

[165]

XXVI. A Letter from Mr. James Short, F.R.S. to the right bonourable the Earl of Macclesfield, Prefident, concerning a Pa per of the late Servington Savery, E/q; relating to bis Invention of a new Micrometer.

Read May 10, TT is now above a year fince I received 1753. a letter from the Rev. F. Pezenas, profeffor of hydrography to the French King at Marfeilles, in which he informed me, that M. Bouguer had read, before the Royal Academy of Sciences at Paris, in the year 1748, a memoir, in which he defribes an heliometer; which is an inftrument, confifting of two objective glaffes, for meafuring the diameters of the planets. He faid alfo, that this memoir was actually in the hands of M. de Fouchy, Perpetual Secretary of the Academy, or at the Royal Printinghoufe; and that it was regifter'd in the minutes of the Academy for the year 1748.

Immediately after reading this letter, I recollected to have heard a paper upon the fame fubject from the late Servington Savery, of Exeter, Efq; read before the Royal Society, about the year 1743 . I therefore had recourfe to the minute-book of the Society for that year, where I found the following minute, which I copied in the prefence of the right honourable the Lord Charles Cavendifh, then Vice-Prefident:

[166]

" A paper communicated from Mr. Savery at " Exon, containing a new method for meafur" ing the difference between the apogeal and
" perigeal diameters of the fun, was hewn; and " thanks being ordered, Dr. Bradley was de" fired to oblige the Society with an account of " its contents.
"Octob. 27, 1743."
Upon mentioning laft year the whole of what I have now repeated to you, your lordhip was pleafed to promife to fpeak to Dr. Bradley, who was then in Oxford/hire, concerning this paper of Mr. Savery; in confequence of which, I, about the end of laft May, received the original paper of Mr. Savery from the Doctor's hands.

The volume of the Royal Academy for the year 1748 being now publighed, I have found, that F. Pezenas's information was juft, and therefore I have fent inclofed to your lordhip, as Prefident of the Royal Society, the original paper of Mr. Savery, which, if your lordfhip thinks proper, may be returned to the Society.

Your lordfhip will obferve, upon the back of the original paper of Mr. Savery, a memorandum in the hand-writing of our late worthy Prefident, Martin Folkes, Efq; as a further proof of its authenticity, which runs in thefe words,
" Delivered to me by Mr. Granam, fealed up " by the author, and then broke open in his " prefence $\$ 26$ Oct. 1743. " M. Folkes."
I have likewife, my lord, in my hands, an original letter of Mr. Savery to the late Mr. Geo. Graham 6 upon

[167]

upon the fame fubject, dated Nov. 30, 1743; and a copy of this letter fhall be delivered, if commanded by the Society, as a farther proof of the authenticity of Mr. Savery's paper. I am,

My Lord,

Your Lordhip's moft obedient,
Surrey-ftreet, May ro, 1753.
and moft humble fervant,

James Short.

A new Way of meafuring the Difference between the apparent Diameter of the Sun at the Times of the Earth's Peribelion and Apbelion, or when the Sun is nearer to or farther from the Earth, with a Micrometer placed in a Telefcope invented for that Purpofe; tho' the Charge or magnifying Power of the Telefcope is fo great, that the whole Sun's Diameter does not appear therein at one Vierw: By Servington Savery, of Exeter, E / q; mention'd in Mr. Short's preceding Letter.

Read OA. 27, $\prod_{\text {HIS, I I doubt not, will, at firft fight, }}$ 1743. - feem impoffible; fince only a part of the diameter appears, and no vifible mark or point therein, from which fuch meafure can be taken: and indeed it is fo by obfervations with our common telefcopes, whether dioptric or reflecting ones.

I have

[168]

I have therefore contrived fome dioptric telefcopes, and a reflecting one; either of which (by reprefenting the object double) will, if well made, anfwer the defign.

Fig. 1.
Reprefents the whole body of the fun, as it appears double, and magnified in the telefcope. Let an be the diameter of the one, and $r x$ of the other image of the fun in perigeo; fo fhall $n r$ be the diftance between the two images at that time; which meafured with the micrometer is equal to (fuppofe) 10 feconds.

Let $b m$ be the diameter of the one folar image, and sw of the other, when in apogeo: fo thall $m s$ be the then diftance of the folar images, meafuring with the micrometer (fuppofe) I minute 10 feconds. The difference of thefe two obfervations, 1 minute, is the apparent diminution of the fun's diameter.

The little circle, whofe diameter is $d t$, is the whole area vifible at once in the telefcope, which is not one third part of the magnified diameter of the fun: but fince both $n r$ at one time, and $m s$ at another time, are vifible within the telefcope's area, (if good inftruments are procured) I can fee no difficulty in performing what I have propofed above more accurately than it has ever yet been done, except this one (which fome time fince Mr. Graham in a letter to me mention'd) vir. that of defining the fun's difk truly: and I think to do that to good perfection, is beyond human art. A telefcope for this ufe may be made to magnify the fun's diameter to any degree whatfoever, not exceeding fuch degree, as will make any part of the line $m s$ fall without the area of the telefcope: and I think it will be very difficult to make one with a charge

[173]

a charge fo great, as not to have more than a geometrical minute of the fun's apparent diameter vifible at once.

Since the fun is an object fo very remote, the pencil of rays flowing from the center of its difk, and incident all over an object-lens (tho' it Mould be a foot broad) would not differ fenfibly from a perfect cylinder within the diftance of above 100 miles from its bafis at the lens; tho' in reality the whole pencil is an acute cone, whofe angle at the vertex is almoft evanefcent.

Hence it follows :
That if the two poles of two equal object-glaffes are placed at the diftance (fuppofe) of a foot from one another, the two centers, c, v, of the two folar images muft, as to fenfe, remain always at that very fame diftance (viz. I foot) from one another, tho' the fun fhould be placed ten times as far off as it now is: but fince the fun's greater diftance would dimininh the diameters of both of the folar images; $m n$, added to $r s$, muft be the true difference of the apparent diameters of the images (and alfo of the fun) at different times.

According to Mr Azout (Harris's Lexic. Techn. Vol. I. See S_{UN}), the apparent diameter of the fun never exceeds $32^{\prime} 45^{\prime \prime}$; whence its radius never exceeds $16^{\prime} 22^{\prime \prime} 30^{\prime \prime \prime}$; the tangent whereof is about 476,328 (if I miftake not) to the radius 100,000,000.

As the faid tangent : to the faid radius : : fo half an inch : to 0496 inches, and decimal parts.

According to this,
If the focal length of a lens is 104.96 inches and paits, it cannot collect the fun's rays to a lefs focus

[170]

at the time of his perigee than one inch in diameter, or half an inch radius.

Fig. 2.
The whole circle reprefents a well-center'd objectlens, whofe focal length is (as above calculated) 104.96 inches and parts (rather a little lefs, that the two images may be fure not to touch one another.) Let the two diameters $d m, q f$, divide it into four quadrants, but the diameter $q f$ muft be occult, or delible. Let $c w$ be half an inch, and $c v$ equal to it. Through v (and alfo thro' w) let a chord-line be drawn parallel to the diameter $d m$, viz. $b g, b p$. 'Thro' the faid chord-lines $b g$, and $b p$, and alfo thro' the diameter $d m$, divide the lens into four parts.

Fig. 3.
Let the frait edge of the fruftum $b v g q$ in the preceding figure be cemented faft to that of the fimilar fruftum $b w p f$ of the fame lens, as they appear in this prefent Fig. 3. wherein, for the eafier underftanding the placing them, I have noted each fruftum with the fame letters it was noted withal in the preceding Fig. 2. Having then with barm faftened a white paper all over both fides of the lens I made for trial (which I did, not only to fecure the cemented joint from breaking, but to prevent the injury which the polifh might receive in cutting and grinding the edges) I defcribed a circle $q m n f$ on the center c, fit for the tube I had to put in it; and having made it round, and wafh'd it clean, after the edges were ground true, that nothing fandy might hurt the polifh, I foak'd it in clean water, till I could eafily take off

[171]

the paper. I alfo, before I took off the paper, mark'd one end of each fruftum in the edge at m and n, that if they fell afunder, they might be cemented together again the fame way. This model (made of a fpectacle-glafs about 12 or 13 inches focus) gave me encouragement to try the following one, which I thought better.

Fig. 4.

I made my fecond model of the two middle fruftums $m \subset d b w p, m c d b v g$, of the lens Fig. 2. by cementing their edges, $b w p, b v g$, together, as they are placed in the prefent Fig. 4. fo the pole c of each part muft confequently be half an inch (fuppofing its focal length is about 104 inches) from the middle where c ftood in Fig. 2. viz. the pole of one fruftum where v, and of the other where w now ftands. I left open at each pole a femicircular aperture $r w q$, $s v t$, about two thirds of an inch diameter, and cover'd all the reft of the circle $a x l k z 0$, to which I had cut it fit for the tube. The focus of the lens I made it of was about 3 feet.

Note, The rays of red light in the two folar images will be next to one another in both thefe models, which, I take it, will render the fun's difk more eafy to be obferved than the violet ones. This I mention, becaufe the glaffes in thefe two forts are fomewhat prifmatical, but moftly thofe of my firft model, which could therefore bear no great charge. Alfo the fruftum on the right-hand of my firft model renders the folar image at the focus on the left, and that on the left-hand renders it on the right : but it is not fo with the fecond model, or with the next contrivance, which is the beft, if well made.

[176]

Fig. 5.

In this the greateft difficulty confifts in getting two well-center'd object-glaffes, whofe focal lengths are equal ; for it is neceffary they fhould be fo, becaufe they are to be combined with the fame convex eyelens (common to them) at the fame diftance. $a b$ is the diameter of a plain brafs plate, which may be two inches and a half broad, or fomewhat lefs ; two fhort equal cylindric brafs tubes, $m n, r s$, muft be faftened thereon, with their centers $p c$, equidiftant from the center l of the plate, and diftant one inch from one another in the diameter $a b$, as the figure fheweth. In the tubes muft be put two equal object glaffes of the focal length of $104 \frac{9}{10}$ inches, or rather fomewhat lefs, as aforefaid. Through the plate there muft be made in the middle of each tube a round aperture, viz. $b g, z x$, whofe diameters muft be proportion'd to the focal length of the eye-lens, and not exceed the third part thereof, left the object appear confufed.

And fince it is farce poffible to center an objectlens to very good perfection, thofe in the two cylinders (tho' put in by a good artift) may happen to render the two folar images at too great a diftance from, or too near to one another. But this fault, if not too great, may be remedied, by turning one or both of the lens's a little way round ; and then their eccentric poles will by that means be brought nearer to, or further from, one another; and when they are once well plac'd, there fhould be a mark made in each lens, and its cylinder; that if it is taken out to be wiped, it may be put in again the fame way. There fhould alfo be a different mark in one of

[77]

the glaffes, that each may know its. own cylinder. They muft both of them be very clofe all round to their .refpective cylinders; otherwife one lens may flide nearer to or further from the other; which if it fhould in the leaft degree, between the firft and fecond obfervation, all the labour would be loft.

Either of thefe three parts of double lens's may be combined with a convex eye-lens as ufual, and have a micrometer placed at the common focus.

Such a double lens, of either fort, may be proved whether it is well compofed or not, without the trouble of combining it with its eye-lens; by holding it in the fun's rays, as one would a burning glafs, and applying a piece of white paper at its focus, where, I apprehend, the two folar images will aprear as diftinct as when an eye-lens is applied, tho not fo large; and each of them one inch broad, if the focal length is as above, i.e. almoft $104 \frac{9}{10}$ inches.

After the fame manner may the double objectmirror of a reflecting telefcope for this ufe be proved.

Fig. 6.

The circle $b d b p m g$ is the circumference of a concave mirror made of black glafs: it muft be very thick, that it may not fpring or bend with any thing that preffeth on it to keep it faft ; for that may injure the concavity of it.

The circle within it on the fame center c fheweth, that the concavity thereof muft not be continued quite home to the very edge of the mirror, but the little fpace between the two circles muft be ground very true on a plain. The prick'd lines muift not be drawn; they are only to indicate where the poles

[174]

vo of the two fruftums muft be brought, after the mirror is diametrically bifected.

Let the concave fide be defended, by pafting a paper all over it, and then let it be divided with a faw in the diameter $d c m$; taking care that the faid diameter be in the middle of the kerf, which may be as broad as the fpace between the lines a $0, e q$. Let the afperities of the edges of both fruftums be ground off, that they may be very ftrait after their being fawn.

Fig. 7.

Reprefents a thick round plate of brafs very plain, and equally thick all over, having lines drawn on it, as on Fig. 2. alfo one line on each fide of the diameter $d m$, equidiftant from it, and parallel thereto. The diftance of thefe two lines $a 0, e q$, from one another equal to the kerf of the faw, which divided the mirror. The diameter of this plate muft be equal to that of the mirror before it was divided.

On the under fide of the plate muft be two pins faftened thereto, $t t$, their diameters equal to the kerf of the faw, that they may keep the two fruftums of the mirror at the fame diftance from each other that they were before their divifion; fo thall their circular edges be extended as far as the circumference of the plate, and their ftrait edges touch the faid pins in the lines $a 0$, eq.

The end of the tube mult be turn'd on the infide exactly to fit the plate and mirror, that they may not flide any way, for that would fpoil the obfervations.

In the diameter of the piate $r s$, on the points v, w, diftant half an inch from c, the center of the plate, and

[175]

and a whole inch from each other, let a circle for the aperture of each fruftum, of a proper fize, according to the intended charge of the telefcope, be defcribed, and cut out. Alfo in the faid diameter, equidiftant from the center $c, v i z$. at x and z, let there be a fcrew for each fruftum, to elevate it a little from the plate, as chall be needful.

Let there be a fpring contrived to prefs on the backfide of the one fruftum or a againft the point v, being the middle between the edge $a 0$, and the frew x, to keep the fruftum clofe to the plate at the points $a 0$, and alfo clofe to the fcrew x, when it is fcrew'd in. Let the like be alfo done on the back of the other fruftum es q.

I fay then,
I. That before the two fcrews are put in at x, z, the two fruftums of the mirror will lie plain on the plate of brafs, and have one pole at common to them, and, confequently, will collect all rays, which, during their incidence, are parallel to the axis of the tube to one common focus in the faid axis of the tube, juft as they would have done before the mirror was divided.
2. But when the two fcrews $x z$ are put in their places, and fcrew'd a little way through the brafs plate, they will lift the two fruftums free from the plate at their circular edges, viz. at r and s, while their ftrait edges, $a 0, e q$, are kept to touch the plate with both their ends (not in the middle, by reafon of the mirror's concavity) by the preffure of the fprings, as was mention'd above. By this means the pole c of the fruftum or a will be removed from c

[180]

toward r; and likewife the pole c of the other fruitum esq be removed from c towards s, more or lefs according to the quantity of the elevation of each fruftum by the fcrew that raifeth it: fo that now there will appear at the focus two folar images; whereas there was but one, before the fcrews weie put in.

By moving the ferews, the two folar images may be brought to any diftance from one another; but care muft be taken not to raife one fruftum more than the other, and the two folar inages muft almoft touch one another at the time of the perigee; otherwife it muft be better adjufted.

This telefcope may be finifhed with a fmall elliptical fpecillum of black glafs, ground plain on its reflecting furface, and a convex eye-lens, like that defcribed by J. Hadley, Eff; F.R.S. in Pbil. Tranf. $N^{\circ} 376$. A micrometer may be contrived for it at the common focus, near the eye-lens.

Such a double object-fpeculum would be capable of a vaft improvement, by combining it with a concave fpecillum, which would reflect the images thro' a hole in the center c of the faid fpeculum to fall on a convex eye-lens, after the manner of our new fort of reflecting telefcopes, was it not for the difficulty of adapting fuch a micrometer to it as would exactly meafure minutes and feconds; for the eye-glaffes of fuch having ufually a pretty large focal length, would bear much larger divifions on a micrometer, than Mr. Hadley's with a fmall eye-glafs can do, tho' their charges fhould be equal, or that of the former did exceed.

I find that large object-glafles for telefcopes are not commonly well center'd, with their poles in the very middle

[177]

middle of them. I fent for two to London, both of which were faulty; I therefore return'd them, and had two fent me again, as eccentric well nigh as the former ones.

Harris's Lexicon Tecbn. Vol. I. (fee Optics) gives a rule for centering optic-glaffes; but I think the following may be more fure and handy for a glafsgrinder's ufe, and foon try whether a convex lens is well center'd.

Fig. 8.

Reprefents a round plate of brafs, conveniently thick, and well harden'd by hammering (were it not for the ruft, harden'd fteel would be better), having many notches round it, one a little wider than that which is next to it, and number'd $1,2,3, \mathfrak{E} c$. in their proper order, each of them wider at the bottom than at the entrance. I fitted fuch a notch to the thickeft fide of one of the glaffes I had from London, fo as the edge enter'd it but a little way, not half the depth thereof; but, on trying the oppofite fide, it went in, the whole depth thereof, and would have gone deeper, if the notch had been fo cut: I then ground the lens narrower on that fide which was thinneft, until I found it was at that place as thick as where I firf try'd it in the notch. After this manner I reduc'd the glars to an equal thicknefs on its four quarters, and then ground off from other places what was needful to bring it circular. I alfo took care, when I tried it in the notch, that the lens hould not be warmer on the one fide than on the other by grinding, but tarried till I thought it thoroughly cold; and was alfo careful not to thruft it in harder on the one fide than on the

[178]

oppofite fide, for I could plainly obferve a difference afterward, if I neglected to mind both thefe circumftances, or indeed either of them *.

XXVII. A Defcription of a Contrivance for meafuring fmall Angles, by Mr. John Dollond; communicated by Mr. J. Short, F.R.S.

Read May 10. ET an object-glafs, of any conveni${ }^{1753}$ ent focal length (being truly ground and well center'd) be divided into two equal parts or fegments, by eutting it ftrait through the center; and let a piece of machinery be fo contriv'd, as to hold there two fegments in the fame pofition to each other, as they ftood in before they were cut afunder; and to be capable at the fame time of drawing them to different diftances from that pofition, in the manner, as is reprefented in the figure.
Each of thefe fegments will form a diftinct image of any object, to which they are directed; differing in nothing from that, which might have been made by the whole glafs before it was cut, except in brightnefs. And while thefe fegments are held in their original pofition, the images will coincide, and become one fingle image as at firf; but, in proportion as they

[^0]
[^0]: - Dr. Smith, in his Complete 8yftem of Optics, pubilihed in 1738, has defcribed a very accurate and ready method of centering object-glaffes, which was always ufed by the late Mr. George Graham, from whom the doctor had is.

