Digitized by the Internet Archive in 2009 with funding from University of Toronto

TRANSACTIONS

OF THE

CONECTICLT ACADEIT

OF

AR'TS AND SOIENCES.

VOLUME IV.

NEW HAVEN:
PじMLISHED 1; THE ACADEMY.
1857-1882.

THE TETTLE, MOREHOESE \& TAYLOR PRESS.

$\stackrel{y}{8}$

6
11
4.4

CONTENTS.

PAGE:
List of Admitions to the Library, \checkmark
Airt. I.-Reven of the Birds uf Consecticet, witu remarks on theil habits. By C. Hart Meferam, 1
Art. II.-List of Writings relating to the Method of Least Squares, witil mistorical and critical notes. By Massfielo Merriman, 151
Art. III.- Vextral Fins of Ganoids. By James K. Thacher. With plates 1 aní 2 , 233
Art. lV.-Some interesting new Diptera. By S. W. Williston, $\because 43$
Art. V.-On the species of Pinnixa inhabiting the New Englani Coast, witi remaris on their early stages. By S. I. Siitu, 247
Art. VI.-Occasional occurrence of tropical ind sub- tropical species of Decapod Crustacea on the Coast of New Exgland. By S. I. Smitif, 254
Art. VII.-On the Amphiponus genera, Celafés, Un- ciola, and Lefidactylis, described by Thomai say. By S. I. Smith. Witi plate $2 \ell, \ldots \ldots$. 273
Art. VIIl.-Nef England Anvelida. Part I. Hhstor- ical Sietch, witil annotated lists uf the species hitilerto recornel. By A. E. Verrill. With plates 3-12, 285
Art. IX.-The Nortil dmerican Sipecies of Conops. By S. W. Williston, 325

Presidrent.
DANIEL C. EATON.

> Vice-Prisifent.
> ADDINON E. VERRILA.

Correxponding sicretery. ADDISON VAN NAME.

Rucordinas Seceretary.
LEONARD WALDO.

Librarian.
ADDINON VAN NAME.

> Treasurer.
> IIENRY C. KINGSLEY.

Pudlishing Committer.

IHHERT A. NEWTON, (CEORGE J. BRUSII, CIIESTER S. LYMAN. ADDISON YAN NAME.

Autiting Committee.
ADDIGON E. VERRILL,
HUBERT A. NEWTON, ADDISON YAN NAME.

ADDITIONS TO TIIE JIBRARY

of the

Connecticut Academy of Arts and Sciences,

By Gift and Exchange, from Ju'ne 1 , $18 \% 6$, to Dec. 31, $18 \% 7$.

1. From Sucieties and Institutions in the I'mited states.

Albany.-N. Y. State Librury. 5sth, $59 t h$ annual report, $1875-76.8^{\circ}$.
———. I. State Museum of Nutural History. 26th annual report, 1874. 8".
American Association for the Advancement of Science. Proceedings. 24th meeting, at Detroit, $1875 ; 25$ th, at Buffalo, 1876 . Salem, 1876-it. 8°.
Ann Arbor.-Scientific Association. Constitution and by-laws with proceedings for year ending May 1, 1876 . s°.
Boston.-Amateur Scientific Society. science observer. No. 1-5. 1s77. 8.
———American Acadeny of Arts ond Siciences. Proceedings. Tol. 11-13, pt. 1. 1875-77. 8.
——Society of Natural History. Memoirs. Vol. 2, pt. 4, no 5. 1877. 4°.
Proceedings. Vol. 18, pt. 3-1: 19, pt. 1-2; 1876-i7. 8°.
Crosbr. IT. O. Report on the geological map of Massachusetts, 18i6. 8°.
Brffalo.-Society of Natural Sciences. Bulletin. Tol. 3, no. 3-4, 1876-i. 5°.
Cambridge.-Museum of Comparative Zoology. Memoirs. Vol. 2, no. 9; 4, no. 10; 5, по. 1: 1876-it. 4°.
Bulletin. Yol. 3, no. 15-16, 1876. 8 .
Annual report, 1876.8°.
Davenport.--Acodemy of Sotural Sciences. Proceedings. Vol. 1, 1867-i6. 8°.
Madison. Wisconsin Academy of Sciencts, Arts and Letters. Transactions Tol. 3, 1875-6. 8°.
Minnesota Geological and Nalural History Survey. 4th, $\overline{\text { nth }}$ annual report. 187ō-f. St. Paul, 1876-77. 8°.
Potghreepste.-Society of Natural Science. Proceedings. Vol. 1, fasc. 3. 8°.
Salem.-Essex Institute. Bulletin. Yol. 7, no. 8-12; 8;9; 10, no. 1-6; 18i5-77. \& .
Sas; Francisco.-California Academy of Sciences. Proceedings. Vol. 5, pt. 3, 1875. 8°

Savaxnah.-Georgia Historical Society. Proceedings at the dedication of Hodgson Hall, Feb. 14. 1876. 8°.
Washisaros.-Bureau aj Education. Report of the commissioner of education for 1875. 8°.

Public libraries in the United States of America. their history, condition and management. Special report, 1876 . 2 pts. 8°.
C. S. Entomoloyical Commission. Bulletin. No. 1-2. 15TT. \& .

IV anusgton-1. S. Geological Firplorution of the Fortioth Perallel.
Vol. 2. Hugue, A. and bmmons, ふ. F'. Descriptive geology. 1877. i
Vol. 3. Ilagne. J. J. Mining industry. 1870. 4", and athas, f".
Vol. 6. Kirkel, F. Mieroscopical petrography. 1876. 4°.
U. As Jival Ohservatory Astronomical and meteorological observations, 1854. 4°.
Newcomb, \&. Investigation of corrections to llamsen's tables of the moon. 1876. 4.
Surgen General's (Iffice. Medical and surgical history of the war of the rebellion. Part '2, vol. 2: Surgical history. 187ti. 4°.
U. S. Treasury Department. Annnal report of the operations of the U. S. life-saving service for 1876.8°.

Worcester.- Americau. Intiqurriun Snciety. Jroceedings. No. 66-69, 1876-77. 8°.
2. Irom Nocieties amd Institutions in foreit!n rountries.
 natuurkunde, 2. reeks, deel 8-10, 1874-77. 8'.
Jaarlook, 1873-75. K".
K. zoologisch Genootschap "Natura Artis IIugistra." Bijdragen tot de dierkunde. Aftev. 1-9. 1848-69. 4.
Nederlandsch tijdschrift voor de dierkunde. Deel 1-4, 1864-74. 8°.
Augsblerg. -Naturhistorischer Verein. Bericht, 21, 24, 1871-77. 80.
Auxerre.-Societé des Sciences Historiques et Vaturelles de l'Jonne. Bulletin. T. 30 , 1876. \& .

Bamberg.-Naturforschende Gesellschaft. Bericht, 10-11, 1871-76. 8°.
Belfast.-Natural IIstory and Plilosophical Society. Proceedings, 1875-6. 8°.
Berlin--Afrikanische Gesellschaft. Correspondenzblatt. No. 1-16, 1א-19, 21, 187377. 8°.

Bologna.-Aceademin delle Scienze dell' Instituto di Bologna. Rendiconto. 1875-77. 8.
Bombiy Branch of the Royal Asiatic Society. Journal. No. 27-34, 1870-76. 8°.
——Geographical Society. Transactions. Vol. 19, pt. 3, 1874. 8°.
Bordeaux.-Société Linnéenne. Actes. T. 2], Iivr. 1-3, 187ti. 8°.
___Société des Sciences Physinués et Naturelles. Mémoires. 2. sér. t. 1, cahier $2-3$. 1876. 8°.
Bremen.-Naturwissenschaftlicher Verein. Abhandlungen. Bd. 4. Heft 4; 5, Heft 1-2; 1875. Beilage do. No. 5. 1855. 4.

Brüns.- Vaturforscher Verein. Terhandlangen. Bd. 13-14, 1874-7.. 8\%. Katalog der Bibliothek. 1875. 8°.
Bruxelles.-Académie Royale des Sriences des Lettres et des Beaux-Arts de Belgique. Mémoires. T. 41, 1575-76. 4.
Mémoires couronnés et mémoires des savants étrangers. T. 39, pt. 1, 1876. 4

Mémoires couronnés et antres mémoires. T. 24-26, 1875. 8°.
Bulletins. 2. sér. t. 38-40, 1874-5. 8°.
Annuaire. 18\%-7f. 8°.
Sociéfé Entomologique de Belgique. Innales. T. 17-19. 1874-77. 80.
Société Malacologique de Belgique. Annales. T. 8-10, 1873-5. 8. Procès-rerbaux. T. 4-5, 1875-76!. 8°.

Budapest.-K. ung. Central-Anstall für Metrorologie und Erelmaynetismus. Jahrbücher. Bd. 4, 18i4. 4^{\prime}.
Calcutta.-Asialic Sociely of Bengul. Journal. Vol. 44, pt. 2, no. 3 (contimation) and extris no. ; 45, pt. 1-2; 46, 1t. 1, no. 1, pt. 2. no. 1; 1875-77. 80. Procecdings, $187 \mathrm{G}, 1877$, no. 1-5. 8°.
Government of India.
Report of the meteorological reporter to tho government of Bengal, 1867-1874. f^{2}.-Administration report do., 1870-1855. f°.
Blanford, 11. B. lieport on the meteorology of India in 1875 . Calc., 1877. f°.

Willson. W. G. Report of the Midnapore and Burdwan cyclone, Oct. 15 and 16,1874 . Calc., $1875 . \mathrm{f}$.
Elliott, J. Report of the Vizagapatam and Backergunge eyclones of October. 1876. Cale., is77. f.
Indian meteorological memoirs. Vol. 1, pt. 1, 1876. \mathfrak{f}°.
Catania.-Accademia Gioeniu di scienze Nuturali. Atti. 3. ser. t. 6, 9, 10, 187075. 4°.

Chemnitz.-Nuturnussenschaftliche Gesellschaft. Bericht, 5, 1873-i4. 8°.
Kramer, F. Phanerogamen-Flora von Chemnitz und Umgegend. 1875. 4° Cherbourg.-Sociéfé Tutionule des Sciences Naturelles. Mémores. T. 19, 1876. 8°. Caristiania.-Kong. Vorske Universilet. Universitetsprogrammer, etc. viz:

Kjerulf, T. Om Skuringsmærker, etc. II. Sparagmitfjeldet. 1872. 8°.
Postola Sögur, udgiv. af C R. Unger. 1×73. 8°.
Hertzberg, E. Grundtrickkene i den ældste norske Proces. 1874. *․
Caspari, C. P. Quellen zur Geschichte des Taufsymbols und der Glaubensregel. III. 1875. so.
Sars, G. O. On some remarkable forms of animal life. II. 1875. 4°,
schübeler, F. C. Die Pfanzenwelt Norwegens. Specieller Theil. 1875. 4°.

Siebke, N. Enumeratio insectorum Norvegicorum. Fasc. 1-4. 1874-77. 8°.
Broch O. J. Kongeriget Norge og det norske Folk. 1876. $8^{=}$.
Videnskabs-Selskab. Forhandlinger, 1872-75. 8.
Chur.-Naturforschende Gesellschaft Grubündens. Jahresbericht. N. F. Jahrg. 19, 1874-75. 8°.
Husemann, A. and Killias, E. Die arsenhaltigen Eisensäuerlinge von Val Sinestra. 1876. 8.
Copenhagen. - Kongelige Danshe Vidensha erues Selskab. Oversigt over Forhandlinger. 1875, nо. 2-3; 1876, no. 1-2; 1877, no. 1. 8°.
Danzig.-Naturforschende Gesellschaft. Schriften. N. F. Bd. 3, Heft 4; 4, Heft 1; 1875-6. 8°.
Dorpat.-Gelehrte Estnische Gesetlschaft. Verhandlungen. Bd. 8, Heft 3-4,1876-7. 8. Sitzungsbericht, 1875-76. 8°.
——_Naturforscher Gesellschaft. Sitzungsberichte. Bd. 4, Heft 2, 1876. 8. Archiv für die Natnrkunde Liv.-Ehst-und Kurlands. 1. Ser. Bd. 7, Heft 5; 8, Heft 1-2; 2. Ser. Bd. 7, Heft 3; 1876-77. 8°.
Dresden.-Kais. Leopold-Carolin. Deutsche Akademie der Naturforscher. Leopoldina. Heft 11, 1875. 4°.

URHSDEN:-Nuturuissehschaftiche Gespllschuft Isis. Sitzungsherichte, 187ti, 8 Verein fïu Firdlunde. Jahresherielt, 1:3-11, 1577. \& .
Detblin. - Hoynl Geological Society of Irelend. Journal. Vol. 1.1, pt. 3-1, 1875-77. 8.
———"mersity Biological Association. Proceedings. V'ol.1.no.2, 187.4-5. 8°.
Emabregh. - Gemogical suciely. Trimsactions. Vol, 3, pt. 1, 1877-8.
limoen.- Veturgimachemle Giesellschaft. Jahreshericht, 61, 1875. 8°.
Frankfurt a. M.-Neue Zoologische Gpsellschuft. Der Zoologische (iarten. Jahrg. 16, ио. $7-12$; 17 ; 18, no. $1-3 ; 1875-77.8^{\circ}$.
Freiburg 1. Br.-Vaturforschende Gesellschaft. Berichte. Bd. 6, IIrft 4; 7, Heft l; 1876-77. 8.
(1Esève- Institut Vetional Genevois. Bulletin. T. 20. 1876. 8. Mémoires. T. 13. 1877. 4°.
——Société de Ihysique et llhistoire Nuturelle. Mémoires. T. $24, ~ p t .2 ; 25, ~ p t$. 1; 1575-77. 4.
Giessen.-Oberhessische Gesellschatt. Rericht, 15-16, 187fi-77. 8°.
Glasgow.-Philosophical society. Proceedings. Vol 10, 1875-77. 8".
Halifax.- Nova Srotian Institute of Vatural Science. Proceedings and transactions. Vol. 4, pt. 1, 1874-75. 8.
Halle.-Vaturforschende Gesellschutt. Abhandinngen. Bd. 13, Heft 3, 1875. 4°. Bericht, 1875. 4.
— Nalurwissenschufthicker levein für Sachsen und Thüringen. Zeitschrift der gesammten Naturwissenschaften. N. F. Bd. 11-12, Berlin, 1875. 8^{\wedge}.
Hambctg.-Naturwissenschaftlicher lerein. Abhandlnngen. Bd. 6, Heft 2-3, 1876. 4. Uebersicht, 1873-74. 4°.
Harlem.-Musée Teyler.-Archives T. 1-2, 4, fasc. 1, 1867-76. 8°.
Hemelaerg.-Nahurhishorisch-medicinischer Verein. Terhandlungen. N. F. Bd. I, Heft 5; ; 2, Heft 1: 1877. 8°.
Helsingrors.-Societas Scientiarum Fennica. Acta. T. 10, 1875. 4°.
Öfversigt, 17, 1874-5. 8°.
Bidrag till kännedom af Finlands natur och folk. Häft. 24, 1875. 8. Observations météorolgiques, 1873. 8°.

- Societas pro Founa et Flora Fennicu. Meddelanden. Häft. 1, 1876. 8.

Hermannstadt- Siebenbüryischer Verein. Verhandlungen. Jahrg. 26-27, 1876. 8*
Hobart Town.-Royal Society of Tesmaniu. Monthly notices for 1874. 8°.
Kiel.- Verein nördlich der Elbe zur Verbreitung naturwissenschofllicher Kentnisse. Mittheilungen. Heft 1, 4-7, 9, 1857-69. 4° and 8°.
————Nthurwissenschafticher lerein für Schleswig-Molstein. Schriften. Bd. 1, Heft 3: 2; 1875-77. 8°.
———Úriversitüt. Schriften. Bd, 2-23, 1855-76. 4°.
Tolbehr, F. Die Einweihungsfeier des neuen Universitäts-Gebäude zu Kiel. 1876. 8°.
Klagenfurt.-Naturhistorisches Lundes-1/useum von Kärnten. Jahrbuch. Jahrg. 20-24, 1873-6. 8°.
Kösigsberg.-Königl. physikalisch-öhonomische Gesellschaft. Schriften. Jabrg. 16, 1875-6. 4°.
Krakau. - K. i. Slernwarte. Materialy do Klimatografii Galicyi. Rok 1875. 8°.

Lalsinne.-Sncite Vudoise des scirners Naturelles. Bulletin. 2. sir. no. ifi-7. 1871i-7. 8^{3}.
LaEns.-Geological and Polytechnic somiety of the West Riding of lorkshive. Proceedings. N. S. pt. - - 3, 18 Tir-ib. 8°.
Lespzotr.-Istromumische Gesellschayt. Vierteljahrsschrift. Jahrg. 10, Ileft 4; 11; 12, Heft 1-2: 1875-77. 8'.
——_Wrturforschende Gesellschufl. Sitzungsherichte. Jahrg. ㄹ-- no. 1, 1875-77. 8.
Liverpool.-Literary and Philosophical soriety. Procecdings. No. 15-17.30, 146076. 8".

London.-Geotogiral Soritiy. Quarterly journsl. Tol. 33, 1, W77. \& . List, Nor. 1, 1877. 8°.
————Linneun Society. Jourual. Zoology, no. (iñ-71, 1876-77; Botany, no. 89-92, 1877. 8.
———Mthematical Society. Proceedings. No. 3.4. 87-121. 1571-77. 8
Royal Historical šociety. Transactions. Vol. 1-6, 1873-7. 8°.
Royal Society. Philosophical transactions. Vol. 163, pt. 2, 164-166, 187277. 4.

Proceedings. Vol. 20-25, 1872-7. \& .
List of fellows, etc., 30 Nov. 1876.4°.
Lrov...Société d'Études Scientifiques. Bulletin. No. 1-2, 18it-77. 8.
Madrid.-Olservatorio. Anuario, 11-14, 1871-76. 8°.
Observaciones meteorologicas, 1869-73. 8°.
" 6 en la peninsula, 1869-70. 8°.
de provincias, 1871-73. 8°.
Manchester.-Literury and Philosophical Society. Memoirs. 3. ser. vol. 5. 18i6. 8°. Proceedings. Tol. 13-15, 1873-76. 8°. Catalogue of the books in the library. 1875. \& .
——Scientific Students Association. Annual report, 1875-76. \& .
Mauritils.-Royal Society of Arts and Sriences. Transactions. N. S. vol. 9, 1876. 8'.
Metz.-Académie. Mémoires. Année 5f, 1Sit-5. 8:
Mexico.-Musєo Nacional Anales. T. 1, entrega 1, 1877. f.
———Observatorio Central. Boletin meteorologico. Marzo, 1877. 8.
Registro meteorologico. Alsril-Junio, 1877.
Boletin del ministerio del fomento. T. 1, no. 1-75, 1877.
sociedad de Geographia y Estadistica. Boletin. 3. epoca, t. 3, no. 1-2, 1876. 8°.

Chavero, A. Calendario Azteca. 2. ed. Mexico, 1876.8 .
Milan.—R. Instituto Lombardo. Rendiconti. 2. ser. vol. 7, fasc. 17-20; 8: 18.475. 8°.
————Societd Jtaliana di Scienze Naturati. Atti. Vol. 17. fasc. 4; 18; 1875-76. 8°.
Mostpellier.-Académie des Sciences et des Lettres. Mémoires. Section des seiences. t. S. fase. 3-1, 1875-6. Section des lettres, t. 6. fasc. 1, 1876. 4°.

Moscow.- société Impérule des Nuturalistes. Bulletin, 1875. 8:
MÜnchen.-Köngl. Bayerische Akademie der Wissenschaften. Sitzungsherichte.
Philosoph.-philolog. und histor. Classe. 1874, Bd. 1, Heft 4; 2; 1875, Bd. 1-2; 1876, Heft 1-5. 8.
Mathemat.-physikal. Classe. 1×74, Heft 4. 1875, 1876, 1877, Heft 1. 8°. Almanach für 1875 . 8 .

Mïncuen.-Königl. Ruyprische Akudemie der Wissenschuften.
Büchner, L. A. Ueher die Bezichungen der Chemie zur Rechtspiluge. 1875. 4.

Bursian, (. Ueber den religiösen Charakter des griechischen Mythos. 1875. 4

Erlenmeyer, E. Teber don Finfluss des Freih. Justus v. Liebig auf die Entwichlung der reinen Chemie. 1874. 4°.
Gümbel, C. W. Die gengnostische Durchforsehnng Bayerns. 187?. 4°. Liliencrou, Freils. R. v. LTeber den tnhalt der allgemeinen Bildung in der Zeit ter Scliolastik. 1876. 4°.
Prantl, (\%, v. Verstohen und Beurtheileu. 1877. 4°.
Trumpp, E. Nānak, der Stifter der Sikh-Religien. 1876. 4°.
———Dternwarte. Amalen. Bd. 20-21, 1874-if. 8°.
Meteorologische ind magnetische Beobachtungen, 1876.8°.
Napoli.- R. Institutn d'Incoraggiamento alle Scienze Naturali, etc. Atti. 2. ser. t. 13, 14, pt. 1, 1876-77. 4°.

Relazione. 1877. 4".
Neu-Brandenburg.-V'rein der Freunde der Naturgeschichte in Mecklenhurg. Archiv. Jahrg. 30, 1876. 8°.
Neuchatel-Société des Sciences Naturelles. Bulletin. T. 10, cahier 3, 1876. s‥
Oxford.-Radcliffe (ibservatory. Results of astronomical and meteorological ohservations. Vol. 25-26, 1865-6. 8°.
———Radcliffe Library. Catalogne of books on natural science, to Dec., 1872. 4°.
Paris.-Société d'Acclimatation. Bullétin mensuel. 3. sér. t. 3, livr. 3-12; 4, livr. $1-4 ; 1876-77.8^{\circ}$.
—_—Société Géologique de France. Bulletin. 3. sér. t. 1, no. 6; 2, no. 6, 8; 3, по. 3, 7, 9-12; 4, по. 2-12; 5, nо. 1-1; 1873-76. ४.
Pesaro.-Osservatorio Meteorico e Wagnetico Valerio. Bulletino mensile. 2. scr. vol. 1, pp. 1-32, Luglio-Agosto. 1875. 8°.
Pisa.-Socitè Toscana di Scienze Nuturali. Atti. Vol. 2, 3, fasc. 1, 1876-7. 8°.
Prag.-Königl. Böhnische 1 kademie der Wissenschaften. Abhandlungen. 6. Folge. Ed. 8, 1877. 4'

Sitzungsberichte, 1875-76. 8°.
Jahresbericht, 1876.8°.
-_ K. h. Sternwarte. Astronomische, magnetische und meteorologische Beobachtungen. Jahrg. 36, 37, 1875-76. 4°.
1'Ulkowa.-Nicolai Hauptsternwerte. Jahreshericht, 1875-76. 8°.
Regensburg.-Zoologisch-minerulogischer Verein. Correspondenz-Blatt. Jahrg. 29. 1875. 8^{3}.
___Historischer V'erein vom Oberpfulz und Regensbury. Terhandlungen. Bd. 31, 1875. 8°.

Rio Janeiro.-Muser Nacional. Archivos. T. 1, pt. 1, 1876. 4°.
Roma.-R. Accademia dei Lincei. Atti. 2. ser. rol. 1-2. 3. ser. Transunti, vol. 1, fasc. 3-7. 1873-77. 4.
———R. Comitato Geologico d'Italia. Bolletino. 1875, no. 5-12. 8".
——Societd Italiana delle Scienze. Memorie. 2. ser. t. 1-2; 3 ser. t. i-2. Modena and Firenze, 1862-76. 4°.

Rotterdast-Bulaufsch Genontschap der proefondervindelijlie Wïsbegeerle. Nieuwe Verlandelingen. 2. reeks, dcel 2, stuk 2, $185 \mathrm{~F}_{6} \mathfrak{4}^{\circ}$.
St. Gallex.-Niturwissenshaftliche Fiesellschuft. Bericht, 1874-5. \&.
Santiago.-Universidud de chite. Anales. Apendice, 1873; 1. 45-46, 1.47. 80. Amuario estadistica de la repulbica di Chile. T. 15, 16. 1875. 4 . Bistadistica comercial " " 1874. 4.
Memorias presentadas al congreso nacional en 1875, riz:
Relaciones esteriores e colonizacion; interior; justicia, culto e instruccion publica; hacienda; guerra i marina. if v. 8°.
Sesiones de la camara de senalores en 1874.2 v .4 .
" de diputados " 4 .
Cuenta jeneral de las entradas \boldsymbol{Y} gastos fiseales eu 1874 . 4 .
Anuario hidrografico de la marina de Chile. Año 1,1875 . \& .
Lei de presupuestos para 1875. 8^{3}.
Lei de elecciones 12 Nor., 18 T . 8°.
Lei explicativa " $6 \quad 8^{\circ}$.
Constitucion politica de la republica de Chile. 1874.
Barros Arana, D. Don Miguel Luis Amunategui, candidato a la presidencia de la republica. 1875. 8°.
St. Petersburg.-Hortus Petropolitanus. Acta. T. 5, fasc. 1, 187ヶ. 8°.
———Kais. Akademie der Wiissenschafttn. Repertorium für Meteorologie. Bd. 5. Heft 1, 1s76. 4.
——Plysikalisches Centralobservatorium. Annalen. Jahrg. 1874-75. 4.
Schweizerische naturforschende Gesellschoft. Terbandlungen. 58. Jahresversammlung in Andermatt, 1875. Luzern, 1876. 8°.
Sтоскноцм.-Kong. Siensha 「'etenshops Akademien. Ilandlingar. N. F. Bd. 11, 13. 14, 1872-75. 4°.
Bihang till handlingar. Bd. 3, 1875.8°.
Öfversigt. Arg. 32-33, 1875-76. 8°.
Meteorologiske jagttagelser. Bd. 15-16, 1873-74. 4°.
Stottgart.- Verein für vateriünlische Naturhunde in Württemlerg. Jahreshefte. Jahrg. 32-33, 1876-77. 8° and 4°.
Sydney.-Governmentobservatory. Results of metcorological observations. 1874. 8°. Russell, H. C. Climate of New South Wales. 187i. 8.
Toronto.-Meteorological Dffire of the Dominion of Cunuda. 5th, 6th annual report, 1875-76. 8°.
Tollouse.-Académie des Sciences. Inscriptions et Belles-Lettres. Mémoires. 7. sér. t. 7, 1875. 8°.
——Société d'Histoire Nuturelle. Bulletin. Année 10, 1875-i6. 8°.
Upsala.-Regia Societas Scientiarum. Nova Acta. 3. ser. vol. 10, fase. 1, $1876,4^{\circ}$.
———Ouservatrive de l'Eniversité d' Cpsonl. Bulletin météorologique mensuel. Vol. 7, 1875. 4.
Wien.-Anthropologische Gesellschaft. Mittbeilungen. Bd. 6, no. 6-10; 7, no. 1-6; 1876-77. 8°.
Kais. Akademie der Wissenschaften. Sitzungsberichte. Mathemat.-naturwiss. Classe. Abth. 1. Bd. i2-74, Heft 2, 1875-i6. 8°.
K. k. Central-Anstalt für Meteorologie und Erdmagnetismus. Jahrbücher. N. F. Bd. 11, 187t. t°.

Witan.-K. k. geolugische hrichsanstalt. Ahhandhugen. Bd. 7, Ileft 4: 9; 1477. 4. Jahrbueit. 130. 26, 27, no. 1-2, 1876-77. \& .
Vorhandlungen. Jahog. 1874, no. 14-15, 1875. 1876, 18iT, no. 1-10. 8°. Catalogr der Ansstellungs-Gegenstände bei der Wiener Ausstellung, 1873. s".
———_K. k. Zonlugisch-botanischer Gesellschoft. Verhandlungen. Bd. 25-26, 187576. x°.
——— Desterreichische Gesellschuft fiir Metemolugie. Zeitschrift. Bd. 11. 12. no. $1-13,15-22,1876-7.8$.
WÜRzBurg.- Physikuhsch-medicinische Gesellschuft. Sitzungsberichte. 1874-74, \&.
Zürıcıt.- Viturforschende C'esellschaft. Vierteljahrsschrift. Jahırg. 17-20, 1872ーi5. 80.

3. Fremm other someros.

Macedo, J. M. de. Brazilian biographical annual. Rio de Janeíro, 1876. B v. \&. The cmpire of Brazil at the universal exhibition of 1876 in Philadelphia. Rio de Janeiro, 1876. 8.

From the Brazilinn Centennial Commission
Mines and mineral statistics of New South Wales. Sydney, 18i5. 8.
Annual report of the department of mines of New South Wrales for 1875. 4.
New South Wales, its progress and resourees, Syduey, 1876.8 .
Robinson, C. New South Wales, the oldest and richest of the Australian colonies. Sydney, 1873. 8°.
Reid, G. 1I. Essay on New South Wales. Sydney, 1876. 8°.
From the New south HTales Centenniat Commission.
International exhibition of 1876 . Portuguese special catalogue, etc. 5 paroph. 8°. From the Portuguese Centemial C'ommission.
Crepin, F. Materiaux pour servir à llhistoire de roses. Fasc. 3. Gand, 1871-5. 8°. ———Observations sur quelques plantes fossiles. Gand, 1875. 8. From the Author.
Haughton. S. On the tides of the Arctic seas. Pt. \&-6. Lond., 1875. 4°.
From the Author.
Law, J. Principes de l'élevage des animaux domestiques. Traduction par M. Louis Quaedrlieg. Bruxelles, 1874. 8°. From the Translator.
Moseley, 11. N. On the structure and relations of certain corals. Lond., 1876. 4°. ——On a young specimen of Pelagonemertes Rollestoni. Lond., 1875. 80. From the Author.
Preudhomme de Borre, A. Notes sur des cmpreintes d'insectes fossiles. Bruxelles, 1875. 8°. From the Author.

Ulrich, A. S. Patbologie und Therapie des muskulären Rückgratsverkrummungen.
Bremen. 1874. 8 .
From the Author.

1. A Review of the Bleins of Connecthet, with Remaliks on thene Habits. By C. Habt Meheham.

Read June 20, 1877.

Tue little State of Comecticut, forming, as it does, the southwestem corner of New England, and lying between the forty-first and forty-second parallels (exactly 41° to $42^{\circ} 3^{\prime} \mathrm{N}$.), ant extenting, in an east and west direction, from the meridian $71^{\circ} 55^{\prime}$ to $73^{\circ} 50^{\prime}$ west longitude, contains an area of but 4,674 square miles. Nevertheless it is highly probable, so favorably is it situated, that no equal area in the country ean boast a greater number of species of birds than may be found within its limits. Indeed, nearly half the total mumber of species in the United States have already lreen detected inside its borders, and it is certain that future investigation will decidedly increase this number.

Zoölogically speaking, Connecticut belongs to that division of rountry known as the Alleghanian Fanna. Still, as Mr. Purdie has said,* its southern border has an evident tinge of the Carolinian, and I may add that this "tinge" runs up the valley of the Comnecticut River, extending completely through the State, and eren into Massachusetts.

Some years ago Prof. A. E. Verrill stated that whenever such birts as the Crossbills, the Spruce Partridge and the Canada Jay " breed abundantly in any region, it may safely be considered as belonging to the Canadian Fanum." \dagger With equal truth it may be said that whenever such birds as the Worm-eating, Blue-winged Yellow, and IIooded Warblers, together with the Large-billed Water Thrush and Yellow breasted Chat, breed regulemly ant in considerahle mmbers, the region may safely be inchiled in the Carolinian Fanma. That these species are so foum in southern Comecticnt-notably about the mouth of the Connecticut River-is now too well known to need further confirmation.
'The dividing lines between the several finmare always more or less irregular, and never very sharn'y defined. The distribution

[^0]Trans. Conn. Agad., Tol. IV.
1
Jely, 187%.
of those species by which the diflerent fitume are distingnisherd, is muquestionably governed, in great measme (as shown by l'mfessor Verrill),* by the temperature durimy the lmeeding! selsem, of the regrons in which they commonly beed. Hence the dividing lines between famse do not follow, when plaed on the chart, such smoth, regula cures as serve to represent the isothomal lines (which show the arerage temperature for the entire year), lant more nearly enincide with lines drawn to indicate the average temperature during the months of Λ pril, May, amd dme, -the period in whele the great majority of singing hirds breed. It has heen stated by l'rofessor Vemill that "a line drawn "pon the map of Eastern North America representing the mean temperature of $50^{\circ} \mathrm{F}$., during these three months, will coincide with the sonthern houndary of the Canadian Fauna, as previously determined from the examination of the birds breeding in that sub-divisiom. Another line representing the temperature of 65° will represent the southern boundary of the Alleghanian Fauna,"* as distinguished from the Carolinian.

The fact that, during the thirty-four years that have clapsed since the publication of Linsley's "Cutnlogre of the Birts of Commertieut," no conmeration of the hirds of this State has appeared, is sufficient exense for the present attempt. Noreover, the Connectient Aeademy resolved, some time since, to puhlish a series of papers on the fauma of this State, and l'rofessor Verrill did me the honor to request that I should prepare, as the first of this series, "A Review of the Birds of Connecticut," which I have done as well as the limited tius at my disposal would permit.

In the year 1861, Dr. Willian Wood, of East Windsor Itill, Conn., published, in the Hartfort Times, a series of twenty-one admirable and most interesting articles on our " Birds of Prey," and it is much to be regretted that he did not, in like manmer, take up the remaning groups. A few brief notices of the oecurrence of some of the rarer species within our limits have, from time to time, appeared in the American Naturalist and Bulletin of the Nuttall Opmithologieal Club, but nothing like a systematic list of the birls of the state has been attempted.

My olject has not been to give the largest possible mumber of species, but to represent faithfully our true knowletge of the Avifauma of Commectiont. An acknowledged fant with most local lists is that their authors include, not only those speeies which have actually been detected, but also these which, from their occurrenea

[^1]in meighboring distriets, may, at some future time, be looked for with a degree of shecess diectly propertionate to the ormithedistributional knowledge of the writer. In the prepatation of the following list I have sompulonsly examine the evidence on which catch species stands, and have rigorously exelnded all those whose oceurrence rests on insuflicient proot.

In a mote, moter each gemm or tamily, will be fomed those species which should, and probibly do, necur, lat which, owing to the small mamber of colleetors in this siate, have not as yet been detected. Information has bern solicited from all, so far as I have been able to aseertalu, who are familiar with our hids-whether active collectors or not-and I take this means of expressing my thanks and gratitude for the many tivors received, believing, at the same time, that they should not be regarded as mere persomal favors, but as real contribntions to seience, for in preparing this list 1 act lont as the exponent of the present state of our knowledge concerning the hirds of Comectieut. I am imlehted to my friends, Mr. Goorge Bird Grimell, Mr. A. J. Dayan, Prof. Wm. D. Whitney, Dr. Wm. H. Hotchkiss, Mr. Thomas IS. Ostmone, Mr. E. H. Wilson, Dr. F. W. Hall, Walter R. Nichols, the Stadmailler Brothers, lobert F. Morris, and Fred. Sumner smith, for information relating to species fomb in the immediate vicinity of New Ihawo ; to Capt. O. N. Brooks, of Fankmer's Istand Light, for a list of the water hirds of that portion of the Sound; to Messre. W. Wr. Cor and John II. Sage, of Portland, Erwin I. Sheres, of Suttieht, amt J. N. Clark, of Saytrook, Com, for notes on the species ohserved in the Comecticut Valley; to Dr. William Wood, of East Windsor IIIl, Comn, for valnable information on the time of ocenrence and relative abondance of many of the rarer species - especially in regarl to the Llawks and Owls ; to Prof. G. Brown Goode, of Mildhetown, Com., not only for throwing open for my inspection the cases of hirds contained in the Musemm of Wesleyan University, but also tor lahmionsly searehing the Dusenm Catalogne for records of the capture of the rarer species within the state; to Josiah G. Ely, Est, for notes on the rarer species fond abont Lyme, New London Comity, Comm. and to Drs. D. Crary and D. Crary, Jr., of Hartiord, Cum., for information conceming the less common birds of that vicinity. To each of these gentlemen due credit is given under the species to which their notes pertain. I am also under obligations to Mr: Robert Ridgway, of the Smithsonian lustitution, Or. Thomas 11. Brewer, of Bostom, and Ir. William Brewster, of Canbridge, for the itentification of linds and egges, and for other information.

My thatis are expecially due to W. W. Coe, John II. Sage, Limin I. Shores, Thomas B. Oshome, Capt. (). N. Brooks, and the staltmäller brothers, for plating their manseript notes at my disposal; also, to Protesonss A. E. Verrill, Sirlney 1. Smith, and liranklin B. Dexter, for the use of books not in the College Library ; and to Dr. William II. Wotchkiss for aid in the prepamation of the special lists appemded to this paper, as well as for much kindly assistance rendered from time to time dming the progress of the work.

Numerons references have been made to the writings of others, amd I hold myself responsible for all dates and statements of any kind, where the contrary is not expressly stated. Neither have 'puotations been omitted, when they semed lesirable, either for the value of the facts they contain, or for their antiquity; ant, as a rule, I have taken pains to refur to the ohder and less aceessible works, rather than to those with which we are all familiar.

Athongh Ornithology, as a science, is, in this country, of comparatively recent date, still that the bids of New England early attracted the attention of our forefathers is evitent from their writings. In the year 1616, Capt. John Smith sail that there were, in New England, "Eagles, Gropes, diners sorts of lankes, Cranes, Geese, Brants, Cormomats, Ducks, Sheldrakes, 'Teale, Meawes, Guls, Turkies, Diucdoppers, and many other sorts, whose names I knowe not."* And a few years later (1622) one William lliton writes that the land "uffoords lectsts of diners sorts, cend great thocks of Timkies, Quailes Pigeons and Patriges: mun! great lukes uboundin! with fish, foods, Beuers and Otters. The sea uffoords us us greut plenty of all excellent sorts of sect-tish, as the riners and Iles doth varietic of wild fowle of most csefel sorts." \dagger Amd there are mmerons others of a like nature, some of which have been reprodnced under the species to which they refer.

It is worthy of note that many birds once rommon along the coast, and some throughout the greater part of New England, are now cither extremely rare or not to be met with at all within its limits, while a few species have mquestimably increased in mombers since the conntry has become settlet. Among the former class may be mentioned the Great Ank (Aleu impennis), the Crane (Grous Comudensis, and perhaps G. Americanu also), the Swan (Cygmes Americamus, and perhaps C. Unccinator), the Wild Turkey (Meleagris gullopavo), the Pimated Grouse or Prairie Chicken (Cupidonia crupido),

[^2]the Swallow-tailed Kite (Ninclerns forficatus), the Raven (Corroses roras) now common mily in nothern New England, the Morekingbiril (Mimes polyglothes), and many others. That these hirds were common here two or there handrel years ago is clear from the mumerous referenes to them in the writings of the time. Amb huring this period many others have greatly deceased in numbers-such as the Pigeon (Eectopistes migratorin), Pileated Woodpecker (I!ylotomus pileatus), black-hirds, water fowl, and walers of all descriptions.* The disappearance of some of these hirts is reatily accomed for by the adrance of civilization with its concomitant evils-destruction of forestr, increased use of fire arms, etc:-but in other cases the canse is less casily explained.

Few people, living away from the coast, have any intea that humdreds of thonsands of hirds are killed each year, during migrations, loy flying against lighthouse towers. ('apt. O. N. Brooks, of Fankner's Istand Light, tells me that hetween two and three hundred dead hirds were picked up at the foot of the tower on the moming of May $16 \mathrm{th}^{2}$, 187 h , and that at the same time thonsands of living ones stopped at the Island, deroming all the tender phants and newiy sown seeds in his garden. During the same night about three humdred binds killed themselves against the light at the entrance of New Haven Bay, and the daily papers stated that over seven hundred were picked up on the deeks of one of the New York steamers. When we take into consideration the number of light-honses and stemalips along our whole coast it becomes clear that the number of birds that perish amually by this means is simply immense. Nearly all our common, and many rare, migrants are found among the dead, hut the Maryland Kellow-throats (treothlypis trichess) greatly predominate, constituting full one third of the total number examined. It is lamentable that this wholesate slaughter of our song-birds seems to be nuavoidable.

The nomenclature and arrangement of species adopted in the present paper is that given in Cones' "Key to North Ameriean Birds," with such corrections as have since appeared in his "Birds of the Northwest" and elsewhere.

[^3]1．Gencral List，givin！times af ormareme and relutive abmulance of the species；togethr with notes on the hubits reme distribution of some of the less common forms．

Family，TURDIDA．

I．Turdus migratorius Linné．Robin．
An abundant summer resident；breeds abmulantly，and several times during the season．I few winter．The summer residents arrive during the middle and latter part of Febrnary（Feb．18， 1876 ； Feb）．ロー，18ヶ5），and remain in considerable numbers till near the close of November．

2．Turdus mustelinus Gmelin．Wood Thrush．

A common summer rexident；breeds．Amives abont May 30 （eommon before the 10th），remaining till October．Mr．John II．Sage， of Jortland，Conn．，informs me that he and Mr．J．N．Clark，and also Mr．W．W．Coe，have fomm its eggs＂covered with fine black specks．＂Dhr．Fred．Smmer smith，of this eity，has reeently shown me a large egg of this species which is marked with a few small， brownish－red spots．On sending the egg to Dr：Brewer，I received the following：＂The spots I never motied before，but any eger， always excepting a woolpecker＇s，is liable to be marked by minnte eftusions of colored lymph of the parent，in its exelusion．＂Mr． Smith tells me that the nest，which contained these speckled eggs， wat placed on a railway bridgre，and withimsix ineles of the rail． A mumber of trains pass daty over this bridge．

3．Turdus Pallasi Cahauis．Hermit Thrush．

Common during its migrations，particularly so in the fall．Amives from the sonth before the midile of April（April 7，1877，Coe；April 6，1875，Sage；April 13，1874，Sage；April 14，1876，Osborme；April 16,1877, April 10,1875 ），remaining till early in May；on their return are with us from early in October till the latter part of Novem－ ber（Nor．14，18，20，1875）．The woods abound with them during the middle and latter part of october．

4．Turdus Swainsoni Cabanis．Olive－backed Thrush．
Common during its migrations，but never so abundant is the last． It is met with in spring from May 10 th to $26 t h$ ，and in antumn from

Sipt. 4th (18it, Hatl) to Oct. 13th. In the fall it is not manommonly fomed in thoeks of a dozen or fifteen in low swampy womes where there is an abmelance of mindergrowth.

4n. Turdus Swainsoni, var. Aliciæe (Bairl) Cones. Ciray-cheeked Thrush.
Oecurs, chang migrations, with the foregoing, and is more common in the vieinity of New Haven-julging from the proportionate number of skins in private collections ahont here. Near Portlam, Come, nu the contrary, the true Smainsoni type seems to predominate-as shown by specimens in the cabinets of W. W. Coe and John II. Sage.

5. Turdus fuscescens Stephens. Wilson's Thrush.

A summer resident; breeds. Arives early in May (May 8). Common in the immediate vicinity of New Haven, espereially during the spring migrations.

6. Mimus polyglottus (Linné) Boie. Mocking-hirl.

A rare summer visitant; used to breed here and may occasionally* do so now. Mr. (teo. Bird Grimell has taken it near Mifford, Comn. Mr. Erwin I. Shores writes me, on the authority of Milton Lester, that it has been killed at Suttield, Comm. Nr. J. N. Clark thinks that it bred pretty regularly at Saybrook, Comn, many years ago; and I am informed hy Mr. Osborne that he saw one above the Whitney Lakes, near New Haren, May 3uth, 187%. Mso taken late in the fall of 1874 , by Mr. William Brewster, near Concort, Mass. \dagger "Stratford and New Haven," Linsley:

There ean he little dombt hut that Howhing-birds were once common in Connesticut, Rhote Island, and Massachusetts, if not still farther uorth. In an appendix to the Mass. Agrieultural Report for 1863 , Sammels cives it as a "rare summer visitant," stating that it "occasionally breeds;" and in $186+$ Alken says that they "have heen known to breed in Springfidd several times within five years, and in 1860 two pairs nested here. .lune 20th, 1860 , $]$ found a nest containing three freshly laid eggs. Locality, a sandy fieh growing up to pitch pines, in one of which the nest was placed, about three feet from the gromind." \dagger

[^4]
7. Mimus Carolinensis (Linmé) (iray. Cat-hird.

An abmatant smmer resident, arriving early in May (May 4, 1877, Portami; May 5, 1874, Nage; May 6, 1876 , (. H. M., and 6, 1877, E. 13. Wilson), and remaining till November (Nov. 4, 1874 and 1875) ; breeds.
8. Harporhynchus rufus (Linné) Cabanis. Brown Tlırush; "Thrasher."

A common smmmer resident; breeds. Arrives during the last of April or first of May (April 30, 1876, Osborne; Hay 1, 1877) departing early in October (Oct. 2).

Family, SAXICOLIDÆ.

9. Sialia sialis (Linné) Haldeman. Common Blnebird.

Resident; abundant dming summer ; breeds in holes in trees and posts, etc. They arrive carly in Fehruary (Feb. 8, 1876), remaining till abont the middle of November (Nor. 13, 1876). Have found it singing as early as March 5th. Though generally evenly distributed and everywhere a common species, Mr. Shores "conld not find it in 1872" about Sntfich, Comn.* A few small flocks frequently winter in seelnded spots.

Family, SYLVIID ※.

10. Regulus calendula (Linné) Licht. Ruby-crowned Finglet.

Common during its migrations. Arrives about the middle of April (April 11, 1875, Sage); remaning till the middle of May (16, Oshorne). Have taken it in the fall from Oct. 13th to Nov. 24th.

11. Regulus satrapa Lichtenstein. Golden-crested Kinglet.

A winter resilent; have seen it at reprated intervals from Oct. 13th till spring (May). Commonly foum, witlo the preceding, associated with small Hocks of chickulees (I'emesutricupillus), and frequently accompanied by a few muthatehes of both species (Sitta Carolimensis and S. Canculensis).
12. Polioptila cærulea (Limé) Sclater. Blue-gray Gnateatcher.

A rare summer visitant. "Stratford," Linsley. "Two were shot at Wauregan (Windham County), Comn., by Mr. C. M. Carpenter, a male in 1874 and a female in 1876 . Three or fonr were seen by me
at Provitenere, R. I., May 23d, 1875 ." ${ }^{*}$ Mr. Jencks writes me that the Comectient recort is a mistake, as all the specimens were taken mear Irowidence, li. 1.

Nr. Willian brewter thus speaks of their habits and appearance in the sonth: "When serem one lumbed feet or more above the earth they remind one more of insects than of birds, so active, and so very frail and slember do they sem. In motions, they bear, perhajs, a greater resembance to the Rerlstart (Setophatre ruticille) than to any other lind, like him lanching ont frequently after insects and alighting with spread tail and drooping wings. They have withal an impertinent, quizzieal air, saroring strongly of Cat-bird ways; the song is indeed quite that of the latter bird, but in miniature (if I may apply such an expression to sound), a quaint mocking little strain, continned half a minnte or more at a time, and full of mewings and harsh chatters, with an oceasional full romm note, but altogether so feeble as surcely to be audible at twenty yards' distance. The note used by both sexes is a harsh hut rather faint lisp.' ' \dagger

Family, PARIDE.

13. Lophophanes bicolor (Linné) Bonaparte. Tufted Titmouse.

I rare risitor from the sonth. "New ITaven," Linsley. Josiah G. Ely, Esq., writes me from Lyme, New London Co., Conn., that he shot a Tufted Titmonse, Fel. 27th, 1872, in that vicinity (the ground being covered to a considerable depth with snow), and saw another in Jin., 18it. 'They were found flitting about among dense hemlocks in a very wild portion of comntry. It has also been taken near IIartford, Comm, by Dr. D. Crary, but must be regarded as accidental, though a common resitent in northem New Jersey (Elizabeth, 1871-72). Also breeds on Long Island "seeking retirement in the lonely part of the woods among the heavy timber." \ddagger It has been found as far north as New IIampshire.

14. Parus atricapillus Linné. Black-capped Clickadee.

A common resirlent; breeds in holes in trees. Gregarious except during the breeding season.

[^5]15. Parus Hudsonicus Forster. Hudsonian Chickadee.

Arare aceilental visitor firom the north. In the July (1876) number of the Bulletin Nuttall Ornith. Cluh, I ealled attention to the first instance of the eapture of this northern ehickadee in Comecticut: "On Nov. 13, 1875, Mr. Robert Morris, while shooting in a wooded ravine a few miles from town [New Ilaven], killed a female Hudsonian Titmonse (Parus ITudsomicus). The specimen is now in the collection of Mr. Thomas Osborne of this city." Its occurrence so far south must be regarded as purely accidental. Mr. Wm. Brewster took a specimen at Concord, Mass., Oct. 30, 1870.* This was supposed to be the most sonthern, and only Massachussetts, record, but as long ago as 1839 , Peaboly tells us that it "has been found by S. Eliot creene, Esc., near his house in Brookline." \dagger

Family, SITTID死.

16. Sitta Carolinensis (Gmelin) Latham. White-belliel Nuthateh.

Resident; breeds. Not particularly abundant immediately about New Javen, especially in summer. Its nest, however, has been taken within city limits by the Stadtmuller Brothers.
17. Sitta Canadensis Linné. Red-bellied Nnthatch.

A tolerably common winter resident, arriving about the middle of October (Oct. 13, 1875, abundant), and remaining till after the middle of April (April 19, 1876, Osborne).

Family, CERTHIIDÆ.

18. Certhia familiaris Linné. Brown Creeper.

A rather common resident ; breeds. Particularly abundant in winter, when it may frequently be seen rmming about on the elms in the heart of the city.

Family, TROGLODYTID \mathbb{E}.

19. Troglodytes aëdon Vieillot. House Wren.

A summer resident; breeds. Not abundant. Arrives late in April or early in May (Apr. 27, 1869, Hartford; 27, 1877, Portland; May

[^6]2, 1863; 3, 1876 ; t, 186 t, 1873 , all Portlanl, (Comm., Ino. II. Sige), remaining till late in Octohor (Oct. 26 and 30,1875).
20. Anorthura troglodytes, var. hyemalis (Vieith) Cones. Winter Wreu.
A winter resident; rather common during migrations. Hase seen it early in October (Oct. 2d), and seenred a specimen on the 24 th of November, 1875. Mr. Grimell has taken it every month during winter.
21. Telmatodytes palustris (Wilson) Baird. Long-billed Marsh Wren.

A common summer resident; breds ahmondaty in the brackish water marshes bordering the Qumnipiac river, near New llaven. Mr. A. J. Dayan and myself foumd dozens of completed nests, a few of which contained from 1 to 5 eggs each, on the 7 th of Jume, 1876. Also breeds in suitable fresh water marshes thronglont the State.

22. Cistothorus stellaris (Licht.) Cabanis. Short-billed Marsh Wren.

A rather rate summer resident; breeding in suitable localities along our sonthern border and in the Comecticut Valley. "New Haven," Linsley. Dr. Wood tells me that it is not common ahout Hartford, Comm.; and Mr. Erwin I. Shores writes me that it hreeds in a marsh near Sontlwick (or Congamick) Ponts, in the town of suffield, IIartford Co., Come (close to the Massachusetts border). Mr. J. (i. Ely, of Lyme, Comn., writes me that the Short-hilled Marsh Wreu breets abundantly in that vicinity.

Note. - 'I'he Great Carolina Wren, Thryothorus Inuloviciamus. (Latham) Bonap., has been known to breed in Massachusetts* and on Long Island, and doubtless occurs, as a rare summer resident from the sonth, in the Connecticut Valley, and along our southern border.

Family, ALAUDIDA.

23. Eremophila alpestris (Forst.) Boie. Horned Lark.

A winter resident, ocemring along the shore, and also in harren, sandy, tracts, throughout the State. Mr. Dayan, Mr. Oshome, Mr. Grimnell, and myself, have seen it here in fall (Nov. 18, 1874, C. H. M1.) and winter, and Mr. W. W. Coe has found it at Portland, Conn., as late as March 26, (1875).

[^7]
Family, MOTACILLIDE.

24. Anthus Ludovicianus (Gmelin) Tieht. Tillark.

Common along the consl during migrations. Have laken it as late as Nov. 14. It passes north in the month of May (1)r. Wood). Dr. Brewer says that he has "found it, somelimes in large flocks, in open "omntry near the enast, in Massachusetts, in milwinter."*

Family, SYLVICOLID※.

25. Mniotilta varia (Limé) Vieillot. Black-and-white Creeper.

A smmmer resident; lureels. Particularly ahmant during migra-
 1876), remaining till Octoher (Oct. 2). Mr. J. II. Sage writes that, in company with Mr. J. N. Clark, he took a nest containing five egess of this species, at Suybrook, Conn., May 30, 1877. I shot it at New Haven on June 23, and have seen several others during the breeding season. Mr. Sage also took another nest containing five eggs (" young well developed"), at Portlanl, Conu., June 12, 1875.
26. Parula Americana (Linné) Bouap. Blue Yellow-backed Warbler.

A summer residem: breeds. One of nur eommonest migrants. Arrives carly in May (May 2d, Osborne). In the fall it is very almudant during the middle and latter part of September, and I have taken it as late as Oct. 13th. Mr. W. W. Coe showed me a mumber of their beantiful hanging nests, composed entirely of Isnet, which he had found abont Portland, Comu. It has also heen fonnd breeding near New Haven (Maltby Park-Stadtmüller Brothers).
27. Helmitherus vermivorus (Gmelin) Bonap. Worm-eating Warbler.

A rare summer resident; breeds. As long ago as the year 1843, Dr. J. D. Whedpley observet this species at New Haven (Linsley), and it has since been taken in this vicinity by several collectors. In the "Bull. Nutt. Ornith. Chul," (vol. ii, No. 1, Jan., 1877, p. 21), Mr. H. A. Purdic states that "Mr. Shores shot a male at Suftield (Itartford County), Comn., Augnst 22, 1874. This is, I think, its most northerly record in the Atlantic States yet noted." Also, in the American Naturalist for Nov., 1873 (vol. vii, No. 2, p. 692), the same author remarks that Mr. J. N. Clark, of Sayhrook, Conu., writes him that he has taken "in the nesting seasnn, Helmitherus vermivorus,

[^8]hot as yet has failed to find the mest." Itr. ('lark tolls me he has seen as many ats five individuals in a simele day. Jr. Thomas Osborne, of New Laver, has a momberl sperimen in his cabinet, pros ented May it, 1875. Two or three others sperinens were shot near here in May, 1875, and Mr. George Bird drimmell tells me that he has known of the eapture of sereral in this vicinity.

So little is really known enncerning the habits of this rate warbler, that I take great pleasure in quoting the following interesting accoumt of it from the olservations of my frient, Mr. William lirewster, of Cambridge, "On the Birds of Ritchic County, West Virginia." Mr. Brewster writes that it is "most partial to the retired thickets in the woods, along water eourses, amb is selimon or nerer fomm in the high open groves. They keep much on the gromm, and walk about rather slowly, searching for food among the dricil leaves. In general appearance they are ruite mique, and I rarely failed to dentify une with an instant's glance, so very peculiar are all their attitudes and motions. The tail is habitually carricd at an eleration considerably above the line of the back, which gives them quite a smart, jannty, air, and if the dorsal aspect be exposed, in a elear light, the peculiar marking of the crown is quite emnspicuons. Seen as they usually are, however, dimly flitting ahead throngh the gloom and shatow of the thickets, the impression received is that of a dark little bird which vanishes maccountalby before four rery eyes, leaving you quite mucertain where to look for it next: indeed, I hardly know a more difficult bird to procmre, for the slightest noise sends it darting off through the woods at once. Occasionally yon will eome upon one winding around the trunk of some tree, exactly in the manner of Mniotiltu vuria, muning ont along the branches with nimble motion, pecring alternately muler the bark on either side, and anon retmrning to the main stem, perhaps the next instant, to hop back to the grount agsin. On such oceasions they rarely aseend to the height of more than eight or ten feet. The males are very quarrelsome, chasing one another through the woods with loni, sharp, chirpings, eareering with almost inconceivable velocity "umong the tops of the highest oaks, or clarting among the thickets with interminable doullings mutil the pursuer, growing tirel of the chase, alights on some low twig or mossy \log, and, in token of his vietory, inters a warble so feeble that you must he very near to catch it at all, a somm like that produced by striking two pebhles very uniekly and gently together, or the song of Spizello socialis heard at a distance, and altogether a very inditterent performance."*

[^9]28. Helminthophaga pinus (Linné) Baird. Blue-winged Yellow Warbler.

A smmmer resident in sonthern Comnecticut and in the Connerticut Valley; bueds. Not commom at New llaven. Mr. L. C. Bragg took a female May 12, and I capturel a male on the $24 t h, 1875$. Mr. J. N. Clark finds it breeding regnlarly, and in eonsiderable mumbers, at Naylorok, Comi.* Mr. W. LI. Nichols shot one at Branforl, Conn., May 12th, 1875. On the 23/ of Jume last (1875) while collecting with Mr. Wm. H. 'Taylor, in a pieee of woods within a mile of the eity of New liaren, I sueceedel in shooting a fine adult male of this speeies, which Prof. Wm. D. Whitney was kind enough to mount for the collection of New England birds now on exhibition in the Peabody Musemm of Yale College. The hird kept flitting abont so actively in the dense mulergrowth that it was with difficulty seeured. It unguestionally had a nest in the immediate vicinity.
29. Helminthophaga chrysoptera (Liuné) Cabanis. Blue Goldenwinged Warbler.
A rather rare summer resident; breeds in the northern part of the State. Mr. Walter Li. Nichols shot one near New Haven Angust, 24, 1876, and Mr. Osborne tells me that he saw one in May, 1875, killed hy a friend of his. 1 have not yet met with it. The finest sjeeimens of this beantiful warbler that I have ever seen are in the cabinets of Mr. Coe and Mr. Sage, of Portland, Comm. They were taken in that vicinity. Mr. Sage informs me that he has seen it from May 11th, (May 11 and 27,1876) to the 30th, (May, 30, 1877, Saybrook). Mr. J. N. Clark, of Sitybrook, Comn, tells me that he has seen but one specimen theve. Mr. Erwin I. Shores writes me from Suffield, Comn.: "Not common; lreeds. On July 7th, 1876,1 obtained a female and three young just able to fly. Jlave taken it at two other times." Dr. Crary has taken it near Hart ford.
30. Helminthophaga ruficapilla (Wilson) Baird. Nashville Warbler.

A summer resident; aboudant spring and autumn migrant. Arrives early in May. Breeds sparingly throughont the State.
31. Helminthophaga peregrina (Wilson) Cabanis. Tennessee Warbler.

A rather rare migrant. Two specimens were taken near New Haven during the latter part of May, 1876 (May 24, Osborne; May 26, Bragg). Mr. Erwin I. Shores shot one near Suffield, Comn., June 8,

[^10]1875 , which is so late one might almost suspert it of breeding within our limits. Mr. J. N. Clark, of Saybrook, has a speemen in his eabinet in musnally high phmage; it is at rare bird there. I anm tokt hy Mr. Clark amd others that its mote is peenliarly lowd and clear, serving to distinguish the species when some distance away.

Note.-The Orange-erowned Warbler, IIelminthophoga celutue (Nay) Bairl, has heen taken both in Massachusetts* and Rhote Islaml, \dagger and also in New York State (by Mr. E. I'. Birknell, and but a few miles from our western borler) \ddagger and nnquestionably oecmrs within our limits.
32. Dendrœca æstiva (Gmeliu) Baird. Yellow Warbler.

A common summer resident; breeds. Arrives abont the first of May (May 7, Osborne; May 4, 1874, and Nlay 5, 18\%3, lortland, Comu., Sage).
33. Dendrœeca virens (Gmelin) Baird. Black-throated Green Warbler.

A summer resident; very ahmalant during its migrations. Arives about May 1st, remaining through the montl (May 23); have taken them in the fall, from September 15th to October 18th. Mr. W. W. Coe tells me that they remain through the entire summer in dense swamps abont l'ortland, Comn., and lonbtless breed, thongh he has not yet taken the nest. I am also informed by Mr. J. N. Clank that a few breed at Saylrook, where he has fomd two nests after the yomg had hatched. I am surprised at this, for it is the last place in the State where they ought, theoretically, to breed.
34. Dendrœea cærulescens (Linni) Baird. Black-throated Blue Warbler.

A summer resident. Common spring migrant; Mr. Osborne and myself hase also taken it here in antum (October 7, 12, and 19). Arives about May loth; breeds sparingly in the northeastern part of the State (Eastford), where two nests were found in June (8 and $13,1 \varepsilon 74$,) by the Rev. C. M. Jones.s.
35. Dendrœea cærulea (Wilson) Baird. Cærulean Warhler.

A very rare summer visitant from the Southern and Central States. This rare warbler was observed at Stratford, Comn., by Linsley, as

[^11]fong ago an April, te4t. H. A. l'urdic says, "a male was ohtaineal by Mr. Shores at sutheh, Jme 12, 1875." Mr. Shoren writes me that he "oltained it purely by acedent while trging to shoot a Wambing Vireo (Vireogitum)." sof lar as 1 am aware these two are the only instances of its eapture within the state.
36. Dendrœea coronata (Linné) Gray. Yellow-rumped Warbler.

Very common during migrations. Have taken it as early as April 18th (1875). In the fall it may be seen from the last of september till the first of November, some remaining still later (Nov. 15), and Mr. Grinuell informs me that he has taken it every mouth during the entire winter.
37. Dendrœca Blackburniæ (Gmelin) Baird. Blackburnian Warbler.

Common during the migrations, being particularly almudant in spring. A few sometimes breel. Arrives about May 9th, remaining till the last of the month (May 27). Also occurs from the middle of September till early in October (Oct. :3). In the spring great mumbers of them frequent the elms in the heart of the town. Mr. Josial G. Ely writes me, from lyme, Com., that he "silot a female Blackburnian Warbler in luly, 1873, with it belly minus of feathers. It evidently had a nest somewhere in that ricinity."
38. Dendrœeca striata (Forster) Baird. Blaek-poll Warbler.

One of our most abmulant migrants. Arrives from the sonth about May 13th, remaining till the last of the month (May 30; Jume 2, 1872, Portland, Com., Sige). In the antumn they are quite numerons by sept. 10th, and their mumber does not decrease much till after the midlle of Oetober-some staying till the last of the month (Oct. 26).

39. Dendrœea castanea (Wilson) Baird. Bay-breasted Warbler.

Sometimes quite abundant dluring the spring migration (1876, for example); at other times extremely rare, if necurring at all. Arrives ahout the middle of May, remaining till the last of the month. Mr. Oslmme has sem it in fall (Sipt. 30 and Oct. 1t, 1876). Mr. Shores gives it as "rare," never having taken "hat two specimens," at sutficid, Comn. \dagger

[^12]40. Dendrœeca Pennsylvanica (Limé) Baird. Chestmut-sided Warhler

A smmmer resident; breds. Very abmanant during migrations. Arrives early in llay (7), the greater momber passing north lefore the first of dune.
41. Dendroea maculosa (Gmelin) laird. l3lack-ant-jellow Warbler.

A common spring and atumn migrant. Arrives about May $1 \geqslant 1$ h, remaining till Jme lst. Ilave taken it in the fill, from the midhle of September to ()etober lst, and it probably remains still hater.*

42. Dendroeca tigrina (Gmelin) Baird. Cape May Warbler.

A rather rave migrant, thongh a lew are taken every seasm, llave known of its oecorrence from May loth, (Oshorne) to the $25 t h$. Mr. Shores writes me that it is gemerally rare about Suftich, Com., but that it was not uncommon there in the spring of 18.6 .
43. Dendrœea discolor (Vieillot) Baird. Prairie Wrarbler.

A summer resident; not common alont New Ifaven. Breeds sparingly. Mr. Dayan has taken it on May 13th and sept. 15th. Mr: WY. W. Coe tells me that it heeds near l'ortland, Comm, but is rather rare. I shot one near New Haven, May $14 \mathrm{th}, 1877$. I am informed loy Mr. E. I. Shores, of Suttield, that it is not mare about Enfield, Comn. Ilr. J. N. Clark tells me that it breeds plentifully about saybrook, Com.

44. Dendrœeca dominica (Linné) Baird. Yellow-throated Warbler.

A rare acedental visitor from the sonth Dr: Daniel Crary, of llartford, Comm, writes me that dming fifteen years of bird collecting in that ricinity (in the Comectiont Valley) he has scented several speeimens of this rare species. Dr. E. L. L. Thompon also assmres me that he has seen it about New Haven. Couts, in his "List of the limels of New England," states, and very properly too, that "there is mo good evidence," that this speeies "ever straggles as far north as New England," \dagger but, for some maceoumtable reasom, in his "libis of the Northwest" (1. 66) disregards his former correct statement and says that the hird oecurs "north to Comecticut (Linsley)." I glance at Linsley's catalogne shows that he did not know of its ocemrence in this state.

[^13]
45. Dendrœea palmarum (Gmelin) Baird. Red poll Warher.

A common spring and athtum migrant. Arives, in spring, about the midule of April ($1: 3,1875$; 1s, 1875), usually remaining hot a few dats; in lall 1 hase taken it lrom Oed. 18th to Nov. 4th. But few were sem this spring (185), amf they stragher along in the most maceonitable maner. I shot ond as late as May 5th! Along with D. pimes ant /1. comomen it may be seem, in spring, fong before the hosts of other warblers make their ippearamee. It is also one of the last to depart in the fall, at which thme it is fomd along fences, and among low bonshes, hy the ronl-side, and in open fieds. In early spring, before The snow has quite all disappeared, large numbers of them may sometimes be seen, in company with the English Sparrows, rmming about on the plots of hare gromid, and the roots of the elm trees, in the ('ity Gimen, in the heart of New llaven. In fact they seem to pay hut little attention to the weather, as may be seen from the ciremmstane that they were really abomant on the 18th of April, 1875, at a time when the gromid was covered with snow nearly a foot deep, with only here and there a bare spot; while none were seen this season (1877) till April 13th, notwithstanding the fact that the gromed had been bare since the latter part of March, and the weather umsually mik. Apparently in great haste to reach the breeding groumts, their stay with us, in spring, is generally brief-a few days ant all are gone. During the atumal migrations, however, the case is quite difterent. Having safely accomplished a long and perilous journey to the far north, and having suecessfally struggled with the clements and the hangry animate word in rearing and proviling for a family of children, its andety is wer, anl now it lingers, for two (1) three weeks, in its farorite hannts by the road-side, before taking its fimal departure for Cuha or the Bahamas; or, perehance, it may not pass beyond omr own limits, but, finding some suitable spot in the (inlf States, conclules to go no farther, and winters there.
'The ahmolance of this species during its migrations varies emsiderably in difterent years. Thus in the spring of 1855 they were very mmerons, while this season (185t) less than half a dozen were seen. This remark applies with eqmal force to D. pinns and several other species.

46. Dendrœeca pinus (Wilson) Baird. Pine-creeping Warhler.

A summer resident; tolerably common luring migrations. It brecds in pines, aml is more often hearl than seem. Arrives before the
middle of $\Lambda_{\text {pril }}{ }^{*}(A$ pril 14 , and prohally earlier and dapans in simp tomber (sept. 29, 185, stoge). They are so patial to the tree whome name they bear that, in spaking of their hathes in the "line-hamens"

 aceasion, saw it alight, even kor an instant, on amythag hat a pinc tree; here it wonld sit hy the hom and warble ont its sweet song." \dagger Imight also state that at such times it is generally so concoaleal among the hramehes that one may not mafiequently send half an hour in vainly enteavoring to "get a shot"-the bid, meanwhile, nttering, at intervals, its characteristic mote, which is not molike a certain strain in the pheasant and perplexing song of the common field-sparmo (Spizelln pusillo). On referring to my M心. notes on the birds of Central llassachusetts, I find the following : "soldom fomd except in pine womls, where a few were fomm breeding on .Ine 25 th, 1874 ." Here, however, thongh evidently preferring similar tracts, they may le met with, espectally during the migrations, in a variety of situations. In the spring of 1875 , for example, they were freguently seen in the City Green hopping abont on the gromed in company with D. polmomm and the English Sbarows, and rmning in and down on the trunks of the large elms searching for insects. Mr. C. J. Maymam, in his heautilin, lont lamentably incompete, work on the "Bitds of Florita," says: "White walking in the piny woods of Florida one will suddenly ohserve that the trees orer his head are filled with birds, where lut a moment betore not a living thing was to be seen; and his cars will besaluted hy a varioty of summls. Beside the lond, harsh notes of the woodjeckers and muthatehes, and the mednow whistle of the huebirds, the slowly given trill of the pine warhlers will oceasionally be heard. There are hondreds of these lithe linds in every passing flock, yet but few of then ever sing. They are extremely active, now searching for insects among the swaying foliage of the pines high overhead, then clinging to the brown trmaks to peer into the crevices of the lark, or alighting on the ground. Of all the thomsands of this species which spend the colder season in Florida hat few remain to breed. and hy the middle of March the greater portion leave fur the North. They arrive in New England in early April, and ly the first of May

[^14]\dagger Am. Nat., vol. viii. No. 1, p. 7. Jan. 1874.
begint, "onstruct their nests, which are commonly placed in a fork of the emmost limb of a pine tree.".
47. Siurus auricapillus (Linmé) Swainson.

Golden-crowned Thrush; "Oven Bird."

A common summer resident, ariving eally in Nay (May 3), and remaining till the latter part of september. Breets abmudantly. Its Gharacteristie: lourt, but not parienlarly pleasing, note frephently amoys one while listening for the softer tones of some of the rarer warblers.
48. Siurus nævius (Boddaert) Coues. (Noveloracensis of Authors.) WaterWagtail; Water Thrush.

Rather common during migrations. Possibly a few oceasionally remain and lored. Arrises early in May. Have taken it in spring from llay 5 th to 27 th; and infall from Sept. 2sth to Oct. 18th. Mr. Gentry, in his late work on the "Birds of Eastern Pemsylvania," says that it "camot be considered either almmiant or rare." The same remark applies here in spring, when they frequent their favorite hants near some small stream or swampy place in woolland. In the fall, howerer, they sometimes eongregate in rather large flucks and may then be seen on hill-siles away from water.
49. Siurus motacilla (Vieillot) Cones. (Ludovicimns of Authors.) Largebilled Water Thrush.

Not rare in southern Comecticut, where it breds resularly, and probalby in considerable numbers. Arrives earher than either of the other species. I shot a fine mate on the 2 th of April, 185\%. That they also breed very early is shown by the fact that a female, cont:ining an egg ready for the nest, was shot hy my friem, Mr. Dayan, on the 17 th of May, 1876 ; and Mr. I. N. Clark, of Saybrow, Comn., tells me that the young are generally hatched lefore llay $25 t h$. The fact of its breeding regularly in southern New Englaml has now become =o well established that it would be superfloms to dite the mumerons published records of its capture.

In halits it seems to agree with s. morius-at least in its fondness for shaved streams. Its note is peculiarly loud am elear, and does

[^15]not resemble that of any other hird I have ever loard. 1hr. F̌. Wr. LIall shot a pair in Maltby Park (near New llaven) Jume loth, 1874; they had evidently bred there W. W. Nietols amd 'Thos. J. Osborme saw sereral specimens on the en of May, one of whel they sectured ; and on the $15 t h 1$ saw still annther. I am informed hy Mr. J. N Clark, of Nathook, that a fambite site for their mests is amomer the mpturnel posts of a fallen tree.

In writing of the habits of this species in West Virginia, Mro Brewster says: "While the mothern Water Thrush [N: mewins] was confined to the muldy hanks of the creck-and I will remark en possont that I never sum one other than in a muddy locality-this species seemed to delight in the pehbly streams of the hills : just sueh streams as in the New Englaml momtains would he ralled good trout hrooks, overshadowed by mighty forest trees, frequently elooked ${ }^{11}$, by fallen logs, aml abounding in beantifinl easeades, still, deep pooks, and wild rocky ravines. In the deepest, darkest retreats you were most likely to tind him, abl here, on several occasions, I wat fortunate enough to hear his somg. It is somewhat like that of s. Novehomeensis [s' movims], being quite as lond, almost as rapin, and commencing in neaty the same way, but lacking the beantifnl crescondotermination, and, altogether, a less fine pertomance. Represented by words, it would be nealy as follows : pseme, pesem, per see ser. This is usually uttered several times in suceession from some shelving rock, or fallen \log overhanging the strean; the bird in the intervals hetween each repetition tilting its boly incessantly, and lonking nervonsly about as if he din't half like your appearance and had a good mime to be off, and this expression, in the majority of ases, shon finds vent in action, for he is a very shy little fellow the moment he begins to suspect that he is wated to grace your cabinet. Come upon him sudtenty, howerer, as he is ruming nimbly along the margin of som quiet pool or rippling edry, and at times be will seem to pay little respat to your presence, and you may have a fine chance to observe his motions and samplper-like ways, as he wates knere deep into the water, or splashes through it in hot phrsuit af some alquatic insects."*
50. Oporornis agilis (Wilson) Baird Connecticnt Warbler.

A rave spring and antummigrant. The only specimen that I have ever seen alive was a fomale, which I shot near New Haven, Oet. 2d,

[^16]1855. Nearly fom years ago Mr. H. A. Purdie ralled atemion to the lace that it hat bere uhtainerl, in September, at sitybook, Come, hy .lle. I. N. ('lark; * and Mr. (lark has reeently intmomed me that he has taken sereral sperimens theme in fall, and one "full-plumatred malde in spring." 'Ilhis last is the finest suecimen I have erer seen, amd, at first sight, I mistook it fire the Jomming Wrarher (ficoth!ynis Ihiluthyhert, the male of which it closely resembles, both in the doep ash of the thoon amf hreast (which is almost hatek where it joins the yellow below, and in the shate and limited extent of the yellow of the helly. The ring aromal the eye, howerer, is well markerl, and pure white.

As its name indicates, this speries was first discovered in Comectient, amb by the distimgushed Omithogist, Alexamber Wilson. De met with it but onee in this state, but afterwards fomm it in Pemsylvania, and says, "It was fomnd, in every case, mmong low thickets, hat seemed more than communly active, not remaining for a moment in the same position." \dagger Its habits are such as to rember it umbikely to be observel muless present in considerable mumbers.
51. Oporornis formosus (Wilson) Baird. Kentncky Warbler.

A rare summer visitor from the sonth. Mr. Erwin I. Shores, who has favored me with so many valuahbe motes conceming one ware hirls, writes that he "ohamed a male of this species at suftied,
 Ari-fama of Comecticut, but also to New England. I am aware that Dr. Cones, in his "hishs of the Northwest" (1 . 78), states that the speries necurs "north to the Commecticut Valley," but on what anthority $[$ am unable tor surmise. Perhajs the learned Jootor's knowledge of the distribution of birds, ant of that something in their hearts which ofttimes causes those inexplicable peregrinations, together With his maselous power of intuition, told him that it did oceur in the Comecticut Valley, and had long been wating to be discovered hy Ar. Shores. Imberd, mearly ten years ago, Dr. Cones prophesied that "the occurrence of this seceies as a rare or casnal summer visitor in sonthem New England is to lx confismenty anticipated,"'s and it is an old saying that probabilities become facts if only given time enongh.

[^17]

 Girame lound it on Long lshand many years ago. \dagger Wilson says, "This species is seldom sed among the high bathehes, but beses to frepucnt low bushes and cane swamp, and is an active, spoghly bind. Its notes are lond, and in theeces, resombling tireedle, twerelle, terealle. . .

It appeared to me to be a restless, fighting species, ahmost always cherger in pmrsuing some of its fellows; thongh this might have been occasioned by its mombers, and the particular season of spring, when love and jealousy rage with violence in the breasts of the feathered tonants of the errowe; who expericnee all the ardeney of those passions no less than their lent amd sovereign man." \ddagger

Since writing the abowe lam from Mr. J. G. Ely of Lyme, Comn., that he has "shot one kentucky Wirhber."
52. Geothlypis trichas (Linné) Cahanis. Maryland Yellow-throat.

A common summer resident, brecling platitinly. Arrives early in May (May 5), remaning till late in the lall (Nov. 1st, 1876).

53. Geothlypis Philadelphia (IVilson) Baird. Mouruing Warbler.

A rather rare migrant, but prohally more ahmalam than commonly supposed-not coming till after most of the wablers are gone. Have only seen it in spring. Mr. Bragg shot a male on May $2+$ th, 1876 , in low moshes. On the following day Mr. Dayan seemed two males; and 1 sat several on the moming ot the 2tht. Nh: 'Thomas Oshorne has seon it as early as May 15 th (May 15 and 17,187 (3). I shot a heautilit male near savin Rock, Comm, May 25th, 187\%. Mr. Grimnell tells me that lie killed a pair (δ aml 8) late in May, 1×75, near Millom, Comm. Mr. J. N. Clark, also, has killet it, late in May, at Silyrook, Conn. At Easthampon, Mass., in the spring of 1874 , I shot two specimens: "The tirst, May 2fth, in a bush-heap' and the other, May esth, on a large hireh tree." large mombers of them lored regularly, in suitable loealities, in Lewis and Ilerkimer Commies, in nothem New York. It also hreals abmmanty ahom l'mburg Lake, Oxford Co., Mane (Brewster), and in Mimenota (T'. Martin Tripm), (eren as far west as "the led River, between Daknta and Dimesota" (Cones).

[^18]liegarding its song, simucls, in his "libds of New Englanl," says, "Its mote was a simple chirp, with a warbling termination like the syllables chimplofe, "hiphelece, nttered in a suft, pensise tone" (p. 207). I :an perfectly lamiliar with the swog of the him in puestion, but never heard it weter a mote that could, by any legitimate streteh of the imasination, be comstrucel into sammels" "rhingelure." Its common song consists of a simple, (lear, wathling whistle, resembling the syllables 'trat, 'trué, 'tríi, 'trú, 'toó, the voice rising on the lirst there sylables and falling on the last two. Sometimes, when otherwise oceripied, the first, or first iwo, syllahles are omitterl. All through the breding seasom, :mat till late in July, they lave a very (daracteristic habit of perching, at frequent intervals during the day, on some branch, gencrally a dead one, and commonly ten or fifteen feet from the gromm, and singing for half an hon at a time.
54. Icteria virens (Linné) Baird. Yellow-breasted Clat.

A common summer resident, breeding in dense mblergrowth. Arrives before the midlle of May ($\mathrm{M}_{\text {ay }} 1: 3,1876$, Osborme; 14, 1857). Extents ul the Comecticut Valley to Massachnsetts ("not rare" at Sufficld)." Given by Emmoms, in 1833 , as an "occasiomal visitant" in Ilassachusettrot Their loud, ringing, notes surpass those of the Catbird and ahmost equal the richly varied song of the brown Thrush (Hurporla!nchers rufies). Its habits so elosely resemble those of its western congener (var. lonficunde) that I take the liberty to quote the following brief extract, relating to some of the pectuliarities of that bind, from my repurt on the Mammals and binds collected hy the C. S. Geol. survey of the Territories in the year 1s7: : "They are shy, shepicions ereatures, and, althongh when disturbed they flit abont in areolding, angy manmer, generally manage to keep ont of sight. Iou hear them in the bushes imitating the mewing of a eat, the shrill notes of the Jay, sometimes singing like a ('athird, and again they sing sweetly in their own pecoliar maner. They have a stange hathit of evating themselves in the air to the height of thirty or forty feet, then, poising for a moment, deecend again to the bushes. During the descent they jork themselves abont in the ar, at the same time uttering elear, ejacolated notes, which ean be heara for quite a distance, and are not altogether mpleasant to the ear." \ddagger

[^19]Wrm. Brewster, lesq., speaking of its hathits in West Virginia, remarks that they arrised there about May 1 st, "amd for a ley days were silent, but soon beeame rery moisy, experally when haria retreats were invaded. Thedr motes are su varied as almust to defy deserpition. What I took tal le the somg of the male was a series of about eight very low bethlike whistles, commencing quickly, aml beoming slower and more emplatice towat the eml, then, atow an interval of a fow secomels, would follow a seobling chatter, to bre immediately suceotled by a single wor clear mote, then the sericso whistles again, hut all these notes were variod 16 an almost infinite extent. All this time the hird would he dodering theongh the bushes abead, keeping always in the thickest places, amd perhaps, after a moment of silence, womld smblenly strike up directly liehind yom. ln this way 1 have fregnently pursued we for fifteen or twent y^{\prime} minutes withont so much as getting a glimps at him. Sereral times, however, when I came upon him suddenly, be would put on a rey immeent and injurel air amb vociferate his motes directly at me, as it to dispel any possible suspicion, on my part, that he hat heen rominge, or, to speak more literally, flying anay."*

55. Myiodioctes mitratus (Gmelin) Audubon. Iloniel Warbler.

A smmmer resident, breeting in the Comecticut valley and along onr sonthers border. Althongh brerling almmantly at Saybrook, Comm, aecoring to Mr. J. N. Clark (recorled by lf. A. Purdie), t I have, as yet, seen but a single specimen from this vieinity. An ardult female was shot at Ilamden (near New ITaren) June 2, 187t, by Dr. F. WT. 11all. It was evidently breeding. Sitill it was fomd here in June, hy Dr. Wheplley, as long ago as 1842.1 Mr. Clark writes me from Saybrook: "The Hooded Warbler is very abmolant here in dense wools, breeding everywhere in suitable places, always in a low Lamrel (Ralmia) hush." Mr. E. I. Shores has taken it at Sutfieln, Comm, near the Dlassachusetts border, but in the Connecticut Valley.

My friends, Messis. John H. Sage of l'ortand, Conn., and Engene ['. Bicknell of Rivempale, Westehester Co., N. Y., have recently ealled my attention to an interesting state of plamage, in the female of this species, which was alhuded to by Wilomss and Nuttall, \| but

[^20]Trans Conn head., Vol. IV
1
Jthy, 18 it.
has since heen denied ly both Cones* and lbairl,t whon pitively, assert that the female has no hack on the head. (imerming it, Mr. sage farors me with the following mote: "When collecting at saylorook, Conn., with Mr. J. N. ('lark, May $30 t h, 1 \times 7$, he shot a female M. mitrutus in a plumage not mentioned in our (Omithologieal works, and thinking a deseription would be interesting, I send the following : Bill black. Feet flewheolor. Head and fore part of hreast back (but bot so pure as in the adult male), with slight indications of black on the throat. A broad patch on the forehead, extending down on the cheeks, with the moler parts loright yellow. Ear-eoverts tinged with olive. Tpper parts olive-green. Wings mmarked. Greater part of imer welos of onter three tail feathers white. The ova of this sjecimen were large. We took the nest with form eggs."

J have lately seen, in the eabinet of Dr. Sage, the bird from which the above deseripition was taken, and have now before me another female (killed by Dr. F. W. Hall, near New Haven, June 2, 1874) which agrees well with the description of Mr. Sage's specimen, but has the crown of the heat, or "hood," deep black-as rich as in the male. The lores also, in this specimen, are black, and the auriculars lack the nlive tinge, being bright yellow. Since the birds from which Prof. Baird and Mr. Ridgway, and Dr. Cones, took their deserijutions were dried skins, and not "in the flesh," it is not so smprising that the mature females were mistaken for young males. From the limited amount of material 1 have been able to examine, and from the notex given me ly Mr. Sage and Mr. Bickncll, I am inclined to helieve that the female bird, like the male, is several years-at least three-in attaining its full plumage; and that the two sexes, when fully adult, can only be distinguished ly the fact that, in the female, the throat, though strongly tinged with black, is never mere luck as in the male.
56. Myiodioctes pusillus (Wilson) Bonaparte.

Green Black-capped
Fly-catching Warbler.
A tolerably common spring migrant, arriving about the mildle of May. Have not taken it later than the 25th. This species is lyy mo means so common here as it seems to have been formerly.

[^21]57. Myiodioctes Canadensis (Linné) Audubon. Gamadian Ny- (atung Warbler.

Common during the migrations. Amives early in May. Have taken it from the thth the the 9 . Mr. W. W'. Coe informs me that it doubtless heeds athout lorthand, Comm, :s he hats seen it there throughont the summer.

58. Setophaga ruticilla (Limé) Swainson. Redstart.

A common summer resident; lnerls. Arrives early in Day. llave taken it from May sth to Neptember 2at. Mr. Stadmailler has a very beantiful nest of this speceics whieh "was placed in the fork of all wak tree about fiftern feet from the ground. It was huilt of grass and bits of paper, and eovered with cotton all over ontside, and lined with a few horse hairs." It contamed fonr eggs, June 10, 1874.

Family, TANAGRID雨.

59. Pyranga rubra (Limné) Vieillot. Scarlet Tanager.

A summer resilent; not uncommon. Dost frequent during the spring migrations; loreds. Arrives abont Nay loth, after which date they are common till the first of Jume. Took a female Sept. 11 th, 18%.
60. Pyranga æstiva (Linné) Vieillot. Summer Redbird.

A rare summer visitant from the South. "Stratford and New Haven, Linsley," :mul in a foot-note he further states that "The Summer lealbird is more rave than the searlet Tanager, thongl I have taken both here [Stratford] during the season of eherry blossoms." \dagger In the Bulletin of the Nuttall Ornithological Clnb for Jan., 1877 (vol. ii, No. 1, 1, 21), Mr. Purlie says, "Mr. Jencks informs me that a male was shot, a few years since, on Ten-mile River, six or eight miles northeast of l'rovidenee," li. I. I have never met with it except in Florita, where it has a very pleasant somg. Dr. Thompon, of this city, informs me that le shot one near New Haven, in smmer, abont five years ago; aml 1 am told by l'rof. Wm. D. Whitney that a friend of his, who was perfectly familar with the species, saw two imividuals, at different seasons, in Fillhonse Arenue, New Haven.

[^22]Mr. Erwin I. Shores writes me that he killed one at Suffeht, Come (in the Comnectient Valley) July 2 lst, 1876 . Does it not sometimes hered heres?

Family, HIRUNDINIDÆ.

61. Hirundo horreorum (Barton.) Barn Swallow.

A common summer resident, breding abumbatly moder the roofs of barns. Arrives thuing the latter part of April (April 21, 1875), remaining till September. Under the heat of this species, Peter Kalm wrote, from Raccoon, New Jersey, in 1750: "I observed them for the first time on the 10 th of April [new style); the next day in the morning, I saw great mumbers of them sitting on josts and phank, and they were as wet as if they had been just come ont of the sea," and the translator of his "Travels," John leinhold Forster, F.A.S., puts in a foot-note, saying: "It has been a snlject of contest among naturalists, to detcrmine the winter-fetreat of sucullows. The fuestion must therefore be decided by facts; nor are they wanting here : Dr. Wellerius, the celebrated Socelish Chemist, wrote in 1 it8, Neptember the eth, O. S., to the late Mr: Alein, secretary of the City of Dentzich: "That he has seen more than once Sucellors assembling on a reed, till they were all immersed and went to the bottom; this being preceded by a dirge of a quarter of an homs's length. He attests likewise, that he had seen a secallow canght dhring winter out of a lake with a net, drawn, as is common in northern countries, mole the ice: this bird was brought into a warm room, revired, Hhttered about, and soon after died. Nr. Klein applied to many Fermiers gencraud of the King of Prussicts homains, who had great lakes in their distriets. All the people questioned mate aftidavits "pon oath before the magistrates."
" Finst, The mother of the Comntess Lehmdorf said, that she hat sem a bundle of swallows bronght from the Frith-llafi (a lake communcating with the Baltic at Pillan) which when brought into a moderately wam room, revived and flutered about. Secomelly, Comnt Schlieben gave an instrument on stamped paper, importing, that by fishing on the lake helonging to his estate of Gerdenere in winter, he saw several sioullures callght in the ret, one of which he took nf, with his hand, bronght it into a warm room, where it lay about an hom, when it began to stir, and half an hour after it Hew abont in the room. Thirell!, Fermier general (Amtmun) Withoneski made atfidavit, that in the year 1740, three secallous were brought
uf) with the net in the great pond at /hidlecken; in the year 1711 , he got two sioullows from another part of the pond, and took them home, (they all leing callght in his presemce) ; after an hour's space they revived all in a warm room, fhetered abont, and died three hours after. thlly, Imtmen Bomke salys, that having had the estate filestion in farm, he had seen nine Strellums loroght up in the net from under the ice, all which he took into a warm room, where he distinctly observed how they gratually revived; but a few homs after they all died. Another time his prople got likewise some Secellores in a net, but he ordered them again to he thrown into the water. sthly, Indrew Rutto, a master fisherman, at Oletsko, mate atfidavit, 1747, that 22 years ago, two dimullours were taken up, by him, in a net, under the jee, and being brought inte a warm room, they flew about. Gthly, Jucob Fiosiulo, a master fisherman, at Strulumen, made aftidavit, that in 1736 , he brought up in winter, in a net, from muler the jee of the lake at lakki, a seemingly dead stectlow, which revived in halt in hom's time, in a wam room, and he saw, a quarter of an hour after, the hird grow weaker, and won atter dying. 7 thly, I can reckon myself among the eye-witnesses of this puruluzon of natural history. In the year 1735, being a little boy, I saw several Subllous brought in winter by fishermen, from the river V'istulu, to my father's honse, where two of them were brought into a warm room, revised, and flew about. I saw them several times settling on the wam stove (which the Jorthern nations have in their rooms) and I recollect well that the same forenoon they died, and I had them, when dead, in my hamd. In Jomur!y [1754] the lake of Lybshun, belonging to these estates, being covered with ice, I urdered the fishermen to fish therein, and in my presence several stofllours were taken; which the fishemen thew in again; but one I took up myself, bronght it home, which was five miles from thence, and it revived, but died about an homr after its reviving. These are fiets, attested by people of the highest quality. It is therefore highly probable, or rather incontestibly true, that sucetlous retire in the Vorthern comntries during winter, into the water, and stay there in a torpid state, till the return of warmth revises them again in spring."*

Not many yems ago l brought upon myself the everlasting odiun of an old lady, in the northern part of New York state, by presmang to guestion her statement that she had seen, "with

[^23]her own eyes," a mmber of swallows that had been exhmmerl, in at toppid state, from the maddy bottom of a pond in the meighbortood of her dwelling. She finther stated that, on taking them into the kitehen, "they som came (o) life and flew about the room," but whether this prematur" "hawing out" was followed, like the cases above recorded by Forster, ly an erpally spedy death, 1 do not remember.
62. Tachycineta bicolor (Vieillot) Cabanis. White-hellied Swallow.

I common summer resident, breeling in lobes in trees (renerally stambling in or about ponds). The earliest to arrive amial last to depart. Mr. Grimell has observed it as early as April $\overline{\mathrm{C}}$ th, and I have found it guite common by the 13 th.

In looking over Dr. WT. W. Coe's note book 1 find the following imeresting item: "While collecting in the vieinity of Portland, Conne, June $1+$ th, 1873 , I found, in the same tree, three Bholbird's eggs and fonr White-hellied swallow's eggs, and thereby hangs a tale: in cutting away the hole to take ont the Bluebird's eggs, l noticed a white teabher sticking "p, throngh the nest. Never having seen teathers in a Blachird's nest, and knowing that the White-bellied swallows haid theirs almost entirely of them, I thonght the Bluebiods might have driven off the swallows and apropriated the nest to their own nse. On removing the bluebird's nest I found this to be the case, for, mbermath it was the nest of the White-hellied Swallow complete and conatining form tresh eggs-the eggs of buth are now in my cabinet."*
63. Petrochelidon lunifrons (Siy) Sclater. Cliff Swallow; Eave Swallow.

A common summer resident, lreeding almodantly mader the eaves of bams. Arives about $\Lambda_{\text {pril }} 20$ th (April 15, 1877, Osborme; 21, 1877, A. I. Dayan), remaining till אeptember. JPofessor Verrill, some years since, showed conclusively that the Cliff swallow hat mot, as formerly supposed, immigraterl from the West, but was actually known in New England as long ago as the year 1800-long lofore its diseovery in the W^{\top} est. He also states that a lage colony of them was known to breed at Winlsor, Come, in $1830 . \dagger$

[^24]
64. Cotyle riparia (Limné) Boic. Bank Swallow.

A common summer resilent, brecting in colonics in holes in banks, gemerally wear some pond or river. Arrives eatly in thy (April 21, 1877, ג. J. Day:ab). Wilhams, writing of tho swallows of Vemont, in itet, relates the lollowing, which I transeriber for what it is worth: "The usual times of the appearance and lisappeare ance of these birds, serve to mark the temperature of the climate, with as much precision, as any of the phenomena of nature but they do not seem to be properly birds of passage. At D/mbly in this Sitate, the inhabiants report, that some of them were taken ont of a pond in that town, some years ago. A man was employed in the winter, to procure the roots of the pond lity, for medicinal pmoses. Among the mud and roots which he threw ont, several swallows were foum enelosed in the mud : alive, but in a torpids state. It has been doubted by some albe naturalists, whether it is prssible for the Swallow to live in sueln a situation. I saw an instance wheh puts the possilitity of the fict beyond all rom for donlt. Shout the year 1760 , two men were digging in the salt marsh, at Cambridge, in Massachnsetts: on the bank of the Charles liver, about two feet below the surface of the ground, they dug up a swallow, wholly surrommed and covered with mod. The Swallow was in a tomind state, but being held in their hands, it revived in abont hall an hour. The place where this Swallow was dug up was every day envered with the salt water, which at every high tide, was four or five teet deep. The time when this swallow was found was the latter part of the month of February."**
65. Stelgidopteryx serripennis (Audubon) Baird. Rongl-winged Swallow:

A rare summer visitant. "A female of this species was shot at Suffield, Conn., ly Mr. Shores, June iftl, 1874." \dagger My frieml, Mr. Engene l'. Bieknell, informs me that he has fomm it in mombers at Riverdale, N. Y., within a few miles of the Conneenicut line, and that it hreeds there-sometimes placing its nest "mbler a bridese"
66. Progne purpurea (Linnéj Boie. Purple Martin.

A snmmer resident, breelling in "Martin hoxes" in villages. Arrives during the midille or latter part of April (April 17, 20, 2.,

[^25]18：5）．Alare eolony of them is located ore the Finst National Bank， in the conter of New llaven．They are abmalant at（iniffort，Comn，
 precterl for them by（＇ipu．Browks．

Family．AMPELID鹿．

67．Ampelis garrulus Linné．Bohemian Waxwing

A rare，almost aceidental，winter risitant．On the 11 th of Foburary，1sto．Prot：ㄷ．I．smith saw a hage Ampelis which he thinks was，witheme louht，A．fetermbers．It was in the old wooter？ cenctery in New llasen．Jrof．smith is familiar with the him in question，having sern it in Maine．A number of eases of its ncenr－ rence in Massachusetts have been recorterl，hut the only instance of its captore in this state is that given by．I．A．Nllen．＂It has bem taken in Commertiont［near Hartfort］hy Dr．Wool，＂＊ant the Woctor tells me that he shut tham by aceilent，when firing into a Hock of Cedar Birds．＂siceral were shot on Long Islame in 1830 and $1832 . . \dagger$

68．Ampelis cedrorum（Linné）Selater．Cedlar Bird：Cherry Biril．

A resident．Gonerally eommon．Breeds in orehards and low thickets．Gregarims．Almost the omly bird that ferts，to any grat extent，on canker worms．

Family，VIREONID雨．

69．Vireo olivaceus（Linné）Vieillot．Red－eved Tireo．
An ahmolant summer resident，breeding chiefly in high woollam？． Arrives during the first week in May（May 6 ），remaning as late as the first of Oetmber（Oct．2）．Superthously noisy．

70．Vireo gilvus（Tieillot）Bonaparte．Warbling Vireo．
A common summer resident．breeding in orchards．Arrives before the mildle of May（Jay 7，1875，Oshome；12，13．14，187ヶ．）Couts thins briefly allutes to the hahits of this pleasing little songster：＂Not bom to＇waste its sweetness on the resert air，＇the Warbling Vireo forsakes the depths of the woodland for the park amd orchard and

[^26]Shady street, where it eslides throngh the lintiage of the tallest trees, the mesen messenger of rest and peace to the lmasy, dhety hannts of men."

71. Vireo flavifrons Vioillot. Yellow-throated Vireo.

A tokerably common smmer resident; particularly abmadint in spring amd fall. Arrises early in May (May 6), remaining till after the middle of september (Sept. 15, 17, 1875).

72. Vireo solitarius (Wilson) Vieillot. Blue-headed, or Solitary Vireo.

Not uncommon during the migrations. A few breal. Arsives during the first week in May (May 2, 1876, Oshome; 6, 1875, (. II. M.; May 5, 187t, Nichols). Have taken it as late as Oct. 13th. A nest of this species, found Jme 18th, 1875, near New Haven (Beaver šamp), by the Stadtmïllers, "was ont on the limb of a Chestnut tree abont 30 feet from the ground, and was constructed of the batk of different kinds of trees, lined with grass. Joss and caterpillars' silk were plastered outside. It contained four egres, which were two-thirds hatched."*

73. Vireo Noveboracensis (Gmelin) Bonaparte. White-eyed Vireo.

A summer resident, but not partionlaty common except along sonthern Connecticut, and in the Connecticnt Valley, where it is common all the way up to the Massachnsetts line (sutheld, E. I. Shores). Arrives hefore May loth (May 7, Osbome).

Nome- IVeo I'hilhedelpiens Cassin, undonbtedly oreurs within our limits, as a rare, or acedental, visitant, but as yet mo record of its capture has appeared. Onsept. 7th, 1875, Mr. William Brewster " shot a female of this beautifinl little species in Cambritge, Mass." \dagger

Family, LANIIDAE.

74. Collurio borealis (Vieillot) Baird. Buteher Bird; Shrike.

I somewhat irregular winter resident. Arvies in October or November (Oct. 29, 1876, Sage;) remaining till the bater part of Marh (March 24, 1876, Osborne). Very abundant some yeats. and equally searee in others. Mr. Maynarl says, "when the Lesser liect-

[^27]polls or the line Finches are common, the shakes follow them amd frey יpon them." During the winters of 18it-5 and 1875-6, when
 finns) were here, Butcher biaks were motally searer ; while during the past winter (1876-7) Narikes har heen mommonly plenty, hut woither of the other birds were seen at all. It is lat fiar 10 state, howerer, that during the lirst two winters mentioned neithe the Linnets nor Finches were here in large enough mombers to hat eafforded the Butcher bials a reliable source of diet. Last winter the English Sparmows supplical all officiencies amb it was no uncommon thing to see a Butcher Bird flying amoss the street with one in its talons. The "poor sparrows," mused to danger of anys sort, were utterly helpless, and ato ome time it secmed as if we were actually going to be rid of the little pests, lat warm weather eame to their relief, driving the intruters hack to their boreal homes, and now the sparrows are apparently as mmerons as ever they were. Mr. Niehols shot one Jan. 13th, 1876, whose stomach eontained grasshoppers! Where could it have foum them at that season?

75. Collurio Ludovicianus (Linné) Baird. Loggerhead Shrike.

A rare visitor from the south and West. Mr. W. W. Coe has a tine specimen of this species in his ealhet, which he shot near Portlamd, Comn., in Nuv., 1876 . Franklin Benner, Esq., writes me that he "saw : Shtike of some suecies at Nt. Carmet [near New llaven] May 24th, 1873 ," which, if he wats not mistaken in the bird, coull bardly have been the mothern Butcher Bird, min might have been this species.

Family, FRINGILLID正.

76. Pinicola enucleator (Linné) Cabanis. Pine Grosheak.

An irregular winter visitant. They were here through the months of Feh. and Dec., 1875, and during .Jan. :mal Feb., 1876, but mone were secn last winter. Messes. Coe and sage, of Portland, Com., tell me that it is foumd there regularly enom winter, though the red males are not always seen, and that they hase olserved it as late as Nareh 12 th (187:3), and as early as Nov. 24th (1855, and 25,1874).

77. Carpodacus purpureus (Gmelin) Gray. Purple Finch.

Lexident, hreeding abomlantly. Gregarinus. Mr: Grinncll informs me that he has taken it during every month of the year. Dr.

Wood, of East Windsor Hill, tells me that they were almost maknown here twenty yeas ago, ant have gradnally become commen sine 1 am likewise informed by Mr. Clark, of Saybrook, that the bial has anly reecntly becone a common species in that ricinity.

78. Loxia leucoptera Gmelin. White-winged Crossbill.

An irregular winter visitant. 'They were not uncommon during the months of Jan., Fel) and Mard, 1875.
79. Loxia curvirostra. var. Americana (Wilson) Coues. Red Crosslill,

An irregula winter visitant, like the last, amd more frequently secth. linsley gave it in his list, stating that it had "heen repeatertly seen in Trumbull, in this [Fairfield] comnty, hy a Mr: Beers." Ilr. W. W. Coc has taken a momber of this, as well as the preceding species, ahont Partland, Com. A few were seen about New llaven darly in Dec., 1876. It has heen known tu breed near New York City.*

80. Egiothus linaria (Limné) C'abmis. Red-poll Liunet.

Aso an irregular winter visitant. They were quite common here fluring the month of March, 1875 (and Mr. Sage saw a flock at Portland, Comm., March 31), but nome were sern in the winters of $1875-(;$ and 1876-7. Mr. W. W. ('ue took it at Portlam, Comn., March 20d, 187: , and saw there large flocks of them (inchuling many highly phomaged males) in March, $1875 . \dagger$
81. Chrysomitris pinus (Wilson) Bonaparte. Pine Finch; Pine Linnet.

An irregular fall and winter visitant. Quite common from Oct., 1874, till March, 1875. Also seen in Oct., 1875. Linsley says: "I took one specimen from a large flock, which was here in my yard [Stratford, Comn.] as late as Nor: ith, 1840." In Mareh and April, 1873, I fonm them extremely abmolant near the houndary line between Georgia and South Carolina, notwithstanding the statement, in Baird, Brewer, amt Ridgway's great work, that: "acrording to Dr. Cones, this species umeasionally strays as far to the fouth as the Carolinas, but it is not common there," (p. 481). This case simply afforts another example of their irregnlar migrations.

[^28]82. Chrysomitris tristis (Limmi) Romaparte. Common Yollowhirl.

An almulan resident, hreeding latr. Common everywhereanl is yregarions.
83. Plectrophanes nivalis (himé) Meyer. Nnow Bunting.

A common winter visitor, generally seen daring show-storms. Linsley, in his "Catalogue of the Birds of Comeretieut," su frequenty cited, s:lys, "Large flocks of the smow limeting were repeaterly seen bere in the winters of 18.40 , 1841 and 1842 . Previous to that protiont, I hull mot seen me here in cighteen !fencs." (1. 261, font-mote).
84. Plectrophanes Lapponicus (Liuné) Selley. Lapland Longspur.

Gecoms as a winter visitant, along with I. miorlis, thongh wo
 B. Grimell informs me that he has sem half a dozen sperimens, killed near the Comecticut River (Porthan, Comm.), by Mr. W. W. Cone. Mr. Walter P. Nichols has taken it near New Haven, and Mr. Erwin l. Shores "obtainel a male ont of a flock of J. nioutis, in Nov., 1874" at suftield, Comb. Mr. Coe has taken it as late as March 16th, (1875).
85. Passerculus princeps Mtaynard. Maynard's Sparrow.
l'robably oceurs quite regularly along the coast in Nos. and Dec. (and perhaps also in Mareh) in such sparing numbers as to escape notice. The only specimen of this beautiful bidy yet taken in this State, so far as I am aware, is the one shot by myself while collecting invertebrates, at low water, with my friend, Mr. A. F. Clark. "On Nor. 4th, 1875, while collecting along the beach at 'south End,' a few miles below New Haven, I was fortmate enongh to secme a fine specimen of the Inswich Sparrow (I'mserculus primeps Maynard). The speeimen was a female, and in excellent condition. Its mate was seen, but eseapecl capture."* The day was cold ami chilly, with oceasional Hurries of snow.

86. Passerculus Savanna (Wilson) Bonaparte. Savanna Sparrow.

An abmedant summer resident, breeding in open fields and pastures. Amives early in April, remaining, in large mmbers, till after the midtle of November.

[^29] Finch.

A common summer resident, hereding ahmotantly, like the last, in open fieks. Arrives ealy in April (April if, 1 sits and s:ame date 1877, Sage ; remaining till abont the midnle of Nowember.
88. Coturniculus passerinus (Wilson) honaparte Yellow-wingal Sparrow:

A common smmer resident in sume parts of Conmeeticot (motally in the ('ommeetient Valley and along our somthern burter) ; not fomm at all in others. Arrives eany in May. Frequents dry, samly, trealess wastes. Linsley fombl breerling here and at stanteme. "In the vienity of llartforl, Come, this hird apmears ako to be a mot bucommon summer resident."* Mr. I'mrlie states that "at Saybrok, Conne, its notes were to he hearl in every field." \dagger I have taken it near Savin Rock (May 2! , 1876), aml Mr. (irimell tells me it is mot uncommon ahont lliford, Com, It also hreals ahont Portan\}, Conn. (Coe and Sage). I am informed hy Messer. (irimell amb Clark that it builds a beantiful covered nest, not molike that of the Oren bird (s゙iur=s raurictpillus). Mr. Erwin l. Shores writes me that he has taken it at Enfieln, Comn, in the northem part of the State, but in the Commectient Valley, in July (July fi, 1874).

89. Coturniculus Henslowi (Auluhon) Bonaparte. Henslow's Sparrow.

A rare smmes resident. I am very glad to be able to inclute this species on the strength of a sperimen just rereivel from my friend Dr. F. Wr. Mall. He shot it at Killingworth, Mildlesex Co., Comn., July 18 th, 18.3 , and it is in the worn breeding plumages I had searehed in vain for it in the many collections of the hirds of this State to which 1 have had aceess, aml had really despaired of finding it at all. Many specimens have been taken in Massambetts and it dombtess ocems regularly in the Comectient Valley, if not in wher parts of the state. Giramd says that momg Island " it is mot so rare as is generally supposed. In general, it fregnents the low, wet meadows, and passes most of its time on the gromil among the tall grass, ant is exceedingly difficult to flush, even when pursned with dogs; it will not fly until nearly within their rearh, when it starts from the gromul, moves on only a fow gats, and agan drops among the grass." \ddagger

[^30]90. Ammodromus maritimus (Wilsnn) Swainson. Seaside Finch.

1 common summer resident, freding atmmetanty in the salt and harakish water marshes mear the coast. Remains into september.
91. Ammodromus caudacutus (Gmelin) Swainson. Sharp-tailed Finch.

A common smmmer resilent, like the last, and breeds in the same situations. Amives almont the middle of April (Apr. 1t, Osbome $)$. Their eges are laid dmong the last of May and first of Jme.

 almontantly. Wre fomme ereat mmbers of both afong the Quimipiac liver, and solar inlaml that the water was almost, if mot quite, fresh.
 bin on the whole the latter greatly prendminates.
92. Melospiza palustris (Wilson) Bairl. Swamp Sparrow.

A rommon smmer resikent, beding pentifilly. Arives early in $\Lambda_{\text {pril }}$, remaming till late in November (Nov. 20).
93. Melospiza melodia (Witson) Bairl. Soug Sparrow.

An almodant resident; particnlany momerous from February 10 beeember, but not meommon all throngh Decomber and Jamary. In the winter season they frequent whe fences alongside which a (opions growth of bushwoof has sprong up; also fomit in backyarls in the eity. Ms. WF. W'. C'oe, of Portlaml, Comn, found a hong Aparmw's nest in : hole in a tree ten feet from the gronnd (early dme, 1873).*

94. Melospiza Lincolni (Audubon) Baird. Lincoh's Finch.

A rather rare smmmer resident. Mr. J. N. Clark, of Saylirook, Comm, showed me a mounted specimen of this species which he had shot in a brosh heap in his garien in the spring of 1875 . He thinks he saw amother a few days lefore, lut it was very sly ame he diol not kill it. Mr. Erwin I. Shores, of Suffield, Comn., writes me that it is "not rare" in that vicinity, where he took one specimen in 1874, aml three more this spring (185\%). Mr. Whores says that on May 23, and again on Jume 2l, he "saw one with small twigs in its bill," hence, althongh he did not actually find the nest, there can be no reasonable

[^31]doubt of its hreeding. He fiomber states: "There is a small piere of Womlland in this phate where surely they camme be considered rare. Have seen sereat that I're mot been able to shoot. 'They are vary
 an deat of what it is, when down he genes into the hate shathery, and no amomb of patient wating will tempt him to come in sight agran. Jrovoked, you determine to kill erery one that comes in sight, and after the shanghter of half a dozen immeent song or swamy sparrows, you conclude that that won't do. Then, perhaps, almost the first hird yon leave will be Limeon's sparow. I think they are much more common than gemerally suppotel, but are so shy, and imhalit such hushy pastures, that they are hame to fiml."* .I. fi. Ely, of Lyme, Comm., "took three this springe" (187").
95. Junco hyemalis (Linné) Shter. Slate-colored Snowhird.

A common winter resident, arriving, from the north hefore the middle of October (Oct. \&, 1856 , Oshome), and remaining till the first week in May (last seen May - 1875, Owhome; May 3, 1876).

96. Spizella monticola (Gmelin) Baird. Tree sparrow.

A common winter resident, but more momerons in sping and fall. Arives from the north abont the last of Octolere (OCt. $28,1 \times 5$), and remains till near the middle of Apmil (.1pr. 12, Oshome).
97. Spizella socialis (Witson) Bonaparte. Clipping sparrow.

An abmodant summer resident, atriving as arly as the latter part of February (Fel) 23, 1s7t. (r. B. Grimell), and remaining, in numbers, till the last of November. Sometimes plates its frail nest on the gromet, as well as on trees and bushes (Cobe . I tew sometimes - pend the winter with the Euglish sparmws alwout thwn. They often awake in the night, sing onere and go where again. Srately a night passes (in June almb (anty July) but that I hear ond sing sereral times-generally about midnight.
98. Spizella pusilla (Wilson) Bonaparte. Field Sparrow.

An abmoknt summer resident, generally breeding in upen fields. Amives early in April (Apr. 6, 18:7. Pottand, Comn, tage), remaining till December (hare taken it all throngh November and on lee.

[^32]\because, 1875). They are untiring songsters, particulaty in carly spring, and may be fomblerywhere except in lense woots. I'he song of the Fichd suarow is lomb, elear, amd pleasing, and he may consider himself fortmate, who has mastered its mmeroms variations. Dinot selys of it, "No sommls :me more refreshing, on a warm atternoom of early summer, than those which they produce." It nests both on the gromed and in low bushes.
99. Zonotrichia albicollis (Gmelin) Bonaparte. White-throated sparrow.

Abundant during the migrations, sometimes remaining all winter. Arrives from the morth about Sept. 22h, remaning through November. Returns in April amd departs abont May 20 , at which tate it was last seen, hoth in 1876 and 1877 . During the winter of $1874-5$ they were very muncrous all about the city, as well as in the surrombling country. Mr. Erwin I. Shores, of sutheh, Comn., writes me that on May 15, 1857, they were extremely abmatant in the woods in his vicinity-outnumbering all the other species tugether.
100. Zonotrichia leucophrys (Forst.) Sw. White-crewned Sparrow.

An irregular migrant ; sometimes quite common. (Nov. 28 and Dec. 5, 1874; Oct. 25,1875 , commom.) Mr. Dayan shot a beantiful specimen May 10, 1876. Mr. Osborne saw it on May 15, 1877. Mr. W. W. Coe shot one at l'ortland, Comn., March 20, 1875.

101. Passer domesticus Brisson. English Sparrow; Honse Sparrow.

Introduced. An abmulat resident in all the larger, and most of the smabler, towns throughout the state. The opening sentence, under the hearl of this species, in II. E. Dresser's magnificent work on "The Birds of Europe," shows that its habits have remaned unehuged, in one respect at least, notwithstanding the great distance it has been earried, and the varied comditions to which it has heen sulyected: " Throughout Enrofe the Honse Sparow is rery gencrally distrihated almost wherever there are human hahitations (except in the extreme north) ; for it follows the footsteps of man almost like a domestic animal, and where he fixes his hahitation there the Sparrow ako takes up its alhore." 'Their pugnacity seems to vary in different parts of the country and at different times of the year. In New Haven their atitude towarl other species is not generally oftensive, and they are commonly seen on the friendliest tems with the Chipping sparows, throughout the entire season. In early spring I have
ohserved them feeding quiety with the laed-poll Wrarblers (I)emborat pulmmmm) on the City (iveen, and in lall it is no meommon thing to find them associated with Peesstrelle iliuen, Zomotrichien ulhicollis, Molospiad melodia, and syizella socialis and pusilln, without showing the slightest sign of amimosity. J" New York amf other cities, however, they are sometimes quite belligerent, attacking and driving off the birds that once secupied the same grounti. This is especially noticeable in spring, when they apropriate the honses put uf for bluehirds, Wrens, and other species. That they do some good in destroying infurions insects is eertan. "In open places where there are a few trees in the towns, such as the gartens in the squares or in the parks, it is eminently nsefil in ridding the foliage of the insects which would otherwise destroy the leaves and tender shoots ; and destroys myrials of the small smooth eaterpillers and larve Wheh feed on the lmds of the trees, and is one of the best guardians of the oreha:d."* A few days ago my attention was attracted by the peculiar actions of one of these sparows. It was hopping along on the uppermost rol of a fence, aml whenere it came to a post (into which the fence rods were inserted) it would stand on tip-toe and peep up under the momental top-board of the post, as if looking for something. On coming nearer I discovered that the hird was searching for moths, of which it secmed one or more at ach post, and, alter proceeding in this manner for several rods, it fiew away, eridenty having had cuough for one meal. In passing the fence since, I have, on several ocoasions, seen a sparrow, aprarently ant probahly the same individual, going throngh with preeisely the same procedure, and with the same result. Do nut cases like the above go far to prove that many lids are highly intelligent and possess a good degree of memory? 'The Sjarrow in question discovered a moth, donhtless by accicient, eoncealed beneath the overlaping edge of the top-hoard of a fence-post. Was he content with simply gobbling this one 11)? By no means; if there is one there may be more, and sure enongh he soon spies another, and, going to the next post, still another, and so on till he is satisfich. Next day, when searching for breakfast, does lie forget yesterday's experience? Not at all; he returns to the fence-posts and reatily seeures another meal. The chane finding of the first moth has led to the knowledge that similar insects take refuge, by day, in eertain places; and in the

[^33]establishment of a regnlar habit of searehing for them. In spring, When the trees are in flower, and the swollen huts give place to tender green leaves, the Itonse Nparows join the carly Wablers in rmming ahont among the brancles in pursuit of one another as well as of the small beetes that come there to feed upon the fresh foliage. But so far as the accomplishment of the object for which they were imported, vi\%, the extemination of the canker worm (Absopteryx vermutu and A. pometrein) in our larger towns and cities, they have most signally failet. That they occasionally devom the full-grown moth ean not be donbted; neither do 1 feel justified in denying that they sometimes eat the worms themselves, though I have never seen them touch one-not even when hopping abont in the midst of hundreds of canker worms. They seem to prefer the small beetles and seeds abounding in the horse droppings about the streets. It is trne that there was a great dimimion in the ranks of the canker worms soon after the introdnction of the Honse Sparrows, but I am informed that this was due to a parasite (llatyguster) which preyed upon and destroyed great numbers of the worms by depositing its eggs in the eggs of the canker worm moth, and not, as generally supposeri, to the sparrows. It may, perhaps, be considered as someWhat of a digression in a mere local list like this, to devote so much space to the biography of a species, but I believe that notes recording actual observations on the habits of any bird should always prove acceptable, especially when there is difference of opinion, resulting in controvers, regarding the merits of a species, for in this way the possilility that individnals, or colonies, may differ in habits in different localities, or at different seasnns, is snggesterl, and warns us not to be too dogmatic in olu statements, or too hasty in drawing conclusions.

For abmelant and unquestionable evidence of the pugnacity and disagreeable qualities of this hid, in some sections, see the writings of Cones, Gentry, and others. Velmont de Bomare, writing in 1791, says: "In Brandebourg, in orter to diminish the ravages committed by sparrows, a price is set on their hearls, and the peasants are compelled by law to bring in a certain mmber yearly; in each village there are Sparrow limers who sell the lirits to the peasants to enable them to pay their tribute. . . It follows the farmer while so wing, harvesting, threshing, or feeding his ponltry; it enters the Dovecot, and with its hill pierees the throats of young pigeons, to obtain the grain in their craw."*

[^34]The English Ilouse Sparrow was hirst intmoneed into New Englam, so lar as I am aware, in the lall of 1858 , when "Six hirds were set at liberty in a large garden" in the city of Portland, Maine. "They were introduced into lioston liy the eity govermment in 1868,"* and have since spread over the greater part of New England.
102. Passerella iliaca (Merrom) Swainson. Fox-colored Sparrow.

Common during the migrations, arriving from the North during the midule or latter part of October (Oct. 10, 1876, Osborne; 23, 1877), and remaining about a month (Nov. 20). Have taken it, in spring, from March 6th to April 19th. Gregarions. The largest and surely one of the hamdsomest of our Sparows. Speaking of its song, Dr. Brewer says: "His voice is loml, elear, and melorions; his notes full, rich, and varied; and his song is mequalled by any of this family that I have ever heird."

103. Euspiza Americana (Gmelin) Bonaparte. Black-throated Punting.

Dr. Linsley, in his "Cutulogne," takes partienlar pains to state that this species was "very common" at New llaven (p. 261), but I hase never seen it here and can find no other reeord of its capture in this State. It must be regarded as very rare in New Englind, although several have heen taken, hreeding, in Massachusetts. Its former abundance and present searcity in this section affords another excellent example of the irregular migrations of birds. Girand gave it as breeding commonly on Long Islant, \dagger but says the eggs are "white, speckled with black," whereas they are blue, ummarked.
104. Goniaphea Ludoviciana (Limé) Bowditch. Rose-breasted Grosbeak.

A common summer resident, breeding in dense undergrowth. Arrives before the middle of May (May 11, 187t, Portland, Comn, Sage), and I shot a female as hate as Nov. 25th, (1874), in the city. I am informed by Prof. G. Brown Goode, of Middletown, Com., that he knew an individual of this species to live eighteen years in continement. Mr. J. Ilammond Trmmbull tells me that it was alnost nnknown about Ilartford, Conn., thirty-five years ago.

Note. - G. cuerten probibly oceurs as an accidental visitant from the Sonth. It has heen taken on the Island of Grand Menan, ${ }_{t}$ and

[^35]Mr. Boardman states that it was "common in the spring of 1861 " in the vicinity of Calais, Maine !*
105. Cyanospiza cyanea (Linnć) Baird. Indigo Bird.

A common summer resident, breeding, like the last, in thick patehes of bushes. Amives before the middle of May (May 14, 1874, J. 11. Sage; 14, 1876 , Oshorne; 14, 1877, C. H. M.; also May 3, 1875, Sage), remaining into September.
106. Cardinalis Virginianus (Brisson) Bonaparte. Cardiaal Crosheak.

Arare and accidental smmmer visitor from the Sonth. Mr. Thomas Bostwick of this city found one lying deal during the smmmer of 1874, and Mr. Geo. Bird Grimell, who examined the specimen, tells me that its bill and feet, as well as the phmage, proved it to be a wild birl. Numerous specimens have, from time to time, been taken or seen along the Connecticnt Valley, and it is highly improbable that they were all escaped cage birds. My friend, Mr. E. P. Bicknell, has taken a mmber of individuals about Riverdale, Westehester Co., N. Y., and it is certain that most, if not all, of them were wild.
legarting the age to which our small birts attain, it is worthy of mention that my grandmother kept a Curdinal Bird caged for twentyone years-it was noisy to the last. Its colors began to fade several years lefore its death, till finally it looked very like a wom female.

It winters as far north as sonthem New Jersey and Pemsylvania (Turnbull). \uparrow
107. Pipilo erythrophthalmus (Linné) Vieillot. Chewink; Towhee Bunting.

A common summer resilent, brecting on the gromi, in matergrowth, and in the wools. Arrives early in May (llay 1, 1876 , Oshorne; 4, 1877), remaining till November (Oct. 28, Nov. 8.) Mr. J. H. Sage has a fine male in his cabinet which was shot near Portland, Comm.. Jom. 20d, 1876! A characteristic nest, found May 24th, 187t, "under a Virginia Jmijerr," by the stadtmiuller Brothers, " was composed extemally of cedar bark, lined with grass and horse hair." \dagger

[^36]
Family, ICTERIDAE.

108. Dolichonyx oryzivorus (Linné) Swainson. Boholink; liced-bird, Rice-bird.

A common summer resident, breding in meadows. Arrives before the middle of May May 7 , 1s50, Osborne; same date at Portland, Aage; llay 12, 18:7).

109. Molothrus pecoris (Gmelin) Swainson. Cow-bird.

An ahmodant summer resident, arriving in March or early in April and remaining till November (Nov. 4, 1874). Sometimes winters. Mr. Geo. Jiad Grimell writes me that he took it twice in mid-winter (Jan. 15, 1874, and Jan. 16, 1855).

110. Agelæus phœeniceus (Linné) Vieillot. Red-winged Blackbird.

A common summer resident, breeding abundantly in sw:mpy places. Sometimes winters. Arrives during the latter part of Felornary or early in March (March t), remaining till late in the fall. Though generally choosing elumps of bushes for their characteristic nests, they sonetimes place them on the eground. On the 6 th of June, 1876, Mr. Daym and myself, while collecting on a part of the Quinnipiac marshes where there were no bushes, found several nests contaning fresh eggs. The nests were extremely shallow-very mulike those commonly found in bushes-and were pacen on the bare ground, in the grass, with no attempt at concealment. I am informed by Dr. Grimmell that he has taken it in January (Jan. 15, 1874, and Jan. 16, 1875). This is the hird concerning which Josselyn wrote (in 1675) that there were, in New England, "Storlings black as Rorens with scarlet pinions."* Mr. W. W. Coe once wounded one of these hids (probably strikinge it in the head) which "started into the air and kept going up-nן-1p-sailing in larger circlesstill ascending till lost to sight." \dagger

111. Sturnella magna (Linne) Baird. Meadow-lark.

Revident, but particularly ahmolant from eanly spring till late in the fall. A few small fiocks winter along the coast. The liev. Alr. Peabody observes that this birl "has few enemies excepting IIawks, snakes, and young sportsmen."

[^37]112. Icterus spurius (Linne) Bonaparte. Orchard Oriole.

A common smmer resident, breeding ehiefty in orehards. Arrives during the first week in May (May 7,1876 , Osborne).

113. Icterus Baltimore (Linné) Daudin. Baltimore Oriole.

A common summer resilent, hreeding plentifully in the city as well as comntry thrmghout the State. Arrives about May loth. Have taken it on the 8th, and Mr. Osborne siaw one as early as the 6th (1876), while this year (187t) it dit not come, in any numbers, till the 13 th, when the whole conutry was literally "alive with them." Mr. J. Il. sige saw it at llartford, May $6 t h, 1868$ aml 7 th, 1872 ; also at Porthand, Comn., May Th, 1876 , and May 10th, 1874 and 1875.

114. Scolecophagus ferrugineus (Gmelin) Swainson. Rusty Gracklo.

Ahmolint during the migrations, sometimes wintering. Arrives hefore the millle of February (firimell) remaining throngh March into April (April 19, Osborne). In the fall it returns before the minlle of September (Sept. 11, 1875 several flocks seen), remaining into November. Mr. (ivinuell juforms me that he took it, at Milford, Comn. Jan. 16 th and $29 t h$, and F'eb. 6th, 1875.

115. Quiscalus purpureus (Linné) Lieht. Crow Blacklird.

A common summer resident, breeding in evergreen trees in the eity, as well as outside. Arrives about March 1 st, though a few are generally seen in February (Feb. 13, 1876). Departs in November.

Such was the abmodance, in early colonial times, of some of our commoner, and at present harmless, birds, that "preminms were paid by the local goveruments for the destruction of many of these species, and not without cause."* The town of Lymo, on Mareh Eth, 1697, voted "that every honsehohler in the town, shonld, sometime before the tifteenth day of May next, kill or eanse to be killed, twelve blackbirds, and bring the heads of them, at or before the time aforesaid, to Ebemezer Stocker's, or Sammel Collins's, or 'Thomas Burrage's, of John Gowing's, who are appointed and chose by the town to receive and take account of the same, and take care this order be duly prosecuted ; and if amy houscholder as aforesaid shall refuse or neglect to kill and hring in the heads of twelve blackbirds, as aforesad, every

[^38]such person shatl pay three penee for every blackhim that is wating, as aforesaill, for the use of the town."*

Peter Kialm, in his "Truvels into North Ameriea," thus speaks of their depretations: "A species of birds, ealled by the swedes, maizethieves, do the greatest mischief in this country. They have given them that mane, becanse they eat maize, hoth pmblicly amd sececty, just after it is sown and covered with gromm, amd when it is ripe. The English eall them backhirds. There are two species of them, both deseribed and drawn by Cateshyt 'Thongh they are very different in species, pet there is su great a friemblip, between them, that they frequently accompany each other in mised flocks. llowerer, in Pemsylvania, the first sort are more obvious, and often tly together without any of the red-winged stares. Their chief and most agreeable fool is maize. They come in great swams in spring, soon after the maize is put under gromid. They serateh up the grains of maize and eat them. As soom as the leaf comes out, they take hohl of it with their bills, and phek it up, together with the corn or grain; and thus they give a great deal of tronble to the country people, even so early in spring. To lessen their greediness of maize, some people rip, the grains of that plant in a decoet of the root of the verutrum allum, or white hellebore, (of which I shall speak in the sequel), and plant them afterwards. When the maize-thief eats a grain or two, which are so prepared, his head is disordered, and he falls down: this frightens his companons, and they dare mot venture to the place again. But they repay themselves amply towards autumn, when the maize grows ripe; for at that time they are continually feeding. They assemble by thousands in the maize-fiells, and live at discretion. 'Ihey are very bold; for when they are disturbed, they only go and settle in another part of the field. In that manner, they always go from one end of the field to the ether, and do not leave it till they are quite satisfied. They fly in incredible swams in antumn; and it ean harlly be conceived whence such immense mmbers of them should eome. When they rise in the air they darken the sky, and make it look quite black. They are then in such great mumbers, and so close together, that it is suprising how they find rom to move their wings. I have known a person shoot a great number of them on one side of a maize-fieh, whieh was far from frightening the rest; for they only just took flight, and droppeel

[^39]at about the listance of a masket-shot in another part of the field, and always changel their phace when their enemy approachet. They tired the sportsman, before he could hrive them ofl the maize, thongh he killed a great many of them at every shot. They likewise eat the seeds of the uquatic ture-fruss (Zizania anuatira) commonly late in antum, after the maize is got in. I an told, they likewise cat lmokwheat, and uats. some jeople say, that they even cat wheat, harley, and rye, when pressed hy hanger; yet, from the best information I cond obtain, they have not been found to doany damage to these species of com. In spring, they sit in mmbers on the trees, near the farms; and their note is pretty agrecable. As they are su destructive to maze, the odim of the iubabitants aganst them is carried so far, that the laws of Pemsylnanion and Nem Jersey have settled a premimm of three pence a dozon for dead maize-thieves. In Vem Einglant, the people are still greater enemies to them; for Dr. Frmblitu told me, in the spring of the year 1550 , that, by means of the premiums which have beensethed for killing them in Teo Englaml, they hare been so extirpated, that they are very rarely seen, and in a few places only. liut as, in the summer of the year 1649 , an immense quantity of worms appeared on the meadows, which devoured the grass, and did great damage, the peojle have abated their enmity against the maize-thicres ; for they thonght they had ohserved that those birds lived chiefly on these worms before the maize is ripe, and eonsequently extirpated them, or at least prevented their spreading too much. They seem therefore to be entitled, as it were, to a reward for their trouble." \dagger

Note.-The Boat-tailel Grackle (Quisculus mojor, Vieillnt) has been accredited to New England hy Linsley amd others, but an mosually large Crow Blackhird was probathy mistaken for it.*

Family, CORVID平.

116. Corvus Americanus Andubon. Common f'row.

An abmulant resident; generally lays five eggs and sometimes six (Coc). On the 25th of Jamary, 1875, I saw a flock of several humdred Crows near New Ihaven. "It is related of a certain ancient philosopher, walking along the sea-shore to gather shells, that one of

[^40]these mulueky himes, mistaking his bald head for at stome, fropped at shell-fish mpon it, and thas killed at omere a philosophere and an oyst.cr." ${ }^{*}$

117. Corvus ossifragus Wilson.

Fish Crow.
This species must be regarded as a rare summer visitor so far north as this State, althongh it has heen seen in Massardmsetts hy Mr. Willian Brewster, who writes: "On the morning of March 16th, 1875,1 saw a bird of this species flying swiftly over om place in ('mblridge. It was pursuct by at least twenty-five or thirty of our common species (Corous - Imeriemmes), and at each renewal of their attacks gave utterance to its peculiar and mmistakable notes." \dagger Linsley gave it as occuring at "Stratford," ('omm.t

118. Cyanurus cristatus (Linné) Swainson. Blue Jay.

An abmand resident; frequently seen about the city.

Family, TYRANNIDÆ.

119. Tyrannus Carolinensis (limé) Temminck. King-hirl; Bee-hird.

A common summer resident, arriving early in May (Mr. Dayan iuforms me that he saw one as carly as April 13, 1875). Departs thout the mildle of September (Sept. 15) or later. Mr. Sage has twiee seen it at Portlaml, Comn., as early as May 7 th (1864 and 1876) anf once on the first (1877), but it generally comes on the 10th.

The halrit, so characteristie of this species, of attacking, and driving away from the vicinity of its nest, Hawks, Crows, and other large hirds, early attracted attention, for we find, in Josselyn's Voyages to New England (pmblishel in 1675 , 1. 96), the following accomnt of it: "There is a small Ash-color liird that is shaped like a Henoke with talous and beak that falleth upon Crones, mounting up into the air after them, :mill will beat them till they make them ery."s 'The Tescription of the hird womb fit a Shrike even better than the one in
 hird is not supposed to indulge in; still 1 have seen a Northern

[^41] closely following him to and for llarorgh the wools, till I put an cmi to his misery ly shomting both.
120. Milvulus forficatus ((imelin) Sw: Swallow-tailell Flywelmer.

An extremely rare aldefontal visitor. The only record of its
 " Dr. Senchs informs me that a sperimen of this species was shot by
 hide first attracted Mr. Carpenter's attention by its opening and elosing the tail while dying alont at small shed of water in quest of insects. The only other Eastern (lited States capture of this spercies, is a male taken at 'Trenton, New. Jersey, a few yoars ago, as reenoterl by 1)r. (. (. Abbot."* Dr. Ahbott's specimen was shot on the 150 h of April, 1872 , amd "when eaptured, was busily engaged in picking semi-domant inserets from the bark of the trees; creeping about very much as is the custom of Certhice fomiliaris, and all the while opening and shoting the long scissor-like tail." \neq lts proper habitat is the lower part of the Mississippi Valley and 'Texas, thonere sonthward into South America.
121. Myiarchus crinitus (Linné) Cabanis. Great-crested Flycatcher.

A common summer resident, generally placing its well-known snake-skintined nest in the hollow limh of some old apple tree, or rotten fence-post. Arrives early in May May 8, 1873, Hartford, Sage), and Mr. W. W. Cone has taken its nest (fomeggs) as late as Jume 13th, (1878). The history of this hirt aftomk us a remarkably good example of the change in habitat of a species during a comparatively lrief perion of years.

Mr: T. Martin Trippe, in one of his interesting articles on "The Irregular Migrations of bisels,"t thus details his experience with the bird in question: "In a series of several years close observation at Orange, New Jorey, I searelied for the Great-crested Flycatcher (Myiurthes crimitns), year after year, but all in vain; and what made the fact rery singrilar was, that twelve or fiftect miles off, I had seen the bidd sufficiently often to convince me that if not common, it was by no means rare. Yet for some inexplieable reason it dial not

[^42]inhabit the eombry immeliately abont Oramge, fir, althomgh in the Woods nearly every week for years. I never saw it motil, after I harl almost despaired of ever finding it, I did suceered in shooting a single speefmen. This was in the fall ; the next suring I saw at pair and, after an absence of two years, returning to Orange, I strolled through the wools, my old limting grommis, amb, to my surprise, almost the first hird I saw was the Great-erested Flycateler. Sulh. sequently I scarcely ever took a walk throngh the woods withomt seeing or hearing it." A precisely parallel case oecomed in the vieinity of my home in Lewis Comity, northern New York. There, prion to the year 1800 , they were $u n k n o w n$ at least so far as I ean ascertain, and it is sate to saly that they were extromely rare. In 1870 my consin, Mr. C. L. Bagg, shot one specimen, the first we hat ever seen. Dming the next season 1 shot a pair. I was away from home in 1420 , but Mr. Bageg informs me that he took several Greatcrested Flycatchers that year, and that they were quite common. In August, 1873, 1 shot eight in abont an hour's time, and since then they have been one of our commonest species, breeding abundantly in the tall maple and birch forests, where their characteristic, but mather harsh ery, may be heard at any hom of the day thronghout the entire season.
leurarding its lomer scarcity in Connectiont, Linsley said "a specimen of the Great-crested Fly-cateher was shot by me in the spring of 1838 , in my front yard, the only living intividual of this hidd I have ever seen in this State,"* and Nutall observed that it was "nearly mknown in New Englaml." \dagger That it is now really a common bird in southern Comecticnt, at least, is certain. However, we must take into consideration the lact that these gentlemen (Nuttall and Linsley) were probably not familiar with its characteristie-I may even saly diagnostic-note, and my experience with the bird has been that it is rarely seen, mbless, guided by its note, it is persistently followed up, and even then one is often at his wits end to get a shot, so well does the bird keep concealed amongst the loliage. And surely it is not partieularly comlucive to tranquillity of mimh to stand, up to one's knees in water, amidst myriads of mosquitoes, in a hot ity in summer, gazing intently up into a tall tree, where, directly orehead, the cry of the Great-crested Flycateher is constantly heard, and yet the most e:areful search fails to reveal the exact where-

[^43] the ery stratin, this time issuing lrom another ame still deeper pertion of the sw: 111 .
la suppert of this view I now propmse to loring forward pretty rour chasive prost: Mr. W. W. Coe, who early hecome lamilial with the note of this speres, tells me that it has been at common birel in the vieinity of lortland, Comm, for at least filtern years-ever since he commenced collecting hims. Vrof. William D. Whitney, of New Haven, on incuiry, informs me that he has known the bided for at least thirty years, and that he has always rexarded it as common. His olservations extend over portions ol Maswachnsetts (alout Northampton) as well as Counceticut. Mr. .J. N. Clath, of Saybrook, Come, says that it was not rare, about the month of the Connectient, twentytive years ago; and Dr. Wh. Wood, of East Wimdsor Hill, Come, tells me that it has bred regularly, and has not been uncommon, in that vicinity, for the last twenty-five or thirly years.

In the face or these facts what is to he honc? Fur my own part, I an willing to admit that in northern New York the bind may mot have been rare prior to the year 18.0 (alihough I feed pretty sure that this was not the case), and that it eseaped notice because I wats then untamiliar with its note. la New Jersey, however, a similar suppusition will not hohl, for Mr. Trippe ores familiar with its note and habits, from nbservations in a neighboring district, and asserts positively that it smdenly beeame abumdant in a bocality where before it was nearly, if' not quite, maknown. Hence it is only lair to conchale that, while some of the sulphesed cases of change of habit may be explained on the ground that the ohservers were not sufficiently familiar with the bird, get there are others concerning which the prool is ample, and the eruse of the change only remans to be accomed for: Whether this be due to ehanged comblitions in the physical featmes of the comntry (such as the cutting away of timber, drying up of streams aml swamps, etc., for example), or to an increase in some species of insects on which the bird feeds (canserd perhaps by the abmulance of some partieular food-plant-due, may be, to altered climatic conditions), or to an actual increase in the momber of birds themselves, I will not take apon myself to deeide, so imperfect is the present state of our knowlelge on these points.
122. Sayornis fuscus (fimelin) Baird. Peweo Flycatcher; Phoebe-hird

A common summer resident. Comes very early: Dr. F. W. Hall tells me he saw it on Fel). 25th. 186 , and Mr. Osbome saw one March

11th of the same year. I lims motioed it on the 2 thh of March this
 In the fill it rematins till, or alter, the midhle of Wetolere (otet. 7 ,
 or on exposed heams, of homses ami outhuildings, in old shede, and mader bridges. 'The primitive hashit of buiding on the side of some rocky cliff is still athered to in some parts of the sitate, and the most heantifil acst 1 have ever seen was fomd by lrof. Daniel (. Eaton and myself, while botanizing near Mt. Carmel, on the 23d of May, 1855. It was phaed in a small wedge-shaped niche in the fate of the rock, and its exterior was composed entirely of delicate green mosses. It contamed five prore white, menotted, fresh eggs. Another beantilul nest, similarly fliterd, was fomm on the "llanging llills of Mcridem," by my frieml, Mr. William II. J'attom, on the 12th of Hay, 18.7. It contamed four lieshe eggs, one of which is ristinctly sprinkled, chietly at the latger and, with small hrownish-red spots. It also breeds on the faces of line and West laneks near New Haven.

123. Contopus borealis (Swainson) Baird. Olive-sided Flyeatcher.

hare ; probably a few sometimes breed in the more northern and hilly protions of the State, as they are known to do in Massachusetts. Not previously recorded from Comecticut, except by Linsley, who gave it, with in query, from stratfort. On the 18 sth of (otolrer, 1875, attracted hy its characteristic note, "which is a short whistle resemhling the sytables O-whéó, O-whés, O-whéo," nttered several times in snecession, "with the accent on the whe and the voice falling on the
 a tall tree; lont the hirl was very shy and I did not suceed in getting a shot. Mr. Erwin I. Shores writes me that he took a male at sint field, Conne, Augnst 5, 1874. This is strong evidence of their breeding in the lills abont that protion of the state, for migrants would hardly appear in Comnecticut during the first of August. On turning to my manscript notes on the hirds of Easthampton, Mass., I find the following: "Jireeds. Not so rare as it shomhl he. Four specimens procured: one shot Sept. 10, 1873, and mother May 23, 1874, in a small grove of pines northwest of town ; two shot May 28,1874 , on Mt. Nonotnck [part of Mt. 'Tom], where they apear to be quite common. Their alimentary tracts contained coleopterous insects,

[^44]wasp, amh lmmble-heres." In Irol. Whitney's private collection, aml
 body Jnsemm of Yale ('ollene, are twor three sperimens of this birt, which he killed in the vicinity ol Northanptun, Mass, some years ago
 ing the past thre or four years I hate ohserved ead year several *pecimens of this beatifnl lifeatelee in the vicinity of Combrilge, Hass, amb, although I consider this a rave hiri with us, 1 am inclined to think a faw hreed within the limits of the state every year."* The species w:s deseribed hy Nuttall, fom specimens taken in the vieinity of Cambridge, "in the wools of sweet Anhmon," in June, 1830 aml 1831, aml it has since bem obsemed in eastern Massathosetts hy Auduhon (1832), Weleh (1*58), Brewster, Maynard, Cabot, Minot, and others. Nothall says that his friem, W. Cooper, Esig., "received this bird likewise the preceding smmmer from the vicinty of Cape May, and Eggharbor, in New Jersey," \dagger but Tumbull gives it as "very rare" in eastem l'emmsylunia amd New Jersey, and states that it only ocours as a migrant, being "gencrally seen early in May on its way north, . . remms in scptember." \ddagger The oceurrace in New Jersey, in "summer" (the month is, mfortmately, mot stated) would indicate its breeding there, which hardly seems credible from what is now known concerning its distribntion, thongh it is trme that the "l'ine-harens" wonld aftord it many congenial spots lim nesting. Coneerning their hahits in the Alirondack region, in northern New York, where they bred plentifully, I have alreatly observed that "they all seemed to have the same hal,it of choosing a large hembeck tree with a few tead branches on top, and were sure to light on the mplermost twig." Messis. Maynard and Brewster gave it as "quite common and breeding at Umbagog," Mane, where "it has the habit of perching on deat stubs on the elge of clearings." |lrofessor Vemill gave it as a "smmmel visitant, not very common," at Norway, llaine (ahont forty miles south of

[^45]

 ern New York, "whore he met with mily rwormexmens during ser-
 hish :athority of 1)r. .1. II. Wheaton, a ":are migrant." "Tlu record of its ocrurreme in the mast, somth of Now dersey, is not woll
 has taken sereral speemons "and saw sis or seren individuals he tween Angust 21st aml hepli. 2bith, 1876, at liverdale, Westehester Ci., N. Y.

Now, on the other hand, on going northwarl, we find it breeding at Ramdolph, Vermont (Chas. S. l'aine), sam Mr. Oshorme has seen it abont Mt. Washingtom. "Anduhon fomms it in Mance, on the Magdeline lalams, and on the coast of Lalmator," ${ }^{\text {an }}$ as mentioned by Dr. Brewer, who further states that "Mr. lioamban morts the Olive-sided Flycateher as having of late years heen very ahmolant drring the smmer in the deal wouls about the lakes west of Calais [eastern Mame] where lomerly they were ruite nneommon," ann] that be is informed by Mr. Iloy "that this spereies usent to be guite eommon near Racine [Wisconsin], frequenting the ertges of thiek woonls, where they nested."

From the above references* it will be seen that the Olive-sided Flyeateler belongs, in the east, to the Camarlian famma, while it oecasionally extends down into the Alleghanian, and, if Cogner's recomd ean be relied on, stragglers have been known to bred in the (Gmolinian. Going westward, however, the ease is quite difterent, and we find rontopms borealis hreeting in mmbers from the "Cumberland Honse, ou the Saskatchewan, in latitude 54°, "Where it was obtained by Sir John lielardsom, and described hy Swainson in 1831 (this description having priority orer Nuttall's, which was not fuhlished till 1833), to Camp lBowie, Arizona, latitme 320, "within one hundred miles of Mexico," where both "young and old were secured in

[^46]Augnst," hy my triem, Mr: II. W. Inenshaw, who, in his recent exeellent work wh the birds of that region, wherees that "lts favorite prefhing places are the tops of the high piane stuls. From these stations it makes freguent sallies after passing inseets, and seems rarely 1.0 miss its prey. When thens engaged, the clicking mose of its hill may be heard quite a distance. About the lisst of dme, in southern Colorato, they had all materl, and each pair mainamed at most jealons watch over the neighborhood chosen as its summer resilence, never allowing the intrusion of the latrger birds to ghiss muntired. The loud eall notes of the male are, at this seasom, almost incessantly repeated."* Mr. Henshaw also states that "specimens were taken near (amp A]ache [Arizona] in July, which doubtless were breeding," and that he "found it almost as mmerous in eastern Arizona, quite far to the south, as in Colorado."

Numerous specimens have been taken in Coloralo hy Allen, t Ifenshaw, Liken, Trippe, and others. Regarding its oecurrence at Jahn Springs, Colorado, 'T. Martin Trippe writes Dr. Concs that "It is quite meommon, only thee or four pairs having been olseeved thronghont the summer, and these at widely different points, cach pair apparently monopolizing a wide range. It keeps in the tops of the trees, and is an active flycatcher; its noise is lond and distinct ; and its nest is placed in the top of a pine, and jealonsly guarded from all intrusion with as much fiereeness and energy as the Kinglird's." \downarrow It is given hy suow as "rare in western Kansas." Notices of its oceurence in Utah have been pulbished by Allen "several seen among the cotonwools along Weber liver", \|l Henshaw, Kidgway "breating in Parley's Park, Wahsatch Mts.",** Nelson (who "obained onc specimen liom the top of at dead pine," among the monntains, thirty miles south of Fort Bridger), t† and myself; tt

* Report upon the Ornithological Colleetions made in portions of Nevada, Utah, Ginliformia, Colorato, New Mexien and Arizonia, during the years 1871, 1872, 1853 and 1874. By 11. W. Henshaw. Foming Chapter IIT of the Zoulogieal Volume published under the direction of Lient. Geo. M. Wheeler, in charge of the Geographical aml Geological Explorations and Surveys west of the Io0th meridian. 1. 350 Washington. 1875.
+ Bulletin Museum Comp. Zoöl. Cambridge, vol. iii, No. 6, p. 158. 1872.
\ddagger lu Cones' Birds of the Northwest, p. 245, 187.4.
SCatalogne of the Birds of Kansas. By F. H. Snow. 31 ed., p. S. 1875.
|| Bull. Mus. Comp. Zoöl. Cambridge, vol. iii, No. 6, pp. 169, 179. 1872.
- Report upon Ornithological Speemens, Pp. 22, 46. Wash. 1874.
** Bull. Essex Inst., vol. vii, No. 2, p. 33. Feh., 1×75.
If l'rneeed. Ioston Soe. Nat. Ilist., vol. xvii, p. 344. Jan., 1875.
抹Sixth Annmal lieport. U. S. Geol. Survey of the Territorics for the year 1862 p. 6:3.
amd it was taken in Newala hy Bischofl (recorterl hy Itenshaw), am lialgway, who writes me as follows: "Athongh 1 fomd it at very few localities, 1 an certan of its oermrence wherever suitable localities exist. lt there inhalits the coniferons wods at an altiture of from ahont s,000 feet mi to timber line, and I noticed that it preforred loealites where the trees had been deadened by fire. The only plares, in Nesald. where I met with this birl, were the pine womb of the East Ihumbolt and laby Mountains." Concerning its necurrenee in C'alifornia, Dr: ('oolner silys: "It seems to be resident in most parts of the state where it is fomm, lut mot oceurring somth of llonterey, where Dr. Gambel fomit young in Iuly. I fomed them rather common in the Coast lange toward santa Cruz, where they hat nests in May, hut I cond not examine any of these, their location being gencrally on a high inacressible branch. I also fomm this hirl at Lake Taboe in september. It is rather silent, keeping mostly on tops of the trees, and catching passing insects." \dagger Mr. Ringway also fomd it lneeding in California, "on the eastem slope of the Nierra Nevala." \ddagger In Oregon and Wrashington Tervitory it is, according to Dr. Cooper. "a much more abomant hid near the Columbia liver and thronghout the northern liocky Dountains. There they migrate, remaining at the Lower Colmmbia from May to October." \neq Dr: Brewer writes: "In Washington Perritory this birel appears to be somewhat more common than in ather portions of the United States. Dr. Suckly oltained a specimen at Fort Steilacoom, July 10th, 1856. It was not very almmant abont I'uget sound, and showed a preference for shady thickets and lense foliage [contrary to its usual hathit], where it was not easily shot." "A single speceimen," contimes Dr. Brewer, "was taken, Aug. 29th, 184n, at Nenortalik, Creenland [ly Reinhadt], and sent to Comenhagen,"s. Hence the distribution of this beantifin and interesting Flyeateher affords tan excellent illustration of the manner in which some speries that are continet, during the breeding season, to the C'anadian and Alleghtnian fanse in the Eastern Province, are foum, fluring the same period, in the far West, extending from the saskatchewan, in British Ameriea, almost, if not quite, 10 Mexico.

[^47]Trins. Conn. Acad, Vol. IV.
JULY, 187%.

124. Contopus virens (timi) Chanis. Wool Pewee.

A common sumber resident, gencrally plating its beantilal lichencovered nest astrile the horizontal branch of some tall lirelt, or maple, in deep forests, but sometimes choosing an oreland or garlen, in elose proximity to oerepped buidings. Arrives before the middle of May (May 10, 1876, Oshmone), remaning throngh september. It is one of the few birds that maty be fomd alike, during the beeding season, in the heart of the dity, ne:u the firm house, and in the darkest swamps and most sechuded forests, far from the habitations ol man. Its mournful note may sometimes le heari at all hous of the night.

125. Empidonax Acadicus (Gmelin) Baird. Aeadian Flycatcher; Small

 Green-crested Flycatcher.A rare summer visitant from the Middle States; may breed in the Comecticut Valley.

It afforls me great pleasure to the able, through the kindness of Mr. Erwin I. Shores, to replace this species among the birts of New Enghaml. As is well known, it was formerly inchded in all New England lists, hat, as shown by Dr. Cones, Mr. II. W. Henshaw, and others, the reconds were fomded on erroneons identitications-the bird having been mistaken for E. mimimms or Traillii, generally the former. In a letter to Dr. Cones, Dr. Brewer says "I do not think the bird occurs in New England, even in the Comecticnt Valley,"* and Mr. William Brewster, of Cambrilge, the highest anthority on the lbirds of New England, has expressed similar views. Hence it was with a peculiar sense of gratification that I received, a few days since, an ummistakable example of this species, from Mr. Shores, who states that he shot it "in Suffich, Conn., Inne 24 th, 1874 , in a piece of wools known as Beech swamp." For the benefit of those who might not fecl disposed to accept my identification in so important a matter, and to aroid all possibility of mistake, I at once sent the bird to my friend Mr: Robert Ridgway, of the Smithsonian Institution, amh he pronomees it to be a "typical E. Actulicus."
126. Empidonax Traillii (Audubon) Baird. Traills Flycatcher.

A common stumer resident, arriving (arly in May (llay 6, 1877). Frequents swampy lowlamls, where it breeds.

[^48]
127. Empidonax minimus Bairl. Lenst Flyenteher.

 and remaining till fate in september. Breeds abondantly in gardens throughont the city-

128. Empidonax flaviventris Baird. Yellow-bellicd Flyeatcher.

Not meommon during migrations; arrives alont the midlle of May (May 20,1866 , remaning till the last of the month, and Mr. frimmell tells me he has seen it in early ome. Have taken it in fall, about the middle of september (hept. 17, 1875). Not known to breed.

Family, CAPRIMULGID.E.

129. Antrostomus vociferus (Wilson) Bonaparte. Whippoorwill.

A common smmer rendent. Arrives carly in May (May 2. 187\%. Osborne). Nocturnal, spenting the day on the wromed beneath some tree, or among thick bushes. When listurbed, its tlight is short and irregular, and it may easily be shot. The Stadtmüller Brothers have an musually pale set of eggs taken on Mill Rock (near New Itwen) llay 30th, 1875. "They were not placed by the side of a rock or log, as sammels says."*
130. Chordeiles Virginianus (Brisson) Bonaparte. Night-hawk; Bull-bat.

A common smmer resident, arriving early in Nay (Nay 11, 1875, Sage). Mr. W. W. Coe has taken its eggs as late as June 2301 (18:2). By no means strictly nocturnal like the last, hut may be seen, especially in autumn, tlying ahout high in the air and constantly uftering its peculiar ery, at any hour of the bay, though generally preferring the twilight. Commonly roosts on ohl logs or horizontal limbs (sometimes quite high up) on which they lie longitudinally.

131. Chætura pelagica (Linné) Baird. Chimner Swift.

An abondant summer resilent, arriving in April or May (Aprit 14, 1876, Osborne; April 30, 18it, May 5, 18it, Portlimt, Sige; May 8, 1874), and remaining till late in september (sept. 27, Oshorne) ; breeds abmidantly in old chimneys. Before the days of

[^49] gate in multitnes about ertatin latere lablow trees, where they here regularly, ant, accorling tosome, semt the winter also. Williams, in his "Natmal and Civil History of Vemmont," pullisher? in $179 t$, relates the following concerning three "swallow trees" which canse under his obscration. "The spectes called the honse or Chimmey Swallow, has been fombl during the wimer, in hollow trees. It Middeluery in this state, there was a large hollow elm, called by the people in the vicinity the swallow tree. From a man whe, for several years, lised within twenty rols of it, l procured this inlomation: He always thonght the swallows tarried in the tree throngh the winter, and aroided cutting it down, on that accomet. About the first of llay, the swallows e:ame ont of it, in lature numbers, about the middle of the day; and soon retmed. As the weat her grew warmer, they came out in the morning with a lond noise, or 1oar, and were soon dispersed; abont halt an how hetore sme down, they returned in millions, circulating two on three times romel the tree, and then desecming like a stram, into a hole alout sixty feet from the ground. It was costomary for persoms in the vicinity, to visit this tree, to observe the motions of these birds. And when any persons disturbed their operations, hy striking violently aginst the tree, with their axes, the swallows wouht rush out in millions, and with a great noise. In November, 1t91, the tol of this tree was blown duwn, twenty feet below where the swallows entered. There has been no appearace of the swallows since. Upon cutting down the remainder, an immense quantity of excrements, quills, ant feathers, were found ; but no appesance or relicks of any nests. Another of these swallow trees was at Briflport. The man who liverl the nearest to it, gate this accomt: The swallows were first ohserved to come out of the tree, in the spring; about the time that the leares first begran to appear on the trees. From that seasom, they come out in the morning, about half an hour after smorse. They rushed ont like a stream, as big as the hole in the tree would atmit, amd ascended in a perpendienlar line, until they were ahout the height of the adjacent trees; then assumed a circular motion, performing their revolutions two or three times, but always in a larger circle, and then dispersed in every direetion. A little before sundown, they returned in int mense numbers, forming several circular motions, and then descended like a stream into the hole, from whence they came ont in the morning. About the middle of September, they were seen entering the tree, for the last time." "Neither of these accounts are attended
whth the highest degree of evidenee, which the mhloce may almit of: but 1 am leal to bedieqe from them, that the llonse swallow, in this part of Americ:a, gemerally resiles during the winter, in the hollow of trees."*

The tree above deseriberl, from Milllebury, Vemment, tinally blew down, amd, more than half : contury (in 1852) atter Williams wrote the accont abose given of it, its remmines were visited by his successor, in the historical line, Zatlock Thompsom, and were fommd scarcely less interesting tham the tree itself when inhabited by thonsimds of swifts. 'Thompson gave this acomont of its eomelition amt contents in 1852: "The tree hat roted aw:y, leaving litte besides the cylindrical mass, wheh hal filled its hollow. The length of this mass was about seven feet, and its diameter fifteren inches. Of the materials which composed it, ahont one-half consisted of the feathers of the Chimney swallow, being, for the most part, wing and tail feathers. 'The other half was made up of exmria of insects, mostly fragments and egge of the large womb-ant, and a brown shlstance probahly derived from the decayed wood of the interior of the tree. This discosery at Middlelury, thongh interesting, wonld not have heen regarden as fery rematokahle, if the materials which fillert the hollow of the tree, hat heen promiscmonsly am disorderly mingled tugether. Such a jumbled mass would be what we should expect to tind in a hollow tree which had heen, for centurics, perhals, the roosting place of myriads of Swallows. But this is not the case. In their general arangement, the larger feathers have nearly all their quills pointing outward, while their plumes, or ends on which their webs are armangerl, point inward. . . . But this is not the most remarkable ciremostance commected with the sulject. In varions parts of the mask, are fombl, in some cases, all the primary feathers of the wing ; in others, all the leathers of the tail, lying logether in contact, and in precisely the same order and position, in which they are fomblin the living Swallow. In a lump of the materials, measming not more than seven inches hy five, and less than three inches thick, fise wings and two tails were plainly seen, with their feathers arranged as above mentioned, and in one of the wings, all the secondary cuills were also arranged in their true position with regard to the primaries. Now, we camot conceive it possible that these feathers could be shed by living birds, am be thus deposited. We may

[^50]*Hpuse that the birds died there, amd that their thesh had been removed by decay, or hy insects, without deranging the feathers. bint in that case what has beemme of the skeletons? I lo not learn that a boue, beak, or a claw, has been found in any part of the whole mass. What then has hecome of these? They cond harlly have been removed by violent means, withont disturbing the feathers. But, if thone quietly, what dial it? What inseet wombl flyour the bones, and beak, and elaws, amd mot medrle with the quills? Or womld the formic, of any other acid, which might be generated within the mass, dissolve the former without afteeting the later:"**

Family, TROCHILID ※。

132. Trochilus colubris Linné. Ruby-throated IIummingbird.

A common smmer resident. Jrives early in May (May 5, 1877), remaining till the middle of October (Oct. 5, 1870; Oet. 16, 187t). They nsually breed early in Jme, lut Dr. F'. W. Hall informs me that a lriend of his fimed a nest completed, and containing two eggs, as early as May 27th (1877).

Thomas Mortom, in 1632, expressed his astonishment at the dimensions and halits of this bird, in the following words: "There is a curions hird to see to, called a hmming birt, no bigger than a great beetle; that ont of question lives upon the bee, which he eateth and eatcheth amonget Flowers. Fror it is his enstome to frequent these phaces. Flowers hee camot feed upon by reason of his shanp bill, which is like the poynt of a Spanish needle, but shorte. llis fethers have a glasse like silke, and as hee stirres, they show to be of a changable colomre: and has bin, am is atmired for shape, coloure, and size." \dagger dnd two years later, William Wood, in his "Now England's Prospect" informs ns that "The Humbird is one of the wonders of the Comntrey, being no higger than a Hormet, yet hath all the demensions of al lBid, as hill, ami wings, with quills, spider-like legges, smath chawes: For colour she is as glorious as the lame-bow, as she tlies, she makes a little hmming noise like a Ilumble-hee: wherefore shee is called the llambird." +

> "The Humberd for some Queene's rich Cage more fit, Than in the racant Wildernesse to sit." \ddagger

[^51]
Family, ALCEDINID.

133. Ceryle alcyon (I,inne) lioic. Belted Kingfisher.

 coast. Arives during the latter pan of Mareh (Mar. 2a), 1875), remaining into November (Nos. 13, 1875). A few sometimes winter.
 Mr: Fred. A. smitl, of this cily, intioms me that he onee fomd the egge of this species plated an a bed of fish bones, alont six feet from the entrance to the lole. This was near lake Whitney, ('onn. In this latitude their egres are gemerally deposited dming the later part of May: Josselyn, in dmumerating the hirds of New England, in 1675 , says there are " hingsefishers, which breed in the spring in holes in the sea-hank, being mapt to propagate in summer, by reason of the driness of their bodies, which becomes more moist when their pures are closed by cohl." t

Family, CUCULIDæ.

134. Coccyzus erythrophthalmus (Wilson) Bonaparte. Blaek-billed Cuekuo.

A eommon summer resident, arriving about the middle of May (May 15, 1856), and remaining till the latter part of september (内ерt. 28, 1875).
135. Coccyzus Americanus (Linné) Bonaparte. Yellow-billeql Cuekoo.

A common summer resident. Arrises early in May (Aay 万, 1876), remaining into Oetoher (Oct. 11, 1873, shot, llall). Bonh Mr. Coe and myself have fombl, on the same day, ant in the same Cuckoos nest, fresh eggs and yomg biris.

Family, PICIDA.

136. Hylotomus pileatus (Linné) Baird. Pileated Woodpecker.

A rare winter visitant; it was once common throughont the State, but is now almost exterminated and driven into the less civilized districts. Linsley gave it from Stratford and New Haven. Mr. W. W. Coe tells me that a specimen was killed near Portant, Comm, in

[^52] age, at sutheld, Comu."* No lunger aco than 18:39, l'eaboty give it as resilent in llassulhmetts, where it was "not meommon in the woodlands." \dagger

137. Picus villosus Linné. Itairy Woodpecker.

Resident, lut not common. Have taken fom specimens and seen several of hess in the immediate vieinity of New llaven. Found chiefly in winter. Inr. Cone tells me that it is quite eommon abont Portland, Coms.

138. Picus pubescens Limé. Nowny Woodpecker.

A eommon resident; found erorywhere exeept in open fiedds devoid of stumps and fences.
139. Picoides arcticus (Swainson) Gray. Black-backed Three-toed Woodpecker.
A rare winter visitor from the North. In the Masemm at Midiletown is a specimen, from the Shurtleff Collection, taken at Simslury, Comn, in 1860. Dr. Wood has also taken it at East Windsor Itill, Conn.

140. Sphyrapicus varius (Linné) Baird. Tellow-bellied Woodpecker.

Rare abont New ITaven. ITave seen but four indiviluals (Sept. 28, and Oct. 2, 18 万5, and March 30, and May 3, 18if). Mr. I. N. Clark finds it to be "abundant in fill" at Gaybook.f Linsley gave it from New London, Conn. It is rare about Portland, Comm, as I am informed lif Messrs. Coe and Sage. Mr. Thos. Osbome tells me that they were quite common about New Haven last fall (18\%6) and that he secured four specimens. Mr. Grimbell says that it is not uncommon about Milford, Comm, in fall; and Mr: J. Ň. ('lark, of Saybrook, writes me that he has obsersed it to he "very common both in spring and fall," lont that he "never saw it after Λ pril till autumn."

Though most Woodpeckers are residents where they are fund at

[^53]all, in :hy mombers, this is fruly, thongh mot strictly, a migrant.* 1)r. Wm. O. Aytes writes me: "At New Caman, Comm., I used to find them eath :luthm, thongh never very mumerous; l never sin them in the pring.

141. Centurus Carolinus (Limé) Swainson. Red-hellied Woodpecker.

A rare acecicmal visitor from the sonth. Linsley salw ane "as. embling an apple free, on the 161h of October, 1842." $\neq 1$ 1). Crary says he has killed it near llamford, Come ; and Mr. Erwin I. Shomes writes me that he "tonk al limale, luly 30th, 185t," at suflichl, Comm.
 very common.*.
142. Melanerpes erythrocephalus (Linné) Swainson.

Red-headed
Woodpecker.
A rare smmer resident; hreets at Saybrook, sometimes remaining all winters Linsley gave it from stat ford, and Dr. .J. D. Whelpley informed him that it was "rare at New llaven" thirty-five yens ago, amf, so lar as 1 am aware, its mombers have not increased since. In fact, as Dr. Cones has remarked: "Comparisoms of the ohler with more recent local anthorities imbicate that the speries is now much less mmerons than formorly." Wr. F. WF. Mall took one at West Ilaven in December, 1872, and has seen several other specimens in this vicinity. W. W. Coe and J. W. Sage have cach taken it ahout Portand, Come, but fimd it rately. Dr. Wood, of East Windsor Hill, tells me that they were really abmant, in that vicinity, thirtyfive years ago, being more mmerons than the Flicker (Colotes ("mratus). Fomm years later a lase flock was seen, and since thon they have been one of our mare hirds. A fow, however, still breed pretty regnlarly in the vicinty of East Wimbor, Com. Mr. J. N. Clark informs me that, during the latter part of september, 1s72, they suddenly beeame abmant in a grove of waks near Saybrok, Comn. The adult hirks were mostly killed off by beys from the neighborhoot, while the yomerofthe-year, lacking the brilliant and

[^54]much prized red heats, were spared and remaned through the winter -some even breeding there the mext smmer (1873). Alr. J. 11. Sage killed one at llatimed, Dere :3st, of the same winter (1872). Their food consisted chicily of atenms. In this comecetion I will state
 of our commomest Woodpererers, they sulnsist almost exehsively on beech-muts, of which they evidendy are extremely fond, eating them, apparently with equal relish, whether grean or lully matured. It is truly a beautifnl sight to wateh these magnilicent birok, tugether with their equally shmulant comsins, the Yellow-hellied Wompeekers (Ny) hers, among the small lorameles and twigs, which bebl low with their weight, while pieking and husking the tember mots-the bright erimson of the heat, neek amd heast, the glossy bhe-hback hack, and creany-white helly, together with the seatedy less striking colors of their yellow-hellied companions, contrast hambsomely with the deep) green foliage.
143. Colaptes auratus (Tinné) swainson. Golden-winged Wnodpecker; Yellow-Lammer; High-hotler; Flicker; Yaffe.

Lesident; common from early Apill till November. A fow generally winter. It breels in holes in ohd stubs and trees. The migrants arrive during the latter pari of Mareh (Mareh 28), remaining till the middle or latter pat of Normber (Nov. 14 and 28). My friemi, Mr. A. I. Dayan, saw onc, mear New IIaven, on the 26 th of January, 187 T. Mr. Geo. Bird Grimell tells me that he has taken it, near Milford, Come, in Wecember (1)ee. 25, 1876), Jamary (Jan. I, 1877), and Felnuary (Feh. 27, 1875). Mr. W. W. Coe writes me that they also spend the winter in the vicinity of l'ortland, Com.

Kialm states, in his Tromels, that "this speries is destructive to maize-fiedds and orehards, for it peeks throngh the ears of maize, and eats apples. Nome years aco ther was a prominm of two pence per heal, paid from the public fumds, in order to extirpate this pernicions bird."*

Family, STRIGIDA.

144. Strix flammea, var. Americana (Audubon) Schl. Barn Owl.

A rare accidental visitor from the South. Taken by Linsley at stratford, Comet l'wof. J. A. Allen states that 1)r. Wood "has a

[^55] Oct. 2sth, $1868.0 \times$. Massathasetts also lays chatm to two apecimens: the dirst "Was killed near Springtichl, Mass., about the last of May," $1868, t$ and the other " was shot near Lymn, in the same sitate, in 1863." ${ }^{\circ} \ddagger$

Since writing the above I have seen, in the cabinet of Capt. O. N. Brooks, at F'ankner's lalad, Comne, a momeded specimen of this species which was kitled at Matison, Comn, some years ago; and Dr. Wm. O. Dyres, now of Easthampen, Jong Lstand, writes me that he fimmat one at Ilatford, Conn, abont the year 1841. Hence at least fent have heen killed in this state.

145. Bubo Virginianus (Gnelin) Bonaparte. Great Horned Owl.

lesident; mot rare breeds in suitable localities throughont the State. It feeds on the larger game (hares, grouse, ant the like), not forgetting the poultry yam, and seems particularly fond of turkeys, of which it selfom tomehes more than the head, if there are a plenty about. Indeal I have known one to kill and decapitate three turkeys and several hens in a single night, leaving the bodies uninjured and fit for the table. Ience, if nut so prone to select valuable fowls the loss wonk not he great. Their tenacity to life is something remarkable. A number of years ago I kept one in confinement for six or eight months, during which time 1 was twice attacked by him amd bear the marks of his talons to this lay. On both of these occasions I kieked amb pommed him with sticks till he was, as I supposed, deal, but always on retmuing to shin the bird I fomm him sitting up, on his pereh, hlinking, shapling his bill, ant making faces at we as usual. Dr. Woorl writes that a gentleman, while viewing one of this species in his collection, sain: - 1 suppose that is the kiml of bid that nuce scared me ahmost to death. While riding on horseback throngh a trace of large wools in New York state, one night, with a white bearer on my heal, something, withont the least noise on warning, atruck my head with such force that it took my hat, and I suplused for a time the top of my head oft. I thought the devil was after me, am the way that old horse went for the next three miles would have astonished lohn (xilpin. It seemed tu me my heart beat

[^56]lomer than an ordin:ary chmrel bedl, amd 1 hat to swallow tast tor kecp it from coming into my throat ant choking me." ${ }^{*}$

My frieme, Mr. W. W. ('oce, of l'ortland, ('omm., has hat suth remarkable sucess in timeling the nests, and scemring the egge, of this species, that $]$ was induced to trouble him for an acoomt of some of his exploits in that direetion, and he has been kind enongh for fand me with the following: " la 1868, a tamores boy told me that a pair of Great Itomed Owls and their two young had taken up their aboule in a piece of wools near his place, and that a pair hand livert there for several years. He had often seen them when at work in the works in winter, and olserved them one moming on the lower limbe of a large hembock. One sat on a branch dieectly above the other and hat a rahbit in its rlaws, uron which they both seemed to be feeding. Ite wateled them fir sometime amt then frightened them off. 'The bird with the rabhit carried it with him a short distance, but finally dropped it. The boy offered to shoot one of the Owls for me, but I told him not to do it, for I wanted to get the egres, it possible, the next year.
"On the first of May, 1869, we went to look for the nest and fomm it in a large chestmint tree. It contaned two young owls almost large enongh tofly. I hought them both home, stufted one, amd kept the other alive sometime, when it got killed while I was away. During the latter part of Mareh, 1870, we went again and fomm the Owls oenpying the same nest. One ohl hird was on, and I thonght myself sure of the eggs this time, hat on ascending to the nest fomm two foung Owls covered with down. 'They were, 1 shomld think, ahout two weeks ohd, so we left them for seed and determined to be in time next season, but sickness ami extra work forcel me to neglect it. Jn the following year (1852) we started out on the 20 of Mareh and visited the old uest, hut for some reason it hat been abmoloned. We then visited another pieee of wools near by and ston fonma a vary large nest in a chestmat tree, hat it showed no sign of life. While deliberating whether it was hest to climb it mot, I gave the theresereal hard raps with a elnh, when off went the ohd bird with a hoo, hoo, hon. Dy rompanion elimbed the tree ant fomm two eargs. I thonght they might lay again, since it was so early, and aroortingly, on the 12 th of April, visited the same nest, and, on grotting near, a bid jumped n, from it which 1 at tirst took to he the 0 wl, but :s it started off I saw it was a Red-tailed llawk, which we fomm had

[^57]taken dossession :mblayed two degs. We then went to the ohl Owl's nest, where we lad fomm yonng in 1869 and 1850 , and fimm the ohd himl unt. This nest now eontatined two eggs in which the gomeg werv well adrameal-so the ohd hirds most have laid again soon atter the first nest was robbed.
" Mhout the first of Jarel, $185:$, we agan visited the same place hut combld not find the hirds, thengh I moticed one of their feathers, amd, since snow hat tallen al day or two before, I know they conld not be fan oft. Finally, on the 13th of Jiareh, I foumt them orempying a nest about t wo miles from the old putere. It was the ohl nest of a Iect-tailed llawk from which I twok three eggs Apmil 29th, 18:2. The nest now comtained one young Ow, apparently abont five or six days ohf, and une roten eqg. I think the egg had been fiozen, for it was badly cracked. I am, "f course, unable to say whether or wo all the eggs ahowe mentioned wore deposited by the same pair of Owhs, since three or finu ald hirds have been killed in this vicinity. However, I ann quite sure that they all helonged to the same family. I ako took their mests in 1874 (Feb. 28), 1875 (took joming in May), 1876 (Feb.
 whole time I have known of them they have not huilt a new nest, hat have cither occupied the same one for at least thace years, or taken some vac:ant IIawk's nest.
"To smm up: my experience with Great Homed Owls has heen that they lay in ohl nests of liedtailed llawks, in hollow trees, and oceasionally in ledges of rocks. I never knew them to huild a nest, or to lay more tham two egge, and I have known of many nests not. mentioned above."

146. Scops asio (Linué) Bonaparte. Mottled Owl Screech Owl.

A common resilent thronghmat the State. It lays fire egers, in a hollow tree, about the last of Apil. 'This is, I think, the most noctumat of our Owts. At least it can generally be approached in broad day-light more easily than the other species, and seems to be dazzled by the light. It sometimes catches fish through a hole in the ice, like the Snowy ()wl.*
147. Otus vuIgaris, rar. Wilsonianus (Lesson) Allen. Long-eared Ow.

A common resilent. Its large nest is commonly placed on some thick tree-generally a pine-but sometimes in low bushes. It is

[^58]said to take possession of the deserted nests of Crows and llawks. " Mr. J. S. limatigee, of Berlin, Comn, fomm a nest, early in April, in a hembock tree, situated in a thick dark evergreen woods. The mest was flat, made of rarse sticks, and containcel four fresh eggs."* llave taken it, in company with the following species, in clums of low hashes near the coast.

148. Brachyotus palustris (Bechst.) Gonld. Short-eared Owl.

Resident about the salt mar:hes near the coast ; also fomme thronghout the State. Nests on the gromme. Nos uncommon. In the year 1856, on the island of Grand Menam," A nest of this bird was fomme by Mr. Cabot in the midat of a dry, peaty log. It was built on the gromm, in a very slowenly mammer, of small sticks and a few feathers, and presented hardly any exavation." \uparrow
149. Syrnium cinereum (Gmelin) Andubon. Great Gray Owl.

A rare stragerger from the morth. Linsley captured a specimen at Strat ford, Comm, Jan, 6, 1843. \ddagger
1)uring the winter of 1852 a large freat Gray Owl was killed near boston, Mass, after creating some little excitement among the inhabitants: "A light show fell on Sunday evening, March last, and the next moming mysterions fontprints were discovered in the viemity of Nahant street and long beach. 'They were of a shape that excited much euriosity, aml wo whe was able to determine what sort of a creature had made them. But on Dumday evening Mr. Joln Bary shot a very large gray owl, on the marsh, near the fort of leasant street, and it was conclumed that the womberful tracks were made by him. He measured more than five feet from tij, to tip of the wings." ss

150. Syrnium nebulosum (Forster) Boie. Barret Owl.

A common resident theoughout the State. Mr. I. N. Clark, of siaybrook, Comn, tells me that lie once fomm it breeting, in a hollow tree, within twenty-five roots of the nest of a pair of Great Jomed Owls.

[^59]Dr. Wrm. Woor, of East Windsor Ilill, Comm., Polates the following ammsing ancedute, which serves well to illustrate "the mature of the beast" modrer certain romditions, and at the same time atlords us an excellent example of conjugal atteretion ant innate wisdom in our own species: " A gentleman who fancied himself :t taxidermist be eanse, forswoth, he had seen a single eperimen shafled, detemined to allow that falent mo longer to be bured, but bring it to light ly practically demonstrating to the world in gemeral, and mankind in particular, the way by which the feathered speries can forever low 'as natural as life amd a little more so.' Having ohtamed a specimen of the lamed (owl that was only slightly winged, he let it loose in the cellar titl a leisure day. The hied, with ouly the tip of the wing ingured, and having free nse of its limbs and fect, could visit ary part of her prisom, mad finding herself sole mistress, was mot long in appropriating anything aml everything that would promote her own comfort and ease. The potato and aple hins, as well as the soapr and pork barvels were indiscriminately and alike used for places of rest tund repose. The day arrived when this misanee could no longer be tolerated. Approaching, with hame extembed, to seize the Owl, my friend received the bencfit of how daws in and aromm his fingers. Grasping the hird's leg to disengage it from its gripe, the other elaw was instantly hrought in requisition and seized the wher hand. both hands being now securely hed hy the bid, no wonder that our hero called ont lustily for help when he saw the Owl expanding herself almost indefintely, ams snaping her bill in anticipation of the dainty repast which, aceorling to apmearane, she was about for swallow! The territied sere:m alamed the whole honsehold, :nd the rash down the eellar stairs reminds one very forcibly of the second and fourth illastrations in Bachelor liuttertly, om page 14 th, where he jumped orerboart, and, in order to save the life of the Naturalist, was followed ly his ommipresent Dorothy and the whole crew. Ilis hetter half beenming alarmed for the safety of her hedoved, seized the emraged bird by the head and pulled with all the force that conjugal fidelity ur nerons excitement could aronse. The more she pullerf the deeper were the talons of the 0 wl inserted, as was evideneed by the musical entertamment given by our fricol, which comprised : scale of at least two octares, with trills and variations that wonla have astonished an Italian prima doma! What mope conld be done: The adage that' necessity is the mother of invention' proved true in this case, for the imminent danger, to say mothing of the exernciating pain, romsed ane bro to the improtance of trying what
virtue there was in his incisors. lbeing best with a gocel sut he with much ditliculty sucerealed in hiting oll all the elaws of the owl, and relieving himself trom his perilons pesition, pobathy a wiser man for his first lesson in Ornithologry." *
surely "Thomas Morton, kisg., could with have lex lamiliar with the lowe calls of this eperias, or he wobld never have withen: "There are Owles of divers kindes: Int I did never heare any of them whop as surs sloe." \dagger

151. Nyctea Scandiaca (Limé) Newton. Snow'y Owl.

'This magnificent bird setms to be a pretty regnlar winter visitant along onr coast. Linsloy hal seremed tive sperimens liom stratforl, Comm, and Dr. Whapley had obsemed it at New Haven, priat to the gear 1843.t Two specimens came to my botice during the wintrer of 1875-6 (the first on Nox. 10), and no less than a dozen specimens were killed in the immediate vienity of New Ilaven in Wetober (Oct. 17 , Osbome), aml Noyember last (1876). They mupestionably belonged to the immense flock of these Owhe that ghased throngh eastern Massachusets ahout the same time. Over fimo humberl specimens were shot about boston in O.toler and November. For a detaled accomt of this womlerfal and really perplexing migration, consult an article by lathen Deane, Esif, in the Linlletin of the Nuttall Omithological Clulb, No. 1, wol, ii, p. 9, for d:mmary, 1sit. 1)r. Wm. Wood, wf East Wimsor lilit, Com., whites that they were monsually abmolant here dming the winter of 185 s-? , when fifteen or twenty were shot in llarforl Comoty. Jle further ohserves that "it lomes either by day, or in the twilight, oceasionally pursming game on the wing and seeming it after the manner of the true lalcons, but generally devouring it on the spot like the Marsh Itawk. When annoyed and teased by Chows it will now and then seck shelter in a hollow tree. Some years since 1 was pursuing one of these birls, in onf meadows, that was followed ami tomented by a great mumber of Crows. It finally alighted on an apple tree abont a humbed rods distant, and in at few moments the whole tree was hack with his tomenters, and still they eame liom all directions, attracted by the moise and confusion of those diving at the O wh. Soom they legan to

[^60]leave, and before my arrival all was quid. 'This was a mystery to me, fire I had not seenthe (twl tly, and if he hatd, the crows wonld ereranly hate given the alam ant followed him, yet Owl was in sight. I Iaving passed the treasome filteren twenty rots I heard a
 treestump elose by the tree. This was rather prowninge, fin I hat been, junt a momant beliore, neat amongh to the stamy to have tomelere it with my gron.."*
 shot during me week, at Nahani, and on the beaches" about bostom. \dagger

152. Sumia ulula, var. Hudsonia (im melin) Coues. Hawk Owl.

A rare winter risitor from the Nurth. 'To Dr. F. W'. Ilall belongs the homo of arlang this spectis to the hives of our state. In Nove 1869, he salw the hird in an rom tree in an openfielt. Not having a gun with him he retured for it and secured a time speemen of the Hawk Owl. It was momed hy the Rer. C. Nl. Jones, and is now in the eabinet of 1)r. Hall. In the vicinity of Hudson's bay, furing the winter season, the white Ptarmigan (Lagopas allows) sonstitutes its chiof article of diet; and it is said to follow the bunter, pouncing upon his game before he has time to reach it. As early as 183.3 the Hawk Owl was recorted, by Elsenezer Emmons, M.D., as a rare "antumn" visitant in Massachusetts.t It has been shot as far somth as Hadington, near Philadephias
153. Nyctale Tengmalmi. var. Richardsoni (Bonaparte) Ridgway. Richarlson Owl.

An extremely rare accilental winter visitor from the North. Dr. Wrm. Wom has a fine specimen of this horeal Owl in his eahinet. It was eaphurel some twenty rears ago, in mildwinter, near East Windsor, Com. The toctor gives the following account of the mamer in which he came in possession of this specimen, in one of his interesting articles pullished in the "Ilartford Times," Ang. 24th, 1861: "Visiting a patient some three miles from my office, I was

[^61]Trans. Conn. Acab., Vol 15
informed that word had heen left for me to call at a homse near by. On driving ower and meeting the ocenpant at the gate, I inquired who was sick? \fter giving me an evasive answer I was invited into the house. lieing woll acepuanted with the gentleman, and knowing that he hat quite a taste for matural history, I began to suspect that it was not professiomal advice that was wanting. Leaving the room for a few minutes, he retmen with an Owl. This bird, he informed me, sat "ren the verandah early the previous morning, and approaching cautionsly, he captured it without its making the least resistance or effint to escape, and jut it into a cage. The next moruing, from some mbnown cause, the bird was found deal, and 'thinking it might he something a little slitferent from any in my collection,' he saved it for me. No one but a maturalist can imagine the satisfaction it attorded me when I heheht lichardson's Owl ; and 1 assure fou that 1 would not only have gone three miles, but ten times three to obtain it." Several suecmens have heen taken in Massaclmsetts.*
154. Nyctale Acadica (finchin) Bonaparte. Aeadian Owl ; Saw-whet Owl.
liesident, though rather rare, or at least not often seen, for, owing to its diminutive size and norturmal halits, it might be quite common and yet escape notice. Linsley never saw " lout two individuals," one of which "was fomm lying upon his lack in a barn-yard in a cold moming in Mareh, 1841, thongh still living." A specimen was taken at East Ilaren, Comn., N゙ov. 26th, 187t, by 1r. F. W. Hall.

Mr. Coe and Mr. Sage have each fune examples of this species in their cahincts, and the former gentleman showed me a set of five eggs fomb in a hole in a tree near lortlanl, Com. Dr. Woot, of East Windsor IIll, has several specimens taken in that vicinity, and I have lately seen quite a number, killed ahout New llaven, and throughont the Sitate. It feeds on small hirds, mice, grasshoppers, beetles, ete. "For rearing its yomg the saw-whet takes possession of the old nest of a crow, or some other large hird, or of a hollow cavity of an old tree." \dagger

[^62]
Family, FALCONID风.

155. Circus cyaneus, var. Hudsonius (Limí) Silil. Marsh llawk;
 Harrier; "Monse Itawk."

A tolerably common summer resident, especially about salt matwes, where it breeds, placing its mest on the gromad. Arrives in Ditreh or $\Lambda_{\text {pril (}}$ (pril 9, 1876 , Oshmme), remaining into November (Nov.6).

I take the following interesting accombt of the andacity sometmes displayed by this hirl, from one of 1 br. Wencls articles in the llartford Times: "If once introluced to your young ponttry a faithful supervision will le exercised over them to see that none are left to suffer from want of attention or hanger. I know of an instance where the old bied returned daty, and about the same hour, until all were taken. Coming one day when the owner was there, the llark evidently intended to convince him that he was sole proprictor of that brool. The chickens having Hed into the coop, he made himself quite at home by alighting on the shed near by and wating for them to appear. The famer canght up at stick and threw it at him, which so emaged the hirl that it flew abont his heal, diving at him and squealing at a most furions rate, when he retmend again to the shed, seoding vehemently. The finmer remarked that be wat the s:unciest little thing he ever saw.' In capturing miee partly concealed they sometimes 'wakn up the wrong passenger' and get capr tured. An instance of this necurret in East Hirtfort. A Monse llawk was observed sailing over some tall grass, evidently intent on game. Poising himself for a moment by the slow, easy flaphings of his wings, he suddenly dose, ant soon apmeared, aseending slowly and with diffienlty. The very singular movements of the Hawk attracted the notice of several persons who were talking tugether, and they watched every motion with interest. IIe gratually rose higher and higher, till his strength began to fail, when he begen to deseend obliquely for a little way, then hendlong to the gromul. On arriving at the place they fomm that the Hawk had seized a weasel, that had killed its assalilant hy eating into the sides of the bird, where he was still at work!"
"Some years since, a student in the seminaty came rmming up to me in a great harry, almost out of breath, puffing like a locomotive, and exclaming, 'Doe-doc-doctor,-c:m-you-shoot-flying?' I replied that sometimes I wid smeh things. "Well, I wish you would go out East and shoot allawk that has chased me fur half a
mile, diving so chose to my hemb that 1 expered every moment he would have hold of me' 'Taking my ginn, we walked tow:ark the swamp, when he intormed me that be eame out there to practice elocution, so :1s not to disturb :ny one, and heline he had finished the vowel somals the Hank amme at him." On :mriving ne:re the place I reduesterl him to eommence his rocal exereises again, so ats to afford me an opportunty for praticing on the wing. Jle commenced, and, if that was :l specimen of clowetion, no womder the Itawk drove him from the premises, for of all the eathly or une:rthly sounds erer intered, those exceeded atyything I ever heard. If hlimhfold, one would have supposed that there was a conecert of (ipeat Horned Owls of ath ages, echoing through the forest 'wathgh ho! oo, é, als,

> ‘'Making night hideous,'
almost tempting one to think, if not to ntter, the penult of the word named. The hirl without donht recognizel the vowel soumls, for she soon came aromod, but either not liking the looks of me ar my gun, kept at a respectul distance, flying about, uttering the peculiar ery of the Marsh llawk. Neither the attempts of Andubon or Nuttall to interpret their song has elucidated it acrording to my ear. It appears to me to somd like the male falsetto descending ruickly from high F to 0 , key of two sharps, with the syllahles hey, ha, ha, in compound time, accenting the tirst note very forcibly. The next day we went again to the swamp, but taking the precantion to conceal myself in the bushes before he commenced his elocntionary exercises, the bird dove at him as before, when he sung out lustily, 'shoot! shoot! shoot!' Discovering me the hawk changed her tactics, much to the relief of my frient, and, poising herself for a moment, dove with so much force at my hearl as to make a distinet rustling sound. After allowing her to repeat this several times to see if she would really take hold of my cranimm, my ohl gun went off, carrying death in its track, much to the joy of my comp:anion, who now, for the first time, rentured to take a full breath since coming into the swamp."**
156. Nauclerus forficatus (Lmme) Ridgway. Swallow-tailed Kite.

A rare straggler from the Sonth, at present. Mr. Josiah fi. Ely, of Lyme, New Lomdon County, Comn, writes me that while hunting on the 2 d of July (1877), one of these magnificent birds flew orer his

[^63]hearl, and that "there is no doubt as to its identity." Mr. W. W. Cone, of lontland, ('mme, tells me that he sim a swallow-talled lifte in that vieinity, during the summer af tsibl. We was erossing ath ofen meadow when the Kite suddenly dove, dose to where he was staming, and arose with a smake in its talons. This it devouret while in the air, much to the surprise of Mr. Cere, whe was not then fimiliar with its habits. A specimen hats also been ohserved in Massachmetts quite recently.* It has heen shot on Lang Fshand (Giratul). The eanse of the restricted northern range, in the eastern province, at the present time, can searely depend on tha temperature (as generally supposed), for it was once not only common in New Englanl, but actally wintered here. Williams, writing in 1794, says that they were then fomm in Vemont, and "seem to be fitted by mature, to endure all the diversity of our climate, and are to be seen in the coldest weather of our winters." \nmid 'The prwer of wing exhibiterl ly this splendid speces is truly wonderiul. Its swift flight and abrupt thmings can only be compared to those of the swatlow. I have wfen seen them, in Florida, dart down and piek a wasp's nest from the mater side of a palmetts leaf, devoming the grobs it contaned while on the wing.t. Dr: Cones writes thes of it: "The Swallowtailed Kite is a marked feature of the seene in the Sonthern States, alike where the sumbeams are redolent of the orange and magnolia, and where the air reeks with the jestilent miasm of the mossshromed swamps that sleep in perpetnal gloom. But, imbued with a spirit of alventure, possessed of mequaled powers of flight, it often wandens far from its sonthern home; it has more than once crossed the ocean, and hecome a trophy of no ordinary interest to the arient collector in Enrope." It extents northward in the Mississippi Valley, "where it mandarly wemes above the mouth of the Missomi." " Marked among its kind ley no ordinary beanty of form and hrilliancy of color, the lite courses through the air with a grace and boyancy it wond be vain to rival. By a stroke of the thinthated wings and a lashing of the cleft tail, its flight is swayed to this or that side in a moment, or instantly arrested. Now it swops with incredible swiftness, seizes without a panse, and bears its struggling captive aloft, feeding from its talons as it flies; now it mounts in airy circles till it is a speck in the bhe ether and disaplears."

[^64]
157. Accipiter fuscus (Gmodin) Bonaparte. Sharposhimod lawk.

I commonsmmer resident, bereding on frees amd on high rocky
 our Hawlis, they are the latest fo beed, laying their cems, gencrally live in mumber, in lume. Jle has found them "in an wh grey squirrel's nest tixed up for the wecasion." Aroves in March, remaning into November. F. W. Putnam, in 1856 , gate it as "resident," but "not abmolant," in Essex County, Mass. I have no anthentic reeorl of its oecmrence here in winter. Dr. Whod writes: "Its Hight is quick, irrerular, and so rapid, that, if your gun is not cocked it will pass out of range before you can get aim. It pounces upon its prey with such velocity that no time is allowed for escape. While riding one day, one passed within a few feet of me and dashed into a cluster of ahlers, interwoven witl grapevines and briars, and seized a half-grown 'fail, passing out with it, withont scarcely checking its speed. Athongh the hedge was within twenty feet of me, it was so thick that I could not hiscern the bird motil it apeared on the opposite side in the talons of the Hawk. When hungry and in seareh of game, it knows no fear, often diving within a few feet of you and seizing it chicken. Sometines yon will see one flying along reryswift and low, wheeling right and left, taking a 'lind'seeye view' of every hedge amb bush, motil it sams some little bind, whose fate is surely sealed."* Nutall writes: "l ascenting furionsly and blindly upou its puary, a young Hawk of this speces froke throngh the glass of the green-honse, at the Cambridge Botanic (atarden; and fearlessly passing throngh a secomd glass partition, he was only fronght up by the thirl, and canght, thongh litte stmmed by the eftiont." \dagger
158. Accipiter Cooperi (Bonapartc) (íray. Cooper's Hawk; Chicken Hawk.

A common smmmer rexident, gencrally placing its nest in some tall pine or other high tree. "Their fom eqgs are usnally deposited about the midnle of May. They frequently build a new nest every year but often take possession of the old nest of a Red-tailed or Redshouldered Hawk." \ddagger Arrives in Mareh, remaining into November. 1)r. Wood writes that he knew of six of their mests in the vicinity of East Windsor Hill, Com, in a single season, and that he oltaned

[^65]eggs from fire of them. He says, "It is bold and fearlese, often diving within at few rols of the farmer and seizing his chickens. If once introduced to the yomg poultry, you may rest assured of a daily eall till all are gone, miless you are fortunate enongh to secure the intruder. I once saw one of these llawks seize atheken on a very steep side-hill, elose beside the old hen. In an instant the emraged mother Hew mon the thief, and both came thmbling down the hill, elinclerl together; ruming up, I was just about to grasp the llawk when they parted. It sometimes attacks full grown poultry with success. A gentleman once informed me that, 'while stimiling lyy his woul-pile, close by the honse, one of these hirds rlove upha finll grown rooster, within six or eight rols of him. 'The fowl ran some two or three rods and dropped dead. 'The lWawk soon returned to dewor his game, as it was too heary for him to carry away, but his andacity cost him his life., "**

In the old colonial days, when every man spelled as best suited his own faney, the different kinds of lawks lid not pass monticed, for in 1632 Morton wrote: "There are Ilawkes in New England of 5. sorts, and these of all other fether fowles 1 must not omitt, to speake of, nor neete I to make any Apology for my selfe, concerning any trespass, that 1 am like to make mon my judgment, concerning the nature of them, having bin hred in so genions a way, that I had the common me of them in England: and at my first arrivall in those parts practieed to take a Lambaret, which I reclaimed, trained, and made flying in a fortnight, the same being a passinger at lichuelmas. I fonnd that these are most excellent Mettell, rank winged, well conditioned, and not tickleish footed, and having whoots, bek, luers, and all things fitting, was desirous to make experiment of that kinde of llawke, lefore any other. And I ann perswaled : that nature hath ordaned them to be of a fare better kinde, then any that have bin used in Encrland." \neq lt seems to mo that there is little doulit hut that the abore remarks refer to Corper's Hawk.
159. Astur atricapillus (Wilson) Jardine. (ioshawk.

Rather rare, and somewhat irregular, winter visitant. Said 10 loreed, oceasionally, as far sombli as Massachmsetts (Maynard and Miwot).

[^66]Profesor Wm. 1). Whitucy has a limely monnted precimen, in his cabinct, which was shot, some year: age, at Ilambern Plains, matr New llaven, Comb. W. W. ('ine, and Jho. II. Silue, of l'artamb, Conn, have each seweral fine slecimens taken in the State-one near

 days previous to its aptme it had been in the hahit of lunching ou a neighbors ehickens. Mr. Erwin l. Nhores writes me that, in the ricinity of Suftield, Comn., he hats seen it "four or more times during the hat two winters." I am informed by 1)r. Wim. Wood, whet Windsor llill, (omm, that they are really commen in that vicinity about once in ten foars (he once hatl seven specimens, in the thesh, on hamd at we time) but are seldom seen betweentimes. The doetor relates the following ancedote as illustrating woll the loolduess and daring often displayed hy this species: An oht man, orer cighty years of age, was sitting quietly in the hitelen with his maden daughter. The door was open and their quiet was sudilenly broken by a hen Who rushed frantically into the room, followed elosely ly a large Goshawk. There, right on the kitehen foor, and in the presence of the two, the bold Hawk seized the hen. The feehle old man rame (1) the rescue, anl, with stick in lamh, finally succeeded in heating off the intruder, who now made for the door. lint it was tou late-the danshter hat closed the doo and actually camght the furious hirl in her loands and put him to death !

Zadock Thompron says: "Its disposition is very savage, and it is withal so much of a camibal as sometimes tu devour its own young! ""* 1)r. Wm. Woml, of Fast Windsor Hill, writes that a specimen which he once kept alive in a small romm "refused from until the thirteenth day, when it devoured an entire hen. It died the next night, a rictim 10 its roracionsness." \dagger "The poet Chancur in allurling to it says, -

> 'Riding on hawking by the river.
> With gray Goshark in hand.'

Falconre and hawking, as lefined by our lexicographers, are synonsmous, lut formerly lime of sport were divided intotwo classes, those of falconry, and these of hawking. This bide eame under the latter class." "The Goshawk does not nsmally soar high, like the longer winged llawke, mo dart mon its prey by a direet deseent, as do the

[^67]true Falcons, but by a side glance. It is restless, seldomalighting but for a moment, exeppt to derour its 'parry, and then it stands ahmost erect. Its Hight is so rapich that it ean easily overtake the swift l'igeon on the wing. When looking for prey it skims : Longer near the surface of the ground with great velocity, and cateles its game so quickly and easily as sareely to beseen by the looker-on." "The Goshawk is the most daring and renturesome of any of om dinmal birds of prey. A farmer who resides a few miles from my office, wishing to perpetnate the ohd New England custom of having a chicken-jie for Thanksiving dimer, canglat some fowh, took them to a \log, severed the neek of one, and threw it down beside him. In an instant : Goshawk seized the struggling fowl, and, flying off some ten rods, alighted and commenced devouring its prey. The boldness of the attack so astonished the farmer that he looked on with blank amazement. liecovering from his surprise, he hastened into the house and lirought out his gun, which secured him both the Hawk amd the fowl. ${ }^{\text {" }}$ *

Pennant, in 1785 , tells us that Goshawks "are used by the Emperor of (himu in his sporting pronresses, attended by his grand falconer, and a thonsand of the suborlinate. The Emperor often carries a Ilawk on his hand, to let fly at any game which presents itself; which arr usually lheasauts, Partrilges, Quails, or Cranes. Harco Polosatw this hiversion about the year 1269." \dagger

160. FaIco communis fmelin. Peregrine Fatcon; Duck Hawk.

Resident, but rare; breeds on Takeott Momentain, near Hartford, Conn. Limsley tells us that, previons to the year 1842 , a specimen of this celebrated and powerful bird was wommed by a gun-shot in Strat ford, [Comn.], and after he was taken sonn recovered, and was kept on poultry until he became too expensive to the owner," \ddagger who then released him. Mr. Geo. Sird Grimell informs me that he saw, on the 231 uf February, 1876, a Duck Hawk (or Great-footed LIawk, as it is olten called), flying alout the Somm, near Milford, Comm.

On the 29th of Jome, 187 , while enjoying the hospitality of lapt. O. N. Broks, at Fanlkners lsland, Conus, in company with my frieml, Mr. Jno. II. Sige, the Tems breeding on Goose Istand (one mile

[^68]distant) Were observed to be in an musual state of commotion. The Captain remarked that they had heen agitated, the day previous, hy a Duck llawk which might still he prowling in the vicinty, and he kindly offered to take us ower there. We lamed, and, on romeling the island, the Falcon sudenly started from her retreat among the rocks and weets, which, as we atterwards discovered, was strewn with feathers. But the eaptain's gim was in readiness, and, through his kinduess, the birt now graces my collection. During her brief visit she had made sad havoe among the Terns, and her erop was greatly distended with their remains, which had been swallowed in incredibly large pieces-whole legs, and the long bones of the wings were fomd entire and mbroken! ludeed she was perfectly gorged, and contained the remains of at least two atult Terns, besides a mass of newly hatched fonng! The only other great-footed llawk that Capt. Brooks has ever taken, he killed, at this same place, twelre years ago. Query: did this hirl come from Taleott Mountain, or did it breed far beyond om limits? It is said that they are able to Hy many homs withont resting, and at the enormons rate of an hundred mites per how !* They sometimes live nearly 200 years!

In the Hartford Times of June 29th, 1861, Dr. Wm. Woot, of East Windsor Hill, Come, phtlished the first accomnt of the first Duck llawk's nest fomd in New England. lt was discovered by Dr. Noses, on Takcott Momatain, near Hartforl, Come, May 25th, 1861, and contained fonr young almost large enongh to fly. The finding of this nest was, at the time, of partienlar interest, since, as Hr. Wood remarked, "it settled beyond dispute three points: 1st, that they breed on eliffs ; 2d, that they breed in Connecticut; and $3 d$, that they nest wery early" (sometime in March). \dagger

They have since been known to breed regularly on Mount Tom, Mass., where their eggs were first taken, April 19, 1864, by Mr. C. W. Bemett,t of llohyoke. Their nest was again robhed, by Mr. Bemett, in 1866 and in 1869. Mr. J. A. Allen, in his "Notes on some of the harer Birds of Massachasetts," writes: "During a visit to this Mountain [Mt. Tom], in company with Mr. Bennett (Apr: 2s, 1869), we hat the great pleasure of discovering their second eyrie, from which, with comsiderable difficulty, three freshly laid eggs were obtained. Not discouraged by this second mistortume, they nested

[^69]again, this time deposting their cges in the ohd eyris from which all exeept the hast set ol egess have been ohtamed. Again they were
 mumber, May 2 Bis, at wheh time incolbation had just commenced. The birds remaned about the mombain all the summer, and from the anxiety they manifested in Angust it appears not improbable that they had laid a thind time, and at this late period had unfledged Gomg."* Hr. Harold lerrick states that it is common on the lamel of Grand Menan, N. B., whew it "hreens on the eliffe, but in such inacressible sitnations that its nest is rarely taken. There is ap pace between 'Fish Head' and the 'Old Bishop' known as the 'Keven Day's Work, where the eliff is diviled into seven strata as sharply defined as lines of masomy. On an indentation in the face of this cliff, ahont one humdred feet from the top, and one hundred and filty feet from the lotiom, a pair of these Falcons have had their eyrie for a succession of years, secure alike from the assaults of the most zealons maturalist, and the small boy of bird's-egging proclivities. ' \dagger

Mr. W. W. Coe, of Portland, Conne, tells me that while duck shooting a few years since, as the birts rose at the report of his gran, a Duek llawk dore, struck a Teale, on the wing, and carried it off' Dr. Wood writes: "In the vicinity of their brealing phaces they are a terror to the poultry as well as a drad to the farmer, for there they usually hunt in pairs, one following directly atter the other, and if the first one misses the game, the other is sure to piok it mp; there is no escaping the two. This is the miversal testimony of all the famers living in the viemity of the eliffs where they bred. One of my collectors went over one hundred miles to get a nest of their eggs, from unly hearing a farmer in the vicinity of the eliff describe their manner of hunting ; knowing from this ciremstance alone that it must be the buck llawk." \ddagger

161. Falco columbarius Linné. Pigeon Hawk,

Resident, hut rare in summer, and not often seen in winter. It is not uncommon here in spring and liall. Dr. Wrm. Wood tells me that he has found it abont East Wimbsor IVill, Comn, in May, June, and July, but failed to discover the nest. Ite is not, of course, perfectly

[^70]eertain that they bred there at all. thang their weenrenee in early summer certainly looks like it. I have seen it, in the vicinity of Now Haven, in Xpril, and again in digust amd keptomber, aml mow have notes of its presence in this state in every month of the year. la one of his interesting articles on the "(iame Faleons of New bene laml," 1r. Wood writes: "In May, 1 stin, a gentleman whor resides some five miles distant, informed me that al small llawk eame ahmost every day and earried of a chicken for him-that it never missed, for it went so like hightning that there was mo escaping its graspl. He said that it always eame in the same direction from a tract of Womts near his honse Aceomp:mied by my friend, we carefully scarehed the wouls withont finding anything exeept the nest of the Red-shondered Hawk. The next day the same little Lawk returned and was shot, and is now in my eollection, a beotutiful representative of the ligeon Hawk. I have no donht that it han at nest about there, as it was the seasom for nesting, and it alwas came from, and went to, the same piere of woods, and in the same direction. If it had not young it must have been carrying ford to its mate while incubating. If a mere straggler it wonld come and go withont any definite place of resort. Onr inability to find the nest was not strange, as there were some sixty on aighty actes of hearytimbererl oaks and pines in the tract." Mr. Geo. A. Boardman states that it "breeds in hohlow trees," \dagger which wonld, of conrse, render its nest still more ditficult to find. I ann strongly inclined to believe that a few paiss do uecasionally lneed in Connecticut, for, thongh its nest has not yet been actually discovered, the fact that the birds are sometimes found here thronghout the entire year is strong evidence that they hreed, and mere negative evilence, in such cases, amounts to little or nothing.

162. Falco sparverius Linné. Sparrow Hawk.

A rather rare resident; only a few pairs breed within the State, and it is seldom seen in winter. Mr. W. W. Coe tells me that it breds near Portland, Conn., and I am informed by Dr. Wood that it sometimes breeds in the viennity of East Wiudsor Litl.

Dr. Wood thus describes a novel site for a nest of this Hawk which was found at Granly, Conn.: "A farmer made a dove house inside of his barn with holes through the sides of the building com-

[^71]mminating with it. A pair of dowes that hat nested there were attacked and killed ly a pair of Sbarow Hawks who look possemsion of their mest, laid four egess, athl commenced to sit. During inculation they limul the tarmers chickens very convenime for fook -loo much so for their own good. I sitw both birts after they were killed; also their four eggs, two of which are mow in my cabinet."* In Wlizabeth, New Jersey, several years ano, l saw a pair of Sparow llawks fly up mader the caves of an ohd ham, and drag a couple of Swallows out of their mests! Mr. Sare has seen it in Itanary (Jan. 6, 1875), nem l'ortlani, Comm, amb Int. Wood writes me that he has "ceasionally taken it in winter.
"Sparhawkes there are also," wrote Mortom in 1632 , "the fitirest, and best, shaped hirts that I have aver beheld of that kinde, those that are lithe, no use is made of any of them, neither are they regarded, 1 onely tried comelasions with a lamaret at first comming ; and when I found, what was in that hird, I tumed him going: but for so much as I hive ofserved of those birds, they may be a fitt present for a prince; and for goodnesse too be prefered before the Barbary, or any other used in Christembome, and especially the Lammars and Lammarets." \dagger The above may have refered to the Sharp-shimed llawk.
163. Buteo borealis (Imelin) Vieillot. Red-tailed Hawk; Hen Ifawk.

A common resident, but more mmarons in arly spring and during the fall migrations than at other times of the year. The migrants arrive early in Marel, anl in fall, may tre seen, in consiterable nombers, in September, October, and November. On the 25 th of September, 1875, I saw, near New Iaven, a fock of twenty-six Reri-tailed Hawks, soaring high, and sailing slowly southwart. The day was clear and cool, and there was little wimb.

Mr. W. W. Cone, of Portlaml, Conn., has heen remarkably fortmate in finding the nests of this H:nwk, having taken, huring the past five years, nearly forty of its eggs! The best time to go for them seems to be about the middle of April, but he has foumi nests, containing eggs, at all dates from Mareh 3uth (1875) to May 230 (1873), though the young generally hateh during the latter part of April or early in May. The Staltuntler hrothers found it nest, near New Haven, April 13, 1877, containing three eggs which "were just heginning to

[^72]hateh."* The liedtailed llawk generally lays two, frequently three, and sometimes four, eqgs. In writing of them, from l'ortland, Com, Mr. (be selys: "Their nests are casily identifich, heing the largest nests built in this loeality, and the earliest. 'They lay in the same nest year after year if not disturbed, ant often if they are 1 once fomml a mest in a young chestmot, not over twenty feet from the gromal, hat they commonly build high np in large trees." \dagger

The Rev. Mr. Peaboly, in his Report on the Birds of Massachnsetts (in 1839), remarked that these llawks, "like the Crow, serm to have an intative perepetion of the use and reach of the gent, for if they see a person armed, they give a seream of disgnst, and sail sway far heyoul his reach." \ddagger

They are often called Hen llawks from their frequent visits to the poultry yard. I have also fonme, in their alimentary canals, the remains of mice, smakes, and frogs.

164. Buteo lineatus (Gmelin) Jardine. Red-shouldered Hawk.

A common resident, like the last, but more frequently seen in winter. Also breeds in high trees. Mr. Coe writes me that it generally lays a little later than the lied-tal, makes a smaller nest, and is more likely to bill a now one every year. He has taken their eggs from April 16th (only one egg, just deposited) till May 19th. They generally lay three or four egess, and sometimes five. Dr. W ond once fonml six! I once took from the stomach of one of these Hawks a snake (Eutainis saurita) measuring twent y-two inches in length!

A yomig bid, which Dr. Wood raised, became very moch attaehed to him. He says: "by giving a whistle he wonld answer with his ka-hee, ka-hee, krt-hee, and Hy from the tree and alight on my shonlder, expecting his accustomed morsel. I did not confine him at all, but allowed him to fly where he pleased, knowing that he would not go far oft. The domestic fowls became so well acquainted with him that they showed no signs of fear when he alighted on a tree or post near them. One moming he lid not come at my call, nor at noon. In the afternoon I went in seareh of him am whistled till my lips wonld not pucker any longer, yet no hirl answered to the music. The next morning he was brought to me as a rare specimen with the following

[^73]serpuel: " He came and alighted on my fenee within thew feet of me when I was feeding my fowls. They flew in every direction. Carefinlly stepping up I canght the pretty eveature and thought I wouhl save him for the doctor. Puttiag him into a box, I gave himsome eorn; lut he diel not seem luentry, cmed would not eut a kernel.'"* Again, under the name of "Winter Ilawk (Buten hyemulis)," the loctor continues: "sitting patiently upon a tree near some spring or masky groumd, it will watch by the hour for a frog to make its appear:nce, when it is immediately seized and drowned. There is a side-hill, some few miles from my office, from which springs constantly run in the coldest weather, furming quite a wet, marshy place, offering great inducements to the Winter Hawk. Here yon may see one or more of these birds every winter, perehed upon a tree near by watching for its firorite food. I received two specimens shot from that tree in one day." \dagger

165. Buteo Pennsylvanicus (Wilson) Bonaparte. Broad-winged Hawk.

A rather rare resident, seldom seen in winter. It hreeds sparingly ahont New IIaren, and Mr. W. W. Coe has taken quite a number of their nests, tugether with several of the finest specimens of the bird that I have ever scen, in the vicinity of Portland, Comn. He informs me that they generally lay later than the Red-shouldered Hawks, and. like them, often build a new nest every year.

Mr. F. W. Patnam (in 1856) gave it as a rare winter visitant so far north as Essex Co., Mass. \ddagger
166. Archibuteo lagopus, var. Sancti-Johannis (Gmelin) Ridgway. Rough-lcgged Hawk; Black Hawk.

A winter visitor ; not common. I saw one near New llaven, Nov. 20th, 1875. Mr. Geo. Birl Grimmell tells me that he has secm it, in spring, near North Haren, Com, It is sometimes quite abunlant on the low mealows borlering the Connectient liser, where, in the ricinity of East Winctsor IJill, Comn, Dr. William Wrood has secured a large number of specimens. The splendid series thas obtained, enalled him, many years ago, to prove the identity of the two forms, legopmes anl Stmeti-Ithamis, then considererl, by our

[^74]best Ornithologists, to be specifically distinct. As long ago its 1861 Dr. Wood published the following: "The ditherence in size is no more than frepuenty oecmes in limeds of the same speces. 'The shape and general form, the small elaws, the same habits in every respeet, their arvival at the same time, asseriating and saling together, the phomage of the one ruming into the other as it changers, so that it is difticult, if not impossible, to tell whe the dividing line comes, some being jet-black, others mot quite as dark, others slightly mixed, some more so, certanly make a strong ease in favor of their identity."* Thee years later the doctor wrote I. A. Allen that he had then taken and examined about forty specimens, amb cond now state positively that: "The Rongh-legged Falcon and Black IItwk are the seme." \dagger Both Baird and Cones, in their late works on our lirds, state that the examination of a large mumber of sperimens leaves little doubt as to the identity of the two forms under consideration, each using such language as to indicate an original discovery dependant on his own investigations, amd neither allndes to the pmblished records of Dr. Wood, who, long before, arrived at the same conclusion, and from a larger amount of material, and of better quality, than is to be found in any other collection in the world.

167. Pandion haliaëtus (Linné) Cuvier. Fish Hawk; Osprey.

A summer resident, breding abundautly along the coast, both on the main land and on islands in the sound. It is particularly abundant during the spring migrations. It arrives late in March (March $\underline{2}, 1877$), remaining througl October (Oct. 23). The migrants pass northward during the later part of April, and retmon again in September. Mr. Fred. Smmer Smith, of this eity, tells me that a friend of his found a Fish Hawk's nest in Heron swamp (near New Haven) as late as . Tnly th, (1870). It was a small one, being little latger than a loshel basket, was placed in a clump of thick bushes, aml contained three egres. Mr. W. W. Coe informs me that they do not breed so far up the Connecticut River as Midalletow and Portland, but are common at its month (about saybrook), and that he has taken their nests, along the Somnd, all the way from Saybrook to New London. Com. "lmmense mombers of them breen regularly at Plumb Island, Comm, where I saw, last suring, at least five hundred nests, and orer a thonsand hirds. There is only one small piece of

[^75]timber on the islam, and every tree eontains a Fish Hawk's nest, or from dight to ten Night, Herons' nests. 'There is quite al eolony of Night llerons there. There not heing trees enongh for the Hawks to nest in, many of them build on the gromad amb some laty their egegs in the samb. They ocenpy the same nest for years, adding a little to it each season, till some of them, that were originally placed that on the gromb, hiod heome so large that I eouh not look into them. Many were seven feet high ame measured six or aight feet across the top! On the the of June I fomd hoth young birds and fresh eggs in some of the nests. The Grow Blackhirds had huilt their nests in among the large sticks on the sides of the Fish Mawk's nests, there being often fom or five of the former plateel about the sides of one of the latter. Besides the Fish IIawk, Night Herons, aml Crow Blackhirds, many other hirks breed upon this island, among which might he mentioned the Uphand and Kilhleer llover, and large numbers of Terns."*

The liev. Wm. 13. O. Peaborly, in 1839, thus wrote of their habits: "The Fish llawk is on exeellent tems with the fishermen, though they are of the same trade. Its coming anmonces the arrival of the shoals of fish that crowd our rivers in the spring. Perhaps its exemp. tion from gersecution maty be owing also to its well known gentleness of disposition. Julike other hirds of prey, the Fish Hawks are social and friendly to eath other. 'They come to us in tlocks of eight or ten, who binid near each other, and rear their young in perfect harmony, and this spirit of hospitality and kindness is extended to of her birds that seem to have no cham upon them. The Crow Blackhirds are permitted to shelter in the interstices of their nests, which are huge constructions, mate of a cartload of heary materials fimly matted logether." \dagger
168. Aquila chrysaëtus Limé. Golden Eagle.

Arare winter visitant. Dr. Woon informs me that it is sometmes seen about Hartforl, Comm. Mr. J. N. Clark, of Sarbrook, Com, writes me that he sees one or two there every yenr, and that one remained in that vicinity a week, about the mildle of May last (1877). One was seoured at Decep River, Comi, Nov. 13th, 1875, by Mr. Harry Flint. Zadnek Thompon statel that they sometimes live in Vermont, and says that "the nest is placed mun the inaceessible shelf of some

[^76]rarged precipice, and eonsists of a fers sticks and weeds harely sufficient to kerp the erges from rolling down the rocks. These cagles feed upon young fawns, hates, racoons, wild turkeys, partridges, aml other ghadrupeds :mbl hide, hut will feed ou putrith Hesh only when severely pressed by hanger."*

169. Haliaëtus leucocephalus (Linné) Savigny. 13ald Eagle.

A resident ; mot menmmon during the migrations. Saw one flying wer the city, Now eoth, 1875 . Alsu observed tive individuals during Feh. ami March, 1876. They unquestionalhy breal about fom miles abure the month of the Honsatonic River, Comn, as I am told ly my friend, Mr. Geo. Biad Grimell. One was shot near the mouth of the East Hasen River in Nov., 1876, and is now in the collection of Mr. Thomas Oshome of this city. Used to breed in suitable localities thronghout the state, and there were formerly two eyries within a few miles of New Hawen, one at Mt. Camel, and the other on Saltonstall Ridge.t

Linslry kept am immature specimen (abled by him "Washington's Etgle") alive fur some time, concerning which he writes: "I kept him awhile confined, hat soom fond it mmecessary, becanse it he left my fromises he would return to the stand at night. I have kown him to eat fumteen birds (mostly King-birds), aml then he was satisfied for a week. He appeared to prefer this mone of living, ant paid mo attention to a daily supply. He, however, in the conse of the smmmer, became so mischicyons among the yomg ducks of my neighoos, that I was compelled to kill him. A single azecrlote of his conduct may not he minteresting: While he had possession of my fromt gard, ocolpying the centre as his stand (the walks making a semicircle to the fowr), be would remain perfectly quiet if ;entlemen or tudies entered; hut if a person with tattered gamments, or such persons as were not aceustomed to come in at the front door, entered the yard, it was actually dangerons for them, and they eonld only escape the tremendons grasp of his taloms by ruming with their full strength ame shutting the gate after them. Facts of this kind often occurred, and I was occasionally compelled to release from his grasp such individuals as he hat taken captive. With one clam in the swad and grass, he wouk hold quietly any man with the other."

* Eistory of Vermont, by Zadock Thompson, p. 59, 1842.
\dagger Aın. Jour. Sci. and Arts. vol. xlir, No. 2, p. 251, April, 1843.

In 1 gist, Willian IV sod wrote: "The Laghes of the Conntrey be of foo sorls, one like the Eagles that be in E'mglemt, the other is something bigger, withagreat white head aml white tayle: these hee eommonly eathed (bripes; these prey upon Duckes and (xeese, and such Fish as are east mon the Sea-shore. Jod ahthough an Eigle he counted king of that fathered regiment, yet is there a eertane batake Hawke that beates him: so that he is constrayned to soare so high, till heate expell his alversary."*

Family, CATHARTID 无。

170. Cathartes aura (Limé) Illiger. Turkey Buzzard.

A rare visitor from the Sonth, at present, ahhongh once " not uncommon" \dagger accorling to Linsley, who further states: "I have kowwn it in Comectient from a child, having at that perion combed twenty in a floek in Northford in the month of Angust." "At the South, where they abomul, it is seldom one attacks domestic poultry; lut many years since I saw in Northforl, in this Ntate, a splemid male Turkey Buzzard pounce down upon a chicken about three-quaters grown, and within about three rots of where I was standing with two other persons. As he turned his eye mon us, still stambing ugon the chicken, he appeared so much alarmed as to lo mable to rise; we all ran upon him, and when within a few feet of him he rose, just clearing out hearls, and dropping the chicken at our feet, he hurvied off." ${ }^{\prime}$ This fact is particularly interesting, sine they are commonly helieved to feed exclusively on carrion. Nuttall heard that they were "accosed, at times, of attacking yomg pigs aml lambs, legimning their assault by pieking out the eyes." But that he did mot helieve it is evident, for he goes on to say: "Mr. Waterton, however, white at Demerara, watehed them for hous together amidst reptiles of atl descriptions, lont they never made any attack mon them. He eren killed lizards and frogs and put them in their way, but they did not appear to motice them till they lad attamed the putrid scent. So that a more hambess animal, living at all mon flesh, is mot in existence, than the Turkey Valtare." Nevertheless, since our own mon-

[^77](Tm classification ol the Anmal Kinglom is mat sufleriently plastie th admit of gromping together ehickens, pigs, and lamhs, muder the hend of "líptiles," atones with "lizands ant frogs," and the like, and since the worl of so cetrefinl and comsiontions an observer as Mr. Linsley is mimpearhable, we are foreed to atmit that these "harmless ammak" do oreasionally visit the fameyam with "matice aforethonght," and that a young fowl, safely lodgeal in the otherwise empty stomach, may 1 ot prove an altogether distasteful article, exerting, perchance, as soothing an efle over the shggish intellect of one of these indotent scarengers as the most delicions morsel of pro trescent camion. Inkeel, Andulum says of it : "they often wateh the young kid, the lamb, and the pig, issning from the mother's womb, aml attack it with direful success." "Any flesh that they can at once tear with their very powerfal bill in pieces, is swallowed, no matter how fiesh; hat it frepmently happens that these hirds are fored to wait motil the hide wh the prey gives way the bill."* Mr. Crimell tells me that one was shot at the month of the llonsatomic River, C'mm., in June, 1875, ly ('. Merwin, of Milforl Point. Turkey Buzzards have heen wherved at Suybrook, Comn., by Mr. J. N. Clark) recorled by Purlie ; \dagger two were taken in Massachusetts, \downarrow and one even strayed as far th the month as Calais, Maine, where it Was eaptured by Mr. G. A. Boardman (recorted by Prof. A. E. Verrill).g Dr: Wood tells me that one was sem, feeding on carron, near East Winlsor, Comn, only thre yeats igo (187t). The liev. J. Howard Hand writes me as follows, concerning the occmrence of Turkey linzzards in Commecticut: "I took one speeimen at Cromwell, Comn., Šept. 23t, tsit ; also one at Westbronk, Comn., Oct. 16th, 1875, and again eight specimens on Oct. 1sth (two days afterwards). They are not common." Dr. Wm. O. Ifres writes me that he tonk one at New Haven in 1853.

Along onr eastern cuast it does mot hreel farther north than Sonthem New Jersey; but in the West its range is much more extensive, its northern limit being "about 53° in the region of the Saskatchewan, where it arrives in June," $\|$ and was obtained by Sir John Richarkson. Dr. Cones saw it at Fort Randall, Jakota, lat. $43^{\circ} 11^{\prime}$, and 1 have

[^78]myself ohserved it in ldaho, Wyoming, aml litah. It was oncer common throughent New laghand, as attested by mumerons obld writers. Josselyn must have been blessed with : krem appetite and an admianlale digestion, for tre says: "The turkic-buzand, a kind of

Note- - The black Vulture, Cuthates afrotus (Ray) Lesson, may
 Howard lland writes me that he thinks he has killed three speremens of it at. Westhrowk, ('omm. (Angr. 10, Scpit. 12: ami 21, 1874), hat they may have ben young Turkey Buzzarts. Unfortmately the specimens were not preserved. Suveral imbividuals have been recorled from Massachasetts, \dagger and it has even straggled as far north as Maine (Calais, G. A. Buarlman)t and Nova Scotia.

Family, COLUMBID \mathbb{E}.

171. Ectopistes migratoria (Limé) Swainson. Wild Pigeon.

Sometimes quite abmbant luming the migations. A few bred (late in May). Amives about the first of $\lambda_{\text {pril }}\left(\lambda_{p}\right.$: 2,7875 , sage). Mr. Coe tells me that numbers of them bred about Portlam, Conn, in 1875 , and that a few generally nest there.

Cuncerning the enormons flecks of Wild ligeons which passed to and fro over the comntry in former years (amd which, on a smaller scale, are still to be met with in some parts of the West), (iow. Thomas Dudley wrote, as barly as 1ti31: "Y pon the 8 of Mareh, from after it was faire day light, untill about is of the clock in the foremoone, there flew over all the tomes in on phantacous soe many flocks of dones, each flock conteyning many thousands and some soe many that they ohscmed the lighte, that it passeth credit, if but the truth should bee written, and the thing was the more strange, becanse 1 scarce remember to have seene teme dones since I ame into the comery. They were all turtles as appeared by diverse of them wee killed flying, somewhat higger than those of Emope, and they Hew from the north east to the south west; but what it portemls 1 know not."s And in the following year (1632), Thomas Morton, of Clif-

[^79]forls lim, seaking of his inpressions of the combtry, when lirst he lamled in Now linglaml, silid: "The more I hakent the more 1 liked it. Snd when l hat more serionsly considered of the bewty of the phace, with all her faire indowments, I did mot thinke that in all the knowne world it conld be paralel'l." "Contained within the volume of the Laml, Fowles in almmance, lixh in maltitme, amd disoovered hesites: Millions of 'lum ledores one the grecme bonghes: which sate perking, of the fill ripe pleasint gripes, that were supperted by the lusty trees, whose fint full loade did canse the armes to bend, which here and there dispersed (you might see) Lillies and of the Daphneantree, which made the lambe to mee seeme paranlice, for in mine cice, thas Natures Mister-peece."*
ln looking orer a curions ofl pramphet, printed in 1630, and entitled "New-England": Plantation. Or, as short and tree description of the Commorlities and diseommodities of that countrey. Written by a remerend Ditine now there resident.", I find the following notice of the Wild Pigesn: "In the Wiater time I have seene Flockes of Pidgeons, and lane eaten of them: they doe flye from Tree to Tree as other liitds doe, which our litgeons will not doe in Englome: they are of all colours as ours are, hint their wings and tayles are farr longer, and therefore it is likely they fly swifter to escape the terrible Hawkes in this Comentre." \dagger sammel Williams, in his Natmal and Civil llistory of Vermont (published in 1794), writes as follows: "In the Wild Pigeon, the multiplying power of Nature acts with great force and vigomr. The male and female always jair: They sit altemately upon the egrgs, and generally hatch but two at a time; hut this is repeated several times in a season.The acomuts which are given of the mmber of pigeons in the menttivated parts of the country, will appear ahmost incredible to those who have never seen their nests. The surveyor, Richurd /Iazon, who rian the line which divides Massachusetts from Vermont, in 1itl, gave this acconnt of the appearances, which be met with to the westward of Comectiont river. 'For three miles together the pigeon's nests were so thick, that five hundred might have been told on the beed trees at one time ; and conld they have heen comted on the hembocks, as well, 1 doubt not but five thousand at one turn romal.' The remarks of the first settlers of 'ermont, fully confirm this account. The settlement of the country has since set hounds

[^80]to this luxmianey of amimal life ; diminished the nmmber of these birds, and drove them finther to the northward."*
'Two renturies after Morton's description was writen, Nuttall remarks:" "Tou talk of humereds of millions of individuals of the stme species habitually associated in ferding, rowsting, amd hereding, without any regard to rlimate or seatom as an operating eanse in these gregarious movements, would at first appear to the wholly incredible. The appoach of the mighty feathered army with a lome mashing roar, and a siming heoge, attended by a sudden darkness, might be mistaken for at farfal tomado atout to owerwhelm the face of nature. For several homs together the vast host, extemding some miles in breadtl, still comtimes to pass in Hocks without diminution. The whole air is filled with them; their muling resembles a shower of sleet, and they shat ont the light as if it were an eclipse. It the aproach of the Itawk, their sublime and heatifin aerial evolntions are disturbed like the ruttling squall extending over the placid oce:n! as a thumbering torrent they rush together in a concentrating mass, and heaving in moduting and glittering sweeps towarls the earth, at length again proced in lofty meandors like the roshing of a mighty :mimated river." " Alighting, they industrionsly searel llorongh the withered leaves for their fivorite mast [chietly beed mits and acorns] ; those behind are contimatly rising and passing forward in frout in such quick succession, that the whole flock, still direling over the gromm, seems yet on the wing. As the sum begins to decline they depart in a body fir the goneral roost, which is often handreds of miles distant, and is generally chosen in the tallest and thickest forests almost divested of mulerwood. Nothing ean exceed the waste and desolation of these noctumal resorts; the vegetation becomes buried hy their exerements to the depth of several inches. The tall trees, lor thousamds of acres, are completely killed, and the gromd strewed with many branches tom down by the clustering weight of the hide which have rested mon them. 'The whole region for several years presents a contimued sere of devastation, as if swept by the resistless blast of a whilwind." Wilson tells us that their breeding places are still more extensive than the roosts, mentioning one in Kentucky "which stretehed through the woods in nearly a north and south direction; was several mikes in breadth, and was sail to be upwarls of forty miles in extent!" "On some single trees

[^81]"pwateds of one humdred nests were fomm, each comtaining ome yomig ouly,"* themgh moulterlly two cerss are always laid-the one hatching first and erowding the ofter out of the nest, which is, at best, lout a fatal cradle, formal merely "of a fow skmer deal twigs, negligently put together, aml with so lithe art that the concavity appears surnecly sufticient for the transient reception of the young," \dagger which, like the caggs, may readily he seen fiom below, throngh the deliate net-wotk of twigs Wilson says it was dangerons to walk muter these flying and flutering millions, from the frequent fall of large braches, broken down by the weight of the multitudes above, and which, in their descent, often destroyed numbers of the hirts themselves; whike the rlothinge of those engaged in traversing the womls were completely coverel with the excrements of the ligeons." "The ground was strewed with hroken limbs of trees, egers, aml yomig squab l'igeons, which had been precipitated fiom above, and on which herds of hogs were fattening. Llawks, Buzzards, and Eagles, were sailing about in great mmbers, seizing the squabs from their nests at pleasure." \ddagger Judubon's description of a night passed at one of their rousting phaces deserves introluction here: leaching it early in the afternoon, betore the pigeons had come in, "many trees two feet in diameter" were ohserved "broken oft at no great distance from the gromel; and the branches of many of the largest and tallest had given way, as if the forest had been swept by a tormado." "Everything proved," eontinued Audnbon, "that the number of" birds resorting to this jart of the forest mast be immense beyond conception. As the period of their arrisal approached, their foes [mam] anxionsly pre\}ared to receive them. Some were fumished with iron pots containing sulphur, others with torches of pine-knots, many with poles, and the rest with guns. The sun was lost to our view, yet not a pigeon had arrived. Everything was ready, and all eyes were gazing on the elear sky, which apmeared in glimpses amidst the tall trees. Suddenty there bust forth a general ery of - here they eome!' The noise which they made, thongh yet distant, reminded me of a hard gale at sea, passing through the rigging of a elose-reefed vessel. As the birts arrised and passed orer me, I felt a current of air that surprised me. Thousands were soon knocked fown by the pole men. The birds contimed to pour in. The fires were lighted, and a magnificent, as well as wonterful, and almost terrifying, sight presented itself. The Pigeons. arriving by thousands,

[^82]alighted everywhere, one above another, matil solid mases were formed on the branches all arombl. Hepeand there the perteres gave Way under the weight with a crash, and, lalling to the gromme, destroyed hamberls of the limh treneath, foreing down the dense grons with which every stick was loaded. It was a seene of uproar and comfinsion. I fomm it quite useless to speak, or eren to shout to those persons who were nearest to me. Even the reports of the guns were seldom heard, amd I was made aware of the firing only by seeing the shooters reloathing. The l'igeons were constantly coming, ald it was past mihnight before I perceived a decrease in the nmmber of those that arrixed. Trwards the approach of day the noise in some measure subsided; long before objects were distinguishable the Pigeons began to move oft in a direction quite difierent from that in which they had amived the evening before; and at sumise all that were able to thy harl disappeasel. The howling of the wolves now reached our cars, and the foxes, lynxes, congars, hears, racoms, opossmms, and pole-cats were scen sneaking off, whilst Eagles aml Hawks of different species, accompanied by a (rowd of Vultures, came to supplant them, and enjoy their share of the spoil." Two famers, "distant more than a hondred miles, had driven "pwards of thre bumded pigs to be fattened on the Pigeons which were to he slamghtered."
"Ambubon attempts to reckon the number of Pigeons in one of these flocks, and the daily quantity of foud consumed by it. He takes, as an example, a colom of ome mile in breadth, and supposes it passing over us, without intermption, for three hours, at the rate of one mile per minate. 'This will give us a parallelogram of 180 miles by 1 , areraging 180 square miles; and allowing two Pigeons to the syuare yard, we have one billion one humded and fifteen millions one hambed and thirty-six thonsand Pigeons in one flock : and as exery ligeon consumes fully half a pint per day, the quantity required to feed such at flock most be eight millions seven hmored amd twelve thonsam bushels per day!" \downarrow
"lndeed, for a time," Nittall correctly remarks, "in many phaces mothing scarcely is seen, talked of, weiten, but Pigeons!"

[^83]172. Zenædura Carolinensis (Jimar) Bonaparte. Carolina Dove;
"'lurtle' llove."
A rather eommon smbmer rexikent, sombtimes matining throngh

 gromm. In the sonth :md west they gemerally, thongh by wo me:ans exchusively, breed on the gromml.* In eembal Massachusetts l hawe taken it als late as the midde of Nowember (1873). It is particulary abmadant throughont the far west, and near the lacific coast hats heell seen as far north as "latt. 49 " in summer, while a few winter in
 fomber a nest of this species, abont twelve feet from the gromid, in it pine grove, near N゙ew llare, Jume 20th, 1874. "It was close to the tronk of the tree, and comsisted of a few sticks pacel loosely on top of a common squirrels nest, and contaned one egg and one yomig dove. I took the erg imf four weks later went to get the nest, but fomb amother ceg in it." \ddagger surely the stuirels nest must have been deserterl, or it womld hardly have constituted a safe base for lird's eges.

Nome-The Wik Turkey, Melutgris !fellopero, var. - Imerierence (biatham) Cones, long since exteminaten from this Litate, was once common liere. Wild Turkies were plenty in 1 t80, and oceasionally seen as fate as togo.s Regaming their fomer abmande in New England, one 'Thomas Mortom, of Clifforl's Inm, (ient., wrote (printel by Charles Green, in 1632): "Turkies there are, which divers times in great flocks have sallied hy our doores; abd then a grmme (heing (ommonly in a redinesse) salutes them with such a courtesie, as makes them take a turne in the Cooke rome. They dame by the doote so well. Of these there hath hin killerl. that have weighed forty-eight promul a peece. They are by many tegres sweeter than the tame Turkies of Euglaml, feete them how gom ralu. I hat a salvage who hatli taken ont his boy in a momingr, and they have bronght home

[^84]thai howes abront mone. I hawe asked them what momber they fomme in the words, who hatre answered memt metawne which is a thomanal that hay; the plenty of them is such in those parts. They are casily killed at ronste, hereanse the owe heing killed, the other st fast neverthelesse, and this is mo hat commodity."* Linsley says: "Thar last. Wild Turkey that I have known in Comertient, was baken hy a relative ol mine, about hirty yeats since [about 181:3], on Tonoket Momatain, in Nowhtime It was overtaken in a deep sum, and therely outrin. It weighed, when dressed, twenty-one pomat." \nmid In 18t2, Zadore 'Thompson wrote that a few "comtinne still to visit and heed men the momitains in the southern patt of the state" (Vermont) $\dagger_{\dagger}^{\dagger}$ Ss late as 1833 it was "frequently met with on Mt. Holyoke," hat hat "become seare and nearly extinet" in wher parts of the state.s Prolessor Wm. W. Whitney owe mounted a fine speeimen of the Wild Torkey killed on Mt. Tom, Hass., Nov. 1st, 1847. It may now he sem in the beantiful case of birds given hy Ponf. Whitney to the Peabory Musem of Vale College, and is of particula value as being, in all probability, the last of its race seen in that siate. In the month of" Oetoher, "the Torkey Momen of the aborigines," they used to wamder liar and wite in quest of food, lieguently assembling in vast mumbers in districts where there was an abmatanes. Ablabon tells us that "When they come upan ar river, they betake themselves to the highest eminenees, and there often remain a whole day, on sometimes two, as if for the purpere of eonsultation. During this time the males are head gobling, calling, ant making much ado, and are seen strutting about, as if to mise their courage to a pitch hefitting the emergency. Even the females amd goung assume sombthing of the same fompons demeanor, spreat out their tails, and rum roumd each other, pmoring lomily, and performing extravagant leaps. At length, when the weather appars settled, and all rombl is quiet, the whole party boomet to the tops of the highest trees, whonce, at a sigual, consisting of a simgle efuch, given loy a leader, the flock takes thight for the opposite shome."

Josalyn says "thoir cags are very wholesome and restore deenyed mature excerlingly."

[^85]
Family, TETRAONIDÆ.

173. Bonasa umbellus (Limni) Stephrns. thufen (irousi:

A common resident. Breeds on both last and We liock, near New Havern, is well as throughout the state. In May, 1877, i'rof. Vervill fomm a nest, contaning twolve eqges, within ten feet of a traveled roal, near the eity. In the vicinity of E:sthamptom, Mass., they were particulaly abmatant, and on once oceation I frightemed one of fom :ll aple tre direetly behind the "Town Itall." large mombers of them atre canght in smares every fall, ame the market is wedl suphlied with mative bials. Of it, in 1632. Morton wrote: "Partridges, there are much, like om l'artrigges of England, they are of the same plumes, but higger in bouly. They have not the signe of the horseshoe-shee on the breast as the l'artringes of Englant; nor are they colomed about the heats as those are; they sit on the trees. For I have seene 40 . in one tree at a thme; yet at night they fall on the gromm, and sit until moming so together; aml are dainty tlesh."**

174. Ortyx Virginianus (Linné) Bonaparte. Quail; Bob White.

A common resident, breeding in thick brushwood at Sonth Eml and many other phees near New Haven.

This species also attracted Morton's attention, for he says: "There are quailes alse, but bigger then the quailes in Englamt. They take trees also : for J have mmbered 60 . upon a tree at a time. The cocks doe call at the time of the yeare, but $w i t h$ a different note from the cock quailes of England."*

Nowe.-The Prairie Chicken, or Pinnated Gronse, ('upirlonia cupido (Linne) Baird, was formerly a resilent of New Englant, but, like the Wiłd Turkey, was exterminated many years ago-at least so far as the man land is concemen, for it is sail that a few still exist on some of the islimls south of Cape Cod (Naushon for example, and perhaps Martha's Vineyard). Howerer, it is pretty certain that many years have elapsed since the last "wild chicken" was seen in Comecticut, for even Linsky, in 1842, give it as a hird of the past. Nuttall, ten years earlier (in 1832), sail that they were still met with

[^86]in Hestiont, C'ommeticut."* 'That our ancestors were fomel at" " fowling," amt that it wometmes rost them thein liver, may he seren fom the following: In Octoher, 16i36, one "Joseph 'Tilly, mastor of a hank, came to anchor neaty upposite calre's lakd, and taking ome matn with him, went on shore for the pergose of fowling. A semb as he hat diselatrged his piece, a large mamber of l'aquots, rising from theit concealment, towk him amd killed his comp:anon; and then eratifical their maliee ly putting him to torture. 'They first ent off his hambs and then his feet : after which he lived there days. bint as nothing
 stont man." \dagger And this ocromred in the town of saybonk, ('mme, at a time when many of our forefathers perished at the hamp of the Imians, hefore luringing them to sumission. One Thomas Morton, writing in 1632 , speaks of the presence of this hird in New Eneland in the following language: "There are a kinde of fowles which are enmmonly called Iheisants, but whether they he pheysants or on, l will not take upon mee, to determine. They are in form like our pheisant-henue of England. Both the male and the female are alike; but they are rongh fontert: and have stareing feathors abont the head and neek, the boly is as ligg as the pheysant-heme of Eugland; and are excellent white flesh, aml delicate white meate, yet we sehom bestowe a shoot at them." \ddagger The "white Hesh" must have been a mistake unless he referred to the lattied Gronse which js immerliately spoken of moter the name of "Partritge." Nuttall says of its habits: "The season for priring is early in the spring, in March or April. It this time the lehavior of the male becomes remarkahle. Early in the morning he comes forth firm his hushy roost, and struts about with a curving neck, rasing his rutt, expamiing lis tail like a fan, and seeming to mimie the ostentation of the Turkey. Ile now seeks out or meets his rival, and several pairs at a time, as soon as they berome visible through the dasky dawn, are seen preparing for comlat."

[^87]
Family. CHARADRIIDA.

175. Squatarola helvetica (Limé) Promm. Black-hellied Plower.

Orents during the migrations. 'Taken at strathord by Linsley.
 the somme mear the month of the (ommertent. Dr. V'. W*. Hall shot
 folls me that they were remarkally tame.

176. Charadrius fulvus, var. Virginicus (Burk.) Coucs.
 Golden Ilorer.

Common during migrations. Capt. Bronk- informs me that they are "plent! at Cinilford. Comb., in spring ant eanly fall," and that "sumetimes a few stop in the fall and stay a few days" at Fanlkner"s Islaml. Linsley fomm it at Stratford. Ilr. Coe has taken it as far inland as Portland, Comm, , whe there

177. ※gialitis vocifera (Limé) Bonaparte. Killdeer Plover.

A smmmer resident, but not very common. It generally arrives late in Mareh (Feh. 24, 1855, plenty by last of Mareh: April 5, 1872; Portaml, Comm. W. WF. Coe). Mr. Coc infoms me that it loreents n.n Plamb lslam, :and in the vicinity of Portand, Comn. where it nsed to he rery common.

178. Egialitis Wilsonia (Ord) Cassin. Wison's Plorer.

Not common. Linsley took it at Stratfort. It has also been taken on Long Island (Girani), hut seldom strays so far North.

179. Ægialitis semipalmata (Bonap.) Cabanis. Semipalmated Plover.

A common migrant. Arrives about, or before, the middle of May (May 17,1876, Oshme). Wuring the latter part of May, aml first of Jome, they may be seen, in small flocks, roming along the beach, in search of food, as the tide goes out. Mr. W. W. Coe writes me that he has taken it at Portland, Com, twenty-five miles from the รо
180. ※gialitis meloda (Wilson) Bonaparte. Piping Plorer; Ringneck.

A smmmer resident. Linsley fimm it hreeding at Sitrat ford. Mr. d. N. Clark atso finds it Wreding at Saybrook, Comn., and Mr. Wr. W. Coe las taken it at Jortlame.

Family, H※MATOPODID平.

181. Hæmatopus palliatus Temminek. Uyster-wither.

A rare migrant. Linsley saly: "The oysteremelere is mow rare here, thot fifteell yeas sine they were nut very meommen in autumn."*
182. Strepsilas interpres (Linné) Mliger. Turnstone.

A common migrant. Linsley gave it from stratfort, and C'apt. brooks writes me that it is "quite common in spring aml fall" about Fanlkner's 1slanl, Com. Mr: Suge, of lootland, has a beantiful male, which he killed at Westhrook, (omm. May 23l, 185h. In fall it returns during the latter pant of Angist (Ang. 31, 187t, F. W. It:ill).

Family, RECURVIROSTRID.

183. Recurvirostra Americana Gmelin. Arocet.

A rather rare migraut. Josiah (G. Ely, Escl, writes me that he has seen hat one specimen of the Arocet taken on cur const. "It was c:mght, in 1871, between Saybook and East Lyme, in an old seine strung out on the beach to dry," and was kept alive for some time by a storekecper.

Family, PHALAROPODIDA.

184. Steganopus Wilsoni (Sibine) Cones. Wilson's Phalarope.

Of rare and almost acerilental ocenrence in New England, thongh common thronghont the West. Linsley says of it: "Wikon's lhaharope I have in my cabinet; it was killed in Bridgeport [com.] and out to me hy a friend, and is probatly whe of the rarest birds in New England. It is not only beantiful, hut the great quantity of plumage on a hird so small and delicite, thegether with his mique hill, seems to rember it one of the most peculiar of this class of amimals." \dagger

185. Phalaropus fulicarius (Limé) Bonaparte. Red I'hatarope.

A rare visitor from the North. Mr. W. W. Coe has a specimen in his eahinet, killed at Portland, Com., in September.

[^88]
Family, SCOLOPACIDA.

186. Philohela minor (Gmelin) Gray. Woodeock.

A resident: dommon from darly sprime till Nowember. A tew ermmonly, if wot regularly, winter in low swamps. 'They arrive early in Mareh (" Mar. 3, 1875, Midtletown, Comm., killed by flying against a telegrap wire"\$), and beed very carly. On the Bel of April, 185, my yousg fiem, Wister li. Nichols, fomm, near branforl, Comm, a nest contaming four fresh exers. They may hred twice, for Mr. Nichols fomm a second nest, in the same locality, and containing the s:ame number of erge, at late as .luly $20 t h, 1877$. The egers were partially incubated, ant the old hird was shot as she left the nest. Mr. W. W'. Cose writes that he found one, near l'ortlant, Comn., April 12,1852 , also containing four eggs: "The nest was on a bog, in the midhle of a brook which ran throngh a swamp. It was mot more than six inches above the water. The grass was short, and there were no bushes near, su that it was very much exposed, but still hard to find, for, althongh we had hunted the groum over carefully, the old bird did not fly off until my man stepped on the bog. I had my old dog Dincks with me, ant his nose is first class, and yet he passed within a foot of her several times without seenting her, which satisfies me that a hird sitting on her eggs gives out no scent, for this is not the first time I have tried it. The nest was simply a shallow hote seraped in the top of the bogr there was a little coarse grass, a fen leaves, and one or two of the Woodcoek's feathers in it." \dagger Mr. .Tohn II. Sage tells me that, while collecting with Mr. W. W. Coe near Porthand, Comn, May 30th, 1874, they flushed is Woodcoek with yonng, one of which she carried off in her claws ! and Mr. Coe writes me, "in regard to the Woolcock carrying off its yomg: Mr. Sige and I were not four fect apart when the dh bid got mpetween us, rose about three feet, amb then dowe down ag:an amp picked mp a youge bird with her teet, and, with her tail spreat and held forwatd moder the young, camied it off about eight rots, and came back for the others, but my hoy lrightened her alway."

Thomats Morton, in 1632 , thus allmed to the resemblance between one hird and the European Woolcock (scolopur rusticold): "Simpes, there are like our simpes in all respects, with bery little fifference. I hare shot at them onely, to see what difterence I conld finde be-
tweene them and those ol my native comatry, and more I did not regatit them." **
187. Gallinago Wilsoni (Temminck) Bomaparte. Wilson's Snipe.

A resident; common during the migrations; sometimes brects. In Oetober and November (some remain into December) large numhers are shot on omr salt mashes. Ins. W. W. Coe took it Feh, thh, 1872, near Portland, Comb, and thinks they sometimes winter there in low swimply paces. Amives in Mareh (Mar. 18, 187t, 内are). Mr. WF. IV. Cone amb Mr. J. II. Sage indorm me that they took a nest contaning thee fresh coss of this specios at lortlam, C'om., May 13th, 1874. The enge were "fully identified, as the parent hirel was fomm on the nest." \dagger It was not previonsly lanwn to hreed as far somth as Connecticut. The nearest apporalh to it is "ase of egess in the smithsonian labeled Oneila Coo, N. V.". \downarrow Mr. C"oe tells me that there were a momber of snipe in the field at the time, and he thinks there were other nests which they did mot find.
188. Macrorhamphus griseus (Gmelin) Leach. Ret-breasted Snipe.

Not rare during the migrations. "Stratford," Linsley. Mr. J. II. sage of l'otland has a specimen which he shot at saybrook, Comn, Ang. 21st, 1874.
189. Ereunetes pusillus (Limui) Cassin. Semipalmated Sandpiper.

A smmane resident; enmon along the shore during the migrations. Mr. W. W. C'se has seen it in Jume. On the 20th of July, 187ヶ, Mr. Walter le. Nichols lombl, at lismford, Comm., fom egess of a small Sampiper. They were placed on a few strams in a slight excavation in a com field, about hall : mike from the shore. Supposing them to the the engs of this speotes I sent one to Dr. Brewer, who writes: "ha the absence of my cabinet, for comparison, I camot be eertain, but I have little or modombt that it is the eger of Ebemetes presillus." It is manecessary to state that this is the first anthentie record of its hreating in sonthern New Englamd. In fall, Dr. Kr. Wr. Hall has taken it as carly as Ang. 25th (187t).

[^89]Trans. Conn. Acad., Vol. IV.
1.4

Avg., 1877.
190. Tringa minutilla Vieillot. least Sampiper.

A common migrant. Maritime. Fommel :longe the shore in May

191. Tringa maculata ricilot. Pectoral sumpiper Jimk suine

Common lhang migratims. Dr. Con tells me that it is common
 north early in August (Aug. 6, 18:3, Hall).

192. Tringa fuscicollis Vieillot. Bonaparte's Sandpiper; White-rumped Sandpiper.

Nut rare during migrations, thongh limsley towk only two specimens an Siratford, Comm. Dr. IVall has taken it hate in Angist (Ang. 31, 18.4).
193. Tringa maritima Brunniel. Purple Sandpiper.

Not meommon during the migrations. Many winter on the islands along the const. Not fumbly binsley. Captam brooks writes me from Framkers lslam that "lompe sandpipers come here in early fall amil stay till siring," and that they are common and get to be quite tame.
194. Tringa alpina, var. Americana Cassin. Dunliu; "Ox-Biru."

A common migrant; a few may winter.
195. Tringa subarquata (Guld) Temminek. Curlew Sandpiper.

A rare visitor along our coast. Mr. Jusiah G. Ely writes me that one was shot nearsabouk, Conn., some time ago. and I am informed by Dr. 1). Crary, of Jartfort, that a seecimen of this species was killed, Oct. 3rl, 1859, at Keemys Cose, mu the Comecticut River, in East IIarford (Ihekamm), Com, Nlso, Dr. E. L. R. Thompson, of this city, tells me that he shot three Curlew Sind pipers on the Quinnpiac River (near New Hasen) in Jume, 18:t. Dr. Wm. O: Iyres, now of Easthampon, Long lshand, writes me that lee "killed it once at Hiller"s Place, L. I., in 1839,"* and it has ako heen taken in . Hassachusetts. \dagger

[^90]196. Tringa canutus Limú. Red-lueasted Sandpiper; Kinot.

Common during migrations. 'J'aken at saybrook, by Mr: siage, Ang. elst, 1sit; amd Mr. Cone tolls me that it is fimml about the Commectiont River, mear Midlletown, in smmmer.

 oceme along the eoast during migrations.

197. Calidris arenaria (Linné) miger. . Sanderling.

Ocens during migrations, and is extremely abment in fall. Linsley took it at Strathord. Mr. Grimed informs me that they arrive during the later part of siptember, remaining late into Oetober. Thomas Morton wrote of them in 1632: "Samlerlings are dainty hirt, more fiull bodied than a sinipe, and I was much delighted to feerle on them, beeanse they were fatt, amb easie to come by, because I went but a siepl wr to for them: aml I have killed betweene foure and five dozen at a shoot which wonk leal me home. Their foone is at ebbing water on the sands, of small smeds, that grows on weens there, and are very gom pastime in August."*

198. Limosa fedoa (Linne) Ord. Great Marbled Godwit.

A rare migrant. Linsley found it at Stratforl, Comn, in Augnst, 1842, "in large flocks, but very shy." \dagger Nearly an hmodred years ago, Thomas Pemant, in his Aretic Zoölogy, stated that "it inhalits Hudson's Bay and Commecticut." \ddagger
199. Limosa Hudsonica (Latham) Swainson. Indsonian Godwit.

A rare migrant. Taken at Stratfort by Linsley. Cones suggests that the Limosn Efhomrdsi"? of Linsley (p. 26t) is "perlaps an albino"s of this species, but l'emant thought it was the Arocet (Lermerirostre - Imericumet.|l The good old preacher (Linsley), in speaking of these birts, conld not take his Lomp's mane in vain on so slight a prowneation-hence he caller] them "Com/wits."

[^91]200. Totanus semipalmatus (findin) Temminek. Willet; Tattler.

I smmmer resident ; mot common. Linsley found it breeding at Stratford, (omn. Mr, Grimatl has taken it, mear Milford, late in the summer, amb Mr: W. W\%. Coe look at nest, comtaming three eoges, at Malisom, Comm., dme 5th, 1873.*
201. Totanus melanoleucus (Gmelin) Vieillot. Greater Yellow-legs.

Common dming migrations. Arives in May (May 14, 1874, Sage), remaining till Ink (Junc 1, 185, siage). Found both coastwise and in the interior. I first became acquainter with it at Vellowstone lake, where I killed four at one shot, Ang. 23d, 1872.

202. Totanus flavipes (Gmelin) Vieilot. Lesser Yellow-legs.

A common migrant. Killed one May 7 th, 1877 , on a fresh water pond near Meriden, Comm. Leturns about the middle of Augnst (Ang. 17, 187t, Hall).

Note.--Totanus chloropus Nilsson. Green-whanlis.
Linsley states that a specimen of this rare straggler was taken at Stratford, Comn., in the authmm of $18+2 \dagger$ This is, so far as I am aware, the only reeorled instance of its capture north of Florida (Audubom shot three on Land Key. Fla., May 2s, 1832) \& where its occurence seems to be purdy accitental, its proper bome being in the "Ohl World;" and since Dr. Cones stater that it was given by Linsley "very possibly through an ermomens identifieation," I do not feel justified in inchading it among the species ascertaned to oecur within our limits.

203. Totanus solitarius (Wilson) Ambluon. Solitary Tattler.

Common during the migrations. Arrives early in llay (Nay e, 187万), frequenting muldy ponds amd shgoish streams, in small Hows of about half a dozen. Solitary individuals may be seem as late as early June, (Coe; Jume 10, (Primnell).

204. Tringoides maculadius (Linné) Gray. Spoted Sandpiper.

A common summer resibent, arriving during the latter part of April or first of May (May 1, 1sit, sage). I once fond its mest

[^92]within right feet of a malnod track where trains passed orey lome
 there is a pond or sumall streatio.
205. Actiturus Bartramius (Wilson) Bonap.

Bartramian Sandpiper;
"Upland Plover."
A common summer resident. Diveds in open tieds away fom water. I am informed by Mr. Coe that large mumbers of then bered on I'lum Island, ofl' New London, Com, Amives about May 1st (May 2, 1874, l'ortlam, Com, Sige).
206. Tryngites rufescens (Tieillot) Cabmis. Buff-lreasted Sandjuiper.

Oceurs dnring the migrations, but is mot common. Josiah (i. Ely, Esq., writes me that two were killed near Sayhook, a few years ago, and Dr. Daniel Crary had one in his collection which "was shot near IIartford some years ago."

207. Numenius longirostris Witson. Long-lilled Curlew.

Not particularly rare during migrations, but expessively shy. Limsley took it at stratford, Comm. liegarling its occurrence near F:alkner's lsland, Conn., Capt. Brooks writes: "Not plenty; occasionally one stops here in the fall." It was seen at Xiltiond Comn, by Mr. Crimuchl, during the smmmer of 1873 . Hr. .J. N. Clank, of Siybrook, Comm, tells me that it sometimes oceurs there in the fall, hut is rare. Whe Crary tells me that it las been takell near Ilartfort, Collu.
208. Numenius Hudsonicus Latham. Hutsonian Curlew.

A rare migramt. Taken at Stratord, Comme, by Limsley. I am infommed ly Dr. Crary, of llatf ford, Com., that it has been killed in that vieinity. Uuder date of "July 20, 187t," the Rev. .J. llowamd Haml writes me, fom Southomptom, Lomg Island: "Have just taken three specimens of the Itndanian Curlew this morning."
209. Numenius borealis (Forster) Latham. Fiskimen ('urlew.

Not common. Oreurs during migration. Taken at stratford, ('mon, by Limsky. Mr. I. N. Clark has a fine mounted specimen in his cabinet, killed at saybrook, Com., Oct. 13, 186.

> Family, TANTALIDAE.

210. Ibis falcinellus, var. Ordii (1homaparte) Cones. (Alosey His.

A ram accidental visiter from the sombth. At stratford, Comm, Linsley whaned tive sperimens of this speces.* Stragerers have also foren taken in Massarchasetts. There is a specimen of this spereese in the Musemm of Wesleyan Iniversity, at Midiletown, Comb, taken in that vicinity, hey Wr. Barratt alwout the year 18.55.
211. Ibis alba (Limué) Vieillot. White Whis.

One only rantad from New Englamb. It was seen ly Mr. Gen. biad Grimell within ten miles of New Haven: "Late in the atternow of Maty 2?, [1575] I wserved near Miforl, Com., a specimen of lhis allw. I recognized the hird as it flew wer me, and following it to a small pend where it went down, diseovered it percheal uman a tree over the water. I carefilly examined it with a good glass, at a distance of alout one homdred and fifty yards, and by this means was enablet to mote every detail of form and color. It was in full phme age, the white being pure amb the naked skin atout the head, hright rect. After watching it for a few moments I tried to alproach it, lut before I came withingunshot it thew, uttering a hoasse cackle as it went off:" \dagger Two specimens have been killed on Long Island. \ddagger

Family, ARDEID正.

212. Ardea herodias Linné. Great Blue Iteron.

A summer resident. Common during the migrations. Arrives lefore the middle of April (Apr. 4, 1873, Coe; 12, Nage), and I have seen it as late as Nor. 26th (1875), along the coast. On April 17 th, 1877, Mr. A. J. Diyan and I saw ahout a dozen of these splendial liirds on the Whitney Lakes, within a couple of miles of New Hasen, but they were very shy and remaned only a few days. Mr. Grimell once saw a flock of twenty-eight flying over the somd. Mr. W. P'. Nichols saw one near New 1Javen, June 2d, 18 th.

[^93]213. Ardea egretta (Gmelin) Gray. (ireat White ligret.

Irame visitor from the fonth. Fieveral specimens have been taken

 yens ago, and is now in the Masemm of We leyan lniverity. Mr. Grimell has seen it on the mashes near Miltord, Comm, in september. Dr. Woorl tells me that, sereral years ago, one spent a werk on a marsh ne:r E:ast Windsor Ilill, Comm. Mr. Fred. Summer smitl tells me that he sam a pair of these birds at Lake Saltonstall (near New llaven), Comb, dmring the latter part of July, 1876, and two weeks later, at the same plate, sat wo less than seven indiwituals feeding together: 'They were excerdingly shy and he conld not approach withing grnshot.
214. Ardea candidissima (Jacquin) Gmelin. Little White Egret.

A rave aceidental risitor from the Sonth. Seen at Stratford, Come, hy Linsley. Mso taken in Massachosets, and one straggler even reached Nova Seotia ("Jones"). Dr. ('rary says that he has taken it near Ilartord, Comm.

215. Ardea cærulea Linné. Little Blue Ilcron.

I very rare accidental risitor from the Sonth. Linsley took it at Stratforl, Com. Has heen taken in Massachusetts. Mr. Dayan saw a small lleron on Lake Whitney, early in April, 1857, which he smpposes to have been this species. In the C'abinet of Ar. Cone, of Portland, Comn, is a heantiful specimen of this species which he shot in that ricinity carly in .lny, I875. It was a young bird and is pure white all over, excepting the tips of the primaries, which show a litthe slate-blue color. There were two of them tugether, hat the other eseaped. Mr. Erwin 1. Shores, uf sufficld, Comu., writes me that one was shot there ahout the middle of May lyy Mr. Chas. Newton. Mr. Shores did wot see the specimen, hut says: "Dr. Newton lescribed it to mu as "a small Heron bhe all over,' amd I have no doubt but that it was this species."

216. Ardea virescens Linné. Green Ileron.

A common summer resident. Breeds in sereral places near New Haven-motably in " Pine swamp." Arrives late in April or early in May (May 3), remaining into Octoher. Capt. Brooks informs me
 in May amb in cilly llume
217. Nyctiardea grisea, var. næevia (Boddert) Allon. Night Heron.

A common smmer rexilent. Breets in line and Heron swamp, ne:lr New Itaren, and in several other plates abont the State, and on islame oflo the cobst. Itr. A. A. Dayan started a smath flock on Lake

 cxamination proved that it had a well manked cataract in the cye faring the direetion from which he apmatherl. This is an interesting late in omithohogisal pathology. lamains into Octoles. Mr. W. W. Coe, of l'ortand, Comm., on the 17th of Ipril, 1872 , visited a " Heromry" of this species, at Rocky llill, Comm. He writes: "Siaw hamitreds of neste, eath containing from two to five egrgs. Light and dren ten hests were freduently fomd on one tree, and the same nest often contained fresh bges, eggs half hatched, and young hirds. The trees were white from the exrements of the birls, and lookel as if they had all been whitewashed; nothing eonh grow muter them."*

Note.-The Yellow-erowned Night Heron (Nyctiender riolncea) has been taken in Massachusetts, by Mr. Vickery (Oct., 1862), \dagger ant doubteses oermes as a rare aceidental visitor.

218. Botaurus minor (Gmelin) Boie. Bittern; Stake-driver.

A common summer resident. Arrives in April ($\mathrm{A}_{\mathrm{n}} \mathrm{r}$. 26, 1875, Alage , remaining till November. Linsley relates the following ammsing anedotes conerming this spueses: "I ohtained a fine specimen of the Amoriean Bittem two yeas sine, which had previously given great alarm to many of omr inhahitants hy its peculianly dolefin and momrntul sommls at erening. One man who was laboring near the swamp, it is sail, ram a mike in the greatest constermation, alleging that 'the $1-1$ was after him.' It_{1} is also stated ly several of omr most respectable inhalitants, that forty-seven years sinee, [1790] one hamdred men mited in a company on the sabbath for traverse this swimp, aml suceeded in killing one of these same hirds, and that their somms have not berem heard in town since, matil the former instance ocenred which secured a sjecimen to me." \downarrow

[^94]
219. Ardetta exilis (fimelin) liray. twast Bittom.

 getre it liom Nouthtorl, Comm., withont comment. It have certanly

 seen it ins sepmember. 'They were particularly abturtant thronghout

 they breed regularly in that vieinity. Mr. den. Biral Grimell also tells me that he takes tion or there ex ery year (gremerally in Jugust or september). They follow up the Comertieut Valley for Massachmsetts (sutlichl, (omb., Iuly, E. I. Shores).

Note.-The sand-hill Crane, Gros l'antelemsis (Limé) Temm., thongh mot ocruring in Now England at the present time, eren as a mare straggler. Was once common here. Thomas Morton, writing of the birts of Nem Englanl, in 1432, says, of "(rames, there are greate strore, that evem more came there at $\stackrel{i}{ }$ bavids day, and mot lofore: that day they nefer wonld misse. These sombtimes eate our corne, and doe pay tor their presumption well emong ; and serveth there in 1"W Wher, with tminips :" suply the place of fowthered beefe, and is agoolly linel in a dishe, and no discommorlity."* The lact that they ate eorn, and were themselves, in turn, eaten ly the inhabitants, clearly shows, as l'rof. .I. A. Allen has saicl, "that the Crane, ant not a IIeron, is the hirl to which referenee is marle." \dagger Horeover, sammel Williams, more than an hamired and fifty years later (in 1794), says that the Sand-hill Crane (" Amen 'comulensis") was among the commonest of the "W:ater Fowl" found in Vermont at that time. + Belknap also gives it, in 17 是, as one of the hims of New Hompshires And even so recently as 1842 , Zardock Thompson wrote that the Whooping Crane, Gros Ameriormen (Linme) Temminck, was "necasimally seen foming its migrations," $\|$ in Vermont.

[^95]The present distribution of the samd-hill Crane is interesting from its perelbarity: Common themghont the Wrat, they extemb nombarl (wen into Alask: lureeding about the Yukn (Dall), but we not fomm east of the Xississippi Valley, except in Flomila, where I have seen them, both on the Oeklawaha liver,t and flying over the St.
 in the Yeflowstome N:ttional lark, thongh so wary that it was diflicult to whtan athent athem. They were particularly numerons in the Lower Geyser basin, in August, anf neal to make such an mberessary amomit of mose, mornines, that sledp, after daylight, was Well nigh out of the question. Showing a decided preferenee for the grassy meadows (called "l'arks," in the West) surrommed hy heay y forest, and marking, periaps, the comes of some momatin tream, Which is content th cherk its headlong sued whiie passing throngh a meighboring valley, the sand-hill Crance, ever on the alde kegns well away from the trees, ant at the approach of any suspicious ohjeet, at once takes flight, uttering its warning ery for the benctit of these of its kind who happen to lee near. The flats which they freguent are often studded with wooled knolls, and the best way to hant them is to betake one's self, in company with a growl rifle, to one of these "Istame" bufors the log rises in the morning, and remain concealed :lud prerfectly quict. When the fog lifts, the stately form of the Crames may lo seen seatered oser ble meadows, always pering abont in search of danger; but at least one is petty sure to be within rifle range. Ind at the report the alarm is given and the othors lose nu time in loating a hasty retreat. Their flight is heary, and semingly laborions. To their elible qualities I can testify with a gool grace. The flesh is really exeellent, deep red in color, and not monlike that of the Bearer. Few birls are more lifficult to skin.

Tlomas Pemant, in his Aretic Zoülngy (1785) sars that "they arre in May about serem River, Hurson's Bay. Freepuent lakes and pombs. Feed on fish and insects. Vateh two young; and retire sontlward in antumn.|| I must observe, that they formerly made a halt in the lamons combtry, at the season in which the Indians set their maize; and again on their retum from the North, when the harsest was ready, in order to feet on the erain. The Indians, at

[^96]those times, were nsed tu shoot them with arrows headed with stone; for 'Theodat, * my anthonty, made his remarks in that combtry in the berimning uf the last century." \dagger

Family, RALLIDÆ.

220. Rallus longirostris Botdert. Clapper Rail.

Not common. Taken at strathor hy hinsley, who remarks that it "breeds abmutantly" there.t. Frequents selt marshes. Recenty recorded from Massadhusetts ly Mr. Vurdie. "The hird was (:ap ${ }^{-}$ fured hy its fying on hamd a wesel in the [hoston] harhor, May t, 1875."

Several Well authenticated instances of its accurrence in Comecticut have recently come to my notice.
221. Rallus elegans Auduhon. King Rail

Lather rate. Found hreening at Noatford, hy Linsley. ${ }_{\neq}$Fregnents freshemater marshes. Mr. W. W. Coe has taken it at l'ortland, Comm. Mr. I. N. Clark of Sathrook, (bmu., has a fine specimen in his cabinet taken there in midtemerer (Jan. 14, 1876).

222, Rallus Virginiantus Limé. Virginia Rail.

I eommons summer resident, breeding phentifinly in both salt and tresh-water marshes. They are quite abondant in the brackish-water marshes bordering the Qumipiac liver, ant here my friend, Mr. Dayan, fomd a nest contaning seven fresh eggs and seened the old bird, on Ime oth, 1876 . Concerning the notimmal proclivities, and shrill, starling (ry of the liail, Dr: C'oues thus graphically writes: "At nightiall some 11 allaml amt Teal settled into the rmshes, gabbling curinus respers as they went to rest. A lew Marsh Wrens had appeared on the edge of the reeds, querly babancing themsclues on the thread-like leaves, set-sawing to their own quaint music. Then they were hushod, and as darkness settled down, the dull, heary croaking of the frogs played bass to the shemflaketo of the insects. suddenly they too were hashed in turn, frightened, may be, into silence; and from the heart of the bullrushes, 'crik-rikitrik-k-k-k;',

[^97]

 at least, bueturnal. Whring suth mombight nighte as these they are on the alopt, patmonge the marses through the combless eovered ways among the reeds, stopping to cry 'all's well' as they pass on, ne to answer the ehathenge of a distant watehman. 'That they feed by might as well as by day, camot be donbed. 'Their hahit of skulking ant histing in the almost inaceessible places they frequent rembers them ditliont of ohservation, and they are usually considered ratrer that they really are."

223. Porzana Carolina (Limé) Cabanis. Carolina Rail; Sora.

An abmelant summer resilent. Large mmbers are killed each year for the market. Ilare seen them as late as Oetober (1874). Foumd both in fresh and salt-water marshes where there is an abundant growth of "Bulhowes," "('at tails" and the like. Linsley says of it : "The Carolina Rail was su abumbant here [Stratford, Com.] last Antmm, in the marshes of the Jousatonic, that something like humdreds were killed in a few homrs, and that too for several days together. 'They were esteemed a great delicacy." \dagger legranding the diffienty of seeing them in their favorite hamots, Mr. Maynard Writes: "I have been in :l swamp where there were literally thousamis of them, yet was mable to start more than two of three!" l have bat many similar experiences. One will suffice: Well do I remember finding a Rail's nest in a mashy swail near the month of a smath eanom at the foot of the Wahsateh lange, just back of Ogden, Utah. lt was early in Jnne, and the nest, which was large and lmbly, being eomposed of coarse marsh grass, was hidien in a chomp of flags, whose arching blatles met orerhearl, so conceating the enclosen treasures that they could only be seen by stooping over and pering throngh is small opening in the silde, left for the passage of the parent hirl. As yet hut two exgss had heen deposited, and the hird stole so silently and quiekly throngh the reeds that I harily felt sure it was mot a suake till careful seateln revealen the nest. 'Tlie next thing to be done was to serere the old bird, and with this end in biew the place was visited at least once each day

[^98]till the middle of dme, lom, notwithstambing the faed that I exereisent
 mentary glimpse of her form, thongh one or twice a shathow seremed Lo thit homedty by and disappeat in phain sight. What made it still more remarkable was that the mumber of egge kept inmerasing day by day, amd 1 always fomm them wam, showing that the hird hat been gone hat an instimt. Onee, while teeting of the eges, I wis so starthe by her harsh erackling ery, utteret sumbenly at my very feet, that I eame meal heaking them all, but still saw mothing of here The time hat eome when we mast move camp, at on the 15 th of Jome I mide a linal eflort to serume the ohd bird. The nest now contaned twelve egge, ant I fincied I combl hear the fant peeping of : a yong bial in his attempt to extricate himself from the shell. Stepping hack a few paces, I waterl, gun in hamb, for the space of two long hours, standing first on one leg, then on the other, like : bashful comntry boy, till my patience was nearly exhansted and I was on the point of leaving, when something darted quickly towad the nest -it was emongh; the mangled remains sutliced to iletemine the species. Weanwhite the egg hat fanty hatehed, and its noisy contents had aldealy gained mo little use of its ting twigs. How the first hated youngsters amme themselves during the ten days, or two weeks, whilst the other eggs are coming to matwity, will soubtless be fully eheidated by he who attempts to explan how it is that a bird can give origin, in the coarse of a comple of weeks, to a duzen of eggs, each nearly as large aml heary as her own body. Certain it is that the processes of digestion, and assimilation of mut ment, mast go on in them moch more rapidly than in ourselves.

Wilson remarked that, "Of all our lamd wr water fowl, perh:ps none afford the sportiman more agreable amsement, or a morber delicions repast, than the little hisd now hetore us. 'This ammement is indeed temporary, hasting only two there homs in the day for four or five weeks in each year." The mode of procednre is thas decribed: "The sportsman fimbes himself" with a light battean, and a stont expericnced lwatman, with a pule of twelve or tifteen feet long, thekenel at the lower ent to prevent it from sinking too deep into the mad. Ahsut two homs or so before ligh water they enter the rects, and each takes his post, the sportsman standing in the bow ready for action, the boaman on the stern seat pushing her stearlity throngh the reeds. 'The lial gencrally spring singly, as the boat advances, aml at a short distance aheat, are instantly shot down, while the hoatman, kepping his eye on the spot where the bird tell,
directs the hoat forward and pieks it up while the gumer is loading.
In this mamer the boat moves steatily throngh amb wer the reeds, the hirds theshing and filling, the gmmer luading aml liring, while the hoatman is pushing :md picking up. In these exemsions it is mot mommon for an active and expert marksman to kill tem or twalve dozen in : tide! ": Nr. (irimell informs me that the same methorl of lunting is pacticed on the marshes bomlering the llonsatonic liver, Com.

224. Porzana Noveboracensis (Gmelin) Cassin. Yellow Rail.

Not common. 'Taken at Stratfort, Comm, b, Linsley. 'Though one of the rarer bids, it breeds about Midlletown, Comb, as 1 am informed 1,y Mr. Cone, who took it there in 187t and 1875. Mr. Thos. () bryme has a specimen killed near New llaven. Mr. Grimell havors me with the lollowing note concerning its oceurence on the marshes ne:r Miltord, Com. :
 Whieh you enguire were taken for the most part huring the month of Oetober, 1876 , althongla 1 procured one imdividnal as late as Nov. foth. The securing of the first two or three was guite accilental.

I wats working a yomg setter on suipe ((Gallimergo Wilsoni) on a piere of wet meatow ne:n Milforl, Cmm, and several times during the early part of the day was amoyed by the pertinacions way in which the dog would trail up some hird which neither be nor I contd stald. At length during wice of these performances 1 saw the pupy grasp at something in the bogs before him, and immetiately a small hail rose and thotered a few yards. Notiong its small size, and the fact that it hat some white on its wings, and secing from its flight that it was a lail, I shot the bird before it had gone far, and when it Was honght by the dog 1 was delighted to see that it was P. Noweburnernsis, as secies which I had never hefore seen ablive. During the day several more imlividuals were seemed. The next opportumity that 1 hat of looking for these liots was, l think, Oct. 14 th. That day my brother and \& secmed eight in an hour or two. 'They Were ridiculonsly tame and wonld rom along before the dog, creeping into the boles in the bugs and hinling there white we tried in vain to start them. I killet one with my dog whip, eanght one alive in my hand, and the olog brought me amother, minjured, which he hatu

[^99]eanght in his montl. From what I saw of their hahise I :m monvineer that the only suceressthl way of rolleeting these hidels is 1 . look for them with at dog. Withont one they conld never he limed from the gromal. Foms sincerely,

(ivon. Ban Ghisivela.

225. Porzana Jamaicensis (fmelin) ('assin. Black Rail.

 rame bial hase as yet been obtaincel in New England. The seeond Commeticut reored is that given by Mr. I1. A. J'metir, who writes: "Of this species Mr. Clatk, of styhook, Comm, writes me that at neighbor of his, while mowing at that place, buly loth, 1s76, swomg his scythe ofer a mest of ten eggs on which the bird wiss sitting, unfortmately cutting off' the bird's head and hereking all but four of the coges."* 1 have reeently sem the egge in question, in Mr. ('lark's rollection. 'They agree prerisely with Comes' daseription of the estrs of this hird, "being ereamy-white, spinkled all were with fine dots of rich, bright rehlishtwown," and are totally mulike those of any other speries of Rail. The bird was not preservest, fom there sems to he no reasmalle doubt of its identity. Mr. Purtir firther states that he has "latery seen a skin of this species belomging to Mr. Browne, of Framingham. The himl was picked up deat, in August, 1869, by a relative of his, on Clark's lamot, llymouth llarhor [Mass.], amd was firwarded to him as something entirely new to onr shomes. This instanee alds a new hird to the Fama of Massachor setts."* The omly other recorled instance of its calture in New Englaml is that given by Dr. "lans. DI. Brewer: "llazensille, Com, Batty."
226. Gallinula galeata (Licht.) Lonaparte. Florida Gallinnle.

A rather common summer mesithon, as 1 am told hy Mr. Grimell, who has taken a mmber of specimens alont Miltorl, Comn. Mr. W. W. Coc has also taken it near Portlam, Comm.

227. Porphyrio Martinica (Linné) Temminck. Purple Gallinule.

A rare accidental visitor from the South. A specimen of this species was killed near Midlletown, Comm, about the year 1855, ant is now in the Musemm of Wesleyan University. It has been taken in Massachusetts, as recorded by (i. P'. Whiman: " A fine specimen

[^100]

228. Fulica Americana (imelin. Common Coot: Mull Iten.

Common during the migrations, partionlany in fall. May hered. Linsley took five sectimens at Notrather, remarking that it was "hy
 Jayall, shot several on lake Whitney, and aseretainel that ow lass than lifty specimens were killed there during that month!

Family, ANATIDA.

229. Cygnus Americanus sharpless. Whistling Swan.

A rare, almost accialental, visitor, necurfing only in winter. Linsley mentions the orentence of fons specimens, at Stratford, Comm, two of which were killed. Ny friend, I)r. Wm. II. Ilotehkiss, of this city, tells me that he was informed, by Willian Beers, Esig., that two swans were seen in bianforl Iarmor, luring a severe gale, ahout the midnle of March, 1876. I take it for granted that they were of this species, since there is mo positive reend of the ocenrence of the Trimpeter Swan ('Itfones buccimutor) within our limits. Ar. Grimnell alsw informs me that several swans were seen near Milford, Comn, about the same time. Swans were once common in New Englant, during the migrations, as seen from Morton's remarks concerning them (in 1622): "And tirst of the swame, because she is the higgest of all the fowles of that Country. There are of them in Mermack liver, and in other parts of the Combtry, greate Store at the seasons of the yeare. The fiesh is mot much desired of the imbabitants, but the skimes may be aceompted a commodity, fitt for divers nses, both for fethers, and quiles." \dagger

Note.-The Trumpeter sw:m ('?y!mes buceinalor Liehardson), may, and very prohally does, sometimes occur within on limits. Dr. Wom, of East W'inlsor llill, informs me that a honter in his vicinty, who was perfectly familiar with this bird in the West, where they were common, once told him that he had hearl the ummistakable note ol the Trumpeter Swan, but did not see the hird. A shomt

[^101]time atterwamk, however, on again meeting the Doofor, the hmoter said that, a fow days before, he hearl the swams coming and mashed into the homse for his gin, but hefore he retmed with it they has passed over, between the house amd harn, that he had a good sight at them and was contident that they were 'romperers. Proof' is wanting to show that some of the hirds mentioned moler the last suecies were not really Cy!mens lmentinutor.
230. Anser hyperboreus lallas. Snow Goose.

A rare winter risitor. Linsley recorts seven specimens from Stratfurt, Comm. Mr. W. W. Coe, of lortland, has a magnifieent specimen of this suecies in his ealhet. It was killed on the coast near Saybrook, Comm., in the fall of 1875.

Note.-The Barnacle (roose (Bruntu lencopsis Boie), a rare aceidental visitor to our coast, from Emrope, is given by Linsley from Stonington, Comm, but on insufficient evillence. Stragglers have been taken from Sonth Carolina to Indsons Bay, and a fine specimen of this Goose was killed on Long lsland, N. Y., in October, $18 \% 6$ (recordeal hy Mr: Lawrence), ${ }^{*}$ henee it may ocemr as a rare aecidental straggler.

231. Branta bernicla (Limé) Scop. Brant Goose; Black Brant.

A tolerably eommon spring and antumn migrant, sometimes remaining throngh the winter. Linsley salid: "The Brant is common here [stratforl, Comn.] in winter" (P. 269). Captain Brooks writes me that they are "not common" at Fanlkner's lsamd, where he has "only taken one." Mr. Grimmell informs me that two specimens of this species were killed off Stratforl Light, Conn., last spring (1857). Mr. Oshorne also saw three individuals near the mouth of the East Haven River, Comn., April $14 \mathrm{th}, 1876$. Dr. Wood, of East Windsor liill, Comb, has a fine specimen in his cabinet. It was shot on the Commectiont Riser, above llartford, in the spring of $18 \% 6$.

This species is first recorded from New England hy Thomas Morton, who, in 1632, wrote: "There are Geese of three sorts, vize, brant Geese, which are pide, ant white Geese which are higger, and gray Geese, which are as big and bigger then the tame Geese of England, with black legges, black bills, heads and neeks black, the Hesh farre more excellent, then the Geese of England, wild or tame,

[^102]yet the provity of the air is such, that the biggest is areormperd but an imbliferent meale for at comple of men. There is of them great ahundance. I have had often 1000 . hefore the mouth of my gimme. I never saw any in England for my part sor latt, as I have killed there in those parts, the fethers of them makes a bedal, softer than any down bed that I have !yen on: and is there a very good commodity, the fethers of the Geese that I have killed in a short time have paid for all the powther and shott, I have spent in a yeare, and I have fed my doggs with as fatt Geese there, as I have ever fed nion myself in England."*
232. Branta Canadensis (Linué) Gray. Canada Goose: Wild Goose.

A winter resident, common during migrations; they arrive in November (Nov. 24, 18ヶ2, Sage), some remaining through $\Lambda_{\text {pril and }}$ sometimes even into May (May 22, 1864, Sage; May 10, 1877, C. I. M.). Linsley writes that "Hundreds of the common 'Wild Geese' winter at the month of the Ilonsatonic, and so near my own dwelling that I often with my telescope present a distinct view of their eyes to my friends who call. Birds are said to be near enongh to shoot when their eyes are visible to the sportsman. Many are killed here merely for sale by gimmers, who fregnently sem them to New Tork." \dagger Capt. Brooks says that they necasionally stop abont the islands off Guilford, Com., and that he killed two last November. Mr. Grimnell tells me that generally a few still winter ahout the mouth of the llowsatonic liver, Comm., and that orer two hundred remained there last winter (1876-7). They begin to go north (some passing nearly due east) during the latter part of March (from Mar. 2tth ont), and all through April large flocks may be seen and hearl overheat. Many of these contain upwards of one hundred and fifty birls, and I shonld say that they average abont seventy-fire. They were particularly mumerous last spring (1876), and scarcely a day passed dwing April hut one or more flocks were seen.

233 a. Branta Canadensis, var. Hutchinsii (Rich.) Cones. Hutchins' Goose ; Southern Goose.

Not common. "Stratford," Comn. (Linsley). Mr. Geo. Bird Grinnell tells me that the hmers abont Milford, Com, all make a distinction between the common or Canada Goose and the Sonthern

[^103]Goose. That the latter does not arrive till after the Camada Geese have all come, ant that they do not stay long, but pass southwartlicnee their mane. 'They are also noticeably smaller than the Camada Goose.

233. Anas boschas Linné. Mallard.

A rare migrant. Have notes of its oceurence here September 30 th, October, and November 13th, 1875, and Mr. Grimnell saw it in October and November, 1876. Linsley gives it from Stratford. Capt. Brooks writes me from Fibulkner's lsland, Conn., that they are not abumlant: "occasionally see a few with Black Dueks in the fall."

234. Anas obscura Gmeliu. Black Duck.

A resident, but most abumlant during the migrations. Capt. Brooks writes me that they "eome in September and stay through the winter. Leave in May and Jume." Linsley sait that they occasionally bred about Stratford, Comm. That their edible qualities were early appreciated is seen from the writings of Thomas Morton, who sain (in 1632): "Ducks, there are of three kindes, pide Ducks, gray Dutks, and black Ducks, in greate abmelance: the most about my habitation were black Ducks: ant it was a noted enstome at my howse, to have every mans Dnek mpon a trencher, and then yon will thinke a man was not hardly used, they are bigger bodalied, then the tame Ducks of England: very fatt and llainty flesh. The common doggs fees were the gibletts, mlesse they were boyled now amt than for to make broath."*
235. Dafila acuta (Limé) Bonaparte. Pintail; Sprigtail.

A rather rare winter resident. Have seen but few speeimens. Linsley fomi it at Stratforl, Conn. Mr. Osborne saw one in March (23), 1877. Mr. J. N. Clark, of Sayhrook, Comn., tells me that he does not consider it particularly rare; in faet that he thinks it is rather common in spring and fall in that vicinity-about the month of the Comecticnt. Dr. Woord, of East Windsor Hill, has two specimens killed on the Commectient River above IIartford, but they are extremely rare there.

[^104]236. Chaulelasmus streperus (Limé) Gray. Gadwall; Gray Duck.

It occurs during the migrations; not common. Captan brooks tells me that they are "oceasionally seen" abont Fanlkner's Island, Come, "lont are mot plenty." linsley writes: "Floeks of the Gray Duck were here as early as August last season [1842], and were among the best of lucks for the table."*
237. Mareca Americana (Gmelin) stephens. Widgeon; Baldpate.

Not farticularly rare during the migrations; may winter. Taken at sitratford, Com., by Linsley, and all along the coast by others, too numerons to mention. Dr. Wood has seen three specimens, one of which he shot, near East Windsor, Comm, but they are rare in this State so far inland. Dr. Cones states that "the Witgeon breeds in abundance in Northern Dakota and Montana along the banks of the streams and pools." \dagger Thomas Morton found them in New England in 1632, for he writes: "Widggens there are, and abundance of other water fonle, some such as I have seene, and such as I have not seene else where, before I came into those parts, which are little regarden." \ddagger

238. Querquedula Carolinensis (Gmelin) Stephens.
 Green-winged

 Teal.A common migrant. Have seen it in Mareh. 'laken by Linsley at Stratforl, Conn. Concerning this and the following species Morton wrote, in 1632: "Teales, there are of two sorts greene winged, and blew wingel: lont a dainty bird, I have bin much delighted with a rost of these for a second conrse, I had plenty in the rivers and ponds about my howse."
239. Querquedula discors (Linné) Stephen. Blue-winged Teal.

A rather common migrant. Mr. Dayan secured a beatiful male of this species on Lake Whitney, September 25 th, 1875. Arrives in Angust (Grinnell), remaining throngh October (Oct. 20, 1874, Sage).

240. Spatula clypeata (Linné) Boie. Shoveller; "spoonbill-duck."

This splendid species is a rare migrant along our shores. Linsley "obtained two fine males" at Stratford, Conn. Mr. Grimnell informs

[^105]me that he took two or three specimens abont October 8th, 1885 , in the somm near Milford, Comm, and that he does mot consider them paticularly rare at that season. Ins. W. W. Coe has an immature specimen taken at Saybrook, December sth, 18\%t. Nr: liohert Momis, of this eity, tells me that he has killed it late in Juty on the West Hayen meadows, and has ako seen it, abont the same time, and eatly in Augnst, on the Qummipiac marshes.

241. Aix sponsa (Linné) Boie. Wood Duck; s'ummer Duck.

A tolerably common summer resident, hreeding in holes in trees. Arrives in Mareh (March 18, 1876, Osbome), frequenting fresh-water ponds and streams, and lays in May, remaining into October. Zadock Thompson, speaking of its occurrence in Vermont, says, "The Wood Dnek is one of the most beantiful birds seen in this sitate, and is one of the very fow permanent residents here."*
242. Fuligula marila (Linné) Stephens. Greater seaup Duck; Broad-bill; Blue-bill.

A rather common winter resilent. Taken at Stratforl by Linsley. Captain Brooks informs me that they are "plenty at Guilford, Comn." In spring Mr. Thos. Osborme has taken it as late as May 17th, (1876).

243. Fuligula affinis Eyton. Lesser Scaup Duck; Blue-bill.

A common winter resident. Mueli prizel for the table. liemans till the millille or latter part of May (May 17, (sborne). Dr. Wood, of East Windsor Hill, once killerl it on the Comecticut river in his vicinity.
244. Fuligula collaris (Donovan) Bonaparte. Ring-necked Duck.

It is not common, lut may winter. Linsley took it at Stratford, Comn. Mr. (reo. Bird Grimell has secured several specimens of this bird, in early spring, on the somml, in the vicinity of llilforl, Com.

Rare. Lindsley took it at Stratford. The Rev. J. H. Haud writes me that he has taken it at Westbrook, Conn., hat it is rare there.

[^106]246. Fuligula vallisneria (Wilson) stephens. Canvasback Duck.

Liare. "strathord," Comm, (Linsley). Mr. Robert Morris, of this "ity, saw one May ith, 187ti. I am also informed by liev. J. II. Hand, that it recors at Westhrook, Comu., where it is "very rare."
247. Bucephala clangula (Liuné) Coues. Golden-eye; Whister.

A rommon winter resident. Fomd on the somm and on freshWater fonds from November to April or May (April $16 t h$). Captain Brooks writes, from lianlkner's Island, "only see them here in very cold winters."
248. Bucephala Islandica (Gmeliu) Baird. Barrow's Golden-eye.

A rare winter visitant lrom the North. I include this species on the strength of a most typieal (mate arlult) specimen in the eabinet of Mr. John II. Sare, of Portlam, Com. It wats purchased by him, November 1 tth, 1867 , from a man who satid it was killed on the Somb, and there seems to be no reason for donbting his statement, especially since it has been taken as fin south as New York City.* Mr. William Brewster records it from Massachasetts with the following remarks: "I obtained an adult lemale in the flesh from Cape Cod, December 7th, 1871, which was pronomeed by Prof. Baird muquestionably B. Islandica. Since then I have seen numbers of females and two fine adult males in the Boston Markets, most of them shot within state limits." \dagger
249. Bucephala albeola (Limé) Baird. Butter-ball; Buffle-head.

A common winter resident. Fomm both on fresh and salt water. Nor., April 15th.
250. Harelda glacialis (Linué) Leach. Long-tailed Duck; Old Wife; Old Squaw.
A common winter resident; partionlarly abmolant during the migrations. Captain Brooks writes me that they "nsually come in October anl leave in April or May." 'This is by far the most abmdant specic of duck found along our coast, and during the migrations (notalily in November) hundreds of thoustuls of them can he seen on the somul, covering the water as far as the eye can reach in every direction, and almost deafening one loy their constant, and, to my ears, not altogether umplasant, caekle. They are continnally on the

[^107]move and, notwithstanding their immense mombers, it is no cas y task to ajproarh withing gushot of the thock. Thongh as striotly matrime as any of our ducks, they have oceasionally strayed so fin into the interior as Central Ohio (Wheaton). Mr. (irimedl tells me that they oceasionally brecd here, but these may be wommed hirels"pensioners" as they are commonly called. Dr. Wool hat taken it on the Comecticut liver above IIartford, but it is rare there.

251. Camptolæmus Labradorius (Gmelin) Gray. Labrador Duck; Pied-Duck.

A very rare winter visitor. Linsley took it at Stratford, Comm. P'emant, in his Aretic Zoülogy, says that this speeies was "sent from Commerticut to Mrs. Blaekburn,* in Englant."

252. Somateria mollissima (Linné) Leach. Eider Duck.

A rave winter visitant along our coast. Linsley states that "one or two Eider Wucks were killed" at Stratford, Comm, ly Mr. Lucins Curtis. Mr. Grinnell tells me, that he saw a specimen killed on the Somd, near Dilford, Comn., ly a gumer (Samuel brown ly name) May 29th, 1877, and that two Eider Dneks, molubly of this species, were shot there in the tall of 1874.

253. Somateria spectabilis (Linué) Boie. King Eider.

A rare winter risitor, like the last, and also taken at Stratford, Comn., by linsley, who says of it: "I have obtained here this season two specimens of the King Duck, saill never to have been seen here hefore. They are among the hest for the tahle." \dagger Girand also states that "an adult male in perfeet phmage was shot on Long lsland Somm, in the winter of $1 \times 39 . " \ddagger$
254. Edemia Americana (Wilson) Swainson. Black Scoter; Gray Coot.

A tolerably common winter resident, hat less so than either of the following. Linsley hat it from stratorl. Dave seen it early in Octuber (October 4, 1876), and again in November, hout the hunters regard it as rather rare. It sometimes visits the Great Lakes in winter, and Jr. Wheaton writes me that one was taken near Cohmbus, Ohio, in Due. 1876.

[^108]It is cxicmely abmedant on the somed daring fall and sprimge, somb remaining through the winter. Arribes about the first of October (Oet. 4, isti) remaining till the midale of May (May 15, Osbome). Thousauds of them visit the coast in (October and November, to feed on the small shells (chietty hectre laterelis) which the shallow muddy bottoms firnish in almudanee. And in this connection it may be stated that the alimentary camats of the sea ducks afford the conchologist at rich collecting gromm, often yielding mexpected treasures. This is the largest of our ducks, and like the other members of the gemus, is gemerally considered mfit for the table, but when properly prepared and well cooked they are by no means hat eating. Though properly manine, it occurs on the Great Lakes in winter. Dr. Wool has taken two specimens on fresh water near East Windsor Ilill, Com.
256. Edemia perspicillata (Limé) Stephens. Surf Duck; Sea Coot; Scoter.

A common winter resident, being intermediate in nmbers between the two foregoing-that is, it is nether abundant nor uncommon. Arrives late in September or early in October, remaining till the middle of April. Ciptain brooks writes me that they are "common through fall, winter and spring " in the vicint y of Faulkner's Island, Conn. I saw one on the Somnd as late as Jane 29th (1875), and I am told that a few generally remain all summer, but they are probably "pensioners" (wounded birds) and do not breed.

257. Erismatura rubida (Wilson) Bonaparte. Ruddy Duck.

lt is not rave during the migrations. Taken by Linsley at stratford, Com. Found both on fresh and salt water. Mi. J. N. Clark, of saybrook, tells me that they are rather common about the month of the Comecticnt, but that full plumaged birds are very rare. Dr: Crary tells me that one was shot on the Comecticut river, near IIartford, Comn, in October, 1858.

258. Mergus merganser Linné. Sheldrake; Merganser.

It is common during migrations; some probably wintering. Frequents fresh water lakes and rivers in the interior, and is "foumd oecasionally abont Guilford llarhor, Com," (Capt. Brooks), hut is not
common on salt water. Remains into $\lambda_{p r i l}^{(A p r i l} 17,1875$, male adult shot, sing
259. Mergus serrator Tinne. Liedbrensted Merganser.

A commun migrant, wintering on the sombt. Cratain brooks writes me that they are "phenty during winter and spring" alont Faulkner's Isand, ("omb. Niso fomm on fiestr water. Remains into April (April 14, 心it6, Osthome).

260. Mergus cucullatus Lime. Hooled Merganser.

A winter resident; not common. Linsley nhtained two specimens from a fresh water prom mear strathorl, Com, and Captain brooks has one, killed at Ginilford, Comm, on salt water. Mr. W. W. Coe has taken it during the migrations, and I saw one in November, 1875. Wr. Wood has taken it near Last Windsor, hat finds it rarely. Mr. Sige writes me that one was killed near Middletown, Comm, Mareh ith, 1876.

Family, SULIDE.

261. Sula bassana Limné. Common Gannet : Solon Goose.

A rare winter risitant. Captain Bronks writes me from Fanlkner's Islam, that he has "only secn two specimens," one of which is now in his collection: "It was killed at Ginilford, Com., in the spring, abont ten years agn." Linsley tork it at Stratford, Com., ant, concerning its gastronomic proclivities, remarks: "The true Solon Goose killed here, which 1 presented to the Sale Natural History Society, had in its stomach a hird, amd in the stomach of the latter was also a bird-destmetion on destruction. Mr. 13. Silliman, Ir., and Dr. Whelpley, who opened the stomach, observed this fact, as the lormer gentleman informed me. Tt was previonsly supposed this bird lived wholly on fishes."* Girand saw a few specimens, killed about Long Island and in the vicinity of New York City.t Mr. Robert Morris tells me that he saw an athlt specimen, shot off Branford late in the fall of 1872 or 1873 . There is also, in a restamant in New Haven, a momed example of the young of the solon Goose, killed near here a few years ago.

[^109]Trans. Conn. Acid., Yol th.

262. Sula fiber Limé. Booly Gannet.

A rame or aepilemal risito from the sonth. Linsley look it at Guilford, Comb. It hats been taken as fan morth as Massachasets (in scptember).*

Family, PHALACROCORACID 无.

263. Graculus carbo (Linnć) Gray. Common Cormorant; Shag.

A tolerably common winter visitam. Captain brooks writes me that they are "plenty in April and May" amd are sometimes seen in fall. Linsley took it at Stoningtom, Comm.
264. Graculus dilophus (Swainson) firay. Donlle-erested Cormorant.

It occurs along the coast during fall and spring, hat usually not in very large mombers, thongh Captain brooks informs me that he "saw large flocks of them feeding abont Fankner's Island, Comm, in the month of May, 1876," and that he eaptured two of them. Liusley ladd a specmen from Stratford, Comm, amb he regarded it as a very rare hirt. Mr. W. W. Coe has a specimen in his eabinet wheh he killed on the Connectient River, near Midilletown, October 29th, 1875. White out dnck-honting at the month of the East llaven liver, November 131h, 1875 , with Mr. Thomas Oshorne, we saw a Cormorant which 1 judged to be of this species. In speaking of the Comorants, in New England, in 1075, Josselyn observes: "Thongh 1 camot commend them to our cmions palats, the Indirms will eat them when they are Hey'd, they take them prettily, they ronst in the night upon some liock that lyes ont in the Sa, thither the Indian goes in his Birch-f'mor when the mon shines clear, and when he is come amost to it, he lets his Conow drive on of it self, when he is come muler the lionk he shoves his boat alomg till he come just muler the Comoremts watchman, the rest being asleep, and so somblly do sleep that they will snore like so many ligs; the Indion thrusts up his hand of a sudden, grasping the watchman so hard romm about his meek that he eamot cry out; as soon as he hath him in his Cemore he wrings oft his hearl, and making his Comom fast, he clamhreth to the top of the Rock, where walking softly he takes them 11] as he pleaseth, still wringing oft their heats; when he hath slain as many as his Comom ean earry, he gives a shout which awaketh the smviving Cormorents, who are gome in in instant." \dagger

[^110]
Family, TACHYPETID业.

265. Tachypetes aquilus (Linné) Vieillot. Frigate Pelican; Man-of-war Bird.
An extremely rare acoikental visitur fiom the fouth. But one instance of its ocembene in New England hats been reonderl, and that w:ts puhlished in the Natmalist, by Mr. Grimmell, nearly two years ago: "The securrence of Tach!petes uquilus in Connecticut is not gencrally knwn, Lomge Island being, up to this time, the northernmost loe:ality on record for this hird. A female of this speces was killed at F'anlkner's lsland in this state, in the antumn of 1859, and is now in the cullection of ('aptain brooks. It wat hovering over the island when shot." 1 hawe seen this specimen in Capt. Brooks's Cabinct.

Family, LARID死.

266. Stercorarius parasiticus (Brünn.) Scheuf. Richardson's Jaeger.

A rare winter visitor. Linsley gave it from Bridgeport, Com, I have lately seen is specimen in the cabinet of Mr. John H. Nage, of Portland, Comm., which was killed at that place in the fall of 1875.
267. Stercorarius Buffoni (Boie) Couss. Long-tailed Jaeger.

A rare straggler from the far North. Not previonsly recorded from Comectient. I have just received, from Mr. Wh. F. Lame, a beantiful armit specimen of this Latrine phunterer, which he shot on the Community Lake at Wallingford, Com., Augnst 30th, 1873. Mr. Lane whites me that he was ont sailing on the lake, with his brother, when they noticed a chrions lided, mulike any they had ever before seen. "It was chasing a swallow, which it soon canght, and then lit on the water with the swallow in its month, and commenced swimming arom and did not seem to be very wild." Mr. Lane then went ashore for his grm, and, on retmrning, sailed so close to the birel that his brother was ohliged to splash the water with an our in order to make it fly, and as it rose he shot it. He says: "The bird was alone and had been flying aromed the lake for about an hour when I shot it. I noticed that it was very swift on the wing, also a very fast swimmer. It did not seem at all afraid of anyone."

Note.-The Pomarine Jatger, Sterraratus pomatorhimus (Temminck) Vieillot, donbtless oceurs as a rare winter visitant.

[^111]
268. Larus marinus limus. (ireat Black-hackel fiull.

A winter resident; wht rare. Linsley recorls it from stanford,
 two or three Lates marimes flying alout the llarbor in company with the common llerving Ginlls.
269. Larus argentatus, var, Smithsonianus Cones. Hering Full.

An abmatant winter resident. Arrives from the North in October, remaining till April or May. Have seen hundrals of them together in New llaven IJarbor in Febmary and March. Mr. Thomas B. Oshorne has seen them in Jhme amb early September, and a few doubtless spend the smmmer, hat they are probably young linds and do not breed. Dr. Wood necasionally finds it abont the Connectiont River above Harttort. On June 29th, 1877, I saw fire together near Faulkner's 1sland, Com, Four of these were in the young (gray) plumage, while one was white.

270. Larus Delawarensis Ord. Ring-billed Gull.

Not rare. Linsley found it at stonington, Com. The young of this species, easily recognized by having "a brom, subterminal hand of black" across the tail (Cones), may fregnently be seen in winter associated with the foregoing. Dy attention was first called to it by Mr. E. I'. Bicknell, of Riverdale, N. Y.

271. Larus tridactylus Linné. Kittiwake Gull.

Occurs in winter, but is not common. Linsley gave it from stonington, Comn. Mr. Oshorne has seen it liom Mareh sth till April 14 th.
272. Larus atricilla Linnć Laughing Gull.

Not common. l'ussibly a few breed on some of the islands off our const. Linsley states that they were oecasionally killed at Stomington, Com. Als: Osbome informs me that he saw one Jume lst, 1870.
273. Larus Philadelphia (Oril) Gray. Ronaparte's Gull.

Is tolerably common in fall. (aptain Brooks writes me that they are "quite common about Fanlkner's Island, Comn., in Octuber and November," ant that he occasionally sees them "with Tems at Goose lsand, Comn., in summer." Linsley states that he "oltained an
 271.) I s:a the remains of one that hat heen killed in November, 1875, near New llaven. Specimens of it are also in the collertions
 Lame semts me a specimen from Wallingtord, ('omm, stating that eight were seen there in the fall of 1871.
 times oedur along onr coast as a ratre winter visitand foom the North, but I have, as yet, been mathle to procure satisfictory evillence of its presene within on limits, althongh it has been taken on long Islamd.

274. Sterna hirundo Auct. Common Tern; Wilsou's Tern; Sea Swallow.

A common smmare resident along the coast. Captain brooks informs me that they bred at Goose Island, Com, but not so abmdantly as the linseate.
275. Sterna macroura N:umann. Arctic Tern.

A rave visitor to our shomes. Mr. J. N. Clark, of Saybrook, Comn, writes me: "I have an undoubted specimen, in the fall plumage of the young (as deseribed by Cones), taken here last season-never eaphtured a mature bird."

276. Sterna Dougalli Mont. (S. puradiset of Authors.)* Roseate Tern.

An aboudant smmer resilent. Captain brooks writes me that they first "make their appearmee abont the midale of Jay, aml commence laying alout the first of Jume, at Goose Island (one mile west of leaulkner's Island, (omm.), where they breed in great quantities, if not disturbed." 'Throngh the kindness of Captain Brooks 1 have recently (Jume 29,1875) visited Goose lsland, am have thas been permitted to witness the magnificent aerrial evolutions of these beantiful hirds, as humbeds of them swept to and fro over our heads, constantly uttering their chamacteristic aries. They would rise high in the air and immediately dive to the water's edge, then, suddenly turning, would sweep over the island and settle on the large rocks with which it is borlered, always, as the Captain remarken, "keeping their heats to the wind'ard." It is truly a splendid sight, amd one well worth going many miles to see. As they rover the rocks, almost

[^112] nicely with the pure white malere parts and bright red lexs. The rege were bow hat ching and thomsams of downy yomer concer the iskaml. I actually courgh :an adnlt female chtangled in the weeds,
 Where the weds were particnlaty thick, forming dense mats, the eggs: were sometimes phacel "pm, as well as muder, them; we fomm several such. (iveat eredit is duc C'aptain brooks for his watchfuhuss orer this litte colny: but for him they wonk bong since have been exterminated.
277. Sterna superciliaris, var. Antillarum 'oues. Least Tern.

Not very common. Limsley took it at Statford, Comm. Mr. J. N. Clark, of saybrouk, Comn., tells me that they are sometimes quite abmant there during the migrations.
278. Sterna fuliginosa Guclin. Sooty Tern.

A rate visitor from the south. The elaim of this speries bo a place among the bids of New Emgland has only recently been establishet, the only anthentic instances of its capture having been published within a year. In a late number of the "lubletin," Ins. H. A. Purdie says that Mr. J. N. Clark has a specimen in his collection "that hast summer Hew against the side of the steamboat wharf depot, at saybrook, Com. Stumed hy the concussion it fell and wats pieked up. It had been noticed for several days, tying about the mouth of the riser, as something musual." Protessor Samborn Tenney states that a specimen was killed as far inland ats the northwestern corner of Hassachmsetts ("near the Honsac river") in September, 18.6.申 These two are, so far as I am aware, the mly recomled instances of its capture in New England. Mr. Freterick 'T. dencks, of lrovidence, R. I., Writes me that he took a particularly beantiful specimen at Point Judith, R. I., last fall. Throngh the kindness of several friends I am enabled to add tive Comecticut examples to those given above, thas increasing the total momber, ascertaned to have oceured in New England to eight, six of which were killed in this state. Four of these I have myself seen. The circumstances comnected with the capture of these specimens are as follows: Two adult birds killed themselves, last September (18.6), hy flying against the lighthonse

[^113]tower at lanalkners lalam. One of them is now in the collertion of Captain O. N. Brooks, ol' that place; Mr. Elburt ('ox, of Ntony C'reek, Comb, has a mombed specimen which was kithed there with a stome, late in the summer (1876) ; Mr. Noman Rlmore, of (tranly, Com, has just rent me, for examination, a hide of this spectes that was
 Ilamd writes me that it was promed in a singular place and manner: "It was knocket down with a stick by a gentlematn who was netting with pigeons. He first saw it, I think, on the pigen poles. He got it alive, but of comse entld not gef it to eat, aml alter keephing it wo or three days it died." 'This and the one killed ley Eithert Coc, Exip, are both in the young-nf-the-year phumate, as deseribed by Cones.* It is a simgula fact that all these specimens wore killed last fall, and probably all in September.

279. Hydrochelidon lariformis (Linné) Cones. Black Tern; Short-

 tailed Tern.A rare risitor, necuring chiefly in fall. Though essentially an inland speres, it is sometimes found along the coast during migrations. Captan brooks took one specimen near Goose Lsland, Comm, about twelve years ago-the mily one he has ever seen. Mr. George Bird Grimell informs me that his hrother shot a hiri of this species, late in Augnst, near Milford, Comn.

Note.-Several species of Terns, not mentioned above, donbtless oceur within our limits. Sterme anglica (eromen of Wilsm), s. con-
 for as rare visitors from the Gonth, while Š. Forsteri probably wecturs oceasionally in fall, and Jemu Subini may be met with as a rare straggler from the North.

Family, PROCELLARIID尼.

280. Cymochorea leucorrhoa (Tieillot) Coues. Leach's Petrel.

Toleralby common off the const in summer, lut is more frequently seen outside than in the sombd. I am informed by Captain brooks that it is " oecasionally seen dming the smmmer mont has cruising in the vicinity of Fanlkner's Island." Dr. Crary, of IIartford, Conn.,

[^114]informs me that whe was shot, October 27th, 1857, by (irorge Meigs, on the Comertant liver, alowe Hatforl. Sinee writing the alowe I have twiece seen it, wh the somm, in the vicinity of Fanlkuce's lslaml, and mar New Haven. I am inclind to believe that a fow breed on some of the islamls ofl' ume coast.

281. Oceanites oceanica (Kiul.) Cones. Wilson's Petrel.

Not common: ocem's ofl the coast in summer. Linsley says that he has seen this speries "not only in our somm, but even west of stratford, and sitting quictly umon the water," amd finther states that he once eanght a specimen "at sea, hy floating alout two humberl feet of thread in the air, against which it flew, and thas hecame entangled and taken."*

282. Puffinus major Filher. Greater Shearwater.

Not rare in winter off the coast, but generally keeps outside the somm. Linsley fomm it common about Stonington in the southeast erract of the State. In the Musem of Wesleyan University, at Mindletown, is the heat of a bird of this species which is said to have been killed at Granhy, Comm.

Family, COLYMBID.

283. Colymbus torquatus Brunn. Loon; Great Northern Diver.

A tolerably common winter resident. Amives from the North in October, remaining till April or May (April 29, 1876, Osborne). I have a beantiful specimen killed at Branforl, Com., April 23d, 1855, and presented to me by Dr. Wm. II. Hotchkiss. It has been known to breed on a pomi at Easthampton, Comn. (IV. (i. Buell).

284. Colymbus septentrionalis Linné. Red-throated Diver.

A common winter resident. Arrives from the North in Oetober, remaining till Mar, and Mr. Nichols informs me that he saw one as late as June $2 d$ (1876). Frequently killed by gunners while duckshooting on the Found, but, as Captain Erooks writes, 'you selfom get one with the red throat."

[^115]Note.-Colymbes Imotions may possibly oceme as an extremely rare winter visitor from the lar north, but I am mable, as yet, to lind sutlicient evidence of its capture within our limits, althomgh there is a specimen so labelled in the Xusem at Middletown. I enmot believe this to te amything more than an immatme Colymbes soptentrionulis, with the throat tingerl with black.

Family, PODICIPID ※.

285. Podiceps cristatus (Linmé) Latham. Crested Grehe.

Tolerably common during the migrations and in winter. Recorded by Linsley from Stratforl, Comm. W. W. Coe and J. II. Sage have each specimens of this species taken here in winter. Dr. Wood, of East Windsor llill, tells me that he has had but four speeimens from that locality, and that they were all callght hy hand in winter; haring alighted in the snow they were mable to rise.
286. Podiceps griseigena, var. Holbolli (Reinh.) Cones. Red-necked Grebe.

A rather rave winter resident. Captain Brooks says he has not seen one for years. Ocems both on fresh and salt water. Linsley took it at Stratford. Mr. J. II. Sige has a specimen which he took at Saybrook, Comm. February 23d, 1875. 1rr. Wood has a very handsome specimen, in full phomage, shot near East Windsor some years ago. I am informed by Dr. Crary, of Hartford, Comm, that one was shot in that vicinity, by Jemy Crocker, October 19th, 1860.

287. Podiceps cornutus Latham. Horned Grebe.

A common winter resitent. Found on the coast as well as on Jakes and ponds in the interior. Arrives in September or October, remaining till May.
288. Podilymbus podiceps (Limé) Lawrence. Pied-billed Dabchick; Hell Diver.

A summer resilent; common during the migrations. Found chiefly on fresh water, but is not rare on the somd. Arrives from the North in September, remaining into November (ant a few may winter). Mr. Geo. Bird Grinnell tells me that it breeds within the State.

Family, ALCIDE.

289. Utamania torda (Lime') Leach. Razor-hilled Auk.

A rare winter visitor in the found.
290. Mergulus alle (Linné) Tiellot. Sea Dove; Dovekie.

A rave winter visitor on our coast. Prof. G. lbown Goode published the first anthentic record of the capture of this species within the limits of the state. Me states that, at Middletown, during a severe northeast storm, about the middle of Nowember, 1871, "two inlividuals were captured in full winter plumage, and plump, though with empty stomachs. Their ocenrence thirty miles inland is somewhat remarkable. Allen recorts the eapture of a single specimen at Greenficld, Mass., on the Connecticnt, and Linsley places the species among the birds of Connecticut on the strength of one captured near Martha's Vineyarl,"* Hass. Several others were secured at Middletown, by W. W. Coe and J. H. Sage, during this same storm during which Mr. Goorle's were taken, and Mr. Sage has still :mother, captured there November 25 th, 1874 , in a gale. One was taken at Saybrook at the same time. Dr. Woorl, of East Windsor Hill, showed me a specimen of this species, shot near Portland, Conn., November 10th, 184. Twn other individuals were killed on a poud at Wrallingforl, Com., in September, 1874, by Wm. F. Lane, Esi. It is oceasionally taken as far south as Egg Harhor, New Jersey. \dagger
291. Lomvia troile (Linné) Brandt. Foolish Guillemot; Murre.

A rare winter visitant in the Sombl, thongh common enough outside. Captain Brooks took one near Fanlkner's Island, Conn., "abont eight years ago."

Note.-The Great Auk (Alra impenuis Limné), supposed now to be extinet, was formerly, without doubt, a winter visitor to our coast. Aside from the three species of Alfile given above, as ocenring within our limits, several others have been fonnd still farther sonth and may be looked for in winter off Stomington, Comm, and perhaps even in the Somml. These are: Fratercula Lectict, Crill grylle, and Lomvia arra.

[^116]
B. List of the Pamilies of Birds now fomm in the State of Conneetient, with the member of their remesentutive species.

	spucter.
2 Saxicolide,	
3 Sylviidx, -	
4 Parilie,	3
5 Sittidie.	2
6 (erthiidse,	
7 Troglodytidar,	
8 Alaudidre,	
9 Motacillide,	
10 Sylvicolide,	4
11 Tanagridæ,	
12 lirmndinids,	
13 Ampelidæ.	
14 Vireouidie,	
15 Lanidat,	
16 Fringillidx	2
17 Icteridx.	8
18 Corvidxe,	3
19 Tyrannidæ,	10
20 Caprimulgida,	
21 Cypselidie,	
22 Trochilidse,	
23 Alcedinidx,	
24 Cuculidæ,	

25 Picidie
Spectes
26 Strigidic. 1
27 Falcoundre 15
25 Cathartida, 1
29 (Olumbidix, 9
30 Thetraonider, 2
31 Claradrídre, f
32 Hematopodidie, 2
33 Recurvirostridie, 1
34 Plalaropodide, 2
35 Scolopacidie. 24
36 Tautalide, 2
37 Ardeidae, 8
38 Rallidx 9
39 Anatider, 32
40 Sulide 2
41 Phalacrocoracidae. 2
42 Tachypetidie, 1
43 Laridie, 14
44 Procellariide, 3
45 Colymbidre 2
46 Podicipidre 4
47 Alcidee, 3

41 Virco gilyus.
42 Vireo tlavifrous.*
43 Vireo solitarius.
41 Vireo Noveboracensis.
45 Carpodacus purpurens.
46 Chrysomitris tristis.
47 Passerculus Savamna.
48 Pooecetes gramineus.
49 Coturniculns passerimus.
50 Coturniculus Henslowi.*
51 Immodromus maritimus.
52 Ammodromus candacutus.
5. Melospiza palustris.

54 Melospiza melodia.
55 Melospiza Lincolui.*
56 Spizella socialis.
57 Spizella pusilla.
58 Passer domesticus.
59 Euspiza Americana.*
60 Goniaphea Ludorictaua.
61 Cyanospiza cyanea.
6. Pipilo erythrophthalmus.

63 Dolichonyx oryzivorus.
ff Molothrus pecoris.
G5 Agelæus phœeniceus.
66 Sturnella magna.
67 Icterns spurius.
68 Icterus Baltimore.
69 Quiscalus purpureus.
70 Corvus Americanus.
il Craumrus cristatus.
72 Trrannus Caroliuensis.
73 Miviarchus crinitus.
T4 Sarornis fuscus.
75 Contopus virens.
it Empidonax Traillii.
77 Empidonax minimus.
78 Autrostomus rociferus.
79 Chordeiles Virginianus.
80 Chretura pelagica.
81 Trochilus colubris.
82 Feryle alcyon.
43 Cocerzus erythrophthalmus.
84 Coccyzus Americanus.
85 Picus villosus.
86 Picus pubescens.
87 Melanerpes erythrocephalus.*
88 Colaptes auratus.
s9 Buho Virginianus.
60 Reops asio.
91 Otus vulgaris, var. Wiksonianus.
92 Braclyyotus palustris.
93 Syrninm nebulosum.
9.4 Nyetale Acadica.

05 Circus cyaneus, var. 11udsonius.
96 Accipiter fuscus.
97 Aecipiter Cooperi.
98 Falco communis.*
99 Falco sparverius.*
100 Buteo borealis.
101 Buteo lineatus.
102 Buteo l'eunsylranicus.
10.3 Pandiou haliaëtus.

104 Ilaliaëtus leucocephalıs.*
105 Wctopistes migratorius.
106 Zenedura Carolinensis.
107 Bonasa umbellus.
108 Ortyx Virginianus.
109 Agialitis vocifera.
110 Egialitis meloda.
111 Philohela minor.
112 Gallinago Tilsoni.*
113 Totanus semipalmatus.*
114 Ereunetes pusillus.*
115 Tringoides macularius.
116 Aetiturus Bartramius.
117 Ardea herodias.*
118 Ardea virescens.
119 Nretiardea grisea, var. nævia.
120 Botaurus minor.
121 Ardetta exilis.
122 Rallus lougirostris.
123 Rallus elegans.
124 Rallus Virginianus.
125 Porzana Caroliua.
126 Porzana Noreboracensis.*
127 Porzana Jamaicensis.*
128 Gallinula galeata.
129 Anas obscura.
130 - lix sponsa.
131 Harelda glacialis.*
132 Sterna hirundo.
133 Sterna Dougalli.
134 Colymbus torquatus.*
135 Podilymbus podiceps.
2. Špecies uhich probuhblybreed oceasionally, but wre mot knoven to do so.

1 Dimus polyglottus.
2 Polioptila cierulea.
3 Lophophanes bicolor.
4 Thryothorus Ludovicianns.
5 Dendrœeca cærulea.
6 Dendroeca Dominica.
7 Siurus nævius.
8 Oporornis formosus.
9 Pyranga æstiva.
10 Stelgidopteryx serripennis.
11 Cardinalis Virginianus.

12 Contopus borealis.
13 Empidonax Acadicus.
14 Spherrapicus varins.
15 Centurus Caroliuus.
1is Strix flammea, var. Americana.
17 Falco columbarius.
18 Egialitis Wilsonia.
19 Totanus solitarius.
20 Sterna superciliaris, var. Antillarum.
21 Cymochorea leucorrhoa.

(b.) Remident sidethis.

1 Turilus migratorius.
2 Sialia sialis.
3 l'arus atricapillus.*

- Sitta Carolinensis.*

5 Certhia familiaris.*
6 Ampelis cetrorum.
7 Carpodacus purpureus.
8 Chrysomitris tristis.
9 Melospiza melodia.
10 Spizella socialis.
11 Passer domesticus.*
12 Molothrus pecoris.
13 Agelatus phonicens.
14 sturnella magna.
15 Corvus 1 mericanus.
16 Cyauurus cristatus.*
17 Ceryle alcyon.
18 Picus rillosus.*
19 Picus pubesceus.*
20 Melauerpes errthroceplaalis.
21 Colaptes auratus.

22 Bubo Virginianas.*
3.3 Sopes asio.*

24 Otus valgaris, var. Wilsonimmu.*
25 Brachyotus palustris.*
26 Syroinm nehulosimm.*
27 Nretale A cadica.*
28 Fialeo communis.
29 Falco columbarius.
30 Falleo sparverius.
31 Buteo borealis.
:32 Juteo lincatus.
33 Butco Pennsylvanicus.
at Laliaëtus leucocephalus.
35 Zenadura Carolinensis.
is Bonasa umbellus.*
37 Ortyx Virginiamus.*
38 Plilohela minor.
39 Anas ohscura.
40 llarelda glacialis.
41. Larus argentatus, var. Smithsonianus,

(c.) MigRANTS NOT KNOWY TO BREED.

(Some of these winter.)

1 Turdus Pallasi.
2 Turdus Swainsoni.
g"Turdus Swainsoni, var. Aliciae.
3 Regulus calendula.
4 Regulus satrapa.
5 Auorthura troglodytes, var. hyemalis.
6 Anthus Ludovicianus.
7 Helminthophaga peregrina.
8 Dendroca coronata.
9 Dendroeca striata.
10 Dendroca castanea.
11 Dendrœeca maculosa.
12 Dendroca tigrini.
13 Dendrœea palmarum.
l. t Siurus nævins.

15 Oporormis agilis.
16 Geathlypis Philadelphia.
17 Myiodioctes pusillus.
18 Passerculus priuceps.
19 .Junco hyemalis.
20 Spizella monticola.
21 Zonotrichia albicollis.
22 Zonotrichia leucophrys.
23. Passerella iliaca.
$2 \pm$ Scolecophagus ferrugineus.
25) Contopus borcalis.

26 Empidonax flaviventris.
27 Sphyrapicus varius.

28 Aquila chrysaëtus.
30 Charadrins fulvus, var. Virgiuicus.
31 Egialitis semipalmata.
32 Hamatopus palliatus.
33 Strepsilas interpres
35 Plalaropus fulicarius.
36 Macrorhamphus griseus.
37 Tringa minutilla.
38 Tringa maculata.
90 Triga frneo.
41 Tringa alpina.
42 Tringa subarquata.
43 Tringa canutus.
Cindris arenaria.

16 Limosa Hudsonica.
$4 i$ Totanus melanoleucus.
48 Totanus Llaripes.
19 Totanus solitarius.
50 Tryngites rufescens.
51 Numenius longirostris.
Numeaius Hudsomicis.
5 Fuliea lmorieana
Anser hrperboreus.

[^117]56 Branta berniela.
57 Brantal (':madensis.
57" Branta Cauadeusis, var. Mutchinsii.
is Anas boschas.
59 Datila acuta.
60 Chaulelasmus streperus.
61 Mareca Americaua.
62 Querquedula Carolinensis.
63) Querquedulit discors.

64 Spatula clypeata.
65 Fuligula marila.
60 Fuligula affinis.
67 Fuligula collaris.
68 Fuligula ferina, var. Americaua.
69 Fuligula vallisneria.
70 Bucephala clangula.
71 Bucephala Islandica.
72 Bucephala albeola.

73 Edemia Americaua.
it (Edemia fusca.
75 Edemia perspicillata.
7ti Erismatura rubida.
is Mergus merganser.
78 Mergus serrator.
75 Mergis cucullatus.
80 Graculus carbo.
81 Graculus dilophus.
8: Larus tridactylus.
83 Larus atricilla.
$k 4$ Larus Pliladelphia.
85 Sterna macroura.
86 Sterna superciliaris, var. Antillarum.
87 Hydrochelidon lariformis.
88 Colymbus septentrioualis.
89 Podiceps cristatus.
90 Podiceps cornutus.

(D.) WINTES RENHDENTS, MURE HE LEAS REGL゙LAR.*

1 Regulus satrapa.
2 Sitta Canadensis.
3 Anorthura troglodytes, var. hyemalis.
\pm Eremophila alpestris.
5 Dendroeca coronata.
6 Collurio borealis.
7 Pinicola enncleator.
8 Plectrophanes nivalis.
9 Spizella monticola.
10 Junco hyemalis.
11 Zonotrichia albicollis.
12 Nyetea Scandiaca.
13. Astur atricapillus.

If Archibuteo lagopus, var. SanctiJohannis.
15 Tringa maritima.
16 Branta beruicla.
:7 Branta Canadensis.
18 Dafila acnta.

19 Fuligula marila.
$\because 0$ Fuligula affinis.
21 Bucephala clangula.
22 Bucepluala albeola.
23 Harelda glacialis.
24 Edemia Americana.
25 (Edemia fusca.
26 Edemia perspicillata.
27 Mergus serrator.
28 Mergus cucullatus.
29 Graculus carbo.
30 Larus marinus.
31 Larus argentatus.
32 Larns Delawarensis.
33 Colymbus torquatus.
34 Colymbus septentrioualis.
35 Podiceps cristatus.
36 Podiceps cornutus.

(E.) WINTTER VTSITANTS, MORE OR LESS IRIREGULALR,

1 Lophophanes bicolor.
2 l'arus Hudsonicus.
3 Ampelis garrulus.
4 Loxia leucoptera.
5 Loxia curvirostra, var. Americana.
6 Egiothns linaria.
7 'hrysomitris pinus.
8 Plectrophanes Lapponicus.
9 Passerculus princeps.
10 Zonotrichia leucophrys.
1111 lotomus pileatis.
12 Picoides Areticus.
13 Syrnium cinereuu.
14 Surnia ulula, var. Hudsonia.
15 Nyctale Tengmalmi, var. Richardsoni.
16 Aquila chrysaëtus.

17 Cygnus Americanus.
18 Anser hyperboreus.
19 Bucephala 1slandica.
20 Camptolemus Labradorius.
21 Somateria mollissima.
22 Somateria spectabilis.
23 Sula hassana.
24 Stercorarius parasiticus.
$\because 5$ Stercorarius Buffoni.
2 Larus tridactylus.
27 Puffinus major.
28 Podiceps griseigena, var. Holbolli.
29 Utamania torda.
30 Mergulus alle.
31 Lomvia troile.

[^118]
(f.) Irkegitar Simmer Vhitants.

1 Mimus polyglottus.
2 I'olioptila carrulea.
3 Lophoplanes bicolor.
4 Deniroca cerulea.
5 Dendroxea Dominica.
(i) Oprormis formosus.

T l'yranga :estiva.
8 Stelgidopteryx serripemis.
9 Euspiza Americana.
10 Cardinalis Virginianus.
11 Corvus ossifragus.
12 Milvulus forficatus.
13 Empidonax Acadicus.
I. 1 Centurus Carolinus.

15 Strix flammea, var. Americana.

16 ('athartes aura.
17 Jrialitis Wilsonia.
18 lbis falcinellus, var. Ordii.
19 lhis alba.
20 Arlea egretta.
21 Ardea candidissima.
2. Ardea cirrulea.

23 Porzana Jamaicensis.
21 Porphyrio Martinica.
25 Sula fiber.
26 Tachypetes aquilus.
27 Sterna fuliginosa.
$2 s$ Hydrochelidon lariformis.
29 Cymuchorea Iencorrhoa.
30 Oceanites oceanica.
(G.) Rare Ichmental Visitores.

1 Mimus polyglottus,
2 Polioptila cerulea.
3 Lophophanes hicolor.
4 Parns IIudsonicus.
5 Oporornis formosus.
6 Pyranga sestiva.
7 Stclgidopteryx serripennis.
8 Ampelis garrulus.
9 Collurio Ludoricianus.
10 Euspiza Americana.*
11 Cardinalis Virginianus.
12 Corvus ossifragns.
13 Milvulus forficatus.
14 IVlotomus pileatus.
15 Picoides Arcticus.
16 Centurus Carolinus.
17 Strix flammea, var. Americana.
18 Syrnium cinereum.
19 Surnia ulula, sar. Hudsonia.
20 Nyctale Tengmalmi, var. Richardsoni.
21 Aquila chrysaëtus.
22 Agialitis Wilsonia.
23 Steganopus Wilsoni.

24 Phalaropus fulicarius.
25 Limosa Iludsonica.
26 Ihis falcinellus, var. Ordii.
27 This alba.
23 Ardea egretta.
29 Ardea canrlidissima.
30 Ardea carnlea.
31 Porzana Jamaicensis.
32 Porphyrio Martinica.
33 Cygnus Americanus.
$3 t$ Bucepbala Islandica.
35 Camptolemus Labradorius.
36 Somateria mollissima.
37 Somateria spectabilis.
38 Sula bassaua.
39 Sula fiber.
40 Tachypetes aquilus.
4 I Stercorarius parasiticus.
12 Stercorarius Buffoni.
43 Sterna fuliginosa.
44 Utamania torda.
45 Mergulus alle.
46 Lomvia troile.

(ii.) Rare ani Irregular Migrants.

Passerculus prineeps?	11 Anser hyperborens.
${ }_{3}^{2}$ Espialitis Wilsonia.	${ }_{13}{ }^{12}$ Anas boschas. Chauleastus streperus.
4 Steganopus Wilsoni.	14 Fuligula collaris.
5 Phalaropus fulicarius.	${ }^{15}$ Fuligula ferina, var. American
6 Tringa subarquata.	16 Fuligula vallisueria.
7 Limosa fedoa.	17 Buceplaala Islandica.
8 Limosa Hudsonica.	Sterua macroura.
9 Numenius borealis.	19 11ydrochelidon lariformis.

* Although Linsley gives this species as "very common" at New laven (in 1842), it has not since been met with, either by myself or any other collector in the State, so far as I am aware. ITence 1 am forced to regard its occurrence, at present, as purely accidental, and this without doubting Linsley's statement that it was once common. Indeed, I have recently seen two of Linsley's mounted specimens.

1). In Amalysis uf' Limsley's "C'atulogue."

In the year 1843, the Rev. James 11. Linsley pullished, in the Autrican Journal of Science and Arts," A Chtelogue of the Birds of Connecticut, arranged according to their natural fumilies."* In this Catalogue Mr. Linsley enumerates 302 species, this number ineluding hoth those that had already been deteeted within our limits and those whose presenco le thought likely (judging from their oremrence in contignous states) future iuvestigation might reveal. Ho likewise included the introduced and domesticated species-such as the California (Lnail, leal Coch, Guiuea Fowl, the various races of the domestic Pigeon (Columba livia Linné), and the common barn-yard fowl, numbering them with our native hirds. Many speeies are given twice, and some eren three times, the immature and seasonal plumages having been mistaken for distinct species. There are also a few doubtful forms, and at least two had been exterminated before his paper was written. \dagger licuce it is that a critical examination of this list at once enables us to eliminate 63 species, thas reducing the total number from 302 to $239 . \ddagger$
(A.) List of those species given by Lissley is his "Catalogue of the Birds of Conucticut," concerning tue occcrrence of which he probably had stfficient proof.

1 Turdus migratorius.
2 Turdus nustelinus.
3 Turdus Pallasi.
4 Turdus fuscescens.
5 Nimus polyglottus.
6 Mimns Carolinensis.
7 Harporhynchus rufus.
3 Sialia sialis.
9 Regulus calendula.
10 Regulus satrapa.
11 Polioptila cerrulea.
12. Lophophanes bicolor.

13 Parus atricapillus.
14 Sitta Carolinensis.
15 Sitta Canadensis.
16 Certhia familiaris.
17 Troglodytes aêdon.
18 Anorthura troglodytes, rar. hyemalis.
19 Telmatodytes palustris.
20 Cistothorns stellaris.
21 Eremophila alpestris.
22 Anthus Ludovicianus.
2.3 Mnotilta varia.

24 Parula Americana.
25 Helmitherus vermivorus.
26 Helminthophaga ruficapdla.
27 Dendroca æestiva.
28 Dendroce vireus.
29 Dendroea cærulescens.
30 Dendrceea cærulea.

[^119]* Am. Jour. Sci. and Arts, vol. xlir. No. 2, pp. 249-2i4, April, 1843.
† Namely: the Wild Turkey (Meleagris gallopuzo) and the Pinuated Grouse or Prairie Chicken (C'upidunia cupilo).
\ddagger The collection of birds given by Linsles to the Yale Natural Mistory Society, and kept for many years in the Yale Medical Sehool, has recently been transferred to the Peabody Musemm of Yale College.
(i) Pinicola enucleator.

62 Capodacus purpureus.
63 Loxia curvicostra, var. Americama.
(i) Agrothens linaria

65 Clarysomitris pinns.
fi6 Chrysomitris tristis
if l'lectrophanes nivalis.
68 l'asserenlus savanna.
69 l'ooecetes gramineus.
70 Coturmienlus passerimus.
71 Ammodromus maritimus.
72 A muodromus caudacutus
is: Mclospiza palustris.
if Mclospiza melodia.
T5 Junen hyemalis.
7 is Spizclla monticola.
7 T Spizella socialis
Ts Spizella pusillis.
-9 Zonotrichia albieollis.
80 Zonotrichia leucoplurys.
81 l'asserella iliaca.
8: Euspiza Americaua.
83 Goniaphia Ludoviciana.
$8 \pm$ Cyanospiza cyanea
85 Cardinalis Virginianus.
86 I'ipilo erythrophthaluus.
8 i Nolichonyx orrzivorus.
88 Molothris pecoris.
89 Agelaus phomiceus.
90 Sturnella magna.
9] Icterus spurins.
92 Ieterus Baltimore.
93 Scolecophagus ferrugineus.
$9 \pm$ Quiscalus purpureus.
95 Corvus Americanus.
96 Corvus ossifragus.
97 Cyauurus cristatus.
98 Tyrannus Carolinensis.
99 Myiarchus crinitus.
100 Sayornis fuscus.
101 Contopus borealis?
102 Contopus virens.
103 Empidonax Traillii.
104 Empidonax minimus ("Acadicus").
105 Antrostomus rociferus.
106 Chordeiles Virginiauns.
107 Chætura pelagica.
108 Trochilas colubris.
109 Cerrle alcyon.
110 ('occyzus erythrophthalmus.
111 Coceyzus Americanus.
112 Hylotomus pileatus.
113 Picus rillosus.
$11 t$ l'icus pubescens.
115 Sphyrapicus varius.
116 Centurus Carolinus.
117 Melanerpes erythrocephalus.
118 Colaptes auratus.
119 Strix flamınea, var. Americana.
120 Bubo Virginianus.
121 Scops asio.
122 Otus vulgaris, var. Wilsonianus.
123 Brachyotus palustris.

124 Syrnium cineremm.
125 Syrmium uebulosum.
126 Nyetea scandiaea.
127 Nyctale Acadica.
128 Cirus cyancus, var. Hmdsonims.
129 Aecipiter fuscus.
130 Falco commmis.
$1: 31$ Fialeo columbarius.
132 Filloo sparverius.
133 Buteo borealis.
134 Buteo lineatus.
135 Buten l'ennsylyanicus.
1:36 Archibuteo lagopus, var. SanctiJoliannis.
10 Pandion haliaetus.
138 Haliaëtus lencocephalus.
139 Cathartes aura.
140 Ectopistes migratorins.
$1+1$ Zenadura Carolinensis.
142 Bonasa umbellus.
143 Ortyx Virginianus.
144 Squatarola Helvetica.
145 Charadrius fulvus, var. Virginicus.
146 .Egialitis rocifera?
147 Egialitis Wilsonia.
148 Egialitis semipalmata.
149 Egialitis meloda.
150 Hamatopus palliatus.
151 Strepsilas interpres.
152 Steganopus Wilsoni.
153 Philohela minor.
154 Gallinago Wilsoni.
155 Macrorhamphus grisens.
156 Frennetes pusillus.
157 Tringa minutilla.
158 Tringa maculata.
159 Triuga fuscicollis.
160 Tringa alpina, var. Americana.
161 Tringa canutus.
162 Calidris arenaria.
163 Limosa fedoa.
164 Limosa Hudsonica.
165 Totanus semipalmatus.
166 Totanus melanoleucus.
166 Totamus flavipes.
168 Totanus solitarius.
169 Tringoides macularius.
170 Actiturns Bartramius.
171 Numenius longirostris.
172 Numenius Hudsonicus.
173 Numenius borealis.
174 Ibis falcinellus, var. Ordii.
175 Ardea herodias.
176 Ardea cantlidissima.
1 17 Ardea cerrulea.
178 Ardea virescens.
179 Nyctiardea grisea, var. nævia.
180 Botaurus minor
181 Ardetta exilis.
182 Rallus longirostris.
183 Rallus elegans.
184 Rallus Virginianus.
185 Porzana Carolina.

186 Porzana Novohoraconsis.
1:4 Fulica Americam.
18s Cygnus Jmericanus
189 Ansir hyperborens.
190 Branta beruicla.
191 Branta Canadensis.
192 Branta Canadensis, var Hutchiusii.
193 Anas boschas.
194 Anas obscura.
195 Difila acuta.
196 Clanlelasmus streperus.
197 Mareca Americana.
1:18 Querquedula Carolineusis.
199 Querquedula discors.
200 Spatula clypeata.
201 Aix spousa
202 Fuligula marila
203 Fuligula collaris.
204 Fuligula ferina, var. Americma.
205 Fuligula vallisueria.
206 Bucephala clangula.
207 Bucephala albeola.
208 LIarelda glacialis.
209 Camptolemus Labradorius.
210 Somateria mollissima.
211 Somateria spectabilis.
212 Edemia Americaua.

21: Ordemia fusca.
214 (Edemiat perspicillata.
215 Brismatura ruhida.
216 Mergns merganser.
217 Margus serrator.
318 Morgus cucullatus.
219 Sula bassaua.
220 Sula fiber.
221 Graculus carbo.
222 Graculus dilophus.
223 Stercorarius parasiticus.
224 Larus marinus.
225 Larus argentatus, var. Smithsonianus.
226 Larus atricilla.
227 Larus Philadelphia.
228 Sterna hirundo.
209 Stern: superciliaris. var. Antillarum
230 Oceanites oceanica.
231 P'uffims major.
232 Colymbus torquatus.
233 Colymbns septentrionalis.
234 Podiceps cristatus.
235 Podiceps griseigena, var. Holbölli.
236 Podiceps cornutus.
237 l'odilymbus podiceps.
238 Utamania torda.
239 Uria grylle.
(B.) List of those species given by Linsley in his "Catalogue of the Birds of Connecticut," concerning the occurrence of which he did not have sufficient proof.

1 Helmitherus Swainsoui.
2 Helminthophaga chrysoptera.
3 Dendreera Dominica.
4 Oporornis agilis.
5 Petrochelidon lunifrons.
6 Ampelis garrulus.
7 Collurio Ludovicianus.
8 Collurio Ludoricianus, var excubito. roides.
9 Loxia lencoptera.
10 Quiscalus major.
11 Picoides Arcticus
12 Accipiter Cooperi.
13 Recurvirostra Americana.
14 Lobipes hyperboreus.
15 Phalaropus fulicarins.
16 Tringa maritima
17 Tringa subarquata.

18 Totanus chloropus.
19 Tryngites rufescens.
20 Ardea egretta.
21 Gallinula galeata.
22 Porphyrio Martinica.
23 Branta lencopsis.
24 Ilistrionicus torquatus.
25 Larus Delawarensis.
26 Larus tridactylus.
27 Rhynehops nigra.
28 Fulmarus glacialis.
29 Cymochorea leucorrhoa.
30 Puffinus obscurus.
31 Fratercula Aretica.
32 Mergnlus alle.
33 Lomvia troile.
34 Lomvia arra.
(c.) List of those "species" Given by Linslet, in his "Catalogue of the Birds of Connecticut," which represent inmature, abnormal, or seasonal plumages of other stated species.

Jame used by Linsley.
1 Regulus cristatus $=$ tricolor.
2 Sylvia trochilus $=$.estiva.
Sylvia sphagnosa $=$ Canadeusis.

Modern Equivalents.

Regulus satrapa.
Dendrueca restiva.
Dendroca carulescens.

Name usad by Linsley.
4 Sylvia parus $=13$ lackburnix.
5 Sylvia uutumalis = castanea.
6 sylvia Roseoc $=$ trichas.
7 Friugilla ambigua $=$ Ieterus pecoris.
8 Strix Seandiact $=$ Virginica (alhimo)?
9 Faleo temerarius = columbarius.
10 Faleo buteoides $=$ lyemalis.
11 Falco chrysaëtos? Limé $=$ lencoccphalus.
12 Falco Washingtonionsis $=$ lencocephalus.
13 Limosa Edwardsii? = Hudsouia.
14 Falligula nigra $=$ Americana.
15 Phalacrocorax graculus $=$ carbo.
16 larus capistratus $=$ IBonapartii.
17 lodiceps minor $=$ farolinensis.

Modern Equivalents.
Dendrovea Blackburnie.
Dendrorea castanea. Geothlypis trichas. Molotlirus pecoris. Bubo Virgimianus. Filco colmularius. Buten lineatus.

Haliaëtus lencocephalus.
1laliaëtus leucocephalus.
Limosa Hudsonica.
(Edemia Americana.
Graculus carbo.
Larus Jhiladelphia.
Podilymbus podiceps.
(D.) List of litrodecei AND Domenticated species given by Linsley, in his "Catalogue of the Birds of Connecticut." Whical scarcely deserve to be mentioned abong our Native Biris.

1 Columba domestica Liumé.
2 Pavo cristatus Linné.
3 Numida meleagris Limé.

4 Gallus domesticus Linné.
5 Lophortfx C'alifornicus lionaparte.
(s Amas moschata Willoughby.
(e.) List of those species Given by Linsley in his "Catalogue of the Birds of Connecticut," which were either esterminated or driven beyond the State before his "Citalogue" was written.

1 Meleagris gallopavo Linné.
12 Cupidonia Cupido Baird.
(f.) List of those species given by Linsley in his "Catalogue of the Birds of Connecticut." Which were insertei, probably, on erroneols identification.

1 Quiscalus major Vicillot.*
2 Empidonax Acadicus (Gmelin) Baird. \dagger
3 Sylvia flava Linné.

4 Larus cauus Linné.
5 Larus fuscus Linné.
(g.) List of those species given by Linsley in his "Catalogue of the Birds of Connecticut," the identity of which 1 have not been able to determine.

1 Sylvia auricollis Latham.
|2 Sylvia flava Linné.

* "Probably a mistuke." Coues' Birds of the Northwest, p. 204, 1874.
\dagger Probably E. minimus.

1:. List of the Publicuttiones, romtainimet Votes on the Birds of Veo Englant, to which refercme has bern made in the forstoings Receier.

A Description of New-F゙ngland, by C'aptaine Iohn Smith. Printed at London, 1616. [Tract], vol. ii.]

New Englands Trials. Writien hy Captaine Iohn smith, sometimes Governour of Virginia, and Admirall of New-England. London. Printed by Willian Ienes. 1622.

New England's Plantation. Or a Short and trve description of the commodities and discommodities of that Countrey.-Written by a reuerend Dinine now there resident. London, Printed by T. C. and R. C. for Michuel Sparke, dwelling at the Signe of the Blue Bible in Greene Atbor in the litile old Briley. 1fian. [Reprinted in Peter Force's llistorical Tracts, vol. i, Tract 12.]

Gov. Thomas Dudley's Letter to the Countess of Lincoln, March, 1631. I'rinted in full in l'eter Force's 1listorical Tracts, vol. ii, Tract iv. Washington, 18:38.

New Englıh Canaan; Or New Canaan, containing An Abstract of New England. Composed in three Bookes, etc. Written by Thomas Morton, of Cliffords Inn, Gent. Upon ten Yeers Knowledge and Experiment of the Country. Printed by Charles Green. 1632. [Peprinted in Peter Force's Historical Tracts. vol. i1, Tract 5. 1838.]

New Englands Prospect. A true. lively, and experimentall description of that part of America, commonly called Nevv England; discorering the state of that Countrie, both as it stands to our new-come English Planters: and to the old Native lnlabitants. Laying downe that which may both enrich the knowledge of the mind-travelling Reader, or henefit the future Voyager. By Willianı Wood. Printed at London, etc. 1631 .

New-England's Rarities Discovered: in Birds, Beasts, Fishes, Serpents, and Plants of that Country. [Etc.] By John Josselyn, Gent. London. 16i2. [Reprinted in Archeologia Americana, vol. iv, pp. 133-238.]

An Account of two Voyages to New-England, etc. By John Josselyn, Gent. The Second Addition. London. Printed for (r. Widdowes at the Green Dragon in St. Pauls Church-yard, 1675. [Reprinted in Collections of the Massachusetts Historical Society, vol. iii, 3d Series. 1833.]

Travels into North America; containing its Natural History, and a Circumstantial Account of its Plantations and Agricnlture in general, etc. ete. By Peter Kalm. Translated into English, by John Reinhold Forster, F.A.S. Yol. ii. London, 1771.

Aretic Zoölogy. By Thomas Pennant. Tol. ii. 1785.
The History of New-Hampshire. By Jeremy Belknap, A.M. Vol. iii. Boston, 1791.

The Natural and Civil listory of Vermont. By Samuel Williams, LL.D. Published according to Act of Congress. Printed at Walpole, New llampshire, 1794.

A Statistical Account of the Connty of Middlesex, in Connecticnt. By Darid D. Field. Published by the Connecticut Academy of Arts and Sciences. Middletown, Conn. Printed by Clark \& Lyman. April, 1819.

American Ornithology. By Alexander Wilson. Edinhurgh, 1×31.

A Mannak of the Ornithology of the United States and Chnada. By Thomas Nuttall. 1832 .

Rejort on the Geology, Mineralogy, Botany, and Zonlogy of Massadmsetts. Made and publishod ly order of the fovernment of that state, etc. By. Edward Hithomek (Report on Birils, ly Ebeuezer kmmons, M.D.). Anherst, 1833 .
The Birds of North America. By John dames Audubon. 18:31-9.
A Report on the Urnithology of Massachusetts. By William B. O. Peahorly. I\&:39.
History of Vermont, Natural, Civil, and Statistical. In three parts, with a new map of the State, and 200 engravings. By Zadock Thompson. Burlington: Chauncey Goodrieh, 1842. Also Appendix to same, published in 1553.
A Catalogne of the Birds of Connecticut, arranged according to their matural families. By the Rer. James 11. Linsley. [Published in the Am. Jour. Sci. and Arts, vol. xliv. No. 2, 1'p. 249-it. April, 1843.]
The Birids of Long Island. By J. P. Girand, Ir. New York. 1844.
The Birds of Essex Countr, Dass. By F. Wr. Putnam. [Published in I'roceed. Essex Lnst., vol. i, pp. 201-31. 1856.]

A List of Birds ohserved at Grand Menan and at Yarmonth. N. S., from June 16 to July 8, 1856. By Ir. Menry Bryant. [From the Proceedings of the Boston Society of Natural Ilistory, vol. vi. March, 1857.]
Birds of North Ameriea. By S. F. Baird. [Vol. ix of Pacific Railroad Reports, 1858.]

Catalogue of the Birds found at Norway, Oxford Conaty, Maine. By A. E. Verrill. With a List of the Birds found in Maine not observed at Norway. [From l'roceedings of the Essex Institute, vol. iii. 181;3.]
Catalogue of the Birds found in the Vicinity of Calais, Maine, and about the Islands at the Mouth of the Bay of Fundy. By George A. Boardman. [Edited by Prof. A. E. Verrill.] [From the Proceedings of the Boston Society of Natural IIistory, vol. ix. Sept., 1862.]

Catalogue of the Birds found at Springfield, Mass.. with notes on their Migrations, Habits, \&c.; together with a List of those Birds found in the State not yet observed at Springtield. By J. A. Allen. 1.64. [From the Proceedings of the Essex Institute, vol. iv, No. 2, pp. 48-98. Juls, 1864.]
A Descriptive Catalogue of the Birds of Massachusetts. By E. A. Samuels. 1864. [From Massachnsetts Agricultural Report. 1863.]
Catalogue of Birds found in the vicinity of Waterville, Kenuebec Connty, Maine. By Charles E. Ilamlin. [Printed in the Tenth Anntal report of the Secretary of tho Maine Board of Agricultnre, pp. 168-173. 186j.]

History of Lynn, Essex County, Massachnsetts: including Lynnfield, Saugus, Swampscot, and Nahaut. By Alonzo Lewis and James R. Newhall. Boston, 1 s65.

A List of the Birds of New Fugland. By Elliott Cones, Assistant Surgeon T. S. A. [Reprinted from the Proceedings Essex Tnstitute, vol. v.] Salem, Mass.]p. 71. 1868.

The Birds of East Pennsylvania and New Jersey. By William l'. Turnbull. 1869.

A C'atalogne of the Birds of Cons County, N. ll., and Oxforl County, Maine. By C. I. Maynard, with Notes loy Willian Brewster. Oct., 1871. [Firom the I'roceed ings of the lioston Socicty of Natural History, vol. xiv. Oct. 18, [xi1. Repaged.]

Key to North American Bircks. By Elliott ('ones. 1872.
A ['artial Catalogue of the Birds of Grantl Menan. New Brunswick. By Marolr] Herrick. [From the Bulletin of the Lissex Institute, vol. v, Nos. 2 and 3. 1873.|

Thu Birds of Florida. By (\% d. Maynard. 1873.
A IIstory of North American Birds. By Baird, Brewer and lideway. 1874.
Birds of the Northwest. By Fllioth Comes. 1874-5.
The Birds of New Fngland and Adjacent States. By Edward A. Kamuels, Boston, 1875.

A Catalogue of the Birds of New England. By Thomas M. Brewer. 1875.
The Naturalist's Guide. By C. .J. Maynard.
The Lamd and Game Birds of New Fngland. By H. D. Minot. Salem. 1877.
American Jourbal of Science and Arts. New Haven.
Proceedings of the Boston Society of Natural History.
Anmals of the Lyceum of Natural llistory. New York.
Proccedings of the Essex Institute.
Bulletin Essex lnstitute.
Bulletin of the Museum of Comparative Zoülogy, Cambridge.
American Naturalist. Salem.
Bulletin of the Nuttall Ornithological Club. Cambridge, $1576-7$.
New England Farmer.
Hlartford Times, for 1861.
Rod and Gun = American Sportsman.
Collections of the Massachusetts IIistorical Society.
Report of the Secretary of the Maine Board of Agriculture.
11. A Last of Whaves helative to the Methob of Least
 Memamax.

The following list contams the tithe of 408 papers, books and parts of books, relating to the Methot of Least sumares amt the Theory of aceidental Ermos of Ohservation, chromolngically arranged according to theib dates of pulabation. The first was issmed in the year 172: and the last in 1876 . Previons to 1805 , the year of LeGENDRE'S :mmomecment of the primejple of Least Bquares, there are 22 titles s since 180 there is a continnal yearly increase in the momber of titles,-thas:

"	1815	. 1824	*	"	30	"
،	1825	" 1834	*	"	32	\bullet
"	1835	4. 1844	"	${ }^{6}$	45	"
"	1845	" 1854	"	"	63	"
*	1855	" 1864	"	"	71	*
"	1865	* 1874	"	"	95	"

These books and memoirs are in eight languges, and elassified according to the place of pmblication, they fall moder twelve comntries. It may be interesting to note the nmmer belonging to each, viz:

Countries.
Germany -----------.----- 153

Great Britain .-. .-......... $\quad \overline{2} 6$
United States .-.-. .-. .-. . 34
Belginm.....................-. - 19
Russia ...----.-.-........-. 16

Austria .-----------..... 10
Switzerland -.-.-.-.....-.-. - 9
Holland 7
Sweden .-.-.-.-....- .-. .- 7
Denmark-.-...-........-. 5

Total
408

Languages.

French .-.--.---------- 110
English .-....-.-.-.-.-.-. 90
Latin-.-.-.-.-.-. 16
ltalian .-....-..........-. - 9
Dutch.-.---.---.-.-....-. 7
Danish .-..-.-.-..-.-.-.-. 5
Swedish.-------------- 4
Total .-. .-......... . 408

The 408 titles may be rughly classified as 313 memoirs, 72 hooks and 23 parts of books. They were written by 193 authors, 127 of Whom prodnced only one look or maper each.

In preparing this list I have lecen able to nse only the liburates of lale College, (imelnding that of the Comertiout Ac:alemy of Arts
 subject has heern left meonsulted. Ont of the total tas works, I have seen 3 : 2 ; the tilles of these and the aceompanying notes have been drawn from actual inseretion. I have made wo attempt to com-
 wher libuary facilities the momber of titles in the Italian, Duteh and seandinavian langages would matubtedly have been greater. of course lum work af this kiml com be regated as complete.

It has becn my aim to record all writings which ean be comsinered as contributions to the serience of the Jolustment of Observations, and I think that those marked as actually inspected may be truly so regarderl. Many works on Astromomy and Prohahility which devote lout a page or two to the subject, as well as numerons practical papers, in which the Mothort of Least Squanes is used incidentally and briefly, have heen left monoticerl; to record all of these would be well nigh impossible, nor would the value of the list be thereby increased. Among the 96 which I have not seen there may possibly be a few that wonk be rejected after actual inspection.

The following is the arrangement of the list.
At the head of a title is placed the year of pulbication. In the case of memoirs this often differs from the date of the rohume in Which they are contained; for instance, Nantical Amanacs are pubhlished several years precedting and Transactions of Learned Societies when neveral years after the date which they bear. When a memoir is phblished in parts extemding over two or more gears it is recorded under the date of the first part.
'The anthor's mame follows the date of publication. In the index at the emd of the list the full manes of anthors are given, and a distincfion is marle in the text when two persons of the same surname have written on the subject.

The tithes of hooks, amd pamphets published as looks, are printed in itulies, and the titles of memoirs in ordinary type. Those which 1 have actually inspected have their titles enclosed in single fuotation marks (${ }^{-}$-') and these are intended to correspond with the originals in punctuation, spelling and when possible in the use of capitals.

The place of jublication of books is given, with references to subsequent editions of tramslations. The usnal tems 4 to, 8 ro, etc. are added, although they give little idea of the size of a book, and the
number of pages is noted whenever I have been able to ascertain it. When a single chapter mily of a book relates to the sulyect, the title of that chapier is treated like a memoir.

After the title of a memoir is placed in italies the title of the volume contaning it. This is abridged in the usual manner, but the works of the title are never tramposed. For instance, Bulletin des s'ciences de lu sumicte Jhilomuthique de J'aris is albidged into Dull. Soc. Plilom. Paris. In a few instanees I have alded the place of publication or have pretixal the name of the editor in order to ensure perfect clearness. The number of the volume and the pages which are devoted to the memoir are given; the mention of the year remders it unuecessary to note the various series.

When the work was begun it was intended to make the notes very full so as to give a tolerably complete history of the Method of Least Squares. But as the number of titles began to multiply under researeh it became evident that the plan wond produce a manseript ton voluminous for publication. The notes were hence ablreviated into their present form. The work begm as historical has, 1 am aftraid, ended by being largely bibliographical.

Sometimes the notes give an account of the contents of a memoir or an estimate of its value; sometimes they take the form of a direct quotation from the memoir itself or state the opinion of some sulsequent reviewer ; and occasionally they offer critical remarks of my own. But always they aim to give such cross references as will enable the student to follow mp, special lines of investigation and gain the fullest information concerning a particular memoir or book. Brief as the notes are, I hope they will be found at least suggestive by those who use them. To the future historians of mathematical science they will mulonbtedly be of very great value.

The mode of cross reference usmally adopted is to mention simply the year ant author. Thus "1818 Bessel" refers either to a book published in 1818 by Bessec or to notes muder that heading.

The following table points out some of the most raluable papers on the pronfs of the Methorl of Least Squares:

Ост., 1877.

I have drawn infomation from every soure within my reach. On the Proofs of the Methor I have found Glatiner's memoir of 1872 of the greatest valne, and while working on the early writers Tonhuntele's Mistory of Probulatity was contimally before me. It is here also the place to acknowledge my indebtedness to Prof. II. A. Newtor of Yale College for valuable suggestions ant kind assistance.

1722 Cotes. 'Astimatio errormm in mixta mathesi, per variationes partium trianguli plani et sphierici.' Opera misrellamer (appendert to Harmonia mensurarmm ; Cantalorigixe, 4to), 1p. 1-22. -Memoir republished, Lemgovise, 1768 , 8vo.

Only the closing paragraph relates to accidental errors of observation; this gives the following rule: "Sitplocus Objecti alicujus ex Observatione prima defintus, q, r, s ejusdem Objecti loca ex Observationibus subsequentibus; sint insuper $P, ?, R, 心$ ponterat reciproce proportionalia spatiis Evagationm, per qua se diffondere possint Errores ex Observationibus singulis prodenntes, queque dantur ex datis Errormm Limitibus; d ad puncta $\rho, q, r,{ }^{*}$ posita intelligantur pondera $P, Q, R, S, \&$ inveniatur cormon gravitatis centrum Z : dico punctum Z fore Locum Objecti maxime probabilem, qui pro vero ejus loco tutissime haberi potest."

Cotes's rule only agrees with modern methods when the observations are directly made upon one quantity. Nee Laplace, Théorie analytique des irobabilités, third edition, p. Exxxiii, p. 346; and Ivory, Phil. Malf., 1825, Vol. LNV, ן. 4.

1749 Euler. Piece qui a remporté le mix de l'Academie royale des sciences en 1748 , sur les inegulities du mouvement de Saturne et de Jipiter. Paris, 4to.

Contains a method for the combination of linear equations similar to the following.

1750 Mayes. Jhhandlung üher die Umwilzmg des Mondes um seme Axe. Kosmogruhhisehe Nuchrichten u. Sammhengen for 1748, PI. 52-183.

By twenty-seven observations upon the position of a monn spot Maver ohtaned twenty-seren equations each containing three unknown quantities. To solve these he added together those nine equations in which the values of the coeflicients of one of the me known 'fuantities were the greatest, then the nine in which these coefticients were the least and lastly the remaining nine; thas olfaning three resulting equations with three unknown quantities.

Mayer's method is given by lalande, Astromomic, second edition, Vol. III, pp. 418-428. See Wolf, Mandbueh der Math., Vol, T,]• 259 , Yol. 11, 1. 199 ; and also helow, 1830 Francoeur.
[170̄4] Kästner. Om geometriska aberrationer. S'venskere Vetensl. Aced. Handl. for 1753,]. 126. -German translation in Schededishe Aliad. Abhamell. for 1553, 1. 131.

Treats of errors in surveying and probaf)ly contains nothing of value on the theory of acedental errors. See also the same memoirs for $1768, p .147$ and p. 159.

1755 Boscovan. The littoue expectitione per I'outiticrm ditionem ad dimetiendos chos meridiumi afodus. Romate, 4to, IIr, xxii, 516. -French translation by Hugos entitled Voyage ustronomique et gengraphique.... ; Paris, 1750 , 4to.

A method of combination of observations for the detemmation of the mean ellipticity of the earth from measured ares of the meridian is here nsed. The method itself is proved in the French translation; see below 1760. For deseription of the book see 'Tonnuater, History of Theories of Ittraction...., Vol. I, IT. 305-321, 332-334.

1756 Simpon. 'A letter to the Right Honomrable George Earl of Macelesfield, President of the lioyal Lociety, on the Adrantage of taking the Mean of a number of Observations, in practical Astronomy.' Pheil. Trems. Loucl. for 1755, Vol. XLIX, Pt. I, P1. 82-93. -Reprint, see 1757.

This memoir is interesting and valuable as loing the first in which the Theory of lrobability is applied to the discussion of errors of ohservation and in which the ilea of a law of facility of error is implied. At the heginning of the letter fimpos says that his attention had been called to the subject ly the fact that "some persons, of considerable note, have been of opinion, and even publickly maintained, that one single olservation, taken with due eare, was as much to be relied on as the Mean of a great number:"

The letter contains two propositions; the first gives a method of determining the probabilit y that the error of the mean of n observations shall be less than an assigned value, provided it is equally prob-
able that the error of a single observation may be any one of the quantitics, $-v, \ldots-3,-2,-1,0,1,2,3, \ldots \%$ 'The second gives a method of detcmining that probability, provided the probabilities of the single erros $-v,-v+1, \ldots,-1,0,1, \ldots r-1, r$ are proportional to the terms $1,2 \ldots \ldots v, c+1, v, \ldots \ldots 2,1$. This is illust rated by a momerical example. Simoson remarks that the alvantage of the mean can be shown, whatever series be usal to express the chances of the errors.

1757 Smpsos. 'An Attempt to show the Advantage arising ly Taking the llean of a Number of Olservations, in practical Astronomy.' Miscellameors Tiracts....(Lomhon, 4to), pp. 64-75.

A reprint of the preceding, the opening and cosing paragraphs locing umitted and nearly four pages of new mater idderl. We find here the following axioms statel for the first time; 1. that positive and negative erors are equally probable, 2. that there are certain assignable limits within which all crors may be supposed to fall.

In the added matter the ease of contimons errors is discussed, and the probability that the error of the mean is less than an assigned value found for the case of the secomd jroposition by making r and other quantities in the formule infinite. Simpon rejresents the law of facility of error geometrically by the sides of an isosectes triangle and draws a curve to show the increased precision of the mean as comparen with single obscrations. He closes by finding under the same supposition as to the law of facility, the probability that the mean is nearer to the truth than a single observation taken at ramdom. The whole memoir must have been extremely valuable at the time of its pullication.

1760 Bosconch. De recentissimis gradunm dimensionibns, et figura, ae magnitudine terrac inde derivanda. Philosophin recention a Benedicto Stay . . . (Romac, 3 vols., 8ro), Vol. II, pp. 406-426.

A methorl of combining discortant olservations upon the lengths of degrees of the earth's meridian is here given. The adpustment is effected muder the two comlitions that the sum of the negative crrors shall be equal to the sum of the positive errors, and that each sum shall have the least possible value. The problem was solved by a geometric construction depenting upon the properties of the centre of gravity of figures.

The method is also given in the French translation of Boscoricu's work of 1755. Sce Lindestau in Zuch's Monatliche Comespoudenz, 1806, Vol. XIS, p. 132; Todnunter, Mist. of Theories of' Attraction...., Vol. 1, pp. 321-332; :uml below, 1785 Bernollel, 1792 Laplace.

1760 Lambert. Photometria sive de mensura et gradibus luminis..... Angustax Vindelicorum, 8vo, plp. [xxx], 5+7.

Contains many remarks on the arithmetical mean and also proposes a method for judging of the precision of the measurements, which
consists in comparing the mean with a mew mean foum ather refecting that ohservation ileviating most from the first mean. See Nome
 p. +26.

1765 Lambert. 'Theorie der Zurerlassigkeit der Bohachtmgen und Versuche.' Beytrïge zrm Gebremelie der Muthemetili.... (Berlin, $1765-70,3$ rols., 8 ro; stcoml ed., 1792), Vol. I, pp. 424-485.

Contains a methor of aljusting simple ohservations founded on the principh that the algehraic sum of the errors shath be zero. The methon is illustrated ly the determination of empirical formule for the length of the seconds pembum, the dectination of the magnetic needle, etc.

1 hit Laplace. 'Determiner le milien que lon doit prendre entre trois observations données d'un même phénotnène.' Mím. Arcul. Paris, par IVverss sacens [étrangers], Vol. IV, 少. 634-644.
This is Part V of the 'Mlmuire sur la pmbabilite des canses par les 'xènemens,' which occulies pages 621-656 of the volume. It contains the first attempt to deduce a rule for the combination of observations from the principles of Prolahility.

Laplare begins by saying that the law of probabitity of errors of observation may be represented by a curve whose equation is $y=q(x), x$ heing any error and y its probability ; and this curse must have three properties: 1st, it must be symmetrical with refercuce to the axis of y, since positive and negative errors are equally probable; 2nd, the axis of ar must lie an asymptote. since the probabifity of the error α is $0 ; 3 \mathrm{rd}$, the area of the curve must be unity, since it is certain that an error will be committed.

Laplace takes $\varphi\left(x^{\prime}\right)$ as $\varphi(x)=\frac{1}{2}$ me ${ }^{m x}\left(x^{\circ}\right.$ heing regarded as always positive), but his reasons for doing so are slight. With this law he finds the mean of three observations, regarding it as corresponding to an ordinate which divides a curve $u=\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{3}\right)$ into two equal parts. His result is as follows: Let M_{1}, M_{2} and M_{3} be the three measurements, of which M_{2} is the least; let $M_{1}+x^{\circ}$ he the me:n; it is required to find r. Put $M_{2}-M_{2}=p$ imb $M_{3}-M_{2}=q$: then x is given by

$$
x=p+\frac{1}{m} \log _{c}\left(1+\frac{1}{3} e^{-m_{r}}-\frac{1}{3} e^{-m q}\right),
$$

in which m is a constant depending upon the precision of the observation. Laplace then shows that this value camot agree with the mule of the arithmetieal mean, and he computes a tahle for finding x for certain givel ratios of q to p. For instance

$$
\begin{aligned}
& \text { if } q=0.0 p \ldots \ldots-x=0.860 p \text {, } \\
& q=0.1 p \ldots-\ldots \cdot x^{2}=0.89+p, \\
& q=0.2 \eta \ldots \ldots \ldots \ldots \\
& q=0.3 p \cdots-----x=0.932 p,
\end{aligned}
$$

Thus if three measurements of an angle give

$$
M_{1}=u^{\circ} b^{\prime} 0^{\prime \prime}, \quad M_{2}=\|^{\circ} l^{\prime} 40^{\prime \prime} \quad \text { and } \quad M_{3}=\pi^{\circ} l^{\prime} 50^{\prime \prime},
$$

we hawe $p=40^{\prime \prime}, q=10^{\prime \prime}$ and $q=0.25 p$; then from the tahle $x=37^{\prime \prime}$ and the adjusted result is " $h^{\circ} 37^{\prime \prime}$, while by the usual rule of the arerage we would have " $h^{\prime} 30^{\prime \prime}$. By Laplates's table the mean will lie nearer to the two observations which most nearly agree, than in the eommon methot.

For remarks on this memoir see Tombunter, Mistor:/ of Proberbility, p. 469 , and Glasinene, Mem. Astrom. Soc. Lomel., ls72, Vol. XXXIX, ple 121-123.
[1754] Latranges. 'Némoire sur J’utilite' de la mithorle de prendre le milien les risultats de plusicurs observations; dans lequel on examine les avantages de cette méthode par le caleul des probabilites; dí où l'on résond differens prohlemes relatifs ì cette maticure.' Miscellanea Tenrinensia (Mel. Sor. Turin) for 17\%0-1723, Vol. V, P1). 167-232 of the math. part.

This memoir is a more thorough presentation of the subject treated by Smpson in 175 t with much new matter added. Lagrange makes no alhasion however to previons writings on the subject. The expression "Law of Facility of Eror" oceurs here for the first time.

For an extended aceonnt of the contents of the memoir see Todhuntere, Mistory of Irolmbility, plp.301-313. See also below 1785 Bernouldi, 1788 Eulier, amd 1804 Thembley. In 1850 Excke gives a translation of part of the memoir, with comments.

1 178 Bernoulla (Daniel). 'Dijudicatin maxime probabilis plnrimm observationm discrepantium atque verisimillima inductio inde formanda.' Actu Acad. I'etrop. for 1757, P'. I, נp. 3-23 of the memoirs.
The now famitiar illustration of a markman firing at a target is here introduced, and the conclusion drawn that small errors are more probable than large ones, and that the method of taking the arithmetical mean "non sine ratione dubitare jotest," since it supposes the observations of equal weight.

Danied Berxoelat takes a circle $y=\sqrt{r^{2}-r^{2}}$ as representing the law of facility of error, y heing proportional to the probability of the error x, and r a constant. Then if ohservations give the errors x_{1}, $x_{2}, x_{3} \ldots$, the product $\sqrt{r^{2}-x_{1}{ }^{2}} \sqrt{r^{2}}-x_{2}{ }^{2} \sqrt{r^{2}-x_{3}{ }^{2}}$ must be a maximum to give the most probable value of the observed quantity. He finds that this value coinciles with that given by the mle of the arithmetical mean for one and for two observations, and that it nearly coincides for three when a suitable value is given to r. For a greater number than three his methon leads to numanageable equations. lle closes by remarking that the problem is indeterminate. see Zuch's Monatliche Correspondenz, 1805, Vol. XI, pp. 486-490.

Daniel bernouthis method agrees elosely with morlern theory. See 1775 Euler, 1785 Bemsould amf Tomuciter, History of Probwhilit!, 1. 236.

1 1778 Eulek. 'Observationes in praecedentem dissertationem 11lustr. Berwoulle.' Actu Acad. Petrop. for 1777,]'art I, P1. 24-3:3 of the memoirs.

Euler considers that Dayiel Bernoulli is correet in objeeting to the arithmetical mean when the observations are of mequal precision, hut that he "was quite arbitrary in propering to make the product of the probabilities a maximum. Eveen proposes another method which amounts to making the sum of the fourth powers of the probabilities a maximum."-Tobuunter, Mist. of Probability, p. 237.

1781 Laplace. 'Mémoire sur les l'rohabilités.' Mist. Acud. Puris lor 1778 , 11. 227-332 of the math. part.

Pages $322-332$ are devoted to the disenssion of the mean to be taken between diseordant observations. Larlace says that by the expression mean or mean result an infinite number of things may be understood. Of these the one which is implied in adjusting observations is a value such that the resulting error shall be a minimmm, and this corresponds to a value such that the sum of the errors, each multiplied by its probability shall be a minimum. The method of his memoir of 1774 is then substantially repeated.

Laplace remarks that if $\pm a$ be the limits of error, the law of facility ought to be $q(x)=\frac{1}{2 a} \log _{\varepsilon} \frac{a}{x .}$. 1 is methods leal to ummanagable equations.

1785 Bervoula (Jean, III). 'Milieu.' • Art. in the Emeycloperlie Méthodique (laris, 4to), Vol. II, IPp. 404-409. -Second edition, 1789, entitled Dictiomeive Encyd. des Mathomatiques.

Buscovicu's method of 1760 and Lambent's of 1765 are referced to, and an accomt is givel of Dantel liberwoulli's memoir of $17 \% 8$, which differs slightly from the memoir itself. An aceount of Lagliavge's memoir of 1 ift is presented with considerable fullness. See Tomulnter, Hist. of Piobability, p. 442.

1788 Euler. 'Eclaircissemens sur le mómoire de Mr De La Grange inséré dans le V^{e} volume de Mélanges de Turin, concernant la méthode de prendre le milien entre les résultats de plusieurs observations, \&e.' Nova Acta Acacl. Petrop. for 1785, Vol. III, I1p. 289297 of the memoirs.

The memoir seems to lave no value; See 'Tomunter, Hist. of Probrbility, 1. 250.

1789 Lesenthe. 'Mimoire sur les Opriations trigonomíriques, dont les résulats dipendent de la figure de la terre.' Mist. Acrel. I'uris for 1787, P1. 352-383 of the memoirs.

The method of indeterminute corrertions, afterwards of so much bse in the computations of Least Squares is here stated and nsed, although perhaps not for the first time. See 1820 Legentre.

1792 Laphace. 'Sur les degrés mesuris des móridiens, et sur les longuenrs observes du pendule.' Mist. Acad. Paris for 1789, pp. 18-43 of the memoirs.

The matter of this memoir is mostly reprorluced in Sections 39-42 of Chap. V, Book III, of the Truité de micomique réleste.

First a method is presented of determining an elliptic merialian so that the greatest eror shall be a minimmo see 1831 Caucur. Secondly a method is developed for finding an ellipse sulpect to the following conditions: " 1° que la somme des erreurs soit nulle; 2° que la somme les errents prises tontes aree le signe + soit min minmum." Larlare mentions that Buscoven (1760) had solver the sime problem by a rlfferent method. He allules to the ellipse thins detemined as "l'ellipse la phis probable."

1799 Kramp. 'Table premiere. Intigrales de $e^{-1} d t$, depmis une ralemr ‘quelconque de t jusqu' it infinie' and 'Table secomle. Logat rithmes des intégrales . e^{-h} elt.' Amelyse des refrections... (Strasbourg, 4to), p! 195-206.

For description of these tables, afterwards of so great use in the Theory of Errors, see Glaisher, Lomel. Phil. May., 1871, Vol. NLII, p. 431.

1804 Thembaey. 'Obeervations sur la méthode de prendre les milienx entre les ubservations.' Mémoires . Lcul. Berlin for 1801, ph. $29-58$ of the math. part.
"Appears to be of no value whaterer."-Tomunter, Mist. of Probability, 1. 428.

1804 Prony. Recherches physico-muthemutiques sur la theorie des canre courmites. Piris, to.

Contains applications of Larlace's methods of 1792 to the defluction of empirical formmie from discordant ubservations.

1805 Legenhre. 'Nourelles méthodes pour le détermination des orbites des comètes.' Paris, to, 1p. viii, 80 . -Scond edition, see 1806.

The date 1806 is generally given for this hook, in which year a second edition seems to have been issued. The copy before me is plainly daterl, "An XII-1805."

In the preface Legbxime gives an outline of his methorl for fomputing orhits. On pige viii he says: " ll fant ensiute, lorsque tontes les conditions da prohleme sont exprimées convenablement, déterminer les coëthoiens de maniere a rendre les errems les plus petites qu'il est pussible. l'our cot efted, la méthode qui me parốt lat
 des guarres des erreurs. On obtinent atinsi autant dequations qu'il y a de coëfle ions incombus; re qui acheve déterminer tons les áméms de l'onde.... la méthode dont je ricms de parler, et que j'applle Wethule des moimetres purrós, peut être d'une gramle utilite......

On page $6 t$ is an applieation of the method to the solution of three equations with two muknown gnantities, in which the now wellknown rule for the solution of normal equations is followed. On page 68 and 69 are references to its use. Pages $72-\varepsilon 0$ constitute an Appendix "sur la Méthode des moindres quarres." In this, after having mentioned that it is impossible that the sum of the errors shonld he zero when the number of given equations exceeds that of the manown quantities, Legevine says: "De tous les principesje pense qu’il ne en est pas de plus général, de plus exact, ni d'une appliation plus facile que celui qui consiste à rendre minimum la somme des gnamés des erreurs. Par ce moyen, il s'ótahlit entre les erreurs me sorte d'íquilibre qui empêchant les extrêmes de prixaloir, est trespropre à faire comoitre l'otat du systeme le plus proche de la verité."

Legenme then proceeds to derbece the rule for the formation of "l'equation du minimm par rapuort à l'une des inconnues," or as we now say of a normal equation. His notation is the following : in the n equations

$$
\begin{aligned}
& 0=a+b x+c y+\ldots \\
& 0=a^{\prime}+b^{\prime} \cdot c^{\prime}+c^{\prime} y+\ldots \\
& 0=a^{\prime \prime}+b^{\prime \prime} x+c^{\prime \prime} y+\ldots
\end{aligned}
$$

$a, b, c \ldots ., a^{\prime}, l^{\prime}, e^{\prime} \ldots$ are known l, y ohservation or theory, and x, y, \ldots are to be determined. By forming the sum of the squares of these equations, lifferentiating with reference to each unknown separately and placing the derivatives equal to zero, he finds

$$
\begin{aligned}
& 0=\int u b+\cdots b^{2}+y / b c+\ldots \\
& 0=\int a c+x / b c+y / c^{2}+\ldots
\end{aligned}
$$

Which are the same in mmber as the unknown quantities $x, y \ldots$, and in which

$$
\begin{aligned}
& \int_{a}=a b+a^{\prime} b^{\prime}+a^{\prime \prime} b^{\prime \prime}+\ldots \\
& f^{\prime}=b^{2}+b^{\prime 2}+b^{\prime 2}+\ldots
\end{aligned}
$$

Legexnre next demonstrates that the rule of the aritlmetical mean is a particular case of his general principle. He then supposes the position of a point in space to be determined l,y three observations and finds the valnes of its coürlinates given by the method. Noticing their itentity with those for the centre of gravity of three points in space, he amounces that the sum of the squares of the distances of
Trass. Cons. Acad., Yol. IV.
21
Ост., 18 Ћ.
all the molecules of a boly from its centre of gravity must be a minimum, and that lence "la méthode des moindres quarres fait combitre, en quelque sonte, le centre antom duquel viembent se ranger tons les résultats fommis par l'experience, de maniere at s'en Eanter le moins gu'il est possible" I mumerieal example of the application of the method to the determination from five observations of the form of a merialian of the earth closes the book.
'The honor of the first publication of the Methorl of Least Syuares belongs to lagenmie. Although he failed to clam that his method gives most probable or most advantageous results, yot the remarks abore quoted indicate that lie fully recognized it as a mule giving a plansible and reasonahle mean. See below 1814.

1805 Putssant. Truité de Géurésie, on Exposition des Méthorles astrommiques et trigonométriques..... Paris, 4 to. -Third edition, see 1842.

This contains an explanation and application of Legenble's Hethorl of Least squares. See review in Zach's Momutlirhe Correspondenz, Vol. XV1, 1. 455.

1806 Legexpre. 'Supplément aux Nouvelles Méthodes pour la détemination des orbites des comètes.' Paris, 4to, Pp. 55.

The copy of this supplement which is before me is preceded by a title page reading, "Souvelles méthules pouer la détermination des orbites cles romètes : are un Supplément..... A Paris, . .. Année 1806." This title page was probably pretixed to copies of the work of 1805 , with the supplement added, as the date 1806 is usually stated for it. A second Suplement appeared in [1820].

On pages 28 and 43 the Nethod of Least Squares is used.
1806 Lindenau. 'Ueber den Gebraueh der Gradmessungen zur Bestimmung der Gestalt der Erde.' Zach's Monatliche Correspondens, Vol. XIV, pl.113-158, ete.

Laplane's methol of 1792 is stated and used in the discussion of the mosi prohahle elliptic meridian. The methorl is attributed to Boscorich; see 1760 .

On pages 138-143 "die.... ron Legexine vorqeschlagenen Methode, die er Withorle des moindres quarres nemt" is explained and applied in the determination of the elliptic meridian. The date of Lagennie's Vourelles méthotes.... is given as 1806.

1806 Gacss. 'II Comet vom Jahr 1805.' Zach's Monatl. Corres., Vol. XIV. pl. 181-186.

On page 184 Gauss says: "Leremine's Werk.... habe ich noch nicht gesehen. Ich hatte mit Fleiss mir deswegen keine llouhe gegeben, nm bey der Arbeit an meiner Nethoile ganz in der Kette meiner eigenen loeen zu bleiben. Dureh cin par Worte. die ne la Lavine in der letztern Wistorie de CAstromomie, 18n5, fallen lässt,
méthode des moimlres qumerós, gerathe ich :ul' die Vermuthung, dass ein (irmulsat \%, dessen ich mich sehonseit zwolf. Jahren bey mimeherley Rechnungen bedient hale, mod den ich anch in meinem Werke mit gehrauchen werle, oh er wol zu meiner Methode ehen nicht wesent-

The work ol' Lexenbris here alloded to is the Nomelles methomess180.s, and that of Gatss the Theorin motas . . . 1809, then in preparation. Gauss mentions some of the arlvantages of his method for computing orlhts but gives no hint of the principle of Least syuares.

1808 Bowntan. 'Solution of Mr. PAtterson's Prize Question for correcting a survey, proposed in No. II. page 42, No. III. page 68, by Nathaniel bownten, to whom the Editor las awarded the prize of ten dollars.' The Amelyst or Math. Wiserm, Vol. I, pl' 88-92.

The Prize Question was: "Ta order to find the content of a piece of gromul, ..I measured, with a common circumferentor and chain, the bearings and lengths of its several sides,.... But יpon casting up the difference of latitude and departure, I discoverei. . . .that some error had been contracted in taking the dimensions. Now it is required to compute the area of this cuclosure, on the most probable supposition of this error."

Bowntcu's solution depends on several "principles" or hypotheses, the chief of which is "that in measuring the lengths of any lines the errors would probably he in proportion to their lengthe" No principles of the 'Theory of l'robability are employed exeept such as are hy eommon sense implied. His solution eoncides with that given by the Method of Least Siquares.
'This lrize Question undoubtedly led to the following ' liesearch' by Auran, the Editor of The Inalyst.

1808 Adran. "Researeh conceming the probabilitics of the errors which happen in making nbservations.' The I I atyst or Muth. Museum, Vol. 1, pp, 93-103.

This paper scems to have been nuknown to mathematicians until 1871 when it was partly reprinted in Amer. Sumr. Sci., see 1871 Abine. It is of great historical interest as eontaining the first deduction of the law of facility of error

$$
f(x)=c^{-h^{2} \cdot x^{2}}
$$

$p(x)$ being the prohability of any error or, and e amd / constants depending upon the precision of the measurement. The term" Least spuares" is mot used, and Anhats seems to have been entirely unacynainted with Legernme's writings.

Amtan gives two deductions of this law. The first, ocenpying pages 93-6 has becm reptinted as noted abowe and need not here be repeated. It depends upon the "self-evident principhe" that the trne eroms of measured fuantities are proportional to the quantities them-
selves. The ablitary nature of this assmmption is shown by Grar-
 the proof is analyzed aud regarded as "revy shight and inconclasive."

The second proof senpies pages 90-97, and not hating been alluder to in the reprint noted ahove, 1 give it in Amans's own words as The Amalyst is quite rare:
"Suppose that the length and bearing of $A B$ are to be measured; and that the lit tle equal straight lines $I S b$, Be are the eqnal probahle errors, the one $B B=B b^{\prime}$ of the length of $A B$, and the other $B c=B c^{\prime}$ (perpendienlar to the former) of the angle at A, when measured on a cureular are to the radius $A B$: and let the question be to find such a curve passing throngh the four points $b, c, b,{ }^{\prime} e^{\prime}$, which are equally distant from B, that, supposing the measnrement to commence at A, the probability of terminating on any point of the
 curve maly be the same as
the probability of terminating on any one of the fom points b, $e, b^{\prime}, c^{\prime}$."

Then fullows trivial reasoning which ends by concluding that "the curve must be the simplest possible" and "must consequently be the circumference of a circle having its centre in K." This establishet, the proof is the following:
"Now let ins inrestigate the probahility of the error $B m=x$, and of m m= $\%$. Let X and I^{\prime} be two similar fimetions of r° and ! denoting those probabilities, $J^{-1}, J^{\prime \prime}$, their logarithms, then $\Gamma^{-} \times I^{-}=$eonstant, or $\Gamma^{-1}+Y^{\prime \prime}=$ constant, and therefore $\dot{I}^{+\prime}+\dot{Y}^{\prime \prime}=0$ or $\Gamma^{-\prime \prime} \dot{r^{\prime}}+$ $J^{-\prime \prime} \dot{y}=0$, whenee $\Gamma^{\prime \prime} \dot{x}=-\Gamma^{\prime \prime \prime} \dot{y}$. But $x^{2}+y^{2}=i^{2}=B b^{2}$, therefore $x \dot{x}=-y \dot{y}$, by which dividing $N^{\prime \prime} \dot{x}=-Y^{-\prime \prime} \dot{y}$, we have $\frac{\Lambda^{\prime \prime \prime}}{x^{*}}=\frac{\dot{Y}^{-n}}{y}$; and therefore, by a fundamental principle of similar functions, the similar functions $\frac{\Gamma^{\prime \prime}}{x}$ and $\frac{I^{-\prime \prime}}{y}$ must be each a constant quantity : put then $\frac{\boldsymbol{N}^{\prime \prime \prime}}{. c}=n$, and we have $\boldsymbol{X}^{\prime \prime}, \dot{i}=$ mait, that is $\dot{X}^{\prime}=$ noir, and the fluent is $I^{-\prime}=c+\frac{n x^{2}}{2}$; in like manner we find $Y^{r \prime}=c+\frac{n!y^{2}}{2}$ and therefore the probabilities themselves are $e^{c+\frac{n x^{2}}{2}}$ and $e^{e+\frac{n y^{2}}{2}}$, in which "ought to be negative, for the promability of at grows less as x grows greater."

I have seen no allusion to this proof by any subsequent writer. It is essentially the same as given in 1850 by Mersenel and usually called Mersicher's proof. I regart it as refective in taking " $\Gamma \times I$ $=$ eonstant," or in eonsidering the probabilities of the x and y deviations as independent. See 1850 Ellss. See Boole's Finite Ditferenees (Cambinge, 1860), 11. 228-229.

In his first proof Amean hat fomd for the probahility of the error $m x^{2}$
\because in the ohserved value "t the expression $e^{c+}+2 a$, and harl shown that the most probable valuas of the shserved quatities a, b, r, whose crrons are ar, $!, z, \ldots$. . mas satisfy the comblion

$$
\frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{z^{2}}{c}+\ldots=a \text { minimun. }
$$

This principle he applies to four problems; the first showing that the arithmetical mean is a particular ease of the methorl, the second to detemine the most proballe position of an observed point in space, which is shown to be "precisely in. the eentre of gravity of all the given points;" the third "to correct the dead reckoning at sea," and the fourth "to correet a survey."

As remarked by Abre "we must eredit 1)r. Adran with the independent invention and application of the most valuable arithmetical process that has been invokerl to aid the prongress of the exact sei-ences."-Imer. Jom. Se Se., 1871, Vol. I, J. 415.

1809 Gauss. 'Determinatio orhita observationilns quotemnque maxime satisfacientis.' Theorin motus corporum crelestimm.... (Hamburgi, 4to), lil. 11, sect. III, pp. 205-224. -French translation, see 1855 Berthand. -English translation ly Divis (Boston, 1858, 4 to) , p. 249-273. -Gemam trams. by Haste (Hamover, 1865).

That demonstration of the Jlethod of Least Siquares usually called Gauss's proot or Gauss's first proof is here presented. Assmming that the arithmetical mean of direct observations is the most probable value of the measmed quantity, it dednces that the law of facility of error is given by

$$
\phi(\cdot x)=c e^{-h^{2} x^{2}}
$$

from which the principle of Least stuner at once follows. This proof has becn adopted by the majority of hooks on the snbject; see for instance 1832 Excke, 1857 Dhengene, 1858 Ritter, 1864 Chauviseet, 1867 IIavsen and Mebriman's Elements of the Method of Lerast Squmes (London, 1877, 8ro).

The demonstration as given by Gauss contans three defects. 1. It is not recognized that the probability of a definite error x, is an infinitesimal ; this is aroiferl by some later writers. 2. The distinction between tree eroms and resideuls (or calculated errors) is not sharply drawn; accorting to Gutss's reasoning the law $\varphi(x)=c e^{-h^{2} x^{2}}$ is not strictly a "law of tacility of error" bat only a law of distribntion of residuals. 3. The rule of the arithmetical mean is assumen, For critical analyses of this pronl see below, 1843 Revsente, 1844 Ellis and 1872 (ilatsimele.
l'ractical leatures of the methom,--the formation of normal equations and the determination of weights and degrees of precision are also disensed in the Section and hints are given regarding its use in astronomy. On page 221 is an attempt to justify the principle of

Least squares on the gromul that any other process would lead to impracticable caleulations.

1 yunte a historical remark on page 221: "Ceternun principium nostrum, quo jam inde ab ano 1795 usi sumus, nuper etian a clar. Lagismbes in opere Nomedles méthodes ...cometes, 1806 prolatum est....."

1810 Bessen. C'utersuchungen über die sehtinture und wahre Buhn der arossen Cometen con 1807. K̈̈nigsberg, tio.

The Method of Least squares is used in determining the orlit and is calted "den mesindres quarrés." see Zaclis Monatl. Corres., 1810, Vol. XXII, pp. 205-212.

1810 Laplafe. 'Mémoire sur les approximations des formules qui sont fonctions de très-grands nombres, et sur leur application aux probabilitís.' Mém. Inst. Frence for 1809, pp. 353-415, 559-565.

Pages 383-389 and 559-565 are devoted to the Theory of Errors, and the principte of Least Squares is provel "lorsyue les risultats entre lesquels on doit prendre un milien, sont domes chacun par un tres-grand nombre d'observations, quelles que soient d'ailleurs les lois de faciliti des erreurs de ces observations."

The matter of these pages is reprodued in the Theorie unnlytique des P'robubilités, pp. 329-335, 340-342; see below mater 1×12 for remarks concerning the proot. See Bull. Sor. Philom. Pervi, 1810, Vol. 1I, pp. 132-136 for an accome of the contents of the memoir.

1811 Gatss. 'Disquisito de elementis ellipticis l'alladis ex oppositionibus 1803, 1804, 1805, 1807, 1808, 1809.' ('omment. Noc. Göttingen, Vol. I, 26 pp . -French translation, see 185 s Bertraxd.

Twelve equations involving sis unknown corrections to the elements of the orbit are solved by the Nethor of Least squares. We here find for the first time the notation

$$
[a b]=a^{\prime} b^{\prime}+a^{\prime \prime} b^{\prime \prime}+a^{\prime \prime \prime} b^{\prime \prime \prime}+\ldots
$$

and also the algorithm for the solution of normal equations hy successive sulstitution, since universally followed in lengthy computations.

A partial translation of the above with comments is given ly Zacu in the Monatl. Corres., 1811, Vol. XXIT, pp. +49-465.

1811 Laplace. 'Dumilien quill fant choisir entre les rísultats des observations.' Mém. Inst. France for 1810, P't. I, Pp. 317-34i.
Contains "the theory of errors substantially eoincilent with so much of the same theory as we find in pages 314-328 and 340-342 of the Théorie....des Prob." - Todmuster, Ilistory fr Probability, p. 490. See below 1812.

An aceont of the contents of this memoir, with historical remarks on the subjeet of Least Nquares, is given by Deasmate, Bull. Nof. Ihilom. Theris, 1811, Vol, 11, p1. 262-266, an Enerlish translation of which is in Tillorll's Phil. Mug., 1812, Vol. XXXIX, pro 240-244.

1811 Lapmate. 'Du milien qu'il faut choisir cotre les resultats d'un grand nombre d'olservations.' Commissence des Tems for 1813, 1p. 213-223. - (ieman translation in Zarch's Mometl. Vorres., 1812, Vol. XXV, pl. 105-120.

Contains matter whieh is reproduced in the Theorie... des Prob., 1812, pl. 322-329.

1812 Laplace. 'Théorie analytique des Probubilités.' Paris, 4 to. pp. 464. -Third edition, 1820, 4to, pp. exlii, 506 , with Introduetion and three Supplements (see 1814, 1815, 1818, 1820). --Fourth edition (Vol. VIl of Oewres de Laplace) Paris, 1847, 4to, pp. exer, 691.
". . . . the greater part of the Thévie des Probabilites is a reprint of papers in the Memoirs of the Acarlemy, which appear to contain the contents of the first papers on which he set down his processes. These with preliminary ehapters, descriptive not of what follows, but of the general methods which he drew from the following parts, make up the whole work."-De Momgan, Theory of Probuhilities in Eneyr.: Metrop., p. 453. It "is by very mueh the most ditionlt mathematical work we have met with."-Ibid, p. 418. Tonmunter in his Mistory of Probubility, p. 560, Eldis (1844) and other writers have also testified to the abstriseness of Laplace's methods.

The Hethorl of Least Squares is Icreloped in Chap. IV, (pages $304-348$) of the second part of the work. The analysis only extends to the case of two mbnown quantities or elements, and the umbier of observations is required to be very large or infinite. Under these restrictions the Method is shown to give most advantageous results, whatever be the law of facility of error provided only that positive and negative errors are equally probable. Larlace's definition of most udventurfeons results is the following: "....si l'on multiplie les erreurs possibles d'un élóment par leurs probabilités respectives, le systeme le plus arantageux sera celui dans leguel la somme de ees produits tous pris positivement, est 1 minimmon." The results thus obtained are not necessarily the most mobuble.

In the concluding paragraph of Chap. IV and in the opening pages of the First Supplement (see 1815), Laplace has given a general account of his method of analysis. These remarks aud the table of contents at the end of the volume, give a much dearer idea of the steps of the demonstration than does Chap. IV itself: The principal objection against the validity of the proof is that it reguires an infinite or very large mmber of observations. With this recuirement, bowever, Gacss's proof of 1809 becomes perfectly logieal and the results are the most probuble, not merely most actiontageous.

Laplace's proof has beed greatly improved hysulseguent writers. Etins in $18+4$ extembed it to any mumber of mblown quantites,
 valuable commentary, aml (xhasume in 1870 presented it in al clear

On proges :318-319 is given what is sumetimes called Laplanes's sebond proof of the Methon of least Squares. 'This depemds on the dedinition that "Iat valeme moyeme de lement at amindre en phas" shoult be a minimum. The reasoning is smilar tu 'tacss's proot of 1823 ; see Eads's and Glasmene's papers photed below mader 1844 and $1 \leq 72$.
[1813] Plasa. Sur divers problêmes de probabilitci. Mém. Irard. Therin for 1811-12, Vol. XX, plo. 355-408.

1814 Canous. Mimoire sur le systime de valeurs quill fat attribuer \&́ divers Élemens, detemineis par ung grand nombre d'obserrations. [Paris, Lith. JIS.]

Probably the same as his memoir of 1831.
1814 Laplace. 'Essai mitosonhique smo les probohilites's Paris, 4to. - Sixth edition, Paris, 1840, 8vo, pp. 2i4. -lutroluction to secoml edition of Theorie....des Proh., 1p. cri; to thirt edition, pl^{\prime} exlii ; to fourth edition, pp. r-c.lxix.

Near the ent are some remarks concerning the history of the Theory of Errors of observation, and descriptive of Laplace's processes.

1814 Leqendre. 'Méthode des moindres quarres, pour tronver le milieu le plus probable entre les résultats de differentes observations.' Mém. Fast. France for 1810, P’t. II, 111. 149-154.

Pages 72-i5 of the Nomelles methodes.... 1805 , are here quoted and reference mate to the practieal applications of the method given in that work, in order to call attention to Legendre's jriority of publication.

1815 Bessel. 'Teber den Ort des Polarsterus.' Berlin. Astron. Juhb. for 1818, pp 233-240.

We here find the first mention of proluble error. After giving 48 observations on the right ascension of Polaris whose arithmetical mean is $55^{\mathrm{ma}} 48^{3} .5104$, Bessel says: "Der rahorsheintiche Fehler einer einzeluen Beobachtung ist, uach den wirkliehen rorkommenden Fehlern $2 n$ urtheilen $=1^{5} .067$, und daher der waluseheinliche Fehler des Endresultats $=0^{5} .154$. Die Grmad dieser schätzumg des wahrscheinlichen Fehters, beruhen auf der von Gasss gegehenen Entwickelung der Walnscheinlichheit, einen Fehler fon gegehener

Grösso zu begehen; ilure Mithoilmus muss ich bis anf cine andere (Gelegenheit versparen." see 1816 lissem, ath also page 196 of the memoir 1816 (iautss.

1815 Laplace. 'Sur l'application du caleul des probabilités à la philosophie maturelle.' Commaissonce des Tims for 1818, 11. 361381. -First suplement to thirl edition of Théorie....des /'roh. (Paris, 1820, +to), 1']. 3-26.

This is devoted partly to a general deseription of Larrace's proof of the Method of Least squares, and partly to the discussion of the probability of results obtained hy that methorl; a mumerical example illustrites the use of his formulre. See Todnusten, Hist. of Probrebility, p. 610 ; also see 1869 Tobhuster.

1816 Beeck-Chlfoen. Over de Theorie der Gemidikelde Waardij. Terhemell. Tederlamh. Inst., Yol. II, III. 1-19.

Treats of Lairlace's methorl of alljustment of 1 ヶ92.
1816 Bessel. 'Thtersuchangen üher die Bahn des Olbersschen Kometen.' . 1hhomell. . Kowl. Berlin for 1812-13, 11'. 117-160 of the math. section.

Bessel defines the probuble eror as follows: "Ieh rerstehe unter dieser Benemmang die Grenze, die eine Anzahl kleinerer Fehler von einer gleichen Anzahl grösserer trenut, so dass es wahrscheinlicher ist, eine Beobachtung immerhall, jeder reiteren (irenze von der Walnheit ahirren zu schen, als ausserhalb derselben." If we designate by $\frac{\sum x}{n}$ the mean of the crrors all taken positively, by $\frac{\sum x^{2}}{\prime \prime}$ the mean of the squares of those errors, and by r the probable error of a single olservation, his demonstration shows that

$$
r=0.8453 \frac{2 x}{n} \quad \text { or } \quad r=0.6745 \sqrt{\frac{\sum x^{2}}{n}}
$$

Bessel does not distinguish between true errors and residnals. These formule be uses in finding the probable errors of the elements of the orbits, which are Iedmeed by the help of the Method of Least Squares.

1816 Giuss 'Bestimmung Irr Genanigkeit der Beobachtungen.' Zeitschr. f\% Astrom. ". rer. Wisw., Vol. I, 11). 185-196. -Also Guuss Horke, Vol. IV (fö̈ttingen, 187.3, 4to), 11). 109-117. -See 1855 Bemtravi.

This memoir wives three methods for finding the proballe error from given observations. The first, which is that menally presented in text-hooks, fimls that r the probable erme of an observation of the weight unity, is given (most polmaly) hy

Trans. Cons. Acad., Vol. IV. 22 UCt., 187%.

$$
r=0.6744897 \sqrt{\frac{\sqrt{x^{2}}}{n}}
$$

$\sum x^{2}$ being the smin of the squares of the errors and n the number of observations, and that it is an even warger that the true value of r lies between

$$
\frac{0.6744897 \sqrt{\frac{\sum n^{2}}{n}}}{1-\frac{0.4769363}{\sqrt{n}}} \text { and } \frac{0.6744897 \sqrt{\frac{\sum, r^{2}}{n}}}{1+\frac{0 .+769363}{\sqrt{n}}}
$$

In the second method the most probable value of the sum Σx^{m} is disenssed and formula for probable error fond when w has the values $1,2,3,4,5$ and 6 . The second of these, which agrees with the one given above, is shown to be the best. The thirl method leads to a different and less accurate formula.

Nothing in the investigation shows whether $\sum x^{2}$ is the sum of the squares of the true or of the romputed errors. By later writers it has been generally taken as referring to the former. See 1816 Bessem, 1819 Young, 1823 Gauss, 1856 Peters, 1866 Börsch.

1818 Aurane. 'Investigation of the Figure of the Earth and of the Gravity in different Latitules.' Truns. Amer. Phil. Soc., Vol. I, pl. 119-135.

A formula for the length of the seconds pendulum is determined by the Method of Least Squares. Amian allules to the process as having been discovered by himself in 1808. See Imer. Jour. Sci, 1871, Vol. I, p. 415, and Mem. Astron. Soce Lond., 1872, Vol. XXXIX, p. 78.

1818 Bessel. 'Fundamenta astronomice mo amo MDC'CLV deducta ex observationibus viri incomparabilis James Bhadhey in specula astronomia Gremovicensi per anmos 1750-1762 institutis.' Regiomonti, folio, pp. 325.
ln pages $18-21$ results of the computations of the mean and prolable errors of the declination and right ascension of certain stars as deduced from the ohservations are given. Three sets of measurements, two of 300 and one of 470 , are investigated as a test of the exponential law $p(x)=\frac{h}{\sqrt{\pi}} e^{-h^{2} x^{2}}$, the theoretical number of errors between given limits being computed from Kramp's tables and eompared with the actual number of residuals. A elose agreement was found, and this may perhaps be called a practical proof of the principle of Least Squares.

Tables of logarithms of $e^{t^{2}} \int_{t}^{\infty} e^{-t^{2}} d t$ are given; regula minimorum quadrutorom is several times applied; and in pages 116-123
methods are given for fimling probable emors of quantities indireetly observer.

Isis Cavanr. Sur la mithode l'erreurs d'un grand nombre l'observations. []:uris], tuo.

1818 Laplark: 'Applieation du calenl des probabilités aux oprérations grorlésiques.' Commis. des Tems for 1820, ppr. 422-440.
'The matter of this article is reprodmeed in pages $3-25$ of the Second Supplement to the third edition of the Theorie des.... Brob. For abstract see Ammal. Chim. et Phys. 1817, Vol. V, pl. 351-356; also Zeitschr. fïr Istron., Vol. V, 1p. 1-9.

1818 Laplace. 'Deuaieme supplément à la Théorie Analytique des Probabitites.' I'aris, tto, Pp. so. -Fourth edition of Théorie, 1'p. 569-693.
${ }^{6}$ laplace shows how the knowledge obtained from measmring a buse of errification m:y be msed to correct the values of the eloments of the triangles of a surver Laldane explains a method of treating observations whicln he ealls the methorl of situation and whiel he considers may in some cases clain to be preferable to the most culcantuycons methorl explained in his fourth chapter." -TonHunter, Mistory of Probubility, pp, 611-612.

1818 Lit?Row. "Ueber die gerade Autsteigung der vomehmsten Fixsteme.' Zeitselur. t. Astion., Vol. VI, pp. 1-26.

The theory of Least Siquares and probable erors is usen.
1818 LANDENAT. "Tersuch einer Bestimmung der wahrscheinlichsten lbahn des ('ometen vou 1680 , mit líücksicht anf ilie planetarisehen Stürungen währenl der Dimer seiner Sichtbarkejt.' Zeitsche. f. Astron., Tol. VI, 1p. 2t-120, 129-208.

The elements and their probable errors are found by the help of Gauss's methon of elimination.

1818 I'sava. 'Allgemeine Formel um nach der Methode dev kleinsten Quadrate dic Verbessemmen von 6 Elemente zu bereehnen uml zugleich das jeder derselben zukummenden Gewicht zn bestimmen.' Zeitschr. t^{\prime}. Astrom, Vol. VI, l'p. 249-264.

1819 Taplace. 'Application ducalenl des probabilités anx opérations géodésiques de la méridienne de France.' Anmal. Chem. et Plys., vol. XIl, pp. 37-41. -Commuiss. (7es Tems, for 1822, 1p. 346348. -Trans. in Tilloch's Plil. Mag., 1821, Vol. V, VIll, pp. 133-136.

A disenssion of the length of the meridian between Perpigman and Formentera, two points listant abont 460000 metres and joined by

26 triangles. Larmes shows that the probable arom of the eomputed distane is 8.194 metres. The investigation is reproduced in the Thime Supplement (1820), pp. 3-7.

1819 Lablace. 'Mamoire sur l'aphlication du calcul des probabilités anx observations, et specialement anx opreations du nivellement.' Ammel. (hem. et Ihys., Vol. XII, 1p. 337-3+1.

On the results of a discussion of the probabity of ermors in the eomputed alevation of laris. The disenssion itself is given in the Thirl supplement (1820), 1010.16-28.

1819 Javeker. 'Ueber die Ammendun! der Ahethode der kleinsten Qumdrutssmmme auff physikulischen Beobuchtungen.' Mitan, fto, P1. 32.

Published as a (iymmasimm "Irogramm." It contains an application of the Method of Least sifuares to the determination of empirieal formule for the expmasion of fluids, the specifie gravity of water, and the elasticity of steam. See 1825 Mencke.

1819 Whabeck. Dissertatio de forma et matoriturime telluris, ex dimensis urubus meridiami definiemfis. Ibo, svo.

The first disenssion of measurements of severul arcs of meridians by the Method of Least Squares.

1819 Ioung. Remarks on the prohabilities of error in physical observations, and on the density of the earth, considered, especially with regard to the rednction of experiments on the pentulum.' Phit. Trans. Lond. for 1819, 11י. 70-95.

Pages $70-83$ are devoted to the Theory of Errors. Besides many interesting remarks it contains a method for finding probable errors, supposing that the prohabilities of the several errors the proportional to the terms of the series $(1+1)^{m}, m$ being an even mmber. Ilis result for the probable error of the mean of $/ /$ observations is

$$
\mathrm{R}=0.85 \frac{\sum x}{n \sqrt{n}}
$$

in which $\frac{\sum x}{n}$ denotes "the mean of all the actual errors." Young refers to Bessel, Gatss, de., as having used only the sum of the squares of the erors in determining the probable eror, and regards his method as more accurate. See 1816.

1820 Bessel. ' Bestimmung der geraden Aufsteigungen der 36 Maskelyneschen Fundamental-sterne für 1815, anf Königsberger Beohachtungen gegrünlet.' Ibhomell. Ikat. Berlin for 1818-19, Pp. 19-36 of the mathematical part. -Ahhrmell. von Bessel (Leipzig, 1875, 4to), Vol. II, pp. 238-245.

Contains discussions on the probable errors of the observations. See akso Ihbuentl. Ahutl. Berlin tor 18:25,]11. 28-35.
[1820] Laplace. 'Troisieme simploment it In Theorie amelytique des Probabilités.' P'aris, Ito, pI. 36. - Fourth edition of the Theorie

See 1s19. At the emd of the supplement is an investigation of the general case of "ohsorvations assujeties a plusieurs sourees d'emeurs." See Tommater, Hist. of Irobability, p. 612.
[1820] Legevidee. 'Nourelles méthorles pour lu déterminution de l'orbite des comètes. Necond supplement.' l'aris, fto, lpp. 80.

In pages 3 and 4 Legennee says: "Jái donne le premier denx méthorles sûres pour ohtenir la solntion à la fois la phas simple et la plus exacte, savoir: la méthode des rorrections indéterminées. et la méthode drs moimeres retrés qui parasait alors pour la premiere

Pages 79-80 contain is "Note palr Il * * *" in which the honor of the discovery of the Method of Least Squares is clamed for Leghexnee on the ground of priority of publication, ame in which Gatss althongh not mentioned by mone reseives several sharp hits.

1821 Sranbebg. On roterande systemers primeipal-axlar och samnolikaste medel-resultatet at gifna observationer. Vetensk. . Ikud. Hundl. Stochholm for 1821 , pl' $388-408$.

1821 -. 'Dissertation sur la rercherehe du milien le phs probable, entre les résultats de phasiems ohservations on experiénees.' Geromme's - Imules de Muth., Vol. XII, 111. 181-20t.
This paper discnsses at some length the different methols which may be imagined for finding at me:n value, and concludes that the problem is indeterminate hecanse it is impossible to render it indepembent of the law of facility of error, concerning which there may lre "une infinte d'hypotheses." It tries to detemine a mean, first supposing that the probability of each given measurement is inversely proportional to the error committed and secondly supposing that that probability is imsersely proportional to the somare of the error, and concludes that the arithmetical mean can only be used when the observations differ hat slightly among themselves.

The paper emls by offering a method for the correction of the arithmetieal mean, which amounts to this: First find the average of the measured quantities and compute the residnals. Then take the reciprotal of each residual as the weight of its corresponding observation and find the mean of these weighted observations. Or as weights the reciprocals of the squares of the residuals may be taken. The new mean gites new residuals from which a second approximation may be made, and so on. In a note at the end, the editor (Gemonef) suggests that this approximation will always tend to one of the given measurements as the mean.

1822 ExCke. 'Die Eintfermung der Some rom der Eirde atws dem Venuschurch!fonge von 1761.' Gotha, Svo, pl. 159. - l'art Il entitled ' Der I'emuslurchigung vom 1769....' Gotha, 1824, svo, plp. 112.

The Method of Least squares is applicel to the reduetion of 149 observations from the transit of 1761 and 106 from that of 1769 , and to the determiation of probable erors. The most probable distance of the sum from the eath is fomm to be 20666800 Gemman geographical miles with the probable ceron of 89150 miles.

1822 (Gatss. 'Anwenlung der Wahrscheinliehkeitsreehnung auf eine Aufgabe der practischen Geometrie.' Astronomische Nachrichten, Vol. I, col. 81-8s. -See 1855 Bertikand.

The problem is: To determine the position of a point from horizontal angles taken at that point between other points whose josition is exactly known. A mumerical example is given in which the numlee of known points is five and the mmber of angles is six. This is often called Pomenor's problem; see 1840 Gerinst, 1866 Schott.

1823 Gatss. 'Theoria eombinationis ohservationmm erroribns minimis olmoxis.' Gomment. Sor. Güttingen, Vol. V, plp. 33-90. —Also Gouss Werke, Vol. IV ((röttingen, 1873, 4to), pf, 1-53. -Freneh trans. see 1855 Bertrinn.

This memoir contains Gauss's second Iroof of the Methor of Least squares. The following quotation from pages 37-38 shows the bypothesis upon which the proof is based: "... . integrale fox $q(x)$ idx $a b, x=-\infty$ usque ad $x=+\infty$ extensum (sen valo medins fuadrati x^{2}) aptissimmm videter ad ineertitudinem observationm in genere definiendam et dimetiendim, ita nt e dnobos observationm systematibus, qua quoat errorm facilitatem inter se differunt, ea pracisione prestare censeantur, in quibns integrale fore $q(x)$, $2 x$ valorem minoren ohtinet." Gatss does indeed recognize and point out that this is only an arbitrary convention, but he justifies himself in adopting it on the ground that the defintion of most adrantageons results must be arbitrary, since the question is in its very mature indefinite, and that his definition lears to simple opreations. The values of the unknown quantities found by his method he ealls "valores maxime plamsibiles."

Gauss's method leads to the rule of Least squares, whatever be the number of ohservations or whatever be the law of facility of error provided only that prositiva and negative errors are equally probable. For analyses of his proof see 1844 Eldis and 1872 Glassien, the former regarding it as valid and the latter as unsatisfactory. In my opinion it is but little more than a begging of the question to assime that the mean of the squares of the errors is a measure of precision. See below 1825 Trons, 1847 Gabloway and 1872 llelmert.

The memoir contains an extender presentation of the practieal features of the method and in this respect is of great value. The algo-
rithm for the solution of nomal equations by the methorl of subatithtion (1816), the letermination of weights amd of firmmas for mean error occupy the second part of the memoir. The vathe of the mean error of an ohservation of the weight unity being $m=\sqrt{\frac{x^{2}}{u}}$, Gatss takes $2 x^{2}$ as referring to the true errors, and determines $m=\sqrt{\frac{2 v^{2}}{u-q}}$ as a pratical formula, Sverernig to the computed residnals, u being the mmber of observations aml q that of the unknown quantities: the investigation however is not very clear. See 1816 bessel and Gauss, aml 1856 Bienhimé.

For Gatsis's own accome of the contents of these memoirs see the Güttingische gelehrle Anzcigen, Fel, 26, 1821 and Feb, 24, 1823. These reviews are reprinted in Vol. N. of Gauss Werke, pp. 95-104. (iauss herestates that in the year 1797 he fomm that the detemination of the most probuble values of ubserved quantities was impossible, moness the latw of facility of eror was known; and that since 1801 he had used the Method of Least Squares almost daily. See 1830 Riese.

1824 Berins. Eiphanutio methodi quadratarum minimonum. Lundie, 4 to.

1824 Fourier. 'Règle usuelle pour lat reeherche des rósultats moyens d'un grand nombre l'olservations.' F'erussuc's Bull. Sci. Muth., Vol. II, 1p. 88-90.

The rute given is expressed ly the formula

$$
m=0.4769 \frac{\sqrt{\frac{\overline{\Sigma u^{2}}}{n}-\left(\frac{\Sigma}{n}\right)^{2}}}{\sqrt{\frac{\Sigma}{2 n}}}
$$

$a_{1}, a_{2}, a_{3}, \ldots$ being the results of the n observations.
1824 Porsson. 'Sur la probabilite des resultats moyens des observations.' ' 'ommeriss. des 'Tems for 182ヶ, Pp. 273-302; for 1832, PD. 3-22.

These memoirs are a commentary on Laplace's fourth Chapter (1812) and seem to form a kind of translation which Poisson made of Laplace's investigations for his own satisfaction. A large part of the memoirs are reprobluced in his Recherches . . ., see 1837. See also 1830 Hatber, 1847 Galeowiy and Tonhunter's History of Probahility, pp. 560-588. Nee Juhrb. Chem. u. Phys., Vol. 1V, pp. 38-42.
"Porsson confines himself to the case in whieh one element is to be determined from a large number of observations, but he treats this ease in a more general mamer than Laplace had donc. Laphate hat assumed that positive and negative errors were equally
likely, and that the law of facility of error is the same at every observation; hat l'ossos makes neither of these assumptions."-Tonmexter in Ticens. C'(emb. Mil. soc., 1869, Vol. NI, p. 219.
$182+$ Pubsant. 'Application de la methode la phas avantagense it la detmination de laplatissment du sphéroide osenlateur en Franee, par le comparaison d'un are de meridien aree un are de paralléle.' F'irussec's Bull. sci. Math., Vol. I, 1p. 271-274. - Conmaiss. des Tems for 1827, 11. 230-232.

A general statement of the method, which seems to have been clsewhere published in tetail.

1825 Irory. 'On the Methol of the Least Aquares.' Tilloch's Phil. Me!g., Vol. LAT', 1p. 3-10, 81-86, 161-168.

This paper contains two attempted proots of the principle of Least Squares by methors indepentent of the Theory of Probahility. The first, in page 5 , rests on thage analogy with the properties of a lever and is in the words ef Elus " little more than a petitio priacipii concealed ly a metaphor:" The secom, in pages $6-7$, rests on the supposition that "the mean of the sum of the squares of the errors may be taken as a measure of the precision of the ohservations" which can searcely be assumed as evident ; this is similar to Gat'sis proof of 1823.
l'ages 81-86 are devoted to disenssing the probability of errors. Frony makes no distinction between trae errors amd residnals, and does not recognze that the probability of any definite ermor most be an infinitessmal. The remaning pages attempt to show that the Methot of Least Squares eamot give the most alrantageous or probable results unless the la of facility of error is $\varphi(x)=c e^{-h^{2} x^{2}}$, and that Larlane's femonstration " whatever merit it may have in other respects is neither more or less general than the other solutions of the problem."

These two proofs are examined aml exposed by Ellas in 1844, and the second proof with the eriticisms on Laplice are analyzed by Glatanel: in 18%. See also 1851 Hossard.

1825 Muxake. 'Beobachtung.' Irt. in Gehter's Physikulisches Wörterturh, seeond el. Vol. 1, pp. 884-912.
Contaius matter from 1823 Gaess and 1819 Paucker.

1826 Gaess. 'Chronometrisehe Längenbestimmung.' Astron.

The Method of Least squares is used and formula for finding mean errors of the results given.

 Paris, ton, Vol. 1ll, in 1826, Vol. IV in 1829.

These volmmes contain inceligations by Foulate on weimhts,
 Tol. XIV, 1. 89.

1826 Irons. 'On the Methomb of the Least Sipuares.' Tilloch's

Contains [ronves thitd attempted proof of the llethod, which is still more absmed than those of 1825 . Sep Elusss analysis in his paper of 1844. See alsobxhw, 18:30 Fbancoevis.

1827 lansexbergeli. ' Telnw dic, ant' Veranstaltung der französischen Academie, während der dahre 1736 mut 1737 im Schweden rorgenommene (iradmessung." Jiston. Jitulor., V'ol. Vl, eol. 1-32.

An appliation of a methorl, commmineated to the author hy Bessel, for the adjustment of geodetic triangulations by the use of Leant Squares. See 1831 Hansen. See dhhumall. ron Bessel (Leip)xig, 1875), Vol. 11I, 1p. 16-19.

1827 —. Leber die Theoric der Zuvertissigkeit der Beobachtmonen und Versuche mad der von derselben abhängigen Bestimmungen des Mittels aus gegebenen Zahlen. [Berlin].

1828 Bessel. 'Teher die Bestimmung des desetzes einer periodischen Erscheinung.' Istron. Virchr., Vol. V1, col. 333-3ts. - 16 homall. von Bessel (Leipzig, 1875, tto), Vol. 1l, plp. 364-372.

Proposes the perionic function since so much used for discussing recurring phenomena, and ilhostrates its application to the detemination of empirical formulate See 186 t Sonotre

1828 (iatss. 'Snpplementum theorite combinationis observationum erroribus minimis obnosie.' ('omment. Sor. Crättimpen, Vol. VI, pr. 57-98. -Alan Gumss Werke, V゙ol. 1V, 111.57-93. -French trims. see 1855 liehthind.

This memoir discusses a method for the combination of observations When the obsencel quantitien are not expressed as explicit functions of the manown quantities to be determined: and when the problem furnishes rigorous equations of condition which the determined values of the mknown quantities must exately satisfy. The method of correlatives for the adjustment of such conditioned observations is given amd an algorithm presented for it. use. A mumerical example involving twenty-four observations sulpeet to thirten conditions ilhstrates the use of the formulx. See the Gëtt. ydehrte Alrzeigen, Sept. 25,
Trans. Conn. acad., Tol. IV.
23
Ост., 1877.
 of the contents of the momoit. See also 1830 linests.
 hilites, limselles, 18 mos .

1830 Fresionetro • De la composition des formules astromomiques, et de la dextemination des constantes: Equations de eondition: Wéthomes de Tobie Mayer et des moindres earrés.' - Istronomie prutique (l'aris, svo; secoml ed., 1840), 1p. 412-431.
luoners proof of 1820 is gisem as a perferty valid "drumonstration." This is repeated in the secomt edition.

1830 IInssen. Commentatio de gralus pracisionis computatione. [rotha, ftu.]

This was first printed "in einem l'rogram, womst die hiesige Stermwarte [at (rothal] des Jubilanm des wïrtigen Ot,bers gefeiert hat." It eontaincal a mothon for timbing the weights of vahes determined hy the Methond of Least Squares, which for a small mmber of unknow quantities is perhaps shorter than that of (atrss (1823). Sees Astron. Vecelr., Vol. VIIl, conl. $+62-463$, and Enckls in Berlin. 1stron. Jithly for 1835, p. 297.

1830 Havmar. Teber die Bestimmmig der Gemangkeit der beobachtungen. Bumugatners Zoitschr. ft. Phys. Muth., etro, Vol. VII, 1'p. 286-314.

1830 Hacber. Terallgemeinemag der J'口ssox'schen C'htersuchungen über die Wrahrsheinlichkeit der mittlem Resultate der lBeobachtungeu in den "Additions à la Commissamere des Trmpos de 1827." Bunmqurtner"s Zeitschr., Vol. VII, pp. 406-429.

1830 Hatber. Theorie der mittleren Werthe. Bommoatner's. Zeitschr., Vol. V11I, pp. 25-26, 147-179, 295-315, 443-445; Vol. IX.

[1830] Nürxberifer. Betrachtung ubar die Methorle der kleinsten Quadrate.

1830 Possox. 'Note sur la probabiliti du résultat moyee des observations.' Fervessefe's Bull. sei. Math., Vol. 天1LI, 11. 266-277.

On Taplace's method of dedueing formulat for prohable errors.
1830 Porsson. ' Ilemoire sur la proportion des massances des filles et tes garçons.' Mím. Arred. P'tis, Vol. IX, pp. 239-308.

The general term of the binomial theorem is shewn to take the expronential firm or-4*, when the mumber of terms is ind dinitely ereat :
 Formmar far probabity af emors betwen given limits and for probable errors are also developed. See 1836 l'onsson.
 1830, I'1. I, col. 269-284.

A review of Ganss's memoirs Theoriat romlimationis., 1823, and suytementum thention., 1827, giving an acommt of their contents and a popular exposition of the suljeert.

1831 ('audur. 'Themoire sur la systime de valeurs ghio fant
 servations, pour que la phas grambe de thates les erremrs, abstraction fate du signe, rlevieme un minimmm.' .Iome. École Poly., Vol. XIII (cahier 20), plo. 175-221.

This was perhape publisherl about 1814, see Bull. Soc. Philom. Prots, for 1824, 1り! $92-99$. The methonls of 1760 Busownen and 179: Lablace, are particmar cases of Cautur's solution. See laplaters Theorie . . iles liol.. Chap. IV, Art. 24.

1831 Degex. "hecherches sur la paraloole, deferminée par la míthode des moinitres carrós of qui repurisente le moins défectnensement, quil il soit possible, m systeme queleonque de points domés dans un plan.' Mim. Acod. Ň. Piters. prer diedrs swouts, Vol. I, 1p. 13-28.

1831 (imbent. 'Burechmug der wahrsheinlichsten Resultate ans gegebenen Beobachtmogen. Wethode der kleinsten Qnadrate.
 keitsrechmung,' $\boldsymbol{\eta}^{\prime}$. 983-1027.

A clear presentation of the Thethod of Least Squares accorling to Gauss, the pronf being that of 1809.

1831 Hansma. 'Darlegumg ciner nemen Methode, bei Amwentung der Methode der kleinsten Quadrate, die Gewichte der mhekamenten Grössen \%n berechnen.' Astron. Terchr., Vol. VIII. col. 463-468.

A simplification of Gauss's methor of 1823 for finding weights. Not the same as 1830 Haxsex. See 1832 Earke.

1831 Itansex. 'Weber die Anwendung der Wiarscheinlichkeitsrechmong anf geolätische Vermessungen in Allgemeinen, mud über die Maupertus'sche (iralmessmeng' Astron. Jether, Vol. IX, col. 189-220, 237-262.

 Hassex, Losexhentast hat in 1827 examined the s:mbe measmer ments.

1*31 Latrow. bemerkingen zum practischen Gehranche der
 Vol. IN, I 1 ${ }^{3}$ 4:33-449.
is31 Petssant: 'Application du calenl des probabilités a la mesure de la precision d’un gramd nivellement trigommétrigne."
 1834, 1p. 3-17.

A modification of the methon of Lamace's Third suplement (1820), illustrated by a practical example.

1832 Exake. 'Ueber die Begrändung der Methode der kleinsten Quarlrate. Whomull. Ikul. Berlin for 1831, ple 7:3-78 of the mathematieal part.

After lurief notices of five proofs of the Method of Least Squares, Excke gives the preference to Itarssis of 1809 . To establish this more rigidly he offers a demonstration to show that for clirect obserrations the rule of the arithmetical mean wives the most probable result. This demonstration (in my opinion not a rigorons one) has heen followed by many subsequent writers. It is repeated by Exeke in the article quoted next below, amb is paltienlarly stated with confidence hy Chatenet in 18Gt. For eriticisms see 1843 Retrionle and 1872 thansets. Side also Exckés later opinion, below under 1850.

1832 Exame. 'Ueber die Methode der kleinsten Quadrate.' Berlin. Astron. .Tulerluch for 1834, 111. 249-312; for 1835, 111. 253-320; for 1836, pl. 253-308. -Republished in Luck's astranomische - Lhemdlumfen (Berlin, 1866), Vol. I, Nos, xii, xiii, xiv.

These memoirs form a treatise on the Method of Least squares. from which many text-books have been compiled.

The first memoir contains the proof of 180 Gatss, reinforced by Farkés attempted demonstration of the validity of the arithmetical mean, the discussion of weight and probable errors, and two tables of the probability integral $\frac{2}{\sqrt{\pi}} \int e^{-t^{2}}$, $1 t$, the first between the limits 0 and t, and the second between the limits 0 and $0.476936{ }^{\circ} \frac{r}{r}$ (x being any error and the probable error). These were computed from Kinamp's tables of 1 tgas as proted hy liesinel in 1818 . See Lomed. Phit. Mheg. 1871, Vol. XLII, 1. 481, et sig. A translation of this first memoir and a repuint of the tables is given in Titylor's Scientitio Memoirs, 1841, Vol. II, Pl. 3 ti-369.

 mal. lint strange to siy her dedures

$$
\mu\left(, r^{2}\right)=\frac{h}{\sqrt{\pi}} r^{-h^{2} \cdot n^{2}}
$$

in which h is a finite quantity.
The secomd memoir contains the pratetical features of the methedGinss's algorithm for the solution of mormal equations, frurss's (1823) amd IIANsEx's (1830 and 1s31) methonls of determining weights, etc. The thind is revoted to the discossion of comblitioned ohervations. It the time of pmbication these memoirs must have been of great value to students.

1832 Pussaxf. ' Deuxième mómoire sur l’application du caleul des probabilités anx mesures giodtésigues. Mim. Acud. Paris, Vol. XI, ןp. 123-156.

Adjustment of triangulations, determinations of probalile errors, ete.
1834 Bessel. 'Betrachtung üher die Methode der Vervielfältigung der Beobachtungen.' Astror. Nitelir., Vol. XI, col. 269-290.

This valuable praper deduces rules for the arjustment of angles taken by the method of repetitions, and formula for finding their weights atml probable errors.

1834 Strooman. Bemetteligh omderiat in de hionsrekiening, of de lier der wentrschïntïhbaten. Bred:a, $12 m o$.

1835 Cadany. 'Mimoire sur l'interplation,' Lith. MS. -Trans-
 in Lioncille's Jour. Math., 1837, V'1l. II, Pl' 193-205; in Moigmo's Lecons de caldul diff érentiol (P:uris, 1840), 1p. 513-526.

When an empirical formula is to the derived trom a great number of observation equations, Cat'ols's mothod may be used as easily, althongh perhaps with less accuracy than the Methon of Least Squares. See below 1853 bienamíe and Cavolix, 1842 Grunert and 1861 Schott. See an artiche by bamuett in Amer. Jomer. Sci., 1862, VHl. XXXIV, 1pp. 27-33.

1836 Porssox. 'Formules relatives anx probabilités qui drpentent de très grand nombres.' Comptes Remd. Leced. Paris, Vol. II, pp. 603-613.

The gemeral twom of the linomi:al $(p+q)^{\prime \prime}$, in which $p+\prime=1$, is shown to aproach the form $\frac{e^{-u u^{2}}}{\sqrt{2} \pi m p g^{\prime}}$, :" is imdefinitely increases. Fere 1830 lobsion.

1836 Rourbos. Tebor die Methote der klemsten Quadrate. Appemix to his Jurblemili (1)resten and Lejpris, 8vo).
 Berlin, svo. - Fecond edition, see 1867 .
'This work contains ILames's pronf of the Method of Least Squares. It is hased upon the following hypothesis: "Der lewhaditungsfehter ist die algehaische summe einer memdich grossen Anzahl elementärer F゙ehker, die alle ghechen Werth haben mon (hem so leicht poxitiv, wis negativ sem kommen." This postulated, the proof consists in finding the general term of the expansion of $\left(\frac{1}{2}+\frac{1}{2}\right)^{2 m}$, m being indafintely large. The law of facility of error takes the form $\varphi(x)=(\pi m)^{-\frac{1}{2}} e^{-\frac{m}{m}}$ from which the prineiple of Least Squares at once follows.

The algehalic work of Il.wes's methorl had in a somewhat different form heen given ly Larlane in the Thiontir... des Probubilitis (1812), 1. 301 , and in the articles 1830 Ponsons amd 1836 Ponsson. LAnes's methol is more elementary aml in comection with his original hypothesis forms, I think, one of the best proofs of the Method of leass Epuares.

Harien's proofin given in the writings 1849 Whatsens, 1850 Encke, 185: Diexger, ami in a modified form 1846 Querelet, 1865 Tatt, 1866 Natant and others. Nansee Penes's Iutegral Celmhers (0)ford, 1865), 1!. 376-379. A dischssion hetween líamell and Mesmanan concerning this frof is now (Oct.. 1876) going on in the ofom:

1837 Porsson. 'Rerherches sur l" probubilité des jugemens en matieve criminelle at em matière civile, précédies des vètles générales du culdul des pooluhilités.' Paris, 4to, 11!. ix, 415 . -Gemman trans. by
 selweig, 1841 , svo.

The matter of Porsson's previons memoirs on the law of great mumbers is reprotuced in Chap. III, and of those on the probability of the mean in Chap. IV.

1838 Bessel amd Baeyer. 'Grudmessun! in Ost-Preussen umel ilhe Terbindmeg mit menssische und russisehe Dreirckisettrn.' Berin, 4to, 品). xir, 45 ?

A seondetic work of great value, contaming many applications of the Mothod of Least squares. See extracts in Alhemell. con Bessel, (Leipzig, 1875), Vol. III, pp. 82-138.
 Beobachtmigstehler:' Astron. Necher., Vol. XV', col. 369-40.4. -- 1bhemell. nom litssel (Liprig, 1855), Vol. 11, 11].372-891.
"Ich werde nämlidh die Eintatehmesirt der beobathtungsfehker rus ilren liselhon, zun (irmmbe des Folgemlen machen. Wemm man
 anf gegenme trt wirkenlen [rsache herrorgehwel betrachate so
 Argments \bar{G}, welches in derselben Art willkührlich ist, wie das Fallen eines Würfeks. Jus dem Ausdrucke $r=$ ftc kam aber der Ausdruck $\phi(x)$ abgeleitet werlen, . . ."

Besser seems to nse the worl Trswehe in the sense of "somere of eror. Dis tirst investigation is of a case arising in the measmement of angles, where the error ir is related to the lrseche z hy the law $x=a \sin E$, erery value for E thetween the limits $\pm \frac{1}{2} \pi$ being equally possible. The law of facility of eror he finds $q(x)=\pi^{-1}\left(r^{2}-r^{2}\right)^{-\frac{1}{2}}$: and the probable eror is 2.568 times greater than hy the Nethor of Least squares. An example where $x=$ "Ese which he shows may antually arise, gives also lisagreemgresults.

In the secome part of the investigation we "reat : "Ich werde mun die Wahsecheinlichkeit eines Fehters motersuchen, weleher ans rev
 ensteht," each error on arising being consideren as equally likely to be positive or megative. The result of the investigation is that the law of facility of eror appoximates chosely to the expmential form $\phi(x)=e^{-h^{*} x^{2}}$, jwivided that "viele Ursachen zill Hervorbingen des Beobadhtungsfehlers zusemmombirken," and "dass moter den, ans den einzelen Lrsachen hervorgehemlen mittlern Fehlern, keiner die nbrigen beträchtlich ühertrefle," and these conditions Bessel thinks, are present in most ohservations.

This memoir is rery valuahle as showing that the exponential lan of facility is not to be regarled as an it pioni rule, frec from excep tion, and as throwing new light on the condition under which it exists. On the whole it may be considered as a new proof of that law amt hence of the Nethot of least Squares.

1838 bueaymé. 'Mémoiresur la probahilité des résultats moyens des observations; demmsuation direte de lat règle de Laphate.' Mem. . . per dirers sumants. . . Detul. Perris, Vol. V, Ipp. 513-558.

The rule of Laplace here meant is a methon for finding the protahility of the error of the mean. The opening pages contan some interesting historical remarks, him the investigation itself is very long and tedinns and seems to be of little valne.
 xviii, $306, x \mathrm{x}$.

This popular book devotes a chapter to methorls of finding weights amd estimating. probalilities of mean results. It contams tables of the error finnctions.

"The where of this palere is the correetion of an wersight made both hy Lablate :md II. J'ussos in pages 279 and 209 of their Papective works on the Thenry of Probabilities."

 Vol. VII, 11. 11:30-1185.

The mean errors of the aljusted elevations are deduced.
18:39 blesivué. Théorme sur lat probahite des résultats moyens des observations. I'rocés-I erk. Som. Philom. Paris for 1839, 111. 60-65.

1839 H.assex. 'Anflösung einer allgemeinen Aufgrate alls des W:abrecheinlichkeitsredmmeng. Astrm. Nicher., Vol. XVI, col. 9-16, -こ-32.

On the detemination of the values and weights of ahserved quantities subject to conditional equations. A particular case of MasSEx"s problem is noted helow mader $1 \times+1$.

1839 .Jans. Die Wrahrscheinhelheitsrechenen! und itre Amwendmet mut' dres wissenschuttliche umel prokitische Leben. Leijaig, svo, pl 240 .

1840 bessel. Nene Formel ron Jarobr, tür cinen Fall der AnWendung der Hethode der kleinsten Quadrate.' Sstron. Virchr., Vol. XV11, col. 305-308. -. Ibhumell. éon Bessel (Leipzig, 1875), Vol. II. PP. 401-402.

Formuta for solving normal equations containing three manown quantities and determining at the same time the weights. They are regarded by bessel as shortening considerably the mumerical work required by previous methonls. See below 1873 Seelitier.

1840 Bessel. 'Ein IIölismittel zur Erleichterung der Anwendung der Methode der klemsten Quadrate.' Astron. Tachor, Vol. XVII, col. 225-230. - 1 bhandl. con Bessel, Vol. II, pp, 398-401.

Computations arising in the formation of normal equations can he shortenel by the use of tables of squares of numbers.

1840 Bexirné La constance des résultats moyens. Procéslerbs soe. Philom. Puris for 1840 , pp. 19-26.

 1840，11．18ヶーヶ0．

1840 beavi．Thendion epmotion del proluthile．Bergamn，second edition，＂－rols，svo．

1840 Clemexs．＇Teloer dic Wethoule der kleinsten Quadrate．
 ［1］．1－12．
＇The first part of this momoir I have not seen．The seeomt diseus－ ses the determination of empirical formulat for periodic observations， the calculation of probalde errors and the eorrection of a ficld surver．

1840 Gemlivti．Pomineotsehe Aufighle，in portiseher Bezie－ hum！durfestellt．Marlurg，85o，plo 32.

Contains mainly the solntion of 1822 Gauss．See 1866 Snott．
1841 Bessel．＇Veber einer Fehler in der Berechming der franzö－ sischen tradmessung uml seinen Einfluss anf die Bestimmmeng ter Figur der Empe．Istron．Vacho．，Vol．XIX，col．97－116．－Abhamel． vom Bessel（Leipzig，1875），Vol．111，11．5．5－62．

Forty－fom ohservations sulgeet to sixtech conditions are atjusted． The methor here employed for the combination of measurements of ares of meridians has firmished a model for many subsetuent investi－ gations．

1841 IIansen．＇Eine Aufgabe ans der practischen Geodäsie mut deren Authönng．＇Astron．Vachr．，Vol．XVIIl，col．165－176．
＂Die Lage zurcier muhehanton Punckte durch Hülfe der Lage zwpier lehemuten Punckte zn bestimmen，ohne jene von diesen ans zu beobachten．＂

1841 IIÜlsee．Selur die Berechumag con Beobuchtungen dureh die Mcthode der Rileinsten Qumlrotssumme．Leipzig， 4 to ．

1841 Jacobi．＇De formatione et proprictatibus Determinantinm．＇ Crelle＇s Jomer：Muth．，Vol．XXII，pp．285－318．

Near the end of this memoir are remarks concerning the applica－ tion of deteminants to the solntion of eguations and to the finding of weights in the Method of Least Symares．

Trans．Conn．Acad．，Vol．IV．

1811 Quetenat: Teber das Geset\% des Guadrats der 'Tompera-

1842 Fhes. I Posuch eimer fr̈tile der Primeipien der Wrehrscheinlichlieitsrechmeng. Braunschweig, 8vo.
 Muth. u. I'y.s., Vol. II, 11.41-60.

See 1835 Cauchy.
1842 Litmoow. 'Theorie der kleinsten Quadrate.' Gehler's I'hysicalisches W'̈̈rterluch. Vol. X, I't. II, Art. 'Wahrschecinlichkeitsreelımung', 1P. 1200-125].

A clear elementary exposition of the Nethod and its theory according to 1832 Encke.

1842 Lobatschewsky. 'Probabilité des résultats moyens tirés d'observations répeties.' Crelle's Jour. Math., Vol. XXIV, pp. 164-170.

Serial expressions are deduced for the probability of error in the mean of a limited number of observations.

1842 Menz. De theoria molubilitatis adhibita in physicrm. Monachii.

1842 1'unssant. 'Traité de géndésie, ou eraposition des méthodes trigonométriques et astromomiques, epplicables a la mesure de la terre, et à la construction che canevas des contes topographiques.' J'aris, 2 vols, tto, Vol. I, Pp. xvi, 515, and XI [11. Vol. 11, pp, xi, 496, xxxii, and III pl. -First edition, see 1805.

The results of many of l'rissint's previons memoirs are here recorded, and the Methorl of Least Squares is often used. The work is one of the most raluable treatises on Geodesy extant.

1842 Ramus. 'sur une question de probabilite relative anx corrections des hanteurs barométriques.' C'relle's Jour. Aluth., Vol. XXIV, 1P. 80-84.

A determination of the probability "que dans un grand nombre d'observations la difference des résultats moyens des hanteurs barométriques observées et rédnites soit comprise dans l'intrevalle λ."

1842 Robber. Experiment. Art. in Mandwürterbuch Chemie u. Pliys. (Berlin, 8vo.)
see Archir. Math. u. Ihyls., Vol. XI, p. 375.
 Kleinsten Qualrate auf emen besondern Fall.' Astron. Vechro, Vol. XX1, col. 163-168.

Simplities the fomation of nomal equations, ete, when the observations are made on the simple smms or difterences of the unknown quantities.

184: Bemanas. Gelver die Methode der kleinsten Pumbrate. Blankenburg, sro.

1843 Contror. 'Enpmsition de latherie des chances et des prob"bilites.' Paris, 8 ro, 1p. viii, 44. -German trans., Braunschweig, 1849, 8 ro .

Chapters on the theory of means and the adjustment of observations are given. It the end is a table of values of the error function. Conenot's methorls are often quite awkward.
 Geometrie, oder die Methodi der hleinsten Quadrate mit ihren Ancendungen "uft 'reoditische Aufigaben.' Hamburg and Gotha, 8vo, 11p. vix, 409 , and +1 l.

This book is derlicated to Guutss. The principle of Least Squares is assumed as the hasis of the methods of adjustment. It consists of four parts; the first treats of direet, the second of indireet, and the third of conditioned olservations, while the fomrth discusses the form and mumber of comlitional equations which need to be considered in the arjustment of triangulations.

The book is fully illnstrated with practical examples, and contains the best systematized development of the application of the method to the treatment of simple geodetic measurements that has yet appeared. Gerling issued later ($1845,1855,1862$) some papers sup)plementary to the work, one of which contains a long list of errata.

1843 lieusente. 'Ueber die Defuction der Methode der kleinsten Quadrate ans: Begriffen der Whawcheinhichkeitsrechnung.' Crelle's Jour. Meth., Vol. NXVI, pp. 333-364; Vol. XXVIl, pp. 182-184.

This is a critical examination of the deduction of the expression for the probability of an error between given limits and of other points in the "Metaphysik" of the Methon. Encke's proof of the validity of the arithmetical mean ($18: 32$) is also exammed and fonnd to be imperfect.
1844. Excke. 'Bemerkungen zu der Abhandhung No. 22. Band 26. Heft 4, dieses Journals.' Grelle's Jour. Muth., Tol. XXVII, pp. 213-222.
 the two expressions

$$
\Sigma_{0}^{\prime *}\left(p (\cdot r) = 1 \text { :und } f _ { 0 } ^ { \prime \prime } \left(p(x) \quad l^{\prime} \cdot r=1\right.\right.
$$

the symbal 1 has ditherent meanimes. He also shows that libetsemas had laiked to moderstand his prool of the arithmetical mean.

1844 Donkin. An lisay on the Theory of the Combination of Ohservations. Tirans. Ishmolean soc. (Oxford. 8vo). - French ahridgment, 'sur lat therie....' in Lioucille's. Jour. Muth. 1855, Vol. XV, 11]. 297-322.

Doxkis attempts to establish "me exnee de Statique métaphysique sur des prenses de la meme force que celles quon emploie en diduisant, à priori, les lois de la statigue ordinare." The word "foree" is taken to mean "tont motil qui nous porte al altérer la valeur attribué il une quantite"," and to these "forees" the principles of centre of gravity of hodies, of rirtual velocities, etc., are applied, and the usual rules for the aljustment of ohservations by means of normal efuations, weights, mean errors, ete., are deduced. No law of facility of error enters into the discussion.

Donkix's reasoning does not always seem to me elear or rigorous.
1844 Edlis. 'On the Methorl of Least Squares.' Trans. Camb. Phil. Soe., Vol. VIII, 1p. 204-219. - Nlso Ellis's Muthematical and other Wi:limgs (Cambridge, 1863, 8vo), 1 1. 12-37.

In this paper it is attempted "to bring the different modes in which the subject las been presented into juxtaposition, as that the relations which they hear to one another may be clearly apprehender."

Ehas first takes up Gucss's proof of 1800 . He considers that Gauss is not justified in assmming that the rule of the arithmetical mean gives the most probable valnes, and he shows that besinles mere enmenience no satisfactory reason can be assigned why it should be so regarded. Ilis remarks on this foint are extremely valuable and smmil. See 1872 Glusher.

Laplace's demonstration is taken mpand presented in a different hut greatly simplified form, extended to the case of any mumber of unknown elements. Gatss's second juoof of 1 sog is also amalyzed and the conclasion amived at that "nothing can be simpler or more satislactory." Lastly Irony's three proots (182.5-6) are disenssed and their illogical character cleany exposet. The patper is one of the most valnable in the theoretical literature of the sulyeet.

1844 Jacobi. 'Ueber eine neue Auflösungsart der bei der Methorle der kleinsten Quadrate vorkommenden lineïren Gleichnngen.' Astron. Nachr., Vol. XXII, col. 297-306.

An abridged metliod for the solntion of certain forms of normal equations.
[1st1] Qubebet. Sur l'appréciations des documents statistiques et en particular sir l’appreciations des moyentes. Bull. stetistique de Pelgique, Vol. 11.
 Vol. XX1ll, col. 1-4.

On the probathe errors of interpolations in logarithmie tables.
1845 Fischers. Die Theorie der beobachtungsfehler mul ihre Ausgleichung dureh die Methorle der kleinsten Quadrate. I't. I of his Leheruch der höheren (reodäsie; Darmstadt, sro.

1845 Cremmita, 'Nachtrige zur Ansgleichungs-Rechmung.' Irehiv. 1Kth. w. Phys., Vol. V1, pl' 141-146, 375-378.

Three smpplements to Cerbina's book (1843). The first and second treat of the determination of points by angle measurements and the thirl of the jrecision of chain measurements.

1846 Bearals. 'Abalyse mathématique sur lés prohabilités des errems de situation d'mu print.' Mém. . . por dizers sucums . . Trost. Frence, Vol. IN, 111. 255-332.

Ohservations being marle on the coürdinates of a point the probability that the apparent and true places are separated by a given distance is investigated, as also is the "valeur de la crainte mathématique de l'eweur" which is shown to he represented by the surface of a certain ellipsuid. The methon requires the observations to be mmerous.

In determining the probability that a point in a plane is located on an clementary area dyof, bisiras takes the prohabilities of the a and !/ deflections ats indepemdent. See 185011 erasilet.

1846 Galoway. 'On the application of the Method of Least Squares to the Determination of the most probahle Errors in a Portion of the Ordnance Survey of Englaml.' Mem. Astron. Soce. Loud., Yol. XV, 11p. 23-69.

A discussion of a triangulation inchding ten stations at which thirtyfive angles are ohserved shloject to mineteen conditional equations. The methods of :nljustment, of determiniug weights, of forming the conditional equations amd all the steps of the process are given at length with great elearmes. See Month. Totices Astron. Sor., 1843, Vol. V, ple 262-264 for a fill accomet of contents of the memoir.

1846 Quelelet. 'Lettres d S. A. R. le Duce régnome de SadeCobourg el Gotha, sur lu Thionie des Probabilités appliquée mex seiences momes et politiqus.' limxelles, large 8ro, ply iv, 450. -English trans. by Downes; London, 1849, 8vo.

These letters are of somentary a chamerer that S. $\lambda . \operatorname{li}$. is informed of the meang of the xign t and - 'They contan however a valuable popular exposition of the Theery of means and of the

It the emd of the luwk is an appemix contaning many valuable "Notes." In prges 3 So-380 a table of the terms of the himomial $\left(\frac{1}{2}+\frac{1}{2}\right)^{089}$ for eighty terms on catch side of the middle term is given ami the method of its computation explained: these have since been
 is shown that the general term of the bimmial $\left(\frac{1}{2}+\frac{1}{2}\right)^{m}$ approaches the exponential form $\mathrm{we}^{-h h^{2} x^{2}}$ as m infefinitely increases: this is similar to II wex's investigation of 183%.

In pages 412-424 are printed three suggestive letters from Brat fats, in which not only lombts are expressed as to the it priori necessity of the expmential law of facility of error, but examples are given to show that it is not miversally the a posteriori. BrasBas' biew is that every eatase of partial erior gives rise to a distinet emre of facility and that the combination of these approaches the exponential form as a limit, partly because of the necessary law that positive and negative erms are equally likely, and partly hecause the combination itself must temt toward the binomial form. Ile alludes to llamex's proof as not sufficiently rigorous.

1847 Demmbrax. "Theory of Probabilities.' Encyel. of Pure Muth. (Eneyrl. Metrop.), J't. I1, P1. 393-490.

Agreat part of this work is translated amd arlipted from Laplace's Thiorie. . . des Prob., 1812, emriched by comments. The Method of Least squares is treated at considerable length according to lasrlaye's method. At the end are given raluable tables, those of 1799 Framp and 1832. Excke, and also factorial tables.

1847 Galdoway. 'Probabilities.' Encyel. Brittenira, seventh ed., Vol. XV1II, pp. 591-fi39. Eighth edition, Vol. XVIII, P1, 588636. - Also separately, Edinburgh, 1848, Sro.

Ponssox's analysis (1824) of Laplave's method is given, and also Gauss's prool of 1823.

1848 Matzia. 'Beweis des obersten Grundsatzes der Methorle der kleinsten Quadrate.' Archic. Muth. u. Ply/s., Vol. Xl, pp. 369-37\%.

A suggestive article. Let x be the tome value of a quantity for which observations give the ralnes $a, b, c, . \ldots$, then

$$
x=f^{\prime}(c, l, c, \ldots)
$$

and also we must have

$$
x-m=f(a-m, b-m, c-m, \ldots)
$$

Applying Taylor's theorem, Matzea deduces for x

$$
x=\frac{h a+i b+k c+\ldots}{h+i+k+\ldots}
$$

in which, h, i, l, \ldots are positive putntities whose values camot be letemined. If the ohservations are of erfal weight and infinite in nmber the rule of the arithmetical mean is shown to fillow.
18.18 Meyer. Résolution d'un probleme du aleul des probabilités. Bell. Acret. Belgique, Vol. XV, 1't. II, 11). 508-512.

1848 Meyer. 'Mémuire sur l'aplication du ealenl des probabilités aux operations du nivellement topegraphique.' Mém. Acud. Belgique, Vol. XXI, 25 p p .

An excellent practical paper.
1848 Wolf. Bestimmung inittlerer Längen und Gewichte. Mittheil. Gesell. Bren for 1848, 11). 238-243.

1849 BaEver. Die Küstenvermessteng turd ihre Verbiudneng mit der Berliner Grundlinie. Berlin, to.

A valuable work for geodetic engineers.
1849 Götze. 'Veber die Bestimmung der Bedingungsgleichungen bei der Aufmehungen der wahrseheinlichsten Elemente eines Himmelsköpers ans einem rollständigen Systeme ron geocentrischen Beobachtungen.' Astrou. Nuchr. Ergänzmngs Heft, col. 159-234, 239-240.

1849 Paycker. Der Ansgleichmogshan mad der mittlere Fehler der beohachtung. Arbeit K̈̈rlrmel. Gesell., Vol. VII, 1p. 91-131.

1849 Wittstein. 'Die Methode der kleinsten Quadrate.' Appendix to H'ittstein's Lehrbuch der Differentinl-und-Integralrechnung (Hannover, 1868-9, 8 ro), Vol. II, 111. 343-442.

Contains a very clear exposition of Hagex's demonstration (183\%) of the law of facility of eror and an excellent elementary presentation of the practical features of the method.

1849 Wolf. Note zur Methomder kleinsten Quadrate. Mitheil. Gesell. Bern for 1849, pp. 140-144.

1849 Wolf. Versuehe zur Vergleichung der Erfahrungswahrscheinlichkeit mit der mathematischen W:alurseheinlichkeit. Mittheil. Gesell. Dern for 1849, 111.97-100, 183-185; for 1850, 111. 85-88, 209212 ; for 1851 , p1. 17-36.

See also 1853 Womp. 1 regret that 1 have been unable to sce these articles.

1850 Bathe. 'Comparison of the Results ohtained in (eeorlesy by the Application of the Theory of Least Sumaes.' Jrene. Amer. Assor. for 18.t9, 11 10 102-105.

A statement of prohahle eroms of meanurements of angles in IT. s. Coast Survey trianghatims. It the end of the paper, which seems of be a brief abstrat of the origimal, there are some remarks by lemse, Gouts amd Hexis, which probably were incorectly reported.

1850 Exake "Teher die Anwemdmg der WahersheinlichkeitsRechmong anf Beolachtmugen.' Berlin Astron. Fehtrb. for 1853, If. 310-351.

The object of this paper is to establish greater comfinence in the practice of taking the arithmetical mean and in the validity of the exponential haw of farility of error. Six of the ten poblems of LaGlinve's memoir of 1774 are translated and a fow comments adiferi. Hasex's demonstration of 1837 is also given in full and spoken of in very favorahle terms. Exake alhules to the use of the "Wrfahrumgssat\% des Irinzips les arithmetischen Mittels" in his memoir of $18: 32$ and says, "so blieb doch inmer cine willkïhrliche Amahme nubrig." At the end ol the article is all attempt to explain why $\int_{-\infty}^{+\infty} q(x) d x=1$, when $q\left(x^{\prime}\right)$ is the probability of the error x.

1850 Gir: 'On the Relative Vahe of Averages derived from different Observations.' .Jom. Šatis. Sor., Vol. VIll, 1’l. 30-45.

The observations discussed are statistical facts.

1850 Hehschel. 'Quetelet on Probabilities.' Eilindmeqh lier', Vol. XCII, Pl. 1-āt. - Hersehel's E'sienfs (London, 185̄, svo), M. 365-465.

This paper contains in a popular form another proof of the Nethod of Least Squares. Supposing a stone dropped with the intention that it shall hit a mark on a horizontal plane, the reasoning assumes that the deflections from rectangular axes through the mark are indepentent; and dednces the exponential form $e^{-h^{2}} x^{2}$ for the law of deviation on error. From this the llethod of least sfuares at once follows. This proof was put into algehraic langnage hy Eluss (see below) and the maramatable character of the assmmption elearly pointed out. See above 1846 bravas, and helow 1857 Bonle, 180 t Thompsos and Tait, 1872 Schlömich, and particularly 1872 Glarshbr. See alno 1808 ADman, where this proof was first given.

1850 Elets. 'Temarks on an alleget Proof of the "Method of Least Squares," contained in a late number of the Edinhurgh Revien." Lome. Phil. Nlag., Vol. XXXVII, pl. 321-32s, 462. - Also Ellis's Muthematical Writings (Cambridge, 1863, 8vo), Pl. 51-62.
 Labman's method is also explained amb tefembed. The paper is sery

1850 Hossant ami Pormea. 'seemule 'Théoreme de minimum
 IX, IJ. 241-242.

Oll the centre of gravity of a system of points. See also Vol. VII, 1. 407 and 454.

1850 Patcker. Der mittlere Fehler zweiter Ordnung. Arheit F̈̈rlumd. riesell., Vol. VIII, 1! 1 . 10t-11き.

1850 Vembam. 'Verhumdelin!f over de methode der Kleinnste gunedruten.' Groningen, Tol. I, 410, 111. xxi, 409.

1 have not seen Vol. II of this work and find no direct reference to its publication: it was probably published about 1853. Vol. I is devoted to the practieal feathres of the method and Vol. Il to the theory.

Vol. T assumes the principle of Least squares and developis the methods of aljustments and comparison by probable ermers, weights, etc. Numerous well chosen partical examples are given workerl ont in detail. The work abounds in historical information, and is the most complete text-book on the sulgect which has come to my nutice.

1851 Amr. 'On a Question of Probabilities which oecurs in the use of a fixed collimator for the Verification of the Constancy of Position of :m Azimuth Cirele.' Rep. Brit. Assor. for 1850, 1p. 1-2.

Is it justifiable to nse the Theory of Errors in finding the probable errors of quantities which are partly results of observation and partly deduetions of formulae?
'18.5] Anry. 'On the Weights to be given to the separate Results for Terrestrial Longitudes, determined by Olservations of Transits of the Moon and Fixed Stars.' Mem. tsitron. Soc. Lond., Vol. NIX, P1. 213-229.

Wright is defined as "the reciprocal of the stuare of the probable error." The paper discusses nine practical cases.

1851 Devzler. 'Ueber den Fundamentalsatz der Methode der kleinsten Quadrate.' Mittheil. Gesell. Zürich, Vol. Il, pp. 110-118.

Appears to be of little importance.
1851 Donkis. 'On certain Questions relating to the Theory of Prolabilities.' Loud. Plil. J/u!!., Vol. I, pp. 353-368, 458-466; Vol. 11, pp. 55-66.

Trins. Conn. Acad, Tol. IV.
25
Оет., 157%

Part $1 / 1$ of this paper oflers some eritical remarks on the 'Theory of Least sifures with partionlar refereme to liblss praper of 1850. HeRsinme's proof, it is said, "shobld be treated whth respect." 'The Inthor of Least sumares mat be used, if for no wher reason, becanse "it is a very , food methol," is shown by liatss's proof of 1823.

1851 Hnsilitr. 'Note sur la mithode desmomires carris.' . Vome. Ammel. Aluthe, Vol. X, plo. 456-460.

Iront's first proof (18.2) is here rediscovered mader a slightly different form.

1851 Patcoer. Uchereinstimmung der ansgeglichenen Cruachen mit den durch Bessel's Verfahren gefundenen. Arocit Kübumb. Gesell., Vol. IX, pl' 170-183.

1851 1'ačuser. Einfluss der (rewichte anl die Ansgleiehmer. - Lebeit K̈̈rlımel. Gesell., Vol. IX, 1p. 183-193.

The sulostance oif this and the preceding article is given in the following.

1851 Padcrer. ' Zur 'Theorie Ner kleinsten Quadrate.' Bull. phys. moth. Lcad. St. Péters., Vol. IX, col. 11:3-125; Vol. X, col. 334:3, 23:3-238. - Mè. math. Acret. Nt. Péters., Vol. I, pl'. 188-204, $333-346,433-439$.

Contains new methods of computation, tests of accuracy, etc., which appear to be of little value.

1852 Bienayyé. 'Mémoire sur la probahiliti' des erreurs d'apres la methode des moindres carrés.' Lioncille's .Jour. Math., Vol. XVII. pp. 33-i8. -Mén. . pur divers sutans. Inst. France, Vol. NV, pp. 615-663.

After some interesting critical remarke, Laplace's :malysis (181:) is given considerably simplified. According to Bexarmés investigation the formula for probable error ordinaril! used are only correct for one unknown quantity. For two, three and four unknown quantities, he finds that the probable errors should be respectively $1.746,2.281$ and 2.716 times larger than these given by the usual formula. Ilis expression for the probability that an error is included hetween given limits differs sensibly for several noknown quantities from the common probability integral, particularly for limits but little removel from $x=0$. See 187:3 Whede.
see Comples Remlus Actat. Paris, Vol. XXXIV, pl. 90-92, or Liourille's Jour. Math., Vol. XITI, pp. 31-32 for a report on this memoir. See also Meyer's C'ulcul des Probulilités, \p. 377-408.

1852 hiren. Thíorie des moindres arriés étublie pur l'analyse pure. Bruxelles, 8 ro.

Probahly similar to his memoir of 1853.

 110 $211-227$.

Hages's demonstation (1837) is followed. Ther articke lorms an ahmost complete elementary treatise on the गlethod of Least sipares.

In the supplement latiEN's proot is abmaloned, as resting on a questionable hypothesis and (iatss's first pronf is given in its place. Dexien appreciates ararly the Nefects of Gauss's methom, for he requires the mumber of observations to be infinite in order that the value given by the aritlmetical moan shall eoincide with the true value of the measured quantity.

1852 Dienger. 'Teber die Bestimmung des Gewiehts der nach der Methode der keinsten Quarlate erhaltenen wahrseheinliehsten Werthe der Utubekanten, wem lbedingungegleichmgen vorhanden

Contains valuable practical formula for the computer.
185: Ilantael. IKamelbuch der niedern Gieodësie, nelst einem Auhonge über tie Elemente der Murkwheidehunst. Wien, 8vo. -Second edition, 1856 , Sro, pp. xvi, 611. -Foutlu edition, 1872, 8vo.

Neध 1863 Börsch.
1852 Liagre. 'Sur la valeur la phus probable d'un côte géodésique commun à deux triangulations.' Bull. Acud. Belgique, Vol.

A clear exposition and solution of the problem. An example from 1849 Baeyeli is disenssed.

1852 Lagre. 'Siu la loi de répartition des hanteurs barométriques, par rapport à la hauteur moyemme.' Bull. Acod. Belgique, Vol. XIX, Pt. II, pp. 502-514.

The law is shown to agree with the exponential law of facility of error.

1852 Perece (B.) 'Criterion for the Rejection of doultful observations.' Gould's Astron. four., Vol. II, P1. 161-163.

This Criterion, fommed on a prineiple of the Theory of Probability, proposes a method for determining by snccessive approximation, whether or not a suspected observation inay be rejected. Tables are needed for its application: for these see below 1855 Guubd and 1864 Chaluenet.

It is a fatal objection to this criterion that its use involves a contradiction of reasoning. The arithmetical mean, for instance, can only be used when the observations are all of equal weight, and the rejection of an observation which deriates considerably from the
mean asserts that the weights of the several values are mot erpal.
 1852 anl $185: 3$ (ilatsincr.

The eriterion hat heen used to some extent in the IT. S. Conat sur-

 les résultats drume serfe dobservations, fates dams lat ve de déterminer unc constant, lorsque les chances de reneontrer des écarts en phas et en moins soint cegales et indrependantes les unes des antres.'

An interesting insestigation, illustrated hy a diseussion of meteornlogical ohservations.

1852 Wolf. Beitrag zur Lehre ron der Wahrseheinliehkeit. Mittheil. (irsell. Bern for 1852, 1p. 133-134.

1853 Brem. 'Theorie analytique des moimdres carrés.' Liouville's Jour. Muth., Vol. XVIII, l'p. 169-200.

The principle of the arithmetical mean is proved according to 1832 Excke. The tem "risque de erreur" is given to the function $1+B \leq r^{2}+r \underset{y}{ } x^{4} D+\Sigma x^{6}+\ldots$ and it is shown that this heeomes a minimum when \sum, r^{2} is a minmm, and this condition is regarteal as furnishing " les ralcurs les plus plansibles des incommes." Formule for weights and mean errors are also developed.

1853 C'itcuy. 'Mémoire sur l'evaluation d’incommes déterminces par un grand nombre d'equations approximatives du premier degré.' Comples Remtus Acoul. Puris, Vol. XXVI, py. 1114-1122.

It is maintained that the method of interpolation (1835 Catciry) can be used for determining several moknown quantities from a redundant nmber of equations, with results nearly as aceurate as by the Method of Least squares.

1853 Biexaymé. 'Remarque sur les differences qui distinguent l'iuteprolation de M. Caucury de la méthode des moindres carcés, et qui assurent la supériorite de cette méthode.' ''omptes Rendus Acad. Puris, Vol. XXVIl, pp. 5-13. -Liounille's. Jour. Math., Vol. X Y'III, p]. 299-308.

It is mainained that the two methods differ "completement", and that even a contraliction exists. Caucur's method, it is said, is only a modification of the ordinary process of elimination, which assures no especial degree of probability to the results and which requires in practice as many operations as the Method of Leist Squares. See below Caucirs.

Further remaths by bitename refermg to this disconsion are given in pages tis-69, 197, 206 of Vol. XXXVIl of the ('omptes Rendus.

 Prois, Vol. XXXVII, prot-tis.

Gives an extract from the memoir of 1835 , ant maintains that in many investigations the method of interpolation is preferable to that of Least Squares.

1853 Cauchy. 'Sur la nowvelle méthode d’interpolation compare A la méthode des momilres carres.' Comptes Remens I cud. P'aris, Vol. XXXVII, pp. 100-109.

The new method is elaimed to be often the shortest, and the Method of Least Sifuares is sild to give most probable results only under certain conditions.

1853 Catochy. 'Mrmoire sur les coefficients limitatenrs on restricteurs.' Comptos Remlus Arued. Peris, Vol. XXXV1I, Ip. 150-162.

In the latter part of the article the "restrictems" are applied to the thenry of Least squares, aml it is concluded that that Hethod furnishes most probable results only when the law of facility of error is the sime for all the errors, when no limits can he assigned to the magnitude of an eror, and when the probability of an error x is proportional to $e^{-h^{2} x^{2}}$.

1853 Catchy. 'Sur les rínltats moyens d'olservations de même mature, et sur les résultats les plas probahles.' ('omptes Rendus Aract. Peris, Vol. XXXVII, P1. 198-206.

The conclusions of the preceding article are confirmed.
1853 Cauchy. 'Sur la probabilite des erreurs qui affectent des risultats moyens d'observations de même nature.' Comptes Rendus - lered. Peris, Vol. XXXVII, 1p. 264-272.

Shows that the most probable values may sometimes differ from those found by the Method of Least squares.

1853 Biexaymé. 'Considerations à l'appui de la déconverte de Lablace sir la loi des probabilités dans la méthode des moindres carrís.' Comptes Rendis Acad. Paris, Vol. XXXVII, p1. 309-324. -Lionville's Jour. Math., 1867, Vol. XII, Pए. 158-176.

An answer and review of some of Catchy's articles: also maintains that the mean of the sum of the squares of the errors is under all cirenmstances a measure of the precision of the observations.

1853 Cabens. 'Sur la plus granke errem it craimbe dans mu risultat moyen, et sur le systeme de factemes qui rend ceete plas gramde erreur un minimmm.' C'onnpers Remdus Arend. P'ais, Vol. XXXVII, 1p. 326-334.

The system of factors is often very diflerent from that given ly the Methon of Least synares.
 nombre dobservations." Comptes Remdus Iend. I'eris, Vol. XXXVII, P1. 381-385.

An abstract only is given. The result seems to be that the mean is worthy of great confiskence.

1853 Ghevent. 'Elementare Betrachtmgen über die Bildung der Bedingungsleichungen aus gegebenen Bcobachtungen.' Archic Duth. u. Mlys., Vol. NXI, pp. 453-486.
"Bediugungsglechung" is not here used in its usual sense. The paper contains an investigation of the ralue to be taken for x^{2} when $A-B \cdot c^{\circ}=0$, and many values of A and B are given by observation. A certain form for a shown to involve the prineiple of Least Squares.

1853 Liage. Calcul des probubilités et lueorie des erreurs, avec des 'pplications ann' sciences droservation en general, et al ler géorlésie en partioular. Bruxelles, svo.

This is a standard work on the subjeet.
1853 Lidere. 'Sur l'erreur probable d'm passage observe à la lumnette méridienme de loObservatoire royal de Bruxelles.' Bull. - lead. Belgique, Vol. Xİ, l't. II, P1. 303-312.

1853 Quetelet. Théorie des mrobabilités. Bruxelles, 12 mo , pp. 104.
1853 Wolf. Versuche zur Vergleichung der mathemathischen Wahrscheinlichkeit. Mittheil. Gesett. Bern for 1853, 1p. 23-28.

See also 1849 Wour.
1853 ——.Tefeh zur Berchmung der Wahrscheinlichkeit des IVorkommens ron Beobachtug:fehler. Berlin, lith. MS., 4to, pp. 11.

1854 D’Arrest. 'Beitrag zur Methorle der kleinsten Quadrate.' Bericht. Nächsich. Gevell., 185t, pp. 133-136. -Astron. Netchr., Yol. SLl, eol. 35-to.

Points out six new geometrical properties of the probability curve, and shows how its equation may he derived from a certain mechanical idea.

1854 HÉLas. Vémoire sur la probulilite dut ter des projectiles de

1855 B.ant. 'Comparison of the reflnetion of horizontal angles by the methods of depembant direetions abd of dependant amgentar quantities, hy the methorl of least squares.' Rep. Cocost Sumery I. s. for 1854, P1. $63^{*}-70$.*

The first methor is slown to possesse a slight advantage.
1855 leetranu. 'Méthode des moimlors corvés. Mémoives sur la

This solnme renders quite accessible the Latin memoirs of Gauss. It contains translations of pages $208-220$ of the Theoria motns 1809, pages 20-26 of Disquisito de Pallenlis, 1811, and the whole of the memoirs of $1816,1822,1823,1826$ aml 1827 . The memoins of 1823 and 1827 form the bulk of the book, the others being added at the end as "Notes."

1855 Bektrant. 'Sur la méthode des moindres carrés.' Comptes Remhes Accel. Pertis, Vol. XL, Ill. 1190-1192.

Historical and critical remarks made on presenting a copy of the above book to the l'aris deademy.

1855 Gerling. 'Ueber die Schätzong des mittlem Fehlers directer Beobachtungen.' Archiv 1/ath. u. Ihys., Vol. NXV, pl. 219-222.

Contains three pages of corrections and errata to his book (1843).
1855 Gould. 'Rejort......containing directions and tables for the use of Pence's Criterion for the liejection of Donbtful Observations.' Rep. Coast Survey U. S. for 1854, 11). 131*-138*.
lipprinted with a different title in Gould's Astron. Jomr., 1855, Vol. IV, P1. 81-87.

1855 IImgard. 'Disenssion of the probable error of observation with a twenty-six inch portable trausit' Rep. Coust S'or. IT. S., for 185t, 1. 121*.

The prohable error is given as ± 0.072 s.
1855 Liagre. 'Sur la probabilité de l'existence d'une cause d'erreur regnlière dans une série d'observations.' Bull. Acal. lielgique, Vol. XXII, Pt. II, pl. 9-13, 15-54.

A valuable theoretical discussion illustrated with practical examples.
 Amol．，Vol．XXII，pro it－is．

Fere abstract in lroe，Jrish Arcel．，Vol．IV，pp．180－183．
1855 1＇siane（B．）．＇Reporthom the Determination of Longitude hy Moon Cumbinations．＇Rep．（＇onst Nur．V．N．For 1854，11p．109＊－120＊．
＂The small erors which are beyond the limits of hmman percep－ tion，are not distributed aceording to the mode recognized by the Wethot of Least squares，but either with the mifomity which is the orlinary chameteristice of matters of chanee，or more trequently in some arlitary form dependant mpon individual pecnliarities．．．．．＂

1855 Fenort．＇Aljustment of horizontal amgles of a triangrulation．＇ Rep．Cocost sior．C．ぶ，for $1854, \mathrm{pp}$ ． $70^{*}-86^{*}$ ．

This aml many of Schort＇s following papers are very valuable， but they are not insually elear except to those who alrealy immerstand the subject．

18：5 Scnotr．＇Probable error of observation derived from olser－ vations of horizontal angles at any single station，and depending on directions．＇Rep．Coast sur．U．S．for 1854，Jp．86＊－95＊．

A discussion of 350 measurements tahen at eleven stations．
1856 Ank．＇Letter from ．．．［Remarks on Penece＇s Criterion．］＇ Gould＇s Lstron．Jour．，Vol．IV，11r．137－13s．

The Criterion is stromgly opposed．＂．．．the whole theory is defective in its fommations and ilhsory in its resnlts．＂It most he said，however，that some of Anv＇s objections are not supported by very good logic．

1856 Winionk．＇On Professor Amp＇s objections to Peiree＇s Cri－ terion．＇Gould＇s Astron．Jour．，Vol．IV，pp．145－147．

Arrys objections are taken up in detail；some of them are shown to apply equally well to the Method of Least Squares．

1856 Petrers．＇Ueber die Bestimmung des wahrscheinliehen Feh－ lers einer Beobachtung aus den Abweichungen der Beobachtungen yon ihrem arithmetischen Mittel．＇Astron．Vecher．Vol．XLIV，col． 29－32．－Trams．in Rep．Const Sur．U．S．for 1856，pp．307－308．

Let $工 x$ be the smo of the residual errors all taken positice，and u the mmber of direct observations of equal weight．Then I＇eters＇ result is，that r ，the probable error of a single observation is，

$$
r=0.8+5347 \frac{2 x}{\sqrt{n}(n-1)}
$$

See on this fommula 1869 Lïr roth，and 1875 Hemenert
 nation.' Rep. Coust sum. IT. Nor 1855, [1]. 255-2kt.

Several methods are given and illustrated by monerical examples. The paper is of great value to a computer.

1856 S.notr. CReport ol a discussion of the secular varittion in the magnetic declination on the Atlantie and part of the cinlt
 306-337.

The process of dedncing empirical formula for deelination from observations by the Methom of Least squares is explaned and illustrated, as akso that of finding the probable errors of the constants which enter jutn such formula amb of the computed results. Formule are deduced for formeen stations. See ako Rep. C'oust simery for $1855, \mathrm{p} .306$, and for $1859, \mathrm{p} .296$.

1856 Vornänobr. 'Teber die (ienanigkeit der längenmessmgen mit der Messkette anf rerschiedenen Borlenarten.' Zeitschr. Muth. \%. Phys., Vol. I, pip. 142-159.

The precision is regarled as imersely proportional to the length of the line. 'Tables are given showing results for different kinds of ground. See $] 863$ Börscu.

1857 Andrä. 'Fehlerbestimmung bei der Auflösung der PotuesuT'scheu Aufgrabe mit dem Messtische.' Astron. Nuchr., Vol, XLVII, col. 193-202.

Points for which the probalilities of error are equal have an ellipse as loens. The most probable ellipe is assmed to be given by the Method of Least Squares. See liull. muth. phys. Iecad. St. Péters., Vol. VII, p. 145.

1857 D'Arrest. 'Schreiten.... [über , lie Berechmung der Gewichte].' Astron. Vecho:, Vol. XLVII, col. 17-20.

Contains formula for the easy determination of the relative weights of three unknown quantities, ant also remarks concerning the geometrie signitication of weights and their connection with determinants.

1857 Babnet and Hocsel.. 'Calruls pmotiques appliqués omex seien'es d'olsercution.' Paris, swo, l' 1 xvi, 388.

Mostly devoted to the theory of momerical approximations and interpolation formnle. Two pages are given to the Method of Least squares.

1857 Bauk.
Programm des Stuttyarter Polytechmikursus für 1857.

An article on determination of weights, ete.
Trans. Conn. Acad., Yol. IV.

185: Wemavits. Considerazioni sulla theoria della probabilitat.

1857 Bonn. 'On the nise of' Éspuivalent Fractors in the Methot of Least Aghares.' Mfom. Imer. Iced., Vol. V1, 1p. 170-212. - Also privately printed, (ambrilge, 185s, 4to, plo. 36.

It is shown that it is momesessary to athere in mumerical computations to the striet letter of the Method of Least siguatres, and that its "pphation"requires the nse of such numbers only, in the arithmetical processes pecular to it and chameteristic of the Method, as may be dexignated hy one of the mamerals $0,1,2, \ldots .9$, of of the ti:netions $\frac{1}{2}, \frac{1}{3}, \ldots$ 支, or by a product of one of these mumbers by an integral power of 10 ."

1857 Boole. On the Appleation of the Theory of Probabilities to the question of the Combination of Testimonics or Julements. Trums. Sioc. Eitimb. Vol. XXI, pp. 597-65!.

In the first part of this memoir the rule of the arithmetical mean is disenssert. "The result of Bombe"s investigation is that if n observations $p_{1} \cdot p_{2}, \cdots \cdot \rho_{n}$ be made "unn the same quantity, then the most probable value of that quantity is a certain linear function of p_{1}, p_{2},p p_{n}; this Boole demonstrates hy his Calculus of Logie, and the analysis is of so peculiar al character that 1 feel scaredy qualified to express a decided opinion on its merits.the [tinal] result takes the form of the arithmetic mean."-flabiner, Mem. Astrom. Noc. Lomd., 18:2, Vol. XXXIX, p. 124.

In the latter part of the paper Henschel's demonstration is reprodured and iefended against the arguments of Elass; see 1850. See Glalshbr's paper, just quoted, 1P. 115.

1857 Diexger. Ausaleirhung der Benburhtumgstehler much der Methorle der kleinsten Gumbrussmmmen. Mit zullieichen Inrendumg, numentlich art gead̈̈tische Messungen.' Brannschweig, 8ro, Pl' riii, 168.

An excellent elementary text-brok. Gurss's proof of 1809 is followed, with the improvement that the probability of a definite error is an infintesimal. see 1852 Diexaen. Among the practieal questions treated is the thenry of repetitions in angle measurements.

1857 Dosman. 'On an Analogy relating to the Theory of Probahilities, and on the Principle of the Methor of Least Squares.' Puart. Jozer. Muth., Vol. I, Pp. 152-162.

Donkin olserves that if two observations of an manown quantity give $x=6$ and $r=b$, then the most probable valne of,x is $\frac{1}{2}(a+b)$, but that we eanot ragard the arithmetical mean of more than two observations as most probable. Taking .r to represent the true value of the unknown quantity Doxkin says: ". . . it appears a natural and
ohvious assmpption (thongh I do not protemb hatit is is me an as-
 enpressithle in the form $1\left(x-\frac{"+7 \prime}{2}\right)$ d.a." From this the expmential law of facility of error is hemberd.
 Lome. Vol. NXXIX, p. 11s, who dasses it among the proofs of the Method.

1857 LAdake, Sur la mesure de précision des observations méridiemmes faites il lohservatoire royal de bruxelles. Bull. Acwd. Belyigue, Vol. III, P1. :330-3:34.

1857 J'etzeal. 'Fortsetzung des Berichtes ïlser optisehe Untersuchungen. [Ansgleichungstheorie].' Sitzungsber: muth-uat. . Acul. Wどn, Vol. NXJV, Pl' 129-144.

Petzral conclades that the Method of heast sinares is entirely inapplicable in Optics the proposes "die Hethode der numerisely gleichen Jaxima mot Ximmia," which consists in making the sum of the $2 m$ powers a minimm, m being a variable which tends toward infinity as a limit. The development and application of this method is to constitute the First Part of Vol. Ill of his work on Opties. This method was mentionel liy Larmace in the Thiorie. . . . des Irobu bilités, 1. 345.

185' Sawtscu. Die Inmenhun! der Wuhrseleinlichleitstheorie
 oder die Methode der kleinsten Qundrate. (Russian). St. Petersburg, 8vo. -German edition, Leipzig, 1863, 8vo.

1857 Vortänder. 'Ueher das geotätische Vorwärts-Einschneiden.' Zeitschr. Muth. и. Phys., Voł. I1, pp. 299-316.

A practical application of the Method of Least Squares.

1857 Wrede. 'Nigra ammärkningar rörande minsta quadratmethodens tillämpning.' Ofèers. . Icat. Förhandl. Ntockhohm, Vol. XIV, pp. 73-81.

On the error ellipse.
1857 Zecu. Ënludung zur ukientomischen Feier des Geburtstu!fs des hönigs von Ẅ̈ttomber, webst emer Abhumdlung zur Methode der kleinsten Quudrute. Tülingen, 4 to.

The first exhanstive disenssion of the adjustment of indirect olservations sulyeet to comlitional equations. See Jordan, Elemente der Termessungshumel (Stuttgart, 1877, 85o), p. 6.
 plication mumivigu de la méthole des moimbes carris, et à contrôler les résultats obtemus par cette mithome.' Bull. fhys. math. Atod. st. P'éters , Vol. XV'll, col. 289-298. - Mél. muth. Acont. st. J'éters., Vol. 11, 11]. 602-614.

A mathine for eakenhating the sums $u_{1}^{2}+u_{2}^{2}$, $+\pi_{3}^{2}+\ldots$, and $u_{1} b_{1}+u_{2} b_{2}+n_{3}{t_{3}}^{+} \ldots$

1858 Casosiats. 'Intorno at alenni puntidella theoria dei minimi quadrati.' Ammuli di Meth., Vol. I, plo 32:9-34.

Discussion hy the use of determinants, ete.
 Britain amel Irehemel. Icronnt of the Olservations mel C'alculations of the Primeijul Trimugulutions and of the Figure, Dimensions amd
 4to, pl' xvii, $九 82$, with an Atlas of 28 Plates.

The whole triangulation is adjusted by the Method of Least squares. The methorl of comrelatives is explanel at length and illustrated for a case involving seventy-four observations subject to thirty-nine conditional equations. An inspection ol this book will give students an idea of the stmpentous calenlations which men of science umlertake and exceute.

1858 Didiox. Calcul des probabilités appliqué an tir des projectiles. Paris, 8vo.

For an exposition of this subject see ふunnet's Llimiomuire des

1858 Grțert. 'Drei Grössen i', y, z, deren Summe die gegebene Grösse s ist, siud dureh Messung bestimmt worden, und man habe dadureh für diese Irei Grössen respective die W erthe a, b, c erhalten. Ha diese Werthe mit Beobachtungsfebler behatet sind, und ihre summe also im Allgemeinen nicht genan s ist, so soll man dieselhen so verliessern, lass die verbesserten Werthe trenan die summe s geben, und die summe der Quadrate der Verbessernagen ein Minimm ist.' Irekie. Math. ". Phiss, Vol. XXXI, Pl? 480-481.

1858 Jelimes. 'Démoire sur la probabilití des erreurs dans la somme on dans la morenne de plusieurs observations.' Ammil di Muth., Vol. I, Pl' $76-88,149-155,227-237$.

Errors subject to the law of facility $p(x)=$ constant are particufarly disenssed.

In the Appendix particularly are applications of the Mathod of Least squames．

1858 lintren：．＇Mamual théoretique de l＇appliation de la méthotle

An excellent little text－look，in which（i．ass＇s first demonstration is followed，with the improvement that the probability of a single error is an intinitesimal．
 Dreireks．Prag，4to．

1858 Schotr：＇Accomit of the method and fommia for the deter－ mination of the astronomieal latitule hy means of the zenith telescope as used in the survey of the coast of the United States．＇Rep．Coust s゙ure！I．N．for 1855，pp．324－334．

Weights amp pohable errors are fomm．The notation nsed on p． 333 is momsual and meonth．

1858 ＇Tanéry＇hefr．＇Siur les fractions continues．＇Limmeille＇s Jout：Mith．，Tol．ITI，1＇p．289－325．

Translated from the Rnssian by Biesayme：treats of interpolation by the Method of Least Squares．

1858 ＇Tonébybeff．＇Sur l＇interpolation des valeurs foumis par les observations．＇Bull．phys．muth．Aeret．St．Péters．，Vol．XVI， col．35：3－35\％．—＿Mél．muth．．｜cun．Št．Péters．，Vol．II，1p．345－351．

1858 Vorlänole．＇Zur praktischen Ceometrie．＇Zeitscher．Muth． u．I＇lys．，Vol．IIT，pp．189－193．

On the adjustment of a quadrilateral whose sides and diagonals are measured．

1858 Vorlänorer．＇Bemerkngen über das mmerische Elimi－ niren bei geodatischen Operationen．＇Zeitsc／u：Muth．u．Phys．，Vol． III，P1．16－22．

On methots of abridging the computations．
1858 （iehinst．＇Brmerkungen üher das indirecte Eliminiren bei geodätischen Arbeiten．＇Zeitsc／rr．Muth．u．Phı／s．，Vol．IlI，1p．3ヶヶ－ 382.

Referring to the preceding article of Vombinder．
 Messumfert. Leipzig, 8vo, plp, 5.5.

Besiles the Tethod of Leas Nquares shorter apmoximate processes are given.

1858 Dowater 'Veher die Emittehng des wahrscheinlichen Fehters bei längremmessungent. Archic. Mthth. II. Ihgse, Vol. XXXI, 11. 225-22s.

Opposes Varnännmers method given in the preverling.

1859 Tonébyonerf. 'Sur l'interpolation dans le cas d'm grand nombre de dommes fonmies par les observations.' Wem. Arect. St. Piters., Vol. I, No. 5, 81 pl .

185: 'Tenebsconeff. 'sur l'intequolation par la methote des moindres carris.' Vém. Areed. Nt. Péters., Vol. 1, No. 15, 24 pp.
 methoden drs C'entrulbureuns der europäischen tiradmessung: I. Die Methode der hleinsten Quadrute. If. Dit Ammemhmy dervellen aut' Gerdäsie. [Lith. MS゙. ! 4 to.

1860 Dedakind. 'Teher die Bestimmung der Präcision einer Beobachtungsmethoile nach der Methode der kleinsten Quadrate.' Vierteljah's. Gesell. Zürich, Vol. V, pp. 76-83.

The most probable value of the measure of precision h is fomm to be $\sqrt{\frac{u-1}{2 \sum x^{2}}}$ and not $\sqrt{\frac{11}{2 \sum x^{2}}}$. See 1566 Bönscul.

1860 Hultmans. Sur les moindres corrés. Stockholm, 4to.
1861 Ankr. 'On the Alyebrachl and Tumerical Theory of Errors of Ohservations and the Comblinatiom of Obserortions.' Cambridge and London, 8 vo, 11. xvi, 103. --Second ed., 1875.

Only Laplace's Theorie anmlytique des Probubilités was consulted in preparing this book, and as a consequence it is umreadable except by those already thoroughly acquainted with the sulbject.

1861 Borchardt. 'Ueber luterpolation mach der Methode der kleinsten Qualrate.' Crelle's Jour. Math., Vol W'Ill, pl. 270-272.

On Tchébycuef's methorl; see 1858 and 1859.
 Bezicinug anf die Methode der kleinsten Quadrate. Necher. Cesell.

Contains among other matter a detailed history of the diseovery of the persomal equation. See 1866 linnut.

1861 S'Hort. 'Jccount of C'uvenr's interpolation formula.' Rep. Coust Sur. LT. S. for 1860, P1, 392-396.
This is a free translation of Cautuřs atidele of 1835. The methon is illustrated by an example.

1861 Wincker. 'Yeber den mittlem Fehler der Kettemmessungen.' Zcitschr. W/uth. I. I'!!心., Vol. V',]p. 109-119.

An excellent practical paper. The me:n error is fomd to be proportional to the square root of the length of the line.

1862 (Gembsa. 'Uelor Genangkeit der Functionen bedingter Beobaehtmagen.' Arehir. Math. ". Ihy/s. Vol. XXXV1II, ן p. 379-381.

Contains additions and corrections to his hook (1843).
1862 Sembel. Ueber eine Anwendmog der Wahrsheinlichkeitsreehmong bezüglich auf der Schwankumgen in deu Durehsichtigkeitsverhältnissen der Luft. Sitzungsber. Lidiersch. Acad., Yol. II, pp. 320-349.

1863 Bürscn. 'Veher die Genanigkeit der Winkel- und LinienMessungen.' Zeitse/r. J/ath. ". Ihys., Vol. VIII, pp. 321-341.

It is comeluded that the precision of angle measurements is proportional to the square root of the number of single observations, or to the nmmer of repetitions; and that the precision of linear measmements is inversely proportional to the square rout of the length of the line. The articles of Tombinime (see 1856) are discussed as also is Harecaer's (1852) treatment of this subject.

1863 Fiemben. 'Die Praxis der Methude der klfinsten Quadrate f̈̈r die Betlarghisse der Inf̈̈n!er bewbeitet.-Erster Theil: Elementare Darstellung der Shethode nebst Sammlung vollstandig berechneter physikalischer, meteorologischer, geodätiseher und astronomischer Aufgaben, welche anf lineäre und transcendente Gleichungen führen.' Bramsehweig, 8vo, ple viii, 114.

An excellent little book, although some of the examples are rather long for a begimer. The prineiple of Least squares is assumed.
 Leljelussache. (rescll. Zürich, Vol. VIII, 111. 2:j-240.

On the sarions methods of forming and solving momal equations, of deremining weights, etc.

1863 Lonatto. Orer de watrechijnlijkhed van gemiddelde nitkomsten nit een groot aantal wammemingen. Arohief. Wish: Genouts, Vol. Il, Ill.96-127.

18 G4 Chanvener. 'Method of Least Symares. Appendix to
 Vol. 11, Ill. 469-5b6. - Also as separate issue umber title ' 1 Treutise on the Method of Lerest ígumers,....' Philatelphia, 1stis.

This is manly an abridement of ENCRE's memoirs of 1832. Excke's demomstration of the rule of the arithmetieal nean is in particular set forth with confidence. The reasoning showing that if $\varphi(\cdot p)$ is the probability of the error $x, \phi(x)$ de is the rigorons probar hility that an emor falls betwean and $r+d x$ is rery illogical. At the end are valuable talles, two of the probability integral, and others for using Pences's eriterion which is given nearly in the words of its author ; see 1852 and 1856. C'HAUVENET adds ain approximate eriterion for the rejection of one donbtful observation, which is derived "directly from the fumbanental formula upon which the whole theory of the Hethod of Least Squares is based."

1864 Chmistoffei.. Brstimmumat einer Oherfläche dweh lotale Messumgen. [Berlin], 4to.

1864 Demondan. 'On the Thenry of the Errors of Ohervation.' Tivens. Cremb. Phil. Nors., Vol. X, pll. 409-42\%.

This is a very valuable contribution to the theory of the arithmetical mean. It is shown that the average "is not merely the mem velue of all the !ficen culues: it is also the merne supposition of all possibie suppositions as to the mode of ohtaining that value," lut that "the arerage is the most probable realt only so long as we knome nothing of the law of tacility of error." See Glasner, Mem. Istron. vac. Lond., 1872 V Vol. XXXIX, p. 90.

Drllonas suggests the name "crition error" instead of probable emor. The entire paper, like all of Dellonain's writings, is very interesting and suggestive.

1864 schotr. 'Development of Bessel's function for the effect of periodic forces, for durations of periods frequently occuring in meteorological and magnetieal investigations; with examples.' Rep. Coust surepy I. N. for 1862, pl. 232-235.
sce abore 1828 Beassil.

1864 Woomousie. 'On huterphation, Simmation, alml the Adjustment of Nemerical Tables.' Lomel. Assurmeme Lue!., Vol. XI, pp. 61-88, 300-332; Vol. NII, 1p. 136-175.

1865 Brünvow. 'The Xtethot of' Least Sguares.' Sphericel Astronomy (First English from the secoml German edition, London and New York, 8vo), pp. 40-60.

A very elementary sketch of the Methon.
1865 Grooss. 'Begrümheny der Methode der hifeinsten Quadrate.' Kreutznach, 8 vo, pp. 32.

A doctor's thesis. Contains a deduction of the law $y=c e^{-h h^{2} x^{2}}$ from the axioms that the curve is symmetrical, that it has the axis of x for an asymtote, that the equation must be a simple one, etc. The discussion is not rery satisfactory.

1865 'Tait. 'On the Law of Frequency of Error.' Trans. Soc. Edinb., Vol. XXIV, 7 pp.

The principle of the insestigation is that an error arising from any souree maty be compared to the deviation from the most probable result of the number of white or black balk obtained by a great momber of drawings trom a bag containing equal numbers of white and black balls. The idea and the algebrate work is nearly the same as Quetelet's investigation of 1846 . See 18.2 Glaisiler.

1865 Tomiunter. - A History of the Mathematical Theory of Probubilit!, from the time of Pascal to thut of Laplace.' Cambridge and London, 8 vo, pp. xvi, 624.

This work is invaluable to all stulents of the Theory of Probability and I have to acknowledge my great indehtedness to it in preparing the early part of this list. None hut those who have undertaken such historical researches can form an idea of the immense amount of labor which most have been done in preparing a work like this of Todiunter.
'Todiunter's analyses of the memoirs of Lagrange and Laplace are finl and clear, and his commentary on Lapiace's proof of the Method of Least Synares greatly simplifies the tedious investigations of the Theorie emalytique des I'robubilités. An accomnt of Gauss's proof of 1809 is not given.

1866 Börsch. 'Ueher die mittlem Fehler der Resultate ans trigonometrisehen Messungen.' Archiv. Muth. и. Mhys., Vol XLVI, pp. 40-44.
$\sum x^{2}$ being the sum of the squares of the residual errors and n the number of direct observations, the mean error has been taken as

[^120]$\sqrt{\frac{\sum r^{\prime 2}}{n}}$ and $\sqrt{\frac{\Sigma-r^{3}}{n-1}}$ The paper compares the results given by these two formule and aceords the preference to the first. See 1816 lisssist, 1816 Gatise, 1823 (bauss and 1860 DEbakind.

1866 Natani. 'Quadrate (Methode der kleinsten).' Koffinume's Mruthementisches 11 Orterbuch, Vol. V, pp. 14-33.

Gauss's proof of 1808 and llagen's of $18: 37$:ure given, and free use is made of Wintstein's work of 1849 . The familian equation expressing the law of facility of error apears here muder the strange notation $\varphi(\gamma)=\mathrm{C}^{-a^{2} \gamma^{2}}$.

18u6 Limau. 'Ueber die persönlichen fleichungen bei Beobaclitungen derselben Erseheinungen durch verschiedene Beobachter.' Riper. f: pheys. Techuik, Yol. 1, 1p. 202-218, 306-321; Vol. II, 1’p. 115-156.

This is a tramsation from the Moniteur scientifigue for 1865. It gives a detailed history and disenssion of the subject of personal equation. See 1861 Peters.

1866 Senotт. •The problem of determining a position by angles observed upon a number of given stations. Solution of Gauss, with example.' Rep. Coast Survey U. ふ. for 1864, ph. 116-119.

The method is taken from Gerlintis book, see 1840.
1866 Sinotr. 'Report on the method of reduction, and results of the connection of the Epping base line with the primary triangulation in the Eastern States.' Rep. Coast Surce! U. S. for 1864 , pp. 120-144.

A valnable practical paper containing determinations of probable errors of observations, and the discussion of a case of adjustment in solving thirty-five normal equations and fifty-eight equations of correlatives.

1866 Whenler. 'Allgemeine Sätze zur Theoric der unregelmässigen Beobachtungsfehler.' Sitzungsher. Akad. Weim, Vol. LIII, Pt. II, 11) 6-4l.

An investigation of relations hetween mean values of powers of errors and expressions for probability of errors.

1867 Avdrä. Den Danske Gradmathing. Vol. I, Kopenhagen, tto, pl'. 608. Vol. 11 in 1873 , pp. 504.

The atjustment of indireet observations sulyeet to conditional equations is fully treated.

1867 Hagen. 'Gromdzüge der W'rhoseheimlirhlit its-Rechmm!g.' Fecond edition, berlin, laree 8 vo, phe $x, 18$.

This is rewritten from the edition of 1837 . 'Tlue proof of the law of facility is given substatially the same as before. The distinetion between true and compuled errors is not howere elealy drawn.

The book is an exeellent one for students and enginects, the greater part being of a practical character.

1867 Mansen. 'Vom der Methode der kleinsten Quadrate im Allgememen mul in ihrer Anwendung anf dic dicodäsie. Sbhumfl. S̈̈chsisch. (resell., Vol. XIII, pll. 571-806. - Also sparately, Leipzig, 8ro, 1pl 236.

In the opening pages the law of facility $\varphi\left(\cdot r^{2}\right)=h \pi^{-\frac{1}{2}} e^{-h^{2} x^{2}}$ is detneed hy Gauss's method of $1809, x$ being regarded as the residual or eomputed error. The remarks on page 797 concerning probable errors seem to he true and valuable. The hook is particnarly full in the treatment of conditioned observations, and is a valuable one for geodetic engineers. See 1868 and 1869 for supplements to the work.

1867 Sonotr. 'Results of the primary triangulation of the coast of New Englam, from the north eastern boundary to the vicinity of New York.' Iifort Contst surrey U. S. for 1865, plo 187-203.

A eontinnation of schotr's articles of 1855 and 1866 , deroted mainly to the discossion of the probable errors of the linear and angular measurements of the triangulation. A comparison is also given of the measured lengths of three base lines with the lengths as computed throngh the triangulation. The paper is a very vafuable one.

1867 Thompson aml 'Tait. EExperience.' Chap. Ill, of their Trentise on Natural Philosmphy, (Oxford, svo), Vol. I, pl. 303-320.

Herschel's proof (1850) is given and spoken of as "simple and apparently satisfactory." See below 1872 Soulimimen.

1867 'Trméstcheff. 'Des valemrs moyens.' Rec. Sei. Math., Vol. II. -Liourille's Jour. Muth., Vol. XII, pp. 157-184.

On "Esperances mathématignes," their arithmetical means, etc.

1868 Frisinsi. 'Sulle piì vantaggiosa comhinazione delle osservazioni.' Mem. Istit. Lomberodo, Vol. II, pl. 1-21.

The principle of Least hquares is proved, assuming that the arithmetical mean gives the most probable result.

1 s68 Mansen. 'Fortgesetzte geodätisehe Tutersuchungen, bestehemd in zelm Supplementen zur Abhandhug von der Methode der
kleinsten Quadrate im Ahgemeinen und in ihrer Anwembung anf die

For review see Jahlo. Fortselrr. Ahath, Vol. I, 1. 388.
1868 Helmart. 'Sturlion ibler rationelle Vermessungen in Ge-
 pp. $78-120$, $16: 3-186$.

See .lahth. Fortsehr: Muth., Vol. I, p. 389.
1868 Mevike. Trber die Mrthode dor hteinsten Phatrate. Leipzig, 8vo.

A doctor's dissertation containing historical and eritical information relating to deast אyuares. I regret that 1 have heen mable to see a copy of it.

1868 Lebbubengé. 'Études de bahlistigue exprimimentale.' Mém. Acat. Belgique, Vul. XX, Pl. 1-94.
Contains applications of the Method of Least Squares.
1868 Millel-Haufifels. 'Mößere Markscheidekmst. Proktisehtheoretische Inleitum! beim Murkscheilen die vermeirllichen Fehler zn umgehen, die nmeermeidliehen aber in einfucher und streng wissenschuftlicher Weise zur werhessern.' Wien, svo, pp, xii, 291.

A valuable book for mining engineers. In the first or practical part processes and their applieations are given, while the proofs follow in the second part. An attempt is made to show that the arithmetical mean is the most probable result by the theory of combinations, all true errors being taken as equal. The term ribsolute weight is introduced for $/ 1^{2}$. Gacss's first proof of the Mlethod of Least Squares is given.

1868 Schiaparelli. 'Sul prineipio della media arithmetica nel caleolo dei resultati delle osservationi.' Instit. Lombart. Rendiconti, Vol. I, pp. 7 万1-778.

Contains a new demonstration of the validity of the arithmetical mean. Sce 1875.

1868 Stone. 'On the Rejection of Discordant Observations.' Month. Not. Astron. Soe. Lond., Vol. XXVIII, jp. 165-168.

Perife's and Chatrenet's criteria (see 1852 aml 1864) are regarded as troublesome to nse and as hased on an ermous prineiple, and a criterion is proposed, which embolies, in the opiniou of the anthor, the true gronnds on which the judgment rests when rejecting discorlant observations or mistakes. See below 1873 Glatsiner and Stone.

1869 Dones. 'Sullat media aththmetica vel cateolo di compensa-

On Exeke's demonstration of the aritlmetieal mean, amd on simmanembis article of 1868.

1869 Fai me blano. 'Truité élémontaire du eulenl des ervenrs, avec des tubles stériotyrées, omrage utile à ceur qui culticent lis seiences d'obsereation.' Paris, 8 vo, pp. vii, 72, xוא.
'The tables are the best part of this ombrage, but in that giving the values of $\sin ^{2}$ there is at least one dangerons error. This was one of the first hooks on the Method of Least Squares which I read, and I take this opportunity to warn young stmbents against it. The text is fall of typographical and other errors and the subjeet is presented neither clearly or fully. The list of literature at the end does not contain the names of labeenhe, lyors, Evoke, Bessel, Ellis, or Hersonfl, gives only one work by Hassen, and does not mention Gauss's Therria motus..... The book deserves a spedy oblivion.

1869 Galton. 'Hereditary Gemius; an Inquiry into its Lams and Consequences.' Lomdon, 8vo. -Amer. edition, 1870.

The exponential law of error is used in dividing mankind into grades of intellect. Quetelet's numbers (1846) are employed for this purpose and are given in the appondix.

1869 IIansea. 'Entwickelung enes nenen veränderten Verfalmens zur Ausgleiclung eines Dreiecksuetzes mit besomlerer Betraehtung des Falles in welehem gewisse Winkel rorans bestimmte Werthe bekommen sollen.' Abhandl. Sächs. Gesell., Vol. XIV, pp. 185-287.

1869 Helmert. 'Beiträge zur Thenrie der Ausgleichung trigonometriseher Netze.' Zeitschr. Math. ". Phys., Vol. XIV, pp. 17t-208.

Sce Jahb. Fortschr. Math., Vol. II, p. 835.
1869 Jompan. 'Ueber die Bestimmung fer Genanigkeit mehrfach wiederholter Beohachtungen eimer Unbekannten.' Istron. Ntachr, Vol. LAXIV, eol. 209-226.

Contains a method for finling probable errors from the $\frac{1}{2} n(n-1)$ differences between n observations taken two by two. See below Andrä.

1869 Anjurä. 'Schreiben.... [om Bestemmelsen af den sandsymulige Feil verl Hjaelp af Iagttagelserues Diffentser].' Astron. Nuchr., Vol. LXXIV, col. 283-284.

Oljeets to Jordax's method on the gromul that the differences are not independent. See 1872 for eontinuation of this disenssion.

1869 Línotn. "Bemerkung üher die bestimmang des willuscheinlichen Fehlers.' . Astrom. Vierhr., Vol. LXXII], col. 187-190.

If "t be the mmber of observations and of that of the manown quantities, the probable emor of a single whemation is lomm to be

$$
r=11.84533 \frac{\sum 1}{\sqrt{11(11-9)}}
$$

This is an extension of the formula given by l'eters in 18:5f. See 187611 ELmeme.

1869 Romets. 'On the Vabiabily of l'ersonal Equation in

A discussion of interesting experiments.
1869 'Tonntrater. 'On the Method of Least sipuares.' Ticus. Comb. Phit. sion, Vol. NI, pp. 219-238.

On page 9 of the First supplement (1815) or on page 539 of the national edition of the Théorie....tes Pioh., Lablare gave, withont demonstration, a certain formula. "The primary object of this communication is to demonstrate the result which as I have stated Laplace merely emmeiated..... A seeondary object of the commonication is to develop Laplane: own process of investigating the method of Least Syuares; some of the results which he olitained for the case of tro elements are here demonstrated to hold for the case of any number ol elements."

1869 Whtson. 'Method of Least Squates, Theory of the Combination of Observations, aml Determination of the most probable system of elements from a series of ouservations.' Cha]. VII of his Theoreticul Astronomy (Philadelphia, 8vo), pן. 360-425.

Au elementary sketch of the subject according to Gat'ss and Excke.
[1869] Thene. Undersogelse af Omlobshevaegelseni Dobelstjerne.
"Tumen hat gezeigt dass der wahreheinlichste Werthe bei durch Schätzung ermittehten Dopıelstemistanzen dis geometrisehe Dittel ist."-MElaERT, Ausgleichemgstrechumu, D. 95.

1870 Chofton. 'On the Proof of the Law of Errors of Observations.' Phil. Troms. London for 1870, pł. 175-188.

The objeet of this paper is to determine the law of facility of error on the hypothesis that an error arises from the joint operation of a large mmber of small sources of error, positive and negative errors not being equally probable. The investigation is not very elear.
18.0 L.a\%nats. 'Onswhe problems in the Themy of l'robabilities.' Lomil. Lssurcture Alı!!, Vol. XV, リr. 244-257.

This is framslaned from the German. It treats of the general term of the bimmial $\left(\frac{1}{2}+\frac{1}{2}\right)^{m}$ when m is very lange.

1870 NEwजlis. Lärobok i minsta gemeleat-methoder. Ibo, 8 ro, plo 109.

For review see Bull. Wuth. et Astron., Vol. 11, 111. 134-136.
1870 Santini. Compendiato expesizime del modo piin vantaggiosa di resolvere una serie di equazioni lineari, risultanti da operationi tuti nguahmente probahili, per la determinasione degli elementi di máa proposta teorica. Mem. Istit. Fenetu., Vol. XIV.

1870 Trhéscomefr, 'Formule d'interpolation par la méthode des moindres earrés.' Jém. ''ouroneres Atert. Belgique, Vol. XXl, (Ap)pemtix to "N. Majewski, Hemoire...."), ${ }^{2} \mathrm{pp}$.

See Juhicl. Fortsehr. Math., V.l. 11, 1. 116.
1870 W'orf. 'Mumllunch der Muthemutik, Ihysik, Geodësie und Istronomie. Zürieh, 2 vols. svo. Vol. I (1870), pp. xii, 492; Vol. II (1872), pl' viii, 459.

This rahable work of reference contains a brief sketch of the history of the Mcthod of Least siguares, with a short development of its theory according to 1832 Eveke.

1871 Ambe. "A Historical Note on the Method of Least Squares.' Gmer. Jour. Sci., Vol. I, 11. +11-415.
Points out that the Dethod was molemenenty diseovered and pulbished by Anrats in 1808, and reprints a portion of the original investigation. Interesting biographical notes relating to Ankan are also given.

1871 Findvee. 'Die Drieckismeze vierter Orimumy, uls Grouchlu!fen yearlätischer Detwi-Autumhmen zu technischer oder stantswithscheftlichen Zureken.' \ünchen, svo, plo xii, 261.

Stumerons ex:mples of adjustment are given. The theory and practice of the subject are presentel in lifferent chapters. It is an excellent book.

1871 Glabiter. 'Tables of the Error-fimetion.' Lond. Phil. Ma!!, Vol. NLII, plp. 431-436.

An acconnt of Kramp's, Bessel's, Excke's and other tables of the values of the prohability integral, with a new table of values trom $x=3.00$ to $r=4.50$.

1871 Jomban. Teber die (remangkeigt cinfacher geotatischer Pmbthestimmmingu. Zeitsche. fiom Math. u. Ihys., Vol. XVI, If. $397-413$.
 ren Zahl ron Beobachtungen mach der Methode der kleinsten Quadrate.' Theoretische Astronomie (Brannschweig, 8vo), Hp, 328-379.

An elementary sketch of the Method of Least squares.
1871 Mrnming. 'Zur Theorie der kleinsten Quadrate.' Bull. stcud. St. Péters., Vol. XV1, col. 305-308.

On the solution of nomal equations, determination of weights, ete.
1871 Petels. 'Quadrate der Zahlen von 1 bis 10,000 .' Astron. Tufeln und Formelm (Leipzig, svo), 1'p. 151-169.

Deverves a place here as an aid in the Method of Least Squares on accomt of its great convenience, being arranged like logarithms.

1871 Scnott. 'Method of adjustment of the secondary triangulation of Long Iskand Sound.' Rep. Coust Sur. U. S. for 1868 , pp. $140-146$.

1871 Zachariak. 'De mindste Quadruters Methode.' Nyborg, 8vo, pl'. viii, 234.

This is an excellent text-book. See review in Juhrl. Fortschr. Muth., Vol. III, 1. 95.

1872 Diexier. 'Ueher einen satz der Wahrscheinlichkeitsrechnung und damit zasammenhängende bestimnate Integrale.' Abhandl. Bühmis. Gesell., Vol. V, 44 pl.

See .Juherb. Fortschr. Wath., Vol. IV, p. 89.
1872 Glatsifer. 'liemarks on certain portions of Laplace's Proof of the Method of Least Squares.' Lond. Phit. Mag., Vol. XLIII, pl. 194-201.

The matter of this paper is mostly inchuded in the following.
1872 Glasher. 'On the Law of Facility of Errors of Oliservations, and on the Method of Least Squares.' Mem. Astron. Soc. Lond., Vol. XXXLX, pp. 75-124.

This is jerhaps the most valuable of all the theoretical memoirs on our list, presenting as it does clear critical analyses of the principal proots of the law $\varphi(x)=e e^{-h^{2} x^{2}}$ and of the Method of Least Squares. It has been of great value to me in preparing this list.

Amens's first proof is examined at lengh amb its ratsoning shown to be defeetive. Then are amalysed in arder: 1. Gatss"s lisst pronf,

 cations and lronšs eriticisms; 3. Gavas's second demonstration ;
 5. 'Par's and similar proofes: 6. Dovkw's proof of' 1857. By means of the index at the emat of this list the reader may refer back to these papers, where I have often gnoted Ghasume's remarks.

It is consilered muroved that the arithmetical mean gives the most probable result. (batss's secome proof is regariled as resting upon an arbitary assumption, which practically asommes the point to be proved. Laplane's method is considered as giving the only correct and philosophical amalysis of the question, and this Ghanmer shows leads directly to the expmential law of facility, provided that the soures of eror are very great in momber and that positive and negative erross are equally likely. "Tan's proot" is fomm insutticient. The proofs of 1837 llabeng, 1838 Bessel, 1844 Donkin and $180^{\circ} 0$ Choftos are not disenssed.

Pences's criterion for the rejection of donhthen observations is regarded as "destitute of scientific precision." ".... under no circumstances have we a right to say an observation has no weight, though it may le better to give it mbe than to give it as much as the best." The inethou of assigning weights in such cases is hinted at ; see below 1873 Glatsiler.

For acconnts of the contents of the memoir sec Monthely Notices, Vol. XXXLI, 1. 241, amb.Jum\%. Fentscher. Ihuth., Vol. IV,]. 92.
 der kleinsten Durdmate mit . Imvendmagen ont' die Geodïsie und die Thuorie der Messinstrmmente,' Leipzig, 8 vo, pp, xi, 348.

The expmential law is regarded as a law proved by experience. The arithmetical mean is sail to be the most phtarsible value. Both the first and second pronts of Gistss are giren, and the second is regarded as better amb more gencral.

While the theoretical part of the look is not satisfactory, the practical part renders it raluahle for geodetic engineers. Conditioned observations in particular are well treated.

1872 1Hhgafir. 'An application of an Exponential Function.' Troc. Imer. Assoe. for 1871, M. 61-63.

A certain statute relating to errors in comage is discussed.

1872 Iforkisson. On the calculation of empirical formula. Messenger Math., Vol. II, P1. (95-67.

A method less accurate than Least Squares.
Trans. Conn. Acad. Yol. 1 IV.
28
Oct., 187%.

1RT: Jombsis. 'Verglemehmg der Gemanigkeit versehiedener (imad-

The mean errors of 17 angle measmements and 21 base line measurements are given, the later lor a line one kilometer in length. 'The greatest mean error of a base line measurement is 63.2 mm . and the least 0.12 mm , the tirst being measumed in 1739 and the werond in 1860 . This is one of those papers in which the results of lourg continned research and labor are expressed in a few lines.

1872 Jombas. 'Ueber die Jestimmung des mittleren Fehlers durch Wiederholmgg der Beobachtungen.' Istron. Vrache, Vol. LXXIX, col. 21:9-222.

On the method of dedncing probable errurs from the $\frac{1}{2} n(u-1)$ differences of $/ 4$ measurements, given by him in 1872. See next article.

1872 Anmä. 'Ueber rlie Bestimmung tes wahrscheinlichen Fchlers dureh die gegebenen Ditterenzen von m gleich genanen Beohachtungen einer 'Unbekannten.' Istron. Techir., Vol. LXXIX, col. 25ヶ-272.

An investigation of Jomnax's method leading to somewhat different results. See Juhrb. Furtschr. Math., Vol. IV, 1. 577 , and Fiull. Muth. et Istron., Vol. IS,]]. 27. See below 1876 IIelmert.

1872 Jordan. 'Ueber die Bestimmung des Gewichts einer durch die Methode der kleimsten Quadrate bestimmten Unbekannten.' Zeitschr. Math. u. Plys., Vol. XVII,]'p, 350-352.

A simplification of demonstrations of two methods.
1872 Lonexz. Udjewning af Jagttagelses fyl. Tidsskr. for Muth., Tol. II, 1]p. 1- . , 97, 125, 162.

See Juheb. Fortschi. Muth., Vol. IV, p. 94. The sime Jommal contains articles by Zacharlae.

1872 Rumpen. ' I'eber den Zustmmenhang der vom Gauss begrändeten Methode der kleinsten Quudrate mit der algehruischen Theorie der quadrutischen Formen.' Bomm, 1872, svo, pp. 40.

A doctor's thesis. The conditions for minimum squares, etc., discussed by belp of determinants.
$18: 2$ Schlönalcu. 'Ueber die liestimmung der Wribrscheinlichkeit eines Beobachtungsfehlers.' Zeitschr. Math. u. I'hys., Vol. XYII, pl. 87-88.

Herscuel's proof is taken from 1869 'Thompson and 'Tut, and pronounced " cinfache mol anschanliche."

187: W'nomotses 'On the Philasophy of Statistics.' ('mop) to

I popular article copied largely from Quemenet.
18ヶ2 Zacmanine. 'Note betreffend die Bestimmung des mittleren Fehlers.' Astron. Verchi, Vol. LXXX, col. 6i-io.

Oflers withont demonstration a new formula for the mean error of a base line measured in several portions. See 1873 Ifement and Jomban.

1878 Brows. 'On the Applieation of the Binomial Law to Statistical Enquiries, illustrated ly the Law of the firowth of Man at difterent ages.' Lond. Assum: Mag., Vol. XVII, pp. $340-351$.

187: Chookes. 'On the l'robability of Error in Experimental Research." Qumert. Jour. siri., Vol. III, [1]. 1-18.

Contains some formula for weights taken from 1838 DeMoroas, with an application to determining the probability of error in the atomice weight of thallimm.
187. DeForest. 'On some llethods of Interpolation applicable to the graduation of irregnlar Series, such as Tables of Mortality, de. ©c.' Rep. Smithsonion Inst. for 1871, 1p. 273-339; for 1873, l11. 319-355.

For continuation see below under 1576 .

1873 Ifelnert. 'Bestimmung des mittlern Fehlers der Längen messungen aus der Differenzen ron Doppelmessungen.' Astrom. Vucler:, Vol. LXXXI, col. 49-52.

A comparison of the common formulat with the one given by Zachariae in 1872 , showing that the latter is less accurate.

1873 .Jornan. 'Ueher die Berechnung der mittleren Fehlers ciner Basismessung.' Astion. Virhor, Vol. LXXXI, mol. 51-56.

Also a eriticism on /achanhav̌: formula.
1873 Zachamae. 'Ueber die Bestimmung des mittleren Fehlers einer in meheren Theilen doppelt gemesvenen Grundlinie.' Astron. Vrullo: Vol. LXXXI, col. 225-22n.

Defends his formula against the above. See Jolerb. Fortscler. Mutli, Vol. V, p. 127.
1873. Jans. Sur lu pmolulilite du tir ot lu méthode des mointres entrés. Paris, 8 m .

 116-120.

Concerning the solution of mormal ertuations.
 tionse dul lir. Paris, sto.

1873 Lautest: 'Tratit dee culcell des probubilités.' I'aris, Svo. 1'1. xii, 268.

This is intemed as an introduction to the study of Laplace's Throrie.... dis lronl. St the emd is the best list of lit crature on the Method of Least sypures which I have seem.

1853 Neweomb. 'A mechanical Representation of a familiar Problem. Monthly Votices Istron. Soe. Lont., Vol. XXXIII, pp. 573-574.
"Given at seremal epochs, ohserved values of a quantity which varies mitormly with the time, to find by Least squares the most probable values of the two constants which fix its value at any time." The analogy of the question with ne of equilibrim in mechanies is pointed ont. The solution of a system of linear equations by Least squares may be represented in a similar way.
18.3 Penbe (C. S.) 'On the theory of errors of observations.' Rep. Coust Ser. C. S. for 1870, pp. 200-22+.

Gives an account of some interesting experiments " made to study the distribution of errors in the observation of a phemonema not seen coming on, as in the case of a transit. but sulden as in the case of the emersion of a star from behind the moon." The results are given graphically and show a decided approximation to the exponential Taw of facility.

In the ten pages of introluction new ideas are offered concerning a notation, "suggested by the study of the logie of relations."

1873 Seeliger. 'T'eber die J.tcon'sche Auflüsung eines Systems ron Normalgleichnngen mit Arei Unbekannten.' Astrom. Nuchr:, Vol. LXXXII, col. 2-49-25\%.

See above 1840 Bessel.
1873 Stose. - On the most Probable liesult which ean be derived from a number of direct Determinations of Assmmed Equal Vilues.' Wonth. Tot. Astrom. Soc. Lond., Vol. XXXIII, Pl. 570-572.

Shows that the arithmetionl mean is the most protable results for $"+1$ observations，provilab it is the most probable result fin＂ob－ sorvations，aml as it is muloubtedly such for＂ニロ，＂．．it éan be shown to be gencrally true．＂
 methoden．＇Öfinersigt Förhamell．Lewh．Ntorkholm，Vol．XXX，No． 8，p11．3－34：No．10，14．21－26．

The protable error is said tw be not ahways 0.6745 of the mean error lout repends upon the momber of mknown quatities insolverl． See 1852 Brenimáe．Bessel＇sinvestigation of 1838 is also discmssed．

1873 Guasiner．＇On the Pejection of Discordant Observations．＂ Mouthly Votices Astron．sioe．Loml．，Vol．XXXIII，1י1．391－402．

It is here clearly pointed out how inconsistent is the rejection of diseordant ohservations by a eriterion foumded on the supposition of the validity of the aritlmetieal meath．The idea first advanced by Dedorgin（Encye．Aetrop．，1847）that the mean is only an approxi－ mate ralne to be used in weighting the observations fiom which a new mean is to be deduced，and so on，is here developed to a certain extent．see 1821 －．The eriterion given by stone in 1868 is examined and pronounced mutrostwothy and wrong．

1873 Stone．＇On the Rejection of Discordant Observations．＇ Monthly Notices，Vol，XXXIV，pץ．9－15．

A reply to the preceding in which Chatsuen＇s arguments are ex－ amined at length and the validity of the criterion maintained． GLatshere＇s method for weighting observations is also disenssed and regarded＂as mathematically masomul．＂

1874 Glasner．＇Note on a paper by Mr．Nione，＂On the Rejec－ tion of Discordant Observations．＂，Monthly Votices，Vol．XXXIV， 1． 251.

1874 Stone．＇Note on a Disenssion relating to the Rejection of Discordant Ohservations．＇Monthly Not，Vol．XXXV＇，pp．107－108．

1874 Cantor＇Historische Notizen üher die W＇̈hrscheinhichheits－ rectumen！．＇Halle，8vo，pp． 8.

This is of no valne．Gauss alone is mentioned in connection with Least Squares．

1874 Fechner．＇Ueber die Bestimmong des wahrscheinlichen Fehlers eines Beobachtmosmittels durch die Summe der einfachen Ahweichngen．＇Potyendortt＇s Ammal．［hys．，Jubelband，p］．66－81．
 Gosell；see below 1875．Ferncise lerluces the liomula

$$
r_{0}=\frac{1.195 .502}{\sqrt{2 n}-0.8 .548} \cdot \frac{20}{1}
$$

n being the mumber of observations amd ユir the sum of the residuals all taken positively．Sue 1876 Ihemmentr．

1874 （ixatiner．＇On the solution of the Equations in the Xethord of Least Squares．＇Momth．Sot．Astron．Nor．Lemt．，Vol．XXXIS， 1］．311－：334．

A rritical desenssion of Gatss＇s，Bessen＇s and Jacori＇s methods for solving equations aml letemining weights．－See Johbl Foptschr． Muth．，Vol．IT，p．145．

187 thassen．＇Von der Bestimmung der Theilungsfehler eines gradlinigen Massstabes．＇Ibhamell．Nä̈hs．（iesell．，Vol．XV，pl． 52．5－668．

187t Jevoss．＂The Primeiples at＇sionme：atreutise on Lonfic ＂nd Erientitic Methocl．＇Lomlon，svo．Vol．I，ll！xvi，463；Vol．II， l！ 1 vii， 480.

Chapters on＇The Method of Means，＇＇The Law of Emor，＇＇Theory of Approximation，＇etc，give valuable remarks conceming the funda－ meutal primeiples of the Methorl of Least squares．

1874 Jomdan．Taschenluch dor malitischen Geometrie．Eime Sammbumy ran Resultuten der hioheren und wieteren Vermessumgs－ kende．stuttgart，sro，lp xi， 416 ．

In l＇art I the Metholl of Least Squares is presented．See review in schlomilel＇s Lit．Zeit．，Tol．XIIll，Pl．33－t0．The book is now （1877）heing republished under the title＇ETcmente der J Jomessum！／s－ kunde；＇and Part I，pl＇1－136，contains a raluable treatise on Least squares．
18.4 Meyer．＇Caleul des Probabilitis de A．Meyer，publie sur les manscrits de l’auteur par F．Fobis．’ Mém．Soe．Liége，Vol．VI， No． $2, \mathrm{x}+446 \mathrm{pl}$ ．－Also published mmler title Cours de Culcul．．．． fait à lu lóversite de Liéqe．．．．Bruxelles，svo．

This is a comprehensive and valuable work．In the parts relating to the theory of observations the proofs of 1809 Gatss and 1837 Hagen are given，as also the investigations of 1852 Bienaymé．

1874 Powaley．＇On the Combination of the different Results of rarious Series of Observations．＇Mouth．Not．Astron．Soc．Laud．， Sol．NXXIY，pp．＋76－479．
 Werthe soldher Untrekamben zwischen wedrhen ladingungs-aleich-

The emmitional equations are regarded an hatring infinite weights. 'lhis way of consideration alpeats ter lead to at mew methot of sohntion.

1874 Sbuns. Ueber cin Vmpharen, die Gleirhungen, anf welehe die Methorle rer kleinsten (Qualrate füht, so wie lincüre (t leichmogen
 Mänchen for 187t, 131.
see Jelull. Fortselli. Muth., Vol. V I, 1י. 14.

1875 Ane (W^{\top}.). 'On the Probable Errors of Levelling ; with liules for the Treatment of Decumalated Errors. Proc: Inst. Cir.
 $84-85,92,98-99,104-105$.

A very valuable practical paler.

1875 baErer. •Ueher Fehlerhestimmong mof Ansgleichng eines geometrischen Nivellements.' Astron. Tecthr., Vol. IXXXYI, col. 177-188.

Beseles methou for arlusting a triangulation is applied to a connected system of levels.

1875 Belfati. Lutorno ad un molo di sempliticare in alcmi casi l'applazaione del metorlo dei minimi quatratial calcolo delle costanti empiriche. Itti Istit. Vento, Vol. I.

1865 Benaymé Application d'un thereme nowean du Calent des probabilités.' Comptes Remolus Arad. Peris, Vol. LXXXI, pu. 415-423. - Bull. Muth. et Astron., Vol. IX, 们 219-225.

If a series of observatoms be artane in the order of the measurements, there are certain maxima and minima whose frobable number and pusition are given by the thenrem. On 1少. 458-45!, 491-492 of this volume of the compies lefulus are remarke by Bertrane on the theorem.

1875 Diexger. 'Die Laplace'sche Methode der Ansgleichong von Benbachtangsfehter hei zahlreichen Beobactungen.' Dewhschr. Aharl. Wien, Vol. XXXIV, 42 1p.

The method is extemed to the case of several unknown quantities. see liepertorimen Math., Vol. I, p. 241.
 antographiée sur lat méthute des moindres catris.' ('omptes liembus,

The expmential law of error is resurled as an empirical law estal)lished by experience.
[1875] F solnser. Teber den Ausqangswerth der kleinsten Abweichnugsumme, dessen bestimmung und Verwentung. . Ibhemdl. sïnds. Gosell., Vol. [NV^{2}].

See title 1874 Fecminers.

1855 Finankis. 'Die trigonometrisehe Punkthestimmung im YetzAnsehluss, mit besomlerel läncksicht anf eine rationelle FehlerAnsgleichnng." Wïnchen, swo, plo viii, 69.
lieference is here malle to artieles by Tela, Jormas and others on al graphieal method of adjustment, winse titles I regret mot to be able to sive. see Monutsbl. Budisch. Crometervereins for 1875.

1855 (r.hitos. 'Statisties ly lateremparison, with Remarks on the Law of Frequeney of Error.' Lomel. Phil. Muf., Vol. XLIX, pp. 33-46.

If all the men of a tribe were amanged in a row acoorling to their heights, the midlle man would have the mean height.

The curve $y=c e^{-h^{2} x^{2}}$ is called an "ogive" :und it is regarted as more likely to be approximately true of a statistical series than any other that ean be specitied it priori.

18t5 Lelmert. 'Teber die Formel für den Durehsehnittsfehler.' Astron. Viechir, Vol. LXXXV, col. 353-366.

The formula given in 1856 hy Peters is tiscussed, and shown to be correct only for direct observations. A new formula for probable error is proposed. See 1869 lülioth and 1876 Helaiert.

1875 Lhunext. 'Sur la méthode des moindres carrés.' Liencille's Juer: Juthe, Vol. I, pp. i5-80.

A diseussion of $1+44$ observations to deduce an empirieal law of enror. The result is that the exponential law represents closely the probabilities of error.

1875 Vees. Ueber die Berechnung des wahrseheinlichen Fehters einer endlichen Zahl ron Beobachtungen. Zeitsche. Nath. u. Phys, XX, Pp. 145-152.
(istusn's methorl (1816) is ronsidered incorrect.

Aroply to Amess's article abore.
1875 Natani. "Methode der kleinsten Quadrote. Mit den Mült

lhersmel's proof is given. The mumerical examples concem the probahility of striking at target.

1875 Sumaparadi. 'Sur le principe de la moyeme aritlmatique.' Astron. Dieche, Vol. LAXXVII, col. 55-58.

A demonstration that the arithmetical mean of direet observations gives "le seul résultat phasible et conciliable are les exigenees pratiques de lif question." Soe 1848 Matzki, 1868 Somapameld and 18 it Stove.

1875 Sonots. Over de theorie der fonten in de rumbe en in het platte vlak. Truhundl. Lioch. Amster., Vol. XV.

See .Jelur\%. Fortsehr. Math., Vol. VII, p. 114.
1875 Sonols. De interpolatie-formule von 'Thébronef volgens de methode der kleinste vierkanten. ITersh. Alired. I msterdem, Vol. 1X , 11p. 301-311.

1875 Sonott. 'Detemination of weights to be given to observations for determining time with portalne transit instruments, recorled by the ehronographic methorl.' Rep. Coest sur. I. S. for 1872, 1P. 222-226.

1875 Tulay. Note sur le principe de la moyeune arithmetique et sur son application à la theorie mathématique des erreurs. Nouv. Corves. Math., Vol. I, pl. 137-147.

See Bull. Math. et Astron., Vol. XII, p. 146.
1875 Thly. Théorie mathématique des erreurs. Ballistique, (Bruxelles, 8vo), pp. 155-225.

The methods of Gauss, Hagen and Laplace compared. See review in Jahrb. Fortschr: Muthe, Vol. VII, p. 108.

1875 Van Geer. Over het gebrniek von determinanter by de methode der kleinste kwadrater. Niezo dreh., Vol. I, pp. 179-188.

Trans. Conn. Acad., Vol. IV,
29
Nov., 1877.

 Vol. II, 1יI. 4-30.

An elementary sketch of the mothorl.

1876 ('mambers (C.) amd C'manmers (F゙.). 'On the: Mathematical Expression of Ohservations of Complex Periontical Phenomena; and on l’anetary hathence on the Earth's Magnetism.' Phil. Trans. Loml., Vol. (LSV', 11). 361-402.

1876 1) EFonest. 'Interpotation und A! ! instment of Neries.' New Haven, svo, 1pl. 52.

A supplement to his memoirs of 1873 . Besirles other valuable matter, methors for finding probable errors of arljusted terms are given.

1876 Ferrero. Esposizione del metodo dei mimimi quadrati. Firenze, svo, P1. 234.

1876 Nagen. 'Untersuchungen über dic gleichförmige Bercegnng des Wussers.' Berlin, 8vo, pp. 104.

All known observations on the mean veloeity of rivers are discussed by the Method of Least Squares, and the most probable law and formula for mean velocity are deduced.

1876 Helmert. 'Die Genanigkeit der Formel von Peters zur Berechnung des wahreheinlichen Fehlers directer Beobachangen gleicher Genanigkeit.' Astron. Tuchr, Vol. LXXXVIII, col. 113-132.

Simplifications are giveu of Lelmert's formula of 1875 , and the formulae of Fecuner, Jomban aml Andrä (see 1869-187t) are discusserI.

1867 Helnert. Ueber die Wahrscheinlichkeit der Potenzsummen der Beobachtnugsfehler und uber emige damit im Zusammenhang stehende Frage. Zeitsehr. IHuth. u. I'hys., Vol. XX, pp. 192-218.

1876 Kummell. 'New Investigation of the Law of Errors of Observation.' The Analyst, Vol. III, pp, 133-140, 165-171.

Hagen's proof of 1837 is given abbreviated and improved, and the usual rules for normal equations and proballe errors are deduced. The probability to commit no error at all is regarded as an absolute constant. See Jour. Irouklim Inst., 1877, Vol. CIV, pp. 270-274.

1866 L коти, 'Vergleichung fon \%wei Werthen des wahrseheinlichen Fehlers.' Astron. Nieltr., Vol. LAXXVll, col. 209-220.

The nsmal formula is compared with a new formula and shown to give larger values.

1876 Siffots. 'On the Methorl of Least Squares.' Proe' Amer. Amal., Vol. XI, 1ヶ1. 19:3-201.
"The main object of this paper is to give rules for goor observing deriver from this theory." Hints for abbreviating computations are adderl.

1876 Skinner. 'Primuiples of' Ifproximutr' 'omputations.' New York, 12 mo , h1. v, 98.

Presents simple roles for eonducting eomputations involving approximate quantities, in such a manner as to require the fewest figures and to show at once the degree of aceuracy of the result.

1876 Stone. 'sur le principe de la Moyeme arithmétique. Astron. Nechr., LXXXV111, col. 6I-64.
 of 1875 agree witl those of his own proof of 1873 . The article is in English.

1876 Vens. "The Logic of Chence. S" Essay on the fonmartions und procince of the Theory of Probubility, with special reference to its logical bearings and its "phlicutions in Moral and Mental Scence.' London, second edition, svo, pl. xxrii, 488.

Versis views are: First, almost any regular and symmetrieal method of treating the errors of observation will tend to apmoximate indefinitely toward the trinth as the number of observations is mefinitely maltiplied, and this whatever he the law of facility ; secondly, the Hethod of Least Squares is the hest method (uron the reasonably probahle supposition of the miversality of the exponential law), that is, it approximates quicker to the truth as the number of observations is increased than any other method; but its superiority orer other reasonable methods is small in comparison with their common suleriority over single observations.
'Suhrbuch üher die Fortsshritte der Muthemuthi.' Berlin, sro. One vol, of about 750 pages appears yearly in 3 parts.

This invalnable publieation has heen of great use to me in preparing the above list for the years $1868-75$. Vol. VIII (not yet issned) embraeing the literature for 1876 , will mulonbtedly contain the titles of some writings on the Method of Least squares which are not given here.

INHEX OF MITHORS.

A mbe (Cleveland), pages $163,165,215$.
Abrain (Rohert) 163, 16i1, 1 (6i5, 171, 192, $215,217$.
AIRy (Gearge l3idwell) $168,14 \%, 196,200$, 206.

Atry (Wilfrod) 2!3.
ANDRÄ (6.... (4....) 201, 210, 213, 218 , 226.

Anonymous, $173,177,195$.
Argelander (Friedrich Wilhelm August) 187.
d'Arrest (Heinricl Lonis) 198, 201.
B.ibinet (Jacques) 201.

Bacne (Alexander Dallas) 102, 199.
BaEyer (Johanu Jatoh) 182, 191, 206, 223, 232.

Bartlett (William Fitt Greenwood) 181.
Baubrnfeind (Carl Miax von) 226.
Baur (C. .. W. . . .) 201.
Beeck-C.llkoen (Jan Frederik van) 149.
Bellati (........) 223.
Bellatitis (Giusto) 202.
Berkitan (C. . . . A. . . W. . . .) 187.
Berlin (C. . . G. ...) 175.
Bernoulli (Daniel) 158, 159.
Bernoulli (Jean, III) 156, 158, 359.
Bertrand (Joseph) 165, 166, 169, 174, 176, 177, 199, 223.
Bessel (Friedrich Wilhelm) 166, 168, 169, 170, 172, 175, 177, 180, 181, 182. 183, $184,185,189,208,210,215,217,220$, 221, 222, 223.
Bienaymé (Jules) 168, 175, 181, 183, 184, $185,194,196,197,205,221,222,223$.
Biver (P.... E....) 194, 196.
Bond (George Phillips) 202.
Boole (George) 164, 192, 202, 217.
Bornilarmt (Carl Wilhelm) 206.
Börsch (Otto) 170, 195, 201, 207, 209, 232.
Boscorich (Ruggielo Giussippe) 155, 156, $160,162,179$.
BOUNTAKOWSKY (Vietor) 204.
Bowntch (Nathaniel) l6i弓.
Bravais (Anguste) 189, 190, 192.
Brafy (Giussippe) 185.
Brown (Samuel) 219.
Brünnow (Franz Friederich Erust) 209.
Cantor (Georg) 221.
(Casorati (Felice) 204.
Catchi (Augustin Louis) 168, 171, 179, 181, 186, 196, 197, 198, 207.
Chambers (Charles) and (F....) 226.
Chaityenet (TVilliam) 165, $180,195,208$, 212.

Christoffel (Edvin Bruno) 208.
Clarke (Alexander Ross) 204.

Clemens (F゙. . . . A. . . .) 185.
Cors (Roger) 15.1 .
('orrinot (Antoine Aurustin) 187
Choftox (Morgan William) 214, 217.
Crookes (Willian) 219.
Davis (Charles Ilenry) 165.
DeForest (Erastus Lyman) 219, 226.
Degen (Carl Ferdinand) 179.
Dedakind (Julius Whlhelm Riclard) 206, 210.

Delambre (Jean Bahtiste Joseph) 167.
DeNorgan (Augustus) 167, 168, 177, 183, 184, 190, 208, 217, 219, 221.
Denzler (Wilhehm) 193.
Didion (Isidore) 204.
Dienger (Joseph) 165, $168,182,195,202$, 206, $216,223$.
[HNKIN (William Fishburn)] 88, 193, 202, 217.

DORNA (Alessandro) 213.
Downes (Olintlus Gregory) 189
Ellis (Rohert Jeslie) 164, $165,167,168$, $174,176,177,188,192,194,202,217$.
Encke (Johann Franz) 158, 165, 174, 178, $179,180,181,142,186,187,188,190$, $213,214,215,217$.
Euler (Leonhard) 154, 158, 159.
Faì de lbruno (Francesco) 213.
Faye (Hervé Auguste Êtienne Alhans) 294.
Fechner (Gustav Theodor) 221, 222, 224, 226.

Ferrero (A....) 226.
Fischer (Phillip) 189.
Folie (F. . . .) 22 2.
Founier (Jean Babtiste Joseph) $175,177$.
Franke (.J. . . . J1. . .) $215,224$.
Francoevr (Louis Benjamin) 155, 17\%, 178.

Freeden (Wilhelm ron) 207.
Fries (Jakoh Friedrieh) 186.
Frisiani (Paolo) 211.
Galloway (Thomas) 174, 175, 189, 190.
Galiton (Franeis) 190, 213, 224.
Giuss ('arl Friedrich) $162,163,165,166$, $167,168,169,170,171,172,174,175$, 176, 175, 178, 179, 180, 181, 185, 187, $188,194,195,199,202,205,210,211$, $212,214,217,221,222,224,225$.
Gergonne (Joseph Diez) 173.
Gerling (Christian Ludwig) 174, 185, 187, $189,199,215,207,210$.
Glatsher (James Whithread Lee) 158, $160,164,165,168,174,176,180,188$, $192,193,196,202,203,205,209,212$, $215,216,217,221,222$.

Gooss (Johann Wilhelm) 209.
Gouls) (Benjamin Apthorp) 192, 195, 199.
Görze (TVilliam Charles) 191.
Grunert (Johamn August) 179, 181, 186, 198, 204.
GUY (William A. . .) 192.
Hiase (.) 165
Hages (Gothilf lleinrich Ludwig) 169 , $182,192,195,210,211,217,225,226$.
H.snses. (Peter indreas) 165, 177, 178, 1ヶ9, 180. 181, 184, 185, 211, 213, 229.
11ARTNER (Friedrich) 195, 207
Ilacber (Carl Friedrich) 175, 178.
Hélie (Felix) 199.
11elmert (Friedrich Robert) 174, 200, 21 2, $213,214,21 \mathrm{i}, 218,219,222,224,295$, 226.

Іелеке (R. . .) 212.
Hexry (Joseph) 192.
Herschel (John Frederick W̌illiam) 164. $189,190,192,193,194,202,211,217$, 225.

Hilgard, (Julius Erasmis) 199, 217.
Hopkinson (T. . .) 21\%.
Hossard (P....) 176, 193, 194.
Motsel (.) 201.
II Ülsse (Julius Ambros) 185.
Heltmanx (.) 206.
Irory (James) 154, 174, 176, 177, 178, 188, 194, 217.

Jacobi (Carl Gustav Jacob) 184, 185, 188, -200, 222.
Jain (Gustav Adolph) 184.
Jains (.) 219.
Jeroxs (William Stanley) 29.2.
Jordan (Wilhelm) 203. 213. 216, 218, 219, $220,229,294,226$.
Jullien (P. . . M. . . .) 204.
Jotffret (Esprit) 220.
Fästaer (Abraham Gotthelf) 155.
Klinkerfles (Ernst Friedrich Wilhelm) 216.

Kohler (Conrad) 205.
Kramp (Christian) $160,170,1 \times 0,190,215$.
Kubisell (Charles H. ...) 182, 226.
Kurz, (A....) 208
Lagrange (Joseph Louis) 158, 159, 209.
Lalande (Joseph Lerôme Lefrançais) 155.
Lasibert (Johann Heinrich) 156, 157, 159.
Laplace (Pierre Simon) 154, 156,157, 158. $159,160,162,166,167,168,164$, $171,172,173,175,176,178,179,180$, 182. 183, 184, 188, 190, 193, 194, 203, 206, 209, 21t, 216, 217, 220, 223, 225.
LaCRENT (Hermann) 168, 220, 224.
Lazaris (Wilhelm) 215.
LeBoclexgé (.) 212.
Legendre (Adrian Marie) $160,161,162$, $163,165,168,173$.

Liank: (Jean Bahtiste .Joseph) 195, 198 199, 203.
Linifenate (Bernhard August von) 156,162, 171.

Littrow (Joseph Johann von) 171, 180 181, 186.
Lloy (llumphrey) 200.
LOBATscuewskr (Nicolai Iranowitech) 186.
Lobstto (Rehnel) 208.
Lorenz (L. . . .) 218 .
Lӥrотн (Jakob) 200, 214, 2•24, 226.
MatzKa (Wilhelm) 190, 225.
Mayer (Tobias) 155, 178.
Меहк (R. . . A. ...) 224, 225.
Merriman (Mansfield) 165, 182
3 ERTZ (Ludwig) 186.
Merer (Anton) 191, 194, 222.
Miller-Hacenfels (Albert ron) 212.
Minding (Ernst Ferdinand Adolph) 216.
Mrweke (Georg Wilhelm) 172, 176.
Natasi (Leopold) 182, 210, 225.
Neovies (V... .) 215.
Newcoub (Simon) 220.
Nürnberger (Joseph Clirıstian Emil) 178.
Patterson (Robert) 163.
Padcker (Magnus Georg von) 172, 176, 1.91, 193, 194.

Peirce (Beujamin) 192, 195, 199, 200, 208, 212. 217

Peirce (Charles Sanders) 220
Peters (Charles August Friedrich) 170, 200, 207, 210, 214. 216, 224.
Petzval (Joseph) 203.
PlaNa (Gioranni Antonio Amedeo) 168, 171.

Porssos (Simeon Denis) 168, 175, 176, 178, 179, 181, 182, 184, 217.
Powalky (Carl) 222.
Price (Bartholomew) 182.
Prony (Gaspard Clair François Marie Riche de) 160.
Poudra (Noël Germinal) 193.
Prondzysski (Boguslaw von) 232.
Pcissant (Lonis) 162, 176, 180, 181, 184, 186.

Qcetelet (Lambert Adolphe Jaeques) 178, $182,186,189,190,192.196,198,209$, 213, 219

Radac (R. . .) 207, 210.
Rames (Christian) 186.
Retschle (Karl Gustav) 165. 180, 187, 188.

Riese (C. ... von) $175,178,179$.
Ritter (Élie) 165. 205.
Röber (August) 186.
Rogers (Willian A. . . .) 214.
Rosenberger (Otto Angust) 175, 180.

Rouvroy (Wilhehn Heinrich) 182
R ̈̈plark (Wilhelm von) 232.
RUMPFAN (Hermann) 2ls.
Aantini (Giovami) 21\%.
Samiscil (Alexis) 203.
Saffoni (Truman Itcury) 227.
Scilapareldi (Ciovanní Y.....) 212, 213, 225, 227, 232.
Schinhler (.) 205.
Schols (${ }^{\prime}$ h. . . . M. . . .) 225.
Schott (tharles A....) 174, 17\%, 181, 185 , $200,201,205,207,208,210,211,216$, 225.

Scilömilen (Oscar) 192, 211, 218.
Schnuse (.) 18.3.
Seeliger (llugo) 184, 220.
Seidel (Ludwig) 207, 223.
Simpson (Thomas) $155,15 f, 158$.
Skinner (.Toseph John) 227.
Sonnet (Ilippolyte) 204.
Stay (Benedictus) 156.
Stone (Edward James) 196, 212, 220, 221, 225, 227.
Strootman (........) 181.
Sranberg (Jöns) 173.
TAIT (Peter Guthrie) 182, 192, 209, 211, 217, 218.
Thiele (Th. . . N. . . .) 214.
'Tonébronerf (Prfautij) 205, 206, 211, 215, 225.
Thomison (William) 192, 211, 218.
TiLhy (.1. de) 225.
Tonnunter (Isaic) 165, 156, 158, 159, 166, $167,168,169,171,173,175,176,209,21 \cdot 1$.
Trembley (Jean) 158, 160.
TULLA (.) 224.
Van Geler (${ }^{3}$.... $) 225$
YENK (7 ohin) 227.
Yerday (Gifleon Jans) 193
Vorländer (J.... J....) 201, 203, 205, 206, 207.

Watson (James Craig) 214.
Thinceler (Anton) 207. 210.
Winlork (Joseph) 196, 200.
Wittsten (Theodore Ludwig) 182, 191. 210, 232.
Wrolf (liudolf) 155. 191, 196, 198, 215.
Woolhouse (W. . . S. . . B. . .) 209, 219.

Wrede (Fabian Jacob) 194, 203, 221.
Young (Thomas) 170, 172.
Zacil (Franz Xaver von) 166.
Zachariae (G....) 216, 218, 219.
Zech (Julins) 203.

INDEX OF SUBJECT's.

Abbreviation of computations, 184,202 , 205, 227.
Adjustment of observations by other methods than Least Squares, $154-160,178$, $179,181,196-198,203,206,217$.
Algorithm of Method of Least Squares, $161,166,171,177,180,185$.
Angles, 189, 192, 199, 200, 207, 211, 218.
Approximate computations, 201, 22 .
Ares of meridian, $155,156,162,171,172$, 185, 206, 218
Aritlmetical mean, $\mathbf{1 5 5}, 156,157,158$, $159,161,165,177,180,185,187,188$, $190,192,195,202,204,208,212,213$, $217,220,225,227$.
Axions, $156,157,196,209$
Base lines, 171, 195, 210, 211. 218, 219.
Barometric measurements, 186, 195.
Binomial formula, 179, 182, 190, 215, 219.
Calculating machine, 204.
Centre of gravity, 154,]56, 161, 165, 188, 193.

Chemistry, 219.

Coiuage, 217.
Comets, $160,162,166,169,171,173$.
Comparison of theory and observation, $170,191,195,198,220,224$.
Conditioned observations, 177, 180, 181, $184,185,187,189,203,204,207,211$, 223.

Constant errors, 199.
Continuons errors, 156.
Correlatives, method of, 177, 180, 214.
Criteria for rejection of donbtful observatious, 195, 199, 200, 208, 212, 217, 220.
Density of carth, 172, 204.
Determinants, 185, 201, 204, 218, 225.
Direct observations, 154, 213, 224.
Ellipse of error, 189, 201, 203.
Empirical formulæ, 157, 160, 172, 177, 185, 201, 217.
Figure of the earth, $155,156,160,126$, $170,172,176,185,204$.

Graphical methods of adjustment, 156, 224.

Geodetic observations, 155, $156,162,171$, 177, 179, 181, 182, 185, 186, 191, 165, $202,203,204,206,210,211,212,222$.
(iunnery, 199, 204, 닌, 215, 220, 225.
liistorical books or papers, $168,180,188$, 193, 207, 209, 215, 216, 220, 221, 22 7.
1lydraulies, $160,226$.
Indeterminate corroctions, 160, 173.
Indirect observations, 203.
Interpolation, 181, 186, 189, 196, 197, 2(11, $205,206,207,20!1,215,214,2 \cup 5,226$.
lastiuments, theory of, $21 \mathrm{i}, 222$.

Latitude, 205.

Limits of error, $156,157,159,170$.
Levelling, 172, 180, 184, 191, 223.
Literature of Geodesy, 232.
Linear measurements, $163,189,201,206$, 207, 211, 218.
Longitude, 176, 193, 200, 207.
Magnetic declination, 157, 201, 208.
Mean error, $175,188,191,193,199,209$, 218, 219.
Mean results, 157, 159, 167, 173, 197, 200.
Measure of precision, 174, 176, 178, 197, 206.

Metaphysics of Least Squares, 186, 187,188.
Metcorology, 186, 196, 208.
Mining surveying, 212.
Moon, $155,200$.
Most advantageons result, 162, 167, 171.
Most plausible result, 174, 217.
Most probable result, $154,160,163,16$, 175, 197, 214, 221.

Normal equations, $161,165,166,175,181$, $184,187,188,201,208,216,220,222$, $223,226$.
n-point problem, $174,185,201,210$.
Notation, 161, 166, 220.
Observing, 176, 227.
Orbits, computation of, $156,160,162,166$, $169,171,216$.
Optics, 156, 203.
Parabola, 179.
Periodic phenomena, 177, 185, 208, 226.
Personal equation, 207, 210, 214, 220.

Powers of errors, 170, 196, $210,224$.
Planets, $154,166$.
Priority regarding Dethod of Least Squares, 160-168, 175, 207, 215.
Precision of observations, $156,165,169$, 174, 178, 201, 218.
Proofs of the principle of Least Squares, see pp. 153-154, 209.
Probable error, 168, 164, 174, 172, 175, $183,193,194,200,211,213,214,218$, $219,221,223,224,225,226$.

Quadrilateral, 205.
Residual errors, $165,169,170,173,175$, 176, 200, 211.
Repetition of angle measurements, 181, 202, 218.

Seconds pendulum, 157, 160, 170, 172.
Social science. 181, 189, 213, 219.
Series, adjustment of, 209, 219, 22:3, 226 .
Sources of error, 182, 183, 194, 200, 214.
Squares of numbers, 181, 216.
Stars, $168,171,172$.
Statical analogy, $154,161,188,198,220$.
Statistics, 177, 184, 189, 192, 219, 224.
Sun, distance of, 174.
Survering, 155, 163, 165, 171, 185, 205.
Tables, $160,170,180,183,187,190,198$, $199,208,215,216$.
Temperature, 186.
Text-books or treatises on the Method of Least Squares, 165, 179, 180, 182, 185, $187,193,198,199,202,203,205,206$, $207,208,211,213,215,216,217,222$, 226.

Transit observations, 193, 198, 199, 203, $205,214,225$.
Triangles, $154,205$.
Triangulations, $160,171,177,181,187$, $189,192,195,200,204,211,213,215$, $216,224,232$.

Weighting of observations, $154,173,217$, 221.

Weights, $165,171,173,177,178,179,181$, $183,184,185,188,193,194,195,201$, $208,216.218,222$.
Zenith telescope, 199, 205.

ERRATA.

Page 172, line 21 from foot, for Remarks read 'Remarks.
" 173, " 11 " top, " Jái " J'ai.
" 179 , " 8 " foot," unhekannten read unbekannten.

Al）にN゙いA。

187ti Rümgek．Dir Methode der hleinsten Quedrate abyeleitet ans
 sehuftlichen Messungın．F＇ramkfurt an der Oder，8vo，p］． 48.

A doctor＇s dissertation．

1876—．＇Zusamamenstellant／der Literatu＇der Gralmessungs－ Arbeiten．＇Berlin，tio，］ll． 32.

This is drawn up hy commissioners of the states and comotries belonging to the E゙uropean International Geodetic Surves．It con－ tains references to about 380 writings on Georlesy， 200 of which are German， 64 English， 50 Itadian and 24 French．The English and ltalian literature is well presented，the German and French is mot． Coming from such a somre，this list should have been a great deal better．

The work is received just as this sheet goes to press，and the fol－ lowing are the additions whieh it renders necessary to the preceding pages：

The work by Baeyer reeorded on page 206 is a lithographed manuseript issued in 1867 or 1868 ．Two other parts on Geodesy were also published．

The following articles，all relating to the adjustment of geodetic triangulations，should properly have been mentioned in my list： 1865 Scmaparelle，Istit Lombard．Rend．，Vol．H，ply．348－：359；Vol．Ill， p1．2ヶ－41．186i Witistein，Astrom．Veachr．，Vol．LNIX，col．289－ 298；321－328． 1868 Pronizyaski and Bönsch，Astron．Nuthr．，Vol． LXXI，col．145－154；265－268；Vol．LXXV，col．87－90．

A lithographed manuscript by Baeyer，entitled C＇utersuchunfen über die Ausgleichung nach Winkel－und Seitengleichangen，was juh－ lished in 1871.
III.-Vmatal Fixe me (iamoms. By James K. Thamer.

Lis erscheint als cine allgemeine liegel, dass homolyname, ungloiehartig entwickelte Körpertheile an den hinteren Aloschnitten indifferentor erseheinen als an den vorderen, dins besonders die Gliedmaasen des Sehultergürtels viel reiehere Tmgestaltungen eingelıen als jene des lieckengürtels, an denen sich das ursprüngliche Verlalten länger und rollstandiger bewahrt.-Gegenluur, Jen. \%eïtschr., Bd. r, p. 41i.

Ls February last I puhlished a paper* to show that the limbs with their giriles were derived from a series of similar simple parallel rays, and that they were a specialization of the continuous lateral folds or fins evidenced in embryos, which were with some probability homologons with the lateral folds or metaplenra of the adult Am phiorms. The following slort paper is designed to do little more than corroborate the riews there siaterl.

In Pl. LIX, tig. 64 of that previous paper, an Acipenser ventral is exhibited. The rentral of another individual of the same species, Acipenser brevirostris, is figured here, Il. 1, fig. 1. Comparing these two we find certain difierences. Th the first place the mumber of rays is not the same, being seren in fig. 64 imh eight in fig. 1 . But we see that the orad ray of fig. 64 is rery broand, as it is also in fig. 65, which exhihits the other rentral of the same specimen, and in the text we read " the breadth and ontline of 0 (the orad ray) raises a suspicion of its double character." This suspicion, then, is contirmed by the eight rays of fig. 1 , where the orad ray is slender like the rest. But there are other differences, and these, aside from insignificant differences in the teminal segmentations, lic in the manner in which the originally separate rays have united with one another. In fig. 64 the aborad three rays are all separate and complete, while in fig. 1 there is quite a different state of things. Here the proximal part of 8 has mited with the adjacent part of $7 ; 7$ is free from 6. But the proximal segment of the latter, which is free in fig. 64, is here, in fig. 1 , joined to 5 . Bnt 5 is free from 4 and 4 from 3 in fig. 1 , as is not the case in figs. 64 and 65.

The part bed is a large flat picce of cartilage of about the thickness of the rays. The process b bends slightly (lownward (rentrad) and is a little foreshortened in the figure. It approaches its fellow on the other side, but does not mite with it.

* Median and Paired Fins. Trans. Conn. Acad., Vol. iii, 1877.

Trans. Conn. Acad., Yol. IT.
Dec., 18%.

There is represented in fig. 1 a fereuliar formmen, which either did not exist or was orerlooked in the suecimen figured in fig. 64. This long tumet enters the substane of the eartiage from the dorsal side at the phace marked f, and ruming in the middle of the cartilage, it pursues the course marked by the dotted line to emerge between the rays 2 and 3.

Its remarkable position, boring the substance of the cartilage to no purpose, and the still more remarkable parallelism between its comrse and the line of division betwen rays 8 and 4 , are sufficient reasons for regarding it as an indication of an early separation between these two rods 2 and 3. The second foramen !/ proceeds ahmost directly throngh the cartilage.

Now if we construct a fin in which all the rays are separate which are separate in either of the two fins figured, and in which the separation between 2 and 3 , which is indieated in the way just suoken of, is retained, we shall have a form of fin represented in Pl. I, fig. 2. From evilence then ohtained within the limits of this single species, it is proved that there must have been fins of this form possessed by some of the ancestors of these individuals; fins in which each of the eight simple rays maintained its independence and simplicity, except so far as regards the concreseence of the froximal segments 1 and 2 , and the process a rising from the orad side of the first ray.

Scopherhomolus, as is well known, is the nearest living relative of Acipenser, and the two are very similar to one amother. The dorsal side of a left ventral of this fish is exhibitel in Pl. 11, fig. 7. We have here seven rays, but the orad one is so wide as to raise the belief that it has heen formed by the union of two. In this the betipping fails. There is the stme iliac process a growing ul from the edge of the fin, but the chief difference lies in the prolongation of the pubic part,* and the degree of conerescence, which is greater than it is in either of the specimens of Acipenser described. As is evident, this fin throws no light on the general question here ander discussion. lt is a mere modification of the feipenser fin. And to this we return.

We had arrived at a form, Pl. I, fig. 2, consisting of eight simple parallel rars, except that the two orad rays have mited in their proximal joints, and that there is the iliae process a, and that the

[^121]distal segmentation is wanting on the first ray. If it were not for the process a, if here in teipenser we had notling lant the flat piece $b d$, there could, I believe, be mo hesitation on the part of anyone in regarding this piece b, da firmed by conerescence from the rays 1 and 2. But the piece a raises :m indefinite suspicion. One is led to think that it may posibly be the remains of something, and that despite the apparent similarity, the orad part of the fin may have something more in it than the aborad, and that the part a may not be a simple original upgrowth of cartilage dorsad from the orad side of the first ray.
To assure ourselves that it is this last and nothing else we tum to Polyodon. A view of the ventral surface of a right ventral is exlibited in Pl. I, fig. 3. Here the number of rays, thirtecn, is greater than it was in Acipenser and Scophirhynchus. The segmentation into three parts is to be noted, as also the absence of the distal joint in the orad ray, agreeing with what we have found so gencrally in lorsal, anal and ventral tins. There has been some conereseence, but not rery much, as seen in the proximals 12-13 and $1-2-3-4-5$. The shortening of ray 7 is worthy of remark. The rays differ a little from those that form the rentrals of Acipenser and Scouphirhynches, in that in these latter the rays contimue thick to their proximal ends, and the median edge of the fin is fuite heavy, whereas in Polyodon the proximal ends of the ray: become very thin; so that while the distal end of the proximal segment is thick and romd, the proximal end runs out into a thin blade. This also, as would be expected, the large piece $b d$ hecomes, as it approaches the median line, a thin lamina of cartilage. This fin lies very nearly all in one plane and there is consequently no foreshortening of any of the parts.

When we turn the fin over so that its dorsal side is presented to riew, we see that the structure of the skeleton differs from what it previonsly appeared to be in a rery striking, and as we shall sce, significant way. The rods are not simple rowls, but from the orad sile of the distal part of the proximal segment of each ray, a bladelike process rums dorsal, approathing, consequently, a direetion at right angles to the plane of the fin, and lying in the intermuscular septa of the fin. One of the rays from the middle of the fin is exhibited in Pl. I, fig. 3, a. The side of the ray is preseuted, and the process i' has been turned about its line of junction with the ray so as to lie in the plane of the paper, and not at right angles to it, as it naturally would. This process a^{\prime} is quite thin and flexible in the case of all the rays of Polyollon, while the ray itself at the point where it
semds ofld this process is thick and heary. It is, moreover, a weal process, a contimation of the cartilage of the my, and mot even antionlated with it. The procerses are highest in the midtle of the fin and diminish in size aborat matil they hardly appear on the last two or thee rays. 'Powarl the orad extrenity of the fin they remain very well developerl, thongh not guite so long as they are in the middle of the fin. One rises at the print marked "fig. :3, I'l. S, and others from the phate bol at points which would have been the orad silles of the distal ends of the proximal segments $2,3,4$ and 5 had the proximal segments of those rays not mited more or less completely to form the large plate $b l$.

If now we compare this fin of Polyodon with that of Acijenser and Scophirhymehus, we find that in each there is a process growing dorsat from the place marked a in Polyodon, Pl. I, fig. 3 , and the corresponding points in Acipenser and Sirephimbmehus, Pl. I, figs. 1 and $2, \mathrm{Pl}$. I1, fig. 3, a. There is no difference between the two processes except that of size. The eorrespondence between the two is so exact that had the species been very different from one another there could have been no doubt of the homology of the process in the one with that in the other, but this is made doubly sure by the fact of the close similarity of Polyodon and the Acipenserids.

Again, there can be no loubt of the correspondence, homorlynamism, of the first process in Polyodon and those that belong to the other rods. They all spring from exaetly the same place and differ in size only. We have in P'lyodom a foot with thinteen toes where each toe has its own separate ilizm.

It has thus beeome apparent that the iliac process in the Acipenserids is not a vestige of anything more complex and important, but simply what it was stated to be, a process from the ray, and that the orall part of the fin does not inelude anything essentially distinct from what appears in the hinder part. We are thms brought to a choice between a series of simple and of forked rays as that from which the Gnathostome limh has been derived. There does not, however, seem to be any room for donbt as to which of these the original form was. That the simpler structure should have been the first protuced and that the more complex should have been developed ont of this is certainly more consonant with onr general experience of organic change than the reverse sequence would have been. Moreover, I have proved that in the similar median fins the original skeletal elements were perfectly simple rods developed in the freely flapping membrane of the fin, and the analogical inference from these to the
paired fins is astrong one, for it is something more than a mere analogy, leing surported by causal considerations.

Agaln, the wide-spreat absence of this dorsal process is inconsistent with its constituting a part of cath ray of the Protognathostomi or any of their ancestors. . Nthough Chimara hats a !arge iliac process from the orad part of the fin, the sharks proper, where we might exfect to find the skeleton in no very specialized condition, have nothing which seems to represent a dorsal process of any of the rays. Neither do the Holostean Ganoids, nor most, not to say all, of the Teleosts. Among the Batoidei we do have dorsal processes from the pelvie cartilage. Their bosition renters their strict correspondence with the iliac process of the Acipenser fin somewhat improbable, while it suggests the possibility that they may represent some of the processes of the ahorad rays of the Polyodon fin. Even if this shonld be the case the absence of these processes in the Sharks would force us to regard the conformation in the hays and in the Holocephali as having arisen imlependently of that in Polydon. With this possible exception and the exception of the Polydon rentrals, no ventral fin or limb anywhere shows signs of any forking aborad of the first ray. Nor is there any forking observed in pectoral and median fins except so far as this may be represented in the scapula. It is easier to believe that these comparatively few instances were late, and some of them independent, developments, than to believe that there has been an annhilation, so nearly complete, of dorsal processes which were miversal in the beginning.

Thus it seems to me that the order of events, as far as regards the Chomdrostean Ganoids, was like this: The simple ray with the three segments was the carly form. An upgrowth of cartilage dorsad from the poximal segment of the first ray took place in the Acipenserids. In Polyodon this was imitated hy the hinder rays. This is an instance of the development of likeness out of mulikeness in homodynamous parts, a kind of change which must have frequently oceurred in the history of stocks. It is the opposite of differentiation, and it does not consist in mere reversion to primitive similarits, but in the attainment of similarity in any waly. It is exemplified in a department of phenomena resembling somewhat those of biology in the formation of French plurals by the addition of s, though the Latin hat formed the phurals of the same words in rery diverse ways. Thus, too, the close similarity between the fore and hind limb in varions forms now living, has donlotless in many cases been preceded by a greater dissimitarity in the direct ancestral lines.

The other Ganoids do not ofler us much of interest in their ventral fins, exhihiting as they do only modifications by concreseonce, and showing no adrame either in the direction of the bipmoans or the Stapedifera. Figure 1, late II, represents the pelvicegirille and rays of Iolypterns. The finet that the two pubic parts abint on one another without uniting, though fistened together by tough connective tissue, that there is no iliae process and that the whole strmeture lics in one horizontal phane should be stated. If this fin is compared with that of Aripenser and scophirhymehns there can be no doubt, I think, that the solid pubie pieces in Polypferus represent the basal segments of rays, amt therefore correspond to the orad proximal parts formed of mited rays in Polyodon and the Acipenserids. Some one or more of the four rays in Polypterns may be composed of more than a single ras. This is not casy to detemine, but there is no donbt that they correspond to the millle and teminal parts of the complete tri-segmented ray, and that the terminal segmentations hase disappeared as they have in the orad rays of the Chondrostei, and so very generally in the orad rass of Elasmolraneh ventral and median fins.

The fins of Lepidostens and Amin are not remarkahle for much beside their similarity. They are represented in Pl. II, tigs. 2 and 3. Comparing them with the fins of I'olypterus we see that they seem to offer an extension of that same process of rednction which we noticed in that fish. The parts lettered bel certainly are homologues of one another in all three. but the middle and terminal segments of the primitive ray, represented by the four well-developed rays of Polypterns, are here reduced to the insignificant parts at the extremities of the main portions $l d$. The median one of these small pieces is somewhat produced and ossified. The pubic parts overlap one another but do not join, being merely fastened together by connective tissne. And both in Lepidostens and in Amia the overdapping was in the sume way, that is, the extremity of the right pubis was dorsad of that of the left. There is no iliae process in either of these forms.

We thas see that in these living Holostean (amoids the only modification is the reduction in the muber of the rays, (and this may be only apparent) and the concrescence especially of the proximal segments. They offer us no advance toward the Dipnoan or Stapediferal limb-skeleton. As to the light which they throw hackward on the earlice history, the separation of the pubie part of one side from that of the other and the absence of an iliae process is to be noticed. Otherwise they are uninteresting forms.

Before reviewing the results obtained, 1 wish to call attention again to the shark ventrals, and to insist on the comparison between them and the Chondrostem ventrals. If the reader will place the figures $1,2,3$ and 7 , side 1 y sike with figmes 67 and 69 of my paper of last Felmary, or with any of the figures of shark ventrals given by Gegenbant, there ean be mo question as to the way in which they are related to one another, and the way in which the later were formerl. If we compare fig. 65 for example, with tig. 3 , 1 ll. 1 , there can le no hesitation in recognizing the eorrespunding parts of each; in seeing that the solid "hasale metapterggii" of 67 answers to the hinder part of the row of proximals, for the most part separate, of fig. 3, and that the part hd in the latter figure represents, more or less exactly, one half the petrice girdle in the former. The iliac part or parts are not developed in the shark. Thus the most essential difference between the Chondrostean and Elamobranch, as regards their ventral fin:, would be obliterated by that process of eonerescence, whose absolnte insignificance is shown hy the varying degrees in which it shows itself, here in the sturgeon ventrals and elsewhere. I think I may regard the formation of the shark ventrals from a series of three jointed rays in the way exhibited diagrammatically in my former paper, as established fully and finally. It will moreover be observed, that this method of forming the sharks' ventrals, resultung as it did in a "uniserial arehipterygium," is incompetent to form a "biserial archipterygium," ant that consequently we have in the shark ventral no approach to the Cerutoctus fin.

The Relutions of the Gromps of Guthostomes ame the Modificution of the Fin-slieleton in those Groups.

Views regarding the history of any part or organ determine to a certain extent the riews which are held regarling the genealogieal commection of the groms in which that part or organ is exhibited; and conversely genealogic comections already established may throw, aud usually do throw, a certain weight of evirlence for or against a view of the development of an organ. And inasmuch as from the history of one part light is thrown upon the gencalogic comection of the groms, and as from this genealogic comection inferences ean be drawn respecting the history of other parts, it is evident that in this way the grombls for aecepting or rejecting a view of the history of one organ may become the grounds for accepting or rejecting a view proposed for the history of mother organ; and be the weight of this evidence great or small, there is no way to bring our belief in one
sequence to bear on that in a diflerent sequence, exerpt by the interposition of a genealogical table more wr less complete. And this possibility of making ome view contirm another anises, of course, from the fact that, althomg we may ronsider the histmies of heart, of hrant, of skull, or of limb, cach hy itself, still each heat amd limb was only a part of at animal in which were all the other parts.

I therefore here introluce the following views repecting the aftinities of the groups involved in this discussion, riows in whel there is little mare original than an imfependent judgment. I give them without the proof, which is extremely bulky for its weight.

The Gual hostomes ami stapedifera* are genctict gromp.
The Guathostomes mints the Elasmobranchas are a genetice eroup. The masal fussa is lnidged in all the members of this group, with very few and insignificant exceptions. f It is never hridged in the Elasmobranchs. We will call the members of this group then Gephyrrhina (I^{\prime} équpar = a bridge).

* Stapedifera = Immiota + Amphibia. In my paper of last February I referred incidentally to the stapes as formed from the proximal part of the byoid arch. This was a mistake, and my attention was called to it by the following passage from Wieders-heim:-. . . . "so ist es beinahe traditionell geworden, die bei der ungleich besser studirten Entwiekelungsgeschichte der Anuren über den Schallznleitungsapparat gewonnenen Resultate ohne Weiteres auch auf die Urodelen auszudeneu. Darauf beruht die in die verschiedensten Ibhandlnngen und Lehrbücher ühergegangene Belnatuptung: 'das Operculum der U'rodelen hat sich vom Hyoilbogen abgeschnürt.' " (R. Wiederslicim, Kopfikelet der Urodelen, Mforph. Jahrb. Band, InI, 1877.) Wiedersheim proceeds to show that the stapes or "opereulum" of the [rodela is cut ont of the eartilage of the periotic capsule as a disk filling the fenestra ovalis, from which a boss, more or less prolonged into a rod in the varicus species, arises by continuous spreading of the cartilage. He refers to Parker as haring arrived at the same results. But it appears that this is only lalf of the story. Those invaluable memoirs of Parker on the sknll, for which erery living anatomist must bear a fecling of perional gratitude. seem to estallish beyond all reasonable doubt that the stapes of mammals and what corresponds to it in the Stapedifera amammalia is never developed from the hyoid arch, but always from the periotic capsule. Moreover, it appears that in the Batrachia, or tailless Amphibia, and in the Amniota amammalia this periotic stapes connects itself with the proximal part of the hyoid arch to form the columella; and it seems to he proved that this proximal part of the hyoid arch mar sometimes originate, ontogenetically, neither in continnity with the distal portion nor at the same time with it.
+ By a genetic group I mean an assemblage of animals, or plants, which are more nearly related to one another than any of them is to anything outside the group Thus the latest common ancestors of any two memhers of any genetic group would be later than the latest common ancestors of any form in the group and any form outside.
\ddagger The Chromides, except Symphysotion, and the Labroidei ctenoidei or Pomacentridæ, have only one external opening on eacls side. There are also some curious modifications of the olfactory apparatus among the Tetrodontina.

Fig

Fig 2

Fig 3

Fig 5

Fig 7

The Stapedilera together with the lipnoi constitnte a genetie gronp. They have posterior mares, or choand, opening within the month. We may then call them Chomata.

With a less degree of certamy, I shouk regard the Elasmobranchii, Teleostei, and Dipmoi, as genetic groups: as also a group formed by withdrawing the Chondrostei from the Gephyrrhina. These relations are exhihited in the following table.

It will be noticed that in two places in this table the division is into more than two lines, into three in one case and into five in the other. I do not intend to indicate that any snch multiplicate fission really took place, lout merely that it is not yet evident exactly how these sub-groups are related to one another. The relation of the genetic gromps A, B, and C may be that exhibited by making C's line come in at $X^{\prime}, X^{\prime \prime}$ or $X^{\prime \prime \prime}$. But while it is practically impossible that X should coincide with O, it is very easy for \boldsymbol{X} to get so near O as to be indistingnishable from it, and this will depend principally
 on the amomnt of change that has taken place between X and O , and on the completeness of our knowledge of the results of that change as now exhibited in living or fossil forms. To represent the lines as
Trans. Conn. Aoad, Vol. IT.
Dec., 187 .
diverging from () seems at way of symblizing the fict that the point of mion of $(1$ with the other lines came sur near () that in our present ignorance we ean not distinguish it from O. Amb this, I take it, has been the practice hitherte.

From this examination of the (iamoid ventals have been obataned the following resulta, for the most part merely contirmat ory of views previously expressed.

1. The hind limbs with their arches have been derived from a series of simple rays divided into three segments.
II. The "Archipterygimm" never existed ontside of the Choanate line, and probably never ontside the bipmoan.

1II. While the two former results are well established and may be regarded as final, the views which we must form respecting the mumber of rays, the amome of coneresence between allacent rays, the mion of the two pubes ant the development of the iliae process are much more indefinite and meertain. It seems probable that there Wats a rembetion in the number of the rays, in going from the Protograthostomi to the lrotogephyrhina, and perhaps a still farther reduction in the line leading off towarl the Teleasts. It is not mulikely that the concrescence in each of the ancestral gromps just mentionel lay between that of Seophimhmehus and Polyodon. The mion of the two pubes is fomd in all Elasmobranchiates, except the Holocephali, in some Teleosts, and in the Dipmoi. Whether this slight development was independent in the different gronps where it occurred or not seems at present impossible to say. An iliac process is found in Chimara, in the lays, in the Chondrostei, apparently in the Dipnoi, and in the stapedifera; there seems to be the same ronbt abont the history of this. But it is not very important. The essential fact seems to be this-that the line from the Protognathostomi to the Protostapedifera was in such a state that no very extraordinary set of circumstances was sufficient to evoke an iliac process.

Lndex to Plates

[Figures all drawn with a camera.]

Plate I.
Fig. 1. Ventral of Acipenser brevirostris, from dorsad.
Fig. 2. Partially ideal figure of the same, obtained by combining previous figure with figure 64, Pl. LIX, Trans. Conn. Acad.. vol. iii.
Fig. 3. Tentral of Polyodon folium, from rentrad. A. Single ray from middle of fin showing iliac process, a^{\prime}.

Plate II.
Fig. 4. Ventral of Polyplerus bichir.
Fig. 5. Ventral of Leepidosteus osseus, from dorsad.
Fig. 6. Tentral of Amia calva, from dorsad.
Fig. i. Ventral of Scuphirhynchus cataphractus, from dorsad.

1V. Some Interestinti New Dirtera. By S. W. Williston.

Rhynchocephalus Sackenii, n. sp. \&
Black with light yellowish hair. Head broater than thorax, hownish hack. Front hroat, thinly hackish haired on the vertex; the lower part, the face, cheeks, and posterior orbits, with thick, bushy, yellowish white hair, becoming nearly white below. Antenma short, redlishyellow, base of first joint infuscated, two first joints subquadrate, third cirenlar. Style of three joints, first joint short, yellowish, second joint twice as long, basal half infuscated, thind as long as two first, fuseous. Proboscis reaching the hind coxa, labinm hack, other parts, with the slender minute palpi, luteons. Dorsmon of thorax and scutellum lnownish black with yellowish hair; pleure and pectus with longer, bushy, grayish white hair. Abdomen short and broad, black; second segment above, and all the segments upon their sides, with yellowish hair, somewhat intermixed with back at the incisures; third and remaining segments above with sparse hairs and thick yellowish tumentum, wanting upon their anterior borders, giving the ablomen a slightly fasciated appearance. Venter with whitish pile. Lamelle of the ovipositor slender, black, luteous at extreme base, about as long as intermediate femora. Fect luteons. Femora white tomentose, with tufts of hair on their undersides near the coxa; anterior and midhle pairs, for their basal two-thirds, and posterior, except extreme tips, black. Anterior and middle tarsi infinseated, posterior more so, blackish. Wings hyaline; neuration as in the figure:

Arlventitions oblique vein but slightly arenated, terminating beyond the middle of the apical half, not contimed to posterior border, so that the thirt and fifth posterior cells are not completely separated; both cross veins obsolete. Three submarginal cells; first and second open, slemier. First posterior open, second closed, the brief petiole terminating in the end of the costal vein before the tip of the wing, fourth (thirl of Osten-Sacken) closed, as usual ; third a little shorter

Trans. Conn. Acad., Vol. IV.
than fifth. Long. corp. $9^{\text {run }}$; long. al. $9^{\text {man }}$. Olympia, Washington Tervitory,-ll. K. Morrison.

The present species is a most interesting addition to our fama. Hitherto only one, possibly two, species of this family and belonging to the short-proboscid division, have heen deseribed from North America. The family is subtropical, and the oceurrence of the present, the first North American representative of the rhynchocephalous division (Temistrinini), from such high latitude is remarkable, and, moreorer, is a striking example of the resemblance pointed ont by Baron Osten-sacken between the Western Asiatic and our Pacific famme. Of the genus Rhynchocephatus, schiner considered R. Tumscherii, from the region sonth of the black sea, as the type, and which, evidently, is the only known species, beside the present, that will ultimately remain in the genus, so averse are the other two species, from the same regions, hitherto placed with it. To R. Turscherii (Meig. Sys. Besch., rol. vi, pl. 66, fig. 6) the present species shows a very close resemblance, the length of proboseis and color of the head being the ebief differences.

Of the Temistrimini, a fossil species has bech described by Dr. Seudder from the Tertiary shales of Florissant, forming the type of a new genus (Pulembolus, Bul. C. S. Geol. Sur., vol. iv, No. 2, p. 526). So far as I ean judge, the genus is nearty related to Rhynchocephalus. I would differ somewhat from Dr. Seudder's excellent interpretation of this, the most intricate neuration among diptera. It is not the anterior, but the posterior, interealary vein that is present, as in many Midusidu. The vein which he describes as the anterior intercalary, is composed of the anterior basal transverse and the fifth longitudinal. Dr. Loew defined the family as having hoth intercalary reins, but 1 ean find no evidence of the anterior one.

Silvius pollinosus, n. sp. f.

Small, black, thickly grayish white pollinose. Head black, shining, concealed beneath dense gray pollen, ocelli very distinct, area not denuded. Frontal callosity black, shining, doubly rounded above, doubly concare and pointed below. Face with three shining black spots, the middle one smaller, sometimes obsolete. Antemme fuscous, second joint less than half as long as first, basal joint grayish pollinose and black pilose, base of all the joints somewhat luteous, the third especially so on the immer and upper sides, quinque-annnlate, terminal portion black. Palpi reddish, proboseis black. Tho-
rax black and shining where denuded of the gray pollen; three indistinet lighter stripes of the color of front, ahbreviated posteriorly. Abdomen thickly pollinose, the blackish, opaque gromb-color with narow whitish posterior borders to all the segments; two series of small, median, more or less indistinet, brownish spots on the anterior parts of second, third, and fourth segments; tip thinly whitish pilose. Legs reddish; ends of all the femora and tibie, anterior tarsi, middle, and posterior tarsi, except the larger part of basal joint, back. Wings pubescent, hyaline; stigma brown, reaching across the marginal cell, veins at bases of second smbmarginal, first, second, amt fourth posterior cells, with narrow blackish clonds; also a number $(4-8)$ of minnte brown spots on all the vems beyond the discal cell. Long. corp. 8^{mm}. Kansas,-E. W. Guild.

Agrees closely in structure-except the prbescent wings-with S. gigantulus Lw, the only other North American species, but is very different in coloration.

Chrysops discalis, n. sp. if.
Large. Front black, with gray pollen, ocellar area not demuded, callosity small, shiming-black, oval. Face yellow, with four small black spots, the upper pair broadly, the lower narrowly separated. Antenne: hasal joints fuscons, white pubescent, first joint yellow on imer side, third joint black. Palpi the color of the face, white pubescent Thorix with four cinereous stripes, leaving black intervals, of which the median is narrow. Scutellum cinereons. Abdomen: first segment black, with a small yellow spot on each side of the sentellum; second segment yellowish cinereous with four black spots, the outer ones smaller and posterior, the median ones larger, subquadrate, anterior, narrowly interrupted; third segment with the fonr spots subequal, indistinct, posterior part and all the remaning segments blackish, with einereous jollen and yellowish incisures. Venter reddish yellow with three series of black spots, median ones broad and triangnlar with the base in front, outer ones small, oval; sixth and seventh segments chiefly black with reddish yellow posterior margins. Legs reddish yellow ; extreme tips of all the femora, anterior tarsi and tips of other tarsi black, tijs of anterior tibix infuscated. Wings with pale brownish design. End of first hasal cell, all of sceond and thitd hasal cells, anal angle, large spots in the diseal and fifth posterior cell and usnal crossband, hyaline. Apieal portion grayish, with a distinct brown spot at the fureation of the third longi-
turlinat, covering as stump of a vein. Four specimens. Como, W yoming, Jume 20. Long. corjp. 10-11 1^{mm}.

Belongs in the small Merlitermanem gromp with hyaline discal cell. Easily distinguishable from C. futvester O.S., of the same region, the only other known American species of this group, by its large size, black fromal and facial callosities and the greater hyalinity of the wings. From δ. quedrivitatus Say, it is also evidently iliferent.
V. On the swechen of l'invixa inhabiting the New Englani, COAST, WLTH REMARKS ON THEIR EARLY STAGES. DYY S. I. SMTH.

Is the Report of the [E . Sommissioner of Fish and Fisheries for 1871-2, I have figured a species of Pimuint and recorded its oecmrrence in Vineyard and Long Island Sounds, but referred it incorrectly to 1 . cylludrien (Say spr) At that time I had examined only three specimens, and all of them were of the species figured. In 1874 and 1875 alditional specimens of Pimmixe were collected by Fish Commission parties in Fisher's Island sound, Vineyard Sound, and Buzzard's Bay, but 1 did not examine them carefully, supposing the specimens to be of the same species as those previonsly examined. During these seasons, however, I hat some opportunities for studying the carly stages of the genns.

In 1874 zoea of Pimnixa were ohtained in abundance from the eggs, but I was not able to rear them to later stages In 1875 zoere were again obtained from the eggs and many zoex in later stages were taken at the surface. Among those obtained at the surface there were two forms which at first sight looked like two stages of the same species, but on closer examination, they both appeared, judging from the advanced condition of the cephalothoracic and abdominal legs, to be in the last zoea-stagr. The larger and much the more abundant of these two forms, the one designated in my notes as the "long-spined zoea," agrees with the zoea of l"inniad, from Newport, Rhode Island, figured by Mr. Faxon (Bull. Mus. Comp. Zool., vol. v, plate 4, figs. 5-15, 1879). The other form, designated in my notes as the "short-spined zoe:t," is considerably smaller and has very much shorter dorsal and rostral spines, eren proportionally shorter than in the first stage of the zoea of I'innixu chutopterana figured by Mr. Faxon (plate 4 , fig. 1), so that the distance from the tip of the dorsal to the tip, of the rostral spine is only about laalf as great as in the longspined form. Except in these claracters 1 was unable to find any differences whatever and, though then aware of the ocemrence of one species only on the New England coast, I supposed that the forms represented two species of Pimixa.

A number of individuals of each form were examined and carefully rared in separate vessels. Two individnals of the long-spined form lived through the last zoc:i molt ame eame out in the early stage of the adult form, as well deseribed hy Mr. Faxom. Of the short-spined form a single individual was reared through the final zoea molt, and came out a megalops. I was not able during the season of 1875 to rear either the megalnps or the young erah through another molt, or to repeat the former observations.

Though these observations were very remarkable, I wished to complete and coufirm them, and, if possible, to determine to what particblar species the two forms of zoea belonged, and so the publication of the observations was postponed; but no opportmity for completing them ocenred, and in 1878 Mr. Faxon, though wholly ignorant of my observations, fortmately repeated the observations upon the long-spined zoea and published the results, together with a brief statement of $m \mathrm{y}$ observations, and gave figures of the zoere which I obtained from the adnlt Pimmiea at Noank, Conn., in 1874. Mr. Faxon identified the adult Pinnica, like those from which the zoere were obtained, with P. chutopteromu of Stimpson, and, in his paper referred to, is the first to record the oceurrence of this species on the New England coast.

During the summer of 1879 Prof. II. E. Wehster obtained a large number of specimens of Piminte (which was before not known north of Cape Cod) at Welltleet, on Cape Cod Bay, and sent them to me for identification. While examining these I have reëxamined the specimens previously obtained on the New England coast, in all between 60 and 70 specimens, and I find there are two quite distinct species among them. As imlicated by these collections, by far the most common species is I^{\prime}. chotopterana Stimpson, and among the specimens taken by Prof. Webster in Cape Cod Bay, this is the only species represented. From Vineyard Sound, Buzzard's Bay, and Long Island Sound, however, there are a few specimens of a different species, the one which I have figured and referred to as P cylindrica (Say sp.) It is apparently not Say's species, however, but the species described by Stimpson as P. Sayama. Stimpson appears to have had only males and his specimens were dredged in 6 fathoms, off the mouth of Beaufort IIarhor, North Carolina. The distinctive features of these two species are pointerl out further on.

Having ascertained that the alults of two species of Pinnixa inhabit the New England coast, it is a matter of considerable interest to determine whether cither or both of these are the same as cither
or both of the speeies which Mr. Fiaxon and I have observed to differ so widely in regard to the megalops-stage.

The young in the first zoea-stage figured by Mr. Faxon (pl. 4, figs. 1-4) were obtained directly from the eggs of P. chetopteranu and are of course unfuestionably of that species. That the later stages figured by Mr. liaxon (pl. 4, figs. $5-15$, and pl. 5) do not belong to the same species as the young in the first \%oea-stage, is shown by the difference in the length of the dorsal and rostral spines in the first and last zoea-stages, and by the presence, in the zoce in the first stage, of the central lobe of the pusterior margin of the telson, while it is wholly wanting in the zoere in the last stage. In the several species of Brachyura in which I have examined a series of zoear in different stages, the dorsal and rostral spines are proportionally not much if at all longer in the first than in the last stage, and there is often a considerable decrease in the length of these spines in passing from next to the last to the last stage: Pinmiare is probably not an exception to this rule. Moreover, among the zoes of Pinnixa taken in Vineyard Sound in 1875, there are a few specimens of the longspined form which are evidently in the penultimate zoea-stage, and they agree fully with the mumerous specimens in the last stage in the length of the spines and in the form of the telson.

On the other land the shortspined zoes which I ohserved to pass into a megalops-stage agree with the first stage of the zoea from the eggs of P. chatopterana, not only in the lengtlı of the spines but also perfectly in the form of the telson, the median lobe of the posterior margin being developed precisely as in the zoes of the first stage and as figured by Mr. Faxon (1, 4, fig. 2, b). This is sufficient evidence, I think, to show that the short-spined zoea upon which my observations were based are the young of P. chetopteranu, and that the long-spined form, which both Mr. Faxon and 1 observed to pass directly from the zoea to the adult form, must belong to some other species. The fact that these long-spined zoere were very common both at Newport and in Vineyard Somn would seem to indicate a probability that they belong to some species regularly inbabiting the coast of Southern New England, and cousequently that they are likely to prove the young of I. Sayuma,-hut this is only a probability. That both forms of the early stages belong to species of the same gemus (as the genera of the group to which they belong are now unlerstoot) there can be no reasonable donbt, since one of the forms has now been traced from the eggs of a well-known species to the megalops-stage, and the other from the later zoea-stages to the early, but geuerically characteristic, stages of the adult form.

The following systematic secomt of the two species of P'inniza above referred to gives the obwious specific characters of the adults and the principal hibliography of each species.

Pinnixa chæetopterana stimpson.
P'inixa rylindrica S'timpson, Annals lyceum Nat. Hist. New York, vii, 1. (;8 (22) 1859 (partial dese; South Carolina, in tnbes of Chcelopterus) (Nrm White nec Say sp.)
Pimixa chatopteronu sitimpson, of), cit.. vii, p. 235 (107), 1860 (dese.; syu.; same loc.) Kingsler, Proc. Aead, Nat. Nei. Hhiladelphia, 187S, p. 324 (9), 1878 (North Carolina) ; op. cit.. 1579, p. 402. 1840 (Virginia, Florida).
Faxon, Bulletio Mus. Comp. Zool. Cambridge, r, p. 26:3, pl. 4, figs. 1-4 (zoca). pl. 5, figs. 8.9 (chelipeds), 1879 (Long I. id, and Buzzard's Bay).
The carapax is very broad and broader in the mates than in the femakes, aduh males and large females being 1 wo and a fourth times as broad as long. There is a distanct and minutely tubercular ridge along the anterior inferior elge of the branchial region just ower the bases of the chelipeds; and above, and neally parallel with this, there is a denticnlated carina, or line of minute denticles, across the swollen hranchial region, on a line from the base of the third ambnlatory leg toward the eye, but not reaching the lateral margin of the carapax nor crossing the cervical suture, though there is a slight elevation on the hepatic region opposite the carina. This line of anticles is better marked in the females than in the males. The transverse erest unon the eardiac region is conspienons in both sexes: in the female it is marked ly a slender but sharp earina interrupted for about a third its lengtl in the middle; while in the male the carina is even more broadly interrupted in the middle and projeets each side in a very prominent, transversely elongated, dentiform protnberance.

In the male the chelipeds are much stouter than in the female: the propodns is nearly smooth, as long as the carapax and somewhat swollen in the middle; the prehensile edge is terminal, but projects distally considerably at the inferior angle, is nearly transverse, and armed with a triangular tooth near the hase of the dactylus and usually with a minute one near the tip. The dactylus is stout, very strongly curred and the prehensile edge is nearly or quite smooth. In several of the males examined one of the cheliperls is a little smaller than the other and in all respects like the chelipeds of the female, but these were probably all cases of reproducen limbs.

In the female the chelipeds are smaller and proportionally less stont and more compressed than in the male: the propodus is shorter than the length of the carapax, and the digital portion is obligue, longer than in the male, and its tip is obliquely trincated so as to
leave an angular prominence near the mildte of the prehensile elge. The dactyths is much longer and less curvel than in the male, and its prehensile edge is armed with a small tooth about a third of the way from the hase to the tip, and often with minute additional teeth either side of the principal one.

The first pair of ambulatory legs are slender and scarcely longer than the ehelipeds; the second pair are a little longer and considerably stouter, but still slender; the dactyli in both pairs are rather slender, and in the female nearly ats long as the upper edge of the propodus, but in adult males apparently a little shorter. The third pair are very large, abont equally stont in the two sexes, ant in adults about as long as the brealth of the carapax, but in young somewhat longer; the merus is about as long as the carapax and about half as broad as long; the mper edge is angular and nsually minutely denticulated distally, there is a slight transerse groove at the distal end, the sides are smooth and rounded, lout the inferior edge projects in a thin and comspicuonsly denticulated carina; there is a similar but mneh less conspicuous carina upon the propodus and also on the ischimm; and there is a slight crest upon the upper edge of the carpus and jropodus. The fosterior ambulatory legs are short, reaching beyond the merns of the third pair, but they are much stouter than the second pair and the merus is carinated and grooved as in the third pair, thongh much less conspicuonsly.

The following measurements of the carapax and one of the third ambulatory legs in a number of speeimens show the proportions of these parts of the animal more fully than the description.

No.	Sex.	Carapax :			Third ambulatory leg:			
		Length.	Breadth.	Ratio.	Length.	Merus.	Propodus.	Dactylue.
5	人	$3 \cdot 9 \mathrm{~mm}$	8.7 mm	1:2.23	$9 \cdot 4^{\mathrm{mm}}$	$4.0 \times 2.0{ }^{0}$	$2 \cdot 0 \times 1 \cdot 4^{\mathrm{mm}}$	$1.2 \times 0.3{ }^{\text {mm }}$
3	'6	$3 \cdot 9$	8.8	1:2.26	9.5	$4.0 \quad 2 \cdot 0$	2.0114	1.204
1	"	$4 \cdot 0$	$9 \cdot 1$	1:2.27	$9 \cdot 7$	4.1 - 1	$\cdots \cdot 0 \quad 1 \cdot 5$	$1 \cdot 307$
3	"	$4 \cdot 1$	$9 \cdot 3$	1:2.26	$9 \cdot 8$	$4.22 \cdot 1$	$2.0 \quad 1 \cdot 5$	1.3004
3	"	$4 \cdot 4$	$10 \cdot 0$	1: 2×27	10%	$4.42 \cdot 2$		1.405
3	*	$4 \cdot 5$	$10 \cdot 2$	1:2.27	$11 \cdot 2$	$4 \cdot 6 \quad 2 \cdot 3$	2.015	1.40 .5
5	*	4.7	$11 \cdot 0$	1: 234	$11^{\circ} 0$	$\pm .7 \quad 2.5$	$\begin{array}{ll}2.3 & 1.8\end{array}$	1.50 .5
3	"	49	11%	1:2.35	11.0	$502 \cdot 4$	2.31 .8	$1.5 \quad 0.6$
4	$8 ?$	$2 \cdot 3$	$4 \cdot 7$	1:2.04	6.0	$2 \cdot 30.9$	$\begin{array}{lll}1.3 & 0.6\end{array}$	$\begin{array}{lll}1.0 & 0.2\end{array}$
3	?	$2 \cdot 6$	$5 \cdot 5$	1:2•12	6.5	2.619	$\begin{array}{ll}1.5 & 0.9\end{array}$	$1.0 \quad 0 \cdot 3$
3	-	$3 \cdot 0$	$6 \cdot 3$	1:2•10	$7 \cdot 4$	$2.8 \quad 1 \cdot 3$	1.71 .0	$1 \cdot 1 \quad 0 \cdot 3$
5	"	$3 \cdot 2$	$7 \cdot 0$	1: $2 \cdot 19$	\because	$\begin{array}{lll}3.2 & 1.7\end{array}$	$1.6 \quad 1.2$	$1 \cdot 1 \quad 0 \cdot 3$
5	${ }^{16}$	$4 \cdot 6$	10.0	1:2.17	10.5	$4 \cdot 1 \quad 2 \cdot 4$	$\begin{array}{lll}2.0 & 1.5\end{array}$	1.30 .5
3	"	$4 \cdot 6$	$10 \cdot 3$	1:2.24	$10 \cdot 4$	$4 \cdot 1 \quad 2 \cdot 2$	$\underline{2.0} 1 \cdot 4$	1.405
5	"	$5 \cdot 0$	$11 \cdot 4$	1:2.28	11.0	$4.7 \quad 2 \cdot 4$	$\begin{array}{ll}2 \cdot 3 & 1 \cdot 8\end{array}$	$\begin{array}{lll}16 & 0.5\end{array}$
3	"	$5 \cdot 3$	$12 \cdot 0$	1:2.26	$12 \cdot 2$	$5 \cdot 0 \quad 2 \cdot 6$	$2 \cdot 5 \quad 1 \cdot 7$	$1.6 \quad 0 . \overline{5}$

Trans. Conn. Acad., Vol. IV.
3.3

MAY, 1880.

Specimers Eincmined.

No. 5 were all found in the tubes of Amphitrite ornata Verrill (Leidy sp.)

Pinnixa Sayana Stimpson.

Pinnixa Sayana Stimpson, Annals Lyceum Nat. Hist. New York, vii, p. 236 (108), 1860 (desc. of δ; North Carolina).
Kingsley, Proc. Acad. Nat. Sci. Philadelphia, 1878, p. 323 (8), 1878.
Pinnixa cylindrica Smith, Invertebrate Animals of Vineyard Sound, Report U. S. Comm. Fish aud Fisheries, part i, p. 546 (252), pl. 1, fig. 1, 1874 (Tineyard Sd. and Long I. Sd.) (Non Say sp. nec Stimpson).
? Pinnixa sp. Faxon, Bulletin Mus. Comp. Zool. Cambridge, r, p. 263, pl. 4. figs. 5-15, pl. 5, figs. 1-7, 1879 (early stages; Nerrport, Rhode Island).

The carapax is narrower than in P. chotopterana, but still nearly, or even somewhat more than, twice as broad as long. There is a tuberculose ridge along the anterior inferior margin as in P. chotopterana, and above and nearly parallel with it a sharp denticulated carina extending from the hase of third ambulatory leg across the branchial region and across the cervical suture to the hepatic region, being most conspicuous at the cervical suture, and separating the dorsal from the nearly perpendicular antero-lateral horder of the carapax. In the female there is no carina on the cardiac region, only an obtusely angular ridge separating the flat dorsal from the inclined posterior dorsal region; while in the male (as alrearly described by Stimpson) the ridge is marked by a very slender, but sate, carina not interrupted in the middle.

The chelipeds in the one male examined are mequal, the smaller being in all respects like the chelipeds of the female, while the other (apparently of the normal form for the male) is very much as in the male P. chutopterana, thongh apparently a little smaller in proportion. The tooth near the base of the digital portion of the propodus is inconspicuons lut still clearly discemible.

The first and second pairs of ambulatory legs are long and very slender, the first pair being longer than the chelipeds, and the second considerably longer than the breadth of the carapax. The third pair are only a little longer than the second and proportionally consider-
ably stonter, but very much less stont than in 1 . chatopterama: the merus is about three times as long as broat, the posterior smrface is somewhat rough and granular and there is a minutely tuberenlar and gramular earina on the lower edge, but there is no well marked groove across the distal ent; there are two lines of granules along the lower edge of the propodns but no real carina. The posterior legs are very much like the third pair except that they are much smaller, reaching only to the distal ends of the carpi of the third pair. The dactyli of all the ambnlatory legs are long, slender and nearly straight.

Measurements.

No.	Sex.	Carapax.			Third ambutatory leg:			
		Length.	Breadtb.	Ratio.	Length.	Merus.	Propodus.	Dactylus.
5	5	$2 \cdot 8 \mathrm{~mm}$	$5 \cdot 4^{\text {mm }}$	1:1:93	8.0 ${ }^{\text {mim }}$	$3.2 \times 0.9 \mathrm{~mm}$	$1.7 \times 0.6{ }^{\text {mm }}$	$1.5 \times 0.2 \mathrm{~mm}$
5	¢	$2 \cdot 7$	$5 \cdot 2$	1: $1 \cdot 94$	7%	2.90 .8	$1 \% \quad 0.4$	$1.4 \quad 0.2$
5	"	$2 \cdot 9$	$5 \cdot 6$	1: 1.93	$7 \cdot 2$	$2 \cdot 7 \quad 108$	$1 . t \quad 0.5$	$1.30 \cdot 2$
5	"	$3 \cdot 3$	6.7	1:2.03	$8 \cdot 2$	$3 \cdot 21 \cdot 0$	1.60 .6	$\begin{array}{ll}1.4 & 0.3\end{array}$
1	,	$3 \cdot 4$	6.8	1:2•00	8.7	$3 \cdot 311$	1.70 .7	$\begin{array}{ll}1.5 & 0.3\end{array}$
4	"	$3 \cdot 7$	7.4	1:2.00	$9 \cdot 1$	$3 \cdot 8 \quad 1 \cdot 2$	$1 \cdot 8 \quad 0 \cdot 7$	$\begin{array}{lll}1 \cdot 6 & 0 \cdot 3\end{array}$
2	"	$\because \cdot 7$	$7 \cdot 7$	1:2.08	$9 \cdot 0$	$3.6 \quad 1 \cdot 2$	$1.90 \cdot 8$	$1.6 \quad 0 \cdot 3$
3	"	43	8.7	1: $2 \cdot 02$	$10 \cdot 1$	$4.0 \quad 14$	$2.0 \quad 1.0$	$1 \cdot 7 \quad 0 \cdot 3$

Specimens Erromined.

V!. OCCASIONAR vCrURRENCE OF TROPICA1. ANU sUB-TROPICAL species of Decapon Chustacea on the Coast of New England. By S. I. Smitu.

Some years ago I called attention to the occurrence of the young of a southern species of Ocypode on the south shore of Long Island and the coast of sonthem New England, and more recently Mr. Faxon has recorded the similar ocourence, at Newport, Rliode Island, of Polyonya macrocheles and, incidentally, of Calappa marmorata. Since my first observations were pablished a considerable number of new observations have been made and addlitional species have been found to ocenr in a similar way, so that it seemed desirable to bring together all the observations with the view of calling special attention to the subject. This is attempted in the following list which includes all the tropical and sub-tropical species which are known to me to occur, in any stage of the adult form, on the New England coast. The pelagie species which I have mentioned as found near the borders of the Gulf Stream, off St. George's Banks (these Transactions, vol. iii, 1. 26; vol. v, 1p. 120-122), are doubtless all regular inhabitants of the Gulf Stream even much north of New England, and all probably occur occasionally on the coast of southern New England, but only those which have actually been observel in the bays and sounds along the coast itself are included in the list. Of the species included, Nautilogrupsus mimutus, Neptumes Sayi, and Latreutes ensiferus belong to the pelagic fauma of the Golf Stream. The others are all southern species which either drift north in the free-swimming early stages and partially complete their development on our coast, like ocypode quadrata and Polyonyx macrocheles, or are accidentally carried north in some stage of the adult form aml survive for a short time in summer, like Pachyfrapsus transversus. I have not intended to include any species which conld, in any sense, be regarded as properly belonging to the fauna of the New England coast.

Ocypode quadrata J. C. Fabricius.
Cancer quadratus J. C. Fabricius, Entomologia Systematica, ii, p. 439, 1793 (diagnosis ; "Habitat in Jamaica Mus. Dom. Bauks.")

Ocypode quadrata J. C. Fabricius (continued).
llerlst, Kralhen und Ǩrehse, i, p. 257, 1782 ($=$ Fabricius).*
Ocypode quadrata 1. C. Fahricius, Supplementum Entomol. System., p. 347, 1798,
Bosc, Hist. nat. Crust., i, pl. 194, 198, 1802 (Ocypoda ; Fabricius).
Latreille, Mist. nat. Crust. Ins., vi, p. 49, 1803 (=Fabricins).
Ocypoda albicans Bose, Hist. nat. Crust., i, p. 196, pl. 4, fig. 1, 1802 (Carolina coast; the figure is very bad aud probably not based on the specimens described in the text, the eje-stalks being prolonged as in O. ceratophthalwa.)
Latreille, Hist. nat. Crust. Ins., vi, p. 48, 180:3 (= Bose).
Ocypote arenarius Say, Jour. Acad. Nat. Sei. Philadelphia, i, p. 69, 181 亿.
M.-Edwards, Hist. nat. Crust., ii, p. 44, pl. 19, figs. 13, 14, 1837 (Ocypoda arenariu); Ann. Sci. nat., III, sviii, p. 143 (107), 1852 (Ocypode arenaria).
White, List Crust. British Mus., p. 34, 1847 (Ocypode arenuria).
Gibbes, Proc. Amer. Assoe. Adv. Sci., 3 meetiug, p. 180 (16), 1850 (arenuriu).
Coues, Proc. Acad. Nat. Sci. Philallelphia, 1871, p. 122 (arenaria; North Caroliua; habits).
Von Martens, Archiv für Naturgesch., xxxviii, p. 103, 1872 (arenaria).
Smith, Amer. Jour. Sci., III, vi, p. 67, 1873 (Honolepis inermis=megalops-stage); lnverteb. Vineyard Sd., Report U. S. Fish Comm., i, p. 545 (251), 534 (240), 1874 (Ocypodu arenaría).
Kingsley, Proc. Acad. Nat. Sci. Pliladelphia, 1878, p. 322 (7), 1878 (Ocypoda arenaria); op. cit., 1879. p. 400, 1880.
Ocypoda rhombea M.-Edwards, Hist. nat. Crust., ii, p. 46, 1837 (" Antilles et Brésil") ; Ann. Sei. nat., III, xviii, p. 143 (107), 1852 (Ocypode).
White, List Crust. British Mus., p. 35, 1847 (Ocypode; Jamaica).
Dana, U. S. Expl. Exped., Crust., p. 322, pl. 19, fig. 8, 1852 (Brazil).
Monolepis inermis Say, Jour. Acad. Nat. Scı. Philadelphia, i, p. 157, 1817.
M.-Edwards, Hist. nat. Crust., ii, p. 264, 1837.

White, List Crust. British Mus., p. 65, 1847.
Gibbes, Proe. Amer. Assoe. Adv. Sei., 3d meeting, p. 192 (28), 1851.
Cuncer arenarius Catesby, Nat. Hist. Carolina, ii, pl. 35, 1743.
In 1873 I called attention to the occurence of the young of this species on the coast of New England and Long Island, and suggestert its relation to the Monolepis inermis of Say. Since then a great number of the megalops have been taken in Vineyard Sound by Mr. V. N. Eiwards, and, early in September, 1875, 1 took several specimens stimming at the surface in the same region. One of the latter specimens, after being kept alive for some days, buried itself in the sand preparatory to molting, but died before this was fully accomplished. The molting was sufficiently advanced, however, to show

[^122]elearly the form of the young Ocypode within the megralops skin and to establish mequivocally my former conclusion that Say's Monolepis inermis is really the megalops-stage of this species of Ocypode.

I have examined a very harge series of specimens of the adult form of this species from Brazil; St. Thomas; Aspinwall; Nassan, New Providenee; Texas; Key West, and sarasota Bay, Florida; the Bermudas; North Carolina; New Jersey; and the sonth shore of Long Istand: :ut, between specimens of the same size, I can find no differences which could be regarded as specific, though young specimens differ moch from adults, and these difterences have probably led to the admission of the two nominal species, aremurire and rhombea.

This species is evidently the O. quadrutu of Fabricius: the original description of Cancer quadratus agrees in every respect, and the comparison with C. cerctophthulmus ("Aftinis C. ceratophtalmo at ocnli simplices") and the habitat ought to leave no doubt whatever on this point. Dellaan, however, refers Fabricins' species to a Japan Sesarmu (Grupsus (P'uchysoma) quedratus DeHaan, Fanna Japoniea, p. 62, pl. 8, fig. 3), althongh he had already (op. cit., p. 29) retained it in the genns Ocypode. Succeerling authors have failed to restore Fabricius' species to its proper place. F'abricius' Ocyporle rhombea, of which the habitat was unknown, is eertamly not this speeies, nor of the gems Ocypode in the modern sense, as the first line of the diagnosis, "thorace laeniusenlo utrinque unidentato," plainly shows. If ante-Linnean names, when occasionally binomial, are to be adopted, then Catesby's arenarius may be retained.

When writing the report on the crustacea of Vineyard Sound, I had not been able to consult Fabricins' works, and stated that "the Brazilian species, usually called rhombea appears to be identical with ours, and if it is really the thomben of Fabricins, his name should undoubtedly be retained." This remark is quoted verbatim in order to correct Mr. Kingsley's statement (Proc. Acad. Nat. Sci. Philadelphia, 1878, p. 322 (1), 1878) that I say "that our form seems to be identieal with the Brazilian one, which is known as O. Thombea Fabricius, in which ease the name rhomber will hold."

Grapsus pictus Lamarck.

[^123]Grapsus pictus Lamarck (continued).
Grapsus pictus Lamarck. S'ystéme Animaux sans Vertèb., p. 150, 1801.
Bosc, 1list. nat. Crust., i, p. 202, 1802.
Latreille, IIist. nat. Crust. Ins, vi, p. 69, 1803.
Desmarest, Consider. Cénéral. Crust., p. 130, pl. 16, fig. 1, 1825.
M.-Edwards, llist. Nat. Crust., ii, p. S6, 1837 (Antilles); Règne animal de Cuvier, $3^{\text {me }}$ élit., pl. 22, fig. 1.
Gibbes, Proc. Amer. Assoc. Adv. Sci.. $3 d$ mecting. p. 181 (17) 1850 (Florida).
Dana, U. S. Expl. Expd.. Crust.. p. 336. 1852 (Madeira, Cape Verls, Peru. Paumotu Archipelago, Sandwich Is.)
Saussure. Revie Mag. Zool., 1I, v, p. 362 (9), 1853 (Mazatlan).
Nicolet, in Gay, Hist. de Chile, Zonl., iii, p. 166, 1854 ($=$ G. arnatus ML.-Edwards).
Stimpson. Jour. Boston Soc. Nat. Hist.. vi, p 466 (26), 1857 ($=$ G. pictus De Saussure, but supposed not to be that of Latreille).
Streets, Proc. Acad. Nat. Sci. Philadelphia, 1871, p. 240 (no description; Isthmus of Pauama).
Miers, Proc. Zool. Soc. London, 1877, p. 73 (falapagos Is.; >G. altifrons stimp.) Yon Martens, Archiv. Naturgesclı, xxxviii, 1872, p. 106 (Cuba).
Hilgendorf, Monatsb. Akad. Wissensel. Berlin, 1878, p. 807 (Mozambique).
Grapsus (Goniopsis) zictus DelIaan, Fauna Japonica, Crust.. p. 33, 1835.
Grapsus strigosus Brullé, in Barker-TVebb et Berthelot. Hist. nat. Hes Canaries, Entomologie, p. 15. 1835 (no description ; $=G$. Webbi, teste M.-Edwards).
? Stimpson, Jour. Boston Soc. Nat. Hist., ri. p. 446 (26), 1857 (=Goniopsis strigosus White, in part).
? Hoffmann, Faune de Madagascar, Crust., p. 20, pl. 5, fig. 31, 1574.
Goniopsis picta Krauss. Südafrikan. Crust., p. 4G, 1843.
? Goniopsis strigosus White, List. Crust. British Mus., p. 40, 184 (in part. probably specimens d and j. (tulf of California).
Grapsus maculatus M.-Edwards, Ann. Sci. nat., III, xx, p. 167 (133), pl. 6 (=pl. 22, Règne animal de Cuvier, (rrust.), 1853 (Antilles).
Saussure, Crust. Mexique et Antilles (Mém. Soc. Phys. Hist. nat. Genève, xiv), p. 32, 185 (G. maculatus?).
Stimpson, Ann. Leceum Nat. Hist. New York, vii, p. 229 (101), 1860 (Florida).
Kingsley, Proc. Acad. Nat. Sci. Philadelphia, 1879, p. 401 (Santa Cruz, Tahiti).
Hoffmann, Fauue de Madagascar, ('rust., p. 21, pl. 6, figs. 36-38, 1874.
Grapsus maculatus, var. Pharaonis, A. M.-Fdwards, Nonv. Arch. Mus. Paris, ix, p. 285, 1873.
Grapsus Pharaonis M.-Edwards, Ann. Sci. nat., III, xx, p. 168 (134). 1853 (Red Sea). Heller, Sitzungsb. matlem.-naturw. Classe Akad. Wisseusch., xliii, p. 362, 1861.
Iloffmann, Faune de Madagascar, Crust., p. 20, pl. 5, tigs. 32-35, 1874.
Grapsus arnatus M. Edwards, Ann. Sci. nat., III, xx, p. 168 (134), 1853 (Chili).
Grapsus Webbi M.-Edwards, Ann. Sci. nat., III, xx. p. 167 (133), 1853 (=G. strigasus Brullé; Canary Is.)
Stimpson, Proc. Acad. Nat. Sci. Philadelphia, 1858, p. 102 (48).
Grapsus altifrons Stimpson. Ann. Lyceum Nat. Ilist. New York. vii, p. 230 (102), 1860 (Cape st. Lucas.).
Pagurus maculatus Cateshy, Nat. Hist. Carolina, ii, pl. 3G, 1743 (Florida).

The only sperimen I have seen from the New England coast is a small one taken alive, in 1857, hy Mr. J. M. Blake, in l'rovincetown Harbor, Cape Cod Bay, from a whaler just in from sea. This specimen dillers so much from the adnut $(\underset{r}{ }$. pictus of Florida and the West Indies that it might readily be taken for a difforent species. The carapax is very much marower proportionally than in adults, and the branchial regions are less swollen. The front and epistome are more like G. strigosus than the adult pictus: the front is not perpendienlar as in the adult but very oblique, the median and lateral protogastric lohes being much less angular in front and much back of the frontal margin itself; the relative proportions of these lobes, however, and the other characters of the areolation of the carapax agree well with adnlt specimens. A series of young specimens of C. gictus from the coast of Brazil shows, by direct gradations in the form of the front and the relative proportions of the carapax, that the small specimen from Provincetown is an immature individual of this abmdant tropical species, which, as far as I know, has not betore been recorded from the western side of the Atlantic north of Florida and the Barmudas.
ln the adult condition this species appears to wary slightly in the height of the front and the character of the frontal lobes, and considerably in coloration, but I can see no reason for regarding the form, from Chili, named monutus by Mihne-Edwards, or that, from the Gulf of California, called altifrons by Stimpson, as distinct species. I have examined a considerable mmber of specimens of the typical pictus from Bermula and from Key West, Florida, two large specimens of the ornatus from Callao, Peru, and two large specinens of the altifrons from La Paz, Lower Califormia; and I find no characters whatever in the form of the carapax, or in the proportions or armament of the chilipeds or ambulatory legs, by which these supposed species can be distinguished. In the coloration of these specimens there is an apparent difference between those from the Atlantic and those from the Pacific, but still not sufficient, I think, to distinguish them even as geographical color varieties. All the specimens appear to have the same pattern of coloration, but in those from the Gulf of California and Peru the red rery much predominates, while in Atlantic specimens the yellow markings appear to occupy a larger proportion of the surface. The Atlantic specimens vary much in this respect, however, and the coloration of some of those from Bermuda approaches very nearly that of the specimens from the west coast of America, and I have no doubt that a large series of specimens from
different localities would show a complete gradation between the extremes of coloration.
The following table of measurements shows the variation in the proportions of the carapax due to age, and the complete comespontence in the proportions of specimens of similar size from Bermuda and Key West, on the one hand, and Lower Califormia and Pern, on the other. In order to show more clearly the relative proportions of the carapax, the measurements in the last three divisions of the table are given first in millimeters and then in the mit of the length of the carapax. In regard to the height of the front, which is not given in the table, it may lee mentionel that it is alsolutely higher in the largest specimen from the Bermudas than in cither of the specimens from La I'az.

$\begin{aligned} & \text { Locallty ; } \\ & \text { sex. } \end{aligned}$	Lengtls of Carapax.	Breadth of Carapax :			
		Greatest.	At anterior angles.	Of front.	
a	10.7 mm	13.7 mmm 1.26 lgth .	11.5 mm I 07 lgth .	$5 \cdot 0^{\text {mm }}$	$\cdot 45 \mathrm{lg} \mathrm{th}$
b	11.7	$14 \div 3$ 1-22	$12 \cdot 1 \quad 1.03$	$5 \cdot 3$	$\cdot 45$
b \%	14.5	17.0 1.17	$13.8 \quad 0.95$	$6 \cdot 6$	-45
b)	$16 \cdot 2$	$18 \cdot 9$ 1.16	14.80 .91	7-1	-44
b ¢	18.5	$21 \cdot 3 \quad 1 \cdot 15$	16.80 .91	$8 \cdot 0$	$\cdot 43$
b ¢	21.0	$24.0 \quad 1 \cdot 14$	18.40 .88	$8 \cdot 8$	$\cdot 42$
c ${ }^{\text {\% }}$	$37 \cdot 2$	40.51 .09	$29.5 \quad 0.79$	14.7	-40
d 3	43.0	$47.3 \quad 1 \cdot 10$	34.60 .80	17.0	-40
d \%	57.0	61.41 .08	43.00 .77	22.5	-39
c of	67.0	73.81110	$47 \% 0 \cdot 71$	$26 \cdot 8$	-40
e ơ	60.0	65.41 .09	$43 \cdot 0 \quad 0 \cdot 70$	24.0	40
e of	$6 \bar{\circ} \cdot 0$	72.51 .11	$46^{\circ} 0 \quad 0.71$	$26^{\circ} 0$	- 40
f ¢	$59 \cdot 0$	14.0 1.08	$41.5 \quad 0 \cdot 70$	22.8	$\cdot 39$

a, Provincetown, Mass. b, Brazil (C. F. Hartt). c, Bermuda (G. Brown Goode). d, Key West, Fla. (roccived from Dr. Harrison Allen). e, La Paz, Lower California (J. Pedersen). f, Callao, Peru (F. П. Bradley).

The geographical distribution of the species is, perhaps, sufficiently indicated by the localities given above in the synonymy.

Pachygrapsus transversus Stimpson.

Grapsus transversus fibbes, Proc. Amer. Assoc. Adr. Sci., 3d meeting, p. 181 (17), 1850 (Florida ; said to belong to "Puchygrapsus if that be adopted.")
Pachygrapsus transrersus Stimpson, Ann. Lye. Nat. Hist. New York, vii, p. 64 (18), 1859 ; Aner. Jour. Sci., 11, xxvii, p. 446, 1859; Ann. Lyc. Nat. Hist. New York. x, p. 113, 1871.
Smith, Report Peabody Acad. Sci. Salem. 1869. p. 91. 1971 (Pacific coast Central America).
Trans. Conn. Acad.. Vol. IV.
May, 1880.

Pachygrapsus transversus Stimpson (contimed).
Kingsley, Ploc. Boston Soe. Nat. llist., xx, 1. 168, 1879 ; Proc. Acad. Nat. Sci, 1'hilateljhia, 1879, p. 400, 1880 (includos specimens from west coast Central America, lut does not make P. socins a synonjan).
Goniograpsus innotatus Dani. Proc. Acad. Nat. Sci. Philalelphia, 1851, p. 249 (3), 1851 (South Amorica); Crust. U. S. Expl. Vixped, p. 345, pl, 21, fig. 9, 1852.
Leptograpsus rugulosus M.-18dwards, Asn. Sci. nat., 1II, xx, p. 172 (138), 1853 (Brazil).
Pachygrapsus innotutus Stimpson, Proe. Acad. Nat. Sci. Philadclphia, 1858, p. 102 (48), 1858 (Madeira).

Metepograpsus mineatus Saussure, Crust. Mexique et Antilles (Mém. Soc. Phys. Mist. nat. Genève, xiv), p. 28, 11. 2, fig. 17, 1858.
Metopograpsns dubius Sanssure, ibid., p. 29, pl. 2, fig.]6, 1858.
Pachygrapsus intermedius Heller, Zool. Bot. Vercin Verhandl. Wien, xii, 1862, p. 521 (Brazil); Reise der Novara, Crust., p. 44, 1865.
Pachygrapsus socius Stimpson, Ann. Lyc. Nat. Hist. New York, x, p. 114, 1871 (Cape St. Lucas, Panama, Peru).
Grapsus (Leptograpsus) rugulosus von Martens, Archiv für Naturgesch., xxxviii, p. 108, 1872.
Grapsus (Leptogropsus) mineatus von Martens, ibid., p. 109, 1872.
Pachygrapsus rugulosus Smith, Trans. Conn. Acad., ii, p. 37, 1869 (=Leptograpsus rugulosus M.-Edwards).
Gonioyrapsus (Pachygrapsus) transversus Lockington, Proc. California Acad. Sci., 1876, p. - (9), 1877 ($=$ Puchygrapsus transcersus Smith).

Four adult specimens of tlis species were taken alive from the bottom of a whaler in Provincetown Harbor, September 3, 1879. As far as I am aware, it has not lefore been recorded north of Florida on our coast. I have also examined a large number of specimens from the following Atlantic Ocean localities: Bermudas (G. Brown (roode, J. Il. Jones) ; Key West (Dr. IIamison Allen); Aspinwall (F. II. Bradley) ; Brazil (C. F. IIartt). From the Pacific eoast I have examined specimens from Gulf of Fonseca (J. A. MeNiel); Aeajutla and Panama (F. I. Bradley) ; Paita, Peru (F. H. Bradley, James Orton).

I can find no characters whatever in Dana's figures or description for distiuguishing his imotatus from Gibbes' transwersus. Stimpson salys the transuersus is "scarcely to be distingnished from P. innotatus, but the carapax is somewhat more eonvex." In all of the fire specimens which I have examined from Brazil, the carapax is slightly less conver than in the majority of those from Florila and Bermuda, lut some of the sjecimens from these latter localities are as little comex as, or even less convex than, the Brazilian specimens. All the mfarled specimens whieh T have seen from the west coast of

America agree well with Stimpson's descriphion of I^{\prime}. serins in wanting the patch of dark color usally prosent at the bases of the propodal digits of the chelipeds of Atlantic Ocean specimens; but in a lange series of Atantic specimens before me there is very great variation in the extent and intensity of the color upon the chelipeds and other parts of the animal, and some of the specimens from Bermula, and one of those from Brazil want wholly the dark spot upon the chelipeds. The only other characters Stimpson points out for distinguishing the socius are: "the carapax is somewhat narrower, less convex, and more strongly striated; and the frontal region is more depressed and expanded." The impossibility of tlistinguishing lacifie specimens by the narrowness of the carapax or brealth of the front is fully shown in the table of measurements beyond. The convexity and striation of the carapax vary comsiderably in Atlantic specimens, and in those examined more than enough to inclule all the Pacifie specimens seen.

Several of the speeimens from Bermoda have the branchial regions of the carapax much more convex and swollen than is usual, and the convexity is not always equal on the two siles of the carapax. In at least a part of these specimens this irregularity in the form of the branchial region is due to the presence of a Boproid parasite within the branchial cavity, and I think it very probable that Saussure's mineutus was based on similar parasited specimens.

Heller compares his intermedius with Dana's innotatus and simplex and says that innotatus differs from his species only in having the carpus, as well as the hand, smooth above. Heller had apparently seen no specimens of innotutus, which is described as having the earpus "smooth" above (although the figure shows indication of slight cormgation), and depended on this one supposed difference for distinguishing the species. There is, as might be expected, considerable variation in the amome of corrugation upon the carpus, some specimens having the earpus very nearly or quite smooth to the naked eye, though in specimens of considerable size it is usually very distinctly corrugated, and I have no doubt Hełler would have identified his specimens with the imnotutus had he had Dana's specimens for comparison. There is certainly nothing in Heller's deseription to distinguish his species from orlinary specimens of transeersus from Bermuda and Florida.

The following measurements of the carapax in a large number of specimens were made with special reference to determining the difference in proportions between Athantic and Pacific specimens. In
odder to give the reatiest means of comparison, the breadth and the brealth of the front are given first in millimeters and then, in the same divisions of the tahle, in mits of the length of the canapax.

Locally.	sex.	Length.	Breadth.		Front.	
Bermula,	yng.	$3 \cdot 6 \mathrm{~mm}$	$5 \cdot 0$	1.39 lgth .	$2 \cdot 6$.72 lgth .
"	"	$4 \cdot 1$	$5 \cdot 5$	137	$2 \cdot 8$	$\cdot 70$
"	،	$5 \cdot 1$	$7 \cdot 0$	1:37	$3 \cdot 8$	-74
\cdots	8	$5 \cdot 6$	$7 \cdot 8$	139	43	$\cdot 77$
"	.	$7 \cdot 4$	10.1	J•41	5.7	-77
"	،	8.2	$11 \cdot 1$	$1: 35$	$5 \cdot 8$	- 71
Paita, l'eru,	"	8:5	1100	$1 \cdot 30$	$5 \cdot 9$	-69
Acajutha.	"	9.8	[3•]	1-34	72	$\cdot 73$
Provincetown,	"	$10 \cdot 1$	$13 \cdot 2$	1.31	$7 \cdot$	-71
Florida,	"	11.0	15%	1.36	83	-76
${ }^{6}$	"	114	$15 \cdot 9$	140	$8 \cdot 8$. 77
Brazil,	"	$11 \cdot 5$	$15 \cdot 6$	1:36	$8 \cdot 6$	-75
Acajutla,	"	$13 \cdot 7$	$18 \cdot 2$	$1 \cdot 33$	$9 \cdot 8$	7]
Bermuda,	"	$1+2$	19.0	13.4	$10 \cdot 8$	$\cdot 76$
Provincetown,	\%	$6 \cdot 0$	$7 \cdot 9$	$1 \cdot 30$	$4 \cdot 1$. 68
Florida,	"	7.0	93	133	$5 \cdot 0$	'71
Provincetown,	"	7.5	$10 \cdot 0$	133	$5 \cdot 0$	-67
4	,	$9 \cdot 0$	$11 \cdot 5$	128	$6 \cdot 3$. 70
Bermuda.	"	$9 \cdot 4$	$12 \cdot 8$	$1 \cdot 36$	6.9	$\cdot 73$
Paita, Peru,	"	$10 \cdot 0$	12.8	$1 \cdot 28$	70	-70
Bermuda,	"	10.5	$13 \cdot 7$] 30	$7 \cdot 6$	$\cdot 72$
Panama,	"	$10 \cdot 5$	139	1.32	$7 \cdot 6$	-72
Bermuda,	"	10.7	$11 \cdot 1$	$1 \cdot 32$	$7 \cdot 8$	$\cdot 73$
Panama,	"	$10 \cdot 7$	$14 \cdot 2$	I-32	$7 \cdot 7$	-72
Brazil.	"	$11 \cdot 1$	14%	1.30	$7 \cdot 6$	-69
Bermuda,	"	$12 \cdot 4$	16.4	132	$9 \cdot 0$	73
Florida,	"	125	16.3	J 30	$8: 9$	$\cdot 71$
Bermuda,	"	$13 \cdot 1$	$17 \cdot 2$	1:31	$9 \cdot 6$	-73
Panama,	"	$13 \cdot 8$	17.4	126	$9 \cdot 8$	$\cdot 71$
Brazil,	"	14.5	18.2	1.25	$10 \cdot 0$	-69
Panama,	"	$15 \cdot 2$	19.4	1-27	$10 \cdot 6$	- 70
Brazil,	"	$15 \cdot 3$	19.7	1-29	$10 \cdot 6$	-69
Bermuda,	\%	$9 \cdot 2$	13.0	$1 \cdot 41$	$7 \cdot 1$	-77

The limits of variation as shown in the table are fomd in Atlantic specimens. Considering the considerable variation in the proportions of specimens of about the same size, the ilifferences in this respect between the smallest and the largest specimens measmed is smprisingly small. The carapax appears to grow proportionally very slightly narrower with increasing size, as I have noticed in a few other species of Grapsoidea, though the reverse is usually the case in nearly all groups of Brachyura, and is what we should naturally expect from the increase, churing the early growth of the animal, in the functional importance of the brauchie.

The measurements given in the last line in the table are of a parasited specimen with one of the branchial regions considerably distorted.

Nautilograpsus minutus Milne-Edwards.
A large male of this eommon pelagie species of the Gulf Stream Was taken at Woods' Ioll, Vinegard Somm, September 11, 1877, by V. N. Eilwarts. Length of earapax, $15 \cdot 1^{\text {min }}$; greatest brealth, $14 \cdot 8$; breadth of front between bases of eyes, $9 \cdot 7$; brealth between anterior : migles, $13 \cdot 0$.

It has been recorded from the English coast by White, liell, and others; the Medeterrancan, Heller; (ape St. Lucas, Stimpson; Indian Ocean, Milne-Edwards.

Pimothres ostreum say is hrought north in considerable numbers in oysters from the Chesapeake and, very likely, occasionally survives for a considerable time in oysters phanted on the New England coast, bur, as far as I can leam, it is never fomd in mative New England oysters or in those which have heen planterl here for any considerable time. It may, therefore, properly have clam to a place in the list. I have never seen the male on the New England coast. The fignre, purporting to represent the mate of this species, which I have given in the Report on the Invertebrate Anmals of Sineyard Sonnd, is in reality the figure of the male of Pinnotheres muculutus.

Neptunus Sayi Stimpson (ex Gibbes).

Young specimens of this common pelagie species of the Gulf Stream were several times taken in Vineyard soumd during August and September, 1875. None of the specimens observed were more than 12 to $15^{\text {min }}$ across the carapax. The megalops of this, or of some closely allied species was taken at the same time.

Calappa marmorata Fabricius.

While at Woods' Holl, with the party of the U. S. Fish Commission, in the summer of 1875 , 1 was surprised at the occurrence of a very remarkable megalops evidently an early stage of some species of Cratappa, though the genns was at the time not known to me to occur, on our coast, north of the Carolinas. Before leaving Woods' Itoll, however, Mr. V. N. Edwards informed me that a small crab, mulike any before known to him, hat been found the previous season, under stones at low water, on Ram Island near Woods' Holl, by Mr. Benja. Smith. The specimen was brought to me by Mr. Edwards and proved to be a yomg Culappa marmorata, with the carapax $22^{n m}$ long. The shores of the same island and other similar localities were carefully searched, during September, 1875, without finding additional specimens. In 1878, however, Mr. Edwards forwarded
another specimen fomm at W'oors' Holl. 'These two specimens are very ne:nly of the same size, the last one leing very slightly the latger.

These young specimens, thongh having most of the essential specific chameters of the ahtult 'olnopur mamomota, yet differ so much that they might readily be mistaken for : distinct species when compared with large specimens. The carapax is much narower than in the alnhe, the breatth, including the lateral teeth, being only abont a fourth greater than the length. The dorsal surface is more convex amb more tuberolose, the tubereles leing proportionally much larger and more prominent, giving the carapax a much rougher appearance. In fact the carapix resmbles that of C. comrere of the west const of America more than it does the adult mumorete, except that it has mot the eremulated thasserse carine above the posterior margin and the similar carin: mon the teeth of the postero-lateral margin.

The (. romerert is unfliciently distinguished from the marmorata by these crennated carme, though the proportions of the carapax, which are given by Ntimpson as distinctive, are wholly inalequate to listinguish it, as the following table of measmements will show. Stimpson evilently compared small specimens of convexa with large ones of murmorete without making sufficient allowance for the changes in the proportions of the carapax with increasing size.

In the last division of the following table, the breadth of the carapax is given just in front of the three most posterior teeth of the lateral margin, and the breadth given in each of the last two divisions of the table is given first in millimeters and then in the length of the carapax as a unit.

The megalops-stage of C. memmorata is so peculiar that 1 insert the following description. The length of the carapax is $3.0^{\text {mon }}$; the breadth between the antero-lateral angles, $1 \cdot 8$; greatest breadth, $2 \cdot 1$. The lateral margins of the eampax are considerably expanted over the branchial regions, ant the dorsal surface is smooth and strongly convex. The front is broal between the bases of the eyes, tapers to an acnte-triangular tip, and is very strongly deflexed so that the terminal portion is perpendicular and the tip on a level with the stermum ; the terminal portion is also transersely concave in front, so that, when seen from above, it projects only a little in front of the eyes, and shows a slight emargination in the middle. The eyes are large, the diameter being equal to more than half the breadth of the front between their hases, ami project considerably beyond the sides of the carapax. The antemmare very slender and searcely longer than the brealth of the front between the hases of the eyes. The extemal maxillipeds have already assumed the form characteristic of the adult Calappide. The chelipeds are short and very stont, and in general form approach strongly those of the adult, but are smooth and unarmed with tubercles or spines, except upon the prehensile edges of the pincers. The merus and carpus are stout and swollen; the boly of the propodus is stout amd broadly expanded above distally, but the upper elfge is smooth and ronnded; the digital portion is long, slender, bent downward at nearly a right angle to the rest of the propodus, incurved at the very slender tip, and its prehensile edge slightly tuberenlar. The dactylus is slenter and curved like the propodus, so that the tips of the digits cross when the pincers are closed. The prehensile edge of the dactylus in both chelipeds is armed like the digital portion of the propodus, and in one of the chelipeds there is in addition a stont tooth near the base corresponding to the similar tooth at the base of the dactylus in one of the chelipeds of the adult. The ambulatory legs are small and slender, and the dactylus in the posterior pair is armed at the tip with the three long seta usmally characteristic of these appendages in the megalops-stage. The abdomen is small in proportion to the rest of the animal, tapers very slightly distally, and is strongly convex above. The postero-lateral angles of the second to the fifth segment are prolonged downward into obtuse teeth. 'The sixth segment is very short, being less than half as long as broad. The telson is as brood as the sixtle segment, but shorter than broad and with the posterior margin nearly semicircular. The aprendages of the second to the fifth segment of the abdomen are of the usual form and
structure, with large outer and small inner lamellie. The uroporls are small, with a very short base, and a single broat oval lamella which reaches only a little beyond the tip of the telsom.

When the megalops is at rest, the ablomen is chrved beneath the body, and the cheliperls and amblatory legs are folded very compactly beneath the earapax.

The specimens examined were all taken at the surface of the water in the evening, August 26 and 27, and S'ptember 2, 1875.

Polyonyx macrocheles Stimpson (ex Gibbes).
Mr. Faxon (Bull. Mus. Comp. Zool., Cambridge, v, p. 256, 1879) states that the adnlt of this species has been detected once, by Alexander Agassiz, under stones on the shore at Newport, R. I. Mr. Faxon also says: on several warm days in Angust, 1878, the zoea of Porcellana [P. macrocheles] swarmed in the streaks of smonth water on the edge of the tidal currents at the mouth of Narragansett Bay." Alexander Agassiz had previonsly observed the zoea of this species at Newport (Proc. Boston Soe. Nat. Jlist., x, p. 222, 1866). I have never observed any stage of the species in Yineyard Sound or elsewhere on the New England coast. The adnlt appears to be not uncommon as far north as Beanfort, North Carolina.

Petrolisthes armatus Stimpson (ex Gibbes). A small specimen of this species was fomd in a hottle with other insertebrata collected, by Prof. Verrill and a party of students, at Stony Creck, on Long Island Sound, near New Javen, in the antumn of 1867 or 1868 . At the time it was brought in, I suspected, without any good reason, that a stray specimen bad been accidentally taken out on the excursion in one of the bottles and, in this way, got mixed with the speeimens collected; but now I have little donbt that it was an erratic specimen from much further south. As far as I am arare, the species is otherwise not known north of Florida and the Bermurlas.

Latreutes ensiferus Stimpson (ex M.-Edwards).
Several small specimens of this Ginf Stream species were taken at the surface in Vineyard Sound, during Angust and September, 1875.

Penæus Brasiliensis latreille.

I have never seen specimens of this species from the New England coast, but Professor Verrill tells me that the live specimens of a large Pemeus, in all probability this species, on exhibition at the New York Aquarium in the autumn of 1877 , were said, by the Superintendent of the Aquarium, to have been taken on the Comecticut shore of Long Island Soumd. Dr. Stimpson (Annals Lyceum Nat. Ilist. New York, x, ן. 232, 1871) had alrearly recorded its occurrence in a fresh-water creck near Somers' Point, New Jersey, and in the Croton River, Sing Sing, New York, so that there can be little doubt that it oceasionally extends to the shores of Long Island Sound. It is apparently common from North Carolina! to Brazil!; it is reported from the west coast of Africa by Miers (Iroc. Zool. Soc. London, 1878 , p. 299), and from the west coast of ('entral America by Kingsley (Proc. Acal. Nat. Sci. Philadelphia, 1879,]. 427, 1880).
VII. On the Amphbobus aenera, Cebaputs, Unciola, And Lepl-

The gemus C'ermus.

Say's description of the structure amd habits of his Ceropmes tulnolaris, though incomplete and, in regrand to some of the strmetmal details, incorrect, certainly indicates a remarkable amphiporl very mlike any of the other species which have been referred to the gems. Though described by Say in 1817 from specimens found "amongst fuci on the sea beach at Egg-Harbor [New Jersey] in considerable numbers," it seems to have remaned mknown for more than fifty years. It was searehed for in wain at the original locality by Professor Verrill and myself in April, 1871, but in June of the same year I dredged a few specimens in Vineyard Sound. These specimens were unfortumately all females, while Say's description and figures were based on the male only, so that I did not feel entirely certain of their identity with Say's species. In the Report on the Invertebrate Anmals of Vineyard souml, i inserted the species under Say's mame, with a query, and, after briefly describing the coloration and habits, remarked that, " in the structure of the candal appendages, our specimens are quite different from the species usually referred to Ceruphes, but I have not thought best to make any changes in the nomenclature of any of the speeies until the discovery of the male shali make it certain whether our specimens belong to the species described by Say." In 1874 a considerable mumber of specimens were taken, in the towing-net, on the evenings of Jnly 17 th and 21st, in Noank Harbor, Conuecticnt, by Professor. Verrill, though I was mable to discover a single specimen in the same locality a few days later. Among these specimens collected by Professor Vemill, there are fortumately an abundance of males which agree with Say's description and figure and leave no doubt whatever that the species is the same as Say's. The following description and figures are taken from these specimens.

The general form of the animal is like Ericthonius lifformis but much more slender, the body being broad, lepressed, very slender, and, in the male, tapering slightly and contimonsly from the head io the telson. The head is shorter than the first and secomel segments.
of the peram taken together, and in the male about at fourth as lomg as the centire pereon, but shorter in the lemald on accomat of the elongation of the midille segments of the peram in that sex. 'There is a slight dorsal earina on the anterior part of the leeat, and the anterior marein projects in a slight rostrmm in the middle, and at the sides in slightly prominent lobes in which the small black eyes are situated. Sh the lateral margin below the eye there is a large emargimation over the base of the antmona as in the allied genera. In the male the seven segments of the peraon are about equal in length, but in the female the first and last are shorter and the fourth and fifth longer than any of the others, the fourth and fifth being each ihont twice as long as either the first or last. The epimera are all long and low: those of the first four segments are small and ineonspicnons; the filth (Plate Ma, figure 4, 1) is much larger and projects in a conspicnons, broad aml romed lobe in front of the articulation of the limb; the sixth and seventh are similar in form but successively much smaller.

In the male, the antemmie and antenne are approximately equal in length. The antemulie are slightly more than half as long as the rest of the animal : the first segment of the peduncle is very stout, but compressed laterally and the lower edge raised into a carina whieh is prominent near the base, where the dorso-ventral diameter is more than half the length of the segment ; the second and third segments are sub-equal in length and diameter and each is slightly longer than the first ; the flagellum is about as long as the third segment of the peduncle and is composed of three segments, of which the first is rather longer than the second and third taken together. All the segments are furnished with long setiform hairs below and with much fewer and shorter ones above. The antenme are a very little shorter than the antemulie and scarcely, if at all, stouter; the third segment of the perluncle is no longer than broad; the fourth is ahout as long as the second of the antemnola; the fifth is a little longer than the fourth; the flagellum is scarcely as long as the fifth segment of the peduncle and is composed of three segments, of which the first is comsiderably longer than the second and third together. All the segments heyond the third are furnished with setiform hairs rery much as in the antenmule. In the female, the antennula and antemie are proportionally more than a fourth shorter than in the male, the diflerence resulting mostly from the shortening of the flagella and the distal segments of the peduncles.

The mandibles are nearly as in the Ericthonius difformis. The
palphs is stomber，amel the thial segment is about lour times as long as hoal ：mat a little shorter，hat seareely longer than，the second． The masilta are nearly as in E：difforme：in the liost pair the imner lobse is shall and tipped with one or two sete only； in the second pair the two lobes are nearly equally developert．The max－ illiperls are essentially as in $F=$ difformis．

The guathopods have essentially the same stmeture as in Frietho－ nimes．The first（l’ate Ilat，figure 1）are alike in both sexes：the merns is narow，armed distally with nomerons seta，and its anterior margin articulates with the proximal half of one edge of the triangu－ lan carpus；the carpins is nearly as liroad as long，the posterior edge is armed with mumerous sete and projects considerably beyoud the broal articulation with the propodus；the propolus is as long，but somewhat narrower than the carpus，approximately oval in outline， and thickly armed along the convex posterior edge with setie and small spines；the dactylus is stont，slightly curved and apparently not e：plable of complete adduction to the elge of the propodus．The secoml gnathopurls in the female are like the first except that the dactylus is，perhaps，slightly longer．In the adnlt male，however， the second gnathoporls（figure 2）are enormonsly developed，as in the males of Ericthomins．The basis is much stonter but searcely longer than in the first pair．The ischium and merns are of nearly the same form and size as in the first pair，though the merus is slightly longer．The earpms is more than twice as long and broad as in the first pair：the posterior edge is convex in outline，armed with a few small fascienli of seta，and projects distally in a long and stont spiniform tooth；the distal end is very broad，the anterior half only is occupied by the articulation with the propodus，and the edge of the posterion part projects in a prominent obtuse tooth near the base of the proporlus，while between this tooth and the great tooth of the posterior angle there is a deep rounded emargination，the border of which is armed with one or two small spines and numer－ ons stont setie．The proporlus is nearly as long as the carpus，abont twiee as long as broad，slightly emred，and the posterior，or prehen－

[^124]wile, edge irregular in outline, minntely dentate and armed with setar. The dactylus is a little shorter than the properbis, stont, but much marower at base than the distal emb of the propodne, regnlarly enred, and the prehemsile enge mimutely serrate and armed with a very few minule setar.

The first and secomd perabpods are nearly alike and differ only slightly in the different sexes, amb, as in the allied genera, are monlfied for lube-huilding, the bases hoing very large and their interiors almost wholly uccupied with the cement-glamps. In the male the basis in the first pair (Plate Ila, figure 3) is artienlated at the anterior angle of the broad and truncated proximal end, while the posterior angle of the same end is prominent and angular: In the second pair the basis is of similar form, lut considerably broader in the middle, and the posterior angle of the distal end does not project and is hoadly rommed. In both pairs the isehimm is a little longer than broal; the merns is of abont the same length but broader than long and with both elges convex in outline; the carpus is scarcely as long as the merus and nearly square; the propolns is narrower but nearly a balf longer than the carpos; the dactylus is shorter than the propodns aml only slightly curved. Th the female the basis in the first pair is proportionally broader than in the male, and the posterior angle of the distal end projects in a ronnded lobe separated from the rest of the posterior edge by a marked emargination. In the seeond pair the basis is only somewhat broader ant more oval in ontline than in the male.

The third, fourth and fifth pereopots are alike in the two sexes and are reversed and tmmed upward above the back, with the hooken dactyli directed upward and ontward. The third pair (Plate IIa, figure $4, \pi, b$) are very small, being only a little longer than the basis in the third pair, and in the female scarcely longer than the segment to which they belong. The basis makes more than a third of the entire length, is as long as the ischinm and merns together and nearly as broad as long. The ischim is very short and broader than long. The hody of the merus is ovoid with the proximal end truncate, and has a long, narrow and spatulate process projecting from the posterior edge near the artienlation with the ischinm and tipped with one short and three long, plumose sete. The carpms is articulated upon the middle of the posterior side of the merus and near the base of the spatulate process, to which it approaches in size and form; it is tipped with a single seta and the terminal portion is roughened with very minute scale-like teeth pointing distally. The
propulns is about as long and nearly as withe as the body of the merus, is artioulated close to the base of the carpus, and armed with a single minute seta on eath elge neat the listal emb. 'The dactylas is very short and stont, with the solid chitinous tip thancel sharply backward and upw:ad in an acoute hook and armed with a shatp tooth on the outside at the point of curvature. 'The fomm and fifth pereopors are slember and of ne:arly the same form as in Ebricthomins difformis. The form are about once and a half as long as the third, the hasis is much brouler than the other secments and abont a fourth longer than hromb; the isehimm is small and nearly square; the merus is twice as long as the ischinm and very slightly broader ; the carpus is not gate as long as the merus hut of abont the same width; the propodus is about as long as the merns lut much narrower the dactylus is stont and hooked very mush as in the thimp pair ; the distal angles of the merus and carpus are armed with long setie Which are longest and most mumerous on the posterior distal angle of the carpus, which projects in a small lobe. The fifth pair are a little longer and proportionately a little more slender than the fourth pair, but do not differ in other respects.

There are, apparently, only three pairs of luanchial lamellae, a siugle lamella being borne upon each cuxa of the first, seeond ant thind pairs of pereoporls.

Of ovigerous lamellat there are also only three pairs and these are borne npon the coxa of the second pair of gnathopods and of the first and second permopods.

The first segment of the pleon is slightly shorter than the seveuth segment of the peroon, and the second and third are sucecessively still shorter. The three pairs of pleopods (Plate IIa, figure $5, a, b, c$), in marked contrast to those of most Amphipoda, liffer remarkably anong themselves in the relative proportions of the outer and inner lamelle, and diminish greatly in size from before backward. This is mondoubtedly an adaptation to the position of the animal in its elosely fitting tube, with the posterior segments of the pleon bent elosely beneath the anterior segments, leaving very little room for the action of the pleopods. In the first pair of pleopods (figure $5, ~ ")$ the base is about as long as the base of the first uroporl and more thau half as broad as long; the inner lamella is a half longer than the base, narrow, and both margins are furnished with long, plumose seta; the onter lamella is very little shorter than the inner, narrow distally, but broally expanding proximally till the breath is equal to half the length, and then suddenly narrowing to the base; the distal two-
thirds of the inner and the whole of the outer margin are furnished with phanose sete which are longest at the tip of the lamella and very thickly erowded on the poximal part of the onter margin. 'The seeond pail (figure 5,6) are very much smaller: the hase is little more than hall ats lome as in the first pair ; the outer lamelta is less than two-thirds as long as in the first pair, orate, hall as broal as long, and buth margins are furbished with plumose sete ; the imer lamella is rudimentary, about half as long as the outer and furnished with only two small sete at the tip and two or three more on the distal part of the inner margin. 'The third pair (figure 5, c) are still smaller : the outer ramus is about two-thirds as long as in the second pair, ovate, and margined with a few plumose setie distally; the inner is about half ats long as the onter, and has only two or three sete near the tip.

The fourth, fifth and sixth segments of the pleon are much shorter than the first three. As seen from above (Plate IIa, figure 6), the fourth segment is nearly as long as broal ; the fifth is a little narrower and not half as long as the fourth, being between three and four times as broad as long; the sixth segment is slightly marrower than the fifth, nearly twice as broad as long, and appears to be partially consolidated with the fifth.

The first pair of mopods (Plate Ma, figure 6) are well developed : the bases are stout and reach to the base of the telson; the onter ramus is narow, shorter than the pedmele, minutely serrate and sparcely setigerons along the outer edge, and tipped with a slender spine; the inner ramus is smaller than the onter, about three-fourths as long, and tipped with a spine, but the erlges marmed. The seeond uropols are small, slender and miramons: the base is alrout as stont as the outer ramus of the first pair, does not quite reach the base of the telson, and is marmed; the terminal segment is very short, stont and hooked, and very similar in structure to the terminal segments of the third uropods and the daetyli of the thind, fourth and fifth peraports. The thim mopods are like the second, lont the bases are much stouter and each is armed with a short seta on the inner edge. The telson is ahont twice as broad as long and bilobed at the extremity, the lobes heing broadly romed and armed with two or three transverse rows of hooked spines above.

In life, a large portion of the ammal apears almost black from the crowding together of mumerous speeks of very dark purplish pigment. The first segment of the perluncle of the antennula is nearly all colored in this way and there is a broad band of the same character
at the distal end of each of the other segments of the pertuncle. The proximal segments of the ant eman are also tark-colored, and there is a broad band of color at the distal end of the fourth segment. Other parts of the perluneles of the antenmata and :mtenme are semi-translucent, and so are the flagella. The head and the whole anterior and middle portions of the body of the animal and the epimera are more or less colored in the same way, as are the gnathopods and the bases of the first and second perreopods; but the distal portions of these jeratoods, the whole of the third, lourth amb fifth jairs, and the candal appendages are semi-translucent and nearly or quite devoid of jigment.

Two adult specimens give the following measurements:

Length from front of head to tip of tel	$\begin{gathered} \text { M:lle. } \\ 4 \cdot 2^{\text {mana }} \end{gathered}$	$\begin{aligned} & \text { Female } \\ & 4 \cdot 4^{\text {mun }} \end{aligned}$
Length from front of head to second segment of pleon in natural position of rest,	35	36
Length of attennula,	$2 \cdot 4$	1.7
Length of tube,	$5 \cdot 4$	$5 \cdot 5$
Diameter of tube at middle,	80	85

In the largest specimens seen the tubes are about $7^{m m}$ long and 0.9^{mm} in diameter, while in the smallest they are only 2^{mm} long and $0.45^{\text {min }}$ in diameter.

The tubes of all the specimens seen are black externally, thin, and very regularly eylindrieal, except that they are usually slightly enlarged at one or at both ends. Within they are smoothly lined with a layer of cement, while externally they are covered, to a great extent at least, with minnte, elongated pellets, apparently the exerement of the animal,* arranged transversely to the tube and closely

[^125](rowded ugether; there apper, buwever, bo be other materials, probahly minute fragments of algar, ligilroids, che, mixal with the pellets. The tube is :pparently never attached, but is carved about by the animal, very mach atter the manner of the larse of some species of Phrygmedide, ats eleseribed by sta. It is very diflicult to fore the living mimal foom its tube, and it probably never guits the tule vohuntarily. The ordinary persition of the anmal when at rest is with the head only protruding from one emd of the tale, the antenmule stretched out in front ant diverging at ahout a right angle, while the autemat are held out each sile at right angles to the tube. The antemmla and antenne are the only appentages whieh are ordinarily used in locomotion, am by means of these alone the animal appears to move about with its tube with the same ease and rapidity as the suecies of Podocerus and Corophium do when mencumbered.

As noticed ly Say, the animal tums about within its tube very rearlily, and uses either end of it indifferently as the frout. If the tube catch in any way while the animal is moving about, or if it be held fast by lorcejs, the head is protruded first from one and then from the other end of the tube in quick suceession, and the antemula and antenne are thrust along the outside of the tube to diseover the

[^126]whstruction．While thas heln fast，fully half the borly is often protrmbel fom the fuls．In turning about within the tulse，the terminal segments of the pleon are throst forwatid beneath the an－ torior segments and the person pulled back over them，ame then the pereon is follent batck uron itself in the same way，but the anten－ mule，antemate amd bead are never first bent beneath the pereon． Thes structure of the telsom，secoml and third moporks，and of a part of the prearopels is well adapterl to the performing of this evolution；the homks of the secoud and third nropods and of the telson holding the tail fist to the sille of the tube，while the thime，fommth and filth prompols，fulding on with their olposing hooked tips，pull the posterion pate of the peraon back ower the pleon，and then the first gutathopots help to complete the erolation．

The tules ane usually kept quite free from foreign growths，but among the specimens taken in 1874 ，there are two individuals in tubes to which are attacherl the egg eapsules of Tritiot trivittuta．

I was not able to discorer how the diameter of the tube is en－ larged to accommotate the growing animal，but it in probably accomplisted by buihling on a larger portion at one cmi and pulling （t）bieces the other end mill the whole tube is reconstrmeted．

As the precerting description shows，this type species of the genns rempus is generically distinct from the species referred to that genus in recent works，and for which Mihne－Elwarls＇gemus Eric－ thomins may properly be retamed as explained further on．Say＇s precies is apparently not congeneric with any described species and the genns camot properly be placed in any of the mmerous sub－ fimilies defmed by Boeek，though it is probably most nearly allied to his Porbocrina．I therefore propose the following new sub－ family to he plaed next Podocerinae．

C＇ERAPINE．

The single known gemus differs from the Podercerine and allied gromps in the following eharacters．There are only three pairs of brachial lamellie，which are bome on the third，fourth and fifth segments of the peraon，and only three pairs of origerous lamella， which are bome on the second，third and fourth segments．The second and third pleopors are mold smaller than the first，and their inmer lamella are rudimentary or very small．The second and third uropuls are miramms aml nearly alike，the distal segment in each leing short and terminating in a booked point．

The only known species inhabits unatacher, portable tubes, and, as in many allied gencra, has large coment olands in the bases of the first and secomd perarnots.

Cerapus say.
Say, Jour. Acad. Nat. sci. Philadelphia, i, p. 49, 1817 (tnhutheris the only species.)
Desmarest, Dictionnaire Sei. nat., xxviii, p. 358, 1823 (= .iay).
Latreille, in Cuvier, Règue animal, iv, p. 122, 1829 (=Say.)
Milne-Edwards, Aun. Sci. nat., Paris, xx, 1. 383. 1830 (=Say); llist. nat. Crust., iii, p. 60,1840 (in part.)

Dana, Amer. Jour. Sei., II, viii, p. 139, 1849, and xiv, p. 300, 1855 ($=$ Say); ('rnst. United States Expl. Expd., p. 832, 1853 (二Say).
Bate, Catalogue Amphip. Crust. British Mus., p. 262, 1860 (in part).

Cerapus tubularis Say.

Say, Jour. Acad. Nat. Sci. Philadelphia, i, p. 50, pl. 4, figs. 7-9, 1817.
Desmarest, Dictionnaire Sci. nat., xxviii, p. 358, pl. 46, figs. 2a-2e (after Siy), 1823 (=Say); Consid. génér. Crust., p. 271, pl. 40, figs. ®a-2e (=last), 1825 (=Åy). Andouin, Précis d'Entomologie, pl. 28, figs. 5-i (after Say), 1828 (=Say).
Guérin, Ieonographie du Règne animal, Crust., pl. 27. fig. 4, (after Say).
 Hist. nat. Crust., iii, p. 60, pl. 29, fig. 15 (after Say), 1810 (=Say).
Bate, Catalogue Amphip. Crust. British. Mus., p. 262, 11. 45, fig. 1 (after Say), 1862 (=Say).
Smith, Inverteb. Animals Vineyard Sound, Report U. S. Comm. Fish and Fisheries, part i, p. 565 (271), 1874.

Plate IIa.

Great Egg-Harhor, New Jersey (Nay). Vineyard sound, among masses of a large compound ascidian (Amouroncium pellucitum), in 8 to 10 fathoms, off Nobska Point, Jnne 27, 1871 ; several females, some of them carrying eggs. Vineyarl Somm, 1575 ; one specimen. Taken in the towing net, among eel-grass (Zostera), in Noank Ilarbor, ('ommectient, July 17 and 2I, 18ヶ4 (A . E. Vemill); males, females. and young, many of the females carrying eggs.

The genns C'eramis being restrieted to the type species and removed from the Podocerinz, as above, Milne-Lilwards' Ericthomines appears to be the proper name to restore and retain for the group of species refermed to Cercepus by recent anthors.

Ericthonius.

Ericthonius M.-Hdwards, Ann. Sci. nat., Paris, xx, p. 382. 1830 (uifformis the onls species) ; Hist. nat. Crust., iii, p. 59. 1840 (clifformis only).
Dana. Amer. Jour. Sci., 11, viii, p. 138, 1849, and xiv, p. $308,18.32$; U. N. Expl. 1:xpl., Crust., 1. 8: 3 , 1s5:3 (Erahthonins).

Ericthonius-(continmed).
Bate, Report Pritish Assor: AIv. Sci.. [455, p. 5.9, 185f; (Erichthonius) ; Ann. Mag. Nat. Ilist., II, xix, 149 (17). 1857
White, P'opular llist. British ('rust., p. 196, 185.7.
Liljelorg, Wifversigt Yetenskaps-Akad. Förhandlingar, Stockholm, 1855, p. 131. Costa, Amfiposi Napoli, Mem. Acead scici. Napoli, i, pp. 175, 227, 1856.
Bruzelius, Scandinav. Amphipoda Gammarilea (Vetenskaps-Akat. Hanellingar, Stockholm, iii), p. 17, 1859 (Erichtonius).
Cerapodine Ml.-Bdwards, IIist. nat. Crust, iii, 1p. 62, 1840 (abditu ($=$ Cerapus abditus Templeton) the only species).
Dana, Amer. Jour. Sci., II, viii, p. 139, 1849, and xiv, p. 309, 1852 ; U. S. Expl. Expd., Crust., p. 832, 1853.
Podocerus Kröyer, Naturh. Tidsskrift, iv, p. 163, 1840 (in part).
Dercothoe Dana, Amer. Jour. Sci., II. xiv, p. 313, 1852; U. S. Expl. Expd., Crust., p. $911,1853$.

Pyctitus Dana, Amer. Jour. Sci., 11, xiv, p. 313, 1852; U. S. Expl. Expd., Crust., p. 911, 1853.
Cerapus Bate, Catalogue Amphip. Crust. British Museum, p. 262,1860 (in part).
Bate and Westwood, British Sessile-eyed trust., i, p. 452, 1863.
Czerniavshi, Materialia ad Zongraphiam Pontican comparatann, p. 97, 1868.
Boeck, Christiania Videnskabs-Selskabs Forhandlinger, 1870. p. 250 (1\%0); Scandinav. og arktiske Amphip., p. 611, 1876.

The synonymy of E. liftomis, the type of the genus, is apparently still in confusion, and as it is a common species upon the coast of northern New England, I subjoin the following account of it :

Ericthonius difformis Milne-Edwards.
Ericthonius difformis M.-Edwards, Aun. Sci. nat., Paris, xx, p. 382, 1830; Hist. nat. Crust., iii. p. 60, pl. 29, figs. $12,13,1810$.
Liljeborg, Efversigt Tetenskaps-Akad. Förhandlingar, Stockholn, 1855, p. 129.
? Costa, Amfipodi Napoli, Mem. Accad. Sei. Napoli, i, p. 228, 1856.
Bruzilius, Scandinar. Amphipoda Gammaridea (Vetenskaps-Akad. Handlingar, Stockholm, iii), p. 17, 1859 (Ericthonius).
Goes, Efversigt Vetenskaps-Akad. Förhandlingar, Stockholm, 1865, 1. 552 (Ericthonius).
Podocerus Leachii Kröyer, Naturh. Tidsskrift, iv, p. 163, 1840 ("Femina hujus speciei forma pedum secundi paris Podocerus est, mas vero Erichthonius").
Cerapus rubricornis Stimpson, Iuverteb. Grand Manan, p. 16, pl. 3, fig. 33 (caudal appendages), 1853.
Bate, Catalogue Amphip. Crust., British Museum, p. 265, pl. 45, fig. 4 (young 3), 1862 (Bay of Fundy).
Packard, Memoirs Boston Soc. Nat. Ilist., i, p. 297, 1867 (C. rubiformis).
Smith, Inverteh. Animals Vineyard Sonnd, Report U. S. Comm. Fish and Fisheries, part i, p. 565 (271), pl. 4, fig. 18, 1874.
Smith and Harger, Trans. Comn. Acad., iii, pp. 5, 19, 1874.
Podncerus punctatus Bate, Ann. Mag. Nat. 1list., IT, xix, p. 148 (17), 185 (" P. punctutus (Edwards, MS. Brit. Mus.)").

Ericthonins difformis Milno-Edwards-(continned).
Merculhnë (f'erafus) punctulus hate, Catalogno Amphip. ''rust. British Muscum. p. $260, \mathrm{p} .14$, fig. 10,1862 (f).
Dercothoë (Cerapus \&) punctatus Bato anl Westwood, British Sessilo-oyed Crust., i, p. 161 (fig.), 186.3 (f). ["Milne-Prlwards, MS. in Brit. Mus." is quoted as anthority for the name as here used.]
? Czerniavski, Materialia ad Zoographiam Ponticum comparatan ; [1. 9G, 1868.
Cevupus difformis Bate, Catalogue Amphip. 'rust. British Museum, p. 265, pl. 45, fig. $5,1815$.
Bate and Westwool, op. cit., p. 457 (figs.), 1863.
Norman, Report British Assoc. Adv. Sci., 1868, p. 283, 1869.
Metzger, Jahresbericht der Comm. zur wissensch. ITntersuchung der deatschen Meere für 1872-3, Nordsee, p. 278, 1875.
Boeek, Christiania Vitenskabs-Selskabs Forhandlinger. 1870, p. 250 (170); Scandinav. og arktiske Amphip., P. 615, 1876.
Meinert, Naturh. Tidsskrift, I11, xi, p. 157, 1877.
Cerapus Leachii Bate, Catalogue Amphip. Crust. British Museum, p. 268, 1862 (= Kröyer)
Cerapus Hunteri Bate, Catalogne Amphip. Crust. British Museum, p. 264, pl. 45, fig. 3, 1862 (habitat unkuown).
Boeck, Christiania Videnakabs-Selskabs Forhandlinger, 1870, p. 252 (172), 1871 (Scandimavia): Scandinav. og arktiske Amphip., p. 618, pl. 28, fig. 5, 1876.

Yineyart sound!, 1871 , not common. Off Cape Cod!, 29 fathoms, 1879. Stellwagen's Bank! and Jeftrey's Ledge!, 1873. George's Banks!, 50 fathoms, simd and shells, and 45 fathoms, coarse sand, 1872. Casco Bay!, 9 to 34 fathoms, 1873 ; common. Bay of Fundy !, low-water mark to 50 fathoms, abundant, especially on hard bottoms, 1868, 1870, 1872, 1876 ; and, in 1872, off Head Harbor, 77 fathoms, mod and stones; and off White Head, Grand Menan, 97 to 105 fathoms, gravel and stones. Halifax, Nova Scotia!, 16 fathoms, rocky, 187ヶ. Straits of Belle Isle, Labrador, (Packarl). Spitzbergen, (Goës). Scandinavia, (Kröyer, Liljeborg, Boeck, et al.) British Isles !, (Norman). Brittany, France, (M.-Edwards). It is reported from the Mediterranean by Costa, and from the black Sea by Czemiavski, (as Bate's Dercothoe (Certoms of) pmotatus), but these illentifications are, perhaps, erroneous.

The form of the second pair of guathoporls of the adult male varies very much in different specimens. When farthest differentiated from the form characteristic of the female and young, the carpus is triangnlar, and the spine of the inferior margin very long and separated from the propodal articulation by a deep, triangular sinus, while the proportus is slender, nearly cylindrical, and withont prominences on the inferior elge. This is the form which I have figured in the work above refired io, and is apparently very mear that figmed liy Milne-

Edwards as the original E difformis. It is probably the lorm characteristie of the oht makes, thomgh the individuals are often smaller than those with the seeond gnathopors in the less differentiated condition, in which the boty of the cappes is more nearly futdrangular in ontline, the spine arising near the propodal arlientation, and the propodus shorter and stouter than in the other form and with two conspicuons prominences on the inlerior edge. This is the form rescribed as Ceropus Ilumteri, by bate and by boeck. Th the large series of specimens before me, there is every gradation between these two forms, and between the latter amd the female. In one case, an indiridnat hat one of the secom pair of gnathopods in the most differentiated form, while the other was somewhat smaller and in the less differentiated form--evidently having been lost and reproduced. The only Enropean specimens which 1 have examined were received from the liev. Mr. Norman, and are fiom the Northumberland coast, England, and among these all the adnlt males agree better with the Munteri than with the more differentiated form.

The habit of the animal and the character of the tubes are well described by Stimpson. In life, the proximal parts of the flagella of the antemmie and antemae are bright red, and the color usually remains for some time in specimens preserved in alcohol.

The gemus Uuciola.

Unciola Say.

> Unciola Say, Jour. Acal. Nat. Sci. Philadelphia, i, p. 388, 1818 (irroruta the only sp.)
> Milne-Elwards, Ann. Sci, nat., Paris, xx, p. 383, 1830 (=Say).
> Hana, Amer. Jonr. Sci., 1IT, viii, p. 139, 1849, and xiv, p. 309 ($>$ Ghuconome); U. S. Expl. Expd. Crust., p. 832, 1853.

> Bate, Catalogue Amphip. Crust. British Museum, p. 279, 1862 ($>$ Gluuconome).
> Glauconome Kröyer, Naturh. Tidsskrift, II, i, pp. 491-501 (leucopis the only sp.)
> Boeck, Christiania Videnskabs-Selskabs Forhandlinger, 1870, p. 259 (179); Scandinaviske og arktiske Amphip., p. 636, 1876.
> "Cyrthopium Danielssen, Beretning om en zoologisk Reise, 1857, Nyt Magaz. Naturvidensk., xi, p. 8, 1861," (Boeck).

Kroyer's name Glanconome is not only more recent than Say's Uweiold, lut it had heen used at least twice before Krïyer employed it, once in mollusks and once in polyps.

Unciola irrorata Say.

[^127]Uncioln irrorutu Say-(eontinued).
 from siy).
Vervill, Inverteh. Animals Vinuyard Sound, Report IT. S. Vomm. Fish and Fisheries, part i, b, $340(46), 187.1$.
Smith, in Verrill, op. (it., p. 567 (273), pl. 4. fig. 19, 18.4.
Glatconome leucopis Kröyor; Naturh. Tidaskrift, 11, i, 1. 491, 1. 7, hig. 2, 18.15 ; in faimard, Voyagu en Sandinavie, Crust., pl. 19, fig. 1. 1849.
Goes, flifersigt Vetenskips-, Ikad. Föhandlingar, Stocklolm, Isha, p. 533.
Boeek, ''hristianial Vilenskahs-Selskahs Forhindlinger, 1870, p. 259 (179): Seandinaviske on arktiske Amplup., p. (isb6, 1876 .
G. O. Sars, Arehiv Nathem. Naturvicl., Kristiania, ii, 1. $360,1876$.

Norman, Proc. Royal 太oc. London, xxr, 1. 208, 1876.
Unciolu lercones $[-i s]$ Bate, Catalogne AmpLi]. ('rust. British Mus., p. 279, pl. 17. fig. :3, 1862 (description and fis. after Ǩröyer).
"Cyrthopirm Darwini Daniclssen, Berctning om en Zoologisk Reise, p. 8," (Boeck.)
This is one of the most atmulant of all New England Amphipoda, being found in greater or less abombance in a very large proportion of the dredgings from the shallowest water down, at least, to 406 fathoms, and from all kinds of bottom, though in less abmenance in mud than among sand and shells. I have collecterl it at Great Egg IIarbor, New lersey, where Say's original seeimens were obtained, and at varions points along the New England coast from Connecticut to the Bay of Fundy. It was iredged by Mr. Harger and myself while on board the bache in 1872, on St. George's Banks, and in 430 fathoms east of these banks, north latitude $41^{\circ} \because 5^{\prime}$, west longitude $65^{\circ}, 42 \cdot 3^{\prime}$. It was obtamed in abmolance in and off Halifax Harbor, Nova Seotia, by the U.S. Fish Commission, in 1875; and I have examined specimens dredged in the Gnlf of St. Lawrence by Mr. Whiteaves, and on the eonst of Labrador by l'rof. Packard. Kröyer's specimens of Glanconome lencopis were from Greenland, and Norman reports it, under the same name, as taken in 100 fathoms in Davis Strait by the Valorous Experlition. Boeck records the same species from Spitzbergen :ul Norway, and G. O. Sars reports mmerous specimens, obtained by the Norwegian Expedition in 1876 , from 412,417 , and 520 fithoms, in the area of eold water off the west coast of Norway.

In life, the body of the animal above is nsually bright red more or less mottled, especially mon the sides, with white; the outer smrfaces of the larger gnathopods are broadly marked with bright red, and the antemmle and antemme anmulated with the same color. In some individuals, especially from muddy bottoms, the red is nearly all wanting; in others the rel appears, to the naked eye, to
low uniformily ditlised, giving the amimal a pald reed tint; in still others the red is largely replaed hy howno. The animal apparently dees mot comstrmel mbes for itself, thongh often fomm in the tubes of where Amphereda aml in the enters of Amelisa. In the bity uf
 low-water mark.

The speries deseribed hy sisy and that heseribed by kroyer are
 eally identical. Specimens from the eomst of New England agree in every particular with Bocek's desoriptions and with liroyer's deseriptions ant figures, exeept in the details refered to beyond. Say Jeseribes the seeond gnathopods as "adactyle" and the thimd pair of moporls as simple, depressem and concealed by the others, and he failed to distinguish the very short sixth segment of the plenn from the telson, lescribing the two together as the terminal segment of the "tall." These are very natural errors, considering the mimuteness of the appendages. In all other respects say's description is correct. Kröyer, on the other ham, incorrecty deseribes and figwres the thind uroporls as bi-ramus, mistaking the terminal lobe on the imer side of the base for a seemul ramus. Boeck, who had access to Kroyer's types, states that Kroyer's figure of the third uropod is incorrect but does not mention the corresponding error in the deseription of the species. White (Catalngne Crust. british Museum, P. 90,1847) records, as in the British Mnseum, specimens of Cuciola irrorata received from Say; bate, however, (Catalogue Amphip. Crust. British Musemm, 1. 279, 1862) states that he has seen no specimens, but refers liroyer's speeies to Uuciola, althongh he in part misquotes and in part misunderstands Say's generic description. Bate appears to have drawn his description of Kröyr's species from the original figure and generic diagnosis and not from the very full description of the species, for he says that no reference to the telson is made either by Say or by Kröyer and that it is not impossible that the gems is synomymous with "Microdentopuss" althongh the telson is descrihed by kroger, in the description just referred to, and is figured in the Voyage en Scandinavie.

The gemus Lepiclactylis.

It has long been known to me that Say's genus Lepichectylis was congeneric with Sulcutor of Bate, as suggested by Dana in 1852; but Bate's demeription and figures not appeatig fully to warrant the assmmption of the identity of the Enropean and American species,
 arenurias, upon which Latreille's gems I'terygucerde was based, I, in 187t, recortet, in the leprort on the lnvertebrate Anmals of Vineyad sombd, Sty's species mader his generic and specitic names and made no attempt to straighten the generic or specifie syonymy. A richly illustrated memoir, hy (arl Bovallins, on the Enopean Noulcotor (I'teryiguccre), and british specimens received from the Rev. A. M. Norman, have recently afforded an opportmity for comparing the American and European forms. On comparing New England specimens of Say's species with Bovallius' numerons and excellent figures, and with the British specimens, I can find no characters ly which the Ameriean can be distinguished from the Emopean form. Say's generic name should therefore be retained in place of Latreille's Pleryyocerce, though Slabber's specific name (fortunately a more approprite lesignation) takes precedence of Say's dytiscus. The following synonymy of the genms amb species sufficiently explains these changes in momenchature. Exeept under Lepiductylis, I give only the earliest reterence maler each name, as this part of the synonymy is pretty fully given by Bovallius.

P'terygucerine Bovallius.

Lepidactylis Say.

Oniscus Slahber, Natumkundige Verlustigingen, 1. 92, pl. 11, figs. 3, 4, 1778.
Lepidectylis Say, Jour. Acad. Nat. Sci. Mhiladelplia, i, p. 379. 1818 (dytiscus the only species).
Desmarest, Dictionnaire ści. uat, xxviii, P. 3 ās, 1823 (=Say); Consid. gẻnér. Crust., p. 27:, 1825 (=Say).
M.-Edwards, Anu. Sei, nat., l'aris, xx, p. 397. 1830 (=Say).

Dava, Amer. Jour. Sci.. Il, viii, p. 138, 1849, and xiv, p. 313, 1852 ($>$ Belha Bate); U.S. Expl. Expol., Crust., p. 912, 1853.

Bate, C'atalogue Amphip. Crust. British Muscum, p. 111, 1862 (二Say).
I'teryyocera Latreille, Ěncyclopedic méthodique, x, IP. 121, 236, 1825 (teste Borallius); in Cuvier; lègue auimall, 2" édit., iv, 1. 121, 1829.
Bellia Bate, Ann. Mag. Nat. 1list., 1I, vii, 1, :318, 1851.
Sulcutor Bate, Ann. Mag. Nat. Hist., II, xiii, p. 501, 1854 (in place of Bellia. preuccupied).

According to Bovallins, statius Maller, in a German translation of
 Houstorius for Slabber's species; but, as Bosallims says, the mane is an atjective, has never come into use, ant is properly rejected.

July, 1880.

Lepidactylis arenarius.

oniscus arcmutiuss Slahmer, of. cit., 1758 (eorrected to urcmurins in erratal.
Lepiluctylis dytiscus Say, loc. cit, p. 3su, 1818.
Date, C'atalugue Amphip. Corast. British Alusema, 1. 112,1862 (Say).
Smith, Invertoh. Animals Vineyard Sound, Report 1.. S. Gomm. Fislı and Fisleer. ios, part i. p. 556 (262), 187.1.
I'teryyocerce urcuriu hatreille, Eneyclopédie meithodiquc, 1 s25 (lased on Slabber's species; teste Bovallins).
Bovallins, Notes on l'terygoeera arenaria Slabher (Bilang till Svenska VetunskapsAkad. Handlingar, iv, no. 8). pp. 1-97, pls. 1-4, 1878.
Belliu (rrenuria Bate, Aun. Mag. Nat. Ilist., II, vii, p. 318, 11. 9, figs. 1-8, In51 (gea. et sp. nov.)
Sulculor aremurius Bate, Ann. Mag. Nat. Hist., 1I, xiii, P. 501, 1854.
Sulcutor arenatius Boeek, Christiania Videuskabs-אelskalıs Forhandlinger, 1870, p. 137 (57).

Coast of Georgia (Say). New Haven!, Comecticut, samly shores, at low water, not rare, and also dredged in shallow water (A. E. Verrill, s. I. Smith, et al.) Vineyarl Somml!, 5 to 10 fathoms, sandy and shelly bothms, 1871, 1875. Smith's I'hint! Beverly, Massachsetts, sand, at low water, Angust 25, 1878 (.I. II. Emerton). These specimens collected by Ar. Einerton are the only ones I have seen from north of Cape Cod. On the European coast, it is reported from the British Isles! (Norman, Bate), the coast of Hollant (Slabher), and Scamlinavia (Boeck, Bovallius).

EXPLANATION OF PLATE lla.

Cerapus tubularis.

All the figures are enlarged seventy diameters, exeept $4, b$, whieh is enlarged one hundred and lorty diameters.
Figure 1.-First gnathopod and epimeron of the riglit side of an adult mate.
Figure 2.- Seeoml gnathopod and epimeron of the right side of the same sjecin en
Figure 3.-First pereopod and epimeron of the right side of the same specimen.
Figure 4.- a, Third peræopod and epimeron of the right side of the sane specimen ; b, distal pertion of the same still more enlarged.
Figure 5.-Pleopods of the right side of an adult female: a, first; b, second; c, third.
Figure 6.-Extremity of the pleon of the same speeimen, dorsal view, showing uropods and telson.

[^128]
Pait 1.-Ilistorical Siemeif, with Anvoted Lists of the Species hitherto liecombed. By λ. E. Verril.

Previons to the last ten years rery litthe har been published in this country concerning the marine amelich of our coast, and very few of our species hat been recorted, either by foreign or American writers.

A large proportion of the New England species are now known to be identical with those of Northern Europe, therefore descriptions of sneh species are to be fomid in nearly all foreign works relating to the European amelids, from the days of Limi down to the present time.

It is not m! intention to enmmerate, at this time, all the European works which must be consulted hy a student of our annelids, for such a liş wonld be nearly coërtensive with the entire literature of the Amelila. Among the more important of the European works, containing rescriptions and figures of many of our Amelids, are those of O. Fabricius; ${ }^{1}$ Ersted; ${ }^{2}$ M. Sars; ${ }^{3}$ Grube: Malmgren; ${ }^{5}$ Qnatrefages; ${ }^{6}$ Ehlers; ${ }^{\text {G. O. Sars; }}{ }^{8}$ Malm; ${ }^{9}$ Theel. ${ }^{10}$
${ }^{1}$ Otio Fabricius. Fauna Groenlandica, pp. 279-315. Hafniæ et Lipsix, 1780.
The Latin descriptions in this work are given with considerable detail, and are, in all respects, much better than most of those published in the last century, or even much later. Many of his species are common on the New England coast.
${ }^{2}$ A. S. (Ersted, Grönlands Annulata Dorsibranchiata [eight plates]. Kjobenhavn. 1843.

Annulatorum Danicorum Conspectus, Fasc. I, Maricole [plates]. Hafniæ, 1843.
${ }^{3}$ M. Sars, Fanna Littoralis Norvegie, i, 1846 ; ii, 18 ait.
Beretning om en i Sommeren 1549 foretagen Zoologisk Reise i Lofoten og Finmarken [pp. 1-91; annelids, pp. 76-91].<Nyt. Magaz. Naturvid., vi, 1850.
Bidrag til Kundskaben um Norges Aunelider, fjerde afhandling. < Tidensk. Forhandl. Cliristiania, 1861.
fenlogiske og Zoologiske Jagttagelser austillerle paa en Reise i en Deel af Trondhjems i Sommeren 1862. 1863.
Also various other papers in the publications of lcarned societies. 184i-1864.
${ }^{4}$ Adolpi Edtard ('́rcbe, Die Familien der Anneliden, pp. 163. Berlin, 1851.
Annulata Semperiana. Beiträge zur Kenntniss der Anneliden Fauna der Philippinen, 4 to, pp. 300, pl. 15. Mémoirs de L'académie Impériale des Sciences de St. Petersbourg. VII, vol. xxv, No. 8, 1878.

Of these, only Whlers amt Quatrefages have actually deseribed or mentioned specmens from the New England Coast.

Of the sombern species, which extend northwart to the New England eoast, some were described hy lbose and other early writers. The important works of Audouin amd Nilue-Eilwards;" of Claparèle;' of kimberg, ${ }^{13}$ ant others, althongh containing but few of our species, are intimately connected with the history of om : mme-

Also many papers in the Archiv für Naturgèschichte; Müller's Archives; Proceedings of the Yienna Academy, 1866-1877; and in the publications of other learned societies.
${ }^{b}$ A. J. Malmgren. Nordiska Mafs-Annulata.<Ofvers. K. Vet.-Akad. Förh., pp. 51-110, pl. 8-15; pp. 355-410, pl. घ8-29. 1865.
Annulater Polycheta Spctsbergix, Groelandix, lslandixe et Scandinavix hactenus cognita, pp. 1-127, pl. 1-14. 1lelsingforsi:e, 1867.
${ }^{6}$ A. de Quatrefages. Histoire nảturelle des Annelés marins et d'eau douce, vols. i, ii, with atlas. Paris, 1865. [Published in the autumu of 1866. t. Mg'n].
${ }^{7}$ Erast Ehlers, Die Borstenwurmur (Annelida Chæotopoda), 4to, pp. 748, 24 plates. Leipzig, 1864-8.
${ }^{8}$ G. O. Sars, Diagnoser af nye Annelider fra Christianiafjorden. < Vidensk.-Selsk. Forhanill. Christiania, 1871.
Bidrag til Kundskaben ow Dyrelivet paa vore Havhanker.<The same. 1872.
Also other papers in the same serial, and elsewhere.
${ }^{9}$ A. W. Malm, Annulater i hafvet utmed Sverges restkust och omkring Götehorg.< Göteborgs Kongl. Vetensk. Vitter. Samh. Haudlingar. xir [pp. 69-105, pl. 1]. 1874.
${ }^{10}$ II. J. Théel, Les Annélides Polycbètes des mers de la Nouvelle-Zemble, 4to, pp. 75, pl. 1-4.<Kongl, Srenska Tet.-Akad. Handlingar, xvi. Stockholm, 1879.
Études sur les Géphyriens inermes des Mers de la Scandinavie, du Spitzberg et du Gronland [pp, 1-2T, pl. 1-4] < K. Srenska Yet. Akar. Handl., iii, No. 6, 1875.
${ }^{n}$ Audouin and H. Mime-Edrards, Recherehes pour servir a l'Histoire naturelle du littoral de la France, vol. ii; Annelides [by Milne-Edwaris]=('lassification des Annélides et Description de celles qui habitent les côtes de la France. <Amnales des Sciences naturelles, xxvii [pp. 337-44i, pl. 7-15]. 1832; xxviii [pp. 187247, pl. 9, 10], 1833; xxix [pp. 195-269, 388-412, pl. 13-18]. 1833; xxx [pp. 411-425, pl. 22], 1833.
${ }^{12}$ Épouard Claparène, Etudes anatomiques sur les Annélides, 'Turbellariés, Opalines et Grégarines observées dans les Hébrides <Mem. de la Soc. de Phys.. et d'Hist. nat. de Genève, vol. xxi, 1861.
Glamures Zootomiques parmi les Annélides de Port-Tendres (Pyrénées Orientales). <Mémoires de la Société de Physique et d'Hist. nat. de Genève, vol. xxii [tto, pp. $463-600$, pl. 1-8]. 1864.
Les Aunelides Chétopodes du golfe de Naples. Feuève, 1868, 1 vol.. in 4 to. < The same, rol. xix. xx , Genère, 1868. 1869.
Supplément aux Annélides Chétopodes, etc. Genève, 1870, in 4°. <The same, vol. xx [pp. 365-542, pl. 1-14], 1870.
Recherches sur la Structure des Annébides Sédentaires. = The same, rol. xxii [pp. 200, pl. 1-15], Genève, 1873.
lids, for in them many of our genera were established, and mmerous species from southern Europe, closely allied to our wwn, were deseribed and illustrated in great detail.

The following lists are arranged, as nearly as possible, in chronologieal orter. Suecies when recorted for the first time, as from the northeastern coast of America, are printed in italies, mess imleterminalble by me. The names placed in the last colum as the equivalents of the original names, are those usel by the writer in the Checklist of Marine Intervebrates, ${ }^{14}$ edition of 1879 , unless otherwise indicated. Those names that have been since changed are enclosed in brackets.

Athough a considurable number of changes in the nomenclature of the annelids, included in the first edition of the Check-list, have become necessary or desirable, and may he adopted in the second, or systematic part of the present paper, I have thought it best to introduce only some of the more important ones, or those that relate to the more commonspecies, in the following lists, the Check-list being still kept, as a convenient standard of reference, for the varions synonymous names that have formerly been used for those species included in it.

The prineipal changes which I have here introbuced in the synonymical lists are as follows:

Cistenides to be changed to Pectinctrice; Anthostomu to Scoloplos; Rhynchobohes ditrameliatus to become the type of the new genus Euglycera, herein established (see p. 295).

The common Phascolosoma ciementarium appears to be identical with P strombi (Phuscolion strombi Theel) of Europe.

The earliest notices of any of our annelits are to be fonnd in the conchological works of Gould and others, but such species as were mentioned by them are mostly those that form more or less solid tubes, and as their notes and descriptions usually refer only to these tubes, it is seldom possible to identify, with any certainty, the species mentioned by them.

For greater convenience, I have also included, in the lists, the small number of Gephyreans that have been recorded from our coasts. The leeches are omitted.
${ }^{13}$ J. G. H. Kinberg, Annulata Nova. <Stockholm, Akad. Ofversigt, xxi, 1865, pp. 559-57t; xxii, 1966. pp. 167-179, 239-258; xxiii, 1867, pp. 97-103, 337-357.
Kongliga Svenska Fregatien Engenies Resa, omkring jorden, Zoology, I, [4to, pp. 1-:32, pl. 1-8].<Kong. Svenska Teteuskaps-Akad. Stockholm, 1867.
${ }^{14}$ A. E. Verrill, Preliminary Cbeck-list of the Marine Invertebrata of the Atlantic Coast, from Cape Cod to the Gulf of St. Lawrence. Author's edition. New Ilaven, June, 1879.
1842.- \uriustus Golmal. Repront on the Tmertebrata of Massuchesetts [firsit ettition]. Boston, 1841.
Certain tube-making species are reorded (pp. 万-11), with descriptive notes. I few other species are mentioned by mame (p. 343).

> List of ipecies.

Pectinaria Belyice, p. 7, fig. I. Amphitrite rentilabrom, p. i.

Spirorlis mentiloides, p. 8, fig. 3.
Spirorbis spivillum, 1.8.
Sypirorbis simistrorst,]. 9, tig. 4.
Serphele vermicularis, p. 10.
Aphrodita aculeuter, p. 343.
Polynoë squamatu, 1. 343.
Nereis margaritacea, p. 343 .
Phyllodoce viridis Johnst., p. $3 \not 43$.
Phỵllodoce lamelligera Jolnst., p. 343 .
$=[$ Pectinaria Gouldii V.]
=Sabella, several species, undeterminable.
$=$ Spirorhis horealis Datud.
=Spirorhis lucitus.
$=$ PHydroides dianthus V.
=Aphrodite aculeata L.
$=$ lepidonotus squanatus.
$=\%$ Nereis pelagica.
Undeterminable.

The last five are accompanied neither by descriptions nor by notes on habits, and camot be determined, except conjecturally, but there can be little doubt as to the illentity of the first three of these.
1852.-I. F. de Pountales. On the Crephefrece of the Allumtic Coust of the L'uited Stutes.<Proc. Amer. Assoc. Ide. Science, for 1851, [vol. v, 1]. 39-42]. 1852.

E'chiurus chrysacanthophorus (Conth.) P., p. 39.
Sipuncutus Goutdii, sp. nov., 1. 40. =Phascolosoma Gouldii.
Phuscolosomu Bernhurdus, 1. 41. = [Pliascolion strombi (Mont.) Theel.] = Phascolosoma cementarium Quartr.*
1853.-WM. Stmpson. Symonsis of the Marine Invertebruta of Granel Manen [$M \cdot 29-36$]. <smithsoniun Contributions to Finorled!fe, vol. vi. Washingtom, 1853.
In this work, Dr. Stimpson published a list of the species collected by him in the Bay of Fundy. His list, thongh exccedingly incom-

[^129]plete, added many speetes and contained all that was known, for many years afterwards, concerning the amelids of that prolific region. The speeies emmerated hy him are included in the following list. In the identification of many of the following speeces I had, formerly, the persomal assistathee of Dr. Stimpson; in company with him, I also dredged many of the species in the same region, in 1861.*

List of Ejpecies.

Sipmenhs Beruhartus, p. $28 . \quad=[$ Phascolionstrombi Theel.]
Nterucuspis fossor, sp. nor., 1. 29.
Spirorbis spirillum Lam., p. $29 . \quad=$ Spirorbis borealis.
Spirorlis nantiloiles Lam., p. $29 . \quad=$ Spirorbis Sitimpsoni Ver.
Spirorbis citreu (Fabr.) St., p. 29.
Spirorbis porrecta (Fabr.), 1. $29 . \quad=$ Spirorbis lucidus Mörch.
spurorbis quedrumaturis, sp. nov., p. 29.
Spirorlis gramuletce (Ilill.), p. $29 . \quad ?=$ Spirorbis eancellatus.
Vermilia servule St., sp. nov., p. 29.
Protulte media St., sp. nov., p. 30.
Subelle, puromina Sav., p. $30 . \quad ?=$ Sabella pavonia Mgn.
Subella zonulis St., 1’30. $30=$ Sibella negleeta.
Pectinaria Grenlandica(?) Grobe, 1. 30. =[Pectinaria grannlata.]
Licmara flerve St., g. et sp. nov., p. 31. =Thelepus cineinnatus.
Terebella brumneu St., sp nov., 1 . 31 . = Amphitrite bronnea.
Terebella cirrata Cuv., p. $31 . \quad=$ Amphitrite eirrata.
C'lymene lumbricalis (Fabr.) Surs, 1. 31. = Nicomache lumbricalis.
Arenicole piscatorem Cuv., p. 31. = Arenicola marina.
Siphonostomum asperum, s]. nov., p. 31. =Trophonia aspera V.
Teeturella flaccide St., gen, et sp, nor., 1.32, fig. $21 . \quad=$ Flabelligera aftinis Sars.

Brache gremosa St., gen. et sp. nov., p. 32.
Bralle sublervis St., gen. et sp. nov.,]. 32.

Ophelia glefbru St., sp. nov., p. 33.
Aricia quadricuspis(?) Ginbe, 1. 33.
Glycer eupitate Ersted, 1. 33.
Gilycere vivideseens St., sp. nov., p. 33. =Goniadia maculata.
I'hyllodoce Gromtandicu (Ers., p. 33.
Nephthys eiliate Mill., p. 33.
Nephthys ingens St., sp. nov., p. 33. :=Nephthys paradoxa Description insufticient.
$=$ Ophelia limacina Rathke.
$=$ [Naincis quardricusjida.]
= Rhynehobolus capitatus. Malm.

[^130]Nereis abyssicola Nt, sp. nov., p. 33.
Nereis iris St., sp. nov., p. 33.
Nereis denticulata, sp. nov., p. 33, tig. 23. $=$ Nereis pelagiea Limé.
Nereis apemetis st., sp. nov., p. 34, fig. 24. = Nereis virens sars.
Enonella biearimata, gen. ct sp. nov., p. 34. Not seen by me.
Eunice Grstellii st., sp. nov., p, 34. = Leodice vivida, young.
Eunice r゙ivida St., sp. nov., 1r. 35, fig. 26. = Leodice vividar V.
Omuphis Eschrichtii, P. 35. =Nothria conchylega Mgn.
Cryptonota citrima st., gen. et sp. nov.,
p. 36, fig. $27 . \quad=$ Spinther citrinus V.

Eiumposyme borealis (Ers., p. 36.
Pholoë tectu st., sp. nov., p. $36 . \quad$ = 'holoë minuta, var.
Lepictonote cirrete (Ers., 1. 36. $=1$ Iarmothoë imbricata.
Lepidonote punctata (Ers., p. $36 . \quad=$ Lepidonotus spuamatus.
Lepidonote seabra (Ers., p. 36. =Eunoa Erstedii Mgn.
Aphrodite aculeata Baster, p. 36.
1855.-Joselill Lendy. Marine Invertebrate Funua of the Coasts of Rhode Istand and New .Jersey. Sommal Acad. Nat. science Philudelphiu, II, vol. iii [m . 144-148, 4to, two plates ; separate copies, pp. 12-16], 1855.

Dr. Leidy, in this work, gave a brief list of Amuelids observed by him, and described a number of new and interesting forms.

List of Species.

Naraganseta coralii L., gen. et sp. nov.,
!. 144(12), jl. 11, figs. 46-48. =[Dodecaceria coralii V.]
scubellu venlifera L., sp. nov., p.. 145 (13),
pl. 11, figs. 55-61. $=$ Potamilla reniformis.
Clymene urceolatus L.., sp. nov., p. 145. Not seen by me.
C'lymene torquotus L., sp. nov., p. 146. =Clymenella torquata V.
Pectinaria auricoma Grobe, p. $146 . \quad=[\text { Pectinaria Gouldii V. }]^{*}$
Terebclle armuta L., sp. nov., p. 146, pl.
11, figs. $44,45$.
Spirorlis spirillum Lamı. p. $146 . \quad=$ Spirorbis borealis

[^131]Torquen eximia $\mathrm{L} .$, gent et sp, nor.,

1. 146, pl. 11, figs. 51, 52. $=$ Polycirrus eximius V .

Cirrhatules firegilis L., sp. novi., 1. 147,
pl. 11, figs. 39-43. $=$ Cirrhinereis fragilis V.
Lembriemercis splendidu 13v., 1. 147. =Arabella opalina V.
Erenice suryrinea Mont., v. 14%. Marphysa Leidyi Quatr.
Glycere Americrent L., sp. nov., 1. 14i,
pl. 11, figs. 49,50. = Rhynehoholus Americamus V.
Nereis denticulata st., p. $148 . \quad=$ Nereis pelagica L. and N. virens.
Siphonostomm uftine L., sp. nov., 1. 148. ='Trophonia aftinis V.
Lepidonote armadillo (Bose) Leily, P.
148, pl. 11, fig. $54 . \quad=$ Lepidonotus squamatus.
Sigation Mithitdu (nom And. and Edw.),
$\mathrm{p} .148, \mathrm{pl} .11$, fig. $53 . \quad=$ Sthenclais picta V .
Ophelire simplex L., sp. nor-. p. 148.
Lmmbrienlus temis, sp. nov.. p. 148, pl. 11, fig. 64. Not seen by me.
1860.-Alexander Agassiz. On the Somig Stages of a feac Amelids.<Amals Lycerm Nutural Mistory, New York, vol. viii, [m'.303-343, pl. 6-11, fí/s. 1-58], .Jeme, 1860.

List of Species.
Spirorbis spirillum (iould (non Pagenst.),
p. 318, figs. 20-25. =Spirorbis borealis.

Terebella fulgita L. Agassiz, MSS., p. 320,
fig. $19,19 a$.
Undetermined. Perhaps
$=$ Thelepus cincimatus or Leprea mbra.
Polydora ciliatom Clap. (?), p. 330, tigs. 26-38.
Nerine comiocephata Johnst. (?), p. 333, figs. 39-45. =Spio, sp.
Phyllodoce maculata (Eirsterl, p. 333, figs. 46-55.
The last three cannot be positively identified withont a reëx:mination of the specimens, which are not, at present, accessible to me, for they were sent to Europe, for study, many years ago.

In addition to thesc, Mr. Agassiz describell and figured, in the same paper, some unknown annelid larva; one which he supposed to be the larva of a Nemertean (? Noreda (virard), and considered the same as "Loven's amelid larra," which, in the light of subseqnent observations, is an annelid, probably identieal with, or allied to Polygordius; and alsn the larval forms of Plumaria enguluta. The latter is not the Plomario anduluta of Fabricins, which was a Nemertean, but is a true Planarian (the Bedellourd cemdide Leidy).
1862.-Adexanmble Agasiz. On Altermate Gemeration in Amelids, and the Eimbryolorgy of Antolyters commers. $<$ Jommal Boston s'ociety of Nirtural IHistory, Vol. rii, [mp. 392-409, pl. 9-11], Jul!/, 1862.

Autolytus cormetus, sp. nov., p. 390, pl. 9-11. Massachusetts Bay, Buzairl's Bay.

Autolytus longosetosus A. Ag.,]. 404, [21], Male = ? A. Iongisetosus; female probably $=\mathrm{A}$. Alexandri Mgn. Massachusetts Bay.
Mr. Agassiz states that the form that he smposed to be the female of Λ. longisetosus has "no less than ten" anterior segments, without long seta. Among the numerous specimens of Antolytus collected at Salem, Mass., by Mr. .1. 11. Emerton, there are both males and females of what I consider the true A. longisetosus (pl. 12, figs. 10, $10 a, 10 c, \delta^{\circ}$.) These have, in both seres, sirr short renterior segments, lacking long dorsal setax, and bearing only short wentral setæ; the post-buecal segment hears very long dorsal cirri (de), but no setre.

In the same lots, collected in early spring, there is a rery distinet species, which has, in both sexes, finurteen anterior sefments, with short ventral setie only, inchuling the first post-bnecal segment, which bears a pair of very large dorsal cirri, and a small cluster of set:u directly beneath them; the second segment is also very much compressed, and its sete are more or less completely concealed by the large cirri, in a dorsal view (plate 12 , figs. $8-8 c$). These are, perhaps, the A. Alexomdri Mgn., and they may prove to be the sexnal forms of my Stephenosyllis ormatre. If' so, it would confirm the separation of Stephanosyllis, as a gemms distinct from Autolytus.

In the sexnal forms that 1 consider identical with Autolytus cormtus A. Ag., I have constantly fomm six anterior setigerous segments in both sercs (p l. 12, fig. 4 , f; fig. 6 of rentral views), hat in the male the first fascicle is concealed, in a dorsal view, by the large dorsal cirrus of the first post-bnceal segment; this first segment bears no seta, in this and the several allied species, which I consider typical Autolyti (pl. 12, figs. $5,6,9-9 b, 10,10 a$), but in this species it has a small papilliform ventral cirus, not mentioned by Mr. Agassiz. He also failed to notice the rentral tentacnlar cirms of the female, though he figures and describes the corresponding cirrus of the male. Although this organ is small, ant often seen with difficultr, especially when the borly is much compressed, as represented in the figures by Mr. Agassi\%, it is quite as large as in the male, and often projects beyond the sides of the head.

Mr. Agassiz stated that in his A. comutus the male had ouly five anterior setigerons segments, while the female harl six. It seems possible, however, that he overlonked the first, very short, compressed segment, with its small fascicle of seta, which is entirely concealed, in a dorsal view, by the large dorsal cirri of the preceding segment. At, least, I have never been able to find a male, of this species, with only fire anterior setigerous segments.
1863.-A. S. I'ackard, J1:. A list of Animals diedlyed near Caribou Ishomel, Southern Labrador, dhering JThly and August, 1860. $<$ Canadian Nuturulist and Geologist, vol. vii, [pp. 401-429, 2 plates .

The lists of amelids and other invertebrates, in this artiele, contain many typographical errors, in the mames of the speeies. Throug? depths. Some important transpositions also oceur in the lists.

List of Species.
Pectinaria Eschrichtii, pp. 403, $418 . \quad=$ [Peetinarial granulata.]
Ouuphis Eschrichtii, p. $403 . \quad=$ Nothria conchylega.
Vermilia sermla, py. 403,418 .
Spirorbis eancellata, P]. 403,418 . (cancellatus)
Spirorbis vitrea, pp. 403, 417 . (vitrens)
Sipunculus, sp. nov., p. 417.
Spirorbis spirillum, 1. ± 17.
$=$ [Phascolionstrombi Theel.]
$=$ Sjirorbis borealis.
Spirorbis matibides, p. 417. $\quad=$ Spirorbis Stimponi V.
Spirorbis porrecta, p. 417. (porrectus) ?=Sprorlis lueidus.
Spirortis glomeratu, 1. 418. (glomeratus)
Spirorbis ruadrangularis, p. 418 .
Terebellit, n. sp., p. 418.
Siphonostomem phemostem, p. 418 . =Trophonia phumosa.
Cimhatulus, n. spr, p. $418 . \quad=$ Cirratulus cirratus
Nephtlygs caeca, 1. $418 . \quad$ Duubtful.
Heteroneis arctica, p. 4t8. (Heteronereis) $=$ Nereis, sp.
Eteone, sp., p. 418.
Nereis pelagic:, p. 418 .
Nereis, n. sp. pp. $118,424 . \quad:=$ Nereis jelagica.
Lepidonote eirrata, pp. $418,424 . \quad=$ Harmothoe imbricata.
Lejidonote pumetata, p'p. $418,424 . \quad=$ Lepidonotus squamatus.
trans. Conn. Acab, Vol. IV.
1863. -Wm. Stimpson. s!mopsis of the Marine Invertebrath cotlected ly, the lute Arrtir Eirperlition, unter Dr. I. I. Inuyes. $<$ Procectings of the Icoclem? of Nutural Siciences of' Ihilutelphia, wol. at', [m . 138-142,] May, 1×6.3.
All the amelid:a recorded are from the westem coast of Greenland.

List of Species.

Lepidonote cirrata, p. 140.
Lepidonote punctata, p. 140 .
Onuphis conchilega, p. 140 .
Nereis pelagiea, p. 140.
Nephthys carea, p. 140.
Phyllodoee Groulandica, 1. 140.
Seoloplos quadricuspida, p. 140.
Cirratulus borealis, p. 140 .
Ammotrypane limacina, p. 140 .
Siphonostommem plumosum, 1. 140 .
Teeturella flaceida, 1. 140 .
Brada inhabilis, p. 140.
Terebella cincinnata, 141.
Terebella cirrata, p. 141.
Pectinaria Eschrichtii, p. 141.
Spirorbis nantiloides, p. 141.
Priapulus candatus, p. 141.
1866.-A. de Quatrefages. Histoire Taturelle des Amnelés. P'uris, 1865 [1866]. (Suites a Buffon).

In this general work, largely compiled, Quatrefages included most of the species mentioned by Stimpson and Leidy, and translated (sometimes erroneonsly) more or less of their descriptions, with some changes in the names. But the only speeies from onr coast that he seems to have personally examined is the common Nereis virens Sars ($=N^{\top}$. graudis Stimpson), which he redescribed under the name of Nereis Yankiana (i, p. 553, pl. 17, figs. 7, 8), and Phascolosoma exmentarium, sp. nov: = [Phascolion strombi Theel.]
1867.-A. S. Packard, Jr. Observations on the Glacial Phenomena of Labrulor and Maine, with a viee of the recent Thvertelrate Fanure of Labrador. < Memoirs of the Boston suciety of Taturul History, vol. i, [4to, pl. 210-303, pl. 7, 8].

This paper inclutes the species emumerated by Dr. Packard in his preliminary paper, noticol above, with some adilitions. Although many of the numerons typographical and other errors of that article were corrected in this later and more complete one, the latter also contains farious orthographical erors, uven in the names of the speries, not only among the annclids but in the lists of species of the other groups. Some of these very obvions errors are indicated in the following list. Many of the species in this list I have personally examined.

List of Species.
Syrinx?, sp. nov., p. 290., pl. 8, fig. 10. Undeterminable.
Phascolosoma hamulatum, sp. nov., pl. 8,
fig. 8, p. 290. $\quad=$ [I'hascolion strombi Theel.]
Spirobis vitrea, p. 291. (vitrens)
Spirorbis sinistrorsa, 1. 292. (sinistrorsus)
Spirorbis porrecta. (porrectus) =Spirorbis lucirlus.
Spirorbis cuncellata. (cancellatus)
Spirorbis granulata. (granulatus)
Spirorbis spirillum. $=$ Spirorbis borealis.
Vermilia servula.
Ampliitrite cirrata.
Amplitrite ? sp.
Amphurete Grubei.
Cistenides granulata, 1. 292. (granulatus) $=$ [Pectinaria granulata.]
Pracillu Mulleri, p. 293. (Donbtful.) $\quad ?=$ (l'rasillella Mulleri V.]
Nicomache lumbricalis.
Spiochatopteras typicus. (Spiochetopterus)
Tubes only. Very doubtful.
Arenicola piscatormm.
Siphonostomm asperum.
Siphonostomzem phemosum.
Cinretulne cimata. (Cirratnlus)
Heteronereis aretica? Ers.
Nephthys lomyisetose.
=Arenicola marina.
$=$ Trophonia aspera.
$=$ Trophonia phmosa.
$=$ Cirratulus cirratus.
=Nereis, sp .
Doubtful.
Two species are confonnded in the synonymy of this species.
Nephthys crecr, p. 294.
Doubiful.
Eteone eylindrica.
Doubtful.
Phyllodice groulandica. (Phyllodoce)
Omuphis Eschrichtii. =Nothria conchylega.
Nereis pelagica.
Nereis, sp. $\quad ?=$ Nereis pelagiea.
I'holoë minnia.

Larmothoë imbricata.
Lepidonotus squatmans, p. 295. (squamatus)
The Pontoluthe? livilu, p. 291, pl. 8, fig. 9, is nndoubtedly a Nemertean-perhaps a Crofrutulus or Micruru, but is indeterminable.
1868.-Erast Ehlers. Die Borstemü̈rmer (Ammtide Chutopodrı), [m?. 1-268, m. 1-11, mbl. 1864; pl. 269-748, p7. 12-24, 1868]. Leipzig, 1864-1868.
Ehlers published in 1868 the second part of his large and elaborate work on Amelida. He had received from the Inseum of Comparative Zoology, Cambridge, a collection of New England annelids, and in this part of his book he described, in detail, a number of on common amelids and illustrated several of them. To one of the most common species, his Glycern dilranchiutu, he devoted thirty-two pages of text amt numerons figures, partly anatomical. Ile described its anatomy with considerable detail. The following are the species particularly mentioned by him as from the New England coast.

List of Sprecies.

Nercis pelagica, p. 511, pl. 20, figs. 11-20. Labratur to Nahant, Mass.
Nereis rirens, p. 559-503, pl. 22, figs. 29-32.
Nereis limbuta, sp. nor., 1ן. 567-570.
Nephthys cera, p. 588, pl. 23, figs. 10-34. Eastport to Nahant.
Neplethys bucera, sp. nov., pp. 617-619, jl. 23, fig. 8. Massachusetts Bay.
Nephthys cliscors, sp. nov., pp. 626-629, 11l. 23, figs. 39, 40. Eastport, Me.
Nephthys ciliata, 1. 629, pl. 23, fig. 36. Edgartown, Mass.
Nephthys picta, sp. nov., pp. 632-655, pl. 23, figs. 9, 35. Vineyard Sd. to S. Carolina.
Glyeera copitute, p. 648. $=$ Rhynchoholus eapitatus Clap.
Glycera Americana Leidy, 11. 668-670, pl. 23, figs. 43-46. =Rhynchobolus Americanns V.
Glyecra ditranchiuta, sp. nov., pl. 670-i02, pl. 24, figs. 1, 3-8, 10-28. Mass. Bay, New Jersey. = [Euglycera dibranchiata「.]*

[^132] Bulletin of the Esscx Institute, $i i i, 19$, 2-6, Nalem, I/ass., Jem. 1871.

Aphrodite aculeata, 1. t.

Nereis gramdis st., p. 6.
Arenicola piseatorum, p. 6.
My.ricolu Nicenstrupuii, p. 6.
Thephisa [error typ.] circinuata (Lumara flawast.), pp, 3, 6.
$=$ Thelepus cincimatns.
Torquen?, p.6. $\quad=$ [Polycirns phosphoreus V., 1879.]
Ennice, sp. 1. 6.
Lumbriconereis, sp., p. 6.
$=$ Nereis virens.
$=$ Arenicola marina.

1872-3.-1. E. Vermal. Isrief Contributions to Zooloty from the Muscum of File Colleqe, To. V「ITI.-Results of Recent Dredging Erperlitions on the Corst of Nern Enylunt. [Nos. 1 and 2.] American Tomal of Science and Arts, vol. v, [m].1-16, Fumury, $18 \uparrow 3$ (author's ed. issued Dec. 13, 1872) ; M. 98-106, Februury, 1873 (author's ed., Jan. 18.)]

These papers include Annelids dredged in the Bay of Fumdy, in $18 i 2$, by the party of the ए. S. Fish Commission, under the direction of the writer; those drelgerl at George's Banks and off Nova Scotin, etc., by Messrs. S. I. Smith and O. Harger, on the Coast Survey steamer "Bache," in 1872 ; and those dredged in the Gulf of Maine, by Messrs. A. S. Packard and C. Cooke, on the same steamer.

List of Eperies.

Hermione hystrix (?), p. $98 . \quad=$ Latmatonice armata V.
Antinoë Sursï, p. 101. (Sarsi.)
Neplithys discors, 1. 103.
Nephthys ingens, p. 103, (? non Stimp.) =Nephthrs incisa Mgn.
Nereis pelagica, pp, 101, 104.
Leodice vivirla, 1p. $2,101,104$.
Nothria conchylega, 11. 9, 102, 104. (conchilega.)
Nothrie opuline, sl. nov., IT. 98, 102.
Lumbricomereis fiagilis, 1. $98 . \quad=$ Lumbrinereis fragilis.
Gomicerta mremelate, plo. 98, 103 (Ilescr.)
Ammotryfrue anloyester, p. 101. =Ammotrypane fimbriata V.

Sumenia corlsirre, p. 101.
Scalibre!ma inflatum, p. 98.
Trophonia aspera, p. 98.
Steruaspis fossor, p. 101.
Sisolecolepis cirrute, p. 98. $\quad=$ [Scololepis cirratil $]$.
Chetozone setost, 1. 103.
Notomastus lutrricites, 1•. 101
Mellone Firrsii, pl. 99, 103. (Sarsi Mgn.)
Nicomache lumbricalis, p. 101.
Praxilla grurilis Mgn., p. $101 . \quad=[$ Praxillella gracilis V.]*
Iravill protermissa Mgn., 1p. $101,103$.
$=$ [Praxillella protermissa V.]
Praxilla torquata, p. 101.
=Clymenella torquata V.
Ampharete Fimmurchica, 1. 101.
Amphicteis Gummeri, p. 101.
Semythe sececirratu, 1'. 101.
Somythella elongata, gren. et sp. nov.,]p. 98, 103.
Amage auricule, p. 98.
Melinna cristutu, 1'p. 98, 103 (descr.)
Amphitrite cirrata, p. 101.
Pista eristutre, 1. 98.
Terebellicles Stroemi, p. 99. (Strömii Sars.)
Thelepus cincinnatus ($=$ Lumara flara St.), p. 104.
Aphlebint, sp., p. 101. $=$ [Polycirus phosphoreus V., 1879.]
Phuscolosoma borealis, p. 102, descr. (boreale). = [Phascolosoma eremita sars.]
Phascolosoma cementarinm, pp. 99, 102. $=$ [Phascolion strombi.]
Phaseolosomu tubicolu, sp. nov.,]'p. 99, 102. = [Plascolion tubicola.] Chatoderma nitidula, p. 102, (nitidulum).
1873.-W. C. MIntosh, in Whiteaves. Report of a Second [1872] Deep-sea Dredging Erperdition to the Gulf of st. Lanorence. Montreal, 1873. A report to the Minister of Morine and Fisheries for the Dominion of C'anudu.

List of Species, p. 14.
Eimoa nodosa, 125 fath.
Ephesia gracilis, 125 fath.
Nothria conchylega, 125 fath.
Ammotrypane anlogaster, 100-125 fath. ?=Ammotrypane fimbriata

[^133]Trophonia phmosa, 100-125 fath.
Sabella paronia, 125 fath.
Goniada maculata, 100-112 fiath.
Amphictene anricoma (tube), 100-112 fath.: = [Pectinaria gramulata.]
Terebeltides Stromii, $100-112$ fath. (Strömii Sars.)
Thelepus circinatns, $100-112$ fath. (cincimatus) $=$ 'T. cincimatns.
Praxilla gracilis, $100-112$ fath. $\quad=[$ Praxillella gracilis V.]
Lumbrinereis fragilis, 200 fath.
Buthenoglosizus, sp.
In the same paper, p. 1t, two species of Gepioyrea are recorderl, on the authority of A. E. Vemali,:
Phascolosoma boreale Kef.
Phescolusoma Ersteclii Kef. (?).
$=$ [1'hasenlosoma eremitas sars.]
$=[$ Phascolosoma margaritaceum Sirs.]

18i3-t.-A. E. Verrile. Repmit upon the Imvertebrate Animals of Tineyard Soumd and the Arlincent waters, with an uccount of the Physical Characters of the Region [Orustacen by S. I. Smith and O. Herger]. $<$ C. S. Gommission of Fish und Fisheries, Pert I. Report on the Conctition of the Sen Fishories of the South Coust of Nere Englemel in 1871 emel 1872, by spencer F. Bairl, Commissioner [mp. 295-iti, 38 phites arfel a mati], Wushington, 1873. A sepurate edtition vas also published b!y A. E. Terrill end s. 1. Smith, with original pagination on the inner margins, and newo paginution on the outer murgins, but rithout the chart. 1874.

This work included all the species known at that clate from the region between Cape Cod and southern New Jersey. Many additional species have subsequently been diseovered, especially in the deeper waters, at a greater distance from the coast, amt also among the small free-swimming species of Syllitax.

Extensive dredgings have subsequently been carried on, within these limits, by the U. S. Fish Commission, during the seasons of 1874, 1875, 1880, and 1881. The results of these explorations have not yet been fully reported upon.

In referring to the pages of this report the numbers refer to the original pagination, except those enclosed in brackets, which refer to the author's edition. The first reference, in each case, is to the systematic list of species.

The volnme containing this report is dated 1873 , when it was printerl, lut this part of the volume was not actually issned unti] early in 1874.

List of 夭jecies.

Aphrodita aculeata Limé, 11. 580 [2R6], 507.
Lepidonotus squamatus, 11 . $581,[2 \times 7], 320,332,392,397,410,422$, pl. 10, figs. $40,41$.
Lepidonotns sublevis V., sp. nov., IP. 581, [287], 320, 332, 397, 410, $422, l^{\prime l} .10$, fig. 42.
Lepidonotus anifustus V., sp. nov., 1'1. 581, [287], 494.
$=$ Lepidonotus squamatus, var.
Harmothoé imbricata, pp. 582, [288], 321, 332, 392, 397, 410, 422.
Stheneluis pietr V., sp. nov., pp. 582, [288], $348,364,422,428,501$.
Nepthys ingens Stimp., p]. 583, [289], 431, 434, 507, 521, 1]. 12, figs. 59, 60.
$=$ Nephthys incisa Mgn.
Nephthys picta Ehl., pp. 583, [289], $348,36+422,428$, pl. 12, fig. 7.
Nephthys bucera Ehl., pp. 583, [289], 416,422, pl. 12, fig. 58.
Nephthrs ciliata, pp. 583, [289].
Eumidia - 1 mericumu V., sp. now., plo. $584,[290], 494$. (Eumida.)
Eumiclie vivida V., sp. nov., pp, 58t, [290]. (Eumida.)
Eumidia papillosa V., sp. nov., pps. 584, [290]. (Eumida.)
Eulatia pistaciu V., sp. nov., 1p. 584, [290].
Eutulir gremulosa T., sp. nov., p1. 585, [291].
Eillaliu unnuluta V'., sp. nor., Pp. 585, [291].
Enlatia gracilis Y', sp. nor., pp. 586, [292].
Phyllodoce gracilis V., s]. nov., lp. 586, [292], 494.
Phylloduce cotenula V., sp. nor.,]ll. 587, [293], 494.
Eteone rolusta V., sp. nor., pp. $5 \div 8,[294], 746$.
Etcone limicola V., sp. nor., pp. 588, [294].
Eteone setost V., sp. nov., 11. 588, [29f].
Eteone, sp., 1p. 589, [295].
Pochathe obscurn V., sp. nov., pp. 589, [295], 319, 332, 382, 392, 410, $440,453, \mathrm{pl} .12$ fig. 61.
Autolytus cormutus, 1]. $590,[296], 392,397,410,422,440,452,494$, pl. 13, figs. 65, 66.
Iutolytus, $=\mathrm{p} ., \mathrm{p}$ p. $590,[296], 398 . \quad=$ Proceraa ornata V.
Antolytis, sp.e, pl. 590, [296].
Procerca ormeta V., sp. nor., 1]. 746, [452].
Syllis, sp., p. 500, [296].
$=$ Syllis pallida V., 1875.
Gattiola, s1., 1p. 590, [296], 453.
Nereis virens, P1. $590,[296], 31 九, 341,367,: 771,377,440,453,455$, 463, $468,487,514,519, ~ p l .11, ~ f i g s . ~ 47-50 . ~$
Nereis limbata, 1ll. 590, [296], 318, 341, 371, 377, 382, 392, 422, 440, $453,463,516$, ph. 11, fig. 51 .

Nercis pelagica, 1J. 591, [207], 319, 397, $410,422,428,434,45 \%$, , 1 . 11, figs. 52-55.
Nereis fiuctuth Aud. and Eilw., P1. $591,[297], 494$.
Nereis, sp., 1. 591, [297].
Nectonereis meydulops, gen. et sp. nov., M1. 592, [298], 440, 453, p1. 12 , figs. 62, 63. $=$ [Nereis megalops V., 1879.]
Dioputra cuprere, 11. 593, [299], $346,364,371,377,422,431,434, ~ p 1$. 13, figs. 67, 68.
Marphys: Leityi, p. 593, [290], 319, :332, 347, 364, 410, 422, 434, 517, pl. 12, tig. 64.
Lycidice Americuma, sp. nov., pp. 593, [299], 508.
Lumbriconereis fragilis, 价. $594,[300], 501,507$. (Lumbrinereis).
Lembriconcreis opalime, sp. nov., pl. 594, [300], 320, 352, 342, 364, $371,377,397,410,422,42 ค, 434,468$, pl, 13 , figs 69,70 .

$$
=\text { Araleella opalina V. }
$$

Lumbriconereis temuis, sp. now.]p. 594, [300], 320, 332, 342, 364, 371, $377,422,+63$, (Lumbrinereis).
Ninoë nigripes, sp. wov., 1p. 595, [301],508.
Stuerocephulus pellictus, -1. nov., 11'. 595, [301], 348, 364.
Rhyuchobolus Americanus, 1יp. $596,[302], 332,342,364,371,377$, $428,434,453,453, \mathrm{pl} .10$, figs. 45,46 .
Rhyuchobolus dibranchiatus, p] 596, [302], 332, 341, $364,371,3$ 57, $428,431,434,463$, pl. 10, tigs. 43, 44. = EUngly cera dibranchiata V.]
Erme !frucilis, sl. nov., 1p. 596, [302]. = [Gonianla gracilis V., 1879.]
Lricire ornatu, sp. nov., P1. 596, [302], 344, 365.
Anthastomu robustem, sp. nov., 1] . $597,[303], 343,348,365,428, \mathrm{pl}$. 14, fig. 76.
$=[$ Scoloplos robustus V.]
Anthostoma fruegile, sp. nov., 11?. 598, [304], 344, 365.
$=[$ Scoloplos fragilis V.]
Authostoma serntum, sp. nov., l'p. 599, [305], $416,422,428,501,508$.
$=[$ Scoloplos acutus V.]
Nerine refilis, sp. nov., pp. 600, [306], 346, 365, 490.
Scolecolepis virillis, sp. nov., p1!. 600, [306], 345, 364, 453, 463 (Scololepis.
Scolecolepis temuis, sp. nov., pl'. 601, [307], 345, 364 (Scololepis).
Scolecolepis cirrata, 1 l 1 . 602, [308], 416, 422, 428,501, 50 (Scololepis).
Spio setosu, sp. nov., 111. 602, [308], 344, 365, 453, pl. 14, fig. it.
Spio robusta, sp. nov., 价. 603, [309], 345, 365.
Pulydora ciliatum!, P1. 603, [309], 345, 364, 453, f1l. 16, fig. 78.
$=$ [lolydora littorea V., sp. nov., (pl. 18, fig. 10).]
Ophelia vimplux, p!. 603, [309], 310, 332, 410.
Trase. Cone. Acad., Vol. IV. 40 Sepr., 1881.

Travisia curnere，sp．nov．，p1）．604，［310］，431，434，508．
Ammotrypine fimbriat：，sp．nov．，pp． 60 ！，［310］，508，pl．15，fig． 79.
Scelibergmu brewieuchu，sp．nov．，111．605，［311］， 416,422 ．
＇Trophonia aflinis，11］．605，［311］，432，434，507，pl．14，tig． 75.
Brcerle st toser，sp．nov．，1PP．90f；［312］， $4: 31,434,508$.
Sternaspis fossur，pl $606,[312]$ ， $507,11.14$ ，fig． 74 ．
Cirretules ifrendis，sp．nov．，1P＇606，［312］，319，332，348，364，371， $377,422,468,1^{17} .15$ ，figs．80， 81.
Cimutulues temuis，sp．nor．，pp．607，［318］，416，42．2．
Cimphinereis fragilis，pp．607．［313］，332，397，410， 422.
Naraganseta coralii，pp＇607，［313］，397，410，422， 404.
$=[$ Dorlecaceria coralii V．］
Clymenella torquata，gen．nov．，pp． $608,[314], 343,365,422,428, p l$ ． 14，figs．71－73．
Nicomuche clispar，sp．nor．，pp．608，［314］， 508.
Mullicme elongutu，sp，nov．，pp．609，［315］， $343,365,371,377$.
Rhorline uttermutu，sp．nov，11p．609，［315］， 508.
Notomestus lurilus，sp．nov．，］11．610，［316］，342，365，，．71，375．
Notomastus filiformis，sp．nov．，P1．611，［317］，342，365，371， 377.
Subellurine vulgatis，sp．nor．，pp．611，［317］，321，332，349，365，392， $397,410,422,428,426,476$, 1， 17 ，figs． $88,88 a$.
Cistenides Gunldii，sp．nor．，pp．612，［318］，323，332，343，365，371， $377,422,428,434, \mathrm{pl} .17$ ，figs． $87,87 \mathrm{a} .=$［Pectinaria Goulilii V．］
Ampharete ！rucilin，pp．612，［318］．508，pl．16，fig． 83.
Ampharete setosa，sp．nov．，11．612，［318］，416，422，432， 434 ．
Amuge pusillu，sp．nor．，P1．613，［319］．
Melima cristata，P］ $613,[319], 432,434,507$.
Terebellides Stroëmi，1p，613，［319］，507．（Strömii Sars．）
Amphitrite ornata，pl．613，［319］，320，321，332，348，365，377，382， $422,428,453,1^{\text {l．}} .16$ ，fig． 82 ．
Nicolea simplex，sp．nor．，11p．613，［319］，321，332，382，392，397，410， $422,453,494$.
Scionopsis palmata，gen．et sp．nov．，1＇1．614，［320］，321，332，397， 410， 476.
Leprace rutura，sp．nov．，pp．615，［321］，382，392， 453.
Polycirrus eximius，PI．616，［322］， $320,332,371,37 ヶ, 382,392,410$ ， 422，434， $453,468, \mathrm{p}$ ］．16，fig． 85.
Chatobranchus sanguineus，gell．et sp．nov．，1p．616，［322］，320，332， 3ヶ1， $37 ヶ, 434,468 . \quad=$ Enoplohranchus sanguineus V ．
Potamilla oculifera，［p． $617,[323], 322,332,382,392,397,410,422$ ， 476, pl． 17 ，fig． $86 . \quad=$ Potamilla reniformis．

Serbella mierophtholma, sp. nov., pl' 618, [324], 323, 332, 392, 397, 410, 422.
Euchone eleyms, sp. nov., pp. 618, [324], 432, 434, 508, pl. 16, fig. 84.
Fubricir Leidlyi, sp. nov:, 111. 619, [325], 323, 332, 397, 110, 422.
$=$ Fabricia stellaris Bv.
Serpula dirnthus, w1. 110v., 11. 620, [326], 322, 332, 392, 397, 410, 416, $422,426,428,46 . \quad=1 l y d r o i d e s$ dianthens V.
Serpulu clicuthus, c'er: citrime, 111. 620, [326].
$=$ Hydroiles dianthus V., var.
Spirorbis borealis, ph. 621, [327].
Spirorbis lucidns, 14. 622, [328].
Clitellio imoratu, sp. nov., p1. 623, [328], 324, 332, 365, 463.
Lumbriculus tenuis Leidy, pp. 623, [329]. Not seen by me.
Hellotrillus littorulis, s1. nov., 1י1. 6233, [329], 324, 332, 338, 365, 463.
Enchytrieus triventralopectinatus Minor, pp. 624, [330]. Not seen by me. Doubtful.

1873-4.- A. E. Vermal. Brief Coutributions to Zö̈logy from the Museum of Jule College. Vos. XXV-XXIX. Results of recent Thedying Enprelitions on the Coast of Dere Eiteglumel. Nos. 3-7. From the Americum Journal of science cmel Arts, vol. vi, Dec., 1873 to vol. vii, Mry, 1874. [Five plates.]

These papers contain accounts of the dredgings in 1873, in Caseo Bay, Maine, and the alljacent waters, by the U.S. Fish Commission, and in the deeper parts of the Gulf of Haine, by the party on the "Bache."

List of Apecies.

Cryptonota citrina, p. $502 . \quad=$ Spinther citrinus V.
Euphrosyue borealis, 1p. 41, 502.
Aphrodita aculeata, P1, 439, 45, 411 .
Letmonice filicomis? $1 \mathrm{p} .411,499,502 .=$ Letmatonice armata V.
Lepirlonotus squamatus, $1 p .41,43$.
Eunoa (Ersterli, 11. 41, 43, 411,502. (Oerstedi Mgn.)
Éenoe uoclost, p. 502.
Nyehia cirrosa, 1. 439. (see errata, 1. 46.) = Ennoa Erstedi.
Harmothoë imbricata, 11. $39,43,45,411,502$.
Nychice Amondseni, plı. 407, 411.
Autinoë Sorsii, p. 411,502.
Euipo aracilis, sp. 13uv., 1p. 407, 411, (jl. 6, fig. 4.)
Pholoë minuta, 1p. 439, 45, 411.

Leanime fetregomel, 11p. 407, 411 .
Nephthgs ingens, lp. 45, 411,502. \quad Nephthys incisa Mgn.
Nephthys ciliata, p. 411, pl. 4, fig. 4.
1'hyllodoce, sp., 11 $4.4,45,411$.
Pyllorloce Fremlandica, 11. 411, 502.
Phyllodoce catemula V., pp. 39, 43, 45, 131, pl. t, fig. 5.
Enlalia pistacia, 1 p. 43, 45, 131, pl. 5, fig. 2.
Eleone pusillu, p. 45.
Eteone depressif, 1. 411.
Nereis pelagica, pp. $39,43,45,411,502$.
Nereis, sp., p. 411.
Nereis virens, pp. 131, 135.
Autolytus comutus, P1. 43, 132 .
Antolytus, sp.,]. 43.
Stephanosyllis picta (nom. preoc.), sp. nov., M1. 43, 414, il. 4, fig. 6, $=$ Stephanosyllis ornata V.
Stephumosyllis omutu, sp. nov., p. 132.
Procerea gracilis, sp. nor., p. 43, 132, pl. 5, fig. 1.
Gattiola, sp., pp. 439, 39, $411 . \quad=[1$ 'terosyllis cincinnata V.]
Leodice rivilla, p. $411,499,502$.
Nothria opalina V., 1P. 408, 411, 5012, ($\mu \mathrm{l} .4$, fig. 1).
Nothria conchilega, pp, 39, 43,411,499, 502 (conchylega Sars).
Ninoë nigripes V., 1p. 439, 408, 411 (pl. 4, fig. 3), 39, 45, 502.
Lumbriconereis fragilis, pp. 408,411 (pl. 4, fig. 2), 39, 45, 502. (Lumbrinereis.)
Goniada maculata, P]. 45, 411,502.
Rhymehobotus ulluss. 1'p. 45, 411,502.
Rhynchobolus dibrachiatus, p1. $132,135$.
$=\left[\right.$ Euglycera dibranchiata ${ }^{T}$.]
Eumenia crassa, p. 411.
Scalibregma intlatum, pp. 439,411 .
Travisia, sj., $p .411$.
Brada, sp., p. 411.
Frata sublevis, p. 502.
Tecturella flaccida, pl. 43, 411,502. =Flabelligera aftinis Sars.
Trophonia aspera, 1p. 4.3, 45, 411, 499, 502.
Ophelia, sp., P1. 45., 411.
Ammotrypane fimbriata, 1p. $439,45,411$, pl. 7, fig. 5.
Sternaspis fossor,]p. 439, 43, 45, 411 .
Scolecolcpis cirrata, p. 411 (Scololepis).
Polydora, sp., (in shell), pp. 43, 45. $=$ Polydora concharum V.

Anthostoma acntum V., 11. 439, 39, 45, 411. $=[$ Scolo $]$ los acutus V. $]$
Cimotulus cimuthes, p. 43, 132.
Chatozone setosa, 1p. 439, 411.
Doelecterere conchurvm, p. 411.
Malilane 心arsii, plo 4:39, 43, 45, 411 (Sarsi Mgn.).
Praxilla gracilis, p. +1].
1’axilla pretermissa,]. 411. $=$ [1’raxillella pretermissa V.]
Praxille zonulis T., sp. nov., p. 505, pl. 6, fig. 2.
$=[$ Praxillella zonalis V.]
Clymenella torquata, p. 132, pl. 7, fig. 6.
Nicomache, sp. nov., viii, ן. 43.
Nicomache lumbricalis, pp. 439, 43, 45, 411, 502.
Ammochares, sp., p. 411.
Notomastus latericeus, p. 411. (latericius.)

- Incistria racutu Γ., sp. nov., 1. 505, pl. 6, fig. 3.
$=$ Notomastus acutus V., 1879.
Arenia, sp. in capillary tubes, sp. nov., pp. 439, 411.
$=$ [Notomastus capillaris V., 1879.]
Cistenikes granulatns, jp. 39, 43, 45, 411, 502.
$=[$ Pectinaria gramulata.]
Cistenides Gouldii, p. 45.
$=[$ Pectinaria Gouldii V.]
Ampharete graeilis, pp. 439, 39, 45, 411.
Ampharete Fimmarchie:, 1'. 411.
Amphicteis Gumneri. 1P. 45, 411 .
Amage auricula, p. 411.
Samytha sexcirrata, p. 411,502.
Samythella elougata V., 1. 411.
Melinna cristata, [1]. 439, 39, 45, 411.
Terebellides Stroëmi, 1p. 439, 411, 502. (Strömii Sars.)
Pista cristata, pp. 439, 408, 411, 502 (pl. 5, fig. 3).
Scione lobutr, गp. 39, 43.
Grymare spiralis V., sp. nov., p. 407 (cnt. 1, descr.) 411, pl. 5, fig. 4.
Thelepus cincinatus, pp. 39, 43, 411, 499, 502.
Amphitrite cirrata, 1p. 439, 41, 43, 45, 411, 503, pl. 6, fig. 5.
Amphitrite Johnstoni, pp. 439, 411. =Amphitrite brunnea Stimp.
Amphitrite (ricentendica, pp. 439, 39, 411.
Amphitrite intermedia, p. 503.
Amphitrite brunnea V., pp. 45, 132.
Polycirrus, sp., vii, 1p. 43, 45, 411 . = [Polycimus phosphorens V., 1879.]
Potamilla oculifera, 11p. $439,39,43,412,499,503$.
Sabella zonalis, 1 p. $43,412,499,503$.

Sabella, sp., 1p. 39, 503.
Chone, sp., p. 39, 43, +5, 412, 503.
Euchome, sp., p. 412.
Euchone clegrans, p. 45, pl. 7 , fig. 4.
Farmicia Leidyi, 1!. 132, 135.
=Fabricia stelluris Bv.
Myxicola Steenstrupii, MI. 43, $412,503$.
Protula media, p. $412,499,503$.
Filigrance implexce, 1'p. 43, 503.
[fig. 1.
Vermilia serrula, pp. $439,41,43,412,499$, fig. 3 (tubc), 503, pl. 6,
Spirorbis Incidus, pp . $39,43,412,503$.
Spirorbis nautiloides, pp. 43,503. =Spirorbis Stimpsoni.
Spirorbis quadrangularis, pp. $41,43,503$.
Spirorbis borealis, pp. 132, 135.
Phascolosoma boreale (?), p. 412, 499 (descr.), 503. $=$ [lhascolosoma eremita Sars.]
Phascolosoma erementarium, $\mathrm{pp} .439,43,45,412,503$. $=[$ Plascolion strombi Theel. $]$

Thatassemue, s1’, 1. $412 . \quad=$ Thalassema viridis V.
Priannetus, s1., 1. 412.
$=$ l'riapulus pygmæens V.
Chatoderma nitiduhum, 1p. $45,408,412$.
Chetoderma lucida, p. 439 (see errata, vol. vii, p. 40).
$=$ Chatoderma nitidulum.
1874.-W. C. In'Ixtosh. The Annelids of the Gulf of St. Latorence, Canald.<Ammels and Maguzine of Nutural Mistory, April, 1874. [pp. 261-270, 1l. ix, x, seta.]
The species inchuled in this paper were collected by Mr. Whiteaves, mostly in the deeper parts of the Gulf.

List of Species.
Aphrodita aculeata, 1. 261.
Letmatoniee filicornis Kiub., p. 261.
Lepidonotus squamatus, p. 261.
Nychia cirroset, 1. 262.
Nychia Amondseni 11 gn., p. 262.
Enmoa (Erstedi Mgn., 1. 262. (Oerstedi Mgn.)
La!fisca rarispina, rer. occilentalis, var. nov., 1. 262, pl. ix, figs. 1-4. Mulmgrenia Whiterresii, s1. nov., 1. 263, pl. ix, figs. $\tilde{-}-7$.
Antinoë Sarsi, p. 263.
Eupolynoë occidentulis, sp. nor., p. 264, pl. ix, tigs. 8-13.
$?=$ Encranta villosa Mgn.
Enpolynoë unticostiensis, sp. nov., 1. 265, 11. x, figs. 1-4.

Nemitia (?) canculensis, sp. nov., p. 265, pl. x, figs. 5-8.
Nemiclice (?) Latrrencii, sp. nov., !. 26ti, pl. x, figs. 9-11.
Polymoë guspéensis, sp. nov., p. 267, pl. ix, tigs. 14, 15, pl. x, figs. 12, 13.
Stheneluis limieola Elil., p. 268.
Leanira tetragona (CRst.), 1. 268.
Lermire Jhleni (?) Mgro., p. 268, pl. x, fig. 11.
1'holoë minuta,]. 269.
1874.-J. F. Wmateaves. Report on Deep-šat Dredfin! Opmentions in the Grulf of St. Lencrence [1873]. Moutreal, 1上it; Im. 1-29.
In this, the third Report of this series, Mr. Whiteaves records a few additional species, on p. 14.
Priapulus cautatus Lam. Oft Gasuć, ete.
Priapulus, sp. Oft Port Hoorl, N. IS.
Phascolosoma cementarimm (etf. Northmmerlam straits, ete.
$=[$ Plascolion strombi $]$.
1874.-A. E. Vermill. Explorations of Caseo Bay by the U. S. Fish ('ommission, in 1873.< Proceetings of' the American Association for the Advancement of Science. Portlund Mreting, August, 1873, [pp. 340-395; [1. 1-6]. Salem, June, 1874.

> List of syecies.

Cryptonota citrina, pp. 362.
Euphrosyne borealis, pl. 358.
Aphrodita aculeata, pl. 351, 367.
Latmonice filicornis, pu. 3 วl.
Lepidonotus squamatus, ple $358,362,370,373$.
Eunoa (Erstedii, pp. 351, 358, 362, 370. (Oersterli Mgn.)
Eunoa nodosa, pp. 351.
Harmothoë imbricata, pp. 351, 355, 357, 302, 367, 370.
Antinoé Sarsii, p. 351.
Enipo gracilis V., $351,361,362,378$ (lescr.), pl. 5, fig. 3.
Pholoë minuta, pp. 351, 367.
Nephthys ingens, pp. 351, 357, 367, 373, pl. 2, fig. 2.
=Nephthys incisa Mgu.
Nephthys ciliata, pp. 351, 367 , pl. 5, fig. 7.
Neplithys ceca, p. 370.
Phyllodoce catemula, 1p. 355, 358, 361, 362, 367, 370, 380 (llescr.), pl. 3, figr 1.
Phyllodoce, sp., 111', 351, 367.

Phyllodoce Crmbmdica, p. 351.
Eulalia pistacia, pr. $361,362,367,370,380$ (descr.), pl. 4, tig. 2.
Eteone pusilla, ן. 367.
Eteone depressia, 1. 351.
Nereis pelagica, lp. $351,355,362,367,370$, fl. 3 , figs. $3,4$.
Nercis limbata, jo. 37.3.
Nereis virens, 11]. 3 \%(1), 373 , 11. 5, figs. 1, 2.
Autolytus, sp., 1. 362.
Antolytus cornutus, 1 ll. 362, $370,373$.
Stephanosyllis picta (typ. enor), pp. 361,362.
=Stephanosyllis ornata V.
Stephanosyllis ornata V., pr. 370,378 (deser.), pl. 4, fig. 1.
Procerta gracilis, ll. 361, 362, 370, 379 (descr.), pl. 3, fig. 2.
Gattiola, sp., pp. 351, $355 . \quad=[$ Pterosyllis cincimata V.]
Guttiola rincimutu. V., s1. nov., 1. 394, ph. 2, fig. 1.*
$=[$ Pterosyllis cincinnata V.]
Leodice vivicla, 1. 351.
Nothria opalina, pp. 351, 381 (descr.), pl. 4, fig. 4.
Nothria conchylega, pl. 351, 355, 362.
Ninoë nigripes, l1p. 351, 355, 367, 382 (descr.), pl. 3, fig. 5.
Lambriconereis fragilis, $1 \mathrm{p} .351,355,367,370$, pl. 5, fig. 6. (Lumbrinereis).
Lumbriconereis obtusa, plu, 367, 370, 383 (iescr.). $=$ Lumbrinereis hebes V.
Foniada maculata, ply. 351, 367.
Phynchohohus albus, Pl'. $351,367$.
Rlyuchobolus dibranchiatus, 11. $370,373$.
$=[$ Englycera dibranchiata V.]
Scalibregma inflatum, p. 351.
Travisia, sp., p. 351.
Brada, sle, p. 351.
Brada granosa, p. 362.
Tecturella flaceida, plp. 351, $362 . \quad=$ Flabelligerat affinis Sars.
Trophonia aspera, ly. $351,362,367$.

[^134]Ophelia sp．，p． 351.
Ammotrypane fimbiata，［1］． 351,367, pl．2，lig． 3.
Sternaspis fossor， $1^{\prime} 1$ ， $351,862,367$ ．
Soolecolepis cirrata，pry． 351 ，367，（Scololepis）．
［＇olytora，sp＇，1］．362，367．
Anthostoma fragilis， 1 ． 3 万o．$\quad=$［Scoloplos fragilis V^{\prime} ．$]$
Anthostoma acutum V．，Ill．351，355，365，3St（descu：）．
$=$｜sor，hplos acutus V．］
Anthostoma，sp．，p． 351.
$=\left[\right.$ scoloplos， $\mathrm{s} \mathrm{s}^{\circ}$ ．］
Ciratulus cirratus，plo． $361,362,367,370$.
Chetozone setosa，p！．351， 367.
Dodecaceria concharum，10．351， 362.
Maldane Sarsii，Pp．351， 367.
Rholline Loveni，pp．351，367．
Aciothea cutemulu（typ．error），p． 351 ．＝Axiothea catenata Mgn．
Praxilla gracilis，pp．351，367．
Praxilla pretermissa，p． $351 . \quad=$［1＇raxillella protermissa V．］
Praxilla zonalis，p． $38+$（deser．），ןl．у，fig．4．＝［Praxillella zonalis V．］
Praxilla zonata（typ．error），111． $357,361,362,367$.
$=[$ Praxillella zonalis V．］
Clymenella torquata，Ill．367， 3 万o．
Nicomathe lumbricalis，！11．351，355，362，36ヶ．
Ammochares，sp．，p． 851.
Notomastus latericeus（Surs，typ．error ？），1． $351 .=$ Notomastus latericius．
Notomastus luridus，p． 370.
Aremielle filiformis V．，sp．nov．，pp．367， 386 （descr．）．
Ancistria ceepillaris．V．，sp．1ov．，pp．351，355，367， 385 （lescr．）． $=[$ Notomastus eapillaris V．，1859．］
Aucistria acuta，［1］．367， 386 （Jescr．）．$=$［Notomastus acutus V．，1879．］
Cistenides Gouldii，p． 367 ．$=$［Pectmaria Gouldii V．］
Cistenisles granulatus，pu． $351,355,362,367,370$.
$=$［Pectinaria gramulat：a．］
Ampharete gracilis，pp．351，35．5， 367.
Ampharete Finmarehica，pll，351，367．
Amphicteis Gunneri，［1］．351， 367.
Amage anricula，1． 351.
Samytha sexcirrata，1． 351.
Melima cristata，pp，351，355，367．
Terehellides Stroemi，门口．351， 357.
P＇ista cristata，111． $351,357$.
Thans．Conx Acad．，Vol．IV．

Thelepuss cincinnatus, ll'. 351, 355, 358, 362.
Amphitrite cirmata, [']. $351,358,362,36$ 万.
Amphitrite Johnstoni, p. $351 . \quad=$ Amphitrite brumea stimp.
Amphitrite brumea, pla, 367, 370.
Amphitrite Grombandica, f1p. 351, 355.
Amphitrite internedia, pp. 351, 362, 367.
Polycirrus, sp., 1. $351 . \quad=$ [Polycirrus phosphoreus V., 1879.]
l'otamilla oculifera, p]', 351, 355, 358, 362, 370. $=$ Potamilla reniformis Mgn.
Sabella zonalis, pp. 351, 362.
Chone, sp., pu. 351, 355, 362, 367.
Euchone clegans V., P1' 351, 362, 36\%.
Fabricia Leidyi, ju. 379, $373 . \quad=$ Fabricia stellaris Blans.
Myxicola Steenstrupii, 1]p. 351, 362, 370.
Protula media, p. 351.
Filigrana implexa, p. 362.
Vemilia sermla, Ip. 351, 355, 358, 361, 362, pl. 4, fig. 3.
Spirorbis lucidus, pp. 351, 355, 358, 362.
Spirorbis quadrangularis, pp. $358,362$.
Spirorbis mantiloiles (?), $3.362 . \quad=$ Epirorbis Stimpsoni V.
Spirorhis borealis, pp. $370,373$.
Clitellio irrorata, p. 370.
Halodrillus littoralis, p. 370.
Phascolosoma boreale (?), p1. 351, 367. $=$ [Phascolosoma eremita Sars.]
Phascolosoma camentarium, pl. 351, 355, 362, 387 (descr.). $=[$ Phascolion strombi Theel. $]$
Phascolosoma tubicola V.,* pp. 351, 355, 388 (descr.). $=\left[\right.$ Phascolion tubicola $V_{.}$]
Priapmbs, sp., p. 351. $=$ Priapulas pygnaens V.
Chretoderma nitiluhum, pp. 351, 367, pl. 6, fig. 6.

[^135]1874.-S. I. Smoth and Oscan: IIabiels. liepont on the Jredgings

The identifieations and deseriptions of the anmelids in this paper were hy A. E. Verrill. The list inclades not only the species from the banks, but also many from the deep water of the Gulf of Mane, amt some from the deep water south of the banks, flol from Nova Scotia.

List of Species.

Aphoodite aculeata Limé, Pl. $4,5$.
Letmatonice filicornis Kinh., j. 22. = Letmatonice armata V.
Nychia cirrost Malng., 1. 12.
Emoa norlosa Malmg., 1. 12.
Lagisce propinquet, 1. 20.
Lagisea rarispina Malmg., p. 14.
Harmothoë imbricata Malug., pl $5,8,12,20,22$.
Lenilla (?) mollis G. O. Sars, pp. 16, 35 (leser.).
Antinoë Sarsi Kinberg, pp. 18, 3 ((Teser.).
Antinoë ungnstu V., s1. nov., pp. 22, 36.
Eucrurte villosu Malmg., |p. 22, 37 (flescr.).
Pholoë minnta Crsted, p. 16.
Nephthys ciliata lathke, p. 16, pI. 5, fig. 1.

$$
=\text { Nephthys incisa Mgn. }
$$

Neplethys circinatu V., sp. nov., pp. 11, 18, 38.
Phyllodoce cateuula V., pp. 5, 39, pl. 4, fig. 3.
Phyllodoce, sp., 1. 16.
Eteone rlepressa Maling., j. 16.
Eusyllis phosphorea. V., sj. nov., pp. 20, :39, pl. 7, fig. 2.
Nereis pelagiea Limé, ll. $4,6,12,16,20$.
Leorlice vivida (Stimp.) V., pl. 11, 16, 20, 41 , pl. 5 , fig. 5.
Nothria conchylega Malmg., 1p. $10,12,16,18,20,22,41,1^{3} .7$, fig. 3.
Nothria opalina T., 11 $\quad 16,22,41,11.7$, fig. 4.
Ninoë nigripes V., lp. 16, 40, pl. 5, fig. 3.
Lumbriconereis fragilis And. and Eif., 1p. 11, 16, 18, 22, pl. 5, fig. 2, (Lmmbrinereis).
Goniada maenlata Frsted, pp. 16, 22, 42.
Rhynchoholus e:ipitatus $\mathrm{T}^{2}, \mathrm{pp}$. 8, 11, 16, 1ヶ, 43.
Ammotrypane timbriata V., 1p. 16, 18.
Enmenia crassa (Erstell, 1! $16,18$.

Scalibregmat jullatum lathke, f. 22.
Trophomia :spera (※timp.) V., |'p. 16, 18.
Brala, sp., 1. 15.
Stematspis fossor stimp., plp. 16, 18.
Seolecolepis cirtata Malmg., 11!. 16, 22, (Nonlolepis).

Dorlecaceria concharmm (Eirsted, 1\% 21.
Chatozone setosil Malmg., I. 18.
Notomasus latericius 1. 16, (latericeus Nars, typ, error?)
Ancistria capillaris V., plp. $16,19,22$.

$$
=[\text { Notomastus capillaris V., 1879.] }
$$

Mahlane Sarsii Malng., plp. 16, 19, 22.
Axiolhea catenata Malmg., p. 16.
Rhodine Loveni Malmg., 11. 16, 19.
Nicomathe lumbricalis Malmg., p. 16.
Praxilla pratermissa Malmg., 11]. 16, 19.
$=[$ Praxillella proetermissa V.]
Praxilla gracilis Malmg., 1. $16 . \quad=$ [Praxillella gracilis V.]
Praxilla, sp., p. 16.
Clymenella torquata V., p. 4.
Ammochares assimilis Sars, p1. 16, 19, 20, pl. 5, tig. 4.
Cistenides granulata Mahmg, [1] $3,6,12,23$, (granulatns).
$=$ [Pectinaria granulata.]
Ampharete gracilis Malmg., p. 17.
Ampharete Fimmarehica Nalmg., p. 17.
Amphurete aretica Malmg., jp. 16, 19.
Amphicteis Gumneri Malmg., plp. 1ヶ, 23.
Amphicteis Sundevalli llalmg., 1. 19.
Samytha sexcirrata Malmg., pl. 17, 43.
Samythella elongata V., 1p. 17, 22 (deser.).
Amage amicula Mahng., p. 23.
Melinna cristata Malmg., pl. 17, 23.
Amphitrite cimata Miiller, 1 . 17 .
Amphitrite Grönlantica Malmg., 1. 20.
Pista cristata llalmg., pp. 17, 23, pl. 4, fig. "!.
Thelepus cincimatus Malmg., 11. $6,8,12,20$.
Grymæa spiralis V., p1. 17, 23, 44 (deser.), pl. 4, fig. 1.
Terelrellides Stromi Sars, 1p. 1ヶ, 19, 23.
Polycirms, sp!, 11'. 17, $19 . \quad=$ [Polycirus phosphorens V., 1879.]
Potamilla oculifera, $\mu \mu, 6,12 . \quad=$ Potamilla reniformis.
Potamilla neglecta, 1p. $6,1 \div, 17,44$.

Sabella pavonia (\%), 1. 17.
Chone infumdibuliformis Kroyer, 1. 2l.
Protular menia stimp., 111. 17, th, pl. 6, fig. 1.
Protulat borealis (\because), 111. $17,23,46 . \quad ?=$ Protula media, var.
spiroubis metedu V., sp. nov., Il'. 12, 44, (validns).
=Spirorbis validus V.
Spirorbin natutiloides (?) Lamk., llp. 6, 8, 20, 45 (destr.), ph. 4, tig. 4.
=Spirorbis Stimpsoni V.
Spirorhis lueidus Morch, ן. 12.
Spirorbis quadrangularis Stimp., p. 21.
Phascolosoma boreale Kef., 110, 17, 23, 47.
$=$ [lhascolosoma eremita sars.]
Phascolosoma cementarium Quatr., 11. 6, 12, 17, 19, 23, 46.
$=$ [Phascolionstrombi Theel. $]$
Phascolosoma tubicola V., P1. 11, 17, 23, 46.
$=$ ['hascolion tubicola V.]
Chetoderma nitishumm Lov., j. 17, pl. 8, figs. 3, 4.
 by Dr. A. S. P'ackard, Ji., curl C. Cooke, in 1873.<N゙oth flmmul Report of the Peaborly Acudem!/ of science, Sulom, Luss.

List of 'species.
Lepidonotus squamatus, p. 60.
Harmothoë imbrieata, 1. 60.
Nephthys ingens, p. $60 . \quad=$ Nephthys ineisa Mgn.
Amphitrite brunnea, p. 60.
Cistenides Gouldii, $\%$. $60 . \quad=[$ Pectinsmia Gouldii V.]
Spirorbis lucidus, r. 60.
Phaseolosoma camentarimm, 1.59. $=$ [Phascolion strombi Theel.]
1875.-A. E. Verbule. Brief Coutributions to Zoology from the Muserm of Jrele College. No. NXYM.-liewlts of Diedging Erpeditions otf" the Tell Englame Coust, in 1574.<American Journal of Science ant Lirts, vol. ic', [PP.411-415], June, 1875.

This contains an aceount of the dredgings made in the Gulf of Mane, on Jeffrey's Bank, Jeffirey's Lealge, Cashe's Ledge, etc., by Messrs. A. S. Packard, Jr., Richard Rathbun and C. Cooke, on the Coast Survey stemmer "lache," Capt. Plitt, commanier, for the U. S. Fish Commission. The list inchaded only species additional to those previonsly drenged in the same region.

List of s'pecies.

Emphrosym borealis, p. +15.
Emmora notosa, j. 415.
Lagisea maispun, p. 414.
Nepluthes circinata V., p. 414.
Ancistria capilharis, p. $415 . \quad=[$ Notomastus capillaris V., 1875.$]$
Amphitrit (rroyi, p. 415.
Amphitrite intermedia, p. 415.
Grymsa spiralis V., p. 414.
Sabella neglecta (?), p. $414 . \quad=$ Potamilla neglecta Mgn.
Spirorbis valida V., p. 414 (validus).
1875.-1. E. Verrill. Brief Comtributions to Zoology from the Mruseum of Iale College. No. JINIII.-Resnlts of Dredying Erimeditions uff the Neer England Coust, in 18:t. [Nos. 2, $3] .<-1$ merican .Jownul of Science amel Arts, vol. x, [mP, 36-43, July, 1875 ; Mp. 19G-202, ml. iii, ir, siept., 18i5].
These articles contain an account of the dredgings made in the eastern part of Long Island Sound, Fisher's Islaul Sound, near llock Island, off Stomington, Comm., etc., with tables of localities and temperatures, and lists of species added to the famna.

List of Species.

Stheneluis, sp. nov., p. 39.
$=$ Sthenelais Emertoni V.
Pholoë minuta, p. 39.
Nephthys ceeca, p. 39.
Phyllodoce Greulandica, p. 39.
Procersa gracilis, p. 39.
Eusyllis huciferu V., sp. nov.,]. 39. $=[$ Odontosyllis lucifera V., 189.]
Syllis pullida V., sp. nov., p. 39, pl. 3, fig. 6.
Syllis, s1'. 1'. 39.
Lumbiriconereis obtusu V., sp. nor., 1. 39. (nom. preoc.)
$=[$ Lumbrinereis hebes V., 1879.]
Lembriconereis acuta V., s]. nov., 1. 39, pl. 3, fig. 5.
$=$ Lumbrinereis acuta V .
Ophelia demticuluter V., su. nor., 1. 39.
Arenicola marina, p. 39.
Trophonia aspera, p. 39.
Brata, sp., 1. 39.
Polydora, ip., p. $39 . \quad=$ Dipolydura concharum V., 1×59.
Polydora, sp.,]. 39. $=[$ Polydora gracilis V., 1879.]

Praxilla, sp., p. 39.
Ancistria capillaris, 1 . $39 . \quad=[$ Notomastus capillaris V., 1×30.
$=[$ Peetinarial gitmulat:a.]
('istenides ermmulatus, p. 39.
Thelephs cincimatus, po 39.
Polycirus, sp, p. $39 . \quad=$ [Polycimus phosphorens V., 1879.]
Pista cristata, f. 40.
('hone, sp., 1. 40.
Filigrana implexa, p. 40.
Spurorbis natiloides? Lam., p. 40.
$=$ Spirorbis Stimponi V., 1879.
Spirmbis, sp., po 40.
1876.--V'. M. 'Trumbelı. On the Inatomy and Ifahits of Tereis virens. < Trans. Comm. Acuct., iii, [m'. 265-280, pl. 42-44]. August, 1876.

This paper inclurles only the species named in the title. The sexmal diflerences, in this species, are here first described and illustrated. The anatomieal details relate chiefly to the external organs and to the eireulatory and digestive systems.
> 1876.-W. C. M'Intosh, in Jefirireys and Cimpenter. The Tharous Expedition. Preliminury Report of the Biological Rasults of at Cruise in M. M. s. 'Valorous' to Dumis streit in 1875. < Proceedings of the Royul Society, man, [mp. 1ヶヶ2377. London, 1876 . [- Amelids, m. 215-222.]

Lists of the species identified by Mr. M'Tutosh, from the collection mate in the Gulf of St. Lawrence by Mr. Whiteaves, are given on p. 222, and compared with those dredged by the Valorons Expedition, off the coast of Greenland. No special depths or localities are given for the Gulf of St. Lawrence species. Part of the species here enmmerated from the Gulf of st. Lawrence are not inchuded in the lists previously pulhished. [See pp. 298, 306, 307, alove.] On the other hand, some of those in the former lists were omitted from this.

List of species not incluled in former reports.

Leanira hystricis.
$?=\mathrm{L}$. Yhleni $?$, see p. 307.
Nephthys incisa.
Phyllorloce Grönlandica.
Nereis pelagica.
Omiphis sicule
(ilyecra eapitat:
= lihynchobohus capitatus.
Scoloplos armiger.
Opheliar limaceinat.
Scalibregma inflatmo.
Eumenia crassa.
Scolecolepis cirrata.
Prionospio Stcenstrupri.
Canitella eapitata. (Doubtiul).
Maldane Sarsi.
Nicomache lumbricalis.
? Axiothea eatenata.
Ocemic filiformis.
Cystenides hyperboren (Cistenides Mgn.) = Pectinaria hyperborea. Artaerma proboscidea Mgn.
Sulvella saxieara?
Chone infundibuliformis.
Sternaspis.
The following species, ennmerated in this paper, are included in the lists published previously (see pl. 298, 306, 307): Aphrodita acnleata, Jatmonice filicomis, Nychia cirrosa, N. Amondseni, Ennoa Oerstedi, Eupolynoë occidentalis, Lepidonotus squamatns, Lagisca rarispina, var., Malmgrenia Whiteavesii, Antinoë Sarsi, Nemidia canadensis, N. Lawrencii, Polynoë Gaspéensis, Sthenelais limicola, Leanira tetragona, Pholoë minuta, Nothria conchylega, Lumbrieunereis fragilis, Goniala maculata, Ephesia gracilis, Ammotrypane aulogaster, Trophonia plumosa, lraxilla gracilis, Thelepus ciremuatus (cineinnatus), Terebellides Strömii, Sabella pavonia.
1879.-A. E. Verrils, in Kumlin. Contrilutions to the Natural History of Aretic 1 merich, mule in comertion with the Howgate Polrer Eaperlition, 1877-78. Amelids, mp. 141-143.<Bulletin U. S. Nrationul Mruserm, No. 15, 1879.

The species included in this pajer were all from Cumberlant Gulf and Cmuberland Somd. They were mostly collected on the shores, between tides.

> List of Species.

Harmothoë imbricata Mgn, p. 141.
Nereis pelagica Limué, 1. 141.
Phyllodoce Grünlandica (Ersted?, 1. 141.

Syllis, spo,

'Thelepus cincinnatus (F:abr.) V., p. $1+1$.
Spirorbis hocidus Mörch, p. 142.
Spirorbis quadrangularis stimp., p. 142.
lhaseotosoma mar!aritarerm (Sirs) K゙or. \& 1)an. (?), p. 142.
 giniuen Coust [21 . 1-69, phutes 1-11]. CTirnsuctions of the Albany Institule, rol. ix, In. 202-269, Jum., 1859.
The species emmerated were from Northampon Co., Virginia, (eastern shore), and are all shallow water and shore species.

List of Aprecies helon!ging to the Neer Fhylamel Famm.

Lepidonotus squamatus línlig., p. $204[4]$, pl. 1, figs. 1-5.
Lepidonotns sifuamatus, var. angustus, f. 205 [5]].
Lequidemetrít rommensulis, n. sp., p. 210 [10], pl. 3, fig-. 23-31.
Sthenclais picta Verrill, 1. 213.
Nephtliys ingens Stimporn, p. 213. = Nephthys incisa Mgn.
Nephthys picta Ehlers, p. 214.
Podarke obscura Vemill, p. 216.
Syllis frogilis, sp. nov., p. 217, pl. 4, figm. 42, 43.
Spherosyllis fortuitu, sp. nov., p. 221, pl. 4, figs. 44-4s.
Pectophylax dispur: sp. nov., 1. 223, pl. 4, fig. 49, pl. 5, figs. 50-55.
Nereis virens Sars, 1. 235.
Nereis limbata Ehlers, p. 235, pl. 6, figs. $70-75$.
Diopatra cuprea Clpd., p. 236.
Marphysa sanguinea Quatr., p. 236, pl. 6, figs. 76-80, pl. 7, figs. 81-83.
Drilonereis longa, sp, nov., p. 240, pl. 7, tigs, 84-88.
Lumbriconereis tenuis V., 1. 241. (Lambrinereis.)
Arabella opralina Verrill, p. 242.
Staurocephalns pallidus Verill, p. 242 (Ileser.)*
Rhynchobolus Americames Verrill, 1. 245.
Spiochutopterus omatus, sp. nov., p. 47, pl. 8, figs. 98-102.
Anthostoma rohustum V., p. $258 . \quad=$ [Scoloplos robustus V.]
Anthostoma fragile V., $1.258 . \quad=[$ Scoloplos fragilis V.]

[^136]Trans. Conn. Acad., Vol. IT.

Cirvatulus gramkis V., p. 258.
Cymenelfa torquata \backslash., ju. 258.
Maddane elongata V., p. 259.
Sabellaria varians, sp. nov., p. $259 . \quad=$ Sabellaria vulgaris V
Amphitrite ormata V., p. 262.
Scionopsis palmata V., p. 262.
Pista eristat: Mgn., 1. 263. . (Doubtful.)
Leprea rubra V., p. 263.
Polycirus eximins V., p. 263.
Enoplobranchns sanguineus Verrill.
Sabella microphthalma V., p. 265.
Hydroides dianthus Verrill, p. 266.
The following additional species, which were described, have not yet been ohserved on the New England coast:

Lepilonotns variabilis, sp. nov.; Antinoë parasitiea, sp. nov.; Phyllodice fragilis (l'hyllodoce), sp. nov.; Eumida maculosa, sp. nov.; Syllis gracilis Grube; Odontosyllis? fulguraus Claprl. ; Antolytus hesperidum Clapd. ; Procerea tardigrada, sp. nov. ; Proceraea? ccernlea, sp. nov.; Nereis irtabilis, sp. nov.; Nereis Dumerillii And. and Elfr. ; Staurocephalus sociabilis, sp. nov.; Trophonia arenosa, sp. nov.; Nerine heteropoda, sp. nov.; Polydora hamata, sp. nov.; Polydora ceca, sp. nov. ; Aricia rubra, sp. nov.; Aricidea fragilis, sp. nov.; Aneistria minima Quatr.; Peetinaria (Lagis) dulia, sp. nov.; Melinna maculata, sp. nov. ; Lysilla alba, sp. nov. ; Potamilla tortnosa, sp. nov.; Cabira incerta, gen. et sp. nov.; Phronia tardigrada, gen. et sj. nov.
1879.-A. E. Verrall. Preliminary Cheek-list of the Marine Invertebrata of the Atlantie Coust, from Cape Cod to the Gulf of St. Luwrence. [Preprared for the United Ntates Commission of Fish and Fisheries.] Author's Edition, mulished ut Newo Haven, June, 1879. [Amelicla, pp. 7-11, 32, printed Auyust, 1878, to Apmil, 1879.]

This list includes a few species not previously reenrded from the New England coast. The rest are contained in the lists already given, and are, therefore, omitted. The total number of polychatons Annelids includer in this check-list is 195 ; of Gephyrat 10 . Several new species, incluted in the eheck-list, were deseribed in the praper next to be noticed. Althongh the latter was in type before the printing of the eheck-list, it was published some months later.

List of clescribed Sucies wot menomsly recorded.
Everme impur, p. 7.
Teqhethys longisetosu (Eis. (mon Mgn.), 1. \%.
Nephthys perctora Malm., p. 7.
Autolytus, sp., f. 8. $=$ SAnolytus Alexandri Mgn.]
Eusyllis monilicomis Ngn., 1. 8 .
Nereis zomutu llgn., 1. 8.
Seoloplos urmiger Blains., p. 9.
Ophelia limacina IIgn., p. 9.
Ly/sippe lobuta Mgn., p. 10.
Leana abremchiata Mgin., 1. 10.
Latnassa Nordenskiceldi Mgn., p. 11.
Artecemet proboscidea Mgn., 1. 10.
Eithone tuberculosa Mgn., 1. 10.
Chone Duneri Mgn., p. 10.
List of Neo species.
Sigetion, sp., p. 7. =Sigation arenicola V., p. 32.
Stheneluis, sp., p. $7 . \quad=$ Sthenelais gracilis V., 1'. 32.
Lysillce, sp., p. 10.
Polycimes, sp., 1.10 . $=$ [l'ulyciums phosphorens V.]
Lutmatonice armata ${ }^{\prime}$., sp. nov., 1. 11.
Etmour spimulosa V., 1. 11.
Sthenelais Emertoni V., 1'. 11.
Heterocivous fimbriatus V., 11.
Polydora conchurum V., p. 32 . \quad [Dipolydora coneharnm V.]
Thalassema viridis V', p. 11.
Priapulus pygmezes V., 1. 11.

The following changes in nomenclature were introhnced in the Check-List:

Arabella opalina V., p. 8. $\quad=$ Lmmbriconereis opalina V., 1878.
Enoplohranchns sangninens V., p. 10.
$=$ Chatobranchns sangnineus Y., 1873.
Hydroides dianthas V., p. 11. =Serpula dianthus V., 1873.
 Incorteloratu af the Northeustern C＇oust of I Imerien，with Iescriptions of mer lienera atmel syerics，und Critical R＇rmerlis on others．P＇art I．－Imelirle，Fephlyiote， Nimertinu，etc：＜l＇ioccedings of L＇nited stutes Nutiomul Muserm，rol．ii［m．165－205．Nov．，1879］．

List of Species．
Sthencluis ：prectlis V．，sp．nov．，p． 166.
Sthenelreis Limertomi V．，sp．nov．，p． 166.
Sthenelais picta Y．，P． 167 （deser．）
Sigulion urenicole V．，sp．nov．，p． 167.
Latmetonice cemutel V．，sp．nov．，p． 168.
Eumoe spimelosu V．，sp．nor．，p． 169.
Actolytus ornatus V．，sp．nor．，p． 170 （name preoceupied）．
$=$［Antolytns varians V．，nom，nov．］
Odontosyllis lucifera V．，p． 170 （Eusfllis lucifera V．，1875）．
Pectophylax longiceps V．，sp．nov．，1．170．
Wereis alacris V．，sp．nov．，1． 171.
$=[$ Nereis megalops Γ ．，nereis－form．］
Nereis megalops V．，p． 172 （Nectonereis megalops V．，1873．）
Ceratocephale Melsteri V．，sp．nov．，p． 172.
Lumbrinereis hebes $\mathrm{V} ., \mathrm{p} .1$ it（L．obtusa $\mathrm{V} ., 18$ 万万，name preoceupied）．
Goniarla gracilis V．，p．Ift（Eone gracilis V．，1873）．
Polydora pretcilis V．，s1．nov．，p． 174.
Polydora concharm V．，sp．nov．，］． 174.
$=[$ Dipolyilora＊concharum V．$]$
Spio limicole V．，sp．nor．，p． 1 it6．
spiophumes tenuis V．，sp．nor．，p． $176 . \quad=[$ Prionospio tenuis V．］
Heterocirus fimbriatus V．，sp．nov．，p．1ヶ．
Dodecaceria concharnm，p． 178 （descr．）
Preirillure ornata T ．，gen．et sp．nor．，p． 179.
Muldane ，filifera V．，sp．nov．，p．1i9．
Totommstus ！fracilis V．，sp．nov．，1． 180.
Polycirns phosphoreas V．，sp．nov．，1． 181.

[^137]Trichobremehus glacialis, P. 181.
Spirorhis stimpsoni V., sp. nov., p. 1\&t.
Tommpteris smithii V., sp. 11or., 1. 182.
Priapules py!manes V., sp. nov., p. 182.
Thulussemue viridis V., sp. nov., p. 183.
1880.-1I. E. Wibster. Ammidee Chutopodie of New Jersey, [m. 1-28, phetes not issued]. <Thively-secomel Ammul Reprort on the New Iork stute Museum of Natural Mistory, [duted 1879].

Athough put in type in 1879, this paper was not actually published until 1880, and the phates that were prepared for it have not yet been published. 'I'o the anthor I an indebted for an advance copy, received in the antumn of 1880 .

The specimens were mostly from Great Egg Harbor, N. J., but some from sonth Norwalk, Comn., were also inchuded.

The new species, not in italics, have not yet been detected on the New Eugland coast.

List of the Eppecies.

Lepidonotus squamatus Kinbg., 1. I.
Lagisea impatiens, sp. nov., 1. 2.
Lepidametria commensalis Webs.g 1. 3.
Sthenelais picta Verrill, 1. 3.
Nephthys incisa Malmg., p. 4.
Nephthys picta Ehlers, p. 4 .
Ancütis speciose, sp. nov., p. $4,[\mathrm{pl} .1$, figs. 8, 9].
Phyllodoce arenre, sp. nov., p. 5, [1 l. 2, figs. 10-12].
Emmida maculosa Webs., p. 6.
Eulalia? amulata Terrill, p, 6.
Éteone alba, sp. nov., p. 6, [pl. 2, figs. 13-16].
Eteone limicola Verrill, 1. 7.
Podarke obscura Verrill, p. 7, [pl. 2, figs. 17, 18].
Podurlie luteola, sp. 11ov., p. 7, [p]. 2, figs. 19, 20].
Syllis gracilis Gmbe, p. 9.
Odoutosyllis? fulgurans Clph., p. 9.
Grubea tennicirrata Clpa., 1. 9.
Padophylax dispar Webs., p. 10.
Autolytus hesperidum Ctpul., p. 10.
Nereis limbata Ehlers, p. 11, [pl. 3, figs. 21, 22].

Nereis Culveri, sp. now., p. 11, [pl. 3, figs. 23-30; pl. 4, figs. 31, 32].
Nereis trimentata, sp. nov., p. 13, [pl. 4, figs. 33-40].
Diopatra cuprea Clyul., p. 15.
Maphysa sanguinea Quatr., pr. 15.
Dribonereis longa W'els., p. 16.
Lumbriconereis temuis Verrill, p. 16. (Lumbrinereis.)
Arabella opalina Vemill, p. 16.
Stanrvecphalus pallitus Verrill, p. 16.
Rhynchobohs Americauns Verrill, p. 16.
Rhynchobohs dibranchiatus Verrill, p, 17.
G'onimhte solituriu, sp. nov., p. 17, [pl. 4, figs. 41, 42; pl. 5, figs. 4., 44.]
Arenicola? cristata Stimpson, p. 17.
Trophonia aftinis Verrill, p. 18.
Spiochetopterns nonlatus Webs., p. 18.
Nerine agilis Verrill, 1' 18.
Scolecolepis viridis Verrill, 1 . 18 (deser:).
Scolecolepis tennis Verrill, 1. 18.
Spio setosa Terrill, p. 19.
Polytora hamata Webs., p. 19.
Polydoraligmi, sp. nov., p. 19, [pl. 5, figs. 45-47].
N゙treblospio Benerlicti, gen. et sp. nov., p. 20, [pl. 5, figs. 48-50].
Anthostoma fragile Verrill, 1. $21 . \quad=[$ Scoloplos fragilis V.]
Cirratulus gramlis Verill, p. 22.
Cirrhinereis fragilis Qtrfg., p. 22.
Notomastus filiformis Verrill, p. 23, [11. 5, figs. 51-54].
Notomastus luridus Verrill, p. 23.
Clymenella torquata Verrill, p. 23.
Mallane elongata Verrill, p. 24.
Praxilla elongata, sp. nov., p. 24 (? Praxillella).
Pruxilla elongutu, ver. Benerlicti Webs., 1. 25.
Perchiother lutens, gen., et sp. nov., 1. 25, [pl. 7, figs. 62-66].
Sabellaria varians Webs., $1.26 . \quad=$ Sabellaria vulgaris V.
Cistenides Gonldii Verrill, p. $27 . \quad=[$ Pectinaria Gonhlii Y.]
Sabellides oculata, sp. nov., p. 27, [pl. 7, figs. 67-69].
Amphitrite ornata Verrill, p. 27.
Sconopsis pahmata Verrill, p. 28.
Polycirrus eximins Terrill, p. 28.
Sabella microphthalma Verrill, p. 28.
Hydroides dianthus Verrill, p. 28.
1880.-I. II. Emertun. Life on the Sershore, or Amimets of our Cousts amed liays. [138 $\mathrm{m} \cdot \mathrm{D}, 12 \mathrm{mos}$., 151 cuts] Geo. A . Butes, Nralem, Metss., 1880.

This work contains brief popular accounts ol' several amelids, with notes on their halits. Miny of the figures are the same as those in the lieport on the Invertehrata of Vineyard somm, ete.

List of Species.

Nereis virens, pp. 23, 122, figs. 24-26, (after Turnbull.)
Clymenella torquat:1, 11]. 24, 121, fig, 27 .
Cistenides Gouhiii, pp. 24, 122, fig. $28 . \quad=$ [Pectinaria Gouldii.]
Polycirrus eximius, p. 25, fig. 29.
Lepidonotus squamatus, p. 26, fig. 30 (original).
Antolytus, sp., p. 86 , fig. 106 (original). = Antolytus cornutus, male.
Trophonia affinis, PI. 116, 121, fig. 142.
Diopatra cuprea, pp. 117, 122, fig. 143.
Amphitrite ornata, pp. 118, 123, fig. 134.
Neplithys ingens, p. 122. = Nephthis ineisa.
Nephthys caca, p. 122.
Sternaspis fossor,]. 135, fig. 156.
Aphrodite aculeata, p. 135.
1880.-A. E. Verrill. Notice of Recent Idelitions to the Marine Invertebrata of the Northeastem Coust of America, with Descriptions of New Cenere amd Species and Criticrel Remarks on others. Purt II.-Mollusea, with notes on Amelidit, Echinodermuta, ete., collected by the ITnited States Fish Commission. < Proceedings of Linited states National Mruserm, $i i i, 1 m .356-405$, Dec., 1880.

This paper is devoted almost entirely to the mollnsea, but in the introductory remarks some of the remarkable anmelids recently discovered in the deep water ($100-500$ fathoms), off the southern coast of New England, are mentioned, in comection with their peculiar tubes, which ocenrred in vast numbers. Two of the new species are briefly described.

List of Species.
My!timesia artifex, sp. nov., p. 357.
Nothria, s1', p. 358.
Leodice polybrunchia, sp. nov., p. 358.

The notices of the following papers were omithed from their proper phaces. The first shombl hase been inserted on prage 291; the seemul, on page 296.
1860.-J. WT. Dawsos. On the Thbiontons Marine Womms of the
 ggist, $v,[\mathrm{~m} .24-30$, with euts] Feb., 1860.

List of species.

Spirorlis spirillum, p. 25.
spirorlis sinistrorsa, p. 25.
spirorlis natiloides, 1.25.
Spirorbis carinuta, p. 26.
Spirorbis vitrea, p. 26.
Suirorbis cemcellatu, 1. 27, fig. 1, a-e.
spirorbis gramlata, p. 27.
Spirorbis porrecta, p. $28 . \quad=$ Sjirorbis lucidus.
Serpula (Vermilia) semula (Stimp.), p. 20 fig. 2, a-c; lateral chambers of shell.
Pectinaria Groulandica? 1. $29 . \quad ?=$ [Pectinaria granulata.]
1868.-A. S. Packard, Jr. A fem Sel Worms. < Lmer. Nuturulist, vol. ii, [M]. 267-275,] July, 1868.

This is a popular account of the habits and structure of a few forms, native and foreign. The New England species mentioned are as follows:

No name, p. 270, fig. 1.
Hamatorrhas, p. 270, fig. 2. =Polycirus eximins, yonng.
Amphitrite cirrata, p. 271, fig. 3, (after Mahngren.)
Pectinaria hyperborea (non Algn.), p. 274 , fig. 4.
$=$ Pectinaria gramulata, in part.
Nereis denticulata, 〕. 274.
Nereis gramlis, 1. 275.
$=$ Nereis pelagica. $=$ Nercis virens.

にスPIAN ITHON OF PIATEN.

Wentmb 15 , Aemele: V11I.|

My thanks are due to Professor N. N. Baid for the use of must of the drawing for the following plates. They were male for the use of the U.S. Fish Commission by Messrs. J. 11. Emerton and J. H. Blake, Huder my direction.

I'late 111.

 diameters, By J. H. Emerton.

Plite IV.

Figure 1.-Lrpilonotres squamutus Leach. Heal anil anterior part of the borly, with the proboscis protruded; one of the anterior scales has been removed to partially expose the head. Much enlarged.
Figure lu.-The same. Eucl view of the proboscis.
Figure 2.-Lepidmotus sublevis T. Dorsal view, enlarged nearly two diameters.
Figure 3 - Morphysu Leidyi Quatr. Head and auterior part of boly, dorsal view. Nuch enlarged.
Figure 4.-Arubellu opatince $\mathrm{V}^{\text {. }}$. Anterior part of the body, enlarged five diameters.
Figure ta-The same. One of the parapodia, muelı enlarged.
Figure 5.-Diopatra cuprea (Bosc.). Head and anterior part of body; side view, showing the gills partially expanded. Kinlarged two diameters.
Figure 5 a. - The same. Yentral view, shoring the pharyux everted so as to expose the jaws. Fularged abont two diameters.
Drawn from preserfed specimens, by J. H. Einerton.

Plate V.

Figure 1.-Tereis megnlops V. (Nereis-form $=N$. uhacris V.). Dorsal view of the head and atuterior part of body, and of the catudal segments and cirri (la). Enlarged about three diameters, from a living specimen, Viuegard Sound, 1875.
Firure 2.-The same. (Female, Heteronereis-form.) Dorsal view of heal and anterior segments; the posterior dorsal tentacular cirti are broken off. Enlarged ahout five dianeters, from a living specimen.
Figure 3.-Nereis limbate Elal. Dorsal view of the head and anterior segments, enlirged about four diameters, from a living specimeu, Vineyard Sound, 1875.
Figure 3u.-The same. Candal segments and cirri.
Figure 1.- I'hyllodoce cutemula Γ. Norsal view of the entire worm, except the caudal segments, which are broken off. Einlarged about three diameters, from life.
Figure 4 u. -The same. Head and protruded prohoscis.
Figure 5.-Phyllodoce Grönhendica Eirsted. Head and anterior segments, dorsal view. Fularged about four diameters, from a living example, Eastport, Me.
Figure i.-Eululin pistaria Y. Heal and anterior segments, dorsal view. Eularged alont eight diameters, from life.
Figure 6a.-The same. Candal segments and cirri.
Figures ! and 3 are by J. 11. Blake; the rest by J. 11. Fimertou.
Thans, Gons. Ac.id., Vol. IV. 42α

l’ate: V"l.

Figine 1.-Marmothoi imbiratu. Horsal view, natural size.
ligitro br.-The same. Portion of in scale, cularged twolvo diameters.
Figure 16.-The sathes. A stmall part of a scole, eularged 190 diameters.
ligure bo. The same. One of the paraporlia bearing dorsal cirri, entarged ten diameters: a^{\prime} upper, "" luwer acicula; de dorsat cirrus; ve ventral cirrus; ds dorsal setie; ris. "s', is"" rentral seta:
Figure la. The same. Sutse, enlarged 200 diameters: $\|$, dorsal seta; n, v^{\prime}, ventral seter, side views ; $n^{\prime \prime}$, the same, front view.
Figure $2 a .-$ Tepidonotus squamutus. A senle, enlarged fonrteen diameters.
Figure 2b. The same. Portion of a seale bearing the sinaller tubereles, more enlarged.
Figure 3u.-Lepidonotus sublevis V. A scale, enlarged twelve diameters.
Figure 3b.-The same. Portion of a scale, onlarged sixty diameters.
Figure $3 t$.-The same. One of the parapodia, muel enlarged.
Figure 3d.-The same. Sctre, much enlarged: d, dorsal seta; r^{\prime}, v^{\prime}, ventral setic, side and froct views.
Figure 4.-Lepidonotus squmatus?. (Young). Head and anterior part of body, with scales removed, much enlarged: h, cophalic lobe or head, with eyes; a, median antenna; a^{\prime}, tateral antenne; c, c^{\prime}, upper and lower tontacular cirri ; p, p, palpi; dc, dorsal cirri; vc, ventral cirri; s, dorsal and s^{\prime}, ventral fascieles of seta; e, e, tubereles to which the scales (elytra) were attached.
Figure tu.-The sume. A scale, enlarged eighteen diameters.
Figure 4b.-The same. One of the parapodia, enlarged fifty-six diameters; lettering as in $1 e$.
Figure $4 c$.-The same. Sete, mnch enlarged; d, dorsal seta; v, ventral seta.
Figure 5.-Polynoë (Eunoa) Acanellee Verrill. Flead and anterior part of borly, enlarged.
Figure 5a.-The same. Part of a scale, enlarged sixty diameters.
Figne 6.-Lcetmutonice urmata V. Head and anterior part of body, enlarged four diameters, with some of the anterior scales removed to show the head. Lettering as in fig. $+: e^{\prime \prime} . e^{p \prime \prime}, e^{\prime \prime \prime \prime}$, elytra.
Figure 6a.-The same. Veutrill parapolium, showing (us) four of the peculiar setie, enlarged ten diameters.
Figure 6b,-The same. Baribed sctee of the dorsal fascile; t, side view; the sime, seen ellgewise.
Figure 7.-Stheneluis pich V. Setie of ventral faseicle, enlarged 200 diameters: a, semi-whorled spimulose seta from upper part of rentral tascicle; b, b^{\prime}, two of the compeund bidentate scte with spinose shafts; e, e^{\prime}, stonter bidentate setie, without spiuules.
The drawings are by J. 11. Emerton, mostly from preserved specimens.

Plate VII.

Figure 1. -Sthenela is Emertoui V. Dorsal view of head, muds eularged. Specimen (figs. 1-ls) from Narragansett liay, station 770,1880 . From a living specimen.
Figure la.-The same. Ventral view of the head and anterior appendages.
Figure 1b.-The same. Side view of head and anterior appendages.
Figure $1 r$.-The same. Side view of midille region of body.

Fignre 1d.-The same. I'osterion segucnts and camal cimi, orlarged eight diameters. Figure le.-Tho same. 'Itansvorse seetion of a skiment.
Figure ly.-The same. Setit from the ventral fascidk, much enluged: r, one with jointed and hookel tip; r', ono with jointed tij, acond at the emd.
Figure ls.--'like same. A rate, culargent.
Figure 2.-The same, several forms of setie from the ventral fascicle: " \boldsymbol{u}^{\prime}, simple aente seta, with partial whorls of spinules; b, ono with short, hooked terminal pioce, bidentate at tip and not listinctly jointerl; c, c^{\prime}, setit with shorter and longer, jointed, acute tips.
Figure 3.-stheneluis pictu V. Dorsal view ol heand and anterior part of borly, enlarged four diamoters. From an aleoholic spucimen.
Figure $3 a, 3 b$-The same. Dorsal and rentral views ot the posterior segments and candal cirri of a living specimen, mueh enlarged. Newport. Low water, Ang. 8, 1880.

Figure $3 r$.--The same. A seale, onlarged.
Figure $\mathbf{3} \mathbf{u}$. -- Portion of the edge of the same seale, more eularged.
Figure 4.-Pholoë mimuta. Ilead and anterior segments, mull enlarged. Newport, 1880.

Figure $4 \pi, 4 b$.-The same. Scales, mineh mularged.
Figure $4 c$. -The same. One of the parapodia, moh enlarged.
Figure 5.-Sigalion arenicola V. Head and anterior segments, dorsal view. The scales of the first pair have heen rewoved; cnlarget? eight iliameters, from an alcoholie speeimen.
Figure 5a.-The same. One of the scales, enlarged twenty-five diameters.
Fignre $5 b$.--The same. One of branched appendiges from the onter border of the scale, mueh enlarged.
Figure 5c.-The same. One of the parapodia, enlarged: ds, dorsal setie; u, simple spinulated setie of the ventral fascicle; $7, c$, different forms of compound setr, with jointed, acnte tips; d, e, compound setie with bidentate hooked tips; e^{\prime}, compound seta with jointed tips, hooked at emf ; ν, v^{\prime}, different forms of eapillary sete in lower part of ventral fascicle, some with joints distally. Original specimen from Nantueket Sound, 1875.
Figure 5 d.-The same. Some of the setw more enlarged, lettered as in fig. $5 c$, enlarged 250 diameters.
Figure 6.--Polynoë (Eunoa) spinulosa V. Portion of the cdge of one of the scales of the original specimen, from off Sable I., N. S., enlarged seventy-tive diameters.
The drawings are mostly from preserved specimens, hy J. H. Emerton. The appendages and sctæ are eamera-drawings from specimens momerl in glycerine-jelly.

Plate ViII.

Figure 1.-Trarisia carnea T. Dorsal view, enlarged nine diameters.
Figure 1a.-The same. Side view of one of the middle scgments, more enlarged.
Figure 2--Arenicola marina L Side view, natural size.
Figure a.--Ctellio irroreta V. Enlarged six diameters.
Figure 3a.--' The same. Dne of the fascicles of setae, much entarged.
Drawn from life: figures 2-: w, hẹ. T. Il. limerom: 1. la, by .I. H. Blake.

Plate 1 .j.

Figure 1.-Mohdue rhngutu $1^{\text {F }}$. Posterior segments and candal apmembage, side view. enlarged two diancters.
Figure la.-The same. Taulal appembage, end view.
Figum. 2.-- Mhotine uttenuatu V. Head and anturior suments, side view, enlarget six diameters.
Figure 3.- Ophelin denticulutu V. Side view, colaryed one aud onc-lalf diameters.
Figure 4.-Brada setosa V. Dorsill view, enlarged three diameters.

Figure 5 at-The same. Heal and anterior segments, enlarged cigh dianeters.
Figure 6.-1 'iratuh cimutus. Dorsal view, enlarged five diameters.
Figure 6a.-Tle same. Side view of learl.
Drawn from living examples, by J. H. Emerton.

Plate X.

Figure 1.-Nicolea simplex V. Side view; the posterior segments are omittet, enlarged three diameters.
Figure 2.-Amphitrite brumea Stinnh., from Dastport, Mo. Sisle view, eularged two dinmeters.
Figure 3.-Dodecteren conchurum. Linlarged tive diameters.
Drawlu from living specimens, by J. H. Fmerton.

Plate XI.

Figure 1.-Thelemus cincinnatus V., from Eastport, Me. Side view, slightly enlarged, from life.
Figure 2.--Pista cristalu Mgn. Side view of hearl and anterior segments, enlarged four diameters:
Figure 3.-Scionopsis pulmata. V. Side view, enlarged about three dianeters, from life.
Figures 4 aud 4 a.-Enoplobranchus sanguineus V. Branchial paraporlia of two segments, enlarged.
Figure 4b.--The same. Tip of one of the branchial divisious, with setie, much enlarged.
Figures 1 ant 2 were drawn from living specimens, by J. H. Emerton; figure 3, from life, by J. H. Blake; figures $4-4 b$ are camera-drawings from mounted specimens, by the author.

Plate Xif.

Figure 1, Odontosyllis lucifera V. Dorsal view of the lieal and anterior part of the body, much enlarged, seen as a transparent object, under a compressor; frou a eamera-drawing of a living specimen: p, pharynx; g, stomach or gizzard.
Figure le.-The same. One of the sete, greatly enlarged.
Figure 2.-Pedophylax longiceps V. Head aud front part of body, and (a) caudal segments, ventral-view, much enlarged, from a camera-drawing of a living specimen.
Fignre 3, 3a.-Autolyms longigulu $\mathrm{V} ., \mathrm{sp}$. nov. Dorsal view, from life, of a specimeu taken at Newport, R. 1. Head and anterior segments; $3 a$. canlal segments. enlarged about 20 diameters.

Figure 3b, The samo, Dorsal viows, seen ats atamparent objert, under a comprese sor, to slow the pharyox and stomach. setar, ete, are omittel.
Figure $1 .-$ - utolytus enrmuths A. Ag. Mate, from life. Yeutral view of the anterion part of bouly, and of the fandil segments (ot), mumb cularged.
 riew, from life, of the anterior and posterior (a) portions, more enlarged than tig. 1.
Figure fi.-Autolytes cormutus. Fomale. Ventral view of the head and anterior scgments, induding the tirst sugment hearing long, capillary, sexual sete, enlarged $1+$ diancturs.
Figure 7. -Autolytus retrius V., mom. nov., p. 320. liemale. Dorsal view of the anterior segments, inchaling three of those bearing sexual sete, enlarged.
Figure 8.-Autolythe Alewntri Mahngren. Male. Dorsal view, enlarged lt diameters. Specimen fronr salem, Mass, in aleohol, taken in early spring: u, median, ord antenua; a^{\prime}, pair of small frontal antenne; $u^{\prime \prime}$, large forked palpi, or antennie, clatracteristic of the male, in this genus; $t c$, upper and lower tentacular cirri, arising frow the concealed buecal segment; ac', large dorsal cirri, arising from the tirst bodr-segment (1), which, in this species, bears a fascicle of sete, beneath (sce fige $8 u$) ; $d c$, dorsal cirri of segments 2 to $15 ; s$, short setre of the 11 anterior segments; $s^{\prime \prime}$, long sexual sete, beyiming on the 15 th segment.
This may be the sexual form of Stephannsyllis ornatu r .
Figure 8 a.-The same. Ventral view, including only the head and 14 anterior segments. Lettering the same as in fig. 8.
Figure 8b.-The same. Female. Dorsal view, incluling the 14 anterior segments. enlarged 14 diameters. From Salem, Mass. Lettering as in fig. 8, bnt with the following additions: e, "epaulets" or lobes extending back from the head; vc. rentral tentacular cirrus; $a^{\prime \prime}$, the pair of long simple frontal antenne.
Figure $8 c$.-The same. One of the short, compound setie, with bidentate tip, from a short anterior segment. Greatly eularged.
Figure 9.-.Iutolytus Emertoni V., sp. nov. Male. Dorsal view of the head. Enlarged It diameters. From all alcoholic specimen, taken at Salem, Mass., at the surface, in Febrnary, by J. 11. Emerton. Lettering as in figs. S, 8 a.
Figure $9 \boldsymbol{\prime}$.-The same. Jale. Ventral view, showing the very large dorsal tentacular cirrus $(t c)$ and the smaller rentral one ($i^{\prime} c$) ; the six anterior setigerous segments have short and nearly equal dorsal cirri, the first pair being the smallest and crowded bencath the large tentacular cirri.
Figure 96. -The same. Female. Ventral view of a specimen from Salem, Mass., in alcolnol, enlarged 14 dismeters. Lettering as in 87 .
Figure ! !.-The same. Peculiar setae of the short anterior segments.
Firgure 10.-Autolytus longisetosus. Dale. Dorsal view of the anterior part of a large alcoliohic specumen from Salem, Mass, taken in February by J. H. limerton, enlarged $1+$ diameters. lettering as in figs. s and $s u$.
Figure 1 far.-The same. Male. Veatral view of the head and anterior segments. The conds of some of the apremlages are omitted.
Figure lur.-The same. One of the compound setit of the anterion segments, greatly enlargerl.
Figures 1 and 5 are hy .J. H. Blake; 2 and 7 by the author; the rest by J. H. Emerton.
Wta,ルтим, M.A., M.D.

Or the fonteen species of ('mun)s recomed in Baron OstenSackens vahable catalogne of North American Diptera, but four are designated by the anthor as having heen reognized, viz: excisus Wienl., gemulis Low, pietus Foab, and sot!ittarims Say. As to the last, it is, lowever, most probable that the species really recognized was thlirtis Say, onf most common one, ant which hat been confounded by hoth Wiedemam and loew, and re-described by both as nigricomes Wied., the real sagitturins being possibly deseribed anew as gemmblis. Loen, which I believe to he its synonsm. \quad \% pethes is monkown to me; its recoguition must depend upon that of its synonym, Remondi Bigot (teste Lnew, vide 1)stem-Sacken's ('atalogne), as the original deseription of Fabricius is wholly insufticient. In the present paper all of the recognizahle deseriptions, whose habitats are creditally referred to North America, have heen determined with sufticient certainty, except gemmilis Lw., and castomopterus Lw., botl: of which I believe to be of doultfinl value. U. wthiops Walker has been recognizerl with as much eertanty as most of the descriptions of that anthor will almit of, while none of Macquart's very insufficiently described species have been recognized, nor the South American species identificd hy him as also pertaining to North America. :Comogs quedrommrelutus Ashmeat, is a syrphid, probably a Burha.

The material herein deseribed has been wholly derived from Mr. Burgess, to whom my sincerest thanks are due, and my own collections. Althongh hy no means so large as I desirech, it is, I trust, sufficient to remove many of the ohstacles to the fiuture study of our species. The indiscriminate description of new species, withont a considerable knowlerlge of allied species, is here fspeci:ally to be leprecated; and, owing to the great individual rariation of rolor, and the pancitr of plastic characters. large collections will be usential, erentnally, to a eomplete and satisfactory knowledge.

Trasis. Cosis. Acad. Tol. IV.
Mareh, 1852.

My kow ledge of such variations inave embavored to supplement by the study of the deaceriptions of foreign species, and 1 deem it worth the while th here give a tramslation of Dr. Lerew's wery pertinent remarks upon the value of the epecific characters in this gemus.
"Those specitic characters have the greatest weight here, as clsewhere, that are based mon the lifferenes in form; such are not always casy to find, yet the shape of the antemae and anterinal style, the structure of the face, the length of the probosctis, the structure of the abdomen and of the legs, and finally the nemration ofters many good characters. Next in value to these characters are those derived from the yellow or white shimmering markings of the dorsum of the thoras, the plenre and the melanotum; so, alsn, from the form and boundaries of the colomtion of the wings, when such is present. The presence or absence of yelluw spots on the sides of the metanotm, and the color of the sentellum are also good characters. Finally, the color of the front is quite nseful, when cantiously employed, as it is rather changeable in many species. Much less dependence is to be placed npon the characters derived from the dust-markings of the abdomen; least of all unon the coloring of the body in those species that are black and reddish brown, as sometimes they may be quite hack, sometimes reddish hrown, with more or less black, or sometimes indeed quite ferrnginons." (Neue lheitr, i, p. 20.)

The following table of the American genera of Conopidte, adapted from schmer, with the aid of a considerable number of our own species, will be of service to many :

Third antennal joint with a terminal style; ocelli wanting. Conops Linn.
Third antennal joint with a dorsal, or sub-dorsal bristle:
Proboscis bent only at the base.
Proboscis bent at base and near the middle, the auterior part closely folding back:
Anal cell, short, obtuse:
Bristle of antenure dorsal, proboscis not of unusual length. Dalmannia Rob.
[Des.
Bristle of antennæ near the end of third joint (sulb-dorsal), proboscis rery long,
abdomeu cylindrical.
Anal cell, extending well toward the border of the wing, acnte:
Face much prorluced, inferiorly, the cheeks broader than the rertical diameter of the eyes, abdomen depressed, short.

Myopa Fab.
Face moderately produced infertorly, cheeks not broader than the rertical diameter of the eyes; abdomen mostly cylindrical and moderately long. Oncomyiu
[Rols. Des.

Schiner has divided the gems fomons, upon what afteans to me insufficient gromeds.* I have retained all our Ameriean spectes muder the gemas in its wider sense.

In the following table I have not attempted to inelude the species of Macepuat, nor his identifications. I have added the original dexeriptions at the close of the article, althongh there is very little possibility of their ever being reengized. C. pirtus F . is also not ineluded in the table, but its description is given:
A.-sinall cross-vem nearly opposite or before the tip of the costal wein and near the middle of the diseal eell.
B.-Small ches-vein reyond the tip of costal rein and near the outer third of discal cell : third joint of :mteme much shorter than the seennd.
a. -Third joint of antemae much shorter than the second. Face and checks rellow; facial grooves not darkened; front wholly llack; wings brownish before, abhyaline behind, picture iadistinct. olscuripennis, n. sp
-Third joint of antemae nearly or cuite as long as second, brown of anterior portion of wings with distinct outlines.
b. - Attemated portion of antennal st yle very short, head comparatively narrow, proboscis very short, a hyaline crosshand before the tif, of the wing. Shining black, dust grayish, front blackish or black. sylvosus, n. sp.

- Attemated portion of style quite long ; proboses considerably longer than the head; the brown reaches the whole length of the wing.
C.- Stripe of dust on upper half of plema indistinet or withont distinct loorders. Front black, cheeks brown hehimd; proboscis about once and a half the length of head. (1)ark colored species.)
bulbirostris Lw.
-stripe of dust on upper half of plema as shaply defined as on the under half.
d. - Prohoscis twice the length of head, stripe on upper half of plenra nartow. Dust on the sides of mentanotum much narrowed toward the disk; from mostly red, darkest above base of antemar. (Redrlish sfrecies.)
excisus Wied.
-l'roboscis scarely once and a half the length of head, much swollen at the base; pleural itripe broad above. Dnst broadly

[^138]covering the sides uf metanothm: front mostly yollow: face, checks, and under part of occiput yellow : facial growes with a hack spot on e:ach sime of midille.

e. - The brown of the wings fills ont the diseal cell to heyond the great cross-vein.
-Onter portion of discald cell trom near the small cross-vein distinctly lighter or ligatine.
f.-Cleek: miformly back; dust on the humeri indistint ; fosterion orbits with a very marow whitish line. (black species.)
tibirlis say.
-"Cheeks brownish yellow: posterior orhit with yellowish brown borker; humeri dusted with gohlen yellow."
!emutis Lw.
-Cheres with a yellow spot in the midale, brown in front and behime: hmmeri with distinct yellow last. I sugiftorins say: i mestaneopterus Liv.
g.- C'lueets mitormly black or frown; basal joint of antennte very short.
-Cheeks with a gallow soot in the middle: firat joint of antemae but little or not at all shorter than the third.
i.

11 -Front with teep hack transerse amd median divaricate stripes. (Dark-coloren species.) fiereillutus, n. sp.
-Front with dery marow redilish stripes or wholly yellow; dorsum of thorax with a brom, median, posteriony abbieviated, hack stripe. (Redilish spectes.)

Burgessi, n. sl-
i.- Cltimate segment of fouth rein nearly twice as long as the penultimate; dorsm of thorax with a narrow, median, black stripe. (Rehlish species.) tectumes, n. s!.
--Ultimate segment of fourth vein but little or not at all longer than penultimate.
k.-Facial groores and frontal stripes hack. (Dark-colored species.) murginutus sily.
--Facial grooves but little or not at all darkened; frontal stripes nearly or quite obsolete: dorsum of thoras with three black sirijes, namowly separated or contlisent, the merlian one more abbreviated behind.
affinis, и. s.].

Conops obscuripennis, n. sp.

- Face and cheeks yellow. facial groores not darkened; near the orbits a rather broad, glistening, yellow border, extending as a line to the vertex. Proboscis nearly blach, about as long as the antennat, much swollen at the basc. Antemme nearly black, first and third joints reddish below of nearly equal length, scarcely more than onehalf as long as second joint ; second joint of style moderately projecting: third joint gradually tapering, of medium length. Front wholly black: with a coppery luster, when vicwed dhlipucly. Oceiput back. With a rather marrow grolien yellow boder along the orbit. Thorax black; spots on the inner sides of the hmoner, the
"pper bomere of the disk of the metamotm, ame large spots in front of the halteres neamy gohken fellow, at small spor helow each homerns, and une above the root of the wing, less distinct, of the same color: Upper portion of plemal stripe mot distinctly defined. Abdomen black, secoul segment mostly brownish, its tip, and beginning of the third, pure yellow; first aml secoml segments narowly, or indistinctly, dusted; third, lourth and fifth with moderately broal yellow hind borders; sixth segment envered on the end with yellowish dust. Legs brown or black; base and tips of femora and basal portions of tibia, yellow. Cuse and anterior tibia on their outer portions with a more gollen satiny luster. Wings darker before the thind longitudinal rein, sub-hyaline behind; the darker portion nowhere with distinct ontlines, a little clearer nearer the humeral eross-vein; slightly darker, narrow clomds belore the fifth aud sixth reins. Posterior cross-vein at right angles. Long. corp., $8-10^{\text {nam }}$. Five specimens, Va. (Davis); S. ('a., Ga. (Morrison) ; Mass. (Burgess).

Conops sylvosus, n. sp.
3. Face obscure white, or yellow, with a brand borler of silvery dust near the orbit, extemling, obliquely marowent, to near the vertex; facial grooves not darkened. Cheeks like the face, oral border sharp. Front obscurely, or quite black, extending down on the sides of the base of the antemme. Vertical callosity black, or red-dish-black, tlattened, extending far forward. Intemme black, red on the muter sides, third joint as long as secomb, first joint more than half as long. Second joint of style projecting very little, third joint rather short, with a very brief bristle-like ent. Proboseis brownish black, searcely as long as the two last joints of the antemes. Oceiput black; orbits, except on the upper part bordered with yellowish dust. Thorax back, shining; immer sides of lmmeri, disk and sides of metanotm, faintly dusterl with white. Jbelomenlifack, shining; sides of the second segment more or less red. All the segments, exeept the sixth, with hearly mitorm, rather narow, yellowish white hind borders; fifth, and especially the sixth, dusted with whitish. Legs black; coxe, particularly the first pair in fromt, amt a small spot near the tip of each of the anterior tibia, with satiny white luster. Extreme base and tips of femora, ret on yellow; basal three-fifths of anterior, and two-fifths of hind tibix, light yellow; distal portions and tasi, reddish brown. Wings light brown and pare hyaline, costal cell searcely lighter; the hrown is limited ly the thim lomgitudinal
rein as far as the small aros-rem; then by the formeth longituctinal to the great eross-velu, beyod which is a hyaline eross-band reaching the (o)stal matgin, everpting sometimes al fint, hatrow elond along the third rein. I brown spot in the ent of the submarginal cell that extends a shot distance on the posterior side of the third rein: great cross-vein ame the anterior side of the fifth rein from near the small crossevein, with brownisla clonds. Great cross vein not at all oblique. Long. corp., $9-11^{\text {man }}$; Long. al., 6-7 $2^{\text {nuna }}$. Three specimens. On underbush, Jits., July 1; Conn., June 25. New England (sambora) ; Burgess' eol.

The hairs on the vertex, dorsmof thorax and sides of first abdominal segment, are longer and more abometant than in any other species known to me. Its parasitic hahits will probably be found to be gnite different from any of the following.

Conops excisus Wied.
Aus. Zw, ii, 234. Lw., Nene Beitr., i, 28.
\therefore Face rellow, the orbits with a rather hroal glistening border of yellowish white, extending as a narrow line nearly to the rertex; facial grooves not darkened; cheeks more retlish. Proboscis about twiee the length of the head; reddish brown: at base and tip black. Antenne red or reddish brown, more or less black near the end of the third joint ; first joint more than half as loug as second, second and third of equal length : secom joint of style with a very inconspicnons process : third joint at the base mut very lnoarl, aml soon attenuated into a long, lristle-like point. Vertex red or reddish bromif front mostly filled out with dark, reddish brown, blackish above the hase of the antennat. Occiput brown, orbits with a line of fellowish dost, broader above and extending across below the vertex. Thorax hack: hmmeri, sentellnta, and the upper parts of the sides of the metanotum, red. The lateral borders of dorsmmay be of the same color. Humeri du their inmer sides and extending ontwards along their hind borler: a small spot in front below: another in front of the roots of the wings above; narow plenral stripes, distinctly margined ahove: upper margin of the metanotum; and a large spot in front of each halter, bright gohlen yellow. Smaller spots on the sides of the disk of the metanotmm amd just back of the root of the wings, more grayish yellow. Ablomen dhefly black; second segment on its sides or almost wholly, red; the three or four following segments with only the hind burter, red, or also with large
spots on the sides. Himb borlers of the segments with bright goldens yellow hathds, hatd on the second, narower on the thim and fonth, and brond again on the lifth; sisth segment behind, similarly coloren. Anterior parts of second, fifh, and sixth segments more grayish dusted. Legs ret ; hase of thise yellow, anterior paiss on the outside with white luster; lass brownish barek, first joint reddish black. Wings rather dark hrown amb hyaline, distinetly elearer before the first longitmelinal rein. From the small eross-rein the discal cell, except a dark bonwo clond before the fith vein, is nearly hyaline, limited in front ly a very clear streak between the fonth vem and a sort of spurions bein, extrming between the anterior emis of the small cross-veir nearly to the posterior; last segment of the fourth win with a rather narrow elearer space in front. Sixth rein with a dark brown doml. Long. eorp., 13-16"m. Long. al., ln11 mm . Ga., Flor., N. Carolina (Mormison).

The female, according to Loew, h:1s an musually large process on the maderside of the fifth segment. The red color on the sides of the segments is not in sexnal marking.

Conops bulbirostris Loew.

Neue Beitr., i, p. 30.
Very closely allied to the foregoing, yet evidently distinct. A single female specimeu was described ly Loew which agrees nearly perfectly with two male specimens hefore me, from ('arolina and (reorgia. (Burgess' collection.)

The second joint of the antema is proportionately a little longer, but I can see no difference in the length of the terminal joint of the style; the proboscis, howerer, is listinctly shoter, and at its base more swollen. The second segment of the mate abdomen, in my specimens, at least, is narrower.
d. Front wholly and quite black, vertex a more brownish black, face yellow, cheeks brown, the brown not reaching far forward. Antenme black, somewhat reddish on the mulersides of the inst and third joints. Thorax and abdomen black throughont. The grayish or grayish yellow, and mueh less distinet dust markings of the head and thorax are quite as in eacisus, except that the spot on the side of the dorsum of the thorax, before the root of the wing, is less distinct, the dust on the disk of the metanotum broaler and less sharply defined, and the plemal stripe is intistinct or diffused on the upper half. The third and fifth segments of the abdomen have rather narrow, the
lourth very marrow, gray or slighty yellowish hind horders; sixth segment, on the end, thickly dnsted with gray, yellowish at the tip. Legs redlish brown (or "hrownish black," locw), marked quite as in excisus. Coln of wings rather darker than in rerisus, especially before the first vein; the first and second basal cells near the fourth rein are lighter or with hyaline streaks; otherwise seareely at all different. "Of the size of medinm specimens, and the shate fuliy as in excishs" ($1: 3-14^{m m}$), lenew. The specinens hefore me measure 16-1 7^{mm}.

An additional female specimen from (ieorgia has the antemme and proboscis nearly as in ercisus, but its coloration and makings similar to bubbionstris; the process of the filth abmominal segment, below, is of extraordinary size. It measures hat !man. Ibeliese it to be distinct.

Conops xanthopareus, n. sp.
of. Fiace and cheeks fellow, with glistening dust near the orbits, extenting narrowly upon the siles of the front. Facial grooves with a black spot on each side of the median prominence: proboseis reddish brown, black at the ends; base much swollen, searcely once and a half the length of the head. Antemme reldish brown, considerably blackened at the end of the third joint; first joint more than half as long as second; second and third of equal length; process of second joint of style small, but more projecting than in the two preceding; third joint moderately long, the attennated portion searecly as long as its basal portion. Front and vertex yellow, brownish above the base of the antemme. Oceiput brown, its under part prue yellow. l'osterior orbits with borlers of grayish yellow dast. Thoras black, homeri and more or less of the sentellum red. A spot on the imer side of eaci hamerus, a small spot below; hroat pleural stripes, distinctly limited above; "pper horder of disk of metanotum, extending broadly on its sides, golden or grayish yellow. Abdomen mostly black, sometimes quite reddish upon the sides, especially of the second segment; the fonr anterior segments rather broadly bordered with golden or grayish yellow, nearly the whole upper surface of the fifth and sixth segments thickly dusted with the same; process of the fifth segment of the female rather small below. Legs red, basal half of tibis yellow. Coxas and outer distal part of anterior tibixe with silrery luster; tarsi brownish black, last fon foints, quite black. Wings hrown in front, sublyaline be-
himet, atripe in the dirst hasal refl, anm the hase of the amal eedf, prote hyaline. The subhyaline tills ont a harger pat of the discal :and tiot posterion cells: the stripes along the filth athe sixtlo veins not at well marked as in eacisus, otherwise similar. Long. corp,
 ('olli.

Two additional male specimens from ('ommecticht, differ in their monch deaper back, the legs in part, the autemat atmost wholly so, the spot above the base of the antemat larger, the humeri and senteflum scareely redfened, ind the dust markings thronghont are more gray.

Conops tibialis Say.

```
.Journal Acad. Phil., vi, 17l.
1', nigricormis Wied., Aus. Zw. Ins., ii, 236, 4. Loew, Neue Beitr., i, p. 31.
```

5 아. Face waxy yellow; cheeks hack, with a narrow silvery line near the orbit ; facial grooves leep black. I'rohoseis black, considerably swollen at the base. Antenme black: the under sides of the first and third joints somewhat reddisls brown; first and third joints of nearly equal length, searcely half as long as the second; pocess of seconf joint of style only moderately projecting; third joint conic, rather short. Vertical callosity nearly black, rather shining, bordered in front by a black, opatne, transverse stripe, contimed as a merlian stripe to near the base of the antemme, where it divaricates \boldsymbol{A}-like on to the sides of the face. Occipat black, duster with whitish, above posterior orbits with a narrow white line. Thorax deep black, with whitish bloom when viewed obliqnely; lmmeri usually concolorons, sometimes slightly tinged with red, faintly or not at all dusted with white abore; sides of metanotum ineonspienonsly dnsted with white. Abdomen black, first and second segments with broader, remaning segments with narower, posterior yellowish white borders, fonth, fifth, and sixth with white dust above, beeoming most abublant on the sixth. Legs black, coxie with satiny white luster: trochanters, hase and extreme tips of temora, yellowish red; basal halves of tibia yellow, distal portions reddish brown ; anterior pairs, on their outer distal portions with satiny white luster. Tarsi: anterior pairs reddish, beeoning black at tips, hind pair mostly black. Anterior half of the wings dark brown, before the tirst longitulinal vein not much clearer ; the brown aceompanies the tifth longitulinal rein nearly the borter of the wing, then follows
trans. Conn. Acad., Yol, IV.
March. 1882.
parallel to the great cross-rein till it reaches the last segment of the fonth, which it aromp:anies to near the tip, :mol then borters the last segment of the thim longitudinal in the secomb posterior cell; sisth longitudinal rein with a dark hrown stripe in front. Posterior cross-vein lan slightly oblique; thind and fourth longitudinal weins distinctly angulated at the tips of the small cross-rein. Long. corpe, $11-13^{\text {man }}$. Long, al., $9-10^{\text {man }}$. Thirty specimens. Indiana (say); Mass., Comn., D. C., Va., N. C.

Our most common eastern species, and very uniform in its markings. Of the syonymy, there ean be no doubt. loew's description of the first and third joints of the antemae being about one-thirel as long as the secomf, I can attribute only to an error, as in neither this nor sagittarius is the discrepane! nearly so great. The differences between tibialis and sugitturios are such that Wiedemann's supposition of the synonymy, Arawn from Say's brief description, is quite excusable aml fully accounts for his doubts in giving a new name. The description of tiliclis by Say appeared but a short time previous to W'iedemann's second volume of his Zweiflugelige Insecten, and was also apparently orerlooked by Loew. The two species are most readily separated by the color of the cheeks, a character which l have found of excellent value in all the speeimens of the genus examined by me.

Two female specimens from Georgia (Morison), and Texas (Belfrage), in Mr: Burgess' collection, differ in their much larger size $\left(16^{\mathrm{mm}}\right)$, and deeper hack color throughout, yet they are evidently the same.

Conops sagittarius Say (non Wied., Loerw).
.Journ. Acad. Phil., iii, 83, 2.
? C. genualis Loew, Neue Beitr., i, p. 32.
? C. castanopterus Loew. loc. cit.
\& ㅇ. Face waxy yellow; cheeks behind and a transverse spot in front, reddish brown, or brownish black, enclosing a quadrate yellow space: a white line near the orbits, not extending higher than the antenne. Facial grooves black, lighter in the median line. Proboscis reddisk brown, black at the end, considerably swollen at the base. Antenne red, or reddish brown, deeper on the upper sides of the joints, first and third joints of nearly equal length, scarcely halt as longr as the second: process of seenud joint of style a little more prominent, and third joint more acuminate than in tibialis. Vertex varying from red to brownish black, bordered in
 stripe to its divarieation, hear the hase of the antemate. Oeciput bhack, Insted with white, postorior orlit with a moderately broad rellowish white line. Thorax hack, with whitish bloom, scoutellum wholly or in patt red; haneri wal ordish yellow, with a very eonspienous spot of golden yellow flust above, comtinned on their inner sides, and less consphomsly behind: the narow, and on the upper half indistinctly limited whlique stripes of the pleurar, upper border of the disk of the metanothm and large spots on the sides with yellowish gray dust. Ablomen hatek, more or less red near the tip of seeond segment: first segment with white, end of second with yellowish dust; hind borders of thim, fourth, and fifth segments conspicuously golden yellow, broadest on the fonth; fourth, filth and sixth segments conspichonsly dusted with white or yellowish. Legs red or redlish brown, often quite batek on basal half of femora, behind; basal halses of tibise yellow, anterion pairs in their distal portions with a satiny white luster, like the coxat farsi hack near the tips. Anterior half of wings brown, the markings quite as in tibialis, a small snbhyaline space more frequent in the first posterior cell. Long. corp., $11-13^{\mathrm{mm}}$. Long. al., $8-10^{\mathrm{mm}}$. Heven specimens, Penn. (Nay). Mass. Cumn. ; N. Carolina (Mormison).

Loew's description of gemulis agrees very well, thronghout, except that the cheeks are brownish yellove. (?. restomopterus agrees in some respects even better. I give here careful translations of both descriptions, as they are rather inaccessible.

Conops genualis Luew.

Nene Beitr., etc.. i, 1. :32.
of "Face yellow: facial grooves black, the cheeks brownish yellow, withont huster except on the under half of the orbit, where there is a white linc. Front on the sides yellow with a narrow median black line, bifarions ahove the antema and passing as a black line ton each side ol the face. Vertical callosity yellowish brown, bordered in front by a narrow black transserse band. Oeciput blackish brown, posterior orbit with a border of yellowish browndust, beluw yellow. Antennæ dark brown, below nearly ferruginous; firs joint about half as long as the second; the third at the end attomuated : second joint of the style moderately large, strongly projecting, the thirl short. Thoras hark, humeri and scintellum blackish brown, the former with mearly golden yellow
dust above which extents inwats on the front borter of the thorax and behind nearly to the roots of the wings: plenre with an indistinct white stripe; metanemm above and the two spots on the sides with grayish yellow dust. Didomen quite hack, the first and second segment with rather narmow hands of yellowish dhst : on the thind segment only a finely yellowinh dusted posterior line: the fourth and lifth segments of the male abolomen with a similaty dusted somewhat hoader posterior border: the fifth segment with a very namow posterior line; the last two segments in both sexes with yellow dinst. The extension of the fifth segment below in the female as in [tibialis], hat the last segment somewhat shorter. The coloration of the wing and the newation wholly as in my specimen of [tibialis]. Length of hody as in [tilialis]."

C. castanopterus Loew.

Nene Beitr.. i, 33.
"A third species liuther remored from [tibialis] but more nearly. related to gemmlis. It is most readily distinguished by the more blackish brown color of the anteriur part of the wings, which is distinetly elearer before the first longitudinal rein, by the fermginons color of the hameri, the lateral margins of the thorax, the sentellum, and a larger or smaller, sometimes a very large part of the abdominal segments and the legs. The thim joint of the antenme is at the cud yet more attemated; on the cheeks a large yellow pot lies between the brown. In all else quite as in !/emulis. Georgia, Carolina."

Conops furcillatus, n. sp.

? ('. IPthiops Wlk.. List., ete., iii, 15 ! 1 .
¿ ¢. Face waxy yellow, facial grooves not darkened, cheeks black. Proboseis black, not mueh swollen at the base. Vertical callosity black, bordered in front with opratue black, extending as a median stripe to the antemme and there divaricating and passing as a black line upon each side of the face. Antemme brownish black, first and third joints more redilish below, first joint very short, scarcely a third as loug as second, third joint about half as long; third joint of style short. ennical. Occiput black, broally dusted with whitish below the vertex. Dursmm of thoras hlaek, more or less redlened near the borters: humeri with a spot of yellowish white dust on their

 along the suthers, the disk of the segments somethene mostly blarkish. Abdomen batek, the seemul segment, on its sider, and sometimes the hegiming of the thim, reddish brown; first segment with distinet, second with broater, especially on the sides, thirel and fourth with moterately hroad, fifth with hamower horlers of grayish yellow dust: pusterior part ol lometh, with the fifth amd sixth distinctly whitenel ahove. Lecgs reddish or reddish brown; fore aml hind coxa darker, with satiny laster; femora sometimes darker toward the base, basal hatres of all the tibie yellow, tips of all the tarsi dark hrown or hack. Wings brown on the anterior half, lighter before the first longitudinal rein; from a little hefore the small cross-rein the discal cell is lyaline, excenting a morow dark cloud before the forth longitudinal vein, raching nearly or quite to the great erossrem: on the anterion side of the formth wein an oral longitudinal space in the first posterior cell, reaching nearly the whole length of the segment of the rein, a lighter sut in the outer par of the submarginal cell, near the margin. Petiole ol the first posterior cell about as long as the posterior coriss-vein. Long. corpe, 10-12m, long. al., 7-9 min. White Mis. (Patton, Morrism). Three specimens.

The very short first joint of the antemnermers it probable that this is Wralker's athions, but his rery indefinite description of the front aml wings prevents me from fecling at all sure of it.

Conops Burgessi, u. sp.

2 of. Face and front yellow, rertex concolorons or reddish, when the latter, with a more or less faint narmw median stripe, scarcely reaching the base of the antemue. Facial grooves mot distinctly darkened, checks red. J'rohoscis brownish red, black at tip. Antemne red; first joint very short, scarcely a third the length of second; third joint a hotle more than half as long as secomb, rather symmetrically attenuated. Style black, brocess of scomid joint small, not conspicuous, third joint not thickened, morlerately long, conical. Ocejput red, not distinctly dusted. Thomax red; a broad, median, posterionly abbreviated stripe, spots in front of the lumeri and disk of metanotum, except the sides amd upper edge, hack. No, muless very indistinct, spots of dust near the humeri, nor elsewhere on the thoras. Abdomen red, sometimes somewhat blackish on the sides of the segments, especially of the thirl ; faint spots of lust on the firs aml near the tip of
 sides. I'rocers of tifihnement helow, in the fonale, not large. Legs
 oration of wings as in the precerling species, the clond along the fifth rem in the outer part of discal eell, often quite obsolete, scarcely any
 Mendocino, (al. (O. T. Baton). If sperimens.

Conops texanus, n. sp.

* Face and font yellow, anterion borler of the vertical callosity a little darker, a namow median stripe, divaricate at hase of antemate, hrown: facial groores not darkened. Cheeks with a transverse brown spot in front, continned as a marow line along the oral border to the brown of the posterior part. Antemae rel, a little darker at the tip of third joint, third joint short, hardly an long as first, distinctly less than half the length of second ; seend joint of style projecting strongly, nearly as far as third, third shmt, comic. Proboscis red, base and tip blackisls. Occiput hownish below, posterior orbit with a fellowish white horder, bruater above, continned as a narrow line hehmi the eye, and hroader on the sifles of the face. Dorsmm of thorax, plemer, and scutellum red, humeri lighter, a narrow median dorsal stripe and triangular soot on the disk of metanotum, black: humeri above, a spot on the imner side and behind, with yellow dust, ohlique stripe of the pleure (diftused on the upper half), upper border of lisk and sides of metanotum with fainter, less yellow dust. Ahdomen brownish red, with mome or less hlack on mpper parts of the segments, first segment distinctly. the otbers more faintly, Austed. Coxat usually black, satiny loster distinct, but not conspicnous. Legs red, basal halves of tibise yellow. Wings brown and hyaline: costal cell much lighter, nearly hyaline. Discal cell from before the small cross-vein, cexept a clond along the fith vein, and an oral spot in first posterion cell, nearly hyaline. The penmatimate segment of the fourth rein is scarcely thre-fifths the length of the ultimate. Long. colp., $16^{\text {mun }}$, long, al.. $10^{\text {mmm }}$. One specimen. Wraco, Texas (Belfrage, Burgess col).

Conops marginatus say.

Journ. Acad. Phil., iii, 82, 1. Comp. IV., ii. 73.
f. Face and front waxy yellow, rertex rather brownish black, with a broad opaque black anterior border, extended as a narrow
median stripe to the base of the antenne, there divarieating and passing to the sides of the lace: facial growere hatek, chreks with a yellow space between two hack ones. I'monocis hack. Antemab back, tirst and third jomts, below, red, of menty equal length, scaredy hall the length of second, thiod joint quite msymmetrieally altennated, about half as broad at hase as long, secom joint of style with a considerably projecting, rather slomber process, thim joint moderately long, conical. Oceiput black, posterior orbits with a narrow silvery line. Thorax black, sentellum red. Humeri above and on the imer sides with silvery white dust, sides of the metanotum and the oblique stripe of the plemre (indistinet in its upper part) with white dust. Abdomen back, second segment reddened on the sides near the tip, hind borders of all the segments with yellowish dast, rather broadest on the fourth, filth am sixth lightly dusted with gray above. l.egs brownish red, probably often quite blackish, especially near the base of the femur ; eose black with silvery luster. Wings brown on anterior half. Costal cell lighter, outer part of discal cell hyaline, except anarow clond along the fifth longitudinal vein; a more or less lange spot in first posterior, hyaline, onter part of marginal cell less deeply colored. Sixth longitudinal vein withont brown clond. Long. corl', 10-1 $1^{\text {mim. }}$. Long, at, 6-7mm. Two specimens. White Ilts.

Conops affinis, n. sp.
3 . F Front either wholly yellow, w with the vertex rather more reddish, and with a brownish anterior border exteming as a narow median stripe to the base of the antenne and there divaricating. Face yellow, grooves nsually quite the same, sometimes a little reddish near the middle. Cheeks with a yellow spot between the brown. Proboscis red, tip black. Antennse yellowish red, third joint more or less infuscated above. The relation of the joints very nearly as in murginctus; the process of the secom joint of style is, however, broader, and the third joint shorter and thicker. Oeciput brown, posterior orbits with a narow yellowish line. Thoras red, dorsum with a broad, median, opaque black stripe beginning at the meck and extembing beyoud the transperse suture, either very narrowly separated or contluent on each with a similar one hegiming back of the humerns and extending to near the sentellum. Disk of the metanotum, except the edges, black. Ifumeri above, a spot on the inner side, a faint one behind, with golden yellow, or in lighter colored specmens grayish dust. Oblique stripes of the plemate and sides of the metanotmm very
finintly dusted. Ahomen red, with more or leas black, on the dorsum of the thite, fouth and :mberior part of fifth serments : posterion part of funth, the lifth and sixth segments, in well preserved specimens, quite comspicnonsly dusted with golden yellow. Legs red, cosae mosily, of at least the middle mes in from, hate ; basal half of tibiae yellowish. Wings light brown on the anterior half, coloration bery nearly as in the preceding, the firt posterior cell, sometines searcely at all, sometimes for the larger part, neaty hyaline. Long. corlי, $10-11^{\text {mm }}$. Twelve specimens. Kansas llains; California (Baron) ; Washington 'Ter. (Morrison).

This species is intermetiate between moryimetus and texame, holding the same relation to the former as Burgessi does to furcillatus. From texames it may be distinguished by its much smaller size and broad thoracie stripes, from morgimutues by the shape of its antennal style and the strong difference in coloration.

Conops pictus Fal.

According to loew, who apparently has recognized this species, (Vide O. Sacken's C'atalogue, Note 258), pictus F. is not pictus Wied. but Remondi Bigot is a synonym of the former. Not having seen the species I give here Fabricins' original tescription, together with Bigot's:

Fab. Ent. Syst. IV, 391, 3. Caput fernginemm, rostro nigro orbitaque oculorum aurea. Thorax niger antice utrinque puncto calloso, marginali ferugineo. Lineolae Juae parvae marginis antici, linea lateralis, scutellum lineaque punctapue duo sub sentello flavis. Aldomen hamosum, ferriginenm segmenti primo et secunda nigris margine flavo. Alae hyalinae, costa late flava. Perles fermginei, apice nigri.

('. Ramondi Bigot, Ranon de la Sagra, 808.

"Niger, capite ferringeo; ocnlis brumeis: antemis ferrugineobrumeis, basi pallidis; haustello fermgineo, acumine brumeo; facie ferruginea, aureo-nitente; fronte ferrogineo, linea media brumnea; orbitis, postice, flavidis; thorace nigro-piceo, antice, linea transrersali simuata, interupta, fiava; metathorace postice subtus linea lata transersali, flara; pleuris exteme auratis; alis hyalinis, antice margina ferruginea; margine magna apicali fusca; abrlomine petiolato, segmentis duobus primis nigris, incisuris pallide tlavis; omnibus segmentis posterioribns rubescentibus: incisuris superne obscure brun-
neis; pedibus, antice, fermgineis, prstion, fallide amatix; tassis nigrientilus; pulvillis ferugineis.-Longit. 23 millim.
"Estal hella espeeve parece casi identica al ('. pinta de Fahn. (Nyst. Tret.), alunque lat deseripeion ghe hal dado este antor sati demasiato incompleta parat servit á resolver la duda. Por otra parte, nos parece diferir bastante del ${ }^{\prime}$ '. pich de Wietmann (Aus. Zane iftut., Ins.), para autorisumos a proponerla como mueva. Tal vez asi no of rezea mas que mua varietal vecidental."

Conops brachyrhynchus Mac., Dipt. Exat., ii, 3, 15, 13.
Long. 51. 3. Trompe assez courte, ne Mepssant pas le premier article des antemes. Face et front jannes. Ce elemier brunâtre an milien. Antemes pen divergentes; premier article testace; deuxieme at troisieme noirs, l'egale longher. Thorix et ablomen noirs; denxieme segment de ce dernier al bord postérien testacé. D'ieds testaces; jambers a basc janne et annem bran an milien; tarses bruns. balancers testaces. Dikes homés, borl interien hruntre; premiere cellule posterienre, discoidale et anate assez claites, nervire terminale de la disenidale ohlidue. Amerique Feptentrionale. M. Bastard.

Conops flwviceps Mac, Joc. cit., $15,14$.
Long. $3 \frac{1}{2} \mathrm{l}$. \& . Noir. Frate et front james; vertex lime Antemnes; mirs, massue testacee en-dessons; troisieme article court. Thoma á epmbes d tache contigue an ariere testaces; ecusson et metathorax noirs. Ablomen á petiole tres-menn; premier segment noir; denxieme et patie anteriente du troisieme fance; le reste de ee segment, quatrieme ef cingleme noirs endestas, sixicme fanve, á duret d'un gris jamatre pale, hord posterienre des troisiome, quatrieme et cinquiems ibluct semblable. Piers fames, hanches noires, jambes á pritu anterienre janne, les quarte derniers articles des tarses moiratres. Diles á large borl exterienre bron, termine carrement, une petite tache brume á lextremite. De l'. Smerifues Septentrionale.

Conops fulvipennis Mac., loc. cit., 13, 10.
Long. 7 l. \& . Face janne; partie superiente de la carme moire, parte inferienr des jones moires. Front fance í borde des yenx janne et borde intermediare noire. Antennes testaces. Thorax noir, spatlete brumes, deux petites taches de duse jamatre en-tedons de ce derniers. Ahtomen menir, segmens hordes posteriemment de duvet

Trans. Conn. Acad., Vol. IV.
janmatre. Pieds finves; base des cuisses mires. Ailes: cellule enstale d'un jaum pale, mu large hord exturient d'un fanse homatre, tainsant loxtremite de la cellule soms-marginale de lat premiere pusterienre et ale la diseondate, et he bord interien hyalins; ; mome temimate the la ceellule disenidate perpendiculaire a sa base.

Gomops anulis Fiab., Syst. Futem, 175, 3.
Antenme tote atre. ('aput nigrmm, we late flam, hanstello atro, orlita oculorm postiea thavo micante. Thonax niger, ntringue lotu amico linea alba, micante impressa. Ablominus petiolus elongatns ater; facia ante apieem flava. Ultimmm segmentum macma magna dorsali flava. Alat albo-hyaline: costa lata nigra. Peles nigri.

Wied., Aus. Zwei. Ins., ii, p. 237, 5.
Scheitel mul Stim his gur Fïhlerwimel tief sehwartz, wodurels diwe Art sich ron costutns Fabr, leicht merscheidet, anch ist der Körper aberall tiefer sch watz, der obere hand den Hinterritekens lat nichts Yergolletes und schimmert kamm anden Seiten ein wenig weisslich messinggell). An allem Einsehnitten des llinterleibes ist mehr weniger Dessinggelbes. Anch die Beine schinmern in gewisser lichtung zum Theil messinggelb. Länge 5 Limien. Sus südamerika.
C. costatus Fab. Wied., Aus. Zwei. Ins., ii, 238, 6.

Fibhlewneel goldgelblich, Irittes Glied unten ocherbman; Augenhiohlemräuler messinggelb. Untergesicht mul stirn honiggell; Scheitel mit selawartzer Bimde, von deren Nitte eine selwarze st rieme zur Föllerwarzel absteigt and hier gespalten these Wurzel nmfasst.
 mach inuen ein vergoldeter Punkt; Seitemrinder des liaickenschildes und cine zu den mitteren liüttgliedern absteigembe strieme vergoldet, anch an dem hintern Ramde und den Seiten des Hinterrückens ist etwas Vergoldetes. Das Gellee an den Rändern der ersten Hinterleilsahschmitte reilt sich entweder laieht ab, oler verselawindet bei schuellem Zusammentrocknen, zuweilen scheint es am \%weiten zn fehlen, \%nwielen auch sogar am vierten vorhanlen; der sechste Absehnitt ist in gewisser Richtung ïberall gelh. Fligel der Länge nach hall, bram, schwinger geth, mit schwarzen oner schwarzbramen Kopfe, Schenkel mehr weniger bram. Lange 5 Linien. Aus sïdamerika.

INDEX゙.

Accipiter Cooperi, 78, 140, 146. fuscus, $78,140,145$.
Acipenser, 233. brcvirostris, 233, 242.
Acipenserini, 24 I.
Actiturus Bartramius, 109, 140, 145.
Figialitis meloda, $102,140,145$. semipalmata, $102,141,145$. vocifera, 102, 140, 145.
Wilsonia, 102, 140, 143, 145.
Agiothus linaria, 34, 35, 142, 145 .
Agassiz, Alexander. On the Foung Stages of a few Annelids. Ann. Lye. Nat. Hist., New York, vol. viii, pp. 303-343, 1860. 291.

On Alternate Generation in A nnelids, and the Embryology of Autolytus cornutus. Journ. Boston Soc. Nat. Ilist., vol. vii, pp. :392-409, 1862. 292.
Agelæus pboeniceus, $45,140,141,145$.
Aix sponsa, 125, 140, 146.
Alaudidx, 11, 139.
Alea impennis, 4, 138 .
Alcedinidae, 63, 139.
Alcidæ, $133,139$.
Amage auricula, $298,305,309,312$. pusilla, 302.
Amia, 23S, 241. calva, 242.
Ammochares assimilis, 312. sp., 305, 309.
A mmodromus caudacutus, 38, 140, 145. maritimus, $38,140,145$.
Ammotrypane aulogaster, 294, 297, 298, 316.
fimbriata, 297, 298, 304, 309, 311. limacina, 294.
Amniota, 240.
Ampelidx, 32, 139.
Ampelis cedrorum, 32, 139, $141,144$. garrulns, $32,142,143,146$.
Ampharete arctica, 312.
Finmarchica, 298, 305, 309, 312.
gracilis, 302, 305, 309, 312.
Grubei, 295. setosa, 302.
Amphibia, 240.
Amphicteis Gunneri, 298, 305, 309, 312. Sundevalli, 312.

Amphipodus genera, Cerapus, Unciola, and Lepidactylus, described by Thomas Say. By S. 1. Smith. 268-284.
Amphithoë, 275.
Amphitrite brunnea, 289, 305, $310,324 d$.
cirrata, 289, 294, 295, 305, 310, 312, 324.

Groenlandica, 305, 310, 312.
Grayi, 314.
intermedia, $305,310,314$.
Johnstoni, 305, 310.
ornata, $290,302,318,322,323$.
sp., 295.
ventilabrum, 288.
Anaitis speciosa, 321.
Anas boschos, 123, 142, 14., 146.
moschata, 147.
obscura, 123, 140, 141, 146.
Auatida, 120, 139.
Ancistria acuta, $305,309$.
capillaris, $309,312,314,315$.
minima, 318.
Anisopteryx pometaria, 42.
veruata, 42.
Annelida, New England. Part I.--Historical Sketch, with annotated Lists of the Species hitherto Recorded. By A. E. Verrill. 285-324e.

Anorthura troglodytes, var. hyemalis, 11, 141, 142, 144.
Anser hyperboreus, 121, $141,142,143$, 146.

Anthostoma, 287.
acutum, 301, 305, 309.
fragile, 301, 309, 317, 322.
robustum, $301,317$.
sp., 309.
Authus, Ludoricianus, 12, 141, 144 .
Antinoë angusta, 311.
Sarsii, $297,303,306,307,311,316$.
Antrostomus vociferus, 59, 140.
A phlebina, 298.
Aphrodita aculeata, 288, 300, 303, 306, 307, 316.
Aphrodite aculeata, 288, 290, 297, 311,323, 324a.
Aquila chrysac̈tus, $89,141,142,143$.
Arabella opalina, $301,317,319,322$, :21 1 .

Archibuteo lagopus var．Sancti－Johamis， 87，142， 145.
Ardea Americina， 113.
cerulea，111，143， 145.
Canadensis， 113.
candidissima，111，143， 145.
egretta，111，143， 146.
lingodias，110，140， 145.
virescena， $111,140,14 \%$.
Ardeide，110， 139.
Ardetta exilis，113，140， 145.
Arenia sp．， 305.
A renicola？cristata， 322.
marina，289，295，297，314，324c． piscatorum，289，295， 297.
Areniella filiformis， 309.
Aricia ornata， 301.
quadricuspis， 289.
rubra， 318.
Aricidea fragilis， 318.
Artacama proboscidea，316． 319.
Astur atricapillus，79， 142.
Auk，Great，4， 138.
Razor－billed， 138.
Autolytus Alexandri，292，319，324e． cornutus， $292,300,304,308,323$ ， 324 e．

Emertoni，324e．
hesperidum，318， 321.
longigula， 324 d．
longisctosus，292， $324 e$ ．
（Proccrea）ornatus，320，324e．
sp．，300，304，308，319， 323.
varians， $320,324 e$ ．
Avocot，103， 107.
Axiothea cateuata，309，312， 316.
catenula， 309.
Balanoglossus， 299.
Baldpate， 124.
Batrachia， 240.
Bdelloura candida， 291.
Bee－bird， 49.
Bellia， 283.
arenaria， 284.
Birds of Counecticut，with Remarks on their Habits，A Review of．By C．Hart
Merriam．1－150．
Bittern， 112. Least， 113.
Blackbird，Crow， 46.
Red－winged， 45.
Blue－bill， 125.
Bluebird，8，19，30， 41.
Boboliuk， 45.
Bobwhite， 100.
Bonasa umbellus， $100,140,141,145$.
Botaurus minor，112，140， 145.
Brachyotus palustris， $70,140,141,145$.
Brada granosa，289， 308.
inhabilis， 294.
setosa， 302,324 ．

Prada sublevis，289， 304.
$81 ., 304,308,312.314$.
Brant，Black， 121.
Branta bernicla，121，142， 146. Camadensis，121，142， 146.
var．II utchinsii，122，142， 146. lencopsis，121， 146.
Broad－bill， 125.
Bubo Virginianus，67，140，141，145， 147.
Bucephala albcola，126，142， 146.
clangula，126，142，146．
Islandica，126，142，143．
Buffe－head， 126 ．
Bull－bat，59．
Bunting，Bay－winged， 37.
Black－throated， 43.
Suow， 36.
Towhee， 44.
Burgomaster， $13:$.
Butcher Bird，33，34， 50.
Butes borealis，85，140，14！， 145.
liyemalis， 87.
lineatus， $86,140,141,145,147$.
Pennsylvanicus， $87,140,141,145$.
Butter－ball， 126.
Buzzard，Turkey，91， 96.
Cabira incerta， 318.
Calappa convexa， 264. marmorata，254， 263.
Calidris arenaria，107，141， 145.
Camptolamus Laboradorius，127，142， 143.
Cancer arenarius， 255.
grapsus， 256 ．
quadrata， 254.
Capitella capitata， 316.
Caprimulgidæ，59， 139.
Cardinalis Virgiuianus，44，140，143， 145.
Carpodacus purpureus， $34,140,141,145$.
Cat－bird，8，9， 24.
Cathartes atratus， 93.
aura， $31,143,145$.
Cathartidæ，91， 139.
Cedar Bird， 32.
Centurus Carolinus，65， $140,143,145$.
Cerapiner， 276.
Cerapodina， 278.
Cerapus，268，277， 278.
（Ericthonius）abditus，270， 278.
Leachii， 279.
difformis， 279.
Hunteri， 279.
rubicornis， 278.
rubiformis， 278.
tubularis，277， 284.
Ceratocephala Websteri， 320.
Ceratodus， 239.
Cerebratulus， 296.
Certhia familiaris， $10,50,139,141,144$.
Certhiidae，10， 139.
Ceryle alcyon， $63,140,141,145$.
Chretobranchus sauguineus， $302,319$.

Clisetoderma lueida, 3us.
nitidulum, 298.306, 310, 313.
Chactozone setosn, 298. 305, 30!), 312.
Cheetura pelagica, $59,1 \cdot 10,145$.
Charadriide, 102, 139.
Charadrius fulvus var. Virginicus, 102, 141, 145 .
Chat, Yellow-breasted, 24.
Chautelasmus streperus, 124, 142, 143, 146.
Cherry Bird, 32.
Chewink, 44.
Chickadee, Black-c.иpued, 9. lludsodiau, 10.
Chimera, 242,
Chonnata, 241.
Chondrostei, 241, 242.
Chordeiles Tirgiuianus, 59, 140, 1.15.
Chone, 306, $310,315$.
Duneri, 319. infundibuliformis, 316.
Chromides, 240.
Chrysomitris piuus, $34,35,142,145$. trisils, $36,140,141,145$.
Chrysops discalis, 245. fulvaster, 246 . quadrivittatus. 246.
Cinatulus cirrata, 295.
Circus cyaneus var. Hudsouius, 75, 140 , 145.

Cirratulus borealis, 291. cirratus, $293,294,295,305,309,324$, $324 d$.
grandis, 302, 318, 322. teuuis, 302.
Cirrhatulus fragilis, 291.
Carrhatulus sp, 293.
Cirrhincreis fragilis, 291, 302, 322.
Cistendes, 287, 290. Gouldii, 290, 302, 305, 309, 313, 322, 323.
granulata, $295,305,309,312,315$, 317.

Cistothorus stellaris. 11, 139, 144.
Chtellio irrorata, $303,310,324 c$.
Clymene lumbricalis, 289. torquatus, 290. urceolatus, 290.
Clymenella torquata, $290,298,302,305$, $309,312,318,322,323$.
Coccyzus Americanus, $63,140,145$. erythrophthalmus, $63,140,145$.
Colaples auratus, $65,66,140,141,145$.
Collurio borealis, 33, 142, 144 . Ludovicianus, $34,143,146$. var. excubitoroides, 146.
Columba domestica, 147. livia, 14.
Columbidæ, 93, 139.
Colymbidæ, 136. 139.
Colymbus Arcticus, 137. septentrionalis, $136,142,146$. torquatus, $136,140,112,146$.

Conops, The North Aurerican species of.
By s. W. Willistou. 325-34?.
wthiops, 325, 337.
athuis, $328,339$.
analis, 342.
brachyruynchus, $3 \operatorname{ll}^{2}$.
bulbirostris, 327, 331.
Burgessi, 328,337 .
castanopterus, $325,328,334,336$.
costatus, 342 .
excisus, $325,327,330$.
flaviceps, 341.
fulvipenuis, $3+1$.
furcillatus, 328,336 .
gevualis, $325,325,334,335$.
ungricorvis, $325,333$.
uargicatus, 328,338 .
obscuripenols, 327, 32 S .
pictus, $325,327,340$.
quadrimaculatus, 325.
Kamondi, 325, 340.
sagittarius, $325,328,331$.
sylvosus, $327,329$.
tesauus, 328, 338.
thbialis, $325,3 \simeq 8,333$.
xanthopareus, 328, 332.
Contopus borenlis, $5.3,55,140,141,145$.
virens, $\overline{3} 8,140,145$.
Coot, Commou, 120.
Gray, 127.
Sea, 128.
White-winged, 125.
Cormorant, Commou, 130.
Double-crested, 130.
Corophium, 275.
Corvidæ, 48, 139.
Corvus Americanus, $48,49,140,141,145$. corax, 5.
ossifragus, $49,143,145$.
Coturniculus Henslowi, $37,140$.
passerinus, $37,140$.
Cotyle riparia, 31, 139.
Cow-bird, 45.
Crade, 4.
Saad-hill, 113.
Whooping, 113.
Creeper, Black-aud-white, 12.
Brown, 10.
Crossbill, Red, 35.
White-winged, 35.
Crow, 48.
Fish, 49.
Cryptonota citrina, 290, 303, 307.
Cuckoo, Black-billed, 63. Yellow-billed, 63.
Cuculidx, 63, 139.
Curlew, Eskimo, 109.
IIudsonian, 109.
Long-billed, 109.
Cupidouia cupıdo, $4,100,144,147$.
Cyanospiza cyanea, $44,140,145$.
Cyanurus cristatus, $49,140,141,145$.

Cyguus Americanus, 4, 120, 142, 143, 146 buccinator, $4,120,121$.
Cymochorea lencorrhoa, $135,140,143,146$. Cypselidx, 139.
Crythopium, 280 . Darwini, 281.
Cystenides hyperborea, 316.
Dabehick, Pied-billed, 137.
Datila acuta, 123, 142, 146.
Dalmaunia, 326.
Dawson, J. W. On the Tubicolous Marine
Worms of the Gulf of St. Lawrence.
Capadian Nat. and Geel., v., pp. 24-30,
1860. 324.

Decapod Crustacea on the Coast of New
England, Occasional ocenrreuce of tropical and sub-tropical species of. By S. I.
Smutl. 254-267.
Dendroeca æstiva, 15, 139, 144, 146.
Blackburniae, $16,139,144,146$.
cervulea, $25,140,143,144$.
carulescens, 15, 139, 144, 146.
castanea, $16,141,144,147$.
coronata, 16, 18, 141, 142, 144.
discolor, 17, 139, 144.
dominica, 17, 140, 143, 146.
maculosa, 17, 141, 144.
palmarum, 18, 19, 41, 141, 144.
Peunsylranica, 17, 139, 144.
pinus, 18, 139, 144.
striata, 16, 141, 144.
tigrina, 17, 141, 144.
vireus, $15,139,144$.
Dercothoë, 278.
(Cerapus) punctatus, 279.
Diopatra cuprea, 301, 317, 322, 323, 324a.
Dipnoi. 241. 242.
Dipolydora concharum, 314, 319, 320.
Diptera, Some Interesting New. By S. W. Williston. 2 $43-246$.
Diver, Great Northern, 136.
Ilell, 137.
Red-throated, 136.
Dedecaceria concharum, 305, 309, 312, 320, 324 \%.
coralii, 290, 302.
Dolichenyx oryzivorus, $45,140,145$.
Dove, Carolina, 9S.
Sea, 133.
Turtle, 93.
Dorekie, 138.
Drilenereis longa, 317, 322.
Duck, Black, 123.
Caovas-bach, 126.
Eider, 127.
Gray, 124.
Greater Scaup, 125.
Labrador, 127.
Lesser Scaup, 125.
Long-tailed, 126.
Pied, 127.

Duck, Ring-uceked, 125.
Ruddy, 12 s .
Spoonbill, 124.
Summer, 125.
Surf, 128.
Wood, 125.
Dumlin, 106.

Wagle, 89.

Pald, 90.
Echiurus chrysacanthophorus, 288.
Ectopistcs migratoria, 5, 93, 140, 145.
Egret, Great white, 111.
Little white, 111.
Ehlers, Erast. Die Borstenwürmer (Annelida Chetopada) pp. 1-268, 1864; pp. 269-748, 1868. 296.
Eider, King, 127.
Elasmebrauchii, 241.
Elasmouranchs, 240.
Enıerton, J. H. Life on the Seaslıore, ctc. 1880. 323.

Empidonax Acadicus, 58, 140, 143, 145, 147.
flaviventris, 59, 141.
minimus, $59,140,145,147$.
Traillii, 5S, 140, 145.
Enchytreus triventralopectinatus, 303.
Enipo gracilis, 303, 307.
Enonella bicarinata, 290.
Enoplobranchus sagguineus, $302,318,319$, 324d.
Eone gracilis, 301.
Ephesia gracilis, 298.
Eremoplila alpestris, 11, 142, 144.
Erennetes pusillus, 105, 140, 145.
Ericthonius, 277.
difformis, 268, 277, 278, 279.
Erismatura rubida, 128, 142, 146.
Eteone alba, 321.
cyliodrica, 295.
depressa, 30t, 308, 311.
limicola. $300,321$.
pusilla, 304, 308.
robusta, 300.
setosa, 300 .
sp., 293, 300.
Eucranta villosa, 306, 311.
Euchone elegans, $303,306,310$. sp., 306. tuberculosa, 319.
Euglycera, 287, 295, 296. dibramchiata, $301,304,308$.
Eulalia aunulata, 300,321 . gracilis, 300. granulosa, 300 . pistacia, 300, 304, 308, 324 a.
Fumenia crassa, 298, 304, 311, 316.
Eumidia Americana, 300. maculosa, 318, 321. papillosa, 300. vivida, 300 .

Ennice (lirstedii, 290. sanguinea, 291.
s1), 29 万. virida, 290.
Funoa notosia, 298, 303, 30t, 311, :314. (Erstedii, 290, 303, 306. 307, 316. spinulosa. 319, 320.
Euphesia gracilis, 316 .
Euphrosyne hotealis, 290, 30:3, 307, 314.
Eupolynoë anticosticusis, 306 . accidentalis, 306,316
1̌uspiza Americana. 43: 140, 143, 145.
Ensyllis lucefera, 314. monilicoruis, 319. phosphorea, 311.
Evarue impar, 319.
Fabricia Leidyi, 303. 306, 310. stellaris, 303. 306. 310.
Filco butcordes. 147
columbarius, $83,140,141,145,147$. communis, 81, 140, 141, 145. chrysaëtus, 147 . byemalis, 147. leucocephalus, 147. sparverius, S4. 140, 141, 115. temerarins, 147 . Washingtoniensis, 147.
Falcon. Peregrine, 81.
Falconidie, 75, 139.
Falligula Amertaua, 147. nigra. 147.
Filigrana implexa, 310, 315.
Flnch, Grass. 37.
Lincoln's, 38.
Pine, 34, 35.
Purple, 34.
Seaside, 33.
Sharp-tailed, 38.
Flabelligera athois, 299, 204, 304, 308.
Flicker. 65, 66.
Flyeatcher, Acadian, 58.
Freat-crested, 50.
Least, 59.
Olive-siderl, 53.
Pewee, 52.
Small Green-crested, 5s.
Swallow-tailerl, 50.
Traill's, 58.
Fellow-bellied, 59.
Fratercula Arctica, 133, 145.
Fringilla ambigna, 147.
Friagillida, 34, 139.
Fulica Americana, 120, 141, 146.
Fuligula aftinis, $125,142,146$.
collaris. $125,142,143,146$.
ferina Var. Americana, $125,142,143$, 146.
marila, 125, 142. 146.
vallisneri:1, $120,142,143,14 i$.
Fulmarus glacialis, 146.
Gadwall, 123.

Giallinaro Winsoni, $105,11 \mathrm{~N}, 140,1 \%$.
Gallinula galeata, 119. 140, 146 .
(a allinule, Plorida, J1:),
Purple, 119, 120.
Gallis domeaticus, 117.
Gmmet, Booly, 130
Common, 129.
Ganoids, Veutral fius of. By Jamues k.
Tharcher. 233-243.
Gattiol: cincinnata, 30 s . sp., 300, 304, 308.
Geplyrrhina, 240, 241.
freothlypis, Philidelphia, 22, 2: 1.11. trich:is, 5, 23. 139, 141, 147.
Glauconome, 230. leucopis, 281.
Glycera Americana, 291. 296. capitata, 289, 296, 316.
dibranchiata, 296.
viridescens, 289.
Gnatcatcher, Blue-gray, 8.
Guathostomes 239, 240.
Godwit. Great marblerl, 107.
Hudsonian, 107.
Golden-eje. 126.
Barrow's, 126.
Goniada gracilis, 301, 320.
maculata, 289, 297, $301,305,311,316$.
solitaria, 322.
Goniapbea carulea, 43.
Ludoriciana, 43, 140, 145.
Gowiograpsus innotatus, 260.
(Pachygrapsus) trausversus, 260.
Goniopsis picta 257.
strigosus, 257.
Goose, Barnacle, 121.
Braut. 121.
Cavada, 122.
Ilntchins', 122.
Snow, 121.
Solon, 129.
Southera, 122.
Wild, 122.
Goshawh, 79.
Goukl. Augustus. Report on the Iurertebrates of Massichmsetts. Buston 184. 285.

Grackle, Boat-tailed, 48.
Rustr, 46.
Graculns carbo, 130, 142, 146, 142. dilophus, 130, 142, 146.
Grapsus altifrons, 257.
maculatus, 257.
var. Pharaonis, 257.
(Leptograpsus) mineatus, 260.
ornatus, 257.
Pharaonis, 257.
pietos, $256,25 \%$.
(Leptograpsus) rugulosu: 260.
Webbi. 257.
transversus, 259.
Grebe, Crested, 137.

Grehe, Homerl, 137.
Red-neekorl, 137.
(ircen-shanks, 108.
Grosbeak, Cardinal, 14.
l'ine, 34.
Rose-breasted, 43.
Grouse, Pmmaterl, 4, 100, 1.14.
Rnffed, 100.
Grubea tenuierrata, 321.
Grus Americana, 4.
Canadensis, 4, 113.
Grymea spiralis, 305, 310. 312, 314.
Guillemot, Foolish, 138.
Gull, Bonaparte's, 132.
Burgomaster, 133.
Great Black-backed, 132.
Herriag, 132.
Kittiwake, 132.
Laughing, 132.
Ring-billed, 132.
Guinea kowl, 144.
Ilematopus palliatus, $103,141,143,145$.
Hæematopodidxe, 103, 139.
Hæmatorrhæa, 324.
Haliaètus lencocephalus, $90,140,141,145$, 147.

Halodrillus littoralis, 303, 310.
Harelda glacialis, $126,140,141,142,146$.
Harmothoe imbricata, 290, 293, 294, 296, $300,303,307,311,313,316,3246$.
Harporhynchns rufus, 8, 24, 139, 144.
vat. longicanda, 24.
Harrier, 75.
Hawk, black, 87.
Broad-winged, 87.
Chicken, 7 s .
Cooper's, 78.
Duck, 81.
Fish, 88.
Hen, 85.
Marsh, 75.
Monse, 75. .
Pigeon, 83.
Red-slıouldered, 86.
Red-tailed, 85.
Rough-legged, 87.
Hawk, Sharp-shinned, 78.
Sparrow, 84.
Winter, 87.
Helmitherus rermivorus, 12, 135, 144. Swainsoni, 146.
Melminthophaga celata, 15.
chrysoptera, 14, 139, 146.
peregrina, 14, 141.
pinus, $14,139,144$.
ruficapilta, 1.1, 139.
Hen, Mud, 120.
Hermione hystrix, 297.
Heron, Great Blue, 110.
Green, 111.
Little Blue, 111.

Heron, Night, 112

Yellow-crowned night, 112.
Hetcrocirrus fimbriatus, 319,320 .
Heteroneis arctica, 293, 295.
High-holder, GG.
Hirumlinidie, 28, 139.
Hirmudo horreorum, $28,139,144$.
llistrionicus torquatus, 146.
IJolocephali, 242.
Ilumminglird, Ruby-throated, 62.
Ilyalincesia artifex, 323.
Hydrocliclidon lariformis, $135,142,143$.
IIydroides dianthus, 288, 303, 318, 319, 322.

Hylotomus pilcatus, $5,63,142,143,145$.
This alba, $110,143$.
falcinellus var. Ordii, 110, 143, 145.
Glossy, 110.
White, 110 .
Icteria vireas, 24, 139, 144.
Icteridæ, 45, 139.
Icterus Baltimore, $46,140,145$.
spurius, 46, 140, 145.
Indigo Bird, 44.
Jay, Blue, 49.
Jaeger, Long-tailed, 131.
Pomarine, 131.
Richardson's, 131.
Junco byemalis, 39, 111, 112, 145.
King-bird, 49.
Kingfisher, Belted, 63
Kinglet, Golden-crested, 8.
Ruby-crowued, 8.
Kite, Swallow-talled, 5, 76.
Knot, 10 ?
Lenilla (?) mollis. 311.
Lictmatonice arouata, 297, $303,307,311$, 319, 320, $324 U$.
filicornis, $30 G, 307,311$.
Letmonice filicornis, 303, 316.
Lagisca impatiens, 321.
propinqua, 311.
rarispina, $311,314,216$.
var. occidentalis, 306 .
Lagopus albus, 73.
Lanassa Nordenskiœuli, 319.
Lauiidæ, 33, 139.
Laride, 131, 139.
Lark, Horned, 11.
Meadow, 45.
Larus argentatus, 142.
var. Smithsonianus, $132,141,146$.
atricilla, 132, 142, 146.
Bonapartii, 147.
canus, 147.
capistratus, 147.
Delawarensis, 132, 142, 146.
fuscus, 147.

Larus glaucus， 133
mariuns， $132,142,116$.
Philadelplia， $132,112.146,117$.
tridactylus，132，142， 1.16
Latreutes ensiferns，254， 266 ．
Leana abranchiata，319．
Leanira lyystricis， 315.
tetragona．304，307， 316 ．
Thleni，307， 315.
Least Squares，A List of Writings relat－ ing to the Method，with historical and critical notes．By Mansfield Merriman． 151－232．
Leidy．Joscjuh．Marine Invertebrate Fan－ na of the coast of Rhode Island and New Jersey．Journal Acad．Nat．Sci．． Philadelphia，col．iii，pp．144－148， 1855. 290.

Leodice polybrauchia， 323. virida， $290,297.304 .305,311$.
Lepidanceria commensalis， 317,321 ．
Lepidactylis，252， 283.
arenarius． 284.
dytiscus，283． 281.
Jlaustorius， 283.
Lepidonote armadillo， 291.
cirrata， 290.
punctata， 290.
scabra， 290.
Lepidonotus angustus， 300.
squamatus，288，290，291，296．300．
$308,306,307,313,316,316.321$,
$323,324 a, 324 b$ ．
var．angustus， 31% ．
squatmaus， 206 ．
sublevis， $300,324 a, 3243$ ． variabilis， 318.
Lepidosteidæ， 241.
Lepidosteus， 238. osseus，24：．
Leprea rubra，291，302， 318.
Leptograpsus rugulosus． 260.
Limosa Ederardsii，107， 147. fedoa，107，141，143， 145. Hudsonica，107，141，143，115，117．
Linnet，Pine， 35. Red－poll， 35.
Lobipes hyperboreus， 146.
Lomria arra，138， 146. troile，138，142，143， 146.
Longspur，Lapland， 36.
Loon， 136.
Lophophanes bicolor，9，140．142，143， 144.

Lophortyx，Californicns， 147.
Loxia curvirostra var．Americana，35，142， 145.
lencoptera． $35,142,146$.
Lumara flava， $2 \dot{8} 9$.
Lumbriconereis acuta， 314.
fragils， $297,301,304,308,311.316$. obtusa，308， 314.

Lambriconereis opalina，：301，319．
＊phondida， 291.
tenuis，301，317，：329．
Lambriculus temais，291， 303.
Lumbrinereis acmen， 31% ．
frarilis，297，25．9．
hehes， $308,311,3311$.
Lycudice Americina， 301.
lysilla alba，：518．
81－． 319.
Lysippe lobata， 319.

Macrorlhamphts griseus， $105,141,14$.
Maldane elongata， $302,315,322,32 \mathrm{~J} d$.
filifera， 320.
Sarsii，305，309．312， 316.
Mallard， 123.
Malmgrenia Whitearesii，30f， 316.
Man－of－war Bird， 131.
Marcca Americana，124，1．12， 146.
Marphysa Leidyi．291，301，324a． sanguinea，317， 322.
Martin，Purple， 31.
Meleagris gallopavo， 4.
var．Americana，98，144， 147.
Melinua cristata，302，305，300， 312. maculata．3！
Melanerpes eryturocephalus， $65,140,141$ ， 145.

Melospiza Lincolni，38， 140. melodia，35，41，140，141， 145. palustris， $35,340,145$.
Merganser， 128.
Hoorled． 120.
Ped－breasted， 129.
Mergulus alle， $135,142,143,146$ ．
Mergus cucullatus．129．142． 146 ． merganser．128，142． 146. serrator， $129,142,146$.
Merriam，C．Hart．A Review of the Birds of Connecticut，with Remarks on their Habits． $1-150$ ．
Merriman，Mansfield．A List of Writings relating to the 11 cthod of Least Squares， with historical and critical notes．151－ 232.

Metepograpsus dubius， 260. mineatus， 260
Microdentopus， 282. grandimanus， 274.
minax， 274.
Micropalanea himantopus， 107.
Midaside， 244.
Milralus forficatus，50， 143.
M＇Intosh，W．C．The Annelids of the Gulf of St．Larvrence，Canada Aun． Mag．Nat．1list．，pp．26I－270，1874．30G． in Jeffreys aud Carpenter．The Valorons Expd．，Proc．Roy．Soc．，xxy， pp．177－237， 1876. （Annelids，pp． 215－222．）315．

Mimus Carolincnsis，8．139， $11 . \mathrm{J}$. polyylottus， $5,7,140,14 \%, 141$ ．
Snietilta varia， $12,13,135$ ， 141 ．
Mocking－bird，5， 7.
Nolothrus pecoris，45．140，141，14．5， 147.
Monolepis ivermis， 25 ．
Motacillide，12， 139.
Murre， 138.
Myiarchus crinitus，50，1－10， 145.
Myiodinctes Canadensis，27，139，144． mitratus，25．139， 144.
pusillus， $266,141$.
Myopa， 326.
Myxicola Steeust rupii，297，306，310．
N゙aineis quadricuspida．237，294．
Naragmseta coralii，290， 302.
Narcia， 291.
Nauclerus forficatus，5， 76.
Nautilograpsis minutus， $251,263$.
Nectonereis megalops， 301,320 ．
Nemidia（？）canadcnsis，307， 316 ．
Lawrencii，30t， 316 ．
Nemistriuini， 24.4.
Nejhthys bucera，296， 300.
cara，293，294，295，296，307．314， 323.
ciliata，289，296，300，304，307，311．
circinata，311，314．
discors，296， 297.
incisa，297，300，304，307，311，313， $315,317,321,323$.
ingens，289，297， $300.304,307,311$ ， $313,317,323$.
longisotosa，295， 319.
paradoxa，295， 319.
picta，296，300， 31 i， 321.
Neptunus Sayi，254，263．
Neres abyssicola， 290.
alacrís，320，324a．
conioceplıala， 291.
Culveri， 322.
denticulata，290，291，324．
Tumerillii， 318.
fucata， 301.
graudis，290，294，297，324．
iris． 290.
irritabilis， 318.
limbata，296，300，308，317，321，324a．
margaritacea， 258.
megalops， $301,320,324 a$ ．
pelagica， $288,290,291,293,294,295$ ，
296，297，301，304，308，311，215，316， 324.
sp．．293，295，301， 304.
tridentata， 322.
virens， $290,291,294,296,297,300$ ， 304，308，317，323，324．

Yankiana， 294.
zonata， 319.
Nerine agilis， $301,322$.
heteropoda， 318.
Nicolea simplex， $302,321 d$ ．

Nicomache，305．
dispar，：32．
lumbricalis，287，29．，298，305，309， 312，31fi．
Night－hawk， 59.
Ninoë nigripes，301，30－4，305， 311.
Notamastus acutus，305， 309 ．
capillaris， $305,309,312,314,315$.
filiformis，302， 322 ．
latericjus，298，305，309，： 12.
luridus，302，309， 322.
Nothria conchilega，304．
conchylega， $290,29 \mathrm{I}, 295,297,298$,
308，311， 316. opalina，297，304，308， 311 ． sp．， 323.
Numenius borealis，102，141，143， 145. Hudsonicus，109，141，14：3，14\％． longirostris，109．141， 145.
Nuthatch，Red－bellıed， 10. White－bellied， 10.
Nychia Amondseni，303，306， 3 I6． cirrosa，303，306， $311,316$.
Nyctale Acadica，74，140，141， 145. Tengmalmi var．Richardsoni，73，142， 143.

Nyctea Scandiaca，72，141，142，145．
Nyctiardea grisea var．nevia， 112,140, 145.
violacea， 112.
Oceanites oceanica，136，143． 146.
Ocspoda， 255.
albicans． 255.
ceratophtbalma， 255.
rhombea， 255.
Ocypode， 254.
arenarius． 255.
quadrata，254， 255.
Odontosyllis fulgurans， $318,321$. lucifera， $314,320,324 \lambda$ ．
Edemia Americana，127，142，146， 147.
fusca， $125,142,145$.
perspicillata， $128,142,146$.
Old Squaw， 126.
Wife， 126.
Oncomria， 326.
Oviscus arenarius， 283.
Onuphis concbilega， 294.
Eschrichtii，290，293， 295.
sicula， 315.
Ophelia denticulata，314，324d．
glabra， 289.
limacina，289，316， 319.
simplex，291， 301.
sp．， 309 ．
Oporornis agilis，21，141．
formosus，22，140， 143.
Oriole，Baltimore， 46 ．
Orchard， 46 ．
Ortsx Tirginianus， $100,140,141,145$.
Ospres， 88

Otus vulgaris, sar. Wilsomianus, fis, 140 , 141, 145.
Oven Bird, 20, 37.
Owenta tiliformis, 316 .
Owl, Acadian, it
Aretic, 7:3.
Barn, 66.
Barred, 70.
Great tiray, 70.
Horned, 1i7. 76.
Hawk, 7:.
Long-eared, fin.
Mottled. Bi!.
Richardson, 7:3.
Saw-whet, 74 .
Screech. 69.
Short-eared. 70.
Snowy, iz.
Qx-bird, 106.
Oyster-catcher, 103.
Piedophylax rlispar, 317, 321.
longiceps, 320.324π.
Pachygrapsus ionotitus, 260 .
intermedius, 260.
rugulosus, 260.
socius, 260.
trausversus, 254, 259, 2600.
Packard, A. S., Jr. A list of aumals dredged near Caribou Island, South Labrador, during July and August. 1850. Canaoian Naturalist and Geologist. vol. vii, pp. 401-429, 1863.29 .3 .

Observations on the flacial Phenomena of Labrador and Maine. with a view of the recent Invertebrate Fauna of Labrador. Mem. Boston Soe. Nat. Ilist., vol. i, pp. 210-303, $1866,2!1$.
Pagurus maculatus, 257.
Palembolus, 244.
l'andion halinettus, $88,1 \pm 0,145$.
Paraxiothea latens, 322.
Paridae, 9. 139.
Partridge, 100. Spruce, 1.
Parula Americaoa, 12, 139. 111.
Parus atricapillus, $3,139,141,144$.
Hudsonicus, 10, 142, 143.
Passer domesticus, $40,1411,1+1$.
Passarella iliaca, 11, 43, 111, 14.
Passerculus princeps, 34, 141, 142, 14.3. Saranna, $36,140,115$.
Pavo cristatus, 147.
Pea Cock, 114.
Pectiuaria, 257, 2\%0.
auricoma. 290.
Belgica, 2SR.
(Lagis) dubia, 318.
Eschriclitii, 29.3. 294.
Gouldii, 288, 290, 305, 313, 322, 323.
grauulata, $249,293,305,312,355$, 317, 324.

Pectinaria, Frumandica, 989. 324.
hyperborea, 316,321.
Pelican, I'rigate, 131.
I'enaeus Brasihensis, 267 .
l'etrel, Leach's, 135.
Wilson's, 136.
Petrocheliton lunifrons, 30,139 , 116.
P'etrolisthes armatus, 260.
Pewee. $5 z$.
Wood. 54.
Phatarrocoracider, 130, 13:.
Plabacrocoriax carbo, 147 graenlus, 147.
Plalarope, Red. 103.
Wilson's, 103.
Thalaropodides, $103,139$.
Fhalaropus fulicarius, $10: 1$, $141,143,146$.
Phascolion capitatus, 285.
concharum, ? 88.
dentalii, 25%.
granulatum, 288.
hamulatum, 285.
spetsbergense, 310.
stromiji, 257, 258, 259, 293, 295. 298,
$301,307,310,31: 3$.
tubicola, 298, 306, 310, 313.
Plascolosoma Berohardus, 285.
borcalis, $298,299,306,310,313$.
ctumeatarium, 287, 2s5, 298, 306, 307.
310, 313.
eremita, 298, 299, $306,310,313$.
Gouldi, 2.s.
hamulatum, 295.
margaritaceum, 299,317 .
Girstedii, 299.
tuhicola, 288, 295, 306, 310, 313.
Philohela minor, $104,140,14,145$.
Phobe-bird, 52.
[holoe minuta, $290,295,303,307,310_{2}$
314,316, 324c.
tecta, 290.
Phronia tardigrada, 318.
Phyllodice fragilis, :31S.
Phyllodoce areme, 321.
catedula, $300,304,307,311,324 a$.
fragilis, 318.
gracilis, 300.
Gremlandica, 259, 294, 295, 304, 308,
$314,315,316,32+2$.
lamelligera. 288.
maculata, 201.
sp. 304, 307.
viridis, 23.8.
Physocephala, 327.
Picidax, 63, 139.
Picoides Arcticus, 64, 142, 143, 146.
Picus pubescens, 64, 140, 141, 145.
villosus, 64, 110, 141, 145.
Pigcou, 5, 144.
Wild, 93.
Piuicola eoncleator, 34, 112, 145.

Pinuixa inhabiting the New England Coast, On tho sprecies of, with remarks on their carly stages, by S. I. Suith. 217-253. chatopterama, 247, 248, 249, 250, 251. evliudrica, 247, 218, 250, 251.
Sayana, 245, 249, 251.
sp., 251.
Pinnotlicres maculatus, 263.
ostreum, EG3.
Pintail, 123.
Pipilo erythrophthalmus, $41,140,145$.
Pista cristata, 298, 305, $309,312, .315,318$, 3星d.
Planaria augulata, 291.
Plectrophanes Lapponiens, 36, 142.
niralis, $36,142.145$.
Plover, Black-bellied, 102.
Golden, 102.
Killdeer, 89, 102.
Piping, 102.
Ringneck, 102.
Semipalmated, 102.
Upland, 109.
W'ilson's, 102.
Pochard, 125.
Podarke obseura, 300, 317. 321.
Inteola, 321.
Podiceps Carolinensis, 147.
cornutus, $137,142,1 \not 55$.
cristatus, $137,142,145$.
griseigena var. Holbolli, 137, 142, 145. minor, 14 .
Podicipidr: 137, 139.
Podilymbus podiceps, 137, 140, 145, 147.
Pollocerus, 275, 27s.
Leachii, 278.
punctatus, 2 is.
Polioptila cærulea, $8,140,143$.
Polycirrus eximius, 291, 302, 312, 322, 323.
phosphoreus, $297,298,305,310,312$, $315,319,320$.
sp., 305, 310, 311, 312, 315, 31!.
Polydory cerea, 318.
Polydora ciliatum, 291, 301.
coucharum, 30t, 319, 320.
gracils, 314, 320 .
hamata, 318, 322.
ligni, 322.
littorea, 301.
sp., 304, 309, 314.
Polygordius, 291.
Polynoë (Ěunoa) Acancllæ, 324ひ.
gaspëensis, 307, 316.
(Funoa) spinulosa, 324c.
squamata, 238.
Polyodon, 235, 241. 242
folium, 242.
macrocheles, 254, 266.
Polspteridie, 241.
Polgpteris, 238.
bichir, 242.

Pomacentride, 240.
Pontobdella livida, 29f.
Poocetes gramineus, $37,140,145$.
Poreellana macrocheles, 266.
Porphyrio Martinica, 119,143, 116.
Purzanat Carolina, 1]6, 140, 145.
Jamaicensis, 119, 140, 143.
Noveboracensis, $115,140,1 \cdot 16$.
Potamilla veglecta, $312,314$.
oculifera, $302,305,310,312$.
reuiformis, 290, 302, $310,312$.
tortuosa, 318.
Pourtales, L. F. de. On the Geplyyrea of the Atlantic Coast of the Uuited States.
Proe. Amer. Assoc. Ads. Scieuce for
1851, rol. v. pp. 39-42. 1852. 258.
Prairic Chicken, 4, 100, 114.
Praxilla elongata, 322.
var. Beuedicti, 322.
gracilis, $298,299,305,309,312,316$.
Mulleri, 295.
ornata, 320.
pretermissa, 298, 305, 309, 312.
sp., 312, 315.
torquata, 293.
zonalis. 305, 309.
Praxillella gracilis, $298,299,305,: 309,312$. Mullerı, 295.
preterimissa, 298, 305, 309, 312.
zonalis, $305,309$.
Priapulus candatus, 294, 307.
pygmæus, 306, $310,319,321$.
sp., 306, 307, 310.
Prionospio Steenstrupl, 316. tenuis, 320 .
Procellariidæ, 135, 139.
Procerea cœrulea, 318.
gracilis, $304,: 308,314$.
ornata, 300.
tardigrada, 318.
Progae purpurea, 31, 139, 144.
Protula borealis, 313.
media, 289, 310, 313.
Protognathostomi, 241, 242.
Protogephyrrhiua, 241, 242.
Protostapedifera, 242.
Ptarmigan, 73.
Pterosyllis cincinuata, 304, 308.
Pterygocera, 283. arenaria, 284.
Pterygocirınæ, 283.
Puffinus major, $136,142,146$. obscurus, 146.
Pyctılus, 278.
Pyranga æstiva, 27, 140, 143, 144. rubra, 27, 139, 144.

Quail, 100.
California, 144.
Quatrefages, A. de. Histoire Naturelle de Anuelés, 1865. 294.

Querquadna Carolinensis, $121,1.1^{2}, 146$. discors, 124, 142, 146 .
Quiscalus major, $48,146,1.17$. purpurens, $16,110,14 \overline{5}$.

Rail, Caroliua, 116.
Black, 119.
Clapper, 115. King, 115. Virginia, 115. Yellow, 118.
Rallidee, 11i, 139.
Rallus elegans, $115,140,145$. longirostris $115,140,145$. Vaginianus, $115,140,145$.
Raven, 5.
Recurvirostra Americana, 103, 107, 1+1, 146.

Recurvirostrid:e, 103, 130.
Redbird, Summer, 27.
Red-head. 125.
Red-poll, 34.
Redstart, 9, 27.
Reed-bird. 45.
Regulus calendula. 8, $141,144$.
cristatus, 146.
satrapa, $8,141,142,141,146$. tricolor, 146.
Rhodina attenuata, 302, 324d. Loveni, 309, 312.
Rlignehobolus albus, 304, 308.
Americanns, 291, 296, 301, 317, 322.
capitatus, 289, 296, 311.
dibranchiatus, $287,301,304,308,322$.
Rhynchocephahus, 24.
Sackenii, 243.
Tauscherii, 244.
Rhyuchops nigra, 146.
Rice-bird, 45.
Ringneck, 102.
Robin, 6.

Sabella microphthalma, $30 \%, 318,322$.
ueglecta, 289, 314 .
oculifera, 290.
pavonia, 289, 299, 313.
pavonina, 289.
sp., 288. 306.
saxicava, 316.
vulgaris, 302.
zonalis, 289, 305, 310.
Sabellaria varians, $318,322$.
vulgaris, $318,322$.
Sabellides oculata, 322.
Samytha sexcirrata, 298, 305, 309, 312.
Samythella elougata, 298, 305, 31\%.
Sanderling. 107.
Sandpiper, Baird's, 107.
Rartramian, 109.
Bonaparte's, 106 .
Bulf-breastert, 109.

Sampiper, Curlew, 116.
L.cast, 10 \%.

Pectoral, 106.
Purple, 10 G.
Red-breasted, 107.
Somipalmaterl, 105.
Spotted, 108.
stilt, 10 .
White-rumped, 106 .
Saxicolitae, 8, 139.
Sayormis fuscus, 52, 140, 145.
Scalibregma brevicunda, $302,321 d$.
intlatum, 298, 304, 308, 312, :316.
Scaphirhynchus, 234, 242.
catapractus. 249.
Scione Inbata, 305, 310.
Scionopsis jralmata, $302,318,322,3244$.
Scolecolepis cirrata, 298, 301, 304, 309, 312, 316.
tenuis, $301,322$.
viridis, 301, 322.
Scolecophagus ferrugineus, $46,141,145$.
Scololepis cirrata, 298.
Scolopacidæ, 10.1,] 39.
Scolopax rusticola, 104.
Scoloplos acutus, 301, 305, 309.
armiger, $316,319$.
fragilis, 301, 309, 317, 322.
quadricuspida, 294.
robustus, 301, 317.
sp., 287, 309.
Scops asio, 69, 140, 141, 145.
Scoter, 128.
Black, 127.
Telvet, 128.
Serpula diantleus, 303, 319.
var. citriua, 303.
(Termilia) serrula, 324.
rermicularis, 288.
Sesarma (Grapsus (Pachysoma) fquatratus, 256.

Setophaga ruticilla, $9,27,139,144$.
Shag. 130.
Shearwater, Greater, 136.
Sheldrake, 125.
Shoveller 124.
Shrike, 33.
Loggerhead, 34.
Sialia sialis, 5, 139, 1.11, 144.
Sigalion arenicola, 319, 320, 324c.
Mathildæ, 291.
sp., 319.
Silvius gigantulus, 245.
pollinosus, 244.
Siphouostomum asperum, 289, 295.
plumosum, 293, 294, 295.
Sipuaculus Bernhardus, 288, 289 .
Gouldii, 288.
sp., 293.
Sitta Canadeusis, 8, 10, 142. 144.
Carolinensis, $\mathrm{S}, 10,139,1+1,144$.
Sittidæ, 10, 139.

Siurus auricapillus, 20, 37. 139, 14.
budovicianus, 20.
molacilla, 20,139.
nervins 20. 21. 140, 141, 111.
Soreboracensis, 20. 21.
smith. S. 1. Decasional necurrence of Iropical and sub-iropical spectes of lhec:upod Crustacea on the Coast of New Englaud, 254-2ci.
()u the Amplupodus genera, Cerames.

İuciula, and Lepdectylus, described hy Thomas say. 268-2s1.
()n the Species of Pinuixa iuhabiting the New Logland Coast, with remarks
on their carly stages. 217-253.
atud O. Harger. Report on the Dredgings in the region of ceorge's Bauk. in 1872. These Traus., iii. pp. 1-5ヶ, 1874. 311.

Suipe, 118.
Jach. 106.
Red-breasterl, 105.
llilson's, 10\%.
Snowhird. Shate-colorenl, 39.
Somateria mollissua, 127. $142,143,146$.
spectabilis, $127,142,143,146$.
Sora, 116
Sparron, Chipping, 39.
English, 40
Field. 39.
Fox-colored, 43.
llenslow's, 37.
llouse. 40.
Ipswich. 36.
Mayuard's, 36.
Sarauna, 36.
Song. 38.
Swamp, 38.
Tree, 39.
White-crownerl, 40.
throated. 40
Yellow-winged, 37.
Spatula clypeata, $124,142,146$.
Spher osyllis fortuita, 317.
Siphonostomum aftue, 291.
Spliyrapicus rarids, G4, 6if, 140,141 , 145.

Spinther citrina, $290,303,307$.
Spiochetopterns oculatus. 317,322
sp.. 31 ?
trpicus, 295.
Spio limicola, 320.
robusta, 301.
setosa, 301,322 .
sp., 291.
Spiophaues temuis, 320 .
Spirorbis borealis, 288. 289, 290, 291, 293,
$295,303,306,310,324$.
cancellatus, 259. 293, 20.5, 324.
carinata, 324.
glomerata, 203.
grapulata, 239, 295, 324.

Spirorbis lucitus, 2 sx, $289,295,295,303$, 30c. 310. 313, 317, 321.
nantiloides, 2as, 28:\% 29:3, 291, 30f, 310, 31:3. 315, 324.
porrecta, 259, 293, 295, 324.
quadrangularis, $2-9,293,305,310$, $: 313,317$.
sinistrorsa, 2:8, 295, 324.
sp, 315.
spirilum, 298, 299, 290, 291, 293, 295, 324.

Stupsoni, 289, 293, 306, 310, 313, $315,321,324$.
valida, 313, 314.
vitrea, 289, 293, 295, 324.
Spizella mouticola, :39, 1+1, 1-12, 145. pusilla, 10, 30, 11, 140, 145.
socialis, $13,39,41,110,141,145$.
Spoonbill-duck, 124.
Sprigt:nl. 123
Squatarola helvetica, $102,141,145$.
Stakedriver, 11:.
Stapedifer:a, 240, 241, 212.
Staurocephalus pallidus, 301, 317, 32\%. sociabilis. 3 t8.
Steganopus W'ilsoni, 103, 143, $14 \overline{5}$.
Stelgidopteryx serripenvis, 31, 140, 143.
Stephauosyllis. $2!!?$.
oryata, 292, 304, 30s.
picta, 304, 30s.
Stercorarms Buffoni. 131. 142. I43.
parasiticus, 131, 142, 143, 146.
pomatorhinus, 131.
Sterna acullavida, 135.
anglica, 135.
arauea. 135.
cantiaca, 135.
caspia, 13%.
Dougalli. 133, 140 .
Fosteri, 135.
fuligidosa. 131, 143.
hirnudo, 133,]40. 146.
macroura, 133, 142, 143.
paradisca, $1: 33$.
reqia, 135
superciliaris var. Antillarum, $1: 34,140$, 142.146.

Steruaspis, 316 .
fossor, 289, $295.302,304,309.312$. 323.

Sthenelais Ensertoui, 31.t, 319, 320, 324b.
gracilis, 319, 320.
limicola, 307. 316 .
picta, $291,300,317,320,321,324 b$, 324c.
sp., 314, 319.
Stimpson. Wm. Synopsis of the Marine Iuvertebrata collected by the late Arctic Expd. under Dr. I. I. Hases. l'roc. Acad. Nat. Sci. Philudelphia, rol. xr, pp. 13S-142, 1563 . 294.

Stupuson, IVm. Symopsis of the Marine lavertobrata of Grand Manan. Smithsonian Contributious to liuowledge, vol. vi, 185.3. 288.
Streblospio Benedicti, 322.
Strepsilas interpres, $103,1 / 11,145$.
Strigidre, 66, 130.
Strixllammea var. Americaua, 66, 140, 143, 145.

Scandliaca, 147.
Virgınica, 147.
Sturnella magna, 45, 140, 141, 145.
Stylogister, 326.
Sula bassana, 129, 142, 143, 146. fiber, $130,143,146$.
Sulida, 129, 139.
Sulcator, $282,283$. arenarius, 284. urenatius, 284.
Surnia ulula var. Mudsoma, $73,142,143$.
Swallow, Bank, 31.
Barn, 28.
Cliff, 30.
Lare, 30.
Rough-winged, 31.
Sea, 133.
White-bellied, 30.
Swan, 4.
Trumpeter, 120.
Whistling, 120.
Swift, Chimuey, 59.
Syllis fragilis, 317.
gracilis, $318,321$.
pallida, $300,314$.
sp., $300,304,31 \%$.
Sylvia estiva, 147.
auricollis, 147.
autumnalis, 147.
Blackhurnie, 147.
Canadensis, 147.
Castanea, 147.
flava, 147.
parus, 147.
Roscoe, 147.
sphagnosa, 147.
trichas, 147.
trachilus, 147.
Sylvicolidæ, 12, 133.
Sylvidde, $8,139$.
Symphysodon, 240.
Syrinx sp., 295.
Syrnium cinereum, 70, 142, 143, 115. nebulosum, 70, 140, 141, 145.

Tachreineta bicolor, 30, 139, 144.
Tachypetes aquilus, 131, 143.
Tachypetidæ, 131, 139.
Tanager, Scarlet, 27. Summer, 27.
Tanagridre, 27, 139.
Tantalidx, $110,139$.

Tattler, Itos.
Solitary, 108.
Teal, Blue-winged, 12.1.
Greeu-winged, 124.
Tecturella flaccida, 289, 20.4, 304, 308.
Teleostei, 241.
Telmatodytes palustris, 11, 1:39, 141.
Terebella, brunnea, 289.
cincinnata, 294
cirrata, 289, 29.4.
fulgida, 291.
sp., 293.
Terebellides Stroemi, 298, 249, 302, 305, $309,312,316$.
Tern, Aretic, 133.
Black, 135.
Comurou, 133.
Least, 134.
Roseate, 133.
Short-tailed, 135.
Sooty, 134.
Wilson's, 133.
Tetraonide, $100,139$.
Tetrodontina, 240 .
Thacher, James K. Veutral tius of Ganoids. 233-242.
Thalassema sp., 306. viridis 306, 319, 321.
Thelepus cincinuatus, 289, 291, 294, 297, $295,299,305,310,312,315,317,324 \ell$. circinatus, $290,316$.
Thelephusa circinmata, 297.
Thrasher, 8.
Thrush. Brown, 8, 24.
Golden-crowned, 20.
Gray-checked, 7.
Hermit, 6.
Larged-billed Water, 20.
Olise-backed, 6.
Swainson's, 6.
Water, 20.
Wilson's, 7.
Wood, 6.
Thryohorns Ludoviciamus, 11, 140.
Titlark, 12.
Titmonse, Hudsonian, 10.
Tufted, 9.
Tomopteris Smithii, 321.
Torquea, 297.
eximia, 291.
Totanns chloropus, $108,146$.
flavipes, $108,141,145$.
melanolcucus, $108,141,145$.
semipalmatus, $108,140,145$.
solitarius, 108, 140, 141, 145.
Travisia carnea, 302, 324c.
Forbesi, 306.
sp., 304, 306.
Trichohranchus glacialis, 321.
Tringa alpina, 141.
alpina var. Americaua, $106,145$.
Bairdii, 107.

Tringa camutus, $107,1+1,1.45$
fuscicollis, $106,141,115$.
macnlata, 106, 141, 145.
maritima, $106,141,142,14 \%$.
minutilla, 106, 141, 1-45.
subarquata, $106 ; 141,146$.
Tringoides macularis, $108,140,141,145$.
Trochilid:e, 62, 139.
Trochilus colubris, 62, 140, 145.
Troglodytes aëdon, 10, 139. 144 .
Troglodytidae, 10, 139.
Trophonia affinis, 291, 302, 322, 323.
arenosa, 318.
aspera, 289, 295, 293, 304, 308. 312 , 314.
plunosi, 293, 294, 295, 299, 316.
Trumbull, F . M. On the Anatomy and
Habits of Nereis virens. These Trans.,
iii, pp. 265-280, 1876. 315.
Trumpeter, 121.
Tryngites rufescens, 109, 141, 146,
Turdidae. 6. 139.
Turdus fuscescens, 7, 139, 144.
migratorins, 6. 139, 141, 144.
mustelinus, 6, 139, 144.
Pallasi, 6, 141, 144.
Swainsoni, 6, 141.
var, Alicie, 7, 141.
Turkey, Wild, 4, $98,144$.
Turustone, 103.
Tyranaide, 49, 139.
Tyraums Carolinensis, 19, 140, 145.
Unciola, 280.
irrorata, 281.
leucopes, 281.
Tria grylle, $338,146$.
Utamania torda, 138, 142, 143, 146.
Termilia serrula, 289, 293, 295, 306, 310, 324.

Terrill, A. E. Bricf Contributions to Zoölogy from Museum of Yale College No. XXIII. Results of Recent Dredging Expd. on the Coast of New England. Amer. Journal Sci, and Arts, vol. v, pp. 1-16, 1873. 297.

Brief Cont. Nos. XXY-XIIX. O_{p}. cit. vol. vi, 1873 : vol. vii, 1874.303.

Brief Cout. No. XXXII. op. cit, vol. ix, pp. 411-415, 1S75. 313.

Brief Cont. No. NXXIII. Op cit, rol. x, pp. 36-43; pp. 196-202, 1875. 314.

Explorations of Casco Bay by the U. S. F. C. in 1873. Proc. Amer. Assoc. Adv. Sci., pp. 340-395, 1874. 307. in Kumlin. Contributions to the Natural History of Aretic America made in connection with the Howgate Polar Expedition. 1877-8. Bull. U. S. Nat. Mus., No 15, pp. 141-143, 1879. 316.

Terrill, A. H. Marino Fanna of Nastport, Mo. Bull. E'ssex Lnst., iii. p'p. 2-6, 1871. 297.

New England Anuelida. Part. I.IIistorical Sketch, with annotated Lists of the Species butherto lecorded, 285-324e.

Notice of Recent Adelitions to the
Marine Invertebrates of the Northeastern Coast of America, ctc. Part 1. Annelida, etc. J'roc. U. S. Nat. Jlus, vol. ii, pp. 16j-205. 1879. 320.

Part II.-Mollusca, ctc. Up. cit., iii, pl. 356-405. 1880. 323.

Notice of some Dredgiugs made near Salem by A. S. Packard, Jr. and C. Cooke, in 1573. Sixth Ann. Rep. Pcahorly Acad. Sci., 1874313.

Preliminary Check-list of the Marine Invertebrata of the Atlantic Coast, from Cape Cod to the Gulf of St. Lawrence. Annelida. pp. 7-11, 1873-9. 318.

Report upon the Iavertebrate Animals of Tineyard Sound and the Adjacent waters (Crustacea by S. I. Smith and O. Harger), 1874. 299.
Vireo, Bline-Leaded, 33.
flavifrons, 33, 140, 144.
gilvue, 16, 32, 140, 144.
Nopeboraceusis, $33.140,144$.
olivaceus, 32, 139, 144.
Philadelphicus, 33.
Red-eyed, 32.
sohtarius, 33,]40, 144.
Solitary, 33.
Warbling, 16, 32.
White-eyed, 33.
Yellow-throated, 33.
Vireonide. 32, 139.
Vulture, Black, 93.
Wagtail. Water, 20.
Warbler, Bay-breasted, 16.
Black-and-yellow, 17.
Blackbucnian. 16.
Black-poll, 16.
Black-ihroated, 15.
Black-throated Blue, 15.
Blue goldeu-winged, 14.
Blue-winged, jellow, 14.
Blue Yellow-backed, 12.
Ccerulead, 15.
Cauadian fly-catching, 27.
Cape May. 17.
Chestuut-sided, 17.
Connecticut, 21.
Greeu Black-capped fly-catching, 26.
Hooded, 25.
Kentucky, 22.
Mouraing, 22. 23.
Nashville, 14.
Orange-crowned, 15.
Pine-creeping, 18.

Warbler, Praitie, 1%.
Red poll, 18.
'l'ennesseo, 14.
Worm-eating, 12.
Y゙cllow, 15.
Yellow-rumped, 16.
Yellow-throated, 17.
Waxwing, Bohemian, 32.
Wobster, II E. Ammelida Chertopoda of New Jersey. Thirty-second Amm. Rep. Now Fork State Mus. Nat. Hist, 1880. 321.

On the Annelida Chetoporla of the Virginian Coast. 'Irans. Albany Inst., vol. ix, pp. 202-269, 1879. 317.
Whippoorwill, 59.
Whistler, 126.
Whiteaves, J. F. Report on Deep-Sea Dredging Operations in the Gulf of St. Lawrence, pp. 1-29, 1874. 307.
Widgeon, 124.
Williston, S. W. Some Interesting New Diptera, 243-246.

Tho North Amcrican Species of Conopis., 325-342.
Willet, 108.
Woodcoek, 10\%.
European, 104.

Whoduceker, Black-haeked Three-toml, 6.t. Doway, 84.
Golden-wingarl, 66.
Hairy. 6.
Pileaterl, $5,63$.
Rethellied, 65.
Red-headed, 65.
Yellow-bollied, 64.
Wren, Great Carolina, 11.
Honse, 10.
Long-billed Marsh, 11.
Short-billed Marsh, 11.
Winter, 11.
Sema Sabini, $1: 35$.
Tamle, 66.
Yellowhird, 36.
Yellow-hammer, 66.
Yellow-legs, Greater, 108. Lesser, 108.
Yellow-throats, Marylaud, 5, 23.
Zenedura Carolinensis, 98, 140, 141, 145. Zodion, 326.
Zonotrichia albicollis, 40, 41, 141, 142, 145.
lencophrys, 40, 141, 142, 145.

Trans. Conn. Acad, Vol. IV.

6.

S. I. Smith, del.

J. H. Ewerton, from nature.

[^139]

[^140]

2.

0
,
N
\qquad


```
    Connecticut Arazerrr of Arts
    and Scieners, New Marren
    Transactions
    v.&
```

Physical
Applied Sai.
Sirials

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: * Am. Nat., vol. vii, No. 11, p. 693, Nov., 1873.
 † Proceed. Essex Inst., vol. iii, p. 138. 1863.

[^1]: * Am. Jour. Sci. and Jrts, Fol. xli, p. 249, (Second Scries.) 1866.

[^2]: * A Description of New England, by Capt. John Smith. p. 16. 1616.
 † New England's Trials. p. 14, 1622.

[^3]: * See also an interesting article by J. A. Allen in Bull. Nutt. Ornith. Club, rol. i, No. 3. Sept. 1876.

[^4]: * A Catalogne of the Birds of Conncuticut, arranged accorling to their natural families; by Rev. Jimes H. Linsley, published in Ain. Jour. of Sci. and Arts, vol. xliv, No. 2, p. 255. April, 1843.
 \dagger Rod and Gun, vol. v, No. 24, p. 370, Mar. $13,1875$.
 \ddagger Catalogne of the Birds fomd at Springfield, Mass., ly J. A. Allen. pp.67-8. 1864.

[^5]: * Mr. Jencks to H. A. Purdie, see Bulletin of the Nuttall Ornithological Club, vol. ii, pp. 20 and 21. Jan. 1877.
 \dagger Annals Lyceum Nat. IIist. N. Y., vol. si, p. 132, Jıme, 1875.
 \ddagger Birds of Long Island, J. P. (iiraud. Jr, p. 78.1844.
 S Belknap's History of New Hampslire, rol. iii, p. 173.1592.
 Trans. Conn. Acad., Vol. IV.

[^6]: * Am. Nat., rol. ri, No. 5. p. 306. May, 1872.
 \dagger A Report on the Ornithology of Massachusetts, by Wm. B. O. Peabody. p. 402. 1839.

[^7]: * Bull. Nutt. Ornith. Chbl, vol. i, No. 3, p. 76. Nept. 1876.

[^8]: * Bull. Nutt. Ornith. (luh, rol. i, No. 4, p. 92. Nov. 1876.

[^9]: * Amals Lyceum N゙at. IIist. N. Y.. Vol. xi, Mp. IB4-5. June, 1875.

[^10]: * Am. Nat., vol. vii, No. II, p. 692. Nor. 1873.

[^11]: * Bull. Nutt. Ornithol. Club, vol. i, No. 4, p. 95. Nov. 1876.
 † lbid, vol. ii, No. 1, p. 21. .Tan. 1877.
 \ddagger In letter from E. P. Bicknell.
 Ś Bull. Nutt. Ornith. Club, vol. i, No. 1, p. 11 . April, 1876.

[^12]: * Bull. Nutt. Ornith. Club, vol. ii, No. 1, p. 21. January, 1877.
 \dagger MS. notes of Erwin I. Slores.

[^13]: * For an interesting accome of the halits of this bird, see an article by William Brewster, in Bull. Vutt Ornitl. ('lub, vol. ii, No. 1, pp. 1-T. Jin., 18 it.
 \dagger Proceed. Essex. Inst., vol. v, p. 270.
 Trans. Conn. dcad., Vol. IV.
 3
 JULY, 187.

[^14]: * Dr. J. A. Allen stated, in the "New England Farmer " for 1861 (p. 540): "The present year [1861] I observed them the 4 th of April, at whieh time a recent snow covered the ground to the depth of several inches."

[^15]: * The Birds of Florida. By. C. J. Maynard. Part II, p. 49. Salem, 1873.
 \& For the nomenclature of this genus see Cones. in Bulletin of the Nutall Ornith. Cluh, vol. ii, No. 2. April. 1877.

[^16]: * Anmals Lyceum Nat. Hist. N. Y., vol. xi, pp. 136-37. June, 1875.

[^17]: * Am. Nat., rol. vii, No. 2, p. 693, Nov. 1873.
 + American Ornithology: Tol. ii, p. 160. Edinburgh. 1831.
 \ddagger Ms. notes of Erwin I. Shores.
 SI'roceed. Wissex lust, vol. v. p. 269. 1 xis.

[^18]: * Am. Nat., vol. ix, No. 10, p. 5ヶ3. Oct., 1875.
 \dagger Birds of Long Island. By J. P. Girant. Jr., p. 50. Istt, \ddagger Wilsu!'s American Ornithology. Vol. ii, 1'. 1.1-2. 1331.

[^19]: * 3tS. notes of Erwin I. Shores, Esq.
 \dagger See Ilitchcock's Report, p. 547. 1s:33
 \ddagger See Hayden's Report for 1872, p. 675 .

[^20]: * Ann. Lyc. Nat. Hist. N. Y̌., vol. xi, pp. 13ヶ-8. June, 18 it.
 \dagger Am. Nat., vol. vii, No. 11, p. 692. Nor., 1873.
 \ddagger Linsley's Catalogne of the Birds of Comecticut, p. 257. 1843.
 § American Ornithology, vol. ii, p. 136. 1831.
 || Mamual of Ornithology. Vinl. i, p. 374. 18.3.

[^21]: \ddagger Coues Key to N. Am. Birds. p. 109 1872.
 § Baird, Brewer and Ridgway, Histury N. Am. Birds, vol. i, p. 314. 1874.

[^22]: * MS. nutes of the sitaltmuller Brothers.
 \dagger Am. Jour. Sei. and Arts, vol. xliv, No. 2, p. 261. April, 1843.

[^23]: * P'eter Kalm's Travels into North America, vol. ii, fyp. 140-44. 1771.

[^24]: * MS. notes of W. W. I'oc.
 † l'roceed. Bost. Soc. Nat, llist., vol, ix, 1'. 276, July 1, 1863.

[^25]: * The Natural and Civil History of Vermont. By Samuel Willians. pp. 115-16. Printed at Walpole, N. H. 1794.
 \& I'urdie in "Nutall Ornith. Bulletin, vol. ii. No. 1. p. 21. Jan. 1sit.

[^26]: ＊Notes on some of the Rarer Birds of Massachusetts，p．25． 1869.
 friraud＇s Birds of Long Island．p．165．18．14．

[^27]: * MS notes of the Stadtmülter Brothers.
 † Bull. Nutt. Oruith. Cluk, vol. i, No. 1, p. 19. April, 1876.
 Trans. Conn. Acad., Vol. 17.
 5
 JULY, 1877.

[^28]: * Am. Nat., vol. x, No. 4, p. 237. April, 4876.
 +MS. notes of W. W. Coe, Eser.

[^29]: * Bult. Nitt. Ornithol. Chub, vot. i, No. 2. p. 52. July, 1 Sitb.

[^30]: * Baird. Brewer and Ridgway, roi. i. p. 554.
 + Bull. Nutt. Ornith. Club, val. ii, No. 1, p. 1 IT January, 18 ri.
 \ddagger Giraud's Birds of Long lstand, 1. 144. 1844.

[^31]: * MS. noter of Wr. IV. C'oe.

[^32]: * \ts. notes of Erwin I. Slores.

[^33]: * A History of the Birds of Europe, including all the species inhabiting the Western Pasearctic Region. By H. E. Dresser. Part NLVIII, March. 1876.

 Trans. Conn. Acad., Vol IV.
 6
 Juty, 1877.

[^34]: * Quoted by Charles Pickering in Proceed. Bost. Soc. Nat. Hist., vol. xi, p. 158 , April 17, 1867.

[^35]: * Birds of North America, Baird, Brewer \& Ridgway, vol. i, p. 526, 1874.
 \dagger Birds of Long Island, p. 100. 1844.
 \ddagger Herrick's Partial Catalogue of the Birds of Grand Menan, p. 8. 1873.

[^36]: * Proceed. Bost. Soc. Sat Ilist. rol. ix, p. 127. 1862.
 \dagger The Birds of Eastern Pennsylvania and New Jersey. By Wrm. P. Turnbull, LL.D. p. 24. 1869.
 \ddagger MS. notes of the Stadtmuller Brothers.

[^37]: * An I ccount of two Voyages to New England, p. 100. 1675.
 \dagger MS. nutes of W. Wr. Coe.

[^38]: * J. 1. Allen in Bull. Nutt. Ornith. Club, vol. i, No. 3. p. 54. Sept., 1876.

[^39]: * Itistory of Lynn, hy Alonzo Lewis and James R. Newhall, p. 298.
 \dagger sere ('ateshy's Nat. Hist. of C'arolina, vol. i, tabs. 12 and 13.

[^40]: * Peter Kilm's Travels into North America, rol. ii, pp. 73-78. 1771.
 \dagger See Cones' Birds of the Northwest. p. 204. 1874.

[^41]: * Nuttall's Mannal of Ornithology, vol. i, p. 211. I832.
 \dagger Gull. Nutt. Ornith. ('luh, vol. i, No. 1, p. 19. April, 1876.
 \ddagger Am. Jour. Sri. aud Arts, vol. xlir, No. 2, p, 260. April, 1843.
 Seprinted in Collections of the Mass. IVistorieal Society, vol. iii. 3 d series, p. 275. $183: 3$.

 Trans. Conn. Acad., Vol. IV

[^42]: * Bulletin Nuttall Ornithological Club, vol. ii, No. 1, p. 21, Jan., 187 个.
 \dagger Imerican Naturalist, vol. vi, No. f, p. 367, June, 187:.
 \ddagger Am. Nat., vol. vii, No. T, p. 390-91, July, 1873.

[^43]: * Am. Jour. Sei. and Arts, vol. xliv, No. 2, p. 259, April, 1873.
 + Manual of the Ornithology of the United States aud Canada. By Thomas Nuttall. Vol. i, Land Birds, p. 271, 1832.

[^44]: * Am. Nat., vol. vii, No. 12, 1. 750, Vec., 1873.

[^45]: * Am. Nat.. vol. viīi. No. 5, p. 30s. May, 1874.
 \dagger Manual of Ornithology, p. 284, 1832.
 \ddagger The Birds of Eastern Pennsylvania and New Jersey, by Willian P. Turnbull, 1869.

 今. Im. Nat.. vol. rii, p. 750 , Dee., 1873.
 || A C'italogte of the Birds of Coos Co.. N. H., and Oxford Co., Me., by O. J. Naynard, with notes ly William Brewster. From Proceed. Bostou Soc. Nat. 1list., vol. xiv, 1) 21 , Oct. $18,1871$.

 - Catalogue of the Birds found at Norway, Oxford l'o., Me., ly A. E. Verrill. From Froceed. Essex Institute, rol, iii, p. 144, May, 1863.

[^46]: * Report Sect. Maine Board A griculture, p. 170, 1865.
 † Catalogue of the Birds of Ghemung Co, N. Y., by W. H. Gregg, M.J. From Procecd. Elmira Aearlemy of Scienees, 1870.
 \ddagger The Food of Birds as related to Agriculture, by J. M. Wheaton, M.D. From Ohio Agrieultural Report, p. 8, 1874.
 § Appendix to Zadoek Thompson's IIistory of Vermont, p. 21. 1853.
 |History N. Am. Birds, Baird, Brewer and Ridgway, vol, ii, 1. 354.
 - Cones, Birds of the Northwest, p. 244. 1874

[^47]: * Bull. Fissex. Inst., vol. vii, No. 1, pp. 21, 3R. Tan., 1875.
 f Oruithology of California, vol. i, p. 324. 1870.
 \ddagger Bull. Essex. Inst. vol. vi, No. 10, p. 174. Oct., 1874.
 S Baird, Brewer and Ridgwiy, Birds N. Am., vol, ii, p. 35f. 1834.

[^48]: * Birds of tic Northwest. p. 251. 1874.

[^49]: * MS. notes of the Stadtmüller Brothers.

[^50]: * The Natural and Civil History of Termont. By Smmuel Williams, pp. 11i-18. 1794.

[^51]: * Zadock Thompson, Appendix to the History of Vermont, p. $26,1853$.
 + Force's Ilistorieal Tracts, vol. ii, Tract 5, p. 50.
 \ddagger New England's Prospect, by William Wood. p. 31, 1;34.

[^52]: * MS notes of John H. Sage, Esq. + Voyages to New England, p. 101, 1675.

[^53]: * MS. notes of Erwin l. Shores.
 \dagger Peabody's Report on the Ornithology of Mass., p. 334. 1839.
 \ddagger Am. Nat.. vol. rii, No. 11, p. 69\%. Nov., 1ヶ\%3.

[^54]: * For a valuable contribution to the hiographr of this beantiful Wooduecker, see an artirle ly Willian Brewster, in lall. Nutt. Ornith. 'lub, vol. i, No. 3, M. (i:3-70. Sept., 1 sit6.
 \dagger Am. Jour. Sci. and Irts, Vol, xlir, No. -2, p. 20.3. April, IS4.3.
 \ddagger Birds of Long Island, p. 179.1844.
 ミ. Am. Nat., vol. vii, No. 11, p. 693. Nov., 1878.
 || A List of the Birds of New Kingland. [From Proe. Essex tnst., vol. v. p. 15.] 1 sige. Trans Conn. Aralo, Vol. IT $!$

[^55]: * Peter Kalm's Travels into Nortl Americir, vol. ii, pl), 8fi-7. 1771. \dagger Catal. Birls Comn.. 1 . 253. 1843.

[^56]: * Notes on some of the Rarer Birds of Massaelusetts, p. 17. 1869. I have lately seen this speeimen.
 \dagger Proceed. Essex Institute, vol. v, p. 312.
 \ddagger Coues' Birds of the Northwest, p. 300. 1s74.

[^57]: * Hartford Times, chap. xvii, July 20, 1861.

[^58]: * Bull. Nutt. Ornithol. Club, vol. ii, No. 3, p. 80. July, 1877.

[^59]: * Baird, Brewer \& Ritgway, vol."iii, p. 22, 18it.
 \dagger A List of Birds observed at (irand Menan and at Yarmouth. N. S., June 16 to July 8, 1856. Proceed. Boston soc. Nitt. Ilist., vol. vi, p. 115. March, 1857.
 \ddagger Aim. Jour. Sci. and Irte, rol. xlir. No. 2, p. 253. April, 1543.
 § History of Lynn, Mass., 1p. 432-i, 1865.

[^60]: * Hartford Times, chap. xx, August I7, Is(31.
 \dagger New English Canaan, p. 4\%). (Reprinted in Foree's LIstorical Tracts, Tract 5, vol. ii.)
 \ddagger Am. Jour. Sci. and Arti, No, 2, vol. xliv, p. 253, 184:\%

[^61]: * Hartford Times, chap. xvi, July 6;, 1861.
 \dagger History of Lynn, Mass., by Alonzo Lewis and James R. Newhall, p. 473, 1865.
 \ddagger leport on the Geology, Mineralogy, Botany, and Zoology of Massachusetts. By Edward Hitrheock, Amherst. p. 546. 1833.

 Slirds of Last Pennsylvania and New Jersey. By William P. Turnbull, M.D., p. 41. 1869.

[^62]: * J. A. Allen's Nutes on some of the Rarer Birds of Mass.. pp. 47-8. 1869.
 \dagger Zaduck Thompson's Jistory of Vermont. 1p. 66i-7. 1842.

[^63]: * Hartford Times, chap. xv. June 29, 1861.

[^64]: * Rarer Birds of Mass., J. A. Allen, p. 46, 1869.
 \dagger The Natural and Civil History of Vermont, by Samuel Williams, p. 112, July 16, 1794.
 \ddagger Am. Nat., vol. viii, No. 2. p. ss, Feh., 18 it.
 Soucs' Birds of the Northwest, p. 332, tsit.

[^65]: * Hartford Times, chap. x, May 25 th, 1861.
 \dagger Nuttall's Manual of Ornithology, vol. i, p. 88. 1832.
 \ddagger MS. notes of W. W. 'roe.

[^66]: * Hartford Times, chap. ix, May $18 t h, 1861$.
 + New English Canaan. By Thomas Morton, 1, 19. 1632. [Reprinted in Force's Hist. Tracts, vol. ii, T'. 5.]

[^67]: * History of Vermout, p. 62. 1842.
 + llartford Times, chap. ix, May 181h. 1861.

[^68]: * Dr. Wooul, in Am. Nat., vol. x, No. 3, pp. 132-1. March, 1876.
 \dagger Aretic Zoology. By Thomas Pemment, vol. ii, p. 204. 1785.
 \ddagger Linsley's Catal. lárds Conn., of. 250, 1843.

[^69]: * See an interesting Article in Am. Nat., rol. v. No. 2, p. 82. April, 1א71.

 1 Hartford Times, June 29, 1861.
 \ddagger See Proceed. Essex Inst., vol. iv, p. 153.

[^70]: * Notes on some of the Rarer Birds of Mass., p. 10-11, 1869.
 \dagger Ilerrick's Partial Catalogue of the Birds of Grand Menan, p. 10, 1873.
 \ddagger An. Nat., vol. v, No. 2, p. 82, April, 1871.

[^71]: * Am. Nat., rol. vii, No. 6, pp. 342-3, June, 187%
 + Proceed. Bost. Soc. Nit. Itist., vol. ix, p. 129, Sept., 1862.

[^72]: * Am. Nat., vol. viii, No. 5, p. 268, May, 1874.
 \dagger New Englislı 'anaan, p. 50. [Reprinted from Force's Hist. Tracts, vol. ii, T. 5.]

[^73]: * MS. notes of the Stadtmuller Brothers.
 \dagger MS. notes of W. W. Coe.
 \ddagger A Report on the Ornithology of Massachusetts, hy William B. O. Peabody, p. 268, 1839.

[^74]: * Hartiord Times, clap. xii, June Rth, 1861.
 \dagger Hartford Times, chap. xiii. June 15th, 1861.
 \ddagger Proceed. Essex Inst., vol, i, p. 203. 1856,

[^75]: * Hartford Times, chap. xiv, June 22d, 1861.
 + Allen's notes on some of the Rarer Birds of Mass., p. 14. 1869.

[^76]: * MS notes of W. W. Coe.
 \dagger Pealoody's Report on the Ornithology of Mass., p. 265. 1839.
 Trans. Conis. Meab., Vol. IT. 12 Jely, 18 亿.

[^77]: * New England's Prospeet, p. 30, 1634
 \dagger Regarding its former ahmulance, Mr. J. N. (lark writes me that an old hunter told him "that they used to be very common" alont the month of the Connectiont, where "he had shot a good many, but not recently."
 \ddagger Am. Jour. Sci. and Arts, wol. xliv, No. 2, p. 250, April, 144\%.
 § Nuttall's Danual of Wrnithotogy, l. 15, 1832.

[^78]: * Appendix to Wilson's American Ornithology, vol. iv, pp. 254 and $258,1831$.
 \dagger Am. Nat., rol. rii, No. 11, p. 693, Nov., Jsi3.
 \ddagger Samuel's Mescriptive Catalogne of the liirds of Massachusetts, p. 3, 18:4. [From Agr. Mass., App., p. xviii, 1863.]

 S Proc. Bost. Soc. Nat Hist., rol. ix. p 122, Sept.. 1892.
 $\|$ Cones' Birds of the Northwest, p. 3sin, 1sit.

[^79]: * New England's Rarities Discovered. By John Josselyn, p. 11, 1672.
 f Cones' List of the Birds of New England, p. 6, Is6\%; J. A. Allen's Rarer Birds of Mass., P, 47, 1869; etc.
 \ddagger Am. Nat., vol. iii, p. 498, Nov., 1869.
 § Reprinted in Force's Ilistorical Tracts, Tract 4, p. 17-18.

[^80]: * Reprinted in Force's Historical Tracts, Tract 5, p. 42.
 \dagger Reprinted in Peter Forces Historical Tracts, vol. i, Tract IU, p. 11.

[^81]: * The Natural and Givil History of Vermont, p. 114, 1794.
 \dagger Nuttall's Atanual of Ornithology, vol. i, pp. (63)-2, $18: 32$.

[^82]: * American Ornitholngy. by Alexander Witson. vol. ii. pp. 295-6. Edinburgh, 1831.
 \dagger Wilson, ibid., pp. 295-6. \ddagger Nuttall, ibid., p. 633.

[^83]: * The Birds of America, beh Joh James Andubou, vol. v, pa. 29-30 f Wilson, ihid, Appendix, vol. iv, p. 323.

[^84]: * Vide: Cones' Birds of the Northwest, p. Sn! , 187t; Allen. Bull. Mus. Comp. Zonl., vol. iii. No. 6. p. 170 , 1si2: Cooper, Ornithology of California, p. 513, 1871; Merriam, Zool. Report in bith Anmual Report C. A. (ieol. Surver Terr., p. ilu, 1sid; llenshaw, Report upon Hrnithological specimens. p. lis, 1874.
 \dagger Cooper, Ornithologe of California, p. 513, 1870.
 \ddagger MS. notes of the Stadtmiller Brothers.
 A Statistical Account of the County of Middlesex, in Connecticnt, by Dirirl D. Fieli, p. 19. $1: 19$.

[^85]: * Reprinted in Force's Historical Traets, 'Tract 5. p. 48.
 + Am. Jour. Sci. and Arts, vol. xliv, No. 2, p. 264. April, $1: 43$.
 \ddagger Jistory of Vermont, Natural, l'ivil, and Statistical. By Z. Thompson, p. 101. Ast2.
 §See tritcheoek's Report, p. 549. 1833.
 $\|$ Iudubon's Birds of America, vol. v. p. 43.
 -Two Vogages to New Fngland. p. 99. 1675.

[^86]: * Force's Historical Tracts, vol. ii, Tract 5, p. 48.

[^87]: * Manual of Ornithology, vol. i, p. 662. 1832.
 \dagger A Statistical Account of the 'ounty of Middlesex, in Connecticut. By Darid D. Field, p. $3 \mathrm{f}_{\mathrm{L}} 1819$.
 \ddagger Force's Ilistorical Tracts, vol. if, Tract $.5, \mathrm{p} . \nmid \mathrm{q}$.
 § Nuttall's Mamml of Omithology, vol. i, pp. 66is-64. 1832.

[^88]: * Am. Jour. Sci. :nd Arts, vol. x†iv, No. 2, p. 265. April, 1843 . † Op, cit., p. 268.

[^89]: * Lieprinted in Force's Ilistorical Tracts, vol. ii, Tract 5, p. 47.
 † MS. notes of Joln H. Sage, Esq.
 \ddagger Coues' Birds of the Northwest, p. 176.

[^90]: * Eee also Giraud's Birds of Long Island, 184t.
 \dagger Catalogue of the Birds of New Eugland. By T. M. Brewer. p. 13. 1875.

[^91]: * New English Canaan, p. 47, 1 1332. Reprinted in Force's Historical Tracts, rol. ii, Tract 5.
 \dagger Am. Jour. Sci. and Arts, vol. xliv, No. 2, p. 267, 1843.
 \ddagger Aretic Zoülogy, vol. ii, p, 465, 17:
 S. List of the Birds of New England. p. $48,18 t i 8$.
 $\|$ Arctic Zoulogy, vol, ii, p. 502, 1785.

[^92]: * Mt. notes of T . T . Cop, Esq.

 [roceed. Essex Inst., vol. r, p. 296, 1868.

[^93]: * Am. Jour. Sci. and Arts, vol. xliv, No. 2, p. 266. 1843. \dagger Am. Nat., vol. ix, No. 8, p. $470,1875$.
 \ddagger Girand's Bird's of Long Island, p. 275, 1844.

[^94]: * MS notes of W. W. Coe, Esq.
 \dagger Itton, Rarer Birds of Massachusetis, p. 39, 1866\%
 \ddagger Ara. Jom. Sci. and Arts, vol. xliv, No. 2, p. 265, 1843.

[^95]: * New English Canaan. Priuted by Charles Greene, 1632. Reprinted in Foree's Historical Traets, rol. ii, Tract $5, \mathrm{pp} .47-\mathrm{s}$.
 † Bull. Nutt. Ornith. Club, rol. i. No. 3, p. 5s. Sept., 1876.
 \ddagger The Natural and Civil History of Vermont, p. 119. 17.94.
 \$ The llistory of New Hampshire, rol, iii. By Jeremy Belknap, p. 169. 1792.
 || listory of Fermont. 1. 103. 1~42.
 Trans. Conn. Acan., Vol. IV.

[^96]: * Alaska and its Resources. By William H. Dall. Appendix G. p. 58:\% Is70. $\dagger \mathrm{Am}$. Nat., rol. viii, No. 2, p. 89. Feb., 1874.
 \ddagger Ludlow's Report for 1875 , p. 87 . Šllaylen's Report for 1872. p. 702.
 || Pli. Trans., lxii. 419.

[^97]: * As quoted by De Buffon.
 \dagger Arctic Zoölogy, vol. ii, p. 443. 1785.
 \ddagger Am. Jour. Sci. and Arts, vol. xliv, No. 2, p. 267, 1843.
 \& Bull. Nutt. Ornith. Club, vol. ii, No. 1, p. 22, January, 1877.

[^98]: * Cones, Birds of the Northwest, pp. 537-8, 1874.
 \dagger Am. Jour. Sci. and Arts, vol, xliv, No. 2, p. 267, Aןril, 1843.
 \ddagger Maynard's Naturalists' Guide, $\mathrm{\Gamma p} .14 \overline{5}-46,1873$.

[^99]: * Wilson's American Ornithology, vol. iii, p. 115, 1831.

[^100]: * Bull. Nutt. Nruith C'lub, No. vol. ii, 1, p. 22, January, 1877

[^101]: * Am. Nat., vol. ix, No. 10, p. 573, Oct., 1875.
 f Force's Ifistorical Tracts, rol. ii, Tract 5, p. 41%.

[^102]: * Bull. Nutt. Ornith. Club, rol. ii, No. 1, p. 18, Jan., 1877.

[^103]: * Force's Iistorical Tracts, Tract 5, (vol. ii,) p. 46.
 \dagger Am. Jour. Sci. and Arts, vol. xliv, No. 2, p. 269, 1843.

[^104]: * New English Canaan, p. 47. Reprinted in Peter Force's Historical Tracts, Tract 5.

[^105]: * Am. Jonr. of sci. and Arts, vol. xlir, No. 2, p. 269, April, 1843.
 \dagger Birds of the Northwest, p. $564,18 \mathrm{i} 4$.
 \ddagger Reprinted in Force's Historical Tracts. Tract 5, p. 47 .

[^106]: * History of Vermont, p. 109, 1842.

[^107]: * Cones' Birds of New England, p. 52 (300), 1868. \dagger Am. Nat., rol. vi, No. 5, pp. 30G-7, May, 1872.

[^108]: * Arctic Zoölogy, vol. ii, 1. 553, 17. $5 . \quad$ + Catal. Birds of Conn., p. $270,1843$.
 \ddagger Birils of Toner Island. p. :33?, 184 .

[^109]: * Im. Jour. Sci. and Arts, vol. xliv. No. 2, p. 271, April, 1843.
 \dagger Giraul's Birds of Long Island, p. 345, 1844.

[^110]: * Putnam, in Proceed. Essex Iust., vol. i, p. 221, 1856.
 \dagger Josselyn's Two Voyages to New England, p. 102. 1675.

[^111]: * Am. Nat., vol. ix, No. S, p. 470, Aug., 1875.

[^112]: * See Cones' Birds of the Northwest, p. 688 1874.

[^113]: * Bull. Nutt. Ornith. Club, vol. ii, No. 1. p. 22. Jan., 187 T.
 + Am. Nat., rol. si, No. 4, p. 243, April, 1577.

[^114]: * Birds of the Northwest, p. 699, 19t4.

[^115]: * Am. Jour. Sci Arts, rol. xliv, No. 2, . 2ヶ2, April, 1843.

[^116]: * Am. Nat., vol. vi, No. 1, p. 49, Jan. 1872.
 \dagger Birds of East Penn. and New Jersey. By Win. P. Turnbull, p. 48, 1869.

[^117]: * Those marked with an asterisk are resideut individually, while the others are represented here, in winter, by individuals which probably brecd much farther north.

[^118]: * This list does not include resident species.

[^119]: 31 Dendroeca coronata.
 32 Dendroera Blackburnis.
 33 Jendrueca striata.
 34 Dendroeca castanea.
 35 Dendroca Pennsylvaniea.
 36 Dendroeca maculosa.
 37 Dendroeca tigrina
 38 Dendrceea discolor.
 33 Dendroeca palmarum.
 40 Dendreca pinus.
 41 Siurus auricapillus.
 42 Siurus navius.
 43 Geothlypis trichas.
 44 leteria virens.
 45 Mriodioctes mitratus.
 46 Myiodioctes Canadensis.
 46 Setophaga ruticilla.
 4) Pyranga rubra.

 49 Pyranga restiva.
 50 Hirundo lıorreorum.
 51 Tachycineta bicolor.
 52 Cotyle riparia.
 53 Progne purpurea.
 54 Ampelis cedrorum.
 55 Tirea olivaeens.
 56 Vireo gilrus.
 57 Vireo flavifrons.
 58 Vireo solitarius.
 59 Vireo Noreboracensis.
 60 Collurio horealis.

[^120]: Trans. Conn. acad., Vol. IY.
 27
 Oct., 1877.

[^121]: * In the figure ($\mathrm{Pl} . \mathrm{II}$, fig. 7 ,) the pubic part, which bends a little ventrad wheu in position, is here flattened out and not foreshortened. It should be noted that the aborad ray, 7 , lies dorsad of the next ray, thus partially concealing it in the tigure. This is what we find as a general rule in the rentrals of Elasmobranchs, and the conformation is important in building the intromittent organs of the mates.

[^122]: * The sign of equality ($二$), as here intreduced after a reference, is used to indicate that the description, mention, or whatever aceount of the species may be given in the work referred to, is apparently based wholly on the previous account given by the author whose name follows the sign.

[^123]: Cancer grapsus Linué, Systema Nature, ed. xii, i, p. 1048, 1767; Amœnit. Acad., 2 d ed., iv, p. 252, pl. 3, fig. 10, 1789.
 Herbst, Krabben und Krebse, i, p. 115, 1782.
 J. C. Fabricius, Systema Entomologite, p. 406, 1775 ; Eutomologia System., ii, p. 438, 1793 ; Suppl. Entom. System., p. 342, 1798.

[^124]: ＊Boeck．Christiania Videnskabs－Selskabs Forhandlinger，1870，p． 246 （166），and Scandinar．og Arktiske Amphipoder，p．598，describes the inner lobe of the first maxilla in the Podocerina，as destitute of sete（＂lamina interiore parvula，ovali，setis destituta＂）．This is not characteristic of all the species of the group，however，and will not serve as a character for distinguishing Cerapus（as here restricted）from the Pollocerin：；for Boeck himself，in the latter of the works above quoted，plate 28， figure 3 f．figures setie upon this lobe of the first maxilla of Cerapus［Ericthonius］ abditus，and they are certainly present in Ericthonius difformis．

[^125]: * In several allied species of Amphipoda, the excrement enters largely into the composition of the tnbe. In 1874 I watched carefully the process of constructing the tubes in several species of Amphipoda. Hicrodeutopus grandimanus (AI. minax Smith) was a particularly favorable subject for observation. When captured and placed in a small zooplyte trough with small, branching alge, the individuals almost always proceeded at once to construct a tube, and could very readily be observed under the microscope. A few slender brancbes of the alga were pulled toward each other by means of the antennie and gnathopods, and fastened by threads of cement spun from brancb to branch by the first and second pairs of pereopods. Tbe branches were not usually at once brought near enough together to serve as the frame-work of the tuhe, but were gradually brought together by pulling them in and fastening them a little at a time, until they were brought into the proper position, where they were firmly held by means of a thick net-work of fine threads of cement spun from branch to brancb. After the tube hul assumed very nearly its completed form, it was still usually nothing but a transparent net-work of cement theads woven among the

[^126]: branches of the alga, though occasionally a branch of the alga was bitten off and added to the frame-work: but very soon the animal began to work bits of excrement and bits of alga into the net. In this case the pellets of excremeut, as passed, were taken in the gaathopods and maxillipeds, and apparently also by the maxillæ and mandibles, and broken into minute fragments and worked throngh the web, upon the outside of which they seemed to adhere partially by the viscosity of the cement threads and partially by the tangle of threads over them. Excrement and bits of alga were thus worked into the wall of the tube until the whole animal was pratected from view. while, during the whole process, the spinning of cement aver the inside of the tube was kept up. When spinaing the cement threads within the tube, the animal Was held in place on the rentral side by the second pair of gnathopods and the caudal appendages, the latter being curred beneath the anterior portion of the pleon, and on the dorsal side by the third, fourth and fifth pairs of perreopods extended and iuroed up over the hack, with the dactyli turned outward into the web. The spinning was done whelly with the first and second peraopods, the tips of which were tonched from peint to point over the inside of the skeleton tube in a way that recalled strongly the movements of the hauds in playing upon a piano. The cement adhered at once at the points touched and spun out between them in uoiform delicate threads. The threads seemed to harden very quickly after they were spum and did not seem, even from the first, to adhere to the animal itself. In one case in which the ontire construction of the tube was watched, the work was apparently very nearly or quite completed in little more than half an heur. In a species of $A m p h i t h o e ̈$, in which the construction of the tube was watchell, the process was very similar, though less cement and mere foreign material seomed to euter into the structure.

[^127]: ITuciola irrorata Say, Jour. Acad. Nat. Sci, Philadelphia, i, p. 389, 181\%. Milne-F.Iwards, IVist, nat. Crust., iii, p. 644, 1840 (= Siy). Stimpson, Marine Invertebrata of Grand Manan, $3.45,185.3$.

[^128]: New Haven, July 1, 1880.

[^129]: * This common and very generally distributed species is, without much doubt, identical with the common shell-inhabiting species of northeru Europe-the Phascolion Strombi Theel. This species has had a large numher of spocific names, under three genera. It is the Strombi Mont., dentalii Gray, bronhardus Forbes, granulatum Leuck., copitatus Rathke, concharum (Erst., cementurium Quatr., hamulutum Packard. Perhaps the Phascolosomu tubicola, described by me, is only a variety of the sime species.

[^130]: * I also ilredged, in that vieinity, in $1859,1864,1865,1868,1870,1872$, but hare not published the very numerous additions to the list of anuelids.

[^131]: * Some of the divisions of the genus Pectinaria, proposed by Malmgren as genera, do not seem to we well founded; at least, I cannot regard them as of generie value. Among these is the group named Cistenides, which does not seem worthy of separation, even as a sub-genus, from Pectinaria. The species hitherto named by me Cistenides Gouldii should, therefore, be called Pectinaria Gouldii V.

[^132]: * This species differs so mnch from the typieal species of Glycera and Rhynchobolus (whether the latter be clistinct or not). that I propose to establish a new genus (Euylycera) for it. Euglycera may be distinguished by possessing two ligulate branehiee to each branchiferous parapodial appendage; oue of these is connected, at base, with the dorsal side of the parapodia; the other, with the ventral side. Prohoscis and jaws are as in Rhynchololus.

[^133]: * The name, Praxillu, Mgn. (1865), having been previonsly employed for a genus of birds by Reicheubach (1853), I propose to substitute Praxillella, for this group.

[^134]: * Alhough this figure was correctly drawn by Mr. Emerton, sevcral ecrors were introdnced by the wood-engraver. The occipital "cpanlets,' which aro made to look like eves, are really suall, lout prominent, flattened processes, laving a very distinct, dark border. The first dorsal cirrus ou the lefl side, is wrongly made to appear to arise from the luceal scgment, and the bases of the tentacular cirri are not well represented. In this species the ventral cirri of the first two segments are short, thick, Hatteued, ovate, and brownish in eolor. I lave, therefore, reproiluced this drawing, more correctly, on one of the accompanying phates.

[^135]: * This species appears to be identical with the Phuscolion Spetshergense Theel, 1875. (K. Srenska Tet. Akad. Handlingar, iii, f, p. 16, [sep.], pl. 1, figs. 2, 3.) The latter is regarded as a variety of P. strombi, by Danielssen and Koren.

[^136]: * The supposed error in the original measurement of this species, referred to by Professor Webster, is only apparent, owing to the fact that the specimens of this species contract excessively when put into alcohol. My original measurements were from the living specimens, and are correct. Still larger specimens have since been obtained.

[^137]: ＊The genus Dipolydora is established for this species．It differs from trpical Polydora，especially in having four groups of setze on each side of the large，specialized， fifth segment，showing plainly that this is composed of at least two united segments． The caulal segment bears four flattened lobes，instead of a sucker．The body is very long，and consists of an unusually large number of segments．The structure，in general，is modified to suit the habit of living in galleries excarated in slells or limestone．

[^138]: * Schiner's charaters are as follows :
 schenkel mieht verdickt, wenn sie aber verdickt sind, dann ist die Verdickerung an der Basis nicht auffillend, smdern rou la bis zur Spitze eiu regelmässige; zweiter Huterleibsring uicht auffallend schmailer und länger als dic übrigen Ringe. - Conops Lin.

 Schenkel an der basis plözlich und in authallender Weise verdickt, so dass die Verdickerumg immer nnregelmässig erscheint; zwetter Ilinterleihsrinzr auffallend schmäler und linger als die übrigen Ringe.

 I'hysocejnhulu Sch.

[^139]:

[^140]: if Fincriciltorr rateme

