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Abstract

The capacity to associate stimuli underlies many cognitive abilities, including recognition, in humans and other animals.
Vertebrates process different categories of information separately and then reassemble the distilled information for unique
identification, storage and recall. Invertebrates have fewer neural networks and fewer neural processing options so study of
their behavior may reveal underlying mechanisms still not fully understood for any animal. Some invertebrates form
complex social colonies and are capable of visual memory–bees and wasps, for example. This ability would not be predicted
in species that interact in random pairs without strong social cohesion; for example, crayfish. They have chemical memory
but the extent to which they remember visual features is unknown. Here we demonstrate that the crayfish Cherax destructor
is capable of visual recognition of individuals. The simplicity of their interactions allowed us to examine the behavior and
some characteristics of the visual features involved. We showed that facial features are learned during face-to-face fights,
that highly variable cues are used, that the type of variability is important, and that the learning is context-dependent. We
also tested whether it is possible to engineer false identifications and for animals to distinguish between twin opponents.
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Introduction

Visual recognition is poorly understood throughout the animal

kingdom [1–4]. The occurrence and use of cognitive processes

such as recognition by invertebrate animals is therefore significant

because of its implications for our understanding of the evolution

and use of learning and memory processes. Humans use complex

recognition to organize their lives but it has been postulated that

the underlining processes may be relatively simple [5], [6] and that

commonalities might be testable across disciplines and species [7].

Invertebrates are valuable for studying visual processes because

they permit us to pose questions that cannot easily be tested in

vertebrates with their more complex behavior and neural

processing power. Some recognition processes occur in inverte-

brates, for example, in bees and wasps which live in colonies where

the benefit of recognizing fellow nest mates contributes to

successful function of the colony [3], [8]. Other invertebrates,

including some decapod crustaceans, do not exhibit strong social

cohesion, but are highly visual; it is not known whether they have

visual recognition. That is, some crayfish have sparse natural

distributions [9] and individuals have short fights and then

separate [10]. They can form hierarchies in research laboratories

[11], [12], but the associations are weak and relative positions

change depending on experience in previous contests [13] so one

might not predict strong selection for visual recognition of other

individuals.

There is evidence that visual cues are important to decapods,

with most studies using artificial manipulations to demonstrate

recognition. Aspects of aggressive behavior in interactions between

individuals are affected by varying the size of natural white

markings on the chelae of Calcinus laevimanus with white paint [14],

manipulating body patterns on Calcinus tibicen [15] and attaching

identity tags to the carapace of Potamon fluviatile [16]. Fiddler crabs

can distinguish between species and mates when natural patterns

are modified with paint and they will also approach unpainted

unfamiliar conspecifics in preference to familiar ones [17]. The

level of illumination also affects behavioral interactions with

aggressive acts lasting longer and being more intense in dim light

as opposed to bright light [18]. There is also physiological

evidence that the most advanced colour sensitivity described in the

invertebrates occurs in stomatopods [19], [20].

Australian crayfish, Cherax destructor, occupy environments

ranging from clear streams, to turbid ponds and they are also

active in daylight and at night and could therefore benefit from

visual recognition ability. We investigated whether individuals can

visually recognize fight opponents.

Results

To test whether C. destrtuctor can visually recognize an opponent

and determine if some parts of the body are more valuable for

recognition than others, first we exploited evidence that addition

of artificial color patches and other greebles [21] changes the way

crustaceans behave toward conspecifics [14–17]. Preliminary

experiments suggested that C. destructor might also be capable of

this form of recognition. Because C. destructor face their opponents

most of the time during agonistic encounters we reasoned that

anterior regions of the body might be important for recognition

and painted patches on their faces (Yellow correction fluid,

Papermate). We defined the ‘‘face’’ as the region of the crayfish

anterior to the cephalic groove (the cephalothorax) because some

of this area is always in view during the head-on encounters that

characterise fights in this species. We use the term ‘‘face’’ also

because this part of the animal matches the human perception of
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‘‘face’’ so it is readily understood. We also painted patches of the

same size on the claws of another group of crayfish. Painted

animals were matched against control-painted crayfish in a

familiarization encounter in an arena (Fig. 1, 2a).

After the encounter, unpainted losers were selected as focal

crayfish to control for social status, placed in the arena and tested

for recognition ability (Fig. 1). We placed the original familiar

winner randomly in one pen and a size-matched, unpainted,

unfamiliar winner in the other.

When the paint patch was applied to the facial region the focal

crayfish demonstrated recognition by spending more time in the end

with the familiar, painted individual (mean6s.e.m.: familiar end

273621 s, unfamiliar end 199618 s; Wilcoxon n = 15, z = 22.073,

p = 0.038). When the patch was applied to the claws the focal

crayfish showed no preference for either end (familiar end 229615 s,

unfamiliar end 249615 s; Wilcoxon n = 15, z = 0.568, p = 0.570).

Control experiments showed that C. destructor have no preference

for crayfish with a yellow patch on their cephalothorax if they have

not encountered them before (familiar end 257624 s, unfamiliar

end 225621 s; Wilcoxon n = 15, z = 0.682, p = 0.496), that the paint

did not affect behavior of the focal crayfish in this design (familiar

end 244614 s, unfamiliar end 236621 s; Wilcoxon n = 15,

z = 0.568, p = 0.570), that focal crayfish do not change their

behavior toward a familiar animal when it is visually alike the

unfamiliar-i.e. ‘‘twins’’ (familiar end 245616 s, unfamiliar end

218623 s; Wilcoxon n = 15, z = 20.398, p = 0.691), and that there

was no bias in the experimental apparatus (familiar end 227615 s,

unfamiliar end 223623 s; Wilcoxon n = 15, z = 20.170, p = 0.865).

This demonstrates that under the conditions of this test, C.

destructor can use patches of paint on the head for recognition but

that they do not use those on the claws in the same way. While it is

possible that the crayfish recognized the claw-marked individuals

but responded differently, the simplest explanation is that they did

not pay sufficient attention to the claw markings to permit them to

later identify the marked individual. Either option suggests that the

face is more important for recognition when this is established

during physical encounters that involve substantial amounts of

face-to-face interaction as in our test case.

The color marking experiments suggested that C. destructor might

find the head and facial region of particular interest for

recognition, so we investigated whether some natural features in

this area have sufficient variation to be used in visual recognition.

Features used for recognition in size-matched crayfish might be

expected to show more variation than ones that are not used

because combinations of such factors would provide more

distinctive sets of cues. We therefore examined two facial features

in crayfish of the same size and found that those potential visual

cues were not correlated with body size (length) or each other,

suggesting that facial features could be used in recognition.

We chose facial width as a character and classified crayfish of

the same size into ‘‘narrow-’’ and ‘‘wide-faced’’ individuals. The

narrow and wide faces were selected by visual inspection of the

animals and measured with callipers to quantify the difference

(dotted lines on photos in Fig. 2b indicate the width). The

difference in width was about 10% (Fig. 2b box plot); a similar

disparity in size is known to influence other crayfish behaviors [22]

so we reasoned this should also be sufficient to be recognized. We

then ran familiarization encounters as before and tested for

recognition by placing the focal animals in the arena and familiar

or unfamiliar winners of different facial width category in the pens.

When focal crayfish were given a choice between a familiar winner

and an unfamiliar winner with a different facial width, they chose to

spend more time in the proximity of the familiar animal (familiar end

266621 s, unfamiliar end 189615 s; paired t-test n = 15, t = 2.337,

p = 0.035). This demonstrates that following a fight encounter, C.

destructor can recognize a familiar individual and that facial width, or

features associated with it, is involved in that process.

Since it is likely that other cues are also used, we tested whether

color (hue and saturation), which also varies in C. destructor of the

same carapace length, might be involved (Fig. 2c–d). When we

repeated our experiment selecting for color instead of width, the

focal crayfish showed no preference for the familiar or unfamiliar

individual (familiar end 269614 s, unfamiliar end 224610 s; paired

t-test n = 15, t = 1.914, p = 0.076). In this case, highly variable

elements of a potentially significant identifier did not predict

recognition and we conclude that high variability alone does not

indicate that a feature will be used for recognition in a particular

situation. The result could be interpreted as a strong trend and one of

possible biological significance, but further testing in different

behavioral situations and with further dissection of the components

of color would be required to establish this conclusion.

C. destructor can recognize familiar crayfish based on at least one

factor that varies independently of carapace length. If a feature such

as facial width alone is sufficiently important for recognition, we

reasoned that it might be possible to trick crayfish into making false

identifications by using non-familiar animals with their facial widths

closely matched to those of the crayfish encountered during the

agonistic learning encounter. To do this we matched the familiar

winner with a ‘‘pseudo-familiar winner’’ and substituted the latter at

the choice stage of the experiment i.e. one test pen contained the

pseudo-familiar winner, the other contained a non-familiar winner

with different facial width to the familiar, as before. The focal

crayfish behaved as if they had not seen either stimulus animal

before–their choice of end was not significantly different from the

control condition (familiar end 252626 s, unfamiliar end 268628 s;

paired t-test n = 15, t = 0.300, p = 0.496)-and we conclude that facial

width alone was not sufficient for a recognition response where there

Figure 1. Test paradigm for crayfish visual recognition. (a) Fights
between size-matched crayfish to familiarize opponents. These fights
occurred, one pair at a time, in the central area of the tank shown. The
tank was cleaned between encounters. (b) Winners and losers were
transferred to the test arena with a pen and choice area at each end. The
focal losing crayfish could spend time in any of the three areas, two of
which would indicate preference for proximity to a specific animal. The
figure shows a focal crayfish visiting the familiar animal from the previous
encounter. Features, for example facial width and color, were varied
between the stimulus animals in the pens. The window prevents chemical
and mechanical cues from passing but does not interfere with vision.
doi:10.1371/journal.pone.0001695.g001
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is no previous physical encounter. This suggests other visual cues are

also involved.

Our contrasting results between width and color indicate that

high variability alone is not sufficient to predict that a cue will be

used in recognition. It is possible that the nature of the variability is

important. To test this we measured eight facial characters (Fig. 3a)

in a group of size-matched individuals (n = 17) and performed a

correlation analysis for each. All showed considerable variation

(Pearson correlation coefficients ,0.1–0.5, Fig. S1). To determine

whether the group was homogeneous or whether different types of

variation were represented, we performed a Principle Components

Analysis (PCA). This separated the features into clusters based on

Figure 2. Manipulating visual clues. Testing artificial paint patches (a), facial width (b) and color of the facial region (c–d) for a recognition
response in C. destructor. (a) Images of crayfish painted in the face region (left) and chelae (right) from the front and top perspectives. Two paint
experiments are shown on the chelae images: the chelae experiment and the small paint patch (control 2). Chelae paint was applied to both chelae
(only one shown) and to the dorsal and ventral surfaces (only dorsal shown). (b) A narrow- and a wide-faced crayfish were placed at either end of the
choice arena. Left panel shows an example of a ‘‘narrow’’ and ‘‘wide’’ face (8% wider, scale: square face panels 262 cm). The box plots (right panel)
summarize the difference in facial width (blue) between the narrow and wide stimulus crayfish in one experiment and the small difference between
their carapace lengths (red). (c) Different colored crayfish were placed at the ends of the choice arena. To make the distinction between crayfish, three
color elements were measured: hue (color, as depicted by a color wheel-shown left), saturation (intensity) and brightness (lightness or darkness). The
three partial crayfish pictured show the range of color variation we measured in C. destructor. The color swatches (1 to 3) beneath each crayfish image
represent the saturation and brightness of color on a scale of 0–100% that were measured for that crayfish image; the hue for each image is shown
on the color wheel to the right. (d) When color was varied, the stimulus crayfish were grouped into a ‘‘light’’ and a ‘‘dark’’ color, judged by human eye
and confirmed by analysis. Crayfish images 2 and 3 in (b) represent the means of the hue and saturation of the light and dark groups. Brightness was
not used to judge crayfish different because this is dependant on the available light. Graphs show difference between the stimulus crayfish for hue
and saturation (mean6s.e.m, *significantly different t test p,0.05 and also visibly different by human eye as confirmed by naı̈ve observers asked to
group the crayfish images by color). Images were photographed under standardized conditions in a studio.
doi:10.1371/journal.pone.0001695.g002
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their variability and, notably, facial width and color were widely

separated (Fig. 3b). This suggests that either cues with particular

variation patterns are favoured for recognition by C. destructor or

that cues drawn from clusters with different variation patterns are

used. In either case, this is evidence that the pattern of variation

can be an influential factor. This is consistent with the recent

prediction that arthropods would necessarily be limited in the

number of cues they could use for recognition because of the

processing limitations of their nervous systems [3].

How animals perceive and interact with objects depends on

experience [23]. If this applies during visual recognition, the

response of C. destructor could be different depending on the context

of the learning. Our experiments demonstrating recognition were

all conducted on crayfish drawn from communal tanks prior to the

experiment. We therefore repeated the facial width and color

recognition experiments on crayfish that had been isolated for 2

weeks prior to the test. In contrast to the earlier result, crayfish

showed no preference for familiar opponents (width: n = 15, paired

t-test t = 0.408, p = 0.689; color: n = 15, paired t-test t = 0.055,

p = 0.957) even though the isolated crayfish had longer fights

(ANOVA df = 1, MS = 625164.8, F = 10.717, p = 0.001). That is,

the previous social history had an effect either on C. destructor’s

ability to recognize antagonists from previous encounters or their

behavioral response to recognition altered.

Discussion

Crayfish recognized each other using natural facial features

learned during a fight. Our experiments suggest that the opponent’s

facial region is committed to memory for at least 24 hours. This is a

similar time period over which C. destructor remember topography of

their environment [24]. Memory of a previous opponent has been

shown to influence aggressive behaviour for up to two weeks in C.

destructor [25] so it is possible that the learning of an opponent by

visual recognition persists longer than 1 day. The memory may also

be affected by the level of dominance of the focal crayfish as there is

evidence that subordinates of the crab Chasmagnathus granulatus have

better memory retention than dominants [26].

There is evidence to support both suggestions from the isolation

experiments: that the isolation affected the ability of C. destructor to

recognize conspecifics or it altered the behavioral response. C.

destructor’s ability to recognize may have changed because the

memory ability of decapods can differ between subordinates and

dominants [26]. On the other hand, C. destructor may have still been

able to recognize the opponents, but changed their behavioral

response, because isolation is known to affect behavioral outcomes in

aggressive contests [25] and in our experiments it also changed

behavior-isolated crayfish fought for longer than communal ones.

Knowledge of the effect of social isolation on crustaceans is limited. It

is known that isolated individuals of Pargurus samuelis win more

encounters [27] and recent evidence suggests isolation also affects

aggressive behavior in C. destructor [25]. Our outcome indicates that

the absence of social experiences (isolation) can also affect the

behavior of crayfish towards familiar individuals.

The behavioral response in which crayfish prefer to remain

close to a familiar animal has been demonstrated before in C.

destructor using chemical cues [10]. It is also evident in shrimp

species [28], [29] and in a range of vertebrate species [30], [31].

This behavior, known as the ‘‘dear enemy’’ phenomenon [sensu 32],

could reduce the energetic cost and physical damage from high

intensity fights that occur between unfamiliar crayfish [10]. There is

also evidence that decisions by an individual to associate with

familiar conspecifics confers other advantages because it allows the

individual to direct behaviors to other situations, e.g. predator

avoidance or feeding [33]. This supports the recent suggestion that

solitary species, of which C. destructor is one, will adopt the strategy of

approaching and spending more time with familiar individuals,

compared with higher aggression toward familiars that is found in

species that are in close social contact [34].

Colonial wasps and bees are the only other invertebrates known

to be capable of visual recognition of familiar conspecifics [1], [8],

[35], [36]. Our finding is unexpected in a species that does not

have a strict social life like a colonial insect. Laboratory

experiments show that crayfish can recognize status and identity

using chemical cues [10], [37–39] and that they form hierarchies

[11]. In the wild, some decapod species share shelters and live in

small communal groups or exhibit gregarious behaviours [40–44].

They also form pair bonds [45] and recognition of chemical cues

can be used in this relationship (e.g. [46], [47]). Detto and

colleagues demonstrated visual recognition between crab mates

Figure 3. The face of C. destructor. (a) Photo of the features analyzed on C. destructor’s face. Color hue and saturation were taken from the mean of
5 points (white triangles are 2 example locations). (b) PCA factor analysis of 8 facial features of C. destructor. Two clusters are identified by dotted
circles and the color variables (HUE–color, SAT–saturation) occur at the extremes of the plot and outside these clusters. Facial width (FW) and color
(SAT, HUE) do not plot together indicating that their variation is different.
doi:10.1371/journal.pone.0001695.g003
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using tethers and painted markings [17]; our observations in

unrestrained C. destructor also suggest this is possible. We are not

aware of strict pair bonds or group living in C. destructor, nor any

structure like the colonies of bees and wasps, however a

neighbourhood of individuals could exist in the wild, particularly

for juveniles when they are shed from the mother until they

disperse. There is evidence of this in juvenile C. destructor which

form groups in the laboratory [48]. At this time, visual recognition

would assist in maintaining relationships and territorial boundar-

ies. In any case, visual recognition in C. destructor could be used in

concert with chemical clues to increase the distance over which

recognition could occur during daylight hours (e.g. chemical clues

described for recognition in crayfish and other crustaceans [10],

[38], [39], [49–52]).

The outcome strengthens recent evidence that crustaceans have

true individual recognition [53], a controversial topic for the past

30 years [49], [54–56]. We conclude that familiar recognition

underpins the behavior however, given the natural variation in

features described, the likelihood that crayfish recognize multiple

individuals from a set of visual cues is a possibility. Regardless of

the type of individual recognition demonstrated, the benefits for

life strategies are likely to be the same.

There is an emerging view that experimentation into behavior

based on cognitive abilities will be advanced by greater attention

to distributed theories of cognition and those that allow for the

generation of testable hypotheses across disciplines [7]. C.

destructor’s ability to learn facial features in biologically relevant

contexts, is a promising new candidate for such testing. Cues with

high variability are involved, but unexpectedly, this alone does not

predict that they will be used. This evidence calls into question

whether recognition evolved in invertebrates to be further

developed in vertebrates or whether two different processes are

involved.

Materials and Methods
Studying recognition in crayfish

Most crayfish species are naturally aggressive towards conspe-

cifics of both genders, whether or not specific resources are at issue

when they meet [11]. All experiments were based on the

longstanding finding in Cherax destructor, and many other crayfish,

that all agonistic contests between two non-moulting, non-

sexually-active individuals are predictably won by the crayfish

that has at least a 5% longer carapace, regardless of gender [22].

Human observers cannot predict the winner where the difference

is less and the contests are more protracted than when it is greater

[22]. These facts ensure that when crayfish are size-matched they

will spend time in extended, face-to-face, agonistic encounters

before one becomes the winner (dominant animal) and the other

becomes the loser (subordinate animal).

Specimens of C. destructor (Clark; 25–35 mm carapace length, both

sexes) were obtained from commercial suppliers in New South

Wales, Australia and maintained in husbandry tanks prior to testing

(18uC, 12h/12h light/dark). Crayfish were only used once and

individuals in a given trial were taken from different holding tanks.

They were maintained in holding tanks for two weeks, either isolated

or communally depending on the experiment.

Apparatus
The experimental apparatus was a perspex aquarium separated

into three sections, a central arena and two curved holding pens,

by two transparent, non-porous perspex partitions (Fig. 1). The

curved pens induced stimulus crayfish to face the center of the tank

more than other designs (e.g triangular or rectangular ends; Y.

Zheng unpublished data). Thus, when animals saw each other at

the tank ends, there was considerable time in face-to-face view

because the focal animals approached the ends of the tank head-on

as they moved around the narrow space. This was important

because crayfish spend most of their fight time head-on, so visual

recognition could relate to this region. The sections were filled

with tap water to a depth of 10 cm. Stimulus crayfish in the pens

were isolated mechanically and chemically from those in the

central arena but they could see each other. This was modified

from a previous apparatus used to test crayfish for recognition

following a fight [10]. The tank was positioned in a temperature

controlled room with fluorescent illumination.

Familiarization prior to testing procedure
Agonistic encounters to familiarize crayfish with each other

were conducted in the central arena (Fig. 1a). Two crayfish were

placed in opaque cylinders in the arena and allowed to settle for

2 minutes. The cylinders were removed so that the animals could

interact. The interaction was scored according to criteria adapted

from previous studies on crayfish and lobsters, in our laboratory

and others [10], [11], [57]. The winner and loser were kept in

separate, isolated holding tanks until use in subsequent recognition

tests 24 h later. The apparatus was washed thoroughly between

encounters to remove chemical traces [10].

Recognition test procedure
To test for recognition behavior, we made video recordings of

the focal crayfish in the central arena which was divided for

scoring using boundary markers, into three equal, imaginary areas:

a central zone and two end zones (Fig. 1b). To conduct a test, size-

matched stimulus crayfish were placed in the pens at the ends and

the focal crayfish placed in an opaque cylinder in the middle of the

central arena to settle for 2 minutes. When the cylinder was

removed, the focal animal moved around the arena. To allow for the

effects of removal and the novelty of the arena, the first 2 minutes of

activity were not scored. Following this, the crayfish was tracked for

10 minutes. It was free to choose where it spent its time and could

indicate this by a preference for one or other of the stimulus crayfish

or for the central zone. For consistency, a focal crayfish was deemed

to have entered a zone when its rostrum crossed the boundary [10].

The pen containing the familiar crayfish was randomly varied to

eliminate the possibility of positional effects. The recorded video

footage was scored double blind so that the scorer had no knowledge

of whether a familiar crayfish was present or of which pen it

occupied. Systat v11 was used to analyze the total time spent in each

end zone and a set at 0.05 [58].

Synopsis of experiments
The choice animals at either end of the arena given to the focal

crayfish for the recognition test are listed below (see Fig. 2a for

images of paint locations). Combinations are the Familiar winner

vs Unfamiliar winner and are similar in all respects except for the

variations in the list.

Cephalothorax paint vs No paint

Head region recognition-chephalothorax painted

Chelae paint vs No paint

Claws recognition-dactylus and propodus painted

Control 1: Cephalothorax paint vs No paint

Initial preference for paint–cephalothorax painted but no prior fight, only

choice test

Control 2: Small patch vs No paint

Paint effect on behaviour–small paint patch applied to claw

Control 3: No paint vs No paint

Distinguishing twins–natural features visually matched by eye

Crayfish Visual Recognition
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Control 4: Empty holding pen vs Empty holding pen

Bias in the apparatus–no choice crayfish in the pens

Narrow face vs Wide face

Natural feature width–measured with callipers to ,10% difference

Light colored face vs Dark colored face

Natural feature color–quantified hue and saturation from digital images

‘‘Pseudo-familiar’’ vs Unfamiliar

Tricking the focal–a pseudo familiar with visually matched natural features

to the real familiar

Narrow face vs Wide face

Isolation and facial width–animals isolated prior to the fight

Light colored face vs Dark colored face

Isolation and color–animals isolated prior to the fight

Note on color experiments
Crayfish were initially grouped into light and dark animals and

then color was measured from digital images. The photographs

were taken with a Nikon D2 digital SLR and Nikon 60 mm

1:2.8D lens set at constant aperture (F25) in controlled lighting

(dark room with Monobloc ProSeries 1000 flash). File storage was

RAW format on the camera which was converted to uncom-

pressed 16-bit TIFF for viewing in Photoshop (Adobe, CS2). The

images were standardized against a reference grid image with a

grey and color swatch which was also photographed. The eye

dropper tool was then used to measure small areas of colour, 565

pixels. Six measurements were taken, one from each square of a

grid template that was held on the computer monitor, superim-

posed over the crayfish cephalothorax. This equipment setup and

file protocol minimised loss of color information in the images

[59]. Even with this care in image analysis, there could be

information lost [59], e.g. we did not measure UV or polarized

light. Nonetheless, a similar method of analysis to ours has been

applied in previous studies and provides an indicator of some of

the elements of the variation in cephalothorax color e.g. [60].

Could the focal crayfish see the different colors of the choice

animals? We used natural variation of the color we saw on the

cephalothorax and quantified this as an index of appearance.

Crayfish are not known to have color vision but they have visual

pigment sensitive to wavelengths of light near those reported in

our study (peak sensitivity ,570 nm, [61]). The ‘‘light’’ and

‘‘dark’’ color categories used in our experiments corresponded

approximately to 620–750 nm and 570–590 nm (converted from

the hue measurements we recorded, corresponding to red and

yellow hues). It may have been possible therefore, that the focal

crayfish were able to view one of the choice animal’s appearances

in more detail than the other because one of the color groups used

was closer to the peak visual sensitivity. Also, if crayfish viewed the

choice animals from angles other than that taken for the analysis, a

different color to what we report may have been seen, but this

would be infrequent given the apparatus design maximised the

time animals faced one another.

Bearing in mind that it is difficult to control and measure all

those variables for color in a live situation between two fighting

animals, we left color in the analysis. However, we also ran the

PCA model again without the hue and saturation variables. The

result was similar: variables clustered into at least 2 groups on the

factor plot, and the 3 PCA components explained 81% of the total

variance (unpublished data). The main conclusion from the PCA

remains the same: there were features that varied, but because

they separated on the factor plot, they do not vary equally.

Supporting Information

Figure S1 Principle Components Analysis. Scatterplots of the

variation in visual cues measured in C. destructor.

Found at: doi:10.1371/journal.pone.0001695.g001 (0.20 MB

PDF)

Acknowledgments

We thank Garry Jolley-Rogers, Kate Naughton, Luke Finley and Dion

D’Alessandro for input to discussions and David Paul for photographic

assistance. Three reviewers provided strengthening comments to manu-

script.

Author Contributions

Conceived and designed the experiments: BP JV YZ DM. Performed the

experiments: JV YZ. Analyzed the data: BP JV YZ DM. Contributed

reagents/materials/analysis tools: BP DM. Wrote the paper: BP JV YZ

DM.

References

1. Giurfa M, Zhang MS, Jenett A, Menzel R, Srinivasan MV (2001) The concepts
of ‘sameness’ and ‘difference’ in an insect. Nature 410: 930–933.

2. Herath P, Kinomura S, Roland PE (2001) Visual recognition: evidence for
two distinctive mechanisms from a PET study. Hum Brain Mapp 12:

110–119.

3. Horridge A (2005) What the honeybee sees: a review of the recognition system of
Apis mellifera. Physiol Entomol 30: 2–13.

4. Yurkovic A, Wang O, Basu AC, Kravitz EA (2006) Learning and memory
associated with aggression in Drosophila melanogaster. Proc Natl Acad Sci USA 103:

17519–17524.

5. Hill H, Bruce B, Akamatsu S (1995) Perceiving the sex and race of faces: the role

of shape and colour. Proc R Soc B 261: 367–373.

6. Riesenhuber M, Jarudi I, Gilad S, Sinha P (2004) Face processing in humans is
compatible with a simple shape-based model of vision. Proc R Soc B 271:

S448–S450.

7. Barrett L, Henzi P, Rendall D (2007) Social brains, simple minds: does social

complexity really require cognitive complexity? Phil Trans R Soc B 362:

561–575.

8. Tibbetts EA, Dale J (2004) A socially enforced signal of quality in a paper wasp.

Nature 432: 218–222.

9. Lake PS, Sokol A (1986) Australian Water Resources Council Technical Paper

No. 87: Ecology of the yabby Cherax destructor Clark (Crustacea: Decapoda:

Parastacidae) and its potential as a sentinel animal for mercury and lead
pollution. Canberra, Australian Government Publishing Service.

10. Crook R, Patullo BW, Macmillan DL (2004) Multimodal individual recognition
in the crayfish Cherax destructor. Mar Freshw Behav Physiol 37: 271–286.

11. Bovbjerg RV (1953) Dominance order in the crayfish Orconectes virilis (Hagen).

Physiol Zool 26: 173–178.

12. Goessmann C, Hemelrijk C, Huber R (2000) The formation and maintenance of
crayfish hierarchies: behavioural and self-structuring properties. Behav Ecol

Sociobiol 48: 418–428.

13. Daws AG, Grills J, Konzen K, Moore PA (2002) Previous experiences alter the

outcome of aggressive interactions between males in the crayfish, Procambarus

clarkii. Mar Freshw Behav Physiol 35: 139–148.

14. Dunham DW (1978) Effect of chela white on agonistic success in a diogenid

hermit crab (Calcinus laevimanus). Mar Behav Physiol 5: 137–144.

15. Hazlett BA (1972) Stimulus characteristics of an agonistic display of the hermit

crab (Calcinus tibicen). Anim Behav 20: 101–107.

16. Vannini M, Gherardi F (1981) Dominance and individual recognition in Potamon

fluviatile (Decapoda, Brachyura): possible role of visual cues. Mar Behav Physiol

8: 13–20.

17. Detto T, Backwell PRY, Hemmi JM, Zeil J (2006) Visually mediated species and

neighbour recognition in fiddler crabs (Uca mjoebergi and Uca capricomis).
Proc R Soc B 273: 1661–1666.

18. Bruski CA, Dunham DW (1987) The importance of vision in agonistic

communication in fighting crayfish Orconectes rusticus. I. An analysis of bout
dynamics. Behaviour 103: 83–107.

19. Marshall NJ, Jones JP, Cronin TW (1996) Behavioural evidence for colour vision
in stomatopod crustaceans. J Comp Physiol A 179: 473–481.

20. Chiao CC, Cronin TW, Marshall NJ (2000) Eye design and color signaling in a

stomatopod crustacean Gonodactylus smithii. Brain Behav Evol 56: 107–122.

21. Gauthier I, Tarr MJ (1997) Becoming a "greeble" expert: exploring mechanisms

for face recognition. Vision Res 37: 1673–1682.

22. Pavey CR, Fielder DR (1996) The influence of size differential on agonistic

behaviour in the freshwater crayfish Cherax cuspidatus (Decapoda: Parastacidae).

J Zool 238: 445–457.

Crayfish Visual Recognition

PLoS ONE | www.plosone.org 6 February 2008 | Volume 3 | Issue 2 | e1695



23. Sigala N, Logothetis NK (2002) Visual categorization shapes feature selectivity

in the primate temporal cortex. Nature 415: 318–320.
24. Basil J, Sandeman D (2000) Crayfish (Cherax destructor) use tactile cues to detect

and learn topographical changes in their environment. Ethology 106: 247–259.

25. Hemsworth R, Vilareal W, Patullo BW, Macmillan DL (2007) Crustacean social
behaviour changes in response to isolation. Biol Bull In press.

26. Kaczer L, Pedetta S, Maldonado H (2007) Aggressiveness and memory:
subordinate crabs present higher memory ability than dominants after an

agonistic experience. Neurobiol Learn Mem 87: 140–148.

27. Courchesne E, Barlow GW (1971) Effect of isolation on components of
aggressive and other behaviour in the hermit crab, Pagurus samuelis. Z vergl

Physiologie 74: 32–48.
28. Rufino MM, Jones DA (2001) Binary individual recognition in Lysmata debelius

(Decapoda: Hippolytidae) under laboratory conditions. J Crust Biol 21:
388–392.

29. Ward J, Saleh N, Dunham DW, Rahman N (2004) Individual discrimination in

the big-clawed snapping shrimp, Alpheus heterochelis. Mar Freshw Behav Physiol
37: 35–42.

30. Ydenberg RC, Giraldeau LA, Falls JB (1988) Neighbours, strangers, and the
asymmetric war of attrition. Anim Behav 36: 343–347.

31. Temeles EJ (1994) The role of neighbours in territorial systems: when are they

‘dear enemies’? Anim Behav 47: 339–350.
32. Fisher J (1954) Evolution and bird sociality. In: Huxley J, Hardy AC, Ford EB,

eds. Evolution as a process. London: Allen & Unwin. pp 71–83.
33. Griffiths SW (2004) Coping with divided attention: the advantage of familiarity.

Proc R Soc B 271: 695–699.
34. Müller CA, Manser MB (2007) ‘Nasty neighbours’ rather than ‘dear enemies’ in

a social carnivore. Proc R Soc B 274: 959–965.

35. Tibbetts EA (2002) Visual signals of individual identity in the wasp Polistes

fuscatus. Proc R Soc B 269: 1423–1428.

36. Dyer AG, Neumeyer C, Chittka L (2005) Honeybee (Apis mellifera) vision can
discriminate between and recognise images of human faces. J Exp Biol 208:

4709–4714.

37. Breithaupt T, Atema J (1993) Evidence for the use of urine signals in agonistic
interactions of the American lobster. Biol Bull 185: 318.

38. Zulandt Schneider RA, Huber R, Moore PA (2001) Individual and status
recognition in the crayfish, Orconectes rusticus: the effects of urine release on fight

dynamics. Behaviour 138: 137–153.
39. Breithaupt T, Eger P (2002) Urine makes the difference: chemical communi-

cation in fighting crayfish made visible. J Exp Biol 205: 1221–1231.

40. Berrill M (1975) Gregarious behavior of juveniles of spiny lobster, Panulirus argus

(Crustacea-Decapoda). Bull Mar Sci 25: 515–522.

41. Zimmer-Faust RK, Spanier E (1987) Gregariousness and sociability in spiny
lobsters: implications for den habitation. J Exp Mar Biol Ecol 105: 57–71.

42. Kelly S, MacDiarmid AB, Babcock RC (1999) Characteristics of spiny lobster,
Jasus edwardsii, aggregations in exposed reef and sandy areas. Mar Freshw Res

50: 409–416.

43. Spanier E, Almog-Shtayer G (1992) Shelter preferences in the Mediterranean

slipper lobster: effects of physical properties. J Exp Mar Biol Ecol 164: 103–116.

44. Herrnkind WF (1969) Queuing behaviour of spiny lobsters. Science 164:

1425–27.

45. Seibt U, Wickler W (1972) Individual recognition and partner preference in
shrimp Hymenocera picta Dana. Naturwissenschaften 59: 40.

46. Rufino MM, Jones DA (2001) Binary individual recognition in Lysmata debelius

(Decapoda: Hippolytidae) under laboratory conditions. J Crust Biol 21:
388–392.

47. Dı́az ER, Thiel M (2004) Chemical and visual communication during mate

searching in rock shrimp. Biol Bull 206: 134–143.

48. Hazlett BA, Lawler S, Edney G (2007) Agonistic behavior of the crayfish

Euastacus armatus and Cherax destructor. Mar Freshw Behav Physiol 40: 257–266.

49. Johnson VR (1977) Individual recognition in the banded shrimp Stenopus hispidus

(Olivier). Anim Behav 25: 418–428.

50. Caldwell RL (1985) A test of individual recognition in the stomatopod

Gonodactylus festae. Anim Behav 33: 101–106.

51. Karavanich C, Atema J (1998) Individual recognition and memory in lobster

dominance. Anim Behav 56: 1553–1560.

52. Gherardi F, Daniels WH (2003) Dominance hierarchies and status recognition
in the crayfish Procambarus acutus acutus. Can J Zool 81: 1269–1281.

53. Gherardi F, Atema J (2005) Memory of social partners in hermit crab

dominance. Ethology 111: 271–285.

54. Hazlett BA (1969) ‘‘Individual’’ recognition and agonistic behaviour in Pagurus

benhardus. Nature 222: 268–269.

55. Winston M, Jacobson S (1978) Dominance and effects of strange conspecifics on

aggressive interactions in the hermit crab Pargurus longicarpus (Say). Anim Behav
26: 184–191.

56. Gherardi F, Tiedemann J (2004) Binary individual recognition in hermit crabs.

Behav Ecol Sociobiol 55: 524–530.

57. Atema J, Voight R (1995) Sensory biology and behaviour. In: Factor J, ed. The

biology of the lobster, Homarus americanus. San Francisco: Academic Press. pp

313–348.

58. Sokal RR, Rohlf FJ (1995) Biometry. New York: Freeman and Company. 887 p.
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