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Foraging is a behaviour that can be influenced bymultiple factors
and is highly plastic. Recent studies have shown consistency in
individual foraging behaviour has serious ecological and
evolutionary implications within species and populations. Such
information is crucial to understand how species select habitats,
and how such selection might allow them to adapt to the
environmental changes they face. Five foraging metrics
(maximum distance from the colony, bearing from the colony to
the most distal point, tortuosity index, total number of dives
and mean vectorial dynamic body acceleration were obtained
using GPS tracking and accelerometry data in adult
Australasian gannets (Morus serrator) from two colonies in
southeastern Australia. Individuals were instrumented over two
breeding seasons to obtain data to assess factors influencing
foraging behaviour and behavioural consistency over multiple
timescales (consecutive trips, breeding stages and years) and
habitats (pelagic, mixed pelagic and inshore, and inshore).
Colony, breeding stage and year were the factors which had
the greatest influence on foraging behaviour, followed by
sex. Behavioural consistency, measured as the contribution of
the individual to the observed variance, was low to moderate
for all foraging metrics (0.0–27.05%), with the higher values
occurring over shorter timescales. In addition, behavioural
consistency was driven by spatio-temporal factors rather than
intrinsic characteristics. Behavioural consistency was higher
in individuals foraging in inshore than pelagic habitats or
mixed pelagic/inshore strategy, supporting suggestions that
consistency is favoured in stable environments.
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1. Introduction

Foraging is a primary activity of animals which can be highly influenced by intrinsic factors such as age,
sex or genotype [1–3], extrinsic factors such as geographical location, local weather or predation risk [4–
6], and by reproductive constraints such as breeding stage or brood size [7,8]. However, such factors do
not necessarily affect all animals in the same way, with one or multiple influences potentially acting in
different directions at a particular time [9]. Furthermore, as foraging is generally a high energy
expenditure activity, there are strong incentives for animals to develop foraging strategies that
minimize their energy costs [10]. Such strategies can vary in associated foraging time and effort in
particular habitats, associated choice of specific search methods and/or of food types consumed [11].
If a particular foraging strategy provides greater rewards, it is likely that this strategy will be repeated
over time, favouring the development of behavioural consistency [12]. It is known that behavioural
consistency in foraging activities leads to the evolutionary development of foraging specialization
within animal populations, but the information on the persistence of this phenomenon over different
timescales and habitats is limited [13].

Foraging specialization refers to the use of a specific proportion of the full range of available resources
(or foraging strategies) by a subset of a population, resulting in inter-individual niche variation [14]. This
phenomenon has been demonstrated in a wide variety of taxa [15]. Information on the factors influencing
behavioural consistency (e.g. extrinsic versus intrinsic factors) and on the link between habitat selection
(e.g. pelagic versus benthic foraging) and behavioural consistency is lacking; however, foraging
specializations are thought to arise in stable environments in which resources are predictable and
diverse, enabling individuals to develop behavioural differences to reduce niche overlap with
conspecifics and, thus, minimize competition [16]. Such behavioural consistency may, therefore, have
significant ecological consequences at the individual level but also on the development of offspring
during the breeding season [17]. Consequently, knowledge of foraging temporal and spatial variation
in specializations is important to fully understand their ecological implications within species [18,19].

The marine environment is complex and dynamic, and the foraging ecology of marine life is highly
influenced by environmental variables [20]. At a global scale, oceans display clear patterns of water
circulation and climate [21]. At local scales, physical features such as bathymetry, tidal regimes and
nutrient fluxes determine the structure of marine and coastal ecosystems and influence the behaviour
of marine fauna [22]. Marine environments comprise different ecosystem types and biomass levels
which can lead to the development of a wide range of foraging techniques (higher ecological
opportunity) [16,23] even within the same species and populations [24]. Behavioural consistency in
foraging activities have been found within different animal groups in the marine environment [25,26],
and it is expected to occur more commonly for top-order marine predators who are regulated by
bottom-up processes and experience high levels of resource competition [27,28].

Marine birds are important top-order predators [29,30]. They are long-lived animals and, during the
breeding season, adopt a central place foraging strategy which can lead to high levels of resource
competition [31]. These attributes have been shown to favour the development of behavioural consistency
within this group and, combined with other factors such as age, sex or breeding status, influence the
development of individual behavioural differences [32]. However, the degree to which species and
populations exhibit individual behavioural consistency in foraging activities can vary [33]. Studies suggest
that intra- and inter-population differences may be related to temporal changes in resource availability
[32,34,35], but the mechanisms influencing individual foraging consistency across populations or habitats
are poorly understood [36]. Such information is crucial to enable predictions about marine predators’
habitat selection and the responses of natural populations to changing environments [18,37].

The Australasian gannet (Morus serrator) is an important marine predator in southeastern Australia and
New Zealand [38,39], with an estimated annual consumption of 228.2 tons of schooling pelagic fish (e.g.
Australian sardine Sardinops sagax, barracouta Thyrsites atun and blue mackerel Scomber australasicus) in
Australian waters alone [40]. This region is one of the fastest warming oceanic areas and significant
changes to ocean currents are predicted to occur [41,42]. Such changes are likely to alter the distribution
and abundance of marine species [43,44]. Indeed, expansions and shifts in fish and invertebrate species
ranges have already been documented in southeastern Australia [45]. Therefore, knowledge of the factors
influencing foraging activity and behavioural consistency in Australasian gannets is necessary to
understand how their populations may adapt to changes in the supply of marine resources.

Like other members of the Sulidae family, the Australasian gannet is considered a generalist forager
and has been shown to be adaptable in its feeding habits [40,46,47]. It displays reverse sexual
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Figure 1. Location of study sites: Point Danger (left) and Pope’s Eye (right). The 200 m bathymetric contour is given to indicate the
edge of the continental shelf.
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dimorphism (females larger than males) and recent studies suggest individuals exhibit sex-related
differences in habitat use [48–50] and prey selection [47]. Furthermore, inter-colony differences in
diving behaviour and habitat selection have been documented [51,52]. However, little is known of the
factors influencing foraging behaviour and behavioural consistency in this species. The aims of the
present study, therefore, were to determine, in Australasian gannets: (i) the influence of extrinsic and
intrinsic factors on foraging behaviour, (ii) the degree of behavioural consistency in foraging activities,
(iii) the persistence of behavioural consistency through time and space, and (iv) the influence of
extrinsic and intrinsic factors on behavioural consistency.
2. Material and methods
2.1. Study sites and animal handling
The study was conducted at two Australasian gannet breeding colonies in northern Bass Strait,
southeastern Australia, which experience divergent oceanographic conditions and may present
differences in resource availability or habitat accessibility (figure 1). Point Danger (PD; 38°23036.0900 S,
141°38055.9400 E) is located at the western edge of Bass Strait near the seasonally active (Austral
summer) Bonney Upwelling, an important source of primary productivity for the Bass Strait region
[22,53]. Individuals from this colony range up to 238 km northwest and southeast, remaining over the
narrow (approx. 40 km wide) continental shelf to forage on schooling fish and cephalopods [22,52].
Pope’s Eye (PE; 38°16035.8800 S, 144°41056.2100 E) is located at the entrance of the Port Phillip Bay (PPB)
on an artificial structure. Birds from PE forage within the shallow (average depth less than 13.6 m)
[54] waters of PPB primarily on benthic/demersal fish, outside of PPB within northern Bass Strait on
schooling fish and cephalopods, or in both habitats [49,52].

Data were collected during the 2014/15 and 2015/16 breeding seasons (October–March) in each of
three breeding stages: incubation; early chick-rearing (chick age 0–50 days); and late chick-rearing
(chick age greater than 50 days) [55]. Individuals were captured by hand or with the aid of a noose-
pole [56] at the nest and weighed in a cloth bag with a suspension scale (±25 g, Salter Australia Pty
Ltd, Australia). A GPS data logger (programmed to record location every 2 min; I-gotU GT-600,
Mobile Action Technologies Inc., Taiwan, ±10 m error), and a tri-axis accelerometer data logger
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(sampling rate of the individual 25 Hz; X8M-3mini, Gulf Coast Data Concepts LLC, USA), encapsulated

together in heat shrink plastic (total package 53.7 g, <3% body mass), were then attached to the central
tail feathers of the individual using water-proof tape (Tesa® 4651, Beiersdorf AG, Germany). The
instrumentation was done in a consistent manner, with the GPS logger at the top, towards the head of
the animals, and the accelerometer at the bottom towards the tail. Individuals were then returned to
the nest and resumed natural behaviours within 10 min of capture.

After 10–12 days, individuals were recaptured as previously described and the data loggers were
removed by peeling the tape from the feathers, and body mass was recorded. Morphometric
measurements of culmen length and bill depth, and tarsus length and ulna length, were taken using
Vernier callipers (± 0.1 mm) and metal ruler (± 1 mm), respectively. A blood sample (0.1 ml) was then
obtained by venipuncture of a tarsal vein for genetic sexing (DNA Solutions, Wantirna South,
Victoria, Australia) before the bird was returned to the nest. Where possible, the same individuals
were sampled in multiple breeding stages and across years.

2.2. Data processing and statistical analysis
Unless stated otherwise, all data processing and statistical analyses were conducted in R v. 3.3.2 [57].
Deployment data were checked by visual inspection, and split into individual foraging trips using the
return of the birds to the colonies’ coordinates as endpoints for each trip. Trips were then filtered using
a speed filter to remove erroneous locations [58] in the trip package [59], applying a maximum average
speed of 55 km h−1 suggested for northern gannets (M. bassanus) [34]. Subsequently, for each foraging
trip, maximum distance from the colony (km), total distance travelled (km) and bearing (0–360°, from
the colony to the most distal point) were calculated using the adehabitatHR package [60]. A tortuosity
index, a measure of an animal’s searching behaviour, was also estimated by dividing the maximum
distance reached from the colony with the total distance travelled during the trip [61,62].

At-sea behaviours throughout the foraging trip were determined from the tri-axis accelerometer data
loggers. Data were initially inspected visually to assign foraging behaviours (plunge diving and surface
foraging) in IGOR Pro (v. 6.37, WaveMetrics, USA) [63], based on the acceleration profiles suggested for
other species of gannets and boobies [64–66]. The Ethographer package was then used to identify these
behaviours by performing a k-means, unsupervised cluster analyses of 1 s windows of continuous
wavelet spectra computed from the time series. Later, each identified cluster was assigned a specific
behaviour based on the previous visual identification [67]. From these data, the total number of dives
(plunge diving and surface foraging) was estimated for each foraging trip. In addition, the
accelerometry data were used to calculate the average vectorial dynamic body acceleration (VeDBA)
throughout each foraging trip. This average was used as a proxy of the energy expenditure and
allowed comparisons of the rate of energy expended across foraging trips [68–70].

A body condition index (BCI) was calculated for each bird at each deployment, as a proxy for total
body fat (%) content, using body mass (kg), wing ulna (mm) and tarsus (mm) measurements [48]. As
Australasian gannets are sexually dimorphic, body size indices were calculated to investigate the
effect of size on foraging behaviour independently of sex. A body size index (BSI) and wing length
index (WLI) were calculated using the deviation of each individual’s body mass (kg) and wing length
(mm) from the means for their respective sex.

To determine the factors influencing the foraging behaviour of instrumented individuals, linear mixed
effects models were created using the nlme package [71]. The foraging metrics (maximum distance from the
colony, average bearing and tortuosity index), the total number of dives and mean VeDBA, were used
separately as response variables. Fixed factors such as colony (PD, PE), year (2014/15, 2015/16),
breeding stage (incubation, early chick-rearing, late chick-rearing) and sex were used as explanatory
variables in combination with the BCI, BSI and WLI. For these models, the full dataset was used (i.e.
data obtained from all individuals in both sites and 2 years of sampling) using sampling size of three or
more foraging trips per deployment. In this study, the influence of the factors colony, breeding stages
and year were considered to reflect the differences in resource availability and environmental variation,
respectively. Consequently, specific environmental variables were not analysed.

Where appropriate, variables were cube-root-transformed to fit model assumptions of constant
variance and normal distribution of residuals [72]. Model assumptions were checked by plotting
residuals and using quantile–quantile plots. Collinearity among all the explanatory variables was
checked before conducting each model using pairplots, boxplots and the variance inflation factor (cut-
off value used = 2) [73]. The initial models were then fitted with restricted maximum likelihood (REML)
and models with and without the random structure (nest identity, due to the use of breeding partners
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from the same nests, and individual identity) were compared using the anova function. Variance structure

for the explanatory variables was included when the residuals inspection suggested it was necessary. The
best-fixed structure was found using the dredge function of the MuMIn package based on the AICc values
[74], using models refitted with maximum likelihood (ML). Where multiple models had ΔAICc≤ 4 and no
single model had an AICc weight above 0.90, model averaging was used to calculate the relative
importance of each explanatory variable using the MuMIn package [74,75]. This multi-model statistical
approach was selected as it allows to identify strong associations between multiple explanatory
variables, while AICc values compare multiple models all at once incorporating model selection
uncertainty and enabling inferences that are unconditional on a specific model [76,77].

To quantify the magnitude of individual behavioural consistency in each foraging metric, variance
component analyses were conducted using the models containing the parameters defined as
influential after model averaging. The ape package [77] was used to calculate the variance, standard
deviation and proportion of total variance occurring at the individual level, as well as the residual
variation. The variance explained by the individual is considered an estimate of the individual
specialization within a population [15,19].

To investigate the factors influencing individual variation, a second set of models using another
measure of consistency, the coefficients of variation of the foraging metrics (standard deviation in the
case of the bearing as it is a circular variable), calculated per deployment and used as response
variable, was then developed [78]. The same set of explanatory variables and modelling approach
described above were used.

As multiple logger deployments were performed on most individuals (mean ± s.e.: 1.9 ± 0.1
deployments per bird), the full dataset allowed comparisons at different timescales to be made:
trip-to-trip (T-to-T, data from consecutive trips obtained within the same deployment), breeding stage-
to-breeding stage (S-to-S, data obtained from different breeding stages within the same year), and
year-to-year (Y-to-Y, data obtained from the same breeding stage in two different years). This partition
enabled the assessment of the timescales over which individual behavioural consistency is maintained.
The full dataset was then partitioned to match each timescale tested, using in each case three or more
foraging trips per deployment.

For the T-to-T comparison, the dataset was also subdivided into colonies (PD and PE) to quantify the
individual consistency level at each site. The PD data were analysed in its entirety, reflecting the relatively
uniform foraging habitat used by these individuals, whereas the PE data were split according to the
predominant habitat individuals foraged in. Individuals that spent greater than 70% of trips during a
deployment in PPB or Bass Strait were classified as PE-inshore and PE-pelagic, respectively, while
individuals that did not were defined as PE-mixed. This partition allowed a comparison of individual
behavioural consistency associated with different habitat selection. Models from these further
separations were made using the same set of response and explanatory variables and followed all
considerations described previously. Unless otherwise stated, results are presented as mean ± s.e.
3. Results
3.1. Factors influencing foraging behaviour
The GPS and accelerometry data loggers were deployed on 142 breeding birds (260 deployments) from
which 3–50 foraging trips were obtained (18.1 ± 0.9 trips per individual). From the GPS data loggers, a
total of 2493 foraging trips were recorded but, due to battery life restrictions, accelerometry data were
recorded for only 1284 trips. Consequently, the sample size used to obtain the different foraging
metrics varied depending on the device used. A summary of the calculated foraging metrics is
presented in table 1.

The top-ranked statistical models explaining the factors influencing the foraging behaviour of
Australasian gannets were determined using model averaging, as the combined weight of the top set
of models was low (ωi < 0.9, electronic supplementary material, tables S1 and S2). After model
averaging, the best explanatory variables for maximum distances from the colony were colony,
breeding stage, year and sex. Namely, individuals from PD, individuals during incubation, individuals
during 2015/16 and females reached greater distances from the colony. For bearing and tortuosity
index, colony, breeding stage and year were the most influential variables. Specifically, individuals
from PD, individuals during late chick-rearing and individuals during 2015/16 showed higher
bearings and tortuosity indices. Lastly, mean VeDBA and number of dives per foraging trip were both
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influenced the most by breeding stage and sex. Individuals during early chick-rearing and males had

higher VeDBA values, and individuals during incubation and females displayed a higher number of
dives (table 2).

3.2. Influence of timescales and habitats on foraging behaviour consistency
Variance component analyses were performed to determine the proportion of variance explained by the
individual for each of five foraging metrics. As 86% (n = 226) of the deployments were conducted
simultaneously on breeding partners from the same nests, nest identity was tested during the modelling
as a random component. The addition of this random component did not significantly improve models
in all cases (p > 0.05 in all cases) and was, therefore, unnecessary. Conversely, the individual random
component was significant (p < 0.05) in all but two of the sets of models developed. For short-term
comparisons (T-to-T comparisons), the variance associated with the individual component ranged from
low to moderate (11.1–27.1%) and overall decreased as the timescale comparison increased to mid-term
(S-to-S: 9.5 to 22.9%) and long-term (Y-to-Y: 0.0 to 28.6%, table 3).

For PE, 127 of the deployments were categorized according to the predominant habitat in which each
bird foraged, with 70 classified as PE-pelagic, 33 as PE-mixed and 24 as PE-inshore (see examples in
figure 2). The proportion of females for each classification was 69%, 27% and 4%, respectively, with
males being more abundant at PE-inshore and PE-mixed. The proportion of variance explained by the
individual between habitats overall ranged from low to moderate values (3.2–50.4%). Consistency
values (maximum distances from the colony, tortuosity indices, number of dives) were higher for both
pelagic habitats (PD-pelagic, PE-pelagic) compared to the mixed strategy (PE-mixed). Except for one
variable (VeDBA), consistency values were higher for the inshore strategy (PE-inshore) (table 4).

Using the coefficients of variation (or the standard deviations) of foraging metrics within deployments
as a measure of individual consistency, the factors influencing individual variation were investigated. The
five foraging metrics examined (maximum distance from the colony, bearing from the colony to the most
distal point, tortuosity index, mean VeDBA and total number of dives) required model averaging due to
the lack of a single best model from the candidate set of models. After model averaging, the most
influential factors on individual variation identified were year, colony and breeding stage for the T-to-T
comparison level, with individuals sampled during year 2014/15, at PD and in late chick-rearing stage
having the highest consistency (electronic supplementary material, table S3).
4. Discussion
Determining the factors influencing foraging behaviour in marine predators and the persistence of
behavioural consistency through time is crucial to understand habitat selection and how populations
can adapt to fast environmental changes [78]. In the present study, spatio-temporal factors (colony,
stage, year) influenced the foraging behaviour metrics obtained in breeding Australasian gannets the
most, while individual characteristics (BCI, BSI and WLI) did not, with the exception of sex. The
proportion of variation explained by the individual showed higher values over shorter (T-to-T) than
longer (S-to-S and Y-to-Y) timescales, consistent with previous studies investigating the persistence of
behavioural consistency in seabirds [78,79] and the repeatability of behaviours in several taxa [80].
Individual consistency in foraging behaviour was found to be higher in inshore compared to pelagic
habitats and mixed use of both habitats, supporting suggestions that consistency is favoured in stable
environments with predictable resources [79,81]. Lastly, measures of individual variation (CVs and
SDs) were explained by spatio-temporal factors rather than individual characteristics; this supports the
idea that consistency is linked to the strategies displayed by individuals depending on habitat
selection and prey availability dictated by environmental variables rather than intrinsic factors.

4.1. Factors influencing foraging behaviour
The use of metrics in foraging ecology research to describe the behaviour and estimate energetic
expenditure of animals, particularly marine birds and mammals, and to provide an indication of the
foraging strategies and habitats used, is common practice [82]. Colony, year and breeding stage were
the most influential factors on the foraging metrics analysed in the present study (i.e. maximum
distance from the colony, bearing, tortuosity index, mean VeDBA and number of dives), followed by
sex. Indices of body condition and body size (BCI, BSI, WLI) did not influence these metrics.
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Table 3. Variance component analysis of instrumented breeding Australasian gannets (Morus serrator). Short- (trip-to-trip),
medium- (stage-to-stage) and long-term (year-to-year) comparisons are shown. Sample sizes (number of trips/number of
individuals) are presented for each final model. The significant fixed components of the models for which the coefficients of
variation were used as response variable are shown as the factors influencing the individual variation in each case.

foraging trip parameter timescale σ2 Σ σ2 (%) n
influences on
individual variation

distances from colony (km)� T-to-T 0.21 0.46 27.05 2480/137 colony, year

S-to-S 0.14 0.37 13.00 1166/56 colony, breeding

stage

Y-to-Y 0.166 0.40 16.64 1069/53 sex

bearing (°) T-to-T 1090.48 33.02 26.32 2490/137 breeding stage, year

S-to-S 944.32 30.72 22.90 1184/57 breeding stage

Y-to-Y 1195.88 34.58 28.63 1069/53 none

tortuosity index T-to-T 0.0006 0.026 11.07 2490/137 colony, sex, year, WLI

S-to-S 0.0005 0.024 9.45 1184/57 colony, BSI, sex

Y-to-Y 0.0005 0.023 8.70 1069/53 WLI, year, sex

mean VeDBA (g)� T-to-T 0.001 0.005 16.91 1237/108 stage, sex

S-to-S 0.001 0.005 14.66 641/51 none

Y-to-Y — — 0.00 190/15 NA

number of dives� T-to-T 0.57 0.75 18.89 1237/108 colony, breeding

stage, year

S-to-S 0.55 0.74 16.25 641/51 none

Y-to-Y — — 0.00 190/15 NA
�Cube-root-transformed variables.
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Geographical variation has previously been reported in the foraging behaviour of gannets
[51,52,83,84] and other marine predators, reflecting spatial differences in resource availability or
habitat accessibility [32,85,86]. The results of the present study are consistent with these findings and
reveal the substantial differences in oceanographic regimes and habitats available to individuals from
the PD and PE gannet colonies [49,52]. In particular, the individuals from PD, which forage within the
Bonney Upwelling system, had longer foraging trips and higher tortuosity index than individuals
sampled at PE, consistent with previous findings [52].

Year of sampling was found to influence the foraging behaviour of breeding Australasian gannets
with individuals travelling less, having a lower tortuosity index, higher energy expenditure rate and
diving more often during the 2014/15 compared to the 2015/16 breeding season. Breeding success
(proportion of chicks fledged) was lower in 2014/15 (25% versus 50% at PE, and 48% versus 79% at
PD, respectively; Rodríguez-Malagón 2014–2016, unpublished data). This suggests both sites
experienced similar environmental variation influencing both foraging behaviour and reproductive
success in a similar way. Previous studies at PE have reported an increased foraging effort in years of
low local marine productivity [87], and inter-annual variation in foraging behaviour in response to
environmental perturbations have been observed in other gannet species [83,88,89]. Indeed, primary
productivity (as measured by chlorophyll-a concentration) was substantially higher in 2014/15 than in
2015/16 [90], coinciding with a strong El Niño-Southern Oscillation event with sea surface
temperatures above average (bom.gov.au) in the later year.

Differences in foraging metrics were also evident between the different stages of the breeding season.
Individuals conducted longer foraging trips, had a higher tortuosity index, lower energy consumption rate
and dived more during incubation compared to the later breeding stages. Similar observations have been
made in Australasian gannets [40,87] and other seabirds, and are thought to reflect a shift from self-feeding
during incubation behaviour to chick-provisioning [32]. However, other studies have related changes in
foraging behaviour between incubation and chick-rearing to be in response to temporal variation in
prey availability due to environmental changes around colonies throughout the breeding period [91–93].
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Figure 2. Examples of the time-scale comparisons investigated: T-to-T (trip-to-trip, left column); S-to-S (stage-to-stage, middle
column); and Y-to-Y (year-to-year, right column). Each row represents an instrumented bird: first row, male from Point Danger-
pelagic; second row, female from Pope’s Eye-pelagic; third row, male from Pope’s Eye-mixed; and fourth row, male from Pope’s
Eye-inshore. Breeding stages include incubation (INC), early chick-rearing (ECR) and late chick-rearing (LCR).
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Maximum distance from the colony and the number of dives were shown to be influenced by sex,
with females exhibiting higher values than males. Previous research at the two study colonies has
shown sex differences in core foraging areas with only 4.2% and 18.4% of overlap at PD and PE,
respectively [52]. Australasian gannets display reverse sexual dimorphism, with females being
significantly heavier and larger than males [48]. This is consistent with observations in other Sulidae
species in which males forage closer inshore than females, the larger sex [1,94,95]. In species with
sexual size dimorphism, trophic or spatial segregation can function to reduce intra-specific
competition, particularly during periods of intense resource competition [32,89]. Despite the greater
foraging range and higher dive rate, females in the present study had lower mean VeDBA. This
suggests females may be more efficient in some aspects of their foraging behaviour. Indeed, females
from the study colonies have been previously been reported to spend a greater proportion of their
foraging trips in gliding rather than flapping flight [52,87].
4.2. Influence of timescales and habitats on foraging behaviour consistency
The level of behavioural consistency displayed by individuals is thought to be related to the foraging
strategy they adopt and influence how adaptable they can be when faced with rapid environmental
changes [78,96]. Individuals in the present study displayed overall low to moderate levels of



Table 4. Variance component analysis of instrumented Australasian gannets (Morus serrator). Short time-scale comparison (trip-
to-trip) results are shown of the models split by colony and habitat. Sample sizes (number of trips/number of individuals) are
presented for each final model. The significant fixed components of the models for which the coefficients of variation were used
as response variable are shown as the factors influencing the individual variation in each case.

foraging trip parameter

colony-habitat σ2 Σ σ2 (%) n

distances from colony (km)�

PD-pelagic 0.24 0.49 15.93 1170/76

PE-pelagic 0.019 0.13 3.17 704/41

PE-mixed 0.227 0.47 20.22 355/25

PE-inshore 0.28 0.53 50.37 264/16

bearing (°)

PD-pelagic 1171.45 34.22 26.32 1170/76

PE-pelagic 443.88 21.06 23.48 704/41

PE-mixed 1032.96 32.13 14.74 355/25

PE-inshore 2200.57 46.91 49.18 264/16

tortuosity index

PD-pelagic 0.0005 0.02 8.92 1170/76

PE-pelagic 0.0004 0.02 8.53 704/41

PE-mixed 0.0015 0.038 10.84 355/25

PE-inshore 0.0010 0.031 12.21 264/16

mean VeDBA (g)�

PD-pelagic 0.001 0.03 14.81 668/54

PE-pelagic 0.001 0.03 15.48 353/36

PE-mixed 0.001 0.02 9.73 149/18

PE-inshore 0.01 0.04 12.56 76/10

number of dives�

PD-pelagic 0.24 0.49 8.00 668/54

PE-pelagic 0.49 0.70 20.17 353/36

PE-mixed 0.98 0.99 26.03 149/18

PE-inshore 0.96 0.98 41.62 76/10
�Cube-root-transformed variables.
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behavioural consistency in foraging metrics. As time between sampling increased, behavioural
consistency decreased.

Over the short-term (T-to-T), breeding Australasian gannets in the present study displayed moderate
levels of consistency, specifically in distances from the colony and bearing to most distal point, which
suggest some degree of foraging side fidelity during consecutive trips, and potentially the exploitation
of the same resource patches, similar to what has been found in northern gannets [97] and other
seabirds [32,79,96]. By contrast, tortuosity index, mean VeDBA and number of dives were shown to
be less consistent, suggesting that while individuals tended to revisit patches, they could adapt to
current local prey availability and environmental conditions, rather than be limited by individual
morphology or foraging/diving abilities.

Consistent with other studies in marine top-order predators [78,79], behavioural consistency in the
present study decreased over time; it was higher for consecutive trips, compared to between breeding
stages, and between years. Behavioural consistency in foraging implies individuals learn, remember
and select specific resources and foraging strategies [98]. It requires predictability in the abundance
and location of the exploited resources so that the strategies can be maintained in the population [36],
which is less likely to be maintained over time because of environmental variability. Our results
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support the theory that behavioural consistency can only persist as long as stability in environmental

conditions prevails [99]. Importantly, as seabird foraging conditions are highly susceptible to
fluctuations in the environment [20,100,101], it may be advantageous for individuals to maintain a
certain level of behavioural plasticity to respond to such change [97]; behavioural consistency can lead
marine predators to encounter ecological traps in degraded environments, and limit the adaptability
of individuals to environmental changes [97,102,103].

In the present study, differences in consistency were seen when breeding Australasian gannets
selected different foraging habitats. Birds which foraged in pelagic environments at both colonies (PD-
pelagic and PE-pelagic) were less consistent than birds which used both pelagic and inshore
environments (PE-mixed), which in turn were less consistent than foraging in inshore environments
(PE-inshore). Individual consistency is thought to be promoted in stable environments [81,104,105].
Birds in the PE-inshore category foraged in PPB, a shallow environment with an important coverage
of seagrasses and sandy bottoms that represent important habitats for marine invertebrates and fish in
southeastern Australia [106]. Such benthic environments are indeed considered refuges for fish and
marine invertebrate communities, as they provide predictable stable habitats and nutrients [96,107].
Thus, they provide predictable resources for marine predators, but also bathymetric features that can
be used as cues for resource availability and aids for navigation which can be memorized [32,49]. This
theory is supported by a high level of behavioural consistency displayed by other benthic foraging
seabirds [79,108,109]. By contrast, the less consistent individuals in the present study foraged in
pelagic habitats (PD-pelagic and PE-pelagic) and were likely to exploit schooling fish [49], a
temporally and spatially variable prey resource, influenced by various oceanographic processes
subject to intra- and inter-annual variations affecting prey species in the region [110].

The differences in consistency observed between individuals foraging in inshore and pelagic
environments is unlikely to be due to the geometry, size or complexity of the available habitat.
Despite the narrowness of the northwest/southeast axis of continental shelf habitat frequented by PD-
pelagic animals, these individuals displayed less consistency in bearing than those foraging in the
more circular PPB area. Similarly, despite the arc of available headings to potential foraging areas
being similar for the PE-pelagic and PE-inshore birds, the later were more consistent in their bearings
from the colony. In addition, while the area of Bass Strait used by PE-pelagic birds was
approximately two to three times the area of PBB, PE-inshore birds represented less than 20% of the
sampled population, such that the latter are likely to have had greater per capita available habitat yet
displayed more consistency in their foraging behaviour. Furthermore, despite PBB representing a
smaller absolute area, it is characterized by greater habitat diversity (seagrass beds, rock reefs, shallow
sand-banks and deeper channels) compared to the open water habitat of Bass Strait.

Finally, some individuals from PE in the present study adopted a strategy of consistently foraging in
both pelagic (Bass Strait) and inshore (PPB) habitats, either within the same or successive foraging trips,
suggesting a degree of behavioural plasticity. Similar findings have been reported for gentoo penguins
(Pygoscelis papua) in which some individuals switched between pelagic and benthic strategies on
successive foraging trips [111]. While it is not known whether this mixed foraging strategy has specific
benefits, it has been suggested that spatial and temporal environmental variation and resource
competition can promote different adaptive responses in individuals, giving rise to different levels of
plasticity [112].
5. Conclusion
In summary, the present study found foraging behaviour in Australasian gannets to be influenced
primarily by colony, breeding stage and year, reflecting the spatial and temporal variation in resources
around breeding colonies and, to a lesser degree, by sex. Overall, low to moderate levels of
behavioural consistency were observed, decreasing with increasing timescales between sampling, but
higher in inshore environments, where individuals displayed more benthic foraging strategies
associated with more stable and predictable environments. These findings could have important
implications for population dynamics as individuals may not be uniformly affected by environmental
variability. Southeastern Australia is one of the fastest warming marine areas in the world and the
anticipated oceanographic changes are likely to affect the distribution, abundance and diversity of
prey species [41,42]. Inter-individual differences in foraging behaviour and behavioural plasticity in
Australasian gannets, therefore, could affect how the population responds to changing environmental
conditions [113]. Future studies should investigate the links between specific environmental conditions
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and behavioural consistency further, and the benefits conferred by strategies adopted by individuals and
breeding pairs on reproductive success.
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