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We treat protein folding as molecular self-assembly, while
unfolding is viewed as disassembly. Fracture is typically a much
faster process than self-assembly. Self-assembly is often an
exponentially decaying process, since energy relaxes due to
dissipation, while fracture is a constant-rate process as the
driving force is opposed by damping. Protein folding takes two
orders of magnitude longer than unfolding. We suggest a
mathematical transformation of variables, which makes it
possible to view self-assembly as time-reversed disassembly, thus
folding can be studied as reversed unfolding. We investigate the
molecular dynamics modelling of folding and unfolding of the
short Trp-cage protein. Folding time constitutes about 800 ns,
while unfolding (denaturation) takes only about 5.0 ns and,
therefore, fewer computational resources are needed for its
simulation. This RetroFold approach can be used for the design
of a novel computation algorithm, which, while approximate, is
less time-consuming than traditional folding algorithms.
1. Introduction
Molecular self-assembly including protein folding is a highly non-
equilibrium dynamic process, which is still not well understood
and requires a lot of computational resources for its simulation.
During self-assembly, the physical system passes through a
complex trajectory in the phase space from an initially disordered
high-energy macrostate (with many microstates V and thus with
high entropy S ¼ klnV) to a final ordered low-energy macrostate
(with a single microstate and low entropy). The process involves
dissipation, which leads to relaxation and wandering through
intermediate metastable states (figure 1).

As opposed to that, during spontaneous disassembly or
disintegration, the system passes from an initially ordered

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.221594&domain=pdf&date_stamp=2023-05-03
mailto:nosonovsky@infochemistry.ru
http://orcid.org/
http://orcid.org/0000-0003-0980-3670
http://creativecommons.org/licenses/by/4.0/


self-assembly

slow relaxation
(folding)

fast destabilization
(unfolding)

multiple initial states

multiple final states

single initial state

single final state

disassembly

high
energy

low
energy

Figure 1. Schematic showing self-assembly (from multiple initial states to a single final state) and disassembly (from a single initial
state to multiple final states), and corresponding energy landscapes (slow relaxation or decaying oscillations leading to the self-
assembled configuration and fast destabilization during disassembly).
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high-energy and low-entropy macrostate to a final disordered low-energy and high-entropy state. In
both cases, the energy is minimized, while the entropy decreases during self-assembly and increases
during disassembly. In accordance with the Gibbs formula, ΔG = ΔH−TΔS, the enthalpy term ΔH
prevails over the entropic term, TΔS, for low temperatures. Consequently, self-assembly usually
cannot be presented as a time-reversed process of disassembly since there is no symmetry between
these two processes. The entropy and enthalpy contributions to the coil–globule phase transition of
proteins are reviewed in [1].

Self-assembly is often an exponentially decaying process, since energy relaxes due to dissipation, while
the system is drifting slowly through metastable states before reaching the most stable configuration. On
the other hand, during fracture, driving forces are often equilibrated by damping leading to a constant-
rate process. Therefore, to relate the energy release during fracture with the exponentially decaying
energy release during self-assembly, different temporal scales should be considered.

Protein folding typically takes dozens of nanoseconds for initial folding by hydrophobic forces and
then on the order of microseconds for reaching the stable configuration through relaxation and forming
stable intramolecular bonds between adjacent amino acids (AAs). The unfolding usually takes several
orders of magnitude less time, on the order of dozens of nanoseconds.

Unfolding and denaturation of proteins have been studied for more than 60 years [2–9], and various
mechanisms, such as cold denaturation [5] and pressure-induced denaturation [6], have been
investigated. The entropic nature of folding has been investigated as well; thus, Kellermayer et al. [7]
showed that the force required to stretch a single molecule behaves as a highly nonlinear entropic
spring. Force hysteresis arises from a difference between the folding and unfolding kinetics.
Intermediate states between the folded and the completely unfolded conformation have been found [8].

During folding, most protein molecules pass from a one-dimensional linear primary structure to a
unique three-dimensional native ternary state. Various computational methods can be applied to
model folding including the molecular dynamics (MD) and Monte Carlo (MC) simulation, as well as
machine-learning (ML) methods [10–12]. The MD allows visualization of the transitional states (TS)
structures dynamically, but it is very slow and time-consuming for a large number of rotational
degrees of freedom. The MC (e.g. RoseTTAFold) simulation is faster than the MD; however, a
crystallographically obtained reference structure is needed for this method. New ML methods, such
as the popular AlphaFold [10], are relatively fast and precise; however, they are not applicable to TS
analysis.

Since modelling protein folding remains a challenging computational task consuming significant
resources, various heuristic approaches to folding modelling have been proposed, including scaling
and topological methods [13–18]. In the present paper, we suggest a mathematical transformation
that presents the assembly–disassembly process as quasi-reversible. We will apply it to the folding–
unfolding transition to suggest a simplified method of folding modelling as a time-reversed unfolding.



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221594
3
2. A mathematical log transition for self-assembly/disassembly

asymmetry
In this section, we consider a model one-dimensional system consisting of a particle with the mass m
travelling in a potential field with dissipation. This is a simplified linearized model of self-assembly
and disassembly. For the potential field with a global minimum, the particle oscillates with
exponentially decaying amplitude and reaches the equilibrium point slowly. This is similar to the self-
assembly of a complex system reaching the unique ordered self-assembled state. This is also similar to
the folding of a protein molecule reaching its native (globular) state. On the other hand, for the
potential field with a global maximum, the particle’s motion is unstable, and it reaches the disordered
state within a short time. This is similar to the disassembly of a complex system or to the unfolding of
a protein molecule. Another possible analogy is the mixing and separation of two types of elements
or substances.

Let us consider the motion of a particle in a potential field with dissipation with the Lagrange
function, L(x, _x), energy, E(x, _x) and dissipative function, Q( _x), given by [19]

L(x, _x) ¼ m
2
_x2 � k

2
x2, E(x, _x) ¼ m

2
_x2 þ k

2
x2, Q( _x) ¼ b

2
_x2, ð2:1Þ

where m, k and β are the mass, elastic spring constant and viscous dissipation, respectively. The quadratic
potential energy is the simplest energy profile with its minimum corresponding to the state of
equilibrium. The equation of motion is supplied by the Lagrange equation

d
dt
@L
@ _x

� @L
@x

¼ � @Q
@ _x

or m€xþ b _xþ kx ¼ 0: ð2:2Þ

The solution is obtained by the standard substitution of X ¼ ezt yielding the roots of the characteristic
equation

z ¼ � b

2m
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2m

� �2

� k
m

s
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where v0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is the natural frequency, z ¼ ðb= ffiffiffiffiffiffi

km
p Þ , 1 is the damping ratio and zv0 is the damped

frequency.
For k . 0, the solution is decaying. The underdamped solution ðz , 1Þ corresponds to complex

conjugate roots z ¼ �z+ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� �
v0 and damped oscillations

x(t) ¼ x0e�zv0t cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
v0t� f

� �
, ð2:4Þ

where f is the phase angle. The overdamped (relaxation without oscillations) solution ðz . 1Þ
corresponds to two negative real roots and it is given by

x(t) ¼ x0 ce
ffiffiffiffiffiffiffiffi
z2�1

p
v0t þ e�

ffiffiffiffiffiffiffiffi
z2�1

p
v0t

� �
e�zv0t: ð2:5Þ

In both cases, the total energy is decaying exponentially by

E(t) ¼ E0 þ ðE1 � E0Þe�zv0t: ð2:6Þ

For the unstable equilibrium, we will consider the potential field E(x, _x) ¼ ðm=2Þ _x2 � ðK=2Þjxj. Unlike
the quadratic term in equation (2.1), the jxj term corresponds to the non-equilibrium down-the-hill
kinetics, which is inherent to protein folding and unfolding [20]. The driving force is asymptotically
equilibrated by friction, K ¼ b _x, so the energy is changing linearly with time as

E(t) ¼ m
2

K
b

� �2

�K2

2b
t: ð2:7Þ

Note that the stable and unstable solutions cannot be converted to each other by just reversing time
due to different time scales of exponential decay and linear growth. To overcome this, one can introduce
the coordinate transformation q ¼ T(t) so that

t ¼ Dte�zv0Dtq, ð2:8Þ
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Figure 2. Schematic representation of (a) folding and (b) unfolding mechanisms for Trp-cage molecule depicted as a tube cartoon
[13]. The cartoon models were generated using the PyMOL molecular graphics system (Schrödinger, Inc.).
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where Dt is the total integration time. Equations (2.7) and (2.8) combined yield the equation

E(Dtq) ¼ m
2

K
b

� �2

�K2Dt
2b

e�zv0Dtq, ð2:9Þ

which is structurally similar to equation (2.5).
Thus, the coordinate transformation (x,t) ! (x,Dte�zv0Dtq) essentially reduces the self-assembly to the

time reversal of disassembly; however, it misses certain details, such as the oscillatory behaviour of the
underdamped solution.

A computational method can be suggested when the final self-assembled state of the system (for
example, the native structure of a folded protein) is known; however, information about the stages
and trajectory of the self-assembly process is needed. In that case, the disassembly can be simulated
(for example, unfolding of a protein) and the above-described procedure applied with time reversal.
Such an algorithm will likely miss some details, such as oscillating between the metastable states;
however, it still can provide a general grasp of the self-assembly trajectory at a computational cost
much lower than the direct simulation of self-assembly. We call this the RetroFold method as an
analogy with the retrosynthesis in organic chemistry, which is considered the reversed synthesis.
3. Case study: molecular modelling of the Trp-cage protein
Trp-cage is the smallest known protein, containing only 20 AA residues, and sometimes it is considered a
polypeptide. The name Trp-cage is given due to the central role of the Trp burial in the hydrophobic core
and the cage-like shape of the globular structure. The AA sequence of the Trp-cage is Asn-
Leu-Tyr-Ile-Gln-Trp-Leu-Lys-Asp-Gly-Gly-Pro-Ser-Ser-Gly-Arg-Pro-Pro-Pro-Ser
(NLYIQWLKDGGPSSGRPPPS). Since Trp-cage shares several features with larger globular proteins, it
often serves as a model system for various computational studies, including MD simulations
analysing protein folding (figure 2). Some observations suggest a two-step folding, while others
indicate the presence of intermediate states [13,21,22]. The MD folding simulations demonstrated
thermodynamic and kinetic features similar to globular proteins [23].

A two-step mechanism with an intermediate metastable state was found by Zhou [24]. According to
this study, two partial hydrophobic cores are separated by an essential salt bridge between residues Asp-
9 and Arg-16 near the centre of the molecule [25]. The original value of the melting point was reported as
Tm = 42°C; however, mutations in the helical portion of the protein (the replacement of Leu, Ile, Lys or Ser
residues by Ala) result in the increase of the melting point to Tm = 64°C from [26]. According to Barua
et al. [26], the Y3/P19 staple interaction defines the 18-residue folding motif. Along with the Trp
burial, this motif is essential for the core formation, unlike the specific Pro/Trp interactions.
Other stabilizing features that have been identified include a solvent-exposed Arg/Asp salt bridge
(0.81–1.43 kcal mol−1) and a buried H-bonded Ser side chain (≈2.39 kcal mol−1) [26].
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Figure 3. MD simulation of the energy profile for Trp-cage molecule folding showing the potential energy versus simulation time.
The 800 ns conformation of Trp-cage is depicted as a tube cartoon model and coloured in green.
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We conducted the MD simulation of both folding and unfolding using the Trp-cage AA sequence with
an extended initial conformation built by the LEaP module of AMBER [13,27]. The linear conformation of
this protein was designed using Avogadro software [28]. The three-dimensional molecular structure (PDB
ID: 1L2Y) of Trip-cage was determined by the nuclear magnetic resonance (NMR) method in the solution
as a set (n = 38) of stable conformations obtained from the RCSB Protein Data Bank.

The MD simulations included the following phases: minimization (500 cycles), heating (50 ps), and
equilibration (production) at 325 K (800 ns) for folding and at 473 K (5 ns) for unfolding according to
the standard protocols published elsewhere [13,29,30].

Our MD simulations were fully unrestrained and carried out in the canonical ensemble using the
SANDER module available for Linux/Unix. The Berendsen thermostat was implemented for
temperature control and the SHAKE algorithm to constrain the length of covalent bonds, including the
hydrogen atoms [31]. The ff99 force field was used as it was previously employed for similar modelling
[32]. Solvation effects were incorporated using the Generalized Born model, as implemented in AMBER
[33]. The Rosetta crystallographic refinement protocol was implemented to assess the conformational
stability of the folded and unfolded protein conformations obtained from the previous MD simulations
[13,34–37].

The folding process involved two phases: the heating stage, which lasted less than 50 ps, and the
equilibration stage, which lasted for 800 ns (figure 3). During the heating phase, the molecule
underwent significant structural changes due to the heating disturbances. The root-mean-square
deviation (RMSD) of the molecule from its exact final reference native shape (from experimental data
obtained by the structural analysis) also undergoes significant fluctuations during folding. During the
heating stage, the value of the RMSD was between 16 Å and about 7 Å, and it further decreased
during the equilibration. The folding is initiated at the very compliant and flexible C-terminus of the
molecule; consequently, the complete folding requires a much longer time of about 4 µs, considering
that the RMSD value of 0.56 Å (close to the ideal 0.5 Å) was found with the AlphaFold2 algorithm [38].

The potential energy of the molecule, Epot, was used as a measure of folding. The potential energy
decreased from Epot =−487 kcal mol−1 at the beginning of the equilibration stage (t = 50 ps) to Epot =
−562 kcal mol−1 at the end of the equilibration stage (t = 800 ns), and the decrease is fitted well by an
exponential approximation. Note that the rates of folding and unfolding are sensitive to the
temperature; however, both processes are qualitatively different, as folding is dominated by dissipative
forces and exponential decay, while unfolding is dominated by non-exponential driving forces.

The unfolding was modelled with a similar MD simulation protocol starting from the native globular
configuration at the temperature of T = 498 K. The high temperature was used according to the standard
protocol [39]. The most stable conformation (Etot =−14.84 kcal mol−1) out of 38 different conformations
obtained by NMR was used as a starting point for unfolding (figure 4).

The potential energy showed an almost linear increase at the initial stage from Epot =
−707.6 kcal mol−1 at t = 0 ps, up to Epot =−478.4 kcal mol−1 at t = 31.8 ps. Following that, the increase
was almost exponential approaching Epot =−350 kcal mol−1 at about t = 1.5 ns, with the unfolding
completed before t = 5.0 ns (figure 5).

It is observed from this data that folding and unfolding are very asymmetric processes, however the
procedure suggested above has been applied. First, the rate of unfolding at the almost linear stage was
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calculated as 16.25 kcal mol−1 ps−1. The potential energy was normalized using the initial and the final
values of Epot =−707.6 kcal mol−1 and Epot =−350 kcal mol−1, respectively, while the time was
normalized by dividing by the total simulation time of Δt = 5.0 4 ns, so that the point Epot =
−478.4 kcal mol−1 at t = 31.8 ps (or at τ = 0.0318/5.0 = 0.0065) corresponded to ε = (−478.4−(−707.6))/
(−350−(−707.6)) = 0.6418, and the non-dimensional rate of zv0Dt ¼ ð0:6418=0:0065Þ ¼ 98:74 was obtained.

Following that, the time variable change or q ¼ ln t=(�zv0Dt) was applied, so that the initial
unfolding time t = 0 (τ = 0) corresponded to q ! 1 (and the globular state), t = 31.8 ps (τ = 0.0065)
corresponded to q ¼ 0:051 (the end of the approximately constant-rate unfolding region) and t = 5.0 ns
(τ = 1) corresponded to q ¼ 0 (unfolded state).

At the next stage, the reverse time transition was applied, t ¼ qDt, so that non-exponential folding
lasted between t ¼ 0 and t ¼ 25:7 ns, and the exponential folding was approximated by

Epot ¼ Emin þ (Emax � Emin)e�q ¼ �562
kCal
mol

� �
þ 75

kCal
mol

� �
e�t=Dt: ð3:1Þ

When comparing data obtained from the approximate equation (3.1) with the folding simulation
data, one finds the maximum error of 4.1% at t = 524 ps, while for a time greater than 1 ns, the error is
less than 3.5% (figure 6). Thus, one can conclude that the approximate method provides a reasonable
approximation to determine the protein structure resembling the NMR model (figure 6).

Finally, the MC analysis was performed using folded and unfolded conformations of Trp-cage mini-
protein to assess energy levels for these conformations. It is clear from figure 7 that the folded model of
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Trp-cage occupies significantly lower energy levels in a range from −28 to −22 REU than its unfolded
form (−22 to −10 REU), confirming our previous results. Additionally, the refinement protocol
calculated minimal-energy score values of −28.45 REU and −22.0 REU for folded and unfolded states,
respectively. All the minimal-energy conformations mainly occurred below the RMSD threshold of
1.0 Å verified by the three-dimensional protein alignment (figure 7), which was previously
determined to be lower (0.5 Å) for the NMR models of Trp-cage [13].
4. Discussion
The results show a significant asymmetry between folding and unfolding, which can be partially
compensated by the transformation T(t) suggested by equation (2.8). The folding–unfolding
asymmetry can be related to the inherent non-ergodicity of the folding process. Non-ergodic systems
evolve with time, which affects their ability to attain microstates with equal probability, while ergodic
systems have no memory of their previous history and attain all available microstates. Ergodicity of a
dynamical system implies the equivalence of the phase space averages and time averages. Many
biological systems are non-ergodic due to molecular crowding [40], anomalous diffusion, fractal
behaviour [14] and many other effects of complex environments typical for biological systems. Non-
ergodic behaviour is compensated by considering the mathematical Lamperti transformation [41],
which is to some extent similar to the transformation T(t) suggested in the present work, or by
introducing the ergodicity defect measure.
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Understanding of protein folding involves several difficult problems. While the AA sequence of a

protein usually determines its folded (native) structure (the so-called ‘Anfinsen’s dogma’ [42]), it is
not clear how protein achieves this native structure. The fast kinetics of folding, despite a huge
number of possible microstates through which the molecule can pass on its way to the unique native
state, is sometimes called the ‘Levinthal paradox’ [43]. The usual explanation of the paradox is that
folding is a hierarchical process with many intermediate states between coil and globular proteins,
such as secondary and super-secondary structures and domains. These are known as ‘folding
intermediates’ [44]. Unfolding does not imply a unique final state, so it takes a much shorter time and
also does not necessarily pass through the intermediate state.

While the analysis of the intermediates, such as secondary and super-secondary structures, during
unfolding would require the study of larger molecules than the Trp-cage used in our case study,
the suggested RetroFold approach still provided values of energy within 4.1% implying similar
structural configurations at the corresponding stages of the folding and unfolding processes.
R.Soc.Open
Sci.10:221594
5. Conclusion
A novel computational method was suggested to simulate self-assembly including protein folding. The
method is based on using the disassembly or unfolding data, reversing the time variable, and applying
a mathematical log transition, which relates the disassembly (often a constant-rate process) with the self-
assembly (often an exponentially decaying process). There is no exact symmetry between the two
processes; consequently, the similarity is only approximate. The method was tested for the MD
simulations of folding and unfolding of the short Trp-cage protein, and showed agreement within 4.1%
or less for the molecular energy profile. Unfolding is more than two orders of magnitude faster than
folding (namely, 800 ns for Trp-cage folding versus 5.0 ns for its unfolding) and, consequently, it
required two orders of magnitude fewer computer resources to model.

The suggested algorithm will likely miss some details of the folding process, such as oscillating
between the metastable states; however, it still can provide a general grasp of the self-assembly
trajectory at a computational cost much lower than the direct simulation of self-assembly.
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