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The analysis of binary response data commonly uses models

linear in the logistic transform of probabilities. This paper

considers some of the advantages and disadvantages of simple

least-squares estimates based on a linear representation of

the probabilities themselves, this in particular sometimes

allowing a more direct empirical interpretation of underlying

parameters. A sociological study is used in illustration.
1. Introduction
The interpretation of data in the form of binary outcomes arises in

many areas of science from the primary physical and biological

sciences and their application through to more directly applied

areas and the social sciences.

Two distinct themes in the analysis of binary data go back at

least to the beginning of the twentieth century with the contrast

between Karl Pearson who, in his biserial correlation coefficient,

treated a pair of possibly related binary variables as derived

from an unobserved bivariate normally distributed variable, and

Yule who worked directly with observed proportions of

outcomes. When the hypothesized latent variables have a tangible

interpretation, as in quantal bioassays, the former approach is

preferable, but in the present paper we consider only situations in

which observed proportions of outcomes are represented directly

and relations concerning them interpreted.

Suppose that for n independent individuals, we observe a

realization of a binary outcome variable Yi (1 � i � n) taking

values 1 or 21, and that for individual i there is a p � 1 vector

xi of explanatory variables. A widely used representation is the

linear logistic form in which logfpr(Yi ¼ 1)/pr(Yi ¼ 21)g is

assumed to depend linearly on xi. This leads to a simple

interpretation of regression coefficients as ratios of effects when

the binary responses are concentrated at one of the two levels

but otherwise the interpretation is less direct. For a discussion

from a sociological perspective of the difficulties of interpreting

logistic coefficients, see [1] and, for a wide-ranging review, see [2].

The linear in probability model to be considered in the present

paper specifies the probabilities as linear functions of the
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explanatory variables, that is for y ¼ 21, 1 and with xi typically including a constant term

pr(Yi ¼ y) ¼ pb(y) ¼ 1

2
(1þ ybTxi), (1:1)

so that E(Yi) ¼ bTxi. There are implicit restrictions on the parameter space, namely that for all data x,

jbTxj � 1.

If both the linear in probability and linear logistic models give adequate fit, the former has the

advantage that the linear regression coefficients have a clearer operational interpretation in terms of

numbers of individuals potentially influenced by a unit change of an explanatory variable. Emphasis

sometimes lies on testing the significance of individual effects and comparison of their relative

magnitudes. For this, the exponential family form of the linear logistic model [3,4] brings substantial

simplification and other advantages. Furthermore, the logistic dependence has the potential to apply

over a wide range of future conditions excluded by the positivity constraints on the linear form.

The discussion highlights a context in which maximum-likelihood estimation is very sensitive to

aberrant observations, whereas ordinary least squares is insensitive yet typically achieves high efficiency.

A limiting case which sharply illustrates these distinctions concerns the comparison of data (Y1, Y2)

formed from counts of events from two Poisson processes of rates, say, r1 and r1c or r1 and r1 þ u for the

multiplicative and additive representations, respectively. That is, Y2 represents either a multiplication of

the baseline rate by a constant or the addition of a separate signal. The former model falls within the

exponential family of distributions and leads to an analysis based on a 2 � 2 contingency table. The

second calls for a different analysis based on large-sample maximum-likelihood theory. For a further

discussion concerning a similar model for Poisson variables, see [5].
2. Inferential aspects
2.1. Second-moment theory
We now consider properties of the linear in probability model based only on first and second moments.

First, we define the least-squares estimate of b by projecting the vector Y ¼ (Y1, . . ., Yn)T orthogonally

onto the space spanned by the columns of x, thus giving

b̂OLS ¼ (xTx)�1xTY:

In the present context, x is a matrix whose ith row is xi
T. The estimate is unbiased but does not have

second-moment optimality unless b ¼ 0 because the components of Y in general do not have equal

variance. Nor is the covariance matrix of the estimates given by the standard formulae unless b is small.

In fact

var(b̂OLS) ¼ Sb ¼ (xTx)�1 � (xTx)�1xTDx(xTx)�1, (2:1)

where D ¼ diag(xT
i b)2. One simple and often satisfactory estimate of the covariance matrix of b̂OLS is to

replace D by D̂ in which b is replaced by b̂OLS.

A more elaborate second moment approach is to replace b̂OLS by a weighted least-squares estimate

b̂WLS in which var(Yi) is estimated as 1� (xT
i b̂OLS)2. Since 1� (xT

i b)2 is not bounded away from zero,

weighted least squares is inappropriate as a general method.

The calculation of approximate confidence intervals and significance tests may be based on the

asymptotic normality of b̂OLS.
2.2. Maximum-likelihood estimation
The log likelihood corresponding to (1.1) is

‘(b) ¼
X

log (1þ xT
i bYi) (2:2)

provided that for all i,�1 , xT
i b , 1. We return to the relevance of this condition later. A stationary value

of the log likelihood occurs where

X xiYi

1þ xT
i b̂MLYi

¼ 0:
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If 1/(1 þ a) is expanded as 1 2 a and higher terms neglected, that is the regression assumed small, the

least-squares estimate b̂OLS is recovered.

There is a strong argument for using ordinary least squares rather than maximum likelihood in this context

despite sufficiency of pb̂ML
under model (1.1). In the present context, the two estimators are virtually equivalent

in terms of their efficiency, while maximum likelihood suffers extreme fragility, as explained below.

There is the following expansion of the second derivative of ‘(b), valid for small xT
i b,

rbb‘(b) ¼ �
X xixT

i Y2
i

(1þ xT
i bYi)

2
¼ �

X
i

xixT
i (1� 2xT

i bYi þ 3(xT
i b)2)þO{(xT

i b)3}:

Here rbb denotes the matrix of second partial derivatives with respect to b. On taking expectations,

an approximation to the asymptotic variance of the maximum-likelihood estimator is obtained

as fxT(I þ D)xg21. For comparison to (2.1), it is more convenient to work with fxT(I 2 D)21xg21,

which is a lower bound for fxT(I þ D)xg21. Using the geometric series expansion (I� D)�1 ¼
Iþ Dþ D2 þ � � � ¼ Iþ Y, say, and the formula

(Aþ BC)�1 ¼ A�1 � A�1B(Iþ CA�1B)�1CA�1, (2:3)

we write, with A ¼ xTx, B ¼ I and C ¼ xTYx in (2.3) and M ¼ {Iþ (xTYx)(xTx)�1}�1,

var(b̂ML) ¼ (xTx)�1{I�M(xTYx)(xTx)�1}: (2:4)

Because M � I, where the notation A � B means that A 2 B is a negative definite matrix, the inflation in

variance from using b̂OLS rather than b̂ML is

(xTx)�1{(M� I)xTDx(xTx)�1 þMxT(Y� D)x(xTx)�1} � (xTx)�1xT(Y� D)x(xTx)�1:

Write di ¼ bTxi. From the geometric series, we deduce that

Y� D ¼ diag
d4

1

(1� d2
1)

, . . . ,
d4

n

(1� d2
n)

( )
:

Thus var(b̂OLS)� var(b̂ML) ¼ O(n�1 max {d4
i =(1� d2

i )}) showing that the loss in efficiency is typically very

small.

On the other hand, from the perspective of formal likelihood theory even one individual out of range, in the

sense that jbTxij. 1, would refute the parameter value in question. That is, maximum likelihood is extremely

sensitive in the present context to observations measured with error or drawn from a model even slightly

different from that postulated. Ordinary least squares is by contrast relatively unaffected by such anomalies.

2.3. Interpretation of analysis
The interpretation of the regression coefficients in the linear in probability model is similar to that in a

normal theory linear regression model. Let x* and x** be two different vectors of covariate information,

differing by 1 unit in variable j and otherwise the same. The number of positive outcomes is S ¼
P

i Zi

where Zi ¼ (Yi þ 1)/2. Therefore, the hypothetical change in E(S) for a hypothetical replacement of m
individuals who differ by one unit in the jth component but are otherwise the same is

Xm

i¼1

{E(Zi j x�)� E(Zi j x��)} ¼
mb j

2
:

If there are binary covariates, it is natural to code them as f21, 1g, in which case division of two is not

needed because a unit change in the level corresponds to a numerical difference of two units.

If, upon fitting the linear in probability model, it is found that the number of least-squares fitted

values xT
i b̂OLS outside [21, 1] is appreciably larger than could be attributed to chance under the

linear in probability model, some doubt would be cast upon the plausibility of the model. The

expected number out of range, assuming that the linear in probability model is valid for all

observations, is l ¼
P

i pr(jxT
i b̂OLSj . 1) ¼

P
i pi where, by the asymptotic normality of b̂OLS � b,

pi ≃ F
�1þ bTxip

(xT
i Sbxi)

( )
þF

�1� bTxip
(xT

i Sbxi)

( )
(n! 1):

Thus, a predicted number of out of range values is an estimate of l, obtained by replacing b and Sb by

estimates in the expression for each pi. A crude lower bound on the variance of the sum, R, of out of range
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values is l, obtained by incorrectly assuming that R is approximately Poisson distributed for large n. The

variance of R is larger than l due to dependence between the summands, induced by b̂OLS. In particular,

var(R) ¼
P

ipi(1� pi)þ
P

i=j{ pr(jb̂T
OLSxij . 1, jb̂T

OLSx jj . 1)� pip j}: (2:5)

Write

Zi ¼
(b̂OLS � b)Txip

(xT
i Sbxi)

, zi ¼
1� bTxip
(xT

i Sbxi)
,

so that Zi and Zj are bivariate normally distributed of zero means, unit variances and correlation

coefficient

rij ¼
xT

i Sbx jp
(xT

i Sbxi)
p

(xT
j Sbx j)

:

Then pr(jb̂T
OLSxij . 1, jb̂T

OLSx jj . 1) is the sum of the quadrant probabilities,

pr(Zi . zi, Z j . z j) ¼ F(�zi)

ð1

zi

F
rijs� z jp
(1� r2

ij)

( )
F(s) ds,

pr(Zi , �zi, Z j , �z j) ¼ F(�zi)

ð�zi

�1

F
�z j þ rijsp

(1� r2
ij)

( )
F(s) ds,

pr(Zi . zi, Z j , �z j) ¼ F(�zi)

ð1

zi

F
�z j � rijsp

(1� r2
ij)

( )
F(s) ds

and pr(Zi , �zi, Z j . z j) ¼ F(�z j)

ð1

z j

F
�zi � rijsp

(1� r2
ij)

( )
F(s) ds:

While there is no closed-form expression for these, close approximations are obtained by replacing the

conditional expectations of the functions of interest by the corresponding functions of the conditional

expectations, with approximation error established by Taylor series expansion. Depending on the

signs of zi, zj and rij, the approximation so obtained might be improved by interchanging the roles of

zi and zj on the right-hand side of the above display. For a further discussion, see [6].
3. Socio-economic inequalities in educational attainment
We use US data from the National Longitudinal Study of Youth (1979), a nationally representative

longitudinal study of people aged 14–22. Our binary outcome, coded as f21, 1g, specifies whether the

individual enrolled in a 4-year-degree-granting institution for at least 1 year. There are five potential

explanatory variables. Ability is measured as the respondent’s score on the Armed Forces Qualifying

Test, administered to all respondents in the 1981 wave of the survey. Family income in childhood is

measured as the log of total net family income in 1979. All respondents identified themselves as male or

female but race was measured via interviewer observation, and we here limit our sample to those

respondents who were classified as black or non-black and non-Hispanic. Finally, we include an

indicator of whether respondents were living with at least one parent at the time of the first survey.

As is common with extensive observational data, some observations on explanatory variables are

missing, as shown in table 1. Because we are concerned with the dependence of outcome on

explanatory variables, individuals with missing outcome are treated as uninformative about that

dependence. A sensitivity analysis examined how the regression coefficients of interest changed when

rather extreme assignments were made to the three explanatory variables with missing values,

treating binary variables as all at one or other extreme and continuous variables as at their upper and

lower quartile. The levels used were 68.33 and 17.28 for the Armed Forces Qualifying Test score and

10.00 and 8.79 for the logarithm of family income when the individual was in childhood. Estimates

from the eight patterns of missingness are in table 2. While there is some dependence on the missing

values, that dependence is very minor and without qualitative impact on the conclusions of the

analysis. If a larger number of explanatory variables have missing values the sensitivity analysis

should be based on a suitable fraction of the two-level factorial system of potential missing values,

allowing estimation of main effects from missingness [7, §12.2].



Table 1. Summary of data.

covariate description sample range per cent missing

x1 gender f1 ¼ male, 21 ¼ femaleg 0

x2 AFQT score percentage (0 – 100) 4.3

x3 log income continuous (3.00 – 11.23) 51.2

x4 race f1 ¼ black, 21 ¼ non-black/non-Hispanicg 0

x5 lives with parent f1 ¼ yes, 21 ¼ nog 5.1
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The sensitivity analysis used here may be contrasted with procedures of multiple imputation based

on the untestable assumption that observations are missing at random.

An informal preliminary analysis involved tests for interactions and inspection of interaction plots.

None was strongly suggested. Table 2 reports least squares estimates of regression coefficients and

their estimated standard errors from a model with main effects for the five explanatory variables.

The suggestion is that hypothetically increasing the number of males and correspondingly reducing

the number of females in the population by m units, say, would correspond to a 6–7% of m decrease

in the expected number of individuals receiving higher education, all other things equal. The coefficient

of the race variable is similarly interpreted, the suggestion being that in a hypothetical population,

demographically equivalent to the one under study except for having m more black children than

white children, the expected number of individuals experiencing the positive outcome would be

22–23% higher.

It is suggested, all other things being equal, that a 1% increase in family income, i.e. an increase of 0.01 in

log family income, would correspond to a 0.02–0.03% increase in the expected number of positive outcomes

and that a 1% increase in ability, to the extent that it can be measured by the Armed Forces Qualifying Test

score, would correspond to a 1% increase. An absolute change at the bottom of the income scale has a

relatively greater effect than the same absolute change at the top. Finally, accounting for other factors,

individuals living with someone other than one of their parents are perhaps slightly more likely to

experience the positive outcome, although the evidence for this is rather weak.

In the above interpretation of the estimated coefficients on the continuous variables, division by 2 is

needed, as described in §2.3. Division by 2 is not needed for the three binary explanatory variables

because they are coded as f21, 1g.
The last two columns of table 2 show the actual and predicted number of least squares fitted values

xT
i b̂OLS that are outside [21, 1]. The individuals whose fitted values are out of range are almost all at the

two edges of the sample space for the Armed Forces Qualifying Test score.

While the numerical values of the coefficient estimates from a linear logistic model are not

comparable to those from a linear in probability model, the ratios of these coefficients are remarkably

similar. The code for verifying this statement and the analysis of §3 is available as outlined in the

data accessibility statement.
4. Discussion
As with other statistical methods care is needed especially when relatively complex data are involved. In

the present context, a reasonable approach for general use is to base the analysis on b̂OLS with the

improved estimate of its covariance matrix, given by (2.1). Examination of model adequacy should

include a check of the number of fitted values outside [21, 1]. Do such values form a rationally

identifiable subgroup to be analysed separately? Does their omission or exclusion materially affect the

conclusions? Does the number of anomalous observations suggest major change to the whole

analysis? A large number of anomalous observations may suggest that a model linear on the logit

scale would be more appropriate.

From the perspective of formal likelihood theory, even one individual out of range would refute the

parameter value in question in the linear in probability model. Thus, the paper illustrates an empirical

context in which the formal optimality of maximum-likelihood estimates is achieved only at the cost

of extreme fragility. A formally slightly less efficient method is much to be preferred.
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