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The impact of satellite trails on Hubble Space 
Telescope observations

Sandor Kruk    1  , Pablo García-Martín    2, Marcel Popescu    3, Ben Aussel    4, 
Steven Dillmann5, Megan E. Perks    6, Tamina Lund    7, Bruno Merín    8, 
Ross Thomson    9, Samet Karadag    10 & Mark J. McCaughrean    11

The recent launch of low Earth orbit satellite constellations is creating 
a growing threat for astronomical observations with ground-based 
telescopes1–10 that has alarmed the astronomical community11–16. 
Observations affected by artificial satellites can become unusable for 
scientific research, wasting a growing fraction of the research budget 
on costly infrastructures and mitigation efforts. Here we report the first 
measurements, to our knowledge, of artificial satellite contamination  
on observations from a low Earth orbit made with the Hubble Space 
Telescope. With the help of volunteers on a citizen science project  
(www.asteroidhunter.org) and a deep learning algorithm, we scanned the 
archive of Hubble Space Telescope images taken between 2002 and 2021. 
We find that a fraction of 2.7% of the individual exposures with a typical 
exposure time of 11 minutes are crossed by satellites and that the fraction 
of satellite trails in the images increases with time. This fraction depends 
on the size of the field of view, exposure time, filter used and pointing. With 
the growing number of artificial satellites currently planned, the fraction of 
Hubble Space Telescope images crossed by satellites will increase in the next 
decade and will need further close study and monitoring.

Artificial satellites can affect the observations of space-based tele-
scopes in low Earth orbit (LEO) such as the iconic NASA/ESA Hubble  
Space Telescope (HST). Shara and Johnston17 warned about this three 
decades ago: ‘artificial Earth satellites will cross the fields of view  
of operating HST science instruments with distressingly high bright-
nesses and frequencies’. Launched in 1990, the orbit of HST is slowly 
decaying due to atmospheric drag18, now being at a mean altitude 
of 538 km above the surface of the Earth. HST is thus sensitive to  
other satellites situated in higher orbits that, depending on the solar 
illumination angle, position and telescope pointing, can affect the 
observations by causing bright streaks of light across the HST images. 

The other concern is that these artificial satellites will become space 
debris, increasing the amount of space junk and the potential of HST 
colliding with a debris object17,19.

Satellite trails have been recognized as anomalies in HST Advanced 
Camera for Surveys (ACS) images20. Borncamp et al.21 proposed an  
algorithm for users to detect and mask satellites in their individual 
HST ACS observations. However, so far there has been no quantita-
tive assessment of how frequently satellites appear in HST images. 
In this study, we quantify the past and current impact of higher- 
orbit satellites on HST images. In the Hubble Asteroid Hunter (www.
asteroidhunter.org) citizen science project (Kruk et al.22), over 11,000 
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The datasets used in this study are shown in Table 1. We find an 
average fraction of 2.7 ± 0.2% of the individual HST images between 
2002 and 2021 containing at least one satellite trail. There is a sig-
nificant difference between the two instruments studied, as shown in  
Fig. 2a: the mean satellite fraction for the ACS/Wide-Field Channel (ACS/
WFC) is 3.2 ± 0.2%, while for the Wide-Field Camera 3/Ultraviolet Channel 
(WFC3/UVIS) it is 1.7 ± 0.1%, because of the larger FoV of ACS/WFC, 202″ 
compared to 160″, and different wavelength coverage of the two instru-
ments. We observe an increasing fraction of HST images with satellites 
with time: the satellite fraction increases from 2.8 ± 0.2% in 2002–2005  
to 4.3 ± 0.4% in 2018–2021 for ACS/WFC, and from 1.2 ± 0.1% in 2009–
2012 to 2.0 ± 0.2% in 2018–2021 for WFC3/UVIS, as shown in Fig. 2a.

The HST observations differ by the filter used. In Fig. 2b, we plot 
the fraction of individual images with satellite trails, split by instrument 
and filter used (for the 12 most commonly used filters). We notice a 
strong wavelength dependence: green (F606W), red (F775W) and 
near-infrared (F814W) filters contain a mean fraction of 3.3 ± 0.2%, 
while ultraviolet (UV) filters contain a much smaller fraction of  
satellites with 0.1 ± 0.1% for F275W. The low fraction of satellites  

volunteers inspected images from the European HST archive (eHST; 
http://hst.esac.esa.int/ehst) for asteroid trails. The volunteers also 
tagged anomalies such as satellites on the forum of the project (called 
‘Talk’). In contrast to asteroid trails that appear as short, curved trails 
in the images due to the parallax effect caused by the motion of the 
spacecraft around the Earth, satellite trails traverse the entire field of 
view (FoV) of the HST observations quickly and, in most cases, appear 
as straight lines.

To explore the HST archive for satellite trails, we used supervised 
machine learning methods and trained two algorithms based on 
deep learning with the volunteer classifications: a binary classifier  
and Google’s Automated Machine Learning (AutoML) Vision  
algorithm, as described in Methods. We applied the former to indi-
vidual HST images of 11 minutes average exposure time (Method I: 
machine learning classification model for individual HST images)  
and the latter to HST stacked, composite images with an average  
exposure time of 35 minutes (Method II: AutoML classification for 
HST composite images). Examples of satellite trails identified in  
the two types of HST image are shown in Fig. 1. The results are consist-
ent between the two methods, as explained in Comparison of the  
two methods section. In what follows, we present results for the  
HST individual exposures and discuss the outlook for HST observa-
tions being affected by satellites in the future. The statistics derived  
in this study concern HST images taken predominantly before the 
launch of satellite megaconstellations. Thus, this is an attempt  
to define a baseline before the swarm of artificial satellites for  
future follow-up studies of the impact of megaconstellations on 
space-based astronomy. The results and uncertainties were calculated 
as explained in the section on Uncertainty calculation. The equivalent 
information for composite images is presented in the Supplementary 
Information.

a

b

Fig. 1 | Examples of satellite trails identified in HST individual exposures and 
composite images. a, Examples of satellite trails in individual HST ACS/WFC 
exposures (one aperture image, cutout FoV of roughly 101″ × 202″), with a typical 
integration time of 11 min: the first column shows typical trails (observation 
IDs j8cw52p3q and j8pu0hcfq); the second column shows multiple trails in 

an exposure ( j8xi1bafq) and flickering satellite trail ( jbhj04gcq) and the third 
column shows broad out-of-focus trail ( ja4tg4lsq) and curved satellite trail 
( jcor25dtq). b, Imperfectly removed satellite trails in composite HST images, as 
identified by AutoML with bounding boxes in cutouts of HST composite images.

Table 1 | The number of archival HST individual and 
composite images analysed in this paper

Dataset Instrument FoV Number of 
images

Average 
exposure time

HST individual ACS/WFC 202″ × 202″ 76,056 11.1 min

WFC3/UVIS 160″ × 160″ 38,551 11.4 min

HST composite ACS/WFC 202″ × 202″ 24,507 35.1 min

WFC3/UVIS 160″ × 160″ 12,947 34.4 min

http://www.nature.com/natureastronomy
http://hst.esac.esa.int/ehst
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in UV images can probably be explained by a lower satellite reflectivity 
at UV wavelengths.

In what follows, we also consider multiple trails in the images  
(144 HST individual exposures contain more than one satellite trail:  
133 images with two trails, ten images with three trails and one image 
with four trails). We calculate the chance of seeing a satellite trail in 
the HST images by normalizing with the exposure time and scaling 
to the FoV of ACS/WFC (202″ × 202″), as described in the section on  
Uncertainty calculation. We show the chance of seeing a satellite trail 
in an image with exposure time of 11.2 minutes, FoV of 202″ and broad-
band filters with λ > 400 nm in Fig. 3. The chance of seeing a satellite in 
HST between 2009 and 2020 is 3.7 ± 0.3% for ACS/WFC and 3.2 ± 0.3% 
for WFC3/UVIS, while for 2021 it is 5.9 ± 0.9 and 5.5 ± 1.2% representing 
an increase of 59 and 71% for ACS/WFC and WFC3/UVIS, respectively.

Finally, we investigate whether the satellites observed by HST 
are distributed uniformly across the sky. Being a general observatory, 
the observations of HST are in principle random in the sky, except for 
the Legacy Surveys (for example, COSMOS, CANDELS, Hubble Deep 
Fields), containing thousands of observations in a small fraction of the 
sky (roughly 2 square degrees). In Fig. 4a,b we plot histograms of the 
HST pointings for all the HST observations (for ACS/WFC and WFC3/
UVIS combined) and, for comparison, for observations containing 
satellite trails. We also create a HEALPix representation of the telescope 

pointings. The fraction of satellites for each pixel is shown in Mollweide 
projection in Fig. 4c. Although there are variations across the sky,  
there is an excess of observations containing satellites along the  
equator (δ = 0°): it is twice more likely to encounter a satellite while 
observing in the equatorial plane than anywhere else. This can be 
explained by satellites in geostationary Earth orbits, which feature a 
constant equatorial latitude for their entire orbit. Additionally, there is 
a slight excess of observations containing satellites at δ > 60°, possibly 
due to a higher fraction of satellites in highly elliptical and inclined 
orbits, such as Molniya and Tundra orbits, intended to cover high 
latitude regions.

The fraction of HST images crossed by satellites is currently small 
with a negligible impact on science. However, the number of satellites 
and space debris will only increase in the future. As of 3 October 2021, 
there were 8,460 objects with sizes >0.1 m2 in orbit, above the altitude 
of HST (5,589 satellites of large sizes >1 m2 and 2,871 of medium sizes 
<1 m2. Both active and defunct satellites were included on the basis of  
https://www.space-track.org/. Since Space-Track measures radar cross- 
section sizes, which can be unreliable, these numbers are only relevant  
to the first significant figure). There has been a 40% increase in the 
number of artificial satellites in the period 2005–2021, matching the 
observed increase in fraction of satellites in HST images (roughly 50% 
increase).

The probability that a satellite crosses the FoV of HST can be  
modelled on the basis of the distribution of satellites that are visible  
at any point to HST, the FoV of the instruments and the exposure 
time, using a similar analysis to ref. 17. We use a simple model with a  
pure geometrical assessment, and assume that satellites are uniformly 
distributed with latitude and longitude and that all orbits are circular 
to first order. The probability that one satellite of Nsat crosses the FoV is

P ≈ Nsat
4π × f × a × ω × δt, (1)

where Nsat/4π is the number density of satellites above the orbit of 
HST across the entire sky, f is the fraction of these satellites that are 
illuminated and visible to HST at any given time (see Supplementary 
Information for the derivation), ω is the mean angular velocity of a sat-
ellite crossing the FoV, a is the size (width) of the FoV and δt is the aver-
age exposure time. We consider a typical satellite at 1,500 km altitude 
(the current median altitude of the roughly 8,500 satellites above the 
orbit HST). The fraction of illuminated satellites at this altitude, visible 
at any given time to HST is f ≅ 11% (see derivation in Supplementary 
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Information). The probability that one of the 8,500 satellites crosses the 
FoV with ω ≅ 186″ s−1, during an exposure of 11 min, is P = 4.4% for ACS/
WFC and P = 3.5% for WFC3/UVIS, close to the observed probabilities 
of 5.9 and 4.4% for 2021.

By the date of this analysis, there were 1562 Starlink and 320 One 
Web satellites in orbit, increasing the population of satellites close 
to the orbit of HST. Nevertheless, the number of satellites in LEO will 
only increase in the future, with an estimated number of satellites 
in LEO between 60,000 and 100,000 by the 2030s (Supplementary 

Information). Most of these satellites will be between 500 and 2,000 km 
altitude. To model the future impact of satellites on HST observations, 
we assume typical LEO megaconstellations between these altitudes and 
calculate the probability that one of the satellites will cross the FoV of 
one of the HST instruments using equation (1). We estimate that the 
probability of a satellite crossing the FoV of HST will be between 20 and 
50%, depending on the altitude and the number of satellites in orbit 
(Supplementary Information). For example, the probability that one 
of the 100,000 satellites at 850 km altitude will cross the FoV is 33% for 
WFC3/UVIS and 41% for ACS/WFC, increasing the current fraction of 
affected images by an order of magnitude.

Satellites in upper LEO (1,000–2,000 km) will appear more fre-
quently in the HST images as the fraction of satellites visible to HST is 
higher. Nevertheless, they will produce narrower trails (such as those 
in lower part of Fig. 1a). Satellites in lower LEO orbits (500–1,000 km) 
will appear less frequently in the images since there will be fewer visible 
to HST, but they will produce broader trails. One of the main Starlink 
shells, for example, is at 550 km altitude, not far from the altitude of HST 
of 538 km. Assuming that an artificial satellite will pass at only 100 km 
from the pointing of HST, the 3 m Starlink satellite2 will produce a wide 
band of 6″ or 120 pixels across the ACS detector, which might have an 
impact on the scientific exploitation of the HST data. Even though no 
scientific impact of satellite trails on HST data has been reported so 
far, this has been noted for other telescopes such as Keck MOSFIRE, 
where a probable explanation for a flash attributed to a gamma-ray 
burst in a z ≅ 11 galaxy23 is an artificial satellite causing flashes in the 
dispersed spectra24,25.

As an important fraction of the HST images will be affected by 
artificial satellites, it is important to consider mitigation strate-
gies. The current version of DrizzlePac is not designed to correct for  
the satellite trails in the images, but to correct for cosmic rays  
(Comparison of the two methods). As mitigation for HST, one could 
mask out the satellite streaks (for example, with the acstools.sat-
det, https://acstools.readthedocs.io/en/stable/satdet.html, tool21) 
before combining multiple drizzled exposures with DrizzlePac. This 
might prove to be difficult for satellite trails that are wider than a few  
tens of pixels, in which case the particular exposure cannot be  
used for science. While deeper surveys can afford to discard one 
or two exposures affected by satellite trails, it will be particularly 
problematic for observations of bright and extended targets, such 
as some HST SNAP programs, where typically only a couple of expo-
sures are available. Taking shorter exposures can alleviate some of 
the problems, but one will have to account for the telescope time lost 
with unusable images.

HST may not be the only space telescope affected by artificial 
satellites. Other telescopes in LEO, such as CHEOPS or NEOWISE, are 
also susceptible to artificial satellite trails in their images, as their orbit 
is below the orbit of many of the current satellites. There is a particular 
concern for satellites having a notable impact on observations with 
future telescopes in LEO having large FoVs, such as the planned Xuntian 
wide-field optical-IR telescope (having 300 times the FoV of HST) on 
the Chinese Space Station. Many space observatories are now orbit-
ing ( James Webb Space Telescope) or planned to orbit in L2 (Euclid, 
Plato), placing them far from artificial satellites and space debris and 
sparing them from the growing problem faced by telescopes in LEO 
and on the ground.

Methods
We analyse the occurrence of satellite trails in HST images using two 
different machine learning methods and two different types of HST 
image: individual exposures and composite images available in the 
eHST archives.

We analyse HST ACS/WFC images taken and publicly released 
between 22 March 2002 (when the ACS camera was installed) and  
3 October 2021 and WFC3/UVIS images taken and publicly released 
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between 25 June 2009 (when the WFC3 obtained first light) and  
3 October 2021. The dataset contains the individual HST exposures 
and composite HST images, created and processed by the Space Tele
scope Science Institute (STScI) using the standard pipeline calibration  
settings, drizzled and combined using the DrizzlePac26 algorithm 
(https://www.stsci.edu/scientific-community/software/drizzlepac.
html). We exclude the grism spectral images (as the spatially extended 
spectral ‘wings’ can be confused with satellite trails), calibration 
images, images with FoVs smaller than 7 arcmin2 (to remove subframes) 
and images with an exposure time of less than 100 s (for composite 
images) and 30 s (for individual exposures). We did not include near-IR 
images from the WFC3/IR channel, because of the lack of training data 
for this instrument.

The individual HST images used are the original, undrizzled images 
with an average exposure time of 11.2 min, with PNG snapshots avail-
able in the eHST archives. The images from the two ACS/WFC (WFC3/
UVIS) apertures were added side-by-side, without correcting for the 
geometric distortions. We downsized the images from 4,096 × 4,096 to 
600 × 600 pixels to improve the display on the citizen science platform 
and to increase the speed of training the classifier. These were analysed 
using a machine learning binary classification model presented in Method 
I: machine learning classification model for individual HST images. Exam-
ples of individual images with satellite trails are shown in Fig. 1a.

The HST composite images, with an average exposure time  
of 35 min, are processed with the DrizzlePac algorithm that performs 
cosmic ray rejection before combining the individual images. How-
ever, it is not well suited to removing satellite trails. Large artefacts  
such as satellite trails are visible as residual trails in the composite 
images27, as shown in the examples in Fig. 1b. These residual trails  
in the composite HST images were used to identify satellites with 
AutoML, described in Method II: AutoML classification for HST com-
posite images. This dataset is the same as the one presented in ref. 22.

Building training sets using crowdsourcing
Satellite trails were first identified in HST composite images by the 
volunteers on the Hubble Asteroid Hunter (www.asteroidhunter.org) 
citizen science project and tagged (with #satellite) on the forum of the 
Zooniverse project (https://www.zooniverse.org/projects/sandorkruk/
hubble-asteroid-hunter/talk/tags/satellite). We used 1,613 of the satel-
lite trails identified by the volunteers in the HST composite images to 
train our AutoML model (Method II). In a subsequent iteration of the 
citizen science project, to identify the satellites in the corresponding 
individual HST exposures, we designed a new workflow to classify satel-
lites and uploaded those individual exposures that corresponded to 
the 1,613 tagged composite HST images with satellites. With the help 
of 450 citizen scientists, we classified 10,239 HST individual images 
(7,776 for ACS/WFC and 2,463 for WFC/UVIS), gathering ten classi-
fications per image for a total of 102,390 classifications. An image 
is labelled to contain a satellite if most of the volunteers provided a 
positive classification (five or more positive classifications out of ten 
classifications per image). If all users classified an image to not contain 
a satellite, we added these images to the ‘no satellite’ class. Balancing 
the two datasets to have approximately the same number of images for  
both classes this resulted in 3,329 images for the ‘no satellite’ class  
and 2,622 for the ‘satellite’ class.

Method I: machine learning classification model for individual 
HST images
For the classification of HST individual images, we developed an image 
classifier model using transfer learning. We based our model on the 
InceptionV3 model28, pretrained with the ImageNet dataset. The model 
has 22.9 million parameters. Our model is a simple binary classifier that 
predicts whether there is a satellite or not in a given image. Therefore, 
we use a sigmoid activation function in the output layer, while for 
the other layers we used the rectifier activation function. To reduce 

overfitting, we add three dropout layers with a probability of 50%. We 
used the stochastic gradient descent optimizer for the training. For the 
calculation of the loss, we used the binary crossentropy.

We used the 3,329 images for the ‘no satellite’ class and the 2,622 
for the ‘satellite’ class to train the algorithm. We split the data into 80% 
of the images for training and 20% of the images for validation. We 
trained the algorithm and stopped it as soon as it started to overfit, 
after 22 epochs. Our model achieves an accuracy of 93.8%, a precision 
of 97.5% and a recall of 89.0% at a 50% classification threshold. This 
leads to an overall F1 score of 93.1%. The confusion matrix is shown in 
Supplementary Fig. 4.

We applied the trained model on all 114,607 individual HST images 
and the model predicted that 3,157 images contain satellite trails. We 
inspected all the positive classifications and removed the images that 
were not correctly classified by the algorithm (205 cases). The main rea-
sons for the false positive predictions were: guide star failures leading to 
trailing stars, diffraction spikes from bright stars or cosmic rays falsely 
classified as satellites. We also added 120 images that the volunteers 
classified as being crossed by satellites, but were not detected by the algo-
rithm. Some of the images contain more than one satellite (the model only 
predicts if satellites are present in the images, but not their number). This 
process led to a final sample of 3,072 HST individual images containing  
a satellite trail and 3,228 satellite trails in total. This dataset of satellites  
is used for the analysis described in the main section of the paper.

Method II: AutoML classification for HST composite images
For the second classification method, we used the HST composite 
images, which are readily available in the eHST archive. As described 
in Table 1, we used a total of 37,454 composite images. To improve 
the trail detection using automated methods, we split the composite 
PNG images into four equal quadrants (examples are shown in Fig. 1b). 
The PNG cutouts have sizes of 1,024 × 1,024 pixels, corresponding to 
101″ × 101″ for ACS/WFC and 80″ × 80″ for WFC3/UVIS.

We used the Google AutoML Vision multi-object-detection algo-
rithm (https://cloud.google.com/vision/automl/object-detection/
docs) to identify satellite trails in cutouts of HST composite images. The 
Google AutoML Vision builds a deep learning model based on a neural 
architecture search algorithm29. We trained the AutoML Vision model 
on Google Cloud with four labels: satellite, asteroid, gravitational lens 
arc and cosmic ray (all of these being trail-like features), thus we can 
detect all four types of object separately in the cutouts, as described 
in ref. 22. Besides the classifications, AutoML returns a bounding box 
for each classification, as shown in Fig. 1b.

We trained the model with the 1,613 satellite trails tagged by the 
volunteers on Hubble Asteroid Hunter and split the sample into 70% 
training, 15% validation and 15% test sets for AutoML to optimize the 
hyperparameters of the model and evaluate its performance. The 
model achieves a precision of 91.7% and recall (or completeness) of 
84.4% on the test set, at a 50% classification confidence threshold. 
Applying the model to the 149,816 HST composite image cutouts, we 
detect 7,990 satellite classifications in the cutouts (as shown in the 
examples in Fig. 1b), corresponding to 4,322 composite images with 
satellite trails out of the 37,454 ACS/WFC and WFC3/UVIS images. Two 
of the authors (S.K. and P.G.-M.) inspected the 4,322 composite images 
with positive classifications by AutoML and identified 1,387 images with 
trails that were not caused by satellites. The types of trail the automated 
algorithm was misclassifying as satellite trails were the same as for the 
individual images: guide star failures causing stars to trail in the images 
and diffraction spikes from bright stars outside the field appearing 
as long straight lines in the images. The model could be improved by 
adding additional labels for ‘diffraction spikes’ and ‘trailing images’. 
However, given that this paper aims to study the impact of satellites 
on HST images and not to produce the perfect model, we discarded 
the 1,387 images, resulting in 2,935 images with correctly identified 
satellite trails, containing a total of 3,217 satellite trails.
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Comparison of the two methods
We analysed the HST images for satellite trails using two different 
machine learning methods: a simple binary classifier based on the 
InceptionV3 model and an object-detection model in Google Cloud, 
AutoML. We inspected the HST individual exposures, as well as the 
stacked, composite HST images. The two different analysis methods 
show consistent results. With our machine learning classification we 
recovered 3,072 images with satellite trails, while with AutoML we 
recovered 2,935 images with satellite trails, respectively.

We find a fraction of 8.9 ± 1.1% composite ACS/WFC and 5.8 ± 0.7% 
composite WFC3/UVIS images crossed by satellites. On average, 3.2 
individual exposures were combined to create the composite images. 
This corresponds to a fraction of HST images with satellites of 2.8 ± 0.3% 
for the individual ACS/WFC and 1.8 ± 0.2% for individual WFC3/UVIS 
exposures, an average of 2.4 ± 0.3% for the two instruments. These 
measurements based on the HST composite agree well (within uncer-
tainties) with those found for the individual HST images (with Method I),  
3.2 ± 0.2% for ACS/WFC3 and 1.7 ± 0.1% for WFC3/UVIS, presented in 
the main section of the paper. These results are promising as we used 
two completely different and independent algorithms analysing two 
sets of images processed in different ways. We, therefore, proceed 
with the analysis and show only the results of the machine learning 
classifications on individual HST images (Method I) in the main article. 
The same results, but for the HST composite images are shown in the 
Supplementary Information.

Finally, since we find a similar fraction of satellites in the HST 
individual images, which contain bright satellite trails, and in the HST 
composite images, where the satellite trails appear as residuals, this 
suggests that flagging satellites as cosmic rays and rejecting them in 
DrizzlePac is not sufficient to completely remove the trails. Therefore, 
different mitigation techniques, such as masking the satellite trail, need 
to be investigated for HST.

Uncertainty calculation
In the main article, we investigate the number of HST images containing 
a satellite trail s using histograms. Due to the variation in the number 
of observations of HST with time, by instrument and filter, we need to 
consider the Poisson uncertainty in the number of images with satel-
lites, √s. Additionally, we assume an uncertainty in the performance 
of the machine learning algorithm to detect the trails. We use the F1 
score of 93% that leads to an uncertainty of 0.07s. Both uncertainties 
are combined using the Gaussian propagation of uncertainty 

us = √(√s)
2
+ (0.07s)2 = √s + 0.0049s2. We then calculate the fraction 

f = s
a

 of images containing a satellite trail, where a is the total  

number of HST images. The uncertainty in the fraction of HST images 

with satellites is thus

uf =
√s + 0.0049s2

a . (2)

Additionally, for the distribution of the declination and right 
ascension, in the frequency histogram for the images with satellites, 
we divide the number of images for each bin by the total number of 
images with satellites stotal or for the entire dataset atotal: freqs =

s
stotal

  

and freqa =
a

atotal
. To calculate the uncertainty in the frequency histo-

grams, we used the following equation:

ufreqs =
√√√√
√

( 1
stotal

us)
2
+ ( s

s2total
ustotal)

2

. (3)

The final result of our paper is the chance of seeing a satellite in 
an HST image, normalized by exposure time and scaled to the width of 
the FoV of ACS/WFC (202″):

c = st
tmean
tsum

202′′
a( ′′) , (4)

where st is the number of satellite trails, tsum the total exposure time in 
a bin and tmean the mean exposure duration for an image and a(″) is the 
size (width) of the FoV. For this calculation, we only include filters with 
λ > 400 nm (we excluded UV images where the observed fraction of 
satellites is low) and images using the full FoV. For the number of satel-
lite trails st, we used the same uncertainty calculation as for the number 
of images with satellites s. For the total exposure time of all images, we 
assumed the uncertainty utsum = 0. For the mean exposure duration 
tmean, we used the standard error of utmean =

σ
√atotal

 with the standard devia-

tion σ and the number of all images atotal. The uncertainty in the chance 
of seeing a satellite calculation is therefore

uc =√( tmean
tsum

)
2
(st + 0.0049s2t ) + ( st

tsum
utmean)

2
× 202′′

a( ′′) . (5)

Data availability
The HST observations are publicly available in the eHST archives  
at http://hst.esac.esa.int/ehst. The list of HST individual images with  
the satellite classifications in this paper is available on Zenodo at 
https://doi.org/10.5281/zenodo.7474191.

Code availability
The binary machine learning classifier, as well as the code used in this 
work to analyse the frequency of satellite trails in HST observations 
and to recreate all the figures, is available on GitHub at https://github.
com/sandorkruk/HST_impact_of_satellites.
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