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Schwertmannite (sch), an iron oxyhydrosulfate mineral, can
catalyse a Fenton-like reaction to degrade organic contaminants,
but the reduction of Fe(III) to Fe(II) on the surface of
schwertmannite is a limiting step for the Fenton-like process. In
the present study, the sch/few-layer graphene (sch–FLG)
composite was synthesized to promote the catalytic activity of
sch in a Fenton-like reaction. It was found that sch can be
successfully carried by FLG in sch–FLG composite, mainly via
the chemical bond of Fe–O–C on the surface of sch–FLG. The
sch–FLG exhibited a much higher catalytic activity than sch or
FLG for the degradation of sulfamethazine (SMT) in the
heterogeneous Fenton-like reaction, which resulted from the fact
that the FLG can pass electrons efficiently. The degradation
efficiency of SMT was around 100% under the reaction
conditions of H2O2 200–500 mg l−1, sch–FLG dosage 1–2 g l−1,
temperature 28–38°C, and initial solution pH 1–9. During the
repeated uses of sch–FLG in the Fenton-like reaction, it
maintained a certain catalytic activity for the degradation of SMT
and the mineral structure was not changed. In addition, SMT
may be finally mineralized in the Fenton-like reaction catalysed
by sch–FLG, and the possible degradation pathways were
proposed. Therefore, the sch–FLG is an excellent catalyst for SMT
degradation in a heterogeneous Fenton-like reaction.
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1. Introduction

The heterogeneous Fenton-like process, one of the advanced oxidation processes, has been extensively used
to remove organic contaminants from wastewater [1,2]. In a heterogeneous Fenton-like process, H2O2 is
catalysed by solid catalysts to produce the hydroxyl radicals (–OH), which can effectively oxidize and
decompose most organic contaminants [3,4]. Generally, the heterogeneous Fenton-like process has
relatively wide availability and terrific catalytic properties [5,6]. To date, many kinds of solid catalysts,
including Fe0, α-Fe2O3, Fe/UiO-66, Cu-ZSM-5, pyrite, etc. have been investigated to reveal their catalytic
activities in a heterogeneous Fenton-like process for the removal of a broad range of contaminants [7–11].

Schwertmannite (sch) is a kind of Fe(III)-hydroxysulfate mineral formed in acid-mine drainage,
acid-sulfate soils and sludge bioleaching environments and its formula can be expressed as
Fe8O8(OH)8–2x(SO4)x (x = 1–1.75) [12,13]. Sch is rich in iron content, which makes sch a widely
available heterogeneous Fenton-like catalyst for the treatment of wastewater. Wang et al. [14] used sch
as a Fenton-like catalyst to degrade phenol and found that 100 mg l−1 of phenol was degraded in 3 h.
Meng et al. [15] reported that 1 mg l−1 phenanthrene was completely removed from the solution in 3 h
when using sch as a Fenton-like catalyst. Additionally, it has been already revealed that the Fenton-
like process takes place on the surface of sch through the reaction between Fe(II) and H2O2 [6,14].
Given the fact that most iron on the surface of sch is Fe(III), Fe(II) should be generated by the
reduction of Fe(III) during the Fenton-like process catalysed by sch [6,15]. However, the reduction of
Fe(III) to Fe(II) on the surface of sch has a very low reaction rate, making it a limiting step for the
degradation of organic contaminants in the Fenton-like process catalysed by sch [16,17]. Thus, it is
reasonable to presume that increasing the reduction rate of Fe(III) to Fe(II) on the surface of sch may
drastically promote the catalytic activity of sch in heterogeneous Fenton-like reactions.

Graphene is a kind of two-dimensional material with a flat single-layer of carbon atoms [18], which
has large surface area and excellent electrical conductivity [19–21]. Many previous studies reported that
graphene can be used as a catalyst carrier to enhance the performance of many catalysts, such as Fe3O4-
GO, GO-FePO4, GO-Fe2O3 and so on, in heterogeneous Fenton-like reactions [22–24], because the
graphene can not only disperse the catalysts to prevent the catalyst agglomeration but also serve as
electron donor–acceptor to enhance the conduction of electron, thus accelerating the oxidation and
reduction reactions on the surface of catalysts [25,26]. Graphene-assisted materials have more stable
and stronger electrical properties, even plant growth can be enhanced by graphene quantum dots [27–
33]. Few-layer graphene (FLG) is constituted of 3–10 layers of single-layer graphene, which is also
considered as a two-dimensional material with good physical and chemical properties, it can also be
used in sensors [34,35]. However, most research on the graphene-supported-catalysts mainly focused
on single-layer graphene. The performance of catalysts carried by FLG were seldom explored, even
though the FLG was more convenient to produce [34].

Sulfamethazine (SMT), a sulfonamide antibiotic, has been widely used in veterinary practice owing to
its broad antifungal spectrum [36,37]. It is noteworthy that most antibiotics used in animal feeding are
discharged into farm wastewater, because of the very low absorption and use of antibiotics by livestock
and poultry [38]. In addition, the antibiotics in farm wastewater cannot be effectively removed by the
conventional biological wastewater treatment processes [39], and the rising concentrations of antibiotics
in the environment may cause the spread of antibiotic-resistant bacteria and antibiotic-resistant genes
that are seriously threating human beings’ health [40]. Therefore, in the present study, SMT was selected
as a target organic contaminant and the research objectives are (i) to synthesize sch/FLG composite
(sch–FLG), (ii) to study the effects of reaction conditions including H2O2 dosage, catalyst dosage, initial
solution pH and reaction temperature on the degradation of SMT during the reaction catalysed by sch–
FLG, and (iii) to study the role of FLG in enhancing the catalytic activity of sch and the degradation
mechanism of SMT during the Fenton-like reaction catalysed by sch–FLG.
2. Material and methods
2.1. Materials and reagents
Fe2SO4 · 7H2O, H2O2 solution (30%, v/v), and potassium iodide (KI) were purchased from Sinopharm
Chemical Reagent Co., Ltd (China) at analytical grade. FLG was purchased from Suzhou Tanfeng
Graphene Technology Co., Ltd (China). SMT (greater than or equal to 99%) and formic acid (high
performance liquid chromatography (HPLC) grade) were purchased from Aladdin Company (China).
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Methanol and acetonitrile were purchased from Merck Company (Germany) at HPLC grade. Deionized

water was used throughout the present study.

2.2. Synthesis of schwertmannite/few-layer graphene composite
A weight of 22.24 g Fe2SO4 · 7H2O was dissolved in 500 ml deionized water containing 0.5 g FLG, and
then 6 ml H2O2 was dropwise added into the solution under stirring. The solution was then shaken
for 24 h at 180 r.p.m. and 28°C in a rotary shaker. After that, the solution was filtered through a
Whatman no. 4 filter paper to collect the precipitate. The precipitate was sequentially washed with
acidified water (pH = 2.0) and deionized water for the respective three times, and then dried at 50°C
until a constant weight. Meanwhile, the same procedures, except the addition of FLG, were carried
out to chemically synthesize sch [41].

2.3. Characterization of catalysts
The morphology of sch–FLGwas characterized by using high-resolution transmission electron microscopy
(HRTEM, JEOL). The crystal structure of sch–FLG was characterized by using X-ray diffraction (XRD,
Thermo Fisher XTRA) at a scanning rate of 10° min−1 in the 2θ range of 10–70° with Cu-Kα radiation
(λ = 1.5406 Å) at room temperature. The surface elements of sch–FLG were characterized by using an
X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB 250Xi) system with Al Kα radiation
(Energy 1486.6 eV) and a laser Raman spectrometer (HR Evolution, HORIBA FRANCE SAS) in a
spectrum scanning range of 100–4000 cm−1 using a solid-state semiconductor laser with λ = 532 nm. The
Brunauer–Emmett–Teller specific surface area and Barret–Joyner–Halenda pore volume of sch–FLG was
measured by using a N2 adsorption–desorption method (Tristar 3000, Micromeritics). The chemical
structure of sch–FLG was characterized by using Fourier transform infrared (FTIR, Thermo Nicolet
6700), and the samples were prepared with the powder pressing method in a potassium bromide pellet
at room temperature.

2.4. Experimental procedures
The solution containing 5 mg l−1 of SMT was first prepared and the solution pH was adjusted to 3 using
1 M H2SO4. SMT degradation experiments were carried out in 35 ml glass vessels sealed with polythene
film in a rotary shaker at 180 r.p.m. and 28°C. A 1 g l−1 of catalyst and 10 ml of SMT solution were added
into each vessel, and then the degradation reaction was started up by adding 200 mg l−1 H2O2 into the
vessels. At the given reaction time intervals, the vessels were taken out correspondingly. After adding
30% (v/v) methanol to quench the reaction, the reaction solutions in vessels were filtered through a
0.22 µm filter film. After that, the solution was used to determine the concentrations of SMT, total
iron, Fe2+, Fe3+, H2O2 and total organic carbon (TOC). To identify the intermediate products, the
solution samples were pretreated using a solid-phase extraction method to concentrate the products.
After the degradation experiments, the catalysts were collected, washed with deionized water, freeze
dried and finally characterized by XPS and FTIR. In order to identify the presence of –OH, 10 mM of
KI and 10% (v/v) of methanol were respectively added to scavenge –OH on the surface of the catalyst
and –OH in the reaction system (including the catalyst surface and the solution).

2.5. Analytical methods
The concentration of SMT was analysed by using a HPLC (LC-20AD, Shimadzu) equipped with a diode
array detector. Agilent ZORBAX SB-Aq column (5 µm, 4.6 × 250 mm) was used for the separation of
SMT. The injected volume was 20 µl at a flow rate of 1 ml min−1 and the column temperature was at 25°
C. The mobile phase was a mixture of 0.1% formic acid and acetonitrile (81 : 19, v/v). The concentrations
of H2O2 and iron ion were measured using the titanium sulfate method and o-phenanthroline method,
respectively [42,43]. The TOC content was measured by using Shimadzu TOC-5000. The intermediate
products were identified by using ultra-performance liquid chromatography/tandom mass spectrometry
(UPLC-MS) system (G2-XS QTof, Waters) with an ACQUITY UPLC BEH C18 column (1.7 µm, 2.1 ×
100 mm). The injected volume was 2 µl, and the flow rate was 0.4 ml min−1. The mobile phase A
consisted of 0.1% formic acid in water, and the mobile phase B consisted of 0.1% formic acid in
acetonitrile. The gradient programme was used: (i) 5% B for the first 2 min; (ii) B was linearly increased
to 95% from 2 to 17 min; and (iii) 95% B was held until 19 min. The MS was performed with a selected
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Figure 1. (a) Raman spectra of FLG, sch and sch–FLG, and (b) XRD of sch and sch–FLG.
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massmode (50–1200m/z), using an electrospray source in positive ionmode. The otherMS parameterswere
as follows: the capillary voltage was 3.0 kV, cone voltage was 40 V, source temperature was 120°C and
desolvation gas temperature was 400°C.
3. Results and discussion
3.1. Characterization of sch/few-layer graphene composite
As shown in figure 1a, the Raman spectrum of FLG shows peaks G and G0 of graphene at 1582 and
2700 cm−1, which is similar to the Raman spectrum of three-layer graphene. The D peak at 1350 cm−1

indicates that the graphene material has more edges and flaws. The D, G and G0 peaks on the
spectrum of the FLG can be identified in the sch–FLG, and the broad peak whose Raman shift is less
than 1582 cm−1 corresponds to the Raman spectrum of the sch. Therefore, the sch–FLG is composed
of sch and FLG [44,45].

The XRD patterns of sch–FLG and sch are shown in figure 1b. The peak at 26.48° shown in the pattern
of sch–FLG was recognized as (002) reflection of FLG [46]. Seven broad peaks (2θ = 18.24, 26.27, 35.16,
39.49, 46.53, 55.29, 61.34°) shown in the patterns of sch and sch–FLG matched well with the standard
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Figure 2. TEM images of schwertmannite/few-layer graphene composite: (a) ×2000 and (b) ×600 000.
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diffraction data for sch (JCPDS no. 47-1775) [47]. These results suggest the crystalline structure of sch
carried by FLG was not obviously changed during the synthesis of sch–FLG.

Figure 3 shows the HRTEM micrographs of sch–FLG at different magnification levels. It can be seen
from figure 2a that sch particles are distributed in the film-like structure of FLG (figure 2a). The diameter
sizes of sch particles were about 500 nm, matching with the values reported by other studies [48,49]. The
specific surface area of sch–FLG was much higher than that of sch (5.4 m2 g−1 versus 2.08 m2 g−1). As
shown in figure 2b, the lattice fringe spacing of 0.26 and 0.35 nm corresponded to the reflection of
(212) and (310) planes of sch. Thus, the results of XRD and HRTEM analysis clearly reveal that sch
was successfully carried by FLG in sch–FLG composite.

The chemical bonding states on the surface of sch–FLGwere characterized byXPS.As shown in figure 3a,
the O element in sch was mostly from SO 2�

4 (531.5 eV), Fe–OH (532.0 eV) and Fe–O (530.1 eV) [50–52].
When sch was carried by FLG, new bonds of Fe–O–C (531.2 eV), C–OH and C–O–C (533.0 eV) appeared
[53,54]. It was reported that the graphene can bond with iron oxides through the Fe–O or Fe–O–C bond
[55,56], and the electrical conductivity can be enhanced by the Fe–O–C bond between graphene and iron
oxide to accelerate the oxidation and reduction progresses taking place on the surfaces of catalysts [57,58].
In the present study, although the bonds of O–C=O (289.2 eV), C–OH or C–O–C (285.3 eV), C–C
(284.8 eV), and C=C (531.5 eV) were observed on the surface of sch–FLG (figure 3b), the Fe–C bond was
not observed. These results suggest that sch was connected with FLG mainly via the chemical bond of
Fe–O–C on the surface of sch–FLG.
3.2. Catalytic activity of schwertmannite/few-layer graphene composite in a heterogeneous
Fenton-like reaction

The degradation of SMTwith reaction time was studied in the Fenton-like reactions catalysed by sch–FLG,
FLG, and sch. As shown in figure 4a, almost no removal of SMT was observed when H2O2 solution was
added alone, which indicates that H2O2 alone cannot degrade SMT. Less than 16.1% of SMT was
degraded in 180 min by the Fenton-like reactions catalysed by 0.13 g l−1 of FLG which is equal to the
amount of FLG in 1 g l−1 of sch–FLG. When 1 g l−1 of sch or sch–FLG was used to catalyze the
heterogeneous Fenton-like reaction, 27.6% and 100% of SMT was degraded in 120 min, respectively.
Obviously, compared to sch or FLG, sch–FLG was more effective to catalyse the heterogeneous Fenton-
like reaction to degrade SMT. Thus, sch–FLG exhibited a much higher catalytic activity than sch or FLG
for the degradation of SMT in the heterogeneous Fenton-like reaction.

In heterogeneous Fenton-like processes, the reaction parameters, such as H2O2 concentration, catalyst
dosage, initial solution pH and reaction temperature, can greatly influence the degradation efficiency or
organic contaminants [59,60], and thus the influences of these parameters in the Fenton-like reaction
catalysed by sch–FLG were investigated. The effect of H2O2 dosage on the degradation of SMT during
a Fenton-like reaction catalysed by sch–FLG is shown in figure 4b. Less than 7.6% of SMT was
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removed when only 1 g l−1 of sch–FLG was added (without the addition of H2O2), indicating that the
adsorption of sch–FLG for SMT was very low. By loading 100 mg l−1 H2O2, 95.64% of SMT was
degraded in 180 min. The degradation efficiency of SMT can be further increased via increasing the
dosage of H2O2 to 200–500 mg l−1. For instance, SMT can be completely removed from the solution in
only 90 min when 200 or 500 mg l−1 H2O2 was loaded. However, the time required for the complete
removal of SMT was prolonged to 120 min when further increasing the load of H2O2 to 1000 mg l−1,
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most probably owing to the fact that excessive H2O2 (1000 mg l−1) in the solution would capture –OH to
form HO 2· to lower the degradation efficiency of SMT [61,62].

As shown in figure 4c, when the dosage of sch–FLG was raised from 0.2 to 1 g l−1, the degradation
efficiency of SMT in 90 min increased from 31.93% to 100%. However, the time required for the complete
removal of SMT was not further shortened when increasing its dosage 2 g l−1. It can thus be inferred that
although higher dosage of sch–FLG provided more active sites to generate –OH, excessive iron species
would inhibit the degradation of SMT owing to the consumption of –OH by Fe2+ [63]. The effect of
reaction temperature on the degradation of SMT during the Fenton-like reaction catalysed by sch–FLG is
shown in figure 4d. The degradation efficiency of SMT was increased when the reaction temperature was
raised from 18°C to 38°C, and SMT can be completely removed from the solution in only 60 min at 38°C.
In fact, previous studies also reported that within a certain range of temperatures, higher temperature
can accelerate the oxidation and reduction reaction between Fe(II) and Fe(III) to promote the generation
of –OH, thus increasing the degradation efficiency of organic contaminant [64,65].
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At the initial solution pH of 3.0, SMT can be removed from the solution in 90 min (figure 4e). When the

initial solution pHwas 1.0, sch–FLGwas dissolved in the solution to release the iron ions, thus activating the
homogeneous Fenton-like process to degrade 98.5% of SMT in 90 min. The degradation efficiency of SMT in
90 min was still as high as 75.5% when the initial solution was increased to 9.0. These results indicated that
sch–FLG can adapt to a wide range of initial solution pH. To reveal why sch–FLG has such outstanding
adaptability for the initial solution pH, the change in solution pH during the reactions was recorded and
is shown in figure 4f. When the initial solution pH was higher than 3, the solution pH decreased to
around 3 in the first 15 min. Clearly, the sch–FLG can balance the solution pH to accelerate the Fenton-
like reaction catalysed by sch–FLG. On one hand, sch has plenty of sulfate adsorbed in its outer sphere,
the dissolution of which can cause the release of H+ from the surface of sch (equation (3.1)) [66]. On the
other hand, iron oxides can adsorb H2O molecules, form an OH− complex with surface iron (≡FeOH),
and dissolve H+ into the solution when they are introduced into water [67]. Given the fact that the point
of zero charge pH (pHpzc) of sch was 3.05 [67,68], the solution pH would decrease through equation
(3.2) when it was higher than the pHpzc of sch [12,14]. In summary, the decrease of solution pH during
the Fenton-like reaction catalysed by sch–FLG most probably resulted from the above two processes.

The performance of the catalysts in some other studies is shown in table 1. Those catalytic materials
generally need to be in a higher temperature (35–45°C) and a narrower pH (2–3.5) range in the
catalytic degradation of sulfamethoxazole [65,69,70]. However, we found that the catalytic degradation
efficiency of SMT (5 g l−1) by sch–FLG was around 100% at a lower temperature (28°C), and in a wide
range of initial solution pH values (1–9). It can be seen that sch–FLG has excellent catalytic performance
and adapts to a wider pH range:

; FeOHþ
2 SO 2�

4 !; FeOH + SO 2�
4 þHþ ð3:1Þ

and

; FeOHþOH� !; FeO� þH2O: ð3:2Þ
3.3. Identification of reactive oxidizing species
To identify the main reactive oxidizing species in the Fenton-like system catalysed by sch–FLG, KI and
methanol were respectively added to scavenge the –OH on the surface of sch–FLG and in the whole
reaction system [71,72]. As shown in figure 5, only 8.02% or 4.67% of SMT was removed in 90 min when KI
and methanol were respectively added, implying that the main reactive oxidizing species in the Fenton-like
reaction is the –OH generated on the surface of sch–FLG. Figure 3c shows the Fe 2p high-resolution scan
spectra of sch–FLG before and after use. The peak at 725 and 711 eV can be ascribed to Fe 2p1/2 and
Fe 2p3/2. The Fe 2p3/2 peak can be deconvoluted into two sub peaks corresponding to Fe(III) (713.2 eV) and
Fe(II) (711.2 eV) [51,73]. The intensity ratio of Fe(III)/Fe(II) on the surface of sch–FLG before and after
use is 3.03 and 2.14, respectively, revealing that a part of Fe(III) on the surface of sch–FLG was reduced to
Fe(II). Thus, the iron on the surface of sch–FLG took part in the oxidation–reduction reaction, and the
hydroxyl radicals were mainly generated on the surface of sch–FLG (equations (3.3) and (3.4)). In addition,
it can also be inferred from the above results that the FLG as an electron donor–acceptor enhanced
the electron conduction rate through the Fe–O–C bond between FLG and sch, thus accelerating the
oxidation–reduction reaction to generate –OH and resulting in the much higher catalytic activity of sch–FLG:

; Fe(II) þ H2O2 ! ; Fe(III)–OH þ –OH ð3:3Þ
and

; Fe(III)–OH þ H2O2 ! ; Fe(II) þ HO2 þ H2O: ð3:4Þ
3.4. H2O2 and total organic carbon evolution, iron leaching and the reusability of
schwertmannite/few-layer graphene

The evolution of H2O2 and TOC during the Fenton-like degradation of SMT catalysed by sch–FLG was
determined. As shown in figure 6, the concentration of H2O2 gradually declined from 200 to 25.33 mg l−1

and 66.81% of TOC was removed in 24 h of reaction. The utilization efficiency of H2O2 was calculated
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through equation (3.5) [74]:

h(%) ¼ k � [SMT]
[H2O2]con

� 100%, ð3:5Þ

where η is the utilization efficiency of H2O2 (%); k is the theoretical stoichiometry of H2O2 to mineralize
one mole SMT (k = 42); [SMT] is the amount of SMT corresponding to the TOC mineralized (mM); and
[H2O2]con is the amount of H2O2 consumed in the reaction (mM). The highest utilization efficiency of
H2O2 is 15.33% in 2 h, and then it decreased to 9.64% in 24 h.

The leaching of iron ions was monitored during the degradation process. As shown in figure 7, the
concentration of total iron in the solution was 1.23 and 2.88 mg l−1 at 90 min and 24 h of reaction,
respectively, which were only equal to 0.12% and 0.29% of the iron in the used sch–FLG. In addition,
the leached iron in the solution almost all comprised Fe3+. The reusability of sch–FLG was further
assessed through using it for a consecutive five cycles to catalyse the Fenton-like reaction. As shown
in figure 8, 87.87% and 100% of SMT was degraded in 80 min and 120 min in the first cycle. In the
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next four cycles, the degradation efficiency of SMT in 80 min was in the range of 55.81%–73.10%, and
the degradation efficiency of SMT in 120 min ranged from 79.35% to 89.96%. Compared with the
pristine sch–FLG, there was no obvious change on the XRD pattern of the repeatedly used sch–FLG
(electronic supplementary material, figure S2). Thus, the sch–FLG can maintain a certain catalytic
activity for the degradation of SMT, and its mineral structure was not changed during its repeated
uses in a Fenton-like reaction.
3.5. Possible degradation pathways of sulfamethazine
The intermediate products involved in the degradation of SMT were identified (table 2) and the possible
degradation pathways of SMT were proposed (figure 9). When the aromatic ring or the R-substituent
group was attached to the amide group of sulfonamides, the strong electrophilic addition of hydroxyl



Table 2. The main intermediate products identified during the SMT degradation catalysed by sch–FLG.

products formula molecular structure m/z
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N
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radicals would make SMT hydroxylate. As a result, the hydroxylated SMT was identified as an

intermediate product [75]. By the cleavage of the S–N bond, the hydroxylated SMT might be further
broken into 4-(hydroxyamino) benzenesulfonic acid, which can be degraded to phenol by the SO2

extrusion and –OH oxidation. In this process, the NO�
3 was formed by the oxidation of the N atom

attached to the aromatic rings and the SO 2�
4 was released to solution.

The SO2 extrusion of SMT formed 4-(2-imino-4, 6-dimethylpyrimidin-1(2H)-yl) aniline, which can be
broken into aniline and 6-dimethylpyrimidin-2-amine by C–N bound cleavage [76]. The cleavage of the
S–N bond broke SMT into sulfanilic acid and 4,6-dimethylpyrimidin-2-amine. The sulfanilic acid might
be further degraded to aniline by C–S bond cleavage and phenol by C–N bond cleavage, respectively.
4,6-dimethylpyrimidin-2-amine would be destroyed by the cleavage of C=N and C–N bonds on the
pyrimidine ring and be oxidized to low molecular compounds by –OH [77]. The aniline would be
oxidized into phenol that can be easily oxidized into CO2 and H2O.
 os

R.Soc.Open
Sci.7:191977
4. Conclusion
In the present study, sch–FLG was synthesized in order to promote the catalytic activity of sch in a
heterogeneous Fenton-like reaction. Results showed that sch can be successfully carried by FLG in
sch–FLG composite, mainly via the chemical bond of Fe–O–C on the surface of sch–FLG. The sch–
FLG exhibited a much higher catalytic activity than sch or FLG for the degradation of SMT in the
heterogeneous Fenton-like reaction. The degradation efficiency of SMT was around 100% under the
reaction conditions of H2O2 200–500 mg l−1, sch–FLG dosage 1–2 g l−1, temperature 28–38°C, and
initial solution of pH 1–9. The main reactive oxidizing species in the Fenton-like reaction catalysed by
sch–FLG is the –OH generated on the surface of sch–FLG. During the repeated uses of sch–FLG in the
Fenton-like reaction, it can maintain a certain catalytic activity for the degradation of SMT and the
mineral structure was not changed, suggesting a good reusability. In addition, SMT can be finally
mineralized in the Fenton-like reaction catalysed by sch–FLG, and possible degradation pathways
were proposed. Therefore, the sch–FLG is an excellent catalyst for SMT degradation in a
heterogeneous Fenton-like reaction.
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