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In order to accurately grasp the timing for the prevention and
control of diseases, we established an artificial neural network
model to issue early warning signals. The real-time recurrent
learning (RTRL) and extended Kalman filter (EKF) methods
were performed to analyse four types of respiratory
infectious diseases and four types of digestive tract infectious
diseases in China to comprehensively determine the epidemic
intensities and whether to issue early warning signals. The
numbers of new confirmed cases per month between January
2004 and December 2017 were used as the training set; the
data from 2018 were used as the test set. The results of RTRL
showed that the number of new confirmed cases of
respiratory infectious diseases in September 2018 increased
abnormally. The results of the EKF showed that the number
of new confirmed cases of respiratory infectious diseases
increased abnormally in January and February of 2018. The
results of these two algorithms showed that the number of
new confirmed cases of digestive tract infectious diseases in
the test set did not have any abnormal increases. The neural
network and machine learning can further enrich and
develop the early warning theory.
1. Introduction
Public health emergencies caused by the continuous occurrence of
emerging infectious diseases and unexplained diseases in the
world such as severe acute respiratory syndrome (SARS), H1N1
influenza A, Ebola haemorrhagic fever and H7N9 highly
pathogenic avian influenza have already become prominent
public health issues in the past 30 years [1]. In addition, existing
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infectious diseases such as tuberculosis, dengue fever, malaria and influenza are also jeopardizing human

health [2–5]. Faced with the complex situation of current infectious disease prevention, we should not
only strengthen the surveillance of the epidemic information of infectious diseases but also issue early
warning signals as soon and as accurately as possible to strive for the timely identification of
outbreaks and epidemics in the early stages and to take rapid response measures to minimize the
harm to social and economic development.

Since the 2003 SARS outbreak, a web-based, daily infectious disease confirmed case surveillance
system, which covered 37 notifiable infectious diseases, was instituted in April 2004 in China [1]. By
2009, the number of monitored infectious diseases increased to 39 types [6]. This system is capable of
collecting the number of confirmed cases of various infectious diseases nationwide in real time and
greatly increases the timeliness of infectious disease reports. Therefore, it establishes an important
platform for surveillance of the epidemic intensity, analysing epidemiological patterns and practising
the early warning model [7].

Early warning of infectious diseases involves issuing signals before or in the early stages of the
infectious disease outbreak to warn that the event may occur or its extent and degree may expand.
This is an important prevention measure to avoid or reduce harm to public health and social security
caused by infectious diseases. Currently, early warning systems of infectious diseases have already
been established in many developed countries; these systems include the Global Outbreak Alert and
Response Network established by the WHO in 2000 [8], the Global Public Health Intelligence
Network established by collaboration between the WHO and Health Canada in 1997 [9] and
ProMED-mail established in 1994 and initiated by the International Society for Infectious Diseases
[10]. These systems play important roles in the prevention and control of infectious diseases,
particularly the prevention of emerging infectious diseases and bioterrorism attacks. The China
Infectious Diseases Automated-alert and Response System developed by the Chinese Center for
Disease Control and Prevention began to operate nationwide in April 2008 [11]. It is a more perfect
and practical early warning system of infectious diseases established in China for the first time. It
plays an irreplaceable role in the prevention and control of infectious diseases in China.

The purpose of analysing infectious disease surveillance data obtained from an early warning
model is to eventually determine whether the epidemic displays any abnormal increases. Currently,
commonly used early warning systems include simple control charts, moving average control charts,
exponential weighted moving average and space scan statistics [7]. These systems have already
played positive roles in early warnings for poliomyelitis, bacillary dysentery, measles and other
public health emergencies. In the twenty-first century, research on artificial neural networks
continues to deepen and includes extensive applications in many fields including precision medicine
and public health [12–16]. In this study, we used real-time recurrent learning (RTRL) and extended
Kalman filter (EKF) to perform early warning research on four types of respiratory infectious
diseases (measles, influenza, rubella and mumps) and four types of digestive tract infectious
diseases (hepatitis A, hepatitis E, typhoid fever and paratyphoid fever, and bacterial and amoebic
dysentery) that have higher incidence rates among notifiable infectious diseases in China. Currently,
these two algorithms have been extensively applied in nonlinear prediction and model
establishment [17]. We used these technologies in the field of epidemiology. The number of new
confirmed cases per month was used as a sequential input signal and nonlinearly mapped to an
output signal. If an output signal was over the threshold value, it was possible to determine the
abnormal increase in the number of cases in the early stage of the disease epidemic. This study
enriches the existing early warning theory of infectious diseases to further excavate the application
potential of public health big data and increase the level of analysis and prediction of the condition
of infectious diseases.
2. Methods
2.1. Data sources
The numbers of new confirmed cases of eight types of infectious diseases reported per month between
January 2004 and December 2015 were obtained from the Center for National Public Health Scientific
Data (http://www.phsciencedata.cn). This center only collected data until 2015 [18]. Data between
January 2016 and December 2018 were obtained by consulting the National Health Commission
website (http://www.nhc.gov.cn/) [6].
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2.2. Real-time recurrent learning

Infectious diseases have the attribute of continuous propagation in the time dimension; in other words,
the numbers of new confirmed cases of one infectious disease in consecutive months are correlated.
Based on this objective fact, we selected the recurrent neural network model for analysis. The so-
called recurrent network indicates that the network uses the output produced after one input as an
intermediate variable, which is used as a part of an input layer together with the next input vector for
continuous calculation. The recurrent neural network continuously receives input signals; therefore, it
is called the dynamically driving recurrent neural network. Targeting this model, we used RTRL and
EKF to estimate the synaptic weights of the network [17].

The RTRL learning algorithm indicates that the adjustment of synaptic weights of a fully connected
network is real-time. Figure 1a shows that the recurrent network was composed of q neurons and m
external inputs. The network had two different layers: the concatenated input-feedback layer and the
processing layer for calculating nodes. Accordingly, the synaptic connections of the network were also
composed of feed-forward and feedback connections. Because four types of respiratory and four types
of digestive tract infectious diseases were included, the value of m was 4. The number of neurons, q,
in the processing layer was also set to 4. The output of the network was the last neuron in the
processing layer.

In addition, the numbers of new confirmed cases of the four types of infectious diseases were used as
inputs in the model. Because the numbers of cases of different diseases might have correlations and
seasonal fluctuations [19–24], they were standardized in advance. After standardization was
completed, the average value of each input variable should be approximately zero, there should be no
correlation between variables, and covariances should be approximately equal. Since the learning
process in this study was supervised learning, the expected responses of the network should be
determined. We calculated the cumulative probabilities of 168 training samples under a multivariate
normal distribution. These probabilities were arranged from low to high, and the 90% quantile was
used as the threshold value. All neurons were set to have the same activation function, and a sigmoid
odd function in the form of a hyperbolic tangent equation was used as the activation function. The
parameters of this function were set to appropriate values such that the expected responses of the
network were 1 and −1 [17], which denoted over the threshold value and lower than the threshold
value, respectively. Furthermore, when the test samples were identified by our network, we consider
that an early warning signal will be generated once the output value of the network is greater than
zero. Moreover, in terms of the learning rate, we selected search-then-converge scheme [17].
Respiratory and digestive tract infectious diseases were separately calculated using 168 sets of
numbers of cases between 2004 and 2017 as the training sets and 12 sets of numbers of cases in 2018
as the test set.
2.3. Extended Kalman filter
Based on the recurrent network established in figure 1a, the idea of the sequential state estimation was
used to divide the network state space under training into the actual state and the measurement state
of the system [17]. The former could not be directly observed; instead, a set of observation values was
measured indirectly to estimate the actual state of the system. The entire set of synaptic weights of
neurons was used as the actual state of the system. The value that measured whether the current
condition of infectious diseases was at a normal level, i.e. expected response, was used as the
observation state of the system. The vector activated by recurrent nodes of the network and the
input vector used as the driving force together formed the input signal. The activation function
was the same as that in RTRL. Therefore, the process of mapping from the input space to the
output space was also nonlinear. This task was finished using EKF. Figure 1b displays the basic
framework of this algorithm. wn indicates the synaptic weights of the network at the nth time step,
which was the state vector of the system. It and dynamic noise together form the state vector
of the next time step of the system. The recurrent node activation vector, input vector and state
vectors in the system were mapped to the output layer under the function of the nonlinear
measurement function. The output vector was influenced by multivariable white noise to form
the observable state of the system. The specific model establishment process is shown in the
electronic supplementary material. The above algorithms are shown in the electronic
supplementary material.
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Figure 1. The structural framework of the real-time recurrent network and the sequential state estimation model. (a) The
real-time recurrent neural network used for the description of real-time recurrent learning. Blue blocks indicate
concatenated input-feedback layers that were composed of a state vector xn with a dimension of q and an input vector un
with a dimension of m + 1. Green circles indicate the calculating node processing layer with a dimension of q; the output
vector was the vector ynþ1 with a dimension of p. (b) The internal dynamic nonlinear state-space model of the recurrent
network under supervised training.
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3. Results
3.1. Time distribution of cases
Figure 2a shows the time distribution described by the surveillance data of four types of respiratory
infectious diseases. The number of mumps cases increased in 2011 and 2012. The number of influenza
cases increased between 2016 and 2018, particularly between December 2017 and February 2018
compared to the historical data. The numbers of measles and rubella cases showed a decreasing trend
overall. Figure 2b shows the time distribution of the four types of digestive tract infectious diseases.
They all showed obvious seasonal fluctuations. Except for hepatitis E, which had a high incidence in
the spring, the other digestive tract infectious diseases all had high incidences in the summer. In
addition, except for hepatitis E, the numbers of cases of the other three infectious diseases all showed
a decreasing trend year by year.
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Figure 2. Time distribution of new confirmed cases of respiratory infectious diseases and digestive tract infectious diseases per
month. (a) Time distribution of the number of new confirmed cases of respiratory infectious diseases per month. (b) Time
distribution of new confirmed cases of digestive tract infectious diseases per month. The numbers of cases of the first three
diseases are measured using the y-axis on the left, and the number of cases of the last disease is measured using the y-axis
on the right.
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3.2. Early warning models
The model was trained after 168 epochs, then the synaptic weights of the network were determined, and
data from 2018 was used to validate model performance. Figure 3a shows the early warning results of
respiratory infectious diseases between January and December of 2018. The RTRL results showed that
the number of cases in September 2018 was significantly higher than the historical level; although
the early warning value in July was higher than zero, the increase in the number of cases was not
significantly different from the historical level. The EKF results showed that the numbers of cases in
January and February of 2018 were significantly higher than the historical level. Figure 3b shows
the early warning results of digestive tract infectious diseases. Both algorithms showed that the
number of cases throughout all of 2018 was not significantly higher than the historical level in the
same period.

Figure 4 shows the time distribution of the numbers of cases of the four types of respiratory infectious
diseases in the same historical period when the early warning signal was issued. The results showed that
the major reason for issuing the early warning was the increase in influenza and mumps cases.
Particularly in January and February of 2018, a nationwide influenza pandemic occurred in China,
which caused a significant increase in the number of influenza cases [6].
4. Discussion
Analyses of surveillance data using early warning models are used to eventually make a decision on
whether the epidemic is increasing abnormally. Two types of calculating principles are employed for
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January and December of 2018. (a) The early warning results of respiratory infectious diseases. (b) The early warning results
for digestive tract infectious diseases.
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commonly used early warning models. One type is the calculation of the threshold value of statistics
under a certain confidence level based on some specific statistical distributions and previous
surveillance data; if the current statistical level obtained from actual measurement values is higher
than the threshold value, the early warning signal is issued. The other type is the calculation of the
expected number of cases based on specific statistical distributions and previous surveillance data;
when the actual value is higher than the expected value, the early warning signal is issued [7]. For
example, some classical warning approaches, such as the exponential smoothing model, Poisson
regression and the ARIMA model, that follow the above ideas have been effectively applied and
constantly improved to increase the accuracy of early warning [7]. The innovation of this article is that
we broke through the traditional thinking framework. We did not calculate the threshold value or the
expected number of cases; instead, the system itself calculated the epidemic intensity and made the
decision on whether to issue early warning signals. The neural network has the characteristics of
continuous optimization through self-iteration; therefore, when there are more training times on the
system, its decision will be more accurate and the system will present a certain intelligent type.
Furthermore, this method can be used not only to consider multiple types of infectious diseases at the
same time, but also to analyse multivariate data, such as the number of patients in outpatient clinics,
drug consumption data in hospitals and sales data for over-the-counter drugs in pharmacies. By
analysing the complex relationship among multiple factors, we can judge the law of disease
development and changes comprehensively.

Both respiratory and digestive tract infectious diseases have different epidemic patterns in different
seasons. The former mainly has epidemics in the winter and spring and the latter mainly has
epidemics in the summer. Therefore, the standardized processing of input vectors of the model
should consider the influence of seasonal factors. According to the epidemic patterns of infectious
diseases, we believed that vectors consisting of the numbers of cases of the four types of respiratory
infectious diseases or the four types of digestive tract infectious diseases in every month all
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Figure 4. Historical data of the numbers of cases in the same period of months issuing an early warning of respiratory infectious
diseases. (a–c) Historical numbers of cases of the four types of respiratory infectious diseases in January, February and September
since 2004.
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conformed to the multivariate normal distribution; in addition, the average vector and covariance
matrix in every month also differed. After the standardized processing of all input vectors, the
influence of seasonal factors on this model could be eliminated. We used month as a unit to perform
analyses on the numbers of cases in this study. To improve the timeliness of early warning, week or
day can be used as the unit for analysis. The average vectors and covariance matrix should also be
adjusted accordingly.

The level of the threshold value could be adjusted according to the actual condition. When the
threshold value was higher, the number of cases necessary to issue an early warning was higher;
when the threshold value was lower, the result was the opposite. The learning rate determined the
convergence rate of the network model. If the learning rate was a constant number, the convergence
rate was slower. If the learning rate was a constant divided by the times of iteration, although the
convergence of the stochastic approximation algorithm could be ensured, fewer iteration times might
have the risk of parameter amplification when the constant value was higher [25,26]. Therefore, we
chose the search-then-converge schedule as the commonly used learning rate annealing programme in
online learning. It had the advantage of combining the expected characteristics of the model with the
traditional stochastic approximation theory [27].
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In this study, the numbers of cases of some types of infectious diseases were used as the input

variables in the model to make an early warning decision through comprehensive analysis. Therefore,
an early warning was issued only when the numbers of cases of these infectious diseases showed an
overall increase and exceeded the threshold value. However, it was not necessary to issue an early
warning only when all numbers of cases increased. Figure 4 shows that when the system issued an
early warning, the numbers of measles and rubella cases not only did not increase but also were at
lower levels compared to the historical level in the same period. The model made the decision on the
high incidence of respiratory infectious diseases after the numbers of influenza and mumps cases
increased. Therefore, we should perform the analysis on the actual number of cases of each infectious
disease based on the model result to determine which infectious disease epidemic caused the early
warning. If the model did not issue an early warning, then it could not indicate that the number of
any infectious disease cases did not increase significantly. Thus, during the analysis of the epidemic,
we should assess actual data for a detailed analysis. If the analysis was performed only based on the
results of the model, it would be possible that the number of some infectious diseases already
significantly increased but the model did not timely issue an early warning, thus causing delay in the
timing of prevention and control.

According to figure 3, we found that the proportion of the same results according to the two
algorithms is 83.3% (20/24), indicating that their decisions regarding the epidemic trend of diseases
were similar. Different results occurred in January, February, July and September of 2018. According
to figure 4a,b, only the numbers of influenza cases in January and February of 2018 greatly increased
compared to that in the historical periods; conversely, the numbers of cases of the other three
infectious diseases all remained at lower levels. Figure 4c shows that the numbers of mumps and
influenza cases slightly increased in September 2018. At these three time points, the results of these
two algorithms differed. These results indicated that although the numbers of cases increased, the
overall results were not significantly higher than that in the same historical periods. The early
warning value of RTRL in July was slightly higher than zero; thus, we ignored its early warning
significance. To increase the sensitivity of early warning, these two methods could be used
simultaneously for analysis and determination of the epidemic intensity of the disease through a
comparison of early warning results between these two algorithms.

In this study, we selected eight types of infectious diseases with a higher incidence for analysis. These
twomodels are not applicable for diseaseswith lower incidences such as anthrax, cholera and the plague;
therefore, other methods are necessary for early warning [7]. Because the Chinese Notifiable Infectious
Diseases Surveillance and Report System began to operate nationwide in 2004 [18], only disease data in
the recent 16 years could be obtained. The sample size of the training set was small, which may have
influenced the calculation results for synaptic weights in the model to a certain extent. This study only
references a new modelling approach and was limited in its scope in terms of validation. Future work
will be focused on gathering more data and cases and providing a more comprehensive model
validation. Furthermore, we evaluated the epidemic intensities of infectious diseases in the entire
nation. However, infectious disease epidemics, such as dengue fever and malaria, might be limited to
a certain area, or they may spread throughout the entire country after an outbreak in a certain area,
such as SARS and H1N1 influenza A. If analysis and judgement were performed only based on the
national data of these diseases, prevention and control of the epidemic would usually be delayed.
Therefore, this model should be implemented in every province and every city to increase the
timeliness of early warning of infectious diseases all over the country. In addition, real-time
multivariate analysis is currently one of the research focuses in the field of early warnings for
diseases, including multistatistical process control, biological change-point detection and some others
[7]. Since the application of artificial neural networks in the field of early warnings for diseases is
relatively new, further research is required to achieve greater precision.
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