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ABSTRACT

This dissertation develops new techniques for variance reduction in computer simu-

lation. It demonstrates that applying nonlinear transformations to control variables can

increase their effectiveness over linear controls. It shows how one can reduce the variance

of quantile estimates, where the quantile of interest is a continuous and strictly monotone

transformation of the control quantile, by transforming the control quantile with a different

continuous and strictly monotone transformation. Asymptotic expansions are developed to

validate the improved performance of the nonlinear control for the quantile estimate. Fi-

nally, in the realm of regenerative simulation, regression-adjusted techniques are applied to

controlled regenerative estimates. The resulting estimates have a greatly reduced estimated

mean square error.
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I. INTRODUCTION

This dissertation is an investigation of the use of new techniques such as data transfor-

mations, the Alternating Conditional Expectation (ACE) algorithm of Breiman and Fried-

man (1985), and regression-adjusted estimates to make nonlinear controls a useful method

for reducing the variance of estimates (of unknown constants) produced via Monte Carlo

computer simulations i.e., simulations which use pseudo-random numbers. People use vari-

ance reduction techniques to either save computer resources or improve the precision of

the estimates gained for the same amount of resources. The following sections provide a

short background on Monte Carlo computer simulation, discuss the new variance reduction

techniques described in the dissertation and briefly outline the chapters that follow.

A. BACKGROUND

While there are many definitions of types of "simulations" (see Kleijnen, 1974, Chap. 1),

the emphasis in this work is on extending variance reduction techniques for stochastic sim-

ulations. One can recognize these types of simulations by the fact that a pseudo-random

number generator provides input essential to the simulation so that both the inputs to

the simulation and the output from the simulation are random variables. The stochastic

simulations in mind do not include "physical simulations" such as flight simulators, or "de-

terministic simulations" such as using a computer to solve large sets of partial differential

equations over time as is done to study chemical interactions. The two types of stochastic

simulations in mind have been called "statistical" simulations and "discrete-event system

simulations."

Statistical simulations are concerned with deriving information about the "behavior of

statistical estimates or procedures as a function of sample size, population distribution and

other factors," while system simulations are concerned with deriving information about

how a process, perhaps physical, responds over a range of input parameters (Lewis and

Orav, 1989, Chap. 8). These simulations can both be considered as "controlled statisti-

cal sampling techniques" (Lewis and Orav, 1989, p. 9) in that one uses a computer to



simulate a given random process using pseudo-random numbers in order to provide samples

(replications) of information of interest about the process. The two types of simulations

differ in scale in that most (but definitely not all) statistical simulations could be solved

on a large computer in reasonable amounts of time so that variance reduction techniques

are not needed and are an inefficient use of the analyst's time. System simulations, on the

other hand, especially when there are many factors influencing the output that need to be

examined, can use all the help they can get, even if it is, for example, a modest one-third

reduction in computing time for a given precision of output.

An important point is that one must develop the computer simulation so that using

the numerical output from the simulation, one can calculate a statistic that estimates the

quantity of interest. As a random variable, this estimate has its own associated probability

distribution with its own mean and variance. To know how "good" this estimate is, or to

conduct meaningful comparisons using the estimate, it is absolutely essential that one have

an estimate of the precision of the estimate. This is an extension, in complex simulation, of

the simple idea that in using the sample mean, x, of an i.i.d. sample X\ , . .
.

, xn , to estimates

E[X], it is known that the Var[x] = ax/n, and moreover, this can be estimated by sx /n

where s
2
x is the sample variance.

A common measure of the precision of an estimate is a relative measure; the standard

deviation of the point estimate divided by the absolute value of the point estimate (Lewis

and Orav, 1989, p. 10) provided that the absolute value is not zero. When discussing

variance reduction, one is concerned about comparing the standard deviation or variance

of estimates of the same quantity. Thus in what follows, the standard deviation or variance

will be considered as absolute measures of precision; the common value of the underlying

quantity factors out.

One can often summarize the information of interest desired from the simulation via

a numerical quantification. These quantifications may include the mean and variance of

a random variable or the parameter of a probability distribution. Quantiles are another

class of quantifications useful in particular for characterizing the extremes of a distribution.

The a-quantile of a probability distribution for a random variable Y is the smallest number

yQ such that the probability that Y < y is greater than or equal to a. Quantiles of

interest may include the .5 quantile (median), as a general measure of location, or the



extreme quantiles such as the .95 or .99 quantile. Estimation of quantiles is fundamentally

different from estimating means in that the order-statistic-based quantile estimator is a

nondifferentiable function of the data and the estimate is not representable as some kind of

sample mean. Thus, in this dissertation, different techniques are investigated for applying

nonlinear controls both to quantile estimates and to other quantifications.

Regardless of whether one uses the relative or the absolute measure of precision for

the estimate, the method of calculating the estimate must provide in addition to the point

estimate of the quantity of interest (the statistic itself), a reliable estimate of the standard

deviation (variance) of the point estimate, such as s. Without this estimate of the precision,

the point estimate is virtually useless. In general, the smaller the variance of the estimate

the better. The most basic way of reducing the variance of the estimate is to increase the

sample size i.e., the number of replications of the simulation.

For many statistics, such as the sample mean, the variance of the statistic decreases

linearly as a function of the sample size n. Thus one can reduce the variance of the estimate

by simply increasing n, the sample size of the simulation. Unfortunately, the standard

deviation of the estimate, which is measured on the same scale as the quantification of

interest, decreases at a rate of 1/y/n; thus to reduce the standard deviation of the estimate

by a factor of one half, one must quadruple the sample size. For many computer simulations,

such as a complex combat model, having to increase the precision to a reasonable level may

create the predicament of expending an inordinate amount of resources. Even fairly simple

simulations such as an M/M/l queue may require a huge amount of resources to quadruple

the sample size when the traffic intensity is above .99. This predicament of having to

consume large amounts of resources in order to increase p sion is a major motivation for

the development and use of variance reduction techniques.

One can often use so called "variance reduction techniques" to attempt to reduce the

standard deviation of the estimate with only a moderate investment of resources. There

is a wide variety of variance reduction techniques available (see Lewis and Orav, 1989,

Chap. 11 or Kleijnen, 1974, Chap. III). In general, variance reduction techniques require

the investment of resources in additional analytical work and more complex programming

for the computer simulation. This investment of resources may yield the benefit of a reduced



estimate of the standard deviation for the same sample size, or if desired, achieving the same

precision using a smaller sample size than otherwise required.

Linear controls are one of several variance reduction techniques and use known in-

formation about other random variables present in the simulation to reduce the variance

of the estimate. To use linear controls, one must know the expected value of a random

variable (the control) that is correlated with the statistic of interest. The method exploits

the knowledge of the expected value and the correlation to reduce the variance. Unfortu-

nately, the effectiveness of a linear control scheme depends upon the amount of correlation

between the control variable and the statistic of interest. When the relationship between

the statistic of interest and the control is not very linear, so that the correlation is low,

a linear control may have little effect in reducing the variance. Although Lavenberg and

Welch (1981) cite several papers with illustrative examples of the use of linear controls in

their survey paper, they "were unable to find any published report describing the appli-

cation of control variables in an actual practical environment." One possible reason for

this lack of use may be that many potential controls are relatively ineffective because they

have a nonlinear relationship with the statistic of interest which is not captured by a linear

control.

One potential remedy for the lack of effectiveness is to use nonlinear transformations

and create nonlinear controls for variance reduction. Breiman and Friedman (1985) showed

that transformations exist that will maximize the squared correlation between one trans-

formed response variable (the statistic of interest) and a linear combination of transformed

predictor variables (a set of controls). Breiman and Friedman (1985) also developed the Al-

ternating Conditional Expectation (ACE) algorithm for nonparametrically estimating these

optimal transformations from a set of data. ACE also provides an estimate of the max-

imum correlation one can obtain between the transformed response and the combination

of transformed predictors. Consequentially it can be used to given an upper bound on the

achievable variance reduction for a given set of controls, as well as to suggest a nonlinear

transformation of the control that will maximize the correlation one can obtain.

Another potential remedy for insufficient precision in simulation involves the use of

asymptotic expansions for the bias of an estimator. One can use linearly or nonlinearly

controlled estimates to compute the coefficients in the expansions and produce an estimator



with reduced bias and variance. This idea is developed here in the framework of a special

type of system simulation known as "regenerative simulation." The result of using the

controlled estimates together with the asymptotic expansions is the "average regression-

adjusted controlled regenerative estimate."

B. CONTRIBUTIONS OF THIS DISSERTATION

The potential remedies of nonlinear controls and regression-adjusted controlled re-

generative estimates are new contributions to the realm of variance reduction techniques.

Linear control schemes have included nonlinear transformations where the parameters were

fixed i.e., the use of C2
in place of or as well as C as a control. The use of nonlinear trans-

formations of control variables where the nonlinear parameters are unspecified a priori and

determined from the data is a new and truly nonlinear approach to variance reduction.

It is shown how one can combine indicator functions using "cutpoints" with transfor-

mations of linear controls to create new, more flexible, nonlinear controls. It is also shown

that, similar to linear regression, one can use nonlinear least-squares regression to estimate

coefficients for the differentiable nonlinear transformations. While nonlinear controls offer

the potential of increased effectiveness in reducing variance in simulation, they have a draw-

back over the linear control of increased difficulty in determining the expected value of the

transformed control.

ACE (Breiman and Friedman, 1985) was developed as a tool for nonparametric mod-

elling. A new application of ACE given in this dissertation is in selecting potential controls

and transformations in simulations. One can use the ACE estimate of the maximum squared

correlation between a potential control and a statistic of interest as a performance standard

for the control i.e., if ACE estimates a maximum squared correlation of only .05, the non-

linear control will be ineffective and not worth the effort. ACE can also be used to help

select transformations, or in the case of the indicator function transformations, an effective

cutpoint.

Several techniques are developed for controlling quantile estimates in simulation. The

nonlinear controls for quantiles exploit two properties of quantile estimators. The first is

the behavior of quantiles under strictly monotone transformations of the underlying random

variable and the second is the asymptotic properties of an order-statistic-based quantile



estimator. These two properties are combined to greatly simplify the burden of computing

the expected value of the transformed nonlinear control. The method of sectioning (see

Lewis and Orav, 1989, Chap. 9) is chosen from several competitors for estimating the

variance of the controlled quantile estimates and it is shown how one can graphically choose

the sectioning parameters so as to maximize the effectiveness of the nonlinear control.

An interesting point that arises when controlling quantile estimates concerns the issue

of normality. Typically, users of linear controls try to induce a multivariate normal distri-

bution between the statistic of interest and the controls since a linear control is optimal

for a multivariate normal distribution (see Nelson, 1988, and Lancaster, 1966) and because

normal theory statistical methodology can be used for the simulation output analysis. Since

the quantile estimator used here is asymptotically normally distributed, this would involve

using large sample sizes.

It is demonstrated here that by selecting the sectioning parameters appropriately, a

nonlinear control at a small sample size can produce a more precise (smaller variance) esti-

mate than a linear control at a large sample size, and a stable estimate of the variance. One

wants to avoid the asymptotic normality because the effectiveness of the nonlinear control

reduces then to that of the linear control. In fact some authors (Glynn and Whitt, 1989)

have dismissed nonlinear controls for this reason; it is the thesis of this dissertation that

non-normality is acceptable if it leads to significant variance reduction. Moreover, the use

of graphical methods in output analysis will lead to more sensible (non-normal) output

analysis than a blind reliance on asymptotic normality.

Asymptotic expansions are developed, building on work by David and Johnson (1956),

for the variance of monotonically transformed quantile estimators and the squared correla-

tion between two transformed quantile estimators. These expansions are then used to show

that with the proper selection of a transformation, a nonlinear control will be more effective

than a linear control in reducing the variance of the quantile estimate for finite sample sizes.

The technique of regression-adjusted controlled regenerative estimates results from

combining methods presented in two papers. Iglehart and Lewis (1979) developed linear con-

trols for regenerative estimates while Heidleberger and Lewis (1981) developed regression-

adjusted regenerative estimates. Regression-adjusted estimates work with estimators that

are nonlinear functions of the data such as ratio estimators. Estimates of the stationary



waiting time from an M/M/l and M/G/l queue at high traffic intensities are used to show

how one can combine the two techniques to compute average regression-adjusted controlled

regenerative estimates along with an associated estimate of their variance. The average

regression-adjusted controlled regenerative estimates tend to have smaller estimated mean

square error than either controlled regenerative estimates or average regression-adjusted

regenerative estimates.

C. OUTLINE OF THE DISSERTATION

Chapter II provides a more detailed background on linear controls. The problems

of low effectiveness are discussed with the possible solution being the use of nonlinear

transformations. A brief description of Breiman and Friedman's (1985) ACE algorithm

then follows. Nonlinear controls are defined and discussed next and the sample mean of

the Anderson- Darling Statistic (Anderson and Darling, 1952) is used as an example to

demonstrate their use. Chapter III discusses several methods of quantile estimation and

the use of nonlinear controls for reducing the estimate of the standard deviation for order-

statistic-based quantile estimates. Chapter IV develops new asymptotic expansions for the

squared correlation between monotonically transformed quantile estimators. An example

demonstrates that in certain situations, properly chosen nonlinear controls will decrease the

estimate of the standard deviation of the quantile estimate over linear controls. Chapter V

uses the framework of the regenerative simulation of queues to demonstrate how one can

use nonlinear controls effectively for low traffic intensity queues. Chapter V also details

how one can use the regression-adjusted controlled estimators for decreasing the estimated

mean square error of an estimate.

D. SUMMARY
Despite improvements in computing speed, computer simulations will continue to grow

in complexity and require more resources. One means for reducing the resource requirements

is through the use of variance reduction techniques. While the method of linear controls is

well known, the effectiveness of linear controls is often limited by low correlation between

the control and the statistic of interest. Thus researchers will continue to seek improved,

more effective, techniques for variance reduction.



Two methods for improving upon linear controls for variance reduction in simulation

are presented in this dissertation. Using nonlinear transformations for nonlinear controls

can improve the precision of estimates of both means and quantile from simulations over

crude or linearly controlled estimates. Regression-adjusted controlled regenerative estimates

can improve the precision and bias in regenerative estimates more than using controls or

regression-adjusted techniques alone. These techniques provide researchers with potential

tools for analyzing their simulation results.



II. LINEAR AND NONLINEAR CONTROLS

A. INTRODUCTION

This chapter develops the use of nonlinear control variables for reducing the variance of

an estimate of a mean from a Monte Carlo computer simulation. The first section discusses

the variance reduction technique of linear controls and why using nonlinear transformations

may improve their effectiveness for variance reduction. The second section defines nonlinear

controls and explains the usefulness of Breiman and Friedman's (1985) ACE algorithm for

estimating optimal nonlinear transformations and bounding the gains in variance reduction

that might be achieved with controls. The next section details some possible methods

for introducing nonlinearity into a control function in order to approximate the optimal

nonlinear transformation. The following section shows, using the sample analog to the

variance reduction formula, that nonlinear least-squares regression may be used to find the

parameters of the transformations. Finally, the last section provides an example of the use

of nonlinear controls to reduce the variance of an estimate of a mean.

B. LINEAR CONTROLS

This section provides a short introduction to the well-known variance reduction tech-

nique of linear controls. Many books on simulation contain information on linear controls.

One can find further details on linear controls in Lewis and Orav (1989). Assume that one

is using a Monte Carlo computer simulation to estimate ar known quantity. Let Y be the

statistic of interest that is calculated from the simulation output to estimate E[y]. Assume

there exists (by design of the simulation) a vector C_ that consists of q > 1 random variables

Cj, for j = 1, . . . ,q. Also assume that the Cj are correlated with (related to or associated

with) the statistic of interest, F, and assume that C has a known mean vector E[C]. The

component variables of the vector C_ are the control variables.

Users of variance reduction techniques hope to more precisely estimate E[Y] by deriving

a controlled statistic Y' that has less variance than Y. The idea behind control variables

is to use the correlation between Y and C_ to exploit the knowledge about the expected



values of C to reduce the variance of Y' . A standard method for doing this is via the linear,

additive combination of Y and the components of CL,

Y' = Y -6T (C-E[C]). (1)

The parameter vector is a vector of q unconstrained constants that are to be chosen so

as to minimize the variance of Y' . Note that some components of Q_ may be known power

transformations of other components, so that polynomial control schemes are included in

formulation (1). Explicit expressions for the components of $ that minimize the variance

of Y' can be found in terms of the second-order moments of Y and £7, and with these

parameters, Y' is an unbiased estimate of E[Y] in that E[y] = E[Y].

In particular, consider the case of a single, additive, linear control

Y' = Y-0(C-E[C]). (2)

Here 6 is chosen to minimize Var[Y']. Assuming Var[Y] = Var[C], it follows that

Var[Y'] = Var[Y] + 2 Var[C] - 20Cov[Y,C]

= Var[Y](l + 2 -20p[Y,C]).

Differentiating with respect to 6 and setting the resulting expression equal to zero yields

the optimal value for i.e., the value that minimizes Var[Y']:

e = P[Y,c),

where p[Y, C] is the correlation between Y and C namely

p[Y,C] = Cov[Y,C]/oY <Tc. (3)

Without the assumption of equal variances, it follows that the value of that maximizes

the variance reduction is

10



6=^p[Y,C], (4)

where ay represents the standard deviation of the random variable Y.

In the multiple control case when q is greater than one, it can be shown (see Kendall

and Stuart, 1977, Chap. 27) that the values for 6 that minimize the variance of Y' are the

multiple regression coefficients

e=(Xc 1
)<TY,c (5)

where Sc is the covariance matrix of Q_ and <Jy,c is the g-dimensional vector with com-

ponents Cov[y, Cj], for j = l,...,g. Rubinstein and Marcus (1985) demonstrated that

the solution for in the linear control of a single response, Y, is a special case of deter-

mining the canonical correlation coefficients for maximizing the correlation between linear

combinations of multiple responses and multiple controls.

1. A Measure of the Effectiveness of a Control for Variance Reduction

One measure of effectiveness for a particular linear control is the percent variance

reduction, a measure that involves the ratio of the variance of the controlled estimate Y' to

the variance of the uncontrolled estimate Y . A high percent variance reduction implies that

the control is effective at reducing the variance of the point estimate. For a single control,

assuming the optimal value for 6 in (4) is known, the percent variance reduction is

i_4^ = p
2 (y,c). (6)

aY

Equation (6) implies that for the control to be effective, one should choose a random variable

which is "strongly" correlated with Y to be the control variable C.

For multiple controls, the percent variance reduction is the direct generalization

i -# = n& - m
°Y

where

KY,C ~ Z2

11



is the square of the multiple correlation coefficient between Y and Q. As before, the

effectiveness of the control depends upon a large value for Rye- When the components of

d are independent, one can simplify (7). For example, with two independent linear controls

l-&=p[Y,Ci ]

2 + p[Y,C2 }

2
. (8)

When the number of multiple controls to use is given, one should simply choose those

controls which maximize the TZy C . However, determining the number of multiple controls

to use is a more difficult problem which is complicated by the necessity of estimating the

coefficients in 9.

2. Estimating the Coefficients for Linear Control of a Sample Mean

In the usual case in simulation, the values for 9 or 9 must be estimated since

not enough information is known about the joint distribution of Y and C_ to determine the

regression coefficients in (5). For notation's sake, assume that one is using a single control.

Assume that Y and C are sample means Y and C calculated in the usual manner from

m i.i.d. replicates Y{ and Ct of random variables y and C such that Y = (l/m)X^=i Y{

and similarly for C. One could generate sample estimates of the variance and covariances

in (4) to estimate 9; however since 9 is the coefficient of regression, an equivalent but

computationally more convenient method for estimating 9 is to use linear least-squares

regression.

The regression coefficient 9 can be estimated by the least-squares regression of

(d — Y) on 9{d - E[C]) using the regression model

(Yi - Y) = 9{d - E[C]) + €i, for % = 1, . .
.

, m

where the C; are considered fixed and e,- is a mean-zero random variable independent of C,-.

3. The Loss Factor

In general, estimating the coefficients can cause a reduction in the percent variance

reduction predicted by (6) or (7). Lavenberg, Moeller and Welch (1982) investigated the

decrease in predicted variance reduction caused by using the individual samples to estimate

9 for a linear control of the sample mean. Under the assumption of multivariate normality

12



between the statistic of interest and the control, they concluded that the decrease in variance

reduction due to estimating 6 could be predicted as a function of the number of independent

samples of the statistic being controlled, m, and the number of controls whose coefficients

had to be estimated, q. They used a loss factor of (to — 2)/(m — q — 2) to predict the actual
2

variance reduction as Hr = (1 - T^Yc)(m ~ ^)/(m ~ Q ~ 2)- The loss factor is a deterrent

to adding more controls simply to achieve a small increase in the H2
{-) in (7). As one

selects more controls for a multiple control scheme, the impact of the loss factor can quickly

overcome the benefits of increasing the 7Z
2
(-). Thus one can not guarantee an improvement

in the effectiveness of a linear control by simply adding more controls.

4. Measuring the Effectiveness of a Control at Reducing Sample Sizes

Lewis and Orav (1989, p. 262) mention an alternative measure for quantifying the

effectiveness of a control scheme. They look at the square root of the ratio of the variance

of the uncontrolled estimate to the variance of the controlled estimate i.e., oy/oy/. This

ratio can be considered to be the ratio of the sample size that would be needed to achieve

a given standard deviation without using the control scheme, to the sample size needed

to achieve the same standard deviation using the control. When expressed in terms of the

correlation coefficient for the controlled statistic and the control from (3), the ratio becomes

1/[1 — p
2
(-)]

1 ^. Given a value for />(•), the formula gives the increase in the sample size

that would be needed to achieve the same standard deviation without the control. Given

a desired reduction in sample size, say 1/2, the formula implies that to achieve a given

standard deviation while cutting the sample size in half, one must have 1 — p
2
{-) = .25,

which implies a correlation coefficient of ±0.86.

Linear controls are typically unable to reduce the sample size needed to attain a

given oY by as much as a half because the correlation between the statistic of interest and

a linear function of the control variables is not high enough. Since many statistics have

a nonlinear relationship with the control variables, one possible means for increasing the

variance reduction for a given set of controls is to allow nonlinear transformations of the

controls.

13



C. NONLINEAR CONTROLS

1. Definition of a Nonlinear Control

One can generalize the linear control scheme for q controls, (1), to include nonlin-

ear transformations of random variables as controls for variance reduction. Let hj(Cj,0j),

for j = l,...,q, be a transformation function of the random variable Cj and let 9± be a

vector of coefficients where, depending upon hj(-), the vector • may have more than one

component. When incorporating nonlinear transformations of multiple controls, the linear

control scheme (1) becomes

Y' = Y-C (9)

= Y-H(C,6) (10)

where, for our purposes, H(-, •) is a linear additive combination of the q transformed controls,

hj(Cj,0j), and their expected values, E hj(Cj,0j)\ , for j = 1, . . . ,q. The vector 9 contains

the coefficients from the linear combination in addition to the q sets of coefficients from the

individual transformations. H(C_j,9) will be referred to as the control function for C. If the

control function has terms that are nonlinear in the unknown coefficients, C will be said

to be a nonlinear control. For ease of notation, the coefficients may be suppressed in the

expressions for H(-) and h(-). When there is only one control so that 5 = 1, the subscript

j will be suppressed so that hj(-) = h(-).

In some simulations possible control variables may have low correlation with Y.

For a given control, two of the possible sources for the low correlation between Y and C

are:

1. there is in fact little structural relationship between Y and the control i.e., a bivariate

scatter plot of Y versus C would look patternless, or

2. the structural relationship between Y and C is of a nonlinear form which is poorly

approximated by a straight line (the linear regression line).

In the first case, a nonlinear control may or may not offer improvement over the linear

control. In the second case, a nonlinear control can offer substantial improvement in variance

reduction.

14



A simple example will show the potential benefits of nonlinear transformations.

Let C be a Normal (0,1) random variable which is being used to control the sample mean

of Y - C2
. It follows that

Cov[y,c] = e[c3
]
- e[c2

]
e[c] = o

so that p(Y, C) is zero, which implies zero effectiveness for the linear control as well. Now

allow the nonlinear transformation

h*(C) = h(C,6) = Ce

with 6 = 2. The transformed random variable h*(C) is a x? random variable with mean 1

and variance 2. It follows that

Cov[Y,h*(C)] = Var[c2
]
= 2 ==> p[w, h*(C)] = | = 1

so that the nonlinear control is completely effective. Therefore when evaluating a poten-

tial control, one should ask: Can this random variable be transformed to have a "high"

correlation with the statistic of interest while still having an analytically computable mean?

2. Optimal Nonlinear Transformations and ACE

For some random variables, transformations do exist which will improve their

correlation with Y.

• Let Y and C, with q components Cj, for j = l,...,g, be random variables with a

general but nonsingular joint distribution.

• Let g(Y) and hj(Cj)) for j = 1, . . . ,q, be mean-zero nsformation functions of ran-

dom variables Y and Cj such that Var[p(y )] = 1 and Var[/ij(Cj)] < oo, for j = 1, . .
. , q.

Breiman and Friedman (1985) proved the existence of optimal transformations for maxi-

mizing the correlation between g(Y ) and H(Q), a linear additive function of the mean-zero

hj(Cj). The optimal transformation for a particular variable can be expressed in terms

of the conditional expected values of given transformations of the other variables. In this

bivariate case, where H(-) = h(-) since q = 1, the pair of optimal transformations g*(-) and
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h*(-) are:

9
m
(Y) = gng i

y]

l|E[fe-(C)
| y]||

and

h*{C) = E[g*(Y)
|
C]

where ||. ||
= {E[(-) 2

]}
1/2

.

In the multiple control case, where q > 1,

9*(X) =

and

E
3= 1

E Y*h){Cj)\Y
3= 1 J

(11)

fcJ(Ci) = E (12)

The transformations y*(-) and /i*(-) in (11) and (12) will usually be nonlinear, the exception

being when Y and Q_ have a multivariate normal distribution.

Results from Lancaster (1966) can be used to show that if Y and Q_ have a

multivariate normal distribution, the solutions for g(Y) and H(Q) which have maximal

correlation between g(Y) and H(£L), over all measurable functions of finite variance, are

the linear transformations which yield the first Hotelling canonical variables. In other

words, when Y and Q. have a multivariate normal distribution, using the linear control

scheme (1), with the multiple regression coefficients for 9 from (5), produces the greatest

amount of variance reduction. Conversely, whenever the joint distribution of Y and Q_ is not

multivariate normal, a nonlinear control offers the possibility for greater variance reduction

over a linear control.

16



D. APPROXIMATING OPTIMAL NONLINEAR TRANSFORMATIONS

FOR NONLINEAR CONTROLS

1. Estimating the Optimal Nonlinear Transformations

Determining the optimal transformations in (11) and (12) analytically requires

the joint distribution of Y and C_ which, in the context of a simulation, is unknown. In the

multivariate normal case, the form of the transformations are known to be linear and one

can estimate the coefficients using linear least-squares regression. With a nonlinear control,

one must first estimate the form of the transformations.

Breiman and Friedman (1985) also developed the Alternating Conditional Expec-

tation Algorithm (ACE) as a means for generating nonparametric estimates of the optimal

transformations (11) and (12). In the ACE implementation for finite data sets of continuous

variables, data smooths are used in place of the analytical conditional expected values. The

ACE algorithm produces estimates of the optimal transformations as sets of fitted values,

one set for each variable. Plotting the fitted values against the original values gives the

shape of the estimated transformation for each variable.

ACE also provides an estimate of the maximum obtainable squared correlation

between the transformed response and the sum of transformed predictors. Given a data set

of n samples of Y and £7, and a set of transformations g(Y) and hj(Cj) for j = 1, . .
. , q, the

R2 estimate is calculated as 1 minus the sample mean-squared error, or

2

l
n

R2 = 1 - -V

This R2 estimate is quite useful as it provides an estimate of an upper bound on the percent

variance reduction that one can obtain using the given set of controls. Thus given a set

of linear controls, one can use ACE to determine if the use of nonlinear transformations of

the controls would improve the percent variance reduction. One technique is to use ACE

on data from a small test simulation for various potential controls and then compare the

estimates of R2 to help select the controls.

Since ACE does not supply any parametric clue to the optimal transformations

of the individual components of C, approximations are needed for these transformations.

A desirable feature for the approximations is that they contain the linear additive case (1)
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as a special set of parameter values, thus ensuring that one attains at least the known

variance reduction for this case. The approximations studied in the next section take two

forms, piecewise linear controls, and standard statistical parametric transformations, used

separately or conjointly on each component of C. It should be emphasized again that an

additional constraint on an approximating transformation g{C) is that for g(C) to be usable

as a nonlinear control, one must be able to calculate the mean of g(C).

2. Piecewise Transformations of Controls

Statistics from simulations are often nonlinear functions of the input random

variables from which they are derived. Therefore one might expect some nonlinear controls

to have a higher correlation with Y than linear controls. Given an initial guess at a viable

linear control, one type of nonlinear control can be formed by using indicator functions and

"cutpoints" to form piecewise transformations of the control.

For example, a control variable X is split into two control variables C\ and Ci

by using a fixed cutpoint 6 and functions hj(X,9j) as follows:

Cj
= l

J
(X)h

l (X,6] ) for; = 1,2, (13)

where

1 i(X<6;
l l (X)= {

and I 2 (X)= {
otherwise

1 if X > 6]

otherwise.
(14)

By judicious choice of a fixed value for the cutpoint 6 or perhaps multiple cut-

points, least-squares multiple regression can achieve a better fit without the use of additional

control variables. As an example let X be distributed as an independent Uniform (-.5, .5)

variate. Let Y = X 2 + (. where c is distributed as independent Normal (0, 0.01). In a small

simulation of 300 samples, using just X as a linear control as in (1), linear least-squares

regression yielded an R 2 of 0.00. However using X to form two new controls as in (13),

where hj(X,0j was linear both in X and 6j for j = 1,2 and 6 = 0, yielded an R2
of .92

using linear least-squares regression.

If the functions h{(-) are linear, then the linear control is a special case of this

transformation. If one lets 6 —> oo or 6 — — oo, the ordinary linear control is obtained.
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Of course, care must be taken in determining the form of the control function to ensure

it has mean zero i.e., E[Ci] and ¥j[Cq\ must be known. Note also that the regression is

still linear if 6 is given, but it is nonlinear otherwise. Finding an optimal 6 then becomes,

in general, a discontinuous nonlinear, mathematical programming problem. An alternative

method for finding 6 is to use graphical analysis of the relationship between Y and C in

selecting the initial cutpoint(s).

3. Transformations of Controls

Several standard transformations are used in statistics and data analysis (Cham-

bers et.al., 1983) and these can be applied as approximations for the optimal transformation

of a control variable C. Power transformations of controls, in addition to piecewise trans-

formations of controls, introduce nonlinearity into the controlled estimate of E[y] while

containing the untransformed control as a special case. The power transformation used

initially in this study is of the well-known form

Z = (Xp -l)/p, forp>-l. (15)

This scaled power transformation has the property that as p — the limit is In X and when

p = 1 it gives a shifted version of the original variable.

This power transformation (15) can have vastly different effects for X > 1 and

X < 1. The curves in Figure 1 represent a sample of possible transformations. As one

increases p, the change in the nature of the function on either side of X = 1 becomes more

drastic. For large values of p, large values of X are given added weight while for small

values of p, the small values of X are given the additional weight. Note that when p = 1,

this is simply the linear transformation. Thus optimizing using this transformation assures

variance reduction at least as good as in the linear case.

Using, for example, the single control variable C, the resulting nonlinear control

function is

I P L p 1)

which has two parameters, p and 9. Of course, combinations of piecewise transforma-

tions and power transformations are also possible by letting the /&,-(•) in (13) be nonlinear
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Figure 1. Examples of power transformations of a variable X.

functions, and it is this combination of nonlinear controls that is the main thrust of the ex-

ample to follow. With this combination one hopes to come close to the maximum theoretical

variance reduction which could be obtained.

Other transformations one might use for inducing nonlinearity include

1. Z =
(f

x - l) h,

2. Z = ((XP - 1) {#* - l)) /p7, or

3. Z = [e^XP-^ _ x) /r

These transformations represent a broad spectrum of transformations on a variable as can

be seen in Figures 2, 3 and 4. Note also that transformation 1 and transformation 3 contain

the linear case as a special set of parameter values. Transformation 1, is a positive weighting

of all values, with large values weighted more than small values. By varying the 7 parameter,

one can scale the effects of the weights from very large for large 7 to very slight for small 7.

Transformation 2, applies small negative weights for values less than 1. For values larger

than 1 it allows for a wide range of positive weighting schemes as in transformation 1.

third Transformation 3, is similar to the straightforward power transformation, (Figure 1),
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but with more parameters. Thus it allows for more flexibility and increased curvature for

smaller values of the parameters. The difficult part with these transformations, as usual, is

computing the necessary expected values.

7 = .01

7 = .2

7 = .5

y = .7

7 = .99

/
y

j.
0.6 1.0

X

1.6 2.0

Figure 2. Transformation 1 applied to a variable X.

E. THE ROLE OF NONLINEAR LEAST-SQUARES REGRESSION

Given that one has selected appropriate nonlinear transformations for the components

of £7, the optimal values for the parameters of the trai rmations can be obtained by

minimizing the variance of Y'. Unfortunately, the results are not explicit functions of the

joint and higher moments between Y and Q. as they are for the linear controls. Starting

with (9), one can write

Var[y]

Var[F]

Varfc
11 *• -*

(Ty

Y,C

Y,C

=

1

Var[y]

1 + k
2 - 2kp

(16)
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Figure 3. Transformation 2 applied to a variable X.

-.01

Z o -

Figure 4. Transformation 3 applied to a variable X.
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and

1
Var[F]

- lkp V^\ *' (17)

andwhere k is positive valued. While this last equation is simple in form, both p Y, C

k = crx/cTy are functions of the unknown parameters in C.

In practice, one has insufficient theoretical information about the joint probability

properties of Y and the components of C_ to determine the parameters in C. Instead one

has a simulation sample of size m of independent replications, {Y{, C,} for i = l,...,m,

from which to estimate E[y]. Regardless of whether the sample is large or small i.e., is a

pilot sample or all of the simulation data that will be available, one wants to minimize the

sample variance of Y' . Minimizing the sample variance involves, after subtracting Y from

both sides of (9), minimizing

—\2

(18)
Zr=i(Yt

'-Y)
2

TZLiJYi-Y-Cj)''

m m

ESifc-r)
1

,
za,c? 2Er. 1 fr-y)ci

m m m

The left-hand side of (18) is the quantity to be minimized as E Y = E = E[Y] since

E C is known to be zero. Thus either Y or Y' can be used in the estimate of the variance

of Y' . Equation (18) shows that this estimate of the variance of Y' is equal to the residual

sum of squares of the least-squares regression of Y — Y on C. Equation (19) involves, in its

first term, the total sum of squares, which estimates the variance of Y; in its second term

the sample variance of the zero-mean C; and in the last term the sample covariance of Y

and C . Rearranging terms in (19), one gets

Er=ifo-F)
2

YI?=1 (y!-y)
2

2ZT=i{Yi-Y)Cj y?=1 cf
m m m m

or

—\2

E£i (Yi - y) -z?=1 (y;-y) 2E£1 fo-r)ft Er= cf
—\2

Si [Yi - Y)
—\2

E£i {Yi - y) E£i (Yi - y)
(20)
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The left-hand side of (20) is the usual R2
regression measure and equation (20) may be

rewritten as

s~ s
2~

R2 = 2-£ r Y,C] --$- = 2k t\y,c] - k
2

(21)
Sy I- J Sy L J

where s~ represents the sample variance and ry,C represents the sample correlation

coefficient.

As the sample analog to (17), (21) indicates that maximizing R2 through nonlinear

least-squares regression is equivalent to maximizing sample variance reduction when the

optimal parameters are unknown. Thus for C_ with multiple components, maximizing the

effectiveness of C can be accomplished through estimating the parameters of C via multiple

least-squares regression of Y — Y on C. A similar result relating optimal regression and

optimal correlation can be found in the ACE article (Breiman and Friedman, 1985).

With linear controls, linear least-squares regression will provide a global minimum for

the residual sum of squares, in turn maximizing the variance reduction for the sample. When

the control function is nonlinear, nonlinear least-squares regression will not necessarily

determine parameter values that globally minimize the residual sum of squares. With a

nonlinear control function C, there may be many suboptimal local minima. In this case the

choice of initial values for the parameters in the nonlinear regression may significantly

affect the amount of variance reduction obtained. If one uses as starting values for 6 the

special values that represent the linear case for the control, one should always do at least

as well as the linear case.

One must be careful that while multiple regression may be computationally useful, the

distribution theory behind multiple regression, which assumes fixed independent variables,

does not apply. Consequently, although the estimates of 9 are identical, (see Sampson, 1974)

confidence intervals on parameter estimates cannot be determined directly from the regres-

sion results.

F. AN EXAMPLE OF USING NONLINEAR CONTROLS

Estimating the mean of the Anderson-Darling goodness-of-fit statistic, W%, (Anderson

and Darling, 1952) provides a good example of the benefits of piecewise internal controls

24



and power transformations. The example is artificial since E[W^] is known to be one for

all n. However, it is useful as an illustration.

The statistic W% can be determined as a function of n independent unit exponential

random variables Ej for j = 1, . .
.

, n (Lewis and Orav, 1989, p. 369). Note first that one can

write W% as a function of order statistics from a unit exponential distribution as follows:

'" n

n
r ( ~ ^

n - (n" 1

) J2 ~
(
2i - 1) In

1 1 - e~
E

(<) \ + {2 (n - •) + 1} E{i) (22)

where the Et^ are the order statistics from a unit exponential population. One method for

generating a sample of the order statistics from a unit exponential problem is to simply

order n i.i.d. realizations from a unit exponential population. A second method, which

is used here, generates the sample of order statistics from a unit exponential population,

£(i), . . . ,E^, from n independent unit exponential random variables, Ej, for j — 1, . . . ,n,

as follows:

h) = E (n _
E
j+ 1}

for* = l,...,n. (23)

Note that the order statistics En\, . .
.

, Ein \ produced by (23) are not the order statistics of

the original sample of n independent exponentials {.Ei, . .
.

, En }. However, they are a sample

of the order statistics from an n-sized sample of i.i.d. unit exponential random variables.

Together (22) and (23) give W% as a function of n independent exponential random variables.

The independence of these random variables makes them ideal for controlling W%. The case

n — 2 is presented here, for which (8) holds with C\ = E\ and C2 — -EV

As mentioned before, graphical methods can sometimes be useful in determining types

of controls or aspects of controls. Two useful plots of W% are presented here. Figure 5 is

a surface plot of W7
^ over a small region of the E\, E2 plane where the majority of values

occur. This is not a density plot, but a representation of the functional relationship between

the two independent exponentials and the W2
2 value each pair generates. Subsequent surface

plots of the control functions likewise do not portray density; just the surface generated by

the control function. As an indicator of the density of points on the W2
2 surface, Figure 6 is a

sample bivariate histogram of 1000 independent pairs of unit exponentials. While one could
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plot an actual bivariate exponential density, the discrete nature of the histogram allows

easier visual comparisons of density. Together, Figures 5 and 6 indicate why nonlinear con-

trols may prove useful for controlling W% • Clearly the relationship between W$ , E\ and E? is

highly nonlinear, suggesting the use of nonlinear controls. Figure 6 supports one's intuition

that the majority of pairs of the bivariate exponential are close to the origin. Suspecting

this, one may be tempted to use a linear control to just approximate the surface in this

region. However, Figure 6 also shows a significant number of pairs throughout the plane.

Thus in order for C to be an effective control, the entire surface should be approximated

by the control. This would require a nonlinear control and nonlinear regression.

Figure 5. The nonlinear surface of W% as a function of two variables E\ and E?.

Six different linear and nonlinear control functions for estimating the mean of W% were

evaluated using a single sample of 500 pairs of unit exponentials and their associated W%

values. The first five control functions are:

C = 9 1 (E1 -l) + d2 (E2 -l); (24)
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Figure 6. 1000 Samples of E\, E2 pairs

= 9, {Ex - 1) + 2 (E2 -l) + 3 (E\ - 2) + 4 (e\ - 2) ; (25)

E?-l
Pj

E? -1

Pj
(26)

and

C - »! (JE?! - 1) + tf2 (-E2 - 1)

E\ l - 1

V Pi Pi
+ #4 (*^-E ^

2
P2 ~ 1

P2

2 2
r £Pjfc -

1
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where in (28)

U(EJ)=\
1 Ej < 6

otherwise,

and l2{Ej) = <

1 S < Ej

otherwise
J = 1,2.

(27)

(28)
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The sixth and final control function uses two cutpoints and can be written as

2 3 ( Et

i=i k=i i

#* _ i

E
Pjk

E]* -11

PjJfc

(29)

where

Ii(^)=<
1 Et < Si

otherwise,

1 Si < Ej < S2

otherwise

and

1 Ej > S2
U(Ej)={ 3

fori = 1,2.

otherwise

As expected, the simplest controls, (24) and (25), with straightforward control func-

tions, were usually less effective than the nonlinear controls. The controls given by (24)

and (25) are referred to as the "standard" controls because their unknown parameters can

be computed using linear least-squares regression. Since the necessary expected values

of the controls just involved the first two moments of the exponentials, they were deter-

mined analytically and not estimated. The remaining parameters for controls (24) and

(25), respectively 6\ and 62 , and l5 62 , #3 and 84 were computed using linear least-squares

regression.

Since control (24) is a linear function of Ei and E2 and W2 is a very nonlinear function

of Ei and E2 , this control, not surprisingly, achieved an R 2 of only .2265. This poor perfor-

mance could also be predicted by using the sample estimates for pfW^-^i] an(^ P\y 2̂ iE2 \

in (8). If the estimates were the true correlations, the optimal 0's would only yield a 22.66

percent variance reduction. The parabolic shape of (25), as shown in Figure 7, enabled the

control function to achieve an R 2
of .5627. While better, as will be seen shortly from the

ACE results, it is far from optimal. Note that on the graphs demonstrating the controls,

the predicted values of the controls are centered about zero, the mean of C.

For control (27) only the linear terms' expected values could be calculated analytically.

The other two expected values were functions of the unknown parameters and had to be

recalculated based on the current parameters during the optimization. For controls (26),
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Figure 7. Surface generated by the parabolic linear control given in (24). The control is

linear since the powers are fixed.

(28), and (29) none of the expected values could be determined analytically so all were

calculated during the optimization. All of the parameters for the nonlinear controls were

estimated via the nonlinear regression segment of IBM's experimental APL2-based GRAF-

STAT statistical graphics package. For nonlinear regression, GRAFSTAT uses a form of the

Marquadt algorithm (Marquadt, 1963) which allows bounds to be placed on the parameters

(see Bard, 1974). Lower bounds of -.99 were necessary on the power parameters, pjk, since

the expected values of the exponentials (involving the gamma function) are not defined for

Pjk < — 1. A reasonable upper bound on each pjk was found useful in speeding convergence.

As the control functions became more nonlinear, their effectiveness usually increased.

Allowing the powers to float in control (26) versus being fixed in control (24) gave a slight

improvement; the R2 went from .2265 up to .4640. This was not as good however as the

"standard" control (25) with two linear terms and two quadratic terms which achieved an

R2 of .5627. Adding the two linear terms to control (26) resulted in control (27). Now

allowing the powers to float in control (27), versus being fixed in control (25), enabled the
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surface to fit more closely and thus the R2
for (27) was .7422. This definite improvement

over the "standard" controls can be seen in Figure 8.

Figure 8. Surface generated by "non-standard" control with linear and nonlinear terms

given in (26).

Originally, the cutpoints for controls (28) and (29) were parameters to be optimized.

Unfortunately, this made the optimization unstable and the results unreliable. Thus, the

cutpoints were fixed at selected quantiles and not included as parameters in the nonlinear

regression. Selection of a good cutpoint was done by examining the results of a short

sequence of regressions. For control (28) a cutpoint at the .5 quantile was the most effective

one found for this sample. Comparing Figure 9 to Figure 8 shows the impact of adding

nonlinearity by the use of the cutpoint. The R2
for control (28) was .8216. The results

of using the estimated parameters for (28) on three independent samples of 1000, Table 1,

indicate that even though the regression-estimated parameters are biased for the original

sample, (28) is still effective in controlling other samples.
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Figure 9. Surface generated by the nonlinear, single-cutpoint control given in (27).

Sample 1 Sample 2 Sample 3

W] .9882 1.0022 1.0219

S w? .0261 .0262 .0282

w? .9972 1.0095 1.0238

.0110 .0124 .0129

R2 .8239 . .7759 .7905

TABLE 1. Effect of the nonlinear, single-cutpoint control given in (27) on three inde-

pendent samples other than the regression sample.
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As the number of outpoints increases to two for control (29), one gets a more effective

control at the cost of increased computational complexity. The computational complexity

increases because the additional cutpoint creates more parameters and because the com-

putation of expected values becomes more expensive. As before, the cutpoints were fixed

at selected quantile values. Which values to select was a matter of performing a series of

regressions on a grid of values. Figure 10 shows that some pairs of cutpoints were better

than others. Figure 11 shows that the best cutpoints for this sample on the grid examined,

the .30 and .65 quantiles, yield a control that is an excellent approximation to the W%

surface. The regression with these cutpoints on the original sample yielded an R2 of .8372.
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Figure 10. Effects of changing the cutpoints on correlation

This last control, (29), was then tested on independent samples and the R 2 was com-

pared to results from ACE. Table 2 indicates the results for three samples of 1000 W%

values. Again the R2 values are almost as good as the original sample, and the control is

effective in all three cases. ACE was given the data generated by using the cutpoints on

the original sample as the independent variables. The R2 value derived by ACE was .8560

showing that control (29) is nearly optimal for the control variables used.
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Figure 11. Surface generated by the nonlinear, double-cutpoint control given in (28).

Sample 1 Sample 2 Sample 3

wq .9534 1.0230 42

5—7 .0230 .0265 .0255

w* .9997 1.0157 1.0001

s—rr .0094 .0121 .0110

R2 .8350 .7925 .8153

TABLE 2. Effect of the nonlinear, double-cutpoint control given in (28) on three inde-

pendent samples other than the regression sample.
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G. SUMMARY
Linear controls are a well-known technique for variance reduction in computer simula-

tion. Unfortunately, the relationship between the statistic of interest and the control is often

poorly approximated by a straight line so the control has limited effectiveness. Nonlinear

controls are a natural remedy for improving the effectiveness of a given set of controls. At

the cost of greater analytical and computational effort in deriving the control, one can use

the increased effectiveness of the control to reduce the sample size needed to achieve a given

precision, thereby saving resources from the simulation.

In addition to controlling the estimate of a mean, one can also use nonlinear controls on

the more difficult problem of quantile estimation in simulation. The next chapter discusses

the use of nonlinear controls for quantile estimation where an important concern is also

obtaining a reliable estimate of the variance of the controlled estimate.
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ni. VARIANCE REDUCTION FOR QUANTILE ESTIMATES IN

SIMULATIONS VIA NONLINEAR CONTROLS

A. INTRODUCTION

As remarked in Chapter I, estimation and simulation of quantiles is different from

the case of quantifiers that can be estimated as means. This chapter begins with a short

discussion of quantiles and the properties of a quantile estimator, with emphasis on the

need for a reliable estimator for the variance of the quantile estimator. The next section

discusses linear controls for quantile estimates and the subtleties involved with estimating

the coefficients for the control functions. The discussion of linear controls is followed by

a discussion of the application of nonlinear controls to reducing the variance of quantile

estimates for a fixed simulation sample size. The final part of the chapter presents an extract

of results from a simulation experiment where crude, linearly controlled and nonlinearly

controlled estimators are compared. Throughout, the emphasis is on quantile estimation

for continuous random variables, though other cases are of interest.

B. QUANTILES

1. Properties of a Quantile Estimator

Let Y be a random variable with a right-continuous distribution function defined

by

FY (y) = Pr{7 < y} , -oo < y < oo.

Following Serfling (1980) define the a quantile of Y, yQ , for < a < 1, as the value

yQ = Fy\a) = inf {y : FY {y) > a} . (30)

If Fy(y) is strictly increasing, yQ is unique for each a. Additional restrictions on Fy(y),

such as continuity at ya , may be needed for the existence of certain asymptotic properties

and will be stated as required.
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Given a simulation sample of n independent and identically distributed (i.i.d.)

samples of Y , namely Y\,. .. ,Yn , one can construct a sample distribution function, Fn , by

placing at each observation Y,, a probability mass 1/n. Thus Fn may be represented as

1
n

Fn{y) = -YlKYi <y), -oo < y < oo

where I(-) is an indicator function which returns 1 if the argument is true and otherwise.

For a sample of size n, one can define a nonparametric estimator of the a quantile,

yQ (n), as the sample a quantile of the sample distribution function, or

ya (n) = F- 1
(a).

Using the sample a quantile to estimate yQ is equivalent to using the order statistics of

the sample, Y^) <,...,< Y(n ), and defining a nonparametric estimator of the a quantile,

yQ (n), as in Lewis and Orav (1989), as

ya (n) = Y(r) = i

Y(na) if no is an integer

^(Inal+i) ^ na 1S n°t an integer

where [w\ denotes the integral part of w.

For a given n and a, the quantile estimator ya (n) is the rth order statistic from

the n-sized sample where r is determined as in (31). The following results on the distribution

of ya {n) are well known (David, 1970, Chap. 1-3 or Kendall and Stuart, 1977, pp. 251-252).

Let i^Q (
n)(y) be the cumulative distribution function of the quantile estimator.

Then F$a (
n)(y) can be written as

F
ya (n){y) = Pr{&> («) < y)

= Pr{ at least r of the n Y{ are < y}

= E(J)iV(y)[i-iKf)]"-',
(32)

since the term in the summand is the binomial probability that exactly i of the Y{ are less

than or equal to y. If the Y, are continuous with a density function fy(y), the density
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function of yQ (n) is

/i.wW = 5?
*

X1^-1
(y) [i - Mv)]

n-r
fy(y)

where B(-,-) represents the complete beta function. Unfortunately, while yQ (n) is a non-

parametric estimator of the a quantile, (32) shows that the distribution of the quantile

estimator yQ (n) depends not only on n and a but also on the unknown distribution of the

underlying Y.

The bias and variance of yQ (n) also depend on n, a, and the distribution of the

underlying Y. Assume that Fy(y) is continuous with a density function fy(y) which is

differentiate and nonzero at yQ . The following result for the expected value of the quantile

estimator can be derived from results in David (1970, p. 65):

Efew]=».-7|1 - ;f:^f! to(i), (33)
nfY (ya ) 2(n + 2) fY (ya )

\n 2
)

where t is a sawtooth function of n and a such that |c| < 1 and /'(•) denotes the derivative

of the function /(•). An expansion for the variance of the quantile estimator can be derived

in similar fashion as

v"tfc(")i°<c)=
( B ;

(

2)^) +o
(^)- (34)

The notation g(n) = 0(l/n2
) means the absolute value of g(n)/(l/n2

) remains bounded

as n goes to infinity. These asymptotic expansions will be discussed in greater detail in

Chapter IV.

There are also well known asymptotic results for ya (n) (Serfling, 1980, sec. 2.3).

• If ya is the unique solution y of F(y— ) < a < F(y), then yQ (n)—>ya with probability

1 as n — oo.

• If Fy(y) possesses a density /y(y) in a neighborhood of yQ , and fy{y) is positive and

continuous at ya , then ya (n) has an asymptotic normal distribution in that
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• Weiss (1964) proved that under mild conditions, the sample marginal quantiles from

a multivariate population with an absolutely continuous joint distribution function

have an asymptotic multivariate normal distribution. The asymptotic covariance is

a function of the multivariate distribution of the underlying multivariate population.

This multivariate result is important because of the role of the joint distribution of the

controlled and controlling statistics in the theory of controls for variance reduction.

2. Using Sectioning to Estimate the Variance of a Quantile Estimator

When using the quantile estimator from (31) to calculate a point estimate of the

a quantile, one must also estimate the variance or equivalently the standard deviation of

the point estimate. One could estimate the density of Y at ya and use (34) to estimate

the variance. However, the instability of density estimates at extreme quantiles can cause

this to be a very biased and unstable estimate of the variance of ya (n). A more general

technique is to use sectioning to calculate both a point estimate of the quantile and an

estimate of the variance of the point estimate. While non-parametric confidence intervals

are available for crude quantile estimates (see Mood, Graybill and Boes, 1974, p. 312), the

confidence intervals are not appropriate for controlled quantile estimates. A brief discussion

of sectioning follows; for a detailed discussion of sectioning see Lewis and Orav (1989,

Chap. 9).

Let the random variable ya (n) be the function of independent and identically

distributed random variables Yi,. . . ,Yn defined in (31) such that yQ (n) is a point estimator

of ya . Let a? # » denote the variance of ya (n). Assume for now that there are a total of

N = m x n independent samples of Y, namely Yi,...,!^,... ,Ypf. The sectioned point

estimator, ya(^ 5
w), is constructed as follows:

1. Divide the N samples of the random variable Y into m sections with n samples each

where for simplicity n X m = N (equivalently, replicate a sample of size n, m times).

2. For the jih. section, j = 1, . . . ,ra, use (31) to compute ya ,j(n)-

3. Compute yQ (Tn,n) as:

1 m
y~(m, n) = —V yaj(n). (35)m r—

*

The point estimator ya(m,n) is a sample mean of m independent estimates, each of

which is based on n samples.
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4. Estimate the variance of yQ {m,n), namely cri- , with the sample variance of the

sample mean:

1
rn

i

Shm,n) = mfm-1)^ {^' (n) ~^(m
'
n)

) *
(36)

One advantage of sectioning to estimate the variance of the quantile estimate

over estimating the density is that since the yaj(n) in Step 2 above are i.i.d. and the point

estimator yaiTn.n) is their sample mean, 51-, , is an unbiased estimate of the variance
V ' Va(m,n)

of the point estimate. Furthermore, if the yaj(n) are approximately normally distributed,

one can develop approximate confidence intervals for ya(^»^) based on a /-statistic with

m — 1 degrees of freedom. A disadvantage of sectioning is the increase in the bias of the

point estimate; the first-order bias predicted by (33) for ya {m, n) is m times that for y (N),

a point estimate based on all N samples.

For fixed N, the selection of m and n involves a tradeoff between the bias and

the variance of 2/a (ro,n) as well as the precision of the estimate of the variance of yQ {m, n).

To minimize the bias in ya (m, n), as well as improve the approximation to normality of the

individual t/j(n), one would like n to be large. A drawback of increasing n is the decrease

in precision of the estimate of the variance of the point estimate as well as the decrease

in the degrees of freedom, m — 1, for the f-statistic, which relaxes the confidence interval.

Using (34) and (36), one can write the expansion for the variance of the sectioned estimate

in terms of m only as

ya (m,n) m ( JV + 2m) JV2 \N2
J

' k *

where j3 and 7 are constants determined by Fy(y) and a. The presence of m in both the

denominator and the numerator in (37) implies, for fixed N, that the value of m which

minimizes the variance is a function of the relative magnitudes of ft and 7. If (3 is small

relative to 7, one should choose a small m in order to minimize the variance. The value

for m must be at least 2 in order to use (36) to estimate the variance. Values for m and

n which will minimize the variance or the mean square error of the point estimate can

be determined as functions of terms such as /3 and 7. However, these terms are in turn

functions of the distribution of Y which is unknown. After consideration of the above, Lewis
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and Orav (1989, p. 262) suggest as a "rough rule of thumb" to make m between 12 and 20

for samples with N over 1000. This usually gives sufficient precision for the estimate of the

variance of ya (m,n).

Once m and n have been selected, the variance of the point estimate can be

estimated. Equation (34) shows that <r? ,. is a decreasing function of n. For fixed to, a

decrease in a2
- ,* will cause a corresponding decrease in a?- . A technique for reducing

a
l In)

w^hout increasing n is the use of linear controls.

C. LINEAR CONTROL OF QUANTILES

1. Single and Multiple Linear Controls

As discussed in Chapter I, linear controls is a variance reduction technique which

can be used to reduce the variance of an estimate of a statistic of interest, often a sample

mean as in Chapter II. The statistic of interest in this chapter is the quantile estimator

ya (n) from (31) and eventually the individual section estimate ya ,j(n) from (35).

To use a linear control for variance reduction a random variable generated in the

simulation, called the control or control variable, which is correlated with yQ (n), must be

available. The expected value of the control must be known, either exactly or approximately.

Let C be a random variable which is generated via simulation. Although an estimator of

the a quantile of C is not necessarily the most effective control for a given quantile of Y, for

purposes of discussion, the estimator of the a quantile of C as defined in (31), namely ca (n)

will be used as the control. The random variable ca (n) is a function of n i.i.d. samples of

the random variable C. If ca (n) is generated as part of the simulation that produces the

samples of Y it will be called an internal control variable. If ca (n) is generated as output

from a different simulation, it will be called an external control variable.

The linear control scheme for variance reduction, with a single quantile estimator

as a control, uses the same linear additive combination of the control and its expected

value as in Equation (2) of Chapter II to produce a controlled estimate y'a (n). The control

function, with coefficient 0, is subtracted off from the uncontrolled or crude estimate ya (n)

to produce the controlled estimate as follows:

y'
Q (n) = ya (n) - 9 {cQ (n) - E[cQ (n)]} . (38)
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Putting aside the question of sectioning for now, the purpose of using a control is to minimize

the variance of the controlled estimate, cr?, ,., for a fixed sample size n. If the statistic of

interest is ya ,j(n) from (35), minimizing its variance will, for fixed m, minimize the variance

of the section estimate ya (rn, n). The value of 6 which minimizes a 1
., • > is still, as in (5) of

Chapter II, the regression coefficient from the regression of yQ (n) on ca (n);

6 =
a*° (

2

n) 'Mn) = ^^ P [ya (n)

,

ca (»)] (39)

where 0ya (n),ca (n) 1S the covariance of ya (n) and ca (n) and p[ya (n) , ca (n)] is the correlation

between ya (n) and cQ (n).

One can use multiple controls for variance reduction where cQ (n) and 6 become

g-dimensional column vectors, c
(
n ) and 0- with components caj(n) and 6j, for j = 1, . . . ,q.

With multiple controls for quantile estimators, Equation (38) becomes similar to Equa-

tion (1) in Chapter II:

ilM = ya (n) - f {^(n) - E[Un)]} • (40)

2. Use of the Asymptotic Expected Value as an Approximation for the

Expected Value of the Control

When using a linear control for variance reduction, the expected value of the

control is subtracted from the control variable in the control function as in (38) so that the

control function will have a mean of zero. A mean-zero control function is desirable when

controlling an unbiased estimator such as a sample mean so that the controlled estimate is

also unbiased. However, expected values of quantile estimators are rarely known exactly.

If the values of the density function of C and its derivative at cQ are known, the biased

expected value of the quantile estimator from (33) can be subtracted in the control function

so that the control function does not affect the first-order bias in the controlled quantile

estimate. // the expected value of the biased quantile estimator is not known, it can be

approximated by the asymptotic expected value of the estimator; i.e., the actual quantile

value ca . The value cQ will replace E[ca (n)] in the control function in (38). While this

causes the control function to have order 1/n bias, there is already order 1/n bias in the
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estimate being controlled, yQ (n), so that the order of the bias in the controlled estimate is

the same as in the uncontrolled estimate.

Even when the biased expected value for the control from (33) is known, it may

desirable to use the asymptotic value. There is empirical evidence (to be shown in Section E)

that the use of a control function with order 1/n bias can actually decrease the magnitude of

the first-order bias in the controlled estimate. One can explain this analytically as follows:

1. let Bya (n) denote the first-order bias of ya (n) computed using (33) as

Bya(n) = E[yQ (n))-yQ + 0(l/n2
)

and let ^£a (n) denote the bias of cQ (n) computed similarly.

2. If using the linear control scheme (38) to control a quantile estimate, let B
y

'

a (
n )

denote

the first-order bias of y'a (n) so that

%,(*)= %(n)-0£cQ (n) + O(l/n2
).

The question is then: under what conditions on 8 is |#yj/n )l
< l^ya (n)l?

Assume, without loss of generality, that #yQ (
n )

> and that ^ya (
n)/^cQ (n) > 0.

It follows that

\

B
ya (n)'\ < l#»a(n)l implies that - Bya{n) < Bya(n) - ££a(n) < Bia{n) . (41)

Operating on the left-hand side of (41) by dividing both sides of the inequality by By
a (

n ),

collecting terms and then dividing both sides of the inequality by the ratio ^aQ (n)/^a (n)5

one gets that the left side of (41) implies that

< 2Bya(n) /Bca(n) . (42)

Operating on the right side of (41) by dividing both sides of the inequality by Bya (n),

collecting terms and then dividing both sides of the inequality by the ratio Bca (n)/Bya (n)i

one gets that the right of (41) implies that

< 0. (43)
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Combining (42) and (43), one gets that when &ya (n)/Bca (n) 1S positive and

the magnitude of the first-order bias of the controlled estimate is less than the magnitude

of the first-order bias of the uncontrolled estimate.

If one is using sectioning to generate the overall point estimate and an estimate

of the variance (standard deviation) of the point estimate, and furthermore assumes that 6

is known, Equations (35) and (36) can be combined with the linear control equation, (38),

to get

1 m
&(™,n) = —J2y'a,j(n) (44)

1 m
= — J2 {&*.;(n )

- e (c«.i(n)
- c*)} (

45
)

with an unbiased estimate of the variance of the controlled estimate of

1
m

i

%(».») = ^TTijE{CW -&»,»)}• (46)

These results are straightforward. It is when is not known, the usual case, and

has to be estimated using sectioning, that estimating the variance of the controlled estimate

requires some care.

3. Estimating the Coefficients

In the usual case in simulation, the values for 6 or 9 must be estimated since not

enough information is known about the joint distribution of yQ (n) and ca (
n ) *° determine

the regression coefficients. For notation's sake, assume that one is using a single control.

If using sectioning to estimate the point estimate along with its variance, the sectioned

estimates yj(n) and Cj(n), for j = 1, . .
.

, m are available to use to estimate 6. The regression

coefficient 6 can be estimated by the least squares regression of [ya,j(n) — yQ (m,n)] on

6[caj(n) — cQ ] using the regression model

[ya,j{n)-ya (m,n)] = 6[cQj(n)-cQ ] + €j, j = l,...,m (47)
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where the cQj(n) are considered fixed and €j is a mean-zero random variable independent

of ca<j(n). Denote by 6(m,n) the estimate of 6 from a regression which used m estimates

for both the dependent variable and the predictor variable, where each of the estimates was

based on n independent samples of Y or C as appropriate.

Once 9(m,n) is computed, the controlled estimate for each section can be com-

puted using (38) as

y'a ,j(
n ) = Va,j(n) - 6(m,n) {cQj(n) - ca } . (48)

where cQ is the approximation for the expected value of the control. The final controlled

section estimate, y'a(m, n), can be computed using (44) as the sample mean of the controlled

estimates from each section. Unfortunately, estimating the variance of the y'Q(m,n) with

(46) is not as straightforward since the individual y'a An) are generally no longer independent

because of the common $(m,n). The characteristics of the quantile estimates and the

variance estimates depend upon the joint distribution of yQ (n) and cQ (n).

a. Subtleties with the Joint Distribution of the Estimators

A key point of linear controls for quantile estimates is that the joint distri-

bution of the statistic being controlled and the control statistic, here yQ (n) and cQ (n), is

of primary importance for determining 6 and the characteristics of the controlled estimate,

not the joint distribution of the underlying populations Y and C

.

This is in contrast to the use of a linear control for controlling an estimate

of the mean, y, with the sample mean of the control, c. In this case, one can determine 6

as a function of the joint distribution of Y and C since, using (39),

_ Cov[y,c] _ Cov[y, c]

Var[c] Var[c] '

Although the joint distribution of y and c is different from the joint distribution of Y

and C, one can estimate 6 using estimates of the population covariances based on the N

individual samples. In general, when controlling estimators other than the sample mean,

one must estimate the covariances from the joint distribution of the controlled statistic and

the control, not the joint distribution of the underlying populations.
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b. Sectioning with the Assumption that the Joint Distribution is

Multivariate Normal

If the joint distribution of yQ (n) and cQ (n) is multivariate normal and 6 is

estimated, the point estimate of the quantile and the estimate of the variance of the point

estimate have several nice properties:

• the controlled estimates for each section, y' -(n), are i.i.d. since the sample covariance

matrix of the caj(n) is independent of their sample mean.

• S'lrv . ? the estimate of the variance of y'(m,n) from (46) where y' An) is computed
ya (Tn,n) " v ' v ' " c*>.7 ,

> '

using (48), is an unbiased estimator, and

• one can develop an unconditional confidence interval for y'a(m,n) using the /-statistic

following Lavenberg, Moeller and Welch (1982) since conditionally unbiased estimators

remain unbiased unconditionally and conditional confidence intervals remain valid

unconditionally (see Kendall and Stuart, 1977, p. 379).

When the multivariate normal assumption, or an assumption of spherical symmetry (see

Johnson, 1987), is not valid,

• the controlled estimates from each section y'
aj(n) are no longer independent since

the sample mean and covariance matrix are no longer independent. The controlled

estimates also have additional 0(l/m) bias from the estimation of 6.

• 5%-. . from (46) can still be used to estimate the variance of y'Q(m,n) although it

is now biased, and

• even if the y'aj(n) are normally distributed, a confidence interval based on a /-statistic

is only approximate because of the lack of independence of the individual section

estimates.

One method for maintaining independence between the controlled section estimates at the

cost of a loss of variance reduction is to estimate 8 indepe 'ntly for each section.

c. Subsectioning

An alternative to estimating a single $(m,n), which couples the y'
Q<
j(n) to-

gether so that they are no longer independent, is to generate an individual estimate of 6

for each section. This can be done by subsectioning the n samples within the section and

calculating quantile estimates within the section to use as data to estimate Oj(v,l). More

formally, for each jth section, for j = 1, . .
.

, m,

1. divide the n samples into v subsections of length / where v x I = n, and

2. estimate yaj t
fc(/) and ca j^(/) for each kth subsection, for k = 1, . . . ,v.
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3. Use the v sets of subsection estimates ya ,j,k{l) and ca ,j,k(l) from the jth section to

estimate 9j(v,l) using a regression model similar to (47).

Once $j(v,l) has been estimated, the controlled estimate for the jth section is computed as

y'a,j(
n ) = Vaj - §j(v, I) (caJ (n) - ca) . (49)

The equation is similar to (48) only now there is a subscript on 9, which also has different

arguments. The final controlled estimate is calculated as before, as a sample mean using

(44), and the estimate of variance of the point estimates is calculated using (46).

An advantage of subsectioning is that by using an independent estimate of 9

to calculate each section's controlled estimate, the ifa An) are now i.i.d.. A disadvantage of

using subsectioning is the loss of predicted variance reduction. This occurs for two reasons.

The first is that instead of needing one estimate of 9, now m estimates are needed and each

additional estimate tends to reduce the achieved percent variance reduction. The second

reason is that 9(v, I) is not an unbiased estimator of the regression coefficient for ya (n)

and cQ (n) since it is calculated using quantile estimates based on / samples. As shown

in Part B.l, the distribution of a quantile estimator is a function of the sample size used

for the estimate. Thus estimates which are based on / < n samples have a different joint

distribution than yQ (n) and cQ (n). There can also be some additional bias in the y
r

Qj(n)

from the estimation of 9j.

d. Splitting and The Jackknife

Other methods which have been used with linear controls for calculating

a point estimate and the variance of the point estimate include splitting and the jack-

knife. Each of these techniques is described in Lewis and Orav (1989, Chap. 9) and in

Nelson (1988).

The splitting technique removes the bias caused by estimating 9 with the

same data being controlled at the cost of reducing the percent variance reduction. Splitting

has been described in Tocher (1963, p. 115) and then in Beale (1985). When using sectioning

to generate m individual section quantile estimates J/Q ,j(ft) and caj(n), for j = l,...,m,

the splitting procedure generates an estimate of 9 for each section. The estimate of 9 for the

jth section is computed using all of the section estimates except the jth set of estimates.
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The controlled estimate for each section is computed using (49) with 9j(m — l,n). The

final controlled estimate and its variance are computed as before as the sample mean of the

individual controlled section estimates and the sample variance of the sample mean

The splitting estimator eliminates the bias in y'Q An) due to estimating 9.

However, like the sectioning estimator it has the disadvantage that the y*a An) are no longer

independent. It also has the same disadvantage as the subsection estimator in that m es-

timates of 9 must be computed, reducing the percent variance reduction. The primary

purpose for using the splitting estimator has been to eliminate the 0(l/m) bias in the

controlled estimate from the estimation of 9 in non-normal samples when controlling unbi-

ased estimators. Since the quantile estimator already has 0(1 /n) bias, which is unaffected

by splitting, and splitting has no other clear advantages over the section or subsection

estimator, splitting was not used.

Lewis and Orav (1989, p.271) describe jackkniflng as a method which can

remove the 0(l/n) bias in ya (n) at the price of uncertainty about the loss of percent

variance reduction in small to medium sized samples. For an "m-fold" jackknife estimate,

one combines an estimate based on the entire data set, ya,o(N), with m estimates, each

based on the data set with N/m samples deleted, yQj(N — m), for j = 1, . .
.

, m, to get a set

of m 'pseudo values" (j\ya(N — m), for j = 1, . .
.

, m. The final jackknife point estimate is

the sample mean of the pseudo values. In some circumstances, one can also use the sample

variance of the sample mean of the pseudo values as an estimate of the variance of the

jackknife point estimate.

The jackknife estimate has an advantage over the section and subsection

estimators in that the bias of the quantile estimates is reduced since each pseudo value is

based on estimates using N — m instead of N/m samples. Unfortunately it has some disad-

vantages as well. Lavenberg, Moeller and Welch (1982) examined the use of the jackknife

when using a linear control for the sample mean under the assumption of a multivariate

normal distribution between the statistic of interest and the control. They found that the

jackknifed confidence interval was usually larger and more computationally expensive than

the standard linear control based confidence interval. Nelson (1988) compared the perfor-

mance of several methods for linear control of the mean when the normality assumption was

violated and found that the jackknife was usually "dominated" by the splitting estimator.
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The jackknife has been used in quantile estimation. Seila (1982) used a 2-

fold jackknife for removing the bias of quantile estimates. However he used a sectioning

approach, not the jackknife estimate, for estimating the variance of the point estimate.

Miller (1974), and Efron and Gong (1983) imply that the jackknife technique may not be

an appropriate tool for use with quantile estimation because of the discontinuous, nonlinear

nature of quantile estimators such as (31). Our empirical results (presented in the last

section of this chapter) confirmed that the jackknife was not suitable for computing quantile

estimates and estimates of the variance of the jackknife point estimate because of the high

variability of the point estimates and the poor performance of the jackknife estimate of the

variance of the jackknife point estimator.

Regardless of the method chosen, estimating the coefficients can result in a

reduction in the percent variance reduction as discussed in Chapter II. Like controlling the

mean, linear controls for quantile estimates often have low correlation with the quantile of

interest. One can use nonlinear controls for quantile estimates in an attempt to improve

the effectiveness of the control scheme.

D. NONLINEAR CONTROL OF QUANTILE ESTIMATES

The fundamental definitions of nonlinear controls found in Chapter II carry directly

over when Y and C are quantile estimates instead of sample means. Equation (10) becomes

y'
Q (

n
) = ya(n)-#(£o»£)»

where H(-, •) is still the linear additive combination of the q transformed quantile estimates

hj{caj(n),e).

One of the problems in choosing an approximating transformation hj(cQj(n),6) is that

E[hj(ca<j(n),9)] must be known exactly or approximately. This severely limits the selection

of nonlinear transformations available to approximate h^(caj(n)) as the necessary expected

values may be intractable to compute or unknown for some transformations. The difficulty

in analytically determining the expected value of the transformed control can be greatly

reduced when using monotone transformations of quantile estimators as controls. This is

the key idea in making the use of nonlinear controls with quantile estimates practical.
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1. The Behavior of Quantiles Under Monotone Transformations

Quantiles have a property that is especially useful when working with nonlinear

controls. Under strictly monotone transformations of the underlying random variable, the

quantiles transform monotonely as well. For example,

• let h(-) be a strictly monotone function with inverse /i
_1

(-),

• let C be a random variable with a continuous, strictly monotone cumulative distribu-

tion function such that for all a between zero and one, Fq (a) = cQ , and

• let W = h(C) be the transformed random variable.

By definition of a quantile,

Pr{C <cQ ] = a and Fi{W < wQ } = a.

Therefore:

?t{W < wQ } = ?i{h(C) < wQ }

= Pr{c</i_1
(u;a )} = a.

This implies that for all a between zero and one,

wQ = h(cQ ). (50)

For example, if C has a Uniform (0,1) distribution with .9 quantile of c.g = .9, then the

.9 quantile of W = h(C) = C2
, namely w,9 is equal to c

2
9 = .9

2 = .81.

The key point is that the a quantile of a transformed random variable can be found

by applying the same transformation to the a quantile of the original random variable.

2. Controlling Quantile Estimates

The fact that quantiles transform monotonely under strictly monotone transfor-

mations of the underlying random variable can also be useful in computing the expected

value of a transformed quantile estimator. It is important to note that the random vari-

able being transformed is the quantile estimator cQ (n) and not the underlying C. For

a given nonlinear transformation, it may be possible to compute the expected value of

h(cQ (n)). For example, if C has a Uniform (0,1) distribution, and h(cQ (n)) is the scaled
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power transformation, (Equation (15) from Chapter II, where 6 = p is constrained to be

non-negative), then h(ca (n)) has a Beta distribution with a known expected value. For

other distributions of cQ (n), or other transformations h(-), the expected value may not be

tractable to compute. This is where the use of strictly monotone transformations can help.

We are interested in the expected value of the transformed quantile estimator.

When a strictly monotone transformation is applied to the underlying C, the quantile

estimator cQ (n) transforms monotonely as well i.e., if ca (n) estimates cQ and h(C) = W,

with a quantile wQ , then

wQ (n) = h(cQ (n)). (51)

From the point of view of the quantile estimator, applying a strictly monotone transforma-

tion to a quantile estimator, cQ(n) as in (51), yields the same quantile estimate as using

the identical transformation on the underlying random variable C and then using (31) to

estimate the a quantile. Although for small n

E[h(cQ (n))]^h(E[cQ (n)}),

it is true that as n — oo,

E[h(ca (n))] — h(cQ ) and h(E[cQ (n)]) — h(cQ )

so that asymptotically, the expected value of the transformed quantile estimator is the

same as the expected value of the quantile estimator of the transformed underlying random

variable.

Since the asymptotic expected values are the same, if the individual transfor-

mation functions /&(•) in the control function H(ca (n) ,6) are restricted to strictly mono-

tone transformations, one can approximate E[h(cQ (n) ,6)] in the nonlinear control function

H(ca (n) ,$), with the asymptotic expected value of the transformed control, namely, the

transformed value of the a quantile, h(cQ ,9). Calculating h(cQ ,6) is trivial since ca is a

constant. Using the asymptotic expected value with the scaled power transformation from

Equation (15) of Chapter II, the nonlinear control scheme becomes
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.,, v ...
fl f ca (n)*2 -l <$-l \

ya (n) = y<* (
n

) - i \
—

j ^— )

The use of the approximation introduces bias into the control function, but it is still 0(l/n)

and may, as in the linear control case, reduce the magnitude of the first-order bias of

the controlled estimate. The key point is that the analytical burden of calculating the

expected value of the transformed control has been greatly reduced. In fact in many cases,

this computation would not be possible at all if the transformation were not monotone.

Once the approximating transformations for the c^ have been selected, one can use

either the section or subsection estimator to estimate 9 and calculate the final, controlled

point estimate y'a(m,n) in (44) and an estimate of the variance of the point estimate.

Regardless of the method, the coefficients in for h^^O) can be estimated using a nonlinear

least-squares regression algorithm as the nonlinear optimizer.

3. Selection of m and n for a Nonlinearly Controlled Section Estimate when

Must be Estimated

A major factor that must also be considered in the selection of m and n for fixed

sample size N is the impact of n, the number of samples used to compute the individual

quantile estimates, on the joint normality of the quantile estimates. When computing a

controlled section estimate and estimating the coefficients 6, the impact of m and n on the

variance of the estimate 6(m,n) must also be considered.

As previously discussed, given a fixed sample size N the values of m and n which

minimize the mean square error of the crude section estimate are a function of the coefficients

in the asymptotic expansions for the mean and variance
r
the estimator, equations (33)

and (34). The variance of the controlled estimate y'
a (n) is a function of the variance of

the estimate of the coefficients in addition to the variance of the crude estimate, ya (n),

and the variance of the estimate of the control cQ (n). In general, the bias and variance of

coefficients estimated via least-squares nonlinear regression is a decreasing function of the

number of estimates used as data in the regression (see Gallant, 1987, Chap. 1). When

using the section estimator, this implies that one would like m, the number of quantile

estimates, to be large. However, as m increases for fixed N, n must decrease, increasing

the bias and variance of the estimates used as data in the regression. If n is too small, the
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bias and variance of the estimates could be such that there is actually very little nonlinear

or even linear relationship between the crude and control quantile estimates so that any

control scheme is ineffective.

If n, the number of samples in a section, is too large, the joint distribution of

the crude and control quantile estimates approaches a joint normal distribution as seen in

Part B.l of this chapter. The impact of the joint normality is that the optimal nonlinear

transformation is now the linear transformation of the linear control as seen in Part C.2 of

Chapter II and one has lost the increased effectiveness of the nonlinear control. This result

is similar to one obtained by Glynn and Whitt (1989) who state that "No improvement in

asymptotic efficiency can be achieved by generalizing the notion of control variables from a

linear form to a nonlinear setting." They go on to say however, ". . .this does not preclude

the possibility of better performance by nonlinear methods in a small sample context."

(Glynn and Whitt, 1989) The key point is that by avoiding the asymptotic joint normality

through keeping small the number of samples used to compute the individual quantile

estimates, the nonlinear controls can be more effective than the asymptotic linear controls.

When using the subsection estimator, the interplay between m and n changes.

One must now consider the impact of choices for v, the number of subsection estimates,

and /, the number of samples used to compute a subsection estimate. With the section

estimator one wanted the section size m to be large since each estimate is used as a data

point in the regression that determines 6 . For the subsection estimator m is the number

of estimates of 6 to compute and a large m implies more regression computations that have

to be made, as well as a small value for n. For any given value of n, the choice of v and /

has slightly different considerations than the choice of m and n for the section estimator.

An important consideration for the subsection estimator is that / be "close" to n so that

the joint distribution yQ (l) and cQ (l) will be similar in shape to that of ya (n) and cQ (n). If

the two joint distributions are not similar in shape, then the subsection estimate of 9 could

be very biased, reducing the effectiveness of the control. This suggests making v as small

as possible while still being two to three times the number of coefficients being estimated.

If n is too small, the few samples available for the v subsections of length / will force both

v and / to be small, resulting in possibly little structure to exploit, or unreliable estimates
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of 6, both of which result in ineffective control. The solution would seem to be to make n

large.

Making n too large results in the same problems for the subsection estimator as

it did for the section estimator. If n is too large, there are few controlled section estimates

which reduces the precision of the variance estimate. More importantly, n is still the critical

factor for the joint normality of the estimate being controlled and the control estimate. If

n is too large, the asymptotic joint normality reduces the effectiveness of the linear control

to that of the linear control.

The selection of m and n for a fixed N which minimizes the bias, variance or

mean square error of the controlled estimate is a complicated function of many parameters.

These parameters include the value of a, the sample size N , and unfortunately, because of

the need to estimate 0, characteristics of the unknown joint distribution of the underlying

populations Y and C. An alternative to attempting to estimate the optimal m and n via a

functional approximation is to use graphical methods to assist in the selection of m and n

such as in Heidelberger and Lewis (1981). In the experiment described below, for a given

fixed sample size JV, the results of using different values of n are compared graphically as

well as numerically to assist in selecting m and n.

E. THE SIMULATION EXPERIMENT

1. The Factors

A simulation experiment was performed to validate the results in the preceding

sections. It used M = 300 or M = 20 replications to investigate simulation procedures for

estimating the a quantile of a distribution and estimating the variance of the quantile esti-

mate. The factors in the simulation experiment included the distribution of the underlying

population of interest, the value for a, the method of estimating the quantile, the sample

size, the choice of m and n for the section estimator and the choice of the m for the m-fold

jackknife estimator. All of the computations were performed in the APL2-based statistical

computing package GRAFSTAT.

2. The Statistic of Interest

The distribution used in the results presented here was suggested by Hsu and

Nelson (1987). The statistic of interest is the estimator for the a quantile of a random
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variable Y where

*<uhi-) +

and X has a Uniform (0,1) distribution and e has a Uniform (0,.5) distribution and is

independent of X . The untransformed control is the estimator of the a quantile of X. The

value of a will be .95 for the results presented here. The true value for the .95 quantile of

Y, namely y.95, is .164167.

Figure 12 shows the nonlinear nature of the relationship between yQ (n) and xa (n)

for four values of n with the sample size N fixed at 1000. Prior to plotting, the quantile

estimates were standardized by subtracting off the sample mean of the quantile estimates

from each estimate, and then dividing each estimate by the sample standard deviation

of the quantile estimates. Thus the "true" values are zero. The quantile estimates were

standardized so that one could visually assess the correlation between the quantile estimator

of interest and the control quantile estimator. Note that the scales of the axes in Figure 12

change as n increases to 100, 250 and 500 as the ranges of the standardized quantile estimates

become more concentrated about the true values of zero.

For n = 25 in Figure 12, the relationship between yQ (n) and xQ (n) is highly

nonlinear. As n increases to 100, 250 and 500 the relationship seems to become more linear

as the number of estimates available decreases to just two at n = 500 where with only

two pairs of estimates, the relationship must appear linear. However, one can see from

Figure 13, where N = 6000, that even for n = 1000 the relationship between yQ (n) and

xQ (n) still has nonlinear tendencies. In all cases, the relationship appears to be one that

would be well approximated by a monotone transformation.

3. The Section Estimator versus the Jackknife Estimator

As stated previously, the section estimator was preferred over the jackknife es-

timator for estimating the a quantile along with an estimate of the variance (standard

deviation) of the quantile estimator. Analytically, the section estimator of the variance of

the section estimate from (46) is an unbiased estimator and the section estimate of the

standard deviation has 0(1 /m) bias. What follows will show graphically the performance
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Figure 12. Scatterplots illustrating the joint distribution of standardized section point estimates

of the .95 quantile of Y and X for n = 25, 100, 250, and 500 from a sample of

N = 1000 samples. Since the estimates are standardized, the true values are zero.
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of the section estimate of the standard deviation so that the graphs can be compared with

the performance of the jackknife estimation procedure.

One can see the performance of the section estimator in Figure 14. The top graph

of Figure 14 shows a series of boxplots of section point estimates of the .95 quantile of Y

calculated using (35). (For a discussion of boxplots see Chambers et. al. (1983, Chap. 2).)

The boxplots summarize the distribution of the section estimates, for varying n, from 300

independent replications of N = 1000 samples. The data under the graph are the sample

statistics from the 300 estimates in each boxplot. The bottom graph consists of boxplots

of section estimates of the standard deviation, calculated using (36), corresponding to the

point estimates in the top graph, again with the sample statistics underneath.

The top graph in Figure 14 shows that as n increases from 10 to 500, for a fixed

sample size N = 1000, the bias in the section point estimates tends to decrease as expected.

However, the top graph also shows that increasing n does not necessarily decrease the

sample variance of the section quantile estimator because of the impact of decreasing the

number of estimates, m, with which the section point estimate of the quantile is computed.

The bottom graph of Figure 14, of the section estimates of the standard deviation

of the section point estimate, shows another effect of increasing n. As n increases and m

decreases, it is easy to see that the standard deviation of the estimates of the standard

deviation also increases, from .00227 for n = 10 to .01170 for n = 500, so that the section

estimate of the standard deviation becomes less precise. As the section estimate of the

standard deviation has 0(l/m) bias, one would expect that the section estimate of the

standard deviation should be closer to the estimate of the sample standard deviation for

small n. A check of the sample standard deviation in the top graph against the mean of

the section estimates of the standard deviation in the bottom graph shows that in fact the

two values of .02030 and .01974 are fairly close at n = 10 and become farther apart as n

increases. The significance of the difference will be examined in a moment.

Figure 15 shows the performance of the jackknife estimator for yQ . The top

boxplots are the m-fold jackknife estimate of the .95 quantile of Y, for varying m, from

the same 300 independent replications of N = 1000 samples used for the section estimates

in Figure 14. The data under the graph are the sample statistics from the 300 estimates

in each boxplot. The bottom graph in Figure 15 consists of boxplots of the corresponding
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jackknife estimates of the standard deviation of the jackknife point estimates in the top

graph, again with the sample statistics underneath.

The top graph in Figure 15 shows that for a fixed sample size JV = 1000, the

jackknife estimates become highly variable as m increases, as well as having in general a

slight positive bias (ya = .164167). The main reason for not using the jackknife technique

however is the poor performance of the jackknife estimate of the standard deviation of the

point estimate. A check of the sample standard deviation in the top graph against the mean

of the jackknife estimates of the standard deviation in the bottom graph shows that the

two estimates of the standard deviation become quite far apart as m increases. For m = 2

the values are the closest, at .02202 for the sample standard deviation of the point estimate

and .01555 for the jackknife estimate of the standard deviation of the point estimate.

The purpose of estimating the standard deviation of the point estimators is to

have a measure of the precision of the point estimate. The section and jackknife estimators

of the standard deviation of the point estimate are both trying to estimate the standard

deviation of a sample of section or jackknife point estimates. To more formally assess their

performance the data was used from the 300 independent replications previously shown in

Figures 14 and 15. The procedure used for both the section estimates and the jackknife

estimates was as follows:

1. The point estimates from the 300 replications were sectioned into 30 independent

sections of 10 point estimates each. The sample standard deviation was computed

for each of the 30 sections. Thus there were 30 independent estimates of the sample

standard deviation for both the section estimates and the jackknife estimates.

2. Likewise, the 300 estimates of the standard deviation were sectioned into 30 inde-

pendent sections of 10 estimates of the standard dc , tion each. These 10 standard

deviation estimates were averaged to get a single esi, 4 uate of the standard deviation

for each section. Thus there were 30 independent estimates of the standard deviation

from the estimator, for both the section estimator and the jackknife estimator.

3. For each of the 30 sections, the mean of the 10 section or jackknife estimates of

the standard deviation from step 2 was subtracted from the sample estimate of the

standard deviation from step 1 to yield 30 independent estimates of the difference.

If the section or jackknife estimator is a reliable estimate of the sample standard deviation,

then the difference of the sample standard deviation and the section or jackknife estimate

of the standard deviation should be zero.
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Figure 14. Boxplots of section point estimates of 3/95 (top) and section estimates of the standard

deviation of the point estimates (bottom) for 300 replications of N = 1000 samples

and varying n.
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of TV = 1000 samples and varying m.
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Note that while the same data is used for all of the section and jackknife estimators

so that there is no independence between the different estimators, the 30 estimates of the

difference for a single estimator i.e., the section estimate with n = 25 or the 2-fold jackknife

are independent. Figure 16 has boxplots of the differences for both the section estimates

(top graph) and the jackknife estimates (bottom graph).

The top graph in Figure 16, of the section estimator, shows that the sample mean

for the smaller n is within one standard error of zero. When n is increased to 250 and 500,

where the section estimates of the standard deviation are more variable because of the small

m, the means of the differences, .00140 and .00300, are still within three standard errors

of zero. This shows that section estimator of the standard deviation of the section point

estimate is a reliable estimate of the sample standard deviation of the point estimate.

The bottom graph in Figure 16 shows the opposite for the jackknife estimator.

For no m is the mean of the differences within three standard errors of zero. If one tests,

for each m, the normality of the differences for the jackknife estimates, one can not reject

at the .95 confidence level the hypothesis that the differences have a normal distribution.

For each m, the .95 confidence interval for the mean of the fitted normal distribution does

not include zero. Thus the jackknife estimate of the standard deviation of a jackknifed

quantile estimate is a biased and unreliable estimate. This is strong evidence for not using

the jackknife technique for estimating quantiles and the variance of the quantile estimate.

4. Comparing the Crude, Linearly Controlled and Nonlinearly Controlled

Estimators

The crude, linearly controlled and nonlinearly controlled estimators of ya will be

compared both graphically and numerically. Now the number of replications is M = 20 and

the number of samples in each replication is fixed at N = 1000. The section estimator will

be used for all three estimators. For the nonlinearly controlled estimator, the monotone

transformation will be the scaled power transformation so that the control function will be

y«(») = y* (
n

)
- #1 1
—

j ^—
|
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Mean 0.00565 0.00530 0.01086 0.02743 0.06101

Std Dev 0.00664 0.00703 0.00774 0.01187 0.02006
Std Error 0.00121 0.00128 0.00141 0.00216 0.00368

Figure 16. Boxplots of differences between estimates of the sample standard deviation of the

point estimate and the section (top) and m-fold jackknife (bottom) estimates of

the standard deviation of the point estimate based on 30 sections of M = 300

independent replications of N = 1000 samples each.

a. Comparison When the Sample Size N = 1000

Figure 17 shows the performance of the three estimators as triplets of box-

plots for n = 25, 100, 250, and 500. In each of the graphs that follow, the left boxplot of the

triple is the crude estimate, the middle boxplot of the triple is the linearly controlled esti-

mate and the right boxplot of the triple is the nonlinearly controlled estimate. The statistics

under each graph are the respective means of the data in the boxplot for the crude, linearly

controlled and nonlinearly controlled estimators.

The boxplots in the top graph of Figure 17 contain the final quantile esti-

mates for each of the estimators. This graph shows the effect of a control function that

is biased because of the use of the asymptotic expected value. Without the biased control

function each of the boxplots would look virtually the same because the control function

would be mean zero and so would not change the expected value of the point estimate. The
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bias in the control function tends to reduce the bias of the point estimate with the exception

of the linearly controlled estimate at n = 25.

The boxplots in the bottom graph of Figure 17 contain the section estimates

of the standard deviation of the point estimators. One can see that as n increases, the

mean of the estimated standard deviation of the linearly controlled estimate decreases,

from .01123 to .00391, while the mean of the estimated standard deviation for the nonlinear

control increases, once n is greater than 100, from .00241 to .00374, until the values for the

linear control and the nonlinear control are about the same. In fact, one can see in Figure 17

that the estimator that minimizes the variance is the nonlinearly controlled estimator at

n = 100 with a value of .00241. It is also clear that when n is large at 250 and 500, the

small m of 4 and 2 causes higher variance in the estimates of the standard deviation.

The top graph in Figure 18 combines the two graphs from Figure 17, the

bias and the variance, in that it contains the estimated mean square error of the estimators.

One can see with this graph that the estimator that minimizes the mean square error is

again the nonlinearly controlled estimator at n = 100 with a value of .00005. In fact the

estimated mean square error for this estimator is under one-half of the best mean square

error for the linear control of .00013 that is at n = 250. At n = 500 the values are the

same, .00029, since there are only 2 quantile estimates with which to work. The other factor

affecting the nonlinear control besides having only 2 quantile estimates to work with is that

at n = 500 the joint distribution of the crude estimate and the control estimate is closer to

multivariate normal than at n = 100.

The bottom graph in Figure 18 is a summary of the percent variance reduc-

tion achieved by the various estimators. The percent variance reduction for each estimator

is computed using the estimate of the variance of the crude estimate, which is why the value

for the crude estimator is 0. This graph again highlights the effectiveness of the nonlinearly

controlled estimator at smaller n. The highest percent variance reduction is .97568, which

is actually achieved at n = 25 and not n = 100 because the percent variance reduction is a

relative measure and the crude estimator at n = 25 had higher variance than the crude esti-

mator at n = 100. This graph also points out the high variability of the variance reduction

for large n as the number of quantile estimates becomes small.
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Figure 17. Boxplots of section crude, linearly controlled and nonlinear controlled estimators

showing the point quantile estimates of t/95 (top) and the estimates of the standard

deviation of the point estimates (bottom) from M = 20 independent replications of

N = 1000 for varying n.
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Figure 18. Boxplots of section crude, linearly controlled and nonlinear controlled estimators

showing the estimated mean square error (top) and percent variance reduction (bot-

tom) from M = 20 independent replications of N = 1000 for varying n.
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b. Comparison When the Sample Size N = 5000

The next pairs of graphs, Figures 19 and 20 are identical in nature to the

graphs for N = 1000 only now the data is from estimates made from a sample size of

N = 5000. The number of samples used to compute each section estimate n is unchanged

so increasing the sample size only increases m, the number of quantile estimates. The larger

m greatly reduces the problem of high variability of the estimates caused by having only 2

quantile estimates with which to work at n = 500.

One can see by comparing the means of the nonlinearly controlled estimates

in the top graph of Figure 17 with those in the top graph of Figure 19 that increasing m

has improved the bias of the mean of the nonlinearly controlled estimates. For n = 25

in Figure 19 the bias of the mean of the nonlinearly controlled estimate can be computed

as .164167 - .16150 =.002. For n= 100, 250, and 500, one gets biases of .001, .004 and

.001 respectively. The improvement is such that for each n, the bias of the nonlinearly

controlled estimate is now less than the bias of the crude estimate (.004, .003, .008, and

.002 respectively). At the same time the bias of the mean of the linearly controlled estimates

has increased. A more significant impact of increasing m, shown in the bottom graph, is

the drop in the estimated standard deviations for all estimators as compared to N = 1000.

The variability of the estimates of the standard deviation has decreased as well.

The mean square errors of the top graph in Figure 20 show again that the

nonlinear control at n = 100 does better than the best linearly controlled estimate. However,

as n increases, one can lose the effectiveness of the nonlinear control as both the number

of quantile estimates decreases and the quantile estimates approach multivariate normality.

One can see the impact of increasing N and m from FigL i8 to Figure 20 in the bottom

graph of Figure 20 where the variability of the estimate of the percent variance reduction

is greatly reduced as compared to Figure 18.

F. SUMMARY
Nonlinear controls have been seen to be effective in improving the variance reduction

over linearly controlled estimates of the mean. Sectioning is a useful procedure for com-

puting point estimates for quantiles along with an estimate of the variance of the point

estimate. The jackknife is not a useful procedure as the jackknife estimate of the variance
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Figure 19. Boxplots of section crude, linearly controlled and nonlinear controlled estimators

showing the point quantile estimates of j/95 (top) and the estimates of the standard

deviation of the point estimates (bottom) from M = 20 independent replications of

AT = 5000 for varying n.
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Figure 20. Boxplots of section crude, linearly controlled and nonlinear controlled estimators

showing the estimated mean square error (top) and percent variance reduction (bot-

tom) from M = 20 independent replications of N = 5000 for varying n.
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of the jackknife point estimate is unreliable. Controlling quantiles with nonlinear controls

is analytically tractable if the nonlinear transformations of the control quantile estimator

are limited to strictly monotone functions. With this restriction, one can approximate the

expected value of the transformed quantile estimator with its asymptotic expected value,

namely the transformed value of the true quantile for the control. The approximation in-

duces additional bias into the control function. However use of a biased control function

can reduce the first-order bias in the controlled estimate.

Finally, when one is considering the choice of m and n to use for the sectioning esti-

mator, one must keep n small and avoid approaching the asymptotic multivariate normal

distribution. As the joint distribution of the crude estimate of the quantile of interest and

the control quantile estimate approaches multivariate normality, the effectiveness of the

nonlinear control reduces to that of the linear control.
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IV. ASYMPTOTIC EXPANSIONS FOR CONTROLLED QUANTILE

ESTIMATORS

A. INTRODUCTION

A key question when controlling one quantile estimator with another quantile estimator

is whether the use of a nonlinear control can improve the performance of the control scheme.

One can create a nonlinear control by applying nonlinear transformations to the original,

linear, control. The question of improved performance is examined in this chapter using

asymptotic expansions for the situation where the estimator for the quantile of interest is

a strictly monotone transformation of the control quantile estimator. This complements

the particular simulation experiment in the last chapter that showed that, for small section

sizes, nonlinear controls could improve the variance reduction over linear controls.

In the first sections of this chapter, Sections IV.B through IV. E, definitions are estab-

lished and asymptotic expansions are constructed for the expected value and the variance

of a transformed quantile estimator where the transformations are assumed to be strictly

monotone. Sections IV.F and IV.G lead to the construction of an asymptotic expansion for

the covariance between two strictly monotone transformations of the same estimator. These

expansions are used in section IV.H to construct an expansion for the squared correlation

between the two transformed quantile estimators; a direct measure of the effectiveness of

one transformed estimator in reducing the variance of the other.

At this point two key results are obtainable. It is shown in section IV. I that given

that the statistic of interest is a strictly monotone transformation of the control, by using

a nonlinear control instead of a linear control, one can increase the squared correlation

between the statistic of interest and the control function thereby improving the variance

reduction. It is also shown that asymptotically, as the sample size increases, the nonlinear

control loses its advantage over the linear control.

Finally, section IV.J describes a simple example where the expansions predict the im-

provement gained by the nonlinear control and also give a solution for the optimal param-

eter for the nonlinear control's transformation. As part of the example, the expansions are
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compared against estimates from simulated data. The results from the expansions closely

match the results from the simulated data for both the improved performance of the non-

linear control over the linear control for small sample sizes and the loss of the improvement

as the sample size gets large.

B. DEFINITIONS

1. Definition of an Asymptotic Expansion

Asymptotic expansions can be used to approximate the small sample character-

istics of estimators as discussed in Cramer (1966, Chap. 27). Using Taylor series, one can

construct asymptotic expansions for functions h(C) of an estimator C from a sample of

size n. In what follows, the functions h(C) will usually involve the moments of C i.e.,

h(C) = E[C]. A general form for an asymptotic expansion of h(C) to order l/nm for

n G 1,2,3 ... and m£ 1,2,3,..., is

h{C) = h + hm-1 + • • • + A.-m-t*-1
) + O(^) (52)

where h(C) is some function of C such as E[C] and ho through hm -\ are constants inde-

pendent of n. The first few terms usually provide a useful approximation even if the series

does not converge for fixed n as the number of terms m gets large (see Barndorff-Neilson

and Cox, 1989, Chap. 3). The first term in an expansion, also called the leading term, is

the asymptotic value of the function h(C) as the number of samples n gets large.

2. Definitions for Functions

The following definitions, which are taken almost directly from Royden (1988),

will be needed in what follows:

Let /(•) be a real-valued function from the set £ to the set C where the domain £ is a set

of real numbers.

Definition 1 The set of values y in C for which there exists an x in £ such that f(x) = y

is called the range of /(•) and is denoted by 1Z.

Definition 2 // the range of /(•), namely Tt, is equal to C, then /(•) is a function from £

onto C.
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Definition 3 A function /(•) from £ toC is called one-to-one if f{x\) = /(a^) onh when

X\ = X2-

Definition 4 Functions that are one-to-one and onto are considered bijections. In this

case there is a function g(-) from 1Z to £ such that for all x in £ and all y in 1Z, it is true

that g(f(x)) = x and f{g(y)) = y. The function g(-) is called the inverse of /(•) and may

be denoted by /
_1

(-)-

Definition 5 The function /(•) is continuous at the point x in £ if given € > there

exists a 6 > such that for all y in £ with \y — x\ < e, it is true that \f{y) — f(x)\ < S.

Definition 6 The function /(•) is continuous on a subset A of £ if it is continuous at

each point of A. Unless stated otherwise, A will be assumed to be the domain £ of the

function /(•).

Definition 7 A real-valued function /(•) is strictly monotone increasing if f(x) < f(y)

whenever x < y. The function /(•) is called strictly monotone decreasing if — /(•) is

strictly monotone increasing. The function /(•) is called strictly monotone if either /(•)

or — /(•) is strictly monotone increasing.

C. ASYMPTOTIC EXPANSIONS FOR THE MEAN AND VARIANCE OF

A SINGLE ORDER STATISTIC

The results in this section are preliminary and can be found in David (1970) or

F.N. David and Johnson (1956).

Let X be a continuous random variable with a cumulative distribution function (CDF)

defined by Fx(x) = Pr{X < x}, for any x that is a real number. Furthermore, let X have

a continuous density function fx{x) = dFx(x)/dx. Let V* be the set of a; for which fx(x)

is greater than 0. Assume that fx(x) is such that V* is an open interval which is a subset

of the real line. Since fx{x) is continuous, and is positive for every x in V*, the function

Fx (x) is continuous and strictly monotone increasing over V*.

Let X( r )
be the rth order statistic from n independent samples of X. Let £/( r )

de-

note the value of the distribution function of X at X^, namely, U(r )
= Fx(X^). It

is straightforward to establish using the probability integral transform that U( r )
is dis-

tributed as the rth order statistic from a Uniform (0,1) distribution (see David, 1970, p. 16).
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This means that U( r )
must be greater than and less than one. Denote the expected value

of the rth Uniform order statistic by pT where

pr = E U(r) = —T—
, for 1 < r < n. (53)

An important property of continuous and strictly monotone functions is described in

the following lemma that can be constructed and proved from a problem in Royden (1988,

p. 50):

Lemma 1 Let h(-) be a continuous function on the closed interval [a, 6]. Then there is a

continuous function /(•) such that l(h(x)) = x for all x in [a,b] if and only if h(-) is strictly

monotone. It is also true that h(l(y)) = y for all y between h(a) and h(b).

Note that Lemma 1 implies that /*(•) is a bijection (see Definition 4) so that /(•) can be

called the inverse of h(-) and written as /i
-1

(-). Also note that h(-) is strictly monotone

increasing if and only if /i
-1

(-) is strictly monotone increasing.

Lemma 1 is now used to show that the CDF of X has an inverse.

1. As V*, the set of x for which fx{x ) is greater than zero, is an open interval, one can

choose a closed interval V = [a,b] where a < b such that V is a subset of V* .

2. Since the CDF of X is a continuous and strictly monotone function over V* , it is also

continuous and strictly monotone over V.

3. Thus by Lemma 1, the CDF of X possesses an inverse F^ l
{u) that is continuous and

one-to-one from [Fx (a) , Fx (b)] to V.

Denote the closed interval [Fx (a) , Fx (b)] by U. One can then write the inverse distribution

function for X as

Fx\u) = x foTueU, (54)

where since F^(u) is one-to-one, x is an element in V.

Denote F^ l (U{r) ) by Q(U(T)) so that

X{r) = Q (U{r) ) , iovU(r) eU. (55)

Note that for any given value of x with fx(x ) > 0, one can choose a and b such that

a < x < b and there exists a u such that (54) holds.
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One can expand the inverse function Q(U(r)) in (55) about the expected value of £/(r),

namely pr from (53), in a Taylor series expansion such as in Mood, Graybill and Boes (1974,

p. 533). Denote Q(pr ) by Q r and the first, second, and third derivatives of Q(U^) with

respect to £/( r ), evaluated at pr , by Q'
r ,

Q", Q"' and so on. Choosing V so that it contains

pr , one can then write the Taylor series expansion of Q{U( T)) about pr for (55) as:

X{r) = Qr+^^-p^Q^^U^-p^Q'^j^U^-prYQ'^

+7j(tf<r)-iv)
4

gr+-i (56 )

where

Q r = Fx\pr ), forO<pr <l,

^
fx{Qr) fx(Fx\Pr)y

Q„ -f'x(Qr)

^ " fUQr)
'

Q,» V'x(Qr) f'x(Qr) ,

^ ' fx(Qr)
"

Px(Qr)

Qn„ -*f'x(Qr)
,
miQr) _ fx(Qr)

T fWr) fWr) fx(Qr)'

Note that fx(Qr) cannot equal since F^ x

{pr ) is an element of V, which means that

fx(Qr) is always greater than 0.

The expansion for X( r )
in (56) is in terms of powers of (f/( r )

—
Pr)- Taking the expected

value of (C/( r )
— pr )

m
yields the mth central moment of the rth Uniform order statistic.

Letting qr = (1 — pr ), one can write the central moments of the rth Uniform order statistic

for a given r and n as the constants

fi, = E[(ff(r)-Pr)]=0, (57)

^3 = E K'-Nj =
( n + 2)(n + 3)

-
a"d (59)
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fl4 = E (U{r) ~ Pr)
Sph2„2r + ofa)=kfi + ofa) (60)

(n + 2)
2

Note that the mth central moment, um , has terms of up to order l/nm_1 .

The expansion in (56) is an infinite sum of powers of random variables and one can

integrate each side term-by-term. Taking the expected value of both sides of the expansion

of X( r \ in (56), one obtains an asymptotic expansion for the expected value of the rth order

statistic of X. Using the constants /X2, A*3 and ^ from (58) through (60), one can write the

asymptotic expansion for the expected value of the rth order statistic as

E *<r)] = Qr + |/*2 Q"r + *fe <ff + £^4 Q? + fa) (61)

If one knows the density of X and its derivatives, one can compute values for the expansion

of the expected value above given r and the sample size n since the values for the central

moments of the rth Uniform order statistics are known (David and Johnson, 1956).

By replacing the /x's in (61) with the expressions for the central moments from (58)

through (60) and combining terms using the fact that

1

= o(±),
(n + 2)

2
( n + 2)(n + 3)

one can get the different form of expansion (61) that is in David (1970, p. 65):

E (r) = «' + 2^2)^' + T^W (l<* - ***" + S»*«") + °(*) <
62 )

To construct an expansion for the variance of the rth order statistic, one can use the

expression Var[A'( r )]
= E X?, — E A( r )

• To compute E X?, , one must multiply the

Taylor series expansion for X/ r \ in (56) by itself, prior to taking the expected value, to get

an expansion for X2
. and then take the expected value of this expansion. Subtracting the

square of the expansion for the expected value (61) from the expansion for E

gets the asymptotic expansion for the variance of Xi r \,

Var(XM ) = MQ'r
2
+ ^Q'rQ'; + £ (Q'rQ? + JQf) + o(^) .

Xh one

(63)
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By replacing the /x's with the expressions from (58) through (60) and combining terms

in a similar fashion as for the expected value, one can transform (63) into the equivalent

expansion for the variance of X( r )
found in David (1970, p. 65).

David (1970) and F.N. David and Johnson (1956) cite two cautions when working with

these types of expansions. First, when calculating terms for an expansion for the moment

of an estimator out to a given order m, which usually involves the m + 1st central moment

of a Uniform random variable, one must also check the expressions for //m+2 and fim+3 for

the presence of terms of order m. These higher order moments should be checked to ensure

that all terms of order m are actually present in the asymptotic expansion. As an example,

note in the expansion for /z4 , (60), that terms of order 1/n2 are present in addition to the

expected order 1/n3 term. Second, these expansions for the moments of order statistics may

converge slowly or not at all if n is large and r/n is close to or 1. In general however, the

expansions for the moments of order statistics are useful for characterizing the distribution

of order statistics and more importantly the distribution of quantile estimators that are

based on order statistics.

D. QUANTILE ESTIMATORS AND ORDER STATISTICS

The expansions constructed above are for the central moments of the rth order statistic

of a sample. For a fixed sample size n, one can use the expansions to examine the charac-

teristics of a quantile estimator that is based on order statistics. The expansions are not as

useful for examining the characteristics of the quantile estimator for changing n because the

discontinuous nature of an order statistic based quantile estimator is suppressed in them.

The remainder of this section will discuss the order-statistic-based quantile estimator, the

implications of making its discontinuous nature explicit in the expansions for the central

moments of the quantile estimator, and the reasons for using the expansions for the central

moments of the order statistics with the discontinuous nature suppressed in subsequent

sections.

Given n independent and identically distributed (i.i.d.) samples of a random vari-

able X, one can estimate the a quantile of X , denoted by xQ , using one of the sample's

order statistics. Define the quantile estimator xQ(n), as in Equation (31) of Chapter III,

as the rth order statistic, where r is either not, if na is integer, or ([na\ + 1) otherwise.
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For a fixed n and o, the quantile estimator is fixed as the rth order statistic. Thus the

distributions of the quantile estimator and the order statistic are identical as well as the

asymptotic expansions for their moments.

However, for changing n, the expansions for the quantile estimator take on a different

flavor from the expansions for the order statistic. The asymptotic expansions for the cen-

tral moments of the rth order statistic in (61) and (63) above are based on Taylor series

expansions about the expected value of the rth Uniform order statistic, defined in (53) as

pT = r/(n -f 1)- For the rth order statistic, pr is a continuous linear function of the sample

size n. For a quantile estimator however, the quantity pr is no longer a linear or even a

continuous function of n because of changes in r. For a quantile estimator, one can describe

the quantity pr as a sawtooth function of n that increases with n until na is integer at

which point pr drops to na/(n + 1) or equivalently to pT = a/[l + (1/n)]. For the rth order

statistic, pr
—* as n — oo while for the quantile estimator xQ (n), the quantity pr

— a

as n —* oo.

Since pT for a quantile estimator is a sawtooth function of n and the asymptotic expan-

sions for the central moments of the rth order statistic are functions of pr , the expansions

for the central moments of the order-statistic-based quantile estimator also exhibit the saw-

tooth behavior as a function of n when used for computation. One can make the sawtooth

behavior an explicit part of the expansions for the central moments of the order-statistic-

based quantile estimator through the use of the relationship \na\ + 1 = na + e
1 when na

is not integer and where e
7
is between and 1. To make the sawtooth nature explicit, one

must use this relationship to expand the expressions for Q T ,
Q'

r and so on in the expansion

for the expected value of the rth order statistic (61) as well as expand the expressions for

the central moments of the Uniform order statistics in (58) to (60). After making these

changes to (61), one gets virtually the same expansion as in Equation (33) of Chapter III,

for the expected value of the quantile estimator xa (n), namely

E[xQ (n)] = xa -
£

- - q(1 - a) e
2

n + 2 n2
" f'xM

fx(Xa)
+ ... + (>(£) (64)

where |e| < 1 is a sawtooth function and the -\ h indicates several other terms of or-

der 1/n2
. One can see in the 1/n terms the increase in the notation as compared to (61)
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that results from making the sawtooth function explicit, so the other 1/n2 terms have been

neglected.

Making similar changes to (63), one can derive the expansion in Equation (34) of

Chapter III; namely the expansion for the variance of the quantile estimator:

,r r . / vi a(l-a) (2a - l)c A /,\ ,„„.q(l-q) (2a - l)c

(n + 2)f%{xa )

~
n(n + 2)f]c (xQ )

where again |e| < 1 is a sawtooth function and the -\ \- indicates several other terms of

order 1/n2
. Making the sawtooth nature explicit in the expansion for the expected value

(64) is useful for seeing that xQ (n) is asymptotically unbiased asn-> oo. However, adding

the e's makes the both expansions (64) and (65) quite lengthy and cumbersome for further

development.

To leave the sawtooth nature of the quantile estimator suppressed in the expansions

for the central moments of the order-statistic-based quantile estimator, one can just use

the previous definition of r where r = na or r = [na\ + 1. Then for changing n pr is

the sawtooth function. Analyzing the performance of the nonlinear control involves fixed

sample sizes; it is not an asymptotic issue. For a given a and a fixed sample size n, the

expansions for the central moments of the order statistics are appropriate expansions for

the central moments of an order-statistic-based quantile estimator. When calculating a

value for one of these expansions, n and a must be known so using the suppressed notation

with its fewer terms is more expedient and less prone to error. Since the expansions with

the sawtooth nature suppressed, (61) and (63), are both notationally and computationally

simpler, they will be used for the remainder of the discussion.

E. CONTINUOUS AND STRICTLY MONOTONE TRANSFORMATIONS

In this section, groundwork is laid for the construction of asymptotic expansions for

the central moments of quantile estimators (order statistics) of a random variable Y that

is a continuous and strictly monotone transformation of the continuous random variable X
described in Section C. These expansions will be constructed in terms of the distribution

of X that is assumed known. Let Y = g(X) for X in V where g(-) is a continuous and

strictly monotone function over V. Denote the range of g(X) by 1Z. As a continuous and

74



strictly monotone function over V, the transformation g(X) has an inverse function <7

-1
(-)

that is continuous over V, and one-to-one from V, to V (Lemma 1).

Using the fact that <7

-1
(-) exists, one can express the distribution for Y in terms of

the distribution of X and <7

-1
(-). If ^(-) is strictly monotone increasing, it follows that (see

Mood, Graybill and Boes, 1974, p. 200):

FY (y) = Fxfa-^yj) for yen,

My) = fx(g-
1

(y)).

fy(y) = fxirHyJ)

and

+ fx (g-\vj)
d2g-\y)

dy2

(66)

(67)

(68)

If g(-) were strictly monotone decreasing, then (66) would become

FY (y) = l-Fx (g~\y)) , for y e 11

where 1 - Fx(x) is the survivor function (SF) of X. Equations (67) and (68) would change

accordingly. Note that 1 — Fx(x) is a strictly monotone decreasing function for x in V.

Regardless of the characteristics of g(-), applying the transformation #(•) to n i.i.d.

samples of X to get n i.i.d. samples of Y yields n order statistics for Y . However if g{-) is a

strictly monotone increasing transformation of X, the transformation maintains the relative

order of the sample values so that the order statistics of Y are equal to the transformation

g(-) applied to the order statistics of X i.e.,

Y{r) = [g(X)]
{T)

= g(X{r) ) (69)

If g(-) were strictly monotone decreasing, the transformation g(X) would transpose the

relative positions of the order statistics. In this case, equation (69) changes to

Y(r) = [g(X))
(r)

= g(X(f) )

where f = [rc(l — a)\ + 1.

If g(-) is strictly monotone increasing (decreasing), one can consider the distribution

function Fy(y) as the composition of the CDF (SF) of X with the function ^
_1

(
-

)' which
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is also strictly monotone increasing (decreasing), where the composition of two functions is

defined from Royden (1988, p. 10) as follows:

Definition 8 Ifhi(-) is a function that maps X into Y , and hi(-) is a function that maps Y

into Z, then one can define a new function /(•) that maps X into Z where l(x) = hi (h\(x)).

The function /() is called the composition of hi(-) with hi(-) and is denoted by hi oh\(-).

To show that Fy(y) is continuous and strictly monotone increasing, the following

lemma, which can be constructed from a problem in Royden (1988, p. 49), is needed.

Lemma 2 Ifh\{-) and hi(-) are continuous functions, then hioh\{-) is a continuous func-

tion.

One can now prove the following theorem that shows that as the composition of two

continuous and strictly monotone increasing (decreasing) functions, Fy (y) is also continuous

and strictly monotone increasing.

Theorem 1 If h\{-) is a continuous and strictly monotone function on [a,b], and hi(-) is

a continuous and strictly monotone function on [h\(a),h\(b)], then the function hi o h\{-)

is continuous and strictly monotone on [a,b].

The proof shows that as long as hi(-) or hi(-) are individually strictly monotone increasing

or decreasing, their composition is always strictly monotone.

Proof

1. Since h\(-) and hi(-) are both continuous, by Lemma 2 the function hi h\(-) is

continuous.

2. Assume h\(-) is strictly monotone increasing on [a, b] and that hi(-) is strictly mono-

tone increasing on [h\(a),hi(b)]. Then

xi < x 2 => hi(xi) < hi(x 2 ) for xi,x 2 € [a, 6]

and

Mx < hi(x2 ) =>• h2 (hi(xi)) < hiih^xi)) for fci(xi),/ii(x 2 ) e [
h i(a ), hi( b )]-

Thus x\ < X2 implies that hi {h\(x\)) < hi (h\(xi)) for all Xi and X2 in [a,b], which

means that the function hi o hi(-) is strictly monotone increasing over [a, 6].

3. Assume hi(-) is strictly monotone increasing on [a, 6] and that hi(-) is strictly mono-

tone decreasing on [hi(a),h\(b)]. Then using relations similar to those in Step 2, one
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establishes that in this case, the function h2 o hi(-) is strictly monotone decreasing

over [a,b],

4. Assume /ii(-) is strictly monotone decreasing on [a,b] and that /12O) is strictly mono-

tone increasing on [hi(a),hi(b)]. Then using relations similar to those in Step 2, one

establishes that in this case, the function h2 h\{-) is strictly monotone decreasing

over [a, b].

5. Assume hi(-) is strictly monotone decreasing on [a,b] and that h2 (-) is strictly mono-

tone decreasing on [hi(a),hi(b)]. Then using relations similar to those in Step 2, one

establishes that in this case, the function h2 ° h\(-) is strictly monotone increasing

over [a,b].

6. In each of the four possible combinations for h\(-) and h2 (-), the function h2 o h\(-) is

either strictly monotone increasing or strictly monotone decreasing over [a,b]. Thus

the function h 2 h\(-) is strictly monotone over [a,b].

I

It is straightforward to show the following corollary to Theorem 1:

Corollary 1.1 By Lemma 1, since the function /(•) = ^2 °^i(") w a continuous and strictly

monotone function on [a, 6], it has an inverse function /
-1

(-) that is one-to-one such that

l~
1
[h2(hi(x))] = x for x in [a,b]. It is also true that

l-\-) = h~' h~\-). (70)

Since the function g(-) for Y = g(X) is continuous and strictly monotone, by Theorem 1

and Lemma 1, the CDF of the random variable Y has an inverse function iry
1
(-) that is

continuous and one-to-one such that for a given rth order statistic (quantile estimator)

Y(r) = Fy 1 (Uir) ) = Q y(U(r) )

where Q y denotes the inverse of the distribution function for Y.

If g(-) is strictly monotone increasing, it follows from Corollary 1.1 and (70), with

^i(") = i/

-1
^) and the CDF (SF) of X as /*2(-)> that the inverse function for Fy(y) is the

composition of g(-) with the inverse function for Fx{x) i.e.,

Qy(U{r) ) = 9 (Fl\U{r) ))
= g Qx(U(r) ) (71)
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where Qx denotes the inverse of the distribution function for X. If #(•) is strictly monotone

decreasing, then (71) changes to

Qy(U(r) ) = Y(T) = g (X(f) )
= g (F^(U(f) )) = g o Qx(U{f) )

where f = [n(l — a)\ + 1.

The relationships between Yjy) and X^, shown for g(-) strictly monotone increasing,

in (66), (69), and (71), are crucial for what follows. These relationships allow one to

develop asymptotic expansions for Y< r \ from the known expansions for X<r\. The similar

relationships for </(•) strictly monotone decreasing also allow one to develop asymptotic

expansions for Y( r )
from the known expansions for X^ . An asymptotic expansion developed

for g(-) strictly monotone increasing can be used for g(-) strictly monotone decreasing by the

appropriate substitution of the survivor function for the cumulative distribution function

and f for r. This generality will be exploited in the following sections by assuming that the

function g(-) is strictly monotone increasing and displaying only the one set of expansions.

F. AN ASYMPTOTIC EXPANSION FOR THE MOMENTS OF Y{r) IN

TERMS OF THE DISTRIBUTION OF X{r)

In this section, asymptotic expansions are constructed for the moments of quantile

estimators (order statistics) of the random variable Y = g(X), from the previous section,

where g(-) is assumed to be strictly monotone increasing. The expansions are in terms of

the known distribution function and moments of X and the central moments of the rth

Uniform order statistic.

The random variable Yt r \ is an order statistic of a random variable that has a continuous

and strictly monotone increasing CDF. As such, one can derive a Taylor series expansion

similar to (56) for Q y (U< T\), from the left side of (71), and then expand the expressions

such as Qy(pr) in terms of Qx (Pr) — Qxr in order to have the expansion in terms of the

distribution of X . As an alternative method, one can consider g~ l o QX{U^) from the

right side of (71) as a composite function and expand it about pr , using the chain rule to

calculate the derivatives.

Let gT denote the value of g(Q XT )- Let g'
r , g'l and so on denote the values of the

derivatives of g(-) with respect to QX(U^) evaluated at Qxr . Regardless of the method
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used, the asymptotic expansion for Yj>) equivalent to (56) can be written in terms of the

distribution of X as

Y{r) =g(X{r) ) = gr + (U{r) -pr )g'T
Q'

xr + ^(u{r) -pTy[g'rQ:r
+g'

r
'Q'

xr )

+i (U(r) - pr
)

3

MQZ + 1g'lQ"XT + g"
T
'Q'

XT \

+ h far) - Pr)" WrQS + *9r'Q7r + WQ'Lr + 9r"
Q'
Xr] + " ' ' (72)

One can now use (72) and the expressions for the central moments from (58) to (60) to

and the variance of Ytr\ in the same manner as for X( r )
in Section C. Forcompute E

example,

M

E >) = E[g(X(r) j\ = 3r + \l* WrQr + 9rQ'r ] + *J<8 [Mr" + ^"Qr + 9r'Qr

+ \A [gT
Q»" + Sg'W + 3g'

r
"Q f

: + tf'Q'r] + O (£) , (73)

and to order 1/n3
,

Var (r) = Vax [*(X(r) )]
= ^rfVr

2
+/«8[rf

2
Q'rQ?+rfrfO;

2^/g;g;
w
+MMQ" + 2^"#2

+ <?;V;2

+ fi'QV
J^r\i r\in _u1r\i 2

(74)

Note that the order 1/n and 1/n 2 factors are contained in ^ and A*3-

The expansion (72) for YiT\ can be used to construct other asymptotic expansions and

approximate the moments of any random variable that results from a function g(X) that

is continuous and strictly monotone increasing over the X in V. One can use these other

expansions for examining the characteristics of the joint distribution between two different

transformations of Xir\. The joint distribution is of interest as it dictates the effectiveness

of a potential control for variance reduction. In the next section, the joint distribution

will be examined using an expansion for the covariance between two strictly monotone

transformations of Xi r \.
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G. THE COVARIANCE BETWEEN TWO STRICTLY MONOTONE
INCREASING TRANSFORMATIONS OF X{T)

Let /(^( r )
) be a function of X(r )

that is continuous and strictly monotone increasing

over the X(r )
in V. Define the covariance between l(X^) and g(X^) as

Cov[l(X{r) ),g(X{r) )}
= E[l(X{r) )g(X{r) )}

- E[l(X{r) j\
E[g(X{r) j\

.

Even though /(•) and g(-) are continuous and strictly monotone transformations of X^,

their product is not necessarily a strictly monotone transformation of XtTy Thus one can

not define a new function h{X< T\) = l(X/ r \) x g(X/r\) and use the expansion of (72) with

h(-) in place of g(-). If h(-) is not strictly monotone, it does not have an inverse that is one-

to-one and continuous; so the expansion does not apply. To calculate E /(X( r)) X y(X( r)) ,

one must multiply the expansions for l(X^) and g(X^), developed individually using (72),

and then take the expected value of their product.

To streamline the notation make the following notation changes by dropping the sub-

script x's and r's from the Q's and X's. Let / denote the value of l(Qxr ) with its associated

derivatives evaluated at Q xr being denoted by /', /", and so on. Denote the corresponding

values for the function g(-) by g, g', g" and so on. Finally, denote the values and derivatives

of the inverse distribution function of X, namely Qx (U( r)), evaluated at pr by Q, Q', Q"

and so on.

Using the streamlined notation, the expansion for the covariance between two mono-

tone functions of the order statistic has the following form to order 1/n3 :

Cov [l(X{r) ),g(X(r) )}
= »2l'g'Q'

2
+iL2 [I'g'Q'Q" + ^9"Q'2

+ ^'d'Q'
2

+i/4 [2l'g'Q'Q'"+ 3l'g"Q'Q"+ M'g'Q'Q" + l'g'"Q'
2
+ l"'g'Q'

2
+ l'g'Q"

2
+l"g"Q'

2

]

. (75)

Letting g(X^) = /(X( r)) = X( T )
so that g' = I' = 1 and the higher order derivatives

are all zero, the expansion above collapses to the expansion for the variance of X( r )
in (63)

as it should. In the next section the expansion for the covariance will be used to develop

an expansion for the squared correlation between two strictly monotone transformations of

X{r).
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H. AN EXPANSION FOR THE SQUARED CORRELATION BETWEEN
TWO STRICTLY MONOTONE TRANSFORMATIONS OF X(r)

One can define the correlation between two random variables or estimators l(X^) and

g(X{r) ) as

P ['(*(!))» 0C*(r))] =
Cov [l(X

ir)
),g(X{r) )}

(Var^,))]}' {Var[/(X(r) )]}

1/2

The correlation between two estimators determines the effectiveness of one of the estimators

in controlling the variance of the other. However, using the squared correlation, an equally

valid measure of performance of a control scheme as seen in Equation (6) from Chapter II,

avoids the need for radicals in the denominator. Thus one can use the previously developed

expansions for the variance of a transformed order statistic (74) and the covariance between

two transformations of an order statistic (75) to construct the following expansion for the

squared correlation to order 1/n3 , where the lower order n's are implicit in the //'s:

<r
2

p
2
[l(X{r) ),g(X(r) )}

= l- /f2

2
^3 91

Q'
!1

v 2

\i"'(9'-9")+g"V'-n
l'g>

Several aspects of the expansion above should be noted. First, to order 1/n2
,

p
2
[l(X(r) ),g(X{r))]=l-ff !1

v 9'

(76)

(77)

so that to order 1/n2 the squared correlation depends, through the /', /", g' and g", only on

the value of Q xr = F^ l

(pr ) and not on the shape (derivatives) of the underlying distribution

of the random variable X. Second, if /(•) = g(-), the squared correlation is one as is to

be expected. Regardless of the relationship between /(•) and g(-) however, the squared

correlation is asymptotically one, as all terms in the expansion save the leading term vanish

as n increases and the /z's go to zero. This implies that if the quantile estimator being

controlled is a strictly monotone transformation of the control, then asymptotically one can

achieve complete variance reduction using a linear control or a nonlinear control. However,

one can show using the asymptotic expansions (76) and (77) that for small sample sizes,

using a nonlinear control can result in a greater squared correlation than a linear control.
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The greater squared correlation means that for small sample sizes, the nonlinear control

will be more effective at reducing the variance than the linear control.

I. THE RATIO OF SQUARED CORRELATIONS

The squared correlation between the statistic of interest and the control measures the

effectiveness of a control scheme for variance reduction. One can use the ratio of the squared

correlations to compare the effectiveness of two different controls. In particular, the ratio of

the squared correlation for a nonlinear control to the squared correlation for a linear control

measures the improvement in variance reduction gained by using a nonlinear control instead

of a linear control.

Let the function /(•) be continuous and strictly monotone increasing over the random

variable X in V. Let Y = 1{X). When estimating the a quantile of Y using the quantile

estimator yQ (n) defined in Section D, one can use the quantile estimator for the a quantile

of X, namely xQ (n), as a control. To employ xa (n) as a linear control, one uses the identity

transformation for g(-) so that g(xQ (n)) = xQ (n). With this transformation </ = 1 and

the higher derivatives all equal zero. Now denote the squared correlation between ya (n)

and the linear control g(xQ (n)) as p\ [yQ (n) ,xQ (n)]. The asymptotic expansion for this

squared correlation simplifies from (76) to

;//\ 2

Ph [Dot (n) ,x a (n)] = 1- 02

2

03_
Q"

(J)+W*°«- w>

To use xQ (n) as a nonlinear control, allow g(-) to be a continuous, strictly monotone

increasing transformation of x a (n) other than the identity transformation. Denote by

PnIVq (
n

) i9(%a (
n ))] the expansion for the squared correlation from (76) for the nonlinear

control. One can now compute the ratio of p%[yQ (n) ,g(xa (n))] to pL [yQ (n) ,xQ (n)] to

construct an asymptotic expansion for the improvement in variance reduction gained by

using a nonlinear control. One can write this expansion to order 1/n3 , where the lower

order n's i.e., the 1/n and 1/n2 terms, are implicit in the /x's, as

P
2
N[ya( n)i9(zg(n))]

pl[y<*(n),xa (n)]
= 1 +

P2

2

j4_

4rf
03
91
Q'

2T ~»i r„"n ..2 in „n
9_ 9_ , 02 l 9

g'l [g'l 2 l'g'

^4
2 L<7'

j— d _ n _ i,"s"

l'g' J

(79)
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The nonlinear control will have improved performance over the linear control if the

sum of the terms after the 1 in (79) above is positive. Given the number of terms in (79), it

is difficult to determine how to choose the transformation g(-) so that the sum of the terms

to the right of the 1 is positive. However, one can write the same expansion to order 1/n2

as

P
2N[yg(n),g(xQ {n))] _ j , £2

pl[y«{n),xQ (n)} 2

2T_^
V g'\ 9'

(80)

The constant //2 is always positive since it represents the variance of the rth order statistic

from a Uniform distribution. Thus by choosing a function g(-) that is continuous and strictly

monotone increasing and whose ratio of first and second derivatives evaluated at F^ l

(pr )

are such that the product of the bracketed expressions in (80) is positive, the nonlinear

control will have improved performance over the linear control for small samples.

In the standard simulation context one could not use the asymptotic expansions in the

straightforward manner described above to select g(-) since very little would be known about

the parametric form of the transformation /(•). In addition, the asymptotic expansions do

not account for any noise or error that is usually present in simulated data. If the parametric

form of /(•) was known i.e., there was no error, and the distribution of X was known, there

would be no need for running a simulation. Given that /(•) is not known exactly, one can use

other methods for the selection of g(-). One could use graphical analysis to hazard a guess

as to the form of /(•) and use the expansions to select g(-). One could also use Breiman and

Friedman's ACE algorithm (1985) along with nonlinear least squares regression to assist in

the selection of g(-). The key point is that while one caT ot always use the asymptotic

expansions to select g(-), the expansions are useful for uemonstrating the potential for

improved performance.

In the next section the asymptotic expansions are used in the context where the exact

form of /(•) is known. Given parametric forms for /(•) and g(-) the expansions are used to

compute the value of the parameter in g(-) that maximizes the improvement in variance

reduction. The expansions also predict the improvement one can expect by using this

parameter. The expansions are then compared to estimates from simulated data.
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J. A SIMPLE EXAMPLE USING THE ASYMPTOTIC EXPANSIONS

The joint distribution of Y and X described in this section is the "noiseless" version

of the one in Section E of Chapter III suggested by Hsu and Nelson (1987). The known

random variable X has a Uniform (0,1) distribution. The variable of interest Y is equal to

the transformation l(X) where

Y = l(X) =
1

for < X < 1, (81)(c-X)

where c is a constant that is strictly greater than one. Looking at Figure 21, one can see that

l(X) is continuous and strictly monotone increasing. Hsu and Nelson (1987) use c = 1.01

in (81) as it causes l(X) to be highly nonlinear at the .95 quantile of X. The results that

follow also use c— 1.01 for the same reason.

Figure 21. Plot of the transformation l(X) = 1/(1.01 — X).

The quantity to be estimated is the a quantile of Y, namely yQ . It will be estimated

using the quantile estimator yQ (n) denned in Section D. The control variable is the esti-

mator of the a quantile of X, namely xa (n). In this section the asymptotic expansions will
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be used to select the parameter of a transformation g(-) that maximizes the squared corre-

lation between yQ (n) and the nonlinear control g(xQ (n)). The values from the asymptotic

expansion will then be compared to simulated data.

1. Specifying the Parameter for <?(•)

Since X has a Uniform (0,1) distribution, the asymptotic expansions for the

variance and covariance (74) and (75) simplify considerably as the only derivative of Q

that is nonzero is Q' = 1. The expansion for the ratio of the squared correlations to order

1/n2
, (80), does not change as it does not involve any derivatives of the inverse distribution

function.

It follows from (81) that l'(x) = (1.01 - x)" 2 and l"(x) = 2(1.01 - x)~3
. Us-

ing xQ (n) as a linear control is equivalent to using the identity function for g(-), namely

g(xQ (n)) = xa (n) . Thus the derivatives for the linear control are g'(x) = 1 and g"(x) = 0.

Denote by p\ the squared correlation between l(xQ (n)) and its linear control xa (n). The

expansion to order 1/n2
for p\ follows from (78) as simply

p
2
L = 1 - [2/^/(1.01 - x)

2
] for0<x<l,

where x represents the value for Q r = F^ 1

(pr ), which for the Uniform (0,1) distribution is

pT = r/(n + 1).

Now let g(-) be the nonlinear, scaled power transformation, with parameter p,

g(x) = (xp - l)/p, for p > -1 and < x < 1, (82)

with derivatives </(x) = xp-1 and g"(x) = (p - l)x(p
~ 2

). Denote by p
2
N the squared

correlation between Ytr\ = l(X^) and its nonlinear control g(X( r)). It follows from (77)

and (82) that to order 1/n2

2 (p-ir 2

n2 -1 ^1Pn-1-
2 1.01 -x

for p > -1 and < x < 1.

Let G(p) be the ratio of the squared correlation for the nonlinear control to

the squared correlation for the linear control. Thus G(p) is a measure of the relative

improvement provided by the nonlinear control over the linear control. Using (80), it
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follows that to order 1/n2

4(p-l) (p-l) :

G(p) = l + f (1.01 -x)x x2
for p > -1 and < x < 1. (83)

One would like to find the value of p for g(-) that maximizes the improvement in

variance reduction for a given x; call this value p*. Differentiating (83), it follows that

P* = T^T^ for < x < 1, (84)
1.01 - x

since x represents Q r , which is always between and 1. Substituting p* into the expansion

for G(p) in (83), one gets, to order 1/n2
, that

G(p
m
) = 1 +

(1Qf'
> 1 for < x < 1, (85)

since from (58), //2 = Pr<7r/(n + 2) is the variance of the rth Uniform order statistic and

is always nonnegative. Thus in this example, for finite samples, the optimal use of a

nonlinear control can only improve the variance reduction over the linear control. One

can see from (85) that G(p*) is an increasing function of x so the higher the a value, the

greater the improvement gained by using the nonlinear control. However, since /12 is a

decreasing function of n, as n increases and //2 goes asymptotically to zero, the advantage

gained by the nonlinear control decreases till G(p*) is one and the linear and nonlinear

controls are equivalent.

2. Comparing the Asymptotic Expansions with Simulated Data

A simulation experiment was used to examine the accuracy of the asymptotic

expansions for the example described above. The asymptotic expansions for the variance

of l(x) and g(x) from (74), the covariance from (75), and the ratio of squared correlations

from (77) were compared to sample estimates of these quantities generated via a simulation

experiment.

The two parameters of the simulation were the number of samples used to cal-

culate each quantile estimate, n, and the a value for the quantile estimate. The values

for n ranged from 10 to 200. The values for a were .05, .1, .3, .5, .7, .9, .95 and .99. A

total of 30 independent replications were used to estimate the precision of each estimate.
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Each replication had 4000 i.i.d. Uniform (0,1) random numbers. For each value of a, and

each value of n, a total of 4000/n quantile estimates were computed. As the maximum

value of n in the simulation was 200 there were always at least 20 quantile estimates with

which to estimate the variances, covariance and ratio of squared correlations.

For each replication the appropriate transformations, /(•) from (81) with c = 1.01

and g(-) from (82) with p = p* from (84), were applied to the quantile estimates. The

sample variances, covariance, and ratio of squared correlations of the transformed quantile

estimates were computed. At the end of the 30 replications, the sample mean and standard

error of the 30 estimates were computed for each sample size n and a combination.

Graphs for the function l(x), the function for p* in (84), and the function g(x) =

(xp - l)/p, Figure 21, Figure 23, and Figure 22, help provide insight into the simulation

results. Note in Figure 21 that the function l(x) = 1/(1.01 — x) is fairly flat until x = .6

where it curves sharply upward until it is almost vertical at x = .99. This shape indicates

that the quantile estimators for the lower quantiles of Y will have small variance while those

for the upper quantiles will have large variance. Figure 22 shows the function for p* as a

function of x (84). One can see in Figure 22 that as x approaches the higher quantiles, p*

rises dramatically. The reason for this rise can be seen by comparing the plot of l{x) in

Figure 21 with the plots of the scaled power transformation for several different vales of p in

Figure 23. The curvature of l(x) at the high quantiles forces g(x) to mimic that curvature

through the use of higher values of p*.

One can compare the performance of the asymptotic expansions to estimates

from the simulation using Figures (24) through (31). The eight sets of figures, for the

eight different values of a, contain four graphs each; the upper left graph showing the

variance of Y = l(X) where l(X) is from (81), the upper right graph showing the variance

of g(X) where g(-) is the scaled power transformation from (82), the lower left showing the

covariance between l(X) and g(X) and the lower right showing the ratio of the squared

correlation of l(X) and g(X), the nonlinear control, to the squared correlation of l(X) and

X, the linear control. The solid lines on the graphs represent the sample means of the

30 replicates of each statistic. To provide an estimate of the precision of the estimates,

dotted lines are plotted three standard errors above and below the sample means. These

are often not visible because of the scaling of the graphs. The dashed lines represent the
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Optimal Value for p as a Function of x

p*-(i.01+x)/(1.01-x)

1.0

Figure 22. Plot of the optimal value for p, namely p*, as a function of x for the nonlinear

transformation g(x) = (xp — l)/p.
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Figure 23. Plot of the nonlinear transformation g(x) = (xp - l)/p for several different

values of p.
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values from the asymptotic expansions. For some of the lower quantiles this dashed line is

difficult to see because of the extreme accuracy of the approximations at these quantiles

and the scaling of the graph.

In general the figures demonstrate that for this example, the asymptotic expan-

sions for the variance, the covariance and the ratio of squared correlations of the order-

statistic-based quantile estimator are quite accurate. The sawtooth nature of the expan-

sions can be seen in most of the figures and is especially noticeable in Figure 30. At the

lower quantiles, a = .05, .1, .3 and .5 in Figures 24 through 27, where the shape of l(x) in

Figure 21 is fairly flat, the expansion values for the variance of l(x), the variance of g(x)

and the covariance of l(x) and g(x) are accurate even at n = 10. While for small n the ratio

of squared correlations in Figures 24 through 27 does not match the simulation results as

well as the other estimators, by n=50, it matches quite well.

One can see in Figures 24 through 27 that the ratio of squared correlations is a

decreasing function of n. Examining the scales of the vertical axes for the ratio of squared

correlations in Figures 24 through 27, one can see that the ratio of squared correlations is

an increasing function of a; in Figure 24, the upper limit is 1.018 while in Figure 27 the

upper limit is 1.18. These values of the ratio of squared correlation indicate that while the

nonlinear control does increase the variance reduction over the linear control, the gain is

small. The small improvement can be attributed to the fact that l(x) is fairly linear for x

between and .6

At the upper quantiles, a = .7, .9, .95 and .99 in Figures 28 through 31, where

the shape of l(x) in Figure 21 is quite nonlinear, the each of the asymptotic expansions

show the effects of increasing a. For a =.7 and .9, in F. es 28 and 29, the expansions

for the variance and covariance match the estimates from the simulated data for n > 10.

Comparing the scale of the vertical axes for the graph of the variance of l(x), in the upper

left-hand corner of Figures 28 and 29, one can see that the upper limit increases from a

variance of 3 to a variance of 80. Comparing the scale of the vertical axes for the graphs

of the ratio of the squared correlations, p%/pi, in the lower right-hand corner of the same

figures, the upper limit increases from 1.4 to 2.0. Thus the improvement gained by using a

nonlinear control is also increasing with a.
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Figure 24. Graphs of the asymptotic expansions for the variance, covariance and ratio

of squared correlations compared to estimates from a simulation for the .05

quantile.
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Figure 25. Graphs of the asymptotic expansions for the variance, covariance and ratio

of squared correlations compared to estimates from a simulation for the .1

quantile.
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Figure 26. Graphs of the asymptotic expansions for the variance, covariance and ratio

of squared correlations compared to estimates from a simulation for the .3

quantile.
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Figure 27. Graphs of the asymptotic expansions for the variance, covariance and ratio

of squared correlations compared to estimates from a simulation for the .5

quantile.
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At the extreme quantiles, a = .95 and .99 in Figures 30 and 31, all three of

the asymptotic expansions begin to have difficulty in matching the estimates from the

simulation. This difficulty may be due to the nature of the quantile estimator at extreme

quantiles. For a=.95, if one is using the quantile estimator defined in Section D with a

sample of size less than 20, the order statistic used as the estimator is the maximum of the

sample. For a = .99 the maximum of the sample is used as the estimator for n less than 100.

It is well known that the limiting distribution of the maximum of a sample is different than

the limiting distribution of a central or non-extreme order statistic (see Mood, Graybill and

Boes, 1974, p. 256). As stated in Section C, David (1970) and David and Johnson (1956)

caution against non-convergence of the expansions when r/n is close to 1 for small n. The

graphs in Figure 30 for n < 20 and in Figure 31 for n < 100 demonstrate this weakness

in the expansions for the variance, covariance and ratio of the squared correlations for the

order-statistic-based quantile estimators.

However, the same graphs also demonstrate that using the value for p* suggested

by the expansions results in an effective nonlinear control for the simulated data. For

a = .95, in Figure 30, and a = .99 in Figure 31, the curve for the ratio of squared correlations

shows that at n = 10 the nonlinear control is twice as effective as the linear control. While

the improvement gained by the nonlinear control decreases as n increases, at n = 100 the

nonlinear control for a = .95 is still 10% more effective than the linear control, and for

a = .99, the nonlinear control is about 30% percent more effective than the linear control.

The variance of l(x) in Figures 30 and 31 doubles, from 400 to 800. At the same time, while

the scale of the vertical axes for the ratio of the squared correlations does not change between

the two figures, the curve for the mean of the estimates of the ratio of squared correlations

from the simulation for a = .99 is consistently higher than the curve for a = .95. Thus

while the expansions do not match the simulation results for small samples at the extreme

quantiles, the expansions are useful for choosing the parameter which will create an effective

nonlinear control.
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Figure 28. Graphs of the asymptotic expansions for the variance, covariance and ratio

of squared correlations compared to estimates from a simulation for the .7

quantile.
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Figure 29. Graphs of the asymptotic expansions for the variance, covariance and ratio

of squared correlations compared to estimates from a simulation for the .9

quantile.
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of squared correlations compared to estimates from a simulation for the .95
quantile.
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quantile.
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K. SUMMARY
The question of the improvement in variance reduction gained by using a nonlinear

control instead of a linear control is not an asymptotic issue. The asymptotic joint distribu-

tion between the two quantile estimators is bivariate normal so that a linear control scheme

is optimal (see Weiss, 1964 and Lancaster, 1966). However, at small sample sizes one can use

asymptotic expansions for the moments of order-statistic-based quantile estimators to in-

vestigate the relative effectiveness of nonlinear and linear controls. Using the expansions for

the variance, covariance and squared correlations constructed in this chapter, one can show

that it is possible to choose a transformation such that the squared correlation between the

statistic of interest and the nonlinear control is greater than the squared correlation between

the statistic of interest and a linear control. This greater squared correlation leads to an

improvement in the variance reduction. The comparison of the asymptotic expansions for

the variance, covariance and ratio of squared correlations with the estimates from the simu-

lation shows that these expansions can be excellent predictors of the variance and covariance

for transformed quantile estimators from a Uniform (0,1) distribution. While for extreme

quantiles and very small sample sizes, the expansions may overestimate the improvement

gained by the use of a nonlinear control in the simulation, using the parameter indicated by

the expansions for the nonlinear control did lead to an improvement in variance reduction

for all quantiles. Given that the statistic of interest is a strictly monotone transformation of

the control, the asymptotic expansions in this chapter demonstrate that for small samples,

the use of a nonlinear control for controlling quantile estimates in a simulation can increase

the variance reduction over using a linear control.
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V. REGENERATIVE SYSTEM SIMULATION: NONLINEAR
CONTROLS AND REGRESSION-ADJUSTED REGENERATIVE

ESTIMATES

A. THE CONTROL OF REGENERATIVE ESTIMATES FOR VARIANCE

REDUCTION

When simulating queueing systems, one often considers the use of variance reduction

techniques. Iglehart and Lewis (1979) showed, using a simulation of the M/M/l queue based

on the regenerative method, that using internal linear controls reduced the variance of the

estimate of the stationary waiting time of the nth customer, Wn . The linear control they

identified as the most suitable reduced the standard deviation of the controlled estimate

to 68% of the standard deviation of the uncontrolled estimate, equivalent to a variance

reduction of .54.

In the remainder of this section, Iglehart and Lewis's results and notation are summa-

rized and nonlinear controls for regenerative estimators are introduced in Section A.4. In

Section B the expected values for several potential nonlinear controls are calculated. Sec-

tion C.l shows that for an M/M/l queue with a traffic intensity of .5, by using a particular

nonlinear control one can increase the variance reduction over a linear control . It is then

shown in Section C.2 that for a traffic intensity of .99, the nonlinear controls either have

bias problems or are no more effective than the linear controls.

Section D shows how one can use the regression-adjusted technique of Heidelberger

and Lewis (1981) with linearly or nonlinearly controlled regenerative estimates. This com-

bination of techniques allows one to obtain estimates of the stationary waiting time for the

nth customer with much lower estimated mean square error than by using either technique

alone. Examples are provided, using data from simulations of an M/M/l queue and an

M/G/l queue, where the estimated mean square errors for the average regression-adjusted

controlled estimators are 10 and 33 percent of the mean square error estimates for the crude

estimators.
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1. A Brief Review of the Regenerative Method

This section is condensed from Iglehart and Lewis (1979) to provide the basis

for the regenerative estimator. Let X = {Xt : t > 0} be the regenerative process being

simulated. Define the regenerative process as a stochastic process {Xt : / > 0} where "there

exists an epoch, Si say, such that the continuation of the process beyond S\ is a probabilistic

replica of the process beginning at time zero." (Heyman and Sobel, 1982, p. 179) Assume

that {Xt : t > 0} is a stable process in that Xt =J» X as t — oo where =$ denotes weak

convergence. One is often interested in estimating r = E[/(A')] for a given function /(•).

When using the regenerative method, one observes the pairs of random variables

{Yfc, Tk : 1 < k < n} where Yk is the area under the function f(Xt ) in the fcth cycle and rjt is

the length of the Arth cycle. Two basic facts are crucial to the method. First, the successive

pairs {Yk,Tk : 1 < k < n} are independent and bivariately identically distributed (i.i.d.).

Second, Iglehart and Crane (1975, App. A) prove that r = E[/(X)] = E[Yi] /E[ri] using the

Key Renewal Theorem (see Smith, 1958). Thus they establish that a strongly consistent

point estimator for r, based on n cycles, is

r(n) = |g (86)

where Y{n) = n" 1 £Li Yk and f(n) = n~ x

Y2=\ n-

There are two methods for estimating the variance of f(n). The first method

involves the use of independent replications of the regenerative process, each having the

same number of cycles. In this method one conducts m independent replications of the

simulation, generating m independent estimates of r, namely r(n) •, for j = 1,. . . ,m. The

sample mean and sample variance of the r(n)- are used to calculate an overall point estimate

and estimate of the variance of the point estimate. Note that one has in essence generated

N = n x m total cycles and chosen to section them in a manner similar to the sectioning

for quantile estimates as discussed in Section B.2 of Chapter III.

The second method of estimating the variance relies on an asymptotic expansion.

Using the asymptotic expansion for the variance of a ratio, found in Cramer (1966, p. 353)

or Mood, Graybill and Boes (1974, p. 181), one can write an asymptotic expansion for the

variance of f(n). Letting Y represent the i.i.d. random variables Yk and r represent r^, one
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can write, to order 1/n3/ 2
,

Var[f(n)] = Var[F(n)] (^^j + 2Cov[F(n),f(n)] f^1

)
+ Var[f(n)] f^

= ^ {
var

(

F(n)
]

- 2

(SBm^^i + (S)
2

var[f(n)]

!

= ^p {
Var

[
F(")] " 2rCov

[

F(")> f(»)] + ^Var[f(n)]}
,

nE[

1

j-j {Var[y ] - 2rCov[y, r] + r
2Var[r]

}

(87)

2
Var[y - rr]

.

(88)
nE[r]

4

One can use (87) to estimate the variance of f(n). Substituting the sample es-

timates of Sy, s
2

, syiT (n) and f(n) into (87) yields an asymptotic estimate of Var[r(n)].

Note that in the method of independent replications, the point estimate and the variance

estimate are uncorrected. However, with the asymptotic estimate of the variance (87), the

estimate of the variance "is usually highly positively correlated with the point estimate."

(Heidelberger and Lewis, 1981) This correlation can result in the variance estimate being

artificially small when the point estimate has a small magnitude.

The asymptotic formulas (87) and (88) above do give some insight however for

formulating possible control variables if one is interested in applying controls to obtain

variance reduction in this regenerative simulation context. Letting Z = Y — rr, one gets

that asymptotically, as the number of cycles n gets large,

Var[f(n)] = -i-2Var[Z]. (89)
nE[r\

Equation (89) shows that the variance of f(n) is directly related to the variance

of Z. Using a control variable to reduce the variance of Z will result in a reduction in

the variance of f(n). As the effectiveness of a control for variance reduction is related to

the correlation between the control and Z, the goal is to find a control that is strongly

correlated with Z. Finding a useful control is complicated by the fact that the expected

value of the control must be known either exactly or approximately. The next subsection
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discusses Iglehart and Lewis's (1979) linear control for the estimate of the stationary waiting

time of the nth customer in a simulated M/M/l queue.

2. Controlling the Stationary Waiting Time of the nth Customer in an

M/M/l Queue

Define the waiting time of the nth customer in an M/M/l queue, namely Wn , as

the time from the customer's arrival until the commencement of service. One can show that

under certain conditions, the waiting time process {Wn : n > 0} is a regenerative process.

When the queue is stable, Wn => W as n — oo. Thus one can use a regenerative estimator

similar to (86) to estimate W once suitable definitions for Y and r are established.

In order to define Y and r, assume the zeroth customer arrives at time to = 0,

finds the server free, and has a service time of Vq. The nth customer arrives at time tn and

has a service time of vn . Define the interarrival times un as un = tn — tn-\ for n > 1. Assume

that the vn and un sequences are independent of each other and that each consists of i.i.d.

random variables. Let E[^n ]
= /i

_1
, and let E[itn ] = A

-1
. Denote the traffic intensity by p

where p = \/p, assuming that A and p are both positive and p is finite. Assume that the

traffic intensity p is less than one so that the system is stable.

In practice, one does not have to estimate W for the M/M/l queue as when p < 1,

the expected value of W is known i.e.,

EW = M&7y <90)

However, a known value for E[W] provides a basis for comparing the bias of the estimate

via the estimated mean square error. In later sections, the estimated bias of the controlled

regenerative estimator will play a major role in assessing the effectiveness of the control

scheme via the estimate of the mean square error.

Since p is less than one and the M/M/l queue is stable, one can show that there

exists a sequence of integer-valued random variables {T^ : k > 0} such that the customers

numbered Tjt arrive to find the server free and experience no waiting in the queue. These

customers start a new cycle or busy period for the system. Let t^ — T^ — Tk-\ for k > 1.

Thus Tk represents the number of customers served in the kth. busy period (the length of
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the cycle). Now define the sequence {Yk : k > 1} by

(Tk)-1

The random variable Yk is sum of the waiting times in the fcth busy period (the area under

the function /(•) for the cycle).

Now that Y and r are defined in the context of the queue, one can estimate

E[W] using the regenerative estimator in (86). The estimator for E[W], based on n busy

periods, is

Win) = ^f , for n > 1.
f(n)

(91)

One method for estimating the variance of W(n) requires one to generate multiple,

independent, replications as mentioned previously. In this case the point estimate, based

on m replications of n busy periods each, would be

1

W{m,n)=-Y,Wi(n) (92)

One would use the variance of the sample mean of the Wj (n) to estimate the variance of

W(m,n), namely Var W(m,n) i.e.,

w(m,n) m(m— l)r^
_£(^(n)-W(m,n))' (93)

The estimate of the standard deviation of W(m, n) would simply be the square root of

2_

W(m,n)'
S^

Another alternative for estimating the variance of the regenerative estimate of the

stationary waiting time is to use the asymptotic estimate from (89). To use the asymptotic

estimate of the variance for W(n), one can use the sample estimates for the quantities

in (87) i.e.,

,2 __J_
V(n) nf(„)

sf -2
Y(n)

f
(
n

).

sy,r(n) +
Y(n)

f
(
n

).
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where s^ is the sample variance of x, sX(J/ (n) is the sample covariance of x and y, and

Y(n)/f(n) is the sample estimate of r '= E[W] from (91).

3. Iglehart and Lewis's Linear Control

One would like to reduce the variance of W(n) for a given number of busy peri-

ods n. Two possibilities for reducing the variance of W{n) are to control the Y on top of the

ratio in (91) or the r on the bottom of the ratio in (91). The controls initially considered

below control the top of the ratio.

When controlling the top of the ratio in (91), one can write the controlled esti-

mator W'(n), as

fr(.)
= Z3!g.w»)a«ffi-'(q-E[cD} (94)

T{n) r(n)

where d represents the value of an i.i.d. random variable that is the control for the z'th cycle

and 6 is a coefficient that can be chosen so as to minimize the variance of W'(n). One can

derive an asymptotic expansion for the variance of W'(n) as a function of 8 by taking (88)

and replacing r(n) with W'(n) and Y by Y' . Substituting in this new expansion the value

for 6 that minimizes Var W(n) (which can be found by differentiating the expansion with

respect to 6), one can show that asymptotically

Var[f?'(n)] = Var[l?(n)] (l - Cor[C,y - rr]
2

)

where C represents Cjt- Thus as previously implied by (89), one would like to choose a

control C that is highly correlated with Z = Y — rr.

One should note several characteristics of W'( that distinguish it from esti-

mators discussed in previous chapters. The first is that the control is developed from

an asymptotic formula. Thus for small sample sizes the sample correlation of the con-

trol may not translate directly into achieved variance reduction. Also, the estimator is

a ratio estimator where the top and bottom elements of the ratio are highly correlated.

As such it is not straightforward to predict the impact of changing or controlling either

of the elements. Finally, the mean-zero control is being applied to one of the elements

of the ratio, not the ratio estimator itself. Thus to assess a potential control's effective-

ness, one estimates the control's correlation with the intermediate statistic Z, not the final
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"statistic of interest" W(n). The impact of these three characteristics is that unlike linear

control of the mean, the R2 from the regression that estimates the coefficients for the control

function may be much different than the achieved variance reduction.

With the goal of developing controls that were highly correlated with Z = Y — rr,

Iglehart and Lewis (1979) chose the following general form for the linear control C:

C = D- r/fi, (95)

where the random variable D is selected so as to "mimic" Y. Iglehart and Lewis found

that dividing r by \i in (95) helps make the variance reduction independent of the scale

parameter /z.

The particular form for D in (95) favored by Iglehart and Lewis exploits a recur-

sive relationship for calculating Wn , namely:

W = 0, and Wn+1 = [Wn + Xn+1 ]

+
, for n > 0,

where Xn = vn-\ — un for n > 1 and the superscript plus, +
, denotes the plus function

x+ =<
x if x > 0;

otherwise.
(96)

Using the Xn and the plus function, one can write Iglehart and Lewis's form for D as

D = l

= <

71 = 1,

Xf + Xi 71 > 2;

Wo = n = l,

Wo + Wx 71 = 2,

Wo + W1 + X} 71 > 3.

(97)

(98)

The second set of equations above, (98), show that D mimics Y by using infor-

mation about the waiting times of the first several customers in the busy period. In fact, if

there are two or less customers for the busy period, then D = Y

.
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4. The Nonlinearly Controlled Regenerative Estimate

Given C as a potential control, one must be able to compute the expected value

of C. To use C as a nonlinear control one must be able to compute the expected values for

transformations of C, namely h(C,6). Note that these transformations could be functions

that act on the random variable C itself, or even functions that act on the random variables

D or t individually. As discussed in Chapter II, the transformed, nonlinear, controls h(C, 6)

are incorporated into a mean-zero, linear additive function of the transformed variables and

their expected values. Thus generalizing (94), one can write

T\Jl) T
{
n

)

where the #(•,•) notation comes from (10) in Chapter II.

Iglehart and Lewis (1979) derive the expected value of C, given at (95), for a

queue of traffic intensity p, as

EIC] = I 1

+ "

1+P \l+pj \-p (100)

The next several sections of the chapter will build on their results by determining the

distributions and expected values for several transformations of C and demonstrating the

effects of some nonlinear controls on the regenerative estimate of E[W].

B. CALCULATING THE EXPECTED VALUES OF POSSIBLE

NONLINEAR CONTROLS

1. The Probability Function for T

For an M/M/l queue with traffic intensity p less than 1, the probability function

for r (see Kleinrock, 1975, p. 218) can be written as

Pr{r = l} =
\ (

2

/_ fj p
1-1

(1 + p)
1 - 21

, for / > 1. (101)

Note that the probability of only 1 customer in a busy period is 1/(1 + p). For p = .5,

the probability that there are either one or two customers in the busy period is approxi-

mately .81, while for p = .99 the probability is .63.
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2. Expected Values of Transformations of D
As the distribution of r is known, to compute the expected values for transfor-

mations of C = D — t/h, one must determine the distribution of C, which means that one

must determine the distribution of D. One must also know the distribution of D to derive

the moments of transformations of D such as Dv
. One way to determine the distribution

of D is to start by determining the distributions of X* and Xj".

The variables X* and Xj" both have the same type of mixed distribution. Ran-

dom variables with this "lightbulb" distribution have a positive probability of being zero,

but given that they are greater than zero, are distributed exponentially. By definition,

X* is the remaining service time of the zeroth customer when the next customer ar-

rives. If there is only one customer in the busy period, r = 1, then X* is zero. Thus

Pr{x+ = 0} = Pr{r = 1} which can be seen from (101) to be 1/(1 + />).

If a customer arrives before the zeroth customer finishes his service, then X* is

greater than zero. This occurs with a probability of Pr{r > 1} = 1 — Pr{r = 1} = p/(l + p).

The memoryless property of the exponential service distribution implies then that given

r > 1, X* is exponentially distributed with mean 1/fi. Thus the survivor function for X*

can be written as

r , 1 I 1, for x < 0; ,

Pr{*+ > x\ =
{ (102)

J

I rfe
e
"MX

>
for x > °-

From (102) one can write the distribution function of X* as

Fxt (x) = ?v{x+<x}=<

0, for x <

ifc,
for* = (103)

jl-(l -€-*«), forx>0

Since the distribution of X* has both a discrete and a continuous part, the notation

dFx +(x) will be used to represent the derivative of Fx+(x) where the derivative exists,

and the probability mass function for X* for those x where there is a jump in Fx +(x),

namely x = 0.

One can determine the distribution for X? in a manner analogous to that for X*.

Given that X* is greater than zero, the distribution of X£ is identical to that of X* since
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X~2 is the residual service time of the n = 1 customer when the n = 2 customer arrives.

If X* is zero then necessarily Xj~ is zero. Thus one can derive the uncondition survival

function for X% by multiplying the probability for x > in (102) by the probability that

X* is greater than 0, namely p/(l + p). It follows then that

Pr{x+ > x} = i

1, for x < 0; , N

(ife) e-*-
f

forx>0.

The distribution function for X£ follows directly from (104). Thus for an M/M/l queue,

X* and X% are nonnegative random variables that have different probabilities of being

non-zero, but the same exponential shape parameter p..

As the sum of two nonnegative random variables, the random variable D is also

nonnegative. Thus Pr{D > x] is one for all x less than 0. With the survivor functions for

X* and X£ in (102) and (104), one can determine the survivor function for D for those x

greater than zero. Let 7 denote the constant p/(l + p). One can write the survival function

for D, for x greater than zero, using(102) and (104) as

FD {x) = Pr{£ > x] = Pr{x+ + X} > x]
,

= Pr{x+ > x] +
J*

Pr{x
2
+ > (x - t)

\
X? = t} dFx + (0,

= 7e""x +f 2
fixe->

iX
, for x > 0. (105)

One must be careful when using the survivor function to remember that D has

a mixed distribution with a positive probability of being equal to 0. From the definition

of D in (97) and (101), it follows that Pr{D = 0} = Pr{r = 1} = 1/(1 + p). However,

for x greater than 0, D has a continuous distribution. Thus for x greater than zero, one

can consider the negative derivative of the survival function in (105) in terms of a "quasi"

density function }d{x ) that integrates to 7 instead of one. The negative derivative of the

survival function for x greater than zero can be derived from (105) as

fD {x) = 7//e-"
x + 7V*e-"x - 7

V~"x
, for x > 0. (106)
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= + +

7 + 7
2

Now that one has the distribution function for D, one can determine the moments

of transformations of D. As an example, to compute the expected value of D, namely

E[D] = /f^ xdFo{x), one can break up the expectation integral over the range from — oo

to oo. Using (106), one can compute the expected value of D as follows:

E[D] =
I

xdFD (x) + x Pr{Z> = 0} + f°° xdFD (x),
J-oo JO

f°° -

/ x/D (x)dx (107)
Jo

(108)

This final formula for the expected value is equivalent to Iglehart and Lewis's result for E[J9]

that they determined using a conditioning argument. While Iglehart and Lewis's (1979)

conditioning argument is useful for determining the expected value of D, it does not provide

the survivor function for D derived in (105). One needs to know the information in the

survivor function for D to compute the expected value for transformations of D.

One can compute expected values for continuous transformations of D, namely

g(D), in a straightforward manner. Note in (107) that the contribution to the expected

value for nonpositive D is zero. Replacing the x in (107) with g(x) one gets what looks like

a standard integral for the expected value of a function of a continuous, positive random

variable, only instead of a density function, /b(x) is used so that the expected value of

g(D) can be simplified to

f°°
n9(D)} = / </(x)/D (x)dx (109)

One can use (109) to compute the expected value for the power transformation Dp as

E[^]=^r(P+i)(p7
2 + 7), forp>-l (110)

where T(-) represents the complete Gamma Function. For p = 1, the right side of (110)

collapses to (108). The power transformation is one means of introducing nonlinearity into

the control C.
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Another means of introducing nonlinearity is by the creation of two new random

variables through the use of a cutpoint as in Part D.2 of Chapter II. One can use D to

create two new variables D\ and D2 through the use of a cutpoint 8 as follows:

£1 = <

D if D < 6;

otherwise,

and D2 = <

D i{D>6;

otherwise.

(Ill)

Additional nonlinearity can be introduced by applying a different power transformation to

each of these new variables. One can write the expected values of D\ and D\ for p > — 1

in terms of Incomplete Gamma functions. For D\ one can derive, using appropriate limits

of integration in (109), that

E[DP
]
= —

v \ H
P+1 xpe~ flx dx +—

v \ fi
p+2x

p+l e-^dx - 3- f fi
p+1 x pe~ "

xdx . (112)

By exploiting the relationship between the Gamma Function and the distribution function

for a Gamma (p,n) random variable, one can simplify the notation in (112). Let Fr tPtP,(x)

represent the cumulative distribution function of a Gamma distributed random variable

with shape parameter p and mean l//x. Then (112) can be written as

E[Df] = -£ [r(P+ i)(l - 7)iT,P+i,^) + (P + l)7*hp+2.„(*)] , for p > -1. (113)

For a given set of parameters, one can use standard software to compute the expected value

in (113).

Other transformations, such as an exponential transformation, can also be used

to induce nonlinearity. The expected value of E ,vD can written as

avD W'-^dx,
roo too rc

= / -ye^ne'^dx + 7
2

/ ^e^xe'^dx - 7
2

/ fie-'e
Jo Jo Jo

f°° f°° f°°
= 7/i / e'^-^dx + 7y / xe-^-^'dx - 7

2
/x / e~^-^xdx

Jo Jo Jo

= 7PMV(^V-W-^). (114)
\fi-rjj \H-V/ \/x — T7/

As the distribution of D is fairly tractable, other transformations of D could be

used if desired as long as the expected value of the transformed D can he computed.
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To determine the expected value for transformations of C = D — r/fi, now that

the distribution for D is known, one could work directly with the distributions for D and

t. However this gets messy as D and r are not independent. It is easier to work with the

conditional distribution for C given r and then uncondition. Sections B.3, B.4 and B.5 will

cover determining the distribution of C. Section B.6 will develop formulas for the expected

value of transformations of C.

3. The Conditional Survivor Function for D

One manner of determining the expected value of transformations of C involves

working with the conditional survivor function for D given r. As shown just prior to (105),

the probability that D > z, for x < 0, is 1 for all r. For x > 0, one can derive, using (105),

that

Pr{£ > x
|
r = 1} = 0, (115)

Pt{D > x
|
t = 2} = c

_/iX
, and

Pt{D > x
|
r = 3} = e""* + T e-^*-') Pr{x2

+ > |
r = 3} fie'^dt,

= e-»
x + (l/2)fixe-»

x
,

= e-"*[l + (l/2)H.

Following in a similar manner, one can derive a more general expression, for r = / > 2, as

{1
for x < 0;

(116)

e-"x [1 + cifix] , for x >

where c\ is the probability that X% is greater than given r = I. It is shown next that

ci = (3/-6)/(4/-6).

4. Determining c/

a. Determining Pr{X+ > 0| r}and Pr {X+ >0|r}

For both Xf and Xj", the probability of being greater than zero can be

considered as a function of r, the number of customers in the busy period. This allows

one to work with the conditional distributions for X+ and Xj" given r = /. As discussed
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earlier, if the busy period has only one customer, r = 1, this implies that X* and Xj" are

identically zero since

(r = 1) implies (u < H\), which implies (X* = 0), which implies (Xj" = 0).

Therefore,

Pr{xf > | r = l} = and Pr{x+ > | r = l} = 0.

If the busy period has at least two customers, r = / > 2, then

Pr{x+ > | r = / > 2} = 1

since for there to be two or more customers in a busy period,

(vo > fi\), which implies (X\ > 0) which implies (X* > 0).

However, having two or more customers in a busy period does not imply that X£ is positive;

it may be zero. In what follows it will be shown that for r > 2,

c, = ?t{x} >0\t = 1>2} = |f|.

b. Determining Pr {X+ >0\ r = I > 2}

This subsection considers a single busy period that starts at time and has

exactly r = / customers for some / > 1. Let L(t) represent the number of customers in the

system at time / with L(0) = 0. Call the time at which a customer arrives or departs a

transition time for L(t) since £(Z)'s value changes by plus or minus one respectively. Denote

the jth. transition time in a busy period as tj where j ranges from to 2r.

One can consider the process L(tj) as a discrete-time Markov Chain that

for a given r may have several different sample paths, only some of which have X^ > 0.

For example, if there are exactly three customers in the busy period, r = 3, there are two

possible sample paths for the number of customers in the system as tj goes from to 6:

L(tj) = 0,1,2,3,2,1,0 and L(tj) = 0,1,2,1,2,1,0. Only the first of these paths has X}

greater than zero.
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The conditional probability that X* is greater than given r is simply the

total number of paths for which Xf is greater than divided by the total number of paths

given r, where this total includes both the paths for which A"j" is greater than and the

paths for which X£ equals zero. To calculate PrjXj" > | r|, one must first determine

the total number of paths and then determine the total number of paths for which Xj" > 0.

Determining the total number of paths for a given value of r is straightfor-

ward. Examining the probability function for the number of customers in a busy period

of M/M/l queue with traffic intensity p in (101), one can see that the (l/OO-?) terms

provide the total number of sample paths given r = /, and the p terms are the probability

of a path of length 21. The terms can be broken out this way because of the Markovian

nature of the transitions in an M/M/l queue as will now be explained.

Since each sample path is independent, the probability that r = / can be

calculated as the probability of having a sample path of length 2/ times the number of

sample paths of length 21. Consider a busy period that has exactly / customers. It must

then have a sample path of length 21. To start the busy period there must be an arrival.

In order for there to be more than one customer in the busy period, the next arrival must

occur prior to Customer l's departure. Because of the Markovian property of the M/M/l

queue, this occurs with probability A(p + A) = p{\ -f p)
-1

. In order for there to be at

least / customers in the busy period there must be at least / - 1 more instances where the

next transition is an arrival rather than a departure. In order for there to be no more

than / customers, there must be / instances where the next transition is a departure rather

than an arrival. This occurs with probability fi/(fi + A) = (1 + p)~ l
, again because of the

Markovian property of the queue. The instances where the next arrival is a departure rather

than arrival may be interspersed between the arrivals as long as the number of arrivals is

greater than the number of departures or it reaches /. Thus the length of the sample path

is 1 + (/ — 1) + 21, 1 for the initial arrival, the / — 1 for the arrivals prior to departures

and the / for the departures prior to arrivals. The probability of having the / — 1 arrivals

is p'
-1

(l + p)
1_/

. The probability of having the / departures is (1 + p)~ l
. Thus, since the

arrivals and departure times are independent, the probability of having a sample path of

length 2/ is p
/_1(l+p) 1 ~ 2/

. The remaining (l/0(*_i
2
) terms in (101) account for the number

of paths of length 21.
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Let NP(l) denote the total number of sample paths given r = I. It follows

then that

It will be useful later on to have an expression for NP(l) in terms of NP(l- 1). Using (117),

one can easily derive the recursive expression

NP(l) =
2 (2/ -3)

/

NP(l-l), for/>2. (118)

Now that the total number of paths can be calculated, one must determine

the total number of paths for which X% is greater than zero. Drawing a graph of the

possible sample paths helps to determine the number of paths for which X% is greater than

zero. By plotting possible sample paths of L(tj) against tj for a given r, one can create a

directed graph that contains all of the possible sample paths from 2/(0) = to L{%2T ) — 0.

Figure 32 shows the possible sample paths for r = 3. The y (vertical) axis

is L(tj), the number of customers in the system at time tj. The x (horizontal) axis is the

transition number i.e., the index j of tj for j = to 2r. A point is represented by the

ordered pair (a, b) where a is the transition number from the x axis and 6 is the value of

L(t
3 ).

The lines connecting the points represent the transitions; a +1 slope is an

arrival and a -1 slope is a departure. Slopes other than ±1 are not allowed since there are

only the two types of transitions. The arrows on the lines indicate the directed nature of

the graph in that as the x axis represents subsequent points in time, one can only move to

the right.

A sample path from a point (a, b) to another point (c, d) is a set of points such

that the first element of the ordered pairs is strictly increasing from a to c and the second

element of each pair is either 1 greater or 1 less than the second element in the preceding

pair. A sample path from (3,1) to (6,0) in Figure 32 is the set {(3,1), (4,2), (5,1), (6,0)}.

In short, there are several constraints in constructing a graph of the possible

sample paths for the number of customers in the system for a busy period with r customers.

1. The graph always starts at the point (0,0).
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12 3 4 5 6
Transition Number

Figure 32. Graph of the possible sample paths for a busy period with 3 customers.

2. The value of L(tj) is less than or equal to tj for tj < r, and is less than or equal to

It — tj for tj > t.

3. The point (a,0) only exists for a = and a = It.

4. The lines must have slopes of ±1.

To construct a graph for a given r, one starts at the point (0,0) and creates

all transitions permitted by the above constraints. When r = 3, the constraints lead to the

creation of the graph in Figure 32. The two possible sample paths from (0,0) to (2r,0) for

r = 3 in Figure 32 are

{(0,0), (1,1), (2, 2), (3, 3), (4, 2), (5,1), (6,0)}

and

{(0,0),(1,1),(2,2),(3,1),(4,2),(5,1),(6,0)}.

The line connecting (2,2) to (3,3) in Figure 32 must be part of the path for X% to be

greater than 0. To determine the number of paths for which X^ > 0, one can count the

paths from (3,3) to (2r = 6,0). Counting is easy in this graph since there is only one path.

Note that one can determine the number of paths for which Xj" = (again 1 path) by

counting the paths from (3,1) to (2r,0).

As r increases, the number of paths increases and the graph gets larger.

Figure 33 shows the five possible sample paths from (0,0) to (8,0) for a busy period with
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4 customers. Again one can count the paths for which X% > (3 of them) by counting the

paths from (3,3) to (2r = 8,0) and one can count the number of paths for which Xj" =

(2 of them) by counting the paths from (3,1) to (8,0). Counting paths gets tedious as r

increases since, as can be seen from (118), as / increases by 1, the number of paths goes up

by a factor that approaches 4 as r = / gets large; for r = 8, the total number of paths is

429.

12 3 4 5 6
Transition Number

Figure 33. Graph of the possible sample paths for a busy period with 4 customers.

Comparing the graphs for r = 3, Figure 32, and for r = 4, Figure 33, one

can see that the number of paths from (3, 1) to (8,0) in Figure 33 is identical to the number

of paths from (1, 1) to (6,0) in Figure 32. Thus for r = 4, the number of paths for which

X~2 = equals the total number of paths for r = 3. T 1 ; s can be shown to be true in

general. Let NPx+_Q
(l) denote the total number of patL. ior which Xj" = for a given

r = l.

Lemma 3 For t = I where I > 3, the total number of paths such that X* = equals the

total number of paths for r — I — 1.

Proof

The proof that follows depends upon constructing the graph for r = / from

the graph for r = / — 1 in a special way. There are two methods for expanding a graph for

r = I — 1 to a graph for t = I. The first method expands to the right by adding the set of /
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points {(/,/),(/ + 1,/ - 1),(/ + 2,/ - 2),. ..,(2/,0)}, then adding the permissible connecting

lines and finally deleting the line from (2(/ - 1) - 1, 1) to (2(/ - 1),0).

The second, and more useful method for the purpose at hand, is to expand

the graph to the left and then shift the x axis.

1. First add the set of points {(/ - 2, /),(/- 3, / - 1), (/ - 4, / - 2), ... ,
(-2, 0)} and delete

the line from (0,0) to (1,1). Figure 34 shows the results of these operations on a

graph where / — 1 = 3. As a result of expanding to the left, no paths are created or

destroyed from (1,1) to (2(/ — 1),0); thus the total number of paths from (1,1) to

(2(1 - 1),0) remains NP(l - 1).

2. Now shift the x axis to the right by adding 2 to each transition number. The former

point (1, 1) becomes the point (3, 1) and the former point (2(1 — 1),0) becomes (2/,0)

and again no paths have been created or destroyed between these two points.

3. Now the total number of paths for which Xj" = in the graph for r = / is the same

as the total number of paths in the original graph for r = / — 1. By adding in the

permissible lines for the new points on the left, the graph contains all the sample

paths for a busy period with r = I customers.

-2-10123456
Transition Number

Figure 34. The results of expanding a graph for / - 1 = 3 to the left.

Given that NPx+=0 (l) = NP(l - 1), it follows that

NP(l)-NPx , =0 (l)

Pr{x+ > |
r = / > 3} =

NP(l)
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, NP(l-l)

NP{1)
'

= 1-
/

2(2/ -3)'

3/ -6
4/ -6'

for / > 3.

Since Pr{xJ > | r = 2} = 0, it is also true for / > 2 that

(119)

as was to be shown.

By manipulating (119), it is easy to see that as / gets large c; approaches

3/4. Thus regardless of how large r may be, X^ does not have to be positive i.e., it can be

zero.

5. The Distribution of C = D — r/fi

Now that ci can be computed, the conditional survivor function for D for r > 2

in (116) is completely determined. Given (115), (116), and the formula for c/ in (119), one

can derive the survivor function for C by conditioning on r as follows:

Pt{C>x} = Pt{(D-t/h>x)},
00

= Y,MD>(x + t/h)\t = 1}?t{t = 1},

1=1

00

= £Pr{£>(x + ///i)|r = /}Pr{r = /}.

For t = I = 1, using (115),

Pt{D > (x + 1/n) I

t = 1} = {

1, for (x + 1/n) < 0;

0, for (x + 1///) >
(120)

since r = 1 implies that D is identically zero. For r = / > 2, it follows from (116) that

Pr{D > (x + IJpL)} =
1, for (x + l/fi) < 0;

e-n(x+l/n) l + c,/i(x+i)
+

, for (x + l//i) > 0.

(121)
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By unconditioning on r and combining the above expressions, (120) and (121), one can

write the unconditional survivor function for C, for —oo < x < oo, as

1
°°

Pr{C > x} = I [(*+i/„)<o] ——- +£ e-"(*+'/")+
[l + c,/i (x + ///x)

+
]
Pr{r = /} (122)

where Pr{r = /} comes from (101) and I[T] is an indicator function that is 1 if T is a true

statement and otherwise.

Looking closely at (122), one can see that the distribution for C is a mixed

distribution with a positive probability for C = — l//x. The need for plus functions to

describe the mixed distribution of C makes (122) not all that useful for determining the

expected values of transformations of C. It is much easier to first condition on r, then

determine the expected value of a transformed C, and then uncondition.

6. Formulas for the Expected Value of Transformations of C

Determining the expected value of C and transformations of C using (122) can

be difficult because of the plus functions. By conditioning on r, one can take advantage

of the fact that E[/(C)] = E[E[/(C)
|
r]] and work with the conditional distribution for C.

The first step in determining expected values is to determine dFc| T (x).

Working with (115), (116), and (122), one can derive the following expressions:

dFC
|

T=1 (x) = I[x = -l//i], (123)

0, for x < -2/V;
dFc|T=2 (x) " "*'

(124)

fie-^x+2^\ for x > -2/fi

and

d*C|T=/>2(*) = <

0, for x < -l/n;

//(l - cl
)iie-'4*+l/*) + ci^ix + l/fi)e-^

x+l^\ for x > -////.

(125)

Note that (124), which is actually a special case of (125), is displayed for clarity.

One can determine the conditional expected values for C given r by integrat-

ing (123) and (125) over the ranges where dF^|T (x) is non-zero. Doing these operations,

with the change in variable of integration of y = x + ////, yields the following conditional
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expected values:

E[C|r = l] = —

,

(126)

E[C | r = 2] = — , and (127)

E[C|r = />2] = —(l-l-ci) (128)

Unconditioning then entails summing the conditional expected values from (126)

and (128) over the possible values for r while weighting them by the probabilities for r = /

i.e.,

E[C) = £E[C|r = /]Pr{r = /},

/=i

= — Pr{r=l} + f;—(/-l-c,)Pr{r = /},

This is the final result. While no closed-form solution is apparent for (129), it is possible

to determine E[C] directly from E[D] and E[r] as Iglehart and Lewis (1979) did in calcu-

lating (100). Their method though provides only the expected value of C . The expression

for E[C] in (129) is useful in that it provides the basis for determining the expected values

of transformations of C.

One can use (123) and (125) to derive an expression for the expected value of

transformations of C i.e., g{C) where g(x) is a continuous transformation that is well defined

for — oo < x < oo. To demonstrate the method for determining an expression for E[^(C)],

let g(x) be xp . Since C can be negative or zero, the power parameter p must be restricted to

being a positive even integer. Using (123) and (125), one can write the general expressions

E[C
I

r = 1] = (y)' (130)

and
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{(1 - c/)xpe-^x+'/^ + cifi
2
xp{x + //^)e-^x+'/")} da:,

l/n *• i

=
J°°

{(1 - c,)(y - ///i)pc-w + clfx
2
(y - l/fifye-™} dy. (131)

After integrating and a bit of manipulation, one can write the conditional expected value

in (131) as

E[C»
|
r = / > 2] = (±Y I (1 - d) Y]L-Vf (

P) F~ij\ + c^i-iy (
P) F-*[j + 1)! 1

v/i/
{ j=o V/ j=o \J / )

(132)

where p is an even integer and c\ is from (119).

To get the unconditional expected value, one must now sum (131) and (132) with

respect to the probability mass function for r. Thus one can write the expected value of

Cp for positive even-integer p as

nCp
) = (y)Vr{r = l})

^)

P

E|{(i- co(-iy0^! + c
/(-iy0/-a+ {-)

Depending upon the probability mass function for r, no closed-form solution may be ap-

parent. In some cases, one can use direct computation to get an approximate answer.

Now that expected values of some nonlinear controls can be obtained, the next

section will use a simulation to evaluate the performance of these controls in reducing the

variance and mean square error of the regenerative estimate of the stationary waiting time

an M/M/l queue.

C. NONLINEAR CONTROLS FOR THE STATIONARY WAITING TIME

IN AN M/M/l QUEUE

A simulation experiment was conducted to determine the performance of several non-

linear controls at reducing the variance and mean square error of the regenerative estimate

of the stationary waiting time in the M/M/l queue. The major factors in the simulation

experiment were the traffic intensity p, the form of the nonlinear control and the number

of cycles, n, used to compute W'(n) using (94).
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The initial traffic intensity was p = .5. It was then increased to p = .99. The standard

for judging effectiveness was the linear control of C = d — r/p from (95) where D comes

from (97). Several nonlinear controls were examined for p = .5 and only the most effective

were examined at p = .99.

The estimators used in the experiment are as follows:

• W'(m,n) is the controlled estimate of the stationary waiting time. The m and n

indicate that m independent estimates W'An), for j = l,...,m, from (94), were

averaged to get the estimate as in (92).

• s^z- is the estimate of the variance of W'(m,n). This is calculated as variance of
W\m,n)

the m estimates Wj(n) divided by m as in (93). The standard deviation (SD) is the

square root of s
2^-
W\m,n)

• The mean square error (MSE) is estimated as the sum of sic- and (W'im.n) —
W\m,n)

E[W]) 2 where E[W) is the known expected value for W given in (90).

The experiment showed that a nonlinear control could be more effective than the linear

control at a traffic intensity of .5. However, when the traffic intensity was increased to .99,

the nonlinear controls were either no more effective than the linear control or had too much

bias to be useful.

1. The M/M/l Queue with Traffic Intensity of .5

The first part of the experiment consisted of simulating an M/M/l queue with a

traffic intensity of .5. The interrarrival and service rates were chosen so that the traffic inten-

sity was .5 and the expected value for W, computed using (90), was 10. The M/M/l queue

was simulated until 120,000 total busy periods or cycles ^re completed. The data was

collected for calculating Y , r and D for each busy period.

Breiman and Friedman's (1985) ACE program, discussed in Chapter II, was used

to initially assess the performance of the linear control vis-a-vis the best nonlinear control,

the control being a function of C. Iglehart and Lewis (1979) reported that the linear

control reduced the standard deviation of the crude estimate by about 70%, or equivalently,

achieved an R2
of .54. When the ACE program was given C = D — r/p as the independent

variable and Z = Y - tt as the dependent variable, the estimate of R2 was between .58

and .76 depending upon the sample. The fact that the estimated R2
s from ACE were higher
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than that obtained by the linear control indicated that using a nonlinear control instead of

the linear control could increase the obtained variance reduction.

Figure 35 is a bivariate scatterplot, using data from one sample of 5,000 busy

periods, which typifies the untransformed relationship between Z = Y — rr, on the y axis,

and the linear control C = D — r/p on the x axis. When looking at the graph one sees less

than 5,000 points. This is due to two reasons. The first is the printer resolution. The second

is the fact that a single dot represents all the busy periods that have only one customer;

for those busy periods the control value for the x axis is - 1/p and the Z value for the y

axis is — r. This single dot can represent a large number of points since the probability

that a busy period has just one customer is 1/1 + p. For p = .5 the probability that a

busy period has only one customer is .66. One can see in Figure 35 that there is a "cloud"

of points in the lower right representing the busy periods with few customers. The highly

scattered points on the left side of the graph represent the busy periods where there are

many customers.

Figure 36 shows the transformation ACE determined for maximizing the corre-

lation between the Z data and the transformed control data in Figure 35. In this figure

the y axis contains the transformed C values and the x axis contains the original C values.

On the left side of Figure 36 the transformation looks linear. However, on the right side of

the graph, where the transformation curves back up, the approximating transformation is

clearly nonlinear.

In general,the graphs of the ACE approximating transformations for C had the

distinct parabolic style curvature shown in Figure 36. In an effort to get a transformation

of C = D — r/p to mimic the parabolic shape there were essentially two approaches. The

first approach was to transform C. The second approach was to transform D individually.

Since D is a nonnegative random variable and its distribution is more tractable than that

of C, more transformations of D were possible. In short, the following nonlinear controls

were compared to the baseline linear control, C = D — r/p, for controlling the top of the

ratio estimator (94):

1. h(Q) = C + C2
,

2. h(C,p)=^-r/p,
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Figure 35. A bivariate scatterplot of Z versus C = D — r//z for a sample of 5,000 busy

periods of an M/M/l queue with p=.5.
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Figure 36. A bivariate scatterplot of the ACE transformed C versus C = D — r/fi for a

sample of 5,000 busy periods of an M/M/l queue with p=.b.
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3. h(C,p) = (D- rlit) + {^f- - r//x), and

4- h(C,p) = (^ _ Tff^ + (££=! _ r/^
where Z>i and D2 in the fourth control are formed as in (111). Control 1 is actually still a

linear control (although a multiple linear control) as the exponent was fixed at 2 beforehand.

Control 2 is the simplest of the nonlinear controls, with Controls 3 and 4 becoming more

complex.

The four nonlinear controls above were individually used in the control function

as in (99) to calculate a nonlinearly controlled regenerative estimate. Table 3 contains the

estimates of the standard deviation associated with the crude estimate, the linearly con-

trolled estimate and the four nonlinearly controlled estimates. Each estimate was based on

the same sample of 120,000 busy periods or cycles. The table shows the standard deviation

estimate by type estimator and by the number of busy periods, n, used to compute W'An).

The number in () is the ratio of the controlled standard deviation to the crude standard

deviation. This is the measure of variance reduction used by Iglehart and Lewis (1979).

Table 3 shows several things. First, for this estimate, the linear control did better

than expected. For n=4000, the standard deviation of the linear control estimate was 57% of

the crude estimate as compared to the 68% reported by Iglehart and Lewis (1979). Among

the nonlinear controls, the second control above had the smallest estimates of the standard

deviation; for n=2000 s— = .059 and for n = 4000 s— = .05816. These estimates
W\m,n) W\m,n)

translate to variance reduction R2,
s of .73 and .76 respectively, values which are close to

the maximum ACE estimates.

One can also see in Table 3 that the addition of C2 to the linear control function

did not improve the estimates over the linear control C by itself; in fact the estimated

standard deviation was larger for n = 500, 1,000 and 2,000. This lack of improvement

may be due in part to the variance inflation that results from having to estimate a second

coefficient as discussed in Section B.3 of Chapter II. As will be discussed again in Sec-

tion A.2. a, a more important reason is probably the impact of the small sample bias of the

control function increasing the bias of the controlled estimate. The tendency of a control

function to affect the bias of the controlled estimate is a function of the variance of the

control function. Since Control 1 contains C2
in addition to C, it has much higher variance
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than the baseline linear control of just C. Thus Control 1 is much more likely to be further

from its asymptotic mean of zero than the baseline linear control. This small sample bias

can affect the bias of the controlled estimate. The point is that one would predict that

Control 1, with its additional term, would be more effective than the baseline linear control

and in fact Control 1 is less effective. This is one of the characteristics of the controlled

ratio estimator discussed in Section A.3.

In summary, Table 3 shows that based on a single estimate, the more complicated

Controls 3 and 4 did no better than Control 2, and Control 2 reduced the standard deviation

more than the linear control.

Control Standard Deviation (% of Crude)

Estimator n=500 n=1000 n = 2000 n=4000

Crude .11698 .11366 .11390 .11987

Lin Con .07117 (60) .07489 (66) .06885 (60) .06815 (57)

1 C + C2 .08157 (72) .08585 (76) .0794 (68) .06628 (55)

2 DP .06214 (52) .06543 (57) .05900 (52) .05816 (49)

3 D + D*> .06340 (54) .06736 (59) .06013 (52) .06355 (53)

4 DVl .06186 (52) .06236 (55) .06011 (52) .06748(56)

TABLE 3. Estimates of the standard deviation of W'(m,n) for various n from 120,000

busy periods of an M/M/l queue with traffic intensity of .5. The number in

() is 100 times the ratio of the estimated controlled standard deviation to the

crude estimated standard deviation.

In order to evaluate the bias characteristics of the estimates as well as their

standard deviations, Table 4 shows the estimated mean square errors associated with the

standard deviation estimates in Table 3. Again Control 2, Dp does better than the linear

control at reducing the mean square error and none of the more complex controls do any

better. Control 1, C + C2
, actually increases the mean square error due to severe bias

problems in W'(m,n). As n increases to 4,000, the inflation lessens but does not go away.

Tables 3 and 4 show an estimate of the standard deviation and mean square error

for each control and n combination. To get estimates of the precision of the estimates of
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Control Estimated Mean Square Error (% of Crude)

Estimator n=500 n=1000 n = 2000 n=4000

Crude .06303 .08313 .09369 .10040

Lin Con .00664 (11) .00611 (7) .00565 (6) .00734 (7)

1 C + C2 .77137 (1223) .59955 (715) .43578 (465) .38132 (379)

2 D? .00468 (7) .00454 (5) .00399 (4) .00490 (5)

3 D + Dp .01005 (7) .00456 (5) .00411 (4) .00605 (6)

4 D? .00422 (7) .00446 (5) .00520 (6) .01890 (13)

TABLE 4. Estimates of the mean square error of W'(m,n) for various n from 120,000

busy periods of an M/M/l queue with traffic intensity .5. The number in ()

is 100 times the ratio of the controlled estimated mean square error to the

crude estimated mean square error.

the mean square error and variance reduction, the 120,000 busy periods were separated into

M independent "replications" so that multiple W'(m,n) could be calculated. For n — 500,

the 120,000 busy periods separated into M = 12 replications; for n = 1000, 2000 and 4000,

they were separated into 12, 10, and 5 replications respectively.

Figure 37 contains triples of boxplots of the estimated mean square error for each

replication's W'(m,n) for the linear control and two of the nonlinear controls for different

sample sizes n. Figure 38 contains triples of boxplots of the estimated variance reduction,

computed as 1 — s^c- ls%r , for each replication's W'(m, n) for the linear control and
W'(m,n) W(m,n)

two of the nonlinear controls for different sample sizes n. For each triple of boxplots, the

left one is the linear control, the middle is Control 4 an •' l

ie right boxplot is Control 2.

Figure 37 shows that as n increases to 4,000, the estimated mean square error decreases

for each controlled estimate. It also shows that for each n, Control 2, Dp
, tends to have a

lower estimated MSE than the other controls.

Figure 38 shows that the nonlinear Control 2 is generally more effective at reduc-

ing the variance than the linear control. Additionally, the mean of the estimated variance

reduction, .736 for n=4000, is close to .76, the largest estimated R 2 estimated by ACE.

Unfortunately, as will be shown in the next section, when the traffic intensity increases to

.99, the nonlinear control is no more effective than the linear control.
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2. The M/M/l Queue with Traffic Intensity of .99

Another simulation experiment was conducted with the parameters chosen so

that the traffic intensity would be .99 while the expected value of W remained at 10. The

simulation was run until 200,000 busy periods were completed. In addition to the linear

control, each of the four controls listed previously was evaluated for p = .99. The first

part of the evaluation consisted of using the 200,000 busy periods to estimate W'(m, n), its

variance and mean square error, for different n where m X n = 200,000. None of the four

controls did appreciably better at reducing the variance and means square error than the

linear control of just C. Control 1 had problems with bias and Controls 2, 3, and 4 were

ineffective at increasing the correlation of the transformed control with Z.

a. The Performance of Control 1

As one would suspect, Control 1 always had a higher estimated correlation

with Z than did the linear control of just C. As an example, when the 200,000 busy

periods were sectioned into 20 sections, containing 10,000 busy periods each the estimate of

the squared correlation between Z and the baseline linear control averaged .61 for the 20

sections; for Control 1, the average of the estimated square correlations was .89.

Unfortunately, the large increase in correlation for Control 1 did not translate

into variance reduction or mean square error reduction. Table 5 shows the estimate of E[W],

its estimated standard deviation and estimated mean square error as a function of n and the

type of estimate for the crude, the linear control with C and Control 1. By comparing the

rows for the standard deviation, one can see that while the Control 1 estimated standard

deviation is less than the crude's estimated SD, it is generally larger than the baseline linear

control's estimated SD.

The real difficulty with Control 1 can be seen by comparing the rows in

Table 5 for W(m,n) with W'(m,n) and the associated rows for the estimate of the mean

square error (MSE). The Control 1 estimate for W'(m, n) is clearly biased with its estimates

of 10.4, 111.4, 11.8 and so on. As for the M/M/l queue with traffic intensity .5, this bias

causes the estimates of the mean square error to be greater for Control 1 than the crude

estimate for n greater than 1000.

The source of the bias in the Control 1 estimates can be seen when the indi-

vidual estimates W'{n)- are examined. For example, consider the 20 estimates ^'(10,000),
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j = 1, ... ,20, that are used to compute the four estimates for n = 10,000 in the right-hand

column for Control 1. These are the estimates described above in the first paragraph of

this section that had an average estimate of squared correlation between Z and Control 1

of .89. However, 11 of the 20 estimates were further from the true value of 10 than their

corresponding linear control C estimates and 8 of the 20 were further from 10 than their

corresponding crude estimates. The most biased Control 1 estimates occurred when the

crude estimate was at an extreme value. For crude estimates of 5.97, 7.11 and 17.26, the

Control 1 estimates were 12.00, 17.31 and 12.18 respectively, despite having R2 estimates

from the regression that estimated the coefficients of .82, .94 and .95 respectively. These

highly biased estimates for Wj(10,000) not only increase the bias of W'(m, n), they increase

its estimated variance as well.

The high bias in the few individual W'{n) can be attributed to bias in their

control functions. While the estimate C was close to the true expected value of C for these

sections, the estimate of C2 was not close to the true expected value despite a section size

of 10,000. This can be attributed the higher variance associated with estimates of second

moments such as C2
. The highly skewed nature of the distribution for C for a traffic

intensity of .99 only serves to exacerbate the problem. In short, despite the fact that its

estimated correlation with Z is much greater than for the linear control C, Control 1 is not

as effective as using C as the linear control of the top because of the bias problem.

Table 5 also demonstrates that one can not rely solely on the reduction on

the standard deviation as a measure of effectiveness of a control. The s'/s rows contain the

ratio of the estimated standard deviation of the controlled estimate to that of the crude

estimate. The row for Control 1 shows that Control 1 can be effective for this one sample

at reducing the standard deviation through an appropriate choice of n. For n = 4000,

Control 1 reduces the standard deviation of the crude estimate to 51% of its original value.

However, at the same time, the bias of Control 1 causes a 383% increase in the estimate

of the mean square error. Thus when evaluating controls for biased estimators, one must

consider the effect of the control on the estimated mean square error in addition to its effect

on the estimated standard deviation.
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Crude

n 500 1000 2000 4000 5000 7000 8000 10,000

W(m,n) 7.54 8.55 9.32 9.77 9.88 9.98 10.0 10.0

S.D. .248 .336 .405 .485 .455 .526 .527 .550

MSE 6.10 2.50 .621 .287 .220 .277 .279 .304

The Baseline Linear Control (C)

W'(m,n) 8.09 8.78 9.49 9.81 9.77 9.97 9.99 9.93

S.D. .189 .232 .254 .308 .223 .268 .282 .228

MSE 3.67 1.54 .323 .133 .102 .072 .079 .057

s'/s .76 .69 .63 .64 .49 .51 .54 .41

Control 1 (C + C2
)

W'{m,n) 10.4 11.4 11.8 11.0 11.0 10.9 10.7 10.8

S.D. .233 .256 .274 .248 .275 .318 .277 .402

MSE .205 2.06 3.31 1.10 1.03 .878 .502 .762

s'/s .94 .76 .68 .51 .60 .60 .53 .73

TABLE 5. Section estimates based on 200,000 busy periods for the stationary waiting

time in an M/M/l queue with traffic intensity of .99 for different sample

sizes n.
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b. The Impact of the Choice of n

Table 5 also shows the importance of selecting the proper number of busy

periods n to use to calculate W'(n). Iglehart and Lewis (1979) chose n = 2000 for their

estimates. They noted that for p = .99 and n = 2000, the baseline linear control estimates

W'{n)- were nonnormal and W'(m, n) had substantial bias. They recommended that n be

increased beyond 2000 to alleviate these problems.

The rows for the baseline linear control of C in Table 5 indicate that using

n greater than 2000 can reduce the bias of W'(m,n) as well as the estimate of its standard

deviation. For each n > 4000, the estimates of W'(m,n), namely 9.81, 9.77, 9.97, 9.99,

and 9.93, are clearly closer to the true value of 10 than the n = 2000 estimate of 9.49.

Keeping in mind that, for a fixed total of busy periods, as the n of W'(m,n) increases the

m necessarily decreases. Thus some of the estimated standard deviations of the higher n

were larger than for n = 2000. However, the standard deviations were small enough so

that the estimates of the mean square error range from 41% down to 17% of the n = 2000

estimated mean square error for the n = 2000 crude estimate.

One reason that the estimates of the standard deviation for the baseline

linear controlled estimates did not increase with decreasing m is that the control became

more effective at reducing the standard deviation. The ratio of controlled to crude estimates

of the standard deviation, namely s'/s, for the baseline linear control at n = 2000 was .63;

for n = 5000 it dropped to .49, and at n = 10,000 the s'/s ratio was .41.

Table 5 also shows the impact of the choice of n on a single sample of

200,000 busy periods. It indicates that choosing an n greater than 2000 when p = .99 can

improve the overall effectiveness of the control at reducing the estimated mean square error

of W'(m,n).

c. The Performance of the Nonlinear Controls 2, 3 and 4

Controls 2, 3 and 4 all depend upon transformations of D to increase their

correlation with Z. For the M/M/l queue with traffic intensity .5, Control 2 was able to

increase its correlation with Z over the linear control of just C. For that simulation, with

p = .5, the expected value of D was 2.22 as compared to an expected value of C of —15.5.

Raising D to a power could have a definite effect on the shape of the transformed C.

For p = .99 the expected value of D was only .025 as compared to an expected value for C
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of -10.02. Raising D to a power or even using an exponential transformation of D had

minimal effect on the shape of the transformed C. Thus for p = .99 the dominant factor in

the control was the effect of r, and D had little influence. This explains why Controls 2, 3

and 4, which involved transformations of D, were only as effective as the linear control of

just C,

d. Controlling the Bottom

Since transformations of D were ineffective, that left only C and C2
as possi-

ble controls. Controlling the top using Control 2, with C2
, had unavoidable bias problems.

Another alternative is to control the bottom. Controlling the bottom is essentially the

same as controlling the top as in (94). The difference is that the control function H(C,6)

is applied to r on the bottom of the ratio instead of to Y on the top. It was hoped that by

putting the control function on the bottom, its bias would not affect the ratio as badly as

when it was used on the top. Unfortunately, the opposite effect occurred. Using Control 1

on the bottom yielded estimates that were more biased and more variable than the estimates

produced by controlling the top. Thus controlling the bottom was not an improvement over

controlling the top.

e. Controlling the Ratio

Another alternative to controlling the top is to control the ratio. Controlling

the ratio involves using the control function to control the already formed ratio estimate.

The thought behind controlling the ratio was that averaging the control function before

applying it would reduce the bias of the control function, especially for Control 1, and thus

reduce the bias of the controlled estimates.

Controlling the ratio is analogous to the str. it-forward control of the mean

in that the actual estimates W{n)- for j, . .
.

,m are controlled. Controlling the ratio is also

analogous to control of a quantile estimate in that the estimates to be controlled as well as

the control must be computed using data from n of the individual busy periods. Controlling

the ratio uses the following expression to compute the controlled estimate:

i 171

W'(m,n)= —Y
.7=1

mn)
J
-^f:H{C1,e)n

,=i

(134)
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Note that the control function is averaged prior to controlling the ratio. Thus one can use

Control 1 with its known expected value for (C2
) and does not have to determine E (Cj .

Three linear controls were evaluated for controlling the ratio. They were the

baseline linear control of C, a control using just C2 and Control 1 namely C + C2
. The

most effective control in terms of both variance reduction and mean square error was the

control of C2
.

In order to compare the ratio control with C2 against the control of the top

with C, the 200,000 busy periods were separated into eight independent "replications" of

25,000 each. Controlled estimates Wk(m,n) and W'k(m,n) were calculated for various n

for each of the k = 1,. . . ,8 replications. Associated with each point estimate of W was an

estimate of the standard deviation and the mean square error of the point estimate.

Table 6 contains the averages of the eight estimated mean square errors (and

their standard errors) along with the averages of the ratio of the standard deviation of the

controlled estimate to the crude estimate (and their standard errors). The impact of the

ratio control can be seen by comparing the averages of the s'/s ratios for the ratio control

of C2 to the averages for the top control by C. For each n the ratio control reduces the

estimate of the standard deviation much more than the top control. However,by comparing

the averages of the estimates of the mean square error, one can see that the average for

the top control is generally smaller than that for the ratio control. The improvement in

the variance reduction by the ratio control is offset by its bias problems. Thus the linear

control of the top appears to create a better estimate when one considers both the variance

reduction and the mean square error.

Unfortunately, for an M/M/l queue with p = .99, the nonlinear transforma-

tions of D were no longer more effective than the linear control of the top. While the use

of the transformation C2 improved the reduction of the estimate of the standard deviation

over using just C, the resulting bias problems, even when used as a ratio control, negated

its effectiveness. Thus the most effective control for reducing the estimates of the standard

deviation and the mean square error was the linear control of the top with C.

It appears that increasing n beyond 2,000 for the linear control, for a fixed

total number of busy periods, reduced the estimated mean square error for the controlled

estimate over using the smaller n = 2,000. While almost any reduction is useful for resource
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Controlling the Top with C

n 2000 4000 5000 7000 8000

MSE (se) 1.1 (.22) 1.6 (.41) .76 (.18) 1.18 (.43) 1.14 (.42)

s'/s (se) .69 (.06) .75 (.11) .57 (.05) .53 (.08) 1.01 (.33)

Controlling the Ratio with C2 {C + C2
)

MSE (se) 1.51 (.56) 1.27 (.57) 1.54 (.68) 1.53(1.15) 1.53 (.68)

s'/s (se) .49 (.07) .49 (.07) .45 (.08) .40 (.11) .58 (.09)

TABLE 6. Means and standard errors for estimates of the mean square error and the

ratio of controlled to crude standard deviations for estimates of the stationary

waiting time from 8 replications of 25,000 busy periods each of an M/M/l
queue with traffic intensity of .99.

intensive simulations such as a high traffic intensity queues, one would like to do better.

The next section discusses a method for exploiting the special characteristics of the control

of the top of the ratio estimator in order to drastically reduce the estimated mean square

error of the estimate of the stationary waiting time.

D. AVERAGE REGRESSION-ADJUSTED CONTROLLED ESTIMATES

FOR REGENERATIVE SIMULATIONS.

Average regression-adjusted controlled regenerative estimates result from using the

regression-adjusted estimation technique of Heidelberger and Lewis (1981) in the context of

controlled regenerative estimates. They developed the technique in the context of a generic,

uncontrolled, regenerative simulation. The first subsection will present the technique in

terms of the regenerative estimate of the stationary waiting time in a queue.

Section D.l, will briefly describe Heidelberger and Lewis's (1981 average regression-

adjusted estimator. Section D.2, will discuss the incorporation of controlled estimates into

the regression-adjusted technique and the impact using of ridge regression in lieu of least-

squares regression. The techniques will be demonstrated using data from simulations of an

M/M/l queue and an M/G/l queue. The data will show that by combining the techniques of

regression-adjusted regenerative estimates and the linear control of regenerative estimates,
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one can produce an estimate with substantially smaller variance and mean-square error

than by either technique alone.

Section D.3 will discuss the impact of using independent average regenerative esti-

mates in the regression-adjusted technique. The data from the M/G/l queue simulation

will be used as an example. It shows that the estimates produced by using fewer indepen-

dent average regenerative estimates tend to have larger estimated mean square error than

the estimates produced by using the standard technique with more, correlated, average

regenerative estimates.

1. The Average Regression-adjusted Regenerative Estimate

Heidelberger and Lewis (1981) proposed the regression-adjusted technique in or-

der to improve the analyst's ability to reduce the bias of a regenerative estimate (re) while

assessing the normality/symmetry of the regenerative estimate. Their regression-adjusted

technique exploits two aspects of the structure of regenerative simulations.

The first aspect of the structure is the i.i.d. nature of the busy periods. Since

the busy periods are i.i.d., one can section a single simulation of N = m x n busy periods

into m i.i.d. simulations of n busy periods each. Thus one can average the m estimates

of E jy(n) , namely Wj (n) for j — 1, . . . ,m, to get the average regenerative estimate (the

are(mk, n^) of Heidelberger and Lewis 1981). The average re is nothing more than W(m, n)

from (92). Heidelberger and Lewis's (1981) idea was to compute estimates W(m,n) for

different values of n. Let nk, for k = 1, . . . ,p, represent p different values of n. If for a given

simulation of N busy periods one estimates W(m,k,nk) for each of the p values of n^, one

gets p unbiased but correlated estimates of E W(njt) .

The second aspect that the regression-adjusted technique exploits is the known

bias structure of the regenerative estimate i.e.,

E[w(nj\ =0o + 1 /n + p2/n
2 + -- + d/n

d + --.. (135)

Estimating the coefficients in (135) to eliminate some of the bias in the regenerative estimate

leads one to the regression-adjusted regenerative estimate.

Let WTa,(N) represent the regression-adjusted regenerative estimate of the station-

ary waiting time based on a simulation of N busy periods (the rare(N) of Heidelberger and
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Lewis 1981). The estimate Wt&(N) is defined as the estimate of (5q in (135). To estimate

/?o, the p average regenerative estimates W^(m^,n^) are used as dependent variables in an

unweighted least-squares linear regression on (3o + fli/n + (- /?d/n
d

. The regression can

be to order rf=l, 2, or 3 or more. For a given order d, the regression-adjusted regenerative

estimate Wra,(N) is unbiased out to terms of order l/nd .

One needs an estimate of the variance of the regression-adjusted estimate though.

Given that one can calculate a regression-adjusted regenerative estimate from a simulation

of N busy periods, the final step of obtaining a variance estimate requires M independent

replications of the regression-adjusted regenerative simulation. Thus in essence, one runs

the simulation until a total of M X N busy periods are completed. Let Wra(M, TV) denote

the averaged regression-adjusted regenerative estimate formed from M replications ofN busy

periods each (the arare(m, n) of Heidelberger and Lewis, 1981). The estimate Wt&(M, N) is

simply the average of the M independent regression-adjusted estimates. Since Wra(M, N)

is a sample mean, one can also estimate the variance of Wra(M, N) as the sample variance

of the M regression-adjusted estimates divided by M .

An immediate concern with forming average regression-adjusted regenerative es-

timates is determining appropriate values for the various parameters such as M , N, p, the

nk and d. Heidelberger and Lewis (1981) describe a graphical protocol which can assist

the analyst in selecting some of these values. For the remainder of this chapter, assume

that the total number of busy periods in the simulation, namely M X N, has been set at

200,000. The next subsection will discuss the methods for using the regression-adjusted

technique with controlled regenerative estimates and the impact of ridge regression in lieu

of least-squares regression.

2. Using the Regression-adjusted Technique with Controlled Estimates

Average regression-adjusted controlled regenerative estimates result from applying

the regression-adjusted technique to controlled re's. The overall procedure is the same as

described in the last section, Section D.l. However, instead of using W(n) to calculate the

average re, one uses W'(n) to calculate the average controlled re. The notation for the

average regression-adjusted controlled regenerative estimate is simply W'ra,(M, N).
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Note that the type of control is important in determining the effectiveness of the

combination. If one uses a control function that is unbiased for all sample sizes, and not

just asymptotically unbiased, then the average of the controlled re's will tend to be almost

identical to the average of the crude regenerative estimates. Thus the regression will yield

virtually the same estimates for Wra(iV) and W'ra(JV) and their associated estimates of

their mean square error and all will be for naught. However, if one uses a control function

that is only asymptotically unbiased, the effects of the small sample bias may be such that

the average re's are different for the controlled re's and the crude re's. In this case, the

regression will yield different estimates for Wtsl(N) and W'ra(iV) and the estimated mean

square error for the average regression-adjusted controlled estimate can be much lower than

for the average regression-adjusted (crude) estimate. This is especially true when one is

controlling the top of a ratio estimator.

A potential difficulty with the regression-adjusted technique is the tendency for

the least-squares regression matrix columns, composed of A; rows of 1, 1/n, 1/n2
, . . ., 1/n , to

be collinear. The collinearity can increase the variance of the regression-adjusted regenera-

tive estimates. Johnson and Lewis (1989) presented results demonstrating that using ridge

regression in lieu of least squares regression can diminish the impact of the collinearity

and produce estimates with lower estimated mean square error. Ridge regression devel-

oped from the realization that although least-squares estimators are the minimum variance

among linear estimators, "they are not in general minimum-mean-square-error estimators

in that class." (Kendall and Stuart, 1979, p.92) In the examples that follow, average ridge

regression-adjusted estimates were computed using the ridge regression technique of Demp-

ster, Schatzoff and Wermuth (1972).

a. An Example: Estimating the Stationary Waiting Time in an M/M/l

Queue

The 200,000 busy periods from the previous simulation of the M/M/l queue

with p=.99 was used to evaluate the performance of the regression-adjusted controlled re-

generative estimate, W'ra,(M,N), against both the section controlled estimate W'(m,n)

and the average regression-adjusted crude estimate Wt&(M,N). Other factors in the eval-

uation were the degree, d = 1 and d = 2, the type of regression, least-squares versus ridge
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regression, and JV, the number of busy periods used for computing each regression-adjusted

controlled estimate.

For the remainder of this chapter the term "best" estimate will refer to

the estimate which has the smallest estimated mean square error (MSE). Unfortunately,

resource limitations precluded running multiple replications of 200,000 busy periods so that

the variability of the estimates of the mean square error could be determined. Thus the

judgement of "best" is based upon a single estimate of the mean square error. However,

while the data will not be able to establish which particular parameters are optimal, it

will establish trends that demonstrate the effectiveness of using the regression-adjusted

technique in combination with controlled regenerative estimates.

Table 5 on Page 129 shows the best section crude estimate was W(40,5000)

with an estimated MSE of .220. It also shows the best sectioned controlled estimate was

W(20, 10000) with an estimated MSE of .057.

Table 7 and Table 8 contain average regression-adjusted estimates of the

stationary waiting time, crude and controlled respectively, along with estimates of their

standard deviation (SD) and mean square error (MSE). Both tables indicate that for a

fixed number of busy periods equal to M X N , the choice of large M versus large N is

important. In both tables, the estimates of the MSE in the row for M = 8 are each lower

than the estimates in the rows for M = 5 and M = 4. This indicates that it is more

important to have multiple regression-adjusted estimates (large M ) than to have many

regenerative estimates for forming the average regenerative estimates used in the regression

(large N).

A second trend in the two tables is that fc >oth the least squares and the

ridge regression estimates, the degree d = 1 regressions produce better MSE estimates than

the degree d = 2 regressions. For example, in the M = 8 row in Table 7, the least squares

estimate of the MSE goes from .292 to .457 as d goes from 1 to 2 and the ridge regression

estimated MSE in Table 7 goes from .265 to .267. These estimates also show that increasing

the degree of regression from 1 to 2 caused a much larger increase in the estimated MSE

for the least square regression estimate than for the ridge regression estimate.

Finally, in both tables the ridge regression at degree d = 1 produced the best

average regression-adjusted estimate. For the average regression-adjusted (crude) estimate,
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the M = 8 row in Table 7 had the best estimated MSE of .265. This was larger than the best

section crude estimate from Table 5 of .220. However, the best average regression-adjusted

linearly controlled estimate, the M = 8 row in Table 8, had an estimated MSE of .017.

This estimate is just 8% of the best sectioned crude estimate. The average (least-squares)

regression-adjusted estimate from the same row has an estimated MSE of .02, again less

than 10% of the sectioned crude estimate.

In summary, for this simulation of the M/M/l queue with traffic intensity of

.99, combining the regression-adjusted technique with the technique of linearly controlled

regenerative estimates produced dramatic decreases in the estimated mean square error for

the estimates of the stationary waiting time. Next, the same techniques will be applied to

estimates of the stationary waiting time from a simulation of an M/G/l queue.

b. An Example: Estimating the Stationary Waiting Time in an M/G/l

Queue

As a second example of the use of the combination of the regression-adjusted

technique with the controlled regenerative estimates, an M/G/l queue was simulated for

200,000 busy periods. The same data, namely Y{, r,-, and D{ for i = 1,. .. ,200,000 was

collected in order to produce estimates of the stationary waiting time. The service times

for the M/G/l queue were distributed as independent variates from a Gamma distribution

with shape parameter 1/2. The means of the Gamma distribution and the Exponential

interarrival time distribution were selected so that known expected value of the stationary

waiting time was again 10.0 and (due to resource constraints) the traffic intensity was .975.

The control used to compute the controlled regenerative estimates was of the

same form as the baseline linear control used for the M/M/l queue, namely C from (95).

The expected value of C for the M/G/l queue was computed using methods suggested by

Iglehart and Lewis (1979). Average regression-adjusted controlled estimates for the station-

ary waiting time in an M/G/l queue were calculated and compared against section crude

estimates, section controlled estimates and average regression-adjusted (crude) regenerative

estimates. Table 9 contains the estimates from the section crude and controlled estimates,

namely W(m,n) and W'(m,n) calculated using (92) and (94), along with their associated

estimated SD and MSE. 8 Comparing Table 5 with Table 9 one can detect several trends.

The first is that the W(m,n) and W'(m,n) estimates for the M/G/l queue in Table 9 tend
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n= 500 1000 2000 4000 5000 7000 8000

M, N

Least Squares Ridge

d=\ d = 2 d=\ d = 2

8, 25,000 Wt<l(M,N) 10.2 10.4 10.1 10.2

S.D. .501 .509 .500 .490

MSE .292 .457 .265 .267

5, 40,000 Wt*(M,N) 10.1 10.4 10.1 10.2

S.D. .593 .633 .589 .606

MSE .369 .532 .358 .415

4, 50,000 W™{M,N\ 10.1 10.4 10.1 10.3

S.D. .607 .645 .600 .620

MSE .387 .548 .379 .455

TABLE 7. Average regression-adjusted crude estimates based on 200,000 busy periods

for the stationary waiting time in an M/M/l queue with traffic intensity

of .99.

n= 500 1000 2000 4000 5000 7000 8000

M, N

Least Squares Ridge

d= 1 d = 2 d= 1 d = 2

8, 25,000 W't<l(M,N) 10.0 10.2 10.0 10.1

S.D. .137 .149 .130 .140

MSE .020 .061 .017 .024

5, 40,000 W't<l(M,N) 10.03 10.2 10.0 10.1

S.D. .180 .209 .176 .201

MSE .033 .073 .031 .054

4, 50,000 W'ra(M,N) 10.0 10.2 10.0 10.0

S.D. .175 .220 .175 .230

MSE .032 .080 .031 .065

TABLE 8. Average regression-adjusted linearly controlled estimates based on 200,000

busy periods for the stationary waiting time in an M/M/l queue with traffic

intensity of .99.
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Crude

n 500 1000 2000 4000 5000 7000 8000 10,000

W(m,n) 8.28 9.01 9.41 9.69 9.80 9.91 9.91 9.94

S.D. .227 .280 .311 .359 .340 .353 .328 .288

MSE 3.02 1.07 .449 .244 .154 .134 .116 .083

Control by C

W'(m,n) 8.69 9.23 9.54 9.74 9.85 9.87 9.94 10.06

S.D. .164 .198 .200 .250 .245 .257 .251 .272

MSE 1.74 .631 .251 .136 .082 .082 .066 .078

TABLE 9. Section estimates based on 200,000 busy periods for the stationary waiting

time in an M/G/l queue with traffic intensity of .975.

to have more bias at the higher n than the estimates for the M/M/l queue in Table 5. At

the same time, the estimates of the standard deviation are generally smaller for the M/G/l

estimates than for the M/M/l estimates.

The combination of the increased bias and smaller standard deviation of the

M/G/l queue estimates can be seen in the estimates of the MSE. The estimated MSEs for

the M/G/l crude estimates are always smaller than those for the M/M/l queue. The best

crude estimate in Table 9 occurs for n = 10,000 with an estimated MSE of .083, much less

than the .220 at n = 5000 in Table 5. The best controlled estimate for the M/G/l queue

in Table 9 occurs at n = 8,000 with an MSE estimate of .066. This is greater than the best

M/M/l queue estimate of .057 at n = 10,000. Thus the linear control is less effective at

reducing the MSE of the estimate of the stationary waiting time for this simulation of an

M/G/l queue at p = .975 than it is for the simulation of the M/M/l queue at p = .99

Table 10 and Table 11 contain the estimates for the average regression-

adjusted estimates both crude and controlled. The tables have the same layout as Tables 7

and 8 with regard to the choice of M and N and the type and degree of regression.

The results for the M/G/l queue again show that the combination of the

regression-adjusted technique and the controlled regenerative estimates is effective at reduc-

ing the estimate of the mean square error for the estimate of the
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stationary waiting time. As with the M/M/l queue estimates in Tables 7 and 8, the

predominant factor for producing estimates with less MSE is the choice of M, the number

of regression-adjusted estimates that are averaged, versus N, the number of busy periods

used to produce each regression-adjusted estimate.

For the M/M/l queue in Table 8, the estimated MSE clearly increased as

M decreased. The row with M = 8 in Table 8 always had the best estimates. The tradeoff

between M and N is not as clear cut for the M/G/l queue. The smallest estimated MSE

for the crude estimate in Table 10 is .070, which occurs for both M = 8 and M = 5. In

fact three of the four estimates of the MSE are lower for the M = 5 row than for the

M = 8 row. When M drops to M = 4, the MSE estimates usually double. Thus even

though the larger M does not necessarily produce the best the average regression-adjusted

(crude) estimate, one does not want M to be too small. For the average regression-adjusted

controlled estimates in Table 11, the larger M, at M = 8, has the best MSE for each of

the other factors, although not always by much. Again the row for M = 4 clearly has the

highest estimated MSEs.

For the M/M/l queue, increasing the degree of the regressions also increased

the estimated MSE. For the M/G/l queue, Tables 10 shows a similar but less drastic effect

for the crude estimate. Increasing d to d = 2 tended to increase the estimated MSE.

However, for the controlled estimates, Table 11 shows that increasing d to d = 2 improved

the estimated MSE over d = 1.

For the M/M/l queue, using ridge regression improved the estimated MSE.

For the M/G/l queue, using ridge regression had mixed effects. While sometimes it in-

creased the MSE estimate over the least-squares MSE estimate, other times it decreased

the MSE estimate. For no combination of factors did using ridge regression have a dramatic

effect for the M/G/l queue.

In summary, the lowest section crude estimate of the MSE was .083, for

n = 10,000 in Table 9. The best section controlled estimate of the MSE was .066, for

n = 8000 in the same table. The best average regression-adjusted (crude) estimate had

an estimated MSE of .070, in two places in Table 10. While this is an improvement over

the section crude estimate, it is not as good as the section controlled estimate. However,

the best average regression-adjusted controlled estimate had an estimated MSE of .023.
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This is a reduction of the estimate of the MSE to 33% of the MSE of the best crude

estimate. While not as dramatic as the reduction to 10% achieved for the M/M/l queue,

combining the regression-adjusted technique with the controlled regenerative estimates still

produced substantial reductions in the estimates of the mean square error of the estimates

of the stationary waiting time.

The reductions achieved thus far were obtained by using the correlated

average-regenerative estimates in the regressions. The next section will discuss modify-

ing the regression-adjusted technique to use independent average regenerative estimates.

3. Using of Independent Average Regenerative Estimates

Heidelberger and Lewis's (1981) regression-adjusted technique described previ-

ously computes average regenerative estimates for different n using the same busy periods

over and over. Assume N is 12,000 busy periods and the set of rik for A; = 1,2,3 is

{500,1000,2000}. One would first use all 12,000 busy periods to compute the average re-

generative estimate W(24,500). Then the same 12,000 busy periods would be used in a

similar manner to compute W(12,1000) and 1^(6,2000). Since the average re for a given

n, say n = 500, uses the same data as the average re's for the other values of n, 1,000 and

2,000, the set of average regenerative estimates used as the dependent variables in the re-

gression are necessarily correlated with each other. The presence of pairwise correlation can

mean that the least squares estimate of /?o, namely Wra(iV), is not the minimum variance

estimator (Kendall and Stuart, 1979, p. 83).

One method for removing the pairwise correlation is to only use each busy period

one time i.e., for computing a single n^'s average regenerative estimate. For the example

of the 12,000 busy periods above, one would use the first 4,000 busy periods to compute

J?(8,500), the next 4,000 busy periods to compute t?(4, 1000), and the last 4,000 busy pe-

riods to compute W(2,2000). By using each busy period one time, the average regenerative

estimates used as the dependent variables in the regression are independent.

For a given N and set of n^ however, the cost of independence is a decrease in

the corresponding m^, the number of regenerative estimates averaged to get W(mjt,nfc).

Given the n^ are fixed, the variance of W(mk,njfc) is a decreasing function of mjt; as m^

decreases, the variance of the W(mk,nk) increases. Thus the variance of the estimate
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n= 500 1000 2000 4000 5000 7000 8000

M, N

Least Squares Ridge

d= 1 d = 2 d= 1 d = 2

8, 25,000 t?ra(M,iV) 9.94 10.0 9.89 9.88

S.D. .259 .264 .255 .252

MSE .071 .070 .077 .077

5, 40,000 Wth(M,N) 9.94 10.0 9.92 9.99

S.D. .258 .293 .258 .270

MSE .070 .087 .073 .073

4, 50,000 Wm(M,N) 9.97 10.1 9.97 10.1

S.D. .388 .403 .388 .399

MSE .151 .169 .157 .162

TABLE 10. Average regression-adjusted crude estimates based on 200,000 busy periods

for the stationary waiting time in an M/G/l queue with traffic intensity

of .975.

n= 500 1000 2000 4000 5000 7000 8000

M, N

Least Squares Ridge

d= 1 d = 2 d= 1 d = 2

8, 25,000 W"ra(M,A) 9.94 10.0 10.0 9.91

S.D. .172 .150 .162 .150

MSE .033 .023 .038 .031

5, 40,000 t?'ra(M,iV) 9.95 lO.f 9.92 9.94

S.D. .200 .182 .195 .174

MSE .042 .034 .044 .033

4, 50,000 W"ra(M,JV) 9.96 10.0 9.95 9.99

S.D. .257 .219 .259 .220

MSE .067 .050 .069 .049

TABLE 11. Average regression-adjusted controlled estimates based on 200,000 busy pe-

riods for the stationary waiting time in an M/G/l queue with traffic inten-

sity of .975.
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Wra(iV) depends upon the balance between reducing m^, increasing the variance, and

eliminating the correlation between the average re's, decreasing the variance.

To demonstrate the impact of using independent average regenerative estimates,

the 200,00 busy periods from the simulation of the M/G/l queue with traffic intensity

.975 from the last subsection were used to calculate average regression adjusted estimates,

both crude and controlled. Other factors included the type of regression, least-squares

versus ridge, the degree of regression, d = 1,...,5, and finally, the choice of the n*. The

set of values for n^ dictates N and thus M for the following reason. One would like the

independent average regenerative estimates used in the regression to have approximately

equal variance. Thus one should use the same number of busy periods to compute the

average regenerative estimate for each n^. For K values of n, one gets that N = K x nx

and M = [200,000/iVJ.

The following four tables, Tables 12, 13, 14, and 15 contain the estimates of the

stationary waiting time from the 200,000 busy periods. The layout of each table is the

same. Each table covers a single type of estimate, crude or controlled, and a single type

of regression, least-squares or ridge. Within each table, the same four sets of n& and their

associated M and N are used to calculate the estimates. The average regression-adjusted

estimates and their associated estimates of the SD and MSE are displayed for each degree

of regression.

It appears that a major factor in obtaining a low estimated MSE is using a large

uk- For each table, the best estimated MSE for degrees d = 1,2, and 3 occurred for M = 3

where uk = 8,000. For degree d=A or 5 the best estimated MSE occurred for either M = 3

or M = 6, when n^ — 4,000. Unfortunately, the high uk necessitates a low M and the low

M implies that the estimates of the SD and MSE are highly variable. However, when uk

was reduced to 2,000, the MSE estimates usually doubled, despite M being as high as 14.

The impact of the degrees of regression is closely associated with the type of

regression. The best least-squares estimates usually occurred when d = 2. The best ridge

regression estimates usually occurred for d = 3. Using ridge regression did not lower the

estimated MSE unless the degree of regression was 3 or higher. For degrees d = 4 and d = 5,

ridge regression usually provided better estimated MSE than obtained using least-squares

regression.
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M=3,N=56,000 n = 125 250 500 1000 2000 4000 8000

d= 1 d = 2 d=3 d = 4 d =5

t?ra(M,N) 9.69 10.1 10.3 11.3 10.8

S.D. .364 .309 .192 .020 .824

MSE .229 .105 .129 1.19 1.32

M=6,N=32,000 n = 40 80 125 250 500 1000 2000 4000

Wt<l(M,N) 8.99 9.81 10.1 10.5 10.9

S.D. .279 .337 .400 .499 .898

MSE 1.10 .150 .170 .459 1.62

M=7,N=28,000 n = 80 125 250 500 1000 2000 4000

Wth(M,N) 9.33 9.72 9.82 9.75 8.22

S.D. .341 .420 .498 .772 2.09

MSE .565 .209 .280 .658 7.54

M=14,N=14,000 n = 40 80 125 250 500 1000 2000

Wrz(M,N) 8.83 9.40 9.86 9.99 9.51

S.D. .247 .400 .577 .972 2.19

MSE 1.43 .520 .350 .945 5.04

TABLE 12. Average independent least-squares regression-adjusted crude estimates

based on 200,000 busy periods for the stationary waiting time in an M/G/l
queue with traffic intensity of .975.

The bottom line is that the average regression-adjusted controlled estimates of

the stationary waiting time in Tables 14 and 15, which were produced using the independent

average re's, have a higher estimated MSE than those in Table 11, which were produced

using the correlated average ne's. The best estimated MSE in Table 11 is .023, for M = 8 and

d = 2, and the best estimated MSE for the estimates created using independent average re's

is .033, in Table 15 for M = 3 and d = 3. Thus it appears that using fewer independent

average regenerative estimates in the regression is not as effective at reducing the estimated

mean square error as using more, correlated, average regenerative estimates.
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M=3,N=56,000 n = 125 250 500 1000 2000 4000 8000

d=\ d=2 d=3 d = 4 d=5

Wt<l(M,N) 9.59 9.75 9.82 10.5 11.2

S.D. .357 .248 .123 .116 .196

MSE .296 .124 .048 .263 1.48

M=6,N=32,000 n = 40 80 125 250 500 1000 2000 4000

d= 1 d=2 d = 3 d = A d = 5

Wtz(M,N) 8.80 9.38 9.54 10.0 10.5

S.D. .268 .316 .349 .347 .506

MSE 1.51 .484 .333 .120 .506

M=7,N=28,000 n = 80 125 250 500 1000 2000 4000

d= 1 d = 2 d=3 d = 4 d = 5

Wt3l(M,N) 9.07 9.20 9.41 9.42 9.25

S.D. .368 .435 .351 .498 1.19

MSE 1.00 .829 .471 .584 1.08

M= 14,N=14,000 n = 40 80 125 250 500 1000 2000

d= 1 d = 2 d = 3 d = 4 d = 5

Wt<i(M,N) 8.54 8.73 9.51 9.93 10.3

S.D. .220 .309 .443 .633 1.29

MSE 2.18 1.71 .436 .406 1.75

TABLE 13. Average independent ridge regression-adjusted crude estimates based on

200,000 busy periods for the stationary waiting time in an M/G/l queue

with traffic intensity of .975.
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M=3,N=56,000 n = 125 250 500 1000 2000 4000 8000

d= 1 rf = 2 ef=3 d = 4 d = 5

W't*(M,N) 9.77 10.0 10.2 11.0 10.4

S.D. .275 .215 .090 .020 .159

MSE .129 .046 .048 1.00 .185

M=6,N=32,000 n = 40 80 125 250 500 1000 2000 4000

d=\ d = 2 d = 3 d = A d= 5

W'ia.(M,N) 9.12 9.69 9.70 9.87 9.91

S.D. .173 .187 .168 .160 .465

MSE .804 .135 .118 .043 .220

M=7,N=28,000 n = 80 125 250 500 1000 2000 4000

d= 1 d = 2 d = 3 d = 4 d = 5

W't*(M,N) 9.48 9.79 9.88 9.89 9.62

S.D. .234 .338 .415 .574 1.67

MSE .325 .158 .187 .342 2.93

M=14,N=14,000 n = 40 80 125 250 500 1000 2000

d= 1 d = 2 d = 3 d = 4 d = 5

W't&(M,N) 9.17 9.65 10.0 10.1 9.63

S.D. .194 .300 .433 .639 1.37

MSE .727 .213 .187 .418 2.01

TABLE 14. Average independent least-squares regression-adjusted controlled estimates

based on 200,000 busy periods for the stationary waiting time in an M/G/l
queue with traffic intensity of .975.
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M=3,N=56,000 n = 125 250 500 1000 2000 4000 8000

d= 1 d = 2 d=3 d=A d=5

W"ra(M,JV) 9.71 9.83 9.94 10.4 10.8

S.D. .287 .203 .170 .091 .077

MSE .166 .070 .033 .168 .646

M=6,N=32,000 n = 40 80 125 250 500 1000 2000 4000

d= 1 d = 2 d = 3 d = 4 d=5

W'iz{M,N) 9.01 9.39 9.39 9.69 9.84

S.D. .178 .207 .188 .123 .191

MSE 1.01 .415 .407 .111 .062

M=7,N=28,000 n = 80 125 250 500 1000 2000 4000

d= 1 d = 2 d = 3 d = 4 d = 5

W'tsl{M,N) 9.32 9.44 9.59 9.83 9.47

S.D. .249 .309 .292 .368 1.21

MSE .524 .409 .253 .164 1.75

M=14,N= 14,000 n = 40 80 125 250 500 1000 2000

d= 1 d = 2 d = 3 d = 4 d = 5

W't&(M,N) 9.01 • 9.20 9.80 10.1 9.67

S.D. .108 .255 .348 .432 .827

MSE .992 .703 .161 .197 .792

TABLE 15. Average independent ridge regression-adjusted controlled estimates based

on 200,000 busy periods for the stationary waiting time in an M/G/l queue

with traffic intensity of .975.
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E. SUMMARY
This chapter has discussed various methods for using the regenerative method of sim-

ulation to estimate the stationary waiting time in a queue. The first method built upon

Iglehart and Lewis's (1979) linear control for regenerative estimates by incorporating non-

linear transformations of the prospective controls. The expected value for several nonlinear

controls for an M/M/l queue were determined. These controls were then applied to data

from simulations of M/M/l queues with traffic intensities of .5 and .99. A nonlinear control

was effective at reducing the standard deviation of the estimate of the stationary waiting

time for the queue with the .5 traffic intensity. The same nonlinear control was ineffective

at the .99 traffic intensity. While a control would improve the estimate of R2 from the

regression that estimates the coefficients for the control function, this R 2 was an unreliable

predictor of the effectiveness of the control, especially since it neglects the impact of the

bias of the control on the bias of the estimate.

The bias of the linearly and nonlinearly controlled estimates necessitated using the

estimated mean square error as a measure of effectiveness. Otherwise a technique that pro-

vided substantial variance reduction at the cost of substantial bias would have been deemed

effective. The estimate of the MSE was used to assess the effectiveness of combining the

technique of linearly controlled regenerative estimates with Heidelberger and Lewis's (1981)

regression-adjusted technique for regenerative estimates.

Combining the two techniques created an average regression-adjusted controlled es-

timate which had a much smaller estimated mean square error than that produced using

either technique individually. This was demonstrated for simulations of both an M/M/l and

M/G/l queue. The reduction of the MSE estimate to 1C ->r even 33% of the best crude

estimate was a dramatic reduction for such resource intensive simulations as an M/M/l

queue with a traffic intensity of .99 and M/G/l queue with a traffic intensity of .975.

Finally a modification to the regression-adjusted technique was discussed. It was

demonstrated that for a fixed overall simulation size, it was better to use "many" cor-

related average regenerative estimates for the regressions than to use a "few" indepen-

dent ones. The increase in the variance of the average regenerative estimates caused

by decreasing the number of regenerative estimates used for the averaging overwhelmed
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the potential reduction gained by satisfying one of the requirements to have a minimum

variance estimator.

An additional factor in favor of the regression-adjusted technique is that it has an

associated graphical analysis. This is given in Heidelberger and Lewis (1981) and is not

discussed here.
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VI. THESIS SUMMARY

This dissertation has presented several ideas oriented to improving methods for ana-

lyzing the statistical output from stochastic computer simulations. The central theme of

this dissertation has been to provide a means for assessing the variability of an estimate

from a simulation and to reducing the variance of the estimate i.e., increasing the precision

of the estimate, without a major increase in the resources required for designing, running

and analyzing the simulation. With these methods, one can either increase the precision of

an estimate for a fixed amount of resources or reduce the expenditure of resources required

to achieve a given precision.

The two major areas presented were the use of nonlinear controls for variance reduction

and the use of average regression-adjusted controlled regenerative estimators. Nonlinear

controls were discussed in each chapter and the regenerative estimators were discussed in

Chapter V. It was shown that for some simulations, nonlinear controls could reduce the

variance of the estimate as compared to using linear controls. For the more complex case

of regenerative simulations which involve ratio estimators, where the nonlinear controls

had difficulty, the average regression-adjusted controlled regenerative estimators had much

smaller estimates of the mean square error than either regression-adjusted estimators or

controlled estimators.

After the introduction in Chapter I, Chapter II discussed linear controls for variance re-

duction and showed that nonlinear transformations could improve their effectiveness. Non-

linear controls were then defined in the context of nonlinear transformations of a control

variable. It was shown how Breiman and Friedman's (1985) ACE algorithm could be used

to estimate the maximum correlation between a statistic of interest and a potential control.

ACE provided a means for evaluating a control and suggesting possible nonlinear trans-

formations for improving the effectiveness of the control. Various methods for introducing

nonlinearity and methods for determining the resulting nonlinear control's expected value

were presented. It was also shown that nonlinear least-squares regression could be used

to estimate the optimal parameters for some of the nonlinear transformations. As an ex-
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ample of the use of nonlinear controls for variance reduction, nonlinear controls were used

to improve the precision of estimates of the mean of W% , Anderson and Darling's (1952)

goodness-of-fit statistic. The nonlinear controls were able to improve the precision over the

linear controls and come close to the ACE estimate of the maximum achievable variance

reduction.

Chapter III discussed the use of nonlinear controls for reducing the variance of quantile

estimators. Order-statistic-based quantile estimators are a discontinuous function of the

data. It discussed how the discontinuous nature causes some subtle differences between

controlling the variance of quantile estimators and controlling estimates of a mean. It was

shown how when the control is a quantile estimator, one can use its asymptotic expected

value in the control function instead of its true expected value. It was demonstrated how

the use of strictly monotonic transformations of a quantile estimator control can greatly

reduce the difficulty of calculating the expected value of the transformed control.

It was demonstrated in Chapter III that the method of sectioning yields a more reliable

estimate of the variance of the quantile estimate than the method of jackknifing. Chapterlll

also discussed the asymptotic normality of quantile estimates as it pertains to selecting sec-

tion sizes. For a fixed sample size, as the section size used to compute the quantile estimate

increases, the quantile estimates become more normal and the linear control becomes opti-

mal. However it is demonstrated that by using a nonlinear control at smaller section sizes,

one can get a more precise quantile estimate than by using the linear control at the larger

section size.

Chapter IV used asymptotic expansions for the moments of an order-statistic-based

quantile estimator to develop additional asymptotic expansions. These expansions included

the variance of a strictly monotone transformation of a quantile estimator and the covariance

between two different strictly monotone transformations of the same quantile estimator.

Using these new expansions, expansions were developed for the squared correlation between

two strictly monotone transformations of a quantile estimator and the ratio of squared

correlations between the two transformations of the quantile estimator. These expansions

were used to prove that one can select a nonlinear strictly monotone transformation for

a quantile estimator control such that the squared correlation between the nonlinearly

transformed quantile and the quantile of interest is greater than the squared correlation
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between the quantile interest and a linear transformation of the quantile control. Thus the

nonlinear control is more effective at reducing the variance of the estimate of the quantile

of interest than the linear control. The expansions were compared to estimates from an

example simulation and found to be fairly accurate at predicting the variances, the squared

correlations and the ratio of squared correlations.

Chapter V discussed the use of nonlinear controls in regenerative simulations of queue-

ing systems. The chapter built on Iglehart and Lewis's (1979) linear control for regenerative

estimates and Heidelberger and Lewis's (1981) regression-adjusted technique for regener-

ative estimates. Nonlinear controls were proposed for controlling the estimate of the sta-

tionary waiting time in an M/M/l queue. Formulas for the expected values of nonlinearly

transformed controls were developed. These nonlinear controls were tested using simula-

tions of an M/M/l queue with traffic intensities of .5 and .99. One of the nonlinear controls

was an improvement over the linear control for the .5 traffic intensity estimate. Its vari-

ance reduction approached the ACE estimate for maximum achievable variance reduction.

Unfortunately, when the traffic intensity increased to .99, none of the nonlinear controls

were more effective than the linear control. A second linear control, which used the trans-

formation C2
,
greatly increased the estimate of R 2 given by the least-squares regression

that estimated the coefficients for the control function. Unfortunately this R 2 estimate was

a poor predictor of the reduction in variance of the controlled ratio estimate. It was also

shown that one must use the estimate of the mean square error instead of the variance to

judge the effectiveness of the controls. Some controls reduced the variance but at the cost

of greatly increasing the bias of the estimate.

ChapterV also proposed using average regression-adjusted controlled regenerative es-

timates as an alternative to using nonlinear controls to reduce the estimated mean square

error of the regenerative estimate of the stationary waiting time. These estimates result

from using the controlled regenerative estimates to form the average regenerative estimates

in the regression-adjusted technique of Heidelberger and Lewis (1981). Their technique is

essentially a generalized jackknife which utilizes graphical analysis. These estimates were

computed for the simulation of the M/M/l queue with .99 traffic intensity as well as for a

simulation of an M/G/l queue with traffic intensity of .975.
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The average regression-adjusted controlled regenerative estimates were computed using

both least-square regression and ridge regression for several degrees of regression. It was

shown that the choice of parameters can have a large effect on the estimated mean square

error. It was also shown that the average regression-adjusted controlled estimate can have

an estimated mean square error as low as 10% for the M/M/l queue and 33% for the

M/G/l queue of the best estimated mean square error for a crude estimate. This was a

dramatic reduction in the estimated mean square error, especially as it pertained to queueing

resource intensive simulations.

In summary, this dissertation provides several methods for improving one's analysis of

the output from a computer simulation. First, it shows how one can use the ACE algorithm

to evaluate the effectiveness of a proposed control and suggest nonlinear transformations

for improving the effectiveness of the control. It develops several methods for introducing

nonlinearity into a control function and establishes that one can use nonlinear least-square

regression for estimating the parameters of the transformation. It shows that nonlinear

controls can be more effective than linear controls at reducing the variance of estimates

of the mean as well as quantile estimates. Finally it demonstrates that while nonlinear

controls may have limited effectiveness in regenerative queueing simulations, the use of

linear controlled estimates to produce average regression-adjusted controlled regenerative

estimates can dramatically reduce the estimated mean square error of the estimate of the

stationary waiting time.

Nonlinear controls will not be applicable for many simulations. One must be able to

compute the expected value of the transformed control to use them at all. However they do

provide an option that one can investigate for analyzing the output of a simulation. They

can improve the effectiveness of a control so as to make controlling an estimate a worthwhile

procedure. The reductions achieved by the average regression-adjusted controlled regenera-

tive estimates should make them a viable option for analyzing the output from regenerative

simulations. These methods can work and they can improve the analysis of output from

stochastic computer simulations.
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