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A dielectric anomaly induced by doping has been observed at

about 340 K in chlorine-doped diisopropylammonium

bromide. The dielectric anomaly has a switchable behaviour,

which indicates potential applications on switches and

sensors. Temperature-dependent Raman spectrum, X-ray

diffraction and differential scanning calorimetry do not show

any anomaly around the dielectric anomaly temperature,

which prove that the dielectric anomaly does not come from

structure phase transition and has no specific heat variety. It

is assumed that this dielectric anomaly can be attributed to

the freezing of ferroelectric domain walls induced by the

pinning of point defects.
1. Introduction
Piezoelectric materials have been widely applied in the energy

conversion, sensing, driving and frequency fields. Ferroelectrics

usually feature a switchable spontaneous electric polarization

and have good piezoelectric performance [1]. Relaxor-based

ferroelectric single crystals, such as Pb(Zn1/3Nb2/3)O3–PbTiO3

and Pb(Mg1/3Nb2/3)O3–PbTiO3 attract much attention for their

large piezoelectric coefficients up to 2500 pC N21 and high

subsequent strain levels up to 0.6% [2,3]. With proper doping
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and phase engineering, the solid solution single crystal of the relaxor ferroelectrics can reach much larger

piezoelectric coefficients than that of pure materials and polycrystals. Doping is believed to be

responsible for good mechanical properties and piezoelectric of the relaxor-based ferroelectric single

crystals. While doping modification of the inorganic ferroelectrics have been widely studied in the

past years [2,4–12], there are few researches relevant to the doping of organic ferroelectrics except

some doping of organic–inorganic hybrid ferroelectrics [13]. Researches on the doping of organic

ferroelectric would help us to understand the organic ferroelectric better and speed up the application

of organic ferroelectric materials. It is essential for us to study the effects of doping on organic

ferroelectrics in order to modify organic ferroelectrics’ mechanical properties and piezoelectricity.

Recently, a series of simple molecular ferroelectrics have been found, such as diisopropylammonium

bromide (DIPAB) [14–18], diisopropylammonium perchlorate [19,20], 4-(cyanomethyl)anilinium

perchlorate [21], 4-methoxyanilinium tetrafluoroborate 18-crown-6 [22], (4-amino-2-bromopyridinium)

(4-amino-2-bromopyridine) tetrafluoroborate [23], pyridin-4-ylmethanaminium perchlorate [24] and so

on, which is composed by ammonium cations and acid ions. The organic–inorganic hybrid ferroelectrics

also cause much attention for the designable and tunable characteristics of organic and inorganic

components. So far, many organic–inorganic hybrid ferroelectrics have been discovered, namely,

(pyrrolidinium)MnX3 (X ¼ Cl,Br) [25,26], (pyrrolidinium)CdCl3 [27], (cyclopentylammonium)CdCl3 [28],

(3-pyrrolinium)MCl3 (M ¼Mn,Cd) [29,30], (benzylammonium)2PbCl4 [31] and so on. Therefore, a huge

potential in practical applications of molecular ferroelectric can be foreseen in the coming future, when

doping of molecular ferroelectrics would be an important part of molecular ferroelectric research.

Diisopropylammonium chloride (DIPAC) [32] and DIPAB [14–16,33] are good organic ferroelectric

materials with large spontaneous polarization (8.9 and 23 mC cm22, respectively) and high Curie

temperature, Tc (440 and 426 K, respectively), which possesses ferroelectric properties comparable to

those of BaTiO3. Ferroelectric DIPAC and DIPAB have similar crystal structure (P21) and similar

structure phase transition (P21! P21/m). So, the two materials can form solid solution single crystal

at any ratio. This is similar to that of relaxor-based ferroelectric single crystals which have large

piezoelectric coefficients and large subsequent strain levels. We have studied the chlorine-doped

DIPAB (DIPAB-C) single crystal in the earlier work [34]. It is found that the ferroelectric properties,

including spontaneous polarization, the phase transition temperatures, the lattice parameters, etc., can

be modulated by doping with congeners. Here we will report a dielectric relaxation phase transition

induced by the doping of chlorine in DIPAB single crystals. Temperature-dependent Raman spectrum,

X-ray diffraction and differential scanning calorimetry (DSC) prove the phase transition does not have

structure phase transition and has no specific heat variety. It is assumed that this relaxation process

can be attributed to the freezing of ferroelectric domain walls induced by the pinning of point defects.

This may help us understand the ferroelectric properties in DIPAB.
2. Material and methods
The single crystal of chlorine-doped DIPAB (C6H16NBr12xClx, DIPAB-C) was grown by slow

evaporation of methanol solution containing 1 mol diisopropylamine, x mol hydrochloric acid and

(1 2 x) mol hydrobromic acid (x ¼ 0–1). The element contents were measured using a CHN

elemental analyser (Heraeus CHN-O-Rapid). DSC measurements of single crystals were recorded by

using a NETZSCH DSC 200F3 in the temperature range of 300–453 K. The complex permittivity

was measured using a Tonghui TH2828A LCR meter. Variable temperature powder X-ray diffraction

(PXRD) was performed on a Bruker D8 Advance X-ray diffractometer. Raman spectra were taken

using a Horiba Jobin Yvon HR800 spectrometer system with a 488 nm laser line from an air-cooled

Ar-ion laser.
3. Results and discussion
Chlorine content in the single crystal of DIPAC was determined by the carbon mass fraction measured by

a combustion method using a CHN elemental analyser [34]. The actual chlorine concentration is a little

less than the stoichiometric values due to the faster volatility of hydrochloric acid compared with that of

hydrobromic acid. As the DIPAB-C samples have similar properties when changing the doping content,

here we just choose C6H16NBr0.76Cl0.24 (DIPAB-C1) as an example to analyse in the following.

The structure of ferroelectric DIPAB-C is P21, similar to that of pure DIPAB. But the structure of the

as-grown crystal of DIPAB-C is P212121, which is non-ferroelectric. Room temperature ferroelectric
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Figure 1. Temperature dependence of (a) real part (10) and (b) imaginary part (100) of complex dielectric constant of DIPAB-C1 in
heating process. Inset: the enlarged view of (a) real part (10) and (b) imaginary part (100).
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DIPAB-C could be acquired by heating the samples above the first phase transition temperature at about

420 K due to the irreversible phase transition. The following measurements were all performed on the

ferroelectric samples.

The dielectric constant of DIPAB-C1 was measured in the heating cycle with the heating rate of

2 K min21. Figure 1 shows the temperature-dependent complex dielectric constant (1 ¼ 10 2 i100, where

100 is the imaginary part) at the frequency range from 500 Hz to 1000 KHz. The real part (10) of the

complex dielectric is shown in figure 1a and the imaginary part (100) is shown in figure 1b. Two

dielectric anomalies can be seen in figure 1. A very sharp dielectric constant appears at 412 K (Tc),

which belongs to the ferroelectric–paraelectric phase transition. At 412 K, DIPAB-C1 undergoes a

structure phase transition from P21 to P21/m. In the vicinity of Tc, the temperature-dependent

dielectric constant along the polar axis follows the Curie–Weiss law of ferroelectric materials

parametrized as 10 ¼ C/(T 2 T0), as shown by the linear relationship between reciprocal dielectric

constant and temperature in electronic supplementary material, figure S2.

It is interesting for us to find another slow step-like dielectric anomaly at about 340 K (T1), which is

not found in the pure DIPAB and has not been reported in the previous literature. The dielectric anomaly

has a switchable behaviour, which indicates potential applications on switches and sensors. Both the real

part 10 and the imaginary part 100 of the complex dielectric display slow step-like dielectric anomaly.

When heating across T1, the dielectric frequency dispersion has an abrupt increase, characterizing an

abrupt increase of relaxation time phase transition. Furthermore, above T1, the frequency dispersion of

10 and 100 enhance with the increase of temperature, indicating the relaxation time decrease with the

increasing temperature. Below T1, the frequency dispersion keeps almost constant, indicating the

relaxation time is independent of temperature. Simply speaking, the relaxation time keeps constant

below T1, increases abruptly at T1 and increases slowly above T1.

In order to understand the mechanism of the dielectric anomaly happening at T1, DSC

measurements were performed. The heating and cooling temperature speed during the DSC

measurements are both 10 K min – 1. The ferroelectric–paraelectric phase could be found easily in

figure 2, which displays an endothermic peak at 425.6 K during the heating process and an

exothermic peak at 420.4 K during the cooling process. 5 K thermal hysteresis indicates the phase
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transition is a first-order phase transition. Yet no DSC signal anomaly was found around 340 K, proving

the dielectric anomaly at T1 has no specific heat variety.

Temperature-dependent PXRD measurements of DIPAB-C1 samples were performed from 303 to

373 K to examine the structure change during the dielectric anomaly happening at T1. All of the

PXRD patterns have similar diffraction peaks with the peaks shifting uniformly with increasing

temperature (figure 3 inset). The PXRD results prove the structure phase transition does not happen

at T1. Both PXRD and DSC reveal the dielectric anomaly at T1 is not structure phase transition and

has no specific heat variety. According to the shifts of XRD peak of plane (200) and Bragg equation

2dsinu ¼ n * l, we can calculate the variance of the plane space d along (100) direction against

temperature. The calculated coefficient of thermal expansion a is 60 � 1026 K21, which is just half of

that of polyvinylidene fluoride (PVDF). The large thermal expansion coefficient indicates DIPAB-C1 is

as soft as polymer, illustrating DIPAB-C possesses potential electrostriction application [35].

In order to understand the mechanism and dynamics of the phase transitions, we performed Raman

measurements as a function of temperature (figure 4), which is an ideal tool for capturing the dynamics

and local structural changes from the viewpoint of lattice vibrations [35]. Figure 4a shows the Raman

spectra measured from 303 to 373 K. The intensity of the Raman peaks in figure 4a do not appear to

abruptly change. Some typical peaks’ positions shifts according to that of 303 K are shown in

figure 4b. There are no apparent abrupt shifts at about 340 K. The chosen Raman peak positions

almost show a linear variation with temperature. The temperature-dependent Raman spectrum proves

the lattice vibrations are not affected by the dielectric anomaly at T1. Raman spectrum results deepen

the conclusion that the dielectric anomaly does not belong to a structure phase transition.
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From DSC, PXRD and Raman measurements, we have reached a conclusion that the dielectric

anomaly at T1 is not structure phase transition. Then what is responsible for the dielectric anomaly?

One reasonable explanation may be the freezing of ferroelectric domains at low temperature

induced by the defects in DIPAB-C1. It has been reported that ferroelectric domains in some

ferroelectric materials normally froze at low temperature [12,36], which can be attributed to the

collective pinning of randomly distributed pinning centre to domain walls. Suppose the ferroelectric

domains freeze below T1, the relaxation time will be long so that it is difficult to establish relaxation

polarization and only instantaneous polarization is in operation. This could easily explain why the

dielectric constant hardly changes with temperature and have less frequency dispersion below T1.

Once the ferroelectric domains unfreeze at high temperature, the relaxation time will decrease with

the increase of temperature, which behaves as that the frequency dispersion increase with the

temperature increasing.

In addition, when the doping chlorine content x is low, the change ratio of the dielectric constant is

small around T1. Electronic supplementary material, figures S3–S6 show the dielectric constant curves

when x ¼ 0.024, 0.062, 0.41 and 0.60. The dielectric constant increases at 500 Hz by 7.6%, 25%, 521%,

428% and 160% in the vicinity of T1 when x ¼ 0.024, 0.062, 0.24, 0.41 and 0.60, respectively.

Therefore, the dielectric anomaly is closely related with the doping content. At low doping level, the

defects density will increase with the doping content increase. The increased doping level will make

freezing process more clear. It is worth noting that defects exist in pure DIPAB single crystals

unavoidably, so the freezing process of ferroelectric domains exists unavoidably. This may explain

that it is hard for the spontaneous polarization in DIPAB to flip through eternal applied electric field

at low temperature.
4. Conclusion
A dielectric anomaly was found at 340 K in the chlorine-doped DIPAB, which does not appear in pure

DIPAB. Relaxation modes are different near the dielectric anomaly temperature. Above the dielectric

anomaly temperature, the dielectric frequency dispersion is larger, and below the dielectric anomaly

temperature, the dielectric frequency dispersion is less. DSC, PXRD and Raman spectrum

measurements show the dielectric anomaly does not come from structure phase transition and has no

specific heat variety. The freezing of ferroelectric domains at low temperature may be responsible for

the dielectric anomaly. The dielectric anomaly was induced by doping in DIPAB.
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