lique arytenoid muscles appear to be the principal, they are not the sole agents in producing the desired adjustment of the cords. The thyro-arytenoid, under certain circumstances, may assist, and also the crico-arytenoid lateralis, as well as the superior fibres of the transverse arytenoid muscle.
" The general form of lever used in the human body is a lever of the third order, with the muscular insertion so close to the fulcrum, that power is altogether sacrificed to velocity; but in the instance of the rotation of the arytenoid cartilage upon its horizontal axis, a bent lever of the first order is used, in which there is a great augmentation of power. The extremity of the vertical arm of the lever is at the apex, and of the horizontal arm at the outer angle of the base of the cartilage; but those two points correspond precisely to the attachments of the oblique arytenoid muscles; and it may be further stated that the incidence of the muscles on the cartilages is most favourable, so that in this particular instance there is scarcely any loss of muscular power. And lastly, it may be observed, that if we do not assign to the oblique arytenoid muscles the special use which we have now delegated to them, they do not appear capable of producing any other motion that could not have been equally well, or indeed more efficiently performed, by the transverse arytenoid muscles."

The following letter from Sir William R. Hamilton was read, giving some general expressions of theorems relating to surfaces, obtained by his method of quaternions:
" The equation of a curved surface being put under the form

$$
f(\rho)=\text { const. : }
$$

while its tangent plane may be represented by the equation,

$$
d f(\rho)=0,
$$

or

$$
\mathrm{S} \cdot \nu d \rho=0,
$$

if $d \rho$ be the vector drawn to a point of that plane, from the point of contact; the equation of an osculating surface of the second order (having complete contact of the second order with the proposed surface at the proposed point) may be thus written :

$$
0=d f(\rho)+\frac{1}{2} d^{2} f(\rho) ;
$$

(by the extension of Taylor's series to quaternions) ; or thus,

$$
0=2 \mathrm{~S} \cdot \nu d \rho+\mathrm{S} \cdot d \nu d \rho
$$

if

$$
d f(\rho)=2 \mathrm{~S} . \nu d \rho .
$$

"The sphere, which osculates in a given direction, may be represented by the equation

$$
0=2 \mathrm{~S} \frac{\nu}{\Delta \rho}+\mathrm{S} \frac{d \nu}{d \rho}
$$

where $\Delta \rho$ is a chord of the sphere, drawn from the point of osculation, and

$$
\mathrm{S} \frac{d \nu}{d \rho}=\frac{\mathrm{S} \cdot d \nu d \rho}{d \rho^{2}}=\frac{d^{2} f(\rho)}{2 d \rho^{2}}
$$

is a scalar function of the versor $\mathrm{U} d \rho$, which determines the direction of osculation. Hence the important formula :

$$
\frac{\nu}{\rho-\sigma}=\mathrm{S} \frac{d \nu}{d \rho} ;
$$

where σ is the vector of the centre of the sphere which osculates in the direction answering to $\mathrm{Ud} \rho$.
" By combining this with the expression formerly given by me for a normal to the ellipsoid, namely

$$
\left(\kappa^{2}-\iota^{2}\right)^{2} \nu=\left(\iota^{2}+\kappa^{2}\right) \rho+\iota \rho \kappa+\kappa \rho \iota,
$$

the known value of the curvature of a normal section of that surface may easily be obtained. And for any curved surface, the formula will be found to give easily this general theorem, which was perceived by me in 1824 ; that if, on a normal plane opr', which is drawn through a given normal ro, and
through any linear element Pr^{\prime} of the surface, we project the infinitely near normal $\mathrm{P}^{\prime} \mathbf{o}^{\prime}$, which is erected to the same surface at the end of the element Pr^{\prime}; the projection of the near normal will cross the given normal in the centre o of the sphere which osculates to the given surface at the given point p, in the direction of the given element Pr^{\prime}.
"I am able to shew that the formula

$$
0=\delta S \frac{d \nu}{d \rho}
$$

which follows from the above, for determining the directions of osculation of the greatest and least osculating spheres, agrees with my formerly published formula,

$$
0=\mathrm{S} . \nu d \nu d \rho,
$$

for the directions of the lines of curvature.
"And I can deduce Gauss's general properties of geodetic lines by showing that if σ_{1}, σ_{2} be the two extreme values of the vector σ, then

$$
\begin{gathered}
\frac{-1}{\left(\rho-\sigma_{1}\right)\left(\rho-\sigma_{2}\right)}=\text { measure of curvature of surface }=\frac{1}{R_{1} R_{2}} \\
=\frac{d^{2} \mathrm{~T} \delta \rho}{\mathrm{~T} \partial \rho \cdot d \rho^{2}}
\end{gathered}
$$

where d answers to motion along a normal section, and δ to the passage from one near (normal) section to another ; while S, T, and U , are the characteristics of the operations of taking the scalar, tensor, and versor of a quaternion : and the variation δv of the inclination v of a given geodetic line to a variable normal section, obtained by passing from one such section to a near one, without changing the geodetic line, is expressed by the analogous formula,

$$
\delta v=-\frac{d \mathrm{~T} \delta \rho}{\mathrm{~T} d \rho} .
$$

