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The present paper reports the catalytic influence of 16-s-16
(spacer (s) = 4, 5, 6) gemini surfactants on the rate constant of
histidine and ninhydrin at 343 K and pH 5.0 using the
spectrophotometric technique. The effect of varying amounts of
geminis was made on the rate constant of histidine and
ninhydrin keeping other constituents constant. Characteristics
of the rate constant (kψ) versus [gemini] depict the effect of
surfactants on the rate constant. A systematic explanation about
the effect of surfactants is revealed and discussed in the text.
The influence of different parameters that includes [reactants],
temperature and pH has also been performed on the study. In
order to determine the critical micelle concentration (cmc) of
pure surfactants and their solution mixtures, conductivity
measurement was employed. By using the Eyring equation,
activation parameters at different temperatures have been
obtained. The resultant data of kψ versus [gemini] plot were
rationalized with the pseudo-phase model of micelles.

1. Introduction
Surfactants contain a polar head (hydrophilic group) and a
non-polar (hydrophobic hydrocarbon tail). They have been
employed in several aspects of chemical, biological and industrial
processes [1–5]. Surfactants aggregate frequently and catalyse the
chemical reactions, but they also inhibit reactions. Micelles affect
reaction rate owing to numerous aspects [6]. A little alteration in
the structure of micelle induces variations in surface properties
and rigidity of micelles; consequently, it alters the reactants’
activity [7–9]. Micelles offer several unusual media for different
parts of the reactants. Solubilization of micellar environment
could serve as a key part in micellar catalysis of a chemical
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reaction. The rate of bimolecular reactions increases in ionic micelles by increasing the concentration of the

reactant molecules into the Stern layer (a small volume). By considering the electrostatic and hydrophobic
interactions between reactant molecules andmicelles, the kinetic effect on the reactions can be accounted in
micellar media.

Gemini surfactant comprises two traditional monomeric surfactants connected by a spacer [10–15].
Compared with conventional surfactants (single head and single chain), gemini surfactants show
unique physico-chemical behaviour that depends upon the nature of hydrophilic head, hydrophobic
tail and spacer chain length. They frequently exhibit the special physical properties, such as lower
critical micelle concentration (cmc) value, enhanced surface active power and rich aggregation
properties compared with those of the corresponding conventional surfactants [16–22]. Owing to their
outstanding aggregation character and surface properties, they have been used in very high potential
applications in daily household chemicals, coatings, petroleum and so on [23,24]. Geminis have much
lower cmc value in comparison with conventional ones. Being low cmc value, gemini surfactant
implies as a high cost-effective surfactant. From an environmental point of view, they can be regarded
as a green surfactant due to the use of smaller surfactant quantities, which are in line with the green
surfactant idea in surfactant chemistry [25,26]. The nature, mode of action and mechanism of 16-s-16
surfactant on the interaction of ninhydrin with histidine may be a matter of great consideration.

2,2-Dihydroxy-1,3-indandione, commonly known as ninhydrin, is a universal colour developing
agent. It has been widely used due to its distinctive sensitivity for the identification of amino group
in chemistry, biochemistry and bio-analytical study. Ninhydrin interacts with the amino group and
forms a purple-coloured product diketohydrindylidenediketohydrindamine (DYDA) [27,28]; ([29] and
references therein). As DYDA colour fades, numerous modifications that include the effect of various
traditional surfactants, different solvents and pretreatment of enzymes to stabilize the product were
performed [30–35].

Although a number of modifications on the reaction of ninhydrin with amino acid have been brought
to increase the stability and potential applicability of DYDA product, but the problem related to studies
with 16-s-16 gemini surfactants under different situations remains unexplored.

Therefore, to get further response and better output, we have reported the catalytic influence of
16-s-16 on the rate constant of histidine and ninhydrin reaction. Studies of different constituents
including the effect of reactants, temperature and pH were also made in 16-s-16 surfactants.
2. Experimental procedure
2.1. Material and method
Freshly prepared double-distilled water (conductivity: 1–2 μS cm−1) was used in all physico-chemical
measurements throughout the experiments. All the reagents used for synthesizing the gemini
surfactants were N,N-dimethylcetylamine (greater than 95.0%), 1,4-dibromobutane (greater than 98%),
1,5-dibromopentane (greater than 98%) and 1,6-dibromohexane (greater than 97%). They were used as
obtained (Fluka, Germany). L-Histidine (99.0%) was used as received from Loba Chemie, India.
Ninhydrin (99.0%), CH3COOH (99.0%) and CH3COONa (99.0%) were purchased from Merck and
applied without any further purification. The rest of the chemicals used were of the best AR grade.
The buffer solution was used for preparation of all standard solutions of ninhydrin, histidine and
gemini surfactants [36]. All the pH analyses were made with an ELICO digital pH meter.

Surfactants were synthesized via method described earlier [37]. N,N-dimethylcetylamine and α,ω-
dibromoalkane were placed in a double-necked round-bottomed 2 l flask. The mixture was stirred
regularly using a magnetic bar at 353 K for 2 days to get complete bisquaternization. After the
reaction was accomplished, solvent was removed. Thus, solid obtained was purified three times by
the mixed solvent of hexane and ethyl acetate. Then, the crude product was dried under vacuum to
get a white solid as a final product (gemini surfactants). The identification of the final product was
checked by proton magnetic resonance spectra (1H NMR) and elemental analyses. Data obtained are
consistent with those described previously [37].

2.2. Determination of electrical conductivity
The specific conductivity of pure gemini surfactants and their solutionmixtures as a function of [surfactant]
was recorded using Systronics conductivity meter (Ahmedabad, India). [Surfactant] was added gradually
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to the glass flask containing pure water/mixture. To provide a homogeneous environment to the system,

the solutionmixturewas stirred continuously after each addition. Specific conductivities were noted down
at 303 and 343 K. All analyses at each temperature were made at a minimum of three runs. The cmc value
was estimated from the intersection of two linear intercepts between plots of specific conductance versus
[surfactant] [38–40]. The determined cmc values of geminis with and without reactants (i.e. water,
water + ninhydrin, water + ninhydrin + histidine) are provided below.

(a) [16-6-16]: 0.043 × 10−3, 0.039 × 10−3 and 0.038 × 10−3mol dm−3 at 303 K; 0.058 × 10−3 , 0.055 × 10−3

and 0.052 × 10−3 mol dm−3 at 343 K.
(b) [16-5-16]: 0.034 × 10−3, 0.033 × 10−3 and 0.032 × 10−3 mol dm−3 at 303 K; 0.050 × 10−3 , 0.043 × 10−3

and 0.048 × 10−3 mol dm−3 at 343 K.
(c) [16-4-16]: 0.032 × 10−3 , 0.031 × 10−3 and 0.028 × 10−3 mol dm−3 at 303 K; 0.044 × 10−3 , 0.040 × 10−3

and 0.038 × 10−3 mol dm−3 at 343 K.

2.3. Kinetic measurements
Measurements were made under pseudo-first-order condition where [ninhydrin] was kept 60 times more
to [His]. Suitable amount of histidine, buffers and gemini surfactant (when required) was placed in a
thermostat-controlled water bath. Mixture was kept at an experimental temperature and left for
30 min for equilibration. To start the reaction quickly, a known volume of thermally equilibrated
ninhydrin solution was poured into the mixture which was placed separately in the same thermostat-
controlled bath. Absorbance was noted at a regular time interval at maximum wavelength using
SHIMADZU model spectrophotometer (Kyoto, Japan). Rate constants were calculated by employing a
computer-based procedure. Other information related to kinetic measurements can be found in the
existing literature reported previously [41–46].

3. Results
3.1. Spectra
Spectra on the rate constant of histidine and ninhydrin in pure water and surfactants were measured after
completion of reaction over a wavelength range 350–650 nm using a quartz cuvette with 1 cm path length
(figure 1; electronic supplementary material, table S1). It was noted from experimental results that the
values of absorbance were increased on increasing [gemini] without any change in maximum
wavelength (λmax = 570 nm); inferring the same product formed in two systems, i.e. remains unchanged.

3.2. Effect of several parameters on kψ
The influence of pH on kψ on ninhydrin and histidine reaction was seen at several pH varying from 4.0
to 6.0 at constant histidine, ninhydrin and temperature (343 K) in gemini system ([16-s-16] = 30 ×
10−5 mol dm−3) (table 1). kψ increases with pH up to 5.0. Beyond pH 5.0, the rate becomes almost
unchanging, i.e. remains almost constant. kψ values corresponding to different pH are plotted and
shown in electronic supplementary material, figure S1. This infers that Schiff base is formed in the
vicinity of pH (5.0), since Schiff base is an acid-catalysed reaction and optimum pH is 5.0. So, all the
analyses were undertaken at pH 5.0.

Experiments were made at different initial [His] in gemini micellar media under the set of identical
reaction situation of ninhydrin, pH and temperature. The resultant values of kψ at different [His] are
given in table 1 and shown graphically in electronic supplementary material, figure S2. The rate
constant (kψ) suggests that kψ does not depend on initial [His]; establishing the order to be unity in [His].

Rate constants were determined at various [ninhydrin] on the present reaction keeping other reaction
ingredients constant (electronic supplementary material, table S2). The rate profile of kψ values against
[ninhydrin] is depicted in figure 2. It can be seen that the plot of figure 2 provides a nonlinear profile
and crosses through the origin. The above leads fractional-order in relation to ninhydrin.

kψ values were achieved in gemini surfactants by performing the studies at several temperatures
(333–353 K) with an interval of 5 K at fixed [reactants] (ninhydrin and histidine) and pH. The
observed kψ values are tabulated (table 1). By using these results, different activation parameters were
calculated by linear least-squares regression procedure.



350 400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ab
so

rb
an

ce

wavelength (nm)

A

B

C

D

Figure 1. Spectra of product formed on the study of histidine and ninhydrin in pure water and surfactants at 343 K and pH = 5.0
after heating 2 h: (A) aqueous, (B) 16-6-16, (C) 16-5-16 and (D) 16-4-16. Reaction conditions: [His] = 1 × 10−4 mol dm−3,
[ninhydrin] = 6.0 × 10−3 mol dm−3 and [16-s-16] = 30 × 10−5 mol dm−3.

Table 1. Influence of different parameters on kψ on the study of histidine and ninhydrin at [Nin] (6 × 10−3 mol dm−3) in 16-s-
16 gemini surfactants (30 × 10−5 mol dm−3). Uncertainties in kψ values are estimated to be less than or equal to ±0.1 × 10−
4 s−1.

104 [His] (mol dm−3) pH Temp. (K)

104 kψ (s−1)

16-6-16 16-5-16 16-4-16

1.0 5.0 343 5.5 6.5 7.7

1.5 5.5 6.5 7.6

2.0 5.4 6.5 7.7

2.5 5.4 6.4 7.6

3.0 5.5 6.4 7.7

1.0 4.0 343 2.2 3.1 3.8

4.5 3.4 4.3 5.6

5.0 5.5 6.5 7.7

5.5 6.0 6.9 8.1

6.0 6.2 7.1 8.4

1.0 5.0 333 4.0 4.8 6.3

338 4.6 5.5 6.9

343 5.5 6.5 7.7

348 6.7 7.9 9.3

353 8.2 9.7 10.9
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Figure 2. Rate constant (kψ) versus [Nin] on the study of histidine and ninhydrin in surfactants: (A) 16-6-16, (B) 16-5-16 and (C) 16-4-
16. Reaction conditions: [His] = 1 × 10−4 mol dm−3, [16-s-16] = 30 × 10−5 mol dm−3, temperature = 343 K and pH = 5.0.
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4. Discussion
4.1. Proposed reaction mechanism between ninhydrin and histidine
Themechanismof amino acidswith ninhydrin has received great attention of researchers/investigators due
to the use in different fields [47–51]. The proposed mechanism for the current study of ninhydrin and
histidine is demonstrated in scheme 1. The reaction has been observed to start through the formation of
DYDA involving the mechanism of reaction that follows two steps. (i) Condensation between carbonyl
group (of ninhydrin) and amino group occurs, which produces an intermediate Schiff base (after
decarboxylation). This intermediate is highly unstable and hydrolyses to result in 2-aminoindanedione
andanaldehyde. (ii) The reactionof 2-aminoindanedione connects slowlywithninhydrin toproduceDYDA.

4.2. Reaction in 16-s-16 gemini micellar media
Rate constants were obtained by varying [16-s-16] in the range (5–3000) × 10−5 mol dm−3 keeping other
reaction factors constant. These are given in table 2. The outcomes suggested that the same first- and
fractional-order paths were detected in [His] and [ninhydrin], respectively, in the presence of
surfactants as that of pure water. The above observation of the same product formation confirms that
the mechanism remains exactly identical in both the systems. Variation of kψ with [gemini] is plotted
and presented graphically in figure 3.

The catalytic influence of gemini on the kψ on histidine and ninhydrin reaction can be interpret by the
means of pseudo-phase model (scheme 2), suggested by Menger & Portnoy [52] and established by
Bunton [53] and Romsted [54].

r = kψ ([His]) and scheme 2 result in the below equation

kc ¼ k
0
w þ k

0
mKC½gemini – cmc�

1þ KC½gemini – cmc� : ð4:1Þ

Then, the above equation converted into the below equation

kc ¼ kw½Nin�T þ ðKCkm � kwÞMS
N ½gemini� cmc�

1þ KC½gemini� cmc� : ð4:2Þ



Scheme 1. Mechanism for the study of ninhydrin and histidine reaction. K and k stand for the equilibrium constant and rate
constant, respectively.
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Herein, KC and KD designate the respective binding constant for histidine and ninhydrin.
MS

N ¼ ½Nin�m=½gemini� cmc� is [ninhydrin] in the molar ratio of the micellar head group.
kwð¼ k0w=½Nin�wÞ and kmð¼ k0m=M

S
NÞ are symbolized as second-order rate constants, respectively. The

determination of KC and km needs cmc data under experimental kinetic conditions. Therefore, cmc was
calculated using the conductivity meter. For a given cmc, KC and km were achieved from equation (4.2) by
the computer procedure. The calculated values of the rate constant (kψcal) were obtained by substituting KC

and km in rate equation (4.2). The clear matching between the values of kψ and kψcal within instrumental
errors validates the proposed reaction mechanism (table 2) (electronic supplementary material, table S3).

Considering segment I (figure 3), where [16-s-16] are much lower than their cmc value, rate values
should not enhance. The enhancement in rate may take place owing to the formation of premicelle
aggregates between surfactants and reactants [55,56]. It is well established that gemini surfactant can
produce various aggregates with different additives, viz., micelles, bilayers, vesicles, etc. The
formation of premicelle aggregates between reactant and surfactant molecules and their catalytic
behaviour can be found in the published literature [57,58].

Segment II, figure 3, [16-s-16] is up to 400 × 10−5 mol dm−3. No variation in kψ values was detected,
i.e. almost invariant and followed the order of their catalysing effect: 16-4-16 > 16-5-16 > 16-6-16. Gemini
micellar systems lead to significantly better catalysing properties when compared with conventional
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Scheme 2. Histidine–ninhydrin reaction in aqueous and gemini systems. w, water; m, micelles.
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monomeric surfactants. The shape behaviour of Segments I and II are identical to traditional surfactants
(single hydrophilic head group and single hydrocarbon tail) [59–62]. The effect of unchanging behaviour
of the rate constant in Segment II may be understood when both the substrates are entirely micellar
bounded with micellar assembly considered to be staying unaffected [63–65].

In Segment III, the values of the rate constant, kψ, increase slowly with [surfactant]. Later, a larger
increase in kψ was observed at higher concentration. This changing in kψ is probably owing to
variations in the structure of micelles, which is consistent with 1H NMR studies of 16-s-16 [37]. Thus,
the rate constant increases at higher [16-s-16] caused by variations in micellar morphologies that gives
diverse reaction micro-environment (less polar).
4.3. Activation parameters
Activation parameters determined on the study of ninhydrin and histidine in gemini micellar system at
fixed [reactants] (ninhydrin and histidine), and pH are listed in table 3. Results in table 3 reveal that the
presence of gemini catalyses the study more and lowers the values of the enthalpy of activation, ΔH#,
with a substantial negative entropy, ΔS#, in comparison with the corresponding aqueous system. The
reduction in ΔH#-value follows not only because of the stabilization of the transition state through the



Table 3. Activation parameters (Ea, ΔH
# and ΔS#), rate constant (km) and binding constants (KC and KD) determined on the

study of ninhydrin (6 × 10−3 M) and histidine (1 × 10−4 M) in aqueous and gemini micellar systems. Uncertainties in
thermodynamic parameters Ea, ΔH

# and ΔS# are less than or equal to ±0.1, ±0.1 and ±0.1 J K−1 mol−1, respectively.

aqueous 16-6-16a 16-5-16a 16-4-16a

Ea (kJ mol
−1) 75.3 38.1 35.8 34.3

ΔH# (kJ mol−1) 72.5 35.3 33.0 31.5

−ΔS# (J K−1 mol−1) 308.9 312.1 313.0 314.1

102 km (s−1)b — 3.5 3.7 4.0

KC (mol
−1 dm3)b — 90.0 86.0 83.0

KD (mol
−1 dm3)b — 58.0 56.0 53.0

a[16-s-16] = 30 × 10−5 mol dm−3.

bAt 343 K.
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growth of rigid and well-cultured intermediate molecule but also on account of adsorption of substrate
molecule onto the micellar surface. The lowering in entropy leads to the conclusion that the well-cultured
activated complex is formed in 16-s-16 than aqueous medium.
8

5. Conclusion
The present study investigates the catalytic influence of gemini surfactants on the rate constant of
histidine and ninhydrin at 343 K and pH 5.0 using Shimadzu model UV–vis spectrophotometer. The
study of the effect of different constituents on the title reaction including [reactants], temperature and
pH was also examined and elaborated in detail. We observe that the presence of geminis even though
below their cmc catalyses reaction efficiently when compared with the aqueous system. Gemini
surfactants allow them to be employed in lower concentration (cost-effectiveness) to overcome the
required catalytic challenges of surfactants in several chemical and industrial applications. They are
much better microbiocides when compared with their monomeric analogues because of their wide
spectrum of biocidal activity, the safety of applications and low costs [66]. They are used to control
and kill harmful and unwanted organisms such as bacteria, mould, algae, insects, etc. Because, gemini
surfactants are more effective in disrupting the membrane than the monomeric counterpart, it means
that a lesser quantity of gemini, below threshold toxicity, may be required to get the same effect of a
considerably higher amount of CTAB. Due to above characteristics, the studied gemini surfactants can
be considered as green surfactants. Consequently, they provide less impact on environment.
Quantitative treatment of results seems acceptable as the observed rate constant (kψ) and the
calculated rate constant (kψcal) are in close agreement (table 2).
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