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Cottage cheese disease is caused by microsporidian parasites
that infect a wide range of animal populations. Despite its
potential to affect economically important activities, the
spatial patterns of prevalence of this disease are still not
well understood. Here, we analyse the occurrence of the
microsporidian Areospora rohanae in populations of the king
crab Lithodes santolla over ca 800 km of the southeastern Pacific
shore. In winter 2011, conical pots were deployed between 50
and 200 m depth to capture crabs of a wide range of sizes. The
infection was widely distributed along the region, with a mean
prevalence of 16%, and no significant association between
prevalence and geographical location was detected. Males,
females and ovigerous females showed similar prevalence
values of 16.5 (13–18.9), 15 (9.2–15) and 16.7% (10–19%),
respectively. These patterns of prevalence were consistent
across crab body sizes, despite the ontogenetic and sex-
dependent variations in feeding behaviour and bathymetric
migrations previously reported for king crabs. This study
provided the first report of the geographical distribution of
A. rohanae infecting southern king crabs.
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1. Introduction

Pathogenic parasites can imperil diverse commercial activities, ranging from honeybee culture to fish and
crustacean fisheries [1,2]. In recently described pathogenic parasites [3,4], the understanding of the
pattern of infection is a mandatory first step to develop powerful predictive models. Considering that
host attributes like sex and size may significantly influence the probability of infection of parasites
[5,6], the assessment of the pathogenic potential of these species should include the associations (or
lack thereof) between prevalence, host sex and host size.

Host sex may influence parasite prevalence in host populations [7–9]. Hormone concentrations,
behaviour, immune responses and diet could make female and male individuals behave as distinct
types of hosts [9,10]. However, sex-dependent parasitosis can be less evident in systems characterized
by parasites with high dispersal potential, because differences between males and females would have
no effect on infection probabilities [8,11]. In addition, extreme over-dispersion of parasites across
the host population decreases the parasite’s ability to control the host population [12], which can lead
to indistinct patterns of infection of male and female hosts [9,13]. Disentangling the relationship
between sex and prevalence is particularly relevant in those cases where hosts are selectively
exploited. For example, several crab fisheries focus on large males, so pathogen-induced mortality
would have differential effects on the economic activity if parasitosis is either sex-dependent or
independent [3,14].

Across host sex, host body size can associate with parasitosis. In the case of pathogenic parasites,
enhanced host mortality leads to a reduction in prevalence in larger, over-infected individuals [15,16].
This, in turn, is evidenced in a unimodal relationship between prevalence and host body size [17].
Yet, there are also examples in which parasitosis prevalence is independent of body size. For instance,
probability of infection can show low variability across host ontogeny when the infection occurs
primarily in aggregations of juvenile hosts and the parasite has a high transmission efficiency [16].

Cottage cheese disease is caused by microsporidians that infect a wide range of animals in terrestrial
and marine ecosystems [1,18]. These parasites develop massive accumulations of spores that destroy and
replace the host’s muscular tissue—once the musculature is fully replaced, the disease expands to other
organs and kills the host [19]. In general, microsporidian parasites can have a high pathogenicity, and
when they affect commercially important hosts such as wild populations of crustaceans under
exploitation [3,14,19], the spread of the disease can have severe societal consequences. In this line,
lithodid crabs host a limited number of microsporidian parasites and sustain important fisheries, with
2000 and 4000 t yr−1 captured in the Northern and Southern Hemisphere, respectively [20,21]. In
south Chilean fjords, Stentiford et al. [1] recently recorded the novel microsporidian Areospora rohanae,
parasitizing individuals of the king crabs Lithodes santolla Molina, 1782. The life history of A. rohanae
and its relationship with king crab individual attributes are still unknown.

In this study, we evaluate the occurrence of A. rohanae in populations of the southern king crab
L. santolla across 800 km of southern Chilean Patagonian and Magellan shores. We test the prediction
that host sex and body size are associated with parasite prevalence across the region. As a null
prediction, we predicted a unimodal relationship between prevalence and host body size. Considering
that fishing is restricted by law to large (12 cm cephalothorax length) male individuals [22], sex- and
size-dependent parasitosis would have important economic consequences in the region. To our best
knowledge, this is the first study on the geographical patterns of prevalence of A. rohanae
microsporidian in king crabs along the south Chilean Patagonia.
2. Material and methods
2.1. Study sites and sampling procedure
Fifty locations along the southern Chilean Patagonia shore were sampled during winter 2011, spanning
800 km of the coast (50°–56° S; figure 1). The samples were obtained in three oceanographic cruises.
In each location, we used conical pots to capture the king crabs. The pots were moored for 48 h between
50 and 200 m deep to capture a wide range of crab sizes [23,24]. The individuals were transferred alive
to the Centro de Investigación de Recursos Marinos de Ambientes Subantárticos (CERESUB) at the
Universidad de Magallanes. In the laboratory, the crabs were subjected to a thermal shock at −80°C and
kept at −40°C. Later, the carapace length of each crab was measured. Also, the individuals were
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Figure 1. Study sites of Lithodes santolla in Chilean south Patagonia (Magellan region). 1. Isla Saboya, 2. Isla Toro, 3. Canal Rayo,
4. Canal Farrel 2, 5. Canal Farrel 1, 6. Canal Ignacio, 7. Canal Guadalupe, 8. Isla Sofía, 9. Canal San Blas, 10. Seno de los Torrentes,
11. Grupo Solari, 12. Isla Wilson, 13. Isla Torres, 14. Canal Uribe, 15. Canal Ballena, 16. Canal Bertrand, 17. Isla Summer, 18. Paso
Roda, 19. Bahía Monsón, 20. Isla Providencia, 21. Isla Richarson, 22. Isla Santa Ana, 23. Estero indio, 24. Canal Abra, 25. Isla Childs,
26. Isla Larga, 27. Seno de las Nieves, 28. Estero Nevado, 29. Isla Charles, 30. Isla Alcayata, 31. Isla Browell, 32. Bahía Brown,
33. Puerto Hope, 34. Isla Julio, 35. Isla Laberinto, 36. Seno Dounze, 37. Isla King, 38. Seno Brujo, 39. Canal Ocasión, 40. Seno
los Ladrones, 41. Canal Ballenero, 42. Grupo Timbales, 43. Isla Stewart, 44. Isla Luisa, 45. Puerto Navarino, 46. Isla Mascart,
47. Bahía Navidad, 48. Isla Bertrand, 49. Isla Lennox, 50. Puerto Eugenia.
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separated into male, ovigerous females (abdomen cavity with eggs) and non-ovigerous females (abdomen
cavity without eggs; [25]).

For each crab, we registered the presence or absence of A. rohanae infection. The infection was
evidenced by whitish nodules arising from the sub-cuticular tissues in multiple parts of the body
and thoracic appendages (figure 2; [1]). Stentiford et al. [1] described and corroborated the
microsporidiosis by means of PCR, ultrastructure descriptions and histological analyses (figure 2).
For each sex group, the individuals were separated in twelve 1 cm size classes. The entire size range
was of 2–19 cm carapace length. For each group, the prevalence was estimated as the proportion of
infected hosts [26].
2.2. Statistical analyses
Region-level prevalence and confidence intervals were estimated by means of 1000 bootstrapped samples
of the original sample. The same method was used to estimate the sex-specific proportion of infected
hosts.

We used a generalized linear mixed modelling (GLMM) approach to analyse the infection as a
function of crab length, sex and location. Length and sex were included in the model as fixed factors;
location (i.e. the interaction of latitude and longitude) was included as a random factor, influencing
the effects of both fixed factors on the probability of infection (i.e. a random-slope model). The model



(a)

(b)

Figure 2. Tissue of Lithodes santolla infected by Areospora rohanae. (a) Granules of A. rohanae (arrows) in appendage. (b) Signs of
the ‘Cottage cheese disease’ present throughout the appendage tissue. Photographs by S. Oyarzún.
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also included sample size of each locality in order to control for potential artefacts caused by varying
sampling effort across the region. Since our null prediction was a unimodal curve, we used a second-
order orthogonal polynomial contrast for the factor ‘size’. We used maximum likelihood for parameter
estimations. A residual-versus-fitted plot was used as a diagnostic of the global (full) model [27].
Modification of likelihood ratio-based pseudo-R2 was calculated to estimate the variability accounted
for by the global model. The null model excluded the random factors, so the estimated pseudo-R2

represented the variability explained by the entire model. In addition, we used posterior predictive
simulations of prevalence (1000) to determine if the model actually represented the data [28]—this
was corroborated with a p-value of 0.48. Autocorrelation of residuals of the global model was revised
in an autocorrelation function plot. All statistical analyses were conducted with the packages boot,
ggplot2, lme4 and MuMIn in R v. 3.3.0 [29–31].
3. Results
A total of 3000 southern king crabs were examined. All stations evidenced the presence of A. rohanae
across the region, and station-level prevalence ranged between 10 and 30% (figure 3). Region-level
parasite prevalence was 16% (95% CI = 15–18.7%; table 1). Sex-dependent values of prevalence were
estimated as 16.5% (range: 13–18.9%), 15% (9.2–15%) and 16.7% (10–19%) for males, females and
ovigerous females, respectively.

Sex-specific prevalence showed varying patterns across body size. Males exhibited a positive
relationship between prevalence and body size (red symbols in figure 4). By contrast, female and
ovigerous females showed maximum values of prevalence at intermediate sizes (green and blue
symbols in figure 4, respectively)—the prevalence of ovigerous females was skewed toward smaller
crabs (figure 4). Despite these patterns, however, the GLMM showed a weak relationship of
the analysed factors with prevalence, evidenced by a pseudo-R2 of 0.018. This result suggests body
size and sex, in addition to the geographical position of the sampling location had a very low
predictive power of parasite infection.
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Figure 3. Prevalence of Areospora rohanae in king crab Lithodes santolla along south Chilean Patagonia. Colour scale indicates
parasite prevalence in each sampled location. The number of crabs in each sample is provided.
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Figure 4. Prevalence (% infected) of infection by A. rohanae as a function of host size (cm) and sex. The red, green and blue lines
indicate male, female and ovigerous female hosts, respectively. Lines were obtained by means of local polynomial regression
smoothing (loess).
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4. Discussion
The results of this study showed that A. rohanae infection in southern king crabs was comparatively high
across south Chilean Patagonia. Moreover, the prevalence was similar among sampling stations, between



Table 1. Prevalence (% infected) of infection by A. rohanae for sex in each sampled location. The sign ‘–’ indicates absence of
individuals.

site

prevalence (%)

total male female ovigerous female

Canal Uribe 41 40 0 24.1

Seno de los Torrentes 47 30.8 10 0

Canal Rayo 31 20 0 0

Grupo Solari 7 20 0 –

Isla Sofía 55 14 17.6 0

Isla Toro 34 38.5 8.3 33.3

Canal Ignacio 52 10 4.8 18.2

Canal Guadalupe 54 14 8 50

Canal Farrel 1 51 33.3 0 25

Canal Farrel 2 36 12.5 15.8 0

Canal San Blas 45 1.1 16.7 33.3

Isla Torres 34 38.5 8.3 33.3

Canal Ballena 45 9.5 23.5 14.3

Canal Bertrand 70 20 32.4 50

Isla Wilson 72 29.2 23.3 20

Isla Summer 124 16.7 9.8 0

Paso Roda 39 16.7 0 25

Isla Charles 54 8 31 –

Bahía Brown 32 15.4 14.3 16.7

Estero Nevado 130 8.1 24.3 25

Isla Providencia 41 33.3 0 16.7

Seno de la Nieves 66 12.1 – –

Isla Richardson 42 19 20 18.8

Bahía Monson 61 26.5 6.2 0

Isla Childs 85 29.7 12.5 12.5

Canal Abra 35 14.3 26.7 16.7

Isla Santa Ana 120 12.9 30.4 33.3

Estero Indio 36 – 26.3 11.8

Isla Larga 121 14.5 7.5 0

Isla Julio 114 8.1 21.2 5.3

Isla Browell 80 16.7 18.8 16.7

Isla Alcayaga 12 10 0 0

Bahía Latorre 44 9.5 9.1 0

Bahía Navidad 12 0 14.3 0

Canal Ocasión 25 16.7 15.4 –

Canal Pomar 68 11.5 0 17.6

Grupo del Medio 57 6.2 12 –

Grupo Timbales 60 18.5 6.7 22.2

Isla Bertrand 41 8 18.8 –

Isla King 104 21.2 15.9 7.4

(Continued.)
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Table 1. (Continued.)

site

prevalence (%)

total male female ovigerous female

Isla Laberinto 89 24.3 15.4 –

Isla Lennox 12 12.5 75 –

Isla Luisa 57 46.2 0 8.8

Isla Mascart 55 11.5 7.1 0

Puerto Eugenia 31 33.3 14.3 –

Puerto Hope 125 7.8 8.6 33.3

Puerto Navarino 71 10 9.4 15.8

Seno Brujo 33 50 0 7.4

Seno Dounze 126 19.2 11.9 9.4

Seno los Ladrones 61 13.6 12.5 33.3
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host sexes and along body size. Accordingly, our analysis of statistical modelling suggests that
microsporidiosis was independent of geographical location, sex and size of hosts. In this section, we
discuss the processes that result in a high and widespread infection of A. rohanae, in addition to the
potential socio-economic consequences of this disease in Chilean southern Patagonia.
4.1. High A. rohanae prevalence in southern king crabs
Areospora rohanae was widely distributed across the study region with a prevalence of ca 16%. This value
was higher than those observed for microsporidian parasites infecting wild populations of other crabs
elsewhere. In the Sea of Okhotsk (Russia), for instance, Thelohania sp. and Ameson sp. show prevalence
values of 3.2% and 0.2% in their respective hosts [14]. Moreover, the microsporidian Nadelspora canceri
occurs in 14% of the Metacarcinus magister population along the United States Pacific coast [32]. Then,
why was the prevalence of A. rohanae in the southern king crab comparatively high? The scarcity of
published information of how the disease is transmitted makes it difficult to construct testable
hypotheses to answer this question. Research conducted on other microsporidians, such as Thelohania
contejeani and T. montirivulorum, suggests multiple ways of infection [33,34] that can contribute to the
disease’s high prevalence. For instance, the spores can be trophically transmitted to new hosts [19,35]:
in the case of crabs, ingestion of spores could occur through scavenging (crayfish: [34]) and
cannibalism (crabs: [3,32]; king crabs: [36,37]). Moreover, the microsporidian spores can be dispersed
through seawater currents and a single host can release millions of spores [34,35]. Thus, multiple ways
of transmission could underpin a high dispersal potential of A. rohanae.

Literature indicates that cottage cheese disease is produced by diverse microsporidian species [1,18].
Along with this, other microsporidian species that do not produce this disease have been reported in the
soft tissues or sub-cuticular epidermis in the same crab host [1,14,38]. Also, some hosts harbour more
than one microsporidian parasite with similar clinical signs of infection. This may suggest that
A. rohanae symptoms may be confounded with those of other parasites in our study. Also, our use of
gross visual assessment may have underestimated the prevalence of A. rohanae, because the
macroscopic signs used here probably represent late-stage infections [38]. Despite these potential
drawbacks of our study, we were able to report a comparatively high prevalence of this parasite,
which should be considered in a more detailed research agenda of this recently described parasite in
southern Chilean Patagonia. In addition, future research is needed to shed light on potential patterns
of co-infection between A. rohanae and other microsporidian parasites.

At what size do king crabs get infected? The life history of southern king crabs may provide data on
the process of infection. For instance, high individual density triggers agonistic interactions and
cannibalism in juvenile L. santolla, which can increase the infection probability of small-sized
individuals [39,40]. Thus, large aggregations during early stages of king crabs would be generating a
‘window of opportunity’ for the transmission of A. rohanae. Assuming a high pathogenicity of
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microsporidians (e.g. in crayfish: [41]), then it would be hypothesized that an early-stage infection of A.
rohanae implies a mechanism of control of host population growth.

4.2. Potential economic impact of microsporidiosis in king crab
What would be the consequences of this infection for king crab fisheries? In the Northern Hemisphere, a
sharp decline in crab abundance has been observed in the last years due to microsporidian infections
[4,14], notably affecting the economic activity [18,19]. In the Magellan region, L. santolla supports the
most important fishery and their exports have increased over the years, reaching US$52 million in
2016 [42]. Our results showed that 16% of the population was infected by A. rohanae, irrespective of
sex and body size. This indicates that a relatively large proportion of fished crab would be infected
and thus could not be sold. However, the infection can eventually develop cottage cheese disease,
enhancing the mortality rate in the population. Since we sampled only live king crabs, we ignore at
this moment the mortality that could be caused by A. rohanae. Therefore, further quantitative research
is mandatory to assess the potential socio-economic consequences of the A. rohanae infection of
southern king crab fisheries.
pen
sci.6:190682
5. Conclusion
In summary, our results indicated that A. rohanae is widely distributed along south Chilean Patagonia.
Prevalence was randomly distributed across an 800 km section of the coast, host sex and ontogeny.
Factors such as cannibalism during early life stages would enhance the transmission among juvenile
individuals, according to high densities of individuals that can be found in shallow waters. Mortality
after early-stage transmission would contribute to the parasite’s ability to control the host population
growth. Finally, the infection by A. rohanae might have important socio-economic consequences for
local artisanal fisheries in the southeastern Pacific.
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