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Pure-sulphide Cu2ZnSnS4 (CZTS) thin film solar cells were
prepared by a low-cost, non-toxic and high-throughput method
based on the thermal decomposition and reaction of sol–
gel precursor solution, followed by a high temperature
sulfurization process in sulphur atmosphere, which usually
gave rise to the unexpected Cu-poor and Zn-rich phase after
sulfurization. In order to remove the formation of detrimental
secondary phases, e.g. ZnS, a novel method with hydrochloric
acid solution treatment to the CZTS absorber layer surface
was employed. By using this method, a competitive power
conversion efficiency as high as 4.73% was obtained, which is
a factor of 4.8 of that of the control CZTS solar cell without
surface treatment. This presents a customized process for
CZTS photovoltaic technologies that is more environmentally
friendly and considerably less toxic than the widely used KCN
etching approach.

1. Introduction
At present, thin film solar cells such as copper indium gallium
selenium solar cells have received considerable attention because
of their simple preparation technology, large-scale production
and higher photoelectric conversion efficiency [1–3]. Nevertheless,
indium and gallium are rare in the earth and rather expensive,
which may limit its large-scale application in the future. Copper
zinc tin sulphur (CZTS) thin film solar cells with a relatively
cheap and abundant zinc and tin element, instead of indium
and gallium, significantly reduced the costs and are found to be
more suitable for the large-scale application [4–8]. In addition,
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Figure 1. Schematic of the formation of the CZTS thin films by the sol–gel route.

as an important compound thin film absorber material, CZTS exhibits superior optical and electronic
properties, as well as a suitable band gap (approx. 1.5 eV). It is well known that CZTS has a great
light absorption coefficient of more than 104 cm−1 in the visible light region, and its theoretical
power conversion efficiency (PCE) is more than 30% [9–11]. So far, various methods have been
employed to prepare CZTS film, such as sputtering [12], thermal evaporation [13], electrodeposition
[14], nanoparticles [15] and hydrazine solution [16]. Usually, these methods use high vacuum deposition
systems or employ toxic chemicals. Here, we adopt a kind of low-cost, high-throughput and non-toxic
method to produce CZTS thin film and the post-sulfurization to obtain the absorber thin film with high
crystallization [17–19]. CZTS film with Cu-poor and Zn-rich phase has been proved to have superior
photoelectric performance [20–22]. However, the presence of excessive zinc will induce the formation
of the ZnS binary phase after sulfurization. The surface treatment has been carried out to remove
Cu2−xS by using potassium cyanide (KCN) [23–25]. Likewise, Fairbrother et al. [26] developed a selective
chemical etch with hydrochloric acid (HCl) to remove the detrimental secondary phases of CZTS thin
film prepared by DC-magnetron sputtering technique. Nevertheless, as far as we know, there is no
effective method to remove the ZnS phase of CZTS absorber layer prepared via thermal decomposition
and reaction of sol–gel solution process, which might be the key reason that the corresponding solar cells
are still limited by their inferior photovoltaic performance.

Herein, a new non-toxic route with a certain concentration of hydrochloric acid (HCl) solution was
employed to ensure a thorough removal of ZnS binary phase. In particular, we carefully explored the
effect of different concentrations and etching time of hydrochloric acid solution and immersion time on
the CZTS surface morphology and solar cell photovoltaic performances. Such CZTS solar cell with the
further modification process of immersing in 5% v/v HCl solution for 300 s at 75°C allowed to obtain the
highest PCE of 4.73%, which gave rise to the improved PCE by a factor of 4.3.

2. Material and methods
2.1. Cu2ZnSnS4 thin film preparation
All reagents were of analytical grade and used without any further purification. The CZTS precursor
solutions were made by adding 0.44 M cupric chloride dihydrate (CuCl2·2H2O, 99%), 0.25 M tin
dichloride dihydrate (SnCl2·2H2O, 98%), 0.3 M zinc chloride (ZnCl2, 98%) and 1.5 M thiourea (CH4N2S,
99%) into 10 ml dimethylsulfoxide (DMSO, anhydrous) at room temperature. The precursor composition
of metal salt was Cu/(Zn + Sn) = 0.8 and Zn/Sn = 1.2. The precursor solution was deposited via spin-
coating onto Mo-coated soda lime glass substrates and then placed on a 200°C preheated hot plate for
2 min. This coating–drying cycle was repeated 12 times to get the desired thickness of CZTS precursors
film. After that, the prepared precursors were annealed at 580°C for 40 min inside a graphite box in a
tube furnace of sulphur powders (150 mg) with N2 atmosphere under 0.05 MPa during sulfurization as
shown in figure 1. After sulfurization, the absorbers were immersed in HCl solution of different HCl
concentrations (0–10% v/v) and etch time (0–600 s) at 75°C in order to remove zinc-rich phases and clean
the surface from contaminations and oxides.

2.2. Cu2ZnSnS4 solar cell devices fabrication
For solar cell fabrication, an approximately 80 nm thick CdS buffer layer was deposited by chemical bath
deposition, and 80 nm of i-ZnO followed immediately by 350 nm of ITO layer were deposited by RF
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Figure 2. (a) XRD patterns of CZTS thin films before and after sulfurization. (b) Raman spectra of CZTS thin films before and after
sulfurization. Inset is the Raman spectra of ZnS binary phase.

magnetron sputtering. Finally, Al was thermally evaporated on ITO layer to form top contact fingers via
shadow mask. Each device has a total area of approximately 0.47 cm2 defined by mechanical scribing.

2.3. Characterization and analysis
The crystal structure was characterized by Bruker D8 Advance X-ray diffractometer (XRD) with Cu
Kα radiation at 40 kV and 40 mA. Field-emission scanning electron microscopy (SEM) was used to
characterize the morphology of the obtained thin film. Both top-down and cross-sectional views were
obtained using a JEOL JSM-7500F. Current–voltage (J–V) characteristics of CZTS solar cells were
measured using a semiconductor device analyser (Keithley 2601B) and a SAN-EI solar simulator (XES-
100S1) with an AM 1.5 G spectrum. The illumination power on the sample was adjusted to 1000 W m−2

using a certified reference solar cell (RS-ID-4). The scan rate was fixed to 0.15 V s−1. Raman scattering
spectroscopy was performed using a LabRAM HR evolution of Horiba Raman scattering system with a
100× magnification lens and in the backscattering configuration. Raman scattering measurements were
performed using excitation wavelength of 532 and 325 nm.

3. Results and discussion
Figure 2a shows the diffraction peaks of CZTS film located at 28.4°, 33.0°, 47.3° and 56.1° that correspond
to the (112), (200), (220) and (312) planes of kesterite crystal structure (PDF#26–0575), respectively. The
weak peak of unannealed CZTS film indicated by a black line in the figure is ascribed to the weaker
crystallization. High and sharp peaks are observed after sulfurization at high temperature due to the
improved film crystallinity and grain growth. To study the impact of sulfurization on the structural
properties, Raman spectroscopy measurements have also been carried out on the CZTS film before
and after sulfurization modification. Figure 2b shows the Raman spectra measured with an excitation
wavelength of 532 nm on the surface of the CZTS film. The spectra are characterized by the presence
of main peaks at 331 cm−1 identified as the main peaks A1 vibration mode of CZTS [27–29], as well as
weaker CZTS characteristic peaks at about 283 and 364 cm−1, respectively. The peak intensity is enhanced
after sulfurization treatment, which is consistent with the XRD results. It is worthy of noting that the
ZnS binary phase can be detected with an excitation wavelength of 325 nm (inset in figure 2b), which is
favourable to the study of removal of the ZnS binary phase. Before and after sulfurization process, CZTS
absorber morphology are shown in the SEM image in figure 3a,b. From the SEM top-down view image,
one can find that the CZTS film was compact and uniform but poorly crystalline before sulfurization.
After sulfurization treatment, the crystallinity of CZTS thin film was improved and the average crystal
grain was approximately 1 µm. Likewise, there are many small and light particles embedded in the grain
boundaries after sulfurization process.

As mentioned previously, the XRD and Raman with an excitation wavelength of 532 nm cannot detect
the ZnS binary phase, the laser with the wavelength of 325 nm was adopted to further study the CZTS
structure. As already indicated, these excitation conditions allow excitation of the main ZnS vibrational
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Figure 3. (a,b) are SEM top-down view of the CZTS thin films before and after sulfurization, respectively.

modes. As shown in figure 4a,b, the presence of ZnS in the surface region of the non-etched CZTS film was
corroborated by the detection in Raman spectrum of first-order (around 348 cm−1), second-order (around
696 cm−1) and third-order (around 1044 cm−1), respectively [30,31]. This demonstrated that the thin film
surface has ZnS binary phase, which is associated with the small particles. By means of HCl etching for
300 s under 75°C with the concentration of hydrochloric acid increasing from 0% to 10%, the ZnS peaks
were demonstrated to be drastically reduced. And in the case of 10% concentration etching, the ZnS
Raman peaks were reduced even more. At the same time, it can be seen that the CZTS peak was relatively
enhanced, which suggested that HCl solution can effectively remove the ZnS on the surface of CZTS film.
Figure 4c,d shows the change of element content by means of the EDS results of CZTS thin film etching
by HCl solution at different volume ratio. Clearly, the Zn/Sn ratio decreased with the HCl treatment in
the case of 10% concentration, where its value was close to 1.16. Firstly, the Cu/(Zn+Sn) ratio increased
with HCl concentration, which could be attributed to the diminution of the Zn concentration. When the
HCl concentration increased up to 5%, the Cu/(Zn + Sn) ratio reduced with HCl concentration, which
could be associated with the diminution of the Cu concentration. Again, these proved that HCl solution
can effectively remove the ZnS binary phase presented on the surface of CZTS film. As mentioned above,
figure 3b shows that the non-etched CZTS films have many small crystals with the size of approximately
100 nm, which proved the presence of the ZnS binary phase. Figure 5 shows the top-down SEM images
of the CZTS thin film etching by HCl solution with a different volume ratio. After the etching process
with HCl-based solution, an obvious reduction of the small crystals on the surface of CZTS thin film was
clearly seen. Further increasing the HCl concentration shows a drastic decrease of the small crystals on
the CZTS surface, which could be explained by the following chemical reaction:

ZnS + HCl → ZnCl2 + H2S ↑ (3.1)

We further studied the effect of etching time on the structure and composition of CZTS thin
films (electronic supplementary material, figure S1). Here, we fixed the concentration of HCl as 0.5%
according to the optimized results above. As shown in electronic supplementary material, figure S1a,
the samples prepared with five different etching times have three strong Raman peaks at 346, 694 and
1041 cm−1, respectively. Again, these peaks corresponded to the first-order, second-order and third-order
characteristic Raman peaks of ZnS. Owing to the strong Raman vibration peak intensity of ZnS, the
characteristic Raman peak at 336 cm−1 at CZTS almost could not be clearly found, which was similar to
the result provided in the previous section. With the increase of the etching time of hydrochloric acid,
the characteristic peak intensity of ZnS gradually decreased, indicating that the longer etching time of
hydrochloric acid, the stronger ability of ZnS to etch the surface of the film. Similarly, we amplified
the Raman spectrum near the Raman peak of the first-order characteristic of ZnS as shown in electronic
supplementary material, figure S1b. In the case of non-etching, we can see the characteristic Raman peaks
of CZTS at 336 cm−1. Gradually, when the hydrochloric acid etching time increases, the peak intensity
of CZTS displayed relative enhancement while the peak intensity of ZnS decreased. Afterwards, we
explored the etching time-induced change of CZTS composition, as shown in electronic supplementary
material, figure S1c and S1d, with the increase of the etching time, the Zn content decreased gradually
and the ratio of Zn/S decreased from 1.30 to 1.2, which indicated that the longer the etching time, while
keeping the same concentration of hydrochloric acid solution, the more ZnS was removed, which was
consistent with the previous study. Electronic supplementary material, figure S2 displays the SEM images
of CZTS thin film with different hydrochloric acid etching time. Again, after the surface of the film was
etched, the white bright spot on the surface of the film was reduced, indicating that the HCl etching
modification on the CZTS surface was effective to remove the ZnS binary phase. Comparably, there was
not too much ZnS secondary phase in the bulk both before and after etching in comparison to the surface



5

rsos.royalsocietypublishing.org
R.Soc.opensci.5:171163

................................................

200 400 600 800 1000 1200

wavenumber (cm–1) wavenumber (cm–1) 

ZnS first order
ZnS second order

ZnS third order

0% 1% 3% 5% 10%

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05
Cu/(Zn + Sn)
Zn/Sn

HCl concentration

0% 1% 3% 5% 10%

HCl concentration

1.16

1.18

1.20

1.22

1.24

1.26

1.28

1.30

Z
n/

Sn

20

30

40

50

Cu
Zn
Sn

240 280 320 360 400 440

10% 325 nm
5% 325 nm
3% 325 nm
1% 325 nm
0% 325 nm
0% 532 nm

ZnS first order

CZTS:336 cm–1

C
u/

(Z
n

+
Sn

)

el
em

en
ta

l c
om

po
ne

nt
 (

%
)

in
te

ns
ity

 (
ar

b.
un

its
)

in
te

ns
ity

 (
ar

b.
un

its
)

(b)
(a)

(c) (d )

Figure 4. (a) Raman spectra with excitation wavelength of 325 and 532 nm taken for the as-grown sample etched with different
concentrations solution of HCl at 75°C for 300 s; (b) corresponding enlarged Raman spectra of (a); (c,d) the evolution of relative cation
composition after etching the CZTS film with different HCl concentrations at 75°C for 300 s that derived from EDS data.
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Figure 5. Top-down SEM images of CZTS thin films at (a) 1%, (b) 3% (c) 5% and (d) 10% concentrations HCl solution soaking for 300 s.

of CZTS thin film (electronic supplementary material, figure S3). In this scenario, it appears that the HCl
mainly etched the surface of kesterite film and thereafter removed the ZnS secondary phase. Likewise,
the crystallization orientation and crystal quality of CZTS absorber layer were obviously improved
thanks to the optimized phase and stoichiometric ratio after HCl etching process.

An additional fact concerning the etching process via presented HCl solution was proved by its effect
on the photovoltaic parameters of the obtained CZTS solar cells. Electronic supplementary material,
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Figure 6. Photovoltaic performance of CZTS solar cell etching with different time.

figure S4 exhibits the illuminated J−V characteristics of the solar cells prepared with different HCl
solution concentration. The conversion efficiency of non-etched CZTS solar cell was only 0.5%. After
the HCl solution etching with the concentration of 5% v/v, the conversion efficiency was improved
greatly up to 2.4%, which gave rise to improved PCE by a factor of five times. Further, the photovoltaic
parameters of CZTS solar cell were demonstrated to be significantly reduced when the HCl solution
with the concentration of 10% v/v was applied to the samples, yielding the solar cells with only 0.7%
conversion efficiency. The reason may be ascribed to the high concentration of HCl solution that is
harmful for the CZTS absorber. In the case of etching time, when the etching time is increased from 0
to 5 min, the open circuit voltage (VOC) and the short circuit current (JSC) increased with the increase in
the etching time, so the PCE was also increasing. The maximum PCE was 4.73% when the etching time
was 5 min (figure 6). However, when the etching time of hydrochloric acid increased to 10 min, the VOC
and filling factor decreased, and the corresponding PCE began to decrease. The reason should be that the
etching time was too long and the hydrochloric acid destroyed the CZTS film. It is necessary to select the
appropriate etching time while etching the binary phase ZnS on the surface of CZTS film.

4. Conclusion
In summary, an approach regarding hydrochloric acid solution etching Cu2ZnSnS4 (CZTS) absorber
layer surface was reported. The results demonstrated that the hydrochloric acid solution with certain
concentration and etching time can efficiently remove the zinc-rich phases and afterward clean the
surface from contaminations and oxides. Such etched CZTS solar cell with 5% v/v HCl concentration for
300 s at 75°C allowed to obtain the highest PCE of 4.73%, which gave rise to improved PCE by a factor
of 4.8 time. Further studies toward higher efficiency, e.g. post-selenization of precursor film and varying
the [S]/([S] + [Se]) ratios via band gap engineering by means of optimizing the selenization condition, is
underway.
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