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The noncongruent liquid-gas phase transition (LGPT) in asymmetric nuclear matter is studied using the
recently developed quantum van der Waals model in the grand canonical ensemble. Different values of the
electric-to-baryon charge ratio, Q/B, are considered. This noncongruent LGPT exhibits several features which
are not present in the congruent LGPT of symmetric nuclear matter. These include a continuous phase
transformation, a change in the location of the critical point, and the separation of the critical point and the
endpoints. The effects which are associated with the noncongruent LGPT become negligible for the following
cases: when Q/B approaches its limiting values, 0.5 or 0, or if isospin dependence of nucleon-nucleon interaction
and quantum statistical effects can be neglected. The latter situation is realized when the particle degeneracy
attains large values, g � 10.
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I. INTRODUCTION

An infinite hypothetical system of interacting neutrons
and protons in equal proportions is called symmetric nuclear
matter. The known phenomenology of the nucleon-nucleon
interaction suggests short range repulsion and intermediate
range attraction. This yields a first-order liquid-gas phase
transition (LGPT) from a diluted (gaseous) to a dense (liquid)
phase in symmetric nuclear matter, and, correspondingly, a
discontinuity of the particle number density as a function of
pressure.

Experimentally, evidence for a LGPT in nuclear matter was
first reported in Refs. [1–3]. Systematic measurements of the
nuclear caloric curve were reported by the ALADIN Collabo-
ration [4,5] and other experiments [6,7]. The thermodynamics
of nuclear matter was applied to the production of nuclear
fragments in heavy ion collisions in Refs. [8–18] in the 1980s
(see Ref. [19] for a review of these early developments).

The present paper treats the more complex situation when
the densities of neutrons and protons are not equal, i.e.,
the ratio of the electric-to-baryon charge, Q/B �= 0.5. This
asymmetric nuclear matter is the subject of Refs. [20–29].

Asymmetric nuclear matter is of interest for both heavy
ion collisions and nuclear astrophysics: neutron-rich matter
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is present in compact stars and binary neutron star mergers
[30], and it is relevant for type-II supernova evolution [31,32].
Asymmetric nuclear matter exhibits a strong dependence on
the isospin. As the Q/B ratio is fixed, this additional isospin
degree of freedom cannot be exploited by the system in pure
phases. In the mixed phase, the total asymmetry is constant,
while the local asymmetries in the gaseous fraction and in
the liquid fraction can be different. Indeed, it is thermody-
namically favorable for the total system if the liquid frac-
tion is more symmetric than the gaseous one; this isospin
distillation phenomenon was predicted [33–35] long before,
for the exactly analogous phenomenon dubbed strangeness
distillation in the first analysis of a production mechanism
for possible strangelet formation in high energy heavy ion
collisions and astrophysical situations. The additional isospin
degree of freedom changes the energy density. This contri-
bution becomes negligible at endpoints of the mixed phase.
Hence, the pressure does not stay constant, but continuously
changes as the system crosses the mixed phase region, while
pressures of components remain equal in every point of the
mixed phase [36]. Other features of the phase transitions (PTs)
are modified as well. For instance the chemical potentials
show behavior similar to that of pressure. This leads to an
additional dimension in the phase diagram. Such PTs are
called “Gibbs PTs,” or, following the more recent terminol-
ogy, “noncongruent PTs” [26]. This notion contrasts with
the “Maxwell” or “congruent” PTs, where only one globally
conserved charge is allowed. Asymmetric nuclear matter is
therefore a model for noncongruent PTs. These are most
relevant also for the conjectured PT between a hadron gas
and a quark-gluon plasma. The later may occur in the course
of binary neutron stars merges and in relativistic heavy-ion
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collisions, where the associated distillation process was first
proposed for strangeness as a signature of that PT [33–35].

For asymmetric nuclear matter, the order parameter there-
fore is not longer given by the difference between the net
baryon densities of the liquid and the gaseous phases, nl − ng,
but rather by the asymmetry factor, Q/B [25]. When Q/B
is fixed, the system moves along the PT line in the (μB, T )
plane. This corresponds to a continuous transformation from
one pure phase to the other [20]. Only in the three special
cases of asymmetry, Q/B = 0, 0.5, and 1, does the phase
transformation lead to the appearance of discontinuities in
thermodynamic variables, which is common for congruent
PTs.

The properties of nuclear matter can be described by a
variety of different models. Here we employ an extension of
the classical van der Waals (vdW) model which was recently
generalized to include the effects of quantum statistics, special
relativity, grand canonical ensemble, and mixtures of different
sized constituents. This quantum vdW (QvdW) model has
been further developed and applied to the description of sym-
metric nuclear matter in Refs. [37–43]. The QvdW approach
models the repulsive interactions by the excluded-volume
corrections, while the attractive interactions are modeled by a
density-proportional mean field. The QvdW model describes
the basic properties of nuclear matter rather well, and the
results are similar to the Walecka model [44]. A generalized
QvdW-type formalism, based on models of real gases equa-
tions of state, allows variations of the excluded-volume effects
and of the attractive mean field [42]. The multicomponent
QvdW formalism, employed in the present work, allows for
the study of systems with arbitrary numbers of different
components [45,46].

The present paper studies the LGPT in asymmetric nuclear
matter using the QvdW model. Section II introduces the
QvdW model with separate baryonic and electric chemical
potentials for neutrons and protons. Section III considers four
special cases with congruent LGPTs, namely, the limiting
cases of (1) symmetric nuclear matter, Q/B = 0.5, (2) the
extreme asymmetry, Q/B = 0, (3) an arbitrary Q/B ratio in
the Boltzmann approximation, and (4) an arbitrary Q/B ratio
and infinite degeneracy. Section IV studies the general case
of a noncongruent LGPT in nuclear matter with intermediate
values of the asymmetry factor, 0 < Q/B < 0.5, and with
physical values of (spin) degeneracy. Section V presents the
calculation of the susceptibilities of the fluctuations of the
baryonic and the electric charges for asymmetric nuclear
matter. Section VI considers the noncongruent LGPTs within
the QvdW model generalized to take into account the isospin
dependencies of the attractive and repulsive parameters. A
summary in Sec. VII closes the article.

II. NUCLEAR MATTER WITH TWO DIFFERENT
CONSERVED CHARGES

We consider an infinite system of interacting nucleons
consisting of neutrons and protons which differ only by the
electric charge they carry. The total baryonic, B, and electric,
Q, charges of the system in the grand canonical ensemble are
regulated by the corresponding chemical potentials, μB and

μQ. Then μn = μB is the chemical potential of the neutrons
and μp = μB + μQ is the chemical potential of the protons.
The QvdW model yields the total pressure of the nucleons as
[43]

p(T, μB, μQ) = pid
n (T, μ∗

B) + pid
p (T, μ∗

B + μQ) − an2
B. (1)

Here T is the temperature, pid
n , pid

p are the pressures of the
ideal Fermi gas of the neutrons and the protons, respectively.
μ∗

B is the shifted baryon chemical potential due to the QvdW
interactions:

μ∗
B = μB − bp − abn2

B + 2 anB. (2)

Here it is assumed that the repulsive excluded volume terms
and the mean field attraction terms of protons and neutrons do
not differ, and that their masses do not differ either. The in-
teraction parameters, a and b, yield, respectively, the strength
of the attraction and of the repulsion between the nucleons.
As the interactions between all protons and neutrons here are
assumed to be the same, also the shift in the chemical potential
is the same for both protons and neutrons. The densities of
the baryonic and the electric charges are given by the partial
derivatives of the pressure with respect to the corresponding
chemical potentials:

nB(T, μB, μQ) =
[

∂ p

∂μB

]
T,μQ

= nid
n (T, μ∗

B) + nid
p (T, μ∗

B + μQ)

1 + b
[
nid

n (T, μ∗
B) + nid

p (T, μ∗
B + μQ)

] ,

(3)

nQ(T, μB, μQ) =
[

∂ p

∂μQ

]
T,μB

= nid
p (T, μ∗

B + μQ)

1 + b
[
nid

n (T, μ∗
B) + nid

p (T, μ∗
B + μQ)

] .

(4)

Here nid
n = nid

n (T, μ∗
B) and nid

p = nid
p (T, μ∗

B + μQ) are the
ideal gas densities of neutrons and protons, respectively. The
pressure and the density of the ideal Fermi gas of neutrons,
j = n, and protons, j = p, are given by

pid
j (T, μ∗

j ) = g j

6π2

∫ ∞

0
k2 dk

k2√
m2

j + k2
fk (T, μ∗

j ), (5)

nid
j (T, μ∗

j ) = g j

2π2

∫ ∞

0
k2 dk fk (T, μ∗

j ). (6)

The density of states corresponding to the momentum k is
given by

fk (T, μ∗
j ) =

⎡
⎣exp

⎛
⎝

√
m2

j + k2 − μ∗
j

T

⎞
⎠ + 1

⎤
⎦

−1

. (7)

g j is the number of the internal quantum states, i.e., the
degeneracy factor of the neutrons and the protons, which
are spin 1/2 particles, therefore gn = gp = 2. The masses of
both neutrons and protons, are assumed to be equal, with
mn = mp = 938 MeV.
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FIG. 1. (a) Congruent LGPT lines in the (μB, T ) coordinates and (b) congruent LGPT regions in the (nB, T ) coordinates within the QvdW
model for nucleons with degeneracy factors g = 4 (symmetric nuclear matter, blue curves) and g = 2 (pure neutron matter, black curves).
The orange solid and dash-dotted curves in (b) correspond to a huge degeneracy factor g = 1000 and to the Boltzmann approximation (with
arbitrary g or Q/B), respectively. Critical points and ground states are represented, respectively, by the stars and the squares.

As the values of the charges B and Q, are conserved, the
total system is also required to have the charge ratio Q/B,

nQ

nB
= nid

p (T, μ∗
B + μQ)

nid
n (T, μ∗

B) + nid
p (T, μ∗

B + μQ)
= Q

B
= const. (8)

The thermodynamical functions at given T and μB values
are calculated by solving the self-consistent system of the four
transcendental equations (1), (2), (3), and (8) with respect to
the four unknown quantities μ∗, μQ, p, and nB.

III. FOUR SPECIAL CASES FOR CONGRUENT
PHASE TRANSITIONS

A. Symmetric nuclear matter (g = 4)

The LGPT in symmetric nuclear matter was studied within
the QvdW model in Ref. [37]. The case of symmetric nuclear
matter corresponds to a fixed value of the baryon-to-charge
ratio, Q/B = 0.5. In this case, as follows from Eqs. (1),
(3), and (8), the electric chemical potential is always zero,
μQ ≡ 0, and the multiplicities of both neutrons and protons
are regulated by a single chemical potential, μB. Hence, the
system of nucleons is a single-component system. In this case,
the degeneracy factor of the nucleons is to be taken as g = 4,
which includes two (isospin) charge states and two spin states.

The QvdW interactions are taken to be equal for all pairs of
nucleons: a = 329 MeV fm3 for the attractive term and b =
3.42 fm3 for the repulsive term. These a and b values were
obtained in Ref. [37] by fitting the binding energy and the
saturation density of the ground state (GS; T = 0, p = 0) of
symmetric nuclear matter:

εGS/nGS
B

∼= m + EGS
b

∼= 922 MeV, nGS
B

∼= 0.16 fm−3. (9)

The position of the critical point (CP) of symmetric nuclear
matter within QvdW model is [37]

Tc =19.7 MeV, nc =0.072 fm−3, pc =0.52 MeV fm−3.

(10)

The LGPT line in the (μB, T ) coordinates as well as the
LGPT region in the (nB, T ) coordinates were obtained in

Ref. [37] within the QvdW model for symmetric nuclear
matter. They are presented in Figs. 1(a) and 1(b), respectively,
by the solid blue curves. The CP and the GS are represented
by the blue star and the blue square, respectively.

B. Neutron matter (g = 2)

Another limiting case is the completely asymmetric nu-
clear matter consisting of neutrons only.1 This corresponds to
a zero asymmetry parameter, Q/B = 0, implying μQ → −∞.
In analogy to the symmetric nuclear matter case, the system
is described by the single-component QvdW equation, but
with a smaller degeneracy factor, g = 2, which counts only
the two spin states of the neutron. The same values of the
interaction parameters a and b are used as in the case of the
nucleon-nucleon interaction in symmetric nuclear matter.

The values of the thermodynamic quantities in the nuclear
GS of symmetric nuclear matter are fixed to known empirical
values; see Eq. (9). These values fix parameters a and b
for nucleons, as well as the value of the shifted chemical
potential in the GS, μ∗

GS = 998 MeV (μGS = 921.5 MeV)
[37]. As the degeneracy factor for pure neutron matter is twice
smaller than that of symmetric nuclear matter, different GS
properties for pure neutron matter are expected as compared
to the symmetric nuclear matter. A straightforward calculation
yields μ∗

GS = 993 MeV (μGS = 938.45 MeV) and

εGS/nGS
B

∼= m + EGS
b

∼= 938.33 MeV, nGS
B

∼= 0.10 fm−3.

(11)

One sees that the neutrons’ binding energy in the GS is
positive, EGS

b = 0.33 MeV > 0, thus the GS of pure neutron
matter does exist in this model but neutron matter is not
self-bound. The position of the CP is determined by the

1Note that neutron matter as discussed here does not match neutron
star matter: the latter must include light and heavy nuclei, beta
equilibrium, leptons, strange hadrons, and eventually also a quark
matter contribution. So the term neutron matter is used here only for
a hypothetical state of neutrons only.
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equations (
∂ p

∂nB

)
T

= 0,

(
∂2 p

∂n2
B

)
T

= 0, (12)

which give

Tc = 10.8 MeV,

nc = 0.051 fm−3, (13)

pc = 0.197 MeV fm−3.

Mixed phase boundaries at given T < Tc are derived from
the Gibbs equilibrium condition:

pG(T, μB) = pL(T, μB), (14)

where pG(T, μB) and pL(T, μB) are two solutions for pressure
with different shifted chemical potentials, μ∗G

B �= μ∗L
B . These

two solutions correspond to pressures on the boundaries of
pure gaseous and liquid phases, respectively.

The LGPT lines in the (μB, T ) coordinates and the LGPT
regions in the (nB, T ) coordinates are presented for neutron
matter in Figs. 1(a) and 1(b), respectively (solid black curves).
The CP is depicted by the black star while the not-self-bound
GS is represented by the open black squares. In Sec. VI it is
shown that the consideration of isospin-dependent parameters
within QvdW model results in the absence of both GS and
LGPT in pure neutron matter.

C. Boltzmann approximation (arbitrary g)

In the Boltzmann approximation, Eqs. (1)–(3) are reduced
to the classical vdW equation of state [37]:

pB(T, nB) = nBT

1 − bnB
− an2

B, (15)

which is independent of g, m, and Q/B values [38]. The
position of the CP is determined solely by the interaction
parameters a and b [47]:

T boltz
c = 8a

27b
= 28.54 MeV,

nboltz
c = 1

3b
= 0.098 fm−3, (16)

pboltz
c = a

27b2
= 1.045 MeV fm−3.

Hence, the noncongruence of the LGPT vanishes2 for
arbitrary Q/B and g values, and the position of the CP is given
by Eq. (16). Figure 1(b) shows the LGPT region in the (nB, T )
coordinates for nuclear matter with the classical vdW equation
of state (dashed-dotted orange lines). Both the Q/B and g
values given here are arbitrary. Note that the Boltzmann ap-
proximation is not valid at low temperatures. For instance, the
entropy density in the classical vdW model becomes negative

2Note that this is true only if the isospin-independent interaction
parameters are considered as in the present section. Within a more
general QvdW formalism, which is described in Sec. VI, the non-
congruent PT takes place even in the Boltzmann approximation.

at sufficiently low temperatures, T < Tmin [38]. Therefore,
nuclear matter at temperatures, T < Tmin, including the GS,
cannot be described in the Boltzmann approximation.

D. Large number of internal states (g � 1)

In Sec. III B it was shown that a decrease in the number
of the internal degrees of freedom leads to a decrease of
the Tc, nc, and pc values. This demonstrates the increased
importance of the Fermi statistics. Correspondingly, increas-
ing g will reduce the importance of the quantum statistics.
From Eq. (3) it follows that, for constant values of nB and
T , the chemical potential must decrease when g increases.
If g → ∞ then μB → −∞ and quantum statistics can be
neglected. Hence, the noncongruence of a LGPT vanishes at
g → ∞ for arbitrary fixed Q/B. The phase diagram becomes
indistinguishable from phase diagram of the corresponding
classical vdW in the (nB, T ) coordinates. Namely,

Tc, nc, pc → T Boltz
c , nBoltz

c , pBoltz
c at g → ∞, (17)

where the critical values for the Boltzmann case are given by
Eq. (16).

A QvdW system of nucleons with a large number of
internal degrees of freedom, g = 1000, exhibits a CP at

Tc = 28.50 MeV,

nc = 0.098 fm−3, (18)

pc = 1.042 MeV fm−3,

close to the position of the classical vdW CP (16).
The nuclear GS is at μ∗

GS = 949.5 MeV (μGS =
852.4 MeV), with

εGS/nGS
B

∼= m + EGS
b

∼= 852.4 MeV,

nGS
B

∼= 0.28 fm−3. (19)

The value of saturation density, nGS
B

∼= 0.28 fm−3, is close to
the corresponding value for the Boltzmann approximation,
nGS

B
∼= 0.29 fm−3. However, in the quantum statistics case, the

entropy density in the GS is positive and, therefore, the GS
is thermodynamically consistent, in contrast to the classical
case.

The LGPT regions in (nB, T ) coordinates for baryons with
the QvdW equation of state and the degeneracy factor g =
1000 are shown in Fig. 1(b) by the solid orange lines. The GS
is noted by a full orange square.

The position of the CP in the QvdW model with large
degeneracy is close to the position of the CP in the Boltz-
mann approximation even for smaller values of g, e.g., Tc =
27.76 MeV for g = 10. Hence, systems of particles with large
numbers of internal states are insensitive to the effects of
quantum statistics. The picture of the PT in coordinates of
T , nB, or p has no dependence on g. An example of the
system with g > 10 are the �(1232) baryons from the SU(3)
decuplet. Four isospin states, each with four spin states, yield
a total degeneracy of g� = 16 for the spin-isospin degenerate
symmetric matter of �(1232) baryons.
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FIG. 2. Dependence on the asymmetry parameter of (a) the ground state binding energy and (b) of the baryon density.

IV. NONCONGRUENT PHASE TRANSITION

The so-called noncongruent LGPTs occur for 0 < Q/B <

0.5. In this case μQ is finite, and two conserved charges B and
Q must be considered, which are tuned by the corresponding
chemical potentials, μB and μQ. The electric-to-baryon charge
ratio is kept fixed, Q/B = const. The location of the GS
is defined by two equations: p(T = 0, μGS

B , μGS
Q ) = 0 and

Q/B = const. The GS binding energy, EGS
b , and the baryon

density, nGS
B , are shown in Figs. 2(a) and 2(b), respectively,

as functions of Q/B. For Q/B < 0.006, the binding energy
in the GS is positive, therefore the GS is not self-bound. The
special case of pure neutron matter, Q/B = 0, without beta
equilibrium and without leptons, is considered in Sec. II B.
Figure 3 shows the dependence of the binding energy on nB at
zero temperature for three constant values of the asymmetry
parameter.

Figure 4 presents an example of the phase transformation
at a constant temperature, T = 15 MeV < Tc, for the value
of asymmetry parameter Q/B = 0.3 by horizontal lines. At a
constant temperature, T < Tc, the mixed phase of the noncon-
gruent PT starts from a point G1 = (T, μG1

B , μG1
Q ), on the boil-

ing curve of the phase diagram, and finishes at a point L1 =

0.0 0.1 0.2 0.3
-20

-10

0

10
0.50.1Q/B = 0

nB [fm
-3]

E b
[M
eV
]

T = 0

FIG. 3. Dependence of the binding energy on baryon density at
zero temperature for the constant values of the asymmetry parameter.
The ground states are represented by the squares.

(T, μL1
B , μL1

Q ) on the saturation curve. The terms “start to
finish of the PT” denote a pictorial progression: from the small
density (gas) to the large density (liquid). The pure gaseous
phase in the point G1 is in thermodynamical equilibrium
with the infinitesimal liquid fraction in the point L1 while
the pure liquid phase in the point L2 is in thermodynamical
equilibrium with the infinitesimal gaseous fraction in the point
G2. The locations of these four points G1, L1, G2, L2 on the
phase diagram at a given T can be calculated from the Gibbs
equilibrium conditions:

pG1
(
T, μG1

B , μG1
Q

) = pL1
(
T, μG1

B , μG1
Q

)
, (20)

pL2
(
T, μL2

B , μL2
Q

) = pG2
(
T, μL2

B , μL2
Q

)
. (21)

While points (G1, L1) or (L2, G2) both have the same
temperature, pressure, and chemical potentials, they differ by
the values of the shifted chemical potential, μ∗

B, and densities
of charges, nB, nQ. The requirement (8) of the constant charge
ratio is imposed on the pure phases (G1, L2) only:

nG1
Q

(
T, μG1

B , μG1
Q

)
nG1

B

(
T, μG1

B , μG1
Q

) = nL2
Q

(
T, μL2

B , μL2
Q

)
nL2

B

(
T, μL2

B , μL2
Q

) = Q

B
= const.

(22)

The infinitesimal fractions (G2, L1) are not restricted by
this requirement, as their contributions are infinitesimally
small. Here, we have four equations, (20)–(22), for four
unknown chemical potentials, μG1

B , μG1
Q , μL2

B , and μL2
Q . In

contrast to the case of a congruent PT, both pressures and
chemical potentials at the start and finish of liquidification
are generally not identical: pG1 �= pL2, μG1

B �= μL2
B . Thus, the

dimensionality of the (μB, T ) phase diagram is increased.
The phase transformation starts from a gas in point G1 in

equilibrium with an infinitesimal fraction of liquid in point L1.
In the course of the phase transformation, the location of the
liquid fraction moves from the point L1 towards the point L2,
while the location the gaseous fraction moves from the point
G1 towards the point G2. Phase transformation finishes with
pure liquid in the point L2 in equilibrium with an infinitesimal
fraction of gas in the point G2. Points G1, L1 and G2, L2
in the (μB, T ) plane coincide, in accordance with the Gibbs
condition.
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FIG. 4. Noncongruent LGPT regions (a) in the (μB, T ) coordinates and (b) in the (nB, T ) coordinates for the constant value Q/B = 0.3.
The critical point and temperature endpoint are represented by the stars and full circles, respectively. The ground state is represented by the
squares. Horizontal lines depict the isotherm at Q/B = 0.3 and T = 15 MeV < Tc.

The mixed phase boundaries are found as the sets of point
G1 (saturation curve) and L2 (boiling curve). Figure 4 also
presents the mixed phase boundaries for Q/B = 0.3. Points
L1, G2, which correspond to infinitesimal fractions of the
mixed phase are not located at the correspondent mixed phase
boundaries in the (nB, T ) plane. While the point L1 is located
in the pure liquid phase, the location of the point G2 is inside
the mixed phase. Nevertheless, the point G2 corresponds to
the pure infinitesimal gaseous fraction.

The standard equations (12) used for the determination
of the CP in the congruent case are not valid in the case
of a noncongruent PT. Therefore, we find the CP as the
point on the mixed phase boundary where the two phases
become identical: μ∗G1

B = μ∗L2
B , nG1

B = nL2
B . One sees that Tc

decreases when Q/B is decreased. For instance, at Q/B = 0.3
the position of the CP is found to be

Tc = 18.72 MeV,

nc = 0.068 fm−3, (23)

pc = 0.49 MeV fm−3.

Another interesting feature of noncongruent PTs is that the
locations of temperature and pressure endpoints (the point
with, respectively, maximum T and p at which the phase
coexistence is possible) differ from each other and from the
location of the CP. Temperature endpoints (TEPs) are shown
by the full circles in Figs. 4–7 and 10. For all Q/B values
one finds TTEP � Tc. The same is true for the temperature in
the pressure endpoints. The pressure endpoint for one value of
Q/B = 0.3 is shown by the triangles in Figs. 5–7.

Figure 5 presents an example of the phase transformation
at a constant temperature, Tc < T = 18.714 MeV < TTEP, for
the value of asymmetry parameter Q/B = 0.3, by horizontal
lines. At a constant temperature Tc < T < TTEP, the mixed
phase of the noncongruent PT starts from a point G1 =
(T, μG1

B , μG1
Q ), on the boiling curve of the phase diagram, and

finishes at a point G2 = (T, μG2
B , μG2

Q ) on the boiling curve.
Gaseous fractions in points G1, G2 are in Gibbs equilibrium
with infinitesimal liquid fractions in points L1, L2, respec-
tively.

Figure 6 shows the local nuclear matter charge fractions,
(Q/B)local, in the coexistent phases on the borders of mixed
phase region for a fixed global charge fraction, Q/B = 0.3.
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0.063 0.066 0.069 0.072 0.075

18.70

18.71

18.72

18.73
(b)Q/B = 0.3

L1L2G2G1

nB [fm
-3]

T
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eV
]

FIG. 5. The zoomed in picture of the CP region for the phase diagrams shown in Fig. 4. Horizontal lines depict the isotherm at Q/B = 0.3
and Tc < T = 18.714 MeV < TTEP. The pressure endpoint is represented by triangles.
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FIG. 6. (a) Temperature of coexistence as a function of local charge fractions in coexistent phases, (Q/B)local, for a fixed global charge
fraction, Q/B = 0.3. (Q/B)local = Q/B in pure phases on the borders of mixed phase are presented by thick red vertical lines, while (Q/B)local

in correspondent liquid and gaseous infinitesimally small fractions are represented by dashed and dotted lines, respectively. (b) The zoomed in
picture of the CP region. CP, TEP, pressure endpoint, and GS are shown by a star, a full circle, a triangle, and a square, respectively.

The black dashed curve represents (Q/B)local of the infinites-
imal liquid fraction at the start of the mixed phase. The blue
dotted curve represents (Q/B)local of the infinitesimal gaseous
fraction at the finish of the mixed phase. The solid red line
represents (Q/B)local = Q/B = 0.3 of both the pure gaseous
and the pure liquid phases, respectively, at the start and at the
finish of the phase transformation.

The asymmetry in the gaseous fraction of the mixture is
always larger then the asymmetry in the liquid fraction; this is
the isospin distillation phenomenon, which is just the equiva-
lent of the strangeness distillation considered in Refs. [33–36].
At T → 0, the infinitesimal gaseous fraction approaches the
composition of the pure neutron matter, (Q/B)local → 0, while
the infinitesimal liquid fraction approaches the composition of
the symmetric nuclear matter, (Q/B)local → 0.5. Figure 6(b)
shows a zoomed picture of the CP region. The asymmetry of
the infinitesimal gaseous fraction becomes equal to the global
asymmetry, Q/B = 0.3, at the critical temperature, T = Tc.

The system can be described in the mixed phase for an
arbitrary proportion of fractions by introducing an additional

parameter χ : the share of the total volume which is occupied
by the liquid fraction. χ = 0 and χ = 1 correspond to the
purely gaseous and to the purely liquid phase, respectively,
while 0 < χ < 1 is realized for the mixed phase. The densities
of the baryonic and of the electric charge for both pure phases
and the mixed phase are given by

nB(T, μB, μQ) = (1 − χ )nG
B (T, μB, μQ) + χnL

B(T, μB, μQ),

(24)

nQ(T, μB, μQ) = (1 − χ )nG
Q(T, μB, μQ) + χnL

Q(T, μB, μQ).

(25)

Here nG
B , nG

Q and nL
B, nL

Q are the charge densities of the gaseous
and the liquid fractions, respectively. In general, the volumes
occupied by both fractions are finite. Hence, conservation
laws shall be applied to the total mixture only, but not to the
different components separately [33–36]. The requirement of
a constant charge ratio (8) for both pure phases and the mixed

0.00 0.05 0.10 0.15
0.0
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0.2

0.3

0.4

0.5 (a)
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Q/B = 0.3
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-3]

p
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L1G1
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FIG. 7. (a) T = 15 MeV < Tc isotherm in the (nB, p) coordinates for a constant asymmetry parameter Q/B = 0.3 (solid curve). Metastable
and unstable areas of isotherm are represented by dotted curves. Mixed phase boundaries are represented by red dashed curves. (b) The same
as (a) but for the Tc < T = 18.714 MeV < TTEP isotherm. The CP, the pressure endpoint, and the TEP are shown by the star, the triangle, and
the full circle, respectively. The points G1, L1, G2, L2 characterize the phase transformation along the isotherm; see text.
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FIG. 8. Local baryon densities in the gaseous and in the liquid
fractions of the mixed phase as functions of the total baryon density
for Q/B = 0.3 and T = 15 MeV.

phase reads

(1 − χ )nG
Q(T, μB, μQ) + χnL

Q(T, μB, μQ)

(1 − χ )nG
B (T, μB, μQ) + χnL

B(T, μB, μQ)
= Q

B
= const.

(26)

The chemical potentials μB and μQ can be found at constant T
and χ from Eq. (26), evaluated simultaneously with the Gibbs
equilibrium condition,

pG(T, μB, μQ) = pL(T, μB, μQ). (27)

Figure 7(a) shows the T = 15 MeV < Tc isotherm in
(nB, p) coordinates for Q/B = 0.3, including the mixed phase
region. Points G1, L1, G2, L2 are also presented. The solid
curve represents the stable solution, while the dotted curve
represents the metastable and unstable areas. Note that the
pressure is not constant in the mixed phase—a generic fea-
ture of all noncongruent PTs. This is due to the presence
of additional degrees of freedom in the mixed phase—here
the local asymmetry parameter (Q/B)local. Figure 7(b) is the
same as Fig. 7(a) but for the supercritical isotherm Tc < T =
18.714 MeV < TTEP. Point M shows the example of the mixed
phase, which includes gaseous, point G, and liquid, point
L, fractions in Gibbs equilibrium. Black and blue dashed
lines represent trajectories of, respectively, gaseous and liquid
fractions in the mixture from start to finish of the phase
transition.

Figure 8 shows the local baryon densities, (nB)local, in the
gaseous and in the liquid fractions of the mixed phase as
functions of the total baryon density, nB, for Q/B = 0.3 and
T = 15 MeV < Tc. At nB < nG1

B one has the pure gaseous
phase only, whereas at nB > nL2

B the pure liquid phase is
realized.

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

1.0

T = 18.714 MeV

T = 15 MeV

Q/B = 0.3

ξB

χ

FIG. 9. Fraction of volume occupied in the mixed phase by liq-
uid, χ , as a function of baryon density for global asymmetry Q/B =
0.3. As a measure of density ξB is taken. For all T the start and the
finish of the PT correspond to ξB = 0 and ξB = 1, respectively. The
black curve corresponds to T = 15 MeV < Tc while the red curve
corresponds to Tc < T = 18.714 MeV < TTEP.

Figure 9 shows χ as a function of the baryon density in
the mixed phase. The measure of the density for a fixed T
is taken as ξB = (nB − nG1

B )/(nL2
B − nG1

B ). The quantity ξB is
constructed in such a way that, for all T , ξB = 0 at the start
of the PT and ξB = 1 at the finish of the PT. Q/B = 0.3
is used in Fig. 9. The two lines correspond to temperatures
T = 15 MeV < Tc and Tc < T = 18.714 MeV < TTEP. The
fraction of the liquid is zero in both cases at the start of the
PT. The liquid fraction starts to increase monotonically when
the density increases. In the case of subcritical temperatures,
T < Tc, the liquid fraction reaches χ = 1 at the finish of the
PT. Correspondingly, the gaseous fraction reaches 1 − χ = 0,
i.e., only the pure liquid phase is left. In contrast, the so-called
retrograde condensation [48,49] occurs for supercritical tem-
peratures in the narrow temperature range Tc < T < TTEP: at
some value of the density, nmax

B , the fraction of the liquid phase
reaches its maximum value, χmax, and with further increase of
density it decreases rapidly. No liquid remains at the finish of
the PT, and the system is in the purely gaseous phase again.
Retrograde condensation is a unique feature of noncongruent
PTs [50].

Figure 10(b) presents the LGPT regions obtained for con-
stant 0 � Q/B � 0.5 values. Critical points are shown by the
stars. The picture for 0.5 � Q/B � 1 mirrors the 0 � Q/B �
0.5 picture, as follows from the isospin symmetry in nuclear
matter. The Q/B = 10−3 and Q/B = 0 mixed phase bound-
aries in the (nB, T ) coordinates virtually coincide except for
low densities. The location of the start of the mixed phase, at
T = 0, is independent of Q/B, for all nonzero Q/B values.
This point corresponds to the zero nucleon density. The non-
congruence of PT disappears for all nonzero finite values of
T as Q/B → 0. The LGPT region in (μB, T ) plane shrinks
and finally degenerates to the LGPT line and {TTEP, μTEP} →
{Tc, μc} → {Tc, μc}Q/B=0. However, the noncongruence of the
PT remains at T = 0.
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FIG. 10. Congruent and noncongruent LGPT regions in the (μB, T ) coordinates (a) and in the (nB, T ) coordinates (b) for the constant Q/B
values. Solid blue, red, and black lines correspond to Q/B = 0.5, 0.3, and 0 respectively. Green lines correspond to Q/B = 0.1, 10−2, 10−3.
Critical points and temperature endpoints are represented by stars and full circles, respectively. Ground states for different Q/B are represented
by squares.

V. FLUCTUATIONS OF BARYONIC AND ELECTRIC CHARGES

The scaled variances of baryonic and electric charges fluctuations can be calculated as

ω[B] = 〈B2〉 − 〈B〉2

〈B〉 = T

nB

[
∂2 p

(∂μB)2

]
T,μQ

and ω[Q] = 〈Q2〉 − 〈Q〉2

〈Q〉 = T

nQ

[
∂2 p

(∂μQ)2

]
T,μB

, (28)

respectively. This yields the following expressions:

ω[B] = ωid [B]

[
1

(1 − bnB)2
− 2anB

T
ωid [B]

]−1

, (29)

ω[Q] = b2nN nQωid [N] + [
(1 − bnQ)2 − 2anN

T (1 − bnB)2ωid [N]
]
ωid [Q]

1 − 2anB
T (1 − bnB)2ωid [B]

. (30)

Here nN = nB − nQ is the neutrons’ number density. The ideal gas scaled variances of the baryon, neutron, and proton
multiplicity fluctuations are given by

ωid [B] = Varid
n (T, μ∗

B) + Varid
p (T, μ∗

B + μQ)

nid
n (T, μ∗

B) + nid
p (T, μ∗

B + μQ)
, ωid [N] = Varid

n (T, μ∗
B)

nid
n (T, μ∗

B)
and ωid [Q] = Varid

p (T, μ∗
B + μQ)

nid
p (T, μ∗

B + μQ)
, (31)

respectively. The ideal gas variance of particles multiplicity fluctuations is calculated as

Varid
j (T, μ j ) =

[
∂2 pid

j (T, μ j )

(∂μ j )2

]
T

= nid
j (T, μ j ) − g

2π2

∫ ∞

0
k2 dk f 2

k (T, μ j ). (32)

For symmetric nuclear matter, μQ = 0, Eq. (30) reduces to the following form:

ω[Q] = ωid [Q]
1 − bnB + b2n2

B
2 − anB

T (1 − bnB)2ωid [Q]

1 − 2anB
T (1 − bnB)2ωid [Q]

, (33)

where ωid [Q] = ωid [N] = ωid [B]. Thus, even in the symmetric case, ω[Q] is not a linear function of ω[B], due to the neutron-
proton correlations.

From Eq. (31) it follows that, in the Boltzmann approximation, ωid [B] = ωid [Q] = ωid [N] = 1 and Eqs. (29) and (30) reduce
to

ω[B] =
[

1

(1 − bnB)2
− 2anB

T

]−1

, ω[Q] = b2nN nQ + (1 − bnQ)2 − 2anN
T (1 − bnB)2

1 − 2anB
T (1 − bnB)2

. (34)
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FIG. 11. The scaled variance of the baryonic (a), (b) and of the electric (c), (d) charge in the (μB, T ) coordinates for asymmetric nuclear
matter with the asymmetry parameter Q/B = 0.3. The critical point, the temperature endpoint, and the pressure endpoint are represented by
stars, full circles, and triangles respectively. The zoomed in picture of the CP region is shown in (b) and (d).

The scaled variances given by Eq. (34) satisfy the relation

ω[Q] = qω[B] + 1 − q, (35)

where q = nQ/nB is the probability of detecting a proton; i.e.,
the charge fluctuations are obtained from binomial folding
of baryon number fluctuations. This is a well-known generic
feature of Boltzmann systems [51]. In contrast, the quantum
statistics does violate the relation (35).

The correlation between the baryonic and the electric
charges is calculated as follows:

cor[B, Q]

V
= 〈BQ〉 − 〈B〉〈Q〉

V

= T

[
∂

∂μQ

]
T,μB

[
∂ p

∂μB

]
T,μQ

= nQ

1 − bnB

[
ωid [Q]

ωid [B]
− bnB

]
ω[B]. (36)

Figure 11 presents the scaled variances of baryonic, ω[B],
and electric, ω[Q], charge fluctuations in the (μB, T ) coor-
dinates for the region of the pure phases. Generally, ω[B] >

ω[Q] in every point of the (μB, T ) plane. At T → 0, both
ω[B] and ω[Q] approach unity in the gaseous phase (Poisson

distributions) and zero in the liquid phase (dense packing
limit). Both ω[B] and ω[Q] are divergent at the CP. At the
same time, both these quantities exhibit regular behavior at
the TEP of the noncongruent LGPT.

VI. ISOSPIN-DEPENDENT INTERACTION PARAMETERS

Throughout this work we have assumed that the QvdW
interaction parameters are the same for proton-proton, proton-
neutron, and neutron-neutron interactions; i.e., the isospin de-
pendence of the NN potential was not considered. The model
predicts a symmetry energy value of about J 
 20 MeV,
which is 10–15 MeV lower than the empirical estimate [52].
In addition, the liquid-gas phase transition in pure neutron
matter, predicted by the model (see Fig. 1), appears to be
ruled out by chiral effective field theory [53]. An improved
description of asymmetric nuclear matter within the QvdW
approach can be achieved by considering isospin dependent
QvdW parameters.

In Ref. [46] the multicomponent QvdW model was for-
mulated, wherein one can specify the attractive and repulsive
QvdW parameters for each pair of particle species. This
formalism is applied here for asymmetric nuclear matter. We
define ann, app, and apn = anp as attractive QvdW parameters
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for neutron-neutron, proton-proton, and neutron-proton inter-
actions, respectively. Similarly, bnn, bpp, and bpn = bnp are
repulsive QvdW parameters. The assumed isospin symmetry
yields bpp = bnn and app = ann. Therefore, the model has four
QvdW interaction parameters: ann, anp, bnn, and bpn. The
isospin-dependent multicomponent QvdW equation for the

pressure is

p(T, μB, μQ) = pid
n (T, μ∗

n ) + pid
p (T, μ∗

p)

− ann
(
n2

n + n2
p

) − 2 anp nn np. (37)

Here the shifted chemical potentials μ∗
n and μ∗

p are
given by

μ∗
n = μB − bnn pid

n (T, μ∗
n ) − bnp pid

p (T, μ∗
p) + 2 ann nn + 2 anp np, (38)

μ∗
p = μB + μQ − bnp pid

n (T, μ∗
n ) − bnn pid

p (T, μ∗
p) + 2 anp nn + 2 ann np. (39)

The generalized equations for neutron and proton densities are [46]

nn(T, μB, μQ) = nid
n (T, μ∗

n )
[
1 + (bnn − bnp)nid

p (T, μ∗
p)

]
1 + bnn

[
nid

n (T, μ∗
n ) + nid

p (T, μ∗
p)

] + (
b2

nn − b2
np

)
nid

n (T, μ∗
n )nid

p (T, μ∗
p)

, (40)

np(T, μB, μQ) = nid
p (T, μ∗

p)
[
1 + (bnn − bnp)nid

n (T, μ∗
n )

]
1 + bnn

[
nid

n (T, μ∗
n ) + nid

p (T, μ∗
p)

] + (
b2

nn − b2
np

)
nid

n (T, μ∗
n )nid

p (T, μ∗
p)

. (41)

If all QvdW parameters are assumed to be equal, ann = anp,
bnn = bnp, Eqs. (37)–(41) reduce to the model defined by
Eqs. (1)–(4).

The symmetric nuclear matter, μQ = 0, nN = nQ, reduces
to a single-component system with interaction parameters

a = ann + anp

2
and b = bnn + bnp

2
. (42)

The values of a and b are fixed by fitting the known
ground state properties of symmetric nuclear matter: a =
329 MeV fm3 and b = 3.42 fm3 (see Sec. III A). Therefore,
the model has two free parameters: anp/ann and bnp/bnn.
We fix these parameters to reproduce the constraints on the
symmetry energy and its slope at normal nuclear density.
We take the following values: anp/ann = 2.5 and bnp/bnn =
1.7. This yields symmetry energy J = 32 MeV and its slope
L = 51 MeV which are consistent with empirical constraints
[54–60].

The blue line in Fig. 12 shows the dependence of the bind-
ing energy on nB at zero temperature for pure neutron matter
within the QvdW model with anp/ann = 2.5 and bnp/bnn =
1.7. The gray band represents result for pure neutron matter
within the chiral effective mean field model [53] with nucleon-
nucleon (NN) and 3N interactions and a renormalization-
group evolution. The width of the band is mainly due to
uncertainties in 3N forces. In the considered case anp/ann =
2.5 and bnp/bnn = 1.7 the minimum in the binding energy as
a function of density is absent for Q/B � 0.08.

Figures 13(a) and 13(b) show, respectively, the dependen-
cies of Tc and nc on Q/B, calculated within the QvdW model
for anp = ann = a, bnp = bnn = b (black lines) and anp/ann =
2.5, bnp/bnn = 1.7 (blue lines). In the case of symmetric nu-
clear matter, Q/B = 0.5, the two parameter sets yield identical
results, as follows from the condition (42). For a sufficiently
symmetric system, Q/B � 0.3, the consideration of isospin
dependence in interaction parameters does not influence sig-
nificantly the locations of CP and TEP.

The situation is different in the case of a large asymmetry.
In the case of isospin-independent interactions, the CP is

present for all values of Q/B, even in the case of a pure
neutron matter, Q/B = 0: Tc = TTEP 
 10.83 MeV. On the
other hand, when isospin-dependent interaction parameters
are used, the critical temperature approaches zero at a finite
Q/B 
 0.015, and the CP is no longer present at Q/B �
0.015. The TEP, however, is present for all finite values of
Q/B, with the limiting behavior TTEP → 0 at Q/B → 0. These
observations suggest that for Q/B � 0.015 the CP is absent;
however, the LGPT is still present, in the form of a retrograde
condensation. In the extreme case of pure neutron matter,
Q/B = 0, the phase transition disappears completely.

The comparison between isospin-independent and isospin-
dependent parametrizations of the QvdW interactions in
Fig. 13 shows that the former is appropriate for possible
applications to heavy-ion collisions, which are typically char-
acterized by Q/B 
 0.4.
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FIG. 12. Dependence of the binding energy on baryon density at
zero temperature. The black line is the same as in Fig. 3. The blue
line represents the QvdW model with isospin-dependent interaction
parameters. The gray band shows result of chiral effective field
theory [53].
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VII. SUMMARY

The noncongruent liquid-gas phase transition in asym-
metric nuclear matter with two globally conserved charges
is studied within the quantum van der Waals model. The
features of those noncongruent phase transitions, such as the
continuous phase transformation, a change in the location of
the critical point, the separation of the critical point and of the
endpoints, and the retrograde condensation, have been ana-
lyzed. The magnitudes of these phenomena tend to zero if the
composition of the nuclear matter approaches the composition
of either the limit of symmetric nuclear matter (Q/B = 0.5)
or pure neutron matter (Q/B = 0). The scaled variances of the
baryonic and the electric charges fluctuations are calculated in
the presence of the noncongruent phase transition. The fluctu-
ations of both baryonic and electric charges are divergent in
the critical point.

The quantum van der Waals model with isospin-dependent
interaction parameters, constrained to empirical values of the
symmetry energy and its slope, has also been considered.
It yields results which are similar to the case of isospin-

independent interaction parameters for sufficiently symmetric
systems, Q/B � 0.3, which covers possible applications in
heavy-ion collisions. However, there are important differences
for small values of the asymmetry parameter. In particular,
the ground state and the phase transition are absent in pure
neutron matter in the case of the isospin-dependent QvdW
interactions.
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