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Hyperbranched polyisoprene was prepared by anionic
copolymerization under high vacuum condition. Size
exclusion chromatography was used to characterize the
molecular weight and branching nature of these polymers.
The characterization by differential scanning calorimetry and
melt rheology indicated lower Tg and complex viscosity in the
branched polymers as compared with the linear polymer.
Degradation kinetics of these polymers was explored using
thermogravimetric analysis via non-isothermal techniques. The
polymers were heated under nitrogen from ambient
temperature to 600°C using heating rates from 2 to 15°C min−1.
Three kinetics methods namely Friedman, Flynn–Wall–Ozawa
and Kissinger–Akahira–Sunose were used to evaluate the
dependence of activation energy (Ea) on conversion (α). The
hyperbranched polyisoprene decomposed via multistep
mechanism as manifested by the nonlinear relationship
between α and Ea while the linear polymer exhibited a decline
in Ea at higher conversions. The average Ea values range from
258 to 330 kJmol−1 for the linear, and from 260 to 320 kJmol−1

for the branched polymers. The thermal degradation of the
polymers studied involved one-dimensional diffusion
mechanism as determined by Coats–Redfern method. This
study may help in understanding the effect of branching on
the rheological and decomposition kinetics of polyisoprene.
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1. Introduction

Hyperbranched polymers (HBPs) have received attention for many years due to the favourable properties
they possess over their linear counterparts as well as ease of synthesis when compared with dendrimers.
Strathclyde methodology is one of the ways in which the hyperbranched polymer synthesis could be
achieved. It involves the copolymerization of vinyl monomers with the help of chain transfer agent that
can prevent the formation of gel [1,2]. Understanding the effect of molecular architecture on the
properties of polymers is of interest from both theoretical and practical perspectives [3]. Hyperbranched
and highly branched polymers represent a class of materials which differ significantly in their chemical
compositions as well as physical properties when compared with the linear polymers. HBPs are widely
used in various fields such as coatings, nanotechnology, supramolecular chemistry, drug delivery
systems, and as thermal and viscosity modifiers due to their lower cost as well as ease of synthesis
compared with the dendrimers [4,5]. Recently, researchers have focused on the characterization of
HBPs, particularly their structure–property relations, such as morphology, branching density, solution
properties, crystallinity and glass transition temperature [4]. Many reports have been published on the
chemical and physical changes that occurred when polymers were exposed to heat over a wide range of
temperature [6–9]. Rheology of branched polymers is a special topic of interest to both industry and
academia due to the correlation between rheological properties and the degree of branching of
polymers [10]. The rheology of polymers of various architectures ranging from linear, star and
dendrimers has been investigated by various groups [11–17]. The degree of branching of polymers
strongly influenced their rheological properties and processing ability [14]. To well understand the
correlation between branching and rheology of HBPs is therefore strongly motivated.

Thermal analysis of polymers is very crucial in understanding the molecular architecture, degradation
and mechanisms, and in determining their application under various environmental conditions such as at
elevated temperature. Extensive research on thermal degradation mechanism of the presently available
macromolecules is available in the literature [18–22]. However, these studies have focused on thermal
properties of commercial homopolymers or blends of polymers. Moreover, there are few reports on this
aspect related to hyperbranched and highly branched polymers. Othman et al. [23] gave some insight
into the effect of terminal groups on the thermal decomposition of some flame-retardant hyperbranched
polyimides [23]. Chen and his co-workers [24] studied the thermal degradation properties of the
hyperbranched exopolysaccharide using the isoconversional method of Flynn–Wall–Ozawa (FWO)
followed by the Coats–Redfern method to model the thermal degradation of these HBPs. Röchow et al.
[25] explored the thermal decomposition behaviour of methyl methacrylate (MMA) copolymer with a
phosphate-containing comonomer, ethyl-2-[4-(dihydroxyphosphoryl)-2-oxabutyl]acrylate (EDHPOBA)
and observed a more complex decomposition mechanism when compared with the homopolymers of
MMA. Methods used for evaluating the kinetic parameters of various physico-chemical processes from
thermal analysis data can be classified into model-fitting or model-free techniques [26].

Principally, a fixed mechanism is assumed in the model-fitting approach with constant activation
energy throughout the reaction. This technique consists of the fitting of kinetic data to some models to
compute the kinetic parameters such as activation energy and the order of reaction. However, it is
difficult to model complex reactions with reasonable accuracy. This is a limitation associated with the
model-fitting approach. Model-free kinetics involves an isoconversional analysis on kinetic data
obtained at a minimum of three heating rates, and activation energy is varied with temperature [27–
29]. Thus, in model-free approaches, more than one mechanism is allowed during the course of the
reaction. The main disadvantage of the model-free method is the absence of a reaction model which is
required for a complete kinetic description to be achieved. Regardless of which of the two approaches,
model-free or model fitting, is employed, it is unanimously assumed that the reaction rate has an
Arrhenius-type dependence on temperature [30]. The primary objective of the Arrhenius-type of
kinetic expressions is to determine the kinetic triplets experimentally. In the isoconversional methods,
the complexity of a reaction is revealed via a functional interdependence between the activation
energy and the extent of reaction (α). This approach allows for a good prediction of kinetic
information. When the activation energy of a process varies significantly with the conversion, it
indicates that the process is complicated from a kinetic point of view.

In this study, HBPs were prepared via anionic polymerization based on the Strathclyde approach. The
rheological properties of HBPs were investigated under oscillatory shear experiments, and a comparison
was made with a linear polymer sample. The information obtained from the TEM analysis could also
assist in establishing and comparing the morphologies of the branched and the linear polymers.
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Thermogravimetric analysis (TGA) was used to study the thermal degradation kinetics of hyperbranched

polyisoprene. The experiments were conducted under nitrogen at 2, 5, 10 and 15°C min−1. The objective
was to obtain the kinetic parameters for the thermal degradation using four isoconversional methods,
namely the Kissinger method, the Friedman method, Flynn–Wall–Ozawa (FWO) and Kissinger–
Akahira–Sunose (KAS) methods. The relationship between the extent of conversion (α) and the
activation energy (Ea) has also been discussed, and finally, the Coats–Redfern method was employed
to determine the mechanism of thermal degradation of these polymers.
ing.org/journal/rsos
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2. Experimental procedure
2.1. Materials
Isoprene (99%), and the initiators (1.4M s-butyl lithium in cyclohexane, and 2.0M n-butyllithium in
cyclohexane, as well as the 99.5% N,N,N,N-tetramethylenediamine (TMEDA)) were obtained from
Sigma-Aldrich; 99.9% dried methanol, and 98% divinylbenzene (DVB) were purchased from Merck
(Germany); 99% 2,6-di-tert-butyl-4-methylphenol (BHT) was obtained from Fischer Scientific. The
solvents (99.9% benzene and HPLC grade toluene) and the monomers were purified through over
CaH2 (Aldrich) via several freeze–pump–thaw cycles on a vacuum line. All the syntheses were carried
out using a special reactor (‘Christmas tree’ reaction vessel), which was purified according to the
similar procedure reported by Habibu et al. [1] and Hutchings et al. [31].
 69
2.2. Synthesis
The polymers were prepared via anionic polymerization technique under high vacuum conditions
similar to the one previously reported [31]. About 100 ml of the solvent was collected into the reactor
by vacuum distillation, and the monomer was added with the help of an attachable flask. Before
transferring the monomer to the reactor, 0.1 ml of n-butyllithium to it. Later, TMEDA, which serves to
promote chain transfer, was added onto the mixture of the solvent and the monomer, before initiation
with s-butyllithium. About 5 min after initiation, DVB was injected, and the reaction proceeded over
night at constant temperature of 50°C. The reaction was terminated with dried methanol, and the
polymer was precipitated in excess methanol. 1H NMR (400 MHz; CDCl3; Me4Si) 7.13–7.18 (3H, m,
Ar), δH 4.94–5.12 (3H, m, 1,4 motifs, olefinic), 4.77–4.94 (3H, m, 1,2), 4.67–4.76 (5H, m, 3,4), 4.64 (7H,
br. s., 3,4), 2.26 (1H, s, 3,4 motifs, aliphatic), 1.79–2.06 (14H, m, 1,4, aliphatic).
2.3. Characterization
The molecular weight and the dispersity index (Ð) of the polymers were obtained by gel permeation
chromatography (GPC, Viscotek 302, Malvern) system equipped with light scattering, viscosity and
refractive index detectors. The elution of the columns (300 mm PLgel, 5 mm mixed C) was achieved
using tetrahydrofuran (THF) at 35°C, and 1 ml min−1 as the flow rate. Polystyrene standards were
employed to calibrate the detectors and the refractive index of 0.087 and 0.127 ml g−1 were used for
the branched and the linear poly(isoprene), respectively. For the analysis, 5.0 mg ml−1 of the samples
were prepared in THF. Table 2 presents details on the molecular weight characteristics. 1H NMR
analysis was performed in CDCl3 on a DELTA2 (JEOL) 400 MHz spectrometer. Reference for the
chemical shift was made to the traces of CHCl3 (7.26 ppm) present in the CDCl3.
2.4. Transmission electron microscopy
The morphology and structural features of the branched polymers were analysed using high-resolution
transmission electron microscopy (HRTEM). HRTEM is a powerful technique used in polymer science to
analyse the shape and structure of a polymeric material. HRTEM was used to investigate the effect of the
branching on the morphology of the branched polymers and to compare them with linear polymers.
Images were obtained by FEI TECNAI G2 F20 X–TWIN transmission electron microscope (TEM)
operated at 200 kV. The analysis was performed at the Malaysian Institute of Microelectronic Systems
(MIMOS). The samples were prepared and analysed according to a similar procedure to that reported
by Hutchings and co-workers [32].



royalsocietypublis
4
2.5. Rheological measurements

The rheological analysis was achieved on an Anton Paar MCR301 rheometer using a parallel plate
geometry (25 mm) with a gap of 1 mm and a convection temperature device (CTD). Amplitude
sweeps were initially conducted to determine the linear viscoelastic regime and the frequency sweep
measurements were carried out from 0.1 rad s−1 to 100 rad−1 in the linear viscoelastic regime with a
strain of 1% at 70°C. The storage and loss moduli, as well as complex viscosity, were measured.
 hing.org/journal/rsos
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2.6. Differential scanning calorimetry
The glass transition temperature (Tg) of the polymers was measured on a DSC 822e, Mettler Toledo
calorimeter. About 4–8 mg of each sample was placed into an aluminium pan and the temperature
was raised to 200°C at 10°C min−1 under nitrogen at a flow rate of 20 ml min−1. The polymer was
then cooled down to −40°C, and second heating was made from −40°C to 200°C. Data from the
second heating were used for the analysis. The data were processed using thermal analysis software
(STARe).
sci.6:190869
2.7. Thermogravimetric analysis
Simultaneous thermal analyser, STA 6000 (Perkin Elmer) was used for TGA. About 10 mg of the polymer
samples were put in a ceramic crucible, and the temperature was raised from 30°C to 600°C at 20 ml min−
1 nitrogen flow rate and at the rates of 2, 5, 10 and 15°C min−1.
2.8. Theoretical background
The use of non-isothermal thermogravimetric methods has a great capacity to unravel the mechanisms of
chemical and physical processes that occur during the degradation of polymers. The kinetic methods
used in the thermal analysis of single-step reactions have been established over the years. For systems
that involve multi-step reactions, the use of inappropriate kinetic method can lead to misleading
results. Nevertheless, it has been revealed that the use of isoconversional methods can provide
meaningful values of activation energy in a wide-ranging environment. The Isoconversional
techniques allow for a model-free estimation of the activation energy. Furthermore, this method is
based on the isoconversional principle which states that at a given extent of conversion, the
decomposition rate solely depends on the current sample temperature. It has been concluded that
model-free (isoconversional) methods are powerful and most reliable tools to estimate the activation
energy of thermally stimulated processes [33–35]. In this research, three isoconversional methods, the
Friedman, FWO and KAS methods, were employed to evaluate the dependence of activation energy
(Ea) on conversion (α) for these polymers.

The rate of thermal decomposition for the solid-state reaction dα/dt follows the equation

da
dt

¼ kðTÞfðaÞ, ð2:1Þ

where k(T ) is the temperature-dependent rate constant, f (α) is the kinetic model which depends on the
particular decomposition mechanism, and α is the degree of conversion represented by the following
equation:

a ¼ wo � wt

wo � wf
, ð2:2Þ

where w0 is the initial weight of the polymer sample, wf is the final weight, and wt is the weight at a given
time of the experiment.

The temperature-dependent rate constant was assumed to follow the Arrhenius equation

kðTÞ ¼ Ae�Ea=RT , ð2:3Þ
where Ea is the apparent activation energy (kJ mol−1), A is the pre-exponential factor (min−1) and R is the
gas constant (8.3142 J mol−1 K−1). Combining equations (2.1) and (2.3) gives rise to equation (2.4) which is
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the fundamental equation used to calculate the kinetic parameters based on the TGA.

da
dt

¼ fðaÞAe�Ea=RT : ð2:4Þ

The most frequently used model for f (α) to analyse thermogravimetric data is given by

fðaÞ ¼ (1� a)n, ð2:5Þ
in which n represents the reaction order. Substituting equation (2.5) into (2.4) gives

da
dt

¼ ð1� aÞnAe�Ea=RT : ð2:6Þ

For a non-isothermal thermogravimetric experiment at a constant heating rate β = dα/dt, the above
equation can be written as

da
dT

¼ A
b
ð1� aÞne�Ea=RT : ð2:7Þ

The above equation is a differential form of the non-isothermal rate law. In the present study, non-
isothermal methods were used to calculate the kinetic parameters.

2.9. Friedman method
The Friedman method is the most commonly used differential isoconversional process [28,36]. The
following equation usually describes the temperature-dependent rate constant (k):

kfðaÞ ¼ b
da
dT

� �
¼ AfðaÞe�Ea=RT : ð2:8Þ

Taking the logarithm of both sides of equation (2.8) followed by simple rearrangement gives Friedman’s
equation:

ln b
dðaÞ
dT

� �
¼ ln

dðaÞ
dt

� �
¼ ln½AfðaÞ� � Ea

RT
: ð2:9Þ

The apparent activation energy (Ea) is obtained from the slope (−Ea/R) of a plot of ln(dα/dt) against
reciprocal temperature (1000/T) at constant conversion for a given set of heating rates.

2.10. Flynn–Wall–Ozawa method
Flynn, Wall and Ozawa proposed the FWO method [37–39]. The main advantage of the FWO method is
that apart from the Arrhenius temperature-dependence equation, no assumptions regarding the form of
the kinetic model equations are required [28]. The FWO method is an integral model-free method which
involves the measurement of temperature that corresponds to a fixed value of conversion at different
heating rates. Integration of equation (2.10) and applying the Doyle approximation give rise to
equation (2.12) in which the plot of ln β against 1000/T provides a straight line with slope equal to −
1.052Ea/R [28,40].

lnb ¼ ln
AE

RgðaÞ
� �

¼ 5:331� 1:052
Ea

RT

� �
, ð2:10Þ

where the kinetic model is g(α) (i.e. kt = g(α)). Therefore, when g(α) is known for a constant α, plots of ln β
against the 1000/T taken at different β should give a straight line. The activation energy and the
pre-exponential factor values are obtained from the slope and the intercept, respectively.

2.11. Kissinger–Akahira–Sunose method
KAS method is an isoconversional method in which for a given conversion (α), the temperature (T ) and
the heating rate are related by the following equation [41,42]:

ln
b

T2

� �
¼ ln

AR
EagðaÞ

� �
� Ea

RT

� �
: ð2:11Þ



Table 1. E expressions for f (α) for the most commonly used mechanisms of solid-state processes.

Model f(α) mechanism

A2 [−ln(1− α)]1/2 nucleation and growth (Avrami equation 1)

A3 [−ln(1− α)]1/3 nucleation and growth (Avrami equation 2)

A4 [−ln(1− α)]1/4 nucleation and growth (Avrami equation 3)

R2 [1− (1− α)1/2] phase boundary-controlled reaction (contracting area)

R3 [1− (1− α)1/3] phase boundary-controlled reaction (contracting volume)

D1 α2 one-dimensional diffusion

D2 (1− α) ln(1− α) + α two-dimensional diffusion

D3 [1− (1− α)1/3]2 three-dimensional diffusion (Jander equation)

D4 (1� ð2=3ÞaÞ � (1� a)2/3 three-dimensional diffusion (Gingstling–Brounshtein equation)

F1 −ln(1− α) random nucleation with one nucleus on the individual particle

F2 1/(1 − α) − 1 random nucleation with two nuclei on the individual particle

F3 1/(1 − α)2 − 1 random nucleation with three nuclei on the individual particle

royalsocietypublishing.org/journal/rsos
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In the KAS method, for each value of α, a straight line plot of ln (b=T2) against 1000/T is obtained from
the non-isothermal data acquired at various β [43].
2.12. Coats–Redfern method
This is an integral method that involves the mechanism for thermal degradation. The activation energy is
calculated based on the f(α) functions according to equation (2.12) derived by applying an asymptotic
approximation [44–46].

ln
g(a)
T2 ¼ ln

(AR)
bE

� E
RT

: ð2:12Þ

The Coats–Redfern method assumes that the activation energy does not depend on the degree of
conversion. The activation energy for each model is acquired using the slope obtained from the plot
of lnðg(a)=T2Þ against 1000/T. Achievement of high correlation coefficient (R2), as well as agreement
between the activation energy obtained by this method compared with those obtained by previous
methods, allows for the selection of the kinetic model [23,46,47]. The f (α) expressions for various
mechanisms are listed in table 1 and the same values of α were used as in the isoconversional
methods.
3. Results and discussion
The molecular weight and dispersity index for the linear and the branched polymers are presented
table 2. The branched polymers and the linear (LP-02) possess higher dispersity index due to addition
of TMEDA, which is absent in the case of the linear polymer (LPI-01) [48,49]. The 1H NMR spectrum
is presented in figure 1. The characteristic peaks of the alkene protons of the polyisoprene exist in the
range 4.5–5.5 ppm.

The peaks at 5–5.2 ppm corresponds to 1,4-microstructure [(CH3)C=CH], while those at 4.6–4.8 ppm
are attributed to the 3,4-microstructure [(CH3)C=CH2]. Difference in the microstructure between the
linear and the branched polymers exist due to the addition of TMEDA. The linear polymer consists
mainly of 1,4-microstructure, whereas the highly branched samples are pre-dominantly 3,4- (figure 1).
Peak a is due to 1,4- microstructure, while peaks b and c are due to 3,4- and 1,2- microstructure,
respectively. Peak c is absent in LPI-01 with TMEDA/Li = 0, and there is appearance of very small b,
whereas in HBPI-01 with TMEDA/Li = 0.5, there is appearance of very small peak c, which is more
evident in HBPI-02 with TMEDA/Li = 1.5. Similarly, peak b is more evident in HBPI-01 due to more
TMEDA content.



Table 2. Molecular characteristics of the linear and hyperbranched polyisoprene.

sample TMEDA : Li DVB : Li Mn(g/mol) Ð [η]br(dlg
−1)a [η]lin(dlg

−1)b G0c Tg (°C)

LPI-01 0 0 19 100 1.04 — — — −15.6
LPI-02 1.0 0 9300 2.25 — — — −13.6
HBPI-01 0.5 1.0 17 900 2.04 0.24 0.40 0.58 −19.5
HBPI-02 1.5 3.0 16 900 6.41 0.32 0.89 0.37 −23.3
HBPI-03 0.5 2.0 82 400 1.87 0.48 1.15 0.42 −12.7
HBPI-04 1.0 3.0 141 500 2.19 0.2871 1.926 0.15 −9.52

aMeasured by size exclusion chromatography in THF at 35°C.
bCalculated using Mark–Houwink–Sakurada equation: [η]lin = K Mw

α, K = 0.000177 dlg−1, α = 0.735 dlg−1.
cG0 = [η]hyper/[η]lin, Ð = dispersity index (Mw/Mn).

HBPI-02 c

c

c

a

a

a

b

b

b

HBPI-01

LPI-01

8 01234
chemical shift (ppm)
567

Figure 1. 1H NMR spectra of the linear and hyperbranched polyisoprene.
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3.1. Transmission electron microscopy
TEM has been widely used for many years to obtain information on the morphology of synthetic
macromolecules. To assess the impact of branching on the morphology of the polymers as well as to
have a comparison between the linear and branched polymer samples, we carried out TEM analysis
on the linear polymer the (LPI-01) and branched polymer (HBPI-02). The investigation was carried
out using HRTEM, and the samples were prepared for imaging by cryo-ultramicrotomy. Typical data
are presented in figure 2a and b for the LPI-01 and HBPI-02, respectively. From figure 2, it is clear that
the structure affects the morphology of these polymers. The increase in branching resulted in a less
ordered morphology. It can be seen that the linear polymer shows a high level of long-range order as
expected [50]. However, the morphology of the branched polymers is dramatically different.
Differences in degree of branching between these polymer samples have a role to play in the
morphologies of these polymers. High degree of branching obstructs any long-range ordering [51].
A similar decrease in the long-range order was observed upon introduction of branched points into
‘barbed wires’ built from polystyrene arms and polyisoprene backbones. Beyer et al. [52] reported a
similar lack of well-ordered morphology in multigraft copolymers with a high degree of branching
[51–56]. The disordered morphology could also occur due to the high dispersity of polymers [57,58].
Also, the results reported in the present study agree with those obtained previously by Hutchings
et al. [59] in which they observed similar morphological changes upon conversion of macromonomers
into hyperblocks. It was established that irrespective of the molecular weights or structures of the
linear precursors, the resulting branched polymers lack the long-range lattice order associated with
the branching which impedes the formation of a well-defined long-range lattice order [59].
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3.2. Melt rheological properties
The melt rheological properties of the branched polymers were evaluated using an MCR rheometer in
oscillatory shear experiments at 70°C, and there was a strong correlation between the rheological
properties of these polymers and their structures. The structural features of a polymer such as
branching, molecular weight and the dispersity index (Ð), usually affects its rheological properties.
Figure 3 shows the relationship between complex viscosity and angular frequency for the linear
(LPI-01, LPI-02), and the branched (HBPI-01, HBPI-02 HBPI-03 and HBPI-04) polymer samples. At
any given angular frequency, the linear polymer exhibited higher complex viscosity than the
branched polymers [49]. Moreover, the branched polymers showed evidence of shear thinning
behaviour compared with the linear polymer sample, and this indicates that the branched polymers
are less entangled than their linear counterpart. Also, the viscosity of the HBPI-02 and HBPI-04 is
lower than that of the HBPI-01 and HBPI-03 due to higher branching as well as dispersity index.
The complex viscosity of HBPI-03 is higher than that of HBPI-02 due to higher molecular weight as
well as lower molecular weight distribution. Also, the branched polymers almost exhibited constant
complex viscosity, and this is also an indication of the absence or low chain entanglement. The loss
(G00) and the storage (G0) moduli, respectively, measure the viscosity and elasticity of materials
[16,49]. Figure 4 presents the loss modulus and the storage modulus as a function of the angular
frequency, and it could be observed that the y-axis for the LPI-01 and LPI-02 extends to about 100
000 Pa, whereas for the HBPI-01 HBPI-02, HBPI-03 and HBPI-04, the y-axis extends only to up to 10
000 Pa. Moreover, the storage and loss moduli vary approximately in a linear fashion in the case of
the branched polymers.
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3.3. Differential scanning calorimetry
Segmental mobility of polymer chains is believed to influence the glass transition of polymers. Branched
polymers possess a lower glass transition temperature (Tg) due to the presence of more free volume as a
result of numerous end groups [1,49]. The differential scanning calorimetry (DSC) data presented in
table 2 show that the linear samples (LPI-01 and LPI-02) exhibited higher values of Tg (−15.6°C) than
the branched polymers, (HBPI-01, −19.5) and (HBPI-02, −23.3°C), due to the higher chain mobility of
the branched polymers over the linear polymer [60]. A similar result was reported in the literature
[61]. Also, HBPI-02 exhibited a lower Tg value due to the presence of soft segments which offers more
mobility to the polymer chains due to high branching density [62]. Therefore, lower glass transition
temperature occurs due to the higher degree of branching in HBPI-02 as compared with HBPI-01,
although they possess roughly the same average molecular weight (Mn). However, higher Tg values
were observed for HBPI-03 due to high molecular weight and low dispersity compared with other
branched and linear samples.
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Table 3. Thermal decomposition characteristics for the linear and hyperbranched polyisoprene.

Title 1 T20% (°C) T50% (°C) Tmax (°C) % residue at 580°C

LPI-01 379 424 439 0.2

LPI-02 371 423 441 1.1

HBPI-01 388 427 444 1.3

HBPI-02 377 423 445 0.8

HBPI-03 353 417 446 1.1

HBPI-04 371 427 448 1.2
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3.4. Thermal degradation characteristics
TGA plots express the relationship between the percentage mass of the experimental samples and
temperature. The mass loss–temperature curve allows for the direct evaluation of the temperatures for
the initial and final degradation as well as the residual mass of the sample. Figure 5a shows a typical
TGA curve obtained from the analysis of the linear and branched polymers heated at 15°C min−1.
It showed that the branching, as well as molecular weight distribution, affect the thermal stability of
these polymers. The thermal stability of the polymers decreases with branching. Moreover, an increase
in the dispersity lowers the thermal stability of polymers [45]. The low molecular weight components
of more disperse samples could be the possible reason for the lower thermal stability of HBPI-02
compared with HBPI-01. It could be seen from figure 5 that after about 580°C, over 98% conversion
was achieved and there was less than 2% residue left in all the three samples. Moreover, at higher
heating rates there is a delay in the degradation process and the curves shift to higher temperatures.

The temperature of maximum decomposition (Tmax) appears at 439°C for LPI-01 (Mn = 19 118 g mol−1,
Ð = 1.04), for LPI-02 (Mn = 9300 g mol−1, Ð = 2.25) it appeared at 441°C, while for HBPI-01 (DVB/Li = 1.0,
Mn = 17 900 g mol−1 Ð = 2.04) appeared at about 444°C and that of HBPI-02 (DVB/Li = 3.0, Mn = 16 900 g
mol−1 Ð = 6.41) was about 445°C. The Tmax for HBPI-03 (DVB/Li = 2.0, Mn = 82 400 g mol−1 Ð = 1.87) and
HBPI-04 (DVB/Li = 3.0, Mn = 141 500 g mol−1 Ð = 2.19), were, respectively, 446°C and 448°C. Details of
values are given in table 3. The more branched polymer sample (HBPI-04) possessed the higher
temperature of maximum decomposition compared with the LPI-01, LPI-02 HBPI-01, HBPI-02 and
HBPI-03 despite having the high dispersity index and this may be related to the higher DVB content.
The highest Tmax observed in HBPI-04 may be related to its high molecular weight.

3.5. Kinetics of thermal degradation
The use of non-isothermal thermogravimetric methods has a high capacity to unravel the mechanisms of
chemical and physical processes that occur in the course of the degradation of polymers. It has been
revealed that the use of isoconversional approaches can provide meaningful Ea values in different
experimental conditions. Model-free evaluation of the activation energy is achieved via the
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Table 4. Average activation energy (Ea) values obtained via the three kinetic methods.

methods

average activation energy (kJ mol−1)

Friedman FWO KAS

LPI-01 330 319 324

LPI-02 263 258 278

HBPI-01 279 270 273

HBPI-02 268 260 262

HBPI-03 320 309 315

HBPI-04 244 237 238
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isoconversional techniques. The isoconversional methods are powerful and most reliable tools for
estimating the activation energies of thermally stimulated reactions [33–35].

Three isoconversional methods which include the Friedman, FWO and KAS were selected to
analyse the experimental results obtained from the thermal degradation kinetics due to their ability to
estimate the kinetic parameters with good accuracy and simplicity [28,36,42,63]. Moreover, using these
methods, the dependence of activation energy (Ea) on conversion (α) for these polymers was
evaluated. Figure 6a–f shows the typical TGA curves at different β for LPI-01, LPI-02, HBPI-01,
HBPI-02, HBPI-03, and HBPI-04, respectively.

The Friedman method which is a derivative method and the most commonly used differential
isoconversional process [28,36,64] was first employed to obtain the kinetic information of the polymers.
This technique correlates the conversion rate (α) with various heating rates at a specified conversion.
Equation (2.9) has been employed to obtain the Ea values by plotting the ln[β(dα/dt)] versus 1/T for
the conversion range (α = 0.2–08) and the results are summarized in table 4. The average activation
energies for the branched polymers (HBPI-01, HBPI-02, HBPI-03 and HBPI-04) were lower compared
with the one obtained for the linear polymer (LPI-01). Also, the average activation energy for HBPI-02
was lower compared with the HBPI-01 with less degree of branching, but HBPI-03, although possessing
a higher degree of branching, exhibited higher Ea due to high molecular weight. HBPI-04 with the highest
degree of branching exhibited the lower average activation energy values.

The second method was the FWO which is an integral and model-free method. Equation (2.10) was
employed, and the Ea was obtained from the plots of lnβ against 1/T for a fixed conversion (α). The Ea

was obtained from the slope which equals to −1.052 Ea/R [28,40,65]. Similar values of α were used as in
the case of Friedman method. The average Ea values for the LPI-01, HBPI-01 and HBPI-02 are given in
table 4. The average values attained by the FWO method for LPI-01, LPI-02, HBPI-01, HBPI-02, HBPI-
03 and HBPI-04 were, respectively, 319, 258, 270, 260, 309 and 237 kJ mol−1. The obtained values are
very close to the ones achieved by the Friedman method. Also, a similar trend is observed in which
the Ea decreases as the branching increases. The main advantage of FWO method is that apart from
the Arrhenius temperature-dependence, no assumptions regarding the form of the kinetic model
equations are required [28].

The third method used was the KAS method in which equation (2.11) relates the temperature (T ) and
the heating rate for a given conversion (α) [41,42]. For all the values of α, straight line plot of ln (β/T2)
against 1/T is attained at various β [43]. The average activation energy values achieved by the KAS
method for LPI-01, LPI-02, HBPI-01, HBPI-02, HBPI-03 and HBPI-04, were 324, 278, 273 264, 315 and
238 kJ mol−1, respectively. Again, these values are comparable to the values achieved via the
Friedman and FWO techniques. Approximately equal values of Ea were obtained by the methods of
FWO and KAS, with slightly higher values obtained by the KAS method. Except for HBPI-03, the
activation energy decreases with branching, which shows that the polymer samples with higher
branching degraded more easily [24].

Figure 7 presents the relationship between activation energy (Ea) and the extent of conversion (α) for
the Friedman, KAS and FWO approaches. For the linear polymer (LPI-01), there was a decrease in the
activation energy with α for all the methods, whereas the branched polymers and LPI-02 are likely to
degrade by a multi-step process as indicated by the nonlinear trend of Ea with α. It was established
that if there is a difference between the Ea attained by the isoconversional methods (integral and
differential), then there is a dependency between the activation energy and α [33,66,67]. It was also
demonstrated that in both FWO and Friedman methods, different values of Ea are obtained for a
system of independent or competitive reaction mechanisms. However, if Ea and α are independent,
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then there is a high tendency of obtaining similar values of Ea by these approaches [28,68,69]. The values

Ea found via the Friedman method, varied slightly with those obtained via the methods of KAS and the
FWO. These dissimilarities are possibly due to the temperature integrals approximations used during
the derivation of the equations for the nonlinear isoconversional techniques. The stability order of the
polymers studied may be written as LPI-01 >HBPI-03 >HBPI-01 >HBPI-02 > LPI-01 >HBPI-04 based
on the values of Ea calculated.

Compared with the average value of Ea (223 kJ mol−1) obtained by Chen et al. [24], for hyperbranched
exopolysaccharide, the values obtained in the present study are slightly higher. Similarly, average Ea

value of 90.35 kJ mol−1 was reported for anhydride-terminated HBPs with a molecular weight ranging
from 16 000 g mol−1 to 19 000 g mol−1 and molecular weight distribution from 1.21 to 128, respectively
[23]. The dissimilarity between the polymers used in the present study and the ones reported in the
literature may be explained in terms of the nature of the polymeric chains, molecular weight or the
distribution of molecular weights in the samples [45].

The correlation between Ea and α could be estimated via the isoconversional methods without prior
assumptions of the model of reaction. Moreover, the isoconversional methods allow for the detection of
the multi-step kinetic relationship between the activation energy and the extent of conversion which may
not be revealed by other methods such as the Kissinger method [70].

3.6. Coats–Redfern method
The Coats–Redfern (CR) technique was chosen to explore the mechanism for the thermal decomposition
of these polymers since the activation energy, Ea could be obtained using this approach in the absence
of prior information about the nature of the degradation. The activation energy was calculated based
on the f (α) functions according to equation (2.12) [44–46].

For each model, the Ea was acquired from the slope of the plot of lnðgðaÞ=T2Þ versus 1000/T.
Achievement of high correlation coefficient (R2), as well as agreement between the Ea achieved via the
CR technique compared with those attained by the isoconversional methods, allows for the selection
of the kinetic model [23,46,47]. The f (α) expressions for various mechanisms are given in table 4 and
similar α-values were adopted as in the isoconversional methods. For both the linear and branched
polymers, 12 different f (α) forms were employed to obtain the thermal degradation mechanism (table 5).

Correlation coefficient for the 12 different f (α) were computed and the mechanism of the reaction was
selected based on the value of the correlation coefficient, and the right degradation mechanism was
assumed to achieve the best linear correlation coefficient, from which the activation energy was
determined [71]. However, comparison of the activation energy between the Coats–Redfern method
and isoconversional methods for all selected kinetic models could not suggest the accurate mechanism
for thermal degradation of these polymers. Nevertheless, analyses of the data together with the high
correlation coefficients suggest the most likely reaction mechanisms. The highest correlation for the
thermal decomposition of all the polymers (LPI-01, LPI-02, HBPI-01, HBPI-02, HBPI-03 and HBPI-04)
was obtained using the function: f (α) = α2, corresponding to a one-dimensional diffusion (D1)
mechanism. The activation energies in kJ mol−1 for this mechanism were, respectively, 144, 122, 91,
152, 122 and 41 for the LPI-01, LPI-02, HBPI-01, HBPI-02, HBPI-03 and HBPI-04 (table 5).

4. Conclusion
Highly branched polymers have been synthesized via polymerization anionic based on the Strathclyde
approach under high vacuum conditions. The branched polymers were characterized to be of broad
molecular weight by size exclusion chromatography (SEC), whereas the linear polymers prepared in
the absence of TMEDA analogue were of narrow molecular weight distribution. DSC and melt
rheological measurements explain the nature of branching of the polymers via the polymer segmental
motion and chain entanglement phenomena, and it was observed that the branched polymers showed
better chain mobility, and a lower complex viscosity than the corresponding linear sample, signifying
a lower chain entanglement in the branched polymer molecules. The morphology of the polymers was
investigated using HRTEM in order to evaluate the effect of architecture on the morphology of these
polymers. It was found that moving from the linear to the highly branched polymer samples, led to
the disappearance of the long-range, ordered morphology characteristics of the linear polyisoprene.
The high branching nature of the branched polymers is certainly accountable for preventing the long-
range lattice order. TGA was employed to study the kinetics of thermal degradation of the linear as
well as the highly branched polymers. The TGA experiments were achieved under nitrogen. Three
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different isoconversional methods, the Friedman, FWO and KAS approaches, were employed to

determine the values of Ea for these polymers. The values obtained using the Friedman method
varied slightly from the values obtained via the KAS and FWO approaches. The branched polymers
were decomposed via multi-step kinetics as manifested by the lack of dependency between the extent
of conversion and the activation energy, while for the linear polymer there was a decrease in
activation energy with the conversion. The determination of the mechanism via the Coats–Redfern
method revealed that the decomposition of polymers can be designated by a D1 mechanism which
involves one-dimensional diffusion. This study may offer useful information on the relationship
between architecture and polymer properties.
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