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I'RfiF ACE.

I T is a remarkable fact in the history ot science, that the oldest book of

Elementary Geometry is still considered as the best, and that the writings

of Euclid, at the distance of two thousand years, continue to form the most

approved introduction to the mathematical sciences. This remarkable

distinction the Greek Geometer owes not only to the elegance and correct-

ness of his demonstrations, but to an arrangement most happily contrived

for the purpose of instruction,—advantages which, when ihey reach a cer-

tain eminence, secure the works of an author against the injuries of time

more effectually than even originality of invention. The Elements of Eu-
clid, however, in passing through the hands of the ancient editors during

the decline of science, had suffered some diminution of their excellence, and
much skill and learning have been employed by the modern mathemati-

cians to deliver them from blemishes which certainly did not enter into their

original composition. Of these mathematicians, Dr. Simso.v, as he may
be accounted the last, has also been the most successful, and has left very

little room for the ingenuity of future editors to be exercised in, either by

amending the text of Euclid, or by improving the translations from it.

Such being the merits of Dr. Simson's edition, and the reception it has

met with having been every way suitable, the work now offered to the pub-

lic will perhaps appear unnecessary. And indeed, if the geometer just

named had written with a view of accommodating the Elements of Euclid
to the present state of the mathematical sciences, it is not likely that any
thing new in Elementary Geometry would have been soon attempted. But

his design was different; it was his object to restore the writings of Euclid
to their original perfectio.n, and to give them to Modern Europe as nearly

as possible in the state wherein they made their first appearance in Ancient
Greece. For this undertaking, nobody could be better qualified than Dr.

SiMso.v ; who, to an accurate knowledge of the learned languages, and an
indefatigable spirit of research, added a profound skill in the ancient Geome-
try, and an admiration of it almost enthusiastic. Accordingly, he not only

restored the text of Euclid wherever it had been corrupted, but in some
cases removed imperfections that probably belonged to the original work :

though his extreme partiality for his author never permitted him to suppose
that such honour could fall to the share either of himself, or of any other of

the moderns.

But, after all this was accomplished, something still remained to be done,

•ince, notwithstanding the acknowledged excellence of Euclid's Ele-

ments, it could not be doubted that some alterations might bo made thai

would accommodate them better to a state of the mathematical sciences, so

much more improved and extended than at the period when they were
written. Accordingly, the object of the edition now offered to the public, i»

not 80 much to give the writings of Euclid the form which th«y orioinally

had, as that which may at present render them most useful.



PREFACE.

<>ne ol the alterations made with this view, respects the Doctrine of

Proportion, the melliod of treating which, as it is laid down in the fifth of

Euclid, has gieat advantages accompanied with considerable defects ; oj

which, however, it must be observed, that the advantages are essential, and

the defects only accidental. To explain the nature of the former requires

a more minute examination than is suited to this place, and must therefore

be reserved for the Notes ; but, in the mean time, it may be remarked, that

no definition, except that of Euclid, has ever been given, from which the

properties of proportionals can be deduced by reasonings, which, at the

same time that they are perfectly rigorous, are also simple and direct. As
to the defects, the prolixness and obscurity that have so often been com-
plained of in the fifth Book, they seem to arise chiefly from the nature of

the language employed, which being no other than that of ordinary dis-

course, cannot express, without much tediousness and circumlocution, the

relations of mathematical quantities, when taken in their utmost generality,

and when no assistance can be received from diagrams. As it is plain that

the concise language of Algebra is directly calculated to remedy this in-

convenience, I have endeavoured to introduce it here, in a very simple form

however, and without changing the nature of the reasoning, or departing

in any thing from the rigour of geometrical demonstration. By this means,
the steps of the reasoning which were before far separated, are brought

near to one another, and the force of the whole is so clearly and directly

perceived, that I am persuaded no more difiiculty will be found in under-

standing the propositions of the fifth Book than those of any other of the

Elements.

In the second Book, also, some algebraic signs have been introduced, for

the sake of representing more readily the addition and subtraction of the

rectangles on which the demonstrations depend. The use of such sym-
bolical writing, in translating from an original, where no symbols are used,

cannot, I think, be regarded as an unwarrantable liberty : for, if by that

means the translation is not made into English, it is made into that univer-

sal language so much sought after in all the sciences, but destined, it would
seem, to be enjoyed only by the mathematical. •

The alterations above mentioned are the most material that have been
attempted on the books of Euclid. There are, however, a few others,

which, though less considerable, it is hoped may in some degree facilitate

the study of the Elements. Such are those made on the definitions in the

first Book, and particularly on that of a straight line. A new axiom- is also

introduced in the room of the 12th, for the purpose of demonstrating more
easily some of the properties of parallel lines. In the third Book, the re-

marks concerning the angles made by a straight line, and the circumference
of a circle, are left out, as tending to perplex one who has advanced no
farther than the elements of the science. Some propositions also have
been added ; but for a fuller detail concerning these changes, I must refer

to the Notes, in which several of the more difficult, or more interesting sub*

,ects of Elementary Geometry are treated at considerable length.

College of Edinburgh,
Dec. 1, 1813



ELEMEISJTS

OF

GEOMETRY,

BOOK I.

THE PRINCIPLES.

EXPLANATION OF TERMS AND SIGNS.

1 Geometry is a science which has for its object the measurement of mag
nitudts.

Magnitudes may be considered under three dimensions,—length, breadth,

height or thickness.

2. In Geometry there are several general terms or principles ; such as.

Definitions, Propositions, Axioms, Theorems, Problems, Lemmas, Scho
liums. Corollaries, &c.

3. A Definition is the explication of any term or word in a science, show
ing the sense and meaning in which the term is employed.
Every detiniiion ought to be clear, and expressed in words that are

common and perfectly well understood.

4. An Axiom, or Maxim, is a self-evident proposition, requiring no formal

demonstration to prove the truth of it ; but is received and assented to as

soon as mentioned.

Such as, the whole of any thing is greater than a part of it ; or, the

whole is equal to all its parts taken together ; or, two quantities that

are each of them equal to a third quantity, are equal to each other.

5. K Theorem IS z. demonstrative proposition ; in which some property is

asserted, and the truth of it required to be proved.

Thus, when it is said that the sum of the three angles of any plane tri-

angle is equal to two right angles, this is called a Theorem ; and tho

method of collecting the several arguments and proofs, and laying

them together in proper order, by means of which the truth of th«

proposition becomes evident, is called a Demonstration.

6 A Direct Demonstration is that which concludes with the direct and ce
tain proof of the proposition in hand.

It is also called Positive or Affirmative, and sometimes an Ostensive De
mmstration, because it is most satisfactory to the mind
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7 An Indirect ox Negative Demonstration is that which shows a proposituiR

to be true, by proving that some absurdity would necessarily follow if

the proposition advanced were false.

This is sometimes called Reductio ad Absurdum ; because it shows the

absurdity and falsehood of all suppositions contrary to that contained

in the proposition.

8 A Problem is a proposition or a question proposed, which requires a so-

lution.

As, to draw one line perpendicular to another ; or to divide a line initf

two equal parts.

9. Solution of a problem is the resolution or answer given to it.

A Numerical or Numeral solution, is the answer given in numbers. A
Geometrical solution, is the answer given by the principles of Geome-
try. And a Mechanical solution, is one obtained by trials.

1 0. A Lemma is a preparatory proposition, laid down in order to shorten

the demonstration of the main proposition which follows it.

11

.

A Corollary, or Consectary, is a consequence drawn immediately from

some proposition or other premises.

i2. A Scholium is a remark or observation made on some foregoing propo-

sition or premises.

13. An Hypothesis is a supposition assumed to be true, in order to argue

from, or to found upon it the reasoning and demonstration of some pro-

position.

14. A Postulate, or Petition, is something required to be done, which is so

easy and evident that no person will hesitate to allow it.

15. Method is the art of disposing a train of arguments in a proper order,

to investigate the truth or falsity of a proposition, or to demonstrate it to

others when it has been found out. This is either Analytical or vSyn-

thetical.

16. Analysis, or the Analytic method, is the art or mode of finding out the

truth of a proposition, by first supposing the thing to be done, and then

reasoning step by step, till we arrive at some known truth. This is also

called the Method ofInvention, or Resolution ; and is that which is com-

monly used in Algebra.

1 7. Synthesis, or the Synthetic Method, is the searching out truth, by first

laying down simple principles, and pursuing the consequences flowing

from them till we arrive at the conclusion. This is also called the Me-

thod of Composition ; and is that which is commonly used in Geometry.

(8. The sign = (or two parallel lines), is the sign of equality; thus,

A=B, implies that the quantity denoted by A is equal to the quantity

denoted by B, and is read A equal to B.

1 9. To signify that A is greater than B, the expression A 7 B is used. A^nd

to sigp'fv that A is less than B, the expression A^I^B is used.

^
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20. The sign of Addition is an erect cross ; thus A+B implies the sum o

A and B, and is called A plus B.

21. Subtraction is denoted by a single line; as A—B, which is read A
minus B ; A—B represfents their difference, or the part of A remainii.g,

when a part equal to B has been taken away from it.

In like manner, A—B+C, or A+C—B, signifies that A and C are to

be added together, and that B is to be subtracted from their sum.

22. Multiplication is expressed by an oblique cross, by a point, or by simple

apposition : thus, A x B, A . B, or AB, signifies that the quantity de-

noted by A is to be multiplied by the quantity denoted by B. The ex-

pression AB should not be employed when there is any danger of con-

founding it with that of the line AB, the distance between the points A
and B. The multiplication of numbers cannot be expressed by simple

apposition.

23. When any quantities are enclosed in a parenthesis, or have aline drawB
over them, they are considered as one quantity with respect to other

symbols: thus, the expression AX(B+C—D), or Ax B+C—D, re-

presents the product of A by the quantity B+C—D. In like manner,
(A+B)x(A—B+C), indicates the product of A+B by the quantity

A—B+C.
24. The Co-efficient of a quantity is the number prefixed to it : thus, 2AB

signifies that the line AB is to be taken 2 times
; ^AB signifies the half

of the line AB.

85. Division, or the ratio of one quantity to another, is usually denoted by
placing one of the two quantities over the other, in the form of a fraction •

thus, — signifies the ratio or quotient arising from the division of the

quantity A by B. In fact, this is division indicated.

26. The Hqiiare, Cube, &c. of a quantity, are expressed by placing a small

figure at the right hand of the quantity: thus, the square of the line

AB is denoted by AB^, the cube of the line AB is designated by AB^

;

and so on.

27. The Roots of quantities are expressed by means of the radical sign /,
with the proper index annexed ; thus, the square root of 5 is indicated

y/b ; -v/(^ X B) means the square root of the product of A and B, or the

mean proportional between them. The roots of quantities are some-
times expressed by nr.eans of fractional indices : thus, the cube root of

A X B X C may be expressed by V^xBxC, or (A x B X C)», and
80 on.

28. Numbers in a parenthesis, such as ri5. 1.), refers back to the numboi
of the proposition and the Book in which it has been announced or de-

monstrated. The expression (15. 1.) denotes the fifteenth proposition,

first book, and so on. Ip like manner, (3. Ax.) desig!iates the third

axiom; (2. Post.) the second posttdate; (Def. 3.) the third lefinition,

and so on
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89. The word, therefore, or hence, frequently occurs. To express either of

these words, the sign .*. is generally used.

30. If the quotients of two pairs of numbers, or quantities, are equal, the*

A C
quantities are said to he proportional : thus, if ^ = =- ; then, A. is to ^

as C to D. And the abbreviations of the proportion is, A : B : : C : D

;

it is sometimes written A : B=C : D.

DEFINITIONS.

1. "A Point is that which has position, but not magnitude*." (See

Notes.)

2. A line is length without breadth.
" Corollary. The extremities of a line are points ; and the intersections

" of one line with another are also points."

3. " If two lines are such that they cannot coincide in any two points, with-
" out coinciding altogether, each of them is called a straight line."

" CoR. Hence two straight lines caimot inclose a space. Neither can two
" straight lines have a common segment ; that is, they cannot coincide
" in part, without coinciding altogether."

4. A superficies is that which has only length and breadth.

' CoR. The extremities of a superficies are lines ; and the intersections of
" one superficies with another are also lines."

5. A plane superficies is that in which any two points being taken, the

straight line between them lies wholly in that superficies.

6. A plane rectilineal angle is the inclination of two straight lines to one
another, which meet together, but are not in the same straight line

B

N. B. 'When several angles are at one point B, any one of them is ex-

pressed by three letters, of which the letter that is at the vertex of the an-

gle, that is, at the point in which the straight lines that contain the angle

meet one another, is put between the other two letters, and one of these

two is somewhere upon one of those straight lines, and the other upon the

other line : Thus the angle which is contained by the straight lines, AB
OB, is named the angle ABC, or CBA ; that which is contained by AB,

* The definitions marked with inTerted commas are different from those of ifatlid.
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• BD, is named the angle ABD, or DBA ; and that which is conliined by
BD, CB, is called the angle DBG, or CBD ; but, if there be only one an-

gle at a point, it may be expressed by a letter placed at that point ; as the
• angle at E.'

When a straight line standing on another

straight line makes the adjacent angles equal

to one another, each of the angles is called

a right angle ; and the straight line which
stands on the other, is called a perpendicu-

lar to it.

8. An obtuse angle is that which is greater than a right angle.

9. An acute angle is that which is less than a right angle.

10. A figure is that which is enclosed by one or more boundaries.

—

The
word area denotes the quantity of space contained in a Jigure, icithout any

reference to the nature of the line or lines which hound it.

11. A circle is a plane figure contained by one line, which is called the

circumference, and is such that all straight lines drawn from a certain

point within the figure to the circumference, are equal to one another

and are called radii

12. And this point is called the centre of the circle.

13. A diameter of a circle is a straight line drawn through the centre, nnJ
terminated both ways by the circumference.

14. A semicircle is the figure contained by a diameter and the pan oi •ff

circumference cut ofll" by the diameter
a
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15. Rectilineal figures are those which are contained by straight lino*

10. Trilateral figures, or triangles, by three straight lines.

17. Quadrilateral, by four straight lines.

18. Multilateral figures, or polygons, by more than four straight lines.

19. Of three sided figures, an equilateral triangle is that which has chree

equal sides.

20. An isosceles triangle is that which has only two sides equal.

21. A scalene triangle is that which has three unequal sides.

22 A right angled triangle is that which has a right angle.

23. An obtuse angled triangle is that which has an obtuse angle.

24 An acute angled triangle is that which has three acute angles.

25 Of four sided figures, a square is that which has all its sides equal

and all its angles right angles.

26. An oblong is that which has ail its angles right angles, but has not al
'ts sides equal.

27 A rhombus is that which has all its sides equal, but its angles are not

nght angles.
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^8. A rhumboiJ is that which has its opposite sides equal to one another,

but all its sides are not equal, nor its angles right angles.

29. All other four sided figures besides these, are called trapeziums.

30. Parallel straight lines are such as are in the same plane, and which
• being produced ever so far both ways, do not meet.

POSTULATES.

1

.

Let it be granted that a straight line may be drawn from any one point

to any other point.

2. That a terminated straight line may be produced to any length in a
straight line.

3. And that a circle may be described from any centre at any distanca

from that centre

AXIOMS.

1

.

Things which are equal to the same thing are equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be taken from equals, the remainders are equal.

4. If equals be added to unequals, the wholes are unequal.

5. If equals be taken from unequals, the remainders are unequal.

8. Things which are doubles of the same thing, are equal to one another.

7. Things which are halves of the same thing, are equal to one another.

8. Magnitudes which coincide with one another, that is, which exactly

fill the same space, are equal to one another.

9. The whole is greater than its part.

10. All right angles are equal to one another.

11," Two straight lines which intersect one another, cannot be both pa-
" ralle to the same straight line."
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PROPOSITION I. PROBLEM.

To describe an equilateral triangle up-n a given finite straight line.

Lot AB be the given straight line ; it is required to describe an equi*

lateral triangle upon it.

From the centre A, at the dis-

tance AB, describe (3. Postulate)

the circle BCD, and from the cen-

tre B, at the distance BA, describe

the circle ACE ; and from the point

C, in which the circles cut one an-

other, draw the straight lines (1.

Post.) CA, CB to the points A, B

;

ABC is an equilateral triangle.

Because the point A is the cen-

tirt of the circle BCD, AC is equal

(11. Definition) to AB ; and because the point B is the centre of the cir-

cle ACE, BC is equal to AB : But it has been proved that CA is equal

to AB ; therefore CA, CB are each of them equal to AB ; now things

which are equal to the same are equal to one another, (1.- Axiom) ; there-

fore CA is equal to CB ; wherefore CA, AB, CB are equal to one another
;

and the triangle ABC is therefore equilateral, and it is described upon the

given straight line AB.

PROP. II. PROB.

From a given point to draw a straight line equal to a given straight line.

Let A be the given point, and BC the given straight line ; it is required

to draw, from the point A, a straight line equal to BC.
From the point A to B draw (1. Post.)

the straight line AB ; and upon it describe

(1. 1.) the equilateral triangle DAB, and
produce (2. Post.) the straight lines DA,
BD, to E and F ; from the centre B, at the

distance BC, describe (3. Post.) the circle

CGH, and from the centre D, at the dis-

tance DG, describe the circle GKL, AL is

equal to BC.
Because the point B is the centre of the

circle CGH, BC is equal (11. Def.) to BG
;

and because D is the centre of the circle

GKL, DL is equal to DG, and DA, DB,
parts of them, are equal ; therefore the re-

mainder AL is equal to the remainder (3.

Ax.) BG: But it has been shewn that BC is equal to BG ; wherefore
AL and BC are each of them equal to BG ; and things that are equal
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to the same are equal to one another ; therefore the straight line AL is

equal to BC. Wherefore, from the given point A, a straight line AL has
been drawn equal to the given straight line BC.

PROP. III. PROB.

From the greater of two given straight lines to et»J i^^ a part equal to th6

less.

Let AB and C be the two given straight

lines, whereof AB is the greater. It is

required to cut off from AB, the greater,

H part equal to C, the less.

From the point A draw (2. 1.) the

straight line AD equal to C ; and from
the centre A, and at the distance AD,
describe (3. Post.) the circle DEF; and
because A is the centre of the circle

DEF, AE is equal to AD; but the

straight line C is likewise equal to AD
;

whence AE and C are each of them equal to AD ; wherefore the straight

line AE is equal to (1. Ax.) C, and from AB the greater of two straight

lines, a part AE has been cut off equal to C the less.

PROP. IV. THEOREM.

If two triangles have two sides of the one equal to two sides of the other, each

to each ; and have likewise the angles contained by those sides equal to

one another, their bases, or third sides, shall be equal ; and the areas of
the triangles shall be equal ; and their other angles shall be equal, each to

each, viz. those to which the equal sides are oppos te*

Let ABC, DEF be two triangles which havt the two sides AB, AC
equal to the two sides I)E DF, each to each. viz. AB to DE. and AC to

DF
, and let the angle

BAC be also equal to the

angle EDF: then shall

.lie base BC be equal to

the base EF ; and the tri-

angle ABC to the triangle

DEF; and the other an-

gles, to which the equal

sides are opposite, shall _^ -_

be equal, each to each, " C E 15

viz. the angle ABC to the angle DEF, and the angle ACB to DFE.
For, if the triangle ABC be applied to the triangle DEF, so that the

point A may be on D, and the straight line AB upon DE ; the point B
shall coincide with the point E, because AB is equal to DE ; and AB

* The three conclusions in this enunciation are mure briefly expressed by soy ng, that t^

UmHfU$ a't every way t^;ual.
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coinciding with DE, AC shall coincide with DF, because the angle BAG
is equal to the angle EDF ; wherefore also the point C shall coincide with

the point F, because AC is equal to DF : But the point B coincides with

the point E ; wherefore the base BC shall coincide with the base EF
cor. def. 3.), and shall be equal to it. Therefore also the whole triangle

ABC shall coincide with the whole triangle DEF, so that the spaces which
they contain or their areas are equal ; and the remaining angles of the

one shall coincide with the remaining angles of the other, and be equal to

them, viz. the angle ABC to the angle DEF, and the angle ACB to the

angle DFE. Therefore, if two triangles have two sides of the one equal

to two sides of the other, each to each, and have likewise the angles con-

tained by those sides equal to one another ; their bases shall be equal,

and their areas shall be equal, and their other angles, to which the equal

sides are opposite, shall be equal, each to each.

PROP. V. THEOR.

The angles at the base of an Isosceles triangle are equal to one another ; and

if the equal sides be produced, the angles upon the other side of the base

shall be equal.

Let ABC be an isosceles triangle, of which the side AB is equal to AC
and let the straight lines AB, AC be produced to D and E, the angle ABC
shall be equal to the angle ACB, and the angle CBD to the angle BCE.

In BD take any point F, and from AE the greater cut off AG equal

(3. 1.) to AF, the less, and join FC, GB.
Because AF is equal to AG, and A B to AC, the two sides FA, AC are equal

to the two GA, AB, each to each ; and they contain the angle FAG com-

mon to the two triangles, AFC, AGB

;

therefore the base FC is equal (4. 1.) to

the base GB, and the triangle AFC to

the triangle AGB; and the remaining

angles of the one are equal (4. 1.) to

the remaining angles of the other, each to

each, to which the equal sides are oppo-

site, viz. the angle ACF to the angle

ABG, and the angle AFC to the angle

AGB : And because the whole AF is

equal to the whole AG, and the part AB
to the part AC ; the remainder BF shall

be equal (3. Ax.) to the remainder CG

;

and FC was proved to be equal to GB, -L'/ \Ei
therefore the two sides BF, FC are equal to the two CG, GB, each to

each ; but the angle BFC is equal to the angle CGB ; wherefore the tri-

angles BFC, CGB are equal (4. 1.), and their remaining angles are equal.

to which the equal sides are opposite ; therefore the angle FBC is equal

to the angle GCB, and the angle BCF to the angle CBG. Now, since

it has been demonstrated, that the whole angle ABG is equal to the whole
ACF, and the part CBG to the part BCF, the remaining angle ABC is

therefore equal to the remaining angle ACB, which are the angles at th«
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ba«e of the triangle ABC : And it has also been proved that the angle

FBC is equal to the angle GCB, which are the angles upon the other side

of the base.

Corollary. Hence every equilateral triangle is also equiangular

PROP. VI. THEOR.

Iftwt angles of a triangle he equal to one another, the sides which subtend

or are opposite to them, are also equal to one another.

Let ABC be a triangle having the angle ABC equal to the angle ACB

;

the side AB is also equal to the side AC.
For, if AB be not equal to AC, one of them is

greater than the other : Let AB be the greater,

and from it cut (3. 1.) off DB equal to AC the

less, and join DC ; therefore, because in the tri-

angles DBC, ACB, DB is equal to AC, and BC
common to both, the two sides DB, BC are equal

to the two AC, CB, each to each ; but the angle

DBC is also equal to the angle ACB ; therefore

the base DC is equal to the base AB, and the area

of the triangle DBC is equal to that of the triangle

(4. 1.) ACB, the less to the greater ; which is ab-

surd. Therefore, AB is not unequal to AC, that

is, it is equal to it.

CoR. Hence every equiangular triangle is also equilateral.

PROP. Vn. THEOR.

Upon the same hose, and on the same side ofit, there cannot be ttoo triangles,

that have their sides which are terminated in one extremity of the base

equal to one another, and likewise those which are terminated in the other

extremity, equal to one another.

Let there be two triangles ACB, ADB, upon the same base AB, and

upon the same side of it, which have their sides CA, DA, terminated in A
equal to one another ; then their sides CB, DB, terminated in B. cannot

be equal to one another.

Join CD, and if possible let CB be

equal to DB ; then, in the case in which
the vertex of each of the triangles is with- / » \Tm
out the other triangle, because AC is / \

A
equal to AD, the angle ACD is equal (5.

1.) to the angle ADC : But the angle

ACD is greater than the angle BCD ;

therefore the angle ADC is greater also

than BCD ; much more then is the angle

BDC greater than the angle BCD. Again,

because CB is equal to DB, the angle

BDC is equal (5. 1.) to the angle BCD ; A'^
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but it has been demonstrated to be greater than it ; which is imposs^

ble.

But if one of the vertices, as D, ^JJ
be within the other triangle ACB ;

produce AC, AD to E, F ; therefore,

because AC is equal to AD in the

triangle ACD, the angles ECD, FDC
upon the other side of the base CD
are equal (5. 1.) to one another, but

the angle ECD is greater than the

angle BCD ; wherefore the angle

FDC is likewise greater than BCD
;

much more then is the angle BDC greater than the angle BCD. Again,

because CB is equal to DB, the angle BDC is equal (5. 1.) to the angle

BCD ; but BDC has been proved to be greater than the same BCD
;

which is impossible. The case in which the vertex of one triangle is

upon a side of the other, needs no demonstration.

Therefore, upon the same base, and on the same side of it, there cannot

be two triangles that have their sides which are terminated in one extrem

ity of the base equal to one another, and likewise those which are termina

ted in the other extremity equal to one another.

PROP. VIII. THEOR.

If two triangles have two sides of the one equal to two sides of the othet

each to each, and have likewise their bases equal ; the angle which is contain

ed hy the two sides of the one shall be equal to the angle contained by the tw*

sides of the other.

Let ABC, DEF be two triangles having the two sides AB, AC, equal

to the two sides DE, DF, each to each, viz. AB to DE, and AC to DF

;

The angle BAG is equal to

B 1; E
and also the base BC equal to the base EF.
•he angle EDF.

For, if the triangle ABC be applied to the triangle DEF, so that the

point B be on E, and the straight line BCupon EF ; the point C shall also

coincide with the point F, because BC is equal to EF : therefore BC coin-

ciding with EF, BA and AC shall coincide with ED and DF ; for, if

BA and CA. do not coincide with ED and FD, but have a different situa-
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tion, as EG and FG ; then, upon the same base EF, and upon the sam*
side of it, there can be two triangles EDF, EGF,that have their sides whicb
are terminated in one extremity of the base equal to one another, and like-

wise their sides terminated in the other extremity ; but this is impossible

(7. 1.); therefore, if the base BC coincides with the base EF, the sides

BA, AC cannot but coincide with the sides ED, DF ; wherelbre likewise

the angle BAG coincides with the angle EDF, and is equal (8. Ax.) to it.

PROP. IX. PROB.

To bisect a given rectilineal angle, that is, to divide it into two equal angles

Let BAG be the given rectilineal angle, it is required to bisect iu

Take any point D in AB, and from AC cut

(3, 1.) off AE equal to AD
;
join DE, and upon

it describe (1. 1.) an equilateral triangle DEF
;

then join AF ; the straight line AF bisects

the angle BAG.
Because AD is equal to AE, and AF is com-

mon to the two triangles DAF, EAF ; the two
sides DA, AF, are equal to the two sides EA,
AF, each to each ; but the base DF is also

equal to the base EF ; therefore the angle

DAF is equal (8. 1.) to the angle EAF : where-

fore the given rectilineal angle BAG is bisect-

ed by the straight line AF.

SCHOLIUM.

By the same construction, each of the halves BAF, CAF, may be diTfc.

ded into two equal parts ; and thus, by successive subdivisions, a given an-

gle may be divided into four equal parts, into eight, into sixteen, and so on.

PROP. X. PROB.

To bisect a given finite straight line, that is, to divide it into two equalparts.

Let AB be the given straight line ; it is required to divide it into two equal

parts.

Describe (1. 1.) upon it an equilateral triangle ABC, and bisect (0. I.)

the angle ACB by the straight line CD. AB is

cut into two equal parts in the point D.

Because AG is equal to CB, and CD common
to the two triangles ACD, BCD : the two sides

AG. CD, are equal to the two BC, CD, each to

each ; but the angle ACD is also equal to the an-

gle BCD ; therefore the base AD is equal to the

base (4. 1.) DB, and the straight line AB is divi-

ded into two equal parts in the point D.
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PROP. XL PROB.

To draw a straight line at right angles to a given straight line, from a given

point in that line.

Let AB be a given straight line, and C a point given in it ; it is requi-

led to draw a straight line from the point C at right angles to AB
Take any point D in AC, and (3. 1.) make CE equal to CD, and upon

DE describe (1. 1.) the equilateral p
triangle DFE, and join FC; the

straight line FC, drawn from the giv-

en point C, is at right angles to the

given straight line AB.
Because DC is equal to CE, and

FC common to the two triangles

DCF, ECF, the two sides DC, CF
are equal to the two EC, CF, each ADC E B
to each ; but the base DF is also equal to the base EF ; therefore the

angle DCF is equal (8. 1.) to the angle ECF ; and they are adjacent an-

gles. But, when the adjacent angles which one straight line makes with

another straight line are equal to one another, each of them is called a

right (7. def.) angle ; therefore each of the angles DCF, ECF, is a right

angle. Wherefore, from the given point C, in the given straight line AB,
FC has been drawn at right angles to AB.

PROP. XIL PROB.

To draw a straight line perpendicular to a giv^n straight line, ofan unlimited

length,from a given point without it.

Let AB be a given straight line, which may be produced to any length

both ways, and let C be a point without it. It is required to draw a straight

line perpendicular to AB from the

point C.

Take any point D upon the other

side of AB,and from the centre C, at

the distance CD, describe (3. Post.)

the circle EGF meeting AB in F, G :

and bisect (10. 1.) FG in H, and join

CF, CH, CG ; the straight line CH,
drawn from the given point C, is per-

pendicular to the given straight line AB.
Because FH is equal to HG, and HC common to the two triangles FHC,

GHC, the two sides FH, HC are equal to the two GH, HC, each to each
,

but the base CF is also equal (11. Def. 1.) to the base CG ; therefore the

angle CHF is equal (8. 1.) to the angle CHG ; and they are adjacent an-

gles ; now when a straight line standing on a straight line makes the ad-

jacent angles equal to one another, each of them is a right angle, and
tho straight line which stands upon the other is called a perpendicular to

It ; therefore from the given point C a perpendicular CH has been drawn
to the given straight line AB.
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PROP. XIII. THEOR.

The angles which one straight line makes with another upon one side oj it, are

either two right angles, or are together equal to two right angles.

Let the straight line AB make with CD, upon one side of it the angles

CBA, ABD ; these are eithertwo right angles, or are together equal to two

right angles.

For, if the angle CBA be equal to ABD, each of them is a right angle

(Def. 7.) ; but, if not, from the point B draw BE at right angles (U. 1.)

E A

D B D B C
to CD ; therefore the angles CBE, EBD are two right angles. Now, the

angle CBE is equal to the two angles CBA, ABE together ; add the an-

gle EBD to each of these equals, and the two angles CBE, EBD will be

equal (2. Ax.) to the three CBA, ABE, EBD. Again, the angle DBA is

equal to the two angles DBE, EBA ; add to each of these equals the angle

ABC ; then will the two angles DBA, ABC be equal to the three angles

DBE, EBA, ABC; but the angles CBE, EBD have been demonstrated

to be equal to the same three angles ; and things that are equal to the same
are equal (1. Ax.) to one another; therefore the angles CBE, EBD are

equal to the angles DBA, ABC ; but CBE, EBD, are two right angles
;

therefore DBA, ABC ; are together equal to two right angles.

Cor. The sum of all the angles, formed on the same side of a straight

line DC, is equal to two right angles ; because their sum is equal to that

of the two adjacent angles DBA, ABC.

PROP. XIV. THEOR.

If, at a point in a straight line, two other straight lines, upon the oppositte

sides of it, make the adjacent angles together equal to two right angles,

these two straight lines are in one and the same straight line.

At the point B in the straight line AB,
let the two straight lines BC, BD upon
the opposite sides of AH, make the adja-

cent angles ABC, ABD equal togelhe*

to two right angles. BD is in the same
straight line with CB.

For if B 13 be not in the same straight

line with CB, let BE be in the sam©
•traight line with it ; therefore, because

he straight fine AB makes angles with

4ie straight line CBE, upon one side of
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it, iW ar.gles ABC, ABE are together equal (13. 1.) to two right angles
;

but the angles ABC, ABD are likewise together equal to two right angles :

therefore the angles CBA, ABE are equal to the angles CBA, ABD.
Take away the common angle ABC, and the remaining angle ABE is equal

(3. Ax.) to the remaining angle ABD, the less to the greater, which is im-

possible ; therefore BE is not in the same straight line with BC. And in

like manner, it may be demonstrated, tliat no other can be in the same
straight line with it but BD, which therefore is in the same straight line

with CB.

PROP. XV. THEOR.

If two straight lines cut one another, the vertical, or opposite angles are equal

Let the two straight lines AB, CD, cut one another in the point E : the

angle AEC shall be equal to the angle DEB, and CEB to AED.
For the angles CEA, AED, which the straight line AE makes with the

straight line CD, are together equal (13. 1.) to two right angles : and the

angles AED, DEB, which the

straight line DE makes with the

straight line AB, are also together

equal (13. 1.) to two right angles
;

therefore the two angles CEA,
AED are equal to the two AED,
DEB. Take away the common
angle AED, and the remaining
angle CEA is equal (3. Ax.) to the

remaining angle DEB. In the

same manner it may be demonstrated that the angles CEB, AED are

equal.

Cor. 1. From this it is manifest, that if two straight lines cut one an-

other, the angles which they make at the point of their intersection, are

together equal to four right angles.

CoR. 2. And hence, all the angles made by any number of straight line?

meeting in one point, are together equal to four right angles.

PROP. XVL THEOR.

If one Side of a triangle be produced, the exterior angle is greater than

either of the interior, and opposite angles.

Let ABC be a triangle, and let its side BC be produced to D, the ex-

terior angle ACD is greater than either of the interior opposite angles
CBA, BAC.

Bisect (10. 1.) AC in E, join BE and produce it to F, and make E>
equal to BE

;
join also FC, and produce AC to G.

Because AE is equal to EC, and BE to EF ; AE, EB are equal to

CE, EF, each to each; and the angle AEB is equal (15. 1.) to the

ungle CEF, because they are vertical angles ; therefore the base AB
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is equal (4. 1 ) to the base CF, and

the triangle AEB to the triangle

CEF, and the remaining angles to

the remaining angles each to each,

to which the equal sides are oppo-

site ; wherefore the angle BAE is

equal to the angle ECF ; but the

angle ECD is greater than the an-

gle ECF ; therefore the angle ECD,
that is ACD, is greater than BAE :

In the same manner, if the side EC
be bisected, it may be demonstrated

that the angle BCG, that is (15. 1.),

the angle ACD, is greater than the

angle ABC.

PROP. XVII. THEOR.

Any two angles of a triangle are together less than two right angles.

Let ABC be any triangle ; any
two of its angles together are less

than two right angles.

Produce BC to D ; and because
ACD is the exterior angle of the tri-

angle ABC, ACD is greater (16. 1.)

than the interior and opposite angle

ABC ; to each of these add the angle

ACB; therefore ihe angles ACD,
ACB are greater than the angles

ABC, ACB ; but ACD, ACB are to-

gether equal (13. 1.) to two right an-

gles : therefore the angles ABC, BCA are less than two right angles. In

like manner, it may be demonstrated, that BAC, ACB as also CAB, ABC,
are less than two right angles.

PROP. XVIII. THEOR.

The greater side of every triangle has the greater angle opposite to it

Let ABC be a triangle of which the

side AC is greater than the side AB ; the

angle ABC is also greater than the angle

BCA.
From AC, which is greater than AB,

cut off (3. 1.) AD equal to AB, and join

BD : and because ADB is the exterior

angle of the triangle BDC, it is greater

(16. 1.) than the interior and opposite
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Tinglo DCB , but ADB is equal (5. 1.) to ABD, because the sid* AB «
equal t-) the side AD; therefore the angle ABD is likewise greater than

the angle ACB; wherefore much more is the angle ABC greater than

ACB

PROP. XIX. THEOR.

The greater angle of every triangle is subtended by the greater side, cr hoi

the greater side opposite to it. •

Let ABC be a triangle, of which the angle ABC is greater than the

angle BCA ; the side AC is likewise greater than the side AB.
For, if it be not greater, AC must either

be equal to AB, or less than it; it is not

equal, because then the angle ABC would
be equal (5. 1.) to the angle ACB ; but it is

not ; therefore AC is not equal to AB ; nei-

ther is it less ; because then the angle ABC
would be less (18. l.)than the angle ACB

;

but it is not ; therefore the side AC is not -ri

less than AB ; and it has been shewn that

it is not equal to AB ; therefore AC is greater than AB.

PROP. XX. THEOR.

Any two sides of a triangle are together greater than the third side.

Let ABC be a triangle ; any two sides of it together arc greater than

the third side, viz. the sides BA, AC greater than the side BC ; and AB,
BC greater than AC ; and BC, CA greater than AB.

Produce BA to the point D, and make _.

(3. 1.) AD equal to AC ; and join DC. ^
Because DA is equal to AC, the an- .

gle ADC is likewise equal (5. 1.) to A,
ACD : but the angle BCD is greater

than the angle ACD ; therefore the an-

gle BCD is greater than the angle

ADC ; and because the angle BCD of

the triangle DCB is greater than its an- B C.

gle BDC, and that the greater (19. 1.) side is opposite to the greater an-

gle ; therefore the side DB is greater than the side BC ; but DB is equal

to BA and AC together; therefore BA and AC together are greater than

BC. In the same manner it may be demonstrated, that the sides AB,
BC are greater than CA, and BC, CA greater than AB.

SCHOLIUM.

This may be demonstrated without producing any of the sides : thus,

•he line BC, for example, is the shortest distance from B to C ; therfifore

BC is less than BA+ AG or BA+AOBC.
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PROP. XXI. THEOR.

If from the ends of one side of a triangle, there be drawn two straight

lines to a point within the triangle, these two lines shall be less than the

other two sides of the triangle, but shall contain a greater angle.

Let the two straight lines BD, CD be dravm from B, C, the ends «*

the side BC of the triangle ABC, to the point D within it; BD and DC
are less than the other two sides BA, AC of the triangle, but contain an

angle BDC greater than the angle BAC.
Produce BD to E ; and because two sides of a triangle (20. 1.) ar«

greater than the third side, the two sides B A,

AE of the triangle ABE are greater than BE.
To each of these add EC ; therefore the

sides BA, AC are greater than BE, EC :

Again, because the two sides CE, ED, of

the triangle CED are greater than CD, if

DB be added to each, the sides CE, EB,
will be greater than CD, DB ; but it has
been shewn that BA, AC are greater than

BE, EC ; much more then are B.\, AC great-

er than BD, DC.
Again, because the exterior angle of a

triangle (16. 1.) is greater than the interior and opposite angle, the exte-

rior angle BDC of the triangle CDE is greater than CED ; for the same
reason, the exterior angle CEB of the triangle ABE is greater than BAC ;

and it has been demonstrated that the angle BDC is greater than the

angle CEB ; much more then is the angle BDC greater than the angle

BAC.

PROP. XXII. PROB.

To construct a triangle of which the sides shall be equal to three given

straight lines ; but any two whatever of these lines must be greater than

the third (20. 1.).

Let A, B, C be the three given

straight lines, of which any two
whatever are greater than the

third, viz. A and B greater than

C ; A and C greater than B ; and

B and C than A. It is required

to make a triangle of which the

sides shall be equal to A, B, C,

each to each.

Take a straight line DE, ter-

minated at ihe point D, but un-

limited towards E, and make
(3. 1.) DF equal to A, FG to B,

and GH equaj to ; and from
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ine cer.lre I', *f. the distance FD, describe (3. Post.) the circle DKL

,

and from the centre G, at the distance GH, describe (3. Post.) another

circle HLK ; and join KF, KG ; the triangle KFG has its sides equal to

the three straight lines, A, B, C.

Because the point F is the centre of the circle DKL, FD is equal (11

Def.) to FK ; but FD is equal to the straight line A ; therefore FK is

equal to A: Again, because G is the centre of the circle LKH, GH is

equal (11. Def.) to GK ; but GH is equal to C; therefore, also, GK is

equal to C ; and FG is equal to B ; therefore the three straight lines KF,
FG, GK, are equal to the three A, B, C : And therefore the triangle

KFG has its three sides KF, FG, GK equal to the three given straight

lines. A, B C.

SCHOLIUM.

If one of the sides were greater than the sum of the other two, the arcs

would not intersect each other : but the solution will always be possible,

when the sum of two sides, any how taken (20. 1.) is greater than the

'.hird.

PROP. XXIII. PROB.

At a given point in a given straight line, to make a rectilineal angle equal

to a given rectilineal angle.

Let AB be the given straight line, and A the given point in it, and DCE
the given rectilineal angle ; it is required to make an angle at the given

point A in the given straight line

AB, that shall be equal to the

given rectilineal angle DCE.
Take in CD, CE any points D,

E, and join DE ; and make (22.

1.) the triangle AF©, the sides

of which shall be equal to the

three straight lines, CD, DE, CE,
so that CD be equal to AF, CE to

AG, and DE to FG ; and because

DC, CE are equal to FA, AG,
each to each, and the base DE to

the base FG ; the angle DCE is

equal (8. 1.) to the angle FAG.
Therefore, at the given point A in the given straight line AB, the angle

FAG is made equal to the given rectilineal angle DCE.

PROP. XXIV. THEOR.

If two triangles have two sides of the one equal to two sides of the other, each

to each, but the angle contained by the two sides of the one greater than

the angle contained by the two sides of the other ; the base of that which

has the greater angle shall be greater than the base of the other.

Let ABC, DEF be two triangles which have the two sides AB, AC
equal to the two DE, DF each to each, viz. AB equal to DE, and AC to
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DF; but the angle BAG greater than the angle EDF ; the oase BC i*

also greater than the base EF.
Of the two sides DE, DF, let DE be the side which is not greater than

the other, and at the point D, in the straight line DE, make (23. 1.) the
angle EDG equal to the angle BAG : and make DG equal (3. 1.) to AC
or DF, and join EG, GF.

Because AB is equal to DE, and AC to DG, the two sides BA, AC are
equal to the two ED, DG, each to each, and the angle BAC is equal to

the angle EDG, therefore

the base BC is equal (4. 1 •) A D
to the base EG ; and be-
cause DG is equal to DF,
the angle DFG is equal

(5. 1.) to the angle DGF;
but the angle DGF is

greater than the angle
EGF ; therefore the angle
DFG is greater than EGF;
and much more is the angle
EFG greater than the

angle EGF ; and because
the angle EFG of the triangle EFG is greater than its angle EGF, and
because the greater (19. l.)side is opposite to the greater angle, the side

EG is greater than the side EF ; but EG is equal to BC ; and therefore

also BC is greater than EF.

PROP. XXV. THEOR.

If two triangles have two sides of the one equal to two sides of the other, each

to each, but the base of the one greater than the base of the other ; the angle

contained by the sides of that which has the greater base, shall be greater

than the angle contained by the sides of the other.

Let ABC, DEF be two triangles which hare the two sides, AB, AC,
equal to the two sides DE, DF, each to each, viz. AB equal to DE, and
AC to DF : but let the base CB be greater than the base EF, the angle

BAC is likewise greater than the angle EDF.
For, if it be not greater, it must either be equal to it, or less ; but the

angle BAC is not equal to the angle

EDF, because then the base BC
would be equal (4. 1 .) to E F ; but it is

not ; therefore the angle BAC is not

equal to the angle EDF ; neither is

it less ; because then the base BC
would be less (24. 1.) than the bas«

EF ; but it is not ; therefore the an-

gle BAC is not less than the angle

EDF : and it was shewn that it is

QOI equal to it : therefore the angle

DAC is greater than the angle EDF.

^
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PROP. XXVI. THhOR.

tf two ttiangles have two angles of the one equal to two angles of the other

each to each ; and one side equal to one side, viz. either the sides adjacent

to the equal angles, or the sides opposite to the equal angles in each ; then

shall the other side be equal, each to each ; and also the third angle nf the

one to the third angle of the other

Let ABC, DEF be two trian-

gles which have the angles

ABC, BCA equal to the anoles

DEF, EFD, viz. ABC to DEF,
and BCA to EFD, also one side

equal to one side ; and first, let

those sides be equal which are

adjacent to the angles that are

equal in the two triangles, viz.

BC to EF ; the other sides

shall be equal, each to each, viz. fi its "C*
AB to DE, and AC to DF ; and B t/ JB J?

the third angle BAC to the third angle EDF.
For, if AB be not equal to DE, one of them must be the greater. Let

AB be the greater of the two, and make BG equal to DE, and join GC ;

therefore, because BG is equal to DE, and BC to EF, the two sides GB,
BC are equal to the two, DE, EF, each to each ; and the angle GBC is

equal to the angle DEF; therefore the base GC is equal (4. 1.) to the

base DF, and the triangle GBC to the triangle DEF, and the other angles

to the other angles, each to each, to which the equal sides are opposite
;

therefore the angle GCB is equal to the angle DFE, but DFE is, by the

hypothesis, equal to the angle BCA ; wherefore also the angle BCG is

equal to the angle BCA, the less to the greater, which is impossible ',

therefore AB is not unequal to DE, that is, it is equal to it; and BC is

equal to EF ; therefore the two AB, BC are equal to the two DE, EF,
each to each ; and the angle ABC is equal to the angle DEF ; therefore

the base AC is equal (4. 1.) to the base DF, and the angle BAC to the

angle EDF.
Next, let the sides which are

opposite to equal angles in each
triangle be equal to one another,

viz. AB to DE ; likewise in this

case, the other sides shall be

equal, AC to DF, and BC to EF ;

and also the third angle BAC to

the third EDF.
For, if BC be not equal to EF,

let BC be the greater of them,

and make BH equal to EF, and
ioin AH ; and because BH is

equal to EF, and AB to DE ; the two AB, BH are equal to the two
DE, EF each to each; and they contain equal angles; therefore (4. 1.)
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the base AH is equal to the base DF, and the triangle ABII to the trian

gle DEF, and the other angles are equal, each to each, to which the equai.

sides are opposite ; therefore the angle BHA is equal to the angle EFD
but EFD is equal to the angle BCA ; therefore also the angle BHA is equai

to the angle BCA, that is, the exterior angle BHA of the triangle AHC is

equal to its interior and opposite angle BCA, which is impossible (16. 1.^

;

wherefore BC is not unequal to EF, that is, it is equal to it; and AB is

equal to DE; therefore the two, AB, BC are equal to the two DE, EF, each
to each ; and they contain equal angles ; wherefore the base AC is eqiuu

to the base DF, and the third angle BAC to the third angle EDF.

PROP. XXVH. THEOR.

]J a straight line falling upon two other straight lines makes the alternate

ingles equal to one another, these two straight lines are parallel.

Let the straight line EF, which falls upon the two straight lines AB,
CD make the alternate angles AEF, EFD equal to one another ; AB is

parallel to CD.
For, if it be not parallel, AB and CD being produced shall meet either

towards B, D, or towards A, C ; let them be produced and meet towards

B, D in the point G ; therefore GEF is a triangle, and its exterior angle

AEF is greater (16. 1.) than the interior and opposite angle EFG ; but it

is also equal to it, which is im-

possible : therefore, AB and CD
being produced, do not meet to-

wards B, D. In. like manner it

may be demonstrated that they

do not meet towards A, C ; but

those straight lines which meet
neither way, though produced

ever so far, are parallel (30. Def.)

to one another. AB therefore is parallel to CD.

PROP. XXVIII. THEOR.

If a straight line falling upon two other straight lines makes the exterior an
gle equal to the interior and opposite upon the same side of the line ; or

makes the interior angles upon the same side together equal to two right

angles ; the two straight lines are parallel to one another.

Lot the straight line EF, which
falls upon the two straight lines AB,
CD, make the exterior angle EGB
equal to GIID, the interior and oppo-

site angle upon the same side ; or let it

make the interior angles on the same
side BGII, GHD together equal to two
right angles ; AB is parallel to CD.

Because the angle EGB is equal to

the angle GHD, and also (15. 1.) to th«
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oiigie AGH, the angle AGH is equal to the angle GHD ; and they are th

alternate angles ; therefore AB is parallel (27. 1.) to CD. Again, becau»t»

the angles BGH, GHD are equal (hyp. )totworight angles, and AGH, BGH,
are also equal (13. 1.) to two right angles, the angles AGH, BGH are equal

to the angles BGH, GHD : Take away the common angle BGH ; therefore

the remaining angle AGH is equal to the remaining angle GHD ; and they

are alternate angles ; therefore AB is parallel to CD.
Cor. Hence, when two straight lines are perpendicular to a third line,

they will be parallel to each other.

PROP. XXIX. THEOR.

If a straight line fall upOn two parallel straight lines, it makes the actemaie

angles equal to one another ; and the exterior angle equal to the interior

and opposite upon the same side ; and likewise the two interior angles upon

the same side together equal to two right angles.

Let the straight line EF fall upon the parallel straight lines AB, CD t

the alternate angles AGH, GHD are equal to one another ; and the exte-

rior angle EGB is equal to the interior and opposite, upon the same side,

GHD ; and the two interior angles BGH, GHD upon the same side are

together equal to two right angles.

For if AGH be not equal to GHD, let KG be drawn making the angle

KGH equal to GHD, and produce KG to L ,• then KL will be parallel to

CD (27. 1.) ; but AB is also paral-

lel to CD ; therefore two straight

lines are drawn through the same
point G, parallel to CD, and yet
not coinciding with one another,

which is impossible (11. Ax.) The
angles AGH, GHD therefore are

not unequal, that is, they are equal

to one another. Now, the angle

EGB is equal to AGH (15. 1.)

;

and AGH is proved to be equal

to GHD ; therefore EGB is like-

wise equal to GHD ; add to each of these the angle BGH ; therefore the

angles EGB, BGH are equal to the angles BGH, GHD ; but EGB, BGH
are equal (13. 1.) to two right angles; therefore also BGH, GHD are

equal to two right angles.

Cor. 1. If two lines KL and CD make, with EF, the two angles KGH,
GHC together less than two right angles, KG and CH will meet on the side

of EF on which the two angles are that are less than two right angles.

For, if not, KL and CD are either parallel, or they meet on the other

side of EF ; but they are not parallel ; for the angles KGH, GHC would
then be equal to two right angles. Neither do they meet on the other

side of EF; for the angles LGH, GHD would then be two angles of a

triangle, and less than two right angles ; but this is impossible ; for the

four angles KGH, HGL, CHG, GHD are together equal to four right

angles (13 1 .) of which the t\» o, KGH, CHG, are by supposition leas thah
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,^0 right angles ; therefore the other two, HGL, GHD are grea.er thai

two right angles. Therefore, since KL and CD are not parallel, and since

they do not meet towards L and D, they must meet if produced towards

K and C.

CoR. 2. If BGH is a right angle, GHD will be a right angle also;

therefore every line perpendicular to one of two parallels, is perpendiculaj

to the other.

Cor. 3. Since AGE=BGH, and DHF=CHG; hence the four acute

angles BGH, AGE, GHC, DHF, are equal to each other. The same it

the case with the four obtuse angles EGB, AGH, GHD, CHF. It may
be also observed, that, in adding one of the acute angles to one of the ob-

tuse, the sum will always be equal to two right angles.

SCHOLIUM.

The angles just spoken of, when compared with each other, assume
different names. BGH, GHD, we have already named interior angles on
the same side ; AGH, GHC, have the same name ; AGH, GHD, are called

alternate interior angles, or simply alternate ; so also, are BGH, GHC :

and lastly, EGB, GHD, or EGA, GHC, are called, respectively, the op-

posite exterior and interior angles ; and EGB, CHF, or AGE, DHF, the

alternate exterior angles.

PROP. XXX. THEOR.

Straight lines which are parallel to the same straight line are parallel to on$

another.

Let AB, CD, be each of them parallel to EF ; AB is also parallel to

CD.
Let the straight line GHK cut AB. EF, CD ; and because GHK cuts

the parallel straight lines AB, EF, the

angle AGH is equal (29. 1.) to the an-

gle GHF. Again, because the straight

line GK cuts the parallel straight lines

EF, CD, the angle GHF is equal (29.

1.) to the angle GKD : and it was
shewn that the angle AGK is equal to

the angle GHF; therefore also AGK
is equal to GKD ; and they are alter-

nate angles ; therefore AB is parallel

(27. 1.) to CD.

PROP. XXXL PROB.

Te draw a straight line through a given point parallel to a given straight

line.

Let A be the given point, and BC the given straight line, it is reqtu'red
10 draw a straight line through the point A, parallel to the straight line
BC.

A \G B

E \h T*

Xk
i*^
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Tn Be take any point D, and join .p,-

AI) , and at the point A, in the *-•

straight line AD, make (23. 1.) the

angle DAE equal to the angle ADC
;

and produce the straight line EA to F. D X) C
Because the straight line AD, which meets the two straight lines BC,

EF, makes the alternate angles EAD, ADC equal to one another, EF it

parallel (27. 1.) to BC. Therefore the straight lin-e EAF is drawTi

through the given j/oint A parallel to the given straight line BC.

PROP. XXXII. THEOR.

If a side of ant/ triangle be produced, the exterior angle is equal to the two

interior and opposite angles ; and the three iiiterior angles of every triangle

are equal to two right angles.

Let ABC be a triangle, and let one of its sides BC be produced to D
,

the exterior angle ACD is equal to the two interior and opposite angles

CAB, ABC ; and the three interior angles of the triangle, viz. ABC, BCA,
CAB, are together equal to two right angles.

Through the point C draw
CE parallel (31. 1.) to the

straight line AB ; and because

AB is parallel to CE, and AC
meets them, the alternate an-

gles BAC, ACE are equal (29.
•

.) Again, because AB is pa-

•allel to CE, and BD falls upon
them, the exterior angle ECD is equal to the interior and opposite angle

ABC, but the angle ACE was shewn to be equal to the angle BAC ;

therefore the whole exterior angle ACD is equal to the two interior and

opposite angles CAB, ABC ; to these angles add the angle ACB, and
the angles ACD, ACI3 are equal to the three angles CBA, BAC, ACB

;

but the angles ACD, ACB are equal (13. 1.) to two right angles; there-

fore also the angles CBA, BAC, ACB are equal to two right angles.

Cor. 1. All the interior angles of any rectilineal figure are equal to

twice as many right angles as the figure has sides, wanting four right angles.

For any rectilineal figure ABCDE can be divided into as many trian-

gles as the figure has sides, by drawing straight lines from a point F
within the figure to each of its angles. And, by the preceding proposition,

all the angles of these triangles are equal

to twice as many right angles as there

are triangles, that is, as there are sides

of the figure ; and the same angles are

equal to the angles of the figure, together

with the angles at the point F, which
is the common vertex of the triangles

;

that is, (2 Cor. 15. 1.) together with four

right angles. Therefore, twice as many
right angles as the figure has sides, are

equal to all the angles of the figure, to-
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gether with four right angles that is, the angles of the figure are e^jual

to twice as many right angles as the figure has sides, wanting four.

Cor. 2. All the exterior angles of any rectilineal figure aie togethei

equal to four right angles.

Because every interior angle

ABC, with its adjacent exterior

ABD, is equal (13. I.) to two
right angles ; therefore all the

interior, together with all the

exterior angles of the figure,

are equal to twice as many
right angles as there are sides

of the figure ; that is, by the —
foregoing corollary, they are Jj
equal to all the interior angles

of the figure, together with
four right angles ; therefore all

the exterior angles are equal to four right angles.

Cor. 3. Two angles of a triangle being given, or merely their suna, the

third will be found by subtracting that sum from two right angles.

Cor. 4. If two angles of one triangle are respectively equal to two an-

gles of another, the third angles will also be equal, and the two triangles

will be mutually equiangular.

Cor. 5. In any triangle there can be but one right angle ; for if there

were two, the third angle must be nothing. Still less can a triangle have
more than one obtuse angle.

Cor. 6- In every right-angled triangle, the sum of the two acute an-

gles is equal to one right angle.

Cor. 7. Since every equilateral triangle (Cor. 5. 1.) is also equian-

gular, each of its angles will be equal to the third part of two right angles ;

so that if the right angle is expressed by unity, the angle of an equilateral

triangle will be expressed by ^ of one right angle.

Cor. 8. The sum of the angles in a quadrilateral is equal to two righ*

angles multiplied by 4— 2, which amounts to four right angles ; hence, if

all the angles of a quadrilateral are equal, each of them will be a right an-

gle ; a conclusion which sanctions the Definitions 25 and 26, where the

four angles of a quadrilateral are said to be right, in the case of the rectan-

gle and the square.

Cor. 9. The sum of the angles of a pentagon is equal to two right an-

gles multiplied by 5— 2, which amounts to six right angles ; hence, when
a pentagon is equiangular, each angle is equal to the fifth part of six right

angles, or | of one right angle.

Cor. 10. The sum of the angles of a hexagon is equal to 2 x(6— 2),

or eight right angles ; hence, in the equiangular hexagon, each angle is

the sixth oart of eight right angles, or ^ of one right angle.

SCHOLIUM.
When (Cor. 1.) is applied to polygons, which have re-entrant angles,

u ABC each re-entrant angle must be regarded as greater than two rigki

angles.
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And, by joining BD, BE, BF, the

figure is divided into four triangles,

which contain eight right angles
;

that is, as many times two right an-

gles as there are units in the number
of sides diminished by two.

But to avoid all ambiguity, we shall

henceforth limit our reasoning to

polygons with salient angles, which
might otherwise be named convex
polygons. Every convex polygon is

such that a straight line, drawn at

pleasure, cannot meet the contour of
the polygon in more than two points.

PROP. XXXIII. THEOR.

The straight lines which join the extremities of two equal and parallel straight

lines, towards the same parts, are also themselves equal and paralhl.

Let AB, CD, be equal and parallel straight lines, and joined towards

the same parts by the straight lines AC, BD; AC, BD are also equal and

parallel.

Join BC ; and because AB is parallel

to CD, and BC meets them, the alternate

angles ABC, BCD are equal (29. 1.); and
because AB is equal to CD, and BC com-
mon to the two triangles ABC, DCB, the

two sides AB, BC are equal to the two
DC, CB ; and the angle ABC is equal to C D
the angle BCD ; therefore the base AC is equal (4. 1.) to the base BD,
and the triangle ABC to the triangle BCD, and the other angles to the

other angles (4. 1.) each to each, to which the equal sides are opposite
;

therefore the angle ACB is equal to the angle CBD ; and because the

straight line BC meets the two straight lines AC, BD, and makes the al-

ternate angles ACB, CBD equal to one another, AC is parallel (27. 1.) to

BD ; and it was shewn to be equal to it.

CoR. 1. Hence, if two opposite sides of a quadrilateral are equal and
parallel, the remaining sides will also be equal and parallel, and the figure

will be a parallelogram.

CoR. 2. And every quadrilateral, whose opposite sides are equal, is a

parallelogram, or has its opposite sides parallel.

For, having drawn the diagonal BC ; then, the triangles ABC, CBD,
being mutually equilateral {hyp.), they are also mutually equiangular

(Th. 8.), or have their corresponding angles equal ; consequently, the op

posite sides are parallel ; namely, the side AB parallel to CD, and BD pa

rallel to AC ; and, therefore, the figure is a parallelogram.

CoR. 3. Hence, also, if the opposite angles of a quadrilateral be equal

the opposite sides will likewise be equal and parallel.

For all the angles of the figure being equal to four right angles (Cor. 8
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Th. 32.), and the opposite angles being mutually equal, each pair o!" adja

cent angles must be equal to two right angles ; therefore, the opposite sidei

must be equal and parallel.

PROP. XXXIV. THEOR.

The opposite sides and angles ofa parallelogram are equal to one another, and
the diagonal bisects it ; that is, divides it into two equal parts.

N. B. A Parallelogram is a four-sided figure, of which the opposite sides are parallel ; and
the diameter is a straight line joining two of its opposite angles.

Let ACDB be a parallelogram, of which BC is a diameter ; the oppo-

site sides and angles ofthe figure are equal to one another ; and the diam-

eter BC bisects it.

Because AB is parallel to CD, and BC
meets them, the alternate angles ABC,
BCD are equal (29. 1.) to one another ; and
because AC is parallel to BD, and BC meets

"them, the alternate angles ACB, CBD are

equal (29. 1.) to one another; wherefore

the two triangles ABC, CBD have two an-

gles ABC, BCA in one, equal to two angles

JdCD, CBD in the other, each to each, and the side BC, which is adja-

cent \o these equal angles, common to the two triangles ; therefore their

other sides are equal, each to each, and the third angle of the one to the

cfaird angle of the other (26. 1.) ; viz. the side AB to the side CD, and

AC to BD, and the angle BAC equal to the angle BDC. And because

ihe angle ABC is equal to the angle BCD, and the angle CBD to the

angle ACB, the whole angle ABD is equal to the whole angle ACD :

And the angle BAC has been shewn to be equal to the angle BDC : there-

fore the opposite sides and angles of a parallelogram are equal to one an-

other ; also, its 'diameter bisects it ; for AB being equal to CD, and BC
common, the two AB, BC are equal to the two DC, CB, each to each

;

now the angle ABC is equal to the angle BCD ; therefore the triangle

ABC is equal (4. 1.) to the triangle BCD, and the diameter BC divides

the parallelogram ACDB into two equal parts.

CoR. 1. Two parallel lines, included between two other parallels, are

equal.

CoR. 2. Hence, two parallels are every where equally distant.

Cor. 3. Hence, also, the sum of any two adjacent angles of a paral

lelogram is equal to two right angles.

PROP. XXXV. THEOR.

ParalUlograms upon the same base and between the same parallels, are eqva*

to one another.

(see the 2d AND 3d figures.)

Let the parallelograms ABCD, EBCF be upon the same base BC, and

between the same parallels AF, BC ; the parallelogram ABCD is equal to

the parallelogram EBCF.
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If the sides AD, DF of the parallelo-

grams ABCD, DBCF opposite to the base

BC be terminated in the same point D ;

it is plain that each of the parallelograms

is double (34. 1.) of the triangle BDC
;

and they are therefore equal to one an-

other.

But, if the sides AD, EF, opposite to the base BC of the parallelograms

ABCDjEBCF, be not terminated in the same point ; then, because ABCD
is a parallelogram, AD is equal (34. l.)to BC ; for the same reason EP
is equal to BC ; wherefore AD is equal (1. Ax.) to EF ; and DE is com-

mon ; therefore the whole, or the remainder, AE is equal (2. or 3. Ax.) to

the whole, or the remainder DF ; now AB is also equal to DC ; therefore

the two EA, AB are equal to the two FD, DC, each to each ; but the ex-

terior angle FDC is equal (29. 1.) to the interior EAB, wherefore the base

EB is equal to the base FC, and the triangle EAB (4. 1.) to the triangle

FDC. Take the triangle FDC from the trapezium ABCF, and from the

same trapezium take the triangle EAB ; the remainders will then be equal

(3. Ax.)that is, the parallelogramABCD is equal to the parallelogramEBCF.

PROP. XXXVI. THEOR.

Parallelograms upon equal bases, and between the same pamllels, are equal tn

one another. '

Let ABCD, EFGH be parallelograms upon equal bases BC, FG, and
between the same parallels AH, . t* -c txBG ; the paralletogram ABCD -A. D E H
is equal to EFGH.

Join BE, CH ; and because
BC is equal to FG, and FG to

(34.1.) EH, BC is equal to EH;
and they are parallels, and join-

ed towards the same parts by the

straight Hnes BE, CH : But
straight lines which join equal and parallel straight linestowards the same
parts, are themselves equal and parallel (33. 1.) ; therefore EB, CH are

both equal and parallel, and EBCH is a parallelogram ; and it is equal

(35 l.) to ABCD, because it is upon the same base BC, and between the

same parallels BC, AH : For the like reason, the parallelogram EFGH
is equal to the same EBCH : Therefore also the parallelogiam ABCD i»

equal to EFGH.
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PROP. XXXVII. THEOR.

Trim g les upon the same hose, and between the same parallels^ are equal to oxt
another.

Let the triangles ABC, DBG be upon the same base BC, and between
the same parallels, AD, BC : The
triangle ABC is equal to the trian-

gle DBG.
Produce AD both ways to the

points E, F, and through B draw (31.

1.) BE parallel to CA ; and through

G draw GF parallel to BD : There-
fore, each of the figures EBGA,
DBCF is a parallelogram; andEBCA
is equal (35. 1.) to DBCF, because they are upon the same base BC, and

between the same parallels BC, EF ; but the triangle ABC is the half ol

•the parallelogram EBCA, because the diameter AB bisects (34, 1.) it;

and the triangle DBG is the half of the parallelogram DBCF, because

tlie diameter DC bisects it ; and the halves of equal things are equal (7.

Ax.) ; therefore the triangle ABC is equal to the triangle DEC

PROP. XXXVIII. THEOR.

Triangles upon equal bases, and bettoeen the same parallels, are equal to one

another.

Let the triangles ABC, DEF be upon equal bases BC, EF, and between

the same parallels BF,AD : The triangle ABC is equal to the triangle DEF
Produce AD both ways to the points G, H, and through B draw BG

parallel (31. 1.) to CA, and through F draw FH parallel to ED : Then
each of the figures GBCA,
DEFH is a parallelogram

;

and they are equal to (36. 1.)

one another, because they aie

upon equal bases BC, EF, and
between the same parallels

BF, GH ; and the triangle

ABGisthehalf(34. l.)ofthe ^ ^ p p
parallelogram GBCA, because

" C ili t

the diameter AB bisects it; and the triangle DEF is the half (34. 1.) of

the parallelogram DEFH, because the diameter DF bisects it: But the

halves of equal things are equal (7. Ax.) ; therefore the triangle ABC is

equal to the triangle DEF.

PROP. XXXIX. THEOR.

Equal triangles upon the same base, and upon the same side of it, are between

the same parallels.

Let the equal triangles ABC, DBG be upon the same base BC, and uoon

tLe same side of it ; tncy are between the same parallels.
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Join AD ; AD is parallel to BC ; for, if it is not, through the point A
draw (31. 1.) AE paiallel to BC, and join EC : a Tr\

The triangle ABC, is equal (37. 1.) to the tri- "^
"^

aiigle EBC, because it is upon the same base

BC, and between the same parallels BC, AE :

But the triangle ABC is equal to the triangle

BDC ; therefore also the triangle BDC is equal

to the triangle EBC, the greater to the less,

which is impossible : Therefore AE is not par-

allel to BC. In the same manner, it may be

demonstrated that no other line but AD is parallel to BC ; AD is there,

fore parallel to it.

PROP. XL. TREOR.

Equal triangles on the same side of bases which are equal and in the same

straight line, are between the same parallels.

Let the equal triangles ABC, DEF be upon equal bases BC, EF, in

the same straight line BF, and to-

wards the same parts ; they are be-

tween the same parallels.

Join AD ; AD is parallel to BC
;

for, if it is not,, through A draw (31.

1.) AG parallel to BF, and join GF.
The triangle ABC is equal (38. 1.)

to the triangle GEF, because they

are upon equal bases BC, EF, and
between the same parallels BF,
AG: But the triangle ABC is equal to the triangle DEF ; therefore also

the triangle DEF is equal to the triangle GEF, the greater to the less,

which is impossible ; therefore AG is not parallel to BF ; and in the same
manner it may be demonstrated that there is no other parallel to it but

AD ; AD is therefore parallel to BF.

PROP. XLL THEOR.

If a parallelogram and a triangle be upon the same base, and between the

same parallel ; the parallelogram is double of the triangle.

Let the parallelogram ABCD and the tri-

angle EBC be upon the same base BC and
between the same parallels BC, AE ; the

parallelogram ABCD is double of the trian-

gle EBC.
Join AC ; then the triangle ABC is equal

(37. 1.) to the triangle EBC, because they

are upon the same base BC, and between the

same parallels BC, AE. But the parallelo-

gram ABCD is double (34. 1.) of the triangle

ABC, because the diameter AC divides it

into two equal parts ; wherefore ABCD is also double ot the triangle EBC
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PROP. XLII. PROB.

To descrxbe a parallelogram that shall be equal to a given triangle, and ha94

one of its angles equal to a given rectilineal angle.

Let ABC be the given triangle, and D the given rectilineal angle. I

is required to describe a parallelogram that shall be equal to the given tri

angle ABC, and have one of its angles equal to D.

Bisect (10. 1.) BC in E, join AE, and at the point E in the straight line

EC make (23. 1.) the angle CEF equal to D ; and through A draw (31.

1.) AG parallel to BC, and through C draw CG (31. 1.) parallel to EF;
Therefore FECG is a parallelogram-A tj^ ^
And because BE is equal to EC, the = *^

triangle ABE is likewise equal (38.

1.) to the triangle AEC, since they

are upon equal bases BE, EC, and
between the same parallels BC, AG

;

therefore the triangle ABC is double

of the triangle AEC. And the paral-

lelogram FECG is likewise double

(41. 1.) of the triangle AEC, because

it is upon the same base, and between
the same parallels : Therefore the parallelogram FECG is equal to the

triangle ABC, and it has one of its angles CEF equal to the given angle

D : Wherefore there has been described a parallelogram FECG equal to

a given triangle ABC, having one of its angles CEF equal to the given

angle D.
Cor. Hence, if the angle D be a right angle, the parallelogram EFGC

will be a rectangle, equivalent to the triangle ABC ; and therefore the

same construction will apply to the problem : to make a triangle equivalent

to a given rectangle.

PROP. XLIII. THEOR.

The complements of the parallelograms which are about the diameter of any

parallelogram, are equal to one another.

Let ABCD be a parallelogram of which the diameter is AC ; let EH,
FG be the parallelograms about AC, that is, through which AC passes, and
let BK, KL) be the other parallelograms,

which make up the whole figure A BCD,
and are therefore called the complements

;

The complement BK is equal to the com-
plement KD.

Because ABCD is a parallelogram and

AC its diameter, the triangle ABC is

equal (34. 1.) to the triangle ADC : And
because EKHA is a parallelogram, and
AK its diameter, the triangle AEK is

equal to the triangle AHK : For the same
reason, the triangle KGC is equal to the
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triangle KFC. Then because the triangle AER is equal to the triangle

A.HK, and the triangle KGC to the triangle KFC ; the triangle AEK, to-

gether with th>^ triangle KGC, is equal to the triangle AHK, together with

Sie triangle K FC : But the whole triangle ABC is equal to the whole

ADC ; therefore the remaining complement BK is equal to the remaining

complement KD.

PROP. XLIV. PROB.

To a given straight line to apply a parallelogram, which shall be equal to a given

triangle, and have one ofits angles ejual to a given rectilineal angle.

Let AB be the given straight line, and C the given triangle, and D the

given rectilineal angle. It is required to apply to the straight line AB a

parallelogram equal to the triangle C, and having an angle equal to D.

Make (42. 1.) the parallelogram BEFG equal to the triangle C, having the

H A.

angle EBG equal to the angle D, and the side BE in the same straight

line with AB : produce FG to H, and through A draw (31. 1.) AH parallel

to BG or EF, and join HB. Then because the straight line HF falls upon
the parallels AH, EF, the angles AHF, HFE, are together equal (29. 1.)

to two right angles ; wherefore the angles BHF, HFE are less than two
right angles ; But straight lines which with another straight line make the

interior angles, upon the same side less than two right angles, do meet if pro-

duced (1 Cor. 29. 1.) : Therefore HB, FE will meet, if produced ; let them
meet in K, and through K draw KL parallel to EA or FH, and produce HA,
G B to the points L, M : Then HLKF is a parallelogram, of which the diam-
eter is HK.and AG, ME are the parallelograms about HK; and LB, BF are

the complements ; therefore LB is equal (43. 1.) to BF : but BF is equal

to the triangle C ; wherefore LB is equal to the triangle C ; and because
the angle GBE is equal (15. 1.) to the angle ABM, and likewise to the an-

gle D ; the angle ABM is equal to the angle D : Therefore the parallelo-

gram LB, which is applied to the straight line AB, is equal to the triangle

C, and has the angle ABM equal to the angle D.
CoR. Hence, a triangle may be converted into an equivalent rectangle,

having a side of a given length : for, if the angle D be a right angle, and
AB the given side, the parallelogram ABML will be a rectangle equiva

lent to the triangle C.
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PROP. XLV. PROD.

To describe a parallelogram equal to a given rectilineal figure, and.having

an angle equal to a given rectilineal angle.

Let ABCD be the given rectilineal figure, and E the given rectilineal

angle. It is required to describe a parallelogram equal to ABCD, and hav-

ing an angle equal to £.
Join DB.and describe (42. 1.) the parallelogram FH equal to the tri-

angle ADB, and having the angle HKF equal to the angle E ; and to the

straight line GH (44. 1.) apply the parallelogram GM equal to the triangle

DBC, having the angle GHM equal to the angle E. And because the an-

gle E is equal to each of the angles FKH, GHM, the angle FKH is equal

to GHM ; add to each of these the angle KHG ; therefore the angles

FKH, KHG are equal to the angles KHG, GHM ; but FKH. KHG are

equal (29. 1.) to two right angles ; therefore also KHG, GHM are equal

to two right angles : and because at the ooint H in the straight lines GH.

the two straight lines KH, HM, upon the opposite sides of GH, make the

adjacent angles equal to two right angles, KH is in the same straight line

(14. 1.) with HM. And because the straight line HG meets the parallels

KM, FG, the alternate angles MHG, HGF are equal (29. 1.) ; add to each

of these the angle HGL : therefore the angles MHG, HGL, are equal to

the angles HGF, HGL : But the angles MHG, HGL, are equal (29. l.)to

two right angles ; wherefore also the angles HGF, HGL, are equal to two
right angles, and FG is therefore in the same straight line with GL. And
because KF is parallel to HG, and HG to ML, KF is parallel (30. L) to

ML ; but KM, FL are parallels : wherefore KFLM is a parallelogram.

And because the triangle ABD is equal to the parallelogram HF, and the

triangle DBC to the parallelogram GM, the whole rectilineal figure ABCD
is equal to the whole parallelogram KFLM ; therefore the parallelogram

KFLM has been described equal to the given rectilineal figure ABCD, hav-

ing the angle FKM equal to the given angle E.

CoR. From this it is manifest how to a given straight line to apply a

parallelogram, which shall have an angle equal to a given rectilineal angle,

and shall be equal to a given rectilineal figure, viz. by applying (44. 1.)

lo the given straight line a parallelogram equal to the &rst fiangle ABD.
and having an angle equal to the given angle.
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PROP. XLVI. PROB.

To describe a square upon a given straight line.

Let A B be the given straight lino : it is required to describe a square

upon AB.
From the point A draw (11. 1.) AC at right angles to AB ; and make

(3. 1.) AD equal to AB, and through the point D draw DE parallel (31. 1.)

to AB, and through B draw BE parallel to AD ; therefore ADEB is a par-

allelogram ; whence AB is equal (34. 1.) to DE, and AD to BE ; but BA
is equal to AD : therefore the four straight ^
lines BA, AD, DE, EB are equal to one an- ^
other, and the parallelogram ADEB is equi-

lateral ; it is likewise rectangular ; for the

straight line AD meeting the parallels, AB, DE, JJ
makes the angles BAD, ADE equal (29. 1.) to

two right angles ; but BAD is a right angle
;

therefore also ADE is a right angle now the

opposite angles ofparallelograms are equal (34.

1 .) ; therefore each ofthe opposite angles ABE,
BED is a right angle; wherefore the figure

ADEB is rectangular, and it has been demon- . l

strated that it is equilateral ; it is therefore a •**•

square, and it is described upon the given straight line AB.
CoR. Hence every parallelogram that has one right angle has all its an

gles right angles.

E

6

PROP. XLVIL THEOR.

In any right angled triangle, the square which is described upon the side

subtending the right angle, is equal to the squares described upon the sides

which contain the right angle.

Let ABC be a right angled triangle having the right angle BAC ; the

square described upon the side BC is equal to the squares described upon

BA, AC.
On BC describe (46. 1.) the square BDEC, and on BA, AC the squares

GB, HC ; and through A draw (31. 1.) AL parallel to BD or CE, and join

AD, FC ; then, because each of the angles BAC, BAG is a right angle

(25. def.), the two straight lines AC, AG upon the opposite sides of AB,
make with it at the point A the adjacent angles equal to two right an-

gles ; therefore CA is in the same straight line (14. 1.) with AG; for

the same reason, AB and AH are in the same straight line. Now be-

cause the angle DBC is equal to the angle FB A, each of them being a

right angle, adding to each the angle ABC, the whole angle DBA will be

equal (2. Ax.) to the whole FBC ; and because the two sides AB, BD
are equal to the two FB, BC each to each, and the angle DBA equal to

the angle FBC, therefore the base AD is equal (4. 1.) to the bast FC,
and the triangle ABD to the triangle FBC. But the paiallelogram BL
is double (41. 1.) of the triangle ABD, because they are upon the same
base, BD, and between the same parallels, BD, AL ; and the square QB
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is double of the triangle BFC be-

cause these also are upon the same
base FB, and between the same par-

allels FB, GC. Now the doubles
of equals are equal (6. Ax.) to one an-
other; therefore the parallelogram

BL is equal to the square GB : And
in the same manner, by joining AE,
BK, it is demonstrated that the par-

allelogram CL is equal to the square
HC. Therefore, the whole square
BDEC is equal to the two squares
GB, HC ; and the square BDEC is

described upon the straight line BC,
and the squares GB, HC upon BA,
AC : wherefore the square upon the

side BC is equal to the squares upon
the sides BA, AC.

CoR. 1 . Hence, the square of one of the sides of a right angled triangle
is equivalent to the square of the hypotenuse diminished by the square of
the other side ; which is thus expressed : AB^z^BC*^—AC^.

Cor. 2. If AB=:AC ; that is, if the triangle ABC be right angled and
isosceles; BC2=2AB2=2AC2 ; therefore, BC=AB/ 2.

Cor. 3. Hence, also, if two right angled triangles have two sides of

the one, equal to two corresponding sides of the other ; their third sidei

will also be equal, and the triangles will be identical.

PROP. XLVni. THisOR.

If the square described upon one of the sides of a triangle, be equal to th*

squares described upon the other two sides of it ; the angle contained by

these two sides is a right angle.

If the square described upon BC, one of the sides of the triangle ABC,
be equal to the squares upon the other sides BA, AC, the angle BAG ia

a right angle.

From the point A draw (11. 1.) AD at right angles to AC, and make
AD equal to BA, and join DC. Then because DA is equal to AB, the

square of DA is equal to the square of AB ; To
each of these add the square of AC ; therefore the

squares of DA, AC are equal to the squares of BA,
AC. But the square of DC is equal (47. 1.) to

the squares of DA, AC, because DAC is a right

angle ; and the square of BC, by hypothesis, is

equal to the squares of BA, AC ; therefore, the

square of DC is equal to the square of BC ; and
therefore also the side DC is equal to the side BC.
And because the side DA is equal to AB, and AC
common to the two triangles DAC, BAG, and the base DC likewise equa^

to the base BC, the angle DAC is equal (8. 1.) to the angle BAG ; Bui

DAG is a right <>ngle ; therefore dlso BAG is a right angle.

6
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ADDITIONAL PROPOSITIONS.

PROP. A. THEOR.

A perpendicular is the shortest line that can he drawn from a point, situated

without a straight line, 60 that line : any two oblique lines drawn from the

samepoint on different sides of theperpendicular, cutting off equal distances

on the other line, will be equal ; and any two other oblique lines, cutting off

unequal distances, the one which lies fartherfrom the perpendicular will

be the longer.

If AB, AC, AD, (fee. be lines drawn from the given point A, to the In-

definite straight line DE, of which AB is perpendicular; then shall the

perpendicular AB be less than AC, and AC less than AD, and so on.

For, the angle ABC being a right one,

the angle ACB is acute, (17. 1.) or less

than the angle ABC. But the less angle

of a triangle is subtended by the less side

(19. 1.) therefore, the side AB is less than

the side AC.
Again, if BC=BE; then the two ob-

lique lines AC, AE, are equal. For the

sido AB is common to the two triangles

ABC, ABE, and the contained angles ABC
and ABE equal ; the two triangles must

be equal (4. 1.) ; hence AE, AC are equal.

Finally, the angle ACB being acute, as before, the adjacent angle ACD
will be obtuse ; since (13. 1.) these two angles are together equal to two
right angles; and the angle ADC is acute, because the angle ABD is

right ; consequently, the angle ACD is greater than the angle ADC ; and,

since the greater side is opposite to the greater angle (19. 1.) ; therefore

the side AD is greater than the side AC.
CoR. 1. The perpendicular measures the true distance of a point from

a line, because it is shorter than any other distance.

CoR. 2. Hence, also, every point in a perpendicular at the middle point

of a given straight line, is equally distant from the extremities of that line.

CoR. 3. From the same point, three equal straight lines cannot be
drawn to the same straight line ; for if there could, we should have two
equal oblique lines on the same side of the perpendicular, which is impos-

sible.

PROP. B. THEOR.

When the hypotenuse and one side of a right angled triangle, are respective-

ly equal to the hypotenuse and one side of another ; the two right angled

triangles are equal.

Suppose the hypotenuse AC= DF, and the side AB=DE ; the righ,

aiigled triangle ABC will be equal to the right angled triangle DEF
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Their equality would be manifest, if the third sides BC and EF wer»
equal. If possible, suppose that those sides are not equal, and that BC is the
greater. Take BH= EF(3. 1.); andjoin AH. The triangle ABH= 1)EF;
for the right angles B and E are

equal, the side AB= DE, and BH
=EF ; hence, these triangles are

equal (4. 1.), and consequently

AH= DF. Now {by hyp), we
have DF=AC; and therefore,

AH:=AC. But by the last prop-

osition, the oblique line AC can-

not be equal to the oblique line

AH, which lies nearer to the per-

pendicular AB ; therefore it is

impossible that BC can differ

from EF ; hence, then, the trian-

gles ABC and DEF are equal.

H C

PROP. C. THEOR.

Two angles are equal if their sides be paranei, each to each, and lying in tht

same direction.

If the straight lines AB, AC be parallel

to DF, DE ; the angle BAC is equal to

EDF.
For, draw GAD through the vertices.

And since AB is parallel to DF, the ex-

terior angle GAB is (29. 1.) equal to GDF

;

and, for the same reason, GAC is equal to

GDE ; there consequently remains the an-

gle BAC= EDF.

CoR. If BA, AC be produced to I and H, the angle BAC=:HAI

.

hence, the angle HAI is also equal to EDF.

SCHOLIUM.

The restriction of this proposition to the case where the side AB lies

in the same direction with DF, and AC in the same direction with DE,
is necessary ; because the angle CAI would have its sides parallel to those

of the angle EDF, but would not be equal to it. In that case, CAI and
EDF would be together equal to two right angles.
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PROP. D. PROB.

Two angles of a triangle being given, tofind the third.

Draw any straight line CD ; at a

point therein, as B, make the angle

CBA equal to one of the given an-

gles, and the angle ABE equal to

the other: the remaining angle EBD
will be the third angle required ; be-

cause those three angles (Cor, 13. 1.)

are together equal to two right angles.

PROP. E. PROB.

TtDO angles of a triangle and a side being given, to construct the triangU

The two angles will either be both adjacent to the given side, or iijc

one adjacent and the other opposite : in the latter case, find the third angle

(Prop. D.) ; and the two adjacent angles will thus be known.
Draw the straight line BC equal to the

given side ; at the point B, make an angle

CBA equal to one of the adjacent angles,

and at C, an angle BCA equal to the other

;

the two lines BA, CA, will intersect each
other, and form with BC the triangle re-

quired ; for if they were parallel, the an-

gles B, C, would be together equal to two
right angles, and therefore could not be-

long to a triangle : hence, BAC will be the triangle required.

PROP. F. PROB.

Two sides and an angle opposite to one of them being given, to construct 'he

triangle.

This Problem admits of two cases.

First. When the given angle

is obtuse, make the angle BCA
equal to the given angle ; and take

C'A equal to that side which is

adjacent to the given angle, the
arc described from A as a centre,

with a radius equal to AB, the

other given side, would cut BC on
opposite sides of C ; so that only -r> f^,
one obtuse angled triangle could be
formed ; that is, the triangle BCA will be the triangle required
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And, if the given angle were right, although two triangles wouiJ be
formed, yet, as the hypotenuse would meet BC at equal distances from the

common perpendicular, these triangles would be equal.

Secondly. If the given angle be acute, and the side opposite to it greater

ihan the adjacent side, the same mode of construction will apply : for, mak
mg BCA equal to the given angle, and AC equal to the adjacent side

then, from A as centre, with a radius equal to the other given side, describe

an arc, cutting CB in B ; draw AB, and CAB will be the triangle requi-

red.

But tf the given angle is acute, and the side opposite to it less than the

other given side ; make the angle CBA equal to the given angle, and take

BA equal to the adjacent side ; then, the arc described from the centre A,
with the radius AC equal to the opposite side, will cut the straight line

BC in two points C^ and C, lying on the same side of B : hence, there will

be two triangles BAC, BAG, either of which will satisfy the conditions

of the problem.

SCHOLIUM.

In the last case, if the opposite side was equal to the perpendicular from
the point A on the line BC, a right angled triangle would be formed. And
the problem would he impossible in all cases, if the opposite sule was less

than the perpendicular let fall from the point A on the straight line BC.

PROP. G. PROB.

To find a triangle that shall he equivalent to any given rectilinealfigure.

Let ABODE be the given rectilineal figure.

Draw the diagonal CE, cutting off the triangle CDE ; draw DF paral-

lel to CE, meeting AE produced, and join CF: the polygon ABODE
will be equivalent to the polygon
ABCF, which has one side less

than the original polygon.

For the triangles CDE, CFE,
have the base CE common, and
they are between the same paral-

icls ; since their vertices D, F, are

situated in a line DF parallel to the

base : these triangles are therefore

equivalent (37. 1.) Draw, now,
the diagonal CA and BG parallel

to it, meeting EA produced : join

CG, and the polygon ABCF will be
reduced to an equivalent triangle

;

and thus the pentagon ABODE
will bo reduced to an equivalent triangle GCF.
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The -jame process may be applied to every other polygon ; for, by suc«

cessiv<>ly diminishing the number of its sides, one being retrenched at each

i<tep of the process, the equivalent triangle will at length be found.

Cor. Since a triangle may be converted into an equivalent rectangle

it foil iws that any polygon may be reduced to an equivalent rectangle.

PROP. H. PROB.

To find the side of a square that shall he equivalent to the sum oftwo tqua^es

Draw the two indefinite lines AB, AC, per-

pendicular to each other. Take AB equal to

the side of one of the given squares, and AC
equal to the other

;
join BC : this will be the

side of the square required.

For the triangle BAG being right angled,

the square constructed upon BC (47. 1.) is

equal to the sum of the squares described upon
AB and AC.

SCHOLIUM.

A square may be thus formed that shall be equivalent to the sum of any

number of squares ; for a similar construction which reduces two of them
to one, will reduce three of them to two, and these two to one, and so of

others.

PROP. L PROB.

Tofind the side of a square equivalent to the difference of two given squares.

Draw, as in the last problem, {see thefig.) the lines AC, AD, at right angles

to each other, making AC equal to the side of the less square ; then, from

C as centre, with a radius equal to the side of the o^her square, describe

an arc cutting AD in D : the square described upon AD will be equivalent

to the difference of the squares constructed upon AC and CD.
For the triangle DAC is right angled ; therefore, the square described

upon DC is equivalent to the squares constructed upon AD and AC : hence

(Cor. 1. 47. :.), AD2=CD2-AC2.

PROP. K. PROB.

A rectangle being given, to construct an equivalent one, having a side oj a

given length.

LetAEFH be the given rectangle, and produce one of its sides, as AH. till
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HB be the givem length, and draw BFD
meeting the prolongation of AE in D ;

then produce EF till FG is equal to HB :

draw BGC, HFK, paraUel to AED, and
through the point D draw DKC parallel

to AB or EG ; then, the rectangle

GFKC, having the side FG of a given

length, is equal to the given rectangle

AEPH(43. 1.)

CoR. A polygon may he converted into an equivalent rectangle, having ont

tif its rides of a given length.
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ELEMENTS

OF

GEOMETRY.

BOOK II.

DEFINITIONS.

1 Every right angled parallelogram, or rectangle, is said to be contained

by any two of the straight lines which are about one of the right an-

gles.
•* Thus the right angled parallelogram AC is called the rectangle contain-

" ed by AD and DC, or by AD and AB, &c. For the sake of brevity,

" instead of the rectangle contained by AD and DC, we shall simply say
" the rectangle AD . DC, placing a noint between the two sides of the

" rectangle."

A. In Geometry, the product of two lines means the same thing as their

rectangle, and this expression has passed into Arithmetic and Algebra,

where it serves to designate the product of two unequal numbers or

quantities, the expression square being employed to designate the pro

duct of a quantity multiplied by itself.

The arithmetical squares of

1, 2,3, &c. arel, 4,9, &c.
So likewise the square de-

scribed on the double of

a* line is evidently four

times the square described

on a single one ; on a triple

line nine times that on a

single one, &c.

2 In every parallelogram, any of the

parallelograms about a diameter, to-

gether with the two complements, is

called a Gnomon. " Thus the paral-
*' lelogram HG, together with the
" complements AF, FC, is the gno-
" mon of the parallelogram AC. This
*' gnomon may also, for the sake of
* brevity, be called the gnomon AGK
•or EHC."



OF GEOMETRY. BOOK II. 40

PROP. I. THEOR.

tj there be two straight lines, one of which is divided into any number oj

parts ; the rectangle contained by the two straight lines is equal to the

rectangles contained by the undivided line, and the several parts of the

divided line.

Let A and BC be two straight lines ; and let BC be divided into any
parts in the points D, E ; the rectangle A.BC is equal to the several rect-

ingles A.BD, A.DE, A.EC.
From the point B draw (Prop. 11.1.)

BF at right angles to BC, and make BG
equal (Prop. 3. 1.) to A; and through

G draw (Prop. 31. 1.) GH parallel to

BC ; and through D, E, C, draw DK,
EL, CH parallel to BG ; then BH, BK,
DL, and EH are rectangles, and BH=
BK+DL+EH.

But BH = BG.BC= A.BC, because

BG=A: Also BK = BG.BD=A.BD,
because BG=A ; and DL=DK.DE=
A.DE, because (34. 1.) DK=BG=A.
In like manner, EH=A.EC. Therefore A.BC=A.BD+A.DE+A.EC

;

that is, the rectangle A.BC is equal to the several rectangles A.BD, A.DE,
A.EC.

SCHOLIUM.
The properties of the sections of lines, demonstrated in this Book, are

easily derived from Algebra. In this proposition, for instance, let the seg-

ments of BC be denoted by i, c, and d; then, k(b-\-c-\-d)^kb-\- kc-\- kd.

PROP. II. THEOR.

If a straight line be divided into any two parts, the rectangles contained by the

whole and each of theparts, are together equal to the square of the whol^line.

c BLet the straight line AB be divided into any
two parts in the point C ; the rectangle AB.BC,
together with the rectangle AB.AC, is equal to

the square of AB ; or AB.AC+AB.BC=AB2.
On AB describe (Prop. 46. 1.) the square

ADEB, and through C draw CF (Prop. 31. 1.)

parallel to AD or BE ; then AF+CE=AE.
But AF=AD.AC=AB.AC, because AD=AB :

CE=BE.BC=AB.BC; and AE=AB». There-
hre AB.AC+AB.BC=AB3.

SCHOLIUM.
This property is evident from Algebra : let AB be denoted by a, and the

segments AC, CB, by 6 and d, respectively; then, a=6+(i; therefore,

nultiplying both members of this equality by a, we sliall have a-—ah+ad

F E
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PROP. Ill, THEOR.

If a straight line he divided into any two parts, the rectangle contained by tht

whole and one of the parts, is equal to the rectangle contained by the tv^

parts, together vyith the square ofthe aforesaid part.

Let the straight line AB be divided into two parts, in the point C ; the

rectangle AB.BC is equal to the rect-

angle AC.BC, together with BC^.

Upon BC describe (Prop. 46. 1.) the

square CDEB, and produce ED to F,

and through A draw (Prop. 31. 1.) AF
parallel to CD or BE ; then AE=AD
+ CE.

But AE = AB.BE = AB.BC, be-

cause BE=BC. So also AD=AC.
CD=AC.CB; and CE=BC2; there-

fore AB.BC=AC.CB-f-BC2.

SCHOLIUM.
In this proposition let AB be denoted by a, and the segments AC and

CB, by b and c ; then a=b-\-c : therefore, miiltiplying both members of

this equality by c, we shall have ac:=bc-{-c\

PROP. IV. THEOR.

Ff a straight line be divided into any two parts, the square of the whole line is

equal to the squares of the two parts, together with twice the rectangle con'

tained by the parts.

Let the straight line AB be divided into any two parts in C ; the square

of AB is equal to the squares of AC, CB, and to twice the rectangle con-

tained by AC, CB, that is, AB2=AC2+CB2+2AC.CB.
Upon AB describe (Prop. 46. 1.) the square ADEB, and join BD, and

through C draw (Prop. 3L 1.) CGF parallel to AD or BE, and through G
draw HK parallel to AB or DE. And because CF is parallel to AD, and
BD falls upon them, the exterior angle BGC
is equal (29. 1.) to the interior and opposite

angle ADB ; but ADB is equal (5. 1.) to the

angle ABD, because BA is equal to AD, be-

ing sides of a square ; wherefore the angle

CGB is equal to the angle GBC ; and there-

fore the side BC is equal (6. 1.) to the side

CG ; but CB is equal (34. 1.) also to GK and
CG to BK ; wherefore the figure CGKB is

equilateral. It is likewise rectangular ; for

the angle CBK being a right angle, the other

angles of the parallelogram CGKI3 are also right angles (Cor. 46. \.)

Wherefore CGKB is a square, and it is upon the side CB. For the same
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reason HF also is a square, and it is upon the side HG, whien is equal to

A.C : therefore HF, CK are the squares of AC, CB. And because th«

complement AG is equal (43. l.)to the complement GE ; and because

AG=AC.CG=AC.CB, therefore also GE=AC.CB, and AG-fGE=
2AC.CB. Now, HF=AC2 and CK=:CB3 ; therefore, HF+CK+AG
^•GE=AC2+CB2+2AC.CB.

But nF-f-CK+AG+GE=ihe figure AE, or AB'; therefore AB's.

AC2+CBH2AC.CB.

Cor. From the demonstration, it is manifest that the parallclograma

about the diameter of a square are likewise squares.

SCHOLIUM.
This property is derived from the square of a binomial. For, let the two

parts into which this line is divided be denoted by a and b ; then, (a+A)'

PROP. V. THEOR.

Jfa straight hnele dividedinto two equal parts, and also into two unequalparts ;

the rectangle contained by the unequal parts, together with the square of the

line between the points of section, is equal to the square of half the line.

Let the straight line AB be dividedinto two equal parts in the point C,

and into two unequal parts in the point D ; the rectangle AD.DB, together

with the square of CD, is equal to the square of CB, or AD.DB+CD^rs
CB2.
Upon CB describe (Prop. 46. 1.) the square CEFB, join BE, and through

D dr:iw (Prop. 31. 1.) UHG parallel to CE or BF ; and through H draw
KLM parallel to CB or EF ; and

also through A draw AK parallel to

CLor BM : And because CH= HF,
if DM be added to both, CM=DF.
But AL=(36. 1.) CM, therefore AL
= DF, and adding CH to both, AH
=gnoinon CMG. But AH = AD.
DH=AD.DB, because DH = DB
^Cor. 4. 2.) ; therefore gnomon CMG
=AD.DB. To each add LG=CD2, then, gnomon rMG+LG=AD.DB
+ CD2. But CMG+LG= BC2; therefore AD.DB+ CD"^=BC2.

'•' Cor. From this proposition it is manifest, that the difference of the

"squares of two unequal lines, AC, CD, is equal to the rectangle contain-

• ed by their sum and difference, or that AC«—CD2=(AC+ CI)) (AC—
CD).'»

^

SCHOLIUM.
In this proposition, let AC be denoted by a, and CD by b ; then. ADs»

a-\-b, and DB=a

—

b; therefore, by Algebra, {a-{-b)x{a—b)=a^—^;
Ihat is, the product of the sum and difference of two quantities, ts equivalent

fO the difference of their squares
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PROP. VI THEOR.

Ifastrais^h'. hnehe bisected, andproduced to any point , :he rectangle contained

by the whole line thus produced, and the part of it produced, together with the

square ofhalfthe line bisected, is equal to the square ofthe straight line which
is made up of the half and the part produced.

Let the straight line AB be bisected in C, and produced to the point D ;

the rectangle AD.DB together with the square of CB, is equal to the

square of CD.
Upon CD describe (Prop. 46.1.) the square CEFD, join DE, and

through B draw (Prop. 31.1.) BHG parallel to CE or DF, and through H
draw KLM parallel to AD or EF, and also through A draw AK parallel

to CL or DM. And because AC is

equal to CB, the rectangle AL is

equal (36.1.) to CH ; but CH is

equal (43. 1. ) to HF ; therefore also

AL is equal to HF : To each of these

add CM ; therefore the whole AM is

equal to the gnomon CMG. Now
AM=AD.DM = AD.DB, because
DM=DB. Therefore gnomonCMG
—AD.DB, and CMG+LG=AD.
DB+ CB2. But CMG+LG=CF
=CD2, therefore AD.DB+ CB2=CD2.

SCHOLIUM.
This property is evinced algebraically ; thus, let AB be denoted by 2a,

and BD by b ; then, AD=2a-\-b, and CD=a-\-b. Now by multiplication,

b{2a-\-b)=2ab-\-b'^ ; therefore,

by adding a^ to each member of the equality, we shall have

J(2a+A)+a2=a2+2ai+i2 ;

•. bl2a+b)+a^={a+b)\

PROP. VIL THEOR.

If a straight line be divided into two parts, the squares of the whole line, and

ofone ofthe parts, are equal to twice the rectangle contained by the whole and

that part, together with the square of the other part.

L et the straight line AB be divided into any
two parts in the point C ; the squares of AB,
BC, are equal to twice the rectangle AB.BC,
together with the square of AC, or AB^-f-BC^
=2AB BC+AC2.
Upon AB describe (Prop. 46. 1.) the square

ADEB, and construct the figure as in the pre-

3eding propositions : Because AG=GE, AG
4-CK = GE+CK, that is, AK = CE, and

rfierefore AK+CE=2AK. But AK+CE
ssgnomon AKF+CK ; and therefore AKF

C B

E E
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+CK=2AK = 2AB.BK =2AB.BC, because BK = (Cor. 4. 2.) BC.
Since then, AKF+CK=2AB.BC, AKF+CK+HF=2AB.BC-hHF

;

and because AKF+HF=AE=AB2, AB2+CK=2AB.BC+HF, that

is, (since CK=CB2, and HF=AC2,) AB2+CB2=2AB.BC+AC2.

" Cor. Hence, the sum of the squares of any two lines is equal In*

** twice the rectangle contained by the lines together with the square ok

* the difference of the lines."

SCHOLIUM.

In this proposition, let AB be denoted by a, and the segments AC and

CD by b and c ;

then a^=b^+2bc+c^;

adding c^ to each member of this equality, we shall have,

a24-c2=A2+26c+2c2

;

.-. a^+c^=b'^+2c{b+ c),

or a2_j_c8=s2ac+62.

CoR. From this proposition it is evident, that the square aescribci on

the difference of two lines is equivalent to the sum of the squares described on

the lines respectively, minus twice the rectangle contained by the lines. For
a—c=6 ; thprefore, by involution, a^—2ac-\-c'^^b^. This may be also

derived from the above algebraical equality, by transposition.

PROP. VHI. THEOR.

Ifa straight line he divided into any two parts,four times the rectangle con-

tained by the whole line, and one of the parts, together with the square of
the other part, is equal to the square of the straight line which is made up

of the whole and thefirst-mentioned part.

Let the straight line AB be divided into any two parts in the point C

;

four times the rectangle AB.BC, together with the square of AC, is equal

to the square of the straight line made up of AB and BC together.

Produce AB to D, so that BD be equal to CB, and upon AD describe

the square AEFD ; and construct two figures such as in the preceding.

Because GK is equal (34. 1.) to CB, and CB to BD, and BD to KN, GK
is equal to KN. For the same reason, PR
is equal to RO ; and because CB is equal

to BD, and GK to KN, the rectangles CK
and BN are equal, as also the rectangles

GR and RN : But CK is equal (43. 1.)

10 RN, because they are the complements

cf the parallelogram CO : therefore also

BN is equal to GR ; and the four rect-

angles BN, CK, GR, RN are there-

fore equal to one another, and so CK-f-

BN -f GR + RN = 4CK. Again, be-

cause CB is equal to BD, and BD equal

A C B D

M
X

G K/N

OP/R

/K II ] -1 .P



M ELEMENTS

{On . 1. 2 ) U BK, tl at is, to CG ; and CB equal to GK, that is, to GP •

therelore OG s equai to GP ; and because CG is equal to GP, and PR to

RO, the rectangle AG is equal to MP, and PL to RF : but MP is equal

(43. L) to PL, because they are the complements of the parallelogram

ML ; wherefore AG is equal also to RF. Therefore the four rectangles

AG, MP, PL, RF,are equal to one another, and so AG+MP+PL+RF
=4AG. And it was demonstrated, that CK+BN+GR+RN=4CK ;

wherefore, adding equals to equals, the whole gnomon A0H=4AK.
Now AK=AB.BK=AB.BC, and 4AK=4AB.BC ; therefore, gnomon
A0H=4AB.BC ; and adding XH, or (Cor. 4. 2.) AC^, to both, gnomon
AOH+XH=4AB.BC+AC2. But AOH+XH=AF = AD^; therefore

AD2=4AB.BC+AC2.

" Cor. L Hence, because AD is the sum, and AC the difference of
" the lines AB and BC, four times the rectangle contained by any two
" lines, together with the square of their difference, is equal to the square
" of the sum of the lines."

" Cor. 2. From the demonstration it is manifest, that since the square
" of CD is quadruple of the square of CB, the square of any line is qua-
" druple of the square of half that line."

SCHCLIUM.
In this proposition, let the line AB be denoted by a, and the parts AC

and CB by c and b ; then AD=c-f 2i. Now, since a=b-\-c, multiplying

both members by 4b, we shall have

4ab=4b^+Abc',

and adding c^ to each member of this equality, we shall have,

4ab-{-c^=c'^+4bc+4b\
or4ai+c2=(c-|-2i)2.

PROP. IX. THEOR.

If a straight line be divided into two equal, and also into two uneqtial parts

,

the squares of the two unequal parts are together double of the square of half

the line, and of the square of the line between the points of section.

Let the straight line AB be divided at the point C into two equal, and
at D into two unequal parts ; The squares of AD, DB are together double

of the squares AC, CD.
From the point C draw (Prop. ILL) CE at right angles to AB and

make it equal to AC or CB, and join EA, EB ; through D draw (Prop 31.

1.) DF parallel to CE, and through F draw FG parallel to AB ; and join

AF. Then, because AC is equal to CE,
the angle EAC is equal (5. 1.) to the

angle AEC ; and because the angle ACE
is a right angle, the two others AEC,
EAC together make one right angle (Cor.

4. 32. L) ; and they are equal to one ano-

iner ; each of them therefore is half of a

right angle. For the same reason each
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of the angles CEB, EEC i« half a right angle ; and therefore tne whoie
AEB is a right angle ; And because the angle GEF is half a right angle

and EGF a right angle, for it is equal (29. 1.) to the interior and opposiia

angle ECB, the remaining angle EFG is half a right angle ; therefore thw

angle GEF is equal to the angle EFG, and the side EG equal (6. 1.) to the

side GF ; Again, because the angle at B is half a right angle, and FDB ?

right angle, for it is equal (29. 1.) to the interior and opposite angle ECB.
the remaining angle BFD is half a right angle ; therefore the angle at B i«

equal to the angle BFD, and the side DF to (6. 1.) the side DB. Now, be-

cause AC=CE, AC2=CE2, and AC24.CE2=2AC2. But (47. 1.) AE2ss
AC2+CE2; therefore AE2=2AC2. Again, because EG= GF, EG2=GF»
and EG24.GF2=2GF2. But EF2=EG2+GF2 ; therefore, EF2=2GF'
=2CD2, because (34. 1.) CD=GF. And it was shown that AE2=2AC2

,

therefore AE2+EF2=2AC2+2CD2. But (47. 1.) AF2=AE2+EF*
and AD2+DF2=AF2, or AD2+DB2=AF2 ; therefore, also, AD2+DB2=x
2AC2+2CD2.

SCHOLIUM.
This property is evident from the algebraical expression,

where a denotes AC, and b denotes CD ; hence, a-\-b =AD, a—i=I)B.

PROP. X. THEOR.

Ifa straight line bebisected, and produced to anypoint, the square of the whole

line thus produced, and the square of the part of it produced, are together

double of the square of half the line bisected, and of the square of the Una

made up of the halfand the part produced.

Let the straight line AB be bisected in C, and produced to the point D
;

the squares of AD, DB are double of the squares of AC, CD.
From the point C draw (Prop. 11. 1.) CE at right angles to AB, and make

it equal to AC or CB
;
join AE, EB ; through E draw (Prop. 31. 1.) EF

parallel to AB, and through D draw DF parallel to CE. And because

the straight line EF meets the parallels EC, FD, the angles CEF', EFD
are equal (29. 1.) to two right angles ; and therefore the angles BEF, EFD
are less than two right angles ; But straight lines, which with another

straight line make the interior angles upon the same side less than two
right angles, do meet (29. 1.), if produced far enough; therefore EB, FD
will meet, if produced, towards B, D : let them meet in G, and join AG.
Then because AC is equal to CE,
the angle CEA is equal (5. 1.) to

the angle EAC ; and the angle

ACE is a right angle ; therefore

each of the angles CEA, EAC is

half a right angle (Cor. 4.32. 1.);

For the same reason, each of the

angles CEB, EBC is half a right

angle; therefore AEB is a right an-

glo ; And because EBC is half a
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right aiig,ie, DBG is also (15. 1.) half a right angle, for they are vertically

opposite : but BDG is a right angle, because it is equal (29. 1.) to the al-

ternate angle DCE ; therefore the remaining angle DGB is half a right

angle, and is therefore equal to the angle DBG; wherefore also the side

DB is equal (6. 1.) to the side DG. Again, because EGF is hall a right

angle, and the angle at F aright angle, being equal (34. 1.) to the

opposite angle ECD, the remaining angle FEG is half a right angle,

and equal to the angle EGF ; wherefore also the side GF is equal

(6. 1.) to the side FE. And because EC=CA, EC2 + CA^ = 2CA2.
Now AE2= (47. 1.) AC2fCE2; therefore, AE2= 2AC2. Again, be-

cause EF= FG, EF2=FG2, and EF2+FG2=2EF2. ButEG2r= (47. 1.)

EF24.FG2; therefore EG2=2EF2; and since EF=CD, EG2=2CD2.
And it was demonstrated, that AE2=2AC2 ; therefore, AE24-EG2=2AC!'
+2CD2. Now, AG2=AE2+EG2, wherefore AG2=2AC2+2CDi. But
AG2(47. l.)= AD2+DG2=AD2+DB2, because DG=DB : Therefore
AD2+DB2=2AC2+2CD2.

SCHOLIUM.

Let AC be denoted by a, and BD, the part produced, by h ; then AD^
2a4i, and CD=a+&.
Now, {2a^bf-\-h'^= Aa'^+4:ab+2P; but 4a2+ 4aJ+252=2a2-f2 (0+

i)2 ; hence, (2a+i)24-i2—2a2-|-2(a-fi)2, and the proposition is evident

from this algebraical equality.

PROP. XL PROB.

To divide a given straight line into two parts, so that the rectangle contained

by the whole, and one ofthe parts, may be equal to the square of the other

part.

Let AB be the given straight line ; it is required to divide it into two
parts, so that the rectangle contained by
the whole, and one of the parts, shall be

equal to the square of the other part.

Upon AB describe (46. 1.) the square

ABDC ; bisect (10. 1.) AC in E, and join

BE
;
produce CA to F, and make (3. 1.)

EF equal to EB, and upon AF describe

(46. 1.) the square FGHA, AB is divided

in H, so that the rectangle AB, BH is equal

to the square of AH.
Produce GH to K : Because the straight

line AC is bisected in E, and produced to

the point F, the rectangle CF.FA, to-

gether with the square of AE, is equal

(6. 2.) to the square of EF : But EF in

equal to EB ; therefore the rectangle CF
FA, together with the souare of AE. i«

F

E

a

B^

'K D
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equal to the square of EB ; And the squares of BA, AE are equai

(47. l.)to the square of EB, because the angle EAB is a right angle;

therefore the rectangle CF.FA, together with the square of AE, is equa.

to the squares of BA, AE : take away the square of AE, which is com
mon to both, therefore the remaining rectangle CF.FA is equal to the

square of .\B. Now the figure FK is the rectangle CF.FA, for AF is

equal to FG ; and AD is the square of AB ; therefore FK is equal to AD :

lake away the common part AK, and the remainder FH is equal to tho

remainder HD, But HD is the rectangle AB.BH for AB is equal to

BD ; and FH is the square of AH; therefore the rectangle AB.Bkl is

equal to the square of AH : Wherefore the straight line A B is divided in

H, so that the rectangle AB.BH is equal to the square of AH.

PROP. XII. THEOR.

In obtuse angled triangles, ifa perpendicular be drawnfrom any of the acute

angles to the opposite side produced, the square of the side subtending the

obtuse angle is greater than the squares of the sides containing the obtuse

angle,hy twice the rectangle contained by the side upon which, vJien produced,

the perpendicularfalls, and the straight line intercepted between theperpen'

dicular and the obtuse angle.

Let ABC be an obtuse angled triangle, having the obtuse angle ACB,
and from the point A let AD be drawn (12. 1.) perpendicular to BC pro-

duced : The square of A B is greater than the squares of AC, CB, by twice

tlie rectangle BC.CD.
Because the straight line BD is divided .A,

into two parts in the point C, BD2=(4. 2.)

BC2+CD2+2BC.CD ; add AD' to both:

Then BD^+AD^ = BC2+ CD^-f AD2+
2BC.CD. But AB2=BD2+AD2(47. 1.),

and AC2= CD^+ AD'^ (47. 1.); therefore,

AB2=BC2+AC2+2BC.CD; that is, AB'
b greater than BC^+AC^ by 2BC.CD.

PROP. XIII. THEOR.

(n every triangle the square ofthe sidt subtending any of the acute angles, w
less than the squares of the sides containing that angle, by twice the rectan-

gle contained by either of these sides, and the straight line intercepted be-

tween the perpendicular, letfall upon itfrom the opposite angle, and the acute

angle.

Let ABC be any triangle, and the angle at B one of its acute angles, and

upon BC, one of the sides containing it, let fall the perpendicular (12. 1.)

AD from the opposite angle : The square of AC, opposite to ine angle B,

is lev than the squares of CB, BA bi twice the rectangle CB.BD.
8'
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P list, let AD fall within the triangle ABC

;

and because the straight line CB is divided

into two parts in the point D (7. 2), BC^-j-

BD2=2BC.BD+ CD2. Addtoeach AD^;
thenBC2+BD2+AD2=2BC.BD4-CD2+
AD2. But BD2+AD2=AB2, and CD2+
DA2:^ AC2 (47. 1.) ; therefore BC^+AB^^
2BC.BD+ AC2 . that is, AC^ is less than

BC2+AB'by2BC.BD.
B D C

Secondly, let AD fall without the triangle ABC :* Then because the

angle at D is a right angle, the angle ACB is greater (16. 1.) than a right

angle, and AB^^ (12. 2.) AC^+BC2+2BC.CD. Add BC2 to each;

then AB2+BC2=AC2-|-2BC24-2BC.CD. But because BD is divided

into two parts in C, BC2+BC.CD=(3. 2.) BC.BD, and 2BC2+2BC.CD
=2BC.BD: therefore AB2+ BC2=AC24. 2BC.BD ; and AC2 is les-»

than AB2+BC2, by 2BD.BC.

Lastly, let the side AC be perpendicular

•x> BC ; then is BC the straight line between
the perpendicular and the acute angle at B

;

and it is manifest that (47. 1.) AB2+BC2=
AC2-|-2BC2=AC2+2BC.BC.

PROP. XIV. PROB.

To describe a square that shall be equal to a given rectilinealJigure.

Let A be the given rectilineal figure ; it is required to describe a square

that shall be equal to A.

Describe (45. 1.) the rectangular parallelogram BCDE equal to the

rectilineal figure A. If then the sides of it, BE, ED are equal to one an-

other, it is a square, and what was required is done ; but if they are not

equal, produce one of them, BE to F, and make EF equal to ED, and bi

sect BF in G ; and from the centre G, at the distance GB, or GF, de-

scribe the semicircle BHF, and produce DE to H, and join GH. There
fore, because the straight line BF is divided into two equal parts in tl

point G, and into two unequal in the point E, the rectangle BE.EF, to

gether with the square of EG, is equal (5. 2.) to the square of GF :

Vut GF is equal to GH ; therefore the rectangle BE, EF, together

»rith the square of EG, is equal to the square of GH : But the squares of

* See figure of the la«t Proposition
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HE and EG are equal (47.

1.) to the square of GH :

Therefore also the rectangle

BE.EF, together with the

square of EG, is equal to

the squares of HE and EG.
Take away the square of

EG, which is common to

both, and the remaining

rectangle BE.EF is equal

to the square of EH : But

BD is the rectangle con-

tained by BE and EF, because EF is equal to ED ; therefore BD is equal

to the square of EH ; and BD is also equal to the rectilineal figure A ;

therefore the rectilineal figure A is equal to the square of EH : Where-
fore a square has been made equal to the given rectilineal figure A, viz.

the square described upon EH.

PROP. A. THEOR.

If one side of a triangle he bisected, the sum of the squares of the other two

sides is double of the square of half the side bisected, and of the square

of the line drawn from the point of bisection to the opposite angle of tht

triangle.

Let ABC be a triangle, of which the side BC is bisected in D, and DA
drawn to the opposite angle ; the squares of BA and AC are togethei

double of the squares of BD and DA.
From A draw AE perpendicular to BC, and because BEA is a right an

gle, AB2=(47. 1.) BE2+AE2 and AC2=
CE2-|-AE"^; wherefore AB2+AC2= BE2 ^
4-CE2+2AE2, But because the line

BC is cut equally in D, and unequally

in E, BE2 + CE2 = (9. 2.) 2BD» +
2DE2 ; therefore AB^ + AC2=2BD« +
2DE2.2AE2.
Now DE24-AE2=(47. 1.) AD^, and

2DE2-|-2AE2=2AD2; wherefore AB2+
AC2=2BD2+2AD2.

PROP. B. THEOR.

The sum of the squares of the diameters of any parallelogram is equa^ to

the sum of the squares of the sides of the parallelogram.

Let ABCD be a parallelogram, of which the diameters are AC and BD ;

the sum of the squares of AC and BD is equal to the sum of the squares

of AB, BC, CD, DA.
Let AC and BD intersect one another in E • and because the vertical

tngw AED, CEB are equal (15. 1.), and also the alternate angles EAD,
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ECB (29. 1.), tho triangles ADE, CEB have two angles in the one equal

to two angles in the other, each to each ; but the sides AD and BC, which

are opposite to equal angles in

these triangles, are also equal

(34. 1.); therefore the other

sides which are opposite to the

equal angles are also equal (26.

1.), viz. AE to EC, and ED to

EB.
Since, therefore, BD is bi-

sected in E, AB2+AD2=(A.
2.) 2BE2+2AE2; and for the

same reason, CD^ + BC^ =
2BE2+2EC2=2BE2+2AE2, because EC= AE. Therefore ABz+AD^
+DC2+BC2=i4BE2+4AE2, But 4BE2=BD2, and 4AE2=rAC2 (2.

Cor. 8. 2.) because BD and AC are both bisected in E ; therefore AB^-f-

AD2+CD2+BC2=BD2+AC2.

Cor. From this demonstration, it is manifest that the diameters of every

parallelogram bisect one another.

SCHOLIUM.

In the case of the rhombus, the sides AB, BC, being equal, the triangles

BEC, DEC, have all the sides of the one equal to the corresponding sides

of the other, and are therefore equal : whence it follows that the angles

BEC, DEC, are equal ; and, therefore, that the two diagonals of a rham-
bua cut each other at right angles.
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BOOK III.

DEFINITIONS.

A

.

The radius of a circle is the straight line drawn from the centre to tj»«

circumference.

1. A straight line is said to touch

a circle, when it meets the cir-

cle, and being produced does

not cut it.

And that line which has but

one point in common with

the circumference, is called a

tangent, and the point in com-
mon, the point of contact.

2. Circles are said to touch one

another, which meet, but do not

cut one another.

3. Straight lines are said to be equally dis-

tant from the centre of a circle, when the

perpendiculars drawn to them from the centre

are equal.

4 And the straight line on which the greater

perpendicular falls, is said to be farther from
the centre.

B. Any portion of the circumference is called an are.

The chord or subtense of an arc is the straight line which joins its two ex-

tremities.

C. A straight line is said to be inscrihedin a circle, when the extremities of

it are in the circumference of the circle. And any straight line which

meets the circle in two points, is called a secant.

5. A segment of a circle is the figure con-

tained by a straight line, and the arc which
it cuts off.
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6. An angle m a segment is the angle contained

by two straight lines drawn from any point in

the circumference of the segment, to the extre-

mities of the straight line which is the base of

the segment.

An inscribed triangle, is one which has its three

angular points in the circumference.

And, generally, an inscribed figure is one, of

which all the angles are in the circumference.

The circle is said to circumscribe such a figure.

7. And an angle is said to insist or stand upon

the arc intercepted between the straight lines

which contain the angle.

This is usually called a?i angle at the centre. The
angles at the circumference and centre, are

both said to be subtended by the chords or

arcs which their sides include.

8. The sector of a circle is the figure contained

by two straight lines drawn from the centre, and

the arc of the circumference between them.

9. Similar segments of a circle,

are those in which the angles are

equal, or which contain equal an-

gles.

PROP. I. PROB.

To find the centre of a given circle.

Let ABC be the given circle ; it is required to find its centre.

Draw within it any straight line AB, and bisect (10. 1.) it in D ;

from the point D draw (11. 1.) DC at right angles to AB, and produce it

to E, and bisect CE in F : the point F is the centre of the circle ABC
For, if it be not, let, if possible, G be the centre, and join GA, GD, GB :

Then, because DA is equal to DB, and DG common to the two triangles

ADG, BDG, the two sides AD, DG are equal to

the two BD, DG, each to each ; and the base

GA is equal to the base GB, because they are

radii of the same circle : therefore the angle

ADG is equal (8. 1.) to the angle GDB : But
when a straight line standing upon another

straight line makes the adjacent angles equal to

one another, each of the angles is a right angle

(7. def. 1.) Therefore the angle GDB is a right

angle : But FDB is likewise a right angle

:

wherefore the angle FDB is equal to the angle

GDB, the greater to the less which is impos-
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sible: Therefore G is not the centre of the circle ABC: In the same

manner it can be shown that no other point but F is the centre : that is

F is the centre of the circle ABC.
CoR. From this it is manifest that if in a circle a straight line bisect

another at right angles, the centre of the circle is in the line which bisects

the other.

PROP. II. THEOR.

If any two points he taken in the circumference of a circle, the straight line

which joins them shallfall within the circle.

Let ABC be a circle, and A, B any two points in the circumference
;

he straight line drawn from A to B shall fall

vithin the circle.

Take any point in AB as E ; find D (1. 3.)

*he centre of the circle ABC
;
join AD, DB

and DE, and let DE meet the circumference

in F. Then, because DA is equal to DB, the

angle DAB is equal (5. 1.) to the angle DBA
;

and because AE, a side of the triangle DAE,
is produced to B, the angle DEB is greater

(16. 1.) than the angle DAE ; but DAE is

equal to the angle DBE ; therefore the angle DEB is greater than the

angle DBE: Now to the greater angle the greater side is opposite (19.

1.) ; DB is therefore greater than DE : but BD is equal to DF ; where-
fore DF is greater than DE, and the point E is therefore within the circle.

The same may be demonstrated of any other point between A and B,

therefore AB is within the circle.

Cor. Every point, moreover, in the production of AB, is fartherfrom ihe

centre than the circumference.

PROP. III. THEOR.

If a straight line drawn through the centre of a circle bisect a straight line in

the circle, which does not pass through the centre, it will cut that line at right

angles ; and if it cut it at right angles, it will bisect it.

Let ABC be a circle, and let CD, a straight line drawn through the

centre, bisect any straight line AB, which does not pass through the

centre, in the point F ; it cuts it also at right angles.

Take (1. 3.) E the centre of the circle, and join EA, EB. Then be-

cause AF is equal to FB, and FE common to the

two triangles AFE, BFE, there are two sides in the

one equal to two sides in the other : but the base

EA is equal to the base EB ; therefore the angle

AFE is equal (8. 1.) to the angle BFE. And
when a straight line standing upon another makes
the adjacent angles equal to one another, each of

ihem is a right (7. Def. 1.) angle : Therefore each
of the angles AFE, BFE is a right angle ; where-
fore the straight line CD, dravm through the centre
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bisecting AB, which does not pass through the centre, cuts AB at ngh»
angles.

Again, let CD cut AB at right angles ; CD also bisects AB, that is, AF
is equal to FB.
The same construction being made, because the radii EA, EB are equal

to one another, the angle EAF is equal (5. 1.) to the angle EBF; and
the right angle AFE is equal to the right angle BFE : Therefore, in the

two triangles EAF, EBF, there are two angles in one equal to two angles

in the other ; now the side EF, which is opposite to one of the equal an-

gles in each, is common to both ; therefore the other sides are equal to

(28. 1.) : AF therefore is equal to FB.
CoR. 1. Hence, the perpendicular through the middle of a chord, passes

through the centre ; for this perpendicular is the same as the one let fall

from the centre on the same chord, since both of them passes through the

middle of the chord.

Cor. 2. It likewise follows, that the perpendicular drawn through the

middle of a chord, and terminated both ways by the circumference of the circle,

is a diameter, and the middle point of that diameter is therefore the centre of
the circle.

PROP. IV. THEOR.

Ifin a circle two straight lines cut one another, which do not both pass through

the centre, they do not bisect each other.

Let ABCD be a circle, and AC, BD two straight lines in it, which cut

one another in the point E, and do not both pass through the centre : AC,
BD do not bisect one another.

For if it is possible, let AE be equal to EC, and BE to ED ; if one of the

lines pass through the centre, it is plain that it

cannot be bisected by the other, which does not

pass through the centre. But if neither of them
pass through the centre, take (1. 3.) F the centre

of the circle, and join EF : and because FE, a

straight line through the centre, bisects another

AC, which does not pass through the centre, it

must cut it at right (3. 3.) angles ; wherefore

FEA is a right angle. Again, because the

straight line FE bisects the straight line BD, which does not pass through
the centre, it must cut it at right (3. 3.) angles ; wherefore FEB is a right
angle : and FEA was shown to be a right angle : therefore FEA is eaual
to the angle FEB, the less to the greater, which is impossible ; therefore
AC, BD, do not bisect one another.

PROP. V. THEOR.

If two circles cut one another, they cannot have the same ttmtre.

Let the two circles ABC, CDG cut one another in the points B, C

;

they have not the same centre.
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For, if it be possible, let E be their

centre : join EC, and draw any straight line

EFG meeting the circles in F and G : and

because E is the centre of the circle ABC,
CE is equal to EF : Again, because E is

the centre of the circle CDG, CE is equal to

EG : but CE was shown to be equal to EF,
therefore EF is equal to EG, the less to the

greater, which is impossible : therefore E
is not the centre of the circles, ABC, CDG.

PROP. VI. THEOR.

If txDO circles touch one another internally, they cannot have the same centre

Let the two circles ABC, CDE, touch one another internally in the

point C ; they have not the same centre.

For, if they have, let it be F ;
join FC, and

draw any straight line FEB meeting the circles

in E and B ; and because F is the centre of

the circle ABC, CF is equal to FB ; also, be-

cause F is the centre of the circle CDE, CF
is equal to FE : but CF was shown to be equal

to FB ; therefore FE is equal to FB, the less

to the greater, which is impossible ; Where-
fore F is not the centre of the circles ABC,
CDE.

PROP. VII. THEOR.

If any point he taken in the diameter of a circle which is not the centre, oj oJ
the straight lines which can be drawn from it to the circumference, the great-

est is that in which the centre is, and the other part of that diameter is the

least ; and, of any others, that which is nearer to the line passing through

the centre is always greater than one more remote from it ; Andfrom the

same point there can be drawn only two straight lines that are equal to one

another, one upon each side of the shortest line.

Let ABCD be a circle, and AD its diameter, in which let any point t

be taken which is not the centre : let the centre be E ; of all the straight

.ines FB, FC, FG, &c. that can be drawn from F to the circumfereYico,

FA is the greatest ; and FD, the other part of the diameter AD, is the

least ; and of the others, FB is greater than FC, and FC than FG.
Join BE, CE, GE ; and because two sides of a triangle aie greatei

(20. 1.) than the third, BE, EF are greater than BF ; but AE is equal to

EB ; therefore AE and EF, that is, AF, is greater than BF: Again, be

«au8e BE is equal to CE, and FE common to the triangles BEF, CEF.
9
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the two sides B£, EF are equal to the two
CE E?; but the angle BEF is greater than

the angle CEF ; therefore the base BF is

greater (24. 1 .) than the base FC ; for the same
reason, CF is greater than GF. Again, be-

cause GF, FE are greater (20. 1.) than EG,
and EG is equal to ED ; GF, FE are greater

than ED ; take away the common part FE,
and the remainder GF is greater than the re-

mainder FD : therefore FA is the greatest, and
FD the least of all the straight lines from F to

the circumference ; and BF is greater than CF, and CF than GF.
Also there can be drawn only two equal straight lines from the point F

to the circumference, one upon each side of the shortest line FD : at the
point E in the straight line EF, make (23. 1.) the angle FEH equal to the
angle GEF, and join FH : Then, because GE is equal to EH, and EF com-
mon to the two triangles GEF, HEF ; the two sides GE, EF are equal
to the two HE, EF; and the angle GEF is equal to the angle HEF

;

therefore the base FG is equal (4. 1.) to the base FH : but besides FH,
no straight line can be drawn from F to the circumference equal to

FG : for, if there can, let it be FK ; and because FK is equal to FG, and
FG to FH, FK is equal to FH ; that is, a line nearer to that which passes
through the centre, is equal to one more remote, which is impossible.

PROP. VIII. THEOR.

ff any point be taken without a circle, and straight lines be drawn from it to

the circumference, whereof one passes through the centre , nf those which

fall upon the concave circumference, the greatest is that which passes through

the centre ; and of the rest that which is nearer to that through the centre

is always greater than the more remote ; But of those whichfall upon the

convex circumference, the least is that between the point without the circle,

and the diameter ; and of the rest, that which is nearer to the least is al-

ways less than the more remote : And only two equal straight lines can be

drawnfrom the point unto the circumference, one upon each side of the least.

Let ABC be a circle, and D any point without it, from which let the

straight lines DA, DE, DF, DC be drawn to the circumference, whereof DA
passes through the centre. Of those which fall upon the concave part of the

circumference AEFC, the greatest is AD, which passes through the cen-

tre ; and the line nearer to AD is always greater than the more remote,

viz. DE than DF, and DF than DC ; but of those which fall upon the con-

vex circumference HLKG, the least is DG, between the point D and the

diameter AG ; and the nearer to it is always less than the more remote,

viz. DK than DL, and DL than DH.
Take (1. 3.) M the centre of the circle ABC, and join ME, MF, MC,

MK, ML, MH: And because AM is equal to ME, if MD be added to

each, AD is equal to EM and MD; but EM and MD are greater (20. 1.)

than ED : therefore also AD is greater than ED. Again, because ME is

equal to MF, and MD common to the triangles EMD, FMD; EM, MD
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are equal to FM, MD ; but the angle EMD is greater than the angle

FMD ; therefore the base ED is greater

(24. 1.) than the base FD. In like manner

it may be shewn that FD is greater than

CD. Therefore DA is the greatest ; and

DE greater than DF, and DF than DC.
And because MK, KD are greater (20.

1 ) than MD, and MK is equal to MG, the

remainder KD is greater (5. Ax.) than the

remainder GD, that is, GD is less than

KD : And because MK, DK are drawn to

the point K within the triangle MLD from

M, D, the extremities of its side MD ; MK,
KD are less (21.1.) than ML, LD, whereof
MK is equal to ML ; therefore tlie remain-

der DK is less than the remainder DL :

In like manner, it may be shewn that DL
is less than DH : Therefore DG is the

least, and DK less than DL, and DL
than DH.

Also there can be drawn only two equal straight lines from the pomt D
to the circumference, one upon each side of the least ; at the point M, in

the straight line MD, make the angle DMB equal to the angle DMK, and
join DB ; and because in the triangles KMD, BMD, the side K.M is equal

to the side BM, and MD common to both, and also the angle KMD equal

to the angle BMD, the base DK is equal (4. l.)to the base DB. But,

besides DB, no straight line can be drawn from D to the circumference, equal

to DK ; for, if there can, let it be DN ; then, because DN is equal to DK,
and DK equal to DB, DB is equal to DN ; that is, the line nearer to DG,
the least, equal to the more remote, which has been shewn to be impossible.

PROP. IX. THEOR.

if a point be taken within a circle,from which there fall vnore than two equal

straight lines upon the circumference, that point is the centre of the circle.

Let the point D be taken within the circle ABC, from which there fall

on the circumference more than two equal straight lines, viz. DA, DB, DC,
the point D is the centre of the circle.

For, if not, let E be the centre, join DE, and produce it to the circum-

ference in F, G ; then FG is a diameter of

the circle ABC : And because in FG, the di-

ameter of the circle ABC, there is taken the

point D which is not the centre, DG is the

greatest line from it to the circumference, and
DC greater (7. 3.) than DB, and DB than

DA ; but they are likewise equal, which is

nnpossible : Therefore E is not the centre of
ihe circle ABC : In like manner it may be
demonstrated, that no other point but D is the

centre : D therefore is the centre.
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PROP. X. THEOR.

One circle cannot cut another in more than 'wo points.

If It be possible, let the circumference FAB cut the circumference DEF
in more than two points, viz. in B, G, F ; take the centre K of the circ'e

ABC, and join KB, KG, KF ; and because within the circle DEF there

is taken the point K, from which more than two

equal straight lines, viz. KB, KG, KF^ fall on

the circumference DEF, the point K is (9. 3.)

the centre of the cij;cle DEF ; but K is also the

centre of the circle ABC ; therefore the same
point is the centre of two circles that cut one
aiiother, which is impossible (5. 3.). There-
fore one circumference of a circle cannot cut

another in more than two points.

PROP. XI. THEOR.

If two circles touch each other internally, the straight line which joins then

centres being produced, will pass through the point of contact.

Let the two circles ABC, ADE, touch each other internally in the point

A, and let F be the centre of the circle ABC, and G the centre of the cir-

cle ADE ; the straight line which joins the cen-

tres F, G, being produced, passes through the

point A.

For, if not, let it fall otherwise, if possible, as

FGDH, and join AF, AG : And because AG,
GF are greater (20. 1.) than FA, that is, than

FH, for FA is eqiial to FH, being radii of the

same circle ; take away the common part FG,
and the remainder AG is greater than the re-

mainder GH. But AG is equal to GD, there-

fore GD is greater than GH ; and it is also less,

which is impossible. Therefore the straight line

which joins the points F and G cannot fall otherwise than on the point

A ; that is, it must pass through A.

Cor. 1. If two circles touch each other internally, the distance be-

tween their centre must be equal to the difference of their radii : for the

circumferences pass through the same point in the line joining the centres.

CoR. 2. And, conversely, if the distance between the centres be equal

M the difference of the radii, the two circles will touch each other inter-

nally.
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PROP. XII. THEOR.

If two circles tOKch each other externally, the straight line which joins then

centres will pass through the point of contact.

Let the two circles ABC, ADE, touch each other externally in the point

A ; and let F be the centre of the circle ABC, and G the centre of ADE ;

the straight line which joins the points F, G shall pass through the point

of contact.

For, if not, let it pass otherwise, if possible, FCDG, and join FA, AG :

and because F is the centre of the circle ABC, AF is equal to FC : Also

because G is the centre of the

circle, ADE, AG is equal to

GD. Therefore FA, AG are

equal to FC, DG ; wherefore

the whole FG is greater than

FA, AG ; but it is also less

(20. 1 .), which is impossible :

Therefore the straight line

which joins the points F, G
cannot pass otherwise than

through the point of contact A ; that is, it passes through A.

CoR. Hence, if two circles touch each other externally, the distance

between their centres will be equal to the sum of their radii.

And, conversely, if the distance between the centres be equal to the sum
of the radii, the two circles will touch each other externally.

PROP. XIII. THEOR.

One circle cannot touch another in more points than one, whether it touche:

it on the inside or outside.

For, if it be possible, let the circle EBF touch the circle AbC in more
points than one, and first on the inside, in the points B, D

; join BD, and
draw (10. 11. I.) GH, bisecting BD at right angles : Therefore because
•ha points B, D are in the circumference of each of the circles, the straight

line BD fal's within each (2. 3.) of them : and therefore their centres arc

<Cor 1. 3.) in the straight line GH which bisects BD at right anglea ;
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therefoi^ Gil passes through the point of contact (11. 3 ), but it does

not pass through it, because the points B, D are without the straight line

GH, which is absurd: therefore one circle cannot touch another in tliP

inside in more points than one.

Nor can two circles touch one another on the outside in more than one
point : For, if it be possible, let the circle ACK
touch the circle ABC in the points A, C, and join

AC : therefora, because the two points A, C are

in the circumference of the circle ACK, the straight

hne AC which joins them shall fall within the

circle ACK : And the circle ACK is without the

circle^ ABC : and therefore the straight line AC is

also without ABC ; but, because the points A, C
are in the circumference of the circle ABC, the

straight line AC must be within (2. 3.) the same
circle, which is absurd : therefore a circle cannot

touch another on the outside in more than one
point : and it has been shewn, that a circle cannot

touch another on the inside in more than one point.

PROP. XIV. THEOIl.

Equal straight lines in a circle are equally distantfrom the centre ; ai.d those

which are equally distantfrom the centre, are equal to one another.

Let the straight lines AB, CD, in the circle ABDC, be equal to one
another : they are equally distant from the centre.

Take E the centre of the circle ABDC, and from it draw EF, EG, per-

pendiculars to AB, CD
;
join AE and EC. Then, because the straight

line EF passing through the centre, cuts the

straight line AB, which does not pass through

the centre at right angles, it also bisects (3.

3.) it : Wherefore AF is equal to FB, and

AB double of AF. For the same reason,

CD is double of CG : But AB is equal to

CD ; therefore AF is equal to CG : And be-

cause AE is equal toEC, the square of AE is

equal to the square of EC : Now the squares

of AF, FE are equal (47. 1.) to the square

of AE, because the angle AFE is a right angle ; and, for the like reason,

the squares of EG, GC are equal to the square of EC : therefore the

squares of AF, FE are equal to the squares of CG, GE, of which the

square of AF is equal to the square of CG, because AF is equal to CG
;

therefore the remaining square of FE is equal to the remaining square of

EG, and the straight line EFis therefore equal to EG : But straight lines

in a circle are said to be equally distant from the centre when the perpen

diculars drawn to them from the centre are equal (3. Def. 3.) : therefore

AB, CD are eqoally distant from the centre.

Next, if the straight lines AB, CD be equally distant from the centre

•hat is, if FE be equal to EG, AB is equal to CD. I'or, the same con
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And, because BC is i.

3.) than EK ; But, as was
of BH, and FG double of FK,
the squares of EK, KF, of which U\i' z

of EK, because EH is less than EK ; there.^

than the square of FK, and the straight line htx'^. .u
therefore BC is greater than FG.

Next, let BC be greater than FG ; BC is nearer to the centre than FG :

that is, the same construction being made, EH is less than EK ; because
BC is greater than FG, BH likewise is greater than KF : but the squares
of BH, HE are equal to the squares of FK, KE, of which the square of
BH is greater than the square of FK, because BH is greater than FK

;

therefore the square of EH is less than the square of EK, and the strai"ht
line EH less than EK.

*

Cor. The shorter the chord is, the farther it is from the centre ; and,
conversely, the farther the chord is from the centre, the shorter it is.

PROP. XVI. THEOR.

The straight line draicn at right angles to the diameter of a circle, from the
extremity of it,falls without the circle ; and no straight line, can be drawn
between that straight line and the circumference, from the extremity of th*t

diameter, so as not to cut the circle.

Let ABC be a circle, the centre of which is D, and the diameter AB
and let AE be drawn from A perpendicular to AB, AE shall fall without
the ciiclo.
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_at one straight line which touches the

, - ^perpendicular at the extremity of a diameter is a tan-

^^,.. to uie circle ; and, conversely, a tangent to a circle is perpendicular

to the diameter drawn from the point of contact.

Cor. 3. It follows, likewise, that tangents at each extremity of the

diameter are parallel (Cor. 28. B- 1.); and, conversely, parallel tangents

are both perpendicular to the same diameter, and have their points of con-

tact at its extremities.

PROP. XVII. PROB.

To draw a straight line froin a given point either without or in the ctrcum^

ference, which shall touch a given circle.

First, let A be a given point without the given circle BCD ; it is re-

quired to draw a straight line from A which shall touch the circle.

Find (1.3.) the centre E of the circle, and join AE ; and from the cen-

tre E, at the distance EA, describe the circle AFG ; from the point D
draw (11. 1.) DF at right angles to E A, join EBF, and draw AB. AB
touches the circle BCD.

Because E is the centre of the circles BCD, AFG, EA is equal to

f^F, and ED to EB ; therefore the two sidss AE EB are equal to fl#«
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Uo FE, ED, and they contain the angle at E common to the twj trian-

gles AEB, FED; therefore the base DF
IS equal to the base AB, and the triangle

FED to the triangle AEB, and the other

angles to the other angles (4. 1.); there- Cy
fore the angle EB.\ is equal to the angle

EDF; but EDF is a right angle, where-

fore EBA is a right angle ; and EB is a

line drawn from the centre : but a straight

line drawn from the extremity of a diame-

ter, at right angles to it, touches the circle

(1 Cor. 16.3.) : therefore AB touches the

circle ; and is drawn from the given point A.
But if the given point be in the circumference of the circle, as the pom'

D, draw DE to the centre E, and DF at right angles to DE ; DF touches

the circle (1 Cor. 16. 3.)

SCHOLIUM.

When the point A lies without the circle, there will evidently be always

two equal tangents passing through the point A. For, by producing the

tangent FD till it meets the circumference AG, and joining E and the poir

of intersection, and also A and the point where this last line will intersect

the circumference DC ; there will be formed a right angled triangle equal

to ABE (46. 1.).

PROP. XVIII. THEOR.

If a straight line touch a circle, the straight line drawn from the centre to

the point of contact, is perpendicular to the line touching the circle.

Let the straight line DE touch the circle ABC in the point C ; take

the centre F, and draw the straight line FC : FC is perpendicular to DE.
For, if it be not, from the point F draw FBG perpendicular to DE ; and

because FGC is a right angle, GCF must
be (17. 1.) an acute angle ; and to the great-

er angle the greater side (19. 1.) is oppo-

site ; therefore FC is greater than FG
;

but FC is equal to FB ; therefore FB is

greater than FG, the less than the greater,

which is impossible ; wherefore FG is not

perpendicular to DE : in the same manner
it may be shewn, that no other line but FC
can be perpendicular to DE ; FC is there-

lore perpendicular to DE.

10
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PROP. XIX. THEOR.

If a straight lino touch a circle, andfrom the point of contact a straight line

be drawn at right angles to the touching line, the centre of the circle is in

that line.

Let ihe straight line DE touch the circle ABC, in C, and from C let

CA be drawn at right angles to DE ; the centre of the circle is in CA.
For, if not, let F be the centre, if possible,

and join CF. Because DE touches the cir-

cle ABC, and FC is drawn from the centre

to the point of contact, FC is perpendicular

(18. 3 ) to DE ; therefore FCE is a right

angle ; but ACE is also a right angle

;

therefore the angle FCE is equal to the an-

gle ACE, the less to the greater, which is

impossible ; Wherefore F is not the centre

of the circle ABC : in the same manner it

may be shewn, that no other point which is

not in CA, is the centre ; that is, the centre

is in CA.

PROP. XX. THEOR

The angle at the centre of a circle is double of the angle at the circumjer

ence, upon the same base, that is, upon the same part of the circumfer

ence.

Let ABC be a circle, and BDC an angle at the centre, and BAG an

angle at the circumference which have the same circumference BC for

the base ; the angle BDC is double of the angle BAC.
First, let D, the centre of the circle, be within the angle BAC, arid joia

AD, and produce it to E : because DA is equal

to DB, the angle DAB is equal (5. 1.) to the

angle DBA : therefore the angles DAB, DBA
together are double of the angle DAB ; but the

angle BDE is equal (32. 1.) to the angles DAB,
DBA ; therefore also the angle BDE is double

of the angle DAB ; for the same reason, the an-

gle EDC is double of the angle DAC : there-

fore the whole angle BDC is double of the whole
angle BAC.

Again, let D, the centre of the circle, be
without the angle BAC ; and join AD and pro-

duce it to E. It may be demonstrated, as in

the first case, that the angle EDC is double

of the angle DAC, and that EDB, a part of

the first, is double of DAB, a part of the

other ; therefore the remaining angle BDC is

double of the remaining angle BAG.
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PROP. XXI. THEOR.

rhe angli s m the same segment of a circle are equal to one anothsr

Let ABCD be a circle, and BAD, BED
angles in the same sejjraent BAED : the an-

gles BAD, BED are equal to one another.

Take F the centre of the circle ABCD :

And, first, let the segment BAED be greatei

than a semicircle, and join BF, FD : and be-

cause the angle BFD is at the centre, and the

angle BAD at the circumference, both having

the same part of the circumference, viz. BCD,
for their base ; therefore the angle BFD is

double (20. 3.) of the angle BAD: for the

same reason, the angle BFD is double of the

angle BED : therefore the angle BAD is equal

to the angle BED.
But, if the segment BAED be not greater

than a semicircle, let BAD, BED be angles

in it , these also are equal to one another.

Draw AF to the centre, and produce to C, and
join CE : therefore the segment BADC is

greater than a semicircle ; and the angles in

it, BAC, BEC are equal, by the first case :

for the same reason, because CBED is great-

er than a semicircle, the angles CAD, CED
ire equal ; therefore the whole angle BAD is

equal to the whole angle BED.

PROP. XXII. THEOR.

The opposite angles of any quadrilateral figure described in a circlef aie

together equal to two right angles.

Let ABCD be a quadrilateral figure in the circle ABCD ; any two of

its opposite angles are together equal to two right angles.

Join AC, B'D. The angle CAB is equal (21. 3.) to the angle

CDB, because they are in the same segment
BADC, and the angle ACB is equal to the an-

gle ADB, because they are in the same seg-

ment ADCB; therefore the whole angle ADC
is equal to the angles CAB, ACB : to each of

these equals add the angle ABC ; and the an-

gles ABC, ADC, are equal to the angles ABC,
CAB, BCA. But ABC, CAB, BCA are equal
to two right angles (32. 1.) ; therefore also the

ingles ABC, ADC are equal to two right an-

fles ; in the same manner, the angles BAD,
)CB may be shewn to be equal to two right angle*.
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Cor. 1. If aii> side of a quadrilateral be produced, the exterior angle

will be equal to the interior opposite angle.

Cor. 2. It follows, likewise, that a quadrilateral, of which the op-

posite angles are not equal to two right angles, cannot be inscribed in a

circle.

PROP. XXIII. THEOR.

Upon the same straight line, and upon the same side of it, there cannot be

two similar segments of circles, not coinciding with one another.

If it be possible, let the two similar segments of circles, viz. ACB, ADB,
be upon the same side of the same straight line AB, not coinciding with

one another ; then, because the circles ACB, ADB, cut one another in

the two points A, B, they cannot cut one another in any other point (10.

3.) : one of the segments must therefore fall

within the other: let ACB fall within ADB,
draw the straight line BCD, and join CA, DA :

ai.id because the segment ACB is similar to the

segment ADB, and similar segments of circles

contain (9. def. 3.) equal angles, the angle

ACB is equal to the angle ADB, the exterior

to the interior, which is impossible (16. 1.).

PROP. XXIV. THEOR.

Similar segments of circles upon equal straight lines are equal to one another.

Let AEB, CFD be similar segments of circles upon the equal straight

lines AB, CD ; the segment AEB is equal to the segment CFD.
For, if the segment AEB be applied to the segment CFD, so as the

point A be on C, and the

straight line AB upon CD,
the point B shall coincide

with the point D, because
AB is equal to CI) : there-

fore the straight line AB A. B C X)
coinciding with CD, the segment AEB must (23. 3.) coincide with Ae
segment CFD, and therefore is equal to it.

PROP. XXV. PROB.

. A segment of a circle being given, to describe the circle of which it is the

segment.

Let ABC be the given segment of a circle ; it is required to describe
the circle of which it is the segment.

Bisect (10. 1.) AC in D, and from the point D draw (11. 1.) DB at

right angles to AC, and join AB : First, let the angles ABD, BAD be
equal to one another; then the straight line BD is equal (6. 1.) to DA,
and therefore to DC ; and because the three straight hues DA, DB DC,
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are all equal ; D is the centre of the circle (9. 3.) ; from the ceniTe D, at

the distance of any of the tliree DA, Dli, DC, describe a circle ; this shall

pass through the other points ; and the circle of which ABC ia a segment

A JJ t? E A D C
is described : and because the centre D is in AC, the segment ABC is

semicircle. Next, let the angles ABD, BAD be unequal ; at the point A, ii

the straight line AB, make (23. 1.) the anj;le 13AE equal to the angle ABD
and produce BD, if necessary, to E, and join EC : and because the angle

ABE is equal to the angle BAE, the straight line BE is equal (6. 1.) to

EA : and because AD is equal to DC, and DE common to the triangles

ADE, CDE, the two sides AD, DE are equal to the two CD, DE, each

to each ; and the angle ADE is equal to the angle CDE, for each of them
is a right angle ; therefore the base AE is equal (4. 1.) to the base EC :

but AE was shewn to be equal to EB, wherefore also BE is equal to EC :

and the three straight lines AE, EB, EC are therefore equal to one another;

wherefore (9. 3.) E is the centre of the circle. From the centre E, at

the distance of any of the three AE, EB, EC, describe a circle, this shall

pass through the other points ; and the circle of which ABC is a segment
is described : also, it is evident, that if the angle ABD be greater than the

angleBAD, the centre E falls without the segment ABC, which therefore

is less than a semicircle ; but if the an^le ABD be less than BAD, the cen-

tre E falls within the segment ABC, which is therefore greater than a semi-

circle : Wherefore, a segment of a circle being given, the circle is de«

scribed of which it is a segment.

PROP. XXVI. THEOR.

In equal circles, equal angles stand upon equal arcs, whether they be at the

centres or circumferences.

Let ABC, DEF be equal circles, and the equal angles BGC, EHF at

their centres, and BAC, EDF at their circumferences : the 3rc BKC ia

equal to the arc ELF.
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Join BC, EF ; and because the circles ABC, DEF are equal, the straigh

lines drawn from their centres are equal : therefore the two sides BG,
GC, are equal to the two EH, HF ; and the angle at G is equal to the an-

gle at H ; therefore the base BC is equal (4. 1.) to the base EF : and be-

cause the angle at A is equal to the angle at D, the segment BAC is similar

(9. def. 3.) to the segment EDF ; and they are upon equal straight lines

BC, EF ; but similar segments of circles upon equal straight lines are

equal (24. 3.) to one another, therefore the segment BAC is equal to ihe

segment EDF : but the whole circle ABC is equal to the whole DEF
;

therefore the remaining segment BKC is equal to the remaining segment
ELF, and the arc BKC to the arc ELF.

PROP. XXVn. THEOR.

In equal circles, the angles which stand upon equal arcs are equal to one

another, whether they be at the centres or circumferences.

Let the angles BGC, EHF at the centres, and BAC, EDF at the cir-

cumferences of the equal circles ABC, DEF stand upon the equal arcs

BC, EF : the angle BGC is equal to the angle EHF, and the angle BAlv
to the angle EDF.

If the angle BGC be equal to the angle EHF, it is manifest (20. 3.)

that the angle BAC is also equal to EDF. But, if not, one of them is the

greater : let BGC be the greater, and at the point G, in the straight line

BG, make the angle (23. 1.) BGK equal to the angle EHF. And because

equal angles stand upon equal arcs (26. 3.), when they are at the centre,

the arc BK is equal to the arc EF : but EF is equal to BC ;
therefore

also BK is equal to BC, the less to the greater, which is impossible. There-

fore the angle BGC is not unequal to the angle EHF ; that is, it is equal

to it : and the angle at A is half the angle BGC, and the angle at D half

of the angle EHF ; therefore the angle at A is equal to the angle at D.

PROP. XXVHL THEOR.

In equal circles, equal straight lines cut off equal arcs, the greater equal to

the greater, and the less to the less.

Let ABC, DEF be equal circles, and BC, EF equal straight lines in

them, which cut off the two greater arcs BAC EDF, and the two less
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BGC, EHF : the greater BAG is equal to the greater EDF, and the lest

BGC to the less EHF.
Take (1. 3.) K, L, the centres of the circles, and join BK, KG, EL,

LF ; and because the circles are equal, the straight lines from their centres

*re equal ; therefore BK, KG are equal to EL, LF ; but the base BG is

also equal to the base EF ; therefore the angle 13KG is equal (8. 1.) to the

angle ELF : and equal angles stand upon equal (26. 3.) arcs, when they

are at the centres ; therefore the arc BGC is equal to the arc EHF.
But the whole circle ABG is equal to the whole EDF ; the remaining part,

therefore, of the circumference viz. BAG, is equal to the remaining pari

EDF.

PROP. XXIX. THEOR.

In equal circles equal arcs are subtended by equal straight lines.

Let ABG, DEF be equal circles, and let the arcs BGG, EHF also be
equal ; and join BG, EF ; the straight line BG is equal to the straight line

EF.
Take (1. 3.) K, L the centres of the circles, and join BK, KG, EL, LF :

and because the arc BGG is equal to the arc EHF, the angle BKG is

equal (27. 3.) to the angle ELF : also because the circles ABG, DEF are

eoual their radii are equal : therefore BK, KG are equal to EL, LF : and

C E

they contain equal angles ; therefore the base BG is equal (4. 1 .) to tht

bas^ EF
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^ - PROP. XXX. THEOR.

To bisect a given arc, that is, to divide it into two equalparts.

Let ADB be the given arc ; it is required to bisect it.

Join AB, and bisect (10. 1.) it in C ; from the point C draw CD at right

angles to AB, and join AD, DB : the arc ADB is bisected in the point l3.

Because AC is equal to CB, and CD common to the triangle ACD,
BCD, the two sides AC, CD are equal to the J)
two BC, CD ; and the angle ACD is equal to

the angle BCD, because each of them is a

right angle : therefore the base AD is equal

(4. 1.) to the base BD. But equal straight

lines cut off equal arcs, (28. 3.) the greater j^ C B
equal to the greater, and the less to the less ; and AD, DB are each of

them less than a semicircle, because DC passes through the centre (Cor.

1. 3.) ; wherefore the arc AD is equal to the arc DB : and therefore the

given arc ADB is bisected in D.
'

SCHOLIUM.

By the same construction, each of the halves AD, DB may be divided

into two equal parts ; and thus, by successive subdivisions, a given arc

may be divided into four, eight, sixteen, &c. equal parts.

PROP. XXXL THEOR.

[n a circle, the angle in a semicircle is a right angle ; but the angle tn a seg-

ment greater than a semicircle is less than a right angle ; and the angle in

a segment less than a semicircle is greater than a right angle.

Let ABCD be a circle, of which the diameter is BC, and centre E
;

draw CA dividing the circle into the segments ABC, ADC, and join BA,
AD, DC ; the angle in the semicircle BAC is a right angle ; and the an-

gle in the segment ABC, which is greater than a semicircle, is less than a

right angle ; and the angle in the segment ADC, which is less than a semi-

circle, is greater than a right angle.

Join AE, and produce BA to F ; and because BE is equal to EA, the

angle EAB is equal (5. 1.) to EBA : also

because AE is equal to EC, tlie angle EAC
is equal to ECA ; wherefore the whole an-

gle BAC is equal to the two angles ABC,
ACB. But FAC, the exterior angle of the

triangle ABC, is also equal (32. 1.) to the

two angles ABC, ACB ; therefore the an-

gle BAC is equal to the angle FAC, and
each of them is therefore a right angle (7.

def. 1
.) ; wherefore the angle BAC in a semi-

circle is a right angle.
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And because the two angles ABC, BAG of the triangle ABC are to-

gether less (17. 1.) than two right angles, and BAG is a right angle, ABC
must be less than a right angle ; and therefore the angle in a segment

ABC, greater than a semicircle, is less than a right angle.

Also because ABCD is a quadrilateral figure in a circle, any two of iw

opposite angles are equal (22. 3.) to two right angles ; therefore the angle»

ABC, ADC are equal to two right angles ; and ABC is less than a right

angle ; wherefore the other ADC is greater than a right angle.

Cor. From this it is manifest, that if one angle of a triangle be equal to

the other two, it is a right angle, because the angle adjacent to it is equal

to the same two ; and when the adjacent angles are equal, they are right

angles.

PROP. XXXII. THEOR.

tj a straight line touch a circle, and from the point of contact a straight

line he drawn cutting the circle, the angles made hy this line with the line

which touches the circle, shall be equal to the angles in the alternate seg-

ments of the circle.

Let the straight line EF touch the circle ABCD in B, and from the

point B let the straight line BD be drawn cutting the circle : the angles

which BD makes with the touching line EF shall be equal to the angles

in the alternate segments of the circle : that is, the angle FBD is equal to

the angle which is in the segment DAB, and the angle DBE to the angle

in the segment BCD.
From the point B draw (11. 1.) BA at right angles to EF, and take any

point C in the arc BD, and join AD, DC, CB ; and because the st/aight

line EF touches the circle ABCD in the point B, and BA is drawn at right

angles to the touching line, from the point of contact B, the centre of the

circle is (19. 3.) in BA ; therefore the an-

gle ADB in a semicircle, is a right an-

gle (31. 3.), and consquently the other two
angles, BAD, ABD, are equal (32, 1.) to

a right angle ; but ABF is likewise a right

angle ; therefore the angle ABF is equal
to the angles BAD, ABD: take from
these equals the common angle ABD,
and there will remain the angle DBF
equal to the angle BAD, which is in the
alternate segment of the circle. And be-
cause ABCD is a quadrilateral figure in

a circle, the opposite angles BAD, BCD are equal (22. 3.) to two righi

angles ; therefore the angles DBF, DBE, being hkewise equal (13 1.) t«

two right angles, are equal to the angles BAD, BCD ; and DBF has been
proved equal to BAD : therefore the remaining angle DBE is equal to the
angle BCD in the alternate segment of the circle.

11
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PROP. XXXIII. PROB.

Upon a given straight tine to describe a segment of a circle, containing em

angle equal to a given rectilineal angle.

Let AB be the given straight line, and the angle at C the given recti-

lineal angle ; it is required to describe upon the given straight line AB a

segment of a circle, containing an angle equal to the angle C.

First, let the angle at C be a right angle ; bisect (10. 1.) AB in F„and

from the centre F, at the distance FB,
describe the semicircle AHB ; the an-

gle AHB being in a semicircle is (31.

3.) equal to the right angle at C.

But if the angle C be not a right an-

gle at the point A, in the straight line

AB, make (23. 1.) the angle BAD equal

to the angle C, and from the point A draw (11. 1.) AE at right angles to

AD ; bisect (10. 1.) AB in F, and

from F draw (11. 1.) FG at right

angles to AB, and join GB : then

because AF is equal to FB, and

FG common to the triangles AFG,
BFG, the two sides AF, FG are

equal to the two BF, FG ; but the

angle AFG is also equal to the

angle BFG ; therefore the base AG
is equal (4.1.) to the base GB ; and

the circle described from the centre

G, at the distance GA, shall pass

through the point B ; let this be the circle AHB : and because from the

point A the extremity of the diameter AE, AD is drawn at right angles to

AE, therefore AD (Cor. 1,16. 3.) touches

the circle ; and because AB, drawn from
the point of contact A, cuts the circle,

the angle DAB is equal to the angle in

the alternate segment AHB (32. 3.) ;

t)ut the angle DAB is equal to the angle

C, therefore also the angle C is equal to

the angle in the segment AHB : Where-
fore, upon the given straight line AB
the segment AHB of a circle is describ-

ed which contains an angle equal to the given angle at C
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PROP. XXXIV. PROB.

To cut off a segmentfrom a given circle which shall contain an angle equal

to a given rectilineal angle.

Let ABC be the given circle, and D the given rectilineal angle ; it is

required to cut ofT a segment from the circle ABC that shall contain an

angle equal to the angle D.

Draw (17. 3.) the straight line EF touching the circle ABC in the point

B and at the point B, in the straight

line BF make (23. 1.) the angle FBC
equal to the angle D ; therefore, be-

cause the straight line EF touches

the circle ABC, and BC is drawn
from the point of contact B, the an-

gle FBC is equal (32. 3.) to the an-

gle in the alternate segment BAC ;

but the angle FBC is equal to the an-

gle D : therefore the angle in the

segment BAC is equal to the angle

D : wherefore the segment BAC is cut off from the given circle ABC
containing an angle equal to the given angle D.

PROP. XXXV. THEOR.

If two straight lines within a circle cut one another, the rectangle contained

by the segments of one of them is equal to the rectangle contained by the

segments of the other.

Let the two straight lines AC, BD, within the circle ABCD, cut one

another in the point E ; the rectangle contained by AE, EC is equal tc

the rectangle contained by BE, ED.
If AC, BD pass each of them through the cen-

tre, so that E is the centre, it is evident that AE,
EC, BE, ED, being all equal, the rectangle AE.
EC is likewise equal to the rectangle BE. ED.

But let one of them BD pass through the cen- Bl
tre, and cut the other AC, which does not pass

through the centre, at right angles in the point E
;

then, if BD be bisected in F, F is the centre of

the circle ABCD
;
join AF : and because BD, which passes through the

centre, cuts the straight line AC, which does not

pass through the centre at right angles, in E, AE,
EC are equal (3. 3.) to one another ; and because
the straight line BD is cut into two equal parts

in the point F, and into two unequal in the point

E, BE. ED (5. 2.) 4- EF2 = FB-^ = AF^. But
AF2 = AE2 + (t7. 1.) EF2, therefore BE.ED +
EF', = AE2 -f EF2, and taking EF» from each,
BE.ED=AE2= AE.EC.

Next, let BD, which passes through the centre,

cut the other AC, which does not pass through
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vhe ceiure, in E, but not at right angles ; then, as before, if BD be bisect'

ed in F, F is the centre of the circle. Join AF,
and from F draw (12. 1.) FG perpendicular to

AC ; therefore AG is equal (3. 3.) to GC ; where-

fore AE.EC + (5. 2.) EG2 = AG2, and adding

GF2 to both, AE.EC+EG2+GF2=AG2+GF2.
Now EG2+GF2= EF2, and AG2+GF2= AF2

;

therefore AE.EC+ EF2=AF2=:FB2. But FB2
=BE.ED+ (5 2.) EF2, therefore AE.EC+ EFa
=BE.ED+ EF2, and taking EF2 from both, AE.
EC= BE.ED.

Lastly, let neither of the straight lines AC,
BD pass through the centre : take the centre F,

and through E, the intersection of the straight

lines AC, DB, draw the diameter GEFH : and
because, as has been shown, AE.EC=:GE.EH,
and BE.ED=GE.EH; therefore AE.EC= BE.
ED.

B G

PROP. XXXVL THEOR.

Iffrom any point without a circle two straight lines be drawn, one of which

cuts the circle, and the other touches it ; the rectangle contained by the whole

line which cuts the circle, and the part of it without the circle, is equal to the

square of the line which touches it.

Let D be any point without the circle ABC, and DCA, DB two straight

lines drawn from it, of which DCA cuts the circle, and DB touches it
•

the rectangle AD.DC is equal to the square of DB.
Either DCA passes through the centre, or it

does not ; first, let it pass through the centre E,
and join EB ; therefore the angle EBD is a

right angle (J 8. 3.) : and because the straight

line AC is bisected in E, and produced to the

point D, AD.DC+ EC2=ED2 (6. 2.). But
EC = EB, therefore AD.DC -f EB2 = ED2.
Now ED2= (47. 1.) EB2-f- BD2, because EBD
is a right angle ; therefore AD.DC + EB2 =
EB2 4- BD2, and taking EB^ from each, AD.DC
=BD2.

But, if DCA does not pass through the cen-

tre of the circle ABC, take (1. 3.) the centre E,
and drawEF perpendicular (12. l.)to AC, and
»oin EB, EC, ED ; and because the straight

ine £F, which passes through the centre, cuts
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llxe straight line AC, which does not pass

through the centre, at right angles, it likewise

bisects it (J. 3.) ; therefore AF is equal to FC ;

and because the straight line AC is bisected in

F, and produced to D (6. 2.), AD.DC+ FC^s
FD2; add Ffi2 to both, then AD.DC+ FC2+
FE2--=FD2+rE2. But (47. 1.) EC2= FC2+
FE2, and ED^-FDa+FE', because DFE is

a right angle; therefore AD.DC+ EC2=:ED2.
Now, because E3D is a right angle, ED^=:
EB2+BD2=EC2-t-BD2, and therefore, AD.
DC+ EC2=EC2+BD2, and AD.DC= BD2.

CoR. 1. If from any point without a circle,

there be drawn two straight lines cutting it, as

AB, AC, the rectangles contained by the whole

lines and the parts of them without the circle,

are equal to one another, viz. BA.AE=:CA.
AF ; for each of these rectangles is equal to

the square of the straight line AD, which touch-

es the circle.

CoR. 2. It follows, moreover, that two tan-

gents drawnfrom the same point are equal.

Cor. 3. And since a radius drawn to the

point of contact is perpendicular to the tangent,

it follows that the angle included by two tangents,

drawn from the same point, is bisected by a line

drawn from the centre of the circle to that point

;

for this line forms the hypotenuse common to

two equal right angled triangles.

PROP. XXXVII. THEOR.

Iffrom a point without a circle there be dravm two straight lines, one of
tohich cuts the circle, and the other meets it ; if the rectangle contained by

the whole line, which cuts the circle, and the part of it without the circle,

be equal to the square of the line which meets it, the line which meets shall

touch the circle.

Let any point D be taken without the circle ABC. and from it let two
straight lines DCA and DB be drawn, of which DCA :uts the circle, and

DB meets it ; if the rectangle AD.DC, be equal to the square of DB, DB
touches the circle.

Draw (17. 3.) the straight line DE touching the circle ABC ; find the

centre F, and join FE, FB, FD ; then FED is a right angle (18. 3.) : and
because DE touches the circle ABC, and DCA cuts it, the rectangle AD
DC is equal (36. 3.) to the square of DE ; but the rectangle AD.DC is

by hypothesis, equal to he square of DB : therefore the square of DE la
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rifjual \o tiie square of DB ; and the straight line

DE ei[ual to the straight Hue DB : but FE is

equal to FB, wherefore DE.EF are equal to DB,
BF ; an 3 the base FD is common to the two trian-

gles DEF, DBF; therefore the angle DEF is

equal (8. 1.) to the angle DBF; and DEF is a

right angle, therefore also DBF is a right angle :

but FB, if produced, is a diameter, and the straight

line which is drawn at right angles to a diame-

ter, from the extremity of it, touches (16. 3.) the

circle : therefore DB touches the circle ABC.

ADDITIONAL PROPOSITIONS.

PROP. A. THEOR.

A diameter divides a circle and its circumference into two equalparts ; and, cun

versely, the line which divides the circle into two equal parts is a diameter

Let AB be a diameter of the circle

AEBD, then AEB, ADB are equal in

surface and boundary.

Now, if the figure AEB be applied to

the figure ADB, their common base AB
retaining its position, the curve line AEB
must fall on the curve line ADB ; other-

wise there would, in the one or the other,

be points unequally distant from the cen-

tre, which is contrary to the definition of

a circle.

Conversely. The line dividing the circle into two equal parts is a diameter

For, let AB divide the circle into two equal parts ; then, if the centre is

not in AB, let AF be dra^yn through it, which is therefore a diameter, and
consequently divides the circle into two equal parts ; hence the portion

AEF is equal to the portion AEFB, which is absurd.

CoR. The arc of a circle whose chord is a diameter, is a semicircum-

ference, and the included segment is a semicircle.

PROP. B. THEOR.

Through three given points which are not in the same straight line, one cir-

cumference of a circle may he made to pass, and but one.

Let A, B, C, be three points not in the same straight line : they shall

all lie in the same circumference of a circle.
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For, let the distances AB, BC be bisected by the perpendiculars I)K

EF, which must meet in some point F ; for if they were parallel, the lint^

DB, CB, perpendicular to them would also be parallel (Cor. 2. 29. 1.), o

else iorm but one straight line : but thev meet in B, and ABC is not a

straight line by hypothesis.

Let then, FA, FB, and FC be drawn ; then,

because FA, FB meet AB at equal distances

from the perpendicular, they are equal. For

similar reasons FB, FC, are equal ; hence
the points A, B, C, are all equally distant

from the point F, and consequently lie in the

circumference of the circle, whose centre is

F, and radius FA.
It is obvious, that besides this, no other

circumference can pass through the same
points ; for the centre, lying in the perpen-

dicular DF bisecting the chord AB, and at the same time in the perpen-
diculasr EF bisecting the chord BC (Cor. 1. 3. 3.), must be at the intersec-

tion of these perpendiculars ; so that, as there is but one centre, there can
be but one circumference.

PROP. C. THEOR.

If two circles cut each other, the line which passes through their centres will ht

perpendicular to the chord which joins the points of intersection, and will

divide it into two equal parts.

Let CD be the line which passes through the centres of two circles cut-

ting each other, it will be perpendicular to the chord AB, and will divide it

into two equal parts.

For the line AB, which joins the points of intersection, is a chord com-

mon to the two circles. And if a perpendicular be erected from the middle

of this chord, it will pass (Cor. 1. 3. 3.) through each of the two centres C
and D. But no more than one straight line can be drawn through two
points ; hence, the straight line which passes through the centres will bi-

sect the chord at right angles.

Cor. Hence, the line joining the intersections of the circumferences of
two circles, will be perpendicular to the line which joins their centres

SCHOLIUM.
1. If two circles cut each other, the distance between their centres will

be less than the sum of their radii, and the greater radius will be also less



88 ELEMENTS

tha.1 tLe sum of the smaller and the distance between the centres. For,

CD is less (20. 1.) than CA+AD, and for the same reason, AD^AC+
CD

2. And. conversely, if the distance between the centres of two circles

be less than the sum of their radii, the greater radius being at the same time

less than the sum of the smaller and the distance between the centres,

the two circles will cut each other.

For, to make an intersection possible, the triangle CAD must be possi-

ble. Hence, not only must we have CD<[AC4-AD, but also the greater

radius AD<[AC4-CD ; And whenever the triangle CAD can be con-

structed, it is plain that the circles described from the centres C and D,
will cut each other in A and B.

Cor. 1. Hence, if the distance between the centres of two circles be

greater than the sum of their radii, the two circles will not intersect eacl

other.

Cor. 2. Hence, also, if the distance between the centres be less thar

the difference of the radii, the two circles will not cut each other.

For, AC-fCD>AD; therefore, CD>AD—AC ; that is, any side oi

a triangle exceeds the difference between the other two. Hence, the tn

angle is impossible when the distance between the centres is less than the

difference of the radii ; and consequently the two circles cannot cut eaca

other.

PROP. D. THEOR.

In the same circle, equal angles at the centre are subtended by equal arcs ,

and, conversely, equal arcs subtend equal angles at the centre.

Let C be the centre of a circle, and let the angle ACD be equal to the

angle BCD ; then the arcs AFD, DGB, subtending these angles, are

equal.

Join AD, DB ; then the triangles ACD,
BCD, having two sides and the included an-

gle in the one, equal to two sides and the

included angle in the other, are equal : so

that, if ACD be applied to BCD, there shall

be an entire coincidence, the point A coin-

ciding with B, and D common to both arcs

;

the two extremities, therefore, of the arc

AFD, thus coinciding with those of the arc

BGD, all the intermediate parts must coin-

cide, inasmuch as they are all equally dis-

tant from the centre.

Conversely. Let the arc AFD be equal to the arc BGD ; then the a -

gle ACD is equal to the angle BCD.
For, if the arc AFD be applied to the arc BGD, they would comcide

;

so that the extremities AD of the chord AD, would coincide with those of

the chord BD ; these chords are therefore equal : hence, the angle ACD
's equal to the angle BCD (8. 1.).

Cor. 1. It follows, moreover, that equal angles at the centre are suL



OF GEOMETRY. BOOK III 89

.ended by equal chords : and, conversely, equal chords subtend equal an-

gles at the centre.

Cor. 2. It is also evident, that equal chords subtend equal arcs .
and,

conversely, equal arcs are subtended by equal chords.

CoR. 3. If the angle at the centre of a circle be bisected, both the ar

and the chord which it subtends shall also be bisected.

Cor. 4. It follows, likewise, that a perpendicular through the middle

cf the chord, bisects the angle at the centre, and passes through the middle

of the arc subtended by that chord.

SCHOLIUM.

The centre C, the middle point E of the chord AB, and the middle pomt

D of the arc subtended by this chord, are three points situated in the same

line perpendicular to the chord. But two points are sufficient to determine

the position of a straight line ; hence every straight line which passes

through two of the points just mentioned, will necessarily pass through the

third, and be perpendicular to the chord.

PROP. E. THEOR.

The arcs of a circle intercepted by two parallels are equal ; and, conversely, if

two straight lines intercept equal arcs of a circle, and do not cut each other

within the circle, the lines will be parallel.

There may be three cases :

First. If the parallels are tangents

10 the circle, as AB, CD ; then, each

of the arcs intercepted is a semi-cir-

cumference, as their points of contact

(Cor. 3. 16. 3.) coincide with the ex-

tremities of the diameter.

Second. When, of the two parallels

AB, GH, one is a tangent, the other

a chord, which being perpendicular to

FE, the arc GEH is bisected by FE
(Cor. 4. Prop. D. Book 3.) ; so that in

this case also, the intercepted arcs

GE, EH are equal.

Third. If the two parallels are chords, as GH, JK ; let the diameter

FE be perpendicular to the chord GH, it will also be perpendicular to JK,

since they are parallel ; therefore, this diameter must bisect each of the

arcs whxh they subtend : that is, GE=:EH, and JE=EK ; therefore,

JE—GE=EK—EH; or, which amounts to the same thing, JG is equal

toHK.
Conversely. If the two lines be AB, CD, which touch the circumfer-

ence, and if, at the same time, the intercepted arcs EJF, EKF are equal,

RF must be a diameter (Prop. A. Book 3.) ; and therefore AB, CD (Cor.

'

3. 16. 3.), are parallel.

But if only one of the lines, as AB, touch, while the other, GH, cuts the

circumference, making the arcs EG, EH equal ; then the diameter FE
13
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whii:h bistcts tlie arc GEH, is perpendicular (Schol. D. 3.) to its chord
GH : it is also perpendicular to the tangent AB ; therefore AB, GH are

parallel.

If both lilies cut the circle, as GH, JK, and intercept equal arcs GJ,
HK ; let the diameter FE bisect one of the chords, as GH : it will also

bisect the arc GEH, so that EG is equal to EH ; and since GJ is {by hyp.)

equal to HK, the whole arc EJ is equal t/) the whole arc EK ; therefore

the chord JK is bisected by the diameter FE : hence, as both chords are

bisected by the diameter FE, they are perpendicular to it ; that is, they are

parallel (Cor. 28 1.).

SCHOLIUM.

The restriction in the enunciation of the converse proposition, namely,
that the lines do not cut each other within the circle, is necessary ; for

lines drawn through the points G, K, and J, H, will intercept equal arcs

GJ, HK, and yet not be parallel, since they will intersect each other within

the circle.

PROP. F. PROB.

To draw a tangent to any point in a circular arc, without finding the centra

From B the given point, take two equal

distances BC, CD on the arc
;
join BD,

and draw the chords BC, CD : make (23.

1.) the angle CBG=CBD, and the straight

line BG will be the tangent required.

For the angle CBDr=CDB ; and there-

fore the angle GBC (32. 3.) is also equa^

to CDB, an angle in .he alternate segment

;

heace, BG is a tangent at B.
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or

GEOMETRY.

BOOK IV.

DEFINITIONS.

1 A RECTILINEAL figiire is said to be inscribed in another rectiline^.

figure, when all the angles of the inscribed

figure are upon the sides of the figure in which
it is inscribed, each upon each.

2 In like manner, a figure is said to be described

about another figure, when all the sides of the

circumscribed figure pass through the angular

points of the figure about which it is described,

each through each.

3 A rectilineal figure is said to be inscribed in

a circle, when all the angles of the inscribed

figure are upon the circumference of the cir-

cle.

4. A rectilineal figure is said to be described

about a circle, when each side of the circum-

scribed figure touches the circumference of the

circle.

5. In like manner, a circle is said to be inscrib-

ed in a rectilineal figure, when the circum-

ference of the circle touches each side of the

figure.

6. A circle is said to be described about a recti-

lineal figure, when the circumference of the

circle passes through all the angular points of

the figure about which it is described.

7. A straight line is said to be placed in a circle,

when the extremities of it are in the circum-

ference of the circle.
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8. Pt^lygons of five sides are called pentagons ; those of six sides, hexa-

gons ; those of seven sides, heptagons ; those of eight sides, octagons

:

and so on.

9 A polygon, which is at once equilateral and equiangular, is called a

regular polygon.

Regular polygons may have any number of sides ; the equilateral tri

angle is one of hreo sides ; and the square is one of four sides.

LEMMA.

Any regular polygon may he inscribed in a circle, and circumscribed about one.

Let ABODE, &c. be a regular polygon : describe a circle through the

thiee points A, B, C, the centre being O, and OP the perpendicular let fall

from it, to the middle point of BO : join AO and OD.
If the quadrilateral OPOD be placed upon

the quadrilateral OPBA, they will coincide

;

for the side OP is common : the angle OPO^
OPB, being right ; hence the side PO wi.i ap-

ply to its equal PB, and the point will fall

on B ; besides, from the nature of the polygon,

the angle POD=PBA; hence OD will take

the direction BA, and since OD=BA,the point

D will fall on A, and the two quadrilaterals

will entirely coincide. ^_^ _
The distance OD is therefore equal to AO

;
r

and consequently the circle which passes through the three points A, B, 0,
will also pass through the point D. By the same mode of reasoning, it

might be shown that the circle which passes through the points B, 0, D,
will also pass through the point E ; and so of all the rest : hence the cir-

cle which passes through the points A, B, 0, passes through the vertices

of all the angles in the polygon, which is therefore inscribed in this circle.

Again, in reference to this circle, all the sides AB, BO, OD, &c. are

equal chords ; they are t* ^refore equally distant from the centre (Th. 14.

3.) : hence, if from the point O with the distance OP, a circle be describ-

ed, it will touch the side BO, and all the other sides of the polygon, each

in its middle point, and the circle will be inscribed in the polygon, or the

polygon circumscribed about the circle.

CoR. 1. Hence it is evident that a circle may be inscribed m, or cir-

cumscribed about, any regular polygon, and the circles so described have a
common centre.

OoR. 2. Hence it likewise follows, that iffrom a common centre, circles

can be inscribed in, and circumscribed about a polygon, that polygon is regu-

lar. For, supposing those circles to be described, the inner one will touch

all the sides of the polygon ; these sides are therefore equally distant from

its centre ; and, consequently, being chords of the circumscribed circle,

they are equal, ami therefore include equal angles. Hence the polygon ig

at once equilateral and equiangular ; that is (Def. 9. B. IV.), it is regular
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SCHOLIUMS.

1. The point O, the common centre of the inscribed and circnmsci ibeil

circles, may also be regarded as the centre of the polygon ; and upon this

principle the angle AOB is called the angle at the centre, being formed by
two radii drawn to the extremities of the same side AB.

Since all the chords are equal, all the angles at the centre must evident*

ly be equal likewise ; and therefore the value of each will be found by di-

viding four right angles by the number of the polygon's sides.

2. To inscribe a regular polygon of a certain number of sides in a given

circle, we have only to divide the circumference into as many equal parts

as the polygon has sides : for the arcs being equal (see fig. Prop. XV. B. 4.),

the chords AB, BC, CD, &c. will also be equal ; hence, likewise, the tri-

angles ABG, BGC, CGD, &c. must be equal, because they are equian-

gular ; hence all the angles ABC, BCD, CDE, &c. will be equal, and con-

sequently the figure ABCD, &c. will be a regular polygon.

PROP. I. PROB.

In a given circle to place a straight line equal to a given straight line, not

greater than the diameter of the circle.

Let ABC be the given circle, and D the given straight line, not greater

than the diameter of the circle.

Draw BC the diameter of the circle

ABC ; then, if BC is equal to D, the

thing required is done ; for in the circle

ABC a straight line BC is placed equal
to D ; But, if it is not, BC is greater

than D ; make CE equal (Prop. 3. 1.)

to D, and from the centre C, at the dis-

tance CE, describe the circle AEF, and
join CA : Therefore, because C is the

centre of the circle AEF, CA is equal
to (;F ; but D is equal to CE ; there-

fore D is equal to CA : Wherefore, in the circle ABC, a straight line in

placed, equal to the given straight line D, which is not greater than the
diameter of the circle.

PROP. II. PROB.

In a given circle to inscribe a triangle equiangular to a given triangle.

Let ABC bo the given circle, and DEF the given triangle ; i/ :a re-
quired to inscribe in the circle ABC a triangle equiangular to the triangle

Draw (Prop. 1 7. 3.) the straight line GAH touching the circle in the ooini
A, and at the point A, in the straight line AH, make (Prop. 23. l.)the an-
gle HAC equal to the angle DEF ; and at the point A, in the straight line
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AG, make the angle GAB equal

to the angle DFE, and join

BC. Therefore, because HAG
touches the circle ABC, and AC
is drawn from the point of con-

tact, the angle HAC is equal

(32. 3.) to the angle ABC in the

alternate segment of the circle :

But HAC is equal to the angle

DEF ; therefore also the angle

ABC is equal to DEF ; for the

same reason, the angle ACB is

equal to the angle DFE ; therefore the remaining angle BAG is equal

(4. Cor. 32. 1.) to the remaining angle EDF : Wherefore the triangle ABC
is equiangular to the triangle DEF, and it is inscribed in the circle ABC

PROP. HI. PROB.

About a given circle to describe a triangle equiangular to a given triangle.

Let ABC be the given circle and DEF the given triangle ; it is requir-

ed to describe a triangle about the circle ABC equiangular to the triangle

DEF.
Produce EF both ways to the points G, H, and find the centre K of the

circle ABC, and from it draw any straight line KB ; at the point K in the

straight line KB, make (Prop. 23 1.) the angle BKA equal to the angle

DEG, and the angle BKC equal to the angle DFH ; and through the

points A, B, C, draw the straight lines LAM, MBN, NCL touching (Prop.

17. 3.) the circle ABC : Therefore, because LM, MN, NL touch the circle

ABC in the points A, B, C, to which from the centre are drawn KA, KB,
KC, the angles at the points A, B, C, are right (18. 3.) angles. And be-

cause the four angles of the quadrilateral figure AMBK are equal to four

right angles, for it can be divided into two triangles ; and because two of

them, KAM, KBM, are right angles, the other two AKB, AMB are equal

to iwo right angles : But the angles DEG, DEF are likewise equal (13.1.)

to two right angles ; therefore the angles AKB, AMB are equal to the an

gles DEG, DEF, of which AKB is equal to DEG ; wherefore the remain*-
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ing angle AMB is equal to the remaining angle DEF. In like manner,

the angle LNM may be demonstrated to be equal to DFE ; and therefore

the remaining angle MLN is equal (32. 1.) to the remaining angle EDF :

Wherefore the triangle LMN is equiangular to the triangle DEF : and it

is described about the circle ABC.

PROP. IV. PROB.

To inscribe a circle in a given triangle.

Let the given triangle be ABC ; it is required to inscribe a circle in

ABC.
Bisect (9. 1.) the angles ABC, BCA by the straight lines BD, CD meet-

ing one another in the point D, from which draw (12. 1.) DE, DF, DG
perpendiculars to AB, BC, CA. Then be-

cause the angle EBD is equal to the angle

FBD, the angle ABC being bisected by

BD ; and because the right angle BED, is

equal to the right angle BFD, the two tri-

angles EBD, FBD have two angles of the

one equal to two angles of the other ; and

the side BD, which is opposite to one of

the equal angles in each, is common to

both ; therefore their other sides are equal

(26. 1.); wherefore DE is equal to DF.
For the same reason, DG is equal to

DF , therefore the three straight lines DE, DF, DG, are equal to one

another, and the circle described from the centre D, at the distance of any

of them, will pass through the extremities of the other two, and will toucl

the straight lines AB, BC, CA, because the angles at the points E, F, G
are right angles, and the straight line which is drawn from the extremity

of a diameter at right angles to it, touches (1 Cor. 16. 3.) the circle. There-
fore the straight lines AB, BC, CA, do each of them touch the circle, and

the circle EFG is inscribed in the triangle ABC.

PROP. V. PROB.

To describe a circle about a given triangle.

Let the given triangle be ABC ; it is required to describe a circle aboui

ABC.
Bisect no. 1.) AB, AC in the points D, E, and from these points draw
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DF, EF at right angles (11. 1.) to AB, AC ; DF, EF produced will meet
one another ; for, if they do not meet, they are parallel, wherefore, AB,
AC, which are at right angles to them, are parallel, which is absurd : lei

them meet in F, and join FA ; also, if the point F be not in BC, join BF,
CF : then, because AD is equal to BD, and DF common, and at right an
gles to AB, the base AF is equal (4. 1 .) to the base FB. In like manner,
it may be shewn that CF is equal to FA ; and therefore BF is equal to

FC ; and FA, FB, FC are equal to one another ; wherefore the circle de-

scribed from the centre F, at the distance of one of them, will pass
through the extremities of the other two, and be described about the trian-

gle ABC.

Cor. When the centre of the circle falls within the triangle, each of

its angles is less than a right angle, each ofthem being in a segment great-

er than a semicircle ; but when the centre is in one of the sides of the

triangle, the angle opposite to this side, being in a semicircle, is a right an-

gle : and if the centre falls without the triangle, the angle opposite to the

side beyond which it is, being in a segment less than a semicircle, is greater

than a right angle. Wherefore, if the given triangle be acute angled, the

centre of the circle falls within it ; if it be a right angle triangle, the cen-

tre is in the side opposite to the right angle ; and if it be an obtuse angled

triangle, the centre falls without the triangle, beyond the side opposite to the

obtuse angle.

SCHOLIUM.

1. From the demonstration it is evident that the three perpendiculars

bisecting the sides of a triangle, meet in the same point ; that is, the centre

of the circumscribed circle.

2. A circular segment arch of a given span and rise, may be drawn by
a modification of the preceding problem.

Let AB be the span and SR the rise.

foin AR, BR, and at their respective points of bisection, M, N, erect

the perpendicular MO, NO to AR, BR ; they

will intersect at 0, the centre of the circle.

That 0x\=0R= 0B, is proved as before.

The joints between the arch-stones, or

voussoirs, are only continuations of radii

drawn from the centre O of the circle.

PROP. VI. PROB.

To inscribe a square in a given circle.

Let ABCD be the given circle ; it is required to inscribe a square in

ABCD.
Draw the diameters, AC, BD at right angles to one another, and join

AB, BC, CD, DA ; because BE is equal to ED, E being the centre, and
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because EA. is at right angles to BD, and

common to the triangles AliE, ADE ; the

base BA is equal (4. 1 .) to the base AD ; and,

for the same reason, BC, CD are each of

them equal to B A or AD ; therefore che quad-

rilateral figure ABCD is equilateral. It is

also rectangular ; for the straight line BD be-

ing a diameter of the circle ABCD, BAD is

a semicircle ; wherefore the angle BAD is a

right angle (31.3.); for the same reason each

of the angles ABC, BCD, CDA is a right an-

gle ; therefore the quadrilateral figure ABCD
is rectangular, and it has been shewn to be

equilateral ; therefore it is a square ; and it is inscribed in the circle

ABCD.

SCHOLIUM.

Since the triangle AED is right angled and isosceles, we have (Cor. 2.

47. 1) AD : AE : : -y/2 : 1 ; hence the side of the inscribed square is to

the radius, as the square root of 2, is to unity.

PROP. VII. PROB.

To describe a square about a given circle.

Let ABCD be the given circle ; it is required to describe a square about it.

Draw two diameters AC, BD of the circle ABCD, at right angles to

one another, and through the points A, B, C, D draw (17. 3.) FG, GH, HK,
KF touching the circle ; an'l because FG touches the circle ABCD, and
EA is drawn from the centre E to the point of contact A, the angles at A
are right angles (18. 3.) ; for the same reason, the angles at the points B,

C, D, are right angles; and because the angle AEB is a right angle, as

likewise is EBG, GH is parallel (28. 1.) to AC ; for the same reason, AC
is parallel to FK, and in like manner, GF,
HK may each of them be demonstrated to be

parallel to BED; therefore the figures GK,
GC, AK, FB, BK are parallelograms ; and
GF is therefore equal (34. 1 .) to HK, and GH
to FK ; and because AC is equal to BD,
and also to each of the two GH, FK ; and
BD to each of the two GF, HK : GH, FK
are each of them equal to GF or HK ; there-

fore the quadrilateral figure FGHK is equi-

lateral. It is also rectangular; for GBE.\
being a parallelogram, and AEB a right an-

gle, AGB (34. 1.) is likewise a right angle :

in the same manner, it may be shewn that the angles at H, K, F are right

angles; therefore the quadrilateral figure FGHK is rectangular; and it

«ras demonstrated to be equilateral ; therefore it is a square ; and it is do

•cribed about the circle ABCD.
13
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PROP. VIII. PROB.

To inscribe a circle in a given square.

Let ABCD be the given square ; it is required to inscribe a circle w
ABCD.

Bisect (10. 1.) each of the sides AB, AD, in the points F, E, and

through E draw (31. 1.) EH parallel to AB or DC, and through F draw
FK parallel to AD or BC ; therefore each of the figures, AK, KB, AH,
HD, AG, GC, BG, GD is a parallelogram, and their opposite sides are

equal (34. 1.) ; and because that AD is equal to AB, and that AE is the

half of AD, and AF the half of AB, AE k equal to AF ; wherefore the

sides opposite to these are equal, viz. FG to GE ; in the same manner it

may be demonstrated, that GH, GK, are each

of them equal to FG or GE ; therefore the

four straight lines, GE, GF, GH, GK, are

equal to one another ; and the circle described

from the centre G, at the distance of one of

them, will pass through the extremities of the

other three ; and will also touch the straight

lines AB, BC, CD, DA, because the angles

at the points E, F, H, K, are right angles

(29. 1.), and because the straight line whach
is drawn from the extremity of a diameter at

right angles to it, touches the circle (16. 3.)

;

therefore each of the straight lines AB, BC,
CD, DA touches the circle, which is therefore inscribed in the squares

ABCD.

PROP. IX. PROB.

To describe a circle about a given square.

Let ABCD be the given square ; it is required to describe a circle

about it.

Join AC, BD, cutting one another in E ; and because DA is equal to

AB, and AC common to the triangles DAC, BAC, the two sides DA, AC
are equal to the two BA, AC, and the base DC is equal to the base BC

;

wherefore the angle DAC is equal (8. 1.) to the

angle BAC, and the angle DAB is bisected by
the straight line AC. In the same manner it may
be demonstrated, that the angles ABC, BCD,
CDA are severally bisected by the straight lines

BD, AC ; therefore, because the angle DAB is

equal to the angle ABC, and the angle EAB is

the half of DAB, and EBA the half of ABC ; the

angle EAB is equal to the angle EBA : and the

side EA (6. 1.) to the side EB. In the same
manner, it may be demonstrated, that the straight

lines EC, ED are each of them equal to EA, or EB ; therefore the four

straight lines EA, EB, EC, ED, are equal lo one another; and the circle

described from the centre E, at the distance of one of them, must past
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through the extremities of the other three, and be described about the

square ABCD.

PROP. X. PROB.

To describe an isosceles triangle, having each of the angles at the base double

of the third angle.

Take any straight line AB, and divide (11. 2.) it in the point C, so

that the rectangle AB.BC may be equal to the square of AC ; and from

the centre A, at the distance AB, describe the circle BDE, in which

place (I. 4.) the straight line BD equal to AC, which is not greater

than the diameter of the circle BDE ;
join DA, DC, and about the tri-

angle ADC describe (5. 4.) the circle ACD ; the triangle ABD is such

as Is required, that is, each of the angles ABD, ADB is double of the an-

gle BAD.
Because the rectangle AB.BC is equal to the square of AC, and AC

equal to BD, the rectangle AB.BC is

equal to the square of BD ; and because

from the point B without the circle ACD
two straight lines BCA, BD are drawn

to the circumference, one of which cuts,

and the other meets the circle, and the

rectangle AB.BC contained by the whole

of the cutting line, and the part of it

without the circle, is equal to the square

of BD, which meets it ; the straight line

BD touches (37. 3.) the circle ACD.
And because BD touches the circle, and

DC is drawn from the point of contact

D, the angle BDC is equal (32. 3.) to

the angle DAC in the alternate segment

of the circle, to each of these add the angle CDA ; therefore the whole

angle BDA is equal to the two angles CDA, DAC ; but the exterior angle

BCD is equal (32. 1.) to the angles CDA, DAC ; therefore also BD.\ is

equal to BCD; but BDA is equal (5. 1.) to CBD, because the side AD
is equal to the side AB ; therefore CBD, or DBA is equal to BCD ; and

consequently the three angles BDA, DBA, BCD, are eq«al to one another.

And because the angle DBC is equal to the angle BCD, the side BD is

equal (6. 1.) to the side DC ; but BD was made equal to C.\ ; therefore

also CA is equal to CD, and the angle CDA equal (5. 1.) to the angle

D.\C ; therefore the angles CDA, DAC together, are double of the angle

DAC; but BCD is equal to the angles CDA, DAC (32. 1.) ; therefore

also BCD is double of DAC. But BCD is equal to each of the angles

BD.\, DB.A, and therefore each of the angles BDA, DBA, is double of

Uie angle DAB ; wherefore an isosceles triangle ABD is described, hav-

ing each of the angles at the base double of the third angle.
" CoR. 1. The angle B.\D is the fifth part of two right angles.

" For since each of the angles ABD and .ADB is e([ual to twice the an-

gle BAD, they are tognher equal to four times BAD, and therefore all

"'ne three angles ABD ADB, BAD, taken together, are equal to five
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" times the angle BAD. But the three angles ABD, ADB, BAD are
'* equjJ to two right angles therefore five times the angle BAD is equal to

" two right angles ; or BAD is the fifth part of two right angles."
" CoR. 2. Because BAD is the fifth part of two, or the tenth part of

•' four right angles, all the angles about the centre A are together equal to

" ten times the angle BAD, and may therefore be divided into ten parts
" each equal to BAD. And as these ten equal angles at the centre, must
"stand on ten equal arcs, therefore the arc BD is one-tenth of the cir-

" cumference ; and the straight line BD, that is, AC, is therefore equal to

" the side of an equilateral decagon inscribed in the circle BDE."

PROP. XI. PROB.

To inscribe an equilateral and equiangular pentagon in a given circle.

Let ABODE be the given circle, it is required to inscribe an equilateral

and equiangular pentagon in the circle ABODE.
Describe (10. 4.) an isosceles triangle FGH, having each of the angles

at G, H, double of the angle at F ; and in the circle ABODE inscribe (2.

4.) the triangle AOD equiangular to the triangle FGH, so that the angle

OAD be equal to the angle at F, and each of the angles AOD, ODA equal

to the angle at G or H : where-
fore each of the angles AOD,
CDA is double of the angle

CAD. Bisect (9. 1.) the angles

AOD, ODA by the straight lines

OE,DB; andjoinAB,BC,ED,
EA. x\BODE is the pentagon

required.

Because the angles AOD,
ODA are each of them double

of OAD, and are bisected by the

straight lines OE, DB,the five angles DAO, ACE, EOD, ODB, BDA are
equal to one another ; but equal angles stand upon equal arcs (26. 3.) ;

therefore the five arcs AB, BO, CD, DE, EA are equal to one another ; and
equal arcs are subtended by equal (29. 3.) straight lines ; therefore the
five straight lines AB, BO, CD, DE, EA are equal to one another. Where-
fore the pentagon ABODE is equilateral. It is also equiangular ; be-
cause the arc AB is equal to the arc DE ; if to each be added BOD, the

whole ABOD is equal to the whole EDOB ; and the angle A ED stands
on the arc ABOD, and the angle BAE on the arc EDOB : therefore the

angle BAE is equal (27. 3.) to the angle AED : for the same reason, each
of the angles ABO, BOD, ODE is equal to the angle BAE or AED : there-

fore the pentagon ABODE is equiangular; and it has been shewn that it

is equilateral. Wherefore, in the given circle, an equilateral and equian
gular pentagon has been inscribed.

Otherwise.

" Divide the radius of the given circle, so that the rectangle contained
•* by the whole and one of the parts may be equal to the square of the other
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"(11. 2.). Apply in the circle, on each side of a given po!nt, a line

'• equal to the greater of these parts ; then (2. Cor. 10. 4.), each of thu

" arcs cut off will be one-tenth of the circumference, and therefore the

" arc made up of both will be one-fifth of the circumference ; and if the

" straight line subtending this arc be drawn, it will be the side of au
" equilateral pentagon inscribed in the circle."

PROP. XII. PROB.

To describe an equilateral and equiangular pentagon about a given circle.

Let ABODE be the given circle, it is required to describe an equilateral

and equiangular pentagon about the circle ABODE.
Let the angles of a pentagon, inscribed in the circle, by the last pro-

position, be in the points A, B, C, D, E, so that the arcs AB, BC, CD,
DE, EA are equal (11. 4.) ; and through the points A, B, C, D, E, draw
GH, HK,.KL, LM, MG, touching (17. 3.) the circle ; take the centre F.

and join FB, FK, FC, FL, FD. And because the straight line KL touch-

es the circle ABCDE in the point C, to which FC is drawn from the cen-

tre F, FC is perpendicular (18. 3.) to KL ; therefore each of the angles

at C is aright angle ; for the same reason, the angles at the points B, D are

right angles ; and because FCK is a right angle, the square of FK is equal

(47. 1.) to the squares of FC, CK. For the same reason, the square of

FK is equal to the squares of FB, BK : therefore the squares of FC, CK
are equal to the squares of FB, BK, of which the square of FC is equal to

the square of FB ; the remaining square of CK is therefore equal to the

remaining square of BK, and the straight line CK equal to BK : and be-

cause FB is equal to FC, and FK common to the triangles BFK, CFK,
the two BF, FK are equal to the two CF, FK ; and the base BK is equal

to the base KC ; therefore the angle BFK is equal (8. 1.) to the angle

KFC, and the angle BKF to FKC ; wherefore the angle BFC is double

of the angle KFC, and BKC double of FKC : for the same reason, the an-

gle CFD is double of the angle CFL, and OLD double of CLF : and be-

cause the arc BC is equal to the arc CD, the angle BFC is equal (27. 3.)

to the angle CFD : and BFC is double of the angle KFC, and CFD
double of CFL ; therefore the angle

KFC is equal to the angle CFL :

now the right angle FCK is equal to

the right angle FCL ; and therefore,

in the two triangles FKC, FLO, there

are two angles of one equal to two an-

gles of the other, each to each, and the

side FC, which is adjacent to the

equal angles in each, is common to

both ; therefore the other sides are

equal (26. 1 .) to the other sides,and the

third angle to the third angle ; there-

fore the straight line KC is equal to

CL, and the angle FKC to the angle

FLO : and because KC is equal to CL, KL is double of KC : in the samf
wanner, it may b« ^hewn that HK is double of BK ; and because BK n
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equal to KC, as was demonstrated, and KL is do.ible of KC, and HK double
of BK, HK is equal to'KL ; in like manner, it may be shewn that GH, GM,
ML aie each of them equal to HK or KL: therefore the pentagon GHKLM
is equilateral. It is also equiangular ; for, since the angle FKC is equal to

the angle FLC, and the angle HKL double of the angle FKC, and KLM
double of FLC, as was before demonstrated, the angle HKL is equal to

KLM ; and in like manner it may be shewn, that each of the angles KHG,
HGM, GML is equal to the angle HKL or KLM ; therefore the five an-

gles GHK, HKL, KLM, LMG, MGH being equal to one another, the pen-
tagon GHKLM is equiangular ; and it is equilateral as was demonstra
ted : audit is described about the circle ABCDE.

PROP. XHL PROB.

To inscribe a circle in a given equilateral and equianguMr pentagon.

Let ABCDE be the given equilateral and equiangular pentagon ; it is

required to inscribe a circle in the pentagon ABCDE.
Bisect (9. 1.) the angles BCD, CDE by the straight lines CF, DF, and

from the point f\ in which they meet, draw the straight lines FB, FA.
FE ; therefore, since BC is equal to CD, and CF common to the trian-

gles BCF, DCF, the two sides BC, CF are equal to the two DC, CF
;

and the angle BCF is equal to 'the angle DCF : therefore the base BF is

equal (4. 1.) to the base FD, and the other angles to the other angles, to

which the equal sides are opposite ; therefore the angle CBF is equal, to

the angle CDF : and because the angle CDE is double of CDF, and CDE
equal to CBA, and CDF to CBF ; CBA is also double of the angle CBF
therefore the angle ABF is equal to the

angle CBF ; wherefore the angle ABC
is bisected by the straight line BF : in

the same manner, it may be demonstra-

ted that the angles BAE, AED, are bi-

sected by the straight lines AF, EF :

from the point F draw (12. 1.) FG,
FH, FK, FL, FM perpendiculars to

the straight lines AB, BC, CD, DE,
EA ; and because the angle HCF is

equal to KCF, and the right angle

FHC equal to the right angle FKC ; in

the triangles FHC, FKC there are two
angles of one equal to two angles of the other, and the side FC, which is

opposite to one of the equal angles in each, is common to both ; therefore,

the other sides shall be equal (26. 1.), each to each ; wherefore the per-

pendicular FH is equal to the perpendicular FK : in the same manner it

maybe demonstrated, that FL, FM, FG are each of them equal to FH, or

FK ; therefore the five straight lines FG, FH, FK, FL, FM are equal to

one another ; wherefore the circle described from the centre F, at the dis-

tance of one of these five, will pass through the extremities of the other

four, and touch the straight lines AB, BC, CD. DE, E A, because that the

angles at the points G, H, K, L, M are right angles, and that a straight line

diawn from ine extremity of the diameter of a circle at right angles \o i»
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wuches (1 . Cor. 16. 3.) the circle ; therefore each of the straight lines AB-

BC, CD, DE, EA touches the circle ; wherefore the circle is inscribed in

the pentagon ABODE.

PROP. XIV. PROB.

To describe a circle about a given equilateral and equiangular pentagon.

Let ABODE be the given equilateral and equiangular pentagon ;
it is

required to describe a circle about it.

Bisect (9. 1.) the angles BCD, ODE by the straight lines CF, FD, and

from the point F, in which they meet, draw

the straight lines FB, FA, FE to the points

B, A, E. It may be demonstrated, in the

same manner as in the preceding proposition,

that the angles CB A, BAE, AED are bisect-

ed by the straight lines FB, FA, FE : and

because that the angle BCD is equal to the

angle ODE, and that FCD is the half of the

angle BCD, and CDF the half of ODE ; the

angle FCD is equal to FDC ; wherefore the

side CF is equal (6. 1 .) to the side FD : iu

like manner it may be demonstrated, that FB,
FA, FE are each of them equal to FC, or FD : therefore the five straight

lines FA, FB, FC, FD, FE are equal to one another ; and the circle de-

scribed from tlie centre F, at the distance of one of them, will pass through

the extremities of the other four, and be described about the equilateral

and equiangular pentagon ABODE.

PROP. XV. PROB.

To inscribe an equilateral and equiangular hexagon in a given circle.

Let ABCDEF be the given circle ; it is required to inscribe an equi-

lateral and equiangular hexagon in it.

Find the centre G of the circle ABCDEF, and draw the diameter AGD :

and from D, as a centre, at the distance DG, describe the circle EGCH,
join EG, CG, and produce them to the points B, F ; and join AB, BC,
CD, DE, EF, FA : the hexagon ABCDEF is equilateral and equiangular.

Because G is the centre of the circle ABCDEF, GE is equal to GD :

and because D is the centre of the circle EGCH, DE is equal to DG

;

wherefore GE is equal to ED, and the triangle EGD is equilateral ; and
therefore its three angles EGD, GDE, DEG are equal to one another

(Cor. 5. 1.) ; and the three angles of a triangle are equal (32. 1.) to two
right angles; therefore the angle EGD is the third part of two right an-

gles : in the same manner it may be demonstrated that the angle DGC is

also the third part of two right angles ; and because the straight line GO
makes with EB the adjacent angles EGO, COB equal (13. 1.) to two
right angles ; the remaining angle CGB is tlie third part of two righi

angles ; therefore the angles EGD, DGC, CGB, are equal to one an

other; aad also the angles vertical to them, BGA, AGF, FGE (15
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I.}; therefore the six angles EGD, DGC,
CGB, BOA, AGFjFGE are equal to one an-

other. But equal angles at the centre stand

upon equal arcs (26. 3.) : therefore the six

arcs AB, BC, CD, DE, EF, FA are equal

to one another : and equal arcs are subtend-

ed by equal (29. 3.) straight lines ; there-

fore the six straight lines are equal to one
another, and the hexagon ABCDEF is

equilateral. It is also equiangular ; for,

since the arc AF is equal to ED, to each of

these add the arc ABCD ; therefore the

whole arc FABCD shall be equal to the

whole EDCBA : and the angle FED stands

upon the arc FABCD, and the angle AFE
upon EDCBA ; therefore the angle AFE
is equal to FED : in the same manner it may be demonstrated, that the

other angles of the hexagon ABCDEF are each of them equal to the

angle AFE or FED ; therefore the hexagon is equiangular ; it is also

equilateral, as was shown ; and it is inscribed in the given circle ABCDEF.
CoR. From this it is manifest, that the side of the hexagon is equal to

the straight line from the centre, that is, to the radius of the circle.

And if through the points A, B, C, D, E, F, there be drawn straight

lines touching the circle, an equilateral and equiangular hexagon shall be

described about it, which may be demonstrated from what has been said

of the pentagon ; and likewise a circle may be inscribed in a given equi-

lateral and equiangular hexagon, and circumscribed about it, by a method
like to that used for the pentagon.

PROP. XVI. PROB.

To inscribe an equilateral and equiangular quindecagon in a given

circle.

Let ABCD be the given circle ; it is required to inscribe an equilateral

and equiangular quindecagon in the circle ABCD.
Let AC be the side of an equilateral triangle inscribed (2. 4.) in the

circle, and AB the side of an equilateral

and equiangular pentagon inscribed (IL 4.)

in the same ; therefore, of such equal parts

as the whole circumference ABCDF con-

tains fifteen, the arc ABC, being the third

part of the whole, contains five ; and the

arc A B, which is the fifth part of the whole,

contains three ; therefore BC their diflTer-

ence contains two of the same parts : bi-

sect (30. 3.) BC in E ; therefore BE, EC
are, each of them, the fifteenth part of the

whole circumference ABCD : therefore, if

the straight lines BE, EC be drawn, and
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straight lines equal to them be placed (1. 4.) around in the whole circle^

an equilateral and equiangular quindecagon will be inscribed in it.

And in the same manner as was done in the pentagon, if through the

points of division made by inscribing the quindecagon, straight lines be

drawn touching the circle, an equilateral and equiangular quindecagon may
be described, about it : and likewise, as in the pentagon, a circle may bo

inscribed in a given equilateral and equiangular quindecagon, and cir-

cumscribed about it.

SCHOLIUM.

Any regular polygon being inscribed, if the arcs subtended by its sides

be severally bisected, the chords of those semi-arcs will form a new regu-

lar polygon of double the number of sides : thus, from having an inscribed

square, we may inscribe in succession polygons of 8, 16, 32, 64, &c. sides
;

from the hexagon may be formed polygons of 12, 24, 48, 96, &c. sides;

from the decagon polygons of 20, 40, 80, &c. sides ; and from the pente-

decagon we may inscribe polygons of 30, 60, &;c. sides ; and it is plain

that each polygon will exceed the preceding in surface or area.

It is obvious that any regular polygon whatever might be inscribed in a

circle, provided that its circumference could be divided into any proposed

number of equal parts ; but such division of the circumference like the tri-

section of an angle, which indeed depends on it, is a problem which has

not yet been effected. There are no means of inscribing in a circle a regu-

lar heptagon, or which is the same thing, the circumference of a circle can-

not be divided into seven equal parts, by any method hitherto discovered

It was long supposed, that besides the polygons above mentioned, no
other could be inscribed by the operations of elementary Geometry, or,

what amounts to the same thing, by the resolution of equations of the first

and second degree. But M. Gauss, of Gdttingen, at length proved, in a

work entitled Disquisitiones Arithmeticm, Lipsie, 1801, that the circumfer-

ence of a circle could be divided into any number of equal parts, capable

of being expressed by the formula 2''4-l. provided it be a prime number,
tnat is, a number that cannot be resolved into factors.

The number 3 is the simplest of this kind, it being the value of the

above formula when n= l ; the next prime number is 5, and this is also

contained in the formula; that is, when n=2. But polygons of 3 and 5

sides have already been inscribed. The next prime number expressed by
the formula is 17 ; so that it is possible to inscribe a regular polygon of

17 sides in a circle. .

For the investigation of Gauss's theorem, which depeni.« upon the the-

ory of algebraical equations, the student may consul Ba ^as Theory of

Numbers.

14



ELEMENTS

OF

GEOMETRY,

BOOK V.

In the demonstrations of this book there are certain " signs or characters*

irhich it has been found convenient to employ.

* 1. The letters A, B, C, &c, are used to denote magnitudes of any kind.

"The letters m, n, p, q, are used to denote numbers only.

It is to be observed, that in speaking of the magnitudes A, B, C, &c.,

we mean, in reality, those which these letters are employed to repre-

sent ; they may be either lines, surfaces, or solids.

' 2. When a number, or a letter denoting a number, is written close to

" another letter denoting a magnitude of any kind, it signifies that the
" magnitude is multiplied by the number. Thus, 3A signifies three

" times A; mB, m times B, oi a multiple of B by m. When the num-
" ber is intended to multiply two or more magnitudes that follow, it is

" written thus, m(A+B), which signifies the sum of A and B taken m
"times ; ff?(A—B) is m times the excess of A above B.

* Also, when two letters that denote numbers are written close to one an-

" other, they denote the product of those numbers, when multiplied into

"one another. Thus, mn is the product of m into n ; and mnA is A mul-
" tiplied by the product of m into n.

DEFINITIONS. '

I A less magnitude is said to be a part of a greater magnitude, when the

less measures the greater, that is, when the less is contained a certain

number of times, exactly, in the greater.

2. A greater magnitude is said to be a multiple of a less, when the greater

is measured by the less, that is, when the greater contains the less a cer-

tain number of times exactly.

3. Ratio is a mutual relation of two magnitudes, of the same kind, to one
another, in respect of quantity.
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4, Magnitudes are saiJ to be of the same kind, when the less can be mul-

tiplied so as to exceed the greater ; and it is only such magnitudes tLal

are said to have a ratio to one another.

5. If there be four magnitudes, and if any equimultiples whatsoever be

taken of the first and third, and any equimultiples whatsoever of the se-

cond and fourth, and if, according as the multiple of the first is greater

than the multiple of the second, equal to it, or less, the multiple of the

third is also greater than the multiple of the fourth, equal to it, or less
;

then the first of the magnitudes is said to have to the second the same
ratio that the third has to the fourth.

b. Magnitudes are said to be proportionals, when the first has the same
ratio to the second that the third has to the fourth ; and the third to the

fourth the same ratio which the fifth has to the sixth, and so on whatever

be their number.

When four magnitudes, A, B, C, D are proportionals, it is usual to say
" that A is to B as C to D, and to write them thus, A : B :: C : D, or

"thus, A : B=C : D."

7. When of the equimultiples of four magnitudes, taken as in the fifth

definition, the multiple of the first is greater than that of the second,

but the multiple of the third is not greater than the multiple of the fourth :

then the first is said to have to the second a greater ratio than the third

magnitude has to the fourth : and, on the contrary, the third is said to

have to the fourth a less ratio than the first has to the second.

8 When there is any number of magnitudes greater than two, of which
the first has to the second the same ratio that the second has to the

third, and the second to the third the same ratio which the third has to

the fourth, and so on, the magnitudes are said to be continual propor-

tionals.

9. When three magnitudes are continual proportionals, the second is said

to be a mean proportional between the other two.

10. When there is any number of magnitudes of the same kind, the first

is said to have to the last the ratio compounded of the ratio which the

first has to the second, and of the ratio which the second has to the

third, and of the ratio which the third has to the fourth, and so on unto

the last magnitude.

For example, if A, B, C, D, be four magnitudes of the same kind, the

first A is said to have to the last D, the ratio compounded of the ratio

of A to B, and of the ratio of B to C, and of the ratio of C to D ; or,

the ratio of A to D is said to be compounded of the ratios of A to B,

B to C, and C to D.

And if A : B :: E : F ; and B : C :: G : H, and C : D :: K : ^, then, since

by this definition A has to D the ratio compounded of the ratios of A to

B, B to C, C to D ; A may also be said to have to D the ratio compoimded
of the ratios which are the same with the ratios of E to F, G to H
Arid K to L.
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In like manner, the same things being supposed, if M has to N the same
ratio which A has to D, then, for shortness' sake, M is said to have to

N a ratio compounded of the same ratios which compound the ratio of

A to D ; that is, a ratio compounded of the ratios of E to F, G to H,
and K to L.

11. If three magnitudes are continual proportionals, the ratio of the first

to the third is said to be duplicate of the ratio of the first to the second

Thus, if A be to B as B to C, the ratio of A to C is said to be duplicate
" of the ratio of A to B. Hence, since by the last definition, the ratio

* of A to C is compounded of the ratios of A ij B, and B to C, a ratio,

" which is compounded of two equal ratios, is duplicate of either of

" these ratios."

12. If four magnitudes are continual proportionals, the ratio of the first

to the fourth is said to be triplicate of the ratio of the first to the second,

or of the ratio of the second to the third, &c.
' So also, if there are five continual proportionals ; the ratio of the first

" to the fifth is called quadruplicate of the ratio of the first to the se-

"cond ; and so on, according to the number of ratios. Hence, a ratio

" compounded of three equal ratios, is triplicate of any one of those ra-

" tios ; a ratio compounded of four equal ratios quadruplicate," &c.

J 3. In proportionals, the antecedent terms are called homologous to one
another, as also the consequents to one another.

Geometers make use of the following technical words to signify certain

ways of changing either the order or magnitude of proportionals, so as

that they continue still to be proportionals.

14. Permutando, or alternando, by permutation, or alternately ; this word
is used when there are four proportionals, and it is inferred, that the first

has the same ratio to the third which the second has to the fourth ; or

that the first is to the third as the second to the fourth : See Prop. 16.

of this Book.

15. Invertendo, by inversion : When there are four proportionals, and it is

inferred, that the second is to the first, as the fourth to the third. Prop
A. Book 5.

16. Componendo, by composition : When there are four proportionals, and
it is inferred, that the first, together with the second, is to the second as

the third, together with the fourth, is to the fourth. 1 8th Prop. Book 5.

17. Dividendo, by division; when there are four proportionals, and it is

inferred that the excess of the first above the second, is to the second,

•as the excess of the third above the fourth, is to the fourth. 17th Prop.

Book 5.

1 8. Convertendo by conversion ; when there are four proportionais, and
it is inferred, that the first is to its excess above the second, as the third

o its excess above the fourth. Prop. D. Book 5.
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19. Kx aequali (sc. distanlia), or ex aequo, from equality of distance

when there is any number of magnitudes more than two, and as many
others, so that they are proportionals when taken two and two of each

rank, and it is inferred, that the first is to the last of the first rank ol

magnitudes, as the first is to the last of the others ; Of this there are the

two following kinds, which arise from the different order in which the

magnitudes are taken two and two.

20. Ex sequali, from equality ; this term is used simply by itself, when
the first magnitude is to the second of the first rank, as the first to the

second of the other rank ; and as the second is to the third of the first

rank, so is the second to the third of the other ; and so on in order, and

the inference is as mentioned in the preceding definition ; whence this

is called ordinate proportion.

It is demonstrated in the 22d Prop, Book 5.

21. Ex aequali, in proportione perturbata, seu inordinata : from equality, in

perturbate, or disorderly proportion ; this term is used when the first

magnitude is to the second of the first rank, as the last but one is to the

last of the second rank ; and as the second is to the third of the first

rank, so is the last but two to the last but one of the second rank ; and

as the third is to the fourth of the first rank, so is the third from the last,

to the last but two, of the second rank ; and so on in a cross, or inverse,

order ; and the inference is as in the 19th definition. It is demonstrated

in the 23d Prop, of Book 5.

AXIOMS.

1. Equimultiples of the same, or of equal magnitudes, are equal to one
another.

2. Those magnitudes of which the same, or equal magnitudes, are equi-

multiples, are equal to one another.

3. A multiple of a greater magnitude is greater than the same multiple of

a less.

4. That magnitude of which a multiple is greater than the same multi-

ple of another, is greater than that other magnitude.

PROP. I. THEOR.

If any number of magnitudes be equimultiples of as many others, each of
each what multiple soever any one of thefirst is of its part, the same mul-

tiple is the sum of all the first of the sum of all the rest.

Let any number of magnitudes A, B, and C be equimultiples of as many
others, D, E, and F, each to each, A+B+C is the same multiple of D-\-

E-t-F, that A is of D.

Let A contam D, B contain E, and C contain F, each the same number
of times, as, for instance, three times
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Then, because A contains D three times, A=D+D-|-D.
For the same reason, B=E -j- E+ E

;

And also, C=F+F+F.
Therefore, adding equals to equals (Ax. 2. 1.), A+B-f-C is equal to

D4*E4-F, taken three times. In the same manner, if A, B, and C were
each any other equimultiple of D, E, and F, it would be shown that A+
B+C was the same multiple of D+E+F-

Cor. Hence, if m be any number, mD |-r/jE+mF=»i(D4-E4-F).
For mD, mE, and mF are multiples of D, E, and F by m, therefore their

sum is also a multiple of D+E-j-F by m.

PROP. II. THEOR.

If to a multiple of a magnitude by any number, a multiple of the same mag-
nitude by any number be added, the sum will be the same multiple of that

magnitude that the sum ofthe two numbers is of unity.

Let A=wiC, and B—nC ; A+B=(m+ra)C.
For, since A=7nC, A=C+C+ C+ &c. C being repeated wi times. For

the same reason, B=C-|-C4-&c. C being repeated n times. Therefore,

adding equals to equals, A+B is equal to C taken m-j-n times ; that is,

A+B=(77J+n\C. Therefore A+B contains C as oft as there are units

in m-\-n.

Cor. 1. In the same way, if there be any number of multiples what-

soever, as A=ffiE, B=nE, C=j9E, it is shown, that A4-B-|-C=(m+n
+jD)E.

Cor. 2. Hence also, since A4-B+ C=(7n+w+p)E,andsinceA=OTE,
B=:nE, and C=j)E, mE-\-n'E,+pY.—{m-\-n-\-p)E.

PROP. III. THEOR.

If the first of three magnitudes contain the second as often as there are units

in a certain number, and if the second contain the third also, as often oa

there are units in a certain number, the first will contain the third as often

as there are units in the product of these two numbers.

Let A=mB, and B=nC ; then A=ffinC.
Since B=nC, m'B=nC-{-nC-\-Sic. repeated m times. But nC+nC,

&c. repeated m times is equal to C (2. Cor. 2. 5.), multiplied by n-\-n-\-&c.

ri being added to itself m times ; but n added to itself m times, is n multi-

plied by m, or mn. Therefore nC+7iC4-&c. repeated m times=winC;
whence also »iB=mnC, and by hypothesis A=mB, therefore A=«mC
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PROP. IV. THEOR.

JJ thifirst ofJour magnitudes has the same ratio to the second which the third

has to theJourth, and if any equimultiples whatever be taken of the first and
third, and any whatever of the second andfourth; the multiple of the first

shall have the same ratio to the multiple of the second, that the multiple oj

the third has to the multiple of the fourth.

Let A : B : : C : D, and let m and n be any two numbers ; mk : nB :

:

mC : nD.
Take of twA and mQ equimultiples by any number/), and of nB and nD

equimultiples by any number q. Then the equimultiples of mk, and mG
by p, are equimultiples also of A and C, for they contain A arid C as oft as

there are units \npm (3. 5.), and are equal io pmk and pmC For the same
reason the multiples of nB and nD by q, are qnB, qnt). Since, therefore,

A : B : : C : D,and of A and C there are taken any equimultiples, viz. pmk
a.ndpmC, and of B and D, any equimultiples ^nB, qnD, i{ pmk be greater

than qnB,pmC must be greater than ^nD (def. 5. 5.) ; if equal, equal ; and

if less, less. But pmk, pmC are also equimultiples of mk and mC, and

qnB, qnD are equimultiples of nB and nD, therefore (def. 5. 5.), mA : nB
: : fnC : nD.

Cor, In the same manner it may be demonstrated, that if A : B : : C ;

D, and of A and C equimultiples be taken by any number m, viz. mk and

mC, mk : B : : mC : D. This may also be considered as included in the

proposition, and as being the case when n=l.

PROP. V. THEOR.

If one magnitude be the same multiple of another, which a magnitude taken

from the first is ofa magnitude taken from the other ; the remainder is the

same multiple of the remainder, that the whole is of the whole

Let mk and mB be any equimultiples of the two magnitudes A and B,

of which A is greater than B ; mk—mB is the same multiple of A—

B

that mk is of A, that is, mA—7nB=ni(A— B).
LetD be the excess of A above B, then A—B=D, and adding B to

both, A=D+B. Therefore (1. 5.) wiA=;nD-fniB ; take mB from both,

and mk—»nB=mD ; but D=A—B, therefore mk—mB^=:m{k—B).

PROP. VI. THEOR.

Iffrom a multiple of a magnitude by any number a multiple of the same mag-
nitude by a less number be taken away, the remainder will be the same mul
tiple of that magnitude that the difference of the numbers is of unity.

Let mk and nA be multiples of the magnitude A, by the numbers m on 1

», and let m be greater than n ; mk—nA contains A as oft as »n--n con-

taias uniw. or mA—nA=(»n—n)A.
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Let rr,—n=y; then m=n-^q. Therefore (2. 5.) mA=nA.-{-qA ; take

i»A from both, and ttjA—nA=qA. Therefore mA—nA contains A as oft

as there are units in q, that is, in m— n, or mA—nA= {m—n)A.

CoR. When the difference of the two numbers is equal to unity or m •

»=sl, then mA—nA=A.

PROP. A. THEOR.

Iffour magnitudes be proportionals , they are proportionals also when taken

inversely.

If A : B : : C : D, then also B : A : : D : C.

Let mA and mC be any equimultiples of A and C ; nB and nD any ecjui-

multiples of B and D. Then, because A : B : : C : D, if mA be less than

nB, mC will be less than nD (def. 5. 5.), that is, if nB be greater than mA,
nD will be greater than mC. For the same reason, if nB=mA, nD=mC,
and if nB/^TwA, nD/_mC. But nB, nD are any equimultiples of B and D,

and ffiA, mC any equimultiples of A and C, therefore (def, 5. 5.), B : A •

D: C.

PROP. B. THEOR.

If the first be the same multiple of the second, or the same part of it, that the

thira is of the fourth ; thefirst is to the second as the third to the fourth.

First, if mA,mB be equimultiples of the magnitudes A and B, mA : A :

ffiB : B.

Take of mA and mB equimultiples by any number n ; and of A and B
equimultiples by any number p ; these will be nmA (3. 5.), pA, nmB (3. 5.)

pB. Now, if nmA be greater than pA, nm is also greater thanj?; and i»

nm is greater than j9, nmB is greater than pB, therefore, when nmA is greai

er than pA, nmB is greater than pB. In the same manner, if nmA=pA
nmB=pB, and if nmA/^pA, nmB/_pB. Now, nmA, nmB are any equi

multiples of mA and mB ; and pA, pB are any equimultiples of A and B
therefore mA : A : : mB : B (def. 5. 5.).

Next, Let be the same part of A that D is of B ; then A is the same
multiple of C that B is of D, and therefore, as has been demonstrated, A :

: : B : D and inversely (A. 5.) C : A : : D : B.

PROP. C. THEOR.

If thefirst be to the second as the third to the fourth; and if the first be a

multiple or a part of the second, the third is the same multiple or the same
part of the fourth.

Let A : B : : C : D, and first, let A be a multiple of B, C .'s the same
multiple of D, that is, if A=mB, C=:mD.
Take of A and C equimultiples by any number as 2, viz. 2A and 2C

;

and of B and D, take equimultiples by the number 2m, viz. 2mB, 2mD (3
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5.) ; then,because A=mB,2A=2niB ; and since A : B : : C : D, and since

2A=2mB, therefore 2C=2wiD (def. 5. 5.), and C=mD, that is, C contains

D, m times, or as often as A contains B.

Next, Let A be a part ot B, C is the same part of D. For, since A : B
• • C : D, inversely (A. 5.), B : A : : D : C. But A being a part of B, B is

a multiple of A ; and therefore, as is shewn above, D is the same multiple

of C, and therefore C is the same part of D that A is of B.

PROP. VII. THEOR.

Equal magnitudes have the same ratio to the same magnitude ; and the same

has the same ratio to equal magnitudes.

Let A and B be equal magnitudes, and C any other ; A : C : : B : C.

Let «»A, tnB, be any equimultiples of A and B ; and nC any multiple

of C.

Because A^B, mA.=mB (Ax. 1.5.); wherefore, if mA be greater than

nC, otB is greater than nC ; and if77iA:=nC, mB=»C ; or, ifmA^^nC, mB
/mC. But mA and mB are any equimultiples of A and B, and nC is any
multiple of C, therefore (def. 5. 5.) A : C : : B : C.

Again, if A=B, C : A : : C : B ; for, as has been proved, A : C : : B •

C, and inversely (A. 5.), C : A : : C : B.

PROP. VIII. THEOR.

Ofunequal magnitudes, the greater has a greater ratio to the same than the less

has ; and the same magnitude has a greater ratio to the less than it has to

the greater.

Let A -}- B be a magnitude greater than A, and C a third magnitude,

A+B has to C a greater ratio than A has to C ; and C has a greater ratio

to A than it has to A+B.
Let m be such a number that otA and mB are each of them greater than

C ; and let nC be the least multiple of C that exceeds mA+wiB ; then nC
— C, that is (n— 1)C (1. 5.) will be less than mA-j-mB, or mA-fmB, that

is, m(A+B) is greater than (n— I)C. But because nC is greater than

wiA-f-mB, and C less than mlB, nC—C is greater than mA, or mA is less

than nC—C, that is, than (n— 1)C. Therefore the multiple of A+B by
m exceeds the multiple of C by n— 1, but the multiple of A by m does not

exceed the multiple of C by n— 1 ; therefore A -4- B has a greater ratio to

•3 than A has to C (def. 7. 5.).

Again, because the multiple of C by n— 1, exceeds the multiple of A by
m, but does not exceed the multiple of A +•B by »i, C has a greater ratio to

k than it has to A+B (def. 7. 5.).

15
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PROP. IX. THEOR.

Magnitudes which have the same ratio to the same magnitude are equal to on$

another ; and those to which the same magnitude has the same ratio are equoj

to one another.

If A : C :: B : C, A=B.
For if not, let A be greater than B ; then because A is greater than B,

two numbers, m and n, may be found, as in the last proposition, such that

mA. shall exceed nC, while mB does not exceed nC. But because A : C
: : B : C ; and if twA exceed wC, mB must also exceed nC (def. 5. 5.) : and
it is also shewn that mB does not exceed nC, which is impossible. There-
fore A is not greater than B ; and in the same way it is demonstrated that

B is not greater than A ; therefore A is equal to B.

Next, let C : A : : C : B, A=:B. For by inversion (A. 5.) A. : C : : B :

C ; and therefore, by the first case, A=:B.

PROP. X. THEOR.

That magnitude, which has agreater ratio ttian another has to the same magnu
tude, is the greatest of the two : And that magnitude, to which the same has

a greater ratio than it has to another magnitude, is the least ofthe two.

If the ratio of A to C be greater than that of B to C, A is greater than B.

Because A : C/^B : C, two numbers m and n may be found, such that

mAynC, and »iB/nC (def. 7. 5.). Therefore also mA/wB, andA/B
(Ax. 4. 5.).

Again, let C : B 7" : A ; B/ A. For two numbers, m and n may be
found, such that mC/nB, and mC/nA (def. 7. 5.). Therefore, since nB
is less, and nA greater than the same magnitude mC,nB/_nA, and there-

fore B/ A.

PROP. XI. THEOR

Ratios tnat are equal to the same ratio are equal to one another.

If A : B : : : D ; and also C : D : : E : F ; then A : B : : E : F.

Take mA, mC, mE, any equimultiples of A, C, and E ; and nB, nD, nF,

any equimultiples of B, D, and F. Because A : B : : C : D, if mA^^B,
wC/nD (def. 5.5.); but if mC/nD, mE/nF (def. 5. 5.), because C : D
: : E : F ; therefore if mAynB, mE ynF. In the same manner, if mAss
nB,mE=nF; and if mA/^nB, mE^nF. Now, mA, mE are any equi-

multiples whatever of A and E ; and nB, nF any whatever of B and F j

therefore A : B : : E : F (def. 5. 5.).



OF GEOMETRY. BOOK V. 116

PROP. XII. THEOR.

If any number of magnitudes be proportionals, as one of the antecedents ts to

its consequent, so are all t/ie antecedents, taken together, to all the conse-

quents.

I"A : B : C : D, and C . D : . E : F ; then also, A : B : : A+C+E :

B+D+F.
Take mA, mC, wiE any equimullipJw of A, C, and E ; and nB, nD, nF,

any equimultiples of B, U, and F. Then, because A : B : : C : D, if »iA

y nB,mCy7iD (def. 5. 5.) ; and when wiC/nD, mEynF, because C : D
:: E : F. Therefore, if mA7nB,mA4-7nC+mE7rtB+ nD+ nF : In the

same manner, if mA= nB, mA.-\-mC-\-mE=znB-\-nD-^nF ; and if mk/^
nB, wA+mC+mE/7iB+nD+nF. Now, mA+OTC+wiE=m(A+ C-}-

£) (Cor. 1. 5.), so that wjA and mA+wC+ ^'E are any equimultiples of

A, and of A+C+ E. And for the same reason nB, and nB+nD+nF are

any equimultiples of B, and of B+D+F ; therefore (def. 5. 5.) A : B :

:

A+C+E: B+D+F.

PROP. XIII. THEOR.

If thefirst have to the second the same ratio which the third has to thejourth,

but the third to the fourth a greater ratio than the fifth has to the sixth

;

the first has also to the second a greater ratio than the fifth has to the sixth.

If A : B : : C : D ; but C : D/E : F ; then also, A : B/E : F.

Because C : D 7 E : F, there are two numbers m and n, such that mC /
nD, but otE / nF (def. 7. 5.). Now, if otC 7 nD, mA 7 nB, because A : B
: : C : D. Therefore ff»A7«B, and wE/nF, wherefore, A : B7E : F
(def. 7. 5.).

PROP. XIV. THEOR.

If thefirst have to the second the same ratio which the third has to thefourth,

and if the first be greater than the third, the second shall be greater than

the fourth; if equal, equal ; and if less, less.

If A : B :: C : D; then if A7C, B7D; if A=C,B=D; and if A^
C. B/D.

First, let A70 ; then A : B7C : B (8. 5.), but A : B : : C • D, there-

fore C : D7C : B (13. 5.), and therefore B7D (10. 5.).

In tie name manner, it is proved, that if A=C, B=D ; and if A^C,
B/D.

PROP. XV. THEOR.

Magnitudes have the same ratio to one another which their equimultiples Aaw.

If A and B be two magnitudes, and m any number, A ; B . : mA : mB.
Becauae A • B : : A : B (7. 5.) ; A : B : : A+ A : B+ B (12. 5.), or A •
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B : . 2A : IB. And in the same manner, since A : B : : 2A : 2B, A : B
: : A+2A : B+2B (12. 5.), or A : B : : 3A : 3B ; and so on, for all the

equimultiples of A and B.

PROP. XVI. THEOR.

Iffour magnitudes of the same kind be proportionals, they will also be prth

portionals when taken alternately.

If A : B : : C : D, then alternately, A : C . : B : D.

Take mA, mB any equimultiples of A and B, and nC, nD any equimul

liples of C and D. Then (15. 5.) A : B : : mA : otB ; now A : B : : C .

D, therefore (11. 5.) C : D : : mA : mB. But C : D : : nC : nD (15. 5.)

;

therefore ttjA : mB : : nC : nD (11. 5.) : wherefore if mA/'nC, mBT'nD
(14. 5.); if mA=nC, mB=nD, or if mA/nC, mB/nD; therefore (def

5. 5.) A : C : : B : D.

PROP. XVII. THEOR.

If magnitudes, takenjointly, be proportionals, they will also be proportionals

when taken separately ; that is, if the first, together with the second, have

to the second the same ratio which the third, together with the fourth, has to

the fourth, the first will have to the second the same ratio which the thira

has to the fourth.

If A+B : B : : C+D : D, then by division A : B : : C : D.

Take mA and nB any multiples of A and B, by the numbers m and n
;

and first, let mA/wB : to each of them add mB, then mA-j-mB/mB+nB.
But mA+mB=m(A+B) (Cor. 1. 5.), and mB+«B=(m+n)B (2. Cor 2.

5.), therefore m(A+B)7(m-l-n)B.
And because A+B : B :: C+D : D, if m(A+B)7(m+n)B, m(C+D)

7'(m+n)D, or mC+mD/mD+ nD, that is, taking mD from both, mCy
nD. Therefore, when mA is greater than nB, mC is greater than nD. In

like manner it is demonstrated, that if mA=nB, mC=nD, and if mA/nB,
that mD^^nD ; therefore A : B : : C : D (def. 5. 5.).

PROP. XVIII. THEOR.

Ifmagnitudes, taken separately, be proportionals, they will also beproportion-

als when taken jointly, that is, if the first be to the second as the third to the

fourth, the first and second together will be to the second as the third and

fourth together to the fourth.

,
n A • B : : C : D, then, by composition, A+B : B : : C+D : D.
Take m(A+ B), and nB any multiples whatever of A+B and B; and

first, let m be greater than n. Then, because A+B is also greater than

B, m(A+B)7nB. For the same reason, m(C+D)7nD. In this case,

therefore, that is, when my n, m(A+ B) is greater than nB, andm(C+ D)
IS greater than nD. And in the same manner it may be proved, that wher
9)=rn, m(A+B) is greater than nB, and m(C4-D') greater than nD.
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Next, let m^n, or n/m, then m(A+ B) may be greater than ;iB, or niaj

be equal to it, or may be hess ; first, let ffi(A-+-B) be greater than nB ; then

also, njA+mB/nB ; take wiB, which is less than nB, from both, and ink

7nB—»jB,or mA7(n—m)B(6. 5.). But if »iA7(n—m)B, »iC7(n—m)
D, because A : B : : C : D. Now, (n—m)D=nl)—mD (6. 5.), therefore

mC7nD—mD, and adding /nD to both, mC+mD7nD, that is (1. 6.),

ffi(C+D)7nD. If, therefore, OT(A4-B)7nB,m(C4-D)7nD.
In the same manner it will be proved, that if nj(A-|-B)= nB, »n(C-f-D)

=nD; and if m(A+B)^;»B, m(C+D)ZnD ; therefore (def. 5. 5.), A+
B : B :: C+D : D

PROP. XIX. THEOR.

If a whole magnitude be to a whole, as a magnitude taken from thefirst is to a

magnitude taken from the other ; the remainder will be to the remainder as

the whole to the whole.

If A : B : : C : D, and if C be less than A, A-C : B-D : : A : B.
Because A : B : : C : D, alternately (16. 5.), A : C : : B : D ; and there-

fore by division (17. 5.) A— : C : : B—D : D. Wherefore, again alter-

nately, A—C : B—D : : C : D ; but A : B : : C : D, therefore (11. 5.) A
-C : B-D : : A : D.

Cor. A-C : B-D : : C : D.

PROP. D. THEOR.

Iffour magnitudes be proportionals, they are also proportionals by conversion,

that is, the first is to its excess above the second, as the third to its excess

above thefourth.

If A : B : : C : D, by conversion, A : A—B : : C : C— D.^

For, since A : B : : C : D, by division (17. 5.), A—B : B : : C—D : D.
and inversely (A. 5.) B : A—B : : D : C—D ; therefore, by composition
(18. 5.), A : A-B :: C : C-D.

Cor. In the same way, it may be proved that A . A -f B : : C : C-fD.

PROP. XX. THEOR.

If there be three magnitudes, and other three, which taken tvoo and two, hav*
the same ratio ; if the first be greater than the third, the fourth is greatf.r

than the sixth ; if equal, equal ; and if less, less.

If there be three magnitudes, A, B, and C, and other three D, E, and F •

•1^ if A : B : : D : E ; and also B : C :: E : F, then
if A7C,D7F; if A=C, D = F; and if A/C,D A. B, C,

D E, F.

First, let A 7C; then A : B7C : B (8. 5.). But A : B : : D : E, there-
fore also D : E7C : E (13. 5.). Now B : C : : E : F, and inversely (A
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5.), C : 13 : f : E ; and it has been shewn that D : E/C : B, therefore

D: E;-F. E (13. 5.), and consequently D/F (10. 5.).

Next, let A =C ; then A : B : : C : B (7. 5.), but A : B : : D : E ; there-

fore, C : B : : D : E, but C : B : : F : E, therefore, D : E : : F : E (! !.

5.), and D= P (9. 5.). Lastly, let A/C. Then C /A, and because, as
was already shewn, C : B : : F : E, and B : A : : E : D ; therefore, by the
firstcase,ifC7A, F/D, that is,ifA/C, D/F.

PROP. XXL THEOR.

Ifthere he three magnitudes, and other three, which have the same ratio taken two
and two, but in a cross order; if the first magnitude be greater than the thirds

thefourth is greater than the sixth ; if equal, equal ; and if less, less.

If there be three magnitudes, A, B, C, and other three, D, E, and F,
such that A : B : : E : F,andB: C : : D : E; if A/C.D/F; if A=C,
D=F; andif A/C, D/F.

First, let A 7 C. Then A : B 7C : B (8. 5.), but

A:B :: E : F, therefore E : F 7 C : B(13.5.). Now,
B : C : : D : E, and inversely, C : B : : E : D ; there-

fore.E : F7E : D(13.5.), wherefore, D7F (10. 5.).

Next, let A=C. Then (7. 5.) A : B : : C : B ; but A : B : : E : F,

therefore, C : B : : E : F (11. 5.) ; but B : C : : D : E, and inversely, C

:

B : : E : D, therefore (11. 5.), E : F : : E : D, and, consequently, D=tF
(9. 5.).

Lastly, let A/C. Then C7A, and, as was already proved, C : B :

.

E : D ; and B : A : : F : E, therefore, by this first case, since C 7 A, F 7
D, that is, D/F.

PROP. XXIL THEOR.

If there be any number ofmagnitudes, and as many others, which, taken two ana

two in order, have the same ratio ; the first will have to the last of thefirst

magnitudes, the same ratio which the first of the other has to the last.

First, let there be three magnitudes, A, B, C, and other three, D, E, F,

which, taken two and two, in order, have the same ratio, viz. A : B : : D :

E, and B : C : : E : F ; then A : C : : D : F.

Take of A and D any fequimultiples whatever, mA, mD ; and of B and

D any whatever, nB, nF : and of C and F any whatever, ^C, qF. Because
A : B : : D : E, mA : nB : : mD : nE (4. 5.')

; and

for the same reason, wB : qC : : n^ : qF. Therefore

(20. 5.) according as mA is greater than qC, equal to

it, or less, mD is greater than qF, equal to it, or

less ; but mA, mD are any equimultiples of A and D :

A, B, C,

D, E, F,

mA, «B, qC,

mD, nE, qF.

and ^C. qF are any equimultiples of C and F ; therefore (def. 5. 5.), A : C
D : F.

Again, let there be four magnitudes, and other four which, taken two

N. B. This proposition is usaally cited by the words " ex aequali/'or " « x aequo."*
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and two in order, have the same ratio, viz. A:B::E:F;B:0 ' F
G ; C : D : : G : H, then A : D : : E : H.

For, since A, B, C are three magnitudes, and

E, F, G other three, which, taken two and two,

have the same ratio, by the foregoing case, A :

C : : E : G. And because also C : D ; : G : H, by that same case, A : D
: : E : H. .ri the same manner is the demonstration extended to any num
ber of magnitudes.

PROP. XXIII THEOR.

If there be any number of magnitudes, and as many others, which, taken two

and two, in a cross order, have tJie same ratio ; thefirst tvill have to the last

of the first magnitudes the same ratio which the first of the others has to

the last*

First, Let there be three magnitudes. A, B, C, and other three, D, E, and
F, which, talcen two and two in a cross order, have the same ratio, viz. A
r B : : E : F, and B : C : : D : E, then A : C : : D : F. Take of A, B,

and D, any equimultiples mA, mB, mD ; and of C, E, F any equimultiples

nC, nE, nF.

Because A : B : : E : F, and because also A : B : : mA : mB (15. 5.),

and E : F : : nE : nF ; therefore, mA : mB : : nE : nF (11. 5.). Again,

because B : C : : D : E, mB : nC : : ctD : nE (4.

5.) ; and it has been just shewn that mA : mB :

:

nE : nF; therefore, if mA 7nC,mD7nF (21.5.) ;

if mA=nC, mD=nF ; and if mA/nC, mD/nF.
Now, mA and mD are any equimultiples of A and
D, and nC, nF any equimultiples of C and F ; therefore, A : C : : D : F
(def. 5. 5.).

Next, Let there be four magnitudes. A, B, C, and D, and other four, E,
F, G, and H, which, taken two and two in a cross order, have the same
ratio, viz. A : B : : G : H ; B : C : : F : G, and

: D : : E : F, then, A : D : : E : H. For,since A, Bj C, D,

A, B, C, are three magnitudes, and F, G, H, other E, F, G, H.
three, which, taken two and two, in a cross order,

have the same ratio, by the first case, A : C : : F : H. But C : D : : E :

F, therefore, again, by the first case, A : D : : E : H. In the same manner
may the demonstration be extended to any number of magnitudes

PROP. XXIV. THEOR.

If thefirst has to the second the same ratio which the third has to tne fourth

,

ana thefifth to the second, the same ratio which the sixth has to the fvurth ;

the first and fifth together, shall have to the second, the same ratio which

the third and sixth together, have to thefourth.

Let A : B : : C : D, and also E : B : : F : D, then A+ E • B : : C+ F : D.

* M. B. Thia proposition i* usually cited l<y the wonla " ex t^iimli in proportione pcrUU'
tmimf or, "ex equo inversely."
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Because E : B : : F : D, by inversion, B : E : : D : F. But by hypo-
thesis. A : B : : C : D. therefore, ex aequali (22. 5.), A : E : : C : F ; and
by composition (18. 5.), A+E:E::C4-F:F. And again by hypothe-
sis, E : B : : F : D, therefore, ex aequah (22. 5.), A+E : B : : C+F : D.

PROP. E. THEOR.

Iffour magnitudes he proportionals, the sum of the first two is to their diffe*

rence as the sum of the other two to their difference.

Let A : B : : C : D ; then if A/B,
A+B : A—B :: C+ D : C—D; or ifA/B
A-f-B : B-A :: C+D : D-C.

Fcr, if A/'B, then because A : B : : C : D, by division (17. 5.),

A—B : B . : C—D : D, and by inversion (A. 5.),

B : A—B : : D : C— D. But, by composition (18. 5.),

A+B : B : : C+D : D, therefore, ex sequali (22. 5.),

A+B : A-B :: C+ D : C-D.
[n the same manner, if B T' A, it is proved, that

A+B : B-A:: C+ D: D-C.

PROP. F. THEOR.

Ratios which are compounded of equal ratios, are equal, to one another

.

Let the ratios of A to B, and of B to C, which compound the ratio of A
to C, be equal, each to each, to the ratios of D to E, and E to F, which com-
pound the ratio of D to F, A : C : : D : F.

For, first, if the ratio of A to B be equal to that of

D to E, and the ratio of B to C equal to that of E to

F, ex aequali (22. 5.), A : C : : D : F.

And next, if the ratio of A to B be equal to that of E to F, and the ratio

of B to C equal to that of D to E, ex sequali inversely (23. 5.), A : C : : D
: F. In the same manner may the proposition be demonstrated, whatever

be the number of ratios.

PROP. G. THEOR.

ffa magnitude measure each of two others, it will also measure their sum and
difference.

Let C measure A, or be contained in it a certain number oftimes ; 9 times

for instance : let C be also contained in B, suppose 5 times. Then A=9C,
and B=5C ; consequently A and B together must be equal to 14 times C,

BO that C measures the sum of A and B ; likewise, since the difference of

A and B is equal to 4 times C, C also measures this difference. And had

any other numbers been chosen, it is plain that the results would have been

einular. For, let A^mC, and B=«C ; A+B=(OT+7i)C, and A—B=
(m—n)C.

CoR. If C measure B, and also A—B, or A+B, */ must measure A for

the sum of B and A—B is A, and the difference of B and A V^? is <}1s(» A

A, B, C,

D, E, F.
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BOOK VI.

DEFINITIONS.

1. SiMiLAE rectilineal figures are

those which have their several

angles equal, each to each, and
the sides about the equal angles

proportionals. ^ , ^ ^

In two similar figures, the sides which lie adjacent to equal angles, are

called homologous sides. Those angles themselves are called homo-
logous angles. In difi'erent circles, similar arcs, sectors, and seg-

merits, are those of which the arcs subtend equal angles at the
centre. Two equal figures are always similar; but two similar

figures may be very unequal.

2 Two sides of one figure are said to be reciprocally proportional to

two sides of another, when one of the sides of the first is to one of the
sides of the second, as the remaining side of the second is to the re-

maining side of the first.

8. A straight line is said to be cut in extreme and mean ratio, when the
whole is to the greater segment, as the greater segment is to the less.

4. The altitude of a triangle is the straight line

drawn from its vertex perpendicular to the base.

The altitude of a parallelogram is the perpendicu-

lar which measures the distance of two oppo-

site sides, taken as bases. And the altitude of

a trapezoid is the perpendiculardrawn between

its two parallel sides.

PROP. I. THEOR.

Triangles and parallelograms, of the same altitude, are one to another

as their bases.

Let the triangles ABC, ACD, and the parallelograms EC, CF have the

samealtitude,viz. the perpendicular drawn from the pointA to BD: Then,

16
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as the base BC, is to the base CD, so is the triangle ABC to tho triangle

ACD, and the parallelogram EC to the parallelogram CF.
Produce BD both ways to the points H, L, and take any number of

straight lines BG, GH, each equal to the base BC; and DK, KL, any
number of them, each equal to the base CD ; and join AG, AH, AK, All
Then, because CB, BG, GH are all equal, the triangles AHG, AGB, ABC
are all equal (38. 1.) ; Therefore, whatever multiple the base HC is of the

base BC, the same multiple is the triangle ARC of the triangle ABC. For
the same reason, whatever the base LC is of the base CD, the same mul-

tiple is the triangle ALC of

the triangle ADC. But if B A. F
the base HC be equal to the

base CL, the triangle AHC
:s also equal to the triangle

ALC (38. 1.): and if the

base HC be greater than the

oase CL, likewise the tria*

gle AHC is greater tnan tL.

triangle ALC ; and if less, jr q^ ^
less. Therefore, since there

are four magnitudes, viz. the two bases BC, CD, and the two triangles

ABC, ACD ; and of the base BC and the triangle ABC, the first and third,

any equimultiples whatever have been taken, viz. the base HC, and the

triangle AHC ; and of the base CD and triangle ACD, the second and
fourth, have been taken any equimultiples whatever, viz. the base CL and
triangle ALC ; and since it has been shewn, that if the base HC be greater

Uian the base CL, the triangle AHC is greater than the triangle ALC ;

and if equal, equal ; and if less, less ; Therefore (def. 5. 5.), as the base

BC is to the base CD, so is the triangle ABC to the triangle ACD.
And because the parallelogram CE is double of the triangle ABC (41.

I.), and the parallelogram CF double of the triangle ACD, and because

magnitudes have the same ratio which their equimultiples have (15. 5.)

;

as the triangle ABC is to the triangle ACD, so is the parallelogram EC to

he parallelogram CF. And because it has been shewn, that, as the base

BC is to the base CD, so is the triangle ABC to the triangle ACD ; and

as the triangle ABC to the triangle ACD, so is the parallelogram EC to

the parallelogram CF ; therefore, as the base BC is to the base CD, so is

(IL 5.) the parallelogram EC to the parallelogram CF.

Cor. From this it is plain, that triangles and parallelograms that have

equal altitudes, are to one another as their bases.

Let the figures be placed so as to have their bases in the same straight

line ; and having drawn perpendiculars from the vertices of the triangles to

the bases, the straight line which joins the vertices is parallel to that in

which their bases are (33. L), because the perpendiculars are both equal

and parallel to one another. Then, if the same construction be made a^ in

the proposition, the demonstration will be the same.
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PROP. II. THEOR.

Ij a straight line be draton parallel to one of the sides of a triangle, it unit ad
the other sides, or the other sides produced, proportionally : And if the

sides, or the sides produced, be cut proportionally, the straight line which

jams the points of section will be parallel to the remaining side of the tri-

angle.

Let DE be drawn parallel to BC, one of the sides of the triangle ABC •

BD is to DA as CE to EA.
Join BE, CD ; then the triangle BDE is equal to the triangle CDE (37.

1.), because they are on the same base DE and between the same paral-

lels DE, BC : but ADE is another triangle, and equal magnitudes have,

to the same, the same ratio (7. 5.) ; therefore, as the triangle BDE to the

triangle ADE, so is the triangle CDE to the triangle ADE ; but as the

triangle BDE to the triangle ADE, so is (1. 6.) BD to DA, because, hav-

ing the same altitude, viz. the perpendicular drawn from the point E to AB,
they are to one another as their bases ; and for the same reason, as the

triangle CDE to the triangle ADE, so is CE to EA. Therefore, as BD
to DA, so is CE to EA (11. 5.).

Next, let the sides AB, AC of the triangle ABC, or these sides produced,

be cut proportionally in the points D, E, that is, so that BD be to DA, as
CE to EA, and join DE ; DE is parallel to BC.
The same construction being made, because as BD to DA, 8v> is CE to

EA ; and as BD to DA, so is the triangle BDE to the triangle \DE (1.6.):
and as CE to EA, so is the triangle CDE to the triangle ADE ; therefore
the triangle BDE, is to the triangle ADE, as the triangle CDE to the tri-

angle ADE ; that is, the triangles BDE, CDE have the same ratio to the
triangle ADE ; and therefore (9. 5.) the triangle BDE is equal to the tri-

angle CDE : And they are on the same base DE ; but equal triangles on
the same base are between the same parallels (39. 1 .) ; therefore DE ia

parallel to BC.



IM ELEMENTS

PROP. III. THEOR.

ifthe aitgle ofa triangle be bisected by a straight line which also cuts the bast ;

the segments of the base shall have the same ratio which the other sides of

the triangle have to one another ; And if the segments of the base have the

same ratio which the other sidesofthe triangle have to one another, the straight

line drawn from the vertex to the point of section, bisects the vertical angle.

Let the angle BAG, of any triangle ABC, be divided into two equal an-

gles, by the straight line AD ; BD is to DC as BA to AC.
Through the point C draw CE parallel (Prop. 31. 1.) to DA, and let BA

produced meet CE in E. Because the straight line AC meets the paral-

lels AD, EC, the angle ACE is equal to the alternate angle CAD (29. 1.)

:

But CAD, by the hypothesis, is equal to the angle BAD ; wherefore BAD
is equal to the angle ACE. Again,

because the straight line BAE meets
the parallels AD, EC, the exterior an-

gle BAD is equal to the interior and
opposite angle AEC ; But the angle

ACE has been proved equal to the an-

gle BAD ; therefore also ACE is

equal to the angle AEC, and conse-

quently the side AE is equal to the

side (6. 1.) AC. And because AD is

drawn parallel to one of the sides of

the triangle BCE, viz. to EC, BD is

to DC, as BA to AE (2. 6.) ; but AE is equal to AC ; therefore, as BD to

DC, so is BA to AC (7. 5.).

Next, let BD be to DC, as BA to AC, and join AD ; the angle BAC is

divided into two equal angles, by the straight line AD.
The same construction being made • because, as BD to DC, so is BA

to AC ; and as BD to DC, so is BA
to AE (2. 6.), because AD is paral-

lel to EC : therefore AB is to AC, as

AB to AE (11. 5.) : Consequently

AC is equal to AE (9. 5.), and the

angle AEC is therefore equal to the

angle ACE (5. 1.). But the angle

AEC is equal to the exterior and op-

posite angle BAD ; and the angle

ACE is equal to the alternate angle

CAD (29. 1.): Wherefore also the

angle BAD is equal to the angle

CAD : Therefore the angle BAC is cut into tw) equal angles by the straight

line AD.
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PROP. A. THEOR.

I'' the exterior angle ofa triangle be bisected by a straight line which also cuts

the base produced ; the segments between the bisecting line and the extremities

ofthe base have the same ratio which the other sides of the triangles have ta

one another; And if the segments of the base produced have the same ratio

which the other sides ofthe triangles have, the straight line, drawn from the

vertex to the point of section, bisects the exterior angle of the triangle.

Let the exterior angle CAE, of any triangle ABC, be bisected by the

straight line AD which meets the base produced in D ; BD is to DC, as

BA to AC.
Through C draw CF parallel to AD (Prop. 31. 1.): and because the

straight line AC meets the parallels AD, FC, the angle ACF is equal to

the alternate angle CAD (29. 1.): But CAD is equal to the angle DAE
(Hyp.) : therefore also DAE is equal to the angle ACF. Again, because
the straight line FAE meets the parallels AD, FC, the exterior angle DAE
is equal to the interior and opposite angle CFA ; But the angle ACF has

been proved to be equal to the an-

gle DAE ; therefore also the angle

ACF is equal to the angle CFA,
and consequently the side AF is

equal to the side AC (6. 1.); and,

because AD is parallel to FC, a

side of the triangle BCF, BD is to

DC, as BA to AF (2. 6.) ; but AF
is equal to AC; therefore as BD
is to DC, so is BA to AC.
Now let BD be to DC, as BA to AC, and join AD ; the angle CAD is

equal to the angle DAE.
The same construction being made, because BD is to DC as BA to AC

;

and also BD to DC, BA to AF (2. 6. ) ; therefore BA is to AC, as BA to

AF (11. 5.), wherefore AC is equal to AF (9. 5.), and the angle AFC
equal (5. 1.) to the angle ACF : but the angle AFC is equal to the exte-

rior angle EAD, and the angle ACF to the alternate angle CAD ; there-

fore also EAD is equal to the angle CAD

PROP. IV. THEOR.

The sides about the equal angles ofequiangular triangles areproportionals ; ana
those which are opposite to the equal angles are homologous sides, that is, ate

the antecedents or consequents of the ratios

Let ABC, DCE, be equiangular triangles, having the angle ABC equal

to the angle DCE, and the angle ACB to the angle DEC, and conse-

quently (4. Cor. 32. 1.) the angle BAC equal to the angle CDE. The
sides about the equal angles of the triangles ABC, DCE are proportionals

,

and those arc the homologous sides which are opposite to the equal an-
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Let the triangle DCE be placed, so that its side CE may be contiguou*

to BC, and in the same straight line with it : And because the angles ABC,
ACB are together less than two right angles (17. 1.), ABC and DEC,
which is equal to ACB, are also less than

two right angles : wherefore BA, ED pro-

duced shall meet ( 1 Cr. 29. 1 .) ; let them be pro-

duced and meet in the point F ; and because

the angle ABC is equal to the angle DCE,
BF is parallel (28. I.) to CD. Again, be-

cause the angle ACB is equal to the angle

DEC, AC is parallel to FE (28. 1 .) : There-

fore FACD is a parallelogram ; and conse-

quently AF is equal to CD, and AC to FD
(34. 1.) : And because AC is parallel to FE,
one of the sides of the triangle FBE, BA
AF is equal to CD ; therefore (7. 5.) BA
nately, BA : BC : : DC : CE (16. 5.)

BF, BC : CE : : FD : DE (2. 6

O E
CE (2. 6.) : but

B
AF : : BC
CD : : BC : CE ; and alter-

Again, because CD is parallel to

but FD is equal to AC ; therefore BG
CE : : AC : DE ; and aUernately, BC : CA : : CE : ED. Therefore

because it has been proved that AB : BC : : DC : CE ; and BC • CA
CE : ED, ex jequali, BA : AC : : CD : DE.

PROP. V. THEOR.

If the sides of two triangles, about each of their angles, be proportionals, the

triangles shall be equiangular, and have their equal angles opposite to the

homologous sides.

Lot the triangles ABC, DBF have their sides proportionals, so that AB
is to BC, as DE to EF ; and BC to CA, as EF to FD ; and consequently

ex aequali, BA to AC, as ED to DF ; the triangle ABC is equiangular to

the triangle DEF, and their equal angles are opposite to the homologous

sides, viz. the angle ABC being equal to the angle DEF, and BCA to

EFD, and also BAC to EDF.
At the points E, F, in the straight

line EF, make (Prop. 23. l.)the an-

gle FEG equal to the angle ABC,
and the angle EFG equal to BCA,
wherefore the remaining angle BAC
is equal to the remaining angle

EOF (4. Cor. 32. 1.), and the trian-

gle ABC is therefore equiangular to

the triangle GEF ; and consequently

they have tneir sides opposite to the

equal angles proportionals (4. 6.).

Wherefore,

AB : BC : : GE : EF ; but by supposition,

AB : BC : : DE : EF, therefore,

DE : EF : : GE : EF Therefore (11.5) DE and GE liavt.
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Aft same ratio to EF, and consequently are equal (9. 5.). For the same
reason, DF is equal to FG : And because, in the triangles DEF, GEF
DE is equal to EG, and EF common, and also the base DF equal to the

base GF ; therefore the angle DEF is equal (8. 1.) to the angle GEF, and

the other angles to the other angles, which are subtended by the equal

sides (4. 1.). Wherefore the angle DFE is equal to the angle GFE, and

EDF to EGF: and because the angle DEF is equal to the angle GEF,
and GEF to the angle ABC ; therefore the angle ABC is equal to the an-

gle DEF : For the same reason, the angle ACB is equal to the angle

DFE, and the angle at A to the angle at D. Therefore the triangle ABC
is equiangular to the triangle DEF.

PROP. VI. THEOR.

If two tnangles have one angle of the one equal to one angle of the other, and
the sides about the equal angles proportionals, the triangles shall be equian-

gular, and shall have those angles equal which are opposite to the homolo'

gous sides.

Let the triangles ABO, DEF have the angle BAG in the one equal to

the angle EDF in the other, and the sides about those angles proportion-

als ; that is, BA to AC, as ED to DF ; the triangles ABC, DEF are equi-

angular, and have the angle ABC equal to the angle DEF, and ACB to

DFE.
At the points D, F, in the

straight line DF, makb (Prop.

23. 1.) the angle FDG equal to

either of the angles BAG, EDF
;

and the angle DFG equal to the

angle ACB ; wherefore the re-

maining angle at B is equal to

the remaining one at G (4. Cor.

32. 1.), and consequently the

triangle ABC is equiangular to

the triangle DGF ; and therefore

BA : AC : : GD (4. 6.) : DF. But by hypothesis,
BA : AC : : ED : DF ; and therefore

ED : DF : : GD : (11. 5.) DF ; wherefore ED is equal (9. 5.) to

DG ; and DF is common to the two triangles EDF, GDF ; therefore the

two sides ED, DF are equal to the two sides GD, DF; but the angle
EDF is also equal to the angle GDF ; wherefore the base EF is equal to

the base FG (4. 1.), and the triangle EDF to the triangle GDF, and the

remaining angles to the remaining angles, each to each, which are sub-

tended by the equal sides : Therefore the angle DFG is equal to the angle

DFE, and the angle at G to the angle at E : But the angle DFG is equal
to the angle ACB ; therefore the angle ACB is equal the angle DFE, and
the angle BAG is equal to the ang e EDF (Hyp.) ; wherefore also the re-

maining angle at B is equal to the remaining an^'le at E. Therefore th»

triangle ABC is equiangu.ar to the triangle DEF
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PROP. VII. THEOR.

If trtjo h (angles have one angle of the one equal to one angle of the other, and

the sides about two other anglesproportionals, then, if each of the remaining

angles be either less, or not less, than a right angle, the triangles shah be

equiangular, and Have tMse angles equal about which the sides are propor-

tionals.

Let the two triangles ABC, DEF have one angle in the one equal to one

angle in the other, viz. the angle BAG to the angle EDF, and the sides

about two other angles ABC, DEF proportionals, so that AB is to BC, as

DE to EF ; and, in the first case, let each of the remaining angles at C, F,

be less than a right angle. The triangle ABC is equiangular to the tri-

angle DEF, that is, the angle ABC is equal to the angle DEF, and the

remaining angle at C to the reniainmg angle at F.

For, if the angles ABC, DEF be not equal, one of them is greater than

the other : Let ABC be the greater, and at the point B, in the straight

line AB, make the angle ABG equal

to the angle (Prop. 23. l.)DEF : and

b'^cause the angle at A is equal to the

angle at D, and the angle ABG to

the angle DEF ; the remaining an-

gle AGB is equal (4. Cor. 32. 1.) to

the remaining angle DFE ; There-

fore the triangle ABG is equiangidar

to the triangle DEF ;

wherefore (4. 6.), AB : BG : : DE : EF ; but,

by hypothesis, DE : EF : : AB : BC,
therefore, ' AB : BC : : AB : BG (11. 5.),

and because AB has the same ratio to each of the lines BC, BG ; BC is

equal (9. 5.) to BG, and therefore the angle BGC is equal to the angle

BCG (5. 1.) ; But the angle BCG is, by hypothesis, less than a right an-

gle ; therefore also the angle BGC is less than a right angle, and the adja-

cent angle AGB must be greater than a right angle (13. 1.). But it was
proved that the angle AGB is equal to the angle at F ; therefore the angle

at F is greater than a right angle : But by the hypothesis, it is less than a

right angle ; which is absurd. Therefore the angles ABC, DEF are not

unequal, that is, they are equal : And the angle at A is equal to the angle

at D ; wherefore the remaining angle at C is equal to the remaining angle

at F ; Therefore the triangle ABC is equiangular to the triangle DEF.
Next, let each of the angles at C, F be not less than a right angle ; the

triangle ABC is also, in this case, equiangular to the triangle DEF.
The same construction being

made, it may be proved, in like

manner, that BC is equal to BG,
and the angle at C equal to the

angle BGC : But the angle at C
is not less than a right angle

;

therefore the angle BGC is not

less than a right ansrlc : vVhere-
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fore, two angles of the triangle BGC are together not less than two right

tngles, which is impossible (17. 1.) ; and therefore the triangle ABC may
be proved to be equiangular to the triangle DEF, as in the first case.

PROP. VIII. THEOR.

In a *tght angled tnangle if a perpendicular be drawn from the right angle tv

the base ; the triangles on each side of it are similar to the whole trtangU,

and to one another.

Let ABC be a right angled triangle, having the right angle BAG ; and

from the point A let AD be drawn perpendicular to the base BC : the trian-

gles ABD, ADC are similar to the whole triangle ABC, and to one another.

Because the angle BAG is equal to the angle ADB, each of them being

a right angle, and the angle at B com-

mon to the two triangles ABC, ABD

;

the remaining angle ACB is equal to

the remaining angle BAD (4. Cor. 32.

1.): therefore the triangle ABC is

equiangular to the triangle ABD, and

the sides about their equal angles are

proportionals (4. 6.) ; wherefore the

triangles are similar (def. 1.6.). In

like manner, it may be demonstrated, that the triangle ADC is equiangulai and
similar to the triangle ABC : and the triangles ABD, ADC, being each equi-

angular and similar to ABC, and equiangular and similar to one another.

CoR. From this it is manifest, that the perpendicular, drawn from the

right angle of a right angled triangle, to the base, is a mean proportional

between the segments of the base ; and also that each of the sides is a mean
proportional between the base, and its segment adjacent to that side. For

in the triangles BDA, ADC,

triangles

triangles

ABC,
ABC,

BDA,
ACD,

BD
BC
BC

DA
BA
CA

DA
BA
CA

DC (4. 6.)

BD (4. 6.)

CD (4. 6.).

and in

and in

the

the

PROP. IX. PROB.

From a given straight line to cut offany part required, that is, a part whuk
shall be contained in it a given number of times.

Let AB be the given straight line ; it is required

to cutoff from AB, a part which shall be contained

in it a given number of times.

From the point A draw a straight line AC mak-
ing any angle with AB ; and in AC take any point

D, and take AC such that it shall contain AD, as

oft as AB is to contain the part, which is to be cut

off from it
;
join BC, and draw DE parallel to it:

then A E is the part required to be cut off.

Because BD is parallel to one of the sides of the

17
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triangle ABC, viz. to BC, CD : DA : : BE : EA (2. 6.) ; and by composi-

tion (18. 5), CA : AD : : BA : AE : But CA is a multiple of AD ; there-

fore (C. 5.) BA is the same multiple of AE, or contains AE the same num-
ber of times that AC contains AD ; and therefore, whatever part AD is of

AC, AE is the same of AB ; wherefore, from the straight line AB the par*

required is cut off".

PROP. X. PROB.

To divide a given straight line similarly to agiven divided straight line, that is^

into parts that shall have the same ratios to one another which the parts of

the divided given straight line have.

Let AB be the straight line given to be divided, and AC the divided line,

it is required to divide AB similarly to AC.
Let AC be divided in the points D, E ; and let AB, AC be placed so aa

to contain any angle, and join BC, and through the points D, E, draw
(Prop. 3L 1.) DF, EG, parallel to BC ; and
through D draw DHK, parallel to AB ; there-

fore each of the figures FH, HB, is a parallelo-

gram : wherefore DH is equal (34. 1.) to FG,
and HK to GB : and because HE is parallel

to KC, one of the sides of the triangle DKC,
CE : ED : : (2. 6.) KH : HD ; But KH=BG,
and HD = GF ; therefore CE : ED : : BG :

GF ; Again, because FD is parallel to EG,
one of the sides of the triangle AGE, ED : DA
: : GF : FA ; But it has been proved that CE
: ED ;

~ " "^ '

to AC

B K O
BG : GF ; therefore the given straight lineAB is divided similar^

PROP. XL PROB.

Tofind a thirdproportional to two given straight lines.

Let AB, AC be the two given straight lines, and let them be placed so
as to contain any angle ; it is required to

find a third proportional to AB, AC.
Produce AB, AC to the points D, E ; and

make BD equal to AC ; and having joined

BC, through D draw DE parallel to it (Prop.

31.1.)

Because BC is parallel to DE, a side of
the triangle ADE, AB : (2. 6.) BD . : AC :

CE ; but BD=AC: therefore AB : AC :

;

AC : CE. Wherefore to the two given
utraight lines hB, AC a third proportional,

CC M found.
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PROP. XII. PROB.

To find afounh proportional to three given straight lines.

Let A,B, C be the three given straight lines ; it is required to find a

fourth proportional to A, B, C.

Take two straight lines DE, DF, containing any angle EDF ; and upon
these make DG equal to A, GE equal to B, and DH equal to C ; and hay-

ing joined GH, draw EF parallel (Prop. 31. 1.) to it through the point E

And because GH is parallel to EF, one of the sides of the triangle DEF,
DG : GE : : DH : HF (2. 6.) ; but DG= A, GE=B, and DH=C ; and
therefore A : B : : : HF. Wherefore to the three given straight lines,

A. B, C, a fourth proportional HF is found.

PROP. Xni. PROB.

To find a mean proportional between tvoo given straight lines.

Let AB, BC be the two given straight lines ; it is required to find a mean
proportional between them.

Place AB, BC in a straight line, and upon AC describe the semicircle

ADC, and from the point B (Prop. 11.

I.) draw BD at right angles to AC, and
join AD, DC.

Because the angle ADC in a semi-
circle is a right angle (31. 3.) and be-

cause in the right angled triangle ADC,
DB is drawn from the right angle, per-

pendicular to the base, DB is a mean
Droportional between AB, BC, the seg-

ments of the base (Cor. 8. 6.) ; therefore between the two given straighr

lines AB, BC, a mean proportional DH is foun'l
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PROP. XIV. PROB.

Equal parallelograms which have one angle of the one equal to one an^le of
the other, have their sides about the equal angles reciprocally proportional

:

And parallelograms which have one angle of the one equal to one angle of
the other, and their sides about the equal angles reciprocally proportioned,

are equal to one another.

Let AB, BC be equal parallel-

ograms, which have the angles at B
equal, and let the sides DB, BE be

placed in the same straight line

;

wherefore also FB, BG are in one
straight line (14. 1.) ; the sides of the

parallelograms AB, BC, about the

equal angles, are reciprocally propor-

tional ; that is, DB is to BE, as GB
toBF.

Complete the parallelogram FE ; and because the parallelograms AB.
BC are equal, and FE is another parallelogram,

AB : FE : : BC : FE (7. 5.)

:

but because the parallelograms AB, FE have the same altitude,

AB : FE : : DB : BE (1. 6.), also,

BC : FE : : GB : BF (1. 6.) ; therefore

DB : BE : : GB : BF (11. 5.). Wherefore, the sides

of the parallelograms AB, BC about their equal angles are reciprocally pro-

portional.

But, let the sides about the equal angles be reciprocally proportional, viz

as DB to BE, so GB to BF ; the parallelogram AB is equal to the parallel

ogram BC.
Because DB : BE : : GB : BF, and DB : BE : : AB : FE, and GB :

BF : : BC : EF, therefore, AB : FE : : BC : FE (11. 5.) : wherefore the

parallelogram AB is equal (9. 5.) to the parallelogram BC,

PROP. XV. THEOR.

Equal triangles which have one angle of the one equal to one angle of the

other have their sides about the equal aigles reciprocally proportional ; And
triangles which have one angle in the one equal to one angle in the otner,

and their sides about the equal angles reciprocally proportional, are equal

to one another.

Let ABC, ADE be equal triangles, which have the angle BAC equal to

the angle DAE : the sides about the equal angles of the triangles are re-

ciprocally proportional ; that is, CA is to AD, as EA to AB.
Let the triangles be placed so that their sides CA, AD be in one straight

line ; wherefore also EA and AB are in one straight line (14. 1.) ; join BD.
Because the triangle ABC is equal to the triangle ADE, and ABD is an.

other triangle ; therefore, triangle CAB : triangle BAD : : triangle E AD
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. mangle BAD ; but CAB :

BAD ::CA : AD.andEAD:
BAD : : EA : AB ; therefore

CA: AD:: EA: AB(ll.o),
wherefore the sides ofthe trian-

gles ABC, ADE about the equal

angles are reciprocally propor-

tional.

But let the sides of the trian-

gles ABC, ADE, about the

equal angles be reciprocally

proportional, viz. CA to AD, as

EA to AB ; the triangle ABC is

equal to the triangle ADE.
Having joined BD as before ; because CA : AD : : EA : AB ; and since

CA : AD : : triangle ABC : triangle BAD (1.6.); and also EA : AB :

:

triangle EAD : triangle BAD (11. 5.) ; therefore, triangle ABC : triangle

BAD : : triangle EAD : triangle BAD ; that is, the triangles ABC, EaD
have the same ratio to the triangle BAD ; wherefore the triangle ABC is

equal (9. 5.) to the triangle EAD.

PROP. XVI. THEOR.

Iffour straight lines be proportionals, the rectangle contained by the extremes is

equal to the rectangle contained by the means; And if the rectangle contained

by the extremes be equal to the rectangle contained by the means, the four
straight lines are proportionals.

Let the four straight lines, AB, CD, E, F, be proportionals, viz. as AB
to CD, 80 E to F ; the rectangle contained by AB, F is equal to the rect

angle contained by CD, E.
From the points A, C draw(ll. l.)AG, CH at right angles to AB, CD ;

and make AG equal to F, and CH equal to E, and complete the parallel-

ograms BG, DH. Because AB : CD : : E : F ; and since E=CH, and
F=AG, AB : CD (7. 5.) : : CH : AG ; therefore the sides of the parallel-

ograms BG, DH about the equal angles are reciprocally proportional ; but

parallelograms which have their sides about equal angles reciprocally pro-

portional, are equal to one another (14. 6.); therefore the parallelogram

BG is equal to the parallelogram DH : "p]

and the parallelogram BG is contain-
"^

ed by the straight lines AB, F ; be- F-
cause AG is equal to F ; and the pa-

rallelogram DH is contained by CD
and E, because CH is equal to E :

therefore the rectangle contained bv
the straight lines AB, F is equal to that

which is contained by CD and E.
And if the rectangle contained by

the straight lines AB, F be equal to that which is contained by CD,E ;

ihese four lines are proportionaJs, »iz. AB is to CD as E to F-

D
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The same tsonstruction being made, because the rectangle contained by

the straight lines AB, F is equal to that which is contained by CD, E, and

the rectangle BG is contained by AB, F, because AG is equal to F ; and

the rectangle DH, by CD, E, because CH is equal to E ; therefore the pa-

rallelogram BG is equal to the parallelogram DH, and they are equiangu-

lar : but the sides about the equal angles of equal parallelograms are reci«

procally proportional (14. 6.) : wherefore AB : CD : ^ CH : AG ; but CH
=E, and AG=F; therefore AB : CD : : E : F.

PROP. XVn. THEOR.

Ifthree straight lines be proportionals, therectangle contained by the extremes is

equal to the square of the mean : And if the rectangle contained by the ex-

tremes be equal to the square of the mean, the three straight lines arepropor-

tionals.

Let the three straight lines. A, B, C be proportionals, viz. as A to B, so

B to C ; the rectangle contained by A, C is equal to the square of B.

Take D eqaal to B : and because as A to B, so B to C, and that B is

equal to D ; A is (7. 5.) to B, as D to C : but if four straight lines be pro-

portionals, the rectangle contained by the extremes is equal to that which
is contained by the means (16. 6.) ; therefore the

rectangle A.C = the rectangle B.D ; but the rect- ^
'

angle B.D is equal to the square of B, because B= i^

D ; therefore the rectangle A.C is equal to the r;

square of B.

And if the rectangle contained by A, C be equal to the square of B ; A :

B : : B : C.

The same construction being made, because the rectangle contained by

A, C is equal to the square of B, and the square of B is equal to the rect-

angle contained by B, D, because B is equal to D ; therefore the rectangle

contained by A, C is equal to that contained by B, D ; but if the rectangle

contained by the extremes be equal to that contained by the means, the

four straight lines are proportionals (16. 6.) : therefore A : B : : D C, but

B=D^; wherefore A : B : : B : C.

PROP. XVin. PROB.

Upon a given straight line to describe a rectilinealfgure similar, and ^milarly
situated to a given rectilineal fgure.

Let AB be the given straight line, and CDEF the given rectilinr^l figure

of four sides ; it is required upon the given straight line AB to deccribe a

rectilineal figure similar, and similarly situated to CDEF.
Join DF, and at the points A, B in the straight line AB, make (Prop. 23.

1.) the angle BAG equal to the angle atC, and the angle ABG equal to

the angle CDF ; therefore the remaining angle CFD is equai to the re-

maining angle AGB (4. Cor. 32. 1.) : wherefore the triangle FCD is equi-

angular to the triangle GAB : Again, at the points G, B in the straight

line GB make (Prop. 23. 1.) the angle BGH equal to the angle DFE, and
he angle GBH equal to FDE ; therefore the remaining angle FED is
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equal to the remaining angle GHB, and the triangle FDE equiangular to

the triangle GBH : then, because the angle AGB is equal to the angle

CFD BGH to DFE the whole angle AGH is equal to the whole CFE

for the same reason, the angle ABH is equal to the angle CDE ; also the

angle at A is equal to the angle at C, and tlie angle GHB to FED ; There-

fore the rectilineal figure ABHG is equiangular to CDEF : but likewise

these figurts have their sides about the equal angles proportionals : for the

triangles GAB, FCD being equiangular,

BA : AG : : DC : CF (4. 6.) ; for the same reason,

AG : GB : : CF : FD ; and because of the equian-

gular triangles BGH, DFE, GB : GH : : FD : FE ; therefore,

ex aequali (22. 5.) AG : GH : : CF : FE.
In the same manner, it may be proved, that

AB : BH : : CD : DE. Also (4. 6.),

GH : HB ; : FE : ED. Wherefore, because the rectili-

neal figures ABHG, CDEF are equiangular, and have their sides about

the equal angles proportionals, they are similar to one another (def. 1. 6.).

Next, Let it be required to describe upon a given straight line AB, a

rectilineal figure similar, and similarly situated to the rectilineal figure

CDKEF.
Join DE, and upon the given straight line AB describe the rectilineal

figure ABHG similar, and similarly situated to the quadrilateral figure

CDEF, by the former case ; and at the points B, H in the straight line

BH, make the angle HBL equal to the angle EDK, and the angle BHL
equal to the angle DEK ; therefore the remaining angle at K is equal to

the remaining angle at L; and because the figures ABHG, CDEF are

similar, the angle GHB is equal to the angle FED, and BHL is equal to

DEK ; wherefore the whole angle GHL is equal to the whole angle FEK

;

for the same reason the angle ABL is equal to the angle CDK : therefore

the five-sided figures AGHLB, CFEKD are equiangular ; and because
the figures AGHB, CFED are similar, GH is to HB as FE to ED ; and
as HB to HL, so is ED to EK (4. 6.) ; therefore, ex aequali (22. 5 ), GH
is to HL, as FE to EK : for the same reason, AB is to BL, as CD to DK •

and BL is to LH, as (4. 6.) DK to KE, because the triangles BLH, DKE
are equiangular ; therefore, because the five-sided figures AGHLB
CFEKD are equiangular, and have their sides about the equal angles pro-

portionals, they are similar to one another : and in the same manner a xec-
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lilineal figure oi six, or more, sides may be described upon a given straight

line similar to one given, and so on.

PROP. XIX. THEOR.

Stmilat triangles are to one another in the duplicate ratio of the homologous

sides.

Let ABC, DEF be simi-

lar triangles, having the an-

gle B equal to the angle E,

and let AB be to BC, as

DE to EF, so that the side

BC is homologous to EF
(def. 13. 5.) : the triangle

ABC has to the triangle

DEF, the duplicate ratio

of that which BC has to

EF.
Take BG a third proportional to BC and EF (11. 6.), or such that

BC : EF . : EF : BG, and join GA. Then, because
AB : BC : : DE : EF, alternately (16. 5.),

AB : DE : : BC : EF ; but

BC : EF : : EF : BG ; therefore (11. 5.)

AB : DE :: EF : BG ; wherefore the sides of the triangles

ABG, DEF, which are about the equal angles, are reciprocally propor-

tional ; but triangles, which have the sides about two equal angles recipro-

cally proportional, are equal to

one another (15. 6.) : therefore A
the triangle ABG is equal to

the triangle DEF; and because x/ \ •r^
that BC is to EF, as EF to / / \ !D
BG ; and that if three straight

lines be proportionals, the first

has to the third the duplicate

ratio of that which it has to the

second ; BC therefore has to B Gr C ID F
BG the duplicate ratio of that which BC has to EF. But as BC to BG
so is (1. 6.) the triangle ABC to the triangle ABG : therefore the triangle

ABC has to the triangle ABG the duplicate ratio of that which BC has to

EF : and the triangle ABG is equal to the triangle DEF ; wherefore also

the triangle ABC has to the triangle DEF the duplicate ratio of that which
BC has to EF.

Cor. From this, it is manifest, that if three straight lines be propor-

tionals, as the first is to the third, so is any trianglo upon the first to a

similar, and similarly described triangle upon the second.
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PROP. XX. THEOR.

Similarpolygons may be divided into the same number ofsimilar triangles^ }un^

ing the same ratio to one another that the polygons have ; and the polygons

have to one another the duplicate ratio of that which their homologous sides

have.

Let ABODE, FGHKL, be similar polygons, and let AB be the homo-

logous side to FG; the polygons ABODE, FGHKL, may be divided into

tlie same number of similar triangles, whereof each has to each the same
ratio which the polygons have ; and the polygon ABODE has to the poly-

gon FGHKL a ratio duplicate of that which the side AB has to the side

FG.
Join BE, EO, GL, LH : and because the polygon ABODE is similar

to the polygon FGHKL, the angle BAE is equal to the angle GFL (def.

1. 6.), and BA : AE : : OF : FL (def. 1.6.): wherefore, because the tri-

angles ABE, FGL have an angle in one equal to an angle in the other

and their sides about these equal angles proportionals, the triangle ABE is

equiangular (6. 6.), and therefore similar, to the triangle FGL (4. 6.)

:

wherefore the angle ABE is equal to the angle FGL : and, because the

polygons are similar, the whole angle ABC is equal (def. L 6.) to the whole

angle FGH ; therefore the remaining angle EBO is equal to the remain-

ing angle LGH : now because the triangles ABE, FGL are similar,

EB : BA : : LG : GF; and also because the

polygons are similar, AB : BO : : FG : GH (def. 1.6.); therefore, ex
Kquali (22. 5.) EB : BO : : LG : GH, that is, the sides about the equal

angles EBO, LGH are proportionals ; therefore (6. 6.) the triangle EBO

is equiangular to the triangle LGH, and similar to it (4, 6.). For the

•ame reason, the triangle EOD is likewise similar to the triangle LHK ;

therefore the similar polygons ABODE, FGHKL are divided into the same
number of similar triangles.

Also these triangles have, each to each, the same ratio which the poly-
gons have to one another, the antecedents being ABE, EBO, EOD, and
the consequents FGL, LGH, LHK : and the polygon ABODE has to the

polygon FGHKL the duplicate ratio of that which the side AB has to the

homologous side FG.
Because the triangle ABE is similar to the triangle FGL, ABE has to

FGL the duplicate ratio (19. 6.) of that wl ich the side BE has to the side

18
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GL* foi the same reason, the triangle BEC has to GLH the duphcaie

ratio of that which BE has to GL : therefore, as the triangle ABE to the

triangle FGL, so (1 1. 5.) is the triangle BEC to the triangle GLH. Again

because the triangle EBC is similar to the triangle LGH, EBC has to

LGH the duplicate ratio of that which the side EC has to the side LH :

for the same reason, the triangle ECD has to the triangle LHK, the du-

plicate ratio of that which EC has to LH : therefore, as the triangle EBC
to the triangle LGH, so is (11. 5.) the triangle ECD to the triangle LHK :

but it has been proved, that the triangle EBC is likewise to the triangle

LGH, as the triangle ABE to the triangle FGL. Therefore, as the trian-

gle ABE is to the triangle FGL, so is the triangle EBC to the triangle

LGH, and the triangle ECD to the triangle LHK : and therefore, as one

of the antecedents to one of the consequents, so are all the antecedents tc

all the consequents (12, 5.). Wherefore, as the triangle ABE to the tri

angle FGL, so is the polygon ABCDE to the polygon FGHKL : but the

triangle ABE has to the triangle FGIi, the duplicate ratio of that which
the side AB has to the homologous side FG. Therefore also the polygon
ABCDE has to the polygon FGHKL the duplicate ratio of that which
AB has to the homologous side FG.

CoR. L In like manner it may be proved, that similar figures of four

sides, or of any number of sides, are one to another in the duplicate ratio of

their homologous sides, and the same has already been proved of triangles :

therefore, universally, similar rectilineal figures are to one another in the

duplicate ratio of their homologous sides.

CoR. 2. And if to AB, FG, two of the homologous sides, a third pro-

portional M be taken, AB has (def. 11. 5.) to M the duplicate ratio of that

which AB has to FG : but the four-sided figure, or polygon, upon AB has

to th3 four-sided figure, or polygon, upon FG likewise the duplicate ratio

of that which AB has to FG : therefore, as AB is to M, so is the figure

upon AB to the figure upon FG, which was also proved in triangles (Cor.

19. 6.). Therefore, universally, it is manifest, that if three straight lines

be proportionals, as the first to the third, so is any rectilineal figure upon
the first, to a similar, and similarly described rectilineal figure upon the se-

cond.

CoR. 3. Because all squares are similar figures, the ratio of any two
squares to one another is the same with th»3 duplicate ratio of their sides

;

and hence, also, any two similar rectilineal figures are to one another as She

squares of their homologous sides.
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SCHOLIUM.

If i ivo polygons are composed of the same number of triangles similar,

und siinilarly situated, those two polygons will be similar.

For the similarity of the two triangles will give the angles EAB=:LFG
ABE=FGL,EBC=LGH: hence, ABC=FGH, likewise BCD=GHK
&c. Moreover, we shall have, EA : LF : : AB : FG : : EB : LG : : BC
: GH, &c. ; hence the two polygons have their angles equal and their sides

proportional ; consequently they are similar.

PROP. XXI THEOR.

RectilinealJigures which are similar to the same rectilinealJigure, are also

similar to one another.

Let each of the rectilineal figures A, B be similar to the rectilineal figure

C : The figure A is similar to the figure B.

Because A is similar to 0, they are equiangular, and also have their

sides about the equal angles proportionals (def. 1. 6.). Again, because B
is similar to C, thoy are equiangular, and have their sides about the equal

angles proportionals (def. 1.6.): therefore the figures A, B, are each of

them equiangular to C, and have the sides about the equal angles of each
of them, and of C, proportionals. Wherefore the rectilineal figures A and
B are equiangular (1. Ax. 1.), and have their sides about the equal angles
proportionals (U. 5.). Therefore A is similar (def. 1. 6.) to B.

PROP. XXII THEOR.

Iffour straight lines be proportionals, the similar rectilineal Jigures stmilarly
described upon them shall also beproportionals ; and ifthe similar rectilineal
Jigures similarly described upon four straight lines be proportionals, those
straight lines shall be proportionals.

Let the four straight lines, AB, CD, EF, GH be proportionals, viz. AB
to CD, as EF to GH, and upon AB, CD let the similar rectilineal figures
KAB, LCD be similarly described ; and upon EF, GH the similar recti,
lineal figures MF, NH, in like manner : the rectilineal figure KAB is to
LCD, as MF to NH.
To AB, CD take a third proportional (11. 6.) X ; and to EF, GH, s

tiiird proportional ; and because
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AB : CD : : EF : GH, and

CD : X : : GH : (1 1. 5.) O, ex aequaU (22. 5.)

AB : X : : EF : O. But

AB : X (2. Cor. 20. 6.) : : KAB : LCD ; and
EF : O : : (2. Cor. 20. 6.) MF : NH ; therefore

KAB : LCD (2. Cor. 20. 6.) : : MF : NH.
And if the figure KAB be to the figure LCD, as the figure MF to the

figure NH, AB is to CD, as EFto GH.
Make (12. 6.) as AB to CD, so EF to PR, and upon PR describe (18.

6.) the rectilineal figure SR similar, and similarly situated to either of th*

E T' G H O P K
figures MF, NH : then, because that as AB to CD, so is EF to PR, and
upon AB, CD are described the similar and similarly situated rectilineals

KAB, LCD, and upon EF, PR, in like manner, the similar rectilineals

MF, SR ; KAB is to LCD, as MF to SR ; but by the hypothesis, KAB
is to LCD, as MF to NH ; and therefore the rectihneal MF having the

same ratio to each of the two NH, SR, these two are equal (9. 5.) to one
another ; they are also similar, and similarly situated ; therefore GH is

equal to PR : and because as AB to CD, so is EF to PR, and because PR
is equal to GH, AB is to CD, as EF to GH.

PROP. XXIII. THEOR.

Equiangular parallelograms have to one another the ratio which is compounded

of the ratios of their sides.

Let AC, CF* be equiangular parallelograms having the angle BCD
equal to the angle ECG ; the ratio of the parallelogram AC to the paral

lelogram CF, is the same with the ratio which is compounded of the ratiof

of their sides.

Let BC, CG be placed in a straight line ; therefore DC and CE are also

in a straight line (14. 1.); complete the parallelogram DG ; and, taking

any straight line K, make (12. 6.) as BC to CG, so K to L ; and as DC
to CE, so make (12. 6.) L to M : therefore the ratios of K to L, and L to

M, are the same with the ratios of the sides, viz. of BC to CG, and of DC
to CE- But the ratio of K to M, is that which is said to be compounded
(def. 10. 5.) of the ratios of K to L, and L to M ; wherefore also K has to
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M the ratio compounded of the ratios of

the sides of the parallelograms. Now,
because as BC to CG, so is the parallel-

ogram AC to the parallelogram CH (1.

6.) ; and as BC to CG, so is K to L

;

therefore K is (11. 5.) to L, as the paral-

lelogram AC to the parallelogram CH

:

again, because as DC to CE, so is the

parallelogram CH to the parallelogram

CF : and as DC to CE, so is L to M ;

therefore L is (1 1, 5.) to M, as the paral-

lelogram CH to the parallelogram CF :

therefore, since it has been proved, that

as K to L, so is the parallelogram AC
to the parallelogram CH ; and as L to M, so the parallelogram CH to th«

parallelogram CF ; ex aequali (22. 5.), K is to M, as the parallelogram

AC to the parallelogram CF ; but K has to M the ratio which is com-
pounded of the ratios of the sides ; therefore also the parallelograna AC
has to the parallelogram CF the ratio which is compounded of the ratios

of the sides.

CoR. Hence, any two rectangles are to each other as the products oj

their bases multiplied by their altitudes.

SCHOLIUM.

Hence the product of the base by the altitude may be assumed as the

neasure of a rectangle, provided we imderstand by this product the pro-

duct of two numbers, one of which is the number of linear units contained

in the base, the other the number of linear units contained in the altitude.

Still this measure is not absolute but relative : it supposes that the area

of any other rectangle is computed in a similar manner, by measuring its

sides with the same linear unit ; a second product is thus obtained, and
the ratio of the two products is the same as that of the two rectangles,

agreeably to the proposition just demonstrated.

For example, if the base of the rectangle A contained three units, and its

altitude ten, that rectangle will be represented by the number 3x10, or

30, a number which signifies nothing while thus isolated ; but if there is a

Becond rectangle B, the base of which contains twelve units, and the alti-

tude seven, this rectangle would be represented by the number 12 X 7^84 ;

and we shall hence be entitled to conclude that the two rectangles iare to

each other as 30 is to 84 ; and therefore, if the rectangle A were to be as-

sumed as the unit of measurement in surfaces, the rectangle B would then

have 1^ for its absolute measure ; or, which amounts to the same thing, it

would be equal to |^ of a superficial unit.

It is more common and more simple to assume the squares as the unit of

surface ; and to select that square whose side is the unit of length. In

this case, the measurement which we have regarded merely as relative,

oecomes absolute : the number 30, for instance, by which the rectangle A
was measured, now represents 30 superficial units, or 30 of those squares

whii-h have each of their sides equal to unity.
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Cop 1. Hence, the area of any parallelogram ts equal to the product oj

its has ! by its altitude.

Cor. 2. It likewise follows, that the area of any triangle is equal to the

product of its base by halfits altitude.

PROP. XXIV. THEOR.

The parallelograms about the diameter of any parallelogram, are similar to the

whole, and to one another.

Let ABCD be a parallelogram, of which the diameter is AC ; and EG^
HK the parallelograms about the diameter: the parallelograms EG, HK
are similar, both to the whole parallelogram ABCD, and to one another.

Because DC, GF are parallels, the angle ADC is equal (29. 1.) to the

angle AGF : for the same reason, because EC, EF are parallels, the an-

gle ABC is equal to the angle AEF : and each of the angles BCD, EFG
is equal to the opposite angle DAB (34. 1.), and therefore are equal to one

another, wherefore the parallelograms ABCD, AEFG are equiangular

And because the angle ABC is equal to the angle AEF, and the angle

BAC common to the two triangles BAG,
EAF, they are equiangular to one another

;

therefore (4. 6.) as AB to BC, so is AE to

EF ; and because the opposite sides of paral-

lelograms are equal to one another (34. 1.),

AB is (7. 5.) to AD, as AE to AG ; and DC
to CB, as GF to FE ; and also CD to DA.
as FG to GA : therefore the sides of the pa-

rallelograms ABCD, AEFG about the equal

angles are proportionals ; and they are

therefore similar to one another (def. 1.6.); for the same reason, the pa-

rallelogram ABCD is similar to the parallelogram FHCK. Wherefore
each of the parallelograms, GE, KH is similar to DB : but rectilinea.

figures which are similar to the same rectilineal figure, are also similar »c

one another (21. 6.) ; therefore the parallelogram GE is similar to KH.

PROP. XXV. PROB.

To describe a rectilineal figure which shall be similar to one, and equal to

another given rectilineal figure.

Let ABC be the given rectilineal figure, to which the figure to be de-

scribed is required to be similar, and D that to which it must be equal. It

is required to describe a rectilineal figure similar to ABC, and equal to D.
Upon the straight line BC describe (Cor. Prop. 45. 1.) the parallelogram

BE equal to the figure ABC ; also upon CE describe (Cor. Prop. 45 1.)

the parallelogram CM equal to D, and having the angle FCE equal to the

angle CBL : therefore BC and CF are in a straight line (29.1. or 14.1.), as

also LE and EM ; between BC and CF nnd (13. 6.) a mean proportional

GH, and upon GH describe (18. 6.) the rectilineal figure KGH similar,

and similarly situated, to the figure ABC. And because BC is to GH as
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GH to CF, and if three straight lines be proportionals, as the first is to th«»

third, so is (2. Cor. 20. 6.) the figure upon the first to the similar and simi

larly described figure upon the second ; therefore as BC to CF, so is the

figure ABC to the figure KGH : but as BC to CF, so is (1. 6.) the paral

lelogram BE to the parallelogram EF : therefore as the figure ABC -s to

the figure KGH, so is the parallelogram BE to the parallelogram EF (11

5.): but the rectilineal figure ABC is equal to the parallelogram BE ; there

fore the rectilineal figure KGH is equal (14. 5.) to the parallelogram EF :

but EF is equal to the figure D ; wherefore also KGH is equal to D ; and

it is similar to ABC. Therefore the rectilineal figure KGH has been de-

scribed similar to the figure ABC, and equal to D.

PROP. XXVI. THEOR.

If two similar parallelograms have a common angle, and be similarly situated,

they are about the same diameter.

Let the parallelograms ABCD, AEFG be similar and similarly situated,

and have the angle DAB common; ABCD and AEFG are about the

same diameter.

For, if not, let, if possible, the parallelogram

BD have its diameter AHC in a different

straight line from AF, the diameter of the pa-

rallelogram EG, and let GF meet AHC in H ;

and through H draw HK parallel to AD or

BC ; therefore the parallelograms ABCD,
AKHG being about the same diametec, are

similar to one another (24. 6.) : wherefore, as

DA to AB, so is (def. 1. 6.) GA to AK; but

because ABCD and AEFG are similar paral-

lelograms, as DA is to AB, so is GA to AE ; therefore (11. 5) as GA to

AE, so GA to AK ; wherefore GA has the same ratio to each of the straight

lines AE, AK ; and consequently AK is equal (9. 5.) to AE, the less to

the greater, which is impossible ; therefore ABCD and AKHG are not

about the same diameter ; wherefore ABCD and AEFG must be ab<>ui

the same diameter.
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PROP. XXVII. THEOR.

Of all the rectangles contained by the segments ofa given straight line, tJkt

greatest is the square which is described on half the line.

Let AB be a given straight line, which is bisected in C ; and let D be
any point in it, the square on AC is greater

than the rectangle AD, DB. A C D B
For, since the straight line AB is divided into two equal parts in C, and

into two unequal parts in D, the rectangle contained by AD and DB, to-

gether with the square of CD, is equal to the square of AC (5. 2.). The
square of AC is therefore greater than the rectangle AD.DB.

PROP. XXVIII. PROB.

To divide a given straight line, so that the rectangle contained by its segments

may be equal to a given space ; but that space must not be greater than the

square ofhalfthe given line.

Let AB be the given straight line, and let the square upon the given

straight line C be the space to which the rectangle contained by the seg-

ments of AB must be equal, and this square, by the determination, is not

greater than that upon half the straight line AB.
Bisect AB in D, and if the square upon AD be equal to the square upon

C, the thing required is done : But if it be not equal to it, AD must be

greater than C, according to the deter-

mination : Draw DE at right angles to

AB, and make it equal to C : produce
ED to F, so that EF be equal to AD
or DB, and from the centre E, at the

distance EF, describe a circle meeting ,___
AB in G. Join EG ; and because AB -A. \^^^^ I ^^^ IR
is divided equally in D, and unequally ^
in G, AG.GB + DG2=(5. 2.) DB2= *
EG2. But (47. 1.) ED24-DG2=EG2; therefore, AG.GB+DG2=ED3
4-DG2, and taking away DG^, AG.GB=ED2. Now ED=C, therefore

the rectangle AG.GB is equal to the square of C : and the given line AB
is divided in G, so that the rectangle contained by the segments AG, GB
is equal to the square upon the given straight line C.

PROP. XXIX. PROB.

Toproduce a given straight line, so that the rectangle contained by the segmenti
between the extremities of the given line, and the points to which it is pro-

duced, may be equal to a given space.

Let AB be the given straight line, and let the square upon the given
straight line C be the space to which the rectangle under the segments of

\B produced, must be equal.
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Bisect AB in D, and draw BE at right angles to it, so that BE be eqn».

to C ; and having joined DE, from the centre D at the distance DE de

•cribe a circle meeting AB produced in G.

And because AB is bisected in D, and

produced to G, (6. 2.) AG.GB4-DB2=
DG2=DE2.

But (47. 1.) DE2=DB2+BE2, there-

fore AG.GB 4- DB2 = DB' + BE^, and

AG.GB=BE2. Now, BE = C ; where-

fore the straight line AB is produced to

G, so that the rectangle contained by the

segments AG, GB of the line produced,

is equal to the square of C.

B

PROP. XXX. PROB.

To cut a given straight line in extreme and mean ratio.

Let AB be the given straight line ; it is required to cut it in extreme and

mean ratio.

Upon AB describe (Prop. 46. l.)the square BC, and produce CA to D,

so that the rectangle CD.DA may be equal to the square CB (29. 6.).

Take AE equal to AD, and complete the rectangle DF under DC and

AE, or under DC and DA. Then, because the

rectangle CD.DA is equal to the square CB, the

rectangle DF is equal to CB. Take away the

common part CE from each, and the remainder

FB is equal to the remainder DE. But FB is

the rectangle contained by FE and EB, that is,

by AB and BE ; and DE is the square upon AE

;

therefore AE is a mean proportional between
AB and BE (17. 6.), or AB is to AE as AE to EB.
But AB is greater than AE ; wherefore AE is

greater than EB (14. 5.): Therefore the straight

line AB is cut in extreme and mean ratio in E (def.

3. 6.).

Otherwise.

Let AB be the given straight line; it is required to cut it in exti«m«
and mean ratio.

Divide AB in the point C, so that the rectangle contained by AB, BC
be equal to the square of AC (11. 2.): Then be-

cause the rectangle AB.BC is equal to the square ^ q 5
of AC, as BA to AC, so is AC to CB (17. 6.)

;

Therefore AB is cut in extreme and mean ratio in C (def. 3. 6.).

19
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PROP. XXXI. THEOR.

t'n right angled triangles, the rectilineal figure described upon the side oppo-

site to the right angle, is equal to the similar, and similarly described

figures upon the sides containing the right angle.

Let ABC b<! a right angled triangle, having the right angle BAG : Tho
rectilineal figure described upon BC is equal to the similar, and similarly

described figures upon BA, AC.
Draw the perpendicular AD ; therefore, because in the right angled tri-

angle ABC, AD is drawn from the right angle at A perpendicular to the

base BC, the triangles ABD, ADC are similar to the whole triangle ABC,
and to one another (8. 6.), and because the triangle ABC is similar to

ADB, as CB to BA, so is BA to BD (4. 6.) ; and because these three

straight lines are proportionals, as the first to the third, so is the figure upon
the first to the similar, and similarly described figure upon the second (2.

Cor. 20. 6.) : Therefore, as CB to BD,
so is the figure upon CB to the similar

and similarly described figure upon
BA : and inversely (B. 5.), as DB to

BC, so is the figure upon BA to that

upon BC ; for the same reason as DC
to CB, so is the figure upon CA to that

upon CB. Wherefore, as BD and DC
together to BC, so are the figures upon
BA and on AC, together, to the figure

upon BC (24. 5.) ; therefore the figures on BA, and on .\C, are together

equal to that on BC ; and they are similar figures.

PROP. XXXIl. THEOR.

If two triangles, vihich have two sides of the one proportional to two sides of

the other, be joined at one angle, so as to have their homologous sides pa-
rallel to one another ; their remaining sides shall be in a straight line.

Let ABC, DCE be two triangles which have two sides BA, AC propor-

tional to the two CD, DE, viz. BA to AC, as CD to DE ; and let AB be
parallel to DC, and AC to DE ; BC and CE are in a straight line.

Because AB is parallel to DC, and the straight line AC meets them, the

alternate angles BAC, ACD are equal (29 1.) ; for the same reason, the

angle CDE is equal to the angle

ACD ; wherefore also BAC is equal

o CDE : And because the triangles

ABC, DCE have one angle at A
equal to one at D, and the sides about

these angles proportionals, viz. BA to

AC, as CD to DE, the triangle ABC
is equiangular (6. 6.) to DCE :

Therefore the angle ABC is equal to
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the angle DCE : And the angle BAG was proved to be equal to AGD .

Therefore the whole angle ACE is equal to the two angles ABC, BAG ;

add the common angle AGB, then the angles ACE, ACB are equal to the

angles ABC, BAG, ACB . But ABC, BAG, AGB are equal to two right

angles (32. 1.) ; therefore also the angles AGE, AGB are equal to two

right angles : And since at the point G, in the straight line AG, the two

straight lines BG, CE, which are on the opposite sides of it, make the ad-

jacent angles ACE, ACB equal to two right angles ; therefore (14. 1.) DC
tnd CE are in a straight line.

PROP. XXXIII. THEOR.

In equal circles, angles, whether at the centres or circumferences, have the same
ratio which the arcs, on which they stand, have to one another : So also have

the sectors.

Let ABC, DEF be equal circles ; and at their centres the angles BGG,
EHF, and the angles BAG, EDF at their circumferences ; as the arc BG
to the arc EF, so is the angle BGG to the angle EHF, and the angle BAG
to the angle EDF : and also the sector BGG to the sector EHF.
Take any number of arcs GK, KL, each equal to BG, and any number

whatever FM, MN each equal to EF ; and join GK, GL, IIM, UN. Be-
cause the arcs BG, GK, KL are all equal, the angles BGG, GGK, KGL
are also all equal (27. 3.) : Therefore, what multiple soever the arc BL is

of the arc BG, the same multiple is the angle BGL of the angle BGG : For
the same reason, whatever multiple the arc EN is of the arc EF the same
multiple is the angle EHN of the angle EHF. But if the arc BL, be equal

to the arc EN, the angle BGL is also equal (27. 3.) to the angle EHN
;

or if the arc BL be greater than EN, likewise the angle BGL is greater

than EHN : and if less, less : There being then four magnitudes, the two
arcs, BG, EF, and the two angles BGG, EHF, and of the arc BG, and of

ihe angle BGG, have been taken any equimultiples whatever, viz. the arc

BL, and the angle BGL ; and of the arc EF, and of the angle EHF, any
equimultiples whatever, viz. the arc EN, and the an^le EHN; And it

hatj been proved, that if the arc BL be greater than EN, the angle BGL
8 greater than EHN ; and if equal, equal ; and if less, less ; As therefore,

«he arc BG to the arc EF, so (def. 5.5.) is the angle BGG to the anj^le
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EUY But as the angle BGC is to tho angle EHF, so is (15 5.) the an
gle BAC to the angle EDF, for each is double of each (20. 3.) : Therefore,

as tho circumference BC is to EF, so is the angle BGC to the angle EHF,
and the angle BAG to the angle EDF.

Also, as the arc BC to EF, so is the sector BGC to the sector EHF.
Join BC, CK, and in the arcs BC, CK take any points X, 0, and join BX,
XC, CO, OK : Then, because in the triangles GBC, GCK, the two sides

BG, GC are equal to the two CG, GK, and also contain equal angles ; the

base BC is equal (4. 1.) to the base CK, and the triangle GBC to the tri-

angle GCK : Aiid because the arc BC is equal to the arc CK, the remain-

ing part of the whole circumference of the circle ABC is equal to the re-

maining part of the whole circumference of the same circle : Wherefore
the angle BXC is equal to the angle COK (27. 3.) ; and the segment
BXC is therefore similar to the segment COK (def. 9. 3.) ; and they are

upon equal straight lines BC, CK ; But similar segments of circles upon
equal straight lines are equal (24. 3.) to one another : Therefore the seg
raent BXC is equal to the segment COK : And the triangle BGC is equal

to the triangle CGK ; therefore the whole, the sector BGC is equal to the

whole, the sector CGK : For the same reason, the sector KGL is equal to

each of the sectors BGC, CGK ; and in the same manner, the sectors

EHF, FHM, MHN, may be proved equal to one another : Therefore, what
multiple soever the arc BL is of the arc BC, the same multiple is the sec-

tor BGL of the sector BGC. For the same reason, whatever multiple tho

arc EN is of EF, the same multiple is the sector EHN of the sector EHF
;

Now if the arc BL be equal to EN, the sector BGL is equal to the sector

EHN ; and if the arc BL be greater than EN, the sector BGL is greater

than the sector EHN ; and if less, less : Since, then, there are four mag-
nitudes, the two arcs BC, EF, and the two sectors BGC, EHF, and of the

arc BC, and sector BGC, the arc BL and the sector BGL are any equi-

multiples whatever ; and of the arc EF, and sector EHF, the arc EN and

sector EHN, are any equimultiples whatever ; and it has been proved, that

if the arc BL be greater than EN, the sector BGL is greaterthan the sec

V)r EHN ; if equal, equal; and if less, less ; therefore (def. 5. 5.) as the

arc BC is to the arc EF, so is the sector BGC to the sector EHF
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PROP. B. THEOR.

If an angle if a triangle be bisected by a straight line, which likewise cuts tkt

base; the rectangle contained by the sides of the triangle is equal to the

rectangle contained by the segments of the base, together with tlie square of

the straight line bisecting the angle.

Let ABC be a triangle, and let the angle BAG be bisected by the

straight line AD ; the rectangle BA.AC is equal to the rectangle BD.DC,
together with the square of AD.

Describe the circle (Prop. 5. 4.) ACB about

the triangle, and produce AD to the circum-

ference in E. and Join EC Then, because

the angle BAD is equal to the angle CAE,
and the angle ABD to the angle (21. 3.)

AEG, for they are in the same segment ; the

triangles ABD, AEG are equiangular to one

another : Therefore BA : AD : : E A : (4. 6.)

AC, and consequently, BA.AG= (16, 6.)

AD.AE=ED.DA (3. 2.) +DA2. But ED.
DA=BD.DG, therefore BA.AC =• BD.DC
+DA2.

PROP. C THEOR.

Iffrom any anglt of a triangle a straight line be dravon perpendicular to the

base ; the rectangle contained by the sides of the triangle is equal to the

rectangle contained by the perpendicular, and the diameter of the circle de-

scribed about the triangle.

Let ABC be a triangle, and AD the perpendicular from the angle A to

the base BG ; the rectangle BA.AC is equal to the rectangle contained by

AD and the diameter of the circle described about the triangle.
,

Describe (Prop 5. 4.) the circle ACB
about the triangle, and draw its diameter

AE, and join EG ; Because the right

angle BDA is equal to the angle EGA in

a semicircle, and the angle ABD to the

angle AEG, in the same segment (21.

3 ); the triangles ABD, AEG are equi-

angular : Therefore, as (4. 6.) BA to

AD, so is EA to AC : and consequently

the rectangle BA.AC is equal (16. 6.) to

^e rectangle EA.AD.
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PROP. D. THEOR.

The tiCtangU contained by the diagonals of a quadrilateral inscribed in a

circle, is equal to both the rectangles, contained by its ojjposite sides.

Let ABCD be any quadrilateral inscribed in a circle, and let AC, BD be

drawn ; the rectangle AC.BD is equal to the two rectangles AB.CD, and

AD.BC.
Make the angle ABE equal to the angle DBC ; add to each of these

the common angle EBD, then the angle ABD is equal to the angle EBC :

Anu the angle BDA is equal to (21. 3.) the angle BCE, because they are

in the same segment ; therefore the triangle

ABD is equiangular to the triangle BCE.
Wherefore (4. 6.), BC : CE : : BD : DA,
and consequently (16. 6.) BC.DA=BD.CE.
Again, because the angle ABE is equal to

the angle DBC, and the angle (2L 3.) BAE
to the angle BDC, the triangle ABE is equi-

angular to the triangle BCD ; therefore BA
: AE :: BD : DC, and BA.DC=BD.AE:
But it was shewn that BC.DA=BD.CE

;

wherefore BC.DA + BA.DC = BD.CE4-
BD.AE=BD.AC(1. 2.). That is, the rect-

angle contained by BD and AC, is equal to the rectangles contained by

AB, CD,andAD, BC.

PROP. E. THEOR.

Ifan arc of a circle be bisected, andfrom the extremities of the arc, andfrom
the point of bisection, straight lines be drawn to any point in the circum-

ference, the sum of the two lines drawnfrom the extremities of the arc will

have to the line drawn from the point of bisection, the same ratio which the

straight line subtending the arc has to the straight line subtending halfthe

arc.

Let ABD be a circle, of which AB is an arc bisected in C, and from A,

C, and B to D, any point whatever in the circumference, let AD, CD, BD
be drawn ; the sum of the two lines AD
and DB has to DC the same ratio that

BA has to AC.
For since ACBD is a quadrilateral in-

scribed in a circle, of which the diagonals

are AB and CD, AD.CB-f DB.AC (D
6 ) = AB.CD : but AD.CB-j-DB.AC =
AD.AC + DB.AC, because CB = AC.
Therefore AD.AC+DB.AC, that is (1.

2.),(AD+DB) AC=AB.CD. And be-

cause the sides of equal rectangles are re-

ciprocally proportional (14. 6.), AD-j-DB
. DC :

• AB : AC.
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PROP. F. THEOR

Iftwopoints he taken in the diameter ofa circle, such that the rectangle containea

by the segments intercepted between them and the centre ofthe circle be equal to

the square of the radius: audiffrom thesepoints two straight lines be drawn

to any point whatsoever iri the circumference of the circle, the ratio of these

lines will betJiesame with tlie ratio of tJie segments iritercepted between the

two first mentioned points and the circumference of the circle.

Let ABC be a circle, of which the centre is D, and in DA produced, lei

the points E and F be such that the rectangle ED, DF is equal to the

square ofAD ; from E and F to any point B in the circumference, let EB,
FB be drawn ; FB : BE : : FA : AE.

Join BD, and because the rectangle FD, DE is equal to the square of

\D, that is, of DB, FD : DB : : DB : DE (17. 6.).

The two triangles, FDB, BDE have therefore the sides proportional

that are about the common angle D ; thespfore they are equiangular (6.

6.), the angle DEB being equal to the angle DBF, and DBE to DFB

Now, since the sides about these equal angles are also proportional (4. 6.),

FB : BD : : BE : ED, and alternately (16. 5.), FB : BE : : BD : ED, or

FB : BE : : AD : DE. But because FD : DA : : DA : DE, by division

(17. 5.), FA : DA : : AE : ED, and alternately (11. 5.), FA : AE : : DA
: ED. Now it has been shewn that FB : BE : : AD : DE, therefore FB
• BE : : FA : AE.

Cor. If AB be drawn, because FB : BE : : FA : AE, the angle FBE
18 bisected (3. 6.) by AB. Also, since FD : DC : : DC : DE, by compo-
ition (18. 5.), FC : DC : : CE : ED, and since it has been shewn that

FA : AD (DC) : : AE : ED, therefore, ex Kquo, FA : AE : : FC : CE.
ButFB : BE :: FA : AE, therefore, FB : BE : : FC : CE (11.5 ), so that

if FB be produced to 0. and if BC be drawn, the angle EBG is bisected

by the line BC (A. 6.).
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PROP. G. THEOR.

Iffrom the extremity ofthe diameter ofa circle a straight line be drawn tn the

circle, and ifeither within the circle orproduced without it, it meet a line per-

pendicular to the same diameter, the rectangle contained by the straight lint

drawn in the circle, and the segment of it, intercepted between the extremity

ofthe diameter and the perpendicular, is equal to the rectangle contained b^

the diameter and the segment of it cut off by the perpendicular.

Let ABC be a circle, of which AC is a diameter, let DE be perpendicu-

lar to the diameter AC, and let AB meet DE in F ; the rectangle BA.AF
is equai to the rectangle CA.AD. Join BC, and because ABC is an an*

gle in a semicircle, it is a right angle (31. 3.): Now, the angle ADF is

also a right angle (Hyp.) ; and the angle BAG is either the same with

DAF, or vertical to it ; therefore the triangles ABC, ADF are equiangular,

and BA : AC : : AD : AF (4. 6.) ; therefore also the rectangle BA.AF,
contained by the extremes, is equal to the rectangle ACAD contained by
the means (16. 6.).

PROP. H. THEOR.

The perpendiculars drawnfrom the three angles ofany triangle to the opposite

sides intersect one another in the same point.

Let ABC be a triangle, BD and CE two perpendiculars intersecting one
another in F ; Let AF be joined, and produced if necessary, let it meet BC
in G, AG is perpendicular to BC.

Join DE, and about the triangleAEF let a circlw be described, AEI"
then, because AEF is a right angle, the circle described about the triangle

AEF will have AF . >r its diameter (31. 3.). In the same manner, the

circle described al)Out the triangle ADF has AF for its diameter ; there-

fore the points A, E, F and D, are in the circumference of the fame circle
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But because the angle EFB is equal

to the angle DFC(15. 1.), and also

the angle BEF to the angle CPF,
being both right angles, the triangles

BEF, and CDF are equiangular, and
therefore BF : EF : : CF : FD (4. 6.),

or alternately (16.5.) BF : FC : : EF
• FD. Since, then, the sides about

the equal angles BFC, EFD are pro-

portionals, the triangles BFC, EFD
are also equiangular (6. 6.) ; where-
fore the angle FCB is equal to the an-

gle EDF. But EDF is equal to EAF,
because they are angles in the same
segment (21. 3.); therefore the angle

EAF is equal to the angle FCG : Now, the angles AFE, CFG are also

equal, because they are vertical angles ; therefore the remaining angh s

AEF, FGC are also equal (4. Cor. 32. 1.) : But AEF is a right angle,

therefore FGC is a right angle, and AG is perpendicular to BC.

CoR. The triangle ADE is similar to the triangle ABC. For the two
triangles BAD, CAE having the angles at D and E right angles, and the

angle at A common, are equiangular, and therefore BA : AD : : CA : AE,
and alternately BA : CA : : AD : AE ; therefore the two triangles BAC,
DAE, have the angle at A common, and the sides about that angle pro-

portionals, therefore they are equiangular (6. 6.) and similar.

Hence the rectangles BA.AE, CA.AD are equal.

PROP. K. THEOR.

Iffrom any angle of a triangle a perpendicular be drawn to the opposite side

or base : the rectangle contained by the sum and difference of the other two

sides f is equal to the rectangle contained by the sum and difference of the

segments, into which the base is divided by the perpendicular.

Let ABC be a triangle, AD a perpendicular drawn from the angle A on
he base BC, so that BD, DC are the segments of the base

;
(AC+AB)

\C-AB)=(CD-f-DB) (CD-DB.)
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Ficm A as a centre with the radius AC, the greater of the wo sides,

describe the circle CFG : produce AB to meet the circumference in E and
F, and CB to meet it in G. Then because AF=AC, BF=AB i-AC,

the sum of the sides ; and since AE=AC, BE=AC—AB= the dilTe-

rence of the sides. Also, because AD drawn from the centre cuts GC at

right angles, it bisects it ; therefore, when the perpendicular falls within

the triangle, BG=DG—DB=DC—DB= the difierence of the segments

of the base, and BC=BD+DC= the sum of the segments. But when
AD falls without the triangle, BG=DG+ DB=CD-1-DB= the sum of

the segments of the base, and BC=CD—DB= the difference of the seg-

ments of the base. Now, in both cases, because B is the intersection of

the two lines FE, GC, drawn in the circle, FB.BE=CB.BG ; that is, as

has been shewn, (AC+ AB) (AC-AB)=(CD+DB) (CD-DB)

PROBLEMS
RELATING TO THE SIXTH BOOK.

PROP. L. PROBLEM.

To construct a square that shall be equivalent to a given rectilineal^gure.

Let A be the given rectilineal figure ; it is required to describe a sqnar*

that shall be equivalent to A.

Describe (Prop. 45. L) the

rectangular parallelogram

BCDE equivalent to the rec-

tilineal figure A
;

produce

one of the sides BE, of this

rectangle, and make EF=
ED ; bisect BF in G, and

from the centre G, at the

distance GB, or GF, de-

scribe the semicircle BHF,
and produce DE to H.
HE2=BE X EF, (13. 6.) ; therefore the square described upon HE will

be equivalent to the rectilineal figure A.

1 SCHOLIUM. /-K
This problem may be considered as relating to the second Book ; Thus,

join GH, the rest of the construction being the same, as above ; because
the straight line BF is divided into two equal parts in the point G, and into

two unequal in the point E, the rectangle BE.EF, together with the square

of EG, is equal (5. 2.) to the square of GF : but GF is equal to GH ,
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iheiaiore the rectangle BE, EF, together with the square of EG, is equal

to the square of GH : But the squares of HE and EG, are equal (47. 1 ^

to the square of GH : Therefore also the rectailgle BE.EF, together witL

the square of EG, is equal to the squares of HE and EG. Take away
the square of EG, which is common to both, and the remaining rectangle

BE.EF is equal to the square of EH : But BD is the rectangle contained

by BE and EF, because EF is equal to ED ; therefore BD is equal to the

square of EH ; and BD is also equal to the rectilineal figure A ; therefore

the rectilineal figure A is equal to the square of EH : Wherefore a square

has been made equal to the given rectilineal figure A, viz. the square de-

scribed upon EH.
Note. This operation is called squaring the rectilineal figure, or finding

the quadrature of it.

PROP. M. PROB.

To construct a rectangle that shall be equivalent to a given square, and the

difference of whose adjacent sides shall be equal to a given litie.

Suppose C equal to the given square, and
AB the difference of the sides.

Upon the given line AB as a diameter, de-

scribe a circle ; at the extremity of the diam-

eter draw the tangent AD equal to the side

of the square C ; through the point D, and the

centre O, draw the secant DF ; then will DE
and DF be the adjacent sides of the rectangle

required.

First, the difference of their sides is equal

to the diameter EF or AB ; secondly, the rect-

angle DE.DF is equal to AD^ (36. 3.) ; hence
that rectangle is equivalent to the given square 0.

r^ROP. N. PROB.

To construct a rectangle equivalent to a given square, and having the sum
of its adjacent sides equal to a given line.

Let C be the given square, and AB equal to the sum of the sides of the

required rectangle

Upon AB as a diameter,

describe a semicircle ; draw
the line DE parallel to the

diameter, at a distance AD
from it, equal to the side of

ihe given square C ; from the

point E, where the parallel
-^ F B

cuts the circumference, draw EF perpendicular to the diameter ; aF
and FB will be the sides of the rectangle required.
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For their sum is equal to AB ; and their rectangle AF.FB is equal to th«

•quare EF, or to the square AD ; hence that rectangle is equivalent to the

given square C.
'

SCHOLIUM.

To render the problem possible, the distance AD must not exceed the

radius ; that is, the side of the square C must not exceed the half of th«

line AB.

PROP. O. PROB.

To construct a square that skall be to a given square as a given line to a given
line.

Upon the indefinite straight line GH take GK=E, and KH=F ; de-

scribe on GH a semicircle, and draw the perpendicular KL. Through

E-the points G, H, draw the

straight lines LM, LN, mak-
ing the former equal AB, the

side of the given square, and
through the point M, draw
MN parallel to GH, then will

LN be the side of the square

sought.

For, since MN is parallel

to GH, LM : LN : : LG :

LH ; consequently, LM» : LN* : : LG* : LH* (22. 6.) ; but, since the trian-

gle LGH is right angled, we have LG* : LH2 : : GK : KH ; hence LM* :

LN* : : GK : KH ; but, by construction GK=E, and KH=F, also LM
^AB ; therefore, the square described on AB is to that described on LN,
as the line E is to the line F.

D C

JL B

PROP. P. PROB.

To divide a triangle into two parts by a line from the vertex ofone ofits angles^

so that the parts may be to each other as a straight lineM to another straight

line N.

Divide BC into parts BD, DC propor-

tional to M, N; draw the line AD, and
the triangle ABC will be divided as re-

quired.

For, since the triangles of the same
altitude are to each other as their bases,

we have ABD : ADC : : BD : DC : :

M- N.

SCHOLIUM.

A triangle may evidently be divided into any nimiber of parts propoi
tional to given Unes, by dividing the base in the same proportion
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PROP. Q. PROB.

To divide a triangle into two parts by a line dravm parallel to one of its side^

so that these parts may be to each other as two straight lines M, N

As M+N : N, so make AB' to AD^
(Prob. 4.) ; Draw DE parallel to BC,
4nd the triangle is divided as required.

For the triangles ABC, ADE being

similar, ABC : ADE : : AB^ : AD^ ; but

M+N : N : : AB' : AD' ; therefore ABC
: ADE : : M+N : N ; consequently

BDEC : ADE : : M : N.

PROP R. PROB.

To divide a triangle into two parts, by a line drawn from a given point ui

one of its sides, so that the parts may be to each other as two given lines

M, N.

Let ABC be the given triangle, and P the given point ; draw PC, and

divide AB in D, so that AD is to DB as M is to N ; draw DE parallel to

PC, join PE, and the triangle will be divid-

ed by the line PE into the proposed parts.

For join DC ; then because PC, DE are

parallel, the triangles PDE, CDE are equal

;

to each add the triangle DEB, then PEB=s
DCB ; and consequently, by taking each from
the triangle ABC, there results the quadri-

lateral ACEP equivalent to the triangle

ACD. B
Now. ACD : DCB : : AD : DB : : M : N ; consequently,

ACEP : PEB : : M : N

SCHOLIUM.

The above operation suggests the method of dividing a triangle into any

number of equal parts by lines drawn from a given point in one of its sides
;

for if AB be divided into equal parts, and lines be drawn from the points of

equal division, parallel to PC, they will intersect BC, and AC ; and from

these several points of intersection if lines be drawn to P, they will divide

the triangle into equal parts.
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PROP. S. PROB.

To divide a triat^ t into three equivalent parts by lines drawn from the ver*

tices oj \e angles to the same point within the triangle.

Make BD equal to a third part of BC, and draw DE parallel to BA, tne

side to which BD is adjacent. From F, tho middle of DE, draw the

straight lines FA, FB, FC, and they will

divide the triangle as required.

For, draw DA ; then since BD is one
third of BC, the triangle ABD is one
third of the triangle ABC ; but ABD=
ABF (37. 1.) ; therefore ABF is one
hird of ABC ; also, since DF=FE,
BDF = AFE ; likewise CFD = CFE

,

consequently the whole triangle FBC
is equal to the whole triangle FCA ; and
FBA has been shown to be equal to a third part of the whole triangle

ABC ; consequently the triangles FBA, FBC, FCA, are each equal to a

third part of ABC.

PROP. T. PROB.

To divide a triangle into three equivalent parts, by lines drawnJrom a given

point within it.

Divide BC into three equal parts in the points D, E, and draw PD, PE ;

draw also AF parallel to PD, and AG parallel to PE; then if the lines

PF, PG, PA be drawn, the trian-

gle ABC will be divided by them
into three equivalent parts.

For, join AD, AE ; then because
AF, PD are parallel, the triangle

AFP is equivalent to the triangle

AFD ; consequently, if to each of

these there be added the triangle

ABF, there will result the quadri-

lateral ABFP equivalent to the

triangle ABD ; but since BD is a

third part of BC, the triangle ABD
is a third part of the triangle ABC ;

consequently the quadrilateral ABFP is a third part of the triangle ABC.
Again, because AG, PE are parallel, the triangle AGP is equivalent to

the triangle AGE and if to each of these there be added the triangle ACQ
the quadrilateral ACGP will be equivalent to the triangle ACF ; but this

triangle is one third of ABC ; hence the quadrilateral ACGP is one thirJ

of the triangle ABC : cansequently, the spaces ABFP, ACPG. PFG are

each equal to a third part of the triangle ABC.
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PROP. U. PROB.

To hvide a quadrilateral into two parts by a straight line iraxonfrom the vertex

of one ofits angles, so that theparts may be to each other as a line M to art-

other line N.

Draw CE perpendicular to AB, and construct a rectangle equivalent to

the given quadrilateral, of which one side may be CE ; let the other sidfl

be EF ; and divide EF in G, so that

M : N : : GF : EG ; take BP equal

to twice EG, and join PC, then the

quadrilateral will be divided as re-

quired.

For, by construction, the triangle

CPB is equivalent to the rectangle

CE.EG ; therefore the rectangle CE,
GF is to the triangle CPB as GF is

to EG. Now CE.GF is equivalent

to the quadrilateral DP, and GF is to EG as M is to N ; therefore,

DP : CPB : : M : N ;

that is, the quadrilateral is divided, as required.

PROP. W. PROR

To divide a quadrilateral into two parts by a line parallel to one of its sides

so that these parts may be to each other as the line M is to the line N.

Produce AD, BC till they meet in E ; draw the perpendicular EF and
bisect it in G. Upon the side GF construct a rectangle equivalent to tha

triangle EDC, and let HB be equal

to the other side of this rectangle.

Divide AH in K, so that AK : KH
: : M : N, and as AB is to KB, so

make EA^ to Ea' ; draw ab paral-

lel to AB, and it will divide the quad-
rilateral into the required parts.

For since the triangles EAB, Eab
are similar, we have the proportion

EAB :Eab.: EA' : Ea*; but by
conotTuction, EA' : Ea' : ; AB :

KB ; so that EAB : Eab : : AB : KB
quenily, since by constniction EAB=AB.GF, it follows that Ea6=KB
GF, and therefore AK.GF=AJ, and since by construction AH.GF=AC
it follows that KH.GF=aC. Now AK.GF : KH.GF : : AK : KH ; bi*

A"K : KH : : M : N ; consequently,

A4 : aC : : M : N ;

that is, the quadrilateral is divided, as required.

-a. K E H B
: : AB.GF : KB.GF ; and const.



60 ELEMENTS, &c.

PROP. X. PROB.

To divide a quadrilateral into twoparts by a line dravm from a point in one oj

'ts sides, so that the parts may be to each other as a line M is to a line N.

Draw PD, upon which construct a rectangle equivalent to the given

quadrilateral, and let DK be the other

side of this rectangle ; divide DK in

L, so that DL : LK : : M : N ; make
DF=2DL, and FG equal to the per-

pendicular Ao ; draw Gp parallel to

DP
;
join the points P, p, and the

quadrilateral figure will be divided,

as required.

For draw the perpendicular pb
;

then by construction, PD.DK = AC,
and PD.DF =PD.Aa + PD.pb, that

is, PD.DF is equivalent to twice the

sum of the triangles APD, ;jPD ,

consequently, since DL is half DF,
PD.DL=APpD ; and therefore PD.
LK=PBC;) ; but PD.DL : PD.LK : : DL : LK : : M : N ; consequently,

AFpp : FBCp : : M : N ;

hence the quadrilateral is divided, as required.

PROP. Y. PROB

To divide a quadrilateral by a line perpendicular to one ofits sides, so that the

two parts may be to each other as a line M is to a line N.

Let ABCD be the given quadrilateral, which is to be divided in the ratio

ofM to N by a perpendicular to the side AB.
Construct on DE perpendicular

to A^, a rectangle DE.EF, equi-

valent to the quadrilateral AC,
and divide FE in G, so that FG :

GE : : M : N. Bisect AE in H,
and divide the quadrilateral EC
into two parts by a line PQ, paral-

lel to DE, so that those parts may
be to each other as FG is to GH,
then PQ will also divide the quadri-

lateral AC as required.

For, by construction DE.LF=AC, and DE.EH=DAE ; hence DE.
HF=EC, and consequently, since the quadrilateral EC is divided in the

same proportion as the base FH of its equivalent rectangle, it follows thai

QC=DE.FG, and EP=DE.GH,also AP=DE.GE ; consequently,

QC : AP : : FG : GE : : M : N
;

mat is, the quadrilateral is divided, as required.

]? GrA. H E
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BOOK I.

OF THE QUADRATURE OF THE CIRCLE,

LEMMA

A t/ curve tine, or any polygonal line, which envelopes a convex line from ont

end to the other, is longer than the enveloped line.

Lei AMB be the enveloped line ; then will it be less than the line

Al'DB which envelopes it.

We have already said that by the

terun convex line we understand a line,

pol/gonal, or curve, or partly curve and

SarUy polygonal, such that a straight

ne cannot cut it in more than two

points. If in the line AMB there were

any sinuosities or re-entrant portions, it

would cease to be convex, because a

straight line might cut it in more than

two points. The arcs of a circle are essentially convex ; but the present

proposition extends to any line which fulfils the required conditions.

This being premised, if the line AMB is not shorter than any of those

which envelope it, there will be found among the latter, a line shorter than

all the rest, which is shorter than AMB, or, at most, equal to it. Let

ACDEB be this enveloping lino : any where between those two lines,

draw the straight line PQ, not meeting, or pt least only touching, the line

AMB. The straight line PQ is shorter than PCDEQ ; hence, if instead

«f the part PCDEQ, we substitute the straight line PQ, the enveloping line

APQB will be shorter than APDQB. But, by hypothesis, this latter was
shorter tha i any other ; hence that hypothesis was false : hence all of "he

enveloping lines are longer than AMB
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C<»A J . Mence the perimeter of any polygon inscribed in a circle it

Ifess than the circumference of the circle.

Cor. 2. If from a point two straight lines be drawn, touching a circle,

these two lines are together greater than the arc intercepted between

them ; and hence the perimeter of any polygon described about a circle it

greater than the circumference of the circle.

PROP. L THEOR.

Ifjrom the greater of two unequal magnitudes there he taken away its half,

and from the remainder its half; and so on; There will at length remain

a magnitude less than the least of the proposed magnitudes.

Let AB and C be two unequal magnitudes, of which AB is the greater.

If from AB there be taken away its half, and from the ^
remainder Its half, and so on ; there shall at length -

*^

remain a magnitude less than C.

For C may be multiplied so as, at length, to be-

come greater than AB. Let DE, therefore, be a

multiple of C, which is greater than AB, and let it

contain the parts DF, FG, GE, each equal to C.

From AB take BH equal to its half; and from the -rr.

remainder AH, take HK equal to its half, and so on,

until there be as many divisions in AB as there are

in DE ; And let the divisions in AB be AK, KH,
HB. And because DE is greater than AB, and EG
taken from DE is not greater than its half, but BH
taken from AB is equal to its half; therefore the re-

mainder GD is greater than the rem lindor HA. B C E
Agam, because GD is greater than HA, and GF is

not greater than the half of GD, but HK is equal to the half of HA ; there-

fore the remainder FD is greater than the remainder AK. And FD is

equal to C, therefore C is greater than AK ; that is, AK is less than C.

PROP. n. THEOR.

Equilateral polygons, of the same number of sides, inscribed in circles, air

similar, and are to one another as the squares of the diameters of the

circles.

Let ABCDEF and GHIKLM be two equilateral polygons of the same
number of sides inscribed in the circles ABD and GHK ; ABCDEF and
GHUvLM are similar, and are to one another as the squares of the diame-
ters of the circles ABD, GHK.

Find N and O the centres of the circles, join AN and BN, as also GO
and HO, and produce AN and GO till they meet the circumferences in D
and K.

Because the straight lines AB, BC, CD, DE, EF, FA, are all equal
the arcs AB, BC, CD, DE, EF, FA are also equal (28. 3.). For the
same reason, the arcs GH, HI, IK, KL. LM, iMG are a^ equal, and they
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are equal in number to the others ; therefore, whatever part the arc AB :s

of the whole circumference ABD, the same is the arc GH of the cimum-
ference GHK. But the angle ANB is the same part of four right angles,

.'hat the arc AB is of the circumference ABD (33. 6.) ; and the angle

GOH is the same part of four right angles, that the arc GH is of the cir-

cumference GHK (33. 6.), therefore the angles ANB, GOH are each of

them the same part of four right angles, and therefore they are equal to

one another. The isosceles triangles ANB, GOH are therefore equian-

gular, and the angle ABN equal to the angle GHO ; in the same manner,

by joining NC, 01, it may be proved that the angles NBC, OHI are equal

to one another, and to the angle ABN. Therefore the whole angle ABC

is equal to the whole GHI ; and the same may be proved of the angles

BCD, HIK, and of the rest. Therefore, the polygons ABCDP^F and

GHIKLM are equiangular to one another ; and since they are equilateral,

the sides about the equal angles are proportionals ; the polygon ABCDEF
is therefore similar to the polygon GHIKLM (def. 1.6.). And because simi-

lar polygons are as the squares of their homologous sides (20. 6.), the po-

lygon ABCDEF is to the polygon GHIKLM as the square of AB to the

square of GH ; but because the triangles ANB, GOH are equiangular,

the square of AB is to the square of GH as the square of AN to the square

of GO (4. 6.), or as four times the square of .\N to four times the square

15. 5.) of GO, that is, as the square of AD to the square of GK, (2. Cor.

8, 2.)- Therefore also, the polygon ABCDEF is to tho polygon GHIKLM
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as ihf square of AD to the square of GK ; and they have also been shewn
to be>iimilar.

CoR. Every equilateral polygon inscribed in a circle is also equiangu

lar : For the isosceles triangles, which have their common vertex in the

centre, are all equal and similar ; therefore, the angles at their bases are

all equal, and the angles of the polygon are therefore also equal

PROP. in. PROB.

The side of any equilateral polygon inscribed in a circle being given, tofind the

side of a polygon of the same number of sides described about the circle.

Lei ABCDEF be an equilateral polygon inscribed in the circle ABD
;

it is required to find the side of an equilateral polygon of the same number
of sides described about the circle.

f^ind G the centre of the circle
;
join GA, GB, bisect the arc AB in H

;

and through H draw KHL touching the circle in H, and meeting GA and

GB produced in K and L ; KL is the side of the polygon required.

Produce GF to N, so that GN maybe equal to GL
;
join KN, and from

G draw GM at right angles to KN, join also HG.
Because the arc AB is bisected in H, the angle AGH is equal to the

angle BGH (27. 3.) ; and because

KL touches the circle in H, the

angles LHG, KHG are right an-

gles (18. 3.); therefore, there are

two angles of the triangle HGK,
equal to two angles of the triangle

HGL, each to each. But the side

GH is common to these triangles
;

therefore they are equal (26. l.),and

GL is equal to GK. Again, in

the triangles KGL, KGN, because

GN is equal lo GL ; and GK com-
mon, and also the angle LGK equal

to the angle KGN ; therefore the

base KL is equal to the base KN
(4. 1.). But because the triangle KGN is isosceles, the angle GKN is

equal to the angle GNK, and the angles GMK, GMN are both right an

gles by construction ; wherefore, the triangles GMK, GMN have two an

gles of the one equal to two angles of the other, and they have also the

side GM common, therefore they are equal(26. l.),andthe side KM is equal

to the side MN, so that KN is bisected in M. But KN is equal to KL,
and therefore their halves KM and KH are also equal. Wherefore, in the

triangles GKH, GKM, the two sides GK and KH are equal to the two
GK and KM, each to each ; and the angles GKH, GKM, are also equal,

therefore GM is equal to GH (4. 1.) ; wherefore, the point M is in the cir-

cumference of the circle ; and because KMG is a right angle, KM touches

the circle. And in the same manner, by joining the centre and the other

angular points of the inscribed polygon, an equilateral polygon may bo
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described about the circle, the sides of which will each be equal to KL, and

wiJ be equal in number to the sides of the inscribed polygon. Therefore.

KL is the side of an equilateral polygon, described about the circle, of th«

same number of sides with the inscribed polygon ABGDEF.

CoR. 1. Because GL, GK, GN, and the other straight lines drawn
from the centre G to the angular points of the polygon described about the

circle ABD are all equal ; if a circle be described from the centre G, with

the distance GK, the polygon will be inscribed in that circle ; and there-

fore it is similar to the polygon ABGDEF.
Cor. 2. It is evident that AB, a side of the inscribed polygon, is to KL,

a side of the circumscribed, as the perpendicular from G upon AB, to the

perpendicular from G upon KL, that is, to the radius of the circle ; there-

fore also, because magnitudes have the same ratio with their equimultiples

(15. 5.), the perimeter of the inscribed polygon is to the perimeter of the

circumscribed, as the perpendicular from the centre, on a side of the in-

scribed polygon, to the radius of the circle.

PROP. IV. THEOR.

A circle beingginen, two similarpolygons may befound, the one described about

the circle, and the other inscribed in it, which shall differfrom one another hy

a space less than any given space.

Let ABC be the given circle, and the square of D any given space ; a

polygon may be inscribed in the circle ABC, and a similar polygon describ-

ed about it, so that the difference between them shall be less than the

square of D.
In the circle ABC apply the straight line AE equal to D, and let AB be

a fourth part of the circumference of the circle. From the circumference

AB take away its half, and from the remainder its half, and so on till the

circumference AF is found less than the circumference AE H. 1. Sup.).

Find the centre G ; draw the diameter AC, as also the straight lines AF
and FG ; and having bisected the circumference AF in K, join KG, and
draw HL touching the circle in K, and meeting GA and GF produced in

H and L ; join CF.
Because the isosceles triangles HGL and AGF have the common an-

gle AGF, they are equiangular (6. 6.) and the angles GHK, GAF are

therefore equal to one another. But the angle GKH, CFA are also equal,

for they are right angles ; therefore the triangles HGK, ACF, are like-

wise equiangular (4. Cor. 32. 1.).

And because the arc AF was found by taking from the arc AB its half,

and from that remainder its half, and so on, AF will be contained a certain

number of times, exactly, in the arc AB, and therefore it will also be con-
tained a certain number of times, exactly, in the whole circumference
ABC ; and the straight line AF is therefore the side of an equilateral poly-

gon inscribed in the circle ABC. Wherefore also, HL is the side of an
equilateral polygon, of the same number of sides, described about ABC (3.

1. Sup.). Let the polygon described about the circle be called M, and th«

polygon ins«'ribed be called N ; then, because these polygons are similar
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tliey are as the squares of the homologous sides HL and AF (3. "Oorol.

20. 6.), that is, because the triangles HLG, AFG are similar, as the square

of HG to the square of AG, that is of GK. But the triangles HGK, ACF
have been proved to be similar, and therefore the square of AC is to the

square of CF as the polygon M to the polygon N ; and, by conversion,

the square of AC is to its excess above the squares of CF, that is, to the

square of AF (47. 1.), as the polygon M to its excess above the polygon
N. But the square of AC, that is, the square described about the circle

ABC is greater than the equilateral polygon of eight sides described about

the circle, because it contains that polygon ; and, for the same reason, the

polygon of eight sides is greater than the polygon of sixteen, and so on
;

therefore, the square of AC is greater than any polygon described about

the circle by the continual bisection of the arc AB ; it is therefore greater

than the polygon M. Now, it has been demonstrated, that the square of

AC is to the square of AF as the polygon M to the difference of the poly-

gons ; therefore, since the square of AC is greater than M, the square of

AF is greater than the difference of the polygons (14. 5.). The difference

of the polygons is therefore less than the square of AF ; but AF is less

than D ; therefore the difference of the polygons is less than the square of

D ; that is, than the given space.

CoR. 1. Because the polygons M and N differ from one another more
than either of them differs from the circle, the difference between each of

them and the circle is less than the given space, viz. the square of D. And
therefore, however small any given space may be, a polygon may be in-

Bcrfoed in the circle, and another described about it, each of which shall

differ from the circle by a space less than the given space.

Cor. 2. The space B, which is greater than any polygon that can be

inscribed in the circle A, and less than any polygon that can be described

about it, is equal to the circle A. If not, let them be unequal ; and first,

let B exceed A by the space C. Then, because the polygons described

about the circle A are all greater than D, by hypothesis ; and because B
js greater than A by the space C therefore no polygon can bo desc rihod
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about the circle A, but what must exceed it by a space greater than C,

which is absurd. In the same manner, if B be less than A by the space

C, it is shewn that no polygon can be inscribed in the circle A, but what
is less than A by a space greater than C, which is also absurd. Therefore,

A and B are not unequal ; that is, they are equal to one another.

PROP. V. THEOR.

TTie area of any circle is equal to the rectangle contained by the semi-diameter,

and a straight line equal to half the circumference.

Let ABC be a circle of which the centre is D, and the diameter AC ; if

in AC produced there be taken AH equal to half the circumference, the

area of the circle is equal to the rectangle contained by DA and AH.
Let AB be the side of any equilateral polygon inscribed in the circle

ABC ; bisect the circumference AB in G, and through G draw EGF
KUching the circle, and meeting DA produced in E, and DB produced in

K IL L

K-r-O

F ; EF will be the side of an equilateral polygon described about the cit

cle ABC (3. 1. Sup.). In AC produced take AK equal to half the peri-

meter of the polygon whose sid«? is .\B ; and AL equal to half the perime-

ter of the polygon whose side is EF. Then AK will be less, and \ U
greater than the straight line .\H (Lem. Sup.). Now, because in the

triangle EOF, DG is drawn perpendicular to the base, the triangle EDF
23
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IS equal to the rectangle contained by DG and the half of EF (41. 1.) and

as the dame is true of all the other equal triangles having their vertices ii

D, which make up the polygon described about the circle ; therefore, the

whole polygon is equal to the rectangle contained by DG and AL, half the

perimeter of the polygon (1. 2.), or by DA and AL. But AL is

greater than AH, therefore the rectangle DA.AL is greater than the rect-

angle DA.AH ; the rectangle DA.AH is therefore less than the rectangle

DA.AL, that is, than any polygon described about the circle ABC.
Again, the triangle ADB is equal to the rectangle contained by DM the

perpendicular, and one half of the base AB, and it is therefore less than the

rectangle contained by DG, or DA, and the half of AB And as the same

IS true of all the other triangles having their vertices in D, which make
up the inscribed polygon, therefore the whole of the inscribed polygon ii

less than the rectangle contained by DA, and AK half the perimeter of the

polygon. Now, the rectangle DA.AK is less than DA.AH ; much more,

therefore, is the polygon whose side is AB less than DA.AH ; and the

rectangle DA.AH is therefore greater than any polygon inscribed in th«»

circle ABC. But the same rectangle DA.AH has been proved to be less

than any polygon described about the circle ABC ; therefore the rectangle

DA.AH is equal to the circle ABC (2. Cor. 4. 1. Sup.). Now DA is the

semidiameter of the circle ABC, and AH the half of its circumference.

CoR. 1. Because DA : AH : : DA^ : DA.AH (1. 6.), and because by
this proposition, DA.AH= the area of the circle, of which DA is the ra-

dius : therefore, as the radius of any circle to the semicircumference, or as

the diameter to the whole circumference, so is the square of the radius to

the area of the circle.

Cor. 2. Hence a polygon may be described about a circle, the perime-
ter of which shall exceed the circumference of the circle by a line that is

less than any given line. Let NO be the given line. Take in NO the

part NP less than its half, and also than AD, and let a polygon be describ-

ed about the circle ABC, so that its excess above ABC may be less than

the square of NP (1. Cor. 4. 1. Sup.). Let the side of this polygon be EF.
\nd since, as has been proved, the circle is equal to the rectangle DA.AH,
and the polygon to the rectangle DA.AL, the excess of the polygon above

the circle is equal to the rectangle DA.HL ; therefore the rectangle DA
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HL is l.js» khan the square of NP ; and therefore, since D \ '» greater tha»

NP, HL n less than NP, and twice HL less than twice NP, wherefore

much more is twice HL less than NO. But HL is the difference betweep
half the perimeter of the polygon whose side is EF, and half the circum-

ference of the circle ; therefore, twice HL is the difference between the

whole perimeter of the polygon and the whole circumference of the circle

(5. 5.). The difference, therefore, between the perimeter of the polygon

and the circumference of the circle is less than the given line NO.
Cor. 3. Hence, also, a polygon may be inscribed in a circle, such

that the excess of the circumference above the perimeter of the polygon
may be less than any given line. This is proved like the preceding.

PROP. VL THEOR.

TTie areas ofcircles are to one another in the duplicate ratio, or as the square*

of their diameters.

Let ABD and GHL be two circles, of which the diameters are AD and
GL; the circle ABD is to the circle GHL as the square of AD to the

square of GL.
Let ABCDEF and GHKLMN be two equilateral polygons of the same

number of sides inscribed in the circles ABD, GHL ; and let Q be such a

DG

•pace that the square of AD is to the square of GL as ilic circle AflP to

the s|.ace Q. Becau.se the polygons ABCDEF and GHKLMN are e«jui

luieral unJ of the same number of sides, they are similar (2. I. Sup.\ anJ



172 SUPPLEMENT TO THE ELEMENTS

then arcdf. are as the squares of the diameters of the circles in which they

are inscribed. Therefore AD'' : GL* : : polygon ABCDEF ; polygon

GHKLMN ; but AD» : GL^ : : circle ABD : Q ; and therefore, ABCDEF
: GHKLMN : : circle ABD : Q. Now, circle ABD 7ABCDEF ; there-

fore Q 7GHKLMN (14. 5.), that is, Q is greater than any polygon in-

scribed in the circle GHL.
In the same manner it is demonstrated, that Q is less than any polygon

described about the circle GHL ; wherefore the space Q is equal to tho

circle GHL (2. Cor. 4. 1. Sup.). Now, by hypothesis, the circle ABD is

to the space Q as the square of AD to the square of GL ; therefore the

circle ABD is to the circle GHL as the square of AD to the square of GL.

CoR. 1. Hence the circumferences of* circles are to one another as

their diameters.

Let the straight line X be equal to half the circumference of the circle

\.BD and the straight line Y to half the circumference of the circle GHL '.

And because the rectangles AO.X and GP.Y are equal to the circles ABD
and GHL (5. 1. Sup.), therefore AO.X : GP.Y : : AD^ : GL^ : : AO^ :

GP2; and alternately, AO.X : AO^ : : GP.Y : GP-^; whence, because

rectangles that have equal altitudes are as their bases (1. G.). X : AO : :

Y : GP,and again alternately, X : Y : : AO : GP: wherefore, taking the

doubles of each, the circumference ABD is to the circumference GHL u
the diameter AD to the diameter GL.

Cor. 2. The circle that is described upon the side of a right angled

triangle opposite to the right angle, is equal to the two circles described on

the other two sides. For the circle described upon SR is to the circle de-

scribed upon RT as the square of SR to the square of RT ; and the circle

described upon TS is to the circle described upon RT as the square of ST
to the square of RT. Wherefore,
the circles described on SR and on
ST are to the circle described on RT
as the squares of SR and of ST to

the square of RT (24. 5.). But the

squares of RS and of ST are equal
to the square of RT (47. 1.) ; there-

fore the circles described on RS and
ST are equal to the circle described
on RT

PROP. VH. THEOR.

Equiangular parallelograms are to one another as the products of th^ nnm
bers proportional to their sides.

Let AC and DF be two equiangular parallelograms, and let M, N, P
«nd Q be four numbers, such that AB : BC : : M . N ; AB : DE : • M
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P
, and AB : EF : : M : Q, and therefore ex zequali, EC : EF : . N . Q

The parallelogram AC is lo the parallelogram DF as MN to PQ.

Let NP be the product of N into P, and the ratio of MN to PQ will be

compounded of the ratios (def. 10. 5.) of MN to NP, and NP to PQ
But the ratio of MN to NP is the same with that of M to P (15. 5.), be

E

A. B D B
cause MN and NP are equimultiples of M and P ; and for the same reason,

the ratio of NP to PQ is the same with that ofN to Q ; therefore the ratio

ofMN to PQ is compounded of the ratios of M to P, and ofN to Q. Now,
the ratio of M to P is the same with that of the side AB to the side DE (by

Hyp.) ; and the ratio of N to Q the same with that of the side BC to the

side EF. Therefore, the ratio of MN to PQ is compounded of the ratios

of AB to DE, and of BC to EF. And the ratio of the parallelogram AC
to the parallelogram DF is compounded of the same ratios (23. 6.) ; there-

fore, the parallelogranc AC is to the parallelogram DFas MN, the product

of the numbers M and N, to PQ, the product of the numbers P and Q.

Cor. 1. Hence, if GH be to KL as the number M to the number N ;

the square described on GH will be to

the square described on KL as MM, the G H K L
square of the number M to NN, the

square of the number N.

Cor. 2. If A, B, C, D, &c. are any lines, and tn, n, r, s, &c. numbers
proportional to them ; viz. A : U : : m : n, A : C : : m : r, A : D : : m : s,

&c. ; and if the rectangle contained by any two of the lines be equal to the

square of a third line, the product of the numbers proportional to the first

two, will be equal to the square of the number proportional to the third

,

that is, if A.C= B2, mXr=nXn, or=7j2.

For by this Prop. A.C : B^ : : mXr : n^ ; but A.C=B2, therefore mXf
=n2. Nearly in the same way it may be demonstrated, that whatever is

the relation between the rectangles contained by these lines, there is the

same between the products of the numbers proportional to them.

So also conversely ifm and r be numbers proportional to the lines A and

C ; if also A.C=B2, and if a number n be found such, that n^ssmr, then

A : B : : n» : 71. For let A : B : : m : q, then since m, q, r are proportional

to A, B, and C, and A.C=B*; therefore, as has just been proved. q'=m
Xr ; but n'^=qXr, by hypothesis, therefore n^=q^, and nrsj ; wherefore

A : B : : m : n

SCHOLIUM.

In order to have numbers proportional to any set of magnitudes ol the
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same kind, suppose one of them to be divided into any number m, of ei|aal

parts, and let H be one of those parts. Let H be found n times in the mag-
nitude B, r times in C, s times in D, &c., then it is evident that the num-
bers m, n, r, s are proportional to the magnitudes A, B, C and D. When
therefore it is said in any of the following propositions, that a line as A=a
a number m, it is understood that A=wiX H, or that A is equal to the given

magnitude H multiplied by m, and the same is understood of the other

magnitudes, B, C, D, and their proportional numbers, H being the common
measure of all the magnitudes. This common measure is omitted for the

sake of brevity in the arithmetical expression ; but is always implied, when
a line, or other geometrical magnitude, is said to be equal to a number
Also, when there are fractions in the number to which the magnitude is

called equal, it is meant that the common measure H is farther subdivided

into such parts as the numerical fraction indicates. Thus, if A=360.375,
it is meant that there is a certain magnitude H, such that A=360xH+
375

X H, or that A is ?qual to 360 times H, together with 375 of the

thousandth parts of H. And the same is true in all other cases, where
numbers are used to express the relations of geometrical magnitudes.

PROP. VIIL THEOR.

The perpendicular drawnfrom the centre ofa circle on the chord ofany arc is a

meanproportional between half the radius and the line made up ofthe radius

and theperpendicular drawnfrom the centre on the chord ofdouble that arc

:

And the chordofthe arc is a meanproportional between the diameter and a line

which is the difference between the radius and the aforesaid perpendicularfrom
the centre

Let ADB be a circle, of which the centre is C ; DBE any arc, and DB
the half of it ; let the chords DE, DB be drawn : as also OF and CG at

right angles to DE and DB ; if CF be produced it will meet the circum

fereuce in B : let it meet it again in A, and let AC be bisected in H ; CG
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18 a mean proportional between AH and AF ; and BD a mean proportional

between AB and BF, the excess of the radius above CF.
Join AD ; and because ADB is a right angle, being an angle in a semi

circle ; and because CGB is also a right angle, the triangles ABD, CBG
are equiangular, and, AB : AD : : BC : CG (4. 6.), or alternately, AB :

BC ; : AD : CG ; and therefore, because AB is double of BC, AD is dou-

ble of CG, and the square of AD therefore equal to four times the squaro

ofCG.
But, because ADB is a right angled triangle, and DF a perpendicular

on AB, AD is a mean proportional between AB and AF (8. 6.), and AD'
=AB.AF (17. 6.), or since AB is =4AH, AD2=4AH.AF. Therefore
also, because 4CG2=AD2, 4CG2=4AH.AF, and CG2=AH.AF ; where
fore CG is a mean proportional between AH and AF, that is, between half

the radius and the line made up of the radius, and the perpendicular on the

chord of twice the arc BD.
Again, it is evident that BD is a mean proportional between AB and BF

(8. 6.), that is, between th« diameter and the excess of the radius above

the perpendicular, on the chord of twice the arc DB.

PROP. IX. THEOR.*

The eircumferenee of a circle exceeds three times the diameter, by a line lets

than ten of the parts, of which the diameter contains seventy, but greater

than ten of the parts whereof the diameter contains seventy-one.

Let ABD be a circle, of which the centre is C, and the diameter AB

;

the circumference is greater than three times AB, by a line less than ^, oi
70'

-, of AB, but greater than— of AB.

* la thti projiositioii, the characte'' -^ placed aAer a number, si<;iittlds that rotnethinf it m
to addwl to it ; and th« character --.on the other ha.t(i, signifie* that something ia to ba takax
•V f from it
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In the circle ABD apply the straight line BD equal to the radius BC

.

Draw DF perpendicular to BC, and let it meet the circumference again in

E ; draw also CG perpendicular to BD : produce BC to A, bisect AC in

H, and join CD.
It is evident, that the arcs BD, BE are each of them one-sixth of the

circumference (Cor. 15. 4.), and that therefore the arc DBE is one third of

the circumference. Wherefore, the line (8. 1. Sup.) CG is a mean pro-

portional between AH, half the radius, and the line AF. Now because the

sides BD, DC, of the triangle BDC are equal, the angles DCF, DBF are

also equal ; and the angles DFC, DFB being equal, and the side DF com-
mon to the triangles DBF, DCF, the base BF is equal to the base CF, and
BC is bisected in F.

Therefore, if AC or BC= 1000, AH=500, CF=500, AF=1500, and

CG being a mean proportional between AH and AF, CG2=(17. 6.) AH.
AF=500x 1500=750000; wherefore CG=866.0254-f , because (866.

0254)2 is less than 750000. Hence also, AC-f CG=1866.02544-.
Now, as CG is the perpendicular drawn from the centre C, on the chord

of one-sixth of the circumference, if P = the perpendicular from C on the

chord of one-twelfth of the circumference, P will be a mean proportional

between AH (8. 1. Sup.) and AC-t-CG, and P2=AH (AC-fCG)=
.500 X (1866.0254+) = 933012.7-f . Therefore, P = 965.9258-i-, be-

cause (965.9258)2 is less than 933012.7. Hence also, AC+P= 1965.

9258+.
Again, if Q = the perpendicidar drawn from C on the chord of one

twenty-fourth of the circumference, Q will be a mean proportional between
AH and AC+P, and Q2=AH (AC+P)=500(1965.9258+)=982962.
9+ ; and therefore Q=991.4449+, because (991.4449)2 is less than

982962.9. Therefore also AC+Q=1991.4449+.
In like manner, if S be the perpendicidar from C on the chord of one

forty-eighth of the circumference, S2=AH (AC+Q)=500 (1991.4449+)
=995722.45+ ; and S=99?.8589+, because (997.8589)2 is less than

995722.45. Hence also, AC+S=1997.8589+.
Lastly, if T be the perpendicular from C on the chord of one ninety-sixth

of the circumference, T2=AH (AC+ S)=500 (1997.8589+)=998929.
45+, and T=999.46458+. Thus T, the perpendicular on the chord of

one ninety-sixth of the circumference, is greater than 999.46458 of those

parts of which the radius contains 1000.

But by the last proposition, the chord of one ninety-sixth part of the cir-

cumference is a mean proportional between the diameter and the excess of

the radius above S, the perpendicular from the centre on the chord of one
forty-eighth of the circumference. Therefore, the square of the chord of

one ninety-sixth of the circumference=AB (AC—S)=2000x(2.1411— ,)

=4282.2--; and therefore the chord itself =65.4386— , because (65.

4386)2 ig greater than 4282.2. Now, the chord of one ninety-sixth of the

circumference, or the side of an equilateral polygon of ninety-six sides in-

scribed in the circle, being 65.4386— , the perimeter of that polygon will be
=(65.4386—) 96=6282.1056—.

Let the perimeter of the circumscribed polygon of the same number of

«ide8, be M,then (2. Cor. 2. 1. Sup.) T : AC : : 6282.1056— : M, that is,

(since T=999.46458+, as already shewn),
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999.46458+ : 1000 : : 6282.1056— : M ; if then N be such

Jiat 999.46458 : 1000 : : 6282.1056— : N ; ex aequo perturb. 999.46458

+ : 999.46458 : : N : M ; and, since the first is greater than the second^

the third is greater than the fourth, or N is greater than M.
Now, if a fourth proportional be found to 099.46458, 1000 and 6282.

1056 viz 6285.461—, then,

because, 999.46458 : 1000 : : 6282.1056 : 6285.461—,
and as before, 999.46458 : 1000 : : 6282.1056— : N ;

therefore, 6282.1056 : 6282.1056— : : 6285.461— N, and as the first o«

these proportionals is greater than the second, the third, viz. 6285 46^

is greater than N, the fourth. But N was proved to be greater than M
;

much more, therefore, is 6285.461 greater than M, the perimeter of a poly,

gon of ninety-six sides circumscribed about the circle ; that is, the perime-

ter of that polygon is less than 6285.461 ; now, the circumference of the

circle is less than the perimeter of the polygon ; much more, therefore, is it

les8 than 6285.461 ; wherefore the circumference of a circle is less than

6285.461 of thoso parts of which the radius contains 1000. The circum-

ference, therefore has to the diameter a less ratio (8. 5.) than 6285.461 has

to 2000, or than 3142.7305 has to 1000 : but the ratio of 22 to 7 is greater

than the ratio of 3142.7305 to 1000, therefore the circumference has a less

ratio to the diameter than 22 has to 7, or the circumference is less than 22
of the parts of which the diameter contains 7.

It remains to demonstrate, that the part by which the circumference ex-

coeds the diameter is greater than— of the diameter.

It was before shewn, that CG'=750000 ; wherefore CG =866.02545—

,

because (866.02545)2 is greater than 750000 ; therefore AC+CG= 1866
02545—.
Now, P being, as before, the perpendicular from the centre on the chord

of one twelfth of the circumference, P^zsAH (AC+CG) =^500 x( 1866
02545) =933012.73—; and P = 965.92585— , because (965.92585)'

Ugreater than 633012.73. Ilonre al.so, AC+P= 1965.925S5—
23
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Next, as Q= the perpendicular drawn from the centre on the chord o?

one twenty-fourth of the circumference, Q2=AH (AC+P)=oOOx (1965.

92585- ) =982962.93— ; and Q = 991.44495— .because (991.44496)2

is greater than 982962.93. Hence also, AC+Q= 1991.44495—

.

In like manner, as S is the perpendicular from C on the chord of one
forty-eighth of the circumference, S2=AH (AC 4-Q)=500(I991.44495—

)

=995722.475— , and S= (997.85895— ) because (997.85895)2 jg greater

than 995722.475.

But the square of the chord of the ninety-sixth part of the circumference

=AB (AC-S)=2000 (2.141054-)=4282.1 + , and the chord itself =.•

65.4377-f because (65.4377)2 is less than 4282.1 : Now the chord ofouxj

ninety-sixth part of the circumference being =65.43774-, the perimete*

of a polygon of ninety-six sides inscribed in the circle =(65.4377-)- )96=i-

6282.019-I-. But the circumference of the circle is greater than he pe

rimeter of the inscribed polygon ; therefore the circumference is greater

than 6282.019, of those parts of which the radius contains 1000 ; or thuik

3141.009 of the parts of which the radius contains 500, or the diameter

contains 1000. Now, 3141.009 has to 1000 a greater ratio than 3-|- --

to 1 ; therefore the circumference of the circle has a greater ratio to the

diameter than 3-|- ;;;77has to 1 ; that is, the excess of the circumference
1 1

above three times the diameter is greater than ten of those parts of which
the diameter contains 71 ; and it has already been shewn to be less than

ten of those of which the diameter contains 70.

Cor. 1. Hence the diameter of a circle being given, the circumference

may be found nearly, by making as 7 to 22, so the given diameter to a

fourth proportional, which will be greater than the circumference. Ani

if as 1 to 3 -|- — , or as 71 or 223, so the given diameter to a fourth pro

portional, this will be nearly equal to the circumference, but will be less

than it.

CoR. 2. Because the difference between - and —- is —— , therefore the
7 71 497

lines found by these proportionals differ by —- of the diameter. There-

fore the difference of either of them from the circumference must be less

than the 497th part of the diameter.

CoR. 3. As 7 to 22, so the square of the radius to the area of the circle

nearly.

For it has been shewn, that (1. Cor. 5. 1. Sup.) the diameter of a cir

cle is to its circumference as the square of the radius to the area of the

circle ; but the diameter is to the circumference nearly as 7 to 22, there-

fore the square of the radius is to the area of the circle nearly in that same
ratio
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SCHOLIUM.

It is evident that the method employed in this proposition, for finding

the limits of the ratio of the circumference of the diameter, may be carrie?

to a greater degree of exactness, by finding the perimeter of an insc-ibed

4ad of a circumscribed polygon of a greater number of sides than 96. The
manner in which the perimeters of such polygons approach nearer to one

another, as the number of their sides increases, may be seen from the fol-

lowing Table, which is constructed on the principles explained in the fore

going Proposition, and in which the radius is supposed = J

.

NO. of Sides Perimeter of the Perimeter of the

of the Poly- inscribed Poly- circumscribed
gon. gon. Polygon.

6 6.000000 6.822033—
12 6.211657+ 6.430781 —
24 6.265257+ 6.319320-
48 6.278700+ 6.292173—
96 6.282063+ 6.285430—
192 6.282904+ 6.283747—
384 6.283115+ 6.283327-
768 6.283167+ 6.283221 —
1536 6.283180+ 6.283195—
3072 6.283184+ 6.283188-
6144 6.283185+ 6.283186—

The part that is wanting in the numbers of the second column, to make
up the entire perimeter of any of the inscribed polygons, is less than unit

in the sixth decimal place ; and in like manner, the part by which the

numbers in the last column exceed the perimeter of any of the circumscrib-

ed polygons is less than a unit in the sixth decimal place, that is, than

of the radius. Also, as the numbers in the second column are

less than the perimeters of the inscribed polygons, they are each of them
less than the circumference of the circle ; and for the same reason, each of

those in the third column is greater than the circumference. But when

the arc of - of the circumference is bisected ten times, the number of sides
o

in the polygon is 6144, and the numbers in the Table differ from one an-

other only by part of the radius, and therefore the perimeters o.

the polygons differ by less than that quantity ; and consequently the cir-

cumference of the circle, which is greater than the least, and less than the

greatest of these numbers, is determined within less than the millionth

pan of the radius.

Hence also, if R be the radius of any circle, the circumference is greatei

Ikaa Rx 6.283185. or than 2Rx 3.1 41592, but less than 2Rx 3.141593 .
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and these numbers differ from one another only by a millionth part of the

radius. So also R2+3.141592 is less, and R'x 3.141593 greater than the

area of the circle ; and these numbers differ from One another only by a

millionth part of the square of the radius.

In this way, also, the circumference and the area of the circle may be

found still nearer to the truth ; but neither by this, nor by any other me-
thod yet known to geometers, can they be exactly determined, though the

errors vf both may be reduced to a less quantity than any that can be a»>

iyned.
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OF THE INTERSECTION OF PLANES.

DEFINITIONS.

* A STRAIGHT line is perpendicular or at right angles to a plane, when
it makes right angles with every straight line which it meets in that

plane.

2. A plane is perpendicular to a plane, when the straight lines drawn in

one of the planes perpendicular to the common section of the two planes

are perpendicular to the other plane.

3. The inclination of a straight line to a plane is the acute angle contained

by that straight line, and another drawn from the point in which the

first line meets the plane, to the point in which a perpendicular to the

plane, drawn from any point of the first line, meets the same plane.

i. The angle made by two planes which cut one another, is the angle con

tained by two straight lines drawn from any, the same point in the line

of their common section, at right angles to that line, the one, in the one
plane, and the other, in the other. Of the two adjacent angles made by
two lines di'awn in this manner, that which is acute is also called the In-

clination of the planes to one another.

5. Two planes are said to have the same, or a like inclination to one an-

other, which two other planes have, when the angles of inclination above
defined are equal to one another.

6. A straight line is said to be parallel to a plane, when it does not meet
the plane, though produced ever so far.
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7. Planes are said to be parallel to one another, which do not meet, though
produced ever so far.

8. A solid angle is an angle made by the meeting of more than two plane
angles, which are not in the same plane in one point.

PROP. L THEOR.

One part of a straight line cannot be in a plane and anotherpart above tt.

If it be possible let AB, part of the straight line ABC, be in the plane,

and the part BC above it : and since the

straight line AB is in the plane, it can be

produced in that plane (2. Post, 1.) ; let

it be produced to D : Then ABC and
ABD are two straight lines, and they

have the common segment AB, which is

impossible (Cor. def. 3. L). Therefore

ABC is not a straight line. *

PROP. n. THEOR

Any three straight lines which meet one another, not in the same point, are m
one plane.

Let the three straight lines AB, CD, CB meet one another in the points

B, C and E ; AB, CD, CB are in one plane.

Lei any plane pass through the straight line

EB, and let the plane be turned about EB, pro-

duced, if necessary, until it pass through the

point C : Then, because the points E, C are in

this plane, the straight line EC is in it (def. 5. 1.) :

for the same reason, the straight line BC is in

the same ; and, by the hypothesis, EB is in it

;

ilierefore the three straight lines EC, CB, BE
are in one plane : but the whole of the lines DC,
AB, and BC produced, are in the same plane

with the parts of them EC, EB, BC (1. 2.

Sup.) Therefore AB, CD, CB, are all in one
plane.

CoR. It is manifest, that any two straight lines which cut one anothei

are in one plane . Also, that any three points whatever are in one plane
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PROP. III. THEOR.

If xvn> planes cut one another, their common section is a straight Une.

Let two planes AB, BC cut one another,

and let B and D be two points in the line of

their common section. From B to D draw the

straight line BD ; and because the points B
and D are in the plane AB, the straight line

BD is in that plane (def. 5. 1.): for the same
reason it is in the plane CB ; the straight line

BD is therefore common to the planes AB
and BC, or it is the common section of these

olanes.

PROP. IV. THEOR.

[fa straight line stand at right angles to each of two straight lines in the

point of their intersection, it mil also be at right angles to the plane in

which these lines are.

Let the straight line AB stand at right angles to each of the straight

lines EF, CD in A, the point of their intersection : AB is also at right an-

gles to the plane passing through EF, CD.
Through A draw any line AG in the

plane in which are EF and CD ; let G be

any point in that lino ; draw GH parallel

to AD ; and make HF=HA, join FG ; and
when produced let it meet CA in D ; join

BD, BG, BF. Because GH is parallel to

AD, and FH=HA : therefore FG=GD,
so that the line DF is bisected in G. And
because BAD is a right angle, BD"=AB2
+AD2 (47. 1.); and for the same reason,

BF2 = AB24-AF2, therefore BD2+BF2=
2AB24. AD2 + AF^; and because DF is

bisected in G (A. 2.), AD2+AF2=2AG2+
2GF2, therefore BD2+BF2=2AB^+2AG2
+2GF2. But BD2 + BF2= (A. 2.) 2BG2-f-2GF«, therefore 2BG'''-t-

2GF2=2AB'^+2AG2-|-2GF2 ; and taking 2GF2 from both, 2BG2=2AB»
-f2AG2, or BG2=AB2+ AG2; whence BAG (48. 1.) is a right angle.

Now AG is any stiaight line drawn in the plane of the lines AD, AF ; and

•hen a straight line is at right angles to any straight line which it nieela

wilh in a plane, it is at right angles to the plane itself (def. 1. 2. Sup.). AB
is therefore at right angles to the plane of the lines AF, AD.
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PROP. V, THEOR.

Ifthree s 'raigJU lines meet all in one point, and a straight line stand at nghl

angles to each ofthem in that point ; these three straight lines are in one

. and the same plane.

Let the straight line AB stand at right angles to each of the straight

lines BC, BD, BE, in B, the point where they meet ; BO, BD, BE are in

one and the same plane.

If not, let BD and BE, if possible, be in one plane, and BC be above it -,

and let a plane pass through AB, EC, the common section of which with

*he plane, in which BD and BE are, shall be a straight (3. 2. Sup.) line

;

let this be BF : therefore the three straight lines AB, BC, BF are all in

one plane, viz. that which passes through AB, BC ; and because AB
stands at right angles to each of the straight lines BD, BE, it is also at

right angles (4. 2. Sup.) to the plane passing

through them ; and therefore makes right an-

gles with every straight line meeting it in that

plane ; but BF which is in that plane meets it

;

therefore the angle ABF is a right angle ; but

the angle ABC, by the hypothesis is also a right

angle ; therefore the angle ABF is equal to the

angle ABC, and they are both in the same
plane, whichis impossible : therefore the straight

line BC is not above the plane in which are BD
and BE : Wherefore the three straight lines

BC, BD, BE are in one and the same plane.

PROP. VL THEOR.

Two straight lines which arc at right angles to the same plane, are parallel to

one another.

Let the straight lines AB, CD be at right angles to the same plane BDE
;

AB is parallel to CD.
Let them meet the plane in the points B, D.

Draw DE at right angles to DB, in the plane BDE,
and let E be any point in it: Join AE, AD, EB.
Because ABE is a right angle, AB2-fBE2= (47. 1.)

AE2, and because BDE is a right angle, BE2=BD2
4-DE2; therefore AB2-fBD2-fDE2=AE2 ; now,
A.B24-BD2=AD2, because ABD is a right angle,

therefore AD2+DE2=AE2, and ADE is therefore

A (48. 1.) right angle. Therefore ED is perpendi-
cular to the three lines BD, DA, DC, whence these
lines are in one plane (5. 2. Sup.). But AB is in ihe

plane in whi»;h are BD, DA, because any three

straight lines, which meet one another, are in one
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plane (2. 2. Sup.) : therefore AB, BD, DC are in one plane ; and each ot

the angles ABD, BDC is a right angle ; therefore AB is parallel (Cor. 28

l.)toCD.

PROP. VII. THEOR.

Jftvao straight lines he parallel, and one ofthem at right angles to a vUmt

the other is also at right angles to the same plane.

Let AB, CD be two parallel straight

lines, and let one of them AB be at

right angles to a plane ; the other CD
is at right angles to the same plane.

For, if CD be not perpendicular lo

the plane to which AB is perpendicular,

let DG be perpendicular to it. Then
(6. 2. Sup.) DG is parallel to AB : DG
and DC therefore are both parallel to

AB, and are drawn through the same
point D, which is impossible (11. Ax.

1.).

PROP. VIII. THEOR.

Two straight lines which are each of them parallel to the same straight line,

though not both in the same plane with it, are parallel to one another.

Let AB, CD be each of them parallel to EF, and not in the same plane

with it ; AB shall be parallel to CD.
In EF take any point G, from which draw, in the plane passing through

EF, AB, the straight line GH at right angles to EF ; and in the plane

passing through EF, CD, draw GK at right angles to the same EF.
And because EF is perpendicular both to GH and GK, it is perpendicular

(4. 2. Sup.) to the plane HGK passing through them : and EF is parallel

to AB ; therefore AB is at right

angles (7. 2. Sup.) to the plane

HGK. For the same reason, CD
is likewise at right angles to the

plane HGK. Therefore AB, CD
are each of them at right angles

to the plane HGK. But if two
straight lines are at right angles

to the same plane, they are paral- K
'el (6. 2. Sup.) to one another. Therefore AB is parallel to CD.

PROP. IX. THEOR.

If two straight lines meeting one another be parallel to two others that meet one

another, though not in the sameplane with thefirst two ; thefirst tuM and th»

other two shall contain equal angles.

Let the two straight lines AB, BC which meet one another, be parallel

24
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to the tvvo "ilraiglit lines DE, EF that meet one another, and are not in the

»*me plane with AB, BC. The angle ABC is equal to the angle DEF
Take BA, BC, ED, EF all equal to one an-

other ; and join AD, CF, BE, AC, DF : Because

BA is equal and parallel to ED, therefore AD is

(33. 1.) both equal and parallel to BE. For the

same reason, CF is equal and parallel to BE.
Therefore AD and CF are each of them equal and

parallel to BE. But straight lines that are paral-

lel to the same straight line, though not in the

same plane with it, are parallel (8. 2. Sup.) to one
another. Therefore AD is parallel to CF ; and it

is equal to it, and AC, DF join them towards the

same parts ; and therefore (33. 1.) AC is equal

aad parallel to DF. And because AB, BC are

<qual to DE, EF, and the base AC to the base

DF ; the angle ABC is equal (8. 1.) to the angle

DEF.

PROP. X. PROB.

To draw a straight line perpendicular to a plane,from a given point abcve it

Let A be the given point above the plane BH, it is required to draw from

che point A a straight line perpendicular to the plane BH.
In the plane draw any straight line BC, and from the point A draw (Prop

12. 1.) ADpeipendicular to BC. If then AD be also perpendicular to the

plane BH, the thing required is already done ; but if it be not, from the

point D draw (Prop. 11. 1), in the

plane BH, the straight line DE at

right angles to BC ; and from the

point A draw AF perpendicular to

DE ; and through F draw (Prop. 31

1.) GH parallel to BC : and because
BC is at right angles to ED, and DA,
BC is at right angles (4. 2. Sup.) to

the plane passing through ED, DA.
And GH is parallel to BC ; but iftwo
straight lines be parallel, one of which is at right angles to a plane, the
other shall be at right (7. 2. Sup.) angles to the same plane ; whereforeGH IS at right angles to the plane through ED, DA, and is perpendicular
(def. 1. 2. Sup.) to every straight line meeting it in that plane. But AF,
which is m the plane through ED, DA, meets it : Therefore GH is per-
pendicular to AF, and consequently AF is perpendicular to GH ; and AF
18 also perpendicular to DE : Therefore AF is perpendicular to each of the
straight lines GH, DE. But if a straight line stands at right angle.s o
each of two straight lines in the point of their intersection, it is also at right
angles to the plane passing through them (4. 2. Sup.). And the plane
passing through ED, GH is the plane BH ; therefore A'^ is perpendiculai
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to the plane BH ; so that, from the given point A, above the plane BH,
the straight line AF is drawn perpendicular to that plane.

Cor. If it be required from a point C in a plane to erect a perpen

dicular to that plane, take a point A above the plane, and draw AF per

pendicular to the plane ; then, if from C a line be drawn parallel to AF
it will be the perpendicular required ; for being parallel to AF it will b«

perpendicular to the same plane to which AF is perpendicular (7. 2. Sup.)

PROP. XI. THEOR.

From the same point in a plane, there cannot be two straight lines at right

angles to the plane, upon the same side of it; And there can be but one

perpendicular to a plane from a point above it.

For if it be possible, let the two straight lines AC, AB be at right angles

to a given plane from the same point A in the plane, and upon the same
side of it ; and let a plane pass through BA, AC ; the common section of

this plane with the given plane is a straight (3. 2. Sup.) line passing through

A : Let DAE be their common section : Therefore the straight lines AB,
AC, DAE are in one plane: And because CA is at right angles to the

given plane, it makes right angles with every

straight line meeting it in that plane. But
DAE, which is in that plane, meets CA : there-

fore CAE is a right angle. For the same rea-

son BAE is a right angle. Wherefore the an-

gle CAE is equal to the angle BAE ; and
they are in one plane, which is impossible.

Also, from a point above a plane, there can be
but one perpendicular to that plane ; for if there

could be two, they would be parallel (6. 2. Sup.) to one another, which is

absurd.

PROP. XII. THEOR.

Planes to which the same straight line is perpendicular, are parallel to ont
another.

Let the straight line AB be perpendicular to

each of the planes CD, EF: these planes are pa-

rallel to one another.

If not, they must meet one another when pro-

duced, and their common section must be a straight

hne GH, in which take any point K, and join AK,
BK : Then, because AB is perpendicular to the
plat e EF, it is perpendicular (def. 1 . 2. Sup.) to

the straight line BK which is in that plane, and
therefore ABK is a right angle. For the same
reason, BAK is a right angle ; wherefore the two
angles ABK, BAK of the triangle ABK art-

t'Mial to two right angles, which is impossible,
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(17 L): Therefore the planes CD, EF, though produced, do not meet

one another ; that is, they are parallel (def. 7. 2. Sup.)

PROP. Xin. THEOR.

If two straight lines meeting one another, be parallel to two straight Itne*

which also meet one another, but are not in the same plane with the first

two : the plane which passes through the first two is parallel to the plane

passing through the others.

Let AB, BC, two straight lines meeting one another, be parallel to DE,

EF that meet one another, but are not in the same plane with AB, BC :

The planes through AB, BC, and DE, EF shall not meet, though pro-

duced.

From the point B draw BG perpendicular (10. 2. Sup.) to the plane

which passes through DE, EF, and let it meet that plane in G ; and

through G draw GH parallel to ED (Prop. 31. 1.), and GK parallel to EF :

And because BG is perpendicular to the plane through DE, EF, it musi

make right angles with every

straight line meeting it in that

plane (1. def. 2. Sup.). But

the straight lines GH, GK in

that plane meet it : Therefore

each of the angles BGH, BGK
is a right angle : And because

BA is parallel (8. 2. Sup.) to

GH (for each of them is paral-

lel to DE), the angles GBA,
BGH are together equal (29

1.) to two right angles: And
BGH is aright angle; therefore also GBA is a right angle, and GB per-

pendicular to BA : For the same reason, GB is perpendicular to BC :

Since, therefore, the straight line GB stands at right angles to the two
straight lines BA, BC, that cut one another in B ; GB is perpendicular

(4. 2. Sup.) to the plane through BA, BC : And it is perpendicular to the

plane through DE, EF ; therefore BG is perpendicular to each of the

planes through AB, BC, and DE, EF : But planes to which the same
straight line is perpendicular, are parallel (12. 2. Sup.) to one another:

Therefore the plane through AB, BC, is parallel to the plane through

DE, EF.

CoR. It follows from this demonstration, that if a straight line meet
two parallel planes, and be perpendicular to one of them, it must be per-

penddcular to the other also.
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PROP. XIV. THEOR.

Ij two parallel planes be cut by another plane, their common sections wttk U
are parallels.

Let the parallel planes AB,
CD, be cut by the plane EFHG,
and let their common sections with

it be EF, GH ; EF is parallel to

GH.
For the straight lines EF and

GH are in the same plane, viz.

EFHG which cuts the planes

AB and CD ; and they do not

meet though produced ; for the

planes in which they are do not

meet; therefore EF and GH are parallel (def. 30. !.)•

^\

PROP. XV. THEOR.

If tiDO parallel planes be cut by a third plane, they have the same inclination

to that plane.

Let AB and CD be two parallel planes, and EH a third plane cutting

them ; The planes AB and CD are equally inclined to EH.
Let the straight lines EF and GH be the common section of the plane

EH with the two planes AB and CD ; and from K, any point in EF, draw
in the plane EH the straight line KM at right angles to EF, and let it

meet GH in L ; draw also KN at right angles to EF in the plane AB

:

and tlirough the straight lines KM, KN, let a plane be made to pass, cut-

ting the plane CD in the line LO. And because EF and GH are the

common sections of the plane EH with the two parallel planes AB and
CD, EF is parallel to GH (14. 2. Sup.). But EF is at right angles to

the plane that passes through KN and KM (4. 2. Sup.), because it is at

right angles to the lines KM and KN : therefore GH is also at right an-

gles to the same plane (7. 2. Sup.), and it is therefore at ri£;ht angles to

N^

S J)

Nc

H

O

M
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ihe lines LM, LO which it meets in that plane. Therefore, since LM and

LO are at right angles to LG, the common section of the two planes CD
and EH, the angle OLM is the inclination of the plane CD to the pkne

EH (4. def. 2. Sup.)- For the same reason the angle MKN is the inclina-

tion of the plane AB to the plane EH. But because KN and LO are pa-

rallel, bein a the common sections of the parallel planes AB and CD with

a third plane, the interior angle NKM is equal to the exterior angle OLM
(29. 1.) : that is, the inclination of the plane AB to the plane EH, is equal

to the inclination of the plane CD to the same plane EH.

PROP. XVL THEOR.

If two straight lines be cut by parallel planes, they must be cut in the same ratto

Let the straight lines AB, CD be cut by the parallel planes GH, KL,

MN, in the points A, E, B ; C. F, D

:

As AE is to EB, so is CF to FD.
Join AC, BD, AD, and let AD meet

the plane KL in the point X ; and join

EX, XF : Because the two parallel

planes KL, MN are cut by the plane

EBDX, the common sections EX, BD,
are parallel (14. 2. Sup.). For the same
reason, because the two parallel planes

GH, KL are cut by the plane AXFC,
the common sections AC, XF are paral-

lel : And because EX is parallel to BD,
a side of the triangle ABD, as AE to

EB, so is (2. 6.) AX to XD. Again, be-

cause XF is parallel to AC, aside of the

triangle ADC, AX to XD, so is CF to

FD : and it was proved that AX is to XD,
as AE to EB : Therefore (IL 5.), as AE
to EB, 80 is CF to FD.

PROP. XVH, THEOR.

Ifa straight line be at right angles to a plane, every plane which passes through

that line is at right angles to the first mentioned plane.

Let the straight line AB be at right angles to the plane CK ; every plane

which passes through AB is at right angles to the plane CK.
Let any plane DE pass through AB, and let CE be the common section

of the planes DE, CK ; take any point F in CE, from which draw FG in

the plane DE at right angles to CE : And because AB is perpendicular

to .he plane CK, therefore it is also perpendicular to every straight line

meeting it in that plane (1. def. 2. Sup.); and consequently it is perpen-

dicular to CE : Wherefore ABF is a right angle ; But GFB is likewise a

right angle ; therefore AB is parallel (28. 1.) to FG. And AB is at right

angles to the plane CK : therefore FG is also at right angles to the same
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plane (7. 2. Sup.). But one plane is

at right angles to another plane when
the straight lines drawn in one of the

planes, at right angles to their com-

mon section, are also at right angles

to the other plane (def. 2. 2. Sup.) ; and

any straight line FG in the plane DE,
which is at right angles to CE, the

common section of the planes, has been

proved to be perpendicular to the other

plane CK ; therefore the plane DE
is at right angles to the plane CK. In like manner, it may be proved

that all the planes which pass through AB are at right angles to the plane

CK.

PROP. XVIII. THEOR.

If twoplanes cutting one another he each of them perpendicular to a third plane

their common section is perpendicular to the same plant.

Let the two planes AB, BC be each of them perpendicular to a third

plane, and BD be the common section of the first two,; BD is perpendicular

to the plane ADC.
From I) in the plane ADC, draw DE perpen-

dicular to AD, and DF to DC. Because DE is

perpendicular to AD, the common section of the

planes AB and ADC ; and because the plane

AB is af right angles to ADC, DE is at right

angles to the plane AB (def. 2. 2. Sup.), and there-

fore also to the straight line BD in that plane

(def. 1. 2. Sup.). For the same reason, DF is at

right angles to DB. Since BD is therefore at

right angles to both the lines DE and DF, it is

at right angles to the plane in which DE and
DF are, that is, to the plane ADC (4. 2. Sup.). AE

PROP. XIX. PROB.

Two straight lines not in the same plane being given in position, to draw m

straight line perpendicular to them both.

Let AB and CD be the given lines, which are not in the same plane ; it

is required to draw a straight line which shall be perpendicular both to AB
and CD.

In AB take amy point E, and through E draw EF parallel to CD, and

let EG be drawn perpendicular to the plane which passes through EB,
EF (10. 2. Sup.). Throujjh AB and EG let a plane pass, viz. GK, and let

this plane meet CD in H; from H draw HK perpendicular to AB ; and

HK is the line required. Through H, draw HG parallel to AB.
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Then, since HK and GE, which are in the same plane, are both at right

angles to the straight line AB, they are parallel to one another. And be-

cause the lines HG, HD are parallel to the lines EB, EF, each to each,

fche plane GHD is parallel to the plane (13. 2. Sup.) BEF ; and therefore

EG, which is perpendicular to the plane BEF, is perpendicular also to the

plane (Cor. 13. 2. Sup.) GHD. Therefore HK, which is parallel to GE,
is also perpendicular to the plane GHD (7. 2. Sup.), and it is therefore per-

pendicular to HD (def. 1. 2. Sup.), which is in that plane, and it is also

perpendicular to AB ; therefore HK is drawn perpendicular to the two
given lines, AB and CD.

PROP. XX. THEOR.

If a solid angle be contained hy three plane angles, any two of these angles are

greater than the third.

Let the solid angle at A be contained by the three plane angles BAG,
CAD, DAB. Any two of them are greater than the third.

If the angles BAG, CAD, DAB be all equal, it is evident that any two
of them are greater than the third. But if they are not, let BAG be that

angle which is not less than either of the other two, and is greater than

one of them, DAB ; and at the point A in the

straight Une AB, make in the plane which
passes through BA, AC, the angle BAE equal

(Prop. 23. 1.) to the angle DAB ; and make
AE equal to AD, and through E draw BEC
cutting AB, AC in the points B, C, and join

DB, DC. And because DA is equal to AE,
and AB is common to the two triangles ABD,
ABE, and also the angle DAB equal to the

angle EAB ; therefore the base DB is equal (4. l.)to the base BE. And
because BD, DC are greater (20. 1.) than CB, and one of them BD has

been proved equal to BE, a part of CB, therefore the other DC is greater

than the remaining part EC. And because DA is equal to AE, and AC
common, but the base DC greater than the base EC ; therefore the angle

DAC is greater (25. 1.) than the angle EAC ; and, by the construction.
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the angle DAB is equal to the angle BAE ; wherefore the angles DAB,
DAC are together greater than BAE, EAC, that is, than the angle BAG
But BAG is not less than either of the angles DAB, DAG ; therefore

BAG, with either of mem, is greater than the other.

PROP. XXI. THEOR.

The plane angles which contain any solid angle are together less than four

right angles.

Let A be a solid ang e contained by any number of plane angles BAG,
GAD, DAE, EAF, FAB ; these together are less than four right angles.

Let the planes which contain the solid angle at A be cut by another

plane, and let the section of them by that plane be the rectilineal figure

BGDEF. And because the solid angle at B is contained by three plan*

angles GBA, ABF, FBG, of which any two

are greater (20. 2. Sup.) than the third, the

angles GBA, ABF are greater than the an-

gle FBG : For the same reason, the two

plane angles at each of the points C, D, E,

F, viz. the angles which are at the bases of

the triangles having the common vertex A,

axe greater than the third angle at the same
point, which is one of the angles of the figure

BGDEF : therefore all the angles at the

bases of the triangles are together greater

than all the angles of the figure : and be-

cause all the angles of the triangles are to-

gether equal to twice as many right angles as there are triangles (32. 1.)

»

that is, as there are sides in the figure BGDEF ; and because all the an-

gles of the figure, together with four right angles, are likewise equal to

twice as many right angles as there are sides in the figure ( 1 cr. 32. l.);there-

fore all the angles of the triangles are equal to all the angles of the rectili

neal figure, together with four right angles. But all the angles at the bases

of the triangles are greater than all the angles of the rectilineal, as has

been proved. Wherefore, the remaining angles of the triangles, viz. those

at the vertex, which contain the solid angle at A, are less than four right

anglfto.

Otherwise.

Let the sum of all the angles at the bases of the triangles =S; the

urn of all the angles of th« rectilineal figure BGDEF^^" ; the sum oi the

plane angles at A=X, and let R= a right angle.

Then, because S-i-X= twice (32 1.) as many right angles as there are

triangles, or as there are sides of the rectilineal figure BGDEF, and as

S-\-AK is also equal to twice as many right angles as there are sides of the

ame figure ; therefore S-|-X= .2'-f-4ll. But because of the three plane

angles which contain a solid angle, anv two are greater than the third,

25
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S/^ ; and therefore X/4R ; that is, the sum of the plane angles which
contain the solid angle at A is less than four right angles

SCHOLIUM.

It is evident, that when any of the angles of the figure BCDEF ia ex-
terior, like the angle at D, in the an-

nexed figure, the reasoning in the /y
above proposition does not hold, be-

cause the solid angles at the base

are not all contained by plane an-

gles, of which two belong to the tri-

angular planes, having their com-
mon vertex in A, and the third is an

interior angle of the rectilineal figure,

or base. Therefore, it cannot be .^ —
concluded that Sis necessarily great- U v?

er than 2". This proposition, therefore, is subject to a limitation, which :'«

farther explained in the notes on this Book.
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GEOMETRY,
SUPPLEMENT.

BOOK IIL

OF THE COMPARISON OF SOLIDS.

DEFINITIONS.

1. A Solid is that which has length, breadth, and thickness.

2. Su.iilar solid figures are such as are contained by the same number of

similar planes similarly situated, and having like inclinations to one an-

other.

3. A pyxamid is a solid figure contained by planes that are constituted be-

twixt one plane and a point above it in which they meet.

4. A prism is a solid figure contained by plane figures, of which two that

are opposite are equal, similar, and parallel to one another ; and the

others are parallelograms.

5. A parallelopiped is a solid figure contained by six quadrilateral figures,

whereof every opposite two are parallel.

6. A cube i<3 a solid figure contained by six equal squares.

7. A sphere is a solid figure described by the revolution of a semicircle
about a dismeter, which remains unmoved.

8. The axis of a sphere is the fixed straight line about which the senu
circle revokes.

9. The centre of a sphere is the same with that of the semicircle.

10. The diameter of a sphere is any straight line which passes through
the centre, ai> 1 is terminated both wavs by the superficies of the sphere
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11. ^ coiie is a solid figure described by the revolution of a right angled

triangle about one of the sides containing the right angle, which side

remains fixed.

12. The axis of a cone is the fixed straight line about which the triangle

revolves.

3. The base of a cone is the circle described by that side, containing th«

right angle, which revolves.

14. A cylinder is a solid figure described by the revolution of a rignt an-

gled parallelogram about one of its sides, which remains fixed.

15. The axis of a cylinder is the fixed straight line about which the paral-

lelogram revolves.

16. The bases of a cylinder are the circles described by the two revolving

opposite sides of the parallelogram.

17. Similar cones and cylinders are those which have their axes, and the

diameters of their bases proportionals.

PROP. L THEOR.

If two solids be contained by the same number of equal and similar planes

sinAlarly situated, and if the inclination of any two contiguous planes in the

one solid be the same with the inclination of the two equal, and similarly

situated planes in the other, the solids themselves are equal and similar.

Let AG and KQ be two solids contained by the same number of equal

and similar planes, similarly situated so that the plane AC is similar and
equal to the plane KM, the plane AF to the plane KP ; BG to LQ, GD
toQN, DE to NO, and FH to PR. Let also the inclination of the plane

AF to the plane AC be the same with that of the plane KP to the plane

KM, and so of the rest ; the solid KQ is equal and similar to the solid AG.
Let the solid KQ be applied to the solid AG, so that the bases KM and

H G n a
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AC which are equal and similar, may coincide (8. Ax. 1.), the point N
coinciding with the point D, K with A L with B, and so on. And be-

cause the plane KAI coincides with the plane AC, and, by hypottiesis, the
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inclination of KR to KM is the same with the inclination of AH to A C
the plane KR will be upon the plane AH, and will coincide with it, because

they are similar and equal (8. Ax. 1.), and because their equal sides KN
and AD coincide. And in the same manner it is shewn that the olhei

planes of the solid KQ coincide with the other planes of the solid AG,
each with each : wherefore the solids KQ and AG do wholly coincide,

and are equal and similar to one another.

PROP. II. THEOR

If a solid be contained by six planes, two and two of which are parallel^ the op-

posite planes are similar and equal parallelograms.

Let the solid CDGH be contained by the parallel planes AC, GF ; BG,
CE ; FB, AE : its opposite planes are similar and equal parallelograms.

Because the two parallel planes BG, CE, are cut by the plane AC, their

common sections AB, CD are parallel (14. 2. Sup.). Again, because the

two parallel planes BF, AE are cut by the plane AC, their common sec-

tions AD, BC are parallel (14. 2. Sup.) : and AB is parallel to CD ; there-

fore AC is a parallelogram. In like manner, it may be proved that each

of the figures CE, FG, GB, BE, AE is a pa-

rallelogram; join AH, DF; and because AB
is parallel to DC, and BH to CF ; the two

straight lines AB, BH, which meet one an-

other, are parallel to DC and CF, which meet
one another ; wherefore, though the first two
are not in the same plane with the other two,

they contain equal angles (9. 2. Sup.) ; the

angle ABH is therefore equal to the angle

DCF. And because AB, BH, are equal to DC, CF, and the angle ABH
equal to the angle DCF ; therefore the base AH is equal (4. 1.) to the base

DF, and the triangle ABH to the triangle DCF : For the same reason,

the triangle AGH is equal to the triangle DEF : and therefore the paral-

lelogram BG is equal and similar to the parallelogram CE. In the same
manner, it may be proved, that the parallelogram AC is equal and similar

to the parallelogram GF, and the parallelogram AE to BF.

PROP. III. THEOR.

/fa solid parallelopipcd he cut by a plane parallel to two of its opposite planes,

it will be divided into two solids, which will be to one another as the bases.

Let the solid parallelopipcd A BCD be ciit by the plane EV, which is

parallel to the opposite pianos A R, HD, and divides the whole into the

solids ABFV, EGCD : as the base AEFY to the base EHCF, so is the

solid ABFV to the solid EGCD.
Produce AH both ways, and take any number of straight lines HM,

MN, each equal to EH, and any number AK, KL each equal to E.A, and
complete the parallelograms LO, KY, HQ, MS, and the solids LP KR

E
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nU, MT then, because the straight lines LK, KA, AE are all equal, and
also tiie straight lines KO, AY, EF which make equal angles with LK,
KA, AE, the parallelograms LO, KY, AF are equal and similar (36. 1.

& def. L 6.) : and likewise the parallelograms KX, KB, AG ; as also

X '
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(2. 3. Sup.) the parallelograms LZ, KP, AR, because they are opposite

planes. For the same reason, the parallelograms EC, HQ, MS are equal

(36, 1. & def. 1. 6.); and the parallelograms HG, HI, IN, as also (2. 3.

Sup.) HD, MU, NT ; therefore three planes of the solid LP, are equal and
similar to three planes of the solid KR, as also to three planes of the solid

AV : but the three planes opposite to these three are equal and similar to

them (2. 3. Sup.) in the several solids ; therefore the solids LP, KR, AV
are contained by equal and similar planes. And because the planes LZ,
KP, AR are parallel, and are cut by the plane XV, the inclination of LZ
to XP is equal to that of KP to PB ; or of AR to BV (15. 2. Sup.) and
the same is true of the other contiguous planes, therefore the solids LP
KR, and AV, are equal to one another (1. 3. Sup.). For the same rea-

son, the three solids, ED, HU, MT are equal to one another; therefore

what multiple soever the base LF is of the base AF, the same multiple is

the solid LV of the solid AV; for the same reason, whatever multiple the

base NF is of the base HF, the same multiple is the solid NV of the solid

ED : And if the base LF be equal to the base NF, the solid LV is equal

(1. 3. Sup.) to the solid N V ; and if the base LF be greater than the base

NF, the solid LV is greater than the solid NV : and if less, less. Since

then there are four magnitudes, viz. the two bases AF, FH, and the two
solids AV, ED, and of the base AF and solid AV, the base LF and solid

LV are any equimultiples whatever ; and of the base FH and solid ED,
the base FN and solid NV are any equimultiples whatever ; and it has

been proved, that if the base LF is greater than the base FN, the solid LV
is greater than the solid NV ; and if equal, equal : and if less, less: There
fore (def. 5. 5.) as the base AF is to the base FH, so is the solid AV to

ihe solid ED.

Cor, Because the parallelogram AF is to the parallelogram FH a» YF
to EC (1 6.), therefore the solid AV is to the solid ED as YF to FC
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PROP. IV. THEOR.

y a solid parallelopiped be cut by a plane passing through the diagonals o,

two of the opposite planes, it will be cut into txDO equal prisms.

Let AB be a solid parallelopiped, and DE, CF the diagonals of the op-

posite parallelograms AH, GB, viz. those which are drawn betwixt the

equal angles in each ; and because CD, FE are each of them parallel to

GA, though not in the same plane with it, CD, FE are parallel (8. 2. Sup.)

wherefore the diagonals CF, DE are in the plane in which the parallel

are, and are themselves parallels (14. 2. Sup.)

;

the plane CDEF cuts the solid AB into two

equal parts.

Because the triangle CGF is equal (34. 1.)

to the triangle CBF, and the triangle DAE to

DHE ; and since the parallelogram CA is equal

(2. 3. Sup.) and similar to the opposite one BE
;

and the parallelogram GE to CH : therefore the

planes which contain the prisms CAE, CBE,
are equal and similar, each to each ; and they

are also equally inclined to one another, because

the planes AC, EB are parallel, as also AF and

BD, and they are cut by the plane CE (15. 2. Sup.). Therefore the prisnc

CAE is equal to the prism CBE (1. 3. Sup.), and the solid AB is cut into

two equal prisms by the plane CDEF.
N. B. The insisting straight lines of a parallelopiped, mentioned in

the followmg propositions, are the sides of the parallelograms betwixt the

base and the plane parallel to it.

PROP. V. THEOR.

Solid parallelopipeds upon the same base, and of the same altitude, the tn

sisting straight lines of which are terminated in the same straight lines in

the plane opposite to the base are equal to one another.

Let the solid parallelopipeds AH, AK be upon the same base AB, and

of the same altitude, and let their insisting straight lines AF, AG, LM, LN
be terminated in the same straight line FN, and let the insisting lines CD
CE, BH, BK be terminated in the same straight line DK ; the solid AH
is equal to the solid AK.

Because CH, CK are parallelograms, CB is equal (34. 1.) to each of

the opposite sides DH, EK : wherefore DH is equal to EK : add, or take

away the common part HE ; then DE is equal to HK : Wherefore also

lh( triangle CDE is equal (38. 1.) to the triangle BHK : and the parallel-

ogram DG is equal (36. 1.) to the parallelogram HN. For the same rea-

son, the triangle AFG is equal to the triangle LMN, and the parallelogram

CF is equal (2. 3. Sup.) to the parallelogram BM, and CG to BN ; for

they are opposite. Therefore the planes which contain the prism DAG
are Bimilar and equal to those which contain the prism HLN, each to each
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and the contiguous planes are also equally inclined to one another (15. 2
Sup ), i ecause that the parallel planes AD and LH, as also AE and LK

are cut by the same piane DN : therefore the prisms DAG, HLN are

equal (1. 3. Sup.). If therefore the prism LNH be taken from the solid,

of which the base is the parallelogram AB, and FDKN the plane opposite

to the base ; and if from this same solid there be taken the prism AGD,
the remaining solid, viz. the parallelopiped AH is equal to the remaining

parallelepiped AK.

PROP. VI. THEOR.

Solid parallelqpipeds upon the same base, and of tne same altitude, the m-
sisting straight lines of which are not terminated in the same straight lines

in the plane opposite to the base, are equal to one another.

Let the parallelepipeds CM, CN, be upon the same base AB, and of the

same ahitude, but their insisting straight lines AF, AG, LM, LN, CD,
CE, BH, BK, not terminated in the same straight lines ; the solids CM,
CN are equal to one another.

Produce FD, MH, and NG, KE, and let them meet one another in the

poin's 0, P, Q, R ; and join AO, LP, BQ, CR. Because the planes (def.

5. 3. Sup.), LBHM and ACDF are parallel, and because the plane LBHM
is that in which are the parallels LB, MHPQ (def. 5. 3. Sup.), and in which

A C
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also is the figure BI PQ ; and because the plane ACDF is that in wliicli

are tlie parallels A'", FDOR, and in which also is the figure CAOR .

therefore the figures BLPQ, CAOI^, are in parallel planes. In like man-
ner, because the planes ALNG and CBKE are parallel, and the plane

ALNG is that in which are tlie parallels AL, OPGN, and in which also

is the figure ALPO ; and the plane Ci^KE is that in which are the paral-

lels CB, RQEK, and in which also is the figure CBQR ; therefore thft

figures ALPO, CBQR, are in parallel planes. But the planes ACBL
ORQP are also parallel ; therefore the solid CP is a parallelepiped. Now
the solid parallelepiped CM is equal (5. 2. Sup.) to the solid parallelepiped

CP, because they are upon the same base, and their insisting straight lines

AF, AO, CD, CI' ; LM, LP, BH, BQ are terminated in the same straight

lines FR, MP ; and the solid CP is equal (5. 2. Sup.) to the solid CN ;

for they are upoii the same base ACBL, and their insisting straight lines

AO, AG, LP, LW ; CR, CE. BQ, BK are terminated in the same straight

lines ON, RK ; Therefore the solid CM is equal to the solid CN.

PROP. VII. THEOR.

Solid parallelopipeds, tnhich are upon equal bases, and of the same altitude,

are equal to one another.

Let the solid parallelopipeds, AE, CF, be upon equal bases AB, CD.
end be of the same altitude ; the solid AE is equal to the solid CF.

Case 1. Let the insisting straight lines be at right angles to the bases

AB, CD, and let the bases be placed in the same plane, and so as that the

sides CL, LB, be in a straight line; therefore the straight line LM, which
is at right angles to the plane in which the bases are, in the point L, is

common (IL 2. Sup.) to the two solids AE, CF ; let the other insisting

lines of the solids be AG, HK, BE ; DF, OP, CN : and first, let the angle

ALB be equal to the angle CLD ; then AL, LD are in a straight line (14.

].). Produce OD, HB, and let them meet in Q and complete the solid

parallelepiped LR, the base of which is the parallelogram LQ, and of

which LM is one of its insisting straight lines : therefore, because the pa-

rallelogram AB is equal to CD, as the base AB is to the base LQ, so is

(7. 5.) the base CD to the same LQ : and because the solid parallelepiped

AR is cut by the plane LMEB, which is parallel to the opposite planes

AK. DR ; as the base AB is to the base LQ, so is (3. 3. Sup.) the soliJ
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AE to the solid LR : for the same reason because the solid parallelopiped

CR is cut by the plane LMFD, which is parallel to the opposite planes

CP BR ; as the base CD to the base LQ ; so is the solid OF to the solid

LR , but as the base AB to the base LQ, so the base CD to the base LQ,
as has been proved : therefore as the solid AE to the solid LR, so is the

solid CF to the solid LR ; and therefore the solid AE is equal (9. 5.) to

the solid CF.
But let the solid parallelopipeds, SE, CF be upon equal bases SB, CE^

and be of the same altitude, and let their insisthig straight lines be at right

angles to the bases ; and place the bases SB, CD in the same plane, so

that CL, LB be in a straight line ; and let the angles SLB, CLD, be un-

equal ; the solid SE is also in this case equal to the solid CF. Produce
DL, TS until they meet in A, and from B draw BH parallel to DA ; and
let HB, OD produced meet in Q, and complete the solids AE, LR : there-

fore the solid AE, of which the base is the parallelogram LE, and AK the

plane opposite to it, is equal (5. 3. Sup.) to the solid SE, of which the base

is LE, and SX the plane opposite ; for they are upon the same base LE,
and of the same altitude, and their insisting straight lines, viz. LA, LS,
BH, BT ; MG, MU, EK, EX, are in the same straight lines AT, GX

:

and because the parallelogram AB is equal (35. L) to SB, for they are

upon the same base LB, and between the same parallels LB, AT ; and
because the base SB is equal to the base CD ; therefore the base AB is

equal to the base CD : but the angle ALB is equal to the angle CLD :

therefore, by the first case, the solid AE is equal to the solid CF ; but the

solid AE is equal to the solid SE, as was demonstrated : therefore the

solid SE is equal to the solid CF.
Case 2. If the insisting straight hues AG, HK, BE, LM ; CN, RS,

DP , OP, be not at right angles to the bases AB, CD ; in this case likewise

the solid AE is equal to the solid CF. Because solid parallelopipeds on
the same base, and of the same altitude, are equal (6. 3. Sup.), if two solid

parallelopipeds be constituted on the bases AB and CD of the same alti-

tude with the solids AE and CF, and with their insisting lines perpendicu-

lar to their bases, they will be equal to the solids AE and CF ; and, by the

first case of this proposition, ihey will be equal to one inothei ; wherefore

the solids AE and CF are also equal.
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PROP. VIII. THEOR.

Solid parcdlelopipeds which have the same altitude, are to one another ai 'hen

bases.

Let AB, CD be solid parallelopipeds of the same altitude ; they are to

one another as their bases ; that is, as the base AE to tlie bajse OF, so i«

the solid AB to the solid CD.
To the straight line FG apply the parallelogram FH equal (Cor. Prop

45. l.)to AE, so that the angle FGH be equal to the angle LCG; and
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complete the solid parallelepiped GK upon the base FH, one of whose in

sisting lines is FD, whereby the solids CD, GK must be of the same alti-

tude. Therefore the solid AB is equal (7. 3. Sup.) to the solid GK, be-

cause they are upon equal bases AE, FH, and are of the same altitude

:

and because the solid parallelopiped CK is cut by the plane DG which is

parallel to its opposite planes, the base HF is (3. 3. Sup.) to the base FC,
as the solid HD to the solid DC : But the base HF is equal to the base

AE, and the solid GK to the solid AB : therefore, as the base AE to the

base CF, so is the solid AB to the solid CD.

Cor. 1. From this it is manifest, that prisms upon triangular bases, and
of the same altitude, are to one another as their bases. Let the prisms

BNM, DPG, the bases of which are the triangles AEM, CFG, have the

same altitude : complete the parallelograms AE, CF, and the solid paral

lelopipeds AB, CD, in the first of which let AN, and in the other let CP
be one of the insisting lines. And because the solid parallelopipeds AB,
CD have the same altitude, they are to one another as the base AE is to

the base CF ; wherefore the prisms, which are their halves (4. 3. Sup.)

are to one another, as the base AE to the base CF ; that is, as the trian-

gle AEM to the triangle CFG.
CoR. 2. Also a prism and a parallelopiped, which have the same alti-

tude, are to one another as their bases ; that is, the prism BNM is to the

parallelopiped CD as the triangle AEM to the parallelogram LG. For
by the last Cor. the prism BNM is to the prism DPG as the triangle AME
to the triangle CGF, and therefore the prism BNM is to twice the pnsm
DPG as the triangle AME to twice the triangle CGF (4. 5 ) ; that is, the

prism BNM is to the parallelopiped CD as the triangle AME to the paral-

lelogram LG.
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PROP. IX. THEOR.

Solid pa^dtcelopipeds are to one another in the ratio that is compounded oftht

ratios of the areas of their bases, and of their altitudes.

Let AF and GO be two solid parallelopipeds, of which the bases are the

parallelogranns AC and GK, and the altitudes, the perpendiculars let fall

on the planes of these bases from any point in the opposite planes EF and

MO ; the solid AF is to the solid GO in a ratio compounded of the ratios

of the base AC to the base GK, and of the perpendicular on AC, to the

perpendicular on GK.
Case 1. When the insisting lines are perpendicular to the bases AC

and GK, or when the solids are upright.

In GM, one of the insisting lines of the solid GO, take GQ equal to AE,
one of the insisting lines of the solid AF, and through Q let a plane pass

parallel to the plane GK, meeting the other insisting lines of the solid GO

vO
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m the points R, S and T. It is evident that GS is a solid parallelopiped

(def. 5. 3. Sup.) and that it has the same altitude with AF, viz. GQ or

AE. Now the solid AF is to the solid GO in a ratio compounded of the

ratios of the solid AF to the solid GS (def. 10. 5.), and of the solid GS to

the solid GO ; but the ratio of the solid AF to the solid GS, is the same
with that of the base AC to the base GK (8. 3. Sup.), because their alti-

tudes AE and GQ are equal ; and the ratio of the solid GS to the solid

GO, is the same with that of GQ to GM (3. 2. Sup.) ; therefore, the ratio

which is compounded of the ratios of the solid AF to the solid GS, and ol

the solid GSto the solid GO, is the same with the ratio which is compound-
ed of the ratios of the base AC to the base GK, and of the altitude AE to

the altitude GM (F. 5.). But the ratio of the solid AF to the solid GO, is

that which is compounded of the ratios of AF to GS, and of GS to GO
;

therefore, the ratio of the solid AF to the solid GO is compounded of the

ratios of the base AC to the base GK, and of the altitude AE to the alti

tude GM.
Case 2. When the insisting lines are not perpendicular to the basesi.
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Let the parallelograms AC and GK bo the bases as before, and let AE
and GM be the altitudes of two parallelopipeds Y and Z on these bases.

Then, if the upright parallelopipeds AF and GO be constituted on tha

bases AC and GK, with the altitudes AE and GM, they will be equal U.

the parallelopipeds Y and Z (7. 3. Sup.). Now, the solids AF and GO,
by the first case, are in the ratio compounded of the ratios of the bases AC
and GK, and of the altitudes AE and GM ; therefore also the solids Y
and Z have to one another a ratio that is compounded of the same ratios.

Cor. 1. Hence, two straight lines may be found having the same ratio

with the two parallelopipeds AF and GO. To AB, one of the sides of the

parallelogram AC, apply the parallelogram BV equal to GK, having an

angle equal to the angle BAD (Prop. 44. 1.) ; and as AE to GM, so let

A V be to AX (12. 6.), then AD is to AX as the solid AF to the solid GO.
For the ratio of AD to AX is compounded of the ratios (def. 10. 5.) of AD
to AV, and of AV to AX ; but the ratio of AD to AV is the same with
that of the parallelogram AC to the parallelogram BV (1. 6.) or GK

;

and the ratio of AV to AX is the same with that of AE to GM ; therefore

the ratio of AD to AX is compounded of the ratios of AC to GK, and of

AE to GM (E. 5.). But the ratio of the solid AF to the solid GO is com-
pounded of the same ratios ; therefore, as AD to AX, so is the solid AF to

the solid GO.
Cor. 2. If AF and GO are two parallelopipeds, and if to AB, to the

perpendicular from A upon DC, and to the altitude of the parallelopiped

AF, the numbers L, M, N, be proportional : and if to AB, to GH, to the

perpendicular from G on LK, and to the altitude of the parallelopiped GO,
the numbers L, I, m, n, be proportional ; the solid AF is to the solid GO
as LxMxN lo Ixmxn.

For it may be proved, as in the 7th of the 1st of the Sup. that LxMx
Nisto /XmXain the ratio compounded of the ratio of L X M to /x »», and
of the ratio of N to n. Now the ratio of L x M to Ixm is that of the area
of the parallelogram AC to that of the parallelogram GK ; and the ratio

of N to n is the ratio of the altitudes of the parallelopipeds, by hypothesis,
therefore, the ratio of L x M X N to IxmXn is compounded of the ratio of

the areas of the bases, and of the ratio of the altitudes of the parallelopipeds

AF and GO ; and the ratio of the parallelopipeds themselves is shewn, in

this proposition, to be compounded of the same ratios ; therefore it is the
same with that of the product Lx M x N to the product IxmXn.

Cor. 3. Hence all prisms are to one another in the ratio compounded
of the ratios of their bases, and of their altitudes. For every prism is

equal to a parallelopiped of the same altitude with it, and of an equal base

(2. Cor. 8. 3. Sup.).

PROP. X. THEOR.

Solid parallelopipeds, which have their bases and aitxtudes reciprocally propo
ttonal, are equal ; and parallelopipeds which are equal, have their bases and
altitudes reciprocally proportional.

Let AG and KQ be two solid parallelopipeds, of which the bases ar»
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AC and KM, and the altitudes AE and KO, and let AC be to KM as KO
to AE ; the solids AG and KQ are equal.

As the base AC to the base KM, so let the straight line KO be to the

suraight line S. Then, since AC is to KM as KO to S, and also by hypo-

toesis, AC to KM as KO to AE, KO has the same ratio to S that it has

to A.E (11. 5.) ; wherefore AF is equal to S (9 5.). But the solid AGii

to (he solid KQ, in the ratio compounded of the ratios of AE to KO, and
of AC to KM (9. 3. Sup.), that is, in the ratio compounded of the ratios of

AE to KO, and of KO to S. And the ratio of AE to S is also compound-
ed of the same ratios (def. 10. 5.) ; therefore, the solid AG has to the solid

KQ the same ratio that AE has to S. But AE was proved to be equal to

S, therefore AG is equal to KQ.
Again, if the solids AG and KQ be equal, the base AC is to the base

KM as the altitude KO to the altitude AE. Take S, so that AC may be

to KM as KO to S, and it will be shewn, as was done above, that the solid

AG is to the solid KQ as AE to S ; now, the solid AG is, by hypothesis,

equal to the solid KQ : therefore, AE is equal to S ; but, by construction,

AC is to KM, as KO is to S ; therefore, AC is to KM as KO to AE.

CoR. In the same manner, it may be demonstrated, that equal prisms

have their bases and altitudes reciprocally proportional, and conversely.

PROP. XI. THEOR.

Similar solid parallelopipeds are to one another in the triplicate ratio oj the%t

homologous sides.

Let AG, KQ be two similar parallelopipeds, of which AB and KL are

two homologous sides ; the ratio of the solid AG to the solid KQ is tripli-

ijate of the ratio of AB to KL.
Because the solids are similar, the parallelograms AF, KP are similar

(def. 2. 3. Sup.), as also the parallelograms AH, KR ; therefore, the ratios

of AB to KL, of AE to KO,and of AD to KN are all equal (def. 1. 6.).

But the ratio of the solid AG to the solid KQ is compounded of the ratios

o** AC to KM, and of AE to KO. Now, the ratio of AC to KM, because

tney are equiangular parallelograms, is compounded (23. 6.) of this ratios

of AB to KL, and of AD to KN. Wherefore, the ratio of AG to KQ is
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compounded of the three ratios of AB to KL, AD to KN, and AE to KO ,

and the three ratios have already been proved to be equal ; therefore, the

ratio that is compounded of them, viz. the ratio of the solid AG to the solid

KQ, is triplicate of any of them (def. 12. 5.) : it is therefore triplicate oi

the ratio of AB to KL.

CoR. 1 . If as AB to KL, so KL to m, and as KL to m, so is m to n, then

AB is to n as the solid AG to the solid KQ. For the ratio of AB to n is

triplicate of the ratio of AB to KL (def. 12. 5.), and is therefore equal to

that of the solid AG to the solid KQ.
CoR. 2. As cubes are similar solids, therefore the cube on AB is to the

cube on KL in the triplicate ratio of AB to KL, that is in the same ratio

with the solid AG, to the solid KQ. Similar solid parallelopipeds are there-

fore to one another as the cubes on their homologous sides.

CoR. 3. In the same manner it is proved, that similar prisms are to on«

another in the triplicate ratio, or in the ratio of the cubes of their homolo-

gous sides.

PROP. XII. THEOR.

Iftwo triangularpyramids, which have equal basesand altitudes, be cut byplanet

that are parallel to the bases, and at equal distances from them, the sections

are equal to one another.

Let ABCD and EFGH be two pyramids, having equal bases BDC and
FGH, and equal altitudes, viz. the perpendiculars AQ, and ES drawn from

A and E upon the planes BDC and FGH : and let them be cut by planes

parallel to BDC and FGH, and at equal altitudes QR and ST above those

planes, and let the sections be the triangles KLM, NOP ; KLM and NOP
are equal to one another.

Because the plan« ABD cuts the parallel planes BDC, KLM, the com-
mon sections B D and KM are parallel (14. 2. Sup.). For the same rea

•on, DC and ML are parallel. Since therefore KM and ML are parallel

to BD and DC, each to each, though not in the same plane with them, the

angle KLM is equal to the angle BDC (9. 2. Sup.). In like manner the

other angles of these triangles are proved to be equal ; therefore, the trian-

gles are equiangular, and consequently similar ; and the same is true of the

triangles NOP, FGH.
Now, since the straight lines ARQ, AKB mert the parallel planes BDC
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and KML, ihey are cut by them proportionally (16. 2. Sup.), or QR : RA
: : BK : KA ; and AQ : AR : : AB : AK (18. 5.), for the same reason,

£S : ET : : EF : EN ; therefore AB : AK : : EF : EN, because AQ is

equal to ES, and AR to ET. Again, because the triangles ABC, AKL
are similar,

AB : AK : : BC : KL ; and for the same reason

EF : EN : : FG : NO; therefore,

BC : KL : : FG : NO. And, when four straight lines are propor-

tionals, the similar figures described on them are proportionals (22. 6.)

;

therefore the triangle BCD is to the triangle KLM as the triangle FGFI
to the triangle NOP ; but the triangle BDC, FGH are equal ; therefore,

the triangle KLM is also equal to the triangle NOP (1. 5.).

Cor. 1. Because it has been shewn that the triangle KLM is similar

to the base BCD ; therefore, any section of a triangular pyramid parallel

to the base, is a triangle similar to the base. And in the same manner it is

shewn, that the sections parallel to the base of a polygonal pyramid are

similar to the base.

Cor. 2. Hence also, in polygonal pyramids of equal bases and altitudes,

the sections parallel to the bases, and at equal distances from them, are

equal to one another.

PROP. XIII. THEOR.

A series cfprisms ofthe same altitudemay be circumscribed about anypyramid^
such that the sum ofthe prisms shall exceed the pyramid by a solid less than

any given solid.

Let ABCD be a pyramid, and Z* a given solid ; a series of prisms hav-

ing all the same altitude, may be circumscribed about the pyramid ABCD,
so that their sum shall exceed ABCD, by a solid less than Z.

* The "olid Z is not represented in the figure of this, or ine following Propoiition
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Let Z be equal to a prism standing on the same base with ths pyramid,

m. the triangle BCD, and having for its altitude the perpendicular drawr
from a certain point E in the line AC
upon the plane BCD. It is evident, that

CE multiplied by a certain number m
will be greater than AC ; divide CA into

as many equal parts as there are units in

m, and let these be CF, FG, GH, HA,
each of which will be less than CE.
Through each of the points F, G, H, let

planes be made to pass parallel to the

plane BCD, making with the sides of the

pyramid the sections FPQ, GRS, HTU,
which will be all similar to one another,

and to the base BCD (1. cor. 12.3. Sup.).

From the point B draw in the plane of

the triangle ABC, the straight line BK
parallel to CF meeting FP produced in

K. In like manner, from D draw DL pa-

rallel to CF, meeting FQ in L : Join KL,
and it is plain, that the solid KBCDLF
is a prism (def. 4. 3. Sup.). By the same
construction, let the prisms PM, RO, TV
be described. Also, let the straight line IP, which is in the plane of the

triangle ABC, be produced till it meet BC in h ; and let the line MQ be
produced till it meet DC in g : Join hg ; then hC gQFP is a prism, and is

equal to the prism PM (1. Cor. 8. 3. Sup.). In the same manner is describ-

ed the prism mS equal to the prism RO, and the prism qU equal to the

prism TV. The sum, therefore, of all the inscribed prisms hQ, mS, and
qU is equal to the sum of the prisms PM, RO and TV, that is, to the sum
of all the circumscribed prisms except the prism BL; wherefore, BL is the

excess of the prism circumscribed about the pyramid ABCD above the

prisms inscribed within it. But the prism BL is less than the prism which
has the triangle BCD for its base, and for its altitude the perpendicular

from E upon the plane BCD ; and the prism which has BCD for ius base,

and the perpendicular from E for its altitude, is by hypothesis equal to the

given solid Z ; therefore the excess of the circumscribed, above the inscrib-

ed prisms, is less than the given solid Z. But the excess of the circum-

scribed prisms above the inscribed is greater than their excess above the

pyramid ABCD, because ABCD is greater than the sum of the inscribed

prisms. Much more, therefore, is the excess of the circumscribed prisms
above the pyramid, less than the solid Z. A series of prisms of the same
altitude has therefore been circumscribed about the pyramid ABCD, ex
ceeding it by a solid less than the given solid Z.

PROP. XIV. THEOR

Pyramids that have equal bases and altitudes are equal to one anoihei

Let ABCD, EFGH, be two pyramids that have equal bases BCD, FGH
37
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and also equal altitudes, viz, the perpendiculars drawn from the vertices A
and E upon the planes BCD, FGH : the pyramid ABCD is equal to th«
pyramid EFGH.

Ifthey are not equal, let the pyramid EFGH exceed the pyramid ABCD
by the solid Z. Then, a series of prisms of the same altitude may be de
scribed about the pyramid ABCD that shall exceed it, by a solid less than
Z Cl3. 3. Sup.) ; let these be the prisms that have for their bases the trian-

gles BCD, NQL, ORI, PSM. Divide EH into the same number of equal
parts into which AD is divided, viz. HT, TU, UV, VE, and through the

points T, U and "V,let the sections TZW, U-sX, V*Y be made parallel

to the base FGH. The section NQL is equal to the section WZT (12.

3. Sup.) ; as also ORI to XZU, and PSM to Y0V ; and therefore also the

prisms that stand upon the equal sections are equal (1. Cor. 8, 3. Sup.),

that is, the prism which stands on the base BCD, and which is between
the planes BCD and NQL, is equal to the prism which stands on the base

FGH, and which is between the planes FGH and WZT ; and so of the

rest, because they have the same altitude : wherefore, the sum of all the

prisms described about the pyramid ABCD is equal to the sum of all those

described about the pyramid EFGH. But the excess of the prisms de-

scribed about the pyramid ABCD above the pyramid ABCD is less than

Z (13. 3. Sup.) ; and therefore, the excess of the prism described about

the pyramid EFGH above the pyramid ABCD is also less than Z. But
the excess of the pyramid EFGH above the pyramid ABCD is equal to

Z,by hypothesis, therefore, the pyramid EFGH exceeds the pyramid
ABCD, more than the prisms described about EFGH exceeds the same
pyramid ABCD. The pyramid EFGH is therefore greater than the sum
of the prisms described about it, which is impossible. The pyramids

ABCD, EF GH therefore, are not unequal, that is, they are equal to one

another.
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PROP. XV. THEOR.

Every prism having a triangular base may be divided into tnree pyramids that

have triangular bases, and that are equal to another.

Let there be a prism of which the base is the triangle ABC, and let

DEF be the triangle opposite the base : The prism ABCDEF may be

divided into three equal pyramids having triangular bases.

Join AE, EC, CD ; and because ABED is a parallelogram, of which

AE is the diameter, the triangle ADE is equal

(34. 1.) to the triangle ABE : therefore the py-

ramid of which the base is the triangle ADE,
and vertex the point C,is equal (14. 3. Sup.) to

the pyramid, of which the base is the triangle

ABE, and vertex the point C. But the pyra-

mid of which the base is the triangle ABE, and

vertex the point C, that is, the pyramid ABCE
is equal to the pyramid DEFC (14 3. Sup.),

for they have equal bases, viz. the triangles

ABC, DEF, and the same altitude, viz. the al-

titude of the prism ABCDEF. Therefore the

three pyramids ADEC, ABEC, DFEC are

equal to one another. But the pyramids ADEC,
ABEC, DFEC make up the whole prism

ABCDEF ; therefore, the prism ABCDEF is

divided into three equal pyramids.

CoR. 1. From this it is manifest, that every pyramid is the third pan
of a prism which has the same base, and the same altitude with it ; for if

the base of the prism be any other figure than a triangle, it may be divided

into prisms having triangular bases.

CoR. 2. Pyramids of equal altitudes are to one another as their bases ;

because the prisms upon the same bases, and of the same altitude, are (1.

Cor. 8.3. Sup.) to one another as their bases.

PROP. XVI. THEOR.

Iffrom any point in the circumference of the base of a cylinder, a straight

line be drawn perpendicular to the plane of the base, it will be wholly in the

cylindric superficies.

Let ABCD be a cylinder of which the base is the circle AEB, DEC
the circle opposite to the base, and GH the axis ; from E, any point in the

circumference AEB, let EF be drawn perpendicular to the plane of the

circle AEB : the straight line EF is in the superficies of the cylinder.

Let F be the point in which EF meets the plane DFC opposite to th«

base; join EG and FH ; and let AGHD be the rectangle (14 dot. a
Sup.) by the revolution of which the cylinder ABCD is described
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Now , because GH is at right angles to GA,
ihe straight line, which by its revolution des-

cribes the circle AEB, it is at right angles to

all the straight lines in the plane of that circh^

which meet it in G, and it is therefore at right

angles to the plane of the circle AEB. But

EF is at right angles to the same plane ; there-

fore, EF and GH are parallel (6. 2. Sup.) and

in the same plane. And since the plane through

GH and EF cuts the parallel planes AEB,
DFC, in the straight lines EG and FH, EG is

parallel to FH (14. 2. Sup.). The figure

EGHF is therefore a parallelogram, and it has

the angle EGH a right angle, therefore it is a

rectangle, and is equal to the rectangle AH,
because EG is equal to AG. Therefore, when
in the revolution of the rectangle AH, the straight line AG coincides with

EG, the two rectangles AH and EH will coincide, and the straight line

AD will coincide with the straight line EF, But AD is always in the

superficies of the cylinder, for it describes that superficies ; therefore, EF
is also in the superficies of the cylinder.

PROP. XVH. THEOR.

A cylinder and a parallelopiped having equal bases and altitudes, are equal to

one another.

Let ABCD be a cylinder, and EF a parallelopiped having equal bases,

viz. the circle AGB and the parallelogram EH, and having also equal al-

titudes ; the cylinder ABCD is equal to the parallelopiped EF.

If not, let ihsm be unequal ; and first, let the cylinder be less than the

parallelopiped EF and from the parallelopiped EF let there be cut off »
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part EQ by a plane PQ parallel to NF, equal to the cylinder ABCD. In

the circle AGB inscribe the polygon AGKBLM that shall differ from the

circle by a space less than the parallelogram PH (Cor. 1 4. 1. Sup.), anc*

cut off from the parallelogram EH, a part OR equal to the polygon

AGKBLM. The point R will fall between P and N. On the polygon

AGKBIvM let an upright prism AGBCD be constituted of the same alti

tude with the cylinder, which will therefore be less than the cylinder, be-

cause it is within it (16. 3. Sup.) ; and if through the point R a plane RS
parallel to NF be made to pass, it will cut off the parallelopiped ES equal

(2. Cor. 8. 3. Sup.) to the prism AGBC, Jaecause its base i.<»- equal to that

of the prism, and its altitude is the same. But the prism AGBC is less

than the cylinder ABCD, and the cylinder ABCD is equal to the parallel-

opiped EQ, by hypothesis; therefore, ES is less than EQ. and it is also

greater, which is impossible. The cylinder ABCD, therefore, is not less

than the parallelopiped EF ; and in the same manner, it may be shewn
not to be greater than EF.

PROP. XVIII. THEOR.

If a cone and cylinder have the same base and the same altitude, the cone w tke

third part of the cylinder.

Let the cone ABCD, and the cylinder BFKG have the same base, viz.

the circle BCD, and the same altitude, viz, the perpendicular from the

point A upon the plane BCD, the cone ABCD is the third part of the cylin-

der BFKG.
If not, let the cone ABCD be the third part of another cylinder LMNO,

having the same altitude with the cylinder BFKG, but let the bases BCD
and LIM be unequal ; and first, let BCD be greatjsr than LIM

Then, because the circle BCD is greater than the circle LIM, a polygon

maybe inscribed in BCD, that shall differ from it less than LIM does (4.

I. Sup.), and which, therefore, will be greater than LIM. Let this be the

polygon BECFD; and upon BECFD, let there be constituted the pyra

mid ABECFD, and the prism BCFKHG.
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Be :au4 i the polygon BECFD is greater than the circle LIM, the prism
BCFKHG IS greater than the cylinder LMNO, for they have the same
altitude, but the prism has the greater base. But the pyramid ABECFD
is the third part of the prism (15. 3. Sup.) BCFKHG, therefore it is great-

er than the third part of the cylinder LMNO. Now, the cone ABECFD
is, by hypothesis, the third part of the cylinder LMNO, therefore the pyra-

mid ABECFD is greater than the cone ABCD, and it is also less, because
it is inscribed in the cono, which is impossible. Therefore, the cone ABCD
•s not less than the third part of the cylinder BFKG : And in the same
manner, by circumscribing a polygon about the circle BCD, it may be
shewn that the cone ABCD is not greater than the third part of the cylin-

der BFKG ; therefore, it is equal to the third part of that cylinder

PROP. XIX. THEOR.

Ifa hemisphere and a cone have equal bases and altitudes, a series of cylinders
may he inscribed in the hemisphere, and another seriesmay be described about

the cone, having all the same altitudes with one another, and such that their

sum shall differ from the sum of the hemisphere, and the cone, by a sMd
less than any given solid-

Let ADB be a semicircle of which the centre is C, and let CD be at right

angles to AB ; let DB and DA be squares described on DC, draw CE,
and let the figure thus constructed revolve about DC : then, the sector

BCD, which is the half of the semicircle ADB, will describe a hemisphere
having C for its centre (7 def. 3. Sup.), and the triangle CDE will describe

a cone, having its vertex to C, and having for its base the circle (11. def.

3. Sup.) described by DE, equal to that described by BC, which is the base

of the hemisphere. LetW be any given solid. A scries of cylinders may
be inscribed in the hemisphere ADB, and another described about the cone

ECI, so that their sum shall differ from the sum of the hemisphere and

the cone, by a solid less than the solid VV.

Upon the base of the hemisphere let a cylinder be constituted equal to

W, and let its altitude be CX. Divide CD into such a number of equal

parts, that each of them shall be less than CX ; let these be CH, HG, GF,
and FD. Through the points F, G, H, draw FN, GO, HP parallel to

CB, meeting the circle in the points K, L and M ; and the straight line

CE in the points Q, R and S. From ihe points K, L, M draw Kf, Lg,

Mh, perpendicular to GO, HP and CB ; and from Q, R, and S, draw Qq,
Rr, Ss, perpendicular to the same lines. It is evident, that the figure being

.hus constructed, if the whole revolve about CD, the rectangles Ff, Gg, Hh
will describe cylinders (14. def. 3. Sup.) that will be circumscribed by the

hemispheres BDA ; and the rectangles DN, Fq, Gr, Hs, will also describe

cylinders that will circumscribe the cone ICE. Now, it may be demon-
strated, as was done of the prisms inscribed in a pyramid (13. 3. Sup.),

that the sum of all the cylinders described within the hemisphere, is ex-

ceeded by the hemisphere by a solid less than the cylinder generated by

the rectangle HB, that is, by a solid less than vV, for the cylinder generated

by HB is less than W. In the same manner, it may be demonstrated

that the sura of the cylinders circumscribing the cone ICE is greater thar
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th« cone by a solid less than the cylinder generated by the rectangle DN
that is, by a solid less than VV. Therefore, since the sum of the cylinder*

inscribed in the hemisphere, together with a solid less than W, is equal to

the hemisphere ; and, since the sum of the cylinders described about the

cone is equal to the cone together with a solid less than W ; adding equals

to equals, the sum of all these cylinders, together with a solid less than W,
is equal to the sum of the hemisphere and the cone together with a solid

less than W. Therefore, the difference between the whole of the cylin-

ders and the sum of the hemisphere and the cone, is equal to the difference

of two solids, which are each of them less than W ; but this difference

must also be less than W, therefore the difference between the two series

of cylinders and the sum of the hemisphere and cone is less than the given

•olid W.

PROP. XX. THEOR.

The same things being supposed as in the last proposition, the sum of all the

cylinders inscribed in the hemisphere, and described about the cone, is equal

to a cylinder, having the same base and altitude with the hemisphere.

Let the figure BCD be constructed as before, and supposed to revolve

About CD ; the cylinders inscribed in the hemisphere, that is, the cylinders

described by the revolution of the rectangles Hh, Gg, Ff, together with

those described about the cone, that is, the cylinders described by the revo-

lution of the rectangles Hs, Gr, Fq, and DN are equal to the cylinder de
scribed by the revolution of the rectangle BD.

Let L be the point in which GO meets the circle ABD, then, because
CGI. is a right angle if CL be joined, the circles described with the dis-

tances CG and GL are equal to the circle described with the distance CL
(2. Cjt 6. 1 Sup.) or GO; now, CG is equal to GR, because CD is equal

to DE, and therefore also, the circles described with the distance GR and
GL are together equal to the circle described with the distance GO, that

if, the circles described by the revolution of GR and GL about the point

G, are together equal to the circle described by the revolution of GO about

the same point G ; therefore also, the cylinders that stand iipo the two
first of these circles, having the common altitudes GH, are enr->' o 'he
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cylinder \/hich stands on the remaining circle, and which has the same
altitude GH. The cylinders described by the revolution of the rectangles

Gg, and Gr are therefore equal to the cylinder described by the rectangle

GP, And as the same may be shewn of all the rest, therefore the cylin-

ders described by the rectangles Hh, Gg, Ff, and by the rectangles Hs, Gr,

Fq, DN, are together equal to the cylinder described by BD, that is to the

cylinder having the same base and altitude with the hemisphere.

PROP. XXL THEOR.

Every sphere is two-thirds of the circumscribing cylindei

.

Let the figure be constructed as in the two last propositions, and if the

hemisphere described by BDC be not equal to two-thirds of the cylinder

described by BD, let it be greater by the solid W. Then, as the cone de-

scriued by ODE is one-third of the cylinder (18. 3. Sup.) described by BD,
the cone and the hemisphere together will exceed the cylinder by W. But

that cylinder is equal to the sum of all the cylinders described by the rect-
angles Hh, Gg, Ff, Hs, Gr, Fq, DN (20. 3. Sup.) ; therefore the hemisphere
and the cone added together exceed the sum of all these cylinders by the
given solid W, which is absurd ; for it has been shewn (19. 3. Sup.), that
the hemisphere and the cone together differ from the sum of the cylinders
by a solid less than W. The hemisphere is therefore equal to two-thirds
of the cylinder described by the rectangle BD ; and therefore th^ whole
sphere is equal to two-thirds of the cylinder described by twice the rectan
gle BD, that is, to two-thirds of the circumscribing cylinder.

END OF THE SUPPLEMG^ T TO THE ELEMENTS.
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PLANE TRIGONOMETRY.

Trigonometry is the application of Arithmetic to Geometry : or, more
precisely, it is the application of nimiber to express the relations of the side*

and angles of triangles to one another. It therefore necessarily supposes

the elementary operations of arithmetic to be understood, and it borrows
from that science several of the signs or characters which peculiarly be-

long to it.

The elements of Plane Trigonometry, as laid down here, are divided into

three sections : the first explains the principles ; the second delivers the

rules of calcidation ; the third contains the constniction of trigonometrical

tables, together with the investigation of some theorems, useful for extend-

ing trigonometry to the solution of the more difficult problems

SECTION I.

LEMMA I.

An angle at the centre ofa circle is to four right angles as the arc on whtek

it stands is to the whole circumference.

Let ABC be an angle at the centre of the circle ACF, standing on the

circumference AC : the angle ABC is to four right angles as the arc AC
to the whole circumference ACF.

Produce AB till it meet the circle

in E, and draw DBF perpendicular to

AE
Then, because ABC, ABD are two

angles at the centre of the circle ACF,
the angle ABC is to the angle ABD as

the arc AC to the arc AD, (33. 6.)

;

and therefore also, the angle ABC is to

lOur times the angle ABD as the arc

AC to four times the arc AD (4. ^.).

Put ABD is a right angle, and there-

fore foiu: times the &rc AD is equa to

28
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the vl (»lc uiicumference ACF ; therefore the angle ABC is to foi.r right

angles as the arc AC to the whole circumference ACF.

Cor. Equal angles at the centres of different circles stand on arcs which
have the same ratio to their circumferences. For, if the angle ABC, at

the centre of the circles ACE, GHK, stand on the arcs AC, OH, AC ia

to the whole circumference of the circle ACE, as the angle ABC m fctii

right angles ; <uid the arc HG is to the whole circumference of the circle

GHK in the same ratio.

DEFINITIONS.

1. If two straight lines intersect one another in the centre of a circle, tno

re of the circumference intercepted between them is called the Measure
of the angle which they contain. Thus the arc AC is the measure of

the angle ABC.

2. If the circumference of a circle be divided into 360 equal parts, each ol

these parts is called a Degree ; and if a degree be divided into 60 equal

parts, each of these is called a Minute ; and if a minute be divided into

60 equal parts, each of them is called a Second, and so on. And as many
degrees, minutes, seconds, &c. as are in any arc, so many degrees, mi-

nutes, seconds, &c. are said to be in the angle measured by that arc.

Cor. 1. Any arc is to the whole circumference of which it is a part, as

the number of degrees, and parts of a degree contained in it is to the

number 360. And any angle is to four right angles as the number of

degrees and parts of a degree in the arc, which is the measure of that

angle, is to 360.

Cor. 2. Hence also, the arcs which measure the same angle, whatever

be the radii with which they are described, contain the same number of

degrees, and parts of a degree. For the number of degrees and parts of

a degree contained in each of these arcs has the same ratio to the num-
ber 360, that the angle which they measure has to four right angles

(Cor. Lem. 1.).

The degrees, minutes, seconds, &c. contained in any arc or angle, are

usually written as in this example, 49°. 36'. 24". 42'"
; that is, 49 de-

grees, 36 minutes, 24 seconds, and 42 thirds.

3 Two angles, which are U>gether equal to two right angles, or two arcs

which are together equal to a semicircle, arc called the Supplements of

one another.

4 A straight line CD drawn through C, one of the extreipities of the arc
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AC, perpendicular to the diameter

passing through the other extremity

A, is called the Sine of the arc AC,
or of the angle ABC, of which AC
is the measure.

CJoR 1 . The sine of a quadiant,or of

a right angle, is equal to the radius.

Cor. 2. The sine of an arc is half the

chord of twice that arc : this is evi-

dent by producing the sine of any
arc till it cut the circumference.

5. The segment DA of the diameter passing through A, one extremity of

the arc AC, between the sine CD and the point A, is called the Versed

sine of the arc AC, or of the angle ABC.

6. A straight line AE touching the circle at A, one extremity of the art,

AC, and meeting the diameter BC, which passes through C the other

extremity, is called the Tangent of the arc AC, or of the angle ABC

CoR. The tangent of half a right angle is equal to the radius.

7. The straight line BE, between the centre and the extremity of the tan

gent AE is called the Secant of the arc AC, or of the angle ABC.

Cor. to Def. 4, 6,7, the sine, tangent and secant of any angle ABC, are

likewise the sine, tangent, and secant of its supplement CBF.
It is manifest, from Def. 4. that CD is the sine of the angle CBF. Let

CB be produced till it meet the circle again in I ; and it is also mani

fest, that AE is the tangent, and BE the secant, of the angle ABI, or

CBF, from Def. 6. 7.

Cor. to Def. 4, 5, 6, 7. The sine, versed sine, tangent, and secant of an

arc, which is the measure of any gi-

ven angle ABC, is to the sine, versed

sine, tangent and secant, of any other

arc which is the measure of the same
angle, as the radius of the first arc is

to the radius of the second.

Let AC, MN be measures of the angle

ABC, according to Def. 1. ; CD the

sine, DA the versed aine. AE the
B OMD

tangent, and BE the secant of the arc AC, according to Def. 4, 5, 6, 7
,

NO the sine, OM the versed sine, MP the iangent, and BP the secant

of the arc MN. according to the same definitions. Since CD, NO, A R
MP are parallel, CD : NO : : rad. CB : rad. NB, and AE : MP : : rad

AB : rad. BM, also BE : BP : : AB : BM ; likewise because BC : BD
: : BN : BO, that is, BA : BD : : BM : BO, by conversion and alterna-

lion, AD : MO : : AB : MB. Hence the corollary is manifest. And
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mereforft, if tables be constructed, exhibiting in numbers the sines, tan-

gents secai.ts, and versed sines of certain angles to a given radius, they
will exhibit the ratios of the sines, tangents, &C'. of the same angles to

any radius whatsoever.

In such tables, which are called Trigonometrical Tables, the radius is

either supposed 1, or some in the series 10, 100, 1000, &c. The use
and construction of these tables are about to be explained.

8. The difference between any angle

and a right angle, or between any
arc and a quadrant, is called the

Complement of that angle, or of that

arc. Thus, if BH be perpendicular

to AB, the angle CBH is the com-
plement of the angle ABC, and the

arc HC the complement of AC
;

also, the complement of the obtuse

angle FBC is the angle HBC, its

excess ubove a right angle ; and
the complement of the arc FC is

HC.

9. The sine, tangent, or secant of the complement of any angle is called

the Cosine, Cotangent, or Cosecant of that angle. Thus, let CL or DB,
which is equal to CL, be the sine of the angle CBH ; HK the tangent,

and BK the secant of the same angle : CL or BD is the cosine, HK the

cotangent, and BK the cosecant of the angle ABC.

CoR. L The radius is a mean proportional between the tangent and the

cotangent of any angle ABC ; that is, tan. ABC X cot. ABC=R2.
For, since HK, BA are parallel, the angles HKB, ABC are equal, and

KHB, BAE are right angles ; therefore the triangles BAE, KHB are

similar, and therefore AE is to AB, as BH or BA to HK.
CoR. 2. The radius is a mean proportional between the cosine and se-

cant of any angle ABC ; or

COS. ABC X sec. ABC=R2.
Since CD, AE are parallel, BD is to BC or BA, as BA to BE.

PROP. L

/« a right angled plane triangle, as the hypotenuse to either of the sides, so

the radius to the sine of the angle opposite to that side ; and as either of the

sides is to the other side, so is the radius to the tangent of the angle oppo-

site to that side.

Let ABC be aright angled plane triangle, of which BC is the hypote-

nuse. From the centre C, with any radius CD, describe the arc DE •

draw DF at right angles to CE, and from E draw EG touching the circle

in E, and meeting CB in G ; DF is the sine, and EG the tanger of the

arc DF or of the angle C.
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The two triangles DFC, BAG, are equiangular, because the angles

OFG, BAG are right angles, and the

angle at C is common. Therefore,

CB : BA : : GD : DF ; but GD is

the radius, and DF the sine of the

angle G, (Def. 4.) ; therefore GB :

BA : : R : sin. C.

Also, because EG touches the cir-

cle in E, GEG is a right angle, and
therefore equal to the angle BAG

;

and since the angle at G is common
to the triangles CBA, GGE, these triangles are equiangular, wherefore

GA : AB : : GE : EG ; but GE is the radius, and EG the tangent of the

angle G ; therefore, GA : AB : : R : tan. G.

Cor. 1. As the radius to the secant of the angle G, so is the side adja-

cent to that angle to the hypotenuse. For GG is the secant of the angle

G (def. 7.), and the triangles GGE, GBA being equiangular, GA : GB :

.

GE : GG, that is, GA : GB : : R : sec. G.

Cor. 2. If the analogies in this proposition, and in the above corollary

be arithmetically expressed, making the radius = 1, they give sin. C =
AB . _ AB _ BG ,, . . » „ , _

tan. G = -r-7^, sec. G = —7;. Also, since sm. G=co8. B, because B
BG AG' AG

AB

of the

is the complement of G, cos. B =DrJ> ^^^ ^^^ ^^^ same reason, cos. C
Bu

AC
BC*
CoR. 3. In every triangle, if a perpendicular be drawn from any

angles on the opposite side, the segments of

that side are to one another as the tangents of

the parts into which the opposite angle is di-

vided by the perpendicular. For, if in the tri-

angle ABC, AD be drawn perpendicular to

«he base BG, each of the triangles GAD, ABD
being right angled, AD : DC : : R : tan. CAD,
and AD : DB : : R : tan. DAB ; therefore, ex
aequo, DC : DB ; : tan. CAD : tan. BAD.

. SCHOLIUM.

The proposition, just demonstrated, is most easily remembered, by stating

r thus : If in a right angled triangle the hypotenuse be made the radius,

the sides become the sines of the opposite angles ; and if one of the sides be
made the radius, the other side becomes the tangent of the opposite angle,
and the hypotenuse the secant of it.
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. PROP. II. THEOR.

ITie sides of a plane triangle are to one another as the stnes of the oppostu

angles.

From A any angle in the triangle ABC,
let AD be drawn perpendicular to BC.
And because the triangle ABD is right

angl 5d at D, AB : AD : : R : sin. B ; and

for the same reason, AC : AD : : R :

sin. C, and inversely, AD : AC : : sin.

C : R • therefore, ex aequo inversely, AB
; AC : sin. C : sin. B. In the same
manner it may be demonstrated, that AB
I BC : : sin. C : sin. A.

PROP. III. THEOR.

The sum of the sines of any two arcs of a circle, ts to the difference of then

sines, as the tangent of half the sum of the arcs to the tangent of half then

difference.

Let AB, AC be two arcs of a circle ABCD ; let E be the centre, and

AEG the diameter which passes through A ; sin. AC+sin. AB : sin. AC
—sin. AB : : tan. ^ (AC+AB) : tan.

I
(AC-AB).

Draw BF parallel to AG, meeting the circle again in F. Draw BH
and CL perpendicular to AE, and they will be the sines of the arcs AB
and AC

;
produce CL till it meet the circle again in D

;
join DF, FC, DE,

EB, EC, DB.
Now, since EL from the centre is perpendicular to CD, it bisects the

line CD in L and the arc CAD in A :

DL is therefore equal to LC, or to the

sine of the arc AC ; and BH or LK
being the sine of AB, DK is the sum
of the sines of the arcs AC and AB,
and CK is the difference of their sines;

DAB also is the sum of the arcs AC
and AB, because AD is equal to AC,
and BC is their difference. Now, in

the triangle DFC, because FK is per-

pendicular to DC, (3. cor. 1.), DK :

KC : : tan. DFK : tan. CFK ; but

tan. DFK=tan. ^ arc. BD, because

the angle DFK (20. 3.) is the half of DEB, and therefore measured by

half the arc DB. For the same reason, tan. CFK=tan. ^ arc. BC ; and

consequently, DK : KC : : tan. ^ arc. BD : tan. ^ arc. BC. But DK is

the sum of the sines of the arcs AB and AC ; and KC is the difference of

the sines ; also BD is the sum of the arcs AB and AC, and BC the <liffe-

rence of those arcs
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Cor. 1. Because EL is the cosine of AC, and EH of AB, FK is the

sum of these cosines, and KB their difference ; for FK=^FB-fEL=EH
-f EL, and KB=LH = EH -EL. Now, FK : KB : : tan. FDK : tan.

BDK ; and tan. DFK=cotan. FDK, because DFK is the complement

of FDK ; therefore, FK : KB : : colan. DFK : tan. BDK, that is, FK :

KB : : cotan.
J

arc. DB : tan. ^arc. BC. The sum of the cosines of two
arcs is therefore to the difference of the same cosines as the cotangent of

half the sum of the arcs to the tangent of half their difference.

Cor. 2. In the right angled triangle FKD, FK : KD : : R : tan. DFK;
Now FK=cos. AB+cos. AC, KD= sin. AB-f-sin. AC, and tan. DFK=
tan. I (AB+ AC), therefore cos. AB+cos. AC : sin. AB+sin. AC : : R :

.an.} (AB+AC).
In the same manner, by help of the triangle F'KC, it may be shewn that

cos. AB+ cos. AC : sin. AC— sin. AB : : R : tan. }(AC— AB).
CoR. 3. If the two arcs AB and AC be together equal to 90'^, the tan-

gent of half their sum, that is, of 45°, is equal to the radius. And the arc

BC being the excess of DC above DB,or above 90°, the half of the arc

BC will be equal to the excess of the half ofDC above tlie half of DB, that

is, to the excess of AC above 45° ; therefore, when the sum of two arcs is

90°, the sum of the sines of those arcs is to their difference as the radius to

the tangent of the difference between either of them and 45°.

PROP. IV. THEOR.

The sum of any two sides of a triangle is to their difference, as the tangent of
half the sum of the angles opposite to those sides, to the tangent ofhalft\tw
difference.

Let ABC be any plane triangle
;

CA+AB : CA-AB : : tan. ^ (B+ C) : tan.
\ (B—C).

For (2.) CA : AB : : sin. B : sin. C
;

and therefore (E. 5.)

CA+AB : CA—AB : : sin. B+sin. C : sin. B— sin. C.

But, by the last, sin. B+sin. C : sin. B— sin. C : :

tan. \ (B+C) : tan. \ (B—C) ; therefore also, (1 L 5.)

CA fAB : CA-AB : : tan. ^ (B+C) : tan. \ (B-C).
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Otherwise, without the 3d.

Let ABC be a triangle ; the sum of AB and AC any two sides, is to the

difference of AB and AC as the tangent of half the sum of the angles ACB
and ABC, to the tangent ®f half their difference.

About the centre A wiih the radius AB, the greater of the two sides, de-

scribe a circle meeting BC produced in D, and AC produced in E and F
Join DA, EB, FB ; and draw FG parallel to CB, meeting EB in G

Because the exterior angle EAB is equal to the two interior ABC, ACB
(32. 1.) : and the angle EFB, at the circumference is equal to half the an-

gle EAB at the centre (20. 3.) ; therefore EFB is half the sum of the an-

gles opposite to the sides AB and AC.
Again, the exterior angle ACB is equal to the two interior CAD, ADC,

and therefore CAD is the difference of the angles ACB, ADC, that is, of

ACB, ABC, for ABC is equal to ADC. Wherefore also DBF, which is

the half of CAD, or BFG, which is equal to DBF, is half the difference of

the angles opposite to the sides AB, AC.
Now because the angle FBE, in a semicircle is a right angle, BE is tho

tangent of the angle EFB, and BG the tangent of the angle BFG to the

radius FB ; and BE is therefore to BG as the tangent of half the sum of

the angles ACB, ABC to the tangent of half their difference. Also CE is

the sum of the sides of the triangle ABC, and CF their difference ; and be-

cause BC is parallel to FG, CE : CF : : BE ; BG, (2. 6.) that is, the sum
of the two sides of the triangle ABC is to their difference as the tangent of

half the sum of the angles opposite tc those sides to the tangent of half

their difference.
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PROP. V. THEOR.

Ifa perpendicular be drawn from any angle of a triangle to the opposite side,

or base ; the sum of the segments of the base is to the sum of the ot/ier two

sides of the triangle as the difference of those sides to the difference of the

segments of the base.

For (K. 6.), the rectangle under the sum and difference of the segments
of the base is equal to the rectangle under tlie sum and difference of the

sides, and therefore (16. 6.) the sum of the segments of the base is to the

sum of the sides as the difference of the sides to the difference of the seg-

ments of the base.

PROP. VI. THEOR.

In any triangle, twice the rectangle contained by any two sides ts to the dif-

ference between the sum of the squares of those sides, and the square of tk$

base, as the radius to the cosine of the angle included by the two sides.

Let ABC be any triangle, 2AB.BC is

to the difference between AB^+BC^ and

AC* as radius to cos. B.

From A draw AD perpendicular to BO,
and (12. and 13. 2.) the difference be-

tween the sum of the squares of AB and

BC, and the square on AC is equal to

2BC.BD.
But BC.BA : BC.BD : : BA : BD : :

R : cos. B, therefore also 2BC.BA : 2BC. B D C
BD : : R : cos. B. Now 2BC.BD is the difference between AB'+BO»
and AC*, therefore twice the rectangle

AB.BC is to the difference between A
AB2+BC2, and AC* as radius to the

cosine of B.

CoR. If the radius =1, BD=BA
Xcos. B, (1.), and 2BC.BAxcos, B
=2BC.BD, and therefore when B is

acute, 2BC.BAXC0S. B = BC^-j-BA*
—AC, and adding AC* to both; AC*
+ 2 cos. B X BC.BA = BC*-f B.V*

;

and taking 2 cos. B x BC.BA from both, AC*=BC*—2 cos. B X BC.BA
+ BA*. Wherefore AC=v'(BC*—2 cos. BxBC.BA+BA*).

If B is an obtuse angle, it is shewn in the same way that ACai

^(BC*-f2 cos. BxBC.BA+BA*).
80
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PROP. VII. THEOR.

Four times the rectangle contained by any two sides of a triangle, is tc </.«

rectangle contained by two straight lines, of which one is the base or thxrd

side of the triangle increased by the difference of the two sides, and thd

other the base diminished by the difference of the same sides, as the square

of the radius to the square of the sine ofhalf the angle included between the

two sides of the triangle.

Let ABC be a triangle of which BC is the base, and AB the greatwr of

the two sides ; 4AB.AC : (BC+(AB-AC)) x (BC-(AB-AC)) : : R»
• (sin. \ BAC)2.

Produce the side AC to D, so that AD=AB
;
join BD, and draw AE

OF at right angles to it ; from the centre C with the radius CD describe

the semicircle GDH, cutting BD in K, BC in G, and meeting BC pro-

duced in H.
It is plain that CD is the difference of the sides, and therefore that BH is

the base increased, and BG the base diminished by the difference of the

sides ; it is also evident, because the triangle BAD is isosceles, that DE is

the half of BD, and DF is the half of DK, wherefore DE—DF=the half

of BD—DK (6. 5.), that is, EF=^ BK. And because AE is drawn pa-

rallel to CF, a side of the triangle CFD, AC : AD : : EF : ED, (2. 6.)

;

and rectangles of the same altitude being as their bases ACAD : AD* :

:

EF.ED : ED2 (1. 6.), and therefore 4AC.AD : AD^ : : 4EF.ED : ED^, or

alternately, 4AC.AD : 4EF.ED : : AD^ : ED^.
But since 4EF=2BK, 4EF.ED=2BK.ED=2ED.BK=DB.BK=r

HB.BG ; therefore 4AC.AD : DB.BK : : AD2 : ED^. Now AD : ED :

:

R : sin. EAC=sin. ^ BAG (1. Trig.) and AD^ : ED^ : : R2 : (sin. \ BkCf

:

therefore, (11. 5.) 4AC.AD : HB.BG : : R2 : (sin. ^ BAC)^, or since AB
=.AD, 4AC.AB : HB.BG : : R2 : (sin. ^ BAC)2. Now 4AC.AB is four

times the rectangle contained by the sides of the triangle ; HB.BG is that

contained by BC+(AB—AC) and BC—(AB—AC).

Cor. Hence 2 ^AC.AD : ^HB.BG • • R : sin ^ BAG.
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PROP. 7III. THEOR.

Fjn» imes t/te rectangle contained by any two sides of a triangle, ts to t/ie

rectangle contained by two straight lines, of which one is the sum of those

sides increased by the base ofthe triangle, and the other the sum of the same

sides diminished by the base, as the square of the radius to the square Oj

the cosine of half the angle included between the two sides of the triangle.

Let ABC be a triangle, of which BC is the base, and AB the greater o*

'.he other two sides, 4AB.AC : (AB+ AC-f-BC) (AB+AC-BC) : : R^ •

fcos.
I RAC)2.

from the centre C, with the radius CB, describe the circle BLM, meet-

ing AC, produced, in L and M. Produce ALto N, so that AN=AB ; let

AD=AB ; draw AE perpendicular to BD
;
join BN, and let it meet the

circle again in P ; let CO be perpendicular to BN ; and let it meet AE in R.

It is evident that MN=AB-fAC+ BC; and that LN=AB+AC—
BC. Now, because BD is bisected in E, and DN in A, BN is parallel to

AE. and is therefore perpendicular to BD, and the triangles DAE, DNB
are equiangular; wherefore, since DN=2AD.BN=2AE, and BP=2B0
=2RE ; also PN=2AR.

But because the triangles ARC and AED are equiangular, AC : AD :

:

AR : AE, and because rectangles of the same altitude are as their base*

(1. 6.), ACAD : AD' : : AR.AE : AE2,and alternately ACAD : AR.At
;

:
AD* : AE^, and 4AC.AD : 4AR.AE : : AD' : AE^. But 4AR AE=

2ARx2AE= NP.NB=MN.NL ; therefore 4AC.AD : MN.NL : : AD' :

AFA But AD : AE : ; R : cos. DAE (1) =co3. 1 (BAC); Wherefow
4ACAD : MN.NL : : R' : (cos. ^ BAC^»
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Now 4AC.AD is four times the rectangle under the sides AC and AB,
(for AD=AB), and MN.NL is the rectangle under the sum of the sides

increased by the base, and the sum of the sides diminished by the base

Cor. I . Hence 2 ^AC.AB ; VMN.NL : : R : cos. i BAG.
CoR. 2. Since by Prop. 7. 4AC.AB : (BC+(AB—AC)) (BC—(AB

—BC)) : : R2 : (sin. ^ BAC)^ ; and as has been now proved 4AC.AB :

(AB+AC+BC) (AB+AC-BC) : : R2 : (cos. ^ BAC)2; therefore, ex
aequo, (AB + AC + BC) (AB+AC-BC) : (BC + (AB-AC)) (BC-
(AB—AC)) : : (cos. i BAC)'^ : (sin. ^ BAC)^. But the cosine of any arc

is to the sine, as the radius to the tangent of the same arc ; therefore, (AB
+AC+ BC) (AB+AC-BC) : (BC+(AB-AC)) BC-(AB-AC)) :

:

R2
: (tan. ^ BAC)^ ; and

V(AB+AC+BC) (AB+AC-BC :

V(BC+AB-AC) (BC-(AB-AC)) : : R : tan. ^ BAG.

LEMMA IL

If there be two unequal magnitudes, half their difference added to halftketr

sum is equal to the greater ; and half their difference taken from half their

sum is equal to the less.

Let AB and BC be two unequal magnitudes, of which AB is the great-

er ; suppose AC bisected in D, and AE
equal to BC. It is manifest that AC is A E D B C
the sum, and EB the difference of the

magnitudes. And because AC is bisected in D, AD is equal to DC : but

AE is also equal to BC, therefore DE is equal to DB, and DE or DB is

half the difference of the magnitudes. But AB is equal to BD and DA,
that is, to half the difference added to half the sum ; and BC is equal to

the excess of DC, half the sum above DB, half the difl*erence.

(!!oR. Hence, if the sum and the difference of two magnitudes be given,

the magnitudes themselves may be found ; for to half the sum add half the

difference, and it will give the greater : from half the sum subtract half

the difference, and it will give the less.

SCHOLIUM.

This property is evident from the algebraical sum and difference of the

two quantities a and b, of which a is the greater ; let their sum be denoted

by s, and their diflference by d : then,

a-\-b=s )

a-b=dS
.•.by addition, 2a=:j+<i;

and a=4-+4-

By subtraction, 25=:j

—

d ;

—— —

.
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SECTION 11.

OF THE RULES OF TRIGONOMETRICAL
CALCULATION.

The General Problem which Trigonometry proposes to resolve is
•

/•I any plane triangle, of the three sides and the three angles, any three Icing

given, and one of these three being a side, to find any of tiie other three.

The things here said to be given are understood to be expressed by iheix

numerical values : the angles, in degrees, minutes, &c.; and the sides in

feet, or any other known measure.

The reason of the restriction in this problem to those cases in which at

least one side is given, is evident from this, that by the angles alone being

given, the magnitudes of the sides are not determined. Innumenible tri-

angles, equiangular to one another, may exist, without the sides of any
one of them being equal to those of any other ; though the ratios of their

sides to one another will be the same in them all (4. 6.). If therefore, only

the three angles are given, nothing can be determined of the triangle but

the ratios of the sides, which may be found by trigonometry, as being the

same with the ratios of the sines of the opposite angles.

For the conveniency of calculation, it is usual to divide the general pro-

blem into two ; according as the triangle has, or has not, one of the angles

a right angle.

PROBLEM I.

In a right angled triangle, of the three sides, and three angles, any two betn§

given, besides the right angle, and one of those two being a side, it is required

to find the other three.

It is evident, that when one of the acute angles of a right angled trianglu

is given, the other is given, being the complement of the former to a right

angle ; it is also evident that the sine of any of the acute angles is th«

cosine of the other.

This problem admits of several cases, and the solutions, or rules for cal-

culation, which all depend on the first Proposition, may be conveniently

exhibited in the form of a table ; where the first column contains the things

given ; the second, the things required ; and the third, the rules or propo*

titions by which they are found.
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g:ven'. SOUGHT. BOLUnON.

CB and B, the

hypotenuse and

angle.

AC.
AB.

R : sin B : : CB : AC.
R : cos B : : CB : AB.

1

2

3

4

AC and C, a

side and one of

the acute angles.

BC.
AB.

Cos C : R : : AC : BC.
R : tan C : : AC : AB.

CB and BA,
the hypotenuse

and a side.

C
AC.

CB : BA : : R : sin C.

R : cos C : : CB : AC.
5

6

AC and AB,
the two sides.

C.

CB.
AC : AB : : R : tan C.

Cos C : R : : AC : CB.
7

8

Remarks on the Solutions in the table.

In the second case, when AC and C are given to find the hypotenuse

BC, a sohition may also be obtained by help of the secant, for CA : CB : :

R : sec. C. ; if, therefore, this proportion be madeR : sec. C : : AC : CB,
CB will be found.

In the third case, when the hypotenuse BC and the side AB are given

to find AC, this may be done either as directed in the Table, or by the

47th of the first ; for since AC2 = BC2 — BA2, AC = ^BC^ — BA*.
This value of AC will be easy to calculate by logarithms, if the quantity

BC^—BA^ be separated into two multipliers, which may be done ; because

(Cor. 5. 2. ), BCg-BA2=(BC + BA) . (BC-BA). Therefore AC =
V'tBC+ B'A) (BC-BA).
When AC and AB are given, BC may be found from the 47th, as in the

preceding instance, for BC= /BA^+AC^. But BA^-j-AC2 cannot be

separated into two multipliers ; and therefore, when BA and AC are large

numbers, this rule is inconvenient for computation by logarithms. It is

best in such cases to seek first for the tangent of C, by the anaJo^y in the

Table, AC : AB : : R : tan. C ; but if C itself is notrequired,itis suflicient,

havin^r found tan. C by this proportion, to take from the Trigonometric
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Tables tne cosine that corresponds to tan. C, and then to compute CB from

the proportion cos. C : R : : AC : CB.

PROBLEM IL

In tm oblique angled tnangle, of the three sides and three angles, any thret

being given, and one of these three being a side, it is required to find the

other three.

This problem has four cases, in each of which the solution depends oa

some of the foregoing propositions.

CASE L

Two angles A and B, and one side AB, of a triangle ABC, being giren,

to find the other sides.

SOLUTION.

Because the angles A and B are given, C is also given, being the 8iq>

plement of A+B ; and, (2.)

Sin. C : sin. A : : AB : BC ; also,

Sin. C : sin. B : : AB : AC.

CASE n.

Two sides AB and AC, and the angle B opposite to one of them, bein^

given, to find the cither angles A and C, and iilso the other side BC.

SOLUTION.

The angle C is found from this proportion, AC : AB : : sin. B : sin. C.

Also, A=180O—B—C ; and then, sin. B : sin. A ; : AC : CB, by Case 1.

In this case, the angle C may have two values ; for its sine being found

by the proportion above, the angle belonging to that sine may either be that

which is found in the tables, or it may be the supplement of it (Cor. def. 4.).

This ambiguity, however, does not arise from any defect in the solution,

but from a circumstance essential to the problem, viz. that whenever AC
is less than .\.B, there are two triangles which have the sides AB, AC, and

the angle at B of the same magnitude in each, but which are nevertheless

unequal, the angle opposite to A B in the one, being the supplement of tnat

which is opposite to it in the other. The truth of this appears by describ-

ing from the centre A with the radius AC, an arc intersecting BC in C
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A.

and C ; then, if AC and AC be drawn, it is evident that the triangles

ABC, ABC have the side AB and the angle at B common, and the sides

AC and AC equal, but have not the remaining side of the one equal to the

remaining side of the other, that is, BC to BC, nor their other angl'HS equal,

Viz. BCA to BCA, nor BAC to BAC. But in these triangles the angles

ACB, ACB are the supplements of one another. For the triangle CAC
is isosceles, and the angle ACC=ACC, and therefore, ACB, which is

the supplement of ACC, is also the supplement of ACC or ACB ; and
these two angles, ACB, ACB are the angles found by the computation
above.

From these two angles, the two angles BAC, BAC will be found : the

angle BAC is the supplement of the two angles ACB, ABC (32. 1.), and
therefore its sine is the same with the sine of the sum of ABC and ACB
But BAC is the difference of the angles ACB, ABC : for it is the diffe-

rence of the angles ACC and ABC, because ACC, that is, ACC is equal

o the sum of the angles ABC, BAC (32. 1.). Therefore, to find BC,
having found C, make sin. C : sin. (C+B) : : AB : BC ; and again, sin.

C : sin. (C-B) : : AB : BC.
Thus, when AB is greater than AC, and C consequently greater than

B, there are two triangles which satisfy the conditions of the question.

But when AC is greater than AB, the intersections C and C fall on oppo-
site sides of B, so that the two triangles have not the same angle at B com-
mon to them, and the solution ceases to be ambiguous, the angle required

being necessarily less than B, and therefore an acute angle.

CASE III.

Two sides AB and AC, and the angle A, between them, being given to

find the other angles B and C, and also the side BC.

SOLUTION.

First, make AB+AC : AB—AC : : tan.
J (C+B) : tan. ^ (C-B).

Then, since ^ (C+B) and \ (C—B) are both given, B and C may be f>iaid.

For B=^ (C+B)+^ (C-B), and C=^ (C+B)-^ (C-B). (Lem. 2.)

To find BC.

Having found B, make sin. B : sin. A : : AC : BC.
But BC may also be found without seeking for the angle B and C , foi

BC= VAB^—2co3. AxAB.AC+ACa, Prop 6



PLANE TRIGONOMETRY. 233

This method of finding BC is extremely useftil in many geometrical in

restigations, but it is not very well adapted for computation by logarithms

because the quantity under the radical sign cannot be separated into sira

pie multipliers. Therefore, when AB and AC are expressed by larg<>

numbtrs, the other solution, by finding the angles, and then computing BC,
is preferable.

CASE IV.

The three sides AB, BC, AC, being given, to find the angles A, B, C.

SOLUTION I.

Take F such that BC : BA-fAC ; : BA—AC : F, then F is either the

sum or the difference of BD, DC, the segments of the base (5.). If F be
greater than BC, F is the sum, and BC the difference of BD, DC ; but, if

F be less than BC, BC is the sum, and F the difference of BD and DC.
In either case, the sum of BD and DC, and their difference being given.

BD and DC are found. (Lem. 2.)

Then, (1.) CA : CD : : R : cos. C ; and BA : BD : : R : cos. B ; where
fore C and B are given, and consequently A.

D C B
SOLVTION II.

C D

Let D be the difference of the sides AB, AC. Then (Cor. 7.) 2 VAB.AC
^(BC+D) (BC-D) : : R : sin. ^ BAC.

SOLUTION III.

Let S be the sum of the sides BA and AC. Then (1. Cor. 8.) 2 y/ABJiC
V(S4-liC) (S-^^^BC) : : R : cos. ^ BAC.

SOLUTION IV.

S andD retaining the significations above, (2.Cor.8.) ^(S-hBC)(S -J5CJ)

: y/{liC+ D) (BC-D) : : R : tan. ^ BAC.

It may be observed of these four solutions, that the first has the advan*
tage of being easily remembered, but that the others are rather more expe-
ditious in calculation. The second solution is preferable to the third, when
the angle sought is less than a right angle ; on the other hand, the third

ji preiierabie to the second, when the angle sought is greater than a right

30
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angle
, Ji/id in extreme cases, that is, when the angle sought is very acute

or very obtuse, this distinction is very material to be considered. The
reason is, that the sines of angles, which are nearly = 90°, or the cosines
of angles, which are nearly = 0, vary very little for a considerable varia-

tion in the corresponding angles, as may be seen from looking into the ta-

bles of sines and cosines. The consequence of this is, that when the sine

or cosine of such an angle is given (that is, a sine or cosine nearly equal to

the radius,) the angle itself cannot be very accurately found. If, for in
stance, the natural sine .9998500 is given, it will be immediately per-
ceived from the tables, that the arc corresponding is between 89°, and 89<^

r ; but it cannot be found true to seconds, because the sines of 89° and ol

89° r, differ only by 50 (in the two last places,) whereas the arcs them-
selves differ by 60 seconds. Two arcs, therefore, that differ by 1", or even
by more than 1", have the same sine in the tables, if they fall in the last

degree of the quadrant.

The fourth solution, which finds the angle from its tangent, is not liable

to this objection ; nevertheless, when an arc approaches very near to 90°,
the variations of the tangents become excessive, and are too irregular to

allow the proportional parts to be found with exactness, so that when the

angle sought is extremely obtuse, and its half of consequence very near to

90, the third solution is the best.

It may always be known, whether the angle sought is greater or less

than a right angle by the square of the side opposite to it being greater oi

less than the squares of the other two sides.

SECTION III.

CONSTRUCTION OF TRIGONOMETRICAL TABLES.

In all the calculations performed by the preceding rules, tables of sines

and tangents are necessarily employed, the construction of which remains
to be explained.

The tables usually contain the sines, &c. to every minute of the quad-

rant from 1' to 90°, and the first thing required to be done, is to compute
the sine of 1', or of the least arc in the tables.

1. If ADB be a circle, of which the centre is C, DB, any arc of that cir-

cle, and the arc DBE double of DB ; and if the chords DE, DB be drawn,

also the perpendiculars to them from C, viz. CF, CG, it has been demon-
strated (8. 1. Sup.), that CG is a mean proportional between AH, half the

radius, and AF, the line made up of the radius and the perpendicular CF.
Now CF is the cosine of the arc BD, and CG the cosine of the half of BD

;

whence the cosine of the half of any arc BD, of a circle of which the ra-

dius = 1, is a mean proportional between ^ and 1+ cos. BD. Or, hr the

greater generality, supposing A = any arc, cos. ^ A is a mean propt**tional
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between ^ and 1+cos. A, and therefore (cos. | A)2=| (l-{-cos. A) or co»

I A = V^^(l-fcos. A).

2. From this theorem, (which is the same that is demonstrated (8. 1.

Sup.), only that it is here expressed trigonometrically,) it is evident, that if

the cosine of any arc be given, the cosine of half that arc may be found.

Let BD, therefore, be equal to 60°, so that the chord BD=radius, then the

cosine or perpendicular CF was shewn (9. 1. Sup.) to be =^, and there-

fore cos. ^ BD, or cos. 30°= Vhi^+h)"^ Vl=-^- ^^ ^^ same man<

ner, cos. 15°= v'i(l+cos.
30°J,

and cos. 7°, 30'= V^(l+cos. 15°),«fec.

In this way the cosine of 3°, 45 , of 1°, 52', 30", and so on, will be com-
puted, till after twelve bisections of the arc of 60°, the cosine of 52". 44'".

93"", 45*'. is found. But from the cosine of an arc its sine may be
found, for if from the square of the radius, that is, from l,the square of

the cosine be taken away, the remainder is the square of the sine, and its

square root is the sine itself. Thus the sine of 52". 44'". 03"". 45^. is

found.

3. But it is manifest, that the sines of very small arcs are to one another
nearly as the arcs themselves. For it has been shewn that the number of

the sides of an equilateral polygon inscribed in a circle may be so great,

that the perimeter of the polygon and the circumference of the circle may
differ by a line less than any given line, or, which is the same, may be
nearly to one another in the ratio of equality. Therefore their like parts

will also be nearly in the ratio of equality, so that the side of the polygon
will be to the arc which it subtends nearly in the ratio of equality ; and
therefore, half the side of the polygon to half the arc subtended by it, that

is to say, the sine of any very small arc will be to the arc itself, nearly iu

the ratio of equality. Therefore, if two arcs are both very small, the first

will be to the second as the sine of the first to the sine of the second
Hence, from the sine of 52". 54'". 03"". 45". being found, the sine of 1
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becomes known , for, as 53". 44'". 03"". 45^^. to l,so is the sine of the

former arc to the sine of the latter. Thus the sine of 1' is found =3

0.0002908882.

4. The sine 1' bemgthus found, the sines of 2', of 3', or of any number
of minutes, may be found by the following proposition.

THEOREM.

Let AB, AC, AD be three such arcs, that BC the difference of the first

and second is equal to CD the difference of the second and third ; the ra-

dius is to the cosine of the common difference BC as the sine of AC, the

middle arc, to half the sum of the sines of AB and AD, the extreme arcs.

Draw CE to the centre : let BF, CG, and DH perpendicular to A E, be

the sines of the arcs AB, AC, AD. Join BD, and let it meet CE in I

;

draw IK perpendicular to AE, also BL and

IM perpendicular to DH. Then, because

the arc BD is bisected in C, EC is at right

angles to BD, and bisects it in I ; also BI is

the sine, and EI the cosine of BC or CD.
And, since BD is bisected in I, and IM is

parallel to BL (2. 6.), LD is also bisected in

M. Now BF is equal to HL, therefore BF
4-DH=DH+HL = DL+2LH = 2LM+
2LH=2MH or 2KI ; and therefore IK is

half the sum of BF and DH. But because

the triangles CGE, IKE are equiangular,

CE : EI : : CG : IK, and it has been shewn that EI=cos. BC, and IK:a

I (BF+DH) ; therefore R : cos. BC : : sin. AC : I (sin. AB+sin. AD).

AE

CoR. Hence, if the point B coincide with A,

R : cos. BC : : sin. BC : ^ sin. BD, that is, the radius is to the cosme ol

any arc as the sine of the arc is to half the sine of twice the arc ; or if any
arc=A, i sin. 2A=sin. A X cos. A, or sin. 2A=2 sin. A x cos A.

Therefore also, sin. 2'=2' sin. I' x cos. 1'
: so that from the sine at.i

cosine of one minute the sine of 2' is found.

Again, 1', 2', 3', being three such arcs that the difference between the

first and second is the same as between the second and third, R : cos. 1'
: :

sin. 2 : 1 (sin. I'+sin. 3'), or sin. I'-j-sin. 3'^2 cos. I'+sin. 2', and taking

sin. 1' from both, sin. 3'^2 cos. I'xsin. 2'— sin. 1.

In like manner, sin. 4'=2' cos. I'xsin. 3'— sin. 2,

sin. 5'=2' COS. I'xsin. 4'— sin. 3,

sin. G'=2' COS. I'xsin. 5'— sin. 4, &c.
Thus a table containing the sines for every minute 6f the quadrant may

be computed ; and as the multiplier, cos. 1' remains always the same, the

calculation is easy.

For computing the sines of arcs that differ by more than 1', the method

is the same. Let A, A-j-B, A+2B be three such arcs, then, by this the-

orem, R : cos.B : : sin. (A-j-B) : ^ (sin A+sin. (A-|-2B)) ; and therefore

making the radius 1,
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•in. A-fsin. (A+2B)=2 cos. Bxsin. (A+B),
or sin. (A-f2B)=2 cos. Bxsin. (A+B)— sin. A.

By means of these theorems, a table of the sines, and consequently alu*

»f the cosines, of arcs of any number of degrees and minutes, from to 90,

maybe constructed. Then, because tan. A= —^, the table of tangent*

IS computed by dividing the sine of any arc by the cosine of the same arc.

When the tangents have been found in this manner as far as 45°, the tan-

gents for the other half of the quadrant may be found more easily by an-

other rule. For the tangent of an arc above 45° being the co-tangent of

an arc as much under 45°
; and the radius being a mean proportional be-

tween the tangent and co-tangent of any arc (1. Cor, def. 9), it follows, ii

the difference between any arc and 45° be called D, that tan. (45°—D) ;

1 : : 1 : tan. (45°+D), so that tan. (450+D)=^^^^i-jj^.

Lastly, the secants are calculated from (Cor. 2. def. 9) where it i«

shewn that the radius is a mean proportional between the cosine and the

secant of any arc, so that if Abe any arc, sec. A= -.
COS. A.

The versed sines are found by subtracting the cosines from the radius.

5. The preceding Theorem is one of four, which, when arithmetically

expressed, are frequently used in the application of trigonometry to the so-

lution of problems.

Imo, If in the last Theorem, the arc AC=A, the arc BC=B, and the

radius EC=I, then AD= A+ B, and AB=A—B ; and by what has jusl

been demonstrated,

1 : COS. B : : sin. A : ^ sin. (A+B)+^ sin. (A—B),
and therefore,

sin. Axcos. B=^sin. (A+B)+J (A—B).

2do, Because BF, IK, DH are parallel, the straight lines BD and FH
are cut proportionally, and therefore FH, the difference of the straight lines

FE and HE, is bisected in K ; and therefore, as was shewn in the last

Theorem, KE is half the sum of FE and HE, that is, of the cosines of the

arcs AB and AD. But because of the similar triangles EGC, EKI, EC
• EI : : GE : EK ; now, GE is the cosine of AC, therefore,

R : cos. BC : : cos. AC : J cos. AD+^ cos. AB,
or 1 : cos. B : : cos. A : ^ cos. (A+B)+^ cos. (A— B)

;

and therefore,

cos. Axcos. B=J COS. (A+ B)+J cos. (A— B);
3tio, Again, the triangles IDM, CEG are equiangular, for the angles

KIM, EID are equal, being each of them right angles, and therefore, tak-

ing away the angle ElM, the angle DIM is equal to the angle EIK, thai

is, to the .angle ECG ; and the angles DMI, CGE are also equal, being

both right angles, and therefore the triangles IDM, CGE have the sides

about their equal angles proportionals, and consequently, EC : CG : : DI
: IM ; now, IM is half the difference of the cosines FE and EH, therefore,

R : sin. AC : : sin. BC : ^ cos. AB—i cos. AD,
or 1 : sin. A : : sin. B : ^ cos. (A—B)—^ cos. (A+B) •
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and also,

sin. Ax sin. B=^ cos. 'A—B)—^ cos. (A+B).
4/c., Lastly, in the same triangles ECG, DIM, EC : EG : : ID : DM-,

now, DM is half the difference of the sines DH and BE, therefore,

R : cos. AC : : sin. BC : } sin. AD—i sin. AB,
or 1 : cos. A : : sin. B :

i sin. (A+B)—^ sin. (A+B)

;

and therefore,

cos. Ax sin. B=^ sin. (A+B)—^ sin. (A— B).

6. If therefore A and B be any two arcs whatsoever, the radius being

supposed 1
;

I. sin. Axcos B=^ sin. (A+ B)+^ sin. (A—B).

II. cos. Axcos. B=|cos. (A—B)+^ cos. (A+ B)

III sin. Axsin. B=|cos.(A- B)—4 cos. (A+B).
IV. cos. Axsin. B=|sin. (A+B)—i sin. (A B).

From these four Theorems are also deduced other four.

For adding the first and fourth together,

sin. Axcos. B+ cos. Axsin. B=sin. (A+B).
Also, by taking the fourth from the first,

sin. Axcos. B— cos. Axsin. B=sin. (A— B).

Again, adding the second and third,

cos. Axcos. B+sin. Axsin. B=cos. (A— B)

;

And, lastly, subtracting the third from the second,

COS. Axcos. B—sin. Ax sin. B=cos. (A+B).

7. Again, since by the first of the above theorems,

sin. Ax COS.B=^ sin. (A+B)+^ sin.(A—B),ifA+B=S, and A—BzsD.

V /T ox A
S+D ,„ S-D , . . S+D

then (Lem. 2.) A-=—-— , and B=

—

-— ; wherefore sm. —-— X cos.

§ J)—-—^^ sin. S+^ D. But as S and D may be any arcs whatever, to

preserve the former notation, they may be called A and B, which also ex-

press any arcs whatever : thus,

. A+B A-B , . , , , . „
sm.—-— X cos.—-—=^ sm. A+| sm. B, or

„ . A+B A-B . , , . „
2 8m. —-— Xcos.—-—=sm. A+sm. B.

* 2
In the same manner, from Theor. 2 is derived,

A+B A—

B

„ . . „ , ,
2 cos. —-— X COS. —-—=cos. B+cos. A. From the 3d,

„ . A+B . A—

B

„ , . , ,
2 sm. —— xsm. —-—=cos. B— cos. A ; and from the 4th,

A+B . A-B . , . .„
2 cos.

—

-— xsm. ——-=s8m. A—sm. B.

In all these Theorems, the arc B is supposed less than A.

8. Theorems of tne same Kind with respect to the tangents of arcs wiy
be deduced from the preceding. Because the tangent of any arc is equal
to the sine of the arc divided by its cosine,
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tan. (A-|-B)=———-—rr^- But it has just been shewn, that
COS. (A-f-B)

«in. (A-|-B)=sin. Ax cos. B+ cos. Ax sin. B, and that

COS. (A-i-B)=cos. Axcos. B— sin. Axsin.B; therefore, tan. (A-j-B) =»

sin. Ax cos. B+cos. Ax sin. B , ,.-,•. i i ij
; r^—:—

:

—

tti ^nd dividing Doth the numerator and deno-
cos. Axcos. B—sin. Ax sin. B

^^tnn \ I trLn ii

minator of this fraction by cos. AxcDs. B, tan. (A4-B)=- -^ rz

I tan. A X t&n. is

III /A r.x tan. A tan. B
In like manner, tan. (A—B)=— ; i-,.

' ^ ' l+tan. Ax tan. B

9. If the Theorem demonstrated in Prop. 3, be expressed in the same
manner with those above, it gives

sin. A+sin. B _ tan. ^ (A+ B)

sin. A—sin. B ~
tan. ^ (A— B)'

Also by Cor. 1, to the 3d,

cos. A+ cos. B _ cot. ^ (A+B)
cos. A— COS. B tan. ^ (A— B)*

And by Cor. 2, to the same proposition,

sin. A+sin. B tan. I (A+B) . „ • . t .
T-T- jT = -jz -, or since R is here supposed ss 1,

COS. j\ ^" COS. D Xv

sin. A+sin. B
i / i , t^x

COS. A+cos. B ^ \ ' /

10. !n all the preceding Theorems, R, the radius, is supposed = 1 , bo-

Cduse in this way the propositions are most concisely expressed, and aro

also most readily applied to trigonometrical circulation. But if it be re-

quired to enunciate any of them geometrically, the multiplier R, which
has disappeared, by being made = 1, must be restored, and it will always
be evident from inspection in what terms this multiplier is wanting. Thus,
Theor. 1,2 sin. A X cos. B=sin. (A+B)+sin. (A— B), is atrue proposition,

taken arithmetically ; but taken geometrically, is absurd, unless we sup-

ply the radius as a multiplier of the terms on the right hand of the sine of

equality. It then becomes 2 sin. Axcos. B=R(sin. {A+ B)+ sin. (A— B));
or twice the rectangle under the sine of A, and the cosine of B equal to the

rectangle under tha radius, and the sum of the sines of A+B and A— B.

In general, the number oi linear multipliers, that is, of lines whose nume-
rical values are multiplied together, must be the same in every term, other-

wi.se wo will compare unlike magnitudes with one another.

The propositions in this section are useful in many of the higher branches

of the Math'jtnatics, and are the foimdation of what is called the Arithmetit

•/ Sines.



ELEMENTS
OF

SPHERICAL

TRIGONOMETRY.

PROP. I.

Ifa sphere he cut by aplane through the centre, the section is a circle^ having the

same centre with the sphere, and equal to the circle hy the revolution ofwhich
the sphere was described-

For all the straight lines drawn from the centre to the superficies of the

sphere are equal to the radius of the generating semicircle, (Def 7. 3.

Sup.). Therefore the common section of the spherical superficies, and of

a plane passing through its centre, is a line, lying in one plane, and hav-

ing all its points equally distant from the centre of the sphere ; therefore it

is the circumference of a circle (Def. 11. 1.), having for its centre the cen-

tre of the sphere, and for its radius the radius of the sphere, that is, of the

semicircle by which the sphere has been described. It is equal, therefore,

to the circle of which that semicircle was a part.

DEFINITIONS.

1

.

Any circle, which is a section of a sphere by a plane through ts centre,

is called a great circle of the sphere.

Cor. All great circles of a sphere are equal ; and any two of them bisect

one another.

They are all equal, having all the same radii, as has just been shewn ; and
• any two of them bisect one another, for as they have the same centre,

their common section is a diameter of both, and therefore bisects both.

2. The pole of a great circle of a sphere is a point in the superficies of the

sphere, from which all strai ^fht lines drawn to the circumference of the

circle are equal.

3. A spherical angle is an angle on the superficies of a sphere, contained

by the arcs of two great circles which intersect one another ; and is the

same with the inclination of the planes of these great circles



SPHERICAL TRIGONOMETRY. 241

4. A spherical triangle is a figure, upon the superficies of a spheie, com-

prehended by three arcs of three great circles, each of which is less than

a semicircle.

PROP. II

The arc of a great circle, hetroeen the pole and the circumference of another

great circle, is a quadrant.

Let } BC be a great circle, and D its pole ; if DC, an arc of a great

circle, pass through D, and meet ABC in C, the arc DC is a quadrant.

Let the circle, of which CD is an arc, meet ABC again in A, and let

AC be the common section of the planes

of these great circles, which will pass

through E, the centre of the sphere ; Join

DA, DC. Because AD= DC, (Def 2.),

and equal straight lines, in the same cir-

cle, cut off equal arcs (28. 3.), the arc AD
= the arc DC ; but ADC is a semicircle,

therefore the arcs AD, DC are each of

them quadrants.

CoR. 1. If DE be drawn, the angle AED is a right angle ; and DE
being therefore at right angles to every line it meets with in the plane of

tbe circle ABC, is at right angles to that plane (4. 2. Sup.). Therefore

the straight line drawn from the pole of any great circle to the centre of the

sphere is at right angles to the plane of that circle ; and, conversely, a

straight line drawn from the centre of the sphere perpendicular to the plane

of any greater circle, meets the superficies of the sphere in the pole of that

circle.

CoR. 2. The circle ABC has two poles, one on each side of its plane,

which are the extremities of a diameter of the sphere perpendicular to the

plane ABC ; and no other points but these two can be poles of the circle

ABC.

PROP. III.

If the pole ofa great circle he the same with the intersection of other two gi ecu

circles : the are of the first mentioned circle intercepted between the other

two, is the measure of the spherical angle which the same two circles make
with one another.

Let the great circles BA, CA on the superficies

of a sphere, of which the centre is D, intersect one
another in A, and let BC be an arc of another great

circle, of which the pole is A ; BC is the measure
cf the spherical angle BAC.

.loin AD, DB, DC ; since A is the pole of BC,
.\B, AC are quadrants (2.), and the angles ADB,
\DC are right angles : therefore (4. def. 2. Sup.),

he angle CDB is the inclination of the planes of

31
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the circles A.B, AC, and is (def. 3.) equal to the spherical angle BAG
but the arc BC measures the angle BDC, therefore it also measures the

spherical angle BAC*

Cor. If two arcs of great circles, AB and AC, which intersect one an-

other in A, be each of them quadrants, A will be the pole of the great cir-

cle which passes through E and C the extremities of those arcs. For
since the arcs AB and AC are quadrants, the angles ADB, ADC are right

angles, and AD is therefore perpendicular to the plane BDC, that is, to the

plane of the great circle which passes through B and C. The point A is

therefore (1. Cor. 2.) the pole of the great circle which passes through B
and C.

PROP. IV.

If the planes of two great circles of a sphere he at right angles to one another

the circumference of each of the circles passes through the poles of the

other ; and if the circumference of one great circle pass through the poles

of another, the planes of these circles are at right angles.

Let ACBD, AEBF be two great circles, the planes of which are right

angles to one another, the poles of the circle AEBF are in the circumference
ACBD, and the poles of the circle ACBD in the circumference AEBF.
From G the centre of the sphere, draw GC in the plane ACBD perpen-

dicular to AB. Then because GC in the plane ACBD, at right angles

to the plane AEBF, is at right angles

to the common section of the two

planes, it is (Def. 2- 2. Sup.) also at

right angles to the plane AEBF, and

therefore (1. Cor. 2.) C is the pole of

the circle AEBF ; and if CG be pro-

duced in D, D is the other pole of the

circle AEBF.
In the same manner, by drawing

GE in the plane AEBF, perpendicu-

lar to AB, and producing it to F, it has

shewn that E and F are the poles of

the circle ACBD. Therefore, the

poles of each of these circles are in

the circumference of the other.

• Again, If C be one of the poles of the circle AEBF, the great circie

ACBD which passes through C, is at right angles to the circle AEBF.
For, CG being drawn from the pole to the centre of the circle AEBF, is

at right angles (1. Cor. 2.) to the plane of that circle ; and therefore, every

plane passing through CG (17. 2. Sup.) is at right angles to the plane

AEBF ; now, the plane ACBD passes through CG.

CoR. 1 . If of two great circles, the first passes through the pol«s of the

When in any reference no mention is made of a Book, or of the Plane 1 ligonomeuy, UM
Soher'ca' Trigononietry is meant.
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second, the second also passes through the poles of the first. For, if the

first passes through the poles of the second, the plane of the first must bn

at right angles to the plane of the second, by the second part of this propo-

sition ; and therefore, by the first part of it, the circumference of each

passes through the poles of the other.

CoR. 2. All greater circles that have a common diameter h^ve theii

poles in the circumference of a circle, the plane of which is perpendiculai

to that diameter.

PROP. V.

In isosceles 'spherical triangles the angles at the base are equal.

Let ABC be a spherical triangle, having the side AB equal to the sida

AC ; the spherical angles ABC and ACB are equal.

Let C be the centre of the sphere
;
join

DB, DC, DA, and from A on the straight

lines DB, DC, draw the perpendiculars AE,
AF; and from the points E and F draw in

the plane DBC the straight lines EG, FG
perpendicular to DB and DC, meeting one

another in G : Join AG.
Because DE is at right angles to each of

the straight lines AE, EG, it is at right angles

to the plane AEG, which passes through

AE, EG (4. 2. Sup.) ; and therefore, every

plane that passes through DE is at right angles to the plane AEG (17. 2.

Sup.) ; wherefore, the plane DBC is at right angles to the plane AEG.
For the same reason, the plane DBC is at right angles to the plane AFG,
and therefore AG, the common section of the planes AFG, AEG is at

right angles (18. 2. Sup.) to the plane DBC, and the angles AGE, AGF
are consequently right angles.

But since the arc AB is equal to the arc AC, the angle ADB is equal

to the angle ADC. Therefore the triangles ADE. ADF, have the angles

EDA, FDA, equal, as also the angles AED, AFD, which are right an-

gles ; and they have the side AD common, therefore the other sides are

equa>, viz. AE to AF(26. 1.), and DE to DF. Again, because the angles

AGE, AGF are right angles, the squares on AG and GE are equal to the

square of AE ; and the squares of AG and GF to the square of AF. But
the squares of AE and AF are equal, tliereforc the squares of AG and GE
are equal to the squares of AG and GF, and taking away the common
square of AG, tli« remaining squares of GE and GF are equal, and GE is

therefore equal to GF. Wherefore, in the triangles AFG, AEG, the side

GF is equal to the side GE, and .AF has been proved to be equal to AE,
and the base AG is common ; therefore, the angle .-\FG is equal to the

Kngle AEG (8. 1.). But the angle AFG is the angle which the piano

ADC makes with the plane DBC (4. def. 2. Sup.), because F.V and FG,
•rhich are drawn in these planes, are at right angles to DF, the common
••ction of the planes. The angle AFG (3. def.) is therefore equal to tho
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spherical angle ACB ; and, for the same reason, the angle AEG ib vqaai

to tbrt spherical angle ABC. But the angles AFG, AEG are equal

Therefore the spherical angles ACB, ABC are also equal.

PROP. VI.

If the angles at the base ofa spherical triangle be equal, the triangle is istrsceles.

Let ABC be a spherical triangle having the angles ABC, ACB equal

to one another ; the sides AC and AB are also equal.

Let D be the centre of the sphere
;
join DB, DC, DA, and from A on

the straight lines DB, DC, draw the perpendiculars AJi, AF ; and from

the points E and F, draw in the plane DBC
the straight lines EG, FG perpendicular to

DB and DC, meeting one another in G

;

join AG.
Then, it may be proved, as was done in

the last proposition, that AG is at right an-

gles to the plane BCD, and that therefore

the angles AGF, AGE are right angles, and

also that the angles AFG, AEG are equal

to the angles which the planes DAC, DAB
make with the plane DBC. But because

the spherical angles ACB, ABC are equal, the angles which the planes

DAC, DAB make with the plane DBC are equal (3. def.), and therefore

the angles AFG, AEG are also equal. The triangles AGE, AGF have

therefore two angles of the one equal to two angles of the other, and they

have also the side AG common, wherefore they are equal, and the side AF
is equal to the side AE.

Again, because the triangles ADF, ADE are right angled at F and E,

the squares of DF and FA are equal to the square of DA, that is, to the

squares of DE and DA ; now, the square of AF is equal to the square of

AE, therefore the square of DF is equal to the square of DE, and the side

DF to the side DE. Therefore, in the triangles DAF, DAE, because DF
is equal to DE and DA common, and also AF equal to AE, the angle

ADF is equal to the angle ADE ; therefore also the arcs AC and AB,
which are the measures of the angles ADF, and ADE, are equal to one

another ; and the triangle ABC is isosceles.

PROP. VIL

Any two sides of a spherical triangle are greater than the third.

Let ABC be a spherical triangle, any two sides AB, BC are greater than

ine third side AC.
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Let D be tlie centre of the sphere

;

join DA, DB, DC.
The solid angle at D is contained by

three plane angles ADB, ADC, BDC ;

any two of which, ADB, BDC are

greater (20. 2. Sup.) than the third

ADC ; and therefore any two of the

»rcs AB, AC, BC, which measure
these angles, as AB and BC must also

be greater than the third AC.

PROP. vin.

The three sides of a spherical triangle are less than the circumference of a
great circle.

Let ABC be a spherical triangle as before, the three sides AB, BC, AC
are less than the circumference of a great circle.

Let D be the centre of the sphere : The solid angle at D is contained

by three plane angles BDA, BDC, ADC, which togetljer are less than

four right angles (2L2. Sup.) therefore the sides AB, BC, AC, which are

the measures of these angles, are together less than four quadrants describ-

ed with the radius AD, that is, than the circumference of a great circle.

PROP. IX.

In a spherical triangle the greater angle is opposite to the greater side ; and
conversely.

Let ABC be a spherical triangle, the greater angle A is opposed to the

greater side BC.
Let the angle BAD be made equal

to the angle B, and then BD, DA will

be equal (6.), and therefore AD, DC
are equal to BC ; but AD, DC are

greater than AC (7.), therefore BC is

greater than AC, that is, the greater

angle A is opposite to the greater side

BC. The converse is demonstrated as

Prop. 19. 1. Elem.

PROP. X.

According as the sum oftwo ofthe sides ofa spherical triangle, is greater than

a semicircle, equal to it, or less, each ofthe interior angles at the base is greater

than the exterior and opposite angle at the base, equal to it, or less ; and als9

the sum 0^ the two interior angles at the base greater than two right angles,

equal to two right angles, or less than two right angles.

5 et ABC be a spherical triangle, of which the sides are AB and B(J

,
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j.roduce any of the two sides as AB, and the base AC, till they meet a?alnm D; then, the arc ABD is a semicircle, and the spherical angles at Aand D are equal, because each of them is the inclination of the circle AB n
to the circle ACD.

I. If AB, BC be equal to a
semicircle, that is, to A D, BC will

be equal to BD, and therefore (5.)
the angle D, or the angle A, will

be equal to the angle BCD, that

is, the interior angle at the base
equal to the exterior and oppo-
site.

2. If AB, BC together be greater than a semicircle, thai is, greater than

ABD, BC will be greater than BD ; and therefore (9.), the angle D, that

Js, the angle A, is greater than the an^le BCD.
3. In the same manner it is shewn, if XB, BC together be less than a

semicircle, that the angle A is less than the angle BCD.
Now, since the angles BCD, BCA are equal to two right angles, if tht»

angle A be greater than BCD, A and ACB together will be greater thaw
two right angles. If A be equal to BCD, A and ACB together, will be
equal to two right angles ; and if A be less than BCD, A and ACB will

be less than two right angles.

PROP. XI.

If the angular points of a spherical triangle be made the poles of three great

circles, these three circles by their intersections willform a triangle, which
is said to be supplemental to the former ; and the two triangles are such,

that the sides of the one are the supplements of the arcs which measure the

angles of the other.

Let ABC be a spherical triangle ; and from the points A, B, and C as
poles, let the great circles FE, ED, DF be described, intersecting one an-
other in F, D and E ; the sides of the triangle FED are the supplement of

the measures of the angles A, B, C, viz. FE of the angle BAC, DE of the

angle ABC, and DF of the angle ACB : And again, AC is the supplement
of the angle DFE, AB of the angle FED, and BC of the angle EDF

Let AB produced meet DE, EF in G, M ;

let AC meet FD, FE in K, L ; and let BC
meet FD, DE in N, H.

Since A is the pole of FE, and the circle

AC passes through A, EF will pass through
the pole of AC (1. Cor. 4.) and since AC
passes through C, the pole of FD, FD will
pass through the pole of AC ; therefore the
])ole of AC is in the point F, in which the
arcs DF, EF intersect each other. In the
same manner, D is the pole of BC, and E
the pole of AB.

And since F, E are the poles of AL, AM, the arcs FL and EM (2.) ^re
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quadrants, and FL, EM together, that is, FE and ML togcthei, are equa«

to a semicircle. But since A is the pole of ML, ML is the measure o*" the

angle BAG (3.), consequently FE is the supplement of the measure of the

angle BAG. In the same manner, ED, DF are the supplements of tht>

measures of the angles ABG, BGA.
Since likewise CN, BH are quadrants, GN and BH together, that is,

Nil and BC together, are equal to a semicircle ; and since D is the polo of

NH, NH is the measure of the angle FDE, therefore the measure of the

angle FDE is the supplement of the side BG. In the same manner, it is

shewn that the measures of the angles DEF, EFD are the supplements
of the sides AB, AG in the triangle ABG.

PROP. XII.

The three angles of a spherical triangle are greater than two, and less than six

right a7igles.

The measure of the angles A, B, G, in the triangle ABG, together with
the three sides of the supplemental triangle DEF, are (11.) equal to three

semicircles ; but the three sides of the triangle FDE, are (8.) less than two
semicircles ; therefore the measures of the angles A, B, G, are greater than
a semicircle ; and hence the angles A, B, G are greater than two right

angles.

And because the interior angles of any triangle, together with the exte-

rior, are equal to six right angles, the interior alone are less than six right

angles.

PROP. XIII.

Ifto the circumference ofa great circle,from apoint in the surface of the sphere,

which is not the pole of that circle, arcs ofgreat circles be drawn ; the greatest

)f these arcs is that which passes through the pole of the first-mentioned cir'

cle, and the supplement of it is the least ; and of the other arcs, that which is

nearer to the greatest is greater than that which is more remote.

Let ADB be the circumference of a great circle, of which the pole is 11,

9nd let G be any other point ; through G and H let the semicircle AGB be
drawn meeting the circle ADB in A and B ; and let the arcs GD, GE, GF
also be described. From G draw GG perpendicular to AB, and then, be-

cause the circle AHGB which passes
through H, the pole of the circle ADB,
is at right angles to ADB, GG is per-
pendicular to the plane ADB. Join
GD, GE, GF, GA, GD, GE, GF, GB.

Because AB is the diameter of the

circle ADB, and G a point in it, which
is not the centre, (for the centre is ir

the point where the perpendicular from
H meets A B), therefore AG, the part

of the diameter in which the centre is
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is the greatest (7. 3.), and GB the least of all the straight lines that can be

drawn from G to the circumference ; and GD, which is nearer to AB, is

greater than GE, which is more remote. But the triangles CGA, CGD
are right angled at G, and therefore AC2=AG2-1-GC2, and DC2=DG2+
GC2; but AG2+GCVDG2+GC2; because AG/DG; therefore AC^
7DC2, and AC 7 DC. And because the chord AC is greater than the

chord DC, the arc AC is greater than the arc DC. In the same manner,
since GD is greater than GE, and GE than GF, it is shewn that CD is

greater than CE, and CE than CF. Wherefore also the arc CD is greater

than the arc CE, and the arc GE greater than the arc CF, and CF than

CB, that is, of all the arcs of greater circles drawn from C to the circum-

ference of the circle ADB, AC which passes through the pole H, is the

greatest, and CB its supplement is the least ; and of the others, that which
is nearer to AC the greatest, is greater than that which is more remote.

PROP. XIV.

fn a right angled spherical triangle, the sides containing the right angle are Oj

the same affection with the angles opposite to them, that is, if the sides be

greater or less than quadrants, the opposite angles will be greater or less than
right angles, and conversely-

uet ABC be a spherical triangle, right angled at A, any side AB will

be of the same affection with the opposite angle ACB.
Produce the arcs AC, AB, till they meet again in D, and bisect AD in

E. Then ACD, ABD are semicircles, and AE an arc of 90°. Also, be-
cause CAB is by hypothesis a right angle, the plane of the circle ABD is

perpendicular to the plane of the

circle ACD, so that the pole of.

ACD is in ABD, (1. Cor. 4.),

and is therefore the point E. Let

EC be an arc of a great circle

passing through E and C.

Then because E is the pole of

the circle ACD, EC is a (2.)

quadrant, and the plane of the

circle EC (4.) is at right angles

to the plane of the circle ACD,
that is, the spherical angle ACE
is a right angle ; and therefore,

when AB is less than AE, the

angle ACB, being less than

ACE, is less than a right angle.

But when AB is greater than

AE, the angle ACB is greater

than ACE, or than a right an-

gle. In the same way may the

converse be demonstrated.
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PROP. XV.

If the two sides of a right angled spherical triangle about the right angle be oj

the same affection, the hypotenuse mil be less than a quadrant ; and ifthey be

of different affection, the hypotenuse will be greater than a quadrant.

Let ABC be a right angled spherical triangle ; according as the two

9id"s AB, AC are of the same or of diflerent affection, the hypotenuse BC
*ill be less, or greater than a quadrant.

The construction of the last proposition remaining, bisect the semicircle

ACD in G, then AG will be an arc of 90°, and G will be the pole of the

circle ABD.

1. Let AB, AC be each less than 90°. Then, because C is a point on

the surface of the sphere, which is not the pole of the circle ABD, the arc

CGD, which passes through G the pole of ABD is greater than CE (13.),

and CE greater than CB. But CE is a quadrant, as was before shewn,

therefore CB is less than a quadrant. Thus also it is proved of the right

angled triangle CDB, (right angled at D), in wliich each of the sides CD,
DB is greater than a quadrant, that the hypotenuse BC is less than a

quadrant.

2. Let AC be less, and AB greater than 90°. Then because CB falls

between CGD and CE, it is greater (12.) than CE, that is, than a quad-

rant.

Cor. 1. Hence conversely, if the hypotenuse of a right angled triangle

be greater or less than a quadrant, the sides will be of different or the same
affection.

Cor. 2. Since (14.) the oblique angles of a right angled spherical trian-

gle have the same affection with the opposite sides, therefore, according as

the hypotenuse is greater or less than a quadrant, the oblique angles will

be different, or of the same affection.

CoR. 3. Because the sides are of the same affection with the opposite

\ngles, therefore when an angle and the side adjacent are of the same affec

lion, the hypotenuse is less than a quadrant : and conversely.

PROP. XVL

In any spherical triangle, if the perpendicular upon the base from the opposite

an^lefall within the triangle, the angles at the base are of the same affection;

and ifthe perpendicularfall without the triangle, the angles at the base art vj

different affection.

I et ABC be a spherical triangle, and let the arc CD be drawn from C
perpendicular *o the base AB.

\. Let CD fall within the triangle ; then, since ADC, BDC are right

angled spherical triangles, the angles A, R must each be of the same aflec*

\ion with CD (14.).
^

32
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o

2 Let CD fall without the triangle ; then (14.) the angle B is of the

ame affection with CD ; and the angle CAD is of the same affection with

CD ; therefore the angle CAD and B are of the same affection, and the

angle CAB and B are therefore of different affections.

Cor. Hence, if the angles A and B be of the same affection, the per-

pendicular will fall within the base ; for if it did not, A and B would be of

different affection. And if the angles A and B be of different affection,

the perpendicular will fall without the triangle ; for, if it did not, the angles

A. and B would be of the same affection, contrary to the supposition.

PROP. xvn.

If to the base of a spherical triangle a perpendicular be drawnfrom the opposite

angle, which eitherfalls within the triangle, or is the nearest of the two that

fall without; the least of the segments of the base is adjacent to the least oj

the sides of the triangle, or to the greatest, according as the sum of the sides

is less or greater than a semicircle.

Let ABEF be a great circle of a sphere, H its pole, and GHD any cir-

cle passing through H, which therefore is perpendicular to the circle

ABEF. Let A and B be two points in the circle ABEF, on opposite

sides of the point D, and let D be nearer

to A than to B, and let C be any point

in the circle GHD between H and D.
Through the points A and C, B and C,
let the arcs AC and BC be drawn, and
let them be produced till they meet the

circle ABEF in the points E and F,
then the arcs ACE, BCF are semicir-

cles. Also ACB, ACF, CFE, ECB,
are four spherical triangles continued
by arcs of the same circles, and having
the same perpendiculars CD and CG.

1
.
Now because CE is nearer to the arc CHG t? an CB is, CE is greatei

than CA, and therefore CE and CA are greater than CB and CA, where
fore CB and CA are less than a semicircle ; but because AD is by sup
position less than DB, AC is also less than CB (13.), and therefore in this
case, viz. when the perpendicular falls within the triangle, and whfa he
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sum of the sides is less than a semicircle, the least segment isadjaceui to the

least side.

2. Again, in the triangle FCA the two sides FC and CA are less than

a semicircle ; for since AC is less than CB, AC and CF are less than BC
and CF. Also, AC is less than CF, because it is more remote from CHG
than CF is ; therefore in this case also, viz. when the perpendicular falls

without the triangle, and when the sum of the sides is less than a semicir-

cle, the least segment of the base AD is adjacent to the least side.

3. But in the triangle FCE the two sides FC and CE are greater than

a semicircle ; for, since FC is greater than CA, FC and CE are greater

than AC and CE. And because AC is less than CB, EC is greater than

CF, and EC is therefore nearer to the perpendicular CHG ihan CF is,

wherefore EG is the least segment of the base, and is adjacent to the

greater side.

4. In the triangle ECB the two sides EC, CB are greater than a semi
circle ; for, since by supposition CB is greater than CA, EC and CB are

greater than EC and CA. Also, EC is greater than CB, wherefore in

this case, also, the least segment of the base EG is adjacent to the greatest

side of the triangle. Therefore, when the sum of the sides is greater than

a semicircle, the least segment of the base is adjacent to the greatest side,

whether the perpendicular fall within or without the triangle : and it has
been shewn, that when the sum of the sides is less than a semicircle, the

least segment of the base is adjacent to the least of the sides, whether the

perpendicular fall within or without the triangle.

PROP. XVIIl.

m right angled spherical triangles, the sine ofeither of the sides about the ngltl

angle, is to the radius of the sphere, as the tangent of the remaining side is

to the tangent of tlie angle opposite to that side.

Let ABC be a triangle, having the right angle at A ; and let AB be

either of the sides, the sine of the side AB will be to the radius, as the tan-

gent of the other side AC to the tangent of the angle ABC, opposite to AC.
Let D be the centre of the sphere ; join AD, BD, CD, and let AF be drawn
perpendicular to BD, which therefore will be the sine of the arc AB, and
from the point F, let there be drawn in the plane BDC the straight line

FE at right angles to BD, meeting DC in

E, and let AE be joined. Since therefore

the straight line DB is at right angles to

both FA and FE, it will also be at right

angles to the plane AEF (4. 2. Sup.)
;

wherefore the plane ABD, which passes

through DF, is perpendicular to the plane

AEF (17. 2. Sup.), and the plane AEF
perpendicular to ABD : But the plane

ACQ or AED, is also perpendicular to

the same ABD, because the spherical an-

gle BAC is a right angle . Therefore .\E,

the common section of the planes .A ED,
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AEF, is at right angles to the plane ABD (18. 2. Sup.), and EAF, EAD
are right angles. Therefore AE is the tangent of the arc AC ; and in the

rectilineal triangle AEF, having a right angle at A, AF is to the radius as

AE to the tangent of the angle AFE (1. PL Tr.) ; but AF is the sine of

the arc AB, and AE the tangent of the arc AC ; and the angle AFE is

the inclination of the planes CBD, ABD (4. def. 2. Sup.), or is equal to the

spherical angle ABC : Therefore the sine of the arc AB is to the radius as

the tangent of the arc AC to the tangent of the opposite angle ABC.

CoR. Since by this proposition, sin. AB : R : : tan. AC : tan. ABC
;

and because R : cot. ABC : : tan. ABC : R (1 Cor. def. 9. PI. Tr.) by
equality, sin. AB : cot. ABC : : tan. AC; R.

PROP. XIX.

In nght angled spherical triangles the sine of the hypotenuse is to the radius as

the sine of either side is to the sine of the angle opposite to that side.

Let the triangle ABC be right angled at A, and let AC be either of the

sides ; the sine of the hypotenuse BC will be to the radius as the sine of

the arc AC is to the sine of the angle ABC.
Let D be the centre of the sphere, and let CE be drawn perpendicular

to DB, which will therefore be the sine of the hypotenuse BC ; and from

the point E let there be drawn in the

plane ABD the straight line EF per-

pendicular to DB, and let CF be joined

;

then CF will be at right angles to the

plane ABD, because as was shewn of

EA in the preceding proposition, it is

the common section oftwo planes DCF,
ECF, each perpendicular to the plane

ADB. Wherefore CFD, CFE are right

angles, and CF is the sine of the arc

AC ; and in the triangle CFE having

the right angle CFE, CE is to the radius, as CF to the sine of the angle

CEF (1. PI. Tr.). But, since CE, FE are at right angles to DEB, which
is the common section of the planes CBD, ABD, the angle CEF is equal

to the inclination of these planes (4. def. 2. Sup.), that is, to the spherical

angle ABC. Therefore the sine of the hypotenuse CB, is to the radius, as

the sine of the side AC to the sine of the opposite angle ABO

PROP. XX.

In right angled spherical triangles, the cosine of the hypotenuse is to the radius

as the cotangent of either of the angles is to the tangent of the remaining

angle.

Let ABC be a spherical triangle, having a right angle at A, the cosii\e

of the hypotenuse BC is to the radius as the cotangent of the angle ABC
lo the tangent of the angle ACB

B
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Describe the circle DE, of which B is the pole, and let it meet AC in

f and the circle BC in E ; and since the circle BD pases through tlie

pole B, of the circle DF, DF must pass through the pole of BD (4.). An
since AC is perpendicular to BD, the plane of the circle AC is perpendi

cular to the "plane of the circle BAD, and therefore AC must also (4.) pass

through the pole of BAD ; wherefore, the pole of the circle BAD is in the

point F, Avhere the circles AC, DE, intersect. The arcs FA, FD are

therefore quadrants, and likewise the arcs BD, BE. Therefore, in the tri-

angle CEF, right angled at the point E, CE is the complement of BC, the

hypotenuse of the triangle ABC ; EF is the complement of the arc ED,
the measure of the angle ABC, and FC, the hypotenuse of the triangle

CEF, is the complement of AC, and the arc AD, which is the measure of

the angle CFE, is the complement of AB.
But (18.) in the triangle CEF, sin. CE : R : : tan. EF : tan. ECF, that

is, in the triangle ACB, cos. BC : R : : cot. ABC : tan. ACB.

CoR. Because cos. BC : R : : cot. ABC : tan. ACB, and (Cor. 1. def. 9.

PI. Tr.) cot. ABC : R : : R : tan. ABC, ex aequo, cot. ACB : cos. BC : : R
: cot. ABC.

PROP. XXI.

In right angled spherical triangles, the cosine of an angle is to the radius as the

tangent ofthe side adjacent to that angle is to the tangent ofthe hypotenuse

The same construction remaining ; In the triangle CEF, sin. FE : R :

.

tan. CE : tan. CFE (18.): butsin. EF=cos. ABC ; tan. CE=cot. BC,and
tan. CFE=cot. AB, therefore cos. ABC : R : : cot. BC : cot. AB. Now
because (Cor. 1. dcf. 9. PI. Tr.) cot. BC : R : : R : tan. BC, and cot. AB :

R : : R : tan. AB, by equality inversely, cot. BC : cot. AB : tan. AB :

BC ; therefore (11. 5.) cos. ABC : R : : tan. AB : tan. BC.

CoR. '
. From the demonstration it is manifest, that the tangents of any

two arcs AB, BC are reciprocally proportional to their cotangents.
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Cor. 2 Because cos. ABC : R : : tan. AB : tan. BC, and R : cos. BC :

:

Ian. BC : R, by equality, cos. ABC : cot. BC : : tan. AB : R. That is, the

cosine of any of the oblique angles is to the cotangent of the hypotenuse,
as the tangent of the side adjacent to the angle is to the radius.*

PROP. XXII.

In right angled spherical triangles, the cosine of either of the sides is to the ra-

dius, as the cosine of the hypotenuse is to the cosine ofthe other side.

The same construction remaining : In the triangle CEF, sin. CF : R : :

sin. CE : sin. CFE (19.) ; but sin. CF=cos. CA, sin. CE=cos. BC, and
sin. CFE=cos. AB ; therefore cos. CA : R : : cos. BC : cos. AB.

PROP. XXIII.

In right angled spherical triangles, the cosine of either of the sides is to the ra-

dius, as the cosine of the angle opposite to that side is to the sine of the other

angle.

The same construction remaining : In the triangle CEF, sin. CF : R ; :

ein. EF : sin. ECF (19.) ; but sin. CF= cos. CA, sin. EF=cos. ABC, and

sin. ECF=sin. BCA : therefore, cos. CA : R : : cos. ABC : sin. BCA.

PROP. XXIV.

In spherical triangles, whether right angled or oblique angled, the sines of the

sides are proportional to the sines of the angles opposite to them.

First, let ABC be a right angled triangle, having a right angle at A

,

herefore (19.; tne sine of the hypotenuse BC is to the radius, (or the siof
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of the right angle at A), as the sine of

the side AC to the sine of the angle B,

And, in like manner, the sine of BC is

to the sine of the angle A, as the sine

of AB to the sine of the angle C

;

wherefore (11. 5.) the sine of the side

AC is to the sine of the angle B, as the

sine of AB to the sine of the angle C.

Secondly, Lei ABC be an oblique angled triangle, the sine of any of tho

sides BC will be to the sine of any of the other two AC, as the sine of the

angle A opposite to BC, is to the sine of the angle B opposite to AC.
Through the point C, let there be drawn an arc of a great circle CD per-

pendiciilar to AB ; and in the right angled triangle BCD, sin. BC : R : .

sin. CD : sin. B (19.) ; and in the triangle ADC, sin. AC : R : : sin. CD :

sin. A ; wherefore, by equality inversely, sin. BC : sin. AC : : sin. A : sin.

B. In the same manner, it may be proved that sin. BC : sin. AB : : sin.

A : sin. C, &c.

PROP. XX\.

In oblique angled spherical triangles, a perpendicular arc being dravm jrom
any of the angles upon the opposite side, the cosines of the angles at the base

are proportional to the sines of the segments of the vertical angle.

Let ABC be a triangle, and the arc CD perpendicular to the base BA ,

the cosine of the angle B will he to the cosine of the angle A, as the sine

of the angle BCD to the sine of the angle ACD.
For having drawn CD perpendicular to AB, in the right angled triangle

BCD (23.), cos. CD : R : : cos. B : sin. DCB ; and in the right angled

triangle ACD, cos. CD : R : : cos. A : sin. ACD ; therefore (11. 5.) cos.

B : sin. DCB : : cos. A : sin. ACD, and alternately, cos. B * cos. A : : sin.

BCD : sin. ACD.

PROP. XXVI.

7^ same things remaining, the cosines of the sides BC, CA, areproportwna

to the cosines ofliD, DA, the segments of the base.

For in ihe triangle BCD (22.) cos. BC : cos. BD : ; cos. DC : R, and in
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ihe triangle ACD, cos. AC : cos. AD : : cos. DC : R ; therefore (11. 5.)

008. BC : COS. BD : : cos. AC : cos. AD, and alternately, cos. BC : cos

AC : : COS. BD : cos. AD.

PROP. XXVII.

The same construction remaining, the sines q/'BD, DA, the segments of the

base are reciprocally proportional to the tangents ofB and A, the angles

at the base.

In the triangleBCD (18.), sin. BD : R : : tan. DC : tan. B ; and in the

triangle ACD, sin. AD : R : : tan. DC : tan. A ; therefore, by equality in-

versely sin. BD : sin. AD : : tan. A : tan. B.

PROP. XXMII.

The same construction remaining, the cosines of the segments of the vertical

angle are reciprocally proportional to the tangents of the sides.

Because (21.), cos. BCD : R : : tan. CD : tan. BC, and also cos. ACD
R : : tan. CD : tan. AC, by equality inversely, cos. BCD ; cos ACD • •

tan. AC : tan. BC.

PROP. XXIX.

Iffrom an angle of a spherical triangle there be drawn a perpendmilar to the

opposite side, or base, the rectangle contained by the tangents of half the

sum, and of half the difference of the segments of the base is equal to the

rectangles contained by the tangents of half the sum, and of half the diffe-

rence of the two sides of the triangle.

Let ABC be a spherical triangle, and let the arc CD be drawn from the

angle C at right angles to the base AB, tan. ^ (»»+«) Xtan. ^ (m—»)=^
tan. {a-\-b)X^tan. [a— b).

Let BC=a, AC=b ; BD=wi, AD=n. Because (26.) cos. a : cos. b :

.

cos. m : cos. n(E. 5.), cos. a-\-b ; cos. a— cos. b : : cos. m+cos. n : cos. wi

—

cos. n. But (1. Cor. 3. PI. Trig.), cos. a+cos. b : cos. a— cos. b : : cot. i

{a-\-b) : tan. ^ (a

—

b), and also, cos. ot+cos. n : cos. m— cos. n : : cot. ^
(m-\-n) : tan. ^ {m—n). Therefore, (11. 5.) cot. ^ {a-\-b) : tan. -| (a—i)
i . cot. ^ (m+n) : tan. ^ [m—n). And because rectangles of the same al-
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Utude are as their bases, tan. ^ (a-f 5)Xcot. ^(a+J) : tan. ^ (a+5)xtan
I (a—b) :: tan. ^ (OT4-n)xcot. 1 {m-\-n) : tan. ^ (mXn)+tan. ^(m—n)
Now the first and third terms of this proportion are equal, being each equa

to the square of the radius (1. Cor. PI. Trig.), therefore the remaining twc

are equal (9. 5.), or tan. ^(m4-n)Xtan. ^ (m—n)=tan. ^ (a+6)xtan. 1

{a-b) ; that is, tan. i (BD-hAD)xtan. I (BD-AD)=tan. ^ (BC+AC)
Xtan. i(BC-AC).

CoR. 1. Because the sides of equal rectangles are reciprocally propor-

lional, tan. I (BD-fAD) : tan. I (BC+AC) : : tan. I (BC — AC) : tan. I

fBD-AD).

CoR. 2. Since, when the perpendicular CD falls within the triangle,

BD+AD=AB, the base ; and when CD falls without the triangle BD~
AD=AB, therefore, in the first case, the proportion in the last corollary

becomes tan. ^(AB) : tan. ^ (BC+AC) :: tan.^(BC-AC) : tan.i(BD—
AD) ; and in the second case, it becomes by inversion and alternation, tan.

I (AB) : tan. ^ (BC+AC) : : tan. J (BC-AC) : tan. ^ (BD+AD).

SCHOLIUM.

The preceding proposition, which is very useful in spherical trigonome

try, may be easily remembered from its analogy to the proposition in plane

trigonometry, that the rectangle under half the sum, and half the difference

of the sides of a plane triangle, is equal to the rectangle under half the

sum, and half the difference of the segments of the base. See (K. 6.), also

4th Case PI. Tr. We are indebted to Napier for this and the two follow-

ing theorems, which are so well adapted to calculation by Logarithms,

that they must be considered as three of the most valuable propositionB in

Trigonometry.

33
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PROP. XXX.

If a perpendicular he drawn from an angle of a spherical triangle to the oppo-

site side or base, the sine of the sum of the angles at the base is to the sine

of their difference as the tangent of half the base to the tangent of half the

difference of its segments, when the peipendicular falls within; but as the

co-tangent of halfthe base to the co-tangent of half the sum oj the segments,

when theperpendicularfalls without the triangle: And the sine of the sum

of the two sides is to the sine of their difference as the co-tangent of half

the angle contained by the sides, to the tangent of half the difference of
the angles which the perpendicular makes with the same sides when it falls

within, or to the tangent of half the sum of these angles, when it falls with'

out the triangle.

If ABC be a spherical triangle, and AD a perpendicular to the base BC,
sin. (C+B) : sin.(C-B) : : tan.^BC : tan. ^ (BD-DC), when ADfaUs
within the triangle; but sin. (C+B) : sin. (C—B) : : cot. ^ BC : cot. \
(BD+DC), when AD falls without. And again,

A

B 1>

8in. (AB+AC) : sin. (AB—AC) : : cot. i BAC : tan. \ (BAD—CAD),
when AD falls within ; but when AD falls without the triangle,

sin. (AB+ AC) : sin. (AB—AC) : : cot. ^ BAC : tan. ^(BAD+CAD).
For in the triangle BAC (27.), tan. B : tan. C : : sin. CD : sin. BD.and

therefore (E. 5.), tan. C+tan. B : tan. C—tan. B : : sin. BD+sin. CD :

sin. BD— sin. CD. Now (by the annexed Lemma), tan. C+ tan. B : tan.

C—tan. B : : sin. (C+B) : sin. (C—B), and sin. BD+sin. CD : sin. BD
-sin. CD : : tan. ^ (BD+CD) : tan. \ (BD—CD), (3. PI. Trig.), there-

fore because ratios which are equal to the same ratio are equal to one

another (U. 5.), sin. (C+B) : sin. (C-B) : : tan. \ (BD+CD) ; tan
|

(BD—CD).



SPHERICAL TRIGONOMETRY. 259

^Jow whon AD is within the triangle, BD4-CD=BC, and therefore sin

(C+B) : sin. (C-B) : : tan. ^ BC : tan. ^ (BD—CD). And again, when
AD is without the triangle, BD—CD=BC, and therefore sin. (C+ B) : sin

(C— B) : : tan. ^ (BD+CD) : tan. ^ BC, or because the tangents of anj

two arcs are reciprocally as their co-tangents, in (C+B) : sin. (C—B) :

:

cot. ^ BC : cot. ^ (BD+ CD).

The second part of the proposition is next to be demonstrated. Because

(28.) tan. AB : tan. AC : ; cos. CAD : cos. BAD, tan. AB+ tan. AC : tan.

AB—tan AC :: cos. CAD+cos. BAD : cos. CAD— cos. BAD. But

(Lemma) tan. AB+ tan. AC : tan. AB— tan. AC : : sin. (AB+AC) : sin.

(AB— AC),and (1. cor. 3. PI. Trig.) cos. CAD+cos. BAD : cos. CA.D—
cos. BAD : : cot. ^ (BAD+ CAD) : tan. ^ (BAD—CAD). Therefore (11.

5.) sin. (AB+ AC) : sin. (AB—AC) :: cot. J (BAD+CAD) : tan. ^ (BAD
—CAD). Now, when AD is within the triangle, BAD+CAD=BAC,
and therefore sin. (AB+ AC) : sin. (AB-AC) : : cot. ^ BAC : tan. ^ (BAD
-CAD.)
But if AD be without the triangle, BAD—CAD=BAC, and therefore

sin. (AB+ AC) : sin. (AB—AC) :

:

cot. i (BAD+ CAD) : tan. ^ BAC ; or because

cot. I (BAD+CAD) : tan. ^ BAC : : cot. ^ BAC :

tan. I (BAD+CAD), sin. (AB+AC) : sin. (AB-AC) : : cot. 4 BAC :

can. i (BAD+ CAD).

LEMMA.

The sum of the tangents of any two arcs, is to the difference of their tangents^

as the sine of the sum of the arcs, to the sine of their difference.

Let A and B be two arcs, tan. A+tan. B : tan. A— tan. B : : sin. (A+B)
: (A-B).

For, by §6. page 232, sin. AX cos. B+ cos. Ax sin. B=sin. (A+B),and
,-,..,. „

,

. _, sin. A sin. B , sin. (A+B) . ^
therefore dividmg all by cos. A cos. B, -\ ;-= ^=:, that

cos. A cos. B COS. A x cos. B
. sin. A ... r^ sin. (A+ B) . ,

IS, because r=tan. A, tan. A+tan. B= ^ -jr. In the same
cos, A COS. A X cos. B

manner it is proved that tan. A —tan. B= -r -r:- Therefore tan. A
COS. A X COS. li

+tan. B : tan. A— tan. B : : sin. (A+B) : sin. (A— B).

PROP. XXXI.

The sine of half the sum ofany two angles ofa spherical triangle is to i/u

sine of half their difference, as the tangent of half the side adjacent to these

angles is to the tangent of half the difference of the sides opposite to them

;

and the cosine of half the sum of the same angles is to the cosine of half
their difference, as the tangent ofhalf the side adjacent to them, to the tarn'

gent of half the sum of the sides opposite.

Let C+B=2S, C—B=:2D, the base BCss2B, and the difference ol
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the sAgmpnts of the base, or BD—CD=2X. Then, because (30.) sin

(C+ B) : sin. (C—B) : : tan. ^ BC : tan. ^ (BD— CD), sin. 2S : sin. 2D
: : tan. B : tan. X. Now, sin. 2S=sin. (S-J S)=2 sin. Sx cos. S, (Sect

III. cor. PI. Tr.). In the same manner, nin. 2D=2 sin. Dxcos. D
Theiefore sin. Sxcos. S : sin. Dxcos. D : : tan. B : tan. X

Again, in the spherical triangle ABC it has been proved, that sin. C+
sin. B : sin. C—sin. B : : sin. AB+sin. AC : sin. AB— sin. AC, and since

sin. C+sin. B=2 sin. i (C4-B)+cos. ^ (C— B), (Sect. III. 7. PI. Tr.)=
2 sin. Sxcos. D; and sin. C— sin. B=2 cos. i (C+B)xsin. ^ (C—B)=
2 COS. S X sin. D. Therefore 3 sin. S x cos. D : 2 cos. S X sin. D : : sin.

AB+sin. AC : sin. AB—sin. AC. But (3. PI. Tr.) sin. AB+sin. AC :

sin. AB— sin. AC : : tan. ^ (AB+AC) : tan. ^ (AB—AC) : : tan. 2 : tan.

d, 2 being equal to ^ (AB+AC) and ^ to ^ (AB— AC). Therefore sin.

S X cos. D : COS. S X sin. D : : tan. S : tan. J. Since then ——^ =
tan. B

sin. Dxcos. D , tan. .^ cos. Sxsin. D , ,. , . , .
—.—

^

r; ; and =-.—-; ^, by multiplying equals by
sin. S X COS. S tan. 2: sin. S X cos. D' -^

f J e ^ J

. tan. X tan. -i/_(sin. D)2xcos. Sxcos. D_(sin. D)^
®^"^ ^'

tan. B ^ tan. .2'~(sin. S)2xcos. Sxcos. D~(sin. S)2'

But (29 \
tan.|(BD-DC)_tan.^(AB-fAC) tan. X_tan. S

""^ ^^^'
tan. 1 (AB-AC)- tan. ^ BC '

^^^ '^' mK:^~t^r~B'
, , . tan. X tan. .2"x tan. ^ , tan. X tan. ^ tan. ^^^

and therefore, ^=—; r:-r-— , as also
tan. B (tan. B)^ ' tan. B tan. S (tan. B)«'

„ tan. X tan. J (sin. Df , (tan. df (sin. D)' , tan. J
But —X ==7-: 7:^; whence^ 7^=7-. ftt^ ; and =

tan. B tan. 2 (sm. S)^ (tan. B)2 (sin. Sf tan. B

rr- .

'

or sin. S : sin. D : : tan. B : tan. J, that is, sin. (C+B) : sin.
sm. o
C—B) : : tan. J BC : tan. ^ (AB—AC) ; which is the first part of the

... tan. J cos. S X sin. D . , tan. 2
proposition. Again, since =-:—j= ^, or inversely -:=
*^ *^ ^ ' tan. 2 sin. S X cos. D ^ tan. J
sin. Sxcos. D , . tan. X sin. Dxcos. D , - , ....

T^ :—=:r ; and since ^=-:

—

fj s? > therefore by multipli-
cos. S X sin. D tan. B sin. D X cos. S j r

tan.X tan. 2_{coa. D)^
''**'°'''

tan. B^ti:^'^-(cos. Sf
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_, . , , , , tan- X tan. 2 X tan. J . . .

ButU was already shewn that :=:z^— rrrr— , wherefore also
^

tan. B (tan. B)^

tan. X tan. :P_(tan. Sf
tenTB ^ tan. ^~(tan. B)^'

-- tan. X tan. 2 (cos. D)^ , . . ,Now, rr X 7=^ 7^, Bs has just been shewn.
tan. B tan. J (cos. S)^'

"

_^ - (cos D)2 (tan. Sf . , cos. D tan. S
Therefore

) 5x5=7 —,and consequently ^= =r-,orcos.
(cos. S)2 (tan. B)^' ^ -' cos. S tan. B

S : cos. D : : tan. B : tan. 2, that is, cos. (C+ B) : cos. (C— B) : : tan. \
BC : tan. J (C+B) ; which is the second part of the proposition.

CoR. 1. By applying this proposition to the triangle supplemental to

ABC (11.) and by considering, that the sine of half the sum or half the

difference of the supplements of two arcs, is the same with the sine of half

the sum or half the difference of the arcs themselves : and that the same
is true of the cosines, and of the tangents of half the sum or half the dif-

ference of the supplements of two arcs : but that the tangent of half the

supplement of an arc is the same with the cotangent of half the arc itself:

it will follow, that the sine of half the sum of any two sides of a spherical

triangle, is to the sine of half their difference as the cotangent of half the

angle contained between them, to the tangent of half the difference of the

angles opposite to them : and also that the cosine of half the sum of these

sides, is to the cosine of half their difference, as the cotangent of half the

angle contained between them, to the tangent of half the sum of the angles

opposite to them.

CoR. 2. If therefore A, B, C, be the three angles of a spherical trian'*

gle, a, b, e the sides opposite to them,

I. sin. 1 (A+B) : sin. t (A— B) : : tan. 1 c : tan. I {a—b).

II. cos.
f

(A+B) : cos. I (A—B) : : tan.| c : tan. | \a+b).

III. sin. 1 {a+b) : sin. 4 (a—b) : : tan. I C : tan. A (A— B).

IV. COS. ] (a+b) : cos. \ (a—b) : : tan. J C : tan. | (A+B).
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PROBLEM L

In a right angled spherical triangle, of the three sides and three ansies, any
two being given, besides the right angle, to find the other three.

This problem has sixteen cases, the solutions of which are contained

in the following table, where ABC is any spherical triangle right angled
at A.

GIVEN. SOUGHT. SOLUTION.

BC and B.

AC.
AB.
C.

R : sin BC : : sin B : sin AC, (19).

R : cos B : : tan BC : tan AB, (21).

R : cos BC : : tan B : cot C, (20).

1

2

3

AC and C.

AB.
BC.
B.

R : sin AC : : tan C : tan AB, (18).

cos C : R : : tan AC : tan BC, (21).

R : cos AC : : sin C : cos B, (23).

4

5

6

AC and B.

AB.
BC.
C.

tan B : tan AC : : R : sin AB, (18).

sin B : sin AC : : R : sin BC, (19).

cos AC : cos B : : R : sin C, (23).

7

8

9

AC and BC.
AB.
B.

C.

cos AC : cos BC : : R : cos AB, (22).

sin BC : sin AC: : R: sinB, (19).

tan BC : tan AC : : R : cos C, (21).

10

11

12

AB and AC.
BC.
B.

C.

R : cos AB : : cos AC : cos BC, (22).

sin AB : R : : tan AC : tan B, (18).

sin AC : R : : tan AB ; tan C, (18).

13

14

14

B and C.

.

—

AB.
AC.
BC.

sin B : cos C : : R : cos AB, (23).

sin C : cos B : : R : cos AC, (23).

tan B : cot C : : R : cos BC, (20).

15

15

16
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T vBLE for determining the affections of the Sides and Angles found b?

the preceding rules.

AC and B of the same affection. 1

If BC£ 90°, AB and B of the same affection, otherwise dif-

ferent, (Cor. 15.) 2

If EC/ 90°, C and B of the same affection, otherwise diffe-

rent, (15.) 3

AB and C are of the same affection, (14.) 4

IfAC and C are of the same affection, BC/ 90°
, otherwise

1

BCZ90°, (Cor. 15.) 5 1

B and AC are of the same affection, (14.) 6

Ambiguous. 7

Ambiguous. 8

Ambiguous. 9

When BC/ 90°, AB and AC of the same ; otherwise of dif-

ferent affection, (15.) 10

AC and B of the same affection, (14.) 11

When BC/90°, AC and C of the same ; otherwise of dif-

ferent affection, (Cor. 15.) 12

BC/90°, when AB and AC are of the same affection.

(1. Cor. 15.) 13

B and AC of the same affection, (14.) 14

C and AB of the same affection, (14.) 14

AB and C of the same affection, (14.) 15

AC and B of the same affection, (14-) 15

When B and C are of the same affection, BC Z. 90°> other-

wise, BC 790°, (15.) 16

The cases marked ambiguous are those in which the thing sought has

two values, and may either be equal to a certain angle, or to the supple-

ment of that angle. Of these there are throe, in all of which the things

given are a side, and the angle opposite to it ; and accordingly, it is easy to

shew that two right angled spherical triangles may always be found that

have a side and the angle opposite to it the same in both, but of which the

remaining sides, and the remaining angle of the one, are the supplements

of the remaining sides and the remaining angle of the other, each of each.

Though the affection of the arc or angle found may in all the other cases

be determined by the rules in the second of the preceding tables, it is of

use to remark, that all these rules except two, may be reduced to one, vii.

that when the thingfound by the rules in thefirst table is either a tangent of

a cosine ; and when, of the tangents or cosines employed in the computation m
(I, on» only belongs to an obtuse angle, the angle required is also obtuse
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Thus, in the 15th case, when cos AB is found, ifC be an obtuse angle,

because of cos C, AB must be obtuse ; and in case 16, if either B or C bo

obtuse, BC is greater than 90°, but if B and C are either both acute, or

Woth obtuse, BC is less than 90°.

It is evident, that this rule does not apply when that which is found is

the sine of an arc ; and this, besides the three ambiguous cases, happens

also in other two, viz. the 1st and 11th. The ambiguity is obviated, in

these two cases, by this rule, that the sides of a spherical right angled tri

angle are of the same affection with the opposite angles.

Two niles are therefore sufficient to remove the ambiguity in all the

eases of ^e right angled triangle in which it can possibly be removed.
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It may be useful to express the same solutions as in the annexed tablu.

Let A be at the right angle as in the figure, and let the side opposite to it

he a; let 6 be the side opposite to B, and c the side opposite to C

eiTKN. 1 SOUOHT. SOLUTION.

a and B.

b.

c.

C.

sin 6 = sin o X sin B.

tan c = tan a X cos B
cot C = cos a X tan B.

1

I

4

5

6

b and C.

c.

a.

B.

tan c = sin 2) X tan C.

tan b
tan a = r-,-

cos G
cos B = cos b X sin C.

b and B.

e.

a,

C.

tan b
sm c = =.

tanB
sin b

sin a = -r-^.
sinB

. ^ cosB
sinC= r.

cos 6

7

8

9

a and b.

e.

B.

C.

cos a
10

11

12

cos b

sin b
sm B = -. .

sin a

-, tan b
cos C = .

tan a

b and c.

a.

B.

C.

cos a = cos b X cos c.

^ _, tan 6
tan B = -.—

.

sin e

tan c
tanCss-:—-,

sm b

13

14

14

B andC.

c.

b

cosC
cos e = -: =..

sin B
cos B

cos b = -I—?;;.smC
cotC

cos as= ;—=.
tanB

15

15

16

34
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PROBLEM IL

in any oblique angled spherical triangle, of the three sides and three anglest

any three being given, it is required to find the other three.

In this Table the references (c. 4.), (c. 5.), &c. are to the cases In the

preceding Table, (16.), (27.), &c. to the propositions in Spherical Trigo-

nometry.

Two sides

AB, AC,

and the in-

cluded angle

A.

One of the

other angles

B.

The third

side

BC.

Let fall the perpendicular CD from
the unknown angle, not requir-

ed, on AB.
R : cos A : : tan AC : tan AD,

(c. 2.) ; therefore BD is known,
and sin BD : sin AD : : tan A
tan B, (27.) ; B and A are of

the same or different affection,

according as AB is greater or

less than BD, (16.).

Let fall the perpendicular CD from
one of the unknown angles on
the side AB.

R : cos A : : tan AC : tan AD,
(c. 2.) ; therefore BD is known,
and cos AD : cos BD : : cos AC
: cos BC, (26.) ; according as

the segments AD and DB are of

the same or different affection,

AC and CB will be of the same
or different affection.
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TABLE continued.

OITEN. SOUGHT. SOLUTION.

3

Two angles,

A and AC B,

and

AC,

the side be-

tween them.

4

The' side

BC.

From C the extremity of AC near
the side sought, let fall the per-

pendicular CD on AB.
R : cos AC : : tan A : cot ACD,

(c. 3.) ; therefore BCD is known,
and cos BCD : cos ACD : : tan

AC : tan BC, (28.). BC is less

or greater than 90°, according

as the angles A and BCD cire

of the same, or different affec-

tion.

The third

angle

B.

Let fall the perpendicular CD from

one of the given angles on the

opposite side AB.
R : cos AC : : tan A : cot ACD,

(c. 3.) ; therefore the angle BCD
is given, and sin ACD : sin BCD
: : cos A : cos B, (25.) ; B and
A are of the same or differ-

ent affection, according as CD
falls within or without the tri-

angle, that is, according as ACD
is greater or less than BCD,
(16.).
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TABLE continued.

elTRN. SOUGHT. SOLUTION.

5

Two sides

AC and BC,

and an angle

A

opposite to

6
one of them,

BC.

7

The angle

B
opposite to

the other gi-

ven side

AC.

Sin BC : sin AC : : sin A : sin B,

(24.) The affection of B is am-
biguous, unless it can be deter-

mined by this rule, that accord-

ing as AC -4- BC is greater or

less than 180°, A-fB is greater

or less than 180°, (10.)

The angle

ACB
contained by
the given

sides

AC and BC.

From ACB the angle sought draw
CD perpendicular to AB ; then

R : cos AC : : tan A : cot ACD,
(c. 3.) ; and tan BC : tan AC : :

cos ACD : cos BCD, (28.) ACD
± BCD = ACB, and ACB is

ambiguous, because of the am-
biguous sign + or —

.

The third

side

AB.

Let fall the perpendicular CD from
the angle C, contained by the

given sides, upon the side AB.
R : cos A : : tan AC : tan AD,
(c, 2.) ; cos AC ; cos BC : : cos

AD : cos BD, (26.)

AB=AD±BD, wherefore AB
is ambiguous.
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TABLE continued.

ITBN. SOUGHT. BOLDTION.

The side Sin B : sin A : : sin AC : sin BC,
BC (24) ; the affection of BC is un-

opposite certain, except when it can be de-

8 to the termined by this rule, that accord-

other ing as A+B is greater or less than

given an- 180°, AC+BC is also greater or

gleA. less than 180°, (10.).

Two angles

From the unknown angle C, draw
A,B, The side CD perpendicular to AB ; then

AB R : cos A : : tan AC : tan AD,
and a side adjacent (c. 2.) ; tan B : tan A : : sin AD :

to the sin BD. BD is ambiguous ; and
9 AC given therefore AB = AD ± BD may

angles have four values, some of which
opposite to A,B. will be excluded by this condition,

that AB must be less than 180°.

one of them,

From the angle required, C, draw CD
B. perpendicular to AB.

The third R : cos AC : : tan A : cot ACD,
(c. 3.), cos A : cos B : : sin ACD :!

angle sin BCD, (25.). The affection of

10 BCD is uncertain, and therefore

ACB. ACB = ACD ± BCD, has four

values, some of which may be ex-

cluded by the condition, that ACB
is less than 180°.

From C one of the angles not requir-

The three ed, draw CD perpendicular to AB.
Find an arc E such that tan ^ AB

sides, : tan ^ (AC-f BC) : : tan i (AC—
BC) : tan ^ E ; then, if AB be11 One of the

AB, AC, greater than E, AB is the sum, and
angles E the difference of AD and DB

;

and but if AB be less than E, E is the

A. sum and AB the difference of AD,
EC. DB, (29.). In either case, AD and

BD are known, and tan AC : tan

AD : : R : cos A.
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TABLE continued.

61 FEN. BOUGHT. SOLUTION.

12

The three

angles

A, B, C.

One of the

sides

BC.

Suppose the supplements of the

three given angles, A, B, C, to

be a, b, c, and to be the sides of

a spherical triangle. Find, by
the last case, the angle of this

triangle, opposite to the side a,

and it will be the supplement of

the side of the given triangle op-

posite to the angle A, that is, of

BC, (11.); and therefore BC is

found.

In the foregoing table, the rules are given for ascertaining the affection

of the arc or angle found, whenever it can be done : Most of these rules

are contained in this one rule, which is of general application, viz. that

when the thing found is either a tangent or a cosine, and of the tangents or

cosines employed in the computation of it, either one or three belong to obtuse

'

angles, the angle found is also obtuse. This rule is particularly to be attend-

ed to in cases 5 and 7, where it removes part of the ambiguity.

It may be necessary to remark wi'ih respect to the 11th case, that the

segments of the base computed there are those cut off by the nearest per-

pendicular; and also, that when the sum of the sides is less than 180°,

the least segment is adjacent to the least side of the triangle ; otherwise

to the greatest, (17.).
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The last table may also be conveniently expressed in the following

manner, denoting the side opposite to the angle A, by a, to B by b, and to

C by c ; and also the segments of the base, or of opposite angle, by «
and y.

Two sides

b and c, and

the angle

between

them A.

Angles

A and C

and

side b

Sides

a and 6

and

angle A.

B

B

B

Find X, so that

tan a;=tan ix cos A ; then

_ sin a; X tan A
tan B=—7— ^-.

sin (c

—

X)

Find X, as above,

, cos b X cos (c—x)
then cos c= ^ •.

Find X, so that

cot a;=cos ixtan A ; then

tan b X cos x
tan c= ; r-.

cos (C

—

X)

Find X, as above,

then cos 6=cos A X sin (c—«)

sin B=sin A X sin A

Find «, so that

cot x=cos ixtan A ; then

„ cos XX tan b
cos C= .

tan a

Find X, so that

tan x=tan b X cos A ; and find

y, so that

cos aXcos X
cos ys=

cos b

;=xj^y.
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TABLE continued.

The angles

AandB

and the

side b.

10

sin 6 X sin A
sin B

Find X, so that

tan a;=tan bxcos A ; and y, so

that

sin aXtan A
sm y=

tan B
c=a:±y.

Find X, so that

cot x=C08 JX tan A ; and also y,
so that

sin xXcoB B
sm y=

cos A
c=ar±y.

11 a, b, e.

Let a-^b-\~c=s.

sm
, . _ ysin {^s—b) X sin {^s—e)
jA— -

/sin i X sin c

or cos J

A

_ -v/sin ^s X sin (J*—a)

v/sin ixsin c

12 A, B, C.

Let A+B+ C=S.
, -y/cos ^ S X cos (I S—A)

y/sin Bxsin C

or cos
, _ ./cos(^S--B)^cos(S -C)

j/sin B x sin C



APPENDIX

TO

SPHERICAL

TRIGONOMETRY,
CONTAINING

NAPIER'S RULES OF THE CIRCULAR PARTS.

The rule of the Circular Parts, invented by Napier, is of great use in

Spherical Trigonometry, by reducing all the theorems employed in the

solution of right angled triangles to two. These two are not new proposi-

tions, but are merely enunciations, which, by help of a particular arrange-

ment and classification of the parts of a triangle, include all the six propo-

sitions, with their corollaries, which have been demonstrated above from

the 18th to the 23d inclusive. They are perhaps the happiest example w
artificial memory that is known.

DEFINITIONS.

1. If in a spherical triangle, we set aside the right angle, and consider only

the five remaining parts of the triangle, viz. the three sides and the two
oblique angles, then the two sides which contain the right angle, and
the complements of the other three, namely, of the two angles and the

hypotenuse, are called the Circular Parts.

Thus, in the triangle ABC right angled at A, the circular parts are AC,
AB with the complements of B, BC, and C. These parts are called

circular ; because, when they are named in the natural order of theii

succession, they go round the triangle.

2. When of the five circular parts any one is taken, for the middle part,

then of the remaining four, the two which are immediately adjacent to

it, on the right and left, are called the adjacent parts ; and the other two,

each of which is separated from the middle by an adjacent part, are call-

ed opposite parts.

Thus in the right angled triangle ABC, A, being the right angle, AC, AB,
90=>— B, 90^- BC, 90^— C, are the circular parts, by Def. J ; and if

35
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anyone, as AC, be reckoned the middle part, then AB and 90^— C, which
re contiguous to it on different sides, are called adjacent parts ; and 90*^

-B. 90°—BC arc the opposite parts. In like manner if AB is taken ^ot

the middle part, AC and 90°— B are the adjacent parts : 90°— BC, and
90°—C are the opposite. Or if 90°—BC be the middle part, 90— B,
90°—C are adjacent ; AC and AB opposite, &c.

This arrangement being made, the rule of the circular part is contained
in the following

PROPOSITION.

In a right angled spherical triangle, the rectangle under the radius and the sine

of the middle part, is equal to the rectangle under the tangents of the adjacent

parts ; or, to the rectangle under the cosines of the opposite parts

The truth of the two theorems included in this enunciation may be

easily proved, by taking each of the five circular parts in succession for

the middle part, when the general proposition will be found to coincide

with some one of the analogies in the table already given for the resolution

of the cases of right angled spherical triangles. Thus, in the triangle ABC,
if the complement of the hypotenuse BC be taken as the middle part, 90°
—'B, and 90°— C, are the adjacent parts, AB and AC the opposite. Then
the general rule gives these two theorems, Rxcos BCi=cot Bxcot C,
and R X cos BC=cos AB X cos AC. The former of these coincides with
the cor. to the 20th ; and the latter with the 22d.

To apply the foregoing general proposition to resolve any case of a right

angled spherical triangle, consider which of the three qualities named
(the two things given and the one required) must be made the middle term,

in order that the other two may be equi-distant from it, that is, may be

both adjacent, or both opposite ; then one or other of the two theorems
contained in the above enunciation will give the value of the thing re-

quired.

Suppose, for example, that AB and BC are given, to find C ; it is evi-

dent that if AB be made the middle part, BC and C are the opposite parts,

and therefore Rxsin AB=sin Cxsin BC, for sin C=cos (90°— C), and

cos (90°—BC")=sin BC, and consequently sin C=-.—:frrr,.
^ ' "^ sm BC

Again, suppose that BC and C are given to find AC ; it is obvious thai

C is in the middle between the adjacent parts AC and (90°— BC), there-
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for* RX cos ()=tan AC X cot BC, or tan AC=-^-^^7^=:co8 C + tan BC -,

cot DKj

because, as has been shewn above, =rr^=tan BC.
cot BC

In the same way may all the other cases be resolved. One or two tnak
will always lead to the knowledge of the part which in any given case is

to be assumed as the middle part ; and a little practice will make it easy,

eTen without such trials, to judge at once which of them is to be so as-

sumed. It may be useful for the learner to range the names of the five

circular parts of the triangle round the circumference of a circle, at equal

distances from one another, by which means the middle part will be imme
diately determined.

Besides the rule of the circular parts^ Napier derived from the last of tho

three theorems ascribed to him above, (schol. 29.) the solutions of all the

cases of oblique angled triangles. These solutions are as follows ; A, B,

C, denoting the three triangles of a spherical triangle, and a, b, e, the sides

opposite to them.

I.

Given two sides b, c, and the angle A between them.

To find the angles B and C.

tan * (B—C)=cot i Ax ""
f I^T^^j . (31.) cor. 1.

tan4(B4-C)=cotiAx^^^4-7rr4- (31.) cor. 1.
* ^ * cos ^ (o+c) ^

To find the third side a.

sin B : sin A : : sin & : sin a.

II.

Given the two sides b, c, and the angle B opposite to one of them.

To find C, and the angle opposite to the other side.

sin b: Bine :: sin B : sin C.

To find the contained angle A.

emiA=lani(B-C)x5!^4r^- (31) cor- 1-

To find the third side a.

sin B : sin A : : sin b : sin a.

III.

Oiren two angles A and B, and the side c between ^enL

To find the other two sides a, b.
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U.'i(»-«)=.an}«X^||^. (31.)

Uni(»+«)=Unicx^^2liiA^). ,3,.,

To find the third angle C.

sin a : sin c : : sin A : sin C.

IV.

Giren two angles A and B, and the side a, opposite to one of them

To find b, the side opposite to the other.

sin A : sin 6 : : sin a : sin b.

To find e, the side between the given angles.

•"l «=-*(«-*)X|i^|^. (31.)

To find the third angle C.

sin a : sin c : : sin A : sin C.

The other two cases, when the three sides are given to find the angles,

or when the three angles are given to find the sides, are resolved by the

29th, (the first of Napier's Propositions,) in the same way as in the table

already given for the case of the oblique angled triangle.

There is a solution of the case of the three sides being given, which it

is often very convenient to use, and which is set down here, though the

proposition on which it depends has not been demonstrated.

Let a, b, c, be the three given sides, to find the angle A, contained be-

tween b and c.

If Rad = 1, and a + i + c = j.

sin i A ^
Vsini^s-b^x^n^SlZ^ .

^^^
-y/sin iXsin c

cos I A — Vs^»-(?^Xs^"i(^-°))
.

•/sin b X sin c

In like manner, if the three angles, A, B, C are given to find c the side

between A and B.
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Le«A + B+C = S,

un l c=-i 2_____Ai_ i
; or,

v^sin B X sin C

, v/cos a s—B) X cos a S—C)
COS ^ c=-^^ ^'

• - .
^ ^ '.

v/sin BxsinC.

These theorems, on account of the facility with which Logarithms are

applied to them, are the most convenient of any for resolving the two cases

to which they refer. When A is a very obtuse angle, the second theorem,

which gives the value of the cosine of its half, is to be used ; otherwise

tbe first theorem, giving the value of the sine of its half its preferable.

Tbe same is to be observed with respect to the side c, the reason of which
* • explained. Plane Trig. Schol.

SKD or BPHBRICAL TRIOONOXBTRT





NOTES
ON THE

FIRST BOOK OF THL ELEMENTS.

DEFINITIONS.

I.

In the definitions a few changes have been made, of wliich it is necea-

wry to give some account. One of these changes respects the first defini-

tion, that of a point, which Euclid has said to be, ' That which has no

parts, or which has no magnitude.' Now, it has been objected to this defi-

nition, that it contains only a negative, and that it is not convertible, aa

every good definition ought certainly to be. That it is not convertible is

evident, for though every point is unextended, or without magnitude, yet

every thing unextended or without magnitude, is not a point. To this it

is impossible to reply, and therefore it becomes necessary to change the

definition altogether, which is accordingly done here, a point being defined

to be, that whichhas position but not magnitude. Here the affirmative part

includes all that is essential to a point, and the negative part includes

every thing that is not essential to it. I am indebted for this definition to

a friend, by whose judicious and learned remarks I have often profited.

n.

After the second definition Euclid has introduced the following, " the
• extremities of aline are points."

Now, this is certaiidy not a definition, but an inference from the defini-

tions of a point and of a line. That which terminates a line can have no
breadth, as the line in which it is has none ; and it can have no length, as it

would not then be a termination, but a part of that which is supposed to

terminate. The termination of a line can therefore have no magnitude, and
having necessarily position, it is a point. But as it is plain, that in all this

we are drawing a consequence from two definitions already laid down, and
not giving a new definition, 1 have taken the liberty of putting it down as

a corollary to the second definition, and have added, that the intersections oj

one line with another arepoints, as this aflTords a good illustration of the nature

of a point, and is an inference exactly of the same kind with the preceding.

The same thing nearly has been done with the fourth definition, wliere

that which Euclid gave as a separate definition is made a corollary to the
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fourth, Lecause it is in fact an inference deduced from comparing the defi

uiiions of a superficies and a line.

As it is impossible to explain the relation of a superficies, a line, and a

point to one another, and to the solid in which they all originate, bettei

than Dr. Simson has done, I shall here add, with very little change, tlie

illustration given by that excellent Geometer.
" It is necessary to consider a solid, that is, a magnitude which has

ength, breadth, and thickness, in order to understand aright tlie definitions

of a point, line and superficies ; for these all arise from a solid, and exist in

it ; The boundary, or boundaries which contain a solid, are called superfi-

cies, or the boundaiy which is common to two solids which are cuntiguous,

or which divides one solid into two contiguous parts, is calleo a supcrfi-

cies ; Thr..s, it BCGF be one of the boundaries which contain the solid

ABODE FGH, or which is the common boundary of this solid, and the solid

BKLCFNMG, and is therefore in the one as well as the other soUd, it is

called a superficies, and has no thickness ; For if it have any, thi* thick-

ness must either be a part of the thickness of the solid AG, or the sol'd BIVT,

or a part of the thickness of each of them. It cannot be a part of the hick-
ness of the solid BM ; because, if this solid be removed from the solid AG,
the superficies BCGF, the boundary of the solid AG, remains sli'l the

same as it was. Nor can it be a part of the thickness of the solid AG :

because if this be removed from the solid BM, the superficies BCGl , the

boundary of the solid BM, docs nevertheless remain; therefore the super-

ficies BCGF has no thickness, but only length and breadth,
" The boundary of a supeificies is called a line ; or a line is the common

boundary of two superficies that are contiguouSj or it is that which divides

one superficies into two contiguous parts : Thus, if BC be one of the boun-

daries which contain the superficies ABCD, or which is the common born
dary of this superficies, and of the superficies KBCL, whicli is contiguous
to it, this boimdary BC is called a line, ar.d has no breadth ; For, if it hav»

any, this must be part either of the breadth of the superficies ABCD C
of the superficies KBCL, or part of
each of them. It is not part of the

breadth of the superficies KBCL

;

for if this superficies be removed from
the superficies ABCD, the hne BC
which is the boundary of the super-
ficies ABCD remains the same as it

was. Nor can the breadth that BC
is supposed to have, be a part of the

breadth of the superficiesABCD ; be-
cause, if this be removed from the su-

perficies KBCL, the line BC, which
is the boundary of the superficies

KBCL, does nevertheless remain : Therefore the line BC has no breadth
And because the line BC is in a superficies, and that a superficies has nc
thickness, as was shown ; therefore a line has neither breadth nor thick-
ness, out only length.

" The boundary of a line is called a point, or a point is t common boun
dar)- or extremity of two lines that are contiguous : Thus if B be the ex-
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Uemity of the line AB, or the common extremity of the two lines AB, KB,

this extremity is called a point, and has no length : For if it^have any, thia

length must either be part of the

length of *.bi line AB, or of thp line

KB. It is not part of the length of

KB ; for if the line KB be removed

from AB, the point B, which is the

extremity of the line AB, remains the

•ame as it was ; Nor is it part of the

iongihof the line AB ; for if A B be

.emoved from the line KB, the .point

B, which is the extremity of the lino

KB, does nevertheless remain :

Therefore the point B has no length

;

And because a point is in a line, and

a line has neither breadth nor thickness, therefore a point has no length,

breadth, nor thickness. And in this manner the definition of a point, lino,

tnd superficies are to be understood."

III.

Euclid has defined a straight line to be a line which (as we translate it)

•• lies evenly between its extreme points." This definition is obviously

faulty, the word evenly standing as much in need of an explanation as the

word straight, which it is intended to define. In the original, however, it

must be confessed, that this inaccuracy is at least less striking than in our

translation ; for the word which we render evenly is sI/oh, equally, and is ac-

cordingly translated ex eequo, and equaliler by Commandine and Gregory.

The definition, therefore, is, that a straight linp is one which lies equally

between its extreme points : and if by this we understand a line that lies

between its extreme points so as to be related exactly alike to the space

on the one side of it, and to the space on the other, we have a definition

that is perhaps a little too metaphysical, but which certainly contains in it

the essential character of a straight line. That Euclid took the definition

in this sense, however, is not certain, because he has not attempted to

deduce from it any property whatsoever of a straight line ; and indeed, it

should seem not easy to do so, without employing some reasonings of a

more metaphysical kind than he has any where admitted into his Elements.

To supply the defects of his definition, he has therefore introduced the

Axiom, that two straight lines cannot inclose a space; on which Axiom it is,

and not on his definition of a straight line, that his demonstrations are

founded. As this manner of proceeding is certainly not so regular and
scientific as that of laying down a definition, from which the properties of

the thing defined maybe logically deduced, I have substituted another defi-

nition of a straight line in the room of Euclid's. This definition of a straight

line was suggested by a remark of Boscovich, who, in his Notes on the

philosophical Poem of Professor Stay, says, " Rectam lineam rectae con-
'' gruere totam toti in infinitum producfum si bina puncta unius binis al-

* «rius congruani, patet ex ipsa admodum clara rectitudinis idea quan>

36
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"habemus." (Supplementum in lib. 3. ^ 550.) Now, that which Mr.

Boscovich would consider as an inference from our idea of straightness,

Beems itself to be the essence of that idea, and to afford the best criterion

for judging whether any given line be straight or not. On this principle

we have given the definition above. If there be two lines which cannot coin'

cide in twopoints, without coinciding altogether, each ofthem is called a straight

line.

This definition was otherwise expressed in the two former editions ; it

was said, that lines are straight lines which cannot coincide in part, with

out coinciding altogether. This was liable to an objection, viz. that it de

fined straight lines, but not a straight line ; and though this in truth is but

a mere cavil, it is better to leave no room for it. The definition in the form

now given is also more simple.

From the same definition, the proposition which Euclid gives as an

Axiom, that two straight lines cannot inclose a space, follows as a neces-

sary consequence. For, if two lines inclose a space, they must intersect

one another in two points, and yet, in the intermediate part, must not coin-

cide ; and therefore by the definition they are not straight lines. It follows

in the same way, that two straight lines cannot have a common segment,

or cannot coincide in part, without coinciding altogether.

After laying down the definition of a straight line, as in the first Edition,

I was favoured by Dr. Reid of Glasgow with the perusal of a MS. contain-

ing many excellent observations on the first Book of Euclid, such as might

be expected from a philosopher distinguished for the accuracy as well as

the extent of his knowledge. He there defined a straight line nearly as

has been done here, viz. " A straight line is that which cannot meet ano-
" ther straight line in more points than one, otherwise they perfectly coincide,
" and are one and the same." Dr. Reid also contends, that this must have
been Euclid's own definition ; because, in the first proposition of the

eleventh Book, that author argues, " that two straight lines cannot have a
'* common segment, for this reason, that a straight line does not meet a
" straight line in more points than one, otherwise they coincide." Whether
this amounts to a proof of the definition above having been actually

Euclid's, I will not take upon me to decide ; but it is certainly a proof

that the writings of that Geometer ought long since to have suggested this

definition to his commentators ; and it reminds me, that I might have learn-

ed from these writings what I have acknowledged above to be derived from

a remoter source.

There is another characteristic, and obvious property of straight lines,

by which 1 have often thought that they might be very conveniently defin*

ed, viz. that the position of the whole of a straight line is determined by the

position of two of its points, in so much that, when two points of a straight

line continue fixed, the line itself cannot change its position. It might
therefore be said, that a straight line is one in which, if the position oj ttoo

points be determined, the position of the whole line is determined. But this de-

finition, though it amoimt in fact to the same thing with that alr(,ady gi^ en,

is rather more abstract, and not so easily made the foundation of reason-

ing. I therefore thought it best to -lay it aside, and to adopt the definition

given in the text.



NOTES. 383

V.

The definition of a plane is given from Dr. Simson, Euclid's being liable

to the same objections with his definition of a straight line ; for, he says,

that a plane superficies is one which " lies evenly between its extreme
" lines," The defects of this definition are completely removed in that which
Dr. Simson has given. Another definition different from both might have
been adopted, viz. That those superficies are called plane, which are such,

.hat if three points of the one coincide with three points of the other, the

whole of the one must coincide with the whole of the other. This defini-

tion, as it resembles that of a straight line, already given, might, perhaps
have been introduced with some advantage ; but as the purposes of demon-
stration cannot be better answered than by that in the text, it has been
thought best to make no farther alteration.

VI.

In Euclid, the general definition of a plane angle is placed before thatol

a rectilineal angle, and is meant to comprehend those angles which are

formed by the meeting of the other lines than straight lines. A plane

angle is said to be "the inclination of two lines to one another which
" meet together, but are not in the same direction." This definition is

omitted here, because that the angles formed by the meeting of curve lines,

though they may become the subject of geometrical investigation, certainly

do not belong to the Elements ; for the angles that must first be considered

are those made by the intersection of straight lines with one another.

The angles formed by the contact or intersection of a straight line and a

circle, or of two circles, or two curves of any kind with one another,

could produce nothing but perplexity to beginners, and cannot possibly be

understood till the properties of rectilineal angles have been fully explained.

On this ground, I am of opinion, that in an elementary treatise it may
fairly be omitted Whatever is not useful, should, in explaining the ele-

ments of a science, be kept out of sight altogether *- for, if it does not assist

the progress of the understanding, it will certainly ititard it

AXIOMS

Amono the Axioms there have been made only two alterations. The
1 0th Axiom in Euclid is, that " two straight lines cannot inclose a space ;"

which, having become a corollary to our definition of a straight line, ceases

of course to be ranked with self-evident propositions. It is therefore re*

moved from among the Axioms.

The 12th Axiom of Euclid is, that " if a straight line meets two straight

lines, so as to make the two interior angles on the same side of it taken
•• together less than two right angles, these straight lines being continually

* produced, shall at length roaet upon that side on which are the angles
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"which ire less than two right angles." Instead of this proposition,

which, though true, is by no means self-evident ; another that appeared

more obvious, and better entitled to be accounted an Axiom, has been in

troduced, viz. " that two straight lines, which intersect one another, can-

"not be both parallel to the same straight line." On this subject, how«

ever, a fuller explanation is necessary, for which see the note on -he 29tb

Prop

PROP. IV. and VIII. B. I.

The IV. and VIII. propositions of the first book are the foundation of all

that follows with respect to the comparison of triangles. They are de-

monstrated by what is called the method of superaposition, that is, by lay

ing the one triangle upon the other, and proving that they must coincide

To this some objections have been made, as if it were ungeometrical to

suppose one figure to be removed from its place and applied to another

figure. " The laying," says Mr. Thomas Simson in his Elements, " of
" one figure upon another, whatever evidence it may aflTord, is a mechanical
" consideration, and depends on no postulate." It is not clear what Mr.
Simson meant here by the word mechanical : but he probably intended only

to say, that the method of superaposition inA'olves the idea of motion, which
belongs rather to mechanics than geometry ; for 1 think it is impossible

that such a Geometer as he was could mean to assert, that the evidence

derived from this method is like that which arises from the use of instru-

ments, and of the same kind with what is furnished by experience and ob-

servation. The demonstrations of the fourth and eighth, as they are given

by Euclid, are as certainly a process of pure reasoning, depending solely

on the idea of equality, as established in the 8th Axiom, as any thing in

geometry. But, if still the removal of the triangle from its place be consi-

dered as creating a difficulty, and as inelegant, because it involves an idea,

that of motion, not essential to geometry, this defect may be entirely re-

medied, pro^dded that, to Euclid's three postulates, we be allowed to add
the following, viz. That if there be two equal straight lines, and if anyfigure
whatsoever be constituted on the one, a figure every way equal to it may be con-

stituted on the other. Thus if AB ana DE be two equal straight lines, and
ABC a triangle on the base AB, a triangle DEF every way equal to ABC
may be supposed to be constituted on DE as a base. By this it is not

meant to assert that the method of describing the triangle DEF is actually

known, but merely that the triangle DEF may be conceived to exist in

all respects equal to the triangle ABC. Now, there is no truth whatso-
ever that is better entitled than this to be ranked among tl e Postulates or

Axioms of geometry ; for the straight lines AB and DE being ever^' way
equal, there can be nothing belonging to the one that may not also belong

to the other.

On the strength of this Postulate the IV. proposition is thus demonstrated

If ABC, DEF be two triangles, such that the two sides AB and AC oi

the one are equal to the two ED, DF of the other, and the angle BAG,
contained by the sides AB, AC of the one, equal to the angle EDF, con
lained by the sides ED, DF of the other ; the triangles ABC and EDF are

every wav equal.
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Oii AB let a triangle be constituted every way equal to the triangle DEF

;

then if this triangle coincide with the triangle ABC, it is evident that the

proposition is true, for it is equal to DEF by hypothesis, and to ABC, be-

cause it coincides with it ; wherefore ABC, DEF are equal to one another

But if it does not coincide with ABC, let it have the position ABG ; and first

suppose G not to fall on AC ; then the angle BAG is not equal to the angle

BAC, But the angle BAG is equal to the angle EDF, therefore EDF
and ABC are not equal, and they are also equal by hypothesis, which is

impossible. Therefore tiie point G must fall upon AC ; now, if it fall upon
AC but not at C, then AG is not equal to AC ; but AG is equal to DF,
therefore DF and AC are not equal, and they are also equal by supposition,

which is impossible. Therefore G must coincide with C, and the triangle

AGB with the triangle ACB. But AGB is every way equal to DEF,
therefore ACB and DEF are also every way equal.

By help of the same postulate, the fifth may also be very easily de-

monstrated.

Let ABC be an isosceles triangle, in which AB, AC are the equal sides

,

the angle ABC, ACB opposite to these sides are also equal.

Draw the straight line EF equal to BC, and suppose that on EF the tri

angle DEF is constituted every way equal to the triangle ABC, that is.

having DE equal to AB, DF to AC, the angle EDF to the angle BAG. the

angle ACB to the angle DFE, <kc.

Then because DE is equal to AB, and AB is equal to AC, DE is equa
to AC ; and for the same reason, DF is equal to AB. And because DF is

equal to AB, DE to AC, and the angle FDE to the angle BAC, the angle
ABC is equal to the angle DFE But the angle ACB is also, l)y hy-
pothesis, equal to the angle DFE • there'bre the angles ABC \CB an
equal to one another.
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Sucii demonstrations, it must, however, be acknowledgedj trespass

against a rule which Euclid has uniformly adhered to throughout the Ele-

ments, except where he was forced by necessity to depart from it ; This
ruie is, that nothing is ever supposed to be done, the manner ofdoing which
has not been already taught, so that the construction is derived either di-

rectly from the three postulates laid down in the beginning, or from pro-

blems already reduced to those postulates. Now, this rule is not essential

to geometrical demonstration, where, for the purpose of discovering the

properties of figures, we are certainly at liberty to suppose any figure to be

constructed, or any line to be drawn, the existence of which does not in-

volve an impossibility. The only use, therefore, of Euclid's rule is tc

guard against the introduction of impossible hypotheses, or the taking for

granted that a thing may exist which in fact implies contradiction ; from

such suppositions, false conclusions might, no doubt, be deduced, and the

rule is therefore useful in as much as it answers the purpose of excluding

them. But the foregoing postulatum could never lead to suppose the

actual existence of any thing that is impossible ; for it only assumes the

existence of a figure equal and similar to one already existing, but in a dif-

ferent part of space from it, or having one of its sides in an assigned posi-

tion. As there is no impossibility in the existence ol one of these figures

it is evident that there can be none in the existence of the other.

PROP. XXI. THEOR.

It is essential to the truth of this proposition, that the straight lin<j8

drawn to the point within the triangle be drawn from the two extremities

of the base ; for, if they be drawn from other points of the base, their sum
may exceed the sum of the sides of the triangle in any ratio that is less

than that of two to one. This is demonstrated by Pappus Alexandiinus

in the 3d Book of his Mathematical Collections, but the demonstration is of a

kind that does not belong to this place. If it be required simply to show,
that in certain cases the sum of the two lines drawn to the point withm the

triangle may exceed the sum of the sides of the triangle, the demonstra-

tion is easy, and is given nearly as follows by Pappus, and also by Proclus,

in the 4th Book of his Commentary on Euclid.

Let ABC be a triangle, having the angle at A a right angle : lei D be
any point in AB

;
join CD, then CD will be greater than AC, because in

the triangle ACD the angle CAD is greater than the angle ADC From
DC cut off DE equal to AC ; bisect CE
in F, and join BF ; BF and FD are greater

than BC and CA.
Because CF is equal to FE, CF and FB

are equal to EF and FB, but CF and FB
are greater than BC, therefore EF and FB
are greater than BC. To EF and FB add
ED, and to BC add AC, which is equal to

BD by construction, and BF and FD will

be greater than BC and CA.



NOTES. 287

It is evident, that if the angle BAG be obtuse, the sa.me reasoning may
be applied.

This proposition is a sufficient vindication of Euclid for having demon-
strated the 21 St. proposition, which some affect to consider as self-evident

;

for it proves that the circumstance on which the truth of that proposition

depends is not obvious, nor that which at first sight it is supposed to be, viz.

that of the one triangle being included within the other. For this reason I

cannot agree with M. Clairaut, that Euclid domonstrated this proposition

only to avoid the cavils of the Sophists. But I must, at the same time, ob-

serve, that what the French Geometer has said on the subject has certain

ly been misunderstood, and in one respect, unjustly censured by Dr. Simson.

The exact translation of his words is as follows :
" If Euclid has taken the

•' trouble to demonstrate, that a triangle included within another has the
" sum of its sides less than the sum of the sides of the triangle in which it

"is included, we are not to be surprised. That Geometer had to do with
" those obstinate Sophists, who made a point of refusing their assent to the

" most evident truths," &c. (Elements de Geometric par M. Clairaut.

Pref.)

Dr. Simson supposes M. Clairaut to mean, by the proposition which he
enunciates here, that when one triangle is included in another, the sum of

the two sides of the included triangle is necessarily less than the sum of the

two sides of the triangle in which it is included, whether they be on the

same base or not. Now this is not only not Euclid's proposition, as Dr
Simson remarks, but it is not true, and is directly contrary to what has

just been demonstrated from Proclus. But the fact seems to be, that M.
Clairaut's meaning is entirely different, and that he intends to speak not of

two of the sides of a triangle, but of all the three ; so that his proposition

is, " that when one triangle is included within another, the sum of all the
" three sides of the included triangle is less than the sum of all the three

sides of the other," and this is without doubt true, though I think by no

means self-evident. It must be acknowledged also, that it is not exactly

Euclid's proposition, which, however, it comprehends under it, and is the

general theorem, of which the other is only a particular case. Therefore,

though M. Clairaut may be blamed for maintaining that to be an Axiom
which requires demonstration, yet he is not to be accused of mistaking a

false proposition for a true one.

PROP. XXII. PROB.

Thomas Simson in his Elements has objected to Euclid's demonstratioi

of this proposition, because it contains no proof, that the two circles made
use of in the construction of the Problem must cul one another ; and Dr.

Simson on the other hand, always unwilling to acknowledge the smallest

blemish in the works of Euclid, contends that the demonstration is perfect.

The truth, however, certainly is, that the demonstration admits of some
improvement ; for the limitation that is made in the enunciation of any
Problem ought always to be shewn to be necessarily connected with the

construction of it, and this is what Euclid has neglected to do in the pro-

sent instance. The defect may easily be supplied, and Dr. Simson him-
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«6lf has done it in effect in his note on this proposition, though he denies it

to be necessary.

Because that of the three straight lines DF, FG, GH, any two are great*

cr than the third, by hypothesis, FD is less than FG and GH, that is,

than FH, and therefore the circle described from the centre F, with the

distance FD must meet the Hne F£ between F and H ; and, for the like

reason, the circle described from the centre G at the distance GH, must

meet DG between D and G, and therefore the one of these circles can-

not be wholly within the other. Neither can the one be wholly without

the other, because* DF and GH are greater than FG ; the two circles

must therefore intersect one another.

PROP. XXVII. and XXVIII.

Euclid has been guilty of a slight inaccuracy in the enunciations of

these propositions, by omitting the condition, that the two straight lines on
which the third line falls, making the alternate angles, &c. equal, must
be in the same plane, without which they cannot be parallel, as is evident

from the definition of parallel lines. The only editor, I believe, who has re-

marked this omission, is M. de Foix Duo de Candalle, in his transla-

tion of the Elements published in 1566. How it has escaped the notice of

subsequent commentators is not easily explained, unless because they

thought it of little importance to correct an error by which nobody was
likely to be misled.

*

PROP. XXIX.

The subject of parallel lines is one of the most difficult in the Elements
of Geometry. It has accordingly been treated of in a great variety of difler-

ent ways, of which, perhaps, there is none that can be said to have given

entire satisfaction. The difficulty consists in converting the 27th and 28th of

Euclid, or in demonstrating, that parallel straight lines, or such as do not

meet one another, when they meet a third line, make the alternate angles

with it equal, or, which comes to the same, are equally inclined to it, and

make the exterior angle equal to the interior and opposite. In order to de-
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nonstrate this proposition, Euclid assumed it as an Axiom, that " if a

" straight line meet two straight lines, so as to make the interior angles on
" the same side of it less than two right angles, these straight lines being
•* continually produced, will at length meet on the side on which the angles
' are that are less than two right angles." This proposition, however, is

not self-evident, and ought the less to be received without proof, that, as

Produs has observed, the converse of it is a proposition that confessedly

requires to be demonstrated. For the converse of it is, that two straight

lines which meet one another make the interior angles, with any third line,

less than two right angles ; or, in other words, tliat the two interior angles

of any triangle are less than two right angles, which is the 17th of the

First Book of the Elements : and it should seem, that a proposition can
never rightly be taken for an Axiom, of which the converse requires a de-

monstration.

The methods by which Geometers have attempted to remove this

blemish from the Elements are of three kinds. 1 . By a new definition of

parallel lines. 2. By introducing a new Axiom concerning parallel lines,

more obvious than Euclid's. 3. By reasoning merely from the definition

of parallels, and the properties of lines already demonstrated without the

ssumption of any new Axiom.

1 . One of the definitions that has been substituted for Euclid's is, that

straight lines are parallel, which presen'e always the same distance from
one another, by the word distance being understood, a perpendicular drawn
to one of the lines from any point whatever in the other. If these perpendicu-
lars be every where of the same length, the straight lines are called parallel

This is the definition given by Wolfius, by Boscovich, and by Thomaa
Simson, in the first edition of his Elements. It is however a faulty defi-

nition, for it conceals an Axiom in it, and takes for granted a property of

straightlines, that ought either to be laid down as self-evident, or demonstrat-
ed, if possible, as a Theorem. Thus, if from the three points. A, B, and C
of the straight line AC, perpendiculars AD, BE, CF be drawn all equal
to one another, it is implied in the definition

that the points D, E and F are in the same
straight line, which, though it be true, it was
not the business of the definition to inform us

of Two perpendiculars, as AD and CF, are

alone sufficient to determine the position of the

straight line itF, and therefore the definition ought to be, "that two straighj

" lines are parallel, when there are two points in the one, from which the

"perpendiculars drawn to the other are equal, and on the same side of it,"

This is the definition of parallels which M. D'Alembert seems to prefci

to all others ; but he acknowledges, and very justly, that it still remains a

matter of difficulty to demonstrate, that all the perpendicidars drawn from

the one of these lines to the other are equal. {Encyclopedic, A rt. Parallele.)

Another definition that has been given of parallels is, that they are lines

which make equal angles with a third line, toward the same parts, or such

as make the exterior angle equal to the interior and opposite. Varignon

Bezout, and several other mathematicians, have adopted this definition

irhich, it mtist be acknowledged, is a perfectly good one, if it be undersiood

37
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fegr it} that the two lines called parallel, are such as make equal angles wtt%

a eertatn third line, but not with any line that falls upon them. It remains

therefore, to be demonstrated, That if AB and CD make equal angles with

GH, they will do so also with any other line whatsoever. The definition,

therefore, must be thus understood, That parallel lines are such as make
equal angles, with a certain third line, or, more simply, lines which are per-

pendicular to a given line. It must then be proved, 1. That straight lines

which are equally inclined to a certainline or perpendicular to a certain line,

must be equally inclined to all the other lines that fall upon them ; and also,

2. That two straight lines which do not meet when produced, must make
equal angles with any third line that meets them.

The demonstration of the first of these propositions is not at all facilitated

by the new definition, unless it be previously shown that all the angles of a

triangle are equal to two right angles.

The second proposition would hardly be necessary if the new definition

were employed ; for when it is required to draw a line that shall not meet
a given line, this is done by drawing a line that shall have the same incli-

nation to a third line that the first or given line has. It is known that lines

so drawn cannot meet. It would no doubt be an advantage to have a defi-

nition that is not founded on a condition purely negative.

2. As to the Mathematicians who have rejected Euclid's Axiom, and in-

troduced another in its place, it is not necessary that much should be said.

Clavius is one ofthe first in this class ; the Axiom he assumes is, " That a

" line of which the points are all equidistant from a certain straight line in

" the same plane with it, is itself a straight line." This proposition he does

not, however, assume altogether, as he gives a kind of metaphysical proof

of it, by which he endeavours to connect it with Euclid's definition of a

straight line, with which proof at the same time he seems not very well

satisfied. His reasoning, after this proposition is granted (though it ought

not to be granted as an Axiom), is logical and conclusive, but is prolix and
operose, so as to leave a strong suspicion that the road pursued is by no
means the shortest possible.

The method pursued by Simson, in his Notes in the First Book of Euclid,

is not very diflferent from that of Clavius. He assumes this Axiom, " That
• a straight line cannot first come nearer to another straight line, and then
" go farther from it without meeting it." (Notes, &c. English Edition.) By
coming nearer is understood, conformably to a previous definition, the dirai*
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nution of the perpendiculars drawn from the one line to the other, Thi»

Axiom is more readily assented to than that of Clavius, from which, how-
ever, it is not very different : but it is not very happily expressed, as the idea

not merely of motionj but of time, seems to be involved in the notion oifirst

coming nearer, and then going farther off. Even if this inaccuracy is pass

ed over, the reasoning of Simson, like that of Clavius, is prolix, and evi

den»ly a circuitous method of coming at the truth.

Thomas Simson, in the second edition of his Elements, has presented

.his Axiom in a simpler form. " If two points in a straight line are positeo

" at unequal distances from another straight line in the same plane,

" those two lines being indefinitely produced on the side of the least dis-

" tance will meet one another."

By help of this Axiom it is easy to prove, that if two straight lines AB,
CU are parallel, the perpendiculars to the one, terminated by the other,

are all equal, and are also perpendicular to both the parallels. That they

are ecjual is evident, otherwise the lines would meet by the Axiom. That
they are perpendicular to both, is demonstrated thus :

If AC and BD,which are perpendicular to AB, and equal to one another,

be not also perpendicular to CD, from C let CE —
be dra^vn at right angles to BD. Then, be-

cause AB and CE are both perpendicular to

BD, they are parallel, and therefore the perpen-

diculars AC and BE are equal. But AC is

equal to BD, (by hypotheses,) therefore BE and

BD are equal, which is impossible ; BD is therefore at right angles to CD.
Hence the proposition, that " if a straight line fall on two parallel lines, il

"makes the alternate angles equal," is easily derived. Let FH and GE be

perpendicular to CD, then they will be parallel to one another, and also at

right angles to AB, and therefore FG and HE are equal to one another,

by the last proposition. Wherefore in the triangles EFG, EFH, the sidei

HE and EF are equal to the sides GF and FE, each to each, and also the
third side HF to the third side EG, therefore the angle HEF is equal to

the angle EFG, and they are alter^.ate angles.

This method of treating the doctrine of parallel lines is extremely plain

and concise, and is perhaps as good as any that can be followed, when a

new Axiom is assumed. In the text above, I have, however, followed a
different method, employing as an Axiom, "That two straight lines, which
" cut one another, cannot be both parallel to the same straight line." This
Axiom has been assumed by others, particularly by Ludlam, in his very
useful little tract, entitled Rudiments of Mathematics.
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It is a pioposition readily enough admitted as self-evident, and iead^
^o the demonstration of Euclid's 29th Proposition, even with more brevity
than Simson's.

3. All the methods above enumerated leave ihe mind somewhat dissatis-

fied, as we naturally expect to discover the properties of parallel lines, as
we do those of other geometric quantities, by comparing the definition of

those lines, with the properties of straight lines already known. The most
ancient writer who appears to have attempted to do this is Ptolemy the as-

tronomer, who wrote a treatise expressly on the subject of Parallel Lines.

Proclus has preserved some account of this work in the Fourth Book of his

commentaries : and it is curious to observe in it an argument founded on the

principle which is known to the moderns by the name of the su^cient reason.

To prove, that if two parallel straight lines, AB and CD, be cut by a

third line EF, in G and H, the two interior angles AGH, CHG will be

equal lo two right angles, Ptolemy reasons thus : If the angles AGH,
CHG be not equal to two right angles, let them, if possible, be greater

than two right angles : then, because the lines AG and CH are not more
parallel than the lines BG and DH, the angles BGH, DHG are also

greater than two right angles. Therefore, the four angles AGH, CHG,
BGH, DHG are greater than four right angles ; and they are also equal

to four right angles, which is absurd. In the same manner it is shewn,
that the angles AGH, CHG cannot be less than two right angles. There-
fore they are equal to tv/o right angles.

But this reasoning is certainly inconclusive. For why are we to sup-

pose that the interior angles which the parallels make with the line cutting

them, are either in every case greater than two right angles, or in every

case less than two right angles 1 For any thing that we are yet supposed

to know, they may be sometimes greater than two right angles, and some-
times less, and therefore we are not entitled to conclude, because the angles

AGH, CHG are greater than two right angles, that therefore the angles

BGH, DHG are also necessarily greater than two right angles. It

may safely be asserted, therefore, that Ptolemy has not succeeded in his

attempt to demonstrate the properties of parallel lines without the assist-

ance of a new Axiom.
Another attempt to demonstrate the same proposition withmt the assist-

ance of a nfw Axiom has been made by a modern geometer, Franceschini
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Professor of Mathematics in the University of Bologna, in an essay, whicL
he entitles. La Teona deUe parallele rigorosamente dimonstrata, printed in

his Opuscoli Mathematici, at Bassano in 1787.

The difficulty is there reduced to a proposition nearly the same with this,

That if BE make an acute angle with BD, and if DE be perpendicular it

BD at any point, BE and DE,
if produced, will meet. To de-

monstrate this, it is supposed,

that BO, BC are two parts taken

in BE, of which BC is greater

than BO, and that the perpendi-

culars ON, CLare drawn to BD
;

then shall BL be greater than

BN. For, if not, that is, if the

perpendicular CL falls either at

N, or between B and N, as at

F ; in the first of these cases the

angle CNB is equal to the angle ONB, because they are both right angle%

which is impossible ; and, in the second, the two angles CFN, CNF of the

triangle CNF, exceed two right angles. Therefore, adds our author, since,

as BC increases, BL also increases, and since BC may be increased with-

out limit, so BL may become greater than any given line, and therefore may
be greater than BD ; wherefore, since the perpendiculars to BD from points

beyond D meet BC, the perpendicular from D necessarily meets it.

Now it will be found, on examination, that this reasoning is no more
conclusive than the preceding. For, unless it be proved, that whatever

multiple BC is of BO, the same is BL of BN, the indefinite increase of

BC does not necessarily imply the indefinite increase of BL,or that BL may
be made to exceed BD. On the contrary, BL may always increase, and
yet may do so in such a manner as never to exceed BD : In order that the

demonstration should be conclusive, it would be necessary to shew, that

when BC increases by a part equal to BO, BL increases always by a part

equal to BN ; but to do this will be found to require the knowledge of those

very properties of parallel lines that we are seeking to demonstrate.

Leoendre, in his Elements of Geometry, a work entitled to the highest

praise, for elegance and accuracy, has delivered the doctrine of parallel lines

without any new Axiom. He has done this in two different ways, one in

the text, and the other in the notes. In the former he has endeavoured to

prove, independently of the doctrine of parallel lines, that all the angles of

a triangle are equal to two right angles ; from which proposition, when
it is once established, it is not difficult to deduce every thing with respect to

parallels. But, though his demonstration of the property of triangles just

mentioned is quite logical and conclusive, yet it has the fault of being long

and indirect, proving first, that the three angles of a triangle cannot be

grf atcr than two right angles, next, that they cannot be less, and doing

both by reasoning abundantly subtle, and not of a kind readily apprehend-

ed by those who are only beginning to study the Mathematics.

The demonstration which he has given in the notes is extremely ingeni-

ous, and proceeds on this very simple and undeniable Axiom, that we can-

not compare an an>{le and a Une, as to magnitude, or cannot have an equa-
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tioii u' any sort between them. This truth is involved in the distinction

between homogeneous and heterogeneous quantities, (Euc. v. def. 4.),

which has long been received in Geometry, but led only to negative con-
sequehces, till it fell into the hands of Legendre. The proposition which
he deduces from it is, that if two angles of one triangle be equal to two an-

gles of another, the third angles of these triangles are also equal. For, it

is evident, that when two angles of a triangle are given, and also the side

between them, the third angle is thereby determined ; so that if A and B
be any two angles of a triangle, P the side interjacent, and C the third an-

gle, C is determined, as to its magnitude, by A, B and P ; and, besides

these, there is no other quantity whatever which can affect the magnitude
of C. This is plain, because if A, B and P are given, the triangle can be
constructed, all the triangles in which A, B and P are the same, being equal
to one another.

But of the quantities by which C is determined, P cannot be one ; for if

it were, then C must be z, function of the quantities A, B, P ; that is to say,

the value of C can be expressed by some combination of the quantities A,
B and P. An equation, therefore, may exist between the quantities A, B,
C and P ; and consequently the value of P is equal to some combination,
that is, to some function of the quantities A, B and C ; but this is impossi-
ble, P being a line, and A, B, C being angles ; so that no function of the
first of these quantities can be equal to any function of the other three. The
angle C must therefore be determined by tne angles A and B alone, without
any regard to the magnitude of P, the side interjacent. Hence in all trian-

gles that have two angles in one equal to two in another, each to each the
third angles are also equal.

Now, this being demonstrated, it is easy to prove that the three angles of
any triangle are equal to two right angles.

Let ABC be a triangle right angled at A, draw AD perpendicular to

BC. The triangles ABD, ABC have the an- a
gles BAC, BDA right angles, and the angle

B common to both; therefore by what has just

been proved, their third angles BAD, BCA are

also equal. In the same way it is shewn, that

CAD is equal to CBA ; therefore the two an-

gles, BAD, CAD are equal to the two BCA,
CBA ; but BAD+CAD is equal to a right B
angle, therefore the angles BCA, CBA are together equal to a right angle,

and consequently the three angles of the right angled triangle ABC are

equal to two right angles.

And since it is proved that the oblique angles of every right angled

triangle are equal to one right angle, and since every triangle may be

divided into two right angled triangles, the four oblique angles of which are

equal to the three angles of the triangle, therefore the three angles of every

triar.gle are equal to two right angles.

Though this method of treating the subject is strictly demonstrative, yet,

as the reasoning in the first of the two preceding demonstrations is not per-

haps sufliciently simple to be apprehended by those just entering on mathe-
matical studies, I shall submit to the reader another method, n'»t liable to

*^e same objection, which I know, from experience, to be 0/ u«f in explain
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ing the Elements. It proceeds, like that of the French Geometer hy de

monstrating, in the first place, that the angles of any triangle are logethei

equal to two right angles, and deducing from thence, that two lines, which

make with a third line the interior angles, less than two right angles, must

meet if produced. The reasoning used to demonstrate the first of these

propositions may be objected to by some as involving the idea of motion, and

the transference of a line from one place to another. This, however, is no

more than Euclid has done himself on some occasions ; and when it furnish-

es so short a road to the truth as in the present instance, and does not im-

pair the evidence of the conclusion, it seems to be in no respect inconsistent

with the utmost rigour of demonstration. It is of importance in explaining

the Elements of Science, to connect truths by the shortest chain possible
;

and till that is done, we can never consider them as being placed in their

natural order. The reasoning in the first of the following propositions is so

simple, that it seems hardly susceptible of abbreviation, and it has the ad-

vantage of connecting immediately two truths so much alike, that one

might conclude, even from the bare enunciations, that they are but different

cases of the same general theorem, viz. That all the angles about a point,

and all the exterior angles of any rectilineal figure, are constantly of the

same magnitude, and equal to four right angles.

DEFINITION.

If, while one extremity of a straight line re-

mains fixed at A, the line itself turns about that

point from the position AB to the position AC, it

is said to describe the angle BAG contained by
the line AB and AC.

Cor. If a line turn about a point from the position AC till it come into

the position AC again, it describes angles which are together equal to four

right angles. This is evident from the second Cor. to the 15th. 1.

PROP. I.

All the exterior angles of any rectilineal figure are together equal to fom
right angles.

1. Let the rectilineal figure be the triangle ABC, of which the exterior

angles are DCA, FAB, GBC ; these angles are together equal to four

right angles.

Let the line CD, placed in the direction of BC produced, turn about the
point C till it coincide with CE, a part of the side CA, and have described
the exterior angle DCE or DCA. Let it then be carried along the Hne
CA, till it be in the position AF, that is, in the direction of CA produced,
and ihe point A remaining fixed, let it turn about A till it describe the
angle FAB, and coincide with a part of the lino AB Let it next be car-

ried along AB till it come into the position BG, and by turning about B
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C D

le* It describe the angle GBC, so

as to coincide with a part of BC.
Lastly, Let it be carried along BC
till it coincide with CD, its first

position. Then, because the line

CD has turned about one of its

extremities till it has come into

the position CD again, it has by

the corollary to the above defini-

tion described angles which are

together equal to four right an-

gles ; but the angles which it

has described are the three ex-

terior angles of the triangle ABC,
therefore the exterior angles of

the triangle ABC are equal to

four right angles.

2. If the rectilineal figure have any number of sides, the proposition is

demonstrated just as in the case of a triangle. Therefore all the exterior

angles of any rectilineal figure are together equal to four right angles.

CoR. 1. Hence, all the interior angles of any triangle are equal to two
right angles. For all the angles of the triangle, both exterior and interior,

are equal to six right angles, and the exterior being equal to four right

angles, the interior are equal to two right angles.

Cor. 2. An exterior angle of any triangle is equal to the two interior and
opposite, or the angle DCA is equal to the angles CAB, ABC. For the

angles CAB, ABC, BCA are equal to two right angles ; and the angles

ACD, ACB are also (13. 1.) equal to two right angles ; therefore the three

angles CAB, ABC, BCA are equal to the two ACD, ACB ; and taking

ACB from both, the angle ACD is equal to the -two angles CAB, ABC.
Cor. 3. The interior angles of any rectilineal figure are equal to twice

as many right angles as the figure has sides, wanting four. For all the

angles exterior and interior are equal to twice as many right angles as the

figure has sides ; but the exterior are equal to four right angles ; therefore

the interior are equal to twice as many right angles as the figure has sides

wanting four.

PROP. IL

Two straight lines, which make with a third line the interior angles on
the same side of it less than two right angles, will meet on that side, if pro-

duced far enough.

Let the straight lines AB, CD, make with AC the two angles BAG,
DCA less than two right angles ; AB and CD will meet if producedtoward
B and D.

In AB take AF=AC
;
join CF, produce BA to H, and through C drav

CE, making the angle ACE equal to the angle CAH.
Because ^.C is equal to AF, the angles AFC, ACF are also equal (5
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I.) ; but the exterior angle HAC is equal to the two interior and opposite

angles ACF, AFC, and therefore it is double of either of them, as of ACF
Now AGE is equal to HAC by construction, therefore ACE is double oi

ACF, and is bisected by the line CF. In the same manner, if FG be taker

equal to FC, and if CO be drawn, it may be shewn that CG bisects the

angle FCE, and so on continually. But if from a magnitude, as the a,n-

gle ACE, there bo taken its half, and from the remainder FCE its

half FCG, and from the remainder GCE its half, &c. a remainder will at

length be found less than the given angle DCE.*

n A
Let GCE be the angle, whose half ECK is less than DCE, then a

straight line CK is found, which falls between CD and CE, but never-

theless meets the line AB in K. Therefore CD, if produced, must meet
AB in a point between G and K.
This demonstration is indirect ; but this proposition, if the definition of

parallels were clianged, as suggested at p. 291, would not be necessary ,

and the proof, that lines equally inclined to any one line must be so to

every line, would follow directly from the angles of a triangle being equal

io two right angles. The doctrine of parallel lines would in this manner
be freed from all difficulty.

PROP. III. or 29. I.Euclid.

If a straight line fall on two parallel straight lines, it makes the alternate

angles equal to one another ; the exterior equal to the interior and oppo-

site on the same side ; and likewise the two interior angles, on the same
side equal to two right angles.

Let the straight line EF fall on
the parallel straight lines AB,
CD ; the alternate angles AGH,
GHD are equal, the exterior angle

EGB is equal to the interior and
opposite GHD ; and the two inte-

rior angles BGH, GHD are equal

to two light angles.

For if AGH be not equal to

GHD, let it be greater, then add-

ng BGH to both, the angles

AGH, HGB are greater than the

* Prop. 1. 1 Sup. The reference of this proposition involves nothing incons'ttcnt witk
gocd reaxoninxi «s the demonstration of it does not depend on anj thing that h&9 gone before.

«o tfant !t oisjr he inti xl'iced in any part of the Eleiiif>nta.

38
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angloi DUG, HGB. But AGH, HGB are equal to two right angles (13.

1
.) ; therelbre BGH, GHD are less than two right angles, and therefore the

lines AB, CD will meet, by the last proposition, if produced toward B and

D. But they do not meet, for they are parallel by hypotheses, and there-

fore the angles AGH, GHD are not unequal, that is, they are equal to one

another.

Now the angle AGH is equal to EGB, because these arc vertical, and

it has also been shewn to be equal to GHD, therefore EGB and GHD are

equal. Lastly, to each of the equal angles EGB, GHD add the angle

BGH, then the two EGB, BGH are equal to the two DHG, BGH. But

EGB, BGH are equal to two right angles (13. l.),therefore BGH, GHD
are also equal to two right angles.

The following proposition is placed here, because it is more connected
with the First Book than with any other. It is useful for explaining the

nature of Hadley's sextant; and, though involved in the explanations usual-

ly given of that instrument, it has not, I believe, been hitherto considered as

a distinct Geometrical Proposition, though very well entitled to be so on ac

count of its simplicity and elegance, as well as its utility.

THEOREM.

If an exterior angle of a triangle be bisected, and also one of the interior

and opposite, the angle contained by the bisecting lines is equal to half the

other interior and opposite angle of the triangle.

Let the exterior angle ACD of the triangle ABC be bisected by the
straight line CE, and the interior and opposite ABC by the straight line

BE, the angle BEC is equal to half the angle BAC.
The line CE, BE will meet ; for since the angle ACD is greater than

ABC, the half of ACD is greater than the half of ABC, that is, ECD
is greater than EBC ; add

ECB to both, and the two JJJ
angles ECD, ECB are A
greater than EBC, ECB.
But ECD, ECB are equal

to two right angles ; there-

fore ECB, EBC are less

than two right angles, and
therefore the lines CE, BE
must meet on the same side

of BC on which the trian

gle ABC is. Let them meet in E.

Because DCE is the exterior angle of the triangle BCE, it is equal to

the two angles CBE, BEC, and therefore twice the angle DCE, that is, the

angle DCA is equal to twice the angles CBE and BEC. But twice the

angle CBE is equal to the angle ABC, therefore the angle DCA is ec^ual

t<» the angle ABC, together with twice the angle BEC ; an<l the same an
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gle DCA being the exterior angle of the triangle ABC, is equal ut the two

»n<rles ABC, CAB, wherefore the two angles ABC, CAB are coual to

ABC and twice BEC. Therefore, taking away ABC from both, there

remains the angle CAB equal to.twice the angle BEC, or BEC equal to

the half of BAC.

BOOK II.

The Demonstrations of this Book are no otherwise changed than by m-

iroducing into them some characters similar to those of Algebra, which is

always of great use where the reasoning turns on the addition or subtrac-

tion of rectangles. To Euclid's demonstrations, others are sometimes add-

ed, as Scholiums, in which the properties of the sections of lines are easilv

demonstrated by Algebraical formulas.

BOOK III.

DEFINITIONS.

The definition which Euclid makes the first of this Book is that of equal

circles, which he defines to be " those of which the diameters are equal."

This is rejected from among the definitions, as being a Theorem, the truth

of which is proved by supposing the circles applied to one another, so that

their centres may coincide, for the whole of the one must then coincide with

the whole of the other. The converse, viz. That circles which are equaj

bave equal diameters, is proved in the same way.

The definition of the angle of a segment is also omitted, because it doea
not relate to a rectilineal angle, but to one understood to be contained be-

tween a straight line and a portion of the circumference of a circle. In like

manner, no notice is taken in the 16th proposition of the angle comprehend-
ed between the semicircle and the diameter, which is said by Euclid to be
greater than an acute rectilineal angle. The reason for these omissions has
%lreadv been assigned in the notes on the fifth definition of the first Book

PROP. XX.

It has been remarked of this demonstration, that it takes for granted, tha

'f two magnitudes be double of two others, each of each, the sum or differ

ence of the first two is double of the sum or difference of the other two,

which are two cases of the 1st and 5ih of the 5th Book. The jnsiness o»
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this lemark cannot be denied ; and though the cases of the Propositions here

referred to are the simplest of any, yet the truth of them ought not in strict-

ness to be assumed without proof. The proof is easily given. Let A and

B, C and D be four magnitudes, such that A=2C, and B=2D ; then A
+B=2(C+D). For since A=C+ C, and B=D+D, adding equals to

equals, A+ B=(C+D)+(C-1-D)=2{C+D). So also, if A be greater

than B, and therefore C greater than D, since A=C-}-C, and B=D-f-D,
taking equals from equals, A—B=(C—D)+(C—D), that is, A—B=2
(C-D).

BOOK V.

The subject of proportion has been treated so differently by those who
have written on elementary geometry, and the method which Euclid has fol-

lowed has been so often, and so inconsiderately censured, that in these notes

it will not perhaps be more necessary to account for the changes that I have
made, than for those that I have not made. The changes are but i'ew, and
relate to the language, not to the essence of the demonstrations ; they will

be explained after some of the definitions have been particularly considered

DEF. III.

The definition of ratio given here has been greatly extolled by some au-

thors ; but whatever value it may have in the eyes of a metaphysician, it

has but little in those of the geometer, because nothing concerning the pro-

perties of ratios, can be deduced from it. Dr. Barrow has very judiciously

remarked concerning it, " that Euclid had probably no other design in mak-
" ing this definition, than to give a general summary idea of ratio to begin-
" ners, by premising this metaphysical definition to the more accurate defi-

" nitions of ratios that are equal to one another, or one of which is greater
" or less than the other ; I call it a metaphysical, for it is not properly a ma-
"ihematical definition, since nothing in mathematics depends on it, or is de-
" duced, nor, as I judge, can be deduced, from it." (Barrow's Lectures,

Lect. 3.) Dr. Simson thinks the definition has been added by some unskil-

ful editor; but there is no ground for that supposition, other than what ari-

ses from the definition being of no use. We may, however, well enough
imagine, that a certain idea of order and method induced Euclid to give

some general definition of ratio before he used the term in the definition of

equal ratios.

DEF. IV.

Tins definition is a little altered in the expression ; Euclid has it, thii.

magnitudes are said to have a ratio to one another, when the ioss cap be

multiplied so as to exceed the greater
"
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D^ 'tf\ V.

One of the chief obstacles to the ready understanding of the 5th Book oi

Euclid, is the difficulty that most people find of reconciling the idea of pro-

portion which they have already acquired, with the account of it that ia

given in this definition. Our first ideas of proportion, or of proportionality,

are got by trying to compare together the magnitude of external bodies ;

and though they be at first abundantly vague and incorrect, they are usually

rendered tolerably precise by the study of arithmetic ; from which we learn

to call four numbers projx)riionals, when they are such that the quotient

which arises from dividing the first by the second, (according to the com-
mon rule for division), is the same with the quotient that arises from divid-

ing the third by the fourth.

Now, as the operation of arithmetical division is applicable as readily to

any two magnitudes of the same kind, as to two numbers, the notion of pro-

portion thus obtained .nay be considered as perfectly general. For, in arith-

metic, after finding how often the divisor is contained in the dividend, we
midtiply the remainder by 10, or 100, or 1000, or any power, as it is called,

of 10, and proceed to inquire how oft the divisor is contained in this new
dividend ; and, if there be any remainder, we go on to multiply it by 10,

100, &c. as before, and to divide the product by the original divisor, and so

on, the division sometimes terminating when no remainder is left, and some-
times going on ad infinitum, in consequence of a remainder being left at each

operation. Now, this process may easily be imitated with any two mag-
nitudes A and B, providing they be of the same kind, or such that the one
can be multiplied so as to exceed the other. For, suppose that B is the

least of the two ; take B out of A as oft as it can be found, and let the quo-

tient be noted, and also the remainder, if there be any ; multiply this remain-

der by 10, or 100, &c. so as to exceed B, and let B be taken out of the quan-

tity produced by this multiplication as oft as it can be found ; let the quotient

be noted, and also the remainder, if there be any. Proceed with this remain-

der as before, and so on continually ; and it is evident, that we have an opera-

tion that is applicable to all magnitudes whatsoever, and that may be perform-

ed with respect to any two lines, any two plane figures,orany two solids, &c.
Now, when we have two magnitudes and two others, and find that the

first divided by the second, according to this method, gives the very same
series of quotients that the third does when divided by the fourth, we say of

these magnitudes, as we did of the numbers above described, that the first

is to the second as the third to the fourth. There are only two more cir-

cumstances necessary to be considered, in order to bring us precisely to

Euclid's definition.

First, It is known from arithmetic, that the multiplication of the succes-

sive remainders each of them by 10, is equivalent to multiplying the quantity

to be diWdcd by the product of all those tens ; so that multiplying, for in-

stance, the first remainder by 10, the second by 10, and the third by 10, i*

the same thing, with respect to the quotient, as if the quantity to bo divided

had beer at first multiplied by 1000 ; and therefore, our standard of the pro-

portionality of numbers may be expressed thus : If the first multiplied any
^u "nber of times by 1 0, and then divided by the second, gives the same quO"
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denf as when the third is muliplied as often by 10, and then divided by the

fourth, the four magnitudes are proportionals.

Again, it is evident, that there is no necessity in these muhiplications for

confining ourselves to 10, or the powers of 10, and that we do so, in arith-

metic, only for the conveniency of the decimal notation ; we may therefore

ose any multipliers whatsoever, providing we use the same in both cases.

Hence, we have this definition of proportionals. When there are four mag-
nitudes, and any multiple whatsoever of the first, when divided by the

second, gives the same quotient with the like multiple of the third, \^hen

divided by the fourth, the four magnitudes are proportionals, or the first

has the same ratio to the second that the third has to the fourth.

We are now arrived very nearly at Euclid's definition ; for, let A, B, C,
D be four proportionals, according to the definition just given, and m any
number ; and let the multiple of A by m, that is mA, be divided by B ; and
first, let the quotient be the number n exactly, then also, when mC is divided

by D, the quotient will be n exactly. But when mK divided by B gives n
for the quotient, ;/iA=nB by the nature of division, so that when mA=nB,
mC=nD, which is one of the conditions of Euclid's definition.

Again, when mk is divided by B, let the division not be exactly perform-

ed, but let ra be a whole number less than the exact quotient, then «B^
ffiA, or wiAT'nB ; and, for the same reason, mC/nD, which is another of

the conditions of Euclid's definition.

Lastly, when wiA is divided by B,let n be a whole number greater than

the exact quotient, then mA/^nB, and because n is also greater than the

quotient of mC divided by D, (which is the same with the other quotient),

therefore mC/_nT>.
Therefore, uniting all these three conditions, we call A, B, C, D, propor-

tionals, when they are such, that if wA/nB, mC ynD ; if 7«A=nB, »iC=
nD ; and if mA^nB, mC^^nD, m and n being any numbers whatsoever.

Now, this is exactly the criterion of proportionality established by Euclid in

the 5th definition, and is derived here by generalizing the common and most

familiar idea of proportion.

It appears from this, that the condition of mk. containing B, whether
with or without a remainder, as often as mC contains D, with or without a

remainder, and of this being the case whatever value be assigned to the

number m, includes in it all the three conditions that are mentioned in Eu-
clid's definition ; and hence, that definition may be expressed a little more
simply by saying, \hixifour magnitudes areproportionals, when any multiple of

thefirst contains the second, {with or without remainder,) as oft as the same mul-

tiple of the third contains thefourth. But, though this definition is certainly,

in the expression, more simple than Euclid's, it is not, as will be found on

trial, so easily applied to the purpose of demonstration. The three conditions

which Euclid brings together in his definition, though they somewhat em-
barrass the expression of it, have the advantage of rendering the demon-
strations more simple 'han they would otherwise be, by avoiding all discus-

sion about the magnitude of the remainder left, after B is taken out of m\ a^

oft as it cEtn be found. All the attempts, indeed, that have been made to de-

monstrate the properties of proportionals rigorously, by means of other defini

tions than Euclid's, only serve to evince the excellence of the method follow

ed by the Greek Geometer, and his singular address in the application of ti
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The great objection to the other methods is, that if they are meant to be

rigorous, they require two demonstrations to every proposition, one when
the division of mk into parts equal to B can be exactly performed, the otner

when it cannot be exactly performed whatever value be ?.ssjgned to m, or

when A and B are what is called incommensurable ; and this last case will

generally be found to require an indirect demonstration, or a reductio adab'
surdum.

M. D'Alembert, speaking of the doctrine of proportion, in a discourse

that contains many excellent obsen'ations, but in which he has overlooked

Euclid's manner of treating this subject entirely, has the following remark :

" On ne pent demontrer que de cette manidre, (la reduction k absurde,) la

•' plupart des propositions qui regardent les incommensurables. L'id6e de
" i'infini entre au moins implicitemens dans la notion de ces sortes de quan-
" tit^s ; et comme nous n'avons qu'une id6e negative de I'infini, on ne peut
" demontrer directement, et a priori, tout ce qui conceme I'infini math^ma-
"tique." [Encyclopidie, mot Geomitrie.)

This remark sets in a strong and just light the difiiculty of demonstrating

the propositions that regard the proportion of incommensurable magnitudes,

without having recourse to the reductio ad absurdum : but it is surprising,

that M. D'Alembert, a geometer no less learned than profound, should

have neglected to make mention of Euclid's method, the only one in which
the difficulty he states is completely overcome. It is overcome by the in-

troduction of the idea of indefinitude, (if I may be permitted to use the word),

instead of the idea of infinity ; for m and n, the multipliers employed, are

supposed to be indefinite, or to admit of all possible values, and it is by the

skilful use of this condition that the necessity of indirect demonstrations is

avoided. In the whole of geometry, I know not that any happier invention

is to be found ; and it is worth remarking, that Euclid appears in another

of his works to have availed himself of the idea of indefinitude with the

same success, viz. in his books of Porisms, which have been restored by
Dr. Sirason,and in which the whole analysis turned on that idea, as I have
shown at length in the Third Volume of the Transactions of the Royal So-

ciety of Edinburgh. The investigations of these propositions were founded

entirely on the principle of certain magnitudes admitting of innumerable

values ; and the methods of reasoning concerning them seem to have been

extremely similar to those employed in the fifth of the Elements. It is

curious to remark this analogy between the diflierent works of the same
author ; and to consider, that the skill, in the conduct of this very refined

and ingenious artifice, acquired in treating the properties of proportionals,

may have enabled Euclid to succeed so well in treating the still more dif-

ficult subject of Porisms.

Viewing in this light Euclid's manner of treating proportion, I had no
desire to change any thing in the principle of his demonstrations. I have
5nly sought to improve the language of them, by introducing a concise

mode of expression, of the same nature with that which we use in arith-

metic, and in algebra. Ordinary language conveys the ideas of the diffe-

rent operations supposed to be performed in these demonstrations so slowly,

and breaks them down into so many parts, that they make not a sufficient

impression on the understandins;. This indeed will generally happen when
the things treated of are not represented to the senses by Diagrams, nv
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they cannot be when we reason concerning magnitude in general, as in this

part of the Elements. Here we ought certainly to adopt the language of

arithmetic or algebra, which by its shortness, and the rapidity with which

ii places objects before us, makes up in the best manner possible for being

raereiY a conventional language, and using symbols that have no resem-

blance to the things expressed by them. Such a language, therefore, I

have endeavoured to introduce here ; and I am convinced, that if il shall

be found an improvement, il is the only one of which the fifth of Euclid will

admit. In other respects I have followed Dr. Simson's edition to the accu-

racy of which it would be difficult to make any addition

In one thing I must observe, that the doctrine of proportion, as laid down
here, is meant to be more general than in Euclid's Elements. It is intended

to include the properties of proportional numbers as well as of all magni-

tudes. Euclid has not this design, for he has given a definition of propor-

tional numbers in the seventh Book, very different from that of proportional

magnitudes in the fifth; and it is not easy to justify the logic of this man
ner of proceeding ; for we can never speak of two numbers and two magni-

tudes both having the same ratios, unless the word ratio have in both cases

the same signification. AU the propositions about proportionals here

given are therefore understood to be applicable to numbers ; and accord-

ingly, in the eighth Book, the proposition that proves equiangular parallelo-

grams to be in a ratio compounded of the ratios of the numbers proportional

to their sides, is demonstrated by help of the propositions of the fifth Book.

On account of this, the word quantity, rather tha.n magnitude, ought in strict-

ness to have been used in the enunciation of these propositions, because we
employ the word Quantity to denote not only things extended, to which
alone we give the name of Magnitude, but also numbers. It will be suffi-

cient, however, to remark, that all the propositions respecting the ratios of

magnitudes relate equally to all things of which multiples can be taken, that

is, to all that is usually expressed by the word Quantity in its most extend-

ed signification, taking care always to observe, that ratio takes place only

among like quantities, (See Def. 4.)

DEF. X.

The definition of compound ratiowas first given accurately by Dr. Simson

,

for, though Euclid used the term, he did so without defining it. I have
placed this definition before those of duplicate and triplicate ratio, as it is in

fact more general, and as the relation of al' 'he three definitions is best seen
when they are ranged in this order. It is en plain, that two equal ratios

compound a ratio duplicate of either of th ;n ; three equal ratios, a ratio

triplicate of either of them, &c.
It was justly observed by Dr. Simson, that the expression, compound ratio,

is introduced merely to prevent circumlocution, and for the sake principally

of enunciating those propositions with conciseness that are demonstrated by
reasoning ex (fquo, that is, by reasoning from the 22d or 23d of this Booic

This will be evident to any one who considers carefully the Prop. F. of this,

or the 23d of the 6th Book
An objection which naturally occurs to the use of the term compound ratio,

arises from its not being evident how the ratios described in the definiiicji
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determine in any way the ratio which they are said to compound, since the

magnitudes compounding them are assumed at pleasure. It may be of use

for removing this difficulty, to state the matter as follows : if there be anj

number of ratios (among magnitudes of the same kind) such that the con-

sequent of any of them is the antecedent of that which immediately fol

lows, the first of the antecedents has to the last of the conseijuents a ratio

which evidently depends on the- intermediate ratios, because if they are de-

termined, it is determined also ; and this dependence ofone ratio on all the

other ratios, is expressed by saying that it is compounded of them. Thus,

if -^, •— , -f-, -pr»be any series of ratios, such as described above, the ratio
1) C L) Jbi

A A R
T=r,orof A to E, is said to be compounded of the ratios -rr-, -^, &c. Theratip

A A B
=r, is evidently determined by the ratios -jr,— , &c. because if each of the
Sid 11 Kj

latter is fixed and invariable, the former cannot change. The exact nature

of this dependence, and how the one thing is determmed by the other, it is

not the business of the definition to explain, but merely to give a name to

a relation which it may be of importance to consider more attentively

BOOK VI.

DEFINITION II.

This definition is changed from that of reciprocalfigures, which was ot no

use, to one that corresponds to the language used in the 14th and 15th

propositions, and in other parts of geometry.

PROP. A, B, C, &c.

Nine propositions are added to this Book on account of their utility and
their connection with this part of the Elements. The first four of them are

in Dr. Simson's edition, and among these l^rop. A is given immediately
after the third, being, in fact, a second case of that proposition, and capable

of being included with it, in one cnunciatioa. Prop. D is remarkable for

being a theorem of Ptolemy the Astronomer, in his Meyaltj Svfia^tg, and the

foundation of the construction of his trigonometrical tables. Prop. E is the

simplest case of the former ; it is also useful in trigonometry, and, under
another form, was the 97th, or, in some editions, the 94th of Euclid's Data.

The propositions F and G are very useful properties of the circle, and are

taken from the Loci Plani of Apollonius. Prop. H is a very remarkable pro-

perty of the triangle ; and K is a proposition which, though it has been

bitherto considered as belonging particularly to trigonometry, is to often of

nse in other parts of the mathematics, that it may be properly ranked among
nlementary theorems of Geometrj'.

39
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BOOK I.

PROP. V. and VI, &c.

The demonstrations of the 5th and 6th propositions require the method
of exhaustions, that is to say, they prove a certain property to belong to the

circle, because it belongs to the rectilineal figures inscribed in it, or described

about it according to a certain law, in the case when those figures ap-

proach to the circles so nearly as not to fall short of it or to exeeed it, by

any assignable difierence. This principle is general, and is the only one
by which we can possibly compare curvilineal with rectilineal spaces^ or the

length of curve lines with the length of straight lines, whether we follow

the methods of the ancient or of the modern geometers. It is therefore a

great injustice to the latter methods to represent them as standing on a foun-

dation less secure than the former ; they stand in reality on the same, and
the only diflierence is, that the application of the principle, common to them
both, is more general and expeditious in the one case than in the other.

This identity of principle, and affinity of the methods used in the elementary

and the higher mathematics, it seems the most necessary* to observe, that

some learned mathematicians have appeared not to be sufficiently aware o!

it, and have even endeavoured to demonstrate the contrary. An instance

of this is to be met with in the preface of the valuable edition of the works
of Archimedes, lately printed at Oxford. In that preface, Torelli, the learn-

ed commentator, whose labours have done so much to elucidate the writ-

ings of the Greek Geometer, but who is so unwilling to acknowledge the

merit of the modem analysis, undertakes to prove, that it is impossible, from
the relation which the rectilineal figures inscribed in, and circumscribed

about, a given curve have to one another, to conclude any thing concerning
the properties ofthe curvilineal space itself, except in certain circumstances

which he has not precisely described. With this view he attempts to show,
that if we are to reason from the relation which certain ijctilineal figures

belonging to the circle have to one another, notwitiistanding that those

figures may approach so near to the circular spaces within which they are

inscribed, as not to difier from them by any assignable magnitude, we shall

be led into error, and shall seem to prove, that the circle is to the square of

its diameter exactly as 3 to 4. Now, as this is a conclusion which the dis-

coveries of Archimedes himself prove so clearly to be false, Torelli argues,

that the principle from which it is deduced must be false also ; and in this

he would no doubt be right, if his former conclusion had been fairly drawn.
But the truth is, that a very gross paralogism is to be found in that part of
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bis reasoning, where he makes a transition from the ratios of the small rect.

angles, inscribed in »he circular spaces, to the ratios of the sums of those

rectangles, or of the whole rectilineal figures. In doing this, he takes fo.

granted a proposition, which, it is wonderful, that one who had studies

geometry in the school of Archimedes, should for a moment have suppos

ed to be true. The proposition is this : If A, B, C, D, E, F, be any num-
ber of magnitudes, and a, b, t, J, e,f, as many others ; and if

A : B : : a : 6,

C : D : : c : rf,

E : F : : « : /, then the sum of A, C and E will be to the sum of B, D and

F, as the sum of a, c and e, to the sum of b, d and/, or A+C+E : B+D
4*F : : a-\-c-\-e : b-\-d-{-f. Now, this proposition, which Torelli suppose*

to be perfectly general, is not true, except in two cases, viz. either first,

when A : C : : a : c, and
A : E : : a : e ; and consequently,

B : D : : 6 : d, and
B : F : : i : /; or, secondly, when all the ratios of A to B, C to D, E

to F, &c. are equal to one another. To demonstrate this, let us suppose

that there are four magnitudes, and four others,

thus A : B : : a : i, and
C : D : : c : </, then we cannot have

A+C : B+D : : a+c '- ^4-<^> unless either A : C : : a : c, and B : D : : 6 :

d ; or A ; C : : i : d, and consequently a : b : : c : d.

Take a magnitude K, such that a : c : : A : K, and another L, such that

i : i : : B : L ; and suppose it true, that A+ C : B+ D : :

a+c : b-\'d. Then, because by inversion ; K : A : : c : a, Pk, A, B, L,
and, by hypothesis, A : B : : a : i, and also B : L : : 6 : </, j.^ a, b, d.

ex aequo, K : L : : c : rf ; and consequently, K : L :
:

C : D.

Again, because A : K : : a : c, by addition,

A+K : K : : a-\-c : c ; and for the same reason,

B+L : L : : b4-d : rf, or, by inversion,

L : B+L : : d : b-\-d. And, since it has been shewn, that

K : h : : c : d; therefore, ex aequo,

A+K,K,L,B+ L,

a-^-c, c, d, b-{-d.

A+K : B+L : : a+c : b-\-d; but by hypothesis,

A+C : B+D : : a+c : b-\-d, therefore

A+K: A+C :: B+L: B+ D.
Now, first, let K and C be supposed equal, then it is evident that L and

D are also equal ; and therefore, since by construction a : c : : A : K, wo
have also a : c : : A : C ; and, for the same reason, b : d : : B : D, and
these analogies from the first of the two conditions, of which one is affirmed

above to be always essential to the truth of Torelli's proposition

Naxt, if K be greater than C, then, since

A+K : A+C : : B+ L : B+D, by division,

A+K: K—C :: B+ L : L— D. But, as was shewn,
K : L : : C : D, by conversion and alternation,

K—C : K : : L—D : L, therefore, ex aequo,
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j?l 4-K : K ; : B+L : L, and lastly, by division,

A : K : : B : L, or A : B : : K : L, that is,

A : B • : C : D.

Wherefore, in this case the ratio of A to B is equal to that of C to D
and consequently, the ratio of a to b equal to that of c to d. The same
may be shewn, if K is less than C ; therefore in every case there are con-

ditions necessary to the truth of Torelli's proposition, which he does not

take into account, and which, as is easily shewn, do not belong to the mag
nitudes to which he applies it.

In consequence of this, the conclusion which he meant to establish re

specting the circle, falls entirely to the ground, and with it the general in-

ference aimed against the modern analysis.

It will not, I hope, be imagined, that I have taken notice of these cir-

cumstances with any design to lessen the reputation of the learned Italian,

who has in so many respects deserved well of the mathematical sciences,

or to detract from the value of a posthumous work, which by its elegance

and correctness, does so much honour to the English editors. But I would
warn the student against that narrow spirit which seeks to insinuate itself

even into the abstractions of geometry, and would persuade us, that ele-

gance, nay, truth itself, are possessed exclusively by the ancient methods
of demonstration. The high tone in which Torelli censures the modern ma-
thematics is imposing, as it is assumed by one who had studied the writings

of Archimedes with uncommon diligence. His errors are on that account

the more dangerous, and require to be the more carefully pointed out..

PROP. IX.

This enunciation is the same with that of the third of the Dimensio Ctr-

culi of Archimedes ; but the demonstration is different, though it proceeds

like that of the Greek Geometer, by the continual bisection of the 6th part

of the circumference.

The limits of the circumference are thus assigned ; and the method of

bringing it about, notwithstanding many quantities are neglected in the arith-

metical operations, that the errors shall in one case be all on the side of de-

fect, and in another all on the side of excess (in which I have followed Ar-

chimedes,) deserves particularly to be observed, as affording a good Intro

duction to the general methods of approximation.

BOOK II.

DEF. VIII. and PROP. XX

Solid angles, which are defined here in the same manner as in Euclid,

are magnitudes of a very peculiar kind, and are particularly to be remarked
for not admitting of that accurate comparison, one with another, which is
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common in the other subjects of geometrical investigation. It cannot, foi

example, be said of one solid angle, that it is the half, or the double of an-

other solid angle ; nor did any geometer ever think of proposing th^ pro

blem of bisecting a given solid angle. In a word, no multiple or sub-mul

tiple of such an angle can be taken, and we have no way of expounding

even to the simplest cases, the ratio which one of them bears to another

In this respect, therefore, a solid angle differs from every other magni
tude that is the subject of mathematical reasoning, all of which have this

common property, that multiples and sub-multiples of them may be found.

It is not our business here to inquire into the reason of this anomaly, but it

is plain, that on account of it, our knowledge of the nature and the proper-

ties of such angles can never be very far extended, and that our reason-

ings concerning them must be chiefly confined to the relations of the plane

angles, by which they are contained. One of the most remarkable of those

relations is that which is demonstrated in the 21st of this Book, and which
is, that all the plane angles which contain any solid angle must together

be less than four right angles. This proposition is the 21st of the 11th of

Euclid.

This proposition, however, is subject to a restriction in certain cases,

which, 1 believe, was first observed by M. le Sage of Geneva, in a com-
munication to the Academy of Sciences of Paris in 1756. When the sec-

tion of the pyramid formed by the planes that contain the solid angle is a

figure that has none of its angles exterior, such as a triangle, a parallelo-

gram, Sec. the truth of the proposition just enunciated cannot be question

ed. But, when the aforesaid section is a figure like that which is annexed,

viz. ABCD, having some angles such
as BDC, exterior, or, as they are some-
times called, re-entering angles, the

proposition is not necessarily tnie
,

and it is plain, that in such cases the

demonstration which we have given,

and which is the same with Euclid's,

will no longer apply. Indeed, it were
easy to show, that on bases of this

kind, by multiplying the number of

sides, solid angles maybe formed, such
that the plane angles which contain them shnll exceed four right angles by
any quantity assigned. An illustration of this from the properties of the

sphere is perhaps the simplest of all others. Suppose that on the surface

of a hemisphere there is described a figure bounded by any number of arcs

of great circles making angles with one another, on opposite sides alter-

nately, the plane angles at the centre of the sphere that stand on these area

may evidently exceed four right angles, and that too, by multiplying and
extending the arcs in any assigned ratio. Now, these plane angles con-

lain a solid angle at the centre of the sphere, according to the definition of

•t solid angle.

We are to understand the proposition in the text, therefore, to be tru^

only of those solid angles in which the inclination of the plane angles are

all the same way, or all directed toward the interior of the figure. To dis-

tin£;vish this class of solid angles from that to which the proposition ooer



•JIO NOTES. SUPPL. BOOK II.

not apply it is perhaps best to make use of this criterion, that they are such
that wtieu any two points whatsoever are taken in the planes that contain

the Bolid angle, the straight line, joining those points, falls wholly within

the sobd angle : or thus, they are such, that a straight line cannot meet the

planes which contain them in more than two points. It is thus, too, that I

would distinguish a plane figure that has none of its angles exterior, by
saying, that it is a rectilineal figure, such that a straight line cannot meet
the boundary of it in more than two points.

We, therefore, distinguish solid angles into two species : one in which
the bounding planes can be intersected by a straight line only in two
points ; and another where the bounding planes may be intersected by a

straight line in more than two points : to the first of these the proposition

in the text applies, to the second it does not.

Whether Euclid meant entirely to exclude the consideration of figuies

of the latter kind, in all that he has said of solids, and of solid angles, it is

not now easy to determine : it is certain, that his definitions involve no
such exclusion ; and as the introduction of any limitation would conside-

rably embarrass these definitions, and render them difficult to be understood

by a beginner, I have left it out, reserving to this place a fuller explanation

of the difficulty. I cannot conclude this note without remarking, with the

historian of the Academy, that it is extremely singular, that not one of all

those who had read or explained Euclid before M. le Sage, appears to

have been sensible of this mistake. [Memoires ds VAcad. des Sciences,

1756, Hist. p. 77.) A circumstance that renders this still more singular

is, that another mistake of Euclid on the same subject, and perhaps of all

other geometers, escaped M. le Sage also, and was first discovered bv
Dr. Simson, as will presently appear.

PROP. IV.

This very elegant demonstration is from Legendre, and is much easiei

than that of Euclid.

The demonstration given here of the 6th is also greatly simpler that

that of Euclid. It has even an advantage that does not belong to Legen
dre's, that of requiring no particular construction or determination of any
one of the lines, but reasoning from properties common to every part &.

them. The simplification, when it can be introduced, which, however
does not appear to be always possible, is, perhaps, the greatest improve

ment that can be made on an elementary demonstration.

PROP. XIX.

The problem contained in this proposition, of drawing a straight line per

pendicular to two straight lines not in the same plane, is certainly to be ac-

counted elementary, although not given in any book of elementary geome-
try that I know of before that of Legendre. The solution given here is

more simple than his, or than any other that I have yet met with : it also

leads more easily, if it be required, to a trigonometrical computation.
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BOOK lU.

DEF. II. and PROP. I.

These relate to similar and equal solids, a subject on which mistakes hav«

prevailed not unlike to that which has just been mentioned. The equality

of solids, it is natural to expect, must be proved like the equality of plane

figures, by showing that they may be made to coincide, or to occupy the

same space. But, though it be true that all solids which can be shewn to

coincide are equal and similar, yet it does not hold conversely, that all solids

wMch are equal and similar can be made to coincide. Though this asser-

tion may appear somewhat paradoxical, yet the proof of it is extremely

simple.

Let ABC be an isosceles triangle, of which the equal sides are AB and

AC ; from A draw AE perpendicular to the base BC, and BC will be bisected

in E. From E draw ED perpendicular to the

plane ABC, and from D, any point in it, draw
DA, DB, DC to the three angles of the tri-

angle ABC. The pyramid DABC is divided

into two pyramids DABE, DACE, which,

though their equality will not be disputed,

cannot be so applied to one another as to coin-

cide. For, though the triangles ABE, ACE
are equal, BE being equal to CE, EA common
to both, and the angles AEB, AEC equal, be-

cause they are right angles, yet if these two
triangles be applied to one another, so as to

coincide, the solid DACE will nevertheless,

as is evident, fall without the solid DABE, for the two solids will be on the
opposite sides of the plane ABE. In the same way, though all the planes
of the pyramid DABE may easily be shewn to be equal to those of the py-
ramid DACE, each to each

;
yet will the pyramids themselves never coin-

cide, though the equal planes be applied to one another, because they are
on the opposite sides of those planes.

It may be said, then, on what ground do we conclude the pyramids to

be equal 1 The answer is, because their construction is entirely the same,
and the conditions that determine the magnitude of the one identical with
those that determine the magnitude of the other. For the magnitude of
the pyramid DABE is determined by the magnitude of the triangle ABE,
the length of the line ED, and the position of ED, in respect of the plane
ABE ; three circumstances that are precisely the same in the two pyra-
mids, 80 that there is nothing that can determine one of them to be greater
than another

This reasoning appears perfectly conclusive and satisfactory ; and it

seems also very certain, that there is no other principle equally simple, on
which the relation of the solids DABE, DACE to one another can be de-
termined. Neither is this a case that occurs rarely ; it is one, that, in the

comparison of magnitudes having three dimensions, presents itself conn
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nually ; for, though two plane figures that are equal and similar can always
be made to i oincide, yet, with regard to solids that are equal and similar, i.

they have not a certain similarity in their position, there will be found iust

as many cases in which they cannot, as in which they can coincide. Even
figures described on surfaces, if they are not plane surfaces, may be equal

and similar vs'ithout the possibility of coinciding. Thus, in the figure de-

scribed on the surface of a sphere, called a spherical triangle, if we suppose
it to be isosceles, and a perpendicular to be drawn from the vertex on the

base, it will not be doubted, that it is thus divided into two right angled
Jspherical triangles equal and similar to one another, and which, neverthe-
less, cannot be so laid on one another as to agree. The same holds in in-

numerable other instances, and therefore it is evident, that a principle, more
general and fundamental than that of the equality of coinciding figures,

ought to be introduced into Geometry. What this principle is has also ap-

peared very clearly in the course of these remarks ; and it is indeed no
other than the principle so celebrated in the philosophy of Leibnitz, under
the name of the sufficient reason. For it was shewn, that the pyra-

mids DABE and DACE are concluded to be equal, because each of them
is determined to be of a certain magnitude, rather than of any other, by
conditions that are the same in both, so that there is no reason for the one
Deing greater than the other. This Axiom may be rendered general by
saying, That things of which the magnitude is determined by conditions

ihat are exactly the same, are equal to one another ; or, it might be ex-

pressed thus ; Two magnitudes A and B are equal, when there is no rea-

son that A should exceed B, rather than that B should exceed A. Either

of these will serve as the fundamental principle for comparing geometrical

magnitudes of every kind ; they will apply in those cases where the coin-

cidence of magnitudes with one another has no place ; and they will apply

w^ith great readiness to the cases in which a coincidence may take place,

such as in the 4th, the 8th, or the 26th of the First Book of the Ele-

ments.

The only objection to this Axiom is, that it is somewhat of a metaphy-

sical kind, and belongs to the doctrine of the sufficient rea^ow, which is looked

on with a suspicious eye by some philosophers. But this is no solid objec-

tion ; for such reasoning may be applied with the greatest safety to those

objects with the nature of which we are perfectly acquainted, and of which
we have complete definitions, as in pure mathematics. In physical ques

tions, the same principle cannot be applied with equal safety, because in

such cases we have seldom a complete definition of the thing we reason

about, or one that includes all its properties. Thus, when Archimedes prov-

ed the spherical figure of the earth, by reasoning on a principle of this sort,

he was led to a false conclusion, because he knew nothing of the rotation of

the earth on its axis, which places the particles of that body, though at

equal distances from the centre, in circumstances very different froa one
another. But, concerning those things that are the creatures of the mind
altogether, like the objects of mathematical investigation, there can be no
danger of being misled by the principle of the sufficient reason, which at the

same time furnishes us with the only single x\xiom, by help of which we
can compare together geometrical quantities, whether they be of one, ol

iwo or of three dimensions.
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Legendre in his Elements has made the same remark thai nas beei; just

•tated, that there are solids and other Geometrical Magnitudes, which
though similar and equal, cannot be brought to coincide with one another

and he has distinguished them by the name of Symmetrical Magnitudes. Hrt

has also given a very satisfactory and ingenious demonstration of the equa-

lity of certain solids of that sort, though not so conciise as the nature of a

simple and elementary truth would seem to require, and consequently not

•uch as to render the axiom proposed above altogether unnecessary
But a circumstance for which I cannot very well account is, that Legen-

dre, and after him Lacroix, ascribe to Simson the first mention of such solids

as we are here considering. Now I must be permitted to say, that no re-

mark to this purpose is to be found in any of the writings of Simson, which
have come to my knowledge. He has indeed made an observation concerning

the Geometry of Solids, which was both new and important, viz. that solids

may have the condition which Euclid thought sufficient to determine their

quality, and may nevertheless be unequal ; whereas the observation made
here is, that solids may be equal and similar, and may yet want the condition

of being able to coincide with one another. These propositions are widely

different ; and how so accurate a writer as Legendre should have mistaken

the one for the other, is not easy to be explained. It must be observed,

that he does not seem in the least aware of the observation which Simson
has really made. Perhaps having himself made the remark we now spean
of, and on looking slightly into Simson, having found a limitation of tht

usual description of equal solids, he had without much inquir}% set it dowj
as the same with his own notion ; and so, with a great deal of candour
and some precipitation, he has ascribed to Simson a discovery which reallj

belonged to himself. This at least seems to be the most probable solution

of the difficulty.

I have entered into a fuller discussion of Legendre's mistake than 1

should otherwise have done, from having said, in the first edition of these

elements, in 1795, that I believed the non-coincidence of similar and equal

solids in certain circumstances, was then made for the first time. This it

is evident would have been a pretension as ridicidous as ill-founded, if the

same observation had been made in a book like Simson's, which in this

country was in every body's hands, and which I had myself professedly

studied with attention. As I have not seen any edition of Legendre's Ele-
ments earlier than that published in 1802, I am ignorant whether he or 1

was the first in making the remark here referred to. That circumstance
is, however, immaterial ; for I am not interested about the originality of the

remark, though very much interested to show that I had no intenton of ap-

propriating to myself a discovery made by another.

Another observation on the subject of those solids, which, with Legendre,
we shall call Symmetrical, has occurred to me, which I did not at first

•-hink of, viz. that Euclid himself certainly had these solids in view when he
formed his definition (as he very improperly calls it) ofequal and similar solids.

He says that those solids are equal and similar, which are contained under
he same number of equal and similar planes. But this is not true, as Di.

Simson has shewn in a passage just about to be quoted, because two solids

may easily be assigned, bounded by the same numbe; of equal and similar

planes, which are obvioj sly unequal, the one being contained within iht-

40
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.
otlief . Simson observes, that Euclid needed only to have added that the

equal wid similar planes must be similarly situated, to have made his des-

cription exact. Now, it is true, that this addition would have made it exact

in one respect, but would have rendered it imperfect in another ; for though
all the solids having the conditions here enumerated, are equal and similar,

many others are equal and similar which have not those conditions, that is,

though bounded by the same equal number of similar planes, those planes

are not similarly situated. The symmetrical solids have not their equal

and similar planes similarly situated, but in an order and position directly con-

trary. Euclid, it is probable, was aware of this, and by seeking to render

the description of equal and similar solids so general, as to comprehend so-

lids of both kinds, has stript it of an essential condition, so that solids ob-

viously unequal are included in it, and has also been led into a very illogical

proceeding, that of defining the equality of solids, instead of proving it, as if

he had been at liberty to fix a new idea to the word equal every lime that

he applied it to a new kind of magnitude. The nature of the difficulty he
had to contend with, will perhaps be the more readily admitted as an apo-

logy for this error, when it is considered that Simson, who had studied the

matter so carefully, as to set Euclid right in one particular, was himselt

wrong in another, and has treated of equal and similar solids, so as to ex-

clude the symmetrical altogether, to which indeed he seems not to have at

all adverted.

I must, therefore, again repeat, that I do not think that this matter can

be treated in a way quite simple and elementary, and at the same time

general, without introducing the principle of the sufficient reason as stated

above. It may then be demonstrated, that similar and equal solids are

those contained by the same number of equal and similar planes, either with

similar or contrary situations. If the word contrary is properly understood,

this description seems to be quite general.

Simson's remark, that solids may be unequal, though contained by the

same number of equal and similar planes, extends also to solid angles

which may be unequal, though contained by the same number of equal

plane angles. These remarks he published in the first edition of his Eu-
clid in 1756, the very same year that M. le Sage communicated to the

Academy of Sciences the observation on the subject of solid angles, men-
tioned in a former note ; and it is singular, that these two Geometers, with-

out any communication with one another, should almost at the same time

have made two discoveries very nearly connected, yet neither of them com-
prehending the whole truth, so that each is imperfect without the other.

Dr. Simson has shewn the truth of his remark, by the following reason-

ing-

" Let there be any plane rectilineal figure, as the triangle ABC, and from

a point D within it, draw the straight line DE at right angles to the plane

ABC ; in DE take DE, DF equal to one another, upon the opposite sides

of the plane, and let G be any point in EF
;
join DA , DB, DC , EA, EB,

EC ; FA, FB, FC ; GA, GB, GC : Because the straight line EDF is at

right angles to the plane ABC, it makes right angles with DA, DB, DC,
which \t meets in that plane ; and in the triangles EDB, FDB, ED and

DB are equal to FD, and DB, each to each, and they contain right angles ;

therefore the base EB is equal to the base FB ; in the same manner EA is
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eqaal to FA, and EC to FC : and in the triangles EBA, FBA, EB, BA art

equal to FB, BA, and the base EA is equal to the base FA ; wherefor*

the angle EBA is equal to the angle FBA, and the triangle EBA equai

to the triangle FBA, and the other angles equal to the other angles ; there-

fore these triangles are similar: In the same manner the triangle EBC is

si.nilar to the triangle FBC, and the triangle EAC to FAC ; therefore there

are two solid figures, each of which is contained by six triangles, one of them
by three triangles, the common vertex of which is the point G, and their

bases the straight lines AB, BC, CA, and by three other triangles the cona-

mon vertex of which is the point E, and their bases the same lines AB, BC,
CA. The other solid is contained by the same three triangles, the common
vertex of which is G, and their bases AB, BC, CA ; and by three other tri-

angles, of which the common vertex is the point F, and their bases the same
straight lines AB, BC, CA : Now, the three triangles GAB, GBC, GCA
are common to both solids, and the three others EAB, EBC, ECA, of the

first solid have been shown to be equal and similar to the three others,

FAB, FBC, FCA of the other solid, each to each ; therefore, these two
solids are contained by the same number of equal and similar planes : But
that they are not equal is manifest, because the first of them is contained in

the other : Therefore it is not universally true, that solids are equal which
are contained by the same number of equal and similar planes."

" Cor. From this it appears, that two unequal solid angles may be con-

tained by the same number of equal pland angles."
" For the solid angle at B, which is contained by the four plane angles

EBA, EBC, GBA, GBC is not equal to the solid angle at the same point

B, which is contained by the four plane angles FBA, FBC, GBA, GBC ;

for the last contains the other. And each of them is contained by four

plane angles, which are equal to one another, each to each, or are the self-

same, as has been proved :' And indeed, there may be innumerable solid

angles all unequal to one another, which are each of them contained by
plane angles that are equal to one another, each to each. It is likewise

manifest, that the before-mentioned solids are not similar, since their solid

angles ^re not all equal."



PLANE TRIGONOMETRY.

DEFINITIONS, &c.

Trigonometry is defined in the text to be the application of Number
to express the relations of the sides and angles of triangles. It depends

tb erefore, on the 47th of the first of Euclid, and on the 7th of the first of the

Supplement, the two propositions which do most immediately connect

together the sciences of Arithmetic and Geometry.

The sine of an angle is defined above in the usual way, viz. the perpen-

dicular drawn from one extremity of tne arc, which measures the angle on

the radius passing through the other • out in strictness the sine is not the

perpendicular itself, but the ratio of tnai perpendicular to the radius, for it

is this ratio which remains constant, wnile the angle continues the same,

though the radius vary. It might be convenient, therefore, to define the

sine to be the quotient which arises from dividing the perpendicular just

described by the radius of the circle.

So also, if one of the sides of a rignt angled triangle about the right an-

gle be divided by the other, the quotient is the tangent of the angle op-

posite to the first-mentioned side, Sec. But though this is certainly the

rigorous way of conceiving the sines, tangents, &c. of angles, which are

in reality not magnitudes, but the ratios of magnitudes
;
yet as this idea is

a little more abstract than the common one, and would also involve some
change in the language of Trigonometry, at the same time that it would
in the end lead to nothing that is not attained by making the radius enual

to unity, I have adhered to the common method, though I have thought

It right to point out that which should in strictness be pursued.

A proposition is left out in the Plane Trigonometry, which the astro-

nomers make use of in order, when two sides of a triangle, and the angle

contained by them, are given, to find the angles at the base, Avithout

making use of the sum or difference of the sides, which, in some cases,

when only the Logarithms of the sides are given, cannot be conveniently

found.



NOTES PL TKKJONOMETRY. dl7

THEOREM.

If, as thegreater of any tioo sides of a triangle to the less, so the radius to ths

tangent of a certain angle ; then will tJie radius he to the tangent of the diffe*

rence between that angle and half a right angle, as the tangent of half the

sum of the angles, at the base of the triangle to the tangent of half their

difference.

Let ABC be a triangle, the sides of

which are DC and CA, and the base

AB, and let BC be greater than CA.
Let DC be drawn at right angles to

BC, and equal to AC ; join BD, and

because (Prop. 1.) in the right angled

triangle BCD, BC : CD : : R : tan

CBD, CBD is the angle of which the

tangent is to the radius as CD to BC
that is, as CA to BC, or as the least

of the two sides of the triangle to the

greatest.

But BC+CD : BC-CD : : tan ^(CDB+CBD) :

tan I (CDB-CBD) (Prop. 5.)

;

and also, BC+CA : BC—CA : : tan ^ (CAB+CBA)

:

tan 1 (CAB—CBA). Therefore, since CD=CA,
tan J (CDB+CBD) : tan ^ (CDB-CBD) :

:

tan { (CAB+CBA) : tan ^ (CAB—CBA). But because the

angles CDB+ CBD=90o,tan J(CDB+CBD) :

tan ^ (CDB-CBD) : : R : tan (45°—CBD), (2 Cor. Prop. 3.)

,

therefore, R : tan (45°-CBD) : : tan A (CAB+CBA) :

tan 4_(CAB—CBA) ; and CBD was already shewn to be such an anglo

that BC : CA : : R : tan CBD.

CoR. If BC, CA, and the angle C are given to find the angles A and B ;

find an angle E such, that BC : CA : : R : tan E ; then R : tan (45°—E,
: : tan

J
(A+B) : tan ^ (A—B). Thus ^ (A—B) is found, and J (A+B)

being given, A and B are each of them known. Lem. 2.

In reading the elements of Plane Trigonometry, it may be of use to ob-

serve, that the first five propositions contain all the rules absolutely neces-

sary for solving the diflerent cases of plane triangles. The learner, when
he studies Trigonometry for the first time, may satisfy himself with these

propositions, but should by no means neglect the others in a subsequen*

perusal.

PROP. VII. and VIII.

I have changed the demonstration which I gave of these propositions in

the first edition, for two others considerably simpler and more concise, given

me by Mr. Jardine, teacher of the Mathematics in Edinburgh, formerly

one ofmy pupils, to whose ingenuity and skill I am very glad to bear this

public testimony.



SPHERICAL

TRIGONOMETRY.

PROP V

The angles at the base of an isosceles spherical triangle are symmetriccA

Magnitudes, not admitting of being laid on one another, nor of coinciding,

notwithstanding their equality. It might be considered as a sufficient

proof that they are equal, to observe that they are each determined to be

of a certain magnitude rather than any other, by conditions which are pre

cisely the same, so that there is no reason why one of them should be

greater than another. For the sake of those to whom this reasoning may
not prove satisfactory, the demonstration in the text is given, which is

strictly geometrical.

For the demonstrations of the two propositions that are given in the end
of the Appendix to the Spherical Trigonometry, see Elementa Sphaericorum,

Theor. 66. apud Wolfii Opera Math. tom. iii. ; Trigonometric par Cagnoli

h 463 : Trigonom&ada Spherique par Mauduit, ^ 165.

FINIS
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