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ABSTRACT

The Department of Aeronautics and Astronautics at the Naval Postgraduate School (NPS) is

expanding its helicopter research capabilities in order to facilitate present and future research

demands. The rapidly changing needs have already out paced available assets. Therefore it was

necessary to design and develop a new remotely piloted helicopter (RPH) that would meet present

needs, NOTAR and HHC, and be flexible enough to meet future needs. The research efforts

encompassed by this thesis are defining the present needs, investigating what type/size of RPH would

fulfill these needs, procuring this asset, and analyzing its capabilities. Based on a defined payload,

helicopter trends are analyzed to determine an estimate of the overall RPH size (gross weight) and

engine size required. A preliminary design process validates these figures. Choosing to procure an

RPH instead of building one, a detailed performance analysis is conducted on the main rotor system.

This analysis includes blade vibration analysis, retreating blade stall analysis, and power required

analysis. Modification of the RPH's main rotor hub, drive train, and landing gear are studied and

recommendations presented. This research effort is a continuation of a long- term program to provide

NPS with robust assets to support present and future rotorcraft research efforts.
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I . INTRODUCTION

Helicopter research in the Department of Aeronautics and

Astronautics at the Naval Postgraduate School (NPS) is

rapidly accelerating. This fast pace has created a need for

expanding the capabilities of the department's Remotely-

Piloted Vehicles (RPV) . Valuable research has been

accomplished through the employment of the existing RPVs

.

The GMP Legend, a commercially produced radio controlled

(RC) helicopter, was used to produce baseline vibration

analysis and to validate measurement techniques. The

results from this work will be of great value in subsequent

Higher Harmonic Control (HHC) research. The Bruiser, a

limited production, 20 pound payload RPV developed by

Pacific RPV, was used in a shake test to obtain an airframe

modal analysis.

The preceding research has been of great value to the

department, but in order to advance beyond proof of concept

and into scale model analysis, a new helicopter was

required. Incorporated in the requirements were a

helicopter with a tip speed and chord which produced a

Reynolds number that was within an acceptable range for

comparison with a full scale helicopter; a helicopter of a

size large enough to carry a No -Tail -Rotor (NOTAR) tail boom



that would also be testable in the quarter scale (14 by 22

foot) wind tunnel at NASA Langley; and a helicopter with

enough flexibility to be adaptable to future research needs.

This impetus developed the challenge of designing a suitable

RPV for the department

.

A critical amount of background knowledge and direction

was obtained on a research trip to the Aerostructures

Directorate at NASA Langley. They were heavily involved in

the design, manufacture and test of their own Free- Flight

Rotorcraft Research Vehicle (FFRRV) , which was directly

along the same lines of interest of NPS . Their RPV was

twice the size and considerably more complex than that

desired by NPS. The head of the directorate, Arthur E.

Phelps III, was invaluable in passing on their corporate

knowledge, saving untold hours in achieving the NPS goal.



II. BACKGROUND

A. HIGHER HARMONIC CONTROL (HHC)

The control of vibrations has always been of great

concern to both the helicopter designer and to the

helicopter pilot. It has been a continuing source of

agitation throughout the years and a focus of enormous

amounts of research assets. The current means by which the

vibrations are reduced are through passive devices which

either isolate the source of vibration (isolators) or

diffuse the vibration level (absorbers) . These vibration

absorption mechanisms are usually restricted to a narrow

scope of flight conditions and vibratory frequencies. The

use of HHC, a relatively new technology, is an active

vibration reduction device, vice the passive ones just

mentioned. HHC functions by altering the aerodynamic loads

on the rotor, and therefore the vibratory forces and moments

which cause the airframe to vibrate are reduced. [Ref. 1]

In earlier full scale HHC testing on the Hughes

Helicopter 0H-6A, it was determined that not only were the

vibrations successfully reduced, but the performance of the

helicopter was also improved. Other helicopter companies

tried to duplicate this resulting improved performance but

were unsuccessful. Corroborating this performance



enhancement locally would have great merit. The RPVs on

hand did not allow this type of research to be conducted

because they could not produce Reynolds numbers over the

main rotor blade that would allow data comparison with the

data obtained on the 0H-6A. A helicopter with a tip speed

and chord length that would produce Reynolds numbers on the

order of two million was required. This shortcoming

provided some of the drive to obtain a new helicopter RPV.

B . NOTAR

Presently, Lit. M. Borno, in conjunction with McDonnell

Douglas Helicopter Corporation, is conducting thesis

research which will produce a fully operational scale model

NOTAR tailboom. The tailboom requirement was that it was to

be big enough to test in the quarter scale wind tunnel at

NASA Langley. The current RPVs lacked the size to

mechanically support and drive a tailboom of this scale.

This was a second driver behind acquiring a new helicopter

RPV.

C. AUTONOMOUS LANDING AND TAKEOFF SYSTEM (ALTOS)

The United States Navy's growing interest in RPVs and

their fleet applications has now reached a point which

requires significant background research. As the Navy leans

toward fully autonomous RPVs, it lacks experience and

expertise in the most effective and efficient means to



launch and recover these vehicles. Recently, Orion Aviation

entered into a contract with the United States Navy in

conjunction with NPS to develop and test five potential

ALTOS concepts and have them analyzed for merit by students

at NPS. Once the best ALTOS concept is determined, it will

be built by Orion Aviation and then will be demonstrated

using an NPS RPV. The expanded capabilities that the new

NPS RPV would add to the existing resources would provide

greater flexibility in the demonstration and validation

phase of the ALTOS program.



III. DEVELOPING SCALE MODEL TRENDS

There is a great deal of documentation for the design of

full scale helicopters regardless of weight range, but there

exits little or no documentation for design of a scale model

helicopter. It was necessary to determine trends for gross

weight, takeoff weight, disk loading (DL) , rotor radius,

solidity (a), and blade loading (BL) from full scale

helicopters in order to determine what the values should be

for quarter- scale size. The trends that were developed were

typically linear with an adjustment of either the x-

intercept or the y- intercept usually required. The

adjustment was made assuming the trends held true for all

weight ranges, but at the lower weights the line had to be

shifted to accommodate scale sizes. The trends that were

generated show this assumption to be good.

The first trend determined was between the load a

helicopter could carry versus the gross weight of the

helicopter. Fig. 1 shows data for thirteen different full

scale helicopters plus the Bruiser.

A linear trend analysis produced Eqn. 1:

Payload = 27 +
Gross Welght

(1)
4 . 52

The slope of the line was assumed to be true for all weight

ranges, but the y- intercept was decreased for gross weight



Load vs Gross Weight
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Figure 1 Payload vs Gross Weight

less than 500 pounds. The final equation that was

determined is shown in Eqn. 2.

Gross Weight - 4 . 52 * Payload (2)

The needs as stated in the previous chapter required a

payload of between 20 and 30 pounds. This equates to a

helicopter between 90 and 135 pounds.



The next trend that was studied was takeoff weight

versus usable power. The desire was to use this trend to

provide a general idea of what power would be required based

on the above weight range. The trend shown in Fig. 2 was

used to derive Eqn . 3.

Usable Power = -7 0.66 *
Takeoff Weight

7 . 38
(3)

Takeoff Wt vs. Usable Power

2,000

a? 1,500
X

| 1,000

o

Q
m
CO

3

500

-500

*

'l>-
^+" ^t

.^-^^
i--

*- "

-
r

- -
i - t

1 2 3 -1 5 6 7 8 9 10 11 12 13 14

Takeoff Wt. (Thousands)

Helicopter

r SA 365N 7K AS 350B
1 A 1 09 K Bell 206L 3

bull 412 ri AH IS if Bell 222B * MbB BO 105 LS

TBKll? J* Hughes 500E cJ Bruiser 4»R22 Beta

"-Hushes 300C JK WoiilanJ Modul 30

Usable Pwr ^ TO Wt/7.38

Figure 2 Usable Power vs Takeoff Weight



Again, assuming the slope was accurate over the entire

weight range, the intercept point was dropped to zero. The

final equation is shown below. This equation shows that

power required would range between 12 to 18 horsepower.

Usable Power = takeoff Weight
( ,

7 .38

Next, the main rotor blade solidity and blade loading (Ct/cr)

versus takeoff weight were compared. Fig. 3 shows that main

rotor blade solidity is independent of takeoff weight. The

minimum solidity was found to be 0.03 for the Robinson R-22

Beta. The maximum solidity was 0.098 for the Aerospatiale

AS 332 LI. The average solidity was approximately 0.07.

Fig. 4 shows a similar trend to that of the blade solidity.

The blade loading was also independent of takeoff weight.

The minimum was 0.05 for the Bell 412. The maximum was

0.095 for

the Aerospatiale SA 365N, and the average was 0.075.

The typical disk loading (DL) for model helicopters is

between 1.0 and 2.0. Fig. 5 shows that the model helicopter

does not fall within the normal range of full scale

helicopters. The minimum full scale DL of 2.8 is that of



Takeoff Wt vs. Blade Solidity
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Takeoff Wt vs. Blade Loading
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Takeoff Wt vs. Disk Loading
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Figure 5 Disk Loading vs Takeoff Weight

the Robinson R-22. Full scale trends were inconclusive in

providing guidelines for the model helicopter. Fig. 6 shows

how power loading (PL) varies with disk loading. Power

loading tells how much weight can be lifted for a given

horsepower. The lower the DL, the greater the PL that can

be achieved. In summary, the trend analysis shows that a

desired payload of 20 to 30 pounds will require a helicopter

weight between 90 and 135 pounds. An engine of 12 to 18

12



Disk Loading vs Power Loading
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horsepower would be required for a helicopter in this weight

range. The solidity should be in the vicinity of 0.07 and

the BL should be in the vicinity of 0.075. These trends

provide a good starting point for the design process and a

very good point of comparison for the preliminary design

results

.
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IV. PRELIMINARY DESIGN

A. CONSTRAINT DIAGRAM

The first task to accomplish was to construct a rotor

blade tip speed constraint diagram. Based on industry-

criteria [Ref. 2:p. 90], a tip speed constraint diagram was

made using the following limits. The upper boundary can

either be set by a noise limit which is 750 fps or a hover

tip mach number limit which is M<0.69 (771 fps) . The hover

tip mach number was used for this constraint diagram. The

lower limit is set by requirement to store kinetic energy in

the rotor system in case of power failure, in other words an

autorotational limit. This limit is set at 400 fps. Two

other limits that are important to consider are that of the

advancing blade tip mach number limit and the advance ratio

(/z) limit. The advancing blade tip mach number limit is set

at M<0.8 to avoid compressibility effects on the advancing

blade in forward flight. The advance ratio is set at /i<0.4

to avoid retreating blade stall at maximum forward speeds.

One additional limit was incorporated to show the lower

Reynolds number limit of 1.5 million. Fig. 7 depicts the

constraint diagram developed using the above parameters.

14



Tip Speed Constraint Diagram
Hummingbird

1.000

60 80 100 120 140
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200
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Adv Ratio Limit Mu < 0.4

Figure 7 Main Rotor Blade Tip Velocity Constraint Diagram

B. PRELIMINARY ESTIMATES

1. Gross Weight and Blade Radius

Ref. 3 outlines basic steps to quickly estimate the

gross weight and rotor radius. Using these steps, the

following calculations were made:

15



Fuel Required

(0.5 lb/hp-hr) Piston Engine

Mission time 60 minutes

Fuel required = (1 . 0) (25) (0 . 5) = 12.5 lbs of fuel*

*This is approximately two gallons.

Usable Load (UL)

UL = crew + payload + fuel

UL = + 30 + 12.5 = 42.5 lbs

Assuming 1970 technology, Fig. 8 shows a useful load

per gross weight factor of 0.4 [Ref. 3:p. 641].

Gross Weight =90.6 lbs.

1 r

9 -

8

7

y

|V *<*

3 1 » ^^^^
i g ^

—

3 q ^^^**~^^w 4 _-

3

2

1

Q I i i i i i i i

1950 1955 i960 1965 1970 1975 I960 1965 1990

Year

Figure 8 Historic Trends of Ratio of Useful Load to Gross
Weight

This number for gross weight falls within the range

developed by the trends analysis, though it is on the low

side for a payload of 30 pounds. Realizing that the design

16



weight of any design will grow, it is assumed that the

higher weight is more reasonable; therefore, a 130 lb gross

weight will be used for the following estimates. Based on

this weight and the DL range from 1.0 to 2.0, the rotor

radius ranges from 4.55 to 6.43 feet. This rotor radius

range is validated by calculation of required blade area as

described in Ref. 2. Assuming a maximum forward velocity

(V
|nax

) of 70 knots, Fig. 9 shows that blade area required is

5.5 square feet, which is 1.83 ft 2 per blade for a three

blade system and 1.375 ft 2 for a four blade system. This

translates into a radius of 4.9 ft, a DL of 1.74 lb/ft 2 with

a chord of 0.375 ft (4.45 in) for the three blade system,

and a radius of 4.7 ft, a DL of 1.86 and a chord of 0.292 ft

(3.5 inches) for the four blade system.

dolor tip ib««

> 0n«*l of
f ud tilttt
M MVMKIM

Figure 9 Determination of Blade Area for New Rotor Design
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Either of the above systems would be feasible for this

design, but the four blade system does have two distinct

advantages. First, the blade vibrations in a four blade

system are less than those in a three blade system. Second,

the aspect ratio (AR) of the three blade system is 13.1 and

the AR for the four blade system is 16.1. The normal range

for AR is 15 to 20. Any blade below that will have a lower

blade efficiency due to tip losses and any blade above that

could pose structural problems.

2. One Hour Estimate

In this estimate, there are two constraints: hover

out of ground effect (HOGE) and high forward speed flight.

The following is a list of the tentative performance

requirements

:

Payload 20-30 lbs

Crew lbs

Max Speed @ S.L. 70 knots

Cruise Speed (0.9*V
max

)63 knots

Vertical Rate of Climb 450 fpm @ 4000 ft 95 deg. F

Engine: One - Max continuous rating 25 BHP.

The following calculation as detailed in Ref. 4 will be done

using the previous gross weight estimation of 130 lbs. Fig.

10 shows that for a weight of 130 lbs, the equivalent flat

plate area (f
e

) would be approximately 0.8 ft 2
. [Ref. 5:p.

35]

18
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a. Maximum Forward Velocity (V^ )

Assuming seventy percent of installed power is

used to overcome parasite drag at high speeds, maximum sea

level speed can be calculated.

v - 41 t r
( 3Q min iatin9 eng) -, 3

max ' L
f

J
(5)

Maximum BHP = 25

Assuming Figure of Merit of 70%

THP =17.5

V „ - 114 knots
max

Based on the assumption that the helicopter was to be

derated to a power of 18 HP, the calculations would be

changed as follows:

19



Maximum BHP =18

Assuming Figure of Merit of 70 !

THP =12.6

V
max

= 41*[12.6/.8]"(l/3)

V = 102 knots
max

b. Rotor Sizing

The preliminary size of the rotor is determined

using the rate of climb (ROC) stated earlier. Additional

power required to climb 450 fpm is approximately 10% of the

power required for HOGE

.

ROC 450 fpm @ 4000 ft 95 deg. F (95% of 17.5 THPi

95% of 17.5 hp = 16.63 hp

PL = 130 lb/16.63 hp = 7.82

From Fig. 11 the DL = 3.5 [Ref. 4:p. 8].

DL = Weight/ (pi*RA
2) =3.5

R = 3.44 ft

Again assuming a derated engine,

95% of 12.6 hp = 12.0 hp

PL = 130 lb/12.0 hp = 10.83

From Fig. 11

DL = 1.75.

DL = Weight/ (pi*R
A
2) =1.75

R = 4.86 ft

20
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Figure 11 Rotor Performance for Design Conditions

c. Starting Point

The preceding calculations provide a good point

at which to begin more in-depth design. In summation, the

starting point is

Gross Weight 130 lbs

Empty Weight 87.5 lbs

Payload 3 0.0 lbs

Fuel Weight 12 . 5 lbs

Rotor Radius (R) =4.86

Disk Loading (DL) = 1.75

21



3 . Design from Scratch or Procure

Based on this data, there were two choices to make.

First, design a helicopter from scratch which would meet the

needs of the Aeronautics and Astronautics Department. While

this is definitely an exceptional learning process, the end

result would leave the department with a paper helicopter

and at least a year's worth of manufacturing. The other

path of choice was to look for a helicopter on the open

market that closely approached the stated needs. The second

alternative, being the most productive and time smart, was

chosen. Though the possibility of locating a helicopter

that would meet every need was slim, it was the best choice,

realizing that the redesign of an existing, flying

helicopter was much more frugal financially and time-wise.

22



V. HUMMINGBIRD ACQUISITION

A. CAPABILITIES

A helicopter of the correct size and payload capability-

was located at the GMP model helicopter company. The owner

and designer, Mr. John Gorham, the lead engineer with

Lockheed Corporation on the L-1011, had built ten 165 pound

RPVs for the U.S. Army. Their original purpose was to be

used as Soviet Hind-D recognition devices. This vehicle was

nearly ideal for meeting the needs of the department. There

were some shortfalls, which will be mentioned in the next

section, but nothing of a critical nature that could not be

redesigned or changed. The department purchased one of Mr.

Gorham' s helicopters, with the desire to purchase a second.

The initial RPH was named Hummingbird I. The purpose of

buying two helicopters is to allow for concurrent HHC,

NOTAR, and ALTOS research. One helicopter would be used in

its original configuration for NOTAR and ALTOS research.

The other would be converted into a platform capable of HHC

research. Fig. 12 contains two pictures of the Hummingbird.

Table I contains a list of the Hummingbird characteristics

and capabilities as it was received from Mr. Gorham.
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Figure 12 The Hummingbird



Table I HUMMINGBIRD CHARACTERISTICS AND CAPABILITIES

Hummingbird:

Characteristics

Weights
Max Gross Weight
Empty Weight
Fuel capacity

Rotor Parameters

Radius (R)

Chord (c)

Solidity (sigma)
No. of blades (b)

Tip speed
Twist
Hinge offset ration (e/R]
Airfoil

Engines

Type
Number
Maximum Usable Power
Maximum Torque

165 lbs
115 lbs
6.5 lbs

Main Tail

5' 3" 12.5"
6" 2.625"
0.0061 0.02
2 3

303 fps 241 fps
-5

0.127 0.24
NACA 0012 NACA 0012

Westlake 342 Series 2100D
1

25 BHP @ 7000 rpm
25 ftlb @ 4000 rpm

B . SHORTFALLS

The Hummingbird satisfied many of the department's

needs; specifically, it was large enough to be developed

into a quarter scale model, it had a 50 plus pound payload,

and in addition, it had already proven itself in flight

test. There were, however, some shortcomings that had to be

addressed. These shortfalls included the need for more than
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a two blade hub, an RPV that possessed autorotational

capabilities and could produce blade Reynolds numbers which

would be comparable to full scale helicopters.

1. Two Blade Rotor

In order to have the capability to do HHC research

work on the RPV, it was required that the helicopter have at

least three rotor blades or more. The reason for this

requisite is that the vibratory forces at the rotor blade

root are produced by the (n-l)/rev, n/rev, and (n+l)/rev

vibrations. The n/rev vertical forces and moments are

transmitted to the fixed system at a frequency of n/rev.

The (n-l)/rev and (n+l)/rev flapwise blade root shears

result in n/rev hub pitching and rolling moments in the

airframe. The n/rev flapwise blade root shears feed into

the airframe as n/rev vertical forces. The (n-l)/rev and

(n+l)/rev chordwise root shears produce n/rev airframe hub

forces in the fore and aft and lateral directions. The

n/rev chordwise root shears result in n/rev hub yawing

moments. Choosing a rotor system with three or more blades

therefore will not interfere with the primary 1/rev control

inputs. [Ref. 6:p 19] This change alone created a

significant amount of work because it includes changing the

main rotor hub and redesigning the rotor blades.
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2. Lack of Autorotational Capability

The original design never incorporated the ability

for the Hummingbird to autorotate, and this was considered

unacceptable for the NPS flight research vehicle. The

bearings in the drive system do not allow the main rotor to

freewheel should the RPV have an engine failure. Presently,

should the engine fail it will cause a rapid decay in rotor

rpm which will transform the RPV from a flying machine to a

projectile. This is a critical redesign requirement which

must be accomplished in order to protect the Navy's

financial and research investment in the Hummingbird.

3 . Low Reynolds Number

In the HHC research, it is not enough to prove that

the concept will reduce vibration; that result is

sufficiently proved. The desire is to have the ability to

test whether HHC also provides performance improvements.

This comparison can only be accomplished on helicopters with

similar Reynolds numbers.

Reynolds number is the ratio of the inertia to the

viscous forces on a volume of fluid (Eqn. 6)

.

Re = SJL£ (6)
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The importance of Reynolds number in the comparison of

geometrically similar bodies in incompressible flows can be

shown using the Navier- Stokes equations. Eqn. 7 shows the

dimensionless Navier- Stokes equation.

£h_
/

=-Je_
/

+_Lv/2 u /
- ^i/

=-i£-
/

+ -i-v/2 v /
- ^2L

/

=-iE.
/

+_Lw /

Dt' dx' Re ' Dt 1 dy' Re ' Dt 1 dz' Re (7>

These equation show that, given geometrically similar

bodies, the equations of motion are identical for the same

Reynolds number. The similar bodies includes surface

roughness as well as shape. [Ref. 7:p. 3 04]

The Hummingbird's Reynolds number was on the order of

0.9 million, and it needed to be in the range of 1.5 to 1.8

million to be comparable to that of the 0H-6A's Reynolds

number equal to 2.4 million.
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VI. BLADE DESIGN

A. SPECIFICS

1. Airfoil

The airfoils that were available with the

Hummingbird were NACA 0012 and NACA 0013. This type of

airfoil is widely used in industry for numerous reasons.

First, the airfoil is symmetrical and therefore there is no

nose-down pitching moment which is associated with cambered

airfoils. Second, it is a relatively thick airfoil which

will provide an acceptable maximum lift coefficient.

Finally, there is a vast amount of data available on this

airfoil, which provides for much easier analysis. This is

due to the fact that the NACA 0012 airfoil was selected by

Mr. Sikorsky for the VS-300, the world's first truly

successful helicopter. It was also the airfoil of choice

for almost all early helicopters, including more recent

aircraft still in service, such as the Navy H-3.

For improved performance, a more recent advanced

technology airfoil worthy of consideration is the NACA

23012. The characteristic drooped nose is an effective

method of increasing the maximum lift coefficient. Also, at

high lift it has lower drag than a similar six- series

airfoil at low mach numbers. [Ref. 3:p. 388]
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2. Twist

The twist of a rotor blade enhances two main areas

of the helicopter's performance- -hover performance and

retreating blade stall- -but it also produces increased

vibration in forward flight. Its most notable adverse

effect is to increase blade vibratory stresses and in this

way reduce blade fatigue life. Built-in blade twist affects

the radial variation of inflow angle from blade tip to blade

root. Ideal twist is represented by Eqn. 8.

* - * R (8)

Hovering performance is enhanced with the addition of

negative twist by creating a more uniform inflow

distribution along the blade span. The larger the amount of

twist, the closer it approximates an ideal twist

distribution. Generally accepted values of main rotor blade

twist are -8 to -14 degrees. Ideal twist yields the minimum

induced loss for a given thrust. Retreating blade stall is

delayed when twist is employed by unloading the tips, which

reduces the tip angle of attack [Ref. 8:p. 57].

These regions of enhanced performance are not

critical areas for the Hummingbird. The Hummingbird will

operate at relatively slow forward speeds; therefore,

retreating blade stall is not a concern. It would be

attractive to have highly efficient blades in the hover

regime, but with the present payload capability of 50
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pounds, it is not critical. If these were critical areas

for the Hummingbird, it might be worth the effort to

manufacture new blades with twist; but since they are not,

simplicity rules, and it was decided not to incorporate

twist in the present rotor blade design.

3. Tip Velocity

Determining the tip speed (V
t

- ) for the Hummingbird

was a difficult matter because its effects were coupled with

so many other areas of the helicopter's performance. The

constraint diagram from Chapter II is shown again in Fig 13

.

The design point is shown to be in the proximity of V
max

of

40 knots and V
t

- of 450 fps . V
max

was obtained from the

Hummingbird original design. The means by which V
t

- was

determined will follow. Low tip speeds have the advantage

of low noise and good hovering performance. "High tip

speeds have the advantage of low rotor and drive system

weights and high stored energy for autorotative entries and

flares." [Ref. 3] In the case of the Hummingbird, V
t

- was

the variable used for a tradeoff study. V
ti

had to be large

enough to produce Reynolds numbers which could be compared

with full scale helicopters, but small enough to provide a

reasonable Figure of Merit (FM)

.
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Tip Speed Constraint Diagram
Hummingbird
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Figure 13 Constrain Diagram

B. TRADEOFF

The need to achieve a Reynolds number in the range

mentioned earlier was the source of some consternation. If

Reynolds numbers were not considered, it was quite easy to

design a rotor blade that would fly efficiently and meet the

department needs. The complication begins when the V
tj ,

Reynolds number, Figure of Merit and chord length

requirements are all met at the same time. Reynolds number
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is a function of Vu and chord length as shown by Eqn. 9

Re = 6400 Vti c (9)

Fig. 14 and 15 show this relationship over a certain range

Tradeoff Study
Vtip vs Reynolds Number

2.5E + 06

0.5E + 06

Chord Length (in)

— 4.0 *M-5 -*5.0 -»"5.5 *6.0 +6.5

Bladed Rotor System

Figure 14 Reynolds Number vs Blade Tip Speed

300 350 400 450 500 550 600

Vtip (fps)

of VUp and chord length.

Figure of Merit is shown by the relationship in Eqn. 10.

Induced power is the power required to overcome the drag due

to the generated lift. Total power also includes the power

33



FM = i— (10)
Px totai

required to move the rotor blades through the air (profile

power) and the power required to drag the fuselage through

the air (parasite power) . Fig. 16 and 17 show this

relationship over the same V
t

- and chord length range.

To link the Figure of Merit and Reynolds number together,

lines of constant Reynolds numbers were plotted on the

Figure of Merit versus chord length chart. Fig. 18 allowed

for the tradeoff to be visualized simultaneously on one

graph. The Hummingbird came with three sets of blades. One

set was of radius 4.52 feet with a chord of 6 inches. The

other two sets were of radius 5.0 feet with a chord of 6.5

inches. To expedite the design process, the available

blades were selected versus designing and manufacturing new

ones. Since there was a requirement for at least a three

bladed rotor, the second set of blades was chosen.

The advantages of this choice are seen in the tradeoff

study. Choosing a longer chord length allowed for a slower

tip speed for the same Reynolds number. Since profile power

is proportional to V
t

-

3
, the slower tip speed increases the

FM from 0.48 to 0.54.
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Tradeoff Study
Vtip vs Figure of Merit
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Figure 15 Figure of Merit vs Blade Tip Speed

C. STABILITY

The pitch and roll damping is produced by the tilt of

the tip path plane, which lags behind the motion of the

shaft by an amount that is proportional to the rate of pitch

or roll. Therefore, the aerodynamics on the blade causes

the tip path plane to tend to stabilize itself in an

equilibrium position with respect to the shaft. "If the
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aerodynamic and inertia flapping moment are equated, the

following results for the angular displacement of the rotor

plane with respect to the shaft per unit tilting velocity of

the shaft is obtained for the hovering case:"[Ref. 8:p. 275]

Tradeoff Study
Chord vs Reynolds Number

2.5E + 06

0.5E + 06
4.0 4.5 5.0 5.5

Chord (inches)

6.0

Blade Tip Velocity (fps)

300 ^400 *450 *500 * 550 +600

6.5

Figure 16 Reynolds Number vs Chord Length

16

0) yCl
(11)

The quantity 16/ (y°0 can be understood more easily by

examining its physical interpretation as follows: The thrust
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vector lags the rotor shaft by a time constant of 16/ (7ft)

seconds if the rotor shaft is tilted with any constant

angular velocity. Therefore, the larger the time constant

(16/ (7ft)), the greater the system is damped. Lock number

Tradeoff Study
Chord vs Figure of Merit

0.9 -r

5.0 5.5

Chord (in)

Blade Tip Velocity (fps)

— 300 £* 400 * 450 » 500 * 550 "t 600

Bladed Rotor System

6.5

Figure 17 Figure of Merit vs Chord Length

(7) relates the inertia and aerodynamic characteristics of a

blade and is shown in Eqn. 12.

cpaR'
I,

(12)
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Tradeoff Study
Chord vs Figure of Merit

Lines of constant Reynolds Number

Re=1 o
H*»i i

5.5

Chord (in)

Blade Tip Velocity (fps)

300 is 400 7^450 »500 * 550 "f- 600

3 Bladed Rotor System
Reynolds Numbers E + 6

Figure 18 Figure of Merit and Reynolds Number Tradeoff

The stability of the Hummingbird is a critical area that

will require additional research. The two proposed

modifications to the helicopter significantly alter the

stability of the RPV. Eqn. 11 shows that rotor speed and

Lock number will affect the damping of the rotor. The rotor

blade is not changed; therefore, the Lock number will remain

the same. The rotor speed will be increased from 550 rpm to

759 rpm, thus decreasing the effective rotor damping. Ref.

8 states that
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In addition to the effects of rotor speed, rotor damping
may be increased by the use of devices that act upon the
control system in such a manner as to increase the
displacement of the rotor from its trim position due to
a given rate of roll or pitch. An example of such a
device is a rate gyro that would apply opposite control
by an amount proportional to the rolling or pitching
velocity of the helicopter.

The Bell-Hiller stabilizer bar hub configuration is such a

device. Therefore, changing from that type of hub to an

articulated hub will significantly decrease the rotor roll

and pitch damping and thus the helicopter's handling

characteristics. For the 3-bladed Hummingbird, rate gyros

may be required in order to have satisfactory flying

qualities.

D. BLADE DYNAMICS

1. Introduction

It is very important to consider the vibratory

effect on the main rotor blades. High vibrations result in

high vibratory shear at the rotor hub, which results in high

fuselage vibrations. The high vibrations also cause

vibratory shear stress, which reduces the effective life of

a rotor blade. The vibratory resonance response also

affects dynamic stability of the rotor system.
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2 . Main Rotor Blades

The following analysis was done on two different

rotor blades. The first was termed the "heavy" blade. It

had a length of 4 ft 6.25 inches, chord of 6 inches,

thickness ratio of 12 percent and a weight of 5.18 lbs. The

second blade, termed the "light" blade, has a length of 5

ft, chord of 6.5 inches, thickness ratio of 13 percent and a

weight of 4.66 lbs. The length given for the blades above

does not include the 8 inch blade offset of the rotor hub,

but it was included in the rotor radius when the analysis

was performed.

In order to analyze each blade, they were broken up

into segments: the heavy blade into 17 segments and the

light blade into 24. Fig. 19 and 20 show a schematic for

the two blades and how the blades were divided into

segments. The analysis for each blade was conducted with

the exact same technique, and therefore the discussion will

be limited to the heavy blade. The following quantities

were required to perform the blade analysis: section radii,

chord, segment width, segment volume, segment weight, and

area moment of inertia (Ixx) , and material modulus of

elasticity. The section radii was the distance from the

center of rotation to the center point of the segment. The

chord was constant for the blade until the small taper at

the root. The segment width was constant with the exception
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of the tip segment, which was allotted any leftover blade.

Fig. 21 shows a cross section of the blade, which was used

for area and moment of inertia calculation. For

calculations, the airfoil cross section was broken up into

three sections and approximated as follows: (1) the nose

section by a parabola; (2) the center section by a box; and

(3) the tail section by an isosceles triangle.

The cross sectional area of each section was

calculated using standard geometric formulas in Eqn. 13.

Parabola: A = i^ Box: A = bh Triangle: A = — bh * 13)

3 2

The area moments of inertia for the box and triangle were

Heavy Blade
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Figure 19 Heavy Blade
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Figure 20 Light Blade

calculated using known formulas, while integration was used

to determine the Ixx of the parabola. (Eqn. 14.)

Box: Ixx =—bh z Triangle: Ixx =^-bh l Parabola: Ixx=[y 2

12 12 J a
dA

(14)

The parabola was approximated by the equation x = 6.67y2
.

Using the calculated cross sectional area and the

segment width, the volume was calculated. The segment

volume was then used to determine the segment weight. The

assumption was made that the rotor blade was made of a

homogeneous material - spruce. The only variation in these

calculations was where the blade was tapered very near the
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Figure 21 Main Rotor Blade Cross Section

root. This section was no longer an airfoil section, but an

inch thick tapered block. The segment weight and Ixx of the

root section also included contributions from the blade grip

assembly. Table II shows the data for each blade.
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Table II BLADE STATION DATA

Heavy Blade Radius 4 5211

Weights IB lbs Chord = £ in

l/c = 12%

Section Radii Chord Xsec Ar Seg Wd Volume Seg Wt Ux Delta Cf

M M (in ^2) M On ~3) flbj urn) mibi

1 59 1 60 168 6 25 10 50 459 097 230 85

2 54 5 60 1 68 3 00 5 04 220 097 49 03

3 51 5 60 1 68 3 00 5 04 220 097 46 33

4 46 5 60 1 68 300 504 0220 097 43 63

5 45 5 60 1 68 3 00 5 04 220 0097 40 93

6 425 60 1 68 3 00 5 04 220 097 38 23

7 39 5 60 168 300 504 220 0097 35 53

8 36 5 60 1 68 300 504 220 097 32 84

9 33 5 60 1 68 300 504 220 097 3014

10 305 60 1 68 3 00 5 04 0220 097 27 44

11 275 60 1 68 300 504 0220 097 2474
12 24 5 60 1 66 3 00 5 04 0220 097 22 04

13 21 5 60 1 68 3 00 5 04 220 097 1934

14 185 60 1 68 3 00 5 04 220 097 1664

15 155 54 5 40 300 1620 708 0450 44 82

16 125 50 500 300 1500 656 0417 33 47

17 95 38 3 75 3 00 1 1 25 742 0808 28 77

Light Blade Radius = 5 ft

Weight = 4 66 lbs Chord = 6 5 in

t/c= 13%

on Radii Chord Xsec Ar Sea Wd Volume Sea wt Ixx DelUCt

M M err a m (iT?) IM (in
- ^ mibi

i 65 6 65 3 37 48 1618 353 478 151 24

2 62 65 3 37 24 809 177 478 3574

3 59 6 65 337 2 4 8 09 0177 478 34 35

4 57 2 65 3 37 24 809 177 0478 3297

5 54 8 65 3 37 24 809 0177 0478 31 59

6 524 65 3 37 2 4 8 09 177 0478 30 20

7 500 65 3 37 2 4 8 09 177 0478 28 82

8 47 6 65 3 37 24 809 177 0478 27 44

9 452 65 337 2 4 8 09 177 0478 26 05

10 42 8 65 3 37 2 4 8 09 177 0478 24 67

11 40 4 65 3 37 2 4 8 09 177 0478 23 29

12 380 65 3 37 2 4 8 09 177 478 21 90

13 35 § 65 3 37 2 4 8 09 177 0478 20 52

14 332 65 3 37 2 4 8 09 0177 0478 1914

15 308 65 3 37 24 809 0177 0478 17.75

16 28 4 65 3 37 2 4 6 09 177 0478 1637

17 26 65 337 24 809 0177 0478 1499

18 236 65 3 37 24 809 177 0478 1360

19 21 2 65 3 37 24 809 177 478 12 22

20 188 65 3 37 2 4 8 09 177 478 1084

21 164 65 3 37 24 809 177 0478 9 45

22 140 58 5 76 2 4 13 82 302 0480 1379

23 11 6 48 480 2 4 1 1 52 252 0400 952

24 92 42 420 24 1008 470 845 1411
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3 . Mykles tad Determinant Method

There are many methods for analyzing vibrations in a

rotor blade. Some of these are

• Rayleigh-Ritz

• Holzer

• Myklestad- Prohl

• Matrix iteration

The Myklestad method, which determines the natural

frequencies and modes of the blades, was the method of

choice. It is especially well suited for vibration analysis

of rotor and turbine blades. Dr. Nils Myklestad was a

consultant to Bell Helicopter Company for many years. The

proper analysis requires considering the coupled flapwise

-

edgewise- torsional response of the blades. Because the

edgewise and torsional stiffness is much greater than the

flapwise stiffness and thus has much high frequencies, only

the flapwise responses of the blades were considered.

The uncoupled flapwise Myklestad system is shown in

Fig. 22.

From this diagram the equations of equilibrium for this nth

element can be written.
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Centrifugal Force :

t
n = TN + 1

+™u Q ^ (15)

Shear

S
N
=S N+1 +m N

g)
2
yN

(16)

Moment

:

Mn = *wsM+1
i n

,
n+i-TN +i(yN +i-yN) (17)
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Slope :

e N
= s^cn-T^i: n

'
n>1 )-^

1

ln
' n * 1

-s„,
1

1 n>n *1 (18)
N n+i n+i 2EI ^ +1 EI N+1 2EI

Deflection:

_o i ,

Tn+1 9 n+1 ^ n.n+1 _
MN+1 1 n,n+1 _ S N+1 1 n,n+1 (19)

YN " YN + 1 WN-Ln.n.l ^pr ^RT TOT

The natural frequencies of the system are obtained

by assuming a frequency (Q) and then calculating the

centrifugal forces, shears, moments, slopes, and deflections

of each blade segment from the blade tip to the blade root.

The boundary conditions at the blade tip are

S
T

= Mr = 0; 6
T

=
T ; yT

= yT

At the root of the blade, the two unknowns 9
T
and yT

are

carried along and the equilibrium equations are written as

follows

:

S
o = hVl + B

S
9
T

M
o = Wl + B

M
9

T

e
o = AeYr + B

ee T

Ye = Vt + B
y
9
T

In the preceding equation, the coefficients A and B will be

calculated as the process proceeds down the blade. They are

functions of mass and stiffness properties of the blade, the

rotational speed, and the assumed frequency. The boundary

conditions at the root of the hinged blade are
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M = y =
*

or

A„y
T

+ B
M
9

T
=

\Yy + B
y
e

r
= °

These equations can be written in matrix form. The

frequencies that satisfy the equation (when the determinant

equals zero) are the natural frequencies and can readily be

determined.

A Fortran code, Appendix A, was written to solve the

Myklestad equations and determine the flapwise natural

frequencies of both Hummingbird rotor blades. Fig.

23,24,25, and 26 show a graphical output of the Myklestad

determinant for both blades.

The natural frequencies, where the line crosses the

x-axis, are clearly seen. Appendix B contains a numerical

output of the same data for the different natural

frequencies.

A means to verify the accuracy of the code's ability

to determine the natural frequencies was to check the ratio

of the determinant coefficients. A and A,,, are the

displacement and slope coefficients respectively for the

rotor blade root section in response to starting boundary

conditions at the blade tip of slope equal zero and

deflection equal one. B and B
m
are similar to A and A

m

except the starting boundary conditions are slope equals one

and displacement equals zero. Knowing that the determinant
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Myklestad Determinant
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Figure 23 Myklestad Determinant (Heavy Blade)

49



Myklestad Determinant
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Figure 24 Myklestad Determinant (Heavy Blade)
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Myklestad Determinant
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Figure 2 5 Myklestad Determinant (Light Blade)
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Myklestad Determinant
Hummingbird
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Figure 26 Myklestad Determinant (Light Blade)

equals zero at the natural frequency, the ratio of -A/B

should equal -Am/Bn)
. Using data in Appendix B for the heavy

blade's first natural frequency, the accuracy is seen.

1st Natural freq. = 107.1522 rad/s

Ay= 7.48560

\= 1.79121E+04

-Ay/By = 1.593837E-02 -\/*m
= 1.593830E-02

B
y
= -469.659

B= -1.12384E+06
m
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It is interesting to note that the natural

frequencies are much higher than those of conventional

helicopters. This is attributable to the fact that model

rotor blades are much shorter and made of solid spruce,

which makes them considerably stiffer than full scale

blades

.

4 . Blade Modes

The blade modes were used to verify that the

calculated frequencies were in actuality the ascending

natural frequencies. Appendix C contains a Fortran code

written by Lt . M. Avila that was modified for use on the

Hummingbird rotor blades to obtain the rigid and bending

flapwise mode shapes. Fig. 27 shows the mode shapes for the

heavy blade while Fig. 2 8 shows the mode shapes for the

light blade.

53



Rotor Blade Analysis
Hummingbird
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1st Flapwise *4 2nd Flapwise 5" 3rd Flapwise

Heavy Blade

Figure 27 Heavy Blade Mode Shape

5. Southwell Plot

The Southwell plot, also called a Fan plot, is a

resonance diagram of the individual blade. It is used to

depict the flapwise modes in relation to the integer

multiples of the rotor rpm, commonly referred to as IP, 2P,

3P etc. For a good design, effort should be directed toward

keeping the blade natural frequencies away from the 1P,2P,

etc. forcing frequencies, since these are the primary
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Rotor Blade Analysis
Hummingbird
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Figure 2 8 Light Blade Mode Shape

excitations. The Fortran code used for the Myklestad

determinant was run for rotor speeds ranging from to 90

rad/s. The results of these runs are shown in Table III.

The area of concern is within plus or minus 6 rpm of the

operating rpm. Fig. 29 and 30 show the Southwell plot for

the heavy blade and light blade respectively.

The rigid mode always lies very near the IP line.

The flapwise bending modes for both blades are much higher

than that for full scale blades. Again, this is attributed
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Table III BLADE FLAPWISE RESPONSE

Blade
Heavy Blade Light

rad/s rpm Rigid 1st
Bend

2nd
Bend

Rigid 1st
Bend

(cpm) (cpm) (cpm) (cpm) (cpm)

1.29 1758.9 5757.3 1.19 2876.2

10 95.5 129.9 1791.5 5784.0 119.7 2893.8

20 190 262.6 1887.3 5863.3 240.6 2945.7

30 286.5 390.6 2036.3 5992.7 360.7 3030.0

40 382 517.6 227.9 6169.8 480.9 3144.2

50 477.5 643.6 2452.3 6389.4 601.1 3285.4

60 57.3 774.4 2700.1 6647.3 721.9 3449.2

70 668.5 902.4 2967.4 6939.5 840.9 3634.5

79.42 759 1023.7 3229.2 7241.9 953.7 3824.5

90 859.4 1159.3 3535.2 7608.9 1080 4053.7

to the greatly increased stiffness. The second and third

modes for the light blade were higher than those for the

heavy blade. This is accounted for by the fact that

although the light blade is larger, the lower mass more than

offsets the length by increasing the natural frequency. The

heavy blade Southwell plot show that there will be no

vibratory resonance problems with any of the modes. The

first flapwise bending mode of the light blade lies very

near the 5P line at the operating frequency. The 5P lies at

62.56 Hz while the second natural frequency lies at 63.74

Hz. The close proximity of the two frequencies should not
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be a problem for the Hummingbird, as the critical

frequencies occur at the 2P, 3P, and 4P for a three blade

rotor system. For a full-scale equivalent 3-bladed

helicopter, this near 5P resonance might need to be

monitored due to possible high amplification of 5P flapwise

blade stresses. In the case of the Hummingbird, the

relatively short blades are sufficiently overdesigned to

avoid this problem.

Discussion of blade resonance results for the RPH blades

would not be complete without comparing these values with

values obtained for full-scale helicopters. Here for the

light and heavy blades, we find the first rigid mode at

1.26C2 and 1.35Q respectively. For a uniform articulated

blade this would be considerably closer to IP at 1.02Q.- The

first flapwise bending mode for an articulated fullscale

blade would be in the vicinity of 2.5Q, whereas analysis

shows in this case that we have much higher frequencies of

5.03Q and 4.25tt for the light and heavy blades respectively.

Similarly, the second flapwise bending mode for a full-scale

articulated blade is about 4

.

1Q to 4.9Q, whereas for the

heavy blade, the second flapwise mode occurred much higher,

at 9.54Q. This is even higher than where we would normally

expect the frequency of the third flapwise mode to occur for

a full-scale rotor. Normally the third mode resonance

occurs in the vicinity of 8P.
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Southwell Plot
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Figure 29 Southwell Plot (Heavy Blade)
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Southwell Plot
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Figure 30 Southwell Plot (Light Blade)
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VII. PERFORMANCE ANALYSIS

A. POWER CALCULATIONS

1. Power Required

Using the parameters established in the blade design

section and the procedures outlined in Ref. 9, power

estimations were calculated. There exist two regimes of

operation that establish the power required limits. The

first is hover out of ground effect; the second is high

speed flight. Since the Hummingbird would not operate in

the high speed flight regime, the HOGE was established at

the limiting flight condition. Two hover conditions were

evaluated: sea level standard day and 4000 ft MSL 95 degrees

F. As alluded to earlier, there are three basic power

calculations that must be accomplished. They are induced

power (Pj), the power required to produce lift; profile

power (P ) , the power require to push the blades through the

air; and parasite power (P ) , the power required to move the

rest of the fuselage through the air. The following

formulas were used to calculate these quantities.

P, - ^ HP, B - 1-
(2<

7>
'

<20)

s/JfiA B 550
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cd poAV,- 3

o 4400

pp
_ \>W

RRfl

HP (2D

HP
(22)

T = Thrust B = Tip Loss Factor b = Number of blades

A = Rotor Disk Area V
f

= Forward Velocity

f
e

= Equivalent flat plate area

Using the above formulas, the total power required to hover

out of ground effect was calculated. Induced power was 4.95

HP, while profile power was 4.4 HP. The parasite power is

equal to zero in the hover case. To calculate the power for

the 4000 ft 95 degree F case requires a density correction.

The power required to hover in ground effect (HIGE) was also

calculated. The induced power ratio equation, based on the

a ratio of the rotor height above the ground over the rotor

diameter, is used for this calculation, and is shown below:

P. ( IGE) h 4 h 3 h 2 h
= -0.1276( — ) +0.7080(-) -1.4569( — ) +1 . 3432 ( — ) +0 . 51

P^OGE) D D D D

(23)

The rotor height above the ground (h) equals 2.5 feet.

Using the light blades for these calculations, the ratio of

h/D equals 0.22. It can be shown that the induced power

required to hover IGE is 3.7 HP. These calculations are

solely for the main rotor system. The power required for

the tailrotor will be included in later calculations. The
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final flight regime that must be considered is forward

flight. The profile power in forward flight is shown by

Eqn. 24.

PoFlight = Po*ov*r(l +4.3H
2

) (24)

This equation does not include high speed effects such as

compressibility or retreating blade stall, but as stated

previously, these will not be factors for the Hummingbird.

Power required calculations for velocities ranging from

hover to 100 knots are shown in Fig. 31.

Power Required
Hummingbird

10 20 30 40 50 60 70 80 90 100

Velocity (knots)

Power Required

"fi" Parasita

* prodia

induced

-f- Total

Figure 31 Power Required Profile
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Tailrotor power is included in these calculations, assuming

that it is nine percent of main rotor in the hover

condition, decreasing to three percent at mid- range

velocities. Appendix D contains the spreadsheet calculation

for all power required calculations.

2. Power Available

The power available curve, Fig. 32, was constructed

from data obtained from Ref. 10 and 11. An assumption of

near linearity over the entire RPM range was made.

Power Available
Hummingbird
WAE Limited 342

35.0

0.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

RPM (Thousands)

7.0 8.0

Figure 32 Power Available vs RPM
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Fig. 32 will be used again when determining the derated

power that will be use in conjunction with resizing of the

main rotor drive gear for obtaining desired rotor RPM.

B. RETREATING BLADE STALL

A phenomena that is particular to helicopters is

retreating blade stall. It occurs at high forward speeds

when the retreating blade is unable to produce the lift

required to maintain equilibrium with the advancing blade.

This phenomena is due to the great difference in local

velocity over the airfoil. The advancing blade encounters

the velocity of V
tl

- plus the forward velocity. The

retreating blade encounters V
tl

- minus forward velocity. At

high forward speeds, the velocity over the retreating blade

becomes very small, requiring a very large angle of attack

to produce the needed lift for equilibrium. Also, the flow

over the inboard part of the retreating blade is reversed,

flowing from trailing edge to leading edge. As speed of the

helicopter increases this reversed flow region moves out

radially along the blade. Typically at cruise speed as much

as 3 percent of the blade is experiencing reversed flow.

The total angle of flow can be determined through either

of two equations. The first equation is based on the

average lift coefficient, which is lift curve slope (a)

times the angle of attack, which will be expressed in terms

of blade loading (C
T
/<7) . The second equation is based on
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the flapping angle of the blade. Both of these equations

are functions of collective pitch angle,
O

, longitudinal

cyclic pitch angle,
2 , geometric angle of twist,

T
, and

inflow ratio, k. For each of these two equations, the four

parameters are multiplied by coefficients which are

functions of the tip loss factor (B) , and the advance ratio

(/i) . The relationship for the first equation is given by

Eqn. 25 with the accompanying coefficients given in Eqn. 26,

27, 28 and 29.

1§£ = Xr1+e r2+e Tr3+e 2
:r
4 (25)

T
x

= 0.5 (B 2
+0.5n

2
) (26)

T
2

= 0.33 (B 2 +0.5\i 2B) (27)

T
3

= 0.25(B 2 (B 2 + [X
2

) )
(28)

T
4

= 0.5|i (B 2 +0 .25\x 2
) (29)

The second relationship is for the longitudinal flapping

coefficient, a
1

, which is assumed to be zero or very close

to it. The second set of relationships are given in Eqn.

30, 31, 32, 33, and 34.

a, - = A.A11+e o
A12+6^13+ 2

A14 (30)
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4 (M!-2)
, _ 2 8

;

(31)
Jn

B 2 (B 2 -0.5|i 2
)

= 8JLB
12

3(B 2 -0.5\x 2
)

i
= 2 *B

13
B 2 -0.5^ 2

B 2 +1.5\i 2

(33)

A14 =
2

r
2

(34)
B 2 -0.5|i 2

Solving the two equations simultaneously in terms of the

eight coefficients, the collective pitch angle and the

longitudinal cyclic pitch angle can be determined. The

resulting equations are as follows:

_ Ml3 +Ml4 +^lle =
-*"" 2 (35)

A12

2 C
A12

—— +A (A11 7
,

2
-A12

7'
1 ) +8T (A13 7

,

2
-A12 7

,

3) ^g)
^2 =

Using these equations, approximations for the angle of

attack of the advancing and retreating blades can be

calculated. The equations for the angle of attack are given

by Eqn. 37.
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<*270 = 8 O
-

2
+e T+

1+H
a 90

= 6 o
+e

2
+0 r+

1+n
(37)

Appendix E contains the spreadsheet that was used to

calculate the angle of attack for three different blade

twist conditions, 0, -4, and -8 degrees of twist. The minus

sign indicates that the twist angle decreases from the tip

of the blade to the root. Fig. 33, 34, and 35 show the

results of these calculations.
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Figure 33 Retreating Blade Stall, Twist
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According to Ref.8 the blade reaches its operational limit

when the angle of attack of the tip of the retreating blade

exceeds the stall angle of attack (AOA) of the airfoil

section by four degrees [Ref. 8:p. 258]. For the NACA 0012,

this AOA would be 16 degrees. There are three areas of

interest on these figures: airspeeds which require less than

12 degrees AOA where no stall will be encountered, airspeeds

which require between 12 degrees and 16 degrees AOA where a

moderate amount of stall is present, and airspeeds which

require 16 degrees or greater AOA where the severity of the

stall prohibits flight. Two lines are annotated on the

above graphs to show the velocity for this stall area. The

limiting velocities for the three conditions are 64 & 74, 66

& 76, and 68 & 77 knots respectively. The result agrees

with theory, because the increase in twist should increase

the stall envelope, which the figures demonstrate.
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VIII. MODIFICATIONS

A. LANDING GEAR

The rear landing gear of the Hummingbird has a narrow

tread width which is considered to be too narrow in view of

takeoff and landing stability. It also has no shock

absorption capability, which is critical for avoiding ground

resonance. A study was conducted to determine the most

advantageous route to take to overcome this challenge. The

options were to leave it as it is, replace it with a skid

configuration, or a strut configuration. The landing gear

was redesigned with a strut configuration to overcome both

of these problems. The tread width was widened from 17

inches to 27 inches and an oleo was incorporated. The

spring constant of the oleo was chosen so that the

Hummingbird could survive a fall from ten feet. Ten feet is

approximately one rotor diameter, the height to hover out of

ground effect.

B. DRIVE TRAIN MODIFICATIONS

1. Engine to Main Rotor Gear Ratio

Because of the requirement for the main rotor blades

to obtain a prescribed Reynolds number range, the rotor rpm

had to be increased to achieve the tip velocity required.

Before the gearing ratio was chosen, the decision to derate
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the engine had to be made. It was shown earlier that for

the Hummingbird's range of operation, there would always be

excess power available. Based on this fact and the desire

to extend the life of the engine, it is recommended that the

engine be rated to operate at 18 HP vice 25 HP. Fig. 32

shows that for this horsepower an engine rpm of 5000 is

required. The present gear ratio is 10:1 and would have to

be lowered to 6.6:1 to achieve a rotor rpm of 759.

2. Freewheeling Unit

The Hummingbird, as stated earlier, has no ability

to autorotate. Because of this operating limitation, the

Hummingbird is at great risk of loss to an inflight engine

failure. It was decided that the most effective way to

solve this safety hazard was to incorporate a one-way

bearing in the gear that would be changed for the gear ratio

change. After examination of the drive train, the last gear

in the drive train was selected as the most effective point

to make the modification. This point was selected for two

reasons. First, because it was the last gear in the drive

train, the rotor would have the least mechanical resistance

during an autorotation. This point is critical because

every rpm gives that much more cushion in the touch down

phase of an autorotation, thus increasing the chances of a

successful autorotation. Second, this gear has easy

accessibility and would simplify the modification process.
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IX. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The goal of this research effort was to design a

remotely piloted helicopter (RPH) with the capabilities to

meet the expanding needs of the Department of Aeronautics

and Astronautics helicopter flight test program. These

needs have grown rapidly over the past two years. J. G.

Scott stated in his thesis that the "requirements were: (1)

a four-bladed rotor head; (2) payload capacity of

approximately 15 pounds; and (3) a total system cost of no

greater than $10,000." [Ref. 12] Numerous research

requirements have arisen since that time, which have

expanded the envelope of RPH requirements. Lt . M. Borno's

quarter scale NOTAR research requires a platform of greater

size and power than is available with any of the

department's current assets. Continuing HHC research

requires an RPH that will produce blade Reynolds numbers in

the range of 1.5 to 1.8 million in order to validate HHC

performance enhancements. Based on these two research

requirements and the hindsight of how quickly these

requirements change, it was imperative to develop an RPH

that could meet the existing needs and would be flexible

enough to meet future needs

.
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Upon completion of the initial design phase it was

determined that two paths were available: (1) complete the

detailed design in house; or (2) search the open market to

find an RPH capable of meeting the existing requirements.

The second path was chosen and resulted in procurement of

the Hummingbird. The Hummingbird possesses the capabilities

to meet existing and future requirements with some

modifications. The NOTAR requirements are fulfilled in the

Hummingbird's present state, but the HHC requirement

dictates some modification. These modifications include a

new three blade main rotor hub to be used with the existing

rotor blades and a change in the engine to main rotor

gearing ratio. Two other modifications that would be of

great value from a safety standpoint are incorporating a

freewheeling unit in the engine drive system and replacing

the existing landing gear.

The performance analysis shows that with the main rotor

hub change, the Hummingbird will be able to achieve a

Reynolds number within the range required for aerodynamic

performance comparison with the 0H-6A. This change will

reduce the Figure of Merit, but due to low disk loading,

will have little effect on the Hummingbirds power loading.

The analysis of the Hummingbird also shows that it will

have an excess power of nearly 10 HP for HOGE and therefore

can be operated at a derated power. This would reduce wear

on the engine and thus enhance its life. The decision to
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derate the engine should be made prior to changing the

engine to main rotor gearing, as it will effect the

operating rpm of the engine.

The design improvements; modified landing gear and a

freewheeling unit, will provide the capability to safely and

successfully recover the Hummingbird from nearly any

malfunction over a large flight regime.

The overall analysis of the Hummingbird is that it is an

ideal platform for subsequent research. It has the

capabilities to meet the existing needs and the flexibility

to meet any foreseeable future needs.

B. RECOMMENDATIONS

There is almost unlimited potential for the

Hummingbird's use in further RPH research. Two items that

need to be undertaken as soon a possible are the design and

manufacture of a three blade hub and incorporating a

freewheeling unit in the engine drive train. The first is

necessary before any HHC work can be undertaken on the

Hummingbird. Measurement could then be started on the

control system freeplay and torsional constants. The ground

work is laid out in Ref. 12 and 13. The second item is

primarily for safety reasons and to help protect the

investment of the department.

The design of a new main rotor hub could be a thesis in

itself. A great source of expertise that could be of help
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is Mr. Art Phelps of the Aerostructures Directorate at NASA

Langley. His directorate owns an RPH identical to the

Hummingbird, and it would be of value to develop the bonds

of cooperation that have been established with them.

Two other areas where valuable research could be done is

in the design of an improved main rotor blade and the

incorporation of a new landing gear design. An improved

main rotor blade should be designed to optimize airfoil

cross section and blade twist. The manufacture of new

landing gear should be a moderately easy job which would

greatly enhance the survivability of the Hummingbird.

The final recommendation is made in light of all the

current and possible future research that would hinge on

the Hummingbird. It is highly recommended that a second

Hummingbird be purchased. The reason for this is that

concurrent research on the Hummingbird will inevitably

require alteration that would adversely affect one or both

of the areas of research. A case in point is the hub

redesign and how it will affect the NOTAR research. The

NOTAR research demands that the rotor operating parameters

be constant. This demand would not be feasible in the

tradeoffs that occur in the design process. Therefore,

having a second helicopter would allow for numerous research

projects to be accomplished concurrently without adversely

affecting one another.
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APPENDIX A: MYKLESTAD FORTRAN CODE

C THIS PROGRAM CALCULATES MYKLESTAD DETERMINANT FOR
C DETERMINING THE NATURAL FREQUENCY OF A ROTOR BLADE
C
C THIS PROGRAM IS FOR AN ARTICULATED HUB ONLY
C
C THE PROGRAM IS SET UP TO TAKE A BLADE OF 17 SEGMENTS

IMPLICIT DOUBLE PRECISION (A-H, L, M, O-Z)
DOUBLE PRECISION T ( 1 : 1 7 ) , SHEAR ( 1 : 17) , MOM( 1 : 17) , SLOPE ( 1 : 17 )

,

%Y (1:17), R(1:17),WT (1:17) , DELTA1 , XI ( 1 : 17) , NR, NRSQ, F, WSQ,
%L(1: 17) , W,S1,S2,S3, Yl , Y2 , Y3 , Y4 , MOM1 , MOM2 , BS , BM, DELTA2

,

%BSLOPE,BY,AS,AM,ASLOPE,AY,XPLOT(l:17) , YPLOT(l: 17)

C*************************************************************
C VARIABLE DEFINITION
C
C T - CENTRIFUGAL FORCE
C SHEAR - SHEAR
C MOM - MOMENT
C SLOPE - SLOPE
C Y - DEFLECTION
C* ****** ***************** *************************** **********

c
C THIS OPENS THE DATA FILE FOR OUTPUT "WOODPTS.DAT"
C

OPEN ( UNIT=3 5 , FILE= ' WOODPTS . DAT' , STATUS= ' UNKNOWN '

)

C

r **************************************************************
c
C THESE ARE THE INITIAL PARAMETERS TAKEN FROM THE BLADE DATA
C THEY ARE FROM THE BLADE TIP TO THE BLADE ROOR
C
C SEGMENT SPACING (IN)

DATA L/6. 25, 16*3.0/
C SEGMENT RADIUS (IN)

DATA R/ 59. 1,54. 5, 51. 5, 48. 5,45. 5, 42. 5, 39. 5, 36. 5, 33. 8, 30. 5,
%27. 5, 24. 5, 21. 5, 18. 5, 15. 5, 12. 5, 9. 5/

C SEGMENT WEIGHT (LBS)
DATA WT/.459, 13*. 22,. 708,. 656,. 742/

C SEGMENT FLAPWISE MOMENT OF INERTIA, Ixx (INM)
DATA XI/14*.097, .45, .417, .808/

L ***************************************************************
C ALLOWS FOR DIFFERENT HR INPUTS WITHOUT RECOMPILING
C

PRINT *, 'INPUT ROTOR RPM OMEGA'
READ *, NR
NRSQ=NR*NR
E= 1305000 ! MODULUS OF ELASTICITY OF SPRUCE WOOD

C******* ********************************************* ************
C THIS LOOP FOR F MAY NEED TO BE MODIFIED FOR THE LOWER FREQUENCY
C RUNS AS YOU DO NOT OBTAIN ENOUGH DATA
C

DO 4 00 F=.l,3 0, .

1

W=(NR*F)
WSQ=W*W
1 = 1.0
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C *»***************************************'***********************

c
C INITIAL CONDITIONS
C

SLOPE(l)=l
Y(1)=0

020 SHEAR(1)=0
MOM(1)=0

C
C ******************************************************************
C
C MYKLESTAD METHOD

T(1)=WT(1) *NRSQ*R(1) / (32. 174*12)
DO 30 J=2, 17
T(J)=T(J-1) +( (WT(J) *NRSQ*R(J) )/(32. 174*12))
Sl=SLOPE(J-l) *(1+((T(J-1)*L(J)*L(J))/(2*E*XI(J))))
S2=MOM(J-l) *L(J) / (E*XI(J))
S3=SHEAR(J-1) *L(J) *L(J)/ (2*E*XI(J)

)

SLOPE(J)=Sl-S2-S3
Yl=SLOPE(J) *L(J)
Y2=T(J-1) *SLOPE(J-l) *(L(J)**3)/(3*E*XI(J)

)

Y3=MOM(J-l) *(L(J)**2)/(2*E*XI(J))
Y4=SHEAR(J-1) *(L(J)**3)/(3*E*XI(J))
Y(J)=Y(J-1)-Y1+Y2-Y3-Y4
SHEAR(J)=SHEAR(J-l)+( (WT(J) *WSQ*Y ( J) ) / ( 32 . 174*12)

)

M0M1=SHEAR(J-1) *L(J)
MOM2=T(J-l)*(Y(J-l)-Y(J))
MOM(J)=MOM(J-l) +MOM1-MOM2

030 CONTINUE
IF(I.EQ.2) GOTO 200
BS=SHEAR(17)
BM=MOM(17)
BSLOPE=SLOPE(17)
BY=Y(17)
1=2

C
C *****************************************************************
C NEW INITIAL CONDITIONS FOR SECOND COEFFICIENTS

SLOPE(1)=0
Y(l)=l

C
c* *** ****************************************** *******************

GOTO 02
200 AS = SiiEAR(17)

AM-MOM(17)
ASLOPE=SLOPE(17)
AY=Y(17)

C
C DELTA1 VARIABLE IS FOR THE ARTICULATED ROTOR
C DELTA2 IS FOR THE HINGELESS ROTOR
C
C WHERE DELTA GOES TO ZERO IS THE NATURAL FREQUENCY
C

DELTA1= (AM*BY) - (BM*AY)
DELTA2=(ASLOPE*BY) -(BSLOPE*AY)

C
50 FORMAT (IX, 1PE13.6, IX, 1PE12.5.1X, 1PE12.5,1X, 1PE12.5,1X,1PE12.5,

%1X, 1PE12.5)
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51 FORMAT (1X,F10.3,2X,F10.3)
WRITE(*,50) W,DELTA1,AM,AY,BM,BY
WRITE(35,50) W, DELTA1 , AM, AY , BM, BY

400 CONTINUE
C

STOP
END
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APPENDIX B: MYKLESTAD NATURAL FREQUENCIES

First Natural Frequency

Operating rpm 759 (79.4118 rad/s)

Frequency
(rad/s)

Delta

Am

Coefficients

Ay Bm By

1 071522E+02 6 82392E--01 1 79121E+04 7 48559E+00 -3L.12384E+06 -4 69659E+02
1 071522Ef02 5 74431E- 01 1 79121E+04 7 48560E+00 -3L. 12384E+06 -4 69659Ef02
1 071522E+02 4 66470E- 01 1 79121E+04 7 48560E+00 -]L.12384E+06 -4 69659E+02
1 071522E+02 3 58510E- 01 1 79121E+04 7 48560E+00 -3L.12384E+06 -4 69659E+02
1 071522E+02 2 50549E--01 1 79121E+04 7 48560E+00 -3L.12384E+06 -4 69659E+02
1 071522E+02 1 42588E- 01 1 79121E+04 7 48560E+00 -3L. 12384E + 06 -4 69659E+02
1 071522E+02 3 46273E--02 1 79121E+04 7 48560E+00 -3L.12384E+06 -4 69659E+02
1 071522E+02 -7 33335E--02 1 79122E+04 7 48560E+00 -3L.12384E+06 -4 69659E+02
1 071522Ef02 -1 81294E--01 1 79122E+04 7 48560E+00 -3L. 12384E+06 -4 69659E+02
1 071522E+02 -2 89255E- 01 1 79122E+04 7 48560E+00 -3L.12384E+06 -4 69659E+02
1 071522E+02 -3 97216E- 01 1 79122E+04 7 48560E+00 -3L.12384E+06 -4 69659E+02
1 071522Ef02 -5 05177E--01 1 79122E+04 7 48561E+00 -1L.12384E+06 -4 69659E+02

Frequency at which Delta

107.1522 0.0

(1022 rpm)

1.79121E+04 7.48560 -1.12384E+06 -4.69659E+02
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2nd Natural Frequency

Operating rpra 759 (79.4118 rad/s)

Frequency
(rad/s)

Delta

Am

Coefficients

Ay Bra By

3 381635E+02 -2 15818E+01 3 50008E+05 8 05647E+01 -5 16530E+06 -]L. 18895E+03
3 381635E+02 -1 90265E+01 3 50008E+05 8 05647EK31 -5 16530E+06 -:L.18895E+03
3 381636E+02 -1 64711E+01 3 50008E+05 8 05647E+01 -5 16530E+06 -]L.18895E+03
3 381637E+02 -1 39158E+01 3 50009E+05 8 05648E+01 -5 16531E+06 -:L. 18895E + 03
3 381638Ef02 -1 13605E+01 3 50009E+05 8 05648E+01 -5 16531EK36 -]L.18895E+03
3 381639E+02 -8 80514E+00 3 50009E+05 8 05649E+01 -5 16531E+06 -]L. 18895E+03
3 381639E+02 -6 24980E+00 3 50010E+05 8 05649E+01 -5 16532E+06 -]L.18895E+03
3 381640E+02 -3 69446E+00 3 50010E+05 8 05650E+01 -5 16532E+06 -3L.18895E+03
3 381641E+02 -1 13912E+00 3 50010E+05 8 05650E+01 -5 16532Ef06 -]L.18895E+03
3 381642Ef02 1 41623E+00 3 50010E+05 8 05651E+01 -5 16532E+06 -]L. 18895E+03
3 381643E+02 3 97157E+00 3 50011E+05 8 05651E+01 -5 16533E+06 -3L.18895E+03
3 381643E+02 6 52692E+00 3 50011E+05 8 05652E+01 -5 16533E+06 -]L.18895E+03
3 381644E+02 9 08227E+00 3 50011E+05 8 05652E+01 -5 16533E+06 -]L.18895E+03
3 381645E+02 1 16376E+01 3 50011E+05 8 05652E+01 -5. 16534E+06 -]L.18895Ef03
3 381646E+02 1 41930E+01 3 50012E+05 8 05653E+01 -5. 16534E+06 -]L.18895E+03
3 381647E+02 1 67483E+01 3 50012E+05 8 05653E+01 -5. 16534E+06 -]L.18895E+03
3 381647E+02 1 93037EK31 3 50012E+05 8 05654E+01 -5. 16534E+06 -1L.18895E+03
3 381648E+02 2 18591E+01 3 50012E+05 8 05654E+01 -5. 16535E+06 -]L.18895E+03
3 3B1649E+02 2 44144E+01 3 50013E+05 8 05655E+01 -5. 16535E+06 -1L.18895E+03

Frequency at whci Delta =

338.1641 0.0 3.50010E+05

(3229 rpm)

8.05650E+01 -5.16532E+06 -1.18895E+03
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3rd Natural Frequency

Operating rpm 759 (79.4118 rad/s)

Frequency Delta Coefficients
(rad/s)

Am Ay Bm By

7 .583725E+02 2 ,20479Ef01 8,.24037E+06 8 . 12285E+02 -7 04041E+07 -6. 94000Ef03
7 .583725E+02 2 00033Ef01 8 24038E+06 8. 12285E+02 -7 04041E+07 -6 94000E+03
7 .583725E+02 1 79588E+01 8 24038E+06 8 . 12286E+02 -7.•04041E+07 -6. 94000E+03
7 .583725E+02 1 .59143E+01 8 24038E+06 8. , 12286E + 02 -7 04041E+07 -6, 94000E+03
7 .583725E+02 1 ,38698Ef01 8..24038E+06 8. 12286E+02 -7

. 04041E + 07 -6, 94000E+03
7 .583725E+02 1 . 18253E + 01 8 .24038E+06 8 .

. 12286E + 02 -7,.0404*lE+07 -6 94000E+03
7 .583725E+02 9 ,78079EfOO 8 24038E+06 8, 12286E+02 -7 04041E+07 -6 94000E+03
7 .583725E+02 7 ,73628Ef00 8 .24038E+06 8, 12286E+02 -7 04041E+O7 -6,.94000Et03
7 583725E+02 5 ,69177E^0 8. 24038E+06 8. . 12286E+02 -7 04041E+07 -6 94000E+03
7 .583725E+02 3 .64725E+00 8. 24038E+06 8, . 12286E + 02 -7, 04041E+07 -6.,94000Ef03
7 ,583725Et02 1 .60272E+00 8 . 24038E+06 8. ,

12286Et-02 -7, 04041E+07 -6. 94000Ef03
7 .583725E+02 -4 41768E-01 8 24038E+06 8. , 12286E + 02 -7 .04041E+07 -6 94000E+03
7 .583726E+02 -2 ,48627Ef00 8 24038E+06 8, 12286E+02 -7 .04041E+07 -6 .94000E+03
7 583726E+02 -4 53081Ef00 8,,24038Ef06 8. 12286E+02 -7 .O4041E+O7 -6. 94000E+03
7 •583726E+02 -6. 57532E+00 8. 24038E+06 8, 12286E+02 -7 04041E+07 -6. 94000E+03
7 .583726E+02 -8. 61982E+00 8. 24038E+06 8. 12286E+02 -7

• 04041E+-07 -6. 94000E+03
7, 583726E+02 -1.,06643E*01 8. 24038E+06 8. 12286E+02 -7. 04041E+07 -6, 94000E+03
7.583726E+02 -1.27089E+01 8.24038E+06 8.12286E+02 -7.04041E+07 -6.94000E+03

Frequency at which Delta =

758.3725 0.0 8.24038E+06 8.12286E+02 -7.04041E+07 -6.94000E+03

(7242 rpm)

82



4th Natural Frequency

Operating rpra 759 (79.4118 rad/s)

Frequency
(rad/s)

Delta

Am

Coefficients

Ay Bm By

1.448090E+03 -4 .21455E+04 2 .77806E+08 L. 18496E+04 -1 75250E+09 -7 47518E+04
1.448091E+03 -3 .88022E+04 2 .77807E+08 !L. 18497E+04 -1 75251E+09 -7 47520E+04
1.448092E+03 -3 .54589E+04 2 77808E+08 1L.18497E+04 -1 75251E+09 -7 47521E+04
1.448092E+03 -3 .21156E+04 2 .77809E+08 ]L.18497E4-04 -1 75252E+09 -7 47523E+04
1.448093E+03 -2 87722E+04 2 77810E+08 3 L . 18498E + 04 -1 75253E+09 -7 47525E+04
1.448094E+03 -2 .54288E+04 2 77811E+08 :L.18498E+04 -1 75253E+09 -7 47527E+04
1.448095E+03 -2 20854E+04 2 77812E+08 ]L.18498E+04 -1 75254E+09 -7 47529E+04
1.448096E+03 -1 87420E+04 2 77813E+08 ]L. 18499E+04 -1 75254E+09 -7 47531E+04
1.448096E+03 -1 53985E+04 2 77814E+08 3L.18499E+04 -1 75255E+09 -7 47532E+04
1.448097E+03 -1 20551E+04 2 77815E+08 3L.18499E+04 -1 75255E+09 -7 47534EK)4
1.448098E+03 -8 71160E+03 2 77816E+08 ]L.18499E+04 -1 75256E+09 -7 47536E+04
1.448099E+03 -5 36809E+03 2 77817E+08 ]L.1850OE+O4 -1 75257E+09 -7 47538E+04
1.448100E+03 -2 02456E+03 2 77818E+08 ]L. 18500E+04 -1 75257E+09 -7 47540E+04
1.448100E+03 1 31898E+03 2 77819E+08 3L. 18500E+04 -1 75258E+09 -7 47542E+04
1.448101E+03 4 66255E*03 2 77820E+08 ]L.18501E+04 -1 75258E+09 -7 47544E+04
1.448102E+03 8 00613E+03 2 77821E+08 3L.18501E+04 -1 75259E+09 -7 47545E+04
1.448103E+03 1 13497E+04 2 77822EK)8 3L.18501E+04 -1 75259E+09 -7 47547E+04
1.448104E+03 1 46934E+04 2 77822E+08 3L. 18502E+04 -1 75260E+09 -7 47549E+04

Frequency at which Delta =

1448.100

(13828 rpm)

0.0 2.77819E+08 1.18500E+04 -1.75258E+09 -7.47541E+04
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First Natural Frequency (Light Blade)

Operating rpm 759 (79.4118 rad/s)

Frequency Delta Coefficients
(rad/s)

Am Ay Bm By

9.987550E+01 3.75536E-01 6.90470EK)3 2.51694E+00 -4.13426E+05 -1.50704E+02
51694E+00 -4.13426E+05 -1.50704E+02
51694E+00 -4.13426E+05 -1.5O7O4E+02
51694E+00 -4.13426E+05 -1.50704E+02
51694E+00 -4.13426E+05 -1.50704E+02
51694E+00 -4.13426E+05 -1.50704E+02
51694E+00 -4.13426E+05 -1.50704E+02
51694E+00 -4.13426E+05 -1.50704E+02
51694Et00 -4.13426E+05 -1.50704Et02
51695E+00 -4.13426E+05 -1.50704E+02
51695E+00 -4.13426E+05 -1.50704E+02
51695E+00 -4.13426E+05 -1.50704E+02
51695E+00 -4.13426Ef05 -1.50704E+02

Frequency at which Delta =

99.87557 0.0 6.90471E+03 2.51695 -4.13426E+05 -1.50504E+02

(954 rpm)

9 .987551E+01 3 .32246E--01 6 .90470E+03 2

9 .987552E+01 2 .88956E--01 6 .90470E+03 2

9. 987553E+01 2 .45666E--01 6 .90470E+03 2

9. 987553E+01 2 .02376E--01 6 .90470E+03 2

9 .987554E+01 1 .59087E--01 6, 90471E+03 2

9 987555E+01 1 .15797E--01 6. 90471E+03 2

9 .987556E+01 7 25066E--02 6, 90471E+03 2

9 987557E+01 2 .92166E--02 6, 90471E+03 2

9 987557E+01 -1 .40733E--02 6. 90471E+03 2

9 987558E+01 -5, 73633E--02 6, 90471E+03 2

9 ,987559Ef01 -1.
, 00653E--01 6. 90471E+03 2

9. 987560E+01 -1 43943E- 01 6. 90471E+03 2
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2nd Natural Frequency (Light Blade)

Operating rpra 759 (79.4118 rad/s)

Frequency Delta Coefficients
(rad/s)

Am Ay Bm By

4.004961E+02 -1.03982Ef00 1.91468Ef05 3.05355E+01 -2.91981E+06 -4.65656E+02
4.004961Et02 -8.98344E-01 1.91468E+05 3.05355E+01 -2.91981E*06 -4.65656Ef02
4.004961E+02 -7.56864E-01 1.91468E+05 3.05355E+01 -2.91981Ef06 -4.65656E+02
4.004961E+02 -6.15385E-01 1.91468E+05 3.05355Et01 -2.91981E+06 -4.65656E+02
4.004961E+02 -4.73906E-01 1.91468E+05 3.05355E+01 -2.91981E+06 -4.65656E+02
4.C04962E+02 -3.32426E-01 1.91468E+05 3.05355E+01 -2.91981E+06 -4.65656E^2
4.004962E+02 -1.90947E-01 1.91468E+05 3.05355E+01 -2 . 91981E<-06 -4.65656E+02
4.004962E+02 -4.94674E-02 1.91468E+05 3.05355E+01 -2.91981E+06 -4.65656E+02
4.004962E+02 9.20121E-02 1.91468E+05 3.05356E+01 -2.91981E+06 -4.65656E+02
4.004962E+02 2.33492E-01 1.91468E+05 3.05356E+01 -2.91981E+06 -4.65656Ef02
4.004962E+02 3.74971E-01 1.91468Ef05 3.05356E+01 -2.91981E+06 -4.65656E+02
4.004962Et^02 5.16451E-01 1.91468Ef05 3.05356E + 01 -2.91981E+06 -4.65656E+02
4.004962E+02 6.57930E-01 1.91468E+05 3.05356E+01 -2.91981E+06 -4.65656E+02
4.004962E+02 7.99410E-01 1.91468E+05 3.05356E+01 -2.91981E+06 -4.65656E+02
4.004962E+02 9.40889E-01 1.91468E+05 3.05356E+01 -2.91982E+06 -4 . 65656E+02
4.004962Et02 1.08237E+00 1.91468E+05 3.05356E+01 -2.91982E+06 -4.65656E+02
4.004962E+02 1.22385E+00 1.91468E+05 3.05356E+01 -2.91982E+06 -4.65656E+02
4.004962E+02 1.36533E+00 1.91468E+05 3.05356E+01 -2.91982E+06 -4.65656E+02

Frequency at which Delta =

400.4962 0.0 1.91468E+05 3.05356E+01 -2.91981E+06 -4.65656E+02

(3824 rpm)
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3rd Natural Frequency (Light Blade)

Operating rpm 759 (79.4118 rad/s)

Frequency
(rad/s)

Delta

Am

Coefficients

Ay Bm By

1 .062360E+03 1 .49707E+03 7 .06185E+06 4 .97993E+02 -6. 33427E+07 -4 .46686Et03
1 .062361E+03 1 .31505E+03 7 •06187E+06 4 .97995E+02 -6, 33429E+07 -4 .46687E+03
1 ,062362Et03 1 13303E+03 7 ,06139Et06 4 .97996Ef02 -6. 33431E+07 -4 .46688E+03
1 062362E+03 9 .51010E+02 7 .06192E+06 4 .97997E+02 -6. 33433E+07 -4 .46689E+03
1 062363E+03 7 68988E+02 7 .06194E+06 4 .97999E+02 -6. 33435E+07 -4 .46690E+03
1 062364E+03 5 86965E+02 7 06197E+06 4 .98000E+02 -6. 33437E+07 -4 .46691E+03
1 062365E+03 4 04941E+02 7 .06199E+06 4 .98001E+02 -6. 33439E+07 -4 .46692E+03
1 .062365E+03 2 .22916E+02 7 06201E+06 4 .98003E+02 -6, 33441E+07 -4

. 46693E+03
1 062366E+03 4. 08897E+01 7 06204E+06 4 .98004E+02 -6. 33443E+07 -4 .46694E+03
1, 062367E+03 -1 41137E+02 7 06206E+06 4 .98005E+02 -6. 33444E+07 -4 ,46695EK>3
1

.

062368E+03 -3. 23166Ef02 7. 06209E+06 4 .98007E+02 -6. 33446E+07 -4 46696E+03
1

,

062369E+03 -5. 05195E+02 7 06211E+06 4 .98008Ef02 -6. 33448E+07 -4 .46697E+03
1

.

062369E+03 -6, 87225E+02 7 06213E+06 4 .98009E+02 -6. 33450E1-07 -4,.46698E+03
1 062370E+03 -8, 69256E+02 7 06216E+06 4 .98011E+02 -6. 33452E+07 -4 46699E+03
1 062371E+03 -1 05129E+03 7,.06218E+06 4 .98012E+02 -6. 33454E+07 -4 46700E+03

Frequency at which Delta

1062.366 0.0

(10145 rpm)

=

7.06204E+06 4.98004E»^2 -6.33443E+07 -4.46694E+03
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4th Natural Frequency (Light Blade)

Operating rpm 759 (79.4118 rad/s)

Frequency Delta Coefficients
(rad/s)

Am Ay Bm By

2.090913E+03 -1.47646E+04 2.52950E+08 9.15755E+03 -1.68095E+09 -6.08555E+04
2.090913Ef03 -1.15527E+04 2.52951E+08 9.15757E+03 -1.68096E+09 -6.08556E+04
2.090914E+03 -8.34069E+03 2.52952E+08 9.15759E+03 -1.68096E+09 -6.08557E+04
2.090915E+03 -5.12869E+03 2.52952E+08 9.15761E+03 -1.68097E+09 -6.08558E+04
2.090916E+03 -1.91669E+03 2.52953E+08 9.15762E+03 -1.68097Ef09 -6.08559E+04
2.090917E+03 1.29533E+03 2.52953E+08 9.15764E+03 -1.68097E+09 -6.08560E+04
2.090917E+03 4.50736E+03 2.52954E+08 9.15766E+03 -1.68098E+09 -6.08561E+04
2.090918E+03 7.71941E+03 2.52955E+08 9.15768E+03 -1.68098E+09 -6.08563E+04
2.090919E+03 1.09315E+04 2.52955E+08 9.15769E+03 -1.68098E+09 -6.08564E+04

Frequency at which Delta =

2090.917 0.0 2.52953E+08 9.15764E+03 -1.68097E+09 -60.8560E+04

(19967 rpm)
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APPENDIX C: MODE SHAPE FORTRAN CODE

*****
* This Program is used to calculate the mode shapes once
* the natural frequencies are determined by the Myklestad
* determinant method
*****

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DOUBLE PRECISION RSTA ( 24 ) , DMASS ( 24 ) , EI ( 24 ) , CENT ( 24 ) , SHEAR ( 24

)

DOUBLE PRECISION DMOM ( 24 )
, SLP ( 24 ) , DEFL ( 24 ) , ix ( 24 ) , dm ( 24 ) ,

%dx(24) ,mod,pi,p
OPEN (101, FILE=' MODE. OUT' , STATUS= ' UNKNOWN

'

)

I PI
! GRAVITATIONAL CONSTANT
I HINGE OFFSET RATIO
I ROTOR RADIUS
! HINGE POINT
! CHORD
! ROOT SECTION THICKNESS (t/c)
! TIP SECTION THICKNESS (t/c)
1 DENSITY OF SPRUCE lbm/in~3
I MODULUS OF ELASTICITY SPRUCE

pi = 3. 141592654
g 32. 174
e = 0. 133
RAD = 68.0
RO - e*RAD
C 6.5
to =

. 13
tt = . 13

P .0
mod = 1305000.0

PRINT *, 'ENTER ROTOR RPM AND NATURAL FREQUENCY'
READ *,rpm,wrpm
RV=rpra*2.0*pi/60.0
w=wrpm*2 . 0*pi/60

1 THE FOLLOWING ARRAYS ARE NUMBERED FROM BLADE TIP TO ROOT:

I SEGMENT RADIUS (IN)
DATA RSTA/ 6 5. 6, 62. 0,59. 6 ,57. 2, 54. 8 ,52. 4, 50. 0,47. 6 ,45. 2, 4 2. 8,

%40. 4, 38. 0,35. 6, 33. 2, 30. 8, 28. 4, 26. 0,23. 6, 21. 2, 18. 8, 16. 4, 14.0,
HI. 6, 9. 2/

1 SEGMENT SPACING (IN)
DATA dx/4.8,2 3*2.4/

i SEGMENT WEIGHT (LBS)
DATA dm/. 3 53, 2 0*. 177 , . 302 , . 252 , .4 70/

! SEGMENT FLAPWISE MOMENT OF INERTIA, IXX (IN~4)
DATA ix/21*.478, .48, .400, .845/

C DO 10 J=24, 1,-1
C x = (J-l) *dx(LL)+0.5*dx(LL)
C RSTA(25-J)= X
C t =

( (RAD-RO-x)*(tO-tt)/(RAD-RO)+tt)*C
C dm = (2. 0*6. 60*0. 2850+2. 0*t*0. 1250) *p*dx(LL)
C DMASS (25-J) = dra/g

C i = (2. 0*6. 85*. 2850) *( ( . 5* ( t- . 1425) ) **2 . 0)
C EI(25-J) - i*mod
CIO CONTINUE

I CENTRIFUGAL FORCES COMPUTED ALONG THE BLADE

DMASS (l)=dm(l) /g

CENT(1)=DMASS(1) *(R0+RSTA(1) ) *(RV**2)/12
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ITERATION LOOP
SLP(l)
DEFL(l)
DMOM ( 1 ) =

SHEAR(l) =

1

0,

,0

.0

.

,0

DO 4 KK=1,2
DO 50 LL=2,2 4

DO 30 J = 2, 24
DMASS(J)=dm(J) /G
EI(J)=ix(J) *mod
CENT(J)=CENT(J-1)+DMASS(J) *(R0+RSTA(J) ) *(RV**2) /12

30 CONTINUE

I BC'S AT TIP FOR Ay AND Am

J MVKLESTAD INTEGRATION
SLP1=SLP(LL-1)*(1+CENT(LL-1) * (dx (LL) **2) /2/EI (LL)

)

SLP2=DMOM(LL-l) *dx (LL) /EI (LL)
SLP3=SHEAR(LL-1) * (dx (LL) **2) /2/EI (LL)
SLP(LL)=SLP1-SLP2-SLP3
DEFL1=SLP(LL) *dx(LL)
DEFL2=CENT(LL-1) *SLP(LL-1) * (dx (LL) **3) /3/EI (LL)
DEFL3=DMOM(LL-l)*(dx(LL) **2) /2/EI (LL)
DEFL4 -SHEAR (LL-1) * (dx (LL) **3) /3/EI (LL)
DEFL ( LL) =DEFL ( LL- 1

) -DEFL1+DEFL2 -DEFL3 -DEFL4
SHEAR(LL)=SHEAR(LL-1) +DMASS (LL) * (w**2) *DEFL(LL) /12
DM0M1=SHEAR(LL-1) *dx(LL)
DMOM2=CENT(LL-l) * (DEFL(LL-1 ) -DEFL(LL)

)

DMOM (LL) -DMOM (LL-1) +DMOM1-DMOM2
50 CONTINUE

IF (KK.EQ.l) THEN I COEF. COMPUTATION
Ay=DEFL(24)
Am=DMOM(24)

ELSE
By=DEFL(24)
Bm=DMOM(24)

END IF
SLP(1)=1.0 ! BC'S FOR By AND Bm
DEFL(1)=0.0

40 CONTINUE I LOOP FOR By AND Bm
DET=Am*By-Ay*Bm
PRINT *,DET

SLP(l) = -Ay/By
DEFL(l) = 1.0
DMOM(l) =0.0
SHEAR (1) =0.0

DO 60 LL=2,24 1 MYKLESTAD INTEGRATION
SLPl=SLP(LL-l)*(l+CENT(LL-l)*(dx(LL)**2)/2/EI(LL))
SLP2=DMOM(LL-l) *dx (LL) /EI (LL)
SLP3=SHEAR(LL-l)*(dx(LL)**2)/2/EI(LL)
SLP(LL)=SLP1-SLP2-SLP3
DEFLl-SLP(LL) *dx(LL)
DEFL2=CENT(LL-l)*SLP(LL-l)*(dx(LL)**3)/3/EI(LL)
DEFL3=DMOM(LL-l) *(dx(LL) **2) /2/EI (LL)

DEFL4=SHEAR(LL-1) *(dx(LL) **3) /3/EI (LL)
DEFL(LL)=DEFL(LL-1)-DEFL1+DEFL2-DEFL3-DEFL4
SHEAR ( LL) -SHEAR ( LL-1 ) +DMASS ( LL) * ( w* *2 ) *DEFL ( LL) / 12

DM0M1=SHEAR(LL-1) *dx(LL)
DMOM2=CENT(LL-l)*(DEFL(LL-l)-DEFL(LL))
DMOM ( LL) -DMOM ( LL- 1 ) +DMOM1-DMOM2

60 CONTINUE
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DO 100 J=l,24
WRITE (101,*) J,RSTA(2 5-J) ,DEFL(2 5-J)

100 CONTINUE
*****************************************************************
*

* This program was written by Lt Matt Avila
* Modifications were made by Lt J.L. Vandiver
*

*****************************************************************

END
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