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ABSTRACT 
 
 
 

The author developed an automatic text categorization approach and investigated 

its application upon categorizing emails.  The categorization approach is derived from an 

instanced-based learning method that explores conditional probabilities of particular 

words.  The effectiveness of the author’s categorization approach using collections from 

a set of emails is then evaluated and assigned a numerical score based upon precision and 

recall.  Precision was 65% while recall was 17%.  The author’s experiments indicated 

automatic categorization of incoming emails at the client level can categorize email, but 

is difficult when not using a standardized corpus.  Word frequency is valuable, but should 

be used in combination with other methods such as phrase extraction for a higher level of 

performance.    
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I. INTRODUCTION 

A. BACKGROUND 

Email has become the standard for fast, inexpensive and easily accessible 

communication.  The explosive growth of email is affecting everyone in the Department 

of Defense as well as the civilian work environment.  Its largest impact is on management 

and record-keeping personnel.  Typical military users receive between 30 – 70 emails a 

day depending on their rank and billet (Marsan, 2002).  If one attaches spreadsheets, 

documents, presentations, graphics and executable programs then email gains even more 

value.  Because of its ease of use, email has become an integral part of military-

organization daily operations.  All of the information in unclassified and classified emails 

is also a treasure trove of operational data. 

B. THESIS OBJECTIVE 

This thesis seeks to improve the organization of individual user’s email by 

implementing an automated categorizer for email.  The author seeks to try to eliminate 

the large amounts of manual email categorization that is currently done by many users.  

This could be useful to military personnel due to efficiency, privacy, and high-turnover 

concerns.  Turnover of military personnel happens every 2-3 years and frequently old 

email is simply deleted rather than organized and used to document valuable operational 

processes and data.  Generally speaking within the DoD there are no formal filing or 

retention policies for email.  There are guidelines such as the DoD Directive 5012.2, but 

these deal with large-scale records management.   

Old email messages are required for numerous purposes.  These include day-to-

day business operations, and requests for, historical financial information, activities, 

logistics, etc.  When each individual decides which email messages to retain or delete, 

much information is hidden from the rest of the organization.  Email storage of this kind 

is scattered in personal archives.  Although servers can store these messages, the number 

of messages is constantly increasing.  If backup tapes are not kept for retrieving old 

messages, and an individual goes on leave or is unavailable, critical information in his 

email is unavailable.  This suggests organizational- level archiving and categorizing, but  

what can be done at the user level to help organize this information? 
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With the average user manually archiving an estimated 300 megabytes (MB) of 

email a year, categorizing methods can vary dramatically in their effectiveness and 

overall organization (Ferris, 1999).  Our primary goal of this research was to survey 

existing methods and determine a method or a combination of methods that would work 

well for email categorization.  A secondary goal of this research was to create a tool to 

accurately and quickly categorize and archive email messages at the local user level.     

This thesis will attempt to answer the following questions: 

• Can machine- learning programs accurately categorize e-mail? 

• What are the strengths and weaknesses of automated categorizers? 

C. OUTLINE OF THESIS 

Chapter II describes previous attempts at automated categorizing and other similar 

problems in text retrieval.  Chapter III gives a description of the structure and 

components of the program.  A detailed description of the data and corpus is also given.  

Chapter IV provides a description of a categorization program that we developed.  

Chapter V discusses the program’s performance and the accuracy of its results.  Chapter 

VI reviews the program’s achievements and major weaknesses.   
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II. OTHER WORK ON TEXT CATEGORIZATION 

A. INTRODUCTION 

Text categorization has become a very active research topic over the last few 

years.  Many of the approaches seek to categorize documents of the Internet.  In this 

thesis email is the document and specifically the text within the email.  Categories can be 

summarized using phrases, words, or numerically.  Traditionally, a domain expert, 

usually a librarian, does text categorization manually.  Documents are read by the expert 

and then placed in the appropriate category.  To eliminate the large amount of manual 

effort required, we could use automatic categorization that learns automatically from 

using training examples.  The classic approach is to assign weights to particular words in 

particular categories; the inferred category of a document is the one with the highest 

weighted sum (Witten, Frank, 2000).    

Two categorization techniques used are instance-based learning and Naïve-Bayes 

probabilistic classification.  Instance-based learning methods begin with a particular 

example and generalize it to cover other similar examples in the same category.  The 

Naïve-Bayes approach uses the conditional probabilities of categories given a word to 

estimate the probabilities of categories given an email document; this model assumes 

word independence.  Typically a list of “stop words” to be ignored and some sort of 

destemming algorithm are used to help normalize the word list. 

B. LITERATURE REVIEW 

Lam, Ruiz, and Srinivasan investigated whether automatic categorization will 

have better retrieval performance than that achieved using manual categorization applied 

to medical documents (Lam, Ruiz, Srinivasan 1999).  They analyzed the retrieval 

performance on test queries to gain insights on the interaction of their categorizer and text 

retrieval.  The first part of their work dealt with automatic categorization including a 

category-extraction process.  For their test documents they use a corpus of medical 

documents from the MEDLINE database that is referred to as the HERSH corpus.   

The authors ran a series of experiments on parameter selection to provide a metric 

and categorization results.  Their results are broken down into category and document 
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perspectives.  The category perspective results are related to sizes of categories ranging 

from 10 to 60 categories.  Three different parameters were tested: C0, C35 and C50.  C0 

used all manually assigned categories that existed in the training set and test set.  C35 and 

C50 limit the number of categories to those that have a document frequency greater than 

35 or 50 per category.  The document frequency is the number of documents that a 

specific category is assigned to.  The F1 score is a weighted combination of recall and 

precision, with the scores being averaged to determine a mean.  Their results for 

parameter selection can be seen in Table 1. 

 

Parameter selection based 
on training set 

Run 

# of 
categories 

F1 score 

N M 
 

C0 
C35 
C50 

641 
58 
43 

0.258 
0.468 
0.509 

5 
5 
30 

50 
40 
20 

 
Table 1. Results for Parameter Selection in (Lam, Ruiz, Srinivasan 1999).   

 

The results indicate that as the frequency threshold on the category set increases, 

the mean F1 score improves.  N represents the number of documents while M was the 

number of categories.  

Yang did a comparative evaluation of statistical approaches to text categorization 

(Yang, 1998).  The author uses several versions of the Reuters newswire corpus of 

20,000 documents to evaluate the categorization methods of k-nearest neighbors, simple 

word matching, decision trees, Naïve-Bayes, inductive-rule learning in disjunctive 

normal form, neural networks, Rocchio, linear least-squares fit, and “sleeping experts”.  

The authors found that linear least squares fit performed best. 

In addition to experimenting with thresholding techniques, Yang concluded that 

variability on the performance of classifiers with collection is common.  Although the 

Word approach, which looks at single word frequency, had increased performance when 

changing from a labeled to an unlabeled corpus, it was still out performed by other 

methods such as kNN and LLSF.   
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Moens and Dumortier applied text categorization to magazine articles to study the 

effects of selection of feature words and proper names (Marie-Francine, Dumortier, 

2000).  The authors use a standardized approach of stop-word removal and then select 

keywords by applying statistical weights to the remaining words after stop words are 

taken out.  For proper names, words with capitalization are given a heavier weighting.  

Terms with a calculated weight above 0.4 conditional probability are selected.  The 

authors also apply the technique of  “zoning”, which is the selection of word examples 

that are in close proximity to other word examples within the document.  The results of 

the Moens and Dumortier compare a Bayesian independence cla ssifier to the Rocchio 

algorithm and a X2 algorithm.  The X2 algorithm is used to test how closely a set of 

observed frequencies corresponds to a set of expected frequencies.  The observed 

frequencies are the number of texts relevant or non-relevant for the text category that 

contain the feature word.  The authors conclude that the X2 algorithm worked best with a 

recall of 0.73 and precision of 0.64 versus the Bayesian method recall of 0.58 and 

precision of 0.61 and the Rocchio algorithm recall of 0.64 and precision of 0.57.  

Salton and Buckley propose a similar method to show how similar one document 

is to a query document by statistically weighting terms within the document (Salton, 

Buckley, 1988).  The authors compare results of eight different term-weighting methods 

on different collections of documents.  They make recommendations on query and 

document vectors concerning the term-frequency component, the collection frequency 

and the normalization component.  The authors conclude that for short queries each term 

is important and query-term weights are preferred.  When dealing with document vectors 

the authors conclude that for technical vocabulary, an enhanced frequency-weighting 

scheme should be used which places terms automatically between 0.5 and 1.0.  Our 

application involves short technical documents and can use this approach by using 

individual term weighting rather than using a similarity calculation. 
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III. DESCRIPTION OF APPLICATION 

In this section we describe our application, and present an algorithm for 

categorizing email documents using a probabilistic model.  The algorithm uses count 

data, the frequency of the terms in a document.  Our approach relies on keyword clues.  A 

training process identifies categories for new documents from pre-categorized examples.  

The categorization technique used in the algorithm is a linear numeric prediction model 

(Witten, Frank, 2000).   

A. DATA 

A total of 737 emails were used to train and test the categorizer. Table 3 provides 

the data characteristics of the emails.  Some emails were previously saved with an 

“.html” extension and others were saved with a “.txt” extension.  HTML tags were 

identified and included in the stop-word list.  The collection of emails was from the 

author’s personal work archives.  Approximately 20% pertain to the authors experience 

as a Supply Officer; the remaining 80% were collected during the author’s experience as 

a graduate student.   

 

  

Number of emails 737 

Total number of words in text corpus 31,593 

Total number of words after destemming and stopword  
removal 

20,115 

Total number of unique words after destemming,  
stopword removal and extraction of HTML tags and  
other special characters  

~ 12,000 

Number of words per email document 
 

45 -1082 

  
Table 2. Training and Testing Data Characteristics. 

 

Table 3 shows the specific category descriptions and example relevant words 

which the author thinks the program should choose as keyword clues relating to a 

category.  The author identified these categories by placing them in logical categories 
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according to their content.  Except for categories #4, #5, #10, #15, and #17, the categories 

could be applied to other military-service emails as well as civilian-business emails.   

 

Category # 1: Classes Emails with administrative course material.  
Possible Key Words class, info, course info, homework, homework problems, answers 
  
Category # 2: Grades Emails with information about grades and transcripts. 
Possible Key Words grades, registrar, python, final grade, homework grade, test grade 
  
Category # 3: Personal Emails with information received from the author’s family members 

and other matters he deemed not directly connected to his work 
environment. 

Possible Key Words trip, Michelle, Abby, love, usmc, thanks, dear 
  
Category # 4: 3270 Emails dealing with connectivity problems to a mainframe computer 

using 3270 emulation software. 
Possible Key Words 3270, ACID, password, connectivity, lack, mainframe, service 
  (ACID – access control identification) 
  
Category # 5: Bwd Mess Emails that involved the authors job as the Marine Officer in charge of 

collecting wardroom dues onboard the USS Belleauwood from 11/98-
6/99. 

Possible Key Words money, payment, dues, mess, receipt, check 
  
Category # 6: Equipment Emails that dealt with equipment issues. 
Possible Key Words swap, equipment, truck, weapons, parts, lead-time, fix, gear 
  
Category # 7: Equipment 
Allowance  

Emails that deal with equipment allowances and what a unit was 
reporting to have.  

Possible Key Words OH, on-hand, own, equipment, T/O, temp, shortage, overage  
 (OH and T/O – stand for on hand and table of organization, which is 

the structuring of a unit) 
  
Category # 8: Equipment 
Readiness 

Emails that pertain to the physical condition of a piece of equipment 
and whether it was working properly or not. 

Possible Key Words maintenance, parts, deadline, fix, repair, leadtime, running, MIMMS 
 (Marine Corps Integrated Maintenance Mgt. System) 
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Category # 9: Exercises Emails that pertain to military exercises the author partook in and 
various problems that he resolved or worked on. 

Possible Key Words Cobra-Gold, billeting, exercise, funding, travel, planning, meeting, 
Y2K 

  
Category # 10: Expeditor Emails that pertain to a person whose job involved the explicit 

tracking of equipment through the transportation pipeline. 
Possible Key Words tracking, equipment, package, arrival, Carl, time, where  
  
Category # 11: Fiscal Emails concerning payment and disbursal matters, contracts, and 

equipment receipts. 
Possible Key Words payment, due, money, SABRS, JON, financial, authority  
 (SABRS – standard accounting and budgeting requirement system; 

JON – job order number) 
  
Category # 12: General Emails concerning general administrative purposes.  
Possible Key Words administrative, requirement, meeting, turn- in, due 
  
Category # 13: 
Maintenance 

Emails that pertain to the physical condition of a piece of equipment, 
whether it was working properly or not, and the parts status for a piece 
of equipment.   

Possible Key Words maintenance, parts, deadline, fix, repair, lead-time, running, MIMMS, 
status, up 

 (MIMMS - Marine Corps Integrated Maintenance Mgt. System) 
  
Category # 14:  
Miscellaneous 

Emails that were of mixed purposes.  They are primarily differentiated 
from category #12 by the variety within each email and that category 
#12 had a general administrative theme. 

Possible Key Words odd, here, fun, get, read, keep, future, misc 
  
Category # 15: NBC Emails that involved Nuclear, Biological or Chemical (NBC) supply 

issues. 
Possible Key Words mask, parts, atropine, injector, NBC, filter, gas, chamber 
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Category # 16: records Emails concerning supply record administration issues. 
Possible Key Words CMR, on-hand, drop, add, quantity, description, account, inventory, 

count 
 (CMR – consolidated memorandum receipt) 
  
Category # 17: requests Emails concerning supply requests for equipment or the purchasing of 

administration supplies. 
Possible Key Words computer, request, get, date, buy, purchase, money, contract  
  
Category # 18: shipboard 
billeting 

Emails concerning issues involving billeting or berthing for Marine 
Officers on board the USS Belleauwood.  Most emails revolve around 
room assignments. 

Possible Key Words room, assignment, billeting, berthing, Belleauwood, officer, 
assignment 

  
Category # 19: tech info Emails that include technical issues focused around the area of 

computer science.  This area was differentiated from category # 1 by 
its lack of specificity in many cases. 

Possible Key Words networking, computer, artificial, intelligence, software, web, Internet 
 

Table 3. Category Descriptions and Possible Keywords Identifying These Categories. 
 

The exact number of texts used for each category in the training and test sets are 

given in Table 4 below.  The training and test sets were formed by placing 80% of each 

category into the training set, and the remaining 20% into the test set. A constraint was 

the limited number of examples in some of the categories.  As with much text 

categorization, a central problem is the lack of standard data collections.    
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Category Number of email texts for 
the training set 

Number of email texts for 
the test set 

 
Shipboard billeting 
Requests 
Records 
NBC 
Miscellaneous 
Maintenance 
General 
Fiscal 
Expeditor 
Exercises 
Equipment Readiness 
Equipment Allowances 
Equipment 
BWD Mess 
3270 
Personal 
Grades 
Classes 
Tech Info 
 
Total 
 
(Total Emails: 737) 

 

 
13 
20 

                     2 
7 

17 
4 
4 
20 
5 
6 
11 
8 
11 
3 
9 

242 
22 
104 
88 

 
585 

 

 
4 
5 
0 
2 
4 
2 
1 
4 
2 
2 
3 
3 
2 
0 
3 
61 
6 
26 
22 

 
152 

 

 
Table 4. Number of Texts Per Category in Training and Test Sets. 

 
B. EVALUATION MEASURES 

The author uses conventional measures of recall and precision to measure 

categorization accuracy.  They are computed by selecting the highest value for the  

returned email:   

 
 

recall =         
 

   
emails correctly assigned to a category 
             emails in a category 

precision =    emails correctly assigned to a category 
             emails assigned to a category 

 
Table 5. Evaluation Measures. 
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The author also displays the results in the form of a two 19x19 confusion matrices 

that show the true categories plotted against actual categories chosen after being run 

through our categorizer.   

C. METHODOLOGY 

Given an email document, an independent binary classifier compares values and 

chooses the single category of highest value.  Two methods of preprocessing text are 

used.  First a word “destemmer” algorithm is used (Rowe, 1998).  The algorithm removes 

suffixes on an English word to regularize its forms.  A sample behavior of Porter’s 

stemming algorithm can be seen in Table 6 below: 

 

Word Porter Stemming Algorithm 
believes believ 
working work 
starting start 
playfully play 

 
Table 6. Porter Stemming Algorithm Behavior. 

 

In addition to destemming words, a “stop word” removal list is used (Rowe, 

1998).  The stop-word list consists of 700 common words such as “a”, “and”, “the”, “of 

”, etc, that are generally non- informative and can be removed to improve categorization.  

Some html tags and special characters were also added to the stop-word list to eliminate 

redundant non-useful characters such as BR, TR, and other commonly used markup tags.  

Two of the most common words, “of ” and “the”, account for 10% of word occurrences 

in most documents (Mooney, 2002).  Sample stop word frequencies can be seen in Table 

7. 
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Frequent word Number of occurrences Percentage of Total 
the 7,398,934 5.9 
of 3,893,790 3.1 
to 3,364,653 2.7 

and 3,320,687 2.6 
in 2,311,785 1.8 
is 1,559,147 1.2 
for 1,313,516 1.0 
The 1,144,860 0.9 
that 1,066,503 0.8 
said 1,027,713 0.8 

 
Table 7. Sample Word Frequency Data:  Frequencies from 336,310 Documents in the 1GB 

TREC Volume 3 Corpus 125,720,891 Total Word Occurrences; 508,209 Unique Words. 
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IV. DESCRIPTION OF TEXT CATEGORIZER PROGRAM 

A. PROGRAM STRUCTURE 

The text categorizer was written in Java.  The overall architecture for the program 

can be seen in Figure 1.  The program starts by accepting email documents in text 

document format.  The training set is manually categorized and then both sets are 

tokenized.  The email document is then run through a destemming program and removal 

of any of the 700 stop words is done.  All capitalized letters are made into lower case.  

The training set is used in the calculation of clue probabilities.  If a word remains after 

stop-word removal it must appear a minimum of 10 times to have its probability 

calculated.  Additionally, probabilities are calculated by viewing two subdirectories 

labeled, “yes” and “no” and finding the conditional probability of a “yes” given the 

occurrence of particular.  The test set involves the calculation of 19 weighted sums for 

each document. 

The “ClueWords” program was adapted with minor changes from another 

program, “GetClueProbs” (Rowe, 1998).  The  program was modified to extract stop 

words.  The RateDocs program was modified to check for the “Subject” line of an email 

and increment the overall word count.  The “RateDocs” program takes the weighted sum 

of the number of occurrences of each clueword, and then chooses the category of highest 

total weight. 

B. PROGRAM PERFORMANCE 

All code was written in Java using JDK1.3.1_02 Java Virtual Machine release.  

The programs were executed on a Pentium II Processor Intel MMX chip running 

Windows 98 with 160 MB of RAM.  Table 8 shows processing time.  
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Email training set

Destemming 

Stop Words 
Removed

Tokenization

Calculate Conditional Word 
Probabilities

Store Conditional Word 
Probabilities

Actions Performed in dotted lined box 
are performed by ClueProbs program.

manual categorization

Email test set

Destemming 

Stop Words 
Removed

Tokenization

Calculate Document Total Weight Per 
Category

Store Document Weights
Per Category 

input compared

Actions Performed in dotted lined box 
are performed by RateDocs program.

Email training set

Destemming 

Stop Words 
Removed

Tokenization

Calculate Conditional Word 
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Figure 1.   Architecture for the Program. 
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Train/Test Number of documents Real total time 
in seconds  

Real time 
Per 

Document 
in seconds  

Training 585 225 4.2 
Test 152 165 0.9 

 
Table 8. Processing Time. 
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V. EXPERIMENT RESULTS 

A. INTRODUCTION 

After destemming and eliminating stop-words, the training set consisted of 585 

different email documents containing more than 30,000 words including duplicates.  

Minimum word counts were set at 5, 10 and 15 words per document and run through our 

clue-probability program.  The number of clue words after destemming, elimination of 

stop-words, and changing of upper-case letters to lower-case letters ranged from 470 to 

1,866 over the different categories.  The top five keywords in conditional probability for 

three sample categories are shown below in Tables 9-11.  “Personal” is a very large 

category with lots of keywords and high probabilities.  “Fiscal” is a medium-sized 

category with some high-ranking clue words, and some important low ones.  “Requests” 

is a small-sized category with low-ranked key words. 

 
% Prob # in category (yes) # not in category (no) Word 

0.99 515                            5 hotmail 
0.98 97                              1 resort 
0.98   127                            2 sooners90 
0.96 64                              2 Love 
0.94   149                            9 her 

 
Table 9. Example Cluewords in Category Personal. 

 
% Prob # in category (yes) # not in category (no) Word 

0.92    36                                    3 ABC* 
0.51 23                                    22  fiscal 
0.27    15                                    39 money 
0.22 14                                    47  spend 
0.21 15                                    54  finance 

 
Table 10. Example Cluewords in Category Fiscal. 

 
% Prob # in category (yes) # not in category (no) Word 

0.53 15                               13 mimm 
0.50 8                                  8 laptop 
0.27 5                                 13 gear 
0.25 4                                 12 machine 
0.12 34                               230 request 

 
Table 11. Example Cluewords in Category Requests. 
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Our classifiers were tested upon 152 new, previously unseen email texts.  Table 

12 shows recall and precision for the test set.  Table 13 shows a confusion matrix of 19 

categories and the 152 test set documents.  This shows which categories were “confused” 

with one another and which categories were clearly identified.  

 

Category Recall Precision 
   
Classes 0.77 0.18 
Grades 1.00 0.05 
Personal 0.18 1.00 
3270 0.67 0.07 
BWD Mess 0.01 0.00 
Equipment 0.50 0.03 
Equipment Allowance 0.67 0.05 
Equipment Readiness 1.00 0.12 
Exercises 1.00 0.06 
Expeditor 0.50 0.06 
Fiscal 0.80 0.10 
General 1.00 0.05 
Maintenance 1.00 0.07 
Miscellaneous 0.80 0.18 
NBC 0.50 0.17 
Records Not enough 

records 
Not enough 

records 
Requests 0.80 0.11 
Shipboard Billeting 0.80 0.08 
Info_Tech 0.32 0.78 
   
Average 0.65 0.17 

 
Table 12. Results of Categorizing Test Set Documents.  With Subject Line Code Included. 
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 Category Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 Classes 113 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 
2 Grades 30 111 0 9 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 
3 Personal 4 0 110 0 0 0 0 0 0 0 0 0 0 0 38 0 0 0 0 
4 3270 0 0 8 29 0 16 0 0 0 0 0 0 10 40 0 0 30 0 19 
5 BWD Mess 0 0 60 0 37 0 0 0 0 0 0 0 0 55 0 0 0 0 0 
6 Equipment 4 0 29 0 0 21 15 15 0 0 0 0 18 20 29 0 0 0 0 
7 EqmntAll 0 0 0 0 0 20 40 21 11 0 0 0 11 30 0 0 0 0 20 

8 
EqmntRead 

0 2 0 0 0 30 29 42 20 0 7 14 0 0 8 0 0 0 0 

9 
Exercises 

0 0 0 0 0 20 25 15 38 10 0 0 0 30 0 14 0 0 0 
10 Expeditor 0 0 0 0 6 15 17 20 30 18 0 1 0 45 0 0 0 0 0 
11 Fiscal 0 0 0 0 0 16 0 0 0 0 71 30 25 10 0 0 0 0 0 
12 General 0 0 0 50 0 7 0 0 0 0 0 19 0 63 0 7 2 0 4 
13 Maintenance 0 0 0 0 0 42 0 0 12 0 0 0 28 52 0 0 18 0 0 
14 Miscellaneous 1 0 12 0 0 0 0 0 0 0 0 12 0 120 0 0 0 0 7 
15 NBC 0 0 60 0 0 6 3 4 0 0 0 0 0 70 9 0 0 0 0 
16 Records * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
17 Requests 0 0 40 0 0 20 0 15 0 0 13 17 0 0 0 0 47 0 0 
18 Sbrd Billeting 8 0 15 0 6 0 0 0 39 0 0 12 0 0 0 9 0 63 0 
19 InfoTech 70 0 60 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 10 

 
Table 13. 19x19 Confusion Matrix and Potential Category Clusters. 

* Not enough data to accurately categorize 
 
B. DATA ANALYSIS 

Results indicate that an average of 65% of all documents were correctly classified 

into their respective category.  Of the 19 categories, 15 had greater than 50% probability 

of being properly classified.  The remaining 4 categories were not properly classified for 

several reasons. In the case of categories #4 (Personal), and #19 (Info_Tech), these were 

frequently confused with one another and with category #14 (Miscellaneous).  For 

categories  #5 (BWD Mess) and #16 (Records) there were not enough examples to train 

on.  Category #19 (Info Tech)  was often confused with category #1 (Classes). Larger 

categories had better precision; smaller categories demonstrated higher recall.  Average 

recall rates were acceptable, but precision rates were disappointing and can be 

contributed to categories clustered together.   

Due to the unique nature of the corpus, each of the categories seemed to have 

certain cluewords that only helped it.  In some categories stop words could have been 

good discriminators, such as category #3 (Personal) where the words “can” and “do” 

frequently show up.   
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Results with double weighting of the document “Subject” line show minimal 

increase in overall success probability.  Table 14 shows actual number of words in 

categories as compared against the number of non-example documents.  The table 

identifies the low number of training examples for smaller categories such as #5 (BWD 

Mess). 

Category Name Actual # words in 
category (yes – examples) 

Actual # of words in category   
(no – examples) 

Classes 78,939 562,272 
Grades 25,952 617,491 
Personal 417,982 239,196 
3270 1,634 638,416 
BWD Mess 237 639,813 
Equipment 2126 637,924 
Equipment 
Allowance 

1945 638,105 

Equipment 
Readiness 

1901 638,149 

Exercises 481 639,569 
Expeditor 486 639,564 
Fiscal 3757 636,293 
General 538 639,512 
Maintenance 881 639,169 
Miscellaneous 3332 636,718 
NBC 685 639,365 
Records 65 639,985 
Requests 3233 640,050 
Shipboard 
Billeting 

1500 641,783 

Info_Tech 115,961 541,280 
 

Table 14. Actual Number of Words Identified for Positive Examples Versus Non-Examples. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This thesis examined automatic text categorization of email documents.  The use 

of keywords and their conditional probabilities was the primary method used.  Final 

recall and precision results were 65% and 17% respectively.  A stop-word list and 

destemmer program proved to be very helpful when dealing with text categorization.   

B. RECOMMENDATIONS 

This thesis could be extended by incorporating term phrases to improve 

categorization.  If possible, a more standardized corpus of text should be used with 

approximate equal number of documents per category.  A program to accurately strip out 

all HTML characters and other special characters for non-text would be helpful.  Finally, 

a program or method to deal with personal names might prove very helpful in some 

categories. 
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APPENDIX A.  CLUEWORDS SAMPLE OUTPUT 

0.03878220540933329 overall probability, 18146 yes examples, 449749 no 
examples,  
0.0 0 12 shape 
0.0 0 17 shall 
0.024 3 122 write 
0.0 0 72 friend 
0.0 0 37 certificate 
0.0 0 14 comfort 
0.0 0 17 netscape 
0.0 0 43 bwlogu 
0.00392156862745098 1 254 usmc 
0.0 0 14 considerate 
0.05834683954619125 36 581 monterey 
0.0 0 13 justin 
0.06666666666666667 6 84 here 
0.0 0 40 lejeun 
0.0 0 34 hell 
0.0 0 83 effect 
0.0 0 15 comment 
0.0 0 51 sans-serif 
0.0125 1 79 hear 
0.05782060785767235 78 1271 head 
0.0 0 17 friday 
0.0 0 17 urge 
0.06481481481481481 7 101 strategy 
0.06484641638225255 57 822 subject 
0.17073170731707318 7 34 interact 
0.0 0 188 Mike 
0.0 0 18 your-account 
0.0 0 11 extreme 
0.0 0 29 prodigy 
0.0 0 63 Fred 
0.06097560975609756 40 616 http-equiv 
0.0 0 38 script 
0.17391304347826086 4 19 before 
0.0 0 13 high-spee 
0.1111111111111111 2 16 amador 
0.0 0 62 Logue 
0.0 0 12 accommodate 
0.0 0 26 simply 
0.0 0 26 upon 
0.014492753623188406 1 68 federal 
0.0 0 45 false 
0.13333333333333333 2 13 adrian 
0.0 0 17 hidden 

 

** The list continues for up 38 pages. 
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APPENDIX B.  CLUEWORDS PROGRAM 

/** 
 * Title:          ClueWords 
 *  
 * Description:    This class performs two functions.  One is to take out  
 *     each non-stop word and then looks at two subdirectories of "yes" 
 *     and "no", find the conditional probabilities of "yes"  
 *     given the occurrence of a particular word.  Initial use is to 
 *    test against emails and try to categorize them appropriately.  
 *     
 *    Elements adapted from Dr. Neil Rowe's programs GetClueProbs  
 *    and CountWords.  
 * 
 * Copyright:    Copyright (c) 2002 
 * Company:    USMC NPS 
 * @author Scott R. Hall 
 * @version 1.0 
 */ 
  
import java.io.*; 
import java.util.*;  
  
 public class ClueWords  
 { 
  public static void main (String args[]) throws IOException  
  { 
  
  //---------------------------------------------------- 
  // Data Member Declarations 
  //---------------------------------------------------- 
   
  /** 
  * call Parser method.  Used only for testing. 
  */ 
   //  Parser ();  
     
  //           Mincount sets the mininum number of times that a word  
  // must appear in order to have its' probability calculated. 
   
    double Mincount = 10;//was 10 
     
  // An integer declaration 
    
   int j; 
   
   
  // Long integer data types for 4 items that allow better 
  // granularity for calculating probabilities.  
   
   long Oldcount, Count, wordyescount, wordnocount;  
   
  //        Integer declarations and assignment values. 
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   int yescount = 0; 
   int nocount = 0; 
   
  // Double real number declarations for 5 items that allow 
  // Standard Deviation and Probabilit ies to be displayed properly. 
   
   double yesratio, yesprob, Dev, Prob, SD; 
   
  // String characters declared to include a string tokenizer 
  // to help extract tokens from emails. 
   
   String Inputline, Word, Stopword; 
   StringTokenizer st; 
   
  // File 
   
   File Dir; 
   
  // Declaring and creating HashSet.  Implements Set using an  
  // internal hashtable.  Allows any type of object or null to  
  // be a member of the set.  There is no guarantee of order  
  // for the set elements.  There are no duplicates in a HashSet. 
   
   HashSet rchs = new HashSet();  
   
  // Within the Destemmer class call the hashKnownWords method 
  // and pass it results of the rchs. 
     
   Destemmer.hashKnownWords(rchs);  
   
  // Declaration and creation of hashmap.  Same thing as a Hashtable 
  // but methods are not synchronized. 
   
   HashMap hm = new HashMap(200000); 
   
  // Declarations below imported from CountWords program. 
     
   HashSet hsstop = new HashSet(1000); 
      FileReader fr1 = new FileReader("stopwords.txt");  
      BufferedReader br1 = new BufferedReader(fr1);  
      while ((Stopword = br1.readLine()) != null) hsstop.add(Stopword); 
  
  // Creating a new instance of the Directory object and passing 
  // it the contents of "yes" directory. 
   
   Dir = new File("yes"); 
   String Filelist [] = Dir.list();  
  
  // A "for" loop to go through "yes/" directory and read in  
  // files via buffered reader. 
   
   for (j=0; j<Filelist.length; j++) 
   {   
    FileReader fr = new FileReader("yes/" + Filelist[j]);  
    BufferedReader br = new BufferedReader(fr);  
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  // Inner "while" loop while the buffered reader is not empty(null) 
                                     // create a new String Tokenizer Object and tokenize based on the  

//      characters identified. 
    
    while ((Inputline = br.readLine()) != null) 
    { 

st = new StringTokenizer(Inputline," ,.;:`~^?!()[]{}_+=|\\\"<>/@#&*"); 
     
  // Another inner "while" loop that loops through each token while 
  // there are more tokens left to tokenize.  If the is not a number  
  // string than increment "yescount" and destem the word. 
  // 
       while (st.hasMoreTokens()) 
        { 
     Word = st.nextToken(); 

if ((Word.length()>1) && (!numberString(Word)) &&                      
(!hsstop.contains(Word))) 

      
{ 

      yescount++; 
      Word = Destemmer.destem(Word,rchs);  
        
      if (!hm.containsKey(Word))  
      { 
       hm.put(Word,new Long(1000000));  
      } 
      else 
      { 
        Oldcount = (Long)hm.get(Word)).longValue();  
        hm.put(Word,new Long(1000000+Oldcount));  
      }//end of last if statement 
     }//end of "yescount" if statement 
    }//end of second while statement 
   }//end of first while statement 
  fr.close();//close out of file reader 
  }//end of for statement  
   
   
  // Same statements except for no category. 
   
   
   
  Dir = new File("no");  
  String Filelist2 [] = Dir.list(); 
  for (j=0; j<Filelist2.length; j++) 
  { 
   FileReader fr2 = new FileReader("no/" + Filelist2[j]);  
   BufferedReader br2 = new BufferedReader(fr2);  
   while ((Inputline = br2.readLine()) != null) 
   { 
    st = new StringTokenizer(Inputline," ,.;:`~^?!()[]{}_+=|\\\"<>/@#&*"); 
    while (st.hasMoreTokens()) 
    { 
     Word = st.nextToken(); 

if ((Word.length()>1) && (!numberString(Word)) && 
(!hsstop.contains(Word))) 
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     { 
      nocount++; 
      Word = Destemmer.destem(Word,rchs);  
      if (!hm.containsKey(Word)) 
      {hm.put(Word,new Long(1));  
      } 
       

else 
      { 
          Oldcount = ((Long)hm.get(Word)).longValue();  
           hm.put(Word,new Long(1+Oldcount));  
      }  
     }  
    }  
   } 
   fr2.close();  
  } 
 
   
  PrintWriter fileout = new PrintWriter(new FileWriter("clueprobs.out"));  
  if (nocount > 0) yesratio = (double)yescount/(double)nocount; 
  else yesratio = 2.0*(double)yescount; 
  yesprob = (double)yescount/(double)(yescount+nocount);  

fileout.println(yesprob + " overall probability, " + yescount + " yes examples, " + nocount 
+ " no examples, ");  

  Set set = hm.entrySet();  
  Iterator i = set.iterator(); 
   
  while (i.hasNext()) 
  { 
   Map.Entry me = (Map.Entry)i.next(); 
   Word = (String)me.getKey(); 
   Count = ((Long)me.getValue()).longValue();  
   wordnocount = Count % 1000000; 
   wordyescount = (Count-wordnocount)/1000000; 
   Dev = (double)wordyescount-(yesratio*(double)wordnocount);  
   Prob = (double)wordyescount/(double)(wordyescount+wordnocount);  
   SD = Math.sqrt(1.0/((1.0/(double)wordyescount)+(1.0/(double)wordnocount)));  

          if (((wordyescount+wordnocount)>Mincount) & (Math.abs(Dev) > SD)) 
    fileout.println(Prob + " " + wordyescount + " " + wordnocount  
     + " " + Word);     
      
  } 
  fileout.close(); 
 } 
  
   
  
 /* Says whether a string of characters represents an integer or decimal */ 
 private static boolean numberString (String S) 
 { 
  boolean numberflag = false; 
  int N = S.length(); 
  if (N > 0) 
  { 
   int i=0; 
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   if (S.charAt(0) == '-') i=1; 
   char C; 
   numberflag = true; 
   while ((numberflag) & (i<N)) 
   { 
    C = S.charAt(i); 
    numberflag = (((C >= '0') & (C <= '9')) | (C == '.')); 
    i++;  
   };  
  }; 
  return numberflag;  
   
 } 
 
//For now I am remarking this call out 
/* 
 public static void Parser () 
 { 
  Parser parser = new Parser ("yessupplyfiscal.txt");  
 } 
*/  
} 
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APPENDIX C.  RATEDOCS PROGRAM  

// Given a directory "unknown" of files of unknown relevance, rates 
// each document for the appearance of clues in the clueprobs.out file. 
// Author: Neil C. Rowe, 9/01.  Modified with permission by Scott R. Hall 
import java.io.*; 
import java.util.*; 
 
class RateDocs 
{ 
 public static void main (String args[]) throws IOException 
 { 
  int j, k1, k2, Wordcount, M; 
  double yesratio, Dev, Prob, SD, Average, Total;  
  Double DProb; 
  String Inputline, Word, Probstring; 
  StringTokenizer st; 
  File Dir; 
  HashSet rchs = new HashSet();  
  Destemmer.hashKnownWords(rchs);  
  HashMap hm = new HashMap(200000); 
  FileReader fr; 
  BufferedReader br; 
  String tempString = new String ();//temporary hold string object for subject line 
  String subjectLine = new String ();  
  boolean foundSubj = false;//flag set to find subject line 
  FileReader frprobs = new FileReader("clueprobs.out 
  BufferedReader brprobs = new BufferedReader(frprobs);  
  Inputline = brprobs.readLine();  
  k2 = Inputline.lastIndexOf(' ');  
  k1 = Inputline.lastIndexOf(' ',k2-1); 
  double Totalprob = Double.valueOf(Inputline.substring(k1+1,k2)).doubleValue();  
  while ((Inputline = brprobs.readLine()) != null) 
  { 
   k1 = Inputline.indexOf(' ');  
   k2 = Inputline.lastIndexOf(' ');  
   M = Inputline.length(); 
   Probstring = Inputline.substring(0,k1); 
   Prob = (Double.valueOf(Probstring).doubleValue()) - Totalprob; 
   Word = Inputline.substring(k2+1,Inputline.length());  
   hm.put(Word, new Double(Prob));  
  } 
  frprobs.close(); 
     
  Dir = new File("unknown");// Begin unknown directory here 
  String Filelist [] = Dir.list();  
  for (j=0; j<Filelist.length; j++) 
  { 
   Wordcount = 0; 
   Total = 0.0; 
   fr = new FileReader("unknown/" + Filelist[j]);  
   br = new BufferedReader(fr);  
   while ((Inputline = br.readLine()) != null) 
   { 
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    st = new StringTokenizer(Inputline," ,.;:`~^?!()[]{}_+=|\\\"<>/@#&*"); 
    boolean foundSubj = false; 
    //use "Subj:" for html 
    if (!foundSubj && Inputline.indexOf("Subject:")  >= 0 ) 
    { 
       subjectLine = Inputline; 
       foundSubj = true;//change flag to true 
       Wordcount++;  
    
     
   PrintWriter fileout = new PrintWriter(new FileWriter("RATEDOCS.out"));  
 
    while (st.hasMoreTokens()) 
    { 
     Word = st.nextToken(); 
     if ((Word.length()>1) && (!numberString(Word))) 
     { 
            
       Word = Destemmer.destem(Word,rchs);  
       Wordcount++; 
       if (hm.containsKey(Word)) 
      { 
         DProb = (Double)hm.get(Word); 
         System.out.println(DProb + " retrieved for " + Word); 
         Total = Total+(DProb.doubleValue());  
                fileout.println(DProb + " retrieved for " + Word);    
       } 
       
     }  
       
     }  
    
   fileout.close(); 
   }//outer if statement for subject line find    
 
  } //while close 
 
   fr.close(); 
   Average = Total/(double)Wordcount; 
   System.out.println(Average + " strength for document " + Filelist[j]);  
  
 
  }  
 } 
 
 /* Says whether a string of characters represents an integer or decimal */ 
 private static boolean numberString (String S) 
 { 
  boolean numberflag = false; 
  int N = S.length(); 
  if (N > 0) 
  { 
   int i=0; 
   if (S.charAt(0) == '-') i=1; 
   char C; 
   numberflag = true; 
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   while ((numberflag) & (i<N)) 
   { 
    C = S.charAt(i); 
    numberflag = (((C >= '0') & (C <= '9')) | (C == '.')); 
    i++;  
   };  
  }; 
  return numberflag;  
 } 
} 
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APPENDIX D.  SAMPLE RUN FROM RATE DOCS  

Test Set  - Rate Docs for grades run against clueprobs 
 
0.9326399520216222 retrieved for qpr 
0.9326399520216222 retrieved for qpr 
0.9326399520216222 retrieved for qpr 
0.9326399520216222 retrieved for qpr 
0.9326399520216222 retrieved for qpr 
0.9326399520216222 retrieved for qpr 
0.848555867937538 retrieved for nw3230 
0.6519746713563415 retrieved for logistic 
0.6172012256239916 retrieved for grade 
0.6172012256239916 retrieved for grade 
0.6172012256239916 retrieved for grade 
0.6172012256239916 retrieved for grade 
0.6172012256239916 retrieved for grade 
0.6172012256239916 retrieved for grade 
0.6172012256239916 retrieved for grade 
0.6172012256239916 retrieved for grade 
0.6172012256239916 retrieved for grade 
0.6172012256239916 retrieved for grade 
0.6172012256239916 retrieved for grade 
0.6172012256239916 retrieved for grade 

* Document continues for up to 38 pages. 
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APPENDIX E.  PARSER PROGRAM 

 
/** 
 * Title:          Parser 
 * Description:     (1) Reads a text file (emails saved as *.txt file) 
 *               (2) Finds Subject line and parses it to find keywords 
 *               (3) Reads entire file and counts the frequncy of occurance of  key words in file 
 *                (4) Prints subject line keywords & freqs to screen 
 *  
 * Some elements adapted from Steve Simmon’s Parser program 
 * @version 1.0 
 */ 
 
import java.io.*; 
import java.util.*; 
 
public class Parser { 
 
   //Class Variables (Global) 
   String fileName = new String();  
   StringBuffer filetext = new StringBuffer();  
   String subjectLine = new String();  
   String keyClueWord = new String();  
 
   Vector subjKeyWords = new Vector();  
 
   //******************************************************************** 
   // Constructor 
  //******************************************************************** 
 
   public Parser(String fileInput) { 
 
      //get the filename from the commandline argument 
      fileName = fileInput; 
 
      ReadFile(); 
 
      ParseSubject();  
 
      ParseEmailText();  
    
    //ReadClueProbs();  
 
   }  //end Constructor 
 
 
   //********************************************************************** 
  // Method:  ReadFile 
 //********************************************************************** 
   void ReadFile(){ 
 
      String tempString = new String();  
      boolean foundSubj = false; 
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      try{ 
 
         BufferedReader fileReader = new BufferedReader(new FileReader(fileName)); 

         while(fileReader.ready()) 
         { 

 
              //Read each line of the email text file & store in string buffer 
              tempString = fileReader.readLine();  
 
              //make all lowercase 
              tempString = tempString.toLowerCase();  
 
 
              //Find subject line, change it from just "subj" 
              If(!foundSubj && tempString.indexOf("subj") >= 0 ) 

{ 
 
                subjectLine = tempString; 
                foundSubj = true; 
 
                //Debug print out 
                 System.out.println("Subject line: " + subjectLine );  
 
              } 
 
            //add line read to String Buffer, goes to frequency count 
            filetext.append(tempString); 
         }  //end While 
 
      }  //end try stmt  
 
      //Opening a file via FileReader object can throw FileNotFound Exception 
      catch(FileNotFoundException fileEX){ 
      } 
 
      //Reading text in from a file can throw an IOException 
      catch(IOException IOEX){ 
      } 
 
   }  //end method ReadFile 
 
 
 
   //********************************************************************** 
  // Method:  ParseSubject 
  //********************************************************************** 
   void ParseSubject() 
   { 
 
      //create a String Tokenizer from the string that is the subject line 
      //default tokinizing is to break string into words 
      StringTokenizer subjectWords = new StringTokenizer(subjectLine);  
      String tempString = new String();  
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      while (subjectWords.hasMoreTokens()) 
       { 
 
          tempString = subjectWords.nextToken();  
 
          //Debug print out 
          System.out.println("Token: " + tempString );  
 
          //check to see if word id a key word; 
          //if the word is a keyword, add to vector 
          if(KeyWord(tempString)) 

{ 
    
   KeyWord temp = new KeyWord(tempString);  
  subjKeyWords.add(temp); 
   
          } 
 
      }  //end While 
 
   }  //end method ParseSubject 
 
 
 
   //********************************************************************** 
  // Method:  KeyWord 
  //********************************************************************** 
      boolean KeyWord(String text){ 
      boolean IsKeyWord = true; 
      String smallWords[] = {"and", "the", "a", "an", "if", "it", "is", "this", 
                             "subject", "subj", "re", ":", ".", "?", "!", ",", " ", "to", "FW:", 
        "fwd:"}; 
      String tempString = new String();  
 
      for(int i = 0; i < smallWords.length; i++) 
      { 
          tempString = smallWords[i];  
 

         if(text.startsWith(smallWords[i])) 
         { 

                 IsKeyWord = false; 
                 break; 
                   } 
 
      }  //end for loop 
 
      return IsKeyWord; 
 
   }  //end method KeyWord 
 
   //********************************************************************** 
  // Method:  ParseEmailText  
  //********************************************************************** 
   void ParseEmailText() 
   { 
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      Iterator KeyWordITR = subjKeyWords.iterator();  
      KeyWord tempKeyWord = new KeyWord("txt");//dummy variable   
      int counter = 1; 
      int keyWordFreq = 0; 
      while(KeyWordITR.hasNext()) 
       { 
         //Get keyword from vector keywords in subject 
    tempKeyWord = (KeyWord) KeyWordITR.next();  
         //reset Freq 

   keyWordFreq = 0; 
 
         //Get Freq for this word 
    keyWordFreq = getFrequency(tempKeyWord.keyword, filetext.toString());  
                tempKeyWord.frequency = keyWordFreq; 
    if (KeyWordFreq > 2)  
       { 
         
         //print out result to screen 
                  System.out.println("Subject Keyword " + counter++ + ":  " + tempKeyWord.keyword + 
                       "  Frequency:  " + tempKeyWord.frequency);  
 
       } //end while stmt  
   }  // end Method ParseEmailText  
 
   //********************************************************************** 
  // Method:  getFrequency 
  //********************************************************************** 
   int getFrequency(String keyWord, String file) 
    { 
      int count = 0; 
      int index = -1; 
      index = file.indexOf(keyWord); 
      //1st occurance of keyword found 
      if(index >= 0) 
      { 
 
         //increment count and make recursive call to this function with remaining 
         //text less all words up to and including the found keyword occurance 
         count = 1 + getFrequency(keyWord, file.substring(index + keyWord.length())); 
 
      } 
 
      return count; 
   } 
    
   //********************************************************************** 
  // Method:  main 
 //********************************************************************** 
   public static void main(String[] args)  
  { 
        Parser parser1 = new Parser("testparser.txt");//was args[0] or"cs4556_8.txt" 
  } 
 
} 
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