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ABSTRACT 

 This study explored the impact of the materials employed, particularly electrode 

material, on the performance of Novel Paradigm Supercapacitors (NPS). The main 

experimental focus was on the impacts of changing the identity of the electrode materials 

in Novel Paradigm Supercapacitors employing Distilled Deionized water (DI) or DI with 

3.5 wt % dissolved NaCl. In sum, it was determined that i) some metals too easily 

corrode in this application (e.g., silver and lead) to be functional for more than a few 

hours, ii) titanium is an excellent electrode material that corrodes very slowly and the 

corrosion layer has an impact on performance, and iii) conductive carbon of any type is 

superior to all other materials in terms of net energy storage capability. The study also 

served the purpose of testing the Super Dielectric Material Theory (SDM-Theory). The 

main thrust of the "theory" component was to test the general SDM model of dielectrics 

against the standard model using appropriately designed experiments, specifically, 

experiments designed to measure the impact of dielectric material “outside” the volume 

between the electrodes. Traditional theory indicates the material outside the capacitor has 

no possible impact, whereas SDM theory says it can have a very significant impact. 

Results were only consistent with SDM theory. 
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I. INTRODUCTION 

A. SUMMARY OF FINDINGS 

This study explored the impact of the material characteristics employed, 

particularly the electrode material, on the performance of Novel Paradigm (NP) 

Supercapacitors. The study identified a combination of carbon nanotube sheet electrode 

with a sodium chloride solution dielectric stored the highest energy and operated at the 

greatest constant current loading.  

The study also served to show the super dielectric material theory (SDM) is more 

consistent with the tested experiments than the standard model of dielectrics (SM). In order 

to clearly distinguish two theories of dielectric operation an experiment for which each 

theory made diametrically opposite predictions was conducted. Specifically, the standard 

model (SM) of dielectrics found in all text books, predicts, mathematically, that the impact 

of dielectric located on the outside of the volume of a parallel plate capacitor will have no 

influence on performance. In contrast the SDM theory, a theory first proposed by Naval 

Postgraduate School (NPS) faculty, indicates that dielectric on the outside should have an 

impact on performance similar to the same dielectric between the plates. Extensive testing 

confirmed: Dielectric material on the outside of the plates of a parallel plate capacitor has 

a dramatic impact on all capacitive parameters [1]. 

In more detail, the tests, as we previously described [1], were as follows: Simple 

parallel plate capacitors with only ambient air between the plates behaved as per standard 

theory. To wit: The capacitance was very low, and the dielectric constant approximately 

1.0. Once the same capacitor was partially submerged in deionized water (DI), or DI with 

low dissolved sodium chloride (NaCl) concentrations, still with only ambient air between 

the electrodes, the capacitance, dielectric constant, energy density, and power density, at 

low frequency, increased by more than seven orders of magnitude. This result is completely 

consistent with SDM theory [2]. Notably, conventional theory precludes the possibility that 

material outside the volume between the plates will in any fashion impact capacitive 
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behavior. Thus, conventional theory postulates no change in performance upon the 

capacitor being submerged in any material. 

B. MOTIVATION AND BACKGROUND 

The carbon footprint of the human race is a macro scale problem. The impact of 

every individual might not seem like much but combined makes a tremendous difference. 

The world today is connected on such a grand scale that it’s hard to be disconnected. Just 

think about going to work, how many items that you interact which use electricity. When 

you wake up, your alarm clock uses electricity, you turn on the light to the bedroom and 

bathroom to see. You might have an electric toothbrush. Your water heater might use an 

electrical heating coil. You check your watch which uses a battery. You leave the house 

and turn on your electric or hybrid vehicle. The world we live in is connected to a power 

grid. We are driven and limited by electricity. Imagine if these energy materials could be 

made out of simple, safe and readily available products. Imagine that instead of when you 

get a new product that has a 20 page “properly disposal procedures” instruction manual 

that it’s safe to dispose of in your garden. Instead of chemicals and rare minerals that are 

high energy density power sources for your phone and other devices, that these products 

are made up of salt water and carbon. A disruptive technology is NP Supercapacitors which 

use super dielectric material that have energy densities greater than current commercial 

products [2]. 

1. U.S. Navy 

The U.S. Navy is moving towards electric ships, electric catapults on ships and 

electric autonomy. In order to enable these proposed technologies, the Navy must find 

improved modalities of electric energy storage and electric power delivery. Improved 

capacitors are part of the roadmap. High energy density capacitors are needed to deliver 

power to weapon systems. Only capacitors can deliver electric energy on the time scale, 

that is high electric power, needed to enable rail guns and other systems. Batteries cannot, 

intrinsically, provide power on the needed scale. Also, improved capacitors could ‘smooth 

out’ power demand made to batteries, and this is known to significantly increase battery 

lifetime. Moreover; there is some basis for considering capacitors as a substitute for 
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batteries for electrical energy storage. Initial data, optimistically extrapolated, indicates that 

fully developed NP Supercapacitors will have energy density significantly better than the 

best batteries, will charge far faster, and will be less expensive; hence, NP Supercapacitors 

could ultimately replace batteries in many systems [3]. 

2. Alternative Energy Storage

Alternative electrical energy storage is a concept of using simple technologies to 

store energy when “alternative energy” sources such as wind and solar, are periodically 

“off-line” due to natural limits such as night fall, low wind, etc. Electrical energy storage 

is most commonly battery based. Given the increasing reliance on these alternative 

energies, as well as the replacement of combustion engines in cars, trucks, ships, etc., with 

electric/battery engines, the growth of battery production is dramatically increasing. In 

turn, increased battery use is already stressing supplies of necessary materials such as 

cobalt for the cathode and lithium for the anode. The price of cobalt, which is needed for 

these batteries, rose over 270 percent from 2016 to 2018 [4]. 

Also, battery disposal is a major problem because batteries contain environmentally 

unsafe materials. Harnessing the power from batteries means having dangerous chemicals. 

Harnessing solar power gives us clean air. Utilizing and structuring theses alternative 

energies in conjunction with a storage device can revolution the world.  

The ultimate goal of this research is providing the information required to assess 

NPS capacitors as a potential replacement technology for batteries in many applications. 

Can NP Supercapacitors be superior to batteries in terms of energy density, charge more 

rapidly, charge rate, power delivery, cost and longevity? Should this potential be pursued 

through further research? 

3. Environmental Impact

Based on extrapolation of data collected regarding the performance of prototypes 

it is possible NP Supercapacitors will not only outperform batteries, but will be cheaper, 

less toxic, less hazardous. They will also only employ materials available virtually 

everywhere, such as salt water for the dielectric and carbon for the electrodes. Current 
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batteries use a wide swath of technologies. Some common used batteries are alkaline based 

batteries in disposable electronics, or lead acid batteries in cars. The batteries used in large 

electric vehicles and hybrids are lithium ion or NiMH (nickel metal hydride) or NiCd 

(nickel cadmium) [5]. The list goes on to be Lithium Cobalt Oxides, Manganese Oxide, 

Nickle Manganese, Iron Phosphate and Cobalt Aluminum Oxide. The combination of 

complex chemical and there uses has been regulated in the European Union (EU) to be 

branded with a “do not dispose” of label. All of these minerals and materials used for these 

complex technologies are limited in their availability.  

4. Energy Weapon Supply (EM Rail Gun/HEL/FEL/LaWS) 

Energy is the next frontier for future weapons. Bridging the divide between science 

fiction and the battle field can give any country a tactical advantage. Weapons, and military 

systems, based on electrical energy are potential game changers because they will be more 

powerful, more readily controlled, better able to deliver power precisely on target, more 

compact. High energy weapons such as electromagnetic (EM) rail guns, high energy lasers 

(HEL), focused energy lasers (FEL) or laser weapon system (LaWS) all need high 

concentrations of energy that need to be delivered in a short time [6]. One aspect of creating 

a mature, dependable technology for electric weapons are the power sources. Batteries 

cannot deliver sufficient power over the time frames required by these weapons. That is, 

they have an upper limit on power. Indeed, it is generally understood that capacitors are 

superior ‘power’ sources. Capacitors have far lower energy density than batteries, but can 

deliver all the energy in a far shorter time than batteries. There is evidence that NP 

Supercapacitors can not only potentially match battery energy density, a real leap in 

capacitor capability, but also deliver the power needed for weapons. In addition, capacitors 

can be re-charged far faster than batteries. 

C. RESEARCH OBJECTIVES 

There were both engineering and scientific objectives to the work conducted. The 

engineering objective was to further understand the effects of changing parameters for NP 

Supercapacitors. To identify the best combination of materials/parameters for a simple 

parallel plate capacitor using super dielectric materials. In particular, to determine if the 
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material identity of the electrodes has any impact and to determine which materials are 

superior. In brief, carbon based material is superior to all metals tested. Limited tests of 

different dielectrics were also conducted, and it was shown simple ‘salt water’ is an 

exceptional dielectric.  

The scientific objective was to conduct a test with an outcome which could 

definitively determine if the Standard model (SM) or the Super Dielectric model (SDM) 

model of dielectric behavior is correct. It was demonstrated, in brief, that the mathematical 

and narrative forms of the SM, that only dielectric material in the volume between the 

electrodes can impact behavior, is incorrect. The finding that dielectric on the outside has 

a significant impact is only consistent with the SDM theory. 

D. CAPACITOR THEORY/GOVERNING EQUATIONS 

The theory studies were designed to test SDM theory: Dielectrics increase 

capacitance by ‘cancelling everywhere’ the field created by charges on the electrodes of a 

parallel plate capacitor. Cancelling the field reduces the energy (voltage) required 

(integrated line integral of field strength) to bring a charge from anywhere to either 

electrode. Thus, according to theory, any material that allows large dipoles, in high density 

in the dielectric to form upon the application of the electrode field will be a super dielectric. 

Salt water is clearly one such material, as the ions formed by salt dissolution in the water 

can ‘swim’ apart macroscopic distances upon field application. Moreover, the dipole 

density is within an order of magnitude of that found in solid dielectrics. In contrast, only 

sub angstrom dipole length is possible in a solid. One example of a theory test:  According 

to SDM dielectric (e.g., salt water) outside the area between the plates of a parallel plate 

capacitor will be as effective as the same dielectric between the plates. According to 

conventional theory, dielectric outside the volume between the plates will have no effect.  

E. SDM THEORY 

The main hypothesis of the SDM theory can be explained in a five-part model [1], 

[2], [6], [7]. 
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1. Dielectric Polarization 

Dielectric material polarizes in the opposite direction to any field applied to it. This 

occurs because the positive charge in a dielectric move toward the negative electrode and 

negative charge moves toward the positive electrode.  

2. Opposing Field 

Placed between the electrodes of a standard parallel plate capacitor, the dielectric 

material creates a field opposite in direction to the electric field created by charges on the 

electrodes, in all space, not just the region between the plates.  

3. Field Interaction 

As the field at any point in space is the vector sum of the fields of all individual 

charges. Thus, given the opposite polarization of dielectric and charges on the electrodes, 

the fields produced by each at all points ‘cancel’. That is, the dielectric in a parallel plate 

capacitor reduces the field, at all points, created by charges on the electrodes. 

4. Overall Reduced Field 

As “voltage,” a state property, is the scaler line integration of the electric field, and 

the dielectric reduces the field at all points, the dielectric necessarily reduces the “voltage” 

between any two points, including any path from infinity to an electrode. 

5. Increased Storage 

It follows that as in the presence of a dielectric it takes more charge on the 

electrodes to reach a given capacitor voltage, dielectrics increase the electrode 

charge/voltage ratio. Thus, by definition, dielectrics increase capacitance: 

 qC
V

=  (1) 

where C is capacitance, q amount of charge on electrodes and V the voltage between the 

plates. 
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F. MEASUREMENT METHODOLOGIES 

All data, dielectric constant, energy, and power density, were computed from the 

constant current discharge leg of charge/discharge cycles collected using a programmable 

galvanostat. The device, in constant current discharge mode, was operated over the range 

of 0 to +/-10 volts. The rate of electrolysis of water was minimal for most configurations 

at these voltages. Significant electrolysis is discussed in following sections.  

1. Capacitance 

The constant current measurement method was the only method employed to 

measure capacitance in this work. There is a simple relationship between capacitance and 

measured discharge rate assuming capacitance is independent of voltage 

 
( )

IC dV
dt

=  (2) 

where C is capacitance, I is current, V is voltage, and t is time. Capacitance, once measured, 

can be used along with easily measured geometric factors to determine the non-

dimensional, engineering parameter, dielectric constant (ε). This is the mathematical 

expression of the standard theory of dielectrics applied to parallel plate capacitors: 

 
o AC
t

εε
=

 (3) 

where t is the thickness of the dielectric layer, A is the area of the electrode, and (𝜀𝜀𝑜𝑜) is the 

permittivity of free space [3]. 

Problem: Equation 3, that is the standard theory of dielectrics applied to parallel plate 

capacitors, is based on the assumption that only the dielectric material between the 

electrodes contributes to the capacitance. This was clearly demonstrated to be an incorrect 

assumption in the present study, and an earlier study by our team [1], [7]. Yet, for the 

capacitive values obtained when the dielectric is only present outside the volume between 

the plates there are no geometric constants to be used in equation 3. Hence, for the 

‘dielectric on the outside’ configuration, a dielectric constant cannot be computed. Instead 

an ‘effective’ dielectric constant is reported. This value is computed employing the same 
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geometric parameters employed for the case of the dielectric between the plates: the area 

of the electrodes and the distance between them. Similarly, ‘effective’ energy density, and 

power density were computed/reported below “as if” the only volume of significance is 

that between the plates [1].  

2. Dielectric Constant 

Solving from Equation 3 to solve for the dielectric constant 

 
o

Ct
A

ε
ε

=  (4) 

3. Energy Density 

Energy was computed as the integral of the area under the voltage time data (V s) 

multiplied by current (amps). 

 
f

i

t

t

Energy E I Vdt= = ∫  (5) 

Energy density was computed as the Energy (E) divided by the volume of the 

internal dielectric. 

 _ EnergyEnergy Density
length width thickness

=
× ×

 (6) 

4. Power 

Power was computed as the total energy of the discharge divided by the total 

discharge time.  

 
arg

total

disch e

EP
t

=  (7) 

5. Capacitors in Parallel 

Capacitance in parallel was calculated using the addition of each individual capacitor. 
 

 1 2 ...Parallel FinalC C C C= + + +  (8) 
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6. Capacitors in Series 

Capacitance in series was calculated using  

 

 

1 2

1
1 1 1...

series

Final

C

C C C

=
+ +

  (9) 

G. CAPACITOR FABRICATION/ TEST APPARATUS CONFIGURATION 

The standard configuration was a simple parallel plate capacitor. The design was 

modular and consisted of interchangeable electrodes and dielectrics. The designed parallel 

plate capacitor was the combination of two electrode sheets 4.5 cm x 4.5 cm with an air 

gap of 2.5 cm x 2.5 cm. That is, only the center area consisted of an air gap. The edges of 

the sheet were used to hold it in place. The electrode pieces were clamped in with layers of 

acrylic and commercial gasket rubber. The rubber was 1.5 mm thick. The gasket was used 

to create a watertight seal from the inside to outside and reverse.  

 
 

Figure 1. Parallel Plate Capacitor Rig 
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1. Configuration 

Two separate configurations were tested. 

a. Dielectric on the Inside (DI) 

The volume between the electrode sheets, 2.5 cm x 2.5 cm x 6 mm, was filled with 

dielectric liquid. Outside was simply ambient air.  

b. Dielectric on the Outside (DO) 

The volume between the electrodes, 2.5 cm x 2.5 cm x 6 mm, contained only 

ambient air. The apparatus was submerged in a liquid dielectric of approx. 700 ml volume. 

The liquid level reached to the top of the external 2.5 cm x 2.5 cm area. Thus, dielectric 

material was only present outside the volume between the plates. 

 
Figure 2. Dielectric on the Outside 

2. Electrode Materials 

All electrodes were cut to 4.5 cm x 4.5 cm squares. 

a. Titanium Thin (0.05 mm) 

Titanium electrodes were cut out of Ti GR2 0.05 mm thick foil sheets. 

b. Titanium Thick (0.10 mm) 

Titanium electrodes were cut out of Ti GR2 0.10 mm thick foil sheets. 
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c. Silver 

Silver electrodes were cut out of Goodfellow Cambride Limited 0.5 mm thick 

99.95+% purity silver foil. Its temper was “As rolled”. 

d. Lead 

Lead electrodes were cut out of Goodfellow Cambride Limited 1.0 mm thick 99.5% 

lead foil. Its temper was “As rolled”. 

e. Grafoil 

Carbon electrodes were cut out of GTA grade Grafoil flexible sheets (0.76 [mm] 

thick, minimum 99.5% graphite). Grafoil, manufactured by Graftech, is “prepared by 

chemically treating natural graphite flake to form a compound with and between the layers 

of the graphite structure” resulting in very thin (0.0762 to 1.651 [mm]) and flexible carbon-

based material. 

f. Carbon Nanotube Sheet 

Carbon Nanotube Sheet electrodes were cut out of Nanocomp Sheet “Acetone 20–

30 grams per square meter (gsm).” This material is also referred to as “Miralon.” It is a 

non-woven material manufacture via chemical vapor deposition [8]. 

3. Dielectric Materials 

a. Air (Control) 

Ambient air was used for experiments. Room temperatures would range from 60–

80 degrees Fahrenheit.  

b. Deionized water (Polar) 

Deionized water was Weber Scientific brand Reagent water/ Deionized Water 

designed for scientific and laboratory research. Water is a polar molecule based on its 

covalent bond between hydrogen and oxygen.  
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c. Mineral Oil (Non Polar) 

The mineral oil was a combination of generic mineral oils from Johnson and 

Johnson corporation [9] and Exchange Select Brand. These oils did contain fragrance 

added for consumer use. The fragrance showed no impact on performance. The mineral oil 

was tested for polarity by a solubility test where DI water and mineral oil were placed in a 

same container. They two solutions stayed separated.  

d. Ionic (3.5 % NaCl Solution) 

Ionic solutions were created using by weight measurements. Sodium chloride was 

measured to the desired weight then combined with deionized water to make a homogenous 

solution. The solution was heated and mixed with a magnetic mixer till not no large solids 

were visible. Sigma Aldrich branded 58.44 g/mol NaCl was combined with deionized 

water. 

H. GALVANOSTAT SETUP 

The galvanostat used was the BioLogic Model SP 300, made by Bio-Logic Science 

Instruments SAS, in Claix, France. As we described in [1], “notably, the device is regularly 

tested by using it to measure the marked capacitance of both commercial supercapacitors 

and electrostatic capacitors.” 

1. Testing Protocol 

The standard protocol for testing was a five step process. First would be to charge 

to an initial voltage, hold for a set time, discharge at a constant current, switch polarity and 

then repeat. An example is shows in Figure 3.  
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Figure 3. Example Cycle of Typical Testing Protocol 

a. Charging

A range of 1 to 50 mA charging was selected. This allowed for a quick charge on 

the electrodes to reach its initial desired voltage with minimal impact to its hold time. 

b. Constant Voltage Hold

A constant voltage hold time was determined for each material. This voltage was 

based on material characteristics and its ability to reach the desired voltage with the desired 

charging amperage. The material would be raised to the desired voltage and then held for 

a determined time. 

c. Constant Current Discharge

A constant current discharge was used to measure the stored charge. These values 

ranged from 0.025 mA up to 5 mA. 
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d. Cycle/Repeat 

Each capacitor was set up to charge, hold, discharge, reverse, charge, hold 

discharge and repeat for 3–5 cycles for each desired discharge current. The report typically 

lists the average of 3–5 cycles. After completing the cycles, the discharge current was 

changed and the process repeated. Changing the discharge current allows for a change in 

“period/ frequency.”  

2. EC Lab Software 

BioLogic Science instruments EC-Lab Software V10.44 released Aug 31, 2015 and 

V11.27 released Feb 15, 2019 were used to collect and process the data.  

I. PH INDICATION 

A measure of the pH value was conducted using General Hydroponics pH Indicator 

with small samples and visual comparison of color. This pH indicator is rated for pH of 4.0 

to 8.5. The lighter and closer to orange the indicator turns the lower the pH.  

Table 1. pH Indicator Color Chart 

pH Color 

4.0 Red 

5.0 Orange 

6.0 Yellow 

6.5 Mustard Yellow 

7.0 Light Green 

8.0 Dark Green 

8.5 and higher Blue Green 

 
 

J. SCANNING ELECTRON MICROSCOPE 

Scanning Electron Microscopy (SEM) was conducted on using a Zeiss Neon 40 

Scanning electron microscope with SMARTSIM 5.07 Software for analysis. 
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K. X-RAY DIFFRACTION(XRD) 

XRD measurements were conducted using a Rigaku MiniFlex 600 machine and 

both MiniFlex Guidance and MDIJADE9 XRD pattern processing, identification, and 

quantification software. 
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II. RESULTS

A. CHARGING AMPERAGE 

The first step in each experiments was to choose an initial voltage and charge the 

electrodes to that voltage. This seems trivial in theory. The issue is for each combination 

of materials; these characteristics change dramatically. There are several phenomena which 

occur with the electrode or dielectric or combination. Based on the paring there were many 

considerations and parameters needed to be changed to meet these. 1) An ageing process 

would occur. This in most cases of metals consisted of an oxidation layer occurring on the 

surface. 2) Ageing oxide growth and material break down into the dielectric. 3) 

Delamination and expansion of the electrode. 4) Dielectric electrolysis and a change of pH. 

5) Pitting corrosion and ultimate failure. For each material there was a maximum voltage

that a combination of electrode and dielectric would reach at a set amperage. Table 2 lists 

the combination. The required amperages would change for some materials as an artifact 

of an aging process of a thin surface oxide layer or a change in the dielectric. The desired 

charging amperes and voltages was a function of the two variables.  

Table 2. Material Charging Voltage Plateau and Associated Current 

Material Dielectric Location Charging 
Amperage (mA) 

Maximum 
Voltage (V) 

Ag DI Inside 2.4 7.3 
Grafoil DI Inside 1.0 8.7 
Grafoil DI Inside 2.4 9.2 
Grafoil SW Inside 2.4 1.8 

CNT Sheet SW Inside 4.5 1.32 
CNT Sheet SW Inside 10 1.4 
Ti Thick SW Inside 2.4 6.7 

A final charging amperage was selected to have minimal effect on the initial 

charging and not induce increased hold time. 



18 

B. INITIAL VOLTAGE DISCUSSION 

The original intention was to use a constant voltage of 10 V for all electrodes. This 

changed for three reasons. 1) The desired charging amperage would need to be increased 

dramatically. The initial range was set to 1 mA and upon further configurations was 

increased as high as 50 mA. 2) Electrolysis of the dielectric would occur for some materials 

at higher voltages. Specifically, electrodes would cause electrolysis of the DI water and 

dramatically change its pH altering its ionic concentration observed by bubbles forming on 

the surface. 3) The increased voltage and electrolysis would cause material break down 

and even failure.  

 

  
Left: Electrolysis of water with titanium electrodes. Right Lead oxide saturation in DI 
water showing a glitter effect. 

Figure 4. Electrolysis of Water with Ti and Lead Oxide Formation in 
DI Water 

C. HOLD VOLTAGE EFFECT 

1. Hold Voltage Current Plateau 

The initial charging current set to maintain a voltage is a function of the dielectric 

and the material. Examining three cases, 1) Air –Ti charges almost instantaneously.  

2) Water - Ti takes a large initial amperage and then over time it will require less amperage 

to maintain and steady over time. 3) Ionic Solution (Salt water) – Ti charges slower than 

water and air but reaches its desired voltage quickly based on the appropriate amperage. 
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For each desired voltage, the required current to reach it would peak and then begin 

to decrease as the hold time continued. In order to maintain the desired voltage there was 

less current needed. This process would occur over large hold times. In many cases the 

minimum current required to maintain a voltage was not reach even after 2000 seconds.  

Table 3. Initial Voltage Required Amperage. 

Material Dielectric Location Voltage(V) Hold 
Time(s) 

Minimum 
Amperage 
observed 
(mA) 

Ti Thin DI In 10 2000 ~0.075 
TI Thin DI Out 10 600 ~0.09 
TI Thick DI In 10 600 ~0.50 
TI Thick DI Out 10 600 ~0.26 
Grafoil DI In 10  200 ~0.37 
Grafoil DI Out 10 600 ~0.77 
Grafoil SW In 1.5 2000 ~0.22 
Grafoil SW Out 1.5 2000 ~0.30 

 

2. Electrolysis of the Dielectric 

A side effect of higher voltages between plates and using water based dielectrics 

was the electrolysis of the water. The breakdown of the water at higher voltages was 

observed by bubbling on the electrodes (Figure 5). This bubbling on the electrodes caused 

a change in the pH of the dielectric (Figure 6). An increased pH of the dielectric lead to 

increased performance. The increased performance was observed by gradual increase in 

discharge times for each cycle in some cases. Mitigation of the electrolysis was managed 

by operating at lower testing voltages. 
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Figure 5. Electrolysis Occurring on the Electrode Surface 

 
Left- Deionized water pre experiment, yellow hue indicating a pH of ~ 6. Right – Deionized 
water post experiment; dark green hue indicating a pH of ~7.5 – 8. 

Figure 6. pH Color Change 

D. IMPACT OF HOLD TIME 

For each experiment a desired voltage and hold time were chosen. For most cases 

an increased hold time showed increased energy storage. Based on increased discharge 

rates the energy storage was becoming less variable and converging. It is believed that the 

individual plate oxidation and performance would give deviations and in some cases better 

performance. The overall trend is that an increased hold time leads to greater energy 

storage. This relationship is nonlinear based on 3X increase hold time giving a 1.6 X energy 

storage and a 10 X increase in hold time giving only 2 X the energy storage as observed in 

(Figure 7).  
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The increase in stored charge is hypothesized by allowing greater time for 

alignment of dielectric. The greater alignment, the greater the reduction of the field. This 

increased alignment was also noted by an increase in discharge time. 

Hold time has a relatively small impact (~2 X) energy storage 

Figure 7. Energy Storage vs. Hold Time of Ti Thin and DI water at 
0.1 mA Discharge Rate 
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Hold time has a relatively small impact (~2 X) energy storage 

Figure 8. Energy Storage vs. Hold Time of Ti Thin and DI Water at 
0.25mA Discharge Rate 
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Impact based on 0.1 mA discharge rate 

Figure 9. 200 vs. 600 vs. 2000 Second Hold Time Comparison 
Energy Storage vs. Discharge Time Ti and DI Water at 0.1 mA 

Using titanium sheets there is a significant impact on the discharge time, and energy 

density in relation to the voltage hold time. This relationship is not specific to the electrode 

material. Increased hold time also gives increased energy storage as seen in changing the 

electrode to Grafoil and dielectric to salt water. Grafoil and SW showed and increased 

energy storage indication that an increased hold time allows greater energy storage. 
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Figure 10. Energy Storage 200 s vs. 1000 s Hold Time at 1.0 mA 

Discharge Grafoil with SW Inside 

E. POLAR VS NON POLAR DIELECTRIC DISCUSSION 

The selected polar dielectric was deionized water and the non-polar was mineral 

oil. The premise for super dielectric materials is that they are able to reduce the overall 

electromagnetic field between two plates. This allows for an overall reduction of the forces 

brought upon storing a charge and allowing for more electrons to gather on an electrode. 

One test of the theory is to explore the difference in the impact of polar and non-polar 

liquids on measured capacitive behavior. That is, according to the theory non-polar liquids 

will have no effect on observed behavior, whereas polar liquids, because they will create 

fields oppositely polarized to the fields created by charges on the electrodes, will “cancel 

field” at all points in space. This will lead to a significant increase in capacitance, dielectric 

constant, energy density, power density. 

The use of mineral oil, which has no dipoles, as a dielectric is predicted to have no 

impact, similar to air on capacitance. This recorded results are in alignment with the theory 

and match those taken with only air in-between.  
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Table 4. Polar vs. Non Polar Discharge Time and Energy Storage. 

Discharge Time (s) Energy Stored (J) 
Polar Inside 
DI In Ti 10V 0.1mA 

41.1471 0.0021759 

Polar Outside 
DI Out Ti 10V 0.1mA 

1.02446 0.0001203 

Non-Polar Inside No measurable time ~ 0 
Non-Polar Outside No measurable time ~ 0 

Polar discharge example: measurable discharge times and current readings 

Figure 11. Polar Discharge Example 
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Non-polar- No measurable discharge times or currents, within the noise of the system setup 

Figure 12. Non-Polar Example Discharge 

The non-polar solution would record similar to air, where the internal noise of the 

system would dominate the program. The readings were negligible compared to an internal 

polar dielectric or external where measurable values were received. 

F. POLAR VS POLAR IONIC 

Two liquids with polar characteristics were tested; Deionized water (DI) and the DI 

with 3.5% dissolved NaCl by weight (“Salt Water” (SW)). Comparing DI water to Salt 

water there is a remarkable difference. Based on the SDM theory the alignment of the 

polarities will reduce the internal field between the place. Based on an addition of free ions 

this increased the internal field and increases the charge storage on each plate. Even though 

the salt water inside was only raised to 1.5 V instead of 10 V the energy stored in the ionic 

solution held much more energy. 
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Table 5. 200 s Hold Grafoil Polar Ionic (SW) vs. Polar (DI) 

Discharge 
Current (mA) 

SW IN 
Energy (J) 

DI IN 
Energy (J) 

0.025 0.040649231 0.006197751 
0.025 0.043085704 0.004634019 
0.1 0.052646395 0.000276487 
0.1 0.049393794 0.000208469 
0.25 0.05775418 2.70104E-07 
0.25 0.05028029 6.44758E-08 

The addition of ions into the solution allows for a greater energy storage. This was 

first noted with a dramatic increase in the required amperage to reach desired voltages as 

well as dramatic increases in discharge times. 

Figure 13. 200 s Hold Time Grafoil with SW vs. DI Water 
Comparison Energy vs. Discharge Current 

G. DISCHARGE DISCUSSION 

The discharge portion can be broken into two major sections. The first being a 

dramatic drop. The second being a gradual near linear decay down to zero. These two 

stages are different for the electrode materials and dielectric.  

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.025 0.025 0.1 0.1 0.25 0.25

En
er

gy
 (J

)

Discharge Current (mA)

SW Inside DI Inside



28 

To discuss the case of Thick Ti with DI water inside there is a dramatic drop from 

10 volts down to approx. 1.5 volts. Then it begins its near linear decent down to zero. This 

drop from 10 to 1.5 took approx. 8 seconds. This was similar for all tested currents. This 

was also repeatable for different hold time, a combination of electrode and dielectric had 

repeatable results. The discharge pattern was similar. 

Comparing two separate hold times the discharge curves had very similar profiles 

with the exception where a longer hold time correlated to a greater discharge time. This 

corresponds to an increased energy storage.  

 
200s hold time (Blue) vs 600 hold time (Red): Similar discharge profiles, however the 
increased hold time give a longer discharge time. 

Figure 14. DI and Titanium 200 vs. 600 s Hold Time 

DI water and salt water operated extremely differently. The addition of salt with 

the same hold time dramatically increased the discharge times. Making them much longer. 
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Blue- DI discharge cycle after 200 s from 10 V to 0 V. Red- SW discharge cycle after 200 
s hold from 5 V to 0. 

Figure 15. DI Water vs. SW Discharge Example 

Lead electrodes dropped dramatically down from 10 V to approx. 0.1 V and then 

showed a linear discharge slope from approx. 0.025 V and below. 

Figure 16. Lead Discharge Example 
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The location of the plateau seems to be a characteristic of the material electrode or 

the dielectric but not the initial voltage. Based on the inside or outside configuration there 

is the same drop from initial charge voltage to the plateau and then begins its linear descent. 

The linear portion seems to be a function of the discharge current.  

Table 6. Material Discharge Current Plateau 

Material Dielectric IN/Out Discharge 
Current 

Initial 
Voltage 

Major drop 
change 
Plateau 
Voltage 

TI DI IN 0.025 - 0.1 10 1.2-.07 
TI DI OUT 0.025 - 0.1 10 ~.45-0 
TI SW IN 0.025 - 0.1 5 1.2-.7 
TI SW OUT 0.025 - 0.1 5 1.4-1.1 

Grafoil DI IN 0.025 - 0.1 10 1.7-1.1 
Grafoil DI OUT 0.025 - 0.1 10 2.0-0.5 
Grafoil SW IN 0.025 - 0.25 1.5 0.85-.8 
Grafoil SW OUT 0.025 - 0.1 1.5 0.9-0.85 
Silver DI IN 0.025 10 1.5-.07 
Silver DI IN 0.025 10 Not Tested 
Lead DI IN 0.025 5 0.04-0.02 
Lead DI OUT 0.025 5 0.1-0.02 
CNT DI IN 0.025 - 0.25 5 1-.016 
CNT DI OUT 0.025 5 ~0 
CNT SW IN 0.25-1 1.5 1.4-1.3 
CNT SW OUT 0.25-1 1.5 1.5-1.3 

H. ELECTRODE THICKNESS DISCUSSION 

As shown in Figures 17 and 18 the data for different Ti thicknesses virtually 

overlaps for discharge times greater than 10 seconds. Shorter “pulse” data, discharge less 

than 10 seconds, suggests there may be a very limited advantage to thin Ti electrodes for 

rapid discharge. This is not clear as the apparent difference may be an artifact. Indeed, the 

absolute energy densities are at the “low end” of the detectable range of the galvanostat in 

this range. Further investigation is required. 
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Figure 17. Ti Thickness Comparison (0.1 mm vs. 0.05 mm) Energy 
Storage vs. Discharge Time at 0.1 mA Discharge 

Figure 18. Ti Thickness Comparison (0.1 mm vs. 0.05 mm) Energy 
Storage vs. Discharge Time at 0.5 mA Discharge 
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Figure 19. Ti Thickness Comparison (0.1 mm vs. 0.05 mm) Energy 
Storage vs. Discharge Time at  0.1 mA and 0.5 mA 

I. IMPACT OF INSIDE VS OUTSIDE DI VS SW AND TI 

The location of the dielectric has an impact on the performance of the capacitor. If 

the dielectric is polar (DI) (Figure 21), the inside energy storage is much greater than the 

outside. If the dielectric is polar and ionic (SW) (Figure 22), the energy storage inside is 

greater than that outside. Both polar and polar ionic store energy, both inside or outside.  

A direct comparison would be Ti-DI inside 600 s hold time gives a 150 second 

discharge at 0.025 ma while Ti-DI outside 600 s hold time gives a 1–5 seconds discharge. 

Ti-SW inside 200 s hold gives a 150~500 second discharge at 0.025 ma. TI-SW outside 

200 s hold gives a 100 second discharge. SW inside gave a much more comparable energy 

storage to SW outside compared to DI inside vs DI outside. 
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The dielectric performance in the dielectric outside configuration is inferior to the DI 
dielectric in the inside configuration. 

Figure 20. Energy Storage Inside vs. Outside Comparison Ti Electrode 
and DI Dielectric 

 

The performance of SW is a function of configuration, always superior in the inside 
configuration, however, the difference is relatively modest. 

Figure 21. Energy Storage Inside vs. Outside Ti Electrode and SW 
Dielectric 
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J. IMPACT OF INSIDE VS. OUTSIDE SW AND GRAFOIL 

The location of the dielectric does make a difference. The salt water dielectric 

inside configuration did show a slightly greater energy storage than outside. The major 

takeaway from this comparison though is that there is similar performance either with the 

dielectric located inside or outside for ionic solutions. SW Inside configuration is also 

superior to the SW outside configuration, but the difference as a function of configuration 

is less significant than that observed using DI as the dielectric. Further discussion in detail 

is discussed in Chapter III. 

 
Figure 22. 200 s Hold Time Grafoil SW Inside and Grafoil SW 

Outside, Energy vs. Discharge Current 
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Figure 23. Grafoil 200 s Hold Time Energy vs. Discharge Time 

Comparison SW Inside vs. Outside 

For SW, the energy density is always higher for the dielectric inside configuration. 

In particular, as shown in (Figure 21), for all discharge currents this is always true. 

However; it is also true that the energy density for the two configurations, given identical 

charge and discharge parameters, is always within a factor of two. On a log-log plot it is 

clear that the difference is not greatly significant (Figure 23). 

K. DI VS. SW AND TI VS. GRAFOIL COMPARISON 

There is a clear difference in net energy storage as a function of the identity of the 

electrodes and dielectric. Comparing four configurations the tested samples demonstrated 

SW in Grafoil is the best, then SW Ti second and then DI Ti followed by DI Grafoil. 

Comparing the four configurations a clear separation is determined and visible in the 

energy storage vs. discharge time comparison. 
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Figure 24. Grafoil and Ti Comparison SW and DI Dielectric, Energy 

vs. Discharge Time at 0.1 mA Discharge Rate 

L. TITANIUM PLATE OXIDATION 

Based on the oxidation layer of the plate a measurable difference in performance 

can occur. Running the “same” experiment with two rigs set up identically. The “same” rig 

comprised of different freshly cut electrodes from the same parent sheet of titanium metal. 

Results could vary by as much as a factor of 10. This level of difference deserves further 

investigation. The experiment shows the comparison of the four total plates. Rig 1 Sheet A 

and B and Rig 2 Sheet A and B. The greatest difference was between Rig 1 and 2. After 

testing, the rigs were disassembled and a clear difference in color between Rig 1’s sheets 

and Rig 2’s sheets was visible. The coloration of a plate is an indication of different 

oxidation layer thickness [10]. That is the coloration of the sheet is an indication of the 

degree of oxidative aging and has an impact on performance. 
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Same configuration, four different results 

Figure 25. Ti and DI Inside Energy Storage vs. Discharge Current 

M. DIFFERENT ELECTRODE DISCUSSION DISCHARGE TIMES 

Different electrode materials gave significantly different results. Of the several 

materials tested, carbon based materials performed the best.  

Table 7. Voltage vs. Discharge Time Comparison 

Initial Voltage Dielectric Electrode 
Material 

Approximate 
Discharge 

Time (s) At 
(~0.025 mA) 

Approximate 
Discharge 

Time (s) At 
(~0.25 mA) 

5 DI Lead 0-1.2 
10 DI Ti Thin 3-5 
5 DI Ti Thick 4-10 
10 DI Ti Thick 10-50 
10 DI Silver 120 
10 DI Grafoil 200-300 0-3 
5 SW Ti Thick 200-500 20-40 

1.5 DI CNT Sheet 700+ 1-25 
1.5 SW Grafoil 5500-6500 550-650 
1.5 SW CNT Sheet 500-700 
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N. MATERIALS AGING 

1. Titanium 

Titanium clearly ages. After cycling (+/- 10 Volts) for approximately 48 hours in 

either DI or SW a surface oxide layer is evident to the naked eye in the form of color 

change. The color is an indication of thickness [10]. The two observed colors seen during 

testing were an orange color hue and a blue color hue. The color changes were also found 

to vary as a function of position. In particular, the greatest color changes appear to occur 

around the edges of the gasket interaction as seen in Figures 26 to 28. Localization of the 

oxide layer thickness is evidence of crevice corrosion.  

 
Note the deepest color change is evident at the top of the electrode. Ti 0.05 mm thick after 
approx. 6+ hours of testing with DI water. 

Figure 26. Ti Blue Oxide Layer 
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Note the deepest color change is evident at the bottom of the electrode. Ti 0.05 mm thick 
after approx. 6+ hours of testing with DI water. 

Figure 27. Ti Orange Oxide Layer 

Note the deepest color change is evident at the bottom of the electrode. Ti 0.1 mm thick 
after approx. 6+ hours of testing with DI water. 

Figure 28. Localized Oxidation, Higher Near Bottom Edge 
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Figure 29. Complete Failure of Ti Sheet with Small Pitting and Holes 

2. Silver 

Silver was chosen as a potential substitute for titanium because is a good conductive 

metal, and like all noble metals more resistant to corrosion than base metals and copper. 

During testing with silver and DI water at 10 volts it was deemed unviable for continued 

testing. During the first testing a breakdown of silver formed a floating surface layer seen 

in (Figure 30). 

 
Figure 30. Floating Silver Film 

During initial testing (Figure 31), the capacitor went through its initial charge and 

discharge cycles but failed to reach the return voltage of 10 V. This test was then manually 

continued and an increased amperage was needed to reach 10 V.  

The first cycle created a naked-eye-visible black surface layer, typical of silver 

oxide. Some of this black material clearly “entered” the liquid material (Figure 30). As the 
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number of cycles increased the oxide layer appeared to create a low resistance path through 

the liquid, requiring ever higher currents to reach any given voltage difference between the 

electrodes (Figure 31).  

Figure 31. Silver Cycle Example 

The test was stopped and the rig was disassembled and the surface cleaned with a 

paper towel and then reassembled and continued.  
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Figure 32. Silver Plate Oxidized and Cleaned. 

The same electrodes were used for second test. The corroded electrodes were wiped 

clean after the first test to remove most of the top layer of oxide growth. Also, the water 

was replaced with clean/new DI water. Below, performance is discussed in terms of 

discharge time at the same current in all cases, 0.025 mA.  

Performance in terms of discharge times at 0.025 mA provides a quantitative 

indicator relating the status of the oxide on the electrode surface and/or in the liquid phase. 

In the first test discharge times started at 30–60 seconds and then increased to a maximum, 

before complete breakdown, of approximately 120 seconds, before the leakage current 

became extremely high. During the tests of the “cleaned” electrodes, discharge in all cases 

took approx. 120 seconds (Figure 34). Yet, again, after a five cycles, the current required 

to charge the capacitor, just like the failure noted in the test of the fresh silver electrode, 

was indicative of a “leaky” dielectric (Figure 33). It was clear that a new silver oxide layer 

formed and that some of that oxide material entered the liquid dielectric, dramatically 

reducing the resistance of the liquid phase. The capacitor at that point was “very leaky”/ 

“failed.” The test was stopped after six cycles as it was determined silver is not a viable 

electrode material. 
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Figure 33. Silver Failure Example 

The internal solution was collected and examined. XRD data indicated a 

combination of silver and silver oxide (Appendix, Part D). 

A typical discharge is shown in Figure 34 for the second test, first five cycles. The voltage 
discharge starts from 10 V and drops dramatically to approx. 1.5 volts, then there is a more 
extreme decay until it reaches approx. 0.5 volts and then shows linear behavior. This is not 
like that observed for titanium electrodes. 

Figure 34. Silver Discharge Example 
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Figure 35. SEM IMAGE of Silver Oxide Particulates 5,000x 

Magnification 

 
Figure 36. SEM Image of Silver Oxide Particulates 5,000x 

Magnification  
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3. Lead

Aging of the lead gave an increased discharge time but also required an increased 

amperage to maintain 5 volts. The first cycle charged to 5 volts with a maximum amperage 

of 1.5 mA while the last cycle was peaked at 2.4 mA. As the cycles continued there was 

increased performance as seen in (Figure 38) by an increased discharge time. 

Figure 37. Lead Discharge at 600 Seconds 
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Figure 38. Lead Discharge at 2300 Seconds 

During the first cycle with lead, the material was generating a surface oxide layer. 

As this layer grew and became more homogenous, the amperage needed to reach its desired 

voltage increased as well. 
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Figure 39. Amperage Cycle Demonstration 

Lead outside showed a similar result as the internal. But it occurred much faster. 

The sample only made three cycles before not being able to reach the desired voltage with 

a max amperage of 2.4 mA. This aging characteristic still need much more investigation 

based on increased performance with the aging. The result of the aging, is increased current 

needed to reach the same desired voltage. But this also seems to give an increased discharge 

time. 

The steady discharge linear portion seems to begin similar to the inside 5 volts 

while the inside configuration showed a 0.1 volts. The discharge times increased as the 

number of cycles continued. The first discharges were in the range of 1 second while the 

later discharges were 4–7 seconds.  
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Table 8. Comparison of Plate A and B 

Time Plate Discharge Current 

7.39859981309559 A 0.02-0.03 mA 

15.3953996110795 A 0.02-0.03 mA 

1.03059997396480 B 0.02-0.03 mA 

7.73119980469346 B 0.02-0.03 mA 

time/s

Figure 40. Lead DI Outside Failure after Two Cycles 

The particle decomposition formed a breakdown into the water. This solution was 

deemed to be lead oxide. Under high magnification this oxide looks to be planar and film 

like, thin and even transparent in some cases.  
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Figure 41. SEM Lead Oxide 3,000x Magnification 

 
Figure 42. SEM Lead Oxide 15,000x Magnification 
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4. Grafoil 

Grafoil electrodes faced two observable changes. The first was a “swelling” of the 

electrode. The exposed area showed a visual increase in size as if it became saturated. This 

was confirmed as well during the SW experiments of salt crystal formation on areas that 

were not exposed to the SW solution indicating saturation and transport of the NaCl. The 

second change with Grafoil was observed as complete delamination. The material after 

operating at higher voltages and increased cycles would eventually delaminate and show 

thin flake layers.  

 
Figure 43. Grafoil Saturated and Swollen 

 
Figure 44. Grafoil Delaminated 
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During initial trail testing with the electrodes, this was placed in high NaCl bath 

and charged at extremely high currents to verify the transition of pH observations. These 

sample testing produced delamination which were viewed in the SEM had small whisker 

nucleation of carbon on NaCl particles. An interesting side effect of these whiskers was 

there susceptibility to being broken with the electron beam. 

 
Figure 45. SEM Image of Grafoil Byproduct 
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Figure 46. Image After Whisker was Broken with Electron Beam 

5. Carbon Nanotube (CNT) Sheet 

CNT sheet was a very good electrode material. The material itself did face some 

breakdown which was observed by a wicking characteristic. Where the galvanostat leads 

were placed was originally dry and as the number of cycles increased, the sheet seemed to 

become saturated and wicking caused slight corrosion on the electrical leads. 

When testing was conducted with DI water, the inside showed significant and 

measureable reads. There was an increase in energy storage from 0.025 mA to 0.1 mA and 

then a decrease again above 0.25 mA discharges. This was a characteristic for 1.5 and 5 V 

charges. When testing was conducted with DI Outside, there was no measure readings. For 

SW there was measurable readings on the inside and outside. The SW configuration was 

tests at 0.25 – 1 mA discharges and showed increased performance on the outside rather 

than inside. However, the inside showing continued increased energy storage for all tested 

parameters. 
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Figure 47. CNT Sheet DI vs. SW Comparison Energy vs. Discharge 

Current 

6. Electrolysis of Dielectric/pH Changes for Dielectric 

Electrolysis occurred when operating at voltages above the breakdown voltage 

(>1.5 V) and was observed by bubbling on the surface of the electrode. This was typically 

neglected based on the magnitude scales of currents. The energy storage and measured 

discharge times gave discernable separations. The increase of pH of the dielectric mostly 

gave increased performance based on increased polarity of the solution. Operating at lower 

voltages gave more reliable and repeatable results with less electrolysis.  

In the case of silver DI water showed a pH increased from a neutral 6.5 to 7 to over 

8.5. This continual increase in pH of the dielectric can attributed to an increase discharge 

times for the first tests. As the initial pH started at 7 and the finals at 9+ a greater polar 

dielectric would demonstrate increased performance.  
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Figure 48. pH Change from Before to After Silver and DI water. 

The electrolysis mostly occurred with the DI water. The addition of NaCl salt to 

the dielectric increased the amperages which was required to bring the electrodes to a 

desired voltage and made higher voltages a place for further research. The SW test were 

conducted mostly at lower voltages 1.5 V instead of 10 V which did not show changes in 

the pH of the dielectric. 

O. CIRCUIT DISCUSSION  

These SDM capacitors do follow traditional capacitor circuity trends. The 

capacitance measured for Ti with DI inside was tested in series and parallel. 

1. Parallel 

The parallel testing consisted of two rigs set up in parallel. The overall set up was 

charged to 10 V and then discharged. The measure capacitance followed the expected trend 

of the addition of each capacitance and as expected like with Equation 8. Complete the 

calculations shows results very similar and in the correct order of magnitude. 

Table 9. Capacitance Parallel Data 10 V 

Discharge 
Current 
(mA) 

10V Rig 1  
Alone Capacitance 

(mF) 

10 V Rig 2 
Alone Capacitance 

(mF) 

Parallel 
Calculation 
Capacitance 

(mF) 

Parallel 
Measured 

Capacitance 
(mF) 

0.025 0.891362 0.260035 1.151396 1.678561 
0.025 1.207207 0.378263 1.58547 2.483555 
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2. Series 

The series testing consisted of two rigs set up in series. The overall set up was 

charged to 10 volts and then discharged. The measured capacitance follows the trend of 

lower overall capacitance for two capacitors in series. The setup of charging the entire 

configuration to 10 volts created a voltage divide, creating a total capacitor of two charged 

to 5 volts. Conducing the calculations in Equation 9 show the results in the appropriate 

order of magnitude. 

Table 10. Capacitance Series 5 V 

Discharge 
Current 
(mA) 

5V Rig 1  
Alone 

Capacitance 
(mF) 

5 Rig 2 
Alone 

Capacitance 
(mF) 

Series 
Calculation  
Capacitance 

(mF) 

Series Measure 
Capacitance 

(mF) 
0.025 0.067194 0.053268 0.029713 0.024245 
0.025 0.237747 0.038074 0.032818 0.086601 

 

P. SUMMARY 

In summary it is clear that the electrode material strongly impacts performance. In 

fact, due some electrode materials, in particular lead, and silver are not viable electrode 

candidates because they age quickly and fail. The tested electrode materials that age slowly, 

and hence are candidates for long term use, include titanium and carbon in various forms. 

It must be noted that the “effective” electrodes produce different outcomes. In all cases, 

carbon based electrodes demonstrated greater energy storage than titanium. 

The data presented here permitted a preliminary assessment of the aging and failure 

mechanism of silver and lead electrodes. In both cases two problems arise. First, an oxide 

forms on the electrode surface due to the challenging electrochemical environment. 

Second, in each case some electrically conducting particulate material leaches off the 

surfaces of these metals, and eventually creates a short between the electrodes. The lifetime 

of the electrodes is no more than a few hours. 

Those materials shown to be effective also suffer forms of aging; however, that 

aging has limited impact on performance. The only metal shown effective, titanium, 
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clearly, like lead and silver, develops an oxide layer. This layer, unlike the lead and silver 

oxide layers, does not bleed particulate material into the liquid phase but does impact 

performance. No short evolves.  

Carbon of two types was shown, one composed of graphite flakes compressed, and 

the other composed of compressed nanotubes. The energy density of capacitors was 

somewhat better for the latter. Both were 2 or 3 X more energy dense than titanium at the 

similar conditions. Both types of electrodes tended to swell with time and gradually leaked 

fluid. 
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III. UNDERSTANDING DIELECTRICS: IMPACT OF EXTERNAL 
SALT WATER BATH 

This chapter was previously published as a journal article by A. Roman and J. 

Phillips (thesis advisor) in Materials a MDPI product [1]. Contributions made by 

Alexander Roman include fabrication and manufacturing of the capacitor rig, experimental 

procedures, data collection, post processing, and discussion contributions to the result 

analysis.  

A. INTRODUCTION 

In this paper a novel experiment was conducted to test further a new theory of 

dielectrics, the so-called super dielectric material (SDM) theory. The experimental design 

of this work was intended to provide a contrast between conventional dielectric theory, as 

presented in physics texts, and SDM theory. That is, the experiments were designed such 

that the outcome could only be consistent with one of these theories. 

The basic arguments of the SDM theory are not widely disseminated, hence there 

is value in a brief review. To wit: The central hypothesis of the SDM theory is that 

dielectrics increase capacitance by polarizing opposite to the polarity of charges on the 

electrodes. This can be understood from a five-part argument [2] - [7]. (1) Dielectric 

material polarizes in the opposite direction to any field applied to it. This occurs because 

the positive charge in a dielectric moves toward the negative electrode and negative charge 

moves toward the positive electrode. (2) Placed between the electrodes of a standard 

parallel plate capacitor, the dielectric material creates a field opposite in direction to the 

electric field created by charges on the electrodes, in all space, not just the region between 

the plates. (3) As the field at any point in space is the vector sum of the fields of all 

individual charges, the dielectric in a parallel plate capacitor reduces the field, at all points, 

created by charges on the electrodes. (4) As “voltage,” a state property, is the scaler line 

integration of the electric field, and the dielectric reduces the field at all points, the 

dielectric necessarily reduces the “voltage” between any two points, including any path 

from infinity to an electrode. (5) It follows that as in the presence of a dielectric it takes 
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more charge on the electrodes to reach a given capacitor voltage, dielectrics increase the 

electrode charge/voltage ratio. Thus, by definition, dielectrics increase capacitance. There 

are some inherent predictions of the SDM model. One example is the prediction that the 

effectiveness of a dielectric is the product of the length of charge separation within it 

(dipole length), and the density of charges (dipole density). This was tested and found 

accurate in earlier work [3] , [11] . Other work showed that, as predicted by the model, 

high dielectric constants would be found for saltwater saturated fabric [12] ,for salt water 

saturated nano-tubes on the surface of anodized titania [13], for porous solids saturated 

with various salts [14] , [15], for fumed silica gels containing salt water [16], for water 

saturated with salts other than NaCl such as KOH and NH3Cl [17]. Other studies show that 

both metal and carbon can be used as the electrode material [7] , and for non-aqueous polar 

fluids such as DMSO containing dissolved salts, etc. Each of the existing SDM studies [3], 

[2], [7], [11]–[20] adds to the corpus of data supporting the SDM hypothesis. 

Another prediction of the model is that any mechanism that reduces the field at all 

points in space around a capacitor will increase the capacitance. This implies that in a 

standard parallel plate capacitor dielectric material need not be between the plates in order 

to impact capacitance. Indeed, dielectric material outside the volume between the 

electrodes should, under correct circumstances, increase capacitance. Consistent with this 

prediction of SDM theory, our team recently demonstrated that a parallel plate capacitor 

with high dielectric material only outside the volume between the plates acts “as if” there 

is a high dielectric constant material between the plates [7]. As shown in that study, a 

simple capacitor composed of titanium electrodes and a thin plastic dielectric had, as 

anticipated, a very low capacitance. Second, the control capacitor, still the same plastic 

dielectric, was modified on its outside only. Specifically, it was covered on the outside in 

a continuous thin layer (<1 mm thick) of a particular gel type super dielectric material. This 

increased measured capacitance by as much as seven orders of magnitude higher than the 

control below ~1 V. This finding is consistent with SDM theory, and completely contrary 

to standard theory. 

Further experiment is needed to demonstrate the generality of the SDM hypothesis, 

particularly as it applies to the “dielectric on the outside” prediction. In the present study 
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simple parallel plate capacitors containing only air in the volume between the titanium foil 

plates were (1) immersed in air, (2) immersed in distilled deionized water (DI), (3) 

immersed in deionized water containing 0.5% NaCl (8.5 x 10–2 mol/L). The results confirm 

SDM predictions regarding the efficacy of “dielectric on the outside.” That is, contrary to 

standard theory that immersion in any material cannot impact measured capacitance, it was 

found, in agreement with the SDM model, that immersion in salt water increased 

capacitance by more than seven orders of magnitude. 

In addition to these experiments, studies of the behavior of (1) DI, and (2) DI 

containing ~5.0 wt % NaCl the dielectric between the electrodes is presented. The finding 

that the dielectric constant of DI water is remarkably high, in fact >109 in particular 

circumstances, confirms earlier studies showing pure water, at low frequency, has a 

remarkably high dielectric value [21], [22]. These results suggest, according to SDM 

theory, that well organized dipole formation must occur in water exposed to electric fields, 

and suggest there is value in continuing research on the dielectric behavior of water. 

B. EXPERIMENTAL 

Two different parallel plate capacitors, with electrodes made of Ti sheets (0.1 mm 

thick) 3 cm x 3 cm, covering an air gap of dimension 2.5 cm x 2.5 cm were employed. The 

only difference between the two was the size of the gap between the electrodes: 6 mm in 

one case and 20 mm in the latter. As shown in Figure 49, the Ti sheets were held between 

materials known to have low (<100) dielectric constants; rubber layer to grip the titanium 

sheets, and the gap created by layers of clear Acrylic sheet.  
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Unlike most modern studies of the dielectric properties that employ micron-scale devices, 
herein a multi-centimeter device (see ruler) was used. 

Figure 49. Figure 1 -Standard 20 mm Capacitor Source: [1]. 

Several different capacitor configurations were studied. In all cases two different 

dielectric must be specified; an inner dielectric, that is the dielectric material between the 

electrodes and an outer dielectric, that is the dielectric material surrounding/outside the 

volume between the electrodes. The distance between electrodes was also specified below, 

because capacitors were virtually identical but for the distance between electrodes were 

studied. Specifically, the behavior observed for a capacitor in which the electrode distance 

was 20 mm (20 mm capacitor) was contrasted with one for which the electrode separation 

was 6 mm (6 mm capacitor).  

1. Control 

In the control cases the capacitor was simply placed on the lab bench in the ambient 

air (AIR). Both the inner and the outer dielectric were ambient air. There were two controls: 

One in which the titanium sheet electrode separation was 20 mm and one in which it was 

6 mm. 

2. Dielectric on Outside 

In the “dielectric on the outside” configuration (DOC), the inner dielectric was the 

same as in the control case; ambient air. The outer dielectric was a super dielectric material, 
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either DI or DI with dissolved NaCl, generally 0.5% by weight. The bath surrounding the 

capacitor in all cases was about 500 cm3. In the DOC configurations ~95% of the electrode 

surface was covered in liquid. The remainder was in the ambient environment. Two cases 

were studied: (1) The capacitor was partially submerged in DI water (DI-DOC), or (2) The 

capacitor was partially submerged in DI water containing dissolved NaCl (S-DOC), that is 

salt water. 

3. Parameter Computation 

The fact that the dielectric is on the “outside” leads to a conundrum in terms of 

computing and labeling parameters. That is, the standard nomenclature requires a volume, 

and that volume is always assumed to be that of the dielectric “inside” the electrodes. To 

address this conundrum, the computations were conducted “as if” only the volume between 

the electrodes is contributing, and the resulting values are called “effective dielectric 

constant,” and “effective energy density”. 

4. Dielectric on the Inside 

In the distilled water-dielectric on the inside configuration (DI-DIC) distilled water 

was used to fill the space between the electrodes, which is the inner dielectric. The 

capacitors were placed on the lab bench; hence the outer dielectric was simply ambient air. 

In essence this is the standard geometry for testing the dielectric properties of a material. 

In the salt water-dielectric on the inside configuration (S-DIC) salt water, generally DI 

water containing 0.5 wt % dissolved NaCl, was used to fill the space between the 

electrodes, hence salt water is the inner dielectric. The capacitors were placed on the lab 

bench, hence, again, the outer dielectric was simply ambient air. 

5. Testing Protocol 

All data, dielectric constant, energy, and power density, were computed from the 

constant current discharge leg of charge/discharge cycles collected using a programmable 

galvanostat (BioLogic Model SP 300 Galvanostat, Bio-Logic Science Instruments SAS, 

Claix, France). Notably, the device is regularly tested by using it to measure the marked 

capacitance of both commercial Supercapacitors and electrostatic capacitors. The 



62 

agreement with nominal capacitance is always excellent. The device, in constant current 

discharge mode, was operated over the voltage range, 0 to 10 V. The rate of electrolysis of 

water was minimal at these voltages, insignificant bubble formation even after twelve hours 

of continuous running. Capacitance is defined in constant current to be: 

 
( )

IC dV
dt

=  (2) 

where C is capacitance, I is current, V is voltage, and t is time. Clearly, if capacitance is 

not a function of voltage, voltage should decline linearly with time. As noted below and 

elsewhere [2], this is not always the case, particularly at “higher” frequencies. 

The constant current method has advantages relative to more commonly employed 

methods for measuring capacitance. Constant current data is far easier to deconvolute than 

that obtained with cyclic voltammetry [23] - [24]. The constant current method also 

provides direct measures of energy and power density. In contrast, impedance spectroscopy 

[2], [25]–[27] is limited to providing values based on measurements conducted over a very 

small voltage range, ±15 mV, thus is clearly not able to directly measure energy or power. 

In impedance spectroscopy a voltage independent capacitance (ideal) also is assumed; 

although, it is clear from a review of the literature that this is generally only true at a very 

low frequency [2]. For the capacitors studied in this work, as with most capacitors, the 

“ideal” behavior was not observed. 

Capacitance is generally used to compute dielectric constant (ε) by Equation (2) for 

a parallel plate capacitor. This is the mathematical expression of the standard theory of 

dielectrics applied to parallel plate capacitors: 

 
o

Ct
A

ε
ε

=  (4) 

  
where t is the thickness of the dielectric layer, A is the area of the electrode, and (ε0) is the 

permittivity of free space [28]–[30]. Equation (4), that is the standard theory of dielectrics 

applied to parallel plate capacitors, is based on the assumption that only the dielectric 

material between the electrodes contributes to the capacitance. This was clearly 
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demonstrated to be an incorrect assumption in the present study, and an earlier study by 

our team [7]. Thus, following the precedent set in earlier work, dielectric constant, energy 

density, and power density were computed/reported below “as if” the only volume of 

significance is that between the plates. Energy was computed as the integral of the area 

under the voltage time data (V x s) multiplied by current (amps), and power was computed 

as the total energy of the discharge divided by the total discharge time 

On the discharge leg, two distinguishable ranges of capacitance as a function of 

voltage were found. In the first range from 10 V to ~1.2 V the capacitance was relatively 

low and not a subject of significant inquiry in this study. The capacitance and dielectric 

values reported were only reported based on data for the discharge between ~1.0 and 0 V. 

Over this range the voltage vs. time relationship was nearly linear in all cases for discharge 

times greater than ~1 s, indicating constant capacitance over this voltage region [7]. 

The standard protocol for testing involved three steps. The first step was charging 

to 10 V, generally at 1.5 mA. The second step was to hold the voltage for a period of time, 

for example 200 s. All parameters were derived from the third step, discharge of the 

capacitor from 10 V to 0 V at a constant current. Next, the polarity was reversed in all 

cases, and a mirror “negative” voltage studied. Thus, the capacitor was charged quickly to 

-10 V, held at that voltage for the same time as during the positive voltage sequence (e.g., 

200 s) and then discharged to zero volts at the same current as the positive voltage discharge 

step. Generally, the reported values of parameters are the average of four cycles (circa 

Figure 50). In many cases, after four cycles, the value of the discharge current was changed, 

and the process repeated with the charge step, voltage, and voltage hold times unchanged. 

Changing the discharge voltage is the only means to change the discharge period/ 

“frequency.” This permits an approximate analysis of the impact of frequency. Note: This 

three-step protocol is very similar to that employed to characterize the capacitance of 

commercial supercapacitors [31] - [32] also previously explored in [7]. 

C. RESULTS 

The experiments were designed to collect capacitance, and “effective” values of 

dielectric constant, energy, and power density. This data was then employed for several 
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purposes: (1) To validate the SDM hypothesis. Specifically, dielectric material outside the 

volume between the electrodes significantly impacts all capacitor performance parameters. 

(2) To provide a check of earlier studies indicating that distilled water has a remarkably 

high dielectric value at low frequency (ca. 1 Hz). (3) To determine if these parameters 

impact capacitor behavior: Maximum charging voltage, hold time, discharge current, salt 

concentration, and electrode separation distance.  

1. Control 

The discharge time, given the smallest allowed discharge current, for the 

galvanostat connectors simply placed just above the bench in ambient conditions and that 

obtained when the electrodes are connected to the capacitor in the AIR configuration are 

the same. The charging current shows the same pattern as well. This indicates that the 

galvanostat is not able to measure discharges that occur more rapidly than 5 x10-4 V/s as 

this is the current an instrument leakage minimum. Thus, the measurements made for this 

study confirm that the capacitance was extremely low for the AIR configuration, but the 

measurement method employed was not sufficient to determine the actual capacitance. 

Assuming the standard dielectric constant for “air,” approximately 1, yielded a capacitance 

of 2 x 10 -13 Farads (F) for the 20 mm separation capacitor, and 1.9 x 10 -12 F for the 6 mm 

separation capacitor. In contrast, the capacitance measured below 1 V for the S-DOC 20 

mm capacitor was ~4.5 x 10 -3 F (discharge current 0.02 mA) and 9 x10 -3 F for the S-DOC 

6 mm capacitor, or more than eight orders of magnitude higher than the AIR configuration 

in both cases.  

2. Raw Data Outside Configuration 

In Figure 50 the results for the DI-DOC of the 20 mm capacitor are illustrated with 

the raw data. The discharge time, on the order of three seconds from 1 V to 0 V, was many 

orders of magnitude higher than that observed in the control studies (<0.5 ms) of the same 

capacitor sitting in ambient air. 



65 

 
(A) Four positive (10 V to 0 Volts) and three negative (-10 V to 0 V) voltage cycles shown 
with a 600 s hold time and 0.02 mA discharge current. (B) An expansion of one positive 
discharge. (Lines: Red current, Blue voltage). 

Figure 50. Discharge of DI-DOC for a 20 mm Separation Capacitor 
Source: [1]. 

One key result was that the hold time had almost no impact on the discharge time, 

a result dramatically different from that observed for salt water. That is, the discharge time 

for a ten second, a two hundred second, and a six hundred second discharge were not 

distinguishable. 

Discharge to about 2 V in all cases took place in less than five seconds, and then in 

some cases (e.g., long hold times) slowed dramatically. An example of the latter was the 

impact of hold time. In the discharge to about 2 V in all cases took place in less than five 

seconds, and then in some cases (e.g., long hold times) slowed dramatically. An example 
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of the latter was the impact of hold time. In the case of DI-DOC the hold time at 1 s and 

600 s was nearly equal, whereas for the S-DOC hold time had a considerable impact. As 

shown in Figure 51, the S-DOC the discharge time for a hold time of 600 s was 35 X longer 

than for a hold time of 1 s. 
 

 

 

 
Impact of the hold time for dielectric, 0.5 wt % NaCl in deionized water (DI), only on the 
outside 20 mm capacitor. (A) Shown: Discharge, current 0.02 mA, 1 s hold at 10 V. (B) 
Discharge current 0.02 mA,  200 s hold at 10 V. (C) Discharge current 0.02 mA, 600 s hold 
at 10 V.  

Figure 51. Impact of the Hold Time for Dielectric, 0.5 wt % NaCl in 
Deionized Water (DI), Only on the Outside 20 mm Capacitor Source: [1]. 
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3. Dielectric Values 

In Figure 52 the effective dielectric constant below one V (20 mm electrode 

separation) for three different salt concentration (DI-DOC and S-DOC) of the outer 

dielectric, with ambient air, all cases, as the inner dielectric. Clearly the S-DOC 

configurations had higher effective dielectric values than the DI-DOC configuration, but it 

was also clear that the DI-DOC was displaying effective dielectric values at least five 

orders of magnitude higher than the classically reported dielectric value for water,  

~80 [33]. These high values of the dielectric constant for DI at a low frequency/long 

discharge period were similar to those reported elsewhere [21], [22] for distilled water.  

Figure 52 also indicates that the effective dielectric constant for S-DOC was a 

function of the dissolved salt concentration. For example, the effective dielectric constant 

for a 250 s discharge of the 5 wt % NaCl solution was about 7 x larger than for the 0.5 wt 

% NaCl solution. 

Finally, Figure 52 indicates that the dielectric constant for discharge times greater 

than ~0.5 s were relatively constant, given all other protocol parameters constant. This 

suggests an effective “saturation” limit, where saturation in this study meant that the 

number of charges released through the circuit, that is the capacitance, was not impacted 

by current levels/discharge time. The finding that dielectric values were relatively flat as a 

function of discharge current, was not consistent with previous studies of SDM [3], [2], 

[11]–[20] on the “inside.” The physical basis for saturation of a dielectric was postulated 

to relate to full alignment of the dipoles in the dielectric. That is, at a particular voltage all 

the dipoles in the material were fully aligned, hence further increasing the voltage on the 

electrodes had no impact on the field generated by the dielectric [2] , [34] hence increasing 

voltage above the saturation voltage did not increase the amount of charge on the 

electrodes.  
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20 mm Capacitor. Based on capacitance below 1 V. As the salt concentration increases, the 
effective dielectric constant does.  

Figure 52. Effective Dielectric Constant as a Function of the Salt 
Concentration Source: [1]. 

It was also clear that not all data was reasonably fit with a power law curve. The 

data for the 0.5 wt % NaCl case was nearly flat above a discharge time of 2.5 s, and clearly 

fell sharply for faster discharges. This was a “trend,” albeit very non-linear. In general, the 

reader should note that the power law curves fitted the data imperfectly, thus extrapolation 

of the fit curves did not provide quantitative prediction. Still, the finding of complex 

“trends” in a few cases did not detract from the primary message of the paper: Immersing 

a parallel plate capacitor in DI or low salt solution dramatically increased capacitance. 

The value of the dielectric constant, remarkably high in all cases, was found to be 

a function of the electrode separation. Specifically, it was found that the dielectric constant 

was consistently higher for an electrode separation for 6 mm than it was for a separation of 

20 mm (Figure 53). It was also found that the dielectric constant for salt water in the S-
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DOC was consistently higher than for the S-DIC configuration both for the 6 mm capacitor 

(shown) and the 20 mm capacitor. 

 
Effective dielectric values below 1 V for the S-DOC and DI-DOC configurations (0.5% 
NaCl, 10 V charge, 200 s hold) for the 6 mm capacitor. It is notable that the power law fits 
were imperfect, indicating that extrapolation of the curves was not necessarily valid.  

Figure 53. Effective Dielectric Values for a 6 mm Capacitor S-DOC 
and DI-DOC Source: [1]. 

4. Energy Density 

In Figure 54, quantitative plots of energy density for dielectric “outside” 

configurations of the 20 mm capacitor at different salt levels are shown. Note that all data 

was in terms of “effective” values. That is, only the volume between the plates was 

employed as the volume in computations, yet it was clear that dielectric outside this volume 
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was dramatically impacting the results. Although it was clear that the energy density of the 

S-DOC were higher than those of the DI-DOC, the trends suggest that for very slow 

discharges the energy densities for all salt levels might converge.  

 

 
The three curves, based on the full voltage discharge, were obtained with the 20 mm 
capacitor and were all for a super dielectric outside/ambient air dielectric inside 
configuration, all based on a program of charging to ±10 V and holding for 200 s at ±10 V. 

Figure 54. Effective Energy Density as a Function of the Salt 
Concentration Source: [1]. 

Similar broad trends in energy density were found for both the 6 mm and the 20 

mm capacitors (Figure 55). Indeed, for the 6 mm capacitor energy density was highest for 

salt water (0.5 wt % all cases) on the outside (triangles), and in all equivalent cases, only 

salt concentration modified, the energy density was higher for salt water than for DI. The 

6 mm capacitor consistently had higher energy density than the 20mm capacitor in all 



71 

equivalent configurations. This result was anticipated as in both the SDM and standard 

model of parallel plate capacitors energy density was inversely proportional to the 

electrode distance squared. In this study, the effective dielectric constant for salt water on 

the outside also increased as the electrode distance was reduced. This is another reason the 

increase in energy density with a decrease in electrode separation, was anticipated. It was 

also clear that the S-DOC pattern (not a clear trend for either data of these data sets) in 

energy density for longer discharge times (>10 s) was remarkably similar for the 20 mm 

and 6 mm capacitors.  

As noted for other parameters, given the poor fit of some of the power law curves, 

quantitative extrapolation was not valid. Note: For the two “DOC” configurations shown 

the energy density was the effective energy density.  

 
The 6 mm capacitor consistently had higher energy density than the 20 mm capacitor in all 
equivalent configurations. Parameters: ±10 V and holding for 200 s at ±10 V. Note: For 
the two “DOC” configurations shown the energy density was the effective energy density. 

Figure 55. Energy Density 6 mm Capacitor Source: [1]. 
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5. Power Density 

In contrast to energy density, for all reported SDM based capacitors [2], [3], [7], 

[11]–[20] , power increases as the discharge time decreases. This indicates that for SDM 

based capacitors energy released during discharge is decreasing less quickly than the 

discharge time. This was also found true in the present study of SDM on the outside (Figure 

56). As anticipated, with all other parameters constant, salt significantly also increased the 

power density; the power produced by S-DOC was at least an order of magnitude higher 

than equivalent DI-DOC at all discharge rates. Yet, it was also clear that DI-DOC 

performed extremely well. 

 
The highest power, based on energy determined by integration over the full discharge, was 
found for S-DOC for the 6 mm capacitor and the lowest for the DI-DOC for the 6 mm 
capacitor; however all configurations produced high power and showed the same trend 
with discharge time. 

Figure 56. Increases with Decreasing Discharge Time Source: [1]. 
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D. DISCUSSION 

The mathematics employed in standard dielectric theory indicates an implicit 

assumption: The nature of the material on the “outside” of a capacitor is irrelevant. A good 

example is the mathematics of the most ubiquitous capacitor, a parallel plate capacitor. To 

determine the dielectric constant of a material that fills the space between the electrodes of 

a parallel plate capacitor three values are required: Measured capacitance, the area of the 

electrodes, and the distance between them (Equation (4)). There is no mathematical 

provision made to account for the properties of material not between the electrodes. True 

also: In standard narrative descriptions of the impact of dielectrics on capacitance there is 

never consideration given to properties of material outside the volume enclosed by the 

electrodes. In contrast, in SDM theory the properties of all dielectric materials, both 

between the plates and outside the plates, must be considered. One notable shortcoming of 

the SDM theory is that there is no simple equation linking geometric and materials 

properties equivalent to Equation (4), thus at present the theory is only qualitative. 

This study regards the use of a very simple test to contrast the predictions of the 

standard dielectric theory with the SDM theory. In this study parallel plate capacitors were 

constructed such that in most cases only ambient laboratory air was between the electrodes. 

The capacitors were then “immersed” in different media (1) ambient laboratory air, (2) DI 

water, (3) DI water containing 0.5 wt % NaCl, and (4) DI water containing 5.0 wt % NaCl. 

According to standard theory the impact of the dielectric properties of material outside the 

region between the plates is irrelevant, hence all four capacitors “immersed” configurations 

should operate identically. In contrast, according to SDM theory, the measured capacitance 

of the test capacitors immersed in water or salt water should be substantially higher than 

those embedded in ambient laboratory atmosphere. The results, in brief, were that those 

capacitors immersed in water or salt water had a capacitance at least seven orders of 

magnitude higher than measured for the same capacitors immersed in air. In fact, for the 5 

wt % NaCl case the effective dielectric constant below 1 V was spectacular, more than 

>10,000,000,000 x larger than the same capacitor immersed in laboratory air. Thus, the 

outcome of the experiments was only consistent with the SDM hypothesis.  



74 

This was not the first report of dielectric material outside the volume between the 

electrodes profoundly impacting performance. All the results reported were consistent with 

an earlier report from our laboratory, on the behavior of parallel plate capacitors covered 

with an SDM “gel” outside the volume between the electrodes [7]. As noted earlier, the 

intent of the present study was to confirm and “generalize” the conclusions reached in the 

first publication on the topic. 

1. Secondary Findings 

Secondary information found in the data included the following: (1) Pure water at 

short periods, order 1 s (roughly equivalent to a frequency of 1 Hz), had a dielectric 

constant in excess of 107, as reported elsewhere. (2) Salt does increase the dielectric 

constant. DI with even low dissolved salt concentrations (ca. 0.5 wt % NaCl) could have 

remarkably high dielectric values, >1010, even for a one second hold time at 10 V. At one 

second discharge time the difference in the effective dielectric constant between DI, and 5 

wt % NaCl in DI, was almost three orders of magnitude. (3) Increasing salt concentration 

did increase effective dielectric constant. Consistently, a bath of salt with 5 wt % NaCl 

produced higher capacitance, energy density, etc., values than a bath with 0.5 wt % NaCl. 

(4) There was evidence of a maximum, or “saturation” value to energy density achievable 

with salt water dielectric. In this study even as the discharge time was increased, effective 

dielectric constant remained relatively constant over a range of discharge times from about 

1 s to 250 s. (5) Effective dielectric constant values were similar in magnitude to the 

dielectric constants of the same materials “between the plates.” (6) Finally, in this study it 

was found that the effective dielectric constant of a dielectric material was always 

measured to be higher if it were outside the region between the electrodes than if it was 

placed between the electrodes. All of these secondary findings were only semi-quantitative 

and more detailed investigation is justified. 

Most of these findings were consistent with earlier work on SDM, and expectations 

developed on the basis of those studies. Indeed, the high effective dielectric constant values 

for salt water were within an order of magnitude of those published previously for SDM 
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gels on the outside of parallel plate capacitors [7] as well as SDM, in various 

configurations, “between the electrodes” [3], [11]–[20]. 

It is notable that other groups studying the dielectric value of water at low frequency 

(ca. near 1 Hz) report values of dielectric constant very similar to those reported here [21], 

[22]. Moreover; those teams used other methods, not the constant current method employed 

herein. Thus, the present results further demonstrate the generality and reliability of the 

results.  

2. Theory 

It is illustrative to compare models of the origin of high dielectric value found in 

the literature for DI water at low frequency, which is the standard model vs. SDM model. 

The standard model is that the extremely high dielectric values (ca. 107 at 1 Hz) result from 

charged species in the water (e.g., OH-, H3O+) forming oppositely charged electric double 

layers at each electrode [22]. According to the model, at the positive electrode OH- forms 

a double layer, and at the negative electrode H3O+. For several reasons it is not at all clear 

how the remarkably high net dielectric values observed are consistent with that model: (1) 

In standard supercapacitor models it is assumed the dielectric value of the double layer is 

in the low double digits [2] at low frequency. (2) This standard model cannot explain why 

the dielectric constant of water is at least five orders of magnitude greater than solid 

titanates [2]. Generally, some double layer like feature is proposed to explain the dielectric 

value of solid dielectrics [28]–[30]. (3) The model is not consistent with the fact that 

voltage is a state property. Given all paths yield equivalent voltage, how does the double 

layer reduce the voltage for a charge that travels between the electrodes via a path outside 

the volume between the electrodes? 

The SDM model, it is argued, is consistent with all observations, and all laws of 

physics [35], [36]. As explained in more detail elsewhere [2], [3], [7], [11], and illustrated 

in Figure 57, the theory is based on the field strength and direction of the field generated 

by a dielectric, placed between electrodes or surrounding the electrodes, “partially 

cancelling” the quasi dipole field produced by charges on the electrodes. The field 

generated by polarizing the dielectric will also be quasi-dipole, with a vector direction 
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necessarily opposite at every point in space to that of the “dipole” field generated by 

charges on the electrodes. Thus, the field produced by the dielectric reduces the electric 

field produced by the charge on the electrode at every point in space, both between the 

electrodes and outside the volume between electrodes. As the voltage is the line integral of 

the field, for any given charge density on the electrodes, that line integral, and 

concomitantly the voltage, is lowered. Hence, given a constant charge, capacitance 

(charge/voltage) is increased by the presence of the dielectric.  

The SDM model predicts, consistent with the data presented herein, and contrary 

to the standard model, that dipoles outside the volume between the electrodes will increase 

capacitance. The dipoles formed in the dielectric reduce the field at every point in space 

whether the dielectric is in the volume between the electrodes, or outside that volume, a 

concept completely consistent with the standard E/M theory [37]: The electric field at any 

point is space is the vector sum of the fields of all charges in the universe. In either 

geometry the field at all points in space produced by the charges on the electrodes is 

reduced by the oppositely polarized dipoles of the dielectric. Also, unlike the standard 

model, there is no need to postulate either a double layer, or a high field region near the 

electrodes. According to the SDM model the electric field distribution in space is nearly 

the same for a particular voltage, including the region adjacent to the electrodes, with and 

without a dielectric [2]. 
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Top view schematic of super dielectric material (SDM) theory for a parallel plate capacitor 
submerged in a salt solution. In the S-DOC configuration illustrated at all points in space, 
both “outside” the capacitor and between the electrodes, the field due to charge on the 
electrodes (solid arrows) is partially cancelled by the field created by the ions (dashed 
arrows), or by water molecules (not shown) organized into a “liquid crystal” like 
arrangement. 

Figure 57. Top View of SDM Example Source: [1]. 

The SDM model applies to all dielectrics, solids, and liquids. Two factors [2], [3], 

[7], [11] should impact the observed dielectric constant at low frequency; (1) the dipole 

density in the dielectric and, (2) the dipole length in the dielectric. There is no fundamental 

difference in the “action” of a solid (e.g., barium titanate) or a liquid dielectric. Both reduce 

the field created by charges on the electrode at all points in space via the formation of 

dipoles oriented opposite to the dipole orientation of the electrodes. Indeed, according to 



78 

SDM theory the underlying physical explanation for the enormous difference in a dielectric 

constant at low frequency (ca. 1 Hz) between salt water and barium titanate is the length 

of the dipoles. In barium titanate it is well under10 -10 m, and in the salt water it can clearly 

be even centimeters long [2], [3], [7], [11]–[20]. Calculations show that NaCl saturated 

water has about 30% as many dipoles per volume as barium titanate. The longer dipoles of 

salt water lead to higher dipole fields at all points in space, hence more significant 

cancellation of electrode charge produced field, and concomitantly higher capacitance. 

That is, barium titanate, with far shorter dipoles, according to SDM theory should have far 

lower dielectric constant than salt water, as observed.  

Some features of the data collected for the present work can readily be shown 

consistent with the SDM model. First, water should be an excellent dielectric at low 

frequencies because, as suggested elsewhere [22], the dipoles of water molecules align in 

the presence of an electric field. The structure of water in this condition is not known. Once, 

aligned, the water molecules will effectively “cancel” the field of the charges on electrodes, 

leading to extraordinarily high dielectric constants. Second, dissolved ions will further 

reduce the net field at all points in space by forming an effective large dipole with a length 

greater than the distance between the electrodes (Figure 57). The magnitude of this dipole 

may even explain why it was observed that S-DOC outperformed S-DIC as S-DIC dipoles, 

restricted by the internal volume, are necessarily shorter than those found in the S-DOC 

configuration. Third the effect of ion separation should increase with hold time. That is, 

the longer the hold time, the more charges can travel from elsewhere in the liquid bath to 

arrive at the proper electrode. In contrast, hold time has virtually no impact on the 

capacitive behavior of DI. Indeed, there is no need to provide time for ions to travel, only 

enough time for the water molecule alignment, clearly a far faster process.  

Further study of a variety of related topics is arguably justified. What is the impact 

of salt type? For example, is KCl or NH3Cl better than NaCl? Is KOH a better ion source 

than NaCl? How does the pH of salt-free water impact behavior? Is there a trend in the 

energy density as a function of inter-electrode distance? 

 



79 

3. Application 

Potential significant applications of the SDM theory supported by these 

experiments, are: (1) Possible novel energy storage devices, and (2) improved 

understanding of charge/discharge mechanisms in nerve tissue. Regarding the former: As 

noted elsewhere, the high dielectric constant value of “salt water” at low frequencies 

suggest capacitors can be created with higher energy densities than the best batteries. An 

“ideal” example: A parallel plate capacitor with a gap of 1 micron into which a material of 

dielectric constant of 1 x 1010 and specific gravity of 2 is placed, then charged to 1 V will 

have an energy density of about 6000 Wh/kg of dielectric. This compares rather well with 

a lithium ion battery with an energy density of order 150 Wh/kg. Even a less “ideal” 

capacitor, same dimensions, but a dielectric of only 109, and assuming the dielectric is only 

thirty percent of the weight, still yields an energy density as good as the best lithium ion 

batteries. The present work suggests an interesting variation: The SDM dielectric need not 

be in the space between the electrodes, but in fact can merely “surround” the electrodes. 

Regarding the latter: One third of the fluid in the body is interstitial water with a relatively 

high Na+ ion concentration. The present work suggests the capacitance of any “solvated” 

circuit, such as a circuit of neurons, will be impacted by the effective dielectric constant of 

the surrounding fluid. The present results suggest the dielectric constant of the “salt water” 

in the body is far higher than previously believed. Thus, the capacitance and charge stored 

in “biological circuits,” even the roll of ions in interstitial media, may need to be 

reconsidered. 

E. CONCLUSIONS 

All data was consistent with the central postulate of SDM theory: Dielectric 

material on the outside of a parallel plate capacitor is as effective at increasing capacitance, 

energy density, and power density as the same dielectric material between the electrodes. 

In contrast, all data was inconsistent with the standard model of dielectrics applied to 

parallel plate capacitors: As per Equation (4), only the dielectric material between the 

electrodes plays a role in determining capacitance, energy, and power density. Thus, the 
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data in this paper suggests the theory of dielectrics presented in standard textbooks [27]–

[29] should be reconsidered. 
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IV. FUTURE WORK 

Future work needs to be continue in research into higher concentrations of NaCl. 

Increased concentrations of ionic solution to find a saturation limitation for the energy 

storage. This study could consist of utilizing several different materials that are soluble in 

water such as potassium. Further investigation into the material characteristics and changes 

of oxide layer growth and ageing of the materials. The combination of a pre-aged material 

and ionic solution may be a viable option for energy storage. Investigation into the 

byproduct manufacturing, initial testing found micron sized particle growth and unique 

nucleation of fibrous structures at the Nano-scale. This includes further investigation into 

the thin layered lead oxides and effects on efficiency. Further investigation into different 

configurations of carbon electrodes. Such as oriented CNT fibers, or uniform spaced sized 

CNT sheets. Further discussion and research in to different configurations of capacitors, 

thickness size of exposed areas and the impacts of these changing parameters. Based on 

preliminary research, investigation into the transition and chemistry associated with 

changing of ion transport in conjunction with electrolysis of water based solutions. 

 
Two electrodes were placed in a NaCl solution separated by a wax paper barrier. One side 
was charged and held at a + voltage. The charged sides pH changed from neutral to a basic 
solution, while the opposite side became acidic. When the process was reversed the acidic 
and basic sides reversed.  

Figure 58. Change of pH from High Electrolysis 
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V. CONCLUSION 

This research highlights some of the many changing variables of working with 

dielectrics and parallel plate capacitors. From the study the greatest combination of tested 

materials is a carbon based electrode with an ionic polar dielectric. This combination gives 

the greatest discharge times and energy densities. It operated best at the tested loading and 

necessitates further research to refine this possible future disruptive technology. 
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VI. MATLAB SCRIPT

To process the EC-Lab files in MATLAB, the first step was to convert them from .mpr 
files to .mpt files. Using the built in function under “Experiment” then “Export to text” the 
file was converted to a text file.  

Figure 1. EC-Lab Text File Export Example 

%% Give file generic name. 
filename='Filename.mpt' 

%% Load File as a table. 
T = readtable(filename,'FileType','text','HeaderLines',101); 
% Pull required data into a smaller table. 7-Sequence / 9-Time / 11- 
% Voltage / 12-Current / 29-Cycle Count 
T_all=T; 
T = T(:,[7,9,11,12,29]); 
% Label consolidated table 
T.Properties.VariableNames={'Sequence','Time','Voltage','Current','Cycl
e'}; 
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data_p=T(T.Sequence==2,:); % Data for sequence 2 only. 
mean(data_p.Current) % Finds average discharge current. 
data_m=T(T.Sequence==5,:); % Data for sequence 5 only. 
mean(data_m.Current) %Finds average discharge current 
T.Voltage=abs(T.Voltage); 
T_Dis=T(T.Sequence==5 | T.Sequence==2,:); 
a=min(T.Cycle); 
b=max(T.Cycle); 
 
for k=[a:b] 
   T1=T_Dis(T_Dis.Cycle==k,:); 
   T1A=table2array(T1); 
% Pull all Plate A Data 
  TA=T1(T1.Sequence==2,:); 
 
  %% Find Linear Regression 
                     if k==b 
                     dt_a(k+1)=0; 
                     inta(k+1)=0; 
                     slopea(k+1)=0; 
                     else 
                     dt_a(k+1)= max(TA.Time)-min(TA.Time); 
                     inta(k+1)=trapz(TA.Time,TA.Voltage); 
                            TAA=table2array(TA);  z=TAA(:,3)<1;  
y=nonzeros(TAA(:,3).*z); 
                            x=nonzeros(TAA(:,2).*z);  mdl=fitlm(x,y);  
                    slopea(k+1)=table2array(mdl.Coefficients(2,1)); 
                    end 
 TA_c(k+1)=abs(mean(TA.Current));                
   
 % Pull All Plate B Data 
 
  TB=T1(T1.Sequence==5,:); 
                    if k==a 
                     dt_b(1)=0; 
                     intb(1)=0; 
                     slopeb(1)=0; 
                  else 
                     TB=TB(1:(height(TB)-1),:); 
                     dt_b(k+1)= max(TB.Time)-min(TB.Time); 
                     intb(k+1)=trapz(TB.Time,TB.Voltage); 
                      
                      
                    TAA=table2array(TB);  z=TAA(:,3)<1;  
y=nonzeros(TAA(:,3).*z); 
                    x=nonzeros(TAA(:,2).*z);  mdl=fitlm(x,y);  
                    slopeb(k+1)=table2array(mdl.Coefficients(2,1)); 
end 
   TB_c(k+1)=mean(TB.Current); 
  
end 
Results_a=[inta;dt_a;TA_c;slopea]'; 
Results_b=[intb;dt_b;TB_c;slopeb]'; 
Results_c=[Results_a((1:6),:);Results_b((2:7),:)];  
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APPENDIX: XRD DATA 

A. TI SHEET (ORANGE) 
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B. TI SHEET (BLUE) 
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C. LEAD OXIDE 
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D. SILVER OXIDE 
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