}=b_{7}+9\left(b_{1} b_{6}+b_{2} b_{5}+b_{3} b_{4}\right)+45\left(b_{1}{ }^{2} b_{5}+b_{1} b_{3}^{2}+b_{2}{ }^{2} b_{3}+2 b_{1} b_{2} b_{4}\right) \\
& +165\left(b_{1}{ }^{3} b_{4}+b_{1} b_{2}{ }^{3}+3 b_{1}{ }^{2} b_{2} b_{3}\right)+495\left(b_{1}{ }^{4} b_{3}+2 b_{1}{ }^{3} b_{2}{ }^{2}\right) \\
& +1287 b_{1}{ }^{5} b_{2}+429 b_{1} .{ }^{7}
\end{aligned}
$$

Van Orstrand (Phil. Mag. 19, 366, I9IO) gives the coefficients of the reversed series up to c_{12}.
6.30 Binomial series.

$$
\begin{aligned}
& (\mathrm{I}+x)^{n}=\mathrm{I}+\frac{n}{\mathrm{I}} x+\frac{n(n-\mathrm{I})}{2!} x^{2}+\frac{n(n-\mathrm{I})(n-2)}{3^{1}} x^{3}+\ldots \\
& \quad+\frac{n!}{(n-k)!k!} x^{k}+\ldots=\mathrm{I}+\binom{n}{\mathrm{I}} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\ldots\binom{n}{k} x^{k}+\ldots
\end{aligned}
$$

6.31 Convergence of the binomial series.

The series converges absolutely for $|x|<I$ and diverges for $|x|>I$. When $x=\mathrm{I}$, the series converges for $n>-\mathrm{I}$ and diverges for $n \leqslant-\mathrm{I}$. It is absolutely convergent only for $n>0$.

When $x=-\mathrm{I}$ it is absolutely convergent for $n>0$, and divergent for $n<0$.
6.32 Special cases of the binomial series.

$$
(a+b)^{n}=a^{n}\left(\mathrm{I}+\frac{b}{a}\right)^{n}=b^{n}\left(\mathrm{I}+\frac{a}{b}\right)^{n}
$$

If $\left|\frac{b}{a}\right|<$ I put $x=\frac{b}{a}$ in 6.30 ; if $\left|\frac{b}{a}\right|>$ I put $x=\frac{a}{b}$ in 6.30.

6.33

I. $(\mathrm{I}+x)^{\frac{n}{m}}=\mathrm{I}+\frac{n}{m} x-\frac{n(m-n)}{2!m^{2}} x^{2}+\frac{n(m-n)(2 m-n)}{3!m^{3}} x^{3}-$ $\ldots .+(-\mathrm{I})^{k} \frac{n(m-n)(2 m-n) \ldots[(k-\mathrm{r}) m-n]}{k!m^{k}} x^{k}+\ldots$.
2. $(\mathrm{I}+x)^{-1}=\mathrm{I}-x+x^{2}-x^{3}+x^{4}-\ldots$.
3. $(\mathrm{I}+x)^{-2}=\mathrm{I}-2 x+3 x^{2}-4 x^{3}+5 x^{4}-\ldots$.
4. $\sqrt{\mathrm{I}+x}=\mathrm{I}+\frac{\mathrm{I}}{2} x-\frac{\mathrm{I} \cdot \mathrm{I}}{2 \cdot 4} x^{2}+\frac{\mathrm{I} \cdot \mathrm{I} \cdot 3}{2 \cdot 46} x^{3}-\frac{\mathrm{I} \cdot \mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} x^{4}+\ldots$.
5. $\frac{I}{\sqrt{I+x}}=I-\frac{I}{2} x+\frac{I \cdot 3}{2 \cdot 4} x^{2}-\frac{I \cdot 3}{2 \cdot 46} x^{3}+\frac{I \cdot 3 \cdot 57}{2 \cdot 4 \cdot 6 \cdot 8} x^{4}-\ldots$
6. $(\mathrm{I}+x)^{\frac{2}{3}}=\mathrm{I}+\frac{\mathrm{I}}{3} x-\frac{\mathrm{I} \cdot 2}{3 \cdot 6} x^{2}+\frac{\mathrm{I} \cdot 2 \cdot 5}{3 \cdot 6 \cdot 9} x^{3}-\frac{\mathrm{I} \cdot 2 \cdot 5 \cdot 8}{3 \cdot 69 \cdot \mathrm{I} 2} x^{4}+\ldots$.
7. $(I+x)^{-3}=\mathrm{I}-\frac{\mathrm{I}}{3} x+\frac{\mathrm{I} \cdot 4}{3 \cdot 6} x^{2}-\frac{\mathrm{I} \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9} x^{3}+\frac{\mathrm{I} \cdot 4 \cdot 7 \cdot 10}{3 \cdot 6 \cdot 9 \cdot 12} x^{4}-\ldots$
8. $(\mathrm{I}+x)^{\frac{3}{2}}=\mathrm{I}+\frac{3}{2} x+\frac{3 \cdot \mathrm{I}}{2 \cdot 4} x^{2}-\frac{3 \cdot \mathrm{I} \cdot \mathrm{I}}{2 \cdot 4 \cdot 6} x^{3}+\frac{3 \cdot \mathrm{I} \cdot \mathrm{I} \cdot 3}{2 \cdot 4 \cdot 6 \cdot 8} x^{4}-\frac{3 \cdot \mathrm{I} \cdot \mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8 \cdot \mathrm{IO}} x^{5}+\ldots$
9. $(\mathrm{I}+x)-^{3}=\mathrm{I}-\frac{3}{2} x+\frac{3 \cdot 5}{2 \cdot 4} x^{2}-\frac{3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6} x^{3}+\ldots .$.
10. $(\mathrm{I}+x)^{\frac{1}{2}}=\mathrm{I}+\frac{\mathrm{I}}{4} x-\frac{3}{3^{2}} x^{2}+\frac{7}{128} x^{3}-\frac{77}{2048} x^{4}+\ldots$
II. $(\mathrm{I}+x)^{-\frac{1}{2}}=\mathrm{I}-\frac{\mathrm{I}}{4} x+\frac{5}{3^{2}} x^{2}-\frac{\mathrm{I} 5}{\mathrm{I} 28} x^{3}+\frac{195}{2048} x^{4}-\ldots$

I2. $(\mathrm{I}-\mathrm{L} x)^{\frac{3}{3}}=\mathrm{I}+\frac{\mathrm{I}}{5} x-\frac{2}{25} x^{2}+\frac{6}{\mathrm{I} 25} x^{3}-\frac{2 \mathrm{I}}{625} x^{4}+\ldots$.
13. $(I+x)^{-\frac{3}{8}}=I-\frac{I}{5} x+\frac{3}{25} x^{2}-\frac{I I}{I 25} x^{3}+\frac{44}{625} x^{4}-\ldots$

I4. $(\mathrm{I}+x)^{\frac{2}{8}}=\mathrm{I}+\frac{\mathrm{I}}{6} x-\frac{5}{72} x^{2}+\frac{55}{1296} x^{3}-\frac{935}{31104} x^{4}+\ldots$
I5. $(I+x)^{-\frac{2}{6}}=I-\frac{I}{6} x+\frac{7}{72} x^{2}-\frac{9 I}{1296} x^{3}+\frac{I 729}{3 I 104} x^{4}-\ldots$.

6.350

I. $\frac{x}{\mathrm{I}-x}=\frac{x}{\mathrm{I}+x}+\frac{2 x^{2}}{\mathrm{I}+x^{2}}+\frac{4 x^{4}}{\mathrm{I}+x^{4}}+\frac{8 x^{8}}{\mathrm{I}+x^{8}}+\ldots$
2. $\frac{x}{\mathrm{I}-x}=\frac{x}{\mathrm{I}-x^{2}}+\frac{x^{2}}{\mathrm{I}-x^{4}}+\frac{x^{4}}{\mathrm{I}-x^{8}}+\ldots$.
$\left[x^{2}<I\right]$.
3. $\frac{I}{x-I}=\frac{I}{x+I}+\frac{2}{x^{2}+I}+\frac{4}{x^{4}+I}+\ldots$.
$\left[x^{2}>\mathrm{I}\right]$.

6.351

I. $\{I+\sqrt{I+x}\}^{n}=2^{n}\left\{I+n\left(\frac{x}{4}\right)+\frac{n(n-3)}{2!}\left(\frac{x}{4}\right)^{2}\right.$

$$
\left.+\frac{n(n-4)(n-5)}{3!}\left(\frac{x}{4}\right)^{3}+\ldots\right\} \cdot\left[x^{2}<I\right] .
$$

n may be any real number.
2. $\left(x+\sqrt{I+x^{2}}\right)^{n}=I+\frac{n^{2}}{2!} x^{2}+\frac{n^{2}\left(n^{2}-2^{2}\right)}{4!} x^{4}+\frac{n^{2}\left(n^{2}-2^{2}\right)\left(n^{2}-4^{2}\right)}{6!} x^{6}+\ldots$

$$
+\frac{n}{\mathrm{I}!} x+\frac{n\left(n^{2}-\mathrm{I}^{2}\right)}{3!} x^{3}+\frac{n\left(n^{2}-\mathrm{I}^{2}\right)\left(n^{2}-3^{2}\right)}{5!} x^{5}+\ldots \quad\left[x^{2}<\mathrm{I}\right] .
$$

6.352 If a is a positive integer:
$\frac{\mathrm{I}}{a}+\frac{\mathrm{I}}{a(a+\mathrm{I})} x+\frac{\mathrm{I}}{a(a+\mathrm{I})(a+2)} x^{2}+\ldots . .=\frac{\left.(a-\mathrm{I})\right|^{\prime}}{x^{a}}\left\{e^{x}-\sum_{n=0}^{a-\mathrm{I}} \frac{x^{n}}{n!}\right\}$.
6.353 If a and b are positive integers, and $a<b$:

$$
\begin{aligned}
\frac{a}{b}+\frac{a(a+\mathrm{I})}{b(b+\mathrm{I})} x+\frac{a(a+\mathrm{I})(a+2)}{b(b+\mathrm{x})(b+2)} x^{2} & +\ldots \\
=(b-a)\binom{b-\mathrm{I}}{a-\mathrm{I}} & \left\{\frac{(-\mathrm{I})^{b-a} \log (\mathrm{I}-x)}{x^{b}}(\mathrm{I}-x)^{b-a-1}\right. \\
& \left.+\frac{\mathrm{I}}{x^{a}} \sum_{k=\mathrm{I}}^{b-a}(-\mathrm{I})^{k}\binom{b-a-\mathrm{I}}{k-\mathrm{I}} \sum_{n=\mathrm{I}}^{a+k-\mathrm{I}} \frac{x^{n-k}}{n}\right\} .
\end{aligned}
$$

POLYNOMIAL SERIES

$6.360 \quad \frac{b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\ldots}{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots}=\frac{I}{a_{0}}\left(c_{0}+c_{1} x+c_{2} x^{2}+\ldots\right)$,

$$
\begin{array}{r}
c_{0}-b_{0}=0 \\
c_{1}+\frac{c_{0} a_{1}}{a_{0}}-b_{1}=0, \\
c_{2}+\frac{c_{1} a_{1}}{a_{0}}+\frac{c_{0} a_{2}}{a_{0}}-b_{2}=0, \\
c_{3}+\frac{c_{2} a_{1}}{a_{0}}+\frac{c_{1} a_{2}}{a_{0}}+\frac{c_{0} a_{3}}{a_{0}}-b_{3}=0
\end{array}
$$

$$
\boldsymbol{c}_{n}=\frac{(-I)^{n}}{a_{0}{ }^{n}}\left|\begin{array}{lllll}
\left(a_{1} b_{0}-a_{0} b_{1}\right) & a_{0} & \circ & \cdots & \cdots \\
\left(a_{2} b_{0}-a_{0} b_{2}\right) & a_{1} & a_{0} & \cdots \cdots & \cdots \\
\left(a_{3} b_{0}-a_{0} b_{3}\right) & a_{2} & a_{1} & \cdots \cdots & \cdots \\
\cdots \cdots \cdots & & & & \\
\cdots \cdots \cdots \cdots & & & \cdots & \\
\left.\cdots \cdots a_{n-1} b_{0}-a_{0} b_{n-1}\right) & a_{n-2} & a_{n-3} & \cdots \cdots \cdot a_{0} \\
\left(a_{n} b_{0}-a_{0} b_{n}\right) & a_{n-1} & a_{n-2} & \ldots & \cdots
\end{array}\right|
$$

6.361

$$
\begin{aligned}
\left(a_{0}+a_{1} x\right. & \left.+a_{2} x^{2}+\ldots\right)^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\ldots \\
c_{0} & =a_{0}{ }^{n} \\
a_{0} c_{1} & =n a_{1} c_{0} \\
2 a_{0} c_{2} & =(n-1) a_{1} c_{1}+2 n a_{2} c_{0} \\
3 a_{0} c_{3} & =(n-2) a_{1} c_{2}+(2 n-1) a_{2} c_{1}+3 n a_{3} c_{0} . \\
\cdots & \cdots
\end{aligned}
$$

6.362

$$
\left.\begin{array}{rl}
y & =a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
b_{1} y+b_{2} y^{2}+b_{3} y^{3}+\ldots
\end{array}\right) .
$$

6.363

$$
\begin{aligned}
& e^{a_{1} x+a_{2} x^{2}+a_{3} x^{3}}+\ldots=\mathrm{I}+c_{1} x+c_{2} x^{2}+\ldots \\
& c_{1}=a_{1}, \\
& c_{2}=a_{2}+\frac{\mathrm{I}}{2} a_{1}{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
c_{3} & =a_{3}+a_{1} a_{2}+\frac{I}{6} a_{1}^{3}, \\
c_{4} & =a_{4}+a_{1} a_{3}+\frac{I}{2} a_{2}^{2}+\frac{I}{2} a_{2} a_{1}^{2}+\frac{I}{24} a_{1}^{4} .
\end{aligned}
$$

-•••
6.364

$$
\begin{aligned}
& \log \left(1+a_{1} x+a_{2} x^{2}\right.\left.+a_{3} x^{3}+\ldots\right)=c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots \\
& a_{1}=c_{1}, \\
& 2 a_{2}=a_{1} c_{1}+2 c_{2}, \\
& 3 a_{3}=a_{2} c_{1}+2 a_{1} c_{2}+3 c_{3}, \\
& 4 a_{4}=a_{3} c_{1}+2 a_{2} c_{2}+3 a_{3} c_{3}+4 a_{4} \\
& \cdots \\
& c_{1}=a_{1} \\
& c_{2}=a_{2}-\frac{\mathrm{I}}{2} c_{1} a_{1}, \\
& c_{3}=a_{3}-\frac{\mathrm{I}}{3} c_{1} a_{2}-\frac{2}{3} c_{2} a_{1}, \\
& c_{4}=a_{4}-\frac{\mathrm{I}}{4} c_{1} a_{3}-\frac{2}{4} c_{2} a_{2}-\frac{3}{4} c_{3} a_{1} . \\
& \cdots
\end{aligned}
$$

6.365

$$
\begin{aligned}
& y=a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& z=b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\ldots \\
& y z=c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\ldots \\
& c_{2}=a_{1} b_{1} \\
& c_{3}=a_{1} b_{2}+a_{2} b_{1} \\
& c_{4}=a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1} \\
& \cdots \\
& c_{k}=a_{1} b_{k-1}+a_{2} b_{k-2}+a_{3} b_{k-3}+\ldots a_{k-1} b_{1}
\end{aligned}
$$

6.37. The Multinomial Theorem.

The general term in the expansion of

$$
\begin{equation*}
\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots\right)^{n} \tag{I}
\end{equation*}
$$

where n is positive or negative, integral or fractional, is,

where

$$
p+c_{1}+c_{2}+c_{3}+\ldots .
$$

$c_{1}, c_{2}, c_{3}, \ldots$ are positive integers.
If n is a positive integer, and hence p also, the general term in the expansion may be written,
(3)

$$
\frac{n!}{p!c_{1}!c_{2}!\ldots} a_{0}^{p} a_{1}{ }^{c_{1}} a_{2}^{c_{2}} a_{3}^{c_{3}} \ldots x^{c_{1}+2 c_{2}+3 c_{3}+} \ldots
$$

The coefficient of x^{k} (k an integer) in the expansion of (I) is found by taking the sum of all the terms (2) or (3) for the different combinations of p, c_{1}, c_{2}, c_{3}, . . . whic. satısfy
cf. 6.361.

$$
\begin{aligned}
& c_{1}+2 c_{2}+3 c_{3}+\ldots=k \\
& p+c_{1}+c_{2}+c_{3}+\ldots=n
\end{aligned}
$$

In the following series the coefficients B_{n} are Bernoulli's numbers (6.902) and the coefficients E_{n}, Euler's numbers (6.903).

6.400

I. $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{x^{2 n+1}}{(2 n+\mathrm{I})!} \quad\left[x^{2}<\infty\right]$.
2. $\cos x=\mathrm{I}-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{x^{2 n}}{(2 n)^{\prime}} \quad\left[x^{2}<\infty\right]$.
3. $\tan x=x+\frac{\mathrm{I}}{3} x^{3}+\frac{2}{\mathrm{I} 5} x^{5}+\frac{\mathrm{I} 7}{3 \mathrm{I} 5} x^{7}+\frac{62}{2835} x^{9}+\ldots$

$$
=\sum_{n=1}^{\infty} \frac{2^{2 n}\left(2^{2 n}-\mathrm{I}\right)}{(2 n)!} B_{n} x^{2 n-1} \quad\left[x^{2}<\frac{\pi^{2}}{4}\right]
$$

4. $\cot x=\frac{I}{x}-\frac{x}{3}-\frac{I}{45} x^{3}-\frac{2}{945} x^{5}-\frac{I}{4725} x^{7}-\ldots$.

$$
=\frac{\mathrm{I}}{x}-\sum_{n=1}^{\infty} \frac{2^{2 n} B_{n}}{(2 n)!} x^{2 n-1} \quad\left[x^{2}<\pi^{2}\right]
$$

5. $\sec x=\mathrm{I}+\frac{\mathrm{I}}{2!} x^{2}+\frac{5}{4!} x^{4}+\frac{6 \mathrm{I}}{6^{1}} x^{6}+.=\sum_{n=0}^{\infty} \frac{E_{n}}{(2 n)!} x^{2 n} \quad$, $\left[x^{2}<\frac{\pi^{2}}{4}\right]$.
6. $\csc x=\frac{\mathrm{I}}{x}+\frac{\mathrm{I}}{3!} x+\frac{7}{3 \cdot 5!} x^{3}+\frac{3 I}{3 \cdot 7!} x^{5}+\ldots$

$$
=\frac{\mathrm{I}}{x}+\sum_{n=0}^{\infty} \frac{2\left(2^{2 n+1}-\mathrm{I}\right)}{(2 n+2)!} B_{n+1} x^{2 n+1} \quad\left[x^{2}<\pi^{2}\right]
$$

6.41

I. $\sin ^{-1} x=x+\frac{\mathrm{I}}{2 \cdot 3} x^{3}+\frac{\mathrm{I} \cdot 3}{2 \cdot 4 \cdot 5} \dot{x}^{5}+\frac{\mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7} x^{7}+\ldots . \quad\left[x^{2} \leqslant \mathrm{I}\right]$.

$$
=\frac{\pi}{2}-\cos ^{-1} x=\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+I)} x^{2 n+1}
$$

2. $\tan ^{-1} x=x-\frac{I}{3} x^{3}+\frac{I}{5} x^{5}-\frac{I}{7} x^{7}+\ldots$ (Gregory's Series) $\quad\left[x^{2} \leqslant \mathrm{I}\right]$

$$
=\frac{\pi}{2}-\cot ^{-1} x=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{x^{2 n+1}}{2 n+\mathrm{I}}
$$

3. $\tan ^{-1} x=\frac{x}{I+x^{2}}\left\{I+\frac{2}{3} \frac{x^{2}}{I+x^{2}}+\frac{2 \cdot 4}{3 \cdot 5}\left(\frac{x^{2}}{I+x^{2}}\right)^{2}+\ldots\right\}$

$$
=\frac{x}{I+x^{2}} \sum_{n=0}^{\infty} \frac{2^{2 n}(n!)^{2}}{(2 n+I)!}\left(\frac{x^{2}}{\mathrm{I}+x^{2}}\right)^{n}
$$

$$
x^{2}<\infty
$$

4. $\tan ^{-1} x=\frac{\pi}{2}-\frac{\mathrm{I}}{x}+\frac{\mathrm{I}}{3 x^{3}}-\frac{\mathrm{I}}{5 x^{5}}+\frac{\mathrm{I}}{7 x^{7}}-\ldots$

$$
=\frac{\pi}{2}-\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{\mathrm{I}}{(2 n+\mathrm{I}) x^{2 n+1}} \quad\left[x^{2} \geqslant \mathrm{I}\right]
$$

5. $\sec ^{-1} x=\frac{\pi}{2}-\frac{I}{x}-\frac{I}{23} \frac{I}{x^{3}}-\frac{I \cdot 3}{245} \frac{I}{x^{5}}+\frac{I \cdot 3 \cdot 5}{2 \cdot 467} \frac{I}{x^{7}}-\ldots$

$$
=\frac{\pi}{2}-\csc ^{-1} x=\frac{\pi}{2}-\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+\mathrm{I})} x^{-2 n-1} \quad[x>\mathrm{I}]
$$

6.42

I. $\left(\sin ^{-1} x\right)^{2}=x^{2}+\frac{2}{3} \frac{x^{4}}{2}+\frac{2 \cdot 4}{3} \frac{x^{6}}{3}+\frac{2 \cdot 4 \cdot 6}{35 \cdot 7} \frac{x^{8}}{4}+\ldots$.

$$
=\sum_{n=0}^{\infty} \frac{2^{2 n}(n!)^{2}}{(2 n+I)!(n+I)} x^{2 n+2} \quad\left[x^{2} \leqslant I\right]
$$

2. $\left(\sin ^{-1} x\right)^{3}=x^{3}+\frac{3!}{5!} 3^{2}\left(\mathrm{I}+\frac{\mathrm{I}}{3^{2}}\right) x^{5}+\frac{3^{1}}{7^{!}} 3^{2} 5^{2}\left(\mathrm{I}+\frac{\mathrm{I}}{3^{2}}+\frac{\mathrm{I}}{5^{2}}\right) x^{7}+\ldots\left[x^{2} \leqslant \mathrm{I}\right]$.
3. $\left(\tan ^{-1} x\right)^{p}=p!\sum_{k_{0}=\mathrm{I}}^{\infty}(-\mathrm{I})^{k_{0}-\mathrm{x}} \frac{x^{2 k_{\mathrm{o}}+p-2}}{2 k_{0}+p-2} \prod_{a=\mathrm{I}}^{p-\mathrm{I}}\left(\sum_{k_{a}=\mathrm{I}}^{k a-\mathrm{I}} \frac{\mathrm{I}}{2 k_{a}+p-a-2}\right)$.
(Schwatt, Phil. Mag. 3I, p. 490, I9I6).
4. $\sqrt{I-x^{2}} \sin ^{-1} x=x-\frac{x^{3}}{3}+\frac{2}{3 \cdot 5} x^{5}-\frac{2 \cdot 4}{3 \cdot 5 \cdot 7} x^{7}+\ldots$

$$
=x+\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{2^{2 n-2}[(n-\mathrm{I})]^{2}}{(2 n-\mathrm{I})!(2 n+\mathrm{I})} x^{2 n+1} \quad\left[x^{2}<\mathrm{I}\right]
$$

5. $\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}=x+\frac{2}{3} x^{3}+\frac{2 \cdot 4}{3 \cdot 5} x^{5}+\frac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot 7} x^{7}+\ldots$

$$
=\sum_{n=0}^{\infty} \frac{2^{2 n}(n!)^{2}}{(2 n+1)!} x^{2 n+1} \quad\left[x^{2}<I\right]
$$

6.43
I. $\log \sin x=\log x-\left\{\frac{\mathrm{I}}{6} x^{2}+\frac{\mathrm{I}}{\mathrm{I} 80} x^{4}+\frac{\mathrm{I}}{2835} x^{6}+\ldots\right\}$

$$
=\log x-\sum_{n=\Phi}^{\Upsilon} \frac{2^{2 n-1}}{n(2 n)!} B_{n} x^{2 n} \quad\left[x^{2}<\pi^{2}\right]
$$

2. $\log \cos x=-\frac{I}{2} x^{2}-\frac{I}{\mathrm{I} 2} x^{4}-\frac{\mathrm{I}}{45} x^{6}-\frac{\mathrm{I} 7}{2520} x^{8}-\ldots$.

$$
=-\sum_{n=1}^{\infty} \frac{2^{2 n-1}\left(2^{2 n}-1\right) B_{n}}{n(2 n)!} x^{2 n} \quad\left[x^{2}<\frac{\pi^{2}}{4}\right]
$$

3. $\log \tan x=\log x+\frac{\mathrm{I}}{3} x^{2}+\frac{7}{90} x^{4}+\frac{62}{2835} x^{6}+\frac{127}{18900} x^{8}+\ldots$

$$
=\log x+\sum_{n=1}^{\infty} \frac{\left(2^{2 n-1}-\mathrm{I}\right) 2^{2 n}}{n(2 n)!} B_{n} x^{2 n} \quad\left[r^{2}<\frac{\pi^{2}}{4}\right] .
$$

4. $\log \cos x=-\frac{\mathrm{I}}{2}\left\{\sin ^{2} x+\frac{\mathrm{I}}{2} \sin ^{4} x+\frac{\mathrm{I}}{3} \sin ^{6} x+\ldots\right\}$

$$
=-\frac{\mathrm{I}}{2} \sum_{n=1}^{\infty} \frac{\mathrm{I}}{n} \sin ^{2 n} x . \quad\left[x^{2}<\frac{\pi^{2}}{4}\right]
$$

6.44

I. $\log (I+x)=x-\frac{I}{2} x^{2}+\frac{I}{3} x^{3}-\frac{I}{4} x^{4}+\ldots$

$$
=\sum_{n=1}^{\infty}(-\mathrm{I})^{n+1} \frac{x^{n}}{n}
$$

$$
[-\mathrm{I}<x \leqslant \mathrm{I}]
$$

$\{\log (\mathrm{I}+x)\}^{p}$ see 7.369.
2. $\log \left(x+\sqrt{I+x^{2}}\right)=x-\frac{I \cdot I}{2 \cdot 3} x^{3}+\frac{I \cdot I \cdot 3}{2 \cdot 4 \cdot 5} x^{5}-\frac{I \cdot I \cdot 3 \cdot 5}{2 \cdot 46 \cdot 7} x^{7}+\ldots$

$$
=x+\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{(2 n-\mathrm{I})!x^{2 n+1}}{2^{2 n-1} n!(n-\mathrm{I})!(2 n+\mathrm{I})} \quad[-\mathrm{I} \leqslant x \leqslant \mathrm{I}]
$$

3. $\log \left(I+\sqrt{I+x^{2}}\right)=\log 2+\frac{I \cdot I}{2 \cdot 2} x^{2}-\frac{I \cdot I \cdot 3}{2 \cdot 4 \cdot 4} x^{4}+\frac{I \cdot I \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 6} x^{6}-\ldots$

$$
=\log 2-\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n} \frac{(2 n-\mathrm{I})!}{2^{2 n-1} n!(n-\mathrm{I})!} \frac{x^{2 n}}{2 n} \quad\left[x^{2} \leqslant \mathrm{I}\right] .
$$

4. $\log \left(I+\sqrt{I+x^{2}}\right)=\log x+\frac{I}{x}-\frac{I \cdot I}{2 \cdot 3} \frac{I}{x^{3}}+\frac{I \cdot I \cdot 3}{24 \cdot 5} \frac{I}{x^{5}}-\ldots$

$$
=\log x+\frac{I}{x}+\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{(2 n-\mathrm{I})!}{2^{2 n-1} n!(n-\mathrm{I})!} \frac{x^{-2 n-1}}{(2 n+\mathrm{I})} \quad\left[x^{2} \geqslant \mathrm{I}\right]
$$

5. $\log x=(x-\mathrm{I})-\frac{\mathrm{I}}{2}(x-\mathrm{I})^{2}+\frac{\mathrm{I}}{3}(x-\mathrm{I})^{3}-\ldots$

$$
=\sum_{n=1}^{\infty}(-\mathrm{I})^{n+1} \frac{(x-\mathrm{I})^{n}}{n} \quad[0<x \leqslant 2]
$$

6. $\log x=\frac{x-I}{x}+\frac{I}{2}\left(\frac{x-I}{x}\right)^{2}+\frac{I}{3}\left(\frac{x-I}{x}\right)^{3}+\ldots$.

$$
=\sum_{n=x}^{\infty} \frac{I}{n}\left(\frac{x-I}{x}\right)^{n} \quad\left[x \geqslant \frac{1}{2}\right]
$$

7. $\log x=2\left\{\frac{x-I}{x+I}+\frac{I}{3}\left(\frac{x-I}{x+I}\right)^{3}+\frac{I}{5}\left(\frac{x-I}{x+I}\right)^{5}+\ldots\right\}$

$$
=2 \sum_{n=0}^{\infty} \frac{I}{2 n+I}\left(\frac{x-I}{x+I}\right)^{2 n+1} \quad[x>0]
$$

8. $\log \frac{I+x}{I-x}=2\left\{x+\frac{\mathrm{I}}{3} x^{3}+\frac{\mathrm{I}}{5} x^{5}+\ldots.\right\}$

$$
=2 \sum_{n=0}^{\infty} \frac{\mathrm{I}}{2 n+\mathrm{I}} x^{2 n+1}
$$

$\left[x^{2}<\mathrm{I}\right]$.
9. $\log \frac{x+\mathrm{I}}{x-\mathrm{I}}=2\left\{\frac{\mathrm{I}}{x}+\frac{\mathrm{I}}{3} \frac{\mathrm{I}}{x^{3}}+\frac{\mathrm{I}}{5} \frac{\mathrm{I}}{x^{5}}+\ldots\right\}$

$$
=2 \sum_{n=0}^{\infty} \frac{\mathrm{I}}{(2 n+\mathrm{I}) x^{2 n+1}} \quad\left[x^{2}>\mathrm{I}\right]
$$

Io. $\sqrt{I+x^{2}} \log \left(x+\sqrt{\left.I+x^{2}\right)}=x+\frac{\mathrm{I}}{3} x^{3}-\frac{\mathrm{I} \cdot 2}{3 \cdot 5} x^{5}+\frac{\mathrm{I} \cdot 2 \cdot 4}{3 \cdot 5 \cdot 7} x^{7}-\ldots\right.$

$$
=x-\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{(n-\mathrm{I})!_{2}^{2 n-1} n!}{(2 n+\mathrm{I})!} x^{2 n+1} \quad\left[x^{2}<\mathrm{I}\right]
$$

II. $\frac{\log \left(x+\sqrt{I+x^{2}}\right)}{\sqrt{I+x^{2}}}=x-\frac{2}{3} x^{3}+\frac{2 \cdot 4}{3 \cdot 5} x^{5}-\frac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot 7} x^{7}+\ldots$

$$
=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{2^{2 n}(n!)^{2}}{(2 n+\mathrm{I})!} x^{2 n+1} \quad\left[x^{2}<\mathrm{I}\right]
$$

I2. $\left\{\log \left(x+\sqrt{I+x^{2}}\right)\right\}^{2}=\frac{x^{2}}{\mathrm{I}}-\frac{2}{3} \frac{x^{4}}{2}+\frac{2 \cdot 4}{3 \cdot 5} \frac{x^{6}}{3}-\ldots$.

$$
=\sum_{n=1}^{\infty}(-I)^{n-1} \frac{2^{2 n-2}(n-I)!(n-I)!}{(2 n-I)!} \frac{x^{2 n}}{n} . \quad\left[x^{2}<I\right]
$$

I3. $\frac{1}{2}\{\log (I+x)\}^{2}=\frac{I}{2} s_{1} x^{2}-\frac{I}{3} s_{2} x^{3}+\frac{I}{4} s_{3} x^{4}-\ldots$
where $s_{n}=\frac{I}{I}+\frac{I}{2}+\frac{I}{3}+\ldots \frac{I}{n}$
(See 1.876).
I4. $\frac{I}{6}\{\log (I+x)\}^{3}=\frac{I}{3} \cdot \frac{I}{2} s_{1} x^{3}-\frac{I}{4}\left(\frac{I}{2} s_{1}+\frac{I}{3} s_{2}\right) x^{4}$

$$
+\frac{I}{5}\left(\frac{I}{2} s_{1}+\frac{I}{3} s_{2}+\frac{I}{4} s_{3}\right) x^{5}-\ldots\left[x^{2}<I\right] .
$$

I5. $\frac{\log (\mathrm{I}+x)}{(\mathrm{I}+x)^{n}}=x-n(n+\mathrm{I})\left(\frac{\mathrm{I}}{n}+\frac{\mathrm{I}}{n+\mathrm{I}}\right) \frac{x^{2}}{2!}$

$$
+n(n+1)(n+2)\left(\frac{I}{n}+\frac{\mathrm{I}}{n+\mathrm{I}}+\frac{\mathrm{I}}{n+2}\right) \frac{x^{3}}{3!}-\ldots \quad\left[x^{2}<\mathrm{I}\right] .
$$

3.445 (See 6.705.)
I. $\frac{3}{4 x}-\frac{\mathrm{I}}{2 x^{2}}+\frac{(\mathrm{I}-x)^{2}}{2 x^{3}} \log \frac{\mathrm{I}}{\mathrm{I}-x}=\frac{\mathrm{I}}{\mathrm{I} \cdot 2 \cdot 3}+\frac{x}{234}+\frac{x^{2}}{34 \cdot 5}+\ldots \quad\left[x^{2}<\mathrm{I}\right]$.
2. $\frac{\mathrm{I}}{4 x}\left\{\frac{\mathrm{I}+x}{\sqrt{x}} \log \frac{\mathrm{I}+\sqrt{x}}{\mathrm{I}-\sqrt{x}}+2 \log (\mathrm{I}-x)-2\right\}=\frac{\mathrm{I}}{\mathrm{I} \cdot 23}+\frac{x}{3 \cdot 4 \cdot 5}$

$$
+\frac{x^{2}}{5 \cdot 6 \cdot 7}+\ldots \quad[0<x<1]
$$

3. $\frac{I}{2 x}\left\{I-\log (I+x)-\frac{I-x}{\sqrt{x}} \tan ^{-1} x\right\}=\frac{I}{I \cdot 23}-\frac{x}{3 \cdot 4 \cdot 5}$

$$
+\frac{x^{2}}{5 \cdot 6 \cdot 7}-\ldots \quad[0<x \leqslant \mathrm{I}] .
$$

6.455

I. $-\log (\mathrm{I}+x) \cdot \log (\mathrm{I}-x)=x^{2}+\left(\mathrm{I}-\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}\right) \frac{x^{4}}{2}$

$$
+\left(I-\frac{I}{2}+\frac{I}{3}-\frac{I}{4}+\frac{I}{5}\right) \frac{x^{6}}{3}+\ldots . \quad\left[x^{2}<I\right] .
$$

2. $\frac{I}{2} \tan ^{-1} x \cdot \log \frac{I+x}{I-x}=x^{2}+\left(\mathrm{I}-\frac{\mathrm{I}}{3}+\frac{\mathrm{I}}{5}\right) \frac{x^{6}}{3}+\left(\mathrm{I}-\frac{\mathrm{I}}{3}+\frac{\mathrm{I}}{5}-\frac{\mathrm{I}}{7}+\frac{\mathrm{I}}{9}\right) \frac{x^{10}}{5}$

$$
+\ldots \quad\left[x^{2}<\mathrm{I}\right] .
$$

3. $\frac{\mathrm{I}}{2} \tan ^{-1} x \cdot \log \left(\mathrm{I}+x^{2}\right)=\left(\mathrm{I}+\frac{\mathrm{I}}{2}\right) \frac{x^{3}}{3}-\left(\mathrm{I}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\frac{\mathrm{I}}{4}\right) \frac{x^{5}}{5}+\ldots \quad\left[x^{2}<\mathrm{I}\right]$.

6.456

I. $\cos \left\{k \log \left(x+\sqrt{I+x^{2}}\right)\right\}=\mathrm{I}-\frac{k^{2}}{2!} \varkappa^{2}+\frac{k^{2}\left(k^{2}+2^{2}\right)}{4^{!}} x^{4}$

$$
-\frac{k^{2}\left(k^{2}+2^{2}\right)\left(k^{2}+4^{2}\right)}{6!} x^{6}+\ldots .
$$

k may be any real number.
2. $\sin \left\{k \log \left(x+\sqrt{I+x^{2}}\right)\right\}=\frac{k}{\mathrm{I}!} x-\frac{k^{2}\left(k^{2}+\mathrm{I}^{2}\right)}{3!} x^{3}$

$$
+\frac{k^{2}\left(k^{2}+\mathrm{I}^{2}\right)\left(k^{2}+3^{2}\right)}{5!} x^{5}-\ldots \quad x^{2}<\mathrm{I} .
$$

6.457

$\frac{\mathrm{I}}{\mathrm{I}-2 x \cos \alpha+x^{2}}=\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty} A_{n} x^{n}$

$$
\left[x^{2}<\mathrm{I}\right],
$$

where,

$$
\begin{aligned}
A_{2 n} & =(-\mathrm{I})^{n} \sum_{k=0}^{n}(-\mathrm{I})^{k}\left(\frac{n+k}{2 k}\right)(2 \cos \alpha)^{2 k} \\
A_{2 n+1} & =(-\mathrm{I})^{n} \sum_{k=0}^{n}(-\mathrm{I})^{k}\left(\frac{n+k+\mathrm{I}}{2 k+\mathrm{I}}\right)(2 \cos \alpha)^{2 k+1}
\end{aligned}
$$

6.460
I. $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
$\left[x^{2}<\infty\right]$.
2. $a^{x}=\mathrm{r}+x \log a+\frac{(x \log a)^{2}}{2!}+\frac{(x \log a)^{3}}{3!}+\ldots$
$\left[x^{2}<\infty\right]$.
3. $e^{e x}=e\left(1+x+\frac{2}{2!} x^{2}+\frac{5}{3!} x^{3}+\frac{15}{4!} x^{4}+\ldots\right)$.
4. $e^{82 n x}=\mathrm{I}+x+\frac{x^{2}}{2!}-\frac{3 x^{4}}{4!}-\frac{8 x^{5}}{5!}+\frac{3 x^{6}}{6!}+\frac{56 x^{7}}{7!}+\ldots$
5. $e^{\cos x}=e\left(\mathrm{I}-\frac{x^{2}}{2!}+\frac{4 x^{4}}{4!}-\frac{3 I x^{6}}{6!}+\ldots.\right)$.
6. $e^{\tan x}=\mathrm{I}+x+\frac{x^{2}}{2!}+\frac{3 x^{3}}{3!}+\frac{9 x^{4}}{4!}+\frac{37 x^{5}}{5!}+\ldots$
7. $e^{8 n^{-1} x}=1+x+\frac{x^{2}}{2!}+\frac{2 x^{3}}{3!}+\frac{5 x^{4}}{4!}+\ldots$.
8. $e^{t a n-1 x}=I+x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{7 x^{4}}{24}-\ldots$.

6.470

I. $\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \quad\left[x^{2}<\infty\right]$.
2. $\cosh x=\mathrm{I}+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!} \quad\left[x^{2}<\infty\right]$.
3. $\tanh x=x-\frac{\mathrm{I}}{3} x^{3}+\frac{2}{\mathrm{I} 5} x^{5}-\frac{\mathrm{I} 7}{3 \mathrm{I} 5} x^{7}+\ldots$.

$$
=\sum_{n=\mathrm{r}}^{\infty}(-\mathrm{I})^{n-1} \frac{2^{2 n}\left(2^{2 n}-\mathrm{I}\right)}{(2 n)!} B_{n} x^{2 n-1} \quad\left[x^{2}<\frac{\pi^{2}}{4}\right] .
$$

4. $x \operatorname{coth} x=\mathrm{r}+\frac{\mathrm{I}}{3} x^{2}-\frac{\mathrm{T}}{45} x^{4}+\frac{2}{945} x^{6}-\ldots$

$$
=\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{r})^{n-1} \frac{2^{2 n} B_{n}}{(2 n)!} x^{2 n} \quad\left[x^{2}<\pi^{2}\right]
$$

5. $\operatorname{sech} x=\mathrm{I}-\frac{\mathrm{T}}{2} x^{2}+\frac{5}{24} x^{4}-\frac{6 \mathrm{I}}{720} x^{6}+\ldots=\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n} \frac{E_{n}}{(2 n)!} x^{2 n} \quad\left[x^{2}<\frac{\pi}{4}\right]$.
6. $x \operatorname{csch} x=\mathrm{I}-\frac{1}{6} x^{2}+\frac{7}{360} x^{4}-\frac{3 I}{15120} x^{6}+\ldots$

$$
=\mathrm{I}+\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{2\left(2^{2 n-1}-\mathrm{I}\right)}{(2 n)!} B_{n} x^{2 n} \quad\left[x^{2}<\pi^{2}\right] .
$$

6.475

I. $\cosh x \cos x=1-\frac{2^{2}}{4!} x^{4}+\frac{2^{4}}{8!} x^{8}-\frac{2^{6}}{12!} x^{12}+\ldots$
2. $\sinh x \sin x=\frac{2^{2}}{2!} x^{2}-\frac{2^{4}}{6!} x^{6}+\frac{2^{6}}{10!} x^{10}-\ldots$.

6.476

I. $\quad e^{x \cos \theta} \cos (x \sin \theta)=\sum_{n=0}^{\infty} \frac{x^{n} \cos n \theta}{n!} \quad\left[x^{2}<\mathrm{I}\right]$.
2. $\quad e^{x \cos \theta} \sin (x \sin \theta)=\sum_{n=1}^{\infty} \frac{x^{n} \sin n \theta}{n!}$
$\left[x^{2}<\mathrm{I}\right]$.
3. $\cosh (x \cos \theta) \cdot \cos (x \sin \theta)=\sum_{n=0}^{\infty} \frac{x^{2 n} \cos 2 n \theta}{(2 n)!}$
$\left[x^{2}<I\right]$.
4. $\sinh (x \cos \theta) \cdot \cos (x \sin \theta)=\sum_{n=0}^{\infty} \frac{x^{2 n+1} \cos (2 n+1) \theta}{(2 n+1)!}$
$\left[x^{2}<I\right]$.
5. $\cosh ^{1}(x \cos \theta) \cdot \sin (x \sin \theta)=\sum_{n=0}^{\infty} \frac{x^{2 n+1} \sin (2 n+1) \theta}{(2 n+1)!}$
$\left[x^{2}<\mathrm{I}\right]$.
6. $\sinh (x \cos \theta) \cdot \sin (x \sin \theta)=\sum_{n=1}^{\infty} \frac{x^{2 n} \sin 2 n \theta}{.(2 n)!}$
$\left[x^{2}<1\right]$.

6.480

I. $\sinh ^{-1} x=x-\frac{\pi}{2 \cdot 3} x^{3}+\frac{I \cdot 3}{2 \cdot 4 \cdot 5} x^{5} \ldots$.

$$
=\sum_{n=0}^{\infty}(-x)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+x)} x^{2 n+1}
$$

$$
\left[x^{2}<I\right]
$$

2. $\sinh ^{-1} x=\log 2 x+\frac{I}{2} \frac{I}{2 x^{2}}-\frac{x \cdot 3}{2 \cdot 4} \frac{I}{4 x^{4}}+\ldots$

$$
=\log 2 x+\sum_{n=0}^{\infty-}(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2} 2 n} x^{-2 n} \quad\left[x^{2}>\mathrm{I}\right]
$$

3. $\cosh ^{-1} x=\log 2 x-\frac{x}{2} \frac{I}{2 x^{2}}-\frac{I \cdot 3}{2 \cdot 4} \frac{I}{4 x^{4}}-\ldots$

$$
=\log 2 x-\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2} 2 n} x^{-2 n} \quad\left[x^{2}>1\right]
$$

4. $\tanh ^{-1} x=x+\frac{\mathrm{I}}{3} x^{3}+\frac{\mathrm{I}}{5} x^{5}+\frac{\mathrm{I}}{7} x^{7}+\ldots=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+\mathrm{I}} \quad\left[x^{2}<\mathrm{I}\right]$.
5. $\sinh ^{-1} \frac{\mathrm{I}}{x}=\frac{\mathrm{I}}{x}-\frac{\mathrm{I}}{2} \frac{\mathrm{I}}{3 x^{3}}+\frac{\mathrm{r} \cdot 3}{2 \cdot 4} \frac{\mathrm{I}}{5 x^{5}}-\ldots$.

$$
=\operatorname{csch}^{-1} x=\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+1)} x^{-2 n-1} \quad\left[x^{2}>_{\mathrm{I}}\right]
$$

6. $\cosh ^{-1} \frac{\mathrm{I}}{x}=\log \frac{2}{x}-\frac{1}{2} \frac{x^{2}}{2}-\frac{1 \cdot 3}{2 \cdot 4} \frac{x^{4}}{4}-\ldots$

$$
=\operatorname{sech}^{-1} x=\log \frac{2}{x}-\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2} 2 n} x^{2 n} \quad\left[x^{2}<I\right]
$$

7. $\sinh ^{-1} \frac{I}{x}=\log \frac{2}{x}+\frac{x}{2} \frac{x^{2}}{2}-\frac{I \cdot 3}{2 \cdot 4} \frac{x^{4}}{4}+\ldots$.

$$
=\operatorname{csch}^{-1} x=\log \frac{2}{x}+\sum_{n=0}^{\infty}(-x)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2} 2 n} x^{2 n} \quad\left[x^{2}<\mathrm{I}\right]
$$

8. $\tanh ^{-1} \frac{I}{x}=\frac{I}{x}+\frac{I}{3 x^{3}}+\frac{I}{5 x^{5}}+\ldots$.

$$
=\operatorname{coth}^{-1} x=\sum_{n=0}^{\infty} \frac{x^{-2 n-1}}{2 n+I} \quad\left[x^{2}>\mathrm{I}\right]
$$

6.490
I. $\quad \frac{I}{2 \sinh x}=\sum_{n=0}^{\infty} e^{-x(2 n+1)}$.
2. $\quad \frac{1}{2 \cosh x}=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} e^{-x(2 n+x)}$.
3. $\frac{\mathrm{I}}{2}(\tanh x-\mathrm{I})=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n} e^{-2 n x}$.
4. $-\frac{I}{2} \log \tanh \frac{x}{2}=\sum_{n=0}^{\infty} \frac{\mathrm{I}}{2 n+\mathrm{I}} e^{-x(2 n+\mathrm{I})}$.
6.491

$$
\frac{\mathrm{x}}{2}+\sum_{n=\mathrm{I}}^{\infty} e^{-(n x)^{2}}=\frac{\sqrt{\pi}}{x}\left\{\frac{\mathrm{x}}{2}+\sum_{n=\mathrm{I}}^{\infty} e^{-\left(\frac{n \pi}{x}\right)^{2}}\right\}
$$

By means of this formula a slowly converging series may be transformed into a rapidly converging series.

6.495

I. $\tan x=2 x\left\{\frac{\mathrm{I}}{\left(\frac{\pi}{2}\right)^{2}-x^{2}}+\frac{\mathrm{I}}{\left(\frac{3 \pi}{2}\right)^{2}-x^{2}}+\frac{\mathrm{I}}{\left(\frac{5 \pi}{2}\right)^{2}-x^{2}}+\ldots\right\}$

$$
=\sum_{n=1}^{\infty} \frac{8 x}{(2 n-I)^{2} \pi^{2}-4 x^{2}}
$$

2. $\cot x=\frac{\mathrm{I}}{x}-\frac{2 x}{\pi^{2}-x^{2}}-\frac{2 x}{(2 \pi)^{2}-x^{2}}-\frac{2 x}{(3 \pi)^{2}-x^{2}}-\ldots=\frac{I}{x}-\sum_{n=\mathrm{I}}^{\infty} \frac{2 x}{n^{2} \pi^{2}-x^{2}}$.
3. $\sec x=\frac{\pi}{\left(\frac{\pi}{2}\right)^{2}-x^{2}}-\frac{3 \pi}{\left(\frac{3 \pi}{2}\right)^{2}-x^{2}}+\frac{5 \pi}{\left(\frac{5 \pi}{2}\right)^{2}-x^{2}}-\ldots$.

$$
=\sum_{n=1}^{\infty}(-\mathrm{I})^{n-1} \frac{4(2 n-\mathrm{I}) \pi}{(2 n-I)^{2} \pi^{2}-4 x^{2}} .
$$

4. $\csc x=\frac{1}{x}+\frac{2 x}{\pi^{2}-\lambda^{2}}-\frac{2 x}{(2 \pi)^{2}-x^{2}}+\frac{2 x}{(3 \pi)^{2}-x^{2}}-\ldots$.

$$
=\frac{\mathrm{I}}{x}+\sum_{n=\mathrm{x}}^{\infty}(-\mathrm{T})^{n-1} \frac{2 x}{n^{2} \pi^{2}-x^{2}} .
$$

By replacing x by $i x$ the corresponding series for the hyperbolic functions may be written.
6.50
I. $\sin x=x \prod_{n=I}^{\infty}\left(I-\frac{x^{2}}{n^{2} \pi^{2}}\right)$.
2. $\sinh x=x \prod_{n= \pm}^{\infty}\left(I+\frac{x^{2}}{n^{2} \pi^{2}}\right)$.
3. $\cos x=\prod_{n=0}^{\infty}\left(\mathrm{I}-\frac{4 x^{2}}{(2 n+\mathrm{I})^{2} \pi^{2}}\right)$.
4. $\cosh x=\prod_{n=0}^{\infty}\left(I+\frac{4 x^{2}}{(2 n+1)^{2} \pi^{2}}\right)$.

6.51

ェ. $\frac{\sin x}{x}=\prod_{n=\Phi}^{\infty} \cos \frac{x}{2^{n}}$.

6.52

I. $\frac{I}{I-x}=\prod_{n=0}^{\infty}\left(\mathrm{I}+x^{2 n}\right)$.
6.53
I. $\cosh x-\cos y=2\left(\mathrm{I}+\frac{x^{2}}{y^{2}}\right) \sin ^{2} \frac{\dot{y}}{2} \prod_{n=\mathrm{I}}^{\infty}\left(\mathrm{I}+\frac{x^{2}}{(2 n \pi+y)^{2}}\right)\left(\mathrm{I}+\frac{x^{2}}{(2 n \pi-y)^{2}}\right)$.
2. $\cos x-\cos y=2\left(\mathrm{I}-\frac{x^{2}}{y^{2}}\right) \sin ^{2} \frac{y}{2} \prod_{n=\mathrm{I}}^{\infty}\left(\mathrm{I}-\frac{x^{2}}{(2 n \pi+y)^{2}}\right)\left(\mathrm{I}-\frac{x^{2}}{(2 n \pi-y)^{2}}\right)$.
6.55 The convergent infinite series:

$$
\mathrm{I}+u_{1}+u_{2}+\ldots=\mathrm{I}+\sum_{n=1}^{\infty} u_{n}
$$

may be transformed into the infinite product

$$
\begin{aligned}
(I & \left.+v_{1}\right)\left(I+v_{2}\right)\left(I+v_{3}\right) \ldots . \\
& =\prod_{n=I}^{\infty}\left(I+v_{n}\right),
\end{aligned}
$$

where

$$
v_{n}=\frac{u_{n}}{I+u_{1}+u_{2}+\ldots+u_{n-I}} .
$$

6.600 The Gamma Function:

$$
\Gamma(z)=\frac{I}{z} \prod_{n=1}^{\infty} \frac{\left(I+\frac{I}{n}\right)^{z}}{I+\frac{z}{n}},
$$

z may have any real or complex value, except $0,-1,-2,-3, \ldots$
6.601

$$
\frac{\mathrm{I}}{\Gamma(z)}=z e^{\gamma_{z}} \prod_{n=\mathrm{r}}^{\infty}\left(\mathrm{r}+\frac{z}{n}\right) e^{-\frac{z}{n}} .
$$

6.602

$$
\begin{aligned}
\gamma & =\operatorname{Limit}_{m \rightarrow \infty}^{\operatorname{Lim}}\left\{\mathrm{I}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\ldots+\frac{I}{m}-\log m\right\} \\
& =\int_{0}^{\infty}\left\{\frac{e^{-t}}{I-e^{-t}}-\frac{e^{-t}}{t}\right\} d t=0.577^{2157} \ldots
\end{aligned}
$$

6.603

$$
\begin{aligned}
\Gamma(z+1) & =z \Gamma(z), \\
\Gamma(z) \Gamma(I-z) & =\frac{\pi}{\sin \pi z}
\end{aligned}
$$

6.604 For z real and positive $=x$:

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t
$$

$\log \dot{\Gamma}(\mathrm{I}+x)=\left(x+\frac{\mathrm{I}}{2}\right) \log x-x+\frac{\mathrm{I}}{2} \log 2 \pi+\int_{0}^{\infty}\left\{\frac{\mathrm{I}}{e^{t}-\mathrm{I}}-\frac{\mathrm{I}}{t}+\frac{\mathrm{I}}{2}\right\} e^{-x t} \frac{d t}{t}$.
6.605 If $z=n$, a positive integer:

$$
\begin{aligned}
\Gamma(n) & =(n-1)!, \\
\Gamma\left(n+\frac{I}{2}\right) & =\frac{1 \cdot 3 \cdot 5 \cdot \ldots(2 n-1)}{2^{n}} \sqrt{\pi}, \\
\Gamma\left(\frac{1}{2}\right) & =\sqrt{\pi} .
\end{aligned}
$$

6.606 The Beta Function. If x and y are real and positive:

$$
\begin{aligned}
\mathrm{B}(x, y) & =\mathrm{B}(y, x)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \\
\mathrm{B}(x, y) & =\int_{0}^{1} t^{x-1}(\mathrm{x}-t)^{y-1} d t \\
\mathrm{~B}(x+\mathrm{r}, y) & =\frac{x}{x+y} \mathrm{~B}(x, y) \\
\mathrm{B}(x, \mathrm{I}-x) & =\frac{\pi}{\sin \pi x}
\end{aligned}
$$

6.610 For x real and positive:

$$
\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}=-\gamma-\sum_{n=0}^{\infty}\left(\frac{I}{x+n}-\frac{I}{n+I}\right)
$$

6.611
6.612

$$
\begin{aligned}
& \psi(x+I)=\frac{\mathbf{r}}{x}+\psi(x) \\
& \quad \psi(I-x)=\psi(x)+\pi \cot \pi x
\end{aligned}
$$

$$
\psi\left(\frac{1}{2}\right)=-\gamma-2 \log 2
$$

$$
\psi(I)=-\gamma
$$

$$
\psi(2)=x-\gamma
$$

$$
\psi(3)=\mathbf{I}+\frac{\mathrm{I}}{2}-\gamma
$$

$$
\psi(4)=I+\frac{I}{2}+\frac{I}{3}-\gamma
$$

6.613

$$
\begin{aligned}
\psi(x) & =\int_{0}^{\infty}\left\{\frac{e^{-t}}{t}-\frac{e^{-t x}}{I-e^{-t}}\right\} d t \\
& =-\gamma+\int_{0}^{1} \frac{I-t^{x-1}}{I-t} d t
\end{aligned}
$$

6.620

$$
\begin{aligned}
\beta(x) & =\sum_{n=0}^{\infty} \frac{(-I)^{n}}{x+n} \\
& =\frac{I}{2}\left\{\psi\left(\frac{x+I}{2}\right)-\psi\left(\frac{x}{2}\right)\right\} .
\end{aligned}
$$

6.621

$$
\begin{aligned}
& \beta(x+\mathrm{I})+\beta(x)=\frac{\mathrm{I}}{x}, \\
& \beta(x)+\beta(\mathrm{I}-x)=\frac{\pi}{\sin \pi x} .
\end{aligned}
$$

6.622

$$
\begin{aligned}
& \beta(\mathrm{I})=\log 2, \\
& \beta\left(\frac{\mathrm{I}}{2}\right)=\frac{\pi}{2} .
\end{aligned}
$$

6.630 Gauss's II Function:
I. $\Pi(k, z)=k^{z} \prod_{n=\mathrm{x}}^{k} \frac{n}{z+n}$.
2. $\Pi(k, z+\mathrm{I})=\Pi(k, z) \cdot \frac{\mathrm{I}+z}{\mathrm{x}+\frac{\mathrm{I}+z}{k}}$.
3. $\Pi(z)={ }_{k \rightarrow \infty}^{\text {Limit }} \Pi(k, z)$.
4. $\Pi(z)=\Gamma(z+r)$.
5. $\Pi(-z) \Pi(z-1)=\pi \csc \pi z$.
6. $\Pi\left(\frac{1}{2}\right)=\frac{I}{2} \sqrt{\pi}$.
6.631 If z is an integer, n,

$$
\Pi(n)=n!
$$

DEFINITE INTEGRALS EXPRESSED AS INFINITE SERIES

6.700

$$
\begin{aligned}
\int_{0}^{x} e^{-x^{2}} d x & =\sum_{k=0}^{\infty} \frac{(-\mathrm{I}) k}{k!(2 k+\mathrm{I})} x^{2 k+1} \\
& =e^{-x^{2}} \sum_{k=0}^{\infty} \frac{2^{k} x^{2 k+1}}{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 k+\mathrm{I})}
\end{aligned}
$$

Darling (Quarterly Journal, 49, p. 36, 1920) has obtained an approximation to this integral:

$$
\frac{\sqrt{\pi}}{2}-\frac{2}{\sqrt{\pi}} \tan ^{-1}\left\{e^{\sqrt{\pi}}\left(I+x^{2} e^{-\sqrt{\pi}}\right)^{2}\right\}^{-x}
$$

Fresnel's Integrals:
$6.701, \int_{0}^{x} \cos \left(x^{2}\right) d x=\sum_{k=0}^{\infty} \frac{(-I)^{k}}{(2 k)!(4 k+I)} x^{4 k+1}$

$$
\begin{aligned}
& =\cos \left(x^{2}\right) \sum_{k_{d}=0}^{\infty}(-I)^{k} \frac{2^{2 k} x^{4 k+1}}{I \cdot 3 \cdot 5 \cdots\left(4^{k}+I\right)} \\
& +\sin \left(x^{2}\right) \sum_{k=0}^{\infty}(-I)^{k} \frac{2^{2 k+1} x^{4 k+3}}{I \cdot 3 \cdot 5 \cdots(4 k+3)}
\end{aligned}
$$

$6.702 \int_{0}^{x} \sin \left(x^{2}\right) d x=\sum_{k=0}^{\infty} \frac{(-I)^{k}}{(2 k+I)!(4 k+3)} x^{4 k+3}$

$$
\begin{aligned}
& =\sin \left(x^{2}\right) \sum_{k^{\prime}=0}^{\infty}(-\mathrm{I})^{k} \frac{2^{2 k}}{\mathrm{I} \cdot 3 \cdot 5 \cdots(4 k+\mathrm{I})} x^{4 k+1} \\
& -\cos \left(x^{2}\right) \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{2^{2 k+1} x^{4 k+3}}{\mathrm{I} \cdot 3 \cdot 5 \cdots(4 k+3)}
\end{aligned}
$$

$6.703 \int_{0}^{1} \frac{t^{a-1}}{I+t^{b}} d t=\sum_{n=0}^{\infty}(-I)^{n} \frac{I}{a+n b}$
$6.704 \frac{I}{(k-I)!} \int_{0}^{1} \frac{t^{a-1}(I-t)^{k-1}}{I-x t^{b}} d t$

$$
=\sum_{n=0}^{\infty} \frac{x^{n}}{(a+n b)(a+n b+1)(a+n b+2) \cdots(a+n b+k-1)}
$$

$$
\left[b>0, x^{2} \leqslant I\right]
$$

(Special cases, 6.445 and 6.922).
$6.705 \int_{0}^{x} e^{-t} t^{y-1} d t=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{x^{n+y}}{n!(n+y)}=e^{-x} \sum_{n=0}^{\infty} \frac{x^{n+y}}{y(y+I) \cdots(y+n)}$.
6.706 If the sum of the series,

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n} \quad[0<x<\mathrm{x}]
$$

is known, then

$$
\begin{array}{r}
\sum_{n=0}^{\infty} \frac{c_{n} x^{n}}{(a+n b)(a+n b+1)(a+n b+2) \cdots(a+n b+k-I) \quad \quad[b>0]} \\
=\frac{I}{(k-I)!} \int_{0}^{1} t^{a-1}(I-t)^{k-1} f\left(x t^{b}\right) d t
\end{array}
$$

6.707

$$
\int_{0}^{\infty} f(x) \sum_{n=1}^{\infty} \frac{\mathrm{I}}{n} \sin n x \cdot d x=\frac{\mathrm{I}}{2} \int_{0}^{2 \pi}(\pi-t) \sum_{n=0}^{\infty} f(t+2 n \pi) \cdot d t
$$

Example 1. $\quad f(x)=e^{-k x}$
$[k>0]$.
I. $\quad \frac{\mathrm{I}}{k}+2 k \sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{k^{2}+n^{2}}=\pi \frac{e^{k \pi}+e^{-k \pi}}{e^{k \pi}-e^{-k \pi}}$.

Replacing k by $\frac{k}{2}$, and subtracting,
$2 \quad \frac{\mathrm{~T}}{k}+2 k \sum_{n=\mathrm{x}}^{\infty}(-\mathrm{I})^{n} \frac{\mathrm{I}}{k^{2}+n^{2}}=\frac{2 \pi}{e^{k \pi}-e^{-k \pi}}$.
Example 2. With $f(x)=e^{-\lambda x} \cos \mu x$ and $e^{-\lambda x} \sin \mu x$.
3. $\frac{\lambda}{\lambda^{2}+\mu^{2}}+\sum_{n=1}^{\infty}\left\{\frac{\lambda}{\lambda^{2}+(n-\mu)^{2}}+\frac{\lambda}{\lambda^{2}+(n+\mu)^{2}}\right\}=\frac{\pi \sinh 2 \lambda \pi}{\cosh 2 \lambda \pi-\cos 2 \mu \pi}$.
4. $\frac{\mu}{\lambda^{2}+\mu^{2}}-\sum_{n=1}^{\infty}\left\{\frac{n-\mu}{\lambda^{2}+(n-\mu)^{2}}+\frac{n+\mu}{\lambda^{2}+(n+\mu)^{2}}\right\}=\frac{\pi \sin 2 \mu \pi}{\cosh 2 \lambda \pi-\cos 2 \mu \pi}$.
6.709 If the sum of the series,

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n},
$$

is known, then

$$
a_{0}+a_{1} y+a_{2} y(y+1)+a_{3} y(y+\mathrm{I})(y+2)+\ldots .=\frac{\int_{0}^{\infty} e^{-t} t^{y-1} f(t) d t}{\Gamma(y)} .
$$

6.710 The complete elliptic integral of the first kind:

$$
\begin{align*}
K & =\int_{0}^{\mathrm{I}} \frac{d x}{\sqrt{\left(\mathrm{I}-x^{2}\right)\left(\mathrm{I}-k^{2} x^{2}\right)}}=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{\mathrm{I}-k^{2} \sin ^{2} \theta}} \\
& =\frac{\pi}{2}\left\{\mathrm{I}+\left(\frac{\mathrm{I}}{2}\right)^{2} k^{2}+\left(\frac{\mathrm{r} \cdot 3}{2 \cdot 4}\right)^{2} k^{4}+\ldots .\right\} \\
& =\frac{\pi}{2}\left\{\mathrm{I}+\sum_{n=\mathrm{r}}^{\infty}\left(\frac{\mathrm{r} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots \cdot 2 n}\right)^{2} k^{2 n}\right\} \tag{2}
\end{align*}
$$

If

$$
\begin{aligned}
k^{\prime} & =\frac{\mathrm{I}-\sqrt{\mathrm{I}-k^{2}}}{\mathrm{I}+\sqrt{\mathrm{I}-k^{2}}} \\
K & =\frac{\pi\left(\mathrm{I}+k^{\prime}\right)}{2}\left\{\mathrm{I}+\left(\frac{\mathrm{I}}{2}\right) 2 k^{\prime 2}+\left(\frac{\mathrm{I} \cdot 3}{2 \cdot 4}\right)^{2} k^{\prime 4}+\ldots\right\} \\
& =\frac{\pi\left(\mathrm{I}+k^{\prime}\right)}{2}\left\{\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} k^{\prime 2 n}\right\} .
\end{aligned}
$$

6.711 The complete elliptic integral of the second kind:

$$
\begin{aligned}
E & =\int^{\frac{\pi}{2}} \sqrt{I-k^{2} \sin ^{2} \theta} d \theta . \\
E & =\frac{\pi}{2}\left\{I-\left(\frac{I}{2}\right)^{2} \frac{k^{2}}{I}-\left(\frac{I \cdot 3}{2 \cdot 4}\right)^{2} \frac{k^{4}}{3}-\ldots \cdot\right\} \\
& =\frac{\pi}{2}\left\{I-\sum_{n=1}^{\infty}\left(\frac{I \cdot 3 \cdot 5 \cdot \ldots(2 n-I)}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} \frac{k^{2 n}}{2 n-I}\right.
\end{aligned}
$$

If

$$
\begin{aligned}
& k^{\prime}=\frac{I-\sqrt{I-k^{2}}}{I+\sqrt{I-k^{2}}} . \\
& E=\frac{\pi\left(I-k^{\prime}\right)}{2}\left\{I+5\left(\frac{I}{2}\right)^{2} k^{\prime 2}+9\left(\frac{I \cdot 3}{24}\right)^{2} k^{\prime 4}+\ldots\right\} \\
&=\frac{\pi\left(I-k^{\prime}\right)}{2}\left\{I+\sum_{n=I}^{\infty}(4 n+I)\left(\frac{I \cdot 3 \cdot 5 \ldots(2 n-I)}{24 \cdot 6 \ldots 2 n}\right)^{2} k^{\prime 2 n}\right\} \\
&=\frac{\pi}{2\left(I+k^{\prime}\right)}\left\{I+\left(\frac{I}{2}\right)^{2} k^{\prime 2}+\left(\frac{I}{2 \cdot 4}\right)^{2} k^{\prime 4}+\left(\frac{I \cdot 3}{2 \cdot 4 \cdot 6}\right)^{2} k^{\prime 6}+\ldots\right\} \\
&=\frac{\pi}{2\left(I+k^{\prime}\right)}\left\{I+k^{\prime 2}\left[\frac{I}{4}+\sum_{n=1}^{\infty}\left(\frac{I \cdot 3 \cdot \ldots(2 n-I)}{2 \cdot 4 \cdot 6 \ldots(2 n+2)}\right)^{2} k^{\prime 2 n}\right]\right\} .
\end{aligned}
$$

FOURIER'S SERIES

6.800 If $f(x)$ is uniformly convergent in the interval:

$$
-c<x<+c
$$

$f(x)=\frac{\mathrm{I}}{2} b_{0}+b_{1} \cos \frac{\pi x}{c}+b_{2} \cos \frac{2 \pi x}{c}+b_{3} \cos \frac{3 \pi x}{c}+\ldots$

$$
\begin{aligned}
& +a_{1} \sin \frac{\pi x}{c}+a_{2} \sin \frac{2 \pi x}{c}+a_{3} \sin \frac{3 \pi x}{c}+\ldots \\
\dot{b}_{m}= & \frac{I}{c} \int_{-c}^{+c} f(x) \cos \frac{m \pi x}{c} d x, \\
a_{m}= & \frac{I}{c} \int_{-c}^{+c} f(x) \sin \frac{m \pi \dot{x}}{c} d x .
\end{aligned}
$$

6.801 If $f(x)$ is uniformly convergent in the interval:

$$
0<x<c
$$

$f(x)=\frac{\mathrm{I}}{2} b_{0}+b_{1} \cos \frac{2 \pi x}{c}+b_{2} \cos \frac{4 x \pi}{c}+b_{3} \cos \frac{6 \pi x}{c}+\ldots$

$$
\begin{aligned}
& +a_{1} \sin \frac{2 \pi x}{c}+a_{2} \sin \frac{4 \pi x}{c}+a_{3} \sin \frac{6 \pi x}{c}+\ldots \\
b_{m}= & \frac{2}{c} \int_{0}^{c} f(x) \cos \frac{2 m \pi x}{c} d x, \\
a_{m}= & \frac{2}{c} \int_{0}^{c} f(x) \sin \frac{2 m \pi x}{c} d x .
\end{aligned}
$$

6.802 Special Developments in Fourier's Series.

$$
\begin{aligned}
& f(x)=a \text { from } x=k c \text { to } x=\left(k+\frac{\mathrm{I}}{2}\right) c, \\
& f(x)=-a \text { from } x=\left(k+\frac{\mathrm{I}}{2}\right) c \text { to } x=(k+\mathrm{I}) c,
\end{aligned}
$$

where k is any integer, including 0 .

$$
f(x)=\frac{4 a}{\pi} \sum_{n=x}^{\infty} \frac{\mathrm{I}}{2 n-\mathrm{I}} \sin \frac{2(2 n-\mathrm{I}) \pi}{c} x
$$

6.803

$$
\begin{aligned}
f(x) & =m x, & & -\frac{c}{4} \leqslant x \leqslant+\frac{c}{4} \\
& =-m\left(x-\frac{c}{2}\right), & & \frac{c}{4} \leqslant x \leqslant \frac{3 c}{4} \\
& =m(x-c), & & \frac{3 c}{4} \leqslant x \leqslant \frac{5 c}{4} \\
& =-m\left(x-\frac{3 c}{2}\right), & & \frac{5 c}{4} \leqslant x \leqslant \frac{7 c}{4}
\end{aligned}
$$

$$
f(x)=\frac{2 m c}{\pi^{2}} \sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{(2 n-\mathrm{I})^{2}} \sin \frac{2(2 n-\mathrm{I}) \pi}{c} x .
$$

6.804

$$
\begin{array}{rlrl}
f(x) & =m x, & & -\frac{c}{2}<x<+\frac{c}{2} \\
& =m(x-c), & +\frac{c^{\prime}}{2}<x<\frac{3 c}{2} \\
f(x) & =\frac{c \dot{m}}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sin \frac{2 n \pi x}{c} .
\end{array}
$$

6.805

$$
\begin{array}{rlrl}
f(x) & =-a, & -5 b \leqslant x \leqslant-3 b \\
& =\frac{a}{b}(x+2 b), & & -3 b \leqslant x \leqslant-b, \\
& =a, & & -b \leqslant x \leqslant+b, \\
& =-\frac{a}{b}(x-2 b), & & b \leqslant x \leqslant 3 b, \\
& =-a, & & 3 b \leqslant x \leqslant \quad 5 b .
\end{array}
$$

$$
f(x)=\frac{8 \sqrt{2} a}{\pi^{2}}\left\{\cos \frac{\pi x}{4^{b}}-\frac{\mathrm{I}}{3^{2}} \cos \frac{3 \pi x}{4^{b}}-\frac{\mathrm{I}}{5^{2}} \cos \frac{7 \pi x}{4 b}+\frac{\mathrm{I}}{7^{2}} \cos \frac{7 \pi x}{4^{b}}\right.
$$

6.806

$$
\begin{aligned}
f(x) & =\frac{b}{l} x+b, \quad-l \leqslant x \leqslant 0 \\
& =-\frac{b}{l} x+b, \quad 0 \leqslant x \leqslant l . \\
f(x) & =\frac{8 b}{\pi^{2}} \sum_{n=0}^{\infty} \frac{I}{(2 n+I)^{2}} \cos (2 n+\mathrm{I}) \frac{\pi x}{2 l} .
\end{aligned}
$$

6.807

$$
\begin{array}{rlrl}
f(x) & =\frac{a}{b} x, & 0 \leqslant x \leqslant b, \\
& =-\frac{a}{l-b} x+\frac{a l}{l-b^{2}}, & b \leqslant x \leqslant l, \\
f(x) & =\frac{2 a l^{2}}{\pi^{2} b(l-b)} \sum_{n=x}^{\infty} \frac{I}{n^{2}} \sin \frac{n \pi b}{l} \sin \frac{n \pi x}{l} .
\end{array}
$$

$6.810 \quad x=2 \sum_{n=1}^{\infty} \frac{(-I)^{n-1}}{n} \sin n x$
$[-\pi<x<\pi]$.
$6.811 \cos a x=\frac{2}{\pi} \sin a \pi\left\{\frac{\mathrm{I}}{2 a}+a \sum_{n=\mathrm{I}}^{\infty} \frac{(-I)^{n-1}}{n^{2}-a^{2}} \cos n x\right\}$
$[-\pi<x<\pi]$.
$6.812 \sin a x=\frac{2}{\pi} \sin a \pi \sum_{n=x}^{\infty} \frac{(-1)^{n-1}}{n^{2}-a^{2}} n \sin n x$
$[-\pi<x<\pi]$.
$6.81 \dot{3} \frac{\pi-x}{2}=\sum_{n=x}^{\infty} \frac{\sin n x}{n}$
$[0<x<2 \pi]$.
$6.814 \frac{\mathrm{I}}{2} \log \frac{\mathrm{I}}{2(\mathrm{I}-\cos x)}=\sum_{n=\mathrm{x}}^{\infty} \frac{\cos n x}{n}$
$[0<x<2 \pi]$.
$6.815 \frac{\pi^{2}}{6}-\frac{\pi x}{2}+\frac{x^{2}}{4}=\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}$
$[0<x<2 \pi]$.
$6.816 \frac{\pi^{2} x}{6}-\frac{\pi x^{2}}{4}+\frac{x^{3}}{\mathrm{I} 2}=\sum_{n=\mathrm{I}}^{\infty} \frac{\sin n x}{n^{3}}$
$[0<x<2 \pi]$.
$6.817 \frac{\pi^{4}}{90}-\frac{\pi^{2} x^{2}}{I 2}+\frac{\pi x^{3}}{I 2}-\frac{x^{4}}{48}=\sum_{n=1}^{\infty} \frac{\cos n x}{n^{4}}$
$[0<x<2 \pi]$.
$6.818 \frac{\pi^{4} x}{90}-\frac{\pi^{2} x^{3}}{36}+\frac{\pi x^{4}}{48}-\frac{x^{5}}{240}=\sum_{n=x}^{\infty} \frac{\sin n x}{n^{5}}$
$[0<x<2 \pi]$.
$6.820 x^{2}=\frac{c^{2}}{3}-\frac{4 c^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-\mathrm{r})^{n-1}}{n^{2}} \cos \frac{n \pi x}{c}$
$[-c \leqslant x \leqslant c]$.
$6.821 \frac{e^{x}}{e^{c}-e^{-c}}=\frac{I}{2 c}-c \sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{(n \pi)^{2}+c^{2}} \cos \frac{n \pi x}{c}$

$$
+\pi \sum_{n=1}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{(n \pi)^{2}+c^{2}} \sin \frac{n \pi x}{c} \quad[-c<x<c] .
$$

$6.822 e^{c x}=\frac{2 c}{\pi}\left(e^{c \pi}-\mathrm{I}\right)\left\{\frac{\mathrm{I}}{2 c^{2}}-\sum_{n=\mathrm{x}}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{c^{2}+n^{2}} \cos n x\right\} \quad[\sigma<x<\pi]$.
$6.823 \cos 2 x-\left(\frac{\pi}{2}-x\right) \sin 2 x+\sin ^{2} x \log \left(4 \sin ^{2} x\right)=\sum_{n=1}^{\infty} \frac{\cos 2(n+1) x}{n(n+1)}=$ $[0 \leqslant x \leqslant \pi]$.
$6.824 \sin 2 x-(\pi-2 x) \sin ^{2} x-\sin x \cos x \log \left(4 \sin ^{2} x\right)$

$$
=\sum_{n=1}^{\infty} \frac{\sin 2(n+1) x}{n(n+1)}[0 \leqslant x \leqslant \pi] .
$$

$6.825 \frac{\mathrm{I}}{2}-\frac{\pi}{4} \sin x=\sum_{n=\mathrm{I}}^{\infty} \frac{\cos 2 n x}{(2 n-\mathrm{I})(2 n+\mathrm{I})} \quad\left[0 \leqslant x \leqslant \frac{\pi}{2}\right]$.
$6.830 \frac{r \sin x}{\mathrm{r}-2 r \cos x+r^{2}}=\sum_{n=x}^{\infty} r^{n} \sin n x$
$\left[r^{2}<\mathrm{I}\right]$.
$6.831 \tan ^{-1} \frac{r \sin x}{I-r \cos x}=\sum_{n=1}^{\infty} \frac{I}{n} r^{n} \sin n x$
$[r<\mathrm{I}]$.
$6.832 \frac{\mathrm{I}}{2} \tan ^{-1} \frac{2 r \sin x}{\mathrm{I}-r^{2}}=\sum_{n=\mathrm{I}}^{\infty} \frac{r^{2 n-1}}{2 n-\mathrm{I}} \sin (2 n-\mathrm{I}) x$
$\left[r^{2}<I\right]$.
$6.833 \frac{\mathrm{I}-r \cos x}{\mathrm{I}-2 r \cos x+r^{2}}=\sum_{n=0}^{\infty} r^{n} \cos n x$
$\left[r^{2}<I\right]$.
$6.834 \quad \operatorname{og} \frac{\mathrm{I}}{\sqrt{\mathrm{I}-2 r \cos x+r^{2}}}=\sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{n} r^{n} \cos n x$
$\left[r^{2}<\mathrm{I}\right]$.
$6.835 \frac{\mathrm{I}}{2} \tan ^{-1} \frac{2 r \cos x}{\mathrm{I}-r^{2}}=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n-1} \frac{r^{2 n-1}}{2 n-I} \cos (2 n-\mathrm{I}) x \quad\left[r^{2}<\mathrm{I}\right]$.

NUMERICAL SERIES

6.900

$$
\begin{array}{ll}
S_{n}=\frac{I}{I^{n}}+\frac{I}{2^{n}}+\frac{I}{3^{n}}+\frac{I}{4^{n}}+\ldots=\sum_{k=I}^{\infty} \frac{I}{k^{n}}, \\
= & S_{6}=\frac{\pi^{6}}{945}=1.0173430620, \\
S_{1}=\infty & S_{7}=\frac{\pi^{7}}{2995.286}=I 0083492774 \\
S_{2}^{-}=\frac{\pi^{2}}{-6}=1.6449340668 & S_{8}=\frac{\pi^{8}}{9450}=1.0040773562, \\
S_{3}=\frac{\pi^{3}}{25.79436}=1.2020569032 & S_{9}=\frac{\pi^{9}}{29749.35}=1.0020083928, \\
S_{4}=\frac{\pi^{4}}{90}=1.0823232337 & S_{10}=1.0009945751, \\
- & S_{11}=1.0004941886 .
\end{array}
$$

6.901

$$
\begin{aligned}
& u_{n}=I-\frac{I}{3^{n}}+\frac{I}{5^{n}}-\frac{I}{7^{n}}+\ldots=\sum_{k=0}^{\infty}(-I)^{k-1} \frac{I}{(2 k+I)^{n}}, \\
& u_{1}=\frac{\pi}{4}, \\
& u_{2}=0.9159656 \ldots \\
& u_{4}=0.98894455 \ldots \\
& u_{6}=0.99868522 \ldots
\end{aligned}
$$

A table of u_{n} from $n=\mathrm{I}$ to $n=38$ to 18 decimal places is given by Glaisher, Messenger of Mathematics, 42, p. 49, 19I3.
6.902 Bernoulli's Numbers.
I. $\frac{2^{2 n-1} \pi^{2 n}}{(2 n)!} B_{n}=\frac{\mathrm{I}}{\mathrm{I}^{2 n}}+\frac{\mathrm{I}}{2^{2 n}}+\frac{\mathrm{I}}{3^{2 n}}+\frac{\mathrm{I}}{4^{2 n}}+\ldots .=\sum_{k=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{k^{2 n}}$.
2. $\frac{\left(2^{2 n}-\mathrm{I}\right) \pi^{2 n}}{2(2 n)!} B_{n}=\frac{\mathrm{I}}{\mathrm{I}^{2 n}}+\frac{\mathrm{I}}{3^{2 n}}+\frac{\mathrm{I}}{5^{2 n}}+\frac{\mathrm{I}}{7^{2 n}}+\ldots .=\sum_{k=0}^{\infty} \frac{\mathrm{I}}{(2 k+\mathrm{I})^{2 n}}$.
3. $\frac{\left(2^{2 n-1}-\mathrm{I}\right) \pi^{2 n}}{(2 n)!} B_{n}=\frac{\mathrm{I}}{\mathrm{I}^{2 n}}-\frac{\mathrm{I}}{2^{2 n}}+\frac{\mathrm{I}}{3^{2 n}}-\frac{\mathrm{I}}{4^{2 n}}+\ldots=\sum_{k=\mathrm{I}}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{k^{2 n}}$.

$$
\begin{array}{ll}
B_{1}=\frac{I}{6}, & B_{3}=\frac{I}{42}, \\
B_{2}=\frac{I}{30}, & B_{4}=\frac{I}{30},
\end{array}
$$

$$
\begin{array}{ll}
B_{5}=\frac{5}{66}, & B_{8}=\frac{36 \mathrm{I} 7}{5 \mathrm{IO}}, \\
B_{6}=\frac{69 \mathrm{I}}{2730} & B_{9}=\frac{43867}{798}, \\
B_{7}=\frac{7}{6}, & B_{10}=\frac{1746 \mathrm{II}}{330} .
\end{array}
$$

6.903 Euler's Numbers
$\frac{\pi^{2 n+1}}{2^{2 n+2}(2 n)!} E_{n}=\mathrm{I}-\frac{\mathrm{I}}{3^{2 n+1}}+\frac{\mathrm{I}}{5^{2 n+1}}-\frac{\mathrm{I}}{7^{2 n+1}}+\ldots .=\sum_{k=\mathrm{I}}^{\infty}(-\mathrm{I})^{k-1} \frac{\mathrm{I}}{(2 k-\mathrm{I})^{2 n+1}}$.

$$
\begin{array}{ll}
E_{1}=\mathrm{I}, & E_{4}=1385 \\
E_{2}=5, & E_{5}=5052 \mathrm{I}, \\
E_{3}=6 \mathrm{I}, & E_{6}=2702765 .
\end{array}
$$

6.904
$E_{n}-\frac{2 n(2 n-\mathrm{I})}{2!} E_{n-1}+\frac{2 n(2 n-\mathrm{I})(2 n-2)(2 n \quad 3)}{4!} E_{n-2} \cdots \ldots$ $-\ldots+(-I)^{n}=0$.
6.905
$\frac{2^{2 n}\left(2^{2 n}-\mathrm{x}\right)}{2 n} B_{n}=(2 n-\mathrm{I}) E_{n-1}-\frac{(2 n-\mathrm{I})(2 n-2)(2 n-3)}{3!} E_{n-2}$
$+\frac{(2 n-\mathrm{I})(2 n-2)(2 n-3)(2 n-4)(2 n-5)}{5!} E_{n-3}-\cdots \cdots+(-\mathrm{I})^{n-1}$.
6.910

$$
\begin{array}{ll}
\quad S_{r}=\sum_{n=1}^{\infty} \frac{n^{r}}{n!} \\
S_{1}=e, & S_{5}=52 e, \\
S_{2}=2 e, & S_{6}=203 e, \\
S_{3}=5 e, & S_{7}=877 e, \\
S_{4}=15 e, & S_{8}=4140 e .
\end{array}
$$

6.911

$$
\begin{array}{ll}
& S_{r}=\sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{\left(4 n^{2}-\mathrm{x}\right)^{r}} . \\
S_{1}=\frac{\mathrm{I}}{2}, & S_{3}=\frac{32-3 \pi^{2}}{64}, \\
S_{2}=\frac{\pi^{2}-8}{\mathrm{I} 6}, & S_{4}=\frac{\pi^{4}+30 \pi^{2}-384}{768} .
\end{array}
$$

6.912
I. $\log 2=\sum_{n=1}^{\infty} \frac{I}{n \cdot 2^{n}}$.
2. $\frac{\pi^{2}}{I 2}-\frac{I}{2}(\log 2)^{2}=\sum_{n=1}^{\infty} \frac{I}{n^{2} 2^{n}}$.
6.913
I. $2 \log 2-\mathrm{I}=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{n\left(4 n^{2}-\mathrm{I}\right)}$.
2. $\frac{3}{2}(\log 3-\mathrm{I})=\sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{n\left(9 n^{2}-\mathrm{I}\right)}$.
3. $-3+\frac{3}{2} \log 3+2 \log 2=\sum_{n=I}^{\infty} \frac{\mathrm{I}}{n\left(36 n^{2}-\mathrm{I}\right)}$.
6.914

$$
\begin{gathered}
S_{r}=\sum_{n=1}^{\infty}\left(\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} \frac{\mathrm{I}}{2 n+r} \\
u_{2}=0.9159656 \ldots \quad(\text { see } 6.901)
\end{gathered}
$$

$S_{0}=2 \log 2-\frac{4}{\pi} u_{2}$,
$S_{-1}=I-\frac{2}{\pi}$,
$S_{1}=\frac{4}{\pi} u_{2}-\mathrm{I}$,
$S_{-2}=\frac{I}{2} \log 2+\frac{I}{4}-\frac{I}{2 \pi}\left(2 u_{2}+I\right)$,
$S_{2}=\frac{2}{\pi}-\frac{\mathrm{I}}{2}$,
$S_{-3}=\frac{I}{3}-\frac{10}{9 \pi}$,
$S_{3}=\frac{\mathrm{I}}{2 \pi}\left(2 u_{2}+\mathrm{I}\right)-\frac{\mathrm{I}}{3}$,
$S_{-4}=\frac{9}{32} \log 2+\frac{I I}{I 28}-\frac{I}{32 \pi}\left(I 8 u_{2}+I 3\right)$,
$S_{4}=\frac{I O}{9 \pi}-\frac{I}{4}$,
$S_{-5}=\frac{\mathrm{I}}{5}-\frac{178}{225 \pi}$,
$S_{5}=\frac{I}{32 \pi}\left(I 8 u_{2}+I_{3}\right)-\frac{I}{5}$,
$S_{-6}=\frac{25}{I 28} \log 2+\frac{7 I}{I 536}-\frac{I}{I 28 \pi}\left(50 u_{2}+43\right)$.
$S_{64}=\frac{I 78}{225 \pi}-\frac{I}{6}$,
$S_{7}=\frac{I}{128 \pi}\left(50 u_{2}+43\right)-\frac{I}{7}$,
When r is a negative even integer the value $n=\frac{r}{2}$ is to be excluded in the summation.
6.915
I. $A_{n}=\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \cdots \cdot 2 n}=\frac{(2 n-\mathrm{I})!}{2^{2 n-1} n!(n-\mathrm{I})!}$.
2. $\mathrm{I}-\frac{\pi}{4}=\sum_{n=\mathrm{I}}^{\infty} A_{n} \frac{\mathrm{I}}{4 n^{2}-\mathrm{I}}$.
3. $\frac{\pi}{2}-\mathrm{I}=\sum_{n=\mathrm{I}}^{\infty} A_{n} \frac{\mathrm{I}}{2 n+\mathrm{I}}$.
4. $\log (\mathrm{I}+\sqrt{2})-\mathrm{I}=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n} A_{n} \frac{\mathrm{I}}{2 n+\mathrm{I}}$.
5. $\frac{I}{2}=\sum_{n=1}^{\infty} A_{n}^{2} \frac{4 n+\mathrm{I}}{(2 n-\mathrm{I})(2 n+2)}$.
6. $\frac{2}{\pi}-\frac{\mathrm{I}}{2}=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n+1} A_{n}{ }^{3} \frac{4 n+\mathrm{I}}{(2 n-\mathrm{I})(2 n+2)}$.
7. $\frac{2}{\pi}-\mathrm{I}=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n} A_{n}{ }^{3}(4 n+\mathrm{I})$.
8. $\frac{\mathrm{I}}{2}-\frac{4}{\pi^{2}}=\sum_{n=1}^{\infty} A_{n}{ }^{4} \frac{4 n+\mathrm{I}}{(2 n-\mathrm{I})(2 n+2)}$.
6.916

If m is an integer, and $n=m$ is excluded from the summation:
I. $-\frac{3}{4 m^{2}}=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{m^{2}-n^{2}}$.
2. $\frac{3}{4 m^{2}}=\sum_{n=\mathrm{x}}^{\infty} \frac{(-\mathrm{I})^{n-1}}{m^{2}-n^{2}}$. (m even)
6.917
I. $I=\sum_{n=2}^{\infty} \frac{n-I}{n!}$.
2. $\frac{I}{2}=\sum_{n=\mathrm{r}}^{\infty} \frac{\mathrm{I}}{4 n^{2}-\mathrm{I}}$.
3. $2 \log 2=\sum_{n=1}^{\infty} \frac{12 n^{2}-\mathrm{I}}{n\left(4 n^{2}-\mathrm{I}\right)^{2}}$.
6.918

$$
\begin{gathered}
\frac{2}{\sqrt{3}} \log \frac{I+\sqrt{3}}{\sqrt{2}}=I+\sum_{n=1}^{\infty}(-I)^{n} \frac{2 \cdot 4 \cdot 6 \ldots 2 n}{3 \cdot 5 \cdot 7 \cdots(2 n+I)} \frac{I}{2^{n}} . \\
\frac{I}{2}(I-\log 2)=\sum_{n=1}^{\infty}\left\{n \log \left(\frac{2 n+I}{2 n-I}\right)-I\right\} .
\end{gathered}
$$

6.920
r. $e=\mathrm{I}+\frac{\mathrm{I}}{\mathrm{I}!}+\frac{\mathrm{I}}{2!}+\frac{\mathrm{I}}{3!}+\ldots=2.7 \mathrm{I} 828$.
2. $\frac{I}{e}=I-\frac{I}{I!}+\frac{I}{2!}-\frac{I}{3!}-\cdots=0.36788$.
3. $\frac{I}{2}\left(e+\frac{I}{e}\right)=I+\frac{\mathrm{I}}{2!}+\frac{\mathrm{I}}{4!}+\ldots=\mathrm{I} .54308$.
4. $\frac{I}{2}\left(e-\frac{I}{e}\right)=I+\frac{I}{3!}+\frac{I}{5^{1}}+\ldots=$ I.17520I.
5. $\cos I=I-\frac{I}{2!}+\frac{I}{4!}-\cdots=0.54030$.
6. $\sin \mathrm{I}=\mathrm{r}-\frac{\mathrm{T}}{3!}+\frac{\mathrm{I}}{5!}-\ldots=0.84 \mathrm{I} 47$.
6.921
I. $\frac{4}{5}=\mathrm{I}-\frac{\mathrm{I}}{2^{2}}+\frac{\mathrm{I}}{2^{4}}-\frac{\mathrm{I}}{2^{6}}+\ldots$.
2. $\frac{9}{I O}=I-\frac{I}{3^{2}}+\frac{I}{3^{4}}-\frac{I}{3^{6}}+\ldots$
3. $\frac{I 6}{I 7}=I-\frac{I}{4^{2}}+\frac{I}{4^{4}}-\frac{I}{4^{6}}+\ldots$
4. $\frac{25}{26}=I-\frac{I}{5^{2}}+\frac{I}{5^{4}}-\frac{I}{5^{6}}+\ldots$
$6.922 \quad \frac{\left(2^{\frac{2}{2}}-\mathrm{I}\right) \Gamma\left(\frac{1}{4}\right)}{2^{\frac{12}{2}} \pi^{\frac{3}{4}}}=e^{-\pi}+e^{-9 \pi}+e^{-25 \pi}+\ldots ; \Gamma\left(\frac{1}{4}\right)=3.6256 \ldots$
6.923 (Special cases of 6.705):
I. $\frac{I}{I \cdot 2 \cdot 3}+\frac{I}{3 \cdot 4 \cdot 5}+\frac{I}{5 \cdot 6 \cdot 7}+\ldots \quad=\log 2-\frac{I}{2}$.
2. $\frac{I}{I \cdot 2 \cdot 3}-\frac{I}{3 \cdot 4 \cdot 5}+\frac{I}{56 \cdot 7}-\ldots \quad=\frac{I}{2}(I-\log 2)$.
3. $\frac{I}{2 \cdot 3 \cdot 4}+\frac{I}{4 \cdot 5 \cdot 6}+\frac{I}{6 \cdot 7 \cdot 8}+\ldots \quad=\frac{3}{4}-\log 2$.
4. $\frac{I}{2 \cdot 3 \cdot 4}-\frac{I}{4 \cdot 5 \cdot 6}+\frac{I}{6 \cdot 7 \cdot 8}-\cdots \quad=\frac{I}{4}(\pi-3)$.
$5 \cdot \frac{I}{I \cdot 2 \cdot 3}+\frac{I}{4 \cdot 5 \cdot 6}+\frac{I}{7 \cdot 8 \cdot 9}+\ldots \quad=\frac{I}{4}\left(\frac{\pi}{\sqrt{3}}-\log 3\right)$.
6. $\frac{I}{2 \cdot 3 \cdot 4}+\frac{I}{6 \cdot 7 \cdot 8}+\frac{I}{10 \cdot I I \cdot I 2}+\ldots=\frac{\pi}{8}-\frac{I}{2} \log 2$.
$7 \cdot \frac{I}{I \cdot 2 \cdot 3 \cdot 4}+\frac{I}{4 \cdot 5 \cdot 6 \cdot 7}+\frac{I}{7 \cdot 8 \cdot 9 \cdot 10}+\ldots=\frac{I}{6}\left(1+\frac{\pi}{2 \sqrt{3}}\right)-\frac{T}{4} \log 3$.

VII. SPECIAL APPLICATIONS OF ANALYSIS.

7.10 Indeterminate Forms.
$7.101 \frac{\circ}{\circ}$. If $\frac{f(x)}{F(x)}$ assumes the indeterminate value $\frac{\circ}{\circ}$ for $x=a$, the true value of the quotient may be found by replacing $f(x)$ and $F(x)$ by their developments in series, if valid for $x=a$.

Example:

$$
\begin{gathered}
{\left[\frac{\sin ^{2} x}{I-\cos x}\right]_{x=0} ;} \\
\frac{\sin ^{2} x}{I-\cos x}=\frac{\left(x-\frac{x^{3}}{3!}+\ldots\right)^{2}}{\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\ldots}=\frac{\left(I-\frac{x^{2}}{3!}+\ldots\right)^{2}}{\frac{I}{2!}-\frac{x^{2}}{4!}+\ldots}
\end{gathered}
$$

Therefore,

$$
\left[\frac{\sin ^{2} x}{\mathrm{I}-\cos x}\right]_{x=0}=2
$$

7.102 L'Hospital's Rule. If $f(a+h)$ and $F(a+h)$ can be developed by Taylor's Theorem (6.100) then the true value of $\frac{f(x)}{F(x)}$ for $x=a$ is,

$$
\frac{f^{\prime}(a)}{F^{\prime}(a)}
$$

provided that this has a definite value (o, finite, or infinite). If the ratio of the first derivatives is still indeterminate, the true value may be found by taking that of the ratio of the first one of the higher derivatives that is definite.
7.103 The true value of $\frac{f(x)}{F(x)}$ for $x=a$ is the limit, for $h=0$, of

$$
\frac{q!}{p!} h^{p-q} \frac{f^{(p)}(a)}{F^{(q)}(a)}
$$

where $f^{(p)}(a)$ and $F^{(a)}(a)$ are the first of the higher derivatives of $f(x)$ and $F(x)$ that do not vanish for $x=a$. The true value of $\frac{f(x)}{F(x)}$ for $x=a$ is \circ if $p>q, \infty$ if $p<q$, and equal to $\frac{f^{(p)}(a)}{F^{(p)}(a)}$ if $p=q$.

Example:

$$
\begin{aligned}
& {\left[\frac{\sinh x-x \cosh x}{\sin x-x \cos x}\right]_{x=0}=\left[\frac{-x \sinh x}{x \sin x}\right]_{x=0}} \\
& =\left[-\frac{\sinh x}{\sin x}\right]_{x=0}=\left[-\frac{\cosh x}{\cos x}\right]_{x=0}=-\mathrm{I}
\end{aligned}
$$

7.104 Failure of L'Hospital's Rule. In certain cases this rule fails to determine the true value of an expression for the reason that all the higher derivatives vanish at the limit. In such cases the true value may often be found by factoring the given expression, or resolving into partial fractions (1.61).

Example:

$$
\left[\frac{\sqrt{x^{2}-a^{2}}}{\sqrt{x-a}}\right]_{x=a}=[\sqrt{x+a}]_{x=a}=\sqrt{2 a}
$$

7.105 In applying L'Hospital's Rule, if any of the successive quotients contains a factor which can be evaluated at once its determinate value may be substituted.

Example:

$$
\begin{aligned}
{\left[\frac{(I-x) e^{x}-I}{\tan ^{2} x}\right]_{x=0} } & =\left[\frac{-x e^{x}}{2 \tan x \sec ^{2} x}\right]_{x=0} \\
{\left[\frac{x}{\tan x}\right]_{x=0} } & =I
\end{aligned}
$$

Hence the given function is,

$$
\left[-\frac{e^{x}}{2 \sec ^{2} x}\right]_{x=0}=-\frac{I}{2}
$$

7.106 If the given function can be separated into factors each of which is indeterminate, the factors may be evaluated separately.

Example:

$$
\left[\frac{\left(e^{x}-\mathrm{I}\right) \tan ^{2} x}{x^{3}}\right]_{x=0}=\left[\left(\frac{\tan x}{x}\right)^{2} \frac{e^{x}-\mathrm{I}}{x}\right]_{x=0}=\mathrm{I} .
$$

$7.110 \frac{\infty}{\infty}$. If, for $x=a, \frac{f(x)}{F(x)}$ takes the form $\frac{\infty}{\infty}$, this quotient may be written:

$$
\frac{\frac{\mathbf{I}}{F(x)}}{\frac{\mathbf{I}}{f(x)}}
$$

which takes the form $\frac{0}{\circ}$ for $x=a$ and the preceding sections will apply to it.
7.111 L'Hospital's Rule (7.102) may be applied directly to indeterminate forms $\frac{\infty}{\infty}$, if the expansion by Taylor's Theorem is valid.

Example:

$$
\left[\frac{x}{e^{x}}\right]_{x=\infty}=\left[\frac{\mathrm{I}}{e^{x}}\right]_{x=\infty}=0
$$

7.112 If $f(x)$ and x approach ∞ together, and if $f(x+1)-f(x)$ approaches a definite limit, then,

$$
\operatorname{Limit}_{x \rightarrow \infty}\left[\frac{f(x)}{x}\right]=\operatorname{Limit}_{x \rightarrow \infty}[f(x+1)-f(x)]
$$

$7.120 \circ \times \infty$.. If, for $x=a, f(x) \times F(x) \cdot$ takes the form $\circ \times \infty$, this product may be written,

$$
\frac{\frac{f(x)}{I}}{\frac{I}{F(x)}}
$$

which takes the form $\frac{0}{\circ}$ (7.101).
$7.130 \infty-\infty$. If, $\operatorname{Limit}_{x \rightarrow a}^{\operatorname{Lim}} f(x)=\infty$ and $\operatorname{Limit}_{x \rightarrow \infty}^{\operatorname{Lim}} F(x)=\infty$,

$$
f(x)-F(x)=f(x)\left\{\mathrm{I}-\frac{F(x)}{f(x)}\right\}
$$

If $\operatorname{Limit}_{x \rightarrow \infty} \frac{F(x)}{f(x)}$ is different from unity the true value of $f(x)-F(x)$ for $x=a$ is ∞. If $\operatorname{Limit}_{x \rightarrow \infty} \frac{F(x)}{f(x)}=+\mathrm{I}$, the expression has the indeterminate form $\infty \times 0$ which may be treated by 7.120.
7.140 $\mathrm{I} \infty, \circ^{0}, \infty^{0}$. If $\{F(x)\}^{(f x)}$ is indeterminate in any of these forms for $x=a$, its true value may be found by finding the true value of the logarithm of the given expression.

Example:

$$
\begin{gathered}
\cdot\left[\left(\frac{\mathrm{I}}{x}\right)^{\tan x}\right]_{x \rightarrow 0} \\
\left(\frac{\mathrm{I}}{x}\right)^{\tan x}=y ; \quad \log y=-\tan x \cdot \log x
\end{gathered}
$$

$[\tan x \cdot \log x]_{x=0}=\left[\frac{\log x}{\cot x}\right]_{x=0}=\left[\frac{\frac{I}{x}}{\csc ^{2} x}\right]_{x=0}=\left[\frac{\sin x}{x} \cdot \sin x\right]_{x=0}=0$.
Hence,

$$
\left[\left(\frac{\mathrm{I}}{x}\right)^{\tan x}\right]_{x=0}=\mathrm{I} .
$$

7.141 If $f(x)$ and x approach ∞ together, and $\frac{f(x+I)}{f(x)}$ approaches a definite limit, then,

$$
\operatorname{Limit}_{x \rightarrow \alpha}^{\operatorname{Li}}\left[\{f(x)\}^{\frac{1}{x}}\right]=\operatorname{Limit}_{x \rightarrow \infty} \frac{f(x+1)}{f(x)} .
$$

7.150 Differential Coefficients of the form $\frac{\circ}{\circ}$. In determining the differential coefficient $\frac{d y}{d x}$ from an equation $f(x, y)=0$, by means of the formula,

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} \tag{I}
\end{equation*}
$$

it may happen that for a pair of values, $x=a, y=b$, satisfying $f(x, y)=0$, $\frac{d y}{d x}$ takes the form $\frac{\circ}{\circ}$.

Writing $\frac{d y}{d x}=y^{\prime}$, and applying 7.102 to the quotient (I), a quadratic equation is obtained for determining y^{\prime}, giving, in general, two different determinate values. If y^{\prime} is still indeterminate, apply 7.102 again, giving a cubic equation for determining y^{\prime}. This process may be continued until determinate values result.

Example:

$$
\begin{aligned}
f(x, y) & =\left(x^{2}+y^{2}\right)^{2}-c^{2} x y=0, \\
y^{\prime} & =-\frac{4 x\left(x^{2}+y^{2}\right)-c^{2} y}{4 y\left(x^{2}+y^{2}\right)-c^{2} x} .
\end{aligned}
$$

For $x=0, y=0, y^{\prime}$ takes the value $\frac{0}{0}$.
Applying 7.102,

$$
-y^{\prime}=\frac{12 x^{2}+4 y^{2}+\left(8 x y-c^{2}\right) y^{\prime}}{4 y^{\prime}\left(x^{2}+3 y^{2}\right)+8 x y-c^{2}} .
$$

Solving this quadratic equation in y^{\prime}, the two determinate values, $y^{\prime}=0, y^{\prime}=\infty$, result for $x=0, y=0$.
7.17 Special Indeterminate Forms and Limiting Values. In the following the notation $[f(x)]_{a}$ means the limit approached by $f(x)$ as x approaches a as a limit.

7.171

I. $\left[\left(\mathrm{I}+\frac{c}{x}\right)^{x}\right]_{\infty}=e^{c} \quad(c$ a constant $)$.
2. $[\sqrt{x+c}-\sqrt{x}]_{\infty}=0$.
3. $[\sqrt{x(x+c)}-x]_{\infty}=\frac{c}{2}$.
4. $\left[\sqrt{\left(x+c_{1}\right)\left(x+c_{2}\right)}-x\right]_{\infty}=\frac{1}{2}\left(c_{1}+c_{2}\right)$.
5. $\left[\sqrt[n]{\left(x+c_{1}\right)\left(x+c_{2}\right) \cdots\left(x+c_{n}\right)}-x\right]_{\infty}=\frac{r}{n}\left(c_{1}+c_{2}+\ldots c_{n}\right)$.
6. $\left[\frac{\log \left(c_{1}+c_{2} e^{x}\right)}{x}\right]_{\infty}=\mathrm{I}$.
7. $\left[\log \left(c_{1}+c_{2} e^{x}\right) \cdot \log \left(I+\frac{I}{x}\right)\right]_{\infty}=I$.
8. $\left[\left(\frac{\log x}{x}\right)^{\frac{1}{x}}\right]_{\infty}=\mathrm{I}$.
9. $\left[\frac{x}{(\log x)^{m}}\right]_{\infty}=\infty$.

Io. $\left[\frac{a^{x}}{x^{m}}\right]_{\infty}=\infty \quad(a>\mathrm{I})$.
II. $\left[\frac{a^{x}}{x!}\right]_{\infty}=0 \quad(x$ a positive integer $)$.

I2. $\left[x^{\frac{1}{x}}\right]_{\infty}=I$.
I3. $\left[\frac{\log x}{x}\right]_{\infty}=0$.
14. $\left[\left(a+b c^{x}\right)^{\frac{1}{x}}\right]_{\infty}=c \quad(c>\mathrm{I})$.
15. $\left[\left(\frac{1}{a+b e^{x}}\right)^{\frac{c}{x}}\right]_{\infty}=e^{-c}$.

I6. $\left[\frac{x}{\alpha+\beta x^{2}} \cdot \log \left(a+b e^{x}\right)\right]_{\infty}=\frac{\mathbf{I}}{\beta}$.
17. $\left[\left(a+b x^{m}\right)^{\frac{I}{\alpha+\beta \log x}}\right]_{\infty}=e^{\frac{m}{\beta}} \quad(m>0)$.
7.172
I. $\left[x \sin \frac{c}{x}\right]_{\infty}=c$.
7. $\left[\frac{\cot \frac{c}{x}}{x}\right]_{\infty}=\frac{I}{c}$.
2. $\left[x\left(\mathrm{I}-\cos \frac{c}{x}\right)\right]_{\infty}=0$.
8. $\left[\sin \frac{c}{x} \cdot \log \left(a+b e^{x}\right)\right]_{\infty}=c$.
3. $\left[x^{2}\left(\mathrm{I}-\cos \frac{c}{x}\right)\right]_{\infty}=\frac{c^{2}}{2}$.
4. $\left[\left(\cos \frac{c}{x}\right)^{x}\right]_{\infty}=\mathrm{I}$.
9. $\left[\left(\cos \sqrt{\frac{2 c}{x}}\right)^{x}\right]_{\infty}=e^{-c .}$
5. $\left[\left(\cos \frac{c}{x}\right)^{x^{2}}\right]_{\infty}=e^{-\frac{c^{2}}{2} .}$
10. $\left[\left(\mathrm{I}+a \tan \frac{c}{x}\right)^{x}\right]_{\infty}=e^{a c}$.
II. $\left[\left(\cos \frac{c}{x}+a \sin \frac{c}{x}\right)^{x}\right]_{\infty}=e^{a c}$.
6. $\left[\left(\frac{\sin \frac{c}{x}}{\frac{c}{x}}\right)^{x}\right]_{\infty}=r$.
7.173

工. $\left[\frac{\sin x}{x}\right]_{0}=\mathrm{I}$.
4. $\left[\sin ^{-1} x \cdot \cot x\right]_{0}=I$.
2. $\left[\frac{\tan x}{x}\right]_{0}=I$.
5. $\left[\left\{\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right\}^{\cot x}\right]_{0}=e$.
3. $\left[\left(\frac{\sin n x}{x}\right)^{m}\right]_{0}=n^{m}$.
7.174
I. $\left[x^{x}\right]_{0}=I$.
7. $\left[\frac{e^{x}-I}{x}\right]_{0}=I$.
2. $\left[x^{\frac{\mathrm{I}}{a+b} \log x}\right]_{0}=e^{\frac{\mathrm{I}}{b}}$.
8. $\left[x^{m} \log x\right]_{0}=0 \quad(m>0)$.
3. $\left[x^{\frac{I}{\log \left(e^{x}-x\right)}}\right]_{0}=e$.
9. $\left[\frac{e^{x}-e^{-x}-2 x}{\left(e^{x}-I\right)^{3}}\right]_{0}=\frac{I}{3}$.
4. $\left[x^{m} \log \frac{I}{x}\right]_{0}=0 \quad(m \geqslant I)$.

IO. $\left[x e^{\frac{\mathrm{T}}{x}}\right]_{0}=\infty$.
5. $[\log \cos x \cdot \cot x]_{0}=0$.
II. $\left[\frac{e^{x}-e^{-x}}{\log (I+x)}\right]_{0}=2$.
6. $\left[\log \tan \left(\frac{\pi}{4}+\frac{x}{2}\right) \cdot \cot x\right]_{0}=I$.

I2. $\left[\frac{\log \tan 2 x}{\log \tan x}\right]_{0}=\mathrm{I}$.

7.175

I. $\left[x^{\frac{I}{1-x}}\right]_{1}=\frac{I}{e}$.
2. $[(\pi-2 x) \tan x] \frac{\pi}{2}=2$.
3. $\left[\log \left(2-\frac{x}{c}\right) \tan \frac{\pi x}{2 c}\right]_{c}=\frac{2}{\pi}$.
4. $\left[\left(e^{c}-e^{x}\right) \tan \frac{\pi x}{2 c}\right]_{c}=\frac{2 c}{\pi} e^{c}$.
5. $\left[\cos ^{-1} \frac{x}{c} \cdot \tan \frac{\pi x}{2 c}\right]_{c}=\infty$
6. $\left[\left(a+b e^{\tan x}\right)^{\pi-2 x}\right]_{\frac{r}{2}}=e^{2}$.
7. $\left[\left(2-\frac{2 x}{\pi}\right)^{\tan x}\right]_{\frac{\pi}{2}}=e^{\frac{2}{\pi}}$
8. $\left[(\tan x)^{\tan 2 x}\right]_{\frac{\pi}{4}}=\frac{I}{e}$.
7.18 Limiting Values of Sums.
I. $\operatorname{Limit}_{n \rightarrow \infty}\left(\frac{\mathrm{I}^{k}+2^{k}+3^{k}+\ldots .+n^{k}}{n^{k+1}}\right)=\frac{\mathrm{I}}{k+\mathrm{I}}$ if $k>-\mathrm{I}$. ∞ if $k<-\mathrm{I}$.
2. $\operatorname{Limit}_{n \rightarrow \infty}\left(\frac{I}{n a}+\frac{I}{n a+b}+\frac{I}{n a+2 b}+\ldots+\frac{I}{n a+(n-I) b}\right)$

$$
=\frac{\log (a+b)-\log a}{b}
$$

$$
\left.\begin{array}{rl}
\operatorname{Limit}_{n \rightarrow \infty}\left(\frac{n-\mathrm{I}^{2}}{\mathrm{I} \cdot 2 \cdot(n+1)}+\frac{n-2^{2}}{2 \cdot 3 \cdot(n+2)}+\frac{n-3^{2}}{3 \cdot 4 \cdot(n+3)}+\ldots\right. \\
& \quad+\frac{\left(n-n^{2}\right.}{n \cdot(n+\mathrm{r}) \cdot(n+n)}
\end{array}\right)=I-\log 2 . .
$$

4. $\operatorname{Limit}_{n \rightarrow \infty}\left[\left(a+b \frac{\sqrt{I}}{n}\right)^{2}+\left(a^{2}+b \frac{\sqrt{2}}{n}\right)^{2}+\left(a^{3}+b \frac{\sqrt{3}}{n}\right)^{2}+\ldots\right.$.

$$
\left.+\left(a^{n}+b \frac{\sqrt{n}}{n}\right)^{2}\right]=\frac{a^{2}}{1-a^{2}}+\frac{b^{2}}{2}
$$

if a is a positive proper fraction.
5. $\operatorname{Limit}_{n \rightarrow \infty}\left[\sqrt{a+\frac{b}{n}}+\sqrt{a^{2}+\frac{b}{n}}+\sqrt{a^{3}+\frac{b}{n}}+\ldots+\sqrt{a^{n}+\frac{b}{n}}\right]=\infty$,
if $b>0$ and a is a positive proper fraction.
6. $\operatorname{Limit}_{n \rightarrow \infty}\left[\sqrt{a+\frac{b}{\mathbf{I} \cdot n}}+\sqrt{a^{2}+\frac{b}{2 \cdot n}}+\sqrt{a^{3}+\frac{b}{3 \cdot n}}+\ldots+\sqrt{a^{n}+\frac{b}{n \cdot n}}\right]$

$$
=\frac{\sqrt{a}}{\mathbf{I}-\sqrt{a}}+2 \sqrt{b}
$$

if $b>0$ and a is a positive proper fraction.

$$
\begin{equation*}
\operatorname{limit}_{n \rightarrow \infty}\left[I+\frac{I}{2}+\frac{I}{3}+\ldots+\frac{I}{n}-\log n\right]=\gamma=0.5772157 \ldots \tag{6.602}
\end{equation*}
$$

7.19 Limiting Values of Products.
I. $\operatorname{Limit}_{n \rightarrow \infty}\left[\left(\mathrm{I}+\frac{c}{n}\right)\left(\mathrm{I}+\frac{c}{n+\mathrm{I}}\right)\left(\mathrm{I}+\frac{c}{n+2}\right) \cdots\left(\mathrm{I}+\frac{c}{2 n-\mathrm{I}}\right)\right]=2^{c}$, if $c>0$.
2. $\operatorname{Limit}_{n \rightarrow \infty}\left[\left(\mathrm{I}+\frac{c}{n a}\right)\left(\mathrm{I}+\frac{c}{n a+b}\right)\left(\mathrm{I}+\frac{c}{n a+2 b}\right) \ldots\left(\mathrm{I}+\frac{c}{n a+(n-\mathrm{I}) b}\right)\right]$

$$
=\left(\mathrm{I}+\frac{b}{a}\right)^{\frac{c}{b}}
$$

If a, b, c are all positive.
3. $\operatorname{Limit}_{n \rightarrow \infty}\left[\frac{\{m(m+1)(m+2) \ldots(m+n-1)\}^{\frac{x}{n}}}{m+\frac{1}{2}(n-1)}\right]=\frac{2}{e}$, if $m>0$.
4. $\operatorname{limit}_{n \rightarrow}\left[\left(I+\frac{2 c}{n^{2}}\right)\left(I+\frac{4 c}{n^{2}}\right)\left(I+\frac{6 c}{n^{2}}\right) \ldots\left(I+\frac{2 n c}{n^{2}}\right)\right]=e^{c}$.
7.20 Maxima and Minima.
7.201 Functions of One Variable. $y=f(x)$ is a maximum or minimum for the values of x satisfying the equation, $f^{\prime}(x)=\frac{\partial f(x)}{\partial x}=0$, provided that $f^{\prime}(x)$ is continuous for these values of x.
7.202 If, for $x=a, f^{\prime}(a)=0$,

$$
\begin{aligned}
& y=f(a) \text { is a maximum if } f^{\prime \prime}(a)<0 \\
& y=f(a) \text { is a minimum if } f^{\prime \prime}(a)>0
\end{aligned}
$$

Example:

$$
\begin{aligned}
y & =\frac{x}{x^{2}+\alpha x+\beta}, \quad \beta>0, \\
f^{\prime}(x) & =\frac{-x^{2}+\beta}{\left(x^{2}+\alpha x+\beta\right)^{2}}, \\
f^{\prime}(x) & =0 \text { when } x= \pm \sqrt{\beta}, \\
f^{\prime \prime}(x) & =\frac{2 x^{3}-6 \beta x-2 \alpha \beta}{\left(x^{2}+\alpha x+\beta\right)^{3}}
\end{aligned}
$$

For $x=+\sqrt{\beta}, f^{\prime \prime}(x)=\frac{-2}{\sqrt{\beta}} \frac{1}{(2 \sqrt{\beta}+\alpha)^{2}} \quad$ Maximum,

$$
\text { For } \begin{aligned}
x=-\sqrt{\beta}, f^{\prime \prime}(x) & =\frac{+2}{\sqrt{\beta}} \frac{I}{(2 \sqrt{\beta}-\alpha)^{2}} \quad \text { Minimum } \\
y_{\max } & =\frac{I}{\alpha+2 \sqrt{\beta}} \\
y_{\operatorname{man}} & =\frac{I}{\alpha-2 \sqrt{\beta}} .
\end{aligned}
$$

7.203 If for $x=a, f^{\prime}(a)=0$ and $f^{\prime \prime}(a)=0$, in order to determine whether $y=f(a)$ is a maximum or minimum it is necessary to form the higher differential coefficients, until one of even order is found which does not vanish for $x=a$. $y=f(a)$ is a maximum or minimum according as the first of the differential coefficients, $f^{\prime \prime}(a), f^{\mathrm{iv}}(a), f^{\mathrm{vi}}(a), \ldots$. . of even order which does not vanish is negative or positive.
7.210 Functions of Two Variables. $F(x, y)$ is a maximum or minimum for the pair of values of x and y that satisfy the equations,

$$
\frac{\partial F}{\partial x}=0, \frac{\partial F}{\partial y}=0
$$

and for which

$$
\left(\frac{\partial^{2} F}{\partial x \partial y}\right)^{2}-\frac{\partial^{2} F}{\partial x^{2}} \frac{\partial^{2} F}{\partial y^{2}}<0 .
$$

If both $\frac{\partial^{2} F}{\partial x^{2}}$ and $\frac{\partial^{2} F}{\partial y^{2}}$ are negative for this pair of values of x and $y, F(x, y)$ is a maximum. If they are both positive $F(x, y)$ is a minimum.
7.220 Functions of n Variables. For the maximum or minimum of a function of n variables, $F\left(x_{1}, x_{2} \ldots \ldots, x_{n}\right)$, it is necessary that the first derivatives, $\frac{\partial F}{\partial x_{1}}, \frac{\dot{\partial} F}{\partial x_{2}}, \ldots \ldots, \frac{\partial F}{\partial x_{n}}$ all vanish; and that the lowest order of the higher derivatives which do not all vanish be an even number. If this number be 2 the necessary condition for a minimum is that all of the determinants,

$$
D_{k}=\left|\begin{array}{cccc}
f_{11} f_{12} \ldots \ldots & \ldots & f_{1 k} \\
f_{21} f_{22} & \ldots & \ldots & f_{2 k} \\
\cdots \cdots & \ldots & \ldots \\
\cdots & \ldots & \ldots & \ldots \\
f_{k 1} f_{k 2} & \ldots & \ldots & f_{k k}
\end{array}\right|, k=\mathrm{I}, 2, \ldots . . n,
$$

where

$$
f_{i z}=\frac{\partial^{2} F}{\partial x_{2} \partial x_{j}},
$$

shall be positive. For a maximum the determinants must be alternately negative and positive, beginning with $D_{1}=\frac{\partial^{2} F}{\partial x_{1}{ }^{2}}$ negative.
7.230 Maxima and Minima with Conditions. If $F\left(x_{1}, x_{2}, \ldots, \ldots, x_{n}\right)$ is to be made a maximum or minimum subject to the conditions,

$$
\text { I. }\left\{\begin{array}{l}
\phi_{1}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=0 \\
\phi_{2}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=0 \\
\cdots \ldots \\
\cdots \ldots \\
\phi_{k}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=0
\end{array}\right.
$$

where $k<n$, the necessary conditions are,
2. $\quad \frac{\partial F}{\partial x_{2}}+\sum_{j=\mathrm{I}}^{k} \lambda_{1} \frac{\partial \phi_{j}}{\partial x_{2}}=0 \quad i=\mathrm{I}, 2, \ldots n$,
where the λ 's are k undetermined multipliers. The n equations (2) together with the k equations of condition (I) furnish $k+n$ equations to determine the $k+n$ quantities, $x_{1}, x_{2}, \ldots \ldots, x_{n}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$.

Example:
To find the axes of the ellipsoid, referred to its center as origin,

$$
a_{11} x^{2}+a_{22} y^{2}+a_{33} z^{2}+2 a_{12} x y+2 a_{23} y z+2 a_{13} x z=1
$$

Denoting the radius vector to the surface by r, and its direction-cosines by l, m, n, so that $x=l r, y=m r, z=n r$, it is necessary to find the maxima and minima of

$$
r^{2}=\frac{I}{a_{11} l^{2}+a_{22} m^{2}+a_{33} n^{2}+2 a_{12} l m+2 a_{23} m+2 a_{13} l n n},
$$

subject to the condition

$$
\phi(l, m, n)=l^{2}+m^{2}+n^{2}-\mathrm{I}=0 .
$$

This is the same as finding the minima and maxima of

$$
F(l, m, n)=a_{11} l^{2}+a_{22} m^{2}+a_{33} n l^{2}+2 a_{12} l m+2 a_{23} m n+2 a_{13} l n
$$

Equation (2) gives:

$$
\begin{aligned}
& \left(a_{11}+\lambda\right) l+a_{12} m+a_{13} n=0, \\
& a_{12} l+\left(a_{22}+\lambda\right) m+a_{23} n=0, \\
& a_{13} l+a_{23} m+\left(a_{33}+\lambda\right) n=0 .
\end{aligned}
$$

Multiplying these 3 equations by l, m, n respectively and adding,

$$
\lambda=-\frac{I}{r^{2}}
$$

Then by (r. 1.363) the 3 values of r are given by the 3 roots of

$$
\left|\begin{array}{lll}
a_{11}-\frac{\mathrm{I}}{r^{2}} & a_{12} & a_{13} \\
a_{12} & a_{22}-\frac{\mathrm{I}}{r^{2}} & a_{23} \\
a_{13} & a_{23} & a_{33}-\frac{\mathrm{I}}{r^{2}}
\end{array}\right|=0 .
$$

7.30 Derivatives.
7.31 First Derivatives.
I. $\frac{d x^{n}}{d x^{n}}=n x^{n-1}$.
2. $\frac{d a^{x}}{d x}=a^{x} \log a$.
3. $\frac{d e^{x}}{d x}=e^{x}$.
4. $\frac{d x^{x}}{d x}=x^{x}(\mathrm{I}+\log x)$.
5. $\frac{d \log _{a} x}{d x}=\frac{\mathrm{I}}{x \log a}=\frac{\log _{a} e}{x}$.
6. $\frac{d \log x}{d x}=\frac{\mathrm{r}}{x}$.
7. $\frac{d x^{\log x}}{d x}=2 x^{\log x-1} \log x$.
8. $\frac{d(\log x)^{x}}{d x}=(\log x)^{x-1}\{\mathrm{I}+\log x \cdot \log \log x\}$.
9. $\frac{d\left(\frac{x}{e}\right)^{x}}{d x}=\left(\frac{x}{e}\right)^{x} \log x$.
15. $\frac{d \csc x}{d x}=-\csc ^{2} x \cdot \cos x$.
10. $\frac{d \sin x}{d x}=\cos x$.
16. $\frac{d \sin ^{-1} x}{d x}=-\frac{d \cos ^{-1} x}{d x}=\frac{\mathrm{I}}{\sqrt{\mathrm{I}-x^{2}}}$.
II. $\frac{d \cos x}{d x}=-\sin x$.
17. $\frac{d \tan ^{-1} x}{d x}=-\frac{d \cot ^{-1} x}{d x}=\frac{\mathrm{I}}{\mathrm{I}+x^{2}}$.
12. $\frac{d \tan x}{d x}=\sec ^{2} x$.

I3. $\frac{d \cot x}{d x}=-\csc ^{2} x$.
18. $\frac{d \sec ^{-1} x}{d x}=-\frac{d \csc ^{-1} x}{d x}=\frac{\mathrm{I}}{x \sqrt{x^{2}-\mathrm{I}}}$.
14. $\frac{d \sec x}{d x}=\sec ^{2} x \cdot \sin x$. 19. $\frac{d \sinh x}{d x}=\cosh x$.
20. $\frac{d \cosh x}{d x}=\sinh x$.
:工. $\frac{d \tanh x}{d x}=\operatorname{sech}^{2} x$.
32. $\frac{d \operatorname{coth} x}{d x}=-\operatorname{csch}^{2} x$.
23. $\frac{d \operatorname{sech} x}{d x}=-\operatorname{sech} x \cdot \tanh x$.
24. $\frac{d \operatorname{csch} x}{d x}=-\operatorname{csch} x \cdot \operatorname{coth} x$.
25. $\frac{d \sinh ^{-1} x}{d x}=\frac{I}{\sqrt{x^{2}+1}}$.
26. $\frac{d \cosh ^{-1} x}{d x}=\frac{\mathrm{I}}{\sqrt{x^{2}-\mathrm{I}}}$.
27. $\frac{d \tanh ^{-1} x}{d x}=\frac{d \operatorname{coth}^{-1} x}{d x}=\frac{\mathrm{I}}{\mathrm{I}-x^{2}}$.
28. $\frac{d \operatorname{sech}^{-1} x}{d x}=-\frac{\mathrm{I}}{x \sqrt{\mathrm{I}-x^{2}}}$.
29. $\frac{d \operatorname{csch}^{-1} x}{d x}=-\frac{\mathrm{I}}{x \sqrt{\mathrm{I}+x^{2}}}$.
30. $\frac{d g d x}{d x}=\operatorname{sech} x$.
31. $\frac{d g d^{-1} x}{d x}=\sec x$.

7.32

r. $\frac{d\left(y_{1} y_{2} y_{3} \ldots . y_{n}\right)}{d x}=y_{1} y_{2} \ldots y_{n}\left(\frac{\mathrm{r}}{y_{1}} \frac{d y_{1}}{d x}+\frac{\mathrm{r}}{y_{2}} \frac{d y_{2}}{d x}+\ldots+\frac{\mathrm{I}}{y_{n}} \frac{d y_{n}}{d x}\right)$.
2. $\frac{d\left(\frac{u}{v}\right)}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$.
3. $\frac{d a^{u}}{d x}=a^{u} \frac{d u}{d x} \log a$.
4. $\frac{d e^{u}}{d x}=e^{u} \frac{d u}{d x}$.
5. $\frac{d f(u)}{d x}=\frac{d f(u)}{d u} \cdot \frac{d u}{d x}$.
7.33 Derivative of a Definite Integral.
I. $\frac{d}{d a} \int_{\psi(a)}^{\phi(a)} f(x, a) d x=f(\phi(a), a) \frac{d \phi(a)}{d a}-f(\psi(a), a) \frac{d \psi(a)}{d a}+\int_{\psi(a)}^{\phi(a)} \frac{d}{d a} f(x, a) d x$.
2. $\frac{d}{d a} \int_{b}^{a} f(x) d x=f(a)$.
3. $\frac{d}{d b} \int_{b}^{a} f(x) d x=-f(b)$.
7.351 Leibnitz's Theorem. If u and v are functions of x,
$\frac{d^{n}(u v)}{d x^{n}}=u \frac{d^{n} v}{d x^{n}}+\frac{n}{\mathrm{I}!} \frac{d u}{d x} \frac{d^{n-1} v}{d x^{n-1}}+\frac{n(n-\mathrm{I})}{2!} \frac{d^{2} u}{d x^{2}} \frac{d^{n-2} v}{d x^{n-2}}$

$$
+\frac{n(n-\text { I) }(n-2)}{3!} \frac{d^{3} u}{d x^{3}} \frac{d^{n-3} v}{d x^{n-3}}+\ldots \ldots+v \frac{d^{n} u}{d x^{n}} .
$$

7.352 Symbolically,

$$
\frac{d^{n}(u v)}{d x^{n}}=(u+v)^{(n)},
$$

where
7.353

$$
\begin{gathered}
u^{0}=u, \quad v^{0}=v . \\
\frac{d^{n} e^{a x} u}{d x^{n}}=e^{a x}\left(a+\frac{d}{d x}\right)^{n} u .
\end{gathered}
$$

7.354 If $\phi\left(\frac{d}{d x}\right)$ is a polynomial in $\frac{d}{d x}$,

$$
\phi\left(\frac{d}{d x}\right) e^{a x} u=e^{a x} \phi\left(a+\frac{d}{d x}\right) u .
$$

7.355 Euler's Theorem. If u is a homogeneous function of the nth degree of r variables, $x_{1}, x_{2}, \ldots x_{r}$,

$$
\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+\ldots+x_{r} \frac{\partial}{\partial x_{r}}\right)^{m} u=n^{m} u \text {, }
$$

where m may be any integer, including 0 .
7.36 Derivatives of Functions of Functions.
7.361 If $f(x)=F(y)$, and $y=\phi(x)$,
I. $\frac{d^{n}}{d x^{n}} f(x)=\frac{U_{1}}{\mathrm{I}!} F^{\prime}(y)+\frac{U_{2}}{2!} F^{\prime \prime}(y)+\frac{U_{3}}{3!} F^{\prime \prime \prime}(y)+\ldots+\frac{U_{n}}{n!} F^{(n)}(y)$,
where
2. $U_{k}=\frac{\partial^{n}}{\partial x^{n}} y^{k}-\frac{k}{\mathrm{I}!} y \frac{\partial^{n}}{\partial x^{n}} y^{k-1}+\frac{k(k-\mathrm{I})}{2!} y^{2} \frac{\partial^{n}}{\partial x^{n}} y^{k-2}-\ldots$.

7.362

I. $(-\mathrm{I})^{n} \frac{d^{n}}{d x^{n}} F\left(\frac{\mathrm{I}}{x}\right)=\frac{\mathrm{I}}{x^{2 n}} F^{(n)}\left(\frac{\mathrm{x}}{x}\right)+\frac{n-\mathrm{I}}{x^{2 n-1}} \frac{n}{\mathrm{I}!} F^{(n-1)}\left(\frac{\mathrm{I}}{x}\right)$

$$
+\frac{(n-\mathrm{I})(n-2)}{x^{2 n-2}} \cdot \frac{n(n-\mathrm{I})}{2!} F^{(n-2)}\left(\frac{\mathrm{I}}{x}\right)+\ldots .
$$

2. $(-\mathrm{I})^{n} \frac{d^{n}}{d x^{n}} \mathrm{e}^{\frac{a}{x}}=\frac{\mathrm{I}}{x^{n}} \mathrm{e}^{\frac{a}{x}}\left\{\left(\frac{a}{x}\right)^{n}+(n-\mathrm{I}) \frac{n}{\mathrm{I}!}\left(\frac{a}{x}\right)^{n-1}\right.$

$$
+(n-1)(n-2) \frac{n(n-1)}{2!}\left(\frac{a}{x}\right)^{n-2}
$$

$$
\left.+(n-1)(n-2)(n-3) \frac{n(n-1)(n-2)}{3!}\left(\frac{a}{x}\right)^{n-3}+\ldots\right\} .
$$

7.363

I. $\frac{d^{n}}{d x^{n}} F\left(x^{2}\right)=(2 x)^{n} F^{(n)}\left(x^{2}\right)+\frac{n(n-I)}{I!}(2 x)^{n-2} F^{(n-1)}\left(x^{2}\right)$

$$
+\frac{n(n-1)(n-2)(n-3)}{2!}(2 x)^{n-4} F^{(n-2)}\left(x^{2}\right)
$$

$$
+\frac{n(n-1)(n-2)(n-3)(n-4)(n-5)}{3!}(2 x)^{n-6} F^{(n-3)}\left(x^{2}\right)+\ldots
$$

2. $\frac{d^{n}}{d x^{n}} e^{a x^{2}}=(2 a x)^{n} e^{a x^{2}}\left\{I+\frac{n(n-I)}{I!\left(4 a x^{2}\right)}+\frac{n(n-I)(n-2)(n-3)}{2!\left(4 a x^{2}\right)^{2}}\right.$

$$
\left.+\frac{n(n-1)(n-2)(n-3)(n-4)(n-5)}{3^{\prime}\left(4 a x^{2}\right)^{3}}+\cdots\right\}
$$

3. $\frac{d^{n}}{d x^{n}}\left(x+a x^{2}\right)^{\mu}$

$$
\begin{array}{r}
=\frac{\mu(\mu-I)(\mu-2) \ldots(\mu-n+I)(2 a x)^{n}}{\left(I+a x^{2}\right)^{n-\mu}}\left\{I+\frac{n(n-I)}{I \cdot(\mu-n+I)} \frac{\left(I+a x^{2}\right)}{4 a x^{2}}\right. \\
\left.\quad+\frac{n(n-I)(n-2)(n-3)}{2^{1}(\mu-n+I)(\mu-n+2)}\left(\frac{I+a x^{2}}{4 a x^{2}}\right)^{2}+\ldots\right\} .
\end{array}
$$

4. $\frac{d^{m-1}}{d x^{m-1}}\left(\mathrm{I}-x^{2}\right)^{m-\frac{1}{2}}=(-\mathrm{I})^{m-1} \frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 m-\mathrm{I})}{m} \sin \left(m \cos ^{-1} x\right)$.

7.364

I. $\frac{d^{n}}{d x^{n}} F(\sqrt{x})=\frac{F^{(n)}(\sqrt{x})}{(2 \sqrt{x})^{n}}-\frac{n(n-I)}{I!} \frac{F^{(n-1)}(\sqrt{x})}{(2 \sqrt{x})^{n+1}}$

$$
+\frac{(n+I) n(n-I)(n-2)}{2!} \frac{F^{(n-2)}(\sqrt{x})}{(2 \sqrt{x})^{n+2}}-\cdots
$$

2. $\frac{d^{n}}{d x^{n}}(\mathrm{I}+a \sqrt{x})^{2 n-1}=\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2^{n}} \frac{a}{\sqrt{x}}\left(a^{2}-\frac{\mathrm{I}}{x}\right)^{n-1}$.

7.365

บ. $\frac{d^{n}}{d x^{n}} F\left(e^{x}\right)=\frac{E_{1}}{I!} e^{x} F^{\prime}\left(e^{x}\right)+\frac{E_{2}}{2!} e^{2 x} F^{\prime \prime}\left(e^{x}\right)+\frac{E_{3}}{3!} e^{3 x} F^{\prime \prime \prime}\left(e^{x}\right)+\ldots$
where
2.

$$
E_{k}=k^{n}-\frac{k}{\mathrm{I}!}(k-\mathbf{I})^{n}+\frac{k(k-\mathrm{I})}{2!}(k-2)^{n}-\cdots
$$

3. $\frac{d^{n}}{d x^{n}} \frac{\mathrm{I}}{\mathrm{I}+e^{2 x}}=-E_{1} e^{x} \frac{\sin \left(2 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{2}}}+E_{2} e^{2 x} \frac{\sin \left(3 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{3}}}$

$$
-E_{3} e^{3 x} \frac{\sin \left(4 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{4}}}+\ldots .
$$

4. $\frac{d^{n}}{d x^{n}} \frac{e^{x}}{\mathrm{I}+e^{2 x}}=-E_{1} e^{x} \frac{\cos \left(2 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{2}}}+E_{2} e^{2 x} \frac{\cos \left(3 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{3}}}$

$$
-E_{3} e^{3 x} \frac{\cos \left(4 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(1+e^{2 x}\right)^{4}}}+\ldots .
$$

7.366

I. $\frac{d^{n}}{d x^{n}} F(\log x)=\frac{\mathrm{I}}{x^{n}}\left\{{ }^{n}{ }_{0} F^{(n)}(\log x)-\stackrel{n}{C_{1}} F^{(n-1)}(\log x)+\stackrel{n}{C_{2}} F^{(n-2)}(\log x)-\ldots.\right\}$. $\stackrel{n}{C}_{0}=\mathrm{I}$,
${ }^{n} C_{1}=\mathrm{I}+2+3+\ldots+(n-\mathrm{I}) \quad=\frac{n(n-\mathrm{I})}{2}$,
${ }^{n}{ }_{2}=\mathrm{I} \cdot 2+\mathrm{I} \cdot 3+\mathrm{I} \cdot 4+\ldots+\mathrm{r} \cdot(n-\mathrm{I})$

$$
+(n-2)(n-1)=\frac{n(n-1)(n-2)(3 n-1)}{24}
$$

2. $\stackrel{n+\mathrm{I}}{C}_{k}=\stackrel{n}{C}_{k}+n \stackrel{n}{C}_{k-1}$.
3. $\bar{C}_{k}^{n}={ }_{-(n-\mathrm{x})}^{C_{k}}+\bar{n}_{h-1}^{-n}$.

$$
\begin{array}{llllll}
\stackrel{n}{C}_{0}=\mathrm{I} & \stackrel{k}{C_{k}}=0, & & \bar{C}_{0}=\mathrm{I} & \bar{C}_{k}=\mathrm{I}, \\
\stackrel{2}{C}_{1}=\mathrm{I} & \stackrel{3}{C}_{1}=3 & \stackrel{4}{C}_{1}=6, & \bar{C}_{1}^{2}=3 & \bar{C}_{1}^{3}=6 & \bar{C}_{1}^{4}=\mathrm{IO}, \\
& \stackrel{3}{C}_{2}=2 & \stackrel{4}{C}_{2}=11, & \bar{C}_{2}^{2}=7 & \bar{C}_{2}^{3}=25 & \bar{C}_{2}^{4}=65 \\
& & \stackrel{4}{C}_{3}=6 . & \bar{C}_{3}^{2}=15 & \bar{C}_{3}^{3}=90 & \bar{C}_{3}^{4}=350 .
\end{array}
$$

7.367 Table of $\stackrel{n}{C_{k}}$.

$n=$	-4	-3	-2	- I	+ I	+2	+ 3	+ 4	+ 5	+ 6	+ 7	+8	+9
$C_{0}=$	I	I	I	I	I	I	I	I	I	I	I	I	I
$C_{1}=$	10	6	3	I	.	I	3	6	Io	${ }^{5}$	2 I	28	36
$C_{2}=$	65	25	7	I	.		2	II	35	85	I75	322	546
$C_{3}=$	350	90	I5	I	.			6	50	225	735	1960	4536
$C_{4}=$	1701	301	3 I	I					24	274	I624	6769	22449
$C_{5}=$	7770	966	63	I	\ldots	.		-	\ldots	120	I764	I3I32	67284
$C_{6}=$	34105	3025	127	I		.			.	\ldots	720	I3068	II8I24
$C_{7}=$	I45750	9330	225	I						\cdots	.	5040	109584
$C_{8}=$	6r1501	28501	5II	I		\ldots							40320

$$
\begin{aligned}
& +2 \cdot 3+2 \cdot 4+\ldots+2 \cdot(n-1) \\
& +3 \cdot 4+\ldots+3 \cdot(n-1) \\
& \text { +.............. }
\end{aligned}
$$

7.368

工. $\frac{d^{n}}{d x^{n}}(\log x)^{p}=\frac{(-\mathrm{I})^{n-1}}{x^{n}}\left\{\stackrel{n}{C}_{n-1} p(\log x)^{p-1}-\stackrel{n}{C}_{n-2} p(p-\mathrm{I})(\log x)^{p-2}\right.$

$$
\left.+\stackrel{n}{C}_{n-3} p(p-1)(p-2)(\log x)^{p-3}-\ldots\right\}
$$

where p is a positive integer. If $n<p$ there are n terms in the series. If $n \geqslant p$,
2. $\frac{d^{n}}{d x^{n}}(\log x)^{p}=\frac{(-\mathrm{I})^{n-1}}{x^{n}}\left\{\stackrel{n}{C}_{n-1} p(\log x)^{p-1}-\stackrel{n}{C}_{n-2} p(p-I)(\log x)^{p-2}\right.$

$$
\left.+\ldots+(-\mathrm{r})^{p+1} \stackrel{n}{C}_{n-p} p(p-\mathrm{I})(p-2) \ldots 2 \cdot \mathrm{I}\right\} \cdot
$$

$7.369\{\log (\mathrm{I}+x)\}^{p}=\stackrel{p}{C}_{0} x^{p}-\stackrel{p+1}{C}_{1} \frac{x^{p+1}}{p+\mathrm{I}}+\stackrel{p+2}{C}_{2} \frac{x^{p+2}}{(p+\mathrm{r})(p+2)}-\ldots$.

$$
-\mathrm{I}<x<+\mathrm{I}
$$

7.37 Derivatives of Powers of Functions. If $y=\phi(x)$.
I. $\frac{d^{n}}{d x^{n}} y^{p}=p\binom{n-p}{n}\left\{-\binom{n}{\mathrm{I}} \frac{\mathrm{I}}{p-\mathrm{I}} y^{p-1} \frac{d^{n} y}{d x^{n}}+\binom{n}{2} \frac{\mathrm{I}}{p-2} y^{p-2} \frac{d^{n} y^{2}}{d x^{n}}-\ldots.\right\}$.
2. $\frac{d^{n}}{d x^{n}} \log y=\binom{n}{\mathrm{I}} \frac{\mathrm{I}}{\mathrm{I} \cdot y} \frac{d^{n} y}{d x^{n}}-\binom{n}{2} \frac{\mathrm{I}}{2 \cdot y^{2}} \frac{d^{n} y^{2}}{d x^{n}}+\binom{n}{3} \frac{\mathrm{I}}{3 \cdot y^{3}} \frac{d^{n} y^{3}}{d x^{n}}-\ldots$.

7.38

工. $\frac{d^{n}(a+b x)^{m}}{d x^{n}}=m(m-\mathbf{I})(m-2) \ldots(m-[n-1]) b^{n}(a+b x)^{m-n}$.
2. $\frac{d^{n}(a+b x)^{-1}}{d x^{n}}=(-\mathrm{I})^{n} \frac{n!b^{n}}{(a+b x)^{n+1}}$.
3. $\frac{d^{n}(a+b x)^{-\frac{1}{2}}}{d x^{n}}=(-\mathrm{I})^{n} \frac{\mathrm{I} \cdot 3 \cdot 5 \cdots \cdot(2 n-\mathrm{I})}{2^{n}(a+b x)^{n+\frac{1}{2}}} b^{n}$.
4. $\frac{d^{n} \log (a+b x)}{d x^{n}}=(-\mathrm{I})^{n-1} \frac{(n-I)!b^{n}}{(a+b x)^{n}}$.
5. $\frac{d^{n} e^{a x}}{d x^{n}}=a^{n} e^{a x}$.
6. $\frac{d^{n} \sin x}{d x^{n}}=\sin \left(\frac{1}{2} n \pi+x\right)$.
7. $\frac{d^{n} \cos x}{d x^{n}}=\cos \left(\frac{1}{2} n \pi+x\right)$.
8. $\frac{d^{n}}{d x^{n}}\left(\frac{\log x}{x}\right)=(-\mathrm{I})^{n} \frac{n^{\prime}}{x^{n+1}}\left\{\log x-\left(\frac{\mathrm{I}}{\mathrm{I}}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\ldots .+\frac{\mathrm{I}}{n}\right)\right\}$.
9. $\frac{d^{n+1}}{d x^{n+1}} \sin ^{-1} x=\frac{I \cdot 3 \cdot 5 \ldots(2 n-I)}{2^{n}(I-x)^{n} \sqrt{I-x^{2}}}\left\{I-\frac{I}{2 n-I}\binom{n}{I} \frac{I-x}{I+x}\right\}$

$$
\begin{array}{r}
+\frac{I \cdot 3}{(2 n-I)(2 n-3)}\binom{n}{2}\left(\frac{I-x}{I+x}\right)^{2}-\frac{I \cdot 3 \cdot 5}{(2 n-I)(2 n-3)(2 n-5)}\binom{n}{3}\left(\frac{I-x}{I+x}\right)^{3} \\
+\ldots \ldots\}
\end{array}
$$

10. $\frac{d^{n}}{d x^{n}}\left(\tan ^{-1} x\right)=(-\mathrm{I})^{n-1} \frac{(n-\mathrm{I})!}{\left(\mathrm{I}+x^{2}\right) \frac{n}{2}} \sin \left(n \tan ^{-1} \frac{\mathrm{I}}{x}\right)$.
7.39 Derivatives of Implicit Functions.
7.391 If y is a function of x, and $f(x, y)=0$.
I. $\frac{d y}{d x}=-\frac{\frac{\partial}{\partial x}}{\frac{\partial f}{\partial y}}$.
11. $\frac{d^{2} y}{d x^{2}}=-\frac{\left(\frac{\partial f}{\partial y}\right)^{2} \frac{\partial^{2} f}{\partial x^{2}}-2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial x \partial y}+\left(\frac{\partial f}{\partial x}\right)^{2} \frac{\partial^{2} f}{\partial v^{2}}}{\left(\frac{\partial f}{\partial y}\right)^{3}}$
7.392 If z is a function of x and y, and $f(x, y, z)=0$.
I. $\frac{\partial z}{\partial x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}} ; \quad \frac{\partial z}{\partial y}=-\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial z}}$.
12. $\frac{\partial^{2} z}{\partial x^{2}}=-\frac{\left(\frac{\partial f}{\partial z}\right)^{2} \frac{\partial^{2} f}{\partial x^{2}}-2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial x} \frac{d^{2} f}{\partial x \partial z}+\left(\frac{\partial f}{\partial x}\right)^{2} \frac{\partial^{2} f}{\partial z^{2}}}{\left(\frac{\partial f}{\partial z}\right)^{3}}$.
13. $\frac{\partial^{2} z}{\partial y^{2}}=-\frac{\left(\frac{\partial f}{\partial z}\right)^{2} \frac{\partial^{2} f}{\partial y^{2}}-2 \frac{\partial f}{\partial z} \frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial y \partial z}+\left(\frac{\partial f}{\partial y}\right)^{2} \frac{\partial^{2} f}{\partial z^{2}}}{\left(\frac{\partial f}{\partial z}\right)^{3}}$.
14. $\frac{\partial^{2} z}{\partial x \partial y}=-\frac{\left(\frac{\partial f}{\partial z}\right)^{2} \frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial f}{\partial z}\left(\frac{\partial f}{\partial x} \frac{\partial^{2} f}{\partial y \partial z}+\frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial x \partial z}\right)+\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial z^{2}}}{\left(\frac{\partial f}{\partial z}\right)^{3}}$.

VIII. DIFFERENTIAL EQUATIONS.

8.000 Ordinary differential equations of the first order. General form:

$$
\frac{d y}{d x}=f(x, y)
$$

8.001 Variables are separable. $f(x, y)$ is of, or can be reduced to, the form:

$$
f(x, y)=-\frac{X}{\vec{Y}},
$$

where X is a function of x alone and Y is a function of y alone. The solution is:

$$
\int X d x+\int Y d y=C
$$

8.002 Linear equations of the form:

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

Solution:

$$
y=e^{-\int P_{(x) d x}}\left\{\int Q(x) e^{-\int P(x) d x} d x+C\right\} .
$$

8.003 Equations of the form:

$$
\frac{d y}{d x}+P(x) y=y^{n} Q(x)
$$

Solution:

$$
\frac{\mathrm{I}}{y^{n-1}} e^{-(n-\mathrm{I})} \boldsymbol{S}_{P(x) d x}+(n-\mathrm{I}) \int Q(x) e^{-(n-\mathrm{I})} \boldsymbol{S}_{P(x) d x} d x=C .
$$

8.010 Homogeneous equations of the form:

$$
\frac{d y}{d x}=-\frac{P(x, y)}{Q(x, y)},
$$

where $P(x, y)$ and $Q(x, y)$ are homogeneous functions of x and y of the same degree. The change of variable:

$$
y=v x,
$$

gives the solution:

$$
\int \frac{d v}{\frac{P(\mathrm{r}, v)}{Q(\mathrm{I}, v)}+v}+\log x=C
$$

8.011 Equations of the form:

$$
\frac{d y}{d x}=\frac{a^{\prime} x+b^{\prime} y+c^{\prime}}{a x+b y+c} .
$$

If $a b^{\prime}-a^{\prime} b \neq 0$, the substitution
where

$$
x=x^{\prime}+p, \quad y=y^{\prime}+q,
$$

$$
\begin{aligned}
a p+b q+c & =0, \\
a^{\prime} p+b^{\prime} q+c^{\prime} & =0,
\end{aligned}
$$

renders the equation homogeneous, and it may be solved by 8.010.
If $a b^{\prime}-a^{\prime} b=0$ and $b^{\prime} \neq 0$, the change of variables to either x and z or y and z by means of

$$
z=a x+b y,
$$

will make the variables separable (8.001).
8.020 Exact differential equations. The equation,

$$
P(x, y) d x+Q(x, y) d y=0
$$

is exact r ,

$$
\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} .
$$

The solution is:

$$
\int P(x, y) d x+\int\left\{Q(x, y)-\frac{\partial}{\partial y} \int P(x, y) d x\right\} d y=C
$$

or

$$
\int Q(x, y) d y+\int\left\{P(x, y)-\frac{\partial}{\partial x} \int Q(x, y) d y\right\} d x=C
$$

8.030 Integrating factors. $v(x, y)$ is an integrating factor of

$$
P(x, y) d x+Q(x, y) d y=0,
$$

if

$$
\frac{\partial}{\partial x}(v Q)=\frac{\partial}{\partial y}(v P) .
$$

8.031 If one only of the functions $P x+Q y$ and $P x-Q y$ is equal to 0 , the reciprocal of the other is an integrating factor of the differential equation.
8.032 Homogeneous equations. If neither $P x+Q y$ nor $P x-Q y$ is equal to o, $\frac{\mathrm{I}}{P x+Q y}$ is an integrating factor of the equation if it is homogeneous.
8.033 An equation of the form,

$$
P(x, y) y d x+Q(x, y) x d y=0,
$$

has an integrating factor:

$$
\frac{I}{x P-y Q} .
$$

8.034 If

$$
\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=F(x)
$$

is a function of x only, an integrating factor is

$$
e^{\int F(x) d x} .
$$

8.035 If

$$
\frac{\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}{P}=F(y)
$$

is a function of y only, an integrating factor is

$$
e^{\int F(\hat{q}) d y} .
$$

8.036 If

$$
\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q y-P x}=F(x y)
$$

is a function of the product $x y$ only, an integrating factor is

$$
e^{\int F(x y) d(x y)} .
$$

8.037 If

$$
\frac{x^{2}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)}{P x+Q y}=F\left(\frac{y}{x}\right)
$$

is a function of the quotient $\frac{y}{x}$ only, an integrating factor is

$$
e^{\int F}\left(\frac { y } { x } \left(\begin{array}{l}
\frac{y}{x}
\end{array} d\left(\frac{y}{x}\right) .\right.\right.
$$

8.040 Ordinary differential equations of the first order and of degree higher than the first.

Write:

$$
\frac{d y}{d x}=p .
$$

General form of equation:

$$
f(x, y, p)=0
$$

8.041 The equation can be solved as an algebraic equation in p. It can be written

$$
\left(p-R_{1}\right)\left(p-R_{2}\right) \ldots \ldots\left(p-R_{n}\right)=0 .
$$

The differential equations:

$$
\begin{aligned}
& p=R_{1}(x, y), \\
& p=R_{2}(x, y),
\end{aligned}
$$

may be solved by the previous methods. Write the solutions:

$$
f_{1}(x, y, c)=0 ; f_{2}(x, y, c)=0, \ldots \ldots
$$

where c is the same arbitrary constant in each. The solution of the given differential equation is:

$$
f_{1}(x, y, c) f_{2}(x, y, c) \ldots \ldots \ldots f_{n}(x, y, c)=0 .
$$

8.042 The equation can be solved for y :

ェ.

$$
y=f(x, p) .
$$

Differentiate with respect to x :
2.

$$
p=\psi\left(x, p, \frac{d p}{d x}\right) .
$$

It may be possible to integrate (2) regarded as an equation in the two variables x, p, giving a solution
3. $\phi(x, p, c)=0$.

If p is eliminated between (r) and (3) the result will be the solution of the given equation.
8.043 The equation can be solved for x :
I. $\quad x=f(y, p)$.

Differentiate with respect to y :
2.

$$
\frac{I}{p}=\psi\left(y, p, \frac{d p}{d y}\right) .
$$

If a solution of (2) can be found:
3. $\quad \phi(y, p, c)=0$.

Eliminate p between (I) and (3) and the result will be the solution of the given equation.
8.044 The equation does not contain x :

It may be solved for p, giving,

$$
f(y, p)=0 .
$$

$$
\frac{d y}{d x}=F(y)
$$

which can be integrated.
8.045 The equation does not contain y :

$$
f(x, p)=0
$$

It may be solved for p, giving,

$$
\frac{d y}{d x}=F(x)
$$

which can be integrated.
It may be solved for x, giving,

$$
x=F(p)
$$

which may be solved by 8.043 .
8.050 Equations homogeneous in x and y.

General form:

$$
F\left(p, \frac{y}{x}\right)=0
$$

(a) Solve for p and proceed as in 8.001
(b) Solve for $\frac{y}{x}$.

$$
y=x f(p)
$$

Differentiate with respect to x :

$$
\frac{d x}{x}=\frac{f^{\prime}(p) d p}{p-f(p)}
$$

which may be integrated.
8.060 Clairaut's differential equation:
I.

$$
\begin{aligned}
& y=p x+f(p) \\
& y=c x+f(c)
\end{aligned}
$$

The singular solution is obtained by eliminating p between (x) and
2.

$$
x+f^{\prime}(p)=0
$$

8.061 The equation
I.

$$
y=x f(p)+\phi(p)
$$

The solution is that of the linear equation of the first order:
2.

$$
\frac{d x}{d p}-\frac{f^{\prime}(p)}{p-f(p)} x=\frac{\phi^{\prime}(p)}{p-f(p)}
$$

which may be solved by 8.002 . Eliminating p between (I) and the solution of
(2) gives the solution of the given equation.
8.062 The equation:

$$
x \phi(p)+y \psi(p)=\chi(p)
$$

may be reduced to 8.061 by dividing by $\psi(p)$.

DIFFERENTIAL EQUATIONS OF AN ORDER HIGHER THAN THE FIRST
8.100 Linear equations with constant coefficients. General form:

$$
\frac{d^{n} y}{d x^{n}}+a_{1} \frac{d^{n-1} y}{d x^{n-1}}+a_{2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots+a_{n} y=V(x)
$$

The complete solution consists of the sum of
(a) The complementary function, obtained by solving the equation with $V(x)=0$, and containing n arbitrary constants, and
(b) The particular integral, with no arbitrary constants.
8.101 The complementary function. Assume $y=e^{\lambda x}$. The equation for determining λ is:

$$
\lambda^{n}+a_{1} \lambda^{n-1}+a_{2} \lambda^{n-2}+\ldots .+a_{n}=0
$$

8.102 If the roots of 8.101 are all real and distinct the complementary function is:

$$
y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}+\ldots+c_{n} e^{\lambda_{n} x} .
$$

8.103 For a pair of complex roots:

$$
\mu \pm i \nu
$$

the corresponding terms in the complementary function are:

$$
e^{\mu x}(A \cos \nu x+B \cos \nu x)=C e^{\mu x} \cos (\nu x-\theta)=C e^{\mu x} \sin (\nu x+\theta)
$$

where

$$
C=\sqrt{A^{2}+B^{2}}, \quad \tan \theta=\frac{B}{A}
$$

8.104 If there are r equal real roots the terms in the complementary function corresponding to them are:

$$
e^{\lambda x}\left(A_{1}+A_{2} x+A_{3} x^{2}+\ldots+A_{r} x^{r-1}\right)
$$

where λ is the repeated root, and $A_{1}, A_{2}, \ldots, A_{r}$ are the r arbitrary constants.
8.105 If there are m equal pairs of complex roots the terms in the complementary function corresponding to them are:

$$
\begin{aligned}
& e^{\mu x}\left\{\left(A_{1}+A_{2} x+A_{3} x^{2}+\ldots+A_{m} x^{m-1}\right) \cos \nu x\right. \\
& \left.+\left(B_{1}+B_{2} x+B_{3} x^{2}+\ldots+B_{m} x^{m-1}\right) \sin \nu x\right\} \\
= & \left.e^{\mu x\{ } C_{1} \cos \left(\nu x-\theta_{1}\right)+C_{2} x \cos \left(\nu x-\theta_{2}\right)+\ldots+C_{m} x^{m-1} \cos \left(\nu x-\theta_{m}\right)\right\} \\
= & e^{\mu x}\left\{C_{1} \sin \left(\nu x+\theta_{1}\right)+C_{2} x \sin \left(\nu x+\theta_{2}\right)+\ldots+C_{m} x^{m-1} \sin \left(\nu x+\theta_{m}\right)\right\}
\end{aligned}
$$

where $\lambda \pm i \mu$ is the repeated root and

$$
\begin{aligned}
C_{k} & =\sqrt{A_{k}^{2}+B_{k}^{2}} \\
\tan \theta_{k} & =\frac{B_{k}}{A_{k}}
\end{aligned}
$$

The particular integral.
8.110 The operator D stands for $\frac{\partial}{\partial x}, D^{2}$ for $\frac{\partial^{2}}{\partial x^{2}}, \ldots .$.

The differential equation 8.100 may be written:

$$
\begin{gathered}
\left(D^{n}+a_{1} D^{n-1}+a_{2} D^{n-2}+\ldots+a_{n}\right) y=f(D) y=V(x) \\
y=\frac{V(x)}{f(D)} \\
f(D)=\left(D-\lambda_{1}\right)\left(D-\lambda_{2}\right) \ldots . .\left(D-\lambda_{n}\right)
\end{gathered}
$$

where $\lambda_{1}, \lambda_{2}, \ldots \ldots, \lambda_{n}$ are determined as in 8.101. The particular integral is:

$$
y=e^{\lambda_{1} x} \int e^{\left(\lambda_{2}-\lambda_{1}\right) x} d x \int e e^{\left(\lambda_{3}-\lambda_{2}\right) x} d x \ldots \cdot \int e^{-\lambda_{n}(x)} V(x) d x
$$

$8.111 \frac{I}{f(D)}$ may be resolved into partial fractions:

$$
\frac{I}{f(D)}=\frac{N_{1}}{D-\lambda_{1}}+\frac{N_{2}}{D-\lambda_{2}}+\ldots+\frac{N_{n}}{D-\lambda_{n}}
$$

The particular integral is:

$$
\begin{aligned}
y=N_{1} e^{\lambda_{1} x} \int e^{-\lambda_{1} x} V(x) d x+N_{2} e^{\lambda_{2} x} \int e^{-\lambda_{2} x} V(x) d x+\ldots & \cdots \\
& +N_{n} e_{n}^{\lambda_{n}} \int e^{-\lambda_{n} x} V(x) d x .
\end{aligned}
$$

THE PARTICULAR INTEGRAL IN SPECIAL CASES

8.120 $V(x)=$ const. $=c$,

$$
y=\frac{c}{a_{n}}
$$

8.121 $V(x)$ is a rational integral function of x of the m th degree. Expand $\frac{I}{f(D)}$ in ascending powers of D, ending with D^{m}. Apply the operators D, D^{2},, D^{m} to each term of $V(x)$ separately and the particular integral will be the sum of the results of these operations.
8.122

$$
\begin{aligned}
V(x) & =c e^{h x} \\
y & =\frac{c}{f(k)} e^{h x}
\end{aligned}
$$

unless k is a root of $f(D)=0$. If k is a multiple root of order r of $f(D)=0$

$$
y=\frac{c x^{r} e^{k x}}{r!\psi(k)}
$$

where

$$
\begin{aligned}
& f(D)=(D-k)^{r} \psi(D) \\
& V(x)=c \cos (k x+\alpha)
\end{aligned}
$$

8.123

If $i k$ is not a root of $f(D)=0$ the particular integral is the real part of

$$
\frac{c}{f(i k)} e^{\imath(k x+\alpha)}
$$

If $i k$ is a multiple root of order r of $f(D)=0$ the particular integral is the real part of

$$
\frac{c x^{\tau} e^{\imath(k x+\alpha)}}{f^{(r)}(\imath k)}
$$

where $f^{(r)}(i k)$ is obtained by taking the r th derivative of $f(D)$ with respect to D, and substituting $i k$ for D.
8.124

$$
V(x)=c \sin (k x+\alpha)
$$

If $i k$ is not a root of $f(D)=0$ the particular integral is the real part of

$$
\frac{-i c e^{2(k x+\alpha)}}{f(i k)}
$$

If $i k$ is a multiple root of order r of $f(D)=0$ the particular integral is the real part of

$$
\frac{-i c x^{7} e^{\imath(k x+\alpha)}}{f^{(r)}(i k)}
$$

8.125

$$
V(x)=c e^{k x} \cdot X
$$

where X is any function of x.

$$
y=c e^{k x} \frac{ \pm}{f(D+k)} X
$$

If X is a rational integral function of x this may be evaluated by the method of 8.121 .
8.126

$$
V(x)=c \cos (k x+\alpha) \cdot X
$$

where X is any function of x. The particular integral is the real part of

$$
c e^{\imath(k x+\alpha)} \frac{I}{f(D+i k)} X
$$

8.127

$$
V(x)=c \sin (k x+\alpha) \cdot X
$$

The particular integral is the real part of

$$
-i c e^{\imath(k x+\alpha)} \frac{I}{f(D+i k)} X
$$

8.128

$$
V(x)=c e^{\beta x} \cos (k x+\alpha)
$$

If $(\beta+i k)$ is not a root of $f(D)=0$ the particular integral is the real part of

$$
c e^{2(h x+\alpha)} \frac{I}{f(\beta+i k)} e^{\beta x} .
$$

If ($\beta+i k$) is a multiple root of order r of $f(D)=0$ the particular integral is the real part of

$$
\frac{c e^{\imath(k x+\alpha)} x^{r} e^{\beta x}}{f^{(r)}(\beta+i k)}
$$

where $f^{(r)}(\beta+i k)$ is formed as in 8.123.
8.129

$$
V=c e_{1}^{\beta x} \sin (k x+\alpha) .
$$

If $(\beta+i k)$ is not a root of $f(D)=0$ the particular integral is the real part of

$$
\frac{-i c e^{\imath(k x+\alpha)} e^{\beta x}}{f(\beta+i k)}
$$

If ($\beta+i k$) is a multiple root of order r of $f(D)=0$ the particular integral is the real part of

$$
\frac{-i c e^{\imath(h x+\alpha)} x^{r} e^{\beta x}}{f^{(r)}(\beta+i k)}
$$

8.130

$$
V(x)=x^{m} X
$$

where X is any function of x.
$y=x^{m} \frac{I}{f(D)} X+m x^{m-1}\left\{\frac{d}{d D} \frac{I}{f(D)}\right\} X+\frac{m(m-I)}{2!} x^{m-2}\left\{\frac{d^{2}}{d D^{2}} \frac{\mathrm{I}}{f(D)}\right\} X+\ldots .$.
The series must be extended to the $(m+1)$ th term.
8.200 Homogeneous linear equations. General form:

$$
x^{n} \frac{d^{n} y}{d x^{n}}+a_{1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{n-1} x \frac{d y}{d x}+a_{n} y=V(x)
$$

Denote the operator:

$$
\begin{gathered}
x \frac{d}{d x}=\theta \\
x^{m} \frac{d^{m}}{d x^{m}}=\theta(\theta-\mathrm{I})(\theta-2) \cdots(\theta-m+\mathrm{I})
\end{gathered}
$$

The differential equation may be written:

$$
F(\theta) \cdot y=V(x)
$$

The complete solution is the sum of the complementary function, obtained by solving the equation with $V(x)=0$, and the particular integral.
8.201 The complementary function.

$$
y=c_{1} x^{\lambda_{1}}+c_{2} x^{\lambda_{2}}+\ldots+c_{n} x^{\lambda_{n}},
$$

where $\lambda_{1}, \lambda_{2}, \ldots \ldots, \lambda_{n}$ are the n roots of

$$
F(\lambda)=0
$$

if the roots are all distinct.
If λ_{k} is a multiple root of order r, the corresponding terms in the complementary function are:

$$
x^{\lambda_{k}\left\{b_{1}+b_{2} \log x+b_{3}(\log x)^{2}+\ldots+b_{r}(\log x)^{r-1}\right\} . ~ . ~}
$$

If $\lambda=\mu \pm i \nu$ is a pair of complex roots, of order r, the corresponding terms in the complementary function are:

$$
\begin{aligned}
& x^{\mu}\left\{\left[A_{1}+A_{2} \log x+A_{3}(\log x)^{2}+\ldots+A_{r}(\log x)^{r-1}\right] \cos (\nu \log x)\right. \\
& \left.\quad+\left[B_{1}+B_{2} \log x+B_{3}(\log x)^{2}+\ldots+B_{r}(\log x)^{r-1}\right] \sin (\nu \log x)\right\} .
\end{aligned}
$$

8.202 The particular integral.

If

$$
\begin{gathered}
F(\theta)=\left(\theta-\lambda_{1}\right)\left(\theta-\lambda_{2}\right) \cdots\left(\theta-\lambda_{n}\right), \\
y=x^{\lambda_{1}} \int x^{\lambda_{2}-\lambda_{1}-1} d x \int x^{\lambda_{3}-\lambda_{2}-1} d x \ldots x^{\lambda_{n} \lambda_{n-1}-1} V(x) d x .
\end{gathered}
$$

8.203 The operator $\frac{I}{F(\theta)}$ may be resolved into partial fractions:

$$
\begin{aligned}
& \frac{\mathrm{I}}{F(\theta)}=\frac{N_{1}}{\theta-\lambda_{1}}+\frac{N_{2}}{\theta-\lambda_{2}}+\ldots+\frac{N_{n}}{\theta-\lambda_{n}} \\
& y=N_{1} x^{\lambda_{1}} \int x^{-\lambda_{1}-1} V(x) d x+N_{2} x^{\lambda_{2}} \int x^{-\lambda_{2}-1} V(x) d x \\
&+\ldots+N_{n} x^{\lambda_{n}} \int x^{-\lambda_{n}-1} V(x) d x
\end{aligned}
$$

The particular integral in special cases.
8.210

$$
\begin{aligned}
V(x) & =c x^{k}, \\
y & =\frac{c}{F(k)} x^{k},
\end{aligned}
$$

unless k is a root of $F(\theta)=0$.
If k is a multiple root of order r of $F(\theta)=0$.

$$
y=\frac{c(\log x)^{r}}{F^{(r)}(k)},
$$

where $F^{(r)}(k)$ is obtained by taking the r th derivative of $F(\theta)$ with respect to θ and after differentiation substituting k for θ.
8.211
where X is any function of x.

$$
\begin{aligned}
& V(x)=c x^{k} X, \\
& y=c x^{k} \frac{I}{F(\theta+k)} X .
\end{aligned}
$$

8.220 The differential equation:

$$
(a+b x)^{n} \frac{d^{n} y}{d x^{n}}+(a+b x)^{n-1} a_{1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots++(a+b x) a_{n-1} \frac{d y}{d x}+a_{n} y=V(x)
$$ may be reduced to the homogeneous linear equation (8.200) by the change of variable

$$
z=a+b x
$$

It may be reduced to a linear equation with constant coefficients by the change of variable:

$$
e^{z}=a+b x .
$$

8.230 The general linear equation. General form:

$$
P_{0} \frac{d^{n} y}{d x^{n}}+P_{1}^{\frac{d^{n-1} y}{d x^{n-1}}+\ldots+P_{n-1} \frac{d y}{d x}+P_{n}=V, ~}
$$

where $P_{0}, P_{1}, \ldots, P_{n}, V$ are functions of x only.
The complete solution is the sum of:
(a) The complementary function, which is the general solution of the equation with $V=0$, and containing n arbitrary constants, and
(b) The particular integral.
8.231 Complementary Function. If $y_{1}, y_{2}, \ldots, y_{n}$ are n independent solutions of 8.230 with $V=0$, the complementary function is

$$
y=c_{1} y_{1}+c_{2} y_{2}+\cdots \cdots+c_{n} y_{n} .
$$

The conditions that $y_{1}, y_{2}, \ldots, y_{n}$ be n independent solutions is that the determinant $\Delta \neq 0$.

When $\Delta \neq 0$:

$$
\Delta=C e^{-\int \frac{P_{1}}{P_{0} d x}} .
$$

8.232 The particular integral. If Δ_{l} is the minor of $\frac{d^{n-1} y_{k}}{d x^{n-1}}$ in Δ, the particular integral is:

$$
y=y_{1} \int \frac{V \Delta_{1}}{P_{0} \Delta} d x+y_{2} \int \frac{V \Delta_{2}}{P_{0} \Delta} d x+\ldots+y_{n} \int \frac{V \Delta_{n}}{P_{0} \Delta} d x
$$

8.233 If y_{1} is one integral of the equation 8.230 with $v=0$, the substitution

$$
y=u y_{1}, \quad v=\frac{d u}{d x},
$$

will result in a linear equation of order $n-\mathrm{I}$.
8.234 If $y_{1}, y_{2}, \ldots \ldots, y_{n-1}$ are n - I independent integrals of 8.230 with $V=0$ the complete solution is:

$$
y=\sum_{k=\mathrm{I}}^{n-\mathrm{I}} y c_{k k}+c_{n} \sum_{k=\mathrm{I}}^{n-\mathrm{I}} y_{k} \int \frac{\Delta_{k}}{\Delta^{2}} e^{-\int \frac{P_{1}}{P_{0}} d x} d x
$$

where Δ is the determinant:
and Δ_{k} is the minor of $\frac{d^{n-2} y_{k}}{d x^{n-2}}$ in Δ.

SYMBOLIC METHODS

8.240 Denote the operators:

$$
\begin{gathered}
\frac{d}{d x}=D \\
x \frac{d}{d x}=\theta .
\end{gathered}
$$

8.241 If X is a function of \dot{x} :
I.

$$
(D-m)^{-1} X=\epsilon^{m x} \int e^{-m x} X d x \text {. }
$$

2.

$$
(D-m)^{-1} \circ=c e^{m x} .
$$

3.

$$
\begin{aligned}
& (\theta-m)^{-1} X=x^{m} . \int x^{-m-1} X d x . \\
& (\theta-m)^{-1} \circ=c x^{m} .
\end{aligned}
$$

8.242 If $F(D)$ is a polynomial in D,
I.

$$
F(D) e^{m x}=e^{m x} F(m)
$$

2.

$$
\begin{aligned}
& F(D) e^{m x} X=e^{m x} F(D+m) X \\
& e^{m x} F(D) X=F(D-m) e^{m x} X
\end{aligned}
$$

3.

8.243 If $F(\theta)$ is a polynomial in θ,
I.

$$
F(\theta) x^{m}=x^{m} F(m)
$$

2.

$$
F(\theta) x^{m} X=x^{m} F(\theta+m) X
$$

3.

$$
x^{m} F(\theta) X=F(\theta-m) x^{m} X
$$

8.244

$$
x^{m} \frac{d^{m}}{d x^{m}}=\theta(\theta-\mathrm{I})(\theta-2) \cdots(\theta-m+\mathrm{I})
$$

INTEGRATION IN SERIES

8.250 If a linear differential equation can be expressed in the symbolic form:

$$
\left[x^{m} F(\theta)+f(\theta)\right] y=0
$$

where $F(\theta)$ and $f(\theta)$ are polynomials in θ, the substitution,

$$
y=\sum_{n=0}^{\infty} a_{n} x^{\rho+n m}
$$

leads to the equations,

$$
\begin{aligned}
& a_{0} f(\rho)=0 \\
& a_{0} F(\rho)+a_{1} f(\rho+m)=0 \\
& a_{1} F(\rho+m)+a_{2} f(\rho+2 m)=0 \\
& a_{2} F(\rho+2 m)+a_{3} f(\rho+3 m)=0 \\
& \ldots
\end{aligned}
$$

8.251 The equation

$$
f(\rho)=0
$$

is the "indicial equation." If it is satisfied a_{0} may be chosen arbitrarily, and the other coefficients are then determined.
8.252 An equation:

$$
\left[F(\theta)+\phi(\theta) \frac{d^{m}}{d x^{m}}\right] y=0
$$

may be reduced to the form 8.250, where,

$$
f(\theta)=\phi(\theta-m) \theta(\theta-I)(\theta-2) \ldots(\theta-m+I)
$$

If the degree of the polynomial f is greater than that of F the series always converges; if the degree of f is less than that of F the series always diverges.
8.300

$$
\frac{d^{n} y}{d x^{n}}=X,
$$

where X is a function of x only.

$$
y=\frac{I}{(n-I)!} \int_{0}^{x}(x-t)^{n-1} T d t+c_{1} x^{n-1}+c_{2} x^{x-2}+\ldots+c_{n-1} x+c_{n},
$$

where T is the same function of t that X is of x.
8.301

$$
\frac{d^{2} y}{d x^{2}}=Y,
$$

where Y is a function of y only.
If

$$
\psi(y)=2 \int Y d y
$$

the solution is:

$$
\int \frac{d y}{\left\{\psi(y)+c_{1}\right\}^{3}}=x+c_{2} .
$$

8.302

$$
\frac{d^{n} y}{d x^{n}}=F\left(\frac{d^{n-1} y}{d x^{n-1}}\right) .
$$

Put

$$
\begin{aligned}
\frac{d^{n-1} y}{d x^{n-1}} & =Y ; \quad \frac{d Y}{d x}=F(Y), \\
x+c_{1} & =\int \frac{d Y}{F(Y)}=\psi(Y), \\
Y & =\phi\left(x+c_{1}\right), \\
\frac{d^{n-1} y}{d x^{n-1}} & =\phi\left(x+c_{1}\right),
\end{aligned}
$$

and this equation may be solved by 8.300 .
Or the equation can be solved:

$$
y=\int \frac{d Y}{F(Y)} \int \frac{d Y}{F(Y)} \cdots \cdots \int \frac{Y d Y}{F(Y)},
$$

where the integration is to be carried out from right to left and an arbitrary constant added after each integration. Eliminating Y between this result and
gives the solution.

$$
Y=\phi\left(x+c_{1}\right)
$$

8.303

$$
\frac{d^{n} y}{d x^{n}}=F\left(\frac{d^{n-2} y}{d x^{n-2}}\right) .
$$

Put

$$
\begin{aligned}
\frac{d^{n-2} y}{d x^{n-2}} & =Y \\
\frac{d^{2} Y}{d x^{2}} & =F(Y),
\end{aligned}
$$

which may be solved by 8.301. If the solution can be expressed:

$$
Y=\phi(x)
$$

$n-2$ integrations will solve the given differential equation.
Or putting

$$
\begin{gathered}
\psi(y)=2 \int Y d y \\
y=\int \frac{d Y}{\left\{c_{1}+\psi(Y)\right\}^{2}} \int \frac{d Y}{\left\{c_{1}+\psi(Y)\right\}^{\frac{1}{2}}} \cdots \cdots \iint \frac{Y d Y}{\left\{c_{1}+\psi(Y)\right\}^{\frac{1}{2}}}
\end{gathered}
$$

where the integration is to be carried out from right to left and an arbitrary constant added after each integration. The solution of the given differential equation is obtained by elimination between this result and

$$
Y=\phi(x)
$$

8.304 Differential equations of the second order in which the independent variable does not appear. General type:

$$
F\left(y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}\right)=0 .
$$

Put

$$
p=\frac{d y}{d x}, \quad p \frac{d p}{d y}=\frac{d^{2} y}{d x^{2}} .
$$

A differential equation of the first order results:

$$
F\left(y, p, p \frac{d p}{d y}\right)=0
$$

If the solution of this equation is:

$$
p=f(y)
$$

the solution of the given equation is,

$$
x+c_{2}=\int \frac{d y}{f(y)}
$$

8.305 Differential equations of the second order in which the dependent variable does not appear. General type:

$$
F\left(x, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}\right)=0 .
$$

Put

$$
p=\frac{d y}{d x}, \quad \frac{d p}{d x}=\frac{d^{2} y}{d x^{2}} .
$$

A differential equation of the first order results:

$$
F\left(x, p, \frac{d p}{d x}\right)=0 .
$$

If the solution of this equation is:

$$
p=f(x),
$$

the solution of the given equation is:

$$
y=c_{2}+\int f(x) d x .
$$

8.306 Equations of an order higher than the second in which either the independent or the dependent variable does not appear. The substitution:

$$
\frac{d y}{d x}=p
$$

as in 8.304 and 8.305 will result in an equation of an order less by unity than the given equation.
8.307 Homogeneous differential equations. If y is assumed to be of dimensions n, x of dimensions $\mathrm{I}, \frac{d y}{d x}$ of dimensions $(n-1), \frac{d^{2} y}{d x^{2}}$ of dimensions $(n-2)$, then if every term has the same dimensions the equation is homogeneous. If the independent variable is changed to θ and the dependent variable changed to z by the relations,

$$
x=e^{\theta}, \quad y=z e^{n \theta},
$$

the resulting equation will be one in which the independent variable does not appear and its order can be lowered by unity by 8.306 .

If $y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \ldots$ are assumed all to be of the same dimensions, and the equation is homogeneous, the substitution:

$$
y=e^{\int u d x},
$$

will result in an equation in u and x of an order less by unity than the given equation.
8.310 Exact differential equations. A linear differential equation:

$$
P_{n} \frac{d^{n} y}{d x^{n}}+P_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+P_{1} \frac{d y}{d x}+P_{0}=P
$$

where $P, P_{0}, P_{1}, \ldots \ldots P_{n}$ are functions of x is exact if:

$$
P_{0}-\frac{d P_{1}}{d x}+\frac{d^{2} P_{2}}{d x^{2}}-\ldots \ldots+(-1)^{n} \frac{d^{n} P_{n}}{d x^{n}}=0 .
$$

The first integral is:

$$
Q_{n} \frac{d^{n-1}}{d x^{n-1}}+Q_{n-1} \frac{d^{n-2} y}{d x^{n-2}}+\ldots+Q_{1} y=\int P d x+c_{1}
$$

where,

$$
\begin{aligned}
& Q_{n}=P_{n}, \\
& Q_{n-1}=P_{n-1}-\frac{d P_{n}}{d x}, \\
& Q_{n-2}=P_{n-2}-\frac{d P_{n-1}}{d x}+\frac{d^{2} P_{n}}{d x^{2}}, \\
& Q_{1}=P_{1}-\frac{d P_{2}}{d x}+\frac{d^{2} P_{3}}{d x^{2}}-\ldots+(-\mathrm{I})^{n-1} \frac{d^{n-1} P_{n}}{d x^{n-1}} .
\end{aligned}
$$

If the first integral is an exact differential equation the process may be continued as long as the coefficients of each successive integral satisfy the condition of integrability.
8.311 Non-linear differential equations. A non-linear differential equation of the nth order:

$$
V\left(\frac{d^{n} y}{d x^{n}}, \frac{d^{n-1} y}{d x^{n-1}}, \ldots, \frac{d y}{d x}, y, x\right)=0
$$

to be exact must contain $\frac{d^{n} y}{d x^{n}}$ in the first degree only. Put

$$
\frac{d^{n-1} y}{d x^{n-1}}=p, \quad \frac{d^{n} y}{d x^{n}}=\frac{d p}{d x}
$$

Integrate the equation on the assumption that p is the only variable and $\frac{d \dot{p}}{d x}$ its differential coefficient. Let the result be V_{1}. In $V d x-d V_{1}, \frac{d^{n-1} y}{d x^{n-1}}$ is the highest differential coefficient and it occurs in the first degree only. Repeat this process as often as may be necessary and the first integral of the exact differential equation will be

$$
V_{1}+V_{2}+\ldots \ldots .
$$

If this process breaks down owing to the appearance of the highest differential coefficient in a higher degree than the first the given differential equation was not exact.
8.312 General condition for an exact differential equation. Write:

$$
\frac{d y}{d x}=y^{\prime} \quad \frac{d^{2} y}{d x^{2}}=y^{\prime \prime} \ldots \ldots \frac{d^{n} y}{d x^{n}}=y^{(n)} .
$$

In order that the differential equation:

$$
V\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, \ldots, y^{(n)}\right)=0
$$

be exact it is necessary and sufficient that

$$
\frac{\partial V}{\partial y}-\frac{\partial}{\partial x}\left(\frac{\partial V}{\partial y^{\prime}}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial V}{\partial y^{\prime \prime}}\right)-\ldots+(-I)^{n} \frac{\partial^{n}}{\partial x^{n}}\left(\frac{\partial V}{\partial y^{(n)}}\right)=0 .
$$

8.400 Linear differential equations of the second order.

General form:

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R
$$

where P, Q, R are, in general, functions of x.
8.401 If a solution of the equation with $R=0$:

$$
y=w
$$

can be found, the complete solution of the given differential equation is:

$$
y=c_{2} w+c_{1} w \int e^{-\int P d x} \frac{d x}{w w^{2}}+w \int . e^{-\int P d x} \frac{d x}{w^{2}} \int w R e^{\int P d x} d x .
$$

8.402 The general linear differential equation of the second order may be reduced to the form:
where:

$$
\begin{aligned}
\frac{d^{2} v}{d x^{2}}+I v & =R e^{\frac{1}{2} \int P d x}, \\
y & =v e^{-\frac{1}{2}} \int P d x \\
I & =Q-\frac{I}{2} \frac{d P}{d x}-\frac{I}{4} P^{2} .
\end{aligned}
$$

8.403 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=0
$$

by the change of independent variable to

$$
z=\int e^{-\int P d x} d x
$$

becomes:

$$
\frac{d^{2} y}{d z^{2}}+Q e^{2 \int P d x} y=0
$$

By the change of independent variable.

$$
\begin{aligned}
& d z=Q e^{\int P d x} d x \\
& Q e^{2} \quad P d x=\frac{I}{U(z)}
\end{aligned}
$$

it becomes:

$$
\frac{d}{d z}\left\{\frac{I}{U} \frac{d y}{d z}\right\}+y=0
$$

8.404 Resolution of the operator. The differential equation:

$$
u \frac{d^{2} y}{d x^{2}}+v \frac{d y}{d x}+w y=0
$$

may sometimes be solved by resolving the operator,

$$
u \frac{d^{2}}{d x^{2}}+v \frac{d}{d x}+w
$$

into the product,

$$
\left(p \frac{d}{d x}+q\right)\left(r \frac{d}{d x}+s\right)
$$

The solution of the differential equation reduces to the solution of

$$
r \frac{d y}{d x}+s y=c_{1} e^{-\int \frac{q}{\bar{p}} d x}
$$

The equations for determining p, r, q, s are:

$$
\begin{aligned}
p r & =u \\
q r+p s+p \frac{d r}{d x} & =v \\
q s+p \frac{d s}{d x} & =w
\end{aligned}
$$

8.410 Variation of parameters. The complete solution of the differential equation:

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R
$$

is

$$
y=c_{1} f_{2}(x)+c_{2} f_{1}(x)+\frac{I}{C} \int^{x} R(\xi) e^{\int^{\xi} P d x}\left\{f_{2}(x) f_{1}(\xi)-f_{1}(x) f_{2}(\xi)\right\} d \xi
$$

where $f_{1}(x)$ and $f_{2}(x)$ are two particular solutions of the differential equation with $R=0$, and are therefore connected by the relation

$$
f_{1} \frac{d f_{2}}{d x}-f_{2} \frac{d f_{1}}{d x}=C e^{-P d x}
$$

C is an absolute constant depending upon the forms of f_{1} and f_{2} and may be taken as unity.
8.500 The differential equation:

$$
\left(a_{2}+b_{2} x\right) \frac{d^{2} y}{d x^{2}}+\left(a_{1}+b_{1} x\right) \frac{d y}{d x}+\left(a_{0}+b_{0} x\right) y=0
$$

8.501 Let

$$
D=\left(a_{0} b_{1}-a_{1} b_{0}\right)\left(a_{1} b_{2}-a_{2} b_{1}\right)-\left(a_{0} b_{2}-a_{2} b_{0}\right)^{2}
$$

Special cases.
$8.502 \quad b_{2}=b_{1}=b_{0}=0$.
The solution is:

$$
y_{1}=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x},
$$

where:

$$
\frac{\lambda_{1}}{\lambda_{2}}=\frac{-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{0} a_{2}}}{2 a_{2}}
$$

$8.503 D=0, b_{2}=0$,

$$
y=e^{\lambda x}\left\{c_{1}+c_{2} \int e^{-(h+2 \lambda) x-m x^{2}} d x\right\}
$$

where:

$$
k=\frac{a_{1}}{a_{2}} \quad m=\frac{b_{1}}{2 a_{2}} \quad \lambda=-\frac{b_{0}}{b_{1}} .
$$

8.504 $D=0, b_{2} \neq 0$:

$$
y=e^{\lambda x}\left\{c_{1}+c_{2} \int e^{-(h+2 \lambda) x}\left(a_{2}+b_{2} x\right)^{m} d x\right\},
$$

where

$$
k=\frac{b_{1}}{b_{2}} \quad m=\frac{a_{2} b_{1}-a_{1} b_{2}}{b_{2}^{3}},
$$

and λ is the common root of:

$$
\begin{aligned}
& a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0 \\
& b_{2} \lambda^{2}+b_{1} \lambda+b_{0}=0
\end{aligned}
$$

8.505 $D \neq 0, b_{2}=b_{1}=0$. If $\eta=f(\xi)$ is the complete solution of:

$$
\begin{aligned}
\frac{d^{2} \eta}{d \xi^{2}}+\xi \eta & =0 \\
y & =e^{\lambda x f}\left(\frac{\alpha+\beta x}{\beta^{3}}\right),
\end{aligned}
$$

where

$$
\alpha=\frac{4 a_{0} a_{2}-a_{1}^{2}}{4 a_{2}^{2}} \quad \beta=\frac{b_{0}}{a_{2}} \quad \lambda=-\frac{a_{1}}{2 a_{2}} .
$$

8.510 The differential equation 8.500 under the condition $D \neq \circ$ can always be reduced to the form:

$$
\xi \frac{d^{2} \phi}{d \xi^{2}}+(p+q+\xi) \frac{d \phi}{d \xi}+p \phi=0
$$

8.511 Denote the complete solution of 8.510:

$$
\phi=F\{\xi\} .
$$

$8.512 b_{2}=b_{1}=0:$

$$
y=e^{\lambda x+\left(\mu+\nu_{x}\right)} F\left\{2(\mu+\nu x)^{\frac{s}{2}}\right\},
$$

where:

$$
\begin{aligned}
\lambda=-\frac{a_{1}}{2 a_{2}} & \mu \\
\nu & =\frac{a_{1}{ }^{2}-4 a_{0} a_{2}}{4 a_{2}{ }^{2}}\left(\frac{4 a_{2}{ }^{2}}{9 b_{0}^{2}}\right)^{\frac{3}{2}}, \\
\nu & =-\left(\frac{4 b_{0}}{9 a_{2}}\right)^{\frac{3}{2}}, \\
p & =q=\frac{I}{6} .
\end{aligned}
$$

$8.513 \quad b_{2}=0, b_{1} \neq 0:$

$$
y=e^{\lambda x} F\left\{\frac{\left(\alpha_{1}+\beta_{1} x\right)^{2}}{2 \beta_{1}}\right\}
$$

where:

$$
\begin{aligned}
\lambda & =-\frac{b_{0}}{b_{1}} \quad \alpha_{1}=\frac{a_{1} b_{1}-2 a_{2} b_{0}}{a_{2} b_{1}}, \quad \beta_{1}=\frac{b_{1}}{a_{2}}, \\
p & =\frac{a_{2} b_{0}^{2}-a_{1} b_{0} b_{1}+a_{0} b_{1}^{2}}{2 b_{1}^{3}}, \\
q & =\frac{1}{2}-p .
\end{aligned}
$$

$8.514 \quad b_{2} \neq 0, b_{0}=\frac{b_{1}^{2}}{4 b_{2}}$

$$
y=e^{\lambda x+\sqrt{\mu+\nu x}} F\{2 \sqrt{\mu+\nu x}\}
$$

where:

$$
\begin{aligned}
\lambda & =-\frac{b_{1}}{2 b_{2}}, \mu=-a_{2} \frac{4 a_{0} b_{2}^{2}-2 a_{1} b_{1} b_{2}+a_{2} b_{1}^{2}}{b_{2}{ }^{4}} \\
\nu & =-\frac{4 a_{0} b_{2}^{2}-2 a_{1} b_{1} b_{2}+a_{2} b_{1}^{2}}{b_{2}^{3}} \\
p & =q=\frac{a_{1} b_{2}-a_{2} b_{1}}{b_{2}^{2}}-\frac{I}{2}
\end{aligned}
$$

$8.515 \quad b_{2} \neq 0, b_{0} \neq \frac{b_{1}{ }^{2}}{4 b_{2}}:$

$$
y=e^{\lambda x} F\left\{\frac{\beta_{1}\left(\alpha_{2}+\beta_{2} x\right)}{\beta_{2}{ }^{2}}\right\},
$$

where $\alpha_{2}=a_{2}, \beta_{2}=b_{2}, \beta_{1}=2 b_{2} \lambda+b_{1}$ and λ is one of the roots of $b_{2} \lambda^{2}+b_{1} \lambda+b_{0}=0$.

$$
p=\frac{a_{2} \lambda^{2}+a_{1} \lambda+a_{0}}{2 b_{2} \lambda+b_{1}}, \quad q=\frac{a_{1} b_{2}-a_{2} b_{1}}{b_{2}^{2}}-p
$$

8.520 The solution of 8.510 will be denoted:

$$
\phi=F(p, q, \xi)
$$

I.

$$
F(p, q, \xi)=e^{-\xi} F(q, p,-\xi)
$$

2. $\quad F(p, q,-\xi)=e^{\xi} F(q, p, \xi)$
3.

$$
F(q, p, \xi)=e^{-\xi} F(p, q,-\xi)
$$

4. $\quad F(p, q, \xi)=\xi^{1-p-\alpha} F(I-q, I-p, \xi)$.
5. $\quad F(-p,-q, \xi)=\xi^{1+p+q} F(I+q, \mathrm{I}+p, \xi)$.
6.

$$
F(p+m, q, \xi)=\frac{d^{m}}{d \xi^{m}} F(p, q, \xi)
$$

7.

$$
F(p, q+n, \xi)=(-\mathrm{x})^{n} e^{-\xi} \frac{d^{n}}{d \xi^{n}}\left\{e^{\xi} F(p, q, \xi)\right\}
$$

8.521 The function $F(p, q, \xi)$ can always be found if it is known for positive proper fractional values of p and q.
$8.522 p$ and q positive improper fractions:

$$
p=m+r, \quad q=n+s
$$

where m and n are positive integers and r and s positive proper fractions.

$$
F(m+r, n+s, \xi)=(-\mathrm{I})^{n} \frac{d^{m}}{d \xi^{m}}\left[e^{-\xi} \frac{d^{n}}{d \xi^{n}}\left\{e^{\xi} F(r, s, \xi)\right\}\right] .
$$

$8.523 p$ and q both negative:

$$
\begin{gathered}
p=-(m-\mathrm{I}+r) \quad q=-(n-\mathrm{I}+s), \\
F(-m+\mathrm{I}-r,-n+\mathrm{I}-s, \xi)=(-\mathrm{I})^{m} \xi^{m+n+r+s-1} \frac{d^{n}}{d \xi^{n}}\left[e^{-\xi} \frac{d^{m}}{d \xi^{m}}\left\{e^{\xi} F(s, r, \xi)\right\}\right] .
\end{gathered}
$$

$8.524 \quad p$ positive, q negative:

$$
\begin{gathered}
p=m+r, \quad q=-n+s, \\
F(m+r,-n+s, \xi)=\frac{d^{m}}{d \xi^{m}}\left[\xi^{n+1-r-s} \frac{d^{n}}{d \xi^{n}} F(\mathrm{I}-s, \mathrm{I}-r, \xi)\right] .
\end{gathered}
$$

$8.525 p$ negative, q positive:

$$
\begin{gathered}
p=-m+r, \quad q=n+s, \\
F(-m+r, n+s, \xi)=(-\mathrm{I})^{m+n} e^{-\xi} \frac{d^{n}}{d \xi^{n}}\left[\xi^{m+1-r-s} \frac{d^{m}}{d \xi^{m}}\left\{e^{\xi} F(\mathrm{I}-s, \mathrm{I}-r, \xi)\right\}\right] .
\end{gathered}
$$

8.530 If either p or q is zero the relation $D=0$ is satisfied and the complete solution of the differential equation is given in 8.502, 3 .
8.531 If $p=m$, a positive integer:
$\phi=F(m, q, \xi)=c_{1} \frac{d^{m-1}}{d \xi^{m-1}}\left[\xi^{-q} e^{-\xi} . \int \xi^{q-1} e^{\xi} d \xi\right]+c_{2} \frac{d^{m-1}}{d \xi^{m-1}}\left[\xi^{-q} e^{-\xi}\right]$.
8.532 If $p=m$, a positive integer and both q and ξ are positive:
$\phi=F(m, q, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{m-1}(\mathrm{I}-u)^{q-1} e^{-\xi u} d u+c_{2} e^{-\xi} \int^{\infty}(\mathrm{I}+u)^{m-1} u^{q-1} e^{-\xi u} d u$.
8.533 If $q=n$, a positive integer:
$\phi=F(p, n, \xi)=c_{1} e^{-\xi} \frac{d^{n-1}}{d \xi^{n-1}}\left[\xi^{-p} e^{\xi} \int \xi^{p-1} e^{-\xi} d \xi\right]+c_{2} e^{-\xi} \frac{d^{n-1}}{d \xi^{n-1}}\left[\xi^{-p} e^{\xi}\right]$.
8.534 If $q=n$, a positive integer and both p and ξ are positive:
$\phi=F(p, n, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{p-1}(I-u)^{n-1} e^{-\xi u} d u+c_{2} e^{-\xi} \int_{0}^{\infty}(I+u)^{p-1} u^{n-1} e^{-\xi u} d u$.
8.540 The general solution of equation 8.510 may be written:

$$
\begin{aligned}
& \phi=F(p, q, \xi)=c_{1} M+c_{2} N, \\
& M=\int_{0}^{I} u^{p-1}(\mathrm{I}-u)^{q-1} e^{-\xi u} d u \\
& p>0 \\
& q>0 \\
& N=\int_{0}^{\infty}(\mathrm{I}+u)^{p-1} u^{q-1} e^{-\xi(1+u)} d u \quad \begin{array}{ll}
q>0 \\
\xi>0
\end{array} \\
& M=\frac{\Gamma(p) \Gamma(q)}{\Gamma(s)}\left\{\mathrm{I}-\frac{p}{s} \frac{\xi}{\mathrm{I}!}+\frac{p(p+\mathrm{I})}{s(s+\mathrm{I})} \frac{\xi^{2}}{2!}-\frac{p(p+\mathrm{I})(p+2)}{s(s+I)(s+2)} \frac{\xi^{3}}{3!}+\ldots\right\} \\
& s=p+q, \\
& N=\frac{\Gamma(q) e^{-\xi}}{\xi^{q}}\left\{I+\frac{(p-1) q}{I!\xi}+\frac{(p-\mathrm{I})(p-2) q(q+\mathrm{I})}{2!\xi}+\ldots .\right. \\
& +\frac{(p-1)(p-2) \ldots(p-\overline{n-1})(q)(q+1) \ldots(q+n-2)}{(n-1)!\xi^{n-1}} \\
& \left.+\frac{\rho(p-1)(p-2) \ldots(p-n) q(q+1)(q+2) \ldots(q+n-1)}{n^{\prime} \xi^{n}}\right\} \text {, }
\end{aligned}
$$

where $0<\rho<\mathrm{I}$ and the real part of ξ is positive.

THE COMPLETE SOLUTION OF EQUATION 8.510 IN SPECIAL CASES
$8.550 p>0, q>0$, real part of $\xi>0$:

$$
F(p, q, \xi)=c_{1} \int_{0}^{I} u^{p-1}(I-u)^{q-1} e^{-\xi u} d u+c_{2} e^{-\xi} \int_{0}^{\infty}(I+u)^{p-1} u^{q-1} e^{-\xi u} d u
$$

$8.551 p>0, q>0, \xi<0$:

$$
F(p, q ; \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{p-1}(\mathrm{x}-u)^{q-1} e^{-\xi u} d u+c_{2} \int^{\infty} u^{p-1}(\mathrm{I}+u)^{q-1} e^{\xi u} d u
$$

$8.552 p<0, q<0, \xi>0$:

$$
F(p, q, \xi)=\xi^{1-p-q}\left\{c_{1} \int_{0}^{\mathrm{I}}(I-u)^{-p} u^{-q} e^{-\xi u} d u+c_{2} e^{-\xi} \int_{0}^{\infty} u^{-p}(\mathrm{I}+u)^{-q} e^{-\xi u} d u\right\} .
$$

$8.553 p<0, q<\rho, \xi<0$:

$$
F(p, q, \xi)=\xi^{1-p-q}\left\{c_{1} \int_{0}^{\mathrm{I}}(\mathrm{I}-u)^{-p^{-q}} u^{-\xi} e^{-\xi} d u+c_{2} \int_{0}^{\infty}(\mathrm{I}+u)^{-p} u^{-q} e^{+\xi u} d u\right\}
$$

$8.554 p>0, q<0$
$p=m+r$, where m is a positive integer and r a proper fraction.

$$
F(m+r, q, \xi)=\frac{d^{m}}{d \xi^{m}}\left\{\xi^{1-r-q} F(\mathrm{I}-r, \mathrm{I}-q, \xi)\right\}
$$

$$
\begin{aligned}
& \xi>0: F(\mathrm{I}-r, \mathrm{I}-q, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{-r}(\mathrm{I}-u)^{-q} e^{-\xi u} d u \\
&+c_{2} e^{-\xi} \int_{0}^{\infty}\left(\mathrm{I}+u^{-r} u^{-q} e^{-\xi u} d u\right. \\
& \xi<0: F(\mathrm{I}-r, I-q, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{-r}(\mathrm{I}-u)^{-q} e^{-\xi u} d u
\end{aligned}
$$

$8.555 p<0, q>0$,
$q=n+s$, where n is a positive integer and s a proper fraction.

$$
F(p, n+s, \xi)=e^{-\xi} \frac{d^{n}}{d \xi^{n}}\left\{e^{\xi} \xi^{1-p-s} F(工-s, 工-p, \xi)\right\}
$$

$\xi>0: \quad F(I-s, I-p, \xi)=c_{1} \int_{0}^{I} u^{-s}(I-u)^{-p} e^{-\xi u} d u$

$$
+c_{2} e^{-\xi} \int_{0}^{\infty}(\mathrm{I}+u)^{-8} u^{-p} e^{-\xi u} d u
$$

$\xi<0: \quad F(I-s, I-p, \xi)=c_{1} \int_{0}^{I} u^{-s}(I-u)^{-p} e^{-\xi} d u$

$$
+c_{2} \int_{0}^{\infty} u^{-s}(I+u)^{-p} \xi^{\xi} u d u
$$

$8.556 \quad \xi$ pure imaginary:
$p=r, q=s$, where r and s are positive proper fractions.
$r+s \neq \mathrm{I}:$

$$
\begin{aligned}
& F(r, s, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{r-1}(\mathrm{I}-u)^{s-1} e^{-\xi u} d u \\
&+c_{2} \xi^{1-r-s} \int_{0}^{\mathrm{I}} u^{-8}(\mathrm{I}-u)^{-r} e^{-\xi u} d u
\end{aligned}
$$

$r+s=\mathrm{I}:$

$$
\begin{aligned}
& F(r, s, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{r-1}(\mathrm{I}-u)^{s-1} e^{-\xi u} d u \\
&+c_{2} \int_{0}^{\mathrm{I}} u^{r-1}(\mathrm{I}-u)^{s-1} e^{-\xi u} \log \{\xi u(\mathrm{I}-u)\} d u
\end{aligned}
$$

8.600 The differential equation:

$$
x \frac{d^{2} y}{d x^{2}}+(\gamma-x) \frac{d y}{d x}-\alpha y=0
$$

is satisfied by the confluent hypergeometric function. The complete sodigtion ist.

$$
y=c_{1} M\left(\alpha, \gamma_{2}, x\right)+c_{2} x^{1-\gamma} M\left(\alpha-\gamma+\mathrm{r}_{2}, 2-\gamma_{, 2}, x\right)=\bar{M}\left(\alpha, \gamma_{2} x_{2}\right)_{,},
$$

where

$$
M(\alpha, \gamma, x)=\mathrm{I}+\frac{\alpha}{\gamma} \frac{x}{\mathrm{I}}+\frac{\alpha(\alpha+\mathrm{I})}{\gamma(\gamma+\mathrm{I})} \frac{x^{2}}{2!}+\frac{\alpha(\alpha+\mathrm{I})(\alpha+2)}{\gamma(\gamma+\mathrm{I})(\gamma+2)} \frac{x^{3}}{3!}+\ldots .
$$

The series is absolutely and uniformly convergent for all real and complex values of α, γ, x, except when γ is a negative integer or zero.

When γ is a positive integer the complete solution of the differential equation is:

$$
\begin{aligned}
y & =\left\{c_{1}+c_{2} \log x\right\} M(\alpha, \gamma, x)+c_{2}\left\{\frac{a x}{\gamma}\left(\frac{I}{\alpha}-\frac{I}{\gamma}-I\right)\right. \\
& +\frac{\alpha(\alpha+I)}{\gamma(\gamma+I)} \frac{x^{2}}{2!}\left(\frac{I}{\alpha}+\frac{I}{\alpha+I}-\frac{I}{\gamma}-\frac{I}{\gamma+I}-I-\frac{I}{2}\right) \\
& +\frac{\alpha(\alpha+I)(\alpha+2)}{\gamma(\gamma+I)(\gamma+2)} \frac{x^{3}}{3!}\left(\frac{I}{\alpha}+\frac{I}{\alpha+I}+\frac{I}{\alpha+2}-\frac{I}{\gamma}-\frac{I}{\gamma+I}-\frac{I}{\gamma+2}-I-\frac{I}{2}-\frac{I}{3}\right) \\
& +\ldots .\} .
\end{aligned}
$$

8.601 For large values of x the following asymptotic expansion may be used: $M(\alpha, \gamma, x)$

$$
\begin{aligned}
& =\frac{\Gamma(\gamma)}{\Gamma(\gamma-\alpha)}(-x)^{-\alpha}\left\{\mathrm{I}-\frac{\alpha(\alpha-\gamma+\mathrm{I})}{\mathrm{I}} \frac{\mathrm{I}}{x}+\frac{\alpha(\alpha+\mathrm{x})(\alpha-\gamma+\mathrm{I})(\alpha-\gamma+2)}{2!} \frac{\mathrm{I}}{x^{2}} \cdots\right\} \\
& +\frac{\Gamma(\gamma)}{\Gamma(\alpha)} e^{x} x^{\alpha-\gamma}\left\{\mathrm{I}+\frac{(\mathrm{I}-\alpha)(\gamma-\alpha)}{\mathrm{I}} \frac{\mathrm{I}}{x}+\frac{(\mathrm{I}-\alpha)(2-\alpha)(\gamma-\alpha)(\gamma-\alpha+\mathrm{I})}{2!} \frac{\mathrm{I}}{x^{2}}+\cdots\right\}
\end{aligned}
$$

8.61

I. $M(\alpha, \gamma, x)=e^{x} M(\gamma-\alpha, \gamma,-x)$.
2. $x^{1-\gamma} M(\alpha-\gamma+\mathrm{I}, 2-\gamma, x)=e^{x} x^{1-\gamma} M(I-\alpha, 2-\gamma,-x)$.
3. $\frac{x}{\gamma} M(\alpha+\mathrm{I}, \gamma+\mathrm{I}, x)=M(\alpha+\mathrm{I}, \gamma, x)-M(\alpha, \gamma, x)$.
4. $\alpha M(\alpha+\mathbf{I}, \gamma+\mathrm{I}, x)=(\alpha-\gamma) M(\alpha, \gamma+\mathrm{I}, x)+\gamma M(\alpha, \gamma, x)$.
5. $(\alpha+x) M(\alpha+\mathrm{r}, \gamma+\mathrm{I}, x)=(\alpha-\gamma) M(\alpha, \gamma+\mathrm{I}, x)+\gamma M(\alpha+\mathrm{I}, \gamma, x)$.
6. $\alpha \gamma M(\alpha+\mathrm{I}, \gamma, x)=\gamma(\alpha+x) M(\alpha, \gamma, x)-x(\gamma-\alpha) M(\alpha, \gamma+\mathrm{I}, x)$.的 $\alpha M(\alpha+\mathrm{I}, \gamma, x)=(x+2 \alpha-\gamma) M(\alpha, \gamma, x)+(\gamma-\alpha) M(\alpha-\mathrm{I}, \gamma, x)$.
8. $=\frac{\gamma-\alpha}{=} x M(\alpha, \gamma+\mathrm{I}, x)=(x+\gamma-\mathrm{r}) M(\alpha, \gamma, x)+(\mathrm{I}-\gamma) M(\alpha, \gamma-\mathrm{I}, x)$.

8.62

采 $\frac{\alpha}{d x}(\alpha, \gamma, x)=\frac{\alpha}{\gamma} M(\alpha+\mathrm{r}, \gamma+\mathrm{r}, x)$.
$2 .(\mathrm{I}-\alpha) \int_{0}^{x} M(\alpha, \gamma, x) d x=(\mathrm{I}-\gamma) M(\alpha-\mathrm{I}, \gamma-\mathrm{I}, x)+(\gamma-\mathrm{I})$.

Spectal differential equations and their solutions in terms of $\bar{M}(\alpha, \gamma, x)$ 8.630

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+2(p+q x) \frac{d y}{d x}+\left\{4 \alpha q+p^{2}-q^{2} m^{2}+2 q x(p+q m)\right\} y=0, \\
y=e^{-(p+q m) x} \bar{M}\left(\alpha, \frac{\mathrm{I}}{2^{\prime}}-q(x-m)^{2}\right) .
\end{gathered}
$$

8.631

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\left(2 p+\frac{\gamma}{x}\right) \frac{d y}{d x}+\left\{p^{2}-t^{2}+\frac{I}{x}(\gamma p+\gamma t-2 \alpha t)\right\} y=0, \\
y=e^{-(p+t) x} \bar{M}(\alpha, \gamma, 2 t x) .
\end{gathered}
$$

8.632

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+2(p+q x) \frac{d y}{d x}+\left\{q+c(\mathrm{r}-4 \alpha)+(p+q x)^{2}-c^{2}(x-m)^{2}\right\} y=0, \\
y=e^{-p x-\frac{1}{2} q x^{2}-\frac{1}{2} c(x-m)^{2}} \bar{M}\left(\alpha, \frac{\mathrm{I}}{2}, c(x-m)^{2}\right) .
\end{gathered}
$$

8.633

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+\left(2 p+\frac{q}{x}\right) \frac{d y}{d x}+\left\{p^{2}-\imath^{2}+\frac{I}{x}(p q+\gamma t-2 \alpha t)+\frac{I}{4 x^{2}}(\gamma-q)(2-q-\gamma)\right\} y=0, \\
& y \doteq e^{-(p+t) x} x^{\frac{\gamma-q}{2}} \bar{M}(\alpha, \gamma, 2 t x)
\end{aligned}
$$

8.634

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+\left\{\frac{2 \gamma-\mathrm{I}}{x}+2 \alpha+2(b-c) x\right\} \frac{d y}{d x} \\
& \quad+\left\{\frac{\alpha(2 \gamma-1)}{x}+\left(a^{2}+2 b \gamma-4 \alpha c\right)+2 a(b-c) x+b(b-2 c) x^{2}\right\} y=0 \\
& 8.635
\end{aligned}
$$

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\frac{\mathrm{I}}{x}\left(2 p x^{r}+q r-r+\mathrm{I}\right) \frac{d y}{d x} \\
+\frac{\mathrm{I}}{x^{2}}\left\{\left(p^{2}-t^{2}\right) x^{2 r}+r(p q+\gamma t-2 \alpha t) x^{r}+\frac{\mathrm{I}}{4} r^{2}(\gamma-q)(2-q-\gamma)\right\} y=0, \\
y=e^{-\frac{(p+t)}{r} x^{r}} x^{\frac{r}{2}(\gamma-q)} \bar{M}\left(\alpha, \gamma, \frac{2 t x^{r}}{r}\right) .
\end{gathered}
$$

8.640 Tables and graphs of the function $M(\alpha, \gamma, x)$ are given by Webb and Airey (Phil. Mag. 36, p. 129, I918) for getting approximate numerical solu-
tions of any of these differential equations. The range in x is I to 10 ; in $\alpha,+0.5$ to +4.0 and -0.5 to -3.0 ; in γ, I to 7 . For negative values of x the equations of 8.61 may be used.

SPECIAL DIFFERENTIAL EQUATIONS

8.700

$$
\frac{d^{2} y}{d x^{2}}+n^{2} y=X(x)
$$

where $X(x)$ is any function of x. The complete solution is:

$$
y=c_{1} e^{n x}+c_{2} e^{-n x}+\frac{I}{n} \int^{x} X(\xi) \sinh n(x-\xi) d \xi
$$

8.701

$$
\frac{d^{2} y}{d x^{2}}+\kappa \frac{d y}{d x}+n^{2} y=X(x)
$$

The complete solution, satisfying the conditions:

$$
\begin{array}{ll}
x=0 & y=y_{0}, \\
x=0 & \frac{d y}{d x}=y_{0}^{\prime},
\end{array}
$$

$y=e^{-\frac{2}{2} k x}\left\{y_{0}^{\prime} \frac{\sin n^{\prime} x}{n^{\prime}}+y_{0}\left(\cos n^{\prime} x+\frac{\kappa}{2 n^{\prime}} \sin n^{\prime} x\right)\right\}$
where

$$
\begin{aligned}
& \quad+\frac{I}{n^{\prime}} \int_{0}^{x} e^{-\frac{2}{2} \kappa(x-\xi)} \sin n^{\prime}(x-\xi) X(\xi) d \xi \\
& n^{\prime}=\sqrt{n^{2}-\frac{\kappa^{2}}{4}}
\end{aligned}
$$

8.702

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+f(x) \frac{d y}{d x}+g(x)\left(\frac{d y}{d x}\right)^{2}=0, \\
y=\int \frac{e^{-\int f(x) d x} d x}{\int e^{-\int f(x) d x} g(x) d x+c_{1}}+c_{2} .
\end{gathered}
$$

8.703

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+f(y)\left(\frac{d y}{d x}\right)^{2}+g(y)=0, \\
x= \pm \int \frac{e^{\int f(y) d y} d y}{\left\{c_{1}-2 \int e^{2 \int f(y) d y} g(y) d y\right\}^{\frac{3}{2}}}+c_{2} .
\end{gathered}
$$

8.704

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+f(y) \frac{d y}{d x}+g(y)\left(\frac{d y}{d x}\right)^{2}=0, \\
x=\int \frac{e^{\int g(y) d y} d y}{c_{1}-\int e^{\int g(y) d y} f(y) d y}+c_{2} .
\end{gathered}
$$

8.705

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+f(x) \frac{d y}{d x}+g(y)\left(\frac{d y}{d x}\right)^{2}=0 \\
\int e^{\mathcal{S}(y) d y} d y=c_{1} \int e^{-\int \nu(x) d x} d x+c_{2}
\end{gathered}
$$

8.706

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+(a+b x) \frac{d y}{d x}+a b x y=0 \\
& y=e^{-a x}\left\{c_{1}+c_{2} \int e^{a x-\frac{1}{2} b x^{2}} d x\right\}
\end{aligned}
$$

8.707

$$
\begin{aligned}
& x \frac{d^{2} y}{d x^{2}}+(a+b x) \frac{d y}{d x}+a b y=0, \\
& y=e^{-b x}\left\{c_{1}+c \int x^{-a} e^{b x} d x\right\}
\end{aligned}
$$

8.708

$$
\frac{d^{2} y}{d x^{2}}+\frac{a}{x} \frac{d y}{d x}+\frac{b}{x^{2}} y=0
$$

I. $(a-\mathrm{I})^{2}>4 b ; \quad \lambda=\frac{\mathrm{I}}{2} \sqrt{(a-\mathrm{I})^{2}-4 b}$

$$
y=x^{-\frac{a-x}{2}\left\{c_{1} x+c_{2} x-\lambda\right\} .}
$$

2. $(a-I)^{2}<4 b ; \quad \lambda=\frac{I}{2} \sqrt{4 b-(a-I)^{2}}$

$$
y=x^{-\frac{a-\mathrm{x}}{2}\left\{c_{1} \cos (\lambda \log x)+c_{2} \sin (\lambda \log x)\right\} ~}
$$

3. $(a-1)^{2}=4 b$

$$
y=x^{-\frac{a-\mathrm{x}}{2}}\left(c_{1}+c_{2} \log x\right)
$$

8.709

$$
\frac{d^{2} y}{d x^{2}}+2 b x \frac{d y}{d x}+\left(a+b^{2} x^{2} y=0\right.
$$

I. $a<b, \quad \lambda=\sqrt{b-a}$,

$$
y=e^{-\frac{b x^{2}}{2}}\left(c_{1} e^{\lambda x}+c_{2} e^{-\lambda x}\right)
$$

2. $a>b, \quad \lambda=\sqrt{a-b}$,

$$
y=e^{-\frac{b x^{2}}{2}}\left(c_{1} \cos \lambda x+c_{2} \sin \lambda x\right)
$$

8.710

$$
\begin{gathered}
f(x) \frac{d^{2} y}{d x^{2}}-(a+b x) \frac{d y}{d x}+b y=\dot{0}, \\
\int \frac{a+b x}{f(x)} d x=X, \\
y=c_{1}(a+b x)+c_{2}\left\{e^{X}-(a+b x) \int \frac{I}{f(x)} e^{X} d x\right\}
\end{gathered}
$$

8.711

$$
\begin{gathered}
\left(a^{2}-x^{2}\right) \frac{d^{2} y}{d x^{2}}+2(\mu-\mathrm{I}) x \frac{d y}{d x}-\mu(\mu-\mathrm{I}) y=0, \\
y=(a+x) \mu\left\{1_{1}+c_{2} \int \frac{(a-x)^{\mu-1}}{(a+x)^{\mu+1}} d x\right\} .
\end{gathered}
$$

8.712

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\frac{2}{x} \frac{d y}{d x}+\mu^{2} y=\frac{a}{x}, \\
y=\frac{x}{x}\left\{1 \cos \mu x+c_{2} \sin \mu x+\frac{a}{\mu^{2}}\right\} .
\end{gathered}
$$

8.713

$$
y=c_{1} e^{-\rho_{1} x}\left\{\rho_{1} \sin \left(\omega_{1} x+\alpha_{1}\right)+\omega_{1} \cos \left(\omega_{1} x+\alpha_{1}\right)\right\}
$$

$$
\begin{aligned}
& \frac{d^{4} y}{d x^{4}}+2 d \frac{d^{3} y}{d x^{3}}+c \frac{d^{2} y}{d x^{2}}+2 b \frac{d y}{d x}+a y=0, \\
& \left.\left.1 x+\alpha_{1}\right)+\omega_{1} \cos \left(\omega_{1} x+\alpha_{1}\right)\right\} \\
& \quad+c_{2} e^{-\rho_{2 x}}\left\{\rho_{2} \sin \left(\omega_{2} x+\alpha_{2}\right)+\omega_{2} \cos \left(\omega_{2} x+\alpha_{2}\right)\right\}
\end{aligned}
$$

where:

$$
\begin{aligned}
4 \omega_{1}{ }^{2} & =z+c-2 d^{2}+2 \sqrt{z^{2}-4 a}-2 d \sqrt{z-c+d^{2}}, \\
4 \omega_{2}^{2} & =z+c-2 d^{2}-2 \sqrt{z^{2}-4 a}+2 d \sqrt{z-c+d^{2}}, \\
2 \rho_{1} & =d+\sqrt{z-c+d^{2}}, \\
2 \rho_{2} & =d-\sqrt{z-c+d^{2}},
\end{aligned}
$$

and z is a root of

$$
z^{3}-c z^{2}-4(a-b d) z+4\left(a c-a d^{2}-b^{2}\right)=0 .
$$

(Kiebitz, Ann. d. Physik, 40, p. 138, I9I3)

IX. DIFFERENTIAL EQUATIONS (continued)

9.00 Legendre's Equation:

$$
\left(\mathrm{r}-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+\mathrm{I}) y=0 .
$$

9.001 If n is a positive integer one solution is the Legendre polynomial, or Zonal Harmonic, $P_{n}(x)$:
$P_{n}(x)=\frac{(2 n)!}{2^{n}(n!)^{2}}\left\{x^{n}-\frac{n(n-1)}{2(2 n-1)} x^{n-2}+\frac{n(n-1)(n-2)(n-3)}{2 \cdot 4 \cdot(2 n-1)(2 n-3)} x^{n-4}-\ldots.\right\}$.
9.002 If n is even the last term in the finite series in the brackets is:

$$
(-I)^{\frac{n}{2}} \frac{(n!)^{3}}{\left(\frac{n}{2}!\right)^{2}(2 n)!}
$$

9.003 If n is odd the last term in the brackets is:

$$
(-\mathrm{I})^{\frac{n-\mathrm{I}}{2}} \frac{(n!)^{2}(n-\mathrm{I})!}{\left(\left[\frac{1}{2}(n-\mathrm{I})\right]!\right)^{2}(2 n-\mathrm{I})!} x .
$$

9.010 If n is a positive integer a second solution of Legendre's Equation is the infinite series:

$$
\begin{aligned}
Q_{n}(x)=\frac{2^{n}(n!)^{2}}{(2 n+1)!}\left\{x^{-(n+1)}\right. & +\frac{(n+1)(n+2)}{2(2 n+3)} x^{-(n+3)} \\
& \left.+\frac{(n+1)(n+2)(n+3)(n+4)}{2 \cdot 4^{\cdot(2 n+3)(2 n+5)}} x^{-(n+5)}+\ldots\right\} .
\end{aligned}
$$

9.011
$P_{2 n}(\cos \theta)=(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}}\left\{\sin ^{2 n} \theta-\frac{(2 n)^{2}}{2!} \sin ^{2 n-2} \theta \cos ^{2} \theta\right.$

$$
\left.+\ldots+(-I)^{n} \frac{(2 n)^{2}(2 n-2)^{2} \ldots \cdot 4^{2} 2^{2}}{(2 n)!} \cos ^{2 n} \theta\right\} .
$$

9.012
$P_{2 n+1}(\cos \theta)=(-1)^{n} \frac{(2 n}{2^{2 n}}$
9.02 Recurrence formulae for $P_{n}(x)$:
I. $\quad(n+\mathrm{I}) P_{n+1}+n P_{n-1}=(2 n+\mathrm{I}) x P_{n}$.
2.

$$
(2 n+1) P_{n}=\frac{d P_{n+1}}{d x}-\frac{d P_{n-1}}{d x}
$$

3.
4.

$$
(n+1) P_{n}=\frac{d P_{n+1}}{d x}-x \frac{d P_{n}}{d x}
$$

$$
n P_{n}=x \frac{d P_{n}}{d x}-\frac{d P_{n-1}}{d x}
$$

5.

$$
\left(\mathrm{I}-x^{2}\right) \frac{d P_{n}}{d x}=(n+\mathrm{I})\left(x P_{n}-P_{n+1}\right)
$$

6.

$$
\begin{aligned}
& \left(I-x^{2}\right) \frac{d P_{n}}{d x}=n\left(P_{n-1}-x P_{n}\right) \\
& (2 n+I)\left(I-x^{2}\right) \frac{d P_{n}}{d x}=n(n+I)\left(P_{n-1}-P_{n+1}\right)
\end{aligned}
$$

7.

9.028 Recurrence formulae for $Q_{n}(x)$. These are the same as those for $P_{n}(x)$.
9.030 Special Values.

$$
\begin{aligned}
& P_{0}(x)=\mathrm{I} \\
& P_{1}(x)=x \\
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-\mathrm{I}\right) \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right), \\
& P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
& P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right) \\
& P_{6}(x)=\frac{1}{16}\left(231 x^{6}-315 x^{4}+105 x^{2}-5\right), \\
& P_{7}(x)=\frac{1}{16}\left(429 x^{7}-693 x^{5}+315 x^{3}-35 x\right), \\
& P_{8}(x)=\frac{1}{128}\left(6435 x^{8}-\mathrm{I} 2012 x^{6}+6930 x^{4}-\mathrm{I} 260 x^{2}+35\right) .
\end{aligned}
$$

9.031

$$
\begin{aligned}
& Q_{0}(x)=\frac{I}{2} \log \frac{x+I}{x-I} \\
& Q_{1}(x)=\frac{I}{2} x \log \frac{x+I}{x-I}-I, \\
& Q_{2}(x)=\frac{I}{2} P_{2}(x) \log \frac{x+I}{x-I}-\frac{3}{2} x, \\
& Q_{3}(x)=\frac{I}{2} P_{3}(x) \log \frac{x+I}{x-I}-\frac{5}{2} x^{2}+\frac{2}{3} .
\end{aligned}
$$

9.032

$$
\begin{aligned}
P_{2 n}(\mathrm{O}) & =(-\mathrm{I})^{n} \frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n} \\
P_{2 n+1}(\mathrm{O}) & =0 \\
P_{n}(\mathrm{I}) & =\mathrm{I} \\
P_{n}(-x) & =(-\mathrm{I})^{n} P_{n}(x)
\end{aligned}
$$

9.033 If $z=r \cos \theta:$

$$
\begin{aligned}
& \frac{\partial P_{n}(\cos \theta)}{\partial z}=\frac{n+I}{r}\left\{P_{1}(\cos \theta) P_{n}(\cos \theta)-P_{n+1}(\cos \theta)\right\} \\
&=\frac{n(n+I)}{(2 n+I) r}\left\{P_{n-1}(\cos \theta)-P_{n+1}(\cos \theta)\right\}
\end{aligned}
$$

9.034 Rodrigues' Formula:

$$
P_{n}(x)=\frac{\mathrm{I}}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-\mathrm{I}\right)^{n} .
$$

9.035 If $z=r \cos \theta:$

$$
P_{n}(\cos \theta)=\frac{(-\mathrm{I})^{n}}{n!} r^{n+1} \frac{\partial^{n}}{\partial z^{n}}\left(\frac{\mathrm{I}}{r}\right) .
$$

9.036 If $m \leqslant n$:

$$
P_{m}(x) P_{n}(x)=\sum_{k=0}^{m} \frac{A_{m-k} A_{k} A_{n-k}}{A_{n+m-k}}\left(\frac{2 n+2 m-4 k+\mathrm{I}}{2 n+2 m-2 k+\mathrm{I}}\right) P_{n+m-2 k}(x)
$$

where:

$$
A_{r}=\frac{\mathrm{x} \cdot 3 \cdot 5 \ldots(2 r-\mathrm{x})}{r!}
$$

MEHLER'S INTEGRALS

9.040 For all values of n :

$$
P_{n}(\cos \theta)=\frac{2}{\pi} \int_{0}^{\theta} \frac{\cos \left(n+\frac{1}{2}\right) \phi d \phi}{\sqrt{2(\cos \phi-\cos \theta)}}
$$

9.041 If n is a positive integer:

$$
P_{n}(\cos \theta)=\frac{2}{\pi} \int^{\pi} \frac{\sin \left(n+\frac{1}{2}\right) \phi d \phi}{\sqrt{2(\cos \theta-\cos \phi)}}
$$

LAPLACE'S INTEGRALS, FOR ALL VALUES OF n

9.042

$$
P_{n}(x)=\frac{I}{\pi} \int_{0}^{\pi}\left\{x+\sqrt{x^{2}-I} \cos \phi\right\}^{n} d \phi
$$

9.043

$$
Q_{n}(x)=\int^{\infty} \frac{d \phi}{\left\{x+\sqrt{x^{2}-I} \cosh \phi\right\}^{n+1}}
$$

INTEGRAL PROPERTIES

9.044

$$
\begin{aligned}
\int_{-1}^{+1} P_{m}(x) P_{n}(x) d x & =0 \text { if } m \neq n \\
& =\frac{2}{2 n+I} \text { if } m=n .
\end{aligned}
$$

9.045

$$
\begin{aligned}
(m-n)(m+n+1) & \int_{x}^{\mathrm{I}} P_{m}(x) P_{n}(x) d x \\
& =\frac{1}{2}\left\{P_{m}\left[(n+1) P_{n+1}-n P_{n-1}\right]-P_{n}\left[(m+\mathrm{I}) P_{m+1}-m P_{m-1}\right]\right\}
\end{aligned}
$$

9.046

$$
\begin{aligned}
(2 n+1) \int^{\mathrm{I}} P_{n}{ }^{2}(x) d x=\mathrm{I}-x P_{n}^{2}-2 x\left(P_{1}^{2}\right. & \left.+P_{2}^{2}+\ldots+P_{n-1}^{2}\right) \\
& +2\left(P_{1} P_{2}+P_{2} P_{3}+\ldots+P_{n-1} P_{n}\right)
\end{aligned}
$$

EXPANSIONS IN LEGENDRE FUNCTIONS

9.050 Neumann's expansion:

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n} P_{n}(x), \\
a_{n} & =\left(n+\frac{1}{2}\right) \int_{-\mathrm{I}}^{+\mathrm{I}} f(x) P_{n}(x) d x, \\
& =\frac{n+\frac{1}{2}}{2^{n} n!} \int_{-I}^{+\mathrm{I}} f^{(n)}(x) \cdot\left(I-x^{2}\right)^{n} d x .
\end{aligned}
$$

9.051 Any polynomial in x may be expressed as a series of Legendre's polynomials. If $f_{n}(x)$ is a polynomial of degree n :

$$
\begin{aligned}
f_{n}(x) & =\sum_{k=0}^{n} a_{k} P_{k}(x), \\
a_{k} & =\frac{2 k+\mathrm{I}}{2} \int_{-\mathrm{I}}^{+\mathrm{I}} f_{n}(x) P_{k}(x) d x .
\end{aligned}
$$

SPECIAL EXPANSIONS IN LEGENDRE FUNCTIONS

9.060 For all positive real values of n :
I. $\cos n \theta=-\frac{I+\cos n \pi}{2\left(n^{2}-1\right)}\left\{P_{0}(\cos \theta)+\frac{5 n^{2}}{\left(n^{2}-3^{2}\right)} P_{2}(\cos \theta)\right.$.

$$
\begin{aligned}
& \left.+\frac{9 n^{2}\left(n^{2}-2^{2}\right)}{\left(n^{2}-3^{2}\right)\left(n^{2}-5^{2}\right)} P_{4}(\cos \theta)+\ldots\right\}-\frac{1-\cos n \pi}{2\left(n^{2}-2^{2}\right)}\left\{3 P_{1}(\cos \theta)\right. \\
& \left.+\frac{7\left(n^{2}-I^{2}\right)}{\left(n^{2}-4^{2}\right)} P_{3}(\cos \theta)+\frac{I I\left(n^{2}-I^{2}\right)\left(n^{2}-3^{2}\right)}{\left(n^{2}-4^{2}\right)\left(n^{2}-6^{2}\right)} P_{5}(\cos \theta)+\ldots\right\} .
\end{aligned}
$$

2. $\sin n \theta=-\frac{I}{2} \frac{\sin n \pi}{\left(n^{2}-I\right)}\left\{P_{0}(\cos \theta)+\frac{5 n^{2}}{\left(n^{2}-3^{2}\right)} P_{2}(\cos \theta)\right.$

$$
\begin{aligned}
& \left.+\frac{9 n^{2}\left(n^{2}-2^{2}\right)}{\left(n^{2}-3^{2}\right)\left(n^{2}-5^{2}\right)} P_{4}(\cos \theta)+\ldots\right\}+\frac{\mathrm{I}}{2} \frac{\sin n \pi}{\left(n^{2}-2^{2}\right)}\left\{3 P_{1}(\cos \theta)\right. \\
& \left.+\frac{7\left(n^{2}-\mathrm{I}^{2}\right)}{\left(n^{2}-4^{2}\right)} P_{3}(\cos \theta)+\frac{\mathrm{II}\left(n^{2}-\mathrm{I}^{2}\right)\left(n^{2}-3^{2}\right)}{\left(n^{2}-4^{2}\right)\left(n^{2}-6^{2}\right)} P_{5}(\cos \theta)+\ldots\right\}
\end{aligned}
$$

9.061 If n is a positive integer:
I. $\cos n \theta=\frac{\mathrm{I}}{2 \cdot 4 \cdot 6 \ldots 2 n} 33 \cdot 5 \cdot 7 \cdot(2 n+\mathrm{I}) \quad\left\{(2 n+\mathrm{I}) P_{n}(\cos \theta)\right.$

$$
+(2 n-3) \frac{\left[n^{2}-(n+1)^{2}\right]}{\left[n^{2}-(n-2)^{2}\right]} P_{n-2}(\cos \theta)
$$

$$
\left.+(2 n-7) \frac{\left[n^{2}-(n+1)^{2}\right]\left[n^{2}-(n-1)^{2}\right]}{\left[n^{2}-(n-2)^{2}\right]\left[n^{2}-(n-4)^{2}\right]} P_{n-4}(\cos \theta)+\ldots\right\}
$$

2. $\sin n \theta=\frac{\pi}{4} \frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-3)}{2 \cdot 4 \cdot 6 \ldots(2 n-2)}\left\{(2 n-\mathrm{I}) P_{n-1}(\cos \theta)\right.$

$$
+(2 n+3) \frac{\left[n^{2}-(n-1)^{2}\right]}{\left[n^{2}-(n+2)^{2}\right]} P_{n+1}(\cos \theta)
$$

9.062

$$
\left.+(2 n+7) \frac{\left[n^{2}-(n-1)^{2}\right]\left[n^{2}-(n+1)^{2}\right]}{\left[n^{2}-(n+2)^{2}\right]\left[n^{2}-(n+4)^{2}\right]} P_{n+8}(\cos \theta)+\ldots\right\}
$$

I. $\quad \theta=\frac{\pi}{2}-\frac{\pi}{2} \sum_{n=1}^{\infty} \frac{(4 n-I)}{(2 n-I)^{2}}\left(\frac{I \cdot 3 \cdot 5 \ldots(2 n-I)}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} P_{2 n-1}(\cos \theta)$.
2. $\sin \theta=\frac{\pi}{4}-\frac{\pi}{2} \sum_{n=\mathrm{r}}^{\infty} \frac{(4 n+\mathrm{I})}{(2 n-\mathrm{I})(2 n+2)}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} P_{2 n}(\cos \theta)$.
3. $\cot \theta=\frac{\pi}{2} \sum_{n=1}^{\infty} \frac{2 n(4 n-\mathrm{I})}{(2 n-\mathrm{I})}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} P_{2 n-1}(\cos \theta)$.
4. $\csc \theta=\frac{\pi}{2}+\frac{\pi}{2} \sum_{n=1}^{\infty}(4 n+1)\left(\frac{I \cdot 3 \cdot 5 \ldots(2 n-I)}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} P_{2 n}(\cos \theta)$.
9.063
I. $\log \frac{\mathrm{I}+\sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}=\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{n+\mathrm{I}} P_{n}(\cos \theta)$.
2. $\log \frac{\tan \frac{1}{4}(\pi-\theta)}{\frac{1}{2} \sin \theta}=-\log \sin \frac{\theta}{2}-\log \left(\mathrm{I}+\sin \frac{\theta}{2}\right)=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{n} P_{n}(\cos \theta)$.
9.064 $K(k)$ and $E(k)$ denote the complete elliptic integrals of the first and second kinds, and $k=\sin \theta$:
I. $K(k)=\frac{\pi^{2}}{4}+\frac{\pi^{2}}{4} \sum_{n=1}^{\infty}(-\mathrm{I})^{n}(4 n+\mathrm{I})\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{3} P_{2 n}(\cos \theta)$.
2. $E(k)=\frac{\pi^{2}}{8}+\frac{\pi^{2}}{4} \sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n+1} \frac{(4 n+\mathrm{I})}{(2 n-\mathrm{I})(2 n+2)}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{3} P_{2 n}(\cos \theta)$. (Hargreaves, Mess. of Math. 26, p. 89, 1897)
9.070 The differential equation:

$$
\left(I-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\left\{n(n+I)-\frac{m^{2}}{I-x^{2}}\right\} y=0 .
$$

If m is a positive integer, and $-r>x>+I$, two solutions of this differential equation are the associated Legendre functions

$$
\begin{aligned}
& P_{n}^{m}(x)=\left(I-x^{2}\right)^{\frac{m}{2}} \frac{d^{m} P_{n}(x)}{d x^{m}} \\
& Q_{n}^{m}(x)=\left(I-x^{2}\right)^{\frac{m}{2}} \frac{d^{m} Q_{n}(x)}{d x^{m}}
\end{aligned}
$$

9.071 If n, m, r are positive integers, and $n>m, r>m$:

$$
\begin{aligned}
\int_{-\mathrm{I}}^{+\mathrm{I}} P_{n}^{m}(x) P_{r}^{m}(x) d x & =0 \text { if } r \neq n, \\
& =\frac{2}{2 n+\mathrm{I}} \frac{(n+m)!}{(n-m)!} \text { if } r=n
\end{aligned}
$$

9.100 Bessel's Differential Equation:

$$
\frac{d^{2} y}{d x^{2}}+\frac{\mathrm{I}}{x} \frac{d y}{d x}+\left(\mathrm{I}-\frac{\nu^{2}}{x^{2}}\right) y=0
$$

9.101 One solution is:

$$
y=J_{\nu}(x)=\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{x^{\nu+2 k}}{2^{\nu+2 k} k!\Gamma(\nu+k+\mathrm{I})}
$$

9.102 A second independent solution when ν is not an integer is:
9.103 If $\nu=n$, an integer:

$$
y=J_{-\nu}(x)
$$

$$
J_{-n}(x)=(-\mathrm{I})^{n} J_{n}(x)
$$

9.104 A second independent solution when $\nu=n$, an integer, is:

$$
\begin{aligned}
\pi Y_{n}(x)={ }_{2} J_{n}(x) & \cdot \log \frac{x}{2}-\sum_{k=0}^{n-\mathrm{I}} \frac{(n-k-\mathrm{I})!}{k!}\left(\frac{x}{2}\right)^{2 k-n} \\
& -\sum_{k=0}^{\infty}(-\mathrm{x})^{k} \frac{\mathrm{I}}{k!(k+n)!}\left(\frac{x}{2}\right)^{n+2 k}\{\psi(k+\mathrm{I})+\psi(k+n+\mathrm{I})\}
\end{aligned}
$$

9.105 For all values of ν, whether integral or not:

$$
\begin{aligned}
Y_{\nu}(x) & =\frac{\bullet}{\sin \nu \pi}\left(\cos \nu \pi J_{\nu}(x)-J_{-\nu}(x)\right) \\
J_{-\nu}(x) & =\cos \nu \pi J_{\nu}(x)-\sin \nu \pi Y_{\nu}(x) \\
Y_{-\nu}(x) & =\sin \nu \pi J_{\nu}(x)+\cos \nu \pi Y_{\nu}(x)
\end{aligned}
$$

9.106 For $\nu=n$, an integer:

$$
Y_{-n}(x)=(-\mathrm{I})^{n} Y_{n}(x)
$$

9.107 Cylinder Functions of the third kind, solutions of Bessel's differential equation:
I.

$$
\begin{aligned}
H_{\nu}^{\mathrm{I}}(x) & =J_{\nu}(x)+i Y_{\nu}(x) . \\
H_{\nu}^{\mathrm{II}}(x) & =J_{\nu}(x)-i Y_{\nu}(x) . \\
H_{-\nu}^{\mathrm{I}}(x) & =e^{\nu \pi^{2}} H_{\nu}^{\mathrm{I}}(x) . \\
H_{-\nu}^{\mathrm{II}}(x) & =e^{-\nu \pi_{\imath}} H_{\nu}^{\mathrm{II}}(x) .
\end{aligned}
$$

9.110 Recurrence formulae satisfied by the functions $J_{\nu}, Y_{\nu}, H_{\nu}^{\mathrm{I}}, H_{\nu}^{\mathrm{II}}, C_{\nu}$ represents any one of these functions.
I.

$$
C_{\nu-1}(x)-C_{\nu+1}(x)=2 \frac{d}{d x} C_{\nu}(x)
$$

2.

$$
C_{-1}(x)+C_{\nu+1}(x)=\frac{2 \nu}{x} C_{\nu}(x)
$$

3.

$$
\frac{d}{d x} C_{\nu}(x)=C_{\nu-1}(x)-\frac{\nu}{x} C_{\nu}(x)
$$

4.

$$
\frac{d}{d x} C(x)=\frac{\nu}{x} C_{\nu}(x)-C_{\nu+1}(x)
$$

5.

$$
\frac{d}{d x}\left\{x^{\nu} C_{\nu(x)}\right\}=x^{\nu} C_{\nu-1}(x)
$$

6.

$$
\frac{d^{2} C_{\nu}(x)}{d x^{2}}=\frac{I}{4}\left\{C_{\nu+2}(x)+C_{\nu-2}(x)-{ }_{2} C_{\nu}(x)\right\}
$$

9.111

I. $J_{\nu}(x) \frac{d Y_{\nu}(x)}{d x}-Y_{\nu}(x) \frac{d J_{\nu}(x)}{d x}=\frac{2}{\pi x} . \quad$ 2. $J_{\nu+1}(x) Y_{\nu}(x)-J_{\nu}(x) Y_{\nu+1}(x)=\frac{2}{\pi x}$.
9.120
I. $J_{\nu}(x)=\sqrt{\frac{2}{\pi x}}\left\{P(x) \cos \left(x-\frac{2 \nu+\mathrm{I}}{4} \pi\right)-Q_{\nu}(x) \sin \left(x-\frac{2 \nu+\mathrm{I}}{4} \pi\right)\right\}$,
2. $Y_{\nu}(x)=\sqrt{\frac{2}{\pi x}}\left\{P_{\nu}(x) \sin \left(x-\frac{2 \nu+\mathrm{I}}{4} \pi\right)+Q_{\nu}(x) \cos \left(x-\frac{2 \nu+I}{4} \pi\right)\right\}$,
3. $H_{\nu}^{\mathrm{I}}(x)=e^{2\left(x-\frac{2 \nu+\mathrm{r}}{4} \pi\right)} \sqrt{\frac{2}{\pi x}}\left\{P_{\nu}(x)+i Q_{\nu}(x)\right\}$,
4. $H_{\nu}^{\mathrm{II}}(x)=e^{-2\left(x-\frac{2 \nu+\mathrm{r}}{4} \pi\right)} \sqrt{\frac{2}{\pi x}}\left\{P_{\nu}(x)-i Q_{\nu}(x)\right\}$,
where
$P_{\nu}(x)=\mathrm{I}+\sum_{k=1}^{\infty}(-\mathrm{I})^{k} \frac{\left(4 \nu^{2}-I^{2}\right)\left(4 \nu^{2}-3^{2}\right) \ldots \ldots\left(4 \nu^{2}-\overline{4 k}-\bar{I}^{2}\right)}{(2 k)!2^{6 k} x^{2 k}}$,
$Q_{\nu}(x)=\sum_{k=1}^{\infty}(-I)^{k+1} \frac{\left(4 \nu^{2}-\mathrm{I}^{2}\right)\left(4 \nu^{2}-3^{2}\right) \ldots\left(4 \nu^{2}-\overline{4 k-3}^{2}\right)}{(2 k-\mathrm{I})!2^{6 k-3} x^{2 k-1}}$.

SPECIAL VALUES

9.130

I. $J_{0}(x)=I-\frac{I}{(I!)^{2}}\left(\frac{x}{2}\right)^{2}+\frac{I}{(2!)^{2}}\left(\frac{x}{2}\right)^{4}-\frac{I}{(3!)^{2}}\left(\frac{x}{2}\right)^{6}+\ldots$.
2. $J_{1}(x)=-\frac{d J_{0}(x)}{d x}=\frac{x}{2}\left\{\mathrm{I}-\frac{\mathrm{I}}{\mathrm{I}!2!}\left(\frac{x}{2}\right)^{2}+\frac{\mathrm{I}}{2!3^{1}}\left(\frac{x}{2}\right)^{4}-\frac{\mathrm{I}}{3!4^{1}}\left(\frac{x}{2}\right)^{6}+\ldots\right\}$.
3. $\frac{\pi}{2} Y_{0}(x)=\left(\log \frac{x}{2}+\gamma\right) J_{0}(x)+\left(\frac{x}{2}\right)^{2}-\frac{\mathrm{I}}{(2!)^{2}}\left(\mathrm{I}+\frac{\mathrm{I}}{2}\right)\left(\frac{x}{2}\right)^{4}$

$$
+\frac{I}{(3!)^{2}}\left(I+\frac{I}{2}+\frac{r}{3}\right)\left(\frac{x}{2}\right)^{6}-\ldots
$$

$$
=\left(\log \frac{x}{2}+\gamma\right) J_{0}(x)+4\left\{\frac{\mathrm{x}}{2} J_{2}(x)-\frac{\mathrm{I}}{4} J_{4}(x)+\frac{\mathrm{I}}{6} J_{6}(x)-\ldots\right\} .
$$

4. $\frac{\pi}{2} Y_{1}(x)=\left(\log \frac{x}{2}+\gamma\right) J_{1}(x)-\frac{\mathrm{I}}{x} J_{0}(x)-\frac{x}{2}\left\{\mathrm{I}-\frac{\mathrm{I}}{\mathrm{I}!2!}\left(\mathrm{I}+\frac{\mathrm{I}}{2}\right)\left(\frac{x}{2}\right)^{2}\right.$

$$
\left.+\frac{x}{2!3!}:\left(x+\frac{I}{2}+\frac{x}{3}\right)\left(\frac{x}{2}\right)^{4}-\ldots\right\}
$$

$$
=\left(\log \frac{x}{2}+\gamma\right) J_{1}(x)-\frac{\mathrm{I}}{x} J_{0}(x)+\frac{3}{\mathrm{I} \cdot 2} J_{3}(x)-\frac{5}{23} J_{5}(x)
$$

$$
+\frac{7}{3 \cdot 4} J_{7}(x)-\ldots .
$$

$$
\gamma=0.577^{2157}
$$

9.131 Limiting values for $x=0$:

$$
\begin{aligned}
J_{0}(x) & =\mathrm{I} \\
J_{1}(x) & =0 \\
Y_{0}(x) & =\frac{2}{\pi}\left(\log \frac{x}{2}+\gamma\right) \\
Y_{1}(x) & =-\frac{2}{\pi x}
\end{aligned}
$$

9.132 Limiting values for $x=\infty$:

$$
\begin{array}{ll}
J_{0}(x)=\frac{\cos \left(x-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi x}{2}}}, & Y_{0}(x)=\frac{\sin \left(x-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi x}{2}}} \\
J_{1}(x)=\frac{\sin \left(x-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi x}{2}}}, & Y_{1}(x)=-\frac{\cos \left(x-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi x}{2}}}
\end{array}
$$

9.140 Bessel's Addition Formula:

$$
\text { - } J_{\nu}(x+h)=\left(\frac{x+h}{x}\right)^{\nu} \sum_{k=0}^{\infty}(-x)^{k} \frac{h^{k}}{k!}\left(\frac{2 x+h}{2 x}\right)^{k} J_{\nu+k}(x)
$$

9.141 Multiplication formula:

$$
J_{\nu}(\alpha x)=\alpha^{\nu} \sum_{k=0}^{\infty} \frac{\left(I-\alpha^{2}\right)^{k}}{k!}\left(\frac{x}{2}\right)^{k} J_{\nu+k}(x) .
$$

9.142

$$
J_{\nu}(\alpha x) J_{\mu}(\beta x)=\sum_{k=0}^{\infty}(-\mathrm{x})^{k} A_{k}\left(\frac{x}{2}\right)^{\mu+\nu+2 k}
$$

where

$$
A_{k}=\sum_{s=0}^{k} \frac{\alpha^{2 k-2 s} \beta^{2 s}}{s!(k-s)!\Gamma(\nu+k-s+\mathrm{I}) \Gamma(\mu+s+\mathrm{I})}
$$

9.143

$$
J_{\nu}(x) J_{\mu}(x)=\sum_{k=0}^{\infty} \frac{(-\mathrm{I})^{k}}{\Gamma(\nu+k+I) \Gamma(\mu+k+\mathrm{I})}\binom{\mu+\nu+2 k}{k}\left(\frac{x}{2}\right)^{\mu+\nu+2 k}
$$

DEFINITE INTEGRAL EXPRESSIONS FOR BESSEL'S FUNCTIONS
9.150

$$
J_{\nu}(x)=\frac{2\left(\frac{x}{2}\right)^{\nu}}{\sqrt{\pi} \Gamma\left(\nu+\frac{I}{2}\right)} \int_{1}^{\frac{\pi}{2}} \cos (x \sin \phi) \cos ^{2 \nu} \phi \cdot d \phi
$$

9.151

$$
J_{\nu}(x)=\frac{2\left(\frac{x}{2}\right)}{\sqrt{\pi} \Gamma\left(\nu+\frac{I}{2}\right)} \int_{0}^{\pi} \cos (x \cos \phi) \sin ^{2 \nu} \phi \cdot d \phi
$$

9.152

$$
J_{\nu}(x)=\frac{\left(\frac{x}{2}\right)^{\nu}}{\sqrt{\pi} \Gamma\left(\nu+\frac{I}{2}\right)} \int_{0}^{\pi} e^{2 x \cos \phi} \sin ^{2 \nu} \phi \cdot d \phi
$$

If n is an integer:

9.153

$$
J_{2 n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \phi) \cos (2 n \phi) d \phi=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}
$$

9.154

$$
J_{2 n}(x)=\frac{(-I)^{n}}{\pi} \int_{0}^{\pi} \cos (x \cos \phi) \cos (2 n \phi) d \phi=\frac{2(-I)^{n}}{\pi} \int_{0}^{\frac{\pi}{2}}
$$

9.155

$$
J_{2 n+1}(x)=\frac{I}{\pi} \int_{0}^{\pi} \sin (x \sin \phi) \sin (2 n+x) \phi d \phi=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} .
$$

9.156

$$
J_{2 n+1}(x)=\frac{(-I)^{n}}{\pi} \int_{0}^{\pi} \sin (x \cos \phi) \cos (2 n+I) \phi d \phi=\frac{2(-I)^{n}}{\pi} \int_{0}^{\frac{\pi}{2}} .
$$

9.157

$$
J_{n}(x)=\frac{I}{2 \pi} \int_{-\pi}^{+\pi} e^{-\imath n \phi+2 x \sin \phi} d \phi=\frac{I}{2 \pi} \int_{0}^{2 \pi} e^{-\imath n \phi+2 x \sin \phi} d \phi
$$

INTEGRAL PROPERTIES

9.160 If $C_{\nu}(\mu x)$ is any one of the particular integrals:

$$
J_{\nu}(\mu x), Y_{\nu}(\mu x), H_{\nu}^{\mathrm{I}}(\mu x), H_{\nu}^{\mathrm{II}}(\mu x)
$$

of the differential equation:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\frac{\mathrm{I}}{x} \frac{d y}{d x}+\left(\mu^{2}-\frac{\nu^{2}}{x^{2}}\right) y=0, \\
\int_{a}^{b} C_{\nu}\left(\mu_{l} x\right) C_{\nu}\left(\mu_{l} x\right) x d x \\
=\frac{\mathrm{I}}{\mu_{k}^{2}-\mu_{l}{ }^{2}}\left[x\left\{\mu_{l} C_{\nu}\left(\mu_{k} x\right) C_{\nu}^{\prime}\left(\mu_{l} x\right)-\mu_{k} C_{\nu}\left(\mu_{l} x\right) C_{\nu}{ }^{\prime}\left(\mu_{l} x\right)\right\}\right]_{a}^{b} ; \mu_{k} \neq \mu_{l} .
\end{gathered}
$$

9.161 If μ_{l} and μ_{l} are two different roots of
$\begin{aligned} C_{\nu}(\mu b) & =0, \\ \int_{a}^{b} C_{\nu}\left(\mu_{k} x\right) C_{v}\left(\mu_{l} x\right) x d x & =\frac{a}{\mu_{k}{ }^{2}-\mu_{l}{ }^{2}}\left\{\mu_{l} C_{v}\left(\mu_{l} a\right) C_{v}{ }^{\prime}\left(\mu_{k} a\right)-\mu_{l} C_{\nu}\left(\mu_{k} a\right) C_{v}{ }^{\prime}\left(\mu_{l} a\right)\right\} .\end{aligned}$
9.162 If μ_{k} and μ_{l} are two different roots of

$$
\begin{gathered}
a \frac{C_{\nu}^{\prime}(\mu a)}{C_{v}(\mu a)}=p \mu+q \frac{I}{\mu} \\
C_{\nu}(\mu b)=0 \\
\int^{b} C_{\nu}\left(\mu_{k} x\right) C_{v}\left(\mu_{l} x\right) x d x=p C_{v}\left(\mu_{k} a\right) C_{\nu}\left(\mu_{l} a\right)
\end{gathered}
$$

and

If $\mu_{k}=\mu_{l}$:
$\int^{b} C_{\nu}\left(\mu_{k} x\right) C_{\nu}\left(\mu_{l} x\right) x d x=\frac{\mathrm{I}}{2}\left\{b^{2} C_{\nu}{ }^{\prime 2}\left(\mu_{k} b\right)-a^{2} C_{\nu}{ }^{\prime 2}\left(\mu_{k} a\right)-\left(a^{2}-\frac{\nu^{2}}{\mu_{k}^{2}}\right) C_{\nu}{ }^{2}\left(\mu_{k} a\right)\right\}$.

EXPANSIONS IN BESSEL'S FUNCTIONS

9.170 Schlomilch's Expansion. Any function $f(x)$ which has a continuous differential coefficient for all values of x in the closed range ($0, \pi$) may be expanded in the series:

$$
f(x)=a_{0}+\sum_{k=1} a_{k} J_{0}(k x)
$$

where

$$
\begin{aligned}
& a_{0}=f(0)+\frac{I}{\pi} \int_{0}^{\pi} u \int_{0}^{\frac{\pi}{2}} f^{\prime}(u \sin \theta) d \theta d u \\
& a_{k}=\frac{2}{\pi} \int_{0}^{\pi} u \cos k u \int_{0}^{\frac{\pi}{2}} f^{\prime}(u \sin \theta) d \theta d u
\end{aligned}
$$

9.171

$$
f(x)=a_{0} x^{n}+\sum_{k=1}^{\infty} a_{k} J_{n}\left(\alpha_{k} x\right) \quad 0<x<\mathrm{I}
$$

where

$$
\begin{aligned}
J_{n+1}\left(\alpha_{k}\right) & =0, \\
a_{0} & =2(n+\mathrm{I}) \int^{\mathrm{I}} f(x) x^{n+1} d x, \\
a_{k} & =\frac{2}{\left[J_{n}\left(\alpha_{k}\right)\right]^{2}} \int_{0}^{\mathrm{I}} x f(x) J_{n}\left(\alpha_{k} x\right) d x .
\end{aligned}
$$

(Bridgman, Phil. Mag. 16, p. 947, 1908)

9.172

$$
f(x)=\sum_{k=1}^{\infty} A_{k} J_{0}\left(\mu_{k} x\right) \quad a<x<b
$$

where:

$$
\begin{gathered}
a \frac{J_{0}^{\prime}\left(\mu_{k} a\right)}{J_{0}\left(\mu_{k} a\right)}=p \mu_{k}+\frac{q}{\mu_{k}}, \\
J_{0}\left(\mu_{k} b\right)=\circ \\
A_{k}=2 \frac{\int_{a}^{b} x f(x) J_{0}\left(\mu_{k} x\right) d x-p f(a) J_{0}\left(\mu_{k} a\right)}{b^{2} J_{0}{ }^{\prime 2}\left(\mu_{k} b\right)-a^{2} J_{0}^{\prime 2}\left(\mu_{k} a\right)-\left(a^{2}+2 p\right) J_{0}{ }^{2}\left(\mu_{k} a\right)} .
\end{gathered}
$$

and
(Stephenson, Phil. Mag. I4, p. 547, 1907)

SPECIAL EXPANSIONS IN BESSEL'S FUNCTIONS

9.180
I. $\sin x=2 \sum_{k=0}^{\infty}(-\mathrm{I})^{k} J_{2 k+1}(x)$,
2. $\cos x=J_{0}(x)+2 \sum_{k=I}^{\infty}(-I)^{k} J_{2 k}(x)$.
9.181
I. $\cos (x \sin \theta)=J_{0}(x)+2 \sum_{k=x}^{\infty} J_{2 k}(x) \cos 2 k \theta$,
2. $\sin \left(x_{6} \sin \theta\right)=2 \sum_{k=0}^{\infty} J_{2 k+1}(x) \sin (2 k+1) \theta$.

9.182

I. $\left(\frac{x}{2}\right)^{n}=\sum_{k=0}^{\infty} \frac{(n+2 k)(n+k-I)!}{k!} J_{n+2 h}(x)$,
2. $\sqrt{\frac{2 x}{\pi}}=\sum_{k=0}^{\infty} \frac{(4 k+1)(2 k)!}{2^{2 k}(k!)^{2}} J_{2 k+\frac{1}{2}}(x)$.
9.183

$$
\begin{aligned}
\frac{d J_{\nu}(x)}{d \nu} & =\left\{\log \frac{x}{2}-\psi(\nu+I)\right\} J(x)+\sum_{k=1}^{\infty}(-I)^{k-1} \frac{\nu+2 k}{k(\nu+k)} J_{\nu+2 k}(x) \\
& =J_{\nu}(x) \log \frac{x}{2}-\sum_{k=0}^{\infty}(-I)^{k} \frac{\psi(\nu+k+I)}{k!\Gamma(\nu+k+I)}\left(\frac{x}{2}\right)^{\nu+2 k} .
\end{aligned} \quad \text { (see 6.61) }
$$

9.200 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}+\frac{2}{x} \frac{d y}{d x}+\left(\mu^{2}-\frac{n(n+\mathrm{I})}{x^{2}}\right) y=0
$$

with the substitution:

$$
z=y \sqrt{x}, \quad \mu x=\rho
$$

becomes:

$$
\frac{d^{2} z}{d \rho^{2}}+\frac{\mathrm{I}}{\rho} \frac{d z}{d \rho}+\left(\mathrm{I}-\frac{\left(n+\frac{1}{2}\right)^{2}}{\rho^{2}}\right) z=0
$$

which is Bessel's equation of order $n+\frac{I}{2}$.
9.201 Two independent solutions are:

$$
\begin{aligned}
& z=J_{n+\frac{1}{2}}(\rho) \\
& z=J_{-n-\frac{1}{2}}(\rho) .
\end{aligned}
$$

The former remains finite for $\rho=0$; the latter becomes infinite for $\rho=0$.
9.202 Special values.

$$
\begin{aligned}
& J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x \\
& J(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right) \\
& J_{\frac{8}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{3}{x^{2}}-I\right) \sin x-\frac{3}{x} \cos x\right\} \\
& J_{\frac{7}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{I 5}{x^{3}}-\frac{6}{x}\right) \sin x-\left(\frac{I 5}{x^{2}}-I\right) \cos x\right\} \\
& J_{\frac{9}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{I O 5}{x^{4}}-\frac{45}{x^{2}}+I\right) \sin x-\left(\frac{I O 5}{x^{3}}-\frac{I O}{x}\right) \cos x\right\}
\end{aligned}
$$

9.203

$$
\begin{aligned}
& J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos x \\
& J_{-\frac{3}{2}}(x)=-\sqrt{\frac{2}{\pi x}}\left(\sin x+\frac{\cos x}{x}\right) \\
& J_{-\frac{5}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\frac{3}{x} \sin x+\left(\frac{3}{x^{2}}-\mathrm{I}\right) \cos x\right\} \\
& J_{-\frac{7}{2}}(x)=-\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{I 5}{x^{2}}-\mathrm{I}\right) \sin x+\left(\frac{I 5}{x^{3}}-\frac{6}{x}\right) \cos x\right\} \\
& J_{-\frac{9}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{I O 5}{x^{3}}-\frac{I 0}{x}\right) \sin x+\left(\frac{I O 5}{x^{4}}-\frac{45}{x^{2}}+I\right) \cos x\right\}
\end{aligned}
$$

9.204

$$
\begin{aligned}
& H_{\frac{1}{2}}^{\mathrm{I}}(x)=-i \sqrt{\frac{2}{\pi x}} e^{2 x} \\
& H_{\frac{\mathrm{I}}{2}}^{\mathrm{I}}(x)=-\sqrt{\frac{2}{\pi x}} e^{2 x}\left(\mathrm{I}+\frac{i}{x}\right) \\
& H_{\frac{\mathrm{x}}{2}}^{\mathrm{I}}(x)=-\sqrt{\frac{2}{\pi x}} e^{2 x}\left\{\frac{3}{x}+i\left(\frac{3}{x^{2}}-\mathrm{I}\right)\right\}
\end{aligned}
$$

9.205

$$
\begin{aligned}
& H_{\frac{I}{I}}^{\mathrm{II}}(x)=i \sqrt{\frac{2}{\pi x}} e^{-i x} \\
& H_{\frac{\pi}{I I}}^{I I}(x)=-\sqrt{\frac{2}{\pi x}} e^{-2 x}\left(I-\frac{i}{x}\right) \\
& H_{\frac{5}{2}}^{I I}(x)=-\sqrt{\frac{2}{\pi x}} e^{-i x}\left\{\frac{3}{x}-i\left(\frac{3}{x^{2}}-I\right)\right\}
\end{aligned}
$$

9.210 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}+\frac{\mathrm{I}}{x} \frac{d y}{d x}-\left(\mathrm{I}+\frac{\nu^{2}}{x^{2}}\right) y=0,
$$

with the substitution,

$$
x=i z,
$$

becomes Bessel's equation.
9.211 Two independent solutions of 9.210 are:

$$
\begin{aligned}
& I_{\nu}(x)=i^{-\nu} J_{\nu}(i x), \\
& K^{\nu}(x)=e^{\frac{\nu+\mathrm{r}}{2} \pi_{2}} \frac{\pi}{2} H_{\nu}^{\mathrm{I}}(i x) .
\end{aligned}
$$

9.212 If $\nu=n$, an integer:

$$
\begin{aligned}
I_{n}(x) & =\sum_{k=0}^{\infty} \frac{1}{k!(n+k)!}\left(\frac{x}{2}\right)^{n+2 k} \\
K_{n}(x) & =i^{n+1} \frac{\pi}{2} H_{n}^{I}(x)
\end{aligned}
$$

9.213

$$
\begin{aligned}
& I_{\nu}(x)=\frac{I}{\sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{x}{2}\right)^{\nu} \int_{0}^{\pi} \cosh (x \cos \phi) \sin ^{2 \nu} \phi d \phi, \\
& K_{\nu}(x)=\frac{\sqrt{\pi}}{\Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{x}{2}\right)^{\nu} \int^{\infty} \sinh ^{2 \nu} \phi e^{-x \cosh \phi} d \phi .
\end{aligned}
$$

9.214 If x is large, to a first approximation:

$$
\begin{aligned}
I_{n}(x) & =(2 \pi x \cosh \beta)^{-\frac{1}{2}} e^{x(\cosh \beta-\beta \sinh \beta)}, \\
K_{n}(x) & =\pi(2 \pi x \cosh \beta)^{-\frac{1}{2}} e^{-x(\cosh \beta-\beta \sinh \beta)}, \\
n & =x \sinh \beta .
\end{aligned}
$$

9.215 Ber and Bei Functions.

$$
\begin{aligned}
& \text { ber } x+i \text { bei } x=I(x \sqrt{i}), \\
& \text { ber } x-i \text { bei } x=I_{0}(i x \sqrt{i}),
\end{aligned}
$$

$$
\begin{aligned}
& \text { ber } x=I-\frac{I}{(2!)^{2}}\left(\frac{x}{2}\right)^{4}+\frac{I}{(4!)^{2}}\left(\frac{x}{2}\right)^{8}-\ldots \\
& \text { bei } x=\left(\frac{x}{2}\right)^{2}-\frac{I}{(3!)^{2}}\left(\frac{x}{2}\right)^{6}+\frac{I}{(5!)^{2}}\left(\frac{x}{2}\right)^{10}-\ldots
\end{aligned}
$$

9.216 Ker and Kei Functions:

$$
\begin{aligned}
& \operatorname{ker} x+i \text { kei } x=K_{0}(x \sqrt{i}), \\
& \operatorname{ker} x-i \text { kei } x=K_{0}(i x \sqrt{2}), \\
& \operatorname{ker} x=\left(\log \frac{2}{x}-\gamma\right) \text { ber } x+\frac{\pi}{4} \text { bei } x-\frac{I}{(2!)^{2}}\left(\mathrm{I}+\frac{\mathrm{I}}{2}\right)\left(\frac{x}{2}\right)^{4} \\
&+\frac{\mathrm{I}}{(4!)^{2}}\left(\mathrm{I}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\frac{\mathrm{I}}{4}\right)\left(\frac{x}{2}\right)^{8}-\ldots
\end{aligned}
$$

$$
\text { kei } x=\left(\log \frac{2}{x}-\gamma\right) \text { bei } x-\frac{\pi}{4} \text { ber } x+\left(\frac{x}{2}\right)^{2}-\frac{I}{\left(3^{1}\right)^{2}}\left(\mathrm{I}+\frac{I}{2}+\frac{I}{3}\right)\left(\frac{x}{2}\right)^{6}+\ldots
$$

9.220 The Bessel-Clifford Differential Equation:

$$
x \frac{d^{2} y}{d x^{2}}+(\nu+1) \frac{d y}{d x}+y=0
$$

With the substitution:

$$
z=x^{\nu / 2} y \quad u=2 \sqrt{x}
$$

the differential equation reduces to Bessel's equation.
9.221 Two independent solutions of 9.220 are:

$$
\begin{aligned}
& C_{\nu}(x)=x-\frac{\nu}{2} J_{\nu}(2 \sqrt{x})=\sum_{k=0}^{\infty}(-\mathrm{r})^{k} \frac{x^{k}}{k!\Gamma(\nu+k+\mathrm{I})} \\
& D_{\nu}(x)=x-\frac{\nu}{2} Y_{\nu}(2 \sqrt{x})
\end{aligned}
$$

9.222

$$
\begin{aligned}
C_{\nu+1}(x) & =-\frac{d}{d x} C_{\nu}(x) \\
x C_{\nu+2}(x) & =(\nu+\mathrm{r}) C_{\nu+1}(x)-C_{\nu}(x)
\end{aligned}
$$

9.223 If $\nu=n$, an integer:

$$
\begin{aligned}
& C_{n}(x)=(-\mathrm{I})^{n} \frac{d^{n}}{d x^{n}} C_{0}(x) \\
& C_{0}(x)=\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{x^{k}}{(k!)^{2}}
\end{aligned}
$$

9.224 Changing the sign of ν, the corresponding solution of:

$$
\begin{gathered}
x \frac{d^{2} y}{d x^{2}}-\left(\nu-\text { I) } \frac{d y}{d x}+y=0\right. \\
y=x^{\nu} C_{\nu}(x)
\end{gathered}
$$

9.225 If ν is half an odd integer:

$$
\begin{aligned}
& C_{\frac{2}{2}}(x)=\frac{\sin (2 \sqrt{x}+\epsilon)}{2 \sqrt{x}}, \\
& C_{\frac{1}{2}}(x)=-\frac{d}{d x} C_{\frac{1}{2}}(x)=\frac{\sin (2 \sqrt{x}+\epsilon)}{4 x^{\frac{1}{3}}}-\frac{\cos (2 \sqrt{x}+\epsilon)}{2 x}, \\
& C_{\overline{5}}(x)=-\frac{d}{d x} C_{\frac{3}{2}}(x)=\frac{3-4 x}{8 x^{\frac{2}{2}}} \sin (2 \sqrt{x}+\epsilon)-\frac{3 \cos (2 \sqrt{x}+\epsilon)}{4 x^{2}},
\end{aligned}
$$

.

$$
\begin{aligned}
& C_{-\frac{3}{2}}(x)=-\cos (2 \sqrt{x}+\epsilon), \\
& C_{-\frac{3}{3}}(x)=x^{3} C_{\frac{3}{3}}(x), \\
& C_{-\frac{8}{8}}(x)=x^{\frac{3}{8}} C_{\frac{8}{8}}(x) .
\end{aligned}
$$

ϵ is arbitrary so as to give a second arbitrary constant.
9.226 For x negative, the solution of the equation:

$$
x \frac{d^{2} y}{d x^{2}}+(\pm \nu+\mathrm{I}) \frac{d y}{d x}-y=0,
$$

when ν is half an odd integer, is obtained from the values in 9.225 by changing \sin and \cos to sinh and cosh respectively.

9.227

$(m+n+1) \int C_{m+1}(x) C_{n+1}(x) d x=-x C_{m+1}(x) C_{n+1}(x)-C_{m}(x) C_{n}(x)$,
$(m+n+1) \int x^{m+n} C_{m}(x) C_{n}(x) d x=x^{m+n+1}\left\{x C_{m+1}(x) C_{n+1}(x)+C_{m}(x) C_{n}(x)\right\}$.
9.228
I.

$$
\int_{0}^{\pi} C_{-\frac{3}{2}}\left(x \cos ^{2} \phi\right) d \phi=\pi C_{0}(x) .
$$

2.

$$
\int_{0}^{\pi} C_{\frac{3}{3}}\left(x \cos ^{2} \phi\right) d \phi=\pi C_{1}(x) .
$$

3.

$$
\int_{0}^{\pi} C_{0}\left(x \sin ^{2} \phi\right) \sin \phi d \phi=C_{\frac{1}{2}}(x) .
$$

4. $\int_{0}^{\pi} C_{1}\left(x \sin ^{2} \phi\right) \sin ^{3} \phi d \phi=C_{\frac{1}{2}}(x)$.
5.

$$
\int_{0}^{\pi} C_{1}\left(x \sin ^{2} \phi\right) \sin \phi d \phi=\frac{1-\cos 2 \sqrt{x}}{x} .
$$

9.229 Many differential equations can be solved in a simpler form by the use of the C_{n} functions than by the use of Bessel's functions.
(Greenhill, Phil. Mag. 38, p. 501, 1919)
9.240 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}+\frac{2(n+1)}{x} \frac{d y}{d x}+y=0,
$$

with the change of variable:

$$
y=z x^{-n-\frac{1}{2}}
$$

becomes Bessel's equation 9.200.
9.241 Solutions of 9.240 are:
I.

$$
\begin{aligned}
& y=x^{-n-\frac{1}{2}} J_{n+\frac{1}{2}}(x) . \\
& y=x^{-n-\frac{1}{2}} Y_{n+\frac{1}{2}}(x) . \\
& y=x^{-n-\frac{1}{2}} H_{n+\frac{1}{2}}^{\mathrm{x}}(x) . \\
& y=x^{-n-\frac{1}{2}} H_{n^{\frac{1}{2}}}^{\mathrm{I}}(x) .
\end{aligned}
$$

3.
4.

9.242 The change of variable:

$$
x=2 \sqrt{z},
$$

transforms equation 9.240 into the Bessel-Clifford differential equation 9.220. This leads to a general solution of 9.240:

$$
y=C_{n+\frac{1}{2}}\left(\frac{x^{2}}{4}\right)
$$

When n is an integer the equations of 9.225 may be employed.

$$
\begin{aligned}
& C_{1}\left(\frac{x^{2}}{4}\right)=\frac{\sin (x+\epsilon)}{x}, \\
& C_{\frac{1}{2}}\left(\frac{x^{2}}{4}\right)=\frac{2 \sin (x+\epsilon)}{x^{3}}-\frac{\cos (x+\epsilon)}{x} .
\end{aligned}
$$

9.243 The solution of

$$
\frac{d^{2} y}{d x^{2}}+\frac{2(n+\mathrm{r})}{x} \frac{d y}{d x}-y=0,
$$

may be obtained from 9.242 by writing \sinh and cosh for \sin anri cos respectively.

$$
=\Xi
$$

9.244 The differential equation 9.240 is also satisfied by the two indendent functions (when n is an integer):
$\psi_{n}(x)=\left(-\frac{\mathrm{I}}{x} \frac{d}{d x}\right)^{n} \frac{\sin x}{x}$

$$
=\frac{\mathrm{I}}{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n+\mathrm{I})} \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{x^{2 k}}{2^{k} k!(2 n+3) \cdots(2 n+2 k+\mathrm{I})}
$$

$$
\begin{aligned}
\Psi_{n}(x) & =\left(-\frac{I}{x} \frac{d}{d x}\right)^{n} \frac{\cos x}{x} \\
& =\frac{I \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{x^{2 n+1}} \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{x^{2 k}}{2^{k} k!(\mathrm{I}-2 n)(3-2 n) \ldots(2 k-2 n-\mathrm{I})} .
\end{aligned}
$$

9.245 The general solution of 9.240 may be written:

$$
y=\left(\frac{\mathrm{I}}{x} \frac{d}{d x}\right)^{n} \frac{A e^{2 x}+B e^{-2 x}}{x}
$$

9.246 Another particular solution of 9.240 is:

$$
\begin{aligned}
& y=f_{n}(x)=\left(-\frac{I}{x} \frac{d}{d x}\right)^{n} \frac{e^{-2 x}}{x}=\Psi_{n}(x)-i \psi_{n}(x) \\
& f_{n}(x)= \frac{i^{n} e^{-\imath x}}{x^{n+1}}\left\{I+\frac{n(n+I)}{2 i x}+\frac{(n-I) n(n+I)(n+2)}{24 \cdot(i x)^{2}}+\ldots\right. \\
&\left.+\frac{I \cdot 2 \cdot 3 \ldots .2 n}{24 \cdot 6 \ldots 2 n(i x)^{n}}\right\}
\end{aligned}
$$

9.247 The functions $\psi_{n}(x), \Psi_{n}(x), f_{n}(x)$ satisfy the same recurrence formulae:

$$
\begin{gathered}
\frac{d \psi_{n}(x)}{d x}=-x \psi_{n+1}(x) \\
x \frac{d \psi_{n}(x)}{d x}+(2 n+1) \psi_{n}(x)=\psi_{n-1}(x)
\end{gathered}
$$

9.260 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}-\frac{n(n+x)}{x^{2}} y+y=0
$$

with the change of variable:

$$
y=u \sqrt{x}
$$

is transformed into Bessel's equation of order $n+\frac{\mathrm{I}}{2}$.
9.261 Solutions of 9.260 are:

9.262

The functions $S_{n}(x), C_{n}(x), E_{n}(x)$ satisfy the same recurrence formulae

$$
\text { I. } \frac{d S_{n}(x)}{d x}=\frac{n+\mathrm{I}}{x} S_{n}(x)-S_{n+1}(x) .
$$

$$
\begin{aligned}
& \text { 2. } \frac{d S_{n}(x)}{d x}=S_{n-1}(x)-\frac{n}{x} S_{n}(x) . \\
& \text { 3. } S_{n+1}(x)=\frac{2 n+1}{x} S_{n}(x)-S_{n-1}(x) .
\end{aligned}
$$

9.30 The hypergeometric differential equation:

$$
x(\mathrm{I}-x) \frac{d^{2} y}{d x^{2}}+\{\gamma-(\alpha+\beta+\mathrm{I}) x\} \frac{d y}{d x}-\alpha \beta y=0
$$

9.31 The equation 9.30 is satisfied by the hypergeometric series:

$$
\begin{aligned}
F(\alpha, \beta, \gamma, x)=\mathrm{I}+\frac{\alpha}{\mathrm{I}} \frac{\beta}{\gamma} x & +\frac{\alpha(\alpha+\mathrm{I})}{\mathrm{I} \cdot 2} \frac{\beta(\beta+\mathrm{I})}{\gamma(\gamma+\mathrm{I})} x^{2} \\
& +\frac{\alpha(\alpha+\mathrm{I})(\alpha+2)}{\mathrm{I} \cdot 2 \cdot 3} \frac{\beta(\beta+\mathrm{I})(\beta+2)}{\gamma(\gamma+\mathrm{I})(\gamma+2)} x^{3}+\ldots
\end{aligned}
$$

The series converges absolutely when $x<1$ and diverges when $x>1$. When $x=+\mathrm{I}$ it converges only when $\alpha+\beta-\gamma<0$, and then absolutely. When $x=-\mathrm{I}$ it converges only when $\alpha+\beta-\gamma-\mathrm{I}<0$, and absolutely if $\alpha+\beta-\gamma<0$.
9.32

$$
\begin{aligned}
\frac{d}{d x} F(\alpha, \beta, \gamma, x) & =\frac{\alpha \beta}{\gamma} F(\alpha+\mathrm{I}, \beta+\mathrm{I}, \gamma+\mathrm{I}, x) \\
F(\alpha, \beta, \gamma, \mathrm{r}) & =\frac{\Gamma(\gamma) \Gamma(\gamma-\alpha-\beta)}{\Gamma(\gamma-\alpha) \Gamma(\gamma-\beta)}
\end{aligned}
$$

9.33 Representation of various functions by hypergeometric series.

$$
\begin{aligned}
(\mathrm{I}+x)^{n} & =F(-n, \beta, \beta,-x), \\
\log (\mathrm{I}+x) & =x F(\mathrm{I}, \mathrm{I}, 2,-x) \\
e^{x} & =\operatorname{Limit}_{\beta=\infty} F\left(\mathrm{I}, \beta, \mathrm{I}, \frac{x}{\beta}\right),
\end{aligned}
$$

$$
\begin{aligned}
(\mathrm{I}+x)^{n}+(\mathrm{I}-x)^{n} & =2 F\left(-\frac{n}{2},-\frac{n}{2}+\frac{\mathrm{I}}{2}, \frac{\mathrm{I}}{2}, x^{2}\right), \\
\log \frac{\mathrm{I}+x}{\mathrm{I}-x} & =2 x F\left(\frac{\mathrm{I}}{2}, \mathrm{I}, \frac{3}{2}, x^{2}\right), \\
\cos n x & =F\left(\frac{n}{2},-\frac{n}{2}, \frac{\mathrm{I}}{2}, \sin ^{2} x\right), \\
\sin n x & =n \sin x F\left(\frac{n+\mathrm{I}}{2}, \frac{\mathrm{I}-n}{2}, \frac{3}{2}, \sin ^{2} x\right), \\
\cosh x & =\alpha=\beta=\infty F\left(\alpha, \beta, \frac{\mathrm{I}}{2}, \frac{x^{2}}{4 \alpha \beta}\right), \\
\sin ^{-1} x & =x F\left(\frac{\mathrm{I}}{2}, \frac{\mathrm{I}}{2}, \frac{3}{2}, x^{2}\right), \\
\tan ^{-1} x & =x F\left(\frac{\mathrm{I}}{2}, \mathrm{I}, \frac{3}{2},-x^{2}\right), \\
P_{n}(x) & =F\left(-n, n+\mathrm{I}, \mathrm{I}, \frac{\mathrm{I}-x}{2}\right), \\
Q_{n}(x) & =\frac{\sqrt{\pi} \Gamma(n+\mathrm{I})}{2^{n+1} \Gamma\left(n+\frac{\mathrm{I}}{2}\right)} \frac{\left(\frac{n+\mathrm{I}}{2}, \frac{n+2}{2}, n+\frac{3}{2}, \frac{\mathrm{I}}{x^{2}}\right) .}{},
\end{aligned}
$$

9.4 Heaviside's Operational Methods of Solving Partial Differential Equations.

9.41 The partial differential equation,

$$
a \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t},
$$

where a is a constant, may be solved by Heaviside's operational method.
Writing $\frac{\partial}{\partial t}=p$, and $\frac{p}{a}=q^{2}$, the equation becomes,

$$
\frac{\partial^{2} u}{\partial x^{2}}=q^{2} u
$$

whose complete solution is $u=e^{q x} A+e^{-q x} B$, where A and B are integration constants to be determined by the boundary conditions. In many applications the solution $u=e^{-q x} B$, only, is required: and the boundary conditions will lead to $u=e^{-q x} f(q) u_{0}$, where u_{0} is a constant. If $e^{-q x} f(q)$ be expanded in an infinite power series in q, and the integral and fractional, positive and negative powers of p be interpreted as in 9.42 , the resulting series will be a solution of the differential equation, satisfying the boundary conditions, and reducing to $u=0$ at $t=0$. The expansion of $e^{-q x} f(g)$ may be carried out in two or more ways, leading to series suitable for numerical calculation under different conditions.

9.42 Fractional Differentiation and Integration.

In the following expressions, I stands for a function of t which is zero up to $t=0$, and equal to I for $t>0$.
9.421

$$
\begin{aligned}
& p^{\frac{1}{2} \mathrm{I}}=\frac{\mathrm{I}}{\sqrt{\pi t}} \\
& p^{\frac{2}{\mathrm{I}} \mathrm{I}}=\frac{\mathrm{I}}{2 t \sqrt{\pi t}} \\
& p^{\frac{5}{2} \mathrm{I}}=\frac{3}{2^{2} t^{2} \sqrt{\pi t}}
\end{aligned}
$$

9.422

$p I=0$
$p^{2} \mathrm{I}=0$

$$
p^{n} \mathrm{I}=0
$$

$p^{3} \mathrm{I}=0$
-••
9.423
$p^{-\frac{t}{2}}=2 \sqrt{\frac{t}{\pi}}$
$p^{-\frac{3}{2}}=\frac{2^{2} t}{3} \sqrt{\frac{t}{\pi}}$
$p^{-\frac{2 n+1}{2}} \mathrm{I}=\frac{2^{2 n-1} t^{n}}{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n+\mathrm{I})} \sqrt{\frac{t}{\pi}}$
$p^{-\frac{5}{2}}=\frac{2^{3} t^{2}}{3 \cdot 5} \sqrt{\frac{t}{\pi}}$
-••

9.424

$\frac{\mathrm{I}}{p^{\nu}}=\frac{t^{\nu}}{\Gamma(\mathrm{I}+\nu)}$,
where ν may have any real value, except a negative integer. (Conjectural.)

9.425

$$
\begin{aligned}
& \frac{p}{p-a} \mathrm{I}=e^{a t} \\
& \frac{\mathrm{I}}{p-a} \mathrm{I}=\frac{\mathrm{I}}{a}\left(e^{a t}-\mathrm{I}\right)
\end{aligned}
$$

9.426 With $p=a q^{2}$,

$$
\begin{aligned}
q^{2 n+1} \mathrm{I} & =(-\mathrm{I})^{n} \frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{(2 a t)^{n} \sqrt{\pi a t}} \\
q^{-2 n} \mathrm{I} & =\frac{(a t)^{n}}{n!}
\end{aligned}
$$

9.427

$$
g e^{-q x} \mathrm{I}=\frac{\mathrm{I}}{\sqrt{\pi a t}} e^{-\frac{x^{2}}{4 a t}}
$$

9.428 If $z=\frac{x}{2 \sqrt{a t}}$,

$$
\begin{aligned}
e^{-q x} & =\frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-v 2} d v \\
\frac{\mathrm{I}}{q} e^{-q x} & =\frac{x}{\sqrt{\pi}} \int_{z}^{\infty} e^{-v^{2}} \frac{d v}{v^{2}} .
\end{aligned}
$$

9.43 Many examples of the use of this method are given by Heaviside: Electromagnetic Theory, Vol. II. Bromwich,. Proceedings Cambridge Philosophical Society, XX, p. 4II, 192I, has justified its application by the method of contour integration and applied it to the solution of a problem in the conduction of heat.
9.431 Herlitz, Arkiv for Matematik, Astronomi och Fysik, XIV, I9Ig, has shown that the same methods may be applied to the more general partial differential equations of the type,

$$
\sum_{\alpha, \beta} A_{\alpha, \beta}(x) \frac{\partial^{\alpha+\beta}(u)}{\partial x^{\alpha} \partial t^{\beta}}=0
$$

and the relations of 9.42 are valid.
9.44 Heaviside's Expansion Theorem.

The operational solution of the differential equation of 9.41 , or the more general equation, 9.431 , satisfying the given boundary conditions, may be written in the form,

$$
u=\frac{F(p)}{\Delta(p)} u_{0}
$$

where $F(p)$ and $\Delta(p)$ are known functions of $p=\frac{\partial}{\partial t}$. Then Heaviside's Expansion Theorem is:

$$
u=u_{0}\left\{\frac{F(0)}{\Delta(o)}+\sum \frac{F(\alpha)}{\alpha \Delta^{\prime}(\alpha)} e^{\alpha t}\right\}
$$

where α is any root, except 0 , of $\Delta(p)=0, \Delta^{\prime}(p)$ denotes the first derivative of $\Delta(p)$ with respect to p, and the summation is to be taken over all the roots of $\Delta(p)=0$. This solution reduces to $u=0$ at $t=0$.

Many applications of this expansion theorem are given by Heaviside, Electromagnetic Theory, II, and III; Electrical Papers, Vol. II. Herlitz, 9.431, has also applied this expansion theorem to the solution of the problem of the distribution of magnetic induction in cylinders and plates.
9.45 Bromwich's Expansion Theorem. Bromwich has extended Heaviside's Expansion Theorem as follows. If the operational solution of the partial differential equation of 9.41 , obtained to satisfy the boundary conditions, is

$$
u=\frac{F(p)}{\Delta(p)}(G t)
$$

where G is a constant, then the solution of the differential equation is

$$
u=G\left\{N_{0} t+N_{1}+\sum \frac{F(\alpha)}{\alpha^{2} \Delta^{\prime}(\alpha)} e^{\alpha t}\right\}
$$

where N_{0} and N_{1} are defined by the expansion,

$$
\frac{F(p)}{\Delta(p)}=N_{0}+N_{1} p+N_{2} p^{2}+\ldots ;
$$

α is any root of $\Delta(p)=0, \Delta^{\prime}(p)$ is the first derivative of $\Delta(p)$ with respect to p, and the summation is over all the roots, α. This solution reduces to $u=0$ at $t=0$. Phil. Mag. 37, p. 407, r9I9; Proceedings London Mathematical Society, I5, p. 40I, IgI6.

9.9 References to Bessel Functions.

Nielsen: Handbuch der Theorie der Cylinder Funktionen.
Leipzig, Ig04.
The notation and definitions given by Nielsen have been adopted in the present collection of formulae. The only difference is that Nielsen uses an upper index, $J^{n}(x)$, to denote the order, where the more usual custom of writing $J_{n}(x)$ is here employed. In place of $H_{1}{ }^{n}$ and $H_{2}{ }^{n}$ used by Nielsen for the cylinder functions of the third kind, $H_{n}{ }^{\mathrm{I}}$ and $H_{n}{ }^{\mathrm{II}}$ are employed in this collection.

Gray and Mathews: Treatise on Bessel Functions.

London, $1895 .{ }^{1}$
The Bessel Function of the second kind, $Y_{n}(x)$, employed by Gray and Mathews is the function

$$
\frac{\pi}{2} Y_{n}(x)+(\log 2-\gamma) J_{n}(x)
$$

of Nielsen.
Schafheitlin: Die Theorie der Besselschen Funktionen.
Leipzig, 1908.
Schafheitlin defines the function of the second kind, $Y_{n}(x)$, in the same way as Nielsen, except that its sign is changed.

Note. A Treatise on the Theory of Bessel Functions, by G. N. Watson, Cambridge University Press, 1922, has been brought out whle this volume is in press. This Treatise gives by far the most complete account of the theory and properties of Bessel Functions that exists, and should become the standard work on the subject with respect to notation A particularly valuable feature is the Collection of Tables of Bessel Functions at the end of the volume and the Bibliography, giving references to all the important works on the subject.
9.91 Tables of Legendre, Bessel and allied functions.
$P_{n}(x) \quad$ (9.001).
${ }^{1}$ A second edition of Gray and Mathews' Treatise, prepared by A. Gray and T. M. MacRobert, has been published (192z) while this volume is in press. The notation of the first edition has been altered in some respects.
B. A. Report, 1879 , pp. 54-57. Integral values of n from I to 7 ; from $x=0.01$ to $x=\mathrm{I} .00$, interval 0.0 I , I6 decimal places.

Jahnke and Emde: Funktionentafeln, p. 83; same to 4 decimal places.

$$
P_{n}(\cos \theta)
$$

Phil. Trans. Roy. Soc. London, 203, p. roo, r904. Integral values of n from I to 20 , from $\theta=0$ to $\theta=90$, interval 5,7 decimal places.

Phil. Mag. 32, p. 512, I891. Integral values of n from 1 to $7, \theta=0$ to $\theta=90$, interval i; 4 decimal places. Reproduced in Jahnke and Emde, p. 85.

Tallquist, Acta Soc. Sc. Fennicae, Helsingfors, 33, pp. I-8. Integral values of n from I to $8 ; \theta=0$ to $\theta=90$, interval 1 , 10 decimal places.

Airey, Proc. Roy. Soc. London, 96, p. r, r919. Tables by means of which zonal harmonics of high order may be calculated.

Lodge, Phil. Trans. Roy. Soc. London, 203, r904, p 87 Integral values of n from I to 20; $\theta=0$ to $\theta=90$, interval 5,7 decimal places. Reprinted in Rayleigh, Collected Works, Volume V, p. 162.
$\frac{\partial P_{n}(\cos \theta)}{\partial \theta}$.
Farr, Proc. Roy. Soc. London, 64, 199, 1899. Integral values of n from I to 7; $\theta=\circ$ to $\theta=90$, interval I, 4 decimal places. Reproduced in Jahnke and Emde, p. 88 .
$J_{0}(x), J_{1}(x) \quad$ (9.101).
Meissel's tables, $x=0.01$ to $x=15.50$, interval 0.01 , to 12 decimal places, are given in Table I of Gray and Mathews' Treatise on Bessel's Functions.

Aldis, Proc. Roy. Soc. London 66, 40, 1900. $x=0.1$ to $x=6.0$, interval O.I, 21 decimal places.

Jahnke and Emde, Funktionentafeln, Table III. $x=0.01$ to $x=15.50$, interval 0.01, 4 decimal places.
$J_{n}(x) \quad$ (9.101).
Gray and Mathews, Table II. Integral values of n from $n=0$ to $n=60$; integral values of x from $x=\mathrm{I}$ to $x=24,18$ decimal places.

Jahnke and Emde, Table XXIII, same, to 4 significant figures.
B. A. Report, 1915, p. 29; $n=0$ to $n=13$.

$$
\begin{array}{llr}
x=0.2 \text { to } x=6.0 & \text { interval } 0.2 & 6 \text { decimal places, } \\
x=6.0 \text { to } x=16.0 & \text { interval } 0.5 & \text { Io decimal places. }
\end{array}
$$

Hague, Proc. London Physical Soc. 29, 211, 1916-17, gives graphs of $J_{n}(x)$ for integral values of n from \circ to 12 , and $n=18, x$ ranging from \circ to 17 .
$-\frac{\pi}{2} Y_{0}(x)=G_{0}(x) ; \quad-\frac{\pi}{2} Y_{1}(x)=G_{1}(x)$.
B. A. Report, I913, pp. 1ı6-130. $x=0.01$ to $x=16.0$, interval $0.01,7$ decimal places.
B. A. Report, I9I5, $x=6.5$ to $x=15.5$, interval 0.5 , 10 decimal places.

Aldis, Proc. Roy. Soc. London, 66, 40, Igoo: $x=0.1$ to $x=6.0$. Interval O.I, 2I decimal places.

Jahnke and Emde, Tables VII and VIII, functions denoted $\mathrm{K}_{0}(x)$ and $\mathrm{K}_{1}(x)$, $x=0.1$ to $x=6.0$, interval $0 . \mathrm{I} ; x=0.01$ to $x=0.99$, interval $0.0 \mathrm{I} ; x=1.0$ to $x=10.3$, interval 0.I; 4 decimal places.
$-\frac{\pi}{2} Y_{n}(x)=G_{n}(x)$.
B. A. Report, I914, p. 83. Integral values of n from \circ to I3. $x=0.01$ to $x=6.0$, interval 0.I; $x=6.0$ to $x=16.0$, interval $0.5 ; 5$ decimal places.
$\frac{\pi}{2} Y_{0}(x)+(\log 2-\gamma) J_{0}(x), \quad$ Denoted $Y_{0}(x)$ and $Y_{1}(x)$ $\frac{\pi}{2} Y_{1}(x)+(\log 2-\gamma) J_{1}(x) . \quad$ respectively in the tables.
B. A. Report, I9I4, p. $76, x=0.02$ to $x=1550$, interval $0.02,6$ decimal places.
B. A. Report, I9I5, p. $33, x=0$ I to $x=6.0$, interval O.I; $x=6.0$ to $x=\mathrm{I} 5.5$, interval 0.5 , 10 decimal places.

Jahnke and Emde, Table VI, $x=0.01$ to $x=1.00$, interval $0.01 ; x=1.0$ to $x=10.2$, interval 0.1, 4 decimal places.
$Y_{0}(x), Y_{1}(x)$ Denoted $N_{0}(x)$ and $N_{1}(x)$ respectively.
Jahnke and Emde, Table IX, $x=0.1$ to $x=10.2$, interval 0.I, 4 decimal places.
$\frac{\pi}{2} Y_{n}(x)+(\log 2-\gamma) J_{n}(x) . \quad$ Denoted $Y_{n}(x)$ in tables.
B. A. Report, I9I5. Integral values of n from I to $\mathrm{I} 3 . x=0.2$ to $x=6.0$, interval $0.2 ; x=6.0$ to $x=15.5$, interval 05,6 decimal places.

$$
J_{n+\frac{1}{2}}(x)
$$

Jahnke and Emde, Table II. Integral values of n from $n=0$ to $n=6$, and $n=-\mathrm{I}$ to $n=-7 ; x=0$ to $x=50$, interval $\mathrm{I} 0,4$ figures.
$J_{\frac{1}{3}}(x), J_{-\frac{1}{2}}(x)$.
Watson, Proc. Roy. Soc. London, 94, 204, 1918.

$$
\begin{aligned}
& x=0.05 \text { to } x=2.00 \text { interval } 0.05 \\
& x=2.0 \text { to } x=8.0 \text { interval } 0.2
\end{aligned}
$$

4 decimal places.
$J_{\alpha}(\alpha), J_{\alpha-1}(\alpha)$
$-\frac{\pi}{2} Y_{\alpha}(\alpha),-\frac{\pi}{2} Y_{\alpha-1}(\alpha) . \quad$ Denoted $G_{\alpha}(\alpha)$ and $G_{\alpha-1}(\alpha)$ respectively.
$\frac{\pi}{2} Y_{\alpha}(\alpha)+(\log 2-\gamma) J_{\alpha}(\alpha)$,
$\frac{\pi}{2} Y_{\alpha-1}(\alpha)+(\log 2-\gamma) J_{\alpha-1}(\alpha) . \quad$ Denoted $-Y_{\alpha}(\alpha)$ and $-Y_{\alpha-1}(\alpha)$.
Tables of these six functions are given in the B. A. Report, rgi6, as follows:

From α	to α	Interval
I	50	I
50	100	5
100	200	10
200	400	20
400	1000	50
1000	2000	100
2000	5000	500
5000	20000	1000
20000	30000	10000
100,000		
500,000		
$1,000,000$		

$I_{0}(x), I_{1}(x) \quad$ (9.211).
Aldis, Proc. Roy. Soc. London, 64, pp. 2I8-223, $1899 ; x=0.1$ to $x=6.0$, interval o. $; x=6.0$ to $x=1$ I.O, interval r.O, 21 decimal places.

Jahnke and Emde, Tables XI and XII, 4 places:

$$
\begin{array}{ll}
x=0.01 \text { to } x=5.10 & \text { interval O.OI, } \\
x=5.10 \text { to } x=6.0 & \text { interval O.I, } \\
x=6.0 \text { to } x=11.0 & \text { interval 1.O. }
\end{array}
$$

$I_{0}(x) \quad$ (9.211).
B. A. Report, $1896 ; x=0.001$ to $x=5.100$, interval $0.001,9$ decimal places.
$\mathrm{I}_{1}(x)$ (9.211).
B. A. Report, $1893 ; x=0.001$ to $x=5.100$, interval $0.001,9$ decimal places.

Gray and Mathews, Table V, $x=0.01$ to $x=5.10$, interval $0.01,9$ decimal places.
$I_{n}(x) \quad$ (9.211).
B. A. Report, 1889 , pp. $28-32$; integral values of n from 0 to II, $x=0.2$ to $x=6.0$, interval $0>2$, I2 decimal places. These tables are reproduced in Gray and Mathews, Table VI.

Jahnke and Emde, Table XXIV; same ranges, to 4 places.
$J_{0}(x \sqrt{i}) \quad=X-i Y$,
$\sqrt{2} J_{1}(x \sqrt{i})=X_{1}+i Y_{1}$

Aldis, Proc. Roy. Soc. London, 66, I42, Ig00; $x=0.1$ to $x=6.0$, interval 0.I, 21 decimal places.

Jahnke and Emde, Tables XV and XVI, same range, to 4 places.
$J_{0}(x \sqrt{i})$.
Gray and Mathews, Table IV; $x=0.2$ to $x=6.0$, interval $0.2,9$ decimal places.
$Y_{0}(x \sqrt{i})$ (9.104) Denoted $N_{0}(x \sqrt{\imath})$ in table.
$H_{0}^{\mathrm{I}}(x \sqrt{i}), H_{1}^{\mathrm{I}}(x \sqrt{i})$.
Jahnke and Emde, Tables XVII and XVIII; $x=0.2$ to $x=6.0$, interval $0.2,4^{-7}$ figures.

$$
\begin{align*}
\frac{i \pi}{2} H_{0}^{\mathrm{I}}(i x) & =K_{0}(x) \tag{9.212}\\
-\frac{\pi}{2} H_{0}^{\mathrm{I}}(i x) & =K_{1}(x)
\end{align*}
$$

Aldis, Proc. Roy. Soc. London, 64, 219-223, $1899 ; x=0.1$ to $x=120$, interval 0.1, 2I decimal places.

Jahnke and Emde, Table XIV; same, to 4 places.
$i H_{0}^{\mathrm{I}}(i x),-H_{0}^{\mathrm{I}}(i x) \quad$ (9.107).
Jahnke and Emde, Table XIII; $x=0.12$ to $x=6.0$, interval 0.2, 4 figures. ber x, ber $^{\prime} x$, bei x, bei' x,
B. A. Report, IgI2; $x=0.1$ to $x=10.0$, interval 0.1, 9 decimal places. .

Jahnke and Emde, Table XX; $x=0.5$ to $x=6.0$, interval 0.5 , and $x=8$, ro, 15, 20, 4 decimal places.
ker $x, \operatorname{ker}^{\prime} x$, kei x, kei $^{\prime} x$,
B. A. Report, IgI5; $x=0.1$ to $x=10.0$, interval 0.I, 7 -Io decimal places. ber $^{2} x+$ bei $^{2} x$, ber $^{\prime 2} x+$ bei $^{\prime 2} x$, ber x bei $^{\prime} x$ - bei x ber $^{\prime} x, \quad$ and the corresponding ker and kei ber x ber $^{\prime} x+$ bei x bei' x, functions.
B. A. Report, I916; $x=0.2$ to $x=10.0$, interval 0.2 , decimal places.
$S_{n}(x), S_{n}^{\prime}(x), \log S_{n}(x), \log S_{n}^{\prime}(x)$, $C_{n}(x), C^{\prime}{ }_{n}(x), \log C_{n}(x), \log C^{\prime}{ }_{n}(x)$, (9.261). $E_{n}(x), E_{n}^{\prime}(x), \log E_{n}(x), \log E_{n}^{\prime}(x)$,
B. A. Report, 1916; integral values of n from \circ to ro, $x=$ I.I to $x=1.9$, interval 0.1, 7 decimal places.

$$
\begin{aligned}
& G(x)=-\sqrt{2} \Pi\left(\frac{I}{4}\right) x^{-\frac{1}{2}} J_{\frac{1}{2}}\left(\frac{x}{2}\right)=-\frac{I}{0.78012} x^{-\frac{1}{2}} J_{\frac{1}{2}}\left(\frac{x}{2}\right) \\
& D(x)=\frac{I}{\sqrt{2}} \Pi\left(-\frac{I}{4}\right) x^{\frac{1}{2}} J_{-\frac{1}{2}}\left(\frac{x}{2}\right)=\frac{I}{\text { I.I5407 }} x^{\frac{1}{2} J_{-\frac{1}{2}}\left(\frac{x}{2}\right)}
\end{aligned}
$$

Table I of Jahnke and Emde gives these two functions to 3 decimal places for $x=0.2$ to $x=8.0$, interval 0.2 , and $x=8.0$ to $x=12.0$, interval r.o.

Roots of $J_{0}(x)=0$.
Airey, Phil. Mag. 36, p. 24r, 1918: First 40 roots (ρ) with corresponding values of $J_{1}(\rho), 7$ decimal places.

Jahnke and Emde, Table IV, same, to 4 decimal places.
Roots of $J_{1}(x)=0$.
Gray and Mathews, Table III, first 50 roots, with corresponding values of $J_{0}(x)$, I6 decimal places.

Airey, Phil. Mag. 36, p. 24I: First 40 roots (r) with corresponding values of $J_{0}(r), 7$ decimal places.

Jahnke and Emde, Table IV, same, to 4 decimal places.
Roots of $J_{n}(x)=0$.
B. A. Report, I9I7, first Io roots, to 6 figures, for the following integral values of n : 0-10, $15,20,30,40,50,75,100,200,300,400,500,750,1000$.

Jahnke and Emde, Table XXII, first 9 roots, 3 decimal places, integral values of $n 0-9$.
Roots of:
$(\log 2-\gamma) J_{n}(x)+\frac{\pi}{2} Y_{n}(x)=0 \quad$ Denoted $Y_{n}(x)=0$ in table.
Airey: Proc. London Phys. Soc. 23, p. 219, IgIo-II. First 40 roots for $n=0,1,2,5$ decimal places.
Jahnke and Emde, Table X, first 4 roots for $n=0$, I. E decimal places.
Roots of:
$Y_{0}(x)=0$,
$Y_{1}(x)=0$.
Denoted $N_{0}(x)$ and $N_{1}(x)$ in tables.
Airey: l. c. First to roots, 5 decimal places.
Roots of:

$$
\begin{array}{rrr}
J_{0}(x) \pm(\log 2-\gamma) J_{0}(x)+\frac{\pi}{2} Y_{0}(x)=0 . & \text { Denoted } & J_{0}(x) \pm Y_{0}(x)=0 . \\
J_{1}(x)+(\log 2-\gamma) J_{1}(x)+\frac{\pi}{2} Y_{1}(x)=0 . & \text { Denoted } & J_{1}(x)+Y_{1}(x)=0 . \\
J_{0}(x)-2(\log 2-\gamma) J_{0}(x)+\frac{\pi}{2} Y_{0}(x)=0 . & \text { Denoted } & J_{0}(x)-2 V_{0}(x)=0 . \\
\operatorname{IO} J_{0}(x) \pm(\log 2-\gamma) J_{0}(x)+\frac{\pi}{2} Y_{0}(x)=0 . & \text { Denoted } \operatorname{IO} J_{0}(x) \pm Y_{0}(x)=0 .
\end{array}
$$

Airey, 1. c. First to roots, 5 decimal places. Roots of

$$
\frac{J_{n+1}(x)}{J_{n}(x)}+\frac{I_{n+1}(x)}{I_{n}(x)}=0 .
$$

Airey, 1. c. First io roots: $n=0,4$ decimal places, $n=1,2,3,3$ decimal places.

Jahnke and Emde, Table XXV, first 5 roots for $n=0,3$ for $n=\mathrm{I}, 2$ for $n=2: 4$ figures.

Airey, l. c. gives roots of some other equations involving Bessel's functions connected with the vibration of circular plates.
Roots of:

$$
J_{\nu}(x) Y_{\nu}(x)=J_{\nu}(k x) Y_{\nu}(k x) .
$$

Jahnke and Emde, Table XXVI, first 6 roots, 4 decimal places, for $\nu=0,1 / 2, \mathrm{I}, 3 / 2,2,5 / 2: k=\mathrm{I} .2, \mathrm{I} .5,2.0$.

Table XXVIII, first root, multiplied by ($k-\mathrm{I}$) for $k=\mathrm{I}$, I.2, I.5, 2-II, 19, 39, ∞ : ν same as above.

Table XXIX, first 4 roots, multiplied by $(k-\mathrm{I})$ for certain irrational values of k, and $\nu=0$, r .

X. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

By F. R. Moulton, Ph.D., Professor of Astronomy, University of Chicago; Research Associate of the Carnegie Institution of Washington.

INTRODUCTION

Differential equations are usually first encountered in the final chapter of a book on integral calculus. The methods which are there given for solving them are essentially the same as those employed in the calculus. Similar methods are used in the first special work on the subject. That is, numerous types of differential equations are given in which the variables can be separated by suitable devices; little or nothing is said about the existence of solutions of other types, or about methods of finding the solutions. The false impression is often left that only exceptionally can differential equations be solved. Whatever satisfaction there may be in learning that some problems in geometry and physics lead to standard forms of differential equations is more than counterbalanced by the discovery that most practical problems do not lead to such forms.
10.01 The point of view adopted here and the methods which are developed can be best understood by considering first some simpler and better known mathematical theories. Suppose
I.

$$
F(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}=0
$$

is a polynomial equation in x having real coefficients $a_{1}, a_{2}, \ldots, a_{n}$. If n is $\mathrm{I}, 2,3$, or 4 the values of x which satisfy the equation can be expressed as explicit functions of the coefficients. If n is greater than 4 , formulas for the solution can not in general be written down. Nevertheless, it is possible to prove that n solutions exist and that at least one of them is real if n is odd. If the coefficients are given numbers, there are straightforward, though somewhat laborious, methods of finding the solutions. That is, even though general formulas for the solutions are not known, yet it is possible both to prove the existence of the solutions and also to find them in any special numerical case.
10.02 Consider as another illustration the definite integral
I.

$$
I=\int_{a}^{b} f(x) d x
$$

where $f(x)$ is continuous for $a \leqslant x \leqslant b$. If $F(x)$ is such a function that
2.

$$
\frac{d F}{d x}=f(x)
$$

then $I=F(b)-F(a)$. But suppose no $F(x)$ can be found satisfying (2). It is nevertheless possible to prove that the integral I exists, and if the value of (x) is given for every value of x in the interval $a \leqslant x \leqslant b$, it is possible to find the numerical value of I with any desired degree of approximation. That is, it is not necessary that the primitive of the integrand of a definite integral be known in order to prove the existence of the integral, or even to find its value in any particular example.
10.03 The facts are analogous in the case of differential equations. Those having numerical coefficients and prescribed initial conditions can be solved regardless of whether or not their variables can be separated. They need to satisfy only mild conditions which are always fulfilled in physical problems. It is with a sense of relief that one finds he can solve, numerically, any particular problem which can be expressed in terms of differential equations.
10.04 This chapter will contain an account of a method of solving ordinary differential equations which is applicable to a broad class including all those which arise in physical problems. A large amount of experience has shown that the method is very convenient in practice. It must be understood that there is for it an underlying logical basis, involving refinements of modern analysis, which fully justifies the procedure. In other words, it can be proved that the process is capable of furnishing the solution with any desired degree of accuracy. The proofs of these facts belong to the domain of pure analysis and will not be given here.
10.10 Simpson's Method of Computing Definite Integrals. The method of solving differential equations which will be given later involves the computation of definite integrals by a special process which will be developed in this and the following sections.

Let t be the variable of integration, and consider the definite integral
I.

$$
F=\int_{a}^{b} f(t) d t
$$

This integral can be interpreted as the area between the t-axis and the curve $y=f(t)$ and bounded by the ordinates $t=a$ and $t=b$, figure I .

Let $t_{0}=a, t_{n}=b, y_{2}=f\left(t_{2}\right)$, and divide the interval $a \leqslant t \leqslant b$ up into n equal parts, each of length $h=$

Fig. I
$(b-a) / n$. Then an approximate value of F is
2. $\quad F_{0}=h\left(y_{1}+y_{2}+\ldots+y_{n}\right)$.

This is the sum of rectangles whose ordinates, figure 1 , are $y_{1}, y_{2}, \ldots, y_{n}$.
10.11 A more nearly exact value can be obtained for the first two intervals, for example, by putting a curve of the second degree through the three points
y_{0}, y_{1}, y_{2}, and finding the area between the t-axis and this curve and bounded by the ordinates t_{0} and t_{2}. The equation of the curve is
I. $\quad y=a_{0}+a_{1}\left(t-t_{0}\right)+a_{2}\left(t-t_{0}\right)^{2}$,
where the coefficients a_{0}, a_{1}, and a_{2} are determined by the conditions that y shall equal y_{0}, y_{1}, and y_{2} at t equal to t_{0}, t_{1} and t_{2} respectively; or
2.

$$
\left\{\begin{array}{l}
y_{0}=a_{0} \\
y_{1}=a_{0}+a_{1}\left(t_{1}-t_{0}\right)+a_{2}\left(t_{1}-t_{0}\right)^{2} \\
y_{2}=a_{0}+a_{1}\left(t_{2}-t_{0}\right)+a_{2}\left(t_{2}-t_{0}\right)^{2}
\end{array}\right.
$$

It follows from these equations and $t_{2}-t_{1}=t_{1}-t_{0}=h$ that
3.

$$
\left\{\begin{array}{l}
a_{0}=y_{0} \\
a_{1}=-\frac{I}{2 h}\left(3 y_{0}-4 y_{1}+y_{2}\right) \\
a_{2}=\frac{I}{2 h^{2}}\left(y_{0}-2 y_{1}+y_{2}\right)
\end{array}\right.
$$

The definite integral $\int_{t_{0}}^{t_{2}} y d t$ is approximately

$$
I=\int_{t_{0}}^{t_{2}}\left[a_{0}+a_{1}\left(t-t_{0}\right)+a_{2}\left(t-t_{0}\right)^{2}\right] d t=2 h\left[a_{0}+a_{1} h+\frac{4}{3} a_{2} h^{2}\right]
$$

which becomes as a consequence of (3)

$$
4
$$

$$
I=\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right)
$$

10.12 The value of the integral over the next two intervals, or from t_{2} to t_{4}, can be computed in the same way. If n is even, the approximate value of the integral from t_{0} to t_{n} is therefore

$$
F_{1}=\frac{h}{3}\left[y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+\ldots+4 y_{n-1}+y_{n}\right]
$$

This formula, which is due to Simpson, gives results which are usually remarkably accurate considering the simplicity of the arithmetical operations.
10.13 If a curve of the third degree had been passed through the four points y_{0}, y_{1}, y_{2}, and y_{3}, the integral corresponding to (4), but over the first three intervals, would have been found to be

$$
I=\frac{3 h}{8}\left[y_{0}+3 y_{1}+3 y_{2}+y_{3}\right]
$$

10.20 Digression on Difference Functions. For later work it will be necessary to have some properties of the successive differences of the values of a function for equally spaced values of its argument.

As before, let y_{\imath} be the value of $f(t)$ for $t=t_{2}$. Then let

$$
\begin{aligned}
\Delta_{1} y_{1} & =y_{1}-y_{0}, \\
\Delta_{1} y_{2} & =y_{2}-y_{1}, \\
\Delta_{1} y_{n} & =y_{n}-y_{n-1},
\end{aligned}
$$

These are the first differences of the values of the function y for successive values of t. All the successive intervals for t are supposed to be equal.
10.21 In a similar way the second differences are defined by

$$
\begin{aligned}
& \Delta_{2} y_{2}=\Delta_{1} y_{2}-\Delta_{1} y_{1}, \\
& \Delta_{2} y_{3}=\Delta_{1} y_{3}-\Delta_{1} y_{2}, \\
& \ddot{M}_{2} \cdots \cdots \cdots \cdots \\
& \Delta_{2} y_{n}=\Delta_{1} y_{n}-\Delta_{1} y_{n-1},
\end{aligned}
$$

10.22 In a similar way third differences are defined by

$$
\begin{aligned}
& \Delta_{3} y_{3}=\Delta_{2} y_{3}-\Delta_{2} y_{2}, \\
& \Delta_{3} y_{4}=\Delta_{2} y_{4}-\Delta_{2} y_{3}, \\
& \hdashline_{3} \cdots y_{n}=\Delta_{2} y_{n}-\Delta_{2} y_{n-1},
\end{aligned}
$$

and obviously the process can be repeated as many times as may be desired. 10.23 The table of successive differences can be formed conveniently from the tabular values of the function and can be arranged in a table as follows:

Table I

y	$\Delta_{1} y$	$\Delta_{2} y$	$\Delta_{3} y$
y_{0}			
y_{1}	$\Delta_{1} y_{1}$		
y_{2}	$\Delta_{1} y_{2}$	$\Delta_{2} y_{2}$	
y_{3}	$\Delta_{1} y_{3}$	$\Delta_{2} y_{3}$	
$\ldots \ldots \ldots \ldots$	$\ldots \ldots \ldots \ldots$.	$\ldots \ldots \ldots \ldots$	$\ldots \ldots \ldots \ldots$

In this table the numbers in each column are subtracted from those immediately below them and the remainders are placed in the next column to the right on the same line as the minuends. Variations from this precise arrangement could be, and indeed often have been, adopted.
10.24 A very important advantage of a table of differences is that it is almost sure to reveal any errors that may have been committed in computing the y_{i}. If a single y_{v}, has an error ϵ, it follows from 10.20 that the first difference $\Delta_{1} y_{i}$ will contain the error $+\epsilon$ and $\Delta_{1} y_{i+1}$ will contain the error $-\epsilon$. But the second differences $\Delta_{2} y_{1}, \Delta_{2} y_{i+1}$, and $\Delta_{2} y_{i+2}$ will contain the respective errors $+\epsilon,-2 \epsilon$, $+\epsilon$. Similarly, the third differences $\Delta_{3} y_{y}, \Delta_{3} y_{i+1}, \Delta_{3} y_{i+2}$, and $\Delta_{3} y_{i+3}$ will contain the respective errors $+\epsilon,-3 \epsilon,+3 \epsilon,-\epsilon$. An error in a single y_{i} affects $j+\mathrm{x}$ differences of order j, and the coefficients of the error are the binomial coefficients with alternating signs. The algebraic sums of the errors in the affected
numbers in the various difference columns are zero. Now in such functions as ordinarily occur in practice the numerical values of the differences, if the intervals are not too great, decrease with rapidity and run smoothly. If an error is present, however, the differences of higher order become very irregular. 10.25 As an illustration, consider the function $y=\sin t$ for t equal to 10°, 15°, The following table gives the function and its successive differences, expressed in terms of units of the fourth decimal: ${ }^{1}$

Table II

t	$\sin t$	$\Delta_{1} \sin t$	$\Delta_{2} \sin t$	$\cdot \Delta_{3} \sin t$
10°	1736			
15	2588	852		
20	3420	832	-20	
25	4226	806	-26	-6
30	5000	774	-32	-6
35	5736	736	-38	-6
40	6428	692	-44	-6
45	707 I	643	-49	-5
50	7660	589	-54	-5
55	8191	531	-58	-4
60	8660	469	-62	-4
65	9063	403	-66	-4
70	9397	334	-69	-3

Suppose, however, that an error of two units had been made in determining the sine of 45° and that 7073 had been taken in place of 7071 . Then the part of the table adjacent to this number would have been the following:

Table III

t	$\sin t$	$\Delta_{1} \sin$	$\Delta_{2} \sin t$	$\Delta_{3} \sin t$
25°	4226			
30	5000	774		
35	5736	736	-38	
40	6428	692	-44	-6
45	7073	645	-47	-3
50	7660	587	-58	-TI
55	819 I	53 I	-56	+2
60	8660	469	-62	-6
65	9063	403	-66	-4

The irregularity in the numbers of the last column shows the existence of an error, and, in fact, indicates its location. In the third differences four numbers

[^0]will be affected by an error in the value of the function. The erroneous numbers in the last column are clearly the second, third, fourth, and fifth. The algebraic sum of these four numbers equals the sum of the four correct numbers, or -18 . Their average is -4.5 . Hence the central numbers are probably -5 and -4 . Since the errors in these numbers are -3ϵ and $+3 \epsilon$, it follows that ϵ is probably +2 . The errors in the second and fifth numbers are $+\epsilon$ and $-\epsilon$ respectively. On making these corrections and working back to the first column, it is found that 7073 should be replaced by 707 .
10.30 Computation of Definite Integrals by Use of Difference Functions.

Suppose the values of $f(t)$ are known for $t=t_{n-2}, t_{n-1}, t_{n}$, and t_{n+1}. Suppose it is desired to find the integral
I.

$$
I_{n}=\int_{t_{n}}^{t_{n+1}} f(t) d t
$$

The coefficients b_{0}, b_{1}, b_{2}, and b_{3} of the polynomial can be determined, as above, so that the function
2.

$$
y=b_{0}+b_{1}\left(t-t_{n}\right)+b_{2}\left(t-t_{n}\right)^{2}+b_{3}\left(t-t_{n}\right)^{3}
$$

shall take the same values as $f(t)$ for $t=t_{n-2}, t_{n-1}, t_{n}$, and t_{n+1}.
With this approximation to the function $f(t)$, the integral becomes (since $\left.t_{n+1}-t_{n}=h\right)$

$$
\text { 3. } \begin{aligned}
I_{n} & =\int_{t_{n}}^{t_{n}+\mathrm{I}}\left[b_{0}+b_{1}\left(t-t_{n}\right)+b_{2}\left(t-t_{n}\right)^{2}+b_{3}\left(t-t_{n}\right)^{3}\right] d t \\
& =h\left[b_{0}+\frac{\mathrm{I}}{2} b_{1} h+\frac{\mathrm{I}}{3} b_{2} h^{2}+\frac{\mathrm{I}}{4} b_{3} h^{3}\right] .
\end{aligned}
$$

The coefficients b_{0}, b_{1}, b_{2}, and b_{3} will now be expressed in terms of $y_{n+1}, \Delta_{1} y_{n+1}$, $\Delta_{2} y_{n+1}$, and $\Delta_{3} y_{n+1}$. It follows from (2) that
4.

$$
\left\{\begin{array}{l}
y_{n-2}=b_{0}-2 b_{1} h+4 b_{2} h^{2}-8 b_{3} h^{3} \\
y_{n-1}=b_{0}-b_{1} h+b_{2} h^{2}-b_{3} h^{3} \\
y_{n}=b_{02} \\
y_{n+1}=b_{0}+b_{1} h+b_{2} h^{2}+b_{3} h^{3}
\end{array}\right.
$$

Then it follows from the rules for determining the difference functions that
5.

$$
7 \cdot
$$

$$
\begin{aligned}
& \begin{cases}\Delta_{1} y_{n-1} & =b_{1} h-3 b_{2} h^{2}+7 b_{3} h^{3} \\
\Delta_{1} y_{n} & =b_{1} h-b_{2} h^{2}+b_{3} h^{3} \\
\Delta_{1} y_{n+1} & =b_{1} h+b_{2} h^{2}+b_{3} h^{3}\end{cases} \\
& \begin{cases}\Delta_{2} y_{n} & =2 b_{2} h^{2}-6 b_{3} h^{3} \\
\Delta_{2} y_{n+1} & =2 b_{2} h^{2}\end{cases} \\
& \Delta_{3} y_{n+1}=6 b_{3} h^{3} .
\end{aligned}
$$

It follows from the last equations of these four sets of equations that
8.

$$
\left\{\begin{array}{l}
b_{0}=y_{n+1}-\Delta_{1} y_{n+1} \\
b_{1} h=\Delta_{1} y_{n+1}-\frac{I}{2} \Delta_{2} y_{n+1}-\frac{\bar{C}}{6} \Delta_{3} y_{n+1} \\
b_{2} h^{2}=\frac{I}{2} \Delta_{2} y_{n+1} \\
b_{3} h^{3}=\frac{I}{6} \Delta_{3} y_{n+1}
\end{array}\right.
$$

Therefore the integral (3) becomes
9.

$$
I_{n}=h\left[y_{n+1}-\frac{\mathrm{I}}{2} \Delta_{1} y_{n+1}-\frac{\mathrm{I}}{\mathrm{I} 2} \Delta_{2} y_{n+1}-\frac{\mathrm{I}}{24} \Delta_{3} y_{n+1}-\ldots\right] .
$$

The coefficients of the higher order terms $\Delta_{4} y_{n+1}$ and $\Delta_{5} y_{n+1}$ are $-\frac{19}{720}$ and新 respectively.
10.31 Obviously, if it were desired, the integral from t_{n-2} to t_{n-1}, or over any other part of this interval, could be computed by the same methods. For example, the integral from t_{n-1} to t_{n} is

$$
\begin{aligned}
I_{n-1} & =\int_{t_{n-1}}^{t_{n}} f(t) d t \\
& =h\left[y_{n+1}-\frac{3}{2} \Delta_{1} y_{n+1}+\frac{5}{\mathrm{I} 2} \Delta_{2} y_{n+1}+\frac{I}{24} \Delta_{3} y_{n+1}+\ldots\right] .
\end{aligned}
$$

NUMERICAL ILLUSTRATIONS

10.32 Consider first the application of Simpson's method. Suppose it is required to find

$$
I=\int_{25^{\circ}}^{55^{\circ}} \sin t d t=-[\cos t]_{25^{\circ}}^{55^{\circ}}=0.3327
$$

On applying 10.12 with the numbers taken from Table I, it is found that

$$
I_{1}=\frac{5^{\circ}}{3}[.4226+2.0000+\mathrm{I} .1472+2.57 \mathrm{I} 2+\mathrm{I} .4 \mathrm{I} 42+3.0640+.8 \mathrm{IgI}],
$$

which becomes, on reducing 5° to radians,

$$
I_{1}=0.3327
$$

agreeing to four places with the correct result.
10.33 On applying 10.11 (4) and omitting alternate entries in Table II, it is found that

$$
I=\int_{25^{\circ}}^{45^{\circ}} \sin t d t=\frac{10^{\circ}}{3}[.4226+2.2944+.707 \mathrm{I}]=0.1992
$$

which is also correct to four places. These formulas could hardly be surpassed in ease and convenience of application.
10.34 Now consider the application of 10.30 (9). As it stands it furnishes the integral over the single interval t_{n} to t_{n+1}. If it is desired to find the integral from t_{n} to t_{n+m}, the formula for doing so is obviously the sum of m formulas such as (9), the value of the subscript going from $n+\mathrm{I}$ to $n+m+\mathrm{I}$, or

$$
\begin{aligned}
& I_{n}, m\left[\left(y_{n+1}+\ldots+y_{n+m+1}\right)-\frac{I}{2}\left(\Delta_{1} y_{n+1}+\ldots .+\Delta_{1} y_{n+m+1}\right)\right. \\
& \left.-\frac{I}{\mathrm{I} 2}\left(\Delta_{2} y_{n+1}+\ldots+\Delta_{2} y_{n+m+1}\right)-\frac{I}{24}\left(\Delta_{3} y_{n+1}+\ldots+\Delta_{3} y_{n+m+1}\right)+\ldots\right] .
\end{aligned}
$$

On applying this formula to the numbers of Table I, it is found that

$$
\begin{aligned}
I=\int_{25^{\circ}}^{\circ 55^{\circ}} \sin t d t=5^{\circ}[(5000 & +.5736+.6428+.707 \mathrm{I}+.7660+.8 \mathrm{IgI}) \\
& -\frac{I}{2}(.0774+.0736+.0692+.0643+.0589+.053 \mathrm{I}) \\
& +\frac{I}{I 2}(.0032+.0038+.0044+.0049+.0054+.0058) \\
& \left.+\frac{I}{24}(.0006+.0006+.0006+.0005+.0005+.0004)\right] \\
& =0.3327
\end{aligned}
$$

agreeing to four places with the exact value. When a table of differences is at hand covering the desired range this method involves the simplest numerical operations. It must be noted, however, that some of the required differences necessitate a knowledge of the value of the function for earlier values of the argument than the lower limit of the integral.
10.40 Reduced Form of the Differential Equations. Differential equations which arise from physical problems usually involve second derivatives. For example, the differential equation satisfied by the motion of a vibrating tuning fork has the form

$$
\frac{d^{2} x}{d t^{2}}=-k x
$$

where k is a constant depending on the tuning fork.
10.41 The differential equations for the motion of a body subject to gravity and a retardation which is proportional to its velocity are

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}=-c \frac{d x}{d t} \\
\frac{d^{2} y}{d t^{2}}=-c \frac{d y}{d t}-g
\end{array}\right.
$$

where c is a constant depending on the resisting medium and the mass and shape of the body, while g is the acceleration of gravity.
10.42 The differential equations for the motion of a body moving subject to the law of gravitation are

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}=-k^{2} \frac{x}{r^{3}} \\
\frac{d^{2} y}{d t^{2}}=-k^{2} \frac{y}{r^{3}} \\
\frac{d^{2} z}{d t^{2}}=-k^{2} \frac{z}{r^{3}} \\
r^{2}=x^{2}+y^{2}+z^{2} .
\end{array}\right.
$$

10.43 These examples illustrate sufficiently the types of differential equations which arise in practical problems. The number of the equations depends on the problem and may be small or great. In the problem of three bodies there are nine equations. The equations are usually not independent as is illustrated in 10.42, where each equation involves all three variables x, y, and z through r. On the other hand, equations 10.41 are mutually independent for the first does not involve y or its derivatives and the second does not involve x or its derivatives. The right members may involve x, y, and z as is the case in 10.42, or they may involve the first derivatives, as is the case in 10.41 , or they may involve both the coordinates and their first derivatives. In some problems they also involve the independent variable t.
10.44 Hence physical problems usually lead to differential equations which are included in the form

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}=f\left(x, y, \frac{d x}{d t}, \frac{d y}{d t}, t\right) \\
\frac{d^{2} y}{d t^{2}}=g\left(x, y, \frac{d x}{d t}, \frac{d y}{d t}, t\right)
\end{array}\right.
$$

where f and g are functions of the indicated arguments. Of course, the number of equations may be greater than two.
10.45 If we let

$$
x^{\prime}=\frac{d x}{d t}, \quad y^{\prime}=\frac{d y}{d t},
$$

equations 10.44 can be written in the form

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x^{\prime} \\
\frac{d x^{\prime}}{d t}=f\left(x, y, x^{\prime}, y^{\prime}, t\right) \\
\frac{d y}{d t}=y^{\prime} \\
\frac{d y^{\prime}}{d t}=g\left(x, y, x^{\prime}, y^{\prime}, t\right)
\end{array}\right.
$$

10.46 If we let $x=x_{1}, x^{\prime}=x_{2}, y=x_{3}, y^{\prime}=x_{4}, \ldots$. equations 10.45 are included in the form

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \cdots \\
\frac{d x_{n}}{d t}=f_{n}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, t\right)
\end{array}\right.
$$

This is the final standard form to which it will be supposed the differential equations are reduced.
10.50 Definition of a Solution of Differential Equations. For simplicity in writing, suppose the differential equations are two in number and write them in the form
I. $\quad\left\{\begin{array}{l}\frac{d x}{d t}=f(x, y, t), \\ \frac{d y}{d t}=g(x, y, t),\end{array}\right.$
where f and g are known functions of their arguments. Suppose $x=a, y=b$ at $t=0$. Then

$$
\text { 2. } \quad\left\{\begin{array}{l}
x=\phi(t), \\
y=\psi(t),
\end{array}\right.
$$

is the solution of (I) satisfying these initial conditions if ϕ and ψ are such functions that
3.

$$
\begin{aligned}
\phi(0) & =a, \\
\psi(0) & =b, \\
\frac{d \phi}{d t} & =f(\phi, \psi, t), \\
\frac{d \psi}{d t} & =g(\phi, \psi, t),
\end{aligned}
$$

the last two equations being satisfied for all $0 \leqslant t \leqslant T$, where T is a positive constant, the largest value of t for which the solution is determined. It is not necessary that ϕ and ψ be given by any formulas - it is sufficient that they have the properties defined by (3). Solutions always exist, though it will not be proved here, if f and g are continuous functions of t and have derivatives with respect to both x and y.
10.51 Geometrical Interpretation of a Solution of Differential Equations. Geometrical interpretations of definite integrals have been of great value not only in leading to an understanding of their real meaning but also in suggesting
practical means of obtaining their numerical values. The same things are true in the case of differential equations.

For simplicity in the geometrical representation, consider a single equation
I.

$$
\frac{d x}{d t}=f(x, t),
$$

where $x=a$ at $t=0$. Suppose the solution is
2.

$$
x=\phi(t),
$$

Equation (2) defines a curve whose coordinates are x and t. Suppose it is represented by figure 2. The value of the tangent to the curve at every point on it

Fig. 2 is given by equation (I), for there is, corresponding to each point, a pair of values of x and t which gives $\frac{d x}{d t}$, the value of the tangent, when substituted in the right member of equation (I).

Consider the initial point on the curve, viz. $x=a, t=0$. The tangent at this point is $f(a, 0)$. The curve lies close to the tangent for a short distance from the initial point. Hence an approximate value of x at $t=t_{1}, t_{1}$ being small, is the ordinate of the point where the tangent at a intersects the line $t=t_{1}$, or

$$
x_{1}=f(a, o) t_{1} .
$$

The tangent at x_{1}, t_{1} is defined by (I), and a new step in the solution can be made in the same way. Obviously the process can be continued as long as x and t have values for which the right member of (I) is defined. And the same process can be applied when there are any number of equations. While the steps of this process can be taken so short that it will give the solution with any desired degree of accuracy, it is not the most convenient process that may be employed. It is the one, however, which makes clearest to the intuitions the nature of the solution.
10.6 Outline of the Method of Solution. Consider equations 10.50 (I) and their solution (2). The problem is to find functions ϕ and ψ having the ,properties (2). If we integrate the last two equations of $\mathbf{1 0 . 5 0}$ (3) we shall have
I.

$$
\left\{\begin{array}{l}
\phi=a+\int_{0}^{t} f(\phi, \psi, t) d t \\
\psi=b+\int_{0}^{t} g(\phi, \psi, t) d t
\end{array}\right.
$$

The difficulty arises from the fact that ϕ and ψ are not known in advance and the integrals on the right can not be formed. Since ϕ and ψ are the solution values of x and y, we may replace them by the latter in order to preserve the original notation, and we have
2.

$$
\left\{\begin{array}{l}
x=a+\int_{0}^{t} f(x, y, t) d t \\
y=b+\int_{0}^{t} g(x, y, t) d t
\end{array}\right.
$$

If x and y do not change rapidly in numerical value, then $f(x, y, t)$ and $g(x, y, t)$ will not in general change rapidly, and a first approximation to the values of x and y satisfying equations (2) is
3.

$$
\left\{\begin{array}{l}
x_{1}=a+\int_{0}^{t} f(a, b, t) d t \\
y_{1}=b+\int_{0}^{t} g(a, b, t) d t
\end{array}\right.
$$

at least for values of t near zero. Since a and b are constants, the integrands in (3) are known and the integrals can be computed. If the primitives can not be found the integrals can be computed by the methods of 10.1 or 10.3.

After a first approximation has been found a second approximation is given by
4.

$$
\left\{\begin{array}{l}
x_{2}=a+\int_{0}^{t} f\left(x_{1}, y_{1}, t\right) d t \\
y_{2}=b+\int_{0}^{t} g\left(x_{1}, y_{1}, t\right) d t
\end{array}\right.
$$

The integrands are again known functions of t because x_{1} and y_{1} were determined as functions of t by equations (3). Consequently x_{2} and y_{2} can be computed. The process can evidently be repeated as many times as is desired. The nth approximation is
5.

$$
\left\{\begin{array}{l}
x_{n}=a+\int_{0}^{t} f\left(x_{n-1}, y_{n-1}, t\right) d t \\
y_{n}=b+\int_{0}^{t} g\left(x_{n-1}, y_{n-1}, t\right) d t
\end{array}\right.
$$

There is no difficulty in carrying out the process, but the question arises whether it converges to the solution. The answer, first established by Picard, is that, as n increases, x_{n} and y_{n} tend toward the solution for all values of t for which all the approximations belong to those values of x, y, and t for which f and g have the properties of continuity with respect to t and differentiability with respect to x and y. If, for example, $f=\frac{\sin x}{x^{2}}$ and the value of x_{n} tends towards zero for $t=T$, then the solution can not be extended beyond $t=T$.

It is found in practice that the longer the interval over which the integration is extended in the successive approximations, the greater the number of approximations which must be made in order to obtain a given degree of accuracy. In fact, it is preferable to take first a relatively short interval and to find the solution over this interval with the required accuracy, and then to continue from the end values of this interval over a new interval. This is what is done in actual work. The details of the most convenient methods of doing it will be explained in the succeeding sections.
10.7 The Step-by-Step Construction of the Solution. Suppose the differential equations are

I

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=f(x, y, t) \\
\frac{d y}{d t}=g(x, y, t)
\end{array}\right.
$$

with the initial conditions $x=a, y=b$ at $t=0$ It is more difficult to start a solution than it is to continue one after the first few steps have been made. Therefore, it will be supposed in this section that the solution is well under way, and it will be shown how to continue it. Then the method of starting a solution will be explained in the next section, and the whole process will be illustrated numerically in the following one.

Suppose the values of x and y have been found for $t=t_{1}, t_{2}, \ldots, t_{n}$. Let them be respectively $x_{1}, y_{1} ; x_{1}, y_{2} ; \ldots ; x_{n}, y_{n}$, care being taken not to confuse the subscripts with those used in section 10.6 in a different sense. Suppose the intervals $t_{2}-t_{1}, t_{3}-t_{2}, \ldots, t_{n}-t_{n-1}$ are all equal to h and that it is desired to find the values of x and y at t_{n+1}, where $t_{n+1}-t_{n}=h$.

It follows from this notation and equations (2) of 10.6 that the desired quantities are

2

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}+\int_{t_{n}}^{t_{n}+x} f(x, y, t) d t, \\
y_{n+1}=y_{n}+\int_{t_{n}}^{t_{n+1}} g(x, y, t) d t .
\end{array}\right.
$$

The values of x and y in the integrands are of course unknown. They can be found by successive approximations, and if the interval is short, as is supposed, the necessary approximations will be few in number.

A fortunate circumstance makes it possible to reduce the number of approximations. The values of x and y are known at $t=t_{n}, t_{n-1}, t_{n-2}, \ldots$. From these values it is possible to determine in advance, by extrapolation, very close approximations to x and y for $t=t_{n+1}$. The corresponding values of f and g can be computed because these functions are given in terms of x, y, and t. They are also given for $t=t_{n}, t_{n-1}, \ldots$. Consequently, curves for f and g agreeing with their values at $t=t_{n+1}, t_{n}, t_{n-1}, \ldots$ can be constructed and the integrals (2) can be computed by the methods of 10.1 and 10.3.

The method of extrapolating values of x_{n+1} and y_{n+1} must be given. Since the method is the same for both, consider only the former. Since, by hypothesis, x is known for $t=t_{n}, t_{m-1}, t_{n-2}, \ldots$ the values of $x_{n}, \Delta_{1} x_{n}, \Delta_{2} x_{n}$, and $\Delta_{3} x_{n}$ are known. If the interval h is not too large the value of $\Delta_{s} x_{n+1}$ is very nearly equal to $\Delta_{8} x_{n}$. As an approximation $\Delta_{3} x_{n+1}$ may be taken equal to $\Delta_{3} x_{n}$, or perhaps a closer value may be determined from the way the third differences
$\Delta_{3} x_{n-3}, \Delta_{3} x_{n-2}, \Delta_{3} x_{n-1}$, and $\Delta_{3} x_{n}$ vary. For example, in Table II it is easy to see that $\Delta_{3} \sin 75^{\circ}$ is almost certainly -3. It follows from 10.20, 1, 2 that
3.

$$
\left\{\begin{array}{l}
\Delta_{2} x_{n+1}=\Delta_{3} x_{n+1}+\Delta_{2} x_{n}, \\
\Delta_{1} x_{n+1}=\Delta_{2} x_{n+1}+\Delta_{1} x_{n}, \\
x_{n+1}=\Delta_{1} x_{n+1}+x_{n} .
\end{array}\right.
$$

After the adopted value of $\Delta_{3} x_{n+1}$ has been written in its column the successive entries to the left can be written down by simple additions to the respective numbers on the line of t_{n}. For example, it is found from Table II that $\Delta_{2} \sin 75^{\circ}=-72, \Delta_{1} \sin 75^{\circ}=262, \sin 75^{\circ}=9659$. This is, indeed, the correct value of $\sin 75^{\circ}$ to four places.

Now having extrapolated approximate values of x_{n+1} and y_{n+1} it remains to compute f and g for $x=x_{n+1}, y=y_{n+1}, t=t_{n+1}$. The next step is to pass curves through the values of f and g for $t=t_{n+1}, t_{n}, t_{n-1}, \ldots$ and to compute the integrals (2). This is the precise problem that was solved in 10.30, the only difference being that in that section the integrand was designated by y. On applying equation 10.30 (9) to the computation of the integrals (2), the latter give
4.

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}+h\left[f_{n+1}-\frac{I}{2} \Delta_{1} f_{n+1}-\frac{I}{I} \Delta_{2} f_{n+1}-\frac{I}{24} \Delta_{3} f_{n+1} \ldots\right] \\
y_{n+1}=y_{n}+h\left[g_{n+1}-\frac{I}{2} \Delta_{1} g_{n+1}-\frac{\mathrm{I}}{\mathrm{I} 2} \Delta_{2} g_{n+1}-\frac{\mathrm{I}}{24} \Delta_{3} g_{n+1} \ldots\right]
\end{array}\right.
$$

where
5.

$$
\left\{\begin{array}{l}
f_{n+1}=f\left(x_{n+1}, y_{n+1}, t_{n+1}\right) \\
g_{n+1}=g\left(x_{n+1}, y_{n+1}, t_{n+1}\right)
\end{array}\right.
$$

The right members of (4) are known and therefore x_{n+1} and y_{n+1} are determined.

It will be recalled that f_{n+1} and g_{n+1} were computed from extrapolated values of x_{n+1} and y_{n+1}, and hence are subject to some error. They should now be recomputed with the values of x_{n+1} and y_{n+1} furnished by (4). Then more nearly correct values of the entire right members of (4) are at hand and the values of x_{n+1} and y_{n+1} should be corrected if necessary. If the interval h is small it will not generally be necessary to correct x_{n+1} and y_{n+1}. But if they require corrections, then new values of f_{n+1} and g_{n+1} should be computed. In practice it is advisable to take the interval h so small that one correction to f_{n+1} and g_{n+1} is sufficient.

After x_{n+1} and y_{n+1} have been obtained, values of x and y at t_{n+2} can be found in precisely the same manner, and the process can be continued to $t=t_{n+3}, t_{n+4}$, If the higher differences become large and irregular it is advisable to interpolate values at the mid-intervals of the last two steps and to continue with an interval half as great. On the other hand, if the higher differences become very small it is advisable to proceed with an interval twice as great as that used in the earlier part of the computation.

The foregoing, expressed in words, seems rather complicated. As a matter of fact, it goes very simply in practice, as will be shown in section 10.9.
10.8 The Start of the Construction of the Solution. Suppose the differential equations are again
r.

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=f(x, y, t) \\
\frac{d y}{d t}=g(x, y, t)
\end{array}\right.
$$

with the initial conditions $x=a, y=b$ at $t=0$. Only the initial values of x and y are known. But it follows from (I) that the rates of change of x and y at $t=0$ are $f(a, b, \circ)$ and $g(a, b, 0)$ respectively. Consequently, first approximations to values of x and y at $t=t_{1}=h$ are
2.

$$
\left\{\begin{array}{l}
x_{1}^{(1)}=a+h f(a, b, o), \\
y_{1}^{(1)}=b+h g(a, b, o) .
\end{array}\right.
$$

Now it follows from (1) that the rates of change of x and y at $x=x_{1}, y=y_{1}$, $t=t_{1}$ are approximately $f\left(x_{1}^{(1)}, y_{1}{ }^{(1)}, t_{1}\right)$ and $g\left(x_{1}{ }^{(1)}, y_{1}{ }^{(1)}, t_{1}\right)$. These rates will be different from those at the beginning, and the average rates of change for the first interval will be nearly the average of the rates at the beginning and at the end of the interval. Therefore closer approximations than those given in (2) to the values of x and y at $t=t_{1}$ are
3.

$$
\left\{\begin{array}{l}
x_{1}^{(2)}=a+\frac{1}{2} h\left[f(a, b, \circ)+f\left(x_{1}^{(1)}, y_{1}^{(1)}, t_{1}\right)\right], \\
\left.y_{1}{ }^{(2)}=b+\frac{1}{2} h\left[g(a, b, o)+g\left(x_{1}\right), y_{1}{ }^{(1)}, t_{1}\right)\right] .
\end{array}\right.
$$

The process could be repeated on the first interval, but it is not advisable when the interval is taken as short as it should be.

The rates of change at the beginning of the second interval are approximately $f\left(x_{1}^{(2)}, y_{1}^{(2)}, t_{1}\right)$ and $g\left(x_{1}^{(2)}, y_{1}^{(2)}, t_{1}\right)$ respectively. Consequently, first approximations to the values of x and y at $t=t_{2}$, where $t_{2}-t_{1}=h$, are
4.

$$
\left\{\begin{array}{l}
x_{2}^{(1)}=x_{1}^{(2)}+h f\left(x_{1}^{(2)}, y_{1}^{(2)}, t_{1}\right), \\
y_{2}^{(1)}=y_{i}^{(2)}+h g\left(x_{1}{ }^{(2)}, y_{1}^{(2)}, t_{1}\right) .
\end{array}\right.
$$

With these values of x and y approximate values of f_{2} and g_{2} are computed. Since $f_{0}, g_{0} ; f_{1}, g_{1}$ are known, it follows that $\Delta_{1} f_{2}, \Delta_{1} g_{2} ; \Delta_{2} f_{2}$, and $\Delta_{2} g_{2}$ are also known. Hence equations (4) of 10.7 , for $n+\mathrm{I}=2$, can be used, with the exception of the last terms in the right members, for the computation of x_{2} and y_{2}.

At this stage of work $x_{0}=a, y_{0}=b ; x_{1}, y_{1} ; x_{2}, y_{2}$ are known, the first pair exactly and the last two pairs with considerable approximation. After f_{2} and g_{2} have been computed, x_{1} and y_{1} can be corrected by 10.31 for $n=x$. Then approximate values of x_{3} and y_{3} can be extrapolated by the method explained in the preceding section, after which approximate values of f_{3} and g_{3} can be computed. With these values and the corresponding difference functions, x_{2} and y_{2} can be corrected by using 10.31 . Then after correcting all the corresponding differences of all the functions, the solution is fully started and proceeds by the method given in the preceding section.
10.9 Numerical Illustration. In this section a numerical problem will be treated which will illustrate both the steps which must be taken and also the method of
arranging the work A convenient arrangement of the computation which preserves a complete record of all the numerical work is very important.

Suppose the differential equation is
I.

$$
\left\{\begin{array}{c}
\frac{d^{2} x}{d t^{2}}=-\left(\mathrm{I}+\kappa^{2}\right) x+2 \kappa^{2} x^{3} \\
x=0, \frac{d x}{d t}=\mathrm{I} \text { at } t=0
\end{array}\right.
$$

The problem of the motion of a simple pendulum takes this form when expressed in suitable variables. This problem is chosen here because it has an actual physical interpretation, because it can be integrated otherwise so as to express t in terms of x, and because it will illustrate sufficiently the processes which have been explained.

Equation (I) will first be integrated so as to express t in terms of x. On multiplying both sides of (r) by $2 \frac{d x}{d t}$ and integrating, it is found that the integral which satisfies the initial conditions is
2.

$$
\left(\frac{d x}{d t}\right)^{2}=\left(I-x^{2}\right)\left(I-\kappa^{2} x^{2}\right) .
$$

On separating the variables this equation gives
3.

$$
t=\int_{0}^{x} \frac{d x}{\sqrt{\left(\mathrm{I}-x^{2}\right)\left(\mathrm{I}-\kappa^{2} x^{2}\right)}} .
$$

Suppose $\kappa^{2}<\mathrm{I}$ and that the upper limit x does not exceed unity. Then
4.

$$
\frac{I}{\sqrt{I-\kappa^{2} x^{2}}}=I+\frac{I}{2} \kappa^{2} x^{2}+\frac{3}{8} \kappa^{4} x^{4}+\frac{5}{I 6} \kappa^{6} x^{6}+\ldots .
$$

where the right member is a converging series. On substituting (4) into (3) and integrating, it is found that

$$
\text { 5. } \begin{aligned}
t=\sin ^{-1} x+\frac{1}{4}\left[-x \sqrt{I-x^{2}}+\sin ^{-1} x\right] \kappa^{2} & +\frac{3}{8}\left[-x^{3} \sqrt{I-x^{2}}-\frac{3}{4} x\left(\mathrm{I}-x^{2}\right)^{\frac{3}{2}}\right. \\
& \left.\left.+\frac{3}{8} x \sqrt{I-x^{2}}+\frac{3}{8} \sin ^{-1} x\right] \kappa^{4}+\ldots \ldots\right] .
\end{aligned}
$$

When $x=\mathrm{I}$ this integral becomes
6.

$$
T=\frac{\pi}{2}\left[\mathrm{I}+\left(\frac{\mathrm{I}}{2}\right)^{2} \kappa^{2}+\left(\frac{\mathrm{I} \cdot 3}{2 \cdot 4}\right)^{2} \kappa^{4}+\left(\frac{\mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^{2} \kappa^{6}+\ldots\right] .
$$

Equation (5) gives t for any value of x between -1 and $+x$. But the problem is to determine x in terms of t. Of course, if a table is constructed giving t for many values of x, it may be used inversely to obtain the value of x corresponding to any value of t. The labor involved is very great. When κ^{2} is given numerically it is simpler to compute the integral (3) by the method of 10.1 or $\mathbf{1 0 . 3}$.

In mathematical terms, t is an elliptical integral of x of the first kind, and the inverse function, that is, x as a function of t, is the sine-amplitude function, which has the real period $4 T$.

Suppose $\kappa^{2}=\frac{I}{2}$ and let $y=\frac{d x}{d t}$. Then equation (I) is equivalent to the two equations
7.

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=y \\
\frac{d y}{d t}=-\frac{3}{2} x+x^{3}
\end{array}\right.
$$

which are of the form 10.50 (1), where
8.

$$
\left\{\begin{array}{l}
f=y \\
g=-\frac{3}{2} x+x^{3}
\end{array}\right.
$$

and $x=0, y=I$ at $t=0$.
The first step is to determine the interval which is to be used in the start of the solution. No general rule can be given. The larger f_{0} and g_{0} the smaller must the interval be taken. A fairly good rule is in general to take h so small that $h f_{0}$ and $h g_{0}$ shall not be greater than rooo times the permissible error in the results. In the present instance we may take $h=0 . r$.

First approximations to x and y at $t=0 . I$ are found from the initial conditions and equations 10.8 (2) to be
9.

$$
\left\{\begin{array}{l}
x_{1}^{(1)}=O+\frac{I}{I O} I=0.1000 \\
y_{1}^{(1)}=I+\frac{I}{I O} O=I .0000
\end{array}\right.
$$

It follows from (8) and these values of x_{1} and y_{1} that

IO.

$$
\left\{\begin{array}{l}
f\left(x_{1}^{(1)}, y_{1}^{(1)}, t_{1}\right)=I .0000 \\
g\left(x_{1}^{(1)}, y_{1}^{(1)}, t_{1}\right)=-0.1490 .
\end{array}\right.
$$

Hence the more nearly correct values of x_{1} and y_{1}, which are given by 10.8 (3), are
II. $\quad\left\{\begin{array}{l}x_{1}{ }^{(2)}=0+\frac{0 . I}{2}[\mathrm{I} .0000+\mathrm{I} .0000]=0.1000, \\ y_{1}{ }^{(2)}=\mathrm{I}+\frac{0.1}{2}[0.0000-0.1490]=0.9925 .\end{array}\right.$

Since in this particular problem $x=\int y d t$, it is not necessary to compute both f and g by the exact process explained in section 10.8, for after y has been determined x is given by the integral. It follows from (7), (8), (IO), and (II) that a first approximation to the value of y at $t=t_{2}=0.2$ is
12.

$$
y_{2}^{(1)}=.0025-\frac{I}{10} .1490=.9776
$$

With the values of y at $0, .1, .2$ given by the initial conditions and in equations (g) and (I2), the first trial y-table is constructed as follows:

First Trial y-Table

t	y	$\Delta_{1} y$	$\Delta_{2} y$
0	I 0000		
I	9925	-0075	
2	9776	-0149	-.0074

Since $y=f$ it now follows from the first equations of (II) and 10.7 (4) for $n=\mathrm{I}$ that an approximate value of x_{2} is
I3. $\quad x_{2}{ }^{(1)}=0.1000+\frac{I}{I O}\left[.9776+\frac{I}{2} .0149+\frac{I}{I 2} .0074\right]=.1986$.
With this value of x_{2} it is found from the second of (8) that $g_{2}=.2901$. Then the first trial g-table constructed from the values of g at $t=0,0 . \mathrm{I}, 0.2$, is:

First Trial g-Table

t	g	$\Delta_{1} g$	$\Delta_{2} g$
0	0000		
I	-.1490	-I 490	
2	$-.290 I$.$- I 4 I I$	+0079

Then the second equation of 10.7 (4) gives for $n=I$ the more nearly correct value of y_{2},
I4. $y_{2}=.9925+\frac{I}{I O}\left[-.290 I+\frac{I}{I 2} . I 4 I I-\frac{I}{I 2} .0079\right]=.9705$.
This value of y_{2} should replace the last entry in the first trial y-table. When this is done it is found that $\Delta_{1} y_{2}=-.0220, \Delta_{2} y_{2}=-.0145$. Then the first equation of 10.7 (4) gives
r5. $\quad x_{2}=.1000+\frac{I}{10}\left[.9705+\frac{\mathrm{I}}{2} .0220+\frac{\mathrm{I}}{\mathrm{I} 2} .0145\right]=.1983$.
The computation is now well started although x_{1}, y_{1}, x_{2}, and y_{2} are still subject to slight errors. The values of x_{1} and y_{1} can be corrected by applying 10.31 for $n=\mathrm{I}$. It is necessary first to compute a more nearly correct value of g_{2} by using the value of x_{2} given in (r_{5}). The result is $g_{2}=-.2896, \Delta_{1} g_{2}=-.1406$, $\Delta_{2} g_{2}=+.0084$. Then the second equation of 10.7 (4) gives
16. $y_{2}=.9925+\frac{I}{I O}\left[-.2896+\frac{I}{2} \cdot I 406-\frac{I}{12} .0084\right]=.9705$,
agreeing with (I 4). This value of y_{2} is therefore essentially correct. An application of $\mathbf{1 0 . 3 1}$ then gives
17. $\quad x_{1}=.0000+\frac{\mathrm{I}}{\mathrm{IO}}\left[.9705+\frac{3}{2} .0220-\frac{5}{\mathrm{I} 2} .0145\right]=.0997$,
after which $1 t$ is found that $g_{1}=-. I 486, \Delta_{1} g_{1}=-.1486$. Now the first trial y-table can be corrected by using the value of y_{2} given in (I4). The result is:

Second Trial y-Table

t	y	$\Delta_{1} y$	$\Delta_{2} y$
	I .0000		
I	.9925	-0075	
2	.9705	-0220	-0145

In order to correct x_{2} and y_{2} by the same method, which is the most convenient one to follow, it is necessary first to obtain approximate values of g_{3} and y_{3} The trial g-table can be corrected by computing g with the values of x given by (17) and (I_{5}). Then the line for g_{3} can be extrapolated. The results are:

Second Trial g-Table

t	g	$\Delta_{1 g}$	$\Delta_{2 g}$
0	0000		
. I	-1486	-.1486	
2	-2896	-.1410	+0076
3	-4230	-1334	$+\infty 076$

Then the second equation of $\mathbf{1 0 . 7}$ (4) gives for $n=2$,
18. $\quad y_{3}=9705+\frac{I}{10}\left[-.4230+\frac{I}{2} \cdot I 334-\frac{I}{T 2} .0076\right]=.9348$.

When this is added to the second trial y-table, it is found that
19. $y_{3}=.9348, \Delta_{1} y_{3}=-.0357, \Delta_{2} y_{3}=-.0 r_{37}, \Delta_{3} y_{3}=+.0008$.

Now x_{2} and y_{2} can be corrected by applying 10.31 to these numbers and those in the last line of the second trial g-table. The results are
20.

$$
\left\{\begin{array}{l}
x_{2}=.0997+\frac{I}{10}\left[.9348+\frac{3}{2} .0357-\frac{5}{12} .0137+\frac{I}{24} .0008\right]=.1980, \\
y_{2}=.9925+\frac{\mathrm{I}}{10}\left[-.4230+\frac{3}{2} \cdot 1334+\frac{5}{12} .0076\right]=.9705
\end{array}\right.
$$

The preliminary work is finished and x and y have been determined ror $t=0$, .r, and .2 with an error of probably not more than one unit in the last place. As the process is read over it may seem somewhat complicated, but this is largely because on the printed page preliminary values of the unknown quantities can not be erased and replaced by more nearly correct ones. As a matter of fact, the
first steps are very simple and can be carried out in practice in a few minutes if the chosen time-interval is not too great.

The problem now reduces to simple routine. There are an x-table, a y-table (which in this problem serves also as an f-table), a g-table, and a schedule for computing g. It is advisable to use large sheets so that all the computations except the schedule for computing g can be kept side by side on the same sheet. The process consists of six steps: (I) Extrapolate a value of g_{n+1} and its differences in the g-table; (2) compute y_{n+1} by the second equation of 10.7 (4); (3) enter the result in the y-table and write down the differences; (4) use these results to compute x_{n+1} by the first equation of 10.7 (4); (5) with this value of x_{n+1} compute g_{n+1} by the g-computation schedule; and (6) correct the extrapolated value of g_{n+1} in the g-table.

Usually the correction to g_{n+1} will not be great enough to require a sensible correction to y_{n+1}. But if a correction is required, it should, of course, be made. It follows from the integration formulas 10.7 (4) and the way that the difference functions are formed that an error ϵ in g_{n+1} produces the error $\frac{3}{8} h \epsilon$ in y_{n+1}, and the corresponding error in x_{n+1} is $\frac{9}{6_{4}} h^{2} \epsilon$. It is never advisable to use so large a value of h that the error in x_{n+1} is appreciable. On the other hand, if the differences in the g-table and the y-table become so small that the second differences are insensible the interval may be doubled.

The following tables show the results of the computations in this problem reduced from five to four places.

Final x-Table

t	x	$\Delta_{1} x$	$\Delta_{2} x$	$\Delta_{3} x$
\bigcirc	. 0000			
. 1	. 0997	. 0997		
2	. 1980	. 0983	- 0014	
- 3	. 2934	. 0954	-0029	-. 0015
. 4	. 3847	. 0913	-004I	-. 0012
- 5	. 4708	.086I	-0052	-. 00011
. 6	. 5508	. 0800	-006I	-. 0009
. 7	. 6243	. 0735	-. 0065	-. 0004
. 8	. 6909	. 0666	-. 0069	-. 0004
. 9	. 7505	. 0596	-. 0070	-. 0001
1.0	. 8030	. 0525	-0071	-. 0001
I	. 8486	. 0456	- 0069	+.0002
I. 2	. 8877	. 0391	$-.0065$	$+.0004$
I 3	9205	. 0328	- 0063	+.0002
I 4	9472	. 0267	- 006I	+.0002
I 5	. 9682	. 0210	-. 0057	$+.0004$
1. 6	. 9837	. 0155	-. 0055	+0002
1.7	. 9940	. 0103	-. 0052	+.0003
1.8	. 9993	. 0053	-. 0050	+.0002
I. 9	. 9995	. 0002	$-.005 \mathrm{I}$	-. 0001

Final y-Table

t	y	$\Delta_{1} y$	$\Delta_{2} y$	$\Delta_{3} y$
\bigcirc	I 0000			
I	9925	- 0075		
. 2	9705	-. 0220	- 0145	
3	9352	- 0353	- OI33	+ 0012
. 4	. 8882	-. 0470	- OII7	+ 0016
. 5	8320	-. 0562	$-.0092$	+0025
. 6	. 7687	-. 0633	$-.0071$	+ 0019
. 7	7009	-. 0678	-. 0045	+ 0016
8	6308	-. 0701	- 0023	+0022
9	. 5602	-. 0706	- 0005	+ 0008
1.0	. 4906	- 0696	+.0010	+0015
I.I	423 I	- 0675	+0021	+ OOII
I. 2	. 3584	-. 0647	+ 0028	+ 0007
I 3	. 2968	- 0616	+.003I	+0003
I 4	. 2382	- 0586	$+.0030$	- 0001
I 5	. 1824	-. 0558	$+.0028$	- 0002
1.6	1290	- 0534	$+.0024$	- 0004
I. 7	. 0775	- 0515	+.0019	
I. 8	. 027 I	- 0504	$+.0011$	$-.0008$
I. 9	-0230	- 0501	+ 0003	- 0008

Final g-Schedule

t	. 1	. 2	$\cdot 3$. 4	- 5	. 6	. 7	. 8	. 9
$\log x$	89989	9.2967	94675	95851	96728	97410	97954	9.8394	98753
$\log x^{3}$	69967	7.8901	84025	8.7553	9.0184	92230	93862	95182	96259
$3 x$. 2992	.594I	8802	I.154I	I 4124	I 6524	I 8729	2.0727	2.2515
$-\frac{3}{2} x$	-. 1496	- 2970	-4401	-. 5770	-. 7062	-8262	-9365	-I 0364	-1.1257
x^{3}	0010	. 0077	0252	. 0569	. 1044	${ }_{167 x}$. 2434	.3298	. 4227
g	-.I486	-2893	-4149	-.5201	-.6018	-.659x	-.693	-. 7066	-. 7030

Final g-Table

t	g	$\Delta_{1} g$	$\Delta_{2} g$	$\Delta_{3} g$
\bigcirc	. 0000			
. I	-. 1486	-. 1486		
. 2	$-.2893$	-. I407	+ 0079	
-3	-. 4149	-. 1256	+ OI5I	$+0072$
. 4	-. 5201	-.1052	$+.0204$	+0053
. 5	$-.6018$	-.0817	$+.0235$	$+.0031$
. 6	$-.6591$	$-.0573$	+ 0244	+0009
- 7	-.693I	-. 0340	$+.0233$	- OOII
. 8	-7066	-. 0135	$+.0205$	-0028
. 9	$-.7030$	$+.0036$	+.0171	-0034
I. 0	$-.6867$	$+.0163$	+ OI27	$-.0044$
I.I	$-.6618$	+ 0249	+ 0086	- 004I
I 2	-6320	$+.0298$	+ 0049	- 0037
I. 3	$-.6008$	+.03I2	+ 0014	$-.0035$
I. 4	$-.5710$	+ 0298	- 0014	- 0028
I. 5	-. 5447	+.0263	- 0035	- 002I
I 6	-. 5236	+ O2II	-0052	-.0017
I. 7	$-.5088$	+.0148	$-.0063$	- OOII
I. 8	-. 5011	$+.0077$	- 0071	- 0008
I. 9	$-.5008$	$+0003$	-0074	-0003

Final g-Schedule - Continued

I. 0	I.I	I 2	I 3	I 4	I 5	I 6	1. 7	т. 8	I. 9
9.9047	99287	99483	99640	9.9764	99860	9.9929	9.9974	9.9997	9.9998
9.714 I	9.786 I	9.8449	98920	9.9292	99580	9.9787	99922	9.999 I	99994
2.4590	25458	26631	27615	2.8416	29046	2.95 II	29820	2.9979	2.9985
-I. 2045	-1.2729	- 13316	-I 3807	-I 4208	-I 4523	-1.4756	-I.4910	-1.4989	-I.4992
.5178	.61II	. 6996	.7799	. 8498	. 9076	. 9520	. 9822	. 9978	. 9984
-. 6867	-.66I8	$-.6320$	-. 6008	$-.5710$	-. 5447	$-.5236$	$-.5088$	-.5011	-. .5008

As has been remarked, large sheets should be used so that the x, y, and g-tables can be put side by side on one sheet. Then the t-column need be written but once for these three tables. The g-schedule, which is of a different type, should be on a separate sheet.

The differential equation (I) has an integral which becomes for $\kappa^{2}=\frac{I}{2}$ and $\frac{d x}{d t}=y$.
21.

$$
y^{2}+\frac{3}{2} x^{2}-\frac{1}{4} x^{4}=\mathrm{I},
$$

and which may be used to check the computation because it must be satisfied at every step. It is found on trial that (2I) is satisfied to within one unit in the fourth place by the results given in the foregoing tables for every value of t.

The value of t for which $x=\mathrm{I}$ and $y=0$ is given by (6). When $\kappa^{2}=\frac{1}{2}$ it is found that $T=\mathrm{I} .854 \mathrm{I}$. It is found from the final x-table by interpolation based on first and second differences that x rises to its maximum unity for almost exactly this value of t; and, similarly, that y vanishes for this value of t.

XI ELLIPTIC FUNCTIONS By Sir George Greenhill, F.R.S.

INTRODUCTION TO THE TABLES OF ELLIPTIC FUNCTIONS

By Sir George Greenhill

In the integral calculus, $\int \frac{d x}{\sqrt{X}}$, and more generally, $\int \frac{M+N \sqrt{X}}{P+Q \sqrt{\bar{X}}} d x$, where M, N, P, Q are rational algebraical functions of x, can always be expressed by the elementary functions of analysis, the algebraical, circular, logarithmic or hyperbolic, so long as the degree of X does not exceed the second. But when X is of the third or fourth degree, new functions are required, called elliptic functions, because encountered first in the attempt at the rectification of an ellipse by means of an integral.

To express an elliptic integral numerically, when required in an actual question of geometry, mechanics, or physics and electricity, the integral must be normalised to a standard form invented by Legendre before the Tables can be employed; and these Tables of the Elliptic Functions have been calculated as an extension of the usual tables of the logarithmic and circular functions of trigonometry. The reduction to a standard form of any assigned elliptic integral that arises is carried out in the procedure described in detail in a treatise on the elliptic functions.
11.1. Legendre's Standard Elliptic Integral of the First Kind (E. I. I) is

$$
F \phi=\int_{0}^{\phi} \frac{d \phi}{\sqrt{I-\kappa^{2} \sin ^{2} \phi}}=\int_{0}^{x} \frac{d x}{\left.\sqrt{(I}-x^{2}\right)\left(I-\kappa^{2} x^{2}\right)}=u,
$$

defining ϕ as the amplitude of u, to the modulus κ, with the notation,

$$
\begin{aligned}
& \phi=\operatorname{am} u \\
& x=\sin \phi=\sin \operatorname{am} u
\end{aligned}
$$

abbreviated by Gudermann to,

$$
\begin{aligned}
x & =\operatorname{sn} u \\
\cos \phi & =\operatorname{cn} u \\
\Delta \phi & =\sqrt{ }\left(\mathrm{r}-\kappa^{2} \sin ^{2} \phi\right)=\Delta \mathrm{am} u=\operatorname{dn} u,
\end{aligned}
$$

and $\mathrm{sn} u, \mathrm{cn} u, \mathrm{dn} u$ are the three elliptic functions. Their differentiations are,

$$
\begin{aligned}
\frac{d \phi}{d u} & =\Delta \phi & & \text { or } \frac{d \operatorname{am} u}{d u}=\operatorname{dn} u \\
\frac{d \sin \phi}{d u} & =\cos \phi \cdot \Delta \phi & & \text { or } \frac{d \operatorname{sn} u}{d u}=\operatorname{cn} u \operatorname{dn} u
\end{aligned}
$$

$$
\begin{aligned}
\frac{d \cos \phi}{d u} & =-\sin \phi \Delta \phi \quad \text { or } \frac{d \operatorname{cn} u}{d u}=-\operatorname{sn} u \operatorname{dn} u \\
\frac{d \Delta \phi}{d u} & =-\kappa^{2} \sin \phi \cos \phi \quad \text { or } \frac{d \operatorname{dn} u}{d u}=-\kappa^{2} \operatorname{sn} u \operatorname{cn} u
\end{aligned}
$$

11.11. The complete integral over the quadrant, $0<\phi<\frac{\pi}{2}, 0<x<\mathrm{I}$, defines the (quarter) period, K,

$$
K=F \frac{\pi}{2}=\int_{0}^{\frac{2}{2} \pi} \frac{d \phi}{\Delta \phi}
$$

making

$$
\begin{aligned}
& \operatorname{sn} K=\mathrm{I} \\
& \operatorname{cn} K=Q \\
& \operatorname{dn} K=\kappa^{\prime} .
\end{aligned}
$$

κ^{\prime} is the comodulus to $\kappa, \kappa^{2}+\kappa^{\prime 2}=I$, and the coperiod, K^{\prime}, is,

$$
K^{\prime}=\int_{0}^{\frac{\pi}{2}} \frac{d \phi}{\left.\sqrt{(I}-\kappa^{\prime 2} \sin ^{2} \phi\right)}
$$

11.12.

$$
\begin{aligned}
& \quad \operatorname{sn}^{2} u+\mathrm{cn}^{2} u=\mathrm{I} \\
& \mathrm{cn}^{2} u+\kappa^{2} \mathrm{sn}^{2} u=\mathrm{I} \\
& \\
& \mathrm{dn}^{2} u-\kappa^{2} \mathrm{cn}^{2} u=\kappa^{\prime 2} . \\
& \text { sn } \circ=\mathrm{o}, \quad \operatorname{cn} \circ=\mathrm{dn}, \quad \mathrm{o}=\mathrm{I} . \\
& \text { sn } K=\mathrm{I}, \quad \operatorname{cn} K=0, \quad \operatorname{dn} K=\kappa^{\prime} .
\end{aligned}
$$

11.13. Legendre has calculated for every degree of θ, the modular angle, $\kappa=\sin \theta$, the value of $F \phi$ for every degree in the quadrant of the amplitude ϕ, and tabulated them in his Table IX, Fonctions elliptiques, t. II, $90 \times 90=8100$ entries.

But in this new arrangement of the Table, we take $u=F \phi$ as the independent variable of equal steps, and divide it into 90 degrees of a quadrant K, putting

$$
u=e K=\frac{r^{\circ}}{90^{\circ}} K, \quad r^{\circ}=90^{\circ} e
$$

As in the ordinary trigonometrical tables, the degrees of r run down the left of the page from 0° to 45°, and rise up again on the right from 45° to 90°. Then columns II, III, X, XI are the equivalent of Legendre's Table of $F \phi$ and ϕ, but rearranged so that $F \phi$ proceeds by equal increments r° in r°, and the increments in ϕ are unequal, whereas Legendre took equal increments of ϕ giving unequal increments in $u=F \phi_{\text {。 }}$

The reason of this rearrangement was the great advance made in elliptic function theory when Abel pointed out that $F \phi$ was of the nature of an inverse function, as it would be in a degenerate circular integral with zero modular angle. On Abel's recommendation, the notation is reversed, and ϕ is to be
considered a function of u, denoted already by $\phi=\mathrm{am} u$, instead of looking at u, in Legendre's manner, as a function, $F \phi$, of ϕ. Jacobi adopted the idea in his Fundamenta nova, and employs the elliptic functions

$$
\sin \phi=\sin \mathrm{am} u, \quad \cos \phi=\cos \mathrm{am} u, \quad \Delta \phi=\Delta \mathrm{am} u,
$$

single-valued, uniform, periodic functions of the argument u, with (quarter) period K, as ϕ grows from ○ to $\frac{1}{2} \pi$. Gudermann abbreviated this notation to the one employed usually today.
11.2. The E. I. I is encountered in its simplest form, not as the elliptic arc, but in the expression of the time in the pendulum motion of finite oscillation, unrestricted to the small invisible motion of elementary treatment.

The compound pendulum, as of a clock, is replaced by its two equivalent particles, one at O in the centre of suspension, and the other at the centre of oscillation, P; the particles are adjusted so as to have the same total weight as the pendulum, the same centre of gravity at G, and the same moment of inertia about G or O; the two particles, if rigidly connected, are then the kinetic equivalent of the compound pendulum and move in the same way in the same field of force (Maxwell, Matter and Motion, CXXI).

Putting $O P=l$, called the simple equivalent pendulum length, and P starting from rest at B, in Figure I , the particle P will move in the circular arc $B A B^{\prime}$ as if sliding down a smooth curve; and P will acquire the same velocity as if it fell vertically $K P=N D$; this is all the dynamical theory required.
(velocity of $P)^{2}=2 g \cdot K P$,
(velocity of $N)^{2}=2 g N D \cdot \sin ^{2} A O P$ $=2 g \cdot N D \cdot \frac{N P^{2}}{O P^{2}}=\frac{g_{2}}{l^{2}} \cdot N D \cdot N A \cdot N E$, and with $A D=h, A N=y, N D$ $=h-y, A E=2 l, N E=2 l-y$,
$\left(\frac{d y}{d t}\right)^{2}=\frac{2 g}{l^{2}}\left(h y-y^{2}\right)(2 l-y)=\frac{2 g}{l^{2}} Y$,
where Y is a cubic in y. Then t is given by an elliptic integral of the form

Fig. I $\int \frac{d y}{\sqrt{\bar{Y}}}$. This integral is normalised to Legendre's standard form of his E. I. I by putting $y=h \sin ^{2} \phi$, making $A O Q=\phi, h-y=h \cos ^{2} \phi$, $2 l-y=2 l\left(\mathrm{I}-\kappa^{2} \sin ^{2} \phi\right)$,

$$
\kappa^{2}=\frac{h}{2 l}=\frac{A D}{A E}=\sin ^{2} A E B .
$$

κ is called the modulus, $A E B$ the modular angle which Legendre denoted by $\theta ; \sqrt{\left(\mathrm{I}-\kappa^{2} \sin ^{2} \phi\right)}$ he denoted by $\Delta \phi$.

With $g=l n^{2}$, and reckoning the time t from A, this makes

$$
n t=\int_{0}^{\phi} \frac{d \phi}{\Delta \phi}=F \phi
$$

in Legendre's notation. Then the angle ϕ is called the amplitude of $n t$, to be denoted am $n t$, the particle P starting up from A at time $t=0$; and with $u=n t$,

$$
\begin{aligned}
\operatorname{sn} u=\frac{A P}{A B}=\frac{A Q}{A D} & \operatorname{sn}^{2} u=\frac{A N}{A D} \\
\operatorname{cn} u=\frac{D Q}{A D} & \operatorname{cn}^{2} u=\frac{P K}{A D} \\
\operatorname{dn} u=\frac{E P}{E A} & \operatorname{dn}^{2} u=\frac{N E}{A E}
\end{aligned}
$$

Velocity of $P=n \cdot A B \cdot \mathrm{cn} u=\sqrt{B P P B^{\prime}}$, with an oscillation beat of T seconds in $u=e K, e=2 t / T$.
11.21. The numerical values of $\mathrm{sn}, \mathrm{cn}, \mathrm{dn}, \operatorname{tn}(u, \kappa)$ are taken from a table to modulus $\kappa=\sin$ (modular angle, θ) by means of the functions $\mathrm{Dr}, \mathrm{Ar}, \mathrm{Br}$, $C r$, in columns V, VI, VII, VIII, by the quotients,

$$
\begin{aligned}
\sqrt{\kappa^{\prime}} \operatorname{sn} e K & =\frac{A}{D} \\
\operatorname{cn} e K & =\frac{B}{D} \\
\frac{\operatorname{dn} e K}{\sqrt{\kappa^{\prime}}} & =\frac{C}{D} \\
\sqrt{\kappa^{\prime}} \operatorname{tn} e K & =\frac{A}{B} \\
r^{\circ} & =90^{\circ} e \\
u & =e K .
\end{aligned}
$$

These D, A, B, C are the Theta Functions of Jacobi, normalised, defined by

$$
\begin{array}{ll}
D(r)=\frac{\theta u}{\theta o}, & A(r)=\frac{H u}{H K}, \\
B(r)=A\left(90^{\circ}-r\right) & C(r)=D\left(90^{\circ}-r\right) .
\end{array}
$$

They were calculated from the Fourier series of angles proceeding by multiples of r°, and powers of q as coefficients, defined by

$$
\begin{gathered}
q=e^{-\pi \frac{k^{\prime}}{k}} \\
\Theta u=x-2 q \cos 2 r+2 q^{4} \cos 4 r-2 q^{9} \cos 6 r+\ldots \\
H u=2 q^{\frac{3}{2} \sin r-2 q^{?} \sin 3 r+2 q^{2 q} \sin 5 r-\ldots}
\end{gathered}
$$

11.3. The Elliptic Integral of the Second Kind (E. I. II) arose first historically in the rectification of the ellipse, hence the name. With $B O P=\phi$ in Figure 2, the minor eccentric angle of P, and s the $\operatorname{arc} B P$ from B to P at $x=a \sin \phi$, $y=b \cos \phi$,

$$
\frac{d s}{d \phi}=\sqrt{a^{2} \cos ^{2} \phi+b^{2} \sin ^{2} \phi}=a \Delta(\phi, \kappa)
$$

to the modulus κ, the eccentricity of the ellipse. Then $s=a E \phi$, where $\int_{0}^{\phi} \Delta \phi \cdot d \phi$ is denoted by $E \phi$ in Legendre's notation of his standard E. I. II; it is tabulated in his Table IX alongside of $F \phi$ for every degree of the modular angle θ, and to every degree in the quadrant of the amplitude ϕ.

But it is not possible to make the inversion and express ϕ as a single-valued function of $E \phi$.

Fig 2
11.31. The E. I. II, $E \phi$, arises also in the expression of the time, t, in the oscillation of a particle, P, on the arc of a parabola, as $F \phi$ was required on the arc

Fig. 3 of a circle. Starting from B along the parabola $B A B^{\prime}$, Figure 3, and with $A O=h, O B=b$, $B O Q=\phi, A N=y=h \cos ^{2} \phi, N P=x=b^{\circ} \cos$ ϕ and with $O S=2 h=b \tan \alpha, O A^{\prime}=S B$ $=b \sec \alpha$, the parabola cutting the horizontal at B at an angle α, the modular angle, $B R A^{\prime} B^{\prime}$ is a semi-ellipse, with focus at S, and eccentricity $\kappa=\sin \alpha$.

$$
\begin{aligned}
& (\text { Velocity of } P)^{2}=\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} \\
& =\left(b^{2} \cos ^{2} \phi+4 h^{2} \sin ^{2} \phi \cos ^{2} \phi\right)\left(\frac{d \phi}{d t}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =a^{2}\left(\mathrm{I}-\sin ^{2} \alpha \sin ^{2} \phi\right) \cos ^{2} \phi\left(\frac{d \phi}{d t}\right)^{2}=2 g y=2 g h \cos ^{2} \phi \\
& =V^{2} \cos ^{2} \phi
\end{aligned}
$$

if V denotes the velocity of P at A, and $O A^{\prime}=a$. Then with s the elliptic arc $B R$,

$$
V \frac{d t}{d \phi}=a \Delta \phi=a \frac{d s}{d \phi}, V t=s
$$

and so the point R moves round the ellipse with constant velocity V, and accompanies the point P on the same vertical, oscillating on the parabola from B to B^{\prime}.

In the analogous case of the circular pendulum, the time t would be given by the arc of an Elastica, in Kirchhoff's Kinetic Analogue, and this can be placed as a bow on Figure 1 , with the cord along $A E$ and vertex at B.

Legendre has shown also how in the oscillation of R on the semi-ellipse $B R B^{\prime}$ in a gravity field the time t is expressible by elliptic integrals, two of the first and two of the second kind, to complementary modulus (Fonctions elliptiques, I, p. 183).
11.32. In these tables, $E \phi$ is replaced by the columns IV, IX, of $E(r)$ and $G(r)=E(90-r)$, defined, in Jacobi's notation, by

$$
\begin{aligned}
& E(r)=\mathrm{zn} e K=E \phi-e E \\
& G(r)=\mathrm{zn}(\mathrm{x}-e) K, \quad r=90 e
\end{aligned}
$$

This is the periodic part of $E \phi$ after the secular term $e E=\frac{E}{K} u$ has been set aside, E denoting the complete E. I. II,

$$
E=E \frac{1}{2} \pi=\int^{\frac{1}{2} \pi} \Delta \phi \cdot d \phi
$$

The function $\mathrm{zn} u$, or $Z u$ in Jacobi's notation, or $E(r)$ in our notation, is calculated from the series,

$$
E r=Z u=\frac{\pi}{K} \sum_{m=1}^{\infty} \frac{\sin 2 m r}{\sinh m \pi \frac{K^{\prime}}{K}}=\frac{2 \pi}{K} \sum_{m=\mathrm{I}}^{\infty}\left(q^{m}+q^{3 m}+q^{5 m}+\ldots\right) \sin 2 m r
$$

This completes the explanation of the twelve columns of the tables.
11.4. The Double Periodicity of the Elliptic Functions.

This can be visualised in pendulum motion if gravity is supposed reversed suddenly at B (Figure I) the end of a swing; as if by the addition of a weight to bring the centre of gravity above O, or by the movement of a weight, as in the metronome. The point P then oscillates on the arc $B E B^{\prime}$, and beats the elliptic function to the complementary modulus κ^{\prime}, as if in imaginary time, to imaginary argument $n t i=f K^{\prime} i$: and it reaches P^{\prime} on $A X$ produced, where $\tan A E P^{\prime}$ $=\tan A E B \cdot \mathrm{cn}\left(n t^{\prime} i, \kappa\right)$, or $\tan E A P^{\prime}=\tan E A B \cdot \mathrm{cn}\left(n t^{\prime}, \kappa^{\prime}\right)$; or with $\mathrm{nt} t^{\prime}=v$, $D R^{\prime}=D B \cdot \mathrm{cn}\left(i v, \kappa^{\prime}\right), D R=D B \cdot \mathrm{cn}\left(v, \kappa^{\prime}\right)$, with $D R \cdot D R^{\prime}=D B^{2}, E P^{\prime}$ crossing $D B$ in R^{\prime}.

$$
\begin{aligned}
& \operatorname{cn}(i v, \kappa)=\frac{I}{\operatorname{cn}\left(\nu, \kappa^{\prime}\right)} \\
& \operatorname{sn}(i v, \kappa)=\frac{i \operatorname{sn}\left(v, \kappa^{\prime}\right)}{\operatorname{cn}\left(v, \kappa^{\prime}\right)}=i \operatorname{tn}\left(v, \kappa^{\prime}\right) \\
& \operatorname{dn}(i v, \kappa)=\frac{\operatorname{dn}\left(\nu, \kappa^{\prime}\right)}{\operatorname{cn}\left(\nu, \kappa^{\prime}\right)}=\frac{I}{\operatorname{sn}\left(K^{\prime}-v, \kappa^{\prime}\right)}
\end{aligned}
$$

where K^{\prime} denotes the complementary (quarter) period to comodulus κ^{\prime}.
If m, m^{\prime} are any integers, positive or negative, including \circ,

$$
\begin{array}{ll}
\operatorname{sn}\left(u+4 m K+2 m^{\prime} i K^{\prime}\right) & =\operatorname{sn} u \\
\operatorname{cn}\left[u+4 m K+2 m^{\prime}\left(K+i K^{\prime}\right)\right] & =\operatorname{cn} u \\
\operatorname{dn}\left(u+2 m K+4 m^{\prime} i K^{\prime}\right) & =\operatorname{dn} u
\end{array}
$$

11.41. The Addition Theorem of the Elliptic Functions.

$$
\begin{aligned}
& \operatorname{sn}(u \pm v)=\frac{\operatorname{sn} u \operatorname{cn} v \operatorname{dn} v \pm \operatorname{sn} v \operatorname{cn} u \operatorname{dn} u}{I-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v} \\
& \operatorname{cn}(v \pm u)=\frac{\operatorname{cn} u \operatorname{cn} v \mp \operatorname{sn} u \operatorname{dn} u \operatorname{sn} v \operatorname{dn} v}{I-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v} \\
& \operatorname{dn}(v \pm u)=\frac{\operatorname{dn} u \operatorname{dn} v \mp \kappa^{2} \operatorname{sn} u \operatorname{cn} u \operatorname{sn} v \operatorname{cn} v}{I-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v}
\end{aligned}
$$

11.42. Coamplitude Formulas, with $v= \pm K$,

$$
\begin{array}{ll}
\operatorname{sn}(K-u)=\frac{\operatorname{cn} u}{\operatorname{dn} u}=\operatorname{sn}(K+u) & \\
\operatorname{cn}(K-u)=\frac{\kappa^{\prime} \operatorname{sn} u}{\operatorname{dn} u} & \operatorname{cn}(K+u)=-\frac{\kappa^{\prime} \operatorname{sn} u}{\operatorname{dn} u} \\
\operatorname{dn}(K-u)=\frac{\kappa^{\prime}}{\operatorname{dn} u}=\operatorname{dn}(K+u) & \\
\operatorname{tn}(K-u)=\frac{\mathrm{I}}{\kappa^{\prime} \operatorname{tn} u} & \operatorname{tn}(K+u)=-\frac{\kappa^{\prime} \operatorname{tn} u}{}
\end{array}
$$

11.43. Legendre's Addition Formula for his E. I. II,

$$
E \phi=\int \Delta \phi \cdot d \phi=\int \operatorname{dn}^{2} u d u, \quad \phi=\int \operatorname{dn} u \cdot d u=\operatorname{am} u
$$

$$
E \phi+E \psi-E \sigma=\kappa^{2} \sin \phi \sin \psi \sin \sigma, \psi=a m v, \sigma=a m(v+u)
$$

or, in Jacobi's notation,

$$
\mathrm{zn} u+\mathrm{zn} v-\mathrm{zn}(u+v)=\kappa^{2} \operatorname{sn} u \operatorname{sn} v \operatorname{sn}(v+u)
$$

the secular part cancelling.
Another form of the Addition Theorem for Legendre's E. I. II,

$$
E \sigma-E \theta-2 E \psi=\frac{-2 \kappa^{2} \sin \psi \cos \psi \Delta \psi \sin ^{2} \phi}{I-\kappa^{2} \sin ^{2} \phi \sin ^{2} \psi}, \theta=\operatorname{am}(v-u)
$$

or, in Jacobi's notation,

$$
\mathrm{zn}(v+u)+\mathrm{zn}(v-u)-2 \mathrm{zn} v=\frac{-2 \kappa^{2} \operatorname{sn} v \mathrm{cn} v \mathrm{dn} v \mathrm{sn}^{2} u}{\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v}
$$

11.5. The Elliptic Integral of the Third Kind (E. I. III) is given by the next integration with respect to u, and introduces Jacobi's Theta Function, Θu, defined by,

$$
\begin{aligned}
& \frac{d \log \Theta u}{d u}=Z u=\operatorname{zn} u \\
& \frac{\Theta u}{\Theta_{o}}=\exp \cdot \int_{0} \mathrm{zn} u \cdot d u .
\end{aligned}
$$

Integrating then with respect to u,

$$
\log \theta(v+u)-\log \theta(v-u)-2 u \operatorname{zn} v=\int_{0} \frac{-2 \kappa^{2} \operatorname{sn} v \operatorname{cn} v \operatorname{dn} v \operatorname{sn}^{2} u}{I-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v} d u
$$

and this integral is Jacobi's standard form of the E.I. III, and is denoted by $-2 \Pi(u, v)$; thus,

$$
\Pi(u, v)=\int \frac{\kappa^{2} \operatorname{sn} v \operatorname{cn} v \operatorname{dn} v \operatorname{sn}^{2} u}{I-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v} d u=u \operatorname{zn} v+\frac{1}{2} \log \frac{\theta(v-u)}{\theta(v+u)} .
$$

Jacobi's Eta Function, Hv, is defined by

$$
\frac{\mathrm{H} v}{\Theta v}=\sqrt{\kappa} \operatorname{sn} v
$$

and then

$$
\frac{d \log \mathrm{H} v}{d v}=\frac{\operatorname{cn} v \operatorname{dn} v}{\operatorname{sn} v}+\mathrm{zn} v, \text { denoted by zs } v ;
$$

so that

$$
\begin{aligned}
\int_{0} \frac{\frac{\operatorname{cn} v \operatorname{dn} v}{\operatorname{sn} v} d u}{\mathrm{I}^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v} & =u \frac{\operatorname{cn} v \operatorname{dn} v}{\operatorname{sn} v}+\Pi(u, v) \\
& =u \operatorname{ss} v+\frac{I}{2} \log \frac{\Theta(v-u)}{\Theta(v+u)} \\
& =\frac{x}{2} \log \frac{\theta(v-u)}{\Theta(v+u)} e^{2 u \cdot z s v}
\end{aligned}
$$

This gives Legendre's standard E. I. III,

$$
\int \frac{M}{I+n \sin ^{2} \phi} \frac{d \phi}{\Delta \phi},
$$

where we put $n=-\kappa^{2} \operatorname{sn}^{2} v=-\kappa^{2} \sin ^{2} \psi$,

$$
M^{2}=-\left(I+\frac{\kappa^{2}}{n}\right)(I+n)=\frac{\cos ^{2} \psi \Delta^{2} \psi}{\sin ^{2} \psi}=\frac{\operatorname{cn}^{2} v \operatorname{dn}^{2} v}{\operatorname{sn}^{2} v}
$$

the normalising multiplier, M.
The E. I. III arises in the dynamics of the gyroscope, top, spherical pendulum, and in Poinsot's herpolhode. It can be visualized in the solid angle of a slant cone, or in the perimeter of the reciprocal cone, a sphero-conic, or in the magnetic potential of the circular base.
11.51. We arrive here at the definitions of the functions in the tables. Jacobi's Θu and $H u$ are normalised by the divisors Θ_{0} and $H K$, and with $r=90 e$,

$$
D(r) \text { denotes } \frac{\Theta e K}{\Theta K}, \quad A(r) \text { denotes } \frac{\mathrm{H} e K}{\mathrm{H} K}
$$

while $B(r)=\dot{A}(90-r), C(r)=D(90-r)$, and $B(0)=A(90)=D(0)=C(90)$ $=\mathrm{I}, \mathrm{C}(0)=D(90)=\frac{\mathrm{I}}{\sqrt{\kappa}}$.

Then in the former definitions,

$$
\begin{aligned}
& \frac{A(r)}{D(r)}=\frac{A(90)}{D(90)} \text { sn } u=\sqrt{\kappa^{\prime}} \operatorname{sn} e K \\
& \frac{B(r)}{\overline{D(r)}}=\frac{B(0)}{D(\circ)} \text { cn } u=\mathrm{cn} e K \\
& \frac{C(r)}{D(r)}=\frac{C(o)}{D(o)} \text { dn } u=\frac{\operatorname{dn} e K}{\sqrt{\kappa^{\prime}}} .
\end{aligned}
$$

Then, with $u=e K, v=f K, r=g \circ e, s=g \circ f$,

$$
\begin{aligned}
(u, v) & =e K \operatorname{zn} f K+\frac{\mathrm{r}}{2} \log \frac{\theta(f-e) K}{\theta(f+e) K} \\
& =e K E(s)+\frac{\mathrm{I}}{2} \log \frac{D(s-r)}{D(s+r)} \\
\operatorname{zn} f K & =E(s), \quad \operatorname{zn}(I-f) K=E(9 \circ-s)=G(s)
\end{aligned}
$$

The Jacobian multiplication relations of his theta functions can then be rewritten

$$
\begin{aligned}
& D(r+s) D(r-s)=D^{2} r D^{2} s-\tan ^{2} \theta A^{2} r A^{2} s, \\
& A(r+s) A(r-s)=A^{2} r D^{2} s-D^{2} r A^{2} s, \\
& B(r+s) B(r-s)=B^{2} r B^{2} s-A^{2} r A^{2} s .
\end{aligned}
$$

But unfortunately for the physical applications the number s proves usually to be imaginary or complex, and Jacobi's expression is useless; Legendre calls this the circular form of the E. I. III, the logarithmic or hyperbolic form corresponding to real s. However, the complete E. I. III between the limits $0<\phi<\frac{1}{2} \pi$, or $0<u<K, \circ<e<$ I, can always be expressed by the E. I. I and II, as Legendre pointed out.
11.6. The standard forms are given above to which an elliptic integral must be reduced when the result is required in a numerical form taken from the Tables. But in a practical problem the integral arises in a general algebraical form, and theory shows that the result can always be made, by a suitable substitution, to depend on three differential elements, of the I, II, III kind,

$$
\begin{aligned}
& \text { I } \frac{d s}{\sqrt{S}} \\
& \text { II }(s-a) \frac{d s}{\sqrt{S}} \\
& \text { III } \frac{\mathrm{I}}{(s-\sigma)} \frac{d s}{\sqrt{S}}
\end{aligned}
$$

where S is a cubic in the variable s which may be written, when resolved into three factors.

$$
S=4\left(s-s_{1}\right) k^{\prime}\left(s-s_{2}\right) \cdot\left(s-s_{3}\right)
$$

in the sequence $\propto>s_{1}>s_{2}>s_{3}>-\alpha$, and normalised to a standard form of zero degree these differential elements are

$$
\begin{aligned}
& \text { I } \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}} \\
& \text { II } \frac{s-a}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}} \\
& \text { III } \frac{\frac{1}{2} \sqrt{\Sigma}}{s-\sigma} \frac{d s}{\sqrt{S}}
\end{aligned}
$$

Σ denoting the value of S when $s=\sigma$.
The relative positions of s and σ in the intervals of the sequence require preliminary consideration before introducing the Elliptic Functions and their notation.
11.7. For the E. I. I and its representation in a tabular form with

$$
\begin{array}{cl}
\kappa^{2}=\frac{s_{2}-s_{3}}{s_{1}-s_{3}} \\
K=\int_{s_{1}, s_{3}}^{\infty, s_{2}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}, & \kappa^{\prime 2}=\frac{s_{1}-s_{2}}{s_{1}-s_{3}} \\
K^{\prime}=\int_{s_{2},-\infty}^{s_{1}, s_{3}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}},
\end{array}
$$

and utilizing the inverse notation, then in the first interval of the sequence,

$$
\begin{gathered}
\propto>s>s_{1} \\
e K=\int_{s}^{\infty} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s_{3}}{s-s_{3}}}=\mathrm{cn}^{-1} \sqrt{\frac{s-s_{1}}{s-s_{3}}}=\mathrm{dn}^{-1} \sqrt{\frac{s-s_{2}}{s-s_{3}}} \\
(I-e) K=\int_{s_{1}}^{s} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}=\mathrm{sn}^{-1} \sqrt{\frac{s-s_{1}}{s-s_{2}}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{1}-s_{2}}{s-s_{2}}}=\mathrm{dn}^{-1} \sqrt{\frac{s_{1}-s_{2} \cdot s-s_{3}}{s_{1}-s_{3} \cdot s-s_{2}}}
\end{gathered}
$$

indicating the substitutions,

$$
\frac{s_{1}-s_{3}}{s-s_{3}}=\sin ^{2} \phi=\operatorname{sn}^{2} e K, \quad \frac{s-s_{1}}{s-s_{2}}=\sin ^{2} \psi=\operatorname{sn}^{2}(1-e) K .
$$

In the next interval S is negative, and the comodulus κ^{\prime} is required.

$$
\begin{array}{r}
s_{1}>s>s_{2} \\
f K^{\prime}=\int \frac{s_{1} \sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s}{s_{1}-s_{2}}}=\mathrm{cn}^{-1} \sqrt{\frac{s-s_{2}}{s_{1}-s_{2}}}=\mathrm{dn}^{-1} \sqrt{\frac{\dot{s}-s_{3}}{s_{1}-s_{3}}} \\
(I-f) K^{\prime}=\int_{s_{2}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s_{3} \cdot s-s_{2}}{s_{1}-s_{2} \cdot s-s_{3}}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{2}-s_{3} \cdot s_{1}-s}{s_{1}-s_{2} \cdot s-s_{1}}} \\
=\mathrm{dn}^{-1} \sqrt{\frac{s_{2}-s_{3}}{s-s_{3}}}
\end{array}
$$

S is positive again in the next interval, and the modulus is κ.

$$
\begin{gathered}
(\mathrm{I}-e) K=\int_{s}^{s_{2}>s>s_{3}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s_{3} \cdot s_{2}-s}{s_{2}-s_{3} \cdot s_{1}-s}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{1}-s_{2} \cdot s-s_{3}}{s_{2}-s_{3} \cdot s_{1}-s}} \\
e K=\int_{s_{3}}^{s} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}=\mathrm{sn}^{-1} \sqrt{\frac{s-s_{3}}{s_{2}-s_{3}}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{1}-s_{2}}{s_{1}-s}}
\end{gathered}
$$

indicating the substitutions,

$$
\begin{gathered}
\frac{s_{1}-s_{2}}{s_{1}-s}=\Delta^{2} \psi=\operatorname{dn}^{2}(\mathrm{I}-e) K, \quad \frac{s-s_{3}}{s_{2}-s_{3}}=\sin ^{2} \phi=\operatorname{sn}^{2} e K \\
s=s_{2} \sin ^{2} \phi+s_{3} \cos ^{2} \phi
\end{gathered}
$$

S is negative again in the last interval, and the modulus κ^{\prime}.

$$
\begin{gathered}
s_{3}>s>-\infty \\
(\mathrm{I}-f) K^{\prime}=\int_{s}^{s_{3}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{3}-s}{s_{2}-s}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{2}-s_{3}}{s_{2}-s}}=\mathrm{dn}^{-1} \sqrt{\frac{s_{2}-s_{3} \cdot s_{1}-s}{s_{1}-s_{3} \cdot s_{2}-s}} \\
f K^{\prime}
\end{gathered}=\int_{-\infty}^{s} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s_{3}}{s_{1}-s}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{3}-s}{s_{1}-s}}=\mathrm{dn}^{-1} \sqrt{\frac{s_{2}-s}{s_{1}-s}} .
$$

11.8. For the notation of the E. I. II and the various reductions, take the treatment given in the Trans. Am. Math. Soc., I907, vol. 8, p. 450. The Jacobian Zeta Function and the Er, Gr of the Tables, are defined by the standard integral
$\int_{s_{3}}^{s} \frac{s_{1}-s}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\int_{0}^{\phi} \Delta \phi \cdot d \phi=E \phi=\int_{0}^{e} \operatorname{dn}^{2}(e K) \cdot d(e K)=E \mathrm{am} e K=e H+\mathrm{zn} e K$, or,

$$
\int_{s_{2}}^{\sigma} \frac{\sigma-s_{3}}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=\int_{0}^{f} \operatorname{dn}^{2}\left(f K^{\prime}\right) \cdot d\left(f K^{\prime}\right)=E \operatorname{am} f K^{\prime}=f H^{\prime}+z n f K^{\prime}
$$

where $z n$ is Jacobi's Zeta Function, and H, H^{\prime} the complete E. I. II to modulus κ, κ^{\prime}, defined by,

$$
\begin{aligned}
H & =\int_{0}^{\frac{\pi}{2}} \Delta(\phi, \kappa) d \phi=\int_{0}^{\mathrm{x}} \operatorname{dn}^{2}(e K) \cdot d(e K) \\
H^{\prime} & =\int_{0}^{\frac{\pi}{2}} \Delta\left(\phi, \kappa^{\prime}\right) d \phi=\int_{0}^{x} \operatorname{dn}^{2}\left(f K^{\prime}\right) \cdot d\left(f K^{\prime}\right)
\end{aligned}
$$

The function $z n u$ is derived by logarithmic differentiation of Θu, $\operatorname{zn} u=\frac{d \log \Theta u}{d u}$, or concisely,

$$
\Theta u=\exp \cdot \int z \mathrm{n} u \cdot d u
$$

and a function $z s u$ is derived similarly from

$$
\begin{aligned}
z s u & =\frac{d \log \theta u}{d u} \\
& =\frac{d \log \theta u}{d u}+\frac{d \log \operatorname{sn} u}{d u} \\
& =\operatorname{zn} u+\frac{\operatorname{cn} u \operatorname{dn} u}{\operatorname{sn} u}
\end{aligned}
$$

For the incomplete E. I. II in the regions,

$$
\infty>s>s_{1}>s_{2}>s>s_{3}
$$

and

$$
\mathrm{sn}^{2} e K=\frac{s_{1}-s_{3}}{s-s_{3}} \text { or } \frac{s-s_{3}}{s_{2}-s_{3}},
$$

$$
\begin{aligned}
& \int_{s}^{s_{1}} \frac{s-s_{1}}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\int_{s}^{s_{2} s_{2}-s} \frac{\sqrt{s-s_{3}}}{\sqrt{S}} d s=-(\mathrm{I}-e) H+z s e K \\
& \int \frac{s-s_{2}}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\kappa^{2} \int \frac{s_{1}-s}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{\bar{S}}} d s=-(1-e)\left(H-\kappa^{\prime 2} K\right)+z \mathrm{~s} e K \\
& \int \frac{s-s_{3}}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\int \frac{s_{2}-s_{3}}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{\bar{S}}} d s=(1-e)(K-H)+z s e K
\end{aligned}
$$

the integrals being ∞ at the upper limit, $s=\infty$, or at the lower limit, $s=s_{3}$ where $e=0$ and $z \mathrm{~s} e K=\infty$.

So also,

$$
\begin{aligned}
& \int_{s, s 1}^{\infty, s} \frac{s-s_{2}}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{S}} d s=\int_{s_{3}, s, s_{2}}^{s_{s}} \frac{s_{1}-s}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\begin{array}{l}
e H+\mathrm{zn} e K \\
(\mathrm{I}-e) H-\mathrm{zn} e K
\end{array} \\
& \int \frac{s-s_{1}}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{S}} d s=\int \frac{s_{2}-s}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\begin{array}{l}
e\left(H-\kappa^{\prime 2} K\right)+\mathrm{zn} e K \\
(1-e)\left(H-\kappa^{\prime 2} K\right)-\mathrm{zn} e K
\end{array} \\
& \int \frac{s_{2}-s_{3}}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{S}} d s=\int \frac{s-s_{3}}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\begin{array}{l}
e(K-H)-\mathrm{zn} e K \\
\left(\mathrm{x}-e^{\prime} K-H\right)+\mathrm{zn} e K
\end{array}
\end{aligned}
$$

Similarly, for the variable σ in the regions
Σ negative, and

$$
s_{1}>\sigma>s_{2}>s_{3}>\sigma>-\infty
$$

$\operatorname{sn}^{2} f K^{\prime}=\frac{s_{1}-\sigma}{s_{1}-s_{2}}$ or $\frac{s_{1}-s_{3}}{s_{1}-\sigma}$

$$
\begin{aligned}
& \int_{\sigma, s_{2}}^{s_{1}, \sigma} \frac{s_{1}-\sigma}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=\int_{-\infty, \sigma}^{\sigma, s_{3}} \frac{s_{1}-s_{2}}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\begin{array}{l}
f\left(K^{\prime}-H^{\prime}\right)-\mathrm{zn} f K^{\prime} \\
(\mathrm{I}-f)\left(K^{\prime}-H^{\prime}\right)+\mathrm{zn} f K^{\prime}
\end{array} \\
& \int \frac{\sigma-s_{2}}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=\int \frac{s_{3}-\sigma}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\frac{f\left(H^{\prime}-\kappa^{\prime 2} K^{\prime}\right)+\mathrm{zn} f K^{\prime}}{(\mathrm{I}-f)\left(H^{\prime}-\kappa^{\prime 2} K^{\prime}\right)-\mathrm{nn} f K^{\prime}} \\
& \int \frac{\sigma-s_{3}}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=\int \frac{s_{2}-\sigma}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\begin{array}{l}
f H^{\prime}+\mathrm{zn} f K^{\prime} \\
(\mathrm{I}-f) H^{\prime}-\mathrm{zn} f K^{\prime}
\end{array} \\
& \iint_{s_{2}}^{\sigma} \frac{s_{1}-s_{2}}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\int_{\sigma}^{s_{3}} \frac{s_{1}-\sigma}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=(\mathrm{I}-f)\left(K^{\prime}-H^{\prime}\right)+\mathrm{zs} f K^{\prime} \\
& \kappa^{\prime 2} \int \frac{s_{3}-\sigma}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\int \frac{s_{2}-\sigma}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=-(\mathrm{I}-f)\left(H^{\prime}-\kappa^{2} K^{\prime}\right)+\mathrm{zs} f K^{\prime} \\
& \int \frac{s_{2}-\sigma}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\int \frac{s_{3}-\sigma}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=-(\mathrm{I}-f) H^{\prime}+\mathrm{zs} f K^{\prime}
\end{aligned}
$$

these last three integrals being infinite at the upper limit, $\sigma=s_{1}$, or lower limit $\sigma=-\infty$, where $f=0, z s f K^{\prime}=\infty$.

Putting $e=\mathrm{I}$ or $f=\mathrm{I}$ any of these forms will give the complete E. I. II,
11.9. In dealing practically with an E. I. III it is advisable to study it firs in the algebraical form of Weierstrass,

$$
\int \frac{\frac{1}{2} \sqrt{\Sigma} d s}{(s-\sigma) \sqrt{\bar{S}}}
$$

where $S=4 \cdot s-s_{1} \cdot s-s_{2} \cdot s-s_{3}, \Sigma$ the same function of σ, and begin by ex. amining the sequence of the quantities $s, \sigma, s_{1}, s_{2}, s_{3}$

Then in the region

$$
s>s_{1}>s_{2}>\sigma>s_{3}
$$

put

$$
\begin{gathered}
s-s_{3}=\frac{s_{1}-s_{3}}{\operatorname{sn}^{2} u}, \sigma-s_{3}=\left(s_{2}-s_{3}\right) \mathrm{sn}^{2} v, \kappa^{2}=\frac{s_{2}-s_{3}}{s_{1}-s_{3}} \\
s-\sigma=\frac{s_{1}-s_{3}}{\operatorname{sn}^{2} u}\left(1-\kappa^{2} \mathrm{sn}^{2} u \mathrm{sn}^{2} v\right), \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}=d u \\
\sqrt{\Sigma}=\sqrt{s_{1}-s_{3}}\left(s_{2}-s_{3}\right) \mathrm{sn} v \mathrm{cn} v \mathrm{dn} v, \text { making } \\
\int \frac{\frac{1}{2} \sqrt{\Sigma}}{s-\sigma} \frac{d s}{\sqrt{S}}=\int \frac{\kappa^{2} \operatorname{sn} v \mathrm{cn} v \operatorname{dn} v \mathrm{sn}^{2} u}{\mathrm{I}-\kappa^{2} \mathrm{sn}^{2} u \mathrm{sn}^{2} v} d u=\Pi(u, v) .
\end{gathered}
$$

But in the region,

$$
\begin{gathered}
\sigma>s_{1}>s_{2}>s>s_{3} \\
s-s_{3}=\left(s_{2}-s_{3}\right) \mathrm{sn}^{2} u, \sigma-s_{3}=\frac{s_{1}-s_{3}}{\operatorname{sn}^{2} v}, \frac{\mathrm{I}}{2} \sqrt{\Sigma}=\left(s_{1}-s_{3}\right)^{\frac{\mathrm{cn} v}{} \frac{\operatorname{dn} v}{\mathrm{sn}^{3} v}} \\
\sigma-s=\frac{s_{1}-s_{3}}{\mathrm{sn}^{2} v}\left(\mathrm{I}-\kappa^{2} \mathrm{sn}^{2} u \mathrm{sn}^{2} v\right)
\end{gathered}
$$

making,

$$
\int \frac{\frac{1}{2} \sqrt{\Sigma}}{\sigma-s} \frac{d s}{\sqrt{S}}=\int \frac{\frac{\operatorname{cn} v \operatorname{dn} v}{\operatorname{sn} v} d u}{I-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v}=\Pi_{1}=\Pi(u, v)+u \frac{\operatorname{cn} v \operatorname{dn} v}{\operatorname{sn} v} .
$$

In a dynamical application the sequence is usually

$$
s>s_{1}>\sigma>s_{2}>s>s_{3}
$$

or

$$
s>s_{1}>s_{2}>s>s_{3}>\sigma,
$$

making Σ negative, and the E.I. III is then called circular; the parameter ${ }^{\circ}$ r is then imaginary, and the expression by the Theta function is illusory.

The complete E. I. III, however, was shown by Legendre to be tractable and falls into four classes, lettered $\left(l^{\prime}\right)\left(m^{\prime}\right)$, p. $138,\left(i^{\prime}\right),\left(k^{\prime}\right)$, pp. $\mathbf{I} 33$, 134 (Fonctions elliptiques, I).

$$
\begin{aligned}
& s_{1}>\sigma>s_{2} \\
& \operatorname{sn}^{2} f K^{\prime}=\frac{s_{1}-\sigma}{s_{1}-s_{2}} \\
& \operatorname{cn}^{2} f K^{\prime}=\frac{\sigma-s_{2}}{s_{1}-s_{2}} \\
& \operatorname{dn}^{2} f K^{\prime}=\frac{\sigma-s_{3}}{s_{1}-s_{3}}
\end{aligned}
$$

A.

$$
\infty>s>s_{1} \int_{s_{1}}^{\infty} \frac{1}{\frac{1}{2} \sqrt{-\Sigma}} \frac{d s}{s-\sigma} \frac{\sqrt{S}}{\sqrt{S}}=A\left(f K^{\prime}\right)=\frac{1}{2} \pi(\mathrm{x}-f)-K \mathrm{zn} f K^{\prime}
$$

B.

$$
\begin{gathered}
s_{2}>s>s_{3} \int_{s_{3}}^{s_{2} \frac{1}{2} \sqrt{-\Sigma}} \frac{d s}{\sigma-s} \frac{\sqrt{\bar{S}}}{\sqrt{2}}=B\left(f K^{\prime}\right)=\frac{1}{2} \pi f+K \mathrm{zn} f K^{\prime} \\
A+B=\frac{1}{2} \pi
\end{gathered}
$$

$$
s_{3}>\sigma>-\infty
$$

$$
\begin{aligned}
\mathrm{sn}^{2} f K^{\prime} & =\frac{s_{1}-s_{3}}{s_{1}-\sigma} \\
\mathrm{cn}^{2} f K^{\prime} & =\frac{s_{3}-\sigma}{s_{1}-\sigma} \\
\mathrm{dn}^{2} f K^{\prime} & =\frac{s_{2}-\sigma}{s_{1}-\sigma}
\end{aligned}
$$

C.

$$
\infty>s>s_{1} \int_{s_{1}}^{\infty} \frac{\frac{1}{2} \sqrt{-\Sigma}}{s-\sigma} \frac{d s}{\sqrt{S}}=C\left(f K^{\prime}\right)=K z s f K^{\prime}-\frac{1}{2} \pi(I-f)
$$

D.

$$
\begin{gathered}
s_{2}>s>s_{3} \int_{s_{3}}^{s_{2} \frac{1}{2} \sqrt{-\Sigma}} \frac{d s}{s-\sigma} \frac{d s}{\sqrt{S}}=D\left(f K^{\prime}\right)=K z s f K^{\prime}+\frac{1}{2} \pi f \\
D-C=\frac{1}{2} \pi
\end{gathered}
$$

TABLES OF ELLIPTIC FUNCTIONS

By Col. R. L. Hippisley

$\mathrm{K}=15737921309, \mathrm{~K}^{\prime}=3831742000, \mathrm{E}=15678090740, \mathrm{E}^{\prime}=1012663506$,

r	F ϕ	¢	$\mathrm{E}(\mathrm{r})$	D (r)	A(r)
0	00000000000	$0^{\circ} 0^{\prime}$	00000000000	I 0000000000	00000000000
I	- 01748 65792	0	00000664649	I 0000005812	- OI745 23906
2	- 0349731585.	20	- 00013 28485	I 0000023240	- 0348994650
3	- 0524597377	30	-00019 90699	I 0000052264	00523359088
4	00699463169	40	00002650480	I 0000092847	- 0697564107
5	- 0874328962	5	00003307023	I OOOOI 44942	'o 08715 56642
6	- 10491 94754	6	- 0003959525	I 0000208483	- IO452 83693
7	- 1224060546	7 I	00004607190	I 0000283393	- 12186 92343
8	- 1398926338	8	- 0005249226	I 0000369582	- 13917 29770
9	- 15737 92I3I	9 I	- 0005884849	10000466945	- I5643 43264
10	- 17486 57923	10	000065×3283	I 0000575362	- 1736480247
II	- 19235 23716	II	00007133760	I 0000694702	- 19080 88283
12	- 2098389508	12 I	00007745523	I 0000824819	020791 15101
13	- 2273255300	13	0 00083 47824	I 0000965555	02249508603
14	- 2448121092	142	- 0008939929	I OOOII 16738	- 24192 16887
15	- 2622986885	15	0000952 III 4	I 0001278184	- 2588188257
16	- 2797852677	16	- 0010090670	I 0001449696	- 2756371244
17	- 2972718469	17	00010647903	10001631066	- 29237 146I8
18	- 3147584262	18	- OoIII 92r32	I 0001822072	- 30901 67404
19	- 3322450054	192	- 00117 22694	I 0002022482	- 3255678900
20	- 3497315846	20	00012238941	I 000223205 I	- 34201 98690
21	- 3672I 81639	2 I 2	00012740244	I 0002450525	- 3583676658
22	- 3847047431	22	- 00132 25992	10002677636	- 3746063009
23	- 40219 I3223	23	- 00136 95594	100029 13109	- 3907308277
24	- 4196779016	242	00014148476	10003156657	- 4067363347
25	0.4371644808	25 3	- 0014584087	I 0003407982	- 4226179464
26	- 4546510600	263	00015001897	I 0003666779	- 43837 08251
27	- 4721376393	27 3	- 00154 OI398	10003932731	- 45399 O1723
28	- 4896242 I 85	28 3	0 00157 82103	10004205516	$\bigcirc 4694712303$
29	0.507 II 07977	293	- 0016I 43549	I 0004484801	- 4848092833
30	- 5245973770	303	00016485297	I 0004770246	- 4999996593
3 I	- 5420839562	3 I	- 00168 0693I	10005061502	0 51503 773II
32	- 5595705354	323	- 00171 08062	I 0005358215	- 5299189180
33	- 5770571147	33 3	- 00173 88322	I 0005660024	- 5446386870
34	- 5945436939	343	- 00176 47373	10005966561	- 55919 25543
35	- 61203 0273I	353	00017884901	I 0006277451	- 5735760867
36	- 62951 68524	363	- 00181 00617	I 0006592318	- 5877849028
37	- 6470034316	$37 \quad 3$	- 0018294261	I 0006910776	- 60181 46744
38	- 6644900108	$38 \quad 3$	- 00184 65599	I 0007232438	- 6I566 11280
39	- 6819765900	393	0.0018614423	1,00075 56912	-6293200458
40	- 6994631693	403	0.0018740556	I 0007883803	- 6427872670
4 I	- 71694 97485	41	- 0018843845	I 0008212712	- 6560586895
42	- 7344363278	424	- 0018924166	I 0008543239	- 66913 02706
43	- 7519229070	$43 \quad 4$	- 00I89 81424	I 0008874981	- 68199 80287
44	- 7694094862	$44 \quad 4$	- 00190 15552	10009207533	- 6946580439
45	7868960655	454	O 00190 26510	I 0009540492	- 7071064600
$90^{\circ} \mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B(r)

Smithsonian Tables
$q=0000476569916867, \theta 0=09990468602, \mathrm{H}(\mathrm{K})=0.2955029021$

B(r)	C(r)	G (r)	ψ		F ψ	$90^{\circ}-\mathrm{r}$
r 0000000000	I 0019080984	- 0000000000			I 5737921309	90
- 9998476949	$1{ }^{00190} 75172$	- 0000663384			I 5563055517	89
- 9993988259	$1{ }^{1} 0019057743$	O 00013 25961		\bigcirc	I 53881 89724	88
(I 00190028720 I 0018988136	- 00001986928		$\stackrel{0}{\circ}$	I 5213323932 I 5038488 I 40	87 86
- 9961946912	I 0018936042	- 0003300820	85		I 4863592347	85
- 9945218855	I 0018872501	- 0003952149	84		I 4688726555	84
- 9925461382	10018797590	- 0004598676	83	1	I 4513860763	83
- 9902680513	10018711401	- 0005239616			I 4338994971	82
- 9876883186	10018614039	- 0005874190	81	1	I 4164129178	8 I
- 98480877260	10018505621	0.0006501626	80		I 3989263386	80
- 9816271510	$1 \begin{array}{ll}10018388282 \\ 1 \\ 1 & 001828656\end{array}$	-00071 21163	79	I	I 38814397593	78
$\bigcirc 9781475623$	10018856165	- 0007732046		I	I 3639531801	78
$\begin{aligned} & 0 \\ & \text { o } 974370290200 \\ & \hline \end{aligned}$		0 0 0 0008833333534		1 2	I 3464666009 I 32898800217	77
- 9659257675	10017802800	- 0009505409			I 3114934424	5
- 9612616296	10017631288	- 00100 74371	74	2	I 2940068632	74
- 9563046817	10017449918	- 0010631089	73	2	12765202840	73
0 95105 64338 0 0	$\begin{array}{lll}100172 & 58912 \\ \text { I } 00170 & 58502\end{array}$	000111 0 0 0			12590337047 I 2415471255	72
- 9396925209	10016848932	- 00122 2108r			I 2240605463	
- 9335803176	10016630459	- 0012722208	69	2	I 2065739670	69
- 9271837364	I 0016403347	- 00132 07868	68	2	11890873878	68
- 9205047258	$1{ }^{1} 0016167874$	- 0013677470		${ }^{2}$	11716008086	6
- 9135453203	10015924327	- 00141 30440		3	11541142293	66
- 9063076400	10015673002	- 0014566228			r 1366276501	
- 8987938894	$1{ }^{1} 00154{ }^{14205}$	- oor 49.84301		3	I 1191410709	
- 89100 63574	10015148252	$\bigcirc 0015384151$	63	3	I 1016544916	63
$\circ 8829474161$ 08746195204	I 00148 I 001459646782	$\circ 0015765289$ 00016127250	62	3	$\begin{array}{lll}\text { I } 08416 \\ \text { I } & 06668819124 \\ 13332\end{array}$	62
- 8660252071	10014310738	- 0016469592	60	3	I 0491947539	60
- 8571670941	100140 19481	- 0016791897		3	I 0317081747	59
- 8480478798	10013722768	- 00170 93771	58	3	I Or422 15955	58
- 8386703419	10013420959	-00173 74846			- 9967350162	57
- 8290373370	$1{ }^{0} 013114423$	00017634776		3	0.9792484370	56
-81915 77995	$1{ }^{1} 00128030332$	-00178 73244		3	- 9617618578	
- 8090167404	$1{ }^{1} 0012488666$	- 0018089958		3	- 9442752785	5
- 77886352473	10012170208 10018848546 1	-00182 84651		3	0.9267886993 0.0093021201	53
O. 7880104823 0 7774456818		- 00018457885			-	5
- 766044556	I 0011197181	- 0018734353		3	- 8743289616	50
- 7547092851	1.0010868272	$\bigcirc 0018838846$			- 8568423824	49
- 7431445232	I 00105 37745	- 0018920395		3	- 839355803 I	
- 7313533926	10010206003	- 0018978900			0.8218692239	
- 7193394850	10009873450	0.0019014287		4	- 8043826447	46
- 7071064600	1 0009540492	- 0019026510	45	4	0.7868960655	45
A(r)	D(r)	$\mathrm{E}(\mathrm{r})$	ϕ		F ϕ	

$\mathrm{K}=15828428043, \mathrm{~K}^{\prime}=3$ 153385252, $\mathrm{E}=15588871966, \mathrm{E}^{\prime}=1$ 040114396,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	$\mathrm{D}(\mathrm{r})$	A(r)
0	00000000000	$0^{\circ} 0^{\prime}$	- 0000000000	10000000000	- 0000000000
1	- 0175871423		00002661187	I 0000023404	- 01745 21509
2	- 0351742845	2 I	00005319095	10000093587	- 034898986 r
3	-05276 14268		00007970448	I 0000210463	- 0523351918
4	- 0703485691	42	- 0010611979	I 0000373890	- 0697554570
5	00879357113		- 00132 40433	I 0000583670	- 08715 44758
6	- $1055{ }^{2} 28536$		- 0015852573	I 0000839546	- 10452 69489
7	- 1231099959	73	00018445182	10001141206	- 1218675849
8	- 1406971388		- 0021015066	I 0001488284	- 13917 Iroi9
9	0.1582842804		- 0023559064	I 0001880356	- 15643 22298
10	01758714227	10 5	- 0026074044	I 0002316945	- 1736457109
II	- 1934585650	11	- 0028556913	I 0002797518	- 1908063023
12	- 21104 57072		-00310 04619	I 0003321491	- 2079087771
13	- 2286328495	13	00033414153	I 0003888224	- 2249479261
14	- 2462 999918	14	- 0035782555	I 0004497028	- 2419185595
15	- 2638071340	15	- 00381 06920	I 0005147160	- 25881 55080
16	0.2813942763	16	- 0040384394	1 0005837829	- 2756336252
17	- 2989814186	${ }^{17}$	-00426 12186	I 0006568193	- 2923677883
18	- 3165685609		- 0044787567	I 0007337362	- 30901 29003
19	- 33415 57031		00046907873	I 00081 44399	- 32556 38912
20	- 3517428454	20	- 0048970511	I 0008988322	- 34201 57197
21	- 3693299877	21	- 0050972961	I 0009868100	- 3583633745
22	- 3869171299	22	00052912778	I 0010782664	- 3746018764
23	0.4045042722	23	- 0054787596	I 0011730898	- 39072 62791
24	- 4220914145		- 0056595131	I 0012711647	- 40673 16711
25	0.4396785568		- 0058333185	1.00137 23717	- 4226 r 3177 I
26	- 4572656990	26 10	- 0059999643	I 0014765874	- 4383659597
27	- 4748528413	27	- 00615 92485	I 0015836848	- 4539852206
28	- 4924399836	28	- 0063109780	I 0016935336	- 4694662019
29	- 51002 71258		- 0064549693	I 0018059998	- 484804188 I
30	- 52761 42681		- 0065910484	I 0019209464	- 4999945073
31	- 5452014104	3 I	- 0067190513	I 0020382334	- 515032532 I
32	- 5627885526		- 0068388242	I 0021577178	- 52991 36820
33	- 5803756949		- 0069502232	I 0022792542	- 5446334239
34	- 5979628372		- 0070531150	I 0024026944	- 5591872740
35	- 61554 99795	3512	-00714 73769	I 0025278880	- 5735707990
36	- 6331371217	36	- 0072328968	I 0026546826	- 5877796173
37	- 6507242640	37	- 0073095735	I 0027829236	- 60180 94008
38	$\bigcirc 6683114063$	38 13	-00737 73166	I 00291 24548	- 61565 58756
39	- 6858985485	39 13	- 0074360469	I 0030431183	0.6293148239
40	- 7034856908		- 0074856962	I 0031747551	- 6427820847
41	- 721072833 x	4 I	-00752 62073	1 0033072046	- 6560535555
42	- 7386599754	42 I3	- 0075575345	I 0034403056	- 66912 51936
43	0.7562471176	43 13	- 0075796433	I 0035738959	- 68199 30169
44	0.7738342599	44 I3	- 0075925102	I 0037078127	- 6946531055
45	0 7914214022	$45 \quad 13$	-00759 61235	I 0038418928	- 7071016026
$90-\mathrm{r}$	F ψ	ψ	G(r)	$\mathrm{C}(\mathrm{r})$	$\mathrm{B}(\mathrm{r})$

Smithsonian Tables
$q=000191359459017, \theta 0=0.9961728108, \mathrm{HK}=0418305976553$

$\mathrm{B}(\mathrm{r})$	C(r)	G(r)	ψ	F ψ	90-r
I 0000000000	I 0076837857	00000000000	$90^{\circ} \quad 0^{\prime}$	I. 5828428043	90
- 9998476907	I 0076814453	- 0002640908	89 o	I 565255662 I	89
- 9993908092	I 0076744270	00005278635	88	I 5476685198	88
- 9986294947	I 0076627394	00007910004	87	I 5300813775	87
- 9975639792	I 0076463966	00010531846	86	I 5124942353	86
- 99619 45873	I 0076254187	O OOI3I 4IOOI	852	I 4949070930	85
- 99452 17362	I 0075998311	- OOI57 34327	843	I 47731 99507	84
- 9925459357	I 0075696650	00018308697	83 3	I 4597328084	83
- 9902677878	I 0075349572	00020861008	824	I 4421456662	82
- 9876879866	I 0074957500	-0023388183	8 I 4	I 4244585239	81
- 984807318 I	I 0074520912	00025887173	$80 \quad 4$	I 40697 I3816	80
- 98162 66600	I 0074040338	- 0028354962	795	I 3893842394	79
- 978I4 69814	I 0073516366	- 0030788572	785	I 3717970971	78
- 9743693426	I 0072949632	- 0033 I 85063	776	I 3542099548	77
- 9702948945	I 0072340828	-00355 41538	766	I 3366228125	76
- 9659248785	I 0071690696	-0037855150	757	I 3190356703	75
09612606262	I 0071000027	00040123098	$74 \quad 7$	I 3014485280	74
- 9563035586	I 00702 69663	- 0042342636	737	I 2838613857	73
- 95105 5186I	I 0069500494	- 0044511077	728	I 2662742435	72
- 94551 71076	I 0068693457	- 0046625790	71	I 2486871012	7 I
09396910107	I 0067849535	- 0048684209	708	I 2310999589	70
- 9335786703	I 0066969756	- 0050683836	699	12135128167	69
- 92718 19488	I 0066055192	- 0052622237	689	I 1959256744	68
- 9205027950	I 0065I 06958	- 0054497055	679	I 1783385321	67
- 91354 32440	I 0064 I 26209	00056306006	66 Io	$1 \begin{array}{lllll}16075 & 13898\end{array}$	66
- 9063054160	I 0063I 14139	-00580 46884	6510	I 1431642476	65
- 89879 I5164	I 0062071982	- 00597 I7561	64 10	11255771053	64
- 89100 38343	I 0061001007	000613 I5997	63	11079899630	63
- 8829447424	I 0059902520	- 0062840232	62 II	I 0904028208	62
- 8746I 6696I	I 0058777858	- 0064288398	61 II	I 07281 56785	6 I
- 8660222325	I 0057628392	- 0065658716	$60 \quad 12$	I 0552285362	60
- 8571639703	I 0056455522	00066949498	59 12	I 0376413940	59
- 8480446080	I 0055260678	- 00681 59154	58 I2	I 0200542517	58
- 8386669240	I 0054045314	- 0069286187	57 I2	10024671094	57
- 8290337754	I 00528 10912	- 0070329201	$56 \quad 12$	- 9848799671	56
- 81914 80969	I 00515 58975	-00712 86900	55 I2	- 9672928249	55
- 80901 29003	I 0050291030	00072158089	54 13	- 9497056826	54
- 7986312733	I 0049008620	00072941679	5313	o 932II 85403	53
- 7880063786	I 00477 I 3308	00073636683	$52.13{ }^{\circ}$	- 91453 13981	52
- 7771414532	I 0046406672	00074242224	5113	- 8969442558	5 I
- 766039807 I	I 0045090305	0.007475753 I	5013	- 8793571135	50
- 7547048222	I 0043765809	- 0075I 81941	49 I3	0.8617699712	49
- 7431399518	I 0042434799	00075514902	48 I3	- 8441828290	48
- 73134 87191	I 00410 98897	- 0075755973	4713	- 8265956867	47
- 7193347160	I 0039759729	.000759 04823	46 I3	0.80900 85444	46
-70710 16026	I 0038418928	00075961235	4513	07914214022	45
A(r)	D (r)	E (r)	ϕ	F ϕ	r

$\mathrm{K}=15981420021, \quad \mathrm{~K}^{\prime}=\mathrm{K} \sqrt{3}=27683631454, \quad \mathrm{E}=15441504939, \quad \mathrm{E}^{\prime}=1076405113$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
\bigcirc	- 0000000000	$0^{\circ} \mathrm{o}^{\prime}$	- 0000000000	10000000000	- 0000000000
1	- 0177571334		- 0005997806	I 0000053258	- 01745 10959
2	- 0355142667		- 00119 88113	I 0000212966	- 03489 68785
3	- 05327 I4001		-00179 63433	I $0000+78929$	- 0523320359
4	- 0710285334		-00239 16296	I 0000850825	- 0697512596
	o 08878 56668		- 0029839265	I 00013 28199	- 0871492460
6	- 1065428002	$6 \quad 6$	- 0035724940	I 00019 10470	- 10452 06976
7	- 1242999335		- 00415 65975	$1{ }_{1} 0002596929$	- 1218603254
8	- 14205 70669		- 0047355081	I 0003386738	- 1391628498
9	- 15981 42002	$9 \quad 9$	- 0053085039	I 00042 78937	1564230024
10	o 1775713336	1010	- 0058748710	I 0005272438	- 1736355278
II	- 1953284669	II	- 00643 39044	I 0006366031	- 1907951850
12	- 2130856003	12	- 0069849088	$1 \begin{array}{ll}10007558383 \\ 1\end{array}$	- 2078967491
13	- 23084 27336	1313	- 0075271998	I 0008848041	O 2249350127
14	- 2485998670	14	- 0080601044	I 0010233434	2419047877
15	- 2663570004		- 0085829622	I 0011712875	- 2588009068
16	- 28411 41337	1616	- 0090951263	1 00132 84561	O 27561 82249
17	- 30187 12671	$\begin{array}{ll}17 & 17\end{array}$	- 0095959638	I 0014946577	- 2923516211
18	- 3196284004	18 18	- 0100848569	I 00166 96898	- 3089959997
19	- 3373855338		- 0105612037	1 00185 33392	- 3255462922
20	- 35514 26672	$20 \quad 19$	- 0110244188	I 0020453820	- 3419974584
21	- 3728998005	2120	o OII47 39339	10022455845	- 3583444886
22	- 3906569339	22 21	- orr90 91990	I 0024537025	- 3745824043
23	- 4084140672	$23 \quad 21$	- or232 96827	I 0026694826	- 39070 62603
24	- 4261712006		o o1273 48729	10028926619	- 40671 11462
	- 4439283339		- oi312 42775	I 00312 29684	- 4225921874
26	- 4616854673	$26 \quad 24$	- oi349 7425I	1 0033601217	- 4383445471
27	- 4794426006	$27 \quad 25$	- oi385 3865r	I 0036038326	- 4539634276
28	- 4971997340	$28 \quad 25$	o or419 31688	I 0038538044	- 4694440717
29	- 5149568674	$29 \quad 25$	o or45I 49297	I 004IO 97324	- 4847817640
30	$\bigcirc 5327140007$	$\begin{array}{ll}30 & 26\end{array}$	o Or481 87635	I 0043713049	
31	- 5504711341	$\begin{array}{ll}31 & 26 \\ 31 & 27\end{array}$		I 0046382031 I 00491 1	O 5150096510 0 0
32	- 5682282674 0 0	$\begin{array}{ll}32 & 27 \\ 33 & 27\end{array}$			
33 34	- 5859854008	$\begin{array}{ll}33 & 27 \\ 34 & 28\end{array}$		I 1005186675706	- 5591640350
	-62149 96675	$\begin{array}{ll}35 & 28\end{array}$	- 0160572204	I 0057524612	- 5735475273
36	- 6392568009	$36 \quad 28$	- o1624 67429	I 0060409949	- 5877563556
37	- 65701 39342	$37 \quad 29$	- 01641 63146	I 0063328201	- 60178 61912
38	- 6747710676	$38 \quad 29$	- or656 57446	I 0066275813	- 61563 27596
39	- 6925282009	$39 \quad 29$	- 0166948676	I 0069249193	- 62929 1842I
40	- 7102853343	$40 \quad 29$	- 0168035433	I 0072244718	- 6427592769
4 I	- 7280424676	$4 \mathrm{I} \quad 30$	- 0168916569	I 0075258740	- 65603 09607
42	- 7457996010	4230	- 01695 91191	I 0078287587	- 66910 28494
43	- 7635567344	$43 \quad 30$	- OI700 58662	100813 27567	- 68197 09600
44	- 7813138677	4430	- 0170318597	I 0084374977	- 69463 I3711
45	- 79907 roorl	4530	- 0170370869	I 0087426104	- 7070802248
90-	F ψ	ψ	G(r)	$\mathrm{C}(\mathrm{r})$	$\mathrm{B}(\mathrm{r})$

$q=0004333420509983, \quad \Theta 0=09913331597, \quad \mathrm{HK}=05131518035$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
I 0000000000	10174852237	00000000000	$90^{\circ} 0^{\prime}$	I 5981420021	90
- 9998476723	1 0174798979	- 0005894801		I. 5803848688	89
- 9993907356	I O1746 39271	- ooril 82606	88	I. 5626277354	88
- 9986293293	I Or743 73307	o oor76 56424	873	I 5448706021	87
- 9975636857	r.01740 01412	- 002350928 I	864	I 5271134687	86
- 9961941297	I OI735 24037	0 0029334228	855	I 5093563353	85
- 9945210792	I O1729 41766	- 00351 24342	846	I 49159 92020	84
- 9925450444	I O1722 55307	00040872741	837	I 4738420686	83
- 9902666280	r 0171465496	00046572589	828	I 4560849353	82
- 98768 6525I	I O1705 73297	00052217102	8 I 9	I 4383278019	8I
- 9848055225	1 0169579795	- 0057799557	8010	1 4205706685	80
- 9816244990	I 0168486202	- 00633 I 3300	79 II	I 4028135352	79
- 97814 44248	I 0167293849	- 0068751750	7812	I 3850564019	78
- 9743663613	I 01660 04190	- 00741 08412	$77 \quad 13$	I 3672992685	77
- 9702914608	I O1646 18796	- 0079376880	7614	I 3495421352	76
- 9659209661	I 01631 39354	- 0084550845	$75 \quad 15$	I 3317850018	75
- 96125 62102	I 016I5 67668	00089624102	7416	I 3140278684	74
- 9562986158	I O1599 05651	- 0094590560	$\begin{array}{ll}73 & 17\end{array}$	I 29627 0735I	73
- 9510496947	I OI581 55329	- 0099444245	$\begin{array}{ll}72 & 18\end{array}$	I 2785136017	72
- 94551 10478	1 OI563 18834	- OIO4I 79308	718	I 2607564684	71
0. 9396843642	I OI543 98405	- 01087 90033	$70 \quad 19$	I 2429993350	70
- 9335714207	r OI523 96380	o ori32 70844	6920	1 2252422016	69
- 92717 40815	$1 \mathrm{I}^{1} \mathrm{Or} 5315198$	0 01176 16310	68 20	I 2074850683	68
- 9204942975	I OI481 57396	- 012I8 2II5I	67 21	1 1897279349	67
- 9135341057	I OI459 25602	- 0125880246	6622	I 1719708016	66
- 9062956284	I Or436 22536	- 0129788640	$65 \quad 23$	I 1542136682	65
- 8987810728	I 01412 51003	- or335 41547	$64 \quad 23$	I 1364565348	64
- 8909927303	I OI388 13892	- 01371 34359	6324	11186994015	63
- 8829329756	I OI363 14174	- 0140562649	$62 \quad 25$	11009422681	62
- 8746042661	r Or337 54893	- 0143822180	6125	I 0831851348	6 I
- 8660091414	I Or3II 39167	- 01469 08906	6026	I 0654280014	60
- 8571502219	I OI284 70184	- 01498 18982	5926	I 047670868 r	59
- 8480302085	I OI257 5II95	- O1525 48767	$58 \quad 27$	I 0299137347	58
- 83865 18817	r 0122985512	- O1550 94825	$57 \quad 27$	10121566014	57
- 82901 81005	I OI201 76507	- O1574 53939	$56 \quad 28$	- 9943994680	56
o 81913 18020	1 OII73 27599	- 0159623105	$55 \quad 28$	-97664 23346	55
- 8089959997	I OII44 42262	- or6r5 99545	$54 \quad 28$	- 9588852013	54
- 79861 37836	I OIII5 24009	- 01633 80704	5329	- 94112 80679	53
- 7879883184	1 01085 76397	- or649 64258	$52 \quad 29$	- 9233709346	52
- 7771228430	r 0105603017	0 0166348119	5129	- 9056 T 38012	51
07660206691	1 OIO26 07491	00167530432	$50 \quad 29$	- 8878566678	50
- 7546851808	I 0099593468	- 0168509584	4929	- 8700995345	49
- 743II 98330	I 0096564622	- 0169284205	4830	- 852342401 I	48
- 73132 8r506	1 0093524642	- 0169853170	4730	- 8345852678	47
- 7193I 37274	I 0090477232	0 01702 15600	$46 \quad 30$	- 81682 81344	46
- 7070802248	I 0087426104	00170370869	$45 \quad 30$	0.79907 10011	45
A(r)	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F $\boldsymbol{\phi}$	r

$\mathrm{K}=16200258991, \quad \mathrm{~K}^{\prime}=2$ 5045500790, $\quad \mathrm{E}=1$ 5237992053, $\quad \mathrm{E}^{\prime}=1118377738$

r	F ϕ	ϕ	E(r)	$\mathrm{D}(\mathrm{r})$	A(r)
0	00000000000	$0^{\circ} \mathrm{o}^{\prime}$	- 0000000000	I 0000000000	0000000000
I	- 0180002878		- 001068958 r	I 0000096218	- 0174481883
2	- 0360005755		- 00213 65522	I 0000384757	- 0348910694
3	- 0540008633		-00320 14202	I 0000865263	- 0523233377
4	- 0720011515		- 0042622042	I 0001537152	- 0697396909
	o 09000 14388	5	-00531 75519	I 0002399605	- 0871348313
6	- 1080017266		00063661189	I 0003451572	- 10450 34678
7	- 1260020144	713	-00740 67708	I 00046 91770	- 1218403169
8	- 144002302 I	815	-00843 75848	I 0006118689	13914 15639 75697
9	- 1620025899	$9 \quad 17$	-00945 78515	I 0007730591	563975697
10	- 1800028777		- 0104660772	10009525510	- 1736074610
II	- 1980031655	1120	- 01146 09855	I 0011501262	- 1907645434
12	- 2160034532		- 0124413188	I 00136 55438	- 2078635973
I3	- 2340037410	1324	- 0134058406	I 0015985414	O 2248994205
I4	- 2520040288	$14 \quad 25$	- 0143533370	I 0018488351	- 2418668298
	- 2700043165		- 0152826180	0021151200	- 2587606626
I6	- 2880046043	1628	- 0161925197	$1{ }^{1} 0024000704$	- 2755757786
17	- 3060048921	1730	- 01708 19057	10027003405	- 2923070609
18	- 3240051799	$18 \quad 32$	o 0179496683	1 l OO301 65642	- 3089494182
19	- 3420054676	1933	- 0187947304	1 0033483565	- 3254977855
20	- 3600057554		- 0196I 60466	I 0036953131	- 34194 71266
2 I	- 378006043 I	$21 \quad 36$	00204126046	I 0040570112	- 3582924349
22	- 3960063309	$22 \quad 37$	- 02118 34268	10044330101	- 3745287349
23	- 4140066187	$23 \quad 39$	$\bigcirc 0219275711$	I 0048228518	- 39065 ro844
24	- 4320069064	2440	- 022644^{1321}	I 0052260614	- 4066545753
	- 4500071942		- 0233322426	I 0056421475	O 4225343354
26	- 4680074820	$26 \quad 42$	- 0239910740	I 0060706033	- 4382855296
27	- 4860077697	2744	-02461 98378	1 0065109067	- 4539033618
28	- 5040080575	2845	$\bigcirc 0252177862$	I 0069625213	- 4693830761
29	- 5220083453	2946	00257842130	I 0074248968	0 48471 99582
30	- 5400086330	$30 \quad 46$	- 0263184541	I 00789 74700	- 4999093370
3 I	- 5580089208	3147	- 02681 98888	I 0083796651	- 5149465858
32	- 5760092086	$\begin{array}{ll}32 & 48\end{array}$	-02728 79396	I 0088708946	- 5298271240
33	- 5940094963	3349	0 0277220732	I 0093705600	- 5445464181
34	- 612009784 I	$34 \quad 50$	-02812 18009	I 0098780525	- 5590999835
	-63001 00719		- 02848 66791	I 0ro39 27539	- 5734833858
36	- 64801 03597	36 51	- 02881 63091	I 01091 40371	- 5876922416
37	- 66601 06474	37 51	- 02911 03382	I Ori44 12669	- 60172 22208
38	- 68401 09352	$38 \quad 52$	- 0293684591	I orr97 3801 r	- 6r556 90470
39	- 70201 12230	$39 \quad 52$	- 0295904103	I Or251 09908	- 6292284994
40	- 7200115107	$40 \quad 53$	- 0297759763	I Or305 21815	- 6426964140
41	- 7380117985	4 I 53	- 0299249874	I O1359 67138	- 6559686845
42	- 7560120863	4253	-03003 73198	I 0141439245	- 6690412642
43	- 7740123740	4353	- 0301128953	I 0146931466	- 68191 01665
44	- 7920126618	$44 \quad 53$	- 03015 I68II	I OI524 37112	- 6945714668
45	- 81001 29496	$45 \quad 53$	- 0301536896	x or579 49474	- 7070213033
90-r	F ψ	ψ	G(r)	C(r)	$\mathrm{B}(\mathrm{r})$

$q=0007774680416442, \quad \Theta 0=09844506465, \quad H K=05939185400$

$B(r)$	$\mathrm{C}(\mathrm{r})$	$G(r)$	ψ	F ψ	90-r
I 0000000000	I 03158 99246	00000000000	$90^{\circ} 0^{\prime}$	I 6200258991	90
- 9998476215	I 03158 03027	- 00103 62474	89	I 6020256113	89
- 9993905327	1.03155 14488	00020712902	884	I 5840253236	88
- 9986288734	I 03150 33980	- 00310 39250	876	I 566025035^{8}	87
- 9975628767	I 0314362088	- 00413 29509	867	I 5480247480	86
- 99619 28686	I 03I34 99632	00051571704	859	I 5300244603	85
- 9945I 92682	I O3I24 4766I	- 00617 53910	84 II	1 5I202 41725	84
- 9925425876	I O3II2 07458	- 00718 64259	83 I3	I 4940238847	83
- 9902634315	I 0309780534	- 008r8 90957	82 I5	I 4760235970	82
- 9876824970	I 0308I 68627	- 00918 22293	81 16	I 4580233092	8 I
- 9848005736	I 0306373701	o oror6 46651	80 I8	I. 4400230214	80
- 98161 85429	I 0304397942	o oirl3 52523	7920	I 4220227337	79
09781373781	I 0302243759	- or209 28519	$78 \quad 22$	I 4040224459	78
- 9743581442	I 0299913775	- 01303 63381	$\begin{array}{ll}77 & 23\end{array}$	I 3860221581	77
- 9702819968	I 0297410829	- O1396 45994	$76 \quad 25$	I 3680218704	76
- 96591 OI827	I 0294737972	0 01487 65396	$\begin{array}{ll}75 & 27\end{array}$	I 3500215826	75
- 9612440390	I 02918 98458	- 0157710793	$74 \quad 28$	I 3320212948	74
- 9562849924	I 0288895748	- OI664 71568	73 30	I 3140210070	73
- 95103 45595	I 0285733501	- 01750 37292	72 31	I 2960207193	72
- 9454943456	I 0282415568	- 01833 97739	7133	I 2780204315	71
- 9396660449	I 0278945992	- or915 42895	$70 \quad 34$	I 26002 OI437	70
- 933355 14391	I 0275328994	- or994 62967	6936	I 2420198560	69
- 92715 23977	I 0271569001	- 02071 48399	$68 \quad 37$	I 2240195682	68
- 9204708768	I 0267670574	- 021458988 I	67 38	I 20601 92804	67
- 91350 89187	I 0263638468	-02217 78360	6640	I I8801 89927	66
- 90626 86515	1 0259477596	00228705049	654 I	I I7001 87049	65
- 89875*22880	I 0255I 93029	- 02353 61442	6442	I I5201 84171	64
- 8909621252	I 0250789985	- 0241739320	6343	I I3401 81294	63
- 8829005436	I 0246273829	- 0247830767	6244	I II601 78416	62
08745700067	I 0241650064	- 0253628172	6145	I 0980I 75538	6 I
- 8659730595	I 0236924323	-02591 24248	6046	I 08001 72661	60
o 85711 23285	I 02321 02363	- 0264312037	5947	I 0620I 69783	59
- 8479905205	I 0227I 90060	- 02691 84920	5848	I 0440I 66905	58
- 83861 04218	I 0222193398	- 0273736626	5749	I O2601 64028	57
- 8289748973	I 02171 18465	- 0277961243	5649	I 00801 6riso	56
- 81908 68896	I 02II9 71444	- 02818 53227	$55 \quad 50$	- 99001 58272	55
- 8089494182	I 0206758606	- 0285407409	54 5I	- 9720155395	54
- 7985655784	I 0201486302	- 02886 I9001	53 5I	- 95401 52517	53
- 7879385407	I or96I 60955	- 0291483611	5252	- 93601 49639	52
- 77707 15491	I. 0190789054	- 0293997245	$5 \mathrm{I} \quad 52$	- 91801 4676r	5 I
- 7659679209	I OI853 77143	- 02961 56313	$50 \quad 53$	- 90001 43884	50
- 7546310450	10179931816	- 0297957642	4953	0.8820141006	49
- 7430643814	1.01744 59707	- 0299398477	4853	- 8640138129	48
- 7312714598	I OI689 67484	- 0300476489	4753	- 8460135251	47
- 71925 58784	r. 0163461837	- 03011 89783	4653	- 82801 32373	46
07070213033	I. Or 57949474	- 03015 36896	$45 \quad 53$	- 8IOOI 29496	45
A(r)	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

$\mathrm{K}=16489952185, \quad \mathrm{~K}^{\prime}=23087867982, \quad \mathrm{E}=14981149284, \quad \mathrm{E}^{\prime}=11638279645$,

r	$\mathbf{F} \phi$	ϕ	$\mathrm{E}(\mathrm{r})$	D (r)	A(r)
0	00000000000	$0^{\circ} 0^{\prime}$	00000000000	I 0000000000	00000000000
I	- O1832 21691	13	000167 60815	I 00001 53565	00174418591
2	- 0366443382		- 0033499667	I 0000614074	00348784245
3	- 0549665073	39	- 00501 94629	I 00013 80964	0052304404 I
4	- 0732886764	412	00066823842	I 0002453303	- 0697145088
5	-09161 08455	$5 \quad 15$	- 00833 6555x	I 0003829783	- 0871034544
6	$\bigcirc 1099330145$	6 I8	- 00997 98139	10005508728	0 10446 59627
7	$\bigcirc 1282551836$		0 01161 00163	I 0007488092	- 12179 67635
8	- 1465773527	824	- 0132250382	I 0009765463	01390905958
9	- 16489 95218	926	- 01482 27797	I OOI23 38067	- 15634 22095
10	- 18322 16909	1029	- 0164011677	$1{ }^{1} 0015202770$	- 1735463669
II	- 2015438600	II 32	0.01795 81596	I 001835608 I	- 1906978446
12	- 2198660291	1235	- 0194917458	I 0021794159	0 2077914345
13	- 2381881982	$\begin{array}{ll}13 & 37\end{array}$	- 0209999533	10025512815	0 2248219454
14	- 25651 03673	1440	- 0224808485	I 0029507519	- 2417842052
15	- 2748325364	1543	00239325396	10033773404	$\begin{array}{lll}0 & 25867 & 30615\end{array}$
16	- 2931547055	1645	00253531798	I 0038305272	- 2754833838
17	- 3II47 68746	1748	002674097,00	I 0043097603	0 2922100649
18	- 3297990437	1850	00280941609	I 0048I. 44557	- 3088480221
19	- 3481212128	1953	00294110555	I 0053439986	- 32539 21991
20	- 3664433819	$20 \quad 56$	-03069 00118	I 0058977438	- 34183 75673
2 I	- 3847655510	$21 \quad 57$	- 0319294445	I 0064750167	- 35817 91274
22	- 4030877201	2259	- 0331278272	I 0070751140	- 37441 19107
23	- 4214098892	$24 \quad 1$	00342836945	I 0076973046	- 3905309808
24	- 4397328582	253	- 0353956434	1 0083408304	- 4065314352
25	- 4580542273	265	- 0364623352	I 0090049074	- 4224084064
26	- 4763763964	$27 \quad 7$	- 0374824970	I 0096887266	- 4381570635
27	- 4946985655	289	- 0384549232	I 01039 14548	- 4537726140
28	0.5130207346	29 II	00393784764	1 OIIII 22358	04692503045
29	0.53 I 3429037	$30 \quad 12$	00402520886	I OII85 OI9I6	O 484585423 I
30	- 5496650728	315	00410747627	I OI260 4423 I	- 4997732999
3 I	- 5679872419	32 I 5	00418455726	I 0133740113	- 5148093092
32	- 5863094110	3316	- 0425636643	I 01415 80186	- 5296888703
33	- 60463 15801	3418	- 0432282564	x 0149554899	- 5444074492
34	- 6229537492	3519	- 0438386406	I Or576 54535	- 5589605600
35	06412759183	$36 \quad 20$	00443941821	I 0165869227	$\circ 5733437662$
36	- 6595980874	$37 \quad 21$	00448943196	$1{ }_{1} 0174188967$	- 5875526819
37	- 6779202565	$38 \quad 22$	- 0453385655	I OI826 03617	- 60158 29737
38	- 6962424256	3923	- 0457265058	1 01911 02927	$061543036 I I$
39	0.71456 45947	$40 \quad 23$	00460578000	r 0199676540	- 6290906189
40	- 7328867638		00463321809	102083 I4013	- 6425595777
4 I	0.7512089328	$42 \quad 24$	- 0465494543	10217004820	- 6558331255
42	0.76953 IIOI9	$43 \quad 24$	- 04670 94981	$\begin{array}{llll}\text { I } & 02257 & 38374\end{array}$	- 66890 72089
43	- 7878532710	$44 \quad 24$	- 04681 22622		06817778347
44	- 80617 54401	$45 \quad 24$	- 0468577678	102432 91122	- 6944410704
45	- 8244976092	$46 \quad 24$	00468461065	I 0252088930	07068930463
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$C^{\prime}(\mathrm{r})$	B(r)

Smithsonian Tables
$q=0012294560527181, \quad \Theta 0=0975410924642, \quad \mathrm{HK}=0666076159327$

$\mathrm{B}(\mathrm{r})$	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
10000000000	I 05041 79735	00000000000	$90^{\circ} \quad 0^{\prime}$	1 6489952185	90
- 9998475111	10504026167	- 00159 57045	893	I 6306730494	89
- 9993900912	I 0503565652	- 003I8 96046	886	I 6123508803	88
- 9986278812	I 0502798750	0 0047798977	879	I 5940287112	87
- 99756 III58	I 05017 26395	- 0063647840	86 I2	I 575706542 I	86
- 99619 O1235	I 0500349895	$00079+24686$	85 I 5	I 5573843730	85
- 9945I 53263	I $0+98670926$	00095 I I1627	$84 \quad 17$	1 5390622039	84
- 9925372400	r 04966 91533	- OIIO6 90855	8320	I 5207400348	83
- 9902564734	10494414129	0 O126I 44653	8223	1 50241 78657	82
- 9876737287	I 0491841489	o OIfr +55416	8I 26	I 4840956966	8 I
- 9847898010	I 0488876746	- Or566 05663	$80 \quad 29$	I 4657735275	80
- 9816055779	I 04858 23391	0 or7i5 78054	79 3r	I 4474513584	79
- 97812 20395	I $0+82385265$	- 0186355407	$78 \quad 34$	I 4291291893	78
- 9743402576	I 04786 66559	00200920712	$77 \quad 37$	I 4108070202	77
- 9702613962	1 0474671802	- 02I52 57149	7639	I 39248485 II	76
- 96588 67101	I 0470405862	00229348102	$75 \quad 42$	I 37416 26821	75
0 9612I 75452	I 0465873936	- 0243I 77177	$74 \quad 44$	I 3558405130	74
- 9562553377	I 0461081546	- 0256728218	$73 \quad 47$	I 3375I 83439	73
- 95100 16139	I 0456034530	- 0269985322	7249	I 3191961748	72
- 9454579893	I 0450739038	- 0282932857	7152	I 3008740057	7 I
- 9396261686	I 04452 Or 522	0 0295555477	$70 \quad 54$	I 2825518366	70
- $9335079+44$	I 0439428728	00307838140	6956	I 2642296675	69
- 92710 51976	$1{ }^{1} 0+33427690$	-03197 66123	$68 \quad 58$	I 2459074984	68
- 92041 98958	I 0427205719	- 033I3 25038	68 o	I 2275853293	67
- 9134540932	1 0420770396	-03425.00853	$67 \quad 2$	I 2092631602	66
- 9062099299	10414129561	-03532 79902	664	1 I 90940991 I	65
- 8986896309	$10+07291305$	- 0363648907	656	I 17261 88220	64
- 8908955058	10400263960	- 0373594992	64.8	I 1542966529	63
- 8828299477	10393056088	-03831 05700	63 Io	I 1359744838	62
- 8744954326	1 0385676470	- 0392169009	62 II	I 1I765 23147	6I
0.8658945184	I 03781 34098	- 0400773349	6 I I3	1. 09933 01456	60
- 8570298444	10370438161	- 0408907619	6014	I 08100 79765	59
- 8479041300	I 0362598035	00416561200	59 16	I 0626858075	58
- 83852 OI744	I 0354623272	00423723976	$\begin{array}{lll}58 & 17\end{array}$	I 0443636384	57
- 8288808549	I 0346523588	- 0430386345	57 I8	I 0260414693	56
- 8189891269	1 0338308852	- 0436539236	56 I9	I 00771 93002	55
- 8088480221	1 0329989073	-04421 74127	$55 \quad 20$	- 9893971311	54
- 7984606482	1 03215 74386	- 0447283056	54 2I	- 9710749620	53
- 7878301874	1 03130 75044	-04518 58637	5322	- 9527527929	52
- 7769598956	103045 Or401	0.0455894076	5222	0 9344306238	5I
- 7658531015	r 0295863905	- 0459383183	$5 \mathrm{I} \quad 23$	- 91610 84547	50
- 75451 32053	I 02871 73077	- 0462320386	$50 \quad 24$	- 8977862856	49
- 7429436775	I 0278439507	- 0464700744	4924	- 8794641165	48
- 73114 80583	I 0269673835	004665 19961	$48 \quad 24$	- 86II4 19474	47
- 71912 9956I	I 026088674 I	- 0467774393	$47 \quad 24$	o 8428I 97783	46
- 7068930463	10252088930	00468461065	$46 \quad 24$	- 8244976092	45
A. (r)	D (r)	$\mathbf{E}(\mathrm{r})$	ϕ	F ϕ	I

r	$\mathrm{F} \phi$	ϕ	$\mathrm{E}(\mathrm{r})$	$\mathrm{D}(\mathrm{r})$	A(r)
0	00000000000	$0^{\circ} 0^{\prime}$	00000000000	I 0000000000	00000000000
I	- 01873 05595	4	0002.4248763	10000227125	- 01742 98716
2	003746 III90	29	00048464683	10000908222	- 0348544751
3	- 05619 16785	$3 \quad 13$	- 00726 14977	I 0002042462	- 0522685438
4	00749222380	418	- 0096666975	I 0003628463	- 06966 68140
5	- 0936527975	$5 \quad 22$	o Or205 88ı78	I 0005664294	00870440267
6	- II238 33570	$6 \quad 26$	0 OI443 46319	I 00081 47472	01043949285
7	- I3III 39165	730	00167909412	I oorlo 74975	- 12171 42736
8	- 14984 44760	835	- or912 458I3	I OoI44 43235	- 13899 68254
9	- 1685750355	939	- 02I43 24269	I 0018248148	- 15623 73574
IO	- 1873055950	1043	- 02371 I3976	I $00224^{\circ} 85079$	017343 06551
I I	- 2060361545	II 47	- 0259584626	I 0027148868	- 19057 15175
I2	0.2247667140	1251	- 02817 06459	I 0032233830	- 2076547584
I3	- 2434972734	1355	- 0303450312	10037733773	- 2246752081
14	- 2622278329	1459	- 0324787664	I 0043641996	- 2416277146
I5	- 2809583924	163	- 0345690685	I 00499 51300	- 25850 71454
16	- 29968 89519	176	- 03661 32272	I 0056654000	- 2753083886
17	- 3184I 95II4	18 Io	- 0386086097	I 0063741929	- 2920263549
18	0.3371500709	1914	- 0405526642	I 0071206453	- 3086559785
19	- 3558806304	$20 \quad 17$	00424429236	I 0079038477	- 3251922190
20	- 37461 I 1899	2 I 20	00442770092	I 0087228461	- 3416300625
2 I	- 3933417494	$22 \quad 23$	- 0460526335	I 0095766426	- 3579645236
22	04120723089	$23 \quad 27$	- 0477676034	I OIO46 41971	- 37419 06461
23	- 4308028684	2430	0 04941 98229	I OrI38 44282	- 3903035051
24	- 4495334279	2533	0 05100 72958	10123362150	- 4062982084
25	- 4682639874	2636	00525281275	I Or331 83978	- 4221698975
26	- 4869945469	$27 \quad 38$	- 0539805273	I or432 97800	- 4379137495
27	- 5057251064	28 4I	- 0553628100	I OI53691295	- 4535249782
28	- 5244556659	2943	- 0566733976	I 0164351800	- 4689988358
29	- 5431862254	3046	00579108204	I Or752 66329	$\bigcirc 4843306142$
30	- 56191 67849	3148	00590737181	I OI 86421583	- 4995I 56464
31	- 5806473444	3250	- 06016 08407	I 0197803972	- 51454 93080
32	- 5993779039	$33 \quad 52$	- 06II7 10486	I 0209399629	- 5294270185
33	0.61810 84634	3454	00621033138	I 022II 94428	- 54414 42428
34	-63683 90229	3555	00629567191	I 02331 73997	- 5586964925
35	- 6555695824	$36 \quad 56$	00637304587	I 0245323743	- 5730793274
36	0.6743001419	3758	- 0644238375	I 0257628863	- 5872883566
37	0.6930307014	$38 \quad 59$	00650362710	I 0270074365	- 6013I 92403
38	07117612609	40 0	- 0655672843	I 0282645087	- 61516 76907
39	- 73049 I8204	4 I I	0.0660165112	10295325714	- 6288294738
40	- 7492223799	$42 \quad 2$	- 0663836938	I 03081 00797	- 6423004103
41	- 7679529394	433	- 0666686806	1.03209 54771	- 6555763772
42	- 7866834989	443	- 0668714255	I 0333871976	- 6686533089
43	- 8054I 40584	453	00669919865	I 0346836674	- 68I52 71988
44	- 8241446179	464	00670305237	1 0359833070	0.6941941003
45	- 8428751774	473	- 0669872981	I 0372845330	- 7066501282
90-r	F ψ	ψ	G(r)	C(r)	B(r)

$\mathrm{K}=1$ 7312451757, $\quad \mathrm{K}^{\prime}=2$ 0347153122, $\mathrm{E}=1$ 4322909693, $\quad \mathrm{E}^{\prime}=12586796248$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
o	0 0000000000	$0^{\circ} \mathrm{o}^{\prime}$	0 0000000000	I 0000000000	- 0000000000
I	- 0192360575		- 0033209329	- I 0000319451	- Or740 911i5
2	- 0384721150	22 12	- 0066371847	I 0001277415	- 03481 29991
3	-05770 81725	$\begin{array}{ll}3 & 18\end{array}$	- 0099440836	I 0002872724	- 0522064403
4	0.0769442300	424	- OI323 69759	I 0005103436	- 0695842154
5	-09618 02875		- 0165112357	I 0007966833	- 08694 11086
6	- 1154163450	$6 \quad 36$	- 0197622733	1 Oorr 459427	- 1042719100
7	- 1346524025	$\begin{array}{ll}7 & 42 \\ 8\end{array}$	-02298 55446	10015576965	- 1215714162
8	- 1538884600	848	- 0261765594	I 0020314429	- 1388344322
9	- 1731245176	954	- 0293308900	I 0025666050	- 15605 57726
10	- 1923605751	II 0	- 0324441797	10031625308	- 17323 02632
11	- 2115966326	12	-03551 21508	10038 I 84944	- 19035 27418
12	- 2308326901	13 II	-03853 06122	10045336968	- 2074180603
13	- 2500687476	14	- 0414954668	10053072668	- 2244210857
14	- 269304805 I	$15 \quad 22$	- 0444027192	I 0061382620	- 24135 67013
15	- 2885408626	$16 \quad 27$	- 04724848 I 8	I 0070256701	- 25821 98088
16	- 30777 69201	$17 \quad 32$	- 0500289819	I 0079684103	- 2750053288
17	- 32701 29776	18•37	-05274 05671	1 0089653340	- 29170 82026
18	- 34624 9035r	1942	- 0553797118	Orooi 52268	- 3083233939
19	- 3654850926	2047	- 0579430217	I OIIII 68099	- 32484 5^{8897}
20	- 38472 I1501		- 0604272392	1 0122687413	- 3412707019
21	- 4039572077	$22 \quad 56$	-0628292476	I OI34696177	- 3575928687
22	- 4231932652	24	- 0651460751	I 01471 79763	- 3738074559
23	- 4424293227	25	- 0673748988	I or601 22964	- 3899095585
24	- 4616653802	269	-06951 30473	I 0173510012	- 4058943019
25	- 4809014377	$27 \quad 13$	- 0715580036	I 0187324599	- 4217568435
26	- 50013 74952	2816	- 0735074079	I 0201549897	- 4374923737
27	- 5193735527	$29 \quad 20$	-07535 90588	1 02161 68576	- 4530961179
28	- 5386096102	$30 \quad 23$	-07711 09151	I 0231162828	- 4685633375
29	- 55784 56677	$31 \quad 27$	-07876 10969	I 0246514386	- 4838893314
30	- 5770817252	3230	- 0803078862	10262204548	- 4990694371
3 I	- 5963177827	$33 \quad 32$	- 08r74 97274	102782 x 4201	- 5140990330
32	- 61555 38402	3435	- 0830852267	10294523841	- 5289735386
33	- 6347898977	$\begin{array}{ll}35 & 37\end{array}$	-08431 31523	1 0311113599	- 5436884170
34	- 65402 59552	3640	- 0854324331	I 0327963263	- 5582391754
35	- 6732620128	3742	- 0864421580	1 0345052308	- 5726213672
36	- 6924980703	$38 \quad 43$	- 0873415741	I 0362359914	- 5868305928
37	0711734^{1278}	3945	-08813 00853	I 0379864996	- 60086 25017
38	07309701853	4046	- 0888072502	I 0397546228	- 61471 27930
39	- 7502062428	4148	- 0893727798	I 0415382068	- 62837 72177
40	- 7694423003	4249	-08982 65352	I 0433350787	-64185 15792
4 I	- 7886783578	4349	- 0901685246	I 0451430495	- 65513 17355
42	- 80791 44153	4450	- 0903989009	I 0469599164	- 66821 35999
43	- 8271504728	4550	- 09051 79579	r 0487834660	- 68109 31428
44	- 8463865303	46 51	- 09052 61280	10506114765	- 6937663926
45	- 8656225878	$47 \quad 51$	- 0904239779	I 0524417208	- 7062294378
90	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{B}(\mathrm{r})$

$q=0$ 024915062523981, $Ө 0=09501706456, \quad \mathrm{HK}=07950876364$

$\mathrm{B}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
I 0000000000	I 1048866859	- 0000000000	$90^{\circ} 0^{\prime}$	17312451757	90
- 9998469394	I 1048547369	- 0030062320	896	17120091181	89
- 9993878065	I 1047589287	- 0060093218	8812	I 6927730606	88
- 9986227471	I 10459 93781	- 00900 6I288	87	I 6735370031	87
- 9975520048	I 1043762795	o oil9 35156	$86 \quad 23$	I 6543009456	86
- 9961759200	11040899048	- 0149683495	$85 \quad 29$	I 635064888 I	85
- 9944949305	11037406029	- 0179275043	8435	I 61582 88306	84
- 9925095707	11033287996	- 0208678620	8340	I 596592773 I	83
- 9902204719	I 1028549965	-02378 63141	8246	I 5773567156	82
- 9876283615	1 1023I 977II	- 0266797640	8 I I	1 558120658 I	8 I
- 9847340633	I 10172 37756	- 0295451279	8057	I 5388846006	80
- 9815384966	I 1010677362	- 0323793372	80	15196485431	79
- 9780426763	I 1003524524	$\bigcirc 0351793404$	79	I 50041 24856	78
- 9742477117	I 0995787957	- 0379421046	78	I 4811764281	77
- 9701548073	I 0987477089	-04066 46178	77 19	I 4619403706	76
- 9657652612	I 0978602047	- 0433438907	$76 \quad 24$	I 4427043130	75
- 9610804649	I 09691 73646	- 0459769592	$\begin{array}{ll}75 & 29\end{array}$	I 4234682555	74
- 95610 19028	I 0959203375	- 0485608861	74	I 4042321980	73
- 9508311516	I 0948703382	- 0510927637	$\begin{array}{ll}73 & 38\end{array}$	I 3849961405	72
- 9452698796	I 0937686463	- 0535697161	$72 \begin{array}{ll}72\end{array}$	I 3657600830	71
- 9394198461	I 0926166042	- 0559889014	$\begin{array}{ll}71 & 48\end{array}$	I 3465240255	70
- 9332829005	I 0914156156	- 0583475147	7052	${ }^{1} \mathrm{I} 3272879680$	69
- 9268609817	I 0901671440	- 0606427902	6956	+1:30805 19105	68
- 9201561173	I 0888727107	- 062872004 I	69	122888158530	67
- 91317 04228	I 0875338930	- 0650324775	68	1:26957 97955	66
- 9059061007	I 086152322 I	-06712 15792	67	12503437380	65
- 8983654396	I 0847296815	- 0691367285	$\begin{array}{ll}66 & 12\end{array}$	1 2311076805	64
- 8905508 r 35	1 0832677048	- 0710753988	6516	121187 16230	63
- 8824646805	r 0817681732	- 0729351200	$64 \quad 19$	I 1926355655	62
- 87410 95823	I 0802329140	- 07471 34824	$63 \quad 23$	I 1733995080	61
- 865488 I 427	I 0786637978	- 0764081398	$62 \quad 26$	11541634504	60
- 8566030670	I 0770627365	- 07801 68127	$6 \mathrm{6r} 29$	I 1349273929	59
- 8474571408	I 0754316809	- 0795372924	$60 \quad 3 \mathrm{I}$	I 11569 I3354	58
- 8380532290	I 0737726184	$\bigcirc 0809674440$	59	I 0964552779	57
- 8283942745	I 0720875705	- 0823052102	$58 \quad 36$	I 0772192204	56
- 8184832973	I 0703785902	- $08354{ }^{86152}$	$57 \quad 39$	10579831629	55
- 8083233933	1 0686477599	- 0846957684	$56 \quad 4 \mathrm{I}$	$1{ }^{1} 0387471054$	54
- 79791 77333	I 0668971884	- 0857448680	5543	$1{ }^{1} 01951$ 10479	53
- 7872695615	I 0651290086	- 0866942053	5444	$1{ }^{1} 0002749904$	52
o 7763821945	I 0633453750	- 0875421680	$53 \quad 46$	- 98103 89329	51
o 7652590201	I 0615484606	- 0882872448	5248	- 9618028754	50
o 75390 34961	I 0597404548	-08892 80287	51 49	- 9425668179	49
- 74231 91490	I 0579235605	- 0894632214	$50 \quad 49$	- 9233307604	48
- 7305095727	1. 0560999913	$0.08989 \mathrm{I6370}$		- 9040947028	47
- 7184784273	1.0542719690	0.0902 I 22056	$48 \quad 50$	- 8848586453	46
o 7062294378	1 0524417208	- 0904239779	$47 \quad 5 \mathrm{I}$	- 8556225878	45
A(r)	D(\mathbf{r})	E(r)	ϕ	F ϕ	r

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	D (r)	A(r)
0	0 0000000000	$0^{\circ} \quad 0^{\prime}$	00000000000	10000000000	00000000000
I	- 0198529904		- 0043725767	10000434107	- 01737 52657
2	- 0397059807	2 I6	- 0087386910	I 0001735897	- 0347453796
3	- 0595589712	324	00130918945	$\begin{array}{lllll}1 & 00039 & 03787\end{array}$	- 05210 51913
4	- 07941 19615	432	0.0174257681	I 0006935136	- 0694495525
5	0 0992649519	5 4I	00217339351	I 0010826253	00867733185
6	o II9II 79423	649	- 02601 00761	1 OOI55 72398	01040713496
7	- 13897 09327	$7 \quad 57$	- 0302479420	10021167791	- 12133 85117
8	- 15882 3923I	95	0 0344413683	I 0027605620	- 1385696780
9	- 17867 69135	IO I3	-03858 42875	I 0034878042	- I557597300
10	- 1985299039	1121	0 0426707422	I 0042976203	- 17290 35587
II	- 2183828943	1228	- 0466948973	I 0051890239	- 18999 60657
12	- 2382358847	$13 \quad 36$	00506510519	I 0061609295	- 2070321648
13	- 2580888751	1443	00545336499	I 0072121534	- 2240067828
14	- 2779418655	I5 5I	005833 72913	I 00834 I4I54	- 24091 48609
I5	- 2977948558	$16 \quad 58$	00620567422	10095473402	- 2577513559
16	- 31764 78462	18. 5	- 0656869435	I OIO82 84592	- 27451 124I7
I 7	- 3375008366	19 ${ }^{\prime}$ I2	00692230203	I 01218 32120	- 29118 95099
18	- 3573538270	2018	- 0726602895	10136099487	- 30778 11718
I9	- 3772068174	$2 \mathrm{I} \quad 25$	- 0759942673	10151069318	- 3242812593
20	- 3970598078	22 31	0 0792206754	I OI667 23379	- 3406848260
21	- 4169127981	$23 \quad 37$	- 0823354475	I 01830 42606	- 3569869491
22	- 4367657885	$24 \quad 42$	- 0853347336	$1 \begin{array}{llll}\text { I } & 02000 & 07123\end{array}$	- 37318 27300
23	- 4566187789	2548	0 0882I 49046	I 02217596267	- 3892672959
24	- 47647 17693	$26 \quad 53$	- 0909725564	I 0235788616	- 4052358014
25	- 4963247597	$27 \quad 59$	0 0936045123	I 0254562012	- 4210834293
26	- 51617 77501	294	- 09610 78252	I 0273893589	- 4368053924
27	- 5360307405	308	. 0.0984797792	10293759801	- 4523969344
28	- 5558837309	3113	- 10071 78905	I 03I4I 36450	0 4678533318
29	- 5757367212	$32 \quad 17$	- 10281 99075	I 0334998717	- 4831698948
30	- 5955897116	$33 \quad 22$	- 1047838 IOI	I 0356321191	- 4983419688
31	- 6I544 27020	$34 \quad 25$	- 1066078092	$1 \begin{array}{llllll}\text { I } & 03780 & 77899\end{array}$	- 51336 49360
32	- 6352956924	$35 \quad 28$	- 1082903444	I 0400242340	- 5282342166
33	- 6551486828	$36 \quad 31$	0 IO983 0082I	I 0422787515	- 5429452702
34	-67500 16732	$37 \quad 34$	- III22 59132	I 0445685961	- 5574935973
35	- 6948546636	$\begin{array}{ll}38 & 37\end{array}$	- 1124769491	I 0468909786	- 5718747405
36	-71470 76540	3939	01135825187	I 0492430699	- 5860842864
37	- 7345606443	4041	- II454 21645	I 0516220047	0 60011 78665
38	- 7544136347	4142	o II535 56375	I 0540248851	- 61397 11590
39	- 7742666251	4244	- II602 28932	10564487839	- 6276398902
40	0.7941196155	$43 \quad 46$	- II654 4086I	$\begin{array}{llll}1 & 05889 & 07481\end{array}$	- 641II 98356
41	- 8139726059	$44 \quad 46$	0 II691 95649	10613478029	- 6544068220
42	- 8338255963	$45 \quad 47$	- II714 98662	$1{ }_{1} 0638169550$	- 6674967282
43	- 8536785867	$46 \quad 47$	01172357096	I 0662951962	0 68038 54871
44	- 87353 15771	$47 \quad 48$	o II7I7 79914	I 0687795074	06930690869
45	- 8933845674	$48 \quad 48$	- I169777784	1 0712668617	0.7055435725
90-	F ψ	ψ	G(r)	$\mathbf{C}(\mathbf{r})$	B(r)

Smithsonian Tables

$'=0.033265256695577, ~ Ө 0=09334719356, \quad \mathrm{HK}=08550825245$

$\mathrm{B}(\mathrm{r})$	C(r)	G(r)	ψ	F ψ	90-r
I 0000000000	I 1425442177	00000000000	$90^{\circ} 0^{\prime}$	I 7867691349	90
- 9998463487	I 14250 07942	-00382 84907	89	17669161445	89
- 9993854451	I 1423705769	00076531872	88 I5	I $74706315+1$	88
- 99861 74408	I 14215 37243	00114702963	$87 \quad 23$	I 7272101637	87
- 997542588 r	I 14185 05008	- OI52760269	8630	1 7073571733	86
- 99616 I2401	I 14146 12760	- 01906 65913	$85 \quad 38$	1 6875041829	85
- 9944738506	I 14098 65243	- 0228382057	8446	I 66765 Ir926	84
- 9924809734	I 1404268243	-0265870918	8353	1 6477982022	83
- 99018 32628	I 1397828584	- 030309478 r	83	I 6279452118	82
- 9875814726	I I3905 54II3	-03400 16009	828	I 6080922214	8 I
- 9846764560	I 1382453698	- 0376597054	8 I I6	1 5882392310	80
- 98146 91652	11373537211	0 04128 00477	8023	I 5683862 ¢06	79
09779606509	113638 I5521	- 0448588958	7930	I 5485332502	78
- 97415 20616	1 I 353300476	00483925314	$78 \quad 37$	I 5286802598	77
- 9700446432	I I 342004893	-05I87 72514	$77 \quad 44$	I 5088272694	76
- 9656397386	I 1329942539	- 0553093702	76 51	I. 4889742791	75
- 9609387866	I 13171 28II6	- 0586852206	$75 \quad 57$	I 4691212887	74
- 9559433213	I I3035 77242	- 06200 II573	$75 \quad 4$	I 4492682983	73
09506549716	I 1289306433	- 0652535577	74 IO	I 4294I 53079	72
- 9450754604	I 1274333082	- 068438825 I	7317	I 4095623175	71
-93920 66032	I 1258675438	00715533910	$\begin{array}{ll}72 & 23\end{array}$	I 3897093271	70
09330503082	I 1242352584	- 0745937 I 77	7109	I 3698563367	69
- 9266085744	112253 844I4	- 077556301 I	$70 \quad 34$	I 3500033463	68
- 9198834913	11207791607	- 0804376736	6940	I 3301503560	67
09128772379	I 1189595604	-08323 44077	6845	I 31029 73656	66
09055920807	11170818582	- 0859431188	67 51	I 2904443752	65
- 8980303745	I 11514 83422	- 0885604692	6656	I 2705913848	64
- 89019 45598	11131613690	00910831714	66	I 2507383944	63
- 8820871618	I IIII2 33599	- 0935079923	65	I 2308854040	62
- 87371 07901	I 10903 67986	-09583 I7573	$64 \quad 9$	12110324136	6I
- 8650681367	I 1069042279	- 09805 I 3545	6314	I I9II7 94233	60
- 85616 1975I	I 1047282465	- 10016 37391	62 I8	I 17132 64329	59
- 84699 5I593	1 10251 1506I	- 10216 59383	6 I 2I	I 1514734425	58
- 8375706220	I 1002567080	- 1040550557	$60 \quad 25$	I I3I62 0452I	57
- 8278913739	I 0979665999	- 1058282770	5928	I III76 74617	56
- 81796 05020	I 0956439724	- 1074828746	$58 \quad 32$	I 09191 44713	55
- 80778 Ir684	I 0932916556	0 Iogor 62132	5734	I 0720614809	54
- 7973566091	10909125160	- IIO42 57553	$56 \quad 37$	I 0522084905	53
- 78669 OI322	I 0885094525	- III70 90668	5539	I 0323555001	52
- 77578 51173	I 0860853932	- II286 38228.	$54 \quad 42$	I 0125025098	5 I
- 7646450133	$1 \begin{array}{llll}1 & 08364 & 32917\end{array}$	- 11388 78137	5344	- 9926495194	50
- 7532733376	I 08II8 61237	- II477 895II	5245	- 9727965290	49
- 7416736742	I 07871 68830	- II553 52736	5146	- 9529435386	48
- 7298496728	I 0762385782	- 11615 49535	5046	- 9330905482	47
07178050468	I 0737542288	- II663 63025	$49 \quad 47$	- 9132375578	46
$\bigcirc 7055435725$	I 0712668617	- 1169777784	$48 \quad 48$	- 8933845674	45
A(\mathbf{r})	D (r)	E(r)	ϕ	F ϕ	r

r	F ϕ	ϕ	E(r)	D (r)	$\mathrm{A}(\mathrm{r})$
0	00000000000	$0^{\circ} \quad \mathrm{O}^{\prime}$	00000000000	I 0000000000	00000000000
1	- 0206008297	1 II	- 0055922185	I 0000576114	- O1732 23240
2	0 04120 16595		- OIII7 56998	I 0002303752	00346396092
3	- 0618024892	$3 \quad 32$	o 01674 17286	I 0005180814	005194 68175
4	- 0824033190	443	00222816343	I 0009203796	- 0692389126
5	- 1030041487	$5 \quad 54$	00277868124	I 0014367802	008651086 II
6	- 1236049785	$7 \quad 4$	- 0332487460	I 0020666547	- 1037576329
7	- 1442058082	815	- 0386590273	I 0028092364	01209742023
8	- 1648066380	$9 \quad 25$	- 0440093780	I 0036636213	0 I38I5 55494
9	- 1854074677	$10 \quad 36$	- 0492916689	I 0046287696	- I5529 66598
10	- 2060082975	II 46	- 0544979400	I 0057035065	01723925270
II	- 2266091272	1256	-05962 04166	I 0068865237	- 18943 81524
12	- 2472099570	146	- 0646515306	I 0081763813	- 2064285463
13	- 26781 07867	15 I5	- 0695839334	I 0095715091	- 2233587294
14	- 28841 16165	$16 \quad 25$	00744105129	I OIIO7 02088	- 2402237330
15	- 30901 24462	1734	- 0791244078	I or267 06562	- 2570186008
16	- 3296132760	1843	- 08371 90207	I 0143709030	- 2737383893
17	- 35021 41057	$19 \quad 52$	- 088I8 80301	I OI6I6 88793	- 2903781691
18	- 3708r 49355	21	- 0925254012	I OI806 23965	- 3069330262
19	- 39141 57652	229	- 09672 53955	I 0200491494	o 3233980622
20	o 41201 65950	23 17	- 1007825794	I 0221267193	- 3397683967
21	- 43261 74247	$24 \quad 25$	01046918308	I 0242925769	- 35603 91671
22	- 4532I 82545	$25 \quad 33$	- 10844 83455	I 0265440853	- 3722055308
23	- 47381 90842	$26 \quad 40$	o I1204 76417	I 0288785035	$\text { o } 3882626656$
24	- 4944199139	$27 \quad 47$	o II54855630	I 0312929893	$0 \cdot 4042057714$
25	- 51502 07437	$28 \quad 54$	- 11875 82813	I 0337846028	0
26	- 5356215734	30	o 12186 22978	$1 \begin{array}{lll}1 & 03635 & 03103\end{array}$	04357308120
27	- 5562224032	3 r 6	o 1247944425	I 0389869880	- 4513032670
28	- 5768232329	32 I2	- 12755 18736	I 04169 14251	0 4667427359
29	- 5974240627	$\begin{array}{ll}33 & 17\end{array}$	- I3013 20757	10444603288	- 4820445468
30	- 61802 48924	$34 \quad 22$	- 13253 28561	I 0472903271	- 4972040572
31	- 6386257222	$35 \quad 27$	- 13475 23413	I 05017 79739	- 5122I 66556
32	- 6592265519	$\begin{array}{ll}36 & 32 \\ 37\end{array}$	- 1367889725	I 05311 97528	$\bigcirc 5270777628$
33	- 6798273817	$37 \quad 36$	- 1386414993	$1{ }^{1} 05611$ 20812	$\text { o } 54178 \quad 28334$
34	- 7004282114	3839	- 14030 89744	I 05915 13149	- 5563273569
35	O 72102 90412	3943	- r4I79 07457	I 0622337524	- 5707068597
36	- 74162 98709	$40 \quad 46$	- 1430864509	I 0653556397	- 5849169061
37	- 7622307007	4 l	- I44I9 60059	I 06851 31742	- 5989531001
38	- 7828315304	4251	0 145II 96000	I 0717025103	- 61281 10868
39	- 8034323602	$43 \quad 54$	- o r $45855^{7} 76849$	I 07491 97630	0 6264865539
40	- 8240331899	$44 \quad 54$	- 14641 09671	I 07816 10137	- 6399752334
41	- 8446340197	4555	- 14678 03964	I 08142 23139	- 6532729030
42	- 8652348494	$46 \quad 56$	- 1469671583	I 0846996910	- 6663753880
43	- 8858356792	4757	0 1469726631	I 0879891523	$\text { o } 6792785625$
44	- 9064365089	$48 \quad 57$	o.14679 85365	I 0912866907	- 6919783514
45	- 9270373387	$49 \quad 57$	- I4644 66094	I 0945882886	- 7044707318
90-	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{B}(\mathrm{r})$

$q=\mathrm{e}^{-\pi}=0$ 04321391826377, $\quad \Theta 0=0.9135791382, \quad \mathrm{HK}=09135791382$

$\mathrm{B}(\mathrm{r})$	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
I 0000000000	1 I8920 71150	00000000000	$90^{\circ} \quad 0^{\prime}$	I 8540746773	90
- 9998454246	1 1891494665	0 00470 60108	89 IO	I 8334738476	89
- 9993817514	I 1889765912	0 0094076502	$88 \quad 20$	1.8128730178	88
- 9986091406	I 1886887000	- OI410 05467	8730	I 79227 21881	87
- 9975278584	I 1882861440	- OI878 03289	8640	I 77167 13583	86
- 9961382775	I 1877694140	- 0234426255	8549	I 7510705286	85
- 9944408767	I 1871391403	0 0280830653	8459	I 7304696988	84
- 9924362407	I 1863960914	- 0326972774	849	I 7098688691	83
- 99012 50593	I 18554 II736	- 0372808916	8318	I 6892680393	82
- 98750 81276	I 1845754293	-04182 95382	8228	I 6686672096	8 I
- 9845863450	11835000363	- 0463388487	$8 \mathrm{I} \quad 37$	I 6480663798	80
- 98136 07151	I 1823I 63059	- 0508044575	8047	I 6274655501	79
- 9778323446	I 18102 56817	- 0552219994	7956	I 6068647203	78
- 9740024430	I 1796297376	- 05958 71139	795	I 5862638906	77
- 9698723216	I 17813 O1756	- 0638954439	$78 \quad 14$	I 5656630608	76
- 9654433929	I 1765288244	-06814 26379	$77 \quad 23$	I 5450622311	75
- 96071 71696	I 1748276366	- 0723243506	$76 \quad 32$	I 52446 I4OI3	74
- 9556952639	I 1730286866	0.0764362449	7540	I 5038605716	73
- 9503793863	I I7II3 41680	- 08047 39933	$74 \quad 48$	I 4832597418	72
- 94477 I3447	I 16914 63907	- 0844332799	$73 \quad 57$	I 4626589121	7 I
- 9388730433	I 1670677783	-08830 98027	735	I 4420580823	70
- 9326864814	I 1649008653	- 0920992756	72 I3	I 4214572526	69
- 92621 37526	I 1626482937	- 0957974315	7120	I 4008564228	68
- 91945 70430	I 16031 28097	- 0994000252	$70 \quad 27$	I 380255593 I	67
- 9124I 86305	I 1578972608	- 1029028362	6934	I 3596547634	66
- 90510 08831	I I5540 45920	- 10630 16727	68 41	I 3390539336	65
- 8975062579	$1{ }^{1} 528378419$	- 10959 23752	6748	I 3184531039	64
- 8896372995	155020 O1398	- II277 08206	$66 \quad 54$	I 2978522741	63
- 88149 66386	I 1474947011	- II583 29266	66 o	I 2772514444	62
- 8730869906	I 1447248239	- II877 46567	656	I 2566506146	61
- 8644I II542	I 14189 38846	- I2I59 20252	64 II	I 2360497849	60
- 8554720099	I 1390053339	- 12428 I1025	6316	I 2154489551	59
- 8462725182	I 1360626928	- 12683 802II	62 21	I 1948481254	58
- 8368r 57184	I I3306 95480	- 1292589815	6126	I 1742472956	57
0.8271047269	I. 13002 95477	- I3I54 02588	6030	I 1536464659	56
- 81714 27355	I 1269463970	- 1336782099	5934	I 1330456361	55
0.8069330099	I 1238238537	- I3566 92789	5838	I II244 48064	54
- 796478888 I	I 120665723 I	- I3751 00077	$57 \quad 42$	1.0918439766	53
- 7857837785	I II747 58542	- I3919 70407	5645	I 0712431469	52
- 77485 II 587	I II425 81342	- 14072 71344	$55 \quad 47$	I 0506423171	51
- 7636845735	I.IIIOI 64844	-14209 71663	5450	1.03004 14874	50
0.7522876332	I 1077548548	- 14330 41415	$53 \quad 52$	1.00944 06576	49
0.740664012 I	I 1044772199	- I4434 52037	5253	- 9888398279	48
0.7288174469	I IOII8 75735	- 1452I 76436	5 I 55	- 968238998 I	47
- 7167517348	I 0978899237	- 14591 89078	$50 \quad 56$	0.94763 81684	46
0.7044707318	$x .0945882886$	- 14644 66094	$49 \quad 57$	-9270373387	45
A(r)	$\mathrm{D}(\mathrm{r})$	E(r)	ϕ	F ϕ	r

$K=19355810960, \quad \mathrm{~K}^{\prime}=17867691349, \quad \mathrm{E}=13055390943, \quad \mathrm{E}^{\prime}=1$ 3931402485,

\mathbf{r}	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	D (r)	A(r)
0	00000000000	$0^{\circ} \mathrm{o}^{\prime}$	00000000000	10000000000	0 0000000000
1	- 02I50 64566	$1{ }^{1}$	- 0069985212	I 0000752700	- OI724 1783I
2	- 04301 29132	228	- OI398 53763	10003009884	- 0344786990
3	- 0645193699	3 41	- 0209489334	I 0006768809	- 05170 58810
4	0.0860258265	455	- 0278776288	I OOI20 24903	- 06891 84630
5	- 1075322831	69	00347600006	I 0018771775	- 0861I I5805
6	- 1290387397	722	00415842717	I 00270 O1222	- 1032803705
7	- 1505451963	836	00483406320	I 0036703237	- 12041 99725
8	- 1720516530	949	- 05501 67694	I 0047866023	- 13752 55283
9	- 19355 81096	113	-06160 24003	I 0060476005	- 15459 2183I
10	- 21506 45662	1216	- 0680870479	I 0074517850	- I7I6I 50856
I	- 2365710228	1328	00744605194	I 0089974482	- 1885893888
12	- 2580774795	14 41	- 08071 29320	10106827105	- 20551 02505
13	- 2795839361	1553	- 0868347367	I OI250 55225	- 2223728335
14	- 30109 03927	176	-0928I 67403	I OI446 36673	- 2391723067
15	- 3225968493	$18 \quad 18$	-09865 01256	I or655 47635	- 2559038457
16	- 3441033059	1929	- 1043264694	r 0187762678	- 2725626330
17	- 3656097626	2040	- 1098377593	I 02II2 54784	- 2891438591
18	- 38711 62192	2151	- II5I7 64068	I 0235995379	- 3056427234
19	- 4086226758	$23 \quad 2$	- 1203352604	r 0261954370	- 3220544344
20	04301291324	$24 \quad 13$	- 1253076146	I 02891 00179	- 3383742 IIO
2 I	- 4516355891	$25 \quad 22$	- 13008 72182	I 0317399787	- 3545972832
22	- 4731420457	26 3I	- I3466 82799	I 0346818764	- 37071 88930
23	- 4946485023	27 41	- I3904 54724	$103773^{\circ} 21323$	- 3867342953
24	- 5161549589	$28 \quad 50$	- I4321 39340	I 0408870352	- 4026387589
25	- 53766 14155	2959	- I4716 92687	I 0441427466	- 4184275678
26	- 5591678722	316	- I5090 75443	I 0474953052	- 43409602 I 8
27	- 5806743288	3214	- I5442 52892	I 0509406315	- 44963 94381
28	- 6021807854	33 21	- I5771 94871	I 0544745329	- 4650531522
29	- 6236872420	$34 \quad 29$	- 16078 75703	10580927090	- 4803325191
30	- 64519 36987	$35 \quad 36$	- 16362 74123	I 06179 07561	- 4954729148
31	- 66670 01553	3641	- 1662373178	I 0655641737	- 51046 97376
32	- 6882066119	3746	- 16861 60131	I 0694083686	- 5253I 8409I
33	07097 I 30685	38 5I	- 17076 26341	I 0733186617	- 54001 43761
34	- 73I21 95251	3956	- 1726767142	10772902929	- 55455 3III9
35	- 7527259818	4 I	- 17435 81713	I 08131 84270	- 56893 O1I77
36	- 7742324384	424	- 17580 72936	I 085398 I 601	- 583I4 09242
37	- 7957388950	437	- 17702 47258	r 0895245247	- 5971810935
38	- 81724 53516	449	- 17801 14536	I 0936924965	- 61104 62201
39	0.8387518083	$45 \quad 12$	0.17876 87890	I 0978970001	0.6247319335
40	- 8602582649	4615	- 17929 83544	I 102I3 29153	- 638233899 I
4 I	- 88176 47215	4715	- 1796020675	I 106395083 I	- 6515478204
42	090327 II78I	4816	- 1796821252	I 1106783124	- 6646694406
43	- 9247776347	4916	0.17954 09878	1 I1497 73861	- 6775945449
44	- 9462840914	$50 \quad 17$	- I7918 13641	I 11928 70673	- 6903I 89618
45	- 9677905480	51.17	- 17860 61952	I 1236021058	- 7028385652
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathbf{C}(\mathrm{r})$	B(r)

$q=0055019933698829, \quad Ө 0=08899784604, \quad \mathrm{HK}=0.9715669451$

$\mathrm{B}(\mathrm{r})$	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-x
I 0000000000	I 2472865857	- 0000000000	$90^{\circ} \quad 0^{\prime}$	19355810960	90
- 9998440186	I 2472112154	- 00561 92362	$89 \quad 12$	I 9140746394	89
- 99937 61319	I 2469851964	- OII23 36482	$88 \quad 25$	I 8925681828	88
- 9985965127	I 2466088048	- 0168384106	87	I 87106 17261	87
- 9975054487	I 2460824999	- 0224289646	$86 \quad 50$	1 8495552695	86
- 99610 33424	I 2454069243	- 0279996670	86	I 8280488 r 29	85
- 9943907108	I 2445829027	- 0335464884	85	I 8065423563	84
- 9923681849	I 24361 14410	- 0390643123	8426	1 7850358997	83
- 9900365093	I 2424937250	- 0445482835	$83 \quad 39$	I 7635294430	82
- 9873965416	12412311192	- 0499935367	8251	I 7420229864	8 r
- 9844492517	1 2398251648	- 0553951961	82	I 72051 65298	80
- 98119 57210	I 2382775779	- 0607483740	81	16990100732	79
- 9776371417	I 2365902476	- 0660481700	$80 \quad 26$	I 6775036165	78
- 9737748160	I 2347652334	- 0712896708	$79 \quad 37$	1 6559971599	77
- 96961 O1546	I 2328047629	- 0764679497	$78 \quad 49$	I 6344907033	76
- 9651446762	I 2307112287	- 0815780662	78	I 6129842467	75
- 9603800059	I 2284871860	-08661 50665	77 Io	I 5914777901	74
- 95531 78745	1226135349 I	- 0915739836	76 21	I 5699713334	73
- 94996 O1167	I 2236585882	- 0964498379	75 31	r 5484648768	72
- 9443086698	I 2210599257	- 1012376383	$74 \quad 42$	I 5269584202	71
- 9383655727	1 2183425328	- 1059323833	$73 \quad 52$	I 5054519636	70
- 9321329639	I 2155097252	- 11052 90627	73	I 4839455069	69
- 9256130802	I 2125649596	- 1150226595	72 II	14624390503	68
- 9188082552	1 2095118289	- I1940 8152I	7120	I 4409325937	67
- 9117209173	12063540582	- 1236805174	$70 \quad 30$	141942 61371	66
- 9043535883	1 2030954999	- 1278347335	6939	I 39791 96805	65
- 8967088815	11997401294	- 1318657834	$68 \quad 47$	13764132238	64
- 8887894998	1 1962920396	- 1357686595	$67 \quad 55$	I 3549067672	63
- 880598234 I	1 1927554368	- 13953 83674	67	I 33340 03106	62
- 87213 79612	I 1891346345	- 1431699314	66 10	1 3118938540	61
- 8634116420	I 1854340490	- 14665 83999	$\begin{array}{ll}65 & 18\end{array}$	I 2903873973	60
- 8544223195	11816581935	- 1499988516	$64 \quad 24$	I 2688809407	59
- 8451731166	11778116727	- 1531864017	$63 \quad 30$	I 247374484 I	58
- 8356672345	11738991774	- 15621 62095	$62 \quad 36$	I 2258680275	57
- 8259079506	11699254783	- 1590834859	6142	12043615709	56
- 8158986161	1 1658954205	- 16178 35017	6048	11828551142	55
- 8056426543	11618139175	- 1643I I5964	$59 \quad 52$	11613486576	54
- 7951435583	11576859453	- 1666631878	58	11398422010	53
- 7844048891	11535165361	- 1688337818	58	11183357444	52
- 7734302735	11493107723	- 1708189832	57	I 0968292877	51
- 7622234019	i. 1450737802	- 17261 45069	56	10753228311	50
0.7507880264	11408107240	0.1742161892	55 10	I 0538163745	49
- 7391279584	11365267992	- 1756200006	54	I 0323099179	48
- 7272470671	11322272263	- 1768220583	$\begin{array}{ll}53 & 13 \\ 53\end{array}$	10108034613	47
- 7151492767	1.12791 72446	- 1778186395	$\begin{array}{ll}52 & 15\end{array}$	- 9892970046	46
- 7028385652	1 1236021058	- 17860 61952	$\begin{array}{ll}51 & 17\end{array}$	- 9677905480	45
A(r)	D (r)	E(r)	ϕ	F ϕ	r

$K=20347153122, \quad K^{\prime}=17312451757, \quad E=1.2586796248, \quad E^{\prime}=14322909693$,

r	$F \phi$	ϕ	$E(r)$	D(r)	A(r)
0	00000000000	$0^{\circ} \quad 0^{\prime}$	0 0000000000	I 0000000000	- 0000000000
I	- 02260 79479	18	0 0086200346	I 0000974600	- 01712 I 3223
2	-04521 5^{8958}	235	- 01722 45749	I 0003897217	- 0342380342
3	- 0678238437	353	- 02579 81795	I 0008764305	00513455249
4	00904317916	5 IO	00343255123	I OOI55 69957	00684391832
5	- 11303 97395	$6 \quad 28$	-04279 13942	$1{ }_{1} 0024305914$	00855143971
6	- 13564 76875	745	- 05118 08539	10034961575	0 10256 65538
7	- 1582556354		- 0594791769	I 0047524006	- 11959 10390
8	- 1808635833	1019	- 0676719530	I 0061977962	0
9	- 20347 15312	II 36	- 0757451216	I 00783 05901	- 1535385318
ro	0 2260794791	$12 \quad 52$	- 0836850144	I 0096488003	- 1704523039
II	- 2486874270	149	- 0914783960	I OII65 02201	- 18731 99332
12	- 2712953749	1525	- 09911 25013	$1 \mathrm{I}^{1} 38324199$	- 20413 67975
13	- 2939033229	1640	- 10657 50694	$1{ }_{1} 0161927508$	- 2208982730
I_{4}	- 3I65I I2708	1756	- II385 43755	I 0187283473	- 2375997340
15	- 33911 92187	19 II	- 1209392580	1021436131 r	- 2542365532
16	- 36172 71666	2025	- 12781 91435	10243128147	- 27080 4ror 7
17	- 38433 51145	2140	- I344840670	I 0273549050	- 2872977496
18	- 4069430624	2254	- 14092 46901	I 0305587080	- 3037I 28656
19	- 42955 IOIO3	$24 \quad 7$	- 14713 23140	I 0339203331	- 3200448178
20	- 4521589583	$25 \quad 20$	- 1530988906	I 0374356974	- 3362889743
21	- 4747669062	2633	- I5881 70288	I 04110 05314	- 35244 07031
22	- 497374854 I	$27 \quad 45$	- 1642799989	I 04491 03831	- 3684953729
23	- 51998 28020	$28 \quad 56$	- 1694817327	I 0488606244	0 3844483538
24	- 5425907499	308	- 1744x 68208	I 0529464558	04002950181
25	- 5651986978	$3 \mathrm{I} \quad 18$	- 1790805075	I 0.571629130	$\begin{array}{llll}0 & 41603 & 07408 \\ 0 & 43165 & 09003\end{array}$
26	- 5878066457	3228	- 1834686827	I 0615048720	04316509003
27	- 61041 45937	3318	- 1875778710	I 0659670560	04471508801
28	- 6330225418	3446	- 19140 52188	I 0705440415	04625360691
29	-65563 04895	3555	- 1949484794	I 0752302647	- 4777718627
30	- 6782384374	37	- 19820 59959	I 0800200285	- 4928836645
3 I	- 7008463853	38 10	- 2011766827	I 0849075092	- 5078568872
32	- 7234543332	3916	- 2038600053	I 08988867634	- 5226869541
33	- 746062281 I	4023	- 2062559591	I 0949517358	05373693004
34	- 7686702290	4128	- 2083650468	I 1000962656	- 55189 93747
35	- 7912781769	4233	- 2101882554	I 1053I 40947	05662726408
36	- 81388 61249	$43 \quad 38$	- 2117270324	I. I1059 88749	0 5804845794
37	- 8364940728	44 41	0 2129832611	I II 594 I I2I 4	$\begin{array}{lll}0 & 59453 & 06894 \\ 0 & 60840 & 64905\end{array}$
38	- 8591020207	4545	- 2139592364	I 1213434929	- 6084064905
39	- 88170 99686	$46 \quad 48$	- 2146576400	I 1267902542	0 6221075244
40	09043179165	$47 \quad 50$	- 21508 15155	I 1322778297	- 63562 93571
41	- 9269258644	48 5I	- 2152342440	I 1377995386	- 64896 75812
42	- 94953 38123	4953	- 215II 95200	. I 14334 86579	- 66211 78175
43	- 97214 17602	5053	- 21474153276	I 1489184299	06750757177
44	- 99474 97081	5 I 53	- 21410 39170	I 1545020711	- 6878369663
45	1 OI735 76561	- $52 \quad 52$	- 21321 17818	I 1600927802	0.7003972833
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B(r)

Smithsonian Tables
$q=0$ 069042299609032, , $Ө 0=0$ 8619608462, $\quad \mathrm{HK}=1.0300875730$

$B(r)$	$\mathbf{C}(\mathbf{r})$	$G(r)$	ψ	$\mathrm{F} \psi$	$90-\mathrm{r}$
I 0000000000	I 3203964540	00000000000	$90^{\circ} \quad 0^{\prime}$	20347153122	90
- 99984 I9I55	I 3202987371	00065466917	89 I5	2 OI210 73643	89
09993677261	I 3200057060	- OI308 82806	88 3I	I 9894994164	88
- 9985776238	I 31951 77192	- OI961 96606	8746	I 96689 I4685	87
- 99747 I9280	I 3188353734	- 026I3 57I82	87 I	I 9442835205	86
099605 I086I	I 3179595033	003263 I3295	86 I7	I 9216755726	85
- 9943I 56720	I 31689 1I80I	0 03910 13564	$85 \quad 32$	I 8990676247	84
- 9922663864	I 3156317106	- 0455406434	8447	I 87645 96768	83
- 9899040553	I 3I4I8 26349	00519440144	842	I 85385 17289	82
09872296302	I 3125457253	00583062693	83 I7	I 83124 37810	81
- 98424 41861	I 31072 29838	006462 21812	8232	I 808635833 I	80
- 9809489213	I 30871 66392	00708864934	8 I 46	I 7860278851	79
- 97734 51558	I 3065291449	00770939167	81 I	I 7634199372	78
- 9734343300	I 3041631759	00832391270	80 I5	บ 74081 19893	77
0 96921 80039	I 3016216250	○ Ö893I 67629	7929	I 7182040414	76
0 9646978546	I 2989075994	00953214240	7843	I 6955960935	75
- 9598756758	I 2960244173	01012476688	7756	I 6729881456	74
- 9547533753	I 2929756032	010709 OOI33	77 10	I 6503801977	73
O 9493329736	I 2897648840	0 II284 29301	$76 \quad 23$	I 6277722497	72
- 94361 6602I	I 2863961840	$\bigcirc 1185008473$	7535	I 60516 43018	71
0 9376065006	I 2828736204	01240581487	$74 \quad 48$	I 5825563539	70
- 93I30 50161	I 27920 I4980	01295091731	74 0	I. 5599484060	69
- 92471 45998	I 2753843041	- 1348482153	73 12	I. 5373404581	68
- 91783 78055	I 2714267027	- 1400695267	7223	I. 5147325102	67
- 91067 72870	I 2673335291	- I45I673I72	7135	I 4921245623	66
090323 57961	I 2631097835	- I5013 57566	$70 \quad 46$	I 4695166144	65
- 89551 61797	I 2587606253	- 15496 89777	6956	I 4469086665	64
○ 8875213778	I 2542913663	- 1596610790	697	I 4243007185	63
○ 8792544206	I 2497074646	- 16420 6I290	68 I6	I 4016927706	62
- 87071 84265	I 2450145176	O 16859 81701	6726	I 3790848227	61
- 86191 65988	I 2402182552	- 17283 12244	6635	I 3564768748	60
- 85285 22237	1.2353245329	- 17689 92991	6543	I 3338689269	59
- 8435286672	I 2303393242	- 18079 63935	6451	I 3112609790	58
- 8339493726	I 2252687137	- I8451 65064	6359	I 2886530311	57
- 824II 78578	I 22011 88895	- 18805 36444	636	I 2660450832	56
0 81403 77126	I 2148961356	- 19140 18312	$62 \quad 12$	I 2434371353	55
- 80371 25960	I 2096068240	- 19455 5II77	6119	I 2208291873	54
- 7931462334	I 2042574072	- 19750 75927	6024	1 I 9822 I 2394	53
0 7823424136	I 19885 44102	02002533955	5930	I I7561 32915	52
07713049868	I 1934044225	02027867279	5835	I. I5300 53436	51
0 7600378612	I. 1879140899	0.20510 I 8688	5739	I 13039 73957	50
- 7485450007	I I8239 OIO66	0.2071931885	5642	x 1077894478	49
07368304220	I I7683 92068	0.2090551650	5546	I 085I8 14999	48
07248981922	I.I7126 81567	0.2106824001	5448	I 0625735519	47
07127524260	'I I6568 3746I	0.2120696376°	5350	I. 0399656041	46
O 7003972833	I 1600927802	02132117818	$52 \quad 52$	I OI735 76561	45
A(\mathbf{I})	D(r)	E(r)	ϕ	$\mathbf{F} \boldsymbol{\phi}$	I

Smithsonian Tables
$\mathrm{K}=2$ 1565156475, $\quad \mathrm{K}^{\prime}=16857503548, \quad \mathrm{E}=1211056028, \quad \mathrm{E}^{\prime}=1.4674622093$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	D (r)	$\mathrm{A}(\mathrm{r})$
0	O 000000000	$0^{\circ} 0^{\prime}$	- 0000000000	I 0000000000	- 0000000000
1	-02396 12850		- 0105021636	I 0001258452	- 0169424822
2	- 0479225699	45	- 0209836904	I 0005032288	- 03388 07351
3	- 0718838549	47	- 03142 40274	I 0011316945	- 05081 05279
4	- 0958451399	$5 \quad 29$	- 0418027880	I 0020104822	- 0677276275
5	- 1198064248	51	- 0520998337	I 0031385295	- 0846277970
6	- 1437677098	8 I3	- 0622953533	I 0045144723	- IOI50 67944
7	- 1677289948	935	- 0723699392	$1{ }^{1} 0061366468$	01183603717
8	- 1916902798	Io 56	- 0823046606	I 0080030911	- I3518 42734
9	- 2156515647	$\begin{array}{ll}12 & 17\end{array}$	- 09208 II326	I OIOII 15480	- I519742358
10	- 23961 28497	$13 \quad 38$	- 10168 I5801	I 01245 94672	- 1687259855
II	- 2635741347	1458	- IIIO8 88976	I 0150440088	- 1854352386
12	- 2875354197	1618	- 1202867034	I 0178620463	- 2020976999
13	- 3114967046	$17 \quad 38$	- 1292593879	1 O2091 Oifor	- 21870 90619
14	- 3354579896	$18 \quad 57$	- 13799 ${ }^{\text {21563 }}$	I 0241846923	- 2352650037
15	- 35941 92746	2016	- 1464710652	10276816504	- 25176 Ir9II
16	- 3833805595	$2 \mathrm{3} \quad 35$	- 1546830530	I 03I39 68120	- 2681932750
17	- 4073418445	$22 \quad 53$	- 16261 59647	10353256803	- 2845568916
18	- 4313031295	2410	- 1702585702	I 0394634991	O 3008476617
19	- 4552644145	$25 \quad 26$	- 1776005773	I 0438052583	- 3170611903
20	- 479225699	2642	- 18463 26382	I 0483457003	3331930665
21	- 5031869844	$27 \quad 58$	- 19134 63517	10530793260	- 3492388634
22	- 5271482694	29 I3	- 19773 42593	I 0580004010	o 36519 4138I
23	- 55110 9554	$30 \quad 27$	- 20378 98371	I 0631029632	- 38105 44318
24	- 5750708393	3141	- 2095074827	10683808291	- 3968I 5270I
25	- 5990321243		- 2148824988	1 0738276019	- 4124721633
26	- 6229934093	34	02199110718	I 0794366784	- 4280206069
27	- 6469546942	$35 \quad 18$	- 2245902484	10852012575	- 4434560826
28	- 67091 59792	$36 \quad 29$	- 22891 79082	I 09111 43480	- 4587740585
29	- 6948772642	3739	- 2328927342	1 0971687771	- 4739699905
30	0 71883 85492		- 2365141807	I 1033571989	- 4890393230
3 r	- 74279 98341	3958	- 2397824399	11096721031	- 5039774905
32	- 76676 III91	41	- 2426984060	1 If6ro 58243	- 5187799184
33	- 79072 24041	$42 \quad 13$	- 2452636394	11226505510	- 5334420249
34	- 8146836890		- 2474803283	I 1292983350	- 5479592224
35	- 8386449740	$44 \quad 26$	- 2493512513	I 13604 11010	- 5623269191
36	- 8626062590	45 31	- 2508797387	1 1428706563	- 57654 05212
37	- 8865675440	$46 \quad 35$	- 2520696336	I 14977887007	- 5905954347
38	- 9105288289	$47 \quad 39$	- 2529252540	I 1567568364	- 6044870673
39	- 93449 OII39	$48 \quad 42^{\circ}$	- 25345 I 3545	I 1637965783	- 61821 08313
40	- 95845 I3989	4944	- 2536530884	I 1708893642	- 6317621451
4 I	- 9824126838	5045	- 2535359713	I 1780265652	- 64513 64364
42	I 0063739688	5146	- 25310 58450	1851994959	- 6583291446
43	I 0303352538	5246	- 2523688429	1923994253	-67133 57232
44	I 0542965388	5345	- 2513313558	I 19961 75873	068415 16433
45	1 0782578237	$54 \quad 44$	- 2500000000	I 2068451910	- 6967723959
90-	F ψ	ψ	G(r)	$\mathrm{C}(\mathrm{r})$	B(r)

Smithsonian Tables
$q=0.085795733702195, \quad \Theta 0=08285168980, \quad \mathrm{HK}=10903895588$

B(r)	$\mathrm{C}(\mathrm{r})$	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
I 0000000000	14142135624	- 0000000000	$90^{\circ} 0^{\prime}$	21565156475	90
- 9998387925	1 4140870799	- 0074645017	8919	21325543625	89
- 9993552434	1 4137077878	- OI492 38646	$88 \quad 38$	21085930775	88
- 9985495732	I 4130761515	- 0223729430	$87 \quad 57$	20846317926	87
- 99742 21491	I 4121929466	- 0298065777	8716	20606705076	86
- 9959734843	I 4110592570	- 03721 95889	8635	20367092226	85
- 9942042378	1 4096764744	- 04460 67701	8553	20127479377	84
- 99211 52135	I 4080462958	- 0519628815	85 II	I 9887866527	83
- 9897073588	1 4061707222	- 0592826440	8429	I 9648253677	82
- 98698 I7641	I 4040520551	- 0665607336	8347	I 9408640827	81
- 98393 96610	I 4016928947	- 0737917757	835	I 9169027978	80
- 9805824210	I 3990961356	- 08097 03401	$82 \quad 23$	I 8929415128	79
- 97691 15541	I 3962649639	- 0880909364	81 41	I 8689802278	78
- 9729287065	I 3932028531	- 0951480095	80	I 8450189429	77
- 9686356591	I 3899135592	- 102I3 59353	8015	I 8210576579	76
- 9640343250	1 38640 11169	- 1090490175	$79 \quad 32$	I 7970963729	75
- 9591267478	I 3826698339	- 1158814840	$78 \quad 49$	I 7731350879	74
- 9539150985	I 3787242853	- 1226274837	78	1 7491738030	73
- 9484016738	I 3745693090	- 1292810844	77 21	r 7252125180	72
- 9425888926	I 3702099983	- I3583 62697	$\begin{array}{ll}76 & 37\end{array}$	17012512330	71
- 93647 92941	I 3656516965	- 1422869378	$75 \quad 53$	r 6772899480	70
- 9300755342	I 3608999899	- I4862 68991	75	I 653328663 I	69
- 9233803829	I 3559607006	- 1548498749.	$74 \quad 23$	I 6293673781	68
- 9163967210	13508398797	- 1609494967	$\begin{array}{ll}73 & 37\end{array}$	I 6054060931	67
- 90912 75372	1 3455437995	- I6691 93054	72 51	I 5814448082	66
- 9015759245	I 3400789457	- 1727527505	725	1.55748 35232	65
- 8937450771	I 3344520094	- 1784431913	718	I 5335222382	64
- 8856382868	I 3286698789	- 1839838964	7030	I 5095609532	63
- 8772589396	I 3227396308	- 1893680462	$69 \quad 42$	I 4855996683	62
- 86861 05122	I 3166685215	- 1945887340	$68 \quad 54$	I 4616383833	61
- 8596965682	I 3104639783	- 1996389691	$68 \quad 5$	I 4376770983	60
- 85052 07549	I 3041335898	- 20451 16802	67.16	I 4137158134	59
- 84108 67990	I 2976850969	- 2091997204	$66 \quad 26$	I 3897545284	58
- 8313985036	I 2911263832	- 2136958722	$65 \quad 36$	I 3657932434	57
- 8214597438	I 2844654650	- 2179928546	6445	I 3418319584	56
- 81127 44636	1 2777104815	- 2220833313	6353	I 3178706735	55
- 8008466719	I 2708696850	- 2259599196	63	I 2939093885	54
- 7901804386	I 26395 I 4305	- 22961 52018	$62 \quad 9$	I 2699481035	53
o 7792798915	I 2569641655	- 2330417372	61	I 2459868185	52
o 76814 92120	I 24991 64194	- 23623 20761	$60 \quad 21$	-1 2220255336	51
o 75679 26317	I 2428x 67937	- 2391787758		1. 1980642486	50
- 7452 I 44290	I 2356739504	- 2418744177		I 17410 29636	49
o 73341 89253	I 2284966025	- 2443116265		11501416787	48
0.7214104816	I 2212935025	- 2464830908	$\begin{array}{ll}56 & 39\end{array}$	$\begin{array}{lllll}1 \\ 12618 & 03937\end{array}$	47
- 7091934952	I 2140734320	- 2483815864	$55 \quad 42$	1.1022191087	46
- 6967723959	I 2068451910	0.2500000000	$54 \quad 44$	1 0782578237	45
A(r)	D(\mathbf{r})	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

$K=2{ }^{\prime} \mathbf{3 0 8 7 8 6 7 9 8 2}, \quad K^{\prime}=1.6489952185, \quad E=1.1638279645, \quad E^{\prime}=14981149284$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
0	- 0000000000	$0^{\circ} 0^{\prime}$	- 0000000000	I 0000000000	- 0000000000
I	-02565 31866	I 28	- 0127171437	I 0001631607	o 0166762945
2	- 05130 63733	256	- 0254065870	I 0006524464	- 0333489266
3	- 0769595599	424	-03804 07622	I 00146 72698	- 05001 42309
4	- 10261 27466	$5 \quad 52$	- 05059 2365I	I 0026066524	- 0666685367
5	- 1282659332	720	- 0630344839	I 0040692257	- 0833081651
6	- 15391 91199	847	- 0753407235	x 0058532333	- 0999294260
7	- 1795723085	1014	o 0874853252	I 0079565320	- 11652 86159
8	- 2052254932	II 4r	- 0994432800	I 01037 65954	- 13310 20150
9	- 2308786798		o IIII9 0434r	I Or3II 05159	- 1496458850
10	- 2565318665		- 1227035875	I 0161550083	- 1661564662
II	- 282185053 I		- 1339605824	I or950 64139	- 1826299754
12	- 3078382398	1725	- 1449403827	1 0231607042	- 1990626038
13	- 3334914264	1850	- 1556231436	I 02711 34860	- 2154505144
14	- 359144613 I	2014	- 16599 02705	I 03136 00060	- 2317898405
15	- 3847977997	2138	- 1760244678	1 0358951569	- 2480766833
16	- 4104509864		- 1857097766	10407134825	- 2643071105
17	- 4361041730	$24 \quad 23$	- 1950316024	1 0458091848	- 2804771545
18	- 4617573596		- 2039767323	I 0511761304	- 2965828110
19	- 4874105463		- 2125333427	1 0568078572	- 31260 00376
20	- 5130637329	$28 \quad 24$	- 2206909968	1 0626975825	- 3285847528
21	- 5387169196	2943	- 2284406338	I 0688382109	- 3444728350
22	- 56437 oro62		- 2357745496	I 0752223418	- 3602801217
23	- 5900232929	$\begin{array}{ll}32 & 19 \\ 33 & 36\end{array}$	02426863696	I 0818422789	- 3760024088
24	- 61567 64795	$33 \quad 36$	- 24917 10151	I 0886900386	- 3916354503
25	- 6413296662	3452	- 2552246626	1 0957573598	- 4071749584
26	- 6669828528	36	- 2608446988	11030357129	- 42261 66028
27	- 6926360395	37 21	- 2660296698	1 Irosi 63106	- 4379560117
28	- 71828 92261	3834	- 2707792271	I 11819 Or175	- 4531887717
29	- 7439424127	3946	- 2750940704	I 1260478613	- 46831 04285
30	- 7695955994	$40 \quad 58$	- 2789758872	${ }_{1} 1540800433$	- 4833164880
31	- 7952487860	42	- 2824272920	I 1422769496	- 4982024170
32	- 8209019727	4318	- 2854517629	11506286634	- 5129636449
33	- 8465551593	$44 \quad 26$	- 2880535786) 1591250752	- 5275955647
34	- 8722083460	$45 \quad 34$	- 2902377551	11677558964	- 5420935352
35	- 8978615326	$46 \quad 41$	- 2920099830	$1{ }_{1} 1765106705$	- 5564528823
36	- 92351 47193	$47 \quad 47$	- 2933765659	${ }^{1} 1853787860$	- 5706689018
37	0 94916 79059		- 2943443597	I 1943494887	- 5847368614
38	- 97482 10926	$49 \quad 56$	- 2949207141	I 20341 18951	- 5986520033
39	I 0004742792	5059	- 29511 34159	I 2125550050	- 61240 95465
40	I 0261274659	52	- 2949306347	I 2217677148	- 6260046907
4 I	10517806525	53	- 2943808705	I 2310388308	- 6394326185
42	1 0774338392	54	- 2934729047	I 2403570830	- 6526884992
43	11030870258	55	- 29221 57532	1.2497111383	- 6657674922
44	11287402125	56	0.29061 86227	I 2590896145	- 6786647507
45	1.15439 33991	$\begin{array}{ll}56 & 58\end{array}$	0 2886908691	1 2684810938	- 69137 54254
90	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{B}(\mathrm{r})$

[^1]$q=0$ 106054020185994, $\quad Ө 0=0$ 7881449667, $\quad \mathrm{HK}=11541701350$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
10000000000	I 5382462687	00000000000	$90^{\circ} \mathrm{o}^{\prime}$	23087867982	90
- 9998341412	I 5380815440	- 008348778 I	8823	22831336115	89
- 9993366526	I 5375875740	- 0166926008	8846	22574804249	88
- 9985077970	I 5367649688	0025026504 I	88	22318272382	87
- 9973480125	I 53561 47447	- 0333455075	$87 \quad 32$	22061740516	86
- 9958579109	I 5341383232	-04164 46052	86	1805208649	85
- 9940382778	I 53233 75281	- 0499187582	86	548676783	84
- 9918900707	I 53021 45843	- 0581628855	8538	21292144916	83
- 9894144182	I 5277721140	- 0663718564	85	21035613050	82
- 98661 26176	1 5250131340	- 0745404819	8422	20779081184	8 I
- 98348 61339	1 5219410514	- 0826635068		20522549317	80
- 9800365970	I 5185596596	- 0907356016		202660 1745I	79
- 9762657996	I 5148731329	- 0987513547	$82 \quad 27$	20009485584	78
- 9721756947	I 5108860218	- 1067052642	8 I 48	I 9752953718	77
- 9677683924	1 5066032466	- 11459 17308	81	I 94964 21851	76
- 9630461576	1 5020300916	- 1224050500	80	1.9239889985	75
- 95801 14060	I 4971721977	- 13013 94047	79 50	1.8983358118	74
- 9526667013	I 4920355559	- 1377888583	79 10	1.8726826251	73
- 94701 47511	1 4866264993	- 1453473477	$78 \quad 30$	1. 84702943	72
- 94105 84035	I 4809516947	- 1528086769	$77 \quad 49$	1.82137 62519	71
- 9348006429	I 475018 I 348	- 1601665105	77	1.7957230652	70
- 9282445859	I 4688331288	- 16741 43683	$76 \quad 26$	I 7700698786	69
- 9213934772	I 4624042933	- 1745456190	7544	I 7444166919	68
- 9142506851	I 4557395424	- 1815534763	75	1.7187635053	67
- 90681 96968	I 44884 70781	- 1884309933	$74 \quad 19$	I 69311 03186	66
- 89910 41140	I 4417353793	- 1951710594	$\begin{array}{lll}73 & 36\end{array}$	I 6674571320	65
- 89110 76479	I 4344131916	- 2017663966	$72 \quad 52$	I 6418039453	64
- 8828341144	1 4268895162	- 2082095570		I 61615 07587	63
- 8742874294	I 4191735981	- 2144929211	71	I 590497572 I	62
- 8654716034	I.4I127 49149	- 2206086968	$\begin{array}{ll}70 & 37\end{array}$	I 5648443854	61
- 8563907366	I 4032031647	- 2265489197	69 51	I 53919 r1988	50
- 8470490138	I 394968254 I	- 2323054536	69	151353	59
- 8374506991	I 3865802852	- 2378699932	$\begin{array}{ll}68 & 17 \\ 67 & 29\end{array}$	I 4878848255	58
- 82760 ol310	I 3780495440	- 2432340676	$\begin{array}{ll}67 & 29 \\ 66 & \end{array}$	I 4622316388	57
- 81750 17168	r 3693864865	- 2483890447	66 4I	14365784522	56
- 8071599276	r 36060 1726I	- 2533261379	$65 \quad 52$	1 4109252655	55
- 7965792934	1 3517060205	- 2580364133	65	I 3852720789	54
- 7857643973	13427102582	- 2625108001	64 II	I 35961 88922	53
- 77471 98708	I 3336254449	- 26674 O1012	$63 \quad 20$	I 3339657055	52
- 7634503889	I 3244626900	- 27071 50065	$\begin{array}{ll}62 & 28\end{array}$	I 30831 25189	51
- 7519606646	1 3152331927	- 2744261086	6135	I. 2826593322	50
- 7402554443	I 3059482284	- 2778639198	6041	I 2570061456	49
- 7283395027	I 29661 91348	- 2810188920	5946	I 2313529589	48
- 7162176383	I 2872572976	- 2838814388	58 51	12056997723	47
- 7038946686	I 2778741372	- 2864419600	$57 \quad 55$	11800465856	46
- 69137 54254	1 2684810938	- 2886908691	$56 \quad 58$	I 154393399	45
A(r)	$\mathrm{D}(\mathrm{r})$	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

$K=25045500790, \quad K^{\prime}=16200258991, \quad E=1.1183777380, \quad E^{\prime}=15237992053$,

I	$\mathrm{F} \phi$	ϕ	$\mathrm{E}(\mathrm{r})$	$\mathrm{D}(\mathrm{r})$	A(r)
0	00000000000	$0^{\circ} \quad 0^{\prime}$	00000000000	I 0000000000	00000000000
I	- 0278283342	I 36	- OI539 55735	I 0002142837	- O1627 42346
2	- 0556566684	3 II	- 0307531429	I 0008568806	- 0325456619
3	00834850026	4 47	- 0460349252	I 0019270294	- 0488I 14698
4	0.III3I 33368	622	- 06120 35769	I 0034234614	- 0650688358
5	- I3914 16710	$7 \quad 57$	- 0762224069	I 0053444028	0 0813I 49227
6	- 1669700053	932	00910555815	I 0076875763	- 0975468734
7	- 1947983395	II 6	- 1056683193	I 0104502032	- 11376 18057
8	- 2226266737	1240	- 1200270732	I 01362 90072	- 1299568083
9	$\bigcirc 2504550079$	$14 \quad 13$	- I3409 96984	I O172202172	- 14612 89355
10	- 278283342 I	1546	- 1478556040	10212195717	- 1622752029
II	- 30611 16763	$17 \quad 18$	- I6I26 58874	$1 \begin{array}{lll}1 & 02562 & 23237\end{array}$	01783925828
12	- 3339400105	18 50	- 1743034501	I 0304232454	- 19447 80006
13	- 36176 83447	2020	- 1869430948	I 0356I 66341	- 2105283297
14	- 3895966790	2 I 50	- 19916 16028	x 04119 63185	- 2265403885
15	041742 50132	$23 \quad 20$	0 2109377918	I 047I5 56657	- 24251 09363
16	- 4452533474	$24 \quad 48$	- 2222525549	I 0534875877	- 2584366697
17	- 4730816816	$26 \quad 16$	- 2330888806	I 0601845500	0 2743I 42196
18	- 50091 00158	$27 \quad 42$	- 2434318557	r 0672385795	- 29014 O1480
19	- 5287383500	298	- 2532686498	10746412734	- 30591 09453
20	05565666842	$30 \quad 32$	- 2625884862	1 0823838086	- 3216230277
21	-58439 50184	3156	- 27138 25968	I 0904569513	- 3372727349
22	06122233526	3318	- 2796441653	I 0988510673.	- 3528563285
23	0.6400516869	3440	- 2873682581	11075561330	- 3683699898
24	06678800211	36 o	- 2945517462	I 1165617464	- 38380 98186
25	0.6957083553	$37 \quad 19$	- 3011932185	I 1258571388	- 3991718323
26	- 7235366895	$\begin{array}{ll}38 & 37 \\ 39\end{array}$	- 3072928884	$1 \begin{array}{llll}13543 & 11869\end{array}$	04144519649
27	- 75136 50237	$39 \quad 54$	- 3128524953	11452724256	O 4296460668
28	- 77919 33579	415	- 3178752022	I 1553690607	- 4447499043
29	- 8070216921	$42 \quad 24$	- 3223654911	11657089825	- 45975 91601
30	0 8348500263	$43 \quad 38$	- 3263290569	1 1762797795	$\circ 4746694339$
3 I	- 8626783605	4450	- 3297727014	I 1870687529	04894762428
32	- 8905066948	$46 \quad 1$	- 3327042283	I 1980629307	- 5041750229
33	- 9183350290	47 II	- 33513 23398	I 2092490830	$051876 \text { II309 }$
34	- 9461633632	$48 \quad 20$	- 3370665364	I 22061 37375	- 5332298456
35	- 9739916974	$49 \quad 27$	- 33851 70194	$\begin{array}{lllll}1 & 23214 & 31946\end{array}$	$\text { ○ } 5475763701$
36	I 0018200316	50	- 3394945975	12438235438	- 56I79 58348
37	I 0296483658	5 I 39	- 34001 05978	I 2556406798	- 5758832996
38	I 0574767000	5243	- 3400767814	I 2675803194	- 5898337576
39	I 0853050342	5346	- 3397052640	12796280178	06036421381
40	I II3I3 33684	544^{8}	- 33890 84414	I 2917691861	- 61730 33109
4 I	I 1409617027	5549	- 3376989203	I 3039891085	06308120897
42	I 1687900369	$56 \quad 48$	- 3360894543	I 3162729599	- 64416 32373
43	I. 19661837.11	57	- 3340928851	I 3286058237	06573514695 06703714605
44	I. 2244467053	$58 \quad 44$	- 33172 20892	I 3409727096	06703714605
45	1 2522750395	59 4I	- 3289899283	I 3533585717	- 6832I 78479
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B(r)

$q=0$ 131061824499858, $\quad Ө 0=0$ 7384664407, $\quad \mathrm{HK}=12240462555$

$\mathrm{B}(\mathrm{r})$	C(r)	G(r)	ψ	F ψ	90-r
I 0000000000	I 70991 35651	00000000000	$90^{\circ} 0^{\prime}$	25045500790	90
- 9998271058	I 7096953883	00091703805	$89 \quad 27$	24767217448	89
- 9993085325	I 70904 II308	- or833 63062	8855	24488934106	88
- 9984446074	I 70795 I6IIo	- 02749 33II9	$88 \quad 22$	24210650764	87
- 9972358755	I 7064281917	-0366369110	8749	23932367422	86
- 9956830984	I 7044727784	- 0457625853	87 16	23654084079	85
- 9937872533	I 7020878163	00548657745	8643	23375800737	84
- 99154 95309	I 6992762875	- 0639418650	86 IO	23097517395	83
- 9889713334	I 6960417067	- 07298 61798	8536	22819234053	82
- 9860542725	I 692388 I 168	- 08I99 39678	853	225409507 II	8 I
- 98280 01661	I 6883200831	00909603928	$84 \quad 29$	22262667369	80
- 97921 10356	I 68384 26872	00998805231	8355	21984384027	79
- 9752891023	I 6789615207	- 1087493206	8321	21706100685	78
- 9710367835	I 6736826771	0 II756 16303	8246	21427817343	77
- 9664566885	I 66801 27439	- 1263I 2169I	8212	21149534000	76
- 96155 16144	I 66195 87940	- 13499 55158	81 37	20871250658	75
- 9563245409	I 6555283761	- 1436060995	8I	20592967316	74
- 9507786259	I 6487295046	0 I5213 81898	$80 \quad 25$	20314683974	73
- 94491 71996	I 64157 06491	- 16058 58855	7949	20036400632	72
- 9387437597	I 6340607230	01689431044	79 I3	I 97581 17290	7 I
- 9322619647	I 6262090720	- 17720 35729	$78 \quad 36$	I 9479833948	70
- 9254756289	I 6180254615	- 1853608158	$77 \quad 58$	I 9201550606	69
- 9183887155	I 6095200637	- 19340 81461	$77 \quad 20$	I 8923267264	68
- 91100 53304	I 6007034445	- 20133 86551	$76 \quad 42$	I 8644983921	67
- 9033297156	I 59158 65494	- 2091452034	763	1.8366700579	66
- 8953662423	I 582 I 80689 I	02168204110	$75 \quad 23$	I 8088417237	65
- 88711 94043	I 5724975252	- 2243566494	$74 \quad 43$	1.7810133895	64
- 8785938106	I 5625490544	02317460328	$74 \quad 2$	I 7531850553	63
o 8697941783	I 5523475933	02389804 III	73 21	I 72535672 II	62
- 8607253257	I 5419057623	- 24605 I3624	7239	1. 6975283869	61
- 85139 21644	I 5312364694	- 25295 or 875	7156	I. 6697000527	60
- 84179 96923	I 5203528933	- 2596679043	7113	1.6418717185	59
- 83195 29861	I 5092684668	- 2661952443	$70 \quad 29$	1.61404 33842	58
- 8218571938	I 4979968595	- 2725226492	6944	I 5862 I 50500	57
- 8II5I 75269	I 48655 19601	- 27864 02697	$68 \quad 59$	1.55838 67158	56
- 8009392537	I 4749478592	- 2845379654	68 12	1 5305583816	55
- 7901276914	I 4631988308	- 2902053069	$67 \quad 25$	1.5027300474	54
- 7790881986	I 4513I 93148	- 2956315786	$66 \quad 37$	I 47490 17132	53
- 7678261683	I 4393238985	- 30080 57852	6548	I. 4470733790	52
- 7563470207	I 4272272983	- 30571 66593	$64 \quad 59$	1.41924 50448	5 I
- 7446561957	I 41504 43413	- 3103526720	648	1.39141 67106	50
- 7327591466	I 4027899470	- 3147020462	$\begin{array}{ll}63 & 17\end{array}$	1. 3635883763	49
- 7206613327	I 3904791083	- 3187527727	6224	I. 3357600421	48
- 7083682 I 26	1 37812 68735	- 3224926298	6131	I 3079317079	47
- 6958852382	I 365748327 I	- 3259092064	$60 \quad 36$	1.28010 33737	46
0.6832178479	1 3533585717	0.3289899283	59 41	I 2522750395	45
A(r)	D (r)	E(r)	ϕ	F ϕ	r

$K=27680631454=K^{\prime} \sqrt{3}, \quad K^{\prime}=15981420021, \quad E=1076405113, \quad E^{\prime}=15441504969$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	D(r)	A(r
0	00000000000	$0^{\circ} 0^{\prime}$	- 0000000000	10000000000	- 0000000000
I	-03075 62572	14^{6}	- 0187871553	10002890226	- 01564 67728
2	- 06151 25143	$3 \quad 37$	- 03752 OI201	10011557568	- 03129 20711
3	- 0922687715	$\begin{array}{ll}5 & 17\end{array}$	- 0561450985	10025992025	- 0469344040
4	0.1230250287		- 0746090790	10046176935	00625722754
5	o.15378 12859	47	- 0928602109	I 0072088997	- 0782041558
6	0.1845375430	$10 \quad 3{ }^{1}$	- 1108481632	$1 \mathrm{I}_{1} \mathrm{I} 03698288$	- 0938284843
7	- 2152938002	$12 \quad 15$	- 1285244620	I Or 40968295	- 1094436574
8	o 2460500574	$13 \quad 58$	- 1458427986	10183855946	- 1250480220
9	- 2768063145	1540	- 1627593073	1 0232311658	- 1406398665
10	- 3075625717	$17 \quad 22$	- 1792328093	I 0286279374	- 15621 74137
II	- 33831 88289	193	- 1952250184	10345696626	- 1717788130
12	- 3690750860	$20 \quad 43$	- 21070 07095	I 0410494593	- 18732 21327
13	- 39983 I3432	$22 \quad 22$	- 2256278479	10480598163	O 2028453538
14	- 4305876004	$23 \quad 59$	- 2399776797	x 0555926010	02183463622
15	o 46134 38576	$25 \quad 36$	- 2537247838	I 0636390673	- 2338229430
16	o 49210 OII47	$27 \quad 12$	- 2668470884	I 0721898642	- 2492727739
17	- 5228563719	$28 \quad 46$	- 2793258519	10812350446	- 2646934194
18	- 55361 26291	$30 \quad 19$	- 2911456129	10907640755	- 2800823255
19	- 5843688862	$3 \mathrm{I} \quad 50$	- 3022941110	11007658484	- 29543 68145
20	- 61512 51434		- 3127621816	11112286903	- 3107540803
21	- 6458814006	$34 \quad 50$	- 3225436297	11 12214 I 133756	- 3260311842
22	- 6766376577	$\begin{array}{ll}36 & 17\end{array}$	- 3316350828	11 1 3348881382	- 3412650509
23	- 7073939149	37 43 8 8	- 3400358309	I 14352586847 I. 1574382078	O 3564524653 0 0
24	- 7381501721		- 3477476532	1.1574382078	- 37159 00694
	- 7689064293		- 3547746364	11700124008	- 3866743599
26	- 7996626864	$4 \mathrm{l} \quad 5^{2}$	- 361122988 I	I 1829664722	- 4017016862
27	- 8304189436	4312	- 3668008467	I 1962851612	- 4166682489
28	- 86117 52008	44 31	- 3718180918	I 2099527538	04315700988
29	- 8919314579	4548	- 37618 61563	I 2239530995	- 4464031361
30	- 9226877151		0.37991 78428	I 2382696285	- 4611631110
3 I	- 9534439723	48	- 3830271460	I 2528853692	O 4758456238
32	- 9842002294	4930	- 3855290817	I 2677829672	04904461259
33	I 0149564866	5041	- 38743.95246	I 2829447038	- 5049599214
34	10457127438		- 38877 50552	I 2983525154	- 5193821695
35	I 0764690010	5259	- 3895528159	I 3139880140	- 5337078866
36	11072252581	54	- 3897903785	I 3298325072	- 5479319494
37	11379815153	5510	- 3895056204	I 3458670195	- 5620490989
38	I 1687377725	$\begin{array}{ll}56 & 14\end{array}$	- 3887166125		
39	I 1994940296		- 3874415171	13784289138	- 5899409669
40	I 2302502868	$\begin{array}{ll}58 & 17\end{array}$	- 3856984955	I 39491 71251	- 60370 45267
41	I 2610065440	$\begin{array}{ll}59 & 17\end{array}$	- 3835056260	$1 \mathrm{I}_{1151} 70596$	O 6173388663
42	1291762801 I	$\begin{array}{ll}60 & 15\end{array}$	- 3808808305	I 4282086579	- 63083 81179
43	I 3225190583	6 l	- $37784{ }^{18107}$	I 44449717132	- 64419 63092
44	1 3532753155		- 3744059923	1 $461788{ }^{88952}$	- 6574073705
45	13840315727	63	- 3705904774	4786307744	06704651423
90-r	F ψ	ψ	G(r)	$\mathrm{C}(\mathrm{r})$	B(r)

Smithsonian Tables
$q=0$ 163033534821580, $\quad \Theta 0=06753457533, \quad H K=1.3046678096$

B(r)	$\mathrm{C}(\mathrm{r})$	G(r)	ψ	F ψ	90-r
r 0000000000	1 9656305108	0 0000000000	$90^{\circ} 0^{\prime}$	27680631454	90
- 99981 60886	I 96533 12951	- 0098991720	8933	27373068882	89
- 9992644975	I 9644340309	- 0197947043	89	27065506310	88
- 9983456552	I 9629398674	- 0296829453	8838	26757943738	87
- 9970602753	I 9608507176	- 0395602195	88 10	26450381167	86
- 9954093546	1 95816 92561	- 049422^{28154}	8743	26142818595	85
- 9933941714	I 9548989147	- 0592669738	8715	258352.56023	84
- 99ror 62829	I 9510438778	- 0690888752	8647	25527693451	83
- 9882775221	I 9466090763	- 0788846278	8619	25220130880	82
- 9851799940	I 9416001803	- 0886502550	85 51	24912568308	8 r
- 98172 60720	1 9360235909	-09838 16828	$85 \quad 22$	24605005736	80
- 9779183923	I 9298864309	- 1080747268	8454	24297443165	9
- 9737598498	I 9231965349	- 1177250798	8425	23989880593	78
- 9692535914	r 9159624373	- 127328298 I	8355	23682318021	7
- 9644030106	I 9081933609	- 1368797883		23374755450	6
- 9592117405	I 8998992030	- 1463747936	8256	23067192878	75
- 9536836468	I 89109 05214	- 1558083802	$82 \quad 25$	22759630306	74
- 9478228200	I 88177 85195	- 1651754225	8 I 5	22452067734	73
- 9416335686	I 8719750301	- 1744705894	8124	22144505163	72
- 9351204092	I 8616924991	- 1836883293	$80 \quad 52$	21836942591	71
- 9282880593	I 8509439670	- 1928228550	$80 \quad 20$	21529380019	70
- 9211414274	I 8397430516	- 2018681293	7948	2.1221817448	69
- 9136856040	I 82810 39279	0 21081 78488	79	20914254876	68
- 905925852 I	I 8160413089	- 2196654291		20606692304	67
- 8978675972	I 8035704247	- 2284039887	78	20299129733	66
o 88951 64174	17907070015	O 2370263334		19991567161	65
- 8808780328	1 7774672401	- 2455249406	76.56	I 9684004589	64
- 8719582952	1 7638677929	- 2538919433	$76^{*} \quad 20$	I 9376442017	63
- 8627631773	1 7499257419	o 26211 91147	$75 \quad 43$	I 9068879446	62
- 8532987622	1 7356585746	0 2701978524	75	I 87613 16874	6I
0.8435712322	I 7210841609	- 2781191636		I 8453754302	60
- 8335868580	I 7062207286	- 2858736500	$\begin{array}{ll}73 & 48 \\ 73 & 88\end{array}$	18146191731	59
- 8233519876	1 6910868389	- 2934514936	73	I 7838629159	58
- 8128730353	1.6757013618	- 3008424433	$\begin{array}{ll}72 & 28\end{array}$	I 7531066587	57
- 8021564710	I 6600834507	0.3080358026	7546	I 7223504016	56
- 7912088085	1 6442525175	- 31502 04176	71	I 6915941444	55
- 7800365955	1 6282282065	- 3217846673	$70 \quad 20$	1 6608378872	54
- 7686464021	16120303692	- 32831 64547	6936	I 6300816300	53
- 7570448103	r 5956790385	- 3346032006	$68 \quad 50$	I 5993253729	52
- 7452384036	I 5791944025	0.3406318384	68	I 5685691157	5 I
$\bigcirc 7332337566$	1 5625967789	0.3463888130	$67 \quad 16$	I 5378128585	50
- 7210374248	1 5459065890	- 3518600808	$66 \quad 28$	I 5070566014	49
- 7086559347	I 5291443320	- 3570311148	$\begin{array}{ll}65 & 38\end{array}$	I 4763003442	48
- 6960957739	15123305588	- 3618869115	$64 \quad 47$	I 4455440870	47
0.6833633823	I 4954858469	- 36641 20039	6355	I 4147878299	46
0.6704651423	1.4786307744	- 3705904774	63	I 3840315727	45
A(r)	$\mathrm{D}(\mathrm{r})$	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

Smithsonian Tables
$K=31533852519, \quad K^{\prime}=1.5828428043, \quad \mathrm{E}=10401143957, \quad \mathrm{E}^{\prime}=15588871966$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	D (r$)$	A(r)
0	00000000000	$0^{\circ} \quad 0^{\prime}$	00000000000	10000000000	- 0000000000
I	00350376139		0 0234668886	10004113182	- or 46006854
2	- 0700752278		- 0468505457	I 0016448264	- 0292020956
3	0 LO5II 28417		- 0700685417	I 0036991860	- 0438049412
4	- 14015 04556	8 0	00930400333	I 0065721668	00584099043
5	- 17518 80695	$9 \quad 59$	- II568 65173	I 0102606485	00730176251
6	- 2102256835	II 5^{8}	- 13793 25365	10147606225	- 0876286871
7	- 2452632974	1355	- 1597063263	10200671948	- 1022436040
8	- 28030 09113	$15 \quad 52$	- 18094 03901	I 02617 45886	1168628061
9	- 31533 85252	1747	- 2015719949	I 0330761484	- I3I48 66263
10	- 3503761391	19 4	- 2215435813	I 0407643440	- I46II 52882
II	- 3854 T 37530	2134	- 240803083 I	I 0492307759	- 1607488922
I2	- 4204513669	2326	- 2593041559	10584661800	- 1753874040
13	- 4554889808	25 16	- 2770063163	10684604345	01900306422
I4	- 4905265947	274	- $29387499+3$	x 0792025667	- 2046782669
I5	- 5255642086	28 51	- 3098815035	1 0906807598	- 2193297686
16	- 56060 I8226	$30 \quad 36$	- 3250029380	11028823622	- 2339844577
I7	- 5956394365	$32 \quad 20$	- 33922 20017	$1 \begin{array}{ll}11579 & 38955\end{array}$	- 2486414540
18	- 6306770504	34	-35252 67798	11294010647	- 2632996779
I9	- 66571 46643	354 I	- 3649 x 046 I 8	I 1436887684	- 2779578408
20	- 7007522782	3718	- 3763710249	115864 IIIOI	- 29261 44375
21	- 735789892 I	$38 \quad 54$	- 38691 08879	I 1742414105	- 3072677376
22	- 7708275060	$40 \quad 28$	- 3965365430	11904722196	- 3219x 57797
23	- 8058651199	4159	- 4052581757	12073153312	03365563638
24	- 8409027338	$43 \quad 29$	- 4130892784	I 2247517970	- 3511870467
25	- 8759403477	4456	- 4200462655	I 24276 19421	o 3658051367
26	- 91097 79617	46.22	- 4261480965	I 2613253814	- 3804076896
27	- 94601 55756	$47^{\bullet} 45$	- 43 I4I 59095	I 2804210369	- 3949915050
28	- 98105 31895	$49 \quad 7$	- 4358726721	I 3000271557	04095531244
29	1.01609 08034	5026	- 4395428505	I 3201213294	- 4240888287
30	1.0511284173	5 I 44	04424521005	I 3406805139	- 4385946375
31	10861660312	5259	- 4446269813	I 3616810508	- 4530663090
32	1 I 121203645 I	5412	- 446094693 I	I 3830986893	- 4674993405
33	$1{ }_{15624}^{12590}$	$55 \quad 24$	- 4468828394	I 4049086089	- 4818889699
34	I 1912788729	5633	- 4470192128	I 4270854443	- 4962301775
35	I 22631 64868		- 4465316053	$\begin{array}{lllll}\text { I } & 44960 & 33094\end{array}$	- 51051 76900
36	r 2613541008	$\begin{array}{ll}58 & 47 \\ 59\end{array}$	- 4454476404	I 4724358241	- 5247459832 0
37	I 29639171477	$\begin{array}{ll}59 & 51 \\ 60 & 53\end{array}$	- 4437946284	$\begin{array}{ll}\text { I } 49555 & 61410 \\ \text { I } 51893 & 69731\end{array}$	- 5389092878 o 5530015938
38	I 3314293286	$\begin{array}{ll}60 & 53 \\ 61\end{array}$	- 4415994403	I 5189369731 I 5425506233	O 55530015938 0 0
39	I. 3664669425	6 I 54	- 4388884024	I 5425506233	- 56701 66575
40	I 4015045564	6253	- 4356872080	I 5663690138	- 5809480084
4 r	I 4365421703	6350	- 4320208450	I 5903637173	- 5947889567
42	I 4715797842	6445	- 4279135381	I 61450 59885	- 6085326019
43	I 5066x 7398 I	$65 \quad 39$	- 4233887053	I 6387667967	06221718423
44	I 5416550120	6632	- 4184689243	I 663II 68595	06356993846
45	I 5766926259	$67 \quad 23$	04131759112	I 6875266770	-64910 77548
90-r	F ψ	ψ	G(\mathbf{r})	C (r)	B(r)

Smithsonian Tables
$q=0$ 206609755200965, $\quad Ө 0=0590423578356, \quad \mathrm{HK}=1406061468420$

$\mathrm{B}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	G(r)	ψ	F ψ	90-r
I 0000000000	23997438370	00000000000	$90^{\circ} \quad 0^{\prime}$	31533852519	90
- 9997975549	23993024464	0 O1049 98939	8939	31183476380	89
- 9991904200	23979788675	00209972691	89 I 8	30833 I 0024 I	88
- 99817 91961	23957748778	0 0314895952	$88 \quad 57$	30482724102	87
- 9967648832	23926934364	00419743187	8836	30132347963	86
- 9949488778	23887386793	- $052+488508$	88 I 5	29781971823	85
- 9927329703	23839159122	- 06291 05559	8754	29431595684	84
- 99011 93406	23782316019	00733567394	8732	29081219545	83
- 9871105534	23716933654	-08378 46353	87 II	28730843406	82
-98370 95524	23643099572	0 09419 I3935	8649	28380467267	81
- 97991 96536	23560912550	- 1045740674	$86 \quad 27$	28030091128	80
- 9757445380	23470482431	- II492 9600I	864	27679714989	79
- 97118 82434	23371929943	- 1252548 IIO	8542	27329338850	78
- 96625 51552	23265386504	- 13554 63814	85 19	269789627 II	77
- 9609499971	23150994002	- 14580 08404	8456	26628586572	76
- 9552778200	23028904563	- 15601 45490	8432	26278210432	75
- 9492439913	22899280308	- 1661836848	848	25927834293	74
- 9428541832	22762293087	- 1763042256	8344	255774 58154	73
- 936II 43595	2 26181 24201	- 18637 19320	$83 \quad 19$	25227082015	72
- 9290307633	224669 64II2	- 1963823298	8254	24876705876	71
- 92160 9903I	223090 12139	- 2063306915	$82 \quad 28$	24526329137	70
- 9138585385	22144476139	- 21621 20167	82	24175953578	69
- 9057836660	21973572184	- 22602 10124	8 I 35	23825577459	68
- 8973925035	21796524214	- 2357520713	81 7	234752 O1320	67
- 8886924749	2 16I35 63692	- 2453992508	$80 \quad 39$	23124825181	66
- 87969 I1946	21424929245	- 2549562494	80 ro	22774449041	65
- 8703964511	21230866296	- 26441 63838	79 41	22424072902	64
- 8608I 6I906	21031626690	- 2737725638	79 II	22073696763	63
- 8509585006	20827468307	- 28301 72673	$78 \quad 40$	21723320624	62
- 84083 I 5928	20618654682	- 2921425142	$78 \quad 8$	21372944485	61
- 8304437863	20405454606	- 3011398388	$77 \quad 35$	21022568346	60
- 81980 34906	20188141730	- 31000 02630	$77 \quad 2$	20672192207	59
- 80891 91886	I 9966994165	- 31871 42670	$76 \quad 28$	20321816068	58
- 7977994194	I 9742294075	- 32727 I76II	$75 \quad 52$	I 99714 39929	57
0 7864527612	I 9514327275	- 3356620561	7516	1 9621063790	56
- 77488 78149	I 9283382823	- 3438738337	$74 \quad 39$	I 9270687650	55
- 7631131867	I 9049752611	- 35189 51171	74	r 89203 II5II	54
- 75113 74717	I 8813730959	- 35971 32414	73 21	I 8569935372	53
- 7389692379	I 8575614210	- 3673I 48250	7241	r 8219559233	52
- 7266170097	I 8335700328	- 3746857413	7159	I 7869183094	5 I
- 7140892524	I 8094288493	- 38181 10919	7 7 16	I 7518806955	50
- 70139 43563	I 7851678703	- 38867 51812	$70 \quad 32$	I 7168430816	49
- 6885406225	I 76081 71386	- 39526 14938	6947	I 68180 54677	48
- 6755362475	I 7364067003	- 4015526735	69 -	1 6467678538	47
-66238 93095	1 71196 65668	04075305071	6812	x 6117302399	46
- 64910 77548	I 6875266770	04131759112	$67 \quad 23$	I 5766926259	45
A(r)	$\mathrm{D}(\mathrm{r})$	$\mathbf{E}(\mathbf{r})$	ϕ	F $\boldsymbol{\phi}$	r

- Smithsonian Tables
$K=32553029421, \quad K^{\prime}=1.5805409339, \quad E=1033789462, \quad E^{\prime}=15611417453$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	$\mathrm{D}(\mathrm{r})$	A(r)
0	- 0000000000	$0^{\circ} 0^{\prime}$	-00000 00000	1 0000000000	- 0000000000
I	-03617 00327		- 0246681037	I 0004463617	0.0143061216
2	- 0723400654	46	-04924 41210	I 0017849728 I. 0040144114	0 0 0 028829235824
3 4	$\begin{array}{lll}0.10851 & 00981 \\ 0.14468 & 01308\end{array}$	$\begin{array}{ll}6 & 12 \\ 8 & 16\end{array}$	$\circ 0736369132$ 00977572158		0 0 0429237056
4	- 14468 01308	816	-0977572158	I 0071323089	- 0572377835
5	0 1808501635	10	- 12151 85252	I orir3 53504	-0715570609
6	02170201961		-14483 79258	I or6oi 92772	- 0858827206
7	- 2531902288	$14 \quad 21$	- 1676368426	r 0217788885	O 1002I 58677
8	- 2893602615	1621	- 1898417049	I 0284080440	- 1145575144
9	- 3255302942	$18 \quad 20$	- 21138 45 ror	r 0358996677	- 1289085656
10	- 36170 03269	2018	- 2322032821	1 0442457511	- 1432698042
II	- 3978703596	$22 \quad 14$	- 2522424183	x 0534373577	0.1576418767
12	0.4340403923		0 0 0 0	I 0634646282	$\begin{array}{lllll}0 & 17202 & 52803 \\ 0 & 18642 & 03484\end{array}$
13	- 4702104250		$\circ 2897925485$ - 3072257913	10743167854 r 08598 21410	$\begin{array}{llll}0 & 18642 & 03484 \\ 0.20082 & 72392\end{array}$
14	- 5063804577	$27 \quad 53$	- 3072257913	10859821410	O, 2008272392
15	05425504904	2942	- 3237238467		- 2152459210
16	- 5787205230	$3 \mathrm{3} \quad 29$	- 3392644357	$\mathrm{r}_{11170} 11775$	- 2296761638
17	- 6148905557	3315	- 3538315704	I 1257269891	- 24411 75248
18	- 65106 05884	3458	- 3674I 52534	I 1405102773	- 2585693397
19	-687230621I	3640	- 38001 11223	r 1560349127	- 2730307120
20	0.7234006538	$38 \quad 19$	- 3916200536	$\begin{array}{ll}1 & 1722839058\end{array}$	- 2875005037
21	$\bigcirc 7595706865$	3956	- 4022477358	I 1892394189	- 3019773269
22	- 7957407192	$4 \mathrm{I} \quad 32$	$\bigcirc 4119042239$	I 2068827779	o 3164595358 0 0 0
23	0.8319107519		- 4206034838	r 2251944855 I 2441542355	O 3309452195 o 34543 21958
24	- 8680807846	$44 \quad 35$	- 4283629362	I 2441542355	- 3454321958
25	- 9042508173		- 4352030077	1 2637409274	- 35991 80053
26	- 9404208500	4730	- 4411466947	12839326825	- 3743999070
27	- 9765908826	$48 \quad 54$	- 44621 91466	I 3047068611	- 3888748743
28	1 0127609153	5016	- 4504472717	I 3260400803	o 4033395918
29	I 0489309480	5I 36	- 4538593683	I 3479082334	04177904532
30	1 0851009807	5254	- 4564847848	I 3702865097	- 4322235599
3 I	I 1212710134	$54 \quad 9$	- 4583536084	I 3931494160	0.4466347209
32	115744 10461	$\begin{array}{ll}55 & 23\end{array}$	$\bigcirc 459496383 \mathrm{I}$	x 4164707992	- 46101 94525
33	11936110788	$\begin{array}{ll}56 & 34\end{array}$	- 4599438581	I 4402238696	- 4753729805
34	1.2297811115	5743	- 4597267648	I 4643812257	0.4896902419
35	12659511442		- 4588756209	I 4889148802	- 5039658883
36	13021211769	5956	-45742 05619	1.51379 62870	- 5181942896
37	13382912095	61	- 45539 I1968	I 5389963693	- 5323695393
38	13744612422	62	- 45281 64872	I 5644855491	- 5464854602
39	I 4106312749	63	- 4497246468	I 5902337776	- 5605356107
40	I $44680{ }^{13076}$		- 4461430615	I 61621 05676	- 5745132929
4 I	14829713403	$64 \quad 56$	- 4420982256	1. 6423850248	- 58841 15607
42	- 5191413730		- 4376156944	I 6688725833	- 6022232286
43	I 5553114057	6644	- 4327200503	1 6952015399	- 6159408825
44	I. 5914814384	$67 \quad 35$	- 4274348807	1.7217800903	0.6295568896
45	1.62765 147II	$68 \quad 25$	0.4217827675	1. 7484293662	- 6430634108
$90-\mathrm{r}$	$\mathrm{F} \psi$	ψ	G(r)	$\mathrm{C}(\mathrm{r})$	B(r)

Smithsonian Tables
$q=0217548949699726, \quad Ө 0=05693797108, \quad \mathrm{HK}=14306906219$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1 0000000000	252833 O1251	00000000000	$90^{\circ} \quad 0^{\prime}$	32553029421	90
- 9997922836	25278454320	0 0106010292	8941	32191329095	89
- 99916 935 5	25263920136	- 02119 97963	89 21	31829628768	88
- 99813 18540	25239718509	00317940278	89	31467928441	87
- 9966808734	25205882420	0.0423814278	8842	3 IIO62 28II4	86
- 99481 79213	25162457960	- 0529596662	8822	30744527787	85
- 9925449353	25109504254	- 0635263677	88	30382827460	84
- 9898642745	25047093354	- 0740790993	8742	3 00211 27133	83
- 9867787139	249753 IOI20	- 0846153590	8722	29659426806	82
- 9832914382	24894252067	0.0951325631	872	29297726479	81
- 9794060344	24804029203	- 1056280337	86 4I	28936026152	80
- 97512 64836	24704763835	- I1609 89854	8620	28574325825	79
- 9704571520	24596590364	- 1265425123	8559	28212625499	78
- 9654027806	2447965505 I	- 13695 55734	8538	27850925172	77
- 9599684748	24354115773	0.1473349785	85 I6	27489224845	76
- 9541596925	24220141749	- 15767 73727	8454	27127524518	75
- 94798223 I 8	240779 I3262	0.1679792208	8432	26765824191	74
09414422181	23927621349	- 17823 67907	849	26404123864	73
0 9345460898	23769467487	- I8844 6r360	8345	26042423537	72
$\bigcirc 9273005843$	23603663252	- 1986030778	83 2I	25680723210	71
09197127230	23430429976	- 2087031860	8257	25319022883	70
- 91178 97950	23249998377	- 2187417592	8232	24957322556	69
09035393417	23062608184	- 2287138038	827	24595622230	68
- 8949691397	22868507750	- 23861 40125	81 4I	24233921903	67
08860871836	22667953647	- 2484367407	81 14	23872221576	66
- 87690 I6690	22461210260	- 2581759833	8047	23510521249	65
- 8674209743	22248549364	- 2678253494	$80 \quad 19$	23148820922	64
- 8576536425	22030249697	- 2773780358	7950	22787120595	63
- 8476083633	21806596524	- 2868268004	7920	22425420268	62
0.837293954 I	215778 81197	- 2961639332	$78 \quad 50$	22063719941	61
- 82671 93416	21344400706	- 3053812272	$78 \quad 19$	217020 19614	60
- 81589 35429	21106457227	- 31446 99478	$77 \quad 47$	21340319287	59
- 8048256467	20864357672	- 32342 08014	$77 \quad 14$	20978618960	58
0.7935247945	20618413229	- 3322239026	7640	2.0616918634	57
- 78200 O1623	20368938902	- 3408687415	765	20255218307	56
0.77026 09411	2 orim 53056	- 3493441494	$75 \quad 29$	1 9893517980	55
- 7583I 63194	I 9860676958	- 3576382644	$74 \quad 53$	I 95318 17653	54
- 7461754642	I 9602534320	- 3657384971	7414	1 91701 17326	53
- 7338475039	I 93421 50843	- 3736314953	$73 \quad 35$	I 8808416999	52
- 72134 15096	I 9079853771	- 3813031100	7255	I 8446716672	51
0.7086664787	I 88159 7r433	- 3887383616	72 I3	I 8085016345	50
- 69583 r3178	I 8550832817	- 3959214068	7130	1.7723316018	49
- 6828448256	I 8284767117	- 4028355079	$70 \quad 46$	173616 15691	48
0.669715678 r	I 80181 033II	- 4094630040	70 I	r. 69999 I5365	47
- 6564524120	I 77511 69734	0.4157852846	$69 \quad 14$	1.6638215038	46
- 6430634108	I 7484293662	- 4217827675	$68 \quad 25$	1.62765 147II	45
A. $\mathbf{(r)}$	$\mathrm{D}(\mathbf{r})$	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	I

Smithsonian Tables
$\mathrm{K}=3$ 3698680267, $\mathrm{K}^{\prime}=1.5784865777, \mathrm{E}=1027843620, \mathrm{E}^{\prime}=15629622295$,

r	F ϕ	ϕ	E (r)	$\mathrm{D}(\mathrm{r})$	A(r)
0	- 0000000000	$0^{\circ} \mathrm{o}^{\prime}$	0 0000000000	1 0000000000	- 0000000000
1	- $037442978 \mathbf{~}$	29	- 0260053438	10004871379	- OI 39687846
2	- 0748859561	$4 \quad 17$	- 0519080180	1001948048 I	- 02793 9608I
3	- 1123289342	626	- 07760 64875	10043812208	-04191 44920
4	- 14977 19123	835	- 10300 14601	I 0077841400	- 055895423 I
	o 18721 48904	10 40	- 1279969416	1 OI2I5 32844	- 0698843359
6	- 2246578684	1246	- 1525012188	I 0174841292	-08388 30956
7	- 26210 08465	14 51	- 1764277402	1 0237711470	- 0978934813
8	o 2995438246	1655	- 1996958914	I 0310078103	- III91 71690
9	- 3369868027	$18 \quad 58$	- 2222316400	I 0391865941	- 1259557152
10	- 3744297807	$20 \quad 59$	- 243968048 I	I 048298978 I	- 14001 05412
II	- 4118727588	$22 \quad 58$	- 2648456468	10583354510	0.15408 29167
12	- 4493157369	$24 \quad 56$	- 28481 26740	1 0692855135	- 16817 39451
13	- 4867587150	26 52 	- 3038251779	10811376835	01822845483
14	- 52420 I6930	$28 \quad 46$	- 3218469961	I 0938795005	- 19641 54524
15	- 561644671 I	$30 \quad 38$	- 3388496193	11074975312	- 2105671740
16	- 5990876492	$32 \quad 28$	- 35481 19530	11219773762	- 2247400071
17	- 6365306273	3416	- 36971 99918	I 1373036763	- 2389340100
18	- 6739736053	362	- 3835664197	11534601207	- 25314 89941
19	0 71141 65834	3746	- 39635 or 539.	r 1704294549	- 2673845123
20	- 7488595615		- 4080758450	I 18819 34902	- 28163 98484
21	- 7863025396	4 l	- 4187533497	I 2067331139	- 2959140077
22	- 8237455176	$42 \quad 42$	- 4283971871	I 2260282998	- 31020 57076
23	o 8611884957	44 16	- 4370259916	I 2460581209	- 32451 33701
24	- 8986314738	$45 \quad 48$	- 4446619725	I 2668007616	- 33883 51142
25	- 9360744519	47 I	- 4513303888	r 2882335321	- 3531687494
26	- 9735174299	48	O 4570590462	r 3103328836	o 36751 17704
27	I 0109604080		- 4618778212	r 3330744242	- 38186 13526
28	$1{ }_{1} 10484033861$	$\begin{array}{ll}51 & 32 \\ 51\end{array}$	O 46581 8218I	I 3564329365	- 39621 43484
29	I 0858463641	$52 \quad 52$	- 46891 29597	I 3803823962	- 4105672843
30	1 1232893422	54 10	- 4711956148	I 4048959917	- 4249163594
3 I	I 1607323203	$55 \quad 26$	- 47270 02620	I 4299461457	O 4392574448
32	I 1981752984	$\begin{array}{ll}56 & 39\end{array}$	- 4734611908	r 4555045373	- 4535860835
33	1.2356182764	5750	o 47351 26377	r 4815421259	- 4678974917
34	I 2730612545	59 o	- 4728885574	r 5080291764	- 4821865611
35	I 3105042326	$60 \quad 7$	- 4716224256	r 5349352855	- 496447862 x
36	I 3479472107	6112	- 4697470729	I 5622294100	- 5106756480
37	I 38539001887	$62 \quad 15$	- 4672945464	I 5898798960	- 5248638600
38	I 4228331668	$63 \quad 16$	- 4642959969	I 61785 45092	- 53900 61335
39	I 4602761449	$64 \quad 15$	- $46078{ }^{8} 15892$	I 6461204680	- 5530958052
40	I 4977191230		- 4567804338	I 6746444762	- 56712 59210
4 1	I 5351621010	66	04523205363	I 7033927583	- 58108 92454
42	I 5726050791	67	O 4474287637	17323310960	- 5949782708
43	I 6100480572	$67 \quad 53$	$\bigcirc 4421308242$	1 7614248657	- 60878 52287
44	r 6474910353	6844	- 4364512599	I 7906390777	- 6225021016
45	I 68493 40133	$69 \quad 32$	- 4304I 34495	I 8199384164	-66612 06349
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	B(r)

$q=0.229567159881194, \quad \Theta 0=05464169465, \quad \mathrm{HK}=14575481002$

$\mathrm{B}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	G(r)	ψ	F ψ	90-r
I 0000000000	26805403437	- 0000000000	$90^{\circ} \mathrm{o}^{\prime}$	33698680267	90
- 9997862112	26800036787	- 0106949135	8942	33324250486	89
- 9991450809	26783944283	00213878301	8924	32949820705	88
- 9980773170	26757 I 48255	00320767423	896	32575390925	87
- 9965840972	26719685860	- 0427596209	8848	322009 61144	86
- 9946670666	26671609043	- 0534344040	8830	31826531363	85
- 9923283334	26612984418	- 0640989867	88 I2	31452101582	84
- 9895704645	26543893156	-07475 12085	8753	31077671802	83
- 9863964786	26464430842	- 0853888428	8735	30703242021	82
- 9828098400	26374707296	- 09600 95847	87 16	30328812240	8 I
- 9788r 44497	26274846381	- 10661 10385	8657	29954382459	80
- 97441 46367	26164985778	- 1171907054	86	29579952679	79
- 96961 51474	26045276741	- 1277459701	86 r8	29205522898	78
- 96442 II348	${ }_{2}^{2} 5915883828$	- 13827 40870	8558	28831093117	77
- 9588381466	25776984606	- 1487721662	$85 \quad 38$	28456663336	76
- 9528721117	25628769342	- 1592371580	$85 \quad 17$	28082233556	75
- 9465293269	25471440664	- 1696658376	8456	2.7707803775	74
- 93981 6442I	25305213208	- 1800547885	8435	${ }^{2} 7333373994$	73
- 9327404449	$\begin{array}{llllll}2 & 5130313248\end{array}$	- 1904003849	84	26958944213	7^{2}
- 9253086446	24946978294	- 2006987739	83 51	26584514433	71
- 9175286553	24755456695	- 21094 58556	8328	26210084652	70
- 9094083786	24556007207	- 2211372633	83	25835654871	69
- 9009559853	24348898556	- 2312683422	8241	25461225090	68
- 8921798975	24 I 34408985	- 2413341265	8216	25086795310	67
- 8830887690	23912825787	- 2513293157	8 I 5 I	24712365529	66
- 87369 14660	23684444831	- 2612482501	$8 \mathrm{l} \quad 25$	24337935748	65
- 8639970475	23449570070	- 2710848837	80	23963505967	64
- 85401 47452	23208513053	- 2808327574	8032	23589076187	63
- 8437539427	22961592414	- 2904849692	80	23214646406	62
- 8332241555	22709133365	- 30003 41444	$79 \quad 35$	22840216625	6
- 8224350100	22451467182	- 3094724031	79	22465786844	60
- 8r139 62227	22188930687	- 3187913276	$78 \quad 35$	22091357064	59
- 8001r 75795	21921865719	- 3279819272	78	21716927283	58
- 7886088149	216506 18621	- 3370346027	$\begin{array}{ll}77 & 31 \\ 76 & \end{array}$	21342497502	56
- 77688 009II	21375539706	- 3459391087	$76 \quad 58$	20968067721	56
- 7649409778	21096982742	- 3546845152	$\begin{array}{ll}76 & 23\end{array}$	20593637941	55
- 7528014315	20815304423	- 3632591686	7548	20219208160	54
o 7404712755	20530863856	- 3716506505	75 II	I 9844778379	53
- 7279602805	20244022044	- 3798457377	$\begin{array}{ll}74 & 34\end{array}$	I 9470348599	52
- 7152781443	19955141373	- 38783 03601	7355	I 9095918818	51
- 7024344736	I 9664585115	- 3955895596	$\begin{array}{ll}73 & 14\end{array}$	I 8721489037	50
- 6894387648	I 9372716923	- 4031074491	$\begin{array}{ll}72 & 33\end{array}$	I 8347059256	49
- 6763003866	I 9079900345	- 4103671725	7150	I 7972629476	48
- 6630285617	I 8786498345	- 4173508655	71	I 75981 99695	47
- 6496323506	I 8492872824	- 4240396200	$70 \quad 20$	I 7223769914	46
- 6361206349	I 81993 84164	- 4304134495	$69 \quad 32$	I 6849340133	45
A(r)	D (r)	E(r)	ϕ	F ϕ	\mathbf{r}

Smithsonian Tables
$\mathrm{K}=35004224992, \quad \mathrm{~K}^{\prime}=1.5766779816, \quad \mathrm{E}=1022312588, \quad \mathrm{E}^{\prime}=15649475630$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
0	00000000000	$0^{\circ} 0^{\prime}$	00000000000	I 0000000000	- 0000000000
1	00388935833	2 I4	- 0275I 52459	I 0005354142	- or357 81428
2	00777871666		- 05491 4917I	10021411230	00271591294
3	01166807500	640	- 0820848196	I 00481 55243	- 0407457840
4	- I5557 43333	853	- 10891 34862	I 0085559486	- 0543408922
5	- 1944679166	II 4	01352934531	I 0133586590	- 06794 71815
6	02333614999	I3 I5	- I6II2 24388	I OI92I 88518	- 08I56 73027
7	02722550833	I5 25	- 1863043989	I 0261306577	- 0952038101
8	- 3III4 86666	1733	02107504315	10340871422	- 1088591438
9	- 3500422499	1940	- 2343795237	I 0430803072	- 12253 56III
10	- 3889358332	2 I 45	- 25711 91248	F.05310 10924	- 136235368 I
II	- 4278294166	2348	- 2789055463	I 06413 93774	- 1499604030
12	-46672 29999	2550	- 2996841874	I 0761839836	- 16371 25182
13	- 5056165832	2750	- 3194095974	I 0892226769	- 1774933141
14	- 5445I 01665	2947	03380453836	11032421710	- 19130 41733
15	- 5834037499	3 I 42	- 3555639822	I II822 81308	- 2051462446
16	- 6222973332	$33 \quad 35$	- 3719463079	I I3416 51764	0 2190204287
17	- 66119 09165	$35 \quad 26$	- 3871813038	I 1510368883	- 2329273637
18	- 7000844998	3714	0 4012654102	1 l I6882 58124	02468674120
19	- 7389780832	3859	- 4142019722	I 18751 34668	- 2608406476
20	- 77787 r 6665	$40 \quad 42$	- 4260006064	I 2070803483	- 2748468440
21	- 81676 52498	$42 \quad 23$	- 4366765427	I 2275059404	- 2888854637
22	- 855658833 I	44 I	- 446249958 I	r 2487687226	- 3029556475
23	- 8945524165	$45 \quad 37$	- 4547453170	I 2708461798	- 31705 62057
24	- 9334459998	47 10	0 46219 07281	I 2937148135	- 33118 56095
25	- 972339583 L	4840	- 46861 73287	I 31735 01537	- 3453419839
26	1 OrI23 3I664	508	- 4740587042	I 3417267728	- 3595231012
27	1 05012 67498	5133	- 4785503463	I 36681 82994	- 3737263757
28	I 089020333 I	5256	- 4821291569	I 3925974348	- 3879488593
29	I 12791 39164	$\begin{array}{ll}54 & 17\end{array}$	04848329959	I 4190359703	04021872381
30	I 1668074997	5535	- 4867002770	I 4461048057	- 4164378306
31	I 2057010830	5650	- 4877696093	I 4737739701	- 4306965861
32	I 2445946664	584	- 4880794838	I 5020126433	- 4449590849
33	I 2834882497	59 I4	- 4876680032	I 5307891792	o 4592205390
34	I 3223818330	$60 \quad 23$	- 4865726520	I 5600711317	$\bigcirc 4734757948$
35	I 3612754163	6 I 30	- 48483 O1039	I 5898252804	- 48771 93356
36	1.4001689997	6234	- 4824760647	I 6200176598	- 50194 52865
37	I 4390625830	$63 \quad 36$	- 4795451456	I 65061 35895	- 51614 74196
38	1.4779561663	6436	04760707644	I 68157 77058	- 53031 91603
39	I 5168497496	$65 \quad 35$	- 4720850753	I 7128739955	- 5444535952
40	1 5557433330	66 3I	- 4676189121	х 7444658318	- 5585434803
41	I 5946369163	$67 \quad 25$	- 46270 I762 1	I 7763I 60110	- 57258 125II
42	I 6335304996	68 I 8	$\bigcirc 4573617475$	I 8083867918	- 5865590333
43	r 6724240829	$69 \quad 9$	- 4516256249	I 8406399362	- 6004686540
44	r.7II3I 76663	6958	- 44551 87962	I 8730367513	- 61430 16549
45	r 7502112496	$70 \quad 45$	- 4390653283	I.90553 81344	- 6280493057
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	$B(r)$

[^2]$q=0.242912974306665, \quad \Theta 0=05211317465, \quad$ HK $=14872214813$

B(r)	$\mathrm{C}(\mathrm{r})$	G(r)	ψ	F ψ	0
I 0000000000	28645259727	00000000000	$90^{\circ} 0^{\prime}$	35004224992	90
- 9997791249	28639254580	- 0107810889	8944	34615289158	89
- 99911 67583	28621247652	-02156 04536	8927	34226353325	88
- 99801 36755	28591264461	- 0323363597	89 II	33837417492	87
- 99647 11670	28549347485	- 0431070526	$88 \quad 55$	33448481659	86
- 99449 10345	28495556077	- 053870747 r	$88 \quad 38$	33059545826	85
- 9920755874	28429966356	- 064625616	88 21	32670609992	84
- 9892276367	28352671062	- 0753697836	88	32281674159	83
- 9859504884	28263779377	- 0861013069	8748	$\begin{array}{ll}3 & 18927 \\ 38326\end{array}$	82
- 9822479350	28163416722	- 09681 81718	8730	31503802493	8 I
- 97812 42473	28051724517	- 1075182779	8713	31114866659	80
- 9735841628	27928859919	o II819 94268	8655	3.0725930826	79
- 9686328755	27794995523	- 1288593097	8637	30336994993	78
- 9632760226	27650319042	- 1394954938	8619	29948059160	77
- 95751 9671I	27495032957	- I5010 54088	86	29559123326	76
- 9513703036	27329354142	- 1606863318	8542	29170187493	75
- 9448348022	27153513465	-17123 53724	$85 \quad 23$	28781251660	74
- 9379204329	26967755363	- 18174 94560	85	28392315827	73
- 9306348276	26772337397	- 1922253067	8443	28003379993	72
- 9229859663	26567529786	- 2026594294	8422	27614444160	7 I
- 9149821585	26353614921	- 2130480901		27225508327	70
- 9066320234	26130886858	- 2233872956	$83 \quad 39$	26836572494	69
- 8979444698	25899650797	- 2336727719	8317	26447636660	68
- 8889286753	25660222548	- 2438999414	8254	26058700827	67
- 8795940653	254 I 2927973	- 254063898 I	8231	25669764994	66
- 8699502909	25158 I 02430	- 2641593822	827	25280829161	65
- 8600072069	24896090190	- 27418 07525	8 I 42	24891893327	64
- 8497748495	24627243859	- 28412 19576	8 I 16	24502957494	63
- 8392634134	24351923782	- 2939765053	80	24114021661	62
- 8284832287	24070497447	- 3037374301	$80 \quad 23$	23725085828	61
- 81744 47382	23783338874	- 3133972593	7955	23336149994	60
- 8061584738	23490828015	- 3229479773	7926	229472 14161	59
- 7946350337	23193350143	- 3323809873	$78 \quad 56$	22558278328	58
- 7828850590	22891295239	- 3416870724	$78 \quad 26$	22169342495	57
- 7709192109	2.2585057383	- 3508563539	$77 \quad 54$	21780406662	56
- 7587481476	22275034151	- 3598782486	$77 \quad 21$	21391470828	55
- 7463825018	21961626008	- 3687414237	$\begin{array}{ll}76 & 47\end{array}$	21002534995	54
- 7338328587	21645235708	- 3774337507	$\begin{array}{ll}76 & 12 \\ 75 & \end{array}$	2.0613599162	53
- 7211097334	21326267708	- 3859422578	$\begin{array}{ll}75 & 36\end{array}$	20224663329	52
0.7082235503	21005127578	- 3942530813	$74 \quad 58$	1.9835727495	51
- 69518 46210	20682221426	- 4023514155	$74 \quad 20$	9446791662	50
- 6820031247	2035795533	- 4102214630	$73 \quad 40$	1.9057855829	49
- 6686890878	20032734790	- 4178463843	7258	I 8668919996	48
- 6552523646	I 9706964170	- 4252082479	72	I 8279984162	47
- 64170 26188	I 93810 46179	- 4322879822	$7 \mathrm{I} \quad 31$	I 7891048329	46
- 6280493057	I 90553 8r 344	- 4390653283	$70 \quad 45$	1 7502112496	45
A(r)	D(r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ¢	r

$K=36518559695, \quad \mathrm{~K}^{\prime}=15751136078, \quad \mathrm{E}=1017236918, \quad \mathrm{E}^{\prime}=1.5664967878$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	D (\mathbf{r})	A(r)
0	00000000000	$0^{\circ} \quad 0^{\prime}$	00000000000	I 0000000000	00000000000
I	-04057 61774	2 I	- 0292515342	I 0005938572	- OI3II 92586
2	-08115 23549	429	- 0583713484	I 002374864 I	- 0262422974
3	- 12172 85323	655	- 0872294380		00393728749
4	- I6230 47098	916	- II569 9I8I2	I 0094904192	00525147063
5	- 2028808872	II 33	01436589152	I Or48I 81886	$\begin{array}{lll}0 & 06567 & 14426\end{array}$
6	- 2434570646	I3 49	- 1709933783	I 02I3I 95491	00788466485
7	- 284033242 I	164	- 1975949853	I 0289882841	00920437819
8	- 32460 94195	$18 \quad 17$	- 2233649075	I 03781 70450	01052661731
9	- 3651855969	$20 \quad 29$	- 2482 I 3938 I	I 0477973504	$0 \text { II85I } 7004 \mathrm{I}$
10	04057617744	2239	02720631341	I 0589195857	0 I3I79 92889
II	04463379518	$24 \quad 46$	- 2948442309	I 0711730024	- I4511 58534
12	- 4869141293	$26 \quad 52$	- 3164998365	I 0845457174	01584693168
13	- 5274903067	2856	- 3369834175	I 099024713 I	0
I4	- 568056484 I	$30 \quad 58$	- 3562590959	I II459 58374	- I8529 627 II
I5	0 6086426616	3255	- 3743012782	I 1312438038	- 19877 38016
16	- 64921 88390	34 51	- 3910941430		02122962758
17	- 6897950165	3644	- 40663 IOI47	$\begin{array}{llllll}\text { I } & 16770 & 34514\end{array}$	02258650123
18	- 73037 11939	$38 \quad 36$	04209136481	I 1874788983	023948 I02II
19	- 77094737 I 3	$40 \quad 24$	- 4339514533	I 2082587235	02531449894
20	o 8II52 35488	429	04457606829	I 2300219929	02668572683
2 I	- 8520997262	43 51	- 4563636044	I 2527466524	- 2806178600
22	- 8926759037	45 3I	- 4657876783	I 2764095335	02944264067
23	- 9332520811	478	0 4740647564	I 3009863590	- 3082821794
24	- 9738282585	$48 \quad 42$	04812303147	I 3264517509	03221840690
25	I OI440 44360	5013	04873227312	I 3527792393	03361305773
26	I 05498 06I34	5142	- 4923826159	I 3799412721	- 35011 98097
27	I 0955567908	538	- 49645 21966	I 4079092268	- 3641494689
28	I 13613 29683	54 3I	- 4995747663	I 4366534239	- 3782I 68497
29	I 17670 91457	55 5I	05017941897	I 4661431412	03923188350
30	I 2172853232	$57 \quad 9$	- 5031544701	I 4963466307	04064518927
3 I	I 25786 I 5006	$58 \quad 25$	- 5036993739	I 52723 I 1369	04206120743
32	I 2984376780	5938	- 5034721104	15587629167	043479 50141
33	I 3390138555	6048	- 50251 50624	I 5909072622	04489959303
34	I 3795900329	6 I 56	- 50086 95651	I 623628524 I	04632096265
35	I 4201662104	$63 \quad 2$	- 4985757270	$\begin{array}{lll}165689 & 01387\end{array}$	04774304952
36	I 4607423878	645	- 4956722903	I 6906546558	0 4916525218
37	I 50131 85652	657	- 49219 65260	I 7248837696	05058692908
38	1 5418947427	666	- 48818 41583	r $75953{ }^{83514}$	05200739919
39	I 5824709201	673	04836693168	I 7945784847	- 5342594285
40	I 6230470975	$67 \quad 58$	- 4786845099	I 8299635024	- 5484 I 80268
4 I	I 6636232750	68 51	04732606189	I 8656520265	- 56254 I 846 I
42	I 7041994524	$\begin{array}{ll}69 & 42 \\ 70\end{array}$	0 4674269071	I 9016020099	05766225903
43	I 7447756299	70	04612110428	I 9377707807	- 5906516209
44	I 7853518073	719	04546391336	I 974II 5088I	- 6046I 99704
45	I 8259279847	725	- 4477357684	20105911517	- 61851 83573
90-r	F ψ	ψ	G(r)	C(r)	B(r)

Smithsonian Tables
$q=0$ 257940195766337, $\Theta 0=04929628191, \quad \mathrm{HK}=15205617314$

$\mathrm{B}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
10000000000	30930199213	- 0000000000	$90^{\circ} 0^{\prime}$	36518559695	90
- 9997707150	30923385676	- 0108590483	8945	36112797920	89
- 9990831458	30902954977	-0217I 66503	8931	35707036146	88
- 99793 81489	30868936827	- 0325713506	8916	35301274372	87
- 9963371496	30821380679	-04342 16747	89	34895512597	86
- 994282138 r	30760355627	- 0542661204	8847	34489750823	85
- 9917756649	30685950269	-06510 31473	$88 \quad 32$	3 34083989048	84
- 9888208340	30598272527	- 0759311673	$88 \quad 17$		83
- 9854212955	30497449431	- 0867485345	88	33272465500	82
- 9815812363	30383626866	- 0975535344	8746	32866703725	8 I
- 9773053698	30256969280	- 1083443731	$87 \quad 30$	32460941951	80
- 9725989240	30117659358	- I1911 91660	8714	3 20551 80177	79
- 9674676286	29965897659	- 1298759255	86	31649418402	78
- 96191 77007	29801902223	- 14061 25487	$86 \quad 42$	31243656628	77
- 9559558299	29625908137	- 15132 68040	$86 \quad 25$	30837894853	76
- 9495891609	29438167083	- 1620163172	86	30432133079	75
- 9428252769	29238946843	- 1726785562	$85 \quad 50$	30026371305	74
- 9356721802	29028530783	- 18331 08161	8532	29620609530	73
- 9281382732	28807217308	- 1939102013	$\begin{array}{ll}85 & 14\end{array}$	29214847756	72
- 9202323376	28575319293	- 2044736088	8455	2880908598 r	7 I
- 91196 35133	28333163492	- 2149977081	8436	28403324207	70
- 9033412763	28081089917	- 2254789218	84 I6	27997562433	69
- 8943754154	27819451210	- 2359134034	8355	27591800658	68
- 8850760096	27548611988	- 2462970143	8334	27186038884	67
- 8754534034	27268948173	- 2566252995	83 I	26780277109	66
- 86551 81826	26980846313	- 2668934606	8251	26374515335	65
- 85528 II491	26684702880	- 2770963287	$82 \quad 28$	25968753561	64
- 8447532958	26380923575	- 2872283335	824	25562991786	63
- 8339457809	26069922604	- 2972834722	$8 \mathrm{8r} 39$	${ }^{2} 5157230012$	62
- 8228699019	25752121966	- 3072552753	81 14	${ }^{2} 4751468238$	6 I
- 81153 70701	25427950725	- 31713 67705	80	24345706463	
- 7999587840	25097844281	- 3269204449	$80 \quad 21$	2 39399 2 3534689	
- 7881466036	24762243648	- 3365982039	$79 \quad 53$	23534182914	58
- 77611 21247	24421594723	- 3461613287	$\begin{array}{ll}79 & 24\end{array}$	23128421140	57
- 7638669524	24076347564	- 35560 04313	$78 \quad 54$	22722659366	56
- 7514226764	23726955671	- 3649054063	$\begin{array}{ll}78 & 23\end{array}$	22316897591	55
o 73879 08451	23373875276	- 3740653814	77 51	2 19111 35817	54
o 7259829409	23017564635	- 3830686651	$\begin{array}{ll}77 & 18\end{array}$	21505374042	53
- 7130103561	22658483337	- 3919026919	$\begin{array}{ll}76 & 44 \\ 76 & 8\end{array}$	2 10996 2 06938	52
- 6998843682	22297091619	- 4005539659	76	20693850494	51
- 68661 61172	21933849695	- 4090080023	$75 \quad 3 \mathrm{I}$	20288088719	
- 67321 65825	21569217102	- 4172492673	$\begin{array}{ll}74 & 53 \\ \end{array}$	1 9882326945	49
- 6596965607	21203652053	- 4252611165	74 13 73		
- 6460666446	20837610820	- 4330257335	$\begin{array}{ll}73 & 32 \\ 72 & \\ 7\end{array}$	19070803396 r. 86650 41622	47 46
- 6323372022	20471547117	- 4405240667	7249	1.8665041622	46
0.6185183573	20105911517	- 4477357684	$72 \quad 5$	1.82592 79847	45
A(r)	D(r)	E (r)	ϕ	F ϕ	I

$\mathbf{K}=3.8317419998, \quad \mathbf{K}^{\prime}=15737921309, \quad \mathrm{E}=10126635062, \quad \mathrm{E}^{\prime}=15678090740$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	$\mathbf{D}(\mathbf{r})$	A(\mathbf{r})
0	00000000000	$0^{\circ} \quad 0^{\prime}$	00000000000	10000000000	0 0000000000
1	00425749111	226	00312975841	I 0006667396	- 01256 98450
2	-08514 98222	$4 \quad 52$	- 0624425476	I 0026663652	- 0251445765
3	- 1277247333	$7 \quad 18$	- 0932844601	I 0059970974	00377290570
4	- 1702996444	$9 \quad 43$	01236772052	x 0106559692	00503281006
5	0 2128745555	126	01534809749	I Or663 88247	- 0629464495
6	- 2554494667	1429	- I825640780	I 0239403165	- 0755887497
7	- 2980243778	1650	- 2108045154	10325539030	008825 95281
8	- 3405992889	199	- 2380912866	I 0424718453	01009631685
9	- 3831742000	2 I 26	- 2643254039	I 0536852030	- 11370 38895
10	O 42574 9IIII	2342	- 2894206026	I 06618 38299	- 12648 57214
II	- 4683240222	2555	- 3133037505	I 0799563700	- 1393I 24846
12	- 5108989333	285	- 3359r 49667	I 0949902519	- 15218 77682
I3	- 5534738444	3013	- 3572074739	I 1712716844	0.1651149087
14	- 5960487555	3218	-3771472117	I 1287856513	- 17809 69700
${ }^{1} 5$	- 6386236666	34 21	- 3957122464	I I475I 59063	- I9113 67239
16	- 68119 85777	3620	04128920138	I 1674449685	- 2042366315
17	- 7237734889	3817	- 4286864336	I 1885541178	- 2173988246
18	- 7663484000	40 II	- 4431049337	I 2108233907	- 2306250891
I9	- 8089233111	42 I	- 4561654173	123423 1577I	0 2439168485
20	- 8514982222	4349	- 4678932075	I 2587562174	- 2572751484
21	- 8940731333	$45 \quad 33$	- 4783 I 99952	I 2843736007	- 2707006428
22	- 9366480444	47 I5	- 4874828 I 42	I 3110587634	- 2841935800
23	- 9792229555	4853	- 4954230625	I 3387854900	- 2977537910
24	I 0217978666	$50 \quad 28$	- 5021855842	1 3675263142	- 3113806778
25	I 0643727777	520	- 50781 78217	I 3972525218	- 3250732040
26	r 1069476888	5329	- 5123690454	I 4279341552	- 3388298857
27	I 1495225999	5456	- 5158896635	I 45954 oor95	- 3526487839
28	I 19209 75110	56 I9	- 51843 06I38	I 4920376904	- 3665274982
29	I 2346724222	5739	- 5200428338	I 5253935243	- 38046 31619
30	I 2772473333	$58 \quad 59$	- 5207768087	I 5595726706	- 3944524378
31	I 3198222444	6012	- 5206821896	I 59453 90851	- 40849 r5164
32	I 3623971555	6124	- 51980 74799	I 6302555479	042257 6II40
33	I 4049720666	6234	- 5I819 978II	I 6666836814	- 43670 I4735
34	I 4475469777	63 4I	- 5I590 45944	I 7037839728	0.4508623658
35	I 4901218888	6446	- 5×29656697	1 7415157980	0.4650530926
36	I 5326967999	6548	- 5094248984	- 7798374487	0.4792674909
37	1.5752717110	6648	- 505322242 I	I 8187061627	- 4934989386
38	I 61784 6622I	6746	- 5006956936	I 8580781564	- 50774 03615
39	I 6604215332	68 4I	- 4955812646	I 8979086607	- 5219842419
40	I 7029964444	6935	0 49001 29952	I 93815 19599	- 536222628 r
4 I	I 74557 I3555	$70 \quad 26$	- 4840229824	I 9787614331	- 5504471457
42	I 7881462666	71 16	- 4776414227	20196895998	- 5646490099
43	18307211777	723	- 4708966670	20608881669	- 5788r 90394
44	I 8732960888	7249	0 4638I 52836	21023080805	- 5929476712
45	1 9158709999	$73 \quad 33$	-45642 21286	21438995792	-60702 49768
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	$\mathbf{B}(\mathbf{r})$

[^3]$q=0$ 275179804873563, $Ө 0=04610905222, \quad$ HK $=15588714533$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
I 0000000000	33872870037	02000000000	$90^{\circ} \quad 0^{\prime}$	38317419998	90
- 9997605041	33864990904	0 OIO92 82I85	8947	3.7891670887	89
- 9990423353	3 38413 65337	00218552713	8934	37465921776	88
- 9978464504	338020 28815	- 0327799847	8922	37040172665	87
- 9961744409	33747040379	- 04370 11679	899	3.6614423554	86
- 9940285290	33676482512	0 05461 76051	$88 \quad 56$	36188674443	85
- 9914I 15622	335904 6096I	- 0655280467	8843	357629 2533I	84
- 9883270058	33489104507	00764312000	$88 \quad 29$	35337176220	83
- 9847789335	33372564694	00873257205	8816	34911427109	82
- 9807720177	332410 I5504	- 0982I 02023	$88 \quad 2$	34485677998	81
- 97631 15168	33094652989	01090831677	8749	34059928887	80
09714032619	32933694854	0 II994 30573	8735	3 3634I 79776	79
- 9660536420	32758379999	- 13078 82183	8720	33208430665	78
- 9602695874	32568968018	0 I4I61 68937	876	327826 81554	77
- 9540585520	32365738654	- I5242 72092	86 5x	32356932443	76
- 9474284947	32148991220	-16321 71605	8635	3 I93II 83332	75
- 9403878585	31919043978	- 1739845990	8620	31505434221	74
- 9329455499	31676233486	- 18472 7217 I	864	31079685109	73
- 92511 09158	31420913909	- 19544 2532 I	8548	30653935998	72
- 9168937204	31153456304	0 2061278689	8531	30228186887	71
09083041205	30874247870	- 21678 03419	85 I3	29802437776	70
- 8993526403	30583691177	- 2273968349	8455	29376688665	69
- 8900501452	30282203368	- 2379739802	8437	28950939554	68
- 88040 78I52	29970215345	- 2485081357	84 I8	28525190443	67
- 8704371170	29648170925	- 2589953603	$83 \quad 58$	280994 41332	66
- 8601497763	29316525995	- 2694313876	$83 \quad 38$	27673692221	65
- 8495577491	2897574764 I	- 27981 I5977	8317	27247943110	64
- 8386731932	28626313272	0290130987 I	8255	26822193999	63
- 8275084383	28268709732	- 3003841353	8233	26396444888	62
- 8160759576	27903432412	- 31056 51708	8210	25970695776	61
- 8043883372	27530984351	- 3206677330	8 I 46	25544946665	60
- 7924582474	27151875345	- 3306849323	8 I 21	2.51191 97554	59
- 7802984129	26766621047	- 3406093073	8055	24693448443	58
- 76792 I5834	26375742081	- 3504327789	$80 \quad 28$	2.4267699332	57
- 7553405043	25979763158	o 3601466018	80 0	2.3841950221	56
- 7425678883	255792 I2198	- 3697413124	79 3I	2.34162 OrIIO	55
- 7296163864	25174619471	- 3792066740	$79 \quad 2$	2.2990451999	54
- 71649 85603	24766516742	- 3885316185	$78 \quad 30$	22564702888	53
- 7032268545	24355436438	- 3977041848	$\begin{array}{ll}77 & 58 \\ 77 & \end{array}$	2.2138953777	52
- 68981 35699	23941910827	04067 I 14546	$77 \quad 24$	2 I7I32 04666	51
- 6762708370	23526471220	- 4155394843	$76 \quad 50$	21287455554	50
- 66261 05910	23109647190	- 4241732345	76 I3	2.0861706443	49
- 6488445467	22691965819	- 4325964967	$75 \quad 35$	20435957332	48
- 6349841750	2.2273950955	- 44079 I8I72	$74 \quad 56$	20010208221	47
-62104 06800	21856122515	04487404204	7416	I 9584459110	46
- 60702 49768	21438995792	- 4564221286	$73 \quad 33$	I 9158709999	45
A(r)	D (r)	E(r)	ϕ	F ϕ	r

$K=40527581695, \quad K^{\prime}=15727124350, \quad E=10086479569, \quad E^{\prime}=15688837196$,

1	F ϕ	ϕ	E(r)	$\mathrm{D}(\mathrm{r})$	A(r)
0	00000000000	$0^{\circ} \quad 0^{\prime}$	00000000000	I 0000000000	00000000000
I	00450306463	235	00337931823	r 0007614948	- OII89 42847
2	00900612927	59	- 0674053633	I 003045367 I	00237947903
3	- 13509 19390	743	- 1006584494	r 0068497794	0 0357077106
4	- 18012 25853	1016	0 1333800630	1 OI217 16668	0 0476391855
5	02251532316	1248	- 16540 61602	1 O1900 67332	00595952742
6	- 27018 38780	15 I8	- 1965833739	1 0273494459	00715819286
7	- 31521 45243	I7 46	- 2267710168	I 0371930291	- 0836049670
8	-36024 51706	20.13	- 2558426948	I 0485294558	0 0956700478
9	$\bigcirc 4052758170$	$22 \quad 37$	- 283687502 I	I 0613494387	0 10778 2644I
IO	04503064633	$24 \quad 58$	- 3102I 07894	1 0756424197	- II994 80182
11	- 4953371096	2718	- 3353345137	I 0913965585	$\begin{array}{lllll}0 & 13217 & 11972\end{array}$
12	- 5403677559	2934	- 3589971966	I 1085987206	- 1444569485
I3	0.5853984 .023	3147	- 38115 3529I	I 1272344637	- I5680 97563
14	- 6304290486	$33 \quad 57$	- 4017736714	I 1472880243	0
15	- 6754596949	364	04208423033	I 1687423039	- 18173 29260
16	- 7294903413	388	- 4383574800	r 1915788539	$0 \text { 1943I } 06384$
17	- 7655209876	40	0 4543293515	I 2157778616	02069700661
18	$\bigcirc 8105516339$	$42 \quad 5$	- 4687787966	I 2413I 81358	
19	- 8555822802	$43 \quad 58$	04817360209	I 2681770925	02325446217
20	- 90061 29266	$45 \quad 53$	- 4932391602	I 2963307415	- 2454639877
21	- 9456435729	$47 \quad 35$	- 5033329227	I 3257536734	02584735115
22	- 9906742192	$\begin{array}{ll}49 & 18\end{array}$	- 51206 72988	I 35641 90478	- 2715741984
23	I 0357048656	$\begin{array}{ll}50 & 57\end{array}$	05194963591	I 3882985826	- 2847665811
24	I 08073 55119	5233	- 52567 71528	I 42 I36 25446	50707 I
25	I 1257661582	546	- 5306687177	I 4555797413	$\begin{array}{lll}0 & 31142 & 61261 \\ 0 & 32489 & 18800\end{array}$
26	I 17079 68045	$\begin{array}{ll}55 & 36 \\ 57 & 2\end{array}$	- 5345312033	$\begin{array}{lll}\text { I } 49091 & 75157 \\ \text { I } 52734 & \text { I74I }\end{array}$	0 3248918800 0 0 3384464932
27	I. 2158274509	57 5	0.5373251072	I 5273417416	0 0 0 0 338208474932
28	I. 2608580972	$\begin{array}{ll}58 & 25 \\ 5\end{array}$	$\begin{array}{llll}0 & 53911 & 06227 \\ 0 & 53994 & 70893\end{array}$	15648168225 I 6033056919	$\begin{array}{lll} 0 & 35208 & 79650 \\ 0 & 3658 \mathrm{I} & 37630 \end{array}$
29	I 3058887435	5945	- 5399470893	16033056919	03658137630
30	I.35091 93898	612	- 5398925408	I 6427698172	- 3796208180
3 I	I 3959500362	6216	- 539003342 I	I 68316 92055	- 3935055205
32	I 4409806825	$63 \quad 28$	- 5373339051	I 7244624133	0 4074637182
33	I 4860113288	6736	- 53493 64751	I 7666065590	- 42149 O7I6I
34	I 53104 19752	6542	- 53186 09786	I 8095573388	04355812766
35	I 5760726215	6645	- 52815 49246	I 8532690463	- 4497296226
36	I 6211032678	6746	- 5238633506	I 8976945959	- 4639294409
37	r.666I3 39141	6844	- 5190288062	I 9427855494	04781738881
38	I. 7111645605	6940	- 5136913678	I 9884921476	- 4924555978
39	I 75619 52068	$70 \quad 33$	- 5078886793	20347633449	05067666888
40	I. 801225853 I	71	- 5016560117	20815468491	- 5210987757
41	I 8462564995	$\begin{array}{ll}72 & 14\end{array}$	- 4950263387	$\begin{array}{lllll}2 & 12878 & 91642\end{array}$	05354429804
42	г 8912871458	$\begin{array}{rr}73 & 2 \\ 73 & 47\end{array}$	0 0 0 0 88060304242	$\begin{array}{llll}2 & 17643 & 56384 \\ 2 & 22443 & 05163\end{array}$	O 5497899455 0
43	I 9363I 7792 I	$\begin{array}{ll}73 & 47 \\ 74 & 31\end{array}$	- 4806969176 o 4730524550	$\begin{array}{llll}2 & 22443 & 05163 \\ 2 & 27271 & 69945\end{array}$	05641298491 05784524208
44	I 98134 84385	74 31	- 4730524550	22727 I 69945	05784524208
45	20263790848	$75 \quad 12$	- 4651217631	23212372832	- 5927469597
90-r	F ψ	ψ	G(r)	C(r)	B(r)

[^4]$q=0$ 295488385558687, $Ө 0=04242361430, \quad \mathrm{HK}=16043008048$

$\mathrm{B}(\mathrm{r})$	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
I 0000000000	37862365254	- 0000000000	$90^{\circ} 0^{\prime}$	40527581695	90
- 9997476964	37852999318	- 0109879345	8949	40077275232	89
- 99899 II477	37824916163	- 0219749829	8938	39626968769	88
o 99773 I4382	37778159714	- 0329602520	8928	39176662306	87
- 9959703726	37712803065	- 0439428343	$89 \quad 17$	38726355842	86
- 99371 04703	37628948312	- 0549218007	89	38276049379	85
- 9909549588	37526726317	- 06589 61931	$88 \quad 54$	37825742916	84
- 9877077652	37406296405	- 0768650165	8843	37375436452	83
- 9839735058	37267846000	00878272314	$88 \quad 32$	36925129989	82
- 9797574732	37111590191	0.0987817452	8820	36474823526	81
- 9750656227	36937771248	- 1097274034	88	36024517063	80
- 9699045558	36746658061	- 1206629807	87	35574210599	79
- 96428 I5032	36538545535	- 1315871709		35123904136	78
- 9582043054	36313753926	- 1424985767	8732	34673597673	77
- 95168 I3914	360726 28II4	- 1533956986	87 19	34223291209	76
- 9447217573	358 r 5536840	- 1642769227	87	33772984746	75
- 9373349419	35542871880	- 1751405085	$86 \quad 52$	333322678283	74
- 92953 rooi7	35255047184	- 1859845746	8638	32872371820	73
- 9213204850	34952497967	- 1968070842	8624	32422065356	72
- 91271 44039	34635679762	- 2076058292	86	31971758893	71
- 9037242062	34305067437	- 2183784126	85	31521452430	70
- 8943617453	3 39611 54178	- 2291222300	8538	3 107II 45967	69
- 8846392502	33604450445	- 2398344495	$85 \quad 22$	30620839503	68
- 8745692937	33235482896	O 25051 19896	85	30170533040	67 66
- 8641647610	32854793300	- 26115 14957	8448	29720226577	66
- 8534388167	32462937417	- 2717493142	8430	29269920113	65
- 8424048716	32060483874	- 2823014649	84 II	28819613650	64
- 8310765499	31648013024	- 2928036106	8352	28369307187	63
- 81946 76545	31226115798	- 3032510250	8332	27919000724	62
- 8075921336	307953 92551	- 3136385568	83 II	27468694260	61
- 7954640466	30356451912	- 3239605923	8249	27018387797	60
0.7830975297	29909909630	- 33421 10135		26568081334	59
- 7705067624	29456387432	- 3443831544	82	26117774870	58
- 7577059335	2.89965 II884	- 3544697527	8 ra	25667468407	57
- 7447092077	2.85309 I 3269	- 3644628984	81 l	25217161944	56
- 7315306927	28060224483	- 3743539786	80	24766855480	55
- 7181844065	27585079940	- 3841336176	80	24316549017	54
- 7046842455	27106114508	- 39379 16142	$79 \quad 50$	23866242554	53
- 69104 39537	26623962465	- 4033168729	79	23415936091	52
- 6772770914	2613925648 I	- 41269 7332r	$78 \quad 49$	22965629627	5 I
- 663397006 r	25652626633	- 4219198869	$\begin{array}{ll}78 & 17 \\ 77 & 43\end{array}$	2 25153 23164 2 20650	50
- 64941 68038	25164699446	- 4309703076	77	22065016701	49
- 6353493209	24676096971	- 4398331542	77	$2 \cdot 16 \mathrm{r}^{2} 710238$	48
- 6212070978	24187435896	- 44849 I 6855	$76 \quad 3 \mathrm{I}$	21164403774	46
- 60700 23531	23699326700	- 456927765 I	$75 \quad 52$	20714097311	46
- 5927469597	23212372832	- 465121763 I	$75 \quad 12$	20263790848	45
A(r)	D(r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	\mathbf{r}

$\mathrm{K}=4.3386539760, \quad \mathrm{~K}^{\prime}=15718736105, \quad \mathrm{E}=10052585872, \quad \mathrm{E}^{\prime}=1.5697201504$,

r	F ϕ	ϕ	E(r)	$\mathrm{D}(\mathrm{r})$	A(r)
0	0 0000000000	$0^{\circ} \mathrm{o}^{\prime}$	-00000 00000	I 0000000000	00000000000
I	-04820 72664	246	- 0370005198	I 0008926934	- 0110297158
2	- 0964 I 45328		- 0737786246	I 0035701695	- 0220673089
3	- 1446217992	$8 \quad 15$	- riori 59944	$\begin{array}{llll}1 & 00803 & 06141\end{array}$	oo 0331206260
4	- 1928290656	10 59	- 1458023384	x 0142709982	- 0441974541
	- 2410363320		- 1806390239	I 0222870707	- 0553054893
6	- 2892435984	16 21	- 2144422668	I 032073347 I	6645 2308I
7	- 3374508648	$18 \quad 59$	- 2470457854	I 0436230963	77764 53371
8	- 3856581312	2134	- 2783028485	I 0569283239	39
9	- 4338653976	24	- 3080876822	x 071979753 I	85
10	- 4820726640	$26 \quad 37$	- 3362962369	I 0887668032	$\begin{array}{r}115730946 \\ \hline 150212218\end{array}$
II	- 5302799304	29	- 3628463422	I 1072775652 I 1274987762	
12	- 5784871968		O 3876773064 o 41074 90335 - 432045	$\begin{array}{lll}1 & 1274987762 \\ \text { x } 1494157909\end{array}$	- 113454943838
13	- 6266944632 067490	$\begin{array}{cr}33 & 46 \\ 36 & 2\end{array}$	O 4107490335 o 4320407437	1 14941 1 17301 57909	- 015458695139
${ }_{4}$	$\bigcirc 6749017296$	362	$\bigcirc 4320407437$	11730125520	
15	- 7231089960	$38 \quad 14$	- 4515493887	I 1982715591	1696721746
16	- 77131 62624	$40 \quad 23$	0.4692878534	I 2251738362	- 1815764776
17	- 8195235288	$42 \quad 27$	- 4852830289	I 2536898988	- 1935868272
18	- 8677307952		- 4995738349	I 2838247193	- 2057071870
19	- 9159380616	$46 \quad 24$	- 51220 92565	I 3155276945	- 2179410587
20	- 9641453280	$48 \quad 16$	- 5232464512	r 3487826100	- 2302914612
21	I O1235 25944	50	- 5327489656	I 3835626077	24276 09III
22	I 0605598608	5150	- 5407850933	I 4198391529	2553514044
23	${ }_{1}^{1} 1087671272$		- 5474263924	I 457582002 I	- 2680643994
24	I 1569743936	55	- 5527463730	I 4967591734	08
25	I 2051816600	$56 \quad 40$	- 5568I 93566	I 5373369175	- 2938609452
26	I 2533889264	58 10	- 55971 95044	I 5792796919	- 3069445879
27	I 3015961928	5936	- 5615200057	I 6225501370	- 32015 08913
28	1 3498034592	$60 \quad 58$	- 5622924153	I 66710 90551	- 3334784147
29	I 39801 07256	$\begin{array}{ll}62 & 17\end{array}$	- 5621061265	I 7129153925	- 346925^{1057}
30	14462179920		- 5610279658	I 7599262260	- 3604882928
31	I 4944252584	$64 \quad 46$	- 5591218929	I 8080967519	- 3741646804
32	I 5426325248	$65 \quad 55$	- 5564487947	I 8573802804	- 3879503444
33	I 5908397912	67	- 5530663561	I 9077282336	04018407305
34	I 6390470676	68	- 5490289975	I 9590901488	04158306538
35	1 6872543240	69	- 5443878661	20114136867	- 42991 42995
36	I 7354615904	70	- 5391908711	20646446451	- 4440852267
37	1 7836688568	7 I	- 5334827539	$\begin{array}{llllllllll}2 & 11872 & 69773\end{array}$	O 4583363730
38	I 8318761232	$\begin{array}{ll}71 & 54 \\ 72\end{array}$	- 5273051847	21736028173	- 4726600609
39	I 8800833896	$72 \quad 45$	- 520696879 I	22292125107	04870480065
40	I 9282906560	$73 \quad 34$	- 5136937297	22854946508	05014913298
4 I	I 9764979224	7420	- 5063289466	23423861220	- 5159805665
42	20247051888	75	- 4986332034	23998221493	- 5305056822
43	20729124552	$\begin{array}{ll}75 & 47\end{array}$	- 4906347860	24577363538	O 5450560878
44	21211197216	$76 \quad 58$	- 4823597411	25160608149	- 5596206569
- 45	21693269880	77	- 4738320219	25747261393	- 5741877451
90-r	$\mathbf{F} \psi$	ψ	G(r)	$\mathbf{C}(\mathbf{r})$	B(r)

$q=0.320400337134867, \quad Ө 0=0.3802048484, \quad H K=16608093153$

B(r)	C(r)	G(r)	ψ	$\mathrm{F} \psi$	90-r
10000000000	43711923556	00000000000	$90^{\circ} \quad 0^{\prime}$	43386539760	90
- 9997308085	43700295871	O.OIIO3 73956	8951	4.2904467096	89
- 9989236540	43665432014	00220741777	8943	42422394432	88
- 9975797949	43607389539	- 033IO 97273	8934	41940321768	87
- 99570 I3248	43526264203	-044I4 34137	8925	41458249104	86
- 99329 II666	43422 I 8973I	-05517 45893	8916	4 0976I 76440	85
- 9903530638	4.32953 3747I	- 0662025830	897	40494103776	84
- 98689 I5704	43145915972	- 0772266944	8858	40012031112	83
- 9829120378	4 2974I 70454	00882461873	8849	39529958448	82
- 9784205999	42780382196	00992602826	8839	39047885784	8 I
0 97342 4I557	42564867836	- 1102681515	8830	38565813120	80
- 9679303503	42327978580	- 1212689076	8820	38083740456	79
- 96I94 75529	42070099336	- I3226 I5989	88 Io	37601667792	78
- 955484834 I	41791647765	- 1432451989	88	37119595128	77
- 9485519406	41493073254	- 1542I 85972	8749	36637522464	76
- 94115 92676	41174855826	- 1651805896	$87 \quad 38$	36155449800	75
- 9333I 78308	40837504971	- 1761298666	8727	35673377136	74
- 9250392359	40481558427	- 1870650017	87 I6	35191304472	73
- 9163356463	401075 80891	0.19798 44386	874	34709231808	72
- 9072197509	3 9716I 62682	- 2088864763	86 5I	34227159144	7 I
- 8977047288	39307918356	- 2197692546	8638	33745086480	70
- 88780 42140	38883485274	- 2306307363	$86 \quad 25$	332630 13816	69
- 8775322590	38443522135	- 24146 86896	86 II	32780941152	68
- 8669032971	37988707472	- 2522806673	8557	32298868488	67
- 8559321039	37519738123	- 2630639853	8542	31816795824	66
- 8446337589	37037327678	- 2738156982	$85 \quad 27$	31334723160	65
- 8330236055	36542204910	- 284532573 I	85 II	30852650496	64
- 82III 72II3	36035112193	- 2952I 10610	8454	30370577832	63
0 80893 03281	3 55I68 03915	- 3058472655	8437	29888505168	62
0.7964788516	3.4988044891	- 31643 69081	84 I9	29406432504	61
- 7837787810	34449608773	- 3269752911	$84 \quad 0$	28924359840	60
- 77084 61787	339022 7648I	- 3374572566	8340	28442287176	59
- 7576971307	3.3346834641	- 3478771421	8319	27960214512	58
0 7443477069	32784074042	- 3582287319	8257	27478141848	57
0 73081 39218	32214788118	- 3685052042	8235	26996069184	56
- 71711 16962	31639771463	- 3786990740	82 II	26513996520	55
0.70325 68193	310598 18371	- 3888021304	8 I 47	26031923856	54°
- 6892649116	30475721420	- 3988053693	8 I 2 I	25549851192	53
- 67515 13887	29888270090	04086989202	8054	25067778528	52
0.6609314267	292982,49435	- 41847 19672	$80 \quad 26$	24585705864	51
0.6466199275	2.8706438790	- 428II 26638	$79 \quad 56$	24103633200	50
- 63223 I4865	28113610542	- 4376080415	7925	23621560536	49
- 61778 03606	27520528945	o 44694 391II	$78 \quad 53$	23139487872	48
- 6032804384	26927948995	0.4561047583	$78 \quad 19$	22657415208	47
0.5887452 IIO	2.6336615364	04650736311	7744	22175342544	46
- 57418 7745I	257472 61393	04738320219	$77 \quad 7$	21693269880	45
A(r)	D(\mathbf{r})	E(r)	ϕ	F $\boldsymbol{\phi}$	r

$K=47427172653, \quad K^{\prime}=15712749524, \quad E=10025840855, \quad E^{\prime}=15703179199$,

r	F ϕ	ϕ	E(r)	D(r)	A(r)
0	- 0000000000	$0^{\circ} \mathrm{o}^{\prime}$	- 0000000000	I 0000000000	0 0000000000
I	- 0526968585		- 0415083698	I 0010949202	- 0098461866
2	- 1053937170		- 0827260369	1 0043791719	- 0197023988
3	- 1580905755		- 1233686879	I 0098512249	- 0295786287
4	- 2107874340	II 59	- 1631644916	I 0175085180	- 0394848012
5	- 2634842925	1456	- 2018596235	I 0273474434	- 0494307415
6	- 3161811510	1749	- 2392229917	I 0393633238	- 0594261408
7	- 3688780095	2040	- 2750499964	10535503843	- 0694805245
8	- 4215748680	$23 \quad 28$	- 3091652198	I 0699017180	- 0796032187
9	- 4742717265	2613	- 34142 40166	I 0884092458	- 0898033181
10	- 5269685850		- 37171 30376	I 1090636709	- 1000896542
II	- 5796654435	3 I 30	- 3999497772	I 1318544282	01104707636
12	- 6323623020	34	- 42608 12751	I 1567696284	- 1209548573
13	- 6850591605	$36 \quad 30$	- 4500821300	I 1837959985	- 13154 97896
14	- 7377560190	$38 \quad 53$	- 4719519964	I 2129188175	- 1422630292
15	- 7904528775		- 49171 27333	I 2441218489	- 15310 16293
r6	- 8431497360		- 5094053625	I 2773872698	01640721997
17	- 8958465946	$45 \quad 35$	- 5250869758	I 3126955975	01751808788
18	- 9485434531	4740	- 5388277072	I 3500256142	- 1864333074
19	1.00124 03116	4940	- 5507078595) 3893542896	01978346027
20	1 0539371701	51	- 5608r 5253I	I 4306567027	- 2093893338
21	I 1066340286	$53 \quad 25$	- 5692428378	I 4739059633	0 22110 14976
22	${ }_{1} 159330887 \mathrm{I}$		- 576086592 I	x 5190731337	O 2329744971
23	I 2120277456	$\begin{array}{ll}56 & 52\end{array}$	$\bigcirc 5814437172$	I 5661271505	O 24501 11193
24	I. 2647246041	$58 \quad 29$	- 5854111188	I 61503 47485	0 25721 35159
25	1.31742 14626		- 5880841618	x 6657603865	- 2695831846
26	I 37011 83211	6131	0.5895556773) 7182661750	- 2821209517
27	I. 4228 I 51796		- 5899151945	I 7725118082	- 2948269565
28	I 475512038 I		$\bigcirc 5892483721$	I 8284544989	- 30770 06377
29	I 5282088966		${ }^{0} 5876366017$	I 8860489185	- 3207407202
30	I 58090 5755	6646	- 5851567551	1.94524 71416	- 3339452050
31	I 6336026136	$67 \quad 56$	- 58 r 8881054 I	20059985969	- 34731 13599
32	I 6862994721	69	- 5778770364	20682500238	0 3608357125
33	I 7389963306		- 5732076019	21319454360	- 37451 40449
34	I 79169 31891	71	- 56793 III88	21970260925	- 3883413902
	I 8443900476	72	- 56210 15757	22634304764	04023120314
*36	I 8970869061	7259	- 5557687678	23310942822	- 4164195021
37	I 9497837646	73 51	- 5489785058	23999504116	- 4306565890
38	20024806231	74 4I	- 5417728388	24699289791	- 44501 53371
39	205517748 r 6		- 5341902851	25409573266	- 4594870563
40	21078743401	$\begin{array}{ll}76 & 12\end{array}$	- 5262660647	26129600482	- 4740623311
4 I	21605711986	76	- 5180323296	2.6858590255	- 4887310316
42	22132680571	77	- 5095183887	275957 3473	- 5034823272
43	22659649156	78 I4	0 5007509241	28340199954	- 5183047025
44	23186617741	$78 \quad 50$	- 4917541985	29091126530	0.5331859750
45	23713586326	7925	0.4825502516	29847630422	- 54811 33155
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	B(r)

$q=0353165648296037, \quad \Theta 0=0.3246110213, \quad \mathrm{HK}=1.7370861537$

$\mathrm{B}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	G(r)	ψ	F ψ	$90-\mathrm{r}$
I 0000000000	53529158734	00000000000	$90^{\circ} \quad 0^{\prime}$	47427172653	90
- 9997065254	53513539870	- OIIO7 55804	8954	46900204068	89
- 9988266090	534667 III20	- 0221508037	8947	46373235483	88
- 99736 177II	53388755928	- 0332253090	89 41	4.5846266898	87
- 9953I 45401	53279813106	- 0442987274	8935	45319298313	86
- 9926884456	53140076445	-05537 06778	8928	44792329728	85
- 9894880069	52969794165	- 0664407630	8921	442653 61143	84
- 98571 87199	52769268222	- 0775085650	89 I5	43738392558	83
- 98138 70401	52538853459	- 0885736405	898	43211423973	82
- 9765003636	52278956618	- 099635516 I	89 I	42684455388	8I
- 97106 70046	51990035203	- 11069 36828	$88 \quad 54$	42157486803	80
- 9650961704	51672596214	o 12174 75905	$88 \quad 46$	41630518218	79
0 9585979343	5 13271 94744	- I3279 66420	8839	41103549633	78
- 95158 32050	50954432457	- 14384 OI862	88 31	40576581048	77
- 9440636948	50554955939	- 1548775112	$88 \quad 23$	40049612463	76
- 9360518846	5.0129454947	- 16590 78361	8815	39522643878	75
- 9275609875	49678660538	- 1769303026	886	38995675293	74
- 91860 49094	49203343119	-.18794 39654	8758	38468706707	73
- 9091982095	48704310392	- 1989477822	8748	37941738122	72
- 8993560570	48 I 82405226	- 2099406015	8739	37414769537	71
- 8890941880	47638503454	- 22092 II507	$87 \quad 29$	36887800952	70
- 8784288604	470735 I1607	- 2318880216	87 I8	36360832367	69
- 8673768071	46488364589	- 2428396552	878	35833863782	68
- 8559551894	45884023314	- 2537743247	8656	35306895197	67
- 84418 1548I	4.5261472300	0.26469 O1I66	$86 \cdot 45$	34779926612	66
- 8320737552	44621717234	- 2755849098	8632	34252958027	65
- 81964 99644	43965782526	- 2864563526	86 19	33725989442	64
0.8069285610	43294708849	- 2973018370	866	33199020857	63
- 79392 81128	42609550677	- 308II 847II	$85 \quad 52$	32672052272	62
- 7806673195	41911373836	0.3189030470	85	3.2145083687	61
- 7671649636	41201253075	- 3296520072	85 21	3161815102.	60
- 7534398604	40480269653	0.3403614062	$85 \quad 5$	3 10911 46517	59
- 73951 08099	39749508972	- 35102 68681	8448	30564177932	58
- 7253965478	39010058247	- 3616435409	8429	30037209347	57
0.7111156987	38263004227	- 3722060448	84 10	2.9510240762	56
- 69668 67291	3.7509430973	- 3827084160	8351	28983272177	55
- 68212 79026	36750417706	- 3931440446	8330	28456303592	54
- 6674572351	35987036716	- 4035056060	838	27929335007	53
- 6526924519	35220351359	- 4137849862	8244	2.7402366422	52
0.6378509470	3 44514 14133	0.4239731992	8220	2.6875397837	5 I
- 6229497425	3 36812 64840	0.4340602965	8 I 55	2.6348429252	50
- 6080054504	3.2910928843	- 4440352686	8128	2.5821460667	49
- 5930342368	3.2141415421	- 4538859368	8059	252944 92081	48
0.5780517864	3.1373716225	- 4635988357	80	24767523496	47
- 5630732704	$3.06088 \quad 03834$	- 4731590851	$79 \quad 58$	242405549 II	46
o 548II 33155	29847630422	0 4825502516	$79 \quad 25$	23713586326	45
A(r)	D (\mathbf{r})	$\mathbf{E}(\mathbf{r})$	ϕ	F ϕ	\mathbf{r}

Smithsonian Tables
$K=5.4349098296, \quad K^{\prime}=15709159581, \quad E=10007515777, \quad E^{\prime}=15706767091$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	D(r)	A(r)
0	0 0000000000	$0^{\circ} 0^{\prime}$	- 0000000000	1 0000000000	- 0000000000
1	- 0603878870	327	- 0491951488	I 0014876066	- 0079798676
2	- 1207757740	654	- 0979531901	I 0059504088	- or 59727570
3	- 18 rI 1636610	$10 \quad 19$	- 1458495983	I O1338 83449	- 0239916544
4	- 2415515480	I3 42	- 1924842494	10238012862	- 0320494760
5	- 3019394350	17	- 2374917959	I 0371889963	. 00401590322
6	- 3623273220	$20 \quad 19$	- 2805500559	10535510766	- 0483329925
7	- 4227152090	$23 \quad 32$	- 3213860670	1 0728868948	- 0565838508
8	- 4831030960	2640	- 35977 96610	I 0951955002	- 0649238899
9	- 5434909830	2943	- 39556 46I36	I 1204755228	- 0733651472
10	- 6038788700	3240	- 4286275917	1 1487250597	- 0819r 93794
II	- 6642667569		- 458905^{2450}	11799415472	- 0905980283
12	- 7246546439	$\begin{array}{ll}38 & 18\end{array}$	- 4863798590	12141216208	- 09941 21860
13	- 7850425309	40	- 5110740138	I 2512609628	- 1083725614
14	- 8454304179	$43 \quad 32$	- 5330446717	I 291354139 r	- II748 94454
15	- 9058r 83049	$45 \quad 59$	- 5523770723	I 3343944250	- 1267726784
16	- 9662061919	$48 \quad 20$	- 5691787466	I 3803736227	- 1362316162
17	I 0265940789	5035	- 5835738857	1. 4292818693	- 1458750978
18	I 0869819659	5244	- 5956982320	I 4811074384	- 15571 14129
19	x 1473698529	$54 \quad 47$	- 605694585 I	I 5358365353	- 1657482707
20	1.2077577399	5643	- 6137089715	${ }^{1} 5934530865$	- 1759927682
21	1 2681456269	58.35	- 6198874725	I 6539385266	0 0 18645 13603
22	I 3285335139	$60 \quad 20$	- 6243736797	I 7172715815	- 1971298307
23	I 3889214009		- 6273067243	I 7834280514	- 2080332624
24	I 4493092879	63. 35	- 62881 98144	1 8523805926	0 2191660113
25	I 5096971749°	65	- 6290392100	I 9240985022	- 2305316788
26	I 5700850619	6630	- 6280835657	I 9985475042	- 2421330872
27	I 6304729489	67 51	- 6260635735	20756895405	- 2539722556
28	I 6908608359	$\begin{array}{ll}69 & 7\end{array}$	- 6230818462	21554825676	0 26660503772
29	I 7512487229		- 61923 29878	22378803597	- 27836 77989
30	I 81r63 66099	$\begin{array}{ll}71 & 27\end{array}$	0.6146038040	23228323203	- 2909240017
31	I 8720244969	$\begin{array}{ll}72 & 31 \\ 73\end{array}$	- 6092736149	24102833038	- 3037175832
32	I 9324I 23839	$\begin{array}{lll}73 & 32\end{array}$	- 6033146378	25001734479	- 3167462424
33	1 9928002709	$74 \quad 29$	- 5967924144	25924380185	- 3300067656
34	20531881579	$75 \quad 23$	- 5897662623	26870072681	- 3434950157
35	21135760449	7614	- 5822897341	27838063098	- 3572059222
36	21739639318		- 5744110737	28827550068	- 3711334754
37	22343518188	$\begin{array}{ll}77 & 48\end{array}$	- 5661736598	29837678796	- 3852707211
38	2.2947397058		- 55761 64315	30867540315	- 3996097596
39	2.3551275928		- 5487742910	3 1916170942	- 41414 17461
40	2.4155154798		- 5396784809	32982551932	- 4288568946
41	24759033668		0.5303569362	34065609346	- 4437444843
42	25362912538	$\begin{array}{ll}80 & 58 \\ 81\end{array}$	O 5208346089	35164214148	- 4587928694
43	25966791408	8130	$\bigcirc 5111337664$	36277182525	o 4739894906
44	2.6570670278	82	05012742646	37403276441	- 4893208915
45	2.7174549148	$82 \quad 28$	- 4912737968	38541204436	- 5047727366
90-r	F ψ	ψ	G(r)	$\mathrm{C}(\mathrm{r})$	$\mathrm{B}(\mathrm{r})$

$q=0403309306338378, \quad Ө 0=0$ 2457332317, $\mathrm{HK}=18599580878$

B(r)	C(r)	G(r)	ψ	F ψ	90-r
I 0000000000	75695897180	00000000000	$90^{\circ} \quad 0^{\prime}$	54349098296	90
o 9996643156	75670529325	o orrio 10463	8956	537452 I9426	89
- 9986579343	75594477064	- 0222019579	8953	5 31413 40556	88
- 9969828696	75467894142	- 0333025985	8949	525374 61686	87
- 9946424694	75291036233	- 0444028272	8945	51933582816	86
- 9916414052	75064260102	- 0555024979	$89 \quad 42$	51329703946	85
- 9879856557	74788022428	- 0666014556	8938	50725825077	84
- 9836824869	74462878301	- 0776995354	8934	5 or219 46207	83
- 9787404272	74089479407	- 0887965593	8930	49518067337	82
- 9731692390	73668571893	- 0998923340	8926	48914188467	8 r
- 9669798856	73200993943	0 IIog8 6648i	$89 \quad 22$	48310309597	80
- 96018 44944	72687673054	- 1220792686	$89 \quad 17$	47706430727	79
- 9527963165	72129623044	- I3316 99380	8913	47102551857	78
- 9448296828	71527940797	- 1442583704	898	46498672987	77
- 9362999559	70883802759	- I5534 42469	893	458947 94II7	76
- 9272234802	70198461207	- 1664272118	8858	452909 I5247	75
- 91761 75278	694732 40301	- 17750 68667	8853	4.4687036377	74
- 9075002426	687095 3İ948	- 1885827648	8847	44083157507	73
- 8968905812	679087 91481	- I9965 44048	88 4I	43479278637	72
- 8858082522	67072533191	- 2107212232	8835	42875399767	71
- 8742736532	66202325717	- 2217825863	$88 \quad 29$	42271520897	70
- 8623078063	65299787323	- 2328377807	8822	41667642027	69
- 8499322921	64366581080	- 2438860035	88 I5	41063763157	68
- 83716 91826	63404409975	- 2549263501	887	40459884287	67
08240409732	6 24150 II966	- 2659578012	8759	39856005417	66
08105705141	61400155012	- 2769792084	$87 \quad 51$	39252126547	65
- 7967809414	60361632083	- 2879892768	8742	38648247677	64
- 7826956083	59301256192	- 298986547 I	8733	38044368807	63
- 7683380165	58220855452	- 3099693739	8723	37440489937	62
- 7537317477	57122268183	- 3209359022	87 12	36836611067	61
0 73890 03962	5.6007338100	- 3318840408	87 I	36232732197	60
- 7238675024	54877909576	- 3428 I 14317	8650	35628853328	59
- 7086564877	53735823026	- 35371 54168	8637	35024974458	58
- 6932905904	525829 10413	- 3645929992	8624	34421095588	57
- 6777928032	51420990885	- 37544 08012	8610	3 38172 16718	56
- 66218 58136	50251866588	- 3862550154	8555	3.3213337848	55
- 6464919448	490773 18631	- 3970313507	8540	32609458978	54
- 6307330999	47899103252	- 4077649715	$85 \quad 23$	32005580108	53
- 61493 07081	46718948167	- 41845 04298	856	31401701238	52
- 5991056732	45538549133	- 4290815883	$84 \quad 47$	30797822368	5 I
- 5832783254	44359566732	- 4396515347	$84 \quad 27$	30193943498	50
- 5674683750	43183623371	- 4501524856	846	29590064628	49
- 5516948696	4.2012300521	- 4605756791	$\begin{array}{ll}83 & 44 \\ 83\end{array}$	28986185758	48
- 53597 61539	4.08471136196	04709112546	83	28382306888	47
- 5203298326	39689622668	$\bigcirc 48 \mathrm{II} 4$ 8II89	8255	27778428018	46
- 5047727366	38541204436	- 4912737968	$82 \quad 28$	27174549148	45
A(r)	D (r)	$\mathbf{E}(\mathrm{r})$	ϕ	F ϕ	I

Smithsonian Tables

INDEX

The numbers refer to pages.
A
PAGE
PAGE
Absolute convergence. 109
Addition formulas, Elliptic Functions 250
Algebraic equations 2
Algebraic identıties. I
Alternating series IrO
Archimedes, spiral of. 52
Area of polygon 36
Arithmetical progressions 26
Asymptotes to plane curves 40
Axial vector. 95
B
Ber and Bei functions 204
Bernoullian numbers. 25
polynomial 140
Bessel functions 196
addition formula. 199
multiplication formula. 199
references. 213
Bessel-Clifford differential equation 205
Beta functions I_{32}
Binomial coefficients. 19
Binormal 59
Biquadratic equations 10
Bromwich's expansion theorem 212
C
Cassinoid 53
Catenary 52
Cauchy's test 109
Center of curvature, plane curves 39
surfaces. 56
Change of variables in multiple inte- grals $1 \ddot{7}$
Characteristic of surface 56
Chord of curvature, plane curves 39
Circle of curvature 39
Circular functions, see Trigonometry Cissoid 53
Clairaut's differential equation. x66
Coefficients, binomial. 19
Combinations. 17
Comparison test 109PAGE
Complementary function 167
Concavity and convexity of planecurves38, 42
Conchoid 53
Conditional convergence rog
Confluent hypergeometric function 185
Conical coordınates. 104
Consistency of linear equations I5
Convergence of binomial series II7
tests for infinite series rog
Covariant property 17
Cubic equations 9
Curl. 93
Curvature, plane curves 38
space curves 58
Curves, plane 36
space 57
Curvilinear coordnates 99
Curvilinear coordinates, surfaces of revolution. 106
Cycloid 51
Cylindrical coordinates 32, 102
Cylinder functions, see Bessel functions 197
D
d'Alembert's Test 109
Definite integrals, computation by dif- ference functions 225
Simpson's method 221
expressed as infinite series. 134
de Moivre's theorem 66
Derivatives ${ }^{5} 55$
of definite integrals. ${ }^{5} 5$
of implicit functions. I6I
Descartes' rule of signs 5
Determinants. II
Difference functions. 222
Differential equations 162
numerical solution. 220
Differentiation of determinants 13
Discriminant of biquadratic equa- tion II
Divergence 93
Double periodicity of elliptic functions 250
E PAGE
Ellipse 46
Ellhpsoidal coordinates IO2
Elliptic cylinder coordınates 104
Elliptic integrals, first kınd. 245
second kind 248
third kind 251
Elliptic integral expansions 135, 195
Envelope 40
Envelope of surfaces 56
Epicyclord 52
Equations, algebraic 2
transcendental, roots of 84
Equiangular spiral 53
Eta functions 251
Euler's constant. 27
summation formula 25
transformation formula II3
theorem for homogeneous functions ${ }^{1} 57$
Eulerian angles 32
Evolute 39
Exact differential equations 163, 177
Expansion of determinants 13
Expansion theorem, Bromwich's 212
Heaviside's 212
F
Finite differences and sums. 20
Finite products of circular functions 84
Finite series, special 26
Fourner's series 136
Fresnel's integrals. I34
Functional determinants. I6
G
Gamma function I3I
Gauss's II function I33
theorem 95
Geometrical progressions 26
Gradient of vector 93
Graeffe's method 8
Green's theorem 95
Gregory's series 122
Gudermannian 76
H
Harmonical progressions 26
Harmonics, zonal I9I
Heaviside's operational methods 210
expansion theorem 2 I 2
Helical coordinates IO6
Hessian I6PAGE
Homogeneous differential equations 162, $166, \mathrm{I} 77$
Homogeneous linear equations I5
Horner's method 7
l'Hospital's rule. 145
Hyperbola 48
Hyperbolic functions 71
spiral 52
Hypergeometric differential equation 209
series 209
Hypergeometric function, confluent 185
Hypocycloid 52
I
Identities, algebraic I
Implicit functions, derıvatives of 16I
Indeterminate forms 145
Indıcial equation I74
Infinite products I30
series 109
Integrating factors 163
Interpolation formula, Newton's 22
Intrinsic equation of plane curves 44
Involute of plane curves 39

- J
Jacobian I6
K
Ker and Keı functions 205
Kummer's transformation II4
L
Lagrange's theorem II2
Laplace's integrals I93
Latus rectum, ellipse 48
hyperbola 49
parabola 46
Leclert's transformation II5
Legendre's equation I9I
Leibnitz's theorem I57
Lemniscate 53
Limiting values of products I52
sums I5I
Linear equations I5
Linear vector function 96
Lituus 53
Logarithmic spiral 53
M
Maclaurin's theorem II2
Markoff's transformation formula II3

	PAGE		PAGE
Maxima and minima	152	Polynomial	
Mehler's integrals	193	Bernoullian	25
Minor of determınant	14	series	119
Multinomial theorem.	120	Principal normal to space curves	58
Multiplication of determinants	12	Products, finite of circular functions	84
Multiple roots of algebraic equations	5	limiting values of of two series	$\begin{aligned} & \text { I52 } \\ & \text { IIO } \end{aligned}$
N		Progressions .	26
Neoid . .		Prolate spheroidal coordinates	ro7
Neumann's expansion, zonal harmonics \qquad		Q	
Newton's interpolation formula.	22	Quadratic equations ..	9
method for roots of equations	7	Quadrıplanar coordinates...	33
theorem on roots of algebraic equations ...	2	R	
Normal to plane curves.			
Numbers, Bernoull's. . .	140	Raabe's test. .	109
Euler's . . .	141	Radius of curvature, plane curves	38,42
Numerical series.	140	space curves.	58
Numerical solution of differential equa-		surfaces.	55
tions	220	Radius of torsion	59
		Reciprocal determinants	14
0		Resolution into partial fractions	20
		Reversion of series	II6
Oblate spheroidal coordinates.	107	Rodrigues' formula	193
Operational methods	210	Roots of algebralc equations	2
Orthogonal curvilinear coordinates	100	transcendental equations. .	84
		Rot .	93
P		Routh's rule.	6
II function, Gauss's	133	S	
Parabola. .	45	S	
Parabolic coordinates	107	Scalar product.	9 I
Parabolic cylinder coordınates	105	Schlomilch's expansion, Bessel fun	
Parabolic spiral . .	53	trons	201
Parallelepipedon, volume of	92	Series, finite, circular functions..	81
Partial fractions	20	infinite	109
Particular integral	167	special finite.	26
Pedal curves	40	numerical	140
Pendulum. .	247	of Bessel functions	201
Permutations and combinations	17	hypergeometric	209
Plane.	53	of zonal harmonics	194
Plane curves	36	Simpson's method	22 I
polar coordinates....		Singular points	4 I
Plane geometry	34	Skew determinants.	14
Points of inflexion	39, 42	Skew-symmetrical determinants	I5
Polar coordinates 32	2, IOI	Sold geometry	53
Plane curves		Space curves	57
Polar subtangent.		Spherical polar coordinates	
subnormal		Spherical triangles	
normal		Spheroidal coordinates	$1 \bigcirc 7$
tangent.		Spiral of Archimedes	
Polar vector.	95	Stirling's formula	28

PAGE PAGE
Stokes's theorem 95
Sturm's theorem 6
Subnormal. 36
Subtangent 36
Sums, limiting values of. 151
Summation formula, Euler's 25
Surfaces 55
Symbolic form of infinite series II2
Symbolic methods in differential equa- tions. 173
Symmetrical determinants 14
Symmetric functions of roots of algebraic equations. 2
T
Tables, binomial coefficients 20
hyperbolic functions 72
trigonometric functions 62
Tangent to plane curves 36
Taylor's theorem III
Theta function 248, 251
Toroidal coordinates ro8
Tractrix 53
Transcendental equations, roots of 84
Transformation of coordinates 29
determinants. I2

[^0]: ${ }^{1}$ Often it is not necessary to carry along the decimal and zeros to the left of the first significant figure.

[^1]: Smithsonian Tables

[^2]: Smithsonian Tables

[^3]: Smithsonian Tables

[^4]: Smithsonian Tables

