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ABSTRACT

Cerenkov radiation is calculated for electron beams

which exceed the velocity of radiation in a nondispersive

dielectric medium. The electron beam is assumed to be

bunched as emitted from a travelling wave accelerator, and

the emission region is assumed to be finite. Predictions

include (a) emission of harmonics of the bunch rate, (b) co-

herence of radiation at low frequencies, (c) smearing of

the emission angle for finite emission regions, (d) explicit

evaluation of power spectrum in terms of bunch dimensions.

The results of theory are applied to microwave emission from

fast electrons in air for different lengths of the air path.

Problems encountered during the experiment are discussed

and suggestions for continuing work are provided.
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I. INTRODUCTION

Cerenkov radiation is generated by a charged particle

moving at greater than light speed in a particular medium.

Because the distribution of intensity of Cerenkov radiation

is proportional to the frequency, the radiated power at

microwave frequencies would be low unless beams are intense

and bunched so that coherent radiation by many electrons

contributes.

Recent developments of electron accelerators for appli-

cations such as free electron lasers (FED have aimed toward

high peak currents in bunches in contrast to nuclear and

particle physics applications, where low peak but high

average currents are desirable to avoid saturating detectors,

The high peak currents in the new accelerators should yield

enhanced Cerenkov radiation.

The intent of this experiment is to find Cerenkov radia-

tion intensity and angle of emission in X Band and K Band

regions

.





II. THEORY

A. CALCULATION OF THE POYNTING VECTOR

In the following derivation, we consider the Cerenkov

radiation produced in a dispersionless medium such as a gas

or other dielectric, by a series of pulses of electrons such

as are produced by a traveling wave electron accelerator

(LINAC) . The pulses or bunches are periodic, the total emis-

sion region is finite and the bunches have a finite size.

In determining the radiated power, procedure is to calcu-

late the Poynting vector from fields which are in turn ob-

tained from solutions of the wave equations for the potentials

Since the current and charge densities entering into the wave

equations are expressed in Fourier form; the resulting fields

and radiated power also have Fourier components. In the deri-

vation r is the coordinate at which the fields will be calcu-

lated, r' is the coordinate of an element of the charge which

produces the fields and n is a unit vector in the direction

-*

of r

.

We assume that E(r,t) and B(r,t) have been expanded in a

Fourier series, appropriate for the case where the source

current is periodic. Then we have

E(r\t) =
I e"

iajt
E(r,a3) (1)

u)=-°°

and a corresponding expansion for B, where jj is a discrete

10





variable and E and B are Fourier series coefficients. The

poynting vector S is given by

t = iExB" (2)

and it is easy to show that the average of S in a direction

given by a normal vector n is

T

* / n-t dt = - n.H(r,a)) x B(r-to) (3)

co
:

where T is an integer multiple of the period of the periodic

current.

-1/2
Letting c = (jjs) be the velocity of light in the

medium, the wave equations for A, <p and their solutions are,

(V
2

- -^j ^-2-)A(r,t) iJ(r,t)
c~ at

(v
2

- -K £-y)<|> (r,t)
c 3t

z
-P(r,t)

(4)

%(T,t) = u////D(r-r« ,t-f)3(r' ,t')d
3
r'dt'

<j>(r,t) = i////D<r-r , ,t-t , )p(r , ,t , )d3r , dt'

where the Green's function D is given by

(5)

11





(6)

The vector potential A(r,t) also can be developed in a Fourier

series expansion of a form similar to (1) with an expression

for the Fourier series coefficients given by (Appendix B)

:

T
A(r, w ) = i / dt A(r,t)e I^ t

(7)

= u/J/d
3
r' J(r',u;)

.>>|r-r'
4tt

-r-»r-r

Now if we assume that the observer is far from the source

so that |r| >> |r'| for regions where the integrand in (7)

is important we can let |r-r'| = r - n«r' in the exponential

and | r-r* |
= r in the | r-r

'
| factor in (7) obtaining (where

n = r/r)

£(r,u>) = ^ e
iwr/c ///d

3
r' J (? ' ,oo) e'^^ (8)

The Fourier series coefficients of the fields are obtained

from those for the vector potential (8) through the usual

relations I = ^ x A and E = -$$ - ^r-. Under the conditions
<3 "C.

leading to (8) the field Fourier coefficients are

£(r, w ) = £ n xA(r /W ) (9)

E~(r,w) = -en x B(r,oj) ( 10)

12





The poynting vector can now be found by using (9) and

(10) in expansions like (1) and then substituting in (2)

.

However it is more convenient to deal with the frequency

components of the radiated power by substituting (9) and

(10) into the expression for the average radiated power (3)

i / n-Sdt = f I ^_|nxA(r,u))
|

(11)
1 u (*)=-«

c

B. FOURIER COMPONENTS OF THE CURRENT

The expression (7) for the Fourier components of the

vector potential contains the Fourier components of the current

density. Consequently it is necessary to examine the form

of the current and its Fourier development. Assume the current

is in the z direction and periodic. If the electrons move

with velocity v, and we ignore for the moment the x and y

variables, the charge or current functions should have the

general form

ik z .

f(z,t) = J e
Z

I
e"

lwt
f(k ,u)) (12)

Under the condition of rigid motion,

f(z,t) = f
Q
(z-vt) (13)

It is easy to show that

13





? (V M) - 6
u ,k v !o (V (14 »

z

where

z — ik z

%
Z' z J

Thus the restrictions of equation (13) reduce the two

dimensional Fourier series of (12) to essentially a one

dimensional series (14) .

With (14) in mind, the current density associated with

the electron beam from a linear accelerator should be periodic

in both z, t, with a Fourier series expansion but the x and

y dependence should be represented by a Fourier integral

form:

J d.t) = vp(r,t) = £ / dk
x
jL / dk

y

.iCfc.r—t)
({, (16)

k =-»
z

where the Fourier components of the charge density are

P (r) = / dy / dy| / dze"
lk ' r

p (?) , (17)
—oo —oo Q

p n
(r) is p(r,t) evaluated at t = and J is assumed to be in

the z direction. Note in (16) that k and u) are both dis-
2

crete and from (14) u = k v.
z

14





C. VECTOR POTENTIAL

The results of the previous section can be applied to

the evaluation of the vector potential and in turn to the

fields

.

Let the infinite periodic pulse train be made finite, ex-

tending from z = -Z ' to z = +Z
' , so that 2Z ' is the length

of the path which generates radiation. Let 9 be the angle

between n and A. Then the cross product in (11) can be

written

n x A(r,o)) = sin 9 -r-— e
~ ' 47Tr

oo oo z ' - 1—n • r '

/ dx ' / dy / dz ' e
c

-oo -z

{±-) / dk / dk
2tt j x j y—oo —oo -*

y vp n (£)5, e
1K ' r

(18)
.

L £.0 k v,oj
k =-oo z
z

But

Z' iji.(£-n|)
/ dx ' / dy / dz ' e

) -00 -Z '

2 . ,,_ oj» » #i- _ oo= (2Tr)"6(k
x
-n

x
^)6(k

y
-n

y
|)I(Z«) (19)

where

15





Z' i(k -n -)

I(Z') = / dz' e
z zc ^sinGZ' (20

-Z' b

and

G = k-n — = —-n —
z z c v z c

And thus the cross product term is

^ / n a) n oo

nxA(r,aj)| = sm9 j£— e vp n (—-,-£-,-) I (Z '
) (21)

Note that w is a discrete variable but from (19) , the

continuous variables k and k become evaluated at discrete
x y

points

.

Returning to (17), a more symmetric form may be obtained

by assuming that p (r) , which is periodic in z with period

Z, is actually zero between the pulses. Denoting by pA(r)

the charge density of a single pulse, which is zero for

z < and z > Z the integral on z can be written

Z -ik z Z -ik z

/ dze z
p (r) / dze z p " (r)
u u

<» -ik z

/ dze
z

P(J(r) (22)

Then (17), the Fourier coefficient of the charge density,

becomes

16





p (k) \ If] d
3re- ik * r p'(?) = \ p^(5) (23)

— 00

where p«(k) is the three dimensional Fourier transform of the

single pulse described by pg(r). Substituting those expres-

sions into (21) gives a final simple result for the cross

product form:

nxA(r,a>)| = sinS^.e^^pJfklKZ 1

) (24)

where

I (
Z

• ) = | sin GZ

'

G = - - n - (25)V 2 C

(n -oj/c,n • <jo/c,—)x y v

The components of the Cerenkov E and B fields may now be

found by substituting (24) in (9) and (10)

.

D. RADIATED POWER

The frequency components of the average radiated power

are obtained by substituting (24) into (11) , The negative

frequency terms equal the corresponding positive frequency

terms, yielding a factor of 2 when the summation range is

2changed. Multiplying by r converts to average power per

unit, solid angle, dP/dfi, -iel :1

17





« = r
2 i/n.Sdt - lld\n*ZCr,»)

I W(w,n) , (26)

where W(u>,n) is defined to be

W(u),n) = 2y
« — sin 6 v

2 -L|o ' (k)
j

I
2
(Z') (27)

(4tt)
c

Z
Z

~ U

W(oj,n) is the power per unit solid angle radiated at the

frequency eo , which is a harmonic of the basic angular fre-

quency u> of the periodic pulse train.

To find P , the total oower radiated at the freauency

co , W is multiplied by dQ. and integrated over solid angle.

Note that n = cos 6, and as 9 varies, G changes according

to (25) , with dG = - - dn so that
c z

dQ = dcj) - dG (2 8)
0)

Nothing that the integral over $ yields 2tt , we find the

result for the total radiated power at the frequency co for

all angles.

P. " w4p r f" sin
2e|p^,| 2

I
2

( 2 )^G (29,

u G

The remaining integral over G may now be examined. This

2
sin 9 and p n

factors may often be slowly varying compared to

18





2
the I (Z») factor, which is shown in Figure 1 for f = 8.5 7

GHz [and in Figure 2] for f = 14.28 GHz]. These two figures

are the results of (25) which was solved by a Fortran computer

2program [Appendix (D.l) ] . For large Z
1

, the peak in I (Z')

becomes narrow, and if the integrand may be neglected outside

the physical range G' < G < G"

G" °° 2 ,

/ I
2
(Z')dG = / 4Z'

2
(

S1^? Z
' )dG = 4ttZ' (30)

G* — GZ

Then, evaluating the sin 9 factor and p'(k) at the point

corresponding to G = (which is cos 9 = n = —) shows that

9 at the peak of I(Z') is the usual Cerenkov angle 9 . We

thus obtain for large Z

'

2

P = fz-cuv sin 8 lp'(k) —5— 31)
a; 4tt c ~0 n 2.

Now let 2Z'/Z = ratio of the interaction length to pulse

spacinq = N, the number of pulses. Also Z = so that,

in the large Z' limit,

2

P = ia)a) n vsin 9
|
p ' (k)

|

N (32)
03 4tt c '

~0

To compare with usual formulations (32) is divided by Nv

to obtain the energy loss per unit path length per pulse:

2
dK - #-u>co r sin

2
8 | »; (5)

|

(33)
dx 4tt ' ~0 '

19
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If the pulse is in fact a point charge, the Fourier trans-

form pi (k) reduces to q , the total charge per pulse and

(33) is very similar to the usual Cerenkov energy loss formula,

where for a single charge q, the radiation is continuous and

the factor ooco- in (33) is replaced by todco. In the present

case the pulse train is periodic at angular frequency to
n

and the radiation is emitted at the harmonic frequencies

denoted by co

.

E. RESULTS OF THEORY

Equation (29) and the approximate evaluation expressed

as (32) form the main result. Some consequences will now

be noted, and some calculations can be made.

1 . Effect of Pulse Size

The spatial distribution of the charge in the pulse

appears in p'(k), which is the Fourier transform of the

charge distribution. One can easily see from (25) and Figure

2
1, the peak of I ( Z' ) occurs at G = or n = c/v. Thus at

CO
"*" "*"

the peak, cu/v = n — so that k, the argument of P^(k) , is

evaluated at

jc - n £ (34)

We may also define a charge form factor F(k) as

p^(k) = qF(k) (35)

22





The form factor F(k) is identically one for a point
-*

charge, and for a finite distribution F(k) = 1 for k = 0.

Furthermore F(k) must fall off as a function of k

near the origin if all the charge has the same sign. If the

pulse were spherically symmetric, F(k) would behave as elas-

tic electron scattering form factors defined for nuclear

charge distributions. In that case, the mean square

2radius <r"> of the charge distribution is given by the be-

havior of F(k) near the origin.

2 k
2

2ZF(k) - 1 - <r > ~- (spherical pulse) (36.

2 . Smearing of the Cerenkov Angle

For a finite region over which emission is allowed,

2
namely if 2Z ' is finite, the function I (z

1

) , appearing in

the integral in (29) , will have a finite width. Since the

2
peak height is 4z ' and the area is (30) , we can assign an

effective width 2r = area/height = tt/z ' or

r = JL- (37)

2Z'

Thus the radiation is emitted mainly near G =

(which corresponds to 9 = 6 ) but in a range AG = ±r. But

from (25) , AG = — An = — A(cos 9) so that there is a range
c z c

in cos 9 over which emission occurs:

A(cos e) - £ ... (38)

23





Note that the finite angular width of the Cerenkov

cone angle in (38) has the factor l/w# indicating that the

higher harmonics are emitted in a sharper cone.

This result is shown in Table 1. Values are calcu-

lated by use of the same Fortran computer program as in

Appendix (Dl)

.

Frequency (GHz)

TABLE 1

o

9
c

o

I mm
A (cos 6

)

1.509 16.129 0.039

1.509 12.259 0.022

1.509 10.539 0.016

1.509 9.249 0.013

1.509 8.819 0.011

1.509 7.959 0.009

1.509 7.09 0.007

8.57

14.28

19.99

25.7

23.56

37.12!

42.84

C. BEHAVIOR AT HIGH FREQUENCIES RELATED TO PULSE PARAMETERS

To be specific let the charge distribution for a single

pulse be given by Gaussian functions

2 2 2

p'(r) = a expC-^j - Xj - iy) (39)
a a b

Then F (k) may be found as

24





v2 2 ,22 ,2, 2
k a ky a k b

F(k) = exp(- -JL i-j V-) (40)

Beam pulse parameters could then be determine by measuring

the Cerenkov radiation. For example, fast electrons from

an accelerator in air will emit with a 8 of several degrees

in which case k and k in (4 0) can be neglected, givingx y

2 2

F(Jt) : exp(- -\-) : exp(-^.^-) (41)
V

The average power emitted into a unit solid angle (dP/df<)

as a function of angle (0) is shown in Figure 3 for f = 8.57

GHz [and in Figure 4 for f = 14.28 GHz]. These two figures

are the results of (26) which was solved by a second Fortran

computer program [Appendix (D.2)].

Total power per unit solid angle as a function of angle

(a) can be calculated by a third Fortran computer program

[Appendix (D.3)] for many harmonic components in Figures 5

and 6. Figure 5 covers harmonics from 3 to 10, and Figure 6

covers harmonics from 5 to 10. For these two figures, the

maximum power and the corresponding Cerenkov angle are shown

in Table 2.

TABLE 2

N
2

N
l

N
2 I (dP/dfl, max 6c

N=N,

3 10 0.65 W 5°. 99

5 10 0.55 w .50

25
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The behavior of dP/dfi as a function of frequency is shown

in Figure 7 (which is plotted with the help of the Fortran

program in Appendix (D.2)) . The linear rise at low frequen-

cies followed by a fall off at higher frequencies, the peak

occurring at

v
'm bu>_ = tr (42)

After inserting values of v and b into (42) (Appendix (C) )

,

9
oo is found to be 126.86 x 10 rad/sec which corresDonds tom

the same value as in Figure 7.

The Cerenkov angle is also plotted as a function of ou

in Figure 8 by use of the same Fortran program.

Furthermore, a different behavior would be expected at

very high frequencies. The formulation from the beginning

represents coherent radiation from all charges, not only from

one pulse, but coherence from pulse to pulse. F(k) then

describes interference of radiation emitted from different

parts of the pulse, but note that expressions (29) and (32)

2 2 2
will still be proportional to q = n e where n is the number

2
of electrons in a pulse. Thus the n dependence of P indi-

cates coherence. But above some high frequency oj, such that

w./c = 2tt/£, where I is the mean spacing of electrons in the

cloud, the radiation should switch over to incoherent radiation

from each charge and P should be proportional to n. The

incoherent radiation should then rise again as a function of

U) .
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III. EXPERIMENTAL EQUIPMENT AND PROCEDURE

It was decided to find the frequency components of the

average radiated power in the X Band (8.2-12.4 GHz) region.

An experiment was designed to measure average radiated power

as a function of angle.

The equipment arrangement is shown in Figure 9 . The

reflector used was a thin sheet of aluminum which would allow

the passage of the electrons and reflect any EM radiation.

X Band antenna, wave guide, detector (HP X4 24A) are mounted

together. They were horizontally movable on this mount.

Radiation was measured using a crystal detector connected to

an oscilloscope (Tektronix 475 A, 200 MHz)

.

Experiments were made for air paths (L, ) = 66 cm and 89 cm,

and repeated in different days for many times. Results changed

day by day depending upon beam current. When the beam cur-

rent increased, the observed signal also increased. Figures

10 and 11 show the experimental results for Beam current

— 8
equals 2 x 10 Amps.

Cerenkov angles were calculated by help of Figures 9 and

10 (or Figures 9 and 11)

.

From Figure 9, one can show that

tan 9 ^
= T7T T~t

—TTT (43)
c 2 (L~ + L, /2)

where r
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x = Distance between two maximum signal positions;

L, = Distance between LINAC and reflector (air
path length)

;

L
2

= Distance between reflector and antenna.

Later experiments were conducted in the K Band region for

the same air path lengths (L, = 66 and 89 cm) . Figures 12

_ o

and 13 show the experiment results for Beam current = 2 x 10

Cerenkov angles were calculated for these four experiments.

The results are shown in Table 3.

TABLE 3

9
c

(XB) 9
c

(KB) L, (cm) L
2

(cm)

8.21 5.94 89 99

9.13 6.97 66 86

To check the correctness of the measurements, another

experiment was set up. The equipment arrangement was the

same as before except this time the reflector was rotatable

(a different, bigger aluminum thin sheet was used) and the

antenna was at a fixed position. The experiment was repeated

for two different air path lengths. Rotation angles (a) of three

reflector versus signal voltages are plotted in Figures 14,

15, 16 and 17.

37





•H
+J
•^

fi
cn

m

c
6 y\

v •H

©
X C
o

I
c
I-* BJ

«w
w 2
•T3 Uz

1-
O T3 oo

3
H- 4J II

1-1 •H

o
r-H rH

g
a. < -

E-

Signal

(K

Band

-«-

- li-

en in «l m in
6-

CN

0)

s-l

•H

(A*) 3Ddl~IOA

38





<n in <VI in

c
o
•H
U
•H
CO

o

O

-P

o
c
a

03 u

CD U3

3
-U II

•H
H r-

e

<H C
id id

C CQ
cn
H «

m

S-l

3
cn
•H
fa

(A«0 1DH'~10A

39





L.

z\

a

2-

- fr-

- 9-

- 8-

©

©

x
-J
a:

u
-j
O
Z

in cu in in
-01-#

H
U
^3

+J

X
H-l

^

•H
JJ

^v
£ 2
a u
[Li

<T>

(TS 00

cn II

(T5 —

1

a) J
-T3

3 -
jj t3
•H C
,-H (T3

QuCQ
s
<c X

-—

*

r-i

ft 0)

G r-i

a^ ct^

•H C
CO <

a)

u

•H

(AW) 3DdllOA

40





-01

- 9

c

•H
4J

(0

J--S
4J

tt OS

0)
4-1

03

i_

O)
c

o •H

p u g
>^ G

G
En CTi

O
IX 03 rH

X W II

Q. 03

i <U J
CC V

G -

+J T3U •H C
_J -H 03

(J? |z < X
X H

03 0)

G rH
C7> CT>

H G
Cfl <

.01-

m

n
G

•H
Cm

(A*") 3DU110A

41





21

81

8

9

a

- 8-

c

•H
-u

id

+j
•->»

tt «
<D m

L. C
O)

n
•H

O ~
•^ fl s

3
h

(Ti

cr id CO

X en 11

CL 03
1

—

-J CD t-5

(L T3
3 •»

4J T3

Ll •H G

-1 O.CQ
e> £
2: < ^
CL rH

<d a)

G rH
0"> CT>

H C
03 <

CD \n en cu 8)

V£»

<u

S-i

3
Oi
•H
Cm

(AW) 3DdllOA

42





OD

21

ai

8

•H

s*<*
P
(0

to •p

©
en

©
i»

4-1

CO
© c
O •H
•w/ +J —

o e
C
3

cn fa <r>

o
rtj rH

QL
-J

en ii

a: H
OJ J
T3u 2 *

-j jj ^
•H C

<j> rH tO

z O.CQ

(L
e

*«'

H
03 (U

C rH
Cn Cr>

•H C
en <C

-8-

C0 to en cu
#»-

a)

P,

a

•H
fa

(A*) 3DyilOA

43





The relationship between 6 and 8 can be found from
c

Figure 18. For small values of 2a and 2(
c

29 - = - rad (44)
c L

~T + L
2

2a ~ =£- rad (45)
L
l

From (44) and (4 5)

,

c " L
2

+ (L
1/2 ,

< 46 >

where a is the rotation angle of reflector between two

maximum signal positions.

Cerenkov angles were calculated for various L-| values.

Results are shown in Table 4

.

TABLE 4

L, (cm) L
2

(cm) a (XB) 9 (KB)

66 86 NoSignalObserved
89 99 12 8.28 6.04

109 114 11 7.44 5.35
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IV. DISCUSSION

A. EFFECTS OF REFLECTOR AND ANTENNA

In all experiments, the same X Eand detector was used.

Table 5 shows experimental values of 6 and dP/dfi assuming

the X Band detector is performing in its Square Law region

where the sensitivity is 400 yv/uW [Ref. 1]

.

TABLE 5

X Band (L, = 66 cm)

X Band (L
1

= 89 cm)

K 3and (L, = 66 cm)

K Band (L n
= 89 cm)

-L

9C

9.13

8.208

6.67

5.94

voltage (mV) power (mW)

1.5

2

0.8

1.4

3.75 x 10

5 x 10

2 < 10

3.5 x 10

-3

- j

-3

-3

To make a comparison between experimental and theoretical

results, L, = 89 cm and 6^ = 8.2 were chosen from experimental

data; and for these values £ dP/dft was calculated using the

second Fortran program (Appendix C.2) . The results are shown

in Table 6.

Although antenna gains weren't included in calculations

of theoretical values, as seen from Tables 5 and 6, experi-

mental values are much smaller than theoretical ones. The

reasons for this can be:

a. Aluminum thin sheet is not an excellent reflector.
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TABLE 6

N
2

N
2

N
t

N I dP/dft (mW/steradian) P (mW)

N=N
L

N=N
1

3 4 .135 9.45 x 10
_2

3 5 .223 15.61 x lo"
2

3 6 .308 21.56 x lo"
2

3 7 .377 26.39 x lo"
2

3 8 .424 29.68 x 10
_2

3 9 .451 31.57 x lo'
2

3 10 .461 32.27 x lo'
2

b. Antenna responsivity is decreasing when distance between

radiation source and antenna increased (L = L]_ + L
2

) •

To check these conditions, another experiment was con-

ducted for various L values with a setup as shown in Figure

19 .

The results are shown in Table 7.

TABLE 7

L (cm) voltage (mV) power (mW)

X Band 80 130 3.25 x 10
_1

X Band 160 20 .5 x lo"
1

K Band 74 20 0.5 x 10
_1

K Band 151 18 0.45 x 10
_1
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In this experiment some part of the observed signal may

be caused by near field radiation, though, the results now

seem more comparable with theoretical results and very close
10

to I P
N .

N=3
L

To be able to make exact comparisons between experimental

and theoretical values, antenna gains were found for these

harmonics of the LINAC [Ref. 2].

Calculated values are shown in Table 8.

TABLE 8

Freq. (GHz) Ant. Gain (X Band) Ant. Gain (K Band)

8.57 11.67

11.42 20.31

14.28 30.64 71.28

17.14 42.46 90.34

19.99 55.08 105.55

22.85 68.67 116.66

25.70 81.72 122.22

28.56 94.58 122.98

For L, = 89 cm, the result of the experiment was 6^ = 8.2 (from

Table 1) . To make a comparison between experimental and

theoretical values, theoretical value of average power

emitted into a unit sold angle is calculated for some

harmonics of the LINAC by use of the Fortran program in

[Appendix (D.2)]. (For 9
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The results are shown in Table 9.

TABLE 9

N dP/dfl Gain dP/dft
steradian)

Gain dP/dft
steradian)(mW/steradian) (mW/ (mW/

3 5.76 x io"
2

.67

4 5.62 x 10" 2
1.14

5 8.38 x 10" 2
2.72

6 8.49 x 10" 2
3.60 7.67

7 6.9 x 10" 2
3.30 7.27

8 4.7 x 10" 2
3.23 5.48

9 2.6 x 10" 2
2.12 3.18

10 1.03 x 10" 2
0.97 1.27

As seen from Tables 7 and 9, although the experimental

values include more than one harmonic, the theoretical

values are bigger than the experimental ones.

B. CONCLUSION

Although in these experiments only a very small signal

was observed, all results indicated that the higher harmonics

are emitter in a sharper cone. Nevertheless, some refinements

remain to be done. Some specific suggestions are given

below.

1 . Antenna Sensitivity

Antenna sensitivity has to be measured as a function

of frequency and distance.
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2

.

Detector Sensitivity

In the K Band region, a K Band detector should be

used. The sensitivity of the detectors should be tested.

3. Coupling a Band Pass Filter to Detector

In the experiments, the X Band and K Band wave guides

have certain lower end cutoff frequencies, but no upper end

cutoff frequencies. If the experiments are conducted using

a band pass filter (having constant response in its band)

,

the effectiveness of measurements will be increased.

4

.

Noise Effect

The experimental area was very noisy. It affected

the observed signals too much. Noise can be partially de-

creased by putting a detector into a thin aluminum box, which

would decrease the electric field noise pickup. However,

the magnetic field noise associated with the LINAC Klystrons

is more difficult to shield.
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APPENDIX A

DERIVATION OF CERENKOV RADIATION FOR A
SINGLE PULSE OF CHARGE

Let the pulse be described by

p ' (r,t) = P(J(r - vt) (Al)

Both k and oj are continuous variables in this case; v is
z

again along the z axis. If we expand in terms of a four

dimensional Fourier integral,

p'(r,t) = (l/(2 Tr)
4
)e

l( ^ t " k ' r)
p ' (k\oo)d

3
kdu (A2)

It may be shown that the condition (Al) gives:

p'(]c,co) = 2tt5(co - k
z
v) P(J(k) (A3)

where p~ (k) is the three dimensional spatial transform of

p'(r,t) evaluated at t = . All the fields have Fourier

integrals rather than Fourier series expansions and the

energy radiated per unit solid angle becomes

00 oo

2
f **.* £ 1 , 1 .2 u r , 2

r / dtn-S = ~— (-*— ) £ / dco oo

—oo —oo

-3— » Jj. I

i^(ct'-n-r')

////d Jr'dt'e n J(r't')

/ co(io,n) doj (A4)
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The integrand is a symmetric function of u so that

w(a) ,n) = -J^y-oo 2
//f/d

3r'dfe :La)(t, - n * r ' /c)
n J(r',f)

16tt
C x

=
T
= a) (n v) (A5,

16tt
C x

where

y = ////d3r'df ei(wt
'"n ' ?,/c) p'(r' ff ) (A6)

Now we may write p* (r' ,t') in a Fourier integral represen-

tation,

p'(r',f) = —i-jr ////d3k'do;'p'(J',u)')e- i(a,,t,
-k, - r,)

(2ir)
*

(A7)

Inserting (A3) into (A7) and the result into (A6) , the inte-

gral over d k 1 involves only exponentials and yields

3 3 -*

(2tt) 5 (k* - con /c) , so that (A6) becomes

H = /dt , ////d3k ,

daj
, e

l(a) ~a),) t '5 3 (k'-wn/c)6 (co'-k'v)p' (k 1

)

Now the integral over ui
' may be done; because of the 6

function, to' is evaluated at k'v.
z

- Kw-k'vjt* ,
y = /dt'/J/d k'e z

5
J

(ic '-un/c) p^ (k

)
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Now do the integrals over k', k 1 and k 1

, noting that
X y 2

k' appears in the exponential, but k' and k' do not.
z x y

• 1. 1 -io)t ' n v/c
M = \ dte e p' ton /corn /corn /c)y ~0 x y z

This may be written as

M = / dt'e
iu,t ' H

p
(
J(aJ n/c) (A8!

where

H = 1 - n v/c (A9)

If we let the time interval be finite, from -T to +T, the

integral is easily dene:

M = - sin oiHTp * (nui/c) (A10)
a) ~u

.2 A 2
..2 , m 2 sin ouHT

i • / / % i ,,,,,M = 4T *— I
p • (no)/c)

|

(All)
(o)HT)

Z
^ U

This result, equation (All) may be inserted in (A5)

for a). The factor nvv is just sin 8 where 9 is the angle

between the radiation and the beam axis.

2 ^2
W(u>,n) = -^ ± o1

2
sin

2
94T

2 Sin ^ |

p
' (nu/c)

1
(A12)

16tt
C

(ojHT)
~ U
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W is the energy radiated per unit solid angle per unit

angular frequency, m . To proceed to the total energy,

multiply by dft (solid angle) and integrate. But n = cos (

so that d£> may be related to dH

:

dQ = d(cos 9) dQ = - - dH dfi (A13)

The function in equation (A12) does not contain cj> so that:

integration over 8 yields 2tt . Thus:

2 2

W(oa,n)dfi = —j — oo T
J

sin 9|p'| 5— dH (A14)
2tt

V ~ U
(loHT)

Z

2 2
The sin u)HT/(ioHT) factor in the integral is peaked at H = ,

which, by eauation (A9) is at n = cos 9 = — , or the usual

Cerenkov angle, 9 . This function is more strongly peaked

about H = for large values of T, and in fact, for large T

2we may evaluated sin 9 and p' at the point corresponding to

H = 0. Then the integral

2 "?

/ dx sin (ax) /(ax) = ir/a

may be used to evaluate equation (A14) , yielding

// Wdft = ^r I 2T sin
2
9
c |

P(;(noj/c)
|

(A15)

The emission was assumed to occur in a time interval from -T

La +T; accordingly dividing Ly 2T yields a late of ission,
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and multiplying by v converts to emission per unit path

length. Thus we obtain, for the large T limit:

d
2
E

dxdco
doj = £- wdoa sin 9 |pl(nu>/c) I (A16)

4tt c ' ~0 '

2
where d E/dwdx is the energy emitted per unit path length

per unit angular frequency range to

.

The corresponding expression for T not large is

d E _ n H -. ^ 22 TTm— , y j /CuT. 2 r .2-1.. , , |
sin ojHT

n IcorlT;

(A17)

where H" and H' are the value of H corresponding to 6 =

and 8 = it respectively.

Equations (A16) and (A17) then describe the energy

radiated per unit path lenth and per unit angular frequency

range. For the non periodic (single) pulse the radiation has

a continuous frequency spectrum. For a point charge q,

pl(k) is identically q and the usual Cerenkov formula is

obtained. Equation (A16) is quoted by Jelly, but only with

the form factor corresponding to a uniform line charge of

length L' [Ref . 3]

.
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APPENDIX B

DERIVATION OF EQUATION 7

Equation 7 is derived for the case in which J(r,t) is

expanded in Fourier series. Let the Fourier coefficient for

A be given by:

A(r,oi) = - / dt A(r,t) e
lwt

(Bl)
1

Assume that the Green's function solution for A(r,t) is given

as:

A(r,t) = u/fjdVj'dt J(r,t) D(r-r *
, t-t '

)

(B2)

where

D(r,f) = |^Mt- r/c) (B3)

Let the current density be expanded in a Fourier series:

J(r\f) = I e-
iu),t '

J(r',o>) (B4)
0)'

Then insert (B2) , (B3) and (B4) into (Bl) to obtain
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A(r,a>) = H. /

T

dt e
iuit

({J d
3
r» / dtf i- ^ (35)

T
o |r - r'

i

5 (t-t *-| r-r '
I

/c) 2, e J(r*,u>')
03

/•OO

Do
J

dt', note that t' appears in the 5 function and
_>,. (J. I y f

in e . The result is t 1 is evaluated at t ' = t-jr-r*|/c

A(r,„) = £ /

T

dt e^ ///dV £ ^A_ (B6)
r-r

-iuj't iwlr-r' /c *,;£, Me e ' '
' J (r ' ,oi '

)

OJ

Do the integral on t, note that

i /

T

dt e
i(aJ -W,)t

= 5
,

(B7)

Then do the sum on to

'

$<?.•) " j^///d 3
r' -

X
-

,

3fr,m) e
™\*-:'\/°

This proves the desired result, (B8) is equation 7 as

used in the main text.
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APPENDIX C

CALCULATIONS

In an earlier experiment at the Naval Postgraduate

School LINAC, Leslie J. Brown [Ref. 4] showed that for small

where £ is the electron energy.

Ae -2
Let linear accelerator be set for — =10 , so that

v ±/2 x 10 l rad. (C2

20

2tt
= 4.5 x 10" 2

(C3)

This means that electrons are accepted 4.5% of each cycle

Our LINAC Klystrons operate at 2.856 GHz (A = 10.5 cm),

.045/2.856 GHz = 16 p. sec. (C4)

Therefore, the LINAC produces bunches that are 16 pico-

seconds long. Incidentally, it does so in one microsecond

burst at the rate of 60 bursts per second.
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Figure 20 is a sketch of the beam current for simplicity it

is assumed that the current is constant over its 16 psec. on

time, rather than having some more complicated shape.

In theory, it is assumed that the charge distribution

for a single pulse be given by Gaussian functions

2 2 2 2 2 2
p Q

(r) = Aexp(- x /a - y /a - z /b )

2 .2
: Aexp(-^- 5_) (C5

v

so it can be assumed that

2b = .4725 cm

b = .23625 cm (C6)

The condition for an electron bunch is shown in Figure

~ —8
21 noting that I = 2 x 10 Amps.3 meter

h = W« • T76 - 3.3 xio" 7
Amp. (C7)

During 1 psec. pulse current (I
2

) is

I- = I, x - 2- = 5.55 x 10
3 Amps (C8)

2 J- en in" 6
60 x 10

Using the relationship between I
2

and q (total charge

per bunch )

,
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q = g- = 1.94 x 10"12 Coulomb (C9)
2.856 x 10

y

was found.

In the present case, experiments are conducted in air for

electron energies ~ 100 MeV. Corresponding values are for

these experimental conditions:

n = refractive index of air = 1.00036

— f\

y = permeability constant of air = 1.256 x io Henry/m

g
C
Q

= speed of radiation in vacuum = 2.99 8 x io m/sec

B = .999987

C
8

C = speed of radiation in air = — = 2.997 x io m/sec

g
V = speed of electrons = £ C

n
= 2.9978 x 10 m/sec

The relationship between dQ and area of an antenna is

dfi . = ^^
T (C10ant

(L
x

+ L
2
/2)

2

The X Band antenna has dimensions 4.6 cm x 3.15 cm and K

Band antenna has dimensions 7.2 cm x 5.75 cm. Results are

shown in Table 10.

The cut-off frequency of the X Band wave guide is 6.56

GHz, and cut off frequency of the K Band wave guide is 14.08

GHz. So all the calculations for the X Band begins from the

third harmonic, and for u he K Hand,, from the fifth harmonic.
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TABLE 10

Area (cm ) L, (cm) L~ (cm) dfi

X Band 14.49 88.9 99.06 7 x 10" 4

X Band 14.49 66.04 10.16 8
-4

x 10

X Band 14.49 109.22 114. 3 5 x 10~ 4

K Band 41.4 88.9 99.06 20 x 10" 4

K Band 41.4 66.04 101.6 23 x 10" 4

K Band 41.4 109.22 114. 3 14
-4

.5 x 10
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APPENDIX D

FORTRAN PROGRAM LISTINGS

To solve the equations (25) and (26) , three Fortran

computer programs were used.

2
1. FORTRAN 1 solves I as a function of 9 for one particu-

lar frequency.

2. FORTRAN 2 solves dP/dft as a function of 9 for one

particular frequency.
N
2

3. FORTRAN 3 solves £ dP/dft as a function of 9.

N=N,
In the first and second programs, responses can be found

for other harmonics by making a change from N = 3 to

M = Desined harmonic number. In the third program, making

a change from K = 3,10 to K = Desired harmonic numbers.

The corresponding program and theoretical symbols

are shown in Table 11.

TABLE 11

Program Symbol Theoretical Symbol

z
l

Z '

PI 7T

WO W

V V

c c

Q

2.1024966449

9
2 2

1 M
C

V
2

q

-0.01000480877

it z c
l/^ob,

2

2
K

c
'
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1) FORTRAN program 1

//AHMETI3 JOS (2 075 . 1000 )
t AT ILL AX' , CL ASS*

A

// EXEC FRTXCLGP, REGION. G0=300K
//FORT.SYSIN 00 *

REAL*8 TITLE(12)
PEAL*8 LABEL/ 1 »/
REAL X( 1100), Y(1100>,Q1(1100)
REAL W0,V,C,Z1,PI ,N,Q,
REA0(5, 105HTITLE( J) ,J = 1,6)
PEA0<5, 105) (TITLE (J) ,J=7,12)

105 F0RMAT(6A8)
Zl=.4445
PI=3. 14159263
N=3.
W0=17.94477724*( 10**9)
V=2. 997886 027*(10**8 )O 2. 997 025 892* (10**8)
X( 1)»0.

DO 10 1=1,991
QUI )=X( I)-22.
Q=PI/180.*Q1(I )

A=N*Z1*( W0/V-WO*COS(Q)/C)
81 = S IN( A)*2.
G=<N*(WO/V-WO*COS(Q)/CJ )

F=B1/G
Y(I)=F**2
X(H-1) = X(I )*0.043

10 CONTINUE
CALL DRAW(990,Q1,Y,0,0,LABEL,TITLE,

10. tO.t 0.,0.,0.,0.,4,4, It LAST)
WRIT«<6t25J
WRITE(6,100XQ1(I) ,Y(I) ,1 = 1,990,10)

100 FTRMAT( 12X,E16.7,10X,E16.7)
2 5 FORMAT ( '1'

,

15X,« ANGLE* , 2 IX, • I SQU ARE'

)

STQo
ENO

//GO.SYSIN DD *
ANGLE VERSUS
I SQUARE(N=3)
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2) FORTRAN program 2

//SAGLAM3 JOB ( 2075 , 1000 ). 'AHMETX* ,CLA SS = A
// EXEC FRTXCLG^, REGION. GC=300K
//FORT.SYSIN OD *

PFAL*8 TITLED 12)
REAL*8 LABEL/ 1 •/
R5AL X( 1100), Y(llOC) ,01(1500)
REAL W0,V,C,Z1,PI,N.Q
PEAD<5,105) (TITLE( J) ,J = 1,6)
PEA0<5, 105)(TITLE( J) ,J=7,12)

105 F0PMATC6A8)
Zl=.4445
PI=3. 14159263
N=3.
W0=17 9.44 77 72 4*< 10**9)
V=2.9 978 86 027*( 10**8)
EXP=2. 718281828
C= 2. 997 025 89 2* ( 10**8)
X(1)=0.

00 10 1=1,991
QUI ) = X( D-22.
= PI/18C.*Q1(I )

A=N*Z1*( W0/V-W0*C0S(Q)/C)
81=SIM( A)
D _ n 1 :^t^ p
G=(N*Z1*( W0/V-W0*C0S(Q)/C) )**2
0=2. 102 4966 449*( < N*S I N < Q ) *Z1 ) **2)
E 1 =-0.01 000480 877* ( ( N* COS (Q) )**2)
E=EXP**El
F = 8/G
Y(

I

)=E*F*0
X(I + 1) = X(I ) +0.043

10 CONTINUE
C4LL OR AW (990 ,01 , Y ,0 ,0 , LABEL , TI TIE

,

10.,0.,0.,0.,0.,0.,4,4, It LAST)
'WRIT' (6 t 25)
WRITE (6

f

100)(Ql(I),V(I)i 1=1,990, 10)
100 FnRMATM0X,El6.7

?
5X,Pl6.7)

2 5 FO«MAT( ! , 15 X, 'ANGL? 1
, 16X ,

• DP/OCMEGA •

)

STGP
ENO

//GO.SYSIN DO *
ANGLE VERSUS
OP/OOMFGA (N=3)
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3) FORTRAN program 3

//SELMA JOB ( 2075, 1CC0) ,«SELMAX« ,CLASS=A
// EXEC FRT*xCLGPfREGICN.GO»300K
//PORT.SYSIN 00 *

REAL*8 TITLE( 12)
REAL*8 LABEL/ 1 •/
PEAL XU100), YU100) ,QK1500),PZ(25)
RPAL WO, V,C,Z1,PI,N,Q,T( 1100)
Rf=A0(5t 105) (TITLE (J), J = l, 6)
REA0( 5,IC5)(TITLE( J) , J =7,1 2)

105 F0RMAT(6A8)
Zl=.4445
00 12 L=l,995
T(L)=0.

12 CONTINUE
PI=3. 14159263
W0=179. 4477724
V=2. 997886027
EXP=2. 718231828
C=2.997C25392

00 10 K=3,10
N=FLCAT(K)

X( 1)=0.
00 20 1=1,995

QUI )=X( I)
Q = PI/18G.*Q1U )

A=N*Z1*(W0/V-W0*C0S<Q)/C)
81=SIN( A)
8=B1**2
G=(N*Z1*(W0/V-W0*C0S (Q)/CM**2
0=2.1 02 49664<*9*< ( N*S IN (Q ) * Zl ) **2

)

E l=-0. 100048087 7* <(N*COS<Q) )**2)
E = EXP**E1
F=B/G
Y( I) = E*F*D
X( I+l)»X(l J+0.05
T( I >=T( I ) + Y< I )

20 CONTINUE
10 CONTINUE

CALL 0RAW(995 , 01 , T , , , LABEL , TI TLc

,

10.,0.,0.,0.,0.,0.,4,4, 1,LAST)
WRITE(6,25)
WRITE (6, 100 MQK I ),T( I ) , 1 = 1 ,990, 10)

100 F0R^AT(10X,E16.7,5X,E16.7)
2 5 FORMAT( !• , 15 X, 1 ANGLE 1

, 18X, DPT/ OOMEGA 1
)

STOP
ENO

//GD.SYSIN OD *
ANGLE VERSUS
TOTAL DP/OOMEGA (N=3,10)
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