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ABSTEACT

A general purpose computer program is developed to

perform nonlinear constrained Oiptimization of engineering

design problems. The program is developed especially for

use on iricrocoraputers and is called Microcomputer Software

for Constrained Optimization Problems (msco?) . It will

accept a nonlinear objective function and ap to 50

inequality constraint functions and up to 20 bounded design

variables.

MSCOP employs the method of feasible directions.

Although developed for microcomputers, for speed of develop-

ment, the MSCOP was implemented on an IBM 3033 using stan-

dard basic language, Waterloo BASIC Version 2.0. It is

directly transportable to a variety of microcomputers.

Typical applications of MSCOP program are in the design

of machine components and simple beam and truss structures.

Solutions to three sairple problems are given.
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I. INTIOPnCTION

A. PDEPCSE

This thesis describes the development of a micr ccomputer

oriented program called ?1SC0P (Microcomputer Software for

Constrained Optimization Problems) for constrained optimisa-

tion of engineering design protlems. Problems which can be

solved by the MSCCP are nonlinear programming problems

arising in several areas of machine and structural design,

such as the minimum weight design of structures subject to

stress and displacement constraints [Ref. 1].

In recent years, several powerful general purpose opti-

mization programs have become available for engineering

design problems, e.g., COPES/CONMIN [Ref. 2], and ADS-1

[Ref. 3]. These programs can handle a wide range of design

problems and contain a variety of solution techniques.

Also, several programs are available that include optimiza-

tion in an integrated analysis / design code, e.g., ACCESS,

ASO?, EAI, PARS, SAVES, SPAR, STARS and TSO [Ref. U]. All

of the above optimization programs are written in FORTRAN,

and are built for use on a mainframe computer. Their use can

be cumbersome, especially for the occasional user. Since

many engineers are now using microcomputers, there is a need

to develop an optimization program contained in a microcom-

puter software package for use on microcomputers. This

thesis fills that need by developing a compact program

written in a standard BASIC language suitable for a wide

range of microcomputers.
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B. lEPLEHEHTATTON

The nature of an optimization program depends on the

computer and programming method available. The MSCO? soft-

ware is designed for use on a microcomputer. However, for

the speed of development and testing, MSCOP was developed on

the lEM 3033 computer at the F. P. Church Computer Center in

Naval Postgraduate School, and was written in WEASIC

(Waterloo Basic) Version 2.0.

To make sure that the program is easily portable to a

microcomputer, only standard BASIC commands and functions

are used. For example, FOR I = 1 TO ^TDB NEX"^ I, G0SU3

etc., were used. The commands and functions not available

in all variations of BASIC are avoided, for example, TRN(A),

MAT (A), etc.

nSCOE provides design engineers with a convenient tool

for optinization of engineering design problems with up to

20 bounded design variables and as many as 50 inequality

constraints.

C. GENEEAL OPTIMIZATION MODEL

The general optinization problem to be solved is of the

form : Find the set of design variables ^ that will

Minimize F(X) (1.1)

Subject to G (X) < 3 = T/ /HI (1.2)
J

1 uX<X<X i=1, , n (1.3)
i - i - i

where X is referred to as the vector of design variables.

F (X) is the objective function which is to be minimized.

G (X) are inequality constraint functions, and Xj^ and X

are lower and upper bounds, respectively, on the design

11



variatles. Although these bounds or "side constraints"

could be included in the inequality constraint set given by

Eq(1.2) , it is convenient to treat them separately because

of their special structure. The objective function and

constraint functions may be nonlinear, explicit or implicit

in X. However, they must be continuous and should have

continuous first derivatives.

In general engineering optimization problems, the objec-

tive to be minimized is usually the weight or volume of a

structure being designed while the constraints gives limits

en compressive stress, tensile stress, Enler buckling,

displacement, frequencies (eigenvalues), etc. [Eef. 5 :

p. 264]. Equality constraints are not included because their

inclusion complicates the solution techniques and because in

engineering situations, equality constraints are rare.

Most optimization algorithms require that an initial

value of design variables xo be specified. Beginning from

these starting values, the design is iteratively improved.

The iterative procedure is given by

g+1 q q
X = X + a* S. (1.4)

where q is the iteration number, S is a search direction

vector in the design space, and a* is a scalar parameter

which defines the amount of change in X. At iteration q, it

is desirable to determine a direction S which will reduce

the objective function (usable direction) without violating

the constraints (feasible direction). After determining the

search direction, the design variables, X, are updated by Eg

(1.4) so that the minimum objective value is found in this

direction. [Ref. 6].

Thus, it is seen that nonlinear optimization algorithms

for the general optimization problem based on Eq{1.4) can be

separated into two parts, determination of search direction

and determination of scalar parameter a*.

12



D. OEGAKIZATION OF THIS THESIS

This chapter has stated the purpose of the thesis and

has put the general concept of engineering optimization into

a preliminary perspective. Chapter 2 will describe the

essential aspects of the optimization algorithm used in

MSCOP such as finding a search direction, the one-

dimensional search and convergence criteria. Chapter 3

describes program usage. In chapter 4, there are three

examples which are solved by the MSCOP. Summary and conclu-

sions are given in chapter 5. The program is listed in the

appendix.

13



II. OPTIMIZATION ALGORITHM

A. INTRCDOCTION

There are many optimization algorithms for constrained

nonlinear problems such as generalized reduced gradient

method, feasible direction method, penalty function methods.

Augmented Lagrangian multiplier method, and sequential

linear programming. The feasible direction method is chosen

for development in this thesis for three main reasons.

First it progresses rapidly to a near optimum design.

Second it only requires gradients of objective and

constraint functions that are active at any given poirt in

the optimization process [Ref. 7]. Third, because it main-

tains a feasible design, engineer cannot fail to meet safety

requirements as defined by the contraints. However, the

method does have several disadvantages in that it is prone

to "zig-zag" between constraint boundaries and that it is

usually does not achieve a precise optimum. This method

solves the nonlinear programming problem by moving from a

feasible point (can be initially infeasible) to another

feasible point with an improved value of the objective

value

.

The following strategy is typical of feasible direction

method : Assuming that an initial feasible point X^ is

known, first find a usable-feasible direction S. The algo-

rithm for this is sinilar to linear programming and comple-

mentary pivoting algorithms. Having found the search

direction, a move is made in this direction to update the X

vector according to Eg (1.4) . The scalar a* is found by a

one-dimensional search to reduce the objective function as

much as possible subject to constraints. That is IlIN
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Figure 2.1 Algorithm for the Feasible Direction Hethod.

F(X + a*S) subject to G(X + a*S) <, 0. It is assumed that the

initial design xo is feasible, but if it is not, a search
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direction is found which will direct the design to the

feasible region. After updating the xo vector, the conver-

gence test must be performed in the iterative algorithm. A

convergence criteria used in this is implementation are

described in section C. The general algorithm used in mscop

is given in Figure 2.1

B. SEARCH DIRECTION

In the feasible direction algorithm, a usable - feasible

search direction S is found which will reduce the objec-

tive function without violating any constraints for some

finite move. It is assumed that at any point in the design

space (at any X) the value of the objective and constraint

functions as well as the gradients of these functions with

respect to the design variables can be calculated. Since

these gradients cannot usually be calculated analytically,

the finite difference method Eg (2.1) is used in MSCOF.

aF(X) r (X+ £e )
- F (X)

= ~ (2.1)
3X

i

where e is the ith unit vector
i

£ is a small scalar.

In HSCOP, £ is 0.1% of the ith design variable

In the feasible direction algorithm, there are usually

one or more "active" constraints. A constraint G (X) < is

"active" at X if g (X) ;:i 0. As shown in Figure 2.1, if no

constraints are active the standard steepest descent direc-

tion S = - VF is used.
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1. Usable-Feasible Direction

;'2

/

1 ""Tn, ^Feasible n.

j^j/v^ sector \^F(>0 = const

f\

>Usable-^
sector

"""^^Ji/V^ Usable-feasible \
^'>n:A. secior \ \

\

' -^1

, _..

Figure 2.2 Osable-Feasible Direction

Assume there are NAC active constraints at X* The direction

S, is "usable" if it reduces the objective function, i.e..

VF«S < (2.2)

Similarly the direction is feasible if for a small movement

in this direction, no constraint will be violated, i.e..

7G • S <

This is shown geometrically in Figure 2.2

(2.3)
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2

.

Active Constraints

It is necessary to determine if a constraint is

active or violated in the feasible direction algorithm. A

constraint G (X) < is "active" at xo if G(XO)^0. In crder

to avoid the zigzagging effect between one or more

constraint boundaries, a tolerance band about zero is used

for determining whether or not a constraint is active. From

the engineering point of view, a constraint G (X) < is

activ€ near the boundary G(X) =0 whenever ACC < G (X) < VCC.

ACC is the active constraint criterion and VCC is the

violated constraint criterion in .1SC0P. Assuming the

feasible constraints are normalized so that G (X) ranges

between -1 and for reasonable values of X, the constraint

G(X) < is considered active if G (X) > -0.1. The

constraint is considered to be violated if G (X ) > 0.004.

This is an algorithmic trick which improves efficiency and

reliability of the algorithm. However, since in the one -

dimensional search, all interpolations for constraint G (X)

are done for zeros of a linear or quadratic appr ox imaticn to

G (X) in crder to find a*, at the optimum the value of active

constraints are very near zero, but may be as large as 0.004

[Ref. 6]. From an engineering point of view, a 0.4 %

constraint violation is considered to be acceptable.

3

.

Subopt imizat icn Problem and Push-Off Factors

Zoutendijk [Eef. 8] has shown that a usable

feasible direction S nay be found as follows :

Maximize fi (2. 4)

Subject to ;

2F (X) -S + ^ < (2. 5)

18



^G (X)- S + 6.^ <

S bouEded

j e J (2.6)

(2.7)

Where scalar ^ is a measure of the satisfaction of the

usability and feasibility requirements. The scalar Bj in

Eq(2.6) is referred to as the "push-off" factor which effec-

tively pushes the search direction away from the active

AS

g(\) =

-^X^

Figure 2.3 Push-Off Factor and Bounding of the S-Vector.

constraints. In Eg (2. 6) , if the push-off factor is 7ero,

the search direction is tangent to the active constraints,

and if it is infinite, then the search direction is tangent

to the objective function. It has been found that a

19



push-off factor is defined as follows gives good results

[Eef. 5: p. 167] :

e =

J

1 -

G.{X) 1

_J
ACC

e«
(2.3)

where 0^ = 1 .

To avoid an unbounded solution when seeking a usatle

- feasible direction it is necessary to impose bounds on the

search direction S. Cne method of imposing bounds on ssarch

direction is to impose bounds on the components of S-vector

cf form :

- 1 < S. < 1 (2.9)

This choice of bounding the S-vector actually biases the

search direction. This is undesirable since we wish to use

the push-off factors as our means of controlling the

search direction. A method which avoids this bias in search

direction is the circle as shown Figure 2.3 . The norm here

is

S-S < 1 (2.9.1)

4 . Simple Simplex-like Method for Sea rch Direction

Vanderplaats [Ref, 5: pp. 168-169] provides the

matrix formulation which solves the above sub-optimization

problem by using the Zoutendijk method.

Maximize p. v

Subject to ;

A.y <

(2.10)

(2.11)

20



y.y < 1 (2.12)

>Ihere

y = P = (2. 13)

n

s

A =

vG^(x), e^

(2.14)

T ^

VF (X), 1

and where j is the numhier of active constraints (NAC)

When the solution to Ig(2.10) through (2.12) is found, 3 may

be normalized to some value other than unity, but the form

of the normalization is the same. A solution to the above

problem may be obtained by solving the following system

derived from the Kuhn-Tucker conditions for that problem :

[e x) = c (2. 15)

u > V > u-v =
i - i - ~ ~

(2.16)

Where

21



B = -A- a" (2. 17)

I = Identity matrix (2.18)

c = -A-P (2. 19)

Above system can be solved using a complimentary pivot algo-

rithm. Choose an initial basic solution to Ec(2.15) is to

he

v = c, u = (2. 20)

where v is the set of basic variables and u is the set of

nonbasic variables. If all v;_ > 0, Eg (2. 16) is also satis-

fied and problem is solved. If some v^ < 0, the solution

procedure is as follcvs :

Let Ej,;, be the diagonal element of the i-th nonbasic vari-

able.

1. Given the condition that some c is less then zero,

we find max {ci/Bn) which is the incoming row to the

basis.

. 2. The incoming column is changed to a basic

column, the tableau is updated by a standard simplex

pivot on B[i .

3. Until all c^> 0, repeat steps 1. and 2.

4. When all c^ > 0, the iteration is complete. The

value of u is now the desired solution.

5. 3y using y = p-A -u, we get the usable-feasible

search direction S which is first NDV components of

y-

^ • Ifiiti^iil l2^€asible Designs

The method of feasible directions assumes that we

begin with a feasible design and feasibility is maintained

throughout the optimization process. If the initial design

22



is infeasitle, then a search direction pointing toward the

feasible region can be found by a siniijle modification to

direction finding problem.

A design situation can exist in which the violated

constraints are strongly dependent on part of the design

variables, while the objective function is primarily depen-

dent on the other design variables. This suggests a method

for finding a search direction which will* simultaneously

minimize the objective while overcoming the constraint

violations. These considerations lead to the following

statement of the direction finding problem [Ref. 5 :

pp. 171-172] :

Maximize " vr (X) • S + 5^ (2.21)

Subject to ;

vG (X) • s + e -^ <
"

J -
je J (2. 22)

S-S < 1 (2. 23)

where J is the set of active and violated constraints, and

where the scalar $ in Eg (2. 21) is a weighting factor deter-

mining the relative importance of the objective and the

constraints. Usually a value of 5. > 10000 will ensure that

the resulting S-vector will point toward the feasible

region. Incorporating Eg (2. 21) and Eg (2.22) into the direc-

tion finding algorithm requires only that we modify the

p-vector given in Eg (2. 24) and the A-matrix of Eg (2. 25).

P =
VP(X)

5
(2. 24)
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A =

~
3 ^i

(2.25)

< 50 (2.26)

Vie use the simple simplex-like method to find the

search direction toward the feasible region.

C. CNE-DIBENSIONAL SEARCH

T • No Violated Ccnstraints

If no constraints are violated, we find the largest

a* in Eci(1.U) from all possible values that will minimize

the objective on S without violating any constraints, active

or inactive.

The procedure in MSCOF is as follows :

1. Let aO, a1, a2, a3 be the scalar in 11g(1.4) corre-

sponding to pcints xp , XJ, X2/ XJ, X4 .

2. aC = at given point XO .

3. In order to get a1, we can calculate the a1 to

reduce the objective by at most 10% or to change each

of the design variable X ^Y ^t most ^Q%.

4. Update the design variables to XJ '^sing Eg (1.4) .

5. Evaluate the objective for XJ, and check the feasi-

bility. If one or more constraints is violated, then

a1 is reduced to a1/2, and we go to step 4.

6. In order to estimate a2, we can use the quadratic

approximation with 2 points X, XJ and the VE.

24



7. Update the design variables to X2 by Eq(1.4) and

check the side constraints.

8. Evaluate the objective and constraints.

9. Now having 3 a's, and values of objectives and

constraints for design variables XO, XJ , X2 are

known, so by using 3-point quadratic approximation, a

value of aS is found.

10. Update the new optimal point in search direction by

Eg{1.U) .

11. Evaluate the objective and constraints.

12. Now choose last 3 values, a1 , a2, a3 and find a new

a3 using 3-points Quadratic approximation

13. Choose the a* among the 5 points which corresponds to

the minimum objective function value with no-viclated

constraints.

2 . On e or More Constraints Viola ted

If one or more constraints are initially violated, a

modified usable-feasible direction is found. It is then

necessary to find the scalar a* in Eg (1.4) which will mini-

mize the maximum constraint violation, using the most

violated constraint j, a good initial estimate for a* is

-G
.
(X)

a* = (2.27)
VG (X) . S

3

Since the gradients of the violated constraints are

known, the scalar which is required to obtain a feasible

design with respect to violated constraint in the search

direction, is given to a first approximation by Eq(2.27).

The more detail procedure in :iSCOP is as follow ;

1. Choose the most violated constraint j.

2. Calculate a* for violated constraint j using

Eg (2.27) .
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3. Update the design variables for a* and check the side

constraints.

4. If one or more violated constraints still exist, then

calculate the derivative of objective, violated and

active constraints and find a new search direction

and then go to step 1. Otherwise proceed with the

optimization in the normal fashion.

E. CCNVEBGENCE CRITIBIA

A desired property of an algorithm for solving a nonli-

near problem is that it should generate a sequence of points

converging to a global optimal point. In many cases,

however, we may have to be satisfied with less faverable

outcomes. In fact, as a result of non-convexity, problem

size, and other difficulties, we may stop the iterative

procedure if a point belongs to a described set, which is

defined in HSCOP as fellows ;

1. Q = 1 X 1 IK° - II < £xlxo| }

2. Q = {X \
!F(XO) - F{X)1 < e-|F(XO)| }

2 ^

In MSCOF, the algorithm is terminated if a point _X is

reached such that X ^ Q, f) Q^ - £,. is 0.001 and Sp is

approximatly 0.001. Since in engineering design problems it

is not necessary to find solutions with more than three

significant digits.
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III. HSCOP USAGE

A. INTEODDCTION

Since this MSCOP is written in WATERLOO BASIC Version

2.0, it is verv convenient to use. The user must first

formulate the design problem with the classical machine

design criteria. Given the formulation of the design

problem as a nonlinear program, the user then enters the

problem as a part of a BASIC program. The user defines the

objective function and constraint functions using EASIC

statements. Other parameters are input as data : the number

of design variables NDV, the number of inequality

constraints NIQC, variable bounds an initial design value

and a print control number.

B. PECBIEM FOBMDLATICN

Generally, the experienced design engineer will be able

to choose the appropriate objective for optimization

depending on the requirements of the particular application.

The physical phenomena of significance should first be

summarized for the device to be designed. The appropriate

objective can then be selected and constraints can be

imposed en the remaining phenomena to assure an acceptable

design from all standpoints. However, the initial formula-

tion for the optimization problem should not be more compli-

cated then necessary and this often requires the making of

some simplifying assumptions. [Eef. 9].

After completing the formulation of the design prcblem,

the design engineer should be able to answer the following

questions :

1. What are the design variables ?
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2. What is the objective function ?

3. What are the inequality constraints ?

4. What are the hounds on the variables ?

The engineer is then ready to input the program to the

MSCOF. However, additional study and preparation of the

problem may be useful. In particular, redundant constraints

should be avoided if possible. MSCOP will operate with

redundant constraints but it will operate faster without

them. Selection of an initial design point from which to

start this program is important, since it affects perform-

ance and running time. The user should use any available

information which gives a good initial approximation. If

side constraints exist, the user must be sure the initial

values of the design variables do not violate the side

constraints. This program will automatically handle an

initial design point which is infeasible with respect to the

G(X) < constraints. However, if the initial point does not

violate these constraints, convergence will likely be more

rapid

.

C. PBCBIEM ENTEY

Problem entry is accomplished by editing the main

program directly. As an example, consider the following

simple NIP with two design variables, and three constraint

functions.

2 2
Minimize F(X) = X + 3XX +2X-X-X+1

1 12 2 12
subject to ;

X + X - 3 <
1 2

1 1— + 2 <XX-
1 2
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2
X +X-X-2<0

1 12-
X > 0. 1

i -

With the MSCOP loaded into memory and listed on the CRT,

modifications are made on the program lines as follows to

input this example :

line 100

Just after the word "data", three integers are added,

separated by a conma. The first number is ND V vhich is

the number of design variables, the second is NIQC which

is the number of ireguality constraints, and the third is

IPET which is print control number ( ; only final

results, 1 ; given data and final results, 2 ; given data

and iterative subcptimal results)

for example :

100 data 2,3,2

Lines 201-220

Each line here corresponds to a separate design variable,

beginning with X (1) and continuing in order to input

X (NDV) . On each line, three values are separated by

commas. After the word "data", these values are the

initial values of the design variable, the lower bound on

the variable and the upper bound on the variable. If no

bound is to be specified, the entry is filled by "no".

For the sample problem, the input is :

201 data 3. ,0. 1,no

202 data 3,, 0.1, no
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lines 400 - 450

These lines are available for defining the objective

function. The objective function must be defined in

terms of subscripted design variables X ( 1) , X {2) , etc.

Tor the sample protlem, the input is :

400 fn_f = X (1)**2 + x(1)*x(2) +2.*x (2) **2-x ( 1) -X (2) +1.

lines 500-650

These lines are available for defining the inequality

constraint functions, which must be expressed using the

format :

601 if i = k then fn_g = G (x) - b
i i

For the sample problem, the input is :

OC601 if i = 1 then fn g = x(1)+x(2)-3.
00602 if i = 2 then fn g = 1 . /x ( 1) + 1 ./x (2) -2 .

G0603 if i = 3 then fn^g = x ( 1) **2 + x (1
) -x (2) -2. -

If there are many constant values in the constraint func-

tions, the user may input data for these functions on

lines 501-600 in order to simplify their statements.
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IV. EXAHPIE PROBLEMS

A. DESIGN OF CAHTILE7ERED BEAM

1. Uniform Cantilevered Beam

Assume a cantilevered beam as shown in Figure 4.

1

must be designed. The objective is to find the minimum

1 = 20O"'

r
T
H

(J = 20000 Psi

E = 30 E 6 Psi

y =1.0 inch

p = 10000 lbs

Figure 4.1 Design of a Dniforn Cantilevered Beam.

volume of material which will support the load P.

The design variables are the width B and height H in

the team. The design task is as follows : Find B and H to

irinimize volume V = B H 1 (U.I)
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ve wish to design the beam subject to limit on bending

stress, shear stress, deflection and geometric conditior.s.

The bending stress in the beam must not exceed 20,000 psi

.

« c 6 P 1
Cr = = < 20,000 (4.2)
b I 2 -

B H

The shear stress must not exceed 10,000 psi.

^ 3 P 3 P
(X= = < 10,000 (U.S)

•"

2 A 2 B H -
'

and the deflection under the load must not exceed 1 inch.

3 3

C PI 4 P 1
O = = < 1.0 (4.4)

3 E I 3 -
E B H

Additionally, geometric limits are imposed on the beam size.

0.5<B<5.0 (4.5)

1.0 < H < 20.0 (4.6)

H/b < 10. (4. 7)

Now we can input this problem to MSCOP.

Input NDV, NIQC, IPRT

00100 data 2,4,2

Initial starting points

00210 data 3.5,0.5,5.0
00220 data 16.0,1.0,20.0

Evaluation of objective

00400 fn_f = tl*x(1)*x(2)
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Evaluation of constraints
00500 tl = 200.

30.e+6
10000.

1 then fn_g

00SG1 hG
00S0 2 bp
00503 if
00S03 if
00503 if
00503 if

then fn'_g
then fn_g
then fn_g

= 6. *bp*tl/f20000 .*b*h*'' 2) -1
= 3. *bp/( 10000.*2.*b*h) -1.
= U. *bp*tl**3/ (be*b*h**3) -1.
= h/b-10.

TABLE I

The Solution of a Uniform Cantilevered Beam

objective ; 6664.0

design variable ;

X(1) = 1.852

X{2) = 17.99

constraint ;

9(2)

g(3)

gC*)

0.000902

-0-9549

-0.0109

-0.0286

As a result of this problem are in Table U.I.

2 . ^Variable Can tilever ed Beam

The cantilevered beam shown in Figure 4.2 is to be

designed for minimum material volume. The design variables

are the width b and height h at each of 5 segments. We

wish to design the beam subject to limits on

stress (calculated at left end of each segment), deflection

under the load, and the geometric requirement that the

hoight of any segment does not exceed 20 times the width.
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\

u—v
— /«

/'=50AXT0N

f = :OOGPa
L = 5(K) .-m

= 14, IKK) N cm-
v= 5k.m

Cross section

Figure U.2 Design of a Variable Cantilevered Beam.

The deflection y at the right end of segment i is

calculated by the following recursion formulas :

y = y =
o o

(4.8)

P 1

I I

1 1
L + — + s: 1

2 j=1 i i-1
{a.9)

p 1

y =
2 E I

2 1
i i

L - ZT 1 +
j=1 i 3

+ y. 1. + y. , (4.10)
1-1 1 1-1
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vhere the deflection y is defined as positive downward, y'

is th€ derivative of y with respect to the X, and 1;. is the

length of of segment i. Young's raodjlus E is the same for

all segments, and the moment of inertia for segment i is

I =
i

3
t h
i i

12
(U. 11)

The tending moment at the left end of segment i is calcu-

lated as

1 =PL + 1 -H 1
i

I
i 3=1 i

J

(4.12)

and the corresponding maximum bending stress is

0" =
i

M h
i i

2 I
('4.13)

The design task is now defined as

Minimize

Subject to :

V = z: b h 1
i=1 i i i

(U. 14)

(4.15)

(Ti
- 1 < i = 1, . . . ,

N

(4. 16)

N
- 1 < (4. 17)

h - 20 b <
i i -

i = 1,...,N (4. 18)
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b > 1.0
i -

h > 5.0
i -

i = 1, . . .,N (U.19)

where ? is the allovable bending stress and y is the allo-

wable displacement. This is a design problem in 10 vari-

ables. There are 6 nonlinear constraints defined by Eq (4. 16)

and Eg (4. 17), and 5 linear constraints defined by Eg (4. 18),

and 10 side constraints on the design variables defined by

Eg(4. 19) .

Now we can input this problem to ^SCOP.

Input NDV, NIQC, IPRT

00100 data 10, 1 1,2

Initial starting points

0021 data 5. , 1 . ,no
00220 data 5. , 1 .,no -

00230 data 5. , 1 . ,no
00240 data 5.,1.,no
00250 data 5. , 1. ,no
00260 data 40. ,5. , no
00270 data 40. ,5. , no
00280 3ata 40. , 5. ,no
00290 data 40. ,5. , no
00300 data 40. ,5. ,no

Evaluation of objective

00400 fn_f = 100. * ( x(1)*x(6)
x(4) *x(9) + x(5) *x (10) )

+ X (2) *x (7) + X (3) *x (3)

Evaluatiom of constraints.

00490 def fn q {x,i\

00500 pcb =^^0006
00498 dim bmT bi (10) ,sigi ( 10) ,y pb (10) , yb (10)

00501 be = 200. e+5
00502 tl = 200.
00503 sigb = 14000.
005C4 ytb = .5
00505 si = 40.
00506 for m = 1 to 5
00507 bm(m) = pcb* (tl+sl-m*sl)
00508 next m
00509 for ffi = 1 to 5
00510 km = m+5
00511 bi(m) = x (m) *x (km) **3/1 2.
C0512 sigi (m) = bm (m *x (km) / (2. *bi (ra)

)

00513 next m
00514 yzo = 0.
00515 yp2 = 0.
00516 for m = 1 to 5
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00517
00S18
00519

5 2
00521
00522
00550
00560
00570
00560
00590
00600
00610
00620
00630
00632
0063a
00636

y
y

next
rem
if i

i
i
i
i
i
i
i
i
i
i

pb (m
umm
L (ai)

pzo
zo =

) = (pcb*sl* (tl+sl/2.-m*sl) ) / (be*bi (m) ) -ypzo
= pcb*£l**2* (tlrra*sl+2.*sl/3.)
= dumm/(2

= ypb (E)
yb(ra)

*be*ti (m) ) +ypzo*sl + yzo

if
if
if
if
if
if
if
if
if
if

m
constraint function

1 then fn_g = si
si
si
si
si

1 then fn_g =
2 then fn_g =
3 then fn_g =
4 then fn_g =
5 then fn_g =
6 then fn_g = yb
7 then fn_g = x

'

8 then fn_g = x
9 then fn_g = x
10 then fn_g = x
11 then fn_g = x

sigb-
sigb-
sigb-
sigb-
siqb-
b-1.
*x (1)
*x 2
*x 3
.*x

(

0.*x \h

TABLE II

The Solution of a Variable Cantilevered Bea:

objective ; 62133-35

design variables

X(1) = 2.994

X(2) = 2.782

X(3) = 2.528

X(4) = 2-203

X(5) = 1.761

X(6) = 59.88

X(7) = 55.62

X(8) = 50.56

X(9) = 44.14

XOO) = 35- 19

constraints

G(1) =

G(2) =

G(3) =

G(4) =

G(5) =

G(6) =

G(7) =

G(8) -

G{9) =

G{10) =

G(11) =

-0.00219

-0.00415

-0-00508

-0-00406

-0-0177

-0- 4401

-0.0101

-0.0231

0.0000

-0.0248

-0-0278
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E, SIHPIE TRUSS

Y
4

<

P = 50000 N

E = 200 GPa

(J
= + 14000 N/cm

t = 100 cm

^x^ 4

I
1

©

<
/

t

^ 3

1 -
2 '^

/

^

P

Figure U. 3 Design of a 5-Bar Truss.

A simple truss with 5 members as shown in Figure U.3 is

designed for the minimum volume. The design variables are

the sectioEal areas of the members. The constraints are

formed for the stresses of the members not to exceed the

given allowable stress. The lower bound for each design

variable is also considered. The stresses are obtained by

the displacement method of the finite element analysis. The

equation to be solved is given by

K-u = P (4.20)

where K is the stiffness matrix, u is the displacement

vector and P is the lead vector as follows :
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u =

r \
u

1

V
1

u
2

V
2

p =

-5000

(4.21)

K =E

A. ^5 As

A5 A, P^s

X" V5fi.

/la

A,

JL

- A4. A2. f^'^

(4.12)

From Eq. (4.20) the displacements are solved by

-1
D = K -P (4.23)

Having displacements at all nodes, we can calculate the

stress for each element.

E'Ai

01= E-g = (4.24)

where

/ 2 2
Al = 1(1 + u ) + V1^11 1

2 2
Al = /(l+v-v) + (u-u)-l

2 V 2 1 2 1 2 2

= /
2 2Al=/(l+u) +v - 1

3 v' 3 2 2 3
(4.25)
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^1 = /( 1 + U ) + { 1 - V ) - 1
U J 3 2 2 2 a

2 2
Al =/(l+u) +(l + v) -1

5 >i 3 1 2 1 5

The design problem is given by

minimize V = 21 A 1
i=1 i i

Subject tc

-1.0<0 i=1,...,5

(4.26)

(4.27)

A > 0. 1

i -
i = 1 , . . . , 5 (4.28)

The MSCOF input for this problem is given as follows

Input NDV, NIQC, IPRT

00100 data 5,5,2

Initial starting point

00200 data 3. , . 1,no
00202 data 3. , . 1,no
00204 data 3. , . 1,no
00206 data 3. , . 1,no
00208 data 3. , . 1,no

Evaluation of objective

00400 fn f = 100 * ( x(1) + X (2) + x(3) + sqr(2.)*x(4)
sqr (2.) *x75) )

Evaluation of constraints

0500 dim vv (5)
050 1 te = 2.e+7
0502 tl = 100.
0503 sigb = 14000.
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0504
050S
0506
0507
0506
0509
0510
051 1

0512
0513
0514
0515
0516
0517
0518
0519
0520
52 1

0522
0523
0590
0592
0594
0595
0596
0598
0600
0602
0604
0606
0608
0610
06 50

sqr (2.)

1) +x (5)/cs) *ct
) *Ct/C£

2)+x {5)/cs) *ct
2) *ct
3 +x (4)/cs) *ct
4) *ct/cs

4)/cs) *ct

2*dk1) /lc24
/k34

f nend

raint
t hen
then
then
then
then

2*dk1+k4 3*ak3+k4 4*dk2)

Kvv ( 1

vv(2
vvh
1
vv
vv

) **2 + vv (2) **2) -tl
-vvf4)) **2+ (vv(11-vv(3)
)**2 + vv (4) **2) -tl

(3) )
**2+ (hl-vv

(1) )**2+ (hl + vv

) *2) -tl

(4) )**2) -hi
(2) i**2i-hl

f n_g
fn_g
f n_g
f n_g
f n g

te*dl1/
te*dl2/
te*dl3/
te*dl4/
te*dl5/

tl*sigb
tl*sigb
tl*sigb
hl*sigb)
hl*sigbi-

TABLE III

The Sclution of a 5-Bar Truss

objective ; 108-52

design variables

X(1) = 0- 1

X (2) = 0. 1

X(3) = 3.514

X(4) = 4.948

X(5) = 0.1

constcaint

G(1) =

G(2) =

G{3) =

G(4) =

G(5) =

-1.9988

-2.0030

-0.0030

-0. 1203

-1.8797
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V. SDH MARY AND CONCLnSION

Numerical optimization is a powerful technique for those

confronted with practical engineering design problems. It

is also, a useful tool for obtaining reasonable solutions to

the classical engineering design problems. Since many engi-

neers are now using nicrocomputers for solving design prob-

lems, the development of microcomputer software which can be

easily used is needed.

In this thesis, an algorithm for constrained optiiriza-

tion problems is programmed in standard BASIC language

(WBASIC version 2.0) on an IBM 3033. The users can easily

convert this to other nicrocomputers.

MSCOI (Microcomputer Software for Constrained

Optimization Problems) employs the method of feasible direc-

tions and specific modifications of a one-dimensional search

for constrained optimization. MSCOP has been validated by

tests on three constrained optimization problems. Its

performance is good and could be made better through refine-

ment cf the algorithm.

Since microcomputers are available with reasonable

memory size and computational speed, their capabilities will

continue to improve as more engineering software becomes

available. MSCOP is considered to be a first step toward

more widespread use cf optimization techniques on microccm-

puters.

42



APPENDIX A

MSCOP PHOGEAM LISTING

0010
0020
00 21
0030
0040
0050
0060
0070
0030
0090
0100
0110
0115
0120
0125
0130
0135
0140

0150

0160
0200
0210
0360
0370
0375
0380
0390
0400
0410
0420
0430
0440
0450
0480
0490
0500
0510
0520
053

0540
0550

0560
0650
0700
0710
0720
0730
0740
0750
0760
0770
0780
0785
0790
0800

cptio
dllE X
din!
dim
dim
dim
rem
gosufc
rem i
read
data
for i
rem

re
xO
if
re
if
va
if
va

next
data
data
rem e
ot j =

itri
rem o
def f

fn
fnend
rem e
for i

next
rem c
def f
tl =
be =
bp =
2.1 i

n bas
(21) L
Hta (^
(51,2
wrk (5
rku(5
npu t
1000

nput
ndv , n
2,4^2

input
ad x (

(il =
niqc

ad lo
lo?;
lue (1
ups

lue (u

3.5,0
16. , 1

valut
fn f

= 1"
bject
n f (X
f =

e 1

xO (21(21),qcv(51J ,ngcv{51) , df (21) , dg (51 , 2 1)
, wrxY (51, 5 1)^

lj ; wrki (5lJ ;iowb (21) ;uprb (2 1) ;ioS {6) ,up? (6)

1) ;wrkyt5i;51
1 ,b(5l,5lf ,p(21),y(21),sf21|,u(
1) , :vrk 51) , wrki (51) ,wrK2 (51) ,wr

i^

51) ,c (51)
k3(§1)

data

number of design variables and constraints.
iqc, ifrt

to n dv
initial value of design variables

i)
.

x(i)
= then 160
S^upl
- *no' then lowb (i) = bnlo else lowb(i) =
o$)
= 'no' then uprb (i) = bnup else uorb (i) =

p$)

.5,10.

.0,20.
e the objective-function
(X)

ive function

200.*x(1)*x (2)

te the constraints
to niac
= fn_g(x,i)

aint functions
,i)

if i = 2 t
if i = 3 t

valua
= 1

Y(i)
1
onstr
n g (X
2Ua.
30.e+6
10000.
= 1 then fn_g =

hen fn_g =
hen fn_g =

if i
f nend
rem i
ical
if ic
rem c
gosub
rem p
rem
rem r
ical
if ic
rem 1

for

= 4 t

6. *bp*tl)/
'2000O.*x (1) *x (2) **2) -1 .

'3. *bp)/(200 0.*x (1) *x (2) )
-1.

'4.*bp*tl**3)/
be*x M) *x (2)**3) -1.

hen fn_g = x (2) / ( 10 . *x ( 1) )
- 1

.

1 counting number inputnitia
= 1

al >
all t
2000

rint results.

3 then stop
he optimization code,

e-counting number input.
= ical+1
al = 3 then 850
0% reduce the design variables.
i = 1 to ndv
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0810 x(i) = 0.9*x(i)
0320 xO (i) = X (i)
0830 next i
0840 goto 720
0850 rem lOf increase design variables.
0860 for i = 1 to ndv
0870 X (i) = 1.1*x(i)
0880 xO (1) = X (i)
0890 next i
0900 goto 720
2000 rem calculate the obi. constraint fen.
2001 obj = fn f (X)
2002 for i = T to nigc
2003 2cv(i) = fn_g{x,i)
2004 next i
2003 itrq = 1

2010 itrq = itrg+1
2020 rem calculate the number of active and violate

constraints.
2030 gosub 3500
2040 rem calculate the gradient of objective and

active or violated constraints.
2050 gosub 3800
2060 if nave = then 2190
2070 gosub 3900
2080 rem calculate the push-off factors
2090 gosub UOOO
2100 rem making the latrix c
2110 rem normalized the df (i)
2120 gosub 4100
2130 rem normalized the DG (i)
2140 gosub 4200
2150 if nvc > then gosub 4400 else gosub 4600
2160 rem calaulate the usable-feasible direction s (i)
2170 gosub 5000
2180 goto 2230
2190 rem normalize the df(i)
2200 for i = 1 to ndv
2210 s(i) = -(df (i).)

2220 next i
2230 rem normalize the s (i)
2240 gosub 5700
2250 rem one-dimensicnal search
2260 if nvc = then gosub 6000 else gosub 9000
2270 rem update x for alph
2280 gosub 7000
2290 gosub 7100
2300 rem calculate new point value.
2310 nobj = fn_f (x)
2320 rem convergence test
2330 gosub 6780
2340 if walp <= accx and delf <= dabf then 2470
2350 itri = itri+1
2360 if itri > mxit then print 'check the problem'
2370 obj = nobj
2380 for i = 1 to ndv
2390 xO (i) = X (i)
2400 next i
2410 for i = 1 to nice
2420 gcv{i) = fn g(x,i)
2430 next i

-^
v

' /

2440 if iprt = 2 then 2460
2450 gosub 9200
2460 goto 2010
2470 rem print final results
2480 print '***** final results ***** '

2490 gosub 9200
2500 return
3000 rem initialize the integer working array
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3005 for i = 1 to niqm
3010 iwrk(i) =
3015 next i
3020 return
3050 rem initialize the integer working array
3055 for i = 1 to nicjin
3060 jwrk(i) =
3065 next i
3070 return
310C rem initialize the one-dimension working arrav
3105 for i = 1 to niqm
3110 wrki (i) =0.
3115 next i
3120 return
3150 rem initialize the one-dimension working array
3155 for i = 1 to niqm
3160 wrk2(i) = 0.
3165 next i
3170 return
3200 rem initialize the one-dimension working array
320 5 for i = 1 to niqc
3210 wrk3 (i) = gcv(i)
3215 next i
3220 return
3250 rem initialize the two-dimension working array
3255 for i = 1 to niqm
3260 for i = 1 tc ndvm
3265 wrky(i,j) = 0.
3270 next j
327 5 next i
3280 return
3300 rem initialize the derivative of objective DF (i)
3305 for i = 1 to ndvm
3310 df (i) = 0.
3315 next i
3320 return
3350 rem initialize the a (i , j) , p (i) ,y (i) ,c (i)
3353 for i = 1 to ndvm
3356 p (i) = 0.
3359 y(i) = 0.
3362 for j = 1 tc niqm
3365 a(^,i) =0.
3368 next j
337 1 next i
3374 for j = 1 to nicm
3377 cij) = 0.
3380 next j
3383 return
3400 rem initialize the derivative of constraints DG(i,j)
3405 for i = 1 to niqm
3410 for 1 = 1 tc ndvm
341^ dg(i,j) = 0.
3420 next 3
3425 next i
343 return
3450 rem initialize the b(i,j)
3455 for i = 1 to niqm
3460 for 1=1 to^niqm
34 6 5 b{i,j) =0.
3470 next j
3475 next i
3480 return
3500 rem Calculate the number of active and violate

constraints.
3502 gosub 3000
3504 gosub 3100
3510 nac =
3520 nvc =
3530 for i = 1 to nigc
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3540
3550
3560
3570
3530
3590
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3790
3800
3805
3810
3815
3820
3825
3830
3 83 5
3840
3850
3860
3900
3901
3910
3915
3920
3925
393
3935
3940
3945
3950
3955
3960
3966
4000
4010
4020
4030
4040
4090
4100
4 102
4105
41 10
4115
4120
4125
4127
4130
4135
4140
4145
4200
4202
4205
4210

if gcv (i) >= vcc then 3580
if gcv (i) < ace then 3590

nac = nac+1
goto 3590
nvc = nvc+1

next i
nave = nac+nvc
if nave = then 3790

ii = 1

ij.= 1

ror,i = 1 tc nigc
if gcv(i) >= "vcc then 3720
if gcv (i) < ace then 3750

iwrk. (nvc+ii) = i
wrki (nvc+ii) = gcv (i)
ii = ii+1

goto 3750
iwrk (j j) = i
wrki (^ j) = gcv (i)

Jl= 3 3+

1

next 1
return
rem calculate the gradient of f (x)
gosub 3300
for i = 1 to ndv
dxi = fdm*abs (X (i) )

if dxi <= mfds then dxi = mfds
X (i) = x (i) +dxi

dobj = fn f (X)
df (1) = (Hot j-obj) /dxi
x(i) = xd(i)

next 1
return
rem calculate the DG(i,j)
gosub 3400
for i = 1 to ndv

dxi = f dm*x (i)
if dxi < mfds then dxi = mfds
X (i) = X fi) +dxi
for j = 1 tc nave

k = iwrk (j)
deon = fn_g(x,k)
dg(j,i) = (dcon-wrkl

( j) ) /dxi
next 1

x(i) = xO(i)
next 1
return
rem ealcilate the push-off factor
for i = 1 to nave

thta(i) = thtO* (1. -wrki (i) /ace) **2
if thta (i) > thtm then thta (i) = thtm

next i
return
rem normalize the DF(i)
gosub 3200
rsg = 0.
for i = 1 to ndv

fsq = fsg + df (i) **2
next 1
fsq = sqr (fsc)
if fsc = 0. then fsg = zro
for i = 1 to ndv

wrk3(i) = (1./fsq)*df (i)
next i
return
rem normalize the DG (i)
gosub 3250
for i = 1 to nave

gsq = .
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U21 5 for j = 1 tc ndv
4220 gsq = gsq+dg (i, j) **2
U225 next j
4230 gsq = sqr (gsq)
4232 if gsq = 0. tnen gsq = zro
4235 for j = 1 to ndv
4240 wrky{i,j) = ( 1. /gsq) *dg (i, j)
4245 next j
4250 next i
4255 return
4400 rem exist the violate constraints
4405 gosub 3350
4410 for i = 1 to nave
4420 for i = 1 tc ndv
4430 a
4440 next

1 = T tc nav
4430 a"ti,j) = •wrky(i,J)
44 4 u next 1
4450 a(i,ndv + 1) = thta(i)
4460 next i
4470 for i = 1 to ndv
4480 p (i^ = -wrk3 (i)
4490 next i'
4500 £(ndv+1) = phid
4510 for i = 1 to nave
4520 yy =
4530 for j = 1 tc ndv+1
4540 XX = a(i,j) *p ( j)

4560 next i

4570 c(i) = (-i.)*yy
4580 next i
4536 ndt = nave
4590 return
4600 rem only exist aetive constraints
4605 gosub 3350
4610 for i = 1 to nave
4620 for i = 1 tc ndv
4630 a1i,j) = wrky(i,j)
4640 next i
4650 a(i, ndv + 1) =thta(i)
4660 next i
4670 for j = 1 to ndv
4680 a(navc+1,j) = wrk3(j)
469 next j
4700 a (navc+1 ,ndv+1) = 1.
4710 p(ndv+1) = 1.
4720 for i = 1 to nave+1
4730 ce = a (i, ndv + 1) *p (ndv + 1)
474 e(i) = (-1.) *ce
4750 next i
4760 ndt = navc+1
4770 return
5000 rem calculate the usable-feasible direction
5002 gosub 3000
5005 gosub 3250
5010 gosub 3450
5040 for i = 1 to ndt
5050 for j = 1 to ndv+1
§^^9 y^Hy (D/i) = a (i, j)
5070 next i

5080 next i
5090 for i = 1 to ndt
5100 for 1 = 1 to ndb
5110 ff = 0.
5120 for k = 1 to ndv+1
5130 tf = a(i,k)*wrky (k,1)
5140 ff = ff+{f

-^

5150 next k
5160 b(i,j) = (-1.)*ff
5170 next j
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5180
5190
5200
5210
5220
5230
52ao
5250
5260
5270
5280
5290
5300
5310
5320
5330
53U0
5350
5360
5370
5380
5385
5400
5405
5410
5420
54 3
5440
5460
5470
5480
5490
5500
5505
5510
5520
5525
5530
5540
5550
5560
5565
5570
5580
5600
5610
5620
5630
5640
5650
5660
5670
5680
5690
5700
5710
5720
5730
5740
5750
5755
5760
5770
5780
5820
6000
6005
6010
6015

next i
iter =
nmax = 5*ndb
rem begin iteration
iter = iter+1
cbmx = .

ichk =
for i = 1 to ndt

ci = c (i)
bii = b (i, i)
if bii = 6. then 5340
if ci > 0. then 5340

cb = ci/bii
if cb <= cbmx then 5340
ichk = i
cbmx = cb

next i
if cbmx < zro or iter > nmax then 5550
if ichk = then 5550

j j = iwrk (ichk)
if j1 = then iwrk (ichk) = ichk else iwrk (ichk) =

11 b (ichk- ichk) ,= 0. then b (ichk, ichk) = zro
bb = l./b (ichk, ichk)
if bb = 0. then bb = zro
for i = 1 to ndb

b (ichk,i) = bb*b(ichk,i)
next i
c (ichk) = cbmx
for i = 1 to ndb

if i = ichk then 5530
bbi = t(i,ichk)
b(i,ichk) = 0.
for j = 1 to ndt
if 1 = ichk then 5520

6(i,j) = b(i,j)-bbi*b(ichk,j)
next 1

c (i) = c (i) -bbi*cbmx
next i

goto 5220
ner =
for i = 1 to ndb

u (i) = 0.
i = iwrk (i)

if 1 > then u (i) = c (j)
next i
for i = 1 to ndt

ff = 0.
for 1 = 1 to ndb

ff = ff+wrky (i, j)*u( j)
next j

next 1
return
reir normalized the s(i)
ssq = 0.
for i = 1 to ndv

ssq = ssg + s (i) **2
next 1
ssg = sgr (ssg)
if fslp = 0. then fslp = zro
for i = 1 to ndv

s(i) = (l./ssg) *s(i)
next i
return
rem one-dimensicnal search for initial feasible point
rem calculate for slope of f (x)
fslp = 0.
for i = 1 to ndv
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6020
6025
6035
604
6045
6050
6055
6060
6065
6067
6070
6075
6076
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
617^
6180
6185
6190
6195

6200
6205
6210
6215
6220
6225
6230
62 3 5
6237
6240
6245
6250
6252
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315

6 32 1

6325
6326

fslp
next i
rem iden
a lev =
flow = o
for i =

wrkl {

next i
rem find
if fslp
a 1st = a
for i =

if s(
walp
if wa

a1
next i
rem upda
alph = a
gosub 70
gosub 71
rem calc
fist = f
for i =

wrkl
(

next i
rem chec
ncvl =
for i =

if wr
nc

next i
if ncvl
alst =
goto 610
rem find
rem 2-po

for
aO = flo
a1 = fsl
a2 = (f1
if a2 <=

a2nd
rem 2-po
for i

aO
if
a1
if a1
walp
walp
if wa

a2
next i
rem upda
alph = a
gosub 70
gosub 71
rem calc
f2nd = f
for i =

wrk2 {

next i
rem find

3-po
f1 = flo
alpl = a
f2 = fis
alp2 = a

a1

if

= fslp+df (i) *s (i)

fy the initial point.

1 to nice
i) = gcv(i)

alst • the 1st mid-point.
= 0. then fslp = zro
boi*f low/abs (fslp)
1 to ndv
i) = . then s (i) = zro
= alpx*x (i)/abs fsji) )

Ip > alst then 60^5
St = walp

te x for alst.
1st
00
00
ulate the fist and wrkl(i)
n f(x)

.

1 to nigc
i) = fn_g(x,i)

k the -feasibility.

1 to niqc
k1 (i) < vcc then 6 170
v1 = ncv1+1

= then 6200
.5*a1st
5
a2nd ; the 2nl mid-point,

ints quadratic fit interpolation
minimum f (alpa) .

w

St-a1*a1st-a0) /(a1st**2)
0. then a2 = zro

= -a1/ (2.*a2)
ints linear interpolation for g(alpa)=0
1 to nice
wrkl (i)
St = 0. then alst = zro
(wrkl (i)-aO)/a1st
<= 0. then a1 = zro

= -aO/al
<= 0. then walp = 1000.
Ip >= a2nd then 6265
na = walp

te X for a2nd.
2nd
00
00
ulate f2nd and wrk2 (i)
n f(x).
1 to nigc
i) = fn_g(x,i)

final point aupr by using
ints quadratic fit.
w
low
t
1st
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6330
6331
63 3 5
63ao
6342
6345
6347
6350
6355
6360
6 36 5
6370
637 5
6376
6377
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6567
6569
6571
6573
6575
6577
6579
6600
6603

f3 = f2n
alp3 = a
rem 3-po
gosub 66
if a2 =
a3rd = -

if a3rd
for i =

f1 =
f2 =
f3 =
gosub
gosub

if alps
a3

next i
rem upda
alph = a
gosub 70
gosub 71
rem calc
fupr = f
for i =

wrku (

next i
rem find
f1 = fis
f2 = f2n
f3 = f3r
alpl = a

d
2nd
ints quadratic fit interpolation

1000.

alp2 =
alp3 =
rem 3-
gosub

if

a
a

po
56
a2

aupr
for 1 =

f1 =
f2 =
f3 =
alpl

alp2 = a
alp3
gosub
gosub
if al
aupr

next 1
rem upda
alph = a
gosub 70
gosub 71
rem eval
fupr = f
for i =

vrku
next i
reir find
gosub 14
return
rem 3-po
if alpl
then ret

6605 a2 =

6610
6615
6620
6630

return
rem zero

00
0. then a2 = zro
al/f 2.*a2)
<= 0. then a3rd =
1 to niqc
wrklfi*
wrki (i
wrk2 (i
6600
6630

> a3rd then 6380
rd = alp^

te x for aupr
3rd
00
00
ulate the fupr and wrku(i)
n f(x)

.

1 to nigc
i) = fn_g (x,i)

4th new point,
t
d
d
1st
2nd
3rd
ints quadratic fit.
00
= 0. then a2 = zro

= -a1/(2.*a2)
1 to niqc
wrki (i)
wr k2 (i
wrk3 (i'
= alst
2nd
= a3rd
6600
6630

ps > aupr then 6540
= alps

te x for aupr
upr
o6
00
uate fupr and wrku(i>
nf(x).
1 to niqc
(i) = fn_g(x,i)

optimum alpa for not violating constraints
306

ints quadratic fit.
= alp2 cr alp2 = alp3 or alpl = alp3
urn
3-f 1)/ (alp3-alp1)-
-f 1) /(alp2-alp1) )/ (alp3-alp2)
-f 1)/ alp2-alp1) -a2*(alp1+alp2)
a1*alp1-a2*alp1**2

of polynomial for g(alpa)
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6635 dd = a1**2-U.*a2*aO
6640 if dd < 0. then 6715
6642 if a2 <= 0. then a2 = zro
6645 if a2 = 0. then a2 = zro ^

6650 alpb = (-a1 +£gr (dd) ) / (2. «a2)
6655 alpc = (-al-sgr idd) j / (2. *a2)
6660 if alpb <= and alpc <= 0. then 6715
6665 if alpb >= 0. and alpc >= 0. then 6695
6670 if alpb >= 0. and alpc < 0. then 6685
6675 alps = alpc
6680 goto 672D
6685 alps = alpb
6690 goto 5720
6695 if alpb >= alpc then 6710
6700 alps = alpb
6705 goto 6720
6710 alps = alpc
6712 goto 6720
6715 alps = 1000.
6720 return
6780 rem update aboj and alpx
6790 delf = abs (obj-nobi)
6795 diff = abs (delf/obji
6800 abcj = fabo j+dif f ) /2.
6815 walp = 0.
6816 welx = 0.
6820 for i = 1 to ndv
6830 delx = abs (xO (i) -x (i)

)

6850 difx = abs(delx/xO (i) )

6855 if delx >= welx then welx = delx
6860 if difx <= walp then 6880
6870 walp = difx
6880 next i
6890 alpx = (alpx+walp) /2.
6910 dabf = accf*abs (ob j)
69 90 return
7000 rem update the x(i)
7010 for i = 1 to ndv
7020 X (i) = xO (i)+alph*s (i)
7030 next i
7040 return
7100 rem check the side-constraints.
71 10 for i = 1 to ndv
7120 if x(i) < lcwb(i) then x(i) = lowb (i)
7130 if x(i) > uprb (i) then x (i) = uprb (i)
7140 next i
7150 return
8000 rem estimate the alpa
8010 fstr = flow
8020 alpa = alow
8030 nvcl =
8040 for i = 1 to nice
8050 if wrki (i) < vcc then 8070
8060 nvcl = nvc1+1
8070 next i
8080 if nvcl > then 8120
8090 if fist > fstr then 8120
8100 alpa = alst
8110 fstr = fist
8120 nvcl =
8130 for i = 1 to niqc
8140 if wrk2(i) < vcc then 8160
8150 nvcl = nvc1+1
8160 next i
8170 if nvcl > then 8210
8180 if f2nd > fstr then 8210
8190 alpa = a2na
8200 fstr = f2nd
8210 nvcl =
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8220 for i = 1 to rice
R230 if wrk3 (i) < vcc then 3250
8240 nvcl = nvc1+1
8250 next i
8260 if nvcl > then 8300
8270 if f3rd > fstr then 8300
8280 alpa = a3ra
8290 fstr = f3rd
8300 nvcl =
8310 for i = 1 to niac
8320 if wrku(i) < vcc then 8340
8330 nvcl = nvc1+1
8340 next i
8350 if nvcl > then 8390
8360 if fupr > fstr then 8390
8370 alpa = aupr
8380 fstr = fupr
8390 alph = alpa
8400 return
9000 rem one-dimensional search for initial

infeasible point,
9002 ii = 1

9004 gcvm = wrkl (1)
9006 ror i = 1 to nave
9008 if wrk1(i) <= gcvm then 9014
9010 ii = i
9012 gcvm = wrkl (i)
9014 next i
9016 rem calculate the slope of badly violation.
9018 gslp =0.
9020 for i = 1 to ndv
9022 gslp = gslp+dg(ii,i) *s(i)
9024 next i
9026 rem calculate the alph.
9027 if gslp = 0. then gslp = zro
9028 alph = -gcvm/gslp
9030 rem update X for alph.
9032 gosub 7000
9034 gosub 7100
9036 rem evalute the objective and constraint.
9038 obi = fn f (x)
9040 for i = T to niqc
9042 gcv (i) = fn g (x,i)
9044 next i -^ ^

' /

9046 rem calculate the NVC.
9048 gosub 3500
9050 if nvc = then return
9052 rem update initial value.
9054 for i = 1 to ndv
9056 xO (i) = x (i)
9058 next i
9060 rem calculate df (i) ,dg (i, j) and push-off factor.
9062 gosub 3800
9064 gosub 3900
9066 gosub 4000
9068 rem normalize the df (i) , dg (i, 1)
9070 gosub 4100
9072 gosub 4200
9074 rem find the search direction.
9076 gosub 4400
9078 gosub 5000
9030 goto 9000
9200 rem print the results
9205 print '»

9210 print '********«** data ************
9215 print "
9220 print 'The number of design variables = '.ndv
9225 print 'The number of inequality constraints = ',niqc
9230 print "
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9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9 30
9305
9310
9315
9500
9510
9520
9530
9540
9550
9560
9570
9580

9590
9600
9610
9620
9630
9640
9650

9660
9670
9680
9690

9700
9800

print
print
print
for i

next 1
print
print
print
print
print
print
print
tor i

pri
next i
return
rem de
mxit =
fdm =
mf ds =
vcc =
ace =
thtO =
thtm =
phid =

accf =
accx =
zro =
espl =
bnlo =
bnup =

dalp =

1

1

]The objective value = ',obj

ables ******

(i)

****** design vari,
= 1 to ndv
nt • x(' ;i; ') = ' ,x

'the number of active constraints =

'the number of vio

***** constraint v

= 1 to niac
nt *g(' ;i; ') = ' ;gcv (i)

; nac

Date constraints = ' ;nvc

alue ****'

1

fault
50

.01
.00

.004
-. 1

1.
50.
10000

.001
0.001
0001
.005
1.e+
e+7
1

abcj =

alpx =
ndvm =
nigra =

return
end

= 1

= .0

= 0. 1

1
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