

DO J

MO:

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
ACCESSING A FUNCTIONAL DATABASE

VIA
CODASYL-DML TRANSACTIONS

by

Harry Coker, Jr.

June 1987

Thesis Advisor: D. K. Hsiao

Approved for public release; distribution is unlimited

T 233168

unc 1 ass i ficd
SfCU«' rv fiAS? fiCATiON OF Tm.^ PaGf

REPORT DOCUMENTATION PAGE
'* report security classification

unc lass if ied
2* SE CU«' T r Classification authority

2b OEClasS ifiCAf.ON ' DOWNGRADING SCHEDULE

'b RESTRICTIVE MARKINGS

) DISTRIBUTION/ AVAILABILITY Of REPORT

Approved for public release;
distribution is unlimited.

i PERFORMING ORGAN'ZATiON REPORT NJMBER(S) S MONiTOHiNG ORGANISATION REPORT NUV8ER(S)

64 NAME Of PERFORMING ORGANIZATION

Naval Postgraduate School

60 OfFiCE SYMBOL
(it »ppin*bie)

52

1» NAME OF MON1TOR1NG ORGANIZATION

Naval Postgraduate School

6< ADORE SS (Cry Stilt *nd/if>Code)

Monterey, California 93 9 43-5000

?b ADDRESS (Cry. Sfjfe tnd HP Code)

Monterey, California 93943-5000

8* NAME OF FuNOiNG. SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(it tpplmbie)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c AOORESS(Cfy Sfte *nd Zip Code) 10 source of funding numbers

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

' T;*lE ("if'uO* S*ru"iy CUUit'(tt'On)

TRANSACTIONS
ACCF.SSING A FUNCTIONAL DATABASE VIA CODASYF-DML

: PERSONA,. AuThOR(SI Coke r , Ha r ry Jr

U fypj F REPORT
Master s The si

)5 T'VE COVERED
FOQM TQ

'« DATE OF REPORT (Yut Month Oiy)

1987 June
'S PAGE CO^NT

6 Supplementary notation

COSATi CODES
(ElD GROUP Su9 GROUP

'8 SUBiECT TERMS (Contmut On reverie if neieiSiry *nd identity by 6'OC* number)

MLDS, Multi-lingual Database System; MBDS, Multi
Backend Database System; Functional Data Model;
Network Data Model: C0DASY1 - DMT. ; D.-iplov -

9 abstract (Continue on re*ene if nectiwy tnd identity by 6/<xk number)

Conventional approaches to the design and implementation of database systems have

been based upon the premise of a single data model with its model-based data language,

nd languages. As' an alternative to this traditional and less effective approach to

database systems, the multi-lingual database system (MLDS) has evolved. MLDS has

allowed the user to access and interact with numerous databases in various data models
via their corresponding data languages.

This thesis implements a methodology for accessing and manipulating databases

stored in a particular data model via transactions of a separate data model;

specifically, a functional database is accessed via CODASYL-DML transactions. This

interface is the initial move toward extending MLDS to a thoroughly Multi-Model
Database Svstem (MMDS).

jS'R9j T ONAVAiLA8iLiTYOF ABSTRACT

QvNClASSiFiED'UNl'MiTED O SAME as RPT OOTiC USERS

2\ ABSTRACT SECURITY CLASSIFICATION

unclassified
>.2» '.AVE OF RESPONSIBLE 'NO'ViOUAi

Prof. D. K. Hsiao
12b TELEPHONE (include Are»Code)

(408) 640-2253
22i OFFICE S'MBOL

_L

ODFORM 1473.84MAR 83 APR fd ion fly b» ul(d unlil *ihj ut!*d

All otr>«r »d't.o"i art obsolete
security clas sif icat io n of t his page

unclass i f ied

Approved for public release; distribution is unlimited.

Accessing a Functional Database
Via

CODASYL-DML Transactions

bv

Harry Coker, Jr.

Lieutenant , United States Navy
B.S., United States Naval Academy, 1980

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1987

ABSTRACT

Conventional approaches to the design and implementation of database systems

have been based upon the premise of a single data model with its model-based data

language, thus restricting the database system to transactions based solely on a specific

model and written in a specific data language. This traditional approach has drastically

hindered the widespread interaction of database systems based on various data models

and languages. As an alternative to this traditional and less effective approach to

database systems, the multi-lingual database system (MLDS) has evolved. MLDS has

allowed the user to access and interact with numerous databases in various data

models via their corresponding data languages.

This thesis implements a methodology for accessing and manipulating databases

stored in a particular data model via transactions of a separate data model; specifically,

a functional database is accessed via CODASYL-DML transactions. This interface is

the initial move toward extending MLDS to a thoroughly Multi-Model Database

System (MMDS).

IS fS

C ^

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and

logic errors, they cannot be considered validated. Any application of these programs

without additional verification is at the risk of the user.

TABLE OF CONTENTS

I. INTRODUCTION 10

A. MOTIVATION 10

B. SYSTEM ORGANIZATION 11

1. The Multi-Lingual Database System 11

2. The Multi-Backend Database System 12

C. THESIS OVERVIEW 14

II. THE DATA MODELS 15

A. THE FUNCTIONAL DATA MODEL AND DAPLEX 15

1. The Data Model 15

2. The Data Language 15

B. THE NETWORK DATA MODEL AND CODASYL-DML 16

1. The Data Model 16

2. The Data Language 19

C. THE ATTRIBUTE-BASED DATA MODEL AND ABDL 20

1. The Data Model 20

2. The Data Language 21

III. DATABASE MAPPINGS 22

A. BACKGROUND MATERIAL 23

B. MAPPING THE FUNCTIONAL(DAPLEX)
MODEL(LANGUAGE) TO THE NETWORK(CODASYL-
DML) MODEL(LANGUAGE) 23

1. Available Strategies 23

2. The Selected Mapping Strategy 24

C. DATA-MODEL TRANSFORMATIONS REFERENCED
IN THIS THESIS 24

1. The Functional to ABDM Mapping 25

2. Functional to Network Mapping 26

IV. THE DATA STRUCTURES 28

A. DATA SHARED BY ALL USERS 28

1. Data Shared by All Users of a Network. Database 29

2. Data Shared by All Users of a Functional Database 32

B. DATA SPECIFIC TO EACH USER 38

V. FUNCTIONAL TO NETWORK TRANSFORMATION
ALGORITHMS 41

A. ENTITY TYPES 42

B. ENTITY SUB-TYPES 47

C. NON-ENTITY TYPES 49

D. UNIQUENESS CONSTRAINTS 51

E. OVERLAPPING CONSTRAINTS 51

F. SET TYPES 52

VI. TRANSLATION OF CODASYL-DML STATEMENTS TO
ABDL REQUESTS 54

A. OVERVIEW OF THE DESIGN 54

B. MAPPING CODASYL-DML FIND STATEMENTS 55

1. The FIND ANY Statement 55

2. The FIND CURRENT Statement 56

3. The FIND DUPLICATE WITHIN Statement 56

4. The Find FIRST/LAST/NEXT/PRIOR Statements 57

5. The FIND OWNER Statement 59

6. The FIND WITHIN CURRENT Statement 59

C. MAPPING CODASYL-DML GET STATEMENTS 60

1. The GET Statement 60

2. The GET record_type Statement 60

3. The GET item_l, ..., item_n Statement 60

D. MAPPING CODASYL-DML CONNECT STATEMENTS 60

1. Sets Representing an ISA Relationship 61

2. Sets Representing Daplex Functions 61

E. MAPPING CODASYL-DML DISCONNECT
STATEMENTS 63

F. MAPPING CODASYL-DML MODIFY STATEMENT 65

G. MAPPING CODASYL-DML STORE STATEMENTS 65

H. MAPPING CODASYL-DML ERASE STATEMENTS 66

1. The ERASE Option 67

2. The ERASE ALL Option 68

VII. CONCLUSIONS 69

A. A REVIEW OF OUR WORK 69

B. FUTURE RESEARCH 70

LIST OF REFERENCES 71

INITIAL DISTRIBUTION LIST 73

LIST OF FIGURES

1.1 The Multi-Lingual Database System (MLDS) 12

1.2 Multiple Language Interfaces for KDS 13

1.3 MBDS Architecture 14

2.1 The University Database Schema 17

2.2 Graphical Representation of Univ Schema 19

2.3 Attribute-Based Data Model Record 21

3.1 MLDS Mapping of the Network and Functional Data Models 22

3.2 Direct Language Interface Approach 25

3.3 The AB(functional) University Database Schema 27

4.

1

The dbid_node Data Structure 28

4.2 The net_dbid_node Data Structure 29

4.3 The nset_node Data Structure 30

4.4 The set_select_node Data Structure 30

4.5 The nrec_node Data Structure 31

4.6 The nattr_node Data Structure 31

4.7 The fun_dbid_node Data Structure 32

4.S The ent_node Data Structure ' 33

4.9 The gsn_sub_node Data Structure 34

4.10 The ent_non_node Data Structure 35

4.1

1

The sub_non_node Data Structure 35

4.12 The der_non_node Data Structure 36

4.13 The overlap_node Data Structure 36

4.14 The function_node Data Structure 37

4.15 The ent_node_list Data Structure 37

4. 16 The sub_node_list Data Structure 37

4. 17 The ent_value Data Structure 38

4. 18 The user_info Data Structure 38

4.19 The li info Data Structure 39

4.20 The dml_info Data Structure 39

4.21 The dap_info Data Structure 40

5.1 The Functional Schema of the University Database Transformed to a

Network Schema 43

5.2 Entity Type Declaration 46

5.3 A functional entity type and its network representation 48

5.4 Entity Subtype Declaration 49

5.5 A functional entity subtype and its network representation 50

I. INTRODUCTION

A. MOTIVATION

Traditionally database systems have been limited to a single data model along

with its respective model-based data language. This conventional approach to

Database Management System (DB.VIS) development has resulted in the evolution of a

DBMS that has restricted the user to transactions on a single data model and its

corresponding data language.

Ideally, an effective and practical DBMS should be able to access and interact

with numerous databases based on various data models via their respective data

languages. Thus, the motivation behind Multi-Lingual Database System (MLDS) is to

have one DBMS that is able to support numerous databases that may be structured in

various data models by executing transactions written in their model-based data

languages [Ref. 1]. MLDS is a modern approach to DBMS development that is

attacking the problems of the older, conventional, homogeneous database system

designs that are currently in abundance. More precisely, MLDS allows the user to

access a DBMS that is comprised of a hierarchical/DL/I interface, a relational/SQL

interface, a network/CODASYL-DML interface, a functional/DAPLEX interface, and

an attribute-based/ABDL interface; the system functions as if it were a heterogeneous

collection of database systems.

The primary advantages to be gained from MLDS are (1) reusability of database

transactions developed on existing systems, (2) more economical and efficient hardware

upgrades by spreading the upgrade benefit to each of the data models rather than a

single model, and (3) an ability to support a variety of databases built around any of the

major data models.

Up to this point MLDS has permitted the user to access and interact with several

databases in the five major data models via their corresponding data languages. This

thesis implements a design methodology, [Ref. 2], for accessing and manipulating

databases stored in a particular data model via transactions of a separate data model;

specifically a functional database is accessed via CODASYL-DML transactions. This

interface is the initial move toward extending the MLDS to a thoroughly Multi-Model

Database System (MMDS).

10

B. SYSTEM ORGANIZATION

In order to meet the aforementioned capabilities, MLDS is supported by an

underlying database system that is fast, efficient, and effective, therefore necessitating a

powerful kernel data model and kernel data language, as well as a high-performance,

high-capacity database system [Ref. 3: page 12].

The kernel data model and the kernel data language are the underlying model and

language for MLDS. The attribute-based data model and the attribute-based data

language were chosen as the kernel data model and the kernel data language for

reasons that will be explicitly cited and analyzed in the following chapter. The software

multiple-backend approach is used to provide the required high-performance and high-

capacity underlying database system that MLDS requires. This system, known as the

Multi-Backend Database System (MBDS), will be examined later in this chapter.

1. The Multi-Lingual Database System

The system structure of MLDS is depicted in Figure 1.1. The language

interface layer (LID supports user interaction with the system via a user-selected data

model \UDM) with transactions written in a corresponding user data language (UDL).

The user's transaction is routed to the kernel mapping subsystem (KMS) by LIL, where

KMS performs one of two possible tasks. It either transforms the UDM-database

definition into an equivalent kernel data model (KDM) database definition; or it

translates a UDL transaction into an equivalent kernel-data-language (KDL)

transaction.

The first of the two possible tasks of KMS occurs if the user indicates that a

new database is to be created. KMS forwards the KDM-database definition to the

kernel controller subsystem (KCS), where the KDM-database definition is then sent to

the kernel database system (KDS). Upon completion, the user is notified by LIL, via

KDS and KCS, that the database definition has been processed and that the loading of

the database may continue.

The second of the possible tasks of KMS occurs if the user chooses to process

an existing database. KMS sends the KDL transaction to KCS, which in turn

forwards the KDL transaction to KDS for execution. When KDS has finished

executing the transactions, the results, in KDM format, are sent back to KCS, where

they are routed to the kernel formatting subsystem (KFS). KFS reformats the results

into UDM format and displays them , via LIL, to the user.

11

(UDM
J

UDM: User Data Model
UDL: User Data Language
LIL: Language Interface Layer

KMS: Kernel Mapping System
KC: Kernel Controller

KFS Kernel Formatting System
KDM: Kernel Data Model
KDL Kernel Data Language
KDS Kernel Database System

. .
Information Flow

-— Data £xchange

Q_) Data Model

(Y)\ Data Language

Module

Figure 1.1 The Multi-Lingual Database System (MLDS).

LIL, KMS, KCS, and KFS make up a language interface of MLDS. Four

language interfaces exist, one for each of the respective UDM/ UDL combinations.

This thesis modifies the network/CODASYL-DML language interface in order to allow

the accessing and manipulation of a functional database via CODASYL-DML
transactions. KDS, on the other hand, is a single and major component that is

accessed by all of the languages interfaces, as shown in Figure 1.2.

2. The Multi-Backend Database System

The traditional approach to a DBMS is to have the database-system software

running as an application program on a mainframe computer system. This requires the

DBMS to share the use and control of the resources with the other applications of the

mainframe system. It is obvious that, with the traditional approach, as the workload

of the DBMS increases, the performance of the DBMS degrades. [Ref. 4: page 14]

The software single-backend approach, developed by Bell Laboratories [Ref. 5],

offloaded the database-system software from the mainframe computer to a separate

dedicated computer and partially solved the problems of performance degradation and

resource and control sharing.

12

jdm;

(UDMJ

I I

KMS1

LILT

(UDllJ

KFS1

r
KMSn

KMS2

KC1

i KCn

KC2

7~

KDS

Figure 1.2 Multiple Language Interfaces for KDS.

The Multi-Backend Database System (MBDS) uses a software multiple-

backend approach to overcome the performance problems that remained in the single-

software backend approach by utilizing multiple backends connected in parallel. The

backends have identical software and their own disks. There is a backend controller,

the master, which supers iscs the execution of the database transactions and the

interfacing of hosts and users. The backend controller is connected to the individual

backends by a communication bus. The backends, or slaves, perform the database

operations with the database stored on the dedicated disk system of each backend.

Users access MBDS through cither the host or directly through the backend controller.

Figure 1.3 shows the architectural configuration of MBDS.

MBDS realized performance gains over the single-software backend system in

two significant areas. First, by increasing the number of backends, while maintaining

the size of the database and the size of the responses to the transactions at a constant

level. MBDS yields a nearly reciprocal decrease in the response times of the user

transactions. The number of backends corresponds directly to performance gains in

terms of reduction in response-time. Secondly, by increasing the number of backends

proportionally with an increase in the size of the database and in the size of responses

to user transactions. MBDS produces invariant response-times for the user

transactions. This relates the number of backends to the capacity growth of MBDS in

terms of response-time invariance. [Ref. 6: page 11]

13

To Host
Computer

Backend
, Controller

f Backend ^
*v Processor 1

Backend
Storage

f Backend >

\. Processor 2 J

" \

(Backend
V Processor N >

Communications
Bus

Figure 1.3 MBDS Architecture.

C. THESIS OVERVIEW

This thesis implements the initial step, as described by Rodeck [Ref. 2], in a move

toward the Multi-Model Database System (MMDS). Fundamental to this work arc

the Multi-Lingual Database System and the Multi-Backend Database System as

described earlier in this chapter. Additional background material is provided in

Chapter II. where the functional, network, and attribute-based data models are

discussed along with their respective model-based data languages. Chapter III presents

the possible mapping strategies for transforming a functional database into a network

database and the generalized translation of CODASYL-DML statements into

attribute-based data language requests. Of the three approaches discussed in the

chapter, the best solution is chosen and described in greater detail.

Contained in Chapter IV are the various data structures required for this

implementation. Each of the data structures is depicted and described along with it's

use in the system.

The actual mapping methodology is given in Chapters V and VI. Chapter V

discusses the transformation of functional structures into network structures; each

structure is described in detail. The translation of CODASYL-DML statements into

attribute-based data language requests is specified in Chapter VI. Finally, the

conclusions are presented in Chapter VII.

14

II. THE DATA MODELS

This chapter provides material that will enable the user to become familiar with

each of the three data models whose terminologies are needed in this thesis, the

functional model, the network model, and the attribute-based data model.

A. THE FUNCTIONAL DATA MODEL AND DAPLEX

1. The Data Model

Sibley and Kershberg [Ref. 7] first introduced the notion of a functional data

model while Shipman [Ref. 8] completed the final design of the data model. The

functional data model is primarily a logical database model that provides a somewhat

natural view of the real world based on entities and relationships, [Ref. 9: page 9]. The

model is based on sets and relationships and maintains a high degree of data

independence.

An entity can be considered a distinctly identifiable "thing", while a

relationship, or function, is an association among these things. Entities of similar

structure are collected into entity sets. A set of functions will be affiliated with each

entity, while the role of an entity in a relationship is the function that it performs in

the relationship [Ref. 9: page 11], A property is a piece of information that describes

an entity, while an association is a many-to-many relationship among entities, [Ref. 10].

A weak entity, or subtype is an entity whose existence is dependent on another entity,

it's supertype or ancestor, in a way that the subtype cannot exist if it's supertype does

not also exist. A subtype exists such that entity type A is a subtype of entity type B if

and only if even' type A is necessarily of type B. Subtyping establishes an ISA

relationship among entities and implies value inheritance. Subtypes also have a set of

functions associated with them.

Functions can be either single-valued or multi-valued and those that are defined

over entities (types or subtypes) can return scalar values, entities, or set of entities.

Scalar values are atomic values which have a literal representation.

2. The Data Language

Whereas a data definition language (DDL) provides for the definition or

description of databases, a data manipulation language (DML) supports the accessing

or processing of the databases. Daplex is the DDL and the DML for the functional

15

data model. Most of the concepts on which Daplex is based come from previous work

in database management; however, Daplex. managed to integrate them into a single

framework, tne functional data model, and provided a straightforward and almost

natural syntax.

It was intended for Daplex to model real-world situations in a manner that is

very similar to the conceptual constructs that a person might use when focusing on

those same situations; it's goal is "to provide a 'conceptually natural' database interface

language" [Ref. 8] and a database system interface which permits the user to more

directly model the way he/she attacks the database manipulations. This conceptual

naturalness simplifies the use of Daplex since the translation between the user's logical

model and model's physical representation in the syntax of Daplex is fairly direct.

The fundamental data definition constructs of Daplex are the entity and the

function, with the function mapping a given entity into a set of target entities. The

University database schema defined by Shipman and referenced throughout this thesis,

is presented in Figure 2. 1 and a graphical representation of the database is shown in

Figure 2.2.

B. THE NETWORK DATA MODEL AND CODASYL-DML

The network data model is one of the oldest of the data models and may be

thought of as an extended form of the hierarchical data model, [Ref. 10: page 542]. It

was developed in the late 1960's by the Conference on Data System Languages,

Database Task Group, (CODASYL DBTG), which yielded quite a comprehensive

specification. [Ref. 11].

1. The Data Model

A network schema is about a collection of records and sets. The schema is a

logical view of the database that defines every record field and relationship of the

database. The schema contains only the data description; physical constructs are

avoided, thus the number of pathological connections to the database architecture are

reduced [Ref. 12: page 336].

A data-item is simply a field or an attribute, whereas a record type is a

collection of these data-items. A set is a one-to-many relationship between record

types and each set type involves an owner record type and a member record type. The

owner record types are the "parents" of the member record types, which can be

considered the "children" in a one-to-many relationship. A set is defined by specifying

its name and identifying the owner record type and the member record type(s). A set

16

DATABASE university IS
T\ PE person:
SUBTYPE emplovee;
SLBTYPE support staff;

SUBTYPE faculty;
SUBTYPE student:
SUBTYPE graduate:
SL BT\ Pb undergraduate;
T"\ PE course;
T^ PE department;
TYPE enrollment;
TYPE rank name IS (assistant, associate, full);

T^ PE semester name IS (fall, serins, summer);
TYPE grade point IS FLOAT RANGE 0.0 .. 4.0;

TYPE person IS
ENTITY

name : STRING (1 .. 25);
ssn : STRING (1 .. 9) := "000000000";

END ENTITY:

SUBTYPE emplovee IS person
ENTITY

' b

home address : STRING (1 .. 50);
office : STRING (1 ..8):
phones : SET OF STRING (1 .. 7);
salary : FLOAT;
dependents : INTEGER RANGE .. 10;

END ENTITY;

SUBTYPE sunport staff IS emplovee
ENTITY

supervisor : emplovee WITHNULL;
fufi time : BOOLEAN;

END ENTITY;

SUBTYPE facultv IS emplovee
ENTITY

rank : rank name:
teaching : SET OF course:
tenure : BOOLEAN := FALSE;
dept : department;

END ENTITY;

SUBTYPE student IS person
ENTITY

advisor : faculty WTTHNLLL;
major : department;
enrollments : StT OF enrollment;

END ENTITY;
SUBTYPE graduate IS student
ENTITY

advisorv committee : SET OF faculty;
END ENTITY;

SUBTYPE undergraduate IS student
ENTITY

spa : srade point := 0.0;
vear : tNTEGER RANGE 1 .. 4 := 1;

END ENTITY;

Figure 2.1 The University Database Schema.

17

TYPE course IS
ENTITY

title : STRING (1 .. 10);
deptmt : department;
semester : semester name;
credits : INTEGER.
taueht bv : SET OF faculty;

END ENTITY;

TYPE department IS
ENTITY

name : STRING (1 .. 20):
head : faculty WITHNULL;

END ENTITY;

TYPE enrollment IS
ENTITY

class : course;
grade : grade point;

END ENTRY;

UNIQUE ssn WITHIN person;
UNIQUE name WITHIN department;
UNIQUE title, semester WITHIN course;

OVERLAP graduate WITH faculty;
END university;

Figure 2.1 . (cont'd.)

can have one and only one record type as owner, however, more than one record type

may be members. Additionally, a member record can belong to only one instance of a

set. The set characteristics are summarized as follows:

A set is a collection of records.

There are an arbitrary number of sets in the database.

Each set has one owner record type and one or more member record types.

Each owner record occurrence defines a set occurrence.

There are an arbitrary number of member record occurrences in one set

occurrence.

A record may be a member of more than one set.

A record may not be a member of two occurrences of the same set.

A record mav be a member and an owner of the same set.

18

ISA

title

semester
credits

class

Figure 2.2 Graphical Representation of Univ Schema.

2. The Data Language

CODASYL-DML is a procedural language based upon the concept of

currency. A currency indicator defines the current position with in a file by maintaining

a value of either (1) null, which means that it currently does not identify a record or (2)

the address of a record in the database [Ref. 10: page 553]. A run-unit is essential to

this notion of currency and is defined as the execution of a program on behalf of a

user. The currency indicator, then, serves as a database pointer by identifying:

• the current record of the run unit.

• the current record of each record type.

• the current record of each set type.

This thesis will limit itself to a subset of the CODASYL-DML operations,

which were implemented as part of the CODASYL-DML language interface in MLDS

[Refs. 3,13]. These major operations are listed below:

19

FIND identifies a record to be manipulated and marks it as the current of the

run unit.

GET retrieves the current of the run unit.

MODIFY updates the current of the run-unit.

CONNECT attaches the current of the run-unit to the current occurrence of

the stated set.

DISCONNECT detaches the current of the run-unit.

ERASE deletes the current of the run-unit.

STORE creates a new record occurrence and marks it as the current of the

run-unit.

CODASYL-DML tasks are generally executed in two phases. First a FIND command

identifies a record to be manipulated and then a second DML command is issued to

perform an operation. Most importantly, it is the FIND commands that updated the

currency indicators.

C. THE ATTRIBUTE-BASED DATA MODEL AND ABDL

The attribute-based data model (ABDM) was originally proposed by Hsiao

[Ref. 14], extended by Wong [Ref. 15], and examined by Rothnie [Ref 16]. It was

chosen as the native model of the MLDS because of it's excellent combination of

simplicity and power. The fundamentals of the ABDM are basic, yet the model is

capable of representing diverse data models without loss of information.

1 . The Data Model

ABDM is based on the attribute-value pair or keyword. These attribute-value

pairs are formed from a cartesion product of the attribute names and the domains of

the values for the attributes. This allows for the representation of any and all logical

concepts. In order to more fully understand the attribute-value pair we must first

define several other terms.

A file of the database contains groups of records, each of which represents a

logical concept. A record is comprised of at most one keyword for each attribute

defined in the database and a textual portion, allowing for a verbal description of the

record or concept. Figure 2.3 shows the general format of an ABDM record.

Keyword predicates are employed by ABDM to access the database and

identify the specific records. A keyword predicate is a 3-tuple of the form (directory

attribute, relational operator, attribute-value). A query of the database is then the

combination, in disjunctive normal form, of keyword predicates.

20

(< attribute_l, value_l > . < attribute_2, value_2> ,
< attribute_3, value_3>

,

< attribute_n. value_n>
,

{text})

Figure 2.3 Attribute-Based Data Model Record.

A keyword predicate is satisfied only when the attribute of a particular

record's keyword is identical to the attribute of the keyword predicate and the relation

specified by the relational operator of the.keyword predicate holds between the value of

the predicate and the value of the keyword predicate. Hence, a record satisfies a query

only when all predicates of the query are satisfied by certain keywords of the record.

2. The Data Language

ABDL. as defined by [Ref 17], is the kernel data language of MLDS. It

allows five basic database operations that are capable of making numerous in-depth

transactions on the database. The database operations provided by ABDL are,

INSERT. DELETE, UPDATE, RETRIEVE, and RETRIEVE-COMMON, however,

this implementation will not concern itself with the latter operation.

ABDL allows the user to issue either a request or a transaction. A request is a

basic operation with an attached qualification. The qualification specifies the portion

of the database that is to be manipulated, while a transaction is defined as the grouping

together of two or more sequentially executed requests. The four operations used in

this work are explained below, [Ref. 6: page 10].

• INSERT places a new record into the database and is qualified by a list of

keywords.

• DELETE removes one or more records from the database and qualified by a

query.

• UPDATE modifies records of the database and is qualified by a query and a

modifier. The query identifies one or more records to be updated, while the

modifier specifies how the target record(s) are to be modified.

• RETRIEVE accesses and returns records of the database and is qualified by a

query, a target-list, and a by-clause. The query identifies the record(s) to be

retrieved. The target-list contains a list of output attributes, and the by-clause

may be used to group records when an aggregate operation is specified.

Together, these five ABDL operations provide all of the required processing to support

data-language translation.

21

III. DATABASE MAPPINGS

For the purpose of this thesis, data-model transformation is the mapping process

from a given data model to the kernel data model (ABDM), and data-language

translation is the mapping process from a given data language to the kernel data

language (ABDL). MLDS has already implemented four data-model transformations

(hierarchical, relational, network, and functional to ABDM) and four data-language

translations (SQL, DL/I, CODASYL-DML, and Daplex to ABDL). This thesis makes

use of two of the aforementioned data-model transformations (network to ABDM and

functional to ABDM) of Lim and Emdi [Refs. 18,19], and one of the data-language

translations (CODASYL-DML to ABDL) [Rcf. 19]. Figure 3.1 depicts the high-level

transformations and translations of the network and functional data models. It should

be noted that the databases that are transformed from the network schema and the

functional schema to an attribute-based schema arc represented throughout this thesis

as AB{netuork) and ABifunctional), respectively.

Network
Transactions

Language
nterface

Functional
Transactions

1 i

1 1

Attribute-

Based Network
Representation

Attribute-

Based Functional
Representation

AB-AB
Translator

Figure 3.1 MLDS Mapping of the Network and Functional Data Models.

The thrust of this work is (1) transforming a functional database into a network

database and (2) modifying the CODASYL-DML to ABDL translation in order to

22

allow CODASYL-DML transactions on an AB(network) database that has been

previously transformed from the functional data-model to the network data-model.

A. BACKGROUND MATERIAL

The MLDS mappings of network(CODASYL-DML) to ABDM(ABDL) is a

modification of the procedure developed by Banerjee [Ref. 17], explicitly defined by

Wortherly [Ref. 3: pages 31-37], and will therefore only be generalized in the following

paragraph.

The key point in the mapping process is the retention of the network records and

sets; the mapping algorithm does, in fact, retain those notions through the use of

attribute-based constructs. The translation of CODASYL-DML to ABDL requests

was implemented by Emdi [Ref. 19], and as previously discussed, only a subset of the

CODASYL-DML statements were considered: FIND, GET, STORE, CONNECT,

DISCONNECT. ERASE, and MODIFY. The translation maintains the all important

notion of currency by using a Currency Indicator Table (CIT). The actual structure

and implementation of the CIT are defined in detail in a later chapter. Another

translation consideration is the one-to-many correspondences between the CODASYL-

DML statements and the ABDL requests; this necessitated a storage facility to

maintain the intermediate information for the ABDL requests. The request buffer (RB)

is used to store the information returned by the auxiliary retrieve requests (ARR), of

which several may be generated by the translation of a single CODASYL-DML

statement. With the exception of several flags and special conditions, the translation

process of this thesis is similar to that of Emdi [Ref. 19].

B. MAPPING THE FUNCTIONAL(DAPLEX) MODEL(LANGUAGE) TO THE
NETWORK* CODASYL-DML) MODEL(LANGUAGE)

1. Available Strategies

The goal of this thesis is to provide the network/CODASYL-DML user with

the means of accessing a functional database without the user having to be familiar

with the functional data-model and Daplex. As one might imagine, this task requires a

sound mapping strategy that maintains the constructs and characteristics o[the target

(functional) database while allowing the CODASYL-DML statements to access this

target database. Rodeck, [Ref. 2], proposed the following mapping strategies:

• DIRECT LANGUAGE INTERFACE: modify MLDS's existing LIL to allow

the transformation of a functional schema to a network schema 'along with a

new lansuaae interface between the network model and AB(network).

23

• AB-AB POSTPROCESSING: create a language interface between the

AB(functional) and the AB(network) databases along with a CODASYL-DML
translator.

• HIGH-LEVEL PREPROCESSING: create a functional schema to network

schema transformer along with a CODASYL-DML to Daplex translator.

The Direct Language Interface approach proved to be best suited for this

implementation and the reasons for its selection are discussed in the following section.

2. The Selected Mapping Strategy

Each of the three mapping strategies was analyzed and compared with the

other two strategies by Rodeck [Ref. 2]. The evaluation process looked at their

respective advantages and disadvantages before finally selecting the direct language

interface approach primarily because of the following implementation considerations:

• a one-step schema transformation.

• a faster schema transformation.

• highest compatibility with existing components of MLDS.

The direct language interface strategy transforms the functional database into

a network database and allows the user to access the transformed database with a

subset of CODASYL-DML statements. These statements are translated into one or

more ABDL requests and executed on the AB(network) database. Figure 3.2 depicts

the direct language approach. By comparing Figure 3.2 with Figure 3.1, one can see

that the primary difference is the addition of the schema transformer and the modified

language interface. It is the schema transformer that represents the process of

transforming the functional schema into the network schema. With the exception of

the schema transformer, this approach is similar to the approach with the network to

AB(network) and the functional to AB(functional) transformation. The goal of the

Multi-Model and Multi-Lingual Database System can be conceptualized by placing

schema transformers between all model/language pairs, thereby arriving at a fully-

database-sharing environment.

C. DATA-MODEL TRANSFORMATIONS REFERENCED IN THIS THESIS

This section provides a high-level view of the data-model transformations that are

referenced in this thesis. In the First subsection, the functional to ABDM mapping is

presented. The functional to network mapping is introduced in the second subsection.

24

1

Schema
Translator

i

DML
Translator

1

Network
Schema

Functional
Schema

i

1

i

Language interface Language Interface

i

1

i

i

i

Attribute-

Based Network
Representation

Attribute-
Based Functional
Representation

figure 3.2 Direct Language Interface Approach.

I. The Functional to ABDM Mapping

The primary task of this mapping is to transform the constructs of the

functional data-model into ABDM constructs. This approach shows that, given the

attribute-value pairs in a record in ABDM, the functions of the functional data-model

map into the attributes of the corresponding attribute-value pairs. An algorithm to

map the entity types and subtypes into ABDM constructs was designed by Goisman

[Ref. 20], and implemented by Anthony and Billings [Ref. 2I|.

In order to represent the relationships of the functional data-model that must

exist between individual records of ABDM, the related attributes for each related

record must be repeated [Ref. 20: page 35]. This is accomplished by using an artificial

attribute and its associated value to allow for unique mappings. The artificial attribute

is in fact a unique key for each entity type or subtype in the functional data-model,

thereby allowing for the relationships amongst entities to exist in accordance with the

unique key. The remainder of the transformation algorithm is given below:

(1) An ABDM file is created for each entity type and subtype. The first attribute-

value pair has as its attribute "File" and its value is the entity type or subtype

name.

25

(2) The second attribute attribute-value pair for each ABDM file representing an

entity has as its attribute the name of the corresponding entity type. The
value of this attribute-value pair is the unique key.

(3) For each ABDM tile transformed from an entity subtype, the second

attribute-value pair of each record has as its attribute the name of the

corresponding entity subtype and its value is the record consisting of its entity

supertype and its unique key.

(4) For each function applied to an entity type or subtype, an attribute-value pair

is inserted into the corresponding ABDM file. The attribute of the attribute-

value pair is the functions name and the value is the value returned by the

particular function.

Using this algorithm to transform the University database schema of Figure 2.1 results

in the AB(functional) database as depicted in Figure 3.3. The asterisks represent

relationship-dependent values.

2. Functional to Network Mapping

This subsection provides the reader with a high-level view of the mapping

algorithm described by Rodeck [Ref. rRod]. The specific implementation issues of the

algorithm are discussed in Chapter V of this thesis. As is the case in all data-model

transformations, the goal is to provide the user with a familiar and accurate

representation of the source database schema. In mapping the functional data-model

to the network data-model we are primarily concerned with the basic functional

constructs: the entity type, the entity subtype, and the non-entity types.

(1) Entity types are mapped into network records with the record name being the

name of the corresponding entity type. Additionally, each entity type is a

member of a set type which is owned by SYSTEM.

(2) For each entity subtype, a record type must be declared with the record name
being the name of the subtype. A set type is also declared with the owner

being the subtype's entity supertype.

(3) Non-entity types map fairly directly to network constructs:

(a) Integers map to integers.

(b) Strings map into characters.

(c) Floating-points map into floating-points.

(d) Enumeration types map into characters.

(4) The functions that are applied to entity types and subtypes can be scalar,

scalar multi-valued, single-valued, or multi-valued:

(a) Scalar and scalar multi-valued functions map into attributes of the

corresponding record type of the entity type or subtype.

26

(< File
,
person > ,

< person, integer > ,
< home_address, string > ,

< office, string > . < phones, string > *, < salary, float >
,

< dependents." integer >
)

(< File, emplovee> ,
< employee, integer > ,

< home_address, string >
,

< office, string > , < phones, string > *, < salarv. float >
,

< dependents, integer >
)

(< File, support staff> ,
< suppprt_staff, integer >

,

< supervisor, integer > ,
< fulf_time, integer > J

(File.. student > . < student, integer > , < advisor, integer>
,

< major, integer > , < enrollments, integer > *)

(< File, undergraduate > , < undergraduate, integer > ,
< gpa, float >

,

<year, integer >)

(< File, course > ,
< course, integer > ,

< title, string >
,

< deptmi, integer > ,
< semester," string > ,

< credits, integer >)

(< File, department > ,
< department, integer > . < head, integer >)

(< File, enrollment > ,
< enrollment, integer > , < class, integer >

,

< grade, float >)

Figure 3.3 The AB(functional) University Database Schema.

(b) Single-valued functions map into sets with the name of the particular

function, owned by the corresponding record type of the entity type or

subtype.

(c) The mapping of multi-valued functions is performed depending upon

whether the multi-valued function is a one-to-many or a many-to-many

relationship.

Chapter V provides detailed explanations of the mapping algorithm as well as a

complete database transformation. In a later chapter, we demonstrate this

transformation process for the Daplex university schema given.

27

IV. THE DATA STRUCTURES

A. DATA SHARED BY ALL USERS

Both the CODASYL-DML and the Daplex language interfaces have been

developed as single-user systems that will eventually will be modified to multi-user

systems. Appropriately, two separate concepts of data are used the in the language

interface: (1) data structures that are shared by all users, and (2) data specific to each

user. The requirements of this thesis work have necessitated the slight modification of

several existing data structures from previous implementations on MLDS; however, the

generic data structures are for this implementation are not drastically altered.

The data structures that are shared by all users are the database schemas that

have been loaded (defined) by the users. The schemas that are of interest to this thesis

are the functional schemas, consisting of entities and the functions of the entities, and

the network schemas, comprised of sets and attributes.

The first data structure, Figure 4.1, is represented as a union and supports each

of the previous MLDS implementations (i.e., SQL, DL/I, CODASYL-DML, or

Daplex) as well. At this point, our interest lies with the functional and network

models. In this regard, either the third or fourth fields will be activated. Should the

selected database be based on the functional model, the fourth field of the union would

point to the structure represented in Figure 4.7, fun_dbid_node. Likewise, if a network

schema were being manipulated, the third field of the dbid_node would be activated

and point to a structure of type net_dbid_node, Figure 4.2.

union dbid_node

struct rel_dbid node *rel;

struct hie_dbid" node "hie;
struct net_dbid~node 'met;
struct fun dbicTnode *ent;

Figure 4.1 The dbid_node Data Structure.

28

1. Data Shared by All Users of a Network Database

The first field of the net_dbid_node is a character array holding the name of

the respective network schema. The second and third fields are integer values

representing the number sets and records in the schema. An integer value representing

a database key is maintained in the fourth field, while the fifth, sixth, and seventh fields

are pointers to structures containing information about each set and record of the

schema. Specifically, the fifth field and seventh fields point to the first set and record,

respectively, of the schema, and the sixth and eighth fields point to the current set and

record, respectively, of the schema. The final field of the net_dbid_node is a pointer to

a structure representing the next network schema in the MLDS.

struct net_

char

_dbid._node

ndn name[DBNLength + 1];

int ndn num set;

int ndn num rec;
int ndn dbkey;
struct nset node :;

'firsT set;

struct nset node *curr set;

struct nrec node *first rec;

struct nrec node *curr rec;

struct net clbid node *next db;

}

Figure 4.2 The net_dbid_node Data Structure.

The nset_node data structure, Figure 4.3 represents information each set in

the schema. The first field, nsn_name, is a character array holding the name of the

particular set. while the second and third fields are also character arrays containing the

names of the owner and member of the set. The fourth and fifth fields are characters

representing the insertion and retention modes of the set. The insertion mode can be

either automatic, 'a', or manual, 'm', and the retention mode can be fixed, T, manual,

'm'. or optional, 'o'. The select_mode field is a pointer to a set_select_node. The

seventh field is a pointer to the owner record type of the respective set type and the

eighth field is a pointer to the member record type of the respective set type.

Figure 4.4 shows the set_select_node data structure. This structure maintains

the set selection mode information for each set. The first field is a character

representation of the set selection mode, either by VALUE, V, by STRUCTURE, Y,

29

struct nset
-
node

char name[SXLeneth + 1];

owner namefONLength + 1];char
char member name[MNLength + 1];

ancestorJANLength + 1];char
char insert modeflNLeneth + 1];

retent mode[RLeng~th + 1J;char
struct set select node *selecf mode;
struct nrec node * owner;
struct nrec node *member;
struct nset node *next set;

}

Figure 4.3 The nset_node Data Structure.

by APPLICATION, 'a', or not specified, 'o'. If the set selection mode of the set is by

value or by structural, the second field, a character array, will hold the item name of

the specified record and the third field will hold the name of the record. The fourth

field will contain the name of a second record only if the set selection mode is by

structural.

struct set seleci:_node
i

char select modefSLength + 1

item namelANLensth -

|char
char record I namefRNLength !];

}

char record2"~name[RNLength + il;

Figure 4.4 The set_select_node Data Structure.

The nrec_node, Figure 4.5, contains information concerning each record in the

schema. The first field is a character array holding the name of the record and the

second field is an integer representation of the number of attributes of the record. The

third and fourth fields are pointers to structures containing information about the first

and current attributes of the particular record. The final field of nrecnode is a pointer

to the next record type representation in the schema.

30

struct nrec
c

node

char nrn name[RNLength + 1];

int nrn num attr;

char nrn ancestor[A\Length + 1];

struct nattr node * first attr;

struct nattr node *curr attr;

struct nrec node *next rec;

}

Figure 4.5 The nrec_node Data Structure.

The nattr_node is depicted in Figure 4.6. Information about the attribute of

each CODASYL record type is maintained in this data structure. The first field is a

character array containing the name of the attribute while the second and third fields

represent the level number and type of the attribute. The attribute can be either an

integer, T, a floating point number, T, or a string, 's'. The fourth field determines the

maximum length that a value of this attribute may possibly have and the fifth field

indicates the maximum length of the decimal portion of a value if this attribute type is

a floating point number. The sixth field is an integer valued flag indicating whether or

not the attribute can have duplicates. It is initialized to '0', allowing for duplicates.

The seventh, eighth, and ninth fields are pointers to structures representing the next

attribute, the child of the attribute, and the parent of the attribute, respectively.

struct nattr node
1

char nan name[ANLensth + 1];

char nan level num[ALLength + 1];

char nan type;
int lengthl;
int lensth2;
int
struct nattr node

dup flag;

"next attr;

struct nattr node •'xhildT

}

struct nattr node "parent;

Figure 4.6 The nattr_node Data Structure.

31

2. Data Shared by All Users of a Functional Database

If the database accessed by the user is based on the functional data-model,

then the fourth field of the dbid_node data structure, Figure 4.1, will be activated. The

pointer will be directed to a structure of type fun_dbid_node, Figure 4.7,

The fun_dbid_node contains information about a functional database. The

first field is a character array which represents the name of the database. The second

field is a pointer to the base-type nonentity node, and fdn_num_nonent is and integer

value of the number of the base-type nonentity nodes in the database. The following

field. *fdn_entity, points to the entity node and while the fifth field is an integer value

of the number of these nodes. The sixth field is a pointer to the generalized entity

subtype node and as before the field that immediately follows contains an integer value

representing the number of such nodes. The fdn_nonsubptr is the nonentity subtypes

and the number of these nodes is maintained in the ninth field, fdn_num_nonsub. The

next field, *fdn_nonderptr, is a pointer to the nonentity derived types respectively with

the eleventh field containing the integer value for the number of such nodes. The

fdn_ovrptr is a pointer to a structure containing the overlap constraints of the database

and the thirteenth field, fdn_num_ovr keeps track of the number of overlap constraints.

The final field of the fdn_dbid_node structure is a pointer to the next functional

schema in the MLDS.

struct fun_

char
struct
int

struct
int

struct
int

struct
int
struct
int
struct
int
struct

}

dbid_node

fdn_name[DBNLength
ent_non_node

ent_node

gen_sub_node

sub_non_node

der_non_node

overlap_node

fun dbid node

+ H:
vfdn_nonentity;
fdn_num nonent;
*fdn_entity;
fdn_num_ent;
*fdn_subptr;
fdn_num_gen;
*fdn_nonsubptr,
fdn_num_nonsub;
*fdn_nonderptr;
fdn_num_der;
*fdn_ovrptr;
fdn_num ovr;
*fdn nexl db:

Figure 4.7 The fun_dbid_node Data Structure.

32

The ent_node data structure is shown in Figure 4.S. The first field of this

structure is a character array containing the name of the entity. The en_last_ent_id

field is an integer value representing the last unique number assigned to the particular

entity node. The third field is an integer representation of the number of functions

associated with the particular entity type, while the fourth field, en_terminal. is an

integer representation of a boolean flag that indicates whether or not the entity is a

terminal type. An entity type is a terminal type only when it is not a supertype to any

entity subtype. The *en_ftnptr field is a pointer to the function nodes associated with

the particular entity node. The final field of the ent_node data structure is a pointer to

the next entity (ent_node) in the schema.

struct ent node
r -
1

char en name[ENLength + 1];

int en last ent id;

int en num funct;
int en terminal;
struct function node *en ftnptr;
struct ent node *en next ent;

}

Figure 4.S The ent_node Data Structure.

Figure 4.9 depicts the gen_sub_node. This data structure contains information

about the entity subtypes of the accessed database. The first field is a character array

holding the name of the generalized entity subtype. The gsn_num_funct field is an

integer value representing the number of functions associated with the entity subtype,

while the third field, gsn_terminal is an integer representation of a boolean flag

indicating whether or not the entity subtype is a subtype of an entity type and not a

supertype to any entity subtypes. The fourth field is a pointer to the entity supertype

of the particular entity subtype represented by the gen_sub_node. The gsn_num_ent

field is an integer value indicating the number of entity supertypes of the subtype. The

next field, *gsn_ftnptr, is a pointer to the functions associated with the entity subtype,

and the *gsn_subptr field is a pointer to the subtype supertype. The eighth field holds

the number of these subtype supertypes. The last field of the gen_sub_node data

structure is simply a pointer to the next generalized entity subtype in the schema.

33

struct gsn__sub_node
(

char gsn namefEXLength + 1];

int gsn num funct;
int gsn terminal;
struct ent_node_list -gsn entptr;
int esn num ent;
struct
struct

function node
sub_node_list

*gsn ftnplr;
*gsn subptr;

int gsn num sub;
-gsn nexl genptr;

}

struct gen_sub_node

Figure 4.9 The gsn_sub_node Data Structure.

Information concerning each nonentity base-type is maintained in a data

structure of type ent_non_node, Figure 4.10. The first field of this data structure,

similar to previous data structures, is a character array containing the name of the

nonentity base-type. The enn_type field is a character flag indicating the type of

nonentity node, either, integer, T; enumeration, 'e'; floating point number, T;

character string, 's'; or boolean, 'b'. The third field is an integer value which represents

the maximum length of the nonentity base-type value. The ennjrange field contains an

integer representation of a boolean flag that indicates whether or not there is a range

of values associated with the nonentity base-type. The next field. enn_num_values,

represents the number of different values that the nonentity can assume. The sixth

field is a pointer to the actual value of the nonentity base-type, while the following

field, enn_constant, is an integer representation of a boolean flag indicating whether or

not the base-type is a constant. The last field in the ent_non_node data structure is a

pointer to the next nonentity base-type in the schema.

The sub_non_node data structure, Figure 4.11, contains information about the

nonentity subtype base-types in the functional schema. The first field of the data

structure is a character array containing the name of the nonentity subtype and the

enn_type field holds a character that indicates the type of nonentity subtype, either

integer, T; enumeration, 'e'; floating point number, T; character string, 's'; or boolean,

'b'. The next field, snn_total_length, contains an integer that indicates the maximum

length of the nonentity subtype value. The snn_range field is an integer representation

of a boolean flag which indicates whether the nonentity subtype has a range of values

associated with it. The fifth field contains an integer that represents the number of

34

struct ent
r

_non_node
I

char
char

enn name[ENLength +
1];

enn type;
enn total length;int

int enn ranee;
mt enn num values;
struct ent value *enn value;
int enn constant;
struct ent non node "enn next node;

}

Figure 4.10 The ent_non_node Data Structure.

different values that the nonentity subtype can assume. The next field is a pointer to

the actual value of the node, while the final field of the data structure, *snn_next_node,

is a pointer to the next nonentity subtype in the schema.

struct sub_non_node

char snn name[ENLength + 1];

char snn tvpe:
int snn total length;
int snn range;
int snn num values;
struct ent value "snn value;
struct sub non node "snn next node;

} " "

Figure 4.11 The sub_non_node Data Structure.

The der_non_node data structure, Figure 4.12, pertains to the derived

nonentity types of the functional schema; it is identical in structure to the

sub_non_node, Figure 4.11.

Figure 4.13 depicts the organization of the overlap_node data structure. The

initial field of the structure contains the name of the base type for the overlapping

entities. The *snlptr field is a pointer to the list of terminal subtypes, sub_node_list,

that are overlapped. The next field, num_sub_node, indicates the number of

overlapped subtypes in sub_node_list. The final field in Figure 4.13 is a pointer to the

next overlap_node in the schema.

35

_
struct der_non_node

cnar
char

dnn name[ENLength + 1];

dnn tvpe;
dnn total leneth;int

int dnn range;
int dnn num. values;
struct ent value *dnn value;
struct cier non nc de *dnn next node;

} " "

Figure 4.12 The der_non_node Data Structure.

struct
7

overlap_ node
i

char base type name;[ENLength + 11;

struct sub node *snlptr;
int num sub node;

}

struct overlap_ node *nexT;

Figure 4.13 The overlap_node Data Structure.

Each function declared in the functional schema is represented by a data

structure of the type function_node. Figure 4.14. The name of the function is

contained in the first field of the structure, while the second field is a character which

represents the type of the function, either floating point number, T; integer, T;

character string, Y; boolean, 'b'; or entity, 'e'. The next field, fn_set, is an integer

value representing a boolean flag that is used to indicate whether the function is a set-

valued function. The fn_range field indicates whether or not there is a range of values

associated with the function. The next field indicates the maximum length of the

values and the fn_num_value field indicates number of values. The following field is a

pointer to the actual value, which the next five fields hold pointers to the type to which

the particular function belongs. A function may belong to only one type, either an

entity, an entity subtype, an nonentity, a nonentity subtype, or a nonentity derived

type. The thirteenth field indicates whether or not there is an entity value associated

with the function. The fn_unique field is used to indicate whether or not the function

is unique, while the final field is a pointer to the next function in the schema.

36

struct function node

char
char
int

mt
mt
mt
struct ent value
struct ent node
struct een sub node
struct ent non node
struct sub non node
struct der non node
mt
mt
struct function node

fn_name[ENLength 4- 1];

fn_type;
m_set;
fh_range:
fn_total_length;
fn_num_value;
*fn_value;
*fn_entptr;
*fn_subptr;
*fn_nonentptr;
*fn_nonsubptr;
*fn_nonderptr;
fn_entnull;
fn_unique;
"next:

Figure 4.14 The function_node Data Structure.

The ent_node_list, Figure 4.15, and the sub_node_list. Figure 4.16, data

structures are used to maintained linked lists of entity types and generalized entity

subtypes, respectively.

struct ent_node_list

struct ent_node
struct ent node list

!entptr;
-next;

Figure 4.15 The ent node list Data Structure.

struct sub node list

{

struct gen_sub node
struct sub node list

*subptr;
'-next:

Figure 4.16 The sub node list Data Structure.

37

The final data structure that is shared by users accessing a functional schema,

ent_value. is shown in Figure 4.17. The structure's function is to maintain a linked list

of entitv values.

struct ent value

{

char
struct ent value

*ev_value;
*next;

Figure 4.17 The ent_value Data Structure.

B. DATA SPECIFIC TO EACH USER

The data structures that are discussed in this section are necessary in order to

support each user's particular interface requirements. The key structure is depicted in

Figure 4.18, user_info. This structure holds information on each user currently using a

particular language interface of MLDS. The first field of user_info is a character array

containing the user's ID. The next field is a union that describes a particular interface

and the last field is simply a pointer to the next user of MLDS.

struct user info

(.

char
union
struct

li_info
user info

uid[U ID Length + 1];

";

next user;

Figure 4.18 The user_info Data Structure.

The union, li_info, depicted in Figure 4.19, can hold the data for a user accessing

any type language interface of database schemas supported by MLDS, (SQL, DL/1,

CODASYL-DML, or Daplex). For the purpose of this thesis the data structures

peculiar to the CODASYL-DML language interface and the Daplex language interface

will discussed.

38

union h info
i -

struct sql info li sql;

lrdfi;struct dri"info
struct dnil info li dnil;
struct

i

dap info li_dap;

Figure 4.19 The li_info Data Structure.

Should the user access a network database, the third field of Figure 4.19, li_dml,

will be activated. This action will call upon Figure 4.20, dml_info.

struct dml info

{

struct
struct
struct
struct

cur db info
file info
tran info
ddl Tnfo

curr db;
file:"
dml tran;
*ddr files;

mt
int

operation;
answer;

int
union
union
union
struct
int

}

kms info
kfs info
kc Info
cur table

error;
kms data;
kfs data;
kc data;
"cur table;
buffcount;

Figure 4.20 The dml_info Data Structure.

The dml_info data structure, Figure 4.20, contains user information mation

concerning the CODASYL-DML language interface. The curr_db_info field is also a

structure; it contains information about the network database being accessed by the

user. The file field is a data structure which contains the file descriptor and identifier

of a file of CODASYL-DML transactions. The third field, dml_tran, is a data

structure that maintains information describing the CODASYL-DML transactions that

are awaiting processing. The next field is a pointer to the ddl_info data structure,

which describes the descriptor and template files. The operation field is an integer

representation of a flag used to indicate the operation to be performed on the network

39

database, either loading a new network database, or executing a request on an existing

network database. The answer is an integer value that is used by the Language

Interface Layer (LIL) to record the answer it receives from interfacing with the user.

The eleventh field is a pointer to the Currency Indicator Table (CIT), as discussed by

Meyer and MacDougal, buff_count, is a count of the result buffers of the Kernel

Controller (KC).

If the user accesses a functional database, then the fourth field of the li_info data

structure, li_dap, is activated, referencing the dap_info data structure, Figure 4.21.

This structure contains information about the Daplex language interface and is similar

to the dml_info data structure, Figure 4.20, with the exception that it applies to Daplex

rather than CODASYL-DML.

struct dap
{

struct

info

curr db info
struct file Tnfo
struct tran info
int
struct ddl info
union kms info
union kfs mfo
union kc Tnfo
int

int
int

dpi_curr_db;
dpi_file:
dpi_dml_tran;
dap operation;
*dpr ddl_files;
dpijtms data;
dpi_kfs_3ata;
dpi_kc_data;
dap_error;
dap_answer;
dap_buff_count;

Figure 4.21 The dap_info Data Structure.

40

V. FUNCTIONAL TO NETWORK TRANSFORMATION ALGORITHMS

The Language Interface Layer (LIL) is the first module in the mapping process

of MLDS. Its function is to control the order in which the other modules are called

and to allow the user to either load a new database or process an existing database.

The implementation of this thesis, in addition to permitting the user to load a new

network database, allows the user to apply transactions to either a network or a

functional database. When an existing database (network or functional) is to be

processed, the user is queried for the name of the database. LIL then uses the user-

supplied name and first searches the existing network schemas; if the desired database

is in fact a network database, then LIL primarily functions as implemented in

Reference 19. If the desired database is not found to be in the list of existing network

schemas, the list of functional schemas is then searched. If the desired database is

found to be an existing functional database, a mapping process is initiated in order to

transform the functional schema into a network schema. This transformed database is

actually a network representation of the functional database which maintains the

characteristics of the functional database while preserving its constraints [Ref. 2: page

52}.

In order to preserve the constraints of the source database (functional), there are

six essential constructs of the functional schema that must be accurately transformed

to equivalent constructs of the target database (network). The constructs of the

functional schema are:

• the entity type

• the entity subtype

• the non-entity types

• the uniqueness constraints

• the overlap constraints

• the set type

The methodology for the transformation was primarily implemented as designed in

Reference 2 and is described in detail in the following subsections. In order to provide

the reader with realistic examples of the mapping of a functional schema to a network

schema, this section depicits the transformation of the functional-based University

41

database schema of Figure 2.1. to the network University database schema shown in

Figure 5.1. Figure 5.1 is referenced throughout this chapter.

A. ENTITY TYPES

In transforming a functional entity, LIL maps not only the entity itself, but also

the functions of the entity, as the functions are applied to the respective entity type.

The function-type may be string, scalar (integer, floating-point, enumeration), entity,

non-entity or a set of any of the above. The form of an entity-type declaration is

shown in Figure 5.2, where entityXX is the unique name of the entity being declared

and functionXXl, functionXX2, ..., functionXXn are the names of the functions that can

be applied to entityXX. The function_types determine what type of value will be

returned by the respective functions.

In the transformation process, an entity type is mapped into a network record

type. Each entity is also made a member of a set type which is owned by SYSTEM.

When mapping the function types associated with a particular entity. LIL must

determine whether or not the function type is a scalar function, scalar multi-valued

function, single-valued function, or multi-valued function. It accomplishes this task by

checking several fields of xhs, function_node data structure of Figure 4.14.

A particular function of an entity is a scalar function if the fn_subptr and

fn_entptr fields are NULL and the fn_set field is not set (i.e., has a value of zero),

indicating that the function does not belong to a specific entity type or subtype, nor is

it set-valued. Scalar functions are mapped into attributes of the record type that has

been transformed from the function's entity.

A function is determined to be a scalar multi-valued function if it meets two of

the three criteria discussed in the preceding paragraph; it's fn_entptr and fn_subptr

fields are NULL, however, the fn_set field is set to a value of "1", indicating that it is a

set-valued function. The scalar multi-valued function is declared as an attribute in the

corresponding record type. It must be noted, however, that only one occurrence of the

single multi-valued function may be stored in the record, therefore the nanjiupjlag

field of the nattr_node, Figure 4.7, is not set, indicating that the attribute cannot have

duplicates.

If either the fn_entptr or the fn_subptr field of Figure 4.14 is not NULL, then the

function in question is either a single or a multi-valued function. Again, the

determining factor is the //i_se/ field; if it is set to a value of "1", then the function is a

multi-valued function. In the case of a single-valued function, a network set type is

42

SCHEMA NAME IS university;

RECORD NAME IS person:
DUPLICATES ARE NOT ALLOWED EOR ssn;

name: CHARACTER 25;
ssn: CHARACTERS,

RECORD NAME IS employee:
DUPLICATES ARE NOT ALLOWED EOR phones;

home address: CHARACTER 50;
ollice" CHARACTER 8;

phones: CHARACTER 7;

salary: FLOAT:
dependents: FIXED 10;

RECORD NAME IS support staff;

fulUime: CHARACTER T;

RECORD NAME IS (acuity;
rank: CHARACTER 9.

tenure: CHARACTER 1.

RECORD NAME IS linkl;

RECORD NAME IS student:

RECORD NAME IS graduate;

RECORD NAME IS undergraduate;
gpa: FLOAT.
fear: FIXED 1.

RECORD NAME IS course:
DUPLICATES ARE NOT ALLOWED EOR title, semester;

title: CHARACTER 10.

semester: CHARACTER 6.

credits: FIXED 1;

RECORD NAME IS department:
DUPLICATES ARE NO I ALLOWED FOR name;

name: CHARACTER 20;

RECORD NAME IS enrollment;
grade: FLOAT;

SET NAME IS system person;
OWNER IS system;
MEMBER IS'pcrson:
INSERT ION f S A U toMAT I C;
RETENTION IS FIXED;
SET SELECT ION IS BY APPLICATION;

SET NAME IS person employee;
OWNER IS person; "
MEMBER IS emplovcc:
INSERTION IS AUTOMATIC;
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

Figure 5.1 The Functional Schema of the University Database Transformed to a

Network Schema

43

SET NAME IS supervisor;
OWNER IS emplovee:
MEMBER IS support staff;

INSERTION IS MANUAL;
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS emplovee support staff;

OWNER IS emplovee; " "

MEMBER IS support staff;

insertion is Automatic;
RETENTION IS EIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS teaching;
OWNER IS faculty;
MEMBER IS linkl;
INSERTION IS MANUAL;
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS tausht by;
OWNER IS course;^ "
MEMBER IS linkl
INSERTION IS MANUAL;
RETENTION IS OPTIONAL:
SET SELECTION IS BY APPLICATION;

SET NAME IS taught bv;
OWNER IS course; ~

'

MEMBER IS linkl;
INSERTION IS MANUAL;
RETENTION IS OPTIONAL-
SET SELECTION IS BY APPLICATION;

SET NAME IS dept;
OWNER IS department;
MEMBER IS faculty:
INSERTION IS MANUAL;
RETENTION IS OPTIONAL-
SET SELECTION IS BY APPLICATION;

SET NAME IS employee facultv;
OWNER IS emplovee; "
MEMBER IS faculty;
INSERTION IS AUTOMATIC
RETENTION IS FIXED:
SET SELECTION IS BY APPLICATION;

SET NAME IS advisor;
OWNER IS faculty;
MEMBER IS student;
INSERTION IS MANUAL;
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

Figure 5.1 . (cont'd.)

44

SET NAME IS major;
OWNER IS department;
MEMBER IS student;
INSERTION IS MANUAL;
RETENTION IS OPTIONAL:
SET SELECTION IS BY APPLICATION:

SET NAME IS enrollments;
OWNER IS student:
MEMBER IS enrollment;
INSERTION IS MANUAL:
RETENTION IS OPTIONAL-
SET SELECTION IS BY APPLICATION;

SET NAME IS person student;
OWNER IS person;

_

MEMBER 1$ student:
INSERTION IS AUTOMATIC;
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS advisorv committee;
OWNER IS graduate;

'"

MEMBER IS faculty;
INSERTION IS MANUAL;
RETENTION IS OPTIONAL-
SET SELECTION IS BY APPLICATION;

SET NAME IS student graduate:
OWNER IS student;
MEMBER IS graduate;
INSERTION LB AUTOMATIC;
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS student undergraduate;
OWNER IS student; "
MEMBER IS undergraduate;
INSERTION IS AUTOMATIC;
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS deptmt;
OWNER IS department;
MEMBER IS course;
INSERTION IS MANUAL;
RETENTION IS OPTIONAL-
SET SELECTION IS BY APPLICATION;

SET NAME IS svstem course;
OWNER IS svstem; "
MEMBER IS'course-
INSERTION IS AUTOMATIC;
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

Figure 5.1 . (cont'd.)

45

SET N \ME IS head;
OWNER IS facultv;
MEMBER IS department;
INSERTION IS MANUAL;
RETENTION IS OPTIONAL-
SET SELECTION IS BY APPLICATION;

SET NAME IS system department;
OWNER IS svstem; ~
MEMBER IS'department;
INSERTION IS AUTOMATIC;
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS class;

OWNER IS course:
MEMBER IS enrollment;
INSERTION IS MANUAL;
RETENTION IS OPTIONAL;
SET SELECTION IS BY APPLICATION;

SET NAME IS svstem enrollment;
OWNER IS svstem: ~
MEMBER IS'enrollment;
INSERTION IS AUTOMATIC;
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

Figure 5.1 . (cont'd.)

TYPE entitvXX IS
ENTITY

functionXXl: function_type;
functionXX2: function_type;

functionXXn: function type
END ENTITY

Figure 5.2 Entity Type Declaration.

created whose name is the single-value function name. The owner and the ancestor of

the set type is the record type declared for the range entity type, and the set member is

the record type declared for the domain entity type.

46

Multi-valued functions are defined over entities and return sets of entities. When

applied to an entity or an entity subtype, a multi-valued function returns zero or more

data values, where each of these values is of the same data type as the functions range

type [Ref. 8]. A multi-valued function represents either a one-to-many relationship or

a many-to-many relationship as defined below.

A many-to-many relationship of a multi-valued function exists in the case where

entity A has a multi-valued function with entity B declared as the range entity type.

Additionally, entity B must also have a multi-valued function with entity A as the

range entity type. In order to determine whether or not this situation exists, for each

multi-valued function of an entity LIL traverses the network, database's list of entities

and searches for a separate entity that has been declared the range entity type of the

multi-valued function of the first entity type; should a match be found, the matched

entity is checked to determine if it has any multi-valued functions (fn_set != 0)

associated with it and whether or not its multi-valued function declare the first entity

type as the range entity type. If the above conditions are satisfied, indicating a many-

to-many relationship for the multi-valued function, a new record type is defined with

its name being LINK_X, where X is an integer representing the numerical standing of

this particular many-to-many relationship. Additionally, two set types are declared --

one each with the record type for the two respective entity types as the set owner and

the LINK_X record as the set member.

A one-to-many relationship exists when a multi-valued function is determined not

to have a many-to-many relationship. In this case a set type is defined with the record

type of the domain entity as the set owner, and its range entity record type as the set

member.

In order to properly illustrate the transformation process of a functional entity

and its associated properties Figure &entexamp is presented. This figure shows a

functional entity taken from the University database schema of Figure 2.1. and in its

network representation following the application o[the transformation.

B. ENTITY SUB-TYPES

The entity subtypes of the functional database are pointed to by the edn_subptr

field of the gsn_sub_node structure which is depicted in Figure 4.10. As long as this

field is active (not equal to NULL), there are entity subtypes that must be transformed

into network structures. As is the case in the entity type transformation, LIL must

also concern itself with the functions associated with the entity subtype. Figure 5.4

47

Functional

TYPE course IS
ENTITY

title: STRING (1.. 10);
dept: department;
semester: semester name;
credits: INTEGER;
tauaht bv: SET OF facultv;

END ENTITY;

Network

RECORD NAME IS course;
DUPLICATES ARE NOT ALLOWED FOR title, semester;

title ; CHARACTER 10.

semester ; CHARACTER 6.

credits ; FIXED 1.

SET NAME IS svstem course;
OWNER IS system: ~
MEMBER IS course-
INSERTION IS AUTOMATIC;
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

SET NAME IS deptmt;
OWNER IS department;
MEMBER IS course:
INSERTION IS MANUAL;
RETENTION IS OPTIONAL-
SET SELECTION IS BY APPLICATION;

SET NAME IS taught by;
OWNER IS course; "

'

MEMBER IS linkl
INSERTION IS MANUAL;
RETENTION IS OPTIONAL-
SET SELECTION IS BY APPLICATION;

Figure 5.3 A functional entity type and its network representation.

shows the form of an entity subtype declaration, where subtype YY is the unique name

of the subtype and supertypeAA is a list of one or more entity types and subtypes that

are supertypes or ancestors of subtypeYY.

Each entity subtype is declared as a record type with the record name being

identical to that of the entity subtype. A set type is also declared with its name being

the concatenation of the subtypes entity supertype, an underscore (_), and the subtypes

48

SUBTYPE subtypeYY IS supertvneAA
ENTITY

functionYYl: function_tvpe
functionYY2: function_type

functionYYn: function tvpe
END ENTITY

Figure 5.4 Entity Subtype Declaration.

name. The subtypes entity supertype is pointed to by the gsn_entptr field of the

gsn_sub_node structure. The set member is the particular entity subtype

(gsn_nsn_name). and the set owner is the subtypes entity supertype. The functions

associated with an entity subtype are transformed as previously described for the

functions defined on the entity types. An example of the transformation of a

functional entity subtype to the equivalent network structures is shown in Figure 5.5.

C. NON-ENTITY TYPES

Non-entity types are represented by those functional schema statements that

declare data types other than entities and functions. The non-entity types o[Daplex

are:

(1) strings

(2) scalars

(a) integers

(b) floating-points

(c) enumeration (including Boolean)

(3) numeric constants

These non-entity types form a rich set of tools that allow the user to provide

semantically meaningful names to data types and to limit the range of values that may

be assumed by a particular data type [Ref. 8: page 34]. Non-entity types have

corresponding counter parts in programming languages such as Pascal and Ada.

The transformation of the Daplex non-entity types impacts upon the attributes of

network records, where these records have been transformed from functional entity

types or subtypes. The task is to maintain the integrity constraints of the non-entity

49

SUBTYPE employee IS person
ENTITY

home address: STRING (1..50);
officer" STRING (I. .8);

phones: SET OF STRING (1.. 7);
salary: FLOAT:
dependents: INTEGER RANGE 0..10;

END ENTITY;

RECORD IS employee
DUPLICATES ARE NOT ALLOWED FOR phones;

home_address
office
phones
salary
dependents

CHARACTER 50;
CHARACTER 8;

CHARACTER 7;

FLOAT.
FIXED 10.

SET NAME IS person employee;
OWNER IS system; ~
MEMBER IS employee;
INSERTION IS AUTOMATIC:
RETENTION IS FIXED;
SET SELECTION IS BY APPLICATION;

Figure 5.5 A functional entity subtype and its network, representation.

types as they are mapped into the network data types. These data types are characters,

integers, and floating-points. The mapping of the non-entity types is based on

determining the Daplex data type by implementing the "switch" facility of C. The

source of the switch is the fnjype field of the function_node shown in Figure 4.14.

The targets of the switch are the nanjype and nanjength fields of the nan_attr_node

structure depicted in Figure 4.7. The mapping is conducted as shown below:

(1) The Daplex string data type (fn_type = Y) maps directly into network

characters (nanjype = 'c'). The length of the type is set by making

nanjength equal to the value offnjotaljength.

(2) The Daplex floating-point (fnjype = T) maps directly to network floating

(nanjype = T).

(3) The Daplex integer is mapped directly into a network integer.

(4) Daplex enumeration types are mapped into network characters with the length

of the character string (nanjength) set equal to the length of the longest of

the enumeration types.

50

The goal of the non-entity mappings is achieved by the aforementioned algorithm, thus

preventing the network, user from destroying the integrity of the functional schema.

D. UNIQUENESS CONSTRAINTS

Daplex utilizes uniqueness constraints in order to identify a collection of

functions whose values are unique across all database entities belonging to a particular

entity type or subtype [Ref. 23: page 72]. Uniqueness constraints conform to the

following representation in a functional schema declaration:

UNIQUE A,B.C WITHIN D
A.B.C represents a list of one or more functions declared for the entity type D. The

values of the list of functions, when combined, uniquely identify the specified entity

type or subtype. MLDS identifies a uniqueness constraint by setting the value of the

fnjmique field of the function_node, which is shown in Figure 4.14. A uniqueness

constraint is mapped directly into the network schema by adhering to the following

algorithm:

(1) locate the record type that has been transformed from the specified entity type

or subtype by traversing the entjiode or subjtode fields and comparing names.

(2) locate the attribute type, nattr_node, of the record type located in step (1).

(3) set the nan_dupjlag of the attribute located in step (2), indicating that

DUPLICATES ARE NOT ALLOWED.

The algorithm is implemented as a loop following the declaration and subsequent

transformation of the entity types, subtypes, and non-entity types.

An example of a functional uniqueness constraint mapped into its network

equivalent can be seen in Figure 5.3. One should note the declared uniqueness of title

and semester. This constraint is transformed into the CODASYL-DVIL statement

DUPLICATES ARE NOT ALLOWED FOR title, semester".

E. OVERLAPPING CONSTRAINTS

Functional subtypes are assumed to be disjoint unless an overlapping constraint

has been declared, specifying otherwise. Basically, the notion of overlapping

constraints is used to indicate whether or not an entity can belong to more than one

terminal entity subtype within a hierarchy. Overlapping constraints are represented in

the functional schema in the following manner:

OVERLAP E.F WITH G,H;

51

ES and G,H are lists of one or more entity subtypes. The overlap constraint specifies

that data items of an entity subtype of the class E or F may also belong to an entity

subtype of the class G or H. The implementation of the overlapping constraint is

through the use of an overlap table which verifies the existence of such a constraint

prior to allowing the addition of a record to the database. The specifics of the overlap

table are given in the following chapter.

F. SET TYPES

Network set types were described in Chapter II of this thesis. The functional

data model does not have a structural equivalent for the set type, however, the network

set type plays a vital role in the database transformation scheme. Earlier in this

chapter the role of the set was discussed in the mapping of entity types and subtypes.

The details of the set implementation include the insertion, retention, and selection rules.

The set is represented in the network language interface of MLDS by the

nsetjiode structure of Figure 4.4 and the specifics of fully defining a set are described

below:

(1) With the exception of sets declared from the transformation of single or multi-

valued functions, the set name is defined as the owner record type name (

nrnjiame field of the nrec_node, Figure 4.6), followed by an underscore (_),

followed by the member record type name. For example if employee is the

owner record type and faculty is the member record type, then the set name is

of the form:

SET NAME IS employee_faculty

(2) The set owner and set member name, nsn_pwner_name and nsnjmemberjiame
respectively, are declared as the corresponding record type name. Continuing

with the example from (1) above, employee is the owner record type and will

be declared the set owner while faculty is the member record type and is

declared the set member as shown below:

OWNER IS employee

MEMBER IS faculty

(3) When a set is defined in the schema it is given an insertion status. Each record

type that has been transformed from an entity type or subtype is required to

belong to a particular set and therefore the insertion mode of the set is always

automatic, indicating that whenever a member record is created, it is

automatically inserted into the corresponding set. The assignment of the

automatic insertion mode is shown below:

nset_node-> nsn_insert_mode = InAutMode;

(4) Set types declared from the transformation of functions applied to entity types

or subtypes, however, are not required to be inserted and the insert mode is

therefore optional, with the assignment as shown:

nset_node-> nsn_insert_mode = InOptMode;

52

(5) There are three separate rules governing the retention mode of sets depending

upon the basis of the set declaration:

(a) A set type that is owned by SYSTEM can never allow its member record

types to change owners, therefore its retention is always fixed, ensuring

that records connected to the set occurrence, remain in the set

occurrence.

nset_node-> retent_mode = RetFixMode;

(b) A member record type transformed from an entity subtype always

belongs to the same owner record type and its retention mode is also

fixed.

(c) The set types resulting from the mapping of single- or multi-valued

functions must allow their member record types to be deleted, modified,

or reattached and thus their retention mode is optional, allowing the

member records to be disconnected, connected or reconnected.

nset_node- > nsn_retent_mode = RetOptMode.

(6) When a record is to be inserted into a set type , the set must be the current of

the set type. Therefore, set selection is always by application:

nset_node-> select_mode = SelAppMode.

The above algorithm for mapping into network set types supports both set type

declarations used in Daplex: set types reflecting an ISA relationship between two entity

types or subtypes, and the set types representation of a Daplex function.

VI. TRANSLATION OF CODASYL-DML STATEMENTS TO ABDL
REQUESTS

Having presented an algorithm for the transformation of a functional schema

into a network schema, we are now ready to discuss the mapping of CODASYL-DML

statements into ABDL requests that will be able to accurately carry out the equivalent

operations on an AB(functional) database.

The DML translation takes place in the Kernel Mapping System (KMS), the

second module in MLDS. KMS is called from the language interface layer (LIL) when

LIL receives CODASYL-DML requests from the user. The two functions of KMS
are: (1) parse the user's CODASYL-DML request to validate the syntax, and (2) map

the request to an equivalent ABDL request. As previously stated, in the MLDS
network interface we restrict ourselves to the following subset of CODASYL-DML

statements: FIND, GET, STORE, CONNECT, DISCONNECT, ERASE, MODIFY.

This chapter discusses each of the above statements and the required mapping

process. Generally speaking, the mapping process is to be somewhat similar to the

mapping that was presented by Wortherly [Ref. 3J with the modifications described by

Rodeck [Ref. 2], and with further modifications as implemented in this work.

Additionally, we give our rationale for building onto KMS of the original MLDS
network interface as implemented by Emdi [Ref. 19] rather than developing an entirely

new module.

A. OVERVIEW OF THE DESIGN

The second component of a database model is the data manipulation language

(DML). DML is a vocabulary for describing the processing of the database. A

procedural DML is a language for describing action to be performed on the database.

It obtains a desired result by specifying operations to be performed. CODASYL-DML

statements are procedural, [Ref. 12: pages 191-192]. As one may surmise, a data-model

transformation is virtually useless without an accurate and efficient DML translation

that allows the user to perform the desired operations on the target database. It is

with this thought that the DML translation proceeded.

Most CODASYL-DML operations are executed in two phases: first, a FIND

command is issued to identify a record, and then a second CODASYL-DML command

54

is issued to perform an operation. This section will briefly describe the format and

intent of each of the pertinent CODASYL-DML statements, as well as give the

translation algorithm for these statements.

B. MAPPING CODASYL-DML FIND STATEMENTS

The FIND statement is logically required before each of the major CODASYL-

DML statements, except for the STORE statement. When a user issues a FIND

command, a record is found, and it is placed in the currency indicator table (CIT). The

format of the FIND statement is:

FIND record_selection_expression
[],

while the general format of the ABDL RETRIEVE statement is:

RETRIEVE Query Target-list [by attributes]

Each of the preceding formats is presented using the following conventions: upper-case

notation represents literals, lower-case represents user-supplied variable names, and

square brackets contain optional clauses. As discussed in Chapter II, the FIND

statement has several variants, and we will, in turn, present each of these.

1. The FIND ANY Statement

The FIND ANY statement locates a specified record of type whose value for

the specified data items are equal to those in that record's template in the user work

area (UWA). The syntax of the statement is:

FIND ANY record_type_x USING item_l, ..., item_n IN record_type_x

KMS. in mapping the FIND ANY statement, must use the ABDL RETRIEVE

statement and form a query whose first predicate is (FILE = record_type_x). KMS
then forms the additional predicates by locating the values of the relevant data items in

the record-template. The request is then executed with the results being placed in the

result buffer (RB). Following the request execution, KMS creates the target list

consisting of the requested records attributes. Thus, the ABDL translation of the the

CODASYL-DML statement is:

RETRIEVE ((FILE: record_type_x) AND
(item_l = value_l) AND

(item_n = value_n))

(all attributes) [by record_type_x]

The translated request is then forwarded to KC for execution.

55

The following example taken from the University database illustrates the

mapping of the FIND ANY statement. The requirement is to find any course record

whose title is Advanced Database'. The CODASYL-DML procedure is:

MOVE 'Advanced Database' TO title IN course

FIND ANY course USING title IN course

It should be noted that the MOVE statement is an assignment statement found in the

host COBOL language and in the above transaction it serves to initialize the UWA
field title in course. KMS would make the following translation and actions:

(1) 'Advanced Database' is placed in the course template of the UWA for the

attribute title.

(2) A RETRIEVE request is formed:

RETRIEVE ((FILE = course) AND
(title = 'Advanced Database))

title, dept, semester, credits)

BY course

(3) Pass the request to KC for execution.

The result is that the course record satisfying the search criteria are placed in RB.

2. The FIND CURRENT Statement

The FIND CURRENT statement causes an update of CIT by changing the

current of the run-unit from its present value to the value of the database key of the

current record of a specified set type. The statement is of use when we want to begin a

search at the current of a particular set, which requires that the current of the run-unit

be updated to agree with it. The syntax of the FIND CURRENT statement is :

FIND CURRENT record_type_x WITHIN set_type_y

The only function of this statement is to update CIT, and therefore it is a relatively

simple task for KMS to handle as there is no direct mapping to an ABDL statement.

An example taken from the University database illustrates the use of the FIND

CURRENT statement:

FIND CURRENT student WITHIN person_student

KMS would pass the CIT update information to KC for execution, and where CIT is

actually updated. The current of run-unit becomes the current student record

occurrence of the current person_student set occurrence.

3. The FIND DUPLICATE WITHIN Statement

The FIND DUPLICATE WITHIN statement is used to sequentially access

records within a particular set occurrence. A basic assumption is that the requested

56

records have previously been located by another FIND and are therefore already

resident in RB. The statement then locates the first record with the current set

occurrence whose values for the listed items match those of the current record of the

set. The syntax of the FIND DUPLICATE WITHIN is:

FIND DUPLICATE WITHIN set_type_x USING

item_l, item_n IN record_type_y

The translation actions are as listed below:

(1) KMS forwards set_type_x, record_type_y, and item_I,..., item_n to KC.

(2) KC locates the relevant RB using the information from (1) above.

(3) Each record with RB is searched until the first duplicate record with the set is

found.

(4) The record is made available to the user.

Additionally, KC will update CIT following the accessing of each record presented to

the user.

4. The Find FIRST/LAST/NEXT/PRIOR Statements

This subsection presents several related variants of the FIND statement; they

identify a record by its position in a set. For instance, the FIND FIRST statement

locates the first record of a set occurrence, the FIND LAST statement locates the last

record of a set occurrence, and so on. Each of these statements is mapped in the same

manner, and therefore we will focus the translation explanation on the FIND FIRST

statement. The syntax for the FIND FIRST statement is:

FIND FIRST record_type_x WITHIN set_type_y

First of all, KMS ensures that the specified record type is a member of the

specified set occurrence. This is accomplished by checking the nsn_setjnemberjiame

field of the nsetjiode data structure of Figure 4.4. Once the set membership is verified,

KMS forms a RETRIEVE request that places every member record of the set

occurrence into its RB. The request is satisfied by returning the first record.

In the case of FIND NEXT and FIND PRIOR, the set occurrence must have

previously been retrieved and placed into RB. KMS must simply check CIT and

determine the current of the set and return either the next or the prior record. Recalling

the two types of sets in the functional data model, ISA relationships and Daplex

functions, we have devised two methods for accessing all members of a particular set

occurrence.

57

The first method is for retrieving members of a set type reflecting an ISA

relationship where the set name consists of the owner name, followed by "_", followed

by the member record name. KMS generates the following ABDL request:

RETRIEVE ((FILE = record_type_x) AND
(MEMBER, set_type_y = set_type_x.owner.dbkey))

(all attributes)

As an example, suppose we query the University database in order locate students

majoring in 'Computer Science'. The CODASYL-DML transaction reads:

MOVE 'Computer Science' TO major IN student

FIND ANY student USING major IN student

MOVE NO' TO EOF

FIND FIRST person WITHIN person_student

PERFORM UNTIL EOF = YES-

GET student

FIND NEXT student WITHIN person_student

END PERFORM
In response to the above CODASYL-DML sequence KMS would issue the following

ABDL request:

RETRIEVE ((FILE = person) AND
(MEMBER, person_student = dbkey of 'CS'))

(all attributes) [by major]

In the case of a set representing a Daplex function, there are two possibilities:

either the function belongs to the owner record type or the function belongs to the

member record type. In order to determine which record type a particular function

belongs to KMS must traverse the functional schema to check the required function.

If the Daplex function belongs to a owner record type the translation is as described in

the previous paragraph. However, if the Daplex function belongs to a member record

the translation is altered as follows:

RETRIEVE ((FILE = record_type_x) AND
(set_type_y = C I T.set_type_y. owner, dbkey))

(all attributes)

By definition, the set type representing a Daplex function belonging to a member

record type has only one member-the member record occurrence that we are seeking.

58

5. The FIND OWNER Statement

The FIND OWNER statement identifies records by ownership and causes the

owner of the current of set type to be returned. The syntax of the FIND OWNER
statement is:

FIND OWNER WITHIN set_type_x. Since all of the necessary information is

already present in CIT, the mapping is simple. KMS extracts the set owner and

database key for the specified set and issues a RETRIEVE of the form:

RETRIEVE (/FILE = CIT.set_type_x.owner) AND
(CIT. set_type_x. owner = CIT.set_type.dbkey))

(all attributes)

KC then executes the RETRIEVE request and returns the owner record-type.

6. The FIND WITHIN CURRENT Statement

The FIND WITHIN CURRENT statement causes a record which is the

current of the specified set type whose values match the specified values of UWA for

the specified record type. The syntax of the statement is:

FIND record_type_x WITHIN set_type_y CURRENT
USING item_l, ..., item_n IN record_type_x

The FIND WITHIN CURRENT is very similar to the FIND DUPLICATE

statement, the difference being that FIND WITHIN CURRENT uses the values

resident in UWA while FIND DUPLICATE uses the value of the current set type.

Once i: is determined that the specified record is a member of the set KMS generates a

RETRIEVE request of the form:

RETRIEVE ((FILE = record_type_x) AND
(record_type_x = CIT.set_type_y.owner.dbkey) AND
(item_l = user_value_l)AND

(item_n = user_value_n)

(all attributes)

KMS then passes the request to KC for execution and the records satisfying the

retrieval are placed in RB with the first record being returned to the user.

59

C. MAPPING CODASYL-DML GET STATEMENTS

CODASYL-DML GET statements are data retrieval statements, but they can

only access records that have been previously located by FIND statements. It is the

GET statement that actually allows the user to access a record for the purpose of

displaying it. As was done in the network interface, the GET statements are handled

through KC rather than mapping them directly into ABDL RETRIEVES. There are

three options with the GET statement and they will be discussed in the following

subsections.

1. The GET Statement

The GET option places the entire current record of the run-unit into UWA for

user access. When KMS receives the GET statement it informs KC that the record in

RB containing records of the type CIT.run_unit.type is to be passed to the user via

UWA.

2. The GET record_type Statement

The GET record_type statement is similar to the GET option in that it

retrieves the current record for the user, however, this option allows the user to specify

a particular record type. In this instance, KMS checks to ensure that the record type

being accessed is in the current of the run-unit RB, and if so, all data items are

returned to the user.

3. The GET item_l, ..., item_n Statement

This statement differs from the previous GET options in that the user specifies

the data items which are to be returned for a particular record. The syntax for this

option is:

GET item_l, ..., item_n IN record_type_n

Again, KMS checks to ensure that the specified record type is resident in the RB

containing the current of the run-unit, then the specified data items are used as search

criteria to locate a matching record. If KMS is successful in locating a record, KMS
informs KC and KC places the desired data items in UWA.

D. MAPPING CODASYL-DML CONNECT STATEMENTS

The CONNECT Statement manually inserts the current record of the fun-unit

into the current occurrence of the specified set(s). The use of this statement requires

the record to be a member of the specified set(s) and that the set(s) have an insertion

clause of manual. The syntax of the CONNECT statement is:

CONNECT record_type_x TO set_type_l, ..., set_type_n

60

There are several ways that the CONNECT statement operates on an AB(functional)

record and these could result in varying results as follows: adding information to an

existing AB(functional) record, creating a new AB(functional) record, or creating a new

set of AB(functional) records. The particular operation depends on the manner in

which the network set types were declared in the transformation from the functional

schema. Recalling the transformation algorithm of Chapter V, we know that set types

represent either an ISA relationship or a Daplex function. The insertion of

information into set types representing a Daplex function is further complicated

depending on whether the information is to be inserted into an owner record of the set

or a member record of the set.

1. Sets Representing an ISA Relationship

As described in Section F of Chapter V, each network record type that has

been transformed from an entity type or subtype represents a functional ISA

relationship. These record types are required to belong to a particular set and

therefore the insertion mode of the set is always automatic. This indicates that

whenever a member record is created during the transformation, it is automatically

inserted into the corresponding set. Therefore, sets with an insertion clause of

automatic cannot be used in CONNECT statements.

2. Sets Representing Daplex Functions

The destination of the information that is to be inserted will be in either an

owner record or a member record type of the set occurrence. This location determines

the method of translating the CONNECT statement. Each of these methods is

discussed in the ensuing sections.

a. Information Resides in Owner Record

When the specified record type is the owner of the set type, the set can be

null or it can contain one or more members. If the set type is null, then there are no

member records associated with it. If the set type is representing a scalar multi-valued

function, then there may be more than one member record associated with the set. We

can see that there are four cases that must be considered when applying the

CONNECT statement when the information resides in the set type owner. The

situation depends on whether or not the set representing a Daplex function is null or

not, and also on whether or not there are scalar multi-valued functions associated with

the original functional entity type or subtype.

(1) Null Set and No Scalar Multi-Valued Function-The AB(functional)record is

the only record to be updated. The null value of the attribute-value pair

61

representing the attribute of the set type is replaced with the database key of

the current of the run-unit as shown below:

UPDATE ((FILE = CIT.set_type_l. owner) AND
(CIT.set_type_l. owner = CIT.set_type_l.owner_dbkey))

(set_type_l = CIT.run_unit.dbkey)

(2) Null Set and Scalar Multi-Valued Function--The null value in each

AB(functional) record created because of the scalar multi-valued function

must be updated. Using CIT information KVIS duplicates all attribute-value

pairs of the attributes that do not represent scalar multi-valued functions and

updates the null value of the attribute-value pairs representing scalar multi-

valued functions. The required attribute-valued pairs are retrieved with the

following ABDL request:

RETRIEVE ((FILE = CIT.set_type_l.owner)AND

(CIT. set_type_l. owner = CIT.set_type_l.owner.dbkey)

(all attributes)

After the results of the above RETRIEVE are placed in RB, KMS traverses

the functional schema and determines which attribute-value pairs represent

scalar multi-valued functions. Once these pairs are identified, they are

updated as shown below:

UPDATE ((FILE = CIT.set_type_l. owner) AND
(CIT.set_type_l. owner = CIT.set_type_l. owner. dbkey) AND
(attributel = value 1)

(set_type_l = CIT.run_unit. dbkey)

(3) AB(functional) record with identical attribute-value pairs to those of the

owner record, with the exception of the attribute-value pair whose attribute

name is the same as the set name. This attribute is given the value of the

database key of the current of the run-unit. As KMS did in (2) above, the

owner record of the set type occurrence is retrieved with the results stored in

RB. KMS then maps the following ABDL INSERT request:

INSERT (< FILE, CIT.set_type_x.owner>
,

< CIT.set_type_x.owner, C I T.set_type_x. owner. dbkey > ,

< data iteml, valuel >
,

< data item_n, value_n> .

< set_type_x, CI T.run_unit.dbkey >)

(4) record representing the scalar multi-valued function that posseses the database

key of the set owner. However, the attribute whose name is the same as the

set type is assigned the value of the dbkey of the current of the run-unit. This

is accomplished by retrieving the AB(functional) record representing the set

owner. After the attribute-value pairs representing scalar multi-valued

62

functions are retrieved, they are used to retrieve the relevant records. Each
record in RB will have a new attribute-value pair inserted in it whose values

are '.he same as those in RB, except for the attribute whose name corresponds

to the set type member; this value becomes the database key of the current of

the run-unit:

INSERT (< FILE, CIT. set_type_x. owner >
,

< CIT.set_type_x.owner, CIT.set_type_x.owner.dbkey>
,

<data item 1, value 1>,

< data_item_n, value_n>
,

< set_type_x, CIT.run_unit.dbkey>)

b. Information in Member Record

The mapping of the CONNECT statement applied to member record is

much less complex then when applied to an owner record. Again KMS must ensure

that the record type is a member of the specified set and that the insertion clause of the

set is manual. However, the existence of scalar multi-valued functions is irrelevant

because we will update all records whose database key is the same as the database key

of the current of the run-unit. This is due to the transformation algorithm specifying

the set membership requirements.

The attribute of the attribute-value pair whose attribute name is the same

as the set name is updated to equal the value of the database key of the set owner.

The ABDL request is:

UPDATE ('FILE = record_type_x) AND
(record_type_x = CIT.run_unit.dbkey))

(set_type_y = CIT.set_type_y.owner.dbkey) KMS then passes the request to

KC where it is executed.

E. MAPPING CODASYL-DML DISCONNECT STATEMENTS

The DISCONNECT statement is the opposite of the CONNECT statement in

that it disconnects the current record of the run-unit from the specified set type(s).

Once disconnected, the records are simply detached from the set type(s) and they

remain in the database. The syntax of the DISCONNECT statement is:

DISCONNECT record_type_x FROM set_type_l, ..., set_type_n

The requirements for the statement are that the current of the run-unit be a member of

the specified set types(s) and that the record be removed from the set types that are

current.

63

The DISCONNECT statement is similar the CONNECT statement in that in

that it has several possible results, dependent on whether the function information is

contained in the set owner or set member record. However, the key is whether the

function set is a singleton, or whether it has multiple members. The DISCONNECT

statement could cause an attribute value to be nulled out, or a single AB(functional)

record could be deleted, or a set of AB(functional) records could be deleted. The

rationale behind these possibilities is explained in the following paragraphs.

If the information regarding the disconnection concerns a Daplex function

represented by a network set owner record, then the function set is either a singleton or

it contains multiple members. If the function set is a singleton we want KMS to null

out the value of the attribute whose name is identical to the set type name. KMS
generates the following ABDL request:

UPDATE((FILE = CIT.set_type_y.owner) AND
CIT.set_type_y.owner = CIT.set_type_y.owner.dbkey)

set_type_y = NULL)

If the above request is applied to a the representation of a scalar multi-valued function,

all of the relevant AB(functional) records will be updated to reflect the null value.

Otherwise a single AB(functional) record will have a value nulled out.

If the function set has multiple members KMS deletes all of the AB(functional)

records with matching database key and function value. The mapping is as shown

below:

DELETE ((FILE = CIT.set_type_y.owner) AND
(C IT. set_type_y. owner = CIT.set_type_y.owner.dbkey) AND
(set_type_y = CIT.run_unit.db_key))

Again, the above would delete all of the matching AB(functional) records if a scalar

multi-valued function is part of the owner record type.

If the AB(functional) record to be deleted is a member record, then, by definition

of the schema transformation, we are updating a singleton function set. KMS will null

out the value of the applicable attribute as indicated in the following ABDL request:

UPDATE ((FILE = record_type_x) AND
(record_type_x = CIT.run_unit.dbkey) AND
(set_type_y = CIT.set_type.owner.dbkey))

(set_type_y = NULL)

64

Prior to mapping the MODIFY statement it should be noted that the

CONNECT and DISCONNECT statements are used to modify attribute-values

representing functions in the AB(functional) database. In order to perform these

modifications the attributes are disconnected from the set type occurrence, modified,

and then reconnected to the set type occurrence.

F. MAPPING CODASYL-DML MODIFY STATEMENT
The MODIFY statement either alters the entire current record of the run-unit or

it modifies specific data items in a the current record. The syntax of the MODIFY
statement updating an entire record is:

MODIFY record_type_x The syntax of the MODIFY statement to alter specific

data items of the current record of the run-unit is:

MODIFY item_l. ..., item_n IN record_type_x In each of the aforementioned

instances, the data items that are to be modified must be supplied by the user. KMS
will then retrieve these data items from the UWA of the specified record and map the

following ABDL request:

UPDATE ((FILE = record_type_x) AND
(record_type_x = CIT.run_unit.dbkey))

(data_item_i = user_vaiue_i)

The above UPDATE request is repeated for each field of the record that is to be

modified. The only change to the UPDATE would be reflected in the individual data

items.

G. MAPPING CODASYL-DML STORE STATEMENTS

The STORE statement creates a new record occurrence and establishes it as the

current of the run-unit. Prior to inserting the record, however, it is constructed by

having its field values stored in UWA. The syntax of the STORE statement is:

STORE record_type_x The key factors in mapping the STORE statement are:

(1) Set selection status.

(2) Insertion clause.

(3) Duplicate condition.

As defined in the schema transformation algorithm, the set selection status is always

BY APPLICATION. Additionally, the STORE statement requires that the insertion

clause of the pertinent set types be AUTOVIATIC. Furthermore, the interface checks

the dupjlag field of the nattr_node of Figure 4.7 to determine if any of the data items

65

of the record being inserted has a DUPLICATES NOT ALLOWED clause assigned to

it. Should it be determined that one or more fields of the record have the clause

associated with it, a RETRIEVE request is formed to see whether or not a duplicate

record already exists in the database. Thus, the mapping of the STORE statement

consists of an INSERT request to store the request and possibly a RETRIEVE request

to determine the status of duplicates.

Once the above requirements are met KMS must ascertain the status of Daplex

imposed overlap constraints. As discused in Chapter V, the Overlap Table maintains a

list of which set types representing functional subtypes have overlap constraints

declared. It is essential that the overlap status be verified in order to maintain the

integrity of the database. The mapping of the STORE statement then proceeds with

KMS verifying the duplicate status. If data items have been designated DUPLICATES

NOT ALLOWED the following ABDL request if formed with the results being placed

in UWA:

RETRIEVE ((FILE = record_type_x) AND
(data_item_i = user_value_i))

(record_type_x)

Next KMS forms an INSERT request:

INSERT (< FILE, record_type_x > ,
< record_type_x, ***>

,

< data item 1, user value 1>,

< set_type_y, CIT.set_type_y.owner.dbkey>)

The data items values are user supplied and retrieved via UWA.

H. MAPPING CODASYL-DML ERASE STATEMENTS

The ERASE statement deletes records from the database. When mapping this

statement it is imperative that we consider the constraints imposed by the rules of

CODASYL-DML as well as those imposed by Daplex. The CODASYL-DML

limitation is that the record(s) to be deleted cannot be an owner of a non-null set type

occurrence.

In examining the Daplex requirements we must evaluate the Daplex equivalent of

the CODASYL-DML ERASE statement, the DESTROY statement. The DESTROY

66

statement is used to remove entities from the database. If the entity type that is being

deleted has any entity subtypes in its hierarchy, then these subtypes are also deleted;

the entire hierarchy of the entity type is deleted. However, there is a significant factor

that comes into play when processing the DESTROY statement. If the entity being

deleted is referenced by a database function, then the DESTROY statement is aborted.

The ERASE statement has two options, the ERASE ALL option and the ERASE

option. The two options are presented in the following subsections.

1. The ERASE Option

The ERASE statement without the ALL option deletes only one record from

the database, the current of the run-unit. Its syntax is:

ERASE record_type_x

Recalling the CODASYL-DML constraint, we realize that KMS must form a

RETRIEVE request to determine if there are any sets whose members are connected to

the specified record. This is accomplished by checking to see if there are any set type

occurrences where the owner database key is the database key of the current of the

run-unit. In order to meet both the CODASYL-DML and Daplex imposed

constraints, KMS must form two separate RETRIEVE requests for each ERASE

statement:

(1) Retrieve all set occurrences where the current of the run-unit is the owner.

(2) Retrieve all set occurrences where the current of the run-unit is a member.

The ABDL translation being:

RETRIEVE ((FILE = CIT.set_type_y.member) AND
(set_type_y = CIT.run_unit.dbkey))

(set_type_y)

If the above request places any set types in RB then the ERASE statement does not

satisfy the CODASYL-DML constraints and it is aborted. If RB is empty then KMS

forms the next ABDL request:

RETRIEVE ((FILE = CIT.set_type_y.owner) AND
(set_type_y = CIT.run_unit.dbkey))

(set_type_y)

If this request results in an empty RB then the Daplex constraints were satisfied and

KMS continues mapping the ERASE statement as follows:

DELETE ((FILE = record_type_x) AND
(record_type_x = CIT.run_unit.dbkey))

67

In mapping the ERASE option KMS always issues the first RETRIEVE

request for execution by KC. The results of the first request will determine whether or

not the two remaining requests are issued or if the ERASE transaction is aborted.

2. The ERASE ALL Option

The second option of the ERASE statement is the ERASE ALL option. It

deletes every record in the hierarchy of the current of the run-unit, the syntax of the

ERASE ALL statement is:

ERASE ALL record_type_x

In this instance the constraints imposed by CODASYL-DML clash with those imposed

by Daplex because of the requirements explained above and therefore the statement is

not translated in this implementation. It should be noted that the lack of an ERASE

ALL option is not considered to critical because the same effect can be obtained by the

repeated use of separate ERASE statement, if the constraints are met.

68

VII. CONCLUSIONS

As previously mentioned, the conventional approach to the design and

implementation database management systems (DBMS) has been based upon the

premise of a single data model with its model-based data language. This methodology

restricted a DBMS to transactions solely on the specified model and in the specified

data language, resulting in the proliferation of single-model, single-language systems

with limited flexibility and extensibility. The obvious need for increased efficiency and

portability in DBMS has highlighted the requirement for a system that can support

databases based on the five major data models using the respective model-based data

languages, specifically: functional Daplex, hierarchical; DL/I, relational/SQL,

network CODASYL-DML, and attribute-based/ABDL. Hence, the Multi-Lingual

Database System (MLDS) has evolved, allowing a user to access and interact with

numerous databases based on various data models via their corresponding data

languages.

While MLDS allows the user to access databases based on the five major data

models using their respective data languages, this thesis has presented the partial

implementation of a first step toward making MLDS a truly Multi-Model Database

System (MMDS). The primary goal of this work is to access a functional database via

CODASYL-DML transactions, achieving interaction across the artificial boundaries of

data models that the conventional approach to DBMS has yet to cross.

A. A REVIEW OF OUR WORK
We have fully implemented a language interface layer (LIL) that is based on the

LIL of the network interface of MLDS as implemented by Erndi [Ref. 19]. The

difference, however, is that the LIL of this thesis allows the user to access a database

that is based on either the network data model or the functional data model. If the

desired database is based on the network data model, then the user inputs his

transactions using the data model-based data language, CODASYL-DML. On the

other hand, if the desired database is based on the functional data model, LIL

transforms the functional schema into a network schema and the user is then allowed

to access this transformed database using CODASYL-DML transactions.

69

The kernel mapping subsystem (KMS) should be modified as described in

Chapter VI of this work in order to allow the CODASYL-DML transactions to

properly manipulate the AB(functional) database that has become the target database.

KMS translates the CODASYL-DML transactions to their equivalent ABDL

transactions somewhat differently from the translation designed by Wortherly [Ref. 3]

and implemented by Emdi [Ref. 19], due to the fact that the target database is an

attribute-based representation of a functional database rather than an attribute-based

representation of a network database.

The kernel controller subsystem (KCS) was not implemented as a part of this

thesis work. This was due to the uncovering of a problem in January 1987 during the

integration of MLDS with the Multi-Backend Database System (MBDS). This

problem prevented the connection of KCS to the kernel database system (KDS) and

would not have permitted the actual test and evaluation of KCS. Although KCS was

not implemented, it was examined and thought to entail only minimal changes to the

existing KCS of the network interface of MLDS. The modifications are similar to

those described by Rodeck [Ref. 2].

B. FUTURE RESEARCH

Rodeck's design [Ref. 2] and the work completed in this thesis present a bright

picture for the emergence of MMDS. It is anticipated that the unfinished work from

this thesis will eventually be completed. The remaining work is to implement the

translation schema of the CODASYL-DML statements as described in Chapter VI,

which entails altering the existing KMS and KC of the network interface of MLDS.

Once finished we will have created a complete and full interface allowing the accessing

of a functional database via CODASYL-DML transactions.

Along with this interface, the Laboratory for Database Systems Research, Naval

Postgraduate School, Monterey, California is continuing to examine other interfaces

that should lead to further breakthroughs. Current work includes that of Zawis

[Ref. 24], which implements a means for accessing a hierarchical database via SQL

transactions. It is expected that the ongoing research and development effort will

ultimately result in a comprehensive MMDS.

70

LIST OF REFERENCES

1. Demurjian, S.A., The Multi-Lingual Database System, Doctoral Dissertation. The

Ohio State University. December 1986.

2. Rodeck. B.D., Accessing and Updating Functional Databases Using CODASYL-
DML, Masters Thesis. Naval Postgraduate School, Monterey. California, June

1986.

3. Wortherly, C.R., The Design and Analysis of a Network Interface for the Multi-

Lingual Database System, Masters Thesis, Naval Postgraduate School, Monterey,

California, December 1985.

4. Hsiao, D.K., "New Database Systems," Computer Science in the Naval

Postgraduate School, pp. 11-14, September 1986.

5. Canaday, R.E., et al., "A Back-end Computer for Data Base Management,"

Communications of the ACM, Vol. 17, No. 10, October 1974.

6. Naval Postgraduate School Report NPS52-86-011, The Multi-Lingual Database

System, by S.A. Demurjian and D.K. Hsiao, February 1986.

7. Sibley, E.H. and Kershberg, L., "Data abstraction views and updates in RIGEL,"
Proc. ACM SIGMOD AFIPS, Nat. Computer Conference, Dallas, Texas, June

1977,

8. Shipman. D.W.. "The Functional Data Model and the Data Language

DAPLEX," ACM Transactions on Database Systems, Vol. 6, No. 1. March 1981.

9. Chen, Peter Pin-Shan, "The Entity-Relationship Model-Toward a Unified View

of Data," ACM Transactions of Database Systems, Vol. 1, pp. 9-36, March 1976.

10. Date, C.J.. An Introduction to Database Systems, Vol. 1, Addison-Wesley

Publishing Company, 1986.

11. Tsichritzis, D.C. and Lochovsky, F.H., Data Models, pp. 119-147, Prentice-Hall,

1982.

12. Kroenke, David, Database Processing, Second Edition, Science Research

Associates, Inc., 1983.

71

13. Emdi. B., The Implementation of a Network Interface for the Multi-Lingual

Database System, Master's Thesis, Naval Postgraduate School, Monterey,

California, December 1985.

14. Hsiao, D.K. and Haray, F., "A Formal System for Information Retrieval from

Files," Communications of the ACM, V.13, No. 2, February 1970; Corrigenda, Vol.

13, No. 3, March 1970.

15. Wong, E., and Chiang, T.C. "Canonical Structure in Attribute Based File

Organization," Communications of the ACM, September 1971.

16. Rothnie, J.B. Jr., "Attribute Based File Organization in a Paged Memory
Environment," Communications of the ACM, September 1971.

17. Banerjee, J. and Hsiao, D.K., The Ohio State University Technical Report No.

OSU-CISRC-TR-77-7, A Methodology for Supporting Existing CODAS YL
Databases with New Database Machines, by J. Banerjee and D.K. Hsiao,

November 1977.

18. Lim, B.H., The Implementation of a Functional Interface for the Multi-Lingual

Database System, Master's Thesis, Naval Postgraduate School, Monterey,

California, December 1986.

19. Emdi, B., The Implementation of a Network Interface for the Multi-Lingual

Database System, Master's Thesis, Naval Postgraduate School, Monterey,

California, December 1985.

20. Goisman, P.L., The Design and Analysis of a complete Entity- Relationship

Interface for the Multi-Backend Database System, Master's Thesis, Naval

Postgraduate School, Monterey, California, December 1985.

21. Anthony, J.A. and Billings, A. J., The Implementation of a Complete Entity-

Relationship Interface for the Multi-Backend Database System, Master's Thesis,

Naval Postgraduate School, Monterey, California, March 1986.

22. Meyer, G. and MacDougal, P., An Attribute-Value Translation of CODAS YL's

Data Manipulation Language, Ohio State University, 1982.

23. Computer Corporation of America, Cambridge, Massachusetts, Technical Report

CCA-84-01, Daplex User's Manual, S. Fox et al, June 1984.

24. Zavvis, J.A., Accessing tlierarchical Databased via SQL Transactions in the Multi-

Model Database System, Masters Thesis, Naval Postgraduate School, Monterey,

California, (to be published December, 1987).

72

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School

Monterey, CA 93943-5002

3. Chief of Naval Operations 1

Director, Information Systems (OP-945)

Navy Department

Washington, D.C. 20350-2000

4. Department Chairman. Code 52 2

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5000

5. Curricular Officer, Code 37 1

Computer Technology

Naval Postgraduate School

Monterey, CA 93943-5000

6. Professor David K. Hsiao, Code 52Hq 2

Computer Science Department

Naval Postgraduate School

Monterey. CA 93943-5000

7. Professor Steven A. Demurjian 1

Computer Science and Engineering Department

The University of Connecticut

260 Glenbrook Road
Storrs, CT 06268

8. Lieutenant Harry Coker, Jr., USN 3

Code R620
Defense Communications Engineering Center

Reston. VA 22090-5500

9. Beng Hok Lim 1

507, Bedok North Ave 3

-10-347, Singapore 1646

Republic of Singapore

73

•Vt

DUD"'

Thesis
C53133
c.l

Coker
Accessing a functional

database via CODASYL-DML
transactions.

Thesis

C53133 Coker

c ,l Accessing a functional

database via CODASYL-DML

transactions.

