
A MICROPROCESSOR DEVELOPMENT SYSTEM
FOR THE ALTOS SERIES MICROCOMPUTERS

Stephen Michael Hughes

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A Microprocessor Development System
for the ALTOS Series Microcomputers

by

Stephen Michael Hughes

June 1981

Thesis Advisor: M. L. Cotton

Approved for public release; distribution unlimited

T199331

SECURITY CLASSIFICATION OF THIS PAGE ['Whan Oa(a Entaradj

REPORT DOCUMENTATION PAGE
" »e»OWT SJMltK

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION no) RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

A Microprocessor Development System
for the ALTOS Series Microcomputers

S. TYRE OF REPORT a PERIOD COVERED

Master's Thesis
June 1981

4 PERFORMING ORG. REPORT NUMBER

7. AUTHORft;

Stephen Michael Hughes

• CONTRACT OR GRANT NUMBEftCij

>. PERFORMING ORGANIZATION NAME AND AOOREIS

Naval Postgraduate School
Monterey, California 939M-0

10. PROGRAM ELEMENT. PROJECT, TASK
AREA a WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME ANO ADDRESS

Naval Postgraduate School
Monterey, California 939M-0

12. REPORT DATE

June 1981
IS- NUMBER OF PAGES

149
14. MONITORING AGENCY NAME * AOORESSf// dlllarant /rem Controlling Olllca) IS. SECURITY CLASS, 'at thla riport)

ISa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (at thla Haport)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol the ebattect entered In Block 30. II dlllerent horn •.•port;

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (ConUnum on rererae aide II neceeeery end Identity by block number)

Microprocessor Development System
ALTOS Microcomputer
PRO-LOG STD bus
CP/M, MP/M

20. ABSTRACT (Continue on ravaraa aide II noebmmmry and Identity by block number)

An ALTOS series microcomputer is being used as the host computer in a micro-
processor development system (MDS). The MDS hardware, consisting of the
PRO-LOG STD bus, a Z80 cpu card, 2K bytes EPROM and 36K bytes random access
memory, is controlled by the host via a single serial I/O port. The system
provides the capability to develop and test both software and hardware in
the combined CP/M (MP/M) and MDS environments.

DO ,:
(Page 1)

'I??, 1473 EDITION OF I NOV SS IS OBSOLETE
S/N 0102-014- 6601

I

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Bntered)

Approved for Dublic release; distribution unlimited

A Microprocessor Development System
for tne ALTOS Series Microcomputers

by

Stepnen Micnael Husfies
Lieutenant, United States Navy

B.S., United States Naval Academy, 19?5

Submitted in partial fulfillment of tne
requirements for tne deerree of

MASTER OE SCIENCE IN ELECTRICAL ENGINEERING

from tne

NAVAL POSTGRADUATE SCHOOL
June 1991

\'\JL£u_£i)

ABSTRACT

An ALTOS series microcomputer is being used as tne

nost computer in a microprocessor development system (MDS).

Tne *!DS nardware, consisting of tne PRO-LOG STD Bus, a ZS0

cpu card, 2K Bytes 3PR0M and 36K bytes random access memory,

is controlled by tne nost via a single serial I/O port. Tie

system provides tne capability to develop and test Botn

software and nardware in tne combined CP/M (MP/M) and *!DS

environments .

TABLE OF CONTENTS

I.

II

III

IV

APPENEIX A

APPENEIX B

APPENEIX C

APPENEIX E

APPENDIX E

APPENEIX F

APPENDIX G

INTRODUCTION

THE MICROPROCESSOR EEVELOPMENT SYSTEM

A. HARDWARE CONSIDERATIONS

B. SOFTWARE CONSIDERATIONS

C. THE SYSTEM CONTROL SOFTWARE

1. The HOST Control Software

2. The MES Onboard Monitor

SYSTEM IMPLEMENTATION AND CUSTOMIZATION

A. PUTTING- IT ALL TOGETHER

B. CUSTOMIZATION

C. SYSTEM LIMITATIONS

CONCLUSIONS AND RECOMMENDATIONS

A. FUTURE HARDWARE

3. FUTURE SOFTWARE

AMES USERS GUIEE

HOST ANE MES FLOW CHARTS FOR USER OPTIONS

AMES HOST CONTROL SOFTWARE LISTING

MES MONITOR SOFTWARE LISTING

MDS MEMORY TEST PROGRAM LISTING

SAMPLE MENU LISTING

SAMPLE BASIC INSTRUCTION LISTING

SAMPLE INPUT PARAMETER FORMAT LISTINGAPPENEIX H

BIBLIOGRAPHY

INITIAL EISTRIBUTION LIST

6

S

9

14

14

15

22

24

24

27

31

36

36

37

3S

61

71

120

129

144

145

146

148

149

4

LIST OF FIGURES

1. PRO-LOG STE BUS FIN LEFINITIONS 12

2. HOST CONTROL PROGRAM 18

3. RS-232C PIN LEFINITIONS ANT SYSTEM I/O SETUP 26

4. INTEL HEX FILE RECORI FORMAT 33

I. INTRODUCTION

Tne Naval Postgraduate Scnool Electrical Engineering

Department's microcomputer/mi croprocessor development

laboratory, presently being used for microprocessor

application courses at the beginning and intermediate

levels, offers two metnods of applications development. One

method uses the Tefctronix 8002 development system. While

this system is very capable for hardware applications

development, it is limited in available software, provides

for use by only a single user at a time, and tatces a

considerable amount of time to learn to use properly. Also,

because of the hi?h cost of additional in-circuit emulation

modules for different processors, tne system nas been slow

to expand. On the other end of tne spectrum, tne ALTOS

series single and multi-user microcomputer systems oroviie

extremely ?ooi support for software development due to tne

vast variety of CP/M based software currently available.

Tnese systems nave a much lower per-user cost and provide a

woric environment more enhancing to individual

productiveness. The primary disadvantage, however, is tne

lacfc of support for hardware development, without having to

set inside tne computers and building some type of fcludged

interface whose reliability is often haphazard at best.

Tne design and implementation of a relatively low cost,

low complexity, nignly flexible microprocessor development

system, combining many of tne good features of eacft of tnese

metnods is tne topic of furtner discussion in tnis tnesis.

II. THE MICROPROCESSOR DEVELOPMENT SYSTEM

The bounding needs of tnis microprocessor development

system (MDS) are grouped into tne four areas listed below:

Tne overall system cost should, be relatively low in
contrast to large development systems such as tne
Tettronix 9002.

Tne MDS snouid be of low complexity in botn software
and nardvare requirements.

Tne system snouid utilize existing software and
nardware to tne best extent possible.

Tne system snouid be expandable and easily
customized or reconfigured to operate with numerous
other microcomputer systems.

The determination of these needs made the selection of

final requirements almost automatic. The primary decisions

were what capabilities should be included in tne MDS within

the constraints of the needs given ani the time available.

Typical development system components include software

support for editing, assembling and debugging applications

programs and nardware support for testing both the software

ani hardware in an in-circuit emulation (ICE) environment.

Because of the low complexity constraint and the limited

time available for this project, it was decided tnat tne ICE

component would be the area wnere most of the compromises

would be made during the system design. To further meet tne

B

stated needs, the decision was made to design tne system for

operation as a tasK in tne CP/M and MP/M operating systems

environment.

A. HARDWARE CONSIDERATIONS

Initial ideas for meeting tne hardware needs of the MDS

included utilizing an ALTOS microcomputer as tne control

computer for a separate hardware development system. The

minimum nardware development system would consist of a

dedicated microprocessor, EPROMs for an onboard monitor,

sufficient random access memory (RAM) for storage and

execution of fairly complex programs and a serial RS-232C

port for interface to the ALTOS.

Tne ALTOS computer and tne nardware development system

together would form the complete microprocessor development

system. For clarity, the ALTOS computer will nencefortn be

referred to as the 'EOST', the hardware development system

as the 'MDS' and the overall system as the 'AMDS', for ALTOS

Microprocessor Development System.

The MDS hardware was the subject cf primary

consideration during tne initial stages of system design.

Consideration was first given to wire-wrapping circuits to

meet tne stated minimum nardware requirements, but tnis

approach was soon recognized as being prohibitive due to the

considerable time requirements involved for this type of

wort.

This approach would also contribute to a less reliable and

less flexible system for long term use and future expansion.

Thus, the decision was made to use a standardized bus

system wnicn aas acnieved industry acceptance in both proven

applications and in manufacturer support and wnicn would

offer a reasonable initial system cost (under $1500.00).

Wnile several manufacturers offer suca a system, tne PRO-LOG

Corporation STD bus was cnosen over others primarily due to

its immediate availability and local manufacturer support.

Tne final mds hardware configuration consists of tne

following PRO-LOS components:

A 16 slot STD bus and card cage witn provisions for
wire-wrapped cards.

A 2MEz ZB0 processor card witn onboard provisions
for up to *£ bytes of RAM and up to 8K bytes of 2716
EPROM.

Two 15K byte static memory cards.

A dual USART card consisting" of two fully
independent, asyncnronous RS-232C serial ports witn
provision for one of tnese to be configured as a 2PmA
loop for TTY applications.

Several blanfc utility cards for wire-wrapped
applications.

A DC power supply providing +5V/10A and ±12V/1A.

The only hardware modification necessary to get this

system operable was tne addition of a manual reset switch

which is only a momentary ground to tne push-button reset

10

pin (48) on trie STD bus. Tne STD bus pin definitions are

£iven in Figure l

.

11

PIN MNEMONIC

1 + 5VDC
2 + 5VDC
3 GND
4 GND
5 VBB#1
6 VBB#2
7 D3
8 D7
9 D2

10 D6
11 Dl
12 D5
13 DO
14 D4
15 A7
16 A15
17 A6
18 A14
19 A5
20 A13
21 A4
22 A12
23 A3
24 All
25 A2
26 A10
27 Al
28 A9
29 AO
30 A8
31 WR*
32 RD*
33 IORQ*
34 MEMRO*
35 IOEXP
36 MEMEX
37 REFRESH*
38 MCSYNC*
39 STATUS 1*

40 STATUS 0*

DESCRIPTION

Logic Power
Logic Power
Logic Ground
Logic Ground
Logic Bias #1 (-5V)
Logic Bias #2 (-5V)
Data Bit 3

7

2

6

1

5

4

Data Bit
Data Bit
Data Bit
Data Bit
Data Bit
Data Bit
Data Bit
Address Line 7

Address Line 15
Address Line 6

Address Line 14
Address Line 5

Address Line 13
Address Line 4
Address Line 12
Address Line 3

Address Line 11
Address Line 2

Address Line 10
Address Line 1

Address Line 9

Address Line
Address Line 8

Write to Memory or I/O
Read Memory or I/O
I/O Address Select
Memory Address Select
I/O Expansion
Memory Expansion
Refresh Timing
CPU Machine Cycle Sync
CPU Status
CPU Status

Figure 1 - PRO-LOG STD Bus Pin Definitions

12

PIN MNEMONIC

41 BUSAK*
42 BUSRQ*
43 INTAK*
44 INTRQ*
45 WAITRQ*
46 NMIRQ*
47 SYSRESET*
48 PBRESET*
49 CLOCK*
50 CNTRL*
51 PCO
52 PCI
53 AUX GND
54 AUX GND
55 AUX +V
56 AUX -V

DESCRIPTION

Bus Acknowledge
Bus Request
Interrupt Acknowledge
Interrupt Request
Wait Request
Nonmaskable Interrupt
System Reset
Push-Button Reset
Clock from Processor
AUX Timing
Priority Chain Out
Priority Chain In
AUX Ground
AUX Ground
AUX Positive (+12VDC)
AUX Negative (-12VDC)

*Low-level active indicator

Figure 1 (cont'd)

13

B. SOFTWARE CONSIDERATIONS

The editing, assembling and debugging software needs for

the AMDS were easily fullfilled by deciding to utilize CP/M

based software. The basic CP/M and MP/M operating systems

provide software for each of these needs, therefore

simplifying the overall system design considerably.

Additionally, the existence of a vast selection of CP/M

based software products on the commercial market greatly

enhances the growth prospects for software applications

development with this system. An added feature of the

decision to use CP/M based software is the ability to

develop and test software on any microcomputer using the

CP/M operating system. This feature alone is one of the most

advantageous aspects of the AMIS.

With these capabilities accounted for, the remaining

software considerations were those of determining the

software requirements for the HOST to control the MD3 and

deciding upon those capabilities which should be included in

the control software package.

C. THE SYSTEM CONTROL SOFTWARE

The system control software needs were divided into two

areas: 1) the control program resident in the HOST, to be

used in exercising overall control of both the ALTOS and the

MDS and; 2) the MDS onboard monitor program, to be used for

communications with the HOST and for interpreting and

executing HOST commands.

14

1. The HOST Control Software

The primary functions of the AMES control program

resident in the HOST are to communicate with the system user

and to exercise positive control of the MES. It is intended

to be the workhorse of the system, providing numerous

routines to simplify the work required of the MES.

A study of the monitor and control programs for

typical development systems helped in identifying the

following software needs as the most essential user

requirements for implementation into the HOST control

program:

A routine to download data from disk to MES memory.

A routine to upload data from MDS memory and store
it on disk.

A routine for examining and modifying MDS memory
contents

.

A routine for filling specified blocks of MES memory
with a specific byte of data for memory initialization.

A routine to locate a specific data sequence in MDS
memory.

A routine to dump the contents of MES memory to a

CRT or printer in a format conducive to user
interpretation.

A routine to initiate the execution of a program
previously placed into MES memory.

Each of these routines are implemented in the HOST

control program. Additional routines provide: 1) the ability

to perform additions and subtractions of two hexadecimal

15

numbers and display the results, 2) a routine for continuous

modification of MES memory without an intermediate

examination of each location, and 3) routines for online

user self-help and system use instructions.

The primary consideration in the design of the HOST

control program was in making it user oriented. Thus,

considerable effort was made to make the system easy to

learn and to provide positive user feedback in all modes of

operation. Examples of this include the implementation of a

menu displaying all user options, detailed instructions for

required input formats (available at any time) , and fully

explanatory error displays. Operation of the system is

designed so that the user should never be in doubt as to

what is going or what is required of him.

The control program flow is straightforward. Program

parameters are first initialized followed by displaying the

menu of options on the user's console and prompting him for

input of the desired option. The input is then interpreted

and a branch is made to the routine chosen, whereupon the

user is again prompted for additional input unique to that

option. Upon completion of the option, at the command of the

user or after a trap to certain errors, the program returns

control to the menu routine to await further user commands.

This flow is easier visualized, as shown in Figure 2.

The flow of the individual option subroutines is

equally simple. Upon entering each routine, again various

16

parameters are initialized and the user is prompted for

initial input. When the proper input is received, the

routine takes the necessary actions to perform the task,

including communications with the MDS, if applicable, and

prompting the user for additional inputs as required. On

completion of the option, control returns to the menu

routine.

17

"AMDS"

INITIALIZE
PARAMETERS

DISPLAY
MENU

GET USER'S
SELECTION

BRANCH TO
SELECTED
OPTION

OPTION

OPTION COMPLETED
or

ERROR
or

USER HALT

Figure 2 - HOST Control Program Flowchart

18

All user input is checked for validity including

proper syntax, correct number and placement of parameter

delimiters and for valid hexadecimal digits where

applicable. Additionally, the input is checked for user

requests for help or to terminate the option and return to

the menu. Lata input and output formats were kept as

compatible as possible with those in the CP/M dynamic

debugging tool (LET). All input is terminated with a

carriage return or a line feed and input line editing

functions conform to the rules set forth in the CP/M and

MP/M users manuals. By maintaining this degree of

compatibility the learning cycle of the AMES user should be

lessened considerably.

System errors are divided into two categories; those

due to faulty user inputs and those due to disk I/O

operations. Eepending on the particular error, errors may

take one of three courses of action. They may return

directly to the menu, they may restart the option in

progress when the error occurred or they may simply return

to the point where the error occurred and await user

provided corrective measures. More details are provided in

the AMES user's guide.

The final area of the HOST control program requiring

discussion is that of the routines and associated protocols

used for intercommunication between the HOST and the MES

.

Because the MES may not always utilize a fast processor such

19

as the Z80 and since the MES is provided with the ability to

execute user programs in real time, it was conceivable that

the MES response time to the HOST could he considerably slow

in some instances. This also brings up the possibility of

lost data if the HOST is transmitting faster than the MDS

can service its serial I/O port. A final problem in such an

asynchronous setup is what the data sent is intended for, be

it a command or some type of processable data.

In order to alleviate the lost data problem and to

lessen the response time to the HOST, several assumptions

were made in the communications software design. The primary

assumption is that the HOST has communications priority at

all times. From this assumption the following protocols were

established and implemented. A type of software handshaking

between HOST and MDS is provided for each character sent by

either device. Some experimentation was done with the use of

packets of characters greater than one, but some data less

was experienced when either the HOST or MES was busy with

other tasks besides I/O, Though time prohibited further

experimentation in this area, it is felt that some type of

hardware initiated control signals would be necessary to

increase transmission/reception reliability in a packet

communications mode for this system.

The protocol thus implemented follows several rules.

For each piece of data to be transmitted two bytes of data

are actually required. The first byte indicates the type of

20

data to follow. Types include command data, pure data, and

status data. Each type is assigned a hexadecimal equivalent

as follows:

055H indicates that the next byte to he transmitted
will be a command

0FFH indicates that the next byte to be transmitted
will be pure data

00H indicates that the next byte to be transmitted
will be status data (the only currently implemented
status data is 00H, meaning the sender is at some point
in the execution of its program where it awaiting input
from the other device in order to proceed)

As an example, when the user wants to examine an MES memory

location the HOST first sends the data sequence:

055H , 058H (058H is the ASCII hexadecimal code for
'X '

, the Examine Command)

After receipt and display of the data in MCS memory, the

user wants to change it to say, 03FH, thus the HOST would

send the sequence: 0FFH , 03FH .

In addition to this rule, recall that a software

handshake is provided for every character sent. As each

character is received, the receiving system returns an

acknowledgement byte of 011H, the ASCII hexadecimal code for

XON, meaning the character has been received and further

transmissions may proceed. At the same time, the sender is

awaiting this acknowledgement before proceeding with further

transmissions or continuing on to other tasks. This

handshaking overhead seems unrealistically high at first

glance, but it is negligible to the user for most types of

21

applications envisioned for this system and it provides a

high degree of confidence in the communications setup.

Perhaps the only time the communications throughput would be

degraded, in the user's eyes, would be when an application

program might require nearly continuous data transmissions

for a lengthy period of time. A way around this particular

situation is discussed in the section on system

implementation .

To improve MES response to HOST transmissions, the

MLS checks for receipt of a HOST transmission prior to every

output to the HOST. If the HOST has sent information,

typically a new command, the MIS halts whatever it was doing

and processes the new data.

Further details concerning the HOST control program

are discussed in the system user's guide and all routines

are well documented in the source code listings and flow

diagrams in the appendices.

2. The MIS Onboard Monitor

Because the HOST control program was designed to do

most of the the work required of the AMDS, the MDS monitor

software was much easier to develop.

The monitor software essentially consists of a

command/data interpreter, a set of complementary routines

for each of the HOST initiated MES options, and a similar

set of I/O routines for communications with the HOST. The

22

program flow is basically the same as described for the HOST

control program, with the exception that there is no direct

input from the user. The MES monitor does not have any error

routines since all system error detection is built into the

HOST control program. If for any reason the monitor does not

understand the HOST transmissions it simply waits until

something is sent that it does recognize and then proceeds.

Though it is unlikely that the system will get hung up in a

loop during normal HOST to MDS communications, if it should

occur, either an ESCape sequence from the HOST or a manual

reset of the MDS will terminate the loop. The only

foreseeable circumstances in which this might occur are when

a user program, executing in MES memory, attempts to obtain

information from the HOST when the HOST is not expecting

such a request.

The monitor is written for automatic startup after

either a system power-on reset or a manual reset. All MES

serial I/O ports are initialized to communicate at S600

baud. Routines for user program I/O with the HOST console

and for return to the MDS monitor are also provided via

simple user calls, as explained in the user's guide.

Again, more detailed information may be best gleened

from the AMES user's guide, the flow diagrams and

accompanying source code listings in the appendices.

23

Ill . SYSTEM IMPLEMENTATION AND CUSTOMIZATION

The AMES is a modular system with respect to both

software and hardware. Though this thesis is concerned

primarily with implementation of the system as already

stated, with an ALTOS microcomputer and the PRO-LOG STE

hardware, the design is intended to "be usable on any other

CP/M or MP/M based system with only a few software changes

and minor additional hardware interface requirements (beyond

the MLS hardware needs, naturally).

A. PUTTING IT ALL TOGETHER

Implementation of the HOST control program is simply a

matter of loading and executing the program via the normal

CP/M method of typing in the name of the object file, in

this case 'AMES', followed by a carriage return or line

feed.

Implementing the ME5 system, while not especially

taxing, does require the use of a PROM programmer to load

the monitor software into EPROM. Once this is accomplished,

and the EPROMs are installed, the system implementation is

nearly complete. All that remains is connecting the systems

together, turning on the power and the reset is automatic.

This particular development system is coupled together

via a standard RS-232C connector cable set with a 25-pin,

24

DB-25P, male 'D' connector on the HOST end and a 26-pin

female Amphenol connector on the MLS end. Only the signal

ground, transmit and receive signals are necessary and other

RS-232C signals are ignored in this implementation. (The

standard RS-232C pin definitions are shown in Figure 3.) The

HOST end of the connector is plugged into the auxiliary

serial port on the ALTOS multi-user system and the MLS end

is connected to the 'A' channel socket on the dual USART

card. Additionally, it should he ensured that the 'a'

channel is jumpered for LTE (Lata Terminal Equipment)

operation, as explained in the dual USART card documentation

listed in the bibliography.

These procedures are all that is necessary to implement

and use the basic system.

25

ALTOS MDS

—/ NC /PGND 1 1 Protective Ground

RXD 2 2 Transmitted Data (TXD)

TXD 3 3 Received Data (RXD)

RTS 4 4 Request to send

CTS 5 5 Clear to send

DSR 6 6 Data Set Ready-

SGND 7 s v 7 Signal Ground

NC HRLSD 8 8
Received Line
Signal Detect

DTR 20 ^ ^ 20 Data Terminal Ready

* NC - No Connection

Figure 3 - RS-232C Pin Definitions and
System I/O Setup

26

B. CUSTOMIZATION

The primary areas of customization of the AMDS are those

concerning the use of different processors in the MES and

the use of different serial interfaces.

At present the PRO-LOG- Corporation 5TE bus supports the

3080, 8085, ZS0, Z80A and the 6800 series microprocessors.

The current implementation uses the ZS0 with onboard EPROM

and RAM. The ROM and RAM address areas may be jumpered to

either the lower (as done here) or the upper 165 of address

space. In order to use the monitor in the upper 16K of

address space would require a hardware addition capable of

taking control of the address lines, at power-on reset or

manual reset, and forcing the next execution address to

coincide with the first address of the monitor. Otherwise,

the Z80 (and 8380/8085) processors normally execute location

0000H after a reset sequence. If no monitor program is

located at this location the processor executes garbage

until a 3ALT instruction is encountered. An implementation

of the monitor in high memory, however, is an idea to be

well considered for future versions of the AMES, as it would

provide better compatibility with the page zero I./C mapping

scheme used by the 6800 microprocessor. As an additional

benefit, it would lessen some of the software limitations

currently imposed by the current configuration. These

limitations are discussed in a separate section of this

paper

.

27

As to the use of different serial I/O interfaces,

several hardware additions may he necessary on the ALTOS

computers. If the system is used vith the single-user ALTOS

computers, the options are to use the serial port currently

used by the printer or to build an additional serial port

into the computer via the use of its internal bus connector.

If using the multi-user system, two AMLS systems could be

supported simultaneously by simply using two of the serial

ports currently used for consoles. To support four complete

AMDS systems would require the addition of three more serial

ports in a manner similar to that discussed for the single

user system.

The changes in serial port usage would require a few

minor changes in the HOST control program. If ZILOG SIO

devices are used, as presently installed in the ALTOS series

computers, the software modification reduces to simply

changing the status (MSTATPT) and data (MEATAPT) port

designations in the 'equates' (EQU statements) section at

the beginning of the HOST control software source code and

then reassembling the code for the new serial ports. If

serial communication chips other than the SIO are used, the

HOST control routines MESTAT, MESIN, and MESOUT would have

to be modified to operate with the particular chip chosen.

On the MDS side of the system, the customization process

for software changes of serial ports is very similar to that

of the HOST. Using additional INTEL 3251 USARTs would

28

necessitate only changes to serial port equates for CHAST4T

and CHADATA in the MDS monitor source code, followed by

reassembly and reprogramming of the EPROMs. Use of serial

devices other than the 8251, would require appropriate

changes to the MLS routines HOSTAT, HOSTIN, and HOSTOUT.

Beyond these hardware oriented customization procedures,

provisions have been included for the addition of more user

options and error processes in the HOST control software.

Each of these areas use 'jump' tables to vector to the

option or error routine selected. To add an option to the

menu, the new option routines would be added to the body of

the current source code, a JMP xxxx (xxxx is the option

label) instruction would be added to the menu jump table and

the menu display would be modified appropriately in the

message storage section of the source code. The insertion of

additional error codes is identical, except that the jump

instructions are inserted in the error jump table.

One further comment on the addition of user options

concerns the method of decoding the option selected. Menu

options are identified by an assigned alphabetic character

from A through Z (current options go only through the letter

N). The ASCII code for each option is modified for use with

the jump table in the following manner. The ASCII code is

first 'anded' with the data 01FH. This removes all ASCII

biasing and leaves only the hexadecimal equivalents of the

numbers 1 through 26, corresponding to the letters A to Z.

29

These numbers are then used to find the appropriate vector

from the jump table, as further explained in the source

documentation. Thus the provision for twelve more options,

through Z, is included in the current version of the HOST

control software. If these options are added, simple changes

are also required to the equates for MAXCHCE, the highest

option letter in use, and for NHSTCME, the current number of

'host only' commands.

A consideration to keep in mind when editing the HOST

software is the fact that it is currently a 62K byte file

and thus larger than the index table capacity of the TEE

text editor used widely at the Naval Postgraduate School.

For this reason, the source code is broken into two files:

AMESPl.ASM containing the primary option routines, and

AMESP2.ASM containing the utility and support routines and

message and data storage definition areas. Prior to

assembly, the files are concatenated via the use of the CF/M

Peripheral Interchange Program (PIP) as follows:

PIP AMDS. ASM=AMESP1. ASM, AMDS P2. ASM

The file AMES. ASM is then assembled using whatever assembler

is desired.

MES monitor software customization is at least as

simple, if not easier than that for the HOST. Commands are

decoded via the simple mechanism of comparing the commana to

a set of known commands and then jumping to the option

30

routines selected. The only additional source code changes

which might he applicahle to the MIS would "be a change of

the assembly origin (OHG statements) addresses if the

monitor is to he moved into upper memory as mentioned

previously.

C. SYSTEM LIMITATIONS

This system, as with many other well designed systems,

also has its limitations. Some of these have already teen

alluded to in previous sections and will now he discussed in

more depth.

The current MES configuration, with the lower 16K

address space reserved for the monitor ROM and RAM, imposes

several notahle limitations on the use of the AMES. Besides

the page zero I/O mapping incompatibility between the 6S00

and Z80, which has already been pointed out, the inability

to use this address space for user program execution places

a restriction on the types of CP/M based software which may

be downloaded and executed in the MES memory.

CP/M's executable object files, designated as '.COM'

files, are created with the implied intent of loading and

initiating the execution of these files from location 0100H.

Since this location is within the reserved area in the MES,

such '.COM' files cannot be downloaded and executed in MLS

memory. Unfortunately, most CP/M software on the commercial

market is distributed in this format.

31

The restriction thus imposed is that only disk files in

the INTEL Hex Format (see Figure 4) or in a page relocatable

format may "be downloaded and executed in ME5 memory. This is

because these formats are not dependent upon any address

restrictions and are executable in whatever address space

for which they are assembled.

32

RH RL LA RT DATA CK

RH - RECORD HEADER: AN ASCII COLON (3A HEX)
SIGNALS THE START OF EACH RECORD.

RL - RECORD LENGTH: TWO ASCII HEX CHARACTERS GIVE
THE RECORD LENGTH (THE NUMBER OF 8-BIT DATA
BYTES IN THE RECORD). END OF FILE IS INDICATED
BY A ZERO RECORD LENGTH. (10 HEX IS MAX. RL)

LA - LOAD ADDRESS: FOUR ASCII HEX CHARACTERS GIVE
THE ADDRESS WHERE THE FIRST DATA BYTE OF THE
RECORD IS LOCATED.

RT - RECORD TYPE: THE RECORD TYPE IS ALV/AYS 00
EXCEPT FOR THE LAST RECORD OF AUTOSTART FILES,
WHERE IT IS 01.

DATA - TWO ASCII HEX CHARACTERS REPRESENT EACH
8-BIT DATA BYTE.

CK - CHECKSUM: TWO ASCII HEX CHARACTERS GIVE THE
NEGATIVE SUM OF ALL PREVIOUS BYTES IN THE
RECORD, EXCEPT FOR THE COLON. THE SUM OF ALL
THESE BYTES PLUS THE CHECKSUM EQUALS ZERO.

Figure 4 - INTEL HEX File Record Format

33

The free address space of the present MES, 4000H to

0BFFFH, is therefore sufficient for the needs of these file

types. As mentioned, most distributed software does not come

in these formats. For use of the MES in "beginner and

intermediate level course work, however, this restriction

should not be a dominant disadvantage in applications

development and in gaining an insight into the use of

microprocessors .

Because of the time constraints imposed, as well as this

student's lack of familiarity with page relocatable file

formats, only the use of type '.HEX' files are supported for

upload and download operations in the current version of the

AMES.

Other limitations of the system are: the lack of

breakpoint setting and cpu register examination facilities

in the MES; the lack of a facility for moving blocks of MES

memory! the inability to operate the MES in a true

in-circuit emulation mode; the current limitation of having

only a single processor and the inability to operate

multiple processors on the MES bus; and the limitations

already discussed concerning communications protocols.

Most of these limitations are only temporary, with the

possible exception of obtaining true in-circuit emulation.

The high communications overhead of the HOST to MES

interface can be avoided by user programs in the MES memory

34

simply by utilizing a separate console and the additional

MDS serial port when the need for high speed data transfer

arises .

35

IV. CONCLUSIONS ANE RECOMMENEATIONS

The original needs stated for the microprocessor

development system have been met, with the exceptions noted

as limiting factors. Even with these limitations imposed on

the current design, however, it is felt that a significant

tool has been added to the snail, but growing Electrical

Engineering microcomputer laboratory. The final design of

the system has left considerable room for future expansion

and improvement in both areas of software and hardware and

is thus a good vehicle for additional thesis study.

A. FUTURE HAREWARE

There are numerous changes and enhancements to be made

to the system in the hardware area. Some of these

enhancements are described below.

Implementation of hardware initiated communication
control signals to increase system response and
throughput

.

The addition of a Faster/Slave cpu capability to
operate and evaluate different microprocessor types on
the same bus? this capability would have to be
implemented via the use of interrupts and the bus
request control lines plus appropriate software.

The addition of analog to digital and digital to
analog (A/D and D/A) capability will significantly
increase the usefullness of the system in hardware
development applications.

36

Another worthwhile improvement would be the addition
of a PROM programmer with the capability to change its
personality under software control in order to program
different types of PROMs.

and the list goes on.

B. FUTURE SOFTWARE

Many of the immediate enhancements to the system will

probably be an outgrowth of the limitations pointed out

previously. These include making changes for the use of CP/M

'.COM' files and adding support for page relocatable files.

These two additions alone, would tremendously improve the

potential uses of the AMDS.

Other near future additions should include facilities

for moving blocks of MDS memory and for the use of

breakpoint, single-stepping and program trace routines. Such

routines would probably be best implemented as individual

files downloaded to the MES memory. The routines couli then

operate as an extension of the onboard monitor. This would

also provide the flexibility to execute routines for

different processors under control of a dedicated monitor.

The addition of software for cross assembly of source

code between various processors is another recommendation

worth careful consideration. One idea, which was considered

for inclusion in this thesis but was axed for lack of time,

is the use of macro assemblers for cross 'translation' of

source code. The idea would be to develop source code usin 6
"

37

the standard mnemonics of a particular processor and then

translate the source code to the mnemonics understood by

whatever processor is actually available. Once this is

accomplished, testing and debugging of the software can be

done with available hardware. The code can then be

translated or cross assembled back to code for the original

processor and put to use in its intended application, ail

without the use of a true development system for that

processor.

Finally, an area of great promise is that of systems

networking. The new C?NET and MPNET loose-coupled network

facilities, by DIGITAL RESEARCH Corporation, provide

numerous avenues for further study into allowing the AMES to

share its resources with other computer systems.

All of these improvements are feasible and cost

effective. These additions will also allow much of the

burden to be taken off the beginning program and hardware

designers. Much of the less interesting trivia normally

associated with applications development can be skipped over

and the solution to the problem can be approached in a more

efficient and structured manner.

38

APPENDIX A

AMES USERS GUILE

TABLE OF CONTENTS

1. INTRODUCTION 40

2. HOW TO USE THE AMDS 41

3. GETTING STARTED 43

4. SYSTEM FUNCTIONS (USER OPTIONS) 44

5. INFORMATION OF GENERAL INTEREST 52

6. TIPS FOR PROGRAMMING THE MIS 54

7. SYSTEM ERROR MESSAGES 57

39

AMES USERS GUILE

1. INTROEUCTION

The ALTOS Microprocessor Eevelopment System (AMLS) is

designed to be used as an aid to students in beginning and

intermediate levels of software and hardware applications

development. The system consists of an ALTOS microcomputer,

running under the CP/M or MP/M operating systems, and a

hardware development and testing system built around the

PRO-LOG STD bus. Included in the current (June 1981)

hardware development system are a 2MHz Z80 cpu card with

onboard monitor in EPROM and 4K bytes of static RAM, two 16K

byte static RAM cards and a dual USART asynchronous RS-232C

serial I/O card. The ALTOS and the hardware development

system are linked together via a serial I/O channel.

The ALTOS computer, hence referred to as the 'HOST',

exercises control over the hardware development system

(designated as the 'MLS') via the execution of the HOST

control program named AMIS.COM . The onboard monitor in the

MLS contains routines which complement those in the HOST

control program, though on a less complex scale. A more

detailed treatment of the inner workings of the AMDS system

is available in the student thesis by LT . Stephen M. Hughes,

U3N, titled "a Microprocessor Eevelopment System for the

ALTOS Series Microcomputers".

40

2. HOW TO USE THE AMDS

The AMIS' primary use is in the design and testing of

both software and hardware applications in a real time

environment. The typical steps for effective use of the

system would be as follows:

a) Using standard CP/M or MP/M software development

tools, such LIT, TEE, EI, ASM and MAC, the user would

develop, test and debug (to the extent possible)

software to be used in a hardware/microprocessor

oriented application.

b) Simultaneously to step a), the user, or other

members of a project team, would be designing, wire

wrapping and performing initial tests on the hardware,

using available test equipment such as oscilloscopes,

digital voltmeters, etc.

c) At such time as the hardware and software are

ready to be tested together, the AMDS would come into

use. At this point the wire wrapped circuitry would be

inserted into a slot in the development bus, the

software would be downloaded to the MDS memory and, via

the use of the AMDS user options, the software and

hardware would be tested as a single unit.

41

d) Refinements and correction to both hardware and

software could then be made as in steps a) and b) and

step c) then repeated until the application operates as

intended.

The intent of this procedure, though it might appear

cumbersome, is to allow the software programmers to

concentrate on their work using proven and tested

development aids while simultaneously allowing the hardware

designer/builders to forge ahead in their respective areas.

The lesson to be learned is the 'real world' concept that

communications between such distinct but collectively-

important segments of a team effort are what is necessary

for successful fullfillment of the project goals. These

intergroup communications require that each team carefully

plan the project in its initial stages of development and

that the division of responsibilities and the methods of

implementation of the project are thoroughly understood by

all members of the team. With this type of planning and

communication of ideas, the AMIS concept is thus seen as

less cumbersome than initially thought and actually allows

for a very flexible working environment. The use of the AMES

also relieves the hardware designers of much of the burden

previously placed on students to design and wire wrap their

own cpu and memory cards.

42

3. GETTING STARTEE

This section is intended as a quick review for those

already familiar with the use of the AMIS. Others should

carefully review the remainder of this guide prior to

attempting to use the system.

With software developed and tested as best possible

(naturally those software routines fully dependent upon the

hardware have not been completely tested) and with the

hardware prototype in hand, the stage is set for utilization

of the AMDS.

With the MES power OFF (!) the prototype card is

inserted snugly into one of the wide slots of the card cage

which are specially designed to accept wire wrapped cards.

After insuring the card is properly in place, the power is

then switched on and the MES reset switch is pressed. The

MES is now ready for use.

Next, the AMES HOST control software is initiated from

the ALTOS system console by typing 'AMES', followed by a

carriage return. The HOST control program then loads into

memory and begins execution by displaying a menu of user

options and prompts the user for a reply. At this point the

user(s) may proceed with testing using the options described

in subsequent sections of this guide.

43

4. SYSTEM FUNCTIONS (USER OPTIONS)

The AMDS control program is designed as a menu-driven

program. This means that after each primary task is

completed, the user is shown a menu of options from which he

may chose his next move. Each of these options is discussed

in the remainder of this section of the guide.

A. SUPPRESS PRINTING MENU -

Selection of option 'A' allows the experienced AMIS user

to automatically suppress the display of the menu at the

end of each option. When this is done the system status

(whether the HOST or MES is in control) and reminders of

which option suppresses and which does not suppress the

menu are printed, followed by the prompt to input a menu

option.

B. EO NOT SUPPRESS PRINTING MENU -

Opposite of option 'A', option 'B' allows the user to

regain full menu display if he cannot remember the

option code he wishes to select.

C. BASIC INSTRUCTIONS -

Option 'c' displays a set of basic instructions for use

of the AMES. These instructions should normally answer

the questions of most first time users without the need

to resort to this guide.

44

D. HEXADECIMAL ADD and SUBTRACT -

Option 'I' allows the user to quickly obtain the 16 hit

hexadecimal sum and difference of two numbers. When this

option is selected, a nessage verifying the option

actually entered will be displayed, followed by a prompt

for input.

The input expected is two hexadecimal numbers, of up to

four digits each, separated by either a comma or a space

as the following example shows:

>01AF F3AB or >01AI\F3AB

The sum and difference of these two numbers are then

displayed as:

SUM = F55A DIEF = 0E04

The user is then returned to the menu for selection of

another option.

(
** This option has the same input format as the 'H'

command in DDT **
)

E. RETURN SYSTEM CONTROL TO HOST -

Selection of option 'E' is necessary only when the

system control has been passed to the MDS via a previous

command for it to execute a program in its own memory.

This option then allows the user to request the MDS to

45

terminate its present action and return control to the

HOST in preparation for subsequent commands.

** Note that this option may not he effective if the

program being executed in MIS memory runs astray or

never checks for or attempts to perform I/O with the

HOST. The only remedy in this situation is to manually

reset the MDS .

F. RETURN TO GP/M -

Selection of option 'F' will terminate use of the AMDS

and return the user to the CP/M (or MP/M) operating

environment. (The input of a control C as the first

entry after any prompt will also accomplish the same

thing.)

G. EOWNLOAE HEX FILE - DISK TO MES -

Option '&' allows the user to download an INTEL Hex

format file from disk to MES memory. Hex files are

normally generated in the course of the assembly

process .

** Note that only 'HEX' file types are supported in this

version and the system will not accept requests for any

other types.

When this option is selected, an option verification

message is displayed and the user is prompted to input

the filename. The entry of the filetype 'HEX' is

46

optional but acceptable. Rules for acceptable filenames

follow those set forth in CP/M documentation with the

exception that ambiguous filenames (those containing

?'s) are not accepted. Additionally, only the currently

logged in disk drive will be used for disk I/O and if

the drive select code is entered with the filename it

will be ignored if it fails to match that which is

currently logged in.

After the Hex file is successfully downloaded, a message

to that effect will be displayed and the user will be

returned to the menu.

H. UPLOAE MES MEMORY TO HEX EISK FILE -

Option 'H ' is just the reverse of option 'G ' . Filename

input is the same. After the filename is input, the user

is prompted for the starting and ending addresses in MES

memory from which the contents are to be saved on disk

in a 'HEX' type file. Acceptable inputs are two

hexadecimal numbers, the first being less than the

second, input in the same manner as in option 'E':

>403C 659F

When the upload is completed, the user will be so

informed and returned to the menu.

47

I. EXAMINE/SET MIS MEMORY LOCATION (3) -

Option 'I ' allows the user to examine and modify (set)

the contents of MBS memo:/. The first prompt is for the

initial MIS address to be examined such as: >0BC3 . The

system then fetches the data from that location and

displays it as:

0B33 3ft

and waits for more input after the '3A ' . If the user

desires to change the data in that memory location, he

may then enter the new data. The system stores the new

data and automatically advances, examines and displays

the next sequential location in MLS memory. This process

continues until a period is the only data input.

If no modification of a memory location is desired, a

carriage return will cause an advance to the next memory

location without modifying the VIS memory.

(** This option has the sar e I/O format as the '5'

command in LET **
)

J. CONTINUOUS SET OF MDS MEMORY -

Option 'J' is similar to the examine/set option

except that it does not examire the MDS memory, it only

modifies it with sequential input data. The first input

requested is the starting MLS address for modifications,

i.e. >13DA . The second and subsequent prompts are for

48

data to be entered into MLS memory, sequentially

starting at the address specified. Input data may be up

to 255 characters long (including spaces and commas) for

a single line of input. If more than 255 characters are

input, the system merely issues another prompt for a

continuation line. Each byte of data is separated by a

space or a comma. Wnen input is completed, a period

entered after the promp; will terminate the option.

£. FILL MLS MEMORY IV. H SPECIFIEL BYTE -

Option 'K ' enables the user to fill any portion of MLS

memory with a specifi.ec" byte of data. The advantage of

this is to allow the vser better knowledge of the

current contents of ME3 memory and to help in

identifying needed dati during memory dumps to the CRT.

The input expected af .ei the prompt are the start and

ending MES addresses followed by the data to be placed

in those locations. For example:

>0395,7FL0,2A will fill MLS memory between,

ani 'ncluding, locations 2295H

and 7FL0H with data 2A, the

AJCII code for '*'

(
** This option has the same input format as the 'F'

command in LLT **)

49

L. LOCATE BYTE SEQUENCE IN MIS MEMORY -

Option 'l' allows the user to search MIS memory for a

sequential data seruence up to 16 bytes long. The first

input prompted fcr is the search start address followed

by an optional en* address as shown:

>0023 579A or X023

If no end address is given it will default to 0FFEEE.

The next prompt is for the byte sequence as:

>00 03 45,9A,CC up to 16 bytes

If the sequence is found, the starting address of the

sequence in MIS memory is displayed. If not found, an

appropriate message is also displayed.

M. LUMP MES MEMORY LOCATION(S) TC CONSOLE -

Option 'M' provides for a hexadecimal and ASCII MIS

memory dump to the CRT. The only inputs required are the

start and optional end addresses for the dump in the

same format as option 'L'. If no end address is

specified it defaults to the start address + 256.

(
** The dump I/O format is the same as that for the "D

'

command in LET **
)

If the user wishes to continue the dump after the

initial dump completes, he may type in the letter 'E' to

50

dump the next 256 byte block. Any other input will

return the user to the menu.

** Note that unlike the LET dump command, the only way

to abort a memory dump is by pressing the ESCape key.

N. EXECUTE MES MEMORY FROM A SPECIFIEL LOCATION -

Option 'N* allows the user to pass system control to the

MIS and let it execute a program in its memory. User

input required is the MLS start address of the program

to be executed. After the address is input, the user is

asked whether or not the program to be executed in MLS

memory will be sending data to the HOST console for

display. If the answer is no, then the user is returned

to the menu. IF the answer is yes, then the HOST system

loops waiting for data to display, until one of the

conditions mentioned below is met.

** Note that when this option is selected, the options F

through N are disabled until the MLS returns control to

the HOST; when the 'E ' option is selected; or when the

MLS system is manually reset.

** For further discussion on the proper use of this

option, see the section on 'TIPS FOR MLS PROGRAMMING'.

51

5. INFORMATION OF GENERAL INTEREST

a) The prompt for all user input is '>'
.

b) All inputs may be in either upper or lower case

alphabetics .

c) All input is terminated with either a carriage

return or a line feed.

d) All address and data inputs are expected to be in

hexadecimal notation. Address inputs contain from 1 to 4

hex digits and data inputs contain 1 or 2 hex digits.

e) When inputting addresses and data, mistakes may

be corrected in two ways: 1) by using the RUPOUT key or

backspace keys to delete input or 2) by simply

continuing to input the hex characters until the correct

ones are input. For addresses, the program always takes

the last four or less hex digits input and for data, the

last two or less digits entered. At least one digit must

be entered for every required input parameter.

f) A question mark '?
' entered during input will

cause the required input formats for each option to be

displayed. When the display is completed, the currently

selected option is restarted.

52

g) If the ESCape key is entered as input, the option

is immediately terminated and the user is returned to

the menu.

h) The MES is automatically reset at power-on but it

is generally a good idea to manually reset it anyway.

i) The MDS to HOST serial I/O port and the

additional I/O port in the l^ES are both initialized at

every reset to operate at a 9600 baud rate.

53

6. TIPS FOR PROGRAMMING THE MES

a) If a program requires considerable communications

with the user, the best terminal response will be gained

by using a separate CRT attached to the spare serial I/C

port in the MES. This port may be reprogrammed for a

different baud rate if necessary (see the PRO-LOG dual

UART documentation for detailed steps for programming

channel B)

.

b) If the user does not wish to fool with

programming the MDS channel B Q5ART, but still has the

need for console I/O, his program may use the routines

built into the monitor specifically for this purpose. In

a manner similar to the BEOS calls used by CP/M, the

user program may call location 0005H in the monitor for

console I/O using the HOST console. The conventions for

these calls is as follows:

for input from the HOST console the user program

should call MES address 0005H with the function code 01H

in register CJ the character from the console will be

returned in the Accumulator

- for output to the console, a call is made to MES

address 0005H with the function code 02H in register C,

and the character for output in the Accumulator

54

- to merely check to see if input has been received

from the HOST, address 00259 is called with function

code 03H in register C ; if no character is waiting the

accumulator will be returned = 00H, otherwise A = 0FFE

meaning input has been received

- if a call is made to MDS address 0005H with a

function code in register C other then 01H, 02H or 03H

,

no I/O will take place and the C register will he

returned with 0FFH

** Two points should he remembered when using the

HOST console for I/O:

1) the data returned from the I/O port is a full

eight bits as received with no stripping of the high

order bit for ASCII data

2) when the console is to be used for user program

I/O, be sure to answer yes to the query about console

I/O when option 'N' is selected

c) if no I/O with the host console is necessary, as

in a) above, the user program should at least

periodically check the HOST port status to see if it

wants to terminate the execution of the user program. If

data is waiting a call should be made as explained above

to fetch the data so that the monitor can interpret it

55

d) the user always returns control to the HOST via a

jump to location 0038H in MES memory; a RST 7

instruction will also accomplish the same thing

e) do not forget that MDS user memory starts at

location 4000H and all HEX files should be assembled for

addresses above that location

56

7. SYSTEM ERROR MESSAGES

System error messages are the result of either user

data input errors or disk I/O errors. A list with brief

explanations follows:

A. USER INPUT ERRORS -

INVALIE MENU SELECTION - this message is displayed

when an option is input which is not one of the

selections from the menu. (* this error returns the user

to the menu *)

TOO MANY OR TOO FEW DELIMITERS IN INPUT - used to

indicate that too many or too few parameters were input

than expected. Acceptable delimiters are a space or a

comma. (* this error restarts the current option *)

PERIOD ONLY PLEASE ! - given when a period is input

to terminate input and the period is preceded or

followed "by other input data. Only a period may he

input. (* this error restarts the current option *)

INVALIE HEX DIGIT - an input of a non-Hex digit (not

in the range 0-9, A-F) was attempted. (* this error

restarts the current option *)

57

CAN'T HAVE A DELIMITER AT START CR END OF INPUT -

either a space or a comma was input as the first or last

character in an input line. (* this errorestarts the

current option *)

TWO OR MORE DELIMITERS SEQUENTIALLY - too many

delimiters were inserted between input parameters. (*

this error restarts the current option *)

AMBIGUOUS FILENAMES NOT ALLOWED - the filename which

was input contained a '?'
. (* this error reprompts for

new input *)

COLON (:) NOT PROPERLY PLACED IN FILENAME - the only

colon allowed in the filename is after the drive code

and before the first letter of the filename. (* this

error reprompts for new input *)

FILENAME TOO LONG OR TOO SHORT - maximum filename

length is 8 characters; minimum is 1. (* this error

reprompts for new input *)

HEX FILETYPES ONLY ! - only files of type '.HEX' are

implemented in this version. (* this error reprompts for

new input *)

53

NO SPACES ALLOWED IN FILENAME - filename characters

must be sequential with no spaces. (* this error

reprompts for new input *)

NON-PRINTABLE CHARACTERS NOT ALLOWED IN FILENAME -

only printable characters are allowed in filename. (*

this error reprompts for new input *)

START ADDRESS CANNOT BE GREATER THAN FINISH ADDRESS

- when in the UPLOAD option, the user must specify MES

memory address boundaries for upload with the start

address lower than the end address. (* this error

restarts the upload option *)

WARNING - ONLY CURRENTLY SELECTEI DISK WILL BE USED,

INPUT IGNORED ! - this version of AMDS does not allow

disk drive specification unless it is the same as the

disk currently logged in to the user. Other drive

specifications are ignored and the option defaults to

the currently logged disk.

B. DISK I/O ERRORS -

FILE NOT FOUNT - the file specified cannot be found

in the directory for download to the MDS. (* this error

restarts the download option *)

59

HEX CHECKSUM ERROR - a data error was detected while

trying to download a HEX file. (* this error returns the

user to the menu *)

DISK REAL ERROR - an attempt was made to read a disk

file but was unsuccessful; check diskette media then the

disk drive. (* this error returns the user to the menu

*)

OUT OE EIRECTORY SPACE - disk directory is full;

delete files or use another diskette. (* this error

returns the user to the menu *)

OUT OF DIRECTORY OR DISK STORAGE SPACE - ran out of

space in one of these areas while attempting to write

data to a disk; *** when this occurs, the data already

written is deleted, i.e. NO PARTIAL files are saved ***.

(* this error returns the user to the menu *)

60

APPENDIX B

FLOWCHARTS FOR HOST AND MDS USER OPTIONS

OPTION A

SET MENU
SUPPRESSION

FLAG

MENU

OPTION B

RESET MENU
SUPPRESSION

FLAG

I
MENU

MENU SUPPRESSION NO MENU SUPPRESSION

OPTION C

PRINT
INST '

S

I
MENU

BASIC INSTRUCTIONS

OPTION D

GET 2 NO • s

CVT TO BINJ

DO ADD &
SUBTRACT

CVT TO HEX
i& DISPLAY

±
MENU

HEX ADD/SUBTRACT

61

OPTION E OPTION F

REQUEST
CONTROL
FROM MDS

PRINT
SIGNOFF

CP/M(MP/M)

RETURN CONTROL TO HOST RETURN TO CP/M

62

DOWNLOAD HEX FILE TO MDS MEMORY

f OPTION G

GET
FILENAME

OPEN FILE

SEND MDS
DWNLD CMD

^L

READ A
HEX RECORD

SEND RL.LA
& DATA+MDS

TELL MDS
DONE

(HOST FLOW)

C DWNLD

GET RL, LA,

DATA: STORE

NO

(MDS FLOW)

63

UPLOAD FROM MDS MEMORY TO HEX DISK FILE

OPTION H

GET
FILENAME

DELETE
FILE

CREATE
NEW FILE

(HOST FLOW)

C UPLD

GET START/
END ADDRS.

SEND DATA
TO HOST

NO

(MDS FLOW)

GET START &

END ADDRS.

SEND UPLD
CMD & ADDR
TO MDS

GET DATA
FROM MDS

1
'FORMAT DATA'
& WRITE TO

DISK

CLOSE FILE

MENU

TELL HOST
DONE

2L

MONITOR

64

EXAMINE/SET MDS MEMORY

OPTION I

GET START
ADDRESS

L

SEND CMD &
ADDR -» MDS

GET DATA
FROM MDS

DISPLAY
DATA

(HOST FLOW)

GET NEW
DATA

SEND DATA
TO MDS

YES

EXAM

JL

GET START
ADDRESS

X
SEND DATA
TO HOST

NO

JL
GET NEXT
MDS DATA

(MDS FLOW)

65

CONTINUOUS MDS MEMORY SET

OPTION JD

GET START
ADDRESS

SEND CMD &
START ADDR

GET DATA
FOR MDS

YES

SEND DATA
TO MDS

TELL MDS
DONE

C MENU

CONT

GET START
ADDRESS

GET DATA
FROM HOST
STORE IT

(HOST FLOW) (MDS FLOW)

66

FILL MDS MEMORY WITH SPECIFIED BYTE

OPTION K

GET START &
END ADDR'S
& DATA

SEND CMD +

ADDR's/DAT/

YES

MENU

FILL

GET ADDR' S

& DATA

V
FILL

MEMORY

_*L
YES

TELL HOST
DONE

MONITOR

(HOST FLOW) (MDS FLOW)

67

LOCATE BYTE SEQUENCE IN MDS MEMORY

OPTION L

±.
GET START/
END ADDR'S
& DATA

SEND ADDR'S
& DATA/CMD

PRINT
FOUND ADDR

T

C MENU

LOCATE

^.
GET ADDRS
& DATA

DO SEARCH

SEND
FOUND MSG

Q

XL
SEND NOT
FMD MSG

)S1

MONITOR

(HOST FLOW) (MDS FLOW)

68

DUMP MDS MEMORY TO THE HOST CONSOLE

OPTION M DUMP

GET/SEND
START /END
ADDR'S

J>L

GET MDS
DATA:

DISPLAY IT

I
GET START/
END ADDR'S

—

'

V
SEND DATA
TO HOST

/done?\ NO

[YES

MONITOR

(HOST FLOW) (MDS FLOW)

69

EXECUTE USER PROGRAM IN MDS MEMORY

OPTION N

GET EXEC.
ADDRESS

SEND CMD+
ADDRESS

(EXEC J

±.

JUMP TO
EXEC ADDR.

±.

MDS EXEC
COMPLETE

±.

MONITOR

(HOST FLOV/) (MDS FLOW)

70

APPENDIX G

AMES HOST CONTROL SOFTWARE LISTING

^^#^^#^#^^^^5^^^j^^#^#^^4e^^^^*^^5^rJt3j:3ie^t3^^:^«^s^e^;5^5}c^e3^^;^5}e^s^C5jc^;4:^e4:}JS5^s5s^^:

AMDS - ALTOS MICROCOMPUTER DEVELOPMENT SYSTEM
(HOST CODE)

#

* VERSION 1.5, 28 MAY 1981
* LT. STEPHEN M. HUGEES - author
*

* This is the HOST (ALTOS) control code for the AMDS
* Separate code for the MDS onboard monitor is listed
* under the filename AMDS1.ASM .

* The AMDS user's manual should he consulted for
* specifics not given in the documentation which follows. *
* *

*

*

org 100h

CPM EQU 0000H
BDOS EQU 0005E
MSTATPT EQU 29H
MDATAPT EQU 28H
CONIN EQU 1

CONOUT EQU 2

PRTSTRG EQU 9
READCON EQU 10
CONST EQU 11
OPENF EQU 15
CLOSE? EQU 16
DELF EQU IS
READF EQU 20
WRITEF EQU 21
MAKEF EQU 22
CURRNTD EQU 25
SETDMA EQU 26
CR EQU 0DH
LF EQU 0AH
ESC EQU 1BH
COMMA EQU i

PERIOD EQU
* *

•

SPACE EQU
* *

EKSPCE EQU 0SH
XON EQU 011H

WARM BOOT RE-ENTRY TO CP/M
EOS ENTRY POINT
MDS SIO STATUS PORT
MDS SIO DATA PORT
CONSOLE INPUT FUNCTION
CONSOLE OUTPUT FUNCTION
PRINT STRING TO CONSOLE
READ CONSOLE DUFFER
CONSOLE STATUS FUNCTION
OPEN FILE FUNCTION
CLOSE FILE FUNCTION
DELETE FILE FUNCTION
READ SEQUENTIAL FUNCTION
WRITE SEQUENTIAL FUNCTION
MAKE FILE FUNCTION
GET CURRENT DISK FUNCTION
SET DMA ADDRESS FUNCTION
ASCII CARRIAGE RETURN

LINE FEED
ESCAPE COEE
COMMA
PERIOD
SPACE
EACK-SPACE

ASCII
ASCII
ASCII
ASCII
ASCII
ASCII
CONTROL Q

71

MINCHCE EQD 'A' AND 1FH JMINIMUM MENU CHOICE
MAXCHCE EOU 'N'+l AND 1FH ;maximum menu choice
EOF EQU 1AH JCONTROL Z - END OF FILE or

; BUFFER INDICATOR
NHSTCMB EQU 6 J CURRENT NUMBER OF HOST CMS
STACK EQU * J64 LEVEL STACK AVAILA3LE

STARTER XRA A INITIALIZE HOST IN CONTnOL,
STA SYSSTAT
STA MENUSUPF ;menu not suppressed
LXI D.SIGNON JPRINT SIGNON AND BASIC

J INSTRUCTIONS
CALL PRINT

MENU XRA A ; INIT . MDSRDYF EVERY TIME
STA MDSRDYF
INR A JDEFAULT TO NO MENU
STA MENUFLG ; SUPPRESSION ON MENU ERRORS

; OTHER THAN INVALIE CHOICE
MVI A, 48 JINIT. CONSOLE REAL BUFFER
STA CONBUFF J TO 48 CHARACTERS MAX
LXI SP, STACK JSET STACK POINTER
LDA MENUSUPF JPRINT MENU?
ORA A
JNZ MENU01 JNO
LXI D,MENUMSG ;yes
CALL PRINT

MENU01 CALL STATSYS JDISPLAY SYSTEM STATUS
CALL BUFFRB jget MENU CHOICE
XRA A JNO DELIMITERS ALLOWED
CALL SCAN JCHECK INPUT FOR DELIMITERS
JNC MENU011 ; SCAN OK
LXI D,MFBELERR J INPUT ERROR (SYNTAX LIKELY)
CALL PRINT
CALL LELAY ; DELAY TO READ ERROR MSG
JMP MENU JBACK TO MENU

MENU011 INX D JALL INPUT OK, POINT TO IT

LCR B J AT END OF BUFFER YET?
JNZ MENU011 J NO, TRY AGAIN
LDAX D J GET OPTION
ANI 1FH JDELETE ASCII BIAS
CPI MINCHCE JIS CHOICE < 'A'?
JC MENU012 J YES, ILLEGAL CHOICE
CPI MAXCHCE JIS CHOICE VALID?
JC MENU013 J APPEARS TO BE

MENU012 MVI A,l J NO - PRINT ERROR MSG #1
JMP ERROR

MENU013 PUSH PSW JSAVE OPTION
CPI NHSTCMD J IF HOST CMD, MDS CONTROL
JC MENU014 J HAS NO EFFECT (EXCEPT

J EXIT CMD)

72

LEA SYSSTAT
ORA A

JZ MENU014
LXI D,CNTRLMSG
CALL PRINT
JMP MENU

MENU014 POP PSW
MENU1 STA MENUFLG

CALL MENUCH

MENUCH MOV C ,A

MVI B,0
LXI H,CH0ICE-3
DAD B

DAE B
DAD B

PCHL
NOP
NOP

;get system status

jhost in control
jmds in control

jonly escape will get
j control back
jretrieve option
j save choice for use in
j helping user later
jbranch to appropriate
J CHOICE

JCOMPUTE MENU CHOICE VECTOR

JCHOICE VECTOR IS IN PC

THIS
TO

CHOICE

MDS

JUMP TA BLE MAY BE
26 MENU CHOICES *

JMP MENSUP
JMP NOMENSUP
JMP INST
JMP HEXARITH
JMP RCNT2HST
JMP CPM

COMMAND JUMP TABLE

JMP DWNLD
JMP UPLD
JMP EXAM
JMP CSET
JMP FILL
JMP LOCATE

JMP DUMP
JMP EXEC

ADDED TO FOR FUTURE EXPANSION UP *

5SUPPRESS MENU
;DO NOT SUPPRESS MENU
J INSTRUCTIONS
JHEX SUM & DIFF.
JRETURN CONTROL TO HOS
,* RETURN TO CPM

jeownloae hex file
jupload hex file
jexamine/set mes memory
jcontinous set w/o examine
jfill mds memory
;locate byte sequence in

j mes memory
j dump mds memory
jexecute mes memory

HOST COMMANDS ONLY - MDS DOESN'T CARE WHAT IS ***
*** EAPPENING ***

* MENU SUPPRESSION *

73

MENSUP MVI
STA
JMP

A,l
MENUSUPF
MENU

JSET MENU SUPPRESSION FLAG

* NO MENU SUPPRESSION (DEFAULT) *

NOMENSUP XRA
STA
CALL
JMP

JRESET MENU SUPPRESSION FLA}
MENUSUPF
CRLF
MENU

* INST - INSTRUCTIONS *

INST

INST1

LXI
CALL
CALL
RRC
JNC
CALL
JMP

E,INSTRUC
PRINT
CONSTAT

INST1
CONSIN
MENU

JPRINT INSTRUCTIONS

JWAIT FOR RESPONSE

JLOOP
J GET CHARACTER

* HEXARITH - AEEITION/SUBTRACTION OF T'aO HEXAEECIMAL *

* NUMBERS *

PRINT VERIFICATION MESSAGEHEXARITH LXI E.HEXMSG
CALL PRINT
CALL BUFFRE
MVI A,l
CALL SCAN
JNC HEX1
MVI A,

2

JMP ERROR
HEX1 CALL GET4BIN

SHLE FIRST
CALL GET4BIN
SHLI SECONL
MOV B f H
MOV C,L
LHLL FIRST
EAE B
SHLD SUM
LHLL FIRST
ORA A
MOV A,L
SUB C

MOV L,A
MOV A,H
SBB B

MOV H,A
PUSH H

GET INPUT
ONE EELIMITER REQUIRE!
CHECK FOR IT
ALL EELIMITERS OK

EELIMITER ERROR

GET FIRST NUMEER
SAVE IT

GET SECOND NUMBER
SAVE IT

BC = SECONL NUMBER

HL = FIRST NUMBER
HL = HL + BC
SAVE SUM
HL = FIRST NUMBER
CLEAR CARRY
HL = HL - BC - CARRY

74

POP B JBC = DIFFERENCE
LXI H,HEXMSG2+7 JCONVERT FOR PRINTIN
CALL CNVT16
LHLD SUM JNOW PREPARE SUM FOR
PUSH H J PRINTING
POP B JBC = SUM
LXI H,HEXMSGl+6
CALL CNVT16
LXI D,HEXMSG1 JPRINT SUM & EIFFERE
CALL PRINT
CALL CRLF
JMP MENU JRSTURN TO MENU

MLS COMMANLS - INITIATE! BY HOST IN ALL CASES ***

* DWNLL - HEX FILE DOWNLOAD FROM DISK TO MDS MEMORY *

#

DWNLD LXI D.DWNLDMSG
CALL PRINT
CALL GETFILEN
LXI D,FCB
CALL OPENFILE
CPI 255
JNZ OPENOK
MVI A, 13
JMP ERROR

OPENOK MVI A,'w'
CALL MLSCMD
XRA A

STA CONTFLG
STA FIRSTIME

RLFILE LXI H.DSKBUFF
CALL REACSK
LXI H,DSK3UFF

RECHD MOV A,M
CPI ':'

JZ RECLEN
I NX H

CALL EOFCK
JMP RECHL

RECLEN MVI B,0
CALL HEXBIN
ORA A

JZ BWNLENE
STA 3UFFCNT
MOV C,A
CALL MLATAOUT
CALL GETSADR

JPRINT VERIFICATION MESSAGE

JGET & CHECK FILENAME
JOPEN FILE

JFILE FOUND?
J YES
J NO, ERROR

JSEND DOWNLOAD CMD TO MDS

JRESET CONTINUATION $.

J FIRST THROUGH LOOP FLAGS

JPOINTER TO DISK BUFFER
JREAD IN AS MUCH AS POSSIBLE
JNOW CONVERT IT TO BINARY &

J SEND IT TO MDS
JFIND ': ' AS RECORD START

JFOUND IT

JEND OF FILE/BUFFER?
J NO, TRY AGAIN
JINIT. CHECKSUM
JGET RECORD LENGTH
JIF RECLEN=0, THEN DONS
J DONE
JSAVE THE RECLEN
J NOT LOME - SAVE RECLEN
JSEND IT TO MDS
JGET START ADDRESS

75

RECLEN1

HEXEATA

EWNLENE

GETSAER

LEA
RRC
JC
LOR
STA
SHLE
SHLI
CALL
XCHG
CALL
CALL
CALL
LCR
JNZ
CALL
INX
JMP
LHLE
PUSH
POP
LXI
CALL
LHLL
LEA
ALL
MOV
MOV
ACI
MOV
PUSH
POP
LXI
CALL
LXI
CALL
CALL
CALL
JMP

CALL
MOV
CALL
MOV
XCHG

RET

FIRSTIME

RECLEN1
A

FIRSTIME
START
FINISH
AEERCUT

HEXBIN
HEXEIN
MEATAOUT
C

HEXEATA
CHECKIT
H

RECHE
START
H

B
H.EWNEONE1+20
CNVT16
FINISH
BUFFCNT
L

L,A
A,H

H,A
H
B

H,EWNE0NEl+43
CNVT16
E,EWNEONE
PRINT
EELAY
HOSTEONE
MENU

HEX3IN
E,A
HEXBIN
E,A

IF FIRST TIME THROUGH LOOP
THEN SAVE AEER FOR LATEF

NOT FIRST TIME
SET THE FLAG

AND SAVE THE AEERESS
SAVE OTHER LOAE AEERS
SENE AEERESS TO MLS
GET BUFFER POINTER BACK
IGNORE RECORE TYPE
GET LATA BYTE
SENE EATA TO MES
EECREMENT RECORE LENGTH
MORE TO GET

SEE IF CKSUM IS OK
GET NEXT RECORE

JGET STARTING LOAE AEDR

JPREPARE IT FOR PRINTING

JNO'V REAEY THE FINISH AEER
JGET RECLEN

IPRINT COMPLETION MESSAGE

JTELL MIS EONE

JGET STARTING LOAE AEERESS
J FOR RECORE

JHL = LOAE AEERESS
JEE = BUFFER POINTER

CHECKIT CALL
XRA
AEE
RZ

HEXBIN
A

B

JCHECK FOR CORRECT CHECKSUM

JSHOULE BE ZERO
J OK

76

MVI
JMP

A, 14
ERROR

JCHECKSUM ERROR

* UPLI - HEX FILE UPLOAE (SAVE) OF MIS MEMORY TO DISK *

UPLD

UPLD01

aPLDl

UPLD2

UPLD3

MVI A ,123
STA BUFFCNT
LXI D.UPLDMSG
CALL PRINT
CALL GETFILEN
LXI D.FCB
CALL DELETE
CALL CREATE
CPI 255
JNZ UPLD01
MVI A, 16
JMP ERROR
CALL BUFFED
MVI A,l
CALL SCAN
JNC UPLD1
MVI A ,2
JMP ERROR
CALL GET4BIN
SHLD START
CALL GET4BIN
SHLD FINISH
XCHG
LHLE START
MOV A,E
SUB L

MOV A,E
SBB H

JNC UPLE2
MVI A,l?
JMP ERROR
MVI A,'U'
CALL MESCME
LHLD START
CALL AEEROUT
LHLE FINISH
CALL ADEROUT
LXI H,DSKBUFF
MVI A,':'
CALL BUFFCK
CALL WRITLEN
CALL WRITADDR

CALL WRITDATA
CALL WRITCKS

JINIT. BUFFER COUNT

PRINT VERIFICATION MESSAGE

GET FILENAME & CrIECK IT

EELETE ANY EXISTING FILE
CREATE A MEW FILE
CREATE OK?
YES
NO, OUT OF EIRECTCRY SPACE

GET ADDRESS INPUTS
ONE DELIMITER ALLOWEE

SCAN OK
ERROR

GET MDS START & FINISH
ADDRESSES FOR UPLOAD

;DE = FINISH AEERES3
; CHECK FOR START > FINISH

; ok
jerror - start > finish

jsend uploae cme to mes

isend start & end addresses

JSTORE RECORD HEADER

JSTORE RECORD LENGTH
JSTORE STARTING LOAD ADDR
J & RECORD TYPE
JGET AND STORE DATA
JSTORE CHECKSUM & CR ,LF

77

JMP UPLD3
WRITLN01 XRA A

JMP WRITLEN1
WRITLEN MVI A,16

WRITLEN1 MVI B,0
CALL BINHEX
RET

WRITADDR LEA START+1
CALL BINHEX
LEA START
CALL BINHEX
POSH H

LHLE START
LXI E,16
DAE D

SHLE START
POP H
XRA A

CALL BINHEX
RET

WRITDATA MVI C,16
WRITDTA1 CALL MESIN

LEA MESRDYF
RRC
JC WRITENE
CALL BINHEX
ECR C

RZ
JMP WRITETA1

WRITDNE XRA A

ECR C

JZ WRTEN001
CALL BINHEX
JMP WRITENE

*RTDN001 CALL WRITCKS
CALL WRITEND
LEA BUFFCNT
MOV B,A
CPI 128
JZ WRITENE1

WRITEN01 MVI M,EOF
I NX 3

ECR B

JNZ WRITEN01
CALL WRITEESK

WRITENE1 CALL CLOSFILE
LXI E,UPLEONE
CALL PRINT
CALL EELAY
JMP MENU

DO ANOTHER HEX RECORD
WRITE LENGTH, ALTERNATE
ENTRY FOR ZERO RECLEN

ALL RECORDS HAVE RECLEN=16
EXCEPT THE LAST
INIT. CHECKSUM
CNVRT TC HEX ASCII 8. STORE

JSTORE RECORD START AEER

ISAVS BUFFER POINTER

JBUMP START AEER FOR NEXT
J TIME

JRESTORE BUFFER POINTER
JSTORE RECORD TYPE

JDATA COUNTER
JGET DATA FROM MES
JMORE LATA OR MES EONE?

J MES EONE
JMORE LATA
J16 BYTES YET?
j YES
; no, continue

;fill remainder of record
j with zeros

JSTORE CHECKSUM
JSTORE LAST RECORD
J IS BUFFER FULL?

YES
NO, FILL REMAINDER WITH
EOF's

EONE WITH FILL?
NO, CONTINUE
YES, WRITE RECORD TO DISK
CLOSE THE FILE
PRINT COMPLETION MESSAGE

78

WRITCKS MCV
CMA

A,B

INR A
CALL BINHEX
MVI A,CR
CALL BUFFCK
MVI A,LF
CALL BUFFCK
RET

WRITEND MVI A,':'
CALL BUFFCK
CALL WRITLN01
XCHG
LXI H,0000H
SHLE START
XCHG
CALL WRITAIIR
CALL WRITCKS
RET

BUFFCK MOV M,A
INX H

LDA BUFFCNT
ECR A

JZ WRITEIT
STA BUFFCNT
RET

WRITEIT CALL WRITEESK

LXI H,ESKEUFF
MVI A, 128
STA BUFFCNT
RET

JSTORE CHECKSUM
JGET NEGATIVE OF SUM
J AEE ONE

JSTORE CR,LF SEQUENCE AT
J HEX RECORE ENE

J STORE LAST HEX RECORE

JSTORE 00 RECORE LENGTH
;EE = BU7FER POINTER
JSTORE 0000 LOAE AEER S.

J RECORE TYPE
IHL = BUFFER POINTER

JSTORE CHECKSUM

JSTORE LATA

J IS BUFFER FULL?

J YES, SAVE IT ON EISK
J NO, SAVE COUNT

JWRITE 128 BYTE RECORE TO
; EISK
JREINIT. BUFFER AREA
J ANE BUFFER COUNT

* EXAM - EXAMINE/SET MES MEMORY LOCATION(S) *

EXAM

EXAM01

EXAM1

LXI E,EXAMSG
CALL PRINT
CALL BUFFRD
XRA A

CALL SCAN
JNC EXAM01
MVI A,

2

JMP ERROR
CALL GET4BIN
SHLE START
MVI A,'x'
CALL MESCMD
LHLE START
CALL AEEROUT
CALL MDSIN
STA MESEATA

JPRINT VERIFICATION MESSAGE

JGET ADERESS INPUT
JNO EELIMITERS ALLO'a'EE

JEELIMITER CHECK
J SCAN OK
J INPUT ERROR (SYNTAX OR HEX)

JGET START ADERESS

JSENE EXAM/SET CME TO MES

JSENE START AEERESS TO MES
JGET DATA IN MDS MEMORY
J SAVE IT

79

EXAM020

EXAM02

EXAM2

NOSET
SET1

EXDONE

PUSH
MOV
LXI
CALL
POP
PUSH
LXI
CALL
XCHG
CALL
CALL
ORA
JZ
XRA
CALL
JNC
MVI
JMP
CALL
ORA
JZ
RAR
JC
MVI
JMP

CALL
MOV
JMP
LLA
CALL
POP
INX
JMP
CALL
JMP

H

C,A
H,EXAMSG2+1
CNVT8
B

B
H,EXAMSG1
CNVT16

PRINT
BUFFRD1
A
NOSET
A
SCAN
EXAM02
A,

2

ERROR
CKPERIOE
A
EXAM2

EXDONE
A,

3

ERROR

GET2BIN
A,L
SET1
MrSLATA
MEATAOUT
H
H
EXAM1
HOSTDONE
MENU

jsave aeer. being examinei
jc = md5data
jconvert lata for printing

;get addr. back,
; but save it
jconvert aler. for printing

jee = examsg1
jprint mes aeer. & lata
;get replacement lata
; if no input, then put ole
j lata back
;no eelimiters allowed

SCAN OK
INPUT ERROR
START OPTION OVER
IF INPUT WAS A PERIOE,
THEN EONE
N0 PERIOE, GET LATA

PERIOE ONLY?
YES - ALL DONE

; NO - PERIOE + LATA IS

; ILLEGAL, START OVER

JSENE NEW EATA

JGET OLE EATA

JBUMP ADDRESS FOR EXAM/SET

JGET MORE EATA FROM MES
fSIGNAL MDS DONE
JBACK TO MENU

* FILL - FILL MES MEMORY LOCATION(S) WITH SPECIFIED DATA *

FILL

FILL1

LXI E,FILLMSG
CALL PRINT
CALL BUFFRD

MVI A,

2

CALL SCAN
JNC FILL1
MVI A,

2

JMP ERROR
CALL GET4EIN
SHLE START

JPRINT VERIFICATION MESSAGE

GET INPUT ADDRESSES + FILL
EATA

TWO EELIMITERS REQUIRE!
CHECK FOR THEM
SCAN OK

JMP ERROR
START OPTION OVER

GET START AEERESS
SAVE IT

80

FILL2

CALL GST4BIN
SHLD FINISH
CALL GET2BIN
MOV A,L
STA CONSDATA
MVI A.'F'
CALL MDSCMD
LHLD START
CALL AEEROUT
LHLD FINISH
CALL AEEROUT
LEA CONSEATA
CALL MDATAOUT
MVI 1.1
STA STSSTAT
CALL MDSIN
XRA A

STA SYSSTAT
STA MESREYF
JMP MENU

JGET FINISH ADDRESS
J SAVE IT TOO
JGET FILL DATA
JA = DATA
J SAVE IT
JSENE FILL CME TO MES

?SENE START AEER. TO MES

JSEND FINISH ADDR. TO MDS

JSENE FILL DATA TO MDS

JMES IN CONTROL

JMD3 DONE FILLING?
J YES - CLEAR FLAGS

J RETURN TO MENU

* SEND 16 BIT AEERESS TO MES - CALL WITH HL = AEERESS *

JMSE FIRST

J THEN L5B

JBACK TO CALLER

JPRINT VERIFICATION MESSAGE

JINIT. CONSOLE REAE SUFFER
J TO 255 CHARACTERS MAX
JGET START ADDRESS
JNO DELIMITERS ALLOWED

J SCAN OK
J INPUT ERROR
JSTART OPTION OVER

AEEROUT MOV A,H
CALL MEATACUT
MOV A,L
CALL MEATAOUT
RET

* CSET - CONTINUOUS SET M

CSET LXI E,CSETMSG
CALL PRINT
MVI A,0FFH
S.TA CONBUFF
CALL BUFFRE
XRA A

CALL SCAN
JNC CSET01
MVI A,

2

JMP ERROR
CSET01 CALL GET4BIN

SHLE START
MVI A,'C'
CALL MDSCMD
LHLE START
CALL ADEROUT
JMP CSET11

CSET1 CALL CRLF
CSET11 CALL BUFFRD

JSEND CSET CMD TO MDS

JSEND START ADDRESS TO MDS

JGET REPLACEMENT DATA TILL
J BUFFER FULL OR <CR>

81

CSET2

CSET21

CSET3

CALL SCAN
CALL CKPERIOE
ORA A
JZ CSET2
RAR
JC CSET3
MVI 4,3
JMP ERROR
CALL STAR

CALL G-ET2BIN
MOV A,L
CALL MIATAOUT
MOV C,A
LXI H,DATAMSG+1
CALL CNVT8
XCHG
CALL PRINT
XCHG
MCV A,B
CPI 0FFH
JZ CSET1
CPI 00
JZ CSET1
JMP CSET21
CALL HOSTLONE

JMP MENU

;look FOR ESCAPE
jcheck for periol in input

j no period, get lata

; period only - all lone
jinput error,
j start option over
iprint a leading star
j prior to validation data
jget data

jsene it to mis

{send it to console fop.

; verification
jde = aldr. of datamsg

,*de = current conbuff ptr
;at end of buffer?

; YES, start over

; yes, start over
;no, get more data
;no data to send, signal
; MDS DONE
J RETURN TO MENU

* EXEC - EXECUTE MDS MEMORY FROM A SPECIFIED ADDRESS *

EXEC

EXEC1

EXEC11

LXI D ,EXECMSG
CALL PtfINT
CALL BUFFRD
XRA A

CALL SCAN
JNC EXEC1
MVI 4,2
JMP ERROR
CALL GST43IN
SHLD START
LXI D,EXMSG
CALL PRINT
CALL CONSTAT
RRC
JNC SXEC11
CALL CONSIN
ORI 20H
CPI V
JNZ EXEC2

JPRINT VERIFICATION MESSAGE

GET START ADDRESS
NO DELIMITERS ALLOWED

SCAN OK
ERROR
START OPTION OVER
GET START ADDRESS
SAVE IT

SEE IF DATA FROM MDS TO
CONSOLE OR NOT

WAIT FOR RESPONSE

LOOP
GET RESPONSE
FORCE TO LOWER CASE
CONSOLE INPUT FROM MDS?
NO, SEND CMD & RETURN TO
TO MENU

82

LXI D.EXM3G2
CALL PRINT
MVI A/E'
CALL MDSCMD
LHLE START

CALL ADDROUT
EXEC020 CALL MLS IN

MOV S,A
LLA MESREYF
ORA A

JNZ GETINP
CALL CONSOUT
JMP EXEC020

GETINP CALL
RRC

CONSTAT

JNC GETINP
CALL CON5IN
CALL MEATAOUT
XRA A
STA MDSREYF
JMP EXEC020

EXEC2 MVI A/E'
CALL MDSCMD
LHLE START
CALL ADDROUT
MVI Atl
STA SYSSTAT
JMP MENU

* LOCATE - LOCATE A SPEC

LOCATE CALL CLRBUFF
LXI D,LOCMSG
CALL PRINT
MVI A.0FFH
STA CONBUFF
CALL BUFFRE
XRA A
CALL SCAN
JNC LOCATE1

MVI A,l
CALL SCAN
JNC LOC01

MVI 4,2
JMP ERROR

LOCATE1 CALL GST4BIN
SHLE START

;give escape methods

; yes, sene c v e to mis s.

; loop waiting for eat/.

; or lone from mes or esc
j from console

;loop at mesin till esc
i or 'q' or lata
jsave data from mds
jsee if mes wants input

; yes
; no, sene it to console
j wait for more
jget input from keyboard

;se\e it to mes
jreset mesrey flag

;loop again
jsene mes exec cme

jsene start aeeres5 to mes

jset mds control flag

;back to menu

:?icified byte sequence in mds memory *

j clear real buffer
{print verification message

jinit. console read buffer
; to 255 characters max
jget aeeress(es)
jany delimiters ?

NO, USE EEFAULT FINISH
AEERESS

MORE THAN ONE DELIMITER?

J NO, GET OPTIONAL FINISH
J ADDRESS
JMORE THAN 2 DELIMITERS
J ERROR, START OPTION OVER
JGET START ADDRESS

83

JMP LCC1

LOC01 CALL GET4BIN
SHLE START
CALL GET4BIN
SELL FINISH
JMP LOCEATA

LOCI LXI H,0FFFFH
SHLE FINISH

LOCDATA MVI A.'L'
CALL MESCME
LHLE START
CALL ADEROUT
LHLE FINISH
CALL AEEROUT
MVI A,16
PUSH PSW

LCCLATA1 CALL BUFF RE
CALL SCAN
CALL STAR

L0CEATA2 CALL GET2BIN
MOV A,L
CALL MEATAOUT
MOV C,A
LXI fl,EATAMSG+l
CALL CNVT8
XCHG
CALL PRINT
XCHG
MOV A,B
CPI 0FFH
JZ L0C5

CPI 00
JZ L0C5

POP PSW
ECR A

PUSH PSW
JZ L0C5

JMP L0CEATA2
L0C5 CALL HOSTRDY

CALL MESIN
ORI 80H
CPI 'F'
JZ FOUNE
LXI E.NOTFOUNE
JMP ERROUT

FOUNT LXI E,FOUNEMSG

NO COMMA, FINISH AEERES5
EEFAULTS TO 0FFFFH -

GET LATA
GET START AEERESS

; COMMA, GET FINISH AEERESS

JSAVE EEFAULT FINISH AEERESS

JSENE LOCATE CME TO MDS

JSENE START AEERESS TO MES

JSENE FINISH AEERESS TO MES

:16 BYTES MAX
J SAVE BYTE COUNT
JGET SEARCH SEQUENCE
JLOOK FOR ESCAPE
JPRINT A STAR
;get A BYTE

JSENE IT TO MES

; & TO CONSOLE FOR
; VERIFICATION

JAT ENE OF BUFFER?

; YES, WAIT FOR SEARCH
; RESULTS

YES, WAIT FOR SEARCH
RESULTS

NO, GET BYTE COUNT
16 BYTES YET?
SAVE BYTE COUNT
YES, WAIT FOR SEARCH
RES ULTS

NOT AT ENE OR 16 BYTES
TELL MES TO SEARCH
GET MES RESPONSE
LOOKING FOR ASCII
BYTE SEQ. FOUNE?
YES

PRINT NOT FOUNE MESSAGE
BACK TO MENU
PRINT FOUNE MESSAGE

84

CALL PRINT
CALL MBS IN
MOV B,A
CALL MESIN
MOV C,A
LXI H.FOUNEMSl
XCHG
CALL PRINT
JMP MENU

* LUMP - LUMP MES MEMORY L

LUMP CA.LL CLRBUFF
LXI E,EUMPMSG
CALL PRINT
CALL BUFFRE
XRA A
CALL SCAN
JNC EUMP01
MVI A,l
CALL SCAN
JNC EUMP010

MVI A,

2

JMP ERROR
EUMP01 CALL GET4BIN

SHLD START
JMP EUMP1

EUMP010 CALL GET4BIN
SHLD START
CALL G-ET4BIN
SHLE FINISH
JMP EUMP2

EUMP1 LHLE START
LXI B.0100H
DAD B
SHLE FINISH

EUMP2 MVI A,'E'
CALL MDSCMD
LHLE START
CALL AEEROUT
LHLE FINISH
CALL AEEROUT

EUMP3 LXI E,EUMPMSG3
PUSH D
CALL MSG3INIT
CALL MESIN
MOV C,A
LEA MESREYF
ORA A

JNZ DUMPDONE

;get found address msb

;get lsb of aeer

jconvert aeer. for printing

jprint adersss
;bacs to menu

ION(S) *

CLEAR REAL BUFFER
PRINT VERIFICATION MESSAGE

GET AEERESS(ES)
ANY EELIMITERS?

NO
MORE THEN ONE EELIMITER?

NO, GET OPTIONAL FINISE
AEERESS

MORE THAN ONE DELIMITER
ERROR, START OPTION OVER

GET START AEERESS

NO COMMA
GET START AEERESS

GET OPTIONAL FINISH AEER

JMAKE FINISH AEERESS =

; START + 256

JSENE LUMP CME TO MES

JSENE START AEERESS TO MES

5SEND FINISH AEDRESS TO MES

JASCII LATA STORAGE

JINIT. ASCII STORAGE
JGET EYTE

JMES LONE TRANSMITING LATA?

; YES

85

MOV A,C
STA MESEATA
LHLD START
MOV B,H
MOV C,L
LXI H t DUMPMSGl
CALL CNVT16
XCHG
CALL PRINT
MVI B,16

EUMPEATA POP E

LEA MESEATA
MOV C,A
CPI 20H
JNC EMPETA1
CALL SPERIOE
JMP DMPETA2

LMPETA1 CPI 80fi

GNC SPERIOE
EMPDTA2 STAX D

MOV A t C

INX E
PUSH D
LXI H,EUMPMSG2+1

PUSH B
CALL CNVT8
XCHG
CALL PRINT
POP B

ECR B
JZ NXTLINE
CALL MESIN
STA MESEATA
MOV C,A
LEA MESREYF
ORA A
JNZ NXTLINE
JMP EUMPEATA

SPERIOE MVI A,'.'
RET

NXTLINE LXI E,EUMPMSG3
CALL PRINT
LXI B,0012H
LHLE START
EAE B
SHLD START
POP E

LEA MESREYF
ORA A

J NO - SAVE LATA
JBC = START ADDRESS

jsixteen bytes per line
jrecall ascii lata storage
j location
;get lata
jis lata ascii printable?

; YES
I NO - STORE A PERIOE

GREATER THEN ASCII
YES, STORE A PERIOE
STORE DATA AS IS

RESTORE ORIGINAL LATA
BUMP STORAGE AEERESS
AND SAVE IT

NOW CONVERT LATA TO HEX
ANE PRINT IT
SAVE COUNT

;get count back
;i6 bytes yet?
; YES
; no - get next byte
jsave new data
;mcs done transmiting data?

YTS
; NO - GET NEXT LINE OF EATA
JSTORE A PERIOE IF NOT A
5 PRINTABLE ASCII CHAR.
JPRINT ASCII CHARACTERS

JGO TO NEXT LINE
JBUMP NEW LINE ST1HT AEERESS
J BY SIXTEEN BYTES
; SAVE IT
;get garbage off stack
;eone?

86

JNZ DUMPEONE
CALL CRLF
J MP • DUMP3

EUMPEONE XRA A

STA MESREYF
CALL CRLF
CALL BUFFRE
XRA A
CALL SCAN
JNC EMPEONE1
MVI A,

2

JMP ERROR
EKPEONE1 INX E

ECR B

JNZ DMPDONE1
LEAX E

ORI 22H
CPI 'd'
JZ EUMPMORE

JMP MENU
EUMPMORE LHLE FI-MISH

INX H

3HLD START
JMP EUMP1

MSG3INIT MVI B,17
LXI D,DUMPMSG3
MVI *.'$'

M3G31 STAX E

DCR B

RZ
INX E

JMP M3G31
CLRBUFF MVI B,255

LXI E,CONBUFF+l
MVI A, 02
JMP MSG31

; YES
JSTART NEW LINE
JEUMP TILL EONE
JCLEAR MLS EONE XMITTING FLG

START NEW LINE
ANOTHER LUMP?
NO EELIMITERS ALLOWEE

SCAN OS
ERROR
START OPTION OVER

POINT TO ENE OF BUFFER
THERE YET?
NO, LOOP

CONVERT TO LOWER CASE

YES - LUMP AGAIN FROM
PREVIOUS FINISH AEER.

NO - RETURN TO MENU
MAKE FINISH+1 = NEW START
AEERESS

LUMP 256 MORE BYTES
INIT. ASCII LATA STORAGE
AREA TO ALL $'5

JIN IT. EONE

JCLEAR CONSOLE REAL BUFFER

JPUT IN ALL ZEROS

* rcnt2h5t - return control to host *

;get system status

j host alreaey in control
jsend escafe to mes

;reset system status flag

jprint mls abortee verifi-
; CATION

NT2HST LEA SYSSTAT
ORA A

JZ MENU
MVI A.V
CALL MESCME
XRA A
STA SYSSTAT
LXI E,ABORTEEM
CALL PRINT
CALL DELAY
JMP MENU

87

*** UTILITY SUBROUTINES ***

* PRINT A STRING TO THE CONSOLE
* GALL WITH EE = STARTING AEERESS OF STRING *

PRINT PUSH PSW
PUSH B

PUSH r

PUSH H

MVI CPRTSTRG
CALL BIOS
POP H
POP D

POP B

POP PSW
RET

JSAVE EVERYTHING

JOUTPUT STRING TO CONSOLE

JRESTORE ALL REGISTERS

JBACK TO CALLER

* STATSYS - LISPLAY SYSTEM STATUS *

STAT3YS CALL CRLF
CALL CRLF
LEA SY3STAT
ORA A
LXI E.SYSMSG+15
JZ SYS1
LXI H,MDSMSG
JMP SYS1+3

SYS1 LXI H,HOSTMSG
CALL MOVESTR
LEA MENUSUPF
ORA A

LXI D,SYSMSG+33
JZ SYS3
LXI H.YESMENMG
JMP SY33+3

SYS3 LXI H,NOMENMSG
CALL MOVESTR
LXI D.SYSMSG
CALL PRINT
CALL MENPMPT
RET

MOVESTR MOV l.M
CPI '$'

RZ
STAX E

INX E

I NX H
JMP MOVESTR

rET SYSTEM STATUS FLAG

JHOST IN CONTROL
JMDS IN CONTROL
JPUT 'MES' IN MESSAGE
JPUT 'HOST' IN MESSAGE

;GET MENU SUPPRESSION FLAG

;no SUPPRESSION
JSUPPRESSION

;print system status

jprint menu prompt
j return to caller
jhl = string to move
jee = eestination aeeres5
;return if move done
j not eone

JMOVE NEXT CHARACTER

* MENPMPT - PRINT MENU PROMPT

88

MENPMPT LDA
ORA
JZ
LXI
CALL
RET

MENPMT1 LXI
CALL
RET

MENUSUPF
A
MENPMTl
E.MENUPROl
PRINT

E.MENUPROM
PRINT

JSUPPRE3S MENU?

NC
YES - PRINT SUPPRE3EE
MENU PROMPT

JPRINT UNSUPPRESSEI MENU
; PROMPT

** ROUTINES TO GET AN! CHECK FILENAMES FOR VALIEITY **
** ONLY INTEL 'HEX' FILES ARE SUPPORTEE BY THIS VERSION **

* GETFILEN - INITIATE CALLS FOR INPUTTING FILENAME ANL
* MAKING APPROPIATE CHECKS *

GETFILEN CALL
LXI
CALL
CALL
CALL
ORA
JZ
CALL
JMP

GETFN1 CALL
CALL
RET

CLRBUFF
E, FILENAME
PRINT
BUFFRD
FILENCK
A

GETFN1
ERROR
GETFILEN
MOVFN
UCASE

jclear console input buffer
jprompt for filename

;get filename
;eo checks on filename
jsee if any errors
j no errors
5 ERRORS
JSTART OVER
JMOVE FILENAME TO FCB
JCONVERT ALL FILENAME
J ALPHAEETICS TO UPPER CASE

* FILENCK - INITIATE ALL FILENAME CHECKS
* RETURN A = 00 IF NO ERRORS
* = ERROR NUMBER IF ERRORS IN FILENAME *

FILENCK CALL
RRC
JNC
MVI
RET

FNCK1 CALL
RRC
JNC
MVI
RET

FNCK2 CALL
RRC
JNC
MVI
RET

FNCK3 CALL
ORA
JZ

SCANQ

FNCK1
A,

7

SCANCOL

FNCK2
A,

8

SCANUM

FNCK3
A,

9

CKPERIOE
A

FNCK4

;SCAN FILENAME FOR '?'

JNONE FOUND
JERROR - NO AMBIGUOUS
5 FILENAMES
JCHECK FOR ': ' ANE PROPER
J ERIVE SELECTION
ISCAN OK
;too MANY COLONS

JCHECK FOR TOO MANY OR TOO
J FEW CHARACTERS IN FILENAME
JNO ERROR
5 ERROR

jcheck filename input for
j a period
;none foune

89

FNCK4

FNCK5

FNCK6

CALL SCANHEX
RRC
JNC FNCK4
MVI A,10
RET
XRA A
CALL SCAN
JNC FNCK5
MVI A, 11
RET
CALL SCANINV
RRC
JNC FNCK6
MVI A, 12
RET
XRA A
RET

ONE PERIOD, CHECK FOR
'HEX' FILETYPE

FILETYPE OK
ONLY 'HEX' FILETYPE5 ARE
SUPPORTEE
CHECK FOR ESCAPE ANT
OTHER DELIMITER ERRORS

NONE FOUNE
NO SPACES ALLOWED IN
FILENAME

CHECK FOR NON-PRINTABLE
CHARACTERS IN FILENAME

NONE FOUND
ERROR

JNO ERRORS DETECTED
; FILENAME OK

* SCANQ - SCAN FILENAME FOR QUESTION MARKS INDICATING AN
* AMBIGUOUS FILENAME
* RETURN A = 00 IF NONE FOUNE
* = 0FFH IF FOUNE *

SCANQ

SCANQ01

SCANQ1

PUSH
PUSH
PUSH
XCHG
MOV
INX
MOV
CPI
JZ
DCR
JNZ
XRA
JMP
MVI
POP
POP
POP
RET

B

E

H

C,M
H
A,M
'?'

SCANQ1
C

SCANQ01
A
SCANQ1+2
A,0FFfl
H
D
B

JHL = BUFFER + 1

;get BUFFR COUNT

jlook for '?'

,* foune one
jkeep looking?
jscan not eone
jscan eone - no errors

;at least one '?
' foune

* SCANCOL - SCAN FILENAME FOR A

*

THEN LOOK FOR PROPER

RETURN

ERIVE SELECT COEE (ONLY CURRENT DRIVE IN USE
IS SUPPORTEE, OTHERS ARE IGNORED)

-A ':' IN ANY OTHER POSITION IN THE FILENAME IS

NOT LEGAL
A = 00 IF NO ERROR

= 0FFH IF AN ILLEGAL ':' IS FOUND *

SCANCOL PUSH B

90

PUSH
PUSH
CALL
ORI
INR
STA
XCHG
MOV
INX
INX
DCR
MOV
CPI
JNZ
ECX
INR
MOV
AN I

MOV
LEA
CMP
JZ
LXI
CALL
CALL
INX
ECR
JMP

SCANCOL1 DCX
INR

SCNCOL11 MOV
CPI
JZ
ECR
JZ
INX
ECR

SCANC0L2 INX
MOV
CPI
JZ
ECR
JNZ

SCNCOLEN XRA
JMP

SCANC0L3 MVI
POP
POP
POP
RET

E

H

CURESK
40H
A
CURRENT

C,M
H
H

C

A,M

SCANCOL1
a
c

A,M
0EFH
B,A
CURRENT
E

SCNCOL11
D,DRIVERR
PRINT
EELAY
H

C

SCANCOL2
H

C

A,M
•

SCANC0L3
C

SCNCOLEN
H
C

H

A,M
•

SCANC0L3
C

SCANC0L2
A

SCANC0L3+2
A,0FFH
H
E

B

JGET CURRENT IISK
JCONVERT IT TO A CHARACTER

JSAVE IT
JGET EUFFER COUNT

JTHE ONLY WOULE BE HERE

;NONE HERE
JFOUNE IT, CHECK FOR
J CORRECT ERIVE

JFORCE TO UPPER CASE

JSAME?
J YES, OK
5 NO, PRINT WARNING 5.

J IGNORE IT

JCONTINUE SCAN
JCHECK IF 1st CHAR IS

; YES , ERROR
; NO
JSCAN EONE
JSCAN NOT EONE

JSEE IF ANY MORE ':

5 YES, ERROR
J NO
JCONTINUE SCAN
JEONE, NO ERRORS DETECTEE

J TOO MANY '
:

'

91

* SCANHEX -

* RETURN A

SCANHEX

SCANHX1

COMPARE

SCNHXER

PUSH
PUSH
PUSH
XCHG
MCV
INX
MOV
CPI
JZ
rcR
JNZ
JMP
INX
MOV
AN I

CPI
JNZ
INX
MOV
ANI
CPI
JNZ
INX
MOV
ANI
CPI
JNZ
XRA
JMP
MVI
POP
POP
POP
RET

SCAN FILETYPE
= 00 IF FOUNT
= 0FFH IF NOT

B

D
H

FOR 'HEX

FOUNE *

C,M
H

A,M
PERIOD
COMPARE
C

SCANHX1
SCNHXER
H
A,M
0IFH
'H'
SCNHXER
H

A,M
0EFH
'E'
SCNHXER
H
A,M
0EFH
'X'
SCNHXER
A
SCNHXER+2
A,0FFH
H
D
B

jget buffer count

;go to perioi

jfoune it

jkeep looking
;error, no perioi

jforce to upper case

; error

;no error

; error

*

-•it

SCANUM - SCAN FILENAME FOR TOO MANY OR TOO FEW CHARACT
FILENAME IS CHECKEE ONLY (8 CHARACTERS MAX,
1 CHARACTER MINIMUM)

RETURN A = 00 IF NO ERROR
= 0FFH IF ERROR *

;rs

SCANUM PUSH B

PUSH D
PUSH H
XCHG
MOV C,M
MVI B,0

;get buffer count

;b = # of characters in fn

92

SCANUM1 INX
MOV

H

A,M
CPI •

• 'START COUNT AT '
:

'?
JNZ SCANUM2 YES
DCR B NO, START AT BEGINNING
ECR C 'EONE YET?
JZ SCANUM4 ; YES
JMP SCANUM1 NO

SCANUM2 CPI PERIOE 'GO TO PERIOI OR BUFFER ENE
JZ SCANUM4 ' PERIOE, EONE
INR B KEEP COUNTING
ECR
JZ SCANUM4 i

i
EONE

JMP 3CANUM1
i
LOOP

SCANUM4 XRA
CMP

A

B

t

i < 1 CHARACTER?

JZ SCANUM5 4

J YES, ERROR
MVI A,

8

1 > 8 CHARACTERS?
CMP B

JC 3CANUM5 I

1 YES, ERROR
XRA A

i

1 NO ERRORS
JMP SCANUM5+2

SCANUM5 MVI
POP
POP
POP
RET

A,0FFH
H
E

B

I

i ERROR

* SCANINV - SCAN FILENAME FOR NON-PRINTABLE CHARACTERS
* RETURN A = 00 IF NONE FOUND
•J? = 2FFH IF ANY FOUNE *

SCANINV PUSH
PUSH
PUSH

B
D

H

XCHG i GET BUFFER COUNT
MOV C,M

SCANIN1 INX
MOV

H

A,M
CPI 20H i < SPACE?
JC SCANIN2 ! YES, ERROR
ECR C

1
EONE WITH SCAN?

JNZ SCANIN1 4

1 NO
XRA A

1

J YES, NO ERRORS
JMP SCANIN2+2

SCANIN2 MVI
POP
POP
POP
RET

A.0FFH
H
E
B

1

1 ERROR

93

* MOVFN - MOVE FILENAME FROM CONSOLE BUFFER TO FCB *

jpurge ane set up fcb
;get buffer count

MOVFN CALL PURGFCB
LXI H,CONBUFF+l
MOV C ,M

XCHG
INX E

INX E
LCR C

LEAX E

CPI
*

•

JZ MOVIT01
ECX E

INR C

JMP MOVIT
M0VIT81 INX E

DCR C

MOV IT LXI H,FCB+1
MOVIT1 LEAX E

CPI PERIOD

RZ
MOV M,A
INX H
INX E

ECR C

RZ
JMP MOVIT1

;IE - CONBUFF POINTER

J3EE IF IT'S A COLON

; YES
; no

;START AT BUFFER START
J START FROM COLON

JMOVE THE FILENAME
; UNTIL PERIOE OR END
; OF BUFFER
JEONE
JSTORE CHAR. IN FCB

;at end of buffer?
; YES , move eone
; no, loop

* PURGFCB - PURGE FILE CONTROL BLOCK (FCB) AND SET IT UP
* FOR ACCEPTING A FILENAME OF TYPE HEX *

PURGFCB LXI H,FCB
LXI E,FCBMSG
MVI C,16 JSET UP FIRST 16 BYTES

PURG01 LDAX D
MOV M,A
ECR C J16 BYTES EONE YET?
JZ PURG1 ; YES
INX H

INX E

JMP PURG01 ; NO, LOOP
PURG1 LXI E,FCB+32 INITIALIZE CURRENT RECORL

XRA A ; BYTE IN FCB
STAX E
RET

* UCASE - CONVERT ALL FILENAME ALPHABETICS TO UPPER CASE *

UCASE MVI
LXI

C,8
H.FCB+1

J8 CHARACTERS MAX

94

UCASE01 MOV A,M
CPI 7BH
JNC UCASE1
CPI

* *

a

JC UCASE1
ANI 0EFH
MOV M,A

UCASE1 I NX H
ECR C

RZ
JMP UCASE01

JIS IT > LOWERCASE z?
• YFS OK
; NO, 'l5 IT < LOWERCASE a?

J YES, OK
JMUST BE LOWER CASE
J CONVERT IT TO UPPER CASS

JEONE?
; YES
; NO, LOOP

* HEXBIN - CONVERT TWO HEX ASCII CHARACTERS TO ONE EIGHT
* BIT BINARY NUMEER
* - ALSO ALE IT TO CURRENT CHECKSUM IN E
* CALL WITH HL POINTING TO FIRST CHARACTER
* RETURN BINARY NUMBER IN A *

HEXBIN INX
MOV
CALL
CALL
RLC
RLC
RLC
RLC
MOV
INX
MOV
CALL
CALL
AEE
MOV
AEE
MOV
MOV
RET

H

A,M
EOFCK
ASCHEX

3,

A

H

A,M
EOFCK
ASCHEX
E

2,

A

B

B,A
A,E

JGET FIRST EIGIT
5END OF BUFFER/FILE?
JCONVERT TO PURE HEX
JMAKE IT 4 MSB'S

JSAVE IT
JGET SECONE EIGIT

JCONVERT IT
JCOMBINE THEM
J SAVE IT
JAEE TO CHECKSUM
J SAVE IT
JGET BINARY NUMBER

* ASCHEX - CONVERT HEX ASCII EIGIT TO PURE HEX EIGIT *

ASCHEX SUI
CPI
RC
SUI
RET

'0'

10
JSUBTRACT OFF ASCII EIAS

J NUMBER IS 0-9
JNUMBER IS A-F

* EOFCK - CHECK FOR END OF BUFFER/FILE
* - IF ENE OF FILE THEN EOWNLOAE IS LONE
* - IF ENE OF BUFFER, REAL MORE EISK & RETURN
* THE FIRST CHARACTER IN A
* - OTHERWISE, RETURN WITH NO ACTION *

WITH

95

EOFCK CPI EOF
RNZ
LDA CONTFLG
RRC
JNC BWNLDNE
LXI H.DSKBUFF
CALL READSK
LXI H,DSKBUFF
MOV A,M
RET

;not
;see

END OF
IF END

FILE/BUFFER
OF FILE

; YES
J NO, REAL MORE

* BINHEX - CONVERT AN EIGHT BIT BINARY NUMBER TO TWO HEX
* ASCII CHARACTERS
* - STORE THE CHARACTERS IN MEMORY POINTEI TO BY HL
* - ADD BINARY NUMBER TO RUNNING CHECKSUM IN D
* CALL WITH BINARY NUMBER IN A AN! HL AS ABOVE *

BINHEX PUSH PSW
AIL B

MOV B,A
POP PSW
MOV E,A
ANI 0F0H
RRC
RRC
RRC
RRC
CALL HEXASC
CALL BUFFCK
MOV A,E
ANI 0FH
CALL HEXASC
CALL BUFFCK
RET

* HEXASC - CONVERT A B

HEXASC CPI 0AH
JC NUMBER
ADI 7

NUMBER ATI 30H
RET

J SAVE LATA
JAIL TO CHECKSUM
,' SAVE IT
;get data
; save it in e
jput 4 msb's into lsb's

JCONVERT TO HEX ASCII
JSTORE IT
JGET DATA
JNOW CONVERT LSE'S

JSTORE IT

IS 0-9
IS A-F

JADD ASCII BIAS

JIT
JIT

** DISK I/O ROUTINES **
** ALL ERROR COLES RETURNED ARE IN ACCORDANCE WITH CP/M
* AND MP/M CONVENTIONS **

READ5K - READ THIRTY-TWO (32)
SET FLAG TO INDICATE

128 BYTE RECORDS PROM DISK
IF ONLY A PARTIAL READ *

96

REAESK PUSH B
MVI B,32

REAESK1 CALL EMASET
CALL REAEREC
CPI
JZ REAEMORE
CPI 1

JZ READNE
MVI A, 15

REAEMORE ECR B
JNZ READSK1
MVI M,EOF

MVI A,0FFH
STA CONTFLG
POP B

RET
REAENE XRA A

STA CONTFLG
PUSH B

LXI B.-128
EAE B

POP B

MVI M,EOF
POP B
RET

* WRITEESK - WRITE A SINGLE 128

WRITEESK LXI H.DSKBUFF
CALL EMASET
CALL WRITEREC
CPI
RZ
MVI A, 18
CALL ERROR
CALL CLOSFILE
CALL EELETE
JMP MENU

* REAEREC - REAL A SINGLE RECORE

READAEC PUSH 3

PUSH E

PUSH H

LXI D,FCB
MVI C.REAEF
CALL BEOS
POP H

POP E

SAVE E
READ 32 RECORDS MAX
SET EMA AEERESS
REAL A SINGLE RECORE
GOOD READ?
YES, EO IT AGAIN

EOF?
YES, DONS
NO, REAL ERROR

4K WORTH YET?
NO, READ MORE
YES, STORE END OF EUFFER
INEICATOR

SET CONTINUATION FLAG

JRESTORE B

JRESET CONTINUATION FLAG

JPOINT TO ENE OF LAST RECORD

; ENSURE EOF MARKER IN BUFFER
JRESTORE ORIGINAL B

JPOINT TO DISK BUFFER
JSET EMA AEERESS
JWRITE RECORE TO EISK
JGOOD WRITE?
J YES, DONE
J NO, OUT OF EISK SPACE

JCLOSE THE FILE BUT
; EON'T SAVE A PARTIAL FILE

FROM EISK *

S7

POP B

RET

* WRITEREC - WRITE A SINGLE RECORD TO DISK *

KRITEREC PUSH B

PUSH D

PUSH H
LXI D,FCB
MVI CWRITEF
CALL BDOS
POP H
POP D

POP B
RET

* EMASET - SET DMA ADDRESS
* CALL WITH ADDRESS IN HL
* RETURN WITH HL = HL + 128 *

LMASET PUSH PSW
PUSH B

PUSH D
PUSH H
XCHG IDE = DMA ADDRESS
MVI CSETDMA
CALL BDOS
POP H

LXI B t 128 JREADY DMA ADDRESS FOR NEXT
DAD B ; TIME
POP D

POP B
POP PSW
RET

* OPENFILE - OPEN A FILE CURRENTLY ON EOSK *

OPENFILE PUSH B
PUSH D
PUSH H

LXI D,FCB
MVI COPENF
CALL BDOS
POP H
POP D
POP B

RET

* CLOSFILE - CLOSE A FILE CURRENTLY ON DISK *

CLOSFILE PUSH B

98

CREATE

PUSH E

PUSH H
LXI E,FCB
MVI CCLOSEF
CALL BDOS
POP H
POP E

POP B
RET

- CREATE A NEW

PUSH B
PUSH E

PUSH H
LXI D,FCB
MVI CMAKEF
CALL BEOS
POP H
POP E

POP B
RET

* EELETE - EELETE A FILE CURRENTLY ON EISK *

EELETE PUSH
PUSH
PUSH
LXI
MVI
CALL
POP
POP
POP
RET

B
D
H
E,FCB
CDELF
BEOS
H

D
B

* CURESK - GET CURRENTLY LOGGED DISK *

CURESK PUSH
PUSH
PUSH
LXI
MVI
CALL
POP
POP
POP
RET

B

D

H

E,FCB
CCURRNTE
BDOS
H
D

B

* ERROR - ERROR HANDLING ROUTINE
* CALL WITH ACC = ERROR NUMBER *

99

ERROR MOV C,A
MVI B,0
LXI H ? ERRJMP-3
DAD B

DAD B

LAI B

PCHL
NOP
NOP

ERRJMP JMP ERROR1
JMP ERR0R2
JMP ERR0R3
JMP ERR0R4
JMP ERR0R5
JMP ERR0R6
JMP ERROR?
JMP ERR0R8

JMP ERR0R9
JMP ERROR10
JMP ERROR11
JMP ERR0R12
JMP ERR0R13
JMP ERR0R14
JMP ERR0R15
JMP ERR0R16
JMP ERR0R17
JMP ERR0R18

ERROR1 LXI D,MENERRMG
JMP ERROUT

ERR0R2 LXI E.MFEELERR
JMP ERROUT

1

ERR0R3 LXI D.PERONLYM
JMP ERROUT1

ERROR4 LXI D.INVHEXER
JMP ERROUT1

ERR0R5 LXI D.SEDELERR
JMP ERROUT1

ERR0R6 LXI D.SEQDELER
JMP ERROUT1

ERR0R7 LXI D,AMBIGERR

JGET ERROR NUMBER
JCOMPUTE ERROR VECTOR

JERROR VECTOR IS IN PC

MENU SELECTION ERROR
TOO MANY/FEW DELIMITERS
PERIOL+EATA ERROR
INVALID HEX EIGIT ERROR
DELIMITER AT START/END
2 OR MORE EEL. SEQUENTIALLY
NO AMBIGUOUS FILES
COLONS NOT PROPERLY PLACED
IN FILENAME

TOO MANY/FEW CHAR. IN FN
HEX FILETYPE ONLY
NO SPACES IN FILENAME
NO NON-PRINTABLE CHAR IN FN
FILE NOT FOUND
HEX CHECKSUM ERROR
DISK REAL ERROR
OUT OF DIRECTORY SPACE
START > FINISH AEERESS
OUT OF EIR/LISK SPACE
PARTIAL FILE NOT SAVED

PRINT MENU ERROR MESSAGE

JPRINT ERROR MESSAGE

100

JMP ERR0UT2

ERRORS LXI
JMP

E.COLONERR
ERR0UT2

ERR0R9 LXI
JMP

D.FNCHARER
ERR0UT2

ERROR10 LXI
JMP

E.HEXFTERR
ERR0UT2

ERROR11 LXI
JMP

E.SPFNERR
ERR0UT2

ERR0R12 LXI
JMP

D,NPRTERR
ERR0UT2

ERROR 13 LXI
JMP

E.FNFNEERR
ERROUTl

ERROR14 LXI
JMP

E,CKSUMERR
ERR0UT3

ERR0R15 LXI
JMP

D.DSKRDERR
ERR0UT3

ERR0R16 LXI
JMP

E.EIRSPERR
ERROUT

ERR0R17 LXI
JMP

E.SG-FAERR
ERROUTl

ERR0R18 LXI
JMP

D f DDSPCERR
ERR0UT3

ERROUT CALL
CALL
JMP

PRINT
DELAY
MENU

ERROUTl LXI

CALL
LDA
JMP

SP, STACK
CALL PRINT
EELAY
MENUFLG
MENUl

ERR0UT2 CALL
CALL
RET

PRINT
DELAY

ERR0UT3 CALL
CALL

PRINT
DELAY

jprint error
;let user read error
jstart over

jre-init. stack
jprint error

jrecall menu choice
jrestart current option

jprint error

jback to caller

jprint error

101

CALL
JMP

HOSTDONE
MENU

JTELL MLS LONE

* DELAY - APPROX. 1-2 SECOND DELAY FOR USER TO SEE ERROR
* MESSAGE BEFORE MENU IS REPRINTED *

DELAY PUSH
PUSH
PUSH
PUSH
MVI
LXI

DELAYIN LXI
DELAYOUT DAD

JC
DCR
JNZ
POP
POP
POP
POP
RET

PSW
B

D

H

B,15
D.-l
H,39E0H
D

DELAYOUT
B

DELAYIN
H
D

B
PSW

JOUTER LOOP INITIALIZATION
JDSCREMENT BY SUBTRACTION
; INNER LOOP INITIALIZATION
JHL = HL - 1

,'DELAY DONE, BACK TO CALLER

* CRLF - CARRIAGE RETURN S. LINE FEED UTILITY *

CRLF MVI E,CR
CALL CCNSOUT
MVI E,LF
CALL CONSOUT
RET

JPRINT CARRIAGE RETURN

J THEN A LINE FEED

* ENTER - GET A HEX INTEGER FROM THE CONSOLE BUFFER
* & RETURN WITH HL = 16 BIT BINARY DATA
* CALL WITH C = MAX NUMBER OF CHARACTERS TO INPUT
* DE = CONSOLE BUFFER POINTER FOR START OF
* CONVERSION PROCESS *

JSAVE A, BC, DEENTER PUSH PSW
PUSH B

PUSH D
LXI H,0000H

ENTER1 LDAX D

CPI 'A'
JC ENTER15
ANI 0DFH

ENTER15 DAD H
DAD H
DAD H

DAD H

JC ENTER3

UNIT. DATA AREA
JGET DATA FOR CONVERSION
JIS IT 0-9?
; YES
; NO - FORCE TO UPPER CASE
JSHIFT PREVIOUS DATA LEFT
J 4 BITS

;IF OVERFLOW, PRINT ERROR

102

CPI '0'

JC ENTER3
CPI 'F' + l

JNC ENTER3
CPI 'A'
JC ENTER2
An 9

ENTER2 ANI 0FH
ORA L
MOV L,A
DCR C

JZ ENTER4
INI E

JMP ENTER1
ENTER3 MVI A,

4

JMP ERROR
ENTER4 POP E

POP B

POP PSW
RET

IS IT 0-F?
NO - ILLEGAL CHARACTER

IS IT > F?
YES - ILLEGAL CHARACTER

LEGAL - IS IT A-F?
NO - IT'S 0-9

ALL CONVERSION FACTOR
ISOLATE 4 BITS
MERGE WITH PREVIOUS LATA

COUNT CHARACTERS ENTERED
EXIT IF C =

BUMP BUFFER AEERESS
GET ANOTHER HEX INTEGER
PRINT ILLEGAL CHARACTER
ERROR

START OVER
RESTORE REGISTERS

* CONSIN - CONSOLE INPUT ROUTINE
* DOESN'T RETURN UNTIL INPUT IS RECEIVED *

CONSIN PUSH B

PUSH E
PUSH H

MVI CCONIN
CALL BEOS
POP H

POP E

POP B

RET

jsave registers

;get character

jrestore registers

; RETURN TO CALLER WITH
; CHARACTER IN A

* CONSOUT - CONSOLE OUTPUT ROUTINE
* ENTER WITH CHARACTER INS*

CONSOUT PUSH PSW
PUSH B

PUSH D
PUSH H
MVI CCONOUT
CALL BDOS
POP H
POP E

POP B
POP PSW
RET

jsave registers

;output character

;restore all registers

jback to caller

103

* CONSTAT - GET CONSOLE INPUT STATUS
* RETURNS WITH A = 00H IF NO CHARACTER WAITING
* = 0FFH IF CHARACTER IS WAITING *

JSAVE REGISTERSCONSTAT PUSH B

PUSH E
PUSH H

MVI C, CONST
CALL BEOS
POP H
POP E

POP B
RET

;get status

jrestors registers

* BUFFRE - REAE CONSOLE INPUT INTO BUFFER POINTEE TO BY EE
* RETURN WITH EE = BUFFER START AEERESS + 1

* B = COUNT OF CHARACTERS INPUT
* ALL OTHER REGISTERS (A, HL) UNCHANGEE *

JSAVE A, HL

JSENE PROMPT TO CONSOLE

JPOINT TO CONSOLE BUFFER
J SAVE IT

JREAE CONSOLE INPUT

JPOINT TO CHAR. COUNT

,*GET COUNT
JIS COUNT = 0?

J NO, RETURN TO CALLER
J YES , TRY AGAIN
JRETURN WITH B = COUNT
JRESTORE A, HL

BUFFRE PUSH PSW
PUSH H

BUFFI LXI E, PROMPT
CALL PRINT
LXI E,CONBUFF
PUSH E

MVI C.REAECON
CALL BEOS
CALL CRLF
POP D
INX E
LEAX E

ORA A
JNZ REAEONE
JMP BUFFI

READONE MOV 3,A
POP H
POP PSW
RET

*

BUFFRE1 - REAE CONSOLE INPUT INTO BUFFER POINTEE TO BY
RETURN WITH EE = BUFFER START AEERESS + 1

B = COUNT OF CHARACTERS INPUT
A = 00 IF COUNT =

= 0FFH IF COUNT >
HL UNCHANGED *

IE

BUFFRE1 PUSH
LXI
PUSH
MVI
CALL

H
E.CONBUFF
D

CREAECON
BEOS

JSAVE HL
JPOINT TO CONSOLE BUFFER
J SAVE IT

JREAE CONSOLE INPUT

104

CALL
POP
INX
LDAX
ORA
JZ
MOV
MVI
JMP

READONE1 MOV
POP
RET

CRLF
I

E
D

A

REAEONE1
B,A
A.0FFH
REAEONE1+1
B,A
H

JPOINT TO CHAR. COUNT

;get COUNT
;is COUNT = 0?
J YES, RETURN TO CALLER
JSAVE CHAR COUNT
JCOUNT >

JRETURN WITH B = COUNT
JRESTORE A, HL

* SCAN - DELIMITER SCAN OF CONSOLE INPUT BUFFER
* (SPACES ANE COMMAS ARE LEGAL LELIMITERS)
* ALSO CHECKS FOR ESCAPE ANE '?' KEYS
* CALL WITH DE = CONBUFF + 1

* A = NUMBER OF LELIMITERS
* RETURN WITH CARRY SET IF MORE OR LESS
* THAN SPECIFIED
* A = GARBAGE
* OTHER REGISTERS UNCHANGEE

TO LOOK FOR
DELIMITERS

SCAN PUSE B
PUSH E

PUSH H

MOV B,A
XCHG
MOV C,M
CALL 3CNENDEL

CALL SCANDDEL
5CAN1 INX H

MOV A,M
CPI SPACE
JZ CNTDEL
CPI COMMA
JZ CNTDEL
CPI ESC
JZ SCANESC
CPI '?'

JZ QUESTION
SCAN2 ECR C

JZ SCANDONE
JMP SCAN1

CNTEEL ECR B

JMP SCAN2
SCANEONE : A

CMP B

5CAND1 POP H

JSAVE REGISTERS

JGET DELIMITER COUNT
JHL = CONBUFF + 1

JGET CHARACTER COUNT
JSCAN FOR DELIMITERS AT
; START ANE END OF INPUT
JSCAN FOR SEQUENTIAL EELS
JGET CHARACTER

IS IT

YES,
IS IT

YES
IS IT
YES,

IS IT
YES,
NONE

A SPACE?
DEC DELIMITER
A COMMA?

COUNT

AN ESCAPE CHARACTER?
ESCAPE FROM OPTION
A QUEST FOR HELP?
PRINT DATA FORMATS

OF THESE, CHECK NEXT
CHARACTER

NO MORE CHARACTERS TO CHECK

JEECREMENT DELIMITER COUNT
JLOOK FOR ANOTHER DELIMITER
JSEE IF B =

JRESTORE REGISTERS

105

SCANESC

POP
POP
RET
LEA
CPI
JC
LEA
ORA
JZ
CALL
RRC
JNC
mi
CALL
XRA
STA
JMP

QUESTION LXI
CALL

SCNESC1

QUEST1

QUEST2

CNTRLCK

CNTRL1

CNTRL2

CALL
RRC
JNC
CALL
LXI
CALL
CALL
RRC
JNC
CALL
LEA
JMP

LXI
CALL
CALL
RRC
JNC
CALL
ORI
CPI
JZ
XRA
RET
MVI
RET

E

B

MENUFLG
NHSTCME
MENU
SYSSTAT
A

5CNESC1
CNTRLCK

MENU
A,V
MESCME
A
STSSTAT
MENU

D,FORMTMSG
PRINT
CONSTAT

QUEST1
CONSIN
E.FMTMSG1
PRINT
CONSTAT

QUEST2
CONSIN
MENUFLG
MENU1

D.ABORTMSG
PRINT
CONSTAT

CNTRL1
CONSIN
20H
* *

y
CNTRL2
A

A,0FFH

JIF HOST COMMANE THEN
J NO ESCAPE TO MES

:SEE IF HOST IN CONTROL

5HOST IN CONTROL
JMES IE IN CONTROL

J NO ABORT
J ABORT

5CLEAR SYSSTAT FLAG, HOST
J NOV IN CONTROL
JRETURN TO MENU

JPRINT DATA FORMATS ANE
5 RETURN TO CURRENT OPTION
;WAIT FOR RESPONSE TO
; CONTINUE

JCONTINUE FORMAT MESSAGE

;back to option

; MD3 IS - print abort query

JWAIT FOR RESPONSE

JGET RESPONSE
JFORCE IT TO LOWER CASE
JABORT MES CONTROL?
; YES
J NO, CLEAR A

I SET A

* SCNENEEL - CHECK FOR EELIMITERS
* POSITIONS IN CONSOLE
* CALL WITH BUFFER COUNT IN C *

AT FIRST S. LAST
INPUT BUFFER

CHARACTER

106

SCNENEEL PUSH
INX
MOV
CPI
JZ
CPI
JNZ

SCNSPC1 MVI
JMP

SCNSPC2 ECR
JZ
INX
JMP

SCNSPC3 MOV
CPI
JZ
CPI
JZ
POP
LXI
RET

B

H
A,M
SPACE
SCNSPC1
COMMA
SCNSPC2
A,5
ERROR
C

SCNSPC3
H
SCNSPC2
A,M
SPACE
SCNSPC1
COMMA
SCNSPC1
B

H,CONBUFF+l

SAVE BUFFER COUNT
GET FIRST CHARACTER

IS IT A SPACE?
YES, ERROR

IS IT A COMMA?
NO, CONTINUE TO ENE

ERROR

AT BUFFER ENE TET?
YSS
NO
LOOP

GET LAST CHARACTER
A SPACE?
YES, ERROR

A COMMA?
YES, ERROR
RESTORE BUFFER COUNT
AND POINTER TO IT

* SCANEEEL - SCAN CONSOLE BUFFER
* DELIMITERS *

FOR 2 OR MORE SEQUENTIAL

SCANEEEL PUSH B JSAVE BUFFER COUNT
XRA A JINIT. FIRST DELIMITER
STA FR5TDEL

SEEL1 INX H JGET CHARACTER
MOV A,M
CPI SPACE JSPACE?
JZ EELCK J YES, FIRST DELIMITER?
CPI COMMA JCOMMA?
JZ DELCK J YSS, FIRST DELIMITER?
ECR C JIF C = THEN DONE
JZ SEELENE
XRA A 5 RESET FLAG
STA FRSTEEL
JMP SEEL1 JLOOP

DELCK LDA FRSTDEL JFIRST DELIMITER?
ORA A

JNZ EELCK1 ; NO, A=l - ERROR
INR A ; YES, SET FRSTDEL FLAG
STA FRSTEEL
ECR C JSEE IF DONE
JZ SDELDNE
JMP SEEL1 ; NO, LOOP

EELCK1 XRA A
STA FRSTDEL
MVI A,

6

JMP ERROR JPRINT ERROR

107

SEELDNE POP
LXI
RET

B
H,CONEUFF+l

J RESTORE BUFFER COUNT
J ANE POINTER TO IT

* CKPERIOE - CHECK FOR A PERIOE ANYWHERE IN INPUT
* CALL WITH EE = CONBUFF + 1

* RETURN WITH A = 00 IF NO PERIOE FOUNE
* = 0FFH IF A PERIOE ONLY
* = 0F0H IF A PERIOE + LATA
* OTHER REGISTERS UNCHANG-EE *

CKPERIOE PUSH
PUSH
PUSH
XCHG
MOV
MOV

CKPER1 INX
MOV
CPI
JZ
ECR
JZ
JMP

PERFNE MOV
CPI
JZ
MVI
JMP

NOERR MVI
JMP

CKEONE XRA
POP
POP
POP
RET

B

E

H

C,M
E,M
H

A,M
PERIOE
PERFND
C

CKEONE
CKPER1
A,E
1

NOERR
A,0F0H
CKEONE+1
A,0FFH
CKEONE+1
A
H
E
B

JSAVE REGISTERS

JHL = CONBUFF + 1

JC = CHARACTER COUNT
JE = CHAR. COUNT ALSO
IGET CHARACTER

IS IT A PERIOE?
YES
NO, ANY MORE CHARACTERS?
NO, CHECK EONE
YES, TRY AGAIN

RECALL ORIG. CHAR. COUNT
ONLY A PERIOE?
YES, NO ERROR
PERIOE + LATA IS ILLEGAL

JPERIOD ONLY INEICATION

,* CLEAR ACC. , NOT FOUNE
JRESTORE REGISTERS

* GET4BIN - GET 4 OR LESS HEX INTEGERS FROM THE CONSOLE
* BUFFER ANE CONVERT THEM INTO 16 BIT BINARY LATA
* (GO INTO BUFFER, GO TO DELIMITER IF ONE EXISTS
* OR TO BUFFER ENE, WHICHEVER OCCURS FIRST;
* BACK UP NUMBER OF CHARACTERS SPECIFIEE EY
* CALLER OR TO EELIMITER OR BUFFER+1, CONVERT
* TO BINARY ANE RETURN)
* CALL WITH EE = START OF CONVERSION POINTER (AT A
* DELIMITER OR THE BUFFER COUNT)
* RETURN WITH B = NUMBER OF CHARACTERS LEFT IN BUFFER
* C = NUMBER OF CHARACTERS CONVERTEE
* DE = END OF BUFFER OR EELIMITER
* HL = 16 BIT BINARY LATA *

108

BACKUP0
BACKUP

GET4BIN MVI
MOV
STA

GET41 XCEG
GET4L00P INX

MOV
CPI
JZ
CPI
JZ
ECR
JZ
JMP
INX
PUSH
DCX
CALL
JZ
MOV
CPI
JZ
CPI
JZ
ECR
JNZ
JMP

BACKUP01 INX
BACKUP1 MVI

SUB
MOV
XCHG
CALL
POP
DCR
RET
PUSH
PUSH
LXI
MOV
CMP
POP
POP
RET

EUFFTST

C,4
A,C
BACKUP1+1

H
A,M
SPACE
BACKUP
COMMA
BACKUP
B
BACKUP0
GET4LOOP
H
H

H
BUFFTST
BACKUP01
A,M
SPACE
BACKUF01
COMMA
BACKUP01
C

BACKUP+1
BACKUP1
H

A,

4

C

C,A

ENTER
D

B

H

D

E,CONBUFF+l
A,L
E
E
H

GET 4 CHARACTERS MAX
BE SURE BACKUP1 INST IS
MVI A t 4

HL = START OF SEARCH
GET CHARACTER

IS IT A SPACE?
YES

IS IT A COMMA?
YES

MORE CHARACTERS IN BUFFER?
NO

NONE OF THESE, TRY AGAIN
POINT TO BUFFER ENE + 1

SAVE EELIMITER AEERESS
BACK UP 1

AT BEGINNING OF BUFFER?
NO

ARE WE AT A SPACE?
YES

ARE WE AT A COMMA?
YES
EECREMENT CHARACTER COUNT
BACK UP 1 AGAIN
C = FINALLY
POINT TO FIRST CHARACTER
FINALLY GOT THERE
COMPUTE NUMBER OF BACKUPS

D2 = CONVERSION START ADER
EO CONVERSION
EE = EELIMITER AEERESS
EECREMENT CHAR. COUNT

;at buffer+i yet?
jif z = 1 then at buffer+1

; ELSE Z =

* GET2BIN - SAME AS GET4BIN BUT LIMITEE TO TWO CHARACTERS
* MAX
* SAME ENTRY PARAMETERS
* RETURNS WITH L 8 BIT BINARY LATA
* OTHER REGISTERS AS IN GET4BIN *

109

GST2BIN MVI C,2
MOV A f C

STA BACKUP1+1
CALL G-ET41
MVI A,

4

STA BACKUP1+1
RET

* MESOUT - HOST OUTPUT TO MLS
* CALL WITH CHARACTER IN A *

MDSOUT PUSH B
PUSH r

PUSH H

MOV C,A
MESOUT1 MVI A.10H

OUT MSTATPT
IN MSTATPT
ANI 0CH
CPI 0CH
JNZ MDSOUT1
MOV A,C
OUT MEATAPT
CPI XON
JZ XONEN

XONCK CALL
RRC

MESTAT

JNC XONCK
IN MEATAPT

XONDN POP H

POP E

POP B

RET

JTWO BACK-UP'S ONLY
5 MOEIFY G-ET4BIN COLE

JRESTORE GET4EIN COLE

JSAVE REGISTERS

JSAVE CHARACTER
JRESET SIO INT BIT

jget SIO STATUS
JCHECK FOR BOTH ETR & TXE
J MUST HAVE BOTH
J LOOP TILL REAEY

JSENE CHARACTER
;i? XON, DON'T WAIT FOR
J CONFIRMATION
JNOW WAIT FOR CONFIRMATION

; FROM MLS
JGET IT TO RESET SIO FLAGS
JRESTORE REGISTERS

* MESCME - SENE COMMANE TO MES
* CALL WITH A = COMMANE *

MDSCMD PUSH PSW ;save COMMAND
MVI A f 055H ;next CHAR. WILL
CALL MESOUT
POP PSW ;send COMMAND
CALL MESOUT
RET

BE CME

* MDATAOUT - SEND USABLE DATA TO MDS
* CALL WITH A = DATA *

MEATAOUT PUSH PSW JSAVE LATA
MVI A,0FFH J NEXT CHAR.
CALL MESOUT
POP PSW JSENE EATA

WILL BE DATA

110

PUSH PSW ; SAVE IT
CALL MESOUT
POP PSW JRESTORE EATA
RET

* HOSTREY - HOST REAEY TO RECEIVE RETURN EATA FOR CURRENT
* OPTION *

JNEXT CHAR. IS RDY FLAG

JSENE REAET FLAG

* HOSTEONE - HOST EONE WITH ITS PART IN CURRENT OPTION,
* IS RETURNING TO MONITOR *

HOSTREY MVI A f 00H
CALL MESOUT
MVI A,00H
CALL MESOUT
RET

HOSTEONE MVI
CALL
RET

A.'Q'
MESCME

* MESIN - HOST INPUT FROM MES
* RETURNS WITH CHARACTER IN A

MESIN PUSH E

PUSH D

PUSH H
CALL MESINREY
IN MEATAPT
CPI 0FFH
JZ MESIN2
CPI 055H
JZ MESQUIT
JMP MESINENE

MESQUIT MVI A,XON
CALL MESOUT
CALL MESINREY
IN MEATAPT
XRA A
STA SYSSTAT
STA MESREYF
MVI A,XON
CALL MESOUT
JMP MENU

MESIN2 MVI A,XON
CALL MESOUT
CALL MESINREY
IN MEATAPT
PUSH PSW

J NEXT CHAR. IS EONE CMNE

OTHER REGISTERS RESTOREE *

JSAVE REGISTERS

ANY INPUT WAITING FROM MES?
YES, GET EATA TYPE

IS IT EATA?
YES, GET IT

QUIT CME?
YES
NO, MES MUST HAVE
SIGNALLEE IT'S REAEY
FOR INPUT

CONFIRM RECEIPT

{RESET FLAGS

JCONFIRM RECEIPT OF 'Q

'

,'NOW BACK TO MENU
JSENE CONFIRMATION

JWAIT FOR EATA
I THEN GET IT
; SAVE IT

111

MVI
CALL
POP
POP
POP
POP
RET

A t XON
MDSOUT
PSW
H
D
B

J CONFIRM AGAIN

JRESTORE LATA S. REGISTERS

* MDSINRDY - CHECK FOR INPUT FROM MDS, LOOP TILL THERE IS *

MESINREY CALL
CALL
RRC
JNC
RET

ESCK
MDSTA?

MESINREY

JCHECK FOR ESCAPE
JGET STATUS

JNO CHARACTER WAITING
{CHARACTER WAITING

LOOP

* MESINENE - SET MIS REAEY FOR INPUT FLAG *

JCONFIRM ITMDSINDNE MVI
CALL
CALL
IN

M7I
STA
MVI
CALL
POP
POP
POP
RET

A,XON
MLSOUT
MISINREY
MDATAPT
A,0FFH
MESREYF
A t XON
MLSOUT
H
D

B

JSET MLS REALY FLAG

JCONFIRM RECEIPT OF DATA

JRESTORE REGISTERS

JBACK TO MESIN CALLER

* ESCK - CHECK FOR ESCAPE COMMAND FROM KEYBOARD

ESCK

IGNORE ALL OTHER INPUT *

CALL
RRC
RNC
CALL
CPI
JZ
MVI
CALL
RET

ESCK01 LEA
ORA
JZ
CALL
RRC
JNC

ESCK1 MVI
CALL

CONSTAT

CONSIN
ESC
ESCK01
E f BKSPCE
CONSOUT

SYSSTAT
A
ESCK1
CNTRLCK

MENU
A.'Q'
MESCMD

JCHECK FOR INPUT

J NONE
J IS IT ESCAPE?
JIS IT ESCAPE?
J NO

JEON'T PRINT CHARACTER

JGET SYSTEM STATUS

JHOST IN CONTROL
JSEE WHO IS IN CONTROL

J NO AEORT
J YES, SENE ESCAPE CME
J TO MDS

112

XRA A ;host now in control
STA STSSTAT
JMP MENU ;now back to menu

* MESTAT - GET STATUS OF MES SIO
* RETURNS WI TH A = 00 ANE Z = 1 IF NO CHARACTER WAITING
= 0FFH AND z = IF CHARACTER WAITING *

MESTAT XRA A ;CHECK SIO STATUS
OUT MSTATPT
IN MSTATPT
ANI 1 JCHARACTER WAITING?
RZ J NO, RETURN WITH A =

MVI A,0FFH ; YES, RETURN WITH A = 0FFH
RET

* CNVT16 - CONVERT 16 BITS BINARY DATA TO HEX ASCII
* CALL WITH HL = AEERESS FOR 4 CHARACTER ASCII OUTPUT
* STRING
* BC = 16 BIT :BINARY DATA
* RETURNS REGISTER PAIRS UNCHANGED
* A = GARBAGE *

CNVT16 PUSH H JSAVE REGISTERS
PUSH E

PUSH B
INX H

INX H

INX H
MVI D,4 ; CHARACTER COUNTER

CNVT161 MOV A,C JNEXT 4 EITS
ANI 0FH
CPI 0AH JIS IT A-F?
JC CNVT1615 ; NO
AEI 7 ; YES

CNVT1615 ADI '0' JFORM ASCII
MOV M,A JSTORE THIS CHARACTER
ECX H JBACK UP THROUGH OUTPUT AREA
MVI E,4 J DOUBLE RIGHT
ORA A ;SHIFT RIGHT 4 BITS

CNVT162 MOV A,B
RAR
MOV B,A
MOV A,C
RAR
MOV C,A
ECR E JEECREMENT SHIFT COUNTER
JNZ CNVT162 J3TILL SHIFTING
ECR E JEECREMENT CHARACTER COUNTER
JNZ CNVT161 ,'STILL CONVERTING

113

POP
POP
POP
RET

JRESTORS REGISTERS

* CNVT8 - CONVERT 8 BITS BINARY EATA TO HEX ASCII

#
CALL WITH

RETURNS

HL - AEERESS FOR 2 CHARACTER ASCII OUTPUT
STRING

C = 8 BIT BINARY LATA
REGISTER PAIRS UNCHANGEE
A = GARBAGE *

CNVT8 PUSH
PUSH
PUSH
INX
MVI
JMP

H

E
B
H

D,2
CNVT161

* STAR - PRINT A STAR *

STAR PUSH
LXI
CALL
POP
RET

E.STARMSG
PRINT
D

JSAVE REGISTERS

;EO CONVERSION

JPRINT IT

JBACK TO CALLER

*** MISCELLANEOUS MESSAGE ANE EATA STORAGE AREAS ***

SIGNON LB CR,LF,'ALTO
EB ' - VERSION

INSTRUC EB CR,LF,'BASI
EB ' A A THE P
EB ' "> . ',CR,
EB ' B. ALL I

EB ' CASE.',CR
DB ' C. AEDRE
EB ' TO BE IN

EB ' E. TERMI
EB 'RETURN OR
EB ' E. NORMA
EB 'IN CP/M AN
EB ' P. FOR A
EB 'WILL ALWAY
LB CR.LF,'
DB 'EATA INPUT
EB ' G. SOURC
EB ' HEX EIGIT
DB ' EELIM

S MES CONTROL PROGRAM'
1.5',CR,LF,LF, '$'

C AMDS INSTRUCTIONS: ',CR,LF,LF
ROMPT FOR INPUT OF LATA IS'
LF
NPUTS MAY BE IN UPPER OR lower'
LF

SS AND DATA INPUTS ARE EXPECTED'
HEX NOTATION. ',CR,LF
NATE INPUTS WITH A CARRIAGE

'

LINE FEED. ',CR,LF
L LINE EDITING ON INPUT IS AS

'

E MP/M. ',CR,LF
DDRESS INPUTS, THE PROGRAM

'

S TAKE THE LAST FOUR OR LESS '

HEX CHARACTERS ENTERED; FOR
'

S, THE LAST TWO OR LESS.',CR,LF
ES OF COMMON ERROR ARE INVALIE'
S, TOO MANY OR TOO FEW',CR,LF
ITERS, AND ILLEGAL SYNTAX .', CR ,LF

114

EE ' H. IN GENERAL, THE SAKE TATA I/O FORMAT'
EB ' AS USED IN DIGITAL RESEARCH "S ', CR ,LF
EE ' ELT IS USEE HERE. FOR EXCEPTIONS,'
LB ' CONSULT THE U5ER"S MANUAL .' ,CR ,LF
DB I. A QUESTION MARK ENTERED AFTER THE

'

EB 'PROMPT WILL CAUSE THE INPUT FORMATS TO'
EB CR,LF
DE ' BE DISPLAYED. ',CR,LF
EB ' J. IF THE ESCAPE KEY IS ENTEREE LURING '

EE 'INPUT THEN THE USER IS RETURNEE ', CR ,LF
DB ' TO THE MENU. ',CR,LF
EE ' K. FOR FURTHER DETAILS, CONSULT TEE

'

EB 'USER"S MANUAL', CR,LF,LF
DB 'PRESS ANY KEY TO CONTINUE >$'

MENUMSG EB CR.LF,'
DB ' MENU',CR,LF
EB

' HOST COMMANES
EB

'
MES COMMANES', CR,LF,LF

DB 'A. SUPPRESS PRINTING MENU
EB 'G. EOWNLOAE HEX FILE - EISK TO MES

'

EB 'MEMORY', CR,LF
DB 'B. DO NOT SUPPRESS PRINTING MENU
EB 'H. UPLOAE MES MEMORY TO HEX EISK FILE'
EB CR,LF
DB 'C. BASIC INSTRUCTIONS
EB 'I. EXAMINE/SET MES MEMORY LOCATION(S)'
EB CR,LF
DB 'D. HEXADECIMAL ADD & SUBTRACT
EB 'J. CONTINUOUS SET OF MES MEMORY ', CR ,LF
EB 'E. RETURN SYSTEM CONTROL TO HOST
DB 'K. FILL MDS MEMORY WITH SPECIFIED BYTE'
EB CR.LF
EB 'F. RETURN TO CP/M
DB 'L. LOCATE BYTE SEQUENCE IN MDS MEMORY'
EB CR,LF
EB

DB 'M. DUMP MDS MEMORY LOCATION(S) TO CONSOLE'
EB CR,LF
EB
DB 'N. EXECUTE MES MEMORY FROM SPECIFIEE ' , CR , LF
EB
EB ' LOCATION', CR, LF, '$'

SYSMSG DB 'SYSTEM STATUS: $$$$ IN CONTROL;'
EB ' $$ MENU SUPPRESSION', CR, LF, '%'

MESMSG EB 'MES $'

HOSTMSG DB 'HOST*
'

NOMENMSG EB 'NO$'
YESMENMG EB ' %

'

MENERRMG DB CR, LF, 'IN VALID MENU SELECT ION ' ,CR , LF ,'$

'

MFEELERR EB CR,LF,'TOO MANY OR TOO FEW EELIMITERS IN'

115

PERONLYM
INVHEXER
SEBELERR

SEQEELER

AMEIGERR

COLONERR

FNCHARER

HEXFTERR
SPFNERR

NFRTERR

FNFNEERR
CKSUMERR
ESKREERR
EIRSPERR
SGFAERR

DESPCERR

ERIVERR

CNTRLMSG

AEORTMSG
ABORTEEM

EXMSG

EXMSG2

FORMTMSG

EB
EB
EB
EB
EB
EB
DB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
DB
EB
EB
EB
EB
EB
E3
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB

' INPUT', CR, LF,

V

CR,LF, 'PSRIOE ONEY PLEASE !
'

, CR , LF , '$
'

CR.LF, 'INVALIE HEX EIGIT ' , CR ,LF , '$
'

CR,LF,'CAN"T HAVE A EELIMITER AT START OR'
' ENE OF INPUT', CR,LF, '$

'

CR,LF,'TWO OR MORE EELIMITERS SEQUENTIALLY'
CR,LF, '$'

CR.LF, 'AMBIGUOUS FILENAMES NOT ALLOWEE'
CR,LF,'$'
CR.LF, 'COLON (:) NOT PROPERLY PLACEE IN

'

'FILENAM-E ',CR,LF,'$'
CR,LF, 'FILENAME TOO LONG CR TOO SHORT'
CR,LF,'(8 CHARS MAX, 1 CHAR MIN)

'
, CR ,LF, '$

'

CR,LF,'HEX FILETYPES ONLY !
' ,CR ,LF , '$

'

CR,LF,'NO SPACES ALLOWEE IN FILENAME'
CR,LF, '$'

CR,LF, 'NON-PRINTAELE CHARACTERS NOT
'

'ALLOWEE IN FILENAME ', CR ,LF ,'$
'

CR,LF,'FILE NOT FOUND ' ,CR , LF, '*
'

CR,LF,'HEX CHECKSUM ERROR' ,CR ,LF ,'$ '

CR,LF,'EISK REAE ERROR ', CR , LF , '$
'

CR,LF,'OUT OF EIRECTORY SPACE ' ,CR , LF ,'$
'

CR,LF, 'START AEERESS CANNOT BE GREATER
'

'THAN FINISH AEERESS ', CR, LF ,'$
'

CR,LF,'OUT OF EIRECTORY OR BISK STORAGE
'

'SPACE', CR,LF, 'PARTIAL FILE WAS NOT
'

'SAVEE !', CR.LF,'*'
CR,LF, 'WARNING - ONLY CURRENTLY SELECTEE

'

'DISK WILL BE USEE, INPUT IGNORED !'

CR LF ' £
'

Cr!lF,''MES IS IN CONTROL, CAN"T CONTINUE'
' UNTIL OPTION "E" IS SELECTEE ' ,CR ,LF , '$

'

CR.LF, 'ABORT MES CONTROL (Y/N)? $'

CR,LF,'MES CONTROL ABORTED, HOST IN
'

'CONTROL. ',CR,LF,'$'
CR,LF,'WILL CONSOLE BE RECEIVING LATA

'

'FOR DISPLAY FROM THE MDS (Y/N)?$'
C R LF LF
' MES* IS IN CONTROL, HOST MAY REGAIN

'

'CONTROL ONLY BY TYPING THE ESCAPE KEY !'

CR,LF,LF,'$'
CR,LF,' INPUT PARAMETER FORMATS ARE AS

'

' FOLLOWS : ',CR,LF
MENU >X

' X IS OPTION SELECTION (A-N)',CR,LF
HEXARITH >XXXX YYYY

XXXX 5. YYYY ARE HEX I NTEGERS ' ,CR , LF
EWNLOAE >FILENAME(.HEX)

'

'
(.HEX) IS OPTIONAL', CR,LF
UPLOAE >FILENAME(.HEX) ',CR,LF

>XXXX YYYY

116

'

DB ' XXXX S, YYYY ARE MBS HEX START AND',CR,LF
DB

' '

DB ' END ADDRESSES FOR UPLOAD ', CR ,LF
DB EXAMINE MLS >XXXX
DB ' XXXX IS FIRST MBS HEX ADDRESS TO'
DB CR,LF,'
DB ' EXAMINE AND SET',CR,LF
DB

'
>XXXX YY ZZ

DB ' XXXX IS HEX ADDRESS, YY IS HEX DATA'
DB CR.LF,'
DB ' AT THAT ADDRESS, ZZ IS CARRIAGE RETURN'
DB CR,LF,'
DB

'
or ZZ 13 NEW HEX DATA'

DB CR.LF,'
DB or ZZ IS ". '",CR,LF
DB ' CONTINUOUS >XXXX
DB ' XXXX IS MIS HEX START ADDRESS FOR'
DB CR,LF,'
DB ' FIRST CHANGE', CR,LF
DB

'
>AA EB CC '

DB * ARE HEX DATA FOR ENTRY INTO MDS MEMORY'
DB CR.LF,'
DB ' (255 ENTRIES MAX, INCLUDING DELIMITERS)'
DB CR.LF
DB
DB ' IF ONLY A "." IS TYPED AFTER THE'
DB C R LF

' '

DB ' 'PROMPT, THE OPTION IS ENDED', CR,LF
DB ' FILL >XXXX YYYY ZZ
DB ' XXXX & YYYY ARE MDS HEX START AND'
DB CR,LF,'
DB ' END ADDRESSES TO FILL BETWEEN; ', CR, LF
DB
DB ' ZZ IS HEX DATA to USE FOR FILL',CR,LF
DB CR,LF, 'PRESS ANY KEY TO CONTINUE >$'

FMTMSG1 DB CR.LF, LF
DB ' LOCATE SEQ. >XXXX (YYYY)
DB ' XXXX & YYYY ARE MDS HEX START AND',CR,LF
DB
DB ' OPTIONAL END ADDRESSES TO SEARCH BETWEEN'
DB CR,LF
DB

'
>AA BB ... PP '

DB ' ARE UP TO A 16 BYTE HEX SEQUENCE' ,CR ,LF

DB
DB ' TO SEARCH FOR IN MDS MEMORY ' ,CR ,LF
DB ' DUMP >XXXX(YYYY)
DB ' XXXX S. YYYY ARE MDS HEX START AND'
DB CR LF

' '

DB ' 'OPTIONAL END ADDRESSES TO DUMP BETWEEN'
DB CR.LF
DB ' EXECUTE >XXXX

117

EB
EB
EE
EB
EB

HEXMSG EB
HEXMSG1 EB
HEXMSG2 EB
EXAMSG EB
EXAMSG1 EB
EXAMSG2 EB
FILLMSG EB

EB
CSSTMSG EB

EB
EXECMSG EB

EB
LOCMSG EB

EB
NOTFOUND EB
FOUNEMSG EB
FOUNEMS1 EB
EUMPMSG EB
EUMPMSG1 EB
EUMPMSG2 EB
EUMPMSG3 EB
MENUPROl EB

EB
MENUPROM EB
PROMPT EB
FILENAME EB
BWNLBM5G EB

EB
EWNEONE EB
DWNEONE1 EB

EB
UPLEMSG EB

EB
UPLEONE EB

EB
DATAMSG EB
STARMSG EB
FCBMSG EB

EB

SYSSTAT ES

MENUSUPF ES

' XXXX IS MES HEX AEERESS WHERE EXECUTION'
CR,LF

' IS TO BEGIN', CR,LF,LF
'PRESS ANY KEY TO CONTINUE >$'
CR,LF,'HEX AEE/SUB',CR,LF,':?'
'SUM = H$$
'EIFF = $$$$', CR.LF, V
CR,LF, 'EXAMINE/SET MES MEMORY ' ,CR,LF ,'$

'

CRjLF,'FILL MES MEMORY LCC ATION (S)
'

, CR ,LF

CR,LF, 'CONTINUOUS SET MES MEMORY W/O '

'EXAMINE', CR,LF, '$'

CR.LF, 'EXECUTE MES MEMORY FROM SPECIFlEE '

'ABDRESS',CR,LF, '$'

CR,LF, 'LOCATE BYTE SEQUENCE IN MES MEMORY'
CR.LF, '$'

CR,LF,'BYTE SEQUENCE NOT FOUNE !',CR,LF,'£'
CR, IF, 'FOUND STARTING AT MES AEERES3

'

'$$$$\cR,L? f
'$'

CR.LF, 'DUMP MES MEMORY ', CR, LF, '$

'

CR,LF, 'OPTION A = MENU SUPPRESSION, B =
'

'NO MENU SUPPRESSION'
CR,LF, 'INPUT MENU OPTION $'
'>$'

'FILENAME $'

CR.LF, 'DOWNLOAD HEX FILE FROM DISK TO MES'
' MEMORY', CR,LF, '$'

CR,LF, 'EOWNLOAE COMPLETEE' , CR , LF
'MES START ABERESS = $$$$H , LAST ADDRESS

'

'= $$$$H',CR,LF,'$'
CR.LF, 'UPLOAD (SAVE) MES MEMORY TO EISK '

'HEX FILS',CR,LF, '$
'

CR.LF, 'UPLOAE TO EISK SUCCESSFULLY
'

'COMPLETEE', CR,LF, '$'

' $$ r
'#$

'

0,20H,20H,20H,20H,20H,20H,20H,20H
'HEX ',0,0, 0,0

JSYSTEM STATUS FLAG
; HOST IM CONTROL =

; MES IN CONTROL = 1

JMENU SUPPRESSION FLAG
I = NO SUPPRESSION

118

MENUFLG
FRSTEEL
FIRST
SECONL
SUM
START

LS
EB
DW
EW
El*

DW

1

FINISH EW

MLSLATA ES 1

CONSDATA ES 1

MLSRLYF ES 1

FIRSTIME
BUFFCNT
CURRENT
CONTFLG

ES
ES
ES
ES

1

1

1

1

FCB ES 36

CONBUFF EB 48

ESKBUFF
DS

EQU
256

ENE STARTER

1 = SUPPRESS
STORAGE FOR M
FIRST ESLIMIT
FIRST NUMBER
SECONE NUMBER
SUM OF HEX NU
STARTING AEER
COMMANE USE
FINISH AEERES
COMMANE USE

TEMP. STORAGE
FROM MIS

TEMP. STORAGE
FROM CONSOLE

MES REAEY FLA
0FFH = DONE,

FIRST TIME TH
BUFFER COUNT
CURRENT DISK
CONTINUATION
READ OPERATI
00 = NC CONT
0FFH = CONTI
SPACE FOR FIL
BLOCK
EEFAULT TO 48
MAX FOR CONS

PROVIDE FOR 2

START OF DISK

ION
ENU CHOICE
ER FLAG
TO ADD /SUB
TO ALE/SUB
MBERS
ESS FOR

S FOR

FOR LATA

FOR DATA
TO MES

- NCT DONE
ROUGH REAL
SPACE
DRIVE
FLAG FOR DISK
ON3
INUE
NUE
E CONTROL

CHARACTERS
OLE BUFFER
55 CHARACTERS
BUFFER

119

APPENDIX E

MDS MONITOR SOFTWARE LISTING

*

* AMIS1 - ALTOS MICROCOMPUTER ESVELOPMENT SYSTEM *

* (MES COEE) *
* *

* VERSION 1.3, 28 MAY 1961 *

* LT. STEPHEN M. HUGHES - AUTHOR *

* #

* THIS IS THE MES MONITOR COEE FOR THE AMDS. THE AMI'S *

* USER'S MANUAL SHOULE EE CONSULTEE FOR SPECIFICS NOT *

* GIVEN IN THE DOCUMENTATION WHICH FOLLOWS. *

RAM
CHASTAT

EQU
EQU

2000H
0E4H

CHADATA
CHBSTAT

EQU
EQU

0E3H
0E2H

CHBDATA EQU 0E1H

BAUEREG EQU 0E0H

XON EQU 011H

USERIO

ORG
JMP
NOP
NOP
JMP

0000H
PORTSET

USRIO

START OF ONBOARD RAM
CHANNEL A STATUS ANE
COMMANE/CONTfiOL PORT

CHANNEL A DATA PORT
CHANNEL B STATUS ANE
COMMANE/CONTROL PORT

CHANNEL 3 DATA PORT
(NOT USEE IN THIS COEE)

PORT FOR SETTING BAUE RATE
OF SERIAL PORTS
CONTROL Q

JSTART OF PROM
JSET UP SERIAL PORT ON RESET

;USER CALL FOR CONSOLE I/O

ORG
JMP

0038H
EXECENE

JRST 7 LOCATION
JUSER RST 7 COMES HERE FOR
', RETURN OF CONTROL TO HOST
J AND ONBOARD MONITOR

ORG
MONITOR LXI

0040H
SP.STACK

;RST 7+8
JSET STACK EVERY TIME

120

XRA A

STA OPTION
CALL HC5TIN

M0NIT0R1 ANI 7FH
CPI V
JZ DWNLD
CPI 'U'
JZ UPLD
CPI 'x'
JZ EXAM
CPI 'C'
JZ CSET
CPI 'F'

JZ FILL
CPI 'L'
JZ LOCATE
CPI T'
JZ DUMP
CPI 'E'
JZ EXEC
JMP MONITOR

jreset option flag
jget command from host
jcommand will be ascii
ilownloal command?

j upload command?

jexamine/set memory cmr?

jcontinuous memory set cml?

jfill command?

jlocate seq. command?

j dump memory command?

jexecute memory cmd?

janything else is ignored

* DWNLD - DOWNLOAD HEX DISK FILE TO MDS MEMORY ROUTINE
* ROUTINE LOOPS UNTIL A HOSTDONE COMMAND 15
* DETECTED BY THE INPUT ROUTINE *

DWNLD CALL HOSTIN

MOV C,A
CALL GETADDR

DWNLD1 CALL HOSTIN
MOV M t A

INX H
DCR C

JNZ D^NLDl
JMP DWNLD

* UPLE - UPLOAD MDS MEMO

UPLD CALL GETADDR
SHLD START
CALL GETADDR
SHLD FINISH
LHLD START
XCHG

UPLD1 LDAX D

CALL HDATAOUT
INX D
CALL BUFFCMP
RRC
JNC UPLD1

;get number of bytes to
; expect
;c = byte counter
;GET STARTING ADDRESS
JGET A BYTE
JSTORE IT

JMORE BYTES TO GET
JGET NEW ADDRESS FIRST

JGET STARTING ADDRESS

JGET FINISH ADDRESS

JDE = START ADDRESS
JGET DATA
JSEND IT

JDONE YET?

J NO

121

CALL
JMP

MESREY
MONITOR

YES

* SXAM - EXAMINE/SET MEMORY
* LOOPS TILL INPUT EETECT3 HOSTIONE COMMANE

jget starting aeiress
jsend lata at rl address
; TO HOST

jget new data
; ieposit it

;loop till hostdone

* CSET - CONTINUOUS SET OF MLS MEMORY
* LOOPS TILL HOSTEONE EETECTEE *

EXAM CALL G-ETAEER
EXAM1 MOV A ,M

CALL HEATAOUT
CALL HOSTIN
MOV M,A
I NX H

JMP EXAM1

CSET CALL GETADDR JGET STARTING AEDRESS
CSET1 CALL HOSTIN JGET LATA

MOV M,A J EEPOSIT IT
JMP CSET1 JLOOP

* FILL - FILL EESIGNATEE MEMORY LOCATIONS WITH SPECIFI
* LATA *

FILL CALL GETADDR JGET FIRST ADDRESS
SHLE START
CALL GETAEER JGET LAST AEERESS
SHLD FINISH
CALL HOSTIN JGET LATA TO FILL WITH
MOV C,A J SAVE IT
LHLD START
XCHG JEE = START AEERESS

FILL1 MOV A ,C JGET FILL LATA
5TAX D J DEPOSIT IT
I NX E

CALL BUFFCMP JEONE YET?
RRC
JNC FILL1 J NO, KEEP FILLING
CALL MESEONE J YES
JMP MONITOR

* LOCATE - LOCATE BYTE SEQUENCE IN MES MEMORY
* SENES 'F' TO HOST IF FOUNE
* SENDS 'N' TO HOST IF NOT FOUND *

LOCATE CALL
SHLD
CALL
SHLE

GETAEER
START
GETADDR
FINISH

JGET START AEERESS

JGET FINISH AEDRESS

122

LOCIN

SEARCH

SRCH1

MATCH

MATCH1

FOUND

LXI H,EATABUFF
MVI C,0
CALL HOSTIN
PUSH PSW
LDA HSTRDYFL
RRC
JC SEARCH
POP PSW
MOV M,A
INX H

INR
JMP LOCIN
MOV A,C
STA LOCO'JNT
LHLD START
XCHG
LXI H,DATABUFF
LDAX E

CMP M

JZ MATCH
INX E

CALL BUFFCMP
RRC
JC NOTFNE
JMP SRCH1
XCHG
SHLE MATCHAER
XCHG
DCR C

JZ FOUNE
INX E

CALL BUFFCMP
RRC
JC NOTFNE
INX H
LIAX E

CMP M

JZ MATCH1
LHLL EATABUFF
INX E

LDA LOCOUNT
MOV C,A
JMP SRCH1
MVI A,'F'
CALL HEATAOUT
LHLD MATCHAER
MOV A,H
CALL HEATAOUT
MOV A,L
CALL HEATAOUT
JMP MONITOR

STORE SEQUENCE HE?E
LATA COUNTER
GET SEQUENCE

IF SET THEN NO MORE DATA

START SEARCH
MORS DATA
STORE IT

BUMP COUNTER

GET SEQUENCE COUNT
SAVE IT

IE = START ADDRESS
KL = START OF SEQUENCE
GET MES DATA
IS THERE A MATCH?
YES

NO, SEE IF EONE

YES, SEQ. NOT FOUND
NO, TKY AGAIN
HL = FIRST MATCH ADDRESS
SAVE IT
RESTORE DE & KL
ALL MATCHES YET?
YES, FOUNE SEQUENCE

EONS YET?

YES , SEQ. NOT FOUNE
NO, LOOK FOR NEXT ,

V,ATCH

ANOTHER MATCH?
YES
NO, START ALL OVER

RE-INIT. SEC. COUNT

KEEP TRYING
SEND FOUND TO HOST

GET FIRST ADDR. OF MATCH
SEND IT TO HOST, MSB FIRST

THEN LSB

ALL EONE

123

NOTFNE MVI
CALL
JMP

A,'n'
HDATAOUT
MONITOR

JSENE NOT FOUNE TO HOST

* LUMP - LUMP MIS MEMORY TO HOST CONSOLE *

LUMP

EUMP1

CALL
SHLL
CALL
SHLE
LHLE
XCHG
LEAX
CALL
INX
CALL
RRC
JNC
CALL
JMP

GETAEER
START
GETADDR
FINISH
START

HEATAOUT
D
BUFFCMP

DUMP1
MESREY
MONITOR

JGET START AEERESS

JGET FINISH AEERESS

;i;E = START ADDRESS
JGET MES MEMORY LATA

;eone YET?

; no
; YES

* EXEC - EXECUTE MDS MEMORY

*

EXEC

PROGRAM TO BE EXECUTEE MAY RETURN MONITOR VIA
A 'RST 7' INSTRUCTION OR A JUMP TO LOCATION
0000H

HOST CONSOLE I/O IS AVAILABLE AS EXPLAINEE IN
THE USRIO ROUTINE *

STA
CALL
PCHL

OPTION
GETAEER

JSAVS OPTION
JGET EXECUTION AEERESS
J GO TO IT

*** UTILITY SUBROUTINES ***

* BUFFCMP - COMPARE EE TO FINISH AEERESS + 1

* IF EQUAL, RETURN A = 0FFH
* IF UNEQUAL, RETURN A = 00 *

BUFFCMP PUSH H

PUSH D
LHLE FINISH
INX H

MOV A,H
CMP E
JNZ NOCMP
MOV A,L
CMP E
JNZ NOCMP
MVI A,0FFH
POP E

;ee=current aeer to compare
jhl = finish aeeress + 1

;h = d?

; no

; YES, L = E?

; no

j yes, addresses are equal

124

POP H

RET
NOCMP XRA A

POP E

pop a
RET

JAEERESSES NOT EQUAL

* GETAEER - GET AEERESS FROM HOST *

JGET MSB FIRST

J THEN LSB

GETAEDR CALL
MOV
CALL
MOV
RET

HOSTIN
H,A
HOSTIN
L,A

* PORTSET - SET UP SERIAL I/O PORTS ON EVERY RESET OR
* CALL TO 0000E *

JSET RATE TO S500 BAUE

JSENE CONTROL BYTE
J 1 STOP BIT
J NO PARITY, 8 BITS/CHAR
J 16x RATE FACTOR
;SENE COMMANE BYTE

PORTSET MVI A,77H
OUT BAUEREG
MVI A,01001110B

OUT CHASTAT
OUT CHBSTAT
MVI A,00110111B
OUT CHASTAT
OUT CHBSTAT
JMP MONITOR

* USRIO - USER TO/FROM HOST CONSOLE I/O ROUTINE
* USER EXECUTEE PROGRAMS IN MES MEMORY MAY
* COMMUNICATE WITH THE HOST CONSOLS VIA A
* TO LOCATION 0005H
* - FOR INPUT FROM TEE HOST CONSOLE, CALL WITH
* REG. C « 1 - CHARACTER WILL BE RETURNEE
* - FOR OUTPUT TO HOST CONSOLE, CALL i/ITH THE
* CHARACTER IN A ANE REG. C = 2

* - TO CHECK THE FOR HOST INPUT, CALL
* REG. C = 3 - RETURNS A = 00
* RECEIVEE FROM THE HOST; A =

* WAITING
* - IF C <> 1, 2 or 3 THEN ROUTINE RETURNS WITH C = 0FFH

CALL

IN A

WITH
IF NO INPUT HAS BEEN
0FFH IF INPUT IS

USRIO PUSH PSW
MOV A,C
CPI 1

JZ USRIN
CPI 2

JZ USROUT
CPI 3

cz HOSTAT

JSEE IF INPUT OR OUTPUT

JWANT STATUS ?

; YES, GET IT

125

MVI C.0FFH
RET

USRIN CALL MESREY
POP PSW
CALL HOSTIN
RET

USROUT POP PSW
CALL HEATAOUT
RET

J ILLEGAL COLE

JTELL HOST TO SENE INPUT

;get INPUT
J RETURN WITH IT IN A

JSENE CHARACTER TO HOST

* EXECDNE - THIS RETURNS USER PROGRAM TO MONITOR AND
* RETURNS CONTROL TO HOST IE A RST ? 15 EXECUTE! *

SEE IF THE EXECUTE OPTION
WAS IN EFFECT WHEN CONTROL
WAS TRANSFERP.EE HERE
NO, HOST IN CONTROL
YES, GIVE HOST CONTROL

EXECENE LEA OPTION
CPI 'E'

JNZ MONITOR
CALL MESEONE
JMP MONITOR

* HOSTIN - GET INPUT FRO

HOSTIN CALL GETCHAR
HOSTIN1 CPI 55H

JZ HOSTCME
CPI 0FFH
JZ HOSTETA
JMP HOSTREY

HOSTCME CALL GETCHAR
JMP MONITOR1

HOSTETA CALL
RET

GETCHAR

HOSTREY CALL GETCHAR
MVI A.0FFH
STA HSTREYFL
RET

GETCHAR CALL
RRC

HOSTAT

JNC GETCHAR
GETCHAR1 : CHAEATA

PUSH PSW
MVI A.XON
CALL HOSTOUT
POP PSW
RET

* HOSTOUT - SENE LATA TO HOST *

;get input
j is it a commane?

jis it lata?

j
v,ust ee host reaey flag
jget actual commane

j go to monitor for escoee
jget lata
j return to caller with it
jget ready flag
j set flag in mes

jreturn to caller

jloop till char. is waiting

jget lata

jconfirm it

HOSTOUT PUSH
CALL

PSW
HOSTAT JANYTHING FROM HOST? (HOST

126

RRC J HAS PRIORITY)
JNC H05TOUT1 ; NO
CALL GETCHARl J YES, GET IT
CALL HOSTIN1 JIF COMMAND, BACK TO MONITOR

; ELSE IGNORE IT
H0ST0UT1 IN CHASTAT JGET PORT STATUS

ANI 1

JZ HOSTOUTl ; LOOP TILL READY TO SEN!
POP PSW JSEND CHARACTER
OUT CHAEATA
CPI XON JEON'T WAIT FOR XON
RZ J CONFIRMATION

XONCK CALL HOSTAT JWAIT FOR CONFIRMATION
RRC
JNC XONCK
IN CHADATA JGET IT

RET

* HOSTAT - HOST INPUT STATUS *

HOSTAT IN CHASTAT
ANI 2

RZ JNO CHAR. WAITING, RET A=0
MVI A,0FFH JCHAR. WAITING, RET A=0FFH
RET

* HEATAOUT - SEND EATA TO HOST IN PROPER FORMAT *

HLATAOUT PUSH PSW J SAVE EATA
MVI A,0FFH JNEXT CHARACTER IS DATA
CALL HOSTOUT
POP PSW
PUSH PSW
CALL HOSTOUT JSEND DATA
POP PSW JRESTORE DATA
RET

* MDSDONE - SEND MES DONE COMMAND *

MDSDONE MVI A,55H J NEXT CHARACTER IS COMMAND
CALL HOSTOUT
MVI A.V J QUIT COMMAND
CALL HOSTOUT
RET

* MDSREY - MES IS READY FOR INPUT OR OTHER ACTION BY HOST *

MESRET MVI A,00H JNEXT CHAR. IS READY FLAG
CALL HOSTOUT
MVI A,00H
CALL HOSTOUT

12?

RET

*** LATA STORAGE AREAS - IN ONEOARE RAM ***

ORG
HSTREYFL ES

MATCHAER LW

LOCOUNT
START
FINISH
OPTION

STACK
DATABUFF

DS
EW
EX
DS
ES
ES
DS

RAM
1

1

1

63
1

25

;host reaey flag
; 00 = not reaey
; offh = ready
jstorage for first aeeress
; OF MATCH
JSTORAGE FOR BYTE COUNT
JSTORAGE FOR START &

J FINISH AEERESSES
JSTORAGE FOR OPTION SELECTEE
JALLOW FOR A 32 LEVEL STACK

JSTORAGE FOR LOCATE SEQUENCE

128

APPENDIX E

MDS MEMORY TEST PROGRAM LISTING

* *

* MLS MEMORY DIAGNOSTIC *
sjc *

* VERSION 2.5 11 MAY 1981 *

* *

* THIS PROGRAM IS A REVISION OF THE Z-80 MEMORY TEST *

* PROGRAM PUBLISHED IN THE FEBRUARY 1981 ISSUE OF *

* "DR. DOBB'S JOURNAL OF COMPUTER CALISTHENICS 5. ORTHODONTIA" *

* THE PROGRAM HAS BEEN TRANSLATED TO 8080 ASSEMBLY CODE AND *

* MODIFIED TO OPERATE ON THE ALTOS AND MDS SYSTEMS. *

* REVISIONS MADE BY LT . STEPHEN M. HUGHES FOR USE IN THESIS *

* AS STATED IN THE ORIGINAL TEXT, "FURTHER RESALE OF THIS *

* PROGRAM IS PROHIBITED", UNLESS INCLUDED IN THE BODY OF THE *
* REVISIONIST'S THESIS. *

ORG 4000H

USRIO EQU 0005H
BKSPACE EQU 08H
ESC EQU 1BH
CR EQU 0DH
LF EQU 0AH

RCNT EQU 3

WCNT EQU 3

MEM DI
LXI SP, STACK
LXI B,TEND
LXI H,MEMT1

JUSER I/O CALL
JASCII BACKSPACE
JASCII ESCAPE CODE
JASCII CARRIAGE RETURN
JASCII LINE FEED

JSEQUENTIAL READS
JSEQUENTIAL WRITES

JDISABLE INTERRUPTS
JINITIALIZE STACK
JFORMAT ADDRESS OF END OF TEST

CALL CHA

* TEST STARTS HERE *

MEM01 CALL
LXI

CRLF
H,0000H

JMAKE OUTPUT PRETTY
JINITIALIZE PAS COUNT,
J CUMULATIVE ERROR COUNT

129

SHLD MEMF
SHLE MEMX
SHLE MEML
LXI H,-l
SHLL MEMK
LXI H,MEMA
CALL DSPLY

* GET TEST MOEE *

MEM03 MVI 4,1
STA MEMP
LXI H,MEMN
CALL ESPLI
CALL CRLF
MVI &,'>'
CALL USROUT
CALL USRIN
Ofil 20H
CPI e
JZ MEM55
CPI l

JZ MEM04
CPI 't'

JNZ MEM03
XRA A

STA MEMP

* GET MEMORY TEST LIMI

MEM04 LXI H,MEMB
CALL ESPLY
CALL SNTR
MOV A,H
ORA A

JM MEM05
LXI D,TEND
PUSH H

MOV A t L
SUB E

MOV L,A
MOV A,H
SBB E

MOV H,A
POP H
JP MEM05

MEM045 LXI H,MEMT
CALL DSPLY

J ANE AEERESS 'OR' PROEUCT

JINIT. ADDRESS 'ANE'

JPRINT PROGRAM TITLE

j3et default = itemize

jprint select i ,t or e

,'proviee a cue mark

iwait for input
jmake lower case
jif e, exit

;if i, itemize errors

jif t, print total errors
J ONLY
JIF NONE, TRY AGAIN
JSET TOTAL ONLY FLAG

JPRINT ENTER FBA

GET 16 BIT AEERESS
IF UPPER BYTE OF FBA IS
NEGATIVE, OK TO USE
SO JUMP
OTHERWISE, MAKE SURE FBA
IS NOT WITHIN TEST PROGRAM
AREA
(HL = HL - DE - C)

JFBA IS OK, JUMP
JIF FBA IS WITHIN TEST PROGRAM
J AREA, SET IT TO END OF

130

MEM05
LXI
SHLD
LXI

CALL
CALL
PUSH
PUSH
ORA
PUSH

LHLD
MOV
MOV
POP
MOV
SUB
MOV
MOV
SBB
MOV
JNC
POP
POP
LXI
CALL
JMP

H,TEND
MEM I

H.MEMC

DSPLY
ENTR
H

H
A

H

MEMI
D,H
E,L
H
A,L
E

L,A
A t H

D
H,A
MEM06
H

a
H.MEMU
DSPLY
MEM04

J PROGRAM S, PRINT A WARNING
JSAVE FIRST BYTE ADDRESS (FBA)
;PRINT ENTER LAST BYTE ADDRESS
J (LBA)

;.. .ACCEPT
JSAVE LBA

AEIRESS

CLEAR CARRY FLAG
(DE = CONTENTS CF MEMI

AND MEMI + 1)

JMAKE SURE FBA < LBA
J (HL = HL - DE - C)

J IT'S OK, JUMP
JRESTORE STACK

JFBA IS >= LBA SO PRINT
J ERROR MESSAGE
J ANE ACCEPT ADDRESSES AGAIN

* ALL ADDRESSES OK NOW *

MEM06

MEM08

POP
LXI
CALL
PUSH
LHLD

MOV
MOV
POP
LXI
CALL
POP
PUSH
LXI
CALL
POP
INX

B
H,MEMG+5
CHA
H
MEMI

B f H
C,L
H
H,MEMG
CHA
H
H

H,MEMV
DSPLY
D

D

JBC = LBA
JCONVERT IT FOR PRINTING

CONVERT FBA FOR PRINTING
(BC = CONTENTS OF MEMI

AND MEMI + 1

)

JHL = LBA

JPRINT ABORT INSTRUCTION

JDE = LEA
JLBA = LBA + 1

* MAIN LOOP OF MEMORY
* BEGIN A PASS *

TEST BEGINS HERE *

131

MEM1 MVI C.l
LXI a,0000H
5HLD MEME

J INITIALIZE PATTERN NO.
INITIALIZE ERROR COUNT

* TEST ALL OF DESIGNATED MEMORY FOR CURRENT PATTERN *

* WRITE PATTERN INTO MEMORY *

jinit. writes counter
jget first byte address
jcheck keyboard

MEM15 MVI B,WCNT
MEM2 LHLD MEMI

CALL USRSTAT
RRC
CC MEM5

PUSH B

MEM21 CALL PATTN

MOV M,A
INX H
MOV A,L
CMP E

JNZ MEM21
MOV A,H
CMP D

JNZ MEM21
POP B

rcR B
JNZ MEM2
MVI B,RCNT

'0 TEST

IF CHARACTER WAITING,
INTERRUPT TEST

SAVE PATTERN AND WRITES
COUNTER
COMPUTE PATTERN FOR THIS
MEMORY ADDRESS
...WRITE IT

ADVANCE MEMORY AEERESS
CHECK IF END OF AREA TO BE
TESTED

LOOP, NOT YET

JLOOP, NOT LONE YET
JGET WRITES COUNTER
JWRITE PATTERN OVER ANE

JINIT. READS COUNTER

OVER

* NOW READ PATTERN BACK FROM MEMORY AND COMPARE TO COMPUTED
* PATTERN. IF DIFFERENCE IS FOUND ON FIRST READ, ASSUME A
* POSSIBLE WRITE ERROR. IF FIRST READ MATCHES, COMPARE 16
* MORE TIMES LOOKING FOR SOFT READ ERRORS. *

MEM3

MEM31

LHLD
CALL

MEMI
USRSTAT

ORA
CNZ
PUSH

A
MEM5
B

CALL PATTN

MOV
MOV
CMP

B,A
A,M
B

JZ
MOV

MEM32
M,B

* n
-ETivxjs.1 FBA OF MEMORY TO TEST

JCHECK KEYBOARD
JIF CHARACTER WAITING,
J INTERRUPT TEST
JSAVE PATTERN AND READS
J COUNTER
JCOMPUTE PATTERN FOR THIS
J MEMORY ADDRESS
J... SAVE IT
J READ MEMORY
JIS DATA CORRECT?
J YES, JUMP
JWRITE THE CORRECT DATA

132

MEM32

MEM35

CALL

JMP

ERR1

MEM35

SUB M

ADD M
SUB M
ADD M

SUB M
ADD M
SUB M
ADD M

SUB M
ADD M

SUB M

ADD M
SUB M

ADD M

SUB M
ADD M

CMP B

CNZ ERR2

INX H
MOV i.I
CMP E

JNZ MEM31
MOY A,H
CMP D

JNZ MEM31
POP B

DCR B

JNZ MEM3

DATA DOESN'T MATCH,
PRINT POSSIBLE WRITS
ERROR AUDIT

TEST NEXT ADDRESS
DATA MATCHED ON FIRST TRY
TRY FOR A SOFT READ ERROR
BY HITTING THIS ADDRESS A

SOLID 16 TIMES

JDOES DATA STILL MATCH?
J NO, PRINT P05SIELE READ
J ERROR AUDIT
JADVANCE MEMORY ADDRESS
JCHECK IF REACHED END OF MEMORY
J AREA TO BE TESTED
JNOT DONE YET, LOOP

;not done yet, loop
;restore pattern and read
; counter
;read pattern over and over

* done with one pattern, advance to next and check for end
* OF PASS *

INR c J INCREMENT PATTE
MOV A,C
CPI 11 JDONE YET?
JNZ MEM15 ; NO, LOOP
JMP MEM6 5AUDIT THIS PASS

TER WAITING ON KEYBOARD , INTERRUPT TEST AND CHECK
FOR EXIT REQUEST *

133

MEM5 GALL USRIN
CPI 04H
JZ DISPSTP
ORI 20H
CPI l

JZ MAKEI
CPI 't'
JZ MAKET
CPI

* *
e

JNZ STACKIT
MEM55 LXI H,MEMM

CALL DSPLY

rispsTP CALL USRIN

CALL B50DT
RET

STACKIT LXI SP, STACK
JMP MEM01

MAKEI MVI A.l
STA MEMP
CALL BSOUT
RET

MAKET MVI A,0
STA MEMP
CALL BSOUT
RET

;get imput
;~e - freeze action

;foli to lower case
jiynamic set itemize

;lynamic set total only

JRESTART TEST IF NOT E

JEXIT FROM TEST, PRINT GCOEBYE

JWAIT FOR ANY KEY TO RESUME
; ACTION
JEON'T PRINT IT

j reset stack
jrestart test

;make itemize

JMAKE TOTAL ONLY

* LONE WITH PASS THROUGH MEMORY *

* PRINT CONSOLE AUDIT IN THE FORM:
*

* PASS: xxxi ERRORS: xxxx CUM. ERRORS: xxxx
* (IF CUMULATIVE ERRORS > ZERO THEN ALSO PRINT)

SAVE LBA+1
(BC = CONTENTS OF MEMF

ANT MEMF + 1

)

* ANL: xxxx OR:

MEM6 PUSH D
PUSH H

LHLD MEMF
MOV B,H
MOV C,L
POP H
INI B
PUSH H

MOV H,B
MOV L,C

JCOUNT PASSES
; (MOV BC TO MEMF)

134

SHLD MEMF
POP H
LXI 3,MEMG1
CALL CHA
PUSH H

LHLD MEME
MOV B,H
MOV C,L
POP H

LXI H,MEMG2
CALL CHA
PUSH H

LHLD MEMX
MOV B,H
MOV C,L
POP H
LHLE MEME
DAD B

SHLE MEMX
PUSH H

POP B

LXI H,MEMG23
CALL CHA
MVI A,CR

STA MEMG25
LHLD MEMX
MOV A,H
ORA L

JZ MEM67
MVI A/ '

STA MEMG25
PUSH H

LHLD MEMK
MOV B,H
MOV C,L
POP H

LXI H,MEMG3

CALL CHA
PUSH H

LHLD MEML
MOV B,H

JCONVERT PASS COUNT

; (BC = CONTENTS OF MEME
; ANL MEME + 1)

J CONVERT ERROR COUNT

; (BC = CONTENTS OF MEMX
J AND MEMX + 1)

;accumulats errors fcr
; all passes

jformat cumulative errors

JSET UP OUTPUT TO SKIP 'AND'
5 S. 'OR' OF FAILING MEMORY
J ADDRESSES IF NO ERRORS HAVE
J BEEN FOUND

;make sure no errors

j none tet, jump
jremove the carriage return
j from the output string

j (bc = contents of memk
j and memk + 1)

JCONVERT LOGICAL 'AND' OF
J FAILING ADDRESSES

J (BC = CONTENTS OF MEML
J AMD MEML + 1)

135

MEM67

MOV C t L

POP H
LXI H,MEMG4

CALL CHA
LXI H,MEMG
CALL ESPLY
LDA MEMJ
RLC
STA MEMJ
POP D

JMP MEM1

JCONVERT LOGICAL 'OR' OF
J FAILING AEERESSES

JPRINT PASS AUEIT

JROTATE BIT CROSSTALK SO THAT
J OVER EIGHT PASSES ALL BIT
J PATTERNS WILL BE USEE
JRESTORE LBA+1
5START ANOTHER PASS

* ERROR AUEITING ROUTINE *

* CONSOLE OUTPUT OF THE FORM:

* A=xxxx P=xx C=xx XOR=xx EKROR-TYPE

* A = FAILING AEERESS
* F = CALCULATEE PATTERN
* C = ACTUAL CONTENTS OF ADDRESS
* XOR = EXCLUSIVE OR OF PATTERN AND CONTENTS
* (ISOLATES FAILING BIT(S))
* ERROR-TYPE = RD PRESUMED READ (SOFT) ERROR
* WT PRESUMED WRITE (HARE) ERROR

ERR1

ERR2

ERROR

PUSH PSW
MVI A.'W
STA MEME5
MVI A,'T'
STA MEME5+1
POP PSW
JMP ERROR

PUSH PSW
MVI A.'R'
STA MEMD5
MVI A,'E'
STA MEME5+1
POP PSW

PUSH B

PUSH D
PUSH H

PUSH PSW
XRA B

POSSIBLE WRITE ERROR

POSSIBLE READ ERROR

JSAVE ALL REGISTERS LURING
J ERROR AUEIT

5LOGICAL EXCLUSIVE 'OR' OF
; CALCULATEE PATTERN ANE
J ACTUAL MEMORY CONTENTS

MOV C,A

136

ERR9

LXI H.MEME4
CALL CHAB
POP PSW

MOV C,A
LXI H,MEME3
CALL CHAB
MOV C,B
LXI H,MEME2
CALL CHAB
POP B

PUSH B
LXI H.MEME1
CALL CHA
LHLE MEME
INX H

SHLD MEME
POP E

PUSH E

LHLD MEMK
MOV i,r

ANA H
MOV H,A
MOV A,E
ANA L
MOV L,A
SHLE MEMK
LHLD MEML
MOV A,E

ORA H

MOV H,A
MOV A,E
ORA L

MOV L,A
SHLE MEML
LDA MEMP
ORA A

JZ ERR9
LXI H,MEMD
CALL ESPLY
POP H

POP D
POP B
RET

JCONVERT 'OR' FOR OUTPUT

JGET MEMORY CONTENTS ANE
; CONVERT IT FOR OUTPUT

JCONVERT PATTERN

JCONVERT CURRENT MEMORY AEERESS

JCOUNT ERRORS THIS PASS

JGET CURRENT MEMORY ADDRESS

JS&VE LOGICAL 'AND' OF
J FAILING AEERESSES

JSAVE LOGICAL 'OR' OF
J FAILING AEERESSES

JCHECK ITEMIZE ERRORS FLAG

JSKIP PRINT IF FLAG =

J PRINT ERROR AUDIT

JRESTORE REGISTERS ANE
J RETURN TO MAIN TEST

* COMPUTE TEST DATA PATTERN FOR GIVEN MEMORY ADDRESS *

* CALL WITH HL = MEMORY AEERESS

137

* C = PATTERN
*

* RETURN A = DATA PA

PATTN PUSH H
MVI B,0
LXI H.PATT0-3
DAD B

DAI E
DAE B

ITHL
NOP
RET

PATT0 JMP PAT1
JMP PAT2
JMP PAT3
JMP PAT4
JMP PAT5
JMP PAT6
JMP PAT7
JMP PAT8
JMP PAT9
JMP PAT10

PAT1 MOV
RRC
RRC
RRC

A,L

XRA H

ANI 1

JZ ONES
ZEROS XRA

RET
A

ONES MVI
RET

A,0FFH

PAT2 MOV
RET

A,L

PAT3 MVI
RET

A.0AAH

PAT4 MOV
CMA
RET

A,L

PAT5 MVI
RET

A,55H

JPATT2RN COMPUTATION
JBRANCH ON PATTERN

J (RESTORE MEM ADDR)

J (BRANCH)
Jl CAMBRIDGE PATTERN
;2 ADDRESS
;3 ALTERNATE l'S AND 0'S
J4 ADDRESS INVERSE
J5 ALTERNATES 0'S AND l'S
;e ALL ONES
J7 CAMBRIDGE INVERSE
J8 ALL ZEROS
J9 BIT CROSSTALK
J10 BIT CROSSTALK INVERSE

{CAMBRIDGE PATTERN

JABDRESS

{ALTERNATE l'S AND 0'S

{ADDRESS INVERSE

{ALTERNATE 0'S AND l'S

PAT6 EQU ONES {ALL BITS = ONE

138

PAT7

PAT8

PAT9

PAT91

PAT10

MOV
RRC
RRC
RRC
XRA
ANI
JZ
JMP

EQU

MOV
RAR
JC
LEA
RET
LEA
CMA
RET

MOV
RAR
JNC
LEA
RET

A,L

H
1

ZEROS
ONES

ZEROS

A,L

PAT91
MEMJ

MEMJ

A,L

PAT91
MEMJ

JCAMERIEGE INVERSE

JALL BITS = ZERO

JBIT CROSSTALK

JEIT CROSSTALK INVERSE

* BINARY TO HEX ASCII CONVERSION, 16 BITS *
*

* CALL HL = AEERESS FOR 4 CHAR ASCII OUTPUT STRING
* BC = 16 BIT BINARY DATA
*

* RETURNS HL,EE,BC UNCHANGEE
* A = GARBAGE *

CHA

CHA1

CHA15

PUSH
PUSH
PUSH
INX
INX
INX
MVI
MOV
ANI
CPI
JC
AEI
AEI
MOV
ECX
MVI

a
D

B

H
H
H

E,4
A,C
0FH
0AH
CHA15
7
'0'

M,A
H

E.4

JSAVE REGISTERS

JCHAR COUNTER
JNEXT 4 BITS

JIS IT A-F?
;no
;yes
;form ASCII
JSTORE ! THIS CHARACTER
5 BACK UP THROUGH OUTPUT
JEOUBLE RIGHT

AREA

139

CHA2
ORA A

MOV A,B
RAR
MOV B,A
MOV A,C
RAR
MOV C,A
rcR E

JNZ CHA2
DCR D

JNZ CHA1
POP B
POP B

POP H

RET

{SHIFT 4 BITS

{DECREMENT SHIFT COUNTER
;STILL SHIFTING
{DECREMENT CHARACTER COUNTER
JSTILL CONVERTING
{RESTORE REGISTERS
J AND EXIT

* BINARY TO HEX ASCII CONVERSION, 8 BITS *

HL = ADDRESS FOR 2 CHARACTER OUTPUT STRING
C - 8 BIT BINARY DATA

* CALL
*

* RETURN HL,DE,BC UNCHANGED
* A DESTROYED *

CHAB PUSH H
PUSH D
PUSH B

INX H

MVI D,2
JMP CHA1

{SAVE REGISTERS

* PRINT CHARACTER STRING *

* CALL HL = FIRST BYTE ADDRESS OF OUTPUT STRING
* (MUST END WITH ASCII CARRIAGE RETURN)

DSPLY
LSPLY1

CALL
MOV
CALL
CPI
RZ
INX
JMP

CRLF
A,M
USROUT
CR

H
DSPLY1

{OUTPUT THIS CHARACTER
JEND 0? STRING?
; YES, EXIT
J NO, BUMP STRING POINTER

* GET KEYBOARD ENTRY OF HEX INTEGER *

* RETURN HL = 16 BIT BINARY DATA *

140

ENTR

ENTR1

ENTR15

ENTR2

ENTR3

* PRINT

CRLF

LXI H,0000H
CALL CRLF

MVI *,'>'
CALL USROUT
MVI C,4
CALL USRIN
CPI CR
RZ
CPI LE
RZ
CPI 'A'
JC ENTR15
ANI 0EFH
BAD H
EAE H

EAE H

DAD H
JC ENTR3
CPI '0'

JC ENTR3
CPI 'l'+l
JNC E.MTR3
CPI 'A'
JC ENTR2
AEI 9
ANI 0FH
ORA L

MOV L,A
DCR C

RZ
JMP ENTR1
MVI A,'?'
CALL USROUT
JMP ENTR

CARRIAGE RETURN

MVI A f CR
CALL USROUT
MVI A,LF
CALL USROUT
RET

LANEOUS MESSAGES

{INITIALIZE LATA
JSENE CARRIAGE RETURN &
; LINE FEED
JSENE A CUE MARK

JCHAR. COUNTER
JGET 1 CHARACTER
J CARRIAGE RETURN?
JYES, EXIT
JLINE FEEE?
JYES, EXIT
JIS IT '0-9?

JYES
JNO, FORCE LOWER CASE
JSHIFT PREVIOUS DATA LEFT
J 4 BITS

JlF
JIS

OVERFLOW, PRINT '?

IT 0-F?
J ILLEGAL CHARACTER

J ILLEGAL CHARACTER
JIS IT A-F?
JNO, IT'S 0-9
JAEE FUEGE FACTOR
J ISOLATE 4 3ITS
JMERGE WITH PREVIOUS LATA

JCOUNT CHARACTERS
JEXIT IF 4 RECEIVEE
JGET ANOTHER CHARACTER
JPRINT QUESTION MARK

J ANE RESTART ENTRY

AND LINE FEED *

ANE LATA AREA *

MEMA DB
MEMB EB

EB

'8080 MEMORY TEST - VERSION 2.5',LF,CR
'ENTER AEERESS OF FIRST MEMORY BYTE'
' TO TEST:',CR

141

MEMC

MEMD
MEME1
MEME2
MEMD3
MEME4
MEME5
MEME
MEMF
MEMG
MEMG1
MEMG2
MEMG23
MEMG25
MEMG3
MEMG4
MEMI
MEMJ
MEMK

MEML

MEMM
MEMN

MEMP
MEMT

MEMT1
MEMU

MEMV

MEMX

DB
EB
DB
EB
EB
DB
EB
EB
DW
EW
EB
DB
EB
EB
DB
EB
EB
DW
EB
EW

EW

DB
EB
EB
DB
EB
EB
DB
EB
EB
DB
EB
EB
DB
EW

'ENTER ADDRESS OF LAST MEMORY BYTE'
' TO TEST:',CR
'ADDRESS='
'$$$$ PATTERN='
'$$ CONTENTS='

XOR='
TYPE='

' ',CR
J ERRORS THIS PASS
JPASS COUNT

'$$$$-$$$$ PASS:
'

'$$$$ ERRORS:
'

'$$$$ CUM. ERRORS:
'

CR.'AND:
'

'$£$$ OR:
'

'$$«', CR
JFIRST BYTE ADDRESS TO TEST

0FEH ,'BIT CROSSTALK PATTERN
-1 JLOGICAL 'ANE' OF FAILING

J ADDRESSES
JLOGICAL 'OR' OF FAILING
J AEERESSES

LF, 'GOODBYE', CR
'I=ITEMIZE ERRORS,

'

'T=PRINT ERROR TOTAL ONLY, '

'E=EXIT TEST',CR
JFLAG 1=ITEMIZE, 0=TOTAL

'END OF PROGRAM USEE AS FIRST '

'ADDRESS TO TEST = '

'$$$$', CH
'ERROR: LAST BYTE AEERESS LESS

'

'THAN FIRST BYTE ADDRESS. ',CR
LF
'TO ABORT TEST PUSH ANY KEY'
CR

{CUMULATIVE ERROR COUNT

USRIN PUSH
PUSH
PUSH
MVI
CALL
POP
POP
POP
RET

B

E

H
C,l
USRIO
H
D

B

JGET INPUT FROM HOST CONSOLE

USROUT PUSH
PUSH

B

E

JSEND CHARACTER TO HOST
J CONSOLE

142

PUSH H

MVI C,2
CALL USRIO
POP H

POP E
POP E

RET

USRSTAT PUSH B

PUSH E

PUSH H
MVI C,3
CALL USRIO
POP H

POP D
POP B

RET

BSOUT MVI A f BKSPACE
CALL US ROUT
RET

STACK DS 64
TENI ECU $+2

END 100H

JSEE IF CHARACTER IS WAITING

JPRINT A BACKSPACE

JSET UP FOR 32 LEVELS

143

CO

2:
o

co
Q

O
w w

1—

t

CO W
M
2: ua

CO
O H-l

e^ m

co W
•—t cc
M
o

I Eh

co

W
Eh
>-"

PQ

Pi
W

w
P)
o
CO

>» z
05 Ogu
W O
2: E-i

W
t—

1

W
P5
O
2:
w
2:X

w
B3 COW
M 2:
<*
O
i-5

o
z

3»
oM

o o
o 2:
hJ W

2:

Q5cO
o w
2; 2:
w
2: W
o

CO

2: W
co

Eh
W co
CO P>

W S3

2: E->

«d z
x o
W CJ

W co^»
1—1 M CO
o 2:^
w 2:

PUZO
tflMH

£h
ta w<
E-i o o
h«* 2 O
3 W hh"

S3

QSM«
O CO o
2: 2:www
21 E- 21

CO PQ CO

2: w 2:
Cm

h3 «! Cm
»-? o 2:MOD
W h-3 H

W
i—

1

w
I—

I

o
w
cm
'O

O
pcj

W
>-"

05
o
2;
Cd
2:

CO
f=H

w o
e-t 1—1

S3 6h

w o
?< ow »-a

u. E->

CO C3 as t-H >-3 M-!I Z
X HH p>H
Q
Z

J
3

2
w

W z 2:
Oh w C3 Eh
Oh £ Z CO<

W w O
2: Eh DO

Oh C_>

22 < O< z 05 Eh
CO S3 HM E-i

z E-< PP hJ
W z S3 O

co 2: •—

»

CO 05
05 co Eh

z c3 Cm Zk3 Z
< z O O
2: —

1

CO w _» O
2: Ei CO Eh Cm 21

Z w O < 2I\
HH 05 3 W Oh
05 Cm Q5 -5 Eh O

&H Cm Cm Eh -< co
CO S3 co 2; H O

CO CO z —

1

CO Eh
m CO -H O

W 6-« W z z
05 OOM 05 05
Cm z HH < PI Z>
Cm CO X EH Eh
S3 O <r. - W W
co O pq cc 05 05

CO
co
w
05
Cm
Cm
S3
CO

S3
Z
W
21

.J
o
05
Eh
Z
oo

EH /\
CO
O z
as

t—

1

• • EH
CO Cm
S3 O
EH
<< S3
Eh Z
CO w

2:
23
W i->

Eh D
CO Cm

< PQ O M W W CO i—t

144

Eh
co
CO CO
w £h
.-J 3

CO 2:
(-4

pa
cd Ph \ OC z
O 3S Q CC

• O j^ 33
W CO X &H

13 CO c-* < • £h pa
w P<Q !-J ^=> cc

• Pu hJ ca CO «*J CU
z c W C3 Z CO

E-* « CC Z ^H H-

<

—

t

CO O >H -«J

E-< < z 1-4 21 Ph cc
<c hJ O <c < "T"| pa
EH • 3 2; P-H CO c-> COOO • Ph E-t 1—* \ 33
z w 2: 33 O cc w

Ed V* E-»£h i—i W co pa
X Pu Cu CO Eh « CO CO =c
w 2: P< -- 3 «C cm

33 W at; t-J • z O
Z M < co v—

1

pa 2 h4
Z t—

1

z 6-. W £h 33 kJ ca <
HH hJ «*: 33

CO Eh
>—*

c5
Eh k3

1—

<

33
Eh

CO
z

cs w cc 2: >H V—

(

CO Eh S •<z
9-1

• PQO\< * M 3 J Eh 2:
M cu 3 CO CO £h CO

CO to z >-3 Eh X co CO CU Cu CO
1—

1

«*? =h cc «C CO w <«; z 2; z \

J O CO z CU 33 l-M cc

z
o

• <-» Eh 1—

1

i-m z Eh cc pa
s (_ W W HM 1— H—

»

< cu C5 CO

CD M /\ u £h CC CO p—

1

h—

<

21 •a z CO
E- s ? O <u 3 •< k-3 PC CO Ph l-M

X O M Cd Eh <C Z 33 CC pa

Q2
CD CO r-t Oh O CO 2: <C ^» • Pu O Eh CO 33

1—

1

X < 1—

(

<C « Z X i—i i-U Eh

W CO OS W "- CC 1—

t

<H O Eh CC
CU z < O « £- CO 03 eh\ cu &a w Eh
eu t-H E-t « cc CO O O W Z 1—

1

Pm £h pa HM
<c o

1—1

«C PC cc «c Cm CC Pu. CC >-< O Pu cc CO
O H «*! CO z cu •< CO < X < w CO

CO Ph —4 Eh pa Eh z
< Ph cu co «*; pa •• «lj< w Z
pa t z 33 O < cc pa pa A
u co tc Eh W cc cc

&H z CU £h « cc w w Pu pa CO * pa

Cm • • CO 1—

(

Z t-t CO •W w H^ 21 EH >-M CO CO
s CO CU 1—

• 3 z co £m .-J -*: z hJ z
< z z H 1—

1

Eh Z z 1—1 co • Pa >M HM HM
CO o h—

t

Cm «4
-

£h CO W ^ pa < Eh
hm 6-1 E- —

1

CU 2: 1-H Cd cc m bd Em Z
EH 04 H « -

(-) z to 2: Z 33 pa 03 pa O
CO O <*: « Cu w •-. CC «*! Eh as «: • pa CO
co Ck 2; z Ld 2; cu •

« « i-h H CO Eh » • M H «c CO cc
EH Eh 00 Z z CO Pu CO hJ W2!h CO z w Eh
co Cu e-» < Cd p—

1

pa < 005< CO O •< CO pa 33
z 21 E-t hm as q- w cc CO >-i v-3 W 2- >*
(—

t

O Ch CO •< M «*: CO CH W £h Cm CC pa
CC z CO z ,-C) (A 33 H i—t z CO CO co pa pa : X

CO Ph •—

I

W <—t «c «*o 2: w t-i pa 1—

1

33 33 Pu
HM as 2: z: cc •-• co Eh Eh >H

2: W h)(-, - CC X tD h4 Eh O- cc z
•< 33 hJ. «« pa w z M Pm Pu C ««j

E-» <H < E-« z Pm 33 CO M •-. f-» < CQ »-M Bh Pu
u CO
l-H • • • • • • • t • • • co
CO << « C- — H Pm C5 33 »—

<

•-3 X pa

< cc
m Cm

145

a
U
Cm
a.
<

z >- CO
35 « 35
=3 O M

«* EH << 2: s->

EH W EH M M
« «C 35 <«; G5 2. 23 W
Z (—

1

O O •-• P-q z
< EH Ph

X C5 X
CS4 «3X

t3 W EH
<«;

, m (-3

Eh co PS << PO CO 2: « £h ^. 1-3

CO 35 CO 33 >-• 33 co 35 33 H 1—

1

-—

1

os ^; Ph 35 w O O W — < E4 Ph
z w EH 35 CO 35 :* > 35 riZE'WE' 3

1 e CO M HH ^J &H" • « ZHft(«CO Eh 33
< w w e-4 CJ z » « i—1 —i «Q Z ud O

Eh
Z

X <
?H OO co co

IT3 Pm X u3 Ph

z i—

i

33 t-3. X —

<

—

t

ih EH «u a CO 33 i-3 Ph
o CmPh » 35 £h Z Cm 1—

t

J CO
1—1 X CO =3 33 CO C>3 M C<1 < Z <—t >M CO —

«

33
'

EH P3 i-5 « CO >3 CS> Csl EH M Eh Z —

)

Pm
cj as **j 21 35 CO W CO » O 21 O
w z « 35 - £_. Im 35 X CO —* O E--

CD2
H-3 w o &q Ph 2Z =-> « CO O O X O < t-H Eh Pm Eh
w (X M 33 H W CO PQ &H 2: CU 33 «*»

(—

I

CO << EH < 00 EH CO < 3q 33 \ O < CO EH
H Cm w co 35 C£! «*5 CO • P3 ««;
CO
1—

1

Z >H O >H CO 35 O X — co O Eh W x Ph >h CO (-3

O >- >> CO t—

•

z w « « z «M I-" 33 >+ CO
i—

i

s- co >H Ph Ph < 3: -c 2: •< W 33 «C Eh >- pa X
Eh • • £h >- »-• >H OS 33 gH >- 35 Ph
< cm M co H CO Eh CO O X Z >M m P 33
3S
so

CO O c<5-^ L<3 P —

<

z .-h «a: 1—

•

&3 P3 h3 £m u3 C3
3 X «c 1—

t

33 Eh 33 Z Cm < co

Em O CO X Ph X X SI X Eh X CO ITS O 2: X 1—

t

t-3 1—4 X 33 X M X -< X X 35 P«3 iO O X fl
cc .-3 X • X Z X X X EH X —

•

33 CM Pm 33 X z c«ow
E->W

O X
Ph

X*-" X Ph X W X <c X P>4 «*;—^ h Cm X Ph P>3

s<
« CO »—^^-^
<
cu

-a X X •

Ph W • tSJ

E- Ph 33 X • N3
3
a.

OS • •

-! '- ' >
>3 •

>H
/\

1—

1

CO
X P3 Ph
>h 2: 21

>H
>-• >~ >-•

Ph
33

PJ EH >« «*J •< >H >H >M z
J •< 2 Z « I—

1

cu z: X Ph Ph X X X X PQ X Eh

<
CO

03 X 1-3 1-^ X X X X X Z
O X t-H •—

1

X X X X •4 X O
Ph k X! Ph Ph X X X X «* X O

/\ /\ /\/\ /\ /\ /\ /\ A /\
PC OW Eh
Eh CO
Ph —

1

CO >*
2: 2: 3 M
•4) 33 O i<d

« Eh « w IT)

-*i t-H «] « z Z >H
Ph

=>
« O <
< *30 21

1—

<

Eh H?
z
<

Gh z x! Z i-3 >< Z h3
» w Ph t* Cm X O M CO
(X, 51 33 MCO w O Ph CO
z w\
—

t

33
Cm

146

w 3:
w z O
3 w t—

«

&-• w c-t

W 7B »
PQ Eh O

w t-t KJ w
z aa w z pq X
<«3 O o «*: «
« z (X,

e- «* &q £- z: W
« w 3 « s> PS
«J CO O >- < (=i w
S-» W « e-t 33
to O CO O co o SB

£h z: e-«X X ud x CO
W CO w ZWW co
33 W m K w M

CO co co OS
CO CO w W CO CO M
(-4 W e-t 51 M &3 W
z; « >H 21 03 «3
w PQ =z «

ia —

i

H-l W (=» X
« < <£> « «c w
< r-t cd < 33
« o o

>H 2 < Pm >h 3 CO 2
>-< w >h &q W •—

t

>H O Cr - z: o
>-^ e-t O >-> 1-3 w

«*S OS «< CO «
u5 2: fU <3u3Z H-

1

O t=> w o o
x>-« CO X i—

t

x e-t

x e-t w X Eh X
x Ph « O X Cm X CO
x o < £h X O X HH

-—

^

PM <"

»

>* >-t

>H • >H
>H • >H
>* • >H

^. PQ
X PQ X X
X X X
X «< X X
X < X X
s\ A /\ /\

•

at
w
CO

w
M Eh
6h 3
•<1 Ph O
O sz W
o => X
-3 « W

3

Oo
o
&H

>H
w

co
co
«
PC!

Cm

147

BIBLIOGRAPHY

Barden, William Jr., The Z80 Microcomputer Handbook, Howard
W. Sams £ Co. , Inc. , 1979.

IIGITAL RESEARCH CORPORATION, CP/M and MP/M Users Manuals,
1980.

PRO-LOG CORPORATION, 7304 Eual Uart Card Users Manual, 1980.

PRO-LOG CORPORATION, 7701 16K Static Memory Card Users
Manual, 1980.

PRO-LOG CORPORATION, 7303 Processor Card (Z80) Users Manual,
1980.

PRO-LOG CORPORATION, Series 7000 STL BUS Technical Manual
and Product Catalog, March 1981.

Titus, Jonathan A. and others, The 80S0A Eugbook, 1st ed . ,

Howard W. Sams S. Co., Inc., 1977.

Titus, Jonathan A. and others, 8060/6065 Software Eesign
Book 1, 1st ed., Howard W. Sams & Co., Inc., 1980.

Titus, Jonathan A. and others, 8080/8085 Software resign
Book 2, 1st ed., Howard W. Sams & Co., Inc., 1979.

Titus, Jonathan A. and others, Interfacing and Scientific
Lata Communications Experiments, 1st ed., Howard W. Sams &
Co., Inc., 1980.

Zaks, Rodnay, How to Program the Z80, 3rd ed . , SYBEX Inc.,
1979.

148

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93940

3. Eepartment Chairman, Code 62 2

Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

4. Associate Professor M. L. Cotton, Code 62Co 2
Eepartment of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

5. Professor R. Panholzer, Code 62Pz 1

Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

6. LT Stephen M. Eughes , USN 1

1416 Sir Richard Road
Virginia Beach, Virginia 23455

149

I

aesis 193277h«59 Hughes
0,1 A microprocessor

development system
for the ALTOS series
microcomputers

.

17 Al

Thesis 1 7Jt/ /

H859 Hughes

c.l A microprocessor
development system
for the ALTOS series
microcomputers.

thesH859

A microprocessor development system for

3 2768 001 03561 1

DUDLEY KNOX LIBRARY

