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Patient-specific modelling of haemodynamics in arterial
networks has so far relied on parameter estimation for
inexpensive or small-scale models. We describe here a Bayesian
uncertainty quantification framework which makes two major
advances: an efficient parallel implementation, allowing
parameter estimation for more complex forward models, and a
system for practical model selection, allowing evidence-based
comparison between distinct physical models. We demonstrate
the proposed methodology by generating simulated noisy flow
velocity data from a branching arterial tree model in which a
structural defect is introduced at an unknown location; our
approach is shown to accurately locate the abnormality
and estimate its physical properties even in the presence of
significant observational and systemic error. As the method
readily admits real data, it shows great potential in patient-
specific parameter fitting for haemodynamical flow models.
1. Introduction
Mathematical models for haemodynamics trace back to the work
of Euler, who described a one-dimensional treatment of blood
flow through an arterial network with rigid tubes [1,2]; more
sophisticated one-dimensional models are still used to study a
variety of physio-pathological phenomena [3–10]. Computational
advances have also allowed for the development of
computationally intensive three-dimensional models [11–16],
which have been used to accurately simulate specific human
arteries (e.g. the carotid arteries [17]) and model their material
properties (e.g. of cerebral arterial walls [18]). There also exist
multi-component models [19], which are amenable to applications
such as modelling oxygen transport to solid tumours [20] and
surgical tissue flaps [21,22].

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.182229&domain=pdf&date_stamp=2019-10-16
mailto:matzavinos@brown.edu
http://orcid.org/
http://orcid.org/0000-0003-0491-7329
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


A (x, t)

u (x, t)x

Figure 1. Schematic of one-dimensional artery segment.
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Despite the sophistication of these approaches, there remain a number of challenges in the creation of
patient-specific models using individual medical data. In particular, computational expense usually
limits arterial parameter estimation to the one-dimensional class of models [2,12], which have
nonetheless proven sufficiently robust to study fluid–structure interactions and viscoelasticity [7,9] and
create a patient-specific model for vascular bypass surgery [23]. Several approaches exist for parameter
estimation and uncertainty quantification for these models. Gradient descent has been used to estimate
arterial compliance parameters [24], recovering single parameters assumed constant in space and time.
Sensitivity analysis has also been used, successfully quantifying output sensitivity to various
uncertainties in a stochastic flow network [25]. More recently, computational methods based upon
Bayesian optimization and multi-fidelity information fusion for model inversion have been explored [26].

The chief contribution of this work is to introduce a Bayesian framework for uncertainty quantification
in a bifurcating network of one-dimensional extensible arteries. The advantages of the approach are
twofold. First, it uses transitional Markov chain Monte Carlo (TMCMC), a highly parallelizable
algorithm for approximate sampling which allows practical uncertainty quantification even for large
arterial networks [27–29]; our high-performance implementation Π4U will be shown to simultaneously
and efficiently estimate several unknown parameters in this setting. Second, the approach can practically
be used for Bayesian model selection, allowing for evidence-based comparison between models
with distinct physical assumptions. The approach thus represents a significant advance in fitting
patient-specific haemodynamical flow models.

Specifically, we consider a branching network of 19 arteries in which a structural flaw (e.g. an aneurysm)
has been introducedat anunknown location. Sections 2 and3describe the one-dimensional blood flowmodel
and the uncertainty quantification framework. In §4,we use the flawedmodel to simulate noisy observations
of the flow velocity at fixed points in the network. We then use Bayesian model selection to probabilistically
locate the defect within the network and accurately recover its structural properties, showing the approach to
be effective evenwhen parameters are corrupted with Gaussian noise. As the method readily admits clinical
blood flow data, which have been shown to be measurable with non-invasive procedures [30–33], it shows
great potential in diagnosing patient-specific structural issues in the circulatory system.
2. Nonlinear one-dimensional blood flow model
We first introduce the one-dimensional blood flow model. While such models can be derived via a
scaling of the Navier–Stokes equations for viscous flow [34], we use here the geometry- and
conservation-motivated approach described by Sherwin et al. [2] and Formaggia et al. [12]. In this
approach, the viscous, incompressible flow is assumed to move only in the axial direction (i.e. along
the one-dimensional artery), to exhibit axial symmetry, and to maintain constant internal pressure
over orthogonal cross-sections. The artery is assumed to have low curvature and to be distensible in
the radial direction. A schematic of the artery appears in figure 1.

The artery of constant length ℓ and position-dependent cross-sectional area A(x, t) is filled with blood
flowing at velocity u(x, t) and with internal cross-sectional pressure p(x, t), yielding the cross-sectional
flux Q(x, t) =A(x, t)u(x, t). Choosing u, A and p as the independent variables, the partial differential
equation governing the incompressible flow can be derived from conservation of mass and momentum
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where ρ is the flow density and Kr is a parameter representing viscous resistance per unit length, here
given by Kr =−22μπ in terms of the viscosity μ of blood and the chosen velocity profile (see [8,9] for
more details).
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Figure 2. Schematic of Y-bifurcation in an arterial network.
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The system is closed using a constitutive law to relate pressure and area. Using the Laplace tube law
and assuming that the arterial wall is purely elastic,

p ¼ pext þ
ffiffiffiffi
p
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where pext is the external pressure, E is Young’s modulus of the wall, h is the wall thickness, A0 is the
relaxed cross-sectional area and ν is the Poisson ratio, here taken to be 1

2. For notational simplicity, we
collect the coefficient into a single stiffness parameter B, yielding

p ¼ pext þ B
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:

Equation (2.1) can then be rewritten in the form of a nonlinear hyperbolic conservation law [2]:
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in terms of the elastic component pe(x, t) and viscoelastic component pv(x, t) of the pressure.
The hyperbolic system is approximated numerically using a discontinuous Galerkin method. The

one-dimensional domain Ω = (a, b) is discretized into N non-overlapping elements Vi ¼ (xLi , x
R
i ) such

that xRi ¼ xLiþ1 and
SN

i¼1
�Vi ¼ �V; discrete approximations to the corresponding weak formulation are

found in terms of orthonormal Legendre polynomials of degree p [35,36] (see, e.g. [35,37] for the
advantages of this approach). Inlet and outlet boundary elements use upwind flux, while a second-order
Adams–Bashforth scheme [35] is used for time integration.

To extend the model to a branching arterial network, multiple arteries are joined via coupled boundary
conditions at bifurcations. An example of such a bifurcation appears in figure 2. Boundary conditions are
physically motivated; mass should be conserved through bifurcations, while momentum should be
continuous at the boundary, i.e.

A1u1 ¼ A2u2 þ A3u3,

p1 þ 1
2
ru21 ¼ p2 þ 1

2
ru22,

p1 þ 1
2
ru21 ¼ p3 þ 1

2
ru23,

where pi, Ai and ui correspond to the ith artery. Other branching configurations appear in [2].

3. Bayesian uncertainty quantification
The primary practical goal of this paper is to identify structural defects in an arterial network using
observations of the blood flow velocity. By varying the material properties of the arteries, perturbations
to the flow can be computed via the blood flow model described in §2; in this sense, the goal is to solve
the inverse problem of determining structural parameters given velocity data as model output. In real
applications, these velocity data may be corrupted by noise (e.g. measurement error). Furthermore,
model parameters may be fit to measurements which are themselves noisy. In this section, we introduce
our recent Bayesian framework for uncertainty quantification which is amenable to the former issue
(observational noise) and will prove robust to the latter (systemic noise). Section 3.3 describes the
TMCMC method which forms the core of this approach: its parallelizability allows for feasible
application tomore expensive models, such as themodel of §2, via the use of high-performance computing.
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3.1. Parameter estimation

Denote as M the mathematical model of interest, which deterministically maps a set of n parameters
u [ Rn to m outputs g(u jM) [ Rm (here, g denotes the forward problem, and so g( · |M ) is a solution
to the forward problem using the model M). The inverse problem is then to estimate the parameters θ
given the model outputs. We assume that these model outputs have been corrupted by noise (due to
e.g. measurement, computational or modelling error) as

D ¼ g(u jM)þ e (3:1)

in terms of a random predictive error e. Under the Bayesian formulation of this problem, the parameters θ
are assigned a prior distribution π(θ |M) given any a priori knowledge of the parameters based on e.g.
physical constraints; the posterior p(θ |D, M) that observed data D were generated by parameters θ can
then be found as

p(u jD, M) ¼ p(D j u, M)p(u jM)
r(D jM)

, (3:2)

using the likelihood p(D | θ, M ), calculated by evaluating g(θ |M ) and using the form of e, and the
evidence ρ(D |M ) of the model class, computed via the multidimensional integral

r(D jM) ¼
ð
p(D j u, M)p(u jM) du:

In order to calculate the likelihood p(D | θ, M ), we make the simplifying assumption that e is normally
distributed with zero mean and covariance matrix Σ, which may itself include additional unknown
parameters. Since the model outputs g are deterministic, it follows that D is also normally distributed,
and so the explicit likelihood p(D | θ, M ) is given by

p(D j u, M) ¼ jS(u)j�1=2

(2p)m=2 exp � 1
2
J(u, D jM)

� �
,

where

J(u, D jM) ¼ [D� g(u jM)]TS�1(u)[D� g(u jM)]

is the weighted measure of fit between the model predictions and the measured data, | · | denotes
determinant, and the parameter set θ is augmented to include parameters that are involved in the
structure of the covariance matrix Σ.

3.2. Model selection
The Bayesian approach to uncertainty quantification is especially useful in the context of model selection.
The evidence ρ(D |M ) which appears in equation (3.2) is a measure of the degree to which the model M
can explain the data D; when M is one particular model in a parametrized class M of models, the
evidence can be used to derive a distribution on models. Let Pr(Mi) be a prior distribution on models
in the class M. The posterior Pr(Mi |D) can again be derived from Bayes’ theorem:

Pr(Mi jD) ¼ r(D jMi) Pr(Mi)
p(D jM)

,

where pðD jMÞ ¼ P
i rðD jMiÞPrðMiÞ is a normalization constant. Intuitively, Pr(Mi |D) is a distribution

which describes the probability of the data D having been generated from model Mi (as opposed to
another model Mj) under the assumption that at least one model in M is the true model, i.e. was
actually used to generate the data. If a uniform prior is assumed on models, this posterior is directly
proportional to the evidence ρ(D |Mi), and so model selection is ‘free’ when the evidence is already
calculated for parameter estimation [29,38–40].

3.3. Transitional Markov chain Monte Carlo
While there exist many approaches to solving the proposed Bayesian inverse problem (e.g. [41–43]), few
are constrained by the main computational barrier in this application: the complex forward problem g
(here, the blood flow model of §2) which appears in the fitness J(θ, D |M ). The TMCMC algorithm,



Algorithm 1 TMCMC

1: procedure TMCMC [27,29]

2: BEGIN, SET j ¼ 0, q0 ¼ 0

3: Generate {u0, k , k ¼ 1, . . . ,N0} from prior f0(u) ¼ p(ujM) and compute likelihood p(Dju0,k , M) for each sample.
4: loop:

5: WHILE q jþ1 � 1 DO:

6: Analyze samples {u j,k , k ¼ 1, . . . ,Nj} to determine q jþ1, weights w(u j,k ), covariance Sj , and estimator Sj of

E[w(u j,k )].

7: Resample based on samples available in stage j using the plausibility weights and the Metropolis algorithm in

order to generate samples for stage j þ 1 and compute likelihood p(Dju jþ1,k , M) for each.

8: if q jþ1 . 1 then

9: BREAK,

10: else

11: j ¼ j þ 1

12: goto loop.

13: end

14: END
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developed by Ching & Chen [27], is a useful approach in this context; by smoothly transitioning to the
target distribution (the posterior p(θ |D, M)) from the prior π(θ |M ), repeated evaluations of the
forward problem g in regions of low probability are avoided. Our implementation, Π4U, further takes
advantage of the parallelizability of TMCMC with a highly efficient architecture for task sharing
(appendix A).

To accomplish a smooth transition, we define a series of intermediate distributions:

fj(u) � [p(D j u, M)]qj � p(u jM), j ¼ 0, . . . , l

0 ¼ q0 , q1 , � � � , ql ¼ 1:

The original TMCMC algorithm is summarized above in algorithm 1. It begins by taking N0 samples
θ0,k from the prior distribution f0(θ) = π(θ |M ). For each stage j of the algorithm, the current samples are
used to compute the plausibility weights w(θj,k) as

w(u j,k) ¼
f jþ1(u j,k)

fj(u j,k)
¼ [p(D j u j,k, M)]q jþ1�qj :

Recent literature suggests that qj+1, which determines how smoothly the intermediate distributions
transition to the posterior, should be taken to make the covariance of the plausibility weights at stage
j smaller than a tolerance covariance value, often 1.0 [29].

Next, the algorithm calculates the average Sj of the plausibility weights, the normalized plausibility
weights w(u j,k) and the scaled covariance Σj of the samples θj,k, which is used to produce the next
generation of samples θj+1,k:

Sj ¼ 1
Nj

XNj

k¼1

w(u j,k),

w(u j,k) ¼
w(u j,k)PNj

k¼1 w(u j,k)
¼ w(u j,k)

(NjSj)

and Sj ¼ b2
XNj

k¼1

w(u j,k)[u j,k � m
j
][u j,k � m

j
]T:

Σj is calculated using the sample mean μj and a scaling factor b, usually 0.2 [29].
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Figure 3. Schematic of arterial network (not to scale). The 19 arteries have varied lengths (ranging from 0.026 to 0.17 m) and cross-
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Figure 4. Inflow boundary condition for blood velocity (m s−1) corresponding to three cardiac cycles.
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The algorithm then generates Nj+1 samples û jþ1,k by randomly selecting from the previous generation
{θj,k} such that û jþ1,‘ ¼ u j,k with probability w(u j,k). These samples are selected independently at random,
so any parameter can be selected multiple times—call nj+1,k the number of times θj,k is selected. Each
unique sample is used as the starting point of an independent Markov chain of length nj+1,k generated
using the Metropolis algorithm with target distribution fj and a Gaussian proposal distribution with
covariance Σj centred at the current value.

Finally, the samples θj+1,k are generated for the Markov chains, with nj+1,k samples drawn from the
chain starting at θj,k, yielding Nj+1 total samples. The algorithm then either moves forward to
generation j + 1 or terminates if qj+1 > 1.
4. Results
We now apply the Bayesian framework of §3 to the blood flow model of §2. In particular, we study the
example 19-artery network shown in figure 3. The solution for our deterministic model, given by (2.2)
and solved using a discontinuous Galerkin method with time step Δt1 = 0.00004 s, plays the role of g
in the model prediction equation (3.1). Measurements of the flow velocity are taken at N specified
locations which vary by experiment and occur with a sampling period of Δt2 = 1600Δt1 = 0.064 s.

Blood (viscosity μ* = 0.0045, with asterisks denoting reference values) in the network begins with zero
velocity and is driven by a specified inflow velocity at the beginning of the first artery: a sum of
trigonometric polynomials, shown in figure 4, which approximates the flow for three cardiac cycles
[9]. The length of three cycles (approx. 3.3 s) allows for a total of 52 velocity data per measurement
location using the sampling period Δt2, and so the output space of g has dimension 52N. The outflow
condition is a fully absorbing boundary condition, described in more detail in [8].
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We consider three free parameters: the blood viscosity μ, the arterial stiffness parameter B and the

relaxed cross-sectional area A0 (the last two of which vary by artery). A structural defect (e.g. an
aneurysm or stenosis) can be modelled by varying the stiffness or relaxed area of a particular artery;
to better emphasize the degree to which a flawed artery has been modified by its defect, results will
use the scaled stiffness β = B/B* (with respect to the reference stiffness B*) and scaled cross-sectional
area a ¼ A0=A�

0 (with respect to the reference area A�
0), and so arteries with no defect will have β = α = 1.

We use our implementation of Bayesian uncertainty quantification to examine a number of questions in
the context of this forwardmodel, focusing inparticular on the ability of uncertainty quantification to identify
the location of structural flawswithin the networkusingonlynoisymeasurements of the flowvelocity. To test
the effectiveness of our implementation in these experiments thus requires noisy data D corresponding to a
known truth;weuse here synthetic data generated from the samemodel butwith known, fixed parameters. It
should be stressed that the approach is easily modified to admit real data and that there exist multiple
practical methods for measuring blood flow velocities from in vivo arteries [30–33]. Section 4.3 will show
that flaws can be located accurately even when the parameters used to generate the synthetic data are
significantly perturbed from the parameters used to perform uncertainty quantification.

Explicitly, observed data D are generated as

Dk ¼ vk þ sek, (4:1)

where Dk is the noisy observation at time tk, vk is the flow velocity at time tk, ek is a zero-mean,
unit-variance Gaussian random variable and σ is the noise level. Here, we choose σ to be a fraction
σ = 0.01η (or sometimes 0.05η) of the standard deviation η of all velocity data vk.

In the following results, we use our implementation of uncertainty quantification to generate 500 samples
from the posterior distribution p(θ |D, M) in a variety of scenarios. Posterior distributions are used for
parameter estimation (§4.1) and to identify structural flaws via Bayesian model selection (§§4.2 and 4.3).
Recovered posterior means, denoted with a hat (e.g. b̂ ), are used as parameter estimates in our analysis.

4.1. Parameter estimation
We first consider a basic case of parameter estimation to illustrate the feasibility of the approach.
Specifically, we estimate the blood viscosity μ and the scaled stiffness β2 of artery 2 (see figure 3 for
artery labels) assuming all other parameters are fixed to their reference values. The noisy data used,
corrupted according to (4.1) with noise level σ = 0.01η, are sampled from a single location at the start
of artery 6. As described in §3, we choose σ as an additional free parameter, requiring the approach to
recover the noise level in addition to the target model parameters. A uniform distribution on [0.5,
1.5] × [0.5, 1.5] × [0, 1] in the parameter space (μ, β2, σ) is used as the parameter prior π.

To determine the effect of the choice of sampling location, we additionally consider separate cases
using data obtained from the start of arteries 1 and 8; for notational clarity, we refer to as Oi the case
of observing the upflow end of artery i.

The results for the case O6 appear in figure 5. μ and β2 are positively correlated in the posterior, i.e.
simultaneously raising or lowering both the blood viscosity and the stiffness of artery 2 yields
qualitatively similar observed data. Intuitively, in order to maintain a consistent rate of flow, a viscous
flow necessitates more rigid artery walls.

Numerical results for O1, O6 and O8 are summarized in table 1. The recovered posterior means of (μ,
β2, σ) were (0.00410, 0.972, 0.00074), (0.00449, 0.997, 0.00074) and (0.00447, 0.994, 0.00077), respectively,
closely matching the true values μ* = 0.0045 and b�

2 ¼ 1:0 (σ* differed by experiment due to differences in
flow velocity by location: 0.00074, 0.00074 and 0.00077 for O1, O6 and O8, respectively). To quantify the
degree of uncertainty in each parameter’s posterior distribution, we compute a coefficient of variation,
defined as the ratio of the single-parameter posterior’s standard deviation to its mean (denoting the
results um̂ , ub̂ 2

and uŝ ); here, O6 and O8 recover parameters with comparatively lower uncertainty than
O1, whose measurements were largely dominated by the inflow boundary condition. Nonetheless, in all
cases, the reference values used to generate the synthetic data were within one standard deviation of the
recovered posterior means.

4.2. Locating structural flaws with model selection
Given the practicality of parameter estimation and its intermediate estimation of the model evidence ρ(D|
M), the Bayesian model selection framework described in §3.2 is a natural approach to locating structural
flaws in the arterial network. Namely, define asMi the model in which the scaled stiffness β of artery i has
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Table 1. Posterior means and uncertainties for parameter estimation on the 19-artery network for three cases Oi (noise level
σ = 0.01η).

data observations m̂ um̂ (%) b̂ 2 ub̂ 2
(%) ŝ uŝ (%)

O1 0.004102 11.86 0.97175 3.48 0.00074218 5.87

O6 0.004493 1.41 0.99663 0.51 0.00073577 6.30

O8 0.004470 2.05 0.99367 0.70 0.00076524 7.65
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been perturbed from its reference value by an unknown amount, corresponding to e.g. an aneurysm or
stenosis. Parameter estimation as in §4.1 can be used to recover the perturbed stiffness which best
matches the observed data, simultaneously yielding an estimate for the evidence ρ(D |Mi) of model Mi.
Letting M be the collection of Mi for various arteries i in the network, the model selection distribution
Pr(Mi |D) is a probabilistic measure of the likelihood of the structural defect occurring in artery i (as
opposed to a different artery j). The class M can easily be augmented with additional models; here, we
also consider a model Mi : j which freely varies the stiffness of two arteries i and j.

We first consider generating data D from a reference model using β6 = 0.5 and βi = 1, i≠ 6, i.e. a model
in which the scaled stiffness of artery 6 has been halved from its reference value. We consider three cases
for data collection: a two-sensor configuration using data from the end of arteries 1 and 7, a three-sensor
configuration using data from the end of arteries 1, 7 and 13, and a four-sensor configuration using
velocity data from the end of arteries 1, 7, 10 and 13. In each case, no sampling locations are adjacent
to the damaged artery. The noise level is again chosen as σ = 0.01η, i.e. 1% Gaussian noise, and we
employ the same uniform prior on [0, 3] × [0, 1] for the parameters (β, σ).

Table 2 presents numerical results for six flaw models M3, M6, M7, M11, M13 and M6 : 7 when taking
flow measurements from the ends of arteries 1 and 7. Models M6 and M6 : 7, both of which include the
correct defect location in artery 6, are assigned the largest probabilities under the model selection



Table 3. Numerical results for identification of a β6 = 0.5 aneurysm using data from the ends of arteries 1, 7 and 13 (noise
level σ = 0.01η).

prediction model b̂ ub̂ (%) ŝ uŝ (%) log evidence Pr(Mj | D)

M3 0.722 2.29 0.000811 4.81 875.6 0.00001

M6 0.501 4.31 0.000770 5.23 886.3 0.70756

M7 1.056 2.19 0.000956 4.64 853.1 ∼0
M11 1.005 0.60 0.000949 5.02 848.8 ∼0
M13 0.901 1.91 0.000887 5.06 858.3 ∼0
M6 : 7 [0.505, 1.031] [3.45, 2.33] 0.000770 3.58 885.5 0.29242

Table 2. Numerical results for identification of a β6 = 0.5 aneurysm using noisy data from the ends of arteries 1 and 7 (noise
level σ = 0.01η).

prediction model b̂ ub̂ (%) ŝ uŝ (%) log evidence Pr(Mj | D)

M3 0.741 2.82 0.000786 6.31 583.2 0.00009

M6 0.499 6.61 0.000729 3.73 592.5 0.99949

M7 1.055 3.14 0.000923 4.27 567.7 ∼0
M11 1.022 0.76 0.000892 5.96 566.3 ∼0
M13 0.587 5.81 0.000867 5.04 578.3 ∼0
M6 : 7 [0.501, 1.036] [3.75, 2.15] 0.000719 5.16 584.7 0.00042
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posterior (Pr(Mj |D) = 0.99949, 0.00042, respectively); recovered parameter estimates b̂ 6 ¼ 0:499 (M6)
and b̂ 6 ¼ 0:501 (M6 : 7) for the wall stiffness of the damaged artery were accurate to within one
standard deviation. Though M6 : 7 assumes a second defect in artery 7, the posterior mean estimated
the stiffness to be similar to the reference value (b̂ 7 ¼ 1:036). M3, M7, M11 and M13 are not able to
accurately match the observed data, and so require a significantly higher noise level σ to explain
differences between the evaluated and observed velocities. For this reason, these models are assigned
negligible mass by Pr(Mi |D).

Note that the model M6 : 7 contains M6 in the sense that it can predict any combination of parameter
values which M6 can predict. In this light, the relatively higher evidence for M6 over the broader error
model M6 : 7 is in keeping with theoretical results available for Bayesian model class selection wherein
over-parametrized model classes are penalized due to Occam’s factor [38].

Table 3 illustrates the corresponding results for a three-sensor configuration using blood flow velocity
data from the ends of arteries 1, 7 and 13. The additional data collected from artery 13 significantly
reduce the (already small) probabilities assigned to models other than M6 and M6 : 7. Interestingly,
leveraging information from the end of artery 13, which is in a parallel tree (rather than directly
upstream or downstream) from the damaged artery, has the effect of shifting mass from M6 to M6 : 7 in
the model posterior, finding Pr(M6 |D) = 0.708 and Pr(M6 : 7 |D) = 0.292. Nonetheless, both M6 and
M6 : 7 estimate the damaged stiffness β6 accurately (0.501 and 0.505, respectively), with M6 : 7 again
finding the stiffness β7 of the undamaged artery 7 to be largely unchanged (1.031).

Finally, table 4 shows numerical results when velocity data are sampled at four monitoring locations:
at the ends of arteries 1, 7, 10 and 13. The additional data from the end of artery 10 drive the model
probabilities assigned to M3, M7, M11 and M13 down further (<10−8), rendering them orders of
magnitude smaller than the probabilities assigned to M6 and M6 : 7 (0.9996 and 0.0004, respectively).
The estimated scaled stiffness remains accurate to within one standard deviation, with M6 and M6 : 7

finding b̂ 6 ¼ 0:520 and 0.521, respectively, and M6 : 7 again estimates the stiffness of artery 7 to be
only slightly perturbed (b̂ 7 ¼ 1:027).

Taken together, these configurations support two conclusions about Bayesian model selection for
flaw identification: first, that increasing the number of locations at which data are sampled reduces
the probabilities assigned to incorrect models, and second, that model selection can accurately



Table 5. Numerical results for area-based identification of an α6 = 1.5 aneurysm using data from the ends of arteries 1, 7, 10
and 13 (noise level σ = 0.01η).

prediction model â uâ (%) ŝ uŝ (%) log evidence Pr(Mj | D)

M3 1.126 26.29 0.00554 3.40 781.0 ∼0
M6 1.508 0.45 0.00078 4.33 1183.6 0.998

M7 0.976 0.17 0.00415 4.15 827.9 ∼0
M11 1.048 0.48 0.00471 3.41 810.0 ∼0
M13 1.014 0.17 0.00518 3.18 793.0 ∼0
M6 : 7 [1.507, 1.000] [0.52, 0.031] 0.00077 3.24 1177.6 0.002

Table 4. Numerical results for identification of a β6 = 0.5 aneurysm using data from the ends of arteries 1, 7, 10 and 13 (noise
level σ = 0.01η).

prediction model b̂ ub̂ (%) ŝ uŝ (%) log evidence Pr(Mj | D)

M3 0.760 2.60 0.000817 3.93 1169.9 ∼0
M6 0.520 2.57 0.000762 3.48 1187.3 0.9996

M7 1.046 2.72 0.000926 3.86 1144.5 ∼0
M11 0.996 0.19 0.000932 3.58 1134.1 ∼0
M13 0.890 1.83 0.000902 3.47 1148.8 ∼0
M6 : 7 [0.521, 1.027] [3.98, 2.49] 0.000771 3.63 1179.5 0.0004
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determine the defect location and magnitude for a variety of sensor configurations, including
configurations which do not sample from at or near the defect location.
4.2.1. Model selection for cross-sectional area

As previously suggested, aneurysms and stenoses can also be modelled by adjusting the initial cross-
sectional area of an artery rather than its stiffness. Ideally, the Bayesian framework for model selection
should provide similar results when the stiffnesses β are fixed and models Mi instead allow the scaled
cross-sectional area α of the defective artery to be perturbed. In what follows, we examine similar
scenarios to the above in the case where, rather than reducing its wall stiffness, the relaxed cross-
sectional area of artery 6 is altered. A uniform prior on [0, 3] × [0, 1] is used for the parameters (α, σ).

We first consider the case α6 = 1.5, i.e. an aneurysm in which the defective artery (again, artery 6 in the
reference model) has become enlarged by 50%. Noisy flow velocity data are collected from the ends of
arteries 1, 7, 10 and 13, as in the final case of the previous section; results appear in table 5. M6 and M6 : 7

are again the most likely models (Pr(Mj |D) = 0.998 and 0.002, respectively), suggesting that the previous
results do not rely on the specific choice of the parameter β. Other models were assigned negligible
probabilities. Similarly to the results for reduced stiffness, both M6 and M6 : 7 accurately recover the
defect magnitude (â6 ¼ 1:508, 1:507, respectively), andM6 : 7 finds artery 7 to be unchanged (â7 ¼ 1:000).

We then consider the same scenario for a reduction α6 = 0.5 in the cross-sectional area of artery 6, i.e. a
stenosis in which the defective artery has narrowed by 50%. Results are summarized in table 6. M6 and
M6 : 7 recover the reduced area accurately (â6 ¼ 0:500, 0:501, respectively) and are assigned the highest
model evidence (Pr(Mj |D)≈ 1.00 and ∼10−4, respectively).

Table 7 shows results for the same magnitude stenosis (α6 = 0.5) with increased observational noise
level σ = 0.05η. The log evidence of models M6 and M6 : 7 is sharply reduced compared to table 6,
though M6 and M6 : 7 remain the most probable models under the model selection posterior, with
Pr(Mj|D) = 0.983 and 0.017, respectively. Both models additionally recover the reduced area accurately
(â6 ¼ 0:502 and 0.503, respectively) despite the increased noise.

Finally, table 8 considers the case of a smaller-magnitude stenosis (α6 = 0.8). Results were similar to
those of table 7, with accurate recovery of location (Pr(Mj |D) = 0.99999 and 0.00001 for M6, M6 : 7,



Table 7. Numerical results for area-based identification of an α6 = 0.5 stenosis using data from the ends of arteries 1, 7, 10
and 13 (noise level σ = 0.05η).

prediction model â uâ (%) ŝ uŝ (%) log evidence Pr(Mj | D)

M3 0.070 4.98 0.0234 2.56 481.1 ∼0
M6 0.502 0.37 0.00376 4.10 849.6 0.983

M7 1.118 0.90 0.0199 2.78 512.5 ∼0
M11 0.800 2.09 0.0221 4.33 492.5 ∼0
M13 0.940 0.88 0.0234 3.97 474.8 ∼0
M6 : 7 [0.503, 1.000] [0.40, 0.23] 0.00381 4.69 845.6 0.017

Table 6. Numerical results for area-based identification of an α6 = 0.5 stenosis using data from the ends of arteries 1, 7, 10
and 13 (noise level σ = 0.01η).

prediction model â uâ (%) ŝ uŝ (%) log evidence Pr(Mj | D)

M3 0.072 8.00 0.023 4.04 478.9 ∼0
M6 0.500 0.05 0.00076 3.16 1178.0 1.00

M7 1.127 0.78 0.0195 4.83 513.3 ∼0
M11 0.790 2.37 0.0215 3.72 493.8 ∼0
M13 0.941 0.73 0.0238 3.33 475.2 ∼0
M6 : 7 [0.501, 1.000] [0.08, 0.03] 0.00076 3.30 1164.6 ∼0

Table 8. Numerical results for area-based identification of an α6 = 0.8 stenosis using data from the ends of arteries 1, 7, 10
and 13 (noise level σ = 0.01η).

prediction model â uâ (%) ŝ uŝ (%) log evidence Pr(Mj | D)

M3 0.175 4.13 0.00493 3.71 809.0 ∼0
M6 0.801 0.18 0.00075 4.68 1185.1 0.99999

M7 1.024 0.15 0.00404 3.78 838.0 ∼0
M11 0.955 0.45 0.00447 3.92 820.5 ∼0
M13 0.987 0.17 0.00488 3.89 802.7 ∼0
M6 : 7 [0.802, 1.000] [0.16, 0.033] 0.00077 3.11 1173.7 0.00001
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respectively) and magnitude (â6 ¼ 0:801 and 0.802). As in the previous area-modification scenarios,M6 : 7

found artery 7 to be unaffected (â7 ¼ 1:000), thereby coinciding with the single defect model M6.
4.3. Locating defects with misspecified models
Results have so far assumed the model selection framework is provided the reference values for all
model parameters, i.e. the non-defective stiffness and area of each artery are known. In a scenario
using real-world data, these ‘known’ values must themselves be estimated from noisy measurements.
A final but crucial test of the robustness of the framework is thus to perform experiments in which
the reference parameters used by the method are incorrect, and so no combination of free parameters
is capable of reproducing the observed data.



Table 9. Numerical results for area-based identification of an α6 = 1.5 aneurysm using data from the ends of arteries 1, 7, 10
and 13 (noise level σ = 0.01η) with misspecified cross-sectional areas (perturbed with noise level σα = 0.01).

prediction model â uâ (%) ŝ uŝ (%) log evidence Pr(Mj | D)

M3 1.312 29.2 0.00761 3.39 711.6 ∼0
M6 2.047 0.89 0.00217 3.98 972.9 0.907

M7 0.970 0.23 0.00628 3.48 748.7 ∼0
M11 1.075 0.56 0.00645 3.76 746.9 ∼0
M13 1.016 0.29 0.00725 3.53 716.8 ∼0
M6 : 7 [2.123, 1.002] [3.27, 0.11] 0.00216 4.32 970.6 0.093

Table 10. Numerical results for area-based identification of an α6 = 0.5 stenosis using data from the ends of arteries 1, 7, 10
and 13 (noise level σ = 0.01η) with misspecified cross-sectional areas (perturbed with noise level σα = 0.01).

prediction model â uâ (%) ŝ uŝ (%) log evidence Pr(Mj | D)

M3 0.816 7.29 0.0220 4.36 485.7 ∼0
M6 0.515 0.17 0.0021 3.22 973.6 0.999

M7 1.118 0.66 0.0181 3.44 529.0 ∼0
M11 0.808 1.72 0.0207 3.41 505.7 ∼0
M13 0.943 0.69 0.0221 3.14 490.5 ∼0
M6 : 7 [0.517, 1.003] [0.23, 0.001] 0.0021 3.87 966.5 0.001
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We now revisit the cases of §4.2.1, beginning with the case of an α6 = 1.5 aneurysm in artery 6. In
addition to corrupting observed flow velocities with additive Gaussian noise, we now additionally
corrupt the parameters themselves: the initial cross-sectional area αk for each artery k is noised as

ak ¼ a�
k (1þ saek), (4:2)

where a�
k is the reference value, ek is again a standard normal random variable, and σα is the parameter

noise level. The structural parameters used to generate the synthetic data (αk from equation (4.2)) thus
differ from the fixed values used in the defect models Mi (a�

k ).
As before, Bayesian model selection is performed assuming the prediction equation (3.1), which is

now misspecified (it assumes correctness of the reference parameters a�
i ). As a result, the ŝ estimated

by posterior samples must now capture the effects of both the true observational noise level σ and the
parameter noise level σα.

Table 9 shows numerical results for Bayesian model selection in this setting. Despite the misspecification,
M6 and M6 : 7 again dominate the model posterior, with Pr(M6 |D) = 0.907 and Pr(M6 : 7 |D) = 0.093,
respectively. Both overestimate the defect magnitude (â6 ¼ 2:047, 2:123, respectively), though M6 : 7 again
estimates artery 7 to be unaffected (â7 ¼ 1:002). We note that some error in â6 is expected, as it attempts
to fit observations from the noised-parameter model and thus varies significantly depending on the
particular values of αk from equation (4.2). Despite this effect, identification of the location appears robust
to perturbation of model parameters, with all other models assigned negligible probability (Pr(Mi |D)∼ 0).

Turning to the second case (α6 = 0.5), model selection again successfully locates the defect despite the
misspecification (table 10), withM6 assigned nearly all mass by the model selection posterior. In this case,
parameter estimation recovers the defect magnitude accurately (â6 ¼ 0:515). In keeping with previous
results, defect model M6 : 7 finds a similar reduction in cross-sectional area for the damaged artery
(â6 ¼ 0:517) and little change in the defect-free artery (â7 ¼ 1:003).

The third case repeated the α6 = 0.5 experiment with increased observational noise σ = 0.05η; results
for the same case with parameter noise (now also increased to σα = 0.05) are shown in table 11. M6 : 7

is significantly more likely than in previous cases (Pr(M6 : 7 |D) = 0.783), though M6 is still assigned all
remaining posterior mass (Pr(M6 |D) = 0.217). The recovered uncertainties uâ are significantly higher



Table 12. Numerical results for area-based identification of an α6 = 0.8 stenosis using data from the ends of arteries 1, 7, 10
and 13 (noise level σ = 0.01η) with misspecified model parameters (perturbed with noise level σα = 0.01).

prediction model â uâ (%) ŝ uŝ (%) log evidence Pr(Mj | D)

M3 1.767 22.2 0.00388 3.57 852.4 ∼0
M6 0.865 0.35 0.00204 3.36 974.9 0.969

M7 1.017 0.13 0.00320 3.87 889.5 ∼0
M11 0.979 0.24 0.00369 3.61 860.3 ∼0
M13 0.988 0.12 0.00345 3.49 869.5 ∼0
M6 : 7 [0.869, 1.003] [0.50, 0.076] 0.00209 3.22 971.5 0.031

Table 11. Numerical results for area-based identification of an α6 = 0.5 stenosis using data from the ends of arteries 1, 7, 10
and 13 (noise level σ = 0.05η) with misspecified model parameters (perturbed with noise level σα = 0.05).

prediction model â uâ (%) ŝ uŝ (%) log evidence Pr(Mj | D)

M3 1.668 45.9 0.0195 4.35 518.5 ∼0
M6 0.597 0.80 0.0111 3.31 636.6 0.217

M7 1.085 0.62 0.00076 4.82 558.5 ∼0
M11 0.894 1.52 0.0185 3.82 527.1 ∼0
M13 0.947 0.51 0.0175 3.62 534.9 ∼0
M6 : 7 [0.609, 1.015] [1.22, 0.44] 0.0108 2.22 637.9 0.783
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than in table 10 due to the higher level of noise, with both M6 and M6 : 7 underestimating the magnitude
of the damage (â6 ¼ 0:597, 0:609, respectively).

Finally, table 12 shows results for the fourth case (α6 = 0.8) in the presence of σα = 0.01 parameter noise.
While model selection again recovers the correct defect location (Pr(Mj |D) = 0.969, 0.031 for M6, M6 : 7,
respectively), the smaller-magnitude stenosis proves more challenging for parameter estimation, with
â6 ¼ 0:865 and 0.869, respectively, notably underestimating the magnitude of the damage.
5. Discussion
Taken together, the results describe a robust approach for uncertainty quantification in the context of
arterial networks. The model selection posterior universally assigned the highest probabilities (by
several orders of magnitude) only to those models which included the true defect location, even in
cases where simulated data were sparse, noisy and poorly located. The Bayesian uncertainty
quantification framework thus appears a powerful tool for comparing and fitting models.

Though all results were generated using simulated noisy data, they simultaneously suggest that the
approach would prove useful for real-world inference. The experiments outlined in §4.2 show the
method to successfully recover parameter values (often within one standard deviation) and identify
the defect location in a range of sampling cases which varied sensor numbers and locations, and so
the approach is not reliant on a particular set of observed data which may not be realistically
attainable. Results were also consistent when using alternative magnitudes and parametrizations of
arterial defects (the scaled cross-sectional area α and boundary stiffness β) and using models which
considered different numbers of defects (in particular, the two-defect model M6 : 7 which consistently
found the ‘defective’ artery 7 to be largely unaltered). We note that the approach readily facilitates the
incorporation of real data, which can be used in place of simulated data without otherwise altering
the method. A natural extension of this work is therefore direct application to medical datasets.

It is worth emphasizing the role of model selection in our approach. The general Bayesian inverse
problem, which simultaneously considers structural properties of all arterial segments, cannot be feasibly
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solved due to its dimensionality. In §4.2, we instead propose a set of simple models which fix most model
parameters to ‘known’ values, then select among these models to locate flaws; while this approach has a
massive computational advantage, it also makes the strong assumption that the properties of healthy
artery segments are known exactly. We investigate robustness of the approach to this assumption in §4.3,
which found inference to remain effective even when ‘known’model parameters were assumed incorrectly.

While model selection has here served primarily as a computational tool, it is more commonly used to
select between distinct physical models of a system given noisy data. Robustness to this form of model
misspecification, i.e. the assumption of a physically incorrect model, is a more complex issue begetting a
range of additional techniques such as discrepancy terms [44] and posterior predictive assessment [45].
Future work should investigate this more general sense of robustness using alternative flow models,
network structures, and defects in more localized arterial subdomains.
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Appendix A. High-performance implementations
Π4U [29,46] is a platform-agnostic task-basedUQ framework that supports nested parallelism and automatic
load balancing in large-scale computing architectures. The software is open-source and includes HPC
implementations for both multi-core and GPU clusters of algorithms such as TMCMC and approximate
Bayesian computational subset simulation. The irregular, dynamic and multi-level task-based parallelism
of the algorithms (figure 6a) is expressed and fully exploited by means of the TORC run-time library [47].
TORC is a software library for programming and running unaltered task-parallel programs on both
shared and distributed memory platforms. TORC orchestrates the scheduling of function evaluations on
the cluster nodes (figure 6b). The parallel framework includes multiple features, most prominently the
inherent load balancing, fault tolerance and high reusability. The TMCMC method within Π4U is able to
achieve an overall parallel efficiency of more than 90% on 1024 compute nodes of Swiss supercomputer

https://github.com/cselab/pi4u
https://github.com/cselab/pi4u
https://github.com/cselab/pi4u
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Piz Daint running hybrid MPI+GPU molecular simulation codes with highly variable time-to-solution
between simulations with different interaction parameters.

Appendix B. Convergence of transitional Markov chain Monte Carlo
Figure 7 shows eight generations of TMCMC convergence from parameter estimation in §4.1. Samples
are initialized from the prior, i.e. sampled uniformly from all feasible parameter values. The
transitional target distribution yields gradual coalescence on regions of high likelihood, eventually
resampling directly from the posterior.
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