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We investigate stabilizing and eschewing factors on bistability
in polar-orthotropic shells in order to enhance morphing
structures. The material law causes stress singularities when
the circumferential stiffness is smaller than the radial stiffness
(β < 1), requiring a careful choice of the trial functions in our
Ritz approach, which employs a higher-order geometrically
nonlinear analytical model. Bistability is found to strongly
depend on the orthotropic ratio, β, and the in-plane support
conditions. An investigation of their interaction offers a new
perspective on the effect of the hoop stiffness on bistability:
while usually perceived as promoting, it is shown to be only
stabilizing insofar as it prevents radial expansions; however, if
in-plane supports are present, it becomes a redundant feature.
Closed-form approximations of the bistable threshold are then
provided by single-curvature-term approaches. For significantly
stiffer values of the radial stiffness, a strong coupling of the
orthotropic ratio and the support conditions is revealed:
while roller-supported shells are monostable, fixed-pinned ones
are most disposed to stable inversions; insight is given by
comparing to a simplified beam model. Eventually, we show
that cutting a central hole is a suitable method to deal with
stress singularities: while fixed-pinned shells are barely affected
by a hole, the presence of a hole strongly favours bistable
inversions in roller-supported shells.
1. Introduction
Shells with more than one stable equilibrium state have enjoyed
considerable interest in the engineering community, since their
multistability enables them to adapt to changing loading
conditions in beneficial ways. Examples in engineering
applications range from aerofoils [1,2], flow regulators [3] and
deployable structures [4–6] to novel semiconductor production
processes [7], motors [8], nanofilms [9,10], wind-turbine blades
[11], piezoelectric energy harvesting devices [12,13] and several
other microelectromechanical systems [14,15].
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Figure 1. Initial stress free shells (top), their stable inversions (middle) and a sketch of their profiles (bottom). (a) Isotropic shell
with an approximately uniformly curved counterpart. (b) Circumferentially stiffened shell (β > 1), mimicking globally an orthotropic
shell, since radial stresses cannot efficiently build up in the stiffened regions. The inverted configuration exhibits a central dimple,
which becomes even more distinct, when the orthotropic ratio is increased, cf. (c). (d ) Radially stiffened shell (β < 1) with a central
plug due to the manufacturing process; its inversion evinces concentrated deformations at the centre.
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Bistability in shells is engendered by them having initial, usually positiveGaussian curvature [7,16–19],
being made from non-isotropic materials [17,18,20–23], or by pre-stressing [24–26]; see [27] for basic
design criteria.

Interestingly, most structures possess a uniform thickness profile, even though local thickness
variations are commonly employed by engineers to improve the structural behaviour. Structures with
such variations include corrugated and dimpled shells that globally mimic anisotropic constitutive
laws due to a smeared stiffness [28,29]. Other local phenomena such as creasing and grooving [30]
were recently shown to cause bistability despite not precisely belonging to one of the methods above.

A simple series of table top experiments with cast silicon rubber shells in figure 1 illustrates that radial
and circumferential stiffeners strongly influence the way in which initially uniform caps invert; it is
notable that also the minimum height required for a bistable inversion differs significantly. Hence, it
is possible to gain control over bistable behaviour by making simple cross-sectional adjustments, e.g.
by using appropriate stiffeners, grooves or employing similar structures, such as grid-shells, which
ultimately offer the opportunity to exploit this characteristic in an optimized manner.

We formally analyse the influence of such manipulations on bistability by considering a polar-
orthotropic constitutive law—an aspect which to our knowledge is completely novel. An analytical
approach is undertaken, since it provides further insight into the governing factors. Coulais [31]
recently identified the lack of such models as a bottleneck in the development of novel smart
structures, since alternative methods, such as the finite-element (FE) method, cannot identify
geometrical thresholds without undertaking tedious numerical parameter studies; this study can be
regarded as a direct response to this need.

Polar orthotropy allows us to vary the internal directional stiffness of shells, which sheds light into the
statically indeterminate interplay between radial and hoop stiffness, and points towards optimized
values that stabilize (or diminish) bistable inversions. This knowledge enables us to make bistable
shells more efficient, to save material, and to make such structures more versatile by allowing the
tailoring of the shape of alternative equilibrium configurations; furthermore, it enables us to judge
where the unique features of shells are required and where simpler beam structures suffice.

The interaction of the stiffness ratio, β, with the in-plane support conditions is of particular interest in
this study, since extreme ratios of βmay lead to a predominantly uniaxial load path; the bistable response
of one-dimensional structures, however, strongly depends on additional horizontal supports. This
additionally widens the applicability of bistable structures by considering support conditions that are
commonly encountered in practice.
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We consider shells with a circular planform that are free to rotate around the outer rim support with a

variable radial spring stiffness, Ku, enabling roller-supported edges (Ku = 0) to fixed-pinned supports
(Ku→∞). We neglect the details of the transition between equilibria, which may include non-axisymmetric
secondary buckling modes [32], and aim to find the inverted axisymmetrical configurations accurately.

Convoluted expressions resulting from applying Bessel functions [33] are avoided by employing
polynomials in a variational higher-order approach, with up to three degrees of freedom for caps and
annuli. Polynomials expedite an analytical treatment and, even though they do not precisely satisfy
the equilibrium conditions [34], they give sufficient accuracy.

The trial functions employed—which are of real but, in general, not integer order—incorporate a novel
extension for higher-order approaches that is based on the geometrically linear solution of a bent plate, in
order to address the stress singularities arising in shells with an increased radial stiffness (β < 1). While this
parameter-range is often neglected or otherwise circumvented, e.g. by introducing a central hole or an
isotropic plug [35–37], we address this problem directly and use it to demonstrate the robustness of our
approach. In particular, we compare the stress resultants to FE results and highlight that shape
functions of integer order occasionally employed in other approaches in the literature inevitably fail to
capture stress singularities in bending and, hence, dangerously underestimate stress-levels.

We then analyse the effects of the stiffness ratio, β, as well as the influence of additional horizontal
supports on the required apex height for bistable inversion. We also present a drastic simplification of
our model by using a single degree of freedom, which enables us to approximate the threshold of
bistability in closed form. The results are supported by considering simpler beam structures that
elucidate governing factors of bistability for extreme ratios of β.

Finally, we introduce a central hole and investigate its influence on bistability, in order to allow
for real applications of radially stiffened shells where stress singularities are usually not acceptable. In
the following section, the governing equations are given before the analytical model is derived in §3.
The results are presented in §4 and, eventually, a summary and outlook are given in §5.

Remark 1.1 Polar orthotropy differs from the often-studied rectilinear orthotropy [18,20,22] since the
possible misalignment of principal strain directions and material-orientations in the latter evokes a strain-
energy performance more conducive to forming extra stable equilibrium configurations. In polar-
orthotropic materials, however, this misalignment is not observed as long as rotational symmetry is
preserved because the absence of in-plane shear is tantamount to principal strains that align with the
principal material-orientations. Hence, we do not expect to observe additional stable configurations
stemming from the material law.
2. Governing equations
The z-ordinate of a rotationally symmetric, initially curved but stress-free shallow shell, with an outer
planform radius a and an initial midpoint deflection wM

0 is described in cylindrical coordinates (r, θ, z)
by a function w0 ¼ (1� r2=a2)wM

0 . The nonlinear response of this shell can be described by two
potential functions, w and Φ. The first describes the deflection and is the potential of the change in
radial, circumferential and twisting curvature

kr ¼ �w00, ku ¼ �w0

r
and kru ¼ 0, (2:1)

respectively, where a prime denotes a derivative with respect to r. The second potential is the Airy stress
function, Φ, and relates to in-plane stresses via:

sr ¼ F0

r
, su ¼ F00 and sru ¼ 0: (2:2)

The relationship to strains is established via a polar-orthotropic constitutive law from three independent
parameters: E, ν and β; E = Er denotes Young’s modulus in the radial direction; ν = νθr, Poisson’s ratio, and
β is the orthotropic ratio. Note that Poisson’s ratio is not symmetric with respect to indices, since an
associated lateral contraction depends on the stiffness ratio, and their compliance requires Erνθr = Eθνrθ.
Hence, the stiffness ratio

b ¼ Eu

Er
(2:3)

also describes the ratio of Poisson’s effects in particular directions via β = νθr/νrθ; see [33,38] for details.
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Due to rotational symmetry, the constitutive equations are written in terms of the principal directions

only. The corresponding material tensor, E, is thus a 2 × 2 matrix:

E ¼ E
1� n2=b

1 n
n b

� �
and E�1 ¼ 1

E
1 �n=b

�n=b 1=b

� �
, (2:4)

where positive definiteness sets β > ν2. Integrating in the thickness direction gives the stretching and
flexural rigidity, and for ease of notation we introduce D = Et3β/12(β− ν2). Now, the corresponding
bending stresses and in-plane strains read as

mr
mu

� �
¼ D 1 n

n b

� �
kr
ku

� �
and 1r

1u

� �
¼ 1

E
1 �n=b

�n=b 1=b

� �
sr
su

� �
, (2:5)

respectively.
Equilibrium considerations require the balance of moments and vertical forces, which state:

mu �mr

r
�m0

r ¼ qr and
d
dr

þ 1
r

� �
qr ¼ �p� 1

r
(F0(w0 þ w0

0))
0, (2:6)

where qr denotes the shear force and p a transverse pressure loading. By combining equations (2.1), (2.5)
and (2.6), we express these equilibrium conditions in terms of w and Φ:

w0000 þ 2
r
w000 � b

r2
w00 þ b

r3
w0 ¼ 1

D
pþ t

r
(F0(w0 þ w0

0))
0

� �
: (2:7)

From the Airy stress function, we ensure that the in-plane equilibrium condition, σr− σθ + rσr0 = 0, is
satisfied for arbitrary choices of Φ(r). Besides equilibrium, the geometrically nonlinear strain
definitions of

1r ¼ u0 þ 1
2
(w0 þ w0

0)
2 � 1

2
(w0

0)
2 and 1u ¼ u

r
(2:8)

require compatibility, which is enforced by eliminating the radial displacement, u, in the preceding
equation by using u0 ¼ (r1u)

0. After substituting ɛr and 1u according to equation (2.5) and again with
equation (2.2), the compatibility equation reads:

� rF000 þF00

b
þF0

r
¼ 1

2
(w0 þ w0

0)
2 � 1

2
(w0

0)
2: (2:9)

By differentiating this equation once more and dividing it by r, we can recover an expression of Gauss’s
Theorema Egregium, which equates the intrinsic and extrinsic definition of Gaussian curvature,
respectively. Provided that w and Φ are known, the stress resultants, strains and radial displacements
can be derived via equations (2.1), (2.2), (2.5) and (2.8) to calculate the total bending and stretching
energy stored in the cap:

PB ¼ p

ða
0
(krmr þ kumu)rdr

and PS ¼ pt
ða
0
(1rsr þ 1usu)rdrþ paKuu2jr¼a,

9>>>=
>>>;

(2:10)

respectively; the latter includes a term for the contribution of a horizontal spring of stiffness Ku at r = a.
It follows from the principle of stationary action that the strain energy of structures in equilibrium

takes an extremal value, and hence, it constitutes an equipollent axiom from which equilibrium in
equation (2.7) can be derived [39]. A semi-analytical energy-based approach capable of approximating
alternative equilibrium configurations is presented next.
3. Ritz approach
We first discuss the linear solution, which is then employed in a geometrically nonlinear Ritz approach
for polar-orthotropic caps (§3.2) and annuli (§3.3). We consider nonlinearity without a further
linearization of the governing equations, in order to avoid a trial-and-error method when locating
alternative equilibrium configurations. Hence, we limit ourselves to a few degrees of freedom but, in
return, we are able to identify inverted stable configurations directly. As a consequence, our
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methodology is more likely to predict ‘false positives’ due to either insufficient degrees of freedom or a

violation of shallow shell theory (which includes the assumption of shallow gradients). In contrast to
that, the FE method is prone to miss stable configurations because we cannot assess the stability of an
infinite number of possible configurations.

3.1. Geometrically linear bending of a plate
To obtain a suitable trial function for the deflection field, w, let us consider the geometrically linear
solution of a thin bent plate. In that case the in-plane coupling is neglected (Φ = 0), and equation (2.7)
simplifies to

w0000 þ 2
r
w000 � b

r2
w00 þ b

r3
w0 ¼ p

D
: (3:1)

The solution in the absence of load ( p = 0) without considering rigid-body modes reads

wh ¼
for b ¼ 1 : A1r2 þ (A2 þ A3r2) log (r)

else: B1r1þ
ffiffiffi
b

p
þ B2r1�

ffiffiffi
b

p
þ B3r2

(
(3:2)

and degenerates for isotropic materials (β = 1).
The only relevant coefficient for isotropic closed shells is A1 [40]. In polar-orthotropic materials, the

situation is more intricate, since all constants evoke some kind of singularity when β < 1. First, we
calculate the curvatures according to equation (2.1) as well as the corresponding bending moments
and shear force via equations (2.5) and (2.6), respectively, and then the related bending strain energy
via equation (2.10). Since β > 0, a pure deformation mode in B1 has finite bending energy, whereas B2

would engender an infinite energy barrier in closed shells and is thus not observed; in annular shells,
however, even stress resultants containing terms in r raised to powers less than −1 are energetically
admissible.

The curvatures related to the B1 term vary with r raised to �1þ ffiffiffi
b

p
, whereas B3 causes a uniform

curvature (UC) throughout the shell. Note that the first term signifies a vanishing shear force
throughout the shell, whereas B3 causes central shear-stress singularities for β≠ 1; this rather
unintuitive detail is a consequence of the material law employed. The singularity of the latter would
necessitate shear-deformable Reissner–Mindlin theory, but since it is energetically favourable for thin
shells to evade shear deformation by flexure, the B3-term can be neglected. Hence, we assume the
dominant deformation mode in the absence of load to be B1r1þ

ffiffiffi
b

p
, despite causing bending-stress

singularities at the centre for β < 1. The same terms arise in the solution of equation (2.9) for the Airy
stress function where the r2 term (technically now part of the particular solution) and r1�

ffiffiffi
b

p
term

vanish due to in-plane displacement compatibility and energetic admissibility in full plates, respectively.
Whether or not infinite stresses from singularities are ever acceptable in elasticity problems, we follow

the philosophy of Barber [41, p. 142ff]: from a mathematical perspective, a well-posed problem has an
existing, unique and converging solution. While this argument may not convince the engineering
community per se, engineers commonly encounter and accept singularities at sharp corners and under
point loads from an idealization of geometry or the boundary conditions. Consequently, knowing that
results next to singularities are not applicable in practice, we choose to accept them as long as they
are energetically admissible.

Here, the singularities arise directly from idealized constitutive equations. Just as there are no corners
without a small fillet radius [42], perfectly polar-orthotropic materials do not exist, since fibre
orientations would be undefined precisely at the singular point of r = 0 (cf. figure 1b–d, tantamount to
a central isotropic spot). Thus, the stress definitions are predisposed for singularities. Note that
singular aspects also arise when the nonlinearity of the solution is considered: according to
Woinowsky-Krieger [33] singularities in stretching are encountered in Kirchhoff–Love plate theory as
soon as membrane forces exist. These ultimately cause a buckled shape described by integrals of
Bessel functions with concomitant singularities in bending.

3.2. Nonlinear solution for shallow caps
To find alternative equilibrium configurations, our choice of mode shape is inspired by the linear plate
solution, but additional terms are required to satisfy the boundary conditions. Others, e.g. [43], consider
an additional quartic term in consequence of a uniform pressure loading. In the present case, however,
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we seek alternative load-free equilibria and, thus, there is no additional indicator of a preferred

deformation mode that could be employed as a trial function.
An alternative approach might take its inspiration from shallow shell theory but we want to avoid

intricate Bessel functions and to limit ourselves to polynomials. By considering more than one degree
of freedom, we allow some latitude to mitigate the penalty of using a reasonable approximation rather
than the (unknown) exact function. This increases the robustness of our methodology and allows us to
cover a wider range of varying parameters. We deliberately avoid an integer power approach since
some of its terms would be equivalent to terms in equation (3.2) for specific β-values. Consequently,
the solution quality would deteriorate due to unsatisfied boundary conditions or a reduction of
degrees of freedom.

To address these shortcomings, we assume a simple series:

w ¼ A1 þ h1r
1þ ffiffiffi

b
p

þ h2r
2þ ffiffiffi

b
p

þ h3r
3þ ffiffiffi

b
p

þ A2r
4þ ffiffiffi

b
p

(3:3)

with the dimensionless radius, ρ = r/a and, in total, five constants, Ai and ηi. The first two, A1 and A2, are
used to satisfy the boundary conditions of w(ρ = 1) = 0 and a vanishing radial bending moment at the
edge, while the remaining constants, η1, η2, η3 serve as degrees of freedom. The formulae for Ai as
well as the further particulars of the derivation of the Airy stress function are given in appendix A.

When calculating Φ, the relevant homogeneous solution, Fh ¼ C1a2r1þ
ffiffiffi
b

p
, indicates that stretching

stresses exhibit a similar singularity as bending stresses at the centre. The constant C1 is used to
satisfy the boundary condition:

Kuujr¼1 ¼ �srjr¼1, (3:4)

where Ku is the stiffness of an in-plane spring, which tends in the limit to be a roller-supported boundary
(Ku = 0) or a fixed-pinned edge (Ku→∞).

Now, the stress and strain resultants only depend on η1, η2 and η3, and the energy can be calculated
according to equation (2.10). Load-free equilibrium configurations are identified via

rhP ¼ 0, (3:5)

where rh denotes the nabla operator with respect to the three degrees of freedom. These configurations
are stable, if and only if, the 3 × 3 stiffness matrix, H, with

Hij ¼ @2P

@hi@h j
, (3:6)

is positive definite, which requires its three eigenvalues to be positive.

3.3. Nonlinear solution for shallow planform annuli
Even though annuli cannot have a central stress singularity, a thorough choice of the assumed deflection
field is required. Following the same reasoning as before, we use the linear equilibrium solution in
equation (3.2) as a part of the solution space, which now permits the second term, B2r

1� ffiffiffi
b

p
.

Since polynomials with negative powers are permissible now, the number of possible mode shapes
increases. Taking a similar series to equation (3.3) with ri+

ffiffiffi
b

p
would not allow us to satisfy the

boundary condition of ur = 0 for ν≠ 0. Thus, we choose a slightly different expression:

w ¼ h�2r
1�2

ffiffiffi
b

p
þ h�1r

1� ffiffiffi
b

p
þ h0 þ h1r

1þ ffiffiffi
b

p
þ h2r

2þ ffiffiffi
b

p
þ h3r

3þ ffiffiffi
b

p
: (3:7)

Four out of the six constants are used to satisfy the boundary conditions of a hinged outer edge (r = a) and
a free inner edge (r = b)

wjr¼1 ¼ 0, mrjr¼1 ¼ 0, mrjr¼b=a ¼ 0 and qrjr¼b=a ¼ 0, (3:8)

leaving the system with two degrees of freedom, η− 1 and η− 2; the expressions for η0, η1, η2, η3 are given in
appendix A.

We do not consider more terms, since the increased number is simply not required in most cases, and
considering an additional degree of freedom significantly deteriorates computational efficiency, since the
deflection function is squared twice: once when computing the Airy stress function and, secondly, when
calculating the stretching energy. We follow the procedure of the preceding section to compute the
corresponding particular solution of the stress function, and add the homogeneous part for which a
second constant of integration is now admissible, Fh ¼ C1a2r1þ

ffiffiffi
b

p
þ C2a2r1�

ffiffiffi
b

p
, in order to satisfy the
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free inner edge condition, σr = 0 at ρ = b/a, and equation (3.4); details are given in appendix A. To identify

alternative stable configurations, we follow the energy-minimizing procedure of §3.2.
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4. Results
First, we present a qualitative analysis of stiffeners in §4.1 before we give a detailed analysis of the effects
of polar-orthotropic materials on the inverted shape and stress resultants in §4.2. The suitability of our
results is assessed by comparing them to FE calculations conducted with the commercial software
ABAQUS [44]. In a quasi-static implicit dynamic calculation, over 900 quadratic S8R5 elements are
used to model the inversion process of a quarter of a shell with circular planform with doubly-
symmetric boundary conditions and properties (in SI units) of E = 107, t = 0.01, a = 1 and a density of
10− 5, see [45] for details.

In §4.3, we analyse the minimum apex height required for a stable inversion as a function of the
orthotropic ratio, and we present simplifying one-term approaches that capture this threshold in closed
form. Verifying FE calculations were conducted with an overseeing Python [46] script for iterative
simulations with slightly changing geometries, up to an accuracy of 0.25%. Our results inspired us to think
of shells with extreme orthotropic ratios in a geometrically decoupled way, and we give a straightforward
explanation using a beam analogy in §4.4. Eventually, we analyse the effects of central holes in §4.5.

4.1. Qualitative influence of stiffeners on bistable inversion
In general, we need to consider separate β-values for stretching, βs, and bending, βb, when stiffeners are
added, since the stretching rigidity relates linearly to the cross-sectional height, while the flexural rigidity
has a cubic relation. The small width of each stiffener imposes two free-edge conditions in close
proximity that prevent stresses in the orthogonal direction (figure 2). Thus, the approximate
orthotropic parameters stem from the area of stiffeners in their longitudinal direction.

For deformed shells of finite thickness, relaxation of the internal bending stresses always tries to restore
the shell back to its initial configuration but which may be prevented by a stretching barrier. Additional
stiffeners therefore tend to erode bistability by increasing the bending rigidity disproportionally, while
carving out or removing material to weaken a particular direction tends to favour bistability. This
aspect reduces to a discussion that is more about an effective thickness than the problem of directional
stiffness, and is not further elaborated since it is well known that the bistable threshold of the initial
apex height scales with the thickness [47]. If, however, a detailed quantitative analysis is desired, one
can calculate the linear bending solution, on which the assumption of the deflection field is based,
using βb, while the homogeneous terms of the Airy stress function depend on βs; ways to approximate
the particular values of βb and βs are, for instance, described by Ventsel & Krauthammer [48].

4.2. Quantitative analysis: inverted shapes and corresponding stress resultants
Setting β = βs = βb, we depict stable inverted configurations for pinned and roller-supported shells in
figure 3a,b, respectively, for the indicated values of β. All shells have the same initial height of
wM

0 =t ¼ 4, which ensures that all cases in (a) exhibit bistability, where roller-supported shells of that
height are bistable for the range 0.5 < β < 6.1.

For β < 1, displacements are more focused at the centre, and increasing β shifts the deformation
towards the outer regions, so that shells with b � 3 evince an inflexion point viz. a central dimple.
Both responses confirm the observed behaviour in the stiffened shells in figure 1d and b/c,
respectively. Note that smaller β-values do not always correspond with larger central deformations
since the roller-supported case with β = 0.5 has a decreased, yet centrally more focused, deformation
than the corresponding isotropic case.

While a concentrated deformation points towards highly stressed areas, the barely deformed central
region of the dimple indicates low bending stresses. Correspondingly, the resulting stresses, depicted by
solid lines in figure 4 for β = 0.1, 0.5, 1, 5, 10, are absent at the very centre for β > 1. These are in good
agreement with FE results (dots), whereas even higher-order approaches of integer power (based on an
approach for isotropic shells in [34], dashed line) shows slight deviations; note that lower-order
integer approaches that apply simpler basis functions to polar-orthotropic shells, e.g. [49–51], lead to
less accurate results. A transition point with finite central stresses is encountered for the degenerate
case of β = 1, where the integer power approach coincides with equation (3.3). Below this value (β < 1),
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Figure 3. Sectional view of stable inverted shapes normalized by wM
0 ¼ 4t for (a) fixed-pinned and (b) roller-supported edges with

0.1≤ β≤ 10 for ν = 0; analytical predications (solid lines) and FE results (dots). The right picture relates to the observations in
figure 1 and confirms that centralized deformations occur for β < 1, whereas shells with b � 3 evince a central dimple.

edge with sr = 0
(a) (b)

edge with sq = 0

Figure 2. (a) Sectional view of a circumferentially stiffened shell: approximated effective areas in radial (blue hatched) and
circumferential direction (beige + blue hatched). The stiffened area is neglected in radial direction, since stresses cannot evenly
distribute through the stiffener’s width due to the free edge boundary conditions of σr = 0 (yellow lines). (b) Full view of a
radially stiffened shell: highlights exemplify now the effective area in circumferential direction (blue hatched) and the free edge
condition su ¼ 0 (yellow); here, the full cross section of ribs is only considered during the calculation of the smeared
stiffness in radial direction.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190888
8

FE calculations confirm induced stress singularities in bending and stretching, which are accurately
captured by our analytical model using equation (3.3).

It now becomes apparent that integer power approaches are inferior since they only capture
singularities in stretching but not in bending, which underestimates peak stresses. The loss of accuracy
cannot be overcome by increasing the number of degrees of freedom since the polynomial order does
not match. A closer inspection of the central region in a doubly logarithmic plot of mu in figure 5
shows that the use of real powers in equation (3.3) accurately captures the asymptotic behaviour for
ρ≪ 1, where the approximately linear relation in the diagram confirms the dominating influence of
the r�1þ ffiffiffi

b
p

term. This inspires us to employ the related deflection term in a simplified single
degree-of-freedom approach to predict the bistable threshold, which is discussed next.

4.3. Minimum apex height required for bistable inversion: refined approaches and
simplifications

Geometrical thresholds for bistable inversion are indicated by a prime; the non-dimensional initial apex
height, vM

0� ¼ wM
0�=t, is given as a function of β for various choices of the deflection field in figure 6, for

roller-supported and fixed-pinned edges.
In general, in-plane supports strongly favour bistable inversion, which confirms a recent observation

in [34]. More interestingly, the influence of the stiffness ratio differs significantly, depending on the
support conditions. For a pinned edge, smaller values of β seem to generally favour bistable inversion,
while the same values for roller-supported shells hamper and eventually erode bistable behaviour
altogether. A global minimum in the latter case is found for β = 3.2, which coincides approximately
with the β-ratio at which the deflection field is about to first form an inflexion point in figure 3.
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In terms of computational accuracy, the results are virtually indistinguishable from FE results, with an
average deviation of 0:35%, whereas the FE accuracy range was set to 0:25%. The approximation is
superior to results obtained by adapted lower-order models from the literature with a single degree of
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freedom, e.g. by Dumir [43], which shows an average deviation of 5:2%. Closed-form solutions are found
by simplifying one-term assumptions of w ¼ h1r

1þ ffiffiffi
b

p
for β < 1 and w = η1ρ

2 for β≥ 1:

(vM
0�)

2 ¼ (1þ ffiffiffi
b

p
)4(2þ ffiffiffi

b
p

)(2� nþ 5
ffiffiffi
b

p
)

3[16b3=2 þ 2b2 þ b(20� 8n)� (3� n)2
ffiffiffi
b

p þ 2]
for b , 1

(vM
0�)

2 ¼ (3þ ffiffiffi
b

p
)2(1þ 2nþ b)

2[bþ 6
ffiffiffi
b

p � n(n� 6)]
for b � 1

9>>>=
>>>;

pinned

(vM
0�)

2 ¼ (1þ ffiffiffi
b

p
)4(2þ ffiffiffi

b
p

)
3(b� ffiffiffi

b
p

n)
for b , 1

(vM
0�)

2 ¼ (3þ ffiffiffi
b

p
)2(1þ 2vþ b)

2(b� v2)
for b � 1

9>>>=
>>>;

rollers: (4:1)

These results emphasize the importance of the transition around β = 1: for small values, the deflection
is governed by the homogeneous term of the linear bending solution while, surprisingly, the averaging
nature of a UC approach can predict the stability threshold for β≥ 1 despite the clearly non-uniform
displacement field in figure 3.

4.4. The beam analogy
The dependency on the boundary conditions considers the limits of β→ ν2 and β→∞. Furthermore, in
the first case, if we assume ν = 0 (and β→ 0) for simplicity, the circumferential stiffness tends towards zero
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and the first two terms of the compatibility equation, equation (2.9), tend to infinity. Hence, large changes
in Gaussian curvature do not induce any stresses, which is reasonable since the shell is virtually free to
expand or contract in the circumferential direction. Consequently, the shell response resembles a
symmetric beam with a wedge-planform of vanishing width at the centre, similar to the shape of a
single stiffener in figure 2b.

The compatibility equation then becomes a simplified version of equation (2.9):

sr ¼ f0

r
¼ 1

2
(w0 þ w0

0)
2 � 1

2
(w0

0)
2, (4:2)

and reflects the entirely geometric strain relation in equation (2.8) without hoop-interaction. Singularities,
however, do arise because the area of the tapered cross section vanishes at the centre, even though the
radial force is well defined. Interestingly, the bistable threshold of fixed-pinned shells with β = 0.1
precisely matches the threshold of fixed-pinned beams, of vM

0� ¼ 1:1.
In this decoupled case, the only way to cause a stretching barrier that inhibits the structure’s bending

recovery to the initial configuration is by additional horizontal supports, otherwise the structure is
statically determinate. We observe a similar behaviour in shells with β≪ 1, where the structure avoids
significant radial stresses by circumferential expansion. Note that up to a value of β≈ 3.2, an
increasing circumferential stiffness also exerts a contrasting influence depending on the boundary
conditions: while vital in case of roller supports, it becomes redundant and even hinders once a
stabilizing radial force is assured by an immovable support.

In the case of β→∞, the radial stiffness becomes negligibly small but unlike before, the equations are
not entirely decoupled, since we may think of our shell as multiple adjacent ring beams whose radial
displacements interact with circumferential strains via 1u ¼ u=r. This interaction ensures a certain
degree of statical indeterminacy and, hence, we observe a bistable response in roller-supported shells
even for large values of β.

4.5. Bistable annular inversion
By cutting a hole, the value of the critical initial midpoint displacement, vM

0�, becomes less representative
as it describes an imaginary height of a shell before the hole was created. For our uniformly curved, closed
shells, it relates to a measure of curvature via 2vM

0� ¼ k0� � a2=t, which is a commonly used quantity to
express the bistable threshold [16,17,22]. However, in the novel context of annular shells, the
minimum physical height of the inner edge required for bistable inversion, vI

0�¼ (1� b2=a2)vM
0�, is more

relevant for practical applications.
The influence of a central hole on this parameter as a function of β is presented in figure 7 for (a) fixed-

pinned and (b) roller-supported edges. For a more open perspective on both plots, we reversed the axes
and plotted the values of log10β from −1 to 1, in order to cover the same range as before (0.1≤ β≤ 10).
Note that the smallest hole size calculated from the annular model was b/a = 0.05; the results of the
closed-shell model have been added for b/a = 0 and intermediate values were linearly interpolated;
hence, there are slight kinks in the transition zone because of the slightly different choice of basis
functions, see equations (3.3) and (3.7).

Our focus is on the interdependency of the stiffness ratio β and the hole size, b/awith respect to their
effect on the critical height for bistable inversion, vI

0�. Poisson’s ratio was set to zero so that the smallest
value of β = 0.1 in figure 7 has a less hindering influence on bistability.

It can be seen that creating a hole favours bistable inversion in all shells on rollers as well as in most
shells with fixed-pinned edges. The most significant enhancement of bistability is observed in roller-
supported shells with a small hoop stiffness, figure 7b, where a central hole of b=a ¼ 20% reduces vI

0�
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by over 30% for shells with β = 0.1; by contrast, an isotropic shell (β = 1) improves only by 3% when a hole

of the same size is created.
In fixed-pinned shells, figure 7a, a similar reduction is observed with the exception of a slight increase

of the physical height required for small values of β. Note that the smallest required height is actually
found in a full plate with β→ 0. For large hole-sizes shell (b/a > 0.5), all shells begin to resemble a
(doubly) curved beam with virtually no radial stresses. Since these structures are already ‘decoupled’
geometrically, the radial stress components are of diminished relevance.

5. Summary and conclusion
We have presented a higher-order, geometrically nonlinear analytical model with up to three degrees of
freedom, in order to study bistable behaviour of polar-orthotropic shells. A Ritz approach that relates the
deflection field to in-plane stresses via Gauss’s Theorema Egregium has been used to find alternative
stable configurations; these were identified by solving a nonlinear eigenvalue problem whose solution
unveiled minima in the strain energy functional. Our analytical model has appropriately captured
central stress singularities for low circumferential stiffness, β < 1, demonstrating its superiority in
comparison to integer-power approaches.

The critical apex height required for bistable inversion has been studied for different support conditions.
Using simplified averaging single-term approaches has allowed us to capture the bistable threshold in closed
form, even though they fail to predict stress resultants appropriately. It has been found that a fixed-pinned
edge enhances bistability in all observed examples compared to a roller-supported edge. Furthermore, the
support conditions significantly affect the influence of other parameters, such as β and the hole size: in
contrast to roller-supported shells, where no alternative equilibrium configurations were found for β→ 0,
fixed-pinned shells have the lowest required apex height. This difference is caused by the increased
statical indeterminacy of shells, which was identified as key for stable inversion.

For roller supports, we have confirmed observations in the literature [52] that circumferential stresses
have a stabilizing influence and prevent reversion. However, the opposite is true for the fixed-pinned
case, where an increasing β-ratio hampers bistability. We conclude that the circumferential stiffness is
stabilizing insofar as radial stresses arise from a ring beam effect that ensures a higher degree of
statical indeterminacy. If radial stresses are assured by the support conditions, the circumferential
stiffness is a redundant feature that becomes a slight impediment.

To circumvent stress singularities for β < 1, central holes were considered. While large holes increase
the critical physical height of fixed-pinned shells only slightly, roller-supported ones were significantly
more inclined to stay inverted once a circular hole of around 20% of the outer radius was formed.
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Appendix A. Full cap
To satisfy the boundary conditions of w(a) = 0, mr(a) = 0, substitute the following values in equation (3.3):

A1¼�a1þ
ffiffiffi
b

p
(h1 þ ah2 þ a2h3 þ a3h4)

and A4¼h1a(1þ
ffiffiffi
b

p
)(
ffiffiffi
b

p þ n)þ h2a
2(2þ ffiffiffi

b
p

)(1þ ffiffiffi
b

p þ n)þ h3a
3(3þ ffiffiffi

b
p

)(2þ ffiffiffi
b

p þ n)
�a4(4þ ffiffiffi

b
p

)(3þ ffiffiffi
b

p þ n)
:

9>=
>; (A 1)

To account for the degenerate case of β = 1, we have to consider the term η2ρ
3 causing a non-vanishing

shear-force at the centre. For this particular case, we substitute this term with the next one in the series in
equation (3.3), η2ρ

6, and achieve results barely distinguishable from those in our isotropic study [34].
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Using the compatibility equation (2.9), the Airy stress function, Φ =Φp +Φh, is expressed in terms of

the η constants as

F p ¼ Eb
2

X4
i¼1

X4
j¼1

 ffiffiffi
b

p
þ i

!
hir

ffiffiffi
b

p þi 4wM
0 r

2dij

(iþ 1)(
ffiffiffi
b

p þ iþ 2)(2
ffiffiffi
b

p þ iþ 1)

�

þ (
ffiffiffi
b

p þ j)h jr
ffiffiffi
b

p þj

(
ffiffiffi
b

p þ iþ j� 1)(2
ffiffiffi
b

p þ iþ j)(3
ffiffiffi
b

p þ iþ j� 1)

#
9>>>>>=
>>>>>;

(A 2)

where δij denotes the Kronecker delta. Denoting the radial and circumferential stresses arising from the
particular solution, Φp, with σpr and σpθ, the remaining constant takes the value

C1 ¼ � s pr(nKuaþ bE)� Kuas pu

(
ffiffiffi
b

p þ 1)[Kua(n�
ffiffiffi
b

p
)þ bE]

����
r¼1

, (A 3)

which simplifies to

C1 ¼
�s pr

1þ ffiffiffi
b

p
����
r¼1

for Ku ¼ 0
(rollers)

or C1 ¼ � s pu � ns pr

(1þ ffiffiffi
b

p
)(
ffiffiffi
b

p � n)

����
r¼1

for Ku ! 1
( fixed pins) : (A 4)
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Appendix B. Annulus
To satisfy the boundary conditions of w(a) = 0, mr(a) = 0, mr(b) = 0 and qr(b) = 0 substitute the following
values in equation (3.7) one after another:

h0 ¼ �(h�2 þ h�1 þ h1 þ h2 þ h3),

h3 ¼
b�5

ffiffiffi
b

p
(3h�2(2
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� 3h2(2
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(A 5)

Then use the same substitution to calculate the Airy stress function in terms of the remaining two degrees
of freedom, η− 2 and η− 1:
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(A 6)

The constants for annulus with Ku→ 0 (roller supports) are
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and the constants for annulus with Ku→∞ (fixed pins) are
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