
it胞名4,2020

\%

7.17.

NO SUBSCRIPTION RECEIVED FOR LESS THAN THE COMPLETE WORK-68 PARTS.

Suinimatr (Crrutiun;

POPULAR EDITION OF

"OUR LIVING WORLD,"

A NATURAL HISTORY

By
The Rev. J. G. Wood.

REVISED AND ADAPTED IO
AMERICAN ZOOLOGY,
BY
JOSEPH B. HOLDER, M.D.,
Fellou of the New York fcademy of Sciences; Member of the Society of Naturalists, E. UT. S.; Member of the fmerican Ornithologists' Union; Curator of Vertetrate Zoology, fmerican Museum of Natural History, Central Park, Jow York.

Fully Illustrated with Scientific Accuracy.

VOL. VI.

NEW YORK:
SELMAR HESS.

COPYRIGHT,
13 TH OF OCTOBER, 1898
BY SELMAR HESS.

CONTENTS．

DIVISION INVERTEBRATA ；or INVERTEBRATE ANIMALS，w Some Early Reminiscences by the American Fditor．．．．．zis

CLASS MOLLUSCA；or MOLLUSEXS． 302

 Eight－Armed Cuttles－Oeqopmalulat 30%
 Calamaries－Teuthillo
Sepia－Sipituduc．．．．
Spirals－spinalilie． 307
order TETRABRANCHIATA；on FOLR－GIl」ED
ANlllAIs：Chambered Nautilus－N゙ぃutilitue，3Il
Order GASTEROPODA．－Smh．Omber Prasorrasumata

Other Fami－ lies of Turicielar． Shells． Isurvillh7，（tirst exampho Whalk） 1ominhuc． 1 wlutinaw

318
.317

Vittiridue，Veritinler： Cerithimelur Turitrllidue Litorinilltr． Turbini\｜lti．．．．．．．．．．．．．．．．．．．．．．．．．．．

 （first example：cupand satucer ．Sitn． peta ．．．．．．．．．．．．．．．．．．．．．．．．．． $3^{\text {a }}$

Oreler PUIMONIFERA；（आ WNOPERCU1ATHE AND） OPERCUTA＇1E：GASTEMOPODS：Suails－ Ilelirialti＂
Slugs－Limucidiue
Apple－Snails－I＇alnailibila
Pond－snails－Limuridrtc．．
Scction OPERCUL．＿1T．1．－Grity OPlsilHODBRANOI
 shelis－उumlame
Sea－Pigeons－I Iusinhlte．－lndian Unburela．． l＇eurohrothrhislat＇

 Eolis，and Glaucus－Einlimae．
Order NUCLEOBRANCHIATA：Carinaria－Firollitro －Mrlrg PTEROPODA：OR WING－KOOTED
 lea，Cleodora，Spike－Shell，and Cymbnlia－ IIyuleidar
Order BRACHIOPOIS：Lamp－Shells－Thromelnlinler

Urder ACEPHAlA；ज\＆HEADLESS NOLIUSKE～ー Silb．Gratr Asmphovib．le：Oysters－Istirimoce 34： Wing shells－A Irimlidue
Mnssels－Mintllinlite
Noah＇s Ark－Hioudu：－Pearl－learing Mollisks －Inionialrte．
Sub－Order Slemosibs：Clams－Clamidur，Trinaeniate Cockles－l＇urdinhar＇，（＇unfinilıt＇．
 Venus Shells－l ruroiluc．－Throngh－Shells－

Razor－Shells－Nilcninlte．－Gaper Shells－．．．．．．．
cidnc．－Watering Pot－Shell－Gitstrorharmiine 35
Piddocks－I＇libeqlielue
355
351 i
Onder TUNICATA：Solitarv Tuaicates－As．ilinilut．．．．． 35 s Social Ascidians－rlamellimm．－Compound Asci－ dians－Butrymlitre．－Pyrosoma－Pyrisomidar 390
Sub－Class POLYZOA．－iriter INFUNDILULATA．－
SutJ－Urtler CIELOSTuMATA．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 310

$$
\text { Sut-Urter CIIELOSTOMATA. } 36
$$

Sub－Order CTClostomata：Crisimlae Twlmliporidutc．Stii Versiculariadae（first example；Serlalaris leudigerl）．．．．．3us

Order PHYLACTOLAEMATA．－Sub－oider LOPHOPE．：36\％
 Vol．VI．－N．E．

DIVISION ARTHROPODA．

CLASS INSECTA；or INSECTS．

372
（orter COLEOPTERA：on BEETLER－Sumton PEN－
 GEODEPridaA：Tiger Beetles－Ci．inticlidur．．．． Ground－Beetles，etc．－C＇trabialue．．．
Stimps IIYDROPlluid or IV ATER liEETLES：
Great Water Beetle－Iytiridor：－Whirlwig Beetles－fiyminidrti．．．
Sub－Sertion Rrrophica．－Ntimen Bencuelitra：Rove Beetles－Situphytinitue．．
Stirps Nerropluded；or Buryist Beettes－Sictiom
 1 IConses：Cockchaffer－Mclolonthinlon
Stag Beetle－Lucunintre．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
IVatchman Beetle－rioutrupidne．－Scarabaens－
Seumbridue．
Chrysophora－I？ntchipur－Hercules Beetle－I！－ pastildre．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Sretion PRluCER．ITA．－Stirps MACROSTERNI：Chrys ochroa－IBmprestilu－－spring Beetles－lilut－ rriduc（first example：the Firefly）．．
Stirps Airrostervi：Glow－Worm－Lump！！rinloc．－Der－ mestes－Drmmestidow－soldiers and sailors－ Thlephorialae．－I＇tiliuus and leath Watch－ l＇timitur
section IIF＇t＇EROMER－l：Cardinal Bertle－Pymorhro－ intur．－Ripiphorus－Murlillidur．－Blister Flies－Cınthui゙ルlać．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Sictinn ATRACl／ELLA：Meal Norm—Tinclrionidnt 3s

chlioniadur，scolytimue．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Scction LAVGICORSEN：Xenocerns－Primmilac：－ －Musk Beetle－Crmmburcirlac．
Sertion PllithliAfil：Portoise Beetles－（＇Itssi－ dirlit：－Chrysomela，and Bloody－Nose Beetle－ Cherysummoliduc
Sretion PNEV DUTViMERiA：Ladybirds－Coccincili－ dit．．
Order DERMAPTERA；OR EARWIGS．．．．．．．．．．．．．．．．．．．．． 38
Orもer ORTHOPTERA，comprising Trasslnoppers．Iso－
ensts，Crickets，ete－section rMsoniA：
Cockroaches－lilnttldue
388
Srotion SALTA TORIA：Crickets－Achctinue and Gryl－ liblut

－Phusmilluc：．．．．．．．．．．．．．．
Snfion R． 1 PTORI A：Praying Insects－Mrmtirlar．．．．． 39
orter THYSANOPTERA；Of FRINGE－WINGED IN－
SECTS．－Oirfrr NETTROPTERA，comprising
Termites，Dragon－Flies，etc． ，Nrtiom IBI－
OMOlillorlT I：Termites－Tcmitilac．．．． 303
Dragon Flies－hibrlinlinıs：．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 39
Sntion SVISNECROMORPHOTICA：Lace－Wing Flies

Order TRICHOPTERA：OR CADDIS－FLAES．－－Hrem H5MENOPTERA；or FLIES AND lBEES－Nrtiom
 Tribu＇sernateras：Saw－Flies－．Pcnthmolinirfor， Irorerinlue
Sub－Srctinn EutomapiagA；or Insect－E．ITELS．Trily SPICLIFERA：Giall Insects－r＇ynifulac．－lch－ neumons－lchurumoнirae
Tribr Tubulfferd．－Nretiom dreLEATA．－sinlr－ N゙ャfion 1ベsectivoria：Cuckon Flies－Crah－ rominum－．－sand and Wood Wasps－bimbu－

Sul－Section DIPLOPTERY（ill：Solitary Wasps－Eumen－ llara，lexpuirlar
Sub－Scetiur Melelferi ：Honey Bees－Apidat：
Order STREPSIPTERA，comprising Insects parasitic on Bees，Wasps，etc．

404
Order LEPIDOPTERA，comprising Butterfies and
Section RllOPALOCEliA
Piniliomidrae
404

H＋limomilder
Bntterflies．$\left\{\begin{array}{l}\text { Iranaliluc，Nimmphilidie．．．．．．．．．} 419\end{array}\right.$
Erycinidae ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 41
Lyeaenidet，IIcsueridut．．．．．．．．．．． 415
sction JIETEROCER.t:

Smbimginde
Uramilduc, Homialidur
Bombutcdur (silk-Worme).
Aretiolur.
Lithosiblur, Suetuidur
Grometrislar
Tortricidur, Tlneidur

$41!$ $4: 01$
40 $4 \because 0$
$4 \div 1$
Moths Bomlulleduc (Snlk-Wornu) 4:3]

Lithosiirlur, Dinetuidur Grometridat Aluritiduce $43:$
434 Sluritidme,......
Oreler HOMOPTERA, comprising the Cicadas, Froghoppers, Jlant-Jice, (lochineal l3ng, etc. sctom TRIMERRA: 'ioqatur
Lantern-Jlies-Fulomsinlow
Ioppers-Cererapidele.
Grrtion MONOMERA: Cochineal Insect- ('orchlar... Srrtion J)IMERA: Grape Pbylloxera-Aphiulu.
orier IIETEROPTERA, comprising Water-Beetles, Whirligigs, Gkippers, ISed-Bugs.-sivtion 1/)"

Back-sirimmers - Notomictirlu'. - Water Scos-pion-Nrpidue...
)

ormer 1)IPERA; un TWU-WINGE1) INSECTS. -
 Gnat-Culirulur.-Crane-Fhes-Tipulinlut. Army-Worm- Myertaphilnler..
BRACDUOERA-Stimps Notacantila: GadFly, Isetse, etc.-Tabramirlor
Stirps A tureinerri: Common and Bot-Flies-MTuscinlue, IHstimlar
Stirps PrPlpsisA: Forest-, or IIorse-Flies-flippobos-

CLASS CRUSTACEA.

Section $J^{2} O$ OnPHTHALM ITA: or N'TILKED

 orver Brawtivera; orstiorer 'T'Amed Cievst'A EANS
Trile Osymuychit. :
Larrofmifialuc (commenclag with the

Tribe Cyclometopita:
Swimming 'inturrirlar
Crabs.) Iortunillat................................... 44
Tribe Catometomisa: Land Crabs-Thilmbumitur, (frcurcillidere
Marine Crabs-pinmolieridit fommencing with lea Crab), Mycitinlac..

Angular Crab- drommilncidur:-lainted and Floating Crab—Girapsiduc.
Tribe Oxystomata: Crested and Armed Crab-Colno-
 resllare
Mask and l'ulished (ral-Gorvistidur
Woolly Crab-Imimidmr.-scallop CrabCithllyrialue.

llairy Crath-lmmindac. - Bearded, Iorenthine, and Nombled Crab-ilomoliotor.
l"rog Crab-línindate-Extraorlinary Forms of realas-Himpichor.

lorcelain Crabs Pinerllanidaíuriolur

Burpowing Crabs-Thulassinidere..................
Fresl-Water "roy F'isht, and Salt-Wiater],ob Troes cisumatio

 Praluemomidar
Order sto (1E.JNs:
 Frichlhblew

Sul-1!axi EDRIOPHTHALMATA; or SESSILE-EYED CRUSTACEANS

णider AMPIIPODA: OR AMPHIPODOUS CRUSTACHANS: Jumpers-wrohestrake..

Darasitic Shrimps-l'momimminac'....................
Cadilis- and Fresh-Water shimp (These belong to
Caddis- and Fresh-Water Chimp (These belong to
the just mentloned fanilies Corophdae, resp. Gammaridae)... tro
Orrler LAEMODIPODA; OH: THPOAT-FOO'LED 11RLSTACFANE: Skeleton - Screw - Cammalidele.
Whale-Lonse-Cyumblue
Ordre IBOPODA: OR EQUAL FOOTED CRUSTACEANS: Arctnrus-ldotcidre...
Gribble- 4 sillidrir
 collfonidec-Poll-Woodlonse- trmentllider:.
Order or ふuluCluss ENTOM()STliACA; OR ENTOMOSTRACANS: fill-Footed EntomostracausBrellehionodirlae
Order CLAI)OCERA: IBRANCH-HORNS: Water-Flea,

Chydorus-Lymreinfur, Pul!йнйidae.............. 48
Ordep OSTRACOIA: Cypris-r inpriraf-Cythere- 48
Order COIPEPODA; OR OAR-FOOTED FNTOMOSTRACAN: Cyclops-Cy ${ }^{\text {Thumidar.-Cetochilus }}$ Gtuchilidur?
Liyion PoEcilopola; or Variots-Footed Entomostra-
Orqer SIPHONOSTOMA; OR TUB-NOUTHED ENTOMOSTRACANS: Argulns-Argulialae.-Cali-gus-Caligidef:

485
Tribe PACHICEPHA, comprising Entomostracans with hroad, shield-shaped heads: Nicothö̈, and other I'ish-Parasites-Erymikllidue Oíler LERN゙EADA; or SUCKING FISH-PARASITES. 486 Tribe AnchorastomachaE; or Avehor Fish Parasitfs:

Chondracanthus, Lermaeotiscus, Jacenlina, etc.

$4 i$
Tribe Anchoracarphreat; Anchor-Parasites upon Carıs, etc.: Percb-Sncker-Lirnuenpotidac. Anchorella-simborellome.-Shark-SuckerProblladric
Carp Sucker-Lermucomprane 48
order PYCNOGONIDES, comprising odd forms of Crus-taceans.- orirg XIPHOSURA; on SWORD-
TAIHED CRUSTACEANS..
Orcler CIRIRIPEDIA; OR BARNACLES: tis
Goose Mussel-Lipmdidac $45!$
Acorn Barnacle-Ibalanidite.................................. 4 . 41
CLASS ARACIINIDAE,
comprising Spiders, Scorpions and Mites. 493
Ordry ARANEHDA; OR TRUE SPIDERS.................. . . 4.93
Trile Octonoculisa; or Efint Ered Aridchida: CrabSpider, Mygale, and Trap-Door Spider-My!relidrre.

Crab-spiders-Thomisidutr. .

Tube-Weaving Spiders-rimitho......................... . . 5 .
Argelena, Tegenaria, Caelotes, Theridion, Ling. phia, Tetragnatha- Anelrnidne. - Garlen-
Spirer, and Varieties-Eumidur................... 509

Ordor 1'SEUBOSCORDIONRE; OF FALSE SCOR-
PIONS..
Order PEDIPALAI; OL TRUE SCORPIONS: Phrynus,

ordrr ACARINA; or MITEN: Harvest-Bug-Crmmas-
iderc-Hippopotamns-Tick-lmmidms............. 516

Horse-Tick-Thiluptrrilute............. 518
CLASS MYRIAPODA. 590
Order CIILAODODA; Tribe Sirmzotabsia: Cermatia-
f'rmutibluc..
Tribe IIolotarsia: Lithobins-Lithohilalar'.................. $5 \% 1$

 Azonia: Vephronia, filomeris-f fombrifler.... 5Q4
Trile Monozonia: Pilydesmidae amd Padyremirlac:Tribe Bizonia: juluduc............................
(ONTE゙IT:
page

CLASS ANNULATA or ANNELIDA;

it includes the Eartls-Worms, the feech, the intestinal Worms and other Worm-like Creatures 52% Order SETIGERA; OR BRISTLE-BFARERA: serpula, Sabella, Terebella, and Shell-15inder-Amphi tritue
Tug-Worms-Nercianc.
Ennice-Emiceur
Cirrhatulus-A
${ }^{5} 5$
.. 530
.
531
...................................... 58.
Chatopterus-chectopt vidice:- Favth-ivormiLumbricislac............ 533

UCTORIA: OR SUCKERS.
534
(1riter SUCTORLA: or SUCKERE................ 535
suls-Cluss ENTOZOA; or INTERNAL WORMS. - Or CAELELMINTHA.-Trih NEMATHDEA: Ascaris, Guinea Worm, Tricncephahas, strongylus -Strongllididue
Order STERELMINTHA : Tape-and Ray-Worm-res-

CLASS RADIATA; O1 ECHINODERM」TA.
Sut.Class DITREMATA.-Oriler HOLOTIJ ${ }^{\top}$ ROIDEA :
Sipunculus-Sijumculidut..
Priapulus-Priapulidur:-Spoon-Worm- Thal. "*semuclac.......... Pentacte-Pentactidar Syaapta-Symuptadie
, 542

Orolor ECHINOIDEA: Sea-Urchins-ricrtrilur........ 5 . 44
 Cake Urehiu, etc.- (ly/nelstorivin

54t
Sub-Cluss HYPOSTOMATA.-Order ASTEROIDEA ; OR STAR-FISHES:
Asterias, etc.-Asteviurlae
Brittle stars-Ophiurid/te.............................. 552
shetland Argus-Euryulina...... 553
Order CRINOIDEA: Feather Star, aud....................... 55.
Medusa's Head... 55 .

CLASS ACNLEPIIA;

or Nettles, or Jelly-Fishes, or IIydroids order SIPHONOPHORA; ON SIIHON-BEARING MOLI_USKS.-Present Classification of JellyFishes:
Sallee Man-Telcllatue
55π
Portugese Man-o'-War-Phyailaidie. 540
Diphyes-D1phyldter. 56
Oreler CTENOPHORA: OR COMB-BEARERS: Cydippe
-Cullianiridae.
502
Venus' Girdle-Beroidac. . 543
 CIMNOPHTHALMATA: Or MED-EYED - Tribo sarsia-Nursinulue.-Endurg, and Aequorealerpuorandar.
. 514
Tribe Steganophthalatta: or Covered-ETED Me Dutsae:- 'hrysaora, Rhizostoma-lRhizatommidite.

CLASS ZOOPHITES; OI ANIMAL I'LANTS.

Order ACTINOIDA; OL RADICATED ZOOPHYTES Nub Ordir A(TLNARLA: Piak Anemones-

Green Anemone-Antherilie.-Peqrlet Anem-
one, Putilets, and Vestlets-11 one, Pumlets, and Vestlets-11!/unthinde-
Plumose Anemone, and Widow-Sumurtionlue
Plamose Anemone, and
Warty duemone-limow-Stiguticulue 5 fig
Warty dnemone-bumodiduc:...................
Actinia, and Cranbactis-detiminlup....... . $5 \pi 1$ 3

,

[^0];

[^1]

[^2]

Abstract

[^3] ;

[^4]
$$
0
$$
\[

$$
\begin{aligned}
& \text { Fungia - Fungidur. - Cup-Corals- ' (arimplat }
\end{aligned}
$$
\]

> Astractecene'.
> True Coral-Cortioreter

> Order ALCYONOIDA, comprising Gorgonias, Sea-Fans, sea-Whips, etc.:
> 554

> Order H Y DROIDA: Tuhulariadar...
> sirtulurinduc. - Jell Zoophytes-Cimproumlur-
> ichdue 5\%

> CLASS ROTIFERA; O1 WHEEL ANLMALCULES.
> Sub-Class PORAMINIFERA
> Sub-Class PORAMINIFERA....................................... 58:
> Sub-Class POLYCYSTINA. 584
> Stentor-Helerotriehti .. 587
> CLASS PORIFERA; or SPONGES. ${ }^{5} \%$
> Present Classification of Porifera. 591 6. 1

Abstract

E

 4
LIST OF ILLUSTRATIONS.

ILLESTRATIONS PRINTED IN COLORS.		
pagie	page	page
Stag-Beetle, and Longicorn Beetle. 3is	Cicadae, Lantern-Fly, etc.......... 428	Holothurians, and Sea Star........ itt
Erycinids............................. 414	Hermit-Crabs....................... 458	Sea-A nemones 56 S
Silk-Worm, and Moths............ 422	Crab-Spider, or Matondou.......... 492	

FULL-PAGE WOOD ENGRAVINGS.

Burying Beetles, Hornet, Watch-
man Bee
Beetle, etc.................... 3π
Armed Calamary.... 30 s
$\left|\begin{array}{l}\text { Hercules Beetle...................... } 340 \\ \text { Dragon-Flies, Laying Eggs........ } 394 \\ \text { May-Fly } \\ \text { 3............................ } 396\end{array}\right|$
illetstrations in the text.

MOLLCSKS CEPHALOPODA.
Sepiola

CEPHALOPHORA.

Common Woodcock-Shell, and Thorny Woodcock...................
Twisted Triton, Sea Trumpet, and
Wrinkled Triton...................... 315
Apple Tun-Shell.......................... . . . 319

Water Boatman, and Water Scor-
pion plon. and Spiny Lo.................................. Lobster, and Spiny Lohster......... 4tit Red Coral, and Eight-Armed Cuttle $5 r_{2}$

414
520

pafie

OPISTHOBRANCHIATA
Sea Hare. 389
Doris...................................... 340
Dendronotus. 40

335
333^{2}

[^5]
NLCLEORRANCIITATA

Wing－Footed Nollusk．．．．．．．．．．．．．．．．． 848

ACE：PIIALA．

Pearl－Oyster ．．．．．．．．．．．．．．．．．．．． $34!$
Sccolicularia，liszor－aud Trough－ Shells．
Gaper Shell．
3.4

Gaper Shell．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．3ñ

POISZOA．

Net－Pored Animal ．．．．．．．．．．．．．．． 364 Group of ？olyzoa（Alecto；Tubuli－ pora；Discopora）．
Group of Polyzoa（Serialaria；Bower－ bankia；Buskia）．．．．．．．．．．．．．．．．．．．． 3 ．
Gronp of Polyzon（Alcyonella；
－Plumatellat Fredericella；Paludi－ cella）．

IN゙心EけTN．

BEETLESS．

Group of Beetles（Tricondyla；Manti－
cora；Harpalus；Lebia；Ciciodela； 3 ， Anthia） －i
Bombardier Beetle．．．．．．．．．．．．．．．．．．．． 33 ．

Great Water Beetle．．．．．．．．．．．．．．．．．．．．3ni；
Vhirlwig Beetle．．．．．．．．．．．．．．．．．．．．．．．． 3 ． 3
Sacred Ligyptian Scarabreus．．．．．．．．．．Bin
spotted scarabaens．．．．．．．．．．．．．．．．． 3 ．！
Death Watch．．．．．．．．．．．．．．．．．．．．．．．．．．．． 381

Nut Weevil．
Ladybirds．

CRICKETS．

Field Cricket．．．．．．．．．．．．．．．．．．．．．．． $88!$ Mole Cricket．．．．．．．．．．．．．．．．．．．．．．．． 34.

ODD FOIRMS OH ORTHOPTERA．
Walking－Stick Insect．．．．．．．．．．．．．． $3: 1$
Praying Insect．．．．．．．．．．．．．．．．．．．．．．．． 342

FLIES．

Ant－Lion ．．．．．．．．．．．．．．．．．．．．．．．．．．． 33% Group of Saw－Flies（Cimbex；Rhyssa； Urocerus；Ichneumon）．．．．．．．．．．．．．．th
Turnip－Fly．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3%

IISPS AND BEES

Group of Sand Wasps（Crabro；Phi－ lanthus）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Group of Sand－Bupilus；Scolia） Monetura．Tompinus；scolia）．．．．$\ddagger 0$
Hive Bee．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $4(1)$

BUTTERFLIES．

Group of Butterflies（Mechanitis Thecla；Helicopis：Mesosemia Ifynaceia；Papilio；Epicalia，Cata－ gramma）
Amplurisins
．．．．
的
White Butterfly，with Eugs，Cater－ pillar athl Larva．
Epicharis．
Ehono，Marsixus，suis，and Erato．．41！
Vol．VI．－N．E．

TAGE
Midamus ．．．．．．．．．．．．．．．．．．．．．．．．． 410
Archippus ．．．．．．．．．．．．．．．．．．．．． 411
Thyoulamas，Thetis，Dido，amd
Ayraulis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 41 ？
Peacock Bnttexfly ．．．．．．．．．．．．．．．．．41：
Neoptolemus．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 41.3

MOTlIS．

Pine Jawk－Moth．
lleander Hawk－Moth．．．．．．．．．．．．．．．． 41
smerinthos，and Hannning－lird
Muth．
419
Gipsy－Moth ．．．．．．．．．．．．．．．．．．．．．．．4！
〕ale Tussock－Moth．．．．．．．．．．．．．．．．．．．．．．TVt
Cliften Nonpareil．．．．．．．．．．．．．．．．．． 425
Oak－Leaf Roller and Caterpillar．．． 4% SCALE INSIECT．
Cochineal Insect．

HETEROPTEPA．

Wheel－Bug with Larva．．．．．．．．．．．．． $43 I$

FLEAG AND FLTES．

Flea．
422
（iat－Fly．．．．．．．．．．．．．．．．．．．．．．．．．．． 434
＇Tsetse
4\％
IIorse Bot－Tly ．．．．．．．．．．．．．．．．．．．．． 434
Cattle Bot－I ${ }^{2}$ y $48 i$
Sheep Bot－Fly．．．．．．．．．．．．．．．．．．．．．．．．．． $4: 3$
Horse－or Forest－Fly ．．．．．．．．．．．．．．．． 43

TEN－LEGGED CRUTSTACEANS．
Sea－suider 439

Edible Crab．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 444
Fighting Crab．．．．．．．．．．．．．．．．．．．．． $44!4$
Racing Crab．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 4%
Hairy Crab．．．．．．．．．．．．．．．．．．．．．．．． 455
Porcelain Crab．．．．．．．．．．．．．．．．．．．．．．．．．．． $4 t_{2}$

Cray－Fish or Craw－Fish．．．．．．．．．．．． 46
Edible Prawn．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 408
MOUTH－FOOTED CRUSTA

CEAN゙ゥ。

Phyllosome ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 4 ． 4
Nantis Shrimp．．．．．．．．．．．．．．．．．．．．．．． $4 \% 1$
SESSILE－ETED CRUSTACEAN゙S．
Fresh Water Shrimp．．．．．．．．．．．．．．．．．． 4 年
Mintis Shrimp．．．．．．．．．．．．．．．．．．．．．．．．．．tй
Whale－Louse．．．．．．．．．．．．．．．．．．．．．．． 4π
BARNACIES．
Groose Mussel．
480
Coronet Barnacle．．．．．．．．．．．．．．．．．．．．．． $4: 11$

SPIIERK．
Tarantula Spider．．．．．．．．．．．．．．．．． $4!5$

Wolf Gpider．PAGE
Wolf Spider．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 49
firoup of Crab－sipiters（＇lhomisus，
and Arkys）．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 5
Group of varions Spiders Clubiona， Drassus，and Clotho）．．．．．．．．．．．．． 504
House spirler．．．．．．．．．．．．．．．．．．．．．．．．nnr
Male of the Tetragnathon．．．．．．．．． 50 ．
Fenale of the Cross－Spider．．．．．．．．Ens！
Segestrium ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $1:=$

PSEEDO－SCORPIONES

Galendes．．．．．．．．．．．．．．．．．．．．．．．．． 518
Book－sicorpion．．．．．．．．．．．．．．．．．． 514
MYRIAPODA．
Scolopendrae（Centipedes）．．．．．．．．．Fr？
Polydesnuts．．．．．．．．．．．．．．．．．．．．．．．．．25
Millepede．．．．．．．．．．．．．．．．．．．．．．．．． $5:{ }_{2}$
ANMT $L_{A}!T_{A} 1$.
Serpula．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 508
Chistapterus．．．．．．．．．．．．．．．．．．．．． 334
Skate－Sucker．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．53：
RATHATAL。
Young and Adult Gea－Urchin．．．．．．isti
IIeart－${ }^{\text {r}}{ }^{r}$ rchin ．．．．．．．．．．．．．．．．．．．．．． 54
Ghitld Urehin ．．．．．．．．．．．．．．．．．．．．．．．． 54
V゙ETTLES 」VN IJYIRいIIS
Swimming Sea－Nettles．．．．．．．．．．．．．．．．．．．．nt
Tubularian Hydroids．．．．．．．．．．．．．．． 55.
（＇0） 1 B－IBE＿LRERS．

Yenus＇Girdle．．．．．．．．．．．．．．．．．．．．．． 5 ．
1H心゚ーアEムクEDふ。
Rhizostoma ．．．．．．．．．．．．．．．．．．．．．ถия
ANHMAT，PLANT心． ACTINOIDA．
Great Crambactis．．．．．．．．．．．．．．．．．．．．．．$\%$ ． 1
CORALS．
Cup Coral．．．．．．．．．．．．．．．．．．．．．．．．הぃ～
Madrepora．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 5 ． It $_{3}$
Brain－Coral ．．．．．．．．．．．．．．．．．．．．．．．．sit
Organ－Pipe Coral．．．．．．．．．．．．．．．．．．．．．．．Sit

Sea Pen．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 5.15
HIIZUIソTH．

INFISURIA．
Stentor
PORTFENA
Glass tronge．．．．．．．．．．．．．．．．．．．．．．．．．．． 62
Glass Vasp．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 593

INVERTEBRATE ANIMALS;

INVERTEBRATA.

E now come to the second great division into which all animated beings have been distinguished. All the creatures which we have hitherto examined, however different in form they may be, the ape and the eel being good examples of this external dissimilarity, yet agree in one point, namely, that they possess a spinal cord, protected by vertebre, and are therefore termed Vertebrated animals.

But with the fishes ends the dirision of rertebrates, and we now enter upon another rast division in which there is no true brain and no vertebre. These creatures are classed together under the name of Invertebrated animals; a somewhat insufficient title, as it is based upon a negative and not on a positive principle. Whatever may be its defects, it has been too long received, and is too generally accepted to le disturbed by a new phraseology, and though it be fonnded on the absence and not the presence of certain structures, it is concise and intelligible.

Numerons as are the species of the rertebrated animals, those of the invertebrates ontnumber them as an army outnumbers a company. Although many species of mammals, birds, reptiles, and fishes, are at present known to science, and the yet unrecognized species are necessarily extremely numerons, there is some hope of ohtaining an approximate calculation of their respective numbers. But with the invertebrates, any approach to a census even of known forms is well-nigh impracticable ; and as it is evident that the ocean alone contains within its fathomless depths myriads of beings as yet hidden from mortal eyes, the reader may conceive the utter impossibility of offering the slightest, conjecture respecting their numbers.

SOME EARLY REMINISCENCES BY THE AMERICAN EDITOR.

Tine study of invertebrate forms in America is of so recent an occurrence that there are a number now living who remember that, with the exception of the mollusks or "shellfish," forty years since the student had but the merest fragment of recorded knowledge to aid him.

At that time the fonr great classes of Curier were recognized as the legitimate foundations of classification: the two great primary divisions being Tertebrata and Invertebrata-those having an intemal bony slobleton, and those having none. At this time, eren in the immediate vicinity of the Massachusetts mptropolis, he was a wise person, heyond the "general," that had a definito idea of the nathre of the very few actimias then known on our coast. The entire amonnt of knowledser, aren with those who recognized them when seen, amomed only to the ragne thm "amimal llowers" 'That they were aminal forms, onr few science-reading folks had loanmod from the scomor mews and gossip that was wafted over from the more scientific centres of England and the continemb.

The grat lomach that mmbanes the shell-fish-techmically the Mollusca-had throngh

most familiar to ns ; and the beantiful shells-univalve and others-from their extremely attractive colors and shapes, were sure to be cared for by sailors and visitors of foreign climes, and taken home as interesting mementoes. so with the more common species of our shores. The exterior of these animals, the shells, were favorite objects; and large collections were made by individuals, most of whom were simply collectors who arranged them, more or less in accordance with the simple classification, as Land shells and Fresh-water shells, and as nuivalves and bivalves.

In the early part of the present century, the French nation associated scientific objects with their expeditions. Napoleon's Egyptian campaign notably resulted in calling forth eminent scientists; and the fine works of these men became important aids to the advancement of natural science.

It was near the middle of this century before the aspiring stuclent in our country conld, withont difficulty and expense, procure published literature on the invertebrates relating to onr own marine forms.

In 1841, Dr. Augnstus A. Gould, of Boston, submitted for publication a "Report on the Invertebrata of Massachusetts." This was one of a series of reports of survers ordered by the State. The matter is contained in an octavo solnme, and is rery nearly wholly devoted to the Mollusca, or Shell-tish; Dr. Gould being at the time one of the notable American students in that branch. It is now, as it was then, a matter of pride to New Englanders that snch an excellent work was prodnced. The copper-phate figures of each species can never be excelled in fidelity to ontline and artistic finish as etchings. This was a gratifying commencement. The anthor of these introductory lines well remembers the barren field existing at this time. Our school-boy friend, William Stimpson, whose name is enrolled among the pioneers and effective laborers in the rarions divisions of Invertebrata, was then the enthusiastir learner ; joyons to seeming absurdity at sharing our small collection of local marine objects. There lived at this time in Boston an old gentleman, Mrr. John Warren, whose occupation was, in the reality, proprietor of a "curiosity shop," but whose tastes and education led him to the stndy of Mollnsea and mineralogy. Primarily, he was a veritable Grandfather Trent, whose commercial requirements were secondary to considerations of taste and spience. This was to us a charming resort. The delightful old gentleman was then near eighty years of age. He was of English birth, and impressed us as a courteous gentleman of the old school. He was eminently a handsome man, and, though many years a trader in his wares, he never lost the kindly, friendly manner of dealing with us, that subsists between students embord with the true spirit of science. At eighty, he was onr companion-boys, as we were, with few desiderata in our minds greater than the speedy approach of every half-holiday. To meet at Mr. Warren's and arrange for a tour of Chelsea Beach, or dredging off Nahant, was the all-absorbing theme during many of these early years. When Mr. Warren conld arrange to join us, there was a thiod party equally joyons, when maging the beaches was the order, in view of our old friend's infirmities.

While recalling this period, we have before ns an old letter-book, in which we have carefully filed away for preservation many choice letters-the volnme, now well swollen and embracing the signatures of the most eminent of Enrojean and American zoologists-but we recur with sentiments of peonliar mature to the few whose earlier age is suggested by the seal-ing-wax and the wafer. Such an one bears the signature of William Stimpson, and carries mpon its face suggestions of the school-room. These half-holidays of my young friend were coveted periods in the discipline of the Cambridge ILigh School, and most economically were they hnsbanded. Under date of year 1848 , Stimpson writes: "Mr". Warren informs me that yon are going to Chelsea Beach on Saturday to collect some of the spoils of the late storm. If yon please, I wonld like to accompany you. . . . I will bring down my dredge and thirty fathoms of line, when we may take a dory and drag around Nahant and Point Shirley."

It is interesting to know that this was some of the first work of the kind done in onf comtry. Some of our salem friends were also early in the field, most notably Putnam and Dr: Wheatland. In that delightful old neighboring town of seren-gabled houses lived another old gentleman natmalist, Mr. Joseph Trne, genial and kindly, and possessed of all the viptues
and anenities. A visit to his rooms was a treat only next in importance to the Old Curiosity Shop of Mr. Warren. Mr. True was a carver in wood, and his shop stood over a mill-dam, whose fresh and salt waters gave him media close at hand for investigation, but had spent the few minutes daily that he could spare from his work in watching the development and habits of some of our native shell-fish, both marine, fresh water, and terrestrial. Meantime he had collected from our beaches the many species inhabiting the neighborhood.

At this time there were few books to be had on the snbjects, and those did not treat of sur local objects. Such men as Mr. True, however, observed for themselves, and what they saw was recorded, and known as facts. To the young aspirants these old men, whose knowledge was practical, these valuable associates, "Uncle John" Warren, with his courtly ways and cultured mind, both were delightful companions. Our young friend in an especial manner prolited by their teachings and advice. Then came Agassiz, in the homely words of Cavier, "A pearl from the dirt hills of Neuchatel." Now, a new impetus was given to the study of natural objects. The learned scientist found many collectors in our country, but few investigators. In the glorions school of Cuvier he had been taught to observe. The mere collection arranged and labelled was to him hollowness, meaningless; what to him was the empty shell of the periwinkle, or the impaled carcase of a beetle, so there was no story of its life, nor approximation of its mysteries in death. We were fortunate in residing near his laboratory at Nahant. His frequent presence on the rocky shores and sandy coves and beaches induced a sort of talismanic power, that called up many an unfamiliar form from the vasty deep; and, seemingly, all then

> " Did suffer a sea change
> Into something rich and strange."

The wild rocky promontory is strongly suggestive of the abode of a Prospero, and an Ariel, and the songs of the sea-nymphs,

$$
\begin{aligned}
& \text { Come unto these yellow sands, } \\
& \text { Where the wild waves whyst." }
\end{aligned}
$$

are readily conjured up. Surprisingly meagre was our knowledge of the indigenous marine invertebrates, but how rapidly did those strange forms come to light at the master's bidding.

A permanent establishment at Cambridge, which afterwards grew into the Museum of Comparative Zoology, offered a place to work up the collections made on the shores during the warmer season.

Stimpson was now an earnest stndent with Agassiz, one of the first who entered his laboratory as such. His capacity for the study so impressed the master that he selected him as eminently fitted for an investigator, and recommended him, young as he was, as chief naturalist for the Wilkes United States Expedition Around the Wordd. In a letter written at that time Stimpson says, most naively: "I have just been appointed I shall not be able to go ont to see you and bid yon good-bye as I wonld like to do, but I will be back soon, in three yeurs at least." Suggestive of the school-boy yet, he was learned, and eminently capable to enter on the important duties before him. On returning, Stimpson found ample occupation in arranging and classifying the results of his collecting in varions portions of the globe.

He now visited Grand Menan, and published a valuable work, embracing the invertelnates of that region. Mis "Revision of the Synonomy of Gonld's Invertebrata of Massachusetts" contained valuable new matter, by pen and pencil. The invertebrates of onr coast were now in lair way of being lorought to light, and treated with something of the scientific as well as popular care that was accorded such forms in Europe.

An interesting perion in the history of our searchings for the invertebrates was when dredging had not been practised in deep water; when the deep sea forms we rescued from the "Maw and gnif of the ravined salt sea-stark; " when the cod and the haddock, by courtesy of the kinally tishemum of swampsott, yiehler each their intestinal contents; when the hage halibut, from the grater depth, responded to the call for pelagic forms; when, too, the
diabolic cat-fish, yelept in systematic terms the Anctrobelers, calme fresh from the rocky beds Where some rare mollusk feeds : then were days of enthusiastic working, dampened never a bit, though the odors were never so rank, and the shont foons of our near-sighted friend a seeming obstacle. Putnam, of Salem, was now working among the fishes, and Agassiz's museum was mpidly becoming a busy laboratory. Comparative anatoms and some branches of zoology were almost monltivated in America lefore this period. Books were not to be had. What little was known was the scattered results of a few foreigu experditions that touched our shores, recorded in Enropean publications. What at commentary on all this do we now witness-the vast amonnt of published matter of the smithsonian, as well as that of other institutions. The archives of the Fish Commission now abound in valuable records. Method was now fairly introchuced. Igassiz had established his great storehonse and laboratories. Students came to him, each with an esperial theme, perhaps, but all to begin tabor in the one proper way, with soalpel amd lens in hand. The names of those who now would respond with credit to the roll-call of srience are so mumerons, and the honors are so evenly divided, it would be quite invidions to emumerate any portion.

The Fish Commission, with its admiralle appliances, gathered to its orgemization many promising investigators. Princeton and Tohns Hopkins have their shools of biology ; and the School of Sidence at Marthas Tinerard exhibits the increased attention given to matural history. Ityat, of the Boston society, has a flourishing sohool of bology at Cape Am.

Daring the pre- Agassiz periok, we have seem, little work was acomplished in biology and comparative amatomy. The varions state Reports were among the finst records of valuable work done in various hamehes. In Massachasetts the first geological report of Dr. Ititeheock contained catalogues of the birds and mammals then known to inhabit the State. Meagre lists they were, atcompanied by mo notes of observation. So, also, of the fishes, by Dr. J. V. C. Smith, in the same rolmme.

- A second series, published in 1830-40, was a welcome gift to American science. The large volume on geology, by Hitchcock, was issued separately, and the other sulbjects were treated in separate volumes.

Dr. Gonld's "Report on the Invertebrata of Massachusetts" was immensely creditable. The mollasks occupied the greater part of the rolnme, as very little research had been bestowed on the other forms by any one in America. The entire matter deroted to "Amelids, Radiates, Tumicates, and Crustacea" was contamed within thirty-onc pages. The first subject occupied two pages, the second ten pages, and the remainder devoted to a treatise on noxions animals and to crustarea. We have elsewhere spoken of the excellence of the copperplate etching. Bimey has since republished this work, with some additional colored plates.

Dr. Storer embodied the results of his investigations in a companion report, issued by the State. This was equally vahable, and good in exerution. Afterw'urds his "Fishes of North America" was issned. Then appeare? the tme Reports of the State of New York, Dr. DeKily being prominently identified with some of them. Jhe labors of Mitchell, Binney, Say, and others were recorded here.

The Philadelphia Academy of Sciences was the resort of men of science, Say, Lesenr, and Bonaparte, Harlan and Le Conte, Wilson and Audubon, and Sully. Here was a coterie of delightful and refined companionship in natuml science.

As we unfold the leares of our old letter-book the honored name of a life-long friend, Spencer F. Baird, occurs. Before the days of the Smithsonian this letter was written, from Carlisle, Penn., to solicit an exchange of a "List of the birds of Carlisle," for a simila" "List of the birds of Lemn and ricinity." These are among the earliest local publications. The latter enumerated one hundred and eightr-five species. Pntnam had published his observations on the birds noticed in the County of Essex, Mass.

The Lycenm of New York during those dars was doing good work. Lawrence, who yet lives, and is honored as one of the most eminent ornithologists, has during his life been identified with the history of omr native birds.

Say had published his beautiful work on the insects of North America. Thsects and shell-fish were attractive, and greatly, perhaps, on this account there was more interest shown
in those divisions. The lower forms "came tardy on." Lnfamiliar and plain folks, as it were, naturally less attractive ; thongh after a better acquaintance exhibiting many extremely interesting as well as heautiful members. The sea anemones are among the most exquisite of all Nature's handiwork, both in color and structure, and the numberless microscopic forms now rapidly coming to light challenge our admination and wonder.

MOLLUSKS.

The first gromp of invertehrated animals is called Molldsca. This term is yet retained for this great branch of the animal kingdom, ahmost meaningless though it he ; for it simply expresses one, and a rery mimportant, feature of this great groun of animal life-that of softness. Probably some naturalist will stop in his work one day, and devote a little time to determining the best and most comprehensive term, one which will express the nature of the division as a whole. The term Arthropode, as applied to the creatures formerly called crustaceans, becanse they had crinsty-like shells, or coverings, seems to be much nearer a natural designation, as the ereatures are all jointed or articulated.

Nollusks are bilateral amimals, that is, having two equal sides, though in some this is obscured by certain developments, as in the gasteropods. They are either provided with a bivalve or mivalve shell, or none, as in the naked Mollusks. The shells are largely composed of carbonate of lime, with more or less amimal matter, the whole being secreted by the inclosing mantle, from its onter layer. The shell is entirely without blood vessels. The internal soft parts have a central month and digestive tract terminating in an anns, which is primitively at the posterior end, and in the median line. The torsion produced by the growth in the spiral and other irregular shells obscures this, but careful study of the young makes this and many other seemingly difficult points clear.

The nervons system is in the form of ganglia or knots of nerve matter with their comnecting nerve lines. The cerebral ganglia, or bain, consists of two knots above the desophagus, and pairs of knots are distribnted arond all the important viscerat, as presiding centres of nerve power. The heart, situated near what is called the back (dorsally), consists of a rentricle and one or two auricles. It recrives the blood from the respiratory organs, and forces it throngh the body. The whole surface of the body has respinatory functions, but special orgaus exist in the form of gills, or so-called lungs. As a rule, the sexes are united in the same individual. Nomerons marine gasteropods have sexes distinct, and in all of the members of the highest order, the cephalopods, also.

The power of progression in the Mollusks is greatly varied, being in some species almost absent, while in others it is developed to a wonderful degree. Many of these creatures, such as the mussel, the limpet, and the oyster, scarcely stir from the spot where they have once fixed their habitation : the smil and those of a similar form glide slowly along by means of the runionsly deveroped mass of musentar fibres, technimally called, from its use, the foot; the scallop drives itself throngh the water in short jerks or flights, cansed by slowly opening and then rapidly shuting its valves; several species are known to jump by a sudden stroke with the foot; the matilns meges its sholl throngh the wases by the riolent expulsion of water from its interior, and is hriven along on just the same principle by which a sky-rorket soars ibto the air: amel the flying simid. ome of the cuttle-fishes, is able to rival even the fiying-fish in its abrial journeys, shosting thongh the air to considerable heights, and even leaping fairly

The wh fahlo of the mantus amt its sails has long been rejected, but the fabricators of this learend need met have visitel the orem lor an example of a molluikan boat. Any one who is in the halsit of wathimg the strambets that imgate while they drain our meadow
lands, must have seen the common water-snails come floating down the current, lying on their backs, their shells submerged, and the edges of their fleshy foot tumed up on all sides so as to convert that organ into at miniature flat boat.

That the Mollusks, or, at all erents, some of the speries, possess the sense of hearing, is tolerably evident from an examination of the structures. Near the nervous knobs, or ganglia, as they are scientifically termed, of the head, are placed some little vesicles, each filled with a tramsparent fhid, and containing a tiny knob, or spikelet, of chalky matter, very similar to the well-known ear-bones of fishes, and probably serving a similar prupose. These "bones" appear to be perpetnally in motion within their crystalline cell.

The circulation of the Mollnsks is tolembly defined, espeeially in the higher and bestdeveloped species, where the blood is mged on its course by definite heart, and ramifies through the body by means of well-developed ressels. In the lower forms, howerer, these vessels can no longer be distinguished, and the blood circulates throngh a system of little cavities distribnted in the boty. So completely is this the case, that many Mollusks can be successfully injected, by introducing a fine-nosed syringe at random into the body, and pressing the heated substance very gently into the system.

The movements of the Mollusks are mostly performed by means of the mantle, and through this structure the shell is secreted and molded into form.

Of the secondary services rendered to man by the Mollusks we know but little, owing to the localities in which the greater number of species live, their noctumal or darkness-loving habits, and their extreme dislike to intrusion. Several species, such as the pholas or burrowing shell, and the teredo, so notorious as the ship-worm, are well known to be actively injurious to man, by destroying the foundations on which his edifices are built, or the vessels in which he trusts his life and property to the wares. Yet even these insidious enemies may have their uses to man, and by destroying the wrecks on which many a noble vessel might be driven and share the same fate, may be the salvation of costly property and invaluable lives.

As to those which are known to be directly usefnl to mankind, it will be sufficient to give a brief enumeration at present and to mention particulars when we come to the individual species.

Usefulness to man is, when reduced to its essence, the capability of affording him food, and therefore the edible speries must take first rank as regards use. The oyster is lamiliarly known to rich and poor, the latter being often more practically cognizant of its valne than the former. It affords at once a refined luxury and a health-giving nutriment; it can be eaten uncooked, or opens a wide field for culinary art ; and it has the further advantage of being very plentifnl, rery cheap, rery accessible, and very easily preserved in a living state until needed. The mussel is another largely consumed Mollusk, especially among the lower classes who cannot afiord to buy oysters; and in some parts of the world is cultirated and bred in millions, the ever-increasing numbers, together with the peculiar accommodation which they require, threatening to obliterate many a natural harbor, and cansing a well-grounded apprehension among ship-owners that their vessels mat be deprived of their accustomed refuge by means of this simple Mollnsk. The scallop again, with its classically famous shell and coralred foot, is another of the edible species, as is the cockle, mother well-known hivalve. Some of the foreign bivalve Mollnsks are considered as very great delicaries, among which the clam takes a rery high rank. There is also the luge giant clam, formerly rare, but now perfectly familiar; which has to be cut away from the rock by hatchets, and whose contents are equivalent to a large round of beef, very well tlavored, but rather tough and stringy.

The single-ralved species fumish many edible examples, such as the whelk and the periwinkle, so largely consumed by the poor, and even the cuttles are capable of affording a tolerably good repast when properly dressed. As a general rule, however, the bivalves are most esteemed, as they are not so fibrons in textme, and therefore not so tough as the nnivalves.

The shells of the Mollusks are also of much service to mankind. Putting' aside the wellknown money cowry, perhaps the most infinitesimally dirided currency in the world, many
species are of exceeding value for the materials furnished ly their shelly coverings Some species, where the shell is of that lovely nacreons nature which we popularly term mother-ofpearl, are extensively employed in the manfacture of "pearl" buttons, handles to pocketknives, ornamental ntensils, and in the inlaying of "ostly finmiture; and even pearls themselves, the most precious offspring of the ocean, are composed of the same substance as the nacreons coating of the shell; other shells are largely used in the mannfacture of cameos, their altermate coats of creamy white and rich red or wam brown giving beantilnt artistie effects when skilfully handted.

In former days, one of the mivalve shells, known now as the purpura, and little heeded except by the owners of marine aquaria, was employed for the purpose of producing the celebrated purple of the ancients, which none but the imperial family were permitted to wear.

Shells have in former times been valued at falulons prices. Collectors were merely such for the pleasure of owning heautiful things and not for purposes of science; consequently the shells berame important objects of commence.

In 173.5 the Scalaria pretiosa, which now is sold for about two dollars, then was worth one hundred dollars, and earlier two hundred dollars. Several of the Cypeas were held at one and two hendred dollars. The celebrated Orange Cowrey, in our day, has been held at fifty dollars each. The Cones are provertially valuable even now. Sereral species, and the Volutes, have commanded over one hondred dollars each.

The Argonautce argo when perfert is a most elegant thing. One in the Boston Natmal History Soriety's Cabinet was purchased for five humdred dollars. Its size is about three inches greater, in diameter, than any other known.
llaring now taken a superticial glanee at the Mollnsks and their uses, we will proceed to the description of individuals, and examine closer into details.

CEPHALOPODA.

The highest of the mollusks are those beings which are classed together under the title of Cepinalopoda. This is a term derived from two Greek words, the former signifying a head, and the latter a foot, and it is applied to these creatures because the feet, or arms as they might also be callet, are arranged in a circular mamer around the mouth.

In these animals, whiel are, as has already been mentioned, thought by many naturalists to he above the mollusks, the organization is highly developed. The nervons system is more like that of the vertenates than is the case with any other kind of mollusk, the knot of ganglia in the head bearing no small resemblance to a real brain. The Cephatopods breathe by means of a pair of gills or branchise, one set on each side of the body, and the circulating system by which the blood is driven through those organs and thence to the remainder of the structures is very complete.

They are all animals of prey, and are furnished with a tremendons apparatus for seizure and destruction. 'Their long arms are furnished with ronnd, hollow dises, set in rows, each dise being a powertul sucker, and, when applied to any ohject, retaining its hold with wonderful temacity. The merde ly which the neelfnl varmin is made is simple in the extreme. The centre of the dise is filled with a soft, fleshy protuberance, which can le withelrawn at the pleasure of the owner. When, therefore, the edges of the dise are applied to an object, and the piston-like centre witham, a partial varnum is formen, and the dise adheres like a cupping-glass or a boy's leather surker.

These dises are ail muder the command of the owner, who can seize any object with an instataneons grasp, and wax its hold with equal celerity. The arms are almost as morable and as useful to the mitlo-fish as the proboseis to the elephant, for beside answering the
purposes which have been mentioned, they are also used as legs and mable the creature to crawl on the ground, the shell heing then uppermost.

We will now proceed to a few selected species of Cephalopods, and in the course of describing the several individuals, will examine the curious points of structure which are common to all.

DIBRANCHIATA.

Our first example is the celphated Amonatt, or Paper Nautilus, the latter title being given on account of the extreme thinness and fragility of the shell, which crumbles under a heedless grasp like the shell of an egg. and the former in allusion to the pretty fable which was formerly namated of its sailing powers. It is rather remarkable, by the way, that the shell of the Argonant is, dming the life of its owner, elastic and yielding, almost as if it were made of thin horn.

Two of the arms of the Argonant are greatly dilated at their extremities; and it was formerly asserted, and generally believed, that the creature was accustomed to employ these arms as sails, raising them high above the shell, and allowing itself to be driven over the surface by the breeze, while it directed its course by the remaining arms, which were suffered to hang orer the edge of the shell into the water and acted like so many ours. In consequence of this belief, the creature was named the Argonant, in allusion to the old classical fable of the ship Argo and her golden freight.

Certainly, the Argo herself conld not have carried a more splendid cargo than is borne by the shell of the Argonant when its inhabitant is living and in its full enjoyment of life and health. The animal, or "ponlp" as it is technically called, is indeul a most lovely creature, despite of its unattractive form. "It appeared," writes Mr. Rang, when describing one of these creatures which had been eaptured alive, "little more than a shipeless mass, but it was a mass of silver with a cloud of spots of the most beantiful rose-color, and a fine dotting of the same, which heightened its beanty. A long semi-circular band of ultramarine-blue, which melted away insensibly, was very decidedly marked at one of its extremities, that is of the keel. A large membrane covered all, and this membrane was the expanded velation of the arms, which so peculiarly characterizes the poulp of the Argonant.
"The animal was so entirely shut up in its abode, that the head and base of the arms only were a rery little raised above the edges of the opening of the shell. On each side of the head a small space was left free, allowing the eyes of the mollusk some scope of vision around, and their sharp and fixed gaze appeared to annome that the animal was watching attentively all that passed around it. The slender arms were folded back from their base, and inserted very deeply round the body of the poulp, in such a manner as to fill in part the empty spaces which the head must natmally leave in the much larger opening of the shell."

Mr. Rang then proceeds to show the real use of the expanded arms, which is to cover the shell on its exterior, and, as has since been definitely proved, to build up its delicate texture and to repair damages, the substance of the shell being secreted by these arms, and by their broad expansions moulded into shape. The expanded extremities of these arms are seen covering nearly the whole shell, and their bases, set with suckers, are bent bridge-like over the rest of the animal. The large eye is seen just protruding ont of the shell, the bases of the arms are curved over and behind it, and some clusters of eggs are seen sheltered under the arch of the expanded arms.

The modes of progression employed by the Argonant are to the full as wondrous as its fabled habits of sailing. Its progression by crawling has already been casually mentioned. While thus engaged, the creature turns itself so as to rest on its head, withdraws its body as far as possible into its shell, and using its arms like legs, creeps slowly but securely along the ground, sometimes affixing its dises to stones or projecting points of rocks for the purpose of lanłing itself along.

When, however, it wishes to attain greater speed, and to pass through the wide waters, it makes use of a totally different principle.

Vor. III. -39 .

As has alrearly been mentioned, the respiration is achieved by the passage of water over the double gills or branchise; the water, after it has completed its purpose, being ejected throngh a moderately long tube, technically called the siphon. The orifice of the siphon is directed towads the head of the animal, and it is by means of this simple apparatns that the act of mogression is effected. When the creature desires to dart rapidly through the water, it gathers its six arms into a straight line, so as to afford the slightest possible resistance to the water throngh which it passes, keeps its velated arms stretched tightly over the shell, and then, by violently ejecting water from the siphon, drives itself, by the reaction, in the opposite dinection.

While in the act of swimming, the Argonant's extremity of the siphon is seen projecting immediately below the eye. It this action forcibly ejects water from the tube, the effect will be to drive the animal rapidly in the contrary direction, i.e., from right to left. An empty shell shows the partially spiral and deeply grooved keel, and an extreme temuity of the bnilding material.

The animal, or poulp, is rery slightly comected with the shell, and, when captured in a net, will sometimes roluntarily leave its home. Many persons have therefore thought that the ponlp, was not the fabricator of the shell. but only an intruder on the premises of the rightful owner, having taken possession of the shell as a defence for its soft body, just as the wellknown soldier or hermit crab ams its soft and unprotected tail with the shell of a whelk, periwinkle, or a trochus. This opinion, ingenions and deserving of examination as it was, has, however, been proved eroneous by a nmmber of experiments, which have shown that the Argonant is not only the occupier, but the architect of its graceful dwelling, and that the expanded arms are at once the furnishers of the material and the executors of the work.

The precise food of the Argonant is not ascertained, but Mr. Bennett presumes that, as he always fomd the globular and translncent, but empty shells of the lyalea, one of the wingfooted marine species, adhering in numbers to the discs on the Argonaut's arms, these creatures must have been captured and devoured by the more powerful mollusk.

As the various cephalopods are so ummerons as to preclude all possibility of describing each species, we must content omselves with a typical form of each family, and a general account ol its members.

The species belonging to the family of the Octopodidæ, or Eight-armed Cuttles, possess no extemal shell like that of the nautilus, its place being taken by two short styles or "pens" in the substance of the mantle. There are eight arms, unequal in length, and furnished with double or single rows of the suckers which have already been described. A good illustration of an Octopus the reader will observe in the right-hand comer of the full-page engraving representing the Red Coral.

They are solitary beings, voracious to a degree, and so active that they find little difficulty in capturing their prey, or in escaping from the attacks of their enemies. Eren when pursued into the nurow precincts of a rock pool, the creature is not easily canght. When threatened, or if apprehensive of danger, the Polypus, as the animal was formerly called, darts with arrowy swiftness from one side of the pool to the other, and at the same time so discolors the water with the contents of its ink-hag, that its course is not perceptible, nor, until the water has become clear again, can the precise locality of the creature be discovered. Even if detecter, it is not easily captured, as it has a knack of forcing its umprotected body into some crevice, so that no hold can be taken of it, and then affixing itself by its suckers to the rock with such wonderful tenacity that it can hardly be detached as long as life remains.

One example of this family is the Webbed Sepid, a very curious animal, fomd on the coast of Greenland. Its color is riolet, and the arms are united by a web almost to their tips. The suckers are set in single rows. Only one species of this genus is known.

In the Octopods the suckers are set directly noon the arms, and the eyes are fixed in their orbits; but in the Decapords, another section of these creatures, the suckers are placed on footstalks, and ammed with a bony ring on each. The eyes are movable, and the shell is internal, lying loosely in the mantle. This so-called shell has, however, no real title to the
name, being either a spear-shaped body of a horny smbstance, such ats is populary known by the name of sea-pen, or a curious aggregation of chalky particles, tamiliar under the title of "cuttle-bone." This "bone" is not attached to the animal by any museles, but lies loosely in a kind of sac in the mantle, and will drop ont if the sar be opened.

Of the order Octopoda, the genns stamoteuthis is a newly disoovered one. But a single specimen is known. which wis found in the waters about thirty miles east of Cape Sable, Nova scotia.

The genus Alloposus is represented in New England waters by A. mollis; a female specimen of which is sahd to weigh over twenty ponnds, and to have a total length of thirtytwo inches.

These genera belong to the family which embraces the Argonants, or Paper Sailors. The latter are familiar to us as tropical species. The United States Fish Commission have dredged about a dozen dead shells a hmmbed miles off the New England coast.

Octopus culgaris, of the West Indies, reaches a length of nine feet, and weight of sixty pounds.

Octopus punctutus, of the Pacific coast, reaches a length of radial spread of twenty-eight feet.

There is no evidence of an Octonus laving attacked any hmman being. In habit it is mild and retiring. exhibiting no disposition to lay hold mpon anything bat its legitimate food, which it finds in abondance on the sea bottom. Abont fifty species are enumerated, as known throughont the world. The most familiar Octopus to the general reader has been the O. vulgaris of the Meditermatan sea, where it is known as an important edible. During Lent the meat is eaten, and regarded by special Papal indnlgence as fish.

Octopus bairdi is an interesting apecies discovered by the Fish Commission operations off our New England coast. l'rof. Terrill, the chief naturalist of the Commission, thus describes its habits, having kept one in confmement: When at rest it remains at the bottom of the ressel, adhering firmly by some of the basal snckers of its arms. While the onter portion of its arms were curled back in different positions, the body was held in neariy a horizontal position, and the eves were msually half closed and had a sleepy look. When distmbed or in any way excited, the eyes opened more midely, especially at night. It rurely crept about by means of its arms, but would swim briskly. The siphon is used to direct the movements, being bent under the body when it moves forward.

One species of Etedone-a genns in which the arms bear a single row of suckers-is found in our waters, but only two specimens have thus far been discovered. In allusion to its warty appearance, Prof. Verill calls it E. verrucosa. There are three species in Emropean waters.

Or acconnt of the term Decapoda-ten-footed-being in use also in the class of Crustacea, Decacera has been snbstituted for the next division. The well-known fossil Bellemmites belong to this order. Whe little Spirmla, nantilus-like shell that is abundantly thrown upon the beaches of the Sonthem States, is another form. These shells have at times been found on Nantncket shores. The animal is not found with the shell. Only three perfect and a few mutilated specimens have ever been fomb. The United States Coast Surver people dredged one off one of the Wrest India islands in 18\%8. It came from a depth of nine hundred and fifty fathoms.

Tire family of the Teuthide, popmlarly known as Calamaries, or Squids, are distinguished by their elongated bodies, their short and broad fins. and the shell or pen which is found in their interior. All the Squids are rery active, and some species, called Flying Squids by sailors, and Ommastrephes by systematic naturalists, are able to dash out of the sea and dart to considerable distances. Mr. Beale mentions that he has seen tens of thonsands of these animals dart simultaneonsly ont of the water when pursued by dolphims or albacores, and propel themselves through the air for a distance of eighty or a hundred yards. While thus engaged, ther have a habit of moving their long tentacles with a rapid, spiral motion, which may possibly help them in their tlight, as it undonbtedly does in their propulsion throngh the
water. This peculiar action has been compared by the writer to that of an eight-pronged cork. screw. An interesting account of the Flying Squid may be seen in Bemett's "Whaling Voyage," where it is casually mentioned that these creatures frequently leaped on the deck of the ressel in their daring flight, and sonetimes struck themselves violently against the bows, and fell back injured into the sea. This squid has even been known to fling itself fairly over the ship, and to fall in the water on the other side.

One species of Squid is tolerably common on European coasts, and is often used for bait by European fishermen.

Our present example of this family is the Little Squin, or Sepiola, of which gemus six species are known, inhabiting most parts of the world. The specimen from which our illustration was taken was of very large size.

SEPIOLA-Sepiola attuntica. (a, front; b, back.)
One species, the Rock Squid, which sometimes attains a large size, may be considered as a formidable antagonist, if irritated.

Squid are not used in America as food, but immense quantities are consumed as fishing-bait.
Family Sepiolide is represented on our shores by genera Sepiola, Rossia, and Heteroteuthis, the species being rarely seen.

Family Cranchiide has one genns, Cranchia. The body is short and round, with two small fins on the hindor end. The head is small, with large eyes, the corneas of which are perforated, so that the sea-water penetrates to the lenses.

Family Desmoteullide is closely allied, having two genera, Desmoteuthis and Taonius, the bodies of which are longer and pointed posteriorly.

Family Lotigopsider. Forms of this family are longer, and the fins are large; the head very snall. Genus Mistiotenlhis is represented by three species only, two of which inhabit the Mediterranear, and the other, II. collinsii, the waters off Nova Scotia. One imperfect specimen, and the beaks of two otheis, are all that lave bean found. Four other prominent genema are recognized.

The fimily Teulhita is chandorized by having horny, recurved hooks, in lieu of the suckers on the tentacmar anms. These arms have sucking discs by which they are, when necessary, mited along their length, leaving the ents to act as forceps in the capture of prey.

ARMED CALAMARY.

A large specimen, called Mforotenthis robusta, found in Alaska ly Mr. Dall, is allied here. Three mutilated specimens were serm, the largest measuring fourteen teet in length. Certain parts of the structure of the "pen " recalls the Beleminites.

The last family is the Ommastrephida, in which the body is long and tapers to a point behind. The arms are short, and without hooks, but furmished with two rows of suckers; the tentacular arms are not retractile, but terminate in an expanded clnb, armed with four rows of suckers. The eves lave lids, and the cornea is perforated so that the salt water penetrates and bathes the lens. The typical genus is Ommastrephes, of which one species, O. illecibrosus, is the most common squid north of Cape Cod. Economically, it is an important article; its use for bait by the deep-sea fishermen is very extensive. It swims in large shoals, and is frequently seen following shoals of young mackerel for food. Prol. Verrill once told me of his observing a large specimen while it was making havoe among some fishes. It advances stealthily, says Prof. Terrill, toward the intended victim by undulations of the fins, when it suddenly seizes it by means of the tentacular arms, and kills it by biting the back of the neck with their powerful parrot-bill jaws. As these creatures swim or dart backwards, it is a question how do they so quickly seize upon their prey. In fact, they dart with great swiftness backwards, and then turn obliquely and throw the tentacles to the victim, which close over it like the blades of forceps.

Many quaint old stories are extant concerning these creatures, or imaginary forms called Poulpes. Bishop Pontoppidan, of Norway, is responsible for one notable drawing, which is published in his "IIistory of Norway," and reproduced in numerous later prblications. One description of this creature, which stranded in Ireland, was published in 1673, and is as follows: "This monster was taken in Dingle I Cork, in the county of Kerry, being driven up by a great storm; having two heads, one great head out which sprung a little head, two foot or a yard from the great head. With two great eyes, each as big as a pewter dish, the length of it being about nineteen foot, bigger in the body than any horse, having upon the head ten horns, some of six, some of 8 or ten One of eleven foot long, the biggest horns as big as a mans Leg, the least as big is his wrist, which horns it threw from it on both sides, And to it again to defend itself having two of the ten horns plain, and smooth that were the middle and biggest horns. The other eight had one hundred Crowns apeece, placed by two and two on each of them, in all eight lundred Crowns, each Crown having teeth, that tore anything that tonched them, by shutting together the sharp teeth, being like the wheels of a watch, the Crowns were as big as a mans thumb, or something bigger. Over this monster's back was a mantle of a bright red color, with a fringe round it, it hung down on both sides like a carpet on a table, falling back on each side, and faced with white-: the Crowns and mantle were glorious to behold. This monster had not one bone about him, ner skin, nor scales, nor feet but had a smooth skin like a man's belly. It swoom by the lappets of the mantle. The little head it could dart forth a yard from the great, and draw it in again at plesure, being like a hawks beak, and having in its little head two tongues, by which it is thought it received all its nourishment. When it was dead and opened the liver wayed 30 pounds."

Any one that las seen the Giant Squids that have recently been discovered, will at once recognize the abore as a faithful description of the same.

Whalers have long been in the liabit of telling that the sperm whales live on Squids of great size, portions of the latter being often found in the stomachs. Yet it has so chanced that science comes tardily to recognize them.

The first reliable account we have on record is in the year 1873. The jaws of a large Squid were described as taken from the Grand Banks. Since that time, nearly thirty specimens of the species have been seen.

These are referred to three species-Architeuthis princeps, A. humeyi, and A. megaptera. Some five or six species have been described from other parts of the world. Those of our coasts are all from Newfoundland or Grand Banks. The Irish specimen measured thirty-one feet. Measurements of some of the American specimens are as follows: One from the coast of Labrador, which was used for dogs' meat before it could be saved for other purposes, measured fifty-two feet, the tentacles being thirty-seven, leaving fifteen feet as the length of the body.

Another from the coast of Catalina, in Newfombland, in 1877, had a liead and body nine and a half feet long, and tentacnlar arms of thinty feet in length. The circumference of the borly was seven feet. This was the specimen which was brought to the New York Aquarium, and there exhibited in a large, shallow tank of spirits. We had the pleasure to examine that specimen in company with Prof. Tervill. Such an opportmity had never occurred before, and throngh the courtesy of Mr. Reiche, the proprietor of the Aquarimm, we were allowed all privileges necessary to measure, describe, and sketel the rare creature. Fortmately, it was the best specimen that had been secured, being quite perfect. The body of this creatmre measured nearly ten feet, as we have seen. What was the astonishment, some years later, to learn of another of twice the dimensions! A body so large, made up of soft flesh, like a gigantic worm, no bones to stiffen it, the only hard part the thin, isinglass "pen," seems to us, as it lies on the shore, surprisingly helpless and out of harmony with its surroundings. Yet, in the vast ocean depths, how well may it not accord,-as the great whate with the same enviromment. This species of Giant Squid is Architenthis princeps. -Verrill.

But few yeurs since, the largest Cephahopod, Cnttle-fish, or Squid, known to natmalists, was scarcely measured by feet. When Tictor Hngo wrote "The Toilers of the Sea," his description of the "Devil Fish," a name applied in some countries for a large Squid or Cuttle, was regarded as quite fabulons. The discovery of a portion of an enormons specimen of Squid off the shores of Newfonndland in 1873 , revealed the fact that not only were there great species of this form in the decp waters of the North Atlantic, but that the fishermen of Newfoundland have for several years habitually fed their dogs and other animals on fragments of the great creatures that occasionally floated near shore, -always in the shape of dead careases, no living specimens having been seen mutil near the present day.

In 1879, the Rev. Mr. Harvey, of Newfoundland, described in the Boston Traveller of Jannary 3oth, a specimen having the astonishing total length of eighty feet !--the body being twenty feet from the montl to the point of the tail. He says: "Not far from the locality of the other Devil-fishes (as they are there called), on the second day of November, Stephen Sherring, a fisherman of Thimble Tickle, Notre Dame Bay, observed some bulky object, ant as he approached, saw it making desperate efforts to escape. It was aground on the beach, and the tide was ebbing. It was cluming the water into foam by the motion of its immense arms and tail. From the fnmmel in the top of its head it was ejecting large volmmes of water, this being its habitnal method of moving backward, the force of the stream, by the reaction of the surronnding medim, driving it in the required direction. At times it threw forth its ink, and blackened the sea around it. Its great bulk could not be started by its pumping, and, like a rast hulk, it was hopelessly strunded. At length, as the water receded, and its gills were no longer bathed by the all-needful life-giving medim, it died. Most monfortunately, the fishemen cut the carcase for dogs' meat, but not before reliable measurements were made. As we have serm, it was just twice the size of that hitherto regarded monster of the kind."

The Belemnites, those curions cuemmber-like fossils, popukarly called Thunderbolts, which are found in various strata, are now known to be the remains of ancient Calamaries, of which the entire animal, with its mantle, fins, ink-bag, siphon, eyes, and tentacles, has been discorered.

Our next example is the common SEPIA, whose wonderful chalky "home" is so frequently thrown on onr shores after the death of the animal in which it was developed.

This so-called bone was formerly in great repute for various purposes, but is now merely employed in the manufacture of pounce and dentifrice, for which latter purpose, however, prepared chalk is quite as effertnal, being indeed the same snbstance, though in the form of powder. It is composed of a vast mumber of nearly horizontal layers, supported by inmmerable little pillars or fibres of the same sulstance. If one of these shells be snapped aross, the structure will be well shown eren to the naked eye, while with the help of a common pocketlens, even the minutest details can be examined. The upper coat will mostly scale off so as to show its smooth surface, while the successive ranges of glittering pillars look like a copy of
the Giant's Causeway in minature, as the irregular fracture breaks up their ranked columns into deep caverns and bold projecting rocks. A diagonal cut with a knife will further expose the iard horizontal strata with their myriad pillars; but the method by which the structure exhibits itself in its greatest beauty is to make a rery thin transrerse section, mount it in Canada balsam on a glass slide for the microscope, and employ polarized light in its examination.

In consequence of its peculiar formation, the cuttle-bone is extremely light when dry, and admits so much air into the interstices that it swims easily in water.

The eggs of the Sepia are dark oval borlies, looking something like a bunch of purple grapes, and from this resemblance termed Sea Grapes by the fishermen. They may often be found on the seashore, flung there by the retiring tide, and left to perish unless rescued by some friendly hand. If these bunches of eggs be placed in a vessel of sea-water, and guarded from danger, they may be seen daily changing in appearance, until at last they burst asunder and let loose the inmates on the world. Nothing can exceed the nonchalant demeanor of the tiny creature not two mimtes okl. It deliberately makes the tour of its glassy prison, examines every detail with mimute attention, and having quite satisfied its curiosity, poises itself for a moment just above the ground, blows ont a circular hollow in the sand with a sharp expulsion of water from the siphon, and settles quietly into the bed thens prepared for it.

The family Sepiada embraces the true Cuttle-fishes. The genus Sepia furnishes the well-known bone and ink of commerce. The flesh is esteemed in European sea-ports. The family Loliginida includes those forms known to us as Squids. Of the three living genera only one-Loligo-is represented on our coast. L. peatei is the familiar form, seen on the Cape Cod shores. It reaches a length of abont fifteen inches. The species common north of Cape Cod is Ommastrephes illicebrosa. A second, L. breois, extends from Virginia to Brazil. L. gatei inhabits the Gulf of Mexico.

Before proceeding to another large group of cephalopods, it is needful to mention the curious anmals called, from the shape of their shell, Spinalidæ. These singular creatures form a distinct though very small family, containing only three species.

In them, the shell is very delicate, and is rolled into a spiral form, something like the proboscis of an elephant when curled up. These shells are very common on the shores of New Zealand, where they are scattered in thonsands, and are sometimes thrown on the shores of Europe by the waves of the Gulf Stream. Tet the animal which formed the shell is extremely rare, and is seldom found except in a very fragmentary and battered condition.

TETRABRANCHIATA.

Anotier order of cephalopods is called by the name of Tetrabranchiata, or Four-gilled animals, because the organs of respiration are composed of four branchix. These creatures possess a very strong extemal shell, which is divided into a series of gradually increasing compartments connected together by a central tube called the siphuncle. As the animal grows, it continues to enlarge its home, so that its age can be inferred from the number of chambers comprising its shell.

In former times these creatures were very abundant, but in our day the only known living representative is the Cifambered, or Pearli Nautilus. The spiral home in which the creature resides, and the structure of the chambers, together with their connection by means of the siphuncle, is beautiful.

While the animal still lives, the short tubes that pass through the walls of the chambers are connected by membranons pipes, and even in a specimen that has been long dead, these connecting links hold their places, provided that the shell has not been subjected to severe shocks. In one of these shells now before me, which I have very cautionsly opened, the whole series of membranous tubes can be seen in their places, black and shrivelled externally, but perfect tubes nevertheless.

CEPHALOPHORA.

$W_{\text {e }}$ now take leave of these highly developed mollusks, and pass to other forms where the organization is not nearly so perfect, and where the habits are either so commonplace as to be deroid of general interest, or the animals so shy that they never can be seen performing any act which is likely to attract the attention of an unprofessed naturalist.

It is an enormonsly large group, containing all the snails, whether tervestrial, aquatic, or marine, the whelks, limpets, and similar animals not so familiarly known. Many species are much used as food, while others are of great service in the arts, furnishing employment to many hundreds of workmen. As the shell of these creatures consists of one piece or valve only they are sometimes termed univalres, in contradistinction to the oysters, muscles, scallops, and similar shells, which are termed bivalves, in allusion to their double shell.

The larger number of mollnsks are divided between the class which embraces the bivalve shells and the present, the Cephalophora, or head-bearers; the former are collectively termed Acephala, or headless. The present class naturally take rank next after the Cephalopods, so-called because the feet are arranged around the head, and both rank higher than the Acephata, the headess, for the reason that they are more like the higher forms of life; that is, they are symmetrical; have heads with a pair of eyes.

The term Gasteropods has heretofore been used to designate this order, from the fact that they crawl upion a flat disc, which was likened to a stomach, hence stomach-footed.

The animals embraced in this order have what is called a lingual ribbon, or tongue, which consists of a band of chitine, a peculiar substance which is characteristic of the skins of insects. This is called an Odontophore, or tooth-bearer. It is attached to the floor of the mouth, and lies free at one end, and bears on its upper surface numbers of hard, tooth-like processes. When in use it is moved by muscles, and drawn over cartilages; a rasping motion brings the hard teeth into contact with any substance taken into the month for food.

The month of these animals is situated on the under side of the head, and is armed by varionsly situated jaws or plates of the hard glutinous character. Classification has been greatly aided by the examination of these lingnal ribbons. The symmetry of the typical Cephalophoras is lost in the largest number by conforming to the shapes of the external parts -their shells. The cavity of the mouth communicates with an ecsophagus, which sometimes dilates and forms a crop, and then the stomach follows, from which the intestine arises.

The circulatory system is well developed; Dentalimm being an exception, having no heart. One auricle and one ventricle is nsually present. The blood is colorless, the corpuscles of which is nucleated. In both Acephala and the present class, the heart receives the blood from the gills and forces it over the body.

Respiration is by gills or by pulmonary organs, lamellar in form, and by plume-like branchiæ. The nervons system differs in the various gronps; ganglia or knots of nervous matter arranged abont the anterior parts-around the "swallow," for example-serve the functions of brain. Organs of hearing are present; eyes are generally so, and nsually two iv number, situater upon the head, or some projecting appendagen, called tentacles. The eyes are singularly like those of vertebrates. The sexes are separate in some and in others combined in oue imdividual. Most of these forms lay eggs. In a few the young are produced living, the eggs being hatched within the parent.

Classification of these forms is yet in a most unsettled condition; further study is required for the determination of points of importance. Consequently provisional arrangement is all that the student can look for. This should, of course, be understood, as learners are apt to receive the mischierous idea that classification is fixed.

Our first example of the gasteroports is the Beaked Spindle-smeli, so called from the rather distant resemblance which its long and pointed form bears to a spindle, and the elongated beak-like process which is seen pointing downwards to the ground as the animal walks along. In the family to which this mollusk belongs, the lip of the shell is always extended and deeply notched.

Another shell belonging to the same family is the Thlee-forned Stromb.
The Strombs form a large genms, containing about sixty speries, and are found in almost every warm sea. They do not appear to be deep-water lovers, being mostly fonnd on the reefs at low water, and seldom extending their range beyond ten fathoms. The opercnlum of the Strombs is lather curious in its structure, the nucleus being set at one extremity, and the operculnm being made up of a succession of horny plates or scales overlapping each other like the tiles of a house, or the surcessive sted layers of a cariage-spring.

Some species of Strombs attain a considerable size, and are much used in the arts, as, for example, the Glayt Stromb, of Fountain Shell (Strombus gigas), one of the TVest Indiam species, which sometimes attains the weight of fonr or five pounds, and is exported to Amerisa and Europe by thousands for the use of englatrers, who cut the well-known cameos from its beantifully tinted substance. Three hmdred thousind of these shells were bronght to Liverpool alone in a single year. As the animal increases in age, it gradually fills up the hollow apex and spines with solid matter, and thus materially adds to the weight of the shell withont improving its valne to the engraver. In some parts of the world, such as Barbadoes, the Giant Stromb is eaten, and sold regularly for that purpose. Pearls of a delicate pink color have sometimes been fomm in this sliell, but their occurence is not frequent, probibly on account of the careless and mohservant habits of the negroes who clean the shells. Pearls are also fonnd in other species belonging to this gemus.

The teeth of the Strombs are extremely beantiful and most complicated.
The color of the Three-horned Stromb is brown and yellow of different shades, richly mottled with pale saffron. Its arerage lengtl is about fonr inches.

The tro species, the Common Spider-shell, and the Orange-mouthed Spider-shell, derive their popular names from the generally spider-like contour of their form.

When adult, the onter lip is furnished with several horny appendages, always curved and not precisely of the same shape in the same species, although the general character of their form is sufficiently well marked to distinguish the species. One of these horns is always close to the spine, and is rolled in such a manner as to form a posterior canal. Abont ten species of these amimals are known, and seem to be confined to the Chinese and Indian seas.

The color of the Common Spider-shell is very bright, consisting of boldly mottled chestnnt, like the hue of old rosewood, variegated with white, and traversed by lines of orange. The interior of the shell is pale brown, with a dash of rellow. The average length is three or fonr inches.

The shell of the Orange-mouthed Spider-shell is remarkable for its curions projecting horns, with their sharp points and bold curres. It is worthy of notice that in all the Spidershells these projections are not developed until the creature has attained adult age, the young Spider-shell resembling that of the stromb. From the peculiar shape of some of the species, these creatures are sometimes called Scorpion-silells.

The color of the Orange-monthed Spider-shell is reamy-white on the exterior, and rich orange within. The curved spines are white and shining, and bear no small resemblance to the poison-teeth of serpents.

Tue shells that are included in the family of the Mruricidre may readily be distingnished by the straight beak or canal in front, and the absence of any such canal behind. The eyes of these animals are not placed on long footstalks, as in the preceding family, but are set directly on the tentacles, without auy supporting stalk or projection. All the animals belonging to this family are not only camivorons, but rapacions, preving on other mollnsks, and destroying them with the terrible armature called the tooth-ribbon, and which, when examined with a microscope, proves to be a set of adamantine teeth, sharp-edged and pointed as llose of the shark, and cutting their way through the lard shells of their victims as the well-known cordon saw passes through thick blocks of hard wood.

Abont one hundred and eighty species are known to belong to the typical genns, and there is hardly a portion of the world where a Mnrex of some kind may not be found.

The larger of the two specimens represents the shell which is popularly known under the name of Thorny Wooncock, the latter title being given to it, in common with several of its congener's, on account of the long beak, which is thought to bear some resemblance to that of the woodcock, and the former in allusion to the vast number of lengthened spines or thorns which are arranged regularly over its surface. It has also received the eqnally appropriate and more poetical name of 'Venus' Conb.

This shell is found in the Indian Ocean, and varies greatly in dimensions, four or five inches being about the average length. It is evident that as nothing is ever made in vain, or to be wasted, the wonderful array of external spines must play some important part in nature, if not in the economy of the particnlar species. But what that part may be, and what may be the object of these beautiful structures, is a problem which seems almost insoluble, at all events, with our present means of discovery.

The color of the shell is very pale brown, each ridge being slightly tuberculated and edged with white. The spines are miform drab, or very pale brown, with an almost horny translucence.

Another species is given in the same illustration, in order to show the animal and the position of the eyes, to which reference has already been made. This is the common Woodcook, or Iledgeifog-silell. It is very much smaller than the thorny woodcock, and affords a good example of the contrast that can often be effected by different animals which yet belong to the same gemus. Its length is hardly more than an inch and a half, and its color is a pale yellowish-hrown.

One or two other species belonging to this genus require a passing notice. The Woodсоск's liead (Afurex hemstellum), remarkable for its long peak and rounded shell, inhabits the same localities as its more beantiful neighbor, being fonnd in the Indian and Chinese seas. It has but few of the spines which decorate the thorny woodcock in such profusion, and even those which are seen mpon the surfars are comparatively short. The rounded body of the shell, however, togetlier with its long leaked process, does really bear some resemblance to the head and bill of the lird from which it takes its popular name.

The Rotal Munex (Mfurex regius) is a very fine example of this genns, and is valued, not only for its rarity, but for the extreme beanty of its form and coloring, which render it an ormament to any cabinet. In color it resembles the thorny woodcock.

The large empty shell lying in the centre of the engraving represents the Sea Trumper, or Conch-shell, so familiar from the use to which it has been put for ages, and which has rendered it a classical appendage to the marine deity whose name it bears.

The Sea Trumpet sometimes attains to a large size, a foot or more in length; and, when it has attained its full dimensions, is employed among the South Sea Islanders and Austialians as a trumpet. In order to fit the shell for this purpose, a round hole is bored in the side, at about one-fourth the length from the tip, and the required sound is elicited by laying the shell to the lips, and blowing accoss the hole as a performer hlows the flute. The note-if the noise produced can be called by that name-is hollow and disagreeable; but as it is lond

TWISTED TRITON.- Triton diwtortus. SEA TRUMPET.- Triton variegatus. WRINKLED TRITON.-Tritonanus.
and unlike any other sound, it answers the purpose of those who employ it. While blowing the conch, the performer introduces his right hand into the cavity, much in the manner of a player upon the French horn.

Below the Sea Trumpet lies another shell, which wonld hardly be taken for a Triton until tmoned over, so as to show the whole of the contomr. This is the Wrankled, or Old Woman Triton, so called becanse the corrugated and rmdely oral month, with its white crmmpled folds, is thonght to bear some distant resemblance to the face of an old woman surounded with a close cap. The Wrinkled Triton is comparatively a small species, as may be seen from the proportions preserved in the figure.

Behind the larger figure is seen the Twisted Triton, represented in the act of crawling, and given, not so much to exhibit any peculiarity of its shell, which is hidden behind that of the larger species, as to show the form of the animal, its large foot, and eyes placed at the bases of the tentacles. The operculum of this animal is small and leaf-shaped, the nucleus being at one end.

The Frog-shell seems to have been gifted with its popular name on the same principle that cansed a well-known dramatic character to detect in a clond an equal resemblance to a whale and a camel. All the members of this genus possess two rows of ridges, tecinically called "varices," mpon the shell, one row being placed on each side. There are about fifty species of Ranella, spread over all the warm seas. Like the preceding shells, they prefer the slallow to the deep waters, and may be found at almost all depths-from the bare rocks left waterless by the receding fide, to a depth of eighteen or twenty fathoms.

The Buld-frog Smal has a roughly tuberculated surface, with deep hollows and bold ridges of thick shelly substance, together with projecting horns on either side. The color of this shell is extremely rarialle. In the handsomest specimens the ground color is creamy white, largely mottled with bold tints of deepest brown and purest white. Bat in many instances the entire shell is of a very pale tone, yellow predominating, and the brown entirely subservient, and presenting the same contrast to the full-colored shell as the albino to the negro.

The Spined Frog-simble derives its name from the sharp and rather long spines or projections with which it is fumished. None of these shells are of very great size, their average length being about two inches.

A very pretty sleell is termed indifferently the Little Fig, or Little Pear Shell (Pyrula ficus), becanse its general ontline is thought snfficiently pear or fig-like to warrant the application of the name. Both scientific names refer to this far-fetched resemblance, pyrula signifying a little pear, and ficus meaning a fig.

The foot of the Pyrula is abruptly cut, off, or truncated in front, and modified so as to form a short horn or jartial crescent at each side.

Nearly forty species of Pear-shell are known to conchologists, and are spread over the warmer seas of the world, living in moderately deep water, varying from sixteen to thirty-five fathoms of depth.

This is a thin and delicate shell, the large expanded lip being especially so, and, in consequence, is very light when the inmate has been removed. The color is very pale yellow, with brown and white arranged in wary mottlings. Its average length is abont four inches.

The delicate thimess of the shell is not, howerer, a character common to the entire genus, for another species, the Bat-hike Pear-smell (Pyrula carnária), is quite as remarkable in the opposite direction, its shell being peculiarly large and ponderously constructed. This sheil is found in the Indian Ocean, and its general color is dark bay. In all these shells, however, the long canal which projects from the front of the shell is always open, not being filled mp with solid matter as the anmal increases in age; and the columella, or pillar of shelly substance, which rons up the centre of the whorls, like the solid centre of a serew, is always smooth.

A darge and boldly mottled shell, popularly known by the really appropriate name of Tulip Whelk, bears in its rich and rariegated coloring some amagy to that of the Hower from which it derives its name; while the general shape is sufficiently like that of the whelk to warmant its use, even though the two shells belong to different families. The generic name of this shell is derived from a latin word signifying a band, and is given to it on account of the boldly banded stripes in which the colors are disposed. As in the last-mentioned genms, the camal, thongh not so elongated, is always kept open.

Comparatively few living species of Tulip-shells are known to conchologists, sixteen or seventern being their intmost limit. These shells inhabit the warmer seas, and some of them attain a great size, such as the Great Tulu-shell, which sometimes reaches a length of nearly two feet.

Befone mentioning our last example of the Muricida, we have to pay attention to the Spindife, or Distaff suell (Fusus coius), so called in allusion to its form. Its scientific
names are both given in consequence of its general resemblance to these objects, the former signifying a spindle, and the latter a distaff.

At least in hundred species of Spindle-shells are lmomm, and their range extends over the greater part of the globe. One large species (Fusus antaqmus), called, from its color, the Red Whele, is common on European shores, and off some of the coasts of Scotland is extensively captured for sale. When the empty shell is held to the ear, the reverberations of sounds are gathered in its wide lip, and, being returned to the ear in a broken and confnsed manner, give forth a monotonous sound, rising and falling at intervals, and are thonght by the uneducated to be the imprisoned murmmrs of the wares. For this reason, the shell is popularly known as Romnixg Buckif. In some places the empty shell is used as amp, the cavity containing the oil and the wick being drawn throngh the canal, thas producing a charmingly elegant lamp, which even exceeds in beauty the classical forms of the ancients, and quite equals them in effiency.

Another species, the Gidnt Spundle (Fusus cotossens), is remarkable as being one of the largest living examples of the gasteropods.

The foot of the animal is moderately broad, and the operculum is small, and shaped not unlike a sea mussel-shell. The color of the Spindle-shell is nearly white, and almost uniformly tinted, but darkening slightly towards the point.

We now arrive at another and rather larger family, of which the common Whelk is a familiar example.

This is one of the most carnivorous of onr mollusks, and among the creatures of its own class is as destructive as the lion among the herds of antelopes. Its long tongue, armed with row upon row of curved and sharp-edged teeth, harder than the notches of a file, and keen as the edge of al lancet, is a most irresistible instrment when rightly applied, drilling a circular hole throngh the thickest shells as easily as a carpenter's centre-bit works its way through a deal board.

The front of the tongue often has its teeth sadly broken, or even wanting altogether, but their place is soon supplied by others, which make their way gradnally forward, and are bronght snccessively into use as wanted. As a general rnle, there are about a hundred rows of teeth in the Whelk's tongne; each row contains three teeth, and each tooth is deeply cleft into several notches, which practically gives the creature so many additional teeth.

The sweeping curves, broad swelling lip, and regular ridges, of the next genus of shells, have earned for them the popular title by which they are known.

About nine or ten species belong to this pretty genus, some of which are rare and costly. The Imperial Harp-shell is still a valuable shell; but in former days, when the facilities of commerce were far less than at present, it conld only be purchased at a most extravagant rate. A small specimen is now ralned at from two to five dollars, and a fine one will cost about fifteen dollars; but, in former days, as mnch as two hundred and fifty dollars have been paid for a specimen. A similar diminution las taken place in the cost of nearly all shells.

The Harp-shells are only found in the hottest seas, and are taken mostly on the shores of the Mamitius, Ceylon, and the Philippine Islands. They frequent the softer and more muddy parts of the coast, and prefer deep to shallow water. None of the Harp-shells possess the opercalnm.

The color of the Imperial Harp is pale chestnut and white, with a dash of yellow arranged in tolerably regnlar and slightly spiral bands.

The Little Harp-shell is a darker species, and one that seldom attains a greater length than an inch and a half. The peculiar foot is very large, broad, and leaf-shaped, and has a deep fissure just behind the tentacles, nearly cutting the organ asunder. It is said that, when the animal is irritated, the fissure becomes widely expanded. Some writers say that, if the animal is very much terrified, it withdraws itself into its home with such rapidity that the expanded front of the foot is mable to contract sufficiently, so that the
fissme is canght against the sharp front edge of the shell, and thas undergoes involuntary amputation.

The general colors are tolerably similar thronghout the Harps, but each species always preserves its peculiar individnality. One species, for example, has the spaces between the ridges pencilled in elaborate wary markings of chocolate on white, and the ribs themselves barred at regular intervals by lines of deep brown ; while another, known by the name of Ventimcose Marl' (Hurpu venlricósa), has the spaces filled with a succession of arches, one within the other, and of a rich brown color.

A very common shell may often be fonnd on the seashore, looking like a small whelk with a smooth whitish shell, boldly banded with reddish-brown. This is the Common Purple, or Purpura (Purpura lapillus), another member of this genns, and worthy of notice as being one of the shells which fumish the celebrated Tyrian purple of the ancients. This color, which, by the way, contains so little blue as to be unlike the tint which we now call by the name of purple, is evidently the analogue of the ink found in the sepia, and is secreted in a little sac by the throat, containing only one small drop.

For the very best dye this material was extracted carefully from the individual shells, but for an inferior kind it was obtained by pounding a quantity of the Purpure in a mortar, and straining off the juice, which was thus mixed with the blood and general moisture of the aninals, and consequently of less value than the pure dye. So expensive was the dye obtained by this latter process, that a pound of wool stained with it could not be purchased under a sum equalling one hondred and fifty dollars. Any one can try the experiment of dyeing a little strip of linen with the matter obtained from a single shell. After breaking the shell carefnlly so as not to crush the inhabitant, the cell containing the coloring matter will be seen lying across the head or neek of the animal, and can be removed by opening the sac and taking up the yellowish-white contents with a small camel's-hair hrusl, or the point of a new quill-pen. When the linen is imbued with this liquid and placed in the rays of the sun, it immediately begins to change its color, and passes throngh a series of tints with such rapidity that the eye can hardly follow them, umess the slanting rays of the rising on setting sum are chosen for the purpose.

One of the strangest, thongh not the most beantiful, of shells is the Mafilus, a native of the Red Sea and the Mauritius.

Dming its stages of development, the Magilus appears once as a small and delicate shell and then as a long, crumpled, and partly spiral tube, with a shell at one end and an opening at the other.

For the purpose, apparently, of carrying ont some mysterions object, the Magilus resides wholly in the masses of madrepore, and in its early youth is a thin and delicate shell without anything remarkable about it. As it advances in age, it enlarges in size, as is the case with most creatures ; but its growth is confmed to one direction, and, instead of enlarging in diameter, it merely increases in length. The canse of the continual addition made to its length is probably to he formd in the growth of the madrepore in which it is sheltered, and which wonld soon inclose the Magilus within its stony walls did not the mollusk provide against such a fate by lengthening its shell and taking up its residence in the mouth.

The most curions point, however, in the economy of the Magilns is, that, as fast as it adds u new shell in front, it fills up the cavity lehind with a solid concretion of shelly matter, very hard, and of am almost crystalline structure, so as to leare abont the same amomot of space as in the original shell. The animal is always to be found in the very front of the shelly tube, and closes the aperture with a strong operenhm that effectually shields it against all foes.

The color of the Magilus is whitish. Only one species is known.
In the peculial formation of the shell there is an evident analogy with the successive chambers formed by the pearly nantilus. In both eases the amimal is of small dimensions When compared with the magnitnde of its dwelling, and in both cases the creature continually advances forwam, taking ap $^{\prime}$, its residence in a chamber formed in the front of the shell, and, closing the passage behind in proportion to its advante. The chief difference, however,
between the two is, that the Magilns, being a fixed shell and inhuhing a stony tunnel, needs not the delicately structured shell required by the active uautilus, and therefore merely fills up the useless portions of the shell with solid matter, requiring no hollow chambers and no tube of communication.

Tile Spotted Needle-shell, or Spotted Auger, derives its name from the long and sharply pointed form of the shell. More than one hundred species of this genus are known, all inluabitants of the warmer seas, and the greater part resident within the tropics. In all these shells, the aperture is very small and the canal short. The operculum is small and pointed, having the nuclens at the smaller extremity. In many species the animal is eutirely blind; and even in those cases where eyes are present, they are very small, and set at the end of the minute tentacles.

The beantiful Spotted Ivory-shell is also a native of the hotter latitudes.
Few species, not more than eight or nine in number, are known to exist at the present day. They are all very smooth and polished on the exterior, and their substance is so thick

and solid that they seem almost to be made of earthenware. They reside at a moderate depth, being generally found in twelve or fonrteen fathoms of water. It is worthy of notice that the rich spotted markings of the shell are repeated upon the body of the animal. The members of this gems possess tolerably large eyes, set at the base of the long tentacles. As in the preceding genus, the operculum has its nnclens at the pointed end.

The color of the Spotted Ivory-shell is pure porcelain-white, richly spotted with deep brownish-red, something like the tint known to artists as burnt sienua. It is not a very large shell, being about two inches in lengtl.

Ture two shells represented in this and in the next illustration helong to the same comprehensive and useful family. The Apple TuN-stiell belongs to a moderately strong genus, deriving their popnlar name from the rounded and barrel-shaped ontlines of the shell.

The animal is shown as it appears when crawling, for the purpose of exhibiting the manner in which the siphon is carried bent over the front of the shell, like the uplifted proboscis of an elephant. In these shells the spire is comparatively small and short, and the aperture very large, thus producing a great contrast to the needle-shell. The figure in onr illnstration
is one-eighth the natural size. About fourteen species of Tun-shells are known, all inhabiting the wamer seas.

The beantiful Helmet-shelds are tolerably thick and solid, and their external surface is covered with bold ridges, manking the periodical growth. These ridges are technically called "varices." All the Helmet-shells

HELMET-SHELL. - Cassis glatea. (Amull specimen) are natives of the tropical seas, and appear to prefer the shallow waters near the coast. Several of these shells are employed by the engravers in the manufacture of cameos, the differently colored layers producing most exquisite effects when cut by a judicions operator. The colors vary greatly in the different species, and sometimes there is a slight variation even in different individuals belonging to the same species. Cameos, for example, that are cut from the Hobinen Helmet-shela (Cassis corminal are white, upon a ground of rich orange; those that are made from the Waty Helmet-shell (Cassis luberosa) are white, on deep dark red; the cameos formed from the shell of the Rrony Helmet (Cassis ruffa) are saffron-yellow on warm orange. Another beatiful speries, called the Queen Conch (Cassis madagascariensis), fumishes a white cameo on a claret-colored ground.

Tue next illustration is a dark smooth shell, represented as crawling on the ground, and partially enveloped in the spotted textures of the living creature.

This is the Black Olive, so called on account of the jetty blackness of its exterior, and the oval, rounded form, which is not molise that of the fruit whose name it hears. The genus Oliva is a very large one, comprising more than one hundred species, and found in all the warm and tropical seas. As may be seen by the figure, the mantle is furnished with two large lobes, that nearly meet over the back while the animal is moving, and which throw ont certain filamentary projections. that look very like temacles in the wrong place. The foot is rery large-so large, indeed, that the shell is partly buried in its soft material-and the eyes are, as may be seen in the figure, placed before the middle of the tenacles.

BLACK OLIVE.-Oliva mouritana. (Natural eize.)

Owing, probably, to the great development of the foot and mantle, the Olives are active creatures, gliding about with tolerable speed, burying themselves in the sand when the tide leaves the shores on which they are creeping ; and if laid upon their harks, they can easily resume their original position by the use of the spreading foot. In spite of their elegant and harmless aspect, the Olives are predaceons and lomgry creatures, and can readily he captured by the simple process of tying a piece of meat to a line, lowering it towards the spot where the Olives are creeping, and hanling it no at intervals, carrying with it the varions molhsks that have attached themselves to the bait, and do not think of loosening their hold until too late.

The shell of the Black Olive is beantifully polished and of a deep rich black, through
which a slight tint of brown can be observel in certain lights. The inside is porcelain-white, and the arerage length is not quite two inches.

Tue next example, the Lightning-colored suell, or Doye Shell, derives its popular name from the peculiar alpearance of its markings. This little shell is covered with zigzag white streaks.

All the Cones, Cone-shells, or Conicte, a family so called on account of their form, have a similar external ontline; the aperture is long and narrow, the head of the living animal is more or less lengthened, the foot is splay and abruptly cat off in front, the tentacles are rather widely separate, and the eyes are phaced upon these organs.

The Textile Cone-sifell is found on the isle of Mauritius. This handsome species is about four or five inches in length, and its markings are cmiously disposed, so that it is impossible to say which is the ground color. The dark, narrow, angular lines are dark brown, accompanied by white, and rariegated by dashes of yellow umber. The bold triangular spots are pure white, and the inside of the shell is of the same color. The figure shown in the illnstration is of natural size.

The Admiral Cone is peculiar for its long and narrow aperture. This species, in common with the other members of the genus, hannts the fissures and holes in rocks, and the warmer pools in comal reefs.

TEXTILE CONE.-Conus textilis. They all take a moderate range of depth, varyiug from one to forty fathoms. Though slow in their movements, they are extremely voracions, their formidable teeth being well adapted for their predatory habits, and sometimes, it is said, being used effectively upon the hand of their captor. Conus auticus has a bad reputation for suclı conduct, rather unexpeeted on the part of a shell-bearing and apparently helpless mollusk.

Tine Bishop’s Mitre, a long, pointed shell with regular spiral markings, belongs to another family, termed the Volutidæ. In these shells the aperture is rather deeply notched in frout; the animal has its siphon recurved, and the foot is very large, in some species partly hiding the shell. The eyes are either placed upon the tentacles, or near their base.

The shell of the Bishop's Mitre is spindle-shaped, long-spired, and stout in substance. The proboseis is very long. This mollusk possesses, in common with many others of its class, the capability of protecting itself when alamed, by the sudden emission of a purplish liquid, having to human nostrils a pecnliarly nauseons odor.

The Mitres, etc., are a very numerons genus, about three hundred and fifty living species being known and named. All the large species inhabit the tropics; and althongh there are some which are found in cooler regions, they are of very small dimensions, and mostly frequent the moderately shallow waters, though a few species are found at a depth of eighty fathoms.

The color of the Bishop's Mitre is verr pleasing, being pure, shining white on the background, and the spots being of a rich warm bay, the red predominating.

Of the typical genns of the Tolutide, which contains abont seventy species, and is spread over most of the warm seas, we may describe the Musical and the Bat Tolute.

The Bat Yolute is remarkable, not only for the bold markings of the shell, but for its own curious form. At each side of the large siphon may be seen a lobe projecting from its base, and the eyes are set on lobes projecting from the base of the tentacles. When the touthribbon of the Tolnte is examined under the microseope, its armature is seen to consist of a series of three-pointed teeth, forming a very powerful engine of destruction.

VoL. III.-41.

The shell called, from its peculiar markings, the Musical Volute, has a series of lines supposed to represent the clefs, the spots doing duty for the notes.

As in the preceding instance, this shell is most variable in the shape and color of its markings, and even the number of lines differs considerably. In this specimen is found the normal number of five lines and four spaces; but in some examples there are only four lines, while in others their number is increased to seven. The color of the shell is a mixture of gray neutral tint and pale brown, the lines being nearly black, and the interior of the shell a very pale drab.

A large, miformly colored species, called Neptune's Boat, is a rather pretty, though simple-looking, shell.

But lew species of the genus Cymba are known, nine or ten being their apparent number; and these creatures appear to be found mostly in Western Africa. It has a peeuliar form ; its oddly-shaped proboscis and recurved siphon giving it a very curious aspect. The foot is of very great size, and deposits a thin enamel on the nnder side of the shell. When first born, the young animal is of rery great size when compared with its shell. The nucleus is large and globular, and in the youth of the animal is sufficiently conspicuous; but, as the inhabitant increases in age, and the home increases in size, the nuclens becomes partly concealed by the growth of the shell, the whorls of which form a flattish ledge around it.

Although not a very large shell, nor remarkable for the variety of its coloring, the Neptume's Boat has yet a pleasing effect to the eye, and, when examined, is really an elegant and delicate shell. Its walls are very thin, in proportion to its dimensions, and the bold, sweeping curves of the surface always call forth admiration. Its color is uniform palish-drab on the exterior, and the inside is beantiful pinky-white, like that of a blush rose.

On the right hand of the accompanying illustration, and occupying the central portion, the reader will perceive a curious-looking shell represented as crawling upwards, the animal having a very broad and flat foot, and its shell almost covered with the striped mantle. This is the Marginella, our last example of the Volutide.

About ninety species of Marginella are known to zoologists, all belonging to the tropical or warm seas. As may be seen by the engraving, the animal is very large in proportion to the size of its home ; and the mantle is so formed, that the two lobes almost meet over the back of the shell, nearly concealing it from view. The tentacles are long and the eyes are placed upon them near their base. The shell is smooth and polished ; and when adult, the outer lip has its edge considerably thickened, thus gaining the generic title of Marginella.

The color of the sholl is gray, streaked with black lines, and the animal itself is of a pinkish hue, diversilied by red rays.

We now come to the family of the Cowries or Cyprecide, three representatives of which family are seen in the engraving. As in the last genus, the mantle is expanded into two lobes, which nearly meet orer the back of the shell; but in many species these lobes are covered with filaments, like so many tentarles. The eyes are either near the base or middle of the tentacles, and the tooth-riblon is powerfully armed.

The most familiar example of these shells is the Connon Cowry, which may be seen on the upper left-hand of the engraving, crawhing diagonally upwards, and remarkable for the great length and breanth of the foot, and development of the mantle and tentacles.

The celebrated Moxay Cowne (Cypraca monéta) belongs to this genus. These litfle white shells are well known as being the mediom of barter in many parts of TVestern Africa; and vast multitndes of them are gathered from their home in the Parific and Eastern seas, and imported into European comtries for the purpose of immediate exportation to the African coast.

In the lefthand bottom corner of the engraving may be seen the beautiful Pantuer Cowre, representel as it appears while living, its mantle covered with the curious appendages whioh look very like the tentacles of the sea amemones. This species derives its name from
the rich mottling of the surface. A larger species is malled the Thaer Cowry. One of these shells is largely used by the natives of the Sandwich lstands as sinkers for their nets, and a singularly ingenious bait is made from the same shell for the captare of the cuttle-fish.

A number of Cowries are cut into fragments and so fitted together as to form an oval ball of considemble size, with a smooth and mottled smiface. Something by way of a tail, or

POACHED EGG-Orulum omm.
COMMON COWRT--Oymáa europa. WEAVER'S SHUTTLE.-Ovulum volva. MARGINELLA.-Marqinella diádocha. PANTHER COWRY.-Cyproa pantherina. WARTY EGG.-Ovubum verviósum. DEEP-TOOTHED COWRY.-Cypraa caurica.
balance, is fastened to one end of the ball, and the fishing-line tied to the other. The bait is now complete, and is quietly lowered near the spot where the cuttle is known to live, and drawn slowly along the gromind. The ever-watchful cnttle is immediately attracted by this novel object, and thinking it to be some hitherto unknown delicacy, darts at it, and arrests its progress by attaching one of its arms to the smooth surface. The fisherman then gives a slight jerk to his line, and the delnded cuttle, fancying that its prey is trying to escape, makes
fast another arm. By repeated jerks the cuttle is incluced to cling with all its force to the bait, when the fisherman rapidly hauls up the line, and flings the sprawling mollusk on the shore before it is aware of its danger.

Several of these large Cowries can be successfully employed in the mannfacture of cameos, especially when human heads form the subject, as the dark mottlings of the shell can be used with singular effect in expressing the deep warm shadows of wavy tresses. The various articles of ornament that are made from these shells are too multitudinous even to be ennmerated, much less described. About one hundred and fifty species of this genus are known.

The groored or winkled edges of the lips are well known to erery one who has handled a Cowry, and these ridges assume a remarkable development in the Demp-tootued Cowhy, a figure of which may be seen in the right-hand bottom corner of the engraving, the empty shell being laid so as to exhibit the opening and the lips. The color of this shell is extremely variable, but is mostly a mottled wood brown, sometimes diversified with bands, and dark inside. It is not a very large species.

Thafe examples of the curions Egg-shells are to be seen in the same engraving. The upper central figure represents the Poached EgG, a popular and appropriate name, as the peculiar shape and color of the shell bears a singular resemblance to the contour and tints of a well-poached egg as it trembles on the toast. Thirty-six species of the Eggs are known, spread sparingly over the greater part of the world. The under surface and opening of these shells are not milike those of the cowries, except that in the Eggs the inner lip is withont the ridges.

A verr curions, elongated shell occupies the centre of the engraving. This is the shell probably known by the name of Weaveres Shuttle on account of its peculiar shape. It is, in fact, one of the Eggs, bot has the aperture lengthened into a long canal at either end. The foot of this species is narrower than in the other members of the same genus, but is especially adapted for crawling over the stens of the gorgonia, one of the zoophytes on which the mollusk feeds.

Our third and last example of these shells is the Warty EgG, remarkable, not so much for the tuberculated exterior of the shell, as for the richly-spotted foot and mantle.

We now arrive at a vast army of shells called the Sea Snails, and distinguished by having the edges of the aperture withont notches, the shell spiral or limpet-shaped, and the opercolum either horny or covered with hard, smooth, shelly matter.

Our first example of this family is the Natica. The mantle of this species is very large, and the front of the foot is developed into a fold, which turns backward over the lead and serves as a kind of protection. As the animal is withont eyes, this curions structure causes no inconvenience. All the Natica, of which about ninety species are known, are found mpon the sandy beds of the sea. and sometimes are taken at a depth of nearly six hundred feet from the surface. They are very predaceous in their habits, feeding principally on little bivalves, which they can assault with their short but strongly armed tongue-ribbon. The egges of these creatures are reary remarkalle. They are compacted into a kind of spiral roll, broad and rather short, which is suffered to be flung about at the mercy of the waves, and is sometimes found resting on the sands when the tide has retreated.

The colors of the Naticte are mareflonsly permanent, and even in the fossil state they are preserved and retain some degree of their original brilliancy. The species which is here represented is jellowish, and marked with gray bands.

The Naticmela-smell is closely allied to the preceding.
An example of another family, the Neritida, is fopularly known by the name of the Smontu Nelifta. The foot of this animal is morlerate, the tentacles are exceedingly large, ank the pyes are set on footstalks just behind the base of these organs. The Neritas are all inhabitants of the warmer seas, and are found plentifully within the tropics.

The color of the present species is slightly variable, but in the individual specimen the shell is marked with bold, zigzag streaks of white and pale buff, and the interior is pure white at the lip, changing to beantiful canary-yellow in the interior. The operrulum is thick, hard, solid, and highly burnished, as if overlaid with glass ; its edge is regularly and finely grooved.

Several allied shells are inlabitants of the fresh instead of the salt waters, and are known as Neritines.

One of the most curions of these shells is the Spined Nerativa. The animal of the Neritina is not unlike that of the preceding genns, but there are one or two minute differences. The operculum is shelly, with a flexible border, and has some small teeth on its straight edge. All the Neritine are globnlar in their general shape, darkly spotted or banded with black and purple, and covered with a polished bone-like epidermis. The color of the Spined Neritina is deep green-black on the exterior, and hackish-white within. The shell is thick and solid at the aperture, but becomes thinner towards the interior.

The Crown Neritina. The color of this shell is gray, diversified with dark streaks. One species of this genus, the Rrver Nemtina (Neritimufluviatilis), is found in the rivers of Northern Eirope.

TuE curious sliell represented in the accompanying illustration is an example of another family, that of the Cluhs, or Cerithiadre. The shell of the Cerithites is spiral, more or less elongated, and the operenlum is horny and spiral. The tentacles are placed rather far apart, and the eyes are set on very short footstalks. These creatures inhabit either marine, brackish, or fresh water.

The Pelican's Font, sometimes called Spout-smell, on account of the manner in which the aperture is lengthened into a limel of spout in front, has a rather elongated spire, and is considerably tuberculated on the exterior. As the animal approaches maturity, it adds fiesh substance to the lip, until it bears some resemblance to the welobed foot of an aquatic kird. The animal has a short and rather abrmpt muzzle, and moderately long, cylindrical tentacles, having the eves set on protruberances near their base. Only three species of this genus seem to be at present known, but they have a wide range of locality, being spread over the greater part of the world, and found at various depths, sometimes being taken in a humdred fathoms of water.

The color of the Pelican's Foot is white, with a tinge of pink, and white inside. The shell is thickly and strongly made, and heave in proportion to its weight. As may be seen by reference to onr engraving, which is of natnral size, it is not a large species, seldom

PELICAN'S FOOT.-Aporrhais pes pelicani. measuring more than two inches in length.

The Great Club-shell is considered a species belonging to the typical gemus of the family. It is rather a large genus, containing at least one hondred known species, and ranging over the whole world. The largest species are, as is usmally the case, to be found within the tropics. The shell is considerably elongated, and with many whorls, and the "varices" or marks of growth are partially visible on the exterior. The aperture is decidedly small when compared with the dimensions of the shell, and has a somewhat twisted canal in front. The onter lip is rather wide, and the inner is much thickened.

One of these shells, the Marsin Cerithuum (Cerithium pathatre), is supposed by some persons to produce the strange sub-aquatic musical sonnds that exist in several Eastern lakes. A detailed acconnt of these sonnds. together with the reason for this conjecture, may be fonnd in Sir J. E. Tennent's "Natural History of Ceylon."

The color of the Great Club-shell is deep chocolate-brown on the exterior, slightly mottled with varying tints, and the interior is brown, but without the chocolate hne.

In the family of the Thritellida, the shell is either tubnlar or spiral ; the aperture is not waved, notched, or formed into canals; the foot is very small, the muzzle is short, and the eyes sunk rather deeply into the base of the tentacles.

The Common Turritella is a species belonging to the typical genus of this family.
In all the Turritellas the shell is long, pointed, and with many whorls; the aperture is romnded and its edge thin ; the operculnm is horny and with many whorls, and with a slightly fringed edge. About fifty species of these shells are known, spread over the whole world, and inhabiting the moderately deep waters of the shores, ranging from a depth of one to fifty fathoms. They are supposed to be carnivorons. The color of the Common Turritella is whitish.

WORM-SHELL.- Fermetus lumbricalis.

The cmions Worm-shell, which derives its name from its long and twisted form, is a very lemarkable shell, and, if carefully examined, affords much instruction as to the mode in which the mollasks build up their wonderfnk homes. It looks, indeed, monch as if it were in the preliminary stage of shell-making, and had completed its armagements with the exception of pressing the whorls together. When young, the spiral form is tolerably regular, but as it grows in years its regularity decreases, and the shell exhibits the form represented in the engraving, in which the figure is somewhat magnified.

The aperture of the Worm-shell is round, and the operculum is consequently circular, and fits the opening with tolerable closeness. Its external face is concave. When not open, the tube is found to be supplied with many partitions of the same material as its walls. The color of the Worm-shell is grayish-yellow.

A suell of somewhat similar constrinction, but readily distinguishable by the longitudinal slit which extends thronghont its entire length, is called the Snake-suell. About seven species of the Siliquaria are known, all of which are carnivorons in their habits, and are found within sponges. As in the last species, the Snake-shell is regularly spiral at its commencement, where it was constrncted by the animal in its youth, but loses its regularity in exact proportion to its age. Its color is whitish. The small head, when just protriuding, exhibits the stopper-shaped operculum.

Tife shell of the Staincase or Precious Wentlftrap, was in former days one of the scarcest and most costly of the specimens of which a conchologist's cabinet conld boast. There was hardly any sum which a wealthy connoissen or virtnoso, as the fashion was then to call those who were fond of natnral listory, would not give for an especially large and perfect example of this really pretty shell. Now, however, its glory has departed, for a tolerably good sperimen may be procured for a very small amount, and a Wentletrap which would twenty or thirty years :gol lave heen sold for two hundred and fifty dollars, cam now be purchased for less than one dollar.

Putting aside, however, the question of rarity or cost, this shell is a rery interesting one, both for its beauty and the mode of its construction. It is purely white and partly transparent, the clevated ridges being of a more snowy white than the body of the shell, on account of their smperior thickness, which does not permit the light to pass throngh them as in the rase of the thimer body. The whorls of this shell are separate from each other, and apparently bound together only by the projecting ridges, so that the gemeral appearance is as if the whorls of a worm-shell had been pressed nealy together, and then kept in their place loy a succession of shelly elevations. This beantiful shell is found in the Indian and Chinese seats.

The Common, or False Wentletrap, is tolembly common upon Enropean coasts.
In this shell the whorls are united together and furnished with a number of circular elevations, which, however, are not nearly so bold as those of the preceding species, but thick in proportion to their height, set obliquely on the shell, and smooth.

The animal has a proboscis-like month, which can be retracted at the will of the owner ; the tentacles are toleably long, placed near together ; and the eyes are set near the base of the tentacles. The foot is tuiangular, with the front rather obtnse, and supplied with a fold. When disturbed or alarmed, the creature is capable of extrding a dark purple thad. Nearly one handred species of Wentletrap are known, all the largest examples being found in tropical regions. They live at a considerable depth, sometimes being captured in eighty fathoms of water, and little seems to be known of their habits.

The color of the Common Wentletrap is rather varied. Sometimes it is dull white, sometimes it is very pale brown, and in a few specimens the shell is reddish-violet, with the ribs purple.

We now arrive at another family, termed the Litorinicte, or Shore Mollusks, because the greater number of them frequent the coasts, and feed upon the various algae. The shell is always spinal and never pearly, by which latter characteristic it may be distinguished from certain shells belonging to another family, but somewhat similar in external appearance. The alperture is rombled. The amimal has its eyes set at the ontpr lases of the tentacles, and the foot is remarkable for a longitudinal groove along the sole, so that in the act of walking each side advances in its thom. The tonge is mother long, and is armed with a formidable series of sharp teeth, that serve admimbly for the purpose of scraping away the vegetable matter on which the animal feeds. The operenlum is horny, and rather sumal.

The common Peliwinkle (Litorima litórea) is the most familiar example of this family, and is too well known to need any detailed description. The Periwinkle is fomd upon on rocks in great profusion, occupying the zone between high and low water, and always being found near the edge of the tide. 'fhere is, however, another species (Litorina rudis) which occupies a rather higher zone than the previons species, and which, thongh very plentiful, is not eaten, in consequence of its young obtaining their shells before eggs are laid, and having a gritty and unpleasant effect upon the teeth. Sea birds, however, are not very particular about this drawback, neither is the thrush, which, in winter, when the suails are hidden away in their danis recesses, funds a meal easier to be obtained on the sea-shore than in hunting for its usual prey.

One of the prettiest members of this family is the Winding Stairacase-shell, or Perspective Trocnus, so named on account of the peculiar formation of its whorls.

If the shell be held with its top downwards, it looks exactly as if it had been wound around a conical centre which had afterwards been withdrawn, and the projecting edges of the whorls have a wonderful resemblance to the perspective riew of a winding staircase seen from below.

Perlaps the most remarkable point about this genus is the singular operalum of some of the species, which differs from that of any other mollnsk. Tustead of being a nearly flat plate, of horny or shelly substance, it is a conical structure of shelly matter with a riband of membranons substance wound romed it, and projecting like the mechanical form so well known as Archimedes' screw. The object of this singnlar variation is quite unknown.

The color of the shell is rather variable, but consists of mottlings with brown, ochre, and white.

A very curions member of this family is the Loopixa Sxail (Truncatella truncótula), a little species that is remarkable for the habit which has earned for it its popalar name. All. these creatures inhabit the space between tide marks, and can live for many weeks withont water. Their mode of progression is rely peculiar, and closely resembles that of the leeches or looping geometric caterpillars with which we are so familar: When they walk they fix the head firmly, then draw up the body in an arch, fix the foot, and then push the head forward. The foot is short and rounded at pach end.

The shell is very small, about the size of a split sweet pea, and would escape the eye of ordinary observers. The animal is fumished with short and diverging tentacles, the head is divided into two lobes, and the eyes are placed in the centre behind the tentacles.

The Indian Phorus, or Mineralogist, a name given to the creature in allusion to its extraordinary habit of agghtinating bits of stones and other substances to its shell, has a mather long proboscis, and long tentacles, with the eyes set at their outer bases. The foot is long and nurrow behind.

The outer lip is very curions in its structure, being extremely thin, projecting above and receding below. The operculum is horny, and formed by overlapping scales. The color of the Indian Phorus is yellowish-brown above, and pearly-white within. The edges of the lip are ragged and crmmpled like those of a withered leaf. Sometimes it prefers other shells, either in fragments or entire, and is then termed the Conchorogist. In one example shown to me by Mr. Sowerby, the creatnre had selected a number of shells of a tiny bivalve, and had stuck them round the edges of its own shell in such a manner that they form a spiral line, marking the growth of the shell. One or two little bits of stone accompany them, and they all lie with the hollow upwards.

A magnificent species is the Shell-collecting Phorus. The long-pointed shells are clubs, or cerithince, a Tenus-shell is seen at the mouth, and a lucina at the base. The name Phorus is of Greek origin, and signifies a carrier. The movements of the Phorns are said to be very clumsy, the animal staggering and tumbling about like the stromb-shells already described.

In former days, the Pifeasant-shells were articles of great price and rarity, some specimens almost rivalling the precions wentletrap in the enormons sums asked and obtained for them. Now, however, that their habitations have been discovered, and more frequent voyages are made, they have become comparatively plentiful, although, from the fragility of their structure, a perfect specimen is not at all common, and will still bring a good price in the conchological market.

The Pheasant-shells are now fonnd in great mumbers on the sandy beaches of several shores, being especially plentiful on the coast of Port W'estern, in Bass's Straits. The high tide sweeps them towards the shore, where they are left by the receding waters, and seek for shelter beneath the masses of sea-weed that are always flong on the beach by the tide. On lifting these sheltering weeds, the Pheasant-shells mas be found crowded together under their wet fronds. They can move with some speed, the duplicate nature of the foot aiding them greatly in progression.

We now arrive at the Top-silells, or Turbinide, a rather large and important family. In all these rreatures the shell is spiral, and beantifully pearly in the interior, the nacre appearing when the outer coating is removed. The animal has a short head, rather long tentacles, with eres mounted on footstalks at their lase, and the head and sides are decorated with fringed lobes. They are all inhabitants of the sea and are vegetarians in their diet, their armay of sharp teeth being very nseful in rasping away the sulnstances on which they feed.

Order Soutibismeria. The Top-shells, so called from their resemblance to a boy's top, and the Neritas, of which the interesting Bleeding-tooth Shell is a representative, are members of this order. An example of the singular distribation of anmals was noticed by the editor of this pelition on one of the keys or islands of the Florida Reef. The beantiful Bleeding-tooth Nerita was found in considerable numbers on one of the islands, and on no other of the entire reef, along a series of islands one hundred and fifty miles in length. A large Chiton was fonnd on the same island, and in no other locality within the same range.

The Common Top is a little pointed shell.
This shell is a most plentiful species, and may be found by hondreds either crawling among the sea-weeds at low water, or flung upon the sands by the tide. The shell of this
creature is beantifnlly pearly, and when the outer coating is removed the iridescent nacre below has a very lovely appearance. Jewellers and lapidaries employ these shells largely in their art, polishing them carefully and then stringing them together so as to form bracelets and necklaces, or affixing them as ornaments to various head-dresses. Another little shell, called Turbo Tersicolor, which is brought from Southern America, is also used for similar purposes. The specimens of Top-shells which are found in the sands are seldom quite perfect, the apex of the spine being usually worn down and rubbed so as to display the sub-lying nacre.

About one hundred and fifty species of Trochus are known, some of them attaining considerable dimensions, and all possessing shells of exceeding beauty. The form of the animal is peculiar. The tentacles are rather long, and the eyes are seen at the extremity of the little footstalks, at their base. The neck-lappets are rather large, and the sides are furnished with lobes and tentacular projections. The operculum is horny, that, and spiral. Trochi are found all over the world, and have a considerable water range, being captured at all depths, from the shallow waters of the shore to a depth of a hundred fathoms.

Another beantiful species of Trochus is the Nı lotic Top, a shell which is remarkable for the rich contrast of scarlet flashes on a white gronnd. One of the rarest species of this genus is the Imperial Tor (Trochus imperiaits), a shell which has hitherto been found only in New Zealand, and may probably be confined to that strange land. It is a handsome as well as a rare species, and is notable for the bold ronnded projections which radiate from the whorls. Its color is violet-brown above and white below. Some authors, however, separate this shell from the Trochi, and place it in a separate genus, on account of the toothed whorls.

The Dolphin-snell affords another instance of the entire discrepancy between the shell and the popnlar name that is giren to it, this species bearing no more resemblance to a dolphin than to a roach, a cow, or a peacock.

Tue Ass's Ear is one of the larger species of the gemms Haliotis, and is one of the most beantiful among the shells. Eren when rough and umpolished, just as it appears after the removal of the animal, the rich iridescence of its interior is almost dazzling in the intense brillinncy of its coloring; and when, by the use of acids, the rough onter coat is removed and the nacreons substance of the shell exposed, the ie is hardy any marine production that approaches it and none that smpasses it in heanty.

This is a very useful shell to the manufacturer, its thick solid substance, with its lovely iridescence, rendering it well adaptable for the construction of buttons and similar articles, and also for inlaying in the darker woods. Tery beautiful sleeve-links are cut out of the muscnlar impression, its heary material giving the requisite strength, while the peculiarly corrngated structure prodnces a very beantifnl effect, either when gronnd and polished or suffered to retain its ordinary contour.

The Guernsey Ear-shell is popularly known throughout the Channel Islands by the name of Ormer.

This shell does not attain to so great a size as the preceding, but is, if possible, even more beautiful when polished and the opaque outer coat remored by means of acids and hard labor. The growth of each successive year is marked by a bold ridge, sweeping in a curve from the spine to the edge, and rapidly enlarging towards the margin. These ridges are cansed by a regular series of furrows, in reality very shallow, but, on account of the peculiar manner in which they reflect the light, appearing to possess considerable depth. The effect presented by these ridges is really marvellous, the rich iridescence of delicate pink, green, and blue, with the slightest imaginable lines of golden light marking them, being quite berond the powers of description, or even of artificial colors. Each ridge is perforated by a single hole near its extremitr, and their course is marked even on the interior of the shell.

The animal of the Guernsey Ear-shell is largely eaten, but requires careful management in the cookerr, as it is liable to be tough and stringy if badly handled. Before being Vol. IIL-42.
subjected to the cnlinary art, it is well beaten, like a beef-steak, and is then cooked in varions ways.

A similarly shaped shell, but without any perforations on the edge, is the Stomatia, or Furrowed Ear-shell, so called becanse the place of the holes is supplied by a single groove or furrow. This shell is a native of the hotter seas. Its color is pale reddish-gray on the exterior, and pearly withiu.

A very curious snail-hike shell is the Vholet Snail (Janthina communis), so called from the beantiful violet-blue of the shell.

The Violet Snail inhabits several seas, and is most common in the Atlantie Ocean, thongh it is also fonnd in the Meditemanean. Though in the look of the shell there is nothing sufficiently remarkable to attract notice, the habits and structure of the animal are most curious and interesting. The Janthina is essentially a surface species, always floating about, incapable of directing its comse, and not even able to sink when threatened with danger. Being quite at the mercy of the winds and waves, it is often seen floating in great numbers, thus denoting the existence of some aërial or marine current, and may in such cases be swept up by thousands.

The food of the Janthina is said to consist mostly of the small blue velelle; but, as the animal is without eyes, and is incapable of directing its course, it cannot be very rapacions. Some minute brown shells have been found in the stomach of several sjecimens.

The Janthina secretes a rather richly-colored fhid, respecting which many conflicting opinions have been giren. Mr. F. D. Bennett, who has made some valuable observations on this curions molnsk, has the following remarks mpon the fhid :-
"The body of this mollusk contains a very blue liquid, which, when the animal is ponctured, exudes to the amount of three or four large drops. It is readily diffused throngh water or colorless spirit-to the former it communicates a faint tinge of its own peculiar hue, and to the latter a pink color, with a purple shade. It communicates its color to paper, and may be conveniently used as a blue ink; several memoranda and pages of my jommal, written with this Hnid, have, after a lapse of more thim five years, retained their original appearance both in color and intenseness. For this use, however, it must be employed from the recent animal, as it will not keep in any quantity, but becomes thin and discolored.
"It is believed that this thuid is analogous in use to the black secretion which the cuttlefish pours forth to obscure the water and elude the pursuit of its enemies; but this opinion must be received with some qualification. The living examples of Janthina which I have irritated when they have been confined in a vessel containing sea-water have not emitted any of the colored fluid when taken in hand, they would sometimes allow a little to exude; but the entire quantity obtained from one animal by artificial means was never sufficient to clond or obscure, althongh it wonld stain about half a pint of pure water."

Order Zygobrancuia. The Ear-shells (Ifatiotis), and the Patellas, Little Knee-pans, etc., are of this order.

The order Ctenobiancuia includes four sub-orders, and embraces some of the handsomest and best-known of shell-fish. The Janthinas are not familiar in the temperate regions, but the beaches of the tropics are strewn with their cast-off shells at times. They are essentially oceanic in habit: resting, if at all, on the rafts of sea-weed, their long toats of bubbles supporting them safely. These creatures have a rich blue and purple coloring, and seem to have no leature of protectire resemblance; consequently, they wonld present to hungry fishes a tempting morse]. Their eggs are supported under the raft or float. They have, however, a means of protection that may prove all-sufficjent: that of throwing out a thick colored liquid when approacherl, which stains the smronnding metimm, and this affords a certain means of escape from enemies. An excellent figure of Janthina with its float attached is seen in the group of Ear-shells.

The well-known Tolutes, Olivas, Mmrices (Rose-buds), Pyrulas (Pear-shells), Buccinnm (Trimpets, Purpuras (Purple Shells, that throw ont purple liquid for protection), Cones, Naticas, Orules. Cypreas, Strombi (Conch), the curions Pteroscerods, and the very beantiful

Cassis, or Queen Conch, the Dolimms, and the exquisite Ranellas-all are of this order, under their respertive suh-orkers. In this entumeration are some of the most ralued of shells as well as most beantiful. Mans of the Cones are of gleat value as rarities, ant the strombi and Cassids are of considerable value commeratily.

In our waters there are not many of especial interest expepting to the stment. Onr semi. tropical waters, howerer, bear some of marked beanty. The most bantiful Qaeen Coneh (Cassis mudugascurensis) has been fomd frequently on the Florida Reef, and along the coast as far as Charlestom. The Bahamas are good localities for these and the large Strombi that are used in cameo-cntting. The great Horse Conch (strombuts gigus) is abundant in Florida waters, and it is rery beantiful when dirst removed from the water ; its rich colors fade quickly when the animal dies. Sevomal species of Volutes are common on the Reef aud along the west coast of Florida. Olivas are also found. The Mmrex, in many species, is fond, thongh sparsely, but of exceeding beanty and singularity of structme or ormammo. On the New England coast and on the Grand and Georges banks are many interesting forms, thongh none of great beanty. The smaller Burcinums are common, and many interesting shells are found in the stomachs of fishes.

The well-known mivalves, so fimiliar moter the name of limpets, are divided into several families, on account of certain variations in the structure of the shell. The first fomily is termed Fissmrellidie, on acoomt of the fissure which appears either at the apex or in the front edge of the shell.

All the Limpets are strongly adhesire to rocks, as is well known by every one who has tried to remove one of these mollnsks from the stony smface to which they ching. The means by which the animal is able to attach itself with snch firmness is analogous to the mode in which the suckers of the cuttle-fish adhere to the objects which they seize, the formation of a vacnum, and the consequent pressure of the atmosphere, being the means employed. The foot of the Limpet is rounded, broad, thick, and powerful; and when the animal wishes to cling tightly to any snlostance, it presses the foot firmly upon the smface and retracts its centre, while its edges remain affixed to the rock. A partial vacmum is therefore formed, and the creature becomes as strongly attached to the rock as a boy's leathern sucker to the stone on which he has pressed it.

The Key-mole Limper is so called on account of the aperture at the top of the shell, which serves as a passage throngh which is expelled the water that has passed orer the gills. This aperture is found in all the species of the genns Fissmrella, but varies greatly in form and comparatire dimensions, being, in some cases, a mere ronnded hole in the shell, white in others it is a long and cmriously-shaped aperture, very like the key-hole of a lock. The aperture increases with the shell, being hardly perceptible when the amimal is young, but encroaching rapidly until it removes the whole of the sharp apex. These animats are mostly fonnd at the same depth with the great tang sea-weeds, but are sometimes to be taken in fifty fathoms of water. The gemus Fissmrella is a large one, comprising about one hondred and twenty species.

The curious Duck-bill Linnet inhabits the hotter seas, amd is fond on the shores of New Zealand, the Red Sea, and the Cape. It belongs to a small gemns, containing about ten species.

This shell derices its name from its peculiar shape, which certainly does bear some dis tant resemblance to the beak of a duck. The animal is of rery great compalative dimensions, and while living covers the shell with its mantle. Its color is black, and its sides are edged with short fringes. The eyes are set on the onter bases of the tentacles. The color of the shell is very pale yellow.

A number of nearly allied shells, belonging to the same family as the preceding species, are called Cup-and-Saucer Limpets, from the peculiar cup-shaped process on the interior, the shell itself taking the plare of the sanfer. This process forms the base, to which are attached the muscles which duw the animal to the rock. None of these Limpets appear to be active, seldom quitting the spot on which they have settled themselves in their infancy.

The form of the shell is extremely variable, depending greatly on the substances to which it adheres, and the color seems to be quite as matable as the form. A speeimen in my posses. sion has an exceedingly thick shell, with very deep ridges, ant a boldly waved edge. Its color is brown, of various shades, diversified with a little orhreous yellow. The "cup" is very much lighter than the interior of the shell, and is of a grayish-white with a slight yellow tinge, and marked with wayr streaks that give it a singular resemblance to chalcerlony. The substance of the cup is very delinate, hatly thicker than the paper on which this account is printed.

The species called Lany's Bonnet (Calyptraa equestris) belongs to the same genus. The generic name is derived from the word catyptra, which signifies a lady's cap. The food of these molhosks seems to be rather varied, as they are known to eat the minnte alge, and one specimen has been observed in the act of devouring a little sea-slug which we placed in the same ressel.

The Hengariay Bonnet Lumpet is almost invariably found adhering to oysters in a moderate depth of water, varying from five to fifteen fathoms, thongh it sometimes prefers a greater depth. 'The finest specimens are, however, taken in the shallower waters. The popular name is sufficiently appropriate in this instance, as the shell is exceedingly like the celebrated Phrygian bonnet of the ancients, or the republican cap of a later period.

The Comon Lmpet is so familiar that it need not be figured nor described. One species of its genns attains to an enormons size, measming a foot in diameter, and having a shell of very great thickness.

The next family, called appropriately Dentalide, or the Tooth-shells, have long puzzled zoologists to assign their right position in the scale of nature, and even baftled the wide experience amd penetrative acuteness of Curier himself. The general opinion of the systematic naturalists of his time referced the Dentalide to the annelids or worms; but Cuvier always expressed his donbts as to the accuracy of their views, and lemarked that the solution of the problem would be found in the nervous and respiratory systems.

Suh-class Scaphopoda is one of the late divisions, embracing the Tooth-shells, so called from their resemblance to long teeth. There are not many, but certain characters render them of especial interest. They are the lowest in rank, being the most closely allied to the Acephatro. The Dentalinm was a farorite objeet with the aborigines of the west coast of America, its value as wampum, or money, being very great.

Super-order Isopleura, meaning equal-sided. It embraces quite singular appearing forms, which are included in three orders. The Chitons are the more familiar of them ; once placed in a group as maltivale shells. The Chitonida, or Mail-shells, are appropriately so called, because their shells are jointed like the pieces of plate armor. When separated from each other, the plates bear a strong resemblance to the joint of a steel ganmetlet, and overlap each other in a similar fashon, a thick and strong mantle taking the place of the leather. There are eight of these plates, and all of them have a somewhat saddle-like shape. A similar arrangement may be observed in the lower abdominal plates of miny beetles. Each of these plates is fixed to the mantle by certain rounded proresses from their front edge, and when the plates are examined separately the processes will be planly seen, white and pearly as the interior of the shell.

The genus Chiton is an extremely large one, containing more than two hundred species. Some of them are found at a depth of ten or fifteen fathoms, while a few of the smaller species are found in eighty or a humdred fathoms of water.

The Prickly Ciriton is remarkable for the amay of rather long spines with which the movable plates are armed, and which, when the creature contracts itself, give it a curions resemblance to the hedgehog. Its color is reddish-brown on the exterior, and pinky-white within. Althongh this shell attains a very great size, a large specimen measuring about five or six inches in length, it is not as valuable as in its youth, the curions spines being gradually lost as it approaches old age, just as human beings lose their hair, and the shell being by
degrees rubbed tolerably smooth in some places and encrusted in others with corallines, calcareous matter, and the shelly coatings of varions marine zoophytes. Sometimes the sea-weeds find a lodgment on the shell, as is often the case with other comparatively stationary nollnsks, such as the common limpet; and in that case the alga not only find a home, but conceal their protector by their waving fronds.

The accompanying illustration represents the Marbled Cinton, a rather prettily colored shell, its exterior being rusty-red mixed with brown and yellow, and edged with brown. The Short-spined Chitor is corered with short spines. Its color is sooty-black, but this dull uniformity of a sombre hate is more than redeemed by the beantiful and mimute pencilling with which its surface is engrared. The Banded Chiton, or Chitonella, has been removed by modern naturalists into a separate genus, on account of the formation of the armor. The plates do not cover the entire surface as in the preceding genus, as only a portion is seen above the mantle. The defence is, however, nearly as perfect as in the previ-
 ous genus, as the projections approach each other beneath the surface of the mantle, and wonld act as effectually in shielding the internal organs as if the plates had met on the surface. These creatures are generally found in the clefts of canal rocks.

The animal is more active than the limpet, but does not appear to be very locomotive in its habits. Its broad creeping disc adheres very strongly to the rocks, and holds the animal so firmly that, if it should happen to have taken up its abode within a crevice, to extract it without tools would be an impracticable task. Like the dentalium, this creature possesses neither eyes nor tentacles. The figures in our illustration are of natural size.

INOPERCULATE AND OPERCULATE GASTEROPODS.

Passing from the sea to the land, we come to those gasteropods which breathe atmospheric air, and are fiumished with respiratory organs suited to the lower element in which they live. These creatures fall naturally into two large sections, the one being destitute of an operculum and the other possessing that remarkable appendage. They are respectively called inoperculate and operculate gasteropods, and it is with the former that we have now to deal. The inoperculate are geuerally furnished with large shells; but in some, such as the slugs, the shell is either very small or wholly absent. The shell of these animals, when present, is not nearly so hard and porcelain-like as that of the sea-snails, and contains a much larger proportionate amount of animal matter. It is worthy of notice, that in order to prevent the waste of moisture in those species which live on land, and the entrance of water in those which inhabit the ponds and rivers, the respiratory passage is small, and closed with a kind of valve.

This group embraces the largest number of species of mollusks, including snails, slugs, whilks, limpets, comiés, etc. The head is well developed, and one or two pairs of tentacles are present. The sexes are usually separate.

The first family is that of the Suails, or Helicidre, containing a vast number of species. Most of the Snails have a shell large enongh to permit the animal to withdraw itself wholly into the protecting domicile. During the time when they are active these creatures require no
closure of their shells, and accordingly have no vestige of an operculnm, as may be seen by looking at a common Snail. In the winter, however, when they retire from active life, and need that the aperture of their domicile shall be closed, the place of the operculum is supplied by a layer of hardened mucus, sometimes strengthented with the same substance of which the shell is composed, and always being perforated with a little hole to permit the inhabitant to respire. Any one may see this structure, called technically the epiphagus, by examining a Snail drawn from the crevice in which it ensconces itself during the winter months.

The animal has a rather short head, fumished with four tentacles, the upper pair being the largest, and bearing at their tips the little black specks which are supposed to act as eyes. These tentacles are retractile; and it is very interesting to watch them drawn back or pushed out like the finger of a glove, and to see the curions manner in which the eye speck is shot, as as it were, throngh the tentacle attached to the slender black thread which rons up its centre.

The gemus Helix, which is miversally accepted as the type of this family, is of enormous extent, both in mumbers and range of locality, containing more than fourteen hundred species, and spread nearly over the whole earth. The common garden Snail is a too familiar instance of this gemus to need a description. I may, however, mention, that its depredations can, in a great mensure, be checked by searching for it in the winter months, and taking it from the crevices in which it hides itself, or even by destroying the eggs which it lays just under the surface of the soil, and which look like pellncid peas. The much maligned thrush, too, is a mighty hunter of Snails, and, in spite of its antummal raids on the fruit, does such good service in Snail-killing before the world is astir, that it ought to be encouraged by the gardener, and the fruit which it eats considered as the wages paid for killing the Snails.

The great Edible Snall is largely consumed in many parts of the world, and is regularly fed and fattened for that purpose. It is a remarkable fact, that in many spots where the Romans-great comoisseurs in Snails-had fixed their establishments, the Edible Snail is still to be found. Regnlar honses were built for the purpose of fattening the Snails, which were bred to an enormous size by constant feeding with a mixture of meal and new wine. There are even now on the European continent several snaileries, where the immates are abundantly supplied with food, thongh they are not fattened with the elaborate precantion of the Roman times.

Eren the common Snail is thought a delicacy by those who are sufficiently strong-minded to eat it; and it is quite common to see, even in Paris, the poorer orders dressing their dinner of Snails on an iron plate, heated orer burning charcoal. I once knew an old woman, one of the few smriving wearers of scarlet cloaks, who used daily to search the hedges for Snails, for the purpose of converting her milk into cream. This cheap luxury was obtained by crushing the Snails in a piece of IInen, and squeezing their juice into the milk. She showed me the whole process, which I afterwards imitated as far as the mixture with the milk, but could not bring myself to test the result by taste.

The Lemon Bulinus is an example of another large genus, containing more than six hundred species. These shells can be distinguished from those of the smails, to which they are closely allied, by the greater comparative length, the oval shape of the aperture, and the thickness of the onter lip. The last whorl is always rery large. Some of the exotic species. such as Butimus matus, attain a large size, and lay eggs even larger than those of the chaffinch, the yonng animal having a shell measuring an inch in length when hatched. Several species are very beautifully colored Many species of Bulimi are excellent food, and are sold in the markets.

In the illustration on opposite page will be seen a shell as if climbing up a tree. It is the largest of all the land smals. and is known as the great Laste-shblu (Achatina) of Africa. This snail will attain a length of eight inches, and lay egos larger than those of the bulimus, and with hard callamous shells. The figure is dram of the natural size.

We now come to the Chessalis-sulla. This shell belongs to a large genus, containing about one hundred and sixty species, and has received its popmar name from its shape, which bears some resemblance to that of a chrysalis. 'lhis animal has always a short foot, pointed behind, and very short lower tentacles.

We now arrive at the great family of Limacidæ, or Slugs, a race of beings which many a gardener donbtlessly wishes extinct.

In these creatures the foot and body are indistinguishable from each other; the lead is retractile; and the whole creature can be gathered into a short rounded mass, looking so like a pebble that it would escape a casual glance. At the first view, the Slugs appear to be destitnte of shell, but on a closer examination, the shell is foum uron the fore part of the body, and either entirely or partially buried beneath the integnments. When removed, it is not unlike the operculnm of many molnsks, being small, flattish, and with an evident melens. They have fonr tentacles, like those of the snails, the eye-dots appearing, as in those mollusks, on the tips of the upper and longer pair. The respiratory orifice is placed on the right side of the body.

The Great Gray Slug is the largest of the Emropean species, and when furnished with abundant food, on which it can fatten itself during the night, and a secure hiding-place,

AGATE-SHELL.-Achatina mauritiana.
whither it can retreat during the day, often attains an enormons size. The careless gardener, who has suffered heaps of old rubbish to collect in his dominions, is often horrified, when he at last removes the stones or sticks, to find under them a number of huge Gray Slugs, that have been silently consuming his flowers and vegetables, and lie slimy and obese at his mercy, bewildered with the unaccustomed light, and unable to escape their impending and deserved fate. It is true that Slugs, snails, and all similar creatures, must have been created for some nseful purpose, and, in their proper place, discharge the duty for which their forms were designed and their instincts implanted; but it is clear that a garden is not the proper place for Slugs, and that if they make their appearance within its precincts, they must be extirpated; just as rats, which are nseful in a sewer, are noxious in a house, and must pay with their lives the penalty of their intrusion.

The well-known Black $\mathrm{Slug}_{\text {(}}$ Limaxater) belongs to the same genus as the preceding species, and is rery common during the summer, coming ont of its hiding-place during the evening, and making its appearance along the sides of roads, in hedgerows, and similar situations. It is nearly, but not quite so large as the gray species.

The common Red Sleg, or Land sole (Arzon ruffis), is another member of this family. It may be known by the deep red-hrown of its body, which sometimes approaches to black. It is very plentiful in gardens, and as, on account of its color, it is not readily seen in the dark,
it escapes observation, and does much damage withont being discovered. Those who desire to rid their gardens of these pests will find that a very effectual plan is to search the grounds after diark. by the aid of it "bull's-e ye" lantern.

Tue semi-spinal shell, called Testacella, is one of the very few carnivorous land mollusks. The Testacella, although plentiful, is seldom seen, on account of its peculiar habits. It leeds almost wholly on eartil-worms, which it pursues through all the windings of their retreats, its long lithesome body enabling it to insimate itself wherever the worm can burrow, and its hard little shell securing it from danger by stopping up the tumel behind its progress. This cnirous Slug cam be obtained in gardens by digging up the loose soil, but, on acromit of its services to the gardener, should be released, and permitted to resume its destructive arocations.

The tooth-riblon of this creature is most formidably armed, haring about two thousand teeth arranged in filty rows. The teeth are needle-shaped, barbed, sharply pointed, slightly curved, and converge towards the centre of the ribbon, thins forming a weapon which no wom is capable of resisting. Only three species of Testacella are known; the English species is supposed to have been introduced from Sontlern Europe.
W_{E} will now pay attention to the Wrater-snails, several of which can be found in every large pond or stream, and at first we may regard two species of Apple-snails, belonging to a genus remarkable for sereral peculiarities of formation. Although the Apple-snails belong more properly to the gill-bearing mollusks, and follow in the systematic arrangement the phorus, described on page 328, we placed them with the pond-snail and planorbis, for the reader's convenience of having combined on a few pages the various water-snails.

The Apple-snails are found throughont the warmer parts of the world, inhabiting the lakes and rivers, and, in case of drought, burrowing deep! y into the mud and remaining buried for a lengthened period, sometimes for a term of years, until a fresh supply of water aronses them from their strange torpor, and urges them again to seek the upper regions.

In his "Natural History of Ceylon," Sir J. Emerson Tennent mentions this curious habit. "The Ampullaria glauce is fond in still water in all parts of the island, not alone in tanks, but in rice-fields and the water-conrses by which they are irrigated. When, during the dry season, the water is about to evaporate, it burrows and conceals itself till the returning rains restore it to activity and reproduce its accustomed food. There, at a considerable depth in the soft mud, it deposits a bundle of eggs with a white calcareous shell, to the number of one hundred or more in each gronp.
"The Ifelania prtudina, in the same way, retires during the droughts into the muddy soil of the rice-lands, and it can only be by such an instinct that this and other mollusks are preserved when the tanks evaporate, to reappear in full growth and vigor immediately on the return of the rains.
"A knowledge of this fact was turned to prompt account by Mr. Edgar S. Layard, when holding a judicial office at Point Pedro.
"A native who had been defraded of his land complained hefore him of his neighbor, who, during his absence, had removed their common landmark, diverting the original watercourse and obliterating its traces by filling it up to a level with the rest of the field. Mr. Layard directed a trench to be sunk at the contested spot, and discovering numbers of the Aupullaria, the remains of the eggs, and the living animal which had been burieit for months, the evidence was so resistless as to confonnd the wrong-toer and terminate the suit." After a few hours of rain, the Apple-snails may be observed emerging from their moddy retreat as if to welcome the newly found moisture.

The animal of the Appie-snail is very curionsly formed. The long siphon, formed by a deveropment of the neck-lappet, is seed on the left. Projecting just without the shell are seen the eyes. set at the extremities of short and stont footstalks, and the enormonsly long tentacles are placed just in front of the eyes. It the first glance the creature appears to have four tentacles, but on a closer examination, the front pair are seen to be merely developments of

ISSUED BY SUBSCRIPTION ONLY, AND NOT FOR SALE IN BOOK STORES.

the muzzle. In one respect, the Ampullaria spems to be a conmecting link between the gillbearing and lmg-bearing mollusks, being said by high anthorities to possess a pulmonic or lung sac, in addition to its gills.

POND-sNAIL.-Linneet stagnulis. (Natural size.)

Iv the accompanying illustration the common Poxd-snail, or Jandea, is shown in the act of climbing u^{\prime}, the stem of a water-plant. In all the members of this family the shell is thin, and sufficiently capacious to contain the entire animal when it desires to withdraw itself into its home. The aperture is simply rounded, without notches or ridges, and the lip is sharp.

In the water-class of the illustration will be observed the pond-snail, an equally common Emopean shell, called from its flattened whorls the Plavorbis. In this animal, the foot is short and round; the tentacles are long, slender, and leave the edges at their inner bases. Both this and the preceding species are in the lubit of burying themselves in the mad during a drought, and there passing a semi-torpid existence.

A rery remarkable species, called, from its peculiar shape, the Fresnwater or River Limpet (Ancylus lacustris), is fonnd in various parts of America, Madeira, and some portions of Emrope. It inhabits swiftly rumning streams, and is mostly seen attached to stony and aquatic plants. Althongh the shell is so limpet-like, the animal does not partake of the resemblance, being very like that of the pond-snail, and having triangular tentacles with the eyes at their bases. The generic term, Ancylus, is of Greek origin, and signi-
 fies a small round shield or target.

The little elongated Pouch-shell, a species of a rather small gemus, extending over the greater part of the globe, is thin, spiral, polished, and the averture is rounded in tront. In Vor. III.-43.
the greater number of species, the mantle is fringed with long filamentary appendages, but in the present example the edges are quite plan. It is, however, always flat and much expanded. The tentacles are long and slender, and the eyes placed at their bases.

The Physas and Planomis, Lymneas and the delicate Pond-shells are of the order PulMonata. The Melices are included: quite familiar to us as Garden-smails. The common Garden-smail of Emrope, Melix Forlensis, was introduced into Essex County, Mass., many years since, and now is quite frequently found in the vicinity of Salem and Lymn. Helix alternatu is the most afmndant species in Eastern New England. A small area on Bass Point, Nahant, is a favorite locality, and in no other place is it fomd within several miles. H. altolabris, or Thite-lipped Snail, is also common. Numerous species of Pupas are abondant in the same region. A familiar form of this gronp is the Naked Slug, which has but a thin film of shell on its back, and is called Garden Slug (Limux).

OPISTHOBRANCHIATA.

We now come to some of the strange and almost grotesque forms which are assumed by many of the mollasks. These belong to a fresh order, in which the shell is sometimes altogether wanting, and eren when present is of very small dimensions, and is almost, if not wholly, concealed by the soft parts. In fact, they may be considered as the marine analognes of the common land slags. The gills of these amimals are rather curionsly formed, not being placed in a definite cavity, as is the case with the previous species, bot projecting boldly from the surface of the animal, and set towards the rear of the body. On account of this position of the gills, the amimals are termed Opistho-branchie, or Remward-gilled mollusks. The whole intermal structure of these creatmres is fully as cmious as their external form, and well repays dissection, the organs of digestion especially being rather complicated, ind possessing many points of interest.

The Bubble-silell, spotted on the exterior, is one of a modarately large genus of mollusks, that are found in almost all tropical and temperate seas, and may generally be captured where the bed of the ocean is of a sandy natmere. In all the family to which the Bubble-shells belong, the shell is very thin, globular, and cylindrical, and the aperture is long and ronnded. The large side lobes are said to be often used as fins for swimming.

The Aplustrum is a closely allied species, formerly placed in the same genus, but now separate on account of several structural differences. It has a shell rounded and slightly colored, but small in proportion to the size of the animal. The foot of the Aplustrum is exceedingly large, capable of concealing the shell eutirely in its folds. Behind the tentacles are four large and flattened lobes, and the eyes are very small and set at the inner bases of the tentacles.

A very curious creature is the Bulla Ampulla.
This is an example of a genus temed Crlicuna ; it is remarkahle for one or two peculiarities. The animal is smaller in proportion than is generally the case with this family, being short and hroad, and not able to wrap its lobes over the shell. The head is flat, hlunt in front, and the eyes are deeply sumk in the tissnes. The shell is cylindrical and mostly smooth, and the aperture is narrow.

A curions amimal is the Boatmax's Shell, a specimen of a very small genns, containing only five species. It is a samd-loving creature, mostly remaining in a rather considerable depth, and being found in fifty fathoms of water. This animal has no eyes; and although the side lobes are turned up, and are very large, they do not envelop the shell.

Sub-ordre Teotmblancutata. In some of its families the amimal has an oroid sliell, as in the Bullas, or Bubble-shells; the curions Aplysias, or" "Sea Pigeons," great masses of flesh. with no shell, and wide flaps for swimming. These are common forms in the tropical waters. Soa llare is another name, from fancied resemblance. Wre have seen these creatures throw ont their purple ink of great density, flouding the surrounding water, evidently for the purpose of defeating its enemies and securely changing its locality

Several species of the Aplysia inhabit the waters of the Florida Reef. The ornamentation is variable. The specimens were about the size of a large cowney.

The shell is never visible, being either very small and covered by the mantle, or wholly wanting, and in some instances being translucent and tlexible as lorm. The common Sea Hale (Aplysia drpilurs) is a well-known example of this corious grenus, which has given its name to the entire fimmily.

The Sea Hares possess the power of throwing out at will a rather large amount of a peculiar colored tluid, mostly of a deep violet, which is secreted by part of the mantle. This habit formerly caused the sea Hare to be held in great dread, the popular opinion attributing to the violet Huid the most virulent properties, such as staining the skin mdeli-

SEA HARE.-Aplysia depilans.
bly with the purple dye, injuring its texture like strong caustic, and cansing the hair to fall off. In allusion to the last-mentioned idea, the animal has leceived its specific title of depilans. The ilhnstation is remarkably true to nature, the figure being of natural size.

We will now briefly examine a few of the more remarkable species.
An oddly-shaped creature, looking as if it were made of some rongh membrane corered with little projections, is the Dolabella, or IIAtcinet-sinell, so calleal on accomit of the form assumed by the shell, which is, however, so entirely hidden under the softer parts that it is not visible until the lobes have heen put aside.

When separated from the animal, the shell appears small in proportion to the size of the creature which formed it, and as it is attached only to the hinder part of the body, it is of little nse in protecting the soft parts from injury. In color the shell is prore, shining white, and pearly ; its smbstance is very thick, and it is covered with a tongh membrane, technically called the epidermis. The color of the anmal is dull olive-green.

Our last example of this family is the Loblger. While swimming, it uses the side lohes as fins. This creature is also called Lobe-bearer, in consequence of the rounded and flattened lobes that project from each side of the body, much like the fom wings of a buttertly. The tentacles are also flattened and rather oval, and the eyes are very small and set on the sides of the head withont any footstalks. The foot is small, and the hinder part of the body is lengthened and pointed so as to resemble a tail. The shell is small, oral, transparent, flexible, and set on the body so as to act as a shield to the plume-like gills. This species is found on the coasts of Sicily.

There is a curious animal belonging to the next family of mollusks, called, from the mode in which the shell is carried, the Indian Umbrella. In this creatme the hody is large, roundish, and corered with tubercles, and in shape something resembling a great limpet:
while the flat, white, pearly sliell is perched horizontally on the rery middle of the back, just like an Eastern umbrella held over the palanquin of some great potentate. The color of the animal is dull ochreons-yellow.

IV e now arive at a rery rematrable series of mollusks which have been separated by systematic natualists into a distinct section, appropriately called Nudibranchidx, or Nakedgilled Mollusks, becanse their gills are always external and placed on the back or sides of the animals. Many of these strange creatures are to be found on the European coasts; and if the reader should wish to gain a

DORIS. Doris putosa. further insight into their habits, and to examine the marvellons forms which the different genera assume, as well as their exquisitely delicate and ranied coloning, he is referred to the magnificent work of Messis. Alder and Hancock. The entire structnre of the Nulibranchs is most curions and well worthy of examination, but is too purely amatomical for admission into these pages. A few, however, of the more notable structmes will be mentioned in the conrse of our description.

Our first example is the Common Doris, a slng-like animal, which is represented in our illustration in the act of swimming. The figure is much magnified. All the members of the family to which this creature belongs may be known by the plume-like gills set in a circle on the middle of the back, like the feathery coronet with which the Blackfoot Indian adorns the head of his horse, and the two tentacles placed more towards the front. In the skin are imbedded a vast number of little spicular.

Of the family Doride, the Potycera Tessoni is a familiar form. It may be found on the algie in still pools left by the tide. In the bath-houses at Cragie's Bridge, in Boston, it is rommon. It is the same as the Emropean species. It is a pleasing form, and proves an agreeable addition to the aquarium.

Dors (Doris bilamellata). About an inch in length. This is also a rosmopolitan form. It inhabits similar localities as the former, at Beverly and Nahant. Stimpsou dredged it in Buston harbor. Doris tenella, abont half the size, is found in same places. Several other species are found on our New England coast.

The next family is represented by two speries, each of which will be brietly described. In this family,

DENDRONOTUS,-Dendronotus arborticeens. called Tritonide. the gills are arranger in lines along the strles of the back. and the tentacles can be withdrawn into their sheaths.

The Thendronomes, which is repmesented in the accompanying ilhastration, derives its very appropriate name from two Greek words, the former signifying at tree, and the latter the back.

The beantiful branched gills are set in a very shmblike fashion mon the back, and even the tentacles and appendages of the head are branched so as to correspond with the gills.

The Dendronotus is common in the waters along the New England coast. It is one of the finest, most show of the race in this region, and forms a pleasing inmate of the aquarim. Our illustration gives the size of the American form.

Ocre next example is the beantiful Inoro. It may be here remarked that the word Doto is the name of one of the seal nymphs of mythology, and that in consequence of their exquisite coloring and beantiful forms, the names of nearly all the nymphs have been given to different species of modibranchs. The tentacles of this animal are slender, and can be retracted into certain trumpet-like sheaths, which are seen projenting from the body. In this creature the processes of the digestive system pass into the large appendages on the back: and it is a curious fact that, althongh they fall off when the animal is handled, they are soon reproduced, and the creature seems to suffer little inconvenience from their loss. Examples of this creature can le fomnd on the Enropean coasts.

Of the family Dotonicice, the Doto coronata is common, inhabiting the same localities as the preceding forms-Nalant, Back-bay, and Beverly Beach. It is equally common in Enrope.

Axotiner family is formed by the Eolide. In these creatures the theory of phlebenterism finds its best proofs, as the processes of the digestive organs extend throughout the beautiful projections on the back, even thongh, as in one gemis, they are placed on footstalks.

The beantiful Eolis is common on the coasts of Europe, and has often been seen moving over the plants and stones with tolerable activity, and always keeping its tentacles and papilla in motion, sometimes contracting and sometimes extending them, while the movement of the water canses it to wave in a very gracefnl mamner. These papilla possess the property of discharging a milky kind of fluid when the animal is irritated. The fluid, howerer, is quite harmless, at all events to the hmman skin. As in the previons case, the papille are liable to fall off at a tonch. While nsing the dredge, the naturalist is sure to bring plenty of nudibranchs to the surface; but owing to their habit of contracting themselves into a shapeless mass, an minitiated observer will probably fail to notice them, and fling them overboard again, together with the sea-weeds, stones, and other refuse sulstances. The Eolis is a voracions being in spite of its delicate beauty, and if several of them are kept in a vessel and not sapplied with the sertularia and other zoophytes on which they feed, they will attack and derour each other.

Family Eolide is represented in American waters by Eolis papillosa; found in same localities as the last. It is one of the most common species in northern seas. Sereral beautiful species are fornd in the usual places-Boston, Back-bay, Bererly, Nahant, and Lynn. Eolis bostoniensis is a notable one, and the salmon-colored species.

The last and most remarkable example of the nudibranchs is the Glaucus, or Sea Lizard, a strange-looking creature. In this animal the gills are slender, cylindrical, and supported on three pairs of lobes or footstalks.

The Sea Lizard is very common in many parts of the Atlantic, where it is found in vast nmmbers during a calm and when the sea is smooth. Mr. F. D. Bennett writes as follows about this strange and eccentrically formed being: "These creatures obtain in greatest number where currents most prevail ; they are active and very predatory in their habits, and wonld appear, from the observations of my brother, which I have already confirmed, to subsist chiefly mpon the soft parts of the defenceless genera Velella and Porpita. The specimens we captured and kept in sea-water contracted their bodies into many convulsive attitudes, but seldom employed their branchial fins, and floated buoyantly while passive. When immersed in fresh water they contracted themselves into a very small compass, assumed a globular form, cast the tentacles from off their branchial fins, lost their color, and expired in a very few moments."

Super-order Anisopletra now (1885) embraces the largest division of the Gasteropods. The naked mollusks are of them. Nndibranchs, so called becanse their respiratory organs
are external, and derive the oxygen from the surounding medinm. Most beantiful forms are seen in this gromp. A few forms are fomd on omr New England coast. The Dendronotus arborescens is an elegant example-the one seen in the above cut is identical with ours. Protective resemblances are common in these forms ; the latter appears like a bunch of pretty algae, with its nmmerons braching fromblike respiratory organs floating gracefully in the water. Folis and Doris are also represented by pleasing species. Elysia is mach like the common slags or maked snail, but somewlat more decorated.

NUCLEOBRANCHIATA AND PTEROPODA.

We now arrive at a new order of mollusks, if possible stranger than that which has just been brietly described. The animals of this order are inhabitants of the sea, but differ from their kind in living almost wholly on the surface of the waters instead of crawling mon the stones or plants of the ocean bed.

It will be seen that a division is here made of more importance than the ordinary one of Orders, becanse of striking differences that can only be thus expressed: The Pteropods are all rather mfamiliar, being pelagic in labits, their delicate forms being borne upon the surface of the great deep. They derive their name. Pteropoda, or Wing-Footed Mollusks, from the fin-like lobes that project from the sides, and are evidently analogons to the similar organs in some of the sea-snails. A fine specimen of this gronp of mollusks is seen in the ilinstration on page 343. The appendages are used almost like wings, the creature flapping its way vigoronsly throngh the water, jnst as a butterfly moges its devious course thronglı the air. Thes are mostly found in the hotter seas, swimming boldly in vast. multitudes amid the wide waters.

The first family of these creatures is represented by the Carinanta. In this genus, the gills are protected by a small and very delicate shell of glassy translucence, bearing but little proportion to the size of the animal. The creature itself arerages two inches in length, and is very transparent, permitting the vital functions to be watched by the help of a microscope. When swimming, the Carinaria reverses its attitude, and keeps the tiny shell downwards. The curionsly modified foot of the animal is formed into a fin wherewith the creature can propel itself throngh the water, or a rudder by which it can guide its course.

In the Order Heteroroda the delieate glass-like sliells fomed on the broad ocean, alled Carinarias, Atluntes, Pterotrachens, etc., wre embraced. The curions eel-like Leptocephatus and the sagittas are seen in our waters.

The curious figure Hyalea is remarkable not only for the two wide fins which are found in all the fanily to which it belongs, but for the long appendages which pass through certain apertures in the shell, and trail behind as the creature proceeds on its course. The wings are mited by a nearly semicircular lobe. The empty shell is placed below in order to show its curious structure.

A creature, smaller than the Hyalea, and, with an odd-looking three-pointed shell, is the Cleodora. It is a very beantiful and interesting animal, of which Mr. F. D. Bennett writes as follows: "On that part of the body which is lodged in the apex of the shell, there is a small, globular, pellucid body, resembling a resicle, and which at night emits a luminons gleam, sufficiently vivid to be visible even when it is opposed to the strong light of a lamp. It is the only example of a lmminons shell-fish I have ever met with; nor would the lmminosity of this species be of any avail, did not the shell possess a structure so vitreous and transparent. Examples were chielly (aptured at night or in the evening.

An example of an allied genns, notable for the straight-pointed shell, is the Spike-shell. The fins of this little animal are rather narrow, and the apex of the shell soon loses its sharpness, heing by degrees divided into compartments and gradnally broken oft. The Spike-shell is mostly found near tloating sea-weed.

A Good example of the Pteropodir is the large-winged Cymbula. Though greatly resembling the carinaria in general appearance, it is divided from that creature by many

WING-FOOTED MOLLLSK.-Pt ropoda.
important strnctural differences. Its shell is flexible, and in shape and translucency somewhat like the glass-slipper of fairy mythology, the point, or toe, being set forward. Only three species of this genus are known.

The Order Thecosomata is a division embacing the Hyateas and Cleorbores. The family Cymbutide includes some comparatively large species. which secrete peculiar looking shells. They are slippri-shaped, and very much like a mass of jelly, thick, transparent, and Hexible. Species are Cymbutia and Tiedemania.

The Order Granostoma embraces the Naked Pteropods. Clione is a more common genns. C. burcelis is the familiar Arctic form which is seen in vast patches on the ocean. This, with the Limaciua, a member of the preceding order, forms the principal food of the whalebone whale of the North Atlantic. Chione pepilionucee is found in our waters as far south as New York. Its resemblance to a buttertly gives it the specitic name.

BRACHIOPODA AND CONCHIFERA.

As group after group of mollusks passes before our notice, each seems to be more extraordinary than its predecessor, and to present us with stranger and more unexpected forms.

The mollusks of the next group are the first of the bivalves, but stand alone in many particulars, and evidently form a transition hetween the gasteropoda and the ordinary bivalres. They are all inhabitants of the sea, and, when adult, are found attached to rocks, coral branches, and eren other shells; but in their earlier stages are apparently able to swim freely through the water, as is the case with many other mollusks.

In the ordinary bivalves, the two shells correspond with the right and left side of the animal; but in the Brachiopodil, as these creatures are called, the one covers the upper and the other the lower portion, and are called accordingly the dorsal and rentral valves. Of these, the former is smaller than its companion, to which it is joined by means of certain interior sockets, which receive corresponding hooks in the ventral valve, and lock them together so tightly, that they cannot be separated without something being broken. The ventral valve is large, and is marked by a decided beak, not molike the bill of a parrot. In most instances the beak is perforated with a ronnd hole, through which passes the peculiar organ by which the animal attaches itself to the sulstance on which it rests; and when this is not the case, the hooked beak itself answers that purpose.

In the interior is a rather complicated internal skeleton. The food is obtained in a singular manner. The animal is furnished with a pair of rather long arms, covered with vibrating fibres or cilia, and by means of the constant action of the cilia a current is cansed, which drives a continual stream over the month, and enahles the animal to seize the minute animals that dwell in the sea and are distributed throughout the waters.

We will now proceed to the eximination of our selected examples of these curions mollusks.

The gems Terebratula is the first to mention. This name is derive from a Latin word signif ying a wimble, and is given to the animal in allusion to the round hole which perforates the beak. The popmlar name of Lanp-simeld also refers to the same aperture, because it looks like the round hole through which the wick of an ancient lamp is drawn. The structure of the shell itself is very curious, being made up of immmerable flattened prisms laid side by side and arraged in a slightly oblique position, so that their ends project over each other, something like the slates in a honse-roof. The substance of the shell is also perforated by multitudes of very minute circular apertures.

Next comes the l'ariot-bill Lamp-sinell, so-called from the shape of the beak, which is long and hooked in a manner which much resembles the beak of the bird whose name it bears. The color of this speries is black.

Our last example of these remarkable mollusks is the (foowebill Lamp-sifled. All the nembers of the fanily to which this animal belongs are known by the long and comparatively narrow valves, and the footstalk which attaches them to the rocks, and which passes from
between the valves. The sulstance of the shell is rather soft and perforaterl. The ralves are slighty open at fach end, and blunted in front. Tery little is known of its habits in the living state, but it is worthe of notice that the Goose-i, ill Lamp-shell is the oldest known form of organie life.

ACEPHALA.

Tife Headess Mollesks are the lowest in rank in the scale of life. The common Clam is a good example of the class. The long fleshy process of the Clam is popularly called the head, but it is the foot, in one semse, being opposite the place where the head would naturally be. The true foot is midway, and is the tougher triangular part which is the locomotive organ. The long fleshy part whicll is called the head consists of two tubes, one cavity absorbing water and the other throwing it out after it has served its purpose.

In some of the hivalves, the mussel. for example, there is a gland near the foot which secretes the byssus, a bundle of threads by which the animal fastens itself to any object.

Bivalves are hinged. and re-enforced as it were ly a stont ligament on the outer side. One or two adductor muscles are placed within, attached to each shell within the depressel portion that shows on the inside of the bare shell. The ligaments, by contraction, tend to force open the shell's valves: the muscles on the inside draw them tightly together.

Classification of Mollusen is yet in a very unsatisfactory state. As in the case of some other divisions of matural history, as long as there is no satisfactory guide to classifying, a consideration of the foms under family heads is most conrenient and usetinl.

Thongh not possessing so many species as the gasteropoda, this group smpasses it in point of numbers, the bivalves being produced in countless myriads, and, perhaps, less exposed to the attacks of foes than most of the race. They are extremely useful in both salt and fresh water, feeding on the particles that would otherwise pollute the element in which they live. Their mode of feeding is somewhat similur to that of the last-mentioned group, the water being driven over the month by the continnal action of certain appendages, and there cleared of all its solid portions. So completely does a bivalve effect this purpose, that it even intercepts the microscopic plants and animals which are invisible to the naked eye, and conveys them to the stomach with marrelons certainty.

In the first family, of which the common Orster is a very familiar instance, the two valres are unequal in size, and the amimal inhabits the sea. The Oyster is too well known to need description ; lut it may be mentioned, that the practical naturalists have for some years been carefully studying its habits, for the purpose of breeding the valuable mollusk artificially. and so of securing a constant supply throughont the four months of the year during which the creature is out of condition. In this conntry the system is being gradually carried out, but in France it is developed to a very large extent, and with great snccess.

The details of the process are too elaborate to be here described, but the general idea may be given in a few words. The rery young spawn, or "spat," as it is technically named, is remored from the natural beds, and is dispersed in shallow "banks," so that each tiny Oyster has plenty of room, and can affix itself to the bed of the bank without being injured by the pressure of its fellows. Fascines, male of slender branches, and sunk into banks paved with stone, birch, and broken earthenware, are found to he most useful for this purpose. In the banks near Dieppe, the Oysters are seen lying in regular rows like the tiles of honses, and are at all times ready to be taken from the hed and sent to market.

This process possesses a domble value, inasmuch as an oyster-hed, if left to itself, would increase to such an extent as to endanger navigation: and these inland hanks are always accessible, whatever may be the weather. In some cases, when confervoid growths are rife, the Oysters attain a decided green hue, and are thonght very valuable by connoissenrs in such matters. In all improvements, however, there is always some drawhack. The Oysters produced by artificial culture are acknowledged to be fatter and finer than those which are suffered
to grow in the open seas: but their artificial size is said to be a poor compensation for their comprative want of Havor, the artificially bred Oyster being to the marine mollusk what the calpon is to the pheasant.

In the sea, thonsands of Oysters perish by the attacks of a strange enemy. The reader has donbtlessly remarked that the shells of many Oysters ane partially perforated by little round holes. These are the marks left by a kind of sponge, called Cliona, which bnrows into and gradually destroys the shells of this mollusk, cansing them to fall to pieces by its payages.

As a matter of economic valne, the Tirginia Orster and the common Clam are all important.
The Tirgmia Oyster (Ostren cirginiana) extends along our coast from the St. Lawrence River to the Gulf of Mexico. Many years since Oysters wers natural to the shores of New England. Old extinct beds are found around Cape Cod, and along the coast to Monnt Desert. Hnge heaps of shells are seen at varions places-notably in Casco Bay, Maine. They are of enormoms size. Professor Verrill inclines to the opinion that climatic changes have conspired to produce a scarcity, and, in some plares, extinction of Oysters in New England. Sonth of Cape Cod they flomish aboudantly. In the Oyster of our shores the sexes are separate; the egrs are fertilized alter they are deposited, and develop in the water. At first the young Oyster swims freely, and after the shell begins to develop it settles permanently. Onr Oysters are all of one species, notwithstanding seremal specific mames have from time to time heen used to designate them. 'Two species of Oysters are edible on the Pacifie coast, O. conchophila and O. luridu. The Emropen Oysters are insufficient to smplly the market, and the Ameriean Ofsters are imported there in great quantities. Edible Oysters are fond in Japan, Cape of Good Hope, and in Anstralia. Some of the Asiatic ones measure three feet in length.

The Orster industry in America exhibits the following statistics: The Censms of 1880 gives the number of persons employed in the business as over fifty thonsand, and over fom thonsand ressels; involving an investment of ten million dollars. The number of bushels of Oysters sold is over twenty millions.

A curious and rathel valuable shell is the Chinese Winmow-sifelis. It is found in the country from which it takes its nime.

This shell is extremely flat, and of a beantiful translucence, and in many parts of China is employed for windows, just as is ground-olass among ourselves, the nacreons substance permitting the light to pass throngh, but effectually preventing an inquisitive eye from distingrishing objects within the apartment. Tery small pearls are fonnd in this shell, too mimute and too opaque to be employed hy jewellers. 'They are, however, collected and exported to India, where they are calcined and formed into lime for the use of wealthy betel-chewers. They are also burned in the mouths of the dead.

The shell is of sreat use in commerce, aftording the snbstance from which is ent those large flat "pearl" buttons that were formerly so faslionable, but seem now to have descended to the demizens of the stable. The button "monlds" are cut from the shell by an instrmment that somewhat resembles the trpohine, by which portions of the skull are removed in case of severe injuries, and in their rongh state look like gmowads. They then pass through a series of poresses in which they are polished and pierced, and madd ready for sale.

The sadmes-sifela is remarkahle for the way in which the shell is attached to other substances. The contrivane by whirh it is attached is most remarkable. The amimal deposits a plug or peg of shelly matter on the oyster, and in the right valve there is a hole or noteh into which the beg tits, much after the fashion of a button. When the left valve is in its phace, this contrivance is bidden. The shell of this creature is beantifnlly thin-hardly thicker, indeed, than the paper on which this account is printed--and elegantly waved. It inhabits the Enropedm seas.

Tife Litas, or Fimb-simeda, of the same species, is wortly of notice on account of the curions refuge which it constructs by hinding together a large mass of shells, corals, sand, and
other materials, by means of the silken threads or "hyssns" which it is capable of secreting. It oftell appears almost entirely buried in the mass of mullipores which it has gathered aronnd its shell. 'The long tentacular appendages are kept in ronstant movement, possibly without the will of the amimal, keeping up their writhing rontortions just as our hearts continue to beat without ons knowledge. Even after the death of the animal, and when they have been separated, the filaments continue to move, twining and twisting like so many worms.

The File-shell can pass throngh the water with some rapidity, urging itself along by the sharp closing of its valres. Its color is crimson, with the exception of the mantle, which is orange. The shell is pure white, so that a living and healthy sperimen is a most beautifnl creature.

A very chrious ex:mple of this family is found in the Thomy Orsten, a species that is remarkable for the singulatly long projections from the shell. The ohject of these spines is mather obscure, but is said to inswer a domble purlose; the one being to art as a chemeana-deficise, whereby the attacks of marauding fish or other foes may be repelled, and the other to aid in fixing the animal to the spot on which it has established itself. Any fish, however, that would be strong-jawed enough to "rush the shell, even without the spikes, wonld care no more for them than does a donkey for the prickles of a thistle; and the smaller and more insiduous enemies would receive no check from the hedgehog-like array of bristling points. The animal of the Thorny Oyster is eatable, and in many places is looked upon as a delicacy.

The group including the curions spondylus, with its numerous projecting processes, also embraces the Malleus, or Hammer-shell, and the Lilhodomus, or stone-borer, and the Modiolus, a large mussel-like shell, of our shores.

The Unionitce rank next, the family embracing the large number of fresh-water shellfish, ranging from the small unios of on creeks and rivers to the great bivalves of the western waters, lakes and rivers.

Family Lucimide embraces some small circular shells, prettily ornamented by concentric ridges. Two speries are found on our const. It is a singular fact, that certain shells are so confined to special localities, and that some are so exceedingly scarce, unless indeed some cause has been actively at work to decimate them. The Lucinia rednla is an example of both these conditions. On Chelsea Beach, in Massachusetts, broken malres of this shell are occasionally seen; but only one perfect shell, with the animal in it, was found up to the time William Stimpson published his work on the marine shells of Massachusetts. This example of Lucinia we now have before us. It was figured by Stimpson, and recorded standing lonely as the only perfect example found on our coast. The Lncinia resembles the Cytherea above figured.

The Cimpinide are represented on our shores by the large bivalre called Quahog, or Ronnd Clam, very much resembling the Tenus, hat larger, and having an epidermis covering of greenish-brown, the Cyprina istandica, althongh the Venus mercenaria, is the proper Quahog of the Indians.

The pretty little chestunt Astarle is one of the most attractive of our bivalves; abont the size and exactly the color of a chestnnt, and not very mulike it in shape.

Tue last example of this family is the Hinvites, a shell remarkable for its exceeding variability of form. When joung, it wanders freely through the orean ; but when it finally settles down in life, it acts like weak-minded men, and molds itself to the locality in which it happens to reside. If it gets among scoriz, as is not unfrequently the case, the shell follows all the irregnlarities of its resting-place; and in one instance, where one of these shells had settled upon a group of serpulae, it had accumulated itself to them in the most curions manner, actually overlapping the shell, so as to form its edge into the balf of a hollow cylinder. The colors are red, brown, and white, but their relative amount and the manner of their disposal are as variable as the form.

The next family are termed Wing-shells, or Avicnlaridre because the apices, or " nm bones," as they are called, are Hattened and spread on either side, something like the wing of
a bird. The interior of the valves is pearly, and the exterior layer is composed of a kind of mosaje work of five or six sided particles. This structure is easily to be seen by means of a moderately powerful simple lens, merely by holding up a scallop or other shell before the window, so as to allow the light to jass through it.

A dark, whitish species is the curions Mammer-surll. Only for the oddity of its form, which somewhat resembles that of the hammer-headed sharks, it attracts some attention. As it lies on the gromnd, it would hardly be taken for a shell by one who was not acquainted with it, the enomonsly expanded ears and strangely crumpled valves giving it a most unshelllike aspect. This strange form is, however, only to be seen in the adult specimens, or when young. The shape of the Hammer Oyster is very like that of the pearl Oyster, presently to be described.

Tife Tariegated Scallop is, in common with many otlier mollusks, able to move with considerable swiftness by means of repeated strokes of its valves, a single stroke carrying it for several yards.

The animal is very beantiful, its color being orange or fine scarlet, and the mantle marbled with brown of different hnes. A series of romnd black dots, called ocelli, and thonght to answer the purpose of eyes, are ranged around its edge, and surrounded by long, tentacular filaments. Like the Oyster and mussel, the Scallop is considered as a delicacy, and eaten dressed in varions ways. The shell is of little value, its chief use in these days being as a vessel in which Oysters are "scalloped;" but in the ancient times it was in great request, as the sign of one who had made a pilgrimage to the shrine of St. James. When at rest, the Seallop lies on the right valve.

The family Pectinide, or Scallons, follows in order. The Pecien irradians, or Common Scallop, is much used in New York and sonthern part of New England as an edible. The adductor muscle alone is used. It is prized by many, but is not uniform in its effect on others; while some dislike its sweetish taste.

The well-known Peall Orster is one of the most valmable of the shell-bearing mollusks, furnishing the greater part of the pearls which are set by jewellers and worn by ladies. The specimens represented in the engraving are half as large as in their natural size. These creatures are found in Ceylon, Madagascar, Swan River, Panama, etc. Not only the pearls themselves are valuable, but the shells are of great importance in the commercial world, furnishing the best "mother-of-pearl," as the nacreons lining of the valves is ealled.

The pearls are secreted by the animal in precisely the same manner as the nacre of the shell, and are, indeed, the same substance, formed into a globular shape, and disposed in concentric layers, so as to gire that peculiar translucency which is quite indescribable, but is known among jewellers by the name of "water." As to the precise method and object of their formation opinion differs, the general impression being that they are morbid secretions, often stimulated originally by a grain of sand or some such substance finding admission into the shell. These objects may be obtained by introducing into the shell certain extraneous bodies, around which the nacre is secreted so as to form very good imitations of the pearls formed after the usmal manner. Examples of such artificial pearls will be mentioned in the course of the following pages.

The Pearl Oyster does not produce its costly harvest under six or seven years of age, and it is, therefore, a matter of importance that the berl should be so managed that the young Oysters may be suffered to remain in peace until they have attained an age which renders them capable of repaying the expense of procuring them, and that no part of the bed should be harried where the Oysters are too small to produce pearls. It is hoped that the increasing knowledge of the mollusk and its habits will enable proprietors to sow the sea with pearls just as they sow a field with grain, and that the harvest may he equally certain in either case.

The Oysters are now obtained by means of men who are trained to the business, and who can remain muler water for a considerable time withont being drowned. Each diver takes with him a net bag for the purpose of holding the Oysters, puts his foot into a stirrup, to

Which hangs a stone weighing about thirty pounts, and after taking a long breath is swiftly carried to the bottom. He then tlings himself on his face, fills his hag as fast as he can, and when his breath begins to fail, shakes his rope as a signal, and is drawn up together with the bag.

Very exagremated arcomsts have betn given of the time passed under water by the divers, from two to seven mimutes being mentioned as the usual periods. The real fact, howerer, is, that one minnte is the ordinary arelage; a few men being able to endure an immersion of a mimute and a half. This is a long period, as any one will confess who has attempted to repeat the feat. Iet, with a little practice, it can be achiever, pyen by those who can lay no claim to extraordinarily capacions hugs : and I have more than once performed it with tolerabla

PEARL OTSTER - Meleagrina margaritijera.
ease. If the lungs be thoronghly filled form or five times in succession, and emptied to the last gasp, so as to expel all fonl air that may be lingering in the tiny vesicles, the blood becomes so well oxygenized, that a further supply of breath will not be needed for some time, and a deep inspiration will serve to keep the blood in a healthy state for a marvellously long time. All swimmers who are fond of diving will find that they can remain under water nearly twice their usual time by taking this simple precantion.

The best plan for procuring the Peard Oyster is evidently the employment of the diving bell, so that the best shells might be leismirely selected, the spot left undistmbed, and the sharks ontwitted. In the illustration are given specimens of the shell in varions stages, as well as the interior, showing the pearls as they aplpear when the animal is remored.

A Large, flattish, wedge-shaped shell, generally moored to a stone, or fastened to the bottom by a number of short threads, is the Pinna, so called from the Latin word, signifying a wing.

The aggregate mass of these threads is termed the byssus, and is, indeed, a very curious object. The threads are spmo by the foot, and are attached to the centre of each valye, thus forming a powerful cable by which the shell is moored to the rock. The threads are wonder-
fully strong, silken in their textmre, and, had the mollusk been sufficiently plentiful, might have been employed in rarions manufactures. I have seen a pair of gloves that have been woven from the byssus of the giant Pinna, a species which sometimes attains the length of two feet, and has a most singular aplearance when old, orring to the mass of parasitic creatures, such as serpule, balaui, and sundry zoophytes, that always congregate on such substances.

It is remarkable that a little crab, called, from its habits, Pinnotheres, is often found within the shell of this mollnsk, and was formerly thonght to have entered into a tacit agreement with its host to act as sentinel and to bring in food as a return for the hospitality afforded to it. This, however, is not a solitary instance of snch strange alliance, several other mollnsks being known to shelter their particular crustacean guest. When at rest, the Pinna is mostly buried in the sand, with the exception of the upper edges of the shell, which are permitted to protrude just above the substances in which the rest of the creature is immersed.

We now come to the large, useful, and even beantiful family of the Mussels, althongh, in most cases, their beanty is not perceptible until the shell has been polished and the rich tints thereby bronght ont. Rongl and polished mahogany are not more milike each other than the Mussel-shell before and after the polishing process. Some species are marine, while others inhabit the fresh water, and all may be known by the peculiar shape of the shells.

The Edible Mussel, so common in the fishmonger's shop and the costermonger's barrow, is found in rast profusion on Enropean coasts, where it may be seen moored to rocks, stones, and fibres, alternately corered with water or left dry, according to the flowing and ebbing of the tide. The heedless bather is sometimes apt to come unexpectedly upon a collection of these mollusks, and if he once meets with that misfortme, his lacerated limbs, cut in all directions by the knife-like edges of the shells, will serve as effectual warnings not to repeat the same imprudence.

At some periods of the year the Mussel is extremely injurions as an article of food, though the effects seem, like those prodnced by eating the bonita, to depend greatly on the constitution of the partaker, some being able to eat it with impunity, while others who have shared the same meal are visited with asthma, violent rash, nansea, and many other symptoms which, thongh not absolutely dangerous, are peculiarly annoying. The Mussel is largely used for bait as well as for luman consmmption, more than thinty millions being collected annually in one locality for that purpose. Little, ill-shapen and badly-colored pearls are often fonnd in this mollnsk, but are quite useless for the market. Attempts have been successfully made to propagate the breed of Mussels ; ant the vast plantations, as they may be called, of these creatures have increased to such an extent, that they threaten to obliterate sereral mseful bays for all maritime purposes.

An allied species, the Dnemsana, inhabiting the fresh waters, has of late years rapidly overmon England, having been originally imported into the Surrey Docks, whence it has spread with astonishing fertility, passing from one river to another, getting into all the little rivulets that trickle between meadows, and even obtaining entrance into artificial basins by means of the water that feeds them through pipes. The shell is like that of the edible Minssel, but shorter, and without the beantifnl macreons lining.

The Fork-talled Date-shell is a little, ochre-colored shell, withont any peculiar beanty of form or color, but yet as remarkable a creature as any that has been or will be mentioned.

This little being has the power of bnrowing deeply into the hardest stone. I know an instance where the substance in which the Lithodomi were imbedded was a shell of the gigantic limpet from Madagascar, measmring abont six inches in diameter and half am inch or so in thickness. This specimen, which I have carefnlly examined, was a really wonderful one, the thick, hard, and solid substance of the shell being literally riddled with the holes of the Lithodomus, whose formed processes projected from the circular aperture much like the egges of the common seatophagus from the substance in which they are sunk.

The method by which this little mollusk contrives to excavate its chamber is a complete mystery. It is known that in its earlier stages it spins a byssus, and attaches itself to
substances like the common Mnssel, but that in process of time it hegins to bore its way into the object to which it is moored. As the shell increases in size, the chamber is entarged in dimensions; but the original aperture remains of the same dianeter as when first bored, and therefore effectually prevents the animal from making its exit.

Some persons have suggested that the animal employs an acid for the porpose of dissolving the rocks; but if such were the mode of operation. the shell would suffer equally with the stone. A continual current of water forms the basis of another theory : and provided that the animal were sufficiently long-lived, there is no doubt but that the constant action of water would in process of time wear away the stone, howerer hard it might he. But as yet no theory has sufficiently accomed for the fact that the creature excavates these chambers with wonderfnl rapidity, and that, in all cases, the chamber corresponds with the shape and size of the shell. It is erident, also, that the shell itself is not the means by which the chamber is bored, as the peculiar shape of the hole prevents the shell from rotating.

The Lithodomms seems to drive its cmious tmmels through everything that comes in its way, for, in one case, a specimen has bored through the upper part of the limpet-shell, broken into a chamber already excavated by another individual, and formed its way fially through the inhabitant as well as the habitation.

The animal is slightly luminons, as is the case with most of the burrowing mollusks. The color of the shell is uniformly pale brown.

The Finger Date-shelf is a rock burower, and so beautifully decorated that it seems a sad pity to bury so lovely a shell in so dark a recess. At a little distamer it is quite ordinary in appearance, being apparently a plain, mahoginy-colored shell; but when examined closely, it is found to be elegantly formed, colored with a peculiarly rich ruddy brown hue, and sculptured with myriads of minute waved ridges and chamels drawn crosswise orer the shell, which give wonderfinl effects of light and shade, and heighten the tints materially. The animal is edible, and is eaten like that of the common Mussel.

A raturer curious-looking-shell, which, from its rude resemblance to the familiar toy of childhood, is called the Noan's Ark.

The Ark-shells are foum all orer the world, hidden under stones, in the crevices of rocks, or even within the forsaken burrows of the pholas or the date-shell. Owing to their retiring habits, and the nature of the localities in which they live, they are mostly distorted or damaged. They can move themselves rery fairly by means of a curions conical byssus, composed of a series of thin plates, which can be cast off or re-formed at the will of the animal.

Examples of pearl-benring molhusks which inhabit the fresh waters, are the Emropean and the Chinese Pearl-mussel.

The Eulopean Pearl-mussel was once a valmable inhabitant of English rivers, on account of its contents. It is now, however, seldom songht excejt for bait, and in the latter capacity is more useful than in the former, as it is estimated that not more than one per cent. contain iny pearls, and not more than one per cent. of the pearls is of tuy commercial value. The older and more irregular the shell, the better chance is there of finding a pearl; and a diligent collector may soon obtain a tolerable series of these objects for his cabinet. Now and then, however, a really fine pearl is found ; and one, that was obtained from the Conway, now holds a place in the crown of England. This Mnssel is tolerably active, and, if laid on the sandy or muddy floor of an aquarium, will soon assmme its usual attitude.

The genus to which the Cninese Pearl-mussel belongs is distinguished by the thin elastic wings into which the ralves are produced.

From this species the Chinese, those incorrigible tricksters, are in the habit of producing imitation-pearls by a very simple process. A string of small shot is introduced between the valves, and the animal restored to its mative element. The irritation caused by the presence of the foreign body forces the mollusk to deposit the nacreons secretion uron the intuding substances, and after a while the shot are covered with layer upon layer of pearly substance, the thickness of the coating depending mpon the length of time ocempied in the construction.

The same ingenions people are also accustomed to make curions little pearl-covered josses, by stamping them ont in thin bell-metal, slipping them into the shell, and leaving them between the valres until they are sufficiently coated with pearl.

In the Thonsy Clam, a curions member of another family, the shell is corered with long and branching projections, something like the homs of a young roebuck. All the Clams are natives of the warmer and tropical seas, especially among coral reefs, and their color and shape are extremely variable. Mr. Broderip writes of them as follows: "The shells are attached by their extemal surface to submarine bodies, such as coral rorks, and shells bave been observed at deptlas varying from points near the surface to seventeen fathoms. These shells appear to be subject to every change of shape, and often of color, that the accidents of their position may bring upon them. Their shape is nsually determined by the body to which they are fixed; and the development of the foliated lamine which form their general characteristic is effected by their situation ; and their color most probably by their food, and their greater or less paposure to light. The (hama that has lived in deep and placid waters will generally be found with its foliations in the highest state of luxuriance, while those of an individual that has horne the buffeting of a compratively shallow and tmrbulent sea will be poor and stunted." The Clams are generally attached by the upper valve. The animal is edible, and is considered a great delicacy. Lbont fifty species of Clams are known.

The Tridacnidse are easily known by their deeply-waved shells, with the indented edges fitting into each other, and the ovelapping foliations of the surface. Although separated from the trme Clams, they are popnlarly called by the same name. The Yeleow Clam is often buried in a mass of white madrepores. A well-known speries, called from its enormons dimensions the Giant Clam (Triducmu gigas), was fomerly rare, but is now tolerably plentiful. It attains to a gigantic size, sometimes weighing more than tive hundred pounds, and containing an animal which weighs twenty pounds, and cam fromish a good dimner to nearly as many persons.

The natives of the coasts on which it is fomm-namely, those of the Indian seas-are extremely fond of this creature, and eat it without any cooking, just is we eat oysters. The substance of the shell is extremely thick and solid, and enables it to be used for many ornamental purposes.

In former days, when this speries was very rare, a magnificent specimen was presented to the church of St. Sulpice, in Piris, where it may now be seen, the valves being set up as bénitiers for contaning the holy water. This shell dates from the time of Francis I. It is evident, that the hyssns by which so enomons a shell is moored to the rocks must be of great size and strength, and, indeed, is so strong as to require an axe for its severance. The muscles, too, by which the ammal contracts its shell are enormonsly powerfin ; and it has been remarked by Mr. Darwin, that, if a man were to put his hand into one of these shells, he would not be able to withdraw it as long as the animal lived.

The Spotted Beares-paw Clam has been placed in a spparate gemis, on accomt of a difference in the momber of projertions on the hinge, teclmically called hinge-teeth. The mouth is marked by a coromet-like chelet around it, and the foot is seen helow just projecting from its groove.

This amimal also spins a hyssns, which is, however, weak and shight compared with that of the gigantio species just described.

Tue family of the Cockles, or Cardiadie, so malled from their heart-like shape, is well represented by the mmmon Cocokle (Córdinm. catulp). Generally, the Cockle is a marine animal; but it sometimes prefers backish water to the salt waves of the ocean, and amall variety is fomm in the Thames nearly ats higl as Greenwich, when the water is sensibly flavored with salt at earh high tide. Another species, the Phokby Cockle (Cérefium aculeaitum), is found on the sonthem coast, and regnlarly bronght to market.

The Cockle is gathered in great nombers for the purpose of being eaten, althongh, as the greater number are consumed in the open air, they can harlly be said to be procured for the
table. According to Mr, Maxwell, "a crowd of the more youthful description of the peasantry are collected every spring tide to gather Cockles on the sands by daylight when the tide overruns. The quantities of these shell-fish thas procured would almost exceed belief; and I have frequently seen more than wonld lod a clonkey collected in one tide by the children of a single cabin. They form a valuable and wholesome addition to the limited variety that the Irish peasant boasts at his humble board ; and afford children, too young for other tasks, a safe and usefnl employment."

This mollnsk frequents sandy bays, and remains about low-water mark, burying itself in the sand by means of the powerfal foot. which also enables it to leap to a surprising height.

The common Heart-Cockle and the remarkable Spiral Heart-Cockle differ in their form, accorling to their name. The latter is notable for the boldly spiral mbones.

The spiral Heart-Cockle is in the habit of burowing in the sand, leaving only the openings of the siphon above the smface. In the Tibberchated Cockle these organs are at once recognizable by their fringed edges; and the large foot is sen below, carrying the superstructure along. Eren when taken out of the water, the Cockles are very lively; and if placed in a pan or basin they tumble about with great energy, knocking their shells against each other and the sides of the ressel with remarkable activity.

We now come to a gronp of these shells where the siphons ame extremely long. The first family is represented by the banden Tenus-simele, so called on account of its beautiful colors and elegant form, and the bands which traverse its surlace. All the Vemos-shells are handsome, and have well deserved their mame. The shells are extremely hard in textmre, thick, and smooth, and are mostly found in the wamer seas.

About one hundred and seventy species of Temus-shells are known, spreat throughont all parts of the word, and ranging lrom low-water mark to a depth of one hondred and forty fathoms.

The Venus mercenaria of America, or Qushof, is an important bivalve commercially, ranking in this respect after the oyster and common "lam (nfyu aremario). This shell-fish is, fortmately for the inhabitants of our coast, who depend on some kind for food and profit, distributed where the mya is not found. This shell was a very important article among the North American Indians. Beside depending greatly npon it as food, their money and ornaments were made from the shells. The blae of the interior of the shells was esteemed, and bits of certain shape were used as media of trading transations.

The purple zoampum was callod by the New England Indians Suctanthock. This was valned at twice that made from the white shells.

The beantiful Cytnerea is closely allied to the genns Vemms, and is therefore appropriately mamed Cytherea, that being one of the classical epithets applied to Venus in consequence of her predilection for the island of Cytherea in the Egean Sea. In this animal the two portions of the siphon do not diverge.

In the family of the Mactridse, or 'Trough-shells, the valves are of equal dimensions, and rather triangular in shape. The animal has the two chamels of the siphom united as far as the extremity, and the foot is ample and strong.

The common Trough-shell is found on many coasts, always preferring those of a sandy nature, where it can hide itself by sinking just below the surface. The foot is calable of considerable motion, and can be extended to some length; and when the morements are rapidly performed, it enables the creature to jump about nearly as artively as the cockle. The Trongh-shells are found in all parts of the world, and in some coasts of the British islands are so plentiful that they are gathered for the pmpose of feeding pigs. The speries which is usually employed for this purpose is Mactra subtruncáta, and, like the cockle, it is taken at low water. Although so usually inhabiting the zones just below and above low-water mark, these shells are sometimes found as low as thirty fathoms beneath the surface.

The largest bivalve on our shores is the Mactra solidissima, or Great Clam, so-called in VoL. III-45.

New Encland. Hen Clam, Sea Clan, and Surf Clam are other local names. It is distributed between Carolinas and Labrador. This shell is prized by some, but it is extremely tough ; the eatable part being the stout foot which composes the largest portion of the animal. By this foot the Clam is enabled to plough its way through the mud, and to leap considerably.

At extreme low tides on the Nahant beaclies these clams are found imbedded just below the water-mark. Being so near shore, heary stoms throw up great numbers. The common Clam (Hye arenaria) is vastly more important. and is prized as an edible in all parts of the New England coast. South of Connecticut, along the coast, although this Clam is very large, it seems to be less palatable, and is consequently less esteemed. The cold waters farther north seem to add a certain excellence to this shell-tish; and this is noticeable in the case of most fishes.

There are several clam-like shells, having dark colored epidermis, that are found in more nortleern waters: and somm on thr rrand Banks, ant "Georges." The Gitycimeris and Panopoct. Wes frequently took from the stomachs of fishes canght in those localities.

Besides these whre many heantifnlly shayed small species. which the rod and haddock in browsing along the shelving rocks of the "Banks" have fed upon.

Anong the most interesting of the biralops that find a home in the waters on our New England coast are the solemulus. Solens. Ensis. and siliques. Their beautiful shapes and glassy veiled coverings ranging from the pleasing shades of olive to dark rhestnut of exquisite polish.

Thercrict concanti is a notahle shell. looking at first like the vemus. but having a singnlar inequality of ralres. One ralre is guite conver, the other somewhat flattened. Chelsea Beach, near Boston, was the only locality linown on the New England roast during many years. During heary north-east storms numerous ralves. more or less damaged. were thrown upon the beacla. but in omly one instance. during many years of frequent risiting at the locality, was a living specimen found. Inedring in all directions failed to discover them.

The very remarkable shell from whiclı pertrude two enormously long siphon tubes is the Scrobictlaida, an example of the family Tellinidere all the members of which are notable for the length and dirergence of these tubes.

We now come to the well-known Solenidie, or Razor-shells, so called on account of their shape.

These curions mollasks always live lmied in the sand in an upright position, leaving only an opening shaped like a key-hole, which comesponds with the two siphon tubes. Those who are fond of examining the sand and rocks at low water will donbtlessly have been startled and ammsed by little jets of water which spirt some few inches in height, but never reappear.

These are cansed by the Razon-smata ; and if the locality whence the jet started be watched, the little lieyhole-like orifice will be seen. To eateh the mollusks that emitted the water is no easy task, but may be managed in two ways. The simplest but ronghest method is to take an iron rod hooked at the end, plunge it into the sand like a harpoon, and pull it ont smartly in an oblique direction, hringing with it the shell. This method, however it may answer for those who only want the creature for the purpose of eating the anmal, or using it as bait, is by no means suited to those who wish to capture the inhabitant uninjured and to experimentalize upon it. These, therefore, must employ a different plan.

In the next family, called Gaper Shells, because the valves when closed do not unite completely, but leare a moderately wide aperture at the hinder part, the shell is strons, thick, and opaque ; the foot is comparatively small, and the siphons are mited and retractile.

The Gaper Suell imhabits sandy and muddy shores, and is especially fond of frequenting the brackish waters of divermouths, where the streans are sure to bring with them a soft deposit of mud and sand. The species which is represented in the engraving burrows nearly a foot in deppth into the sand, and is able to breathe and gain subsistence by the long siphons, which just protrude above the surface. In looking at this animal, and observing its habits, the entomologist is forcibly reminded of the manner in which the rat-tailed maggot, $i . e .$, the larva of Eristalis tenar, the grat bee-like fly, with enormons eyes, is in the habit of hovering for a moment orev a flower or leaf, settling for a moment, and then darting off again with lightning speed. Like the Gaper Shell, this larra spends its life deeply buried in the mud, carrying on the business of respiration by means of a long tube which, like the siphon of the mollusk, can be retracted or extended at will.

The Gaper Shell is much sought after in many places as an article of food, not only by man, but by birds and beasts, such as the walrus and the blue fox.

GAPER SHELL-Ifya arenáría.

The nearly cylindrical Watemba-pot Shell is a curions creature found in some of the hotter seas.

This species is a good example of a family termed the Gastrochenidr, in which the valves are thin, gaping, and when adult, often comected with a rather long calcareous tube, as in the present instance.

The Watering-pot Shell derives its name from the curions perforated disc which closes its lower extremity, and bears no small resemblance to the rose of a watering-pot. In allusion to the same peculiarity, the French writers call the animal by the name of Arrosoir. All the species are burrowers, some into coral, some into stone, some into shells, and others into sand, as is the case with the creature which we are now examining. From the other ent of the tube the siphons can be protruded to some extent, and withdrawn when the animal is alamed.

One species belonging to this family, the Gastrochena modiolina, has been known to drive its burrow fairly throngh some oyster-shells into the grond below, and then to make a permanent home by cementing all kinds of materials into a tlask-like case and fixing its neck into the perforated oyster-shell.

Tue very curions and common shells, popularly called Pidnocks, are fomd in profusion along the sea-coast.

The common liddock may be foum in vast numbers in every sea-covered chalk rock, into Which it has the gift of penetrating, so as to protect itself from almost every foe.

Every one is lamiliar with the beantiful white shell of the Piddock, crossed by a series of elegantly curved projections, something like the teeth of a file. According to some writers, it is by means of these projections that the creature is able to burrow into the rock; and the possibility of such a feat has bem proved by the simplest possible means, namely, by taking a Piddock into the hand and boring a similar hole witl it. Mr. Robertson, who kept these creatures alive in their chalky hurows, deroted much time to watching them, and finds that dming the process of lomrowing they make a half turn to the right, and then back to the left, nevel turning completely romd, and, in fact, employing much the same kind of morement as is used by a carpenter when horing a hole with a bradawl.

Mr. Woodward remarks very justly, that "the condition of the Pholades is always related to the nature of the material in which they are fom burrowing; in soft sea-beds they attain the largest size and greatest perfection, whilst in hard and especially gritty rock, they are dwarfed in size, and all promineut points and ridges appear wom by friction. No notice is taken of the hypothesis which ascribes the perforation of rocks, etc., to ciliary action, becanse, in fact, there is no rmrent between the shell, or siphon, and the wall of the tube." As soon as the animal has completely boried itself it ceases to burow, and only projects the ends of the siphon from the aperture of the tumel.

Some speries of Piddock are eaten, Pholus costátu, one of the Sonth American species being a good example. In Enrope it is seldom nsed, except for bait, its fine white foot, which looks. when fresh, as if cut ont of ice, answering that pupose admirably, its glittering whiteness serving to attract the attention of the fish, and its toughness causing it to adhere strongly to the hook.

Several other genera are worthy of notice, among which the Martesia is, perlans, the most curions, shells belonging to this gems having been found in cakes of wax floating on the waves off the Culran coast, and others in masses of resin on the shores of Anstralia. The Paper Pindas is another species of this interesting gemis.

Family Petricolide embraces certain clam-like shells that, as the name imports, live in stone. Our American species bores into word, or more commonly it is fonud in the hard bottom, exposed hetwren tide-waters. The shell is a chalky-white, and is long and romsiderably ridged. The celebrated Date-clam is moch the same shape, lant has a beantiful chestmot epidermis.

Is the Slip-worm we have an example of a creatnre, which, thongh usefnl enough in many ways, and doing good service in transmuting dead and decaying substances into living forms, is set the dread of mariners and the terror of pier-builders.

The suth-wons derives its mame from its depredations on the hottoms of ships and all subnerged wonden structures. It is fom in most seas, and works feartul damage by eating into piles. planks, of even loose woor that lies tossing about in the ocean. Thave now before me a portion of a pier which is so honeycombed by this terrible creature that it can be crnshed betwem the hands as if it were japer, and in many places the wood is not thicker than ordinary foolscap?. This piece was hroken of by a steamer which acridentally ran against it ; and so completely is it tumelled, that althongh it measures seren inches in length and about eleven in ciremmference, its weight is under four ounces, a considerable portion of even that weight heing due to the shelly thles of the destroyers.

I have also a block of oak, where the Ship-wom has been nearly, thongh not quite so destrnctive ans in the former instance. This sperimen is notable, as giving in example of a
primeiple on which many piers, ete., have boen protected from this mollask. A large iron bolt passes throngh the midst of the hloek, and the rust of the projecting heat has spread itself for some distance over the wool. Multitndes of holes, linge and small, smronnd the bolt, but not one has piered that portion over which the rust extends. Konowing the objection entertained by the Ship-worm to rnst, engineers have been in the habit of driving a number of short irou nails, with very wide heads, into the timber, arranging them in regnlar rows, with their heads at no great distance from each other. The action of the salt water soon canses the rust to spread over the spaces between the hends, and upon these spots the Ship-worm refinses to settle.

Another plan, and a rery effective, thongh mather expensive one, consists in forcing a solution of corrosive sublimate into the pores of the wood. This salt of mercury is very destructive to animal life, and M. Quatrefages asserts that one twentr-millionth part of corrosice sublimate is enongh to destroy all the yomms Ship-worms in two hours, and that a ten-millionth part would have the same effect in forty minutes. He therefore proposes that ships shond be cleared of this temilde pest by being taken into a closed dock, into which a few handfuls of corrosive smblimate should be thrown and well mixed with the water. The salts of copper and lead have a similar effect, but alre not so rapid in their operation. The wooden piles on which jetties and piers are supported can he preserved in the same manner. Iron, however, is now rapidly superseding wood for such structures, and is quite impervions to the attacks of any mollusk, no matter how shamp its teeth.

When removed from the tube, the Ship-worm is seen to be a long glayish-white animal, abont one foot in length and half an inch in thickness. It one end there is a rommded head, and at the other a forked tail. The burrow which the creature forms is either wholly or partially lined with shell, and it is worthy of notice that the Ship-wom and its mode of burowing was the object that gave Sir 1 . Brunel the idea of the Thames Tumnel.

The Teredo did not almas lead this fixed and darkling life, but at one time of its existence it swam freely throngh the ocean, having orgas of sight and hearing for the purpose of gnarding itself against the damers of the deep.

Of all shell-fish, the Teredo is the most important in its relations to commerce. Its larages are such that nothing short of an entire conting of copper plates on the hulls of vessels will suffice to prevent the serious injury sure to come to them when exposed in warm and temperate seas. On our const, south of Cape Col, spars and boys are coated with verdigris paint.

It is an interesting fact that in the tropical regions, where the waters swarm with the eggs of the Teredo, there tlonrishes the palmetto-tree, the wood of which is a perleet resistant to the attack of the dreaded shell-fish. Piers are constructed of the palmettologs, and prove of immense importance in onr Sonthern harbors. In the wam waters of the Gulf of Mexico, the Ship-worms work with gleat rapidity. A pier of ordinary wood may seem to the eye wholly sound. On close inspection of it there will he observed on the surface minnte holes, which, to the uninformed, are little suggestive of imperfection. Make a section of that wood, and we will see the interior of the log wholly rephaced hy the white, hat shells of the creatures, which entered in the young state, just before hatehed mom the onter surface. These minute holes show where each yomg shell-worm penetraterl. From these points they progress, eating the interior wood, and leaving nothing' hehind hut the lime-shell thbes. 'Thms, when the pier seems to the eye intact, its integrity is wholly destroyed ; the least jar or movement suffices to throw the strincture down.

An enormons species of this gems, called from its dimensions the Ginnt Tereno (Teredo gigantea), has been fonnd at smmatra. This huge mollusk sometimes attains the lengtly of six feet, and a diameter of about three inches, but, fortmately for timber, does not make its habitation in that substance, contenting itself with boring into the hardened mud of the seabed. The color of the shelly tube is pure white extermally and rellow within. On account of its mud or sand burrowing habits, the specific title of arenaria has been applied to this species.

TUNICATA.

Tire strange-looking creatures, as the Plonea, the Sea-Squirt, the Clavellina, etc., have long perplexed systematic naturnlists, and even now, althongh they have been the subject of careful examination by accomplished zoologists, many parts of their economy are enigmatical in the extreme. The order to which they belong is ealled by the name of Tunicata, hecanse the animals possess $n o$ slell, but are covered with an elastic tonic. Some of them are transparent and leally heantilul, while others are apparently little more than shapeless masses of gelatinous substance, studded with mimute stones, fragments of shells, and coarse sand, overgrown with sea-weeds, and perforated by certain bivalve mollusks.

The simple or solitary tmicates are classed together moder the name of Ascidiada. The common Sea-squirt is a good example of the typical genus.

This animal, in common with all its kin, feeds mostly, if not wholly, upon the minute regetable organisms, sneh as the desmils, diatoms, etc., which abound throughout the water, and the mamer in which these substances are bronght to the digestive organs is equally simple and benutiful. "The month," writes Mr. Rymer Jones, "is quite destitute of lips or other extensile parts, and situated, not at the exterior of the body, but at the very bottom of a capacious bag inclosed in the interior of the creature.
"It is obvious, then, that whatever materials are used as aliment, must be brought into the body with the water required for respiration ; but even when thus introduced, the process by which they are conveyed to the month still requires explanation.
"A truly miracnlons apparatus is provided for this pmpose. The whole surface of the respiratory chamber is covered over with multitudes of vibratile and closely-set cilia, arranged in millions, which by their united action cause emrents in the water, all of which flow in continnons streams directly towards the mouth. It is sometimes possible, in very young and transparent specimens, by the aid of a good microscope, to witness the magnificent scene afforded by these cilia when in vigorons action.

> Et perlucentes numerare in pectore fosis 'sas.'

The effect upon the eye is that of delicately-toothed oval wheels revolving continually from left to right, but the cilia themselves are very much closer than the apparent teeth, the illusion being caused by fanning motion transmitted along the ciliary lines, producing the appearance of waves, each wave representing a tooth of the supposed wheel."

Another tunicate is the Crrtma, one of a rather numerous genus, not meommon on European coasts. The AgGRegated Cyntula (Cymthict ugfregaita) is to be found on almost any substance that has remained for any length of time below low-water mark, and stones, rocks, wooden piles, or even the larger sea-weeds, are frequently covered with these curious creatures, sometimes set in solitary state, and sometimes gathered together in groups by means of the interlacing of the filres by which they attach themselves. Some species are eaten, C!methia microcosmus heing the most in favor, and regularly brought to market for sale. This animal derives its specific title from the multitude of anmal and vegetable parasites that grow upon it, and so transform it into a little world.

Our next example is the Pelonea, so called from two Greek words, the former signifying mud, and the latter to inhal)it. This animal, as its name imports, is in the habit of burying itself in the mut, where it remains fixed and nealy motionless, respiring and obtaining nutrition by means of two open tubes seen at the smaller end. Only two, or perhaps three, species of this genns are known, and the animal is fomed in northern Scotlimd and Norway.

The curions Bolfenia, so called after Dr. Bolten, a natmalist, of Hamburg, is found in rather deep waters, being sometimes drawn bp by fishermen's lines from a deptla of seventy fathoms. The animals of this gemns ine attached to long footstalks, at the end of
which the creature sways like a fritillary on its slender stalk. The two orifices by which water is admitted into and ejeeted from the system are seen, and their remarkable four-cleft openings are well displayed. When very young, the Boltenia is often fomn affixed to the stem ol its parent.

The Boltenia, several species, is ${ }^{\circ}$ an unfamiliar animal, monless the observer is interested enough to go to the braches after stoms, when it will be found cast ashore, with great quantities of sea-weeds, kelp, etc. It is always an attructive creature, looking more like a rich peach or damson, with its beantiful pink and lemon coloration.

Many of the Ascidians are rery uninviting in appearance.
The Cynthia mbrieformis is one of the most beautiful of the race. It is called Sea-Peach, from its lich velvety surface and bright pink blush, precisely the aspect of a blood-peach.
W^{r} e now artive at the Social Ascidians. Our first example of them is the Clavellina. Its blood circulates throngh channels of commmication, passing to and fro through separate tubes. It is a small creature, and extremely transparent, the latter characteristic making it a vahable species to the physiologist, who is enabled to watch its structure, and the methods in which the different organs perform their duties, withont needing to dissect it. The Clavellina may be fomnd on the Emropean shores at low water, adherent to rocks, stones, or sea-weed, to which it attaches itself by means of the tiny root-like projections which are developed from the outer thnic, something like the little rootlets hy which iry clings to a wall.

Our second example is the Synteturs, another Emopean species. When full-grown, a group of these creatures foms a largish mass, nearly six inches in diameter, and as many in height, each member of the group being about two inches long. They are rather transparent and of a greenish color, and, when tonched, they will contract themselves violently, and vanish into the common mass on which they are seated. These animals are propagated both by eggs and buds, the buds being produced on offshoots of the creeping tube. Sometimes the young one severs its connection with the parent, and tixes upon some fresh locality, there to form the basis of a new colony, but it frequently remains on the same spot, and only serves to increase the general mass.

Of the Botryllide, or Compound Ascidians, we may mention the common Star-sifaled Botryluts. The "tests," or equivalents of the shell of these amimats, are fused into a common mass in which these individuals are imbedded. In the present gemus the amimals are arranged in a star-like form, each gronp consisting of a nmmber of individuals, not less than six, and not more than trenty, in number. Many of these gromp, or systems as they are technically called, are fomd upon the common test. The branchial orifices are simple, and the other orifice is common to all the members of the group, and forms, as it were, the centre of the radiating star. Six European species are known, which may be found on stones and sea-weed at low-water mark.

A veri beantiful and curious mollusk, called from its luminous appearance the Prrosoma, i.e., Fire-body, is an example of the next family. This is one of the compound tunicates, and looks like a gelatinous cylinder, open at one end, and closed at the other, and having its body covered with numerons zoïds grouped in whorls. A large Italian-iron tube, studded with daisies, will give a good idea of its general shape.

The ejecting orifices of the aggregated animals all open into the hollow interior of the cylinder, and the consequence of this structure is, that by the constant flow of the rejected water, the whole mass is driven slowly and regularly throngh the waves. When seen at night they look just as if they were made of glowing white-hot iron, and they are at times so numerous as to choke up the nets of the fishermen, and diffuse so strong a light around them that even the fishes are rendered risible when they happen to swim within the sphere of its radiance. There is generally a greenish hue about the light.

Of the appearance presented by these animals when existing in great numbers, Mr. F. D. Bennett gives the following vivid and valnable account: "When assembled in the sea, and, as
is usially the case, near the surface, these creatures present a gorgeous spectacle; their vivid phosphoric light being sufficient to illuminate, not only the extent of ocem they occupy, but also the ail above, rendering all surrounding objects visible during the darkest night, and permitting a book to be read on the deck, or near the stern cabin-windows of a ship. They are occasionally collected togetler in incredible mombers. On two occasions, at midnight (in lat. 20° and $40^{\circ} \mathrm{N}$. Athantic Ocean), the ship sailed over many miles of water which they had illmminated, and in which they were so densely crowded as to be taken in any amount by buckets or nets.
"When captured, they exhibited no signs of animation, and emitted a peculiar half-fishy odor. When left in a vessel of sea-water, and allowed to be tranquil, their light was withheld, or only sparingly displayed; hat when they were handled, or the water in which they were contained was agitated, their body instantly hecame one blaze of phosphoric light, which, upou close exanination, could be observed to proceed from myriads of haninous dots, occupying the situations of the small brown specks, noticeable in the fleshy structure of the molnsk. Upon the irritating canse bring removed, the phoshorio light gradually expired, and the Pyrosoma remained in darkness until again distmbed, when it once more illuminated objects with its vivid gleam; and this was repeated until after the death of the animal, when no luminous effect could be produced.
"When living specimens were immersed in fresh water, they not only existed for some hom's, but emitted a constant light. Even after they had been so much eufeebled as to cease to give light in sea-water, or after they had been serionsly mutilated, their phosphorescence invariably reappeared when they were put into fresh water, which appears to act as a peculiar stimulns in reproducing the phosphoric light of these, as well as of most other marine luminons amimals.
"The Pyrosoma does not commmicate its luminosity to water, mer to any object in contact with it (like many lmminous Mednse), its body being enveloped in a membrane that has no luminous secretion. But when the mollusk is cut open in water, some of the brown specks before mentioned will escape, and, diffnsing themselves throngh the lluid, shine independent of the animal; in this respect, as well as in their strncture and color, beaning some resemblance to the luminons scale on the abdomen of the small fire-fly of Bengal."

Orr last example of these remarkable mollusks is the Salpa, which is mentioned on account of the cmions phemomenon ealled "altemate generation," whiml is exhibited by this creature.

The salpa takes two distinct forms, so entirely mlike each other that no one who was macquainted with the circumstance would imagine that they could possibly belong to the same species. Sometimes the Salpe are seen mited in long chains, and swimming throngh the orean with a heantifully graceful movement that greatly resembles the undulations of a swimming serpent. Sailors often call these chains of Salpe by the name of Sea-Snakes.

The remarkable chameteristic in this creature is, howerer, that the solitary Salpa produces a chain of mited individuals, and that each of the mited Salpe becomes the parent of a solitary one. So that, as Mrr. Rymer Jones happily remarks, "a Salpa mother is not like its daughter or its own mother, but resembles its sister, its grandaughter, and its grandmother." When swimming at ease through the water, the Salpa, like many other inhabitants of the orean, is hardly perceptible, on acconnt of the extreme transpareney of its structure, the only indication of its presence being a kind of iridescence as the light plays upon the delicate membnanes. The motive power is oltaned by regular contactions of the body, be which the refuse water is rejerten with some force, and thus drives the croature along hy direct artion, just as a rooket is propelled throngh the air. It is a remarlable fact, that in the chain of muited Sulpe, each individual expands and contracts in exact mison. so that the force is applied to the water in the strongest possible mamer. Sometimes the chains Theome broken u1, but the fragmentary portions do not seem to be at all inconvenienced by the change in their condition, swimming ahont as actively as hefore. The rreature is very slightly luminons, giving forth its phosphorescent light when tonched, and especially when pressed.

POLYZOA.

INFUNDIBULATA.

HE rery remarkable beings which now come before our notice are appropriately termed Polyzos, from two (rreek words, signifying" many anmals;" because a large number of individuals are mased together in groups of varions forms and textures. some natmolists mostly designate them by the term of Bryozoa, or ""moss animals." on accomnt of their frequent resemblance to the varions mosses: but, as this trim has bern omployed in far too wide a sense, gromping under one common designation a mmber of beings belonging to different classes, the more recent observers have decided on the more appropriate title of Polyzua.

For rery many years-indeed, from the earliest days of natural history until comparatively morlern times- the Polyzoa were rankert among the regetables; and a leamed latian observer who rentured to express his opinion that they partially, at least, partook of the batme of animals, was persecuted by the prolessors of the day with the usual acrimony excited by a discoverer who is in adrano of his time. Eren the acnte and experienced Linnems could not rective the new doctrine, which was for at wile "exploded" by the researches of another naturalist, who ammonned that he had seen corals in flower, thus setting the question at rest in the minds of those who desired to be so conrinced.

Truth, however, stood its ground, and thongh for a time suppressed by those who had a personal interest in mantaining the theories which they had so bong prommlgated, in the dne course of events became triumphant.
'The tron anmal nature of theser and man other boings, which had been formerly classed among the regetables, was at length lainly proved by the researches of two eminent men, Trembley and Ellis, the latter of whom may lay claim to the honor of having produced the best and most comprehensive work of his time; a work, indeed, which is valuable even at the present day, owing to the invariable clearness and oreasional brilliancy of the descriptions, and the nomber and accuracy of the engravings.

Ellis called all these creatmes by the name of Corallines, a title now given to one of the trme regetables, bint discorered many anatomical and physiological details, and set their animal nature beyond a dondt. All his researches were conducted with the aid of instrmments which in our day would be thonght ahmost useless, the microscope employed being only a simple lens momed on a stand, and devoil of the complicated apparatus for magnifying and illuminating that now atford surh aid to the observer.

After the animal nature of the Polyzoa had been fairly established, they were confounded with many other marine and aquatic inholbitants, such as the corals and the various zoophytes, in consequence of the superficial resemblance lotween their external forms. Lately, however, their true place in the amimat kinglom has been discovered, and their affinity with the lower mollusks clearly proved, the tumicates forming the comnecting link betreen the mollusks proper and the molluscoids, as these anmals are sometimes called.

Haring glanced at the general history of these curious and really beantiful animals, we will proceed to examine the form and characteristics of the individual species.

Should the reader obtain from the sea or fresh water a being which is eridently either a zoophyte or one of the Polyzoa, he may set his doults at rest by examining the tentacles, and if he finds that they are furnished with cilia, or minute filaments, he may assme himself that they belong to the gronp of animals on which we are now engaged.

The forms assumed by the general mass of the varions species of Polyzoa are extremely different, some resembling twigs or mosses; others looking like lumps of spongy substance VoL. III.-46.
adhering to sticks, stones, or leaves, or even lying freely in the water; others being flat and ramified, like broad-leaved sea-weeds; others spreading film-like over leaves, stones, shells, or similar objects; while a few are able to crawl at liberty, the entire organism being animated by some wonderful instinct, which urges all the myriad individuals of which it is composed to employ their force in the same direction.

The number of these creatures is so vast, that it is impossible to give more than a brief description of them: lout in the following pages it will be fonnd that a careful selection has been made of the typical forms, and that sufficient details of their structure will be given to enable the reader to form a general idea of the subject, and in most cases to refer any specimens which he may find to their genera or families. Those who desire further information on the subject will find it in Busk's elahorate catalogne of the Marine Polyzoa, and the large work by Allman on the Fresl-water Polyzoa.

Putting aside the classification of the polyzoa until the termination of the work, we will proceed at once to the description of the many species of this class.

The first family of the polyzoa is known by the mamer in which the cells are arranged around an imaginary axis, and connected with each other by flexible stalks. The general shape of the whole group, or "polyzoary," as it is termed by some authors, is very shrub-like, standing boldly erect, and giving out branches by two and two, after the fashion called by botanists "dichotomous."

An example of one of these beings, the Little Ciame, or Breast-plate, is plentifnlly found in the sea, and is properly classified among the zoophytes. The Catenicella hustata is somewhat remarkable for the slape of the cells, the form of their mouths, the method in which they give ont their branches, and the peculiar organs called technically "avicularia" and "vibracula;" the former being processes that in many species bear an almost absurdly close resemblance to the heads of birds; and the latter, curions hair-like projections, which move regnlarly backward and forward as if impelled by machinery. These remarkable organs will be presently described more fully.

The members of the present genns are fomen most commonly in the Anstralian seas, seldom in the sontheru hemisphere, while in the northern hemisphere they are almost entirely unknown. Many sperimens have been taken from Bass's Straits, at a depth of forty-five fathoms. As a general rule, howerer, the polyzoa prefer the shallower waters, and are most commonly fonnd a little below low-water mark.

Another species belonging to the same gems is remarkable for the long pointed spines that project from the margin, like a pair of cow's horns. In allusion to this peculiarity it is called Catenicella cormúta.

Another curions polyzoon, termed Culpidium ornatum, is also found in Bass's Straits, at the same depth as the preceding species. It shows a singnlar method of construction.

Each cell is extremely wide in proportion to its depth, and instead of possessing but one mouth, it is pierced with three apertures shaped something like keyholes. It is conjectured that each cell is imhabited by three selarate individnals, a supposition which is strengthened by the great comparative dimensions of the cell and the thickness of its walls. Still, no sign of internal partitions have been discovered, although some remains, apparentl? of the inhabitunts, have been seen at the bottom of the cell. In some cases there are only two apertures to raclı shell.

An example of the trpical genus of this family is the Suticornaria farciminoides. The strange specific name of this creature is given to it on arromt of its external resemblance to the Farciminaria, another genus of polyzoa which will be presently described. Th this genus the cells assume a kind of honeyrombed aspect, being almost hexagonal in their shape and pressed closely together.

In this place it may be as well to mention that in all the species belonging to the first snbdivision of the plofroil the month is not quite at the extremity of the cell, is of a somewhat cresentic form, amb fimished with a movable lip or door, which closes the aperture when the animal retreats. In many cases this l_{1}, is membranons. All the marine polyzoa are termed Infundibulata, or Fumel-shajed animals, on acrome of their form ; their frest-water relations
being called Hippocrepia, or Ilorseshoe animals, becanse the tentacles are arranged in a shape resembling that of a horseshoe. It will be, perhaps, hardly necessary to apologize for the introdnction of so many techmical terms, the fact being that the minate dimensions of the objects have caused them to escape popular olservation, and to depend for their nomenclature upon the learned and scientific. Still, the technical phraseology is never employed where its use can be aroided, and when cimmotanes render its introduction ineritable, its meaning and the reasons for its employment are ahways given.

We now arrive at another family, the Cellmanide, where the general slape resembles that of the preceding family, but the cells, instead of being arranged round an imaginary axis, and so forming cylindrical branches, are arranged on the same plane. A magnified example of this family is the Cellularia peachii, so called in honor of the eminent maturalist, Mr. Peach.

In a creature belonging to the genus Menipea, found in Tierra del Fuego, and termed from its habitat, Menipec fugueris, the curious "opercouhm" closes or rather guards the month of the cell. In this genus it is in the form of a simple spike. This species is found at low water.

The avicularimm is an object which is set somewhere about the middle of a cell, and always upon its ontside, and assumes ranious slapes in the different species of polyzoa. What may be the prease nature of the aricnlatia is at present mother a mystery, and no one can definitely promounce them to be actual portions of the cell, or merely parasites that remain affixed to the same spot. In all cases there is a decided resemblamer to the head of a bird, though in some speeies the similitude is closer than in others. Only one avicnlarium is to be found on a single cell, though many cells do not possess these strange appendages.

By close exmmation, it will be seen that the avicularium can be roughly distinguished into three portions; namely, a base by means of which it is attached to the cell, a mather large head, and a movable spine like the lower mandible of a bird's beak. In those examples where the avicularium is seated directly upon the cell, the only movement is that of the lower mandible, which opens and shuts with a continual motion, as if it were a veritable head of a hungre bird snapping at its food. In those cases, however', where the base is lengthened into a neck, the entire head is endowed with motion, nodding up and down in the most lively manner, very like those wooden birds sold in the tor-shops, whose head and tail are altemately raised and depressed by means of strings and a weight. But whether the head mores, or is still, the jaws contimally open and shnt, and will often inclose between their parts any small worm that may happen to come across their path, and have eren been known to seize each other in their grasp.

When the beak has seized a rictim, and the mandibles closed uron it, they retain their grasp with astonishing tenacity, and when, as sometimes happens, two avicularia have seized the same worm, the unfortmate victim is rendered entirely lelpless by the grasp of its foes.

The purpose of these objects seems to be rather dubions, but two conjectures have been offered, whirll at all erents are worthy of notice.

According to the opinions of some ohservers, the avicularia answer the purpose of police, and force intruders to leave the spot where their presence might do harm to the creature on which they are placed. This duty seems, however, to be performed loy the vibracula, and we must search for another theory for the true object of the aricularia. Mr. Gosse has put forward a conjecture which is not only highly ingenions, but bears with it the elements of probability.
"More than one observer"." he remarks, "has noticed the seizure of small roring" animals by these pincer-like beaks, and hence the conclusion is pretty general, that they are in some way connected with the procuring of food. But it seems to have been forgoten, not only that these organs have no power of passing the prey thus seized to the month, but also that this latter is sitnated at the bottom of a fumnel of ciliated tentacles, and is calculated to receive only such minute prey as is drawn within the ciliary vortex. I have ventured to suggest a new explanation.
"The seiznre of a passing animal, and the holding it in a tenacious grasp until it dies, may be a means of attracting the proper prey to the vicinity of the mouth. The presence of
decomposing animal substance in water invariahly attracts crowds of infusory animalcules, which then breed with amazing rapidity, so as to form a clond of living atoms around the decaying body, quite inrisible in the aggregate to the massisted eye; and these remain in the vicinity, playing round and round until the organic matter is quite consumed. Now, a tiny anmelid or other animal canght by the birl's head of a polyzoon and tightly heid, wonk presently die; and thongh in its own substance it would not yield any nutriment to the capturer, yet by beroming the centre of a crowd of busy intusoria, multitudes of which wonld constantly be drawn into the tentaculean vortex and swallowed, it would be ancillary to its support, and the organ in question wonld thas play no unimportant part in the economy of the animal."

We now proceed to the vibraculum. It is hollow, the interior being filled, during the life of the animal, hy a fibrons contractile substance, which enables the organ to perform its curions movements. These morements are very irregnlar as regards time, but very regular in their directions, each vibraculm sweeping slowly over the whole surface within its reach, tirst moving in one direction and then in the other, and it is sufficiently notahle that these movements will continue for several days after the death of the polype to which it is attarhed.

The month of a cell belonging to another polyzoon shows a curions operculmm, with a branched form, like the horm of a fallow deer, and may be contrasted with the simple spiny operculim.

I Am now going to describe several curions and bizare loms of Marine Polyzoa. One of them is the Bulls-horn Coralline of Ellis-the Ladies Slipper, as it is more elegantly and equally appropriately named at the present day. The cells of this species bear a considerable resemblance to a series of delicate, slender-toed slippers, adherent to each other, while from the opening protrudes the beantiful bell-shaped circle of tentacles. Sometimes a rudimentary cell may be fomd, tont always below the aperture.

A common creature is the Snakeheat Coralline, so called from the extrardinary similitude with a reptile.

In another species, which is called Beánire mirabilis, the month is surrounded with a series of thoms or spines. It is found mostly on shells. Each rell is united to its predecessor and successor by a slender tube.

The curions Fareiminaria, remarkable for the array of short and stont spines with which its surface is thickly studded, is a Nerw Zealand speries, and appears to be the sole representative of its family. It grows in slender bramehes, which are dichotomous.

In the family to which the Gemeftoriu loricitu belongs, the cells are arranged in pairs ant opposite each other, the orifies ol the pairs looking in the same direction. This species is the Coat-of-Mail Comaline of Ellis, deriving its name from the shape of the cells, which bear no slight resemblance to steel corslets.

The succeeding family, of which the Dimetópia spicato is an example, may be known by the ardangement of the cells, which are in pais, but with their months placed at right angles to each other. When growing, it is ary pretty speries, being white, neariy transparent, and attaining a height of ahont three mohes. It grows in thicls tufts, and is found in Bass's Straits.

The Shepherd's-purse Coralline of Ellis (Notémít bursíria) is a common Emropean species, and its peculiar aricularinm shows a tobace-pipe-like head.

A most curions vibiacnlum, which is toothed like a saw, belongs to a creatme called Caberéa patafomica, living in the country from which it takes its specific name.

On a rery remarkahle species, the Bicpllária ciliáta, the cells are surronnded by long processes. An aricularium belonging to another species of the same genus is conspicnous for the enormonsly long stalk of the head, and the three finger-like appendages at the base.

A tolerably common European species is the Bird's-lead Coralline (Búgula arimlaria), popularly so called on account of the number. shape, and activity of the avienlaria. Our attention is now called to a well-known polyzon. which may be found lining the sides of rockpools, or affixed to shells, and even to living crustareans, the spidpr-crab being often enveloped
,

亮E have concluded to submit for public patronage a work with the above title, being a series of exquisite Engravings representing the ANmLLL Worli, executed with great scientific accuracy, and accompanied by full Descriptive Text, written in popular terms, so as to delight and instruct the people. Anyone who has considered the subject must be at a loss to understand why an Illústrated Natural History, comprehensive and at the same time popular, has not before this been published in this country. Indeed any lover of animals who has visited the great museums and zonlogical gardens and has had access to books of engravings in the public libraries, could not fail to remark the wealth of material in existence devoted to this subject. Being confirmed in our conviction of the desirability of such a work, we laid under contribution the best existing authorities for the production of most perfect representations of all the more important living creatures, and among the artists whose delineations wili delight the reader, we may mention Harrison Weir, Wolf, Coleman, Fr. Specht, and Mutzel. By far the majority of the engravings in these volumes are from drawings made from the lizing animals, many at the Zoological Society's Gardens in London, England.

We purpose that our patrons shall be aided and interested in their study by such an array of pictures as has never before embellished any Natural History. In numerous instances the engraving is printed in oil-colors, and this portion of the illustrations has been taken charge of by Messrs. L. Prang \& Co., of Boston, who we believe rank foremost for high artistic results in this department of printing. These Oleographs were copied under the superintendence of Mr. Prang from the renowned "Tafeln" of "Brehm's Thierleben," so that they may be declared perfectly reliable.

We sought competent advice from various sources as to the most suitable text that should accompany this panorama of handsome Engravings. It was found impossible to embody all the present ideas of naturalists in a single work like this on account of the rapid advances and constant changes in their knowledge of, and habits of thought respecting, the Animal World. And it seemed to us correct that the true object of Zoology is not to arrange, to number, and to ticket animals in a formal inventory, but to inquire into their life-nature, and not simply to investigate the lifeless organism.

What do we know of "Man" from the dissecting-room? Is it not Man, the warrior, the statesman, the poet, etc., that we are interested in? With all veneration which attaches itself to those who are the accredited possessors of abstruse learning, their inordinate use of phraseology detracts too much, we fear, from the fascination that the study of the Animal World would otherwise yield, and as we are not content to have our work restricted to a favored few, we thought the task placed in our hands to be to keep the work free from a repellant wocabulary of conventional technicalities. Our endeavor has been to find an author whose work would be noted for its fund of anecdote and vitality rather than for merely anatomical and scientific presentation, and we arrived at the conclusion that we could not do better than avail ourselves of the Rev. J. G. Wood's comprehensive work -a work most popularly approved by speakers of the English language. It would be superfluous to say one word concerning the standard character of his book, from the pages of which old and young at the other side of the Atlantic have obtained so much instruction and rational amusement. Avoiding the lengthened dissertations and minute classifications of specialists, he presents to his readers in popular terms a complete treatise on the Animal Kingdom of all climes and countries. The one objection that could be urged against it was, that animal life in America might be treated more fully and American forms given more consideration. In order to obviate this drawback and to do full justice to the creatures of our own country, we secured the aid of Dr. J. B. Holder, of the American Museum of Natural History in New Vork, an undoubted American authority, who has adapted Wood's work to American wants and given prominence to American forms of Animal life.

The splendid work on Rodentia, by Allen, Coues, and others, will be fully consulted. The valuable work on North American Birds, by Baird, Brewer, and Ridgway, will be the guide in the treatment of birds. The late arrangement of the classification and nomenclature of North American Birds, by Mr. Ridgway, and the Committee on that subject of the Ornithologists' Union, will be utilized in full. The arrangement of Mammals will be after the latest classification by Professor Flower, of the Zoological Society of London. So that this will be the first popular Natural History worthy of the name that has made its appearance here, which gives due and full recognition to the animate world surrounding us.

Cermig of publication.

The extent of the work will be 68 parts of 28 pages, at the price of $\mathbf{2 5}$ cents each. The entire publication will contain $3 \boldsymbol{1}$ Oleographs and $\mathbf{6}$ Full Page Engravings on Wood, besides mamy hundreds of exquisite lllustrations interspersed through the text. The parts will be issued every two weeks, and are payable only as delivered. No subscriber's name will be received for less than the entire work, and anyone removing, or not regularly supplied, will please address the Publisher by mail. No order can be cancedted after aceertance.

NOTICE TO SABSCRIBERS.

$3: 7: \%$:

\circlearrowleftUBSCRIBERS are respectfully informed that I am prepared to bind these pamphlets in durable and tasteful styles, ornamented with artistic designs made expressly for this publication. The carrier is supplied with a Specimen-Book, exhibiting the different styles of binding, and he will gladly submit it to customers for their inspection; or we will send a special messenger to do so, if requested by letter.

Subscribers residing out of the metropolis are warned not to entrust the binding of their book to any binder who is not accustomed to bind such large volumes, more particularly works containing a multitude of full-page engravings printed on heavy plate-paper; and they are informed that they can have this publication bound by us at New York rates, if they will send us the pamphlets by our carrier, or express them to the address below. (We will pay the express charge.)

Subscribers residing in New York, or other large cities, are cautioned against people who come to their doors offering to bind their books at a price far below that at which it is possible to do satisfactory work; for such people often mean to keep these books, and intend never again to return them, either bound or unbound, to their legitimate owner.

Respectfully,
SELMAR HESS, Publisher.
NEW' YORK.

NO SUBSCRIPTION RECEIVED FOR LESS THAN THE COMPLETE WORK-68 PARTS.

in its soft, plumy branches to such an extent that it marches beneath their shade, like Macduff"s army under its leafy disquise. I know scarcely a more wonderfnl sight than is presented by a living specimen of the Bngula, with its wonderful appendages in full action. As if moved by machinery, they nod mpand down like antomata, sometimes throwing themselves back like the head of a fan-tail pigeon; the mouth opens slowly, with a wearied kind of air, that almost forces the observer to yam in sympathy with the deliberate movement, while ever and anon the jaw suddenly choses with a snap so sharp that the ear instinctively watches for the sommd.

Everif one who has walked along the sea-shore most have olserred the pretty, leaf-like Sea Mats strewn on the heach, and admired the wonderfnl regularity of their strncture, perceptible to the naked eye; but when magnitied even by a pocket lens, their Jeanty increases in proportion to the power employed, and the marellous arrangement of the cells, and the orderly system in which they are planed, are almost beyond belief. Beantifn, howerer, as they are in this state, they are but the dead and lifeless habitations of the creatmres who built the wondrous cells, and the only method of showing the Sea Mat in its full glory, is to take a living specimen from the stome or shell to which it is affixed, and wateh it under the microscope while the creatores are still in full activity. The common sea Mat is sometimes called the Hornwrack.

The pernliar mamer in whith the polypes of the sea Mat protrude themselyes is quaintly and accurately described Jy Mr. Gosse in his "Evenings at the Miroscope." Alter pointing ont the erade-like shape of the cells, he proceds as follows: "Snppose that a coverlid of transparent skin wese stretched over each cradle from a little within the margin all round, leaving a thansverse opening just in the right place, viz, ower the pillow, and you would have exactly what exists here. There is a crescent-form slit in the membrane of the upper part of the cell, from which the semidreular edge and lip can recente if pushed from within.
"Suppose, yet again, that in every cradle there lies a bay with its little knees bent up to its chin, in that zigzag postme that children, little and hig, of en like to be in. But stay, here is a child moving ! Softly and slowly pushes open the semicireular slit in the coverlid, and we see him gradually protruding his head and shoulders in an erect position, strengthening his knees at the same time. Ite is mised half out of bed, when lo! his lread falls open, and becomes a bell of tentacles. The baby is the tenant polype."

The Toothet Sea Mat is a variation with curions tooth-like appendages from which it derives its name.

A curious polyzoon, bearing the name of Charasea episempatis, is fomd in Bass's Strats at a depth of forty-five fathoms. This species is found in two forms, either parasitic on sertularia and rarions polyzoa, and then of small size, or leading an indelendent existence, and reaching considerable dimensions. It is chietly remarkable for the singular form of the ovicells, which bear a wonderfnlly close resemblance to bishops mitres, and have eaned for the species the title of episcopalis.

Two specimens of another genus are called Diachoris magellanichs and Diachoris crotati. The latter shows remakable appendages which guard the mouth; and the former, Diachoris mugellanicus, exhibits the method in which earh cell, except at the margins of the fronds, is comected with six others, something like tle stellate cells in pith. In fact, the Diachoris is a flastrmm dissected, the cells being lawn away from each other and comectod by stalks. The central cell is by connecting stalks united to the six that smromed it.

Any one who picks upa piece of a dark sea-weed, will tud that many parts of its structure are corered with a peculiar growth, that looks as if a portion of Sea Mat had been cemented upon it. This substance is indeed closely allied to the Sea Mat, and is chielly to be distingnished by the membranous nature of the polyzoary, which will not permit it to stand boldy erect after the manner of the true Sea Mat. This species is called Membranipora pitosa.

The feathery plume of tentacles is extremely gracefui, and, when the creature is living, has a remarkably elegant effect. In a specimen now before me, viewed by a power of only thirty diameters attached to the binocnlar microscope, the polypes of the Membranipora are
beatifully exhibited, some shut up closely in their homes, some just putting forth their heads from the cells, others half protnded, and afew with the phumy tults displayed in all their beanty. It is as well to view this amb other polyzoa with different kinds of illumination, both as opaque and transparent boties; artificial light is, however, to be avoided.

An allied speries is called LepruTiu Tumdsborocii. In the Lepralia, as well as the Membranpora, the process of development is very interesting, especially as it can be readily watched under the microsiope.

Towards the end of May, specimens of Lepmalia, Fhastra, and Membranipora should be prorned :mel phated in shallow glass vessels containing sea-water. Alter a little time, minute Jeings, moln resembling the ordinary infusoria, are seen swimming about. Presently, the "gemmmles," as these creatures are techmically named, become stationary, aftix themselves to some definite spot, and develop a feather-covered polype, boing now similar in shape to a single cell of the species from

NET-PORED ANIMAL.-Retepora eellulosa. which it was produced. Buds, or projections, are soon formed at the sides, which are rapidly developed into new cells, and in their turn are the means of putting forth new cells. Thus it will be seen that each polyzoary spreads fiom a centre; and that, although a free gemmule is capable of producing stationary cells, the greater number of cells have never bassed through the state of theiroriginal progenitor. When a polyzoary has attained a considerable size, it is not unfrequent to find the margins of the group filled with rigorous and lively polypes, being those last produced, while the centre is composed of empty cells, the original imhabitants having died out from old age.

The Lepratia spinifera differs through the short sharp thoms with which the edges of the cell are gnarded, and the eurions ovicell, notable for its beatiful sculpturing of ridges radiating around a centre. The Lepratim trispinose is distinguished by three long spines from which it derives its name.

A lalas and interesting genus with abont forty or fifty known species, comprises the species of Lepmatia, Eschara, Lmmlites, C'upularia, aml Selenaria. Among these especial attention must be drawn to Leppratia momoceros, on the L'hicorn Lepmalia, so called on acconnt of the single lorn, or clat), with which it is furnished; the Lepratia alata, or Winged Lepalia, remarad, for the classically elegent soulpturing and the projecting "wings;" and the Lepratian cerriotoser. so called on account of the peentiar mottlings which are thonght to bear a lesemblane to the fare of a berson seamed with small-1wx.

The shoor-like avionlamium of the cheplepore fusere is a creature notable for its urn-shaped and chalky, stiff redls, armageal either irmegharly on in the form of a quincmax, i.e.. like the cingue spots on a die, : It is antive of Bass's Staits. Two tolerably common species are the Eschlorn folinem, se called from its superficial resemblance to the sear left by a
wound, and the Eschara flabellaris, a rity curions polyzoon of the same genus. The latter is remarkable for the hood or helmet-like oricells. About eleven species of this genus are known.

In the illustration on the opposite page is shown one of the most curions of the polyzoa, named, from the external resemblance which its apertures present to the meshes of a net, the Retepora, or Net-pored animal. The polyzoary of this species is hard, chalky, is only pierced on one surface, and has so much the appearance of the true stony corals, that it might easily be mistaken for one of these objects. It is a European species, and the specimen represented of the natural size.

The next interesting family of polyzoa is called Selenariadæ, because they are ronnd as the full moon, or Norval's famons shield. In the circular form of the margin they all agree, but differ considerably in their curvatures, some being with oue side plane and the other convex, while others are convex-concave, like a watch-glass, or, to speak more accurately, like the lens technically called a meniscus. They are all remarkable dor their very large vibracula.

One of these creatures is called Cupmaria Tovei on acrount of its resemblance to a dome.
A good example of a rery shield-like genns of this family is the Selenaria maculatu. The reader will not fail to remark its exact resemblance to the target-shield nsed by many nations, ancient and modern. It may be here mentioned that in this last-mentioned family the ribracula are thought by some naturalists to act as locomotive organs.

Onr space is so rapidly drawing to a close, that it will be hardly possible to give much more than a brief account of a few more interesting examples.

In the group of polyzoal I am going to describe, there is a great extermal similarity between their forms and those of the true stony corals so familiar to ns. It will, moreover, be fomd, that in many details of their structure, there is a decided analogy between them and the true zoophytes which will be described in the latter part of the work.

In the Crisict eburna the arrangement of the cells is simple and elegant, and the varions branches are comected with each other by means of certain horny joints. The use of these joints is, in all probability, to enable the polyzoury to resist the action of the wares, and so to avoid the fractures which would prolably result if the joints were as stiff and inflexible as the cells. A similar provision will be seen in the Goryonic, a zoophyte which will be described on a future page.

A remariably construpted species, the Itmonea atlantica, looks something like a manylegged spider, with its branches protrnding from a rounded centre which represents the bodys of that animal.

A polyzoon remarkable for the profusion and great comparative length of the cells, is termed Pustulopora delicatuta, the generic name being on account of the minute dots with which the surface of the cells and polyzoary is studded, and the specific title in reference to the delicate structure and soft hrown hue with which it is colored.

A stoutly-built polyzoon named ITornera, is notable for its resemblance to several corals.
Is the accompanying illustration, the resemblance to the corals, the madrepores, and even the stony habitations of certain marine worms, is rery close and striking.

Fig. A represents a polyzoon fancifully entitled Alecto, in honor of one of the Furies of that name. It is seen of its natural size as it appears while spreading itself over the inner surface of a shell. At Fig. B, a portion of the same species is shown as it appears when magnified, and is given to exhibit not only the method in which the cells are sunk into the polyzoary, but the mode in which the branches are developed from each other.

At Fig. C is delineated a portion of the appropriately named Tubulipora serpens, a being which has the cells even more elougated than in the Pustutopore which has been lately described. The singular resemblance between the lengthened cells of this species and the hard shelly tubes of the well-known Serpula, so familiar on accomnt of its scarlet and white plumes and marvellonsly engraved stopper, must be evident to every one who has seen the little creature. or even noticed its empty habitation.

Fig. Drepresents a curious species, called from its shape Discopora patina, the former word being of Greek origiu and given in allusion to its disc-like form, and the latter being a Latin word signifying it that dish like our present champagne glasses. The numerous pores or orifices through which the animal protrudes, are seen upon the surface. A magnified example of the same species is seen at Fig. E, having been broken asunder in order to show the manner in which the cells are massed together, so as to produce a honeycomb-like aspect at their mouths. If the reader will compare this with the last-mentioned species, the evident connection between the two will be readily perceptible.

A very remarkable modification of the same species may be seen, rather magnified, at Fig. F. The original gemmule from which the whole mass sprang had made a mistake in its settlement, having fixed itself upon a slender stem where it conld find no space for its expansion into the normal circular form. Being fixed, it could not more, but philosophically made the best of the situation, and finding itself umable to spread into a single disc-like body, and equally unable to extend beyond the supporting substance to which it was affixed, adopted a compromise, and coiled itself into the singnlar form here represented.

Our next group of polyzoa exhibits some rery remarkable forms. At Fig. A is seen il specimen of the Serialaria lendigeri, a species which without the aid of a lens presents no particular points of interest, but, when magnified, is seen to be a really curious being. Two branches of this creature are represeuted at Fig. B, as seen when moderately magnifier. and the further details of its strmeture are given at Fig. C, where che polypes are shown protruding from their bases, and the peculiar dottings of the cells are seen. It will be noticed that the cells are gathered into groups, connected with each other by the stallk-like processes of the polyzoary.

Fig. D represents a sprig of the Bowerbantia imbricata of the natnral size, and the same species is shown much magnified at E. In this species the cells are aiso placed upon the footstalk formed by the polyzoary, but they are not gronped together as in the last-mentioned species. The polypes are long and slender, and the walls of the cells are delicately transparent, thus allowing the observer to examine the stmoture of the polype through the walls.

A part of the digestive organs of the Borerbankia is deserving of a passing notice. Like all the other species, it possesses a feathery crown of tentacles spronting around the month, and directing the minnte objects which serve it for food, from the month into the osophagus, popularly called the gullet. In this gemus, however, a further provision is made, for immediately below the osophagus comes a kind of contractile gizzard, lined with a marvellous pavement of teeth arranged in a tesselated formation, and capable of bruising and crushing the food before it is passed into the stomach and thence to the intestine. One speecies of this genus, Bowerbankid densa, is common on the English coasts, being found parasitic on Flustio foliacea in patches of about an inch or so in diameter, and may be readily obtaned by those who are desirous of studying its habits and structure.

At Fig. F is given a small portion of a polyzoon named Buskin, mitens, the former title being in honor of the eminent matmalist, and the latter alluding to the shining appearance of the species.

Witn the next descriptions our examples of the Marine Polyzoa are terminated.
Of the Alcyonidinm ghlutimosum, lopularly called the Sea Ragged Staff, Mermaid's Glove, or more commonly, Jeat Man's Fingers, in allusion to the cold dampness of its smface, great numbers can be found on the sea-shore, especially after a storm, when it may be seen lying among the masses of set-weed and other delnis that are flung on the beach by the angry wares. In its natual state it is affixed by its base to stones, shells, and otlier supports, and is always extremely irregular and variable in its form, no two specimens being alike. When picked up, its aspect is anything but attractive, but when placed in sea-water and suffered to remain at rest for a whik, it becomes a most beantiful object. From each of the tiny pits with which its surface is thickly studded, projects a polype, with a beantiful crown of Waving tentacles, and so mmerons are these polypes, that they densely cover the surface and render microscopic observation rather difficult.

As in other species, fresh colonies of the Alcyonidinm are formed by gemmmes, which are given forth from the general mass, swim about freely for a time, hy means of the cilia with which their surface is thickly studder, and when they have attained a proper age, settle down and at once begin to develop fresh cells on all sides. The little vesicles wherein the gemmules are originally formed, may be seen in the spring scattered throngh the tramsparent substance of the polyzoary, and looking like little white points. Each vesicle contains abont five or six gemmules, and as it can be easily isolated, its rupture and the consequent escape of the gemmules can be easily seen in a moderately powerful microscope.

Onr next ample is the Pedicellima echinata. These little creatures look wonderfally like the common moss that grows so plentifnlly on walls. The cilia by which the necessary currents are formed in the water for the purpose of obtaining food, is similar to a tulip in its form.

PHYLACTOLEMATA.

One of the most remarkable polyzoa that at present are known to exist. is the Cristatella mucedo. The entire polyzoary is not only free and unattached to any object, but eren possesses the power of locomotion. It is frequently seen to crawl over the stem of some aquatic plant. In order to qualify it for this process, the lower smface of the polyzoary is modified into a flattened disc, which thus becomes analogons to the foot of the gasteropodous mollusks already described. The substance of the disc is contractile.

To an ordinary eye, that any creature should craw, would not appear a very surprising fact, but to the mind of a naturalist, the whole phenomenon is full of wonder. It is easy enough for a single being to advance in a given direction, and even thongh it has a very army of legs, like a centipedre or a julus, the limbs are all directed by the same mind. But in the present case, there is no common centre to which the wills of the myriad polypes that compose the group can be referred ; and the locomotive capacities of the Cristatella lemain one of the bany unsolved mysteries with which nature abounds.

In all respects, this is a remarkable species. Instead of hiding in darkness and coveting the shade, as is the case with nearly all the polyzoa, the Cristatella exnlts in light, and loves to crawl in shallow waters where it is exposed to the full blaze of the meridiam sun. The ordinary length of the Cristatella is from one to two inches, and its general aspect reminds the observer of a yellowish-brown hary caterpillar, softer than the well-known woolly bear, or larva of the tiger-moth, and indeed looking much as if it were made from the soft silken substance denominated " cllenille."

It is one of the fresh-water species, and the plume of tentaeles is not funnel-shaped, but formed as if set in a horseshoe.

A most marvellons production, which requires some explanation, is the so-called "statoblast." It is a rather formidable object. The statoblasts are developed within the cavity of the parent, where they may be seen of different sizes, and in most cases arranged like beads on a string. They consist of two nearly hemispherical or oval discs, which are united at their edges, and the line of junction strengthened by a more or less deep ring, so that the general aspect of the statoblast is not molike that of the planet Saturn.

In the Cristatella and amother genus, the Pectinatella, the statoblast is amed with a donble series of hooks, starting from the edges of the dises, those of the opposite dises alternating with each other and extending well beyond the ring. The spines are gradnally developed, and fore their way throngh an enveloping substance which sumomds the statoblast. Alter a while it often liappens that the soft gelatinons envelope is washed away.

These womlerfnl objects contain the future young ; and the process of derelopment is briefly as follows: Within the walls of the parent they attain their full size, and when the parent dies at the end of the season, they are liberated and pass from its body. They then attach themselves to subaquatie substances, such as regetables, sticks, stones, ete., and at the begiming of the next season the two dises separate, and out comes the foung Cristatella, reaty to take apon itself the tasks for which it was created. It often happens that the two dises of the statoblast ding to the young for some time after it las given up its contents, and the little rreature camies about the separate halves in a manner that reminds the observer of a bean newly sprouted from the ground and bearing the two halves of the seed which was planted. The C'ristatella also produces buds, and in fact, the statoblast is a kind of bud of rather jeeculiar construction. The dise of the statoblast is brown.

An example of an interesting polyzoon found in ponds and streambets, and of ten adhering to the rootlets of duck-wred, is the Lophopus crystallimus. It deserves peonliar interest as being the first speries of polyzoa that was detected. 'The honor' of its discorery rests with Trembley, who named it appropriately "Polype i panache," the plume-like group of tentacles leing sufficiently large to be seen with the naked eye. In this creatmre, the place of the external wall or ectocyst, is taken ly a solt gelatinoms envelope.

Mr. Allman pmanks that in the interior of the Lophopus are often to be seen a vast number of little glittering partioles of a pear-like shape, which move abont throngh a series of tubes comected witl euch other like the capillary vessels of the vertebrates. Ifter much investigation of the subject, he came to the conchsion that they were merely parasitical.

Otre history of the polyzoa is soon concluded. A fresh-water polyzoon called seientifically the Aleyonclla finngosa, and, pophlarly, the Fresh-water Sponge, because when dry it las a very sponge-like aspect, is fond in masses of considerable size, sometimes weighing as moch as a pound, adherent to varions substances which ine constantly beneath the waters in which it lives. It frequently develops itsell romad the pendent twigs of the weeping-willow and
other trees which dip the extremities of their brancles into the water. I have seen the timbers of locks quite enernsted with the Aleyonella in many places.

When carefully removed and placed in fresh water, it gradually develops a kind of white down appeance over its entire surface, which disappears with the rapidity of magic if a hand is moved quickly over the ressel in which it is lying. This downy :tppearane is caused by the tentacles which protrude themselves in vast nmbers. and instantly retract when the creatures are alamed.

Even in swallowing its food, the Plumatella displays considerable powers of discrimination, accepting some particles as they pass over the moutl, and rejecting others as unworthy of reception. Its usial places of abode are under stones, submerged braches, floating leaves, and similar substances. Sometimes it attains a considerable size, spreading over a square foot of surface, and having some hanches more than three inehes in length. It is in best condition towards the end of smmer.

A lovely polyzoa is the Fredericellu suttínt: the former title being given to it in honor of M. Fr. Cuvier, the celebrated naturalist, and the latter being earned by its graceful and queenly beanty. This is a common species, and is found plentifully in tufts on submerged stones, plants, sticlis, and similar objects. It also inhabits rivulets, but seems to prefer tolerably still waters. As it is tolerably hardy, it is useful to microsconists, who can keep it alive in a common vial of water and place it under the microscope whenever they choose.

Our last example of the Polyzoa is the Patudicella elirenbergii. Its peculiar form is not a horseshoe outline, but a funnel-like shape of the marine polyzoa. This arrangement of the tentacles seems to be unique among the fresh-water species; for, although the tentacles of Fredericella appear at first to assume the circular form, a more careful examination will show that this is not really the case.

The mechanism by which the floating particles contained in the water are inevitably driven towards the mouth is of a knife-blade shape, on which the cilia is arranged in such a manner that all those of one side point mpwards and those of the opposite side downwards. The tentacular plume viewed from the front shows that the arrangement of these organs is really circular. Only the bases of the tentacles are detineated.

ARTHROPODA.

REATUPES that compose this great Brancii of the Animal Kingdom were magarfed by Covier as articulated animals having a symmetrical body, in that both sides wore equal. One of his fom great Divisions embrared these forms, under the titfe Artionlata. The bodies of these animals are characterized by a pecenliar feature, the series of rings, of which the earth-worm is a simple example. The circulating system is represented just nnder the back by a long vessel, the heart, connerting with ressels that promel the blood over the system, and return it to the gills, or longi. The stomach and intestine lie in the median line of the body. The nervons system has ganglis, or enlargements of the nervous cords.

The Arthropoda have cretain features in common: bi-lateral symmetry, one side being like the other ; rings, or articulating farts, segments, arranged one upon another, each ring-theoretically-bearing a joar of limbs, which are also jointed. The blood is usnally colorless, yet in some instances fellowish, or red, or purple. The globnles of the bloor, however, are not colored, the coloring matter loemg hed in the fluid itself. The alimentary eanal is usually nearly straight. The eyes are usnally fontined in the head.

Authors have formerly divided the Arthropoda into two classes, the Insects and Crustaceans; but the places of some examples are so obscure they are held somewhat in reserve. The Horseshoe Crabs and Tribobites, Water-Bears, Sea-Spiders, and Linguatulina are now resting hetween the two classes, Insecta and Crustacea, where anthors are inclined to believe they will ultimately find a permanent place.

INSECTS; INSECTA.

The Insects afford the first pxamples of the Articulata, i. r., the jointed animals withont vertebre. Their borlies are composed of a series of rings, and they are separated into at least two and mostly three portions, the head being distinct from the body. They pass through a series of changes bufore attaining the Ierfect form ; and when they have reached adult age thay always jussess six jointed legs, noither more nor less, and two antenner, populaty called homs or feeloms.

In most instances their prelminary forms, technitally calleal the barva and pupa, are extremely malike the pertore lnsert; but there wes some in which, at all prents extarnally, they retain the sames shape thromghont the in entime lile. The whole of the growth takes place in the prediminary stages, so that the perfere losect nower grows, and the popular idea that a little Insent is meressabily a yomge one is gnite incorred. It is trow that smatler and larger sperimens ofeme in every speries lat this difference in size is due to some external influences that have antor on the individual ; and we find late and small examples of an Tnsect, say a Wasp), of a bertle, just as we lime giants and dwarts among mankind.

Insects breathe in a vary drions manmer. They have no longs nor gills, but their whole hody is permeated with a met-work of tubes through which the air is conveyed, and by means
of which the blood is bronght in contact with the vivifying intuence of the atmosphere. These breathing tubes, techmically called trachee, ramity to every portion of the creature, and even penetrate to the extremities of the limbs, the antenne, and even the wings, when those organs exist. Their external oritices are calle shimeles, and are set along the sides.

They have rery littla intermal skeleton, the hard materials which protect the soft vital organs being placed on the exterior, and forming a beautifnl coat of mail, so constructed as to defend the tender portions within, and yet to permit perfertly free motion on the part of the owner. Certain projections of this snbstance are often found in the interior, especially in the thorax, a central portion of the creature, and are used for the attachment of moscles where considerable power is neederd.

This externat skeleton is quite unique in its chemical composition, being made almost entirely of a substance called chitine, to which are adderl several other materials, such as animal matter, albnmen, and the oil which gives the bright colors so prevalent in most of the species.

There are many other interesting points in the structure of the Insects, such as the eyes, the wings, the trachea, otc., which will be described in the course of the following pages.

The systems on which the lnsects have been arranged are as perplexing as numerons, differing accorling to the charanteristics chosen by their anthors. In this work the system employed is that of Mr. Westwood, which seems to combine many adrantages to be fonnd in the different arrangements of varions anthors, and is sufficiently intelligible to be understood withont any painful exercise of the memory.

BEETLES; COLEOPTERA.

Tue first order, according to this author, is called the Coleopteris, a word of Greek origin, signifying sheathed-winged amimals, and inchdes all those insects which are more popularly known under the title of Beetles. In these insects the front pair of wings are modified into stont horny or leathery cases, under which the second pair of wings are fokled when not in use. The hinder pair of wings are transparent and membranoms in their stmeture, and when not employed are arranged under the upper pair, technically called the elytra, by folds, in two directions, one being longitudinal and the other transverse. On examining these wings carefully, it will be seen that their supporting nervores are furnished with hinge-like joints, which permit them to be folded in the right direction and no other. One of the best examples of a folded wing among the Beetles is to be found in the common Corktail Beetle (Staphyfinus), where the large and beantiful wings are packed away under two little square elytra, just as a folded map is packed into its covers. In other instances where the elytra are very long, as in the common Musk Beetle (Ceramby/x), the wings are first folder longitudinally and then a little piece clonbled over at the tip, so as to fit within the corer.

The month is furmished with jaws, often of considerable power, which more horizontally.
The last character that must be considered in the Beetles is the mode of the metamorphosis or change of form which is undergone by them before they attain their perfert state. After being hatched from the egg, they take the form that is popularly known under the title of grub, and is quite unlike the shape of the perfect insect. In this state they remain for various periods, according to the speries and the climate, and then pass into the second, or pupal state, when they look much like the perfect insect, but are unable to move abont. This characteristic seems to separate them from the earwigs, cockroaches, and grasshoppers, which would otherwise have been included in the same order with the Beetles, but are now placed in separate orders on account of the character of their ureliminary stages, where the shape of larva, pupa, and perfect insect are very similar, and the pupa is active.

Passing orer, for the present, the details of classification, we come to the first family of insects, scientifically called the Cicindélidae, and popularly known by the name of Tiger Beetles,
or Sparklers. These Beetles are represented by several species, among which the common Theer Beetle (Cicindélu rampestris) is the most common and perhaps the most beantiful. Well does this little rreature deserve its popular name, for what the dragon-fly is to the air, what the shark is to the sea, the Tiger Beetle is to the earth; rimning with such rapidity that the eye can hardly follow its comse; armed with jaws like two reaper"s sickles crossing earl other at the points; fmonshed with eyes that project from the sides of the liead and permit the creatme to see in every direction withont turning itself; and, lastly, gifted with agile wings that enable it to rise in the air as readily as a dy or a wasp. Moreover, it is corered with a suit of mail, gold embossed, gem studded, and bumished with more than steely brightness, light yet strong, and though freely yielding to every movement, yet so marrellonsly jointed as to leave no vuluerable points even when in full action, and, in fine, such a suit of armor as no monard ever possessed and no artist ever conceived. True, to the maked or unolservant eye it seems to be but a dully green Beetle with a blue abdomen, but if placed under the microscope, and a powerlul light directed upon it, it blazes ont with such gorgeons brilliancy that the eye can scarcely endure the glory of its rament.

The typical species which is represented in the illustration is the Figint-spot Tiger Beetle of India.

The European Tiger Beetle is remarkable for exnding at powerful scent, much resembling the odor produced by a crushed verbena leaf.

The family Cicimdetider, which embraces the gronp of Tiger Beetles, so called, prohably, from their simgular markings and stripes, is represented in North Ameriea by a nmmber of species. Their habits are terrestrial. During lot mid-smmmer days they are met with in dirty roadsides, or roadheds, ruming or flying so swiftly they are difficult to capture. In the troplice the species are fond of trees.

An example of a very large genus belonging to this family is given in the engraving under the title of Manticora Zatipennis, the generic title being given to it becanse its great dimensions and ferocions habits are thought to bear some analogy with those of the fabeled Manticora, a beast which the older matmalists were accustomed to describe with great zest, and in an engraving now before me had figured with the face of a hmman being, with hair carefully parted, six rows of shark's teeth. and a tail armed with a very arsenal of projertile spikes.

A verir large and important family of Beetles, the Carabide, now comes before ns, which is represented by very many species, the common Ground Beetles being familiar examples. The accompanying illustration represents the celebrated Bombardier Beetle (Brachimus crépitens.s), which helongs to this family. This little beetle is plentifully fomed in many places. When this beetle is handled, a sharpish explosion is heard, and on looking at the creature, a tiny wreath of bluish rapor is seen to issue from the body. This vapor has a very pungent odor, and when discharge: against the skin, leaves a yellow mark like that produced by nitrie

bombardier beetle--Brachinua crépitans. (Magnified.) acid. Originally, it is a liquid, seereted by a certain gland, but as soon as it comes in contact with the atmosphere it becomes snddenly rolatilized, thereby producing the explosion and cansing the smoke-like vapor to arise. The insect can fire off its miniature artillery seven or eight times in succession. Even after the death of the insect, the explosion can be produced by pressure.

One species of this genus, Lelia crux-minor, is given in the former illnstration. It is notable for the cross-like mark from which it derives its name. The largest species belonging to this family are to be found in the exotic gems Anthia, an example of which is given in the same illustration. The males are remarkable for the enormons size of the mandibles, and the thorax, or chest, seems to be divided into two parts. Most of the species are fonnd in Sonthern Africa. Anthia sulcata is a native of Senegal.

It may be here remarked that the very largest of the Carabide is a Javanese beetle, named Monolyce, which is mostly found under the

MORMOLYCE.-Mormalyce phyllodes. branches of trees. Mr. W'estwood mentions that one of these insects in his possession has attained the extruordinary length of three inches and a half. As may be seen from the engraving, it is a very oldlooking insect, hardly recognizable as a beetle, and more resembling the mantis than the beetles. It will be noticed that this creature has a very long neek, a very flat body, elytra wide and flattened like those of the leaf-insect, and a thorax also that and deeply toothed at the edges.
The Curubidue are represented in North America by mumerons species, one of the most familiar of which is the one prettily shaped, black, and with gold spots, Calosoma calidum, rery common in fields. Its habits are somewhat voracions, the Junebng sometimes being assailed by it, and torn to pieces. A species of Anophthatmus is found in the Mammoth Cave, in Kentucky, which is blind, no eyes being risible.

Passing by the group of Carabide known as the Scaritide, a sub-family of beetles which are mostly fornd under stones or in holes near the sea-shore, we come to the Itarpalides, of which the Harpalus caspicus is our present example. They are mostly rather small, and seldom bright colored, with the exception of a few species, sneh as the well-known Siry Beftles, which are so familiar to us as they run actively orer gravel walks or roads as if enjoying the blazing sunbeams.

We now come to the large group of Water Beetles, which are divided into several families. The fresh waters of many rivers, ponds, and lakes are rery populons with the Water Beetles, which may be seen by thousands on a summer day, swimming, diving, rising to the surface, and evidently enjoying life to the ntmost.

In order to enable them to perform the various movements which are necessary for their aquatic existence, their hind legs are developed into oars with flattened blades and stiff hairy fringe, and the mode of respiration is slightly altered in order to accommodate itself to the surromding conditions. It has been already mentioned that in all insects the respiration is conducted through a series of apertures set along the sides, and technically called spiracles.

In the Wiater Beetles, the spiracles are set rather high, so as to be covered by the hollowed elytra, and to be capable of breathing the air under those organs. When, therefore, the Beetle dives, it is in noways distressed for want of air, as it carries a tolerable supply beneath the elytra. When, however, that supply is exhansted, the bettle rises to the surface, just pushes the ends of the elytra out of the water, takes in a fresh supply of air and again seeks its subaquatie haments. Any one may see in almost any ditch the Great Water Beetle (Dyticus dimidiutus), ever and anon rising to the surface, poking its tail ont of the water, and then diving to the bed of the stream.

Towards evening, this, in common with many other Wrater Beetles, is accustomed to leave the streams, to spread its wide wings, and to soar into the air. In the early morning it again speks its watery home, and is accustomed to save time and exertion by closing its wings and dropning like a stome as soon as it perceives the water below. The larva of the Dyticus is a

terribly ferocions creature, both in aspect and character. It inhabits the waters, and is a very hyena in the terrible grasp and power of its jaws. The perfect insect is quite as voracions, and when a number are kept in a single vessel, they are sure to attack and kill each other. No one who cares for the animated inhabitants of his aquarium should permit a Dyticus to be placerl among them, as a fox makes no more havoc in a chicken-roost than a Dyticus in an acquarium.

Whirlifig bee-TLE.-ciyrinuts mergus.

A smaller species is called I lybius ater.

To this group belong the Whimblig Bemtles, or Gyrivids, so plentiful on the surface of many rivers and ponds, but always choosing a still spot, where they are overshadowed by the bank or an overhanging tree, for the locality wherein they perform their mazy dance. These insects are very hardy, and even on a winter's day the Whirlwigs may be seen taking advantage of the last gleam of smoshine, and wheeling around their complicated maze as merily as if the wam winds of summer were breathing on them. The reader will see a magnified specimen in the engraving; its matural length is signified by the line aside.
The Whirligigs of North America, the country boy will tell, "give milk." For certain they emit a milky liquid when eaught, which latter is not easily accomplished, as they dive

BURYING BEETLES, HORNET, WATCHMAN BEETLE, ETC.
carry down a bubble of air on the tip of the abdomen, and when the supply is exhansted rise for more.

Passing by several large and interesting families, we come to curious creatures, popularly known by the name of Rove Bezthes, or Cocktarls, the latter name being given to them on account of their habit of curling up the abdomen when they are alamed or irritated. The common Black Cocktanl has, when it assumes this attitude, standing its ground defiantly with open jaws and elevated tail, so diabolical an aspect that the rustics generally "all it the devil's coach-horse. It has, moreorer, the power of throwing out a most disgusting odor, whith is penetratingand persistent to a degree, refusing to be driven off even with many washings.

These beetles are termed Staphylinide, or Brachelytra, the latter term signifying short elytra.

Two species, scientifically termed Ocypus olens and Creophilus maxillosus, are common throughont Europe. The latter is plentifnl in and about drains or dead animal matter, and may be known by the gray hairy look of the elytra. There is a smaller species (Staphylinus eryflerópterus) which has the elytra of a dusky red, and is not so common as the preceding insect. I have often remarked that the red-backed shrike is very fond of this insect, and used to find the nests of the shrike by means of the beetles that the bird had stuck upon the thorns near its home.

The Staphylinida incluke ar rast nmmber of species that may be found in almost every imagimable locality, and liva on almost every imaginable kind of food.

The Staphylinids, or Rove Beetles, are extremely common in the United States, and useful as scavengers. The Historides and several other families inchade the common Dung or Canion Beetles. Necrophorus is a very common form.

Next to the Staphylinida are placed some insects that have become quite famous for their curions and vahable habits. These are the Necrophage, popularly and appropriately termed Burying Beetles.

It is owing to the exertions of these little scavengers that the carcases of birds, small mammals, and reptiles are never seen to cumber the ground, being huried at a depth of several iuches, where they serve to increase the fertility of the earth instead of tainting the purity of the atmosphere. These beetles may easily be captured by laying a dead monse, mole, bird, frog, or eren a piece of meat on the ground, and marking the spot so as to he atble to find the place where it had been laid. It will hardly have remained there for a couple of hous before some Burying Beetle will lave found it out, and straightway set to work at its interment. The plan adopted is by burrowing underneath the corpse and scratching away the earth so as to form a hollow, into which the body sinks. When the beetles have worked for some time they are quite hidden, and the dead animal seems to subside into the ground as if by magic.

The object of bursing dead animals is to gain a proper spot wherein to deposit their eggs, as the larvee when hatched feed wholly on decaying animal substance.

In the accompanying full-page illustration many figures are given of the Burying Beetles, showing them while in the act of interning a dead bird.

We now come to the Lamellicom beetles, so called from the beantiful plates, or lamellæ, which decorate the antemne. This family juchdes a rast number of species, many of which, as, for example, the Common Cockchaffer, are extremely hurtful to vegetation both in the larval and adult form. In this family are fomd the most gigantic specimens of the Coleoptera, some of which look more like crabs than beetles, so hage are they and so bizarre are their shapes. In all these creatures the lamelle are larger and more beantifnl in the female than in the male insect.

The Conmon Cockonaffer is too familiar to need any description of its personal appearance, but the history of its life is not so widely known as its aspect. The mother beetle commences operations by depositing the eggs in the ground, where in good time the young are hatched. The grubs are unsightly-looking objects, having the end of the boty so curved that Vol. III.-48.
the creatures camot crawl in the ordinary fashion, but are obliged to lie on their sides. They are furnished with two teribly trenchant jaws like curved shears, and immediately set to work at their destructive lahors.

They feed mostly upon the roots of grasses and other plants, and when in great numbers have been known to min an entire harvest.

Of the Stag Befethe, the largest of the genus Coleoptera, we present a beantiful colored illustration. When it has attained its full dimensions it is an extremely powerful and rather formidable insect, its enommons mandibles being able to inflict a very painfnl bite, not only on actonnt of the powerful muscles loy which they are moved, but in consequence of the antlerlike projections with which their tips are armed. These horn-like jaws only belong to the male, those of the fenale being simply sharp and curved mandibles, in $n o$ way conspicuons.

The larvae of the Stag Beetle reside in trees into which it burrows with marrellous facility, and as after they have emerged from their holes they appear to cling to the familiar neighborhood, they may be found mpon or near the trees in which they have been bred.

From the formidalle slape of the mandibles it might be supposed that the Stag Beetle was one of the predaceons species. This, however, is not the case, the food of this fine insect consisting mostly, if not wholly, of the juices of vegetables, which it wounds with the jaws so as to cause the sap to flow. It is true that specinens have been detected in the act of assanlting other insects, but they never seem to have been observed in the act of feeding upon their victim. Whether the food be of animal or vegetable nature, it is always liquid, and is lapped, or swept up, by a kind of brush which forms part of the month, and looks like a donble pencil of shining orange-colored hairs.

It seems that during the winter the Stag Beetle hibernates, as there is in the Ashmolean Mnsemm, at Oxford, an earthen cell, or cocoon, in which was found a Stag Beetle very neatly packed, with its horns bent over its thorax. A popular name for this beetle is Hornbug.

The Stag Beetle is equally well known in the United States as in Europe ; its large size and stag-like horns giving it an attractive appearance.

In the accompanying, as well as in the next illustration, beetles are represented that have been rendered forever famons by the honors which the ancient Egyptians paid to them, and the frequency with which they are represented ripon their hieroglyphs, and even sonlptured on a gigantic scale in the hard granite which that wondrous race could work so easily. The present is the Sacred ScaraBets of the Egyptians, an insect which deserves a passing notice on account of its curious habits.

The reader will remember that the bnrying or sexton beetles are in the habit of interring the dead bodies of various small animals in order to form a convenient nidus in which to deposit their eggs, and insure for their young a bountiful supply of food as soon as they enter the world. The Scarabens is urged by a similar instinct, but exercises it upon different materials. Every one who has walked in the field must have noticed the singular rapidity with which patches of cow-dung disappear, and many may have observed that this phenomenon is caused by the efforts of sundry beetles, which burrow beneath the mass and convey the substance deep into the ground. The common watchman beetle, so well known from its habit of flying on droning wings in the evening, is one of the hest known of these valuable beetles; and it is worthy of notice that, despite of the nature of the substance in which they work, not a speck adheres to their bright and polished armor.

The Egyptian Bertle employs similar sulastances for the cradle of its future young, but not in the same manner, kneading into irregnlar balls in which it deposits its eggs, and then rolling it away by means of its odd-looking hind legs. After it has made the ball, which is often larger than itself, the beetle sets to work to roll it to a convenient spot where the earth is soft, and performs this cmions oneration by a retrograde motion, the

SELMAR HESS, PUBLISHER, $N Y$
hind legs directing the ball, while the four other legs are employed in locomotion. During this operation the beetle seems to be standing on its head. the hind legs being necessarily much elerated in order to guide the ball. which br dint of much rolling becoues nearly spherical. A tolerably deep hole is then excarated in a suitable spot, the ball rolled into it, and the earth filled in.

Many beetles perform this useful operation : and eren in seremal European countries where the beauty of the climate is only equalled by the uncleanliness of the inhabitants. these beetles are of inestimable serrice, and are. perhaps. the only means whereby the tomns and villages are rendered endurable, at all erents to unaccustomed eres and nostrils. Fortunately these insects fly by day as well as byight. and being gifted with extraurdinary powers of scent, are sure to be on the spot as soon as their labors are required.

There are fer parts of the globe where beetles possessing similar habits are not to be foum, and although they do not display equal skill in the construction of egg-containing

balls, they are equally efficacious in the results. It may be here mentioned, that the watchman beetle (Geotrúpes stercorárius) is the "shard-borne" beetle mentioned br the poets. the title being due to the shelly elytia which are held aloft during its flight. Ther are marvellonsly tenacious of life; and, as an example of this property. I may mention that I once caught a Geotrupes in the air which had been mulcted of one elytron. lost sereral of its limbs, and the whole of its abdomen. the contents haring been evidently scooped out br some bird. Yet it was quite strong on the wing. and seemed little the worse for its injuries. This beetle is represented in the full-page illustration on page 376.

Several species of this kind of beerle, called Dung-beetles, or Tumble-bug, are found in the northern Cnited States. The Bronze Dung-beetle (Copris curnifere is the most attanetive of these scavengers. It is a more southern species than the Common Dung-beetle, or Pellet Beetle (Ateuchus rolvens.s. which, howerer. is fome in all the states. The latter is closely related to the Sacred Scaraberus, which, by some authorities. is of the same genus ats the Spotted Scarabets (Ateuchus zariolosus). The ancient Egyptians, being so impressed by what they regarded as a benetit conferred by these sarengers they looked mp and treated their beetle as sacred. too, representing them, as we see abore, in sculpture of their tombs, houses, temples, etc. The latter species is found in the south of France.

A pery fine Lamellicorn is the Atlas Beetle, a native of the Philippines and part of India. Its colors are as follows:-The male is of a brilliant metallic olive-green, brightly polished and shining ; but the female is of a much dnfler hne, having the thorax and the base of the elytral rongh, and the green of a blackish cast. The length of the male is about three inches.

A pery odd-looking beetle is the Chmysophora. It belongs to the family Rutelidre, the members of which helong entirely to the hot conntries of the globe, and are most plentiful in the tropics. They do not seem to attain the gigantic dimensions which are found among the allied families, such as the Dynastidie, but are all very beantilul insects, on account of the extreme brilliancy of their coloring. The Chrysophora is quite remarkable for its curious form and glowing colors. The hind legs are extraordinarily developed, and seem disproportionately long and stout when compared with the moderately sized body. Another point of interest in this beetle is the structure of the "tibia" of the hind leg, i. $e_{\text {. }}$, the joint immediately preceding the jointed foot. The lower part of this joint is prolonged into a stout and sharp spur, not unlike that on the leg of most gallinaceons birds. The object of this curious modification is not known.

The Hercules Beetle, which is rejpresented in the accompanying full-page illustration, is an example of the family termed Dynastide, or powerful beetles, on account of their enormons size and strength. They are the giants among insects; for, although many others exceed them in length or width, those creatures are so stontly made, that any other insect becomes dwarfed when placed by their side.

In this family, the males are remarkable for the strange and often grotesque horny proresses whicll are developed from the head and thorax, the females being destitute of these ormaments. Most of the Dynastide inhabit tropical regions, only a very few species being found in the moderate climates. They are generally night-fliers, ascending to considerable eievations, and during the day they hide themselves in holes in the earth, in hollow trees, or similar situations. Their food seems to be nearly, if not wholly, of a vegetable nature.

We have one example of the Dymustida, the family that embraces the giant Dymustes hercules, a beetle about six inches in length. Our species is found in the Southem States, and measures about two inches.

Passing by one or two families of more or less importance, we arrise at the Buprestidæ, a family of beetles remarkable for the extrordinary gorgeousness of their tints, almost every imagimable hne being found npon these brilliant insects.

They are found in many portions of the globe, but, as is generally the case with insects, their colors take the greatest intensity within the tropics. They fly well, and seem to exnlt in the hottest sunshine, where the bright heams cause their burnished rament to tlash forth its most dazzling lmes. They are, however, slow of foot, and, when alamed, have a habit of falling to the gromnd with folded limbs, as if they were dead.

The Cmprsocmbat is one of the finest of this splendid family. The sides of the thorax are covered with little romd pits, something like the depressions on the head of a thimble, and are of a firy copper lure. The head and middle of the thorax are light burnished bhe, like that of a well-tempered wateh-spring, and the elytra are warm cream-colored, diversified with a patch of doep purple-blue at each side, and another at the tip. The Chrysochroa is a native of India.

IV a now rome to the relebrated Crotro, or Finefly of Brazil. Each side of the base of the thoma shows two light pateles, which in the living insect are of a pale yellow, and at night hum with a lustre far smrassing that of the common glow-wom. When the insect "xpands its wings for thight two more fire-spots are seen bencath the elytua and when the creathre appoaches near the observer, the whole interior of its body seems to be incandescent. These inserts are norturnal in their hathits, and at night in the forests, when the air is filled

HERCULES-BEETLE.
with myriads of blazing stars, crossing and recrossing in every direction. making the deepest glades laminons with their flaming lamps, and appearing and ranishing as if suddenly bronght into existence and as suddenly amihilated, they present a sight almost too magnificent for description. So splendid are these beetles, that the ladies arw often in the habit of catching them and trimming their dresses with these living diamonds, taking care to fasten them in such a way as not to ingure them.

When in full glow, the light is so intense that a letter or book may be read by its aid, provided that the insect be slighty squeezed so as to excite it to throw ont the luminous element. There are very many species of Fire-flies, but this is the best known, and one of the most luminous of its kind. Mr. Westwood mentions that one of these insects was bronght in a living state to Enrope, and was kept alive by continnally moistening the woodwork of its cage.

The Elateridæ, or Spring Beetles, so well known from their halit of jumping with a slight clicking sound when laid on their backs, are allied to the Buprestis beetles.

The Etateride comprise several prominent beetles. They are well known in Ameria as Snap-beetles. Pyrophorus is the genus that embraces several species of Fire-flies of Central and South America. The genus Photinus has several species, most of which have phosphorescent glands. Our common New England Fine-fly is a familiar example.

The celebrated Guow-worar belongs to the typical genns of its family.
Contrary to the usual mule among insects, where the male alosorbs the whole of the beanty, and the female is comparatively dull and sombere in rolor and form, the lemale carries off the palm for beanty, at all erents alter dusk, the male regaining the natural ascendancy by the light of day. Either throngh hooks, or by actual observation, almost every one is familiar with the Glow-worm, and wonld recognize its pale blue light on a summer's evening. Many, however, if they came across the insert by day, would fail to detert the brilliant star of the night in the dull, brown, grub-like insect crawling slowly among the leaves, and still fewer would be able to distinguish the malr, so unlike are the two sexes.

The family Dermestide ambraces the pests of our museums, Dermestes. They are also very destructive to small fruit shrubs when in leaf. The Anthrenus is equally destructive. and is the most common pest in musemus.

Next to this family is another, called the Telephoride, which is represented in Emrope by the well-known beetles, popmarly called, from their red or huish colors, Soldiers and SAllons. They are found in great quantities in the spring, and upon the umbelliferons llowers they assemble plentifnlly. They are camivorons, voracions, and combative to a degree, and in my school-days the fashionable spring amusement consisted in setting Soldiers and Sailors to fight with each other. They fly readily, but slowly, and only to short distances, and may be known while in the air by their peculiar attitude, the long body hanging nearly vertically from the wings.

A very destrnctive family, termed Ptinida, mnst now be briefty noticed. To this family belong the insects which are so well known by their labors, thongh themselves are mostly hidden from sight. Among the Ptinids are placerl the little beetles that eat holes in our furniture, books, etc., and do snch irremediable damage in so short a time. Mr. Westwood mentions one instance whpre a new bedpost was wholly destroyed by one species of these beetles (Ptitimus pectinicormis) in a space of three years.

The celebrated Death 'I atch, represented in the accompanying engraring, belongs to this family. That peculiar name is popularly given to sryeral species, snch as Anobium striatum and tesselatum. on account of the ticking sound which is made by knorking their heads against the woodwork, and which is used as a signal to their mates. The exact natural length of the beetle is indicated by the line next to the illnstration.

Towans the middle of sping and for the next month, may be found certain very hand. some looking heetles of a deep, rich, red color, and remakable for the beantifully-toothed antenne. 'This insert is to be seen mostly upon tlowers, and is popularly known by the name of Calnural Beetle. 'The stientific title is Pafortróe rubens. This is the only European genus of the fimily to which it helongs, and which is called Pyrochrojdee, in allusion to the typiral gemms. The word l'yrochroat, or Flame-colored, is given to this beetle on accomt of its loright red exterior.

A succesding family, the Mordellide, is chiefly rematable for the curions fact that the larva of several of its genera, those of the Ripiphorns, for example, inhabit the nest of the common wasp, modetered by the poisoned stings of their involntary hosts from taking possension of their home. It seems that each specimen of this bectle monopolizes a single cell, and entomologists are of opinion that the murse wasps feed the intruders, together with the rightful owners of the cells, not being able to distingnish between them.
'Tne insect represented in the accompanying illustration is fond in Emope, and is here given as an example of the family Cantharida, of which the Blister Fly, sometimes called

the Spanisu Fiy, is the typical species. In the illustration, both insects and the larva are magmified.

In the whole of this family, rertain noxions tlemrents are strongly developed, which, like all other noxious things, can be thansmuted and modified into benelits by those who know how to use them. 'There is a certain substance secreted within these creatures technically called Cantharidin, and looking, when separated from extraneous matier, like minnte crystalline tlakes of snowy whiteness. It can be dissolved in spirit, but not in water.

Spain is fanous for the multitudes of Blister Flies which are found within its limits, and the whole of south-western Enrope is prolific in this remarkable beetle. Whenever it may be present, its vicinity is known by the powerful odor which it exhales, just as the musk and tiger beetles may be detected by the nostril, though unperceived by the eye. On account of its peculiar jroperties, it is not easily prepared, the dust which flies from the dried and drying insects being light, searching, pungent, and inflammatory to the last degree.

The larva or grub of this beetle is said to reside under gromnd, and to feed upon the roots of vegretablus.

The Spanish Fly is a handsome insect, nearly an inch in length, and of a rich silken green, with a gold gloss in certain lights. It is a wery remankable fact that fish will eat the Cantharis without injury, and anglems have fomd, mother to their surprise, that if they conld fix a Cantharis on their hook, it jroved to be a very eflectual bat for fish, the chmb seeming particularly fond of this very stimmlating food. The common hedgeliog las been known to eat these insects with impunity.

BuLongang to the same family, and very common in Enrope, is an insect which popnlarly gene by the apropriate name of Orr Bexthe, beanse, when handed, it has the property of pouring a yellowish, oily fluid from the joints of its legs.
'The abromen is extremely large in proportion to the rest of the body, and the short,
diverging elytra descend but a very little way below the thorax. Insects of this genus-especially the males, where the elytra are longer than in the other sex-are used by mumemeipled druggists for the purpose of mixing with the trine blister fly, which they resemble sufliciently to deceive an inexperienced eye. In some parts of the word, however, they are always employed in connection with the blister beetle, or even used instead of that insect. The oily matter that is poured from the joints is considered in some countries to be a specitic for ihemmatism, and is expressed from the insect for medicinal purposes.

The Oil Beetle's color is dull indigo-hlue, and its natmal length is not much more than one inch and a quarter.

A few other insects of this family are rather remarkable in their habits. One of these is the sitanse, the larva of which is fonnd in the nests of sereral of the mason bees (Authophore and Osmiat, and the general opmion of matmalists is that they feed mpon the larve of those insects. Some, howerer, think that their only ohject in this intrision is to eat the provision of pollen that has been laid up for the yomg bee.

The Meal-wona, so well known to bird-fanciers as a wholesome diet for nightingales and other birds; to millers, for its ravages among the grain : and to sailors. for its depredations among the biscuit, is the larva of a beetle named Temebriomolitor, the former word heing given to it in allusion to its love of darkness, and the latter to the damage which it ocrasions to the miller. This is one of the maggots which have cansed sators to knock the edge of a biscuit upon the table before eating it, an action which in many ohd voyagers has become so deeply rooted a habit, that they are aetually mable to resist the movement. These larva are terribly sharp-toothed, eating their way throngh the sites of casks while in search of food. Some species of the same genus have the power of ejeeting an acrid thid to the distance of more than a foot; the one most remarkable in this respect being a Brazilian insect, Tenebrio graudis.

We now arrive at a vast group of beetles, embracing several thonsand species, which are popularly classed moler the name of Weevils, and may all be known by the peculiar shape and the very elongated snouts. Many of these creatnres have their elytra covered with minnte but most brilliant scales, arranged in rows, and presenting, when jolaced moder the mieroscope, a spectacle almost mapproached in splendor. They are mostly slow in their movements, not quick of foot, and many being wholly wingless.

Nany of these creatures are extremely injurions to regetables, both while growing and when stored up in barns or granaries. Nost persons are too familiar with the little maggots that infest peas, and frequently ruin whole pods at a time, eath pea containing a single white grub. 'These are the larvae of the Pea Wemvin (Bruchus pisi), which feed upon the soft substance of the pea, and make their escape just abont the time when the vegetalble is suthciently ripe for gathering. One of the Cons Weevils (Bruchus gramarius), so destructive to grain, also commits great ravages mong the peas. One speries of this gemus inhabits the cocoa-mut, and the creatures are infinitely more abondant in tropical than in temperate climates. lt is thought, indeed, that several speries of these destructive insects have been imported into Europe in cargoes of grain, and linding the comntry suitable to their habits, have thriven there.

Another species of Weevil, the Grass Weevil. or Lisette (Rhymoketes bucchus) commits terrible devastations among the growing vines, sometimes stripping the bushes of their leaves, which it rolls up and lines with silk.

The most brilliant of the Weevils are to be found in the typical family Curculionidae, to which belong the well-known Diamond Beetles, in snch request as objects for the microscope. Magnificent, however, as are these insects, some of the common little field Wreerils, which may be found abundantly on peas, nettles, and other vegetables, yield to them not an simgle jot, when properly magnified and ilhminated, the successive rows of glittering seales with their numerous facets being quite as splendid as the scale-lined pits which cover the elytra of the Diamond Beetle.

The maggots that are so frequently found in muts, and which leave so hlack and bitter a deposit behind them that the person who has unfortunately tasted a maggot-eaten mut is forcibly reminded of the Dead Sea apple, with its inviting exterior and bitter dusty contents,
also belong to the Weevils, and are the larve of the Ntt Weevil (Baluninus numm). All the members of this genus are remakable for the extraordinary length of the snont, at the extramity of which are placed the powerful jaws. Fig. al shows the beetle in its natural size, while in the other figmres it is magnitied. A foreign species, a
 native of Cayome, is termed Butronions proboscideus, and is also lemarkable for the inombate length of the corver snout.

While the mot in yet soft and moderelojutd, the female Weevil bores a hole at the base of the froit, (hposits an egg therein, and makes the best of her way to another nut, which she treats in at similar mamer. As the nut increases, the young grob feeds on the interios of the not, which is at first soft and milky, so as to suit its infant needs, and ly degrees hardens into a fruity substance more int for it after its jaws and digestive organs have ateqaired strengtlo. After it has attained its finll growth, it gnaws a found hole through the shell of the mont, allows itself to drope to the gromd. buries itsalf below the surface, and in the ensuing antomm remerges in the perfect form.

The ammon Cosis Weevil (Calandru aranaria) is perhaps the most destructive of its tribe, its depredations far exceeding those of

 Buck c. Itead. (Thellue indicaten the naturallength.) the insects that ifestroy buts, acoms, apples. cherries, flowers, and other vegetables. This pest of corn-dealers is of very small size, not larger' than the capital lettry at the beginning of this sentence, and is therefore able to make its way though very small crevices. Like the preceding sperjes, it passes jts larval existence within the grain on which it feeds, devours the whole of the interios, and then, gnawing its way throngh the shell, becomes transfomed in process of time into its perfect shape, which is that of a little long-beaked Weevil of dull sed color, which, however, under the microscope, is singularly beautifnl.

Many species hefonging to this destructive gemms are equally plentiful all orar the world, and "qually injurons. There semes, indeed, to be no vogetable substance that is not eaten by the Weevils, which appear to have a peculiar liking for those that are used for human food. Almost every article has its peculiar Weevil. There is the Rice Wervin, for example (Calantra oryzoo), known from the previons species by the fom red spots on the elytra, which is nearly as destructive towards rice and Indian rorn as the Com Weevil towards wheat.

One of the largest species is a mative of the West Indies, and is knowi ly the name of the Paim Meevic (Calandra palmaram). This huge Whevil sometimes attans the length of two inches, and its color is a dnll, relvet-like hardk. The larva of this large beetle is a great fat white grub, called grugru by the nogroes, and considered by them to be a great dainty. The more educated inhabitants know this gruh, by the name of Ter protmiste. This grub is especially fond of the newly planted ranco, amb is sometimes so terribly destructive among them that a fresh planting beromes neressary. When this creatore is about to attain its propal condition, it weaves for itself a kind ol copoon formed from the fibres of the phant in which it lives.

Belont motiring the long-homed inserts, we must brietly mention a teribly destrmetive family of heretles, that are fertamly allied to the TVerevils, but whose precise degree of relationship does hot seem to he revy aceramtely mulerstood.

To this dimily ferongs the far-fimed Seolyhus destructor, a little dull mored insert, insignifiont in apmaramer, hut able to lay low the loltiest elon that ever reareci its leafy lead. limalrests of the finest treers lave fallen victims to the devouring teeth of this tiny beretle, a reature harelly the sixth of an inch in length. These insects not only burrow info the trees for the purpose of obtaining forel, but therein they deposit their eggs, and therein are the young larve hatched.

The mother beetle deposits the egrgs in a row, and the yonng, immediately mpon entering the world, begin to eat their way through the wood, all diverging at right angles from the burrow in which they were laid, and all increasing the diameter of the burrow in exact proportion to their own growth. Hundreds of these quondam dwellings may be seen on roadside fences and railings, and so mmerons are they on many trees that the bark falls off in tlakes, the comrse of the sap becomes arrested, and at last the tree dies from the injuries to which it has been subjected by these minnte but terrible foes, who work in darkness, unseen and secure. The grubs or larse may often be found in these tamels. They are thick, round, and fat, without feet, and of a whitish color, excep, the homy head with its powerful jaws.

Tire destructive beetles that are embraced in the Cureulio family have heen more notable than almost any gronp of insects, as the small fruit trees have suffered in all parts of North America where such fruits are grown. The term Weeril is applied to these insects. One species attacks the roses, both wild and cnltivated. Another is found feeding on pine trees. The W'ute Pine Weevil (Pissodes strobi) is especially destructive to the white pines. The Plum Gouger (Anthonomus prunicidu) resembles the Plum Curenlio very much. The latter is named Conotrachetus. When the fruit is set the beetles sting them. Apples and peaches are also subject to the same pest. Sitophitus is the grain Weevil.

Other species are, Centorhynchus, the European turnip Weevil, introduced into Maine, where it stings the radish.

A common pest in the Western States is the Potato-stalk Weevil (Barideus binotatus), and B. vestitus eats the tobacco plants in the Sonthem States.

The Colorado potato beetle (Doryphoru decemineute) is a pest sufficiently well known at this time, having reached as far as it can go eastward, on the farms of Maine.

We now come to the Longicorn beetles, so called on account of the extraordinary length of the antenne in many of the species, an example of which will be fonnd in the colored illnstration on page 378. 'These insects are well represented by many species, though none have the antenna of such wonderful length as the Xenocerus semituctuosus. While the length of its body is only seven-eighths of an inch, its antennae measure four inches, and often still more.

As in the preceding family, the Longicom beetles pass their larral state in wood, sometimes boring to a considerable depth, and sometimes restricting themselves to the space between the bark and the wood. The grmbs practically possess no limbs, the minute scaly legs being entirely useless for locomotion, and the movements of the grub being performed by alternate contraction and extension of its ringed body. In order to aid locomotion the segments are furnished with projecting tubercles, which are pressed against the sides of the burrow. Those of the common wasp heetle (Clytus arietis) may be found at the beginning of summer in fir trees, or in palings and posts of that wood.

The just-mentioned Xevocmits, so remarkable for the inordinate length of the antemnæ, is one of the finest examples of the Anthribidæ, not only for the long and thread-like antennie, but for the beanty of its coloring. It is a native of Amboina, where it was found by Mr. Wallace. The male is jetty-black diversified with small white stripes on the head and thomax. The eintra are boldly decorated with the same contrasting lanes. The female is also white and black, but the former color greatly predominates, the black being reduced to marks on the sides of the head and thorax, the tips of the elytra, and four black spots, two on the middle of the elytra and the other two on the thorax.

The well-known Musk Beetle (Cerambyrx moschátus) belongs to this group. The scent, which more resembles attar of roses than musk, is extremely powerful, and is often the means of betraying the presence of the insect, as it lies hidden among the leaves. The larva is at wood-borer, and I have taken numbers out of old willow trees, which I split with wedges for the express purpose.

A beetle with a large tuft of hair on each of the antenne is termed Discutax cayennensis. it is a native of the country whence it takes its name. The stont bases of the elytra are VoL. III.-49.
yellowish-orange. The whole of the body is holdly manked with deep black and snow y-white of a silvery lustre. The Plectodera scalator, a much larger suecies, belongs atso to the Longicorns, and, like the preceding species, is marked with black and white, though the arangenent of the tints is different.

Tire largest of the Tortoise Beetles, or Cassidida, is the Aspidomorpha amplissima. This broad and flat insert is found in the Philippines. These insects derive their popular name from the tortoisw-like shape of the body, which is so expanded that the whole of the limbs are roncealed moder its shedter. Dany of these beetles are a light green, or greenish brown, and when they are stationary mon a leaf they can with difficulty be distinguished. The lara is remarkalbe for possessing a large forked appendage upon the end of the tail, Which turns over the back and is loaded with excrementitions substances, so that the creature can hardly be seen under the load which it bears.

In the present speries the hody is chestmot-hrown, and the elytra are furnished with wide, thin, and semi-transparent margins. Their centre is spotted with black.

Passong by several families, we come to our last example of the Coleoptera, the Chrysomela cereatis, a member of a very large family.

All the Chrysomelide are round-hodied, and in most cases are very billiantly colored with shining green, purple, hhe and gold, of a peculia but indesmibable lustre. They are slow

2
3
1
LADYBIRDS.-1. Micraspis duodecimpmutata. (In utural wize) 2. Coccinelle septempinctata and two larea. (In natural size.) 3. Ite magnificd darva among aphides. 1. Coccinella impustulata. (In uaturalsize.) 5. Two different specimens of Cuccinella dispar. 6. Chilocorus bipustulatus. (In natural size.) The line indicates the average length of these beetles.
walkers, but grasp the leaves with a wonderfully firm hold. One of the genera belonging to this family contains the largest Emropen specimen of these beetles, commonly known by the name of the Bloody-nose Beethe (Timerabe tenebricosa), on acconnt of the bright red fluid which it ejects from its month and the joints of its legs when it is alamed. 'This fluid is held hy many pertons to bu a sperific in case of toothache. It is applied by means of permitting the insect to emit the fluid on the finger and then rubbing it on the grm, and the effects are said to mhture for several days. The larva of this beetle is a fat-bodied, shining, dark-green grab which may le formal elinging to grass, moss, or hedgerows in the carly summer. They are so like the profert insect that their identity camot he donbterd.

Ths family of the Cominellide, or Latdyhmes, is allied to the Chrysomelide, and is well known on account of the pretty little spoted insects with which we have been familiar from our childhood, and of which our illustration gives an interesting collection. Thongh the Ladybird is too well known to need deseription, it may be mentioned that it is an extremely nsefn] insect, feeding while in the lurval state on the aphides that swam on so many of our
farorite plants and shrubs. The mother Ladybird always takes care to deposit the eggs in spots where the aphides most swarm, and so secure an abondant supply of food for the future offspring.

EARWIGS.

Taking leave of the beetles, we now proceed to a fresh order, distingnished by several simple characteristics, among which may be mentioned the soft and leathery elytra, or forewings, the wide and membranous hind-wings, and the forceps with which the tail is armed. The insects belonging to this order are popularly known by the name of Earwigs.

Before proceeding to the description of individual species, it is necessary to remark that the word Earwig is slightly incorrect, and owing to a popnlar notion that the insects crawl into the hman ear, thence into the brain, and complete their work by cansing madness in the minds of those who are aftlicted by their presence.

The fact is, as all most know who have the least smattering of amatomy, that the insect never conld gain admission to the hain by means of the ear. In the first place, the cerumen which is secreted in the ear and serves to preserve the natural moisture of the tissues, is so inexpressibly bitter, and so entirely opposed to the habits of the Earwig, that if one of these insects should by chance happen to crawl into the ear, its first impulse wonld be to retreat. In the second place, the drmon of the ear wonld present an impassable obstacle, and in the third place, supposing the drum to have been ruptured, and the Earwig to have passed the spot where it existed, the complicated bony passages throngh which the anditory nerve passes would be too small to admit of its passage, even if the nerves which fill the chamels were removed.

In point of fact, the correct name of this insect is the Earwing, so called becanse its spread wings have an ontline somewhat resembling that of the human ear.

The membranous wings of the Earwig are truly beantifnl. They are thin and delicate to a degree, very large and rounded, and during the day-time packed in the most admirable manner under the little square elytra. The process of packing is very beautilul, being greatly assisted by the forceps on the tail, which are directed by the creature with wonderfnl precision, and used as deftly as if they were fingers and directed by eyes. The Earwigs seldom fly except by night, and it is not very easy to see them pack up their wings. Some of the smaller species, howerer, are day-fliers, and in spite of their tiny dimensions, may be watched without much difficulty.

Earwigs feed on vegetable matter, especially preferring the corollas of flowers. Pinks, carnations, and dahlias are often damaged greatly by these insects, which sometimes occur in vast quantities, and ruin the appeannce of a well-tended Hower-bed. Fortunately for the florist, the habits of these insects are constant, and they can be destroyed in great numbers by those who desire to kill them. Being intolerant of light, they avoid the sunshine by every means in their power, and creep into every crevice that may hide them from the unvelcome light.

In consequence, they are fond of crawling among the thick and shadowy petals of the dahlia, and are frequently found in the slender spur of the nasturtium, so that any one who is abont to eat one of these flowers will do well to examine the spur before he makes the attempt. Knowing these habits, horticultmists catch them by hondreds by the simple plan of placing lobsters' claws, bits of hollow reed, and similar objects on the tops of sticks, knowing that the Earwigs will crawl into them at the dawn of day, and may be shaken ont and killed when the gardener goes his rounds.

The Earwig is remarkable for a parental affection quite exceptional in the insect race, the mother watching over her eggs until they are hatched, and after the young have entered the world, taking as much care of them as a hen takes of her chicken.

There are abont seven or eight European species, some of them being of very small size. 1 have often seen them llying about at midday, when they might easily be mistaken for beetles. They have several times alighted on the sleeve of my coat, and afforded good opportomities of watching the curions manner in which the wings are tucked moder their cases. The largest species is the (tiant Earwig. It is of very rare occurrence, and seldom seen, as it only inhabits the sea-shore, and never shows itself matil dusk.

GRASSHOPPERS, LOCUSTS, CRICKETS, ETC., ORTHOPTERA.

A LARGE and important order sncceeds the Earwigs, containing some of the finest and, at the same time, the most grotesquely formed members of the inscet tribe. In this order we inchude the grasshoppers, locnsts, crickets, cockroaches, and leaf and stick insects; and its members are known by the thick, parchment-like upper wings, with their stout veinings and their overlapping tips. As in all the orders, there are exceptional species, wherein one or more of these attributes are wanting. But the characters are in themselves constant, and in most cases the indications of the missing member can be found. For eximple, many species never obtain wings at all, in many others the males only are fumished with these organs, and in others they are so small as to escape a casnal notice.

Tire first family of Orthoptera is the Blattide, a gronp of insects familiar under the title of Cockroaches.

In these insects the body is llattened, the antenna are long and thread-like, and the perfect wings are only to be found in the adult male. The common Cockroachi, so plentiful in our kitchens, and so well known nnder the erroneons name of black-beetle-its color being dirty-red, and its rank not that of a beetle-is supposed to have been bronght originally from India, and to have found itself in such good quarters that it has overspread the land in all directions.

The Cockroaches are particularly fond of heat, and are found in greatest abundance in kitchens, bake-houses, and other places where the temperature is always high. They are nocturnal in their habits, very seldom making their appearance by daylight, but leaving their hiding-plares in swarms as soon as darkness brings their day. On board ship, they become an almost intolerable nuisance, pouring ont of the many hiding-places afforded to them by a ship's timhers as soon as the lights are put out, and drive sleep far away by their pestilent odor and their continual crawling over the face and limbs of those who are vainly endeavoring to seek rejose.

Together with the rats and mice, these insects sometimes increase to such an mbearable extent, that, when the ressel comes to a port, the crew are sent on shore pots of lighted sulphms are placed in the hold, and the hatrhes battened down for fons-and-twenty homs. This severe treatment kills all the rats and mice and all the existing generation of Cockroaches. and is so far a temporary relief. But the aggs, which are laid in great profusion, retain the elements of life, in spite of the sulphoreous fumes; and in a few months the ship will be nearly as much overrm as before with these pests.

There are several means of destroying the Cockroblles in houses, and if they are perseveringly carpiet ont, at dwelling may be kept comparatively free lhom them. The common red wafers, if seattered over the floor, are rapid and affectual poison to these insects, and meal mixed with plaster of Paris has the same effect. Traps, too, can be realily made by twisting a funnel of paper, putting it into the neck of a jar with a little susar and water at the bottom, aml laying slijs of wool or pastehoard as ladders by which the Cockroaches can reach the treacherons banquet. Those that enter will never escape with life, and the quickest way of killing them is to pon boiling water into the jars.

A hedgehog is also a good remedy against Cockronches, and, if allowed the run of the kitchen dwing the night, will be wonderfully efficarious in keeping down their numbers.

The egges of the Cockroach are not laid separately, but inclosert in a hard membamons case, exactly resembling an apple puff, and containing about sixteen egge. Plenty of these eases maly be found moler planks or behind the skirting boarls where these inserts love to conceal themselves. Along one of the edges of the capsule there is a slit which corresponds with the opening of the puff, and which is strengthened, like that part of the pastry, by a thickened margin. The edges of the shit are toothed, and it is said that each tooth corresponds with an egg. When the young are hatched, they pour out a fluid which has the effect of dissolving the cement which holds the edges together, the newly-hatched Cockroaches push themselves through the aperture, which opens like a valve, and closes again after their exit, so that the empty capsule appears to be perfectly entire.

The shape of the young much resembles that of the perfect insect, except that in neither sex are the wings in existence. In the pupal stage the resemblance is preserved, the creature is active, and exhibits the rudimentary wings. The reader may often have seen white, brown, and mottled Cockroaches. These are the insects that have lately changed their skins ; and if one of these creatures be taken, it will be found that in a day or two it will attain the same reddish-brown color as its companions.

The Cockroach is a rery active insect, rumning both backwards and forwards with astonishing speed, and is furnished at the extremity of the abdomen with two short projections resembling miniature antemse, and popularly regarded as such.

The accompanying illustration gives a figme of a short, stmmpy insect with large hind legs. This is the Fifle Cuicket, a noisy creature, inhabiting the sides of hedges and old walls, and making country lanes vocal with its cmions cry, if suth a word can be applied to a sound prodnced by friction. The Field Cricket lives in burows, made at

FIELD CRICKET.-Gryllus campestris. the foot of ledges or walls, and sits at their mouth to sing. Our illustration shows both male and female in their matural size, the former just coming ont of its burow. It is, however, a very timid creature, and on hearing, or perchance feeling, an approaching footstep, it immediately retreats to the deepest recesses of the burow, where it waits until it imagines the danger to have gone by. Despite of its timidity, however, it seems to be combative in no slight degree, and if a blade of grass or stratw be pushed into its hole, it will seize the intruding substance so firmly that it can be drawn out of the burrow before it will loosen its hold. The males are especially warlike, and if two specimens be confined in the same box, they will fight until one is killed. The vanquished foe is then eaten by the rictor. In White's "Natural Listory of Selbome" there is a careful and interesting description of

MOLE CRICKET.-Gryllotalpa viulgaris. the Field Cricket and its habits.

The well-known House Cricket (Acheta doméstica) is a near relation of the above-mentionel species, and is so familiar as to need no description.

One of the oddest-looking of the insects is the Mole Cmicket, so called on account of its burrowing habits and altogether mole-like aspect. This insect is illustrated in the natural size, and, as may be seen, attains comsiderable dimensions. The right-hand figure represents the Mole Cricket while in its larval stage. Those who like to give the needful time and tromble will find the internal anatomy of the Mole Cricket to be highly developed, remarkably interesting, and easily dissected.

Like those of the mole, the fore-limbs of the Mole Cricket are of enormous comparative size, and turned outwards at just the same angle from the body. All the legs are strong, but the middle and hinder pair appear quite weak and insigniticant when compared with the gigantic developments of the front pair. This insect is rather local, but is found in many parts of Europe, where it is known by smadry popular titles, Croaker being the name most in vogue.

The wings of the Mole Cricket are large and handsome; and when folded, their hardened outer edges project along the back like two curved spines. Some persons have thought that this insect is the canse of the well-known phenomenon called the Will of the Wisp, or Jack o° Lantern, becanse in a locality where one of these deceptive lights was fluttering after its uncertain wont, a Mole Cricket was captured on the wing.

The food of the Mole Cricket is chiefly of a vegetable nature; but the insect will eat animal food when offered, having been known to feed upon raw beef with great zest. Like the tield cricket, it is very combative, and when it has vanquished its foe is sure to eat him. As may be imagined from the tasks which it performs in driving burrows through the earth, the muscular strength of the Mole Cricket is exceedingly great ; and when the insect is held in the hand, its struggles for escape are apt to intlict rather sharp scratches on the skin of the captor.

The color of the Mole Cricket is brown of different tints, darker upon the thorax than on the wing-covers, both of which organs are covered with a very fine and short down.

As might he surmised from the extraordinary muscular power of the fore-legs, the Mole Cricket can burrow with great rapidity. The excavation is of a rather complicated form, consisting of a moderately large chamber with neatly smoothed walls, and many winding passages commmicating with this central apartment. In the chamber are placed from one to four hundred eggs of a dusky yellow color; and the roof of the apartment is so near the surface of the ground that the warmth of the smbeams penetrates through the shallow layer of earth, and canses the eggs to be hatched.

The Mole Cricket (Gryllotalpa) is rery common, and destructive to regetation in the warmer portions of the United States. Its ravages on the sugar-cane is of a serions nature. The G. Worealis is fomm in New England, in moist earth near ponds.

There is a simgnlar species, called schizodíctylus monstrosus, now common in the insect cases sent from India, which is notable for the manner in which the enormonsly long wings and their covers are rolled at their tips into spiral coils. This belongs to the same family as the mole cricket, and, like that insect. is a burower, making holes nearly a yard in depth.

Tine Minnatons Looust, represented in the accompanying colored illustration, is a wellknown instance of a very large family of insects represented in onr own land by many examples. All the Locusts and Grasshoppers are vegetable feeders; and in many cases their voracity is so insatiable, their jaws so powerful, and their numbers so countless, that they destroy every vestige of vegetation wherever they may pass, and devastate the country as if a fire had swept orer it.

Such is the case with the Migratory Locust, so called from its habit of congregating in vast armies, which tly like winged clonds over the earth, and, wherever they alight, strip every living plant of its verdure. So assidnonsly do they ply their busy jaws, that the peonliar sonnd promuced by the champing of the leares, twigs, and grass blades can be heard at a considerahle distance. When they take to flight, the rushing of their wings is like the roaring of the sea; and as their amies pass throngh the air, the sky is darkened as if by black thonder-ciouds.

The family Ciculdrio includes an interesting group of insects, called in New England, incorrectly, locusts. Cicada is the generic name of the common "locust." A nother species, called seventern-year locusts, is notable for the great length of time the grubs live. During seventeen years the grubs live under ground, feeding on the roots of trees. The oak-tree is a favorite. At the termination of the period the grubs have attained their adult condition, when
they, being in the pupa state, come to the surface and the perfect Cicala appears, leaving the empty cases behind. Myriads of these creatures infest the oak forests, making the stridulous concerts so characteristic of them during the entire day. Whittier says of them, they
"Stab the noon silence
With their shrill alarm."
Or, in popular language, zeeing expresses their note, if it can be called a note, for it is the result of a mechanical rasping.

Now and then is found in the fields a very large, locnst-like insect, of a beautifnl grassgreen hue, and having at the end of its tail a long, flat-bladed instrument called an ovipositor, and used for the purpose of boring holes in the earth and placing its eggs below the surface. This is the Great Green Grasshoppere (Phetsyomure, or Acride viridissima), which unfortumately loses its soft, light green color soon after death, and as it dries becomes a dirty yellowish-brown. It is a rery fine insect, often measming two inches in length, and three inches and a half orer the expanded wings. It seems to be rather capricious in its appearances, in some years being quite plentiful, and in others hardly to be seen. The jaws of this insect are wonderfully powerful, and its captor will act wisely to keep his finger out of their reach. The iuternal stracture of this grasshopper is extremely interesting, and on account of its large dimensions are easily studied. The gizzard is especially worthy of notice.

A singular insect is the Eyed Pterochroza. It is one of those beings in which are found a strong resemblance to other parts of creation. In this insect, we have an example of a member of the animal kingdom reproducing with startling fidelity the forms, colors, and even the accidental rariations of leaves and flowers, thus exhibiting another phase of that wonderful adaptive power, which gives to many flowers, such as the orchids, a striking resemblance to bees, butterties, and other inserts. In this instance, the resemblance to leaves is not only due to the peculiar outline and the leaf-like nervires, but to the presence of certain spots which look exactly like the tracks of leaf-mining or leaf-derouring caterpillars. These creatures belong to the same family as the locusts, and their habitation is Brazil.

The locnsts (Locustarice) of North America include some very interesting forms. The Katydid, whose notes so iuvade night's attribute, stilhess, during antumn, and some smaller ones, Aecouthus, are notable for their characteristic notes.

The grasshoppers (Acryde) are familiar enongh in America, particularly in view of their monstrous destructive habits in the grain-fields. A speries in Florida, called the Lubber Grasshopper, feeds on the orange-trees.

A strange-looking insect, with an attennated body and long, slender limbs, is the Wralk-ing-stick Insect. It is one of a most remarkable family of Orthoptera, none of which are found excepting in the hottest parts of the earth. That the Walking-stick Insect fully deserves its name, will at once be recognized by reference to the engraving. This insect belongs to the

WALKING-STICK INSECT, grown and as larva.-Bacteria trophina. (In natural size.) family of Phasmide, an appropriate title, derived from a Greek word signifying a spectre, many of these creatures being, as it were, the mere unsubstantial visions or shadowy outlines of insects.

The chief point of interest in these creatures is their marvellons external resemblance to certain portions of the regetable kingdom; some assuming the forms of a broken branch and twigs with such extraordinary fidelity that the most practised eye is often deceived, and others taking not only the flat outline and half curl of fallen leaves, but even reproducing their peculiar nervures and soft regetable green with such marvellous exactness, that those who see them for the first time can hardly be made to believe that they are not the objects which they
so faithfully represent. Is if to add to the singularity of these creatures and to keep up the illusion, the eggs of scveral species are ribbed and colored precisely like the seeds of certain plants.

The Phasmithe embrace some very extraordinary creatures, the Walking Sticks and Spectres being prominent and familiar members of this family. Ons North American species of Walking Stick (Diopheromera femorata) is not over two inches in length of body, resembling the larger species of the East Indies.

One of the singnlar species which hare such a wonderful resemblance to fallen leaves is the Leaf Insact. The pecoliar, leaf-like elytra, and also the singular mamer in which the limbs are lmmished with wide, flattened appendages, in order to carry out the leafy aspect, have often astonished people. Only the females possess the wide, reined wing-covers, those of the male being comparatively short. The wings, however, are entirely absent in the fenale, while in the opposite sex they are very wide and reach to the extremity of the body. One of these has lived for a considerable time in a greenhonse.

Tine Mfantided, or Praying Insects, also belong to the Orthoptera. These creatures derive their name from their habit of sitting with their long and flattened fore-legs held up and joined as if in the attitude of prayer. The form of this insect can be best seen from the drawing. So remarkable an insect conld not fail to be the subject of many wild fables, some of which

PRAYING insECT.-Mantis religiosa. (Female, and a cluster of eggs from which some laryæ are making their exit. Natural aize.)
may take rank as popular superstitions. For example, it was long thouglit that if any one lost his way in a forest and met with a Mantis, he had only to ask the insect to direct him on his road, when the obliging creature would stretch ont one of its arms and point out the proper direction. According to old legends, one of these insects, being met by St. Francis Xavier and commanded to chant a prayer as well as to act it, responded to the request of the saint by singing a canticle-we presume in the Latin language.

Unfortmately for the chamer of the Mantis, the real reason for holding up its feet is, to be in readiness for seizing its prey or to defend itself from an enemy, the creature being voracious as at wolf and combative as a game-cock. It feeds chiefly mon other insects, stealing upon them quietly and catching them in its claws by a rapid morement, just as the loris takes its winged prey; and should it meet with another of the same sex and speries, the two begin to fight with damntless courage, cutting at each other with their fere-legs with the skill of practised swordsmen, and making their strokes so truly and with such force, that they have bern known to sever the body of their antagonist with a single biow. The winner, that is to say the survivor, generally consummates his victory by devouring the body of his slanghtered foe.

The Chinese are iond of kepping these insects in rages and matching them against each other like game-corks or ball-dogs. These creatures are said hy some anthors to be cowardly, becanse, if ants are put into their ages, they endonor to eseape in all directions. True as the fact may be, the inference is quite mwarrantable, the Mantis being entirely justified in
trying to escape from such direful foes as the ants of its own comntry. During the last war of the English in India, a picket of soldiers contrived to disturl) a large wasps" nest, and were forced to scatter ia all directions in order to awoil the attacks of their small but formidahle intagonists, for whose assanlts ther, being highlmders, were rery ill frepared. Yet no one would impugn the conrage of the soldiers (the officer in command, an old pupil of my whn, having won the Victoria Cross) ; and the ants are eren more terrible foes to the Mantis than the wasps to human beings, their dimensions being quite disproportionate, and their ushal prey being insects whom they overpower by mombers and united action, so that the size and conrage of the Mantis are impotent when opposed to such foes.

Our Afontidce are also small compared with those of the tropics.

FRINGE-WINGED INSECTS; THYSANOPTERA.

The next order, according to Mr. Westwood’s arrangement, is that called the Thysanoptera, or Fringe-winged Insects, on accome of the manner in which the wings are edged with long and delicate cilia. They are all little insects, seldom exceeding the tenth or twelfth of an inch in length, but, although small, are capable of doing considerable damage. They are mostly to be found on plants and flowers, especially those blossoms where the petals are wide and deep and afforl in good shelter. The convolvnlus is always a great favorite with them. Greenhouses are sadly liable to their inroads, and owing to their numbers they are very injurions to melons, cucumbers, and similar plants, covering their leaves with a profusion of decayed patches, that look as if some powerful acid had been sprinkled over them. Only one family of these insects is acknowledged by entomologists.

TERMITES, DRAGON-FLIES, ETC.; NEUROPTERA.

We now come to an order of insects containing some of the most beantifn\} and a few of the most interesting members of the class. They are known by the possession of four equatsized membranous wings divided into a great number of little cells techinically called areolets. The month is furnished with transversely movable jaws, and the females do not possess is sting or valved oripositor. Th this order are comprised the ant-lions, the dragon-flies, the termites, the lace-wings, and the May-flies.

Tue first family in Mr. Westwood's arrangement is that of the Termites, popularly but erroneonsly known by the name of White Ants, becanse they live in rast colonies, and in many of their habits display a resemblance to the insect from which they take their name. All the Termites are miners, and many of them erect edifices of vast dimensions when compared with the size of their architects. For example, the buildings erected by the common White Ant (Termes bellicósus) will often reach the astonishing height of sixteen or seventeen feet, which in proportion to the size of the insect would be equisalent to an editice a mile in height if huilt by mam. The dwelling is made of clay, worked in some marvellous mamer by the jaws of the insect-architects; and is of such astonishing hardness, that atthongh hollow, and pierced by numerons galleries and chambers, they will sustain the weight of cattle, which are in the labit of ascending these wonderful monuments of insect lahor for the purpose of keeping a watch on the surrounding country. I full-sized habitation of the warlike Termite resembles a large inregular cone, having a diameter about equal to its height, and covered with VoL. IL.-- 50.
turrets and smaller cones. Nor is this all, for the subterranean excavations are every whit as marvellons as the building, consisting of galleries, chambers, and wells some fourteen inches in width, and penetrating about five feet into the earth. These excavations serve for homes, for murseries, and for roads of commmimation between the several portions of the vast estab)lishment.

To give a complete history of the 'Termites would be a task demanding so much time and space, that it camot be attempted in these pages ; and we must, therefore, content ourselves with a slight sketch of their general history,]remising that many parts of their economy, and esperially those which relate to their development, are still buried in mystery.

The most recent investigations give the following results:-
Each Termite colony is founded by a fruitful pair, called the king and queen, who are placed in a chamber devoted to their sole use, and from which they never stir when once enclosed. These insects froduce a vast quantity of eggs, from which are hatched the remaining members of the colony, consisting of nenters of both sexes, the females being termed workers and the males soldiers, the latter being distinguished by their enormons heads and powerful jaws; of lavie of two forms, some of which will be fully developed, and others pass all their lives in the worker or sothier condition; of pupa of two forms; and, lastly, of male and femate perfect insects, which are destinel to found fresh colonies. The nenters of either sex are without wings.

Passing by, for the present, several families of the Neuroptera, we come to the Libellulide, or Dragon-tlies. These insects are very familiar to us by means of the numerous Dragonflies which hant our river sides, and which are known to the rustics by the very inappropriate name of llorse-stingers, they possessing no sting and never meddling with horses or any other vertehate amal. The name of Dragon-fly, on the contrary, is pertectly appropriate, as these insects are, indeed, the dragons of the air, far more voracions and active than even the fabled dragons of antiquity.

Even in their preliminary stages the Dragon-flies preserve their predatory habits, and for that purpose are armed in a most remarkable manmer. During the larval and pupal states, the Dragon-fly is an inhabitant of the water, and may be found in most of our streams, usnally hameng the muldy banks, and propelling itself along by an apparatns as efficacions as it is simple, and exactly analogous to the mode by which the nantilus forces itself throngh the water. The respiration is carried on by means of the oxygen which is extracted from the water; and the needfne supply of liquid is allowed to pass into and out of the body throngh a large aperture at the end of the tail. On taking one of these creatures from the water, the extremity of the tail seems to be pyramidal, but on examination will be seen to consist of several peinted tlakes which can be separated and then diselose the aperture above mentioned.

By means of this apparatus, water is admitted into the boly, and, after giving up its oxygen, is violently expelled, therely forming the insect forward with a velocity proportioned to the power of the stroke. If one of these creatures be put into a glass vessel, it appears at first to move by simple volition; but if a little sand be allowed to settle at the bottom, the disturbance cansed among the grains by the ejected water will show the mode of progression. If the larva be allowed to take in the water, and then suddenly moved into the air, the force with which it expels the contained water will drive it to a distance of three or four inches.

Such are its means of locomotion ; those of attack are not less remarkable or less efficacions.

The lower lip, insteat of being a simple cover to the month, is developed into a strangejointed organ, which can be shot out to the distance of nearly an juch; or, when at rest, can be folded flat over the face, much as a carpenter's rule can be shat up so as to fit into his porket, and can be rapidly protruded or withdrawn, very like the instrunent ealled a "lazytongs." Like that instrument, it is formished at its extremity with a pair of forceps, and is able to grasj) at passing objects with the swiftness and certainty of a serpents stroke.

The creature remains for sone ten or eleven months in the preliminary stages of existence, and when the insect is about to make its final change, the undeveloped wings become visible

DRAGON-FLIES LAYING EGGS.
on the back. When its time has come, the pupa leaves the water, and crawls up the stem of some aquatic plant until it has reached al suitable elevation; it clings firmly with its claws, and remains apparently quiet. On approaching it, however, a volent internal agitation is perceptible, and presently the skin of the back splits along the middle, and the Dragon-fly protrodes its head and part of the thoran. By degrees, it withdraws itself from the empty skin, and sits for a few hours drying itself, and shaking out the innumerable folds into which the wide ganze wings have been gathered. After a series of deep respirations of the mwonted air, and much waving of the wings, the glittering membranes gain strength and elasticity, and the enfranchized insect lanches forth into the air, in search of prey and a mate.

There are very many species of Dugon-flies, all very similar in their habits, being fiercely predaceons, strong of wing, and gifted with glittering colors. Unfortmately, the rich azare, deep green, soft camation, or fiery scarlet of these insects fade with their life, and in a few hours after death the most brilliant Dragon-fly will have faded to a blackish-krown. The only mode of preserving the colors is to remove all the interior of the body, and to introduce paint of the proper colors. This, however, is but an empirical and unsatisfactory sort of proceeding ; and no matter how skilfully it may be achieved, will never be worth the time bestowed upon it.

In many species, the sexes are of different colors, as, for example, in the beautiful Demorselle Dragon-flies, where the male is leep purple, with dark spots on the wings, and the female a rich green, with the wings meolored. The wings are of an exceedingly fine quality, and the structure of the whole looly can be best learned by reference to our full-page engraving. Another form of Dragon-tly is the Libelluta trimuculatu. It is an example of the restricted genns Libellnta.

The singular group of insects termed scompon-flies also belong to this family. These insects derive their popular name from the curions appendage with which the abdomen of some of the species is armed. The male of the common Scorpion-fly has the sixth and seventh rings of the abdomen mather slender, and calable of movement in every direction; while the last ring is modified into a stout, thick, rounded form, furnished with a pair of forceps not unlike those of the earwig. While at rest, the creature sits with the abdomen curled quietly over the back like a pmg-dog's tail; but, when irritated or alarmed, it brandishes the tail about in a very alarming maner, snapping at the same time with the forcipated extremity, and, if it seizes the finger, can intlict a rery perceptible nip. Few persons, indeed, who are not acenstomed to the insect can summon up sufficient moral conrage to hold it while its scorpion-looking tail is being flourished in so menacing a manner.

Tue beatiful Lace-wivg Flies, or Hemeroliiide, are also members of this order. Several species of the Lace-wings are also called by the appropiate name of Golden Eyes, on acconnt of the extreme brilliancy of the large and projecting eyes, which glow as if with internal fires, and give forth flashes of gold and ruby light. Unfortunately, there is a sad drawback to their beanty, for, when handled, they exhale a most powerful and indescribably odions stench, unlike any imaginable combination of evil savors, but quite unique, and never to be forgotten after a single experience. The Lace-wings may be taken in the evening as they fly from tree to tree, and in the daytime may be fornd clinging to the under side of leares.

The far-famed Ant-lion is one of the insects that are more celebrated in their preliminary than in the perfect stage of existence. As may be seen by reference to the illustration, their perfect form is very light and elegant, and closely resembling that of the dragon-flies, save that the wings are lighter, softer, and broader.

In their larval condition, however, as will be noticed, they are by no means attractivelooking creatures, somewhat resembling flattened maggots with their rather long legs and their very large jaws, the legs being apparently useless as organs of progression, all movements being made by means of the abdomen.

Slow of movement as is this creature, and yet predaceons, feeding wholly on living insects, the mode of obtaining its food seems to be rather a problem. The solntion, however, is simple enough, the creature digging a pitfall, and lying

ANT-LION.-Myrmeleon formicarius. a, Aut-Liou; b, e, larva (Figs.
a and c are of uatural size, while Fig. b is maguified.)

This insect has long been celebrated for its short space of life, a single day sometimes witnessing its entrance into the perfect state and its fimal departme from the world. The popular idea concerning these insects is, that the whole of their life is restricted to a single day. 'This, however, is an error, as they have already passed at least two years in their preliminary stages of existence. In the larval and pupal states, they are inhabitants of the water, and are fond of hiding themselves under stones, or burrowing into the mondy banks Under the latter circumstances they make a very curious tunnel, something like a doublebarrelled gun. It is said that the larra feeds upon mud, and, as a proof of this assertion, it may be mentioned that Swammerdam always found mod within those specimens which he dissected. I can personally vonch for the accuracy of his remarks, but wonld not like to assert that, althongh mud was always found in the stomach and intestines of those larve which I have dissected, it might not have been swallowed with the food rather than composed it.

The May-fly is pecnliarly notable for a stage of development which seems to be quite mique among insects. When it has passed through its larval and pnpal state, it leaves the water, creeps out of its papa case, and takes to its wings. After a period, rarying from one to twenty hours, it flies to some object, snch as the tronk of a tree or the stems of waterplants, and casts off a thin membranous pellicle, which has enveloped the body and wings, the dry pellicle remaining in the same spot, and looking at first like a dead insect. After this operation, the wings become brighter, and the three filaments of the tail increase to twice their length. Some anthors call the state between the leaving the water and the casting the pellicle the "pseudimago" state.

Some of these insects are well known to fishermen under the names of green and gray drake, the former being the psendimago, and the latter the perfect form of the insect, which is represented in the illustration. Sometimes these insects occur in combless myriads, looking like a lieary fall of snow as they are blown by the breeze, and having on some occasions been so plentiful, that they have been gathered into heaps and carted off to the fields for manure.

The Perlidæ, known to anglers by the name of Stonf-Flites, belong to the Neuroptera. Several species of the same family are popularly called Yellow Sally and Willow-fly. They may be known by the large folded front pair of wings, and the two bristle-like appendages at the tail.

CADDIS-FLIES; TRICHOPTERA.

Quiting the Neuroptera, we must give a few lines to another order of insects, the Trichoptera, popularly known by the name of Caddis-Flies.

These insects, of which there are many species, are chiefly remarkable in their larval state, on account of the curions portable habitations which they construct. All anglers are familiar with the Caddis, and the singular variety of form and material employed in the construction of its home. Being a soft, white grub, totally marmed, and presenting a most delicate morsel to every river-fish, the Caddis is forced to conceal itself in some way from its innumerable foes. For this purpose, it builds around itself a nearly cylindrical tube, ojen at each end, and composed of substances varying according to the locality and the species. Sometimes these tubes are made wholly of short pieces of stick, laid sometimes side by side, and sometimes in a partly spiral form, something like the wires of the submarine telegraph. Sometimes the tubes are made of sand or little stones, while the deserted shells of the planorlis, and other freshwater shells, are very common materials.

FLIES AND BEES; HYMENOPTERA.

We now come to a vast order of insects, technically called the Hymenoptera. In these insects the wings are four in mmber, transparent, membranons, the veins comparatively few, and the hinder pair smaller than the others. Their mouth is furnished with powerful horny jaws, and with a tongue guarded by the modified maxills. The females are armed with a many-valved sting or ovipositor. In this enomons order are inchuded all the bees, wasps, and their kin, the great family of saw-thies, the ichneumons, the gall-flies, and the ants, each single family being so large, and presenting so many points of interest, that an entire volume could be devoted to them with great profit. Onr space, however, prohihits us from attempting more than a slight sketch of each family, together with descriptions of a few typical species. Withont, therefore, enumerating the various armangements of this large order, or the characteristics on which they are founded, we will proceed at once to the family of the Tenthredinidre, or Saw-flies, the first in Mr. Westwood's system.

In this and the next family, the females are fumished with a pecnliar oripositor, composed of several pieces, and which, though comected with a gland secreting an irritant fluid, are not envenomed as in the bees, wasps, and their kin. All these insects are comprised inder the general term of Terebrantia, or borers, and fall easily into two large groups, in one of which the abdomen proceeds directly from the thorax, and in the other is connected with the thorax by means of a footstalk. Each of these groups is further subdivided, as will be seen in the conrse of the following pages.

The true Saw-tlies are known by the curious piece of animal mechanism from which they derive their name. The females of this family are supplied with a pair of horny saws, placed side by side on the lower extremity of the abdomen.

These saws are of various forms, according to the particular species to which they belong, and may be seen even in the dried specimens, the top of their sheath slightly projecting, and their shapes plainly visible after the remoral of a portion of the abdomen. When taken from the insect and placed under the microscope, they present a very pretty appearance, owing to the gently-curred ribs with which their sides are strengthened and decorated. The saws act alternately, one being pushed forward as the other is being retracted. Their object is to form a groove in some plant, in which the eggs of the mother insect can be deposited, and wherein they shall find a supply of nomishment in order to enable them to complete their development; for it is a most remarkable fact that, after the egg is deposited in the groove, it rapidly increases in size, obtaining twice its former dimensions.

In the genns Cimbex, of which an example is given in the illustration, the larva possess twenty-two feet, and lave the power of discharging a translucent greenish fluid from certain
 pores placed on the sides of the body just above the spiracles. This feat they can repeat six or seven times in succession. When they have eaten their way to the next stage of existence, they spin a cocoon of a brownish color and of a stringy, tough consistency, and either suspend it to the branches of a tree on which they have been feeding, or hide it under fallen leaves. In this cocoon they remain for a comparatively short time, and then emerge as perfect insects.

The terrible Turnip-fly (Alhatia centifotiox) belongs to this family. The larva of this speries is popnlarly called the Nigger, on account of its black color. Our engraving shows the insect in both its stages of development. A very small species of Athatia is called Athatio spinarum. Its larva feeds upon the various cabbages, eating away the whole of the soft green parts of the leares, and only rejecting the thick nervores. It makes no cocoon, but retires into the ground, excarates a kind of oval cell,' which it lines with a slimy smbstance, and there awaits its final change.

The well-known black Gooseberri-fly (Nématus grossutaria') is another of the Sawflies. Its larva, so destrnctive to the frnit, is blackish-gray. These tiresome creatures are often seen in great numbers, more than a thonsand having been taken on a single goose-

berry-bnsh, and there are two broods in the comse of a year. Withont going into further details, it is sufficient to say that there is hardly a plant without its especial saw-fly. and that any one who can discover al really effectual mode of checking their ravages, will confer no sliglit benefit on mankind.

The fine insect in the illustration at top of this page, which is known by the name of the Giant Immeumon (Ifhememon arossarims), is an example of the next family, in which the ovipositor is converted into a gimlet instead of a double saw. With this powerful instrument,

运迬 Anmate Creation.

 have concluded to submit for public patronage a work with the above title, being a series of exquisite Engravings representing the ANIMAL WORLD, executed with great scientific accuracy, and accompanied by full Descriptive Text, written in popular terms, so as to delight and instruct the people. Anyone who has considered the subject must be at a loss to understand why an lllustrated Natural History, comprehensive and at the same time popular, has not before this been published in this country. Indeed any lover of animals who has visited the* great museums and zoological gardens and has had access to bools of engravings in the public libraries, could not fail to remark the wealth of material in existence devoted to this subject. Being confirmed in our conviction of the desirability of such a work, we laid under contribution the best existing authoritics for the production of most perfect representations of all the more important living creatures, and among the artists whose delineations will delight the reader, we may mention Harrison Weir, Wolf, Coleman, Fr. Specht, and Mutzel. By far the majority of the engravings in these volumes are from drawings made from the living animals, many at the Zoological Socicty's Gardens in London, England.We purpose that our patrons sliall be aided and interested in their study by such an array of pictures as has never before embellished any Natural History. In numerous instances the engraving is printed in oil-colors, and this portion of the illustrations has been taken charge of by Messrs. L. Prang \& Co., of Boston, who we believe rank foremost for high artistic results in this department of printing. These Oleographs were copied under the superintendence of Mr_{r}. Prang from the renowned "Tafeln" of "Brehm's Thicrleben," so that they may be declared perfectly reliable.

We sought competent advice from various sources as to the most suitable text that should accompany this panorama of handsome Engravings. It was found impossible to embody all the present ideas of naturalists in a single work like this on account of the rapid advances and constant changes in their knowledge of, and habits of thought respecting, the Animal World. And it seemed to us correct that the true object of Zoology is not to arrange, to number, and to ticket animals in a formal inventory, but to inquire into their life-nature, and not simply to investigate the lifeless organism.

What do we know of "Man" from the dissecting-room? Is it not Man, the warrior, the statesman, the poet, etc., that we are interested in? With all veneration which attaches itself to those who are the accredited possessors of abstruse learning, their inordinate use of phraseology detracts too much, we fear, from the fascination that the study of the Anmal Wrorld would otherwise yield, and as we are not content to have our work restricted to a favored few, we thought the task placed in our hands to be to keep the work free from a repellant vocabulary of conventional technicalities. Our endeavor has been to find an author whose work would be noted for its fund of anecdote and vitality rather than for merely anatomical and seientific prescutation, and we arrived at the conclusion that we couk not do better than avail ourselves of the Rev. J. G. Wood's comprehensive work -a work most popularly approved by speakers of the English language. It would be superfluous to say one word concerning the standard character of lis book, from the pages of which old and young at the other side of the Atlantic have obtained so much instruction and rational amusement. Avoiding the lengthened dissertations and minute classifications of specialists, he presents to his readers in popular terms a complete treatise on the Animal Kingdom of all climes and countries. The one objection that could be urged against it was, that animal life in America might be treated more fully and American forms given more consideration. In order to obviate this drawback and to do full justice to the creatures of our own country, we secured the aid of Dr. J. B. Holner, of the American Museum of Natural History in New York, an undoubted American authority, who has adapted Wood's work to American wants and given prominence to American forms of Animal life. -

The splendid work on Rodentia, b;: Allen, Coues, and others, will be fully consulted. The valuable work on North American Pi ds, by Baird, Brewer, and Ridgway, will be the guide in the treatment of birds. The late arrange nent of the elassification and nomenclature of North American Birds, by Mr. Ridgway, and the Committee on that subject of the Omithologists' Union, will be utilized in full. The arrangement of Nammals will be after the latest classification by Professor Flower, of the Zoological Society of London.

Tcrms of publication.

The extent of the work will be $\mathbf{6} \boldsymbol{8}$ parts of $\mathbf{2 6}$ pages, at the price of $\mathbf{2 5}$ cents each. The entire publication will contain ist Oleographs and $\mathbf{6}$ Full Page Engravings on Wood, besides many hundreds of exquisite Illustrations interspersed through the text. No subscriber's name is received for less than the entire set, and no order can be cancelled after acceptance of first four parts. The Publisher guarantees to complete the work in sixty-eight parts. The parts are payable only as delivered, the carrier not being permitted to receive money in advance, nor to leave parts on credit. Subscribers who remove, or who are not regularly supplied, will please address the Publisher by mail.
N. E.

NO SUBSCRIPTION RECEIVED FOR LESS THAN THE COMPLETE WORK-68 PARTS.

the female is enabled to drill holes into living timber for the purpose of depositing the eggs. When they are hatched, the young grubs immediately begin to gnaw their way through the wood, boring it in every direction, and making burrows of no mean size. Those of the present species prefer fir and pine, and I have had specimens of the wood sent to me which have been riddled by the grubs until they looked as if they had harbored a colony of the ship-worm. The perfect insects often make their appearance in honses, the larver having been concealed in the timbers and rafters; and I know of one case where a gentleman who had built a wooden garden-house, was sadly annoyed by the multitudes of the Sirex which emerged from the timber. In such cases the insects do not seem to attain their full dimensions, but appear dwarfed and stunted. All wood-boring insects are, however, extremely variable in size.

The next group of the Terebrantia is called Entomophaga, or Insect-eaters, because the greater mumber of them are parasitic upon other insects, just as the Saw-flies are parasitic upon regetables. In these insects the oripositor is furnished with two delicate spicule, and the last segments of the abdomen are not formed into a telescope-like tube.

The first family is that of the Cynipide, or Gall insects, the creatures by whose means are produced the well-known galls mpon rarious trees, the so-called oak-apple being perhaps the best known, and the Ink-gall (also found on the oak) the most vahable. These Galls are formed hy the deposition of an egg in the leaf, branch, stem, trig, or even root of the plant, and its consequent growth. The well-known Bedegnar of the rose, with its soft mossy envelope and delicate green color, relieved by bright pink, is cansed by one of these insects (Cymips rosex); and the celebrated Dead Sea-apples are nothing but galls formed by the Cymips insána. The spherical oak-galls, which contain a single insect, and are about the size of a large marble, are closely allied to the true Ink-galls; and if one of these objects be cut with a knife, the action of the astringent juice upon the iron of the hlade will produce a kind of ink. The best galls are those which are gathered before the insect makes its escape, as the astringent quality is then more powerful.

The true Ichnemmons, of which a specimen is given in the illustration, form a vast group of insects, the Ichneumonide alone numbering many move than a thousand described and acknowledged species. In them the oripositor is straight, and is employed in inserting the eggs into the bodies of other insects, mostly in their larval state. In some cases, this slender and apparently feeble instrument is able to pierce through solid wood, and is insinuated by a movement exactly like that which is employed by a carpenter when using a bradawl. When not engaged in this work, the oripositor is protected by two slender sheaths that enclose it on either side.

Were it not for the Ichmeumons, our fields and gardens would be hopelessly ravaged by caterpillars and grubs of all kinds, for practical entomologists always find that when they attempt to rear insects from the egg or the larval state, they must count upon losing a rery large percentage by the Ichneumons.

Take, for examples, three or four caterpillars of the common white cabbage butterfly, place them under water, and open the body from end to end. It will be found that, in ahmost every case, the caterpillar bears the seeds of death within its body in the shape of tiny white grobs, like very minute grains of rice. These creatures are the young of an Ichneumonfly (Microgaster glomerátus), and retain their place within the caterpillar until the time for it to clange into the perfect form. They then simultaneously eat their way out of the skin, spin a number of bright yellow silken cocoons, and in process of time change into tiny flies and set out on their destructive mission. The caterpillar never survives their attacks, and is seldom able to move away from the spot whereon it happened to be when the Tchneumons make their escape, the body being enveloped in their yellow cocoons.

All the Ichneumon-flies may be distingnished by their fussy restless movements, as they run up and down any object on which they may settle, and the continual quivering of their antenne. The two lower figures in the illustration belong to this family, that on the left showing an example of the long ovipositor with which several species are furnished, and the other being given in order to show the wasp-like abdomen and the curled antennæ.

The Rhyssa persuasoric is the largest European Ichnemmon, and is parasitic on Urocerus jurencus, another species of the same genus as that to which the giant Ichneumon belongs. The larra on which it preys bores deep holes in fir-trees, and, in consequence, the Rliyssa may be seen running ap and down the trunks in search of some spot where the ovipositor may be introduced so as to lodges in the hidden larra. So deeply does the insect contrive to force its weapon into the wool, that it sometimes is malhle to withoraw it, and may be seen hanging dead and dry to the tree in which it has lmaita the oripositor too firmly.

Passing by several families belonging to this group, we must brietly mention the beautiful Ruby-tall Filees, of Cuckoo Flaes, so plentiful in old walls and similar localities. These are distinguished ly the fact that, in the females, the last segments of the abdomen are formed into a teloscopic tube, which call be projected or retracted at pleasure, amd is fumished with a minute sting. These are, perhaps, the most brilliant in color of any European insect, and are veritahle humming-birds of the insect tribes, their hodies literally tlashing with ruby, sapphire, and emerald, as they flit restlessly in the sunbeams. They are parasitic insocts, and hamet the walls for the purpose of depositing their eggs in the larra of sundry solitary bees amb wasps.

Is the next great division of Hymenopterous insects, the ovipositor of the female is changed into a sharply pointed weapon, popularly called a sting, and comected with a gland in which is secreted a poison closely analogons to that which envenoms a serpent's tooth. These are again divided into the lusectivora, or those which have fore-wings not folded, and the larve solitary and feeding on other insects; the Sodáles, where the fore-wings are not folded, and the lavie are social ; and the Diploptera, where the fore-wings are folded, and the larve (in the social species) inclosed in separate cells.

The first of these sections comprises all those curious and interesting insects known popularly by the names of Sand Wasps amd Wood Wasps. These creatures are in the labit of making burvows into the ground or in posts, and placing therein their eggs, together with the bodies of other insects which are destined to serve as food for the future progeny. Spiders are sometimes captured and immured for this purpose. In nany instances the captared insects are stung to death before they are placed in the burrow, hut it is often fonm that they only receive a womd sufficient to paralyze them, so that they lead a semi-torpid life until they are killed and eaten hy the young giub. Two of these Sand Wasps are given in the illustration. That on the left is one of the wood-horers, drilling its burow into posts, palings, and smilar sulstances, and foeds its young with the lave of one of the leaf-rolling Caterpillars that lives in the oak, and is scientifically known by the name of Tortrix chlorana. It also employs for this purpose several two-winged insects. One speries of these burrowing wasjs frepers the well-known enckoo-spit imsect for this purpose (Aphrophora spumária), pulling it out of its frothy bed ly means of its long legs.

The right-hand figme represents a speries that is in the habit of provisioning its bumow with the hive-hre, which it contrives to master in spite of the formidable weapon possessed by its victim, and then murders or paralyzes by means of its sting. Mr. Latreille mentioned that he saw from filty to sixty of these insects busily engaged in burrowing into a sandbank not more than forty yards long: and as eam female has five or six eggs, and deposits a bee with eath egen, the hatroe made among the hives is hy mo means inconsiderable.
lir the acrompanying illustration is shown a Brazilian speries, belonging to a genus which is represented in Europe by more than twenty species. In these insects the legs are
very long ant spider-like, emabling their owners to run about among grass with great vivacity, their wings quivering all the while with violent agitation. some of the species are in the habit of eatching spiders, and provisioning the burrows with them. It is worthy of motice, that the largest specimens of Hymenoptera are to be found in exotic insects belonging to this limily, the genns Pepsis being most remarkable for the great dimensions of its members.

The right-hand figure represents an insect which is common in Southem Europe. Judging by the habits of those species whieh have been studied, the whole of the fimily to which it belongs are sind-burrowers, and seem to be cruelly predatcous, mastering insects of consider. able size, and dragoing them into their burrows. One of these insects (Scollu bicinctra) has been known to capture and inter a large locust, the tumel being some eighteen inches in depth and very wide at the month.

Monédula signaza.

Pomphilus nobitits.

Scovela pratorum.

A formidable but useful insect is the Chlorion 7obatum, which wages fierce war agatnst cockroaches, those pests of Amprican and Oriental houses, and its services are fully appreciated by the natives, none of whom would kill one of these insects on any account, or permit any one to injure it. With the slanghtered cockroaches it stocks its nest as a provision for the young when they escape from the egg. These insects are tolerably numerous, and are all remarkable for the bright and yet deep purple and green of their bodies, and sometimes of their wings.

Our next subject is the Laheremeaded Mutilla. It is a cmrious, wingless insect, with head disproportionately large, when the size of its body is taken into consideration. This is aul example of a family where the females, although armed with a powerful sting, are quite destitute of wings. Most of the Mutillidre are exotic, requiring a large amount of heat to preserve them in health, only a very few being natives of Northern America and Europe. In some of the larger species the sting is fearfully poisonons, a single insect haring been known to make a man so seriously ill that he lost his senses a few minntes after being stung, and his life was despaired of for some time. A child has been known to die from the effects of the sting intlicted by the Scarlet Mntilla of North America, an insect whose weapon is as long as the abdomen. All these insects appear to be sand-borers.

We now come to the Wasps, in which the wings are folded throughout their entire longth when at rest. A wasp distingmished through the slenderness of the middle part of its body is a native of Australia. It belongs to the Solitary Wrasps, many of which are found in Enrope. The curious nest of this insect is formed like a globe. 'The creature makes a separate nest for' each egg, the material being clay well worked. The nest is stocked with the larva of moths or buttertlies.

To this family belongs that wonderful Burrowing Wasp, which is a builder as well as an excavator, and which erects a tubular entrance, often more than an inch in height, with the fragments of sand which it has dug from the tumnel. It is thonght, and probably with correctness, that the object of the insect in making this edifice is to deter its parasitic foes from

Vos. III.-51.
entering so long and dark a channel. The tube is always curved. When the burrow is completed, the Wasp lays its egg in the tunnel, and packs in it a series of little green caterpillars, which serve as food for the larva. When the arrangements are completed, the Wasp takes down her tube, and employs the materials in closing the mouth of the tumel. The technical name of this insect is Orlynerus muraria. Another species is also known to possess this curious facnlty.

The true Wrasps, or Vespida, come next in order. These insects are gregarions in their habits, building nests in which a large, but uncertain mumber of young are reared. The common Wasp makes its nest within the gronnd, sometimes taking advantage of the deserted hole of a rat or monse, and sometimes working for itself. The substance of which the nest is made is a paper-like material, obtained by nibbling woody fibres from decayed trees or bark, and kneading it to a paste between the jaws. The general shape of the nest is globular, and the walls are of considerable thickness, in order to guard the cells from falling earth, a circular aperture being left, throngh which the inhabitants can enter or leave their home.

Many species of Wasp inhabit Eorope, the Honnet (Vespa crabro) being the largest, and, indeed, being nearly equal in dimensions to any tropical species. This formidable insect makes a nest very similar to that of the wasp, but the cells are necessarily much larger. The nest is generally placed in lollow trees, but I have known a colony of these insects to establish themselves in an onthouse, and to canse great annoyance before they could be expelled.

A very pretty nest is also fonnd in Enrope, the work of the Vespa britannica. It is suspended to branches, is nearly globular in shape, and extremely variable in size, some specimens being nearly a foot in diameter, while others are comparatively small. A rery pretty specimen in my possession is abont the size of a tennis ball. Some exotic species make nests, the covering or outer case whereof is thick and tongl as pasteboard, and nearly white in color. One of these nests, which is foond in the Brazils, is popularly called the Dutchman's pipe, its shape somewhat resembling an exaggerated pipe-bowl, the tom for ingress and egress doing duty for the month, and the branch on which it is susp. . . aking the place of the stem. I believe that the insect which forms this curions structure belongs to the genus Chartergns. The central orifice penetrates throngh all the layers of combs.

The left-hand figure on the engraving at page 401 represents a fine insect, a native of Brazil, belonging to the Bembecide. This species is in the habit of catching grasshoppers of considerable size, carrying them off, and stocking with these insects the habitation made for its young. A very fine species of Chrssis is parasitic upon it.

Tinere are, perhaps, few insects so important to mankind as those which procure the sweet substance so well known by the name of honey. Nearly all the honey-making Hymenoptera are furnished with stings, and in many species the poison is fearfully intense. Some of these inserts, such as the Huse Ber, which is represented in the arompanying engraving, make waxen cells of mathematical accuracy, the lave heing placed in separate cells, and led by the nenter's. In some cases, such as the common IIumble Bee, the cells are egg-shaped, faclo cell being either ormpied by a larva, or filled with honey; while in some species the eggs are placerl parasitically in the nests of other bees, so that the larve feed either upon the stores of food gathered for the involmatary host, or upon the body of the deluded incect itself.

The Hive Bee is the typical example of the honey-gatherers, but its general economy is ton well known to need much description. Suffice it to say that, as in the ants, the commmity consists of males, females, and neuters, but that in the Bees, all the members of the establishment are winged, and the wings are permanent. In each hive there is one fullydeveloped female, called the queen, several others in process of development, and intended to be the heads of futme establishments, a limited number of males, and a vast band of nenters, i. e., undeveloped females. The males have no sting, but both the females and neuters are armed with this tiny, but formidable weapon. Since in civilized countries the Hive Bees are kept in halitations of limiter size, their numbers soon ontgrow their home, and a large number accordingly quit the hive under the govermment of the old queen, the rule of the hive being taken up with one of the young queens, which has burst from its cell in the meanwhile. A
fresh colony is founded as soon as the Bees can meet with shelter, and their new residence is speedily filled with honey and young. The cells of the Bee-romb are set back to back, and each comb hangs like a thick curtain from the top and sides of the hive, so that the cells lie nearly horizontally.

In gathering honey, the Bees lick the sweet juices from flowers, swallow them, and store them for the time in a membramons cop, popmlarly called the honey-bag. When this cup is filled, the Bee returns to the hive, and discharges the honey into cells, closing its month with

HIVE BEE-Ajnis mellifica. (u, Quceu; b, Laborar; c, Irone; with front of the heads. The latter are magnified, and each belongs to figure beneath.)
wax when it is filled. The structure of the Bee-cell, its marvellons adaptation to the several pmoposes for which it is intended. its mathematic accuracy of construction, whereby the best amount of material is found to afford the greatest amount of space and strength, are subjects too complicated to be bone described, but may be found in many works which have been written upon the.

The members of the genus Nomada are very wasp-like in their general aspect, are not hairy, and are, indeed, often taken for small wasps by inexperienced observers. They are, howerer', trme bees. 'Iheir habits are mather obscure, but they are thonght to be parasitic insects.

The Canmenter Bers of sonthern Africa is one of those cmrions insects which construet a series of cells in wool. - After completing their bumow, which is open at each end, they close the bottom with a flooring of agghtinated sawdust, formed of the morsels bitten off during the operation of burowing. lay an egg mpon this tloor, insert a quantity of beebread," made of the pollen of flowers and their juices, and then cover the whole with a layer of the same substance that was used for the floor. Upon this is laid another egg, another supply of bee-hread is inserted, and a fresh layer of sawdust superimposed. Wach layer is, therefore, the floor of one cell and the ceiling of another; and the insect makes, on the average, about ten or twelve of these cells.

Time numerons Humble Bees are a gromp of insects readily recognized by their thick, hairy bodies and general shape. Their nests are placed underground, often in hanks, and contain a variable number of cells, sometimes not more than twenty in number, and sometimes exceeding two or even three hondred. The cells are loosely connected together, and are of an oval shape, their textmre being tongher and more paper-like than those of the hive bee. In these, as in the ordinary bees, there are the three kinds of inhabitants: but with the IImmble Bees, both the females and nenters take part in the labors of the establishment, while the number of perfect females is comparatively large.

The honey made by these insects is peculialy sweet and fragrant, but to many persons, myself included, is rather injurions, alwass cansing a severe headache. Some of the Humble Bees (Bombus muscórum) employ moss in the construction of their nests, and pass it, fibre by fibre, through their legs, in a manner that reminds the observer of carding cotton. They are, on that account, popularly called Capder Bees. Others, again (Bombus lapidarius), prefer
to make their nests in heaps of stones, or similar localities, and these are the fiercest of their kinci. Crenerally, the Humble Bees are quiet amt inoffensive, even permitting their nest to be laid open and the rells extracted, without offering to molest the invader. The OrangeTallen Humble Bee, howerer, is large and fierce; and possessing a powerful sting, with a very large poison-gland, hecomes no despicable foe 10 those who offend it, or whom it chooses to consider as foes.

The mests of the Humble Bees are not permanent like those of the hive hee, bont perish during the winter, the only smrvors leing a few females, who are destined to found fresh colonies in the succeerting yent.

Another sperien, the Banded Bee, is so greatly in use in Egypt, and is fed by being placei on board of harges, and transported doyn the Nile, so as to insure a bomntiful supply of honey. The owners of the hives pay a small sum to the owners of the boats, and, in return, their bees are raried along the fertile stream during the honey season, and afterwards retmened with full combs. Parment is mostly in kind, thms insuring the proper fulfilment of the compuet.

For want of space, we are compelled to pass by many interesting Hymenoptera, such as the Leaf-rutter Bees. the Wood-borers, and the Mason Bees, each of whieh creatures would demand more space than can be given to the whole of the insects.

STREPSIPTERA.

A verr small, but rery remarkathe order now comes bofore our notice-the Stremsiptera, comprising insects of very minute proportions, all of which are parasitic upon the bodies of different bees and wasps, five, and even six, having been discovered within a single wasp. Their presence may generatly be discovered by the pectuliar swollen aspect of the abdomen ; and, in many cases, the leads of the parasites may be seen protruding from between the segments.

The name Strepsiptera signities, literally, twisted wings, and is given to these creatures becanse the front pair of wings are transformed into short and twisted appendages, quite useless for thight or for defending the second pair of wings. These are almost disproportionately large, membranons, and with a kind of milky look as the insect tlies throngh the air. The eye is composed of a rery few lenses, in some species only fifteen on each side, two or three thousand being the ordinary aroage anong insects. The antemate af of amarable form, branched and forked like the horms of a stag. The thorm is enormonsly large, and the abdomen of very small size: but, as the creature does not appear to take food during its life in the berfect state, this is of little moment. Curionsly enough, the larve of these insects are themselves subject to internal parasites; and it is very possible, that they, in their turn, may be infested by other creatures less than itself, and equally disagreeable.

UUTTERFLIES AND MOTHS; LEPIDOPTERA.

W'e now come to an order in which are included the most beantifn] of all insects, namely, the Butterflies and Moths. On account of the feather-like scales with which their wings are covered, and to which the exquisite coloring is due, they are technically called Lepidoptera, or scale-winged insects.

The wings are for in number, and it is occasionally found that the two pairs are connected togethre by atrong bristle in one, and a lrook-like appendage in the other, so that the
two wings of each side practically become one member, in a maner similar to the formation of many hymenopterous insects. Those species which take any nomishment subsist entirely upon liquid fook, which is drawn into the system by suction, and not by means of a brush, as

is the case with the liquid-feeding beetles and bees. The wings are strengthened by nervures, which are of great use in determining the position of the insects.

In the system which is adopted in this work, the Lepidoptera are divided into two sec-tions-the Butterflies and Moths, technically called Rhopalocera and Heterocera-which may generally be distinguished from each other by the form of the antennee those of the Butter
flies having knobs at their tips, while those of the Moths are pointed. The first family is that of the Papilionidr, in which are included the largest and most magmificent specimens of this order. The fanciful names with which so many of these insects have been honored are chietly due to Limicus, who was so struck with the splendid dimensions and gorgeons coloring of these insects, that he dermed them worthy of Homeric titles, called them Equites, or knights, and, separating them into two divisions, gave to all those which have red spots on the sites of the breast the names ol the Trojian heroes, and to those which were without the red spots, and had an eye-shapeed mark on the lower wings, the names of the Greek warriors who fonght against Troy. Unfortunately, for this division, it happens that the two sexes of many species are rery diverse, and cause great confnsion, so that Polycaon, one of the Greeks, and Laodocus, a Trojan hero, hare been fount to be the two sexes ol the same insect, the latter being the femile.

The splendid insect which is shown in the illustration is one of a genus which, by common consent, takes the first lank among the Lepidoptera, in consequence of their great size, the elegant holdness of their shajpes, and the richness of their coloring. In them, the two fore-legs

AMPПRISIU:.-Ornthóptera Amphrusius. are not stunted, as is the case with so many butterflies, but are large, strong, and can be used in walking; and the tips of the antemne have a very slight bend upwards. The caterpillar of this insect is furnished with two retractile tentacles, placed on the neck in a fork-like shape, and is able to protrude these organs at will, at the same time emitting a very unpleasant odor. The chrysalis is hung up by means of silken threads from the tail, and the body is prevented from swinging abont too rudely by a pair of very stout silken fords, one of which is affixed to each side, and moors the pupa firmly to the substance against which it hangs. The shape of the papa is rather peculiar, being angular in its outline, and having also an irregnlar curve.

The perfect Ampirisius is a boldly marked insect, though withont much variety of coloring. The upper wings are rich blackish-brown, and the lower are fine king's-yellow, edged with jetty-black, and haring a fringe of long hair-like scales upon their inner edges. The under side is nearly of the same colors, except that a few dashes of chalky-white are seen upon the mpper wings, as if dashed in with a quick swerp of a dry brush, and a similar dash of yellow is seen upon the lower wings. The ablomen is bright yellow below and dark brown above, and rotind the neck is a narrow collar of firsy crimson, lich and silken as "chenille."

Another spocies of this gemms, the Posmonn, is a great farorite with the natives of the Darnley Islands, who are acemstomed to catch several of these fine insects, to tie one end of a fine threan to the butterty, and the other to their hair, so as to permit the insects to Hutter
about their heads. This style of head-dress is much admired, and, indeed, is equally poetical and artistic. Many of these insects differ greatly, arcording to sex, the upper wings of the male Prasu, for example, being velvety-black, striped with silky-green, ant the hinder wings entirely silky-green, spotted with black and orange; while the female is dark brown, spotted with white.

In the genns Papilio we find the insects to be of nearly as magnificent proportions as in the former genns, though none of them reach the enormous size of the Priam, which will sometimes measmre nearly eight inches across the spread wings. The colors are, however more varied, and quite as brilliant, while a cmions featme is often added by the prolongation of the hinder wings into two long tail-like appendages. The larva is of raried form, sometimes smooth, sometimes covered with flesly protuberances, sometimes long, and able to throw ont or to withdraw at pleasure the two first segments of the body, sometimes short, thick, and grub-like, and in one or two instances marrellonsly resembling snails in the general form. The genus is a very comprehensise one, including between two and three hondred known species, among which may be fount almost every imaginable tint in every gradation, and exhibiting bold contrasts of color which scarcely any luman artist would dare to place together, and which yet produre a result equally striking and harmonions.

Onr tirst example is the Salipenon, one of the most common of the genus, being found plentifnlly thronghout many parts of Asia, Australia, and the Sandwich Islands. Its flight is rather swift, and easily recognizable, and, in common with many allied species, it has regular beats, traversing the same ground time after time with almost merhanical regularity. Entomologists take advantage of this habit, and if they see one of these buttertlies pass over a certain spot, they just go and sit down where they saw the insect, and catch it as it comes round on its next circnit.

The Hector forms a fine contrast to the preceding insect, its colors being amost wholly black and flaming crimson. On its upper surface, the front pair of wings are sooty-black, with a broad dash of gray-brown orea the centre, and a little pencilling
 of the same color near the tips ; and the lower wings are deep relvety-black, diversified with spots of intense crimson. The wings have a very narrow edging of white. The chest and part of the abdomen are black, and the head and rest of the abdomen of the same rich crimson as the spots on the wings. The under surface is colored much in the same way, except that the crimson spots are larger.

On the large engraving at page 405, and in the right-hand lower corner, may be seen a
butterfly, with two very long straight tails to its under wings. This insect belongs to the genus Papilio, and is known by the name of Protesilans. The colors of this species are comparatively dull, but when examined, their soft contrasts are so pleasing to the eve, that any change wonld only be for the worse. Above, the upper wings are partly transparent, a large patch of white scales being set near their base. The under wings are mostly white, with the exception of a little dash of scarlet on their inner edge, a few half moons of dull yellow near their tips, and streaks of blackish-brown on their edges and along the centre of the tails. On the madn side is a little more variety, the shining transparent membrane of the upper wings being crossed with dark bars, and the central stripe of the lower wings being edged with scarlet. It is a native of Demerara.

Our last example of this genus is the Thoas, a very striking insect, whose colors are almost wholly back and yellow. This insect is to be seen in the same illnstration as the last, and its colors can be well imagined from the lact that, excepting a very small spot of orangered on the inner edge of the lower wings, all the dark parts are blatk, and all the light are rich yellow. Below, it is almost wholly yellow, but of an ochreons and duller cast. In Northern Enrope there exists but one acknowledged example of the genns Papilio. This is the beantiful Swallow-Talled Butterfly (Papilio machaon),
 a rave and brilliant creature. The flight of this insect is rather high, swift, and straight.

Two examples yet remain of the Papilionidr. The first is the very remarkable insect which is known by the name of Lerpocibors, and which, until comparatively late years, was as rare as it is singular. This insect is not of great size, the expanded wings seldom exceeding an inch and a half, and being usually rather less in their measurement. The general color of this butterfly is brown, with the exception of a moderately broad greenish band along the centre of the wings. In the female the band is nealy colorless, and the light patch on the upper wings is tramsparent. The under parts are nearly of the same colors, except that the onter edges of the tails are fringed with a narow line of glittering white, like humished silver. The insect is a native of Siam and Java.

Lastly, we come to the prettily-marked Thais, one of a genns of Papilionidx, which can always be known by the peculiar markings of their wings. The colors are, in all the species, yellow, black, and red, and the wings are edged with a series of bold festooned marks. The inner edges of the hinder wings are deeply scooped, as if to permit free motion of the abdomen.

We now come to another fimily, called the Pierida,

WIIITE 13LTTEELFLY (Pieris crategi), WITII EGGS, CATERPILLAL AND LAIVA. which may he known at once by the mamer in which the imner edges of the hinder wings are folded, so as to form a kind of gutter in which the abdomen rests. In all these insects, the colors are comparatively sober, the upper surface being generally white and black, and the under surface sparingly colored with red and yellow. Our accompanying illustration represents the Common Whime Butabfly. It is a trme representative of the family Pieride, as well as the Brimstone Butterfly, the harbinger of spring ; all the Marbled Butterties, the Orange-tip, and the now scarce Teined-white, which last-mentioned insect belongs to the typical genus. The Epicnaints is almost wholly white and blark above, a slight tinge of rose-color appearing on the lower edge of the hinder wings, and being due to the rich orange-red spots on the under
smrface. All the color is concentrated mpon the under surfare of the lower wings, the groundwork of which is bright yellow traversed by black nervHes, and which are adorned by six large oval spots of or:ange-red. Onr well-known Orange-tip Buttertly is it familiar example of a similar gathering of the color upon the under surface of the lower wings.

There is a pretty butterdly, "alled the Spo, which also belongs to this large lamily, and may be distinguished from the succeeding group by the angulated front wings. It is a mative of tropical America, Java, and India, in all of which comntries it is tolerably plentiful. The colors of the apper surface are deep hack, largely mottled with yellow and orange. The nuter surface is washed with pale yellow, purple, and brown of varions depths.

On the accompanying illustration are seen some specimens of a beantiful gromp of buttertlies placed in the family Heliconia, becanse their gracelul forms and elegantly disposed tints are presumed to render them

worthy of the compraionstip of Apollo and the Muses.

'flhe nlpermost tigure represents the Phono, a mative of Jamaica, Brazil, and the neighboring parts. The wings of this curious insect are almost wholly transparent, the opaque and colored portions heing confined to a narnow band round the edge, and a few spots and streaks upon the wings. All these markings are hackish-brown, except on the under side. where the edge of the hinder pair of wings is tinged with yellow, and sometimes marked with a series of little whitespots. An allied buttertly, the Transparent Heliconia (Helicónia diáphana), so closely resembles this species, that the two are often confounded together.

The lowermost figure at the right hand is the Erato, a native of Surinam. In this insect there is always some variation in color, and the sexes are so different that they might easily be supposed to belong to separate species. In the malle the apper wings are lich brownish-black with large spots of yellow, and the lower wings are also black-ish-brown, streaked in a radiating manner with bhe, and edged with little oval spots of pure white. The female has the ground color of the same hues as her Vot. III.-52.
mate, except that the base of the upper wings is boldly striped with rusty red, and the radiating streaks on the lower wings are of the same warm tint. In both sexes the moder surface is brown, with pale yellow spots on the upper wings, and narow streaks of pale red on the lower wings. The spread of wings is about three ineles.

One species of this genms (Helicónia charitónia) is rery gregarions in its habits, great numbers gathering in some particular spot, and playing about like the gnat assemblies that are so common in the summer thme. So plentiful are they, that when tired they can hardly

MIDAMUム. -Euplaxa midamus. find a place to lest upon, as crowds are continually settling upon the neighboring trees, and as continnally driving off the crowds which have just sat down to rest.

The last figure represents the Marsems, a very elegantly shaped buttertly, a native of tropical America. The gromml color of the wings is hatck, diversified with many bold stripes and patches of orange, and a large golden-yellow mark across the extremity of each upper wing. In the illustration, the white patch on the upper wings represents the golden-yellow of the insect.

In the upper left-hand corner of the engraving on page 40.5 is another example of this genns. 'The upper wings of the Lysimma are chestnut at the base, and thence black to the tip, with the exception of two bold patches of nearly tramsprent membrane. The inder wings are chestont, edged with black, and having a jagged black streak across them, above which is a transparent stripe. The under surface is colored in nearly the same manmer, except that a row of white spots rims aromed the edge.

To the same elegant family belong the buttertlies of the genns Enploa, a good example of which is the Midamus. This insect strongly reminds the British entomologist of the purple emperor, the sober brown of the wiugs changing to rith shining purple when the light falls at a larticular angle. At first sight, the butterfly appears to be quite a dull and inconspicnons insect, its colors being hardy more attractive than the simple black and white of the engraving. But if it be moved so that the light falls diagonally on its wings, the dull brown suddenly changes as if by magie into imperial purple of a lichness experling the power of man to imitate, and more than realizes the metamorphosis achieved by the faily god-mother's want. This transformation is confined to the npper wings, the lower retaning their simple hown lue. The upper wings are sprinkled with some pale spots. The under side is grayish-brown, marked with spots similar to those on the rpper surface.

Pehinaps the most interesting of these butterflies is the now relehrated Bugova (Enplad humáta), the so-called "moth," on which the aborigines of New South Wiales ares in the habit of feeding.

The bugrong is found chiefly upon a range of granite hills called the Bugong Mountains, and it is mather remarkable that the insects congregate mpon the outcropping granite masses
in preference to the wooled sides of the monntans, and are fomm in greatest plenty at a considerable elevation.

The color of the Bugong is dark brown, with two hack eye-like spots on the upper wings. The body is rather stont, filled with a yellow, oily suistance, and covered with down. It is not a large insect, the spread of wing areraging an inch and a half.

We now arrive at another family, of which the Aremipes affords a good example of the trpical grmus. This fine insect measures about four inches and a quarter between the points of the outspread wings, of which the entire contour is bold and sweeping. There is but little diversity of coloring in this buttertly; rich chestnut striped and streaked with black being the gromend tint, and relieved round the edges with white spots, arranged in a mather irrecrular double series. The under surface presents similar hese, bnt of a paler cast. The head, thomax, and abdomen are deep, relvety-black, decorated with small spots of snow-white.

Tine large and important family of the Nymphalide contains a rast nmmber of species, most of which are notable for their brilliant coloring, and many of which are well-known natives of Europe. These insects are, indeed, so mumerous, that only a very slight sketch can be given of then.

The large and boldly-marked insect in the lower left-hand comer of the engraving at top of next page is the Dido, a native of Brazil and Guiana, and is here

ARCHIIPPUS-DAanais archippus. represented of the natural size. The ground color of its wings is blackish-brown, and all the lighter parts are soft, leafy-grem. with a slight pearly gloss. On the moder surface, the gromud color is chocolate, the green manks are much paler, and rather more opalescent than on the upper surface, and are edged with silvery-white. There are, besides, several bands of the same delicate lme on rarions parts of the wings. The caterpillar of this insect is green, diversified with a red and white stripe on each side of the bodry, and covered with several rows of short spines, besides two rather long appendages to the tail.

The mppermost figure in the same engraving on next page represents the Throdamas, an insect marked in a rery mique fashion. Having a ground color of grayish-white, the whole surface is stribbled orer with lines and streaks of brown, diflering greatly in width, some being fine, as if traced with a crow-quill, and others broad amd decided, as if drawn with a brinsh. Along the edges of the wings are a few double lines of moty-brow. The noder side of both wings is much paler, and the markings are finer and farther apart.

The right-hand upper figure is an example of the genns Marpesia, and is remarkable for the bold contour of wing, and the elongated tail with which it is decorated. The color of the Themis is by no means rarions, but has, nevertheless, a decided and pleasing effect. The upper surface is nuiform mady chestnut, over which are draw several narrow stripes that traverse nearly the entire wings, passing from the edge of the upper pair to the extremity of the lower. From the lower margin of each under-wing start two projections, or tails, one being rather short, and the other very long, narrow, and sightity enlarged at the tips. The muder side is pale msty-red, with a very slight gloss of blue when seen in certain lights.

The last figure in this illustration represents the Agraulis moneta, an insect that closely resembles the well-known Adippe Fritillary of England, save that the color is deeper, and the metallic spots of the muder surface larger and brighter. The noper surface of this handsome insect is rich ruddy chestnut, and on the nuder side of the wings are a number of large spots which shine as if they had been plated with silver, and then carefully burnished. It is necessarily impossible to represent this peculiar metallic lustre in a simple engraving, but
a good idea of its real beanty may he formed by imagining the gromd color of the upper wings to be pale chestnut, that of the under wings wood-brown, and all the spots to be composed of highly-hmrnished silver leat.

To this family belongs the brightly-colored gemus Tanessa, of which the common Peacock Butterfly is a familiar British example. This insect, which is one of the finest butterflies,
 may be seen very plentifully in fields, roads, or woods, when the beanty of its coloring never fails to attract admilation.

One of the most notable peculiarities in this buttertly is the uniform dark hues of the under side, which present a great contrast to the varied shades of bhe and red which decorate the upper side. The object of this anangement spems to be that the insect may be able to conceal itself from its foe at will, a purpose which is reatily attainced by a very simple manoenve. When the Peacork Buttertly thinks itself in danger, it thes straightway to some shaded spot, such as a tree-trunk or old palings, closes its wings over its back, and remains motionless. The effect of this proceeding is. that the wide expanse of hright colors is suddenly replaced by a flat, dark, leaflike ohject. which looks more like a pioce of burk torm from the tree than an inseet. The apparent vanishing of the butterfly has always a rather starthing effect, even to those who are accustomed to it, the large, brilliant creatme disappearing as mysterionsly as if amihilated, or corered with the cap of darkness.

The beantiful Soarlet Anmmai, so well known by the broad, scarlet stripes that are drawn over the wings; the Large and Suall Tomtolse-shell Butterflas; the Comma

Butterfly, so called from a comma-shaped white mark on the under wings, and the rare and beantiful Camberwell Beauty, are all members of this genms.

We now come to the gemus Catagramma, which is remarkable for the maner in which the under surlace of the lower wings is colored. There is in all a somewhat cirentar anrangement of lines, which in many species take the form of a figure of 8 , more or less distinctly ontlined. The generic name Catagramma refers to this pernliarity, and is derived from a Greek word signifying a delineation. They are all inhabitants of the warmer portions of the New World.

The Catagramma Peristera (or the Pigeon Catagramma) derives its name from the resemblance which the clanging shades of the wings bear to the opaline hues of a pigeon's nerk. The ground color of the upper surface is black, with two large patches of scarlet in the centre of each wing, the scarlet changing to violet when the light falls obliquely on the wings. The moder surface of the upper wings is of paler tints, lont colored in a similar manner, except a slight streak of blne on the edge, and a stripe of buff across the tip. The under wings are yellowish-buff, variegated with two black patches in the eentre, each of which is garnished with a pair of azure spots. Just above these marks are two black streaks, and a curved blue stripe edged with blark runs round the lower margin.

If the reader will turn to the englaving on page 405 he will find a figure in the npper right-hand corner, that represents the Catugramma marchalii, an insect that is marked more boldly than the last-mentionm species. The mpper surface is black, with a short azme band on the upper wings, and a very narrow gray-blne streak round the lower edge of the second pair. The under surface of the first pair of wings is scarlet from the base nearly to the edge, where a broad band of blatk streaked with white completes the wing. The markings of the nnder wings are blackish-brown or very pale wood-brown, except one tiny patch of scarlet on the upper edge.

The Pollux, a large and boldly colored insect, is a native of Ashantee and Guinea. As is evident by the enormons dimensions of the thorax, which contain the muscles that work the wings, so wide and strongly made, the butterfly is swift and endming of flight. The upper surface of both wings is deep rich black-brown, and the body is of a similar, but rather palerhne. The somewhat indistinct markings on the upper wings are ochreons-yellow, and those at the base of the lower wings are likewise yellow, which fades into white towards the base. The slight edging of the lower wings is blne, except the little streak at the angle, which is yellow. The under surface is rery richly mottled, thongh withont iny brilliant colors. The basal half of the wings is jetty-black, with streaks and rings of white; then follows a broad white belt changing gradually into buff, and on the upper wings the remainder is brown, marked indistinctly with shades of gray. In the lower wings the white belt is followed by a broad stripe of chocolate, then by festoons of gray upon brown, then of a row of deep blue spots, then by a waved band of yellow, and lastly by a border of black. The legs are black and white like the base of the wings, from which they can hardly be distinguished when folded.

A butterftr which is known by the appropriate name of Acoxtimes (which word is of Greek origin, signifying thomy), is a native of Tava and India.

Althongh not remarkable for any brightness of hue, its tint being peculiarly sober, the regular shape of the larva and pupa render it worthy of observation. The caterpillar is mostly found on some species of Bryonia, and is remarkable for the wonderfnlly long projections from its body, which are evidently amalogons to, though far surpassing in size, those mpon the caterpillar of the peacock-butterfly, which is represented on page 412. When it has cast its skin for the last time, and is abont to change into the pupa state, it prepares for the coming event by spiming a large web of stont and shining silken threads, which often neanly cover the under surface of the leaf to which it is afterwards suspended. It then bursts through the caterpillar-skin, hitches itself to the silken web, and hangs there mutil its final change into the
perfect form. As may be seen from the illustration, the shape of the pupa is very remarkable, reminding the observer of an ancient jousting-helmet with the visor down.

The two beantifnl insects, known under the tems ITetara piera and Hetora dracontis, are examples of the family Satyridie. Both these creatures, unlike as they appear to be, belong to the same gemns. The Hetera piera bears a wonderful resemblance to the transpareut heliconia. Its wings are delicately tramsparent, and with the slightest imaginable tinge of yellow. On the lower wings there is a blush of orange-red, and the marks are darkish brown.

The Hetcera dracontis is a delicately marked, thongh not brilliant insect. The upper wings are rely soft brown, tharersed by a band of a glayish hue, and with a very slight tinge of chocolate. 'The lower wings are also brown, but with il faint wash of blne, and the light marks are aznre. On the muder side it is wholly brown, with two round spots of black edged with buff, and two or threc whitish blotches.

The family of the Erycinidre romes next in order, and, as may be seen from the specimens upon the colored illustration, embraces insects of very differing forms and colors. The strange-looking insect, Zeonia Batesii, derives its name from Mr. Bates, who discovered it.

The white portions of the wings are membranous and transparent, and the dark portions are nearly all black, except that the base of the projecting portions of the lower wings is deep blue. The light-colored har is rirh scarlet. This specimen represents a mate; the hinder wings of the female are closer together, and the tails are nearly straight.

A small but elegant buttertly is the Calyana calamila. The upper surface of this insect is black, diversified with mumerous blue and white spots. Below, the ground color is brown, spotted profusely with black and white, and having some short transverse lines of yellow. This insect inhabits the regions abont the Amazou.

A buttertly called Eurygone opatina is of simple but extremely beautiful coloring. Unless held in a favorable light, the insect seems to be of a simple orange color, but if held with its heard towards the observer's eyes, and the sum being behind his back, its wings glow with a golden effulgence that surpasses all power of description. As the insect is gently turned or held so as to communicate a quivering motion, all the tints of the rainbow play orer the trembling wings, and the glory reflected from its surface is almost intolerable to the eve. Is is the case with all the buttertlies, this insect is represented of its natural size.

On the illustration at page 405, two more examples of this family may be seen. The first is placed in the rentre of the left-hand side, and immediately under the tip of the left wing of the great Thoas buttertly. This is the Helicopis cupudo, an insect which, if only viewed on its upper surface, seems, except for the long and slender projections of the hinder wings, to be handly worthy of moch ohservation, the color being pale and dull brown, changing to pale masty-red towards the hase of the wings, and having a mather large whitish spot in the centre of the upper wings. But on tuming it over, so as to bring the mater surface into riew, it proves to be a really wonderful insect. The upper wings have little remakable abont them, their color being hrown, becoming paler towards the edge, and having a sharply defmed whitish-yellow mak in the centre. But it is on the lower wings that the chief interest is concentrated. On a ground of ocheons-yellow are a mumber of large spots which look exactly as if they were made of gold-leaf artificially affixed to the wings, the resemblance being so close, that withont the aid of a magnifier which shows their real structure, a person who han seen them for the first time might well imagine that they had been reritable pieces of gold-leaf, and fastened to the wing by cement. This butterfy is a native of Demerara, while the Misipsa inhahits the regions about the Amazon. It may be seen in the left-hand lower corner of the same engraving. The color of this pretty little insect is silvery blue, over which are drawn a mumber of black bands, thins producing a very bold effect. The under surface is simply light brown, with some bands of a darker lue.

The accompanying fine engraving represents the magnificent insect called the Neoptolemus. It belongs to the gemus Morpho, in which are contained some of the most resplendent beings to be found in the world, all being beantiful, and some endowed with a gorgeousness of coloring that is almost inconceivable. In the present species the upper wings are of the richest azure, glittering like burnished metal, and iridescent as the opal, lout with far greater intensity of hme. In some lights the colors are sombre enough, being only pale gray and darkish brown; but when the light falls favorably upon the wings, their colors are truly magnificent. Around the edges of the wings is a broad belt of black, very deep towards the tips, and narrowing towards the angle. The under side is soft brown, decorated with many irregular stripes of yellowish gray, and besprinkled with a mumber of eye-like spots arranged in a tolerably regular row, three on each of the upper wings, and of nearly equal size, and fom on each of the lower wings. one being very large and separate from the rest, and the remaining three small and close together. In the centre of each eye there is a little white spot, round which is a broad ring of black. then a narrower ring of buff, them a line of black, and lastly a gray line.

Just above the lefthand comer of the Thoas' wing in the illustration on page 405 , may be seen a little butterfly of simple coloring. This is one of the Mant-streak butterflies, belonging to another family called the Lycienidae. In this family are contained the beantiful blue buttertlies so common in the fields, and whose exquisitely spotted under surface never fails to attract admiration. All the copper butterflies belong to the same limily.

The present species is a native of Demerara, and is very scarce, not yet having received a name in the scientific catalogue. The color of the upper wings is brown, with light streaks of blue radiating from the bases, and that of the lower wings is blue, edged with brown. Below it is brownish-gray, with a single narrow line of rusty-red crossing both pairs of wings, and a dash of the same color on the hinder edges.

Befone taking a final leave of the butterflies, it is necessary to mention a family of Lepidopter:, which possess so many of the characteristics belonging to the buttertlies, and so many of these belonging to the moths, that entomologists find some difficulty in placing them in their proper position, some considering them as members of the Rhopalocera, and others as belonging to the Heterocera. These insects are popularly known by the name of Skiplers, on account of their short and irregular flight. Sereval of these insects may be found mostly along hedge-banks towards the end of the day. They do not seem to Hy very high, but pass in their peculiar jerking fashion along the banks, flitting in and out of the herbage with restless, eager movements, which can never be mistaken for the tlight of any other insect. All these creatures have dather large heads, their antenuse have a slight hook at the tip, and their wings are small when compared with the dimensions of the body, thus producing the peculiar flight.

The second great division of the Lepidoptera is that of the Moths, distinguishable by means of the pointed tips of their antenne, which are often furnished with a row of projections on either side, like the teeth of a comb; and in the males are sometimes supplied with branching
appendages. In most instances the wings are conjoined by means of the bristle and loop which have already heen mentioned.

The first family of the Moths is tle Sphingide, a group which contains a great number of swift-winged insects, populaty and appropriately called Hawk-moths, from the strength and speed of their flight. In many instances the proboscis is of great length, sometimes equalling the length of the entire body, and in such instances it is found that the insect is able to feed while on the wing. Jalancing itself before a flower, hovering on tremulous wing, and extracting the sweets by suction. In some cases, however, such as the well-known death's head moth, the prohoscis is very short, barely exceeding the length of the head. In the longtongned Hawk-moths the chrysalis is furnished with a distinct horny case, in which the elongated proboscis can be packed during the period occupied in development. In the genus Smerintlons the wings are sharp and angulated, and the tongue is short.

One of the commonest species of this genus is the Lime Hawk-motif, so called because the larva feeds on the leaves of the lime-tree. It is a green caterpillar, thick-bodied, covered with little protuberances, and uron each sile are some whitish streaks edged with red or yellow. Just at the end of the tail there is a short knobby protuberance, and the fore part of the body is rather narrow. When the larva has completed its time of feeding, it descends to the ground, and bories itself about eighteen inches deep in the earth, whence the chrysalis may be extracted in the winter by the help of a pickaxe and trowel. Beside the lime, the elm and birch are favored residences of this insect.

Although very common in some places, it seems to be rather local, being scarcely, if ever, found in many spots where the trees which it loves are abundant. The color is very variable, but the general tints are leaf-brown and green, with a few blackish spots and stripes, the brown being towards the base and the olive-green towards the tips of the wing.

An allied species, termed Smerinthis ocellutus, is seen in the engraving on page 419.
The splendid insect, appropriately named the Death's-mead Moti, is tolerably common throughont Europe, though, from its natural habits and the instinct of concealment with which the caterpillar is endowed, it is not so frequently seen as many rarer insects. Owing to the remarkably faithful delineation of a skull and bones upon the back of the thorax, the insect is often an object of great terror to the illiterate, and has more than once thrown a whole province into consternation, the popular idea being that it was some infra-natural being that was sent upon the earth as a messenger of pestilence and woe, if not indeed the shape assumed by some witch residing in the neighborhood.

I once saw a whole congregation checked while coming out of church, and assembled in at wide and terrified circle aroumd a poor Death's-head Moth that was quietly making its way across the churchyard-walk. No one dared to approach the terrible being, until at last the village blacksmith took heart of grace, and with a long jump leaped upon the moth and crushed it beneath his homailed shoes. I keep the flattened insect in my cabinet, as an example of popular ignorance and the destructive nature with which such ignorance is always accompanied.

Althongh in itself a perfectly hamless creature, it yet has one umpleasant habit, and is said to make its way into hee-hives, for the purpose of feeding on the honey. Still, its numbers are so inconsiderable, that it could do but little harm in an apiary, and need not be dreaded by the owner.

The caterpillar of this moth is enormonsly large, sometimes measuring five inclies in length, and being rery stoutly made. It feeds on varions plants, the jessamine and potato being its favorites, and may be hest found by traversing potato-grounds in the night, and directing the light of a builsterye lantern among the leares. It can be readily kept and bred, but requires some "arefnl tending, and it must be remembered that it will only eat the particular forl to which it has loeen aronstomen, and if bred among the potato will refuse the jessamine leaf, and cice cersâ. When the catempillar is about to change into its chrysalis state, it should be plaped in a vessel containing seven or eight inches of earth, which should be kept morderately damp by means of a moist sponge or wet piece of moss laid on the top. If this
precantion be not taken, the shell of the chrysalis is apt to become so hard that the moth is unable to break its way ont, and perishes in the shell. I have several specimens where the moth has thus perished. The caterpillar's are also much inlested by ichnemmon-flies, so that the collector often finds his hopes of a fine insect destroyed by these small and fatal flies. It is worthy of remark, that, when this moth first emerges from the chrysalis shell, its wings, legs, and antenne are enveloped in a fine and delicate membrane, which soon dies when exposed to the air, and falls off in pieces, permitting the limbs to unfold themselres. Mr. Westwood regards this membrane as analogons to the pellicle mpon the pseudimago of the may-Hy, described at page 396.

One of the most carious points in the history of the Deathis-head Moth is its power of producing a somul-a faculty which is truly remaskable among the Lepidoptera. The noise is something like the grating, squeaking cry of the field-cricket, but not nearly so lond. The mode of prodncing the sound is rather donbtfinl ; but modern investigations seem to confirm the opinion of Huber and Rösel, who thonght that the sonnd was produced by friction of the abdomen against the thorax just at the junction. At all events, it is certain that the moth always bends its abdomen downwards whenerer this squeak or cry is heard, and a circular tuft of orange-colored hairs below the wings is seen to expand at the same time.

The color of the caterpillar is bright yellow, and the body is corered with many small tubercles. Along each side rm seven oblique bands of a fine green. At the end of the tail is

PINE HAWK-MOTH.-Sphinx pinastri. With eggs and caterpillar. (Natural size.)
a grannlated kind of horn, and mpon the back are many spots of black and blue. The color of the moth is briefly as follows:-On the upper surface, the front pair of wings are blackishbrown covered with waved stripes and dashes of deep black and powdered with white. There are also some stripes of rusty-red on the edges. The lower wings are ochre-yellow, and marked with two bands of deep bluish-gray, the upper hand about half the width of the lower. The thome is blackish-brown, and has on its surface a marvellonsly accurate semblance of a homan skull and collar-bone. The plumes, or lengthened scales, of which this is composed are beantifully soft, with a rich deep pile, and feel like relvet under the fingers. A fine specimen of the Death's-head Moth is almost the largest insert found in Emrope, the spread of wing sometimes reaching nearly six inches. The antenne are remarkable for their stiff and sturdy make and the curions hook with which they are terminated.

We now armive at the typical genus of the family, of which the Convolyults Hawk motur affords a good example. It may be mentioned that the term Sphingidre is derited from the peculiar attitude sometimes assmmed by the caterpillars, which have a custom of raising the fore part of the borly so as to bear a fancifnl resemblance to the well-known attitude in which the Egyptians were accustomed to represent the mysterions Sphinx.

The fine insect seems to be found sparingly in most parts of Enope, especially towards the sonth. As is the case with many of the nocturnal moths, its eyes shine brightly at night, and on account of their great size are very conspicuous in this respect. The specific name of
the moth has been given to it because the caterpillar is known to feed on the common field convolvnlus or bindweed, and it is sometimes known by the title of Convolvnlus or Bindweed Hawk-moth. The caterpillar is mostly green, spotted and splashed with black and brown, and having a row of oblique stripes on each side. Generally the stripes are yellow, and edged with black, but they are sometimes wholly of the bolder color, while the entire caterpillar sometimes assumes a brownish lme. Upon the end of the tail there is a sharp curved horm, quite harmless, and whose nse is at present unknown. The color of the wings is mostly wood-brown, checkered with ash, gray, and white, and the abdomen is ringed with broad bands of rose-color and narrow stripes of black, while down its centre runs a broad streak of gray.

Of several other fine insects belonging to this gemas, we mention the Privet Hawk-noth (Sphinx lignestri), and the Pine Hawk-Motin (Spliinx pinastri). The latter has been chosen for an illustration on account of the mice pattern with which the caterpillar is inseribed. (See page 417.)

The beantifnl Oleanber Hawk-motif, which is here represented of the natural size, belongs to another genus, in which the caterpillar has the power of prolonging or withdrawing the hearl and neck like the proboscis of an elephant, a faculty which has eamed for another insect the name of elephant hawk-moth.

Our next illustrated example is the Humming-bird Motw. Although not gifted with the brilliant hues which decorate so many of the Hawk-moths, it is a more interesting creature
than many an insect which can boast of treble its dimensions and dazzling richness of color. This insect may be readily known by its very long proboscis, the tufts at the end of the abdomen, and the peculiar flight, which so exactly resembles that of the homming-bird, that persons accustomed to those feathered genus have often been deluded into the idea that Eimope actually possesses a true humming-bird.

In the curious motlis of which the Hylas is a good example, the wings are as transparent as those of the bee tribe, and, indeed, the hymenopterous idea seems to run through the whole of these rreatures so thoroughly, that the shapes of their bodies, the mode of flight, and even the manner in which they mose the abdomen, are so bee and wasp-like, that an inexperienced observer would certainly mistake them for some species of the hymenoptera. Others there are which bear an equal resemblance to the gnats, and are of correspondingly small dimensions.

Is the next family, the Antliroceridte, we find a number of moths of no great dimensions, but possessing great brilliancy of coloring, and flying by day. A very familiar example of this group is found in the Gheme Folesters, a pretty little insect, not exceeding an inch and

a quarter in the spread of wing, but colored with extremely pure hues. It may be found plentifully in the month of June, and is most common on the outskirts of woods. The caterpillar of this insect feeds on the common dock and sereral allied plants, and, like the perfect insect, is of a green color, but diversified with two rows of black dots along the back, and a row of red dots on either side. The color of the moth is very simple, the upper wings being of a soft golden-green, with a peculiar silken gloss, and the under wings brown. The body is green, but with reflections of blue.

The well-known Burnet-noth, so familiar on account of the rich velrety-green, spotted with scarlet, which decorates its wings, also belongs to this family. The caterpillar feeds on many plants, and is notable for making a spindle-shapet cocoon in which it passes through its pupal state. This cocoon is of a light brown color, and is usually fastened to an upright stem of grass.

In the Egeriidae, the wings are as transparently clear as in the Sesiadre, and the general aspect is equally unlike that of a moth. A species called Currant Clear-wing (Figeria tipuliformis) is very common, and is fond of haunting currant-bushes, where it may be captured without much difficulty, being rather dull and sluggish in takiag to flight, though when once on the wing it is quick and agile in its movemeuts. On account of its resemblance to the
large gats, it is popmlarly called the GNat Clear-wing. The caterpillar of this insect feeds upon the pith of the cumant-trees.

A lahge insect, of tolerably, but not very frequent occmrence, is the Lunar Hornet Clear-wing. Its popular name is given to it in allusion to its singular resemblance to a homet, the similitude being so close as to deceive a casual glance, especially when the insect is on the wing. In rommon with all the members of this genus, the Hornet Clear-wing is a rather sluggish insect, being oftener seen at rest than on the wing, and being mostly found while clinging to the trunks or leares of the trees on which they lived in the larval state. Their flight is rather slow and heary, and as their tongues are comparatively short, they are not able to poise themselves on the wing, and sip the sweets of flowers while balancing themselves in the air.

The larva of the present species feeds mon the willow, boring into the young wood and sometimes damaging it to a serious extent. All these insects inhabit, while in the larval state, the interior of branches or roots, and make a kind of cocoon from the nibbled fragments of the wood. Just before undergoing the transformation, the larva turns round so as to get its head towards the entrance of the hurow, and after it has clanged into the pupal form, is able, by means of certain projections on the segments, to push itself along until the upper half of the body protrudes throngh the orifice, and permits the perfect moth to make its escape into the open air.

The wings of this insect are transparent, with orange-red nervures and dusky fringes. The head and thorax are shining brown-black, with a yellow collar, and the abdomen is ringed with orange and dark brown.

The Uranide form a curions and somewhat doubtful family, some authors having considered them to belong to the buttertlies mather than the moths. Many of these insects are of most gorgeous coloring ; their form, including the tailed wings, is very like that of a buttertly, and they are dimmal in their habits. Still, the preliminary stages of the caterpillar and pupa are such that they prove the insects really to belong to the moth tribe. All these insects are inhabitants of the hotter parts of the earth, and are most plentifnl within the tropies.

The Urania stoamus is a native of Tmmaca.
The Castmid licus comes from Brazil and Central America. Its coloring is bold and yet simple. The upper surface of the first pair of wings is dark blackish-brown shot with green, the latter color being hest seen by looking along the wing from point to base. Near the outside edge of the hinder wings is a row of azme spots, and the narow fringe is white and brown. A bold white hand rms throngh the centre of both pairs of wings.

A verif curions moth is the New Zealand Swift (Hepiolus pirescens). It is a foreign pample of a genus well known in Europe by some curious thongh common insects belonging to a family called the ITpialids. From the head of the lara rises, in a nearly perpendicnlar line, a hom as long as the body of the insect. In the typical genus the larva is entirely subterranean, feeding on the roots of plants, and, as in some of the preceding insects, the chrysalis is able to ascend its burrow when near the time of assuming the perfeet form. All these moths are very quick of wing, darting in a nearly straight line with such swiftness that they look like mere light on dark streaks drawn throngh the air. Fet they are captured with comparative ease, as they are not so agile as swift, and can be taken by quickly striking a net athwart thein course. From their great speed, they are known by the popular name of Swifts.

The New Zalant Swift is a truly curions insect, not so much for its form or colors, but for the strange mischance which often befalls the lara, a regetable taking the place of the ichmemmon-fly, and nourishing itself on the substance of the being which gives it support. A kind of fungms affixes itself to the larva, and becomes developed on its strange bed, taking up gradually the fatty parts and tissues of the caterpillar, until at last the creature dies under the parasitic growth, and is converted almost wholly into vegetable matter.
'The Hell-known Goat-motir is, mext to the death's-head moth, one of the largest of the British Lepidoptera, its body being thick, stont, and massive, and its wings wide amd spreading.

Some readers may perhaps hare observed certain large, rount holes in the trunks of trees into which a finger can be readily thrust, amd out of which an empty chrysalis tase often projects. These are the burrows made by the caterpillar of the Goat-moth, and often arevery destructive to the trees. The larva itself is but little smaller than that of the deathes-head moth, and is by no means an attractive-looking creature. Its body is smooth and shining, mostly of dull mahogany-red tinged with ochreons-yellow, and having a large oval patch of chestunt on the back of each segment. It is gifted with a curiously wedge-shaped heat, and its muscular power is enormons, as may be proved hy actual experiment during the life of the creature, or inferred from the marvellous armagement of muscles which are made visible upon dissection.

It exudes a liquid of powerful and fetid odor, thought by some to resemble the unpleasant effluvium exhaled by the he-goat. Its influence extends to a considerable distance, and a practised entomologist will often detect the presence of a Goat-moth caterpillar simply by the aid of the nostrils. In spite, however, of the repulsive aspect and umpleasant odor, this creature is thonght to be the celebrated Cossus of the ancients, a grub which was fonnd on trees, and, when dressed after some particular fashion, was looked upon as a very great dainty.

A mnch smaller moth, the Wood Leorarn, is a very prettily-marked insect, though without the least brilliancy of color. The caterpillar of this insect feeds upon the interior of many trees, seeming to prefer the wood of the apple, pear, and other fruit-trees. It is a naked, fleshy-looking larva, of a light yellow color, and having a doable row of black spots upon each segment. Like the goat-moth, it prepares a cocoon-like cell when it is about to take the pupal form, but the lining is of stronger materials, cemented firmly together with a ghtinous substance secreted by the insect. The moth is seldom seen until July, and is tolerably plentiful in some places, appearing to be decidedly local and rather intermittent in its visits.

Tue family of the Bombycida includes several insects of inestimalle value to mankind, the various silk-producing moths being included in its ranks. The common silk-worm is the most useful of all of them. The accompanying oleograph is a true ilhustration of this familiar insect. The ralnable results of its habits are too well known to need any description. But as it is not generally known that upwards of forty silk-prodncing moths exist in different parts of the world, a short history will be given of some of them, together with a brief description of one of the finest species.

All these insects secrete the silk in two large intestine-like vessels in the interior, which contain a gelatinous kind of substance, and become enormously large just before the caterpillar is abont to change into a pupa. Both the silk organs unite in a common tube at the month, technically called the spinneret, and through this tube the semi-liquid is ejected. As soon as it comes into contact with the air it hardens into that soft, shining fibre with which we are so familiar. If a single fibre of silk be examined throngh a good microscope, it will be seen to consist of two smaller fibres laid parallel to earh other, like the barrels of a donble gnn, this structure being due to the double secreting vessels. The goodness of silk chiefly consists in the manner in which these semi-fibres are placed together. Silk-worm "gut," as it is called by anglers, is made by steeping the caterpillars in strong vinegar for a time, and then pulling them suddenly until they elongate into the well-known threads to which hooks are attached.

The caterpillar emploss the silk for the purpose of ronstructing a cocoon in which it can lie until it has assumed the perfect form ; and proceeds witlo wonderfnl recrularity and dispatch in its work, its head passing from side to side, always carrying with it a thread, and the cocoon being gradually formed into the oval shape which it finally assumes. The few outermost layers are always rongh and of poor quality; these are stripped off, and the end of the thread being found, it is fastened to a wheel, and spun off into a hank of soft yellow fibre. The coloring matter is very variable, sometimes being hardly visible, and at others giving the silk a bright orange tint. It fades much on exposure to light.

Among the many silk-worm moths may be mentioned the Dasee-worm of Bengal (Bomby, fortunátus), an inseet that makes an inferior silk, with which the bales are often adulterated unless the owner or purchaser is very careml in examining them. The silk is yellow, and there are several crops ammally. A much more valuable insect is also cultivated in Bengal, by the name of Boro Poroo (Bombex textor). The caterpillar is small, and the cocoon of proportionate dimensions. The silk is rery good, and of a pure white. One of the commonest insects reared by the same nation is the Tusser or Tussen of the Bengalese (Anthérea páplica), called by different names by the various tribes which cultivate it. It is very aboudant, and as it is lardy and feeds on many kinds of food, is a truly valuable insect. It supplies the natives with great part of their clothing, and is even imported into Europe. There are several large manfactories of this silk, the most important of which is at Bhagulpore. The habits of this insect seem to vary much according to the locality.

The Allantiuts Silf-worm las lately attracted great attention, and appears likely to supersede the ordinary silk-worm in many respects. It is a native of China, and has been largely used for the purpose of supplying clothes for the people. As the name implies, the caterpillar feeds upon the Ailanthus tree (Ailanthus glandutosus), which, althongh imported from China into the moderate climates of Europe and America, grows well and fast in these conntries, and has been firmly acclimatized. Rearing the Ailanthus-moth is one of the easiest of processes, the caterpillars remaining quietly on the trees and spimning their cocoons amid the branches. The eggs are hatched in a similar manner to those of the common silk-worm, and after being fed throngh their first monlt with picked leaves, are transferred to the trees, and there left. It is of course necessary to cover the trees with metting in order to prevent the liids from feeting on such delicate morsels.

The color of the caterpillaw is green, marked with blank, except the head and the last segment, which are yellow. The general color of this moth is grayish-yellow above, with splashes and markings of dull riolet, black, and white. The transparent crescent is worthy of notice. The silk is strong, and takes dye easily, but does not jossess the peculiar gloss which has long been proverbial. It is a truly fortunate circumstance that this insect has been so opportumely brought into notice, as it is wonderfully hardy, not subject to many diseases to which the common and delicately constituted silk-worm is liable, and being apparently free from that strange fungoid parasite which occasionally commits such fearful ravages, and has been known to dejopulate a whole district in a single night.

An allied species, the Eran She-wors (Attacus ricini), has long been in use in many parts of Asia, where it is cultivated by the peasants, and affords them rament of a marrellonsly enduring character, and ret sightly. Although the cloth that is woven from the silk of this insect is loose and seemingly flimsy of texture, it is so wonderinlly durable, that a garment is said to last during nearly an entire lifetime.

Tue family of the Arctiode, so called because some of the hair-covered larve have a bearlike look, is represented in Europe by many examples, some being really handsome insects, and others remarkable for some peenliarity in themselves or the larre.

Perhaps the most curious example of this family is the Horse-bunneli Moti, which derives this name from its habits. It is common in many parts of the West Indies, and is in some places so plentiful as to do considerable damage to the fruit-trees. As soon as the larva is hatched from the pegg, it sets to work in building its habitation : and even before it begins to feed, this industrions insect begins to work. The house is mate of hits of wood and leares, bound together with silken thereads secreted in the interior. When the creature is small, and the house of no great weight, it is carried nearly upright : but when it attains size and consequent weight, it lies flat and is dragged along in that attitude. The entrance of this cmrious habitation is so made that the sides can be dawn together, and whenever the ereature feels alarmed, it pulls its cords and so secures itself from foes.

The Lobster-notu derives its name from the grotesque exterior of the caterpillar. This larva is one of the oddest imaginalle forms, hardly to be taken for a caterpillar by one who

SILK-WORM AND MOTHS.
was not acquainted with it. The apparently forced and strange attitnde in which this caterpillar is represented is that which it assumes when at rest. The second and third pair of legs are much elongated. The moth itself displays no very notable points of structure except the raised tufts on the disc of the fore wings.

The well-known Trger-noth (Aictica caja), with its red and brown coloring, is a wellknown example of this family, and its caterpillar is no less familiar under the name of Woolly Bear. This is a very harmless creature, feeding ahmost wholly on the dead nettle, but some of its allies are terrible phagnes to the agricultmist, or even to the comtry at large, having been known to inflict serions damage to crops, and in some parts of Germany even to strip whole forests of their foliage.

One of these insects, called the Taporer-motir (Orgyicantiqua), is especially remarkable for the strange contrast between the sexes, the male being a wide-winged moth of the ordinary kind, and the female a fat grub-like creature with hardly a vestige of wing, and scarcely

GIPSY-MOTH.-Mynogymna dispar.
stirring from the spot on which it is placed. The well-known Puss-motn (Cerura vinula), so called because its markings bear some resemblance to those of a tabley cat, belongs to this family. The caterpillar of this moth is a handsomely colored creature, remarkable for the odd, sphinx-like attitnde which it assumes when at rest, the pink St. Andrew's cross which is drawn over the back, and the forked appendage at the extremity of the body, from which a pair of long and delicate filaments cam be thrust or withdrawn at pleasure. This caterpillar constructs a cocoon of wonderful strength, composed of bits of wood cemented together, and of such hardness that a penknife cannot penetrate it without risk of being snapped in the attempt.

As may be seen by reference to the engraving, the Gipsr-moti differs much in its coloring, according to the sex, the male being blackish-brown and the female grayish-white. The upper wings of both sexes are marked with four waved transverse bands of moderately light brown, and a dark brown mark near the middle of the front edge like the letter \mathbf{V}, inside of which is a blackish spot. On the Enropean Continent this moth is very abundant, and the caterpillar is often extremely injurious to the trees.

Another moderately winged moth, called the Pale Tussock-motir, was also chosen for an illustration. This name the insect derives from its color and the tufts of hair that decorate the body of the caterpillar

PALE TUSSOCE-MOTH-Dasychira pudibunda. Male, cocoon, caterpillar. (Everything of natural size.) like tussocks of grass upon a tield. The caterpillar goes by the popular name of the Hopdog. The color of the Pale Tussock-moth is light brown-ish-gray, the fore wings being' diversified with several marks of blackish-brown, the shape and dimensions of which may be seen by reference to the engraving. The hinder wings are much jaler, and the band is dark brown.

The Hers, our next example, belongs to a gemms which is known in Emope by the beautiful Dominula, or scablet Tagele-momi, with its rich green and scarlet wings. In the present instance, the fore wings are cream-colored with broad markings that look at first sight as if they were black, but when viewed in a good light are seen to be of the deepest imaginable green with a velvety hastre. The hinder wings are rich crimson scarlet, decorated with three or four black spots. This species is found in several parts of Europe.

The Stmg-motil is a mative of New Sonth Wales, and the caterpillar feeds on the leaf of the stringy bark-tree. About the month of February it changes into the pupal state, and resides for some time in a cmions kind of habitation. Just before it throws off the last larval skin, the caterpillar weaves a small and close cocoon or case, of an egg-like shape, which it suspends to the stem of a leaf, and therein awaits its final change.

The color of the moth is simple, but rather prettr. The fore wings are chestnut, edged with green and white, and the hinder wings are bluish-gray, edged with yellow and marked. with green, yellow and hrown.

The family of the Lithosiide is represented in Europe by several moths, of which the Cinvabal-motil (Callimorpha jacobera) is perhaps the best known, on acconnt of its rermilion and scarlet wings of precisely the same color on both sides. The Isse, which, like the Meliconia, is a native of Brazil and the neighboring comntries, has the npper wings black, beantifully diversified ly some red longitudinal stripes at the base, succeeded by two broad yellow patches. Near the edge there are some white spots. The hinder wings are red, veined with black and bordered with a broad black band on which are some red spots.

We now come to the large family of the Noctuida, contaning a very great number of species, many of which so closely resemble each other that to distinguish them is not a very easy matter

The delarately colored Pearif-Blossom Motar derives its name from the colors upon the wings, which closely resemble the soft pink upon the peach blossom. Althongh spread over the morthem parts of Europe, it does not appear to be very plentifnl, and does not assemble near one spot, as is the case with many rare and local moths. The caterpillar is easily known on account of a large hump that projects just behind the head, the summit of which is cleft into two bands, and also ly the series of triangular elevations along the back upon which mons a pale zigzag line. 'I'he color of this larva is originally dark brown, but it sometimes assumes a paler hue. It may be fond sparingly upon the common bumble about May. The fore wings of the Peach-Blossom Moth are soft brown, with a few waved lines romning nearly panallel with the edges, and having fire shots of delicate pink. The linder wings are simple grayish-yellow, with a single waved line running across the middle.

The Lalige Sword-grass Motil derives its generic name from the handsome appearance of the caterpillar, the word calocampa being derived from two Greek words, the former signifying beantiful, and the latter a grub. The larva may be found in summer and antum upon
many plants, but especially on spinach, lettuce, and asparagus, and is not very common. Its color is rich green; a double row of white spots runs along the back, the rows being divided by a yellow line, then a row of white spots arranged in groups, and lastly a line of scarlet. The moth itself, although of pleasing tints, is not nealy so handsome as the caterpillar. The general color is brown, in some individuals marked with yellow and in others with chestnut. The curiously shaped marks upou the wings are brown-black. The hinder wings are gray, and the fringe is yellow.

When this moth is alarmed it has a habit of falling to the gromd, with the upper wings drawn closely round the body and the antenne and legs folded. In this attitnde it looks more like a stray piece of stick than a moth, and would escape any one who was not searching carefully for it and was not acquainted with its habits.

The insect in the illnstration is the Clafoes Noxpaleal, a fine and rare example of the Underwing-moths, so called because the hinder pair of wings are mostly of some bright color, while the upper pair are of comparatively sober tints. All these insects have a labit of settling on trunks of trees, or objects of similar dark hues, and drawing their upper wings so closely over each other as to conceal the brilliantly colored lower wings eutirely beneath their shelter. When so seated, or rather suspended, as they always hang in a vertical attitude, it is almost impossible to discover them, even thongh they be marked down to the very tree on which they

CLIFDEN NONPAREIL.-C'atocalu frusina. (Natural size.)
alight. They require some little care on the part of the pursuer; for although they depend much on their dull coloring for concealment, they are very alert on the wing, and the moment that they take alarm they speed away with wouderful alacrity.

The Swalen-talled Moth is a well-known European species, very common in woods, and being mostly found among the underwood, whence it may be dislodged by beating the branches. The caterpillar feeds on many shrubs, but prefers the willow, the lime, and elder trees, the elder being its chief favorite. The cocoon is made of withered leaves.

The Peppered Moth derives its name from the color of the wings, which are white, covered with little black dots, that look as if they had been shaken out of a pepper-castor. The stripes on the fore wings are black.

The V-мотн, another of a very common species of this family, is so called on account of the dark brown mark upon the fore wings, which much resembles the letter after which it is named.

There are several other families of moths, many of which contain numerons species, but our space does not allow to treat them all. Some of them are rery small and apparently Vol. III.-51.
insignificant, thongh their rast numbers often give them powers of destruction which are unequalled by the larger lout scarcer insects.

The Pebble Ноoк-tip Moti is one of these insects, and one that has greatly perplexed systematic entomologists to place it in its proper position. The Geometridre, ats a rule, have the antenne perfectly simple and thread-like; but the male of this insect has those organs in a feathery form, like those of other families. The larva, again, is of rather eccentric shape, with projections along its back, with tufts of stiff hairs, and assming an attitude very like that which is characteristic of the puss-moth lara already described.

The popmar name of this moth is derived from the hook-like tips of the wings. Its color is reddish-buff, over which are drawn a number of waved dusky streaks. In the centre of the wing there is a dusky spot, and an orange-brown stripe is drawn from the imer margin to the extremity.

A very pretty and well-known moth is the Oak-teaf Roller (Tortrix viridana), a moth of a beantiful apple-green unon the upper wings. In the illustration the insect is represented in its natnral size. In some places, these moths
 swarm to a fearnl extent, stripping whole trees of their leaves. I have known the oaks to be surrounded with whole clonds of these moths, fluttering abont like gnats, and forming an exhanstless hanquet to the empis-flies, which were catching them by thousands, embracing them in their long legs, and flying about with their prey, sucking their juices like so many winged vampires.

Other species live beneath the bark of trees, or eren lyurow into the wood, while others are hatched in the interior of frnits, and live mususpected in their retreats mitil they are on the point of changing to the pripal form, when they eat their way out, and leave a round hole as a memento of their presence. Thr Coding-motir is one of the commonest of these tiresome insects, living in the middle of the fruit from which it takes its name, and giving rise to the condition which is termed " maggoty." The larva is a ronnd, fat, white grob, which may too often be found in the interior of an apparently somed and ripe apple, and which gives to every part which it has tonched a very bitter and nanseons flavor, like that of a worm-eaten nut. None of the 'Tortricida are of very brilliant colors, the Oak-leaf Roller being one of the most conspicuous. The fore wings are dan grayish-brown, striped thansersely with a darker tint. On the outer part of each wing there is a dark hrown space streaked with golden bars. The hind wings are simple dusky-hrown.

The rose suffers sadly from the ravages of several of these moths, some of which feed within the bud, and others tie the young leaves together :amd feed upm the interior.

Tue Tineide form a very large fimily of moths, all of which are of small dimensions, and some exceedingly minute. From several points in their structure, Mr. Westwood seems donbtfinl whether they onght not to be mited to the Tponomentida; the general narowness of their wings, and the rare ocemrence of labial palpi, being the points by which they have been separated. The larree of most of the species form portable cases of rarious materials, in which they reside, some feeding upon animal, and others upon regetable substances. The too well-kunwn Cloties-motir (Tinea topetzellio) belongs to this family. There is another species of the same genus, popularly called the Wolf-мotu (Tinea gravella), which hames gramaries and malt-honses, and does great damage by feeding on the grains and fastening them together with its silken wel.

The pretty litile Lilac-leaf Roller Moti belongs to this family. Those who possess gardens lave doubtlessly noticed that many leaves of the common lilac are rolled into a cylindrical form, hom together by silken threads, and that, if this little case be opened, ont tumbles a small whitish caterpillar with a black head, who loses no time in letting itself to the ground by means of a silken fibre spun from its month. How the larva rolls the leaf is quite a mystery, and though it has been watched by many careful observers and seen to fasten its

2eve

NE have concluded to submit for public patronage a work with the above title, being a serie of exquisite Engravings representing the Animal World, executed with great scientific accuracy; and accompanied by full Descriptive Text, written in popular terms, so as to delight and instruct the people. Anyone who has considered the subject must be at a loss to understand why an Illustrated Natural flistory, comprehensive and at the same time popular, has not before this been published in this country. Indeed any lover of animals who has visited the great museums and zoulocgieal gardens and has had access to books of engravings in the public libraries, could not fail to remark the weath of material in existence devoted to this subject. Being confirmed in our conviction of the desirability of such a work, we laid under contribution the best existing authoritics for the production of most perfect representations of all the more important living creatures, and amons the artists whose delineations will delight the reader, we may mention Harrison Weir, Wolf, Coleman, Fr. Specht, and Mutzel. By far the majority of the engravings in these volumes are from drawings made from the liaing animals, many at the Zoological Society's Gardens in London, England.

We purpose that our patrons shall be aided and interested in their study by such an array of pictures as has never before embellished any Natural Itistory. In numerous instances the engraving is printed in oil-colors, and this portion of the illustrations has been taken charge of by Messrs. L. Prang \& Co., of Boston, who we believe rank foremost for high artistic results in this department of printing. These Olengraphs were copied under the superintendence of Mr. Prang from the renowned "Tafchn" of "Brehm's Thicrleben," so that they may be declared perfectly reliab!e.

We sought competent advice from various sources as to the most suitable text that should accompany this panorama of handsome Engravings. It was found impossible to embody all the present icleas of naturalists in a single work like this on account of the rapid advances and constant changes in their knowledge of, and habits of thought respecting, the Animal World. And it seemed to us correct that the true object of Zoology is not to arrange, to number, and to ticket animals in a formal inventory, but to inquire into their life-nature, and not simply to investigate the lifeless organism.

What do we know of "Man" from the dissecting-room? Is it not Man, the warrior, the statesman, the poet, etc., that we are interested in? With all veneration which attaches itself to those who are the accredited possessors of abstruse learning, their inordinate use of phrascology detracts too much, we fear, from the fascination that the study of the Animal World would otherwise yield, and as we are not content to have our work restricted to a favored few, we thought the task placed in our hands to be to keep the work free from a repellant vocabulary of conventional technicalities. Our endeavor has been fo find an author whose work would be noted for its fund of anecdote and vitality rather than for merely anatomical and scientific presentation, and we arrived at the conclusion that we could not do better than avail ourselves of the Rev. J. G. Wood's compreliensive work -a work most popularly approved by speakers of the English language. It would be superfluous to say one word concerning the standard character of his book, from the pages of which old and young at the other side of the Atlantic have obtained so much instruction and rational amusement. Avoiding the lengthened dissertations and minute classifications of specialists, he presents to his readers in popular terms a complete treatise on the Animal Kingdom of all climes and countries. The one objection that could be urged against it was, that animal life in America might be treated more fully and American forms given more consideration. In order to obviate this drawback and to do full justice to the creatures of our own country, we secured the aid of Dr. J. B. Holder, of the American Museum of Natural I listory in New York, an undoubted American authority, who has adapted Wood's work to American wants and given prominence to American forms of Animal life.

The splendid work on Rodentia, by Allen, Coues, and others, will be fully consulted. The valuable work on North American Bisds, by Baird, Brewer, and Ridgway, will be the guide in the treatment of birds. The late arrangement of the classification and nomenclature of North American Birds, by Mr. Ridgway, and the Committee on that subject of the Omithologists' Union, will be utilized in full. The arrangement of Mammals will be after the latest classification by Professor Flower, of the Zoological Society of London.

Tcrms of publication.

The extent of the work will be 68 parts of $\mathbf{2 8}$ pages, at the price of $\mathbf{2 5}$ cents each. The entire publication will comtain $3:$ Oleographs and 6 Full Page Engravings on Woorl, besides many hundreds of exquisite Illustrations inkerspersed through the text. No subscriber's name is received for less than the entire set, and no order can be cancelled after acceptance of first four parts. The Publisher guarantees to complete the work in sixty-eight parts. The parts are payable only as delivered, the carrier not being permitted to receive money in advance, nor to leave parts on credit. Subscribers who remove, or who are not regularly supplied, will please address the Publisher by mail.

NO SUBSCRIPTION RECE̦IVED FOR LESS THAN THE COMPLETE WORK-68 PARTS.

threads, the precise force which makes the leaf assume its cylindrical form is as yet undis. covered. The caterpillar lives within, and feeds upon the rolled portion of the leaf, thus surpassing the feat of Ascanius recorded in the "Fneid." The fore wings are golden-brown, with pale brown transverse markings, and the hinder pair are edged with long grayish fringes. The larva feeds on the ash and privet as well as on the lilac.

Otr last example of the Lepidoptera is the beautifnl Wifte-plume Motir, an inseet which never lails to attract attention, on account of the singular elegance and beauty of its form.

This insect belongs to a small family which is remarkable for the fact, that, except in one genus, the wings, instead of being hroad membranous structures, are cleft into narrow rays, feathered in a most soft and delicate manner. The White-phume Moth is to be seen in the evenings, flying in a curious, uncertain manner, and looking not umlike a snow-flake blown casually by the wind. It seems never to fly to any great distance, settling quite openly on leaves or plants, withont taking the precantion of clinging to the under side, as is the custom with so many of the smaller moths. When it rests, it folds the wings so that they only look like a single broad ray. The legs of this moth are very long and slender. The color of this insect is pure white.

An allied insect, the Twentr-plene Motn (Alúcite hexadactyla), has its wings eleft into a great umbler of plumes, thus giving rise to its popular name. In reality, there are twenty-four plumes, each of the fore wings being cleft into eight divisions, and the hinder wings into four. It is much smaller than the White Plume, and is fond of haunting honses, where it may be seen moring up and down the window panes with much agility. Antumn is the best time for finding this little moth. Its general color is ashen-gray, with two darkish bands and a white fringe.

HOMOPTERA.

In the next order are comprised some very grotesque insects, some of which have been thought to belong to other orders, and a few not leing linown to be insects at all until comparatively late years. They have rounded bodies, not more than three joints in the tarsi, and their wings are four in number, wholly membranons, the fore pair being larger than the hinder, but not overlapping in repose. The mouth forms a kind of tube, sometimes nearly as long as the body, and often sufficiently hard and stiff to pierce the skin.

In this curious order are placed the Aphides, those little green insects that swarm upon roses and other plants, and are termed "blights" by garleners, who employ that term in a strangely wide sense; the Ciadee, with their beantiful membranous wings, their large heads, and their lond voices ; the tribe of Hoppers, of which the Cuckoo Spit insect, known in its perfect state under the name of Frog-hopper, and the beantiful Scarlet Hopper, are familiar examples; the wonderful Lantern-flies, also leapers, which are found only in lot climates; the Wax Insects of China; and lastly, the Scale Insects, or Coccidre, from which the "lae," so important in commerce, is obtained.

The Cicada, which are represented in the accompanying oleograph, have three joints to their feet, these members affording nseful characteristics in settling the precise position of the various species. They are very large insects, sometimes measuring more than six inches between the tips of the expanded wings. Their month or beak is three-jointed and very long, being tucked under the body when not required. The females are furnished with a curions apparatus, by which they are enabled to cot grooves in the branches of trees for the purpose of depositing their eggs therein, and which is clearly analogous to the instrument possessed by the saw-flies. On the under side of the body, and nearly at the extremity, are seen a pair of jointed valves, which form the seabbard to the boring instrument. At first sight, the borer
appears like a spear-head deeply notched along both edges; but on a closer examination it is seen that this apparently single instrument is composed of three pieces, namely, two saw-edged blades, set back to back, and a central support in which they both slide. There seems little dombt that these instruments work altemately, like the saws of the tenthredo.

The slits made ly these curions saws are wonderfully deep, considering the instrmments with wnich they are cut, and look as if little splinters of wood had been partially detached by a pen-knife, but left adherent at one end. Each of the burows under these elevations is abont a third of an inch in length, and contains from four to ten eggs. Altogether, each female deposits between six and seven hundred eggs. As soon as the young are hatched, they emerge from the cell, and make their way to the ground. At this period of their existence they are not unlike the common flea, both in size and shape. They grow rapidly, and when they are changed to the pupal form exhibit but little alteration in form, except that the rudimentary wings are visible externally. They live for some time in the preliminary stages, and guard themselves against the frosts of winter by burrowing into the ground to a depth of nearly a yard. When the perfect insect makes its escape, it leaves the empty pupal shell nearly entire, except a slit along the back through which the creature has passed.

The male Cicada has the power of producing a shrill and ear-piercing sound, so lond in many species that it can be heard at a considerable distance, and becomes a positive amoyance, like the same tune played for several hours without intermission. The organ by which the somed is produced is internal, but its position may be seen externally by looking at the under side of the body, just behind the last pair of legs, where a pair of horny plates may be seen. These plates are the protecting covers of the sonnd-producing apparatus, which consists of two drum-like membranes and a set of porverfnl mnscles. The color of the perfect insect is mostly of a yellowish cast, and the wings are firm, shining, and membranous, somewhat resembling those of the dragon-fly in texture, but having larger cells or spaces between the nervures.

One speries of Cicada is a mative of Europe (Cicada anglica). Generally, however, the Cicade are tropical insects, or, at all events, inhabit the warm conntries, those in the cooler parts of the world being comparatively small. Several species of Cicada are eaten like the locusts.

The wonderful Lantere-flies are known by the three-jointed antenne and the two ocelli beneath the eyes.

It may here be remarked that the eyes of insects are of two-fold character, namely, the compound and the simple, the former being constructed of a variable number of facets, so arranged, that each, though a separate eye, with its own optic nerve, is made to coincide with the others, and to produce a single image in the sensorium. Many insects, especially those which fiy or rin rapidly, have a vast number of facets in the compound eye, the common peacock butterfly possessing aloont thirty-four thousand of these lenses, seventeen thonsind on each side. The average number, however, is about six or eight thonsand. The ocelli, or simple eyes, are round, lens-like objects, mostly set in front of the head; and it is imagined that the two sets of eyes perform distinct offices, the compound eyes for the purpose of observing distant oljects, and the ocelli in order to examine the food or any substance withiu close proximity.

In many of the Fulgoridie, the heal is formed into the ondest imaginable shapes, sometimes lengthened into a curved horn. like that of the Lantern-1ly, sometimes broad, with a deep keel above, and nometimes with a raised edge of knife-like sharpmess. The head is said to emit : phosphorescent light, similar to that of the fireflies.

The Wax Tnsects lelong to this family. These creatures are plentiful in China. where the waxen serretion is manfacturel into many useful articles, and is equal, if not superior, to that ontainerd from the bee. That this creatme shomla produce wax is thought to be very marvellons, hut there is no reason to consider the fact more wonderful than that the bee shonld secrete a similar sulstance. There is this difference, that the bee produces the wax from six little pockets anranged along the abdomen, whereas the Fulgora pours it from various parts of the body, just as the oil is emitted by the meloë-heetle already described.

SELMAR HESS, PUBLISHER, N Y
CICADÆ, LANTERN FLY, ETC.

Tue Cercopidae. or Hoppers, art well known in Emope, mostly from the labits of the larva, and the saltatorial powers of the perfect insect. The Ctckoo-spit, or Froc-hoprer, is very plentiful in this combtry and is often a great annoyance to amatem gatdeners, who dislike to find their hands on fares suddenly wetted with the frothy exudations in which the creature lives enshrined. lhe larva fixes itself upon varions phants, and sucks their juices throngh its long beak, which it plunges into the sott substance. When the accumatation of froth is rery great, which msually haplens in the heat of the day, a drop of chear water begins to form at the lowest part, into which the froth drains itself, and is presently relieved by the falling of the drop). The seientitic name of this insect is Aphrophord spmomid. Another species of Frog-hopper (Aphoophorat gomdotio), a mative of Matagascar, pours out clear water without the preminary process of forming the lignid into froth. In its perfect state it can leap, to an extraordinary distance, the spring heing so smartly made as to canse a sharp tap on the ohject from which it leaps. Ls it alights it often tumbles over, and loses some liftle time in kicking about heforw it cam again get on its short legs.

A small but very remarkable insert is the Cocens, popularly known as the Scale Irsect, or Mealy Beg, the former title heing appled to the exterior of the frmale, and the latter given on account of the white mealy substance that is fonnd within her body. The male of this insect is winged. To gardeners the Corei are sal pests, infesting varions fruit-trees, and increasing with such rapidity that their progress can seareoly be checked. The young, too, are of such minute size that they can hardly he seen or destroyed. Tt appears, however, that the most effectual way of ehecking their depredations is to make a kind of semi-liquid paste of fine clay and water, amd with a housh to wasl it well into the bark of the aflected trees, so as to cover the insects, deprive them of air, and dehar them from remoring. Three or four coats are necessary, in order to stop up the minute cracks which are sure to take place in the drying clay, and which would afford ample opportunities of egress to these tiny creatures.

Within the shell-like body the young Cocci are hatched, amid an abundant supply of white substance, something like flour. The mother by this time has died, but her shelly skin still remains, and forms a house wherein her children live until they are strong enough to enter the world. They are usually hatched towards the end of June, and the young escape at the end of July.

The Cochineal Inseft (Cocenes carti), of which we give a very fine illustration, belongs to the same genus. This speries is a native of Mexico, and lives mpon a kind of cactus, called, from its insect guest, the Cuctus rochinellifer. The wonderful amount of rich coloring matter which these insects contain is well known. The beantifnl eolors, carmine and lake, are obtained

COCHINEAL INSECT.-Coccus cacti. (a. The inkpet alive npon the opuntia, covered uith it- waxeu sweat; b, male; c, female. Tbe objects are magnified, and the linex indicate the natural size.)
from this insect, and the best scarlets are likewise produced from the Cochineal, the difference of hne being due to a mixture of chloride of tin. The trade in the Cochineal is rery great: and as the substance is very costly, and permits a parcel of great ralue to be compressed into a small bulk, it is often used in lien of cash in mercantile transactions, and a package will go travelling backwards and forwards for at long time before it reaches its final destination.

Several other speries, such as the Polisn Scamber Grain (Cocens polomicus), and the Fermes (Cocus ilicis), are also valnable to colorists, and impart a very fine scarlet to substances treated with them, although the hues are not equal to those obtained from the cochineal. The latter of these insects was known both to the Greeks and Romans, and was used by them for the purpose of obtaining the purple dyes which were so much wom by the higher classes.

The Lac Inseat (Coccus lacen) is another member of this most useful gemus. This species resides in India and the hotter parts of Asia. It is fonnd attached to the twigs of trees, and is then called stick-lac, the shell-he being the waxen secretion purified and shaped into thin, shell-like phates.

The Grape Phylloxem (P. nitifolice) is the most destrnctive of the Aphides. Thongh first characterized in Lurope, North America seems to be the home of the genns, for, while there are but two well-detinerl species so far known in linope, sixteen distinct species are found in rarious parts of the United States. They are gall-inhabiting creatures. For a long period the Phylloxera was only an object of interest to the natmalist; lut, fire or six years since, the Grape Phylloxera came suddenly to be a creature of great concern to the pnblic. Indeed, this speries has lecome so prominent that it is entitled the Phylloxera, though fifteen other species are known. It is found from Camada to the Gulf States, and east of the Rorky Mountains.

Ealy in the history of the grape cultme in the United States, the gall-making type was observed on the leaves of certain varieties, particularly on the Clinton, and in 1856 this was brielly described by Dr. Fitch, State Entomologist of New York, by the name Pemphegus vitifolice. The more normal root-inhabiting type was not snspected, however, until it was discovered by Prof. Riley, of Washington, in 1871. A kind of grape-root disease began to show itself in France, where the grape interest is of vast importance. Large smms were offered by the government. It was found eventnally that it was the identical species that is indigenons on American vines, and that it was imported into France from America, probably during our civil war, on our vines sent to French nurserymen. It presents two forms or types, the rooteating and the gall-inhabiting. The insect is about a sixteenth of an inch in length. The appearance of the vine-roots, after being infested, is that of a collection of young potatoes just formed. There seems no practical remedy for the vines already affected. The only serviceable practice is to substitute new vines; and though America furnished the enemy, yet it is found that the American vines resist the pest much better than those of France. Consequently, the vineyards of the Old World are being replanted by vines shipped from our American vineyards. The Cmnningham, Norton's Virginia, Clinton, Concord, Taylor, are preferred. Those especially preferred are of the species astiralis, as lIerbmont, Cynthiania. The French have now learned to appreciate onr vines, when formerly they scorned the idea of importing them. American grape cultmre, meantime, is advancing favorably from this commumication of the cnlturists of both countries.

HETEROPTERA.

Ture insects belonging to the large and important ordor which is placed next to the Homoloptera, are readily known by several conspienons characteristics. The wings are four in nmmber, and the front pair are very pecnliar in their structmre, the basal portion being horny, like the elytra of beetles, and the remaining portion membranous, like the linder wings of the same inserts. In some species, howerer, the wings are wanting, as in the common Bed-hng' (Cimex lectularins). The hody is always monch flattened, the month is beak-like, and in the pupal stage the creatme is active and resembling the perfect insect, except in its want of wings.

As the space which can be dovoted to the remaining insects is extremely limited, it will be merely possible to give a brief sketch of the different families.

WATER-BOATMAN AND WATER-SCORPION.

In the first section of the lleteropera, the species are aquatic and predaceons, some being very quick and active in the water, and others slow, but set fierce and roracions, aum obtaitsing by craft the prey which the otners win by fair chase.

The first family of the Notomectidt, or Back-swimmers, is represented in Emrope hy many species, of which the common Witer Boatman (Totonecte glaucus) is the commonest. As may be seen by reference to onr full-page illustration, these insects are in the habit of lying ou the back and propelling themselres by means of the hind legs, which are rery long, and with the extremities expanded and fringed with stitl hairs, so as to resemble and do the duty of oars. When lying on the bark, the insect is wonderfully boat-like, the general shape much resembling an Indian canoe. These creatures breathe atmospheric ail, for which ther are forced occasionally to come to the surface, receiving it under their wings, just as is the case with the water-beetles alrealy described. When the air has been taken in, it is prevented from escaping by means of the stiff hairs with which the segments are furnished. Any one who has watched a pond in the smmmer-time must hase noticed the Water Boatmen coming to the surface, poking their tails out of the water, and then descending. The beak of all this family is rery sharp and strong. especially in the genns Corixa: and a heedless captor will often find a sudden pang shoot through his fingers, caused by the determined thrust of the insect's sharp beak, which is amed with a pair of spear-like points, the edges of which are deeply jagged. The wings of the Water Boatman are large and handsome, and the insects are powerful on the wing. They fly by night.

Tusf family of the Nepide is represented in Europe by the common Water Scorpion, a rery flat and leaf-like insect, which is found abundanty in slow running streams, ditches, and ponds. It is figmred in the same engraving. This insect derives its popular name from its scorpion-like aspect, the two slender filaments appended to the abdomen representing the sting-tipped tail, and the raptorial fore-legs resembling the claws. It is with these legs that the Water Scorpion catches its pres, which, when once grasped in that hooked extremity, is never able to make its escape. The beak is short, but very strong and sharp, and is not bent under the thorax, as is the case with that of the water boatman.

The Reduvidae comprise a great number of terrestrial insects, mostly exotic, but a few being natives of Europe. Some of them are rery large, and one sjecies, the Wheed-bug (Arilus serratus), is said to possess electric powers. Its popular name is derised from the curious shape of the prothorax, which is elevated and notched, so as to resemble a portion of a cog-wheel. One species of the Wheel-bug (Reducius personatus). inhabitshonses, and is said to feed upon the bed-bug. The larval and pupat of this insect are difficult to discorer, on account of their hatbit of enveloping themselves in a coating of dust. The Hamuatocenus belongs to this family. The insect is remarkable for the cmious structure of the second joint of the intenne, which consists of numerous small articulations. The generic title is derived from two Greek words, signifying Link-horned, and is given to the insect in allusion to this peculiarity.

WHEEL-bUG WITH LARVA.Redurius personutus. (Natural size.)

Tue remarkable insect, Datader acuticosta, belongs to the Mictidie, and is notable for two peculiarities, namely, the flattened expansion of the third joint of the antennre, and the singular width and flatness of the abomen, which is so rers leaf-like as to remind the observer of the leaf-insect The abdomen is greatly expanded, and extends on either side far beyond the wings, which, when opened, exhibit the curions formation of the parts below. The thorax is also expanded and deveioped into a semi-lumar shape, the points being directed forward. The third joint of the antemme is seen also to be expanded, flattened, and formed into a kind of battledore shape. In color, this insect is rers inconspicnons, being altogether of a dull brown, like a withered oak-leaf. It is a native of Northern India.

Avomers insect, termed Diactor bitinentus, belongs to the same family, and is remarkable for the curions formation of the hinder pair of legs. In the genns of which this species is an example, the tibier are expanded like the blade of a Sonth Sea Islander"s paddle, being very flat, and not so thick as the paper on which this account is printed. In the present species, the coloring is rery splendid, the whole of the thorax being rich emerald-green, with a peculiar lnstre, as if incmsted with the minntest of gems, and diversified with two longitudinal streaks of light red. The latter color, however, always fades in process of time, as is gemerally the case with all the shades of red in insects. 'ilhe elytra are also green, but not so sparkling in effect. It is a native of Brazil, and the family in which it is placed is the Anisoscelidie. The broad leaty expansions of the legs are chestnat-brown, spotted with a paler hue.

APHANIPTERA.

We are now come to another order, deriving its name from the invariable absence of wings, the name being derived from two Greek words, the former signifying invisible, and the latter a wing. There are not many species helonging to this order, and they are all known by the popular name of Fleas. A magnified representa-

FLEA - Pilex irritans, a, Upper lip. b, Jaw. ©, Fecler of the under lip. d, Under lip. e, Feeler of the short, not visible jaws. f and g, Larvas, (All the objects are magnited ; the linu underneath the large figure indicates the natural size of the Flea.) tion of the common Fuea is given in our illustration.

These inserts are notable for their extreme agility and the hard shelly substance of their integuments, two characteristics which are very useful in defending them from foes, for in the first place they leap about so quickly that they are not easily canght, and in the second place they are so have and polished, that even when seized they are alpt to slip through the fingers hefore they can le immolated to the just wrath of the captor. As may be seen by reference to the engraving, the month of these insects is yery complex in its structnre, and is' a reritable surgeon's case of lancets, saws. aml probes. Although eager for hoon to a proverhial extent, Fleas can endure a very long fast without much inconvenience. 1 have known arom to be unnsed for years, and yet, when I became its monformate first, occmant, being rendered helpless by a broken leg and disloeated ankle, the Fleas came swarming in positive armies to their long-delayed feast, like the lomst hosts descending mpon a corntield, and cansed mopeakahle miseries mitil they were routed by continual slanghter. What food these insects may have found in an empty room is not pasy to say, as, though the larve might, perhaps, have continned to subsist on the feathers of the pillows, the perfert insects could not tat such juiceless sulstanes, and must either have grome altogether withont food. or drawn their subsistence from some unknown source.

Another species of Flea, the Curioe (Pmex penetrons), sometimes cormpted into . Ttiger, is a terrible pest in tropinal countrios attacking haman beings, and by its perular habits causing severe injuries, unless they are checked at once. They mostly attack the feet. generally preferring the bare spot just between the tom and the mail. When they have made their way fairly muter the skin, they swell to a very great size, the boly beroming about the size and shape of a sweet pea, and being filled with a vast number of regs. (iemerally, those who live in the Chigoe-infected regions are carpefle to have their feet axmined arery day, and the offendiug inserts dislodged with the point of a needle. Sometimes, however, one may escape olserration milil it has obtained its full development, when its only external sign is a slight swelling, with a bluish color. To extrant one of these swollen inseets is a matter of no small
difficulty, for if the body be burst, and a single eggr suffered to remain, the creature will be hatched in the wound, and the result will be a painful festering sore. If such an event should take place, the best plan is to pour a drop of spirit of thrpentine into the womm, a process sufficiently painfol, but yet preferahle to the risk of the inture sores.

The young negroes are rery subject to the Chigoe, and every evening a chorns of ontrries is usually heard, being sounds of lamentation from the children, whose toes are undergoing maternal inspection. The little creatures, with the short-sighted ruming of childhoor, always try to hide the Chigoe bite, in hopes of exajuing the resulting needle. But their cmoning only meets its dhe rewarl, as when the Chigoe has made her burow, the sharp eye of the negress is sure to discover it, and then the whole nest has to be excarated, and rendered untemable by red pepper, mbobed well into the hollow. Indeed, if it were not for the terror inspired by the red pepper, the children would hardly liave a sonnd foot among them.

It may seem cmions that the insect shonld be able to burow under the skin without being discovered, but the fact is, that it sets abont its work so quietly, and insinnates itself so gently, that the only perceptible sensation is a slight but not unpleasant irritation.

DIPTERA.

We now pass to the Dıpterd, or Two-winged Tnsects, which may be known not only by the single pair of wings, but bry the little appendages at their base, called halteres or balancers, and which are the only vestiges of the hinder pair of wings. Moreorer, the wings are not capable of being folded. This order is of rast extent, and includes a whole host of species, many being extremely minute, and many others displaying so many nncertainties of form and habit. that the arrangement of this order is one of the greatest difficulties with which systematic entomologists have to contend. In the following engravings a few examples are given of this order, for the propose of illustrating some of the principal fimilies.

The Comon fivat is an example of the family Culicide. The month of this pretty and graceful but very annoying insect, is fully as complicated as that of the flea, and under the microscope is a truly beantifnl object. The male Gnat, which is easily known by the plumed antenne, is not to be feared, not being athoorlsucker, that chanacteristic belonging solely to the female.

The eggs of the Gnat are laid in, or mother upon, water, and are built, as fast as laid, into a boat-like shape, which possesses sucli powers of flotation, that, eren if water be poured upon it, the mimic vessel turns ont the water, and rights itself as well as any life-boat. When hatched, the larve fall into the water, and begin at once to make themselves very conspicnons by their contimal twisting and jerking themstlves about. They are long-tailed, large-headed insects; and when they are at rest, they hang with their heads downwards, the whorl of hairs at the tip of the branched tail serving as a float. Throngh this tail the respiration is carried on, the little creature requiring to breathe atmospheric air. In process of time, the larva changes into an active pupa, and, lastly, when the perfect insect is about to make its appearance, it rises to the surface, the pupal skin splits along the back, and forms a kind oll raft, on which the Gnat stands until its wings have attained sufficient strength for flight.

The Tipulide are very familiar to us through the well-known insects called Daddy Longlegs. or Crane-flies. In their perfect state, these insects are perfeetly harmless, althongh ignorant people are afraid to touch them. But, in their larval condition, thes are fearful pests, living just below the surface of the ground, and feeding on the roots of grasses. Whole acres of grass have been destroyed by these larrx ; and, two or three years ago, Blackheath Park was so infested with them, that the turf was much injured, and in the beginning of autumn the gromnd was covered thickly with the empty pupa cases of the escaped insects.

One of the wonders of natural science is the Army-wom (Heerwurm). At first sight, it appears to be a single being, but by closer observation it will be seen to consist of a vast multitude of larvæ, or caterpillars. There is a Enropean and an American Army-worm, distinguished lrom each other by the nature of the tiny creatures which collect in a body for pro cession or migration ; the one being a collection of the larve of the small light yellowish gnat (Sciara mititaris), belonging to the family Mycetophilida of this class, while the other consists of the caterpillars of one of the moths of the family Nocluida.

When in such a large collection, the larese of the Sciara mitituris move forward in a snake-like manner. They look pallid, and are kept closely together by their mucous surfaces, so that they really appear as one body. So strongly do they stick together, that the tail-piece of the worm may be lifted with help of a stick for a moment withont becoming refracted. The ficulty of moring on consists in the miform motions of all the larve. Every one shoves forwatd with the back of the hody, and then stretches out the fore-part as if feeling. The whole appears like a little stream slowly gliding along.

Sometimes this larve-procession has to overcome obstacles in its way which often canse a dissection. Small hindrances the Army-worm smmounts, but larger ones canse a temporary disunion. Sometimes one part of the mass of bodies disappears under leaves, but generally a remnion takes place. A break by lorce, cansed, for instance, by the hoofs of a horse, or by the wheels of a wagon, soon becomes joined, just as is the case with the so-called procession-caterpillar of the moth Cuethocampa processionea, belonging to the family Bombycida, of the class Lepidoptera.

For centuries, the mysterions movements of the Army-worm have given rise to all kinds of superstitions beliefs anong the people of Enrope, where from time to time it was seen in Silesia, Thuringia, Hanover, Denmark, Norway, and Sweden. They predicted hack or misfortme from its appearance, some prophesying war, others the result of the harvest. The inhabitants of the Silesian momntains predicted luck, whenever the Army-worm took its way down the valley, but unfruitfulness whenever it crawled up. The people in the Thuringian woods predicted peace when it took the former direction, and war when it took the latter. Some even believed their own destiny to be connected with the worm. They threw clothes and ribbons in its way, and felt happy, especially hopeful women, when it crawled over the things ; but they regarded one as a dead man whose things it avoided.

These funny heliefs are now all orerthrown by the studies and close observations which Mr. Beling, an inspector of the German forests, has made of the Army-worm. He detected its exact natme and origin, and he has delivered many treatises on the subject since the year 1868. IIis observations fully convinced him that the only canse for the appearance of the Army-worm is the longing for food of larse of the Sciara mititaris. The Army-worm generally measmres fifteen feet in length, and three to fom inches in width.

Thongh really not belonging to the Diptera, but, like the Cnethocampa processionea, to the Lepidoptera, we may undertake here, for sake of conformity, to treat the Amenican Army-woms. The caterpillars forming it are termed Leucania extranea. They collect, like the European Army-worm, in vast numbers, and derastate whole meadows in a short time. When they can no longer find grass, they emigrate to other fields, and

GAD.FLX (Female) - Tabanus boninus. With the head. (Natural size.) attack even rye and wheat. Large clusters of these caterpillars have been observed in the Western States and on Long Island. In 1861, such a gathering of caterpillars proceeded fnlly sixty yards in two hours.

The Texas and Mexican collections of the same or of a similar speries of caterpillars are known by the name of Whe-wonm.

The accompanying illustration represents the common BreazeFhy, a well-known example of the Tabanida. It is also known by the popular names of Gab-FLy and Cleg. Is in the gnats, the females are the only hoodsuckers, but they exert their sanguinary ability with terrible force. While staying in forests and suffering greatly from the bites of the Gad-flies, I used to keep a little naphtha in a bottle, and rub it occasionally over my face and hands, for
the purpose of repelling these blood-thirsty insects which selected me for their victim, leaving my companions untouched. I have found the whole of the unprotected space round the neck covered with their bites, and my ears thickly stained with blood from the eflects of their weapons.

To this family belongs the terrible Tsetse, the curse of Southern A frica, which destroys horses, dogs, and cows by thousands, though it causes no harm to man or to any wild animal. Fortunately, it is a rery local insect, its boundaries being as sharply defined as if drawn on a map, one side of a stream being infested with this active insect, while the other is perfectly free. The fignre is drawn most accurately.

TSETSE.-Glossina morsitans, a, llead, with parts of the mouth. b, Antenna, or feeler. (The objects are differently magnified. The line underneath the figure of the Fly iudicates the nutural size of the Teetse.)

The following account of its habits and the effects of its bite are given by Dr. Living-stone:-"In the ox the bite produces no more immediate effects than in man. It does not startle him as the gad-fly does; but a few days afterwards the following symptoms supervene : the eyes and the nose begin to run ; the coat stares as if the animal were cold ; a swelling appears under the jaw, and sometimes at the navel; and, though the animal contines to graze, emaciation commences, accompanied with a peculiar flaccidity of the muscles ; and this continues unchecked until, perhaps months afterwards, purging comes on, and the animal, no longer able to graze, perishes in a state of extreme exhanstion. Those which are in good con dition often perish soon after the bite is inflicted, with staggering and blindness, as if the brain were affected by it. Sudden changes of the temperature, produced by falls of rain, seem to hasten the progress of the complaint; but, in general, the emaciation goes on uninterrmptedly for months, and do what we will, the poor animals perish miserably.

When opened, the cellular tissue on the surface of the body beneath the skin is seen to be injocted with air, as if a quantity of soap-bubbles were scattered over it, or a dishonest, awkward butcher had been trying to make it look fat. The fat is of a greenish-yellow color, and of an oily consistence. All the muscles are so flabby, and the heart often so soft, that the fingers may be made to meet through it, and the lungs and liver partake of the disease. The stomach and bowels are pale and empty, and the gall-bladder is distended with bile."

The insect which occasions these terible results is hardly larger than a house-fly. It is curions that, although horses perish under its bite, mules, asses, and goats escape injury, and it seems that the bite of a single fly is sufficient to canse death. Another curious symptom is, that the blood loses its redness, and hardly stains the hands of the person who dissects the smitten amimal. The source of all this mischief is to be found in a little poison-gland at the base of the mouth, not larger than a mustard-seed, and yet infinitely more deadly than the renom of the rattlesnake. The color of the Tsetse is brown, with a few yellow bars across the abdomen. When it bites a man, the pain which it canses is very slight, and the worst resnlts are a trifling irritation not more severe than that cansed by the bite of a gnat.

A large insect is the Banded Hornet-fly. It is an example of the Asilidre, among which are found the most gigantic specimens of the order. The body of these insects is long, and clothed with stiff hairs. They are fierce and voracions, feeding mostly upon other insects which they catch on the wing, and out of which they suck the vital fluids through their powerful proboscis. One species of this family has been known to capture and carry off a hive-bee, a remarkable instance of a stingless insect attacking and orercoming a creature so formidably armed as the bee. Some of them are said to attack cattle after the manner of
the Tabanide. As with the preceding family, the larve of the Asili reside under gronnd, and feed upon the roots of plants.

The family of the syrphida, or Hoverer-flies, is rather large, and contains many interesting inserts. Among them may loe mentioned the Tolucella tlies, which feed, while in the larval state, on the larve of bees and wasps, and, as if to aid them in gaining admission into the mests of those formidable creatures, are shaped and rolored so like the insects which they invade, that at a little distance it is almost impossible to distinguish leetween them.

The Drone-fly (Eristatis tomma belongs to this family. This insect bears a wonderful resemblance to the hive-bee, and has a habit of moving the abomen in a manner that leads an macenstomed observer to fincy that it possesses a sting. The larva of this insect is popularly known by the name of Rat-tail magerot, on account of its pernliar construction. This larva resides in mud, with the head fownwards. In order to enable it to breathe, the respiratory tubes are carried into a long and telescopic appendage attached to the tail, the end of which is furnished with a brush of hairs something like that on the tail of the gnat larra. The extremity ol this cmions organ is ahways held ont of the mody water, and it is most curions to see the grulns elongate their tails as the deptlof of water is increased.

All the vast family of Musidie, or Flirs, are members of this order, ant as at least eight lmurtred species of this one family are known, it may be imagined that no description of them can he attempted.

The large and bold looking fly, rejresented in our ilhastration, belongs to the family of the (Estride, and is popularly known by the name of Bor-fly. All these insects are parasitic in or mpon ammals. The larva of this Bot-fly resides in the interior of horses, and is conveyed there in a rery rarions mamer. The jarent ty deposits her eggs mpon the hars near the shonklers of the horse, where the animal is sme to lick them in order to rid itself of the mpleasant feeling caused hy agghtinated hains. The eges are thus conveyed to the stomach, to the coats of which organ the larve cling, and there remain motil they have attaned their full growth. 'They then loown theil hold, are carried, together with the food, throngh the

HORSE BOT-FLY- Gastrophilus equi, a, Fly, b, Egy on a hair. c, d, e, Larva in its trannformatione. interior of the ammal, fall to the gromud, and immediately begin to burrow. They demain underground until they have undergone their metamorphoses, and then emerge in the shape of the perfect insect. They do not seem to inflict any damage upon the animal from whose bodies they have drawn their nomrishment, and some veterinary surgeons lelieve that they are rather beneticial than injurious.

Another kind of Bot-fly (CEstrus bonis) resides in the row, but instead of heing taken into the stomach, it burrows into the skin, and there forms large tuberches, that are popularly called workles or whbles. An aperture is always left on the tol of the tuberele, and the lara breathes by meams of kepping the two pincipal spirarles opposite to the oritice. When foll grown, they push themselves ont ol the aperture, fall upon the gromel, and there burow and undergo their tramsformations.

The spirates, to which allusion has bean often made, are the apertures throngh which air is armitted to the system. Thserts breathe in a very remarkahle manner, the air being condueterl thromgh cmionsly-constructed vessels to arery part of the body, even to the extremities of the feet and antennes. It will he seen that the structure of these ressels mast be very pemarkalbe, on account of the opposite duties they have to perform. As they penetrate the entime jusert, it is meedfal that they shonld be flexible. in order to premit the creature to move about at will, abs, if they were stiff-walled, the joints wonld be rendered useless, and the insect
wouk be unable to move a limb. Another characteristic, however, is required. They must be always kept sufficiently open for the free passage of air, and it is not easy to see how these qualities sloonk be mited, as a flexible tube will mostly, if abmptly bent, as is contimally the case with the air-tulues of the limbs, lose its roundness at the angle, and shut ofl the communication. An Indiarubber gas-tube is a fimiliar instance of this properts of flexible tubes.

The difficulty is, however, surmonnted by a simple and yet most effectual plan. The tubes are double, one within another, and in the interspace a fine but very strong hair-

CATTLE BOT-FLY.-ITypoderma, or (Extrus bovis. a, Fly. b, Larva. c, Pupa. b and c, As seen from the under side. (All magnitied; ine at luft-baud side natural size of Fly.) like thread is closely wonnd in a spiral. It will be seen that, by means of this structure, the tube can be bent in any direction withont losing its roundness. The long tlexible tubes of Turkish pipes are made in a similar mamer, a spiral wire forming the basis, upon which is sewn the leather and silken outer

SHEEP BOT-FLY.-Gatrus ovis. a, Fly. h, Larva. c, Pupa, as seen from the under side. (Everything magnified,) tube-one of the many instances where the art of man las been anticipated in the animal creation. A thim species (Ostrus ocis), of which we give also an exact illustration, is parasitic: in the sheep, inhabiting the frontal simus, i. e., the open space between the bones on the forehead and between the eyes.
'The lippoboscide, popnlarly known under the name of Forest-flies, deserve a short notire. These are round-bodied insects with legs that can cling with wonderful force, and are capable of moving hackwards, forwards, and sideways with equal swiftness, so that they are not easily captured, even when they do not take to wing. These insects are mostly found in or near forests, and are very annoying to horses and cattle. As may be seen by reference to the

llORSE, OR FOREST-FLY. Hipwobasea equina. (Magnified.) engraring, their integuments are covered with hair, and are remarkably tongh and leathery. The varions species of Ticks helong to this family, and are closely allied to the Forest-fly.

Although not included in Mr. Westwood's list of insects, the Lice are mostly considered as belonging to this class, under the name of Aptera. There are very many speeies of these obnoxions creatures infesting different animals and tribes, and at least three species are found upon the human subject.

LOBSTERS, CRABS, SHRIMPS, ETC.;

CRUSTACEA.

AVING now completed our brief smrvey of the insects, we proceed to the Crustacea, a very large class, in which are included the lobsters, crabs, shrimps, water-fleas, and a host of other familiar beings. Eren the Cirrhipeds, popularly known under the name of Barnacles, are members of this large class, and a number of cmious animals, which have mntil lately been classed with the spiders, are now ascertained to belong to the Crustacea.

These beings can be easily separated from the insects on account of their general structure, the head and throat being fused into one mass, called technically the cephalo-thorax; the number of limbs exceeding the six legs of the insects; and the mode of breathing, which is by gills, and not by air-tubes. As a necessary consequence of the lastmentioned structure, the Crustaceans possess no spiracles, such as are found in all the stages of insect life, from the larva to the imago. They undergo a well-marked metamorphosis, and in those creatures whose development is best known, the change of shape is so entire as to have led the earlier zoologists to consiter the undereloped Crmstacea as separate species. They may be also distingmished from the spiders by the presence of a series of feet, or rather of locomotive organs armaged under the abdomen, as well as by the metamorphosis of their earher stages, a phenomenon which is not known to take place among the spiders.

The name of Crustacea is sufficiently appropriate, and is given to these creatures on account of the hard shelly crust with which their bodies and limbs are covered, a covering which, in some, cases, is of such flinty hardness as to be used for the purpose of sharpening knives, and in others, attains a glossy polish which reminds the observer of glazed porcelain.

As our space is rapidly diminishing, we must proceed at once to the different families and genera, simply noting the more important characteristics as we proceed through the class.

TEN-LEGGED CRUS'ГACEANS; DECAPODA.

Tire first section of these rreatures are called the Pordopthalmata, or Stalk-eyed Crustaceans, becanse their eyes are set mpon footstalks. The first orcler is that of the Ten-legged Crustaceans, so called on account of the five pairs of legs that are set in each side. These are exclusive of the complicated apparatus of the month, and the jaw-feet which gnard its entronce. The Crabs are placed first in the list of Crmstaceans, and are technically called Brachyura, or Short-tailed Crustaceans, becanse their tails are of comparatively small size, and are tucked moner the large shielded body. In the preliminary stages, however, the Crabs have tails as proportionately long as those of a lobster or a cray fish.

In the accompanying illustration of the Stexomirxcuts may be seen one example of the first family of these animals, being a gromp of Crustareans distinguished chietly by the singular form of the carapax or upper shell, which is wide and abrupt at the base, but is prolonged in front, so as to form a long and pointed beak. In all these creatures the legs are long in comparison to the body, but in the Leptoponis they are of such inordinate length, as to remind the observer of the round-bodied, long-legged harvest spider, which souttles over the gromnd so rapidly when disturbed. On account of this great length of limb and small size of body, these crabs are often called sam-spiders. The eyes of the Leptopodia are rather large, and not retractile. It may here be mentimed that the eyes of Crustacea hear some resemblance to those of inseets, being compomm organs, with a large number of licets, some square and some hexagonal. The eyes of the common shore crab or the shrimp afford excelient examples of this structure. It is a native of the West Indies.

SEA-SPIDER.-Stenorhynchus longirostris.

In the Stenorlynchns, the projecting beak is proportionately shorter than in the preceding gemus, is cleft at the tips, and very sharp. The fore-limbs, which are furnished with large claws, are stont and strong.

As the shelly armor of the Crnstareans is, in most cases, so hard, strong, and myielding, the mode of growth might be considered a problem not rery easy of solntion. For with the Crustaceans the growth contimes dming nearly the whole of life, or at all events for sereral years after they hare passed through the varions changes to which they are subjected in their imperfect stages of existence. Their increase of size and weight is marvellonsly rapid, and how it can be accomplished without subjecting the Cmstaceans to the lot of the starveling monse, who rrawled into a jar of corm, but could not crawl ont again after feasting on its contents, seems to partake of the clararter of an anmated puzzle.

The answer to the problem is simply that the creature sheds its armor annually, expands rapidly while yet covered only by a soft skin, and is soon protected by a freshly-deposited coat of shelly substance. Even this answer contains a second problem little less difficult than
that which it solves. How can a Crustacean, say a crab or a lobster, shed its skin? It is true that the cast shells are fomd, showing that the creatme has escaped from its old and contracted tenement by a slit in some part of the hody, such as the top of the carapace, and has left its shell in so perfect a state that it might easily be mistaken for the living anmal.

But how did it manage abont the claws? We all know what large muscnlar masses they are, how very small is the apenture in which the joint works, and how stiff and firm is the broad tendinons plate which is found in tlieir interior. Examination shows that there is no opening on the claws throngh which the creature might have drawn the imprisoned limb, and it is also evident that the only method by which these members can be extricated, is by pulling them fairly througlt the joints. Is a preliminary step, the hard, firm, muscular fibres which fill the claw and give it the well-known pinching power, beeome soft, flaccid, and watery, and can thus be drawn throngh the comparatively small openings through which the tendons pass from one joint to another. The sharp and lamife-like erges of the plates cut deeply throngh the monscle, which, however, is little injured, on account of its soft consistency, and heals with great rapidity as soon as the amimal recovers its strength, and is gifted with a new shell. In the common edible rab, the flesh is quite mfit for consmmption during this process, as any one can attest who has attempted to dress and eat a "watery" crab. Yet in some of the exotio cronstactans, these conditions are exactly reversed, and the crabs are never so fit for the table as while they are soft and shell-less, after the old snit of armor has heen thrown off, and before the new integment has received its hardening. It may here be observed, that the bases of the crustaceons amor is composed of chitine, the remarkable substance of which the elytra and other portions of the insect skeleton are composed.

The name of Leptopodia signifies slender feet. When full grown, the limbs of this species will mostly attain a length of one foot and more. The Stenorhynchons is shown of its natural size.

The Leptopodia of the West Indies resembles that of the Florida Reef. Besides the singular slenterness of the entire body and limbs, there are pretty brilliant blue markings on its tentarles and claws. Quite appropriately it is called Spider Crab. Its resemblance is much like the Daddy Long-legs. The American species we have seen inhabits shallow water. Around artificial works it chooses to crawl orer the piers just under the surface. It measmres about ten ine hes in spread of limbs, ant is mach more slender even than that fignred above. Also, it has smooth limbs, and no hairy appendages.

The largest crab, in point of spread of limbs, is the Great Spiden Crab of Japan (Microcheira), belonging to this gromp. The largest specimen known in any collection is that of the British Musemm, which measmres between the tips of the first pair of legs eighteen feet. Reliable information is recorded of measurements reaching twenty-two feet. The boty of one of the latter measmrements is about the size of a "Deroy" hat. A photoglaph of one in our possession is taken with such a hat hanging near it. But the limbs are so long that as at man stamds holding them upright, they tower above him a long distance.

Onr next example is the Cemposcia. This creature is quite different in its appearance. When its exterior is free from extraneons snbstances, it looks slender and small ; while burdened with shonges and other marine growths, its form is clumsy and twice as large.

The hairy limbs, as woll as the whole of the body, are encrusted so thickly that their true shape is quite modistinguishable, and the animal seems to masquerado under a domino of living disgrises. Firen the joints can barely be ascertained, and, but for the continal movements to which they are subjerted, it is very probable that the sponges wonld inerease with sucls rapidity, that in a shont time the limbs would be rendered immovable. These growths fre so comstant and rapid that the weature can only free itself at the time when it changes its skin; and it is likely that the (cabl may fees as comparatively light and disburdened after throwing off all this ancumbranco of heary volmminons substances, as does a thick-wooled sheef) after the shears have removed the heary fleere, ant enabled the lightened animal to skip abont the field astonished at its own activity and the sudden coolness shed over its body.

The Camposelia possesses all the characteristics already mentioned as appropriate to the family in which it is elassed, and that the snout-if we may be allowed to employ the word-
is elongated and very deeply eleft, so as to form a forked protnberance. The body is rounded at the base, and small in proportion to the limbs, though the apparent disproportion is not so marked as in the Leptopotia. This species is a native of the Philippines. The genns to which this creature belongs does not seem to be very large. only three, or perhaps fonr speries, being known.

Still keeping to the same family, we come to a curious gems containing some very remarkable creatures, among which the Dortea calcitrapa is one of the most notable.

In this genus the beak is comparatively small, but still contains the cleft tip, although the notch is not nearly so deep as in other members of this family. The claws are of considerable size and power, and the legs are long and furnished with an army of stiff bristles. The chief peculiaritr, however, which most strikes the sight, not to say the tonch, is the formidable display of long and pointed spikes, which radiate from the body like the spines of a hedgehog. The eyes are not very prominent, being set on rather short footstalks, and nearly concealed by the projection from the shelly rovering. This genas seems to be widely spread over the hotter portions of the globe, sperimens haring heen taken off the Mauritius, in China, India, and the Philippines, of which latter locality the present slecies is a native.

All the crabs of this family are marine, and prefer the derper parts of the sea, where they lurk among the waving masses of sea-weeds, or crawl upon the oyster banks. As might be imagined from the length and slenderness of their limbs, they are bnt slow of progress, and seem to tumble over the ground in a very unsteady manner. Still, their long limbs are admirably calculated for the peculiar substances on whicl they pass their lives, and they are able to stride, as it were, orer obstacles which would serionsly encumber a creature with shorter legs. Their food consists almost wholly of small mollnsks and other marine animals.

We now come to another family wherein many of the same characteristics are preserved, but the legs are of moderate size. These creatures are popularly known by the name of Spider-crabs, and scientifically are termed Maiadæ.

We will describe a few examples of this genus. The Gouty Chab has been gifted with its very appropriate name on account of the knobby and swollen limbs, which give it an aspect as if it were suffering from the painful but unpitied disease from which it derives its name. The specific title of Chiragra is of Greek origin, and bears a similar signification. The Gouty Crab is known to be an inhabitant of the Meditermanean, and is thonght also to be a native of the West Indian seas.

A creature which looks as if it had been made almost at random ont of a thistle-bud and a handful of thorns, is known under the name of Thorsback Chorinits (Chorimus acanthonotus). This species can hardly be mistaken for any other, on account of its altogether eccentric shape, and the branching spines which spring on every side from its body and the joints of its limbs. It is but feebly provided with claws, these members being little larger than the ordinary limbs ; and the eyes stand out on tolerably long footstallis.

Nearly related to these species, we find two moderately common European crustaceans, which are interesting in their habits, thongh not particularly pleasing in their aspect. One of these is the Four-horned Spider-crab (Arctopsis tetraoton), a rather long legged creatme that seems to be rery local in its habits, being rarely or never seen in some localities, while in others it is found in vast numbers. This crab generally hides itself under the overhanging masses of fuci which covel the submerged rocks, and thence is fond of descending into the lobster and crab pots, and so is made captive by the fishermen. The color of this species is yellow, and the body and greater part of the limbs are densely corered with thick hair. The male is larger than the female.

The second species is the Harper-chab, or Great Spider-chab, or Sea-toad (Ityas araneus), as it is sometimes called. This is commonly found on nearly all the coasts of Northern Europe, and prefers to range among the meeds just about the zone beneath low-water mark. It is one of the day-feeders, and will often leare the wares for the purpose of feeding upon the fish and other animal substances that have been flugg upon the shore by the tide.

In some places it launts the stakr-nets, and there makes a regal feast before it is disturbed by the proprietors.

An example of a very common and a very usefnl Enropeam species is the common Thoresback Spider-crab, or Squinado. It is plentiful upon European coasts, and is not a very prepossessing creature in extemal appearance, its body being one mass of sharp and not very short spines, and its whole frame possessing a weird-like and oncomely aspect.

Another carions creature is the Thefe-spined Spider-crab, so called from the pecmliar shape of the body, which, on accomnt of the projecting beak and the strange modification of the carapace, has a kind of three-cornered aspect. Several species of this genus are known, and are fomd in the West Indian seas and off the Philippines. The present species is one of the most common, and is found in the West Indies.

Two remarkable examples of this family are the Ram's-horn Crab (Criocarcinus superciliosus.), a species which is distingnished by the two long, hom-like projections from the snont, and the Thorn-claw Crab (Acanthony.x zebrida). The generic name Criocarcinus, which is of Greek origin, and signifies Ram-crab, is given to the amimal on account of this structure. The body is thomy, thongh not so wholly beset with spikes as in the spider-crab, and the eyes are phaced on moderately long footstalks. The specific term, superciliosus, refers to a Latin word signifying an eyebrow, and is given to this crab on account of the overhanging plates under which the eyes are hidden when the footstalks are laid close to the head, as is the custom of the creature when alarmed. The present species is found in the New Hebrides.

The Thom-claw Crab is a curions-looking little creature, especially notable for the large and boldly hooked extremities of the limbs. The name of Acanthonyx, or Thorn-clawed, is given to the genns on accomt of this strncture. At first sight, the Acanthonyx hardly seems to belong to the same family as the preceding species, the shape of the body being apparently the reverse to that which is characteristic of the Maiadie. But on a closer examination, it is found that this difference is more apparent than real, and that thongh the body seems to be wider across the head, or rather, the cephalo-thorax, to speak accurately, the width is owing to mere projections and not to any increase of the actual body. The Thorn-claw Crab is fonm in many European seas, and is tolerably common in the Mediterranean.

Our last examples of the Maiade are the Heraldic Crab (IFuenia heraldica), the Longsnouted Crab (Hnenict elongatet), and the Micippa (JFicippa phityra).

In these three species can be observed a curious variation of form that takes place in animals that helong to the same family, and even to the same genus. The body of the Micipra is sery large in proportion to the limbs, rounded, and covered with numerons protnberances of various sizes, mostly small tubercles, lout sometimes being developed into hold spikes. The claw legs are remakably small in proportion, and the claws themselves are even more feeble than might be inferred from the dimensions of the entire limb. Sevemal species of Mieippa are known, all of which are obtained from one or other of the Philippine Islands.

The Meraddic Cral) and the Long-snonted Crab are very dissimilar in external appearance, and yet belong to the same genus. The Heralide Crab derives its name from the shape of its carapace, which presents a fanciful resemblance to the shield and mantle employed by heraldic painters in depicting eonat armor. The sides of the carapace are developed into four singular projections, flat, and looking very much as if pinched out of the shell while its material was plastic. The snout is tolemaly long and very sharply pointed, and the eyes only just project from mader the protectiug shell.

The Long-svorten Chab is a creatme in which the carapace, instead of being wide, Hattened, and fomen with ring-like projections at the side, is drawn out to a wonderful length, and possesses two angular projections towards the base. Both these crabs are natives of Japan.

1n the family of crabs which is known by the name of Parthenopide, we have a very differput form, the carapace being more or less triangular, the beak or snout small and not notched, and the cyes very retractile. The claw-legs are generally large in proportion to the other limbs, which are often very short.

The Domed Crab is a very remarkable example of this family, and in addition to certain generic peculiarities, well displays the characteristics of the family. The claw-legs are very large throughout their entire structure, and are furnished at their extremities with short but powerful nippers. The carapace of this creature is extremely wide, lout the width is due, not so much to the body as to the shell, which is expanded in such a manner as to conceal the legs under its shelter.

The generic name Cryptopolia is derived from two Greek words signifying Hidden-legs, and is an extremely appropriate title. Even the large claw-legs "an be folded up and tucked away so neatly under the carapace, that, when the creature lies still ou the gromed, no vestige of limbs can be seen, and it might easily he mistaken for a stone thrown casually on the shore. In fact, the whole contour of this crab, whether when moving or quipscent, irresistibly reminds the observer of the tortoise tribe, and bears a special analogy to the box-tortoise, which has already been described and figured. The eyes of this genus are very small, and, like the limbs, can be wholly retracted and hidden under the shell. The Domed Crab is a native of Japan.

A very singular and mprepossessing crab, called Spinose Parturnope (Parthenope horrida), belongs to the typical genus of the family. At present, this gems seems to be very small, the number of known species being decidedly limited. Owing to the marine residence of these creatures, and the extreme difliculty, not to say impossibility, of watching them in their watery homes, the habits of these Parthenopide are but little known, and in most cases can only be conjectured from the bodily form, just as the fossil animals are known to be carnicorous or herbivorous by the strueture of their teeth and jaws, to be swimming creatures becanse they possess fins and paddles, or to be capable of flight becanse they are furnished with wings.

In the Spinose Parthenope, the carapace approaches to a five-sided figwre, rather wider than its length, monlded into a series of the oddest inaginable protuberances, and covered with knobs, tubercles, and spines. The beak is sharp, short, pointed, and has a strong tooth just between the antenur. The claw-legs are very large, armed with powerful forceps at their extremities, and covered thickly with such a multitude of knobs, spikes, and protuberances, that they really seem as if they were subject to disease and had thrown out a crop of unhealthy growths. The hinder limbs are compaatively small, but yet are strongly made, and armed with a whole array of thorny spines, so that, what with the claws and what with the spines, the creature is a truly formidable being, and one that may not be grasped with impunity by a careless hand.

This species inhabits some of the hotter parts of the world, and specimens were procured from the Mauritios.

The little Strawberry-crab is very appropriately named, as its color is of a pleasing red, and its surface studded with numerons tubercles, so as to bear some resemblance to the fruit whence it derives its popular name. It is a European species, and is generally found in deep water, so that the dredge is the instrment usually employed in its capture.

The Spine-armed Lambics is a member of a moderately large genus, inhabiting the Mediterranean and the warmer seas of the world in general. In many respects the gemis Lambrns resembles the parthenope, but is distinguishable by having one plate fewer in the abdomen, and by the manner in which the antemne are jointed. The eyes of this Spine-armed Lambrus are retractile and placed on footstalks of an elaborate and curious construction.

The large family of the Canceride now comes before ns, and is familiarly known throngh the medium of the common Edible Crab, which is represented in the accompanying illustration, the figure being drawn from a young specimen.

This is a very common species, being plentiful around rocky coasts, and generally remaining just under low-water mark. The fishermen catch it in varions ways; but the most nisual method, and that by which the greatest number of these crustaceans are captured, is by means of certain baskets, called crab-pots, cruives, or creels, according to the locality. These baskets are round, and in shape something like a flattened apple, and have an aperture at the top through which the crab gains access to the interior. When once within the basket, it cannot
escape, because the opening is guarded by an inverted cone of osiers, like the entrance to a common wire monse-trap, so that the elastic sticks yield to the expected prey while passing downwards, but effectually prevent all up-

EDIBLE CRAB.-Cancer pagntus. ward movement.

The Edible Crab of Europe resembles greatly the Cancer sayi of New England shores, north of Cape Cod.

In many external points the Etura resembles the domed crab, which has already been described on page 443 . Like that being, the carapace is very wide, flat, and expanded at the edges. The limbs, too, are comparatively short, and can be concealed under the shell, which, from its hilly surface, covered with tubercles, and the irregular, notched, and ridged carapace, has but little of the cancerine aspect. Zoologists of the present day, however, have placed it in the same fanily with the edible crab. The claw-feet, with their forceps, are very like those of the parthenope, but are not so proportionately large, and their surfaces are concave, so as to fit into the trunk. The eyes are very small, and their orbits nearly circular.

All the species of this genus inlabit the East Indian and African seas. Large specimens attain a length of three, and a width of fonr and a half inches.

We still have to describe three more curions examples of this large family, each being notable for some peculiarity of form or liabit.

Montarfu's Chab belongs to a genus which finds several European representatives. It is a flat-bodied and strongly-made creature, very restless in disposition, and with a curious fondness for getting under stones, and turning them over; probably for the sake of obtaining a meal from the smaller marine animals that are accustomed to shelter themselves in such localities.

The shelly covering of this crab is remarkably strong and flinty, and the muscular power of the claws is gigantic, when the small size of the creature is taken into consideration. It is a tolerably common species on several European coasts, appearing to be peculiarly plentiful on the sonthern side of England.

The Red-spotted Eale is a curionsly marked crab, the carapace being divided into a number of partitions, in which is a certain, thongh not very definite regularity. It inhabits the wamer seas. The Mauritius and the Philippines are favored hannts of the Egle. The color is red and whitish spotted.

The Tootned Perimela is our last example of this fimily.
The name of Toothed Perimela is given to this species in allusion to the shape of the carapace, which has the front edge rather flattened, and cut into a series of four or five strong teeth, like those of a saw. The surface of the carapace is smooth, and is swollen into several decided projections, something like those softly rounded hills called by the French "mamelons." Over the region of the liver, the carapace is concave.

Nearly allied to the preceding species is the Hamis Chab (Pilummus hirtellus), a creature which derives its popular name from the corions hairy covering with which it is decorated. The fonvex carapace is stmeded more or less thickly with longish hairs, and the four hinder jairs of legs are also protected in the same mamer. This crab is not a very common one, and is mostly found on the northern coasts of Europe. It seems to prefer moderately deep water, fifteen fathoms being the risnal depth at which it is captured.

It may be easily known by the following chanacteristics: On the front edge of the carapace are arranged four spines set in the same line, and the front is divided by a deep notch down the middle. The claw-legs of this species are always unequal in size and the first joint of the onter pair of antennse is short. The ground-color of the Hairy Crab is chestnut-brown, with
a reddish tinge of greater or less intensity, according to the individual. The legs are duskyred, relieved by a series of bands of a grayish-yellow color.

In many characteristics, the genus Zozymus resembles the genus Figle so closely, that the two genera have been blended together by several systematic zoologists.

As a general fact, it is much to be wished that the modern fashion of breaking up the old and established genera into a lost of new ones, many of which contain but a single species, had not proved so fascinating to the anthors. In many cases, the characteristics employed as generic differences are so very trifling, that they are barely of sufficient importance for the establishment of a species. New families also have been invented with reckless profusion, and in many instances, known to every naturalist, the characteristics on which the family is founded serve equally for the genus and the species. Needful as is some definite system of nomenclature, and admirable as is the system which Linnaus founded, and which has since formed the basis of all arrangement, it can be pushed too far, and, as is well known to be the ease, is so widely abused, that merely to learn the multitude of sesquipedalian titles with which the study of zoology is now eneumbered, requires a greater exercise of memory than to study the habits and peculiarities of structures which alone form the true objects of zoological seience.

The Brassy Crab is remarkable for the curions protuberances into which the carapace is moulded, and which cover the claws and legs. Only three or four species are ranked under this genus, and all of them are natives of the Manritius or the Philippines.

The genus to which the Spotted Crabs is assigned is rather more comprehensive than the preceding, and contains six or eight species, all being remarkable for their round and smooth bodies, the peculiar notches and projections on the edge of the carapace, and the huge claws that terminate the first pair of legs.

The members of this genus belong to the tropical regions. Some species are found about Jamaica and the West Indies in general. Others inhabit the Philippines, and others, again, are natives of the Manritius. Except from the peculiar spots with which the carapace is decorated, this crab might easily escape detection while lying with its limbs withdrawn, and its frame in a state of quietude, for it is so round and so smooth that it looks very like a large pebble that has received a partial polish from the action of the waves. Many sperimens are corered more or less with regetable and animal growths, such as corallines, algie, burnacles and zoophytes, and are therefore almost undistinguishable while they are quiet.

The spots upon the carapace are bright red.
Examples of two dissumilar species of the same genus are the Tubercled Galene and the Smooth Galene. The Tubercled Galene derives its name from the profuse warty excrescences which grow upon the claw-feet and the pincers. In the Smooth Galene the claws are very much smaller in proportion, and destitute of the tubercles which are so characteristic in the former species. Both these crabs are natives of the East Indies.

We now arrive at the family of the Portunidse, or Swimming Crabs, in which the last pair of feet are flattened sideways, and have the last joint dilated into a thin oblique plate, which answers as an oar or a fir, and enables the creature to propel itself through the water. The first example of this family is the Gheen, or Shone-crab, so familiar to every one who has passed even an hour on the coast between the time of high and low water. Althongh one of the commonest of the crustaceans, it is at the same time one of the most interesting, and, owing to its climrual habits, its fearless nature, and its love for the shallow waters, it is rery easily observed. I have spent many a pleasant hour in watching the habits of this little creature, and could hardly have imagined the activity, the piercing sight, and the cleverness with which this crab is endowed.

It is a fierce and even voracious animal, chasing and failly ronning down living prey, and actually leaping upon its victim with a spring like that of the honting spider. I have seen the Green Crabs run after and catch even the active sandhoppers, calculating with nice precision the spot on which they alighted, and pouncing on them before they could get themselves into position for a serond leap. If the prey should be of tolerable size, the crab does not leap at it, but darts out one of its claws with a stroke so sharp and quick, that
the eye can scarcely follow it, and as true of aim as the serpent's dart, draws back the victin, seizes it immediately with the other claw, and begins to pull it to pieces before it can recover from the shock.

The Green Crab has a most extended distribution, the North American species being the same as the above. It is also found in Enropean seas, Sontl America, and the Sandwich lslands. Its range here is from Cape Cod to Maryland. Martha's Vineyard is a good locality for this species.

The little crustacean which is called by the name of the Telvet Fiddler-crab, derives its popular and appropriate title from the movements which it makes while swimming through the water.

The last joints of the hinder feet are extremely flat, and it is by their movements that the crab is enabled to swim. Their motions are very like those of an oar when used in "sculling" a boat, and are popularly thought to resemble the movements of a fiddler's arm while playing a lively tume. The word "velvet" is affixed to the name, becanse the entire shell of a perfect specimen is thickly corered with shining hairs, short, silken, and soft, something like the pile of velvet or fine plush. It is seldom, however, that a really perfect specimen is seen, as the soft velvety pile is easily rubbed off, and in almost every instance has sustained some damage, so that the blackish shell is seen, with its polished surface. The edges are very seldom clothed with their normal coating of hair. When tolerably perfect, a full-grown specimen is a really handsome creature, with its coat of velvet pile, its striped feet and legs, its scarlet and bhe claws, and its vermilion eyes set in their jetty sockets.

This species is not one whit less voracions or cruel than the edible or the green crab, and as it enjoys all their activity, with the additional privilege of swimming through the water, it is even a more fomidable animal, chasing and killing every creatmre that it can overcome. Even the hermit-crab, that lies so snugly in its shelly cell, with the large fighting-claw guarding the entrance, and its body withdrawn into the inmost recesses of the shell, is frequently captured and killed by this doughty warrior. Every one who has tried to pull a hermit-crab out of its house, knows the difficulty of the task. The creature has the art of retreating into its dwelling so far, and pressing its claws and legs so firmly against the inner mouth of the shell, that there is nothing by which the animal can be grasped, except, perhaps, the antenna; and the crab will allow itself to be pulled to pieces rather than loosen its hold. Yet the Fiddler-crab makes little account of the hermit, but pokes his claw into the shell, pinches the poor hermit across the thorax, and drags him ont of his cell. It thei pulls off and eats the soft abdomen, tears n_{1}, the body and limbs, and flings them away in fragments, as if for sheer wantonness of destruction.

There are many species belonging to this genus, which are scattered all over the world, especially where the seas are warm or temperate. The Velvet Fiddler is tolerably common. Of these the Malibled Fiddler (Portumus marmoreus) is perhaps the handsomest, on account of the regular patterns of buff, brown of various shades, and red, which are seen upon the body. The shape of the patterns is variahle, but their armagement is always symmetrical. These colors are, however, very fugitive, and can only be preserved by removing the whole of the soft parts, and dyeing the carapace with great care. All the species seem to be decidedly local, so that in the space of two or three miles of coast as many species of Portmms may be found, mach in its own particular locality.

Perhaps the very best swimmer in the family is the Oceanic Swamang Crab, a creature to which the generic name of Neptums has been given on accomnt of its wonderful mastery over the waves.

This crab is apparently made for speed, its flattened limbs and body being calculated to offer the least possible resistance to the dense fluid throngh which it has to pass. The Oceanic Swimming Crah is among rrustaceans what the albatross is among birts, being able to sustain itself for days together withont needing rest, and whenever it does seek a brief repose, needing nothing but the floating alge as a temporary resting-place. The movements of this species are achieved with an ansy grace and freedom that remind the observer of the swallow's Hight, as the crab flies swiltly through the water, its claws ready to seize their prey, and its
limbs held in such an attitude that they offer searcely any resistance to the clement in which the creature lives.

This species has a rery wide range, and is found throughont the warmer seas. It is common around India, Anstralia, and the Philippines, and from its bird-like fleetness and activity, has never failed to attract attention. Like others of its family, it feeds upon liring prey, and chases its rictims through the water with a speed as rapid, an aim as certain, and a voracity as unfailing as are exhibited by the shark itself. The species is notable for the shape of the carapace, and the sharp spine into which each side is developed.

The Edible Cinab of America (Neptunus hustatus) lorms a somewhat important item of tommerce in certain portions of our coast. In New England, north of Cape Cod, it is practically unknown as an edible. When in the soft state, after monlting, it is highly prized, and ranks eren higher than the best oysters. They are not prodnced in sufficient mumbers to render them common in markets, excepting those of the Middle States. The region of Hampton Roads is the central point of this luxury. This species is also consumed largely in its hard-shell state. It extends southward to the Gulf of Mexico, where it is abundant on the reef.

Another strange-looking creature is nearly as good a swimmer as the oceanic crab, and has many of the same habits. Like that crustacean, the Forcers-crab roams the ocean as freely as the bird roams the air, shooting throngh the waves with arrowy swiftness in chase of prey, gliding easily along just below the surface, hanging suspended in the water while reposing, or occasionally lying across some floating sea-weed. The chief peculiarity of the Forceps-crab is the structure from which its name is derived, the wonderful length of the first pair of limbs, and the attenuated forceps with which they are armed. Though not possessing the formidable power with which some crabs are armed, the Forceps-crab is yet as terrible an enemy to the inhabitants of the sea, for it can dart ont these long claws with a quick rapidity that almost elndes the eye, and grasp its prey with merring aim.

No one who has not watched the crabs in their full vigor and while enjoying their freedom, can form any conception of the many uses to which the claws are put and the wonderful address with which they are used. Their bony armor, with its powerful joints, appears to preclude all delicacy of touch or range of distinction, and yet, the claws are to the crab what the proboscis is to the elephant. With these apparently inadequate members the crab can pick up the smallest object with perfect precision, can tear in pieces the toughest animal substances, or crack the shell of other crustaceans as a parrot cracks a nut in its beak. It can direct them to almost every part of its body, can snap with them like the quick, sharp bite of a wolf, or can strike with their edges as a boxer strikes with his fists.

The paddle-legs are broad and well developed, so as to ensure speed, the front of the carapace is sharply and deeply serrated, and the sides are drawn ont into long pointed spines. It is a native of the West Indian seas, and is represented abont the dimensions of an ordinary specimen.

The Nipper-crab (Polybius henslowii) is a better swimmer than the fiddler-crab, being able, according to Mr. Conch's account, to ascend to the surface of the sea, and to pursne its prey through the waters. So well does this creature swim, and so voracious is its appetite, that it captures and eats even the swiftest sea-fish, having been known to pounce upon the mackerel and the pollack. Its method of proceeding seems to be to dart upon its prey, grasp it firmly with its sharply-pointed and powerful claws, and retain its hold until the mofortunate victim is quite fatigued and falls an easy prey. It is not so handsome as the velret fiddler, having none of the beantiful scarlet and azme tints which decorate that species, and being mostly colored with different shades of brown.

Our last example of this interesting family is the Sextinel-crab, so called from its extreme watchfulness, and the wonderful manner in which its eyes are arranged so as to explore objects in every direction, withont needing to move, or even to raise itself from its flat and crouching attitude. The generic name of this creature is of Greek origin, being composed of two words, the former signifying a foot, and the latter an eye, and is given to it on account of the strangely long footstalks on which the eyes are set. When the creature is
at rest, the footstalks lie horizontally upon the body, and are received into two channels or grooves, where they lie hidden and safe from danger.

A somewhat similar disposition is found in some of the land-crabs, but differing in the arrangement of the footstalks. Each of these curious organs consists of two pieces, and in the Sentinel-crab the first is long and the second very short, while in the land-crab exactly the reverse takes place, the length of the footstalk depending on the second joint. Only one species of Sentinel-crab is at present known, and is a native of the Indian Ocean. It never attains very great size, its length varying from two to four inches.
$W_{\text {e now }}$ leave the swimming and marine crabs, and turn to those which are able to spend a great part of their existence out of the water. The Flattened Mud-crab belongs to a tolerably mumerous genus of crabs, which live along the banks of rivers or in damp forests, and are evidently a link between the aquatic and the true land-crabs. The Thelpuusa lives in burows, which it excavates in the mud to a considerable depth, and gives the fisherman no small trouble before it can be dug out.

One species of this genus, the Grancio of the Italians, is very common around Rome, and is largely captured for sale in the markets, as its flesh is very delicate, and in great request on the fast days of the church. It is dug out of the mud and kept alive for sale, as it can endure removal from the water for a very long time, sometimes living a month upon dry land, the only precaution needful being that it should be kept in a damp spot, such as a cellar. It is a most useful species, as it can be eaten throughout the entire year, but is thought to be in best condition during and immediately after the monlt. There are many ways of dressing this delicacy, some persons killing it by long immersion in milk, and others asserting that its flesh has more flavor if eaten raw, like that of the oyster. In the market these crabs are tied to strings, but always at such lengths that they camot reach each other, or if they should do so they would of a certainty attack and maim their nearest neighbors.

The Lake of Albano is a very farorite resort of these crabs, which absolutely swarm in its soft mnddy bed. On the first view, the Mud-crab looks very like the common green crab of the sea-shore, but can be distinguished by its color, which is of a whitish or livid hue. It runs about with great speed, and when it fears the approach of an enemy, huries into the water, burrows under the mud, or hides itself heneath a friendly stone. Shonld, howerer, its retreat be cut off, it proves that it can fight as well as rum, and grips with such force, that it makes the blood flow before it can be shaken off. During the winter it dives deeply into the mud, and there remains hidden, until the wamm of spring induces it to leave its retreat.

Anotifer family of land-crabs is well represented by the Toulourou Black-crab, or Trolet-crasi of Jamaica (Gecarcinus ruricole).

This singular creature is found in vast numbers, and for the most part lives in burrows at least a mile from the shore, and sometimes at a distance of two or even three miles, seldom, indeed, visiting the sea lout for the purpose of depositing its eggs. About the months of December and Jannary the eggs begin to form, and the crah is then fat, delieate, and in good condition for the talle. In May, however, it is quite poor and withont flavor, and does not recover its proper condition until it has visited the sea, deposited the eggs, and returned to its home. Alont Jnly or August the Tiolet Crab is again fat and in full flesh, having, in fact, laid in a stock of fat which will afford it sufficient nomishment through the time in which it remains in a torpid state. It retires to the hottom of its burror, into which it has previonsly convered a large amount of grass, leares, and similar materials, 'loses the entrance, and there remains until the next year.

It is at very quick and active creature, scuttling off to its hole with astonishing rapidity, and is not to be captured without the exercise of consiterable skill and quickness. Nor must it he handled without caution, for as it runs, it holds up its claws ready to bite, and if it succeeds in grasping its foe, it quickly throws off the limb-which continues to gripe and Jinch as sharply as if still attached to its former owner-and makes good its escape
while the claw is being detached. For the table, this crab is esteemed as one of the greatest delicacies, and is treated in varions modes, sometimes stewed, but mostly cooked in its ovan shell.

The Pea-crab, a curions little crmstacea, is found within the shells of the horse-mmssel, and one or two other bivalres. That this crab was a frequent inhabitant of the pima was a fact well known to the ancient naturalists, who put forward a number of ingenious but lather fabulous theories to account for the singular alliance. By some writers it was said that the Pea-crab supplied the place of eyes to the blind pinna, and that its especial task was to warn it of the approach of the polypus or cuttle-fish, receiving board and lodging as a reward of its labors. Some thought that the Pea-crab performed the office which ancient tradition attributed to the jackal, and was sent out by the mollusk for the purpose of obtaining food, the host and guest dividing the spoil.

What may be the real reason for this strange habit is not quite clear, for thongh the Peacrab will live in the same shell without intlicting any apparent injury to its host, it is yet very fond of mussel-flesh, and will eat it with much eagerness. Indeed, several specimens have been kept alive for more than a year by being fed upon that diet. Perhaps it may feed upon the juice and less important parts of the mollusk, just as the ichnemmon larva feeds on the juices of the caterpillar. Sometimes two and even three specimens are found within a single shell, and on examining the mussels taken from an old bank where they have been permitted to rest quietly, almost every shell will contain one specimen of the Pea-crab.

The color of the Pea-crab is reddish cream-color, and the dimensions are small. The average diameter is half an inch. It is a very timid creature, as might be inferred from the remarkably retired spot in which it passes its hife; and when it is alarmed, it contracts its limbs and pretends to be dead, remaining motionless for a vely long space of time, and not moving until it feels sure that its enemy is out of the way.

The little Pinnotheres, so commonly found ensconced in the Americin oysters, is designated specifically P. ostrea, on account of its habitual sojourn there. The female only is seen, the male maintaining an independent existence.

The Long-armed Mrctiris is an example of a moderately large family of crustaceans, all of which inhabit the warm seas, and are most plentiful under the tropics. In this genus the carapace is very delicate, convex, and somewhat circular in form; the limbs are long and slender. In the present species the carapace is curiously divided by two longitudinal furrows into three convex protnberances, and projects slightly in front. The claw-feet are long and armed with pincer's that are very powerful in proportion to the dimensions of the animal. It is a native of the Australian seas.

We now arrive at another fanily, called the Ocypodidx, or Swift-footed Crabs, from their extraordinary speed, which equals or even exceeds that of a man.

The accompanying engraving represents the Figilivg Crab, a creature whose name is well deserved. As the reader may observe, one of its claws is enormonsly large in proportion to the body, being indeed, nearly equal in dimensions to the whole carapace, while the other claw is quite small and feeble. It is remarkable that sometimes the right and sometimes the left claw is thus developed. This animal is a most determined fighter, and has the art of disposing its

FIGHTING CRAB.-Gelasimus beliator. limbs like the arms of a boxer, so as to be equally ready for attack or defence. The figure shows the crab in its natural size.

The Fighting Crab lives on the sea-shore or on the border of salt marshes, and burrows deeply in the earth, the holes being tolerably cylindrical and rather oblique in direction. In some places these holes are so close together that the earth is quite honeycombed with them, and the place looks like a rabbit-warren. Each burrow is tenanted by a pair of crabs, the Vol. III. -57 .
male always remaining in the post of danger at the mouth of the tunnel, and keeping guard with his great claw at the entrance.

While rmoning, it has a habit of holding the large claw aloft, and moving it as if beckoning to some one, a habit which has cansed one of the species to be named the Calling Crab. This action has in it something very ludicrous, and those who have watched the proceedings of a crab-waren say that there are few scenes more ridiculous than that which is presented by the crustaceans when they are alarmed and go scuttling over the ground to their homes, holding up their claws and beckoning in all directions. The generic name is derived from a Greek word signifying langhter, and is given to the crabs becanse no one can look at them withont laughing. These crustaceans possess very long footstalks, on which their eyes are placed, but, as has already been mentioned, the second joint of the footstalk is long and the first is short.

The Fiddler Cifabs, or, as they are called also, Fighting Crabs, are represented in America by the Gelasimus pugillator. They are characterized by the singnlar difference between the two fore-arms. The above description and tigure apply very closely to the American form. We have seen thonsands of these crabs, of the same uniform size, thronghout the army, which they simulated, covering an area of many yards on a smooth beach.

The ludicrous uplifting of the great arm-though sometimes earning for them the name of fiddlers, the arms looking like bass viols-when these creatures were moving together, suggested most readily an army on the march, and manouvring meantime. An interesting feature was observed, in that being crowded closely, each tonching the next, their movements were the result of simultaneons impulse. The whole army would be seen approaching yon, steadily as a heavy column of troops; anon the entire mass wheeled, or changed instantly, and with the greatest precision, to oblique mareh or in echelon. We observed this at Cedar Keys, in West Florida.

This crab is not uniformly distributed in New England, beiug found in scattered localities. We never saw it in the vicinity of Boston, Mass.

A beantiful species called Lady-
 cliab, or Sand-crab (Platyoniculus ocellalus), was once found in the habor-side waters near Boston, but is now nearly if not quite extinct in the eastern portions of New England.

Closely allied to these creatures is the Racing Crab (Ocypodecursor), sometimes called the Sand-crab, from its labit of burrowing in the sand. In our illnstration it is represented of the natural size. Sir J. Emerson Tennent, in his "Natural History of Ceylon," writes as follows of this crab: "In the same localities, or a little inland, the Ocypode burrows in the dry soil, making deep excavations, bringing up literally armfuls of sand, which, with a spring in the air, and employing its other limbs, it jerks far from its borrows, distributing it in a circle to the distance of many feet. So inconvenient are the operations of these industrious pests, that meu are kept regularly employed at Colombo in filling up the holes formed by them on the surface of the Galle Pace. This, the only equestrian promenade of the capital, is so infested by these active little creatures, that accidents of ten occur through horses stmmbling in their troublesome excavations."

These crabs run with surprising swiftness, and it is by no means easy to catch them before they escape into their burrows. Sometimes they are made to afford a few hours' ammsement to military officers and other persons who have too much time on their hands, the struggle between man and crab being as exciting as the battle between an eagle and a salmon. One
derice is ingenions, simple, and often successful. Long strings are attached to flat pieces of slate or stone, which are carefully laid near a burrow, and some tempting food laid outside. The crabs crawl out to feed on the bait, and while they are engaged, the slates are quietly drawn over the entrance of the burrows. A sharp rush is then made, the crabs scuttle away to their homes, and one or two are generally captured before they have recovered their presence of mind sufficiently to leave their barricaded doors and ask for admission into another habitation. Another amusement is to chase the crahs on horseback, trying to ride them down by main speed, and to kill them with a gun. They mostly take an oblique line when rmning, so that a pursuer who is acquainted with their habits is more likely to sncceed in his endeavors than one who employs nothing but main speed in the chase.

None of these crabs care much abont the water, being quite satisfied if they can obtain sufficient moisture to keep their gills in working order. As is the case with most of their kindred, they seek the ocean when the time for laying their eggs has arrived. Even then, they remain but a very short time in the water. It is, however, conjectured that the first stages of existence must be passed either in the water or underground, as a very small Racing Crab never seems to be found. On account of the great speed of these creatures, the Greeks were accustomed to designate them by a name which signifies a horseman or knight. Opinion appears to be divided with respect to the ralue of their flesh, some species being highly esteemed, while others are totally rejected, and even decried as poisonons. It may be, however, that locality las some influence in these opposite opinions, and that in some places the crabs may feed on wholesome food and therefore be eaten with impmnity, while in others they may perforce mix with their diet certain substances injurions to limman health, and so become in some degree poisonons. The reader will doubtlessly remember that the common edible mussel is at one time perfectly harmless, and at another is so injurious as to cause serious effects upon the health of those who eat it, life itself laving been threatened by the mysterions influence.

The Racing Cral alluded to above has a representative species considerably larger than this on the beaches of the sub-tropical portions of America. It is called the Spirit Crab. On the Florida Keys it abounds ; its colors so accord with the yellowish-white sand of the beaches, one is quite deceived at first glance. Were nothing stiring, a few moments after your advent, you would notice nothing of animal life; move never so liglitly, and the light-colored ghosts flit in great numbers to their holes in the sand.

The Angular Crab is one of the European species, and in many respects bears some resemblance to the preceding species. The eyestalks of this crab are also long and movable, the carapace is wider than long, and the legs of the male are nearly five times the length of the carapace; in the female they are only twice the length. The Angular Crab is taken off the southern coasts, and is either dredged out of rather deep water or found within the stomachs of fishes. It is a burrower, forming excavations in hardened mud, and always having each extremity of the habitation open. A Mediterranean variety of the same species prefers to live among rocks, and is a good swimmer, frequently coming to the surface of the water, but not being known to frequent the land. The claw-legs are of great length, and the claws themselves are large and powerful. Its name of Angular Crab is given to it in allusion to the shape of the carapace.

In the next family, of which the Painted Crab (Grapsus pictus) is a good example, the eyestalks are very short, and the carapace is squared. The members of this family are found in nearly all warm parts of the globe, not, lowever, being natives of the European coasts. Now and then a Floating Crab (Planes Cinneana) is swept into the seas together with masses of the well-known Gulf-weed; but its presence is purely accidental, and cannot entitle it to rank among the European species.

The Painted Crab is a native of the Antilles, and is a rery active as well as beantiful species, haunting the sea-shore and running about nimbly in the spray. It is a good climber. and can ascend or descend nearly perpendicular rocks, provided that they are washed by the waves. Some species of this genns prefer the mouths of tidal rivers, and remain mostly at the
edge of the water. They seem to rejoice in the hottest rays of the tropical sun, and run about nimbly hither and thither, with the sumbeams flashing on their wet bodies. They are all wary and timid beings, betaking themselves to the water on the least alarm, and flinging themselves into the waves with such force that their flat bodies skim for some little distance over the surface, much as the flying squirrel skims throngh the air between two trees. While running along, they strike their claws against each other as if for the propose of menacing their pursuer, and when a number of these crabs are startled in one locality, the clatter which they make is surprising. The color of the Painted Crub is reddish, covered with spots and variegations of yellow. It is not at all a large species, the carapace being seldom more than two inches in length.

The Painted Crab resembles closely a species that inhabits the waters of the Gulf. At Fort Jefferson, Tortngas Islands, we were continually amnsed by the actions of these Crabs. They were called Spider Crabs, not from their slenderness, but from a resemblance to the Hunting or 'Zebra Spiders (Sulticus), and particularly from the singularly furtive movements that characterize that group of spiders. Being amphibions, they wonld be fonnd usually upon the brick walls or piers of the lort. When approached they suddenly flattened themselves closely against the surface, and their antenne or eyestalks moved quickly, as we have seen those of the above named spiders.

Two remarkable species of Crabs are the Crested and the Armed Crab.
The former, a cmrions animal, inhabits Japan. Most of the species of this genns are found in the hot parts of the world, such as the Sandwich Islands, the Mamitins, and the West Indies. The whole slape of this creature is strange in the extreme, its carapace being covered with all kinds of tubercles and spines, and edged with saw-like teeth. Even the claws are covered with mexpected spikes and tubercles, and when folded in front of the body, assome a very crest-like aspect. The creature instinctively makes use of its extraordinary shape for the purpose of concealment, and when it is alamed, it tucks its legs away under the broad carapace, folds its chaws over its front, and remains perfectly motionless in spite of all annoyances. A sailor has been known to find one of these crabs on the sea-shore, to take it for a cmious stone. and so to put it in his pocket. Some time afterwards, when he had laid down the smpposed stone, he was not a little surprised to see it put forth a number of legs, and run away at best speed.

The name of Crested Crab is given to this species in allnsion to the form of the closed claws.

The Armed Crab is also a native of Japan and China, and belongs to the same family as the precoding animal. The chief pecnliarity in this creature are the four sharp spines with which the carapace is armed, those at the side being of very great dimensions, each measuring half the length of the body. The claws are sharp and powerfin, and are formed in a mamer somewhat resembling the same members in the crested crath.

Allnsion has more than once been made to the power of volmntarily throwing off a limb, a facnlty which is inlerent in all the crustacea, but in some species is prevalent to a wonderful degree. 'The land-rabs, for example, will always sacrifice their best claw as a means of purchasing safety, and seem able to part with almost any nomber of legs without feeling the loss. If, for example, a land-rab or mod-erab be taken mp, by the legs it suddenly shakes itself loose, leaving in the captor's hands the limhs which he has grasped, and making off with the remainder. The animal allways throws off its limbs at one of the joints, seeming to achiper the feat by a sudden musenlar contraction, like the movement which shakes off a blind-worm's tail, snaps away the wings from a flying ant, or breaks up the whole anatomy of a brittle-star into fragments. If the limbs be cut or severed between two of the joints, there is a flow of bloon, and the reature seems to ferd the injury acutely. It soon, however, heals itself by shaking off the injured portion at the joint immediately below the womd, and then spems to recover itself from the shock. 'Ihis limulty is very needful to creatmes who depend mon thein rlaws for obtaining food, and who are so quarrelsome in disposition. As has already been mentioned, the cmstaceans fight terihly, and in those cases where the combat is
not $a ̀ l o u t r a n c e$, both parties have nsually to deplore a limb or two crushed in the nippers of the opponent. Were no means provided for replacing the injured members, the poor creatures would die of starvation, as wouk an elephant if deprived of his proboscis, or a lion whose feet had been cut off and teeth drawn.

Erery injured limb, therefore, is at once discarded at some joint, no bleeding takes place, and the stmmp heals almost immediately. After a short time, a little button seems to be protruding from the joint, and before many dars have passed, a very small but perfect claw is seen to protrude. This new member grows regnlarly though slowly, and so in process of time the creature is re-supplied with its full complement of limbs. Every one has noticed the frequent inequality in the size of lobsters' claws, how one side is armed with a huge weapon nearly as large as a man's hand, while the other can only boast of a puny, soft-shelled claw an inch or so in length. This inequality is the result of some injury that has been inflicted on the limb from which the little claw las spronted, and in ahost every instance the original claw has been lost in battle. After the moult, and the induing of a fresh suit of armor, the growth of the new claw proceeds more rapidly.

It must be noticed that this power of reproduction of a lost or injured members always denotes that the creature possessing this capability is not very highly organized. Very few of the rertebrates, and those mostly belonging to the reptiles, are able to reproduce a lost member, and even in these few instances, the restorative power is very limited. A very few examples hare been recorded where a limb has been lost and replaced, but such phenomena are extremely rare, and can only be looked upon as rariations from the nsual systen.

The faculty of avoiding danger by closing all the joints of the limhs and merging them as far as possible under the carapace, is carried to a wonderful extent in the Tortoise-crab, a crustacean that derives its popular, title from its general similitule to the reptile from which it derives its name. There are, indeed, many of the tortoise tribe which are not able to enclose themselves nearly so perfectly as does this crab, and extepting the box-tortoise, there is perhaps none that exceeds it in the very perfect concealment of all restige of their limbs. The carapace is wide, flattened at the edges, and dome-like in slape, so as to afford a perfect cover to the limbs. Owing to the manner in which these crabs conceal their limbs, Cuvier called them by the appropriate name of Cryptopords, or IIidden Feet. In all of these creatures the carapace is domed or vanlted, so as to form a slelter for the legs, while in the typical genus, the claw-feet are very large and compressed, with it decided upper edge which is notched or toothed so as to form a crest. The French know these crabs by varions names, such as Migranes, Coqs de mer, and Crabes hontenx.

The claws are broad, flattish, notched at the edge, and scooped in a pecnliar fashion, so that when folded over the body they exactly fit to the shell, as if they were part of the same piece. Two sides of this species are given in order to show the crab in its upper and under aspects. The Tortoise-mal is a native of the Maritius.

Crested and Armed Crabs, and the Tortoise-cmb (Camara), are found on the Florida Reef. The latter reminds one strongly of the box-tortoise, its parts shut so admirably together. The creature seen from above, appears when at rest or alarmed, as if there were no limbs.

In the family of the Lencosidde, the carapace is more or less rounded, and projects somewhat in front.

The Ulinna-clab is an example of the typical genns. It has a smooth carapace with rounded edges, and the claw limbs are rery large and powerful in proportion to the size of the body. On their edges they are covered with rounded tuberckes, and one or two of these projections are scattered ubon the surface of several joints. In all these crabs, the apertures throngh which water passes to cover the gills are in the form of canals. One curions characteristic of these crustaceans is that the external antemne are very small indeed, and are inserted in a narrow but deep notch near the eyes. In common with nearly all this genns, it is a native of Philippines.

A much smaller species of the same genns is called Spotted Leucosia (Leucosia hermatostica). In it are observable the same characteristics which have already been mentioned,
namely, the very small and narrow snout, the round and flask-like body, the strong claw-feet, and the very small size of the external antenne, which cannot he seen from the upper surface. A rery strange looking creatme is the liefled Crab. It derives its name from the form into which its carapace is monded, being pinched, as it were, into a kind of keel thronghont its length.

In this chab the chief points of interest are the long arms and the apparently shapeless carapace, which is monlded as if squeezed out of clay by a single grasp of the hand, and the very long claw-feet. In consequence of this latter structure, the lapanese call one of the species of this genms, the Temkô-gani, or Long-handed Crab. In this creatmre, as in the last, there is no appearmee of external antemm when viewed from the upper smrface, the claws are feeble in proportion to the long and somewhat powerfnl limbs to which they are attached, and the end of the carapace is drawn ont into a long and sharp point. This species inhabits the Philippines.

Tun Nut-crabs are members of the same family, and are found off the British shores. Pennant's Nut-chab is genemally to be canght in about fifteen fathoms of water. It is rather a sluggish and inactive species, burying itself in the sand or mud at the bed of the sea, mnch after the fashion of the toad, and only leaving its eyes and claws at liberty to act. Thins it sits and waits for prey, behaving much like the ant-lion in its pitfall of sand. It seldom moves about except at night, and even when it does travel, its motions are very slow and deliberate. It is rather a pretty little rab, being of a tolerably bright yellow, with a red patch on the snont.

This, and other species of the same gems, are often found in the stomachs of marine fish, and as the shell is very hard, specimens are discovered in a grood state of preservation.

In the couss of the preceding pages we have seen many instances of cmions structures which seem to be wholly smpplementary and of no use whatever to the creature. The very fact of their existence is a proof that there is some use for them, although their office is so obscmre as to elude all present researches. Such a crab is the Txa Cybindius. On each side of the body is a large cylindrical projection, so that the extreme measurement from side to side is nearly equal to three times the length of the body; the claws are long and feeble, all the force seeming to be thrown into the two projections. This crab is a native of several parts of Asia, and is found both in India and off the Philippines.

Another odd-looking crab, having its carapace scooped and grooved in a wonderful manner, is the Nersia plicala. It is found in the Indian Ocean.

But we will not forget to mention the Seven-spined Crab, so called on account of the seven sharp points that project from the carapace. There are several large species of this genus, one of which has nine spines instead of seven. In this curions creature the arms are longer and more slender than in the preceding species, and the claws at their extremities are exceedingly delicate and feeble. This crab is a native of the Eastern seas, and is generally captured off the cousts of India.

Our next example is the Mask Crab. It buries itself in the sand or mondy bed of the sea, and only permits its snont to project, with the long antenne, so as to feel (or, as some suppose, to listen) for aproaching prey, and the eyes to look in all directions for any eatable creature that may haplessly wander within reach, and the claws, in order to seize the prey when it 1asses within the grasp of their long and formidable hands.

The antenne are apt to become clogged with mud, and the crab is thereof gifted with an apparatus whereby they can he perfectly cleansed. In order to effect this object, the crab hends each antenne sideways, matil it rests on the hairy base of its companion; it then draws it completely throngh the stiff bristly hairs, matil every particle of extraneous matter is In mash away. Sometimes the Mask-cab bmies itself deeply, that it only leares the tip of the antemae aboye the sand. The name of Mask-crab is given to this cmstacean, becanse the carapare is so formed that its two waved grooves mould the surface into an obscme likeness of the himman face.

In the gemas of the Polished Crab (so called from the smooth, shining surface of the carapace), the curapace is somewhat heart-shaped, and very narrow behind ; the claw-feet are

2e Animate Creation. 逐

WE have concluded to submit for public patronage a work with the above title, being a series of exquisite Engravings representing the Animal World, executed with great scientific accuracy, and accompanied by full Descriptive Text, written in popular terms, so as to delight and instruct the people. Anyone who has considered the subject must be at a loss to understand why an Illustrated Natural History, comprehensive and at the same time popular, has not before this been published in this country. Indeed any lover of animals who has visited the great museums and zoological gardens and has had access to books of engravings in the public libraries, could not fail to remark the wealth of material in existence devoted to this subject. Being confirmed in our conviction of the desirability of such a work, we laid under contribution the best existing authorities for the production of most perfect representations of all the more important living creatures, and among the artists whose delineations will delight the reader, we may mention Harrison Weir, Wolf, Coleman, Fr. Specht, and Mutzel. By far the majority of the engravings in these volumes are from drawings made from the living animals, many at the Zoological Society's Gardens in London, England.

We purpose that our patrons shall be aided and interested in their study by such an array of pictures as has never before embellished any Natural History. In numerous instances the engraving is printed in oil-colors, and this portion of the illustrations has been taken charge of by Messrs. L. Prang \& Co., of Boston, who we believe rank foremost for high artistic results in this department of printing. These Oleographs werc copied under the superintendence of Mr. Prang from the renowned "Tafèn" of "Brehm's "erleben," so that they may be declared perfectly reliable.

We sought com .ent advice from various sources as to the most suitable text that should accompany this panorama of handsome Engravings. It was found impossible to embody all the present ideas of naturalists in a single work like this on account of the rapid advances and constant changes in their knowledge of, and habits of thought respecting, the Animal World. And it seemed to us correct that the true object of Zoology is not to arrange, to number, and to ticket animals in a formal inventory, but to inquire into their life-nature, and not simply to investigate the lifeless organism.

What do we know of "Man" from the disse".... \quad "cum? Is it not Man, the warrior, the statesman, the poet, etc., that we are interested in? With all veneration which attaches itself to those who are the accredited possessors of abstruse learning, their inordinate use of pluraseology detracts too much, we fear, from the fascination that the study of the Animal World would otherwise yield. and as we are not content to have our work restricted to a favored few, we thought the task placeit in our hands to be to keep the work free from a repellant vocabulary of conventional technicalities. Our endeavor has been to find an author whose work would be noted for its fund of anecdote and vitality rather than for merely anatomical and scientific presentation, and we arrived at the conclusion that we could not do better than avail ourselves of the Rev. J. G. Wood's comprehensive work -a work most popularly approved by speakers of the English language. It would be superfluous to say one word concerning the standard character of his book, from the pages of which old and young at the other side of the Atlantic have obtained so much instruction and rational amusement. Avoiding the lengthened dissertations and minute classifications of specialists, he presents to his readers in popular terms a complete treatise on the Animal Kingdom of all climes and countries. The one objection that could be urged against it was, that animal life in America might be treated more fully and American forms given more consideration. In order to obviate this drawback and to do full justice to the creatures of our own country, we secured the aid of Di. J. B. Holder, of the American Museum of Natural History in New Vork, an undoubted American authority, who has adapted Wood's work to American wants and given prominence to American forms of Animal life.

The splendid work on Rodentia, by Allen, Coues, and others, will be fully consulted. The valuable worls on North American Bi:ds, by Baird, Brewer, and Ridgway, will be the guide in the treatment of birds. The late arrangement of the classification and nomenclature of North American Birds, by Mr. Ridgway, and the Committee on that subject of the Ornithologists' Union, will be utilized in full. The arrangement of Mammals will be after the latest classification by Professor Flower, of the Zoological Society of London.

Terms of 『publication.

The extent of the work will be $\mathbf{6}$ parts of $\mathbf{2 8}$ pages, at the price of $\mathbf{2 5}$ cents each. The entire publication will contain 31 Oleographs and 65 Full Page Engravings on Wood, besides many hundreds of exquisite Illustrations interspersed through the text. No subscriber's name is received for less than the entire set, and no order can be cancelled after acceptance of first four parts. The l'ublisher guarantees to complete the work in sixty-eight parts. The parts are payable only as delivered, the carrier not being permitted to receive money in advance, nor to leave parts on credit. Subscribers who remove, or who are not regularly supplied, will please address the Publisher by mail.

NOTICE TO SHBSCRIBERS.

S
UBSCRIBERS are respectfully informed that I am prepared to bind these pamphlets in durable and tasteful styles, ornamented with artistic designs made expressly for this publication. The carrier is supplied with a Specimen-Book, exhibiting the different styles of binding, and he will gladly submit it to customers for their inspection; or we will send a special messenger to do so, if requested by letter.

Subscribers residing out of the metropolis are warned not to entrust the binding of their book to any binder who is not accustomed to bind such large volumes, more particularly works containing a multitude of full-page engravings printed on heavy plate-paper; and they are informed that they can have this publication bound by us at New York rates, if they will send us the pamphlets by our carrier, or express them to the address below. (We will pay the express charge.)

Subscribers residing in New York, or other large cities, are cautioned against people who come to their doors offering to bind their books at a price far below that at which it is possible to do satisfactory work; for such people often mean to keep these books, and intend never again to return them, either bound or unbound, to their legitimate owner.

Respectfully,
SELMAR HESS, Publisher.
small and short. Although this is one of the Enropean species, it is not very commonly found, probably on account of its habit of burying itself rather deeply in the sand, so that the eve cannot perceive it, and the dredge passes orer its sunken body without sweeping it into the met. It is rather a iretty little crab, though monformately its beanty is only skin-deep, and perishes after death. When living and in good heath, the carapace is of a soft rose color, and has a very pleasing appearance; but when the shell is emptied of its contents, or even after the death of the inhabitant, the pink hme rapidly fades into the dull grays so prevalent among dead crustareans. In the Meditemaram the Polished Crab is rery plentifnh.

Wre now come to another family, of which the Wooluy Cbab is an excellent type.
This creature derives its name from the coating of thick short hair with which its body is corered. All the species of this genus possess several peculiarities; at each side of the shell,

HARIY CRab - Inromiu lutur. (sce page 456.)
and just at the base of the claw-legs, is an aperture that looks as it it had been cut for a button-hole, and partly closed with a membrane. These apertures are in fact the openings throngh which the water passes for the purpose of supplying the gills with the needful moisture, and allowing it to escape when it has performed that offict.

The limbs are rery remarkable, both as to their shape and their disposition ; they are unequal in size, and the two last pairs are elevated on the back in a very curious fashion. At their extremities is a large hooked nail, which is jointerl to the limb, and can be folded back so as to take a firmer grasp. The IV colly Crab seldom approaches the shore, but prefers the deeper waters, and is only to be canght by a dredge with a rery long line. On accome of its locality very little is known of its habits, though moch is conjectnred. It is mostly fonnd. in the Meditermanean.

The Scallor-crab has derived its name from its habits. The general shapes of this crab are not at all milike those of the pea-crab, which has already been described: and the curions analogy that exists between form and habits, cannot but strike every one who has an opportunity to see the two creatures.

In the snb-order which now comes before onr notice. is seen a modification of structure which evidently forms one of the connecting links between the crabs and the lobsters, or, to
speak more accurately, between the short-tailed and long-tailed crustacea. The two large divisions of the body bear searcely any ordinary proportion to each other, the abdomen being exceedingly small, and the "rephato-thomx" enormonsly large. Some of these creatures extend the abdomen from the body like the lobsters, while others hend it under them like the crabs. In some species, of which the common hermit-crab is a familiar example, the last pair of legs are totally nseless for walling, and are modilied into a pair of appendages, by means of which the animal is enabled to grasp with a hold so firm, that it may often be torn asmuder rather than be fored to loosen its gripe.

The next descriptions refer to a curions species belonging to the typical genus of the first family. In all these mastacems the body is rather globohar, and the carapace is bent downwards in front. The eyes are short. One of these crustaceans, called the Maniy Crab, is fonnd in the hotter seas, and has heencaptured off the Cape of Crood Hope. The two hinder pairs of legs are very small in proportion to those limbs which are evidently intended for progression. They are fumished at their tips with a hooked claw. These modified and apparently stmuted limbs are, however, extremely usefnl, their ollice being ascertained by studying the economy of the animat. With the claws at the end of these limbs the crab seizes pieces of sponge, shells, and other marine substances, so as to conceal its form under their shelter, therely exlibiting a curions analogy to the well-known habits of the tortoise beetle while in its larval state. Some crabs are admirable examples of this peculiarity, as, for instance. the Dromiotulor, which has been chosen for an illustration. It is dawn as being nearly lidden nuder the miss of sponges under which it lies concealed, the sponge being nearly as large as a man's fist, while the crab is about the size of half an ordinary walnut.

One species of this gemus, callet, from the shape and monldings of the carapace, the Death's-head Crab, is found amoug the Channel Islands of Europe. The scientific name of this crab is Dromicu culfuris. Its color is deep brown, changing to pink upon the claws, the carapace is strongly knobbed above, and the edge is notched so as to form four broad teeth. Some species of this genns are thought to be poisonons, but without any apparent reason. The hairy covering is mot so extensive in other slecies, for the carapace of the common Death's-head Crab is quite smooth and polished, the hairs leing restricted to the limbs, where they afford an excellent basis for sponges, corallines, and zoophytes.

The Beamped Crab is an example of amother family, in which the carapace is formed into a kind of beak, and is almost always covered with sharp spines. The infth pair of legs are comparatively short, and are not employed in walking. In the Bearded Crab the eyes are very large and romu, and the carapace is covered with short but sharp spines. The antenne are long and the claws powerful, and are well suited for detecting and securing prey. The Bearded (rab) is fomm in the Mediterane:m.

A strange and weird-fike creature, which is called by the appropriate name of the Porcu-pine-riab, is a natipe of Japall. In this species the characteristics of the family seem to be carried to the very utmost. The lant pair of legs are extremely small ; so diminatice, in fact, that they are folded moler the body and not visible when the creature is viewed from its nper surface. The catalam is thangular and thickly rovered with spines: and even the limbss histle with thony points set as closely as the homy layomets of the hedgelog. It appears to bee rather dull and shoggish in its mevements, crawing along the hed of the sea with slow, monotonons retion.

One speries of this gems, the Nomminn Stone-crab (Lithodes maicu), is found off the Buropem ionsts, and is plentiful on many of the Scottish shores. It is covered with short, thick spines which extend over its legs and claws, and in its genemal whape hears some resemblane to the spider-ctabs already described. In spite, however, of its thorn-studded smrface, it is much eaten by lishes, and is not mutrequently fonnd entire in the stomachs of the fish that are takeu off European coists.

The Northern stone-crab, may be known, by its very long leak, furnished at the end with two short and rather divergiag teeth, and by its bright scarlet color when it is first takeu from
the water. The Porcupinc-rath, which has the characteristics of its gemus almost exaggerated, is found in Jipan.

A species, Lithodes arrtica, fonnd in the northem Athantic waters, is smrprisingly ammer with spines. It is large, mensuring ten or twelve inches arross. Sperimens are bronght ups from the waters on Grand Banks, from which somre we have received specimens.

The last of the Ilomolida is an meouth-looking creature which is called the Nobltan Crabs, on account of its singular conformation.

This cmstacean, instead of being covered with thorny points, as in the stone-cmbs, has is entire carapace, limbs, and claws so studded witlo tubercles, that it can scarcely be recognized as a living creature, and looks more like a rongh stone encrusted with marine growths. The carapace is rather triangular in form, but its sides are so scooped into hollows and projeetions, its surface so moulded into elerations and depressions, and its shell so covered with tubercles of varions shapes and sizes, that its trme proportions are not easily distimguished.

The claw-limbs are large and powerful, and are aren more obscme in slape than the body, for the smbstance of the shell is thrown out into such a forest of tubercles that at first sight it seems to be covered with a very fertile crop of fungi, algre, or the thick and fleshy molhscoids which spread so lapidly when once they have ohtained a resting-place. Even the antenne of this strange animal are furnished with long projecting points, and look something like the beantifnl comb-shaped antenne of the larger moths. The Nodnled Crab is foand in the Cohumbia River.

The next family is a very small one, and is called Raninidfe, from the fancied resemblance which its members bear to the shape of a frog. In these crabs the carapace is something like the half of a jargonel pear, from which about half an inch has been cut at earh end. The broader end is towards the front, and is scooped so as to form a nmmber of tooth-like projections. The abdomen of these creatures is extremely small, and may be represented by about three-quarters of an inch of a French bean stuck on the small end of the pear which answers to the carapace.

The limbs are moderately large, and the crabo is said to leave the water and travel on land. Some persons say that it climbs to the tops of houses, but withont mentioning the height of the honses or the materials of which they are composed. The rlaws are rather large, flattened, something of a tringular shape, deeply toothed, and with the pincers bent inwards at almost a right angle. All the legs are vely close together at their bases, and the last two pairs ascend upon the back. All the Raninide inhathit hot comtries, and are foumd chiefly in the Manritius, the Philippines, and India. The Tootuen Fwog-cuab (Remine serruta) is a good and tolembly common example of this fimily. It is a native of the Manuitins and Japan.

It is altogether a curions-looking creature, with a broad, flattish calapace, edged in front with the most formidable-looking teeth, that harlly seem to belong to the shell, but to have been taken from the month of a shark and fastened artificially upon the front edge of the carnace. The legs of this creature seem quite insufficint to carry the great, broad carapace, and the abdomen is almost absurdly small. The color of the shell is very pale pink, and the spines which cover its surface are of a whiter lone, looking almost as if they had been pricked into the carmace by human means. All the points are directed forward, and have a rery rough eflect when the hand is drawn from front to rear. Wherl full grown, the Toothed Fiogcrab is abont as large as a man's fist.

The family Roninida is represented in hot climates by singular creatures-large. frog like bodies, with limbs reduced to short appendages that, in many instances, would seem to dis appear beneath the shells.

A Ratmer pretty-looking and decided! cnrions crab, which is an example of another family, are termed the Hippidse. In this family the carmace is long, romded, and rather thimble-slaped, in most cases slightly flattened above. The abdomen is very small, and from the upper view of the body is hardly visible. In one species of the typical genns, the Asmatra Hippa (Hippa asiatira), the carapace is very romd, elongated, and altogether egg-shaped, so that it wonld hardly be taken for a part of a crustacean. Even its color is a hue rarely seen Vol. IM.-58.
among the shelly race, heing a soft, bale yellow, very like the chrysilis case of the oak eggermoth, which, indeed. it also resembles in shane.

The color of the signnata is very pale yellow. Its claws are suddenly broad, rather sharp, and bent orer at a light angle. The antennge are long and beantifnlly fringed with hairs. It is a small speries, only two or three inches in length.

The general shape of the OAR-FOOT Crab points it ont as allied to the preceding species, although the antemme are not so long, and their fringe not so conspicuons.

The name of Oar-foot is given to this species on accont of the curions modification by which the false feet are developed into oar-like arplendages with flat blades, which serve for swimming like the hinder feet of the swimming-craths. The last ring of the abdomen is changed into a tlattened and pointed paddle. The carapace is convex and of a tolerably regular oval. This species is a native of New Holland, and never attains to any great size.

We now come to a singular group of crabs which are remarkable for their soft and shell less tails, and the mode employed to protect them. From their solitary liabits they are called Hermit-crabs, and from their extreme combativeness they have earned the title of soldiercrabs.

The best known of these crustarea is the common Hemint-risab (Pagurus bernhardus), which we have chosen for the accompanying colored illustration. Like all its race, the Hermitcrab inhabits the shell of some mollusk, in which it cam hury its mprotected tail, and into which it can retreat when threatened with danger. The Hermit-rrab usurps the deserted home of varions mollusks, according to its size, so that, when young and small, it is fonnd in the shells of the tops, periwinkles, and other small molhusks; and when it reaches full age, it takes possession of the whelk-shell and entirely fills its cavity.

Any one may find these odd crabs by watching a rock pool after the tide has gone down. There are always plenty of shells in such places, and if the observer will remain rery quiet, he will see one of the apparently empty shells suddenly turn orer, and begin to tum along at a great paee, much faster than il it had been inhalbited by its nsmal occupant. On the least morement of the spertator, the shell stops as abruptly as it had started into action, and rolls over as before, seemingly dead and emptr.

On picking it mp, the mystery will be revealed, for within the shell will he seen an odd little crab, with a body curved so as to fit exactly round the shell, with one claw small and one very lurge. If it he tourhed it retreats still farther into the shell, and defies amy attempt to pull it ont. Even if a claw be grasped, the creatme cannot easily be withdrawn, and clings so tightly to its home that in most cases it mary be torn asumber rather than loosen its hold. It is enabled to hold thus firmly ly means of a pair of pincers sitnated at the end of the tail, am? which are indred the last pair of legs modified for that purpose. Sometimes the creature (an bre coaxed, as it were, ont of its shell by a long and steady pull, but, as a general mule, to get a Hermit-crab minjured ont of its abore is a very differult task.

I have often aromplished it by putting the shell mom an opren artinia. The crab, feeling the tentacles of the actinia gradually surroumbing its limbs, and not liking the aspert of the living gulf into which it is rapidly descending, makes the hest of its way ont of the shem, and can be snatched mu before it has found time to recover its presence of mind. Sometimes a Hermit-crab may be captored while the inhabitant is tinee parts outside its shelly house, but, on the least alarm, the creathre flies back to the farthest recesses of its home as if worked by a spring.

This crustacean is wonderfally combative, and will fight on scant povocation. Anything will serve for a cause of War, such ats a piece of meat. a smaller crab, or a shell to which another indivianal happens to take a fancy. If two Hermits be remored from their houses, and put into a rock pool with only one shell in it, the rombats which take place for the possession of that solitary shell are as fierre and detarmined as any that have taken place in the tomeney or the field of battle. As with most of the ernstareans, the victor always eats his fallen foe; and even thongh hr br hereft of a few legs, he seems to care nothing for the loss, but eats away with perfect appetite.

selmar hess, publisher, n γ

HERMIT-CRABJ

Eren when the craths are suited with homes, their combats are fieree, deadly, and active, in spite of the heary shell which the drag behind them, and whieh seems to incommote them no more than the hundredwesight of steel inconvenienced an ancient knight. 'ibhey spar with great address, gunding the only voluerable point with the large claw, and threatening the adrersary at the same time with that weapon. At last one of them makes a dash, the pair grapple, the weaker is eradually orerome, the stronger pushes his claw into the failing adversary"s shell, crushes his mprotected hreast, hraws him dying out of his shell, picks him to pieces and eats him.

To sere a Ilermit-crab fitting itself with a new shell is a very ludicrous sight. The creature takes the shell among its fert, twink it abont with wonderful rapidity, balances it as if to try its weight, probes it with the long antennar, and perhaps throws it away. Sometimes, however, when the preliminary investigations have proved satisfactory, it twists the shell ronnd until the tail falls into the opening, and then parates up and down for a little while. Perhaps it may he satisfied, and after twirling the shell about several times, whisks into it with such speed that the eye can searcely follow its morements. Indeed, it seems rather to be shot into the shell from some engine of propulsion than to move voluntarily into the new habitation. When the number of empty shells is great, the Hermit is very fastidions, and will spend many hours in settling into a new house.

A Hermit-cral, when deprived of its shell presents a most absurd appearance. It is dreadfully frightened, crawls about with a terribed kind of air like that which is put on by a beaten (log, and will poit up with anything hy way of a homse. Ï have seen a very large whelk-shell inhabited by a very little arab, so small and weak that it could not drag its huge home about, and was tmmbled backwards and forwards as the waves washed over the shell. It was much too small to fix itself in the month of the whelk-shell, as is the usnal custom of Hermit-crabs, and had been forced to content itself with a hole that had been broken near the point.

This crab may be kept in an aquarinm, as it is hardy, and can be fed with perfect ease. It is. moreover, less liable to fight with and kill its companions than the other crabs, probably on account of the shell, which protects the hody, and renders a hattle a very laborions undertaking. So that if two or three Hermits of similar dimensions are put into an aquarmm, they will live on terms of armed nentrality, and if care be taken to feed them semarately, they will survive for a long time. It is rather remarkable that when they become sickly, they are sure to leave their shells and lie listlessly on the stones or sea-weed. As soon as one of them is seen to act in this mamner, it should be at once removed.

There is a curious notion prevalent respecting the Hermit-crabs. All the fishemen, and the sea-side population in general, himly believe that the l Lemit-crab is the young of the lobster, and that when it becomes large enongh to protect itself, it leaves the shell, gets a hard tail, and changes into a real lobster. Iny one who wishes to study the structure of the Hermitcrab can do so by risiting a fishmonger's shop, and looking over the stock of periwinkles, many of which are sure to be occupied by a Hermit-crab instead of a mollnsk.

There are very many species of Hermit-crabs, those of the tropics being the largest and handsomest. Some of these larger species inhabit the trmopet-shell, some are found in the large tmbos, and are handsome creatures, richly mottled with black and brown, and there are one or two species which live in the cone shells. These crrions IEemits are shaped so as to suit the shell in which they reside, their bodies being quite flat and almost leaf-like, so as to enable them to pass freely into and out of the long narrow month of the shell. The Crafty Hermit-crab is fond in the Mediterranean, and among other shells which it inhabits, the variegeted triton is known to be a favorite.

The Hermit-crabs are among the most interesting of the ernstaceans. The singnlar habit of adopting cast-off domiciles of othrr creatures is quite mique. The structure of the Crafty Hermit is rery closely like, il not the same as that of the great Hermit of the Florida waters. These rabs select the shells found most suitable around them. The Horse Conch (Strombus gigas) is the favorite in the above locality; althongh we lave seen them in Triton, which is not so abondant. One is olten met with so large as to fill the largest Horse Conch, nearly one foot in length. This is an interesting feature of this animal;
ins "xposed claws and luad being reinfored, at it were, by handsome sealed amor. These portions anm "xtmomy ham, and of a bright brick color. Once ensconced in the shell, which in its stommess is like a castle, the amomed liont that Hermit presents may dely any ememy.
 his sally -pold, he is out tankwh, and foment to give battle outside his portenllis. Few objects are more mortaming. The grat Land flemits are especially so. They never go to the sea, but live in dry phares, where they bumew mater stones or logs.
 athe the W° est Imlial listands.

It ofallum the shells of vations moblusks, mostly, bowner, giving the preference to some barge sporios of turtw : amb Mr. Branott mentions that he possenses an mitue shell which he

 assmbling in great mumber', the aggrogate effect is rather overpowering. 'They gather

 and "amg lithe lon the heavy hurdm which they beat on their haks. They have the power of furoducing a "mrions moise, something like the croak of a frog altemating with sounds as it of datwing water throng thr lips.
 shbstanfers. They perfor animal leod, shels as fish, crals, amol, indeed, almost any kimd of

 their homes as soon as they feel alamorl. They are mostly moctmal in thejr hatbits ; and as

 the wight as the "ratures knock the shalls alomit in their mownemes.

 eyes are sob, are moderately lomg, stomt, and jointom, and amble their posseswor to see in all dirertions. 'The color ol this speries is meditish-hrown, wotted thickiy with back.

 the Diogemes lived, several of them. One exhihited sympoms of festlessmess, and after ser-

 mammall would, hamd ove hamd, whathe boty hanging behimd. This rath repatad the leat

 stronges hatd bathed with the others and destroyed ham, leaviog nothing but drimd shells. A

can endure a long absence from water, and is fitted with a pecenliar addition to the breathing apparatus. There are twenty-eight gills, fourteen at eath side of the boty, and enclosed in a large hollow, which they do not neally fill. Even when the lootstalks are consideren, on which the gills rest, they hardly oeculy the tenth part of the hollow.

The Robber-crab is found in several parts of the Indian Ocean, is rery common in Amborna, and has been taken off the Mauritins. Mr. Darwin gives the folowing interesting account of this crab :-"It would at first be thought impossible for a crab to open a strong cocoa-mat covered with the hask, but Mr. Liesk assmes me he has rejeatedly seen the operation effected. The crab begios by tearing the hask, tibre by tibre, and always at that end moder which the three eye-holes are sitnated. When this is acomplished, the animal commences hammering with its heary clats on one of these holes till an opening is made; then, tming rond its body, by the aid of its posterior and narrow pair of pincers, it extracts the white albuminons sulstance of the nut.
"I think this is as curious a case of instinct as ever was heard of, and likewise of adaptation of structure between objects apparently so remote from each other in the scheme of nature as a crab and a cocoa-mut tree. This crab is dimmal in its habits, but every night it is said to pay a visit to the sea, no donht for the purpose of moistening its branchie. The young are likewise hatched and live for some time on the coast. These crabs inhabit deep burrows, which they excavate beneath the roots of trees, and here they accumulate surprising quantities of the picked fibres of the rocoa-nut hisk, on which they rest as on a bed. The Malays sometimes take advantage of their labor by collecting the coarse fibrons substance, and using it as junk."

In the missionary boyage of Messis. Tyeman ane Bemett, a very spirited account is given of these cabs, and one or two interesting details are mentioned. For example, when the crab walks it raises itself well off the gromb, standing nearly a foot in height, and gets along quickly, thongh with a clumsy and stiff gait. The antenne are very sensitive, and it is said that if they are tonched with oil, the creature immediately dies. Another mote of opening the shell is employed by these crabs besides that which is mentioned lyy Mr. Darwin, for, according to Messis. Tyeman and Bemett, the cmb, after tearing off the homs, imsimates the smaller joint of the claw into one of the holes at the end of the nut, and then beats the frnit against a stone until the shell is broken.

This crab is ly no means lrandsome, but is a very large and remarkably slaped creature. A fine specimen, when stretched out at length, will measure between two and three feet in length, and as it is stont in proportion to its length, it may rank with some of the largest of the cristaceans. The abdomen is of a curions form, and is evidently one of the structures intermediate between the crabs and the lobsters. Its general color is pale yellowish-brown, and its limbs are covered with little projections of a nearly thack hue.

During the day the Robber-crab mostly hides in the fissures of rocks, or in holes at the foot of the trees, and in the ereming issues from its concealment to prey upon the cocoa-nut. lts wonderful skill and power in opening this huge fruit have alrealy been mentioned, but some writers give it credit for more extensive qualities, and say that it is in the habit of climbing up the palm trees for the purpose of obtaining the fruit. The particular patm which it is said to climb is the Pendenms odoretissimus.

It appears to be fierce in proportion to its strength, and Mr. Cuming found that if intercepted in its passage, it at first tried to intinnidate its disturber ly holding up the claws and clattering them loudly; and that even when it foum itself obliged to give ground, it retreated with its face to the enemy, still maintaining a threatening attitude. The eyes of the Robbercrab stand on rather long but stont footstalks.

We now come to the Porelain-crabs, so called because their shells are smooth and polished as if made of porcelain. and have much of the peculiar semi-transparent gloss of that manufacture. The specimen shown in the engraving is of natural size.

Several of these crabs are natives of the Enropean seas, among which we may mention two species. The first of these is the common Broad-claw Porcelain-crab, so called from the
singular width aurd flatness of the claws, each of which is nearly as large as the whole body. Altogether this is a tat erab, and, like all flattened beings, is fomed for a life mater stones or in namow crevices. It may be fond easily enongh by geing to the

PORCELAIN CRAB.--Porctluna platyche les. rery rerge of low-water-mak, and quickly turning orer the loose stones which lie piled upon each other by the wares. Under these stones lifs the Broad-claw, flat and quite at its ease, its great claws fitting beautilnlly into its shell, moll like the same members in the domed cial)s.

The food of the Broad-claw consists mostly of amimalenles, which it catches by making regular casts with its hair-rovered jaw feet, and sweephing its prey into its mouth by the artion. The mode in which the hains or bristles are set upon the foot is rery beantiful, and is exactly calculated to ato as a met, which will sweep mp every olject that crosses its path. several of the terminal joints of these jaw-legs are edged with long and slightly curved hairs set neand at right angles with the joint. It follows, then, that when the limb is flang ont neatly in a straight line, these hairs diverge; lont that as the limb is lent while beiner withdrawio, the hairs become nearly parallel to each other, some of them cross, and form a very complete net-work ol still bristles that swee] everything before it. Moreoser, each separate bristle has a donble row of still smaller hairs, projecting from each side, something like the vanes of a feather, and nearly tombing those of the next hair on either side. This structure is evidently intended to ensure the capture of the very minute animaleules, which might be able to escape throngh the comparatively large meshes formed by the bristles.

Thongh the Broad-claw loves to hide in this manner', and remains so quiescent, it is fully able to move abont, and can dart throngh the water with astonishing celerity, flinging ont the abdomen, and giving a series of shap flaps that mrge it along just in the manner adopted by the lobster and its kin. Still, it does not attempt to swim. but merely darts towards some spot where it can find a hiding-place, and whence it will not stir for weeks together, finding in its narrow home all that it needs in the way of food.

Another Emropean species is the Loxg-homed Porcelan-chab, a little creatmre that is common in similar localities. Tt is moch eaten by various fishes, and the codfish makes great havoc among its ranks. Both these crals can pinch smartly with their flat but powerful claws, and, in sjite of their insignificant appearance, camot be handled with impunity. In them the last pair of legs modergo a curions motification, being very small, nearly hidden in the abdomen when not in nse, and apparently objectless. They are, however, very usefin limbs, being employed as brushes, and used for the purpose of cleaning the abdomen and part of the carapace from adhering snbstances.

We now come to the second great division of the Crustacea, namely, those which have long and powerful tails. The lobsters and shrimps are examples of these creatures. In swimming rapidly thongh the water, the tail is the organ of propulsion which is employed, and a glance at its form will soon explain its use. This powerful mass of solid moscle is first stretthed out to its utmost, and the fan-like appendage at the extremity is spread to its widest ; the cratme then closes its tail smarty under the body, so as to assmme the attitude in which lobsters and shrimps are mostly brought to table.

The effect of this sudden contraction is, that the creature shoots swiftly through the water. Of conrse, the amimal darts backwats, lntt so sharp are its eyes, and so true is its aim, that it cam lling itself into a crevice barey large enongh to contain it. Any one who wishes to see this manoure practised in all its foree, may do so by watching the little seaside frobls wherein the shrimps and prawns are acmstomed to disport themselves as long as the water lasts, and where, when it dries up, they bury themselves in the sand to await the coming tide.
'This shooting mode of progression is not their' only means of morement. By the ordinary use of their legs, nearly all the species can crawl among the sea-weed, or upon the rocks and bed of the sea, just as an insect crawls on the gromat. Ind, when they are balaneing themselves in mid-water, and are only desirous of mowing gently abont, they can do so by means of the mumerons false legs under the body, which may be seen moving with great rapidity. Those who are fortunate enongh to possess a marine aquarimm, and can keep a prawn or a shrimp in the miniature ocean, will have many olportunities of watehing the easy and graceful movements of these elegant crnstaceans.

Trie first family is called the Galatheidar, in honor of the beantifnl and unfortmate nymph vainly beloved by Polyphemus. Several species of this family are found on the Emropean coasts, one of whirh is the common Platris Lonster. This is a hadsome little creature, the general ground color being red, upon which are drawn a number of hine spots and streaks. Its activity does not correspond with its beautr, for, according to all accounts, it is a dull, slnggish creature, and, from Mr. Conch's observations, is "incapable of any motion but batkward, and rarely rises ahore the bottom, where, by a laborious motion of its tail, it contrives to retreat from its enemies; but its usual progress is by creeping, and by the legs only." Yet, althongh it is thas tardy while arawing, it can dart backward with all the agility of its late ; and if alarmed, flashes through the water with arrowy speen, and can hardly be captured or its exact direction ascertained.

The beak of this species is triangular, and amed with seren strong teeth. By these characteristics it is distinguished from another species, Montagités]'lation Lobstere (Galathea squamifera), which has a short and wide beak, cut into nine spine-like teeth. The color of this creature is greenish-brown, tinged with red. It is to be found under stones at low-water mark.

The small but important family of the Scyllaride is easily recognized by the wide, flat carapace, the large and leaf-like outer antenne, and the partly flexible tail-fan, by which the creatures drive themselves through the water'. In consequence of their shape, they go by the popular name of Flat, or Bhand Lobsters. The habits of these crustaceans seem to be much alike. They live in moderately shallow water, where the bed of the sea is solt amd muddy. Into this substance they burrow rather deeply, so as to be entirely concealed, and only issue from then retreat for the purpose of seeking food. In all the members of this genns, the carapace is longer than wide, and the sides parallel to each other. The common Broad Lobster is exceedingly plentiful in Greenland, where it forms the chief food of the Aretic ank (Alca arctica). The beak-like projection of its carapace is very wide, but does not projpet. The carapace is covered with little tubercles, and along the central line runs a series of spines. The onter antemee are large and deeply toothed. The color of this species is brownish, covered with red marks, dispersed in a simple but very pretty pattern, which would serve as a model for embroidery, and would be paticulaly suitable for the heary metallic ornamentation upon uniform coats. It is but a small species, measmring only three inches in length.

Some species of this family are eatable, and in Japan are considered as delicacies.
The Broad Lobsters are represented in the sub-tropical waters of our Sonthern States. In the moat at Fort Jefferson were mmerons smooth, ronud holes of three inches diameter. Mnch watching failed nsually to discover any living thing in them ; but a vigorous spading underneath sufficed to mearth a scylla of about eight inches in length. Another species, smaller, is found in northern waters.

One species of these creatmres, known by the name of the Spotted Ibacus, is a great favorite with the Tipanese. In this genus the carapace is extremely wide, and is expanded in such a manner as to hide the feet, so as to remind the spectator of the domed crab, already Hescribed on page 443. The color of the Japanese Scyllarns is red, covered with blne points.

The accompanying full-page illustration represents the well-known Spiny Lobster (Palinúrus vulgáris), which belongs to the next family of crnstareans. In all this lamily the outer antenne are very long and stont, and their basal joint is large.

The Spiny Lobster is also called the Sea Cray-fish, or the Red Crab. Its claws are very small, and by no means formidable. It is mostly foum on the western and southern coasts, and is callght in crab-pots, like the common lobster. Its flesh is good and wellHavored, though rather tongher and coarser than that of the lobster; moreover, the want of the claws is a drawback to its excellemer, so that it is not esteemed nomly so much as the trme lobster: Sometimes it is fomd entangled in the nets, and even upon the fishermen's lines.

The areage length of this speeies is eighteen inches, and its weight about five pounds, when adult. Its color is phiple-brown, with some irregnlar white spots, and its legs are red-dish-white, banded longitudinally with brown. One species of this genus, Pafinurus ornatus, sometimes attains to an enomons size, measming from the end of the antenne to the tail rather more than form feet.

The spiny Lobster is annand on the Florida Reef, and there serves as a tolerable substitnte for the Lohster, which does not inhabit south of New York. It is called Craw-fish at Key West. As an edible it larks the pleasant lavor of the former, being more like the common edible (rab).

The Lobster of Aberica inhabits from St. Lawrence River to New York State. Formerly, the spepimens ontained for the markets were of good aremge size of eighteen inches. They are now reduced to smaller numbers, and one a foot in length of borly is rare. Legislation has become necessary for the protection of this most useful and highly-prized food erustacean.

The two next examples belong to a family called the Thalassinide, in which the abdomen is long, its integuments rather soft, and the carapace small and compressed on the sides.

The tirst one, the Mun-Bunsower, is not very often seen, as it lives in a burow some two feet under the surface of the mud. It forces itself heneath the mud by means of the thind pair of legs, and there passes the greater portion of its time. The shell of this species is very thim, and but for the enomons daw with which it is furmished it wond seem quite a helpless creature.
 Florida and other parts of Ameriea, foms a very remarkable burow. Mr. T. Say, who fomnd this creature by digging in the sand, gives the following accomet of its habits: "lt had formed a tabular domicile, which penetrated the sam in a perpendicular direction to a considerable depth ; the sides were of a more compart consistence than the surrounding sand, projecting above the surface about half an inch or more, resembling a small chimmey, and rather suddenly contracted at top, into a small orifice. The deserted tubes of the Callianassa are in many places very numerons, particnlarly where the sand is indmated by iron into the incipjent state of samdstone; they are always filled up, but may be readily distinguished by the incturated walls and summit often projecting a little above the general smface."

The Mud-humower is mother a pretty little creature, being of a soft pink lone, sometimes changing to yellow on the sides. Tery soon after death these colors farle, and change into dull gmy. The haddock spems to feed largely on this species, as fragments are mostly fond in the stomach of the fish.

The serond speries is the Show Surimp, a rather curions looking creature much resembling the common shrimp, exrept that it possesses a pair of large and stont elaws. Its jopmlar mame is lerived firom the shegishess of its mormmonts, as it hats sarcely any idea of ruming or swimming away if alarmed, but only attempts to fseape by burrowing in the mod. If, therefore, it should be intererpted mpon some harder gromed. where it is not able to burow, it axhansts all its strength in mavailing efforts, and is easily taken misoner. The best way of obtainimg this reatum is to dig it ont of the sund. It is but a small specjes. moasuring about three inches in lemeth. Several other burrowers are inhabitants of the
 about two inches in length. 'This creature often takes possession of the burows which have been made and forsaken by the razor-shell, but it is doubtlessly able to bore holes for itself. It is rather a pretty little crustaceam, being of a pale yellowish-white, covered with rery little

LOBSTER AND SPINY LOBSTER.
star-shaped orange spots. On the front of the carapace are multitudes of little spines, arranged in longitndinal rows.

Another species, the Deltura (Gebia deltura), inhathits the same and similar localities as the mud-borer. In many points it much resembles that crnstacean, and has been thonght by some persons to be the female of the same species. It furnishes abundance of food to rarious fishes, esperially those belonging to the ray family, and its remains are found abundantly in their stomachs. It is much larger than the mud-horer. All the members of this genus hare the carapace formed into a triangular beak, and the onter pair of fore-feet formed for watking. One more remarkable species of burrowing crnstarea is the Calocaris (Caloraris macandrei), which resides at a rery great depth, having beem ascertained to live at the bottom of the sea, more than a thousind feet from the surfice. Here, like the rest of these rreatures, it burows in the mud, passing a kind of sub-manine mole-like existence. Is, at this great depth, and under the mud, the ordinary risual powers wonld be of no arail, the creatme has but the rudiments of eyes, which are small and quite withont coloring. The Calocaris is mostly to be obtained from the stomachs of haddocks, mys, and flat-fishes.

The color of this cmrions species is delicate pale rose while living, but, as is usmal with this fleeting tint, it soon fades after death. The shell of the Calocaris is very delicate and thin, and the whole of the feet ire covered with hairs.

We now come to the family of the Astacider, which includes two well-known and very similar creatures, the fresh-water cray-fish, and the salt-water Lobster. The latter is illustrated on the pereding full-page illustration, together with the Spiny Lobster. The Lohster is not much of a rover, seldom straying far from the spot on which it was hatehed. It is rather remakiable that Lobsters are liable to permanent varieties, according to the locality in which they reside, and a good jutge will be able to detemine at a glance from what part of the country any given Lobster has been taken.
sometimes a green speeimen is bronght to market, and the salesmen have a theory that it las obtaned this change of color by living in some spot where the ores of copper impregnate the arth. They consequently believe it to be poisonons. Both irleas, however, seem to be groundless.

Lobsters are always sold by momber and not by weight, and their value is necessarily dependent on the accurate eye of the dealer. The Lobsters are canght in creels or pots, like the crabs, but with grater ease and economy, as they are very fond of meat, be it fresh or tainted, and even if it should be putrefying will be attracted to it. Bright and shining objects seem quite to fascinate the Lolster, which will enter a "pot" even thongh the bait be nothing more than a number of empty oyster-shells placed so as to exhibit the shining white of the interior. A few years ago a curious bait was employed with great snccess. It was very simple, consisting of nothing more than a common phial bottle, silvered on the inside. This was hung in the lobster-pots, and served to attract the creatures to the bait. It has been suggested that the potency of this strange allnrement may be attribnted to its resemblance to the phosphorescent shining of putrid animal substances. But it is quite as probable that the glittering object may surve simply to attract the Lobster's attention, and that when it has approached in order to satisfy its curiosity, it perceives the bait, and immediately enters the trap. It is found that both bait and bottle are required, as if the latter is nsed alone, the Lobsters discover their mistake and quit a spot where they find no food.

Like many other crustaceans, the Lobster is a most combative animal, quarrelling on the shightest pretext, and fighting most furionsly. In these combats it mostly loses a claw or a leg, being obliged to discard entirely a wounded member. A fresh leg or elaw sprouts from the scar, and it is to this circumstance that the frequently mequal size of Lobster-claws is owing. Lobsters, indeed, part with these valuable members with strange indifference, and will sometimes shake them off on hearing a sudden noise. It is said that the commanders of certain preventive sloops were accustomed to levy a tax apon the Lobster-fishermen, threatening that nuless a certain number of Lobsters were furnished to them they would fire cannon over the Lobster-grouncis and make the creatnres shake off their claws.

Vol. III.-59.

If the fishemmen find that they have wounded a Lobster, they have reconse to a very strange but perfectly eflicarions remedy. Supposing one ol the claws to be womded, the creature would soon bleed to death muless somm means were taken whereby the flow of blood may be stopped. The methor adopted by the fishermen consists in twisting off the entire claw. A membrane immediately forms over the wombl, and the bleading is stopped. The new limb, that is to smpply the place of that which was lost, always sprouts from the centre of the scar.

The accompanying illustration shows the com

CRAY-FIsH, OR CRAW-FISII-Aisacus fluzatilis. mon Cray-fish, or Craw-fish(Astucusfuciutitis). This speries has alm almost exact resemblance to the mamine lolster, which it resembles in mans of its laabits and qualities. Like that creature, it hides itself in some crevice, amd does not issue from its concealment except for the purpose of obtaining food. It is equally quartelsome, and also displays many tokens of its combats in the shape of lost or minnte members. It is quite a rare thing to find a large Cray-fish with both its claws of the same size. The illmstration is three-quarters of the natural size.

This creature mostly hides minder stones or holes in the bank, sometimes partially scooped out by the imhabitant, lut mostly being the deserted tenement of a water-vole. Herein the creature sits, with its liead towards the orifice, and its claws thoronghty protecting its home. Eren the sharp spikes of the head form no inconsiderable protection, for, if the hand be throst into a hole tenanted hy a Cray-fish, a sensation is perceived as if the fingers had been pushed agamst a puantity ol needle-points. From these dens it issues in seareh of prey, which consists of dead fish and any similar substances.
Cruy-fish cam betaught invariousways. There are large "pots" or "creels," made of wickerwork, into which the creature is enticed by a batt, bat out of which it cannot escape. There are Chay-fish nets, by which many hmodreds can be canght in an afternoon. These are simple circular nets fastened inside an iron hoop and having a piece of meat tied in the centre by way of bait. A long string is attached to each net, and a forked stick, something like a clothes-prop, used for laying or taking them up. The fisherman always has several dozen of these nets, which he disposes along the river-bank in the spots which he thinks best suited to Cray-fish. By the time he las latid his last net, he must visit the first, which he pulls mp quickly, and in which he mostly finds thres or four Cray-fish eagerly fating the bait. The net is then replaced, and he proceeds to the secoud. On an average, each net produces three Cray-fish every romd.

The flesh of the Cray-fish is something like that of the lobster, but far more delicate and without the indigestible qualities of the larger crustacean. It is only in season for a comparatively short time, and in the other months of the year the flesh is soft, watery, and tlavorless.

The next family ineludes the true Shrimps, and contains but one genns. The Shrimp, Which is so familiar on our tables, and which, until the marine aqnaria became so common, was dually moknown in its living state, imhabits the shores of England, where it is pronlaced in commtless myriads. In every little pool that is left by the reting tide, the Shimps mary be seen in mofnsion, betmying their presence by their quick, darting movements as they dash abont in the water and ever and anon settle mpon some spot, flinging up a clond of sand as they sumfle helow its surface, their barks being just level with the survombing sand. In con-
 olten confounded with the Shrimps and pophlarly called hy the same title. They can,
however, be easily distinguished from each other, the beak of the pawn being long, and deeply saw-edged, while that of the Shrimp is quite short.

While living, the Shrimp wars tinth so exactly like those of the samd, that when it is lying motionless, it hamonizes exatety with the tawn bed of the sea, and camot be discerned except by a pratised eye. When boiled, it does not change to so bright a red as is usually the case with eatable crustacea, but assmmes a duller and more onaque hue. During life the Shrimp is a most beantiful creature. nearly translucent in many points, and when seen against the light seeming to possess some inward illumination. Its habits are interesting, and ran be surcessfully watched by means of an atuarmm, thongh it is necessary to bestow some care on the creature. and keep it properly supplied with food, as it is, thongh so delicate, a very voracions animal and requires much feeding.

Shrimps are canght for sale in a pectiiar wide and purse-like net set crosswise upon a pole, and pushed along the sand at the depth of ahont two feet or a little more. By this method of procedure great mumbers of shrimps are gathered into the net as they dash along the sand, and together with them are rarions other inhabitants of the sea, quite useless to the shrimper, but rery valuable to the seaside maturalist. Any one who is studying the habits of the marine animals will do well to pay a shrimper for the right of examining the net and retaining whatever is uselul or interesting. The method of hurying itself in the sand is by using the hinder legs as scoops, setfling into the small hollow mate by them, and then flinging the sand over its back with its antelnuæ.

There are several speries of trme shmints, all good for lood, and, athough companatively sarce, taken together with the rommon Shrimp. There is the Banded smmap (Cramon fesciátus), known by the natrow and rounded abdomen and the brown band that crosses the fourth ring. It is abont an inch in length. It seems to be rather a rare species. Another Shrimp is called the Spmy Shmmp, on account of five rows of teeth-like points upon the carapace. It is of a rather light hrown color, banded and striped above with grayish white, and spotted below with crimson. Another species, Bell's Shmimp (Crongon scutptus), is very small, being little more than thres-quarters of an inch in length. There are several raised lines on the carapace, each with a few small teeth. In color it is extremely variable, but is mostly darb, with little black spots and chestnnt specks, and is adorned with patterns of pale brown edged here and there with hone.

The Shomt-beaken Rem Summp belongs to the family of the Alpheide. This is a Tabume species. Its carapace projects over the eyes in a hood-like shape, and the beak is rery small, sometimes indeed being altogether albsent. The lirst pair of legs are always very stout and strong, and one daw is much larger and mone powerful than the other. The greater number of the speries belonging to the genus H_{p} pheus live in the tropical seas, and those that have been fonnd within the waters of moderate climates have clearly resided at a considerable distance from land. One species, for example, Einwams' Red Smamp (Alphéus ruber), has been fomd in the stomach of cod-fishes, mostly in fragments, but rery rarely entire. Another species, the Scalamet smmp (Aphíus affinis), is of a deep scarlet exept the claws, which are marked with yellow. This Shrimp has heen taken in the Chamnel lslands.

Another species, Montagets Smmm (Athomas nitescens), is popularly thonght by the fishermen to be the young of the lohster, its derp, green color and large pincers giving it a great resemblance to that cmstacean. It is a sociable little being, congregating in some favored spot and assmbling in considerable nombers. In fact, it is seldom found alone; and in clening ont a little sand pool, six or seven may often be found in close companionship.

We now amive at the Prawrs, a lamily which is easily known by the long and sawedged beak that projects from the carapace. This family is very rich in specjes, many of which are most lovely creatures, resplendent in scarlet, amure, green, purple, and orange, and of a beautiful transparency, which gives double effect to the colors with which they are adorned.

In the Ring-iorned Prawn the beak is extremely long, and slightly turned upwards.

While it lives at some distance from the shore, it cannot be captured in the ordinary shrimp nets. The fishermen call it the Red shrimp'. 'The spines, or teeth in the upper edge of the long beak, do not sming at once from the substance of the beak, hat are simply jointed to it, so that they can be moved slightly by pressure. A large number of species belong to the gemus IIppolyte. In these creatures the beak is very large and strong. Several of the Esop Pamms belong to this genns. They derive their popmlar name from the homp-like manner in which the abdomen is laised towarls the centre and then bent downwards. Counn's Exop (Hippolyte comothi) is perhaps the most common of these heantifal little creatures, and has the characteristic hmmp strongly defined. It may he fomd plentifully in the shore-pools, flitting about the water with a morement much like the flirting and fluttering of a robin in a gatden, and displaying its beantiful colors to the best adrantage. It is a lovely little being, very variable in color, but always marked with bright and peculiarly pmre hues, mostly white, purple, aud scarlet. Many of these Esop Prawns are chaming inhabitants of an

EDIBLE PRA IV N, -Pukemon serratus.
aguarimm, their pellucid bodies and beantifnl colors making them fit inhabitants of the drawing-room or the conservatory. One species, Whumes Fsor Pratry (Hippolyte whitei), is an esperially beautiful creature, being green witl a white streak rumning along the back, and having a number of azure specks scattered over the body.

Even the large Endiat Prawn (Patomon seratus), the figure of which is drawn of nataral size, is a beatiful inhahitant of an aquarium. No one who has only seen Prawns on the tallle, red, opmutue, and with their tails folded under them, can fom the least conception of their wourderful beanty while living. Is they swim gracefully throngh the water, the light passes throngh thoir transhucent bodies and their beantifully straked integments, rich with trameparent browns, pinks, and grays of various depths. Their delicate and slender limbs are ringed with orange and purple, amd stained with pale blue.

At night, when a lamp is brought into the room, the effect produced by the Prawn is really surprising. The large globular eyes glow as if illuminated by some powerful light within; and as the creature comes out of the clarkness its eyes alone are visible, as they shine like two globes of living fire

It is very interesting to watcll the habits of this beantifnl creature. It is extremely voracions. amd seems always to be ready for food. I used to feed my own Prawns with the bodies of shrimps, hermit-crabs, and other marine crustacea that had died in the aquaria. All
that was needfal was to drop the dead anmal into the water so that it should pass the spot where the Prawn had made its home. As soon as it approathed, the Prawn used to dart ont like a tiger from its den, its long antenne waving in great excitement, and its forceps open and extended so as to be in readiness. The claws appear to be very feeble, but they are stronger than they seem, and are perfectly adequate to the task which they are ralled upon to perform. The creature would quickly grasp its prey with one claw, carry it off to its home, and there leisurely pick it to pieces, displaying considerable discrimination in choosing the most delicate morsels, and abandoning the remander to its smaller companions who still lived in the same tank, and preserved their lives by hiding themselves in little nooks and crevices, wherein they were sale from their giant kinsman. The air of utter contempt with which the Prawn would twist off and fling aside the legs and antenne of a shrimp or a hermitcrab was very amusing. Its greatest dainty, for which it wonld leave almost every other kind of food, was the soft abdomen of the hermit-crab.

The forceps employed for this purpose are those at the extremity of the second pair of feet, those of the first par hemg used for a different purpose. Mr. Gosse has given the following account of those limbs and their use. After mentioning that they are rovered with hairs set at right angles to the limb, like the bristles of a bottle brush, he proceeds as follows:"These are the Prawn's washing brushes, especially applied to the deansing of the under surface of the thorax and abdomen. When engaged in this operation, the amimal commonly throws in the tail under the hody, in that manner which we see assumed in the finest specimens that are bronght to table, which is not, however, the ordinary position of life, the body being nearly straight. Then he brings his fore-feet to bear on the belly, thrusting the bottle brushes to and fro into every angle and hollow with zealous industry, withdrawing them now and then, and clearing then of dirt by passing them between the foot-jaws.
"The reason of the inbending of the tall is manifest. The burbes conld not else reach the hinder joints of the body, and still less the swimming-plates, but hy this means every part is brought within easy reach. Sometimes the brashes are inserted between the edge of the carapace and the boty, and are throst to and fro, penetrating to an astonishing distance, as may be distinctly seen through the transparent integument. Erer and anon the tiny forceps of the hand are employed to seize and pull off any fragment of extraneons matter which clings to the skin too firmly to be removed by brushing; it is plucked off and thrown away clear of the body and limbs. The long antenne and all the other limbs are cleaned by means of the foot-jaws principally."

Tue Sword-simimp, a mative of Japan, belongs to another family, termed the Penceida. All the members of this family have a very long and much compressed abdomen, and the beak rery small or absent. One of them is the Grooved Surinr (Penous sulcátus), a common species in the Meditermean. It has three groores on the carapace, two long and one shorter in the middle. It is a large species, sometimes attaining the length of seven inches.

Another species is the Sirado, sometimes called the Sword-smbins, or the White Summp, the last-mentioned term, howerer, being applied rery loosely by the fishermen. It is a very beautiful little creature, being of a transhacent white color, dashed and spotted with rich crimson. It is said that this speries cannot endme exposmre to the air, and that it dies immediately on being removed from the water.

MOUTH-FOOTED CRUSTACEANS; STOMAPODA.

Another order of crustaceans now comes before us, called the Stomaporta, or Mouthfooted Crustaceans, so called because their legs mostly issue from the neighborhoot of the month. The gills are external, and "re formed in a most curious manner of a series of tiny cylinders. The greater number of Stomapods live in the hotter seas, but a few are inhabitants of the English coasts.

Onr first example of these odd-looking creatmes is the Chameleon-smmmp, perhaps the most common of its kind. This species is abundant on Enropean coasts, and derives its popular name from the extreme variability of its coloring. It seems to alter aceording to the locality in which it resides. Those, for example, which live upon a sandy coast are of a gray hone, those whicl are fomd among the large dark sea-weeds are brown, and those that prefer the ulya and zostera heds are green, like the vegetation among whith they live. These creatmes are sometimes called Opossom-ihrimps, from a "mions modification of their structure. The last two leet are fumislaed with an appendage that forms a sorty of ponch. In the male this pourh is small, but in the temale it is large, and capable of containing a large nomber of egres, which are carmed abont by the constacem just as the opossum carries its yomg.

In the Northem seas these Opossmm-shrimps exist in vast multitutes, and form much of the food on which the great whale of those seas depends for its snbsistence. Several speries are thus eaten, and one of them, M!/sis flexuosus, is largely eaten by the enormous shoals of salmon that visit these regions in the months of July and Angust, thereby aiding in giving to the fish that finemess of condition and fulness of Hesh which unght to be possessed by a well-nurtured salmon. These creatures are fond of congregating at the months of rivers, probably heanse they find plenty of food in such localities, and during the winter, hamt the whole line of coast.

Many species of Opossum-shrimps are foumd upon European shores, and can be captured by the simple plam of hating up masses of sea-weed, and seizing the little crastaceans before they ran escape.

Another example of these beings is the Club-horned Phyllosome, a member of another and a rery remarkible family. These crustaceans are in the habit of floating on the surface of the water, extending their legs, and there
 lying quite at their ease. The body is beantifully transparent, and it wonld be almost impossible to see the Phyllosome were it not that the eyes are of a most beantiful blue, and serve as indications of their owner's presence. This species is a mative of the Atlantic Ocean. The name Plyllosoma is derived from the Greek, and signifies Leaf-bodied. One or two examples of this creature have been fonnd floating near the Chamel Islands. All the nembers of this family have the body exceedingly flat and leaf-like, formed by the carapace and part of the thomas. The abdomen is extremely smail in proportion to the enormons size of the cuirass, and the limbs are so formed that they can be spread from the body so as to present a large matiating outline. On illnstration is a true representation of a ram species of this family. It is drawn in natmal size.

The two next examples belong to the remarkable genns of the Stomapod Crustareans. In these creatures the mper part of the body is defended by a single and large cuinass, covering much of the head, being wide and free behind. The members of the genus Ericthas have the rnirass enomonsly dereloped, prolonged in front into a kind of beak, which projects over the head, and having behind several strong and rather long spines. 'These creatures hate smaller claws than is found to be the case with the generality of the family, and all the limbs are of only moderate dimensions. The last segment of the abdomen is developed into a wide and flat fan-like hlade. The eyes are large, round, and set on stont footstalks.

The Classy Eni"Tmis derives its mame from the translncency of its integments, and the Armen Ericturts is so called in consequence of the sharp spines that defend its shield. Both these species are inhabitants of the Atlantic.

Before passing to the next family, we must cast a brief glance at a very strange-looking crustacean, called the Transpabent Alina (Alima hyaline). This remarkable amimal looks
 (Somewhat diminished.) much as if an Ericthus had been drawn ont like wire to a considerable extent, retaining all the characteristics of the family, and some which belong to the genus. The abdomen is extremely long, something like the tail of a scorpion, and temmanted by a flat paddle. The cuirass is so large and so loose that it hardly seems to belong to the creature, but to have been taken from some larger crustacean, and dropped upon its back. The eyes are large and globalar, and stand on slender curred footstalks, bearing no small resemblance to a dumb-bell with a long and wther cnrved handle, each eye answering for the heads of the bell, and their nnited footstalks for its handle. The claw-feet are long, slender, and can be used with much quickness.

These creatures are natives of the warmer seas, such as the tropical portions of the Atlantic, the South Seas, and New Guinea. They all live at some distance from the shore.

We now come to a curious family, called the Squillidre. In these creatures the body is long and mostly flattened, and the first pair of legs are very large, and used for seizing prey; the last joint folding over serves to answer the purpose of a claw. The carapace is divided into three lobes. The best known of these cmstaceans is the Mantis-summp, so called from its great resemblance to the insect from which it takes its title. As will be seen by reference to the accompanying illustration, the carapace of the gemus Squilla is small but long, and shields the mouth, the antemne, and their appendages. The abdomen is very long and boldly jointed, and the appendages at its extremity are made in a manner that much resembles the fan-like tail of the lobster.

All the Squille are vorarious, fierce, and active beings, and can strike as shamply with their long claw-feet as can the mantis with the corresponding limbs. From all appearance it seems as if the creatmes were in the habit of hiding themselves in dark crevices, and from their dens striking quickly at passing prey.

This theory is much strengthened by the observations of Dr. Lukis, who kept a Mantis. shrimp alive for a short time. "It sported about, and after a first approach exhibited a boldness rather mexpected. When first alarmed, it sprang backwards with great velocity, after which it placed itself in a menacing attitude which would rather have excited the fear of exposing the hand to it. The prominent appearance of the eyes, their brilliancy and attentive watching, the feeling power of the long antenne, evinced quick apprehension and instinct. I bronght a silver teaspoon near them, which was struck out of my hand with a suddenness and force comparable to an electric shock. This blow was effected by the large arms, which were closed and projected in an instant with the quickness of lightning."

The Squille are seldom seen near land, specimens being mostly taken nearly six miles at sea, where the bed of the ocean is known to be of a sandy nature. They are good swimmers, darting quickly throngh the water by the action of the paddle at the end of the tail. The Gouty Squilla derives its name from the largely-tuberculated limbs, which look as if the animal were badly attacked with the gout. It is taken off the Mauritins.

SESSILE-EYED CRUSTACEA.

Our attention is now drawn to the second great group of ernstaceans, called the Sessileeyed Crustacea, becanse their eyes, instead of being placed on footstalks, are seated directly upon the shell. The body is divided with tolerable distinctness into three parts, for which the ordinary titles of head, thoras, and ablomen are retained, as being more convenient and intelligible than the ingenions and more correct, thongh rather repulsive, titles that have lately been affixed to these divisions of the body.

They have no carapace, like the stalk-eyed crustaceans, nor do they breathe with gills, but by means of a curions adaptation of some of their limbs. None of the Sessile-eyed Crustacea obtain any large size, an inch and a half being nearly their utmost limit in point of length. Most of these animals reside along the sea-shores, where they are of very great use in clearing away the mass of dead amimal and vegetable matter which is constantly found in the sea.

AMPHIPODA.

The first order of the Sessile-eyed Crustaceans is termed the Amphipoda, a word derived from the Greek, and siguilying "both kinds of feet," becallse they are furnished with limbs for walking and swimming; whereas, in the Isopoda, or similar-footed ernstaceans, the feet are all of the same character. The females are in the habit of carrying their eggs under the thorax, mostly between certain flattened appendages attached to the base of the legs.

Tue next family is called by the name of Orchestidre, or Jumpers, because they possess the power of leaping upon dry ground. Thi most familiar of these little crnstaceans is the well-known Sand-hopper, or Sand-skipper, seen in such myriads aloug sandy shores, leaping about vigorously just before the advancing or behind the retiring tide, and looking like a low mist edging the sea, so countless are their numbers. Paley has a well-known passage respecting this phenomenon, too familiar for quotation.

The leap of the Sand-hopper is produced by bending the body and then flinging it open with a sudden jerk-in fact, the exact converse of the mode of progression adopted by the tobster and shrimp. The Sand-hopper feeds on almost anything that is soft and capable of decay, and seems to care little whether the food be of an animal or vegetable nature. Decaying sea-weed is a favorite article of food, and wherever a bunch of backened and roting sea-weed lies on the sand, there may be found the Sand-hoppers congregated beneath it, and literally boiling out when the sea-weed is plucked up.

Wherever there is sand, the Sand-hopper is to be fomm, eren though no traces may be perceptible; and an experienced shore-hunter will seldom lail in obtaining as many as he wishes in the space of a few minntes. Even where the sand is extremely dry and level, and seems unfit to nourish Sind-hoprers, these little creatures are often snugly ensconced beneath, having burrowed deeper and deeper as the sand became dry. If a smart stamp of the foot he given, a vast mmber of little holes will make their appearance, as if by magic. These are the burrows of the Sand-hoppers, which have been made while the sand was still wet, and over which a film of moist sand had formed itself. The shock caused ly the stamp of the foot breaks the dried films, and the hole is at once made apparent.

To catch the Sand-hopper in fair chase is no easy task, but it can be captured without any difficulty by simply digging up the sand and throwing it aside. The Sand-hoppers seem so hewildered with their sudden change, that they merely sprawl about listlessly, and can be pieked up at leisure.

The tecth of this creatnre are strong and sharp, as indeed is needful for the tasks imposed upon them. The Eiml-hopper will eat anytling; and on one occasion, when a lady had allowed a swarm of these little crinstaceans to settle on her handkerchief, it was bitten to rags when she took it up. It is very fond of worms, will eat any kind of carrion, and sometimes,
when pressed by hunger, has no scruple in eating its own kind. It has many enemies, as is sure to be the case when a little creature is prodnced in absolute clonds, when it is quite harmless, easily obtained, and excellent food. Sea-birds feed largely upon the sand-hoppers, and many land-birds are in the habit of passiug much of their time upon the shore, and eating their fill of these crustacea. The green crab is a terrible enemy to the sand-hopper, even running it down in fair chase, as I have witnessed, and displaying wonderful ingenuity in pouncing upon the active little creature just as it descends from its leatp. Even a little beetle, not a quarter its size, feeds upon the Sand-hopper, instinctively attacking it from below, where it is comparatively undefended by its shelly coat. Sometimes three or four beetles will unite in attacking upon a single Sand-hopper. The technical name of this beetle is Cillenum Taterate.

The Snome-nopper (Orchestict littorea) is also plentifn\} on stady coasts, preferring those where the sand is sprinkled with rocks. It may be known from the sand-hopper ly its more compressed body, the partly-clawed character of the two first pairs of legs, and the comparatively small size of the first pair. Thongh it hops on the sand, like the preceding species, and has many similar hatbits, it is seldom found occupying the same locality, the sand-hopper taking to one part of the coast and the Shore-hopper to another.

Another strange-looking creature is the common sand-schers, an example of the next family. In these rreatures the antenne end in a lash-like point, called appropriately the flagellum, or little whip. The Sand-screw is so called from the odd morements which it makes when laid upon dry sand, wriggling along while lying on its side, and displaying an awkwardness, in this respect, which contrasts greatly with the wonderful power and freedom with which it can forre its way through wet sand. In the course of its burrowings, it makes many tortuous tracks in the samd, that are generally taken for the trace of some worm's passage.

There are many fossil remains said to be the relins of certain worms, but which are now thought by Mr. Allatay Ilancock to have been produced by some crnstacean of similar habits to the Sand-screw. He has given a most interesting account of this dis'overy, and the following passages are extracted from his account:-"1 went down to the beach, just as the tide was leaving the spot where the broad tracks were usually in great profusion. The sand was quite smooth, all irregularities having leen obliterated ly the action of the water. Here and there, howerer, the tracks had already made their appearance, but were as yet of very limited extent, and there was no longer any difficulty in taking the whole in in one riew, and, moreover, the extremities were perfectly distinct. It was only necessary to watch attentively, to note the formation of the numerons and lahrinthine windings that had been so long a puzzle.
"I had not long to wait before the sand at one of the extremities was observed to be gently agitated, and, on this agitation ceasing, the track was found to have added nearly half an inch to its jength. In the course of two or three minutes, the sand was again put in motion, and the track once more a little prolonged. These morements were repeated over and over again, until it was quite clear, that the track was formed by slow, intermitting steps, and not, as might have been supposed, ly one continuous gliding motion. Having satisfied myself of this, I took up the morsel of sand at the end of the track, just as it was again becoming agitated, and found that I had captured a small crustacean, the species of which was unknown to me, though in general appearance it was not altogether unlike the common saud-hopper, but not quite so long. I soon took in this way five or six specimens, all of the same species, and all forming tracks of precisely the same character, namely, broad, slightly elevated, flattened, and groored.
"While forming its track, the animal is never seen; it moves along a little beneath the surface of the sand, which it pushes mpwards with its Jack, and the arch or tumel thus formed partiatly subsides as the creature presses forward, and, breaking along the centre, the median groove is produced."

A more slender and delicate-looking mustacean is Kroveris Sind-screw, a creaturn which possesses some of the same hahits as the last-mentioned species. It burrrows horizontally beneath the sand, like the common Sand-screw, but differs in its mode of action, the back always appearing above the samd.

The Long-norved Corophium, a curious-looking and very interesting species, inhabits Vol. III.-60.
the muddy parts of the sea-shore. This creature is common in the smmmer and early antumn, at which times it walks boldly mpon the wet shore. Doring the later part of antumn and the winter, it resides in holes which it harrows into the mud and clay, and in some places is so pleutiful, that the mud is quite honeycombed by its tunnels. This species is rery common on the French roasts. especially in the great mussel preserves near Rochelle. M. D'Orbigny, who observed their liabits closely, has given a very animated accomnt of their manner of feeding.

The whole of the muddy deposit along the shores is inhabited by myriads of marine worms, such as the nereis and lug-worm, and upon these the Corophimm feeds. As the tide rises, the worms ascemb to the months of their burrows, for the purpose of eating the little animalenles that swarm on the shore. The Corophimm wages continual war aganst these worms, darts it them with smprising speed, fastens on them, and eats them. Sometimes a great lng-worm will he surounded by thirty or forty of these curions crustacea, all attacking it simntaneonsly, and forming a strange gronp is the worm whithes in its endeavors to escape, and carries with it the small but pertimacions fors moler whose attack it is sinking.

Hundreds of the Corophinm may be seen beating the mud rapidly with their enormons antenme, for the purpose of thscorering their prey, and the energy of the movement and the evinlent excitement mader which the creatures labor partake largely of the ludicrous. They do not restrich themselves to the worms, being equally ready to prey upon fishes, oysters, or indeed any animal substance that comes in their way. The fishermen, who know it by the name of Pernys, are very angry with this little creature, and declare that it robs them of their mussel harvest. They even assert that it climbs tive posts of the complicated wood-work to which the mussels cling, cuts the silken threads by which these mollusks are attached, and, having thms let them fall into the sea, eats them at leisure. As is the case with the sandhopper, the Corophimm is greatly persecuted by larger creatures, and is eaten in vast numbers by birds and many fishes. All the members of this gemns can be recognized by the enormous dimensions of their antenne, which are extremely thick at the base, and look much more like a very large pair of legs than true antemme.

We now come to some rery cmionsly shaped crustacea, whose habits are fully as remarkable as their forms. Their scientific name is Phronima, and their best known species is Fleming's Hermotschew. This creature incloses itself in a nearly oval and transparent sac, which is found to be the body of one of the medusie. M. Risso tells us that, like the argonants and carinarice, these creatmres may be seen in calm weather voyaging along in their glassy boats, and rising to the surface or sinking through the water at will. They live on animacule, and for the greater part of the year remain in the muddy depths of the ocean, ascending to the surface in the spring. How they enter their habitations, and their general economy, are sulojects at present obsemre.

There are several species of Phronima, all inhabiting similar dwellings. Phronima sumtinella, for example, chooses the bodies of the aquoria and geronia for its home. These cratures are called by the name of Hermit-screws on account of the solitary life which they lead, each shat up, in its cell or coroon, as it may possibly be called. In all the Hemitscrews, the head is large and vertical, with two little antema, and the body is soft, neary tramsparent, and ends in a mumber of bristle-like appendiges. Nll the legs are long, slender, aud apparmatly weak, except the fifth pair, both of which legs possess a large and powerful claw, and are direeted backwarl.

A little crustarean belomging to an allied genus is not umeommon on Enropean coasts. It has labits of a somewhat similar nature, dwelling in the chambers within several common mednsald. It will ocrasionally late this curions residence, and returu to it at will. It is about half im inch in lemgth, has the two dirst pairs of fees shortest, tipped with a claw, and has the three last pais of leogs longer than the others. 'The mame of this crustacean is Metoces
 moler the namo of Phronimadar. All the members of this family have the mandibles very large, some of the legs prehensile and oddly formed, and the head of enormons comparative size. Some of them attach themselves to fishes, and others to mednsae.

Another strangely formed and closely allied crustacean is the Ductypocera niccemsis, whose hahits are, however, rery imperfectly known, though it is presumed that they resemble those of the hermit-screw and its kin. In this genns, the head, thongh large, is not of such enormons comparative dimensions as in Phronima, and is rather squared in form. Some of the strange and glasping legs possess great moseular development, and are armed at their extremities with formidable clats, the movable joint bending over at right angles.

A small, but very remarkable crustacean, one of the few which really construct a bome for themselves, is the Camms-simmpr, scientitically called Cerapus tabutaris. The close resemblance between this creature and the well-known caddis-worm cannot but strike an observer. All the animals leelonging to this genus imhahit a case which they are able to carry abont with them. In spite of the awkwardness of such an appendage, the Caddis-shrimp passes along at a brisk pace, moving by means of the two pairs of long antenne, which not only look like feet, but are used for locomotion. The real feet are kept within the tube, with the exception of the two front pairs, which are almost wholly used for catching prey and feeding itself.

Some persons imagine that the tube of this creature is not of home mamfacture, but is the deserted residence of some annelid. There is, howerer, no reason why a crustacean, which is much higher in the scale of creation, should not make as good a tube. The material of which these tubes are made resembles rough leather or papier-maché, and grayish-brown in color, and very tongh. They are very small, in some species being not more than the sixteenth of an inch in length, and proportionately small in diameter. Sometimes the tubes are set so thickly upon the plant as to conceal its surface from view. They are set without the least order, and look as if they had been simply flung upon the sea-weed to which they adhere. The common carrageen (Chondus crispus), from which the well-known Irish moss is made, is the plant that is most favored by their presence. When taken out of its cell, the little animal is not unlike a sand-hopper, except that the two pairs of antenne are enormonsly developed, and the first few pairs of legs are furnished with small claws.

The generic. name Cerapus is taken from the Greek, and is very appropriate, signifying "horn-footed." These strange antenne are continually flung forward, grasping at everything that comes within their reach, and reminding the observer most forcibly of the peculiar actions of the cirmpedes or barnacles. The Caddis-shrimp does not love the very shallow waters, and, except by use of the dredge, cannot be obtained but at the very low tides of March and September, those precious days so invaluable to the practical naturalist, where he finds laid ont before him large tracts of the ocean-bed that, except for a few days, at intervals of six months, remain covered with water, and hide their treasures from all eyes.

The accompanying illustration represents the common Fresif-water Shrimp, or Fresif-water Sobew.

FRESH-WATER SHRIMP.-Cammarus pulex. (Twice natural size.)

In common with the other Screws, this creatmre derives its name from its movements when taken from the water and laid mpon the ground. Not being able to stand upright mpon its feeble legs, it is forced to lie on its side, so that the perpetual kicking of its legs only forces it round in a screw-like fashion, similar to the conduct of the marine serew-shrimp when laid on the sand.

The Fresh-water Shrimp is extremely plentifnl in every stream, and may be seen in great numbers even in the little rivulets that conduct the water from the fields. They lurk in recesses in the bank or moler stones that form the bed of the stream, occasionally darting ont to seize some prey, and then making their way back again. Occasionally they push themselves a yard or two up the rivulet, but are sure to come tloating back again before very long,
allowing themselves to be passively swept along by the force of the water as if they were dead. but starting suddenly into active exertion as soon as they reach their former hannts.

In the water this crustacean moves by a series of jerks, and mostly lies on its side, though it often swims with its back mpermost, and frequently rotates as it passes along. It is a voracions creature, feeding upon dead fishes or any similar carrion. It is fond of the muddy parts of the stream, liking to conceal itself in the soft allavinm when fearful of danger. The eggs of the female are kept for some time under the abdomen, and the young remain in that situation until they have attained sufficient strength to shift for themselves.

Three other species are marine. These are the Wood-horing Shrimp, the Skeleton-serew, and the Whale-louse. The Wood-boring Smbinp is a crnstacean that nearly rivals the shipworm itself in its destructive powers. It makes burrows into the wood, wherein it can conceal itself, and at the same time feast upon the fragments, as is proved by the presence of wooly dust within its interior. Its tunnels are made in an oblique direction, not very deeply sunk below the surface, so that after a while the action of the wares washes away the thin shell and leaves a nomber of grooves on the smface. Below these, again, the creature bores a fresh set of tumels, which in their turn are washed away, so that the timber is soon destroyed in successive grooved flakes.

According to Mr. Allman, its habits can he very easily watched, as if it is merely placed in a tumbler of sea-water, together with a piece of wood, it will fortluwitl proceed to work and gnaw its way into the wond.

In this creature the jaw-feet are fimmished with imperfect claws, and the tenth segment from the head is cmionsly prolonged into a large and long spine. The great flattened appendages near the tail seem to be merely used for the purpose of cleaning its burrow of wood dust which is not required for food. The creature always swims on its back, and when commencing its work of destrnction, clings to the wood with the legs that proceed from the thorax. The Wood-boring shrimp is one of the jumpers, and, like the sand-hopper, can leap to a considerable height when placed on dry land.

Another wood-boring shrimp will he described in a surceeding page.
In the illustration is seen the marine crnstacea called appropriately the Skeleton-

Screm, or Mantis-smamp. The bodies of the Skeleton-screws are indeed skeleton-like in their bony lankness, but their appetites are by no means small in proportion to their size. They are fmanished with terrible instruments of prehension, their first and second pairs of legs being devoted wholly to this purpose. The last joint lont one is rnomonsly large, and the last joint is thin, and shots down like the blade of a claspknife into its haft, the groove being represented by a domble row of spines between which the blade is received. The blade itsulf is finely notched along the adge. These clatw-like terminations to the legs are used not only for seizing prey, but for grasping the branches and dawing the long attennated body from one part to another.

Mr. Gosse, who has pail much attention to these cmions beings, remarks that their movements among the marine regetation are wonderfnlly like those of the spider monkeys among the banclass, their long thin bodies adding to the resemblance. They ron about with great agility, and are always to be found in the brancles of the Pommatella oristuta. The same writer has given a very interesting history of the Mantis--hrimp: -
"Their manners are excessively amming. The midale part of their long body is destitute of limbs, having instead of legs two pairs of oral mear vesicles, but the hinder extremity is fornisherl with three pairs of legs armed with spines, amd a terminal hooked blade like that alroaly deseribed. With these lindermost legs the amimal takes a tirm grasp of the twigs of the folypidom, and rears mi into the free water its gant seletom of a body. stretching wide its seythe-like arms, with which it keeps np a see-sitw motion, swaying its whole body to and
fro. Ever and anon the blade is shut formbly upon the groored haft, and woe be to the unfortunate infusorium, or mite, or rotifer that comes within that grasp! The whole action, the posture, fignre of the anmal, and the structure of the limb, are so closely like those of the tropical genus Mantis among insects, which I have watched thus taking its prey in the Southern United States and the West Indies, that I hare no doubt passing animals are caught by the crustacean also in this way, though I have not seen any actually secmed.
"The antenne, too, at least the inferior phir, are certainly, I shouk think, accessory weapons of the animal's predatory warfare. They consist of four or five stont joints, each of which is armed on its inferior edge with two rows of long, stiff, curved spines, set as regularly as the teeth of a comb, the rows divaricating at a rather wide angle. From the sudden clutching of these organs, I have no donbt that they too are seizing pres; and rery effective implements they must be, for the joints bend down towards each other, and the long rows of spines interlacing mast form a secure prison, like a wire cage, ont of which the jaws probably take the victim, when the bending in of the antenne has delivered it to the month.
"But these well-fumished animals are not satistied witl fishing merely at one station. As I have said abore, they climb nimbly and eagerly to and fro, insinnating themselves among the branches, and dragging themselves hither and thither by the twigs. On a straight surface, as when marching (the motion is too free and rapid to call it cranoling) along the stem of the zoophyte, the creature proceeds by loops, catching hold with the fore limbs, and then bringing up the hinder ones close, the intermediate segments of the thin body forming an arch, exactly as the caterpillars of metric moths, such as those, for example, that we sce on gooseberry bushes do. But the action of the crustacean is much more energetic than that of the caterpillar. Indeed, all its motions strike one as peculiarly full of rigor and energy.
"I have seen the large red species swim, throwing its body into a donble curve like the letter \mathcal{S}, with the head bent down, and the hind limbs turned back, the body being in an upright position. It was a most awkward attempt, and though there was much effort, there was little effect." In our illustration the creature is enlarged.

The Whale-louse is, like all the species of this gemus, parasitic, residing on the whale and dolphin. Their hooked and diverging legs, armed with their shaply-rmed claws, enable them to cling so tightly that not even the swift movement throngh the water, or the active exertions of the creatme on which they reside, are sufficient to shake them from their hold. The different species of Whale-house seem to prefer varions parts of the body, one species clinging to the head, another to the side, and another to the fin. They all burrow mather deeply into the rongh and thick skin of these marine mammahia.

Their bodies are flattened and rather oval; they have five pairs of legs, all prehensile; and on the second or third joint of the thorax, instead of legs there are long appendages for respiration, which usually are bent over the back. The illustration is of natural size.

ISOPODA.

In the Isopod crustacea, the signification of which word has alreads been giren, there is a great resemblance to the common wood-lonse, and many of them might easily be mistaken for those common and destructive beings. The females have large horny plates on their legs, so formed as to produce a large pouch under the thorax, wherein the eggs are contained. In many species some of the rings of the abdomen are connected so as to resemble a single joint.

The Baffin's Bay Arcturus is one of the best developed of the whole order. In all the species belonging to this genus the body is long, and the first font pairs of legs are beantifully feathered at the ends. These cannot be used for walking, the three last pairs of legs being devoted to this purpose. The long antenne are used as organs of prehension, and with them the creature captures its prey. The young are said to cling by their legs to the antennæ of the parent.

Several of these species take possession ol the corallines, each selecting a particnlar branch, and not permitting any other to intrude upon its premises, fighting with great valor against any ansailant.

They resemble the fly-eatehers in some of their labits, sitting patiently on their branch until they see some little creature passing within rearh. They then dart at their prey, seize it, return with it to their resting-place and there cat it leisurely. They sit in a curions erect attitude, swaying the borly about and oceasionally deaning the antenne by drawing them throngh the tulterd feet.

The emmon lisu-houst is jarasitic nom many speries of fish, elinging tightly ly means of their hooked legs. It is thought hy many lishermen that the creature is by momeans hurtful to the fish, but that it is absolntely heneficial, causing death if removed.

A mother curons and tolerably plentiful species of Isopoderustacean is the Smbmp-Fixer, so "alled from its labit of aflixing itsell to shrmps and prawns, concealing itself under the site of the canapace. Any mumbri of these curious parasites may be obtained from a fishmonger's shop, by the simple process of looking over his stock of prawns, and picking ont those which have a swelling at the side of the campace. The fishermen, who have the oddest ideas about manine objects, and know as little abont shrimps as a plonghman abont worms, generally fanty that these parasites are young soles ! probably on account of the general slape of the male.

The female of this drustacean is genemally found with a mass of eggs which are congregated beneath the body, and are kept in their paces by the pouch formed by the plates attached to the legs. Owing to the pressure cansed hy the carapare of the patw, the sides of the Shrimpfixer are dissimilar, and distorted individuals are very common.
la all the members of this genus the male is math smaller than the female, being barely one-sixth the size ol his mate, and is narrow and elongatel, whereas she is wide, pear-shaped, and ending in a point. The false legs are ten in number, live on each side, and modified into triangular membranous pates, forming a ponch for the reception of the eggs.

The color of this speries is greenish, with a slight lustre above, and dark at the edges of the plates.

The members of the gemus Tone may be known by the appendages of the abdomen, which are threath-like and amanged romm the body. The female is also larger than the male.

This rematme is also a parasite like the preceding, but makes its home within the thoracic 1, hate oil the burowing cabl, (Calliantesse subteramet), whieh has alreaty been deseribed on page flit. It forms a thmor on the side, and can be removed in a living state. It seems that both sexes are to be lomm under the same shell, the tiny male holding firmly to the appendages of his mate like a little child holding to its mother's dress. 'The color of this species is omag-yellow, and the appendages are white.

Mr. Thlfon W'est has favored me with the following remarks upon an allied crustacean : "Some years ag'o, I assisted in the disseetion and mate diawings of the male and female of a remamable mastacean taken from the gills of a hermit-crab. It was thought that a new gemms would lave to be constituted for it. In the female of this species there was a distinct space lelt between the plates covering the ova, for the accommolation of the male, and it is thonght doubtlul whether he ever takes any foon. The mates are model hushands; having once selected at mate, they never leave hor."

Anotmer wood-horimg erustacean is called the Thmber-moring Shrimp, or Gribble.
Though belonging to :mother fimily, this "reatore is as destructive as that which has alreaty been deseribed, but makes its tmmels in a different mamer, burrowing deeply into the woed instead of triving oblique passages. It proceeds in a very methotical manner, the thmels being quite staight unless they happen to meet a knot, when they pass ronnd the obstarle and resume their former direction. Small as is this crustace:m, hardly larger. imbed, than a grain of rice, it is a sad pest wherever submarine timber is employed, for it works with great energy, and its vast mumbers quite compensate for the small size ol each individual. It appen's to attack equally any kind of wood, though its progress is slower in
oak and other harder woods than in deal. Sometimes It is found attacking the same timber as the chelura.

As with most of these cratures, the male is smaller than the female, being about onethird her size. The female may be distinguished by the ponch in which the eggs and after wards the young are carried. About six or seven young are generally found in the pouch.

The Gribble is ashen-gray in color, with darker eyes. The timber into which these creatures have been boring looks very like old worm-eaten furniture. The creature is able to roll itself into a nearly spherical form, like the well-known pill-woodlouse. The tail is composed of many segments, and the antenne are in pairs, set above each other.

A creature much resembling the common woollonse, is the Great Sea-slater, or Seawood louse, a speries which, though extremely plentiful, is not seen as often as it might be imagined, owing to its extremely retiring habits and hatred of light. The Sea-slater lives on the stone and rocks of the sea-shore, and lides itself carefully during the day in the crevices, its flattened body enabling it to crawl into very small chinks. At early morning, however, and in the evening, these creatures may be found by thomsands, and any one who will take the tronble to search the rocks by the aid of a "bull's-eye"' lantern will find himself repaid by the vast number of nocturnal animals that lave ventured out of their dens.

The female carries her young in a kind of pouch formed by the development of a number of horizontal plates along the abdomen. They remain in this natural cradle for some time, and even after they are able to ma abont, may be seen clinging to their parent. Mr. Tuffen West tells me that on one occasion he picked up a very large Sea-slater, but nearly let it fall again, startled by seeing four or five little ones rm from the body. More and more followed, until twenty had made their appearance. Thinking that he had taken up a dead specimen, he put it down again, and was hardly less surprised to see it run off quite briskly.

The substance of the Sea-slater is rather softer than that of the common woodlonse. It appears to feed either on animal or vegetable substances, and is itself much preyed upon by birds and other enemies. The fish are very fond of these creatures, and some species have been known to hover abont rocks during a storm for the purpose of preying on the Sea-slaters that are washed into the water. The color is very variable, but is mostly some shade of brown or gray. This, as well as the succeeding species, belongs to the family of Ouiscidæ.

The Water Hog-louse is the aquatic representative of the sea-slater just described. This species is plentiful in fresh water, whether still or running, and in general walks very leisurely, thongh when alarmed it can run swiftly. In this genus the proportion of the sexes is reversed, the male being larger than the female. Its average length is about half an inch.

The common Woodouse shows an equal development of the legs. This creature is very plentiful in all damp places, and especially exults in getting under logs of wood or decaying timber. In cellars and outhouses they are common, and are generally to be found in dark and damp localities. Fowls are very fond of them, and there is no surer way of extirpating these sharp-toothed creatures than by allowing some fowls to scrape and peck abont in the places where they have taken up their residence. Under the bark of dead and decaying trees is a very favorite residence with the Woodlonse, and in such localities their dead skeletons may often be found, bleached to a porcelain-like whiteness.

The color of the Woodlouse is a darkish leaden hue, sometimes spotted with white.
An allied species, the Land-slater (Oniscus asellus), is equally plentiful. This species may be distingnished by the two rows of yellow spots and the same number of white spots that rum along the back. There are also eight joints in the outer antenne, whereas there are only seren in the same members of the woodlouse.

The well-known Pill-woodlouse, or Pill-armadillo, when rolled up into a globular shape, bears a strong analogy to the common hedgehog, and a still stronger to the manis, as in the latter case the creature is defended by horny scales that protect it just as the external skeleton protects the amadillo. While rolled up this creature has been often mistaken for a bead or a berry from some tree, and in one instance a girl, new to the country, actually threaded a number of these unfortunate crustaceans before she discovered that they were not beads.

As they bear such a resemblance to pills, they have often had fo pay the penalty of their likeness; for in the earlier days of medicine, and even up to the present time, they havebeen employed in the phamacopeia. Even now, thongh no modern physician would prescribe them for the cure of any disease, the Pill-woodlice may lee seen in the recesses of druggists' shops. I have often seen a drawer half-filled with these creatures, and used to convert them into marbles, bullets for a toy cross-bow, and varions other pmoses, in which they were quite as useful as if they had been employed according to the original desigu. The color of the Pill-woodlonse is a dark grayish-brown, with a slight polish.

ENTOMOSTRACA.

We now enter upon a subdivision of the crustacea, called scientifically the Entomostraca, a term derived from two Greek words, the former signifying an insect, and the latter a shell. All these strange creatures are aquatic, and their bodies are protected by a shell of horny or leathery consistence, sometimes in one single piece and sometimes formed of several portions. The gills are attached to the feet, or the jaws and the feet are jointed and fringed with hairs.

This sub-class embraces a numerous group of small creatures, important as being food for fishes. As parasitic forms they prove considerably injurions to our food-lishes, fastening about the gills, and eventually destroying them. Many inhabit fresh water.

The well-known Cyelops is an example of one of the principal orders called the Conepoda.
Many of the species of orders Siphon ostomata and Ostracode are familiar as parasitic on the sharks, and especiatly the sluggish molar, or sum-fislo. Penella of the latter is large, and has a leng'th of sevelal inches.

In the first section of these creatures the gills are attached fo the feet, and they are therefore termed Branchiopoda, or gill-footed. They all swim freely in the water. The first order, the Phylloporla, or Leaf-foofed Entomostraca, have fhe joints of the feef flat, leafy, and gill-like, and are fitted for respisation. Sometimes the body is naked, and at best, only the head and thorax are covered with the carapace. The first family of these creatures is the Apodide, or Footless Entomostraca, so called because all the feet are formed into breathing organs. There are no less than sixty pairs of these feet, all with many joints, and, indeed, the number of joints which are required to form one of these apparently insigniticant creatures, is almost incredible. With the wonderful patience of the German nation, Schæffer counted the joints, and found that they fell rery little short of two millions.

One species, the Crab Shield-smbmp (Apus cameriformis), is fonnd in Europe. It swims either on its back or in the usual attitnde, and uses the branchial feet in its progression. Its food seems to consist of the smaller Entomostraca. The mandibles of this creature are very powerful, and ('ilpable of hreaking mp the shells of the creafures on which it feeds. Ifs color is brownish-yellow clonded with brown. One species was discovered by Mr. Tuffen West, and named after linin.

A very remarkable buing is the Brine-simbimp. It loves to reside in water so strongly charged with salt that erary other creature dies in so saturated a solution, abont a quarter of a pound of salt being contained in one pint of water. These animals may be seen by thousands in the salt-pans at Lymington, Itants, where the workmen call them Brine-worms.

They congregate thickly in the strongest brine, while in the ordinary sea-water they do not tronlle themselus to ventme. The workmen believe that the contimal movements of these "reatures hare the effect of dearing the brine, and if they dind that their own salt-pan is withont the Brint-shrimp, they always fetch some from another pan.

The movements of this little creature are most erpareful. It mostly swims on its back, its feet heing in constant motion, and its comse directed by means of its long fail. It revolves in the water, hends itself into vanied curves, tums fairly over, wheels to the right or left, and semms thoronghly to enjoy the very fact of existence. Its color is mostly red, and in some of the: fans the Brine-shrimps congregate in such multitudes near the surface that the water looks quite pink with their borlies.

The Fairy-surimp is appropriately named, as a more fairy-like creature can hardly be conceived. It is to be found in several parts of Emope. In spite of its comparatively large size, measuring more than an inch in length, it may easily escape observation, as its body is of glassy transparencr, and scarcely visible in the water, except by the red and blue tints of its tail, branchire, and feet. It always inhabits stagnant water, and may even be found in the half-putrid mass of mud and water that lies at the bottom of casting-nets.

In his valuable work on the Entomostraca Dr. Baird gires the following acconnt of this beautiful creature:-"They swim upon their back, and in fine, warm weather, when the sun is not too strong, they may be seen balancing themselves, as it were, near the surface, by means of their branchial feet, which are in constant motion. On the least disturbance, however, they strike the water rapidly with their tail from right to left, and dart away like a fish, and lasten to conceal themselves by diving into the soft mud, or amongst the weeds at the bottom of the pool.
"It is certainly the most beautiful and elegant of all the Entomostraca. The male is especially beautiful. The minterupted undulatory waving motion of its graceful branchial feet, slightly tinged as they are with a light redish hue; the brilliant mixture of transparent bluish-green and bright red of its prehensile antenne, and its bright red tail, with the beautiful plumose sete springing from it, render it exceedingly attractive to the view.
"The undulatory motion of its branchial feet serves another purpose in addition to that of keeping the animal suspended in the water. The thorax or body of the animal has been described, when floating on its back, as like the cavity of a little boat, the feet representing the oats. When these are in motion, they canse the water contained in this cavity to be compressed, and to monnt up as along a canal, carrying in the current the particles destined for its food towards the mouth. It seems to be constantly, when in this position, employed in swallowing and digesting its food, its mastieatory organs being in perpetual motion."

BRANCH-HORNS; CLADOCERA.

We now come to some of the minute species of these curious animals. The creatures belonging to this order are termed the Cladocera, or Branch-horns, hecause their antenna are forked and branched. With the exception of the head, the body is wholly enclosed within two shells, like the half shells of a walnut. There is only one eye. of very large comparative size ; there are two pairs of antenne, and the lower pair are nsed in swimming. In the first family, the Daplmiadse, the lower anteuna are very large and upper very small. There are five or six pain's of feet enclosed within the shell, and the intestine is straght.

The common Water-fled is a good example of the typical genus. Eight or nine species of this genns are now known, and the habits are much the same in all. They are to be found in fresh water, whether still or running, but seeming to prefer the former. Eren the horseponds, which are so trodden about by cattle that they seem to consist of equal parts of bad pea-sonp and duck-weed, are farored residences of the Water-fleas, and sereral species may sometimes be found in one little pond.

The common Water-flea has five pais of feet, the lower anteme branched and branchleted, the lower pair being very large and powerful. The head is lengthened downwards into it prominent beak. These little creatmres exist in vast mombers, and sometimes assemble in snch heary masses that they quite change the color of the water. Dr. Baird has remarked that they will sometimes assemble so as to form a belt of a foot or so in breadth, and ten or twelve yards in length, and that the whole helt will pass round the pond, thas obeying some strange instinctive command that, thongh inaudible to human ears, is conveyed to the myrads whom it concerns, and marshals their hosts with the same wonderful discipline that governs a flock of starlings. If a shadow should fall mpon this belt of Daphnias, they all suddenly vanish, and appear again as soon as the darkness has passed away.

The eggs of the Daphnia are placed within the space hetween the shell and the body, and are there kept until they are hatched, and the mother permits them to escape from under her Vol. II.-61.
shelly covering. The joung are not in the least like their parent, having no shell, no abdomen, and not nearly all their limbs. Each of the antemme is divided into two braches, and each of these branches is subdivided at its extremity into three branchlets.

Another of these wonderful little beings is called the Monst, a genus of which rery few species are at present known. The color of this species is olive-grem, its head is romd and bhunt, and the lower antenne are pecoliaty large and musentar at the hase. 'The carapace is moch smaller behind, and at the end of the abdomen are eight very short spines and two long and stont chaws. This spuepies is to be fonnd in Enuone, esperially in ponds of woods, in which localities the Emopean microsepie natmalists have detected vast mumbers of beantiful and even rare preatures that are seldom seen in others places.

On the back of the Moina is seen a dark mass, whirlo, on acconnt of its slape, is called the ephippimm, or saldle. This remarkable appendage appears upon the back of the female, particutarly in summer, and is divided into two capsules, each portion containing one egg. The eggs which are placed in this singular resting-place are fond to remain monatehed through the winter, and ane probably defended hy this living sadde from the effects of cold, just as pistols are sheltered from the inchamey of the weather in their holsters. Probably, also, the saddle may serve to protect the eggs from the effects of dronght, when the pools are dried up by a hot and ramless antumn. When the mother monlts, the saddle and its contents are thrown ofl, together with the shell, and it is not uncommon to find specimens of the young swimming about with a portion of the saddle adhering to them, and looking like young beans just spronting from the earth, and carying with them the two lobes of the seed lrom which they sprang.

A very pretty little Entomostracan, belonging to a small sub-family called the Sidina, is called Sida crystallina. In all these beings there are six pairs of feet, the lower antenna have two branches, and a row of sharp and rather strong tilaments springs from the edge of the larger branch. In this genus one branch of the lower antemas has three and the other two joints. Thongh it is occasionally very artire, passing throngh the water with great rapidity, it is mostly dull and stationary, having a cmrions habit of pressing the back of its head against some object, and there remaining for a considerable period without moving. It derives its specitic name of crystalline from its beantifnlly transparent aspect.

In the Lynceida there are two pairs of antenne, the upper being very short, and the branches of the lower having three joints. They have five pairs of legs, and one eye, with a black spot in front of it. The abdomen is jointed. All the species are rapid swimmers, and their food consists of both vegetable and animal matter.

In the Chydorns, of which one or two Emropean species are known, the body is nearly spherical, the lower intemie are very short, and the beak is very long, sharp, and curved downwards. The color is olive in the present species, and has a smooth, shining exterior. It may be found in ponds and ditches thronghout the year.

The Chydorus sphoricus, a curions globular-looking creature, is an example of another family, ablled the Polyphemide, haring only fom pairs of feet, which are not included in the shield. Their single eye is very large, and has given rise to the name of Polyphemus, which belonged to the one-eyed giant overome by Ulysses and his companions. The lower antenna have two branches-one with four joints amd the other with three. In the lower part of the carapace there is a large, empty space for the accommodation of the eggs and young.

An example of the typical gemus is the common Polypuemts (Polyphemus pedirutus), found in ditches and ponds. Th this creatme the abdomen is long and projects from the shell, and in the adult the eye is emomonsly large, seeming to ormpy the whole head. There is a deep notch or groove in thu Polyphemus, seeming to sepmate the body from the head. It appears always to swim upon its back, and uses both the antenna and legs to drive it through the water.

Whave concluded to submit for public patronage a work with the above title, being a series of exquisite Engravings representing the Animal World, executed with great scientific accuracy, and accompanied by full Descriptive Text, written in popular terms, so as to delight and instruct the people. Anyone who has considered the subject must be at a loss to understand why an Illustrated Natural History, comprehensive and at the same time popular, has not before this been published in this country. Indeed any lover of animals who has visited the great museums and zoological gardens and has had access to books of engravings in the public librarics, could not fail to remark the wealth of material in existence devoted to this subject. Being confirmed in our conviction of the desirability of such a work, we laid under contribution the best existing authoritics for the production of most perfect representations of all the more important living creatures, and among the artists whose delineations will delight the reader, we may mention IJarrison Weir, Wolf, Coleman, Fr. Specht, and Mutzel. By far the majority of the engravings in these volumes are from drawings made from the liaing animals, many at the Zoological Society's Gardens in London, England.

We purpose that our patrons shall be aided and interested in their study by such an array of pictures as has never before embellished any Natural llistory. In numerous instances the engraving is printed in oil-colors, and this portion of the illustrations has been taken charge of by Messrs. L. Prang \& Co., of Boston, who we believe rank forenost for high art istic results in this department of printing. These Oleographs were copied under the superintendence of Mr. Prang from the renowned "Tafeln" of "Brenm's Thierleben," so that they may be dectared perfectly reliable.

We sought competent advice from various sources as to the most suitable text that should accompany this panorama of handsome Engravings. It was found impossible to embody all the present ideas of naturalists in a single work like this on account of the rapid advances and constant changes in their knowledge of, and habits of thought respecting, the Animal World. And it seemed to us correct that the true object of Zoology is not to arrange, to number, and to ticket animals in a formal inventory, but to inouire into their life-nature, and not simply to investigate the lifeless organism.

What do we know of "Man" from the dissectins-rom": ls it not Man, the warrior, the statesman, the poct, etc., that we are interested in? With all vencration which attaches itself to those who are the accredited possessors of abstruse learning, their inordinate use of phraseology detracts too much, we fear, from the fascination that the study of the Animal World would otherwise yield, and as we are not content to have our work restricted to it favored few, we thought the task placed in our hands to be to licep the work free from a repellant rocabulary of conventional technicalities. Our endeavor has been to find an author whose work would be noted for its fund of anecdote and vitality rather than for merely anatomical and scientific prescntation, and we arrived at the conclusion that we conld not do better than avail ourselves of the Rev. J. G. Wood's comprehensive work -a work most popularly approved by speakers of the English language. It would be superfluous to say one word concerning the standard character of his bouk, from the pages of which old and young at the other side of the Atlantic have obtained so much instruction and rational amusement. Aroiding the lengthened dissertations and minute classifications of specialists, he presents to his readers in popular terms a complete treatise on the Animal Kingdom of all climes and countries. The one objection that could be urged against it was, that animal life in America might be treated morc fully and American forms given more consideration. - In order to obviate this drawback and to do fuil justice to the creatutes of our own country, we secured the aid of Dr. J. B. IIolder, of the American Museum of Natural Nistory in New York, an undoubtal. Imerican authority, who has adaptud Wood's work to American wants and given prominence to American forms of Animal life.

The splendid work on Rodentia, by Allen, Coues, and others, will be fully consulted. The valuable work on North American Birds, by Baird, Brewer, and Ridgway, will be the guide in the treatment of birds. The late arrangement of the classification and nomenclature of North American Birds, by Mr. Ridgway, and the Committec on that subject of the Ornithologists' Union, will be utilized in full. The arrangement of Mammals will be after the latest classification by Professor Flower, of the Zoological Society of London.

Terms of lpublication.

The extent of the work will be $\mathbf{6 8}$ parts of $\mathbf{2 8}$ pages, at the price of $\mathbf{9 . 5}$ cents each. The entire publication will contain 34 Oleographs and 68 Full Page Engravings on Wood, besides many hundreds of exquisite lllustrations interspersed through the text. No subscriber's name is received for less than the entire set, and no order can be cancelled after acceptance of first four parts. The Publisher guarantees 10 complete the work in sixty-eight p.in The parts are payable only as delivered, the carrier not being permitted to receive money in advance, nor to leave parts on credit. Subscribers who remove, or who are not regularly supplied, will please address the Publisher by mail.
no SUBSCRIPTIon received for less than the complete work-68 parts.

SOLD ONLY BY SUBSCRIPTION.

OSTRACODA.

In the order called Ostacola-a term derived from a Treek word. signifying a shellthe cuirass is in two parts, and incloses the animal like a bivalre shell. The hind jaws are furnished with gills. Th the family of the C'ypride, the npper pair of antenne are long, have mmerons joints and : pencil of long filamplts: the lower pair are short, thick, and used as feet. There are two pairs of real feet. One of these reatures is called Cyplars. It belongs to a genus which has many Emopean species, and it may be found in almost erery pond or ditch. The body is inclosed thoronghly in its valued cuinass, something like a walnut in its shell, the fringed antmmie and legs protroding from between the valves and permitting the creature to move. It is a most elegant little being, the shell heing gracefolly emred, and the antenne boing fine and transparent as of they were threads of glass. In. Baird tells us that the valves are vary brittle, and that on their exterior they are washed with a kime of varnish which proterts them from the artion of the water. Owing to this varnish, these cleatures cannot renture eren to dise to the surface: fom as soon the the shell is exposed to the air, it beromes quite dry, and so hoyant, that no exertion of the ('ypris can sink it agin.

These tiny animals will often live through a hot summer which dries up the pond in which the geside, and at the first min will make their appearance again, swimming menily abont as if nothing had happened. As sonn as they feel themselwes heing deserted by the water, they bury themselves deeply in the mud, and eren their eggs latain their vitality, thongh the mad shonld be baked quite hard. When the Cypris changes its skin, it throws off the whole shell. the internal parts of the body, the beantiful comb-like gills, and the tiny hairs which clothe the bristles of the antennae.

Two other examples of this pretty genus are named rypris cherítu and Cypris réduct.
In the family of Cytherida, the mper pair of antema have no lomg filaments.
The members of the typical gemus Cythere are mostly marine and may loe fomd in the little rock-pools at the sea-side, darting about among the bramehes of sea-weeds and zoophytes that live so plentifully in such situations. Safe in these sheltered spots, they "ure nothing for wind and waves and the storm which tlings the huge whale on the shore will fail to injure these tiny heings. whose very minnteness is their safety. One speries. Cythere minna. is remarkable for being the largest one seen by Dr. Baird. Its valves are white. It was found in deep water and taken in a dredge. Cythere inopinato derives its sperific mame of inopinata or unexpected, from the fact that the creature was foum where no whe would have expecter its presence. namely. in small ponds. It is a rery small speries, and always remains at the bottom. Its color is white, and there is a little orange-colored mark on the mpper edge. An oblique view of this speries has been chosen, in order to show the cmions ronded projections uron the middle of each valre.

The eythere impressa was found in sand at Torquay. The shell is dull black in color: and is covered with little punctures impressed upon its surface. whence is derived its specific name.

A closely allied genus is remarkable for the manner in which the valves are ridged. irregular, covered with tuberoles. and having their edges boldfy toothed. This species was taken in the Tsle of skye.

In the family of the Cypridinadæ there are two eves, set as footstalks, and two pairs of feet, one pair being always within the shell. There is only one genns of these creatmres, and all the species are marine. The shell is oral. sharply pointed at each end, and the front edge is deeply notched. The pair of feet that are retained within the shell are modified into one organ, which seems to be intended for the purpose of supporting the eggs. Some other species are Inminous.

OAR-FOOTED ENTOMOSTRACANS; COPEPODA.

The alore term is chosen for this order of arnstarems beamse their five pairs of feet are mostly used for swimming'. 'The hody is divided into sereral rings, the cuirass covers both the head and thorax, and the montl is fumished with foot-jaws.

In the family of the Cyclopidae the heal and body are merged together with the first ring of the thorax. There are two pairs of loot-jaws, am the dith pan of legs are very minnte.

A speries callod compops qumbriournis is remy common in every pond and ditch, and the female may at once he lecognized by the little rogethags which she bears on the sides of the abdomen, like Tohn (tilpin's wine-inottles at his lelt. The color of this speries is exceedingly variable, dilleming acombing to the lowlity where the creature happens to reside. It is mostly white, bot some imbividuahs are hrown, others greenish, while a few are red. Both salt and firesh watere are inhabited hy the Crolops, and some of the manine species are so highly lnminons, that they add in mo slight degree to the phosphoresernce of the ocean.

Conthoromptus mimetus is the name given to it very little speries. It is a creatmre with a long ablomen, whirl it is able to turn ore its batk, something alter the fashion of the earwig
 other, and gradablly diminsh in size to the extremity. All the speries belomging to this gomes have bery smatl and simple foot-jaws. It inhabits ponds and ditehes of fresh water. Mr. Tullen Wrest tells me that a short time ago he was examiming some of the shime that had gathered upon the root of the Cramlingen Pit, at a vast depth from the surfare, and that he found in tha slime some of these minute mastaceans quite brisk amd lively, whisking their tails upand down smartly. These creatures mast have been washed down the pit while still mathathed, amb hare been thas "aried down from the open air into the bowels of the earth.

Another creatme of the same erenus is termed Cetochitus septentrionulis. 'Thongh rery small, not more than the sixth or serenth of an inch in length, it is of exceeding importance to commere, as it affords fool to the herring, several whales, and other valuable beings. In the seas where this little "reatme lives, whole taacts are reddened with the multiture of their hosts, which swam near the surfare and congregate in such vast mmbers, that the wind has been known to catch up, a whole hank of them, like a wase, and ding it into the vessel, rovering the derk and the sators with their bodies. The confish feeds largely and luximiously mpon these almondint creatmes, needing not to take any bains abont them, but swimming lazily through their masses and opening its month, into which they pass without the least tronble.

The long antennop are used as oats, being thrown backwat at every stroke until their tips tomell each other. 'This attitude, howerer, is only assumerl while the creature is in haste, as it is often seen to base gently fluongh the water, with its antemme at right angles to the boury

11: Sutherland, in his "Yoyage to Baflin"s Bay," writes of thesw elegant little bemgs: "They are always on the alert to elote and escape from their pmasurss. When the water is bout slimhtly agitated, they dive from the surface, and in a few minutes, when it beromes still, they (am be sern ascending slowly, but ravely asing the antennar. I eonld only obtain sperimens by including them in a large quantity of water taken up suddenly, from which they could be sepatated subsequently staming though a calico bag. A bucketful (two gallons) of water often produceri wemty to thisty individnals, and sometimes twise that momber. They nevar survived a singla night, apen thomghapt in their native efament in a ressel. From their constant darting from side to side of the vessel, jerlags it is a sate inference that the
 lifte."

The molo of this species is light red, and the body is mearly translucent.
Another curions speries deserves a word oi mention. This is the Notortetphys ascidicola, which is fonnd swimming in the bromblial sate of the ascidia.

VARIOUS-FOOTED ENTOMOSTRACA; PCECILOPODA.

TUBE-MOUTHED ENTOMOSTRACA; SIPHONOSTOMA.

We now come to another group of Entonostraca which are parasitie upon fish and other inhabitants of the waters. They beloug to Dr. Baird's thind legion, called the P'orilopoda, a term derived from two Greek words, signifying various-footed. They are so named becmse they are partly formed for walking or seizing prey, and partly for swimming and breathing. In the first order, the Smporostons, or tube-monthed Entomostraca, the month is furnishem with a tube containing sharp, spike-like mandibles. The foot-jaws are well formed. The object of the tube and its sharp mandibles is evidently for the purpose of piercing the skin and sucking the juices of the beings mon which they cling; and the strong foot-jaws enable them to hold so firmly, that they camot he slaken off. The first tribe is called Peltocephala, or buekler-headed, becanse the head is shaped something like an anciont buckler; the head is also furnished with phates in front, and small antenne of two joints. The first family of these creatures is callen Argulide, and may he known by the cirenlar-shaped head-shipld, and the manner in whirh the second lair of foot-jaws are modition into a pair of powerful suckers.

The Fish-aligulds may lee seen minn many of the ordimary river-fishes, the stickithack being its favorite. I have seen it on the roach, and even mpon the golden carp. It is not very small, being ahout the diameter of a small sweet pea, and may easily be watched if pateed in an aquarium in which any fish are swimming. The little creature at one makes for the fish. diuting along with consilerable speed, and tixes itself to the side just under the pertoral fins. It does not, howerer, remain fixed to the fish, but occasionally leares it, and starts ofl on little voyages of discovery, always, howerer, returning at short intervals, as if for the pmose of assuring itself of a meal. It is wonderfully flat, looking very like the shed seed-vessel of some plant, and the reamblance is increased by its pale green collor.

The femate is consiterably larger than the male, and may at once be known by the black spot on each sifte of the abdomen.

The Caligus is reforted to another family.
This creature is mostly found mon the codfish amh hrill, and clings with great fimmess. Mr. Tuffen West tells me that he has exanined the Caligns carefnly with the mirreseope, amb assured himself that the suckers are present. "They are hemispherical, shallow in front, where their margin thins off to a translurent membrane; and deep behind, where their concavity is bombed hy a strong, transversely striated membrane."

A remarkable parasite, adherent to the gills of the loister. is called Nicolluë asteri. This "reatme belongs to a different tribe. which may be known by the small and mostly binnt head and the long and well-jointed antemne. The lamily Ergasilide have the head rommert, the boty oral, the abdomen well dereloped, and the feet small and branched.

The Lobster-Loese is sometimes found in considerable numbers tixed to the gills of the lobster, from which the female nerer moves after she has once taken a firm hold, thongh the male is more erratic in his hahits, and swims abont as he chooses. During her wally youth, the female is not much larger than the male; but, as soon as she attaches lierself to her new home, a pair of struge projections are seen to grow from the side, and by degrees become so large, that they seem to constitute the entire creature. Below these projections the egg-sars are developed.

A curions parasite that infests the stmrgeon is rather more than half an inch in length and the twelfth of an inch in breadth. It is termed Diehelertium sturionis. This creatmre insinmates itself deeply into the skin, making its way to the bony arches mpon which the gills are supported, lout not appearing to tonch the membranons gills themselves. Sometimes as many as ten or twelve are taken from a single fish. They can grayp very firmly by means of their forceps, and are albe to turn round whenever they please. This curions creature belongs to
the order of the Lemeadre, in which the month is formed for suction, and the limbs scarcely visible. All these beings are parasitic mon fishes, and are often so deeply buried in the tissmes, that the whole body is comcealed and only the egg-bearing tubes suffered to appear. As is the case with many creatures, esperially those that occupy a low place in the scate of cration, the young enjoy a wider range than the parent, being able to roam abont at will, and not setthing down to a motionless existence matil they have attaned matwity.

LERNEADA.

Tinfre seems to be no bond to the wombrons forms which these parasites assmme, as may be learmed from the following example: the chomblracomflus zri. It is called so becanse its bokly is rovered with cartilaginons suines or tubereles. The name is derived from two (treek words, the former signilymg cartilage and the second a thom. This strage being is found unom the gills of the John Dorv.

The two most extrandinary loings, which are called Lernaodiscus and Jacculina, were discovered under the ablomen of a lohster. In both these reatures (which certainly seem to betong to the Lemeans), the whole of the head becomes motitied into a set of branching fibres, much resembling the roots of a tree. 'Thare is no month whatever, all nourishment being transmitted through these fibres. Ther are quite recent discoverjes.

Thongh onr space is mpilly diminishing, we may still mention a few more of these creathes. One of common oremrence is the Peron-siofer, in which exists a great dissimilarity between the lemale and her small mate. Another species is termed Anchorella. uncinala. In this parasite the am-like appenanges are bery short, and united from the base so as to look like a single organ. 'The body of the female Anchorella is white, and the short arms end in a ronnded knob. This reatmre is rather more than half an inch in length. The male of the same species would hardly lee recognized as having any comertion with the long-horlied rreature that has just been described. The length of the male is about the forty-righth of an inch. Another species of the same gemms is the Anchorella rugose so called heranse the body is notehed at the side. This creature js about the seventh of an inch in lengeth. All these reatmres infest the cod, haddock, and similar fishes.

A wonlerfal example of a darasitir crustane:n is the Truchelirestes, with its long egg-hags amd strangely-developed unper extremity.

In the next tribe of Entomostraca the head is kept buried in the tissmes of the anmal to which the parasites cling, and are there held timbly bome hom-like processes that spring from the hatk part of the head. They are, in fact, living spears, the barbed heads being sunk into their prey. The two best-known members of this tribe are the Lamproylena pulchella and the Lerventome asempluo.

Not the least struge-looking among them is termed Chatimus scombri. It is, like many others of jts class,]arasitieal mon a parasite, and it is foum adhering to the caligns. With its long tab amd sumer it alheres to its prey, and it may often be seen langing to the lower part of the "aligus like at fish at the end ol' a line. This is one of the many instances that prove the truth of that quaint and farpseeing old saying, namely-

> "Big fieas and little fleas

Have lesser' Heas to bite 'em;
The lesser theas lave smaller theas, And so, wel infmitum."

A creature that is fomm mon the sm-fish, and adheres to the gills, is called Cecrops. It is mot always fixma to this habitation, hut tloats about by thonsands in the Mediterranean, where it is preyed upon ly many hishes.
(Ond next example is the shank-stekel: a species that is found adherent to the eyes of the Apotic shark, amb appears to blimd it. The shanks to which this mpleasant appendage Wat attacherd semmerl to be quito destitnte of sight, and did not flinch in the least when a blow
with a lance was aimed at them. The arm-like' appentages of this creature are inserted into the comer of the eye for norary one-lourth of their length. This parasite attains to the length of three inches. An allied slecies, called Lormerportu gutet, is formd on one of the common dog-tishes known by the name of tope, and described on page 199 of this volame. A strange, elongated creature is the Penella filoso, so (alled from its extreme length. This species is fomm to penetrate into the thesh of the swort-tish, the tumy and the mole-fish, all of which have been described in this whlume. It is satid to carse them considerable paim. A parasite of even strangel form, hat belomging to the same genus, is Penefle serfillotu. One of these jamaites, called the sprat-steker, is somotimes tolerably commom, many sperimens being obtainable at a single fishmonger"s shop, while for several years hardly one will be seen. The color of this parasite is pale seatereen, with a sight bluish cast. The eggs are very green.

A strange and seemingly shapeless parasite, that is foumb to affix itself to the carp tribe, is the Lerncencert cumpinucel. The Leruce, a creature of somewhat similar form, is notable for being loms upon the gills of the codisis. This creature betongs to the typical gemus.

PYCNOGONIDES.

It is hardly possible to imagine any toms that are so strangr, any hathe so astomishing as those which are fomed in the ermstareans described in the following lines. Althongh they hare been known for some time, their proper phace in the seale of creation has long been a disputed point among systematic matmalists, some romsidering them to belong to the chastaceans and others to the spikern. As. however, they mondre a trum metamorphosis, which is not the case with any spider, they are now admitted to be real, but miqne crustacea. Even such natmolists as Siehod amd Mine-Edwards differed about them, the formed phacing them among the spiders, and the latter making them with the ernstacea.

Such strange reatures as these are not easily describerl, esperially when the spare that can be granted to them is so limited, for their whole ecomomy is so thoroughly migue that they require a volume rather than a page. They are fond upon the Emropean coast, and their history is briefly as pollows.

Two of these strange-looking creatures with wonderfally small bodies and enomons legs, jointed and arranges in such a mamer as almost to preclude the idea of their real chandeter, are called Pycnorfom"m littoreter and Phorichitidium corcinimm. Inderd, it seems passing strange how the tiny abdomen cam absorts suflicient mutriment for the supply of those mavellons limbs. Their economy is as strange as their form.

Some suerimens of a well-known zoophyte (ror!me sximimm) are often sewn attarbed to the rocks on sea-hed. The Phoxichilidium is frequently foum as a modnte. In spite of the long limbs. it appears packed away in a vely complete mamer, the limbe being rolled romad the body so as to form the creature into a kind of ball. During its growth the gomg Phoxichilidinm has to pase different stages. Sometimes it pussesses the rudiments of limbs, with long filamentous appendages ; sometimes it thows them off, and contents itself with a pair of stont claws, and then again grows a fresh set of limbs and a pair of small and feeble claws.

Strange as are these habits, there is still a kind of analogy with other modes ol mamal life. On page 474 is mentioned the cmions little cmstacean which resides within the body of a berois, and in the present instance there is an eviclent amalogy with the varions galls and their inhahitants, the cells of the Phoxichilidinm being in lact the galls of the corynt.

SWORD-TAILED CRUSTACEA; XIPHOSURA.

The cmstacea abound in strange fomes. The Lonti-Tamen Monteca Crab belomgs to a separate order, called hy the name of Xiphosima, or sword-taled ('mstacea, in allusion to the long and shat'p spine which projects hom the shell. These creatures, of which several species are known, can easily be recognized by their general shape. The body and limbs are coveren
by a curions shield, composed of two parts. the junction taking place across the rentre of the body. Though perfectly hambess, these creatures can he made very offensive, for the natives of Molucea are areastomed to nse the long sharp tail spine as the head for an arow or lance, am thas make a most formidable weapon. Dlany of these erustacea attan the length of two feet, so that the spike is nearly a foot in lemgth, and is capable of inflicting a deadly wound.

The edges of the hinder portion of the shied are deeply toothed, and the space between the teeth is ocmpied ly a mather long and sharply-pointed spine, which is not tixed, but is movalite on its hasis. The feet are mostly furmished with tolerably strong "aws.

The Molucca Crabs offen leare the sea and crawl mon the sand, whepe they may be taken without much diflicnlty. They camot endure the heat of the sums rays, and are in the habit of burowing into the sand when the sumbeams heat too fielcely on their sliells. Sometimes they do not bury themselves very derply, and then they are discovered by the projecting tail-suike, which shows itself above the level of the sand, and betrats the position of the animal. As they pass over the sand they present a rery curions appearance, as their large shield-like shell entirely covers the limbs, and the rreathres seem to lue carried along by some external agency lather than to be propelter on their own limbs. Owng to the shortness of the legs, ant the large romuded shell, the Molurca Crabs are ahmost helpless if laid on their backs, leing ohliged to wat whtil some friendly wave may strike them and enable them to resume their proper attitude. Thesp armstaceans oecur largely in certain strata, and are fond in a fossil state, many species attaining to a very grat size. One living ppecies (Limmons cyclops) is a mative of the Last Indies, and goes by the popntar name of pav-Frin, or SAtcepan-cRab, because the shell, when the himbs and body have beedr removed and the tail spine promittad to retain its plape, has some resemblanre to the useful mblinay article from which it clerives its name. It is often used as a ladle for dipping water out of a vessel.

BARNACLES; CIRRIPEDIA.

We now come to the last members of the crustacea, creatures which were for a long time planeal among the mollusks, and whose true position has only heen diseovered in eomparatively ater years. Popularly they are called Bamacles, but are known to natmalists mader tha gemeral term ciripedes, on acommt of the ciri, or bristles, with which their strangely transformed feet are fringed.

IThen adnlt, all the cirmiperles are affixed to some substance, heing either set dirpetly "pom it, as the common acom-lnamacle, so plentiful on Emrojean roasts; plared mpon a footstalk of variahle length, as in the ortinary goose-massel ; or eren smb into the smpporting substance, as is the case with the whale harnales. When young, the cirmperles are free and able to swim about, and are of a shape so totally dillerent to that whiph they alterwards assume, that they would mot he recognized excent by a practised eye. More will be said on this suloject.

Along the mader surlace are set six pairs of limbs bot fumishect with claws, but being dexeioped at their extremities into two long fikments, jointed and rovered with haiss. By means of these modibex limbs the cimiperdes obtain their food. The rommon acorn-hamacle afforls a familiar aml heantilnl example of the mode by which this stroture is made subsorpient to procming a supply of food. The "losed valves at the upper part of the shell arre
 matle at the water, and the elosed member then withdrawn into the shell.

This hand like object is in fact the agregegted mass of legs with their filaments. As the limbs arm throst forwad, they spered so as tor form a kind of casting net; and as they beturn to Hhe sholl, they hoing with them all the minute orgmisms whirh were swimming in the water. 'This monement continnes withont ressation, as long as the Bandacles are covered with water,
 higher animals.

We will now cast a hasty glance at the transformations throngh which these creatares pass before attaining their perfect state. It has already been mentioned that the young cirripedes are free and able to wander about at will ; and as is generally the case in such instances, they are apparently of a higher organization whem fomg than when adnlt. For example, the young Barnacle can swim freely with certain limbs. When adnlt, it loses those limbs. When it is young, it possesses eyes; but when it attams maturity, it loses those valuable organs, which, although indispensable to a waderel, are needless for a being which is fixed to one spot and needs not to move in order to obtain subsistence.

When tirst set free from thr barent, the Barnacle is extremely minute, and has a striking resemblance to the young of one of the Fntomostraca already described. It has three pairs of legs, with imperfect joints and ending in bristle-like appendages. By the vigoroms flapping of these limbs the yonng Bamade is driven quicky through the water, with a sharp but uncer-

GOOSE-MUSSEL-Lephe anatifera. (On pannce-stone.)
tain movement. In fact, a microscope of low power, when applied to the water wherein a nmmber of these tiny creatures are swimming, discloses a swarm of merry little beings playing about just like the clonds of gnats orer water, or the daneing motes in the smbean.

Just in the middle of the part of the body which by courtesy we will call the forehead, a single eye is placed, black, round, and shining as if it were a little jet bead inserted into the body. There are also two very large antemme, which serve two useful purposes, for they aid the free and imperfect Barnacles to proceed through the water, while they are the means whereby the creatme fixes itself to the rock when abont to undergo its last change.

In the accompanying illustration is seen a group of the common Gonse-mussact, or Duckbarnacle, so called on accomat of the absurd idea that was once so widely entertained, that this species of bamacle was the preliminary state of the bamaclp-goose, the cirri representing the plomage, and the valves domg duty for the wings.

This Banacle is tolerably universal in its tastes. It clings to anything, whether still or moving, and is the pest of ships on account of the pertinacity with which it adheres to their VoL. III -62.
planks. Tte growth is marvellonsly rapid, and in a rery short time a vessel will have the whole of the smbmerged smface coated so thickly with these cimipedes that her rate of speed is sadly diminisher by the friction of their loose bodies against the water.

When once the Coose-mmssel has affixed itself to any object, the rapidity of its growth is positively startling. The minute young are poured from its shells in snch multitudes that they look like clondy currents in the water; and after they have enjoyed their brief period of freerlom, they settle down, attain matmity, and in their turn become the origin of a comntless posterity.

Thave sem a large log of timber, abont fompern feat in length by one foot square, so thickly cowred with these Barmarles that the wood on which they rested was not risible. The same log, which had evidently formed pat of the cargo of a timber ship, had been attacked by the ship-wom as well as the Barnacle, and had been tumelled from rod to end by that insatiable devonrel. 'The log wats so entirely covered by the Barnacle and the ship-worm, that the wood of which the beam was composed was quite invisible, and could not be seen until the heary masses of Bamacles were lifted up by the hand.

The old hatman who had licked n] the \log while fishing, and had ingenionsly built a trongh to receive the log, a tank of sta-water to shpply the trongh, and a kind of trat composen of sails to hold the trough and the log together, was very full of a discovery that he had made. ILe was fully persuaded that the ship-worm and the Barmacle were identical, and that when the ship-worm was tired of horing into wool, it came to the surface, and was immediately changed into a bamacle. He was quite impervious to leason, and always went into a passion whenerer the facts seemed to contradiet his theory.

If the objects were emmerated to which the Barnacle will cling, a volume would hardly he sufficient for the mere catalogue. It has heen found on ships, hoats. floating timber, shells, fortles, whales, and marint suakes. A moment is sufficient to give them a firm hold of any objert, and when once they haw fixel their antenne, the fiercest stom camot shake them off. Even after death, the force with which they cling is as great as during life, and they seem almost to form part of the substance to which they adhere. 'The length of the footstalk is extremely variable, in some measuring three or fom times the length that it does in others. This speries is foomd in neatly all temperate and warm seas.

A secomb, but smaller Stalked Barnacle, is the Fascine-babnacle, a larger and finer speries. Which can be distinguished by the mamber and shape of its shelly valves. These values afford most important indieations of the gemos to which men species belongs, and in the arrangements of some zoologists they play the principal part in the fomation of the system.

The Fascine-barnacle is fomd in the Indian Ocean.
A bather singular form of Bamarele, resting on short, stoutly-shaped foutstalks, imm having somewhat triangular valves, is the Mitelba-banvachas. This species comes from China, the Philippines, ett.
 tubular projections which stand out boldy fiom ejther side, like the ears of a quadroped from the leakt. This spercies lives in the wamer seas.

A slomp of Farm Bamacles hase been fomad attached to another gemus of Bamacle. which lives on, or mather in, the skins of cetacea, and to which we shall prestatly allude. Indeest, these lowings seem to care little ahont the substance to whirh they adhere one speries of stalked Bamarle having actually been takem mpon the delicate suface of a living Mednsa.

We now leare the stalked hamacles amb pereed to some other species. One of them. the Beld-bimestule, which is found off the coast of Madeira, Alrica, amo other hot parts of the orean, forms gemerally atmall sromp of turight shells, surpomded by hottress-like and puintel projections. It sometimes attams a vory ponsiderahle size, ame is satem by the ('linuese, who think that it lesembles the lobster in flavor.
 its bame from a comed projection something like the hill of a parot. This rmormons Bannalde is sometimes fomm measmring between five and six inches in height, and between
three and fonr inches in diameter. It is fomd in large bunches, sometimes consisting of a hondred individuals, some adhering to the rocks and others to the shells of their companions. The bunches of Parmot-beaked Barmaches bear a decided resemblance to the strange carti whose leares are set so oddly mpon each otliel.

This Barnacle is gathered, or father lown from the rocks in large quantities, amd exported to Talparaiso and other places, where it is hedd in high estimation as a delicacy for the table. It is generally boiled, amd eaten cold, like the common crab, and is said to resemble that crustacean in general lharor. It is a Soutl American speries, and is found most plentifully and of the largest size at Conceprion le Chile, and the best sperimens are taken from a little island called Quiquinina, which lies arress the mouth of the bay.

A "reature which is fomm plentifnlly on some coasts is calleal the common Acome barracle. On many roasts the shaface of every stone and rock that is washed by the sea, the exterior of wery pile of masomy that is lashed hy the waves, is envered with the shells of this cmions little creature, which is patremely valuable to the natnalist, as its habits are easily studied, and from its excerding plenty any mumber ol specimens cam be obtained. They are very pretty inhabitants of an aquarinm. bat they require pecnlian ronditions to keep them in health, and if they die, are sure to cormpt the smpounding water to such an extent, that nearly every other inhabitant of the agharimm will share their linte. Spots over which the tide only runs for a few hours are thickly stadled with these Barmacles, and it is interesting to see how quickly they oqen their valves and fling ont their ams as soon as the water covers them at each retmong tide. When the sea withdiaws. they close their shells firmly, and retain within their interior a sufficiency of water wherewith to "ary on the business of respination mont the next tide brings a fresh smply. Total submersion seems to be hurtfol to them.

They are very awkward to the shore hather who does not know the coast, as the edges of their shells are exceedingly sharp and knile-like, and intlict rery painful scratches when brought into collision with the umprotectet skin. Even to those who are searching on the rocks for mane comosities the Barnaches are very amoying, as they are constantly scratehing the hamls when an incations searcher happens to stmmble and tries to save himself by grasping at the rocks.

A rather curions cimpeda is the Corat-balinacle, which, as is wident from the material on which it is supported, will only he found in those seas which are wam enongh to produce corals. Sometimes the growth of the coral is too rapid for the Barnacle, which is gradually covered by the increasing stony deposit, and at last is actuatly buried deeply in the mass. where it dies from starration. The reader may remark that one of the mollasks described on page 318, is also in the lahit of making its residence mpon corah. and were it not for a pecnliar adaptation of structure, would perish for the same reason. But the Magilus is able to extemul its shm as fast as the comal deposits fresh substance, and therefore ahways contrives to keep itself within reach of the water. In the Pyrgoma the cone is composed of a single piece, very thick, rather compressed, and open above.

Some very strange fomms of cimipedes are now presented to ns. One of them is figmed in the illustration. The Coronet-bandacle, so called on accomet of the coronet-like shape of the body, is always found upon the skins of the cetacen which inhahit the Aretic Seas, such as the Greenland whale and the long-armed whale (Batanopteratongimunct).
the specimen exhibited in the ilhastration is representer of its natural size, but Mr. Sowerby in loms me that in a piece of whate skin only fonr inches in length, no less than six shecimems of this creature are attabled, all largel tham that shown in the engrasing. The cimipeda

CORONET-BARNACLEBatanus crenutus. does not merely adhere to the skin, hat in process of time antually buries itself deeply into the tissues, and would sem to canse moch amoyance to the creature on which it was parasitic.

A still strangre example of these chrions parasites is the Bramowner Barvarle, which sometimes are found deeply sumk into the skin oft at whate. This species plants itself in the
skin of the whales belonging to the Sonthern seas. This pest of the cetaceans is nearly cylindrical in shape, and remarkible for a series of raised rings, which surrombl it like the hoops mpon a bartel. Is the creathre increases in age, it also increases in length, and adds ring after ring, in proportion to the depth of its imbedment in the skin. The Bmrowerbarmacle is found in great nombers, and actually stuts the whale's skin with its shells. Not only does the skin suffer from their presence, but the blabber is also infested by them, as they olten pass completely through the skin, and sink deeply into the fatty tissues beneath. I have seen several fine examples of these smaen cirripedes, and conld not but admire the wonderful adaptation of their stmetmer to their mode of living.

Barnacles were collected and arrmged as mintivalve shells formerly. They are subdivided and embraced muler several orders, anong whieh the Probolems, Cryphophiatus, and Alcippe are known.

Members of the family Lemetirta are mmerous on on coast. The Conchoderma virgater is a chrious form, often fome on floating stufl in our waters. They have tleshy stalks by which they fasten to floating débris. Lepors is a familiar gemns.

Family Butconide inelnder more species tham others. The Acom-harnarles are mumerons. species are fomm attached to sea-turtles and shoggish tishes. Coromulus are found on whales. Temobctumes is found on tmetles and the back-fish delphin.

SELMAR HESS, PUBLISHER, N Y

CRAB-SPIDER, OR MATOUDOU.

SPIDERS. SCORPIONS. AND MITES:

(ARACHNIDA).

TRUE SPIDERS; ARANEIDEA.

NOTHER ،las of animated beings now comes bofore us, which, muder the general term of A tachnifla, (comprises the spiders, Scompons, and Mites.

These beings breathe atmospheric air, they have no antemae, and they have fome pains of legs attarbed to the fore parts of the body.

In some of the higher drachnida. there is a bold division into thorax and abdomen, and the former portion of the hody is clearly divided into sequate segments. By the earlier matmalists, the Arachnida were planed among the insects, hut may readily be distinguished by several peculiarities. In the first place, they have more than the nomal momber of six legs, which alone womlat be sufficient to separate them from inserts. They have no separate heal ; the head and thoma heing fused, as it were, into one mass, called the cophalo-thorax. In many of the lower species there is not eben a division betwern the thorax and ablomen : and the borly, thorax, and abdomen are merged into one miform mass, without eren a mank to show their seremal bombaries. They undergo no metamorphosis, like that of the insects, for, although the yonng spiders , hange their skin several times. there is no change oll loms.

Begiming with the the spiders, we find that their palpi (i.e. the jointed antemar-like organs that project from the rephalo-thorax) are more or less thread-like, and in the males are swollen at the extremity into a momatable strmetmre, as indioative of the sex as is the bean of man, the curled tail-feathers of the drake, and the gorgeons train of the peacork. In the different genera. these palpi are differently formed, and afford valuable indications for systematic zoologists.

Several examples of these spiders will be doseribed in the course of the following pages. They are remarkable throngh thois exceeding diversity of form, and they can be readily distingished from each other. They are rery small, and the largest sperimen is hardly equal to the head of a minikin pin. Still, their struetmre is not rery difent to be comprehended, and a moderately goor magnifying-glass will mostly he sufficiently powerful to answer the purpose. The spiders all breathe by means of retain lumg-like organs, called the pulmonary sacs, though some species are also fumbed with air-tnbes. These sacs commonicate with the extermal air by means of small apertures called "stigmata," which are amalogons to the spiacles of imserts. There are seldom more than two of these stigmata, and never more than four.

In these strange creatures, the mandibles are furnished with a curvel claw, perforated at the extremits, something like the poison-fang of a remomons snake, and used for a similar purpose. A gland furtishes a serretion which is forced throngh these organs, and is injected into ans object that may be wommed by the sharp claw. The flnid whirl is secreted for the sprvice of the fangs is neary rolorless, and is lonnd to possess most of the properties that exist in the renom of the battlesmake or tipar. The rery rxistence of this flnid is demied by some writers, and its poisonons mature by others. I ean, however, state from personal experi-
ence, that the bite of an angry Spider intlicts a really painful injury, not rery dissimilar to the sting of a wasp. I have seen a lady's hand and am swollen so as to be hardly rerognizable as belonging to the human figure, in consequence of at bite inflicter ley a large Spider on the back of hee hamd.

They all spin those remarkable nets which we popnlarly call "webs," and which differ wonderfully in the varions mecies. These webs are, in very many instances, employed as traps, wherein may be canght the prey on which the Spider feeds, hut in other cases are only used as honses wherein the creature can reside. Some of the nses to which these womderful productions are put, as well assme details of their structure, will presently be mentioned.

We now pass to the typical species of these curious ammals.
The spiders belonging to the family Mygalide may at once he known by the shape of their mandibles and the terrible claws which poceed from them. In the greater number of Spiders, the claws are set horizontally, hat in the Mygatida they are bent downares, and strike the pres murlas a liom chutches at his victim with his curved talons. Soveral sperjes of these Spiders ane known, most of which attain to considerable dimensions, and some are so enormonsly large as to lerome really formidalle creatmes, which man himself does not like to attack except with a wealum of some kind, or, at all erents, with a shod foot.

The Cheat Crap-ripidele, which is represented in the fine colored ithstation, helongs to the trpical gems of this family, and is one of the formidable Amelmidat that are said to prey unon yomg hids and other small vertehates, instead of limiting themsetres to the inseets. aud similar beings, which constitnte the food of the generality of the Spider mace. All spiders are carnivorons. the dimensions of their prey varying with thow of the destroyer, and it is by no means an illogical smposition that a sider whose spreal of limb equals that of a hmman hamd, might snck the juices of somue of the smaller amb more heppless rertebtates.

In Mandame Merian's well-known work on the insects of surinam, there is a carefal and forembe sketch of one of these great sipiders (Mygute ariontrotio) engaged in preving npon a hamming-lird, which it seems to have taken ont of its nest. She gives abso a destription of this spider, mentioning that it chiflly feeds upon ants, but that when they fail, it climbs the trees and catches the homming-liods. For a time this accomt was believed, and the Spider received the specific name of aciontario in "onsequence of its bird-catehing propensities. Alter at while, howerer, several peroms rentured to discredit the story, and at last both the acoount and the illustration were set down as simple fahrications of the imagination. Experiments were also tried, dead hmming-hirds leing put into the iens of these spiders, withont any result, and the whole of Madame Merian's acront was boldy demounced as fabmbus.

Yet there were many observers of mature who contimed to think that so painstaking. a matmatist as Malame Morian, who had spent many years of her life in constant investigations, was not likely to have given so ciremstantial an accome withont some gromets for it. That she was quite correct in saying that the spider fed gemerally on ants, was conceded eren fre her opments, and it was just pessible that she might not be wholly incorrect in the latter part of her statement.

Noreover, they thonght that the pxperiments were by no means "ondusive, and that the matmal conditions were mot fulfillert. It was true enough that when a dead humming-third was poshed into the nest of a Mygale, the ereature did mot attempt to eat it, but retreated to the back of its dell, or trima to gret away. They thought that the Mrgale coubld mot be expercter to act otherwise, and that there was a wast difference hetween al dead homming-bird
 hind, asleep at might in its nest mon a tree. An amimal of :my kine must lee left modisturbed, if the olserep wishes to gain an insight into its habits: and if he deliberately violates all the mondions, he can hamber expect favomble results. If a practieal matmatist wishes to leam whether the Mrgate a noetnmal leing. is in the halit of cisiting the trees at night and robling the nests of the humming-hirds whem it could not ohtain its proper supply of ants, he would harelly sot to work in so chmey a mamer as to poke a dead bumming-lird into the creatums burwe ly day.

Surely, the only methorl wond be to ascertain, in the first place, that the spiders could
not obtain the ants on which they usually fed, and then to wateln the nests of the hommingbirds at night. to see if the Myale patid them a visit. The experiments were simply futile. Humming-bids nerel think of getting into smbtemanean hurrows, and if a Mygate saw such a bird making its way into his donicile, he would be justified in moming away as fast as he could fiom so strange a phenomenon. Lately, howerel, the Mygabe has been seen repeatedy to kill the young, not only of the bmming-hird, hit of other vertebrates, and thms Dadame Merians leputation for remeity remains intact. It is ture that, in one or two paces. she mamates ciremstances which ate not true; but then she always takes care to mention that such events were related to hor by a third person: and whenever she speaks of any circomstance as having been witnessed hy herself. her statements may be implicitly relied ujon.

As a proof of her perfect verarity on this hathit of thas Mygale. I will quote a passage from M. Morean de Jonnes, who spent many years in Martinique, and watehed carefnlly the habits of these enommons Spiders:-
" It spins no web to serve it as a lwelling. It burrows amb lies in ambmsh in the clefts of hollow ravines, in volcamic tulas, or in decomposed lava. It often travels to a considerable distance, and concrals itself under leaves to smprise its prey, or it chimbs on the bramehes of trees to surprise the colibris (i. c. homming-birds) and the certhice flotorole (abirl athed to onr common tree-creeper). It msmally takes advantage of the might to attack enemies, and it is commonly on jts retum towards jts burrow that one may meat it in the morning and cateh it, when the dew. with which the plants are charged, slarkens its walk.
"The muscular force of the Mygale is bery great, and it is particularly diflicult to make it let go the objects which it has seized, even when their smrfare affords no purchase, either to the hooks with which its tari are ammed, or to the claws which it employs to kill the birds and the anolis (a kind of tree-lizard). 'The obstinacy and bittemess which it exhibits in combat ceases only with its life. I have seen some which, thongh pisped twenty times throngh and through the corslet, still contimed to assail their adversaritw without showng the least desire of escaping them by thight.
" In the moment of danger, this spigler usmally seeks a support against which it can maise itself and mak its opportumity of casting itself mon its enemies. lts four posterior feet are then fixed upon the gromm; bont the others, half extented, are rady to seize the amimal which it is about to attark. When it darts moon it, it fastens itself mpon the body with all the double looks that teminate its feet, and stretches to attain the superior base of the head, that it mar sink its talons between the cranjum and the first vertebra. In some of the American insects 1 have jecognized the same instinct of destruction.
". The Myght caries its egrs inclosed in a cocoon of white sitk of a very close tissue, forming two romber pipers, united at their body. It smports this cocoon under its corslet by means of its antemmate, and transports it along with irself. When very much pressed by its enemies, it abandons it for an instant but retums to take it up as soon as the combat is conchuded.
"The little ones are disclosed in rapid succession. 'lhey are entirely white; the first change which they undergn is the appearance of a triangular and hairy spot which forms on the centre of the mpper part of the abolomen.

- I had preserved from 1,800 to 2.000 of these, all of which proceeded from the same cocoon. They were all devoured in the same night by some red ants, which, gnided by an instinct that set at defiance all my rares, discovered the box in which I had inclosed the Spiders, and insinnated themselves into it by means of an almost imperceptible aperture, through which myriads of them passed, one hy one, in the space of a few hours. It is owing, in all probabilits, to the deatrnctive war waged upon the avirularia by these insects that the number of these Arachnida is contined within such narrow limits, which by no means correspond with their prodigions "apability of reproduction."

The talons of the spiders are scientifically called by the appropriate name of "falces," the word being Latin, and sjgnifying a reaping-hook. By this name they will be called in the course of the following pages. The falces of the great Crab-spiders are of enormous size, and

When iemoved from the ereatme and set in gold, they are used as tooth-picks, being thought to possess some occult virtue. which drimes away the tooth-arlie.

A much smaller example of this family is Sulzefes Atyprs (At!ppus subzeri). This creature is of a peruliar structure. The eyes are mounted on a kind of jeedestal or watch-tower, so as to allow the creature to ser objects in its front, which wond otherwise be hidden by the enomons and elevater mandibles.

This Spider is lare, but has beren fomm in several places. It frequents damp sitnations, amb makes a mather curionsly shaped hurow, nearly horizontal at its commencement, but alterwards slojing downwark. The tumel is lined with a kind of web of white silk, very strmgly compacted, which serves to prevent the earth from falling into the bmrow. Part of the tube projects ontside the entrance, and acts as a protection. The female phaces here egres in a little cocoon atso composed of white silk, and keejs them at the bottom of the burrow until the young are hatched.

The length of this creature is nealy half an inch, am its color is reddish-hrown, beroming paler and more raddy on the limbs. The male is smaller and darker than his mate.

A cithots spiner is the Trap-boore Spider of Tamaifa, proneonsly called the Tarantula.
Like the preworg species, this Spider digs a burow in the earth, ant lines it with a silken web; hut, insteal of merely proterting the ratrance by a portion of the silken tube, it proves itself a more complete arohitect hy making a trap-door with a hinge that permits it to he opened and crosed with mbmiable arouracy. The dow is hemutifully circular, and is made of alternate layers of earth and web, and is hinged to the lining of the thbe ber a band of the fame silken serretion. It patatly fits the entrance of the lurmow, and, when closed, so precisely corresponds with the smmounding earth, that it can hardly he distinguished, even whem its prosition is prointed out. It is a strange sight to see the earth ojen, a little lid raised, some hairy legs protrute, and gradmally the whole form of the spiter show itself.

The strength of the membrane is rery considerable. One of the nests in my own rollection has endnred a large amonnt of rongh handlins, and has yet snffered but little damage. It will permit a mon's finger to be sliphed into its interior, and has a very soft and silken feel to the tonch. The trap-door has, however, been somewhat injured, as most of the dry earth has been shaken off, and only the layers of web left in their jlaces. I hare also several of the spiders themselves preserved in suints, and though they have lust their colors, as is the wont of most preserved Ammbida, their falces are very perfect, and the permiar barbed mandibles are charly perejptible.

The morle in which theso Spiders procure fook seems to be bry hunting at night, amd, in some cases, Jy mothing the insects that are entangled in the threads that the creature spins by the side of its homse. There are sererat species of Traphoor spiders, amt all seem to possess similar halnits. In the daytime they are very chary of opening the doon of their domicile. amd if the trap he raised from the ontside, ther mon to the spot, hitch the claws of their fore feet in the silken webbing of the door. and those of the hind feet in the lining of the burmow, and so resist with all theil might. The strength of the Spider is wonderfully great, in proportion to its size, and few persons woukd anticipate the force of its resistance.
small Spiders which construct trap-door domiciles are not uncommon in North America. but the discovery of hr. Tolmes, of Chameston, S. C., of a gigantic speriss on his plantation ramserl some smoprise.

This sperimen, with the yomeg just hathed, is in the Ameriom Musenm. Central Park. The lomy of the Spifler is larger than an ondinary monse. 'The legs are short and stont, and, with the hodr, are covered with conse halis. 'The nest, as it is now seen, is a cylinder of about one ame three-quarters of an inch in diameter, and seren inches long. It is like an arlobe tube hnilt in the earth. Thlike other Spiders, this does not weave a web, but depends upon his subterranean castle, which it delemds with astonishing power. The ground is not only expavated for his purpose, hut it is opened as a stone-mason works. Thstead of plasters on the sithes of the axeavation, he digs a large hole, and then commences at the bottom ta build a wall of mm, which, on completion, forms a thloe. This is closely woven with delicate
silvery silk, satim-like in appeamuce. It the lower end is a small loble left to let out the water or any moistme that may arommate. In the West lndian sjucies the door is constructed entirely of silken threads. In the present speries the door is a flat dise fitting as tightly within the tuhe at its entraner, as a stopper to a bottle. 'This is made of mad, anul lined compartly with the silken satin threads. It one point it is hinged and so hang, that, while the creature may pass ont hy presiug against it, it closes of its own weight when left. Nests are observed to be placed on sloping grommd, thus remdering it natural for the doors to close readily.

Of all the many smprising natmal ubjects, of all instames of marvellons beanty of adalp. tation exercised by the lower forms, this seems especially notable.

Some specimens of Trab-cloor 'piders and their nests are in the Mnsemm. sent from Mentone. Flamere. 'They are in blocks of earth removed for the purpose. When these little blocks of earth teemed with the granses that ome grew upon them, the spiders were pretty sale from intrusion, so far as sewing their nests wonld lead to it. Now, when nearly all trace of green is vanished, the nests are nearly invisible. There are circular lines, each indicating the periphery
 in the earth. This ontline is secmingly perfectly cimolar. Some nests are smblied with a second, or an offisoot, which is malerground. It tightly fitting valve is introcluced at the entrance of this. The extemal hinged coor is precisely like a valve. It is fitted exactly to a depressed shoulder. and, in this respert, is like a wide-monthed glass far used by druggists.

Tue Lacosidie. or Wolf-uphers, are all gronnd-livers, and take their prey in fair chase instead of catching it in nets. They are mostly found among herbage, how bushes, fallen leaves, and similar localities : and if they should happen to feel alamed, they mon for salety boder stones, mosses, rooks, and into any areidental crevice in the earth. The family indudes an immense number of species, which are found in ahost every part of the world. They ant fierce and determined hmuters, chasing their prey wherever it may seek shelter. Some of them are semi-aquatic in their habits, amb are not only able to bun learlessly mon the surface of water, but can descend along the aquatic plants motil they are deeply immersed, breathing by means of the air which is entangled among the hairy clothing of their bodies.

The aroompanying engraving represents the celebrated 'Thantula-spider, so called from the town of Tarentum, in lal?, where this Arambind is very plentiful.

There was a derm y-rooted belief among the inhabitants of that town and its neighborlood, that if any one were bitten by the Tarantula lee wonld be instantly attlicted with a singular disease called tarantismms, which exhibiterd itself in one of two extremes, the one being a profound and silent

TARANTULA SPIDER - Terventule apulice. (Natural size.) melaucholy, and the other a contimal conmulsive movement of the whole hody. It was also thonght that this disease could only be cured by music, and that a certain tune was needful in each particnlar case.

The disease undoubtedly existed. and might, not improbably, be cured by music ; but its source was entirely unconnerted with the Tarantula. It ran throngh towns and villages like wildfire, drawing into its vortex hundreds of persons of both sexes who eame within the spluere of its influence. The patients wond leap, and dance, and wave their arms, and sloriek, and sing, as if the ancient Dionysia were being re-enacted in Christian times; and, indeed, it is by no means unlikely, that the frenzied gesticulations of the ancient bacchanals were VoL. III.-63.
attributable to a smilar canse. As soon as the music ceased to play, the patients ceased to dance, and fell back into the mofoum stupor from which the brisk sounds had aroused them. The disease was evidently a nowoms affection, temding to propasate itself, like chorea and hysteria at the present day, amd, in fact, seems to be little more or less than a rather aggravated form of the former of these maladies-if, indeed, they are not different developments of the same ailments.

That the tarantismms should be cured hy mosir and consequent dancing, is a natural resnlt. The patient indulged in long and rontinnons exercise, fell into a violent perspiration, fell exhansted, slept camly, and awoke cured. The spiler, upon whom the odimm of this strange disease rested, is perfectly imocent, heing as hambess to man as any other Spider, and only formidable to the insects on which it preys.

Another speries of Lyensa, inhabiting the south of France, has sometimes been ronfounded with the thme Tammolala of Italy. The habits of this species have been carefully studied by M. Olivier, and have afforded some interesting details respecting the economy of the creature. It firequents dry and meultivated soils, and sinks therein a little pit, of a drpth varying with its size and the length of its residence. 'The intrrior of this cell is strengthened with a web. At the entrance of this bmrow it sits watehing for its prey and as soon as an unfortmate insect passes within range, it dats formand, seizes it in its talons, and bears the victim away to its len, where it feasts in peace and solitude.

The female is a kimp parent, and extremely fond of her eggs and young. She envelopes the eggs in silk, and forms them into a globular ball, which she always carries about with her mutil the foung are hatched. When the time comes for the little spiders to make their appearame in the worlk, the mother tears open the envelope, and so aids her young to escape. As som as they are fanly ont of the egg, they transfer themselves to the hody of their parent, where they cling in such numbers, that she is harlly visilde mader her swarming brood. They remain with their mother throngl the winter, and in the following spring the bonds of matnal affection are loosened, and the yonng disperse to setk their own living.

A Wolf-spider, termed Lycose antrenicorn, derives its name from its habit of killing the smaller bees, such is the andrema and its kin. It is mostly fomd in oid pastures and commons, and its color is wxtremely variable, thongh brown and yellow are the prevailing tints. A very common species (Lycosu cotmpestris) may be seen plentifully in all meadows and pastnredands, of eren on the lawn in onr gadens. It is a brisk and nimble creature, roming quickly along, as, imkeed, is needful for a being that depends on its agility for its living.

Abont June, the female las made up hes little packet of eggs, inclosed in a snowy-white silken envelope, and carmes this bmelen abont wherever she goes. Nothing will separate her from her egros. If the packet is forcibly removed,

 nifled representution of the eyes as seen from behind, beneath. she remains on the spot, hunting in every direction, and evidently suffering great distress; and if the white ball be laid near her, she soon spies it, darts at it almost fiercely, and cames it off. Her affection for heregg-lall is, howerer, quite instinctive; like the feeling which indmees a hen to sit upon a piece of white chalk, which the takes for an egg. If a little bit of white cotton-wool be rolled np so as to resemble the lost egrepacket, the spider will seize it and make off with it, not at all suspecting the imposition.

There are, on an arerage, abont one hmadred egos in each packet. They are quite romd, and very tiny, like the paltsit yellow thanslurent dust shot; and their silkth covering is drawn so tight, that their globnlar forms give it an appearance of being embossed. The color of this sperifes is greemish-hrown, with a few little dark spots, and the body is also banded and spotted with yellowish-brown of rarions shades.

Another species of Wolf-spider is shown in our illustration. This is rather a prettier species than that which has just bem moutionme being of a rich chestmut-brown, with a longitudinal bar of yellow along the body, and a momber of yellow spots on each side of the lat, where it runs over the abdomen. The colors of the male are rather duller than in the female. The cocoon of this speries is yellowish-hrown in color, and contains about fifty egrg. A band of slighter texture and lighter hate sumounds the coconn.

One species of this gemis, tha Pirnte-spider (Lycósa piríticu), deserves also a brief notice. This creatmre is mostly fomd mear water, or on marsh land. It is rery quick and artive, and can run on the smrface of the water without sinking. If alamed, it immediately takes refuge below the surface, crawling down the stems of aquatie plants, and can remain in that position for a long time. The rog'parket contains abont one hundred rages generally rather less, and seems to be no imperliment to the activity of the mother, who can mom over the water even when thas enembered.

The color of the lizate-spider is rather complicated. The cephato-thome is brownishblack, edged on either side by a white band, and haring a doll yellow streak along its centar. Along the upper part of the abdomen runs a chestuat patch, edged with white spots, ant having an arch-like mak of pure white, the point of the arch being directed towards the tail of the spider. The lest of the abdomen is simple gray-brown. The male is smaller and duller colored than his mate.

I may here remark, that a full acconnt of these. and many other Emropean Arachmida, may be fonnd in Mr. Blackwall's splendid work on this subjort.

A handsome spider, termed Dolomedes mirntilis, is found in well-wooded districts. We learn from Mr. Blackwall's researches, that the coroon of this species is of a dull yellow color, smooth within and rough without, and contaning more than two hundred yellow egrgs, loosely tied up in the cocoon. She carres her yellow burlen under the thorax, and smports it, not only by her limbs, but by some silken threads which serve to bind it to the borly. When the young are about to leave the coroon, the mother spins a rather large silken nest among grass or low bushes. This nest is of a dome-like shape, and under its shelter the young spiders are first int free. They immediately cluster upon the silken lines spun by themselves, and remain moter the dome until they are strong enongl to go out into the world on their own account.

The color of this fine spider is yellowish-brown, and at each side of the body runs a deep black band, having a marow white line along its centre. When the female has laid her eggs, she loses these fine tints, and resumes a sober gray color.

Another pretty species belonging to the same gemns is temen Dotomectes fimbriatus. Its body is nearly an inch in length. Like the Pirate-spider, it is found in the vicinity of water. It will often descend voluntarily below the surtace of the water, its respiration heing conducted by means of the air-globules which cling to the mass of hairs with which its bodyis corered.

The cocoon of the female is hrown in color, and of considerable size, containing more than two hondred eggs. It is carried, like that of the preceding species, under the thorax. The color of this spider is rich dark brown, with a broad band of yellowish-buff down each side, and a donble row of little white spots on the abdomen. The leg's are paler, and of a more mady hue.

We now come to the beantiful Hunting Spiders, a family which is spread over the wordd. They are the rery chetahs, or honting leopards, of the spider race, and have the mottled beanty as well as the active limbs of the mammalian leoparts. Ther can all run fast, and have also the power of leaping upon their prey to a considarable distance. They are mostly found upon walls, among stones, or upon leaves.

The handsome little spider that is called by the name of Eresus cinnabarinus is by no means common, and may indeed be considered as one of the rarest species. It is not very large, being only one-third of an inch in length, but its color is extremely beantifnl, the cephalo-thorax being deep velvety-black, edged towards its hinder margin with vermilion, and
the whole upper part of the abdomen being colored with the same brilliant he. On the upper part of the ablomen are six sonare blark spots, the first lour being lange and the last fwo small. Each of these spots is edget with pure white, and their eflect against the rich searlet of the aldomen is rery fine.

The common Iluxtivit Aplober, sometimes known by the mame of Leblat-spider, from its boddly-striped markings, is very frequently fomd, and in the smmmer time may be seen on almost every watl and tree-tromk, bonsily lmating for prey. Eren mpon the window-sills the llunting Spider pursues its chase : and as it is very bok and allows itself to be approached quite closely, its proceedings are pasily watelred. When it spes a fly or other insect which it thinks suitable for food, it sidles quietly in the direction of its intended vietim, keeping a most carefnl watch, and ever drawing nearer to its prey. As the tly mores, so mores the Spider, until the two beings ahmost seem to be urged hy a common instinet. Smely and gradnally it makes its way towarls the mosusperting fly, amt then, with a lealp so quirk that the eye can scarcely follow its morements, it spings mon its prey, rolls perhaps oreatat orer in a short stroggle, and in a few moments emerges victorions from the contest, its former antagonist dead on dying in its grasp). I have witnessed such a seeme hondreds of times, as the gatran in which I passed many years was fumished with long ranges of old walls finll of crevices that were exactly suited to the purposes of the ITmoting Spider.

Even on a perpemticular wall the Spider will make these leaps. It is sure not to fall to the gromod, because it ahays draws a silken cord behind as it moves, and so, whenerer it leaps upon its pres, it is sared by its self-woren ladder, and reascends, bearing its dead virtim in its grasp.

While engaged in its search, the Hunting Spider is all full of animation. It traverses the wall with great speed and in a very jerky manner, dirst darting this way, then ruming that way, then diving into a crevice, them running out and looking aromd. Sometimes, when it wishes to extend its shbere of rision, it raises the whole front pant of the body by simply straightming the fore-legs, and it is smprising what a knowing look it assumes when in that position.

This is a hamdsome species to examine when under a low power of the microscope, say about twenty-five diameters. lts color is hown, banded obliquely with white. The female does not carry her eggs with her, but wrape them in either one or two coroons, and hides them in some secmre spot, such as the crevices in rocks, and moder the bark of trees. Only fifteen or sixteen egres are plared in earlo cocoon.
 cutius. The former is a reatly large species, measnring one-third of an inch in length. Its folor is eratyish-black, wotted with a darker lone, and sundry short hands of the same color are drawn diasonally over the cephalo-thorax and the elges of the abdomen. A band of dull rellow is down along either side of the abdomen. The latter speries is extremely rare, and is remarkalme for its ant-like shape. The great mandibles are lather dark brow, ant the front lalf of the cephato-thoms is noarly of the same hue, but with more black. The entire centre of the body is buft, and the latter half of the abdomen is bark-brown, diviled from the butl by a white land.

The last species we will mention is the very rematkable Myrmaracheme melomocepheta. It is wrom more ant-like than the pereding species. Its mandihes are of rery great size, and its attennated alrfomen is arorn-like in fomm. It is a native of Bengal, and is wonderfully like the mutilla, that terrible ant which has already been deseribed on page 401 . It is notable for swereal reasons, $\begin{gathered}\text { anomg which may be the fact that its lead seems to be nearly distinet }\end{gathered}$ firom the thonax, a strocture quite mblike that of the arachnida, from the myerale to the choespmite. It is thought to mat ants as wroll as to resemble them. The head, if it may he so called, of this cmrions spider is hatek, and the remainder is red. It is about half an inch in leogith.

I may mention here, that Spiders, like the custacea, are apt to be termbly quarelsome; and the strangest]art of their natme is, that they are most combative dming the season of love. In many species, especially those where the male is of insignificant dimensions
compared with those of the female, all comtslify is conducted under the most mexpected difficulties. A male in love is equally a male in a fright, for if his adelresses are not receiverl farombly: he rmas a great chance of being eaten on the sjot. Am eren when he hats not been repulsed, he still stands in great damger; for mamy of the Amohmitan beanties are as cmelly deceifful as the enchantress of the "Ambian Nights," and kill their lovers ruthlessly as soom ar they have granted theil payers. So, as Alphonse Farr well remarks, the stereotyped exclamation of "Love me, or I die!" is by no means a metaphor, but a simple enmetation of a fact.

When Spinters of nealy equal powers fight with each other, the battle rages rehemently. and if the weaker can escape with life, it is sure to have lost several of its limbs. As with the crustacems, howera, the deproman is only temporary, for the serered members are reproduced ; and thongh they hardly seem to attain the same dimensions as the original limbs, are yet to a degree serviceable.

The spiders belonging to the gems Thomisus are, like the hunting-spiders, dependent for their subsistencer on their hodily powers and atctivity. some, which are rather slow of limb, are in the halbit of concealing themselves mder leares or in crevices, and thence pouncing suddenly om the inserdis that renture too near the treacheroms jurecinte, but the generality are active creatures. rumning about swiftly, and much resembling the saltici in their morements. Some-
 times these ereatures are ponnlanly called Comb-spiders, heranse they can move in any direction withont needing to turn their hodies.

Fig. I of the accombanying illnstration shows one of the common species of Thomisus. It is mostly fonm on the gromnd, or lumking among the foliage of old pasture-land. In its color, and indeed in its whole appenance, it is singularly raliable, and exhibits so mamy differences that the simple varieries have been treated by serema zoolugists as distinet species.

This is one of the mamy sperjes which, when yomg, is accnstomed to take aërial excursions, and to form that delicate substance popularly known as "gossamer." There is no gossamer spider, as is generally supposed, but many speries are in the labist of spining long loose threarls and allowing themselves to be wafted into the air. Lycosse are rery fond of the some curions labit. Sometimes these gossamer webs, each with its minute aëronaut, may but seen floating by thousands in the air, glittering with iridescent light as the morning sme beams fall on them, and covering the fields with their pran-stmong threads as far as the eye can reach.

The whole question of the spinler's web is wery curions and interesting" , and although oun fast wang space will not permit of a full deseription, a few lines must still be granted to these beantiful structures.

The web is produced primarily from a thind contained within the body of the spider, and secreted within curtain glands, varying in number and dimensions acrorling to the speries. Like the thread of the silkworm, this substance beromes hard on exposure to the atmosphere, and is dawn ont throngh tubes of exceding minuteness. In the silkworm, these
spinnerets, as they are called, are two in momber, but in the spider they are almost innmerable, so that the apprently single thread of the tiniest spider, minnte as it may seem, and really is in fact, is composed of many humdred finer threads all collected into one strand, like the tibres of hemp in a rope. The strength obtaines by this form of structure is rery grat, and the line is not only strong, but elastic, capable of being drawn out like an Ludia-rubber thread and resuming its original length whem the extemding force is removed.

As reguding the gossamer web, Mr. Blackwall makes the following observations:" Ahthongh spiders are not provided with wings, and consequently are incapable of firing. in the strint sense of the word, yet, by the ail of their silken tilaments, numernms speries, belong. ing to rarions gemera, are enablert to acomplish distant journeys through the atmosphere. These aerrial excmsions, which appear to result from an instinctive lesire to migrate, are undertaken when the weather is hright and serene, particularly in antumm, both by adult and immature individuals, and are eflected in the Rollowing manner.
"After climbing to the summits of dilferent olijects, they raise themselves still higher by straightening the limbs; then, elevating the abdomen, by bringing it from the usual horizontal bosition into one almost perpendioular, they enit from their spimers a small quantity of visodd Hnid, which is drawn ont into fine lines by the assending current occasioned by the rarefaction of the air contiguons to the heated gromm. Against these lines the current of raretim air impinges, till the animals, feeling themselves acted mpon with sutficient force, quit their hold of the objects on which they stamd, and mount aloft.
"The welus named gossamel are composed of lines spme by spiders, which, on being bronght into contact by the mechamical action of gentle airs, adhere together till, by eontinual additions, they are acemmulated into irregular white flakes and masses of ronsidemble magnitude. Occasionally, spiders may be fonnd on gossamer wels alter an ascending curpent of ratrefied air has separated them from the objects to which they were attached, and has raised them into the atmosphere; lat as they never make ust of them intentionally in the performance of their aemonantic expertitions, it mast always be regarded as a fortuitons circmmstance."

The same writer also remarles that the varions directions in which these gossamers are known to sail is in no way attributable to the will ol the spider, but merely to the currents of air through which the webs float. Lle also reviews the opposite opinions regarding the production of the first lines of the web. Some writers say that the spider has the power of projecting its threads in any dirertion which it may choose, while others assert that it has no such power, and that the creature is forced to wait for a coment of air which can bear the slemerer thread on its breath. After noticing the arguments ant experiments on hoth sides of the question, lee comes to the conclusion that the spidel is indelated to the air and not to its own projectile apabilities.

Strong ant elastic as these wehs may be, they have never yet bren put to any mseful purpose, save to check the hleeding of a cut finger, or to form the cross-wires of an astronomer's telegenpe. The threarl of many speries is suitable emongh for manufactme, but it camot be smpplier in sutlicient gnamtities. Spiders camoot he kept in any number, as they wond be always foghting and eating earh other ; and they are so voracions that they rond not he properly formished with forot, flies being dithentt to catch in many parts of the year, and in the cold montlis quite mattainable. As a prool that if the wel) rould only he obtaimed in sufticient quantity it might be woren into varions artirles of appare, there are now in existence spyeral pairs of sloves, storkings, an lother labries that have hern madr, thongh with remy great difliculty from this sulstanee.

The odr-looking spider raller Arkys 7 ancier is seen at Fig. E. Tt is a native of Brazil and the surmouding comntries. The rephato-thorax of the spidre is orange-yellow, with a line draw transwarsely orer it, and changing to a brilhiant red at the point on each side. The round sionts on the abomen are hright yellow ; the hinder feet are corerext only with short down. lont those in front are firmished with strong spines.

It Figs. B and D are puresented the two sexes of Thomisns citrens, for the pmope of - Luwing the great dillerence in their dimensions and gemeral shape, the female being twice as
long as the male, and, as a necessary consectuence, very much larger in cubic dimensions. This species is tolerably common, and is nsually found on Howers, whether growing in gardens or in the field.

The female is a light citron-yellow, with some dark streaks on the repplalo-thorax, and a slonble row of rombl dark spots on the wiper part of the abdomen. 'The yellow color extends orer all the limbs. The male, on the contrary, is light leafy-green, with two black bands rumning down the abdomen, and at daker streak on each side of the cephalo-thoma apprombing to brown. The first and second pairs of legs are dark chesmut-hown, while the others are green like the body, so that it is a very pretty-colored creature, and so mulike the lemalta that few persons would believe it to belong to the same species.

A very active spider is the Philohtromus dispar. It can rum swiftly even upon polished substances. It is found in well-wooled districts, and is remarkable for the speed with which it rums. The cocom mate by the female is mather large, being nearly a quarter of an incla in dianoter, and containing ahont seventy pale yellow eggs laid loosely in a white cell. 'this cocoon is not earied about by the female. lout is longed in a larger cell of dull white silk; and this rell is generally plated within a leaf, the edges of which are dawn together hy stont lines of the same silken fabric. A dead and aheady withered leaf is chosen for this purpose.

The color is quite different in the two sexes. The female is rather prettily manked with brownish-chocolate mon a ground color of reddish-yellow, while the male is deep black-brown, with a curions seribbled pattern of a paler hut along the back. The specific name of "dispar," or unlike, is given to the spider on acerount of this dissimilarity. It is worthy of notice, howerer, that in the immature state the colors are alike in both sexps. The reader will doubtlessly remember that this is the case with many hires, and that eren when the adnlt male glows with all the lates of the minhow and the alnt female wears a mere dress of sober brown, black, ant gray, the young hirts are so similar in their plumage that it is hardy possible to distinguish one sex from another.

In a species termed Phitortromms oblongus, the two sexes are colored in nearly the same manmer. and the male is chisfly to be distingnished from his mate by the smaller extremities of the palpi.

Onr last example of this genns is the Philoctromus pallidus. It is a small but rather pretty species, in which the male is mather smaller and slightly darker than the female. The cocoon of this species is slighty made, and white in color, ant contains a large mumber of little spherical eggs, not adhering to each other. The color is pale grayish-hown, prof asely speckled with timy black atots, and marked in a very peculiar manner with dark rhocolate-brown. On the mpper part of the cephalo-thomax there is a large and nearly triangular patch of this color, with a point directed towards the tail, and aromed it are amanged sereral short streaks all converging towards its point. It the end of the abdomen a nmmber of similar stripes are arawn, but withont the triangular pateh.

A certainly remarkable spider whicll belongs to mother gems is termed sparassus. smaragdutus. The sexes are wonderfully dissimilar, but instead of one sex being brilliantly colored, and the other only tinted with dull lines, as is mostly the case, botlisexes are equally beantifnl, thongh with boldly-contrasting colors. This difference of he is only in the adult spider, as, when immatme, the male and female are colored alike.

This spider is more than half an inch in length, and is fond in tolerable plenty in northern Europe, its beantiful colors rendering it very conspicnons. The adult female is pate green, with some darker stripes painted, as it were, upon the upper surface of the cephalothorax, and all drawn from the sides towards the centre; while along the middle of the abdomen rums a deep green streak, edged with greenish-white. The male, which is smaller than lis mate, has the whole front of the body colored like that of the female. But the abdomen is totally different. The ground color is pinky cream, speckled with brown, and three broad crimson hands are drawn longitudinally throughout its entire length, the central band having several protuberances at intervals.

The fanily of the Drasside is spread over the greater part of the world. They all have a rather remarkalde halit of concealing themselves, not in holes or crevices, but in silken cells, spun hy themselves among leaves, nuler stones, in chinks of walls, and, in fine, wherever their instinct leads them. They are active creatures, and math their prey ly fair chase, in one instance even musning the rictim beneath the surface of the water.

The species shown at Fig. B never attains to any great size, two-litths of an inch seeming to be the ordinary lengtlo of a female, the male, of comree, measming rather less. It generally resides muder stones, and but for that habit wond he seen oftener than is now the case. The eccom of the female is pure white, amd contains rather more than one houdred eggs of a very pale yellow color. The cocoon is then placed in a larger sace, also made of white silk, and placed in a hole in the ground. The mother spider generally includes herself in this second sate. The color is alike in both sexes, being of a pale reddish-hrown.

It Fig. l ', is shown another sjeries of the same gemns, and at Fig. E is drawn a portion of a twig. showing the manner in which the female deposits her "ggs. The reader will probably have seen these cmions little egg pramids on the branches of varions trees. This species is very suall, the male measming barely the eighth of an inch in length. It is rather prettily colored. The limbs are buff, with a large patch of chocolate-brown on the tirst two

pairs. The cephalo-thome is ruddy leaf-hrown, with six white streaks, their points converging to a spot in the central line. The abdomen is deep, black in the shade, but when the light shimes upon it, varions iridescent haps of purple, green, and copper are given out, rendering the creature a really brantiful meecies. The name of "micans." or glittering, is applied to the reatare on account of its changing colors.

At Fiyss. 1 and D are shown ine two sexes of a cminons and prettily marked spider of monderate dimensioms, the fomale measming nearly half an inclu in lengtlo.

This rumede is mostly form in well-woolen distriets, living in a prette white silken homse, which it wins under the shelter of rough bark or shaty leaves. The coroon containing the equgs is paren in this cell, and affertionately temen by the parent. The cocoon is also made of white silk, and gemeally contains rather mone than one hmorred spherical egors. These are very pale yellow in toler, ant laid loosely in the cocom. The rephalo-thome of this aferies is pald dull green, and the aldomen is soft silkengray, with a peculian relvety lustre. prewtucen hy the dense "lothing of hair with which it is cowerer. The sperifie mame "holosericea," signifies silken, and is therefore rery apmoprately given to the species.

Another speries of this genms is termed chubionn mutrix. It is ratleer larger tham the
 understand that the length is exelusive of the limbs. and is measured from the front of the cephalo-thorax to the end of the abdomen. This is a very rane creature.

The last example upon this illnstation (Fig. (iv) is a mally y malkable meature, whose habits have been studied hy M. Intomr. That carefol maturalist formol it in the leyrenpes, in Catalonia, and in the momatains of Narbome. It has also been discorered in Eyppt and Dalmatia.

Ut this Amalchidan, M. Thtome gives a most interesting laseription, from which the following lassage is extracted:-
"It makes at the inferior smeface of large stones, and in the clefts of rocks, a comon, in the form of a cap, or little dish, a gool inch in diameter. Its contom presents seven or eight emarginations, of which the angles alone are fixer mpon the stone, by means of bumbles of thead, while the edges are free. This singular tent is of an admirable texture; the exterior resembles the finest taffetas, composed, accorling to the age of the worker, of a greater or less number of donblings.
" Thus, when the Uroctea (another mame for the Clotho), as yet yomge, commences to establish its retreat, it only fabricates two weh, hetween which it remains in shelter. Subsequently, and, I believe, at each moulting, it alds a certain mumber of douldes. Finally, when the period marked for reproduction andes, it weases a cell for this rely phrpose, more downy and soft, where the sacs of egge, and the yomg ones newly disclosed, are to be shat mp. Althongh the external cap or pavilion is designedly, withont dombt, more or less soiled hy foreign bodies, which serve to conceal its presence, the apatments of the industrions fabrimtion are always scrupulously clean."

Tue curious and interesting Whters Splofer is now far hetter known than was formerly the case, as the aquaria that have bern established hase tended to familiarize many people with this as well as with many other inhahitants of the water.

This creatmre leads a strange life. Though a really terrestrial being, and nepding to respire atmospheric air, it passes mealy the whole of its life in the water, and, for the greater part of its time is submerged below the surlace. To a lesser degree, several other spiders lead a somewhat similar life, sustaning ゃxistenes by means of the air which is entangled in the hais which abothe the body. Their sulmerged existence is, however, only accidental, while in the Water spider it loms the constant hathit of its life.

Like the pirate-spitler, this creatmre is purposely covered with hatis, which serve to entangle a lase comparative amount of atmospheric air, lout it has other means which are not possessed hy the speries already dexcribme. It has the power of diving helow the surfare, and carrying with it a wery lare hobhle of air, that is held in its place loy the hind-legs; and in spite of this ohstacle to its progress. it can pass thomgh the water with tolerable speed.

The strangest part in the eromome of this creature is, that it is actually hatched moder water, and lies submerged for a considerable time hefore it ever sees the land. At some little depth the mother spider spins a kind of egeg or dome-shaped rell, with the opening downwards. Haring made this chamber, she ascends to the surface, and there charges her whole body with air, ambing her hind-logs in snch a mamer that the great bobble camot escape. She then dires into the water, proceeds to her nest. and discharges the bubble into it. A quantity of water is thas displacer, amd the mpper part of the coll is filled with air. She then retmens for a second supply, and so proceeds until the nest is full of air.

In this muions domicile the spider lives, and is thus able to deposit and to hatch her egegs under the water without eren wetting them. The reater will have noticed the exact analogy between this sub-aquatic residence and the diving-hell, now so generally employed. As to the spider itsell, it is never wet; and thongh it may be seen swimming rapidly abont in the water. yet the moment it emerges from the smrface, its hairy hody will he fond as dry as that of any land spider. The reason for this phenomenon is, that the minute hobles of air which always cling to the furred body repel the watrer and prevent it from moistening the skin.

The eggs of this spider are inclosed in a kind of cap-shaped coroon, not mulike the cover of a circular vegetable dish. This coroon usually contains about it hondred hittle spherical eggs, which are not glued together.

The Water Spider is a tmly active creature, and its rapid movements can be watched by means of plaring one of these Amphita in a ressel nemty filled with water. If possible, some water plant, such as the vallisnmia, or amathats, should be also placed in the vessel. Hore the spider will soon constroct its weh, amd exhihit its cmrions habits. It most be well supplied with flies and other insects thrown into the water. It will pounce on them, carry them to its honse, and there eat them.

It is a tolerally common suecies, heing especially foml of imhabiting quiet and rather deep ditehes, where it is well sheltered, and the stream is not miph rongh to endanger the security of its domicile. It is necessary that the water plants to whith the nest is fixeal shombl be sufliciently firm to prevent the nest from being swayed on one side, as, in that case, the air would essalpe, and the water make its entrance. I have often wathed its active movements throngh the water:. Whemerer it swims, it always kereps its head downwards, just as is the fase with a human diver, and it urges itself through the water with quick smant strides of its hairy legs.

The limbs and cephalo-thorax of this species are hown, with a slight tinge of red ; and the abdomen is brown, lat washed with green. It is densely covered with laiss. On the middle of the upper surface of the abdomen are fomm round spots armoged in a square. The male is father larger than the female, and his legs are larger in proportion. He may, however, be distingnisled by the large mandibles and longer palpi.

W'e now come to the family of the Ciniflonide.
All these spiders are font of resiming in crevices in rocks, walls, and stones, or monder leaves, or sheltered by old projecting bark; and near their hiding place they weare nets of a most elabounte structure, not flat, like those of the common garden-spider, but inclosing spaces of considerable size in comparison with the small dimensions of their arehitects. These webs are woven chiefly by means of a pecmine apparaths on the hinder legs, consisting of two rows of parallel and movahle spines. The weh is most intricate in its arrangements, and connected with the hiding-place of the spider hy means of a silken tomel of variable length, throngh which the creatur darts when it feels the vibration of an insect in its web, and to the bottom of which it retreats if it apprehembs danger. Sometimes the spicter makes more than ome of these tuhes.

Several species of Cinitlo are very plentifnl, and may he fonm hiddro in their dark silken raverus even in honses. Cellars often contain them, and they frequently swarm in the helfries of old churches. They are extremely ferocions, and mostly seem to be hongry, killing fly after fly with untiring assiduity.

The Ciniflo ferox is moderately plentifnl, and may be fomd in old buildings, especially in the dark arevices behind the windows, and moder stones. Its length is a little model half an inch. The cephalo-thorax is heart-shaped, of a pale yellowish-brown, and clothed thimy with long black hair. 'The abomen is dark brown, and is rariegated with buff markings.

A small, but intmesting spider, temed Eigutis benigne, is not unfrequent ipon heaths and commons, and makes an imesular web at the tips of the gorse and heather. This weh passes from one twig to sereral others, and is studded witl the hodies of the captured prey. Within the web the females spider pilaces her cocoons, which are two or three in momber, dishshaped, and are fastemed to the stems of the plants upon which the web is built. There are about thirty regs in eard coroon, and they may mostly be found abont June.

The color of the pemale is ver ${ }^{\text {ren }}$ lat brow, upon which is described a bold pattern of bull. The male is smaller, tarkm, and the markings on the body are of a duller bue. Fierce as is this little creature in its own was, it often falls a rictim to the voracious asilide, or honnet-thes, whirll completely reverse the nsmal order of things, and instead of being devoured by the spider, act the part of its destroyers. The soft skin of this spirler is easily piepeed by the jaw-lancets of the harest-fly, and, owing to this structure, the poor little spider learns practionlly the diseomfort of being eaten.

A meetty species of mother family is the Agelenu Zaborinthira. It is found plentifully on heaths and commons, and derives its sperific name from the complicated nature of its web. This is a very large stmolure when compared with the dimensions of its arehiteet, and is spread almost horizontally orer the tops of timze. heath, amd the other phants which are found on commons. It is a tolerahly massive weh, and well calonlated for catching prey. Culike the garden-spider, which boldly sits in the midale of the web, trosting to the delicate meshes escaping the eyes of flying insects, the Agelema does not trmst itrell in sight, but sits in its dark caren, which commmimates with the wel by means of a siken tumel.

The Tegenaria domestich. lelonging to another genus, is al fine spider which is mostly found in old honses, chiefly hamong the corners, ant spimning a thick, horizontal sheet of web, and forming a rather stoat, silken tube as a rommmication between the web and the den where the spider sits and watches for its prey. Both figures of our illustration are of natural size. The well-known Cadinal-spuler, which frightens ignorant prosons by its large size, is probably a variety of this species. The wel is always very completely supported by guy ropes, which are laid with the greatest care, and disposed as artistically as il amanged by a professional architect.

Like the preceding suecies, this spider makes sweral dish-shilped cocoons, surrounds them with a coarse envelope, and covers the white silken cases with bits of old mortar, fragments of wood, particles of whitewash, or any other substance that cim be casily obtained. These cocoons are to be seen in Jme amd July.

The color of this species is moldy hrown, dark brown, and huff, the first tint being drawn in a broad band along the whole body, the serond being the ground tint, and the third being formed with rows of spots on each side of the central line. The limbs are banded with reddish hrown and black. The male is smatler than the female, darker colored, and has his legs proportionately longer. The average length of the body is neally three-quanters of an inch, so that the spread of limbis, in a fine specimen, very consiflerable. This species oceasions dire tumults in the minds of honsemaids, who sweep away the webs with ruthless broom, and give the spider no hope of a peacefnl home.

There are several speries of Tegenaria, all having very similar habits. In one species, it has been found that the spider changes its skin, or monlts, nine times before they reach adnt age, the first monlt being achieved while in the cocoon, and the remaining eight after the

yonng have left their silken cradle. It has, moreorer, been proved hy artual experiment, that a limb may be remored at the joint and renewed many times in succession, the new limb appearing after the next monlt. The life of this species averages four years.

A Pretty spider, which is termed Copotes saratitis, is rather more than half an inch in length: but, owing to the shortness of the limbs, it does not present so formidable an aspect as many of less real dimensions. The female of this speries makes at curions and rather large
cocoon of a dish-like shape, mensuring nearly half an inch in diameter, and attaches it firmly to the under surfape of stomes, by means of a series of strong silken threads. The cocom is found about May and Jume. The nuter surface of the coroon is rathee profnsely studded with patches of mud, in all probalility to take off their tho great brilliancy.

The color of this species is simple, but pleasing. The ceplato-thorax and limbs are red-Aish-brown, and the ablomen is yellow, over which is drawn a brom back streak, narowing as it approarhes the extremity of the abdomen.

A very lage gems, Theridion, is spread over the girater part of the world. 'These spiders are mostly of small dimensions, some heing extremely minute. Sereral of the tiny spidips, boplanly called Moner-pimms, belong to this genns; and, fortmately for themselves, they are protected from destruction by the preating notion that it is muncy to kill a money-spinner.

A mother large species, inhabiting Corsica and known ly the name of Marmiavatto, or Marmanato (Theridion tretecim-guttutum), spems to be rather a formidable creature, its bite cansing much pain, even to man, and, according to Rossi, inducing most serions symptoms, which are only removable hy slarp treatment and copions perspiration. It lives in the openfieks, and preys mostly upon insects of the grasshopper kind, stretching long threads across the finrows, which serve to entangle the feat of the ative insect, and enable the slower Arachnida to make sure of its victims. When the spider fimis a loenst thus entangled. it further secures the struggling insect by fresh threads spun over its feet and legs; and when it has fainly bound all its lints, it momes upon its victim and intlicts a fatal wound at the jumetiom of the heald witli the nerk. Is soon as the lornst has received the lite, it is attarked with a violent conrolsion throngh its whole fame, and dies almost instantaneonsly.

This action seems to he universal throughout the Theridia, wherever as spider attacks a large and powerful insert. In Webler's "Song Birls of America," there is an ammaterl acrount of a battle letween a large rockroach and a spider, which seems to belong to this genns. In this case, the cockroach struggled furionsly, and was nearly escaping, had not the little spider bethonglit itself of a new manenve. "We had noticed him frequently attempting to hite throngh the sheath armor of the corkroach, lut he seemed to have failed in pierebug it. Lie now semed determined to "atch the two fore-legs that were free. After twenty trials at lenst, he noosed one of them, amb soon hat it muder his control. This pair of legs was much mome dedicote than the others; he instantly bit though the eapeturel one.
"The peisom was not suflicjent to affect the large mass of the chekroach a great deal, but the leg semed to give it much lain, and it bent its head forward to caress tho wond with its jaws: and now the ohject of the cmming spider was apparent. He ram instantly to the ofd position he had heen ronten from on the back of the meck, and, while the cockroach was emphoyed in soothing the smart of the hite, le snccead in enreloping the head from the back in stich a way an to prevent the corkroach from straghtening it out again, and, in a little while more, hatd him hound in that position, and entirely surrounded by the web. A few more last agonies, and the coekroach was dead, for the neck, lent forward in this way. exposed a vital burt bemeath the sheath: and we left the spider quietly luxurating upon the froit of his weary comtest. This batile between bonte force and subtle sagacity lasted one hour and a half."

The color of the Mfarmignatto is depp blark, with thirepen roma spots on the abdomen, one spot lowing meoni-red.

Another Therinim has heen seen to catch its prey in a somewhat similar mamer, netting the insect in its silken toils, spiming threan alfer thread. and binding it tighter and tighter to the spot, and at last killing it when fairly tied dorm, and then carrying it of to its domicile.

The genlus linyphia. As in the preedinge spmus, the generality of these spiders are of sery small dimmions. One speries (Limmblich trimugntaris) is rery plentiful, and towards the culd of summer or the begiming of antum, its webs may he seem stretching across the braches. Though buta rery little sidider, not so large as a grain of rice, it makes webs of wide somead, haid horizontallys and calrefully sustamed by ghy ropes attached to different
objects around. Fometimes the gity ropes are so strong, and their elasticity so great, that they actually draw the net mat of its that horizontal direction, and make it swell into a very shallow dome.

The structure of the wel, is rather loose, and the fibres are necessarily rery slender, but is yet strong enough to arrest and detain tolerath! large insects. The spider generally remains near the midale of and helow the wek, and, as soon as a passing insect becomes entangled in the trearherons meshes, the spider runs nimbly to the spot, wounds the insect through the weh, and sokills it. The next move is to hite a hole in the weh, pull the dearl insect through, and then to suck the juices from its looly.

The cmrions spider' seen in the illustration is called the Tetragnatha. In this spiden the jatws are very large, long, widened towards their tips, and direrging from each other. The eres are nearly of the same size, amb are arranged in two regnlar lines, nearly parallel to each other. The web which this creature spins is vertical, like that of the gardenspicler.

We now arrire at the Epeiridie, a fimily containing some of the strangest members of the spider race. The best known of this family is the common (iAmber-splofer, sometimes called the Cross-spmble, from the marks mpon its abdomen. It is illustrated in the acompanying illnstration. This is thonght to lee the best typical example of all the Arachnidie. It is fomed in great mombers in gardens. stretching its beantiful wels gerpendicularly from branch

MALE OF THE TETRAGNATHON.-Tetrug* nathon extensu. Above the position of the cyes are seen from behind. (Maguified.) to branch, and remaning in the center with its head downwards, wating for its prey. This attitude is tolerably mirersal among spintors ; and it is rather emrions that the Arachodse should reverse the nsnal order of things, and assmme an inverted position when they desire to repose.

The web of this spider is composed of two different kinds of threads, the radiating and supporting threads being strong and of simple texture. But the fine spinal thread which

$$
0000
$$

a. FEMALE OF THE CROSS-sPIDER.-Eptire diatema. b, The wew ax seen from the front. (Magnified.) divides the web into a series of steps, decreasing in breadth towards the rentre, is studded with a vast amoment of little globules, which give to the wel its peculiar adhesireness. These globules are too small to be praceptibie to the massisted eye, hot by the aid of a microscope they may he examined withomt difficulty. In an ordinary web, such as is navally seen in gardens, there will be abont eightyseven thonsand of these globnles, and yet the web ran be completed in less tham three-quarters of an hour. The globmes are loosely strmg npon the lines, and when they are mbled off, the thread is no bonger adlesive.

Many interesting cimmotances can be namated of this spider. but our space will not permit of more than a brief description. Several species of Epeira are inhalnitants of Encland, and have different habits. The following accomnt of an Epeina and its web is giveli 1ry the Rer. D. Lamtshorongh, in his "Exmmsions to Arran":-

- As he was rather a gigantio spider, his trat, instead of being on the ground. was elevated, like the honse of a giant of whom in early life we have all read. It was built on the tops of the common grass, Molmes lanatus, more than a foot above the gronnd. Had he built his honse on the top of one stallk of grass, the honse and its inhabitant might have home down a single slender stalk. But lie had con. trived to bring together several heads whose roots stoorl apart, and, with cordage which he
rould furmish at will, had hound them firmly together, so that his elevated habitation was anchored on all sides. From whatever airt the wind blew it had at once halser and stay. Not only did he hind the heads together, but he bent, donbled, and fastened them down as a thatch roof, under which his habitation was suspended.
"As he was a larger spider than usual, his house was large ; the more capacions apartment, which I believe was the mursery, being below; and the smaller one, which was his observatory or watcl-tower, heing above, from which he rould pounce upon his prey, or, in case of hostile attark, could make his escape by a postem gate, so as to conceal himself among the grass.
"During my visit in June last, I was anxious, as we returned from Whiting Bay, to ascertain whether this interesting colony of tent-makers was still in a thriving state, and not secing any at first, I began to fear that a Highland clearance had taken place. When I at last discorered a few of them, I saw that, as there are times of low trale among on industrions 1 wo-footed artisans in town, so are there occasionally hard times among our six-footed opreatives in the country. The field in which they encamped harl, 1 suppose, been overstocked. The stately Hotrus had heen eaten down ; but these shifty children of the mist had arailed themselves of the heather, doubling down the tops of some of the heath-sprigs, and under this thatched camopy forming their suspension-tabernarles. As yet, however, it was too early in the season. The honse had only one apartment; the web of which it was formed was as yet thin, so that through it I conld see the spider, which, being hat half-grown, had not yet got in perfection its fine tiger-like markings. 'Go to the ant, thou sluggard;' go also to the spider. He who tanght the one tanght the other ; and leaming hmility, let hoth teach thee."

Several stramge-looking creatures, having their hodies covered with points, knols, and sphes, in a most formidable array, belong to the families termed Acrosoma, Eripus, Garternctotho, and Henizn. These curions spiders inhabit several of the hot parts of the earth, and are remarkable for the extreme hardness of their skin amd the brilliancy of their coloring. The skin of these arachids is as hand and firm as the shelly amor of the crustaceans, and really startling to the tonch. There is, however. one spider, the sclearache, which even smpasses them in the hardess of its slim. This is a very small species, with six eyes, a native of Cuba, and exilently forms one of the links between the true spiders and the mites. The name scletarachne is of Cimek origin, and literally signifies "hard-spider."

During their life-time these spiders literally glitter with resplendent hnes, and gleam like living gems set in the deep verdure of the forests. Crimson. azure, emerald, and purple adorn these remarkable Arachida, and in sereral speries the skin looks exactly as if it were made of bomished gold and silvel. After death these glaring colors ranish and drange into dull browns and backs, but in many cases a few relics of the former heanty are atill discemille, uspecially in those sperimens where the surface once glittered wifh metallic radiance.

A collertion of spiders lelonging to the genera Arrosoma and Gastemeantha presents a most extrandinary aprearaner. There seems to be no bound to the variety of spines and spikes with which the bexies of these creatures are armod ; and han it not heen for the lack of sata, a few illustrations would have been wholly filled with their strange and weird-like forms. The ohject of these apmondages is guite monkow. Some witers have suggested that they maty be intembed as defensive armor, and given for the jurpose of detering birds from enting them. But this opinion is quite matemble, as there is no reason why they should be this guarded more than any other quilers. Indeent, this is amother of the many mysteries of zoology, which will mever be inveiled until we learn to look lemeath the surface and to inguire not only the olject of a color on fomation, but its meaning.

In the illustration of the (fatames-spmer, omly the fomale is given, which is one of the fieprest Amazans of the spider race : and in case she shombld objeet to the attentions of her intembed sponse, lue must needs fle for his life, a feat which he generally performs by dinging himself out of the web, and lowering himself quickly to earth with his silken ladder. This

2es Enimate Creation.

[^6]WE have concluded to submit for public patronage a work with the above title, being a serie. of exquisite Engravings representing the Animal World, executed with great scientific accuracy, and accompanied by full Descriptive Text, written in popular terms, so as to delight and instruct the people. Anyone who has considered the subject must be at a loss to understand why an Illustrated Natural History, comprehensive and at the same time popular, has not before this been published in this country. Indeed any lover of animals who has visited the great museums and zoological gardens and has lad access to books of engravings in the public libraries, could not fail to remark the weaith of material in existence devoted to this subject. Being confirmed in our conviction of the desirability of such a work, we laid under contribution the best existing authorities for the production of most perfect representations of all the more important living creatures, and among the artists whose delineations will delight the reader, we may mention Harrison Weir, Wolf, Coleman, Fr. Specht, and Mutzel. By far the majority of the engravings in these volumes are from drawings made from the living animals, many at the Zoological Society's Gardens in London, England.

We purpose that our patrons shall be aided and interested in their study by such an array of pictures as has never before embellished any Natural IJistory. In mumerous instances the engraving is printed in oil-colors, and this portion of the illustrations has been taken charge of by Messrs. L. Prang \& Co., of Boston, who we believe rank foremost for high artistic results in this department of printing. These Oleographs were copied under the superintendence of Mr. Prang from the renowned "Tafeln" of "Brehm's Thierleben," so that they may be declared perfectly reliable.

We sought competent advice from various sources as to the most suitable text that should accompany this panorama of handsome Engravings. It was found impossible to embody all the present ideas of naturalists in a single work like this on account of the rapid advances and constant changes in their knowledge of, and habits of thought respecting, the Animal World. And it seemed to us correct that the truc object of Zoology is not to arrange, to number, and to ticket animals in a formal inventory, but to inquire into their life-nature, and not simply to investigate the lifeless organism.

What do we know of "Man" from the dissecting-room?" Is it not Man, the warrior, the statesman, the poct, etc., that we are interested in? With all veneration which attaches itself to those who are the accredited possessors of abstruse learning, their inordinate use of phraseology detracts too much, we fear, from the fascination that the study of the Animal World would otherwise yield, and as we are not content to have our work restricted to a favored few, we thought the task placed in our hands to be to keep the work free from a repellant vocabulary of conventional technicalities. Our endeavor has been to find an author whose work would be noted for its fund of anecdote and vitality rather than for merely anatomical and scientific presentation, and we arrived at the conclusion that we could not do better than avail ourselves of the Rev. J. G. Wond's comprehensive work -a work most popularly approved by speakers of the English language. It would be superfluous to say one word concerning the standard character of his book, from the pages of which old and young at the other side of the Atlantic have obtained so much instruction and rational amusement. Avoiding the lengthened dissertations and minute classifications of specialists, he presents to his readers in popular terms a complete treatise on the Animal Kingdom of all climes and countries. The one objection that could be urged against it was, that animal life in America might be treated more fully and American forms given more consideration. In order to obviate this drawback and to do full justice to the creatures of our own country, we secured the aid of Dr. J. B. IIOLDER, of the American Museum of Natural History in New York, an undoubted American authority, who has adapted Wood's work to American wants and given prominence to American forms of Animal life.

The splendid work on Roclentia, by Allen, Coues, and others, will be fully consulted. The valuable work on North American Birds, by Baird, Brewer, and Ridgway, will be the guide in the treatment of birds. The late arrangement of the classification and nomenclature of North American Birds, by Mr. Ridgway, and the Committce on that subject of the Ornithologists' Union, will be utilized in full. The arrangement of Mammals will be after the latest classification by Professor Flower, of the Zoological Society of London.

Tcrms of publication.

The extent of the, work will be $\mathbf{6 8}$ parts of $\mathbf{2 8}$ pages, at the price of $\mathbf{2 5}$ cents each. The entire publication will contain 81 Oleographs and 68 Full Page Engravings on Wood, besides many hundreds of exquisite Illustrations inwerspersed through the text. No subscriber's name is received for less than the entire set, and no order can be cancelled after signature to it. The Publisher guarantees to complete the work in sixty-eight parts. The parts are payable only as delivered, the carrier not being permitted to receive money in advance, nor to leave parts on credit. Subscribers who remove, or who are not regularly supplied, will please address the Publisher by mail.

NO SUBSCRIPTION RECEIVED FOR LESS THAN THE COMPLETE WORK-68 PARTS.

creature derives its name from a triple yellow cross upon a dark brown band that runs along the central line of the back of its abtomen.

A spiner which presents a very strange appearance is called the Nops. It is an arachnid which has only two eyes instend of eight or six, but in which these organs are so enormonsly large that their dimensions compensate for their patuity of number. On the front portion of the cephalo-thorax there is a lhack spot, and on this spot are seated the two eyes, romid, globular, black, and brilliant. It is one of the hard-skinned species, and appears to be allied both to Fasteracantha and Epeira, in spite of its two eyes.

It is mostly found under stones in woots, and in such localities is tolerably plentifnl, but is very mre in honses, though it does sometimes make its appearance in the dwellings. The coloring of the Nops is very simple, the cephalo-thorax being ruddy brown and the abdomen dark brown. It is not a large species considering that it lives in a hot conntry, measuring rather less than half an inch in length. It is helieved to he the conly known spider that possesses only two eres. This species is an inhabitant of Cuba.

Another remarkable arachnid, termed Otiomnors, is especially notable from the fact that its two hinder eyes are united together. This spider is a native of Cuba, and is genemally fomd under stones in well-wooded places, and, like the last-mentioned species, has a hard and shelly skin. In length it is rather moder halt in inch.

SIX-EYED ARACHNIDA; SENOCULATA.

Wimit the exception of the curious spiders just mentionet, the species which have been deseribed bear eight eyes, or rather ocelli, very like the organs of the same mame in insects, and armaged non the ceplato-thorax in rarions patterns. One well-known witer on the Arachmida has based his system entirely mon the number and arrangement of these ocelli; but the zoologists of the pressat day seem to think that such a system is insufficient for such a purpose, though very useful-amb, inkeed, palpably so-as a subordinate means of arangement. The next gronp of spiders are in reality sepmated by the fact that they possess only six pyes, and are therefore called Senomata, or Nix-ryed Arachmida, the preceding belonging to the group of Octonoculina, or Eight-eyed Arachnida.

This sueries of Dysderal has lately attracted murh attention, for, atthough it is properly a native of sonthem Germany, it has lately been discovered in other Enropean combtries too.

It can eavily be ilentified ly its straight jaws, its powerful falces, and its six eyes armang in a form something like that of a horseshoe, two small oceli in front and four larger behime It has altogether a reddish cast ; and its length is more than half an inch.

A pretty spider, which is known under the name of Scrfodes, is found both in Enrope and Africa, but only in the hotter parts of the former continent. It may be identified by its six eyes aranged in pairs, and its elegant coloring, which is pinky-white, with two rows of black spots on the abdomen and black rings on the legs. Its eyes are brilliant yellow. The female always uses her jaws in carying the cocom, which is about the size of an ordinary pea.

In the illustration of the Segesthem, both sexes are given, in order to show their different shape and comparative dimensions. The three forms are magnified, and the lines underneath the male and the female indicate the natural size of both.

The Segestrim also has six eyes, and is fond in Europe. It lives mostly in hollows of walls and rocks, spiming a silken tube in which it conceals itself, and holding in its feet the lines which comminicate with the exterior. The tube is open at both ends, so that when the spider feels either of the lines shaken, it can dart out at once upon its pres.

The common Harvest-spidel, or Harvest-man (Thelangium Zongipes), is a very common and well-known inhabitant of Europe, and, whether in gavdens or in the open field, is to be found in very great mmbers.

Sometimes the Harvest-spider is seen swrambling orer the grass witl wonderful speed, its little romd body hardly discermible as it moves along, and its long straggling legs looking like
animate hairs. Sometimes it prefers to cling to a wall or fence, and there remains perfectly quiet, with its legs stretched out to their full extent, and occupying a wonderful spread of smface. Sometimes again, especially on windy days, it seeks sheltered spots, such as crevices in old walls, or the rough bark on the leeward side of tree-trunks.

One summer day, as I was bathing in the river, just below a lasher, I happened to look under the cross-lnem of the wood-work, and there saw something which I took for a mass of black horsehair. Wondering how such a substance could get into such a situation, I went to examine it, and then found that the supposed horsehair was nothing more or less than a legion of Harvest-spiders, all gathered together, their little bodies nearly hidden by their bent legs. There innst lave been some thonsimuls of the creatures under the beam, all perfectly motionless. An intelligent countryman, to whom I pointed out this curious assemblage, was quite as surprised as myself, never having seen anything of the kind before.

Like many other very long-limbed creatnres, the Harvest-spider seems to set little store by its legs, and will throw off one or two of them on the slightest provocation. Indeed, it is not very easy to find a liarvest-spider with all his limbs complete; and if such a being shoukd be captured, it is nearly certain to shed a leg or two during the process. It appears to be totally indifferent to legs, and will walk off quite hriskly with only half its nsual complement of limbs. I have even known this arachnid to be deprived of all its legs save one, and to edge itself along by this solitary member, in a mamer sufficiently ludicrous. The cast legs contain much irritability, and eren after they have been severed from the hody continue to bend and straighten themselves for some little time.

A strange genns, termed Gonoleptes, is closely allied to the Plalanginu. These curions spiders have the palpi very broad, pery flat, and armed with thoms; and the body is flat, expmod behind, and covered with a hard shelly skin. The legs are extremely long, and the hinder pair are longer than the others. All the members of this genns are exotie.

PSEUDOSCORPIONES.

Tue formidable-looking arachid (faleones, which is represented in the accompanying illustration, by no means belies its appearance, but, from many accomes, seems to be a really dangerons creature. [t is drawn of its matuma size.

The bite of the Gateodes is much dreaded in the comntries where the creature lives, and is suid to produce very painful and even dangerons effects. Still, we may leare an ample margin for exagyeration ; and when we consider the black catalogue of crimes that are attributed to the newt, the blind-worm, and varions other harmless creatures of our own land, we may well imagine that the jonnar oninion of the Caleodes is not likely to be very favor:alle.

The Galeodes is fonl of warm, sandy situations, amd, like many of the Arachnida, is seldom seen except by night, when it comes from its hiding-place in search of prey. Under such circumstances, it is verr likely to retaliate if injured by a bare hand or foot, and to inflict a wound causing considerable pain. There are several species belonging to this gemus.

Even the scorpion itself is hardly more formidable in aspect than the Galeodes, and to the generality of the insect tribe it is even a more dreadful toe. Armed with two pairs of powerful mandibles placed side by side, like the claws of lobsters withont their jointed footstalks, the Galeodes sets off at night in search of prey. It runs with wouderful rapidity, more like a monse than a spider, and, from the large size to which it sometimes attains, covers much more space than a monse as it darts over the floor: One specimen I saw was about two inches in length, exclusive of the limbs, and measured exactly ten inclues in total length. With straightened limbs the length would have been very greatly increased.

A large specimen of the Galeodes will attack any insect and almost any creature of small size. It has been known to leap upon a lizard, to cling to its back as the combatants rolled about on the ground, to kill it by driving its fangs into the spinal cord at the jumetion at the head with the neck, and, finally, to eat it entirely with the exception of some of the larger bones. The lizard measured three inches in length, exclusive of the tail.

GALEODES.-Sotputga or Galeodes araneoides.

Much attention has been given to the Galeodes and its habits by Lieutenant-General J. Hearsey, who has kindly communicated to me the following observations :-

When the Galeodes approaches any creatme that it desires to attack, it thrusts ont its long palpi, tonches the body with the rounded tips of those members, and immediately raises them aloft, as if fearful lest they should be injured. The whole action is wonderfully like the manner in which an elephant flings its proboscis in the air after touching anything of which it is not quite sure. The tips of the palpi are rounded and soft, and when they are applied to any object a sort of phosphorescent flame seems to be emitted from them. Having satisfied itself by the touch, the creatnre rushes in at once to the attack.

In order to ascertain whether the Galeodes would really attack and eat vertebrated animals, an ordinarily-sized specimen was captmed and placed under a bell-glass. A rery young musk-rat was then inserted under the glass, the Galeodes being on the opposite side. As the creature trarersed its transparent prison, it came suddenly on the ronng musk-rat, which was quite a baby and conld not open its eyes. Withont hesitation it sprang on the little animal, killed it, and in a very short time had eaten it.

Vol. 1Il.-65.

The manner in which the Galeodes kills its prey is really remarkahle. The double set of pincers are sharply houked, like the beak of an eagle, and are calpable of being separately opened and shat like lobsters' chaws, and of being meed conjointly to secme prey between them : and. moreover, the upper joint of till claw can be pushed far over the lower. When the creature seizes a large animal, such as the lizard athove mentioned, it buries the pincers in the flesh, and deliberately shems its way onwards, each pair of bincers working altemately, one pair boing engaged in holding the prey and the other in cutting.

The same Galeoles was then pitted against a little hat, about three or four inches across the wings. Thongh small, it was full-grown and lively. When placed under the glass shade, it fluttered about, bont was speedily arrested by the spider, which leaped upon it, proceeded to drive its falms into the mectk, and chung so tightly that it could not be shaken off. In vain did the bat try to beat off the enemy with its wings, or to rid itself of the foe by flying in the air. Nothing conld shake off the Galeodes; the long legs clung tightly to the victim, the cruel fangs were boried deeper and deeper in its flesh, the struggles gradually became weaker, until the point of a fang tonchel a vital spot, and the poor bat fell lifeless from the grasp of its destroyer.

The next antagonist of this redonbtable warrior was a scorpion, about four inches in length. The Galeodes seemed nothing damed, seized the scorpion by the root of the tail, just where it conld not lee touched by the sting, sawed its way through the tail, severed that deadly weapon from the kody, and then killed and ate the scorpion, together with its tail. There was, however, much meertainty ans to its mode of attack in this instance, for no one could exactly ascertain whether it was directed to the one point of safety by chance or instinct. Another similar scorpion was then procured and placed in the glass bell. The Galeodes darted as nsual to the attack, but unfortmately seized its foe by the front. The scorpion immediately grasped the Galeodes in its mippers, quickly brought its tail over its back, and by a well-directed stroke succeeded in stinging its enemy. At the moment of receiving the stroke, the (raleodes started back, opened all its limbs, began to quiver throughout its whole frame, and rolled over quite dead.

The color of the Galeodes is palish-yellow, and the tips of the fangs are black. Their surfare is very hard and polished; and when the light falls upon them, they gleam as if covered with hurnished gold. In a specimen now before me, the aray of hairs with which the fangs are fringed glitter as if tinged with the rainbow.

One shecies of Galeodes inhabits the New World, heing found in Havana, hut the greater mumber of them are inhabitants of the hotter portions of the Old Wrorld. In India the present species is plentiful, and is apt to be rather annoying,

BOOE-NOORPION.- Chelifer cancroides. especiaily to a new-comer.

In this engraving is seen a much magnified remresentation of the morious Book-scondion, of Cuelifel, a little arachid very murin ressmbling a tiny scorpion without a tail. The body is flattenerl, and the palpi are much elongated and fumished with a regnlar claw at the end, like that of a true scomion. The Chelifer is an active little being, rumning with much speed, and directing its course bickwand, forward, or sidewise, with equal easr. It lives in dark places in houses, between looks in libraries, and similar localities, prefering, however, those that are rather damp. It does no harm, however, to the books, but rather confers a fayor on their owner, feeding on woodlice, mites, and other beings that work sad mischief in al library.

Its general color is brownish-rel, and it is remarkable that the palpi are twice as long as the whole body. This, as well as an allied genms callen Obisinm, is fomd in Enrope. The two genera can be easily distinguished by the cephato-thorax, that of Chelifer being parted by a cross grove, and that of Obisium being antire.
W_{E} are now approaching the true Scorpions, and panse on the way to describe the remarkable arachnid which is called Panernus (Phrymus pulmatus). In this, as well as the

Scorpions, the abdomen is divided into segments, the palpi are very larese and foot-like, and are fumished at their tips with claws like those of the mastacea. 'The cepplabothorax is hroad, semidirenlar, and very slightly separated from the abdomen.

Of all the spider bare, the scorphons are most dreaded; and justly so. These strange beings are at once derognized by their large claws and the armed tail. This member is composed of six joints, the last being modifitel into an archer point, wery sharp, and communicating with two poisonglands in the base of the joint. With this weapon the storpion wounds its foes, striking smartly at them, and hy the same movement driving some of the poison into the wound.

The effect of the poison varies mumh, acomeling to the eomstitution of the person who is stung, and the size and health of the sompion. Shonld the creatome he a large one the sting is prodnctive of serions consequences, and in some "ases has heen known to destroy life. Generally, however, there is little danger to life, thongh the prain is most sorege and the health much injured for the time, the whole limb thobhing with shooting pangs, ant the stomarb oppressed with orepowering nalusta. The poison reems 10 low of an acpid matnere ; and the pain can be felieved hy the application of alkaline pemperlies, such as liquid ammonia, tobace ashes, etre. Melted fat is also thonght to do groul servire, and the nansea is relieved by small doses of ipecacuanha. some of the prison can mostly he bronght to the smface ley means of pressing a tube, such as a tolerably large liey or the barrel of a small pistol, upon the spot; and the dumation, if not the sererity of the min, is therehy mitigated. The great Rocrescomplov of Afriea is monch dreaded by the matives, whose only idea of are is to tie a bandage firmly above the wound, and then make the patient lie down until the effecte have gone off.

The Scorpions inhabit most warm countries, and everywhere are held in the greatest detestation. All kinds of preerations must he taken to givard against a sudden wound. for these croatures are rery fond of wamth and alraid of light, and therefore crawl into homses, and conceal themselves in the wamest and darkest suots that can be fomm. They gete into beds, (reep under pillows, make their way into the toes of boots, cramb into clothes, hide themselves under cushions, and are, withat, so plentiful, that no carefnl person thinks of throsting his hand moler a pillow or his loot into a shee withont ascertaining that mo Scorpion has taken up its abode there.

They are diere and lapid creatmes. perfectly awore of the tervible weapons with which they are armed, and not unfrequently ronting a foe mby hy the ferocity of their apect. When threatened or alamed, the sempion curls its tail orer its boty, flomishes the remomed weapon ahout in a most mphating style, and il it thinks that it camot conveniently escape, it takes up the offensive, and bolly lushes to the attack, its claws and tail ready for the assanlt.

It is a father remarkable fact, that the poison of the scorpion graxlually loses its effect mpon a human being. and that a man suffers less and lese each time that he is stang. One bold philosopher had the courage to follow ont this principle to the furthest extent, and made Scorlions sting him repeatedly motil he had become poison-proof, and snffered but little inconvenience beyond the transient pain of the puncture.

The scorpion, howerer repmsive in ajpearane and renomons in action, yet may excite some almination for its attachment to its yomg. While they are yet small and feeble, they congregate mpon the person of the mother, swiming orer her hack, her forceps, her limbs, and even clinging to here tail, amel exist in such numbers that they quite roneal the outline of their parent. The little forpions remain mom the boly of the mother until they are about a month old, when they separate, and are able to whit for themselves. It will be lemembered that the young of several spiders helave in a similar mamer.

In all these creathres the tail is composed of the six last joints of the abodomen, and the powerful limbs, with the lobster-like claws at the tils, are the moditied palpi. The eyes of the Scorpions differ in number, some species having twelve, others eight, and others only six ; these last constitute the genns soorpio. The lower surface of the sempions has two remarkable appendages, called the combs, the number of tewth differing in the varions species. In the Rock-scorpion the teeth are thinteen in number, while in the sed scorpion there are never
less than twenty-eight teeth. The Rock-scorpion is a large creature, measuring about six inches in length when fully grown.

Like the other Arachmida. the scorpion is carnivorous, and feeds mon varions living creatures, such as insects and the smaller crustacea. They mostly seize their prey in their claws, and then wound it with the sting, before attempting to eat it. Even the hard-mailed coleontera, such as the gromd beetles, the weevils, etc., fall victims to this dread weapon, while the grasshoppers and locusts lall an easy prey before so terible a foe.

MITES; ACARINA.

W^{W} e will now turn our attention to the little, but annoying, creatures called Mites.
None of the Mites attain large climensions, and the greater number of them are almost microscopic in their mimuteness. Everywhere the Mites are fomnd, in the earth, in trees, in honses, beneath the water, and parasitie upon animals. They hannt om cellars and swam mon our provisions- wheese, ham, batom. and biseuits are equally covered with these minnte but fotent destroyers ; and even onr flour stores are ravaged by the countless millions of Mites that assail the white treasures. Whether the canse or the effect of the malady, Mites are found in many forms of disease, both in man and beast, and will certainly propagate the infertion if they are remored from the patient and transferred to a healthy person. They are even fomm deep within the structmes of the vital organs, and Mites have been discovered in the very brain and eye of man.

A rery common and most amoying species is the well-known Marvest-bug.
This little pest of our fields and gardens is very small, and of a dull red color, looking exactly like a grain of eayenne pepper as it glides across a leaf. It is seldom seen until June or July, and is most common in the autumn, in some places swaming to such an extent that the leaves are actualty reddened by their numbers. They are especially plentiful on the French bean ; and I well remember that when I was a little boy I was horibly tortured by the Harvest fongs, which came from the leaves of the French beans anong which I was employed, and, rrawling over my shows, left a scarlet ring of intolerable irritation round my ankles.

While we are walking through the stablo-fields, the Harvest-hug is terribly apt to make successful attacks mpon our ankles; aul in the case of persons endowed with a very tender skin almost drives the sufferer to the rerge of madness. Giblbert White, in his "Natural History," tells us that wareners are "so much infested by them on chalky downs, where these inserts swam sometimes to so infinite a deeree, as to discolor their nets and to give them a redulish cast, while the men are so bitten as to be thrown into fevers."

The Ilarestobg does not confine its attacks to human heings, hot equally infests horses, dogs. wherp, and rabhits. It hurrows under the skin in a very short space of time, and after a litthe while a red pustule arises, sometimes as large as a pea, oceasioning great imitation at the time, and much pain if it he broken or wounded. On arcount of its red color, the French call the liarvest-hog the Rowner.

A bather pretty species is called fromes momstus. It derives the name of "vemustmm," or heantilul, in ronsequence of the pretty coloring of its surlate. The ground color of this (reathre is deep blatk, upon which are set some patches of rich orange-red, edged with yellow. The kittle lines armanged momd the hody are also yellow, ant its legs are red. It is moderately large, heing athont ome-sixtl of an inch in lengeth.

Two eprops are patasiti won the minoreros and the hippopotamms, and derive their name from the aratmes which they infest. The Inpropotamos-mpe, or 'lick, as it is sometimes wrongly cotled, is of pale straw eolor alowe and drep liver-wed helow, the limbs heing of the same color ats the mpere smotace, but rather paler. The lines and streaks mon the body
are black. Its body is decidedly convex, and there is a rery slight indication of a thorax. Its length is about a quarter of am inch.

The Runocmbos-mpe has also a convex body, the head and palpi are orange, and the blotches upon the boly and the limbs are of the same rich hue. 'This creature is slightly larger than the preceding. It also belongs to Africa, being found on the Borele, sometimes called the Rhinaster (Rhinoctos bicormis).

Another species of Txodes is termed thorucicus. All these creatures are furmished with suckers, through which they can draw the juices of the animals on which they are parasitic, and with a peculiar barbed modification of the parts of the mouth, which emables the parasite to anchor itselt, as it were, with living grapnels. There is hardly any animal which is not snbject to the attacks of these tiresome mites, and even the hard-shelled tortoise itself is not free from them. They fix themselves so firmly with their barbed grapnels that, if they are ronghly form from their hold, they either leave their lheads in the wound, or carry away part of the flesh. Under the microscope the head of any Ixodes forms a beantifnl object, and is easily prepared by means of Canada balsam and pressmre.

These creatures often swarm in thick woods, and attach themselves for the nonce to the leares of shrubs, at no great height, waiting for the time when some animal may wander near and become their victim. Sometimes they swam mon an animal to such an extent that ther have been known to kill eren a horse or an ox from sheer exhaustion. The French call the Ixodes of the dog, the Louvette, and in America all the mites belonging to this group are known by the name of Proves.

These "ticks," as they are popnlarly called, are extremely amoying in tronical conntries, where they swarm in every forest, and infest every living creature that passes by, provided its skin be sufficiently soft to be penetrated hy their beaks. They are small and flat when they first settle themselves on their victim, but they suck the blood with such vehemence and industry, that they speedily swell and redden, mitil at last, when fully gorged, they are as large as broad beans, and as easily crushed as ripe gooseberries.

In these countries, after a walk in the forest, every one is obliged to undergo a thorongh inspection from head to foot in order to rid himself of the ticks. When found, they must by no means be pulled away, as their bamed heads would then remain in the wonnd, and cause a festering sore. The proper method of detaching them is to touch them with oil, when they immediately begin to work their way out of their holding places, and may then be removed and killed. Sometimes a tick is only to be fonnd by the pain which it canses. A dull aching pang, for example, shoots at intervals up the arm, and the experienced forester at once begins to look for a tick somewhere about the roots of the fingers. The creature in such a case is usnally very small, not very much larger than a cheese-mite, but it still has strength enough to make its presence felt.

Eren in the large forests, the ticks are mumerons and umpleasint. In some of them, they are far too plentitnl to be agreeable; and after a day's walk in the wood I have often been obliget to serve numbers of ticks with an oily notice of ejectment.

A cheature but too well known to millers and dealers in com, is called Flour-mite (Acurus furimue). Althongh it is a very tiny creature, it contrives to travel orer the loose flour with considerable speed. The well-known cheese-mite is closely allied to the Flour-mite. In these creatmres the body is corered with mmerons stout hairs, which are capable of movement, so that each hair must have at least two muscles, together with their tendons. Despite, therefore, of the minnte size of these mites, their strmetmre is not a jot less complicated than that of many larger beings, and possesses a wonderfnl series of organs of which the higher animals are destitute.

A little vesicle at the end of the foot is a beatifnl object in the microscope, especially if the mite can be kept alice while imprisoned under the field of the instrument. In these creatores the females are larger tham their mates. The eggs of this mite are oval, very white. and corered with a sort of brown network.

The Beftle-mite. This genus is a very large one, containing a great number of sprcies.

Most persons who have been accustomed to see the common Watchman-beetle (Geotrupes stercorctius in its wild state must have noticed the frequency with which the moder part of the body is infested with certain pale yellow mites. This particnlar species is here represented. Sometimes the beetle is so covered with the mites that its whole body swams with them; but, as a general lact, they contine themselves to the under snliace. Many other insents are rictims of mites belonging to the genus (famasns, the humble-bee being very conspictoons in this respect.

Closely allied to the beetle-mite is the temible Red Mate, so called by the bird-fanciers, in allusion to its color when gorged with blood. When hungry it is of a light yellow color, but when it has fed, the blood shows its rudly hue throngh the tramsprent skin of the mite. It is a very small creature, and lives mostly in the crevices of the cage during the day, coning ont to leed at night. I always used to destroy them by inserting insect-powite into the crevires of the cage, dusting the birls well with the same substaner, and keeping a small camel's hair brush charged with oil, with which any stay mite could be at once killed.

The well-known srallet Mate, so plentifuk on banks and in gardens, is coremed with a soft down, which gives a very rich and pleasing lepth to its color. This species is not of large size, but in the East Indies a species is lound which is three or four times larger than our own searlet Nite. It yields a might red dye, and is therefore called Trombinlum. tinctorizm.

Examples of a different family, the Pedientidie, are the IGor-tick and the Dor-Tlek. The former is found only unon swine, and not miversally even upon those animals. It is of moderate dimensions, muasuring about one line and a quarter in length. Its thorax is mostly brown, and its abolomen glayish-yellow.

Mr. Demy, in his "Monographia Anopharmm," gives the following account of the Hog-tick:-
"Homatopinus suis. This speries is found in great abundance on swine, but it does not appear so generally spread as might be experted from the dirty habits of the animals. It most frequently occurs on those liesh imported from Ireland, the Sister Isle. It was many months betore I cond obtain a single example. Here, in England, I had applied to both farmers and pig-hutehers, neither of whom seemed to approve of the ideal whirh I had conceived of their pigs being lonsy, but referred me to those of the Emerald Isle as being sure to gratify my wishes.
"I accordingly risited a colony just amiver, where I most certanly met with a ready supply. But here they were contined almost entirely to lean anmals: and wherever I found a pig fat and healthy, no game were to be seen. In walking, this species nses the claw and tibial tooth with great facility, which act as finger and thmmb."

The bog-tick is apt to be extremely tronblesome, not only getting into the fur of the dog, bont harboring in their bedding, and almost defying all attempts at destruction. White precipitate seems to be the best solid substance for this purpose, and a rery weak solution of nitric acid amswers well as a liquit. But, in both cases, the dog mmst be muzzled to prevent it from noblong at its fur, and thms imbibing some of the poison. Its color is ashy-flesh, with a slight eheckering. The skin is so trmanarent that the intestine can plainly be seph, of a dull red rolor. When gorged with blood, the creatme becomes of a light scarlet. This speries is also found on the ferret.

The Demb-tick and the Horsw-Tick refer to another family of these creatures. The Horsetick is found both on the horse and ass, especially when fresh from pasture, and is very common under such circumstaneres. It is lather a pretty species, with a light ehestmut head and thoras. and may be known hy the squared thomix and the long choblike first joint of the antemore.
 common fathow therr, assembling in great mumbers on the immer side of the thigh. 'The color of the heat and thoma is something like that of the last-mentioned speries, except that there is more red in it. Moreoym, it can be distingmished by thr antemme, which have the second joint the longest and the thim innte. The eves, too, are large and prominent.

The four creatures described in the following lines are parasitic on hirds. The species called Menopon pullidum is mpleasantly familiar to poultry-keepers, swarming among the feathers to such a degree that the hamds are often covered with these parasitess when the fowls are plucked or even lifted up. They cling very tightly, and are not easily brushed away, as their bodies are smoothy polished, and ofler scareely any resistance. The color of this species is pale straw.

A parasite found on the common swan and other aquatic lieds, surh as the bean goose and Bewick's swan, is termed Docophorus cygui. It is colored after a rather pecnliar fashion. The head, thomax, and legrs are bright chestmot, smooth and shining; the abdomen is white, except the first segment, which is of the same color an the thorax. There is also a chestmot spot on the third segment, and a row of short, liver-colored bands rme down each side.

A parasite which is not very plentiful, lont which is fomed on varions birds, such as the rook, the raven, and the backlird, is catled Goniofles factiomrnis. It has a hard, shelly surface, and is marked with mumerons dark bars. The last example is the Sickle-horned Thos, so called from the shape of its antema, which are mather large, thattish, and curved. It is a pretty species, its squared head being of a light chestnut color, and highly polished. 'The abdomen is broad, lather flat, and of a light tawny yellow, barred with deep red, and having the last segment of the same color as the head. It is parasitical upon the common peacock, and may almost invariably be found, after the death of the bird, eongregated in tolerable numbers albont the base of the beak.

M Y RI A PODA.

N accordance with the best systems of the present day, the Mrriarona are considered as a separate class.
some writers have placed them at the end of the insects, on areount of certain structmad resemblances with certain insects in the larval state. There is also a strong resemblance to the Annelida, or Ringed Wrorms, which will be placed next in order ; and, indeed, when we come to examine the lower forms of animal life, we find ourselves quite bewildered with their many relationships, and meertain as to their true position in the scale of nature. Tan der Hoeven, after reviewing some of the difficulties of systematic zoologists, makes the following pertinent remarks:- "Thms is the entire animal kinglom a not ereryohere connected, and every attempt to arrange animals in a single ascending series must necessarily fail of effect."

The reader will remard that in the spiders the head and thorax are fused together into a single mass, the abdomen remaining separate. In the Myriapoda the reverse of this structure is seen, the head being perfectly distinct, while there is no ontward mark to distinguish between the thorax and abdomen.

The Myriapoda are withont even the rudiments of wings, and possess a great momber of feet, not less than twelve pairs; and in some species there are more than forty pairs of legs. In allnsion to their numerous feet, the Myriapoda are popularly called Hundred-legs, and their scientific title is even bolder, signifying ten thousand feet. To this class belong the wellknown centipedes, so plentiful in onr gardens, and the equally well-known millipedes, found under decaying wood and in similar localities.

In moderate climates none of the Myriapods attain to great dimensions; but in hot comtries, and expeciatly under the tropics, ther become so large as to be positively formidable as well as repulsive. Eren the common centipede of the garden is by no means an attractive heing, ind there are few persons who can handle one of those creatures without some feeling of dixgust.

In all the Myrioparla the feet are teminated by a single claw. Some species are totally blind, hat those who possess visnai organs have two masses or chnsters of simple eyes, their nnmber being variable, according to species or in the diflerent stages of development in the same individual.

CHILOPODA.

The first oxder of the Myrianods, called by Mr. Newport the Chilopoda, may be known by seresal charartaristios. The head is brond and somewhat prominent, and the segments of the bouly ane unergal, eacle having a single pair of legs. The mandibles are long, sickleshaperd, sharp, and prominent. The first tribe of the Chilopods has antenne of great length, longer imded than the body, rery slemder, and composed of many joints. 'Thes tarsi are also many-jointeal, unequal, and very long. The eyes are pominent and mather ghoblar.

The family to which the Noble (emastad (Cermatice nobitis) belongs is known by eight large bone-like flates or shithls mpon the back, looking very like the ridge tiles on the roof of
an ont-house. The members of the genns Cermatia, or Scutigera as it is sometimes called, are spreal over the hotter parts of the word, and attain their greatest dimensions under the tropics. Specimens of these stramge beings are found in the south of Europe, Madeita, many parts of Africa and Asia, Florida. New llolland, and Australia, 'The eyes of the Cermatia are unlike those of the genematy of Myriapoda, the ocelli being crowded together, so that the facets assume a hexagonal form like those of the insects and some of the crustacea.

All the Cermatise are exeedingly active, muning about on their long legs with an action that reminds the observer of the common harvest-spider. Indeed, the whole creature has very mbeh the look of being composed of a number of harrest-spider's legs attached to the body of a centipede. The Cematia is carnivorons in its habits, feeding upon insects and having a great predilection for spiders. I full-grown Cermatia will attak even one of the large and formidable spiders of the tropics, and, safe in its slielly mail, sucreed in killing and devoming its foe. In the struggle it will probably lose a few legs; hut the creatore is in mo wise fastidions about its proper complement of limbs, and loses six or seven legs with perfect indifference, heharing in this respect like the harvest-spider, the crane-tly, and other "hag-leggit" creatures, whose affection for their limbs seems to be in inverse ratio to their length.

The color of the nohle Cermatia is pale brown, with a yellowish line ruming down its centre. The limbs are strongly marked with yellowish-hrown, green, amb rings of bine. It seldom exceeds two inches in length. This species is lomm in the East ludies and in the Manritios.

A Myriapod belonging to another family, termed the Lithobide, is called Lithobious rubricpps. The members of this family may be known hy the fifteen shields mon the back and their sharp, elongated angles. They are found in the open air, hiding umter stomes-a habit to which is due the title of the family and genus. The name Lithohins is composed of two Greek words, the former signifying a stone, and the latter to live.

In this speries the head is large and squared, and of a deep red color. There are fourteen eyes on earh side, and they are sumall and very hlark. The long antemae are yellow, and the mandibles are of the same color, deepening into bark at the points. The general color of the body is olive-brown, the green tinge being more conspicnons in some individnals than in others, and the lags are yellow. This is a small species, rather less than an inch and a half in length. This speries inhabits the south of Spain.

More than twenty species of Lithobius are known, scattered over the greater part of the Vol. III-66.
work, some being fond even in comparatively cold countries. Several of them are rery prettily colored, such as the Variegated Lithobins (Lithobins cariegotus), which has a donble row of dark spots along its body, and the Black-eyed Lithobins (Lithobins metonops), which is of a yellowish-green color, with an orange heat, one joint of each leg of the same bright hue, and twelve large Mack eves on "itlere side of the head. The Forkerl Lithobins (Lithobins forficatus) is rery common in this conntry, being fond plentifnlly under stones and in similar localities. It is a quick, active creature, of a ramar-red color, and is of moderate dimensions, measuring from in inch to an inch and a half in length. It has fifteen pairs of legrs.

Wh now arrive at the true Scolopendrae, which, together with the allied genera, are popularly known by the name of Centipedes. The genus scolopendra is a very large one, containing about sisty species, most of them inhahitants of the tropies, and many attaining a large size.

The great Scolopentrue are not only mpleasant and repuksive to the sight, hut are really formidahle creatures, heing amed with fangs soarcely less terrible tham the sting of the seorpion. These weapons are placed just below the month, and are formed from the serond pair of feet, which are modified into a pair of strong claws, set horizontally in a manner resembling the falces of ominny spiders, and terminated by a strong and sharp hook on eath side. These hooks are perforated, and are traversed by a little channel lealing from a poison gland, like that of the scorpion, so that the renomons secretion is forced into the wond by the tery action of hiting. These curions weapons cover the first pair of feet and the gnaming organs of the mouth. All the members of the order possess this remarkable motitication of the feet, which has earmed for them the title of Chibopora, a term composed of two Greek words, the former siguifying a beak, and the latter a foot.

Buth the speries of scolopendra figured on the engraving are exotic, and of rather large dimensions. The solopenctre formosa is well deserving of its specitic title, which signities beantiful, on arcount of the splendid coloring with which it is alomed while living, the feet being orange, with black teeth, and the edges of each segment being bright green. It is a native of the East Indies, and is abont four inches in length. The second species is, as its name imports, of a yellowish color, with a deep orange-colored head and appendages. This is a native of the Caribbem Islands, and is of the same length as the preceding species.

Onl mext rexamplo is the Giant Cevtibede, a creature that well deserses its name, sometimes attaining a foot or lather more in length.

This truly formidabor being is a native of Teneznela, and possesses a pair of surla pownful venom-fangs that its bite is nealy, if not quite, as langerous as that of the viper:

As an example of the effects of the poisoned wound inflioted by these large centiperles, I may cite it passage from W"illiamson's valuable work on "Oriental Field sports":-"Centipedes grow to mealy a foot long, and as thick as a man's little finger' : their form is, indeed. thatter, or like tape. When young they are of a clay color, but jecome darker with age. They bite by means of a pair of stomg forceps placed horizontally at their month, nearly as large as the hooked thoms on a barkbery bramble. catusing much pain and inflammation, and often orcasioning ferer. Being from their shape so fernliarly capable of serpating themselyes, they sometimes orcasion very hadicrous acribents. [onee saw frient apply a thate to his month to platy on it, lat scarcely had he begum, when a large rentiperde fastemed to his muder lip, (ansing him to change his note very abmotly. Several have heen hithen white smoking their logkahs ; and I was myself once made to smatt in phting on my glovess a centipede latring taken possession of one of the fingers.
"A very grave and respectahbe ond gentleman, who was remarkahly fond of starting an hypothesis and honting it to (leath, and who wonkl lather pay the piper than not have his dance ont on all oceasions. percoived a large rentipede deliberately cawling up an old door at bethsarom (fardens, near (hororinghe. The vetran assuret the company that all venomons animals were in theif natnre inotfensive, and never wounded hat when attacked. Experience having satistied some present to the contrary, an argment arose, and the old gentleman, with much disnity, assurted that he womld prove the vatidity of his position by plating his finger
in the centipede's way. Ite did so, and remived smoh a bite as occasioned a violent feren, from which a critical abspess mater his arm-pit revlieved him."

There are many of these fieree and venomons creatures scattered over the world, cansing no small amoyamee to the new-comers, who camot for a long time look with indifference on a great centipede, some eight or ten inches long, monning up the wall elose to their heads, or thatersing the floor within a short distance of their feet. Among military men the monotony of camplife is somstimes agreeably diversified hy a centipede homt, the creatnre being chased as eagerly as if it were a fox or a wolf, and ntatly captured in a split bamboo, or between two sticks.
so extremely poisonous are the fangs of these myriapods, that they will even kill poultry without moch difficulty, while the smaller creatures on which they prey die almost inmediately under the bite. The force with which they can grasp is really terrible, the two hookerl claws being driven into the flesh until they mest, and holding their position so firmly that the centiperde will mather be torn asunder than loosen its grasp. The hest way to assure ones self of the force and general strncture of these fangs is to procure a sperimen that has been preserved in spirits and dissect it, when the powerful moseles that work the poison-fert, the glands which supply the venom, and the perforated passage throngh which it is discharged into the wound. are easily made out.

The color of the (riant Centipede is bright rustr-red, with a deep green head and antemue. and blackish or olive-eolored feet. A closely allied species of similar dimensions is found in Jamaical.

The nest of these mrriapods looks like a romoded object with an aperture on one side. One was fomm by Mr. Foxeroft while digging for beetles in sierra Leone. It was formed in a reddish kind of earth, and many of these hathitations were discovered in the same locality.

Two more examplas of this large gemus are the scolopematra antuluta and the Scolopendrat rariegata. 'The latter, a beantifnl species, is a native of Demerara, and is generatly about five inches in length when adnlt. Its color is rather rich and striking. The general hate of the upper surfice is deep chestnut, and the front prlge of the head segment, the hinder edge of the dorsal segments, and the lower surface are light orange. The antemare are olive-green, and the feet are orange banded with olive.

The second species is found in the Island of Trinidad, and in color contrasts well with the preceding. Its length is not quite so great, measming less than five inches. This creatme is deep green, the lip and mandihles are reddish orange, and the feet are orange and green. It deripes its sperific name of angulate from the sharp angle on the sides of each segment.

IV Enow take our leave of the true scolopendre and pas to other genem.
Both the specimens which we will hirst deseribe are remarkable beings; one for its noisy natare. and the other for its phosphorescent power.

In the cmompede called Encorybas crotulus, the feet are modified into flat, plate-like appendages. Is the rentipede moves along it makes a clattering noise with these plates, and derites from this "urious habit both its scientific mames. The Corybintes were an ancient tribe to whom the education of Jupiter was intrusted when he was sought hy his father, who wanted to eat him, and who, in order to cover the sombl of his cries, contimally danced and played the castanets around the infant. The specific name, crolutus, signities a rattle, and is, therefore, appropriate to the meature.

This centipede is a native of Southern Africa, and is fomd abont Natal. Its color is rusty-brown.

An allied species, but in wo way conspicuons for its dimensions, is called Arthromomalus longicormis. It is, however, lemarkable on another account. It has the power of giving ont a tolerably strong phosphorescent light, which is only visible after dark, but is then very conspicnous, and las often cansed the centipede to be mistaken for a glow-worm. It is not unfrequently found within peaches, apricots, phums, and similar fruits, when they are very ripe, and lies comfortably coiled up in the little space between the stone and the fruit, where the sweetest juices lie.

The color of this centipede is yellow ; its head is deep rust color; its antemse are very hairy and four times as long as the head segment. There are from fifty-one to fifty-five pairs of legs. Its length varies from two and a half inches to three inches.

Our next example, the Gomibregmutus cumingii, is remarkable for the enormous number of rings of which the creature is composel, and the consequent mmber of legs which are needed to carry it orer the gromnd. Although this species is only from four to five inches, it has no less than three hondred and twenty-two legs. It is a native of the Philippine Islands, whence so many wonderful forms are brought.

The rather harsh generic name of this creature is composed of two Greek words, the former signifying an angle, and the latter the top of the head, and is given to the animal because the front edge of the head is formed into an arnte angle. The general color of the species is ashen-gray, and the mandibles are back at their tips.

CHILOGNATA.

W^{\prime} now come to a new group of Myriapoda, where the creatures have the power of rolling themselves up, more or less completely, like the hedgehog and the pill-woodlonse. A new species of this group has been termed Zepleronion impressus. It is a native of Borneo, and was found by Mr. A. R. Wallace. The general color of the creature is rusty-brown, inclining to red; the head is edged with blackish-brown, and the front segment is also edged with the same color. The surface is shining and polished, and all the segments, except that at the end of the body, are marked with deep longitudinal impressions. For this reason, I call the species "impressus." Its lengtl is nearly two inches.

Before learing these creatures, it may be as well to state that, during the earlier stages of their existence, these animats are mull less perfect tham when they have reached adult age; they have not their full complement of segments or limbs, nor an equal number of eyes. The metamorphosis, therefore, is complete, and serves to show the relationship between the Myriapoda and the inserts.

Some species of this genus are remakable for their beantifnl markings, and the aspect which they present when rolled un) for delence.

One of them, the Actieon Milleperle, is a mative of Madagascar, and was noted hy the celebrated female traveller, Aathame Jata Pfeiffor. The surface of its body is very polished and slining, and the general color is a livid yellow. A number of tiny puncturations are seattered rather sparely at the lack of the head and between the eyes, but in the tront they are more numerons, and along the sides they are nearly as thick as the little depressions on the end of a thimble. The species may also be known loy the shape of the eighth to the eleventh segments included, which are curionsly pointed, looking as if they lad bepm snipped off diagomally with scissors.

The body of another speciss, termed Zepleroun cersicolor, is very smooth and beautifully colored, loing of a yellowish ground tint, boldy variegated with stripes and spots of deep black, so as to render it extremely conspicuous. The front of the head, the eyes, legs, and antenne are pale green in the preserven specimens, and are thought to be darker during lifp. The heal is marked with distinct points. This beautiful species is further remarkable from the fact that no two specimens ever semm to be colored exactly alike. On the upper ridge of the face there arrem fight to ten little short spines. This species is a mative of Ceylon.

These creatures are all natives of the hotter parts of the earth, lont there exists an allied example in atmost every garden, and certainly in every field thronghout the greater part of Envope. This is the Pill-midereme (Clomeris margináta). It is fomd among moss and under stomes, and, as it rolls itself up in a mamer very similar to that which is employed by the armadillo-woodlonse, is often mistaken for that being. It may, however, he readily distinguished from that crustacean by the simple fact that the legs have their origin on a single
line traversing the middle of the under surface, and that when the creature is walking, their extremities do not project beyond the edges of the shelly corering.

Like the armadillo-woodlonse, the Pill-millepede was formerly used in medicine, probably because it looks somewhat like a pill, and may be found among the old stock of druggists' shops, mixed with the veritable armadillo. Both these beings feed on the same substances, namely, decaying animal and regetable matrer. It seems to be rather a gregarions creature, as it is generally found in tolerable numbers in some farored locality.

We now come to another genus, termed Polydesmas. This term is composed of two Greek words, the former signifying "many," and the latter a "bundle," in allonsion to the nmmerous gromps of limbs arranged along the body. In all these creathres the body is covered with a hard skin, and the segments are flattened and lengthened at the sides. A handsome species. called Polydesmus splendidus, is found in India, and mostly attains the length of two inches. The color and geneml aspect of this species are rather striking. Independently of the rery deep depression of the segments, which has a very strange effect, the color is bold and striking, being deep and very reddish-hrown, diversified by an angular spot of bright yellow placed in the hinder' angles of each segment. The body is smooth and slightly shining. When alamed it is able to roll itself into a partial spiral, so as to present merely the hard shelly armor to the foe, and to shield the limbs within the coil.

To a new species belonging to this gemns, I propose to give the specific name "granmlatus," on account of the peculiar apmearance of the body, which is thickly corered with rery minute raised tubercles of a white color, such tubercles being called gramoles in scientific nomenclature. Perhaps I can give a letter notion of the idea expressed by the word "grammlated," by mentioning that it conld he rightly applied to such substances as shagreen.

The general color of this species is rather dark drab, and it may be at once recognized by the peculiar form of the segments, which are flattened and elongated even more than nsual in this genus, and are set at their extremities with three distinct teeth. The length of the specimen from which this description is taken is rather more than three inches.

A species of this genus (Poly-
 desmus complanatus), represented in the accompanying illustration, is found in Europe, and is not nneommon in gardens. It is abont threequarters of an inch in length, is very narrow, and has thinty-one pairs of feet. The genns is a very large one. and contains a great number of exotic species. The figure of the engraring is magnified.

Belore passing to the next large family of myriaporls, we may mention the pretty little Pencil-tail (Polyxenus lagurus), a tiny creature which seldom attains a greater length than the twelfth of an inch. It is found under the bark of trees, in clefts of walls, and in moss, and may be known by the twelre pairs of feet, the bunches of little scales on the sides, and the white pencil at the end of the tail.

Tus members of the curions fanily Julidæ are very like those which hare just been described, but may be known from them by the fact that the edges of the segments are not flattened and lengthened, but are contimned in an mbroken circle. They feed mostly on decaying regetable matters, but have been seen to eat dead earth-worms and mollnsks.

They all exhale a peculiar and rather mpleasant odor, which is cansed by a fluid secretion in certain little sars along the sides, two on each ring. The little apertures throngh which this scented fluid exades may be seen on examining the creatures closely, and by some of the earlier writers they were mistaken for spiracles, the sacs themselves being thonght to be the
breathing apparatus. The real spiracles may be seen on the under sides of the animal, close to the insprtion of the feet. Like the preceding creatmes, they can roll themselves mp, but, on account of the length of their body, they can only assume a spiral form, as is shown by the left-hand figure in the illustration.

The two figures shown in the accompanying illustration, represent the common Millepene of the garden. This little creature is very plentiful, and may be found under deraying wood, or below stones. Its morements are very curious. The little delicate feet, looking like white threads proceeding from below, move in a regnlarly graduated order, so that, as
 the creature glides along, a succession of waves seem to phes orer its body. On being tonclied it immediately stops, and coils itself into a spiral form, lying necessarily on its side.

The development of the Jnlide is curions and interesting. In the early part of the spring, the female deposits sixty or seventy eggs in the earth, digging a hole expressly for their reception. Here they lie until they are hatched, which occurs in abont three weeks' time, when the young Julidie make their way into the world. They are then without any limbs, and retain the fwo halves of the egg-shell by means of a filament, which fastens them to the body. After a little while they gain three pairs of feet, and then are able to separate themselves from the egg-shell. At this period of their existence, they bear a great resemblance to the larre of some beetles. As they contimue to grow, however, the number of segments and limbs increase, so that they gradually lose their lesemblance to the beetle larve, and attain the shape and form of their parents.

The spirostreptes cinctátus is a native of India, and sometimes attains considerable dimensions, reaching a length of nine inches. It is of a rusty red color, in some individnals inclining to yellowish cliay, and has a drab ling round the middle of each segment. The legs also have a ring of the same color round the middle of each joint.

Our last example, the Spirostreptes anmutatipes, is a creature of large size. This is also an Indian species, and somewhat resembles the preceding, except that its colors are much deeper; there is a narrow black ring rond the middle of each segment, and each joint is broadly banded with the same color. There are seventy-five segments in this species, when it has reached full age.

ANNULATA.

IEW class of animals now romes hefore us. These creatures are technically called Ammata, or sometimes Ammelida, on acconnt of the rings, of amnuli, of which their bodies are composed. They may be distingnished from the onlide by the absence of true feet, althongh in rery many species the place of feet is supplied by hundles of bristles, set along the sides. The respination is carnied on either by means of external gills, internal sacs, or even throngh the skin itself.
In most of the Annulater the body is long and crlindrical, but in some it is Hattened and oval. Tha number of rings is very variable, even in the same species; so variable, indeed, that in some specimens of Phyllodoce laminose, no less than tive hundred rings have been counted, while others possess only three hundred.

SETIGERA.

The group of worms which come first on our list is remarkable for the architectural powers of its members. In order to protect their solt-skinned body and delicate gills, they build for themselves a residence into which they exactly fit. This residence is in the form of a tuhe, and in some cases, as in the Serpular, is of a rery hard shelly substanee, and in some, as the Terebella, is soft and covered with grains of sand and fragments of shells.

The beantiful Seripla is remarkable for its white shell, its exquisite fim-like branchie, and its brilliant operculam.

As may be seen by reference to the arcompanying illustration, the shell of the Serpula is tolerably cylindrical, very hard, white, and moderately smoth on the exterior, thongh it is ridged at intervals, marking the different stages of its formation. The size of the tube increases with the growth of its immate and arehitect, so that a perfect sperimen is always rery small at its orioin, and mmeh larger at its month. The Serpula is able to travel up and down this tube by the bundles of bristles, which project from the rings along the sides, and is able to retract itself with marvellous rapidity. It has no eyes, and ret is semsible of light. For example, if a serpula be fully protruded, with its gill-fans extended to their utmost, and blazing in all its scarlet and white splendor, a hand moved between it and the window will canse it to disappear into its tube with a movement so rapid, that the eye camot follow it. The figure in the illustration is of natural size.

The gills, whose pxquisitely graceful form and delicate coloring have always attracted atmimation, are affixed to the neck, as, if they were set at the opposite extremity of the body or along the sides, they wonld not obtain sufficient air from the small amount of water that could be contained in the tube.

The heantiful scarlet stopper ought also to be mentioned. Each set of gills is fmmished with a tentacle-like appendage, one of which is small and thread-like, and the other expanded at its extremity into a conical operculmm or stopper, marked with a momber of ridges, which form a beantiful series of teeth around its circumference. The footstalk on which this stopper is mounted is a little longer than the gills, so that when the animal retreats
into its tolbe the gills collaphe and vimish, and the entranco of the tube is exactly closed by the conical stopuer.

The Serpula is a lovely inhabitant of the aqnarimm, hat has an inconvenient habit of dy ing. sometimes roming out of the thbe for that purpose, and sometimes petreating to its feathest deresses, and there putrefying, to hom eloat damager of the enfurrimm. There are severat kinds of Serpula, somm of which are only attarded by the lower part of the tube, and hold the rest of that womderful strmature npright in the water: some, like the present speciess, intertwine theile tubes very molloh like a handind of boiled macaromi ; while others, such as the serpulet triquelra, form tulles which do not project at all, but are aflixed to their suplerts throngh out their matire length. This species makes a

 triangular tube. There are many interesting rifemmstances commerted with the labits and structure of these lovely worms, but one failing space will mot admit of a longer deseription.

We now come to another buetty tube inlabliting annelid, which is called Sabella, becanse it lives in the satd and fomms its tuhe of that substance. Sereral suecies of Sabella are found
 a litthe creature seldom weresting threer-quarters of an inch in lengeth. As is the ease with many of these womes, it has a thim tath-like appendage at the extremity of its body, whioh is doubled up withim the tube. 'fle head is fmonished with a erreat mumber of little threadlike tentackes, whith are very frexible, and moler a good miorosepre are seen to have a growe fomning alomg the contre, ant a donble row of teetlo along the edges, something like the snont of a satw-tish.

This is a metul speries to the natmalist on areont of its plentifnl oremrence, and readi-
 thln, it will low seen to choose the particles of samb with the greatest care, selecting and seeming to badance them with the tentacles, and cementing each in its place with a ghanoms secretion, Which has the property of wetting while moles water. If the creatme can be indaced to build its case against the side of a glass ressel the possessor las caluse to be gratified, for the creature dores not wastr matrial, and will oftem make the drass :mswer for ome side of its tube, therehy permitting the doserver to wateh its emtere ecomenng.

The skin of these worns is rery tongh. I remenher onde laring to dissert the digestive

 smbjert, and quite lost gatiences. So l fave the wom an angry tug with the foreeps, when the wholes skin of one side stripporl off, leaving the digestive orgams exposed as beantilully as if they had been camplally dissected.

To give the Sabella a variety of building matemials, amel to note which it acrepts, is al ways an interesting ammement; for the wom is very fastidions, not to say eapricions, in its choice and always likes to have a stock of materials from which it may make its selection.

While wamdering along sandy coasts, we frequently come arross some moderately large thase projecting from the same and rather conspichomes in the little paddes left by the receding tide. Romm their month is usually a set of lorkel filaments which, like the tule itself, are composed of fragments of sama agglutimated together. The sulstame of this thbe is very soft, but very tongh, and will endme a tolembly ham pull withont breaking. If the inhabitant of these tubes be songht, it will not be found without much labor, for the Terebela retreats to the farther extremity at the least indication ol danger; and as the tube is at foot or more in length, and is always conducted nuder stones or anong rocks, it is not pasily dislodred.

As in the case of the Sabella, this amelid performs its arditectural labors ly metms of its tentacles, which are most wonderfully constructed, so as to be arpable of extension or retaction, and at the same time can seize or throw away a purtide of sand at any part of the tentarle. The method of working is very well given hy Mr. Th. Rymer .Jones:-"If a specimen be dislorged from its tube, it swims by volent contortions in the water, after the manner of varions mane amelds; the tentacule and the branchia fore compressed and contracted abont the heald like a hrush; and as the animal is very suon exhansted by such umatural exertions, it soon sinks to the bottom. Should a quantity of samd be now scattered from above, the tentacule, speadily relaxing, extemt themselys in all directions to gather it ap, sweeping the reseel quite clean, so that in a very shont time not a particle is left helhend that is within their reach. the whole lawing been collected to be employed in the construction of a new artiticial dwelling, adapted to shelter the maked borly of the architect.
"We will suppose a tube to have been partially construrted into the side of the aquarium, wherein a suecinen is abont to take nu its permanent abode. During the eander part of the day, the anmal is found lurking in its interior, wifl only the extremities of the tentaculie protruding beyoud the orifice, and so it will remain till towards noon.

- But scarcely has the smin passed the meridian, than the creature begins to become restless; and towards four or five it will be seen to have risen upwards, the tentacule extending with the approach of pyening, mutil after sunset, when they are in full activity. They are now spread out from the oritice of the tube like somany slemder cords-each seizes on one or more glains of sand, and drags its burden to the summit of the tube there to be employed according to the service required. Should any of the tentacula slip their hold, the same organs are again empleyed to search eagerly for the lost particle of sand, which is again seizen and dragged towards its destimation.
-"sub operations are protmeted during several hours, thongh so gradually as to be aplurently of little effect. Nevertheless, on resmuing inspection next moming, al smprising elongation of the tube will be diseovered ; or, perhaps, instead of a simple accession to its wath, tho oritice will be surromoded loy forking theals of samdy particles agolutinated together."

There are many species of Tereletla. They have to a considerable extent, the power of reprolucing lost portions of the hody ; and it has been foum that even the whole mass of plumy tentacles can he removed withont much injury to the Terehella, which retreats to its tube, and after a while reproduces the whole of the missing organs.

The sublu-bicmale is yery plentiful on some coasts, cisuerally those where the shells of rarions mollusks are fomd in profusion. The tobe of this speries is built almost entirely of little fragments of shedl, ind is of rery great length --so lomg, indeed, and ghing so deeply into the samd and among the stomes, that to prorure a perfect specimen is almest an impossibility, except by some rare good fortume. As this creature makes its dwelling alont midway between high and low water mark, it mary sometimes he promed by setting to work as soon as the tide has retreated, amt, with crowbrar, pick, and shovel, making the lest use of the few hours that can be given to the task. I have never yet succeeded in extracting an entire tube. thongh I have often tried to do so.

> Vol. III.-6iz.

A species of Shell-hinder is very common on the white mond of the lagoons of the Florida Reef. It is an interesting view, when gliding ovel the Reef in a boat, to look orel in the shallow water and observe these creatures at work. They constrnct a thbe about three-quarters of an inch dianeter, and it projects abont two inches above gronnd. Few ohjeets of natme have amested our attention with glomer wonder than these tube-bnilders. Here we have a worm, of low organization, and, so farr as intelligence is concemed, it might well be at the very foot of the animal scale. Here we have the creature picking up material aromed it to bnild a louse. It not only picks up material, but it selecte, as a stone-mason does, the most suitable. A singular cirenmstance is, that it builds its tube exclasively (its hard parts) of the little lime fronds of calcareons alge-such as abound in the samel of the Resef. This algie grows abun dantly among the corals. The leaves, or fionds, are small, oval dises, when alive, covered by green vegetable tissue. The worm selects the lime parts and lays them neatly in con'ses, just as a stone-masom lays his wall. The worm occasionally places a bit of sea-weed in the comrses, to aid in concealing the walls. These will be seen introdnced in varions burts of the tuhe, falling over and quite effectively hreaking mp the antifial aspect of the structure, which thas semes as a protective resemblance to the smomading wed-covered onjects. What are onr thonghts, in view of this exhibition of "intelligence" in a base worm! If nothing more, it reminds us that human knowledge is finte. The worm goes a step further, —and what additional wonder do we not experience, when we see the rreatme hunt about for a bit of shell, an entirely different objert, and long it to the tule precisely as we have seen in the case of the trap-door spinders. Here the worm has a house. When he wishes to feed, he pushes his head against the sleell door, whieh gields, and drops to its place when the worm retires. Once in the completed tube, the worm does not lease it entirely. Often the whole strmeture is concealed by a large piece of alga so fastened to the top that it falls over the structure.

Pasang from the tube-inhabiting worms, we now rome to those whel are free and able to move abont at pleasme.

No one who has walked on sundy coasts can hare failed to notice the nmerons wormcabsts which appear in the sand, between high and low water, being most mmerous where the sand is level, and becoming scarcer in proportion to the steepness of the slope. Sometimes, when a large, mashy that makets its appenance, which is nerer entirely elry eren at low water, these worm-rasts become so mmerons that the foot can hardy be placed between them ; and even while the spectator is gazing on the wet sand, coil after coil of dark sand morges from below, as if Michatel Scott's familiars were trying to fulfil their task of making ropes from sea-sind.

These samy coils are the casts of the Lug-worm, so valuable to fishemen as a bat, and which, when well settled moon the hook, and tipped with a mussel, prove most attractire to the whiting pout, rock cod, plater, dahs, and other shore-loring tishes. At erery low tide the fishermen's boys may be seen busily digging for Lig-worms, or Logs, as they generally term these amnelids, and in a populons spot they will fill their square wooden pails in a wonderfully short time.

As a number of Lug-worms lie in a box, covered with sand, mud, and slime, twisting and whithing about in continnal movement, they have by no means an attractive aspect, and might even be thonght repulsive. But if a single wom be taken from the mass, washed, and placed in a ressel of clear sea-water, it assumes quite a different aspert, and becomes a really beantifnl and intmesting creature. Its color is very variable, but usuatly is dark grem and carmine, some specimens heing almost entirely of the latter lue. Others, again, are neary brown, and some of a deep real.

Along the sides rms a donble row of the wonderful bristles by means of which the creature is enabled to probel itself thongh the sand, and projecting from the back are thirteen pairs of light scarlet fufte, which, on examination, are formd to be the gills of the worm. These are most beantiful organs, and when magnidied are seen to be compost of many tults, like the branches of a thick shouh.

The Lug-worm has some of the habits of the tubr-making amelids, for, althongh it is perfectly free and able to move where it likes, it does not pmsh its way throngh the samb at random, but forms a tmmel of moderate strength, thongh which it ean pass and repass at pleasmre. As it Jores its way through the sand, it pom's ont a small anantity of the gintinons matter which has already been mentioned in the Terebella, and thens cements the sides of the tmonel together in a mamer somewhat resembling the brickwork of a rallway tmmel. Like that work of engineering skill, moreover, the thbe of the Lug-wom camot bear removal, breaking up when it is manpported by the surmonding earth. It is, however, amply strong enough for its mae, ant will withstand the heatings of ordinary wares withont yielding.
hat the whole of the gemms Arenicolat there are no eyes nor jatws, and the head is not distinct. Several species of this genns are known.

The Great Eunice (Eumice gigunter) is another ammelid closely allied to the Nereida. In this family the body is rery long ant compored of mumerons segments. The probusis has at least seven, and sometimes nine pairs of hormy jaws. Sometimes it will attain a length of more than four feet, and comprise upwards of fom hmmbed segments in its body, pald segment furnished with its padeles. someserenteen humbred or more in momber.

When in a living state, this is a most lowely creature, winthg along its serpentine comse with easy grace, and gleaming with all the colons of the winhow as the sumbams fall on its polished surface and artive propellers.

An eximple of the beantind gemus Nemeis is mon given. Ther Nereider hare both tentames and eyes, and the ponboscis is large. often heing fumished with a single pair of homy jats. In the typioal gemus the eves are foms, armoned in a sort of square, and the tentacles are fons in number. The probowis is thick, strong, and amed with two jaws.

The beantiful Nereids are found plentifully on Enropean roasts, mostly hiding under stones and rocks, or hiding in the sand. They are well worthy of examination mader the microscope ; and, perhaps, the hest method of making ont the struture of these beantifnl creathres is by taking a single segment and notiong its constructiom. On the back are seen certain tufts of different slapes in the varions speries, lut all agreeing in being composed of numerons hlood-ressels lamilying in a most complicated manner. These are the gills, or brancliir, of the Nereis.

On each side are seen the organs of locomotion, sometimes consisting of a single, but mostly of a double, row of oars. Each oar is formed of a strong muscular footstalk, from the extremity of which proceeds a hmolle of stiff bristles and a varionsly formed thap, which is techmically called the "cirpus." Jf the bristles be examined semately, their wonderful forms camot fail to attract admiration. They no longer appear as the simple hairs which the naked eye wonld assme them to be, but are transformed, as it were into a very arsenal of destructive weapons, the barbed spear-the scimetar, the sabre, the sworl-hayonet, and the cutlass, all being represented; while there is no lack of more peacefn] instrmments, such as the grapnel, the siokle, and the fish-hook.

The Nereids will live for a time in a shallow hasin half filled with sea water, and are, therefore, valnable to those who really desire to study for themselves the beantifn forms with Which they are suromided, and whidh, but for the microscope, wond ever be hidden from our eyes. The ohserver should not fail to examine the formidable proboscis with its terible jaws. White the worm is at rest. this proboscis is retracted like the finger of a glore and the jaws appear to be sitnated in the merk, where, indeed. they were once taken for a gizzard. But either by dissection or applying pressure in the right direction, the jaws can be drawn ont, and are then found to be destructive weapons at the ent of the proboscis. Many years ago, while examining, for the first time, a Nereis which I had found on the sea-shore. I took this strncture for a gizzard, and find, on reference to my note-hook, that a sketch of these intermal jaws is marked with the title, "Gizzard of the abore."

There are vers many species of these interesting worms, among which we may mention the Glow-worm Nerers (Tereis noctituct), a little speries seldom more than an inch in length, but which is remarkahle for its power of emitting phosphorescent light in a manner
that reminds the obserter of the luminons centiperle ahrealdy described. There is also the l'early Nerets (Nemis murquritacer), so balled on acrount of its pealy-white color. This is a monch larger and more landsome speries, measuring eight of ten inehes in length when fully grown. Another speries, the Smining or lumberent Nemels (Nereis futgens), is remarkable from the fact that it constructs a tube of rery thin silken textnre transparent in itself. but oftem being stucded with particles of samd. It seldom exceeds seven inches in length, ant is of a deep orange-red color, with a backislo line moning along the back. Like most of the Nereds, it is inderserent on the surfare.

Another magnitirent sueries, called the Laminaten Neress (Phmplodoce laminata), deseres a passing notice. This tine specimen sometimes attans the length of two feet, and is certainly the finest example of the family that is to be found in the Enropean seas. Its color is shining irioteseent green, having a hluish tinge on the back, mat changing gradually to a more leal-green hate on the sides. There are no less than fom humdred segments in the body of a full-grown Phyllodore, and, consequently, eight hundred patdles and sets of bristles, by neans of which it can swim throngh the water or 'rawl upon the sand with equal ease and grace.

As Mr. T. Rymer Jonter well remarks: "The merhanism of this creatnre, its parts and their powers, are to be ranked among the more ronspichous and admirable works of creation, nor can they be contemplated withont wonder. Issming forth from its retreat, it swims by an madnating serpentime motion. Its mwieldy body, gradually withdrawn from its hidingplace, has its multiphed orgmons mfolded in regnlar order and arrangement, so that, whether intertwined or free, they mever present any appearance of intricacy or confusion-ach part performs its own proprer finctions, and the general effect is protured by the mited exerise of the whole. Whan inactive, the lateral paddles are latid close over the back, but when in artivity they spread widely ont, arting like so many oars to aid the amimal's comse by their united impulse on the water.

* It is a pleasant thing to see al well-manmed boat glide orer the smooth smface of the sea, ol to watcla the long ammy of oars as silently they simmltaneonsly dip and rise again, all Hashing in the evening sumshine. Bot such a sight is but a paltry spectacle compared with that athorded by these gorgeons worms ; fom humdred pairs of oars, instinct with life, hamonionsly respond in play, so active that the eye can scarcely trace their movements, save by the hones of iridescent splendor, violet and bhe, and green and gold, the very minhow's tints that inclicate their course."

It is a remarkable fact, that in the Nereids thejr young are of ten prodnced by the simple process of breaking off a piere from the end of the body. The last ring but one beromes swollen and lengthens. and ly deogrees assumes the appearance of a young Nereid, with its eyes and antenne. When it is suffiriently strong it is hroken off, and goes forth to seek an indelendent life. Sometimes it happens that a second and a third are thus formed before the first is separaterl, and M. Milne-Edwards has seen a row of six young Nereids thus attached to thejr parent.

Many speries of Neprdis inhahit the sand beaches of our roast, and olier an interesting fipld of study. The labors of matmalists attached to the Fishery Commission, at Wrood's Ifoll, have resulted in a great amount of investigation.

Thes larger forms of this gromp of invertehrate amimak art, many of them. of considerable beanty. The Seat Homse (Aphroutite) is often taken on the hook hy the fishermen off (reorge's TBanks. Its indoscent spmes om ham-hke cowering render it extremely attactive. These are

Ther form mentioned above is Ifermione hystrix. Sepiotonoths symummatus is a more common form, fomm in]rols near shore. L. subleris is amother, familiar on the New Englamd seashore. From their natmer it is mot likely these forms get to be designated by English terrms. 'Their terhnical ones, however, are classical, the larger momber being maned from methoblugy.

The ('mandathanderives its name fom the mumerons dimi, on thread-like appentages, Which projent from its sides, and which serve for hege as well as organs of respiration. These
curions appendages arise from the altermate segments of the bonly, and are continued in two rows along the back almost to the very end of the hody.

If plared mader a goor mirroscope, the transparent walls of these rimi permit the blood to be seren coursing through them. This is not, howerer, a bery easy operation, as the creature is rery timid, and when touched will contract the cirri into a shaireless bondle. When, however, the Cirmatulas is quite at its qasp, recumbent in its rocky home, it permits the cirri to lie flat on the gromul, where they smboum it like a masis of red woms comtinnally writhing and twining throughout their lengtlo.

It is one of the light-hating ereatmres, always seeking a getreat under some stome or in a cleft of a marime rock; and it is, moreorer, protected by a mass of sand, mud, and slime whish it collects aromed its body, so as uffectaally to disguise its shape. The length of the Cirmathlus is abont four incles, and its color is mostly red. with a tiuge of brown.

The members of the gemus symus may be easily distinguished by the shape of the tentacles, which are jointed in such a mampr as to resemble closely the beads of a neeklare. The number of the tentacles is always meren, and this fat serves to separate them from an allied genns, where their nomber is aren.

The sea-motse, a creature with a hairy coat, possesses beanties which nerer fail to strike even the mobservant eye of a casual pasemger, as the wondrons hues of ruby, emerald. salpphire, and every imaginable gem, Hash from the coat of this breathing rainbow. Each hair of the Sea-monse is a living frism. and when leed singly before the eyes is a most magnificent object in spite of its small dimensions, flinging ont gleams of changing colors as it is mored in the fingers, or the direction of the light is changed. I have often thonght that if shakespeare had only known of the Aphrodite, he might have furnished Queen Mab with a still more fairylike conveyance.

Yet the habits of the creature serm to be quite ont of arcordance with its exceeding beanty. When the smbight falls on its surface, the many-hmer? latim give forth a cluromatic radiance which is almost painful to the eyes from its very intensity ; and it would be but natural to conclude that the Aphrodite narle its home in the sumniest sjots, and welcomed the dawn with ghadness. Such, however, is not the case; for this beatiful creature, which wears all the colors of the humming-hird and sorms equally a child of the sun, latses its life mader stones, shells, and similar localities at the muddy bottom of the sea.

The whole group of the Aphroditacea is separated from the rest of the order by reason of the curious mode in which its respiration is conducted. If the beantifn\} hairs be pushed aside, a series of scales will be seen upon the back, which are guarded by a rovering of a loose feltlike substance, composed of interworen hairs. This felt, if it may be so callerl, ands as a filter, which is rery necessary, considering the muddy loralities in which the reature lives, and permits the water to pass in a puritied state to the breathing apparatns, which is set beneath the scales. These scales or plates move up and down, something like the gills of a tish, and by their altemating morements have the power of admitting the water and then expelling it in regular pulsations. If a recent sperimen be examined, a considerable quantity of mud is alwins to be found entangled in the felt-like covering of the scales.

Sometimes this beatifnl annelid attains a considerable size, reathing the length of five or even six inches. Generally, However, from three to fonr inclaps is the measmrement. It is a slow-going, but rery roracions creature, feeding even upon its own kind, and using its powerful proboscis as a means of capture.

In some species of this genus, the spines which edge the borly are most marvellously formed. They are set mon projecting footstalks, and when not required for use can be drawn back into the body. Their shape, howerer, would seem to render sheh a proceeding dangerons, inasmuch as they are formed just like the many-harbed spears used by certain sarage tribes. In the Aphrodite hispidu, for example, they are just like donbly-barbed harpoons, and would womnd the soft tissues of the body most sererely when withdrawn. In order, therefore, to prevent this result, each spine is furnished with a sheath composed of two blades, which close upon the barbs when the weapon is withdrawn, and open again to allow its exit when it is protruded.

Another species, the Porcupine Sea-morse, is easily distinguished from the preceding creature hy the peculiar stracture of the back, which is devoid of the felt-like substance, and the scales are consegmently bare.

On arcount of the singular structure of the Chemoptenus, it has been placed in a family by itself, of whieh it constitutes the sole genns.

This remarkable worm is one of the tubebuilders, and makes a dwelling of a tongh pareln-ment-like consisteney, measming eight or ten inches in length. It is fommel in the seas ahout the Antilles. As may be seen by reference to the engraving, in this curions being there is no distinct head, and no vestige of maxillar, but the probose is is fumished with a lip, to which are attached two small tentacles. "Thern comes a dise with nine pairs of leet, then a pair of long silly bundles, like two wings. The gills, in the form of lamine, are attanhed rather below than above, amb predominate along the middle of the hody." In the fllustration the anmal is reperesented in its matmar size.

The next family, of which the common E.rrtifWorm is a rery familiar example, is distmgnished by the rimged hody withont any gills or feet, but with infistles arramged mpon the rings for the purpose of progression.
lut the well-known Earth-worm, the bristles are hort and rely stiff, and are eight in number on each ring, two pars being plared on pach side; so that, in fart, there are eight longitndinal rows of bristles on the body, fonr on the sides, and fonr below, which enahbe the creature to take a firm hold of the gromm as it proceeds.

Except that the womm makes mse of bristles, and the snake of the erges of its scales, the mode of progress is mond the same in hoth cases. The Whole boxly of the eleature is rery flastire, and calable of being extended on contracted to al won

CHETUPTERUS.- Shctóptorus pergamentáceus. derful degrees. Whan it wishes to advance, it puslas formard its borly, permits the bristles to hitch against the ground, and then, by contracting the rings tugether, brings itself forward, and is ready for another step. As in each finl-grown lath-wom there are at least one hondred and twenty rings, and each ring contains eight hristles, it may be imagined that the hold mon the ground is very strons.

As every one knows, the Tarth-wom lives a very solitary life below grombl, driving its little tmmels in all dirertions, and never seeing its friends, except at night, when it comes (antionsly to the surface and searclaes for compans. In the evening, if the observer be fumished with a "bull's-ey"" lantern, and will examine the ground with a very gentle and ('antions step), he will he sure to find many worms stretching themselves out of their holes, retaining for the most jart their hold of the place of repose by a ring or two still left in the hole, amd elongating themselves to an almost incredible extent. If, while thus employed, an Fanth-worm be alarmed or tonched, it springs back into its hole as if it had been a string of india-rubherr that had been stretehed and was suddenly released.

The worms have a curious habit of searehing for rarions leaves and dragging them into their holes, the point downwards, and are always careft to select those particalar leaves which they best like. As a general male, they dislike erergreens; and the leaf which I have found to be most in favor is that of the primrose. I have often watehed the worms engaged in this curions pursuit: aml in the dusk of the evening it has a very strange effect to see a leaf moring over the gromm as if by magie, the dull redrlish-brown of the worm being quite invisible in the inurerlect light.

The food of the Earth-worm is wholly of a regetable nature, and consists of the roots of various plants, of leares, and decaying vecretable substances. Many persons cherish a rooted fear of the Earth-worm, fancying that it lives in chureh-yarls and feeds upon the dead. These fears are but idle prejudice, for the worm cares no more for the coffined deat than does the tiger for the full manger, or the or for the bleeding gazelle. The corpse when once laid in the ground sinks into its dust by matural corruption, untomehed by the imagined devourer.

The so-called woms that feed mpon decaying animal substances are the larve of varions thes and beetles. which are hatched from eggs laid by the farent: so that if the maternal insect be excluded, there camot be any possibility of the larva. Moreoren, neither the tly nor bertle conld live at the depth in which a coffin is deposited in the earth; and if perchance one or two shonld happen to fall into the grave, they would he dead in half an hour, from the deprivation of air and the weight of the superincumbent soil.

Let, therefore, the por Earth-worm be freed from canseless reproach; and thongh its form be not attractive, nor its toncl agreeable, let it, at all events, be divested of the terrors with which it has hitherto been clothed.

The Earth-worm is a timisl and retiring creature, living below the surface of the gronnd, and having a great objection to heat and light. Heat dries up the coat of mucus with which its body is covered, and which enables it to slide through the ground without retaining a particle of soil upon its surface. A very moderate amome of heat soon kills an Earth-worm ; and if one of these amelids be placed in a spot where it camot hide itself from the sm's rays, it soon dies, and rither melts into a kind of soft jelly, or hardens into a thin strip of horny parchment.

The vexed question of its use to agriculture is too wide a subject to be treated at length in these pages; but we may safely come to two conclusions-first, that unless it were of some use it wonld never have been made ; and secondly, that it will he wiser to find out wherein its use lies than to kill it tirst and then perhaps discorer that its presence was absohntely needful and its absence injurious.

The Earth-worm is of no direct use to mankind. except, perhaps, as bait for the angler ; and for this purpose they are easily oltained by the simple process of driving a garden-fork into the ground and shaking it ahont vigoronsly. The timid worms are very much alarmed at the tremmlons parth, and come to the smfiace for the purpose of esaping, when they can be easily seized and captured.

SUCTORIA.

Tue Common Leenn is almost as familiar as the eartl-wom, and is one of a grenus which furnish the blogd-sucking creatures which are so largely used in surgery. It belongs to a large group of Annelida which have no projecting bristles to help them onward, and are, therefore, forced to proceed in a different manner.

All these Leeches are wonderfully adapted for the purpose to which thes are applied, their months being supplied with sharp teeth to cut the ressels, and with a sucker-like dise, so that the blood can be drawn from its natural channels : while their digestive organs are little more than a series of sacs in which an enormous quantity of blool can be received and retained.

Every one who has had practical experience of Leeches, whether personally a sufferer or from seeing them applied to others, must have noticell the curions triangular wound which is made by the teeth. Jf the month of a Leech be examinerl, it will be seen to have three sets of minute and saw-like teeth, momoted on as many projections, which are set in the form of a triangle. The wound made by this apparatns is rather painful at the time, and is apt to be troublesome in healing, especiatly in the ase of very thin-skimned persons, requiring the application of strong pressme and eren the use of some powerful canstic.

It one meal the Leech will imbibe so large a quantity of blood that it will need no more food for a year, heing able to, digest by very slow degrees the enormons meal which it has taken. It is a very remarkable fact, that the blood remains within the Leech in a perfeetly unchanged stath-as firesh, as red, and as liquid as when it was inst drawn-and even after the lapse of many montlis is fomed to have undergone no alteration.

The very great diffirulty in inducing a Leech to make a second meal is well known, and can be well accounted for by the lact that it has abeady taken enongh food to support existence during one-sixth of its whole life. In Enrope this is almost impossible as the time oceupied in redncing the Leech to the requisite state of hunger is so long that it more than comberbalances the value of the "reature itseff. "Use up, and buy more," is the plan that is now pursued by the smeron.

The Leeches that are used in England are mostly imported from Brittany, where they live in great nmmbers and constitute an important lnanch of commerce, being sold by millions ammually: The Jeerh-gatherers take them in various ways. The simplest and most successiful method is to wade into the water and pick off the Leeches as fast as they settle upon the bare legs. This plan, however, is by no means calculated to improve the health of the Leechgatherer, who becomes thin, pale, and almost spectre-like, from the constant drain of blood, and seems to be a fit companion for the old worn-out horses and cattle that are oceasionally driven into the Leech-ponds in order to feed these bloodthirsty annelids.

Another plan is to entangie the Leeches in a mass of reeds and rushes, and a third method is, to sulbstitute pieces of raw meat for the legs of the man, and take off the Leeches as they gather round the spoil. This proceeding, however, is thought to injure the health of the Leeches, and is not held in much favor.

Those who keep Leeches, and desire that they shond be preserved in a healthy state, will do well to line the sides of the ressel with clay, and to place a bundle of moss, equisetum, and simila materials, with the amplids. These creatures are invested with a coat of slime. and, as is often the case with such beings, are obliged frequently to change their skin. This operation is performed every four or five days, and is rather a troublesome one, unless the Leech beformished with some such materials as lave just been mentioned. Like the snake, when in the art of castingr its slough, the Leerh crawls among the stems of moss, and thas succeeds in rubhing off its cast gament.

Thes Leech lays its egre in little masses. called cocoons, each of which contains, on the average from six to sixteen egoss. These rocoons are placed in clay hanks, and are of mather large size, heing ahont three-quarters of an inch in length. In some parts of France, attempts are made to rear the Leeches ; and it is found that these fastidions amelids will not lay their cocoons in small tanks, bat require large reservors lined with clay and edged with weeds and other aquatie plants.

J may perhaps mention that some Enropean waters contain other speries of blood-surbing Leepless, which are fomm mostly in still or stagnant waters, and invariably gather to a spot where the mond is thick, soft, and plentitul. One snmmer, white bathing, I waded throngh some mod in order to phek some very tine dewbertips that were orerhanging the bank, and When 1 began to bress fonnd that my fert wem covered with leeches of different sizes. I comberl pightern on one foot, and then fomm that their mombers were so great that 1 ceased to comot them.

The common lomesebeecta, another example of this cmious family, is plentiful in ditehes and more shogish rivels. This amelid is distinguished from the preceding by the character of its teeth, which are not nearly so momerous as in the merlicinal leech, and much more blunt.

It is a camisorons being，and feeds mpon the common earth－worm，seizing it as it protrudes itself from the banks of the stream in which the Horse－leech resides．＇There is a popular＇ prejudice against the Honse－leech，the wound which it makes heing thought to be poisonons． This，however，is clearly erroneons，and the creature has evidently been confounded with another species，the BLack Lefen（Pseudobdella nigra）．The Horse－leech is much larger than the medicinal speries，and may be known by its color，which is greenish－black，whereas that of the medirinal Ieech is gree in，with some longitudinal bands on the back，spotted with

SKATE－SUCKER－Albiōne muricaia．
black at theil edges and middle；the under surface yellowish－green edged，but not spotted with hlack．

The figure in the accompanying illustration represents the Skate－suckelk，so called becanse it is found adhering to several fishes，and is especially prevalent on the common skate and others of the ray tribe．Almost all the species of this genus are beset with the cmious nodules upon the rings of the hody，which give to the creatures so strange an aspect．In this genus，moreover，the portion contaming the head is quite distinct and separated from the body by a sort of neck．Our figure is of natural size．

All these creatures have two modes of movement ：they can crawl slowly along by means Vol．III．－6s．
of moving their rings altermately, or they can proceed at a swifter pace by employing a similar mode of progress to that which is made use of by the larrae of the geometrical moths. Being furnished with a surker at either end, they first fix their hinder sucker against any object, and then extend the body well forwands. Having secured the sucker of the head, they loosen their hold of the posterior sucker, arch their bodies just like the looper-caterpillars, and so proceed.

Before bidding finewell to the Leeches, we must cast a casnal glance at three remarkable members of this group.

The first is the Brancifellion, or Brancmiobdella, a hattish and not very large creature, which is notable for being parasitic upon the torpedo, and retaining its hold in spite of the electric powers of the tish. Another species of the same genus is found on the lobster.

The second of these creatmes is the wonderful Nemertes, a leech-like being not furnished with sucker, and attaning the extraordinary length of thirty or forty feet.

The last of these beings is the Land-Leeen (Hirudo zeylonicu), a temible pest to those who travel through the forests, and often occuring in such vast numbers as even to endanger life.

INTERNAL WORMS; ENTOZOA.

We now pass to the last members of this great class, the Entozoa, or Internal Worms, so called becmse they are all found in the systems of living animals. They have also, bnt wrongly, been termed Intestinal Worms, inasmuch as very many species inhabit the respiratory, or even the sensonial, organs, and are never found in the intestines. The Entozoa are very nmmerons, and are distributed throughont the word, inhabiting the interior of varions living beings ; and, indeed, their presence is so miversal, that wherever an animal can live, there are Entozoa to be found within its structure.

To give an idea of the wide distribution of these strange beings, we will take one genus of Entozoa as expmplilied by the specimens in the Museums, and note the varions animals in which the members of that single genus have been fonnd.

The mestricted genus Ascanis is the type of its family, and many specimens are in the collection of the Musemms. Those have been faken from the following animals: man, mole, dog, fox, cat, seal, woulmonse, sow, horse, grizzly bear, heron, tortoise (several), toad, frog, mulfe, hloms, tishing-frog, bubel, cod (several), tubot, founder, eel, goshawk, barn-owl, lapwing. red-wing, cormorant, and gronse.

The history of these remakable beings is, for the most part, shronded in mystery, and we know lont little of their trone habits and the manner of obtaining entrance into the varions beings on whicly they live. It is, howerer, ascertaned that the young of the Entozon have a very diflerent shape from that of their parents, and that they may obtain entrance into their fouture homes under the disguise of rarious foms.

To this curions smb-class lelong many remarkable croatures, among which the following may be briefly mentioned. The Gunca Worm (Fitaria medinensis) is one of the most developed of this group of animals. It is a strange-looking creatme, eight or ten feet in bongth, amd not thicker than ordinary sewing-threal. It is fomm in many of the hotter parts of the wolld, especially in the combtry from whieh it takes its name. It is also found in America, thongh it does not appear to be mentilnl, except in the Island of Cumacao.

The fininea IVom is mumb dreadet by the inhahitants of the combtres where it resides. on arconnt of the pain ant inconvenionce which it oceasions, and the great difficulty in festroying it. It mostly takes up its residence in the leg, and there grows to an inordinate length, catwing muth pain and swelling matil the heat of the worm makes its appearance. As soon as the sufferer pererives that the worm has made its appearance, he takes a small
-

2ever Animate Creation. 远

WE have concluded to submit for public patronage a work with the above title, being a series of exquisite Engravings representing the Animal World, executed with great scientific accuracy, and accompanied by full Descriptive Text, written in popular terms, so as to delight and instruct the people. Anyone who has considered the subject must be at a loss to understand why an Illustrated Natural History, comprehensive and at the same time popular, has not before this been published in this country. Indeed any lover of animals who has visited the great museums and zoological gardens and has had access to books of engravings in the public libraries, could not fail to remark the wealth of material in existence devoted to this subject. Being confirmed in our conviction of the desirability of such a work, we laid under contribution the best existing authoritics for the production of most perfect representations of all the more important living creatures, and among the artists whose delineations will delight the reader, we may mention Harrison Weir, Wolf, Coleman, Fr. Specht, and Mutzel. By far the majority of the engravings in these volumes are from drawings made from the living animals, many at the Zoological Society's Gardens in London, England.

We purpose that our patrons shall be aided and interested in their study by such an array of pictures as has never before embellished any Natural History. In numerous instances the engraving is printed in oil-colors, and this portion of the illustrations has been taken charge of by Messrs. L. Prang \& Co., of Boston, who we believe rank foremost for high artistic results in this department of printing. These Oleographs were copied under the superintendence of Mr. Prang from the renowned "Tafeln" of "Brehm's Thierleben," so that they may be declared perfectly reliable.

We sought competent advice from various sources as to the most suitable text that should accompany this panorama of handsome Engravings. It was found impossible to embody all the present ideas of naturalists in a single work like this on account of the rapid advances and constant changes in their knowledge of, and habits of thought respecting, the Animal World. And it seemed to us correct that the true object of Zoology is not to arrange, to number, and to ticket animals in a formal inventory, but to inquire into their life-nature, and not simply to investigate the lifeless organism.

What do we know of "Man" from the dissecting-room? Is it not Man, the warrior, the statesman, the poet, etc., that we are interested in? With all veneration which attaches itself to those who are the accredited possessors of abstruse learning, their inordinate use of phraseology detracts too much, we fear, from the fascination that the study of the Animal World would otherwise yield, and as we are not content to have our work restricted to a favored few, we thought the task placed in our hands to be to keep the work free from a repellant vocabulary of conventional technicalities. Our endeavor has been to find an author whose work would be noted for its fund of anecdote and vitality rather than for merely anatomical and scientific presentation, and we arrived at the conclusion that we could not do better than avail ourselves of the Rev. J. G. Wood's comprehensive work -a work most popularly approved by speakers of the English language. It would be superfluous to say one word concerning the standard character of his book, from the pages of which old and young at the other side of the Atlantic have obtained so much instruction and rational amusement. Avoiding the lengthened dissertations and minute classifications of specialists, he presents to his readers in popular terms a complete treatise on the Animal Kingdom of all climes and countries. The one objection that could be urged against it was, that animal life in America might be treated more fully and American forms given more consideration. In order to obviate this drawback and to do full justice to the creatures of our own country, we secured the aid of Dr. J. B. HoLDEr, of the American Museum of Natural History in New York, an undoubted American authority, who has adapted Wood's work to American wants and given prominence to American forms of Animal life.

The splendicł work on Rodentia, by Allen, Coues, and others, will be fully consulted. The valuable work on North American Birds, by Baird, Brewer, and Ridgway, will be the guide in the treatment of birds. The late arrangement of the classification and nomenclature of North American Birds, by Mr. Ridgway, and the Committee on that subject of the Ornithologists' Union, will be utilized in full. The arrangement of Mammals will be after the latest classification by Professor Flower, of the Zoological Society of London.

đerms of \mathbb{P} publication.

The extent of the work will be $\mathbf{6 8}$ parts of $\mathbf{2 8}$ pages, at the price of $\mathbf{2 5}$ cents each. The entire publication will contain 34 Oleographs and 68 Full Page Engravings on Wood, besides many hundreds of exquisite Illustrations interspersed through the text. No subscriber's name is received for less than the entire set, and no order can be cancelled after signature to it. The Publisher guarantees to complete the work in sixty-eight parts. The parts are payable only as delivered, the carrier not being permitted to receive money in advance, nor to leave parts on credit. Subscribers who remove, or who are not regularly supplied, will please address the Publisher by mail.
N. E.

NO SUBSCRIPTION RECEIVED FOR LESS THAN THE COMPLETE WORK—68 PARTS.

piece of wood or pasteboard, rolls the projecting end of the worm romd it, and, after very cantionsly drawing it out for a few inches, he winds mp the loosened portion, and ties the stick close to the limb. Next day, he draws ont a little more of the worm, and proceeds in a similar mamer, until, in a fortnight or three weeks, the entire entozoon has been withdrawn and wound upon the roller.

This process is extremely simple, but demands the greatest care, as, if the worm should be broken, a most painful and even dangerous tumor is certain to arise. I have seen a moderately large specimen of the (ruinea Worm extracted from an English sailor, into whose leg it had made an entrance, and who was quite incapable of work until his enemy had been destroyed. It is mather flat, like some kinds of silken thread, and is of a very pale brown color.

Passing by a few genera, such as Ascaris, Thicocephahns, and Strongylus, all of which are found in the human subject, we come to the large and important genns Trenia, which may be accepted as the type of all the Entozoa. The well-known Tape-worm (Tcemict solimm) belongs to this genns. It derives its name of solinm, as also its French title of Ver Solitaire, from the smpposed lact, that only one individnal cam infest the sime person. It is, however, known that a few cases have occurred where the same indivitual has leen aflicted with at least two specimens of Tape-morms. Those which belong to this genus may be known by the long, flat hody, and the head with four suctorial spots, and almost invariably a circle of rery small but very sharp hooks. The whole structure of the Trenia is interesting to those who study comparative anatomy, but too purely scientifie to be described in these pages.

Another species of Tape-worm that is found in the common cat is termed Tania crassicollis. In example of a Tape-worm that is found in several hirds, smeh as the nightingale, barkeap, and the lark, is called, after the last-mentioned bird, Lark-worm (Tania platy(aphata). Another species of this is fomm in the black-backed gull.

Tanda, Tape-worm, is a parasitic worm of flattened, tape-like form, living in the intes tines of man and many of the lower animals. The long, tape-like creature is made mp of many joined together, each joint heing regarded as a distinct animal.

The Teniu sotium is the more fimiliar form. In a tolerably healthy person it may remain parasitic during a long period.

The treatment for this pest is ammed to dislodge the beat ; for, if that is left, though all of the body, its numerons joints, be thrown off, the head is ancleus or starting-point for more, and the disease becomes as tromblesome as before. Once the head is dislodged, there is an end of the creature. Pomegranite root and the extract of the root of the male fern are regarded as the most efficient remedies.

There is another notable genus of Entozoa, commonly going by the name of IIydatids, on account of the large amount of liquid which is found within their cells. Within each large cyst, or cell, myriads of smaller cysts may be formd, some in an early stage of progress, and others being further adranced, and containing other cysts within themselves.

I have seen some enormons Hyclatids taken from the interior of a female monkey. They were so large and so full, that the owner of the animal thought that it had died from orereating itself. On opening the creatme, howerer, the stomach was found to contain very little food, and almost the whole cavity of the chest and abdomen was filled with huge cysts, which lad encroached upon all the vital organs, pushed the heart on one side, enveloped the whole of one hagg, and, in fact, had cansed so strange a disturbance of the riscera, that the fact of the creature having supported life under such circumstances seemed almost incredible. The large cysts contained a vast number of smaller cells, and these again were filled with cysts of still less dimensions. A large quantity of fluid also existed, and floating in the liquid were found myriads of echinococci, very small, bnt with the characters exhibited perfectly well under the microseope.

We now come to om last examples of the Entozoa.
The Ray-worm is, as its name imports, an inhabitant of fishes belonging to the ray tribe. The genus to which this creature belongs is a rather remarkable one, the head affording somo
curions characteristics. It is very large, in comparison with the body, and has fonr deep clefts set opposite to each other. Some of the species have only two of these clefts, which, in the Greek language, are called "bothria," but in all the gems either two or fomr of these clefts are to be found. The generic title literally signifies "furow-headed."

One species of this genus (Bothriocephatus latus) is the well-known Broad Tape-wom, which is so injurious to man whenever it takes up its abode within a human being. This creature will sometimes attain a length of twenty feet; and it may always be recognized by the peonliarly deep and opposite furrows on the head. Like all its kind, this Tape-worm increases with great rapidity, multiplying its joints by division, and in that manner extending itself to the great length which has already been mentioned.

The whole history of these strange treatures is very obscn'e, on account of the impossibility of watching them in the spots wherein they take their residence. They are all, as is gemerally the case with beings low in the scale of nature, exceedingly tenacions of life, and will survive treatment which would kill many beings apparently stronger and more capable of resistance than themselves. For example, several species of Entozoa have been found in a living state within meat after it has been cooked, especially in those spots where the heat had not penetrated sufficiently to destroy the natmal ruddiness of its color. It is known that "measly" pork derives its peculiar aspect from the presence of Entozoa, and that many of these Entozoa, or, at all events, their eggs, are swallowed by human beings, within whom they make their homes, and whom they condemn to infinite worry, lain, and weakness.

Even immersion in alcohol does not seem to indlict any serions damage mpon these creatnres. Rudolphi found a specimen of an Ascaris quite lively in the throat of a cormorant that had been steeped in spirits of wine for nearly a fortnight. Even the severe process of being thoronghly dried appears to be quite as ineffectual to destroy these beings. A number of Ascarides that had heen removed from a fish, and suffered to become quite dry, and were apparently nothing more than flit slips of membrane adhering to a board, began to revive as soon as they were wetted, and actually moved the moistened part of their bodies, while the remainder was still dry and adhering to the board.

The Trichlna is a parasitic nematoid worm, which infects the muscular tissue of the pig, the rat, and some other animals, and is liable to occur in man. It is usually a quiescent incysted parasite, occupying in great numbers, often, the voluntary innscles. The process of development of Trichinse in the intestine, and the dispersal of their young thronghont the system, produces in men and animals a severe and often fatal illness, known as trichinosissevere intestimal irritation, with fever, are common symptoms. No remedy is found effectual in staying the ravages of this dreadful parasite, other than extreme cleanliness and cantion.

The use of food imperfectly cooked is the great source of tronble. The fat of pork is not injurions, as the Trichine never infect that portion. The mnscular parts, as in sansages, fresh pork, ham, and the lean parts of bacon, are liable to produce the disease. The parasite is so small that the butcher often cannot tell whether any given piece of pork is affected or not. Neither pickling nor smoking, as ordinarily practised, will destroy the life of the pest. The only protection is by very thorongh cooking. The Trichine are killed by a temperature of 160° Far. Meat that is smbjected a short time to this temperature is harmless. All parts of the piece of meat shonld be carefully heated at that point, as a ham may be at 160° on the surface, while inside the temperature may be much lower. The only safe rule is to boil until the meat is of a uniform color thronghont.

RADIATA, OR ECHINODÉRMATA.

E now arrive at a rast and comprehensive division of living beings, which have no joints whatever, and no limbs, and are called Radiata, becanse all their parts radiate from it common contre. The structure is very evident in some of these beinge, but in others the formation is so exceedingly obscure, that it is only by anatomical investigation that their real position is discovered.

The highest forms in this division lave been gathered together in the class Echinodermata. This word signifies Trehin-skimed, and is given to the animals comprising it because their skins are more or less furnished with spines, resembling those of the hedgehog. In these animals the radiate form is very plainly shown, some of them assuming a perfectly star-like shape, of which the common star-fishes of our coasts are familiar examples. In some of the Radiates, such as the sea-mrchin, the whole body is enornsted with a chalky coat, while in others it is as soft and casily torn as if it were composed of mere structureless gelatine.

The mode of walking, or rather creeping, which is practised hy these beings, is very interesting, and may be easily seen by watching the proceedings of a common star-fish when placed in a ressel of sea-water. At first it will be quite still, and lie as if dead, but by degrees the tips of the arms will be seen to cmrve slightly, and then the creatme slides forward withont any perceptible means of locomotion. If, however, it be suddenly taken from the water and reversed, the mystery is at once solved, and the walking apparatus is seen to consist of a vast number of tiny tentacles, each with a little round transparent head, and all moving slowly but continually from side to side, sometimes being thrust out to a considerable distance, and sometimes withdiawn almost wholly within the shell.

These are the "ambulacre," or walking apparatus, and are among the most extraordinary means of progression in the animal kingdon. Each of these immmerable organs act as a sucker, its soft head being applied to iny hard substance, and adhering thereto with tolerable firmmess, until the pressure is relaxed and the sncker released. The snckers contimually move forward, seize upon the ground, draw the body gently along, and then search for a new hold. As there are nearly two thonsand snckers continually at work, some being protruded, others relaxed, and others still feeling for a holding-place, the progress of the creature is very regular and gliding, and hardly seems to be produced by voluntary motion.

The Echinoderms of our North American coast are not conspicuons for beanty, and, consequently, are not well known popularly. At this day it is probable that very few persons that visit the sea-slore and pick up one of the common sea-urchins that are seen there, would have the slightest conception what it is-indeed, most people would question its kingdomwhether vegetable or animal. In the absence of information, no wonder; but is it not an unilesirable state of things, that the nature of the most common objects of our sea-shore should be so completely unfamiliar?

We will now proceed to our examples of these curions beings.
The Hermit Sipunculus (Sipumous bernhardus) is a long, slender, worm-like being. it is a creature which is remarkable for the fact that it resides in the empty shells of mollusks, after the same fashion as is observed by the hermit crabs.

If taken ont of the shell, the Sipuncuhus resembles a worm so closely, that it might easily be mistaken for an annelid; and, indeed, according to one of our best zoologists, it forms a
link between these two great divisions, for in its person radism sets and annulism begins. The end of the body, which is concealed within the shell, is calpable of being enlarged into a bulb-like shape, which enables the creature to maintain a firm hold of its shelly retreat, and the other extremity is furmished with an external proboscis, at the end of which is a small circlet of tentacles.

Several species of this genms are eatable and held in great estimation by the Chinese, who catch them in a rery ingenions mamer. The Edible shraculds lives in holes in the sand, and always keeps the month of its burrow open. The Chinese fishermen arm themselves with a bundle of glender wooden rods, tapered to a point at one end, and having a little round knob at the extremity of the point. Ther proceed to the sands at low water, and drop one of these rods into eath burow, where they leave it for twelve hours. During this time the Sipuncmus is sure to swallow the button, and as the elastic tissues contract it is unable to release itself; and when the tide has again retreated, the rod, with the sipmonhus attached, is drawn out of the burrow by the fishomen.

The species which we are now examming is sery carefol of its own comfort, and in order to make the entrance of its shell exantly suitable to its own size, it stops up the aperure with sand and similar substances.

A rather curions creature, notable for the long tuft-like appendage at its extremity, is the 'Paben Priaplot's, a species which is found in the southern seas, and occasionally taken off the English coasts. A cmions lmandle of threads at its extremity is supposed to serve the burpose of respiratory organs. It has a retractile proboscis, but no tentacles rond the month.

The sylunx is distinguished from the sipmonlus ly the proboscis, which in these creatmres is rather short, and has an indented tentannar fold round the month. The generic name, Syrinx, is derived from the resemblance of the creature to the reed from which the ancient pipes were mate. This species has a wondorful caparity for changing its shape. The SpoonWorm is so called on arcount of the spoon-like appendage to the proboscis. Behind the prohoseis are two shiming, hook-like bristles. All the members of this gems are remarkable for the wondゃrful power of contration and expransion possessed by the skin, and the extraordinary mamer in which they can alter theil shape. In consequence of this extremely contractile structure, the whole of the water contaned in the borly is spmrted out as soon as a wound is made, and intestines are seen to be forced out after the water. One species of Thalassema is used as lait by fishermen.

All these speries belong to the family Sipunculide.
The examples next described belong to the family Holotiurdide, and are populany known by the name of Sea Cectabels, or Sea Puddintis. In these the body is mostly cylindrical, and is covered with a tongh, leathery skin, upon which are placed a number of scattered chalky particles. The month is surounded with a set of retractile tentaches.

Some sperios of this lamily are atem by the Chinese, and a large trade is carried on in these strange prolucts of the sea; the ammal merchandise being worth about two hundred thomsand pomms. The price of the Thepavas (Psolus phentapus), as they are called, is very variable, arcorling to the species, some kinds being comparatively cheap, and costing rather less than two pronds jer hmmedweight, while others will fetch thirty ponnds for the same weight. There are, besides, "fancy prices" for some rery scare species of Trepang, which, however, are likely to be equalled in ral vahe by the chearer and commoner kinds.

They secm to he very mattractive creatures, black, wrinkled, and looking moch as if they had been mate ont of the mper-leather of ohd shoes. They are, howerer, convertible into a liclo aml palatable somp, and are also stewed in bations was, taking, in fact, the same ramk among the Chinese that turtle does with us. The 'Trep pang is prepared for the market by being carefully opened and eleansed, laid in lime, and then dried, either in the sum or orer wooden fires.

The Psolns is allied to a form which is oftem bronght up on the lishermen's hooks on Georges' Banks. It is abont six inches in length, composed on the exterior of a series of calcareons scales, arranged like those on fishes; these are of a brickred color, sometimes of brilinant searlet. One end, the month, is fumished with a llowing amay of branching shrub-
bery tentacles, that are at the least disturbance entirely withdrawn, and concealed internally. This is one of the most desirable objects for the aquarimm. On the unter surface is a flat disc, provided with small tubes, which answer as propelling organs. These thbes have discshaped teminal parts, which adhere to surfaces it passes along. 'The same are seen in appropriate portions of the Sea Urchins. A few small species are found at Grand Mpnan, but the home of these forms is in tropiral waters. The Pentacta is represented in our New England waters, and other forms, similar to the Cucumarias. The most notable of these forms is seen on the Florida Reef. A species of Holothmia inhabits the lagoons at Tortngas, measmring two feet in length. It is moll like a great encumber in appearance, thongh it is black and minviting in aspect. These creatures are strewn along the bare places among the shrol) corals of the lagoons in considerable mmbers. Remove one of them and snbmerge it in a pail of water, the hage creature exhansts the oxygen very quickly. Another creature now protests there is not enough of the life-giving agent, and appears from the moutl of the great Holothmrian, in the shape of a veritable fish, six or eight inches in length. Delicate, almost white, from its absence from light, it seems to have little faculty for swimming, thongh it is possessed of every ordinary requisite of fins. Carelnl as possible with this fish, we never could keep it alive an hour. Here is a singular case of commensalism. Chancer is credited with the invention of the word commensal, as literally meaning eating at the same table. Naturalists have adopted this term to distinguish the cases like the present, where two creatures are intimately associated.

The Molothorias are prepared for food, and a large species, the Trepang of the Chinese, inhabiting the Pacitic Octan coral reefs, is similar to the great one just described. They are gathered on the reefs and "cured" there, when they are exported to Chinese ports in great quantities. Cur friend stimpson, of fame in these regions of the invertebrates, "cored" our smaller Holothmia, of Grand Menan, and pronounced it equal, at least, to the article of the Chinese markets, with which he was familiar. Onr friend had personal experience in rarions other directions, to wit, in one case, testing the "smarting" powers of the tentacles of one of the great jelly fishes. Not fontent with the ordinary method of tonching, he applied his tongue-with positire results as to potemer.

A form of TIolothmian is quite often thrown n p on the braches of New England after stoms, which is very attractice from its pearly-white, soft, leathery exterior, and a beantifnl pinisish blush on one side. This was called Chirodota by Gould, and is altered to the Symaptas.

An odd-looking little creature among them, called the Psolinus, is remarkable for the great lengtl of the ambulacre, which lift it well above the object on which it walks. Owing to this fact, it has quite an intelligent aspect as it crawls along, with its beantiful crown of tentacles expanded, and waving in the water. In these two chrious genera, the ambulacre are only distributtal in the under surface, and in the present example are placed in three rows on a flattened dise, which ocenpies part of the under surface.

In the genns Pentacte, the ambulacre are placed in a series of parallel rows along the body, sometimes six, but mostly five in mumber.

It is a remarkable fact, that when one of the Molothurida is alarmed, or suffers from indigestion, or is affected in any way, it proceeds to an act which is the exact analogue of the Japanese custom of "happy despateh." I'nder any or either of these circumstances, it proceeds to disembowel itself, and does so with a completeness and promptitude that are almost incredible. It disgorges the whole of its interior, with all the eomplieated armangements that render the Holothmide such singular beings to dissect, casts away all its viscera, its stomach, and eren throws off the beantifnl bell of tentacles.

Haring done this, and reduced itself to the condition of an empty skin, which camot eat because it has no montly and no stomach, and will not walk, becanse it has no object for locomotion, it remains perfectly quiescent for some months. At the expiration of that period, a fresh set of tentaeles hegin to make their appearance; they are followed by other portions; and after a while, the animal is furnished with a completely new set of the important organs which it had cast away. It seems a singular cure for indigestion, but no one can deny its efficacy.

The now cone to the Sea Cucunber, which has reepived its generic name from its great resemblance to that regetable. The swaller species are appropriately named Sea Gherkins. The food of all these animats consists of marine mollnsks and other small inhabitants of the sea. The complete but, empity shells of several small mollusks have been fond within the stomach of dissected specimens, proving that the creature must have swallowed the shell entire, and dissolred ont its inhabitant by the process of digestion.

It may as well be mentioned that the only vestige of a skeleton in these creatures is a ring of chalky substance smroming the beginning of the intestinal canal, and formed of ten pieces, five large and as many small. To this cmions ring are attached the longitudinal miscles of the boty, ly which the creature can lengthen or shorten itself at will, the expansion and contraction of the body being due to a series of transerse muscular fibres. The longitudinal miscles are ten in mmber, and are arranged in five pairs.

Another example of the Cucmmarise is termed C'ucumaria lyotina. It is remarkable for its heantifnl month, which is adomed with a crown of tentarles.

A Cucmaria called sumopto is a more singular leing. It derives its name from a Greek word signifying to seize hold of anything. This name is given to it becanse, when the hand is drawn over its smrface, the skin is slightly arrested ly some invisible agency.

On taking off part of the skin of the Synapta and placing it under a microscope, a most wonderful sight is disclosed. The skin is furnished with a mmber of little tubercles on which are set numbers of tiny spientes, which look as if they were anchors for a fairy fleet. They are of extremely minnte dimensions, and are quite invisible withont the aid of a microscope, but never fail to excite admiration when they are well exhibited. Perhaps the best method of bringing out their beantiful shapes is by using a paabolic condenser or a spotted lens, as then their transhucent glasey forms shine ont against a dank background.

These little objects are of exactly the same shape as the classic anchors of ancient times, and were it not for their extreme minuteness, the person who sees them for the first time is tempted to think that they have been manufactured by some ingenions impostor. But the hand of man is quite incapalle of making these beantiful little objects, with their long shanks, their gravefully curved ams, and their sharply-pointed and regularly-serrated flukes.

Nor are the anchors the only wonders which so appropriately deck the skin of a marine animal. If the little prominences can be neatly placed under the microscope withont being rubbed, each anchor is fomm to be affixed by the end of the shank to the end of a cmionslyformed shield, mande of the same translucent subsiance as the anchor itself, and piereed with a pertectly regular pattern like ladies" "cut-work" embroidery. These shields hold the anchor in sucin a way that, as the shieh lies flatly upon the skin, the flokes of the anchor are held in the air. The olject of this remarkable arrangement is not known.

There are several species of synapta, all with the anchors and shields, but the pattem mon the shields is diflerent in the varions species, as in the shape of the anchor. These remarkable apmendages hatre heen compared by some anthors to the little hooks on the calyx of the well-known burdock. Symaptas are abundant on the Reel, and one or more are foumd on the shores of New Englamd.

We now come to a new and beatiful family of this order, called Echinidse, becanse they are covered with spines like the quills of the hedgehog. Popularly, they are known by the name of Sea-tromis, or sba-mits. The general shape of these eurions heings can be best learned by reference to onv colored illnstration, which in every respect is most true to nature.
ln all these curions beings the mper parts are protected ly a kind of shell always more or less dome-shajed, but extremely variable in form, as will be seen in the illnstrations. The shell is one of the most marvellons structures in the animal kingdom, and the mechanical difficulties which are operome in its formation are of no ordinary kind. In the case of the common Sea-ema, the shell is nearly glomlar. Now, this shell incrases in size with the age of the animal ; and how a hollow shlerical shell can increase regularly in size, not materially aftaing its shape, is a pollem of extreme dilliculty. It is, howerer, solved in the following manner:-

SELMAR HESS, PUBLISHER, N Y

The shell is composed of a vast number of separate pieces, whose junction is evident when the interior of the shell is examined, but is almost antirely hidren by the projections upon the outer' surfact. 'These pieces are of a hexagonal or pentagonal shape, with a slight enve, and having mostly two opposite sides mond longer than the others. As the animal grows, fresh deposits of chalky matter are made upon the edges of each pate, so that the plates increase regularly in size, still keeping their shape, and in consequence the dimensions of the whole shell increatse, while the globular shape is preserved.

If a fresh and perfect specimen be examined, the surface is seen to be corered with short shatp spines set so thickly that the substance of the shell can hardly be seen through them. The structure of these spines is rery remarkable, and moder the microscope they present some most interesting details. Moreorer, each spine is movable at the will of the owner, and works upon a trme ball-and-socket joint, the ball being a round globular projection on the surface of the shell, and the socket sumk into the base of the spine. When the creature is dead and dried, the membrane which binds together the ball-and-socket joint becomes rery fragile, so that at a slight tonch the membrane is broken and the spines fall off.

Other peculiarities of structure will be noted in eonnection with tle different species.

The common Sea-urchin is edible, and in some places is extensively consumerl, fully eaming its title of Sea-egg, by being boiled and eaten in the same manner as the eggs of poultiy.

The fishing for these creatures in the Bay of Naples is graphically and quaintly described by Mr. R. Iones:"I had not swom very far from the beach before I found myself smrrounted by some fifty or sixty human

YOUNG AND ADULT SEA-URCIIIN,-syongylocentrotus dröbachiensts. heads, the bodies belonging to which were invisible, and interspersed among these, perhaps, an equal ummber of pairs of feet sticking ont of the water. As I approached the spot, the entire scene beeame sufficiently ludicrous and bewildering. ... Down went a head, up came a pair of heels-down went a pair of heels, up came a head; and as something like a hundred people were all diligently practising the same mancuvre, the strange vicissitude from heels to head and head to heels, going on simultaneously, was rather a puzzling spectacle."

After inquiry, it proved that these divers were engaged in fishing for sea-urchins, which Vol. ILl--e9.
are especially valuable just before they deposit their eggs, the roe, as the aggregate egg masses are termed, being large and in as much repute as the "soft roe" of the herring.

These Sea-urchins are fond of burrowing into the sand, an operation which is conducted mostly by help of the movable spines. They will sink themselves entirely out of sight, but not without leaving a slight fumnel-shaped depression in the sand, which is sufficient to guide a practised eye to their hiding-place.

The Sea-urchins are represented in New England by one species. It is found ensconced in pools among the rocks at low tide, being unaffected by the loss of water during the low tide which leaves them bare.

The Common Sea-urchin on our coast, bearing the heavy title of Strongylocentrotus drobachiensis (see figure) is the only one quite faniliar to Northern waters. It is exceedingly abundant in the tide pools and in the rocky cliffs, and is common in Alaska. A larger species is found in California. The Echinoderms are not very largely represented on the North American coast. In the warmer waters of the Florida Reef they are aboudant.

The accompanying figure (No, 2) is about the average size of our species. The smaller fignre (No. 1) represents the young as seen from the side of the mouth.

The genus to which another species, the Piper-tromin, belongs, can always be recognized by the enormons comparative size of the tubercles sustaining the spines and the parallel rows of ambulacra.

The members of the gemus Cidaris are mostly found in the hotter parts of the world, and are plentiful in the Indian Stas. The spines of several of the species have been made serviceable in the cause of education, being found to make excellent slate-pencils after being calcined. The missionaries have the credit of making this useful discovery.

The food of the Echini in general seems to consist of various substances, hoth of an animal and regetable nature. Fragments of different sea-weeds have been found in the digestive cavity, as also certain portions of shells, which seem to prove that the Edhinus had fed upon the mollusks, and broken their shells in pieces with its powriful jaws. The precise mode of feeding is not exactly ascertained ; but it seems likely that the Echinus can seize its prey with any of its ambulacra, no matter on what portion of the hody they may be sitnated, and pass it from one to the other matil it reaches the mouth, which is placed in the centre of the open disc. Both mivalre and bivalve mollusks appear to he eaten by the Echinus.

The creature which is represented in the accompanying illustration is appopriately named Common Heart-thchin, from its peculiar shape, and bears an evident respmblance to the heart-cockles already mentioned. Many speries of Heart-urchins are found in a fossil state, and are especially common in the chalk formations.

The shell of this genus is slight and delicate, and is composed of very large plates, which, in consequence, are comparatively few in number. There is always a furrow of greater or less depth at the upper end. In the naken specimen the rows of pores through which the ambulacta pass are plainly perceptible, and aren in the fossilized specimens, which have been buried in the earth for so many ages, these proses are still visible, and so plainly marked, that the genus and species of the dead shell can be made ont with little less ease than if the animal were just taken ont of the water.

The Heart-urehins are fonnd in all parts of the world, and the European seas contain suepimens of these curious beings. In the Mediterranean they are extremely plentiful, and mostly appear to live helow the samd. They seem to feed on the amimal substances that are mingled with the sand, for M. de Blainville fomd, on dissecting many specimens, that their digestive organs were always filled with fine sand. The walls of the digestive cavities are exceedingly delicate, and have been compared to the spider's web.

Another of these remarkable creatures, where the shell is formed into two points, is the Fimble lienlit-lroficy, so called from the fiddle-shaped mark upon the shell.

In some of the hotter parts of the world, such as the Indian seas, several species of Echinus are armed with sharp and slender spines, which are apt to pierce the bare foot of a bather, and to cause painful, and even dangerous wounds. Most of these Echini live in the crevices of rocks, but sometimes crawl over the sand, and inflict monch suffering upon those who unwit-
tingly place a foot upon them. Mr. F. D. Bennett, in his account of a "Whaling Voyage," had practical experience of these shar" spines:-"On one occasion, when searching for fish in the crevice of a coml rock, I felt a severe pain in my hand, and, upon withdrawing it, found my fingers covered with slender spines, evictently those of an Echinus, and of a gray color.

HEART-UIRCHIN - fremopais tyrigera. (Natural saze.)
elegantly banded with black. They projected from my fingers like well-planted arrows from a target, and their points, being harbed, could not be remored, but remained for some weeks imbedded as black specks in the skin.
"Its concealed situation did not permit me to examine this particular Echinus, but I subsequently noticed others of a similar nature fixed to the hollows in the rocks; they were equal in size to the Echimus cidaris, and their body was similarly depressed, but the spines were long, slender, and more vertically arranged, and their points finely sermated. Their color was jet-black. These animals adhered so firmly to the rocks, that they conld not be detached without difficulty.
"When closely approached, they gave an imitable shrug to thrir spines, similar to that displayed by the pormpine or hedgehog. It was difficult to say if the hand had been bronght in perfect contact with this Echinus before it was wounded by its weapons. In some experiments, I approached the spines with so much cation, that had they been the finest pointed needles in a fixed state, no injury conld have been received from them: vet their points were always struck into my land, rapidly and severely. The natives are well aware of the offensire character of these amimals, and cantion the stranger against handing them."

The same author mentions that a species of Cidaris is largely eaten by the Sonth Sea Islinders, and that in varions places on the sea-shore there are large lifaps of its shells and spines, showing that feasts have been lately held in that locality.

Tue curiously-formed Echinus which is shown in the illustration on next page is popularly called the Cake-trchin, on account of its remarkably flattened form. It belongs to a family which are generally called Shield-urchins, from their flat, disc-like shapes. The shell is wonderfully tlattened and slopes rapidly from the centre to the circumlerence. The general shape and
arrangement of the plates from which the shell is hoilt may be seen in the figure. The word "placenta" is Latin, sigmifying a flat cake, and is appropriately given to this speries.

The development of the Eehinns is so very remarkable, that it deserves a passing notice. This creature passes throngh a metamorphosis even more strange than that of the insect, and no one who was not acquainted with the amimal conld possibly recognize in the delicate framework of translurent spines the larval form of the globmar Sea-mochin. It tirst, the little creatures are almost shapeless and globular, roll-

SHIELD-URC'IIN,-Echinaracthiks irarma. (Natural size.) ing about throngh the water in an uncertain kind of way. But by degrees they put forth a domelike portion, from which proceed several slender calcareons rods, altogether making a figme that has been aptly sompared to a skeleton French clock. In this state it was formerly known ly the name of Plutens. As if to carry ont the comparison still further, the first indiation of change to its more perfect form is the development of a circolal dise which will represent the face of the clock, uron which are traced remtain lines that answer to the lands and figures. By rapid degrees, the dise expands and covers the gelatinons substane of the animal, and puts on hour by hour more of the Echims as it loses its former skeleton slape. The latter becomes rapidly covered by and absorlwed into the former, and in due time the framework of long, slender rods, which might also be well comprared to an artist's easel, or the tripod stand of a theololite, is converted into the well-known globular Echinus, with all its complicated apparatus of spines, pedicillaria, and walking-organs.

The reader may perhaps have noticed that, on inspecting a common Echinus, esperially from the interior, it exhibits in a very distinct manner its close alliance with the well-known star-fishes. Take, tor example, a common five-finger star-fish out of the water, lay it on its hack, and then gather all the tive points together. Now, supposing the creature to be dead, strip the skin from the rays, leaving it only adherent down the centre, join the edges of the strins, and there is a very good imitation of the Sea-mrehin.

The Cake-mrchin is represented on the New England coast by one of about three inches diameter. This object is, perhaps, more puzzling to the average observer than any other. Its remarkable flatness is a stumbling-block to understanding it as an animal. Sund Cake is a name given it, and suggests its possible origin with the uninformen.

Two other curions members of this genns are the Keynole-trany and the Wrineel-uncmin.
The latter, so called because of its wheel-like shape, is nearly as that as a piece of money, and has a very slight elevation in the centre. It is remarkable for the rery deep teeth into which one sidn of the dise is cnt, giving the creatnre an aspeet as if it were a cog-wheel in process of manufacture. The color of this speries is mostly grayish-state above, and dull white below. The under surface is reined over its whole extent, all the veinings radiating from the centre. The color of this speeies is, however, extremely variable. It is also called Rotula.

The second species might be well called the Keyhole-mrchin. This remarkable creature, insteal of heing toothed at the edige like the preceding species, has its dise pierced with oblong apertures of a shape much resembling a keyhote. These apertures are rather variable in their shape, sometimes being merely piereed throngh the dise of the Urchin, and sometimes extending fainly to the edge. When full-grown, this is mather a large species, moch resemlhing an ordinary pancake both in shape and dimensions. Tleere are mayy species of Encope, most of which are inhal)itants of the hotter seas, some being fonm in Southern America. The colon of the Keylule-urdin is Anll gray. The whole family is a very remarkable one, and affords nmmerons points of interest to the careful observer.

STAR－FISHES；ASTERIADA．

Leaming now the Echini，we pass to the next latre grouj，of Echinodermata，caller scientifically Asteriadat，and pmplarly known as Star－fishes．These creatures exhibit in the strongest manner the radiate form of hody，the varions organs boldly radiating from a common centre．

Many of these creatures are exceedingly common，so plentiful，indeed，as to be intensely hated by the fishermen．Of these，the common Five－fingeis，Astemis，Buthione，or Cross－fisif，is perhaps found in the greatest mombers．All star－fishes are very wonderful beings，and well relay a close and lengthened examination of their habits，their development， and their anatomy．There are sufficient materials in a single Star－tish to fill a whole book as large as the present volume，and it is therefore necessary that our descriptions shall be but brief and compressed．

To begin with the ordinary labits of this creature．
Every one who has wandered by the sea－side has seen specimens of the common Five－ fingers thrown on the feach，and perbaps may have pased it by as something too common－ place to deserve notice．If it he taken up，it dangles helples．ly from the hand，and appeans： to be one of the most imocuons beings on the face of the earth．Yet，this very creature has， in all probalifity，killed and deronred great numbers of the edible mollusks，and has either entirely or partially excited the anger of many an industrions fisherman．

To begin with the former delinguency．It is found that the star－fish is a terrible foe to mollusks；and，althongh its body is so soft，and it is destitute of any jaws or levers，such as are employed by other mollusk－eating inhalitants of the sea，it can derour even the tightly． shat bivalves，howerer firmly they may close their ralres．On looking at a Star－fish，it will be seen that its month is in the very centre of the rays，and it is through that simple－looking month that the star－fish is able to draw its sustemance．

Even if it should come upon a mollusk which，like the oyster，is firmly attached to some object，it is by no means disconcerted，but immediately proceeds to action．Its first process is to lie upon its prey，folding its ams over it，so as to hold itself in the right position．It then applies the month closely to the victim，and deliberately begins to push out its stomach throngh the mouth，and wraps the mollusk in the folds of that orgam．Some naturalists think that the Star－fish has the power of secreting some fluid which is applied to the shell，and canses the bivalve to unclose itself．But，whether this be the case or not，patience will always do her work，and in time the hapless mollusk surrenders itself to the derourer．In the case of smaller prey，the creature is taken wholly into the month，and there digested．

A very remarkable effect of the voraty of the Star－fish is often sem in specimens．It is not an musnal oremrence，that Star－fishes had managed to swallow entire a bivalve mollusk， and had dissolved out all the soft parts from the shell．This they were mable to throw ont， as is the cnstom of Star－fishes，and，in consequence，the empiy shell of the bivalve became a fixture within the body of the Star－fish．

The serond delinquency of the Star－fish is achiered as follows：－By some wonderful power the Stir－fish is enabled to detect prey at some distance，even thongh no organs of sight， hearing，or scent can be absolutely detined．When，therefore，the fishermen lower their baits into the sea，the Star－fishes and crabs often seize the hook，and so give the fisherman all the trouble of pulling up his line for nothing，baiting the hook affesh，and losing his time．

The fishermen always kill the Star－fish，in reprisal for its attack on their bait，and for－ merly were accustomed to tear it across and fling the pieces into the sea．This，however，is a very foolish plan of proceeding，for the Star－fish is wonderfully tenacions of life，and can bear the loss of one or all of its rays withont seeming mucle inconvenienced．The two halves of the Asterias would simply lital the wound，put forth fresh rays，and，after a time，be transmuted into two perfect Star－fishes．

It often happens that the lounger on the sea－shore finds examples of this species with only four or even three rays，and，finding no restige of a scar to mark the place whence the missing
limb was torn, he is apt to fancy that he has found a new species which only possesses a small number of rays. The fact, however, is that the interval is immediately filled up by the creature; the rays on each side of the injury close np together, and all mark of a wound is soon obliterated. I have seen these strange beings with only one ray, proceeding quietly along withont appearing to suffer any inconvenience from their loss.

The movements of the Star-fish are extremely gracefnl, the creatnre gliding onward with a keantifully smooth and regular motion. It always manages to accommodate itself to the surface over which it is passing, never bridging over even a slight depression, but exactly fol lowing all the inequalities of the ground. It can also pass throngh a very narrow opening, and does so by pashing one ray in front, and then folding the others back, so that they may afford no obstacle to the passage. It also has an odd habit of pressing the points of its rays uron the bottom of the sea, and raising itself in the middle, so as to resemble a five-legged stool. If the reader is desirous of keeping a few Star-fishes in an aquarium. the object may be easily accomplished by keeping them in a very cool place, as they are extremely impatient of heat, and soon die if the water becomes too warm. They also require that a supply of air be freqnently pumped through the water in which they reside.

The bony apparatus, or skeleton, if it may be so called, of the Star-fish is a most beantiful and wondrous object. Without going into the tempting regions of anatomy, I may state that a few hours will be well bestowed in examining the structure of any of these beings. A very simple plan of doing so is to wash the creature well with fresh water, lest the salt shond rust the scissors and scalpel, and then carefnlly look into the extraordinary array of tentacles, or ambulacra, on which the creature walks. Iet it then be pinned to a flat piece of cork loaded with lead, and sunk about half an inch below the surfare of clear fresh water. Slit up the skin along eaclu ray, taking care to save a portion for the microscope, and turn the flaps aside.

In each ray will be seen the emious feathered and ferm-like branches of the stomach, and muler them lies the wondrons army of bone-like pieces of which the skeleton is made. Thonsands upon thonsands of pare white colmms are ranked in donble vistas, and are overarched by an claborate strnctare of the same white material on the pillars. I know nothing that can compare with this sight for delicacy and heanty. Imagine a cathedral aisle half a mile in length, which is smpported ly a donble row of white mable columns, and whose roof is formed of the same heantitul material ; then, let all the pillars be bowed towards each other in pairs, so that their capitals rest against each other, and a dim idea will be formed of the wonderful structure of the Star-fish.

The piece of skim must be preserved in order to examine, with the aid of the microscope, the pedicillarise and minute spiracles that stud its surface. A tolembly stout pair of scissors are required for the pmpose of cutting the skin, as its substance is tongh; and it is besides fumishod with such an army of harl stony appendages, that the edge of a more delicate instrument wonk certainly be tmmed, and its blate lon some risk of flacture.

Before we pass to the remaining examples of this family, a few words must be given to the derelopment of this wonderfal creature.
'Ther egiss of the star-fish are nmmerons, almost heyond the power of anthmetic to calculate, and thins kepp op the needful supply of these creatmres whose enemies are su numerons, and powers of escape sotritling. When first exchuded, the eggs are not allowed to bass lieely into the sea, hot are protected for a time in a kind of cage or chamber formed by the parent by raising itself on the tips of its rays, as has ahrady been mentioned. When hatched, the young are romm and ahmost shapeless, bearing a very close resemblance to an imprisoned amimalenle. They hy degrees put forth their rays, the feet issue fom the rays, and, aftor a while, they are embled to shift for themselves, and are dismissed from their pirental home.

The Butthorn is much like a species once thought to be very rare on the New England coast. but now known through the dredsinge of the Fishery Commission to be abondant in certain loralities in deep water. One hanl ofl' l'ortland, Me., chring a summer we spent with Professor Baird, as guest of the Fish Commission, prodned a large number.

The common Star-fish of onr American beaches is familiar enongh, though as yet, like many another sea form, not understood. Though so diverse in shape, the Star-fish, Echinus, or Sea-chestnut, and the Lolothmias, are closely allied as Echinoderms-spine-skimed animals.

Species like the Sm-star (Solaster) have been found, shangly, by adhering to lines of fishermen on the fishing banks.

We now proceed to the examiation of somm of the more conspionons species of Asteriadar.
 bern given.

A pretty little species, called Gibburs stanlet, is notable for the mamer in which the moss are connected by a membrane as far as their tips. Another species is the Knotry cusmox simar, so called on account of the thick rounded mas.

Is the next examples we have several other cmious forms of star-fishes. The Birbes. Foot SEA-stab derises its name from its singular shape, which iss not at all unlike that of a duck's foot, with its spread toes and comnecting membrant. This heantiful species is very thin of texture, and has a pentagonal form, cansed by the five rass and the comecting mbmintane. If the surface of this Star-tish be examined with a good magnifier, it will he formed to be covered with tufts of very tiny spines armonged in a regular series, and foming a kind of pattern.

The colors of the Bird's foot Star are positively splendid. Each ray is marked with a donble line of bight scarlet, anrow belt of the same color eqges the combecting membrane, and the centre is also scarlet. The gromnd color is light yrellow, and the contrast of these two beatifnl colors has a remarkably splendid eflect. This species is seldom seen in the shallow waters or above low-water mark, and is, as a general rule, taken with the dredge.

A boldly rayed speries, which looks something like the front view of a suntlower, is very common, and goes popularly by the appropriate name of Suv-stak. It often attains to considerable dimensions, and is always a very consplichons object from the glaring colors with which its surface is decorated, and the lare amome of surface on which they can be displayed. The mpere surface of this fine species is bright remilion, and as it sometimes is eight or nime inches in diamster, it is a very brillimt object as it lies upon the rocks.
shonld any reader he desirous of preserving this or any other of the star-fishes for a cabinet. he may do so withont diffimlty, by taking a few precautions. The first process is to wash the Star-fish in plenty of fresh water, and it will be better to follow mp this step by removing the whole of the stomaclo and its appendages. This may be done from the under surface of the rays; and it will, perhaps, be usefnl if a little cotton wool be judicionsly inserted, so as to prevent the skin from collapsimg dming the prowess of drying. Star-fishes may be easily dried, either lofore the fire or in the sum, but in either case they must be rarefully washed in fresh water ; and if a fire he amployed, as most be the case in wet or dull weather, the boad on which the Star-tish is shond not be placed rery near the fire, and should be occasionally watched, so that any tendency to warping may he porrected.

In the Eymd Crabila, the eyes are mother blant at their extremitios, and are cleft nearly to the centre, so that there is no definite disc. This species is mather stiflof to the tomel than the others. It mast, however, be remarked that the eonsistency of the star-fishes is extremely variable, even in the same species or the same intividual. If, for example, a specimen of the common cross-fish be taken from the pool of water in which it is lying, a practised hand will at once know whether it is dead or alive. In the former ase the creature is soft and flabby to the touch, yields readily to the impress of the fingers, and hangs down heavily like a mass of wet rag. If, on the contrary, any life should be lett in the creature the rays are tolerably firm and resisting to the touch, and when held by one lay it has altogether a firmer and more lively feeling about it. A simple but effectnal mode of ascertaining whether a Star-fish be alive or dead, is to tmon it on its back in some sea-water. If it be dead there will, of course, be no movement, lut if the least particle of life be still latent in that
body from which it can hardly be expelled, the ambulacra, or feet, are seen to put themselves in motion, some being thrust ont while others are being withdrawn.

Our next examples are very curions species of Star-fish.
The Brittle-stals (Ophiocomu rosula), of which there are sereval species, are very appropriately mamed, inasmnell as they are able to break np their rays in the most extraordinary manner, a capability whirh they mostly exercise when they feel alarmed. The generic name, Ophiocoma, is derived from two Greek words, the former signifying a selpent and the latter a lock of hair.

The whole of the Brittle-stars are curions and restless beings. They can never remain in the same attitnde for the tenth hart of a second, but are continually twining their long arms, as if they were indeed the ser"ents with which Medusa's head was smmonded. The least impmity in the water will camse these strange beings to break themselves to pieces in this extraordinary manmer, lont they never seem to disintegrate themselves with such rapidity as when they are tonched, or otherwise abarmed.

The lamented Prolessor Forbes has left an admirably quaint description of this suicidal process. Having in vain attempted to secure a perfect sperimen of a Brittle-star, he thought that he might achieve that object by having a pail of fresh water lowered into the sea, so that as soon as the dredge reached the surface of the sea it might be tramsferred to the bucket of fresh water, and all the immates killed at once by the shock.

A fine sperimen of thr gemus Laidia was then taken in the dredge. "As it does not generally break up before it is mised above the smface of the sea, cantionsly and anxionsly I sank my bucket to a level with the dredge's month, and proceeded, in the most gentle manner, to introdnce Luidia to the purer element. Whether the cold element was too much for him, on the sight of the bucket too temilic, I know not; but in a moment he began to dissolve his corporation, and at every mesh of the dredge his fragments were seen escaping. In despair, I grasped the largest, and bronght up the extremity of an arm with its terminating eye, the spinous eyelid of which opened and closed with something exceedingly like a wink of derision."

These Brittle-stars are, however, extremely capricions in their exercise of this curions power. It sometimes happens that, as in the instance so ammsingly narrated, the creatures break themselves to pieces withont any apparent provocation, while, in other cases, specimen after specimen may le taken, handled, killed, or wonded, withont the loss of a ray. Even in the aquarimm, they are equally mucertain in their habits, at one homr being entire and splendid specimens, and at the next being little bont a solitary dise amid a ruined heap of broken arms.

The Brittle-stars are abundant in the warmer waters. When Dr. Gould published his "Report on Invertebrata of Massachusetts," 1841, his enumeration of Echinodermata embraced Echinus aranututus, Sea-esg, Sea-mehin; Asterias, four species, A. rubens being the common Star-fish, or Five-finger' ; and two species of Ophiura, which were visible only as bronght up by dredging, or from the stomachs of fishes. The latter were not, as they are in the tropical waters, lound crawling on the objects at low tide or in shallow waters. The coral shrubs, and dead and mombling hocks of Meandrimas astreas, ete., are numeronsly inhabited by them. There are many others since discovered by the extensive dredging in deep and shallow waters on onr coast.
'Ille W'hite Sand-stale (Ophilumes abbidus).
The word Ophimms is of treek orisin, signifying snake-tail, and is therefore very appropriately given to these curious beings, whose slender arms twist and coil just like a handful of small serpents.

The Ophimi :ur quite as voracions as the ordinary Star-fishes, and are able by means of the long ams to conver food to the month, which is placed in the central dise. The young of these Echinodermata are quite as curions as those of the seamehins, to which, indeed, they bear some resemblance. They lase long heen known to matmalists under the title of Easel animalcules, on account of their beculiar shape, their real origin not being suspected until later
years. It is totally unlike the form which it attains when mature, and the relationship between the adult Star-fish and the Platens, as the larva is temed, has been well compared to the relation of an embroidery frame to the pietured canvas within.

Tue wonderful creature which is called by the name of Shethand Arate is one of a most remarkable gemo of Star-fishes, which are remarkable for the rast development of their arms.

Althongh the whole mass of arms is of so complicated a description, it will be found, on carefully examining the creature, to be formed by the simple process of twofold division. From the central dise spring five stout arms, each of which almost immediately divides into two smaller arms, and these again into two others; so that in a fime sperimen the nomber of little arms or tendrils, if we may so call them, exceeds eighty thonsand. All these organs are extremely flexible, and quite meler the control of the animal, which is able to close or expand them at wilk. When the extremities of the arms are drawn together, it will be seen that the whole animal assumes the shape of alobular basket; ant in consequence of this resemblance, the name of Basket-urchin, or Sea-basket, has been proposed for the creature.

It takes its food by means of these wonderfnl arms, using itself, in fact, like a living casting net, surrounding the prey with the spread arms, and inclosing it within their mutitudinons lines. Tt has been known to embrace in this mamer a fisherman's bait, and to allow itself to be drawn to the surface withont losing its hold. It is one of the deep-sea Star-fishes, and is rery seldom taken exeept by means of the dredge or line.

The structure of the shetland Argus is most marvellously complicated, inasmmeh as each of the numerons arms is composed of an enormons number of small joints, each exactly in its place, and so beantifully connecter together, that they are as flexible as silken cords, and yet as perfectly under the command of their owner as if they were restricted to the original five from which they take their origin.

The elegant and graceful Star-fish which is appropriately named the Frathen-star, is a native of the English coasts, and has always attracted the attention of sea-side observers. It is not very readily seen, being one of the deep water species, but it may be captmed by means of the dredge, and will live for some time in the marine aquarium. It is a rery active being, combining in its own person the accomplishments of many lifferent Star-fishes. For example, it can crawl with tolerable speed orer the ground, "an swim throngh the water with sufficient power to direct its course, can float about at will, driven by the tide, and will sometimes clasp pieces of floating wood, so as to be carried along by the wares without any fatigue.

Its habits while in the aquarium are very interesting, and have been well described by Mr. Gosse :-
"In captivity, the Feather-star sits upon the frond of a sea-wped or on a projecting angle of rock, which it grasps very firmly with its clawed filaments, so firmly that it is difficult to tear it from its hold. When violence is used, it catches hold of its support, or any other object within reach, with the tips of its arms, which it hooks down for the purpose, and with its pinne, so that it seems furnished with so many claws, the hard, stony nature of which is revealed by the creaking, scratching noise they make as they are forced from any hold, as if they were made of glass.
"I was surprised to observe that several of the arms were unsymmetrically short : and on examining these with a lens, saw distinctly that each had been broken off, and was renewed: the new part agreaing in structure and color with the rest, but the joints were much less in diameter; and this difference was strongly marked at the point of mion, the first of the new joints being not more than one-third as wide as its predecessor. The appearance much reminded me of a lizard renewing its tail.
"In sitting, the Feather-star bends its arms with a sigmoid curre, the tips bending upwards. It waves them now and then, but not much, and remains long withont moving from its hold. Though I repeatedly took it out of the water, removing it forcibly, it manifested no tendency to voluntary dislocation."

Perhaps, however, the strangest part of the Comatula`s life is its early youth. VoL. II.-70.

Every one who has the least smattering of geology is familiar with the fossils called Encrinites, and is well acquainted with them under the different popular names that they bear. They are, or mother were, Echinodermata set upon a long flexible stalk, and being constructed, like the star-fishes, of an enomons mumber of joints. Populaty they are known loy the name of stone-lifies, or Screw-stones, and their disjointed members are very familiar under the title of St. Cuthbert's Beads. The number of joints in an adult Encrinite is almost incredible.

In the head only of one specimen, no less than one hundred and fifty thonsand joints have benn calculated to exist, exclusive of the mumerons purts of which the stem is composed. These joints are frequently found sejarated from each other; and as they are perforated by a small hole through which a thread might be rum, they were formerly strung together and nsenl as mosuifes. Encrinites were found very plentifully in many marlles, which, according to Dr. Buckland's energetic hanguge, are as entirely made up of the petrified remains of Encrinites as a com rick is of straws. These wonderful beings cont hardy be dissected ont of the stome fy any exertion of hman labor, lont it is fomm that water will achieve a task at once too laborions and too delicate for lomman hands to modertake. It oftens happens that the abmpt fares of madle dill's exposed to the weather, so that the ammal rains are driven forciby moon them, and ly their continnal action wear away the soft suromnding substance of the stome, leaving the harter forms of the Enerinites as memorials of the time long passed away.

The Encrinites have long ago perished, but there are still somp existing species of stalked Erhinotermata, which ate closely allied to them, and are still more nearly comected with the history of the Feather-star. These are termed Pentacrinites, because their joints are five-sided. Dany foosil species of Pentacrinites ane fomod, and are seen in positions which seem to prove that they must have been adherent ly theh bases to floating objeets, and thus carred about from one plave to another, like the banarles, which have already described and figined.

The Feather-star is a great ranity. The Comutule is a stemmed form fomm sparingly in the waters off South Carolina. A large species is found off Greenland, and is occasionally brought from off the coant of Mane, mear Eastport.

One living species of these strange creatures is still in existence. This being is appropriately called be the mame of Mmosis Hean, as the mamy arms that wave about its summit lear some resemblanee to the fabled head of Merlusil, with its broden of renomons serlents.

If is mot a rery large sueries when compared with some of its fossil relatives, for the largest specimens hitherto discovered are only a few feet in length, and have a stem abont as large as at common drawing-pencil. Seppal fossil speedes, on the contrary, are at least eleven or twelve fore in length, and measure a full inchacross the stem. The lledusa's head is the only species at furesent known, thoigh it is promble that others may be yot discovered.

E'mionte sentutum is a mame applied to a very singular and always interesting form of Star-fish. A species formd off Massarhusetts Bay is mamed Astrophytom ayessizi, Basket-fish, so callow ley old foremor Winthop, of Massactmsetts, who wrote an acomint of it with other natural prohuctions, for the loreredings of the Royal Society. Limmens called it Asterias ratput modusce, a very goon speritic namb-Mednsals: Hearl. This has beph regarded as very rame An orcasional instance of its being drawn uploy fishermen, was all that was known until it was taken in quantities off Cane Corl in one locality.

A star-fish, discovered ley Mr. Thompom, and called by him Pentecrinus enropous, is, when full-grown, barely thee-guaters of an inch in height, and with a stem no thicker than sewing silk. Without entering into the many and interesting iletails of structure, development, and the halias of this heantiful litthe creature, we need only observe that this being has been froved to be the yomg, or larval state of the Foather-star. Daring this stage of its existence, the young Comatula is aflixed to its arer-lengethening sifm, but when it has attained adult age, it leaves its footstalk and wanders freely through the ocem.

The reader will not fail to observe that herein the creature acts in precisely the opposite mode to that which is adopted by many beings which have already been described．In those marine anmals of which the acorn－barnalle is a good example，the young enjoys freedom thronghont its earlier stages，is furnished with certain organs which it afterwards loses，and does not settle down to one spot motil it las attained adult age．In the case of the Comatula， the contrast between the two states of lile is rery strongly marked，the creatme being of a more nomad nature than the rest of its kin，and in swimming，presenting a curions resem－ blance to the Medusa，the arms contracting and expunding in a manner that strongly reminds the observer of the pulsating disc of the acaleph．

SWIMMING SEA-NETTLES.-Acalejha.

NETTLES: ACALEPHA.

now arrive at a large and important class of animals.
Theseheings, represented by somespecimensin the arrompanying illustration, arw sidentifially termed Acalejus, or Nettles, a word which may be fireely remIfred as sea-nettes. The term is aphopriate to many of the speries which compose this latrockas, for a very great momber" of the Acalepha are jossessed

 [u] fints.

The whole history of these remarkable animals is curions and interesting in the extreme, for not only do they exhibit sume of the most gracefnl shapes and pheasing hues that can add beaty to a living being, lmot they also atford examples of the eatier forms of organs and nembers which in the higher animals attain their fullest development.

When they have attained thein achult rondition, they roam the seas freely, though in their earlier stages they are fixed to one spot and assume a shape fuite molike that of their parent.

The function of nutrition is carried on in these amimals in a method sufficiently simple. They are fumished with a cavity, romesponding to the stomach of higher animals, in which the food is placel, and from which a number of diverging vessels convey the nutritive fluid to the rest of the body.

SIPHONOPHORA.

For convenience sake, this class is divided into three gromps or orders, the first of which is called the siphonophora, and includes the best organized members of the class. In them the shape of the body is irregular, and there is no rentral ravity. They are fumished with sucking organs, and move by me:ns of a peptain cavity into which water is received gently and from which it is expelled foreibly, or sometimes by mealls ol little sacs or vesicles charged with air.

Owing to the rast number of species contaned in this class, it is manifestly impossible to mention all the curions and interesting animals which it includes. Cate, however, has been taken to select those suecies which afford the best types of their orders, and it will be foum that almost every gronp of importance will find its representation in the following pages.

The present armagement of the Jelly-fishes (1885), Mydroids so called, and Corals, is under the title Coplenteralu, constitnting one of the great bunches of the Animal Kingdom, the third in the scale, counting upwards lirom the lowest. See the classification and nomenclature tables at end of this rolume. Three classes are recognizerl: Ihytrozory, Actinozoa, and Ctenophoro. In the finst and last of these classes are what are familialy known as Jellyfishes, while class Actinozon cmbaces the Corals and other Sea Anemone forms.

The first class is Hymbozod. The first Order embraces those forms alled Hydroids. The fresh-water Ifydra is a familiar example. The semom Order, Dascopmon, embraces the great hemispherical jellies that inhahit om North.

Among the Lydroids, the first class of Coelenterates, the Temotana is familiar. It is not uncommon on our Atlantic shores. The phate on page 5.8 gives a very fine example of this Ifydroid. A bumch of these creatmes looks more like a gronp of beantiful pink-like flowers than any other marine form. The color' is exquisite pink, while the stems are sober' brown. They are fonnd in our North American waters during the smmmer. The Discophoms attain the largest size of all. Thein popmlar names are Sea-nettles, in allosion to the stinging lowers, Sea-bullos, ete.

The bodies of these, though comparatively tough, are yet mostly water'. A specimen weighing thirty-foni pounds last ninety per cent. on drying in the sun. These creatures are phosphorescent, glowing like living fire. We have seen the waters of the harbor of Havana one golden hue at night from their presence. The most common form in the Northern waters is the Chamea, which attains a great size. Mrs, Lgasiz records the following dimensions from prwonal measurement, taken from a secimen at Nahant. She says: "Encomatering one day one of these hage Jelly-fishes, when ont in a row-hoat, we attempted to take a rough measmement of its dimensions on the spot. He was lyiug quietly near the surface, and did not seem in the least disturbed, but allowed the oar, eight feet in length, to be laid along its dise, which proved to be about seven feet in diameter. Backing the boat slowly along the line of the tentacles, which were floating at their utmost extension
behind him, we then measmred them in the same manner, and found them rather more than fourteen times the length of the oar. thas covering a space of some hundred and twelve feet."

TUBULARLAN HYDROHSS.- 「ubuluria indivisa.
I'his romuls so marvellous it may be taken as an exaggeration, lut the facts are rather understated than otherwise. We may well regard such creatures with cantion and dread for their stinging powers.

Class IIL., Stphonophora, embrares some of the most beantifnl of the "Sea-jellies," or Medusie, as they are called. The most notable, and surely the most beautiful of all, is the " Portuguese Man-o"- V^{\top} ar."

Puysala. This class inchudes species of most diverse forms, yet closely allied. The essential parts, howerer, are not so varied - that is, the stomach and reproductive organs are a mass of soft flesh that hang from the floats. It is the ruper and ornamental portion that varies. For example, see the difference between the beantifnl bubhle of the Physalia and the little oval floating raft of the sallee Man with its low resest, and the crestless circular float of the Porpita. The latter, seen on the oceam as we have seen them in myriads, presents a pretty circular dise of the dimensions of a quarter dollar. 'This is a perfectly smooth float, of the same indigo and purple as the Physalia. On the under side is the fleshy mass of stomach and small tentacles. In some there is a delicate fringe on the periphery. These are the Porpitas. The Sallee Man, or Teltha-meaning little boat-is more interesting from the curious form of its crest. On an oral float like that of the latter species. there stands an mpright sail-like crest, of the thimest isinglass-like substance when dennded, but when alive covered by the indigocolored membrane seen in all. The twisted shape of this upright is pleasing for its beanty of form ; and the denuded shells are exquisite in texture. These surely recall the "painted ships upon a painted ocean." The two forms are seen in company : and in some instances the Physalia is seen in great numbers also with them.

The Class IV., CTExomoni, embraces the highest forms of the Merfore. Tenus Girdle is an example. One of the prettiest of the Ctenophores is the Bolime of the New England coast-Imemiopsis. These are the pretty tramsparent comb-bearing forms that float in great numbers on the waters during the hottest portion of the year. They are often strewn on the beaches in vast masses, their iritleserent bodies, or rombs, glowing brilliantly. The Pleurobranchia rhoductylu is a common, rather small, oval form of great attractiveness.

Beroe is another form, having no trintacles. It is of a delicate pink, which greatly enhances its beanty. The pretty oval forms of these creatures constitnte one element in their beanty.

The remalikable cleature, called by the popular namp of Salaee Man, sometimes corrupted, in nautical fashion, into Sallymax, may be met in rast mombers, sometimes being crowded together in large masses, and of various sizes, thongh it seldom approaches land.

In this curions animal the body is membamons, oval, and rery flat, and may be at once recognized by the cartilaginous crest which rises oblichely from its upper surface, and the mmerous trobercles which depend from its lower surface and surromm the month. This cartilaginous substance marks ont the sallee Man as possessing a somewhat higher organization than its merely gelatinons relatives, and it is therefore placed at the head of its order.

The Sallee Man, scientifically temed Telellarmlgaris, is seldom seen on northerm Enropean coasts, although it sometimes happens to be driven, by stress of wind and wares, to regions more chilly than those in which it entered the world. It is thonght with justice that the upright cartilage can act the part of a sail, and. by means of its diagonal setting, drive the creature throngh the sea. The exat direction of its movements is in all probability decided by the numerons tentacles which hang from its lower surface, and which, by contraction or extension, can become lising rudders.

The Telella is very widely distributed, and is found in eyery sea except those that are subject to the cold influences of the poles.

There is an allied gemus called Ratamia, in which the borly is cimemar, and the row of tentacles round the mouth is single. The body is sustained by a flattened elevated cartilaginous plate, and possesses also a longitudinal crest abore, muscular and movable.

The internal cartilage of the Telellade are sometimes found strewn in great numbers on the surface of the water. Salors believe that the delicate smbstance of the creature has been destroyed by the hot sumbeams, but naturalists have now ascertaned that the true canse of their destruction is to be found in the sea-lizard (Glaucus), which feeds upon these
curious inhabitants of the orean, and devoms the whole berly with the exrention of the firm (artilaginous plates.

A consprodous member of this class of ammals is the celehated Porturtese Max-ofWale (Physulis pelagimes).

This beautifinl lont most formidable acaleph is found in all the tropical seas, and never fails to attract the attention of those who see it for the tirst time. The gemeral shape of this remarkable being is a bubble-like envelope filled with air, upon which is a membranous crest, and which has a number of long tentacles hanging from one end.

These tentacles can be protruded or withdrawn at will, and sometimes reach a consider able length. They are of different shates, some being short, and omly measming a few inches in length, while the seven or eight central tentacles will extend to a distance of several feet.

These long tentarles are most formidably armed with stinging tentacles, too minute to be sem with the naked eye, but possessing venomons powers even more noxions than those of the common nettle. "It is in these appendages alone," writes Mr. D. Bennett, "that the stinging property of the Physalis resides. Erery other part of the mollnsk may be tonched with impunity, but the slightest contact of the hand with the cables produces a sensation as painfil and protracted as the stinging of nettles; while, like the effect of that vegetable poison, the skin of the injured part often presents a white elevation or wheal.
"Nor is the inconvenience confined to the hand ; a dull aching pain nsually proceeds up the arm and shoulder, and even extends to the muscles of the chest, prodneing an unpleasant feeling of anxiety and difforulty in respination. Washing the injured part with water rather asoravates than relieves thr pain, which is hest remedied by friction with olive oil. The cables retain their urent property long after they have been detached from the animal, and their viscid secretion when received on a cloth retains the same virntent principle for many days, and communicates it to other olojects."

It is most probable that these temible appendases are employed for the pmpose of procuring food, and that they serve to entangle and kill the creatures on which the Physalis lives. Several of these acalephs have heen ohserved with the Jories of half decomposed fishes entanglerl among the short teutacles.

The colors of the Physalis are always beantifnl, and slightly variable, both in tint and intensity. The deboate pink crest can be elevated or depressed at will, and is beantifnlly tramsarent, grooved vertically thronghont its length. The general he of its body is bhe, taking a very deep tint at the pointed end, and fading into softer lanes fowards the tentacles. A gental iridescence, however, plays orer the body, which seems in rertain lights to be formed of topat, sapphire, or aquamarine. 'The short fringes are heatifully rolored, the inner row being deep purple, and the onter row glowing erimson, as formed of living cambmole. The larger temtates are nearly colorless, but are banded at vew small intervals thronghont their length, giving them the appeatance of being jointed.

It is a rommon trick with sailors to induce a "green hame" to pick nu a floating Physalis, and to make him huy arather deal axperienor at the cost of sereral hours' smant.

The vesicular londy seems to be permanently filled with air, the animal having no power of intlating or collapsing at will. Many of these beings may be fonm on the sea-shore, where they have been thung by a tempest, the tentacles all decayed, lut the body still inflated with air.

This is one of the most familiar objects seen in tropioal waters, and it is one of the most
 indigu shading to pink. Along its mper (rest is a narow rulle of silvery-white Delicate in the extreme is this gorgeons bable Bent on the moldr side, hanging in the water, is a jelly-like mass of thesh, from which frepend in coils, of sereat leeet in length, the tentarentar oryans. So low is this creatore in the scale of' life. it has mo propelling power. 'The litfle
 before it. 'Thee allutt length is alout mine inches. Often these creathes are seen in great numbers, berderging the weran lar ant wide with their rirhly-whored thats.

While resident on the Florida Reet we had ondertunity to ohserve the creatmres, and often remored xeromems to a bait of water for examination. Abox with a bottom of windowghase, placed on the surlace of the sea, renders objects visible with great elearmess. Lsing this one day orey a Physalia, we ohsorved several smatl fishes swituming among its long curling tentacles. Ifere was at disoover, and at mystery llow is it that these little tishes whond be exempt from harm, when it is known that the last tonch of the tentacles camses instant death to other fishes: A power resides in the tentarles that these little fishes seem to be exceptionally proof agamst. They aresonew the brilliant hue color of the Physalia that they seem to be a part of them. Une would requrd them as a nathat arompaniment, so alike ther are in color, and so completely proterted are they from latrm.

Since this discovery of so remankable an association of amimals of diverse habits, many others have been made in rarions path of the word. The singular power possessed by the Physalia in common with many of the comals and jelly-tishes, may well be consirlered here. For a long time, naturally simee conals and jelly-fishes have attrated attention of collectors, it has heen observed that a sharly, moleasant, stinging effert is produced by contact with these forms. Not matil a few jeans sime was this folly understood. We lave before us photographs taken from the tentarles of the most powerfnl of these "stinging" creatmres, those of the Physalia, just considered. On a light magnifying power the tentarles, the long, curling, extensible feelers, exhibit along their surfaces vast mumbers of needle-point orifices, latised slightly from the smomang surfare. These are called tasso cefls, becamse the little cell-shaped swellings contain each a reritable lasso-like, slender, tubular thread coiled up within, which is darted ont instantly when needed. The interior anatomy of these organs is somewhat complicated, but it suffices us to know that the weapon thrown ont is barbed, and though microscopic, yet penetrates the skin eren of fishes, not only causing pain. but, from the deadly effects, seems to eject at the salm instant a poisonoms thid. Wre have seen fishes swim up to the tentacles of a Playsalia holdry and rery quidely tum orer and die. At the same time, as we have seen, thore are little fishes one would suppose equally vulnerable, quite at home within the dread portals, moving among and around the poisomous hanging mass.

The great power existing in the tentaches of the Physahia we may, perhaps, be allowed to illustrate by a personal relation. And we may find it proper at this place to say that our long residence on the Florida Reaf maturally afforded opportmities for many observations of habits of marine amimals not heretofore made public. In order to render such of the true value, we may be pardoned, perhaps, the frequent use of personal pronoms.

It was a common ocmrenee after the appearance of myridds of the beantiful Physalias, like minature glass ships mon the orean, that the creatures, having no power to direct their course, would, after a considerable disturbance in the oceat, as after a gale, drift ashore in great mombers. The moat of the fortress was a point which canght many.

A lad of our family, indulging with others in a bath at this portion of the moat, inadvertently swam over a Physalia; its lomg slimy tentacles adhered to his chest and abdomen, and the shock of the millioms of poisonons lassos that were thrown into his skin was such as to nearly prostrate him. Some soldiers at hand rescued him from the water, otherwise he, though an excellent swimmer, would have drowned. For several hours the most vigorons treatment of internal stimnlants and external topical remedies was necessary to keep him from sinking, with the vital powers wholly overcome. The treatment ronsisted in rubbing the parts with an abondantly strong soapy-water, warm, and the internal use of whiskey. For many months the marks of the tentacles were observed on his flesh, aphearing like welts left after a severe lashing with a whip.

Oter last example of this order belongs to a tolerahly large family termed Diphyide, or double amimals, becanse they atre formed, as it were of two animals, one titting inside the other. Their gemeral form is bell-shaped. In the present genms, both animals are similar, and of a somewhat pyramilal shape, and have afew points romm the aperture.

The comection betwren the two portions of the Diphres spems to be very slight, inasmuch as the two halves are often found separated from each other. The progress of the You. III. -71 .
animal is achiered simply by taking water slowly into the bells, and expelling it smartly, much atter the fashion of the ordinary Meduse.

Trailing from the interior of the bells may be seen a curionsly-elongated appendage, stndded with globnles, which are, in fact, the oflspring in different stages of development. A number of tiny dises set on footstalks are also distributed along this appendage, and save the power of adhesion to any object which they may happen to tonch.

COMB-BEARERS; CTENOPHORA.

We now come to a fresh order named Ctenophora, or comb-beartrs, becanse their bodies are fumished with rows of tlattened cilia, set in rows above talch other something like the teeth of a comb. There are many members of this beantiful order to be found, of which the common Cydippe is an excellent example. In the accompanying illustration it is drawn of its natural size.

This lovely creature may easily be captured by the simple process of towing a ganze net over the side of a sailing boat. When remored from the water the net will be found studded with rariously-sized knobs of transparent gelatine, not moticularly attractive, and presenting no salient points whatever. Let, however, these apparently inanimate lumps of jelly be transferred to a vessel filled with sea-water, and then how different is their aspect!

Until the eye is accustomed to their shapes, ther are not rery easily seen, owing to their transparency and the similarity between their refractive powers and those of the water. I have often noticed persons looking at my glass jars withont discovering that a single living creature was within them, thongh each jar was tenanted by two or three of these beantifnl creatures.

By degrees, however, they became plainly visible, the chief points of attraction being the eight hands of ever moving cilia that are drawn longitudinally over the body, and by means of which the creature performs its wonderful
 evolutions. The Cydippe is nerer still, but careers throngh the water with ceaseless movement, sometimes rising and falling in one spot, sometimes rolling over and over, sonetimes spiming on its longer axis, but mestly pursuing a party spiral course, thrning slowly on itself as it proceeds through the water.

During these movemonts a faint iritesence plays orer the whole body of the Cydippe, but its chief glories are concentrated upon the bands of cilia which are drawn over the body. On these the colors are too brilliant, and yet evanescent, for description. Miniature raimbows seem to ripple along these living belts ; and as the cydippe glides gracefully along, it appeats to be encircled with many diadems of sell-illumined jewelry. If examined by the microstope the ciliae of which the loromotive bands are composed are seen to bear some resemblance to very narrow Tenetian blints, each lath closing or opening in regular succession.

Pendent from the body are finther seen two long filaments, to which are attached a number of shorter and still finer threads, not mulike the looks and smoorls on a deep-sea line, and nsed, indeed, for a similar purpose. The Cydippe can protrude or retract these tentacles at will, and is contimally throwing them ont from the body or drawing them back again, so that they never seem to be exactly the same length, one
being often three or four times as long as the other. The maner in which these tentacles trail after the creature is extremely gracofnl, and the observer camot resist a feehing of wonder that they should aroid entanglement.

The tentacks are employed for the purpose of catching prey, the Cydiphe having been observed in the very act of seizing and eating its food. The long theats arrested the objest as soon as tomehed, and in a very shont time they were drawn to the rentral mouth, and the prey softly lodged within. The smaller crustacems appear to be the farorite food of the Cydippe. The vitality, of perhaps the imftability, of the cilia is very enduring, for they contime to act when the animal is rut into several parts, or even when a little piece is nipped off, and will cary the severed portions through the water quite merrily.

The development of the Uydippe is very interesting, the young being produced from minute vesicles, and passing throngh a series of stages before they assume their perfect form.

The present illustration shows us a long, flat, riband-like creature edged with a delicate

VENLS' GIRDLE.-Cextum zvueris. (One-half natural हize.)
fringe of cilia. This emrious being is callem Vents' Girdir, and from its beanty fully deserves the name.

This lovely creature is found in the Mediterranean, where it attains to the extraordinary length of fire feet, the breadth being only two inches. Rightly, the words breadth and length onght to be transposed, as the derelopment is wholly lateral. The month of the Venus' Girdle may be seen in the centre of the body, orempying a very small space, in proportion to the large dimensions of the creature to which it helongs. A very good idea of the appearance of the Venus' Girdle may be obtained by supposing a Cydippe two incles in length to be flattened and rolled out into a riband of five fept in length.

Owing to the great length and temuty of this creature, it is seldom fomd quite entire, but it seems to care little for the loss of a foot or so of its sulostance.

DISC-BEARERS; DISCOPHORA.

We now come to a very large order of acalephs, inclnding all those beings which are so familiar under the title of bfasy Fisure, shobbers, and similar enphonions hames. They are all mited monder the mame of biscophorat, or dise-bearers, becallase they are fumished with a large umbrella-like dise, hy means of which they are emabled to proceed through the water.

Earh order is sepurated into several tribes, the fist of whirh is termed Gymmophthamata, or Naked-efed Mombste, heramse the little orelli, or eye-spects, are either uncovered or altogether absent. Thes edge is eithersimple or hanched. The name of Meduse is given to these creatures on acoount of the long trailing filaments which depend from them like the snaky lockis of Medusa from her head. In the Naked-ayed Mednsie, the circulating vessels may be seen radrating to the adge either simple or bramohed.

A good example of the family Sasiadte is the Satsin tulmbose 'This family contains sereral genera. All the sarsiar are pretty little creatmes, and may be known by the fond simple mutritive vesisels and the egg-tubes placed in the footstalk. In this genus the ambrella is nealy hemispherical, and there are form tentacles set at the ends of the radiating ressels.

Though small, the Sarsise are interesting to the naturalist, on account of the curions method by which the yomg are prodnced, sponting like buds from the footstalk, and presenting a very strange aspert as they propect in dilferent stares of development. In their tirst stare, the young Sarsia are nothing more than simple prominences upon the surface of the footstalk, and gradually increase in size, developing first one part and then another, until at last the little "reatures are quite perfect, shake themselves free from the parent, and rommence an independent existence.

There is a corions species of this gemas, Sursion protifera, in which the hase of every temtarle is supplied with a little bunch of roung Medusar, some just making their first appearanee as mere hmps of gelatinous substance, some half-grown, and others neaty ready to free them selves from the parent stork.

The members of the next family are known by theil flattened dises and the egg-tubes rmming linearly along the vessels. The Eurdore undulose is a prominent species of this family. It is a mather corions creature which is devoid of footstalles and appendages and has a dise almost as flat as a biscuit. In the pretty Equoren cyoura the dise is rather more convex than in the preceding gems, the footstalk is rery wide and expands into many lobes, with long and broad fringes; and the tentacles are very slender and variable in nomber. The present spectirs inhabits the Gouth seak.

A beally fine creature is the chergserora lutpa. It belongs to the next tribe of the order, wherein the eve-sbecks are cosered by reptain thaps, and the circolating vessels mited into a kind of network. This tide is further divided into two families, in the tirst of which, the trame Mellase, solid food is reselved into a mouth; and in the seoond, there is no mouth, but nombshment is absorbed throngh the polds of branching vessels.

The Cmersatha belongs to the lirst of these families, and may be recognized by the long mafringed but furbelowed arms. I fint speries belonging to this genus, Cherysarre eyclomoln, was krpt for some time by Mr. (tasse, and has alforded many useful hints to the students of Natural IIstory. Fxperiments were made for the purpuse of aserertaining the method of ontaining food, and it wats discovered that the fumelowed arms as well as the tentarles ane bsed for patching pary. A dead white-hat was fist given to the Medusa, and, after having Imerll ranght by the tomataces and furbelows, was belivered to the former organs, the latter relinguishing their hohd. Very eralually it was shifted towards the mouth of the footstalk, shad there helf for abont an homb, when it was peleased and fell to the bottom of the ressel.

Thinking that the fish might have been too hage a monsel for thr Merlusa, the experimentere mext supplited the aninal with a smatl piowe of cooken meat. This was seized as the

of the footstalk. There it mmaneal for abont sixty hours, when it was rejected. On being examined, it was fomm to be perfertly white, but not in the least decomposed or having any futrescent smell.

A curious change then took phare. "After I hard kept this Chrysior for about a week, its manners underwent a change. It no longer swam about freely in the water by means of its pumping contractions, nor was its aplearance that of an umbrella. It hegan to thrn itself inside ont, and at length assmmed this form permanently, its shape being that of an elegant vase or cup, with the lim turned orer, and the tentacles depencling loosely from it, the furbelows constituting a sort of foot.
"The latter were now put to a new use; the animal began habitnally to rest near the bottom of the ressel, on mon the brom fronds of the Cridech, which were growing in the water amb preserving its purits, but ondsionally it would bise milway to the shrface and hang hy one or two of the furbelows. A fold or two of the latter wonld come to the top of the water, and dilate upon the surface into a brod flat expansion, exactly like the foot of a swimming mollusk: from this the Medusa would hang suspended in an inverted position. All the other furbelows, and portions of this one that lay below the expansion, floated as usual through the water, except that on some occasions an accessory power was obtained by pressing a portion of another furbelow to the side of the glass and making it adhere just like the portion that was exposed to the surfare of the air. The texture of the furbelows when thus stretched smooth was exquisitely delicate." This curions movement seemed to be a prende to the production of eggs, which were seen in great mombers. As if its whole life powers were exhansted by this process, the "reature som became feeble and then died, its eaptive life having endmed for almost three weeks.

An example of the trypal gemus of the Mednse is the Mertura aurite. This is a sufficiently common species. and may be fomm plentifully on northern Enropean shores, together with its kindred. There are few more beantifut sights than to stamd on a pier head or lie in the stern sheets of a hoat, and watch the Meduse passing in shoals through the cledr water, pulsating as if the whole being were but a translucent heart, trailing behind them their delicate fringes of waving cilia, and rolling gently orer as if in excess of happiness. It night, the Medusie put on new beanties, glowing with phosphorescent light like marine fire-flies, and giving to the ocean an almost unearthly beanty that invesistibly recalls to the mind the "stan of glass mingled with tire."

That scourge of the orean, the Trenomots Cransa, thongln a larmless-looking creatne, is, in truth, one of the few inhabitants of the sea that are to be feared by bathers on onr favored shores; but its presence is so much to be dreaded that no one who has once suffered from the lash of its envenomed dilaments will venture to bathe without keeping a careful watch on the surrounding water. I have twice undergone the torment occasioned by the contact of this creature, and know by experience the severity of its stroke.

At its first infliction, the pain is not unlike that caused by the common stinging-nettle, but rather sharper, and with more of a tingling sensation. Presently, however, it increases in violence, and then seems to attack the whole nervons system, occasionally cansing a severe pain to dart through the body as if a ritle-hullet had passed in at one side and out at the other. Both the heart and lungs sulfer spasmodically, and the victim oreasionally feels as if he conld not survive for another minute.

These symptoms last for tell or twelve hours before they fairly abate, and even after several days the very contart of the clothes is painful to the skin. The shooting pangs just mentioned are of longer duration, and I have felt them more than three months after the Cyansea had stung me.

To the maided eye the filaments which work such dread misery are most innocuous and feeble, being scarcely strongey than the gossamer tloating in the air, and looking much as if the Medusa had broken away a spider's web, and were trailing the long threads hehind it. The microscope, however', reveals a wondrons structure, which, thongh it cannot Inecisely compensate for the sufferings inflicted by these tentacles, can at all erents endow them with an interest which would not otherwise be felt.

Lost any of my readers should become fellow-sufferms with myself, I advise them to be very 'areful when lathing after a strong sonth-west wind has prevailed, and if ever they see a tawny mass of membranes
 and fibres floating along, to retreat at onse and wait, until it is at leasta hondred yards away. Some may suppose that this advice is needlessly timid, but those who have once felt a single poison thread across their hand or foot, will recognize that discretion is by far the wisest part to be played whenever there is the least danger of being stung by the Cyaniea.

Tue last family, of which a small specimen is represented in the accompanying illustration, is easily known by the absence of a mouth. In the typical genns, RimzosToma, the footstalk is deeply scooped into semilunar orifices, and the eight cartilaginons arms are without fringes.

Before taking a fimal leave of these remarkable beings, it is needful that we should briefly motice the strange metamorphosis throngh which some of them pass before they assume thrir well-known form. Experiments were mande on a suecies of Chrysama, by Sir John Dalyell, with the following result:-When first sent into the world, the young Medusae were little flat, wam-like creatmes, too minnte to be examined by any exept the highest powers of the mirroscope. By degrees, these tiny beings settle down to one spot and affix themselves, the body lengthens, ams begin to be shown, and after a while the strange creatme is developed into the being known as the IIyrare tube .

Satistied, apmarently, with its condion, the Ifydra remains in the same spot for some timer, and prowhees a momber of young Hythas, which spront like burls from its sides, and, when stparated, resemble their farmo. There, we might maturally imagine to be the end of its history, for, with almost all animals, when a being is able to produce young, it is considered as having attaimod the utmost development of which it is capable. The Ifydra, however, has gut other phases throngh which to pass. Towards spming, its body heromes moch lengthened and wrimiked, so as to form a mumber of folds. just as if a series of threads had been tied tighty rombl it, one below the other. The moler rings now rapidy expand and the folds
 mom aboh othor. The edges of eath sameer ine developed into two-clelt rays, and in this combition the animal proves to be the heantifnl zoophyte diswovered by M. Sars, and called the Strobila.

These are, inderd, strange viofssitubes in hife. 'hamges more maredons than even those wronght by water ant magie worls, in the old days when Itarom Ahaschid rnleal the faithful. There is yet more to come. 'The mpermost and largest dise or sancer now lengthens its rays

$\sqrt[5]{5} \sqrt{0}$E have concluded to submit for public patronage a work with the above title, being a series of exquisite Engravings representing the ANIMAL WORLD, executed with great scientific accuracy, and accompanied by full Descriptive Text, written in popular terms, so as to delight and instruct the people. Anyone who has considered the subject must be at a loss to understand why an Illustrated Natural History, comprehensive and at the same time popular, has not before this been published in this country. Indeed any lover of animals who has visited the great museums and zoological gardens and has had access to books of engravings in the public libraries, could not fail to remark the wealth of material in existence devoted to this subject. Being confumed in our conviction of the desirability of such a work, we laid under contribution the best existing authorities for the production of most perfect representations of all the more important living creatures, and among the artists whose delineations will delight the reader, we may. mention Harrison Weir, Wolf, Coleman, Fr. Specht, and Mutzel. By far the majority of the engravings in these volumes are from drawings made from the living animals, many at the Zoological Society's Gardens in London, England.

We purpose that our patrons shall be aided and interested in their study by such an array of pictures as has never before cmbellished any Natural History. In numerous instances the engraving is printed in oil-colors, and this portion of the illustrations has been taken charge of by Messrs. L. Prang \& Co., of Boston, who we believe rank foremost for high artistic results in this department of printing. These Oleographs wete copied under the superintendence of Mr. Prang from the renowned "Tafeln" of "Brehm's Thierleben," so that they may be declared perfectly reliable.

We sought competent advice from various sources as to the most suitable text that should accompany this panorama of handsome Engravings. It was found impossible to embody all the present ideas of naturalists in a single work like this on account of the rapid advances and constant clanges in their knowledge of, and habits of thought respecting, the Animat World. And it seemed to us correct that the true object of Zoology is not to arrange, to number, and to ticket animals in a formal inventory, but to inquire into their life-nature, and not simply to investigate the lifeless organism.

What do we know of "Man" from the dissecting-room? Is it not Man, the warrior, the statesman, the poet, etc., that we are interested in? With all veneration which attaches itself to those who are the accredited possessors of abstruse learning, their inordinate use of phraseology detracts $t 00$ much, we fear, from the fascination that the study of the Animal World would otherwise yield, and as we are not content to have our work restricted to a favored few, we thought the task placed in our hands to be to keep the work free from a repellant vocabulary of conventional technicalities. Our endeavor has been to find an author whose work would be noted for its fund of anecdote and vitality rather than for merely anatomical and scientific presentation, and we arrived at the conclusion that we could not do better than avail ourselves of the Rev. J. G. Wood's comprehensive work -a work most popularly approved by spealiers of the English language. It would be superfluous to say one word concerning the standard character of his book, from the pages of which old and young at the other side of the Atlantic have obtained so much instruction and rational.amusement. Avoiding the lengthened dissertations and minute classifications of specialists, he presents to his readers in popular terms a complete treatise on the Animal Kingdom of all climes and countries. The one objection that could be urged against it was, that animal life in America might be treated more fully and American forms given more consideration. In order to obviate this drawback and to do full justice to the creatires of our own country, we secured the aid of Dr. J. B. Holder, of the American Museum of Natural History in New York, an undoubted American authority, who has adapted Wood's work to American wants and given prominence to American forms of Animal life.

The splendid work on Rodentia, by Allen, Cones, and others, will be fully consulted. The valuable work on North American Birds, by Baird, Brewer, and Ridgway, will be the guide in the treatment of birds. The late arrangement of the classification and nomenclature of North American Birds, by Mr. Ridgway, and the Committee on that subject of the Ornithologists' Union, will be utilized in full. The arrangement of Mammals will be after the latest classification by Professor Flower, of the Zoological Socicty of London.

Tcrms of publication.

The extent of the work will be $\mathbf{6 8}$ parts of $\mathbf{2 8}$ pages, at the price of $\mathbf{2 5}$ cents each. The entire publication will contain $3:$ Oleographs and Full Page Engravings on Woad, besides many hundreds of exquisite Illustrations interspersed through the text. No subscriber's name is received for less than the entire set, and no order can be cancelled after signature to it . The Publisher guarantees to complete the work in sixty-eight parts. The parts are payable only as delivered, the carrier not being permitted to receive money in advance, nor to leave parts on credit. Sulscribers who remove, or who are not regularly supplied, will please address the Publisher by mail.
N. E.

NO SUBSCRIPTION RECEIVED FOR LESS THAN THE COMPLETE WORK—68 PARTS.

and assumes the form of an ummistakable, though shallow-disced Medusa. Its arms rapidly gain strength, the attachment becomes houly weaker, until at last the whole dise is broken away, and tloats into the wide sea in its new form.

How wonderful is this phenomenon, and how full of interest is the study of animate nature! Here we have a being which first enters into active existence in a shape like that of the infusorial animatulles; then changing into a hydra, and white in this state becoming the parent of a mumerous offspring; then developing into a Strobilal ; and lastly, breaking up into a series of Medusie.

ZOOPHYTES.

ACTINOIDA.

UITTING the Acalephre, we come to the rast class of Zoophytes, or animal plants, so called, becanse, though really belonging to the amimal kingdom, many of them bear a singularly close resemblance to vegetable forms. In our beatifnl oleograph, swen European species of this class are given, some to exhibit their forms as they appear when expanded, and the others to show the variety in colors. These seven species are: The Thick-petalled Sea-rose (Thelia crassicornis); the Sugartiu parasitica; the Sea-ponk; the Whoow; the Red-anemone (Sagartia rosea); the Wabtr-anemone; and the Gmeen-anemone (Anthea cereus). As there exists a great similarity in the form and structure of these Sea-anemones, it will be sufficient to describe only some of them. The substance of these Zoophytes is always gelatinous and fleshy, and round the entrance to the stomach are set certain tentacles, used in catching prey and conveying it to the stomach. These tentacles are armed with myriads of offensive weapons contaned in little capsules, and capable of being discharged with great force. Organs of sight, smell, taste, and hearing seem to be totally absent, though it is possible that an extended sense of tonch may compensate the creature for these deficiencies.

Withont entering further into the constitution of these singular beings, we will proceed to the examination of the varions gromps into which they have been divided.

In the family of the Lncermariadie, the tentacles are arranged in detached gromps, a peculiarity whereby the creatures may casily be recognized. These organs are placed upon the onter edge of the membramons and expanded dise, in the centre of which is the squared mouth. They are mostly found adherent by a stem to some object, but they can swim with tolemble rapidity, their bodies pulsating like those of the Medusre. None of them attain any great size, the largest being about one inch in height. Pink is their usual color.

Mr. Gosse, in his "Sea-inemones and Corals," remarks that the Lncernariadre have closer" affinities with the Mednse than with the Actinise, on accom of several structmal peculiarities, among which may be mentioned the gelatinous texture, the expanded umbrella, the egg-sacs in the substance of the mombell:i, and the squared month at the end of a free footstalk. I hare, therefore, departed a little from the ordinary armonement, and placed the Lucernariadre immerliately after the Acalephs, forming a kind of intermediate link between them.

Tur highest form of true Zoophyte is, undoubtedy, that which is so familiar under the name of Sea-amemone-a name singnlarly inappropriate, inasmuch as the resemblance to an anemone is very far-fetched; while that to the chrysanthomum, daisy, or damdelion is very close. These creatures are called Actinoida, and are easily distinguished hy having the stomach inclosed in a sac divided into compartments by radiating partitions. For convenience sake, this group is divided into two smb-orders, the first of which is the Actinaria, known by the number of tentacles (twelve or more), perforated above, and the radiating partitions sometimes depositing solid, chalky plates, commonly called "coral." The tribe Astreacea is known by the imperfect series of tentacles, and the family Actiniadze by their circular arrangement.

selmar hess, publisher, n. y.

SEA ANEMONES.
 the gleat length of its many tentarles，which wate，and twist，and twine，and com like so many smakes．It has but litale power of retrating the tentactes，and is，therepore，more consphanoms

 Opelet is able to arrest passing objerts by means of the temtaters，and does so by the aid of a wonderfal array of weapons unexampled in the animat kinglom．

If a portion of a tentarle be examine moler a moderatoly powerfal microseone，it will be seen to bee studeded with tiny cerls，in each of which lies roiled a dark throul．On applying

 into any rolt substance with which it comes in contact．Ehabomate arombts amd datwings of these cells and their contained weapons may be fomm in Mr．Gosse＇s valuable＂Sea－Smemones and Comals，＂a work to which I ghally refer my realems for many interesting details respecting the beantiful creatmes on which we areat pressent cogaged．
＇Thongh the hmman skin be a tonghey and hamele substane than the prey generatly bronght into contact with the femtarles，it yet ean lend the allorets of the individually minute but collectively potent weapons with which these delicate tentarlas are amerl．A tinger which is tonched by a tendacle is instanty consefons of being seized，as it wem，and foreed to allhere to the soft waving membune which it could crush with it single effort．On most prisons this adherence has no partioular aflect；bat those who possess delioato skins，and a sensitive nervous system，are mumb womided by bisters amb pustules orasioned by the assambin of these microscopical weapons．A yomg eral，measming six inches in lengeth，and half an inch in thickness，was killed in a few minntes by mere contace with the tentacles，and in a very shont time was turked quiptly away in the ereature＇s stomath．These weapons are most momerons at the tips of the tentacles，just where they are most needed．
 very rare in Europe，but now necessarily expancled into a family，and found fo contall a considerable mumber of speries．Most of the Pearlets are able to craw over solicl bodies；
 ont the hinder part of the colmon with water．

Sithe is known respecting the history of the Scothish Parlet，saro that it is a very mom speries，and has only been fomm in deep water．All the tentacles and very slemeder，and marked with a dank line．

 being hidden bemeath the samd，ant the beantilal dentactes just protioding from tho surface． None of the l＇ulthets have many fentaches．

We maty here bridily notico another cxample of the same family．
The Vesteft is one of those members of the fanily which inhabit buben．All of them are femarkable from the lact that they possess mondherent base，but，ats a rompernsation for fhis
 over solid bodies．In this spereses，the tube is cylindrical，and very wide in comparison with the dimensions of the inhabitant；it is of tomgh，paper－like consistmate，mather thick，and is composed of many layers of intertwining fibes，mixed with sam and mull．＇Ihe ordinary
 juch ancl a hall．Dr．（iosse found that le was able to memove the creathre liom its opathe dwelling，and place it in a tube of glass，which the amimat arrepted as a nseful substitute， withon troubling itsell to reconstruct another honse．

Thes beamilul reatme called sea－pink，or ］＇momose Anemone（Actimoloba diunthus）， vor．III．－72．
which is also shown in the oleograph, under the name of Plumose Anemone, is certainly the most magniticent of the European species.

It may be at once recognized by its bold cylindrical stem, firm and sturdy as the oak trunk, standing ont bravely from the object to which it is aftixed, and crowned with its lovely tufted tentacles, lringed and cut like the petals of the pink. Its color is extremely variable, being snowy-white, olive, red, orange, cream, or pale pink; and of all the varieties, the first is, in my eyes, the most beautiful. It is capable of much alteration in its general form, shrinking to a mere shapeless fleshy mass, and looking by no means a pleasing object; expanding itself to the fullest extent, or forming itself into many shapes, according to the eaprice of the moment.

Fortunately for the owners of aqnaria, the Plumose Anemone is hardy, and bears captivity well. It olten separates itself into several parts, each of which becomes an independent being, and in some stages of this process looks as if two individuals had become fused together.

Tire pretty Snake-locked Anemone, or Widow (Sagartia viduata), may be recognized in the colored engraving of the Sea-Anemones, by the long, slender stem, and the Hexible, indistinctly-barred tentacles, with a dark line running down each side.

It is found on many stores of northern Europe, seeming to be rather local, but tolerably plentiful in the spots which it chooses for its residence. Though not adorned with brilliant colors, it is a remarkably pretty species, with its crown of delicate tentacles waving "like a thin blue clond" "pon the smmmit of its elongated stem. One of these Anemones has been known to produce some curions changes in its tentacles, at one time thickening them into knobs, and at another throwing ont branches.

A widely-spread Anemone, with a circlet of pearl-like beads at the base of its tentacles, is well known under the name of Beadmet (Actinia mesembryanthemmm).

It is a singularly harly species, living mostly on the rocks that lie between high and low. water mark, and in some places collecting in extraordinary numbers. I remember on one occasion, altel meeting a party of unsuccessful anemone-hunters, I filled their baskets in a quarter of an homr, though night had set in, and the only method of discovering the creatures was by the touch. It is, perlaps, more variable in color than any of the European Actinix, the body taking all imaginable hues, passing from bright scarlet to leaf-green, graduating from scarlet to crimson, from crimson to orange, from orange to yellow, and from yellow to green. The spherical beads around its mouth are more persistent in color than any other parts of the tnimal, being almost invariably a rich blne, just like a set of torquoises placed around the disc. These, howerer, are occasionally subject to change, and lose all color, looking like pearls rather than torquoises. Even the same individual is subject to change of color, being evidently influenced by various extermal conditions, such as light and shade, food, and the purity of the water in which it is placed.

In the aquarinm it is wonderfully prolifie, surounding itself with many a brood of tiny young, whose minute forms are seen settled around their parent, opening their tentacles with a kind of competent air that has something of the ludierons about it. The Beadlet is something of a wanderer, and will not only chawl slowly orer the glassy sides of the aquarium, but, when it has reached the surface of the water, will incert itself so that the tentacles are downwards, make its base hollow, and float away, trusting itself freely to this shallow boat.

The Gem-Pinplet, or Warty-Anemone (Bumodes gemmacca), may be recognized by the double series of large and small warty protuberances placed alternately on its body. There are six white bands on the stem, and the tentacles are thick, marked with white, oval spots. Like the preceding species, the Gem-Pimplet is not local, thongh gathering in considerable numbers in certain favored spots. Even when closed, with all the tentacles withdrawn, it may at once be known hy the six bands of white which radiate from the orifice, and the great resemblance which its body bears to an echinns stripped of its spines.

The Sea-Anemones are now (1885) embraced under the class II., Actinozoa, -and the Corals are included.

The term coral insect should now be abandoned. Yet we hear it used by persons who ought to know better. The idea that the coral animal is a separate creature which bnilds mechanically its blocks of roral, shoukl be ignored, as the corals are, in most respects, the same as the shells of clams or other shell-fish, merely the lime skeletons of the soft animal, secreted, as our own bones are, for support to the soft parts. Thus, the corals are not anything like insects, and they are very much lower in the scale of life than the insects.

The gemus Actinia includes a large number of soft-bodied creatures that do not secrete a lime, or hard covering, but have instead a thick, leather-like exterior. This creatme may, for convenience, be compared to the naked mollnsk, the garden-shg, while the coral, with its lime tube aromd it, may be regarded as corresponding to the garden-slug that has a slrell, the garden-snail. This assumed analogy may help the reader to understand the subject. But, at ail events, it mast be understood that the corals which we admire so mach for beanty of form and cells, are compound skpletons, which, like our bones, have loeen secreted by the animals that are now dead and decomposed. Corals are difficult to understand. We may readily get an idea of the corals that are made up of a congregation of stars, lor each star is a sea-anemone, Actinia with its spereted skeleton around it. But when we are asked, how about the Meandrinas which have long, winding pits, we have to explain that the amimals tre compound, and

GREAT (RAMBACTIS--Crambactis arabica. (A little diminished).
months are seen at intervals. It must be remembered that these animal forms are so low in the scale of life, it is not expected they will be fond observing the strictest conventionalities.

We have, on the New England coast, a species of Actinia (Hetridium marginatum) that grows to be about the size of a tea-cup. Its color is sometimes rather attractive, of a pinkish, but usually wather sombre hue. It is a pleasing object in the aquarium. It is found in shady pools among rocks at low water. Several beautiful forms are found in deep water. The warmer waters of the tropics teem with gorgeous colored species.

One example we remember as especially interesting, is a species that bears green, leafshaped appendages between the tentarles. One only we obtained, while resident on the Reef at Tortngas. This, or one very closely like it, is fignred by Dana, in colors. It was about seven inches in length, and three inches diameter. Its body was columnar and fluted, of a delicate pinkish-white. Between the tentacles were organs that resembled oak-leares, both in exquisite outline and in color. It was a most beautifnl object. We kept it in our sea aquarium, until Mr. Barmm sent an agent to 'Tortugas for the purpose of gathering marine objects for' his then new aquarium in New York. This Actinia we sent to Mr. B., and it proved an especial attraction for many months.

The Great Crambactis seen in the illustration recalls the latter Actinia in the respect that it has leaf-like appendages, but the latter are sitnated on the upper surface in this case, while those of the Reel specimen were under the tentacles, and quite like oak-leaves in shape and color.

Learing the sea-amemones, we now proceed to the next tribe, the Caryophylliacer, in which there are many tentacles, in two or more series, and the eells many-rayed. Many of these beings deposit a corallum.

The Fungla, of SEA-Musmbon, is so called trom its great resemblance to a monshroom, the expanded dise and delisate lamelles having a singularly lomgine form. The hard corallom of this genas is not fixed, but the creature is protected from the violence of the waves by its habit of lying in clefts of rocks, or in the deep cavities of coral reefs, so that it enjoys free access of water, without the danger of being carried away by the currents or dashed ashore by the tempest.

CUP CURAL.-Astroides calycutaris

When young, however, the Funrise ire affixed for a time, sometimes on rocks, and sometimes on the stony remains of their own kinds, being attacled to a stem which gradually vanishes as the creature increases in age. While in this state, they bear some resemblance to the genns Caryophillia. Though all possessing the same gentrul characteristics, they are not all circular, some being oval, and others bearing no small resemblance to slngs. The entire corallum is smmomed by the solt substance of the Fungia, which envelops it below as well as above. Most of the Fnngiat are found in the Indian seas, esperially among the coral-beds.

We now pass to another group of these curions beings. The Endre Coral is so called from the resemblane which its corallum bears to the crumpled leaves of that vegetable. The animal has no tentacles, and the cells are small, conical, and rather oblique. The corallum is fixed, sharply edged, and expanded from the base to the tip-a peculiarity which has earned it the specific title of Pavonia, or Peacock's-tail Coral. All the living members of this pretty gemms are to be fomm in the East and We We Indian seas.

The present illustration represents the Cup Conal as it appears when the tentacles are folly expanded, and when they are elosed. It is not a very large, but is a rery pretty species, the conlor of its corallum being gemerally of a pure translacent white, sometimes tinged with a dolicate rosy hoe. while that of the living animal is pearly-white, variegated with rich chestnut, and the palest imaginable fawn.

RED CORAL AND EIGHT-ARMED CUTTLE.

It is mostly a deep-water species, not mutiequent on northern Emropean coasts, and is seldom protured except by means of the dredge or grapmel. Sometimes, howerer, it is fonnd near the coast, and at the equinoctial springtides may sometimes be procured from the rocks which we laid bare by the receding waters. Fortunately for the collectors, it is very gregarions in its habits; and when one specimen is lound, others may generally be secured within a very short distance. It is a pretty inhabitant of the aquarium, and, as a general rule, may be induced to expand its long tendrils to their fullest extent, by placing a morsel of food upon the orifice. When properly managed it is tolerably harly, but it does not brook inattentionshrinking up daily, and at last perishing lopelessly. When new to the mysteries of aquariummanagement, I never could keep a Cup ('olal more than a month.

Ir the family Oculinidie, the corallum is branched and tree-like, and is here represented by the only known form, the Tuft Consl. It is very rare. A remarkably fine specimen is figured by Mr. Gosse, who remarks that it was taken off Skye in the year 1852 , entangled in the deep-sea-line of a fisherman. Another specimen, weighing six pounds, has been taken in a similar manner between the islands of Rum and Eig. As may be seen from the illustration, the corallum resembles a massive, thickly-branchert tree. The individual comals are abont half an inch in height and the same in diameter.

On the full-page illustration is seen a coral that has attained a singularly tree-like form, and, in consequence of this structure, has ohtained the appropriate name of Dendrophycllia, or Tree-Coral.

The regnlar branched form of this coral can be seen by reference to the illustration, together with the manner in which the individuals are set on their common stem. The cells are rather deep, and the animals possess tentacles Which are cleft longitudinally. It is a native of the hotter seas.

On the accompanying illustration we have some examples of those beings which we call Mindrepores.

In the genus Madrepolia the animals are rather short, with twelve simple tentacles. The cells are deep, irregularly armaged upon the surface, and are crowded together towards the tips of the corallnm, though they are scattered rather wiclely at its base. The cells are nearly cylindrical in their general shape and project ontwards from a centre. something like the grains on an ear of wheat.

The genus Echinopora is distinguished by the peeuliar arrangement of the cells, which are set only upon the upper surface of the coral. They are boldy radiated and rather irregular. All the true Madreporæ inhabit the hot seas, and are most plentifnl under the tropies.

Also of great interest is the gemms Astrea, so called
 because the animals are sown over its surface like stars in Madrepolia Vadrenoraverrucosa, A Little the heavens. The cells are decidedly short, and the tentacles few in number. The genus is a rery large one, including many recent and fossil specimens, many of which are familiar to us in the polished stones of which mantlepieces and other domestic ornaments are made. Owing to the vast number of the animals, and the rapidity with which they increase, the groups of Astrea often assmme enormons dimensions ; and in the secondary and tertiary rocks they frequently occur in such hnge masses that whole rocks are composed of their remains.

In the accompanying illustration is seen a figure of that remarkable coral which is popularly called Brain-stone, or Brain-coral, becanse the convolutions into which the corallum is moulded mnch resemble those of
 the human brain.

The animals of this genus are always united together in long waved series, each having a distinct mouth and series of very short tentacles. The cells are very shallow, and the valleys formed by their union are separated from each other by distinct ridges. The shape of this coral alters greatly with age, somewhat resembling the top-shells when young, hut becoming rounded above when adult. The Brain-coral is found in several of the hot seas.
Among the Asteriadie, as these creatures are called, in consequence of the star-like appearance of the polype or animal, the Organ-PIPE-Colids is perhaps the most striking. It forms, as far as is yet known, the only example of the group to which it belongs, and which is ralled Tabuliporina, on account of the multiplied series of regular tubes from which it is formed. As witl be seen by reference to our engraving, in this beantiful coral the tubes are arranged like the pipes of a chmreh-organ, or the storied rows of basaltic colnmens of the Giant Canseway.

The color, ton, is very pleasing, being a delicate pink, so that even the empty and lifeless corallum forms a really beatiful object. When living, however, it may fairly lay claim to the title of magnificent, for each tube is clothed, formed, and vivified by a light green polype, whose color contrasts beantifully with that of the structure which is ruised by that soft and feeble body.

Two other species of trme coral, such as are used so largely in the mannfacture of ormaments, are termed Corállium. fecundum and Corállium nóbile.

These beautiful zoophytes seem to be found only in the Mediterranean, where regular fisheries are established and the corals dragged from their recesses. The appliances, however, are very rnde; and it is likely that more elaborate machinery would reap a rich harvest ly permitting some selection to be mate and by enabling the fishers to regulate the dimensions of the gronps of coral branches. Although the stony centre is so thick and solid, the substance of the animal is quite delicate and membranous, enveloping the corallum like wetted goldbeater's skin.

A fan-like object is popularly called from its shape, the Sea-Fan (Gorgomia flubellum), and well (leserves that title. In this genns the branching arms are united by a number of transparent

ORGAN-PIPE CORAL. Thenpura springa. (Nataral size.) pieces, which are, in fact, developments of the branches, are covered in a similar manner by the investing membrane, and bear the living polypes on their surface. The whole structure easily dries, and may be found in most curiosity shops, or in the dwelling-honses of mainers, who have brought home these remarkable objects as presents to their wives.

The Gorgonias, Sea-fins, Sea-feathers, Sea-whips, etc., belong to the Order Halcyonoida
of this class. To this also belongs the Organ-pipe coral-the precious red coral of jewelrythe curions Sea-pens, Tenellas, etc. The Sea-fans and Sea-feathers are abundant on the shoal of the Florida Reef. Acres of them may he seen, bending with the tide like so many land grasses or shrubs. Their colors are pretty and striking, while living, and some are of a beautiful red and snlphur-yellow when dead.

GORGONIA - Gorgönia vervucasa.

The Gorgonia verrucosa figured above is a common example in other seas. The egg case of a shark is shown revy prettily, with its coiling temdrils wonnd around the branches of the Gorgonia. The polyps of this species are shown plainty, while most others are too minute to show distinctly. The illustration is of natural size.

An allied species belonging to the same family (Isis hippuris) is formed in a very strange fashion. Its branches are composed of a number of strong joints, mited together by horny rings, so that a certain amonnt of flexibility pervades its structure. Owing to this formation, it is sometimes called the Horn-Plant or Sea-Simulb, titles surviving from the time when all the corals were thought to be vegetables, and the expanded polypes to he their flowers. They are always fixed by a base, and grow like trees, with their branches upwards. It
is worthy of notice, that the Gorganiee are never bushy, and for the most part have their brancles in the same plane.

In this illustration we hare an example of a very interesting
 and extremely beantiful species.

The Sea-pen is so named because its whole form bears the most remarkable resemblance to a quill-feather, consisting of a central shaft, from which a double row of "pinne" is developed at right angles, bearing the polype on their upper margin. As may be seen by the illustration, the whole form of this curions being is remarkably graceful, and it really seems as if it had been modelled upon a quill-feather plucked from the wing of some bird.

The Sea-pen is never attached to solid substances, but remains quite free in the ocean. It does not, however, swim, but is a helpless sort of being, and only kept in its proper position by the base being thrust into the mud or sand at the bottom of the sea. Some species of Sea-Pinne are phosphorescent, and present a magnificent sight in the darkness. It was once thought that the creature was able to swim hy means of the webs, or pinnee, which flapped like the fins of a fish, but it is now ascertained that no such power resides in these organs. The stem is of a rather soft consistency, strengthened by a bony centre, which reaches nearly to its tip.

An object of somewhat similar form, but considerably elongated, and with the pinnee proportionately shorter, is called Searusn (Virgularia mirabilis), an animal belonging to a genus that can easily be distinguished from the preceding by several peculiarities. The pinna are short, deeply scooped above, and, with their bases, partly surround the central stem. The polypes are set only mpon the edges of the pinnre. There is an allied species belonging to the same family, called by the name of Pavonaria. In this remarkable genus, the general shape of the lengthened mass is four-sided, and the polypes are arranged in a somewhat spiral form on the stem, but only one side of its latter half. In temperate seas, the Sea-rushes do not grow to any great length; but under a tropical sun they reach great dimensions, some of them measuring more than a yard in length.

A very cmions inhabitant of some seas, which is in the habit of encrusting all kinds of marine bodies, such as shells, stones, and stems of the large alge, is popularly known under the name Sea-finger (Alcyonium digitatum). Its general mass runs into lobes, and is of a soft, spongy consistency, pierced with little holes, from which the polypes make their appearance when in health. When closely examined, the little holes or pores are seen to be formed of eight rays, in a kind of star-like patterm, and corresponding to the tentacles of the polypes which inhabit them. These little cells are placed at the ends of canals, which permeate the whole mass, and serve to unite into one common body the rast number of polypes which are thms aggregated together. When examined by the microscope, the substance of the polypidon is found to be filled with tiny particles of chalky matter, which serve to give consistency to the fabric, and add to its elasticity.

HYDROIDA.

We now arrive at the order Hydroida, which are known by the internal carity being simple, and the creature increasing by buts thrown out from the sides. The Tubulariade are the first lamily of these creatures. In the Tubulariadie the buds grow from the base of the tentacles, and break off their attachments as soon as they have attained maturity. The buds,
or yomg, are naked. The amimals are sometimes naked, but are often inclosed in a horny, tubular covering, which we will term the polypidon. The first family is represented by its typical genns. The polypidon of this gemus does not throw out branches, and the tentacles are delicate, thread-like, and arranged in two circles. The germs, or bonds, are set on very short footstalks, and are gathered upon the bases of the lower tentacles.

Before leaving this interesting family of zoophytes, we must panse awhile, to cast a cursory glance at one or two of the more prominent examples.

The Club-zoopiyte (Claca multicornis) has a large and rounded extremity, something like the head of a bludgeon, upon which are placed irregularly a momber of thread-like tentacles.

The rarious species belonging to the genus Coryne are also worthy of notice. These conspicuous, though minnte, zoophytes may be recognized by the globular tips of the tentacles. Sometimes the creatures are naked, and sometimes they are inclosed in a rude sort of tube. The word "Coryne" is Greek, and signifies a club. The head of each tentacle is most elaborately constructed, and adorned with very minute tentacles, each being furnished with a small bristle at its tip. These tentacles can be moved with tolerable rapidity, and are held in various attitudes, sometimes stretching out at right angles from the stem, but often bending upwards, with their heads directed towards a common centre, and have been happily compared to the bars of a tumstile or the weighted arms of a screw press.

Another genns is that which is appropriately named Endendrium, from two Greek words, signifying a beantiful tree. As may be presumed from its name, it has a decidedly tree-like form, each twig terminating in a polype whose flower-like tentacles add in no slight degree to its beauty. It is foumd that, when in captivity, the Endendrinm is sadly apt to throw off all the lovely diadems with which it is crowned, but that it will in process of time supply the deficiency by new heads. Its reprodnction is quite as remarkable as that of any creature which has hitherto been mentioned, but our failing space will not permit a detailed account.

Iv the Sertulariadie, the buds are inclosed in resicles, and do not break away when adnlt. They are placed in cmp-like cells, which have no footstalks.

Any of the common Sertularie affords a good example of this family ; and as they are easily procured, they are very valuable aids to those who wish to study the structure of these beantifnl beings. Even the empty polypidon is not without its elegance, and is often made up into those flattened bouquets of so-called sea-weeds, which are sold in such quantities at seaside lathing towns. But when the whole being is full of life and health, its multitudinous cells filled with the delicate polypes, each furnished with more than twenty tentacles all moving in the water, its beanty defies description. These little polypes are wonderfully artive and suspicious. At the least alarm, they retreat into their cells as if withdrawn by springs, and when they again push ont their tentacles, it is in a very wary and careful manner.

The reproduction of these beings is very curions, for it is known that they can be propagated by cuttings just like plants, as well as by cell vesicles, and that in the latter case the first stage of the young closely resembles that of the young medusre already mentioned. They also reproduce br offshoots; and it is very likely that their capabilities in this respect are not limited even to these three methods.

Tue Campanulariae, or Bell-zoophytes, may be distingnished from the last family by having the cells placed on footstalks.

The whole history of this creature is rery interesting, but on account of failing space we must restrict ourselves to its chief peculiarities. Placed among the ordinary polype-cells may be seen, at certain times of the year, a few scattered egg-shape objects, some eight or ten usually being found on a branch. Within these cells are seen a small number of very minnte living beings, which gradnally develop themselves. A restless movement prevails towards the upper part, some slender tentacles make their appearance at the end, and at last the whole of the tip breaks loose, displaying itself as a tiny medusa.

This change is indeed a wonderful one, pernaps even more marrellous than the mutnal transformations of hydru tuba and meduse, inasmuch as the Campanularia and the mednsa VoL. TII. - 78.
belong absolntely to separate classes; and that a medusa should spring from a zoophyte is hardly less surprising than that a perch shonld give birth to a human being.

These important discoreries were made simultaneonsly by Professor Van Beneden and Sir John Dalyell, and the former natm"alist was able to observe a phenomenon which certainly seems to be the first step towards the retum from the merlusia into the zoophyte. Having isolated a specimen of the little medusa, and made a carelul drawing of it, he left it for about an homr, and on his return was smerised to find that the whole shape of the tiny being had altered. The convex dise had become concave, the tentacles were reversed, and the animal had changed the central footstalk of the medusa into the semblance of a roophytic stem.
"My observations," remarks that accomplished natmralist, as quoted by Mr. T. R. Jones, "go no further; but although I have not seen the medusa give origin to a polype stem, I observed it np, to the moment when it was abont to form a new colony : and without fear of deceiving on'selves, we may form by analogy some idea of the changes which monst necessarily occur. The Campannlaria, in its medusa state, has only a single aperture, situated at the extremity of its central pedicle. We lave already seen that its body becomes inverted like the fingrer of a glove, and that the marginal filaments become converted into time tentacles. The polype fixes itself by the extremity of its central appendage-that is, by what was previously its montl; the back of the umbrella becomes depressed at the same time that the tentacles change their direction; and in the centre of the disc a new apertme is formed, which communicates with the central cavity, and becomes the permanent month, which is sitnated directly opposite to the original one.
"Being now fixed by its base, the hody of the polype begins to grow ; and as its external sheath becomes hardened, buds spront at regnlar interrals from its surface. In a word, the growth of the polype resembles that of the hyrla, with this difference, that in the latter there is no polype stem, and their bods spront from another part of the body."

The name of Campamularia is given to this zoophyte in consequence of the bell-like form of its cells, and is derived from the Latin word "campana," a bell.

The delicate Plumblama is so called on account of the feathery appearance of its polypidon. The cells are always small and the egg-vesicles are scattered. In some species the stem is composed of many parallel thbes, such as Plumularia myriophyllum, but in the present species it is quite simple. The egg-vesicles are lather widely scattered.

THE CORAL REEFS OF FLORIDA.

The Reef phoper of the Flohida Sthats does not reach the smrface, excepting in certain places, as follows: Carysport, where there is an iron pier lighthouse, Alligator Reef, Tennessee Reef, and a few shoals of less extent, but perhaps not less dangerous. These shoals give rise to heavy breakers, which show at most times in white caps. In a few places there is an accumulation of dead corals and debris, which brings the surface to a level with the water; then the dry land that is formed is called a key (cayo) or islet. The Dry Tortngas are so named, being originally of similar character.

Sombrero Key is an important example, on which is a fune lighthonse. Dove Key, the Sambos, and Sand Key, are others. Sand Key is situated at the entrance of the channel that leads to Key $W^{\top} e x t$ larbor, and bears one of the most important lighthouses on the coast. This is about nine miles from Key West, sonthwesterly, and is the sonthernmost inhabited land of the United States.

Several safe anchorages are known, particularly at Key Largo, with from one to three fathoms of water.

The Balamas are coral reefs and islands similar to the above.
The westernmost portion of the Florida Reef consists of several keys that barely rise above the sea, and are covered by fine white coral sand. Beach grasses have faken root, and oven quite large, trees are tlonrishing. A small bush, called bay cedar, is abondant, and covers some keys entirely.

As there is not extant a published account of these interesting islands, which are so intimately associated with what we have to saly about the marine objects of the semi-tropical waters of North America, we feel sure that it will be acceptalle to the reader to have a somewhat detailed account of them.

The Dry Tortugas, hefore the late conflict of $1861-5$, was little known to the average reader. The establishment of a military prison there soon made the name a terror to evildoers, and a synonym for the dreadful. During the two years preceding the "ronflict" it had been our fortune to reside at the Tortugas as Lnited States surgeon. Fort Jefferson was then in progress of construction. It is an enormons work, involving many millions of money. During these two years the quiet life and delightful association with other officers of the post, and their families, interested in the same pursuits, rendered it an opportunity of exceptional excellence for the study of marine zoology.

The risitor to this region in years when the post was garrisoned would take the following course: Usmally a stop, coming from the north, was made at key West, the only important inhabited island then on the reef. From there a sail, usually by night, of sixty miles, brought one off Marquesas Keys and Rebecca Shoals. Daylight reveals in the western horizon a long row of castellated structures, impressing one as fairy castles, now illumined by the rays of the rising sum. The ressel now abruptly changes her course, to enter the peruliar winding channel that is so characteristic of the coral reef-five miies from the fortress. Anon there shoots forth a small clond from the top of the work, and simultaneously rises the garrison ensign, followed at an interval by the booming sound of the sunrise gun.

In this delightful climate, even during the winter months, this scene is as enjoyable as it is novel. On all sides is the rast ocean. Not a sign else, save the four green-capped islets, slender white strips on the blue sea, with low green bushes on their surface. These now begin to be distinguished. Seven of those small islands, of sizes varying from a quarter of a mile to two miles in length, form a sort of irregular ring around a deep harbor. The intervening space is occupied by the solic reef that has been built up from the sea-bottom, and lies just under the surface, many miles in extent, the entire group being about circular and some seven miles in diameter. The water on this area varies in depth from one foot to twenty, and it is the abode of great numbers of the shoal-water corals, corallines, and alge. In the centre, or netrly so, of the harbor, an islet of sand, formed like all the others on the solid coral basis of the reef, and about thirteen acres in extent. On this island, entirely covering it, is built Fort Jefferson, the largest structure of the kind in the United States.

Though these little islands look to us like mere sand-spits that any stout gale might demolish, they are gronnded in the most endurable of material. The solid area of extended reef around them, just beneath the surface, is as firm as rock. Just at the edge of these islands, on the windward side, the waves break with great violence-the vast ocean depths are behind. The still waters within offer the safest anchorage, reached through the narrow, winding channels. The nature of coral reefs the world over is to grow in such shape as to inclose lagoons with more or less depth of water, which is usually sufficient to float the largest vessels. Hence the great value attached to coral islands in the great Indian Ocean, where passing vessels seek temporary shelter from storms.

The harbor within these islands is valuable for the nary in time of war, as otherwise the presence of a great fortification here is useless.

The important elements in the building up of these coral reefs are the Astrean Corals. These are not circumscribed in growth like many others, but are seemingly indefinite in boundary. Immense ledges are seen cropping out of the mud in shallow water.

The Brain Corals, so called from their resemblance to the brain, Meandrinas, from the meandering nature of their cells, exhibit a number of beantiful shapes, ranging from the most regular hemispheres to masses of indefinite shape and size. These, with the star corals, the astreas, as we have seen, form important elements in the brilding up of reefs.

In the coral regions of the West Indies and the Florida peninsula the islands are called cays, in English keys, a corruption from cayo, Spanish for an islet. The principal cay of Florida, or the only considerable one inhabited, was early called Cayo hueso. Bone Cay, or

Bone lsket, from the remarkably white appearance of its beaches, the white coral fragments thrown up lyy the seat, appeared like bleached bones to the first visitors, hence Bone Cay, now Key West.

It was the opinion of Professor Louis Agassiz that the entire peninsula of Florida had been built mp from the sea-bottom by the several reef-building corals now living in the surromding waters. This theory was seemingly verified by the discovery, in the interior of the state, of parallel ridges, which extend across the peninsula, and are the dead remains of species of corals that are seen living in the vicinity.

The process of reef-bnilding is easily comprehended by observing the present living forms, their growth and decay. The will observe a single egg of a reef-bnilding coral, an astrea. As it floats in the deep sea, its nltimate destination as a single object is to rest on some solid base, and there develop into a simple polyp, in its first stages resembling an actinia or seaanemone. We lave observed the development of these eggs in a glass of sea-water, and we may assume that on the sea-bottom the little animal flower is passing through the same phases of development. Soon we notice at the base of the polyp the first layers of a foundation wall. When finished the creature represents the perfect coral amimal. It is like a sea-anemone inclosed within a tube of lime. In some respects it is like a clam or other shell-fish in its shell, a perfect animal. It has several ways of growth and extension into family groups, by eggs, and by development of buds ont of its sides. If we take a piece of one of these reefbnilding corals in hand, we see that there are numerous stars, if it is an astrea, each star representing a single polyp, each a single animal ; but the hard parts, that serve as skeletons, or that correspond somewhat to the shells of clams and other shell-fish, are closely mited. Practically the yonng members of the family, the buds, stay at home, and bnitd on to the old home the first honse, and the result is an indefinite mmber of tenements united in one block. The great ledges of astrean corals seen in the waters of the Florida Reef, are thus built up. This is the principal element in the foundation of a coral island. We may now regard the sea-bottom covered to a certain extent with the ontspreading ledge of these united stars. Among the numerons elements that must be recognized in reef-building are various species of burrowing shell-fish, and worms in great variety. These creatures kill the coral animals, and penetrate their limestone houses. Here we have the first steps in the building of the reef. The coral stars have secreted and deposited on the ocean bottom the masses of lime which form their houses; their enemies have destroyed them and penetrated their walls. The general debris of the oce:m covers the broken walls. But the young of the coral animals are swimuing in great numbers, ready to fasten upon any point. Myriads settle upon the old and deal ones, and found new houses; new blocks are built upon the old, and in time also yield to the inroads of their numerous enemies. The conflict thus goes on. The coral block of honses, solid material, becomes a compact mass, which rises gradually through this process of growth and decay, life and death, until this growing land has reached near the surface of the sea. In the shoaler water that now covers this coral-made land numerons small corals and algae grow, objects that require shallow water in which to thrive. Here is manifested a wise provision. The larger corals cease to thrive becanse the water is not sufficient, then smaller species appear, which, with the soft corals, as gorgonias, sea-feathers, and fans, and masses of corallines, the latter being alga or sea-rreeds with solid lime bases, eventually quite bring the newly-made land to a point at the smface of the sea. Here we have an island, built up from the sea-bottom throngh the agency of living corals, their dead skeletons, alge. and the accumulatel débris of ocean. This island would be of little service were it to remain at the ocean level. Nature has provided for the extension of this land. The manErove tree is found growing on the extreme ocean border. Its fruit drops into the sea. This fruit is so much in shape, size, and color like a cigar, one is quite sure to be deceived on viewing it. Myriads of this fruit float orer the new-made land; one end being heavier inclines to tonch botton. 1)uring the still water, after the summer solstice, these froits throw out roots, which find their way rapidly and strongly into the earth. Soon they have put out leaves and have become trees. The roots, instead of disappearing beneath the soil, remain to a certain extent exposed, so that when the tree has gotten to be a
year old the roots are veritable flying buttresses. Remark how well adapted this plan is to fimish the growth of the island, to bring it up to a safe height, when other elements shall be utilized. These Hying buttresses catch all debris of the ocean, and hold it until a soil is formed. Now, birds come to roost here; they bring seeds, which are deposited in the excrement. Among these seeds are several kinds of great convolvuli, morning-glory plants, whose habits are to run ou the ground like a pumpkin vine.

These great vines take root at intervals-many of them form resting-places for moving rubbish. Sand begins to collect. Innmmerable agencies conspire to bring this low island to a greater height above water, when the land becomes dry; hence Dry Tortugas, in contradistinction to Wet Tortngas, or wet land that has not yet reached the point of being above water. Once the surface has become somewhat permanently dry, other seeds germinate, and grasses appear-the beach-grasses, whose rootlets catch and hold the sands. Eventually a considerable soil is formed. The risitation of sea birds brings guano, shrubs appear, and then great trees. Some of the older keys are heavily wooded with a variety of trees. By these processes it is supposed the larger portion of the State of Florida has been built up.

ROTIFERA.

LTHOUGH the Rotifera, or Wheel Animalcules, are generally placed among the Infusoria, on account of their minute dimensions and aquatic habits, it is evident, from many peculiarities of their formation, that they deserve a much higher place, and in all probability constitute a class by themselves.

They are called Wheel Animalcules on account of a curious structure which is found upon many of their members, and which looks very like a pair of revolving wheels set upon the head. These so-called wheels are two disc-like lobes, the edges of which are fringed with cilia, which, when in movement, give to the creature an appearance as if it wore wheels on its head, like those of the fairy knight of ballad poetry. These wheels can be drawn into the body at will, or protruded to some little extent, and their object is evidently to procure food by causing currents of water to flow across the month. All, however, do not possess these appendages, but have a row of cilia, mostly broken into lobes, extending all round the upper portion of the body.

They have a well-defined muscular system, while their jaws are nearly, if not quite, as complicated as those of the echinus. Most of them can swim, some are able to attach themselves at will to any fixed objects, while others are fixed to one spot, from which they do not stir.

Distinct sexes have been discovered in several genera of Rotifers; and in those cases where the male has not been found, it is generally thought that the very small size and eccentric shape of the opposite sex may be the reason why it has not been discovered. In those instances where his existence has been indnbitably ascertained, he is always a strange being, very unlike the female, rery small, and what is even more strange, possessing neither jaws, throat, stomach, nor intestines. His life must therefore be very short, as is known to be the case with the male sex in many insects. It has been well suggested, that perhaps the males are only produced at certain times of the year, and are not, therefore, found so plentifully as their mates.

Fortunately for observers, the integuments of these animals are extremely transparent, so that it is possible to watch the whole of the vital processes, and to see the various functions
carried on with as much ease as if the skin were of crystal. Their development is wonderfully rapid; for althongh but a few eggs are produced at one time, they are so quickly hatched, and the animal is so rapid in its growth, that Professor Ehrenberg calculated that in the genus Hydatica, although only three or four eggs are produced at a time, a single individnal will be the progenitrix of nearly seventeen million descendants within the space of twenty-four days.

In this class the arrangement is very perplexing to systematic naturalists, and nothing is as yet settleci about it.

These remarkable heings are mostly found in water that has become stagnant, but is partially purified by the presence of the Infusorians, which always swarm in such localities. There is, however, one very strange residence of the common Rotifer, namely, within the leafcells of the common log-moss (sphagnum). These cells are very large in proportion to the size of the leaf, are kept open by spiral threads coiled in their interior, and their walls are pierced with large apertmes, so as to form a general communication throughont the whole mass of cells. Within these curions chambers the Rotifer is fonnd, and is able to pass freely from one cell to another. They probably gain their admission in the egg state, and find sufficient moisture in the cells for their seeds.

The typical genus of this class is known by the name of Rotifer. In all the members of this gemus the body is rather elongated, and furnished at the hinder end with a kind of telescopic tail, by means of which they can attach themselves at will to any object, and release themselves whenever they please. Sometimes they move their bodies gently about, while still grasping by the extremity of tail ; sometimes they are nearly motionless, while they frequently rock themselves backwards and forwards so violently that they seem almost to be testing the strength of their hold.

These creatures can both swim and crawl, the former act of locomotion being achieved by the morement of the cilia, and the latter by creeping along after the fashion of the leech, the head and tail taking alternate hold of the object on which they are crawling.

The masticating apparatus is always conspicuous, whether the animal have the wheel protruded or withdrawn. It is sitmated behind the bases of the wheel-lobes, and looks, when the animal is at rest, something like a circular buckler, with a cross composed of double lines drawn orer its surface. Eren in the very young and modereloped animals which are seen within the body of the parent, these jaws form the most conspicuons portions of their structure, and enable them to be recognized long before they are able to go out into their watery world and shift for themselves.

All the Rotifers have a marvellons fund of vitality, and survive under circumstances where animals less tenacions of life would die a thousand deaths. They have been thoronghly dried by means of chemical acid, wetted and restored to life, dried again, wetted again, and subjected to this treatment through many successive alternations, withont perishing.

At first sight, this animal bears a strong resemblance to several of the Molluskoids; but a closer examination shows that the apparent tentacles are nothing more than extensions of the lobes on whith the cilia are set, and the apparent cell is no cell at all, but a gelatinous secretion from the body. In one genus, however, a veritable tube is built up, composed of particles of solid matter, formed into little pellets by a special organ, and then deposited upon the edge of the tube. The organ which forms these pellets is set towards the front of the head, and on its under side, and looks like a little revolving disc.

RHIZOPODA.

HE whole arrangement of the beings which we are now abont to examine is still very obscure, and the best zoologists of the present time have declared that any system which has been hitherto adopted can only be considered as provisional.

Some writers, for example, unite the Rhizopota with the infusoria, while others bank them among the Polyzoa; and others again consider them to be intermediate between the radiata and those simple forms of animal life which are appropriately named Protozoa. After taking into consideration the varions systems that have been proponded by dillerent anthors, i have come to the conchaion that, at all events, as a provisional armongement, the Rhizopoda ought to be lauked as a distinct class, and placed in the position which they here occupy.

The name Rhizopoda is of Greek origin, and hiterally signifies "root-footed." It is a very appropriate title, inasmuch as they put lorth certain filamentons appendages from their bodies, which look very like the tender rootlets of plants, and serve a donble purpose, namely, as organs of progression, and ans instrments whereby they may catch their prey.

Some of these beings are quite mprotected, their soft grelatinons borlies being devoid of any corering; others are inclosed in a horny case, piercet with openings. throngh whichi the dilaments can be projected ; while the greater number of the known species are funnished with shells very similar in form to those of the mollnsks, and in some cases wonderfuliy similar to the highly complicated dwelling of one of the highest mollusks, the pearly nantilus.

These minute though beautiful beings exist in ummbrs that are only rivalled by the sands of the sea for moltitude ; and the vast hosts of these creatures can be barely estimated even when we know that many large cities are buit wholly of the dead skeletoms of these microseopic beings, and that in a single onnce of sand from the Caribbean sea nearly fom millions of these shells have been discovered. The living species are not nearly so munerons as the fossil. They can be captured in varions ways. If, for example, growing algat be plucked, and placed in a glass vessel of sea-water, the Rhizopods will leave the algæ, and settle on the sides of the vessel. If they live in muddy snbstances, snch as the "oyster-ooze," which is especially prolific in Rhizopor forms, the upper layer of mud should be taken off and stirred up in a ressel of clear sea-water, when the creatures wiil sink to the bottom of the vessel, and may easily be separated.

These motes are adopted for liring specimens, hut if the dead skeletons only are required, they can be procmed in many ways. One of the simplest methorls of finding Rhizopod shells is, to shake the dust ont of sponges, and to examine it when laid thinly on black paper. An ordinary pocket magnifier is employed in the search, and the shells are readily seen against the black background. For removing them I always employ a single bristle, stuck into a handle-one taken from a shaving-hrush is, perhaps, the best adapted to the purpose-and take up the shells singly loy wetting the tip of the bristle.

There is also another method whereby the empty shells may be obtained in considerable numbers. The sand, mud, or other substance, in which they reside, should be well dried, heated, and then stirred into water. As the chambered cells of the Rhizopods will be filled with air, they will float on the smface of the water, and can be skimmed off withont much diffienlty.

The first sub-class of these beings is the Foraminifera, so called on accomt of the tiny openings, or foramina, with whirh the pretty shells are piered. Sometimes, however, this
shell is wanting, and its place supplied by a cover composed of matted sand-grains. The greater number of these creatures are formed by a succession of buds, each bud remaining in connection with that from which it sprung, and thus forming a composite body, which sometimes is rather complicated in its strocture. Sometimes when the buds are merely arranged in a line, the result is a straight, rod-like form, divided into a series of joints, marking the spots where the buds have in their sequence issued from each other. If, on the other hand, each bud grows a little on one side of its predecessor, a spiral form is the result, and a nantihus-like shell is formed. The resemblance to this mollusk is further increased when each bnd becomes rather larger than that from which it sprung.

The arrangements of the Foraminifera hitherto in use have mostly been founded upon the mode of growth ; but Dr. Carpenter has clearly shown that this character is so extremely variable, that no reliance can be placed upon it. In a single genus, there is every gradation between the straight and the spiral forms; and, in many instances, a shell which commences in a spiral will end in a straight line.

As, therefore, the ahready existing systems have been shown to be based on false principles, and the arrangement which is to supplant them has not been fully decided upon, we will not occupy our space by insisting upon the characters by which the systems are established, but merely proceed to a brief description of the localities in which the varions species may be found.

The greater number of the species are found in Emope, and are now known by the names of Dentalina, Polystomella, Rosalina, and Quinqueloculina. Some other species are to be fonnd in Central America.

Another sub-class of Rhizopods is mamed Polycystina, and is notable for the singular structure of the shells, which are pierced in regular patterns, withont orifices, and are often prolonged into curious spikes and projections that give them a most wonderful beanty when seen under a good microscope. They are, in general, smaller than the Foraminifera, and are found in the mud of various seas, especially those of the West Indian islands. The marvellous variety which is obtained by the carrying out of two principles, namely, the piercing of holes and the projection of spikes, is almost incredible; and the delicate tracery of the patterns thus produced is so artistic as to have been happily compared to the hollow ivory balls carved by the patient hands of Chinese artists.

There is one little creature, which is smpposed by many physiologists to belong to the Rhizopoda, but whose position is very uncertain, and even its class not clearly ascertained. This is the Noctiluca, a tiny being, about as large as the head of a minikin pin, which is remarkable for its phosphorescent power. If a vessel be filled with sea-water, and brought into a dark room, the Noctilnca fills it with little sparklets of bluish light, which shine for an instant like stars in the firmament, and which can be induced to give out their momentary radiance by tapping the ressel, or even by a heary footfall on the floor of the room.

Each of these little heings is fmomished with a minute tail-like appendage, by means of which it is enabled to proceed throngh the water; and on certain favorable occasions they fill the sea with their luminons hosts, and canse each ware to become a breaking mass of liquid fire. A ship passing through the sea leaves a fiery wake behind her keel, and when the boatmen lift their oars from the sea, they appear to drop flames from the blades as they are raised, all dripping, into the air at every stroke.

Although so small as to be microscopic in their dimensions, they are yet large enough to be discerned by the unaided eye, and can therefore be isolated without difficulty and placed in the field of the microscope.

In the accompanying illustration will be seen an odd-looking object, which is considered as belonging to the Rhizopods, though not possessing any shell.

This creature, called Angera, is remarkable for the fact that it really has no ontline and no shape, for its boty is contimually altering its figure; so that the ronnded object which was seen in the microscope but a few minutes before, will, in that short space of time, have protruded a number of elongations that look like fingers of a glove or the rays of a star-fish.

It can elongate itself to almost any extent, can then throw out its strange protrusions so as to resemble a club with a spiked head, or it can gather itself into a rude globular mass, as if pinched out of dough by a single squeeze of the hand, allowiug the solt substance to protrude between the fingers. It has no particular stomach, but extemporizes that organ out of any part of its body with which its food happens to come in contact, literally pushing the food into its body and then digesting it withont requiring any special apparatus for the purpose.

Some of the Lobose Rhizopods, as these creatures are called, are also furnished with a shelly or horny covering, such as the Arcellina, where the shield is capshaped, or the Difflugia, where it is pitcher-shaped, the animal protruding itself from that part which represents the mouth of the jug.

AM@EBA-A maba prineeps. $\quad 600$ times enlarged. a and b show the same animal in changed form. Many physiologists suppose that the Amœba is not a perfect being, but it is merely the larval state of some animal with a higher development, such as the Arcella and other shell-bearing Rhizopods.

The genus Perinidium may be known by the furrow that runs transrersely around the body, and is furnished with cilia. The integnment of the body is membranous. The Tripos Perinidinm is remarkable for its power of shining by night. It may be recognized by the shelly case, which is concave, smooth, and is developed into three horns, two being long and the other comparatively short. The longer horns are in front. Its length is about 150 th of an inch. The Kerona also belongs to this order, and is found in fresh water, where it may often be seen in considerable numbers. Besides the usual cilia, it is furnished with instruments of progression that enable it to climb and creep, and are formed iike bristles or hooklets. Its length is rather variable, but is about equal to that of the Peridinium.

I N F U S ORIA.

E now come to the Infusoria, creatures which are all of very minute dimensions, and respecting which there is great uncertainty prevailing. As with the preceding class, no definite system has yet been invented by which they can be arranged; and in many cases physiologists are undecided whether the tiny beings are veritable species, or whether they are but the larral forms of higher beings; while, in some cases, it cannot be precisely ascertained whether they belong to the animal or regetable kingdom.
Wi ithout, therefore, occupying our space with disquisitions which would require a volume for their full elucidation, we will proceed at once to some of the more remarkable forms among these curious beings.

Two specips of Infusoria, termed Vorticelta citrina and Stentor polymorphis, may be fond in soft water that has been allowed to remain in the open air, and in which any vegetable matter has been permitted to decay. Both

STENTOR.-Stentor polymorphis. (Two hundred times enlarged). these creatures are affixed by footstalks to some objert on which ther make their residence, and looth agree in having a bell-like month, edged with a fringe of cilia.

These organs are set upon the edge of the mouth, and their object is indirectly to draw food into the system ly creating certain currents in the surronnding water. When the cilia are exposed to a good microscope, they appear to be formed like the cogs of a little wheel, which is rotating with great lapidity ; and it is not until a close examination detects the real canse of this appearance that its illusory nature is discovered. As in the case of the cilia attached to the higher animals, of which a notice has already been given, each fibril bends in regular succession, so as to produce the effect of waves upon the eye.

When the Infusoria are free, the continnal movement of the cilia canses them to move with greater or lesser swiftness through the water, each tibril acting as a minute paddle, and having a distinct feathering movement, like that of an oar handled by a skilful rower. It is a most curions sight to observe the admirable manner in which they make their strokes, the flattened sides striking the water so as to give the greatest force to the blow, and the back stroke being made with the edge, so as to meet with the least possible resistance.

In the Vorticella, the footstalks on which the bell-like cup is seated are of considerable length, and capable of being shortened by being coiled into a spial form. This is by no means an uncolumon Infusorian, and is very liberal in displaying this capability. It is nsually found associating in groups, so that there is liardly a stage in its life of which some example cannot be discovered. Though devoid of apparent organs of sense, this creature is marvelloms timid, slurinking in a moment if the water be shaken, and tightening its coils notil they resemble the spiral rings of a vine's tendril. It soon, however, merovers itself, and by slow degrees permits the spires to uncoil, and waves its fringed lead boldly in the narrow prison to which it has been ronsigned. Somotimes the Torticella breaks away from its footstalks, and is then "arriod rapiclly through the water ly the action of its ever-waving fringe of cilia.

As is the case with many of its kindred, the Vorticella is able to increase its numbers by the simple process of splitting itself into two distinct beings, each of which is afterwards a
complete and perfect being. At first, a single notch is seen npon the edge of the lip, lont as time passes on the notrh deepens, the cleft becomes more apparent, and in a wonderfully short space each half of the Torticella is changed into a perfect individual, which in its turn is ready to divile and subdivide itself ad infinitum. It is a truly strange process, this subdivision, and forms one of the links that bind animals of a ligher type of organization with these lowly, but not imperfect beings. Thus, therefore, the Vorticella never need die of old age, for it renews its youth, as it were, by this roluntary division, just as if a man of sixty were to split himself down his spine, and thus become two young men of thirty, or, by further subdivision, four lads of fiftern.

The figme in the illustration represents the Stentor, so called becanse its general shape bears some resemblance to that of a spealing-trumpet. This is a comparatively large species, being visible to the naked eye, and readily distingnished by a practised observer. Sometimes it is found singly, either attached by its base or swinming boldly through the water ; but in most instances it gathers itself round duck-weed, or floating sticks, and is produced in such nmmbers that its vast multitudes quite resemble a fringe of soft, filmy slime.

Like the preceding animal, the Stentor multiplies by self-division; but it is rery likely that many other methods of inrreasing its numbers are employed. There is, for example, in these creatures, the remarkable phenomenon called "conjugation," which is almost identical with the same art as performed by some of the microscopic regetables. If two free Infusoria of the same speries-say, for example, the common Paramecium, that swarms so largely in stagnant waters-happen to meet at the proper season of the year they adhere firmly to each other, as if they were magnets and iron, and go spinning abont the water with no less speed than when each urged its single conrse. A vast number of very minute eggs are then produced by both of the individuals, but the further development of these eggs is not yet known. Sometimes, as in the Stentor, the Infusoria are fixed by their bases, and in such instances they bend their months towards each other, and so contrive to unite themselves in pairs.

PORIFERA.

E now arrive at a large class of beings, which, if they really do belong to the animal kingdom, and are not to be ranked among vegetables, are by common consent allowed to form the very lowest link in the animal chain.

The name Porifera is given to them becanse the whole of their surface is pierced with holes of varions dimensions, the greater number being extremely minute, while others are of considerable dimensions. The well-known Turkey Sponge, so useful for the toilet, will afford a good example of the porous structure.
Tet no one can form an adequate idea of the living Sponge from the dry, dead skeleton which is sold under that name. Many of the species are decked with delicate colors, while all are truly beautiful creatures when viewed in full life and action. They are to be found widely distribnted throngl the seas, and there is hardly a solid body on which a Sponge will not grow. Sponges are generally found hanging from the under sides of projecting rocks at some distance below the surface of the sea, or clinging to the roofs of submarine caverns. Some, howerer, are strong, sturdy, and branched, and stand boldly erect like the earth-plants which they so wonderfully resemble.

Even the living inhabitants of the sea are liable to become the resting-places of many a Sponge, and the crustacea are often forced to bear on their shells the additional burden of living Sponges and other zoophytes much more massive than their whole body.

The true living being which constitutes the Sponge is of a soft and almost gelatinous texture, to the unaided eye; and with the aid of the microscope is found to consist of an aggregation of separate bodies like those of the Amebse, soue of which are furnished with loug cilia. By the constant action of the cilia a current of water is kept up, cansing the liquid to enter at the innumerable pores with which the surface is pierced, and to be expelled through the larger orifices. A Sponge in full action is a wonderful sight: the cilia drives the water in ceaseless torrents, whirling along all kinds of solid particles. arresting those which are useful for digestion, and rejecting those which it cannot assimilate.

The reader will at once see thatt a creature thus composed will stand in need of some solid framework on which the delicate fabric can be supported; and on examining a series of Sponges with the microscope, we find that it is mostly composed of a fibrous and rather homy network, strengthenet with spicule of a hard mineral substance. The shape of the spicule is extremely variahle, some being simple translucent hars, some looking much like rough flints rendered transparent, others star-shaped with several points, while the greater number resemble knotted clubs made of differently-colored glass, and having a lovely effect under the microscope.

In the genns Grantia, which is well known to marine zoologists as having fmonished valuable information respecting the mutriment and reproduction of the Sponges, no horny network can be found, but its place is supplied by the singular form of the spicule, which are composed of three long-pointed spines arranged so as to form a star of three rays. These rays, on account of their shape, form an entangled mass, and answer the purpose of the ordinary horny framework. A new species, termed Halichondria palmata, inhabits the East Indies.

There are several European species of the genus Grantia. Some of them are hollow, and stand out with tolerable boldness from the objects on which they are set, while others are always found as whitish incrustations upon stones and other massire substances. Their structure is tolerably firm, and, on account of the absence of the horny framework, is not so elastic as are the generality of the Sponge tribe ; and the texture is very close, but still porous. With a microscope of tolerably high power, magnifying from two to three hundred diameters, the layer of spiculæ can be readily made ont, interlacing with each other in wonderful profusion, and so completely intermixed that a single spicula is scarcely ever separable from the general mass.

The shape of the species belonging to this genus is extremely variable, but in all the structure is remarkably simple, the wall being extremely thin, so that the ramifying canals are not needed, and the water is merely absorbed through the minute pores of the wall and expelled through the large orifice which forms the month of the sac. If the spicule of this or other Sponges be wanted in a separate state, the animal matter can be removed by heat; but a better, though slower process, is to immerse the specimen in strong nitric acid or liquor potassæ, accorling to the flinty or chalky nature of the spicules. When separated they may be mounted in two ways, namely, as dry and opaque objects, or in Canada balsam.

We must now briefly examine a rather important genus of Sponges, which has many representatives. It is a very extensire genus, and its members are varionsly shaped, all, however, agreeing in those salient points on which the group has been founded. They are all spongy, elastic, not slimy, and with a very porons surface.

One species is generally called the Mermaid's Glove, because it is apt to spread into a form that bears a somewhat remote resemblance to a glove with extended fingers. It is certainly the largest of the European Sponges, sometimes attaining a height of two feet, and stretching out its branches boldly into the sea. The branches are rather flattened, and when full-grown are abont an inch in width. They do not always remain separated thronghont their whole extent, but are apt to coalesce in various parts, and sometimes to form rudelyshaped arches.

The color of this Sponge is generally of a pale straw-yellow, and to the tonch its exterior is decidedly rough, on account of the myriads of spiculæ which slightly project from the surface. These spicule are needle-like, sometimes slightly curved and sometimes straight. Mostly they are pointed at both ends, but as they are fragile and suap asunder with the least
riolence, ther often look as if they were only pointed at one end. They lie nearly parallel to each other, and many are so placed that their points are presented outwards. This sponge is found in deep water in many parts of the European seas.

We now come to the large genus Halichondria.
The Funnel-sponge closely resembles an ordinary funnel. Its structure is very finely porons, and it is rather a pretty and elegant species. The spiculs which contain the softer parts of the Funnel-sponge are long, slender, and sometimes curved. In most cases they are pointed at each end, but in others only one end is sharp, while the other is rounded, so that the spicule resembles a needle without an eye. They are rather loose, and either lie in bundles or crossing one another. The width of an ordinary specimen is about three inches, and its length is equal to its width.

The Ling-Hood has a shape which, when it is young, reminds the observer of the preceding species. It may, however, be readily distinguished from that Sponge by the thick coating of hair-like spines with which its surface is covered. It always becomes shallower ly age, and is therefore extremely variable in its form. The edge is seldom so smooth and regular as that of the Fumel-sponge, being mostly cut into notches and the intervals devel oped into lobes.

One remarkable characteristic of this species is the very brittle exterior, which can be broken away by the fingers, and is found to consist almost wholly of flinty spicules, cemented together by the ghtinous substance of the amimal. Sometimes it almost loses the cup-like form, and spreads ont like a fam, deriving therefrom the popular title of Sea-fan. As the term, however, is applied to many other marine beings, it is not thonght so useful as the name which has already been mentioned.

Maxy of the zooplystes, especially the sertularia and its kin, are very liable to the gentle but irresistible attacks of this sponge, which, settling upon them, increases rapidly and more or less eurelops them in its own mass. Its mode of growth is always rariable. Sometimes it follows all the branches of the zoophyte on which it is parasitic, causing it to resemble a tree thickly covered with iny; while at other times it spreads out so widely, that it gathers all the branches together, covers them with its own substance, and forms them into a shapeless, spongr mass, from which a fow ends of the branches vaguely protrude.

This Sponge does not, however, confine itself to zoophytes as resting-places, but settles upon stones, sticks, shells, and other objects. Its color is generally grayish-white, but it sometimes deepens its tint and becomes of a yellowish-brown. The texture of its substance is always rather coarse, but its softness differs greatly according to the olject on which it has established itself and the locality in which it happens to ke. The spicule are always short, rather curved, and are sharpened at one end and rounded at the other. About forty species of the genus Halichondria are fomd in our seas, several of which are remarkable for having the spicule knobbed at both ends.

The extraordinary object which is called by the appropriate name of Neptunes Cup is one of the most magnificent, as well as one of the most notable, of the Sponge-tribe. It hardly looks like a Sponge; and when a specimen is shown to persons who have no knowledge of the subject, they can hardly ever be made to believe that the exhibitor is not endeavoring to play a pratical joke mon them.

The Neptune's Cup is of enormons dimensions, often measuring four feet in height and having a corresponding width. Its exterior is rough, gnarled, and knotted like the bark of some old tree; and if a portion were remored from the side, it might almost be mistaken for a piece of cork-tree bark. Many persons have imagined that the strangely-shaped object was made of the skin of an elephant's leg, and I have even heard a teacher telling her pupils that it was an old Roman wine-jar.

It is hardly possible to disabuse strangers of the notion that it is not the result of human ingennity until they are allowed to lift it, and test persomally its exceeding lightness. It is hollow, and is not at all unlike an old font that by some misfortune has been deprived of its base. Its capacity is enormons, and it would not only form a cup for Neptune, but even

Polyphemus himself might have fillerl its depths with the ruddy wine which he loved, and failed to empty the hige ressel at a draught.

The snbstance of this emormous Sponge is porons, rather stiff, and without much elasticity. It yields but slightly to pressure, and almost feels to the tonch as if it had been made from cork.

This is one of the exotic sponges, being found only in the hotter seas. In general shine it has some resemblance to the Fumel-sponge already described, but is of much coarser texture, and, sare for its gigantic size, is not nearly so attractive.

In the Prmoestone Sposga, we have an admirable example of the flinty structure developed to the utmost degree. The firmework is wholly composed of flinty spiculæ, all fused together, and forming a highly porons mass, which at first sight resembles a madrepore rather than a true Sponge. It has not the least elasticity, but is as hard and as stiff as if it had been carved from stone. On account of its extreme porosity, it is rery light, seeming to weigh not more than a pirete of cork of the same size.

The whole surface, ahove and below, is plentifully sown with pores, which have a lovely effect monder a magnifier, when the smbeams fall on the glittering spicnlre of which the mass is composed. A number of the large apertures appear on both sides, and all converge towards the centre. The general shape of this remarkable Sponge is enp-like, but exceedingly shallow, and on the inside it is tolerably smooth, becoming rougher and deeply grooved on the onter surface. It has a pecnlially rough feel to the tonch, almost exactly resembling the well-known rasping effect produced by rubbing pumice-stone upon the skin; and it is in consequence of this resemblanee that it has gained its popnlar title.

The pecnliarities of this very beantifn Sponge consist in the following distinctive characters, the most remarkable of which is its being formed entirely of silex, the reticulate structure of the mass being composed of transparent, glassy tubes, the silex forming the mass itself, and not, as in other instances, arranged as spicule in the horny membranes; consequently, it is perfectly rigid and sonorous when struck.

When viewed under a microseope of about seventy-five diameters, the net-like meshes are seen to be composed of beantifnl glassy tubes, uniting one with the other in every direction, the extemal smface of the cylinders having a rugged aspect. The newest or last-fomed portions appear to emanate from centres, and at certain distances from spherical knobs, from which straight tubes again arise, thus forming the net-like mass.

Before taking leave of these interesting beings, we must glance lapidly at the method by Whith they distribute themselves so widely and increase with such marvellous rapidity.

It will J_{e} remembered that the soft animal matter of which the true Sponge is formed is romposed of multitm tinous bodies which closely resemble the Amobse, and many of which are furnished with thread-like "ilia. In certain months of the yenr, which in moderate climates are generally fond to be October and November. a vast number of very mimute yellowish particles are to be sean studding the body of the Sponge. They are not often semnear the surface, but are gathered plentifully within its multitudinous calls. Small as are these yellow purticles, they are formed of many egres, or "gemmules," as they are callend, of the sponge, which gladnally increase in size, and at last are expelled from the larger orifices, and thrown at random into the wide sa.

There they are, flimse, minnte, sheltemless, feeble, and apparently helpless. Small, however, as they may be, they still possess the power of transporting themselves through the water by means of the cilia with which their bodies are abomdantly studded. Their shape is vely like that of a peoll ; and as they are wholly covered with cilia, exerpt the narrow end, it is evident thast their larger end must always be in front. They lead a free life for several tays after their expulsion from the parental home; and even in this early stage some indications of the future framework are to be seen.

Alter the lapse of some little time, these gemmules meet with some object which affords them a suitable resting-place, and aceordingly atlix themselves to the spot, from which they
never afterwards can move. The rounded hody soon becomes flattened, as it atheres with a close grasp, and spreads itself into a nearly circular film. The cilia still exist on the opper surface of this film, but the effect of their action is then not to propel the Sponge, but to create a cmrent of water which can pass orer it.

As time passes on, the distinctive spienlie become risible, and, after three weeks or a month have passed away, the spicnlæ have been gathered into little bundles, which by their arrangement tend to preserve the shape of the Sponge and to keep the orifices open. The little being now spreads rapidly, by a process which much resembles the subdirision of the Infusoria, and the whole mass of the Sponge is evidently composed of a vast number of the Amoba-like bodies which have already been described. Thousands upon thousands of these gemmmes are passed out into the sea from every Sponge that inhabits its waters; and the only wonder is, that, in consequence of such marvellously prolific properties, the Sponges do not swarm to such an extent as to fill the whole seas, and poison the entire earth with the odor of their decay.

The editor of this edition would state here that though the Sponges were once regurded as forming the lowest branch of the animal kingdom, as stated in the original text of this work, they now constitute the second in the ascending scale, or next to the lowest, under the title Branch II.-Pobiferata. As with other branches of the animal kingdom, we refer the reader who desires to gain linowledge of the present state of science as applied to this branch und that embracing the lowest amimals, to the technical tables of classification and nomenclature of the Smithsonian Institution. Not long since, it is well known, they were so little understood that no one had quite the courage to say which kingdom they belonged towhether of the animal or vegetable.

The present state of that section of science which relers to these low animals may be simply presented as follows: It is now known, as the result of much study and observation during the last ten or fifteen years, that the Sponges, in common with all other animals above them, are composed of myriats of cells, which perform each their respective offices in the animal economy. In some gromps perpetuation by division of the body is observed. Yet in all these are specialized cells or eggs, for the purposes of reproduction.

In the dirst division of the animal kingdom, that embracing the lowest animals, and called Braxci I.-Protozoa, it is observed that they differ by having only one simple cell; consequently they do not increase by means of eggs, but by division or segmentation. An analagous example is seen when regetable roots are perpetuated by cuttings. This difference suggests to the naturalist two distinct divisions. Those animals having many cells are called collectively Metazoa, and the single-celled Protozoa.

Spouges are all aquatic ; fonnd in the ocean, and in fresh water to a very limited extent. They are all fixed, with very few exceptions, to some object near or on the bottom of the seas. The young, dming a short period, are supplied with cilia, by which they move through the water until they become fixed. Myriads of Hoating microscopical plants and animals become their food by absorption through the pores and opeu channels so characteristic of these forms. The term Poriferata is selected to indinate this branch of animals from this prominent feature. The familiar vase form is characteristic of them. Some very beantiful examples are familiar.

The great Neptune's Cups are interesting forms, being complete vases in slape and construction, yet in their native element living animal structures.

Late anthorities place Sponges as follows:
Class I.-Calcisponge. Lime Sponges, literally. Yet all do not have the lime spicules or skeleton framework of lime formation.

Order 1. An American representative of this order is known throngl Mr. J. A. Ryder's observations, called Camaraphysema. It is a clnb-shaped mass, with a tough exterior.

Order II.-Olynthoidea. This order embraces those forms that have the framework of calcareous spicules. Some extremely curious forms of the latter are found, resembling artificial objects, as various forms of anchors, spears, "grains," etc.

Four sub-orders embrace the comparatively few species of this order.

Class IT.-Carneospongle. Most of the forms embraced here have the skeleton framework made m, of homy or silicions spicules. Three orders embrace the Sponges of this class.

The III. Order, Keratoidea, includes the commercial Sponges; those having a horny framework.

Sub-order-Spongince. The genus Spongia embrace all the Sponges that are utilized in commerce. Six species are

GLAsG SPONGE.-Holtenia carpenteri. (Natural size.) at present recognized, with varieties.

Three of the species are found in the Meditermanean and Red Sea. and three are native to Bahamas and the Florida Reef.

The Sponges of our coast are of the coarser kinds, yet of great practical value in the orts and household affairs.

It is an interesting fact that parties in the American localities lave succeeded in raising Sponges from cuttings. This is done, of conrse, under the sea surface, as the moment the Sponge is removed from water it dies. The broard areas of lagoon on the Florida Reef will furuish profitable returns of this new product.

The well known "Dead Mán's Finger" (Chatimule oculata), foumd frequently after storms on onr beaches along the Atlantic coast, is of another order, called Keioto-silicoidea, on aiccount of the union of the two kinds of spicules.

One of the sub-orders of this gromp embraces the species Microciona prolifera. abundant on pools at Cape Cod. Its color is a bright orange, and in this form. fresh from the sea, it will be remembered by many a visitor to the sea-shore after heary gales

Another sub-ordor embraces the familiar Crmmb-of-Bread Sponge (Halichondria panicea). Another, Suberites compucta, is common on the south side of Cape Cod.
fome boring forms, small, but very destructive to shell-fish, are common on our shores. Clionu sulphurea is one notable species. No satisfactory explanation is yet fortheoming of its boring rharacter. Another sub-orfer fombaces the fresh-water Sponges. 'Two families, embracing ton species. pepresent the gronp at present.

It is said that the peculiar "cucumber odor," so called, is llerived from the decay of these fresh-water Sponges

Order II., Silicoldea, includes the highest of the class. The skeleton framework of these Sponges is almost wholly made up of silicious spicules. The Tethia and Geodia are prominent forms.

What are known as Glass Sponges are of this Order.
The IIyalonema, or Glass-rope Sponge, is found in the waters around the Philippine Islands. Though so much in appeurance like spun glass, it is nevertheless of horn, like the nails and hoofs of animals. When burnt it has the same odor as horn. In 1860 naturalists first found the true nature of these objects; they, as well as the glass vases, were so artificial in appearance that they were taken as objects made up for a market.

The Holtenia carpenteria, seen in the engraving, is another of different shape. Of all, for beauty and singularity, the Euplectella, or Glass Vase-Tenus-cup-is the most beantiful A very fine example is lere figured. This, it will be remembered, is the framework of a sponge, just as the Sponges we use are frameworks of the Sponge. While alive all Sponges are quite heavy, some exceedingly so, with their flesh and the inclosed water. When lifted from the sea, an old black hat with many holes, is as good an illustration of the looks of a living Sponge as any. But what beautiful objects when dennded of tlesh !

Tile editor of this edition would, as in the case of the Branch of the Animal Kingdom II., Poriferata, treat of the First Branch where, according to late authorities, it properly belongs. For classification and nomenclature, according to modern authors, see tables of Smithsonian Institution.

Branch I.-Protozoa. First animals, is meant literally-or, looking at animal life in a descending series-the last, or lowest of animals. In omr pages this latter view is adopted.

The simplest object that can be called an animal is embraced in this branch. All of this gronp can move, eat, and reproduce their kind. They move by little oars placed in all parts of the exterior' they eat by absorbing minute animal and regetable substance into all parts of their bodies; and they are reproduced by the division of their forms indefinitely. Such creatures, we are ready to understand from their composition, are formed of single cells, whose parts are homogeneons, one bit being a representation of another or the whole.

GLAsS VASE.- Euplectella arpergillum. (Two-thirds natural size.)

The Protozoa are mostly minute creaturesmicroscopic. There is some degree of rank observed among the Protozoa. The first class embraces the lowest, called Monera. One of these forms, called Protomyxa, is regarded as the simplest representative.

The Rhizopods form a second class, but the differences are extremely small.
The fresh-water Rhizopods of America have been treated in a magnificent work, with colored plates. In the first Order of this class, the well-known Amaba is placed. See the figure in accompanying engraving.

Vol. IIL- 75.

The Order Radiolaria embraces some very beautiful forms, radiated and resembling crystals of snow-flakes.

The Order Reticularia includes the Foraminifera such as are figmed above, Polystomella, Butina, etc. One of the most notable of these is the Globigerina, a wonderful little microscopic globe, from which radiate myriads of spine-like organs, giving the creature a resemblance to some of the Echimi. The celebrated "Globigerima ooze," described by the maturalists of the "Challenger," is made up of this little animal in imnomerable numbers, forming vast beds of mad on the ocean bottom.

The Class Infusoria includes certain more familiar forms called Vorticella and Stentor, etc. But the most notable is the Noctiluca, the largest ol all, being visible to the naked eye. This is somewhat like a gooseberry in aspect. It is noted for its beantiful phosphorescencethe sea at times being wonderfully ilnminated by myriads of it on the surface. It has been seen in this condition on the Coast of Maine and Massachusetts.

Many species of these "animalcnles" exist, and many of their forms are as fantastic and beautiful as anything Nature produces.

I NJEス．

A．	Araneidea， 493.
Acalepha， 5 ¢ ${ }^{\text {a }}$	Arcella，isis．
Acanthonyx， 4 \％．	Archippns， 411.
dearina，हll	Architenthis，30\％．
Acarus， 51%	Arctia， 423.
Acephala，34\％，	Arctopsis， 44.
Achatina， 334,335	Arcturus，Batlin＇s Bay， 4π.
Acheta，x ．	Arenicola， 331.
Acrida，311．	Argonant，30इ．
\erosoma， 510.	Argonauta，34．
－ 1 crydxe． 341.	Argonauts，30\％．
Ietinaria，568．	Argnlidan thio．
Actinia，${ }^{\text {a }}$	Arguluc．Fishr，4年，
Actinoida，डtim．	Argus，shetland，5．\％．
Actinoloba，Stio	Arilus，431．
Actinozoa，55\％，5\％．	Arion． 335.
tılippe，Fritillary， 411.	Ark，Noah＇s，Sisl．
－Immiral，Scarlet，＋1：	Ark－Shells，3in．
Ecanthus， 361.	Arkys，\％n，51，
Egeria， 419.	Armidillo，1bll－，4\％．
Egle Red－spotted， 444.	Army－Worm， 4
Equorea．obt	Arrosoir，35\％．
Esop，Couch＇s， 48.	Arthrononialnc，${ }^{\text {a }}$ 3
Ethra，＋4．	Arthropoda，3\％\％．
Agate－Sbell， 334.	Ascaris． 83.3 ．
Agelena． $5 \cdots \%$.	Ascidians．300．
Agraulis， 411.	Asilidie，43\％．
Ailanthus，t\％	Aspidomorpla，386．
Albione，$i 3 \%$.	Ass＇s Far，Bit！．
Alca，tis．	Astacidirs． 4 （in）．
Alcippe，493．	Astacns， 4 lifi．
－Hejonella，3\％）．	Astarte，34\％．
Alcyonidium．3te．	
Al yonium，st\％．	
Alecto，2i\％，36s	Astrien，53．3，5\％4．
Alima，4il．	Astreacea， 5 ¢\％．
Allopostrs．30\％．	Astroides，5\％\％．
Alphens，tii＊．	Astrophyton． Si 4.
Alucita，tor．	Atenchus， 36%
	Athalia，Sim．
Amphipoda，fö．	Athinas，thã．
Ampulla，bulla，33，	Atlantas．34．3．
Ampullaria，3ı\％．	Atlas 13eetle，3xt．
Anchorella， 4×6,	Attacus， $4 \times$.
Aneylus，3s\％，	Atypus， 4 im．
Anemone，Green－，5fs， 54\％．	Auger，Spotted．31！． Avicularide， 34% ．
Anemone，Plumose，50，	
Anemone，Red－，stis．	B
Anemone，Sea－， $53 \%, 068$.	Back－Swimmers， 431.
Anemone，Snake－Lock－ ed，niol．	Bacteria， 391. Balanoptera，4！！．
Anemone，TVarty，5ris， 50.	Balaninus， 344. Balanus， 491.
Anisopleura， 341.	jarideus， 3×5.
Anoulata，i2\％．	Barnacles，fis to 491．
Anobium，34．	13asket－Fish， 5 54．
Anoplithalmus，3\％5．	Beadlet，is）．
Ant－Lion，3\％	Beania，3lit．
Ant，White，393．	Beauty，Camberwell，
Authera，5心s．	418．
Anthiя，3rt．3\％5．	Bed－Bng，430．
Anthononuns，3¢5．	Jees，Various， 40% to 404
Anthophora， 343.	Beetle，13loody－Nose，3m；
Anthrenus， 3 \％	Beetle，Cocktail，3\％3．
Authroceridie，419．	Beetle，Egyptian，378．
Aphaniptera，432．	Beetle，Musk，3\％3．
A phrodite，532．533．	Beetle，Pullet， 369.
Aphrophora， 4 （\％），429．	Beetle，W atchman－，3\％．I．
Apis，40\％．	Beetles， $3 \% 3$
Aplustrum，38s．	Beetles，Carrion． 3 －
Aplysia，38：？	Reetles， 1 liamond，343．
Aplysias，38s．	Beetles，Supring， 3 il．
Apodidie， 460.	Belemnites，31\％， 310.
Aporrhais，325．	Bembecidax，40：
Aptera， 437.	Вет的， 5 5\％．
Apus，480．	Bicellaria， 364.
Arachnida， 493.	Blattidæ，3x－．
Arachnida，Six－Eyed， E11．	Bleeding－Tooth Shell， $3 \% 5$.

Araneidea， 493.
Arcella，．s．t．
Architenthis，Bot．
Arctia， 423 ．
Aretnrus，Batlin＇s Bay， tir．
Arenicola， 331
Argonauti， 344.
Argonauts，307．
Argaluc．Fisho，44， Argus，shetland，5．3．
Arilns． 431.
Ark，Joah＇s，35t．
Ark－Shells，3il．
Armidillo，l＇ll－，4：
Army－Worm，tist Arthrononalnc，mez Arthropoda，37\％． Ascidians zo． Asilidie，4．35． Aspidomorpha，386． Ass＇s Far，B！：！ Astacns， 4 lifi． Astarte，34～． Asteriadie， $\bar{n}+4$, int Astrita，53．3．5\％ 4 Astrieacea， 2, Astrophyton．之it． Atenchus， 36 Athanas， 4 bia． Atlantas．34： Attacus，t？： Atypus， 4 int． Anger，spotted． 31 ． B．
Back－Swimmers， 431. Bacteria， $8: 1$. Balrenoptera，4：II． Balanme 191 Barideus， $3 \times$
Barnacles，4sx to 491. 13asket－Fish， 504. Beadlet，jot
Beania，3lot．
Beauty，Camberwell， P．

Bees，Various， 403 to to Beetle，13loody－Nose，3s Beetle，Cocktain， Beetle，Musk， $3 \pi 3$ Beetle，Pullet，：3 39 Beetles， 3 3．
Beetles，Carrion． $3:$ 亿．
Beetles，Spring，
Belemnites， 31% ， 310 ．
Bembecidax 4 （4）
Berre， $\mathbf{5 0 5 \%}$
Blattidge 3s．
Bleeding－Tooth Shell， 3：3．

Vol VI．－N．E．

Blister－Fly，3n\％． Bombardier Beetle， 3% ． $30 \mathrm{mbyx}, 4: 2$.
Bulina，559．
Boltenia， 358.
Bombycidx 434
Ronnet，Lady＇s，33s． Boro Poloo，4\％＝．
Bot－Thly，43ti． Botbriocephalus，5to． Botryllus，Star－sthaped， 359.

Bowerbaukia，31～， 369 Brachelytra，3\％
Brachinus， $3 \pi 5$.
Brachiopodi， 344
Brain－Stone， 574
Branch－Horns，th1．
Brauchellion， 23 ．
3ranchiobdella，io．
13 rauchioposa，tゅ川
Breast－Plate， 36% ．
Brittle Stars，5ǰ．
Bruchus，383．
Hubble－clell．33s．
Buceinums，330，331．
Buckle，Roaring，31～．
Kug，Harvest－．．ोlti．
Bug．Mealy， 400.
lougong， 410
Buyula，36t．
Butioni，3st．
Bulimns，Lemon，3：3
Bulina，5！t．
sill－Hrog
Bull－frog，Ghell， 3 Lf．
3unodes，ind．
Burying Beeties，3ã．
Burying Beeties， 3π.
Buskia，
Bit？
Buskia，369．
Butterflies，and Varie－ ties， 464 to 41.5
Buthorb， 540
C．

Caberea， 364

＇actus，4：4．
Caddis－Flies， 39 T
Calamaries， $30 t$
Calandra， 344
Calcispongit， 501.
Caligns， 455
Callianassa，464．4\％
Callinuorpha， 424 ．
（alocaris， 45.
Calpidinm， 30° ？
Calydna， 414
Calyptrea， 332.
amara， 453
Camaraphysema，501
Campanulariæ， 5 テ̈
Camposcia， 440.
Caucer， $4+$ ．
Cantharidæ， 382.
Canthocampitus， 4×4.
Caprella， 476.
Carabidxe，3\％．
Carbasea， 3 年．
Cardiada．3̄̄：
Cardiual－Beetle，3＊3．
Cardium，352．
Carinaria，34：
Carneospnngiæ，5ir
Caryophylliace， 5π
Cassididæ，3kti．
Cassis，32）， 331
Castnia $4 \geqslant 0$
Catagramma．405，413． Catenicella， 3 it
Catocala，4：3
Cecrops， 486.

Cellepora， 36. Cellularla，；tios． Centipede，Giant．size， centorhynclus，36．）． Cephalophora， $81: 3$ Cephaloporla，304． Cerambys，37：3． Ceramby， 385 Cerapus， 4 方． Cercopidat，4？ Cerithium suen Cermatir -20 Cerithiadas， $3{ }^{2}$ Cerithava， Cestum，sis． Cesthm，sion
Cethosia，t1z
Cetochilus， 484.
（havtopterns， 334.
Chain．Little， 3 to．
Chatimus，inis．
Chalinula，sty
Chelifer． 514.
higoe 43：．
Chilocorns， $34 t$ ． Chilognata，5：3t． Chilopoda，
Chiragra， 41. Chirolota，54． Chitons，Varions，33\％， ：33：3．
Chlorion，4or．
Chondracanthus，fisi Cborinus， 44. Chrysaora，5\％t，5hf． Chrysalis－Shell， 335. ＂hrysochora，3xil Chrysomela， 3 nim ，
Chrysomelida，siki， Chrysophora．imo． Chydorus，f＊？ Cicincelidae，373． Cirripedes，4s， Cicada，3n，428． Cicintela，B\％t． Cidaris，5lti． Cimbex， $3!\mathrm{k}$ ．
Cimex， 430.
Ciniflo， 506
Cirrhatulus， c_{3}
Cladocera， 4×1.
Clam，and Species， 345 ， $34 \pi, 35^{\circ}, 3 \mathrm{n} 4$.
Clava，13＋1． 358 350 Clear－Wings， 116, th $^{*} 0$ Cleg，4：34．
Cleorora， 349.
Clifden Nonparei］，f？
Tifdea Nomparel，4．． Clione 34
Clome，dis
CInb－S゙心ell，Freat，305
－＇lnbiont， 504.
Cluhs，3：3）
Clytus，simo
Cnethocampa， 434
Toccinella，ini：
Cocens，420，4：30
Cochinea！Insect，423．
Cockles，Bri．，353．
Cockchaffer，Common，
．いい。
Cockroach， 388.
Cocktails． 3 亿ĩ．
Cuslenterata，55\％．
Culotes， 50 万．
Coleoptera，3＊3．3＊7，34i．
Colorado Potato Beetle， 35．
Comatula，5int．

Comb Bearers，wis
Comb，renlls， 314
Conch，331．
Conch，Grieed， 331.
Conch－Shell， 315.
Conchoderma，4\％
Conchologist， 3 ＂ל．
Cone－Shells， 321.
Cones，314，3\％1，330．
Conida， 321 ．
Conis， 321.
Conotrachelus， 385
Copepoda，4s1．
Copepoda， 48.
Copris， 3 ： 1 ．
Coqs de Mer，453，
Coral Reefs of Florida，
oral
Coralline，Bird＇s．IIead， 314.

Corallium， 574
Corals，55\％， 572 to 5% ．
Coronulas tir
Corophium，L ong．
Horned， $4 \% 3$.
Corybautes， 523.
Coryne，4ni，5it．
Cowrey，Orange， 304.
Cowries， $32: 3$ to 3 int
Crab，Angular，4ō1．
Cral，Armed，tis．
Crab，Bearded，taf．
Crah，Black，Toulouse， 4 Hs ．
Crab，Brassy， 4% ．
Crab，Calling，fô0．
Crab，Jeath＇s－Hend， $4 \overline{\text { D }} 6$
Crab，Death＇s－Hend， 4
Crat，Domed， 4.3 ，
Crab，Edible， 43 ．
Crab，Ealible，of A meri－
ca， 4 ．
Crab，Figbting， 410.
Crab，Flattened，Iud－ 44.

Crab，Floating，4s1．
Crab，Frog－，Toothed， 45%
Crab，Gouty， 411.
Crab，Great Burrow－ ing， 4 tit．
Crab，Green， 45.
Crab，Oar－Foot，tin
Crab，Hairy，44，Łot
Crab，Harper－， 411.
（ rab，Herald， 4 t？
Crab，Heraldic，+12
Crab，Hermit，t5s．
Crab，Hermit－，Crafty，
45：．Keeled 454
Crab，Lady－，t50．
Crab，Lady－，tiso．
Incea． 4 st．$^{\text {In }}$
Crab，Long－Snouted，
Crab，Long－s
$\pm!2$.
Crab，Mask， 454
Crab，Montagu＇s， 44.
Crab，Nipper 4 ：．
Crab，Noduled，45\％．
Crab，Nut－，Pennant＇s， $+5$.
Crab，Oceanic Swim． noing， $4+6$ ．
Crab，Painted，fol．
Crab，Pea－， $4!$ ．
Crab，Polisbed，4＂t．
Crab，Porcelann－，long－
Horned， $41 ;$
Crab，Porcelain－，Broad． Claw，461．

Crab，Porcupline－， 456.
Crab，Purse－， 460.
Crab，Racing， 450
Crab，Ram＇s－Horn， 442.
Crab，Red，tif．
Crab，Robber－， 460.
Crab，Sand－， 450 ．
（rab，sa口cepan． 4 Rs
Crab，Scallop－， 455.
Crab，sentinel， 47% ． Crao，heven pinere－， 45 ． Cras，Shore－，Spider， 439
（rab，Spider－，Four Horned， 411 ．
Crab，Spider－，Great， 441， 41.
Crab，spider－，Horn－ Dack， 42 ．
Crab，Spiler－，Three－ Spined， 42.
Crab，Spirit， 451.
Crab spotted，His
Crab，Stone－，Northern， 454 ．
Crab，Strawberry－， 44 ．
Crab，Thorn－Claw，4：
（＇rab，Tortoise， 453.
Crab，Trania， 4 ins．
Crab，Jelvet Fiddler， 446.

Crab，Violet－，of Ja maica， 448.
Crab，Wooley， 455.
Crabs，Fiddler， 450.
Crabs，spider－， $41,452$.
Crabs，Swift－Footed 444.

Crabs，Swimming， 455.
Crabes Honteux． 453.
Crambactis，$\overline{\text { 万i }} 1,5 \%$ ．
Cranchia， 30 ．
Crane－Flies． 433
Craugon， 435° ．
Craw－Fish，tho
Cray－Fish，Sea， 464.
Cray－Fish， 46 ，
Creophinis，stio
Cribella，Eye
Criocareinus， 422.
Crisia， 36 in．
Crista，
Cristatella， 360
Cross Fish， 549,
5051
Cross－Fish， 549 ，
Crustreea．Sessile－ Eyed， 4 z．
Crustacea，Sword－Tail－ ed， 48 T ．
Crustacea，Ten－Footed， 30\％．
Crustaceans，Month－ F＇ooterl， 449.
Crustaceans，Stalk－ Ered， 438.
Cristaceans，Stomapod tio．
Crustaceans，Ten－Leg． ged， 438
Cryptophialus， 492.
Cryptopods，4，3．
Cyptapora 43.
Ctenophora， $557,559,562$
Cuckoo Flies，toro．
Cnekoo－Spit， 499.
Cheknorspit
Crucujo， $3 s 0$ ．
Cucujo， 380 ．
Cucnmaria，
Cucumber，SHa，
Sta
Cucrimbus，Sea， 54% ．
Cupu．aria，3i\％．
Curculio， 3 sa．
Cuttle－Fishes， 311.
Cuttles，Eight－Armed 30%
Cyamus，4\％7．
Cyana\％，Yenomous， 50
Cy：nea，55\％，
Cyclopidar 44
Cyclops，4sis， 484.
Cylippe，562
Cylichna， 33%
Cymba，Bos
Cymlulia，34．
Cymips 34
Cymthia，3in， 359
Сур：на，及，

Vor， $11-\mathrm{N}$ E

Cypridinidæ， 483.
Cyprina， 34%
Cypris，483
Cyrestis， 412
（＂ythere 4×3.
Cytherea， 353.

D．

Dactylocera， 455. Daddy Long－Legs， 433. Dalder， 431.
Datais， 411.
Daphnia， 481.
1）asee－W orm， 422.
Hasychira，424． 1）ate－s＇hell，r＇inger， 3 si Date－shell，Fork－Faile D．30．
Dead Man＇s Finger 590
Death Watel Sel，
Decacera
Decacera， 30π.
Decapoda， $30 \check{7}, 438$ ．
Dendronotus， $3410,342$.
bendroplyyllia， 5%
Dentalina，5at．
Jeatalinm， $33^{3} 5$.
Dermestes， 381.
Uesmotenthis， 308. Devil－Fish， 310.
Diachoris， 365.
Diactor， 43% ．
Dibranehiata， 305
Jichelertium， 45 ．
1）ido， 411 ．
1）imetopia， 364.
Dipera，433．
Diphyes， 5 ti
Diphyid：a， 561
Disaulax，3s
Disaulas，sens．
Discophora，int， 544 ．
biscopora， 364
Distaff 心hell， 316
boclea，41．
Docophorus， 519.
Dolabella． 339 ．
Dolium， 319.
Dolinms， 331.
Dolomedes， 499
Dolomedes， 499 Jotphin Shell，3w． Dominula， 484 Doris， 340, ， 34 Dery phora， 385. 1 oto， 341
Jove shell， 321 Dragon－Flies， $394,395$. Drassus， 514 Dreissena，zoo． Dromia，455．4int． Irone－Fly， 436 ． 1）ung－Beetle．：3\％） 1）nastes，sim0． Dysdera， 511 Dyticus，3T6．

E．

Ear－Shells，82：1， 330. Earwigs， 387.
Earth－itorm，534． Echinarachnius， 548. Fchinidae， 544. Wchinopora，57： Fehinodermata．5tl． Fichinus，5－17，5；2 Edwaresia 56：9． Egg－shells，3：4． Elaterid！a， 3 L ． Fledone， 30 a Flysia， 342. Encrinites，5． Endendrinm，5\％． Ensis，3n－4．
Entonxophaga，$: 890$
Entomostraca， 450.
Eutoza， 538 ．
Eolis，341， 34
Epeira， 504 ．
Ephemera，：36．
Fpicaliat， 46.
Equites，406，
Frato，tos．
Fresus in
Ergasilidie，485．
Erqatis， 504
Friethos， 4 rio．
Eripus．tio
Fristalis，355，436．

Erycinidx， 414. Eschara， $346,37 \%$ Gucorybas， 523.
Fudora，564．
Eunice， 531.
Euplæa， 410
Euplectella， 503.
Euriale， 554 ．
Eurygone， 414.

F．

Farciminaria， 3 int
Feather－star． 50.3
Fiddler，Marhled， 446.
Fig，Littie， 3 ic．
Filaria， 538.
File－Shell， 346
Fireflies，3su，3sI．
Fish－Louse，fis
F＇issurellide， 331
Five－Fingers，549，551， its．
Flea，Water， 481.
Fleas，43\％．
Flies， 486
＇lustra， 369
Foot，Pelican＇s，32iz
Horaminifera，5＊3，\％月4．
Forest－F］y 43 ．
Forester，Green， 419.
Fredericella， 3 ri．
Frog－Iopper， 429
Frog－shell 311% ．
Fulgoride， 428.
Fusus，310， 31% ．

G．

Gad Fly 434.
Galathea，463．
（ialene， 45
raleodes， 510
（iall Iusects， 390.
Gamasus， 518
Gammarus． 4 Tis．
（iaper Shell． 355.
Ciarteracantha． 510
Gasteropods，Inopercu－
late， 333
Gast rochama， 3 nfo．
Giastrophilus， $43 i$ ．
（iehia，4tit．4tis．
（iecarcinus， 445
Gelasimus， 499,450
Gemellaria， 364
Geodia， 593
Geometridæ，42h，
Geotrupes， 374
Gherkins，Sea，54．
Glass．Vase 503.
Glaucus， 341
Globigerina， 594.
Glomeris， 524
Glove，Mernaid＇s，5ss
Glow－W orm 3n1，
Glyeimeris， 354
Guat，Common， 433.
Golden Eyes，3in．
Gonibregnatus， 504.
Goniorles， 519.
Gonoleptes， 512.
Gooseberry Fly， 398.
Croose Mussel， 489.
frorgonia， $34 \pi, 5 \pi 4,5 \%$.
Grorgonias， 54.
Gosadmer，50：．
Grancio， 448.
Grantia 588
Grapsus 431
Grasshoppers， 301.
Gribble， 4 an
Ground Jeetles， 375.
（iry Ilotalpa，350，3！10．
cryllotalpa，
Gymnophthalmata，oft
Gymmostoma，34．
Gynatcia， 405.
Gyrinus， 3 T6．

H．

Haleyonoida， 544.
Halichondria，548， 592,
Ilaliotis，324， 330 ．
llammer thell， 345,345
llare，Ser 338
Harpa，：318．
llarpalis， 3 T4， 375.

Harp Shells， 31% ．
Harp，Ventricose， 318
Marvest－13ug，516．
Harvest－Man， 511
Watchet－Shell， 339.
Heetor， 40π ．
Hedgehog－Shell，314．
Heerwurm， 434 ．
Helices， 838.
Helieide， 333.
Heliconia，404．
Helicopis， 415 4if
Helix，334．334
Helmet，Pudds， 320.
Kelmet，Shells ： 200
hemet，hells，jza
Hemerobidat，man
ITeplians，to
Teplialls，
Ilera，4？t
Ilercules Beetle， 350 ．
Hermione， 53% ．
Hermione， 533.
Hermit－Screw，Flem－
ing＇s， 474.
Ifetara， 414
Heterocera， 415
Heteropoda， 342
leteroptera， 430.
Heterotenthis， 318.
Hidden Feet， 403.
Himnites， 347.
Hippa，Asiatie， 457.
llippobusea 437.
Hlippocrepia， 343.
Hippolyte，tis
Hirulo， $53{ }^{3}$
Histinteuthis 30s．
Historida， 3 T．
1fımatopinus， 518.

Woltenia．5io 5ins．
Tontenia， $592,5 \%$ ．
Homolide
45%
Homolide， 4 a\％
Homontera， 42% ．
Homuptera， 42%
Hoppers， 42.
Hopperx，＋29
Horn－Plant
Hornera，34ín．
Hornet， 412 ．
ITornet Fly，Banded， 435
Horse－Couch， 331
Horseshoe Animals，363
Hoverer－Flies， 433.
Huenia， 42
Hyalea，3t3．
Hyalonema， 503.
Hyas， 41 ．
Hydatids． 589
Hytra，5si，filio：
Hydroida， 5 iti．
Hydroids， $55 \pi, 558$.
Hydrozon． 55%
Hylas， 419
Hymenoptera． 39 \％．
Hyporlerma，43\％．
Hy pogymua $4 \because 3$.

1.

lbacus，spotterl， 463.
Iclmenmons． 348 ：349．
JImonea， 3 tit．
Hyanthus， 56
llybius．зil
Infundibulata， 36 ．

Infusoria，inis， 3% ．

Insects， 3 Ti2．
Internal Worms， 538
Internal Worms，
Invertebrata， 295
Isis， 575.
Isopienra．332．
I soporla， 4 \％i．
1sse， 424.
Iteniza， 510.
lthonia， 409.
Ivory－shell，spotted
$31!9$.
1xa，4is．
Ixodes， 516.

I．

Tacculina， 4 si
Janthina， 330
Itlly－Fishes， $556,52 \pi, 564$
Julus，5ed．
Jumpers，4\％
．1ииціа， 5 2．
K，
Fatydid， 301.

Keratoidea， 502.

Meleagrina，： 49
Membranipory， 365
Menopon， 51 ：
Menipea，3tis．
Mesostmiat，tict

Metcecns， $4 \pi 4$
Nicip \rightarrow a，42．
Micraspis， 380
Microcheira， 40 ．
Microciona，5！ 1 ．
Microgaster， 39.
Nictidæ， 431.
Nidamus， 410.
Nigranes， 453
Millepedes， 524,526 ．
Mineralogist， $3: 8$.
Misipsa， 114
Mites， 216 to 518
Nitre，Bishop＇s， 391
Mnemiopsis， 559
Modiolns，37\％．
Moina，4s：
Mollnsea，302， 345.
Mollusks，Fonr－Gilled 311.

Mollusks，Headless，345．
Mollusks，Naked－Gill ed， 340.
Mollusks，Rearward－
Gilled，33s，
Mollusks，shore， 32%.
Mollusks，Wiug－Foot
ed， 342.
Monedula． 401
Monera， 503.
Money－Spioners， 508.
Mordellidie， 3×2.
Mormolyce，B7̃．
Norotenthis， 309.
Morpho， 415.
Nothes， 415 to 4？ 2.
Mud－Borer，4tit．
Mad－Burrower，46t，
Murex，314，315， 331
Mascille， 4 ：
Mashroom，Sea－， 5% ．
Musk Beetle， 3 sis．
Mussels， 3 201， 3,1 ．
Mutilla， 401.
19уа， $353,304,355$.
Byctiris，Long－Armed 449.

Wygale， 494.
liypsis，47\％．
My riapoda， 520
Myrmarachna， 500.
Myrmeleon， 3% ．

N

Naticella－Shell， 3 3．
Nautilus， $305,311$.
Necrophage， 3 ，
Necrophorus，
Need e－Shell，Spotted 319.

Nematus， 308.
Nemertes， 538
Nemoptera，Coa，396．
Neoptolemns， 41.5
Nepidze， 431.
Neptune＇s Boat． 322.
Neptune＇s Cup，589，591．
Neptunus，44．
Nereis，531， 533.
Neritas， 324.
Neritina， $3 \% 5$
Nettles，556， 55%.
Neuroptera， 393.
Nicothoë， 45.
Nigger， 390
Koab＇s Ark， 351
Noctiluca，584，50．t
Noctuides $42 t+3$
Nomada， 403.
Nops， 511 ．
Notamia， 364
Notodelphys， 48
Notonecta， 431
Nucleobranchiata
Nudibranchs， 340 ．
Nursia， 454
Nympãäidæ， 411.
O．
Obisinm， 514.
Octcpus，304， 307.
Vol．VI．－N．E．

Ocypode， 450.
（）cypus，3デ．
Odynerus，40：．
Olivas， $43 i j, 437$
Oliva， 320
Olivas， $320,330,33$ I
Olynthoidea，i．） 31 I．
Oniscns， 479
Opelet，atis．
Ophiocoma， 5 วิ
）phiura，55：
（）pisthobranchiata， 338 Orange－Tip，fus Orchestia， $4 i 3$ ${ }^{0}$ Oqyia，423． Ornitlaptera， 406 Orthoptera， 38 s． Osmia，34？
Ostracoda，480，4s3．
Ostrea， $341 ;$
Otiothops， 511
O）べュles，
Oysters， 345 to $3+8$
P．
Pagitus，4is．
Paliemon，4tis
palinurus， $40,404$.
Paludicella， 371.
panella，4ní
1＇an－Fisin，48s．
＇anopura，3it．
baper stilors． 30% ．
1apilio， $415,41,40$ ．
Paramecinm，5xi
Parthenope，Spinose，
448.

Patellas， 330.
Pavonaria， 576.
Pavonia，and．
Pear－Shells，316，330．
Pearlet，Scottish，int
Pecten， 348.
Pectinatella，3\％0．
Pedicellina，3i：
Perliculida， 518
Pelonap， 358
Peltocephala 485. Pemphegus．436．
Pencens，thi：
Pencil－Tail，
Penella， 480.
P＇enmatula， 5 fi
l＇entacrinns，sist．
Pentacte 543 ．
Pentacte， 3
lerch－sucker， 486
Perimela，Toothed， 414 ．
erimblimm，5s5．
erjnopsis，oti．
Periwnkie，3：\％．
Perlidae． $3!6$.
Petricolidae， 350 ，
Phasgonura， 36$]$
Phasmidre， 3 ：1．
Peasant－shells，3：8．
Philodrontus， 503.

Phono， 409
Phorus， $3: 8$.
Photinus， 3 in
Phoxichilidium，48＊
Phronima，tif．
phrynus，51t．
Phylactolæmata， 300 ．
Phyllodoce， $527.23: 3$.
Phyllopoda，tso．
Phyllosome．
llorned，tio
Phylloxera，Trape， 430.
Physalia，559， 5151.
Pbysanoptera， 343
Pildocks， 3 āb．
Pieris，408， 409.
Pigeons，Sea， 33
Pilumans 44．
Pimplet，Gean－，5\％）．
Pinna 349.
Pinnotheres， $350,49$.
Piques，517．
Pissodes 385.
Plaues， $45 I$
Fianorbis， 337.
Piatyonicnlus， 450
Plectodera，3st

Pleurobranchia， 539. Plonata， 3 沙 Plum Gouger， 3×5 Plumatellit， $3 i 1,4 \tilde{6} 6$ Plamularia，5is． Plutens， 548
Podophthalmata， 488 ．
Pecilopoda，te：
Polish Scarlet Graiu 430.

Pollux， 413.
Polybins，447．
Polycera，：340．
Polyeystina， 58.4
Polydesurus，5：55．
Polgphemns，48：3．
Polypus，30t．
Polystomella，584，594． Polyxenus，525．
Polyzoa，Bul．
Polyzoit，Marine， 362.
Pompilus， $4(1$
Porcellana， 463.
Porifera， 587.
Poriferatat，5！， 593.
I＇orpita， 55%
Portuguese 川an－o＇
Il ar，55！，bto．
Portunus， 441
Puseidon，40hi．
Poltch－shell， 337
Pravins， 46 ． 46
Praying Insects，302．
Priam， 407
Priapulas，Tailed，54？．
Protesilaus， 40 s
Protolepas， $4!2$,
Protomyxa， 543.
Protoza，5！ 1 ，54．3
Pseudobdella， 537
Peudoscorplomes， $51 \cong$.
Psolinıs， 543.
Psolus， 543.
Pterochroza，Eyed，391．
Pteroscerods， 330.
Pterotracheas， 34°
1＇tilinus，341．
Ptinidex，Bs］
Pufflets， 564 ．
Palex， 432.
Pulmonata， 338.
Pupas， 3 38．
Purple，Comanon，318． Purple－shells， 330 ． Pirpura， 318. Pirpuras 330 ．
Pustulopora，36r．
Pycnogoninn， 45 ．
Jrochroa， 352.
Pyrophorus， 3 LI
Pyrosoma， 350
Pyrula， 316,

Q．

Quabog，347， 353.
Quinqueloculina，5st．

R．

Radiata， $5+1$.
Radiolaria， 594.
Ranellas， 331.
Ranina，45\％．
Rataria， 554.
Ray－Worm， 539.
Razor－Shells， 355
Redirvius 431
Reef Proper of the Flor－
ida Straits， 5 ris．
Retepora， 366.
Reticularia，5：－4．
Rainaster， 517.
Rhinoceros， 51%.
Rhizojoda，ふк：3
Rhizopods，585， 593.
Rhizostoma， 506
Rhopalera， 405.
Rhynchites， 883.
Rhyssa，398，400．
Ripiplıorus，38～．
Roller，Oak－Leaf，4\％
Rosalina．544．
Rose－Burls， 330
Rossia， 308.
Rotifera， 581
Rove－Beetles， 2π
Rutelidæ，3s0．

Sabella， 528
Saddle－Shell， 34 ．
Sagartia，5is， $5 \% 0$ ．
Sagittas，34＊．
Salicornaria， 362.
Sallyman，554．
Stlpa，3is0．
Salticus， $452,500$.
sand－llopper， 4% sand－screw，Jiroyer＇s， 4\％
Sand－akipper，tis． sund－Star，White， $5 \tilde{n}^{2}$ sarpedon，40t
Sarsia， 564
Sityriday，$\$ 14$.
Sitw－Flies，True，3！／
Scalaria， 304
cicale lusect， 420 Scallops， 344 －caphopotit，33？ Scaphopodat， 32.3 ． Scarabeus，3ั̌ schizodactylus， 390 sciara 434 ． Sclerarachne，5io． Scolia， 411. Ecolopeudra， 521 to 523． scolytus， 384. Scorpion，Book－，514． scorpion－Flies， $3!5$ scorpion－shetlls， 31 ：太̇corpion，Water， 431. scorpions，True，514． cerews，ton， 46 ． Screw－Stones， 5 is \＆urohicularia，З̇ッ4 scutibranchia，sus scyllaridae， 403. scytoles， 511. sea－Basket．553．
sea－13albs，5a\％．
sea－Fgss， $544,55 \Omega$ ea－Fan， 5 it ea－Feathers，5it． Sea－Finger，5ith ea－Hare，38s． cea－Jellies，5in
Sea－Mats， 345
Seat－Monse， $533,533$.
ea－Rens，5i：
sea－P1geons，3：38，
sea－Pink，5is．5in， sea－Pink，56s，54！
sea－Puddinms， 54% ． sea－Rose，I＇hick－Petal－ led， 568.
Sea－Shrub，5i5． sea－Star，Bird＇s Foot， 551．
ca－Toad， 41.
sea－Whips， 5π
segestrinm，ill．
Selenaria，3uti． Senoculata， 511. －еріа， 346310. Sepiola， 308 Serialaria，3tis． Serpula， $367,597,528$. Sertulariade，5\％r． Sesiadze， 419. setigera， 537. Ghark－Sncker，484

Shell，Fountain， 313.
 shore－Hopper，4T3
Shore－Hopper，tis，
Shrimps，Tarious，tht，
$40 \hbar, 46 \bar{r}, 4 \%, 4 \pi(1), 4 \pi 1$,
$45,4 \pi 6,4 \pi 5,4>1,4>1$ ．
Shntle，Weaver＇s，B2t． Sida，42．
Silicoidea， 503.
Siliquaria， $3=0$.
siliquas， 354.
silk－W orms， 422
Siphon， 4 so
iphonophora，55й，55．
siphonostoma，4s5．
ipunculus， 541,54
Sitaris， 3×3.
Sitophilus， 385
Sivado， 469.
Skate－Sucker，537．
Skippers， 41%
－hlaters tro
Slobbers， 50 t
Slugs，335．

Smerintlus +16 ＋19
Snails，3\％： 331 ，333，33－4 3\％ij to 330 ．
Suails，Sea， 324.
smake－shell， 326

IN＇IEES．

Tape－Worm， 539.
Tarantula， $4!6$.
＇Tectibranchiata， 388. Tegenaria，507． Telephoridit，sisl． Tellinida，3s4． Tenebrio， 3×3. Terebella， $52:$
Terebratula， 344.
Teredo， 35%.
Termes， 393
Testacella，336．
Tethia， 543.
Tetrabranchiata， 311
Tetragnathon 50%
Tetragnathon，50\％．
Ticks，436， $516,518,519$ Ticks，436，516，51． Tielemania， 344.3 Beetles， $3 i 3,3 \div 4$. Tiger Beetles， 3
Timar＇cha，
Thais， 406
Thais， 40 ．
Thatassinid
Thecosomata， 344
Thelia，56s．
Theridion， 505.
Thoas，t0s．
Thomisus，501，50\％
Thracia， 354.
Thunderbolts， 310.

[^7]Thyodamas， 411.
Touth－SLells， 382 Top－Shells， 388. Tops，328，329． Tortoise Beetles， $38 t i$ Tortrix， $4(6), 426$, Tracheliastes， 456 ． Trepangs， 54 ？ Trichina， 540 Trichoptera， $3: 7$. Tricocephalus， 539. Tricondyla，3it
Tridacna， 35
Tritonjiak， $3 \neq 0$. Tritons， 315. ${ }^{T}$ Trochus， $3: 2 \pi, 329$. Trochbidinm， 520. Trourb－Shells 25： Trotigh－Shells， 353. Trumpet，sea， 315. Trutupets，ost Truncatella， 327. Tsetse， 435.
Tubipora， 514
Tubularia，55\％，55S．
Tubulariadat，5\％6． Tubulipora，3ir，3ts． Tubuliporina，57̃． Tulip－Shell，Great， 316. Tumble－Bug， 37% ．
Tun－shell，Apple， 316. Tunicata， 35 ．

Turbo Versicolor，389． ＇l＇uruip－Fly， $3!$ ．
Turritella，Common 326.

Tusseln，4ヵ0．
＇Tusser，4：2．
U．
Umbrella，Indian， 339. Unionidæ，34\％．
Trania，4：0
Urchin，Basket， 5 ²3．
（ rehin，Cake－ 54 ．
Urchnn，Cake－，5t．
Urchin，Ileart－，Com Urchin， mon,
Trchin，Heart－，Fiddle， 546 ．
UTrchin，Keyhole， 54 s
Trchin，Piper－， $5+5$
Urchin．Sea－，55\％．
Trchin，Shield－， 54 s．
Urchin，Wheel－，54s．
Trchins，Sea－， 544.
Urocerus，漈， 400 ．
Uroctea， 505.
V ．
Vanessa． 412.
Veined－White，40s．
Velella，5：9
Vemellas， 5%

Tenus，34\％．
Venus Cup， 503
Venus＇Girdle，55\％，563．
Yenus－Shells， 353.
Ver Palmiste，384．
Ter Solitaire， 53% ．
Vermetus， $3: 6$.
Tespar， 412.
Vestlet， 54%
Virgularia 5\％6．
Tolncella Flies， 436
Volutes， $304,3 \div 1322,3300$ ．
Volutidat， 321 ．
Vorticella，5．56，5！ 4.
IV．
Walking－Stick，Insect， $3!1$ ．
IVasps，Wood， 400 to 402
Water Beetles，3i\％ $3 \% 1 ;$
Water Boatman， 431 ．
Water Hog－Louse，töl
Watering Pot－whell，35；
VFax Insects， 424
Weevils， 383 to 345.
Wentletraps，3ef，32\％
Whale－Lonse， 4% ．
Wheel Animalcules， 581.

IVherl－Bing， 431.
Whelks，316，317．

Whirligigs， 376
Whirlsig Beetles，37b．
Widow， 508,500 ．
Willow－Fly， 346.
Window－Shell，Chinese 346.

Wing－shells， 346
Wire－Worm， 434 ．
Food－Borers，4）4．
Woodcocks， 314.
Voodlice， 4 ti！
Woolly Bear， $4 \geqslant 3$ ．
Worm，Guinta，58s．
Worm－Shell， 326.
S．
Xenobalanus，4：42．
रenocerus， 385.
Siphosura，4ヵ7．
I．
Yellow Sally， 300 ．
Yponomentilæ，42t， Z．
Theonia， 414.
／，ephronia， 524
／oophyte，Club－，5\％7．
\％oophytes，5ris．
Zoophytes，Bell－， 576.
Zozymus， 45
Zygobranchia， 330.

2e- Animate Creation.

WE have concluded to submit for public patronage a work with the above title, being a serie of exquisite Engravings representing the Animal World, executed with great scientific accuracy, and accompanied by full Descriptive Text, written in popular terms, so as to delight and instruct the people. Anyone who has considered the subject must be at a loss to understand why an lllustrated Natural History, comprehensive and at the same time popular, has not before this been published in this country. Indeed any lover of animals who has visited the great museums and zoological gardens and has had access to books of engravings in the public libraries, could not fail to remark the wealth of material in existence devoted to this subject. Being confirmed in our conviction of the desirability of such a work, we laid under contribution the best existing authorities for the production of most perfect representations of all the more important living creatures, and among the artists whose delineations will delight the reader, we may mention Ilarrison Weir, Wolf, Coleman, Fr. Specht, and Mutzel. By far the majority of the engravings in these volumes are from drawings made from the living animals, many at the Zoological Society's Gardens in London, England.

We purpose that our patrons shall be aided and interested in their study by such an array of pictures as has never before embellished any Natural History. In numerous instances the engraving is printed in oil-colors, and this portion of the illustrations has been taken charge of by Messrs. L. Prang \& Co., of Boston, who we believe rank foremost for higlı artistic results in this department of printing. These Olcographs were copied under the superintendence of Mr. Prang from the renowned "Tafeln" of "Brehm's Thierleben," so that they may be declared perfectly reliable.

We sought competent advice from various sources as to the most suitable text that should accompany this panorama of handsome Engravings. It was found impossib!e to embody all the present ideas of naturalists in a single work like this on account of the rapid advances and constant changes in their knowledge of, and habits of thought respecting, the Animal World. And it seemed to us correct that the true object of Zoology is not to arrange, to number, and to ticket animals in a formal inventory, but to inquire-into their life-nature, and not simply to investigate the lifeless organism.

What do we know of "Man" from the dissecting-room? Is it not Man, the warrior, the statesman, the poet, etc., that we are interested in? With all veneration which attaches itself to those who are the accredited possessors of abstruse learning, their inordinate use of ploraseology detracts too much, we fear, from the fascination that the study of the Animal World would otherwise yield. and as we are not content to have our work restricted to a favored few, we thought the task placed in our hands to be to keep the work free from a repellant vocabulary of conventional technicalities. Our endeavor has been to find an author whose work would be noted for its fund of anecdote and vitality rather than for merely anatomical and scientific presentation, and we arrived at the conclusion that we could not do better than avail ourselves of the Rev. J. G. Wood's comprehensive work -a work most popularly approved by speakers of the English language. It would be superfluous to say one word concerning the standard character of his book, from the pages of which old and-young at the other side of the Atlantic lave obtained so much instruction and rational amusement. Avoiding the lengthened dissertations and minute classifications of specialists, he presents to his readers in popular terms a complete treatise on the Animal Kingdom of all climes and countries. The one objection that could be urged against it was, that animal life in America might be treated more fully and American forms given more consideration. In order to obviate this drawback and to do full justice to the creatures of our own country, we secured the aid of Dr. J. B. Holder, of the American Museum of Natural History in New York, an undoubted American authority, who has adapted Wood's work to American wants and given prominence to American forms of Animal life.

The splendid work on Rodentia, by Allen, Coues, and others, will be fully consulted. The valuable work on North American Birds, by Baird, Brewer, and Ridgway, will be the guide in the treatment of birds. The late arrangement of the classification and nomenclature of North American Birds, by Mr. Ridgway, and the Committee on that subject of the Ornithologists' Union, will be utilized in full. The arrangement of Mammals will be after the latest classification by Professor Flower, of the Zoological Society of London.

Cerms of Mpublication.

The extent of the work will be $\mathbf{6 8}$ parts of $\mathbf{2 8}$ pages, at the price of $\mathbf{2 5}$ cents each. The entire publication will contain 31 Oleographs and $\mathbf{6 8}$ Full Page Engravings on Wood, besides many hundreds of exquisite Illustrations inecespersed through the text. No subscriber's name is received for less than the entire set, and no order can be cancelled after acceptance of first four parts. The Publisher guarantees to complete the work in sixty-eight parts. The parts are payable only as delivered, the carrier not being permitted to receive money in advance, nor to leave parts on credit. Subscribers who remove, or who are not regularly supplied, will please address the Publisher by mail.

豆陛

[^0]:

 E

[^1]:

[^2]:

[^3]: ก

[^4]:

[^5]: Yol. yi amimatr Creation-N.E.

[^6]:

[^7]: Vor，VI．－N．E．

