
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2002-09

Automatic text categorization applied to E-mail

Hall, Scott R.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/5142

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

AUTOMATIC TEXT CATEGORIZATION APPLIED TO
E-MAIL

by

Scott R. Hall

September 2002

 Thesis Advisor: Neil Rowe
 Second Reader: Thomas Otani

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Automatic Text Categorization Applied to E-Mail

6. AUTHOR(S) Hall, Scott R.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The author developed an automatic text categorization approach and investigated its application upon
categorizing emails. The categorization approach is derived from an instanced-based learning method that
explores conditional probabilities of particular words. The effectiveness of the author’s categorization approach
using collections from a set of emails is then evaluated and assigned a numerical score based upon precision and
recall. Precision was 65% while recall was 17%. The author’s experiments indicated automatic categorization of
incoming emails at the client level can categorize email, but is difficult when not using a standardized corpus.
Word frequency is valuable, but should be used in combination with other methods such as phrase extraction for a
higher level of performance.

15. NUMBER OF
PAGES

60

14. SUBJECT TERMS Text Categorization, Automatic Classification, Java Text Processing

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AUTOMATIC TEXT CATEGORIZATION APPLIED TO E-MAIL

Scott R. Hall

Major, United States Marine Corps
B.B.A., University of Oklahoma, 1990

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2002

Author: Scott R. Hall

Approved by: Neil Rowe

Thesis Advisor

Thomas Otani
Second Reader

LCDR Chris Eagle
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The author developed an automatic text categorization approach and investigated

its application upon categorizing emails. The categorization approach is derived from an

instanced-based learning method that explores conditional probabilities of particular

words. The effectiveness of the author’s categorization approach using collections from

a set of emails is then evaluated and assigned a numerical score based upon precision and

recall. Precision was 65% while recall was 17%. The author’s experiments indicated

automatic categorization of incoming emails at the client level can categorize email, but

is difficult when not using a standardized corpus. Word frequency is valuable, but should

be used in combination with other methods such as phrase extraction for a higher level of

performance.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. THESIS OBJECTIVE ...1
C. OUTLINE OF THESIS ...2

II. OTHER WORK ON TEXT CATEGORIZATION..3
A. INTRODUCTION..3
B. LITERATURE REVIEW ...3

III. DESCRIPTION OF APPLICATION ..7
A. DATA ..7
B. EVALUATION MEASURES ...11
C. METHODOLOGY ..12

IV. DESCRIPTION OF TEXT CATEGORIZER PROGRAM15
A. PROGRAM STRUCTURE...15
B. PROGRAM PERFORMANCE..15

V. EXPERIMENT RESULTS ...19
A. INTRODUCTION..19
B. DATA ANALYSIS ...21

VI. CONCLUSIONS AND RECOMMENDATIONS...23
A. CONCLUSIONS ..23
B. RECOMMENDATIONS...23

APPENDIX A. CLUEWORDS SAMPLE OUTPUT ..25

APPENDIX B. CLUEWORDS PROGRAM..27

APPENDIX C. RATEDOCS PROGRAM..33

APPENDIX D. SAMPLE RUN FROM RATE DOCS ..37

APPENDIX E. PARSER PROGRAM ..39

LIST OF REFERENCES ..43

INITIAL DISTRIBUTION LIST...45

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Architecture for the Program. ..16

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Results for Parameter Selection in (Lam, Ruiz, Srinivasan 1999).4
Table 2. Training and Testing Data Characteristics...7
Table 3. Category Descriptions and Possible Keywords Identifying These

Categories...10
Table 4. Number of Texts Per Category in Training and Test Sets.11
Table 5. Evaluation Measures. ...11
Table 6. Porter Stemming Algorithm Behavior. ..12
Table 7. Sample Word Frequency Data: Frequencies from 336,310 Documents in

the 1GB TREC Volume 3 Corpus 125,720,891 Total Word Occurrences;
508,209 Unique Words. ...13

Table 8. Processing Time. ..17
Table 9. Example Cluewords in Category Personal. ...19
Table 10. Example Cluewords in Category Fiscal...19
Table 11. Example Cluewords in Category Requests. ...19
Table 12. Results of Categorizing Test Set Documents. With Subject Line Code

Included..20
Table 13. 19x19 Confusion Matrix and Potential Category Clusters.21
Table 14. Actual Number of Words Identified for Positive Examples Versus Non-

Examples. ...22

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

The author wishes to express a special thanks to Dr. Neil Rowe whose

encouragement, intelligent counsel, and practical suggestions were crucial to the

successful outcome of this Graduate Thesis. Appreciation is also due to Dr. Thomas

Otani for his teaching Java to the author from the ground up.

This statement of acknowledgement would be incomplete without a formal

expression of sincere appreciation and gratitude of the author’s friends and family for

providing the assistance and encouragement needed to complete the task. A special

thanks is due to Steve Simmons for the numerous ad-hoc technical discussions and

tackling of the programming problems that helped this authors understanding.

Finally, I would like to say to my wife, Michelle; I love you and thank you for the

dedicated support you have given me throughout the writing of this thesis. To my

daughter Abigail you have given me the inspiration to finish so we can play together, I

love you. As a professing Christian I would be remiss if I did not say thank you Lord.

1

I. INTRODUCTION

A. BACKGROUND

Email has become the standard for fast, inexpensive and easily accessible

communication. The explosive growth of email is affecting everyone in the Department

of Defense as well as the civilian work environment. Its largest impact is on management

and record-keeping personnel. Typical military users receive between 30 – 70 emails a

day depending on their rank and billet (Marsan, 2002). If one attaches spreadsheets,

documents, presentations, graphics and executable programs then email gains even more

value. Because of its ease of use, email has become an integral part of military-

organization daily operations. All of the information in unclassified and classified emails

is also a treasure trove of operational data.

B. THESIS OBJECTIVE

This thesis seeks to improve the organization of individual user’s email by

implementing an automated categorizer for email. The author seeks to try to eliminate

the large amounts of manual email categorization that is currently done by many users.

This could be useful to military personnel due to efficiency, privacy, and high-turnover

concerns. Turnover of military personnel happens every 2-3 years and frequently old

email is simply deleted rather than organized and used to document valuable operational

processes and data. Generally speaking within the DoD there are no formal filing or

retention policies for email. There are guidelines such as the DoD Directive 5012.2, but

these deal with large-scale records management.

Old email messages are required for numerous purposes. These include day-to-

day business operations, and requests for, historical financial information, activities,

logistics, etc. When each individual decides which email messages to retain or delete,

much information is hidden from the rest of the organization. Email storage of this kind

is scattered in personal archives. Although servers can store these messages, the number

of messages is constantly increasing. If backup tapes are not kept for retrieving old

messages, and an individual goes on leave or is unavailable, critical information in his

email is unavailable. This suggests organizational- level archiving and categorizing, but

what can be done at the user level to help organize this information?

2

With the average user manually archiving an estimated 300 megabytes (MB) of

email a year, categorizing methods can vary dramatically in their effectiveness and

overall organization (Ferris, 1999). Our primary goal of this research was to survey

existing methods and determine a method or a combination of methods that would work

well for email categorization. A secondary goal of this research was to create a tool to

accurately and quickly categorize and archive email messages at the local user level.

This thesis will attempt to answer the following questions:

• Can machine- learning programs accurately categorize e-mail?

• What are the strengths and weaknesses of automated categorizers?

C. OUTLINE OF THESIS

Chapter II describes previous attempts at automated categorizing and other similar

problems in text retrieval. Chapter III gives a description of the structure and

components of the program. A detailed description of the data and corpus is also given.

Chapter IV provides a description of a categorization program that we developed.

Chapter V discusses the program’s performance and the accuracy of its results. Chapter

VI reviews the program’s achievements and major weaknesses.

3

II. OTHER WORK ON TEXT CATEGORIZATION

A. INTRODUCTION

Text categorization has become a very active research topic over the last few

years. Many of the approaches seek to categorize documents of the Internet. In this

thesis email is the document and specifically the text within the email. Categories can be

summarized using phrases, words, or numerically. Traditionally, a domain expert,

usually a librarian, does text categorization manually. Documents are read by the expert

and then placed in the appropriate category. To eliminate the large amount of manual

effort required, we could use automatic categorization that learns automatically from

using training examples. The classic approach is to assign weights to particular words in

particular categories; the inferred category of a document is the one with the highest

weighted sum (Witten, Frank, 2000).

Two categorization techniques used are instance-based learning and Naïve-Bayes

probabilistic classification. Instance-based learning methods begin with a particular

example and generalize it to cover other similar examples in the same category. The

Naïve-Bayes approach uses the conditional probabilities of categories given a word to

estimate the probabilities of categories given an email document; this model assumes

word independence. Typically a list of “stop words” to be ignored and some sort of

destemming algorithm are used to help normalize the word list.

B. LITERATURE REVIEW

Lam, Ruiz, and Srinivasan investigated whether automatic categorization will

have better retrieval performance than that achieved using manual categorization applied

to medical documents (Lam, Ruiz, Srinivasan 1999). They analyzed the retrieval

performance on test queries to gain insights on the interaction of their categorizer and text

retrieval. The first part of their work dealt with automatic categorization including a

category-extraction process. For their test documents they use a corpus of medical

documents from the MEDLINE database that is referred to as the HERSH corpus.

The authors ran a series of experiments on parameter selection to provide a metric

and categorization results. Their results are broken down into category and document

4

perspectives. The category perspective results are related to sizes of categories ranging

from 10 to 60 categories. Three different parameters were tested: C0, C35 and C50. C0

used all manually assigned categories that existed in the training set and test set. C35 and

C50 limit the number of categories to those that have a document frequency greater than

35 or 50 per category. The document frequency is the number of documents that a

specific category is assigned to. The F1 score is a weighted combination of recall and

precision, with the scores being averaged to determine a mean. Their results for

parameter selection can be seen in Table 1.

Parameter selection based
on training set

Run

of
categories

F1 score

N M

C0
C35
C50

641
58
43

0.258
0.468
0.509

5
5
30

50
40
20

Table 1. Results for Parameter Selection in (Lam, Ruiz, Srinivasan 1999).

The results indicate that as the frequency threshold on the category set increases,

the mean F1 score improves. N represents the number of documents while M was the

number of categories.

Yang did a comparative evaluation of statistical approaches to text categorization

(Yang, 1998). The author uses several versions of the Reuters newswire corpus of

20,000 documents to evaluate the categorization methods of k-nearest neighbors, simple

word matching, decision trees, Naïve-Bayes, inductive-rule learning in disjunctive

normal form, neural networks, Rocchio, linear least-squares fit, and “sleeping experts”.

The authors found that linear least squares fit performed best.

In addition to experimenting with thresholding techniques, Yang concluded that

variability on the performance of classifiers with collection is common. Although the

Word approach, which looks at single word frequency, had increased performance when

changing from a labeled to an unlabeled corpus, it was still out performed by other

methods such as kNN and LLSF.

5

Moens and Dumortier applied text categorization to magazine articles to study the

effects of selection of feature words and proper names (Marie-Francine, Dumortier,

2000). The authors use a standardized approach of stop-word removal and then select

keywords by applying statistical weights to the remaining words after stop words are

taken out. For proper names, words with capitalization are given a heavier weighting.

Terms with a calculated weight above 0.4 conditional probability are selected. The

authors also apply the technique of “zoning”, which is the selection of word examples

that are in close proximity to other word examples within the document. The results of

the Moens and Dumortier compare a Bayesian independence cla ssifier to the Rocchio

algorithm and a X2 algorithm. The X2 algorithm is used to test how closely a set of

observed frequencies corresponds to a set of expected frequencies. The observed

frequencies are the number of texts relevant or non-relevant for the text category that

contain the feature word. The authors conclude that the X2 algorithm worked best with a

recall of 0.73 and precision of 0.64 versus the Bayesian method recall of 0.58 and

precision of 0.61 and the Rocchio algorithm recall of 0.64 and precision of 0.57.

Salton and Buckley propose a similar method to show how similar one document

is to a query document by statistically weighting terms within the document (Salton,

Buckley, 1988). The authors compare results of eight different term-weighting methods

on different collections of documents. They make recommendations on query and

document vectors concerning the term-frequency component, the collection frequency

and the normalization component. The authors conclude that for short queries each term

is important and query-term weights are preferred. When dealing with document vectors

the authors conclude that for technical vocabulary, an enhanced frequency-weighting

scheme should be used which places terms automatically between 0.5 and 1.0. Our

application involves short technical documents and can use this approach by using

individual term weighting rather than using a similarity calculation.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

III. DESCRIPTION OF APPLICATION

In this section we describe our application, and present an algorithm for

categorizing email documents using a probabilistic model. The algorithm uses count

data, the frequency of the terms in a document. Our approach relies on keyword clues. A

training process identifies categories for new documents from pre-categorized examples.

The categorization technique used in the algorithm is a linear numeric prediction model

(Witten, Frank, 2000).

A. DATA

A total of 737 emails were used to train and test the categorizer. Table 3 provides

the data characteristics of the emails. Some emails were previously saved with an

“.html” extension and others were saved with a “.txt” extension. HTML tags were

identified and included in the stop-word list. The collection of emails was from the

author’s personal work archives. Approximately 20% pertain to the authors experience

as a Supply Officer; the remaining 80% were collected during the author’s experience as

a graduate student.

Number of emails 737

Total number of words in text corpus 31,593

Total number of words after destemming and stopword
removal

20,115

Total number of unique words after destemming,
stopword removal and extraction of HTML tags and
other special characters

~ 12,000

Number of words per email document

45 -1082

Table 2. Training and Testing Data Characteristics.

Table 3 shows the specific category descriptions and example relevant words

which the author thinks the program should choose as keyword clues relating to a

category. The author identified these categories by placing them in logical categories

8

according to their content. Except for categories #4, #5, #10, #15, and #17, the categories

could be applied to other military-service emails as well as civilian-business emails.

Category # 1: Classes Emails with administrative course material.
Possible Key Words class, info, course info, homework, homework problems, answers

Category # 2: Grades Emails with information about grades and transcripts.
Possible Key Words grades, registrar, python, final grade, homework grade, test grade

Category # 3: Personal Emails with information received from the author’s family members

and other matters he deemed not directly connected to his work
environment.

Possible Key Words trip, Michelle, Abby, love, usmc, thanks, dear

Category # 4: 3270 Emails dealing with connectivity problems to a mainframe computer

using 3270 emulation software.
Possible Key Words 3270, ACID, password, connectivity, lack, mainframe, service
 (ACID – access control identification)

Category # 5: Bwd Mess Emails that involved the authors job as the Marine Officer in charge of

collecting wardroom dues onboard the USS Belleauwood from 11/98-
6/99.

Possible Key Words money, payment, dues, mess, receipt, check

Category # 6: Equipment Emails that dealt with equipment issues.
Possible Key Words swap, equipment, truck, weapons, parts, lead-time, fix, gear

Category # 7: Equipment
Allowance

Emails that deal with equipment allowances and what a unit was
reporting to have.

Possible Key Words OH, on-hand, own, equipment, T/O, temp, shortage, overage
 (OH and T/O – stand for on hand and table of organization, which is

the structuring of a unit)

Category # 8: Equipment
Readiness

Emails that pertain to the physical condition of a piece of equipment
and whether it was working properly or not.

Possible Key Words maintenance, parts, deadline, fix, repair, leadtime, running, MIMMS
 (Marine Corps Integrated Maintenance Mgt. System)

9

Category # 9: Exercises Emails that pertain to military exercises the author partook in and
various problems that he resolved or worked on.

Possible Key Words Cobra-Gold, billeting, exercise, funding, travel, planning, meeting,
Y2K

Category # 10: Expeditor Emails that pertain to a person whose job involved the explicit

tracking of equipment through the transportation pipeline.
Possible Key Words tracking, equipment, package, arrival, Carl, time, where

Category # 11: Fiscal Emails concerning payment and disbursal matters, contracts, and

equipment receipts.
Possible Key Words payment, due, money, SABRS, JON, financial, authority
 (SABRS – standard accounting and budgeting requirement system;

JON – job order number)

Category # 12: General Emails concerning general administrative purposes.
Possible Key Words administrative, requirement, meeting, turn- in, due

Category # 13:
Maintenance

Emails that pertain to the physical condition of a piece of equipment,
whether it was working properly or not, and the parts status for a piece
of equipment.

Possible Key Words maintenance, parts, deadline, fix, repair, lead-time, running, MIMMS,
status, up

 (MIMMS - Marine Corps Integrated Maintenance Mgt. System)

Category # 14:
Miscellaneous

Emails that were of mixed purposes. They are primarily differentiated
from category #12 by the variety within each email and that category
#12 had a general administrative theme.

Possible Key Words odd, here, fun, get, read, keep, future, misc

Category # 15: NBC Emails that involved Nuclear, Biological or Chemical (NBC) supply

issues.
Possible Key Words mask, parts, atropine, injector, NBC, filter, gas, chamber

10

Category # 16: records Emails concerning supply record administration issues.
Possible Key Words CMR, on-hand, drop, add, quantity, description, account, inventory,

count
 (CMR – consolidated memorandum receipt)

Category # 17: requests Emails concerning supply requests for equipment or the purchasing of

administration supplies.
Possible Key Words computer, request, get, date, buy, purchase, money, contract

Category # 18: shipboard
billeting

Emails concerning issues involving billeting or berthing for Marine
Officers on board the USS Belleauwood. Most emails revolve around
room assignments.

Possible Key Words room, assignment, billeting, berthing, Belleauwood, officer,
assignment

Category # 19: tech info Emails that include technical issues focused around the area of

computer science. This area was differentiated from category # 1 by
its lack of specificity in many cases.

Possible Key Words networking, computer, artificial, intelligence, software, web, Internet

Table 3. Category Descriptions and Possible Keywords Identifying These Categories.

The exact number of texts used for each category in the training and test sets are

given in Table 4 below. The training and test sets were formed by placing 80% of each

category into the training set, and the remaining 20% into the test set. A constraint was

the limited number of examples in some of the categories. As with much text

categorization, a central problem is the lack of standard data collections.

11

Category Number of email texts for
the training set

Number of email texts for
the test set

Shipboard billeting
Requests
Records
NBC
Miscellaneous
Maintenance
General
Fiscal
Expeditor
Exercises
Equipment Readiness
Equipment Allowances
Equipment
BWD Mess
3270
Personal
Grades
Classes
Tech Info

Total

(Total Emails: 737)

13
20

 2
7

17
4
4
20
5
6
11
8
11
3
9

242
22
104
88

585

4
5
0
2
4
2
1
4
2
2
3
3
2
0
3
61
6
26
22

152

Table 4. Number of Texts Per Category in Training and Test Sets.

B. EVALUATION MEASURES

The author uses conventional measures of recall and precision to measure

categorization accuracy. They are computed by selecting the highest value for the

returned email:

recall =

emails correctly assigned to a category
 emails in a category

precision = emails correctly assigned to a category
 emails assigned to a category

Table 5. Evaluation Measures.

12

The author also displays the results in the form of a two 19x19 confusion matrices

that show the true categories plotted against actual categories chosen after being run

through our categorizer.

C. METHODOLOGY

Given an email document, an independent binary classifier compares values and

chooses the single category of highest value. Two methods of preprocessing text are

used. First a word “destemmer” algorithm is used (Rowe, 1998). The algorithm removes

suffixes on an English word to regularize its forms. A sample behavior of Porter’s

stemming algorithm can be seen in Table 6 below:

Word Porter Stemming Algorithm
believes believ
working work
starting start
playfully play

Table 6. Porter Stemming Algorithm Behavior.

In addition to destemming words, a “stop word” removal list is used (Rowe,

1998). The stop-word list consists of 700 common words such as “a”, “and”, “the”, “of

”, etc, that are generally non- informative and can be removed to improve categorization.

Some html tags and special characters were also added to the stop-word list to eliminate

redundant non-useful characters such as BR, TR, and other commonly used markup tags.

Two of the most common words, “of ” and “the”, account for 10% of word occurrences

in most documents (Mooney, 2002). Sample stop word frequencies can be seen in Table

7.

13

Frequent word Number of occurrences Percentage of Total
the 7,398,934 5.9
of 3,893,790 3.1
to 3,364,653 2.7

and 3,320,687 2.6
in 2,311,785 1.8
is 1,559,147 1.2
for 1,313,516 1.0
The 1,144,860 0.9
that 1,066,503 0.8
said 1,027,713 0.8

Table 7. Sample Word Frequency Data: Frequencies from 336,310 Documents in the 1GB

TREC Volume 3 Corpus 125,720,891 Total Word Occurrences; 508,209 Unique Words.

14

THIS PAGE INTENTIONALLY LEFT BLANK

15

IV. DESCRIPTION OF TEXT CATEGORIZER PROGRAM

A. PROGRAM STRUCTURE

The text categorizer was written in Java. The overall architecture for the program

can be seen in Figure 1. The program starts by accepting email documents in text

document format. The training set is manually categorized and then both sets are

tokenized. The email document is then run through a destemming program and removal

of any of the 700 stop words is done. All capitalized letters are made into lower case.

The training set is used in the calculation of clue probabilities. If a word remains after

stop-word removal it must appear a minimum of 10 times to have its probability

calculated. Additionally, probabilities are calculated by viewing two subdirectories

labeled, “yes” and “no” and finding the conditional probability of a “yes” given the

occurrence of particular. The test set involves the calculation of 19 weighted sums for

each document.

The “ClueWords” program was adapted with minor changes from another

program, “GetClueProbs” (Rowe, 1998). The program was modified to extract stop

words. The RateDocs program was modified to check for the “Subject” line of an email

and increment the overall word count. The “RateDocs” program takes the weighted sum

of the number of occurrences of each clueword, and then chooses the category of highest

total weight.

B. PROGRAM PERFORMANCE

All code was written in Java using JDK1.3.1_02 Java Virtual Machine release.

The programs were executed on a Pentium II Processor Intel MMX chip running

Windows 98 with 160 MB of RAM. Table 8 shows processing time.

16

Email training set

Destemming

Stop Words
Removed

Tokenization

Calculate Conditional Word
Probabilities

Store Conditional Word
Probabilities

Actions Performed in dotted lined box
are performed by ClueProbs program.

manual categorization

Email test set

Destemming

Stop Words
Removed

Tokenization

Calculate Document Total Weight Per
Category

Store Document Weights
Per Category

input compared

Actions Performed in dotted lined box
are performed by RateDocs program.

Email training set

Destemming

Stop Words
Removed

Tokenization

Calculate Conditional Word
Probabilities

Store Conditional Word
Probabilities

Actions Performed in dotted lined box
are performed by ClueProbs program.

manual categorization

Email test set

Destemming

Stop Words
Removed

Tokenization

Calculate Document Total Weight Per
Category

Store Document Weights
Per Category

input compared

Actions Performed in dotted lined box
are performed by RateDocs program.

Figure 1. Architecture for the Program.

17

Train/Test Number of documents Real total time
in seconds

Real time
Per

Document
in seconds

Training 585 225 4.2
Test 152 165 0.9

Table 8. Processing Time.

18

THIS PAGE INTENTIONALLY LEFT BLANK

19

V. EXPERIMENT RESULTS

A. INTRODUCTION

After destemming and eliminating stop-words, the training set consisted of 585

different email documents containing more than 30,000 words including duplicates.

Minimum word counts were set at 5, 10 and 15 words per document and run through our

clue-probability program. The number of clue words after destemming, elimination of

stop-words, and changing of upper-case letters to lower-case letters ranged from 470 to

1,866 over the different categories. The top five keywords in conditional probability for

three sample categories are shown below in Tables 9-11. “Personal” is a very large

category with lots of keywords and high probabilities. “Fiscal” is a medium-sized

category with some high-ranking clue words, and some important low ones. “Requests”

is a small-sized category with low-ranked key words.

% Prob # in category (yes) # not in category (no) Word

0.99 515 5 hotmail
0.98 97 1 resort
0.98 127 2 sooners90
0.96 64 2 Love
0.94 149 9 her

Table 9. Example Cluewords in Category Personal.

% Prob # in category (yes) # not in category (no) Word

0.92 36 3 ABC*
0.51 23 22 fiscal
0.27 15 39 money
0.22 14 47 spend
0.21 15 54 finance

Table 10. Example Cluewords in Category Fiscal.

% Prob # in category (yes) # not in category (no) Word

0.53 15 13 mimm
0.50 8 8 laptop
0.27 5 13 gear
0.25 4 12 machine
0.12 34 230 request

Table 11. Example Cluewords in Category Requests.

20

Our classifiers were tested upon 152 new, previously unseen email texts. Table

12 shows recall and precision for the test set. Table 13 shows a confusion matrix of 19

categories and the 152 test set documents. This shows which categories were “confused”

with one another and which categories were clearly identified.

Category Recall Precision

Classes 0.77 0.18
Grades 1.00 0.05
Personal 0.18 1.00
3270 0.67 0.07
BWD Mess 0.01 0.00
Equipment 0.50 0.03
Equipment Allowance 0.67 0.05
Equipment Readiness 1.00 0.12
Exercises 1.00 0.06
Expeditor 0.50 0.06
Fiscal 0.80 0.10
General 1.00 0.05
Maintenance 1.00 0.07
Miscellaneous 0.80 0.18
NBC 0.50 0.17
Records Not enough

records
Not enough

records
Requests 0.80 0.11
Shipboard Billeting 0.80 0.08
Info_Tech 0.32 0.78

Average 0.65 0.17

Table 12. Results of Categorizing Test Set Documents. With Subject Line Code Included.

21

 Category Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 Classes 113 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31
2 Grades 30 111 0 9 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
3 Personal 4 0 110 0 0 0 0 0 0 0 0 0 0 0 38 0 0 0 0
4 3270 0 0 8 29 0 16 0 0 0 0 0 0 10 40 0 0 30 0 19
5 BWD Mess 0 0 60 0 37 0 0 0 0 0 0 0 0 55 0 0 0 0 0
6 Equipment 4 0 29 0 0 21 15 15 0 0 0 0 18 20 29 0 0 0 0
7 EqmntAll 0 0 0 0 0 20 40 21 11 0 0 0 11 30 0 0 0 0 20

8
EqmntRead

0 2 0 0 0 30 29 42 20 0 7 14 0 0 8 0 0 0 0

9
Exercises

0 0 0 0 0 20 25 15 38 10 0 0 0 30 0 14 0 0 0
10 Expeditor 0 0 0 0 6 15 17 20 30 18 0 1 0 45 0 0 0 0 0
11 Fiscal 0 0 0 0 0 16 0 0 0 0 71 30 25 10 0 0 0 0 0
12 General 0 0 0 50 0 7 0 0 0 0 0 19 0 63 0 7 2 0 4
13 Maintenance 0 0 0 0 0 42 0 0 12 0 0 0 28 52 0 0 18 0 0
14 Miscellaneous 1 0 12 0 0 0 0 0 0 0 0 12 0 120 0 0 0 0 7
15 NBC 0 0 60 0 0 6 3 4 0 0 0 0 0 70 9 0 0 0 0
16 Records * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 Requests 0 0 40 0 0 20 0 15 0 0 13 17 0 0 0 0 47 0 0
18 Sbrd Billeting 8 0 15 0 6 0 0 0 39 0 0 12 0 0 0 9 0 63 0
19 InfoTech 70 0 60 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 10

Table 13. 19x19 Confusion Matrix and Potential Category Clusters.

* Not enough data to accurately categorize

B. DATA ANALYSIS

Results indicate that an average of 65% of all documents were correctly classified

into their respective category. Of the 19 categories, 15 had greater than 50% probability

of being properly classified. The remaining 4 categories were not properly classified for

several reasons. In the case of categories #4 (Personal), and #19 (Info_Tech), these were

frequently confused with one another and with category #14 (Miscellaneous). For

categories #5 (BWD Mess) and #16 (Records) there were not enough examples to train

on. Category #19 (Info Tech) was often confused with category #1 (Classes). Larger

categories had better precision; smaller categories demonstrated higher recall. Average

recall rates were acceptable, but precision rates were disappointing and can be

contributed to categories clustered together.

Due to the unique nature of the corpus, each of the categories seemed to have

certain cluewords that only helped it. In some categories stop words could have been

good discriminators, such as category #3 (Personal) where the words “can” and “do”

frequently show up.

22

Results with double weighting of the document “Subject” line show minimal

increase in overall success probability. Table 14 shows actual number of words in

categories as compared against the number of non-example documents. The table

identifies the low number of training examples for smaller categories such as #5 (BWD

Mess).

Category Name Actual # words in
category (yes – examples)

Actual # of words in category
(no – examples)

Classes 78,939 562,272
Grades 25,952 617,491
Personal 417,982 239,196
3270 1,634 638,416
BWD Mess 237 639,813
Equipment 2126 637,924
Equipment
Allowance

1945 638,105

Equipment
Readiness

1901 638,149

Exercises 481 639,569
Expeditor 486 639,564
Fiscal 3757 636,293
General 538 639,512
Maintenance 881 639,169
Miscellaneous 3332 636,718
NBC 685 639,365
Records 65 639,985
Requests 3233 640,050
Shipboard
Billeting

1500 641,783

Info_Tech 115,961 541,280

Table 14. Actual Number of Words Identified for Positive Examples Versus Non-Examples.

23

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis examined automatic text categorization of email documents. The use

of keywords and their conditional probabilities was the primary method used. Final

recall and precision results were 65% and 17% respectively. A stop-word list and

destemmer program proved to be very helpful when dealing with text categorization.

B. RECOMMENDATIONS

This thesis could be extended by incorporating term phrases to improve

categorization. If possible, a more standardized corpus of text should be used with

approximate equal number of documents per category. A program to accurately strip out

all HTML characters and other special characters for non-text would be helpful. Finally,

a program or method to deal with personal names might prove very helpful in some

categories.

24

THIS PAGE INTENTIONALLY LEFT BLANK

25

APPENDIX A. CLUEWORDS SAMPLE OUTPUT

0.03878220540933329 overall probability, 18146 yes examples, 449749 no
examples,
0.0 0 12 shape
0.0 0 17 shall
0.024 3 122 write
0.0 0 72 friend
0.0 0 37 certificate
0.0 0 14 comfort
0.0 0 17 netscape
0.0 0 43 bwlogu
0.00392156862745098 1 254 usmc
0.0 0 14 considerate
0.05834683954619125 36 581 monterey
0.0 0 13 justin
0.06666666666666667 6 84 here
0.0 0 40 lejeun
0.0 0 34 hell
0.0 0 83 effect
0.0 0 15 comment
0.0 0 51 sans-serif
0.0125 1 79 hear
0.05782060785767235 78 1271 head
0.0 0 17 friday
0.0 0 17 urge
0.06481481481481481 7 101 strategy
0.06484641638225255 57 822 subject
0.17073170731707318 7 34 interact
0.0 0 188 Mike
0.0 0 18 your-account
0.0 0 11 extreme
0.0 0 29 prodigy
0.0 0 63 Fred
0.06097560975609756 40 616 http-equiv
0.0 0 38 script
0.17391304347826086 4 19 before
0.0 0 13 high-spee
0.1111111111111111 2 16 amador
0.0 0 62 Logue
0.0 0 12 accommodate
0.0 0 26 simply
0.0 0 26 upon
0.014492753623188406 1 68 federal
0.0 0 45 false
0.13333333333333333 2 13 adrian
0.0 0 17 hidden

** The list continues for up 38 pages.

26

THIS PAGE INTENTIONALLY LEFT BLANK

27

APPENDIX B. CLUEWORDS PROGRAM

/**
 * Title: ClueWords
 *
 * Description: This class performs two functions. One is to take out
 * each non-stop word and then looks at two subdirectories of "yes"
 * and "no", find the conditional probabilities of "yes"
 * given the occurrence of a particular word. Initial use is to
 * test against emails and try to categorize them appropriately.
 *
 * Elements adapted from Dr. Neil Rowe's programs GetClueProbs
 * and CountWords.
 *
 * Copyright: Copyright (c) 2002
 * Company: USMC NPS
 * @author Scott R. Hall
 * @version 1.0
 */

import java.io.*;
import java.util.*;

 public class ClueWords
 {
 public static void main (String args[]) throws IOException
 {

 //--
 // Data Member Declarations
 //--

 /**
 * call Parser method. Used only for testing.
 */
 // Parser ();

 // Mincount sets the mininum number of times that a word
 // must appear in order to have its' probability calculated.

 double Mincount = 10;//was 10

 // An integer declaration

 int j;

 // Long integer data types for 4 items that allow better
 // granularity for calculating probabilities.

 long Oldcount, Count, wordyescount, wordnocount;

 // Integer declarations and assignment values.

28

 int yescount = 0;
 int nocount = 0;

 // Double real number declarations for 5 items that allow
 // Standard Deviation and Probabilit ies to be displayed properly.

 double yesratio, yesprob, Dev, Prob, SD;

 // String characters declared to include a string tokenizer
 // to help extract tokens from emails.

 String Inputline, Word, Stopword;
 StringTokenizer st;

 // File

 File Dir;

 // Declaring and creating HashSet. Implements Set using an
 // internal hashtable. Allows any type of object or null to
 // be a member of the set. There is no guarantee of order
 // for the set elements. There are no duplicates in a HashSet.

 HashSet rchs = new HashSet();

 // Within the Destemmer class call the hashKnownWords method
 // and pass it results of the rchs.

 Destemmer.hashKnownWords(rchs);

 // Declaration and creation of hashmap. Same thing as a Hashtable
 // but methods are not synchronized.

 HashMap hm = new HashMap(200000);

 // Declarations below imported from CountWords program.

 HashSet hsstop = new HashSet(1000);
 FileReader fr1 = new FileReader("stopwords.txt");
 BufferedReader br1 = new BufferedReader(fr1);
 while ((Stopword = br1.readLine()) != null) hsstop.add(Stopword);

 // Creating a new instance of the Directory object and passing
 // it the contents of "yes" directory.

 Dir = new File("yes");
 String Filelist [] = Dir.list();

 // A "for" loop to go through "yes/" directory and read in
 // files via buffered reader.

 for (j=0; j<Filelist.length; j++)
 {
 FileReader fr = new FileReader("yes/" + Filelist[j]);
 BufferedReader br = new BufferedReader(fr);

29

 // Inner "while" loop while the buffered reader is not empty(null)
 // create a new String Tokenizer Object and tokenize based on the

// characters identified.

 while ((Inputline = br.readLine()) != null)
 {

st = new StringTokenizer(Inputline," ,.;:`~^?!()[]{}_+=|\\\"<>/@#&*");

 // Another inner "while" loop that loops through each token while
 // there are more tokens left to tokenize. If the is not a number
 // string than increment "yescount" and destem the word.
 //
 while (st.hasMoreTokens())
 {
 Word = st.nextToken();

if ((Word.length()>1) && (!numberString(Word)) &&
(!hsstop.contains(Word)))

{

 yescount++;
 Word = Destemmer.destem(Word,rchs);

 if (!hm.containsKey(Word))
 {
 hm.put(Word,new Long(1000000));
 }
 else
 {
 Oldcount = (Long)hm.get(Word)).longValue();
 hm.put(Word,new Long(1000000+Oldcount));
 }//end of last if statement
 }//end of "yescount" if statement
 }//end of second while statement
 }//end of first while statement
 fr.close();//close out of file reader
 }//end of for statement

 // Same statements except for no category.

 Dir = new File("no");
 String Filelist2 [] = Dir.list();
 for (j=0; j<Filelist2.length; j++)
 {
 FileReader fr2 = new FileReader("no/" + Filelist2[j]);
 BufferedReader br2 = new BufferedReader(fr2);
 while ((Inputline = br2.readLine()) != null)
 {
 st = new StringTokenizer(Inputline," ,.;:`~^?!()[]{}_+=|\\\"<>/@#&*");
 while (st.hasMoreTokens())
 {
 Word = st.nextToken();

if ((Word.length()>1) && (!numberString(Word)) &&
(!hsstop.contains(Word)))

30

 {
 nocount++;
 Word = Destemmer.destem(Word,rchs);
 if (!hm.containsKey(Word))
 {hm.put(Word,new Long(1));
 }

else
 {
 Oldcount = ((Long)hm.get(Word)).longValue();
 hm.put(Word,new Long(1+Oldcount));
 }
 }
 }
 }
 fr2.close();
 }

 PrintWriter fileout = new PrintWriter(new FileWriter("clueprobs.out"));
 if (nocount > 0) yesratio = (double)yescount/(double)nocount;
 else yesratio = 2.0*(double)yescount;
 yesprob = (double)yescount/(double)(yescount+nocount);

fileout.println(yesprob + " overall probability, " + yescount + " yes examples, " + nocount
+ " no examples, ");

 Set set = hm.entrySet();
 Iterator i = set.iterator();

 while (i.hasNext())
 {
 Map.Entry me = (Map.Entry)i.next();
 Word = (String)me.getKey();
 Count = ((Long)me.getValue()).longValue();
 wordnocount = Count % 1000000;
 wordyescount = (Count-wordnocount)/1000000;
 Dev = (double)wordyescount-(yesratio*(double)wordnocount);
 Prob = (double)wordyescount/(double)(wordyescount+wordnocount);
 SD = Math.sqrt(1.0/((1.0/(double)wordyescount)+(1.0/(double)wordnocount)));

 if (((wordyescount+wordnocount)>Mincount) & (Math.abs(Dev) > SD))
 fileout.println(Prob + " " + wordyescount + " " + wordnocount
 + " " + Word);

 }
 fileout.close();
 }

 /* Says whether a string of characters represents an integer or decimal */
 private static boolean numberString (String S)
 {
 boolean numberflag = false;
 int N = S.length();
 if (N > 0)
 {
 int i=0;

31

 if (S.charAt(0) == '-') i=1;
 char C;
 numberflag = true;
 while ((numberflag) & (i<N))
 {
 C = S.charAt(i);
 numberflag = (((C >= '0') & (C <= '9')) | (C == '.'));
 i++;
 };
 };
 return numberflag;

 }

//For now I am remarking this call out
/*
 public static void Parser ()
 {
 Parser parser = new Parser ("yessupplyfiscal.txt");
 }
*/
}

32

THIS PAGE INTENTIONALLY LEFT BLANK

33

APPENDIX C. RATEDOCS PROGRAM

// Given a directory "unknown" of files of unknown relevance, rates
// each document for the appearance of clues in the clueprobs.out file.
// Author: Neil C. Rowe, 9/01. Modified with permission by Scott R. Hall
import java.io.*;
import java.util.*;

class RateDocs
{
 public static void main (String args[]) throws IOException
 {
 int j, k1, k2, Wordcount, M;
 double yesratio, Dev, Prob, SD, Average, Total;
 Double DProb;
 String Inputline, Word, Probstring;
 StringTokenizer st;
 File Dir;
 HashSet rchs = new HashSet();
 Destemmer.hashKnownWords(rchs);
 HashMap hm = new HashMap(200000);
 FileReader fr;
 BufferedReader br;
 String tempString = new String ();//temporary hold string object for subject line
 String subjectLine = new String ();
 boolean foundSubj = false;//flag set to find subject line
 FileReader frprobs = new FileReader("clueprobs.out
 BufferedReader brprobs = new BufferedReader(frprobs);
 Inputline = brprobs.readLine();
 k2 = Inputline.lastIndexOf(' ');
 k1 = Inputline.lastIndexOf(' ',k2-1);
 double Totalprob = Double.valueOf(Inputline.substring(k1+1,k2)).doubleValue();
 while ((Inputline = brprobs.readLine()) != null)
 {
 k1 = Inputline.indexOf(' ');
 k2 = Inputline.lastIndexOf(' ');
 M = Inputline.length();
 Probstring = Inputline.substring(0,k1);
 Prob = (Double.valueOf(Probstring).doubleValue()) - Totalprob;
 Word = Inputline.substring(k2+1,Inputline.length());
 hm.put(Word, new Double(Prob));
 }
 frprobs.close();

 Dir = new File("unknown");// Begin unknown directory here
 String Filelist [] = Dir.list();
 for (j=0; j<Filelist.length; j++)
 {
 Wordcount = 0;
 Total = 0.0;
 fr = new FileReader("unknown/" + Filelist[j]);
 br = new BufferedReader(fr);
 while ((Inputline = br.readLine()) != null)
 {

34

 st = new StringTokenizer(Inputline," ,.;:`~^?!()[]{}_+=|\\\"<>/@#&*");
 boolean foundSubj = false;
 //use "Subj:" for html
 if (!foundSubj && Inputline.indexOf("Subject:") >= 0)
 {
 subjectLine = Inputline;
 foundSubj = true;//change flag to true
 Wordcount++;

 PrintWriter fileout = new PrintWriter(new FileWriter("RATEDOCS.out"));

 while (st.hasMoreTokens())
 {
 Word = st.nextToken();
 if ((Word.length()>1) && (!numberString(Word)))
 {

 Word = Destemmer.destem(Word,rchs);
 Wordcount++;
 if (hm.containsKey(Word))
 {
 DProb = (Double)hm.get(Word);
 System.out.println(DProb + " retrieved for " + Word);
 Total = Total+(DProb.doubleValue());
 fileout.println(DProb + " retrieved for " + Word);
 }

 }

 }

 fileout.close();
 }//outer if statement for subject line find

 } //while close

 fr.close();
 Average = Total/(double)Wordcount;
 System.out.println(Average + " strength for document " + Filelist[j]);

 }
 }

 /* Says whether a string of characters represents an integer or decimal */
 private static boolean numberString (String S)
 {
 boolean numberflag = false;
 int N = S.length();
 if (N > 0)
 {
 int i=0;
 if (S.charAt(0) == '-') i=1;
 char C;
 numberflag = true;

35

 while ((numberflag) & (i<N))
 {
 C = S.charAt(i);
 numberflag = (((C >= '0') & (C <= '9')) | (C == '.'));
 i++;
 };
 };
 return numberflag;
 }
}

36

THIS PAGE INTENTIONALLY LEFT BLANK

37

APPENDIX D. SAMPLE RUN FROM RATE DOCS

Test Set - Rate Docs for grades run against clueprobs

0.9326399520216222 retrieved for qpr
0.9326399520216222 retrieved for qpr
0.9326399520216222 retrieved for qpr
0.9326399520216222 retrieved for qpr
0.9326399520216222 retrieved for qpr
0.9326399520216222 retrieved for qpr
0.848555867937538 retrieved for nw3230
0.6519746713563415 retrieved for logistic
0.6172012256239916 retrieved for grade
0.6172012256239916 retrieved for grade
0.6172012256239916 retrieved for grade
0.6172012256239916 retrieved for grade
0.6172012256239916 retrieved for grade
0.6172012256239916 retrieved for grade
0.6172012256239916 retrieved for grade
0.6172012256239916 retrieved for grade
0.6172012256239916 retrieved for grade
0.6172012256239916 retrieved for grade
0.6172012256239916 retrieved for grade
0.6172012256239916 retrieved for grade

* Document continues for up to 38 pages.

38

THIS PAGE INTENTIONALLY LEFT BLANK

39

APPENDIX E. PARSER PROGRAM

/**
 * Title: Parser
 * Description: (1) Reads a text file (emails saved as *.txt file)
 * (2) Finds Subject line and parses it to find keywords
 * (3) Reads entire file and counts the frequncy of occurance of key words in file
 * (4) Prints subject line keywords & freqs to screen
 *
 * Some elements adapted from Steve Simmon’s Parser program
 * @version 1.0
 */

import java.io.*;
import java.util.*;

public class Parser {

 //Class Variables (Global)
 String fileName = new String();
 StringBuffer filetext = new StringBuffer();
 String subjectLine = new String();
 String keyClueWord = new String();

 Vector subjKeyWords = new Vector();

 //**
 // Constructor
 //**

 public Parser(String fileInput) {

 //get the filename from the commandline argument
 fileName = fileInput;

 ReadFile();

 ParseSubject();

 ParseEmailText();

 //ReadClueProbs();

 } //end Constructor

 //**
 // Method: ReadFile
 //**
 void ReadFile(){

 String tempString = new String();
 boolean foundSubj = false;

40

 try{

 BufferedReader fileReader = new BufferedReader(new FileReader(fileName));

 while(fileReader.ready())
 {

 //Read each line of the email text file & store in string buffer
 tempString = fileReader.readLine();

 //make all lowercase
 tempString = tempString.toLowerCase();

 //Find subject line, change it from just "subj"
 If(!foundSubj && tempString.indexOf("subj") >= 0)

{

 subjectLine = tempString;
 foundSubj = true;

 //Debug print out
 System.out.println("Subject line: " + subjectLine);

 }

 //add line read to String Buffer, goes to frequency count
 filetext.append(tempString);
 } //end While

 } //end try stmt

 //Opening a file via FileReader object can throw FileNotFound Exception
 catch(FileNotFoundException fileEX){
 }

 //Reading text in from a file can throw an IOException
 catch(IOException IOEX){
 }

 } //end method ReadFile

 //**
 // Method: ParseSubject
 //**
 void ParseSubject()
 {

 //create a String Tokenizer from the string that is the subject line
 //default tokinizing is to break string into words
 StringTokenizer subjectWords = new StringTokenizer(subjectLine);
 String tempString = new String();

41

 while (subjectWords.hasMoreTokens())
 {

 tempString = subjectWords.nextToken();

 //Debug print out
 System.out.println("Token: " + tempString);

 //check to see if word id a key word;
 //if the word is a keyword, add to vector
 if(KeyWord(tempString))

{

 KeyWord temp = new KeyWord(tempString);
 subjKeyWords.add(temp);

 }

 } //end While

 } //end method ParseSubject

 //**
 // Method: KeyWord
 //**
 boolean KeyWord(String text){
 boolean IsKeyWord = true;
 String smallWords[] = {"and", "the", "a", "an", "if", "it", "is", "this",
 "subject", "subj", "re", ":", ".", "?", "!", ",", " ", "to", "FW:",
 "fwd:"};
 String tempString = new String();

 for(int i = 0; i < smallWords.length; i++)
 {
 tempString = smallWords[i];

 if(text.startsWith(smallWords[i]))
 {

 IsKeyWord = false;
 break;
 }

 } //end for loop

 return IsKeyWord;

 } //end method KeyWord

 //**
 // Method: ParseEmailText
 //**
 void ParseEmailText()
 {

42

 Iterator KeyWordITR = subjKeyWords.iterator();
 KeyWord tempKeyWord = new KeyWord("txt");//dummy variable
 int counter = 1;
 int keyWordFreq = 0;
 while(KeyWordITR.hasNext())
 {
 //Get keyword from vector keywords in subject
 tempKeyWord = (KeyWord) KeyWordITR.next();
 //reset Freq

 keyWordFreq = 0;

 //Get Freq for this word
 keyWordFreq = getFrequency(tempKeyWord.keyword, filetext.toString());
 tempKeyWord.frequency = keyWordFreq;
 if (KeyWordFreq > 2)
 {

 //print out result to screen
 System.out.println("Subject Keyword " + counter++ + ": " + tempKeyWord.keyword +
 " Frequency: " + tempKeyWord.frequency);

 } //end while stmt
 } // end Method ParseEmailText

 //**
 // Method: getFrequency
 //**
 int getFrequency(String keyWord, String file)
 {
 int count = 0;
 int index = -1;
 index = file.indexOf(keyWord);
 //1st occurance of keyword found
 if(index >= 0)
 {

 //increment count and make recursive call to this function with remaining
 //text less all words up to and including the found keyword occurance
 count = 1 + getFrequency(keyWord, file.substring(index + keyWord.length()));

 }

 return count;
 }

 //**
 // Method: main
 //**
 public static void main(String[] args)
 {
 Parser parser1 = new Parser("testparser.txt");//was args[0] or"cs4556_8.txt"
 }

}

43

LIST OF REFERENCES

Buckley Christopher and Salton, Gerard, "Term-Weighting Approaches in Automatic
Text Retrieval", Information Processing and Management, Vol. 24, pp. 513-523, January
1988.

Ferris Research Group, "Email Archive and Retrieval: A Hidden Enigma, A Hidden
Cost", Computer Network Information, 1999.

Lam, Wai, Miguel, Ruiz and Padmini, Srinivasan, "Automatic Text Categorization and
Its Application to Text Retrieval", IEEE Transaction on Knowledge and Data
Engineering, Vol. 11, No. 6, pp. 865-979, November/December 1999.

Marsan, Duffy Carolyn, "Standard May Bring Order to Email Chaos", Network World,
Vol. 19, No. 28, p. 14, July 15 2002.

Moens, Marie-Francine and Jos, Dumortier, "Text Categorization: The Assignment of
Subject Descriptors to Magazine Articles", Information Processing and Management,
Vol. 36, pp. 841-861, January 2000.

Mooney, Raymond J., CS378 Class Notes, University of Texas, April 2002.

Porter, "A Program for Suffix Stripping", Program. IEEE Transactions on Data and
Knowledge Engineering, Vol. 14, pp. 130-137, 1990.

Rowe, Neil C., Program, IEEE Intelligent Systems, 13, 3 (May/June 1998), pp. 61-69.

Witten, Ian H. and Eibe, Frank, Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations, Morgan Kaufmann Publishers, pp. 112-114,
2000.

Yiming, Yang, "An Evaluation of Statistical Approaches to Text Categorization",
Information Retrieval Journal, 1998.

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Prof. Neil Rowe, Code 32

Department Of Computer Science
Naval Postgraduate School
Monterey, California

4. Prof. Thomas Otani, Code 32

Department Of Computer Science
Naval Postgraduate School
Monterey, California

5. Marine Corps Representative
 Naval Postgraduate School
 Monterey, California

6. Director, Training and Education, MCCDC, Code C46
 Quantico, Virginia

7. Director, Marine Corps Research Center, MCCDC, Code C40RC

Quantico, Virginia

8. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)

Camp Pendleton, California

