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Many prey species exhibit defensive traits to decrease their
chances of predation. Conspicuous eye-spots, concentric rings
of contrasting colours, are one type of defensive trait that some
species exhibit to deter predators. We examined the function
of eye-spots in Lepidoptera to determine whether they are
effective at deterring predators because they resemble eyes
(‘eye mimicry hypothesis’) or are highly salient (‘conspicuous
signal hypothesis’). We recorded the gaze behaviour of men
and women as they viewed natural images of butterflies and
moths as well as images in which the eye-spots of these insects
were modified. The eye-spots were modified by removing
them, scrambling their colours, or replacing them with elliptical
or triangular shapes that had either dark or light centres.
Participants were generally more likely to look at, spend
more time looking at and be faster to first fixate the eye-
spots of butterflies and moths that were natural compared
with ones that were modified, including the elliptical eye-
spots with dark centres that most resembled eyes as well
as the scrambled eye-spots that had the same contrast as
the natural eye-spots. Participants were most likely to look
at eye-spots that were numerous, had a large surface area
and were located close to the insects’ heads. Participants’
pupils were larger when viewing eye-spots compared with
the rest of the insects’ body, suggesting a greater arousal
when viewing eye-spots. Our results provide some support
for the conspicuous signal hypothesis (and minimal support
for the eye mimicry hypothesis) and suggest that eye-spots
may be effective at deterring predators because they are highly
conspicuous signals that draw attention.

1. Introduction

The coevolution of predators and prey can lead to dramatic
changes in phenotypic traits [1,2]. Selection favours predators
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that efficiently capture prey and prey that successfully avoid predators. These opposing forces can lead
to an arms race in which traits of predators and prey change to counteract decreased fitness levels [3].
However, costs may limit the evolution of these modified traits [4]. Many prey species currently exhibit
defensive traits that reduce their chances of predation [5].

Morphological adaptations are one defensive trait that prey use to minimize predation risk [5].
Prey often possess specific traits, like quills or spines, which inflict injury upon potential predators
[6]. Their skin can be so thick that it is difficult for predators to puncture [7] and it can be
thicker in especially vulnerable areas of the body [8]. Overall body size influences predation rates
as well since predators may be unable to consume relatively large prey [9]. Prey coloration can also
reduce predation. Some animals have cryptic coloration that closely matches the environments in
which they live, making detection by predators less likely [10]. Alternatively, animals may exhibit
bright coloration to advertise their unpalatability [11]. Some species, such as butterflies, moths and
fish, display conspicuous eye-spots, concentric rings of contrasting colours, that confer survival
advantages [12].

Eye-spots can be effective at reducing predation through intimidation or deflection (reviewed in
[13]). The intimidation hypothesis proposes that eye-spots, generally those that are large and central,
are effective because they frighten the predator. The eye-spots can frighten the predator because they
resemble the eyes of vertebrate predators (‘eye mimicry hypothesis’). When predators locate a prey item
with eye-spots, the predators may be deterred or startled because the eye-spots resemble the eyes of
their own predators, thus giving prey time to escape [14]. The eye-spots can also frighten the predator
because they are high-contrast and colourful markings (‘conspicuous signal hypothesis’) [15,16]. Low-
level visual features, such as colour, form and luminance [17], exogenously capture attention [18,19].
Eye-spots may therefore be effective because they have low-level features that automatically draw the
attention of predators and potentially decrease predation risk. Some evidence supports the conspicuous
signal hypothesis [16]. Avian predators are less likely to eat artificial moths with markings that have
high contrast, regardless of whether these markings resemble eyes [15,20,21]. However, other studies
find no support for the conspicuous signal hypothesis but support the eye mimicry hypothesis. De Bona
et al. [22] found that natural eye-spots were equally effective compared with real predator eyes at eliciting
aversive reactions in great tits. By contrast, other studies find mixed support for both hypotheses [23]. The
deflection hypothesis proposes that eye-spots, generally those that are small and marginal, are effective
because they attract attention away from the preys’ bodies towards the non-vital wings to manipulate
where attacking predators direct their strikes, increasing the probability of prey escaping predation.
While some studies have found that marginal eye-spots do not affect where predators direct their attacks
[24], other studies have found that predators direct their attacks towards marginal eye-spots and away
from the insects’ bodies [25].

We examined the function of eye-spots in moths and butterflies to evaluate how a potential predator
directs its visual attention when encountering prey with eye-spots. Visual search behaviour can be
readily investigated with the use of eye-tracking, providing a powerful method for investigating the
relationship between prey markings and predator visual attention. While eye-tracking can be performed
in non-human animals (e.g. [26,27]), such studies in humans have fewer technical barriers and we
therefore used humans as our ‘predators’. Furthermore, there are similarities between humans and
other animals in their perceptual systems, such as receptive fields [28], that can result in similar
strategies for prey selection. Human subjects have been used as ‘predators’ in previous studies exploring
protective coloration [29-32] and have been shown to share some perceptual abilities with other
predators [30].

The gaze behaviour of men and women were recorded as they viewed images of butterflies and
moths. The images were displayed in their natural form (with the eye-spots intact) or were artificially
manipulated (eye-spots were removed, scrambled, or replaced with elliptical or triangular eye-spots
with dark or light centres). If eye-spots are effective because they mimic the eyes of predators, we
predict predators will direct more attention to the eye-spot regions of moths and butterflies that
have their eye-spots intact than to moths and butterflies that have their eye-spots removed or have
scrambled/triangular versions of eye-spots. We predict participants to spend similar amounts of time
looking at the eye-spot regions of moths and butterflies that had their eye-spots intact and that had
elliptical versions of eye-spots with a dark centre because both of these eye-spots resemble eyes. If eye-
spots are effective because they are highly salient, we predict predators to direct similar amounts of
attention towards the eye-spot regions of moths and butterflies that exhibited eye-spots and any type of
modified eye-spot (scrambled, elliptical or triangular) with high contrast (contrast between the eye-spot
and the rest of the insect’s body).
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Figure1. Scanpaths from one female subject looking atimages of moths (a: Aglia tau; b: Graellsia isabellae) and butterflies (c: Mesosemia
asa; d: Erebia epipsodea, in the seven different treatments: (1) ‘original; (2) ‘no eye-spot; (3) ‘scrambled;, (4) ‘ellipse light, (5) ‘ellipse dark,
(6) ‘triangle light"and (7) ‘triangle dark. The size of the black circles indicates the amount of time the subject was fixating on each location.
The subject began looking at the bottom of each image before making a saccade to the moth or butterfly.

2. Material and methods
2.1. Participants

Twenty-three men and 16 women participated in this study at Duke University from November 2012
to March 2013. They were all of European heritage and between the ages of 18 and 30 years old
(mean £ s.e.: 21.9 4 0.41 years). We used flyers and e-mails to recruit participants. They earned $15 for
their participation.

2.2. Butterfly and moth images

We obtained photographs of 70 species of butterflies and moths (table 1) that exhibit eye-spots on their
wings from books and online sources. The 70 species belong to seven different families (Carthaeidae (1),
Noctuidae (3), Nymphalidae (38), Papilionidae (1), Riodinidae (6), Saturniidae (20) and Sphingidae (1)).
The eye-spots were markings on the insect’s body parts that were circular and had concentric rings of
contrasting colours. We isolated each ‘original” image of a butterfly or moth and then centred it within a
white image (1280 x 1024 pixels) such that the width of the butterfly or moth extended to the width of
the white image (33.72 cm wide; ADOBE PHOTOSHOP v. 7.0; figure 1a). We then created a ‘no eye-spot’
image in which we covered all eye-spots with colours that were immediately surrounding the eye-spots
(using the clone stamp tool in PHOTOSHOP) so that eye-spots were no longer present (figure 1b).

Finally, we created five modified versions of each image by overlaying shapes atop the no eye-
spot” image in the exact region where the eye-spots had been located by using custom MATLAB (The
Mathworks, Natick, MA, USA) scripts. (i) The ‘scrambled’ image was created by randomly repositioning
every pixel within ellipses that covered each eye-spot (figure 1c). (ii) The ‘ellipse light’ image had two
concentric ellipses atop the eye-spot regions, using a dark colour for the outer ellipse and a light colour
for the inner ellipse (figure 1d). (iii) The ‘ellipse dark’ image was identical to the ‘ellipse light’ image
except the dark ellipse was inside the light ellipse (figure 1e). (iv) The ‘triangle light’ image was similar
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Table 1. Species of butterfly or moth used as stimuli in images.

species of butterfly or moth species of butterfly or moth

Actias luna Junonia atlites
...................... Agl/atau T
....................... Anart/a/atrophaeJunomaevarete
......................... Antheraeaperny/junonlalawnla
...................... Antheraeapolyphemus T
......................... Apatura/r/sJunon/aor/thya
""""""""""""" Agemamimosee ~ Juoniarhadama
......................... AutomensgodartuJunomavest/na
...................... e
......................... e
....................... Automensl/ber/aLasmmmatamegera
....................... T Leucanellaapol/ma/re/
....................... Bassansgonenl/a Leucanel/alynx
....................... BunaeaalcmoeMan/olajurtma
......................... Cal/gulajapon/caMesosem/aasa
...................... e Mesosem/ahesper/na
......................... (atacropteradoanrheMesosem/atelegone
""""""""""""" Dasypodiaselenophora ~ Mesosemiazorea
......................... Donum/ampesMymlmtermmus
...................... Donucaorblgera 0podlphtheraeucalypt/
......................... Enod/aanthedonOpod/phtherahelena
....................... EommammemPamrgeaegena
...................... Ereblaaeth/ops Pamass:usapo/lo
........................ Ereb/aep/psodea S
,,,,,,,,,,,,,,,,,,,,,,, Eud/apavon/aPreas:ph/ta
......................... Euryb/adardusPre(/sor/thya
...................... Euryb/a/yasca Salamlsparhassus
......................... S
""""""""""""" Heteronymphamerope ~ Saumiapavomia
........................ Heteronymphapene/ope L
...................... Hypocystaadlante T/s/phoneabeona
....................... HypocystametlrlusVanessagonerllla
......................... s
...................... e thh:maasterope
......................... G thh/macey/on/ca

to the ‘ellipse light” image except that triangle shapes were used instead of ellipses (figure 1f). (v) The
‘triangle dark” image was similar to the “triangle light’ image except the dark triangle was inside the light
triangle (figure 1g). For the “ellipse” and ‘triangle” images, the light and dark colours were chosen for each
image as the colours at the 90th and 10th percentile in overall brightness within the image in order to
better match the coloration of the insect. The inner shape was 50% the size (in linear dimensions) of the
outer shape. For the ‘triangle” images, the triangles were equal in surface area to the ellipses from the
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corresponding ‘ellipse” images and were formed from equilateral triangles stretched to match the aspect
ratio of the ellipses.

2.3. Experimental procedure

The experimenter (J.L.Y.) told participants that they would be seeing a series of images of butterflies
and moths. They were instructed to imagine that they were outside searching for food and specifically
looking to find butterflies and moths to eat. They saw seven blocks of images and each block included 70
images. The 70 images within a block included 10 images of each of the seven image versions (‘original’,
‘no eye-spot’, ‘scrambled’, ‘ellipse light’, ‘ellipse dark’, ‘triangle light” and ‘triangle dark’). Within an
image block, a given species of butterfly or moth only appeared one time and was presented in a
randomized order. Block order was randomized across participants.

For each image, participants initially saw a white screen with a black dot that was located at the
bottom. They used the mouse to click atop the dot so that they were initially fixating on an area where
the butterfly or moth stimulus was not present. After clicking the mouse, an image of a butterfly or
moth appeared for 3s. To ensure that participants were actively engaged in the task, after the image
disappeared, they had to indicate how likely they would be to select that butterfly or moth as a food
source on a scale from 1 (very unlikely) to 10 (very likely). Given that primates, including humans,
selectively forage for food [33], we would expect them to exhibit preferences for different food items.

2.4. Eye-tracker

We used a Tobii T60 eye-tracker along with TOBII STUDIO 3.1 and 3.2 (Tobii Technology, Inc., Sweden)
to present our images and record the gaze of participants (accuracy: 0.5°; data rate: 60 Hz; binocular
tracking). We told participants that we were measuring their pupil size but did not tell them that their eye
movements were being monitored until after they finished their trial. The images were displayed using
ToBII STUDIOTM software (v. 3.1 or 3.2) on a 1280 x 1024 pixel monitor (43.18 cm diagonal). Participants
were positioned approximately 60 cm from the screen and a chin rest was used to stabilize their heads.
The equipment was calibrated before each trial began with nine points. We used the Tobii Velocity-
Threshold Identification filter (I-VT filter; gap fill-in: 75ms; eye selection: average; noise reduction:
median; noise reduction samples: 7; velocity calculator window: 20 ms; I-VT classifier threshold: 30° s~ L.
merge adjacent time: 75 ms; merge adjacent angle: 0.5°; discard short fixations: 60 ms) to classify fixations
and saccades. This filter classifies eye movements as fixations or saccades based upon the velocity of eye
movements; eye movements below and above the velocity threshold (30° s™!, in this study) are classified
as fixations and saccades, respectively. Eye-tracking data consisted of coordinates of where participants
were known to be looking during each sampling point.

2.5. Measurements and statistical analysis

Using a customized MATLAB program, we drew regions of interest (ROI) around each eye-spot region.
In the ‘original’, ‘scrambled’, ‘ellipse light’ and ‘ellipse dark” images, the ROIs were ellipses that
encompassed each eye-spot or modified eye-spot. In the ‘no eye-spot” image, the ROIs were the same
as the ROIs in the ‘original” image of a given species even though the eye-spots were not visible. In
the “triangle light” and “triangle dark” images, the ROIs were triangles that encompassed each modified
eye-spot. For each fixation coordinate, we determined which ROI it fell within to determine whether
the participant was looking at an eye-spot or modified eye-spot region. We calculated two metrics: the
amount of time that elapsed before participants first fixated on the eye-spot or modified eye-spot region
and the percentage of time (out of the entire time that the subject was viewing the image) that the subject
was fixating an eye-spot or modified eye-spot region.

We calculated Weber contrast using custom MATLAB scripts to determine the contrast between the
eye-spot regions and the surrounding bodies of the insects. It was calculated as the difference between the
mean pixel intensity of the eye-spot region and the mean pixel intensity of the surrounding body divided
by the mean pixel intensity of the surrounding body [34]. We measured Weber contrast between each eye-
spot and the surrounding body; then we took the mean of the contrasts for each butterfly or moth image.
We classified the images as having eye-spots that were darker than the surrounding body (negative
Weber contrast) or lighter than the surrounding body (positive Weber contrast); we then calculated the
absolute value of the Weber contrast to determine the magnitude of the contrast.
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We analysed our data in two steps using SAS (v. 9.3; SAS Institute Inc., Cary, NC, USA). First, we
used a generalized linear mixed model (PROC GLIMMIX) to assess whether our independent variables
influenced whether or not participants directed their gaze towards eye-spot regions. The independent
variables included the treatment (‘original’, ‘no eye-spot’, ‘scrambled’, ‘ellipse light’, ‘ellipse dark’,
‘triangle light” and ‘triangle dark’), gender of the participant (male or female), the interaction between
the treatment and gender of the participant, whether the image was a butterfly or moth, the phylogenetic
family of the insect, the total number of eye-spots/modified eye-spots on an image, the mean percentage
of surface area each eye-spot/modified eye-spot occupied out of the entire surface area of the insect
(‘relative surface area of eye-spots’), the mean distance between the head of the insect and the eye-
spots (‘marginality of eye-spots’), contrast type (whether the eye-spots were darker or lighter than the
surrounding body), the absolute value of Weber contrast, the interaction between contrast type and the
absolute value of Weber contrast, and the edibility rating. Treatment and species name (table 1) were
nested within subject identity, which was nested within gender, and were included as a random effects.

Second, we used linear mixed-effects models with repeated measures (PROC MIXED) using only
the portion of data in which participants directed gaze towards the eye-spot regions (images in which
the participants never looked at any of the eye-spot regions were removed so that underlying model
assumptions were met). We examined whether the time viewing eye-spots/modified eye-spots and the
latency to fixate an eye-spot/modified eye-spot were influenced by the same independent variables
as used in the first step. Treatment and species name (table 1) were nested within subject identity,
which was nested within gender, and were included as random effects. We examined all pairwise
comparisons among treatments and created contrasts to evaluate these differences. Pairwise comparisons
were considered significant if the p-value was less than the Bonferonni corrected values.

We also examined the relationship between pupil size (average of the left and right pupil) and the part
of the butterfly or moth that the participant was gazing at (body versus eye-spot), treatment, luminance
of the body of the butterfly or moth (mean pixel intensity of the body), luminance of the eye-spot regions
(mean pixel intensity of the eye-spot region), gender of the participant, interaction between the gender of
the participant and treatment, and the edibility rating. The perceived luminance may be slightly different
from the pixel luminance because of properties associated with the computer screen [35].

3. Results

The number of eye-spots on the butterfly and moth images ranged from two to 24 eye-spots (mean
number of eye-spots £s.e.: 5.8+ 0.59). They covered approximately a tenth of the insect’s body
(mean £ s.e.: 8.8 & 0.7%; range: 0.03-24.9%). Overall, eye-spots were fixated for approximately a tenth
of the viewing time (mean percentage of time looking at eye-spot regions: 6.9 + 0.12%) but the range
was large (0-89.4%). The natural eye-spots on butterflies and moths were usually darker than the
surrounding body and had a high contrast (mean Weber contrast £+ s.e.: —0.12 £ 0.02; range: —0.45—
0.26). The elliptical and triangular eye-spots with dark centres had the same contrast (mean Weber
contrasts £ s.e.: 0.18 £ 0.03) as did the elliptical and triangular eye-spots with light centres (—0.42 4 0.02).
The ‘scrambled” eye-spots and ‘no eye-spots’ had similar magnitudes of contrast but in opposite
directions (‘scrambled:’—0.12 % 0.02; ‘no eye-spot”: 0.12 & 0.02)

3.1. Probability of looking

The type of treatment (‘original’, ‘no eye-spot’, ‘scrambled’, ‘ellipse light’, ‘ellipse dark’, ‘triangle light’
and ‘triangle dark’) influenced whether participants looked at eye-spot regions or not (figure 2a and
table 2). Participants were more likely to look at the eye-spot regions in moths compared with butterflies.
They were also more likely to look at the eye-spot regions when there were more eye-spots, the mean
surface area of the eye-spots was greater, and the eye-spots were closer to the head of the insect.
Participants were more likely to look at eye-spot regions that were darker than the surrounding body
but the magnitude of contrast did not affect whether participants looked at eye-spot regions or not.
Participants indicated that they were more likely to select the butterfly or moth as a food source when
they looked at the eye-spot regions.

Participants were more likely to look at the eye-spot regions in images that exhibited natural eye-spots
compared with images with no eye-spots or modified eye-spots (‘scrambled’, ‘ellipse light’, “ellipse dark’,
‘triangle light” and ‘triangle dark’; table 3 and figure 2a). They were statistically less likely to look at eye-
spot regions in the images lacking eye-spots compared with all other images. The scrambled eye-spots
were more likely to draw attention than the elliptical or triangular eye-spots. Participants were not more
likely to look at the elliptical and triangular eye-spots with dark centres compared with light centres.

561051 2 s uado 205y BaoBuysiigndiaposieforsos:



—~
Q
=

probability of looking at eye-spot regions

1im

original no scrambled ellipse ellipse triangle triangle
eye-spot light dark  light dark

treatment

,\
S
=

1400

1200

1000

800

600

400

latency to fixate eye-spot regions (ms)

200

time viewing eye-spot regions (%)
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Table 2. The effects of variables on whether the participants looked at the eye-spot regions or not (‘probability look’), the amount of time n
participants spent looking at the eye-spot regions (‘time looking’), and their latency to fixate the eye-spot regions (‘latency to fixate’).
Asterisks indicate whether the comparison is significant.

Fnum df., den d.f. (P)

variable probability look latency to fixate time looking
treatment 69.805,264_6 (<00001)* 9-006,246 (<00001)* 38.816,276 (<00001)*
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Weber contrast (absolute value) 0.81 12049 (0.37) 0.211 6577 (0.65) 0.00; 560 (0.99)
contrast type x Weber contrast (absolute value) ~ 3.72; 1049 (0.054) 1.40; 5629 (0.24) 2.6 5467 (0.10)
Edlblhty rating 14.391,10322 (00001)* 0.281/5341 (060) 10921,5416 (0001)*

3.2. Latency to fixate

The latency to initially fixate an eye-spot region depended on the treatment (table 2 and figure 2b).
Participants were quicker to look at the eye-spot regions of moths than those of butterflies. They were
faster to fixate eye-spots when there were more eye-spots, the mean surface area of the eye-spots was
greater, and the eye-spots were closer to the head of the insect. The contrast of the eye-spots did not
influence latency to fixate the eye-spot regions. The latency to fixate eye-spot regions was unrelated to
participants’ indication of whether they would select the butterfly or moth as a food source.

Participants were faster to detect the eye-spot regions in the images that exhibited natural eye-spots
compared with images with no eye-spots or modified eye-spots (with the exception of ellipse ‘ellipse
light’; table 3 and figure 2b). The eye-spot regions in the ‘scrambled” images were also more quickly
detected than those in the “triangle light” images. Similar amounts of time were spent looking at elliptical
and triangular eye-spots regardless of whether the inside of the respective shapes was light or dark
coloured, with the exception of ‘ellipse light” and ‘triangle light’.

3.3. Time looking

The amount of time that participants fixated eye-spot regions varied depending on the treatment (table 2
and figure 2¢). They directed more attention towards the eye-spot regions when there were more eye-
spots, the mean surface area of the eye-spots was greater, and the eye-spots were closer to the head of
the insect. Neither the type of contrast nor the magnitude of contrast was a significant predictor of the
amount of time participants fixated eye-spots. Participants indicated that they were more likely to select
the butterfly or moth as a food source when they spent more time looking at the eye-spot regions.

Participants spent more time looking at the eye-spot regions in the images that exhibited natural
eye-spots compared with images with no eye-spots or modified eye-spots (with the exception of
scrambled eye-spots). They spent less time looking at eye-spot regions in images that lacked eye-
spots compared with ‘scrambled’, ‘ellipse dark” and ‘ellipse light” images. They directed more attention
towards ‘scrambled” eye-spots than the other modified eye-spots.

3.4. Pupil size

Pupil size was related to treatment (Fg 256 =5.12, p < 0.0001), luminance of the body of the butterfly or
moth (F1 4829 =454.9, p < 0.0001) and the part of the butterfly or moth that the participant was gazing



Table 3. Pairwise comparisons across treatment groups for whether the participants looked at the eye-spot regions or not (‘probability
look’), the amount of time participants spent looking at the eye-spot regions (‘time looking’), and their latency to fixate the eye-spot
regions (latency to fixate’). Asterisks indicate whether the comparison is significant using a Bonferroni correction (p-value = 0.05/21
comparisons = 0.002).

Fnum d.f., dendf. (P)

treatment comparison probability look latency to fixate time looking

original versus
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at (F1,17000 = 13.42, p = 0.0003), but unrelated to the gender of the participant (F137 =0.50, p = 0.49), the
interaction between the gender of the participant and treatment (Fg 211 = 1.04, p = 0.40), the luminance of
the eye-spot regions (F1,10000 = 3.35, p = 0.067) and the edibility rating (F1,11000 = 1.11, p = 0.29). Pupil size
was larger when participants were gazing at the eye-spot regions compared with the surrounding body
(LSMean = s.e.: eye-spots: 2.68 £ 0.046 mm; body: 2.67 £ 0.046 mm) but was smaller when the luminance
of the body was bright.

4. Discussion

Even though the eye-spot regions only occupied a fraction of the butterfly or moths” bodies, they still
attracted large amounts of attention. Humans were more likely to look at the natural eye-spots of
butterflies and moths than the eye-spots of butterflies and moths that had modified eye-spots (scrambled,



elliptical or triangular). They were faster to initially fixate the eye-spots of butterflies and moths with
their natural eye-spots compared with butterflies and moths that had modified versions of eye-spots,
except for the elliptical eye-spots with light centres. They also spent the most time looking at eye-spots
of butterflies and moths with their natural eye-spots compared with butterflies and moths that had
modified versions of eye-spots (with the exception of the scrambled eye-spots). They were not simply
looking at eye-spots because they were located in salient positions on the insects. When the eye-spots
were removed, participants had a lower probability of looking at the eye-spot regions compared with
when the natural eye-spots were still intact. Interestingly, participants’ pupil sizes were larger when they
viewed the eye-spot regions compared with the rest of the butterfly or moth body, indicating a greater
arousal level (potentially due to intimidation) when viewing eye-spots.

We found mixed support for the conspicuous signal hypothesis, which posits that eye-spots are
effective at deterring predators through intimidation because they are highly salient signals [15,16,20].
The natural eye-spots of the butterflies and moths did not have the highest contrast levels compared
with the other modified eye-spots. Despite this, they still attracted the most attention and humans
were generally quickest to fixate them compared with the eye-spot regions of butterflies and moths
lacking eye-spots or exhibiting modified eye-spots. Furthermore, eye-spots with scrambled pixels had
the same contrast as natural eye-spots but humans directed less attention towards the scrambled eye-
spots compared with the natural eye-spots. Interestingly, the natural eye-spots of butterflies and moths
were usually darker than the surrounding body of the insect and had a high contrast (large and negative
Weber contrast). Previous research in humans shows that luminance decrements (i.e. negative Weber
contrast) are more visually salient than luminance increments (i.e. positive Weber contrast) [36,37], and
contrast may therefore be contributing to eye-spot salience but not driving its effect.

The number, size and marginality of eye-spots affected gaze behaviours. Humans were more likely
to look at eye-spot regions, be faster to look at eye-spot regions and spend more time looking at
eye-spot regions when the butterfly or moth had more eye-spots and those eye-spots were larger.
Consistent with this gaze behaviour, Stevens et al. [20] found that artificial prey exhibiting more eye-
spots and larger eye-spots were more likely to survive than prey exhibiting eye-spots with opposite
properties. This suggests that predators’ visual attention towards numerous and large eye-spots impacts
predator hunting success. Numerous and large eye-spots may overload the sensory system of predators,
supporting the conspicuous signal hypothesis [16]. In addition, participants spent more time looking at
eye-spot regions and were faster to first fixate eye-spot regions when the eye-spots were located closest
to the heads of the insects, suggesting that marginal eye-spots are not the most effective at drawing
predator attention and may therefore have limited effects on deflecting attack [24].

We found minimal support for the eye mimicry hypothesis, which states that eye-spots are effective
at reducing predation through intimidation because they resemble the eyes of real predators [14].
Participants had a higher probability of looking at natural eye-spots and spent more time looking at
natural eye-spots compared with elliptical eye-spots (with dark centres) that also resembled eyes. In
addition, participants spent similar amounts of time looking at and initially fixating elliptical eye-spots
regardless of whether the inner ellipse was dark (and thus more closely mimicked a real eye) or light.
Eye-spots with scrambled pixels, which did not resemble eyes except in their elliptical shape, attracted
more attention than elliptical eye-spots with dark centres. Furthermore, elliptical eye-spots with dark
centres did not have higher probabilities of being fixated and were not fixated for longer amounts of
time than triangular eye-spots with dark centres, the latter of which did not resemble eyes in shape but
exhibited similar contrast levels to the elliptical eye-spots. Therefore, the resemblance of eye-spots to
real eyes seems unlikely to be the driving factor for attracting or maintaining attention because more
eye-like stimuli (elliptical eye-spots with dark centres) did not attract more attention than less eye-
like stimuli (elliptical eye-spots with light centres, triangular eye-spots and scrambled eye-spots; albeit
natural eye-spots did attract more attention than any of these modified eye-spots [15]). Similarly, avian
predators were deterred by eye-spots regardless of whether the eye-spots were more or less eye-like [38].
An experiment probing the cognitive biases of starlings also failed to find support for the eye mimicry
hypothesis: starlings did not show an increased aversion to eye-spots after being exposed to alarm calls,
suggesting that they did not categorize the eye-spots as a threat [39]. Future experiments using modified
eye-spots that more closely resemble the eyes of real predators (rather than using simplified ellipses; see
also [20]) would be informative to further probe this hypothesis.

The visual systems of predators can significantly impact their abilities to detect and capture prey.
Predators may be unable to see certain wavelengths that prey use when signalling with each other [40,41]
and this may decrease the predators’ abilities to detect that prey. Predators may also fail to note prey
that mimic environmental features [42] or blend in with their environments [43]. Alternatively, predator
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attention may be drawn to conspicuous prey markings that can lead to predator startle responses

[44]. Rather than attacking the vital body region of prey, predators may even mistakenly target the

conspicuous wing markings of prey and allow the prey to successfully escape. Our results demonstrate
that the visual system of human predators can also be influenced by the appearance of prey. In particular,
human attention was drawn towards eye-spot markings on butterflies and moths and this attention could

affect their abilities to successfully capture prey in natural environments.
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