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Causality detection methods are valuable tools for detecting
causal links in complex systems. The efficiency of continuity
scaling (CS) and the convergent cross sorting (CSS) methods
to detect causality was analysed. Usefulness and limitations
of both methods in their application to simulated and real-
world time series was explored under different scenarios. We
find that CS is more robust and efficient than the CSS
method for all simulated systems, even when increasing
noise levels were considered. Both methods were not able to
infer causality when time series with a marked difference in
their main frequencies were analysed. Minimum time-series
length required for the detection of a causal link depends on
intrinsic system dynamics and on the method selected to
detect it. Using simulated time series, only the CS method
was capable to detect bidirectional causality. Causality
detection, using the CS method, should at least include:
(i) causality strength convergence analysis, (ii) statistical tests
of significance, (iii) time-series standardization, and (iv)
causality strength ratios as a strength indicator of relative
causality between systems. Causality cannot be detected by
either method in simulated time series that exhibit
generalized synchronization.
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1. Introduction

A fundamental question when studying real-world complex systems is how to establish cause–effect
relationships between two time-dependent variables (e.g. x→ y). The identification of causal links
between variables that affect the system’s behaviour to some degree is vital for the development of
reduced-order models (ROMs) and control systems [1], as well as for the identification of governing
equations [2]. Causality detection is particularly important in health research, where causality
detection methods have been used to identify the direction of brain–heart interactions [3,4] and to
detect interactions between different parts of the brain [5]. Recently, causality analysis was employed
to study the spread of the COVID-19 pandemic [6,7] and its effects on stock markets [8]. Another
research area in which causality identification and quantification are important is in the Earth and
Atmospheric Sciences. Here, the identification of causal interactions allows for the improvement of the
predictive capacity of climate models [9], the determination of causal relationships in the study of
climate change [10] and its consequent social effects [11].

In its most fundamental form, a causal relationship appears as a term in the differential equations
describing the system’s temporal evolution. However, when studying real-world systems, it is
common to have no access to these equations, but rather to time series obtained through
measurements. Different methods have been developed to identify causal connections between
variables (e.g. x and y), which can be classified into two large classes: statistical methods based on
information theory [12], and those based on the reconstruction of the system’s phase space [13].
Granger causality [14], one of the first proposed quantities to study causality, belongs to the first class.
This latter method was used to estimate direct causal relationships in ecological systems [15,16].

Subsequently, other methods and quantities were developed, such as transfer entropy-based methods
[17], compression complexity [18], embedding entropy [19], PCMCI [20] and methods based on
generalizations of conditional mutual information [1]. The second class, and the one we will focus on
in the present study, was developed over the last decade and is based on Taken’s theorem [21]. The
second large class, which is the focus of the present study, is deeply rooted on Takens’ theorem, and
assumes that the attractor of the system can be recovered from analysed time series [21–25]. Probably,
the most well-known method of this class is convergent cross mapping (CCM) proposed by Sugihara
et al. [26]. Subsequently, different modifications of the CCM method were proposed for the
identification of causal relationships in systems with time delays [27] or by using other causality
indicators such as pairwise asymmetric inference [28]. However, up to date, one of the best-
performing modifications introduced to the CCM method is known as convergent cross sorting
method (CCS) [29], which uses a dimensionless ranking to order points in phase space, making the
method independent of geometric transformations that distort the distance and preserve the relative
order (multiplication or addition of some constant to the time series).

Recently, an approach to identify causal relationships based on the continuity condition for mapping
between the reconstructed attractors was proposed. This condition has previously been used to
determine the reconstruction parameters of attractors [30,31]. To the best of our knowledge, the
continuity condition was first proposed as a measure of causality in [13]. The continuity scaling (CS)
method [32] was recently formalized, and a measure of causal strength was established in terms of
the continuity condition, allowing the systematization of its application.

Theproposal of severalmethods to detect causalityovera short timeperiod showsnot only the relevance of
this research area but also its fast development rate over last years. However, since thesemethods are still in the
early stages of maturity, their performance can be significantly impacted under different conditions, leading to
considerable variability in their results. In particular, in Earth Sciences, where time series can be characterized
by seasonality (dominant low frequencies), bidirectional interactions of different intensities (synchronization
can occur), there may be indirect causalities (in biology, and it is common to find feedback loops or causal
chains [33,34]), we usually find short time series of few measurements (n∼ 200−500), series containing
different time scales (e.g. phenomena of interdecadal variability, such as El Niño–Southern Oscillation
(ENSO) interacting with processes of synoptic variability) and noisy time series.

In this scenario, the available methods proposed to detect causality should be tested not only with time
series generated using physical models (e.g. coupled logistic maps (LM), Rössler systems), but also with
experimental and real-world time series to characterize them under multiple conditions where the
performance of these methods can be seriously affected. In this study, we analyse different cases
considering systems with complete synchronization and generalized synchronization, in the latter case
the time series are not necessarily similar but are connected by a functional relationship [35].
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Accordingly, the main objectives of this study are: (i) to determine the conditions under which CS [32] and

CCS [29] methods can be safely applied to detect causality in real-world time series, (ii) to highlight the
advantages and limitations of both methods for scientists within the Ecology, Biology, Earth and Marine
Science communities, among others, who can use these methods to detect causal networks.
ietypublishing.org/journal/rsos
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2. Causality detection methods
2.1. Convergent cross sorting method
CCS was recently proposed in [29], and its performance appears to be better than the method fromwhich it
was developed: CCM. A concise description of CCM is provided in the following paragraphs, and further
details can be obtained from [26,27,36]. The CCM method proposes that if a variable xt causally affects
another variable yt, it is therefore possible to approximate x from y. This means that the information
contained in y alone can be used to reconstruct past values of x, or in other words, time-delay
embedding allows to detect the amount of information about x that has been encoded into y [26]. If we
have access to some variables measured at time t, such as xt and yt, those can be used to reconstruct
two versions of the attractor Lx and Ly, then we can reconstruct x from y and a cross-map exists from
Ly to Lx. In this context, the ‘causal effect that x has on y’ is quantified by how well y cross-maps x
(they belong to a common dynamical system) [22,26,37]. The causal strength is quantified by the
correlation between the original variable and the reconstructed variable, rðxt, f̂�1

xt ytÞÞ. However,
Sugihara et al. [26] suggest another condition: in addition to the value of the correlation ρ there must be
a convergence of its value time-series length increases. For the reconstruction of time series, the CCM
method estimates x̂t ¼ f̂�1

xt ðytÞ as follows: considering a time t, associated with a point Xt in the
attractor, the dx + 1 nearest neighbours are searched (with dx the embedding dimension). Then, the
nearest neighbours are sorted according to their Euclidean distance to Xt and obtain times t1 � � � tdxþ1

associated with points X1, . . . , Xdxþ1 on the attractor. Then the variable ŷt is recreated as
ŷt ¼

Pdxþ1
i¼1 wiyti . Where wi ¼ e�ðdðXðtÞ,XðtiÞÞ=dðXt ,Xt1 ÞÞ and d( · , · ) denotes the Euclidean distance. This latter

operation causes several problems with the CCMmethod mentioned in [29,37–39], the most relevant being:

(i) Requires relatively long time series to obtain reliable results, i.e. length n � Oð103Þ.
(ii) Failure in oscillatory variables that show a highly dominant or shared single frequency.
(iii) Poor performance for noisy and also for strongly coupled time series.
(iv) Shows some problems when applied to time series that are not ‘fully deterministic’.

Short, oscillatory and noisy time series that are somewhere in between the extremes of being ‘fully
deterministic’ (i.e. no measurement or process noise) and ‘fully stochastic’ (i.e. independently
identically distributed noise) are ubiquitous in nature, making difficult the widespread use of CCM in
geophysical, biological and ecological research [37,39]. The CCS method addresses some of these
drawbacks by replacing the use of nearest neighbours based on Euclidean distance with a
dimensionless distance ranking. The fundamental improvement is that, after estimating the distance
between the reconstruction points, dðXti , XtjÞ, those are sorted from the smallest to the largest and
then replaced by a dimensionless ranking R consisting of evenly spaced values between 0 and 1.
Finally, these ranking values, are sorted in the same order as the distances dðXti , XtjÞ. To estimate
causality, the ranking R is sorted again in the same way as the distance of the points in the space Ly,
this is denoted by Rx(Ii). Then the error between the original rankings R and the reordered ranking
Rx(Ii) is estimated. In this method, causality is basically a measure of the difference between both
rankings. This error is normalized by the error that would be obtained if the rankings were randomly
sorted. We call this function E(R) and it is approximated according to E(R) = a + becR. The causality
score given by the CCS method is the value E(0) [29].

The advantage of this procedure is that causality is independent of certain geometric transformations
of the system variables. For example, the same result is obtained regardless of whether a standardized
variable is used, which is a problem found when other methods are used.
2.2. Continuity scaling method
This method was proposed in [32] and is described in the following paragraph. Let us consider a
dynamic system of two variables xt+1 = f (xt, yt), yt+1 = g(yt, xt). If we have access to time series of these



linear

ring

C1

C19

C20 C1
C2

C3

x1

x1

x2

x20 x2

x3

x3

x20

C2 C3 C19

(b)

(a)

Figure 1. Arrangements considered. (a) Linear array with unidirectional causality. (b) Circular arrangement.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221590
4

variables, we can reconstruct the system’s attractor for lags (τu, τv) and embedding dimensions (du, dv).
The evolution of these two variables can be described using the functions f̂ðxt, ytÞ and ĝðyt, xtÞ. If we
consider f̂xtð�Þ ¼ f̂ðxt, �Þ, we see that the role of this function is to map the variable yt, which lives in
its reconstructed space Ly to the space of xt, Lx. Similarly, f̂�1

xt ð�Þ performs the inverse operation. What
was proposed in [32] means that if causality exists, there is a continuous map between the two spaces
(Ly and Lx). Thus, if we consider a neighbourhood in Lx of radius ex that maps to the space Ly using
inverse function f̂�1

xt ð�Þ, we should obtain a neighbourhood in Ly whose radius δy must be an
increasing function of ex. In other words, continuity implies that as the size of the neighbourhood ex
increases, the size of the pre-image of this neighbourhood (δy) must also increase. Moreover, it should
scale as dy � logðexÞ. In [32], the authors proposed the scaling of δy as a function of ex (value of the
slope in logarithmic scale) as a measure of causal strength.
3. Causality detection in simulated and real-world time series
3.1. Logistic map
Coupled LMs are one of the most frequently used systems in causality studies [26,29,40]. This corresponds
to a discrete system, whose dynamics are given by equation (3.1), which accounts for the interaction
between two chaotic systems. The system exhibits synchronization for high values of coupling strength.

x1ðtþ 1Þ ¼ x1ðtÞ[r1 � r1x1ðtÞ � C1x2ðtÞ] ð3:1Þ
and

x2ðtþ 1Þ ¼ x2ðtÞ[r2 � r2x2ðtÞ � C2x1ðtÞ] : ð3:2Þ
The coupling is given by Ci. In this study, we set r1 = 3.6 and r2 = 3.7 in the case of two coupled systems.

The chains of LMs coupled in networks with linear and ring topologies were also studied, as shown
schematically in figure 1a,b. This allows us to investigate the method’s ability to detect direct causality
and its potential failure in the presence of indirect causal relationships. In these latter cases, 20
different LMs were coupled, with the coupling constant taking uniformly spaced values in C∈ {3.6, 3.8}.
3.2. Rössler–Lorenz system
The second system considered for causality analysis is the Rössler–Lorenz (RL) coupled system, which is
presented and described in [41,42]. The governing equations for this system are the following:

_x1 ¼ �aðx2 þ x3Þ, ð3:3Þ
_x2 ¼ aðx1 þ 0:2x2Þ, ð3:4Þ
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_x3 ¼ að0:2þ x3ðx1 � 5:7ÞÞ, ð3:5Þ
_y1 ¼ 10ð�y1 þ y2Þ, ð3:6Þ

_y2 ¼ 28y1 � y2 � y1y3 þ Cx22 ð3:7Þ
and _y3 ¼ y1y2 � 8

3
y3: ð3:8Þ

The equations show that the coupling is of the form x2→ y2 through the constant C, as shown
schematically in the causal network in figure 2a. This system allows us to study the effectiveness of
CCS and CS methods in a continuous, chaotic system (the attractors are shown in figure 2b). This
system also exhibits generalized synchronization, indicating that an invertible functional relationship
exists between the subsystems [43]. This occurs for C * 2 when a = 6 and in the ranges 2.1≤C≤ 2.7 or
C > 2.9 when a = 10 [42].
3.3. Rössler–Rössler system
The third system under study consists of two coupled Rössler systems. The equations that describe the
evolution of the Rössler–Rössler (RR) system are

_x1 ¼ �v1x2 � x3, ð3:9Þ
_x2 ¼ v1x1 þ a1x2, ð3:10Þ

_x3 ¼ x3ðx1 � cÞ þ b1, ð3:11Þ
_y1 ¼ �v2y2 � y3 þ Cðx1 � y1Þ, ð3:12Þ

_y2 ¼ v2y1 þ a2y2 ð3:13Þ
and _y3 ¼ y3ðy1 þ cÞ þ b2: ð3:14Þ

This system has been previously studied in the context of causality detection [18]. We see that the
direct coupling corresponds to x1→ y1, as shown in the causal network in figure 3a. The advantage of
considering this system is that parameters ωi (i = 1, 2) in the RR equations are associated with the
main frequencies of the variables. This property allowed us to study the effect of different frequency
ratios (r = ω1/ω2) on the performance of both causality detection methods.
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3.4. Real-world time series
We applied the previously described causality detection methods to six time series from three real-world
systems shown in figure 4. These correspond to the rainfall-dam level systems for the Angat (figure 4a)
and Ipo (figure 4b) dams, both located in the Philippines [44]. The second system (figure 4c) corresponds
to a predator–prey system cultured in a chemostat described in [45] and available in [46], characterized by
the planktonic rotifer Brachionus calyciflorus that feeds on the unicellular green algae Chlorella vulgaris,
resulting in oscillations of species populations in different experimental trials. This system was
controlled by adjusting the dilution rate and the addition of Nitrogen (N), which can limit the algal
growth. The N concentration determines the birth rate of Chlorella, and the concentration of this
species determines the birth rate of Brachionus [45].

In [45], a mathematical model for the predator–prey system is proposed, and it is illustrated in figure 5.
Time series under study have some desired characteristics to be tested using both causality detection

methods. They are intermittent, and their main oscillation frequencies are associated with markedly
different frequency bands. A particularly useful piece of information to test the ability of both
causality detection methods is that the directions of causal links are known for both systems. In the
rainfall–dam systems (Angat and Ipo), it goes from the rainfall to the water level. In the chemostat
system, bidirectional causality for the concentrations of Brachionus and Chlorella is established as
observed by their fluctuations over time (figure 4c) and its causal network (figure 5).
4. Results
4.1. Causality detection in simulated systems
Receiver operating characteristic (ROC) curves [47] were calculated, and the areas under the ROC curves
(AUC) were used to estimate the efficiency of both causality detection methods in terms of different
parameters. Results for the LM system are shown in figure 6. In figure 6a, it shows the variation of
the AUC as a function of the time-series length. The AUC results for the CCS method coincide with
the results reported in [29]. The CS method is more efficient for short time series, reaching AUC≈ 1 in
L≈ 150, whereas for the CCS method the maximum efficiency is reached at L≈ 200.

The lower panels of figure 6 show the causality strength detected by both methods for different time-
series length in the correct (x1→ x2) and wrong (x2→ x1) directions.
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The effect of coupling strength on the efficiency of both methods is shown in figure 7a. For low values
of C2, both methods have maximum efficiency. It starts to decrease at C2≈ 2.4 for the CS method and
C2 ≈ 3.2 for the CCS method. At these coupling values, the systems begin to synchronize, as can be
observed in the increase in mutual information (MI) and correlation (figure 7b,c).

The coupling strength detected by each method is shown in figure 8. The causality detected by the CS
method increases progressively as C2 increases, but this was not observed in the causality strength
detected by the CCS method.

The ability of the methods to identify bidirectional interactions is evaluated in the results of figure 9,
which shows the results for the general bidirectional case. In the three figures, we display the difference
between the causality strengths detected in the two directions for the CCS (figure 9a) and CS (figure 9b)
methods, while the actual difference between the couplings is shown in figure 9c.

In table 1, two statistical measures of efficiency are shown. The error corresponds to the root-mean-
square error (RMSE), and the AUC is obtained calculating the p-value. We computed the p-value for each
point in the grid with 100 surrogates (for each realization) using the stationary bootstrap [50,51]. The
points where the p-values were less than 0.05 are considered as statistically significant, meaning that
the method detects causality at that point, in the direction considered.

The variation of the AUC with the increase in the time-series noise level, measured by the signal-to-
noise ratio (SNR) is shown in figure 10a. When SNR∼ 1, the noise amplitude is of the same order as the
values of time series. As the SNR increases, the effect of noise on the time series decreases. Gaussian
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white noise was used in all the simulations. The effect of noise on the causality strength detected by CCS
and CS methods are visible in figure 10b,c. The efficiencies of both methods for high noise levels
(SNR & 15) are similar (approx. 0.5); however, the CS method surpasses the CCS method at SNR≈ 18
(figure 10a). which can be clearly observed when causality curves separate from each other at this
SNR level (figure 10c).
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Causality strength detected by both methods for LM networks (figure 1) are shown in figure 11 for
the CCS (figure 11a) and CS (figure 11b) methods.

In the case of causality detection for the continuous RL system, there is only one direct causal
relationship, x2→ y2, which is defined by the coupling constant C, as can be observed in figure 2a.
Once again, the CS method outperforms the CCS method. For the former, AUC values over
approximately 0.85 were obtained at reduced time-series lengths (L≈ 200), as shown in figure 12a. By
contrast, for the CCS method, AUC values over 0.85 were obtained at L≈ 1000.

The effect of coupling strength (C) for both causality detection methods applied to the RL system can
be observed in figure 13a. We note that the maximum efficiency for both methods is reached around C≈ 2
(being the AUC greater for the CS than for the CCS method) and above this value a fast decrease in the
AUC for both methods can be observed. The efficiency is approximately equal for high coupling values.
The AUC is close to 0 for the CCS method between 20 <C < 40 and AUC≈ 0.1 for the CS method for the
same coupling strength range values. This latter result means that both methods are detecting a reverse
causal relationship (y2→ x2) which clearly does not exist (figure 2a).

Figure 14 shows the causality strength detected by CS and CCS methods for different values of the
coupling force C in the RL system.
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Figure 15a shows the variation in the AUC with noise level for both methods. AUC changes are
smaller and not as marked as observed for the LM case (figure 10). In the case of the CCS method,
the efficiency is higher when noise predominates. This is not observed in the CS method, which
shows a slight improvement in its efficiency with noise reduction. We want to remark that the CS
method yielded better results than the CCS method for all noise levels.

The variability of the AUC as a function of the frequency ratio r = ω1/ω2 (see equation (3.9)) was
analysed to detect the possible effect that differences in the main frequencies of the analysed signals
can have on the ability of both methods to detect causality in the RR system (figure 16). The
frequency ω1 was set to 1, and only ω2 was allowed to vary. A low r indicates a high ω2 frequency in
comparison with ω1 (figure 16a) shows the efficiency of the methods in terms of the frequency ratio.
For low r values, the efficiency is approximately 0. Thus, they detect a causal relationship from y1→
x1, which does not exists (figure 3a). The CS method was more efficient for all r values except in the
cases where both methods fail: when both frequencies are the same (r = 1) and when the difference is
large (r close to 0).

Table 2 shows a summary of our results for the three simulated systems using CCS and CS methods
under different time-series length/noise level scenarios. It can be observed that the CS method
outperforms the CCS method in all scenarios.
4.2. Causality detection in real-world time series
Table 3 shows the statistical significance of the detected causality in real-world time series for each
method. Significance levels were calculated using the stationary bootstrap, which is recommended for
time series with non-independent observations [50]. The mean block size was selected based on [51].
In total, 100 surrogates were created for each time series, after which a p-value test was performed. If
causality was detected, its value was considered significant only if p≤ 0.05.

The convergence of both causality detection methods as a function of time-series length is shown
in figure 17.
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Both methods detect bidirectional relationships in the Angat dam system (table 3), which is incorrect.
However, in both cases, the main direction of causality was detected correctly (figure 17a). For the case of
the Ipo dam, both methods detect a correct causal relationship. For the chemostat data, only the CS
method correctly captures the bidirectional causality, and the detected causality strength is of the
same order in both directions, C(Brach. ! Chlor.) ≈ C(Chlor. ! Brach.) (figure 17c). Using the CS
method, causality strength converged to a relatively uniform value of 0.4 at L = 350 (figure 17c), which
is a moderated time-series length considering actual real-world experimental and observational
databases.
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5. Discussion
The CS method exhibited the best performance for all systems under study. The CS method reaches
its maximum efficiency value at L ≈ 150 when results from the LM were analysed. However, its
efficiency was lower than the CCS method when at coupling strengths of C ≈ 3 (figure 7a). Almost
complete synchronization was observed for this value of C, and the time series were almost
identical. This is reflected in the correlation value being close to 1 and a marked increase in MI
(figure 7b,c).

An important question is how we can distinguish between unidirectional, bidirectional, or
asymmetric bidirectional causality. This is studied in figure 9. From these results, it is evident that the
CS method is superior to the CCS method in the general bidirectional case, which can be observed
directly in figure 9. This superiority is also evident in the smaller RMSE values in table 1 and the
larger AUC in the same table. The RMSE values measure the ability of the methods to recreate the
real causal relationship, while the AUC measures the ability to detect the correct causal links
(independently of the predominant direction).

For the RL system (figure 12), CS method exhibits a considerably higher efficiency, particularly for
short time series, where the method reached its maximum AUC at L≈ 200.

In practical applications, an important question is: how do we know if the time-series length is long
enough to apply some specific methodology? The answer depends on the variability that time series
exhibits at different time scales which is particular to each system, and also on the performance that
each method has in these specific cases. Before applying any causality detection methodology, a
previous sensitivity analysis should be conducted and its convergence as a function of time-series
length (L) should be checked. This is observed for the simulated systems in figures 6b,c and 12b,c and
also in the real-world systems under consideration figure 17). In the latter results, we observed that
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Table 2. Summary of results for simulated systems. A critical AUC value equal to 0.9 was considered. Cross marks indicate when
AUC value was less than 0.9 or when non-monotonic variation without convergence was obtained.

CCS continuity

lengtha noise lengtha noise

LM >150 >46.23 >100 >37.4

RL ‘ ‘ >225 >22.4

frequency

CCS continuity

RR ‘ r≥ 1.5
aA critical AUC value equal to 0.95 was considered for LM systems.

Table 3. Statistical significance for causality detection in real-world systems using CCS and continuity scaling methods. RA, rain
Angat system; RI, rain Ipo system; DL, water level of the respective system.

system CS CCS

1 2 1→ 2 2→ 1 1→ 2 2→ 1

RA DL-A ✓ ✓ ✓ ✓

RI DL-I ✓ ‘ ✓ ‘

Brach. Chlor. ✓ ✓ ‘ ✓
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for short time-series lengths, there are significant variations in the causality values (figure 17a,c), reaching

relatively stable causality strength values as the length increases, specially for the CS method. For this
latter method, we observe a level of convergence for the Ipo dam system starting at L≈ 2000, which
was not observed in the results of the CCS method.

Synchronization has been identified as a problem in causality detection [26,27]. It has been suggested
[29] that the CCS method has a higher efficiency than the CCM in systems susceptible to synchronization.
In figure 13a, we observe a low efficiency of the CCS method (AUC≤ 0.7 for all values of the coupling
strength C) in the RL system (a = 6), where generalized synchronization starts at C≈ 2. Even before
synchronization, the efficiency of CCS was less than the efficiency estimated when the CS method was
applied. When these results are compared with the Lyapunov exponents (LE) reported in [42], a
similar behaviour of the AUC and the distribution of exponents is observed. When LE are positive,
greater efficiency is achieved for both methods. The same was observed in simulations with a = 10. MI
can be interpreted as an indicator of synchronization [52]. We observed that under conditions of ‘high’
MI, a lower efficiency in causality detection can be observed (figures 7 and 13). However, given that
the values estimated for mutual information are relative to each particular system, the designation of
‘high value’ given a single realization of the system requires the introduction of some kind of suitable
normalization.

Regarding the causality strength, it is clear that the CS method performs better than the CCS method in
the following aspects that emerged after the comparison of figure 8 and figure 14. First, it detects values
close to 0 in the absence of causality (not so the CCS method). Second, from figure 8, the causality
strength detected by the CS method increases progressively with the actual coupling parameter (C) up
to C≈ 2, which is not the case for the CCS method that quickly saturates at 1. The same can be
observed in the results of figure 9, where it is clearly observed that the CS method recreates the
gradient in the causality strength difference, while the CCS method does not. Accordingly, our
recommendation is to analyse both the statistical significance of the causal link and the causality
strength ratio C(1→ 2)/C(2→ 1) instead of directly studying the value detected by each method.

When the effect of the SNR on the methods’ abilities to detect causality was analysed, a superior
performance for the CS method was observed in all scenarios (figures 10 and 15). Results obtained for
the LM showed low efficiencies for both methods when the noise level was high (SNR < 10, figure 10).
The results were different for the RL system: the CS method showed a similar efficiency for all noise
levels (AUC≈ 0.9) and convergence of causality strength at SNR≈ 20. For the same system, the
efficiency of the CCS method decreases as noise decreases. This means that the CS method was more
robust in the presence of noise than the CCS method.

Biological and ecological systems can develop feedback loops or linear causal networks [33,34]. The
simplest causal network topologies are shown in figure 1. Results observed in figure 11 indicate that both
methods can accurately distinguish between direct and indirect causality.

Time series in natural sciences and geophysics are characterized by multiple time scales of
variability, which means that its variance is concentrated on different frequency bands. In these
research areas, the use of statistical methods (e.g. wavelet coherence [53]) to detect and quantify
synchronous oscillations, and accordingly, they infer causality based on the degree of coupling
between both time series. This statistically based approach can detect artificial couplings and,
therefore, spurious causality. By contrast, for CCS and CS methods, synchrony makes the detection of
causality more difficult, and both methods fail in the presence of generalized synchrony. In brief,
synchrony should be considered as a factor that enhances the possibility to detect causal links that do
not exist. Our results show that for RR systems with a large difference between their characteristic
frequencies, causality tends to be detected from the low-frequency to the high-frequency system in
circumstances where the simulated experiment is designed with a causal link in the opposite direction
(as we can observe at r = 0.25 in figure 16). This bias, favouring causality from slow to fast variables,
has previously been observed in [54]. Overall our results show a superior performance of the CS
method, with an AUC≈ 1 starting at r = 1.5. Our results suggest that in experimental time-series
exhibiting significant seasonality, causality analysis should be complemented by other statistical
analysis. One possible option is to analyse the statistical significance of the causality by studying
surrogates with the same main frequency but applying the stationary bootstrap to the fluctuations
(considering that experimental time series with marked seasonality are usually composed of slow, or
seasonal and fast, time scales); this should test whether the fast variable could be caused by another
variable with the same main frequency [55]. The other option is to extract the main frequency content
from the slow variable and apply the causality detection methods and surrogate analysis to
the fluctuations.
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6. Summary and conclusion

Our results show that, when detection of causality in simulated and real-world time series under
different scenarios was conducted, the CS method appears to be more robust and efficient than the
CCS method. A better performance of the CS method in comparison with the CCS method was
observed for all analysed time series, including series as short as L = 150 for which an AUC≈ 0.95 was
obtained. In general terms, the minimum time-series length necessary to detect causality depends on
the system intrinsic dynamics and on the selected method. An appropriate use of causality detection
methods should include a test to check convergence of causality strength as a function of time series
length L. Standardization of both time series before applying the CS method is also recommended, to
make results independent of geometric transformations and from the units under which time series
were measured. The CS method clearly outperforms the CCS method when the strength and direction
of causality in LMs with bidirectional coupling was analysed (RMSE = 0.297 and 0.450, respectively).
The ability of both methods to detect the right direction of causal links can be evaluated checking the
statistical significance with their p-values. It was observed that the CS method was more efficient in
detecting causality than the CCS method, achieving the former higher AUC values for equal time-
series length and parameter configuration than the latter method (AUC = 0.962 and 0.553, respectively).

Neither method was able to detect causality when generalized synchronization dominates the
dynamics of the system under study and using the mutual information as an indicator of synchrony.
In addition, both methods did not perform well in determining the level of causality strength.
Therefore, causality ratios rc(1→ 2) = C(1→ 2)/C(2→ 1) should be calculated, as they provide an
indication of the relative causality strength. The addition of increasing noise levels to simulated series
did not change previous conclusions, because the CS method showed the highest efficiency in
causality detection under all configurations in comparison with the CCS method. When a remarkable
difference between main frequencies of interacting time series was detected, both methods failed in
detecting causality. For example, when r = 0.25 both methods detected a causal link going from the
time series dominated by a low-frequency component to the series dominated by a high-frequency
component. This latter result is essentially wrong because simulated time series emerged from an
experiment designed with a causal link in the opposite direction.

Using real-world time series from the chemostat experiment (Brachionus/Chlorella) only the CS
method was capable to properly detect bidirectional causality, but fails as the CCS method, spuriously
detecting causality from the dam water level to the amount of rainfall in Angat (table 3). Most
probably, as the water dam level time series is characterized by a marked periodic component, not
observed for the rainfall time series which is more intermittent (figure 4a), the difference between its
main frequencies could be the cause of this failure as demonstrated above using simulated series.
Time series dominated by low-frequency components are ubiquitous in the real-world, and climatic/
oceanographic time series and population abundance time series from diverse marine ecosystems are
only a few examples of series for which low-frequency components tends to dominate. When causal
links are detected using this latter type of series, our results and warnings should be considered,
otherwise the rate of spurious detection of causal links can becomes higher than it should be if
detection methods were not biased.

In conclusion, the process of development and application of causality detection methods is still far
from achieving a mature state, which makes it, nowadays, not possible the use of a unique and easy
recipe of widespread acceptance within the scientific community that allows a reliable detection of
causal networks. Moreover, both methods can fail even when recommendations given above were
considered. General guidelines given here must be complemented with a deeper knowledge of
underlying mechanisms involved in the generation of causal links.
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