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Fluid inclusions in hydrothermal quartz in the 2.4 Ga Ongeluk

Formation, South Africa, are expected to partially retain a

component of the ancient seawater. To constrain the origin of

the fluid and the quartz precipitation age, we conducted

Ar–Ar dating for the quartz via a stepwise crushing method.

The obtained argon isotopes show two or three endmembers

with one or two binary mixing lines as the crushing

proceeds, suggesting that the isotopic compositions of these

endmembers correspond to fluid inclusions of each

generation, earlier generated smaller 40Ar- and K-rich
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inclusions, moderate 40Ar- and 38ArCl (neutron-induced 38Ar from Cl)-rich inclusions and later

generated larger atmospheric-rich inclusions. The K-rich inclusions show significantly different
40Ar/38ArCl values compared to the 38ArCl-rich inclusions, indicating that it is difficult to constrain

the quartz formation age using only fluid inclusions containing excess 40Ar. The highest obtained
40Ar/36Ar value from the fluid inclusions is consistent with an expected value of the Ongeluk

plume source, suggesting that the quartz precipitation was driven by Ongeluk volcanism.

Considering the fluid inclusion generations and their compositions, the hydrothermal system was

composed of crustal fluid and magmatic fluid without seawater before the beginning of a small

amount of seawater input to the hydrothermal system.
g
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1. Introduction
It is believed that the evolution of life has been frequently influenced by changes in the surface

environment throughout Earth’s history (e.g. [1–3]). As revealed by fossil records, several destructive

environmental changes have induced mass extinctions and triggered increases in the diversity of life

[4,5]. In particular, global glaciation (Snowball Earth), which has occurred a few times in Earth’s

history [6,7] could probably apply intense selective pressure on life to evolve [8]. In addition to

extreme cooling, the seawater compositions were probably drastically changed by the formation of

voluminous ice sheets on land and the isolation between the atmosphere and the oceans, which

would also behave as a selective pressure. Therefore, to consider the factors contributing to the

evolution of life before and after Snowball Earth events, the compositional changes of seawater need

to be estimated from geological records.

One of the best methods to estimate the compositions of ancient seawater is the study of fluid

inclusions in hydrothermal quartz precipitated in drainage cavities and interstitial spaces between

seafloor pillow lavas because such hydrothermal quartz is presumably formed via mixing between the

subseafloor hydrothermal fluid and seawater [9–17]. However, the timing of this event, i.e. whether

the hydrothermal quartz precipitated at the time of seafloor hydrothermal circulation or during later

thermal events, has frequently been debated (e.g. [18]). Furthermore, the origin of the trapped fluid as

a fluid inclusion needs to be constrained to estimate the palaeo-seawater composition because the

trapped fluid potentially has various origins: not only seawater and magmatic fluid, but also meteoric

water and crustal fluid.

Previously, to provide constraints on the formation ages of quartz-bearing hydrothermal ore deposits,

Ar–Ar dating for fluid inclusions and trapped minerals within quartz has been conducted via crushing

and heating methods (e.g. [19–23]). In general, 40Ar has many reservoirs, such as the atmosphere and

metamorphic fluid. 40Ar, except atmospheric 40Ar (40ArA) and radiogenic 40Ar (40ArR), is referred as

excess 40Ar (40ArE). The ubiquitous 40ArE in natural samples often causes considerable difficulties in

Ar–Ar dating. To overcome this problem, several studies have provided useful methods for data

analysis, e.g. isochron diagrams for stepwise crushing analyses of fluid inclusions (e.g. [21,23]), and

three-dimensional (3D) multi-component correlation diagrams for the stepwise crushing of fluid

inclusions and the heating of impurity minerals (e.g. [19,20,22]). The calculations of these methods

simultaneously provide the ratio between the sum of 40ArA and 40ArE (40ArAþE) and the atmospheric
36Ar (36ArA). The 40ArAþE/36ArA value can be used to constrain the fluid origins because their

sources have unique values, e.g. continental crust (70 000; [24–26]), mid-ocean ridge basalt (28 000;

[27]; 40 000; [28]) and oceanic island basalt (approximately 8000; [29]). Recently, attempts have been

made to estimate Archaean atmospheric 40Ar/36Ar value and formation age by Ar–Ar dating using

fluid inclusions trapped in hydrothermal quartz extracted by the crushing and heating methods

[30,31]. These estimations are based on an assumption of constant 40ArE/38ArCl value in all fluid

inclusion. However, it is unclear whether all fluid inclusions contain a similar 40ArE/38ArCl value in

the single sample.

In this study, we focused on the 2.4 Ga Ongeluk Formation, Transvaal Supergroup, South Africa. This

formation is composed of submarine lava flows that are thought to have erupted during the

Palaeoproterozoic Snowball Earth Event, as suggested by palaeomagnetic studies and geological field

observations [7,32–34]. The lavas preserve the ancient seafloor hydrothermal alteration [33,35,36] and

the hydrothermally precipitated quartz in the Ongeluk Formation is strongly suggested to have

formed at the time of seafloor hydrothermal circulation [12,13,35]. Furthermore, the chemical

compositions of the fluid inclusions in the quartz samples indicate that the fluid inclusions partially
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contain the seawater component at the time of seafloor hydrothermal circulation [12,13,35]. However, it is

important to assess the likelihood that the seawater component is truly derived from the 2.4 Ga Ongeluk

seawater based on the formation age of the hydrothermal quartz and to constrain the sources of the other

fluid components. Therefore, we carried out Ar–Ar dating with stepwise crushing techniques to

determine the formation age and to constrain the source(s) of the inclusion fluid in the quartz samples

collected from the Ongeluk Formation.
 ypublishing.org
R.Soc.open

sci.5:180260
2. Geological setting
The 2.4 Ga Ongeluk Formation belongs to the Postmasburg Group, Transvaal Supergroup in the

Griqualand West Basin, Kaapvaal Craton, South Africa. The Kaapvaal Craton extends over an area of

approximately 1.2 million square kilometres, chronologically spanning from 3.6 to 1.9 Ga. The lower

part is composed of granite–greenstone belts that were unconformably covered by the Dominion

Group, Witwatersrand Supergroup, Ventersdorp Supergroup, Transvaal Supergroup and Olifantshoek

Supergroup in ascending stratigraphic order. The Transvaal Supergroup is a platform succession that

covered the Kaapvaal Craton from the Late Archaean to the Palaeoproterozoic [37] (figure 1). The

Transvaal Supergroup was deposited in three different basins: the Griqualand West Basin, Transvaal

Basin and Kanye Basin. The Griqualand West Basin located in the Northern Cape Province is usually

subdivided into the Ghaap Group and the overlying Postmasburg Group (figures 1 and 2). The

Ghaap Group primarily consists of clastic rocks, carbonates, chert and banded iron formations,

chronologically spanning from 2642+ 3 to 2465+ 5 Ma [43–47]. The Postmasburg Group consists of

the Makganyene Formation, Ongeluk Formation, Hotazel Formation and Mooidraai Formation in

ascending stratigraphic order [47]. The Makganyene Formation consists of a glacial diamictite and

underlies the basaltic andesite lavas of the Ongeluk Formation (figure 3a). The clastic rocks in the

Makganyene Formation do not contain detrital zircons younger than 2.4 Ga [42]. The age of the

dolerites and basalts in the Ongeluk Formation was estimated to be 2425.5+2.6 Ma from U–Pb

dating of baddeleyite within the formation [41]. The Hotazel Formation conformably covers the

Ongeluk Formation and consists of banded iron and manganese formations. The Mooidraai Formation

contains dolostone, shale, quartzite and lava. The dolostone of the Mooidraai Formation gives a

secondary-lead Pb–Pb age of 2394+26 Ma [40]. The Mapedi Formation unconformably overlies the

Mooidraai Formation, which is composed of basal conglomerate, lavas and shales covered by arenites

of the Lucknow Formation.

The Ongeluk Formation is a thick succession (up to 900 m) of pillowed/sheeted basaltic andesite and

hyaloclastite (figure 3a), which erupted in a shallow marine environment along the submerged western

margin of the Kaapvaal Craton [33,48]. The Ongeluk lava apparently conformably overlies the

Makganyene Formation (diamictite) with no palaeo-weathering [32,49]. The palaeomagnetic data for

the Ongeluk lavas show a depositional palaeolatitude of 11+68, indicating that the Makganyene was

deposited in tropical latitudes [32,41]. The presence of dropstones of likely glacial origin at the base of

the Hotazel Formation overlying the Ongeluk lavas indicates that the glaciation even lasted to after

the Ongeluk volcanism [7,34,50] (figure 1).

The Ongeluk lavas have been hydrothermally altered and metamorphosed; the occurrence of

pumpellyite in the Ongeluk lavas indicates that the prehnite-pumpellyite facies are probably the peak

metamorphic condition [12,51,52]. Geochemical studies of the Ongeluk volcanic rocks have revealed

the preservation of subseafloor hydrothermal alterations [33,35,36]. The hydrothermal alteration of the

basaltic andesites preserves two types of alteration: high-temperature alteration causing K-depletion in

the cores of the pillowed lavas and low-temperature alteration leading to K enrichment in the

hyaloclastites and rims of the pillows [33].
3. Petrographic descriptions
The hydrothermal quartz samples analysed in this study were collected from the outcrops of the Ongeluk

pillowed/sheeted lavas exposed along a road cut in the Bosch Aar farm (figure 2). As previously

described in detail [12,13,35], the Ongeluk pillow lavas have original open spaces such as drainage

and interpillow cavities, whose sizes range from approximately 10 to 50 cm long. They are filled with

quartz and/or jasper precipitates [12,13,35] (figure 3a,b). The cavities are isolated from one another

and never cut the pillow rims. The quartz precipitates consist primarily of milky quartz hosting

multiple fluid inclusions, and the coarse-grained quartz crystals have needle-shaped pyrite with
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oxidized surfaces in some cases (the black part in figure 3c–e). Some quartz crystals show point

symmetrical structures growing from the surface to the centre of the cavity and forming banded

growths formed by changes in the grain size or the intercalation of fine-grained clay material [13]

(figure 3c–h). The clay minerals probably originate from the chilled margins of the pillow lavas and

the surface of drainage cavities, which are presumably rich in K as revealed by a previous study [33].

Indeed, fine-grained (less than 10 mm wide and a few mm thick) muscovite (sericite) has been

identified in a 20 mm-sized fluid inclusion or in the quartz crystals via electron microprobe analysis

and Raman spectroscopy (figure 4). These geological and mineralogical occurrences of quartz

precipitates indicate their formation during low-temperature seafloor hydrothermal circulation [11,35].

Moreover, the compositional variation of the fluid inclusions in the quartz samples indicates that the

seawater component is partially preserved in the fluid inclusions [12,13].

The hydrothermal quartz used in this study contains various sizes of fluid inclusions (from less than

1 to 40 mm, on average less than 10 mm). The fluid inclusions generally consist of liquid and vapour

phases without a liquid CO2 phase at room temperature, and their liquid to vapour ratios range from

5 to 12. No observations have indicated the presence of halite as a daughter mineral at room

temperature [12,13,35]. These fluid inclusions have been categorized into primary and secondary

inclusions based on detailed petrographic and microthermometric observations; the homogenization

temperatures vary from 66.6 to 122.98C for the primary fluid inclusion and from 86.1 to 160.08C for

the secondary inclusions, while the salinities vary from approximately 2500 to 4600 mmol kg21 for the

primary inclusions and from 1130 to 2100 mmol kg21 for the secondary inclusions [13]. Similar trends

have been observed in the previous study [12].

The three analysed samples (GU84, GU91 and GU103) were carefully selected for Ar–Ar dating from

a few tens of quartz samples (figure 3c–e) according to the abundance of the primary fluid inclusions and
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the relative paucity of the secondary fluid inclusions. The crushed parts of the samples for Ar–Ar dating

are composed primarily of fine-grained quartz crystals that precipitated in the earlier stage of the quartz

mineralization without apparent discontinuity of crystal growth and contain smaller amounts of

secondary inclusions (figure 3c–e).
4. Analytical method
The quartz samples close to basalt parts were sliced; these samples were the earliest generation and are

secondary inclusion-poor based on wide-range sample observations (figure 3c–e). The sliced quartz

samples were crushed to a grain size of less than 1 mm using a tungsten mill. The sieved grain

fractions of a 30–60 mesh (0.50–0.25 mm) were ultrasonically cleaned using ultra-pure water and 2 N

HNO3. The quartz grains without oxidized brown parts and basaltic clay, which are a possible source

of K and often disturb Ar–Ar dating, were selected. The picked quartz grains were cleaned again in

the same manner and dried on a cleaned bench. A total of 1.00 g of quartz grains for each sample

was prepared for Ar–Ar dating. In addition, because GU103 contains both clear transparent quartz

grains and smoky grains, this sample was separated into two subsamples: GU103-1 and GU103-2.

Our 40Ar/39Ar experiments were measured using a GV Instruments 5400w mass spectrometer at the

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. The mass spectrometer is equipped

with a Faraday and an electron multiplier in ion counting mode. To monitor the irradiating condition and

to evaluate irradiation parameter (the J value), the quartz samples (approx. 150 mg each) and flux

monitor ZBH25 biotite in China with an age of approximately 132.7 Ma, were irradiated at the 49-2

reactor in Beijing for 48 h. The irradiated samples and a crushing pestle (218 g) were put in a crusher

composed of a type 316L stainless steel tube with a hole that was 170 mm long and 28 mm in

diameter, after cleaning the crusher thoroughly.

To decrease background signals, the vacuum lines for extraction and purification were baked for

approximately 10 h at 1508C using a heating tape while the crusher was also baked for 10 h at 1508C
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with a furnace. The system blanks were measured on the electron multiplier at the start and end of each

sample experiment and between every four steps. The blank signal levels were 0.003–0.009 mV for 36Ar,

0.0001–0.0005 mV for 37Ar, 0.0011–0.0022 mV for 38Ar, 0.0009–0.0020 mV for 39Ar and 1.5–3.2 mV for
40Ar. The Faraday sensitivity of this 5400Ar mass spectrometer is 1.19 � 10215 mol mV21. The sample/

blank ratios that relate to the precision of the experiments and the detection limit ranged from 20 to 292

for 39Ar.

The pestle was repeatedly lifted and dropped to crush the samples via an external electric magnet that

was controlled by an adjustable repeating-timer relay. The free-fall drop of the pestle was conducted from

approximately 4 cm above the sample, and the number of pestle drops was counted automatically. The

frequency of the single crushing adjusts at 2.5 Hz. The pestle drop frequency and the current level of

the electromagnet were kept constant to generate a stable impact energy for a single drop. The

number of the drops for each step was increased to obtain enough argon signals to measure because

the mass of the gas extracted from a sample by a single drop decreases due to the decrease in the

sample grain size as the experiment proceeds. The released gas was purified using two SAES NP10

Zr/Al getters at room temperature and at approximately 4008C, respectively. The purified gas was

introduced to and analysed by mass spectrometer working with the Faraday for 40Ar of samples and

the secondary electron multiplier (Balzers SEV217) for the others. The results were calculated via the

software ArArCALC software (version 2.4) [53].
260
5. Results and discussion
5.1. Release patterns of the argon isotopes
The release patterns of the argon isotopes provide information concerning the argon reservoirs in the

quartz samples. For each sample, the 39ArK release pattern was clearly different from those of the

other argon isotopes during the crushing extraction (table 1; figure 5). Taking GU84 as an example

(figure 5a), the relative content of released 36ArA for the total amount of 36ArA extracted by

approximately 12 000 crushing strokes was higher in the earliest steps (e.g. less than 100 strokes) than

in the later steps while the relative contents of the released 38ArCl and 40ArAþRþE broadly changed

synchronously with that of 36ArA. These results indicate that most of the 36ArA, 38ArCl and 40ArAþRþE

were released in the early steps of the crushing experiment. Conversely, the relative content of 39Ar

was generally low in the early steps, increased and reached the maximum value in the middle steps

and then decreased thereafter. This release pattern of the four argon isotopes was also observed for

other samples.

The releasing patterns of Ca/K calculated by argon isotopes show that high Ca/K value was

extracted in the early steps and that various Ca/K value among samples was extracted in the later

steps (figure 6). GU84 shows K enrichment in the later steps, whereas the others show K enrichment

in the middle steps and Ca enrichment in the later steps. In the Ca/K value, apparent characteristics

that were observed for all samples were absent except Ca enrichment in early steps.

The K-rich components extracted by crushing probably results from the smaller K-rich fluid inclusions.

However, the specific release pattern of 39ArK makes it possible to consider the contribution from K-

bearing impurity minerals in the hydrothermal quartz. Indeed, the presence of muscovite inclusions

was identified in the quartz crystals, as described above, which is consistent with the geochemical

study of the Ongeluk lavas that revealed that the pillow rims and hyaloclastite are enriched in K as a

result of the seafloor hydrothermal alteration [33]. Furthermore, argon gas derived from the irradiated

K-bearing minerals, such as mica, muscovite and scapolite, can also generally be extracted via

the crushing technique [54,55]. However, the high Ca/K compositions in the later steps of GU91,

GU103-1 and GU103-2 are inconsistent with the contribution of K-rich minerals (figure 6).

In the early steps, the amount of 39ArK gas derived from smaller K-rich inclusions is small or

negligible because of a large amount of argon gas mainly extracted from larger fluid inclusions

containing most of 36ArA, 38ArCl and 40ArAþRþE. Especially during the crushing extraction of GU84

and GU103-1, the most dominant argon isotope changed from 36ArA to 38ArCl in the early steps,

indicating that the isotope ratio of the released argon changed as the number of steps increased.

Therefore, the samples GU84 and GU103-1 should contain at least two types of fluid inclusions with

different argon isotope ratios in the early steps (see details below). In the middle to later steps, the

contributions of 39ArK from K-rich smaller fluid inclusions become significant due to the decreasing

amount of argon released from the larger fluid inclusions as the crushing proceeded (table 1;



Ta
bl

e
1.

Re
su

lt
of

Ar
–

Ar
da

tin
g

an
aly

sis
.

ste
p

pe
stl

e

dr
op

nu
m

be
rs

to
ta

l

pe
stl

e

dr
op

nu
m

be
rs

36
Ar

A
+

1s
38

Ar
Cl
+

1s
39

Ar
K
+

1s
40

Ar
Aþ

Rþ
E
+

1s

39
Ar

K/
36

Ar
A
+

1s

40
Ar

Aþ
Rþ

E

/36
Ar

A
+

1s

38
Ar

Cl

/36
Ar

A
+

1s
Ca

/K
+

1s

GU
84

1
8

8
0.

00
57

91
+

0.
00

00
48

0.
00

22
59
+

0.
00

00
16

0.
00

00
93
+

0.
00

00
03

6.
72

72
95
+

0.
00

02
46

0.
01

6+
0.

00
1

11
61

.7
+

9.
6

0.
39
+

0.
00

6.
11
+

0.
91

2
18

26
0.

00
69

77
+

0.
00

00
58

0.
00

35
39
+

0.
00

00
23

0.
00

01
55
+

0.
00

00
03

8.
27

39
14
+

0.
00

04
37

0.
02

2+
0.

00
0

11
85

.9
+

9.
8

0.
51
+

0.
01

4.
74
+

0.
63

3
18

44
0.

00
25

11
+

0.
00

00
21

0.
00

21
56
+

0.
00

00
11

0.
00

01
16
+

0.
00

00
02

4.
26

57
96
+

0.
00

02
35

0.
04

6+
0.

00
1

16
99

.1
+

14
.2

0.
86
+

0.
01

3.
51
+

0.
89

4
24

68
0.

00
18

89
+

0.
00

00
17

0.
00

19
00
+

0.
00

00
10

0.
00

00
96
+

0.
00

00
03

3.
53

26
14
+

0.
00

02
07

0.
05

1+
0.

00
1

18
70

.1
+

16
.5

1.
01
+

0.
01

3.
25
+

0.
77

5
28

96
0.

00
16

12
+

0.
00

00
13

0.
00

18
10
+

0.
00

00
10

0.
00

00
85
+

0.
00

00
01

3.
24

77
78
+

0.
00

01
11

0.
05

3+
0.

00
1

20
15

.0
+

16
.8

1.
12
+

0.
01

3.
95
+

0.
78

6
38

13
4

0.
00

12
71
+

0.
00

00
11

0.
00

17
01
+

0.
00

00
08

0.
00

00
77
+

0.
00

00
01

3.
33

88
97
+

0.
00

02
71

0.
06

0+
0.

00
1

26
27

.7
+

22
.1

1.
34
+

0.
01

2.
86
+

0.
86

7
10

0
23

4
0.

00
03

32
+

0.
00

00
03

0.
00

08
83
+

0.
00

00
04

0.
00

00
65
+

0.
00

00
01

1.
37

81
20
+

0.
00

02
13

0.
19

7+
0.

00
4

41
52

.7
+

36
.7

2.
66
+

0.
03

3.
06
+

1.
10

8
30

0
53

4
0.

00
11

91
+

0.
00

00
10

0.
00

30
08
+

0.
00

00
14

0.
00

02
66
+

0.
00

00
02

4.
50

36
75
+

0.
00

05
46

0.
22

3+
0.

00
2

37
80

.3
+

31
.6

2.
52
+

0.
02

2.
91
+

0.
43

9
50

0
10

34
0.

00
09

29
+

0.
00

00
08

0.
00

23
35
+

0.
00

00
12

0.
00

05
00
+

0.
00

00
02

3.
61

74
11
+

0.
00

18
42

0.
53

8+
0.

00
5

38
94

.6
+

33
.7

2.
51
+

0.
03

1.
56
+

0.
18

10
70

0
17

34
0.

00
07

80
+

0.
00

00
07

0.
00

19
54
+

0.
00

00
09

0.
00

06
82
+

0.
00

00
03

3.
01

80
96
+

0.
00

05
07

0.
87

3+
0.

00
9

38
67

.0
+

33
.1

2.
50
+

0.
02

1.
03
+

0.
14

11
85

0
25

84
0.

00
04

96
+

0.
00

00
04

0.
00

12
12
+

0.
00

00
07

0.
00

07
11
+

0.
00

00
03

2.
02

60
10
+

0.
00

03
34

1.
43

4+
0.

01
4

40
84

.9
+

36
.8

2.
44
+

0.
03

0.
87
+

0.
13

12
10

00
35

84
0.

00
03

34
+

0.
00

00
03

0.
00

07
91
+

0.
00

00
04

0.
00

06
76
+

0.
00

00
03

1.
32

34
81
+

0.
00

02
77

2.
02

7+
0.

02
1

39
67

.0
+

36
.3

2.
37
+

0.
02

0.
76
+

0.
15

13
10

00
45

84
0.

00
02

20
+

0.
00

00
02

0.
00

04
88
+

0.
00

00
03

0.
00

05
33
+

0.
00

00
02

0.
88

47
01
+

0.
00

02
63

2.
42

8+
0.

02
6

40
29

.1
+

40
.0

2.
22
+

0.
03

0.
62
+

0.
15

14
10

00
55

84
0.

00
01

50
+

0.
00

00
01

0.
00

03
09
+

0.
00

00
02

0.
00

04
20
+

0.
00

00
02

0.
58

18
05
+

0.
00

01
68

2.
79

0+
0.

03
0

38
68

.7
+

36
.1

2.
05
+

0.
02

0.
54
+

0.
15

15
10

00
65

84
0.

00
01

18
+

0.
00

00
01

0.
00

02
30
+

0.
00

00
02

0.
00

03
19
+

0.
00

00
02

0.
46

12
47
+

0.
00

01
01

2.
70

0+
0.

03
3

39
00

.8
+

42
.5

1.
95
+

0.
03

0.
63
+

0.
19

16
10

00
75

84
0.

00
00

99
+

0.
00

00
01

0.
00

01
96
+

0.
00

00
02

0.
00

02
56
+

0.
00

00
02

0.
37

69
79
+

0.
00

00
67

2.
58

1+
0.

03
3

38
04

.1
+

43
.3

1.
98
+

0.
03

0.
35
+

0.
30

17
10

00
85

84
0.

00
00

77
+

0.
00

00
01

0.
00

01
58
+

0.
00

00
01

0.
00

02
29
+

0.
00

00
03

0.
30

50
95
+

0.
00

00
83

2.
95

8+
0.

04
2

39
49

.8
+

34
.2

2.
05
+

0.
02

0.
20
+

0.
44

18
10

00
95

84
0.

00
00

64
+

0.
00

00
01

0.
00

01
25
+

0.
00

00
01

0.
00

01
90
+

0.
00

00
01

0.
24

83
47
+

0.
00

00
34

2.
95

7+
0.

03
9

38
61

.4
+

43
.3

1.
95
+

0.
03

0.
27
+

0.
38

19
10

00
10

58
4

0.
00

00
52
+

0.
00

00
01

0.
00

01
03
+

0.
00

00
01

0.
00

01
80
+

0.
00

00
01

0.
21

92
29
+

0.
00

00
36

3.
49

5+
0.

04
9

42
53

.0
+

52
.7

2.
00
+

0.
03

0.
01
+

0.
36

20
10

00
11

58
4

0.
00

00
52
+

0.
00

00
01

0.
00

00
92
+

0.
00

00
01

0.
00

01
62
+

0.
00

00
01

0.
20

74
76
+

0.
00

00
34

3.
11

2+
0.

04
3

39
89

.5
+

52
.6

1.
78
+

0.
03

0.
01
+

0.
35

Th
e

ar
go

n
iso

to
pe

s
ar

e
lis

te
d

in
vo

lt,
Jv

alu
e:

0.
00

83
54

2+
0.

00
00

41
8,

sa
m

pl
e

we
ig

ht
:1

51
.6

m
g

(C
on

tin
ue

d.
)

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:180260
9



Ta
bl

e
1.

(C
on

tin
ue

d.
)

ste
p

pe
stl

e

dr
op

nu
m

be
rs

to
ta

l

pe
stl

e

dr
op

nu
m

be
rs

36
Ar

A
+

1s
38

Ar
Cl
+

1s
39

Ar
K
+

1s
40

Ar
Aþ

Rþ
E
+

1s

39
Ar

K/
36

Ar
A
+

1s

40
Ar

Aþ
Rþ

E

/36
Ar

A
+

1s

38
Ar

Cl

/36
Ar

A
+

1s
Ca

/K
+

1s

GU
91

1
24

24
0.

00
00

45
+

0.
00

00
01

0.
00

01
63
+

0.
00

00
01

0.
00

00
24
+

0.
00

00
00

0.
17

12
75
+

0.
00

00
43

0.
53

6+
0.

01
3

38
06

.3
+

54
.0

3.
63
+

0.
06

1.
99
+

2.
53

2
10

0
12

4
0.

00
01

90
+

0.
00

00
02

0.
00

06
98
+

0.
00

00
03

0.
00

00
90
+

0.
00

00
01

0.
60

00
37
+

0.
00

00
65

0.
47

2+
0.

00
6

31
54

.8
+

28
.4

3.
67
+

0.
04

2.
41
+

0.
66

3
15

0
27

4
0.

00
02

84
+

0.
00

00
02

0.
00

09
51
+

0.
00

00
05

0.
00

01
39
+

0.
00

00
01

1.
05

43
35
+

0.
00

01
31

0.
49

1+
0.

00
6

37
16

.5
+

30
.9

3.
35
+

0.
03

1.
05
+

0.
51

4
20

0
47

4
0.

00
02

49
+

0.
00

00
02

0.
00

09
30
+

0.
00

00
04

0.
00

01
81
+

0.
00

00
01

0.
89

49
27
+

0.
00

01
22

0.
72

8+
0.

00
8

35
91

.7
+

32
.6

3.
73
+

0.
04

0.
08
+

0.
36

5
25

0
72

4
0.

00
02

17
+

0.
00

00
02

0.
00

07
91
+

0.
00

00
04

0.
00

02
20
+

0.
00

00
01

0.
79

88
87
+

0.
00

00
52

1.
01

6+
0.

01
1

36
81

.9
+

33
.2

3.
65
+

0.
04

0.
15
+

0.
28

6
30

0
10

24
0.

00
02

16
+

0.
00

00
02

0.
00

07
51
+

0.
00

00
04

0.
00

02
62
+

0.
00

00
01

0.
74

48
99
+

0.
00

00
61

1.
21

2+
0.

01
2

34
47

.0
+

31
.8

3.
47
+

0.
04

0.
17
+

0.
26

7
35

0
13

74
0.

00
01

91
+

0.
00

00
02

0.
00

07
00
+

0.
00

00
03

0.
00

02
96
+

0.
00

00
01

0.
73

37
18
+

0.
00

00
65

1.
54

9+
0.

01
6

38
34

.4
+

34
.8

3.
66
+

0.
04

0.
16
+

0.
24

8
40

0
17

74
0.

00
01

65
+

0.
00

00
02

0.
00

05
97
+

0.
00

00
03

0.
00

03
29
+

0.
00

00
02

0.
63

25
88
+

0.
00

00
83

1.
99

5+
0.

02
3

38
37

.8
+

40
.3

3.
62
+

0.
04

0.
35
+

0.
18

9
45

0
22

24
0.

00
01

18
+

0.
00

00
01

0.
00

04
06
+

0.
00

00
02

0.
00

03
30
+

0.
00

00
02

0.
47

78
97
+

0.
00

00
49

2.
80

0+
0.

03
0

40
56

.1
+

38
.6

3.
44
+

0.
04

0.
05
+

0.
18

10
50

0
27

24
0.

00
00

97
+

0.
00

00
01

0.
00

02
89
+

0.
00

00
01

0.
00

03
41
+

0.
00

00
01

0.
38

45
12
+

0.
00

01
15

3.
52

8+
0.

03
8

39
77

.4
+

41
.2

2.
99
+

0.
03

0.
66
+

0.
19

11
60

0
33

24
0.

00
01

02
+

0.
00

00
01

0.
00

02
85
+

0.
00

00
02

0.
00

03
66
+

0.
00

00
02

0.
38

59
41
+

0.
00

01
33

3.
58

6+
0.

03
8

37
80

.0
+

37
.2

2.
79
+

0.
03

0.
28
+

0.
23

12
70

0
40

24
0.

00
01

08
+

0.
00

00
01

0.
00

03
20
+

0.
00

00
02

0.
00

03
84
+

0.
00

00
02

0.
42

58
40
+

0.
00

01
37

3.
54

6+
0.

03
5

39
31

.3
+

33
.8

2.
96
+

0.
03

0.
77
+

0.
22

13
80

0
48

24
0.

00
01

02
+

0.
00

00
01

0.
00

03
04
+

0.
00

00
02

0.
00

03
84
+

0.
00

00
01

0.
38

38
69
+

0.
00

01
51

3.
76

7+
0.

03
7

37
62

.8
+

34
.0

2.
98
+

0.
03

0.
69
+

0.
28

14
10

33
58

57
0.

00
01

05
+

0.
00

00
01

0.
00

03
06
+

0.
00

00
02

0.
00

04
18
+

0.
00

00
02

0.
42

08
99
+

0.
00

01
57

3.
97

4+
0.

04
7

39
98

.8
+

44
.5

2.
91
+

0.
04

0.
97
+

0.
26

15
11

00
69

57
0.

00
00

89
+

0.
00

00
01

0.
00

02
51
+

0.
00

00
02

0.
00

03
82
+

0.
00

00
02

0.
35

81
64
+

0.
00

01
26

4.
31

3+
0.

04
8

40
39

.1
+

37
.9

2.
83
+

0.
03

0.
70
+

0.
24

16
12

00
81

57
0.

00
00

80
+

0.
00

00
01

0.
00

02
07
+

0.
00

00
01

0.
00

03
59
+

0.
00

00
02

0.
29

90
37
+

0.
00

00
94

4.
48

2+
0.

05
2

37
34

.0
+

40
.2

2.
58
+

0.
03

0.
65
+

0.
25

17
13

00
94

57
0.

00
00

68
+

0.
00

00
01

0.
00

01
70
+

0.
00

00
01

0.
00

03
36
+

0.
00

00
02

0.
25

75
09
+

0.
00

01
14

4.
94

4+
0.

05
5

37
89

.7
+

37
.7

2.
50
+

0.
03

0.
86
+

0.
25

18
14

00
10

85
7

0.
00

00
58
+

0.
00

00
01

0.
00

01
39
+

0.
00

00
01

0.
00

03
23
+

0.
00

00
02

0.
21

65
85
+

0.
00

01
00

5.
57

4+
0.

09
4

37
38

.6
+

57
.3

2.
39
+

0.
04

1.
37
+

0.
27

19
15

00
12

35
7

0.
00

00
50
+

0.
00

00
01

0.
00

01
12
+

0.
00

00
01

0.
00

03
18
+

0.
00

00
02

0.
19

16
70
+

0.
00

00
90

6.
34

7+
0.

10
3

38
24

.4
+

56
.6

2.
24
+

0.
04

0.
88
+

0.
31

Th
e

ar
go

n
iso

to
pe

s
ar

e
lis

te
d

in
vo

lt,
Jv

alu
e:

0.
00

90
08

5+
0.

00
00

45
0,

sa
m

pl
e

we
ig

ht
:1

51
.0

m
g

(C
on

tin
ue

d.
)

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:180260
10



Ta
bl

e
1.

(C
on

tin
ue

d.
)

ste
p

pe
stl

e

dr
op

nu
m

be
rs

to
ta

l

pe
stl

e

dr
op

nu
m

be
rs

36
Ar

A
+

1s
38

Ar
Cl
+

1s
39

Ar
K
+

1s
40

Ar
Aþ

Rþ
E
+

1s

39
Ar

K/
36

Ar
A
+

1s

40
Ar

Aþ
Rþ

E

/36
Ar

A
+

1s

38
Ar

Cl

/36
Ar

A
+

1s
Ca

/K
+

1s

GU
10

3-
1

1
30

30
0.

00
01

59
+

0.
00

00
02

0.
00

01
06
+

0.
00

00
01

0.
00

00
17
+

0.
00

00
00

0.
08

84
84
+

0.
00

00
31

0.
10

6+
0.

00
3

55
6.

1+
5.

4
0.

66
+

0.
01

4.
54
+

2.
41

2
10

0
13

0
0.

00
03

28
+

0.
00

00
03

0.
00

03
60
+

0.
00

00
02

0.
00

00
56
+

0.
00

00
01

0.
23

22
79
+

0.
00

00
49

0.
17

2+
0.

00
2

70
9.

2+
6.

8
1.

10
+

0.
01

1.
33
+

0.
79

3
15

0
28

0
0.

00
03

23
+

0.
00

00
03

0.
00

04
56
+

0.
00

00
03

0.
00

00
84
+

0.
00

00
01

0.
26

93
04
+

0.
00

00
29

0.
25

9+
0.

00
3

83
3.

1+
7.

5
1.

41
+

0.
02

0.
54
+

0.
63

4
20

0
48

0
0.

00
02

31
+

0.
00

00
02

0.
00

03
99
+

0.
00

00
02

0.
00

01
01
+

0.
00

00
01

0.
22

91
12
+

0.
00

00
27

0.
43

5+
0.

00
6

99
0.

0+
9.

1
1.

72
+

0.
02

0.
63
+

0.
55

5
30

0
78

0
0.

00
02

44
+

0.
00

00
02

0.
00

05
14
+

0.
00

00
02

0.
00

01
54
+

0.
00

00
01

0.
28

62
90
+

0.
00

00
64

0.
63

0+
0.

00
6

11
72

.1
+

10
.8

2.
10
+

0.
02

0.
24
+

0.
50

6
40

0
11

80
0.

00
02

48
+

0.
00

00
02

0.
00

06
37
+

0.
00

00
03

0.
00

02
05
+

0.
00

00
01

0.
34

73
04
+

0.
00

00
40

0.
82

7+
0.

00
9

14
00

.0
+

12
.7

2.
57
+

0.
03

0.
16
+

0.
43

7
50

0
16

80
0.

00
01

68
+

0.
00

00
02

0.
00

05
16
+

0.
00

00
03

0.
00

02
37
+

0.
00

00
01

0.
29

16
72
+

0.
00

00
39

1.
40

5+
0.

01
6

17
32

.5
+

17
.7

3.
06
+

0.
03

0.
51
+

0.
21

8
60

0
22

80
0.

00
01

25
+

0.
00

00
01

0.
00

03
97
+

0.
00

00
02

0.
00

02
61
+

0.
00

00
01

0.
25

10
37
+

0.
00

00
24

2.
08

5+
0.

02
4

20
03

.6
+

21
.4

3.
17
+

0.
04

0.
67
+

0.
16

9
70

0
29

80
0.

00
00

98
+

0.
00

00
01

0.
00

03
03
+

0.
00

00
02

0.
00

02
49
+

0.
00

00
01

0.
21

35
00
+

0.
00

00
41

2.
53

5+
0.

02
9

21
76

.2
+

22
.8

3.
09
+

0.
04

0.
85
+

0.
22

10
85

0
38

30
0.

00
00

90
+

0.
00

00
01

0.
00

02
40
+

0.
00

00
02

0.
00

02
43
+

0.
00

00
01

0.
19

28
03
+

0.
00

00
47

2.
69

7+
0.

03
0

21
39

.1
+

22
.2

2.
66
+

0.
03

0.
64
+

1.
39

11
11

50
49

80
0.

00
00

82
+

0.
00

00
01

0.
00

01
92
+

0.
00

00
01

0.
00

02
60
+

0.
00

00
02

0.
18

39
53
+

0.
00

00
26

3.
15

0+
0.

04
1

22
30

.3
+

24
.4

2.
33
+

0.
03

1.
06
+

1.
41

12
10

00
59

80
0.

00
00

55
+

0.
00

00
01

0.
00

01
17
+

0.
00

00
01

0.
00

01
78
+

0.
00

00
01

0.
12

08
68
+

0.
00

00
21

3.
24

0+
0.

05
2

22
06

.0
+

32
.2

2.
13
+

0.
03

2.
08
+

1.
86

13
10

00
69

80
0.

00
00

45
+

0.
00

00
01

0.
00

00
95
+

0.
00

00
01

0.
00

01
53
+

0.
00

00
01

0.
10

29
82
+

0.
00

00
24

3.
42

4+
0.

07
0

23
00

.8
+

43
.5

2.
12
+

0.
05

1.
46
+

2.
17

14
11

00
80

80
0.

00
00

39
+

0.
00

00
00

0.
00

00
75
+

0.
00

00
01

0.
00

01
41
+

0.
00

00
01

0.
09

04
52
+

0.
00

00
14

3.
60

3+
0.

04
9

23
03

.2
+

28
.4

1.
91
+

0.
03

0.
53
+

1.
65

15
13

00
93

80
0.

00
00

39
+

0.
00

00
01

0.
00

00
76
+

0.
00

00
01

0.
00

01
53
+

0.
00

00
01

0.
09

54
19
+

0.
00

00
21

3.
91

8+
0.

07
2

24
50

.2
+

44
.3

1.
95
+

0.
04

0.
53
+

1.
65

16
15

00
10

88
0

0.
00

00
39
+

0.
00

00
01

0.
00

00
70
+

0.
00

00
01

0.
00

01
58
+

0.
00

00
01

0.
09

52
12
+

0.
00

00
17

4.
09

7+
0.

07
9

24
61

.2
+

44
.4

1.
81
+

0.
04

0.
70
+

0.
55

Th
e

ar
go

n
iso

to
pe

s
ar

e
lis

te
d

in
vo

lt,
Jv

alu
e:

0.
00

88
23

6+
0.

00
00

44
1,

sa
m

pl
e

we
ig

ht
:1

53
.7

m
g

(C
on

tin
ue

d.
)

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:180260
11



Ta
bl

e
1.

(C
on

tin
ue

d.
)

ste
p

pe
stl

e

dr
op

nu
m

be
rs

to
ta

l

pe
stl

e

dr
op

nu
m

be
rs

36
Ar

A
+

1s
38

Ar
Cl
+

1s
39

Ar
K
+

1s
40

Ar
Aþ

Rþ
E
+

1s

39
Ar

K/
36

Ar
A
+

1s

40
Ar

Aþ
Rþ

E

/36
Ar

A
+

1s

38
Ar

Cl

/36
Ar

A
+

1s
Ca

/K
+

1s

GU
10

3-
2

1
7

7
0.

00
00

07
+

0.
00

00
00

0.
00

00
41
+

0.
00

00
00

0.
00

00
06
+

0.
00

00
01

0.
01

99
17
+

0.
00

00
25

0.
89

6+
0.

09
8

29
48

.7
+

81
.1

6.
05
+

0.
18

2
20

0
20

7
0.

00
01

90
+

0.
00

00
02

0.
00

09
47
+

0.
00

00
05

0.
00

01
84
+

0.
00

00
01

0.
46

46
24
+

0.
00

00
49

0.
97

0+
0.

01
2

24
48

.5
+

24
.5

4.
99
+

0.
06

3
25

0
45

7
0.

00
01

61
+

0.
00

00
01

0.
00

08
09
+

0.
00

00
04

0.
00

02
19
+

0.
00

00
01

0.
41

73
76
+

0.
00

00
43

1.
36

2+
0.

01
5

25
94

.0
+

24
.1

5.
02
+

0.
05

4
30

0
75

7
0.

00
01

72
+

0.
00

00
02

0.
00

08
34
+

0.
00

00
04

0.
00

02
62
+

0.
00

00
02

0.
44

17
30
+

0.
00

00
49

1.
52

6+
0.

01
6

25
71

.4
+

22
.5

4.
85
+

0.
05

0.
11
+

0.
28

5
35

0
11

07
0.

00
01

71
+

0.
00

00
02

0.
00

08
15
+

0.
00

00
04

0.
00

03
10
+

0.
00

00
01

0.
45

85
00
+

0.
00

00
57

1.
80

9+
0.

01
9

26
78

.0
+

26
.5

4.
76
+

0.
05

0.
02
+

0.
21

6
40

0
15

07
0.

00
01

72
+

0.
00

00
02

0.
00

07
80
+

0.
00

00
04

0.
00

03
45
+

0.
00

00
02

0.
45

81
02
+

0.
00

00
77

2.
00

6+
0.

02
3

26
64

.0
+

25
.4

4.
54
+

0.
05

0.
30
+

0.
21

7
45

0
19

57
0.

00
01

38
+

0.
00

00
01

0.
00

06
43
+

0.
00

00
04

0.
00

03
32
+

0.
00

00
01

0.
39

39
03
+

0.
00

06
10

2.
39

9+
0.

02
5

28
44

.3
+

27
.2

4.
65
+

0.
05

0.
72
+

0.
23

8
50

0
24

57
0.

00
01

31
+

0.
00

00
01

0.
00

05
92
+

0.
00

00
03

0.
00

03
40
+

0.
00

00
02

0.
37

17
57
+

0.
00

00
40

2.
60

0+
0.

03
2

28
39

.0
+

30
.7

4.
52
+

0.
05

1.
31
+

0.
23

9
55

0
30

07
0.

00
01

09
+

0.
00

00
01

0.
00

04
64
+

0.
00

00
02

0.
00

03
24
+

0.
00

00
02

0.
31

86
64
+

0.
00

00
49

2.
98

1+
0.

03
8

29
33

.2
+

32
.9

4.
27
+

0.
05

1.
03
+

0.
20

10
60

0
36

07
0.

00
00

95
+

0.
00

00
01

0.
00

03
96
+

0.
00

00
02

0.
00

03
21
+

0.
00

00
02

0.
29

04
84
+

0.
00

00
32

3.
37

0+
0.

03
9

30
53

.7
+

32
.5

4.
16
+

0.
05

1.
56
+

0.
24

11
65

0
42

57
0.

00
00

79
+

0.
00

00
01

0.
00

03
07
+

0.
00

00
02

0.
00

02
99
+

0.
00

00
01

0.
24

83
61
+

0.
00

00
20

3.
80

2+
0.

04
4

31
63

.3
+

33
.3

3.
92
+

0.
05

1.
69
+

0.
26

12
70

0
49

57
0.

00
00

63
+

0.
00

00
01

0.
00

02
29
+

0.
00

00
01

0.
00

02
63
+

0.
00

00
01

0.
20

45
08
+

0.
00

00
27

4.
15

3+
0.

04
4

32
28

.1
+

32
.9

3.
62
+

0.
04

1.
86
+

0.
24

13
75

0
57

07
0.

00
00

60
+

0.
00

00
01

0.
00

01
93
+

0.
00

00
01

0.
00

02
44
+

0.
00

00
01

0.
19

06
22
+

0.
00

00
43

4.
04

1+
0.

03
9

31
56

.7
+

28
.4

3.
19
+

0.
03

1.
84
+

0.
27

14
80

0
65

07
0.

00
00

49
+

0.
00

00
01

0.
00

01
55
+

0.
00

00
01

0.
00

02
19
+

0.
00

00
01

0.
15

88
63
+

0.
00

00
29

4.
44

4+
0.

05
9

32
19

.5
+

39
.3

3.
14
+

0.
04

2.
21
+

0.
32

15
85

0
73

57
0.

00
00

44
+

0.
00

00
00

0.
00

01
43
+

0.
00

00
01

0.
00

01
95
+

0.
00

00
01

0.
14

42
72
+

0.
00

00
19

4.
43

2+
0.

04
1

32
75

.5
+

27
.7

3.
26
+

0.
03

2.
77
+

0.
52

16
90

0
82

57
0.

00
00

44
+

0.
00

00
01

0.
00

01
42
+

0.
00

00
01

0.
00

01
83
+

0.
00

00
01

0.
13

80
10
+

0.
00

00
25

4.
17

0+
0.

05
2

31
50

.1
+

36
.3

3.
24
+

0.
04

2.
34
+

0.
38

17
10

00
92

57
0.

00
00

42
+

0.
00

00
00

0.
00

01
40
+

0.
00

00
01

0.
00

01
88
+

0.
00

00
01

0.
13

68
38
+

0.
00

00
42

4.
43

9+
0.

05
8

32
37

.4
+

38
.1

3.
30
+

0.
04

2.
92
+

0.
50

18
14

00
10

65
7

0.
00

00
52
+

0.
00

00
01

0.
00

01
67
+

0.
00

00
01

0.
00

02
35
+

0.
00

00
01

0.
17

04
83
+

0.
00

00
43

4.
56

2+
0.

05
0

33
07

.5
+

34
.8

3.
24
+

0.
04

2.
95
+

0.
55

19
14

00
12

05
7

0.
00

00
45
+

0.
00

00
00

0.
00

01
45
+

0.
00

00
01

0.
00

02
21
+

0.
00

00
01

0.
15

35
26
+

0.
00

00
14

4.
86

8+
0.

05
6

33
88

.4
+

36
.0

3.
19
+

0.
04

2.
79
+

0.
37

Th
e

ar
go

n
iso

to
pe

s
ar

e
lis

te
d

in
vo

lt,
Jv

alu
e:

0.
00

85
90

9+
0.

00
00

43
0,

sa
m

pl
e

we
ig

ht
:1

54
.0

m
g

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:180260
12



30
(a) (b)

(c) (d)

20

10 9
10

6
7

8 9 10 11
12 14 13 15

5 6
7 8 9 10 11 12 13 14 15 16 17

18 19
16

11 12

20

3
45 6

1

2
3 4 5

7

1

2 3

4 5

8

36ArA
33Ark

38ArCl
40ArA+E+R

36ArA
39Ark

38ArCl
40ArA+E+R

36ArA
39Ark

38ArCl
40ArA+E+R

36ArA
39Ark

38ArCl
40ArA+E+R

10

0 400 800

20

10

0 400 800

20

10

0 400 800

20

10

0 400 800

13 14
15

16 17 18 19

6 7
8 9 10 11 12 13 14 15 16 17 18 19

20

0 2500 5000

re
la

tiv
e 

co
nt

en
ts

 (
%

)

7500 10 000 12 500

30

20

10

0 2500 5000 7500 10 000 12 500

30

20

10

0 2500 5000
no. of crushing strokes

re
la

tiv
e 

co
nt

en
ts

 (
%

)

7500 10 000 12 500

30

20

10

0 2500 5000
no. of crushing strokes

7500 10 000 12 500

2
3 4

1

1
2
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figure 5). Therefore, the obtained argon isotopic composition is probably formed by three-component

mixing in each sample during crushing extraction.
5.2. Isotopic compositions of each sample
Based on the obtained isotopic data, the argon gas from each sample is thought to be a mixture of at least

three independent components derived from irradiated three types of fluid inclusions. Because a three-

component dataset should distribute along a single plane in a 3D plot, the results were plotted in 3D
40ArAþRþE/36ArA–39ArK/36ArA–38ArCl/

36ArA space (figures 7 and 8). Two (GU84, GU103) of the

three samples show planar correlations in this 3D spaces calculated by Isoplot 4.15 [56].

In previous studies, a correlation between 38ArCl and 40ArAþRþE has been observed for argon isotopes

extracted from fluid inclusions via the crushing technique (e.g. [19]); however, 39ArK has not sufficiently

been extracted in the crushing experiments, instead it has been extracted from using heating

experiments. The distinct behaviour of 39ArK with different extraction methods indicates that the 39ArK

extracted via the crushing method was derived from fluid inclusions while that extracted via the
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heating method originated from minerals (e.g. [19]). Despite the different origins of argon isotopes, some of

their datasets show planar distributions, which were interpreted as mixing planes between the three

representative components: the atmospheric component (40ArA and 36ArA) in fluid inclusions, the excess

Ar-rich component (38ArCl and Cl-correlated 40Ar as 40ArE) in fluid inclusions and the radiogenic Ar

component (39ArK and 39ArK-correlated 40Ar as 40ArR) in K-bearing minerals [19,20,22,57].

Assuming that the planar correlations obtained in this study were also generated by the mechanism

similar to mixing plane from heating and crushing experiment, the obtained 3D regression planes enable

us to calculate 40ArE and 40ArR. Therefore, the Ar–Ar age can be calculated from the 40ArR/39ArK values.
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Furthermore, the origin of the fluid can also be constrained because the subtraction of the 40ArR/36ArA

values from the 40ArAþRþE/36ArA values can be used to estimate the degree of mixing between the

atmospheric component and the 40ArE-rich component (figures 7e,f and 8d,e). We describe the results

of the isotopic data in detail for each sample below.
5.2.1. GU84

The sample GU84 exhibits positive correlations of 40ArAþRþE/36ArA to 38ArCl/
36ArA, and 39ArK/36ArA

and from step 1 to 7 corresponding to from 8 to 234 strokes (table 1; figure 7c,e). Then, from step 8 to
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20 (from 534 to 11 584 strokes), the sample shows a decrease in 38ArCl/

36ArA, an increase in 39ArK/36ArA

and a relatively constant value of 40ArAþRþE/36ArA. The 3D plot of the argon isotopes shows strong

correlations between 38ArCl/
36ArA, 39ArK/36ArA and 40ArAþRþE/36ArA with the intercept of

40ArAþE/36ArA ¼ 613+108 (1s). The intercept value is significantly higher than the modern

atmospheric value (298.6; [58]) (figure 7a). The 40ArAþR/36ArA value without the contribution of
40ArE, equivalent to the subtraction of 40ArE/36ArA from 40ArAþRþE/36ArA, shows a linear positive

correlation with 39ArK/36ArA (figure 7c). However, the corrected value also shows a large uncertainty

due to the relatively large uncertainty in the 3D regression plane while the mean square weighted

deviation (MSWD) value for the sample is 15. This 3D regression plane gives an age of 2114+ 312 Ma

(+2s). The 40ArAþE/36ArA value shows a slightly scattered but linear positive correlation with
38ArCl/

36ArA (figure 7e). The highest value of 40ArAþE/36ArA (equivalent to the subtraction of
40ArR/36ArA from 40ArAþRþE/36ArA) is 4100, which can be used to interpret the origin of the fluids.

The large MSWD value clearly indicates that the uncertainty in the 3D model for GU84 is insufficient

to obtain a precise age. Especially, in the early extraction steps of GU84, the scattered argon isotope ratios

generated a large uncertainty in the 3D regression plane (figure 7c,e). Previously, it has been reported that

degassing from 40ArE-rich secondary fluid inclusions in the early extraction steps can cause scattered

argon isotope ratios (e.g. [59]). Such trends potentially account for the relatively large variations in the

argon isotope ratios in the early steps of the extraction of GU84.

5.2.2. GU91

The sample GU91 exhibits increases in 39ArK/36ArA and 40ArAþRþE/36ArA and a decrease in
38ArCl/

36ArA from step 1 to 9 (from 24 to 2224 strokes) on the two-dimensional (2D) diagrams

(table 1; figure 7d,f ). Then, the sample shows a decrease in 38ArCl/
36ArA, an increase in 39ArK/36ArA

and relatively constant values of 40ArAþRþE/36ArA from step 10 to 19 (from 2724 to 12 357 strokes).

The dataset of GU91 could not be fitted to a 3D regression plane due to its relatively linear

distribution in 3D space. The largest uncorrected 40ArAþRþE/36ArA value is 4056.

5.2.3. GU103-1

The sample GU103-1 exhibits positive correlations between 38ArCl/
36ArA, 39ArK/36ArA and

40ArAþRþE/36ArA from step 1 to 8 (from 30 to 2280 strokes) on the 2D diagrams (table 1; figure 8b,d).

Then, the isotopic compositions show a decrease in 38ArCl/
36ArA and increases in 39ArK/36ArA and

40ArAþRþE/36ArA from step 9 to 16 (from 2980 to 10 880 strokes). The isotopic compositions plotted

in the 3D space show strong correlations between 38ArCl/
36ArA, 39ArK/36ArA and 40ArAþRþE/36ArA

with the intercept of 40ArAþE/36ArA ¼ 331+9 (1s), which is close to the atmospheric value

(figure 8a). 40ArAþR/36ArA shows an excellent linear positive correlation with the 39ArK/36ArA values

(figure 8c) while the MSWD value of the 3D planar regression is 0.52. The obtained regression plane

gives an age of 2701+43 Ma (2s). The 40ArR-corrected 40ArAþE/36ArA values show a linear positive

correlation with the 38ArCl/
36ArA values (figure 8d ). The highest value of 40ArAþE/36ArA is 1142. The

well-constrained regression plane and the low MSWD value in this experiment indicate that the argon

isotope ratios of GU103-1 can be satisfactorily explained by the 3D model and are sufficiently suitable

for a discussion of the origin and age of the Ongeluk hydrothermal quartz and its fluid inclusions.

5.2.4. GU103-2

The results of the extraction from GU103-2 also exhibit relatively good correlations between
38ArCl/

36ArA, 39ArK/36ArA and 40ArAþRþE/36ArA except for step 1 (7 strokes) on the 2D diagrams

(figure 8c,e). The isotopic compositions show a decrease in 38ArCl/
36ArA and increases in 39ArK/36ArA

and 40ArAþRþE/36ArA from step 2 to 19 (from 207 to 12 057 strokes). The isotopic compositions

plotted in the 3D space show correlations between 38ArCl/
36ArA, 39ArK/36ArA and 40Ar/36ArA and

the distribution along the regression plane of GU103-1 (figure 8a). The difference between GU103-1

and GU103-2 results from the contribution of the atmospheric component and the J value. Therefore,

the result of GU103-2 can be treated the same as the data from GU103-1. An age correction of the

same age as GU103-1 to the GU103-2 data provides a similar regression line on a diagram of between
38ArCl/

36ArA and 40ArAþE/36Ar. The intercept 40ArAþE/36ArA value of the regression lines on the
38ArCl/

36ArA and 40ArAþE/36ArA diagram and isochron diagram are 398+ 55 (1s) and 399+43 (1s),

respectively. The highest 40ArAþE/36ArA value is 2586.
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5.2.5. Consistency between the 3D model and argon isotope ratios

The argon isotope ratios obtained for the fluid inclusions and minerals are generally explained as mixing

between atmospheric argon, radiogenic argon and excess argon when the values can be plotted on a 3D

regression plane (e.g. [57,60]). Even though GU84 have relatively large uncertainties resulting from the

scattered argon isotopic ratio, the results of GU103-1 show a well-constrained 3D planar distribution

with the intercept value (331+9, 1s) close to atmospheric 40ArA/36ArA of 298.6. The 3D plot of argon

isotopes normalized by 40ArAþRþE also shows the change in the composition as crushing proceeds

from atmospheric endmember to K-rich endmember through Cl-rich endmember (figure 9). Therefore,

the 3D distribution of GU103-1 probably resulted from mixing between atmospheric argon (EM1),
40ArE- and Cl-rich fluid (EM2) and radiogenic argon from K-rich fluid (EM3).

The results of the isotope ratio show a continuous change in the composition as the crushing

proceeds. This change probably resulted from the change in the generation of the crushed fluid

inclusions from the later formed larger inclusions to the earlier formed smaller inclusions (figure 10).

In previous studies using a similar crushing method for argon extraction, excess argon was extracted

from secondary fluid inclusions, which are easily broken by crushing, before the extraction of the

excess argon-free composition from the primary fluid inclusions (e.g. [61–63]). However, in this study,

small amounts of excess argon are extracted in early steps before the degassing of significant amounts

of excess argon in the later steps. This indicates that the primary fluid inclusions are composed of

excess argon. Another characteristic of this study compared to previous studies is the remaining

contribution of fluid inclusions primarily crushed in the early steps through all the crushing steps.

The difference between the result of GU103-1 and that of GU103-2 can be explained via the different

contributions of EM1, supporting the remaining contribution of EM1. The degassing pattern of EM1

suggests that the change in the composition as crushing proceeds resulted from the difference in the

size distributions of each generation of fluid inclusion rather than from the different physical strength

of the primary and secondary inclusions. Therefore, all endmembers of the fluid inclusions are

probably composed of primary fluid inclusions (figure 10).

5.3. Interpretation of quartz formation age

5.3.1. Interpretation of obtained ages

The stepwise crushing experiments for the Ar–Ar dating provided ages of 2114+312 Ma (2s) for GU84

and 2701+ 43 Ma (2s) for GU103-1. The analysed quartz samples should ideally have similar ages

because these samples were collected from outcrops in the same locality even though the obtained

ages vary from 2114+312 Ma for GU84 to 2701+43 Ma for GU103-1.
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There are several effects that can potentially make the Ar–Ar age younger than the true age. One

possibility is a break in the closed system for argon, such as the recrystallization of quartz. However,

quartz retains its microcrystalline texture (figure 3c,e), indicating the absence of significant

recrystallization and any resulting escape of argon. A second possibility is mixing between the argon

from K-rich inclusion and the excess argon without a correlation with chlorine from the (secondary)

fluid inclusions. This effect may have influenced all the samples of GU84; especially in the early steps

of GU84 (figure 7c), it may have disturbed the obtained ages and intercept value of 40ArAþE/36ArA

for each sample.

Nevertheless, the sample GU103-1 is probably unaffected by this effect because the 3D distribution of

argon isotopes is in good agreement with the three-component mixing model. Based on this consistency,

2701+43 Ma for GU103-1 is the best constrained age. However, this age is significantly older than the

eruption age of the Ongeluk lavas (2426+ 3 Ma); even the ages of igneous and sedimentary rocks vary

from 2642+ 3 to 1928+ 4 Ma in the Griqualand West Basin. Such a discrepancy between the true and

estimated ages is possibly explained by four mechanisms described below.

First, the discrepancy can be caused by a different physical and chemical property between 40ArR and

K in K-rich minerals. Previously, it has been reported that Ar–Ar ages for approximately 120 mm thick

muscovite obtained via the crushing method were older than those obtained via the heating and laser

ablation methods [54]. This phenomenon has been explained by the preferential release of 40ArR

compared to 39ArK during crushing process; 40ArR is loosely retained in minerals compared to 39ArK,

which is contained in the crystal lattice of K-bearing minerals. However, Ca/K values in the later

crushing steps of GU103-1 and GU103-2 higher than 1 are inconsistent with the significant presence of

a K-rich mineral.

The second mechanism to explain the discrepancy is recoil of 39ArK in minerals trapped in fluid

inclusion via irradiation and release of 40ArR via alteration between fluids and minerals in the fluid

inclusion. During neutron irradiation, 39ArK recoils over several hundreds of nanometres. When the
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K-bearing minerals are very small e.g. less than 1 mm, a significant amount of 39ArK is recoiled into the

fluid. Conversely, 40ArR in minerals is slowly released over a few billion years of alteration at

temperatures close to room temperature. Younger ages from K-bearing minerals (1027+ 41 Ma) than

expected from the depositional age (approx. 1526 Ma) were reported by a previous study of Ar–Ar

dating of middle Proterozoic quartz with K-bearing minerals as the main K reservoir in fluid

inclusions using crushing and heating methods (approx. 1526 Ma; [57]). This gap can be explained by
40ArR degassing from minerals to fluid inclusion via alteration being a more significant effect for
40ArR/39ArK than the recoil of 39ArK. Another previous study reported 40Ar-poor and 39ArK-rich argon

gas extracted from a 3.5 Ga hydrothermal quartz sample during heating experiments [31] that may

also be explained by this mechanism. This mechanism makes the apparent age of fluid inclusions

containing K-bearing minerals extracted by crushing experiments appear older than the depositional

age due to the addition of 40Ar. In this case, a calculation of the depositional age from the quartz

sample additionally requires the K abundance of the minerals, the 40ArR/39ArK value of the mineral,

and the contributions of 39ArK via recoil. These additional datasets can be provided by an additional

heating analysis of an irradiated sample and a crushing analysis of the non-irradiated sample.

However, K-rich minerals are likely to be efficiently trapped in larger inclusions, and the K-rich

composition extracted from later crushing steps in this study is likely to be inconsistent with an

explanation using this mechanism.

Third, in the case of a K-rich component contributed primarily by K-rich fluid inclusions with

minimal contributions from minerals, only the 39ArK recoiling out from the inclusions would

possibly make the apparent age older than the depositional age. This K-loss process is insufficient to

affect the quartz samples because neutron-irradiated quartz grains have sizes of several hundreds of

micrometres.

Fourth, in the case of EM3 contributed by K-rich fluid inclusions, the different 40ArE/38ArCl values

between EM2 and EM3 can explain the discrepancy. The three-component mixing model and the

regression plane assume a constant 40ArE/38ArCl ratio in each sample. When this assumption is

inappropriate, the obtained age is different from the true formation age. The gap between the

apparent age of 2.7 Ga and the expected depositional age of 2.4 Ga implies that the assumption of the

three-component mixing model is inappropriate including GU103-1 due to the non-constant
40ArE/38ArCl value between the Cl-rich endmember and the K-rich endmember.

We cannot clearly decide which mechanism is the most suitable to explain the discrepancy of the four

described above due to the absence of a heating analysis. However, the Ca/K values and the degassing

profiles suggest that the last mechanism is the most likely of the four.

5.3.2. Variations of 40ArE/38ArCl in a single sample

Assuming that the analysed hydrothermal quartz and all the fluid inclusions formed at 2.4 Ga, the

diagrams of 40ArAþE/36ArA and 38ArCl/
36ArA for GU103-1 show two mixing lines between EM1

mixed with EM2 (EM20) and EM3 mixed with EM1 (EM30) and between EM1 and EM2, suggesting

that the 40ArE/38ArCl ratio of EM3 is different from that of EM2 in these samples (figure 11c). The

bulk regression line for GU103-1 shows small uncertainty and a 40ArE/38ArCl value of 340+37 (95%

confidence). However, the mixing line between EM20 and EM30 of GU103-1 indicates that the
40ArE/38ArCl value of EM3 is higher than approximately 468, approximately 40% higher than the
40ArE/38ArCl value from the total regression line, based on a slope of a line connecting between EM1

and a data point of the last step. The EM3 of GU103-2 also shows a similar minimum 40ArE/38ArCl

value of approximately 464. These data clearly show that the fluid inclusions with apparently constant
40ArE/38ArCl value can involve different 40ArE/38ArCl components. These types of fluid inclusions

induce misinterpretation when constraining the mineral formation age and the 40ArA/36ArA value of

the palaeoatmosphere. However, apparent ages of 2114+312 Ma from GU84 and 2701+43 Ma from

GU103-1 obtained by the three-component mixing model varies around the expected depositional age

of 2.4 Ga. These variations may imply that all the primary fluid inclusions formed at approximately

2.4 Ga and that the 40ArE/38ArCl value of the mixing line between EM20 and EM30 is slightly different

from that of EM2.

5.4. Origins of the fluid components
The continuous change of the extracted argon gas composition from the quartz corresponds to the sizes

and generation of fluid inclusions, as discussed in §5.2.5, representing the evolution of Ongeluk
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hydrothermal fluid. The assumption for the quartz depositional age of 2.4 Ga enables the following

interpretation. EM3 which is trapped in smaller inclusions of early generations is enriched in K with

various Ca/K ratio among samples and has higher or similar 40ArE/38ArCl values compared with

EM2. The 40ArE/36ArA value of EM3 is lower than that of EM2 (when the 40ArAþE/36ArA value

is similar to EM2, obtained age of approximately 0 Ma for GU84 and approximately 1.9 Ga for

GU103-1). EM2, which is trapped in moderate-sized inclusions of moderate generations has a Cl- and
40ArE-rich composition and is poor in K. However, EM2 of all samples except GU84 shows a lower

Ca/K value than 1, indicating a higher abundance of K than of Ca. The lower abundances of the two

major cations in the fluid imply that EM2 has an Na-rich composition, i.e. EM2 is an Na-rich fluid.

The clear presence of 40ArE in EM2 and EM3 indicates a lack of seawater and surface water in the

Ongeluk hydrothermal system. A hydrothermal system separated from ambient seawater implies a

presence of a cap rock, such as the sulfate minerals in the modern seafloor hydrothermal system

(e.g. [64]). The hydrothermal quartz itself possibly effected as a cap rock. The highest 40ArAþE/36ArA

value of all the samples is 4100 for GU84 indicating that the 40ArE-rich component could be derived

from a fluid that reacted with the 100–200 Ma older sedimentary rocks located stratigraphically below

the Ongeluk Formation and/or a fluid containing volatiles degassed from the plume source of the

Ongeluk volcanism. The former candidate is supported by the presence of 13C-depleted calcite

(–31.9‰) in the Ongeluk interpillow jaspilites, indicative of the decomposition of organic matter in

the underlying sedimentary rocks during seafloor hydrothermal circulation [36]. The latter candidate

would also be supported by the absence of 40ArAþE/36ArA values much over 4000 in the samples

when the 40ArAþE/36ArA value of the Ongeluk plume source is assumed to have been similar to those

of 2.4 Ga oceanic island basalts with values of approximately 4000 [65]. In previous studies of fluid

inclusions in hydrothermal quartz with MORB-like basalt in the 3.5 Ga Dresser Formation, West

Australia, the highest 40ArAþE/36ArA value was consistent with the expected 40Ar/36Ar value of

MORB source mantle at 3.5 Ga [14,31]. Therefore, obtaining the highest 40ArAþE/36ArA of 4100 similar
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Figure 12. Schematic images of the hydrothermal systems hosted by the 2.4 Ga Ongeluk volcanism. (a) The rocks in the
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to the expected value for the Ongeluk plume source supports the idea that the fluid inclusions formed

due to hydrothermal circulation driven by the Ongeluk volcanism. EM1 shows the atmospheric

composition compared with EM2 and EM3. In particular, EM1 of GU103-1 shows a 40ArAþE/36ArA

value similar to the atmospheric value and fluid inclusions trapped in hydrothermal/relict minerals in

meta-gabbros of modern oceanic crusts [66]. The atmospheric component probably corresponds to the

2.4 Ga Ongeluk seawater because the seafloor hydrothermal alteration is well preserved in the

Ongeluk lavas [33,35] and the compositional variation of the fluid inclusions in the hydrothermal

quartz points to the presence of a seawater-like endmember [12,13]. However, the obtained
40ArAþE/36ArA values with a significant difference between that from GU84 and GU103-1 are higher

than modern atmospheric value and similar to that of the fluid inclusions in meta-gabbros, suggesting

the small amounts of seawater in the Ongeluk hydrothermal system.

Previously, the seafloor hydrothermal circulation hosted by the Ongeluk volcanism was primarily

explained by interactions between seawater-derived hydrothermal fluids and the volcanic rocks

(e.g. [12,13,33]). However, the argon isotopes of the hydrothermal quartz in this study could provide

new constraints on the fluid sources during the seafloor hydrothermal circulation; there was fluid

mixing between the deep crustal fluid derived from the underlying sedimentary rocks and the plume

source of the Ongeluk volcanism without the involvement of the Ongeluk seawater. After the

hydrothermal alteration without seawater, the (a little) Ongeluk seawater is mixed with crustal fluid

possibly along the faults (figure 12).
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6. Conclusion

Stepwise crushing extraction of the quartz samples reveals that the fluid inclusions with different size are

different argon compositions, 36Ar-rich larger inclusions, 38ArCl- and 40Ar-rich moderate-sized ones and
39ArK- and 40Ar-rich smaller fluid inclusions.

The 3D regressions for the obtained argon isotope data clearly indicate that the compositional

variations are formed by three major components: K-rich fluid, excess argon-rich fluid and

atmospheric argon-rich fluid.

An age of 2732+45 Ma for GU103-1 was obtained from the 3D plot of the three-component mixing

model, which is significantly older than reported ages for the Ongeluk volcanism (2425.5+2.6 Ma). The

apparent gap of approximately 300 Ma was probably caused by the different 40ArE/38ArCl value of K-

rich fluid from the Cl-rich fluid.

It is difficult to constrain a depositional age based on Ar–Ar dating by crushing method using only

fluid inclusion containing excess argon due to the large variation of 40ArE/38ArCl.

The highest 40ArAþE/36ArA value (4100) of the age-corrected data as 2.4 Ga from the Ongeluk fluid

inclusions probably represents the contribution of the deep crustal fluid from older sediments below

the Ongeluk Formation and derived from the plume source of the Ongeluk volcanism, suggesting that

these fluid inclusions were formed at 2.4 Ga.

The presence of excess argon indicates (a) little seawater contribution in the Ongeluk hydrothermal

system. The Ongeluk hydrothermal fluid evolves from crustal fluid and magmatic fluid without seawater

into a little seawater and these fluids.
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