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Herein, we report the first access of β-elemene derivatives
through the SeO2-mediated oxidation reaction. Several new
compounds were isolated through such a one-step reaction,
and their structures were elucidated using various 2D-NMR
techniques. This method provides easy access to multiple
oxidative β-elemene derivatives in one single step and
represents the first modifications on cyclohexyl ring of
β-elemene. It is expected to open up the opportunity for
future derivatization on cyclohexyl ring of β-elemene. The new
compounds obtained above showed better anti-proliferation
activities than β-elemene itself on several cancer cell lines.
Among them, compound 17 shows the best activity in
antiproliferation assays of A549 and U-87MG cell lines.
1. Introduction
The plant Curcuma wenyujin Y. H. Chen et C. Ling belongs to one
of the important traditional Chinese medicines (TCM), and has
been used to treat cancer and various diseases for nearly a
thousand years [1–4]. The essential oil obtained from this
plant is called elemene extracts, which contain at least four
sesquiterpene isomers, namely α-elemene, β-elemene (1),
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Figure 1. (a) The structure of β-elemene with carbon atoms numbering; (b) the ground-state chair conformation of
β-elemene [18]. The two hydrogen atoms on C-2 and C-4 are theoretically accessible to SeO2-mediated allylic oxidation besides
C-13 and C-14.
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γ-elemene, and δ-elemene [5–7]. In 2008, the State Food and Drug Administration of China approved the
uses of elemene extracts in two special dose forms: liposomal oral liquids (for treatment of oesophageal
and gastric cancers) and liposomal injections (to treat leukemia, brain, breast, ovarian and lung cancers)
[8,9]. In the past two decades, numerous papers and patents published in China and across the world
established the clinical usefulness of elemene extracts as a wide spectrum anti-cancer drug [10–16].
The mechanism of action of elemene is yet to be uncovered.

Within the four major sesquiterpene isomers, β-elemene is reported to be the major isomer,
consisting of 40–80% of elemene extracts depending on the isolation and purification process [17]. It is
undoubted that β-elemene is the major pharmacology contributor among the four isomers. Other
isomers (α-elemene, γ-elemene and δ-elemene) might also contribute to the anti-cancer effects to some
extent, which is another topic of interest under our investigation.

β-Elemene, named (5S,7R,10S)-(-)-(1-methyl-1-vinyl-2,4-diisopropenyl-cyclohexane), contains only
hydrogen and carbon elements (figure 1). The biological activity of β-elemene is moderate or weak,
indicated by its high IC50 value against several tumour cell lines [19,20]. Barrero et al. reported the
synthesis of β-elemene from germacrone in several steps [21]. In recent years, several papers
have been published regarding the modifications of β-elemene, in the hope to seek better
biological activity and to improve its water solubility [22–26]. The modifications of β-elemene
described thus far are limited to two positions: C-13 and C-14. Such limitations are largely due to the
stereoelectronic preference for reaction at C-13 and C-14. Herein, we report that SeO2-mediated
oxidation conditions can yield other oxidation patterns.

β-Elemene possesses three carbon-carbon double bonds, all connected to the cyclohexyl
skeleton. These three C=C bonds are all terminal double bonds, two of them being di-substituted
and one being mono-substituted. Conformational analysis of β-elemene suggests these three alkene
substituents are probably positioned equatorial in ground state. Furthermore, C-14 is more sterically
hindered than C-13 due to its proximity to the C-15 quaternary centre. Similarly, the proton on C-2 is
slightly more hindered than the proton on C-4. The steric effects analysed above agree well with
what Thomas et al. described in their epoxidation of β-elemene double bond [27].

Selenium dioxide (SeO2)-mediated allylic oxidation of olefin to allylic alcohol, commonly known
as Riley oxidation, is one of the most important transformations in organic synthesis [28,29].
Typically, an olefin is subjected to a catalytic SeO2 and stoichiometric tert-butylhydroperoxide (TBHP)
under mild conditions. Since its discovery, the Riley oxidation has been widely applied in organic
synthesis [30,31]. The mechanism of Riley oxidation and the preferences and selectivity of reaction
sites of the allylic group were well documented in the literature [32,33]. Preference (region- and
chemoselectivity) will be dictated by stereoelectronics. In the case of β-elemene, there are four
different allylic protons, namely protons at C-2, C-4, C-13 and C-14, respectively. Our interests in
modifying unexplored positions of β-elemene prompt us to examine the SeO2-TBHP condition on this
substrate. Of all the four hydrogen-bearing allylic carbons, C-2 and C-4 draw our attention. We
envision that the SeO2-mediated oxidation reaction might access the hydrogen atoms on these two
carbons, in addition to C-13 and C-14, and hence, might install the hydroxyl group on these two
positions of cyclohexyl ring. As a result, the modification products of β-elemene on its cyclohexyl ring
could be obtained. Those modifications on the cyclohexyl ring of β-elemene represent the synthetic
challenge to date. Additionally, SeO2-mediated allylic oxidation will also generate the oxidative
products from C-13 and C-14 (plus the possible combination). These products, though previously
reported, can only be synthesized in several steps [24,25,34–37] (figure 2).
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Figure 2. Summary of the allylic oxidation of β-elemene.
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2. Results
β-Elemene raw material is the gift from Holley Kingkong Pharmaceutical Co., Ltd. GC-MS analysis1

suggests that it contains only about 78% of β-isomer, plus the other three isomers. Since the four
elemene isomers possess very similar structure and physical properties, to purify them in the
laboratory represents a challenge. Therefore, the material was used as-is. Understandably, the presence
of other isomers will generally give lower yield as well as complicate the isolation process.

β-Elemene raw material was subjected to a SeO2-mediated oxidation reaction in CH2Cl2, with 5
equivalent of TBHP at 0oC for 6 h. After standard work-up process, the crude product was purified in
silica gel chromatography (petroleum ether (PE)/ethyl acetate (EA)) to yield four fractions, with
polarity from the least to the most: fraction I (Rf = 0.9, PE/EA = 4:1, 7.4% yield), fraction II (Rf = 0.7,
PE/EA = 4:1, 2.8% yield), fraction III (Rf = 0.2, PE/EA = 4:1, 8.6% yield) and fraction IV (Rf = 0.15, PE/
EA = 4:1, 21.6% yield) (Scheme 1).

The above four fractions were analysed by HPLC. The results revealed that only fraction IV contains
a single compound, the other three fractions were all mixtures of two compounds.

Fraction I appears to be a single spot in TLC (petroleum-ethyl acetate system). After screening
with several mix solvent systems for TLC, petroleum ether/acetone system was found to be the best
solvent to resolve the two compounds (Scheme 2). The structure of compound 2 was established by
NMR in comparison with references [35]. The structure of compound 3 was elucidated through various
2D NMR techniques (see electronic supplementary material for details). It should be noted that
compound 2 was synthesized in the literature involving three steps and a tedious HPLC purification
process [35].

The 1H NMR of fraction II reveals two sets of signals in about 1 to 1 ratio, containing both aldehyde
proton and allylic protons connecting to a hydroxyl group, presumably from compounds 6 and 7.
Attempt to resolve them in TLC using a variety of mix solvent systems (similar to fraction I) was
proven to be unsuccessful. We then turned to protecting group strategy. Thus, 50 mg of fraction II
was treated with TBDMS-Cl/imidazole to install TBDMS group on hydroxyl groups, resulting in two
compounds 4 and 5, which were carefully separated in silica gel chromatography. The isolation yield
1GC-MS analysis was performed in Agilent Technologies 7890B (GC system) and 5977A MSD (Mass unit) under the following
conditions: Agilent gas chromatograph and gas work station, FID detector, capillary chromatography (Agilent 19091S-433UI, HP-
5 ms Ultra Inert, 60–325°C, 30 m × 250 mm× 0.25 mm); injection temperature: 250°C, detector temperature: 230°C, rise range:
starting temperature: 50°C, maintain for 2 min, rise to 80°C at the rate of 20°C per minute, maintained for 2 min, then increased to
150°C at the rate of 30°C per minute, maintained for 5 min; carrier gas: helium, flow rate: 24.2 ml min−1, chromatographic column
flow rate: 1.2 ml min−1, pressure: 9.8 psi, tail gas flow rate: 3 ml min−1, injection volume: 1 ml, split ratio: 100 : 1. The retention time
of β-elemene is 9.05 min under the above conditions.
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is low because these two compounds are close to each other and the majority material stays as a mixture.
If necessary, the mixture can be subjected to chromatography repeatedly to give a better yield of pure 4
and 5. After standard deprotection of tert-butyldimethylsilyl group, compounds 6 and 7 were obtained
respectively. The structures of 6 and 7 were established by NMR. Alternatively, compounds 6 and 7
might be separated using a suitable column in the preparative HPLC system (Scheme 3).

The 1H NMR of fraction III did not show the aldehyde proton signal. Therefore, the mixture
presumably contains allylic alcohols. After screening a set of mixed solvent systems for TLC,
dichloromethane/acetone (1:1 v/v) appears to give the best resolution. Thus compounds 8 and 9 were
obtained in about 3 to 2 ratio, and their structures were established via various 2D NMR techniques
(Scheme 4) [36].

The analysis by HPLC and 1H NMR of fraction IV indicates it is a single compound, whose structure
was established as compound 10 by comparing its 1H NMR with known compound 13,14-bis(hydroxyl)-
β-elemene [9,38,39]. Compound 10 is a known compound reported in the literature. It required a three-
step synthesis using the literature method (reaction sequence: bis-allylic chlorination, nucleophilic
displacement with OAc− and hydrolysis of ester), with a total yield of 19% [38]. Our method provides
alternative access to this key intermediate in a single step.

To further expand the usefulness of SeO2-mediated allylic oxidation reaction in β-elemene analogue
synthesis, compound 122 was subjected to a milder condition to see if we can obtain a higher yield and
better regioselectivity of the oxidation product. To our delight, with less catalyst and oxidant (0.4
equivalent of SeO2 and 0.8 equivalence of TBHP), the selective installation of the hydroxyl group was
achieved in moderate to good yield. Compound 13 can serve as a key intermediate for further
functionalize the C-13 and C-14 position of β-elemene (Scheme 5).

Huang reported that β-elemenal (11) (figure 3) showed better anti-proliferation activity against
several tumour cell lines than β-elemene (1) itself [13]. Apparently the aldehyde functional group
contributes to the biological activity. Thus, compounds 2, 8, 9 and 10 were converted to the
2β-Elemene was subjected to allylic chlorination in NaOCl/acetic acid to obtain a mixture of compound 11 and its regioisomer (i.e. Cl-
group in 14-position of β-elemene). After repeated chromatography in preparative HPLC, compound 11 was obtained in pure form.
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corresponding aldehydes 14–17 using standard oxidation conditions (pyridinium dichromate (PDC) in
dichloromethane, 0oC to RT) (Scheme 6). All compounds were characterized by 1H NMR.
Undoubtedly, compounds 14–17 can serve as key intermediates in further functionalization of β-elemene.

All new compounds and β-elemene were subjected to cell proliferation inhibition assay against two
tumour cell lines: A549 and U-87MG. The results will be discussed below.
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Table 1. Inhibition of cell proliferation against A549 and U-87MG cell lines.a

Compound A549 (IC50, µM)
b U-87 (IC50, µM)

b

β-elemene (1)c >300 >300

2 >100 >100

3 >100 >100

6 87.23 ± 0.2 32.92 ± 0.3

7 44.57 ± 0.1 14.31 ± 0.4

8 >100 >100

9 >100 >100

10 >100 >100

13 41.24 ± 0.5 40.35 ± 0.2

14 >100 >100

15 45.28 ± 0.3 25.45 ± 0.1

16 91.44 ± 0.2 >100

17 9.34 ± 0.1 2.83 ± 0.4

STS d 0.021 ± 0.003 0.230 ± 0.01
aIC50 (μM): inhibitory concentration of 50% cell growth was calculated through a nonlinear fit-curve (log of compound
concentration versus normalized response—variable slope).
bData are presented as the means ± s.d. of three independent experiments. p < 0.05.
cThe material tested here contains 78% of β-elemene, which is the same batch used in the experimental section.
dSTS (staurosporine) was used as the positive control.
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The β-elemene derivatives obtained above were assessed in anti-proliferation assay against A549 and
U-87MG cell lines. The activity of some representative compounds is shown in table 1. Compounds 6, 7,
11, 15 and 17 showed improved inhibitory activities than β-elemene. It is interesting to note that all the
compounds showing better biological activities possess an aldehyde functional group. The reason for
such phenomenon is currently being investigated in our laboratory.
3. Experimental
Typical procedure: to a solution of β-elemene (1) (500 mg, 2.45 mmol, 78%) in CH2Cl2 (10 ml) at 0°C was
added dropwise 65% aqueous tert-butyl hydroperoxide (1.7 ml, 12.21 mmol). SeO2 (270 mg, 2.45 mmol)
was added into the above mixture. Then the mixture was stirred at 0°C for 6 h. The reaction was
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quenched at 0°C with saturated aqueous NaHSO3 solution (15 ml). The organic layer was separated, the

aqueous layer was extracted with CH2Cl2 (2 × 10 ml). The combined organic extracts were washed with
brine (10 ml), dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue was
purified via silica gel column chromatography (petroleum ether/ethyl acetate) to yield four fractions,
with polarity from the least to the most: fraction I (2 and 3, 40 mg, 7.4%, Rf = 0.9, PE/EA = 4:1),
fraction II (6 and 7, 16 mg, 2.8%, Rf = 0.7, PE/EA = 4:1), fraction III (8 and 9, 50 mg, 8.6%, Rf = 0.2,
PE/EA = 4:1) and fraction IV (10, 125 mg, yield 21.6%, Rf = 0.15, PE/EA = 4:1). Fraction I was further
purified in silica gel chromatography (petroleum ether/acetone, v/v = 10:1) to yield compounds 2
(27 mg, yield 5.0%) and 3 (9 mg, yield 1.7%). Fraction III was further purified in silica gel
chromatography (dichloromethane/acetone, v/v = 10:1) to yield compounds 8 (27 mg, yield 4.7%) and
9 (18 mg, yield 3.1%).

2-((1R,2S,5R)-2-methyl-5-(prop-1-en-2-yl)-2-vinylcyclohexyl)prop-2-en-1-ol (2) [35]: colourless oil.
1H NMR (400 MHz, CDCl3) δ 5.77 (dd, J = 17.8, 10.5 Hz, 1H), 5.17 (q, J = 1.5 Hz, 1H), 4.96–4.92 (m,
1H), 4.90 (q, J = 1.3 Hz, 1H), 4.85–4.83 (m, 1H), 4.72 (m, 2H), 4.09–3.94 (m, 2H), 2.07–2.00 (m, 1H),
2.00–1.90 (m, 1H), 1.75 (t, J = 1.1 Hz, 3H), 1.66–1.43 (m, 6H), 1.00 (s, 3H). HRMS (ESI) calcd for
C15H24NaO [M+Na]+: 243.1719, found 243.1725.

(1S,3S,4S)-4-methyl-1,3-di(prop-1-en-2-yl)-4-vinylcyclohexan-1-ol (3): colourless oil. 1H NMR
(400 MHz, CDCl3) δ 5.75 (dd, J = 17.8, 10.5 Hz, 1H), 5.06 (m, 2H), 4.93–4.90 (m, 1H), 4.88 (s, 1H), 4.83
(p, J = 1.6 Hz, 1H), 4.61 (dt, J = 1.9, 0.9 Hz, 1H), 2.06–1.85 (m, 3H), 1.81 (t, J = 1.0 Hz, 3H), 1.70 (dd, J =
1.5, 0.8 Hz, 3H), 1.67–1.28 (m, 4H), 1.07 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 149.69, 146.62, 146.47,
113.35, 112.60, 110.36, 74.39, 49.64, 39.72, 37.47, 37.20, 31.77, 24.39, 18.71, 16.68. HRMS (ESI) calcd for
C15H24NaO [M+Na]+: 243.1719, found 243.1722.

(1S,2S,5R)-1-(3-hydroxyprop-1-en-2-yl)-2-methyl-5-(prop-1-en-2-yl)-2-vinylcyclohexanol (8): colourless
oil. 1H NMR (400 MHz, CDCl3) δ 5.69 (dd, J = 17.7, 10.5 Hz, 1H), 5.19 (q, J = 1.4 Hz, 1H), 5.07 (m, 2H),
4.97–4.91 (m, 1H), 4.89 (d, J = 6.9 Hz, 2H), 4.09–3.86 (m, 2H), 2.08–1.99 (m, 2H), 1.98–1.85 (m, 2H), 1.81
(d, J = 1.2 Hz, 3H), 1.72 (td, J = 13.8, 3.9 Hz, 1H), 1.47 (td, J = 13.9, 3.6 Hz, 1H), 1.34 (dt, J = 13.7, 3.7 Hz,
1H), 1.06 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 150.53, 149.08, 146.29, 113.60, 111.67, 111.22, 74.32,
67.42, 44.90, 39.60, 37.92, 37.06, 31.60, 18.74, 16.04. HRMS (ESI) calcd for C15H24O2 [M +H]+: 236.1776,
found 236.1771.

(1S,3R,4S)-3-(3-hydroxyprop-1-en-2-yl)-4-methyl-1-(prop-1-en-2-yl)-4-vinylcyclohexanol (9): colourless
oil. 1H NMR (400 MHz, CDCl3) δ 5.82 (dd, J = 17.8, 10.5 Hz, 1H), 5.20 (d, J = 1.5 Hz, 1H), 5.05 (s, 1H),
4.97–4.94 (m, 1H), 4.94–4.90 (m, 1H), 4.83 (d, J = 1.4 Hz, 2H), 4.10–3.95 (m, 2H), 2.49 (dd, J = 13.3,
3.3 Hz, 1H), 1.94 (m, 2H), 1.90–1.85 (m, 1H), 1.84 (s, 3H), 1.49 (ddt, J = 16.7, 13.9, 2.9 Hz, 2H), 1.31–
1.28 (m, 1H), 0.99 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 152.04, 150.87, 149.20, 111.47, 110.91, 109.25,
73.99, 67.76, 42.14, 39.45, 37.69, 34.66, 31.02, 19.00, 15.07. HRMS (ESI) calcd for C15H24O2 [M +H]+:
236.1776, found 236.1779.

2,2’-((1R,3R,4S)-4-methyl-4-vinylcyclohexane-1,3-diyl)bis(prop-2-en-1-ol) (10) [36]: colourless oil. 1H
NMR (400 MHz, CDCl3) δ 5.77 (dd, J = 17.8, 10.5 Hz, 1H), 5.17 (q, J = 1.4 Hz, 1H), 5.06 (d, J = 1.6 Hz, 1H),
4.94 (m, 2H), 4.90 (q, J = 1.4 Hz, 1H), 4.84 (s, 1H), 4.14 (s, 2H), 4.10–3.93 (m, 2H), 2.11–1.99 (m, 2H),
1.70–1.28 (m, 6H), 1.02 (s, 3H). HRMS (ESI) calcd for C15H24O2 [M+H]+: 236.1776, found 236.1772.

To a solution of fraction II (122 mg, 0.52 mmol), imidazole (53 mg, 0.78 mmol) and
4-dimethylaminopyridine (3 mg, 0.025 mmol) in CH2Cl2 (5 ml) at room temperature was added tert-
butyldimethylsilyl chloride (118 mg, 0.78 mmol). The mixture was stirred at this temperature for 8 h.
The reaction solution was diluted with H2O (2 ml) and extracted with ethyl acetate (3 × 6 ml). The
combined organic layers were washed with brine (4 ml), dried over Na2SO4. After filtering, the filtrate
was concentrated under reduced pressure. The residue was purified via column chromatography to
afford the compounds 4 (22 mg, yield 12%) and 5 (18 mg, yield: 10%).

To a solution of 5 (18 mg, 0.052 mmol) in dry THF (2 ml) was added tetrabutylammonium fluoride
(0.52 ml, 0.52 mmol, 1 M solution in THF), and the mixture was stirred at room temperature for 1.5 h. The
reaction solution was diluted with H2O (1 ml). The THF was evaporated under reduced pressure and the
residue was extracted with ethyl acetate (3 × 5 ml). The combined organic layers were washed with
saturated brine (3 ml), dried over Na2SO4. After filtering, the filtrate was concentrated under reduced
pressure. The residue was purified via column chromatography to afford the compound 7 (9 mg, yield
75%). 1H NMR (500 MHz, CDCl3) δ 9.52 (s, 1H), 6.29 (d, J = 1.1 Hz, 1H), 5.99 (s, 1H), 5.78 (dd, J = 17.8,
10.5 Hz, 1H), 5.17 (d, J = 1.4 Hz, 1H), 4.97–4.88 (m, 2H), 4.82 (s, 1H), 4.11–3.91 (m, 2H), 2.56 (dq, J = 11.8,
7.2, 5.8 Hz, 1H), 2.13–2.07 (m, 1H), 1.67–1.61 (m, 3H), 1.61–1.55 (m, 2H), 1.53–1.45 (m, 1H), 1.03 (s, 3H).
13C NMR (126 MHz, CDCl3) δ 194.51, 154.57, 151.12, 149.31, 132.99, 111.01, 110.95, 67.37, 47.82, 39.58,
39.49, 36.56, 33.17, 26.61, 16.04. HRMS (ESI) calcd for C15H22O2 [M+H]+: 234.1620, found 234.1628.
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Using the procedure above, compound 6 (12 mg, yield 85%) was prepared from compound 4 (22 mg,

0.062 mmol). 1H NMR (500 MHz, CDCl3) δ 9.39 (s, 1H), 6.15 (s, 1H), 6.04 (s, 1H), 5.65 (dd, J = 17.4,
10.8 Hz, 1H), 5.07 (d, J = 1.4 Hz, 1H), 4.95 (t, J = 1.2 Hz, 1H), 4.85–4.70 (m, 2H), 4.13 (d, J = 1.2 Hz, 2H),
2.89 (dd, J = 13.1, 3.3 Hz, 1H), 2.18–2.08 (m, 1H), 1.73–1.66 (m, 1H), 1.66–1.55 (m, 2H), 1.54–1.49 (m,
2H), 1.28 (m, 1H), 0.95 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 194.40, 153.34, 151.94, 148.78, 135.12,
110.69, 108.27, 65.21, 41.31, 41.29, 39.53, 39.40, 32.60, 27.12, 14.93. HRMS (ESI) calcd for C15H22O2

[M +H]+: 234.1620, found 234.1627.
To a stirred solution of compound 2 (50 mg, 0.23 mmol) in CH2Cl2 (5 ml) was added PDC (129 mg,

0.34 mmol) at 0°C. The solution was sealed and stirred at 0°C for 1 h, then at room temperature for 12 h.
The precipitate was filtered and washed with CH2Cl2. The filtrate was evaporated under reduced
pressure. The residue was purified via column chromatography to afford compound 14 [37] (20 mg,
yield 40%). 1H NMR (400 MHz, CDCl3) δ 9.32 (s, 1H), 6.08 (s, 1H), 5.97 (s, 1H), 5.59 (dd, J = 17.4,
10.8 Hz, 1H), 4.70 (dd, J = 36, 1.4 Hz, 1H), 4.71 (t, J = 1.6 Hz, 1H), 4.65–4.63 (m, 2H), 2.82 (dd, J = 13.0,
3.4 Hz, 1H), 2.10–0.93 (m, 7H), 1.67 (d, J = 1.2 Hz, 3H), 0.87 (s, 3H). 13C NMR (126 MHz, CDCl3) δ
194.48, 152.15, 149.91, 148.97, 135.06, 110.56, 108.51, 45.35, 41.20, 39.55, 39.37, 32.16, 26.65, 21.10, 14.92.
HRMS (ESI) calcd for C15H22O [M +H]+: 218.1671, found 218.1676.

Compounds 15, 16, 17 were prepared by following the same procedure as those described for 14.
2-((1R,2S,5S)-5-hydroxy-2-methyl-5-(prop-1-en-2-yl)-2-vinylcyclohexyl)acrylaldehyde 15 (yield

38.7%): colourless oil. 1H NMR (400 MHz, CDCl3) δ 9.40 (s, 1H), 6.13 (s, 1H), 6.06 (s, 1H), 5.72 (dd,
J = 17.5, 10.8 Hz, 1H), 5.05 (dd, J = 1.5, 0.8 Hz, 1H), 4.85–4.75 (m, 3H), 3.36 (dd, J = 13.6, 3.4 Hz, 1H),
2.02 (td, J = 13.6, 4.9 Hz, 2H), 1.90–1.82 (m, 1H), 1.85 (dd, J = 1.4, 0.7 Hz, 3H), 1.59–1.51 (m, 1H), 1.41–
1.27 (m, 3H), 0.93 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 194.88, 165.86, 145.34, 142.32, 127.42, 110.80,
109.34, 83.42, 39.51, 35.90, 31.88, 29.70, 29.49, 29.14, 14.15. HRMS (ESI) calcd for C15H22O2 [M +H]+:
234.1620, found 234.1624.

2-((1R,2S,5R)-5-hydroxy-2-methyl-5-(prop-1-en-2-yl)-2-vinylcyclohexyl)acrylaldehyde 16 (yield
36%): colourless oil. 1H NMR (400 MHz, CDCl3) δ 9.29 (s, 1H), 7.54 (s, 1H), 5.88 (ddd, J = 18.0, 10.7,
1.0 Hz, 1H), 5.15 (d, J = 1.9 Hz, 1H), 5.13–5.10 (m, 1H), 5.00 (s, 1H), 4.90 (t, J = 1.5 Hz, 1H), 2.87
(s, 1H), 2.09 (dd, J = 13.3, 2.7 Hz, 1H), 1.88–1.81 (m, 3H), 1.80 (t, J = 1.0 Hz, 3H), 1.61 (dt, J = 3.9,
1.9 Hz, 1H), 1.46 (ddd, J = 13.4, 3.8, 1.9 Hz, 1H), 1.40–1.32 (m, 1H), 0.85 (s, 3H). 13C NMR (126 MHz,
CDCl3) δ 189.26, 167.08, 146.91, 144.95, 121.31, 112.93, 111.21, 83.42, 40.80, 33.33, 32.69, 29.86, 29.70,
28.54, 18.63. HRMS (ESI) calcd for C15H22O2 [M +H]+: 234.1620, found 234.1627.

2,2’-((1R,3R,4S)-4-methyl-4-vinylcyclohexane-1,3-diyl)diacrylaldehyde 17 (yield 80%): colourless
oil. 1H NMR (400 MHz, CDCl3) δ 9.53 (s, 1H), 9.38 (s, 1H), 6.29 (d, J = 1.0 Hz, 1H), 6.12 (s, 1H), 6.03
(s, 1H), 6.00 (s, 1H), 5.67 (dd, J = 17.4, 10.8 Hz, 1H), 4.84–4.73 (m, 2H), 2.95 (dd, J = 13.1, 3.3 Hz, 1H),
2.67–2.57 (m, 1H), 1.73–1.21 (m, 6H), 0.97 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 194.36, 194.21,
154.35, 151.71, 148.65, 135.04, 133.11, 110.78, 41.35, 39.17, 36.77, 31.73, 29.70, 26.46, 18.45. HRMS (ESI)
calcd for C15H20O2 [M +H]+: 232.1463, found 232.1469.

To a solution of 12 (100 mg, 0.42 mmol) in CH2Cl2 (3 ml) at 0°C was added dropwise 65% aqueous
tert-butyl hydroperoxide (0.047 ml, 0.336 mmol). SeO2 (19 mg, 0.168 mmol) was added into the above
mixture. The mixture was stirred at 0°C for 6 h. The reaction was quenched at 0°C with saturated
aqueous NaHSO3 solution (3 ml). The organic layer was separated, the aqueous layer was extracted
with CH2Cl2 (2 × 3 ml). The combined organic extracts were washed with brine (3 ml), dried over
anhydrous Na2SO4 and concentrated under reduced pressure. The residue was purified via silica gel
column chromatography (petroleum ether/ethyl acetate) to afford compound 13 (60 mg, yield 56%).
1H NMR (500 MHz, CDCl3) δ 5.77 (dd, J = 17.7, 10.5 Hz, 1H), 5.21–5.14 (m, 2H), 5.04 (d, J = 1.1 Hz,
1H), 4.97–4.90 (m, 2H), 4.84 (s, 1H), 4.09 (d, J = 0.9 Hz, 2H), 4.09–3.94 (m, 2H), 2.28–2.17 (m, 1H), 2.07
(dd, J = 12.3, 3.9 Hz, 1H), 1.77–1.69 (m, 1H), 1.69–1.57 (m, 1H), 1.57–1.44 (m, 4H), 1.01 (s, 3H). 13C
NMR (126 MHz, CDCl3) δ 151.20, 149.59, 149.35, 113.27, 111.22, 110.94, 67.48, 47.90, 47.69, 41.07, 39.65,
39.60, 33.64, 27.00, 16.01. HRMS (ESI) calcd for C15H23ClO [M +H]+: 254.1437, found 254.1439.
4. Biological assay
4.1. Materials
Cell Titer-Glo luminescent cell viability assay kits (cat. no. G7573, lot. no. 0000365004) were obtained
from Promega; MEM (cat. no. 11095-080; lot. no. 2053121), 0.25% Trypsine-EDTA (cat. no. 25200-072,
lot. no. 2042303) and F-12 K (cat. no. 21127-022; lot. no. 2085296) were obtained from Invitrogen; FBS
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(Biological Industries, cat. no. 04-002-1A, lot. no. 1841929); Penicillin-Streptomycin solution cat. no.

SV30010, lot. no. J180029) was obtained from Hyclone; Glutamax (cat. no. 35050-061; lot no. 2085268)
was obtained from Gibco; DMSO (cat. no. 276855-1 L, lot. no. STBD7938 V) was obtained from Sigma;
96-well plate, white wall with clear bottom, tissue culture-treated (cat. no. CLS3903; lot. no. 25116010)
was obtained from Corning.

4.2. Methods
The suspension of specific tumour cells was adjusted to 5 × 104 ml−1 or 2 × 104 ml−1 with DMEM+ 2 mm
glutamine + 10% FBS medium. Add 100 µl cell suspension to 96-well cell culture plate, and the final cell
concentration is 5000 cells well−1 (72 h). DMSO was used to dissolve the compound to be tested as
100 mM storage solution. The final concentration of 200× compound was prepared with storage
solution and DMSO, and the gradient dilutions of 3× series were prepared, and then diluted 20 times
with culture medium respectively. Finally, 10 µl corresponding 10-fold solution was added to each cell
hole, and each drug concentration was in duplicate holes. The final concentrations of each compound
were 300 µM, 100 µM, 33.33 µM, 11.11 µM, 3.704 µM, 1.235 µM and 0.412 µM, and the final
concentration of DMSO per pore was 0.5%. Incubate in a 37°C, 5% CO2 incubator for 72 h. After 72 h
of drug treatment, add 100 µl celltiter glo detection reagent into each hole according to the CTG
operation instructions, melt and balance the CTG solution to room temperature in advance, mix it
with microporous plate shaker for 2 min, place it at room temperature for 10 min, and the
luminescence is recorded with a luminometer. The cell survival rate was calculated by the formula:
(Vsample – Vblank)/(Vvehicle control – Vblank) × 100%. Vsample is the reading of the drug treatment group,
Vvehicle control is the average of the solvent control group, and Vblank is the average of the blank control
hole. By using graphpad prism 5.0 software, a nonlinear regression model was used to draw the S-
type dose survival curve and calculate the IC50 value.
5. Conclusion
SeO2-mediated allylic oxidation reaction was first applied to β-elemene, a substrate bearing three carbon-
carbon double bonds and several allylic hydrogen atoms, and was discovered to produce seven
derivatives of β-elemene in a single step. Several additional analogues of β-elemene were further
synthesized and found to display better inhibitory activities against A549 and U-87 cell proliferation.
All compounds in this article can serve as key intermediates for further derivatization of β-elemene.
Our approaches represent the first success to introduce functional groups onto the cyclohexyl ring, a
challenging task unexplored before.

Data accessibility. Supporting information includes 1H NMR, 13C NMR, 1H-1H COSY, HMBC, HSQC, NOESY spectra of
compounds 3, 8 and 9. Our data are deposited at the Dryad Digital Repository: https://doi.org/10.5061/dryad.
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