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PREFACE.

IN tlie present work I have employed the term Mechanism

as applying to combinations of machinery solely when con-

sidered as governing the relations of motion. Machinery
as a modifier of force, has in the science of Mechanics

occupied the attention of nearly every mathematician of

eminence who has arisen in the world
; but, by some

strange chance, very few have attempted to give a scien-

tific form to the attractive and valuable results of mechan-

ism
;
for it cannot be said that the few and simple machines

which form the examples in books of mechanics, are to

be regarded as even forming a foundation for the prin-

ciples upon which is to be based a science that will

enable us either to reduce the movements and actions of

a complex engine to system, or to give answers to the

questions that naturally arise upon considering such

engines; for example, are the means by which the

results are obtained the best that might have been

employed? or what are the various methods that might
have been substituted for them? Yet there appears no

reason why the construction of a machine for a given

purpose should not, like any usual problem, be so reduced

to the dominion of the mathematician, as to enable him to

obtain, by direct and certain methods, all the forms and

arrangements that are applicable to the desired purpose,
from which he may select at pleasure. At present,

questions of this kind can only be solved by that species

713887
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of intuition which long familiarity with a subject usually

confers upon experienced persons, but which they are

totally unable to communicate to others.

When the mind of a mechanician is occupied with the

contrivance of a machine, he must wait until, in the

midst of his meditations, some happy combination presents

itself to his mind which may answer his purpose. Yet

upon analysing the mental operations by which the

nascent contrivance is gradually made to assume form

and consistency, it will generally be observed, that the

motions of the machine are the principal subject of

contemplation, rather than the forces applied to it, or the

work it has to do. For every machine will be found to

consist of a train of pieces connected together in various

ways, so that if one be made to move they all receive a

motion, the relation of which to that of the first is

governed by the nature of the connection. The work

which the machine has to do will require that the pieces

appropriated to this work shall move with respect to each

other in some given manner, and the forces applied to the

machine to set it in motion must also move the piece

which receives them in some other manner. Thus the

question of contriving a machine by which a given kind

of power may be made to perform given work, is reduced

to a problem of mere motion to a question of connecting

the pieces which receive the power and those which do

the work; so that when the first move according to the

law required by the economy of the power, the last shall

necessarily receive the motion which will enable them to

do the work. There are, of course, many essential

considerations of force and arrangement which must be

entered into before the machine can be completed, but

they admit of being abstracted in the first instance
;
and

it is only by so doing that we can hope to create a science

of mechanism. Yet this view seems to have presented
itself but lately, with due clearness, to the minds of
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writers on this subject; and it may be interesting to trace

the history of its rise and progress.

Apart from the writings on the science of Mechanics,
the history of which is well known, a number of books

have been produced from time to time, having for their

subject Machinery. At first, however, the leading prin-

ciple of classification in these is derived from the purpose
for which each machine is designed, and accordingly these

books are either confined to machines destined for one

particular kind of work, as in the early treatises of Val-

turius (1472) and Agricola (1550) on warlike and mining

machinery respectively; or else they are collections of

machines classed and described with reference to the

objects for which they are constructed; divided, for ex-

ample, into machines for raising water, for grinding flour,

sawing timber, and so on. The earliest of these collections

are the treatises of Besson (1569), Ramelli (1580), Strada

(1618), Zonca (1621), Branca (1629), Bockler (1662) ;

and the list might be continued without interruption to

the present day.* The voluminous ' Theatrum Machi-

narum '

(1724) of Leupold, although it falls under the

same description, yet in its first volume contains the first

attempt to consider the parts of machinery separated from

their work, and referred to the modifications of motion.

And although these parts are made to follow the usual

mechanical powers, and are mixed up with considerations

of force, yet we find chapters on the crank, on cams, on

machines for converting a circular motion into a rectilinear, or

a back and forwards motion, and for converting a back and

forwards motion into a continued circular motion, and so

on. This must, in fact, be considered as the first attempt
to produce a systematic treatise on Mechanism. But the

first clear statement of the true principles upon which the

science of Kinematics must be based, was made by Euler,

* This list might be preceded by Vitruvius, Book x., the works of Hero and
other Greek mechanists, &c. Vide Veterum Mathematicorum Opera. Par. 1G93.
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in 1775 ('Nov. Comm. Petrop.' xx.), in a memoir,* of

which I present a translation of the opening paragraph ;
in

which it appears that ' The investigation of the motion of a

rigid body may be conveniently separated into two parts,

the one geometrical, the other mechanical. In the first

part, the transference of the body from a given position to

any other position must be investigated without respect to

the causes of the motion, and must be represented by

analytical formulae, which will define the position of each

point of the body after the transference with respect to its

initial place. This investigation will therefore be referable

solely to geometry, or rather to stereotomy.
'
It is clear that by the separation of this part of the

question from the other, which belongs properly to Me-

chanics, the determination of the motion from dynamical

principles will be made much easier than if the two parts

were undertaken conjointly.'

The next step appears to have been made in 1794, by

Monge, who, in planning the organisation of the Ecole

Polytechnique, proposed to devote two months of the first

year of study to the elements of machines. 'By these

elements are to be understood the means by which the

directions of motion are changed ;
those by which pro-

gressive motion in a right line, rotative motion, and

reciprocating motion, are made each to produce the others.

The most complicated machines being merely the result

of a combination of some of these elements, it is necessary
that a complete enumeration of them should be drawn

up.f This enumeration formed the subject of part of his

lectures, and was the basis of the two similar systems of

Hachette, and of Lanz and Betancourt. The latter was

finally adopted for the Ecole Polytechnique, and printed
*
Reprinted in his Theoria motm corporum, in the first chapter of the

Additamentum, headed 'Formulae generales pro translatione quacunque cor-

porum rigidorum,' p. 449, ed. 1790.

t Vide Essai sur la Composition des Machines, par MM. Lanz and Betancourt,
Par. 1808. p. 1.
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in 1808, under the title of ' An Essay on the Composition
of Machines.' It was subsequently translated into

English. Postponing for the moment the discussion of

the system, we may observe that Monge, in the above

programme, distinctly proposes to study machines by

treating them merely as contrivances for changing one

kind of motion into another, apart from any considerations

of force. We shall see presently, however, that this

plan did not extend beyond the mere enumeration and

description of the elements, without containing a pro-
vision for the calculation of the laws of the motion, or

changes of motion produced. Ampere, however, appears
to have contemplated the formation of a system that

would also include these latter objects; for in his '

Essay
on the Philosophy of the Sciences,' published in 1834, we
find it distinctly asserted,

' that there exist certain con-

siderations which if sufficiently developed would consti-

tute a complete science, but which have been hitherto

neglected, or have formed only the subject of memoirs or

special essays. This science [which he terms Kinematics}

ought to include all that can be said with respect to motion

in its different kinds, independently of the forces by which

it is produced. It should treat in the first place of spaces

passed over, and of times employed in different motions,

and of the determination of velocities according to the

different relations which may exist between those spaces
and times.

4
It ought then to develope the different instruments by

the help of which one motion may be converted into

another, so that, calling these instruments by the usual

name of machines, this science will define a machine to be,

not as usual, an instrument by means of which we may
change the direction and intensity of a given force ; but, an

instrument by means of which we may change the direction

and velocity of a given motion. The definition is thus

freed from the consideration of the forces which act on



X PREFACE.

the machine
;
a consideration which merely distracts the

attention of those who endeavour to unravel the me-

chanism.
' To understand, for example, the wheel-work by means

of which the minute-hand of a watch makes twelve turns

while the hour-hand makes but one, why need we trouble

ourselves with the force that sets the watch in motion ?

The effect of the wheel-work, so far as it governs the

relative velocity of the hands, is the same, by whatever

cause the motion may be produced, as, for example, when

the minute-hand is turned by the finger.
' After these general considerations relating to motion

and velocity, this new science might pass on to the deter-

mination of the ratios that exist between the velocities of

the different points of a machine, or generally of any

system of material points, in all the movements of which

the machine or system is susceptible ;
in a word, to the

determination, independently of the forces applied to the

material points, of what are called virtual velocities
;
a

determination which is infinitely more comprehensible

when thus separated from considerations of Force.' *

It is much to be regretted that this distinguished writer

did not attempt to follow up this clear and able view of

the subject, by actually developing the science in question.

A similar separation of the principles of motion and

force formed the basis of the Lectures on Mechanism,
which I delivered for the first time to the University of

Cambridge, in 1837
;
and the same views were sub-

sequently sanctioned by the high authority of Professor

Whewell, who, in his '

Philosophy ofthe Inductive Sciences,'

has assigned a chapter to the Doctrine of Motion,f in

which, under the title of Pure Mechanism, he has defined

this science nearly in the above words of Ampere, whom
he quotes.

* Vide Ampere, Essai sur la Philosophic des Sciences, 1835, p. 50.

t Whewell, P/ulosophy of the Inductive Sciences, 1840, p. 144.
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To make the plan of the following pages more intelli-

gible, it will be necessary in the first place to take a short

review of the system of MM. Lanz and Betancourt, which,
as we have seen, is founded upon the views of Monge.
Their system is thus detailed at the opening of their

work :

' The motions of the parts of machines are either (1)

rectilinear, (2) circular, or (3) curvilinear; and each of

these may be continuous in direction or alternate, that is

back and forward. These six motions admit of being com-

bined two and two in twenty-one different ways, each

motion being supposed to be also combined with itself.

The object of every simple machine being to counter-

change or communicate these motions, the following

system will include them all.

(-rectilinear

(alternatef 2

Continuous Rectilinear,* changed into ...... circular. . . .
( continuousf 3

1 alternatef 4

/rectilinear alternatef 7

Continuous Circular,* into
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in (3), and then to convert this into alternate rectilinear

by one of those in (7). In this way also classes 5, 6, 11,

12, 13, 15, 16, 18, and 21, are disposed of; so that there

remain only twelve, under which our authors proceed to

arrange the elementary combinations into which, according

to them, mechanism may be resolved.

This celebrated system, which was pretty generally

received, must, however, be considered as a merely popular

arrangement, notwithstanding the apparently scientific

simplicity of the scheme. In the first place, it is not con-

fined to pure combinations of mechanism, but is embar-

rassed by the intrusion of several dynamical and even

hydraulic contrivances. Thus, a water-wheel and a wind-

mill-sail are considered to be a means of converting con-

tinuous rectilinear motion into continuous circular
;
and a

ferry-boat attached to one end of a long rope, of which the

other is fixed to the bank, is admitted into Class 4, as a

means of converting continuous rectilinear motion into

alternate circular. Fly-wheels,pendulums with their escape-

ments, parallel motions, are all placed in one class or other

of this scheme. No attempt is made to subject the motions

to calculation, or to reduce these laws to general formula?,

for which indeed the system is totally unfitted.

The plan of the great work of Borgnis, published
in 1818, is much more comprehensive and complete, really

embracing the whole subject of machinery, instead of

being confined by its plan to elementary combinations for

the modification of motion. Borgnis, in the volume on

the Composition of Machines, divides mechanical organs
into six orders, each of which have subordinate classes.

His orders are;* (1) Receivers of power ; (2) Communi-

cators; (3) Modifiers; (4) Frame-work, fixed and mov-

able; (5) Regulators; (6) Working parts.

For the mere purposes of descriptive mechanism this

* In the original, (1) Rdcepteurs, (2) Communicateurs, (3) Modificateurs,

(4) Supports, (5) R<?gulateurs, (6) Op^rateurs.
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system is much better adapted than that of MM. Lanz

and Betancourt, but still does not provide for the in-

vestigation of the laws of the modifications of motion,

which is an especial object of the proposed science of

Kinematics. Many essays, however, have been from tune

to time written concerning various detached portions of

this science. The teeth of wheels is the most remarkable

of these, from having occupied the attention of so many of

the best mathematicians. But in fact, the description of

all the mechanical curves, as epicycloids and conchoids,

may be held to belong to this science, which would thus be

made to include a great mass of matter that has hitherto

been classed with geometry. The calculation of trains of

wheel-work is also a branch of it, to which the first contri-

bution was made by Huyghens, who employed continued

fractions for the purpose of obtaining approximate num-
bers for the trains of his Planetarium. *

The following pages must not, however, be considered as

an attempt to carry out the able and comprehensive views

of Ampere ; being confined to machinery alone, and not

passing from it to the more abstract generalities of motion,

which he seems to have contemplated.

My object has been to form a system that would em-

brace all the elementary combinations of mechanism, and

at the same time admit of a mathematical investigation of

the laws by which their modifications of motion are go-
verned. I have confined myself to the Elements of Pure

Mechanism, that is, to those contrivances by which motion

is communicated purely by the connection of parts, with-

out requiring the essential intermixture of dynamical
effects.

I have taken a different course from the one hitherto

followed, in respect that, instead of considering a machine

to be an instrument by means of which we may change the

* Vide also Young's Natural Philosophy, vol. ii. p. 55, Arts 365, 366, the

substance of which will be found in this work, Arts, 32 and 336.
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direction and velocity of a given motion, I have treated it

as an instrument by means of which we may produce any
relations of motion between two pieces.

For Monge and his followers began by dividing motion

into rectilinear and rotative, continuous and reciprocating,

and so based their system upon the actual motion of the

parts ;
and Ampere defines his machine in the words

quoted above as modifying a given motion. But a little

consideration will show that any given element of ma-

chinery can only govern the relations of velocity and di-

rection of the pieces it serves to connect
;
and that this

connection and the law of its action are for the most part

independent of the actual velocities. By establishing a

system upon the relations of motion instead of upon the

actual motions, it will be found that many of the redun-

dancies and difficulties that have hitherto obscured the

subject are got rid of.

Thus, to follow up the example given by Ampere of the

hands of a watch, it is clear that the connection governs the

relation of their angular velocities, which at every instant

is in the proportion of twelve to one
;
and also provides

that they shall both revolve the same way, whether that

be to the right or to the left. If, then, the one be made

to revolve through a small angle back and forwards, the

other will also revolve back and forwards through an

angle of one twelfth of that described by the first. Now
in the usual system this identical contrivance, which in its

ordinary employment belongs to the class of conversion

from continuous circular into continuous circular, is thus

also thrown into the class of alternate circular changed
into alternate circular. In the system which I propose,
this contrivance at once finds its place as a combination

in which the velocity ratio and directional relation are

constant.

I have also dismissed, or given a subordinate place to,

the distinction between circular and rectilinear motion,
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and have introduced a new distinction between those

motions which are capable of being from the nature of

the contrivance continued indefinitely in either direction,

and those of which the extent is limited by the nature of

the contrivance.

The first ground of my classification, and the one by
means of which the calculation of the law of communi-

cation of the velocities and directions is effected, is the

mode in which the motion is transmitted
;

a part of the

subject which appears wholly neglected by the writers

already referred to. These modes I have divided into

Rolling and Sliding Contact, Link-work, Wrapping Con-

nection, and Reduplication. The relative motions pro-

duced by each of these methods will be found to be governed

by a different geometrical principle, and every possible

mode of communication may be placed under one or other

of these divisions. Many combinations, however, derive

their principle of action from a mixture of two or more of

these methods of communication. In this case their place

in the system is always determined by that method which

has the greatest influence
;
besides which, each combination

is reduced to its equivalent simple form, and its position

determined by that alone
;
for the object of the system is

to reduce the motions to calculation
;
and for this pur-

pose the equivalent simple form of every combination

must be employed.
For example, the action of combinations in which rows

of teeth are used depends partly upon rolling contact and

partly upon sliding contact; for the action of the indi-

vidual teeth is of the latter kind, but the total action of

them is equivalent to the rolling contact of their pitch-

lines, and the pitch-lines only need be considered in

calculating the motion. Accordingly, all combinations in

which rows of teeth are employed will be found under the

head of Rolling Contact. Again, when cam-plates or

curves are used a friction roller is often employed for
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these plates to act against. At first sight this would

appear to convert the action of the combination into

rolling contact. But besides that this contrivance merely
transfers the sliding action to the axis of the roller, and

that our definition of rolling contact supposes the two

axes of motion of the rolling curves to be fixed in position,

the calculation of the motion of all such combinations is

effected by supposing the roller reduced to a point, and

the curve thus obtained upon the principles of pure

sliding contact, is afterwards adapted to the roller by

tracing a second curve within it at a normal distance equal
to the radius of the roller. All combinations of this kind

are therefore placed under Sliding Contact, notwith-

standing the employment of friction rollers.

The second ground of my classification is the effect of

the combination upon the velocity ratio of the pieces,

and upon the relation of their directions of motion, or

directional relation; from which considerations I have

divided all the elementary combinations into three classes.

Either of these considerations, the velocity ratio, and

directional relation, or the modes of communication,

might have been made the primary ground of the classifi-

cation. In the first edition I was induced to select the

former, because it enabled me to separate from the others

all that most important class of combinations in which the

velocity ratio and directional relation remain constant

and which are also the foundation of most of those

contained in the subsequent classes.

But my experience as a lecturer soon taught me that

the exhibition of models for illustrating the various forms

assumed by the practical modes of communication must

be conducted by classing them with primary reference to

the modes of communication^ and that consequently a

second edition of this work must be also subjected to

this change.
I have accordingly taken the four divisions of (A)
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Rolling Contact, (B) Sliding Contact, (C) Wrapping Con-

tact, and (D) Link-work, for the primary groups of

examples; each division being separated into classes

denned by constancy or variation of the directional

relation or velocity ratios. With the exception of this

change, the arrangement of the work is very little altered;

new combinations have been inserted here and there, and

drawings of many models contrived by me for the eluci-

dation of motions described in lectures have been intro-

duced into the text.

** I have also added an essay on Frictional Combina-

tions, which forms the fourth part of the work. This is

a very attractive subject, and I have contrived and

introduced many models to exemplify its laws and its

practical applications.

The work is terminated by a chapter on Universal

Joints, the history and various forms and uses of which

I have endeavoured to exemplify practically and theoreti-

cally, concluding with my own observations of the exist-

ence of such joints in the articulations of the crustaceous

animals and insects. This discovery ultimately suggested
to me the systems of link-work which terminate Chapter
XII. and which I have termed prismatic and solid-

angular*
The Synoptical Table, which immediately follows this

Preface, will show , the general arrangement of the ele-

mentary combinations under the new system.

In the second part of the work is assembled a number
of contrivances which appeared to me to be connected

by a general principle which had not hitherto been

denned
;

these I ventured to term Aggregate Motions.

One portion only of these contrivances had usually been

treated as a separate class, under the name of Differential

Motions.

*
Vide?. 245.

a
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The third part, on Adjustments, contains several

problems relating to the calculation and arrangement of

mechanism in which it is necessary to have the power of

altering the velocity ratios, changing the directional rela-

tions, or breaking off the communication of motion at

pleasure.

I have, in the course of the work, endeavoured in every
case to acknowledge the sources from whence I have

derived any portion of its contents, by references at the

foot of the page. But so little of its peculiar subject had

been treated mathematically when I wrote my first edition,

that I must hold myself answerable for the greatest

portion of it. The teeth of wheels was then the only
branch of mechanism in which the original papers had

been already wrought into a system, and published in a

collected form. This was first done by Camus, and was

subsequently effected by Buchanan in his Essays, and by
Hachette, Ferguson, and Sir D. Brewster, and others

(vide note to p. 87 below).
I have incorporated into Chapter V. extracts from the

valuable paper of Professor Airy, as well as the entire

contents of my own paper from the ' Transactions of the

Society of Civil Engineers,' and have added several

original investigations relating to the proportions of the

teeth, and their least numbers.

In the present edition, Art. 124, 1 have restored to Camus
the discovery of the method of describing teeth of wheels

by employing the same describing circle or curve to trace

their forms within and without the respective pitch-lines.*

It will be found that I have calculated all the results

that are required in practice, and have arranged them in

tables for reference.

On the whole, it will be seen that the present volume is

* I may also be pardoned for referring to the description und theory of my
Odontograph, for facilitating the setting out of the teeth of wheels

;
which has

been extensively employed since its invention in 1838. Fide below, p. 130.
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limited to that portion of the important subject of machi-

nery which deals with the communication of motion j

The object of it was, as has been already stated, to

systematise this portion of the subject, and to free it

from the considerations offeree, with which it had been

usually mixed up.

In the preface of the first edition I stated that to

complete the plan of a treatise on mechanism, it would be

necessary to apply these considerations of force to the

combinations thus obtained, as well as to describe and

investigate those parts of machinery in the action of

which forces are essential, adding a hint that I should

probably undertake this task at some future time.

But in the year of its publication (
1 841) Professor AVhe-

well also published his 'Mechanics of Engineering;' into

which he introduced many of the results of the French

writers, Navier, Poncelet, Morin, &c.,who had with so much
success applied themselves to this purpose ;

and he also

flattered me by the adoption of my own views upon the

classification of the modes in which motion is communica-

ted from one piece to another of a machine, adding to

them the investigation of the effects of force and resist-

ance
;
which might be considered as carrying out a portion

of the plan above alluded to, as necessary to complete this

arrangement of the science of Machinery.
In concluding the preface of the first edition, I expressed

my hopes that, in addition to its principal object of giving
a scientific and systematic form to its subject, the results

of the volume which I then ventured to present to the

world might be found a useful addition to mathematical

studies in general, by affording simple illustrations of the

application and interpretation of formula?, and by sug-

gesting new subjects for problems, and for farther in-

vestigation.

After the appearance of the first edition at the end of

1841, it took its place as a text-book to my Lectures and
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others, but it was not quoted or mentioned in any new

mechanical work until Monsieur Tom Richard published

in 1848 in Paris, his ' Aide-memoire des Inge"nieurs,' into

which he introduced the whole of my articles on link-

work (Bielles}, duly acknowledging the author.

This was the first of a series of works on mechanism, of

which I present a list below, which comprises every sub-

sequent work on that subject, in which my classifications,

nomenclature and figures have been more or less adopted;

and, with two or three exceptions, the source from whence

borrowed properly mentioned.

1. M. Tom Richard, Aide-Memoire des Ingenieurs . 1848
',

2. M. Laboulaye, Traite de Cinematique . . 1849

3. Tate, Elements of Mechanism, 12mo -

. . 1851

4. Baker, Elements of Mechanism, 12mo . . 1852

5. Eankine, Applied Mechanics.... 1858

6. M. Girault, Transformation du Mouvement . . 1858

7. Goodeve, Elements of Mechanism, 12mo .. . 1860
8. Laboulaye, Traite de Cinematique . . .1861
9. M. J. N. Haton de la Goupilliere . . . 1864

10. Be"langer, Traite de Cinematique . .

"

. 1864
11. Fairbairn, Treatise on Mills and Mill-Work. . 1864
12. Bour, Cours de Me'canique et Machines . . 1865

13. Kankine, Manual of Machinery and Mill-work . 1869

I venture to acknowledge in this numerous progeny,

proofs that my hopes of advancing my favourite science

have not been fruitless.

CAMBRIDGE: Nov. 1870.
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NOTE to page 309.

THE following mode of communicating an aggregate velocity to a worm-wheel,

ought to have been inserted at page 309, as a mixture of sliding and rolling

contact.

In fig. 272, let the axis of motion of the worm-wheel B be supposed fixed in

position. Then, if the endless screw or long worm Aa revolve, it will commu-
nicate a rotation to the wheel B in the usual manner, at the rate of one tooth

of the latter for each turn of the former. Again, if an endlong travelling

motion without rotation be communicated to A a, it will now act as a rack

upon the teeth of B. If, therefore, the two motions of rotation and travelling

be communicated to the endless screw, which can be done in various ways from

two sources, the wheel B will receive the aggregate motion, and its angular

velocity be affected accordingly. For example, let the screw revolve uniformly,
and at the same time travel back and forwards through a small space endlong,
the wheel will then revolve with a hobbling motion, making a short trip in

one direction and a long trip in the other direction continually.





PRINCIPLES

MECHANISM,

INTRODUCTION.

1. EVEEY MACHINE is constructed for the purpose of performing
certain mechanical operations, each of which supposes the exist-

ence of two other things beside the machine in question, namely,
a moving power, and an object subjected to the operation, which

may be termed the work to be done.

Machines, in fact, are interposed between the power and the

work, for the purpose of adapting the one to the other.

2. As an example of a machine whose construction is familiar

to all, the grinding machine so commonly seen in our streets may
be cited, in which the grindstone is made to revolve by the appli-
cation of the foot to a treadle.

Here the moving power is derived from muscular action. The

operation is carried on by pressing the edge of the cutting instru-

ment, which is the subject of it, against the surface of the grind-

stone, which is caused to travel rapidly under it.

The arrangement and form of this surface, and its connection

with the foot in such a manner that the pressure of the latter shall

communicate the required motion to the former, is the office and

object of the machine.

Two portions of the machine are given, the one by the nature

of the power, and the other by that of the work. The first is a

treadle placed at a proper level to receive the pressure of the foot,

by the action of which it may be made to perform, without un-

natural exertion, about eighty or ninety vertical oscillations in a

B



2 INTRODUCTION.

minute. The second part of the machine is the cylindrical grind-

stone, which is mounted on a horizontal axis at the upper part of

the frame, and at a convenient height to allow the tool to be

pressed upon its revolving surface. The surface should pass

under the edge of the tool at the rate of about 500 feet in a

minute, and therefore supposing the diameter of the grindstone to

be eight inches, it must revolve at the rate of 250 turns in a

minute. The remainder of the mechanism serves to connect the

treadle and grindstone, and may consist of any contrivance that

will compel the latter to revolve when the former is made to

oscillate, and in the proportion of 250 revolutions to 80 oscilla-

tions, or about three to one.

. 3. It appears, then, that this machine consists of a series of

connected pieces, beginning with the treadle, whose construction,

position, and motion are determined by the nature of the moving

power, and ending with the grindstone, which in like manner is

peculiar and adapted to the work. But this is, in fact, the

description of every machine. There is always one or more series

of connected pieces, at one end of each of which is a part especially

adapted to receive the action of the power, such as a water-wheel,
a windmill-sail or a horse-lever, the sliding piston of a steam-

cylinder, a handle, or a treadle. At the other end of each series

will be a set of parts determined in form, position, and motion by
the nature of the work they have to do, and which may be called

the working pieces. Between them are placed trains of mechanism

connecting them, so that when the first parts move according to

the law assigned them by the action of the power, the second

must necessarily move according to the law required by the nature

of the work.

4. These three classes of mechanical organs are so far inde-

pendent of each other, that any given set of working parts may
be supplied with power from any source : thus a grindstone may
be turned either by the foot or by the hand of an assistant, by
water or by a horse. Again, a given water-wheel or other re-

ceiver of power may be employed to give motion to any required
set of working parts for whatever purpose. Also between a given
receiver ofpower and set ofworking parts the interposed mechanism

may be varied in many ways. Moreover the principles upon
which the construction and arrangement of these three classes are

founded are different. The receivers of power derive their form
from a combination of mechanical principles with the physical
laws which govern the respective sources of power. The working
parts from a combination of mechanical principles, with conside-
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rations derived from the processes or objects in view. But the

principles of the interposed mechanism admit of being developed
without reference to the powers employed or transmitted, or to

the resistances or work to be done, or, in fact, to the objects for

which machinery is constructed. By defining mechanism in the

abstract to be a combination of parts for the purpose of connecting
two or more pieces, so that when one moves according to a given

law, the others must move according to certain other given laws,

this branch of the subject may be reduced to geometrical prin-

ciples alone : whereas by considering mechanism as usual, as a

modifier of force, the subject becomes embarrassed by a condition

foreign to the connection of parts by which the modification is

produced ;
and which condition and its consequences admit more

conveniently of subsequent consideration and separate investiga-
tion.

5. TJie hour-hand of a clock, for example, is connected with

the minute-hand by a mechanism which compels the former to

perform one revolution while the latter completes twelve ; or

generally, the angular velocity of the first is always one-twelfth

of that of the second. The connection is independent of the force

which puts the minute-hand in motion, and also of the actual

velocity of the minute-hand. If this be turned by hand quickly
or slowly, uniformly or variably, back or forwards, the hour-hand

will still follow these motions at an angular rate of one-twelfth

of the original. The constant relation of the angular velocities

depends in this as in other similar cases only upon the proportion
between the diameters or number of teeth of the wheel-work that

connects the two hands a purely geometrical relation, the com-

prehension of which is rather obscured than assisted by the

introduction of statical principles, of which the connection is

independent, but which find their proper place, when it becomes

necessary to investigate the proportion between the forces and

resistances in any given case, and the strains thrown upon the

different parts of the mechanism by their application, and thus to

find the requisite strength of each part.

6. The term mechanism, then, must be understood to be in

this work confined to those mechanical combinations which govern
the relations of motion only, and which therefore admit of being

entirely separated from the consideration of force. This, of

course, excludes not only those mechanical organs which have

been already alluded to, as receivers of power and working parts,

but also those which are employed to govern the motions of

machinery ; such as the escapements of clocks, and contrivances

B 2



4 INTRODUCTION.

by which machinery is made self-acting and self-regulating ; all

of which are derived from combinations of pure mechanism with

statical or dynamical principles, but from which they do not

admit of separation. The exposition of such contrivances will

naturally and easily follow from the principles of the present

work, but are excluded from it by its plan, which is, to reduce

the various combinations of Pure Mechanism to system, and to

investigate them upon geometrical principles alone.

7. Neither is it my purpose to enter into minute details of the

actual construction of machinery, of the different forms which

each combination may assume, or of the infinitely varied methods

of framing and putting them together ; for, in the first place, the

choice of these forms in every particular case is mainly deter-

mined by the strains to which the machinery is to be exposed ;

and, in the next place, this branch of the subject is sufficiently

important and extensive to admit of separation from the others,

under the name of Constructive Mechanism. Although some

details of this kind are unavoidable in the present work, I have

carefully avoided them when possible, and for this purpose have

excluded from the drawings all unnecessary and extraneous

framing or connections that tend to individualise the combinations,

and thus to oppose the very object which I have proposed to

myself, namely, to introduce such a degree of generalisation and

system, as would give to Pure Mechanism a claim for admission

into the ranks of the Sciences.

8. I must here recapitulate the ordinary definitions and mea-

sures of motion and velocity, for the purpose of introducing
certain modifications which they require to adapt them to our

present purposes.
A body is absolutely at rest when it remains in the same

position in space, and at rest relatively to another body when it

continues in the same relative position to that body, as it is

usually said to be at rest when it remains in the same relative

position to the earth. Thus, too, a body which remains in the

same place in a boat or a carriage, is at rest with respect to that

boat or carriage, although these may be in motion
; and so a

wheel or other portion of a machine may be carried into different

positions relatively to the fixed frame, and yet remain at rest

with respect to the arm or carriage upon which it is mounted.

A body is in motion when it occupies successively different

positions in space with respect to some other body ; motion being
relative as well as rest. Two bodies moving with respect to a

third will be at rest with respect to each other, if they retain in
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their motions the same relative positions ; or a body absolutely
at rest may be said to move with respect to another moving body,
if the latter be assumed as the standard to which the motion is to

be referred.

9. Motion is essentially continuous
;
that is to say, a point

cannot pass from one position to another without going through
a series of intermediate positions. Thus the motion of a point
describes in space a line necessarily continuous, which line is

termed its path. The motion of a solid body is defined by the

paths of certain selected points in it, as will appear below.

The path being assigned, there are only two directions in which

it can move in that path.* Direction of motion being relative,

may be defined by naming some fixed point which the body is

approaching or retiring from : as, for example, the points of the

compass, the zenith or nadir, or by personal or other relations,

such aS right and left, larboard and starboard, windward and

leeward, upwards and downwards, &c. ; otherwise its direction of

motion may be defined by comparing it with that of the sun or

of the hands of a watch. The latter is an exceedingly con-

venient standard for rotative motion. By supposing the path of

the sun projected upon the plane of motion, it may be employed
as a standard for rotative direction in every case except that of

motion in a plane perpendicular to its orbit ; but the hour circle

of a watch-face can be imagined as described on either surface of

a given plane, whatever be its position.

The path and direction of a given point being assigned, it may
move in this path and direction quickly or slowly, with a greater
or less velocity ; and this velocity is estimated by comparing the

space passed over with the time occupied in describing it.

10. When a point describes equal portions of its path in equal
successive times, the motion is said to be uniform, and the

velocity measured by the space (that is, the length of path)
described in the unit of time. The units usually employed are

feet and seconds. Thus a body is said to move at the rate of

3 feet per second.

Since the same space is described in every unit of time, the

entire space described is proportional to the time employed in

* In diagrams, the direction of motion in a given path is usually indicated by the

order of the letters of reference, i.e., from the first towards the second, which are applied
to that path. When a body or point is said to move in the direction BA, the meaning
is, that the point travelling in the line HA moves from B towards A. Similarly, a

force acting in the direction BA means a force which tends to move the point of its

application from B to A, whether by pushing or pulling, repulsion or attraction, pro-

pulsion or traction.
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describing it, and the measure of velocity is obtained by dividing
the number of feet passed over by that of the seconds employed.

If V be the velocity, IS the space in feet, T the time in
O

seconds, F= -^-I
. The direction is indicated analytically by the

sign of the velocity for a given path; if the velocity in one

direction be assumed positive, that in the opposite direction will

be negative.
Rotation is defined by the lexicographers to be the act of

whirling round like a wheel, and by mathematicians as the cir-

cumvolution of a line, surface or solid round an immovable line,

called the axis of rotation.

Revolution is
' the course of anything which returns to the point

at which it began to move' (Johnson), but is often employed in

common language and by mathematicians in the same general
sense as rotation. In astronomy revolution is limited to express
the period of a heavenly body, that is its course from any point
of its orbit till it return to the same again.

In mechanism the term rotation ought to be employed only for

the act of turning about an axis, and revolution, or turn, for the

course of a rotating body from one position with respect to some

other given object to its return to the same relative position.

These terms are thus limited in the present work.

Period should be confined to the sense of ' time in which any-

thing is performed so as to begin again in the same manner '

(Johnson).
11. The motion of a rotating body may be measured by the

linear velocity of a point whose radial distance is equal to the

unit of space. This is termed the angular velocity of the body,
which is said to rotate uniformly when its angular velocity is

uniform.

In uniform angular velocity the angles described by a given
radius are manifestly proportional to the times ; and since the

linear velocity of every point is the arc described in the unit of

time, which arc is proportional to the radius, so the linear

velocity of every point is proportional to its radius. If A be the

angular velocity, R the radius of the point in feet, the linear

velocity V=RA.
The motion of a uniformly rotating body may also be con-

veniently measured by the number of revolutions performed in a

given time. In uniform rotation the angles described are pro-

portional to the times, and any given point describes its own
circle with uniform linear velocity. Let T be the time of per-
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forming k revolutions, where k may be a whole number or a

fraction. Then, since 2?r is the circumference whose radius is

unity ;
2nk will be the space described in k revolutions by the

point whose radius is unity, but A is the space described by the

same point in the unit of time ;

.-. A: 2Trk :: I : T; .-. r=?^(l); k*{*);A &IT

hence the number of turns in a given time varies as the angular

velocity.

Let R be the radius of a wheel and V its perimetral velocity ;

whence the number of turns in a given time varies directly as

the perimetral velocity, and inversely as the radius or diameter

of the wheel.*

Let the time in which a wheel performs one complete revolu-

tion be termed its Period (=P); .-. P=~ (putting A = l in
^4

(1)} ; and the period varies inversely as the angular velocity;
T

Also from (2)k=-=', whence the period varies inversely as

the number of turns in a given time. When the rotations of

two wheels are to be compared, the number of turns they re-

spectively make in a given time may be termed their synchronal
rotations.

12. When the velocity is not uniform, these expressions can

no longer be applied, because the velocity is different at different

times. In this case, then, the velocity at every instant is

measured by the space that would be described in the succeeding
unit of time, were the velocity with which that unit is commenced
continued uniformly throughout it.

If the velocity of a body increase, it is said to be accelerated,

and if the velocity diminish, to be retarded.

* In practice linear velocity is commonly referred to seconds and feet, but angular

velocity to minutes and revolutions or turns ; thus a millwright will define the velocity

of a given wheel by either saying that it performs twenty revolutions in a minute, or

that its circumference moves at the rate of three feet per second. In the expression

(3) if & and T be expressed in minutes, and V is to be expressed in seconds, we must

put GO V for V\

Railroad velocities are so high that they are stated in miles per minute.



8 INTRODUCTION.

13. Varied motion admits of convenient graphical representa-

tion, by which its characteristic points and general laws are

rendered much more easy of comprehension than they are by the

use of formula} alone.

Thus to represent the motion of a point of which the velocities

at certain given intervals of time are known, take an indefinite

straight line AX, and from A set off abscissas Ab, Ac, Ad
proportional to the given intervals of time as measured from the

Fig. 1.

g

,4 b C d

beginning of the motion. Upon A, b, c, d erect ordinates

Ae, bf, eg, dh, respectively proportional to the velocity of the

point at the beginning of the motion and after each interval of

time. By joining the extremities of these ordinates, a polygon

eff/h is obtained, which, if the intervals of time be taken

with their differences sufficiently small, will become a curve as

hPGKL, of which the abscissa AN at any given point P, will

represent the time elapsed from the beginning, and the ordinate

NP the corresponding velocity of the point.

If the motion of the point cease, its velocity becomes zero, and

the curve meets the axis, as at G and L. If the point change
its direction in its path, this is indicated by the change of sign in

the velocity; for either direction being assumed positive, the

other will be negative ; and so in this curvilinear representation,

the ordinates representing the velocity for one direction being
set off upwards from the line, as from e to G, those of the opposite
direction will be set off downwards as from G to L.

14. By another method a curve is constructed of which the

abscissa? shall represent the time as before, but the ordinates the

space described by the point. Thus, if the last figure be sup-

posed to be constructed on this second hypothesis, Ae will

represent the distance of the point at the beginning of the motion

from that point of its path whence the space is to be measured
;

bfits distance from the same point at the end of the time Ab;

eg its distance after the time Ac ; and so on. But the motion in

one direction being accounted positive, that in the opposite direc-
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tion will be negative. If then the point change its direction in

the interval cd, the ordinates will decrease.

And, as in the former case, if the ordinates are taken in

sufficient number, a continuous curve is obtained, as pPGKL,
which will tend upwards when the point moves in one direction,

and downwards when in the other direction.

Now since the space described in any interval of time is repre-
sented by the difference of the two ordinates corresponding to the

beginning and end of that interval, so the velocity is proportional
to that difference divided by the difference of the abscissas. Thus

in the interval be (
=fm\ gm is the space described, and ^ the

fm
velocity, which is proportional to the tangent of gfm, or ultimately
to the tangent of the angle which the curve makes with the axis

Ax.

15. This method is better adapted for representing the motion

of the parts of mechanism than the other, because the tendency
of the sinuous line corresponds with the direction of the body,

changing from upwards to downwards, and vice versa, as the

direction changes ; while its more or less rapid inclination indi-

cates the change of velocity. Thus the line is a complete picture
of the motion, as the line formed by the notes in music is a

picture of the undulations of the melody ;
whereas by the first

method where the ordinates represent the velocities, the directions

are indicated by the situation of the curve above
^.

or below the axis, which is a distinction of a dif-
'

ferent kind from the thing it represents, and re-

quires an effort of thought for its comprehension.
Sometimes the axis Ax of the time is drawn

vertically, and the ordinates consequently are

horizontal.

16. The two methods are compared in the

following figure, which represents the motion of

the lower extremity of a pendulum, the con-

tinuous line upon the first hypothesis, and the

dotted line upon the second.

The axis of the abscissae Ak is vertical, AM
is the interval of time corresponding to one

oscillation from left to right, and MN to the

returning oscillation from right to left.

In the continuous line the horizontal ordinates represent the

velocities, which beginning from zero at the left extremity of the

vibration at A, reach their maximum values in the middle of each
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oscillation at H and K, and vanish at the extremities of the

oscillations at M and JV. The right side of the axis is appropriated
to the direction of motion from left to right, and the left side to

the opposite direction.

In the dotted line the ordinates represent the distances from

the middle or lowest point, which are greatest at the beginnings
and ends of the oscillations at a, m, n. But the curve in this case

moves from right to left, and vice versa, as the pendulum moves.*

17. In the varied motion of mechanical organs it generally

happens that the changes of velocity recur perpetually in the

same order, in which case the movement is said to be Periodic.

The period is the interval of time which includes in itself one

complete succession of changes, and the motion is made up of a

continual series of similar periods. But the changes of velocity

in the different periods may be similar in the law of their succes-

sion only, and may differ either in the actual values, or in the

interval of time required for each period. In most cases, how-

ever, the periods are precisely alike in the law and value of the

successive velocities, as well as in the interval of time assigned to

each. Such motion is termed a Uniform Periodic Motion ; of

which examples are the motion of pendulums, or of the saws in a

saw-mill, supposing the prime mover to revolve uniformly.
The complete set of changes in velocity included in one period

may be termed the Cycle of Velocities. This phrase is, indeed,

generally applicable to anything that is subject to recurring

variations, whereas Period is applicable to time alone. The suc-

cessive phenomena of motion in each period are sometimes termed

its Phases, so that the periodic motion is thus a recurring series

of phases. The choice of the phase in this series, which shall be

reckoned as the beginning and end of the period, is arbitrary.

Thus we may reckon the beginning of the periods of a pendulum,
either from one of the extremities of its oscillation, or from the

middle and lowest point.

* If a pencil be attached to the lower part of the pendulum so as to touch a vertical

surface of paper behind it, and this surface travel by means of clockwork with a uni-

form motion upwards, the pencil will trace this very curve. This supposes that the

circular arc described by the pencil in each oscillation belongs to so small an angle
that it may be taken as a horizontal right line.

Upon this principle apparatus is constructed for the registration of the motion of

machinery, in which such motion curves are traced either by pencils or by the photo-

graphic image of some moving point of the machine upon paper applied to the surface

of a revolving cylinder. The machines to which such apparatus is applied are those

employed for measuring atmospheric phenomena, as barometers, hygrometers, wind-

gauges, &c., or for the appreciation of magnetic variations, the recording of the varia-

tions of pressure in the cylinders of steam engines, and the like.



PART THE FIRST.

CHAPTER I.

ON TRAINS OF MECHANISM IN GENERAL.

18. MECHANISM may be defined to be a combination of parts so

connecting two or more pieces, that the motion of one compels
the motion of the others, according to a law of connection depend-

ing on the nature of the combination. The motion of elementary
combinations are single or aggregate.

Aggregate motions are produced by combining in a peculiar
manner two or more single combinations, as will hereafter appear
in Part II. All that follows in this Part relates to the single

combinations alone.

19. The motion of every point of a given piece in a machine

being defined, as in the Introduction, by path, direction, and

velocity, it will be found that its path is assigned to it by the

connection of the piece with the frame-work of the machine ; but

its direction and velocity are determined by its connection with

some other moving piece in the train. Thus the points of a

wheel describe circles, because its axis is supported by holes in

the frame ; but they describe them swiftly or slowly, backwards

or forwards, by virtue of its connection with the next wheel in the

train, which lies between it and the receiver of power.
This connection affects the ratio of the velocities, and the

relative direction of motion of the two pieces in question, but its

action is independent of the actual velocities or directions of

either piece,*" as in the familiar example already quoted of the

two hands of a clock, where the connection by wheel-work is so

contrived, that while one hand revolves uniformly in an hour, the

* We shall find a few contrivances in which this is not strictly true with respect to

the direction, but they are not of a nature to vitiate the generality of the principle.
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other shall revolve uniformly in twelve. But this connection has

this more general property, that it will also compel the latter to

revolve with an angular velocity of one-twelfth of the former,

whatever be the actual velocity communicated to either ; as, for

example, when we set the clock by moving the minute-hand

rapidly to a new place on the dial, and similarly with respect to

direction, the two hands will always revolve the same way,
whether that be backwards or forwards.

Since Mechanism is a connection between two or more bodies,

governing their proportional velocities and relative directions, and

not affected by their actual velocities or directions ; it follows that

a systematic arrangement of the principles of mechanism must be

based upon the proportions and relations between the velocities

and directions of the pieces, and not upon their actual and sepa-
rate motions.

20. Proportional velocities may be divided into those in which

the ratio is constant, and those in which it varies.

V
Let F"and v be the velocities of two bodies, then is the

v

velocity ratio ; and if the velocities are uniform, let S, s be the

V S
spaces described in the same time T

; .'. = a constant
v s

ratio ; consequently between uniform velocities the velocity ratio

is constant, which indeed is sufficiently obvious.

If, however, the velocities be not uniform, and yet the velocity

ratio constant, let the bodies in any successive intervals of time

T, T,, Tlf
... move with velocities V, V

t , V/f
... and ,

v
/t

v
tl

respectively, of any different magnitudes, but so that the two

velocities at the same instant always preserve the same ratio ;

V V V
... L. L'.^ZJL &c. ... = c.

v v, v,/

Hence if S, S,, S,,... and s, s,,
s
/f
be the spaces described with

these velocities by the two bodies in the intervals T, T/y
T

tt

respectively, we have

/ - S + S
' + S" + '"

And as this is true whatever be the magnitude of the intervals

of time, it is also true when they are taken so small that the

changes of velocity become continuous, and therefore when the

velocity ratio is constant it is obtained by comparing the entire
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spaces described in the same interval of time, whatever changes the

actual velocities of the bodies may have undergone during that time.

And in the same manner it may be shown that in revolving
bodies the angular velocity ratio, if constant, is equal to the ratio

of the synchronal revolutions, notwithstanding the velocities of

rotation may vary, and also to the inverse ratio of the periods if

the angular velocities be uniform.

When the velocity ratio varies, the relations of motion between

two pieces may often be more simply defined by means of the law

of their corresponding positions than by the ratio oftheir velocities.

21. With respect to actual direction we have seen that it has

only two values, but the relation of direction between two bodies

moving in given paths may be conveniently divided into two

classes. In the first, while one continues to move in the same

direction, the other shall also persevere in its own direction ; but

if one change the other shall change. To this class belongs the

clock-hands ; and in this instance both hands move the same way
round the circle. But this is not necessary ;

it may be that when
one piece revolves to the right the other may revolve to the left,

and vice versa, as in a pair of flatting rollers ; or again in the old

simple mangle, so long as the handle is turned in one direction,

the bed of the mangle will travel forwards, but when the motion

of the handle is reversed, the bed of the mangle also returns. In

all these cases the directional relation is constant. In another

class the connection is of this nature, that while one body perse-
veres in the same direction, the other shall change its direction ;

as, for example, in a saw-mill. The saw-frame moves up and

down, changing its direction periodically, but the piece from

which it derives this motion revolves continually in the same

direction. In cases of this kind the directional relation changes.
22. We have thus two kinds of directional relation, and two of

the velocity ratio, by means of which all the simple combinations

of mechanism, for the modification of motion, may be conveniently

grouped under the following heads or divisions.

DIVISION 1. Directional relation and Velocity ratio con-

stant.

DIVISION 2. Directional relation constant Velocity ratio

varying.

DIVISION 3. Directional relation changing periodically

Velocity ratio either constant or varying.*

* The third division might have been separated into two by arranging the constant

and varying velocities under different heads, but it will be found that the contrivances
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DIVISION 4. Intermittent Motions. The continuous mo-

tion of one piece communicates a motion to

the other with intervals ofperfect rest.

23. In those classes of combinations in which either the

velocity ratio or the directional relations change, it will generally

happen, from the very nature of mechanism, that the changes
will recur in cycles. But, since these changes are independent
of the actual velocities of the bodies, the cycles cannot be periodic
in time, but will recur with reference to the path-movement of one

of the bodies, the same velocity ratio and directional relation

generally corresponding to the arrival of this body at the same

point of its path, and so on in succession for the different phases.

The true argument* as it is called, of the change being in fact

the path of one of the bodies, and not the time of its motion.

24. A TRAIN OF MECHANISM is composed of a series of mov-
able pieces, each of which is so connected with the frame-work

of the machine, that when in motion every point of it is con-

strained to move in a certain path, in which, however, if con-

sidered separately from the other pieces, it is at liberty to move
in the two opposite directions, and with any velocity. Thus

wheels, pullies, shafts, and rotating pieces generally, are so con-

nected with the frame of the machine, that any given point is

compelled when in motion to describe a circle round the axis,

and in a plane perpendicular to it. Sliding pieces are compelled

by fixed guides to describe straight lines, other pieces to move so

that their points describe more complicated paths, and so on.

25. These pieces are connected in successive order in various

ways, so that when the first piece in the series is moved from any
external cause, it compels the second to move, which again gives
motion to the third, and so on.

26. The act of giving motion to a piece is termed driving it,

and that of receiving motion from a piece is termed following it.

The piece or part of a piece which is appropriated to transmitting

motion to the next is the driver, and the part which receives

motion is the follower.
27. The law of motion of one piece in a train may differ in

any way from the laAv of motion of the next piece in the series,

and the change is effected by the mode of connection. The
different cases under which these modes of transforming motion

for effecting these two conditions are so much alike that this would only have intro-

duced needless complication.
* Vide Whewell's Philosophy of the Inductive Sciences, vol. ii. p. 542.
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by transmission are arranged, are termed in this work the ' me-

chanistic connections.'

One piece may drive another either by immediate contact or

by an intermediate or connecting piece. The different modes of

doing it will be best explained by taking an example of each in

its most elementary and general shape.

28. Communication of Motion by Contact. Let AC, BD be

two successive pieces of a train of mechanism, moving on centers

A and B respectively, and let BD be the driver,

and A C the follower, the curved edge of the first

touching that of the second. If the driver be

moved into a new position near the first, as

shown by dotted lines, its edge will press that

of the follower, and move it also into a new

position. Let m be the point of contact in the

first position, and let n and p be the respective

points of the edges that will come into contact at

r in the second position. Now, during the

motion every point between p and m in the

following curve AC, has been successively in

contact with some other point between n and m
in the driver BD

; and if from the nature of the

curves, nm is not equal to pm, sliding must have taken place
between the edges through a space equal to the difference. But
if nm be equal to pm, no sliding will have happened. In the

first case the communication of motion is said to be by sliding

contact, and in the second by rolling contact.*

This mode of action supposes either that the curves are both

convex ; or should the curvature lie in the same direction, that

the convex edge has a greater curvature than that of the concave

edge at the point of contact. If this be not the case, successive

contacts may take place at discontinuous points.

* The distinction of contacts was first discussed by Olaus Homer, and more exactly

by Leibnitz (1710), Misctllanea Berolinensia t. 1. In his words, 'The motion of a

body which is superposed upon a horizontal fixed surface is either radens (scraping),
volvens (rolling), or a mixture of the two. Scraping motion is when every point of

the moving body which is in contact with the fixed at starting is brought in succes-

sion into contact with different points of the latter. Boiling motion is when each

point of contact of the upper body with the lower is continually changed, so that the

line joining any given pair of upper points of contact shall be equal in length to the

line joining their respective lower points. Mixed motion is when each point of con-

tact of the upper body with the lower is continually changed, but so that the line

joining the upper points is not eqxial to the line joining the respective lower points."

This mixed motion is that to which the term sliding contact is now by common consent

applied, for it occupies so conspicuous a part in the theory of the motions produced by
the contact of curved edges as to require a more definite name than mixed contact.
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Fig. 4.

29. Communication of Motion by Intermediate Pieces. Let

APy
13Q be a driver and follower, moving on centers at A and B

respectively, and let a rod or link*

PQ, be jointed at its extremities to

the driver and follower at P and Q.

Then, if the driver be moved into a

new position Ap, it will by means
of the link place the follower in a

position Bq. If the driver push the

follower before it, the link must be

rigid, but if the driver drag the fol-

lower after it, the link may be flexible,

the principle of link-work only re-

quiring that the connection between

the link and its pieces shall be at constant points, and the

distance on the link between the two points of attachment

invariable.

In the next place, let ACE be a driver, BDF a follower whose

centers of motion are A and B, and whose edges CJE, DF, are

Fig. 5. curved and connected by a flexible

band, which is attached at C and
D to the curves, and wraps round

them, but lies between them in a

state of tension in the direction of

the common tangent of the curves.

If the driver be moved, it will

through this connection drag the

follower after it, and the connector

will wrap and unwrap itself from the edges respectively, so as

always to lie in the direction of the common tangent.

Such a wrapping connector may also be considered as a rigid

right line a narrow bar, which is always a common tangent of

the curved edges of the driver and follower, and which is com-

pelled to roll upon those edges during the motion of the system.f
The practical connections between the curve and this rolling bar

Avill be shown below. Link-work includes all kinds of jointed

work, cranks with connecting rods, bell-hanging, and the like,

while wrapping connections are employed for endless bands and

* I adopted the term from the hanging rods of Watt's parallel motion. In his

patent, 1784, he describes these as 'bars of wood or iron having joints at each end,

and calls them links in the subsequent details. Vide Muirhead's Mechanical Inven-

tions ofj. Watt, pp. 95, 96, &c., vol. iii.

t Vide chap. iv. on '

Wrapping Connectors.'
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belts, fusees in clock and watch-work, and a variety of devices

for complex motions.

Every elementary combination of mechanism may be placed in

one or other of the four divisions of mechanistic connections above

defined, namely,

-, , i f Rollingr-edges . . 2
Actual contact by < 01 .,. ,

(. olidmg-edges . . .3

Intermediate connection by a -I ,TT .

*

I Wrapping connector 4

We may now proceed to investigate the velocity ratio of these

combinations, in doing which it is convenient to take them in the

order indicated by the numerals placed opposite to them in the

last Article.

30. Tofind the velocity ratio in Link-work. Let AP, BQ be

two arms moving on fixed centers A and B respectively, and

Fig. 6.

let them be connected by a link PQ, jointed to their extremities

at P and Q. Let AR, BS be perpendiculars from the centers

upon the direction of the link produced, if necessary, and let

AP, BQ, PQ be moved into the new positions Ap, Bq, pq, very
near to the first. Draw pm and Qn perpendicular to PQ, then

in the right-angled triangles Ppm, APR, Pp is perpendicular to

AP, and Pm to AR ; therefore the angle at P in the small

triangle is equal to the angle at A in the large triangle, and the

triangles are similar. In like manner the small triangle qn Q is

similar to BSQ ; whence

c
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Pp I Pm :

qn : Qg :

also AT: BT \

PA : AR,
BS : BQ,
AR : BS (1),

by similar triangles ART, BTS. Compounding these propor-

tions and arranging the terms, remarking that qn= Pm ultimately

since the length of the link PQ=pq, we finally obtain

&:*L*BT:AT. (2),

that is to say, the angular velocities of the arms AP, BQ are to

each other inversely as the segments into which the link divides the

line AB, which joins the centers of motion, and which is technically

termed the line of centers.*

* The following demonstration of this problem, which I gave in my paper on the

Teeth of Wheels, in 1838, is in some respects preferable to the above. It is founded

upon Euler's principle of the instantaneous axis of rotation.

The rod PQ, fig. 6, during its motion may be considered as always turning round

some center or other in space, although the relative position of that center to it is

continually shifting. Produce the arms AP, BQ in the requisite directions to meet in

K, then will this point K be the momentary center. For as the extremity P moves

round the center A, the direction of its motion at starting from P must be perpendi-
cular to AP, therefore the momentary center will lie somewhere in AP produced. In

like manner the initial motion of the other extremity Q must be perpendicular to BQ,
and the momentary center must also lie somewhere in the direction of BQ ;

therefore

it must be in the intersection K of the two lines AP and BQ produced. But since

the rod PQ turns on the momentary center K, the direct motion of P and Q are to

each other at any given instant as their radial distances from K, that is, as PjK"to QK,
which is true, whether we consider them as the extremities of the rod PQ or of the

radii AP,BQ; also the angular motions of the latter will be found by dividing these

direct motions by their respective radii ;
therefore we have,

~P"K OK
Angular motion of P round A : angular motion of Q round B : : : -*

Draw KL, AR, BS, perpendicular to PQ. Then we have

PK:AP::KL:AR\)j similar triangles KPL ; APR
BQ : QK:: BE : KL BQS; KLQ
AT : BT :: AR : BS ATR; TBS,

and compounding these three proportions we obtain

rX-.^-.-.BT-.AT;

that is to say, the angular motion of the arms are to each other at any moment inversely
as the segments into which tJte direction of the link divides the linejoining the centers of

motion, or 'line of centers.' If now it happens that when the link PQ moves into its

new position pq, very near to the first, this second position intersects the first in a

point L above (or below) the line of centers, as in the figure ;
then the ratio of the

segments AT, B Twill be altered into that of At, Bt, consequently the ratio of the

angular motion will be an increasing or decreasing ratio, as the case may be. But if

the point L coincide with the line of centers, this ratio will for the moment remain

constant.



TRAINS OF MECHANISM. 19

COR. 1. L: - :: BS : AR, by compounding (1) and
A" B (^

(2); therefore the angular velocities of the arms AP, BQ are

Inversely as the perpendiculars from their centers of motion upon
the link.

These perpendiculars are necessarily parallel. But they may
be placed by the motion of the system with their extremities in

the same aspect with respect to their center points A and B as in

figs. 7, 8 (BS, AK), or in opposite aspects, as in fig. 6 and in

fig. 8 at Ar, Bs.

Fig. 8.

Q

When in the same aspect the motion of AP is communicated

to B Q by the link on the same side of their respective centers

A B, .consequently their arms revolve in the same direction ;

c 2
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also the similar triangles TAR, TBS lie on the same side of the

line of centers and the point T beyond the line AB.
On the contrary, when the perpendiculars are placed with

their extremities in opposite aspects with respect to AB, as in

fig. 6, the motion of AP is communicated to BQ on the opposite

side of their centers, consequently the arms revolve in opposite

directions. The similar triangles tAr, tBS, fig. 8, or TAR,
TBS, fig. 6, lie on opposite sides of the line of centers, and

the points t, and T between A and B. We obtain therefore

the following theorems and results.

COR. 2. In any position of a given piece of link-work the

relative directions of motion of the arms is shown by the place of

the intersection, T, of the link-line with the line of centers,

whether beyond or within the points A B.

COR. 3. The relative angular motions of the arms are at

every instant the same as if the system consisted of arms AR, BS,
connected by a link RS, to which they are perpendicular, and

are inversely as those lines.

COR. 4. In fig. 8, let the arm AP move into a position

AP1

, so as to place the link PQ in coincidence with the center

A. The arm AP now coincides with the link. Also the per-

pendicular AR vanishes, and the point T7
coincides with A.

Hence at this instant motion given to AP communicates none

to BQ, for the motion of AP 1
is to that of BQ as BS to AR

and AR= O. The system in this case is said to be at a dead

point.

Let AP1 continue its rotation from P to p. The link will be

carried over the center A to pQ accompanied by the perpen-
dicular Ar. Bs will be the perpendicular from B, and the inter-

section T will now lie at t between A and B. The rotation

communicated to BQ is therefore reversed. It is thus shown

that when an arm approaches and passes a dead point, the motion

communicated to the link and opposite arm decreases, vanishes,

and then increases in a reverse direction.

COR. 5. Produce AP and BQ to meet in K, and drop KL
perpendicular to P Q,

theupm : Pm :: PL : KL,
and qn : Qn :: KL : QL;

whence, compounding, pm : Qn :: PL : QL, which shows that

L is the intersection of the two positions of the link.

COR. 6. If the path of the pieces be rectilinear, or any other

curve than a circle, let Pp, Qq be the elements of the paths ;
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then since Pm= qn, Pp . cos pPm= Qq . cos Qqn ;

. Pp_co8 Qqn'

Qq cos pPrn

where the angles are those made by the link with the respective
directions of motion : and hence

The linear velocities are to each other inversely as the cosines of
the angles which the link makes with the respective paths.

31. To find the Velocity Ratio in Contact Motions. Let A, B
be the centers of motion of two pieces connected by the contact

of curved edges, and let M be the point of contact in a given

position. Fig. 9.

Let P, Q be the respective centers of

curvature of the edges, corresponding to

the point of contact M; join PQ ;
there-

fore this line will pass through the point
of contact M. Now in considering the

communication of motion through a

small angle, the circles of curvature

may be substituted for the curved edges.
But the line PQ being thus equal to

the sum of the radii of two circles, will

be constant during that small motion, and hence the motion be

the same if a pair of rods AP, B Q, connected by a link PQ, be

substituted. Let T be the intersection of PQ, with the line of

centers AB, then by the last proposition, the angular motions of

the arms AP, BQ are to each other as the segments BT, AT,
and PQ is the common normal to the two curves ; whence in the

communication of motion by contact, the angular motions of the

pieces are inversely as the segments into which the common normal

divides the line of centers.

32. Tofind the quantity of sliding in Contact Motions. Let A
and B be the two centers, M the point of contact, MD the com-

mon normal ; then,

Suppose the curves to move into the new positions, shown by
the dotted lines, and very near the first, and let m be the new

point of contact, and p and n the new positions of the points

which were in contact at M.
Now since every point of mn must have necessarily touched

some point or other of mp, during the change from the first to

the second position, a sliding or shifting of the surfaces must have

taken place equal to the difference between mp and mn. Join pn,
which will ultimately represent this difference, and become a
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right line perpendicular to the normal MD. Also Mp, Mn are

ultimately perpendicular to AM, BM.
In the small triangle Mpn, the sides

Mp, Mn, pn are respectively perpen-
dicular to AM, BM, MD, and conse-

quently make mutually the same

angles with each other as these latter

lines;

., P pn sin pMn sin BMA
therefore *-=>= ~.

r ,,= -
^r^v,,pM sin pnM sin DMB

in which expression ..pM
the ratio of

the sliding to the elementary quantity
of motion of the point of contact in

one of the pieces, DMB is the angle
between the normal and the radius of

contact of the other piece, and sin

BMA = sin (BAM + ABM} = the

sine of. the sum of the angular dis-

tances of the radii of contact from the

line of centers.

c .
., , pn sin BMA

Smnlarly,

33. From these expressions it appears that in the small triangle

pnM, pn can only vanish with respect to nM or pM when sin

BMA vanishes
; that is, when the radii of contact coincide with

the line of centers. But when pn vanishes the sliding vanishes,

and the contact becomes rolling contact. Hence it appears that

in rolling contact the curves must be so formed, that the point of

contact shall always lie on the line of centers. Also the common
normal will cut the line of centers at the point T (fig. 7), which

will be now the point of contact, and therefore in rolling contact,

the angular velocities are inversely as the segments into which the

point of contact divides the line of centers.

34. Examples. Let the curves be a pair of involutes of circles,

and let BD be a perpendicular from B upon MD. But this

perpendicular is constant in the involute ;

BD 1
therefore sin DMB BM

.'.*~<x. BM x sin BMA, that is to say as the perpendicular

upon AM produced.
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But if the curves be an epicycloid turning on the center A, in

contact with a radial line which turns round B ; then DMB is a

right angle,

and - -- oc sinBMA.
pM

Tofind the velocity ratio in wrapping connectors (correlation of

sliding and wrapping). Let AB be the respective centers of

Fig. 11.

motion of a pair of curves, S
1
S8 , s^s^ in contact at M, and let

<S
l
s

l , S^ . . . S
&
s
9 be respective points of contact when

the curve S
l 8 drives s^^ by sliding or rolling contact.

Let WPS% be the evolute of S^MS^ described on the plane of

that curve, and w Qs v
the evolute of s^Mw, described on the plane

of that curve. The curve S^MS^ may be, therefore, described
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by the point M of the inextensible string WPM, and similarly
the curve s, Qw by the inextensible string w QM, and as these

strings are always normal to their respective involutes S^S^,
they together form a common normal at every point of contact

of those curves as at M. Consequently, if we suppose an inex-

tensible flexible string WPTQw to be attached at Wt w respect-

ively to the evolutes of the contact curves, and the latter move
with their edges in contact, this string will wrap upon one

evolute and unwrap from the other evolute, always remaining a

common normal to the contact curves, and a common tangent to

their evolutes, the wrapping curves, and the point M on the

string will coincide in every position with the point of contact of

the curves. Hence, if the contact curves be removed, the

evolutes and the string constitute a pair of curves with a wrapping
connector, whose action is equivalent to that of the contact curves,

and as the wrapping connector is the common normal of the

latter, the proposition (Art. 31) shows that in wrapping connectors

the angular motion of the pieces are inversely as the segments
into which the connector, or (which is the same thing) the common

tangent of the wrapping curves divides the line of centers.*

If any other point m be taken on the wrapping connector, it

will trace, during the motion, another pair of involutes, normally

* In the former edition of this work the following demonstration was given :

To find the Velocity Ratio in wrapping connections. Let A, B be the centers of

motion, PQ the wrapping connector touching the curves at P and Q, and let the point
P be moved to p very near to its first position, then will Q be drawn to q, and the

connector will touch the curves in two new points of contact, which may be r and s

Fig. 12.

respectively. Now, in the action of wrapping or unwrapping, the connector touches

the curves in a series of consecutive points between q and 8 or p and r, and ultimately

q coincides with S and p with r. The extremities of the connector may therefore be

considered at any given moment as ifjointed to the two curves at the points of contact,

and turning upon these points in the manner of a link. The relative velocities of the

curves are therefore momentarily the same as if AP, SQ were a pair of rods connected

by a link PQ. Hence the angular velocities of the pieces are to each other inversely as

the segments into which the connector divides the line of centers.
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equidistant from the first, on their respective planes. This new

pair may be substituted for the first, if more convenient.

It may happen that one or both of the wrapping curves may
have salient points,* as at P, which is the meeting point of the

two tangents P3 and P6, and at Q, which is the meeting point

of the tangents Q5 and Q6. Consequently, the lower sliding

Fig. 13.

curve from 3 to 6 and the upper one from 5 to 6 are arcs of

excentric circles, described about P and Q.
The effect of this is that the wrapping connector in the posi-

tions between P5, 5 Q and P6, 6 Q acts in the manner of a link

* In the points of certain curves changes of curvature take place which are termed

points of inflexion, cusps, or salient points.
At a point of inflexion, I, fig. 14, the curvature changes its aspect, and the direction
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whose centers are P and Q. But between the positions P3, 3m,
and P5, 5 Q the connector is jointed as a link at P, but wraps on

the curve in iv Q at the other extremity.

This shows that a link is in effect a wrapping connector, of

which the wrapping curves are reduced to a point, and that link-

work is a particular case ofwrapping connection (F), in which one

or both of the wrapping curves are reduced to a point.

35. If the line of direction of the link in link-work, of the

common normal to the curves in the rolling and sliding contact

motions, and of the connector in wrapping motion, be severally

termed the line of action, we can express the separate propositions

which relate to the Velocity Ratio, by saying that the angular
velocities of two rotating pieces provided with either of the four
mechanistic connections, are to each other inversely as the segments
into which the line of action divides the line of centers, or inversely

as the perpendiculars from the centers of motion upon the line of

action (A).
I have confined these investigations, for the present, to motions

in the same plane. The cases of motions in different planes are

more simply examined as the individual combinations which

require them occur.

36. It has been shown that the points of the principal pieces
which constitute a train of mechanism are compelled, by their

of the tangents //, It on each side of the point coincide in one straight line so that the

curve ab cuts its tangent at that point.

T/ \*

At a point of cuspidation, C, fig. 15, the curve aC is abruptly reflected as at C, so

that the tangents of the two branches Ca, Cb at that point or cusp coalesce in one

straight line Ct.

Fig. 17. Fig. 18.

At a salient point, S, figs. 16, 17, 18, the curve aSb is abruptly reflected so that two

tangents ST, St meet at that point of the curve at an angle TSt. The salient point

may be concave, fig. 16, convex, fig. 17, or concavo-convex, fig. 18.
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connection with the frame, to move each in a given path.

Strictly speaking, therefore, we ought in the first place to exa-

mine the principles upon which frame-connections may be arranged
so to guide a piece in any given path-motion, and then to show

how its time and direction-motions may be governed by its mechan-

istic connections with its driver.

But an examination into path-motions in general would lead us

at the opening of our subject into many details which, however

curious and useful, belong to a class of contrivances of limited

and special employment. I have, therefore, postponed this por-
tion of the subject of mechanism to the latter part of this treatise,

and have confined the first part to the motions of pieces that

either rotate or move in right lines, for this is the case in the vast

majority of mechanistic combinations.

It will also appear as we proceed that many of the contrivances

by whieh motion is communicated in a rectilinear path, are the

same as those by which it is given to a revolving piece, and

derived from the latter by that familiar geometrical artifice by
which a right line is considered as the arc of a circle whose radius

is infinite. In this way much complication of classes will be

avoided. Thus, for example, a pinion driving a rack is plainly
the same contrivance as a pinion driving a toothed wheel, the

rack being considered as a portion of a toothed wheel whose radius

is infinite.

37. The path-motion of a rotating piece may be considered as

unlimited in extent in either direction, since the piece may go on

performing any number of revolutions in the same direction. But
a piece that travels in a right line is necessarily limited in its

motion either way, to the length of that line.

Again, the method by which motion is communicated from one

piece to another, may be of such a nature as to limit the motion

of these pieces, although, by their connection with the frame they

may be capable of unlimited motion, considered apart from this

connection. For example, if the driver and follower be rotating

cylinders, and therefore capable of unlimited motion in either

direction, the communication of motion may be effected by a

string whose ends are fixed one to each cylinder, and coiled round

it, so that when the driver rotates it shall communicate motion to

the follower by coiling the string round itself and uncoiling it

from the follower
;
in which case the revolutions of each cylinder

are limited to the number of coils which its circumference contains

when the other is empty.
It appears, then, that the motion of a pair of connected pieces
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may be limited either by the figure of one or both of their paths,
or by the nature of their connection; and a limited connection

may be formed between unlimited paths, or vice versa, but if

either the paths or the connection be limited, the motion of the

pieces will be limited.

In classifying the communication of motion, however, the union

of unlimited connections with limited paths, will require but little

attention, as the modifications to which they lead are, in general,

sufficiently obvious
;
but the distinction between limited and

unlimited methods of communication is of more importance.



CHAPTER II.

ELEMENTARY COMBINATIONS.

DIVISION A. COMMUNICATION OF MOTION BY KOLLING- CONTACT.

DIRECTIONAL RELATION CONSTANT.
CLASS A .

VELOCITY RATIO CONSTANT.

38. IN the rolling . contact of curves rotating about fixed

centers It has been shown (Art. 33) that the point of contact is

always in the line of centers; and the angular velocities are

inversely as the segments into which the point of contact divides

that line. Therefore if the velocity ratio is constant, the segments
must be constant, and the curves become circles, revolving round

their centers, and whose radii are the segments, and no other

curves will answer the purpose.
Let JK be the radius of the driving circle, and r that of the

following circle ;
L and / their synchronal rotations ; then as they

are (by 20) in the ratio of the angular velocities :

L=L

This ratio will be preserved, whatever be the absolute velocity of

the driver, but when this is uniform, which is generally the case,

let P and p be the respective periods of the driver and follower ;

... (by *0)=i=5.
The motions being supposed hitherto to

be in the same plane, the axis of rotation of

the circles will be parallel.

39. When the axes are parallel. Let

A a, Bb, be two parallel axes, mounted in

any kind of framework that will allow them

to revolve freely, but retain them parallel

to each other at a constant distance, and

prevent endlong motion, and let two cy-
linders or rollers, E, F, be fixed opposite to each other, one on
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each axis, and concentric to it; the sum of their radii being

equal to the distance of the axes. The cylinders will therefore

be in contact in all positions, and if one of these axes, and con-

sequently its attached cylinder, be made to revolve, its superficial

motion will be communicated to the surface of the other cylinder

by the adhesion of the parts which are brought successively into

contact; and thus the second cylinder will be driven by the first

by rolling contact, and their perimetral velocities will be equal.

Let R be the radius of the driver, and r of the follower ; then

a section of the cylinders, made by a plane passing through them

at any point at right angles to the axis, will present a pair of

circles in contact, whose radii are R and r
;

and therefore, as before, = =;
p L, r

which is indeed manifest, for since the same length of circum-

ference of the driver and of the follower passes the line of centers*

in the same time, let M'

. circumferences of the driver, equal
m. circumferences of the follower;

.-. 2frRM=2'7rrm, and =-L
m H

But the number of circumferences that pass a given point measure

the number of revolutions of the wheel
;

M L r , -

.', = -_ = -
-, as before.

m I Jti

40. If the axes of rotation be

A not parallel, they may either meet
in direction or not, and these cases

must be considered separately.
Axes meeting. Let AB, AC be

two axes of rotation intersecting
in A, to which are attached cones

ABE, AJEC, whose apices coincide

with A, and which have angles at

their vertices of such a magnitude
that their surfaces are in contact.

Let AE be the line of contact, and

Dbe, ecf sections of the cones at

any point e of the line and re-

* The line of centers is the right line which joins the centers of motion, as already

stated, and, in the case of rolling circles, passes through their point of contact. The

plane of centers is the plane which contains the two axes, whether they be parallel or

intersect. These two phrases are of continual use.

Fig. 20.
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spectively perpendicular to their axes, which sections are neces-

sarily circles touching at e, whose radii are be, ce. If angular
velocities A, a be given to the cones ABE, AEC, the peri-

metral velocities of these sections will be A.le and a.ce, and if

these are equal,

~a~be~'BE

a constant ratio. If then the perimetral velocities of any pair of

corresponding sections be equal, those of every other such pair
will be equal; therefore the cones will roll together as in the

former case, and the ratio of the angular velocities be inversely as

the radii of the bases of the cones.

41. In practice, a thin frustum only of each cone is employed.
Let the position of the axes be given, and also the ratio of the

angular velocities, it is required to describe the cones, or rather

the frusta.

Let AB, AC be the axes intersect- Fig. 21.

ing in A. Through any point D in

AB draw DF parallel to AC, and

make DF : AD in the ratio of the

angular velocity ofAB to that of A C.

Join AF, then will AF be the line of

contact of the two cones, by means of

which the required frusta may be de-

scribed at any convenient distance

from A,

f DF_sinDAF
A^D~sinAFD

smFAC CG'

that is, the angular velocities are in

the ratio required by last Article.

COR. The angles at the vertices of

the cones may be readily found thus :

Let be the angle BA C, K the semiangle of the vertex of the

cone of AB, the given ratio of the angular velocities ;

sin AC m .
'

smT-^ w
; ( g '

whence tan K =
sing

- + COS0
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which may be adapted to logarithms by taking a subsidiary angle

>. so that cos <f>= - cos 6 ;

n

Fig. 22. whence tan *=- .

2n cos2 *

If be a right angle, which

is generally the case, then

m
tan /e= .

7Z

The same principle ap-

plies to the arrangement of

friction rollers for the sup-

port of circular tables, as

AB fig. 22, that are re-

quired to turn about a ver-

tical axis, such as the '* turn-

tables
'

of railways. Three

conical rollers at least must

be employed, the portion of

the lower surface of the

table which rests upon them
must be a circular ring, flat

or conical, generated by a

line which meets the vertical axis of rotation of the table in the

same point d, as that which generates the conical friction rollers

as shown in the diagrams. The latter are mounted in suitable

fixed supports.
42. Axes neither parallel nor meeting. The hyperboloid of

revolution is a well-known solid, whose surface is generated by
the revolution of a straight line about an axis to which it is not

parallel and which it does not meet.*

* In the former edition of this work, after giving the known method of connecting

pairs of parallel axes and of axes that meet in direction by employing cylinders for

the former and cones for the latter, I proceeded to show that the then newly intro-

duced skew bevil wheels for connecting axes whose directions were neither parallel

nor meeting must be similarly referred to hyperboloids of revolution, and gave a

simple construction to enable the proportions and relative positions of the pair of

conical frusta required, as in bevil geer, to be obtained.

After twenty years had elapsed M. J. P. Belanger, an eminent French mathemati-

cian, inserted in the Comptes-rendus de J!Academic des Sciences, t. lii. p. 126, 1861,
a Resume dune theorie de Fengrenage hyperbolo'ide, which he afterwards included in

his excellent treatise on Cinematique, Paris, 1864, p. 144. In this memoir, after

giving me full credit for first showing that these solids gave the true solution of the
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Let Aa, Bb be two axes neither parallel nor meeting, MN their

shortest distance or common normal.

E, Ftwo hyperboloids of revolution in contact along the line Cc.

P the intersection of the contact line with the common normal,
which is also necessarily perpendicular to Cc.

The name of the solid is derived from the fact that, from the

mode of its generation, by a right line revolving about an axis to

which it is neither parallel nor meeting, it can be proved that the

section of the solid by a plane passed through this axis is an

hyperbola, and the axis of rotation its conjugate axis.

Fig. 23.

The lines traced on the curved surface at equal distances

represent successive positions of the rectilinear generator. If the

two solids be exactly alike in form and dimensions it is only

necessary to place them in a frame so that the upper traced line

of the lower solid and the lower line of the upper solid shall

together coincide with the actual line of contingence of the two

surfaces. Then motion given to the lower solid will by the rolling
contact be imparted to the upper, and the lines drawn on the

problem, he proceeds to point out that ' M. Willis faute d'une etude suffisamment

approfondie de la question a inexactement indique la determination de ces deux sur-

faces, en supposant, comme d'autres auteurs 1'ont admis apres lui, que la generatrice

de contact doit partager la plus courte distance des deux axes en deux parties recipro-

ques aux vitesses angulaires.' The perfect truth of this criticism I am bound to

admit, as well as the polite terms in which it is expressed by its able and ingenious

author, to whom I feel greatly indebted. His own solution, which occupies a dozen

pages and five figures, is obtained by a complex method unsuited to English readers.

I have in the following pages given one which is directly derived from the rolling

action of the pair of hyperboloids, and although totally different from that of my
critic, has led me to expressions which are identical with his.

D
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surfaces will come successively in pairs into contact on the common

contingent line Cc. But as the axes of rotation are not parallel,

the relative motion of each pair of lines during the short time of

their mutual action is compounded of a direct approach and recess,

combined with a sliding motion parallel to their common direction

as will appear below.

43. The nature of these hyperboloids and their mutual action

are best explained by models, in which the solid is represented by
two equal disks E, e fixed to the axis

Aa, and provided with a series of equi-
distant notches /, m, n, p &c. In the cir-

cumference an equal number of holes, 1,

2, 3 are bored, one opposite to each

notch, as shown in
fig. 24, which repre-

sents the outside of the disk.

A string passed through E and secured

with a knot inside is carried over the

notch /, and thence to the corresponding
notch in the opposite disk, which places the string in the position
of the generator. This string is laced backwards and forwards,

always carrying over the notch of the disk as m to the outside,

then through the hole (1) next on the inside from 1 to 2, and on

the outside over n to the opposite disk and so on. When com-

pleted this forms a skeleton frame. If two such skeletons are

mounted in contact in a proper frame, in the relative positions of

the figure, and revolved by hand, the respective strings will come
into successive contact, sliding lengthwise in opposite directions.

In practice these solids are required as above stated for the con-

struction of toothed wheels whose axes are neither parallel nor

meeting and only a comparatively thin frustum or slice of the solid

is required. The successive lines on the surface are replaced by
teeth which must be in the same direction as the lines to enable

them to come into successive contact. Also these wheels gene-

rally require to be in pairs, of which the teeth are different ; but

the dimensions and relative proportions of two hyperboloids re-

quired to communicate the rotation of one axis to another in any
ratio can only be effected by formula? and constructions, which

may be obtained as follows.

44. In fig. 25 the two hyperboloids are shown in contact. EE'
is the axis of the larger, and FN that of the smaller, the

farther part of which is concealed by being necessarily passed
behind the larger one. Its general outline is, however, shown by
the dotted lines.
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The circle of least diameter in the center of the length of the

hyperboloid, assuming its extremities to have equal radii, is

termed the gorge circle.

MPNis the common perpendicular of the axes EE', FN, and

also contains the radii MP, NP of the gorge circles which

touch at a point P, in this common perpendicular.

CC^ is the contact line of the two hyperboloids, and composed
of two generators of the respective surfaces which coincide along
their whole length.
Now the condition required for the contact of two curved

surfaces at any two points belonging respectively to these sur-

faces, is that the direction of the two normals shall coincide into

Fig. 25.

one right line when the two surface points come together. Mani-

festly this condition is fulfilled in the contact point P of the

gorge circles which are not in the same plane.

To show that the same condition is complied with at every
other point of the common generator, it must be observed that,

through every point of the surface of a hyperboloid, as at C, it is

possible to draw two lines CC
l
CC2 , both of which will coincide

with the surface throughout its length, and consequently each

separately would generate the surface by revolving about the

axis EME'.
The projections of these generators on the base circle C

}
DC2 are

obtained by projecting the upper extremity C on the base at D,
drawing D C, to meet the lower extremity. This line will touch

the projection p^E'p^ of the gorge circle at pv
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A line similarly drawn from D to the extremity C2 of the

companion generator CC2 will touch the projected circle at pz
.

Join these lower extremities by a line CCV We have now an

isosceles triangle DC
l
C.2 with apex D and base (7

t
C2 .

This triangle, of which the two legs are in contact with the

solid, determines the position of the tangent plane at their con-

course at C.

A plane, DE^ CE, passing through CD and EE
V
will bisect

the angle CiDC2 , and also pass through the intersection C of the

two opposite generators. But, as CC\ is common to the two

curve surfaces, and C a point of contingence, the normal CA

Fig. 26.

must be perpendicular to the plane C, CC, at the apex, and in the
same direction with the normal CB of the other hyperboloid.

45. Fig. 26 shows the small central circles, or gorge circles

(as they are termed), in action.

EM, FN are the respective axes, MN their common normal,
P the point of contingence of the circles. PiPP2 is the line of
contact of the two solids, along which their respective generators
are also represented in coincidence.

Let the larger gorge circle move through a small angle PMm,
so as to carry the radius MP into the position Mm. This will
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remove the point P of its generator into the position m, and the

whole generator of the larger hyperboloid into the position 7WjW 2

very near to the first. By the contact of the surfaces the gene-
rator of the smaller hyperboloid will be carried along with the

first generator, and the motion being small, the two will remain

in longitudinal contact. But the point of the second generator
is carried about the axis NF in the direction Pn, and thus the

whole generator is removed to the position n
}
n

2) where P^ } ,
P

2
n

2

are parallel to Pn. Thus the motion of the generators through
a small distance is performed with a coincidence of direction,

accompanied by a longitudinal sliding, measured by the ratio of

, where Pp is the shortest distance between the successivePP
f

positions.

Manifestly the motion of the larger gorge circle through the

small angle mMP compels the smaller gorge circle to describe

the small angle PNn. Hence as the angular velocities of two

bodies are measured by the magnitude of the angles they describe

simultaneously, let be the angular velocities of the greater and
j

lesser hyperboloids, and R, Rl pig 27.

be the radii MP, NP of the

respective gorge circles.

-
w

-=? x
R
J.

*

to, R X
Pn

46. In
fig. 27 the leading

lines of the left half of fig. 25

are delineated, with the same

letters of reference and the

addition of other lines for the

purpose of obtaining the ne-

cessary formulae.

MPM is the common nor-

mal composed of the two gorge
radii R and Rr
MA the axis of the greater

hyperboloid, NB that of the

lesser, Pab a plane passed

perpendicularly through the common normal at the point P, and

therefore parallel to the axes of the hyperboloids, which are pro-

jected upon this plane at Pa, Pb. PC is the position of contact

of the generators, ACB the common normal of the hyperboloids
at their upper extremities.
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Through the extremity C of the united generators, and per-

pendicular to them, a plane Aa bB is passed.

In this combination it is evident that the intersection lines of

the latter plane with the previously explained elements of the

figure, describe upon it two similar right-angled triangles A Ca,

BCb, in which Aa=MP=R and Bb=NP=Rr
Let the angle CPa= a. CPb= a

l
.

In the plane aCPdraw a line mn parallel to PC, and from

P lines Pm, Pp, Pn respectively perpendicular to Pa, PC, Pb.

This triangle, mPn, supposed small, is manifestly the same as the

triangle mPn in fig. 26, for, in both mn is parallel to the

coupled generators PC and mP, nP, pP, are in planes respec-

tively perpendicular to the two axes and the generator.

Consequently ?= = 5?L?i .-.
i ^

J Pn Pb cos a w
t
R cos a

R, PN Bb bC tana.
- = -=

..y= =
Wt sin a Ce

Through C let a plane CeE pass, intersecting normally the

axis MA in E. Therefore CE (H) is the radius of the greater

hyperboloid. A second plane, CfF, through C perpendicular to

the axis NB, contains the radius CF of the lesser hyperboloid
CE= VEe2 +Ce*= ^R^ + PC^irfa where PC is the half-length

from the gorge circle of the generators (=G) and similarly

CF= A/ JR 2

when H is the greater radius of the hyperboloid.

and G the half length of the generator.
If from any point of the line PC normals be drawn to meet

the axes MA NB, they will be in one right line and in the

constant ratio of MP to PN. If drawn very near together, they
constitute a ruled surface, bounded by AM, BN, and generated

by a right line, which travels in contact with those lines and

with PC, but always at right angles to the latter.

It is manifest that the same surface would be generated by a

right line whose extremities rest against AB and MN, and travel
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on those lines with uniform velocities proportional to their

lengths.

47. These formulae may be employed either by calculation or

by descriptive geometry, as shown by fig.
28 and by proceeding

as follows.

From a point P, draw lines P^E, P^F of sufficient length, and

making an angle= a + a
1
.

From any point r on one line, as P^F, draw rs parallel to the

opposite line, and make rs to P^r as w to w
{
in the given velocity

ratio. Join PjS producing N downwards. In the triangle P}
rs

we have
S
?

n s
^ = iT ^1 by construction, and the angle at s is

em P, rs w
equal to the angle PP1

M. Therefore the entire angle MP^N is

divided in the required ratio.

Fig. 28.

The length of the common normal MN being given, may be

divided into its segments thus. From P, draw MjP, perpendicular
to PjC, and equal to that given length. Also M\M parallel to

P
} F, and intersecting P^E in M. Draw MN perpendicular to

P^C, which will be divided in P in the required ratio of

tan

Set off on the bisecting line a length Pl
C equal to the half

length PC of the common generator (figs. 25 and 27), and from

C drop perpendiculars Ce, Cf on the legs of the angle, and set off
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from e, f on those legs the respective lengths eE^PM and

fF= PN. Joining C with E and F we obtain the radii of the

upper disks of the hyperboloids, and also the distances ME,
NF, of the upper and lower disk from the gorge circles of those

solids. For fig. 27 shows that these distances ME, NF are

respectively equal to Pe, Pf already constructed in fig. 28 at

Pf, PJ-
48. If one hyperboloid be given, and it be required to construct

another to roll with it in the ratio -, the same diagram, fig. 28,

may be constructed in the following order. From the given

hyperboloid we obtain the angle a, the gorge radius PM, and the

half length P1
C of its generator, by which the triangle P^eC and

the line MP can be drawn.

To construct the dimensions of the required hyperboloid draw

an arc from C as a center Avith radius Cf= Ce~ and from P
l

U7j

a line P^F touching the arc. This gives the angle a,. Producing
MP to meet P^F at N, we obtain the radius PN of the new gorge
circle, and by setting off its length fromf to F and joining CF,
the radius of the outer disk of the required hyperboloid.

49. In practice, as in the case of cones, a thin frustum only is

required of each hyperboloid, and these frusta include so small a

portion of the curve surface, that a frustum of the tangent cone at

the mean point of contact may be substituted without sensible

error, and may be found as follows : Set off on the axis Ee, ME,
and Me equal to the given distance from the center M to the

midpoint of the frustum.

Make EC perpendicular to ME, and equal to the mean radius

of the frustum.

On the base line ceT draw (in plan) two semicircles, one with

radius ep=ihe radius of the gorge plane or least corresponding

segment MP of the common normal. The other with radius

ec= EC.
From c draw cs tangent to the gorge circle meeting the outer

circumference in s, project s on T, join TC intersecting the axis

in t. tC is the tangent to the point C of the hyperbola, and

consequently t is the apex of the tangent cone required.
This construction is given by Le Roy, Geometric descriptive,

1834, p. 73, No. 148. cs is the plan of that generator, CT,
which touches the hyperbola at C.

50. The wheels may be placed so that their mid-planes coincide

with the gorge circles of their hyperboloidal frusta. These frusta
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must be made in the form of a thick pulley, with a shallow con-

cave groove in its circumference.

When these pullies are placed together, contact takes place

along a line, as in the former arrangement, which ~
2g

determines the direction of the teeth.

The mean and extreme radii of the pullies

may be obtained by the construction already

given by setting off from N upon the lines NF,

fig. 28, the half thickness of one of the pullies,

and proceeding as before to determine that of

the other, and also the radii of the extreme dia-

meter of the pulley. The construction, fig. 31, shows how by

Fig. 30.

Fig. 31

proceeding in the same manner as in fig. 30, the radius may be

obtained by which approximate circular arcs are described,

which are the respective sections of the concave grooves of

the pullies. Or these radii may be obtained on the assumption
that they may be considered as the radii of curvature of the

hyperbola, which by rotation about the axis of the pulley gene-
rates its section. This radius is equal to the latus rectum of the

hyperbola.
51. This third case of axes, neither parallel nor meeting,

Vide p. 34, above.



42 ELEMENTARY COMBINATIONS.

admits of solution by means of the cones of the second case;

thus :

*

Let Aa, Bb be the two axes, take a third line intersecting the

axes at any convenient points C and D respectively ;
and let a

Fi 32 short axis be mounted so as to revolve in

the direction of this third line between the

other two axes.

Now a pair of rolling cones, e, f, with a

common apex at c, will communicate mo-

tion from the axis 13b to the intermediate

axis; and another pair #, /*, with a common

apex at D, will communicate motion from

the intermediate axis to Aa ;
and thus the

rotation of Bb is communicated to Aa by

pure rolling contact.

Let A, A,, a, be the respective angular velocities of the axes

Bb, CD, Aa ; and R, R^ r the radii of the bases of their cones,

those of the cones,/, g, being the same ;

A R, -, A, r , A r

exactly as if the cones e, h, were in immediate contact.

To apply these Solutions to Practice.

52. Theoretically we have now the complete solution of the

problem in all the three cases ; having shown how to find a pair
of cylinders in the first case, and of conical frusta in the other

cases, by which a given angular velocity ratio will be effected.

If these solids could be formed with mathematical precision,

then, the axes having been once adjusted in distance so that the

surfaces should touch in one position, they would touch in every
other position ; but in practice this is impossible, and various

artifices are employed to maintain the adhesion upon which the

communication of motion depends.
The surface of one or both rollers may be covered with thick

leather, which by giving elasticity to the surface enables it to

maintain adhesional contact, notwithstanding any small errors of

form.

One of the axes may be either made to run in slits at its

extremities instead of round holes, or else it may be mounted in

a swing frame. Both methods allowing of a little variation of

* Vide Hachette Traitt des Machines, second edition, 1819, p. 313, N. 81. The

figure is copied from Poncelet, Memnique industrielle, p. 300.
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distance between the two axes, the contact of the rollers will in

this way also be maintained, notwithstanding small errors of

form.

If the weight of the uppermost roller is not sufficient to pro-
duce the required adhesion, or if the rollers lie with their axes'in

the same horizontal plane, then weights or springs may be em-

ployed to press the axes together. The practical details of these

methods belong rather to the department of Constructive Me-
chanism than to the plan of the present work.

Another method is to provide the circumferences of two wheels

in rolling contact with three or four angular grooves in the

manner shown in fig. 33.

The bottoms of the grooves in the right hand section are of an

acute angular section, but the projecting edges which separate
them are finished with fillets, so as to allow the projections to be

mutually wedged into the hollows. This method appears to have

Fig. 33.

been introduced and patented by Mr. Robertson, who terms it

'

wedge and grooved frictional geering.'
In the Paris Exposition of 1855, M. Minotto exhibited a

model of wedge and groove rollers, in which only one groove was

used. This device was termed *

engrenage a coin.'

53. But the most certain method of maintaining the action of

the surfaces is to provide them with teeth. The plain cylindrical
or conical surfaces of contact are exchanged for a series of pro-

jecting ridges with hollow spaces between. These ridges or teeth

are distributed at equal distances from each other on the two

surfaces, and generally in the direction of planes passing through
the axis, so that when the driving wheel is turned, its teeth enter

in succession the spaces between those of the follower. They are

so adjusted that before one tooth has quitted its corresponding

space the next in succession will have entered the next space,
and so on continually ; consequently, the surfaces cannot escape



44 ELEMENTARY COMBINATIONS.

from each other, and there can be no slipping, notwithstanding

slight errors of form.

The action of this contrivance falls partly under the head of

rolling contact, and partly under that of sliding contact ; for the

teeth considered separately act against each other by sliding

contact, and the forms of their acting surfaces must be determined,

as we shall see, upon that principle.

On the other hand, the total action of a pair of toothed wheels

upon each other is analogous to that of rolling contact. Equal

lengths of the two circumferences contain equal numbers of teeth,

and therefore equal lengths will pass the line of centers in the

same time, if measured by the unit of the space occupied by one

tooth and a hollow between. In fact, the adhesion which enables

the surface of one plain roller to communicate motion to another

arises from the roughness of the surfaces, the irregular projec-

tions of one indenting themselves between those of the other, or

pressing against similar projections ;
and the contrivance of teeth

is merely a more complete development of this mode of action,

by giving to these projections a regular form and arrangement.
I shall proceed therefore to explain in this section all that relates

to the general action, arrangement, and construction of toothed

wheels ; leaving the exact form of the individual teeth to the

next section, and observing, that this arrangement corresponds to

the ordinary practical view of the subject ; for all that belongs
to the complete action or construction of a pair of toothed wheels

is always referred to a pair of corresponding rolling circles, which

are termed the pitch circles, or geometrical circles, or to plain

cylinders, cones, and hyperboloids, which may be called pitch

solids.

54. Geering is a general term applied to trains of toothed

wheels. Two toothed wheels are said to be in geer when they
have their teeth engaged together, and to be out of geer when

they are separated so as to be put out of action ; and generally

speaking, a driver and follower, whatever be the nature of their

connection, are said to be in geer when the connection is com-

pletely adjusted for action, and out of geer when the connection

is interrupted.
55. Toothed wheels with few teeth are termed pinions. This

phrase is merely to be considered as the diminutive of toothed

wheel
;
and there is no impropriety or ambiguity in calling a

pinion a toothed wheel, if more convenient.

56. The teeth of wheels may be either made in one piece with

the body or rim of the wheel, or they may be each made of a

separate piece and framed into the rim of the wheel.
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The first method is employed in cast-iron wheels of all sizes,

from the largest to the smallest ;
also for brass or other metal

wheels in smaller machinery, which are formed out of plain discs

by cutting out a series of equidistant notches round the circum-

ference, and thus leaving the teeth standing.

Figure 34 A and C, represents the form of the modern cast-

iron wheels, in which, for the sake of uniting lightness and stiff-

ness, a thin web or fin runs along the inner edge of the rim and

on each side of the arms, so that the transverse section of the arm

is a cross.

Fig. 34. Fig. 35.

This cruciform section was abandoned soon after the publi-
cation of the first edition of the present work and replaced by an

elliptical section (fig. 35).
In smaller wheels the arms are omitted, as at B, and the rim

of teeth united to the central boss by a thin continuous plate.

These wheels are plate wheels, and when arms are employed,
wheels are said to be crossed out ; but this phrase rather belongs
to clock-work. Wooden wheels in one piece with their teeth are

too weak to be trusted beyond the construction of models, or

wheel-work which transmits little pressure. The wheels of Dutch
clocks of the coarser kind are constructed in this manner.

57. Figure 36 exemplifies the construction of mill-work, and

larger machinery, previous to the introduction of cast-iron wheels

by Messrs. Smeaton and Kennie, at the latter end of the last
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century.* The wheel A is framed of wood, not like carriage-
wheels with radial spokes, but with two pair of parallel bars set

at right angles, so as to leave a square opening in the midst for

the reception of the shaft, which is also of wood, and square, and

the opening being purposely left larger than the section of the

shaft, the wheel is secured upon it by driving wedges in the

intermediate space. This frame carries the rim of the wheel,
which is made truly cylindrical on the outer surface, and annular

in front. Equidistant mortises are pierced through the rim in

number equal to those of the teeth or cogs, as they are called,

when made in separate pieces.

The cogs are made of well-seasoned hard wood, such as moun-

tain-beech, hornbeam, or hickory ; the grain is laid in the

Fig. 37. direction of the length, which, being the radial direc-

tion, gives them the greatest transverse strength. A
cog consists of a head a, and a shank b, of which the

head is the acting part or actual tooth which projects

beyond the rim, and the shank or tenon is made to fit

its mortise exceedingly tight, and is left long enough
to project on the inside of the rim. When the cog is driven into

its mortise up to its shoulders a pin c is inserted in a hole bored

close under the rim of the wheel, by which it is secured in its

place.

58. This construction of a toothed wheel has been partly
imitated in modern mill-work, for it is found that if in a pair of

wheels the teeth of one be cast-iron, and in the other of wood,
that the pair work together with much less vibration and conse-

quent noise, and that the teeth abrade each other less than if both

wheels of the pair had iron teeth. Hence in the best engines one

wheel of every large sized pair has wooden cogs fitted to it

exactly in the manner just described ; only that instead of em-

ploying a wooden-framed wheel to receive them, a cast-iron

wheel with mortises in its circumference is employed. Such a

wheel is termed a mortise wheel.

Wheels of the kind hitherto described, in which the teeth are

placed radially on the circumference, whether the teeth be in one

piece with the wheel, or separate, are termed spur-wheels ;
and

when the term pinion is applied to a wheel its teeth are usually
called leaves.

* Mr. Smeaton was the first who began to use cast-iron in mill-work at the Carron

Ironworks, in 1769. It was first employed for the large axes of water-wheels, and

soon afterwards for large cog-wheels ;
but the complete introduction of it is due to

Mr. Rennie. Vide Farey on the Steam Engine, p. 443.



DIVISION A. BY ROLLING CONTACT. 47

59. The pinions in large wooden machinery were commonly
formed by inserting the extremities of wooden cylinders into

equidistant holes, in two parallel discs attached to the axis or

shaft,* as at B (fig. 36), thus forming a kind of cage, which is

termed a lantern, trundle, or wallower ; the cylindrical teeth being
named its staves, spindles, or rounds. This construction was very

strong, and the circular section of its teeth or staves gave it the

advantage of a very smooth motion when the lantern was driven,

as will be shown in its proper place. In Dutch clock-work this

plan is imitated on a small scale, and small wire used for the staves.

60. A similar system to this is of great an- Fig. 38.

tiquity, for in early machinery the toothed

wheels were often cut out of thin metal plates,

fig. 38
;
and it would be obviously impossible

to make a pair of such thin wheels work

together ;
for the smallest deviation of one

of the wheels from the plane of rotation of the

pair, would cause the teeth to lose hold of each

other sideways. For this reason one of the

wheels of a pair was always made either in

the lantern form as just described, or with pins
inserted at one end only into a disc, as at A,
or else the teeth of one of the wheels were cut

out of a hoop, as at C, forming what is termed

a crown wheel, or contrate wheel.

In this figure it is evident that the thin

wheel B would retain hold of the pins of A,
or of the teeth of C, notwithstanding a little deviation from the

plane of rotation, or a little end-play in the axis.

61. Annular wheels have their teeth cut Fig. 39.

on the inside edge of an annulus, so that the

pinion which works with them shall lie within

the pitch circle. Hence the two axes revolve

in the same direction. The arms of an annu-

lar wheel necessarily lie behind the annulus,

in order to make room for the pinion, and the

latter must be fixed at the extremity of its

axis, otherwise this will stop the wheel by

passing between the arms. Annular wheels are more difficult to

execute than common spur-wheels, but it will be shown that the

* Axis is the general and scientific word, shaft the millwright's general term, and

spindle his term for smaller shafts ;
axle is the wheelwright's word, and arbor the

watchmaker's.
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action of their teeth is smoother. A pin-wheel like A, fig. 38,

may be employed as an annular wheel, and is much easier to

construct.

62. When the path of one of the pieces is rectilinear, or, in

other words, if it be a sliding piece, then the teeth are cut on

the edge of a bar attached to this piece,

so that the teeth may work with those

of the wheel or pinion, which is to drive

or follow it, as in this figure, where the

bar ab is supposed to be confined by

proper guides, so as to move only in the direction of its length,
and the pinion c to geer with it either as a driver or a follower.

Such a toothed bar is termed a rack. The teeth admit of all

the different forms and arrangements of which the teeth of wheels

in general are susceptible ; the rack being merely a toothed wheel

whose radius is infinite. Similarly, an annular wheel may be

considered as a toothed wheel whose radius is negative.
63. If the space through which the bar moves is less than the

circumference of the wheel, the latter may assume the form of a

F]g- 41 -

sector, as in this figure.

64. All these examples belong to the first

case of position in the axes, that is, when they
are parallel ;

but the second case, in which

their directions meet, presents itself also very

early in the history of mechanism.

A water-wheel, for example, has its axis necessarily horizontal,

and near the surface of the water. The axis of a mill-stone, on

the other hand, is vertical, and it is convenient to place the latter

in an upper floor of the building. This is the disposition of the

water-mill of Vitruvius, and is in fact universal.

But the exact method of deriving the form of the toothed

wheels from a pair of rolling cones, was not introduced until the

middle of the last century, when its mathematical principles were

completely laid down by Camus, in 1766.*

* Camus, Cours de Mathematique, Paris, 1766. The part relating to toothed

wheels has been printed separately in England, and is well known. The principle of

rolling cones was first published in England by Imison. In his treatise of the Me-
chanical Powers, 1787, he uses the term bevel geer, and speaks of such wheels as well

known. Schottus, however, or rather his 'Amicus,' in Technica Curiosa, 1664, p.

621, describes toothed wheels of various kinds, and amongst them Conica convexa

Rota, when the teeth are arranged on the surface of a truncated cone, and conica

concava when on the interior superficies, and at p. 644 employs them to communicate
motion between axes or shafts at any angle used to convey the motion of a clock to

dial work in the tower above.

He also mentions annular wheels under the name Cylindrica concava Rota, and
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Previously to this it was thought sufficient to dispose the teeth

of the wheels, as in this figure, upon the face of one of the wheels

as A, so as to catch those of an ordinary spur-wheel B with teeth

on the circumference ;
or else to place the teeth of both wheels

on the face, as in those of A and C. Sometimes the teeth of both

wheels were placed on the circumference, as in the ordinary spur-
wheels ;

with this difference, that the teeth require to be much

rig. 42.
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longer, to enable them to lay hold of each other in this relative

position. For the forms of the individual teeth no certain prin-

ciples were followed, and for the arrangements in question the

only principle appears to have been to place the teeth so that on

passing the line or rather plane of centers,* the teeth should

present themselves in the same relative position as if they be-

longed to a pair of wheels with parallel axes.

A similar principle is, indeed, clearly stated by De la Hire, in

the extract which follows the next paragraph.
65. When the axes intersected each other at right angles, and

one of them revolved much quicker than the other, a cylindrical

lantern was universally given to the latter, and the teeth of the

former placed on its face, as in fig. 43, at A and B. This

form and arrangement is found in mills of all kinds, from the

earliest known printed figures to the wooden mill-work of the last

century.
The wheel B is termed a face wheel ;

it generally revolved in

a vertical plane. This figure is copied from one in De la Hire's
'

Mechanics,' f in a chapter where he proposes to show how the

gives the name Annularis Rota or Annulus Rotatilis to a revolving toothed ring
' which

has no solid connection with an axis/ and must consequently be guided at the circum-

ference by rollers or fixed studs.

* Vide note, p. 30.

t De la Hire's Treatise on Mechanics, Par. 1695. Prop. Ixvi. This was early
translated into English, in part, by Mandey, in his Michanical Powers, 1709, p. 304.
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direction of motion may be changed by toothed wheels ; and after

giving the cylindrical lantern A for the case of axes at right

angles, he proceeds to axes inclined at any other angle, thus :

' If a lantern C be constructed having staves inclined to the axis

at any given angle, then will the horizontal motion of the power
be changed into a motion inclined to it at any angle we please,

Fig. 43.

provided only that the staves of this lantern C must be so arranged
that they come successively into the horizontal position at the

moment of meeting the teeth of the wheel B, in order that they

may apply themselves to the teeth in the same manner as if this

lantern was like the other B. These changes of direction in

motions may be of great use in machinery.'
It is interesting to remark, that upon the authority of this

conical lantern the invention of bevil geer has been attributed to

De la Hire, when it is plain that the principle of rolling cones,

which is essential to them, has nothing whatever to do with this

arrangement ; which is solely founded upon the notion of present-

ing the teeth to each other at the plane of centers, in the same

relative position as in spur or face-wheels. The apex of the cone

is turned in the wrong direction for bevil-wheels, and the cylin-

drical lantern is employed for the axes at right angles.
66. But the necessity of changing the direction of motion

through other angles than right angles had arisen long before the

time of De la Hire ; suggested, as I believe, by the use of the

Archimedean screw for raising water, which appears to have been

a great favourite with the early mechanists, and which from its

nature must be placed in an inclined direction. Fig. 44, for

example, is part of a complex piece of mill-work extracted from

one of the early printed collections of machinery.* The object of

the mechanism in question is to enable a water-wheel to give

* Le Diverse et Artificiose Machine del Capitano A. Rametti. Par. 1580, ch. xlriii.
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motion to a series of three Archimedean screws placed one

above the other. A face-wheel, carried by the axis of the

water-wheel, geers with a trundle Fig. 44.

(Art. 56) at the lower extremity of a

vertical axis, which extends to the top
of the building, and of which A is a

portion.

Three conical wheels, similar to B,
are placed one opposite to the lower

end of each screw, as C, which

it turns by geering with a square-
staved trundle, as shown in the

figure.

These conical wheels are derived from the common spur-wheel,

by the same principle of placing the teeth so that they shall, in

crossing the line of centers, lie in the same relative position as if

the axis of the wheel had been parallel to that of the trundle ;

which principle it was, in this case, oddly enough, thought neces-

sary to extend also to the spokes or arms of the wheel.

67. The common crown-wheel and pinion, fig. 45, which is used

in clock and watch-work, in cases where axes meet at right angles,
is another example of the same principle. The axis A, which

carries the pinion, is at right angles f\g. 45.

to B, which carries the crown-

wheel.

The teeth are cut on the edge of

a hoop, and the action of the pinion

upon them is nearly the same as if

it worked with a rack ; the combi-

nation being made on the presump-
tion, that the curvature of that

portion of the hoop whose teeth are

engaged is so small, that it may be

neglected ;
in which case, the hoop

coincides with a rack which is tangent to it, along its line of

intersection with the plane of centers, and which travels in a

direction perpendicular to that plane.
The crown-wheel is often termed a contrate wheel.

68. To form a pair of bevil-wheels, a pair of conical frusta

having been described (by Art. 41) to suit the required angular

positions of the axes and the given velocity ratio, the smooth

surface of these cones must be exchanged for a regular series of

equidistant teeth, projecting nearly as much beyond the surface

E 2
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as the intermediate hollows lie below it, and directed to the apex
of the cone, so that a line passing through this apex shall, if

Fig. 46. brought into contact with any
part of the side of a tooth,

touch it along its whole length.
Thus the contact of one tooth

with another will also take

place along the line
; whereas

in face geering the contact of
the teeth is between two con-

vex surfaces at a point only.
69. It may happen that the

common apex of the two cones

shall lie so that one of them becomes a plane surface, as in fig. 47 ;

in which case the teeth become radial. Also one of the cones

may even be hollow, as in fig. 48.

Fig. 48.

Fig. 47.

For every given position of the axes, however, we have a choice

of two positions for the wheel which belongs to that shaft whose

direction is carried past the other. In these last figures this

wheel is placed below, but if it had been above, a different and

smaller pair of cones would have been obtained for the given

Fig. 49. velocity ratio, in which these peculiarities of

form would have been avoided.

Fig. 49 shows a mode of disposing bevil-wheels

when two shafts meet in direction.

Fig. 50 is another mode of constructing the

same combination which admits of a steady sup-

port for the shafts at their point of intersection.

70. When the axes are inclined to each other without meeting
in direction, an intermediate double bevil-wheel may be employed,

arranged as in Art. 51, or else frusta are employed, which are

derived from the tangent cones of a pair of hyperboloids. (Arts.

42-50.)
The direction of their teeth or flutes must be inclined to the
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base of the frustum, to enable them to come into contact ; and

the oblique position thus given to teeth has procured for wheels

of this kind the name of Skew Bevils. If the teeth be cut in the

Fig. 50. Fig. 51.

direction of the generating line of each hyperboloid, they will

obviously meet, since this line is the line of contact of the two
surfaces. The mode of projecting this line of contact has been

already shown.

But this question was disposed of by the older mechanists upon
the principle of face-wheel geering, the teeth being merely ar-

ranged in positions that caused them to pass at the instant of

contact, in the same relative positions as if the axes had been

parallel, or meeting in direction.

71. It has been already shown that there is no rubbing
friction when the point of contact of two edges is on the line of

centers. Of this Dr. Hooke was certainly aware, as appears
from his remarkable contrivance to get rid of the friction of

wheel-work. This, to use his own words,
' I called the perfection

of wheel-work ; an invention which I made and produced before

the Royal Society in 1666.'
* It is, in short, first, to make a piece of wheel-work so that

both the wheel and pinion, though of never so small a size, shall

have as great a number of teeth as shall be desired, and yet
neither weaken the work, nor make the teeth so small as not to

be practicable by any ordinary workman. Next, that the motion

shall be so equally communicated from the wheel to the pinion,

that the work being well made, there can be no inequality of

force or motion communicated. Thirdly, that the point of touch-

ing and bearing shall be always in the line that joins the two

centers together. Fourthly, that it shall have no manner of

rubbing, nor be more difficult to be made than the common way
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of wheel-work, save only that workmen have not been accustomed

to make it.'*

This fourth condition of no rubbing is, however, as we have

seen (Art. 33), necessarily included in the third.

First, then, if there be a certain large number of teeth required
to be made in a small wheel, then must the wheel and pinion
consist of several plates or wheels lying one beside the other, as

in this figure A, where eight plates of equal thickness and size,

are each cut into a wheel of twenty-five teeth, as shown in front

Fig. 52.

elevation at B
;
the wheels are fitted close together upon one

arbor de, and fixed in such order that the teeth of the successive

plates follow each other with such steps that the last tooth of

each group may within one step answer to the first tooth of the

next group. Thus, reckoning from a to b, the teeth follow each

other in equidistant steps of such a magnitude that b is distant

one such step from c, the first tooth of the next group.
The pinion being constructed upon a similar principle, and of

the same number of plates, it is clear that the inequalities in the

touching, bearing, or rubbing of such wheel-work, would be no

more than what would be between the two next teeth of one of

the sets, that is, about the same as in a wheel of 200 teeth, and

yet the teeth are as large as those of a wheel of 25 teeth.

Secondly, if it be desired that the wheel and pinion should

have infinite teeth, all the ends of the teeth must, by a diagonal

slope, be filed off and reduced to a straight or rather a spiral

edge, as in (7, which may indeed be best made by one plate of a

* Vide Cutlerian Lectures, by E. Hooke, No. 2, entitled Animadversions on the first

part of the Machina Ccelestw, 1674, p. 70.
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convenient thickness, which thickness must be more or less

according to the bigness of the sloped tooth. And this is to be

always observed in the cutting thereof, that the end of one slope

tooth on the one side be full as forward as the beginning of the

next tooth on the other : that is, that the end b of one tooth on

the right side be full as low as c, the beginning of the next tooth

on the left side.

Thus far I have employed nearly the words of Hooke, who has,

however, said nothing respecting the form of the teeth, which

must evidently, in the second system, be so shaped as to begin
and end contact upon the very line of centers ; the mode of

effecting which will appear in Chapter V.* The contact of the

teeth will be at every instant at a single point, which point will,

as the wheel revolves, travel from one side of the wheel to the

other; afresh contact always beginning on the first side, just before

the last -contact has quitted the other side. And as the point of

contact is always on the line, or rather plane, of centers, it is

strictly rolling, and there will be no sliding or friction between

the teeth.

Hooke's system has been several times re-invented, for example,

by Mr. White, of Manchester, who patented it before 1808 ;f

and endeavoured, in vain, to introduce it into the machinery of

that place. The motion of such wheel-work is remarkably smooth

and free from vibratory action, but it has the defect of introducing
an endlong pressure upon the axes, occasioned by the obliquity
of the surfaces of contact to the planes of rotation. But there

are many cases in which this property, when understood and

provided for, would not be injurious. The first form of Hooke's

geering, in which it appears as separate concentric wheels, as at

A, has been employed successfully in cases where smooth action

is necessary ;| and is free from the oblique pressure, but loses the

advantage of the perfect rolling action.

ON PITCH.

72. Let N and n be the numbers of teeth of the driver and

follower respectively, then as the teeth are equally spaced upon

* I have there shown that the simplest mode of effecting this object is to make the

flanks of the teeth radial, and the portion of tooth that lies beyond the pitch line a

complete semicircle whose center is upon that line, as in fig. 52 B.

t Vide White's Century of Inventions, 1822; Memoirs of Lit. and Phtt. Soc. of
Manchester; also Sheldrake, Theory of Inclined Plane wheels, 1811. It has besides

been reproduced as new in America, and in London, under the name of a Helix Lever.

I have seen it in a planing engine by Mr. Collier, of Manchester.
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the circumference of the two wheels, these numbers are propor-
tional to the circumferences and radii of their respective wheels ;

hence

= - = J? = L (Vide Art. 39.)
n r p L

73. The pitch circle of a toothed wheel is the circle whose

diameter is equal to that of a cylinder, the rolling action of which

would be equivalent to that of the toothed wheel (Art. 50) ;

therefore in the above equation R and r are the radii of the pitch
circles of the driver and follower respectively ; these rolling

cylinders being the limit to which the toothed wheels approach,
as their teeth are indefinitely diminished in size and increased in

number, the distance of the axes remaining the same.

This circle is variously termed the pitch circle of the wheel, the

primitive circle, or the geometrical circle. I prefer the term

pitch, as less liable to ambiguity, and as, I believe, the one most

usually employed. In conical wheels the pitch circle will be the

base of the frustum.

74. Let the circumference of the pitch circle be divided into

equal parts, in number the same as that of the teeth to be given
to the wheel ;

the length of one of these parts is termed the pitch

of the teeth, or of the wheel, and evidently contains within itself

the exact distance occupied by one complete tooth and space.

The word space is employed here in its technical meaning, as

denoting the hollow or gap that separates each tooth from the

neighbouring one.

Let C be the pitch, D the diameter of the pitch circle, both

expressed in inches and parts ;
and let N be the number of teeth,

then NC = irD\* from which expression if any two of the quan-
tities C, D, N be given, the third may be found. The arithme-

tical rules which are immediately deducible from this equation
are in constant requisition amongst millwrights.

75. In English practice it has been found convenient to employ

only a given number of standard values for the pitch, instead of

using an indefinite number. The values most commonly chosen

are 1 in., 1 in., 1 in., 1 in., 2 in., 2^ in., 3 in. And it very

rarely happens that any intermediate values are necessary. Below
inch pitch the values , f , ^, f , and f ,

are perhaps sufficient.

These remarks apply to cast-iron wheels principally, as the

great utility of this system of definite values for the pitch resides

99
* Where 7r = 3'1415. The millwrights commonly use for *-.
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in its limiting the number of founders' patterns. Cast-iron teeth

of less than in. pitch are seldom employed ; and, for machinery
of a less size than this, the wheels would be cut out of discs of

metal in a cutting engine. Nevertheless the same system of

sizes might be introduced with advantage into wheels of this latter

kind.

76. Since the values of C are few and definite, the use of the

expression NC=TrD may be facilitated by calculating beforehand

C1 TT

the values of - and that belong to these cases.
7T C

s~1

J?orN= ^.D, and D = .N; and the following table fur-
C/ 7T

nishes the factor corresponding to each of the established values

of the pitch, by the use of which the number of teeth may be

readily: found for any given diameter, or vice versa.

Pitch in

inches
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EXAMPLES.

Given, a wheel of 42 teeth, 2 inch pitch, to find the diameter

of the pitch circle. Here the factor corresponding to the pitch is

6366, which multiplied by 42 gives 26*7 inches for the diameter

required.

Given, a wheel of four feet diameter, 2 pitch, to find the

number of teeth; the factor is 1*257, which multiplied by 48, the

diameter in inches, gives 60 for the number of teeth.

Given, a wheel of 30^ inches diameter, and 96 teeth, to find

T) ^(Vi (^ (^
the pitch. Here l=-^L-= -317= -; which value of - corre-N 96 7T 7T

spends in the table to inch pitch.

Questions of this kind are continually occurring in the exe-

cution of machinery ;
and simple as the calculation may appear

to a mathematician, they require more multiplication and division

than is always at the command of a workman. By way of sim-

plifying the expression of the relations between the size of the

teeth, their number, and the diameter of the pitch circle, a diffe-

rent mode of sizing the teeth in small machinery has been adopted
in Manchester, which may be thus explained.

77. Suppose the diameter of the pitch circle to be divided into

as many equal parts as the wheel has teeth
; and let one of these

parts be taken for a modulus instead of the pitch hitherto em-

ployed ; and accordingly, let the few necessary values be assigned
to it in simple fractions of the inch. Call this new modulus the

diametral pitch of a wheel, to distinguish it from the common

pitch, which may be named the circular pitch, and let M be the

diametral pitch ;

-=-- = My and, as M is a simple fraction of the inch, let M=
.*. N m y

.. mD= N, in which .ZVand m are always whole numbers.

The values of m, commonly employed, are 20, 16, 14, 12, 10,

0, 8, 7, 6, 5, 4, 3
; and all wheels being made to correspond to

one of the classes indicated by these numbers, the diameter or

number of teeth of any required wheel is ascertained with much
less calculation than in the common system of circular pitch.

This table* shows the value of the circular pitch C, corre-

sponding to the selected values of m already given.

* This table originated in the -well-known factory of Sharp, Roberts, and Co. at

Manchester. It is an excellent example of the perfect methods employed in the

smaller class of mill-work, or cast-iron mechanism. In this system, a wheel in which

m = 10 would be called a ten-pitch wheel, and so on.
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CHAPTER III.

ELEMENTARY COMBINATIONS.

DIVISION A. COMMUNICATION OF MOTION BY ROLLING CONTACT.

DIRECTIONAL RELATION CONSTANT.
CLASS B. ' VELOCITY RATIO VARYING.

78. THE elementary combinations by rolling contact, which

are the subject of the preceding chapters, include those which are

employed in all the largest and most important machines ;
for the

parts of heavy machinery are always made to move with uniform

velocity, if possible ; and consequently with a constant velocity

ratio and directional relation to each other. In the combinations

by rolling contact which are to be considered in this chapter,
the velocity ratio varies and the directional relation is constant.

79. It has been already shown, in Art. 35, that when a pair

of curves revolving in the same plane about parallel axes in con-

tact are of such a form as to roll together, the point of contact

remains in the line of centers. The two radii of contact coincide

therefore with this line, and the tangents of the angles made by
the common tangent of the curves at the point of contact with

their radii respectively are the same.

80. Ex. 1. In the logarithmic spiral the tangent makes a

constant angle with the radius vector. Let two equal logarithmic

spirals be placed in reverse positions, and made to turn round

their respective poles as centers of motion, and let these centers

be fixed at any distance that will permit the curves to be in con-

tact. Then in every position of contact the common tangent will

make the same angle with the radius vector of one curve that it

makes on the opposite side with the radius vector of the other.

The two radii of contact will therefore be in one line, and coincide

with the line of centers, and hence, equal logarithmic spirals are

rolling curves.

The logarithmic spiral does not return to itself, and is therefore

unsuitable as a foundation for wheels which revolve continuously.
But it may be employed for the extremities of levers which move
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Fig. 53.

each other by actual contact through angles of moderate extent.

It is readily laid down by points in the manner shown in the

fig. 53, which is due to Mr. Nicholson.

The curve is constructed about

its center C by taking radii Ci, Cu,
Cm ...... at equal angles and with

lengths in geometrical proportion.

By Nicholson's method draw two
radii AC, BC, and beginning at

the outer extremity I of CA draAv

1 2, perpendicular to CB, then from

2 draw 2, 3, perpendicular to CA,
and so on continually in the order of

the figures 3, 44, 5 &c. We
thus obtain a series of radial lengths
Ci C2 C3 &c. in geometrical pro-

portion for the lines so drawn from a

series ofright angled triangles with a

C1

1 ("'2 C"^
common angle at (7, .*. 7^= 7=r~

==
7r^>

an<^ so on * Transferring,G 2 G 3 G4
therefore, the successive radial lengths, Ci, C2, (73 &c ...... by
circular arcs, struck from the common centre C to the radii

Ci C2 (73 &c., we obtain a series of points through which

the curve may be drawn, and is, as above shown, self-rolling.

Ex. 2. Let aPm, APM be two similar and equal ellipses of

Fig. 54.
which s, h

; S9 H are the foci,

and let them be placed in contact

at any point P situated at equal
distances aP, AP from the ex-

tremities of their major axes, and

draw tPT the common tangent
at P.

Now by the property of the

ellipse the tangent makes equal

angles with the radii sP, Ph ;

and because aP=AP, and the

ellipses are equal, the tangent
makes the same angle with the

radii SP, PH; whence tPs
= TPH, and sPH is a right line.

Also sP=SP\ .-. sP+PH
=SP+PH=AM is a constant

distance, whatever be the distance of the point of contact P
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from the extremity of the axes major. If, therefore, the foci s,

H be made centers of motion, and their distance equal to the

major axes of the ellipses, the curves will roll together.
The logarithmic spiral and ellipse round the focus appear to

be the only two rolling curves that admit of simple independent
demonstrations of their possessing this property.

81. Supposing fig. 54 to represent any pair of rolling curves,

and let r=s Pbe the distance of their point of contact Pfrom
the center of rotation s of the first curve, and 6= asP the angle
made by r with a fixed radius s a, and let r^PH.O^PHA, be

the corresponding quantities in the second curve, and c the dis-

tance sH of the centers ; then since r and r
t
are in the same

straight line,

r + r
t
=

c, .

*
. dr= dr

t ;

also the lengths of those parts of the curves aP,AP, that have

been in contact are equal ;

and as dr dr
t ,

*. rdd= r
/
d8=cr . dd,.

Again, Jy2 is the tangent of the angle the first curve makes with

r, and ^ '
is the tangent of the angle the second curve makes

with r
/}
and these angles are the same ;

...
rd?= -r&Qj, whence rdff-rde,, as before.
dr dr,

Hence, if one curve be given by an equation between r and 0,

the other is determined by the equations

i a rrde
r
f
= cr, and V ==/ .

<J c r

Ex. Let the first curve be the logarithmic spiral (Art. 80),

and let < be the constant angle between the radius vector and

the curve, .*. =
<f>log- is its equation;

Now when Q, vanishes, r= c b; .-.0= C <logc b;

.-. &,
=

<}> log
~ is the equation to the second curve,

is the same logarithmic spiral in the reverse position.
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82. Let there be two logarithmic spirals AMP AM 1
P

1 equal,
and placed inversely and touching at any point A of the line CC
which joins their poles. Let AMAM

l
be two small elements

of the curves, and by the definition of this spiral the angles CMA,
M

l
AC

l
are equal, .-. the small triangles ANM, AN1

M
1
are also

equal and NM=AN^ .
f CM+M} C, = CA + A

(7,
= CCV Hence

the points M and M^ will be brought into coincidence with the

line of centers at N\ without sliding.

Fig. 55.

Fig. 56.

These curves may be employed by taking two equal regular

polygons (e*g* the squares in fig. 56), and replacing each rectilinear

side by two arcs of the logarithmic spiral. The compound figures

that result from this process will roll together, and may serve as

pitch lines for teeth. The ratio of the angular velocities is from

A/ 2 to , for the maximum and minimum radii are the diagonal
-v/2

AD and the side A C respectively of a right angled triangle with

two equal sides.

The general equation of the logarithmic spiral is r=aem\\\
and we have to find 'the value of the constants a and m that will

give an arc of the spiral passing through the points A and B.

Now the parameter a is the radius vector which corresponds to

= and is therefore equal to AB the half-side ofthe given square.

When 0=^,r=aA/2 and consequently (1) ^2=e>? whence

log. v/2 =m-and rw = ^=0,44128. This value will give

the angle M^AC^ made by the tangent of the spiral with its

radius vector, =23 49 1 *

83. The general equation of article 81 is given by Euler, in the

fifth volume of the 'Acta Petropolitana,' but it is not easy to obtain

*
(Weisbach ap Laboulayc Traits de Cinematiqite, 2nd Ed. p. 180, 1861.)
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many convenient results in this manner. The properties of one

class of rolling curves have been treated in the most complete
and able manner, in a paper in the Cambridge

'

Philosophical

Transactions,' by the late Rev. H. Holditch, to which I must

refer those of my readers who are desirous of following out the

subject.

This paper, however, led its author to a method of setting out

rolling curves, which can be practically employed by persons who
are not able to follow the algebraic reasoning which conducted

him to it. I was indebted to his kindness for a simpler essay,

containing the proofs of this method, which I inserted at length
in the former edition of the present work. But I have thought
it better now to place it in the Appendix, and merely to explain
in the text, his rules for setting out the curves, premising them by
the following remarks of my own.

84. We have seen that a pair of equal ellipses revolving in

contact about axes, whose distance equals the major axis of the

ellipse employed, will furnish a pair of rolling curves which, if

their circumferences are connected by teeth, wrapping bands, or

other suitable devices, will enable each revolution of the driving

ellipse, supposed to rotate uniformly, to communicate to the

following ellipse a complete revolution which will have one mini-

mum velocity and one maximum velocity. For in every position

of the acting curves (fig. 54), the angular velocities are in the

inverse ratio of the radii of contact which are always coin-,

cident with the line of centers. But at the maximum and mini-

mum velocity positions, the major axes of the ellipses coincide

with the line of centers and the radii of contact are the major and

minor apsidal distances HA and SA with sa and ha respectively.

But it may be required that there should be two, three, or more

maximum velocities, alternating of course with as many minimum
velocities in each revolution of the two axes, and it will be shown

below that a pair of equal rolling curves may be easily derived

from a pair of ellipses or indeed any pair of rolling curves which

will satisfy these conditions.

If a pair of rolling curves be given which are contained in

angles 6, </>, respectively, other pairs contained in angles md, m<f>,

can be constructed by employing the same elementary radii, but

contracting or expanding the small angular distances of these

radii in the ratio of I to m.

For example, we may take the case of a pair of equal ellipses

rolling about their foci, in the same manner as in
fig. 54.

Let A, B fig. 57 be two fixed points or axes, each corresponding
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to one of the foci of a pair of equal regular ellipses placed in con-

tact. In the figure the lower halves only of these ellipses are

shown, and their circumferences delineated by dotted lines.

The radii Ai, An, Am Avi, are disposed at six equal

angular distances below the axis vi, O, and consequently meet

the circumference at unequal distances Oi, I II, II in, &c. In

the second ellipse the radii are not at equal angular distances

about the center, but are so spaced that the points I. I, n. u,
in. in, vi. vi, in the two circumferences shall come together
in the motion. But by the self-rolling property of the ellipse

these points will meet on the line of centers AB, and thus the sum
of every pair of contact radii A O+ OB, Ai + iB, A iv -f ivB
&c., will be the same and they will have a common tangent at O.

Fig. 57.

Now let us construct a curve out of the same group of radii

in which the angles made by each with the line of centers shall

be diminished by half, thus let Ai=Ai, bisect the angle
OA i, and Ai-=A\\ bisect the angle OAn and so on, therefore

lastly the angle OAvi, which is a semicircle, is bisected by the

line Am.
From A strike circular arcs from the extremities of the elliptic

radii to meet the respective bisecting lines in points i, 2, 3 6,

through these points draw the curve, as shown, which will occupy
F
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the quarter OA 6 of a circle, and the other three-quarters must be

filled by similar curves in alternate reversion, thus completing a

bilobe O6O.6, O.

These two new curves are shown in action on the upper side of

the line of centers, where A O, I, 2, 3, ... 6 and BO, 1, 2, 3, ... 6,

are in working contact.

By the property of the ellipse the sum of any corresponding
radii e.g. Ai -\-B\-AB. But the length of the contracted

radii remain the same, .-.we have A\-\-\B=AB, and similarly

for every other pair. As also all the angles of the elliptic radii

are contracted in the same given proportion, every pair of opposite
radii will come into contact upon the line of centers simulta-

neously, and therefore the contact of the contracted curves will

be rolling.

In like manner by dividing the entire circle into three times

the number of radii of the ellipse we obtain a pair of equal self-

rolling curves with three lobes.

85. The curves produced by this method will roll in pairs ;
bilobe

with bilobe, trilobe with trilobe, and so on. But they will not

roll unless the number of lobes is the same in each pair, for it is

plain that to enable the respective radii to come into line in

passing the line of centers the circumferences of the two semi-

lobes in contact must be equal, as the diagram shows.

Mr. Holditch's researches* conducted him to a simple con-

struction which enables a series of multilobe curves to be laid

down from a given pair of rolling ellipses, from which any two

being selected, will roll together, whatever may be the respective
numbers of lobes. Fig. 58 shows the geometrical construction,

and fig. 59 a set composed of the unilobe, which is the ellipse

already described, a bilobe and a trilobe.

His analysis is tedious and obscure, and leads to instructions

which are not very plainly given. Referring to the Appendix
for this investigation, I will proceed to state his method, which in

itself is simple and practical.
86. In

fig. 58 let P be the center of the given ellipse which is to

be the foundation of the system of multilobes. Draw an indefinite

line through P extending both ways, on which set off the foci R,
S and length AA l of the major axis. From these data the

semiellipse must be constructed, and with one of the foci R and a

sufficient radius as RC1 describe the dotted semicircle, which

must be divided into equal angles by radii, as shown. In this

diagram I have divided the semicircle into six angles only, but

* Vide Cam. Phil. Transactions, vol. vii. 1838.
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for the accurate laying down of the curves a more numerous sub-

division should be employed.
With center P and radius the semifocal distance describe a

circle to which draw an indefinite tangent td, parallel to the major

axis, and from A with center P and radius PA= semimajor axis

draw an arc intersecting the tangent td in a. Upon td with con-

stant distance ta set off the points b, c, d ... as required, and join
these points to P with lines Pa, Pb, PC, &c., which are the

secants of a series of right-angled triangles having a constant

radius Pt the semifocal distance of the primitive ellipse.

From the center P set off on the line PD distances PA= Pa,
PB= Pb, PC=Pc, and so on, as required,

Fig. 58.

These distances are the semimajor axes of a series of concentric

ellipses with common foci R and S. Of these ellipses the smallest

AA belongs to the curve of one lobe, the next BB' to the bilobal

curve, (7(7 to the trilobal, and so on to a curve of any number of

lobes. Any two curves of this set will roll together whatever be

the respective numbers of lobes.

The construction is shown in fig. 59. For a unilobe the
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ellipse is drawn by assuming a point R' for the axis of rotation,

and a circle described about R is divided by twelve equidistant

radii, the lengths of which are the same as in the one lobe ellipse

of the diagram fig. 58.

For a bilobal curve whose center is R' each semilobe is divided

as before into six equal angles, and the length of the radii R"B',

R"\, 72"2, &c., taken from the lines in fig. 58, which radiate

from the focus R to the ellipse B'B, and are to be set off in

order.

Similarly the trilobal curve in fig. 59 is divided into six primary

angles, each containing a semilobe as OR'" C, and the lengths
of the radii which subdivide the semilobes taken from the ellipse

which belongs to the trilobal curve.

87. To employ rolling curves in practice. In fig.
54 let the

upper curve be the driver, and let it revolve in the direction

from T to t. Then since the radius of contact sP increases by
this motion, and the corresponding radius PH decreases, the

edge of the driver will press against that of the follower, and so

communicate a motion to it of which the angular velocity ratio

Pff
will be ^. But when the point m, has reached M, the radii

S_t^

of contact in the driver will begin to diminish, and its edge to

retire from that of the follower, so that the communication of

motion will cease, unless maintained by some extraneous con-

trivance. For example, we may provide the retreating edge

60
with teeth, as in

fig. 60, which will engage
with similar teeth upon the corresponding edge
of the follower, and thus maintain the com-

munication of motion until the point a has

reached A, when the advancing side of the

driver will come into operation, and the teeth

be no longer necessary.
These teeth, however, necessarily destroy

the advantage of no friction, and another

practical difficulty is introduced. If the curves be not very

accurately executed, it may happen that the first pair of teeth

and spaces that ought to come together at M, m in each revolu-

tion, may not accurately meet, and that either the tooth may get
into the wrong space, or become jammed against another tooth,

by which the machinery may be broken.

88. To prevent this accident, a curved guide-plate n (fig. 61)

may be fixed to one of the wheels, and a pin p to the other.

The edge of this plate must be made of such a form that the
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pin p may be certain of engaging with it, even if the wheels are

not exactly in their proper relative position. When the pin has

fairly entered the fork of the plate, it will press

either on the right or left side, and so correct

the position, and guide the first pair of teeth

into contact. It is easy to see that the edge of

this plate should be the epicycloid that would

be described by JD,
if the lower plate were taken

as a fixed base, and the upper made to roll upon
it; but the outer edge of the plate must be

sloped away from the true form, to ensure the

entrance of the pin into the fork.

89. Another method is to carry the teeth all round the two

plates, which effectually prevents them from getting entangled
in the above manner, but at the Fig 62

same time entirely destroys the

rolling action. This method, how-

ever, is the one always adopted in

practice, as, for example, in the

Cometarium, and in the silk-mills,

and is an excellent method of ob-

taining a varying velocity ratio.

Fig. 62 represents a pair of such wheels that were employed by
Messrs Bacon and Donkin in a printing machine.

90. The forms of the teeth to be applied to these rolling curves

may be obtained by a slight extension of the general solution in

division B below. For calling the rolling curves pitch curves, it

can be shown for them, precisely in the same manner as it will be

there shown for pitch circles, that if any given circle or curve be

assumed as a describing curve, and if it be made to roll on the

inside of one of these pitch curves, and on the outside of the

corresponding portion of the other pitch curve, that the motion

communicated by the pressure and sliding contact of one of the

curved teeth so traced upon the other, will be exactly the same

as that effected by the rolling contact of the original pitch
curves.

91. The Cometarium is a machine which has two parallel

axes of motion carrying indices or clock-hands ; one of which

axes is the center of a circle, and the other the focus of an

ellipse, which represents the orbit of a comet. The two axes

must be connected by mechanism, so that when the first revolves

uniformly, the second shall revolve with an angular velocity that

will make it describe equal areas of its ellipse in equal times, and
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thus represent the motion of a comet round the sun* for which

purpose the machine is constructed. Now, according to what

is termed Seth Ward's hypothesis, if one radius vector HP of

an ellipse (fig. 54) revolve uniformly round the focus H, the

other SP will describe equal areas round the focus S. This,

although a very coarse approximation, is considered sufficient for

the mechanical representation of planetary or cometary motions

in this instrument, and is accordingly obtained by connecting the

two axes with a pair of rolling ellipses, as in fig. 54. For by
Art. 80, it appears that HPhP, and the angle SHP=shP.
The motion therefore of HP and hP with respect to the axis

major of their respective ellipses is the same, and the ratio of the

angular velocities of sP and hP round their foci s and h is the

same as those of SP and HP round S and H. Also, since the

corresponding radii sP, PH have been shown to coincide with

the fixed line of centers, it follows that the angular velocities of

SH and sa round the centers H and s are respectively the same
as those of HP and sP, that is, of HP and SP with respect to

the major axes of the ellipses.

92. This machine was first introduced by Dr. Desaguliers,f
and may be considered as the first attempt to employ rolling
curves in machinery. He did not, however, furnish his ellipses

with teeth, but connected them by means
of an endless band of catgut, which em-
braced the circumference of each ellipse,

lying in a groove in the circumference.

The addition of teeth was a subsequent
improvement.

93. When the required periodic varia-

tion in the ratio of angular velocity is

not very great, a pair of equal common
spur-wheels, with their centers of motion
a little excentric, may be substituted for

the equal ellipses revolving round their foci
; but in this method

the action of the teeth will become very irregular, unless the

excentricity be very small.

* In any ellipse APM (fig. 54), we have

Angular Telocity of SP round S _HP_ SP . HP CD*
Angular velocity of HP~ro\m^^~ SP SP*

= p
?

where CD is the conjugate diameter of the ellipse. If the ellipse be nearly a circle,CD may be supposed constant, in which case if the angular velocity of HP be uniform,

that of SP will vary as - which is the
'

lw of motion of ^ ^.^ vector Q &

planet. This is termed Seth Ward's hypothesis, but is a very coarse approximation.
t Vide Bees' Cyclopedia, art. Cometarium

; or Ferguson's Astronom.
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94. The difficulty of forming a pair of rolling curves is some-

times evaded in the manner represented by fig. 63. A is a

curved plate revolving round the center J9, and having its edge
cut into teeth. C, a pinion with teeth of the same pitch. The
center of this pinion is not fixed, but is carried by an arm or

frame, which revolves on a center D. So that as A revolves,

the frame rises and falls to enable the pinion to remain in geer
with the curved plate, notwithstanding the variation of its radius

of contact. To maintain the teeth at a proper distance for their

action, the wheel A has a plate attached to it which extends

beyond* it, and is furnished with a groove de, the central line of

which is at a constant normal distance from the pitch line of the

teeth equal to the pitch radius of the pinion. A pin or small

roller attached to the swinging frame D and concentric with

the pinion C rests in this groove. So that as the wheel A re-

volves, the groove and pin act together, and maintain the pitch

lines of the wheel and pinion in contact, and at the same time

prevent the teeth from getting entangled, or from escaping

altogether.
Let R be the radius of C, r the radius of contact of A, (/>

the

angle between H and r
;
then it can be easily shown

1 ang;. vel. of A R ,

that 9 = x cos
(j>.

ang. vel. 01 C r

But as the center of motion of C continually oscillates, and it is

generally necessary to communicate the rotation of A to a wheel

revolving on a fixed center of motion, a wheel E must be fixed

to the pinion (7, and this wheel must geer with a second wheel

D concentric to the center of the swing-frame. When A re-

volves, the rotation of C will be communicated through E to F,

but will also be compounded with the oscillation of the swing-

frame, in a manner that will be explained Fig. 64.

under the head of Aggregate Motions, in

the Second Part of this work.

95. If for the curved wheel A an ordi-

nary spur-wheel A, (fig. 64) moving on an

excentric center of motion B, be substi-

tuted, a simple link AC connecting the

center of the wheel A with that of its pinion

C, will maintain the proper pitching of the

teeth, in a more simple manner than the groove and pin. The

wheel A must be of course fixed to the extremity of its axis, to
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Fig. 65.

prevent the link from striking it in the course of its revolutions.*

This combination being wholly formed of spur-wheels, is one of

the simplest modes of effecting a varying angular velocity ratio.

96. On Eoemers wheel*. These wheels were proposed by the

celebrated astronomer Olaus Roemer,f to effect the varying motion

of planetary machines. Aa, Bb, fig. 65, are two parallel axes, of

which the lower one is provided with a cone C, fluted into regular

teeth like those of ordinary bevel-wheels, but occupying the sur-

face of a much thicker frustum of the

cone than usual. Opposite to this cone is

fixed upon the axis Aa a smooth frustum

D, whose apex d is in the reverse direc-

tion, and this latter cone is so formed as

just to clear the tops of the teeth of C.

Upon the surface of D are planted a

series of teeth or pins, so arranged as to

fall in succession between the teeth of

C. By placing these pins at different

distances from the apex d, we can ob-

tain any velocity ratio we please between the extremes ;
for

if R, r be the greatest and least radii of D, and fi
/
r
/
of (7; then

the angular velocity ratio of C to D will vary between the limits

of and
r
-\ the first being obtained by placing the pins close

r, R
/

to the large end of D, and the second by fixing them at the

small end; and when the pins are fixed in any intermediate

position, an intermediate velocity ratio will be obtained.

97. If the axes be not parallel, a varying ratio of angular

velocity may be obtained by the excentric crown-wheel.

This was invented by Huyghens, for the purpose of repre-

senting the motion of the planets in his

Planetarium.^
AS is an axis, to the extremity of

which is fixed a crown-wheel F, exactly
similar to that represented in

fig. 45, p.

51, only that its center of motion B is

excentric to its circumference. This

wheel is driven by a long cylindrical

pinion CD, whose axis meets that of AB
in direction, and is at right angles to it. Now since the radius

of contact of the pinion is constant, while the radius of contact

* From a machine by Mr. Holtzapfel. f Machines Approuvees, t. i.

I Descriptio Automati Planetarii.

Fig. 66.
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of the teeth of the hoop varies at different points of the cir-

cumference by virtue of its excentricity, it follows that the

angular velocity ratio of the axes will vary.
In Huyghen's machine the pinion is the driver, and is supposed

to revolve uniformly, but if the contrivance be adopted in other

machines, the wheel or pinion may be made the driver, according
to the law of velocity required. Also, by making the circum-

ference of the crown-wheel of any other curve than a circle,

different laws of velocity may be obtained at pleasure. The
action of the teeth however will be irregular, if the excentricity
of the hoop be too much increased.

98. Let H, fig. 67, be the center of motion of the crown-

wheel, C the center of its circumference,

CP=R, HP=r, MHP=6, and HC=E.
Pig. 67.

Then, since the axis of the pinion is directed to

H in the line of the excentric radius HP, the

perimetral velocity of the pinion will be commu- /

nicated to this radius in a direction perpendicular
to it

;
and if p be the radius of the pinion, we

have

angular velocity of pinion _ r

angular velocity of crown-wheel p

But R*= r2 + E* =F 2rE cos 0,

whence r- E cos + R. ^J \ -
R2

. sin2
6.

Now in planetary machines E is small with respect to R ;

.-. r=E cos 6 + R.

And since the pinion revolves uniformly, angular velocity 01

crown-wheel

oc - oc_ fjx. R^Ecos 9 nearly.
r R E cos 6

But if MP were the elliptic orbit of a planet, of which C the

center, Hthe focus, HP the radius vector, and AM(= 2R) the

axis major, we should have angular velocity of HP

6>)
2

oc 7^2^ cos nearly.

By making therefore the excentric distance CH of the crown-

heel equal to the distance of the foci of the elliptic orbit, the
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radius vector HP will revolve with an approximate representation

of planetary motion, when the driving pinion revolves uniformly.*

99. Huyghens also proposed another method of obtaining the

varying velocity ; namely, by varying the pitch of the teeth. If

in a pair of ordinary spur-wheels the pitch of one wheel be con-

stant as usual, but in the other it vary so that a given arc of the

circumference shall contain N teeth in one part, and an equal arc

n teeth in another part of the circumference, and so on ; then as

every tooth of the first wheel causes one tooth of the other wheel

to cross the line of centers, and the driver is supposed to move

uniformly, it follows that these equal arcs of the follower will

pass the line in times that will be directly as their numbers of

teeth N and M, and thus an unequal velocity will be obtained for

the follower. But it is evident that this contrivance is but a

make-shift, since teeth of unequal pitch will never work well toge-

ther, although, if the variations from the mean pitch be small,

they may be made to act so as to pass tooth for tooth across the

line, with a kind of hobbling motion.

Nevertheless, a pair of wheels very similar to these admit of

having their teeth formed upon correct geometrical principles ;

but the difficulty of executing them would be so much greater
than those of the rolling curves (Art. 90), that I do not think it

worth while to occupy space by developing their theory, which

may be easily deduced from the preceding pages.
100. It may happen that the variation of angular velocity in

the follower may consist in a sudden change from motion to rest

and vice versa ; that is, that the follower may be required to

move by short trips with intervals of complete rest between, or

with an intermittent motion.

This may readily be effected with

a pair of common spur-wheels, by

cutting away the teeth of the driver,

\ as in
fig. 68, where the follower B

0A
| B0 $ is an ordinary spur-wheel, and the

driver A is a wheel of the same

pitch whose teeth have been cut

away between a and b, c and d;

consequently, when A revolves it will cease to turn B while the

plain parts of its circumference are passing the line of centers,

* In the article Equation Mechanism, in Rees' Cyclopaedia, will be found a

minute and popular account of the various contrivances employed to represent plane-

tary motion. Those that I have introduced into the text are applicable to machinery
in general, and on this account, as well as from the celebrity of their authors, deserve

to be studied.
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but will turn it in the usual manner when the teeth come into

action. By properly proportioning the plain arcs to those which

contain the teeth, we can obtain any desired ratio of rest and

motion that can be included within one revolution of the driver.

101. These intermitted teeth are liable to the same objection

as those in Art. 87, namely, the chance of the first pair of teeth

in each row getting jammed toge-

ther, and a similar remedy may
be employed a guide-plate and

pin. Thus in fig. 69, the wheel A
will rfevolve in the direction of the

arrow without communicating any
motion to B, until the pin p enters

the fork of the guide-plate m, and

thus communicates to it a motion

which brings the teeth of B into geer with those of A ;
and A

will then continue to turn B until the plate m again reaches the

position of the figure, when B will rest until the pin p returns.

In this combination B must make a complete revolution (unless

there be more guide-plates than one), and if R, r be the respective
radii of driver and follower, it is easy to see that when A revolves

uniformly, the time of jS's rest is to the time of its motion as R
r : r. Also, several pins may be fixed to A if required, and

the intermitted teeth may be given to A instead of to B, or to

both.

102. As there is no contrivance in the above to protect B from

being displaced during its period of rest, and thereby preventing
the guide-plate from receiving F

.

7Q
the pin. the action will be ren-

dered more complete by the

arrangement of fig. 70.

Here the follower has its

edge mn formed into an arc of

a circle whose center is the cen-

ter of motion of the driver, and

the circumference of the driver

is a plain disk npq of a greater
diameter than the pitch circle

of the toothed portion qn. This plain edge runs past mn without

touching it, but effectually prevents the follower from being
moved out of its position of rest, and therefore ensures the meet-

ing of the pin and guide-plate.
103. Bevil or crown-wheels maybe employed if necessary, and
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the combinations may be thrown into a great many other different

forms. The pin and disc of fig.
68 have this advantage, that,

when properly formed, they allow the intermittent wheel to begin

and end its motion gradually, whereas in fig. 68 the motions

begin with a jerk, and the follower is apt to continue its motion

through a small space, after the teeth of the driver have quitted

104. In many machines a lever is required to move another by

the mere contact of their extremities. As the angular motion

required is always small, these extremities may be formed into

rolling curves, by which the friction will be entirely got rid of,

and the small variation in the angular velocity ratio will gene-

rally be of little or no consequence. Arcs of the logarithmic

spiral or ellipse round the focus will be the most easily described ;

but since the motion is small, arcs of circles may be substituted

as an approximation for the rolling curves, and these may be

described as follows.

Let A, B, fig. 71, be the centers of motion of the levers, AB
the line of centers divided in T in the proportion of the radii in

their mean position. Draw
KT perpendicular to A T, and

through T draw PTQ in-

clined to AT at any angle
less than a right angle. As-

sume a point Kin KT. Join

AK intersecting PTQ in P,
and join KB, producing it to

meet PTQ in Q. With cen-

ter P and radius PT describe

an arc rTs, and with center

Q and radius Q T describe an arc m Tn. These arcs will roll

together in the mean position of the figure.

For by Art. 31, it appears that the action of these arcs is

equivalent to that of a pair of rods AP, B Q, connected by a link

PQ. Now during the motion of this system the link may be

considered as revolving round a momentary center, which center

is always changing its position. But as the extremity P of the

link begins to move in a direction pependicular to AP, this center

must be somewhere in the line AP produced ; and in like manner,
as the extremity Q begins to move perpendicularly to BQ, the

center must be somewhere in B Q produced ;
it must therefore be

in K, the intersection of AP and BQ. But since K is the

momentary center of motion of the link, and KT is perpendicular
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to AB, it follows that the point of contact T of the arcs rs, mn,
will begin to move in the line of centers, and therefore the contact

will be rolling contact.

105. Since the distance of jfiTfrom T is arbitrary, let it be sup-

posed infinite, in which case AK, QK become parallel to each

other, and perpendicular to the line of centers, as at Ap and Bq,
and p, q are now the centers of the arcs. This is a simpler con-

struction.

In practice the angle PTA must be made much greater than

in the figure, to avoid oblique action.
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CHAPTER IV.

ELEMENTARY COMBINATIONS.

DIVISION A. COMMUNICATION OF MOTION BY ROLLING CONTACT.

f DIRECTIONAL RELATION CHANGING.
CLASS C "\

t VELOCITY RATIO VARYING.

106. WHEN two spur-wheels act together the axes revolve in

opposite directions, but when a spur-wheel acts with an annular

wheel the axes revolve in the same direction. By combining a

spur-wheel with an annular wheel the mangle-wheel, fig. 72, is

obtained
;
in which the directional relation is periodically changed,

by causing the driving pinion to act alternately upon the spur-
teeth and the annular teeth.

The mangle-wheel in its simplest form is a revolving disc of

metal with a center of motion C. Upon the face of the disc is

fixed a projecting annulus am, the

outer and inner edges of which are

cut into teeth. This annulus is in-

terrupted at/, and the teeth are con-

tinued round the edges of the inter-

rupted portion so as to form a con-

tinued series passing from the outer

to the inner edge and back again.
A pinion B whose teeth are of the

same pitch as those of the wheel is

fixed to the end of an axis, and this

axis is mounted so as to allow of a

short travelling motion in the direction BC. This may be
effected by supporting this end of it either in a swing-frame

moving upon a center as at D, or in a sliding piece, according to

the nature of the train with which it is connected. A short pivot

projects from the center of the pinion, and this rests in and is

guided by a groove BSftbhk which is cut in the surface of the

disc, and made concentric to the pitch circles of the inner and
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outer rings of teeth, and at a normal distance from them equal to
the pitch radius of the pinion.

Now when the pinion revolves it will, if it be on the outside,
as in the figure, act upon the spur-teeth and turn the wheel in

the opposite direction to its own
;
but when the interrupted por-

tionf of the teeth is thus brought to the pinion, the groove will

guide the pinion from the outside to the inside, and thus bring its

teeth into action with the annular teeth. The wheel will now
receive motion in the same direction as that of the pinion, and
this will continue until the gap/ is again brought to the pinion,
when the latter will be carried outwards, and the motion again
reversed.

The velocity ratio in either direction will remain constant, but

the ratio when the pinion is inside will differ slightly from the

ratio when it is outside, for the pitch radius of the annular teeth

is necessarily somewhat less than that of the spur-teeth. How-
ever, the change of direction is not instantaneous, for the form of

the groove sft, which connects the inner and outer grooves, is a

semicircle, and when the axis of the pinion reaches s the velocity

of the mangle-wheel begins to diminish gradually till it is brought
to rest at f, and is again gradually set in motion fromf to t, when
the constant ratio begins ;

and this retardation will be increased

by increasing the difference between the inner and outer pitch

circles.

107. The teeth of a mangle-wheel are,
Fig- 73.

however, most commonly formed by pins

projecting from the face of the disc, as in

fig. 73.

In this manner the inner and outer pitch-

circles coincide, and therefore the velocity

ratio is the same within and without ;
also

the space through which the pinion moves

in shifting from the outside to the inside is

reduced.

108. This space may be still further diminished by arranging

the teeth as in fig. 74, that is, by placing the spur-wheel within

the annular wheel ;
but at the same time the difference of the

two ratios is increased.

109. If it be required that the velocity ratio vary, then the

pitch-lines of the mangle-wheel must no longer be concentric.

Thus in fig. 75, the groove kl is directed to the center of the

mangle-wheel, and therefore the pinion will proceed in this por-

tion of its path without giving any motion to the wheel ; and in
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the other lines of teeth the pitch radius varies, and therefore th e

angular velocity ratio will vary.*

The mangle-wheel under all its forms is a very practical and

effective contrivance. It derives its name from the first machine

Fig. 74.
F'g- 75.

to which it was applied, but has since been very generally em-

ployed in manufacturing mechanism.

110. In figs. 72, 74, and 75, the curves of the teeth are

readily obtained by employing the same describing circle for the

whole of them (Art. 90). But when the form fig. 73 is adopted,

the shape of the teeth requires some consideration.

Every tooth of such a mangle-wheel may be considered as

formed of two ordinary teeth set back to back, the pitch-line

passing through the middle. The outer half, therefore, appro-

priated to the action of the pinion on the outside of the wheel,

resembles that portion of an ordinary spur-wheel tooth that lies

beyond its pitch-line, and the inner half which receives the inside

action of the pinion resembles the half of an annular wheel tooth

that lies within the pitch-circle. But the consequence of this

arrangement is, that in both positions the action of the driving

pinion must be confined to the approach of its teeth to the line of

centers, and consequently these teeth must lie wholly within their

pitch-line.

To obtain the forms of the teeth therefore take any convenient

describing circle, and employ it to describe the teeth of the

pinion by rolling within its pitch-circle, and to describe the teeth

of the wheel by rolling within and without its pitch-circle, and

the pinion will (Art. 90) then work truly with the teeth of the

wheel in both positions. The tooth at each extremity of the

series must be a circular one, whose center lies on the pitch-line
and whose diameter is equal to half the pitch.

* A mangle-wheel of this kind is employed in Smith's self-acting mule.
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Fig. 76.

Fig. 77.

111. If the reciprocating piece move in a right line, as it very
often does, then the mangle-wheel is transformed into a mangle-
rack, fig. 76, and its teeth may
be simply made cylindrical pins,
which those of the mangle-wheel
do not admit of on correct prin-

ciple. Bb is the sliding piece,
and A the driving pinion, whose
axis must have the power of

"*

shifting from A to a through a space equal to its own diameter,
to allow of the change from one side of the rack to the other

at each extremity of the motion. The teeth of the mangle-rack

may receive any of the forms which are given to common

rack-teeth, if the arrangement be derived from either fig. 72 or

fig. 74.

112. But the mangle-rack admits of an arrangement by which

the shifting motion of the driving pinion, which is often incon-

venient, may be dispensed with.

Bb, fig. 77, is the piece which receives the reciprocating

motion, and which may be either guided between rollers, as

shown, or in any other usual

way ;
A the driving pinion,

whose axis of motion is fixed ;

the mangle-rack Cc is formed

upon a separate plate, and in

this example has the teeth

upon the inside of the pro-

jecting ridge which borders it, Q
and the guide-groove formed

within the ring of teeth, similar to fig. 74.

This rack is connected with the piece Bb in such a manner as

to allow of a short transverse motion with respect to that piece,

by which the pinion, when it arrives at either end of the course,

is enabled by shifting the rack to follow the course of the guide-

groove, and thus to reverse the motion by acting upon the

opposite row of teeth.

The best mode of connecting the rack and its sliding piece is

that represented in the figure, and is the same which is adopted
in the well-known cylinder printing-engines of Mr. Cowper.
Two guide-rods KC, kc are jointed at one end K, k to the re-

ciprocating piece Bb, and at the other end C, c to the shifting-

rack
; these rods are moreover connected by a rod Mm which is

jointed to each mid-way between their extremities, so that the

G
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angular motion of these guide-rods round their centers K, k will

bethe same ;
and as the angular motion is small, and the rods

nearly parallel
to the path of the slide, their extremities C, c,

may be supposed to move perpendicularly to that path, and con-

sequently the rack which is jointed to those extremities will also

move upon Bb in a direction perpendicular to its path, which is

the thing required, and admits of no other motion with respect

to Bb.

The earliest shifting rack of this kind is to be found in the

work of De Caus,* in which the rack is moved from one side to

the other at each end of its trip by a pair of cam-plates, turned by
the same pinion which drives the rack.

113. In the works of the early mechanists a variety of con-

trivances for reversing motion are to be found, in which the teeth

of a driving wheel or pinion are made to quit one set of teeth and

engage themselves abruptly with another set, and so on alter-

nately : the two sets being so disposed upon the reciprocating

follower as to produce motion respectively in the opposite direc-

tions in it.

For example, Aa, fig. 78, is an axis which revolves con-

tinually in the same direction, Bb an axis to which is to be com-

municated a few rotations to right and left alter-

nately.
This axis carries two pinions, B and Z, and

the first axis has a crown wheel at its ex-

tremity, of which the teeth extend only through
half its circumference, as from m to n.

In the figure the crown-wheel is supposed to

revolve in the direction from n towards m, and

its teeth will accordingly act upon those of b,

and cause the shaft Bb to revolve. When the last tooth n has

quitted b this rotation will cease, but at that moment the first

tooth m of the series will begin to act upon the lower pinion B,
and turn it in the opposite direction. This contrivance is so

manifestly faulty for two reasons, namely, the shock at each

change of motion and the danger of the first teeth that come

together becoming entangled (Art. 87), that I should hardly
have thought it worth describing, were it not for the numerous
similar forms that present themselves in the early history of

machinery, more especially in the work of Ramelli, in which

* De Caus, Les Raisons des Forces mouvantes, 1615. L. I. probs. xvi. and xvii.

Copied in Bockler's Theatrum Machinarum, 1662, pi. 94.



DIVISION A. BY ROLLING CONTACT. 83

this principle is exhibited in a great variety of forms, and applied
not only to wheels but also to racks.*

114. Fig. 79 is an application of the same principle to a

double rack,f which deserves attention on account of the pro-
vision which is made to diminish the shock, and ensure the first

engagement of each set of teeth.

Aa is the frame to which the reciprocating motion is to be

given, B the driving pinion ; this is made in the form of a

lantern, and the teeth confined to about

a quarter of its circumference. *

These teeth act alternately upon racks

fixed to the opposite sides of the frame,
and thus the frame receives a back and

forward motion from the continued ro-

tation of the pinion. In the figure the

pinion revolving in the direction of the

arrow is shown at the moment of quitting the lower rack to begin
its action upon the upper ;

the tooth of each rack which receives

the first action of the pinion is made longer than the others, and

straight-sided, and is so arranged that the action of the first stave

upon it shall be oblique, by which the shock is diminished, while

at the same time the stave sliding down the long side is safely

conducted into the first space, and thus the proper action of the

teeth and staves secured.

115. If the driver be a wheel A, fig. 80, and the follower an

arm BC rotating round a center B, and having a wheel of an

irregular form D turning round a pin at its

extremity C; its teeth being kept in constant Fig. 80.

action with those of A by means of a guide-

plate fixed to one or both of the lateral faces

and shaped to its pitch curves. These plates

must rest upon a pair of circular plates simi-

larly adapted to the pinion A and thus keep
the teeth of the wheels in proper working distance, then the ro-

tation of A will produce a reciprocating motion in the arm B C,

the law of which will vary according to the figure of the wheel.

* Vide Ramelli, i. ii. iii. iv. et passim. De Caus, pr. iii. and iv. Bockler, 109, 110

111, copied from Ramelli. Bessoni, Theatrum Instrumtntorum, 1569, pi. 34.

f From Bockler, Theatrum Machinarum, No. 71.

o 2
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CHAPTER V.

ELEMENTAEY COMBINA TIONS.

DIVISION B. COMMUNICATION OF MOTION BY SLIDING CONTACT.

CLASS A. DIRECTIONAL RELATION AND VELOCITY
RATIO CONSTANT.

116. THE axes of the pieces in contact, as in Art. 31 above,

being supposed parallel, it has been shown that in sliding contact

the angular velocities are at each instant in the inverse ratio of

the segments into which the normal of the curves at the point of

contact divides the line of centers.

Any convenient curve being assumed for the edge of one re-

volving piece, if we can assign such a form of another revolving

piece that the common normal of the two curves shall divide the

line of centers in a fixed point in all positions of contact, then will

these curves preserve a constant angular velocity ratio when one

is made to move the other by sliding contact.

Before proceeding to general principles, I shall give the several

ordinary solutions of the problem, as the knowledge of them serves

as an instructive introduction to the requirements of the question.

For convenience the first step in any given case is to assume two

pitch circles in contact, capable of revolving about fixed centers,

and the one driving the other by the rolling contact of their edges
in the given velocity ratio.

On the planes of these circumferences as bases we proceed to

describe opposite curves in contact, which being fixed to the re-

spective circles so as to move each other by the sliding contact of

their edges, will exactly replace the rolling contact action of the

pitch circles.

117. First solution, Jig. 81. Let A, B, be the centers of

motion, AB the line of centers divided as usual in T, in the

inverse proportion of the angular velocities
; describe through T

the respective pitch circles, and let abc be a portion of an epicy-
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Fig. 81.

cloid whose base is the pitch circle a T, and whose describing circle

has the same diameter as the pitch circle Tb, and let b be a pin
whose diameter is exceedingly small,

so that it may be considered as a

mathematical line. Then if the curve

abc be cut out of a thin plate, and

caused to turn round the center A,
and the pin b carried by a piece

capable of turning round the center

B, the motion communicated from

the edge to the pin will fulfil the

required conditions. For at the be-

ginning of the motion let Te be the

position of the curve ; therefore, the

pin b will coincide with T, and if the

curve move into any other position
abc driving the pin to b, the arc Ta
will be equal to Tb

;
for Tb is an arc of the describing circle, and

therefore, if it were made to roll on Ta, the point b would trace

an epicycloidal arc coinciding with ba, and the point b would coin-

cide with a. But the arcs Ta, Tb are also those described by the

two pitch circles respectively, in moving from T to the second

position ;
and since these equal arcs are described in the same

time, the angular velocity ratio of the two pieces is constant, and
the same as if the motion had been produced by the rolling contact

of the pitch circles.*

Otherwise, by the known property of the epicycloid, the normal

to any point b passes through the point of contingence T of its

describing circle and its base circle. But these latter circles are

the two pitch circles of the combination ; and since the normal of

the curve ab at the point of the contact is thus shown to pass

through a constant point T of the line of centers, the angular

velocity ratio of the circles will be constant and equal to the

inverse ratio of their radii, by the last Article.

1 18. Second solution, Jig. 82. A, B being, as before, the centers

of motion,T the point of contingence of the pitch circles. Let abc

be an arc of an epicycloid whose describing circle is TbB, of half

the diameter of the pitch circle FTd. From the center B draw

a radial line through the describing point b, meeting the circle in

d
; then will this line touch the epicycloid in b. Let motion be

communicated by contact from the curved edge abc, which re-

* For the properties of cycloidal curves, vide Peacock's Examples, p. 186 ; Young's
Nat. Philosophy, vol. ii. p. 555

;
De la Hire, Sur les ftpicyclo'ides, &c.
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volves round A, to the radial line Bbd which revolves round B
;

ind let the beginning of the motion be reckoned from the posi-

tion in which a coincides with T, and, therefore, d with a. In

moving to any other position of contact abc, JBbd; Ta, Td, will

be the arcs simultaneously described by the two pitch circles.

Now TBb is an angle at the circumference of the circle TbB,

and TBd an angle at the center of the circle TdF'; therefore

Tb measures an angle double of Td. Also the radius of Tb is

half that of Td; therefore the arc Tb= Td. Again, TbB is the

describing circle of the epicycloid abc, and Ta its base; .'.Tb=
Ta ; whence Td= Ta, that is, the arcs of the pitch circles

described from the beginning of the motion are equal, and conse-

Fig. 82.

quently the angular velocity ratio constant, and the same as would

be obtained by the rolling contact of the pitch circles.

Otherwise ;
as before, the normal of contact at b passes through

the constant point T of the line of centers, and therefore divides

it into a pair of constant segments; whence by Art. 116, the

angular velocity ratio is constant.

COR. The point of contact b, between the curve ac and the

radial line Bd, is always situated in the circle TbB, described

through T, with a diameter equal to the radius of the pitch circle

of the radial line, and having its center upon the line of centers.

This circle is therefore the locus of contact.
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119. Third solution, Jig. 83. A and B being, as before, the
centers of motion, T the point of contingence of the pitch circles.

Let a describing circle Tbk be taken of any diameter, and with it

describe an epicycloid TC by rolling on the outside of the pitch
circle Trn, and an hypocycloid TF by rolling on the inside of the

pitch circle Tn. Let these curves be cut out and made to revolve

in contact, round their respective centers of motion A and #,
until they come into a new position where abc is the epicycloid
and ebf the hypocycloid. By the known properties of the curves

they will have their common point b in the circumference of the

describing circle Tb, when its center O is on the line of centers,

and they will also have a common tangent there. As before, the

circle Tbk is the locus of contact.

Also, if the describing circle Tbk were to roll upon Te from its

present position, it would describe the curve be with the point b,

and this point would come to e
; therefore the arc Tb is equal to

the arc Te, and similarly, the arc Tb is equal to the arc To. ;

. . Te~ To. But these are the ares respectively described by the

two pitch circles in moving from the first position to the second ;

therefore, as before, the angular velocity ratio is constant and

equal to that which would be obtained by the rolling contact of

the pitch circles.

Otherwise ;
as before, the constancy of the angular velocity

ratio may be shown from the known property of the curves by
which the normal from the point b passes through T.

This third solution includes the two former ones, for it is known

that if the diameter of the describing circle of an hypocycloid be

made equal to the radius of the base, the hypocycloid becomes a

straight line coinciding with a diameter of the latter ;
and thus the

second solution is obtained. Also, if the describing circle of the

hypocycloid equal the circle of the base, the hypocycloid is reduced

to apoint in its circumference, and thus the firstsolution is obtained.*

120. Fourth solution. Let A, B be the centers of motion, T

* The third solution, like the others, is given by Camus in his well-known Essay

f>n the Teeth of Wheels, in 1752, and copied by Ferguson in his Lectures, which

were reprinted by Sir David Brewster in 1806, and introduced into his Edinburgh

Cyclopeedia, vol. xiii. p. 572.

But the enunciation of its application to the formation of a set of wheels '

any two

of which will work together' was for the first time laid down by myself in the paper

On the Teeth of Wheels in the second volume of the Transactions of the Institution of

Civil Engineers. This enunciation will be found below, Art. 166.

It was soon after claimed for Sir David Brewster in the Engineer and Machinists'

Assistant, Glasgow, second edition, p. 109, but as no reference was made to the work

in which that corollary was published by that distinguished philosopher I reserve my
assent to this assertion until I am favoured with a reference to the work in question.
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the point of contingence of the pitch circles. Through T draw

D TE inclined at any angle to the line of centers, from A and B

drop perpendiculars AD, BE upon D TE, and with radii AD, BE
and centers A and B describe the circles to which DE will be a

common tangent.

7? V JiT
Also we have - =

,=, by similar trianglesDA A J.

Fig. 84.

TAD, TJBE.

Through the point T describe an involute KTH of the circle

DH, and an involute FTG of the circle FE. If these involutes

be made to turn round the centers

A and B respectively, and to remain

in contact, the perimetral velocities

of the pitch circles will be equal.

For, let kth,ftg be new positions

of the involutes, the point of contact

t will be always in the line DE,
which is the locus of contact, and

Hh, Ff are the arcs respectively

described by the base circles of the

involutes. EutHh

* J

= Ff. And since these arcs are

equal, the perimetral velocities of

the base circles are equal, and the

angular velocity ratio constant.

But AD: BE:: AT: BT by
construction ; that is, the radii of

the bases are proportional to the

radii of the pitch circles. Whence
it follows that the perimetral velocities of the pitch circles are also

equal, and the angular velocity ratio the same as that which would

be obtained by making their circumferences act upon each other

by rolling contact.

Otherwise ; because the normal to any point of contact t of the

involutes coincides with the common tangent of their bases, this

normal is a fixed line, and passes through a fixed point T of the

line of centers, which also shows, as before, the constancy of the

angular velocity ratio.

121. If the distance of the centers A, B be altered, but so that

the involutes may still remain in contact, then it can be shown, in

exactly the same manner, that the velocity of the circumferences

of the bases will be equal ; and, therefore, that the ratio of the

angular motion of the two curves will remain unaltered. This is
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a property which distinguishes the involute from the other curves

that have been given, and is of some practical importance ; for

when these curves are employed for the teeth of wheels, it is not

only unnecessary to fix the centers of their wheels at a precise

distance, but a derangement of the centers, from wearing or settle-

ment in the frame-work, does not impair the action of the teeth.

In every other pair of curves that have been assigned, a variation

in the distance destroys the equal ratio of the motion, by destroy-

ing the principle of their connection.

122. For every given pair of pitch circles an infinite number
of pairs of involutes may be assigned, that will answer the con-

ditions required ; for the inclination ofDTE to the line of centers

is arbitrary, and every change of inclination produces a new pair
of bases and of involutes.

123. General solutions. De la Hire in his treatise ' On the Em-

ployment of Epicycloids in Mechanism '

(1694), stated (Prop. VI)
the principle that, if the surfaces of two wheels be in the same

plane, we may give any convenient figure to the teeth of one and

the teeth of the other will be a form compounded of the epicycloid

and that of the selected tooth. To construct this latter form he

assumes that the pitch circles instead of revolving in rolling con-

tact about two fixed centers, are, the one fixed and the circum-

ference of the other rolled upon it, carrying with it the tooth, and

in the next place gives a geometrical construction by which the

given tooth can be drawn in a sufficient number of successive

positions on the plane of the fixed circle, and proceeds to draw a

curve which will touch all these positions, and be, therefore, in

the language of modern geometry, the envelope of those positions.

If the edge of the required tooth be made
in the form of this envelope, it will |f

manifestly be in contact with the assumed

tooth at one point or other when the pitch
circles revolve.

This process, but not the method, is

represented in
fig. 85, which shows a

simple piece of apparatus for lectures,

which I constructed and published in

1837.*

Take a pair of boards A and B, whose

edges are formed into arcs of the given

pitch circles. Attach to one of them the

shape of the proposed tooth C, and to the other a piece of drawing-
* Vide Transactions of the Institution of Civil Engineers, vol. ii. p. 89.
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paper D, the tooth being slightly raised above the surface of the

board to allow the paper to pass under it Keep the circular edges

of the boards in contact, and make them roll together.

Draw upon D, in a sufficient number of successive positions,

the outlines of the edge of C. A curve ef, which touches all these

successive lines, will be the corresponding tooth required for B.

For by the very mode in which it has been obtained, it will, if

cut out, touch C in every position ;
and therefore, the contact of

these two curves C and ef will exactly replace the rolling action

of the pitch circles.

124. The problem to be solved is, that any curve being assumed

for the edge of one tooth of a given pitch circle, we have to trace

the form of a tooth for the other pitch circle, such that the com-

mon normal of the two curves in contact, shall in all positions

divide the line of centers in the fixed point of contingence of the

two circles (vide Art. 116 above).

The complete solution was first stated by Fra^ois Joseph

Camus, in 1733,* in the words of the note below,f of which the

translation follows. ' If the pinion is to turn the wheel with a

uniform force, the curve of its leaf, and that of the tooth of the

wheel must be generated in the manner of epicycloids by one and

the same describing curve, which must be rolled within the circle

of the pinion to describe the inner form of the leaf, and on the

outside of the circle of the wheel to describe the outer form of

the tooth. Similarly, the outer form of the leaf, and the inner

form of the tooth which work together must be described by

rolling one and the same describing curve outside the circle of

the pinion, and inside the circle of the wheel.' He adds that the

curve employed to generate one part may be the same or a

different one to that employed to generate the other. The paper
includes complete demonstrations and constructions for carrying
out his principle.

125. Dr. Young, in his ' Lectures '

\ in 1807, is the first English
writer who states this principle, but without allusion of any kind

* I discovered this paper after the publication of the first edition of the present
work. This general principle is not contained in the Cours de Mathematiques of

M. Camus (t. ii. 1759), from whence the well-known English Camus on Wheels was
translated

; yet the above paper and the Cours appear to have been written by the

same person.

f Si Ton veut quo le pignon tourne comme la roue avec une force toujours uniforme,
la courbure de 1'aile ACH et la courbure CZ de la dent doivent etre engendrees
comme les epicyclo'ides, par une memo courbe, qui roulera au-dedans du uignon sur sa

circonference HB pour decrire 1'aile, et exterieurement sur la circonference ZB de la

roiie pour decrire la dent, &c.

J Lecture xv. p. 176.
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to its author. It is true that in his invaluable catalogue under
the head ' Structure and Proportion of Wheels,' we find ' Camus
on the Teeth of Wheels (A.P. 1733, p. 117, H. 81),' a reference

which led me to the real author of this remarkable theorem, and

to the source from whence Young derived it. In the Cambridge
'

Philosophical Transactions'* (1825), there is an excellent paper
on the forms of the teeth of wheels, by Mr. Airy, the present
astronomer royal, which serves to show the state of that question
at the time of its compilation, but was certainly not written with

the intention of giving the history of the subject, for the only
name mentioned is that of Euler. The method employed in the

paper is founded upon the theorem which I have above traced to

Camus, and the demonstrations are essentially the same as those

of that writer and De la Hire, but without reference to the

original authors.

I have therefore thought it best, after having given the above

historical account, to continue with extracts from Mr. Airy's

paper, beginning with a theorem borrowed from De la Hire.f
' It

is always possible to find a curve, which, by revolving upon a given

curve as a base, shall, by some describing point, in the manner of a

trochoid, generate a second given curve, provided that the normals

from all points of the second curve meet the first. This second

curve is termed a "Roulette
"
J by De la Hire.'

To prove this, let AB (fig. 86) be the first curve, AC the

second, from the points C and E, which are very near, draw the

normals CD, EF ;
if a describing point Fig 86

P be taken, and PQ, PR, be made re-

spectively equal to CD, EF, and QR
equal to DF, and this process be con-

tinued, a curve will be formed, which,

by revolving upon BA, will, by the

describing point P, generate the curve

A C. For if Q coincide with D, then R will afterwards coincide

with F-, and so on for all succeeding points, since QR DF.

Also, DC- QP, &c. And the angles made by these with the

tangents are equal, for the cosines of these angles, drawing DG,

QS perpendicular to EF, PR are^ and
j?? Q'

in which the

numerators are the differences of equal lines, and the denominators

are equal. Hence, P rolling on AB will describe A C. And

* Vol. ii. p. 276. t A. P. 1706, p. 379.

\ Roulette may be translated by Roll-traced curve.
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the formation of the curve RQ is always possible, because RQ is

greater than RS, for FD is necessarily greater than FG.

De la Hire gives the following example. Suppose it were

required to find the curve, which, revolving on one straight line

g
AB (fig. 87), would generate
another straight line AP.
Since the angles made by
the line PQ with the tan-

gent must be constant, it

follows that the curve would

be the logarithmic spiral, P
being its pole. If the straight lines AB, AP be parallel, the

curve will be a circle, and its center the describing point.

126. The mode of employing the method of Camus is clearly

shown by the following diagram and demonstration, extracted

from Mr. Airy's paper on the teeth of wheels already mentioned.

If the tooth HD (fig. 88) be generated by the revolution of

any curve on the outside of the pitch circle HT, and if DK be

generated by the revolution of the same

curve in the same direction, in the inside

of the pitch circle KT, then the normal

at the point of contact of the teeth will

pass through T. For, let the generating
curve be brought into the position L T,
so as to touch the circle HT at T, DT
will be the normal of HD at Z>; and

that the teeth may be in contact, the

same generating curve in the other circle

must touch KT at T, in which case it

will coincide with this ; D therefore will

be in the surfaces of both of the teeth,

and TD the normal of both at that point ;

therefore they will touch at D, and the

line of action TD will pass through the fixed point T\ * which

being true in every position, the angular velocity ratio will be

constant, and equal to that which would be obtained from the

rolling contact of the pitch circles.

* In the involutes, fig. 84, page 88, the separation of the circles of the bases would
seem to exclude them from this general proposition. But, however, in the involute c t

the normal Et is inclined at a constant angle to BT, and therefore to the tangent of

the pitch circle at T, and the constructions just given show that the involute c t may
be generated by the revolution of a logarithmic spiral upon the pitch circle c T; the

describing point being the pole of the spiral, and the angle between its radius and tan-

gent the same as the angle made by ETwith the tangent of the circle at T. In the
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127. We are now able to solve the problem in its most general
form. Given, the form of the teeth of one wheel to find the form
of those of another that they may work together correctly. De-
scribe the pitch circles of the required wheels. Find the curve

which, revolving upon the one, will describe the given tooth.

Make the same curve revolve within the other, and with the

same describing point it will generate the tooth required.
That these forms may be applicable in practice, however, it is

necessary that the curvature of the convexity of one tooth should

be greater than that of the concavity of the other, or else that

both should be convex.

ON THE TEETH OF WHEELS.

128. The formation and arrangement of the teeth of wheels

forms so important and interesting a branch of our subject, that

I have thought it better to allot a separate Section of this

Chapter to it. For the convenience of reference, it will be seen

that I have distinguished, by number, the several solutions of the

problem which requires curves to be found that will produce a

constant velocity ratio when revolving together in sliding con-

tact ; and I shall now proceed to show, in order, how these

solutions are to be applied to the formation of the teeth of

wheels.

To apply the first solution to the formation of the teeth of
wheels.

129. This solution shows that an epicycloid traced on the

pitch circle of the driver, by a describing circle equal to the

pitch circle of the follower, will drive a pin in the circumference

of the follower with the same motion as if the pitch circles rolled

together. Let the pitch circles (fig. 89) be divided respectively

into a number of equal parts, ed, dg, gh, &c,....fa, ab, be, c....

corresponding to the number of teeth proposed to be given to

them ; let fine pins be fixed into the follower at the points

e, d, g, h, &c....and let a series of epicycloidal arcs fk, ka, al, Ib,

&c....be traced with a describing circle equal to the pitch circle

same way, the revolution of this spiral within the second pitch circle k Twill generate

another involute k t, which will work correctly with the first.

The portions of the two involutes which lie respectively within and without the

pitch circles, as JG, TH, being thus included in the general proposition, the remaining

portions TF, KT can bo in the same manner included in it.
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of the follower, and through the points /, a, b,... alternately to

right and left, meeting at k, I.... If motion be given to the

driver in the direction of the arrow, then the curved face ak, will

press against the pin d, and move it in the same direction. But

as the motion continues the

pin d will slide upwards until

it reaches k, when this tooth

and pin will quit contact.

Before this happens the pin e

will have reached the point/,
and the face fw of the next

tooth will have commenced a

similar action upon the pin e,

which will in like manner be

succeeded by the next pair ;

and so on continually.

130. But the demonstra-

tion supposes the pins to be

mathematical points having
no sensible diameter, which is

practically impossible. Take

therefore, a sufficient number
of points t, x, y,...in the epi-

cycloidal face of the tooth bl,

and with a radius equal to

that which the pin requires describe a series of small arcs, and

draw a curve mn touching them all. Repeat this operation upon

every tooth, so as to produce curves sq, qp, rn...respectively

parallel to the original epicycloids. For example, let the curve

pq be substituted for the epicycloid ak, and at the same time a

pin of the given radius be substituted for the point d. In every
relative position of contact between this new pin and the curve

pq the epicycloid ak will pass through its center d. For by the

mode of its description the circle must touch the curve pq, when
its center is in any point of the epicycloid. Therefore the tooth

w derived from the epicycloid will drive a pin of any required

diameter, exactly in the same manner as the original curve would

have driven the mathematical point. A space pr must also be

cut out within the pitch circle of the driver and between the

bases of the teeth, to allow the pin to pass. But as the sides of

this space never touch the pin, the form of it is immaterial,

provided it be made sufficiently large to ensure that there shall

be no accidental contact.
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131. This solution is applicable to trundles or pin-wheels of

all kinds (Art. 59). In the figure it appears, that while any
given tooth ka is in contact with, and drives a pin d, the back kf
of this tooth will be in contact with the succeeding pin e ; and

consequently, if the motion of the driver were reversed, the back

of the tooth would begin to drive the tooth e without any shake

taking place, and the wheels would work as well in one direction

as the other. This perfection is unattainable in practice, as the

smallest error in excess of the figure, or position of the tooth, or

pin, would cause the teeth to wedge themselves fast between the

two contiguous pins. It is necessary to allow a small space for

play between the teeth and pins, and this play is termed backlash.

The same principle and phrase applies to all forms of teeth which

are capable of being so arranged as to work in both directions.

132. When the pin is reduced to a mathematical point, the

contact of any tooth ak begins at the moment its base a has

reached the line of centers ;
and during the action of the tooth

the point of contact gradually slides upwards, remaining always
in the pitch circle of the pin-wheel, and at the same time it re-

cedes from the line of centers until the contact is finally termi-

nated at the point of the tooth k
; the action being wholly con-

fined to the recess from the line of centers. But if, on the other

hand, the pin-wheel were made to drive the teeth, the reverse

would happen ; the contact would begin at the top of the teeth,

and end at their base, and the action would be confined to the

approach to the line of centers.

Now, in practice, the friction which takes place between

surfaces whose points of contact are approaching the line of

centers, is found to be of a much more vibratory and injurious

character than that which happens while the points of contact

are receding from it. It is therefore necessary to avoid the first

kind of contact as much as possible, and for this reason the teeth

are always given to the drivers, and the pins to the followers, in

this kind of wheel-work. For the most part, the diameter of the

pin is made equal to that of the tooth, with an allowance for

play equal to one tenth of the pitch. The radius of the pin will

be, therefore, rather less than a quarter of the pitch. When the

stave has a sensible diameter, the first contact will take place, as

before, when the center of the stave reaches the line of centers,

and therefore at a distance before that line equal to the radius of

the stave, or rather less than a quarter of the pitch.

But, plainly, one tooth must not quit contact before the suc-

ceeding tooth is engaged; therefore, when the point/ has reached
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the line of centers, the tooth pq must not have quitted contact

with the pin d ; and the point q, when contact ceases, must

therefore be at an angular distance from the line of centers,

equal at least to half the distance fa, or half the pitch ;' so that

in a pin-wheel the action that takes place before coming to the

line of centers, is less than half that which must take place after

passing it.

133. A rack may be considered as a wheel, the radius of

whose pitch line is infinite (Art. 62) ;
and on this hypothesis the

form of its teeth may be derived from those of spur-wheels with

finite radii, by very simple considerations.

The rack may drive or follow ;
in the first case the pins will

be given to the wheel, and in the second case to the rack.

Now if the rack drive, the line Ta, fig. 81, (which is an arc of

the pitch circle of the driver) will become a right line perpen-

dicular to the line of centers, and ale will become a cycloid.

The teeth of the rack, fig. 90, must be derived from the

cycloid ka, by the method already explained, of tracing a parallel

curve at a distance from it equal
F'g- 90 - to the radius of the pin.

If, however, the rack be

driven, as in fig. 91, then the

arc Tb, fig. 81, will become a

right line, and ale will become

the involute of the pitch circle

of the driver Ta. From which

involute a parallel curve might
be obtained, as before, for the teeth of the pinion ;

but this is

unnecessary, inasmuch as this process would merely reproduce
the same involute in a different position.

p.
It follows, that to describe

^ the teeth of a wheel which

is to drive a pin rack, invo-

lutes of its pitch circle must

be traced to right and left

alternately, and at a distance

from each otherrather greater
than the diameter of the

pins.

134. In a similar way an annular iclieel may either drive or

follow.

If it drive, the pitch circle Ta, fig. 81. will become concave;
and if the radius of the pins be small, the sides of the teeth will

--O
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Fig. 92.

be hypocycloids, as at pq, fig. 92, traced by the rolling of the

pitch circle of the follower within the pitch circle of the driver;

or, as before, if the radius

of the pins be considerable,

then the sides of the teeth

will be drawn parallel to

the hypocycloids at a nor-

mal distance equal to the

radius of the pins.

If the annular wheel fol-
low, it will carry the pins,

and the teeth of the driver will be traced by rolling the inside of

the annular pitch circle upon the outside of that of the driver,

making, as before, the true

edge of the teeth equidistant
from the epicycloid so ob-

tained, ka, fig. 93, by a dis-

tance equal to the radius of

the pin.

135. To find the smallest

number of teeth or pins that

can be employed, ichen the pins
have no sensible diameter.

Let T, d, be two successive pins in a pin-wheel, Tda the

tooth of the driver, and let the pin d coincide with the point of

the tooth Tda, at the moment the next pin T
arrives at the line of centers ; then one tooth ceases

its action at the moment the next tooth begins.

LetAT=fi, BT=r, BAd=0, ABd=
<f>

Now, from the nature of the curve ad, Ta which

is equal to the pitch must be equal to Td rfa ;

and the angle BAd includes in the position of the

figure half a tooth or half the pitch ; .. 2R0= r(f>.

If the pin d had not quite reached the extremity
of the tooth, when T arrived at the line of centers,

TAd would have been less than half the pitch angle ; but the

action of the wheels would not be interrupted, but rather im-

proved ; whereas, on the contrary, were TAd greater than half

the pitch angle, one tooth would quit its pin before the next

could begin contact ; therefore, we may have TAd equal to, or

less than, half the pitch angle, but not greater ;

Fig. 94.
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Bd sin BAd
Now -7-=;= -

A j D 'AB sin AdB

that is,

r
rj

in which equation, substituting different values of the ratio ,

it will appear whether the value of 6 is sufficiently small to

answer the conditions; for example, let 72= r;

. l-. 8i?_*
, or 2 sin = sin 30= 3 sin 0-4 sin 3

;'

2 sin 30'

.-. sin0=*, and = 30;

by which it appears that six teeth and six pins will exactly fulfil

the conditions, and that the pin will exactly reach the extremity

of its tooth when the next pin comes into action. Also any
number greater than six may be employed, but with less than six

the action will be interrupted.

If r=2R, cos 0= 3
,
and = 41.36 ; .-. 20= 83.l2' ;

which corresponds to four teeth and a fraction; the smallest

whole numbers are five teeth to drive ten pins.

136. In this manner the following set of results were obtained.

A pinion of four pins may be driven by a wheel of any

number of teeth greater than about sixteen, but a pinion of three

pins cannot be driven even by a rack, that is, by a wheel of an

infinite number of teeth.

Five pins may be driven by any number of teeth greater than

about ten.

Six is the least number that admits of being employed in the

case of the number of teeth and pins being equal.
Five teeth will drive a pin-wheel of any number from eight

upwards, and four teeth require at least twelve pins ;
but three

teeth will just drive a pin-rack, and consequently will not work
with a wheel.

It must be recollected, that in this class of wheel-work the

pins are always given to the follower.

137. In the last Article the pin was supposed to be a mathe-

matical point ; but as this is impracticable, let us examine the

question, supposing the pin to have a sensible radius.

It has been shown (Art 129) that the form of tooth for such a

stave is derived from the epicycloid ak
(fig. 95), that would serve
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when the stave is reduced to a point ; by tracing a curve pq at a

normal distance from it, equal to the radius cq of the stave. Let

pqs be such a tooth, then, if it be quitting contact at the

moment the next stave and tooth

center of this next stave T must

coincide with the line of centers ;

and as the line Tc, which joins the

center of the pin c with the tan-

gent point T of the pitch circles,

is the /normal to the epicycloid ak,

it necessarily passes through the

point of contingence of the curve

pq and the stave : this point q will

also be the extremity of the tooth.

Let TBc (the pitch angle of the

pin-wheel )
= <>,

and BAq (half the pitch angle of

the toothed wheel)= ;

let A T R, B T r, and cq, the radius of the pin,

,1 ,
. sin 6

that is, .
-- :

sin
(< + 6)

A1 sinBAm_Bm
AlSO, i -. H~~~~S~r>'sm AmB AB

(*+]
(cm)_

r Pf sin
(<jf>
+ #)

From this equation 6 may be eliminated by (1.)

Let k be the ratio of the diameter of the pin to the pitch,

which is the most convenient term in which to express the result ;

Substituting this value of p, and arranging the terms, we finally

obtain

* In fig. 95, m should be at the intersection of Be and Ak.

H 2.
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t""(-aa-

From this equation, by substituting in each particular case the

7?

value of
<j>,

and of , the necessary diameter of k will be ob-

tained, which will cause one tooth to quit contact at the instant

the other begins. Should k come out negative, the case is thus

shown to be impossible ;
and if zero, then it corresponds to the

arrangement in which the pin is a mathematical point. In prac-

tice it would not answer to arrange teeth so that one pair should

quit contact at the instant the next pair begins it, because the

least wearing or inaccuracy would cause an interruption in the

action. It is necessary, therefore, to allow more teeth than our

Tables will show, or to make the stave of less diameter and the

tooth of greater.
TABLE I.

Pinion drives, and Staves are given to the Wheel
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TABLE II.
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fourth of its diameter ;
to find the least number of teeth and pins

that can be employed.
This example belongs to the second table; and in the line

appropriated to
^= 4 it appears that if four staves be given to

the pinion, and consequently sixteen teeth to the wheel, the

diameter of the stave is reduced to the hundredth part of the

pitch ;
but that if the numbers 5 and 20 be employed, the pin

may be made nearly half the pitch. In practice it would not be

safe, therefore, to employ less numbers than 6, 24, or 7, 28.

To apply the second solution to the formation of the teeth of
wheels.

140. The forms of teeth derived from this solution are the

most generally employed at present, they having been found the

best adapted for metal wheels, whereas those which have been

derived from the first solution belong rather to the ancient prac-
tice of wooden mill-work, although they may still be occasionally

employed in metal work, as pin-wheels.

Fig. 96 represents a pair of wheels whose teeth are derived
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from the second solution. A and B are their centers of motion,
T the point of contingence of the pitch circles ; and as the forms
of the teeth in each wheel are obtained from the same principles,
either wheel will act as driver or follower. The complete side of

each tooth, as c Ta, or h Tg, is made up of two parts, one of

which lies within the pitch circle, and the other without ; the

portion aT or Tg that lies without the pitch circle is technically
termed the face of the tooth, and that which lies within as Th or

Tc is termed itsjlcmk, which terms I shall employ.
With respect to the portions Tc, Tg of the pair of teeth g Th,

c Ta, Tc is a radial line to A, and Tg an arc of an epicycloid
whose describing circle is Tefa, equal in diameter to the radius

TA of the lower pitch circle. On the other hand, Th is a radial

line to B, and Ta an arc of an epicycloid whose describing circle

is TkB, equal in diameter to the radius TB of the upper pitch
circle ;

that is, the flanks or portions of teeth in both wheels that

lie within their respective pitch circles are radial lines, and the

faces, or those that lie without, are arcs of epicycloids traced in

each wheel with a describing circle equal in diameter to the pitch
radius of the other wheel. By the second solution, therefore,

each flank and face will act in contact to produce a constant

angular velocity ratio, but the action of each pair will be confined

to its own side of the line of centers.

As the two sides of each tooth are precisely alike, and symmet-
rical to a line joining the centers of the wheel and point of the

tooth, the wheels will turn each other in either direction at

pleasure. The form of the curved line cde which connects each

tooth with the next is indifferent, provided it afford sufficient

room for the point of the opposite tooth ;
for it manifestly never

comes into contact action, since that is entirely confined to the

portions of the tooth before described. The curved part cde is

termed the clearing.

141. To examine the action of the teeth, let the lower wheel

of the figure be the driver, and let it revolve in the direction of

the arrow ; therefore the rio;ht sides of its teeth will press the

left sides of the follower's teeth. Now, the locus of contact is

the semicircle feT during the approach to the line of centers, and

the semicircle TkB during the recess. The contact, therefore, of

every pair of teeth begins at the root of the driver's tooth, that

is, at that point of the flank which is nearest the center, and

proceeds gradually outwards till it ceases at the point of the

tooth. But in the follower the contrary action takes place. The

contact begins at the point of its teeth, and ends at their root.
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This is evident, since the path of the point of contact is the

sinuous line eTk.

Also, in every pair of teeth the extent of face that comes into

contact action is much greater than the extent of flank with

which it works. For, let Tg be a given length of the curve of a

tooth in the upper wheel, then, to find the required length of

flank in the lower wheel, describe with radius Bg an arc of a

circle gm, intersecting the locus of contact Tef in e
; therefore e

will be the radial distance of the first point of contact of the flank

with g, and AT Ae the length of flank through which the

action is continued ; which is manifestly less than the face Tg.
142. To find the smallest number of teeth that can be employed

when the teeth of the driver are epicycloids whose describing circle

is half the pitch circle of the follower, and the teeth of the follower
radial lines having no sensible thickness.

Radial teeth of this kind might be formed by inserting thin

plates of metal edgewise into the surface of a block, in the same

way that pins are when employed for teeth ; and this arrange-
ment falls under the second solution, as well as the last, although
the form of the teeth appears different.

In
fig. 97, B is the center of the follower, A of the driver,

Tda one of the teeth of the latter, and
Bdm* the radial tooth of the follower,

with which the face ad has been in con-

tact during its motion from T to a.

The semicircle TdB described upon
the radius TB is the locus of contact;
let the apex d of the tooth ad be quitting
contact at the same moment that the

succeeding tooth begins it
; therefore d

will lie in the semicircle Tdb, and the

base of the succeeding tooth coincide

with T.

Join bd, then comparing this figure
with

fig. 94, Art. 135, it will appear that
in

fig. 97, if b were the center of a pin-wheel, and d the pin

acting with the tooth ad, Tbd would be the pitch angle that

would cause the tooth ad to quit contact with the pin at the

moment the next began it
; but TBd is the similar pitch angle in

the case of radial teeth, and TBd= 1 Tbd.

The least number of radii, therefore, that will work with a given
* The line from d to m is obliterated in the woodcut, but can easily be supplied,

since it is the mere prolongation of Bd.

Fig. 97.
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number of epicydoidal teeth is equal to twice the least number of
pins.

The results obtained upon this principle, from the formula of
Art. 93, are as follows.

A pinion of

7 radii may be driven by a wheel of 56 teeth and upwards.
16

9 12

10 is the least number when equal numbers of teeth and radii

are employed.
9 teeth will drive a wheel of 10 radii and upwards.
8 11 .

7 12

6 12

5 16

4 24

3 teeth will drive a rack whose teeth are straight, and have

no sensible thickness.

143. Although it appears from these tables that a pinion of

three teeth will but just drive a rack, and that four is the least

that can be employed to drive a wheel, supposing the radii to be

very narrow, yet two teeth may be made to answer this purpose

very practically by fixing them in two planes, as in
fig. 98.

B represents a disk to which teeth c, c, c, ... d, d, ... are fixed

alternately on one side and on the other, the sides or rather flanks

of these teeth are straight, and radiate

in direction from the center of B ;
and

the extreme diameter of B measured

from the opposite extremities of the

teeth is equal to that of its pitch circle.

The driver is formed of a pair of double

epicycloids, of which A is in the plane
of the upper teeth c, c, c, ... and a in

the plane of the lower teeth d, d....

The describing circle of these epicy-
cloids is of course equal to half the

pitch circle of the follower. The ac-

tion of this combination is very smooth.

A pinion of one tooth communi-

cating a constant angular velocity

ratio between parallel axes appears absolutely impossible.

The endless screw is equivalent, however, as we shall see, to a

single tooth.

Fig. 98.
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Fig. 99.

144. To show the geometrical conditions that limit the employ-
ment of low-numbered pinions, when the teeth are formed in the

usual manner, as in Jig. 96.

The usual general construction and letters being made, fig. 99.

Let TBd be the angle through which it is desired that the contact

of the tooth ad should con-

tinue after passing the line

of centers. Therefore, as

the contact is now ended, the

point of contact will be at

the extremity d of the tooth.

Join Td, which will be per-

pendicular to the radius Bdm.

Join Ad. Then, since a was

in contact with m at the line

of centers, the arc Ta= Tm,
and is given, being that pro-

portion of the pitch through
which the contact of the

teeth is required to continue.

Also of is half the tooth, if

the tooth be pointed, or else,

if it be blunted by a certain

quantity, then afis half the

tooth diminished by that quantity and in either case is given.

Now ka is equal to the pitch, and must contain one tooth, and

the space between ;
and since of cannot be greater than half a

tooth, and may be less, therefore kf must contain at least half a

tooth and a space, always supposing the tooth and space to be

equal. Now for every given wheel BTm, and value of TBd, a

value of TA may be assigned that will make kf exactly equal
to a space and a half tooth, and in that case the tooth will be

pointed.
If a greater value TA, be taken, the point /will fall nearer to

a, and of will become less than half a tooth ; so that the tooth

may be blunted : but if a less value TA
lt
be taken, then the point

/will fall nearer to T, and kf will become too small to contain the

space and remaining half tooth. If the teeth of the wheel radius

TA
tl
were set out, it would be found that the epicycloidal arcs on

the two sides of df would intersect between d and /, and thus

make the tooth too short to continue its action through the re-

quired arc Ta.

Let N and n be the numbers of teeth in a pair of wheels whose
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teeth are of the kind described, and whose action after passing
the line of centers is given ; it appears then that for every value
ofN a value of n may be assigned, a less number than which will
make the action of the teeth impossible ; and it is of some practical
importance to determine these limiting values of n in every case,
that we may avoid setting out impossible pairs of numbers in
wheel-work.

145. A formula may be investigated thus : produce dT towards
G, an*d from A draw AG perpendicular to and meeting it in G\

then
n = Gd _AB

tsmGAT GT AT*

or
tan ( TBd+ TAd)_AT+BT

tan TBd A T
Xow the angle TBd and the radius BT are given by the con-

ditions, and also the arc Ta, which is the supposed arc of action
;

whence Tf is known
;

also TAd=--J-.AT
But if we attempt to extract the value of A T from the above

expression, it will be found to be so involved as to make a direct

solution of the equation impossible, although approximations may
be obtained.

However, on account of the practical importance of the question,
I have arranged in the following Tables the exact required results,

which I derived organically from the diagram of fig. 99, by con-

structing it on a large scale with movable rulers.

N. B. The case of annular wheels differs from that of spur-
wheels in this respect, that, with a given pinion a small-numbered

wheel works with a greater angle of action than a large-numbered
one, and therefore we have to assign the greatest number that

will work with each given pinion. This will easily appear if a

similar diagram to fig. 99 be constructed for the case of annular

Avheels.

146. In these Tables I have supposed the tooth of the wheel

to equal the space throughout, and have given the whole of the

limiting cases, and under three suppositions : first, that the arc of

action Ta shall be equal to the pitch, in which case, if required,

the teeth of the follower may be cut down to the pitch circle, and

the contact of the teeth thus confined to their recess from the line

of centers ;
for since the action of each pair of teeth continues

through a space equal to the pitch, it is clear that at the moment
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TABLE I.

FOB SPUR-WHEELS.

TABLE of the least numbers of Teeth that will work with given Pinions.

(Tooth= Space.)
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TABLE II.

FOB ANNULAR WHEELS.

TABLE of the greatest numbers of Teeth that will work with given Pinions

(Tooth = Space.)

Arc of action,

7iz= pitch.
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of the pitch respectively, shall take place between the teeth before

they reach the line of centers.

It appears that a smaller pinion may be employed to drive

than to follow. Thus, when the action begins at the line of

centers the least wheel that can drive a pinion of eleven is 54,

but the same pinion can drive a wheel of 21 and upwards; again,

nothin^ less than a rack can drive a pinion of ten, but this pinion

can drive a wheel of 23, and upwards. No pinion of less than

ten leaves can be driven, but pinions as low as six may be em-

ployed to drive any number above those in the Table. And,

lastly, the least pair of equal pinions that will work together is

sixteen. These limits being geometrically exact, it is better in

practice to allow more teeth than the Table assigns.

147. Other problems of the same nature as those already

given might be suggested ; as, for example, to find the least

numbers that can be employed when, without considering the

relative action before and after the line of centers, the teeth are

supposed to be drawn, as in fig. 96, with entire points both in

the driver and follower, and the tooth equal the space ;
on which

suppositions it would be found that the least possible number of

teeth in a pair of equal wheels is five, that four will just work

with six, and three with about twelve, and that two will not even

work with a rack.

148. To adapt the second solution to racks. If we suppose
the lower pitch circle of fig. 96 to become a right line, we shall

obtain a rack, and the epicycloidal faces ab of the rack teeth will

become cycloids, because their describing circle BkT now rolls

upon a right line, but the radial flanks h T of the pinion will

remain unaltered. On the other hand, when the radius TA is

thus increased to an infinite magnitude the describing circle Tfa
coincides with the pitch circle whose center is A, and they unite

in one straight line, tangent to the upper pitch circle at T',

which line is, as already stated, the pitch line of the rack. But
the curved faces To... of the upper pitch circle being thus

described by the rolling of a tangent upon its circumference, are

involutes of the circle, and the straight flanks Tc of the rack-

teeth become parallel to each other and perpendicular to its pitch
line.

Also, because Tf the locus of contact now coincides with the

pitch line of the rack, therefore the action of the faces of the

wheel-teeth is confined to that single point of each rack-tooth
which lies upon the pitch line.

Fig. 100 represents a pinion and rack constructed upon the
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above principles, from which it appears, that, supposing the rack

to be the driver, and to move in the direction of the arrow, the

locus of contact will be the _.

right line aT during the

approach to the line of cen-

ters, and the semicircle Tb

during the recess from that

line. If the pinion drive,

then the contact will take <

place
'

in the semicircle on

approaching the line of cen-

ters, and in the pitch line on receding from it. But as there is

a great disadvantage in confining the action and consequent
abrasion to a single point of the teeth, I am inclined to think

that this method of forming rack-teeth, although most universally

adopted, is bad, and that the forms derived from the succeeding
solutions will be found to wear better. Nevertheless, this injurious

action may be abridged or destroyed by cutting the teeth of the

pinion shorter, or reducing it to the diameter of the pitch circle ;

but then if the pinion drive, as it generally does, we fall into the

other difficulty of confining its action entirely to the approach
to the line of centers.

To find the length of the teeth of wheels formed according to the

second solution.

149. The length of the tooth will in all cases appear from the

setting out, according to the rules already laid down ; but it is

more convenient to have some general principles for this purpose.

It has been already stated, that the true diameter or radius of a

wheel is that which is measured from the extremities of the teeth,

in opposition to the geometrical diameter, or diameter of the pitch

circle. Let R be the radius of the pitch circle, and E the pro-

jection of the tooth beyond it, and U the true radius ; therefore

U=R+ E. Now this addition E to the radius of the pitch

circle is called by clockmakers the addendum, which term I shall,

for convenience, employ. Let r, u, e be the geometrical radius,

true radius, and addendum of a wheel, working with one of which

the same quantities are respectively indicated by R, U, E \

u r+e

As it is convenient to express the addendum in terms of the

. . / 27
pitch =-
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i A r^
let E T^

-

j , 2-rrr
K. --, and <?= A. --

,

,/V W

and as =
, we obtain

r w

u n + 27T&
'

The practice of millwrights is to employ a constant addendum
O

of x pitch, whether the wheel be a driver or follower ; putting,

therefore, K=k= .?>, we have

_= '

u w+1-885 n + 2

that is to say, to find the ratio of the true diameters of a pair of

wheels of a given number of teeth, add two to each term of the

ratio of the numbers. When the pitch is expressed according to

the method described in Art 74, where the pitch diameter of the

wheel is laid down from a scale whose unit is a tooth, the true

diameter is at once given by adding two teeth to the number.

Watchmakers assign a different value to the addendum, ac-

cording as the wheel in question is a driver or follower. Various

proportions are assigned by different writers. Our latest and
best English work* on the subject gives the rule

U_N+2'25.
~u n + 1'5

'

where U is the true radius of the driver, and u of the fol-

lower, and K, k are equal to -36 and -24, or f and nearly of

Fig. 101.

the pitch. I shall proceed to investigate a principle for these

rules, but will first state the entire general proportions which are

Reid's Horology, p. 114.



DIVISION B. BY SLIDING CONTACT. 113

at present usually given to the teeth of mill-work, and which may
be considered to have arisen almost entirely from practice.

150. In fig. 101 is represented a portion of the circumference
of a pair of mill-wheels in geer, whose pitch lines are man, and
cac\ the forms of the teeth are those generally adopted in

practice, and the rules for proportioning them are stated in frac-

tious of the pitch, thus :

o
dc Depth to pitch line= pitch.

df= Working Depth = ......

dg= Whole Depth = -Z- ......

ab= Thickness of Tooth= -- ......

/>

bc= Breadth of Space = ......

It thus appears that an allowance of pitch is made to pre-

vent the sides of the teeth from getting jammed into the spaces,

and an allowance of pitch to prevent the tops of the teeth

from striking the bottoms of the spaces. These proportions differ

slightly with different workmen and different localities.

151. The necessary length of the teeth may be assigned with

sufficient precision as follows. Vide fig. 99, p. 106.

Ad?= TA* + Td*-2TA. Td. cos A Td.

Let AT=R, BTr, and the addendum/c?= J

l

;

and let the angle TBd0. This is the angle through which

the contact will be continued after passing the line of centers,

and may be termed the angle of receding action. Substituting
these values in the above expressions, and arranging the terms,

we obtain

R

Expanding this expression by the binomial theorem, and

putting for sin the series 0- - + &c.... we may reject terms
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including the fourth power of 0, and higher powers, for 6 is a

small angle in all practical cases ; we thus obtain

It is convenient to express both the addendum and the arc of

action in relation to the pitch.

Let C be the pitch= = r
;

E=E N
V C~R X

2^r'

Let F be the ratio of the arc of action Tm (
= r$) to the pitch ;

e
F
y^

7rr 'irF

r n n

Substituting these values, we have

This is the addendum to the driver.

The addendum of the follower is obtained in the same manner,

by reversing the diagram, and considering the driver and follower

to change places ;
in which case, the arc of action Tm will be

that which takes place before reaching the line of centers. Let

e be the addendum to the follower, / the ratio of the arc of

action before reaching the line of centers to the pitch, which arc

may be termed that of approaching action ; substitute these

letters for the corresponding ones in (1), and counterchange N
for n, and we have

.

152. From these expressions rules may be obtained, by which
the addendum can be assigned in every case, by help of a few

preliminary principles.

In the first place (fig. 101), the addendum de is the projection of

the tooth beyond the pitch circle, and there must be an extent

of tooth or flank ef within the pitch circle sufficient to receive the

corresponding projection of the tooth with which the wheel is

acting, as well as a small additional space fg to prevent the

teeth of one wheel from striking the bottom of the spaces of the
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other ;
the entire depth or rather length of a tooth is made up,

therefore, of the sum of the addenda of the driver and follower,
added to this allowance for clearing, which in practice is made

- of the pitch and termed freedom ;

.-. whole length of tooth=E+e + C
~,

It is essentially necessary that each pair of teeth should con-

tinue
/
in action until the next pair have come into contact,

therefore the sum of the arcs of approaching and receding action,

must be at least equal to the pitch, that is, F+f=l. But it is

better that they should continue in action longer than this, in

order to divide the working pressure between more teeth, as well

as to prevent the chance of one tooth escaping before the next

begins. It is therefore unnecessary to proportion the addendum
so accurately as to give the entire arc of action a constant length.
It is merely required to find a value that will be sufficient in all

cases to prevent the teeth from escaping too soon. Now the ex-

pression (1) shows at once that the greatest addendum is re-

quired for the smallest numbers of teeth when the arc of action

is given ;
and hence a rule assigned for the small numbers will

serve for all cases.

If equal wheels of 1 5 work together with an arc of receding
action of f x pitch, the expression (1) will give JT='28 for the

necessary addendum; therefore the millwrights' value (K='3)
is sufficient for all cases of higher numbers than 15. But for

smaller numbers the addendum will be greater and must be

calculated. For example, the limiting cases in the Table,

(page 108) will all be found to require a much greater addendum,

varying from about '63 to '5, in the different examples.

153. The arc through which the action of the teeth is con-

tinued is governed by the magnitude of the addendum ; and as

the arc of approach depends on the addendum of the follower,

and the arc of recess on the addendum of the driver, we are at

liberty to give these arcs any required proportion by properly

adjusting these addenda.

Now, considering merely that the friction which takes place

before the line of centers is of a different and more injurious

character than that which happens after passing that line,* it

would seem that the best method would be to exclude altogether

any action between the teeth until the line of centers is passed,

by giving no addendum to the follower whatever; thereby

* ride Chapter on Friction below,

i 2



116 ELEMENTARY COMBINATIONS.

making its true diameter equal to its geometrical diameter. On
the other hand, it has been shown (Art. 32), that the quantity

of friction in both cases increases rapidly with the distance of the

point of contact from the line of centers. If the action be

entirely confined to one side of the line of centers, it must be

continued to a proportionably greater distance from that line,

and so the teeth at the extremity of their action may incur

greater abrasion and friction than they have lost by avoiding

contact before the line of centers.

The best method, then, is to adjust the addenda so that there

shall be less action before coming to the line of centers than after

it ; but the exact proportion between these arcs of action cannot

be assigned for want of proper data; for although the fact is

certain, no experiments have been hitherto made to compare
these two kinds of friction.

154. To examine the effect of a constant addendum upon the

ratio of the arcs of approach and recess, put E=e in (2) ;

When equal wheels work together, or N= n, then f F, or

the arcs of action before and after the line of centers are equal.

When a wheel drives a pinion, N is greater than n, and /greater
than F ;

but if a pinion drive a wheel, then n is greater than N,
and .Fthan/. In the first case, there is more action before the

line of centers than after it, and in the second, the reverse. It

appears, then, that the constant addendum of the millwrights

produces an effect exactly contrary to the principles just laid

down, in every case except that of a pinion driving a wheel
;
and

this is one reason why the action in this case is so much smoother

than when a wheel drives a pinion. In fact, any rule that fixes tlio

proportion of the addenda will make the ratio of the two arcs of

action vary exceedingly. However, it appears from the expression

2N+n

that the ratio of the addenda is constant when the ratio of the

arcs of action and also of the number of teeth is constant ; if,

therefore, the ratio of the arcs of action is determined, a small

table will give the ratio of the addenda corresponding to the

principal ratios of numbers of teeth.
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E .

The following table of values of is calculated for three

different ratios of the two arcs of action
; namely, supposing them

to be equal, double, or in the proportion of about 2 to 3.

Eack follows.
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driver, and to the follower ;
and may safely be adopted when

the wheels drive, or if the wheels be equal ; but when the pinion

drives, then

P=^l5
, or ^=^, will be better.

u n+1.5 u n+ 2

To apply the third solution (Art. 119) to the formation of the

teeth of wheels.

155. Teeth whose forms are derived from the previous solu-

tions, and especially the latter, are the most commonly adopted in

practice; but they are subject to this inconvenience : a wheel of

a given pitch and number of teeth, for example 40, if it be made

to work correctly with a wheel of 50 teeth, will not suit a wheel

of any other number, as 100. This is obvious, for the diameter

of the describing circle by which the epicycloid is traced must be

made equal to the radius of the pitch circle of the wheel with

which the teeth are to work, and will therefore be, in this ex-

ample, twice as large in the second case as in the first, producing
different epicycloids.

In the modern practice of making cast-iron wheels this ob-

jection is a very serious one, as it compels the founder to make a

new pattern of a wheel of a given pitch with 40 teeth, for every
combination that it may be required to make of such a wheel

with others ; and so on for wheels of every other number.

Besides, it often happens in machinery that one wheel is

required to drive at the same time two or more wheels whose
numbers of teeth are different, and in this case the teeth cannot

be correctly formed at all on the principles hitherto explained.
In cast wheels, then, it is especially essential that the teeth

should be shaped so as to allow a given wheel to work correctly
with any other wheel of the same pitch ; and this may be done

by employing the following corollary from the third solution.*

156. If for a set of wheels of the same pitch a constant

describing circle be taken and employed to trace those portions of

the teeth which project beyond each pitch line by rolling on the

exterior circumference, and those which lie within it by rolling
on its interior circumference, then any two wheels of this set will

work correctly together.
157. Fig. 102 represents a pair of wheels of such a set.

Here A, B are the centers of motion as usual. TdD or TyG
the constant describing circle. This is employed to trace the

* Transactions of Civil Engineers, vol. ii. p. 91, in which I stated this principle
for the first time.
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faces or portions of the teeth that lie beyond the pitch circle FTf
of the driver, as qr, by rolling upon it, and the flanks or portions

that lie within the pitch circle ETe of the follower, as pm, by

rolling within it
; consequently, by the third solution, these

curves will work together with a constant velocity ratio, and the

describing circle TdD will be the locus of contact ; which begin-

ning upon the line of centers between the point r of the driving

tooth, and the point m of the following tooth, will gradually

recede from the driver's center A, and approach the follower's

centre B ; the teeth finally quitting contact at the point q of the

driver, and the root p of the follower, their action being confined

to their recess from the line of centers.

In the same manner, the same constant describing circle at

TgG is employed to trace the flanks rs which lie within the pitch

circle FTfot the driver, and the faces mn which lie without the

pitch circle ETe of the follower; TGg will be the locus of

contact which begins between the root s of the driver and the
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point n of the follower, and is confined to the approach of the

teeth to the line of centers.

But as a constant describing circle is used for the whole set, it

is clear that this demonstration will apply to any pair of the

wheels that may be placed in action together ;
for whether the

point of contact lie on one side or other of the line of centers, we

have an epicycloid working with an hypocycloid, and both have

been drawn by the same describing circle ; that is, by the constant

circle of the set. Also any wheel may be taken either for a

driver, or a follower.

158. Nevertheless, the diameter of the describing circle must

not be made greater than the radius of the pitch circle of any of

the wheels, as the effect of this would be to produce a tooth

much smaller at the root than at the pitch circle
;
a fault which

is partly incurred in the common form where the describing circle

is equal in diameter to the radius of the pitch circle, as in fig. 96 ;

for as the flanks of the teeth are radial, they are nearer together

at the root of the tooth than on the pitch circle.

On the contrary, when the describing circle is less in diameter

than the radius of the pitch circle, the root of the tooth spreads,

as in fig. 102, and it acquires a very strong form. Nevertheless,

if this be carried to excess by making the describing circle too

small, the curvature of the epicycloidal faces will be injuriously

increased, and the teeth become too short. The best rule appears
to be, that the diameter of the constant describing circle in a

given set of wheels shall be made equal to the least radius of the

set.

159. With respect to the length of the teeth, that may in

every case be determined by construction, thus :

Since TdD is the locus of contact, take Th equal to the arc of

the pitch circle, through which it is required that the teeth shall

remain in contact after passing the line of centers, that is, to the

arc of receding action. Describe the hypocycloidal arc lid, then

will d be the last point of contact ; consequently, Ad the true

radius of the driver, and dh the necessary length of the flank of

the follower. A similar construction on the other side of the

line of centers will give the length of the follower's teeth and the

flanks of the driver.

160. Otherwise the necessary length may be computed in a

similar manner to that of Art. 151 ; for comparing fig.
102 with

fig. 99, it will appear that the diameter TD of the describing
circle in

fig. 102 is equivalent to the diameter TBof the follower

in
fig. 99 ; and since Th, the arc of action in fig. 102, is equal
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to the arc Td, that is, to TD x angle TDd, we shall obtain for

the driver, exactly as in Art. 151, the formula

where ^ is the number of teeth which belongs to a wheel whose
radius is the diameter of the constant describing circle : and for

the follower

2
.

I'

161. But as the wrheels in question constitute a set, any pair

of which are expected to work together, there can be no different

proportions for driver and follower, since any wheel may be

called upon to perform either function. Recollecting, therefore,

that if the addendum of a wheel be too small, the teeth will quit

hold of each other too soon, but that too large an addendum
introduces no other inconvenience than an unnecessary length of

tooth, we may find the necessary addendum for the set thus.

E_
c-

is the general formula for the addendum to every wheel in the

set, in which as N decreases, E increases ;
but the smallest value

of iV, by Art. 151, is
jJVj ;

is the greatest necessary value of E. Let the smallest wheel of

the set have 16 teeth, and let the arc of action equal pitch.

Then it will be found that the usual constant addendum of T
3 of

the pitch may be safely used for wheels of 19 and upwards, but

that a greater addendum must be given to the wheels 16, 17, and

18 ;
the first requiring about f of the pitch.

162. But it was also shown in Art. 154, that the practice of

employing a constant addendum under the second solution had

the mischievous effect of making the arc of action before the line

of centers greater than the receding arc. To examine the effect

of the constant addendum in the present system :

Let F, f be the arcs of action of two wheels, N, n their

numbers of teeth :
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which shows that the arc of action that belongs to the greater

number of teeth is the greater of the two ; so that when a con-

stant addendum is employed, if the wheel drives the pinion, the

arc of action after the line of centers is greater than that before

that line, and vice versa
;
which is the reverse of what happens

in the second solution, and removes the objection to the constant

addendum in the first case, but introduces it in the second.

Of course, the most complete system would be to make two

sets of wheels, one for each case, with the addenda separately

calculated for each ; but the increase of expense occasioned by
the making of two patterns for each wheel is sufficient to prevent
the practical use of such a system, unless in very particular

instances.

163. The smallest numbers of teeth that this system admits

of may be derived from the same Table that has been given for

the radial teeth. For fig. 99 applies also to this case, in the

manner explained in Art. 160, if BT\>z the diameter of the

describing circle. To apply the Table, page 108, the numbers

that indicate Followers must be interpreted as denoting the

number of teeth that would correspond to a wheel whose radius

equals the diameter of the describing circle.

Example. The arc of receding action is equal to the pitch,
and the describing circle corresponds to a wheel of twelve teeth.

Fig. 103.

Thirty teeth is the least wheel that will drive, and of course a

wheel of any number greater than this may be employed. But
if the arc of action equal of the pitch, then the same describing
circle being employed, any number of teeth greater than twelve

may be used, and so on.
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1 64. To apply the third solution to racks (fig. 103). When rack-

teeth are formed, as in the usual manner, according to the second

solution, by making their flanks straight and the teeth of the

pinions involutes, we have seen that the action on one side of the

line of centers is confined to a constant point in each rack-tooth,

because the pitch line of the rack is the locus of contact. This

may be avoided by taking any describing circle Tkm, and em-

ploying it to describe cycloidal flanks, as no for the rack-teeth,

by rolling on its pitch line n T, and then by describing the faces

of the teeth of the wheel with the same describing circle, in which

case the contact will no longer be confined to the pitch line of

the rack, but will be found in To
;
and will consequently be

distributed over the distance on, which may be made as small as

we please by increasing the diameter of the describing circle. If

the circle Tmk be the constant describing circle of a set of

wheels, then any one of them will work with the rack.

Fig. 104.

To apply the fourth solution (Art. 120) to the formation of the

teeth of wheels.*

* The involute was first suggested for this purpose by Euler, in his second paper on

the ' Teeth of Wheels.' N. C. Petr. xi. 209.
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165. Involute teeth differ from the epicycloidal teeth derived

from the second and third solutions, in having the entire side of

the tooth, both face and flank, formed of a continuous curve;

whereas, as we have seen, the side of an epicycloidal tooth is

made up of two different curves joined at the pitch circle.

Fig. 104 represents a pair of wheels with involute teeth. A, B
the centers of motion, T the point of contingence of the pitch

circles ; BE, AD the radii of the bases of the involutes, ED
their common tangent, and therefore the locus of contact of the

teeth. As in the teeth already described, the contact lies within

the pitch circle of the driver during the approach to the line of

centers, and within that of the follower during the recess from

that line.

Referring to
fig. 84, page 88, it appears, that as the action of

the curves begins at D, and T is the point of contact at the line

of centers of the teeth TH and TG ; therefore TH must have

moved through an arc DH in its approach to that line. But
DT=arc DH, since TH is an involute of DH; .-. angle of

action before the line of centers, or

DA~DA'
and the arc of action upon the pitch circle

DA
In like manner, as the tooth TK recedes from the line of

centers until it finally quits contact at E, it can be shown that

this receding arc of action upon the pitch circle

BE

. approaching arc_A T x DT x BE_A T_DA
receding~arc BTxTETyTDA

~
B T~~ 13E'

The arcs of action in a pair of involute teeth before and after

the line of centers are therefore in the direct proportion of the

radii of the bases of the driver and follower respectively. This
of course supposes that the teeth are each made sufficiently long
to extend to the base of the opposite tooth, as at mE, fig.

104.

166. However, by reducing the length of the teeth the quantity
of action may be altered at pleasure. For example, in the tooth

FH, fig. 104. With radius BH and center B, describe an arc of
a circle cutting DE in h; then, supposing as before, that the
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lower wheel is the driver, h will be the first contact, and it can
be shown, as in the last Article, that the actions before and after
the line of centers are as hT to TE.

167. Although the contact action of the teeth is confined to
the outside of the bases, yet it is necessary, as in epicycloidal
teeth, to form clearing curves (Art. 98) within the bases; for

example, the nearest point of contact of the tooth mE to the
center B, is E

; but if we describe with radius AE and center A
an arc JEk meeting the line of centers in k, then k will be the
nearest approach of the point of the tooth E to the center B, and
a clearing hollow must be formed within the base circle, whose
depth is at least equal to k, as shown in the figures.

168. The two pitch circles being given (fig. 104), and the

required angle of action TBE, the radii of the bases are easily
found; forBE=BTxcos TBE.

Comparing the diagram A TBE of fig. 104 with A TBd in
fig.

99, it will appear that they are identical in their relations to the

teeth, and that the same formula (Art. 151)

will apply to the involutes, but only at the points E or Z>, when
the contact coincides with the bases. They will therefore give
the addendum required to enable the teeth to continue their

action to the base of the opposite wheel, but will not apply to all

other positions of contact as they do for epicycloids.
169. The plan of this work excludes the examination of the

relations of pressure ; but in this case, it is necessary to remark,
that a great objection to involute teeth is founded upon the

obliquity of their action, by which a much more considerable

divergent pressure is thrown upon the axes than in the other

forms of teeth. The action of epicycloidal teeth is, in fact,

perpendicular to the line of centers at the instant of crossing it
;

but that of involute teeth is constantly in the direction of the

common tangent of their bases, and is therefore oblique to the

line of centers.* This injurious property is balanced by the

advantages that a variation of the distances of their centers does

not destroy the action of the teeth, and that any two wheels of

the same pitch will work together; but this last property, I

have shown (Art. 156) to be possessed also by some arrangements
of the epicycloidal teeth. In smaller machinery, constructed

* In fig. 104 the arc of action and obliquity are made, for the sake of distinctness,

greater than would be necessary in practice.
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rather for the modification of motion than for the transmission of

force, this oblique action ceases to be objectionable, and the other

advantages of involute teeth will then recommend them in pre-

ference to all others.

Such teeth manifestly possess greater strength of form than

epicycloidal teeth, at least than those with radial flanks, and I

shall proceed to show that they admit of a greater reduction of

back-lash than any other kind.

170. For in fig. 104, suppose the teeth to be so described that

no back-lash exists, that is to say, that both sides of the acting

teeth are in contact at once, which is theoretically possible, in

all forms of teeth, when they are symmetrical to a radius, but

which, as already stated (Art. 131), is not possible in practice,

because a slight error in excess, in the form of any tooth, would

cause it to wedge itself fast into its corresponding space.

Now if the distance of the centers of these wheels be increased,

this double contact will be destroyed, although the action of the

teeth in effecting a constant velocity ratio will not be impaired.
A back-lash will therefore be introduced, which will be the

greater the more the wheels are withdrawn from each other.

In any given pair of involute wheels, therefore, we can, by
properly adjusting by trial the distance of their centers, reduce

the back-lash to the least quantity that will allow the teeth to

act without jamming. This advantage is possessed by no other

form, and particularly recommends these teeth for dial-work, or

any such kinds of mechanism in which the back-lash is mis-

chievous.

171. To apply involutes to rack-teeth.

Fig. 105.
Describe a pitch circle (fig.

105), radius B T, and draw A C a

tangent at T for a pitch line to

the rack
;

let the circle whose
radius is BE be the base of an

involute JEF, and let the tooth

of the rack be bounded by a

straight line EGH, making an
F

angle EGA with the pitch line

equal to BTE. If the involute

be moved to ef, it will drive the

sloped tooth to gh, always touch-

ing it in the line ETh; and the

velocity of the circumference of
the pitch circle will always equal that of the pitch line : for
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Eh
sm

also Eh= arc Ee, by the property of the involute

G3 jEGT'

= arc mn x sin BTE
;

= arc mn x sin EGT\ .. Gg= arcmn.

This may be shown from
fig. 104, page 123. For let the radius

of the wheel A T become infinite, then will the pitch line be a

straight line passing through T, and touching the pitch circle of
the wheel whose center is B, Ei 1Q6
and the involutes GH, Em will

become right lines perpendi-
cular to the line ETD. Thus
is obtained a rack with straight-
sided slopingteeth, as in fig. 106.

Hence a wheel with involute

teeth will work with a rack

whose teeth are straight-sided
and inclined to the pitch line at an angle 6, provided

radius of base . a
T.
-

. =sm 6.
radius of pitch circle

In such a rack, the locus of contact being the tangent line

JETk, the contact will not be confined to a single point of the

tooth, as it is in the common involute rack teeth (Art. 148),
which are derived from that particular case of this figure, in

which the radius of the base coinciding with that of the pitch

circle, the line ETh coincides with the pitch line of the rack.

But a rack with sloping teeth will be pressed downwards by
a resolved portion of the working pressure, and this appears
to me to be in many cases advantageous, and destructive of

vibration.

To approximate to the trueform of a tooth by arcs of circles.

172. The portion of curve employed in a tooth is so short,

that a circular arc may be substituted for it with sufficient ac-

curacy for all practical purposes, if its center and radius be de-

termined upon correct principles.

In fact, practically the edges of teeth are always made arcs of

circles, but unfortunately, these arcs are often struck from the

merest empirical rules, such as setting the point of the compasses

in the pitch line on one side of the tooth, in order to strike the
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other, and vice versa, or similar absurdities.* Teeth have even

in the old time been set out by forming their edges into semi-

circles struck alternately without and within the pitch circle;

these are technically known by the name of hollows and rounds.

Some millwrights with equal neglect of principle gave their

teeth plane faces passing through the axis of the wheel, ex-

pecting them to wear themselves in a short time into proper

forms. But the best workmen endeavoured to give to their

wheels teeth of the epicycloidal form, according to the rules laid

down in Camus,f or in Buchanan's Treatise on Millwork,| which

are immediately derived from Camus. In truth, the question is

one of great practical importance ; I do not mean to say, that it

is necessary, or even practicable, to shape the teeth of small

wheels into exact epicycloids or involutes, such as those which

have been described in the preceding pages; but I do assert,

that unless the rules for shaping them be derived from such con-

siderations, so as to approximate their form to the true ones, as

nearly as possible, that the action of the machines will be ir-

regular and noisy, producing those vibrations which must be

familiar to all who have been in the habit of examining

machinery, and which are above all things conducive to the

wearing out and disintegration of every part of the mechanism.

The investigation of the proper curves for the teeth of wheels is,

therefore, by no means one of mere curiosity, although this has

been sometimes hastily asserted. One proof of the necessity of

attending to the exact theoretical forms, is the acknowledged

impossibility of making one wheel to work with two others

whose numbers of teeth are different, by means of the usual

rules.

173. The method employed by the best woi'kmen for shaping
the teeth of a proposed wheel, or of a pattern from which to cast

one, is as follows :

The shape of a single tooth adapted for this wheel is traced in

the true epicycloidal form, by means of templets, that is, of a

pair of boards whose edges are cut to the curvature of the pitch

circle, and describing circle respectively, and which may be

termed the pitch templet and the describing templet. The latter

carries a describing point in its circumference, and by rolling its

edge upon that of the pitch templet, the arc required for the face

of the tooth is traced upon the drawing board.

* Vide Imison's School of Arts, or Gray's Experienced Millwright.
t Camus on the Teeth of Wheels, 1806 and 1837. J 1808, 1823, and 1841.

J5
If the method I have recommended under the third solution (Art. 1 14) be adopted,
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This done, the workman finds with his compasses, by trial, a
center and small radius, by which an arc of a circle can be
described, that will coincide, as nearly as he can manage to make
it, with the templet-traced epicycloid.

Then, having struck upon the fronts of the rough cogs a circle

which is concentric Math the pitch circle, and whose distance from
it is equal to that of the center of his small arc, he adjusts his

compasses to the small radius, and always keeping one point in

the circle just described, he steps with the other to each cog in

succession, they having been previously divided into equal parts cor-

responding to the given pitch and breadth of the teeth ; upon each

cog he describes two arcs, one to the right and one to the left,

which serve him as guides in shaping and finishing the acting faces.

174. The practical convenience of this method was very great,
and required only a more commodious and certain method of

determining the center and radius of the approximate arc.

The first method that suggests itself, is to find the center and
radius of the circle of curvature at some intermediate point be-

tween the extremities of the curve selected for the teeth, and to

substitute an arc of this circle in lieu of the actual curve. But
the determination of the required circles may be effected upon

general principles, without taking individual curves into the

considerations. In fact, Euler, in his elaborate paper on the

Teeth of Wheels,* undertook to investigate a general expression
for curves that possess the property of revolving in contact with

a constant velocity ratio, which he effected by determining
the relation between their radii of curvature ; and suggested
that in practice small arcs of the circles of curvature thus ob-

tained would probably suffice for the sides of teeth. He ac-

cordingly gave some geometrical constructions for this purpose,

but the hint thus supplied was neglected by every subsequent

writer, probably because the numbers of teeth given to wheels in

the eighteenth century were proportionally much smaller than

in our own time, and consequently the teeth larger, and the

length of curve required for each too great to admit of a sufficient

coincidence with a circular arc, for practice.

The general introduction of cast-iron wheels at the beginning

of the present century enabled a much greater number of teeth

then one describing templet will serve for the entire set
;
but since this templet is

required to trace hypocycloids for the flanks, as well as epicycloids for the faces, every

pitch templet must have a convex and a concave edge, both shaped into an arc of the

pitch circle of the wheel in question. The concave edge is not required upon the

common system (Art. 140), because the flanks are radial lines.

* Nov. comm. Petr. ix. 209. A.D. 1767.

K
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to be assigned to a toothed wheel of a given magnitude, and

proportionally reduced the length of their acting sides, so that

the circular approximation was rendered practically possible.

Perceiving this fact, I endeavoured in 1838 to follow out the

views suggested by Euler's paper, and finally succeeded in

discovering a practical method of finding a pair of centers with

appropriate radii, for any given pair of wheels, by means of an

instrument which I denominated an Odontograph. This instru-

ment dispenses with all geometrical calculations and has been

extensively employed in practice from the time of its publication

in my paper
' On the Teeth of Wheels 'in the Transactions oj

the Institution of Civil Engineers, vol. ii. 1838. The substance

of that communication occupies the following pages.

Fig, 107.

Fig. 108.

175. A simple construction is sufficient to give the centers

and radii of the arcs in any required case. For it has been
shown (Art 30, COR. 5) that the action of a pair of curves by con-

tact is equivalent at every moment to that of a pair of radii AP,
BQ (fig. 108) connected by a link PQ, P and Q being the re-

spective centers of curvature of the curves at the point of contact.

Now (fig. 107; the angular velocity ratio between the radii AP,
BQis that of the segments BT \ AT, into which the link divides

the line of centers (Art. 32); and if the rods be moved into a

new position, this ratio becomes Bt: At, which is greater or less

than the former, according as the point t moves to one side or

other of the point T.

But if the point L, which is the intersection of two successive
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positions of the link, happen to coincide with T, the ratio of the

segments will be the same in both positions, and the angular

velocity ratio constant at that instant.*

If then the rods and links of fig. 107 be placed in such a relative

position that L and T may unite, and the curves in contact be

replaced by arcs of circles described from centers P and Q
through any point M of the line PQ, the angular velocity ratio

of these curved pieces will be perfectly constant at the moment
of their reaching the position that makes M the point of contact,

and the ratio will not vary essentially during a small angular
motion on each side of this position.

176. As this constancy of the velocity ratio depends only upon
the centers of the arcs, they may be struck through any common

point of the line of action PQ, as at TO, beyond both the centers.

Only that if this point lie between the centers P, Q, as at M,
the arcs and edges will be convex, but if the point lie beyond the

centers, as at m } the edge corresponding to the most distant

center P, will be concave.

177. It follows, that to find a pair of centers that possess the

property of communicating motion in a constant velocity ratio, it

is only necessary to construct the diagram (fig. 107) in such a

manner, that the point L shall fall on the line of centers. But

(by Art. 30, Cor. 5), L is that point of PQ which is met by a

perpendicular from K, the intersection of the directions of the

radius rods AP, BQ. Whence the following construction.

Let A, B be the centers of motion of the wheels, T the point

of contingence of the pitch circles; through T draw PTQ
* Vide note, p. 18, above.

K 2
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making any angle with the line of centers, and upon it assume P
as a center, from which the circular side is to be described for a

tooth of a wheel whose center of motion is A. To find the

corresponding center for the wheel which turns upon B, draAv

TK perpendicular to PTQ, produce AP to meet it in K, join

KB and produce it to meet PTQ, in Q ; then will Q be the

required center.

And a small arc mn, struck from P as a tooth for the wheel

whose center of motion is A, will work correctly with an arc mp,
struck from Q through m, and employed as a tooth to the wheel

whose center of motion is B.

If B be so placed that the angle KBT is acute, as for example
at B', then will Q fall at Q' on the same side of T as P, but

beyond it
;
the effect of this is to make the tooth mp concave

instead of convex.

But if the angle KBT=PTA, KB will become parallel to

PT, and the point Q being thus removed to an infinite distance,

the arc mp or tooth of the wheel whose center of motion is B,
will be a right line perpendicular to PT.

178. The distance of the centers from 77

may be calculated as

follows.

Draw AR perpendicular to PT.
Let KT=C, AT=R, PT=D, ATP=6, then by similar

triangles, ARP, PTK,
Tx AR= PTxAR
PR TR-PT'

c^ PR . sin 6
. . D EC cos

R.coa 0-D* C+Rsin tf

and similarly, drawing BS perpendicular to TQ, and putting

BT=r, QT=d,
we have for the corresponding arc mp,

d_ rC cos~
C+r sin 0'

But if a concave tooth be employed, draw B' S' perpendicular to

PTQ, then

xT=%l*%. whence d= Crc se
-

Q'T+TS" rsintf-C

179. If the side of the tooth be made to consist of a single arc,
a very simple rule may be obtained; for suppose KT to be
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infinite, then will AP and SQ become perpendicular to the line

PTQ, and the points P, Q Avill come to R, S respectively. Let
the arcs of the teeth be struck through T, let 6 be the angle
A TP, which the line PTQ, makes with the line of centers, and
let R be the radius A T of the wheel, and D= TR be the required
distance of the center of the tooth from the point T ;

.-. D=R cos 6

is independent of the wheel with which it is to work, as well as of

the pitch and number of teeth of its own wheel.

If therefore 6 be made constant in a set of wheels, any two of

them will work together, and their teeth are easily described as

follows. Assume 6=75 30', which is a very convenient value ;

for cos 75 30'= -25038= very nearly.
180. Let A be the center, A T the radius of the pitch circle of

a proposed wheel. Draw TP making an angle A TP of 75 30'

Fig. 110.

with the radius, and drop a perpendicular AP upon TP (or
A nn\

describe a semicircle upon AT and set off TP=~
J,

then will

P be the center from which an arc op, described through T, will

be the side of the tooth required.

On more conveniently, let a bevil of 75 30' be made of brass

or card-paper, as in the figure, of which the side TP is graduatedp , -** ... i ii i i

into a scale ot quarter-inches and tenths. If this bevil be laid
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upon the radius A T, so that its point T coincides with the pitch

circle, the center point P will be found at once, by reading off

the radius of the wheel in inches upon the reduced scale. Thus

the radius AT in the figure, is two inches long, and the point P
is found at 2 upon the scale.

To describe the other teeth, draw with center A and radius

AP, a circle within the pitch circle, dotted in the figure, this will

be the locus of the centers of the teeth ; then having previously

divided the pitch circle, take the constant radius PT in the com-

passes, and keeping one point in the dotted circle, step from tooth

to tooth and describe the arcs, first to the right and then to the

left, as for example, mn is described from q and p O from P.

If Op were an arc of an involute having the circle Ppg for its

base, PT would be its radius of curvature at T. These teeth,

therefore, approximate to involute teeth, and they possess in

common with them the oblique action, the power of acting with

wheels of any number of teeth, and the adjustment of back-lash ;

but, as the sides of the teeth consist each of a single arc, there is

but one position of action in which the angular velocity ratio is

strictly constant, namely, when the point of contact is on the line

of centers.

181. By making the side of each tooth consist of two arcs

joined at the pitch circle, and struck in such wise that the exact

point of action of the one shall lie a little before the line of

centers, say at the distance of half the pitch, and the exact point
of the other at the same distance beyond that line, an abundant

degree of exactitude will be obtained for all practical purposes.
To describe the teeth of such a pair of wheels, let A (fig. Ill)

be the center of motion of a proposed wheel, B the center of mo-
tion of the wheel with which it is to work, T the point of contin-

gence of the pitch circles. Draw QTq making an angle of 75
with the line of centers. (This angle is in fact arbitrary, but

by various trials I find 75 to give the best form to the teeth.)
Draw kTK perpendicular to Q Tg, and set off TK and Tk

equal to each other, and less than either A T or TB. Join AK
and BK, producing the latter to Q, then P and Q are a pair of

tooth-centers. Take a point m on the pitch circle a Te, at the

distance of half the pitch from T, and on the opposite side to the

tooth-centers. A convex arc struck from P through m on the

outside of this pitch circle will work correctly with a concave arc

struck from Q through the same point, and within the other

pitch circle.

To describe the faces of the teeth of the lower wheel we may



DIVISION B. BY SLIDING CONTACT. 135

proceed as in the last example, thus : draw with center A a circle

through P, which will be the locus of the centers of the small

arcs ;
and having previously divided the pitch circle for the

reception of the teeth, take the constant radius Pm in the com-

passes, and keeping one point in the circle Pf, describe the faces

Fig. 111.

of the teeth to the right and left outside the pitch circle, as shown

in the figure at t and s.

A similar proceeding will give the flanks of the teeth of the

upper wheel.

To obtain the flanks of the lower wheel and faces of the upper
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wheel, join Bk and Ak, producing the latter to q, then will p and

q be another pair of centers, from which let arcs be struck through
a point n, at the distance of half the pitch beyond T, but within

the pitch circle of A and without that of B. The action of these

arcs will be exact at the distance of half the pitch from T.

To complete the teeth of the lower wheel already begun,
describe from A with radius Aq, a circle for the locus of the

centres of the flanks of these teeth, and with the constant radius

equal to qn step from tooth to tooth, describing the flanks in the

manner shown in the figure, as at r and q.

182. From the construction it appears that these teeth of the

lower wheel would work correctly with a wheel of any radius,

provided the points K and k remain constant ;
for a change in the

position of B, on the line of centers, only affects the points Q, p,

which belong to its own teeth, but does not disturb the points

P, q, from which the teeth of the lower wheel have been de-

scribed.

In short, if any number of wheels be in the above manner

described, in which the lines Qq, Kk, preserve the same angular

position with respect to the line of centers and the same distances

KT, k T, then any two of these wheels will work together. The
distance KT may be determined for a set of wheels by considering
that if A approach T, Aq becomes parallel to Tq, and q is at that

moment at an infinite distance ; the flank of the tooth becoming
a right line perpendicular to Tq. If A approach still nearer, q

appears on the opposite side of T, and the flank becomes convex,

giving a very awkward form to the tooth.

The greatest value therefore that can be given to KT, must be

one which when employed with the smallest radius of the set,

will make Aq parallel to Tq ; therefore if R
t
be this smallest

radius, we have

KT^RjXsm QTA, or C=R, x sin 0;

which substituted in the formula (Art. 178), gives

.

ft, + -H R R
f

183. By assuming constant values for R, and 6 in a set of

wheels, the values of D and d which correspond to different

numbers and pitches, may be calculated and arranged in tables

for use, so as to supersede the necessity of making the con-
struction in every case. Thus the tables which follow in fig. 112
were obtained by assuming twelve teeth as the least number to
be given to a wheel, and = 75.
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THE ODONTOGRAPH.

137
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The unit of length in which the values of D and d are ex-

pressed is one-twentieth of an inch, that being sufficiently small

to avoid errors of a practical magnitude.
The reduction of this system to a divided scale is necessarily

more complex than when a single arc only is employed. But, as

above stated (p. 130), I contrived in 1838 for that purpose, the

Odontograph, which I will now describe. This instrument is at

present very generally employed as well in England as on the

Continent,* as the works quoted in the note will show, and, as I

am informed, with complete success.

Fig. 112 represents the Odontograph exactly half the size of the

original ;
but as it is merely formed out of a sheet of card-paper,

this figure will enable any one to make it for use. The side

NTM which corresponds to the line Q T q in fig. Ill, is straight,
and the line TC makes an angle of exactly 75 with it, and

corresponds to the radius A T of the wheel. This side NTM is

graduated into a scale of half inches, each half inch being
divided into ten parts, and the half inch divisions are numbered
both ways from T.

184. One example will show the mode of using this instrument.

Let it be required to describe the form of a tooth for a wheel of

29 teeth, of 3 inches pitch. De-
scribe from a centre A, fig. 113,
an arc of the given pitch circle,

and upon it set off DE, equal to

the pitch, and bisected in m.

Draw radial lines DA, EA. For
the arc within the pitch circle

apply the slant edge of the in-

strument to the radial line AD,
placing its extremity D on the

pitch circle, as in the figure. In

the Table headed, Centers for the

Flanks of Teeth, look down the

column of 3 inch pitch, and op-

posite to 30 teeth, which is the

nearest number to that required,
will be found the number 49. The point g indicated on the

drawing-board by the position of this number on the scale of

equal parts, marked Scale of Centers for the Flanks of Teeth, is

* Vide Laboulaye, Cineinatique, 1861, p. 221. Bour, Cours de Mecanique,
p. 206. De la Goupilliere, Traite dcs Mecanismes, 1864, p. 111. Weisbach, 'Die

Meckanik, 3ter Theil, 1860, p. 125, &c.

Fig. 113.
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the center required, from which the arc mp must be drawn with
the radius gm.

The center for the arc mn, or face, which lies outside the pitch
circle, is formed in a manner precisely similar, by applying the
slant edge of the instrument to the radial line EA. The number
21 obtained from the lower table, will indicate the position /of
the required center upon the lower scale. In using the instru-

ment, it is only necessary to recollect, that the scale employed
and the point m always lie on the two opposite sides of the radial

line to which the instrument is applied.
The curve nmp is also true for an annular wheel of the same

radius and number of teeth, n becoming the root and p the point
of the teeth. For a rack, the pitch line DE becomes a right
line, and DA, EA, perpendiculars to it, at a distance equal to

the pitch.

185. Numbers for pitches not inserted in the tables may be
obtained by direct proportion from the column of some other

pitch : thus for 4-inch pitch, by doubling those of 2-inch, and for

half-inch pitch by halving those of inch pitch. Also, no tabular

numbers are given for twelve teeth in the upper table, because

within the pitch circle their teeth are radial lines.*

* In fact, in the actual instrument I have inserted columns for \, -|, J, -|, J, and 3 \

pitch, which are omitted in fig. 112 for want of room, and are indeed scarcely necessary,
as the numbers are so easily obtained from the columns given.

It is unnecessary to have numbers corresponding to every wheel, for the error pro-
duced by taking those which belong to the nearest as directed, is so small as to be un-

appreciable in practice. I have calculated the amount and nature of these errors by
way of obtaining a principle for the number and arrangement of the wheels selected.

It is unnecessary to go at length into these calculations, which result from very simple

considerations, but I will briefly state the results.

The difference of form between the tooth of one wheel and of another is due to two

causes, (1) the difference of curvature, which is provided for in the Odontograph by

placing the compasses at the different points of the scale of equal parts, (2) the varia-

tion of the angle DAE (fig. 113), which is met by placing the instrument upon the two

radii in succession.

The first cause is the only one with which these calculations are concerned. Now
in three-inch pitch the greatest difference of form produced by mere curvature in the

portion of tooth which lies beyond the pitch circle, is only -04 inch between the ex-

treme cases of a pinion of twelve and a rack, and in the acting part of the arc within

the pitch circle is ! inch, so that as all the other forms lie between these, it is clear

that if we select only four or five examples for the outer side of the tooth and ten or

twelve for the inner side, that we can never incur an error of more than the jj^th of

an inch in three-inch pitch by always taking the nearest number in the manner

directed, and a proportionably smaller error in smaller pitches. But to ensure this, the

selected numbers should be so taken, that their respective forms shall lie between the

extremes at equal distances. Now it appears that the variation of form is much

greater among the teeth of small numbers than among the larger ones, and that in
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186. But if it be not required that wheels shall work in a set,

the construction of fig.
109 may be readily adapted to particular

cases : thus, if a pin-wheel be required, the pin is evidently

already a tooth, whose acting edge is an arc of a circle. And

supposing K to remove to an infinite distance, AP and B Q will

become perpendicular to PTQ, and the points P and Q coincide

respectively with R and S. If S therefore be the center of the

pin, R will be that of the tooth which is to drive it, and the point m
should be assumed somewhere between T and S, and Tm may be

about half the pitch, Sm being manifestly the radius of the pin.

Again, if the side of the tooth (of the left-hand wheel, for

example) is required to be a radial line, in imitation of the second

solution (Art. 140), this, as already explained (Art. 177), will

remove its tooth-center to an infinite distance, and the point k

will be found by drawing Ak perpendicular to kTK. Join Bk,
and the intersection of this line with PTQ will give the center of

the tooth which is to work with the radial tooth
; also AR, the

perpendicular from A upon PTQ,, is the radial tooth, and R is

the point through which the arc must be struck, and the angle
RTA must be of such a magnitude as will make TR equal to

about half the pitch, since R is the point at which the exact action

takes place.

187. The Odontograph is also applicable to the obtaining a

correct form for the cutters used in forming metal wheels out of

plain discs
;
for since the form of the cutter is that of the space

between two contiguous teeth, we have only to describe a pair of

teeth in any given case, in order to obtain the form of the cutter.

In making, however, a set of cutters, especially for small pitches,
it is by no means necessary to make one for every wheel, as the

forms for numbers of teeth that lie together are so nearly alike,

that the errors of workmanship would entirely destroy the dif-

ference.

The variation of form, however, is much less among high num-
bers than in low ones. For example, the difference of form

fact the numbers in the two following series are so arranged that the curves corre-

sponding to them possess this required property.
For the outer side of the tooth, 12, 14, 17, 21, 26, 34, 47, 73, 148, Hack.
For the inner side, 12, 13, 14, 15, 16, 17, 19, 22, 26, 33, 46, 87, Back.
Now these numbers, although strictly correct, would be very inconvenient and un-

couth in practice if employed for a table like that in question, where convenience

manifestly requires that the numbers, if not consecutive, should always proceed either

by twos or fives, or by whole tens, and so on. They are only given as guides in the

selection, and by comparing them with the actual hible, their use in the formation of
the first column will be evident.
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between a cutter for 150 teeth, and one for 300, is not greater
than that between cutters for 16 and 17 teeth.

This being the case, it appeared worth while to investigate
some rule by which the necessary cutters could be determined for

a set of wheels, so as to incur the least possible chance of error.

To this effect I calculated, by a method sufficiently accurate
for the purpose, the following series of what may be termed equi-
distant values of cutters ; that is, a table of cutters so arranged,
that the same difference of form exists between any two con-

secutive numbers.

TABLE OF EQUIDISTANT VALUES FOR CUTTERS.

No. of

Teeth
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. sin *, and it makes an angle with the line of centers= - = 6,

suppose ;
therefore sin *? = cos 6. Hence the distance of the cen-

ter of curvature at b from T

Sln
2w

which expression becomes identical with the value of D in Art.

178, if *

It appears therefore that if, in fig. 109, mn were an arc of an

epicycloid whose base were the pitch circle, and diameter of the

describing circle = -=, then would Pm be its radius of curvature
sin a

at m ;
and in like manner Q'm can be shown to be the radius of

curvature of the corresponding hypocycloid mp.

Consequently teeth described by this method approximate to

epicycloidal teeth, and when described in sets by the Odontograph,

approximate to those of the third solution (Art. 119). Hence
the rules that have been given for the least numbers, and the

length or addenda of all such teeth, may also be applied to these.

189. In all the figures of teeth hitherto given the teeth are

symmetrical, so that they will act whether the wheels be turned

one way or the other. If a machine be of such a nature that the

wheels are only required to turn in one direction, the strength of

the teeth may be doubled by an alteration of form, exhibited in

fig. 114, and suggested by me in 1838.*

This represents a portion of the circumference of a pair of

wheels, of which the lowest is the driver, and always moves in

the direction of the arrow,

consequently the right side

of its teeth and the left side

of the follower's teeth are the

only portions that are ever

called into action
; and these

sides are formed exactly as

usual. But the back of each

tooth, both in the driver and

follower, is proposed to be

bounded by an arc of an

involute, as eg or cb.

The bases of these involutes being proportional to the pitch
* Trans, of Institute of Civil Engineers, vol. ii.

Fig. 114.
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circles, they will during the motion be sure to clear each other,

because, geometrically speaking, they would, if the wheels moved
the reverse way, work together correctly ; but the inclination of

their common normal to the line of centers is too great for the

transmission of pressure. The effect of this shape is to produce
a very strong root, by taking away matter from the extremity of

the tooth, where the ordinary form has more than is required for

strength, and adding it to the root.

190. In Hooke's system, under its second form (Art. 71), it

has been shown that the point of contact travels during the

motion of the wheels from one side to the other
;
a fresh contact

always beginning on the first side just before the last contact has

quitted the other side. To ensure this, the teeth of the wheels in

each section B (fig. 52) must be so formed that when the angu-
lar velocity ratio is constant the teeth may begin and end contact

on the line of centers ; otherwise, if the teeth were formed upon
the principles of the previous articles of this chapter, it is evident

that the sliding contact of the teeth before and after the line of

centers would still remain. The simplest mode of effecting this

object is to make the flanks of the teeth radial, as in the second

solution, and their faces any arc of a circle that will lie within the

epicycloidal face required by that solution. If, for example, the

portion of tooth that lies beyond the pitch line be a complete
semicircle whose center is upon that line, this condition will be

complied with. I have described the teeth of B, fig. 52, in this

manner. The figures A and C are nearly the same as Hooke's,

but he has given no front view of his wheels, and has said

nothing respecting the forms of the teeth.

To describe the teeth of wheels when their axes are not parallel.

191. To describe the teeth of bevil-wheels, let ACT, ATD,

fig. 115, be the pitch cones of a pair of bevil-wheels described as

in Arts. 40, 41; AT their line of contact. Let AET be any

other cone also lying in contact with ATD along AT, and

having its apex at A ;
therefore the axes of the three cones will

be in the same plane ABF. Also the circumferences of their

bases being at the same distance A T from A, will lie on the

surface of a sphere whose center and radius are A and A T.

Let the three cones revolve round their axes with the same

relative velocity as would be produced by the rolling contact of

their surfaces, then the line of contact will always be AT, and
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(calling the intermediate cone AET the describing cone) a line nm

upon the surface of the describing cone directed to the common

apex will generate one surface ompn on the outside of the cone

ATD, and another surface smrn on the inside of the cone ACT.

Also, these surfaces will touch along the describing line nm,
for since ponm is generated by the rolling of the describing cone

upon the surface of the cone AD T, the motion of nm is at every
instant perpendicular to the line of contact AT\ and therefore,

the normal plane at nm to the surface generated by nm will pass

through AT. And in like manner, the normal plane to the

surface rsnm will pass through AT-, therefore the surfaces touch

along nm.

If these surfaces be employed as teeth, and the rotation of the

cone ATD be communicated to the cone ACT by their contact

action, the angular velocity ratio will, from the mode of their

generation, be precisely the same as that produced by the rolling
contact of the conical surfaces; for at the beginning of the motion
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op and rs coincide with A T, and in the position of the figure the
arcs To, Ts respectively described by the bases of the two cones
are each equal to Tm, and therefore themselves equal.

192. The arc om is an arc of a spherical epicycloid* whose
base is the cone ADT, and describing cone the cone AET\ and
in like manner sm is an arc of a spherical hypocycloid whose base
is the cone A TC, and describing cone AET. But in practice,
the portion of spherical surface occupied by these arcs, when

employed for teeth, is a narrow belt extending to a small distance

only from ToD and Ts C. The surface, therefore, of cones tan-

gent to the sphere along TD and TC may be substituted for that

of the sphere itself, as follows : draw BTF perpendicular to A T,
and intersecting the axes of the two cones in F and B

; then BF
revolving round AF will generate a conical surface tangent to the

sphere along the base TD of the cone ADT, and the same line

BF revolving round AB will generate a conical surface tangent
to the sphere along the base TsC of the cone ACT.
And since the arc mo, which really lies in the spherical surface,

is very short in practice, it may be supposed, without sensible

error, to lie in the surface of the tangent cone FTD, and to be

described with a circle whose diameter is equal to that of the base

of the describing cone. And in like manner, the arc sm may be

supposed to be described with a similar circle upon the surface of

the tangent cone B TC.
193. Now by developing these conical tangent surfaces into

planes we obtain a ready practical mode of describing the teeth,

which was first suggested by Tredgold.f

* DEFINITION. If a cone AB C be made to roll upon another fixed cone ADCE in

such a manner that their summits A always coincide ; then a tracing point C in the

circumference of the base of the rolling cone will trace a kind of epicycloid Ckm,

Fig. 116.

which will plainly lie on the surface of a sphere whose center is A and radius AC,

whence this curve is termed a spherical epicycloid.
If the cone roll on the concave

surface of the base, the curve becomes a spherical hypocycloid.

t Buchanan's Essays on Mill-work, by Tredgold, 1823, p. 103; or new ed. 1841, p. 59.

L
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Fig. 117.

Let AB, AC, fig. 117 be the axes meeting in A, A T the line

of contact, /, k the rolling frusta described by Art. 41. Draw
BTC perpendicular to A T, and meeting the axes in B and C

;

with center B and radius BT describe a circle Tf, and with

centre C and radius CT
describe a circle Te. Also

describe the frusta n and m
which will be frusta of the

tangent cones to the sphe-
rical surface at the bases of

the rolling frusta I and k, as

above explained. The cir-

cle Tfwill be the develop-
ment of the face of n, and

Te that of the face of m ;

and it follows from the de-

monstration in Art. 192,

that if the circumferences

of these circles be treated

as the pitch lines of a pair

ofordinary spur-wheels, and

teeth described upon them according to any of the rules laid

down for such wheels, that these teeth when transferred to the

conical surfaces will communicate the desired constant velocity

ratio. The following practical mode of completing the bevil-

wheel is easily deduced from the above.

194. Prepare a solid of revolution whose axis is AC, and the

section of whose edge is represented at abed, as bounded by two

parallel conical surfaces ab, cd, and by a third cb, whose generat-

ing line is directed to A.

This surface is to be cut into teeth, and therefore the portion
cb projects beyond the surface of the pitch cone, by a sufficient

quantity to contain the projections of the teeth beyond that sur-

face, as shown at Te. For the surface ab is plainly the same as

that which has been developed at Ters. The teeth there figured
must be cut out of thin metal and wrapped round this conical

surface, so as to allow their outlines to be traced upon it. They
may then be cut out, observing that a line passing through A
must lie in complete contact with every point of the side of the

tooth contained between ba and cd, or in other words, that the

acting surfaces of the teeth are generated by the motion of a line

one of whose extremities always passes through A, and the other

is made to follow the outline traced out upon the surface ab.
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The usual method for large wheels is to develope also the

interior surface cd, making a new construction for it precisely
similiar to that employed for the exterior surface ab.

If separate wooden cogs are employed, they are first fitted and

fixed into their mortises, then the conical surfaces ab, be, cd

formed upon them in the lathe, and the outlines of the two ends

ab, cd traced by patterns derived from the two constructions.

They are then taken out separately, and easily shaped by careful

planing in straight lines from one outline to the other. The
same method is employed for the large wooden patterns that are

used in casting wheels, and in which the teeth are made in

separate pieces, to allow of this method of shaping.
195. Let the radius TD of the base of the frustum k= JR, and

the radius TC of the developed pitch circle = r. Also the semi-

ano-le TAD of the rolling cone= K; therefore r . Whence
cos K.

the action of the teeth in any bevil-wheel is equivalent to that
n

of a spur-wheel of the same pitch whose radius is =.; also if

^Vbe the number of teeth in the bevil-wheel, ~will be those
cos K

of the spur-wheel.
This is a reason for the superior action of bevil-wheels over

spur-wheels of the same number of teeth, for spur-wheels always

act the better the more teeth they have, and it appears that a

bevil-wheel is always equivalent in its action to a spur-wheel of

a greater number of teeth.

When a pair of bevils have equal numbers of teeth, and their

axes are at right angles, they are termed mitre-wheels; in this

case

0=45, and- =1-4;
cos

therefore the action of a mitre wheel is nearly equivalent to that

of a spur-wheel with half as many more teeth.

196. Face-wheel geering (Art. 65) is almost driven out of prac-

tice by the employment of bevil-wheels ;
but it may be sometimes

used with advantage, and its principles are worth investigating.

Let two face-wheels with cylindrical pins exactly alike in every

respect be placed in geer, as in fig. 118, with their axes at right

angles ;
not meeting in a point, but having their common per-

pendicular fe equal to the diameter of the pins. Then will these

wheels revolve together with a constant angular velocity ratio.

L 2
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Fig. 118.

For let the pin whose center is a in the upper wheel, be in

contact with the pin whose axis is at d in the lower wheel. Draw

fb parallel to the axis of the lower wheel, and

ab perpendicular upon fb. Also through c the

center of the lower wheel draw a line parallel to

the axis of the upper wheel, and therefore per-

pendicular to the plane of the paper, and let dc

be a perpendicular upon this line from the axis

of the pin d, therefore ab is the sine of the an-

gular distance of a fromfb, which is parallel to

the axis of the lower wheel, and dc is the sine

of the angular distance of d from a line draAvn

through c parallel to the axis of the upper
wheel. But a is removed to the left of d by a horizontal distance

equal to the diameter of the pins, and b is removed to the left

of c by a horizontal distance equal tofe, which is also by hypo-
thesis equal to the diameter of the pins ; therefore ab= dc, and

the angular motion is equal.

The pin a appears in the figure to cut the pin a, but a little

consideration will show that the circular motion of the lower

wheel removes this pin to a sufficient distance from the plane of

the upper wheel to clear the ends of the pins of the latter.

197. If, however, which is generally the case, the diameter of

the wheels be different and their axes meet, then supposing one

Fig. 120.

Fig. 121.

of them, as in this figure, to have cylindrical pins or staves, the
other must have cogs whose acting surfaces are those of solids of
revolution. The axes of these solids may, or may not, coincide
with the centers of the cogs. If they do, the cogs are easily
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formed in the lathe. The generating curve of these solids may-
be found as follows.

In fig. 120, C is the center of the pin-wheel, the pins of which
are supposed to have no sensible diameter, the axis of the pin-
wheel is perpendicular to the plane of the paper, and that of the

cog-wheel is parallel to it, and meets the first axis in a point
whose projection is C. PAP' is the pitch line of the pin-wheel,
and pAm/

the projection of the pitch line of the cog-wheel. A
their point of contact.

Let P be one of the pins,/m the axis of the solid of revolution,

or cog, which is to work with it, pPf the generating curve of the

solid. Fig. 121 is a plan of the cog-wheel, t the point of contact,

m the seat of mf, and the concentric circles the plans of the cog ;

the large one at the level of mp, and the small one at the level of

Pn.

Let the radius AC=r, at=R, and the angular distance of mf
from the plane of centers, or 7W^ = <;

.*. Am=R . sin
<f>.

Let mN=x, NP(=An)=y,ACP=0, mpp\
then we have (1) y=r.versin 6.

z= r. sin R sin
</>,

for Nm= Pn Am.

Also, since the velocities of the pitch circles are equal by sup-

position, and p and P coincide at A, therefore the arc AP in fig.

120, must be equal to the arc tm in fig. 121, + the radius mp of

the base of the solid very nearly.

From (1) and (2) the curve pPf may be constructed by points,

and a curve for a pin of any required diameter derived from it, by

tracing it at a normal distance from pPf equal to the radius of

the pin, as in the case of common trundles (Art. 129).

198. The cog pPf, supposing it to drive, is necessarily moving
in the direction of the arrow, and receding from the plane of

centers ; but if we consider the relative positions of the approach-

ing pin Pt
and cog />,/*,/, on the other side of the plane of centers,

at an equal angular distance 6, and therefore with the same value

of y, we get the corresponding value of x, orxt
=R sin <, r.sin
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whence it follows that

JR. sin
<j>/

r. sin 9<r . sin 6R. sin <;

that is, x
t
< x.

This curve p,P,f,, therefore, is not the same as pPf, but will

lie within it. But if the cogs are turned in the lathe, the axis of

the solid of revolution will coincide with the center, and the

smallest curve of the two must necessarily be used
;
and therefore

the action will only be maintained while the cylindrical pin lies

between the cog and the plane of centers ; and as receding action

is preferable to approaching action, it follows that the cylindrical

pin must be given to the driver and the cogs to the follower, if

the cogs be turned in a lathe. But fig.
121 shows that the point

of contact of the cogs on one side of the line of centers, as m,, is

very nearly confined to the half of each cog which lies within the

pitch circle, and that on the other side as m to the portion which

lies without. By making the outer portion of each cog of the

form pfPff^ and the inner portion of the form pPf, we may have

action on both sides the plane of centers at pleasure.
199. This shows the possibility of forming the cogs of face-

wheels so as to communicate motion with a constant velocity ratio.

In practice, the form of the cogs may be obtained by finding two or

three points for the curve pPf, which may be done on the drawing
board by constructing a diagram similar to figs. 120 and 121, but

in which the cogs and pins shall be placed in two or three different

successive distances from the plane of centers. In small wooden

mill-work, the cogs used to be turned in the lathe and with round

shanks, and consequently made complete solids of revolution, as

in fig. 119 ; but in the larger wheels each cog had its acting face

shaped into segments of solids of revolution of considerably greater
diameter than the cog itself.

In this kind of geering, however, the surfaces of the teeth touch

only in a single point ;* while in bevil-geer, as we have seen

(Art. 68), the contact is along a line directed to the point of

intersection of the axes. The abrasion is therefore less in the

latter, but the convenience of forming the cogs in the lathe

sometimes occasions the face-geer to be used even now in light

machinery or models.

* To use the words of a practical American millwright, in speaking of wooden face

geers,
' the disadvantage of face geers is the smallness of the bearing, so that they

wear out very fast, for if the bearing of cogs be small, and the stress so great that

they cut one another, they will wear exceedingly fast
; but if it be so large and the

stress so light that they only polish one another, they will wear very long.' Oliver

Evans, Young Millwright's Guide, Art, 80.
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In face-geering, a derangement in the relative position of the
wheel and trundle, if it take place in a line parallel to the axis of

the latter, will not interfere with the action of the geering.
200. The surfaces adapted for teeth in the case of rolling hy-

perboloids, Art. 42, might be obtained in a similar manner to

those of rolling cones, by taking an intermediate describing hy-

perboloid ; but it does not appear possible to derive from this any
rules sufficiently simple for application. This kind of wheel is

only employed to enable the two axes to pass each other, which is

impossible in conical wheels ; and, on account of the imperfection
of their rolling action, explained in Art. 42, the axes should bo

brought as close together as possible, by which the solids will

approximate nearly to a pair of rolling cones. The teeth should

be small and numerous, and therefore the frusta should be placed
as far as convenient from the common perpendicular of the axes.

When the frusta have been described by Art. 49, the forms of the

teeth may be obtained with sufficient approximation by treating

these frusta similarly to those in fig. 117, that is, draw a line per-

pendicular to tr at r (fig. 30, Art. 50), this will intersect the

axis at some point beyond K\ take this point for the apex of a

cone whose base shall coincide with that of the rolling frustum

KP, develope its surface and describe the teeth as in Art. 193.

An interior surface, corresponding to cdin fig. 117, must also

be developed and the teeth traced upon it ; the relative position

of these interior forms to those already traced upon the exterior

surface, will be determined by drawing an inclined line at the

pitch surface, according to the method of Art. 70.

The principal machine in which these skew bevils are employed
is that which is known by the name of the bobbin and fly frame,

in the cotton manufacture.

201. To communicate motion by means of involutes between tiro

axes inclined without meeting.*

Fig. 104 represents, as already explained, a pair of wheels whose

teeth are formed of arcs of involutes, the point of contact of which

is always situated in the common tangent DE of the bases.

In this figure the wheels are in the same plane, and their axes

consequently parallel. Suppose now that the plane of one wheel

be inclined to the other by turning on the line DE, in the manner

of a hinge, so that this line shall be the intersection of the two

planes, but that the position of each wheel in its own plane with

respect to this line shall not be altered. The inclination of the

* This property of involutes is due to M. Ollivier. Vide Bulletin de la Soc. <fEn-

couragement, torn, xxviii. p. 430.
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axes will be however changed, but they will not meet, and their

common perpendicular will be equal to DE. Since DE is the

locus of contact, it is clear that this motion will not disturb the

angular position of either wheel in its own plane ; and hence the

angular velocity ratio of the wheels will remain constant and un-

altered by the change of position. Involute wheels, therefore,

may be employed to communicate a constant velocity ratio between

axes that are inclined at any angle to each other, but which do

not meet.

But the demonstration supposes the wheels to be very thin,

since they coincide with the planes that meet in the line DE, and

the invariable points of contact are situated in this line. The

edge of one of the wheels must be in practice rounded so that it

may touch the other teeth in a point only.

ON CAMS AND SCREWS.

202. Having disposed of the teeth of wheels, we may now
return to the remaining combinations in which sliding contact is

employed to communicate a constant velocity ratio between two

pieces.
If the motion of these pieces be limited to a not very con-

siderable angle, or if one of them moves in a short rectilinear

path in the manner of a rack, any of the pairs of curves in the

first part of this chapter (in Arts. 116 to 127) may be employed in

the single forms there shown, instead of being reduced to short

arcs, and placed in successive order as teeth. To avoid un-

necessary details, I shall confine myself to the examination of

the cases in which one of these curves is reduced to a pin, as in

the First Solution ; for this method is generally preferred, and it

has this advantage, that whereas greater friction is introduced

when a long curved plate is substituted for a series of teeth,* the

pin can be made into a roller, and thus the abrasion which would
tend to destroy the form of the curved edge is transferred to the

axis of the roller, which can be easily repaired when worn out.

203. In fig. 122, A is the center of motion of a revolving plate
in which a slit a b is pierced, having parallel sides so as to embrace

and nearly fit a pin m, which is carried by a bar CD fitted

between guides so as to be capable of sliding in the direction of

its length.

* By carrying the point of contact farther from the line of centers (Art. 32).
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If the plate revolve in the direction of the arrow the inner side
of the slit presses against the pin and moves it further from the
center A, but when the plate revolves in the opposite direction
the outer edge of the slit acts against the pin and moves it in the

opposite direction.

If the curved edges of the slit be involutes' of the circle whose
radius is Ac, where Ac is a perpendicular upon the path m c of the

-o

bar, it appears from Art. 133 that the velocity ratio of plate and
bar will be constant, and the linear velocity of the bar equal to

that of the point c of the plate. But if any other velocity ratio

be required, let PC (fig. 123) be the path of the sliding bar, Pthe

pin, A the center of the curve, aP the curve.

Let cAP=(f), PAa= 0, Ac= a, AP=r, then while a has moved
from c to a, let Phave moved from c to P; so that ca mxcP-,

preserving a constant velocity ratio during the motion ;

=m x tan
<f>.

But tan />=
^r2 - 2

;
and <=cos-'

a
;

a r

.
'

. 6 + cos'
1 = */r

2 a* is equation to curve.

If the velocity of the circumference of the circle (radius Ac)

equals the linear velocity of the bar,

ca= cP, and .'. m= l
;



154 ELEMENTARY COMBINATIONS.

which is the equation to the involute of the circle as it ought
to be.*

If, however, the line PC of the follower's path pass through the

center A, then since equal angles described to the curve are to

produce equal differences of radial distance in the pin, the curve

becomes evidently the spiral of Archimedes
;

a curve which,

although, as we see, capable of communicating velocity in a

constant ratio between a circular and rectilinear path, cannot be

employed for the teeth of racks, because the pitch line passes

through the center of the wheel.

204. Sometimes the pin, instead of being mounted on a slide,

is carried by an arm revolving round a center E, as mE, and

therefore describes an arc of a circle. The curve is then derived

from the first solution (Art, 129), the line of centers AE having
been previously divided, in the ratio of the required angular
velocities.

The angular motion of the curved plate which is the driver is

Fig. 124. of course limited to the length of the slit a b, but

this may be carried through several convolutions,

as in fig. 124, where it is shown in the form of a

spiral groove, excavated in the face of a revolving

plate, and communicating rectilinear motion to

the bar Dm by means of the pin at its extremity

m, which lies always in the groove.
This may be termed a flat screw or plane

screw.

205. Combinations of this kind assume a great

many different forms, the complete exhibition of

which belongs rather to descriptive mechanism than to the plan of

the present, work. Thus, instead of employing the slit or groove,
shown in these figures, the object of which is to produce action in

both directions, a single curved edge may be employed, and the

returning action produced by a weight or spring, which may be

applied to the bar so as to keep the pin constantly in contact

with it.

Curved plates of this kind are termed cams, or, when small,

tappets, and they are more used to produce varying velocity
ratios than constant ones. For which reason I shall refer to

Chapters VI. and VII. for some other forms in which they appear.
206. If the path uoth of driver and follower be rectilinear, the

slit will become straight.

* Peacock's Examples, p. 177.



DIVISION B. BY SLIDING CONTACT. ]55

Let a plane rectangle CD move in its own plane in a path
parallel to its longest side, and have

Fi m
a straight slit cut in it making an

angle 6 with that side, and let a bar
AB moving in the direction of its own

length below this plane be provided
Avith a projecting pin G which enters

the glit, the slit making an angle <f>

with the path of this bar. Therefore

the paths of the plane and bar make
an angle +

<j>
with each other.

If the plane move through a space =(7/*, draw gf parallel to

the first position of the slit, then g will be the new position of the

pin, and Gg the space described by the pin or bar ;

velocity of plane_ Gf
velocity^ balT

~
~Gg

sm Ggf_sin <

sin Gfy
~
sinlP

a constant ratio.

If the bar move perpendicularly to the plane, + $= .,

and velocity_of plane =
velocity of bar

(f>
or

tan 6'

207. To return to the revolving plate and bar ;
if the path of

the bar be not parallel to the plane of Fig. 126.

rotation of the plate, the latter must be

formed into the cone or hyperboloid that

would be generated by the rotation round

its axis of the line which is the path of

the pin, or other point of contact of the

bar. Thus, in fig. 126, AB is the axis, -

CD the sliding bar, e its pin, the path cd

of whose acting extremity is in this case

supposed to meet the axis. If this line cd generate a cone D
by revolving round AB, the pin will always lie at the same depth

in any groove excavated in the conical surface. Also, if this

surface be developed, the groove ef will be the spiral of Archi-

medes. It is unnecessary to follow into detail all the forms,

curves, and combinations, that arise in this manner. One case

only requires more particular attention.

208. If the path of the bar CD be parallel to the axis of

rotation AE, the conical surface upon which the groove is traced

will become a cylinder; and to produce a constant velocity ratio
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the spiral groove must be at every point equally inclined to a line

drawn upon the surface parallel to the axis.

For it has been shown that a plane surface mh, fig. 127, moving

perpendicularly to a sliding bar cd, will communicate motion to

it in a constant ratio, by means of a

straight slit pr in which lies a pin fixed Fig. 127.

to the bar, and that c v>

velocity of bar

where
<f>

is the angle rpd made by the

slit with the path of the bar.

If this plane be wrapped round the

cylinder, keeping its axis parallel to the

path of the bar, the groove will become

a spiral, inclined at the angle < to a line

drawn parallel to this axis. But the

motion given to the bar by this spiral

when the cylinder revolves will be ex-

actly the same as if the plane had passed under it through the

line hi and perpendicularly to the plane of the paper.
The velocity of the plane is now the velocity of rotation of the

cylindrical surface, and therefore we have, if r be the radius

of the cylinder, A its angular velocity, V the velocity of

the bar,

If the length of the plane be greater than the circumference

of the cylinder, the spiral groove will encompass its surface

through more than one revolution, and may, in this way, pro-
ceed in many convolutions from one extremity of the cylinder
to the other, its inclination to the axis of the cylinder remaining
constant and equal to

(f> ; such a recurring spiral is termed a

screw.

Draw pq, qr respectively perpendicular and parallel to the

path of the bar
;

if pq is equal to the circumference of the

cylinder, qr will be the distance between two successive con-

volutions of the screw, and
qr-.

tan
This is termed the pitch

of the screw, from its analogy to the pitch of a rack or toothed

wheel. Every revolution of the screw carries the bar through a

space equal to the pitch.
209. The screw is sometimes made in this elementary form,
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consisting of a simple spiral groove, with distant convolutions,
Avhich gives motion to a slide, by means of a pin fixed to the

latter, and lying in the groove ; for example, the screw by which

the wick of the common Argand lamp is adjusted in height is

always made in this form. But, generally, screws receive a

more complex arrangement, in the following manner.

Firstly, the inclination of the spiral to the axis is made small,

and he convolutions of the groove brought close together. The

Fig. 128.ridge which separates two contiguous

grooves is a spiral precisely resembling that

of the groove in inclination, and in the

number and pitch of its convolutions. This

ridge is termed the thread of the screw, and

according to the form of its section the

screw is said to have a square thread as at

A, an angular thread as at B, or a round

thread as at C.

Secondly, instead of a single pin e let other pins / and g be

also fixed to the bar opposite to the other convolutions ; then, since

each pin will receive an equal velocity from the revolving

cylinder, the motion of the bar will be effected as before, with

Fig. 129.

Fig. 130.

Fig. 131.

the advantage of an increased number of points of contact. But

this series of pins is generally thrown into the shape of a short

comb, the outline of which exactly fits that of the threads of the

screw, as at C, fig. 129 * This is the most ancient form in whi

the screw was employed. It appears to be that which is desc

by Pappus.f .

210. Most commonly, however, the piece which receives

action of the screw is provided with a cavity embracing 1

* The same expedient may be resorted to in the flat spiral of fig. 124, which is, in

fact, a flat screw; and on the same principle a screw may be formed on a co

hyperboloidal surface.

f Pappi Math. Cd. Commandini, lib. viii. p. 332.
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screw, and fitting its thread completely, as shown in section in

fig. 130, being in fact a hollow screw, corresponding in every

respect to the solid screw. Such a piece is termed a nut, and

the hollow screw, afemale screw.

These modifications are only introduced to distribute the

pressure of the screw upon a greater surface ; for as the action

of the thread upon every section of the nut through its axis is

exactly the same as that of fig. 129, the result of all these con-

spiring actions is the same : namely, that the piece to which the

comb or nut is attached advances in a direction parallel to the

axis of the screw, and describes a space equal to as many pitches
as the screw has performed revolutions.

211. A screw may be right handed or left handed, that is,

looking at the screw in a vertical position, the thread may incline

upwards to the right, as in fig. 129, or to the left, as in
fig. 131.

The majority of screws are right handed, the left handed are

only employed when the conditions of the mechanism require
them. The respective motions of these two classes may be dis-

tinguished by the following rule. Supposing the screw to be

movable and its nut fixed, it will, if right handed, enter its nut

when turned in the direction of the hands of a watch, and vice

versa.

Also, if the nut be movable and the screw fixed, the nut will

descend the right-handed screw when turned in that direction.

Consequently if the screw be left handed, it must be turned

counter clockwise to enter a fixed nut, or put a movable nut in

action upon the extremity of its screw.

212. When the comb or rack form (fig. 129) is used instead of

a nut, this farther modification is sometimes employed, that the

screw is made short and the rack lengthened, as in fig. 132. In

Fig. 132.

Fig. 133.

both these cases, the length of the path that may be described

by the bar, without allowing any portion of the screw or rack to
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quit contact at the extremities of the motion, will be the differ-
ence between the lengths of the screw and rack.
From this latter modification, we easily pass to the so-called

endless screw* In this contrivance, the screw C is employed to
communicate rotation to a revolving follower or wheel B. An
axis Aa is mounted in a frame, so as to prevent its endlong
motion, and provided with a short screw C. The wheel B has
its e.clge notched into equidistant teeth of the same pitch as the
thread of the screw with which they are in contact. If the
screw axis be turned round, every revolution will cause one
tooth of the wheel to pass the line of centers BC\ and as this

action puts no limit, from the nature of the contrivance, to the
number of revolutions in the same direction, a screw fitted up
in this mode is termed an endless screw, in opposition to the

ordinary screw, which when turned round a certain number of
times either way, terminates its own action by bringing the nut"
to the end of its thread

; the term endless applying in this case
not to the form but to the action of the screw.

213. To determine the form which should be given to the

thread and teeth in this contrivance, it may be remarked, that

from the nature of a screw the section of its thread made by a

plane passing through its axis is everywhere the same : and that

if a series of such sections of the entire screw be made by planes
at equal angular distances round the circle, a set of similar

figures resembling a double rack (as in fig. 128), will be obtained

alike in the number and form of their teeth, but in which the

teeth will gradually approach nearer and nearer to the extremity
of the screw. The action of the screw upon the wheel-teeth, in

revolving without end play, brings these successive sections into

action upon the teeth, and produces exactly the same effect as if

the screw were pushed endlong without rotation, in the manner

of a rack.f But this latter supposition enables us to obtain the

figure of the thread and teeth, upon the principles already given
for the teeth of racks.

Fig. 134 is a transverse section of a wheel and endless screw,

made through the line of centers ; ab the axis of the wheel, K
that of the screw ; fig. 135 represents the corresponding sections,

in which AB being the line of centers, the section to the right

of this line is made by a plane passing through the axis of the

* Also described by Pappus in the article already referred to; also lib. viii. prop. 24.

f Thus if a screw be held to the light and turned round, the outline of its thread*

will appear to travel from one end of the screw to the other continually, in the manner

of the teeth of a sliding rack.
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screw, and through the line Cc, fig. 134 ; and the section to the

left of the line of centers in fig. 135 is made by a plane passing

through the line Dd, fig. 134, on one side of the axis of the screw,

and parallel to the first The effect of this is, that F is a direct

Fig. 135. Fig. 134.

section of the screw, while H is an oblique section : also, cte is

the pitch circle of the wheel, and stw the pitch line of the screw,

supposing it to act as a rack.

Nevertheless, according to the supposition already made, it

appears that in these two sections, and in any other parallel to

them within the wheel, the screw is required to act as a rack

upon the teeth of the wheel. But whatever figure be given to

the screw-thread, it is seen that the forms of these racks will

necessarily be different in each section ; for although the form of

the thread is the same in all, it is cut at a different angle in each

section, by which the teeth of H remote from the axis will be

more prolonged and twisted in their form than those of F in the

central section
;
and besides this, the successive racks will retire

further from the center A of the wheel, as their section recedes

from the axis of the screw ;
as shown in the figure, in which the

rack-teeth H are lower than in F.

Now it has been already shown (Art. 127) that any form
of tooth being assumed, the corresponding tooth may be assigned.
The forms of the teeth in the central plane E may therefore

be made to suit those of F, and the forms of the teeth in G may
also suit those of H\ and so on for every intermediate section.

It is therefore possible to make an endless screw whose thread
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shall be in contact with the entire side of the tooth, provided tho

figure of the wheel-teeth be different in every section. Also,
since in every section two or three pairs of teeth may be in

simultaneous contact, the screw may be in contact along tho

entire side of all these teeth.

214. The practical difficulty of making the teeth of a wheel
of which the form in every parallel section shall be different,

is very simply overcome by making the screw cut the teeth,

thus :

An endless screw is formed of steel, exactly the same as the

proposed one, and this is notched regularly across its threads so

as to convert it into a cutting instrument or tap, and then

properly hardened. The wheel having had its teeth roughly cut

in the proposed number, is mounted in its frame, together with

the cutting screw, and the latter is turned in contact with it, and

pressed gradually nearer and nearer, cutting out the teeth as it

proceeds, till it has formed them to correspond exactly with its

thread
;

it is then taken out and replaced by the smooth-threaded

screw.

215. The endless screw falls under the case of two revolving

pieces whose axes are not parallel and never meet. It commu-

nicates motion very smoothly, and is equivalent to a wheel of a

single tooth, because one revolution passes one tooth of the

wheel across the plane of centers ; but, generally speaking, can

only be employed as a driver, on account of the great obliquity

of its action.

216. In a cutting engine by Hindley of York, an endless

screw of a different form was introduced, which is thus described

by Smeaton :
* The endless screw was applied to a wheel of

about thirteen inches diameter, very stout and strong, and cut

into 360 teeth. The threads of this screw were not formed upon

a cylindrical surface, but upon a solid whose sides were termi-

nated by arches of circles. The whole length contained fifteen

threads, and as every thread (on the side next the wheel) pointed

towards the center thereof, the whole fifteen were in contact

together, and had been so ground with the wheel, that, to my

great astonishment, I found the screw would turn round with the

utmost freedom, interlocked with the teeth of the wheel, and

would draw the wheel round without any shake or sticking, or

the least sensation of inequality.'*
* The screw was cut by the rotation of the point of a tool,

* Smeaton, p. 183, Miscellaneous Papers.

M
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carried by the wheel itself, the wheel being driven by an ordi-

nary cylindrical endless screw.'

Fig. 136 shows this form of endless screw, and fig. 137 is an

arrangement to show the manner of cutting the spiral thread

upon the solid, in which A is a wheel driven by an endless screw

B, of the common form ;
C a toothed wheel fixed to the axis of

Fig. 136.

the endless screw and geering with another equal toothed wheel

J9, upon whose axis is mounted the smooth surfaced solid E,
which it is desired to cut into Hindley's endless screw. For this

purpose a cutting tooth F is clamped to the face of the wheel A.
When the handle attached to the axis BC is turned round, the

wheel A and solid E will revolve with the same relative velocity
as A and B, and the tooth F will trace upon the surface of the

solid a thread which will correspond to the conditions. For
from the very mode of its formation the section of every thread

through the axis will point to the center of the wheel. The
axis of E lies considerably higher than that of B, to enable the

solid E to clear the wheel A.

The edges of the section of the solid through its center, exactly
fit the segment of the toothed wheel, but if a section be made by
a plane parallel to this, the teeth will no longer be equally
divided, as they are in the common screw

; and therefore this

kind of screw can only be in contact with each tooth along a line

corresponding to its middle section. So that the advantage of

this form over the common one is not so great as appears at first

sight.

217. If the inclination of the thread of a screw to the axis be

very great, one or more intermediate threads may be added, as in

fig. 138. In which case the screw is said to be double, or triple,
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according to the number of separate spiral threads that are so

placed on its surface. As every one of these threads will pass its

own wheel-tooth across the line of centers, in each revolution of
the screw, it follows, that as many teeth of the wheel will pass
that line during one revolution of the screw as there are threads
to the screw.

If we suppose the number of these threads to be considerable,

Fig. 138.
Fig H0

Fig. 139.

for example, equal to those of the wheel-teeth, then the screw
and wheel may be made exactly alike, as in fig. 139 ; which may
serve as an example of the disguised forms which some common
arrangements may assume.

The old Piemont silk-mill is an example of disguised endless

screws.*

218. In fig. 140 is represented a method of communicating
equal rotation by sliding contact between two axes whose direc-

tions if produced are parallel. Aa Bb are the axes, parallel in

direction.

The axis Aa is furnished with a semicircular piece CAc,

forming two equal branches, and terminated by sockets bored in

a direction to intersect the axis at right angles. The axis bB is

provided with a similar pair of branches dbD, and the whole is so

adjusted that their four sockets lie in one plane perpendicular to

the axes. A cross with straight cylindrical polished arms is fitted

into the sockets in the manner shown in the figure ; and its arms

are of a diameter that allows them to slide freely each in its own
socket. If one of the axes be made to revolve, it will communicate

to the other by means of this cross a rotation precisely the same

as its own.

For let fig. 141 be a section through the cross transverse to the

axis, and let AB be the axes, and the circles be those described

by their sockets respectively.

* Described in Encyc. Methodique,
' Manufactures and Arts,' torn. ii. p. 31

; and in

Borgnis, Machines pour confectionner les Itoffes, p. 160.

M 2
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Fig 141.

Then if D be a socket of A, the arm of the cross which passes

through it must meet the center A ; and in like manner if C be

a socket of B, the arm CB must pass

through B. Also, if D move to d, the new

(or dotted) position of the cross will be

formed by drawing dA through A, and Be

perpendicular to it through B the other

axis
;
therefore C will be carried to c

; and

it is easy to see that the angle DAd= CBc.

Therefore the angular motion of the axes is

the same. Also, every arm of the cross

will slide through its socket and back again

during each revolution, through a space equal to twice the

perpendicular distance of the axes (AB\*
* This arrangement is essentially the same as that of a coupling invented by the

late Mr. Oldham, and introduced by him into the machinery of the Banks of England
and Ireland. His form of it is more solid, but not so well adapted for geometrical il-

lustration as that which 1 have given. His axes are each terminated by a disk in

which a transverse groove is planed, and the cross consisting of two square bars in

different planes has each bar completely buried in the groove of its neighbouring disk.
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CHAPTER VI.

ELEMENTARY COMBINATIONS.
DIVISION B. COMMUNICATION OF MOTION BY SLIDING CONTACT.

CLASS B
DIRECTIONAL RELATION CONSTANT.
VELOCITY RATIO VARYING.

219. THE simplest mode of obtaining a varying angular ve-

locity ratio, when the rotations are to be continued indefinitely in

the same direction, is by the pin and slit,

fig. 142, where Aa, Bb are axes parallel in

direction, but placed with their ends opposite
to each other. Aa is provided with an arm

carrying a pin d, which enters and slides

freely in a long straight slit formed in a

similar arm, which is fixed to the extremity
of Bb. If one of these axes revolve, it will

communicate a rotation to the other with a

varying velocity ratio; for the pin in re-

volving is continually changing its distance

from the axis of Bb.

Let C be the center of motion of the pin-

arm, K the center of motion of the slit-arm,

P the pin, R the constant radius of the pin from C, r the radial

distance from K, and let P move to p through a small angle ;

draw prn perpendicular to CP, then angular velocity of pin :

angular velocity of slit

.. Pp . pin .. 1
.
cos CPK

"PC PK"R' r

If CP revolve uniformly, the angular velocity of KP will vary

as gg!
CPK

t or if CJTbe small, as -

1
-

;
therefore when the centers

r r

of motion are near, this contrivance produces the same law of

motion as that of Art. 97.
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If PCD=0, PKD=fi, CK=E, we have

R sin 6(R cos 6 E) tan /3 ;

.-.tan =-5
' 8m ^JK cos t)E'

will give the position of J5T.P corresponding to any given position

of CP.

By altering the direction of the slit, or by making it curvilinear,

other laws of motion may be obtained.

220. In the endless screw and wheel (Art. 212), the thread of

the screw is inclined to the axis of the cylinder at a constant

angle </>,
and the angular velocity ratio of screw and wheel is

constant. If, however, the inclination
<f>

of the thread be made
to vary at different points of the circumference, as shown in fig.

143, the angular velocity ratio will vary accordingly. For ex-

ample, if the threads through half the circumference lie in planes

perpendicular to the axis of the screw, the wheel will revolve

with an intermittent motion, remaining at rest during the al-

ternate half rotations of the screw. If A, a be the respective

angular velocities of the screw and wheel, R, r their pitch-radii,

it appears, from Art. 208, that - = tan <.
a R

But as the inclination < changes, the teeth of the wheel must
be made in the form of solids of revolution, having their axes

radiating from the center of the wheel.

Fig. 143.

Fig. 144.

221. A simple intermittent motion is effected by a pinion of

one tooth A, fig. 144. This tooth will in each revolution pass a

single tooth of the wheel B across the line of centers ; but during
the greatest portion of its rotation will leave the wheel undis-

turbed. To prevent the wheel B from continuing this motion

by inertia through a greater space than this one tooth, a detent C
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may be employed. This turns freely upon its center, and may
be pressed by a weight or spring against the teeth. It will bo
raised as the inclined side of the tooth passes under it by the
action of A, and will fall over into the next space, but when A
quits the wheel, the detent pressing upon the inclined side of the
tooth will move it through a short space backwards, until the

point m rests at the bottom of the nook, as shown. The detent
thus detains the wheel in its position during the absence of the
tooth A. These detents receive other forms, for which I shall
refer to the section on Ratchet-work, below.

222. A better intermittent motion is produced by a contrivance

(fig. 145) which may be termed the Geneva stop, Fig. 145
as it is introduced into the mechanism of the

Geneva watches.

A is the driver, which revolves continually in

the same direction, B the follower, which is to

receive from it an intermittent motion, with long
intervals of rest. For this purpose its circum-

ference is notched alternately into arcs of circles

as ab, concentric to the center of A when placed

opposite to it, and into square recesses, as shown
in the figure.

The circumference of A is a plain circular disc,

very nearly of the same radius as the concave tooth which is

opposed to it ; this disk is provided with a projecting hatchet-

shaped tooth, flanked by two hollows r and s. When it revolves

(suppose in the direction of the arrow), no motion will be given
to B so long as the plain edge is passing the line of centers, but
at the same time the concave form of the tooth of B will prevent
it from being moved (as in

fig. 70).

But when the hatchet-shaped tooth has reached the square
recess of B, its point will strike against the side of the recess at

d, and carry B through the space of one tooth, so as to bring the

next concave arc a b opposite to the plain edge of the disk, which

will retain it until another revolution has brought the hatchet

into contact with the side of the next recess bf.

The hollow recess at r is necessary to make room for the point

d, which during the motion is necessarily thrown nearer to the

center of A than the circumference of the plain edge of the latter.

The hatchet-tooth being symmetrical will act in either direction.

223. The office of this contrivance in a Geneva watch is to

prevent it from being over-wound, whence it is termed a stop ;

and for this purpose one of the teeth is made convex, as shown in
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dotted lines at fg. If A be turned round, the hatchet-tooth will

pass four notches in order, but after passing the fourth across the

line of centers, the convex edge gf will prevent further rotation,

so that in this state the combination becomes a contrivance to

prevent an axis from being turned more than a certain number of

times in the same direction.

For the wheel A is attached to the axis which is turned by the

key in winding, and the wheel B thus prevents this axis from

being turned too far, so as to overstrain the spring. As the watch

goes during the day the axis of A revolves slowly in the opposite

direction, carrying the stop-wheel with it by a similar intermitting

motion.

The late Mr. Oldham applied this kind of mechanism to inter-

mittent motions,* and his arrangement is in some respects superior
to that o/ fig. 145. Instead of the hatchet-tooth he employed a pin
carried by a plate fixed to the back of the driver, by which means

he was enabled to reduce the size of the square notches of the

follower.

224. Any required variation in the ratio of angular velocities

may be produced by a cam-plate ; but if the directional relation is

constant the motion will necessarily be limited, as in
fig. 122,

(page 153). In this contrivance, by altering the form of the curve

we may obtain different velocity ratios at every point of its action ;

as, for example, if a portion of the edge of the cam-plate be con-

centric to its axis, the pin or bar which it drives will receive no

motion while that part of the edge is sliding past it.

225. The curve for a cam of this kind is generally described by
Fig. H6. points. The methods of doing this will readily

occur in each particular case, but one example
may serve to show the nature of the process.
In the combination of

fig. 122, let the angu-
lar velocity ratio vary so that when a series

of points 1, 2, 3, 4, 5, fig. 146, in the cir-

cumference of the circle C 3, 5 shall have reached

in order the point C, the pin in the sliding
bar shall be moved into the corresponding

positions I, n, in, iv, v. To each of the position points in

the circumference of the circle draw tangents, and with center A
draw circular arcs in order, each intersecting one of the position

points, i, II, in, &c., and the corresponding tangent, as at

, b, c, d, e; thus is obtained a series of points through which, if

* In the machinery of the Banks of England and Ireland.
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a curve be drawn, it will be the cam required ; for it is manifest,

that if any point (as 3) of the circle be brought to C, the corre-

sponding point c of the curve will be moved to in, and thus the

pin will be placed in its required position ; and so for every other

pair of positions.

The curve for a pin of sensible diameter must be obtained from

this by the usual method (Art. 130).
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CHAPTER VII.

ELEMENTARY COMBINATIONS.

DIVISION B. COMMUNICATION OF MOTION BY SLIDING CONTACT.

DIRECTIONAL RELATION CHANGING.
CLASS C. ' VELOCITY RATIO VARYING.

226. BY means of a properly formed revolving cam-plate a

reciprocating motion may be given to a follower which will vary

periodically according to any required law.

Thus let A, fig. 147, be the center of motion of a cam-plate
n m q p, BD the follower, which in this case is an arm turning
on a center B, and furnished with a friction-roller D which rests

upon the edge of the cam. But the follower may also be a sliding

bar as in fig. 122 (p. 153). Let A m be the least radius of the

K cam, and A p the greatest, and let the

radii gradually increase along the edge
m n p, and decrease along the edge/? q m.

Then if the cam revolve continually in

the direction of the arrow, the roller D
will be by the action of the edge pushed

away from the center A, during the

passage of m n p under it, and will return

to the center during the passage ofp q m ;

it being supposed to be kept in contact with the edge by weight
or by a spring.

In this manner a series of periodic oscillations are communicated

to the bar BD, and the velocity ratio of this bar to that of the

cam can be adjusted at pleasure to any required law, by shaping
the edge of the plate accordingly (Art. 31).

This may be set out by points in the method of which an

example has already been given in Art. 225. If the bar be

required to remain at rest during a given angular portion of the

revolution of the cam, the edge will be an arc of a circle through
that angle. If the follower be a straight bar, as in

fig. 122, and
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this bar be required to perform its motion in both directions with
a constant angular velocity ratio to that of the cam, then must a
cam-plate be formed of two of the curves given in Art. 203, each
occupying half the circumference, and set back to back, so 'as to

produce a heart-shaped figure.
227. If the cam-plate be required to communicate more than

one double oscillation in each revolution, its edge must be formed
into a corresponding number of waves, as A, fig. 148

; and if the
follower is to be raised gently and let fall by its own weight, the
waves must terminate abruptly, as in B. If the follower is to

Fig. 148.

receive a series of lifts with intervals of rest, the cam becomes a
set of teeth projecting from the circumference of a wheel, as in D.
When the cam is employed to lift a vertical bar or stamper, these

separate teeth are often termed wipers or tappets.
228. The axis of the follower, if it be a revolving bar, as in

fig. 147, is not necessarily parallel to that of the cam ; but may
be set at any angle to it, if the bar revolve only through a small

angle, whose tangent in the mean position is in the plane of rota-

tion of the cam.

229. The simplest form of a cam is that of an excentric circle,

as at (7, fig. 148. Let a be the excentric center of motion, b the

center of the cam, ac the direction of motion of the follower,

which is a roller whose center is c. Then be is plainly constant,

and the motion given to the follower the same as if a link be and

crank ab were employed.
230. If the weight or spring be inconvenient, the cam may be

made to press the follower in both directions by means of a

double curve. This cannot be made in the form of a slit, as in

fig. 122, because the motion is now to take place indefinitely

in the same direction ; but a groove in the face of a plate may be

employed, as at A, fig. 149.

231. If the cam revolve always in the same direction, the

outside curve is only required during that portion of the motion

in which the follower approaches the cam, and it may be supplied
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by a bar attached to the cam by a few bridge pieces at the back,

as at B, fig. 149.

232. Or motion may be communicated in the two directions by
a double cam, as at C, fig. 149, in which the piece that receives

the reciprocating motion has two arms, the roller of one of which

rests on one cam, and that of the other upon another cam which

Fig. 149.

Qlt,

lies behind the first on the same axis, and the figure of which

corresponds to that of the first in such a way that the arc mn

between the points of contact is constant and equal to the distance

between the rollers. Thus when the edge of one cam is retiring

from its roller, that of the other is always advancing, and vice

versa.

233. In fig. 150, Ee is a revolving axis, Gg a bar capable of

sliding in the direction of its own length, and having a friction

Fig. 150.
roller at g ; a flat circular plate F is fixed

to the extremity of the axis, but not per-

pendicular to it
; the bar Gg may be pressed

into contact with the plate by a spring or

weight. Now if the plate F were perpen-
dicular to the axis, the rotation of the latter

would communicate no motion to the bar,

but the effect of the inclination is to com-

'-.]/ I .-- municate a reciprocating motion to the bar

-SiJ in the direction of its length, the quantity
of which varies with the inclination of the

plate to the axis ; and if the plate be so attached to the axis as

to admit of an adjustment of this inclination, a ready mode is

obtained of adjusting the length of the excursion of the bar.

This plate is termed a swash-plate ; the law of its motion may be

thus found.

Let Aa be the vertical axis of the swash-plate Bb, B its lowest

point, and therefore BaA the angle of its inclination to the axis.

Let cD be the sliding bar, BCh the plane of rotation of the

point B.

The motion therefore of BM from MC through the angle
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BMC lias moved the extremity c of the bar through the spacecC. Draw CN and Nn perpendicular to BM, then will Nn beMill A. I f\Ttf\ nnvallnl +n /%. .equal and parallel to Cc

"tan BaA 9

also BN=BM . versin BMC;
. versin BMC , ,

~RJ = aM versin BMC ;

so that the motion of the bar is the same as that produced by a
crank with an infinite link and a radius= aM.

234. If the path of the follower bar of a cam-plate be not
parallel to the plane of rotation of the plate, then, as in Arts.
207, 208, a cone, a hyperboloid, or a cylinder, may be employed
exactly in the manner there described ; but as the

velocity ratio
of cam and bar is no longer constant, we are no longer confined
to the curves there given. Instead of a groove a

projecting rib

acting between two rollers may be employed, either in these
combinations, or in those of the Articles already referred to.

235. If the motion of the bar from one end to the other of its

path be required to occupy more than a single revolution of the
cam-axis, the double screw of

fig. 151

may be employed.* This arrange-
ment has a cylinder and sliding bar

exactly corresponding to fig. 127, p.

156, but that on the circumference of

the cylinder is traced two complete

screws, one a right-hand screw beginning at a, and extending
from a by mbcdfto g\ the other a left-hand screw which begins
as a continuation of the right-hand screw at g, and extends from

g by ohkl to a, where it also joins the other screw
;
so that the

two screws form one continuous path, winding round the cylinder
from one end to the other and back again continuously. When
the cylinder revolves, the piece e, which lies in this groove and is

attached to the sliding bar, will be carried back and forwards, and

each oscillation will correspond to as many revolutions of the

cylinder as there are convolutions in the screw.

As the screw-grooves necessarily cross each other twice in each

revolution, the piece e must be made long, so as to occupy a

* Lanz and Betancourt, Analytical Essay on Machinet, by whom it is attributed to

M. Zureda.
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considerable length of the groove, as shown sideways at E
;
thus

it will be impossible for it to quit one screw for the other at the

crossing places. Also, as the inclination of the screws to the bar

are in opposite directions, it is necessary to attach the piece e to

the bar by a pivot, as shown in the figure, so as to allow it to

turn through a small arc as the inclination changes. If the bar

be required to move more rapidly in one direction than the other,

the one screw may be of greater pitch than the other, and

similarly, by varying the inclination of the screw at different

points, a varying velocity ratio may be obtained.

236. In the endless screw, fig. 143, p. 166, if the inclination of

the threads be made to vary from right to left in each revolution,

the wheel, when the screw revolves uniformly, will revolve with

continual change of direction, advancing by long steps, and

retreating by short steps alternately.

237. If a single series of changes in velocity and direction be

required, and which are too numerous to be included within a

single rotation of a cam-plate ;

then the spiral-cam or solid-cam

fig. 152, may be employed. Aa
is the axis of the cam, on one

extremity a of which a common
screw is cut, which works in a

nut in the frame of the machine,

so that as the axis revolves it also travels endlong. B is the

solid cam. D d the roller of the follower whose path is m d, and

which is kept in contact with the cam by a weight or spring as

usual. As the axis revolves the follower D will receive from it

a motion in its path, the velocity and direction of which will be

governed by the figure of the cam, as in Art. 226. But by
means of the screw at a the cam will be gradually carried endlong,
so that at the completion of each revolution the same point of the

cam will be no longer presented to the follower, as in fig. 147, in

which the same cycle of changes is repeated in each revolution.

On the contrary, the path traced by D upon the surface of B will

be a spiral or screw of the same pitch as that at a, and by

properly shaping the cam, we can thus provide a series of changes
that will extend through as many revolutions of the cam as the

length of the cam contains the pitch of the screw a.

C is an end view of the cam. In the figure the transverse

sections of the cam are represented as being everywhere circles

of the same excentricity, but of continually increasing diameter.

The effect of this would be to communicate to D d a reciprocating
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motion in its path, of which the trip in one direction would be
shorter than that in the opposite direction.

238. In the previous examples the pin or roller has been
given to the follower, and the curve to the driver, but either the

contrary arrangement may be made, or curves may be given to
both pieces, and the pin dispensed with. In

fig. 153, A is an
'>

Fig. 153.

arrangement by which an excentric revolving pin c, working in

the slit of an arm whose center of motion is b, gives it a recipro-

cating motion. This is the same combination as that of Art. 219,
but that in this case the pin c, by revolving always on the same
side of the center b, produces reciprocation, while in fig. 142 the

pin having the center b within its path produces a rotation in the

follower.

The same formula will therefore apply in the two cases,

making It less than E for reciprocation, and greater than E for

rotation.

In B, fig. 153, it is shown how by giving a curved outline to

the sides of the slit a different velocity ratio may be obtained.

In C the slit is attached transversely to a bar which slides in the

direction of its length ; and in this case it is easy to see that the

law of motion is the same as in a crank with an infinite link.

Again, by increasing the diameter of the pin of C, we obtain

an excentric, as at Z), where a is the center of motion, b the

center of the excentric. The slit now appears in the form of

two parallel bars ef, gh, attached at right angles to the sliding

bar; but the combination is exactly equivalent to that of Cy ab

being the radial distance of the piii from the centre of motion.

239. Any curve, however, may be substituted for this excentric

circle if it possess this property, that every pair of parallel and

opposite tangents are at a constant distance equal to the distance

of the bars ef, gh. For thus the bars will touch the cam in all

positions.
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For example, fig. 154 has such a curve, and is adapted for the

production of intermitting motion.

A is the center of motion of the cam, the form of which is a

kind of equilateral triangle Anm, whose sides are arcs of circles

Fig. 154. each described from the opposite angle,
the center of motion being one angle.

The follower is a bar Bb, and the cam
acts upon two straight edges pq, rs fixed

at right angles to the bar, and at a

distance from each other equal to the

radius of the arcs of which the cam
consists ; consequently the bars will be

in contact with an angle and a side of

the cam in every position, and the effect

of its figure upon the motion is as follows.

Let the circle described by its circumference be divided into six

equal parts, as in the figure. Then following the point m round

the circle in the direction of the numbers, it appears that from 1

to 2 no motion is given to the bar ; from 2 to 3 the point n is in

contact with rs, and the motion of the bar through that angle
will therefore be the same as that by the pin and slit C, fig. 153,

(w replacing the pin,) so that the bar begins to move gently and

accelerates ; when however m reaches 3 this action of n terminates

abruptly, and m begins a similar action upon pq, by which the

motion of the bar is now retarded, and gradually brought to rest

when m reaches 4
;
from 4 to 5 the bar is entirely at rest, from

5 to 6 gradually accelerated, and from 6 to 1 gradually retarded.

The motion of the bar is therefore nearly the same as that of the

pin and slit of C3 fig. 153, but with intervals of complete rest.*

ON ESCAPEMENTS.

240. We have now arrived at a class of combinations in which

revolving piece produces the reciprocation of its follower by

Pig. 155. acting alternately on two different

pieces attached to it, instead of upon
a single pin, roller, or other piece, as

in the combinations we have just been

considering. In
fig. 155, dbc is a

revolving piece or driver which has

three equal wipers or tappets, and the follower is a sliding bar or

* This cam was employed by Fenton and Murray to give motion to the valves of

their steam-engine.
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frame provided with two teeth or pallets A and B on opposite
sides of the center of motion of the driver.* The latter revolves
in the direction of the arrow, and its wiper a is shown in the act
of urging the follower to the right by pressing against the side of
the tooth A. Revolving a little farther in the same direction a
will, by its circular motion, escape from A, and at the same
instant b will encounter B, and will urge it in the opposite
direction, until b in like manner escapes from it, when c will act
upon A. In this way the rotation of abc will produce the re-
ciprocation of the frame.

241. But the frame may also be made the driver ; for if it be
moved to the left, A will push a and make the wheel revolve in
the contrary direction to the arrow, and c will pass B. When
this has happened, let the frame be moved back again; then,
after moving a short space, B will meet c, and move the' wheel
still farther round, until b has passed A, when the return of the
frame will enable A to push b. Thus the reciprocation of the
frame will cause the wheel to revolve in the opposite direction to
that in which itself would produce the reciprocation of the frame.
But when the frame is the driver, there will always be a short
motion at the beginning of each oscillation, during which no
motion will be given to the wheel.

242. Fig. 156 is another method by which a revolving wheel
A gives a reciprocating motion to a sliding
bar bk.-j-

The wheel has six pins projecting from
its face. The pin 1 is shown in the act of

driving the bar to the right by acting upon
the tooth at k. The pin 3 also moves a

bell- crank lever, the upper army of which

travels in the contrary direction to the bar. At the moment the

first pin 1 escapes from the side of k by its circular motion, the

pin b will have reached the army, and this will, by acting upon
b, push the bar in the reverse direction. Again, when the pin 3

escapes from the arm of the bell-crank, the pin 2 will begin to

act upon k, exactly as the pin 1 had previously done, while the

pin 4 will in like manner replace the pin 3, and raise the bell-

crank. This action will go on continually, producing a short,

alternate, but very abrupt and jerking, motion in the bar.

243. In these two contrivances the teeth of the wheel are

made to act upon two distinct pieces attached to the reciprocating

* This contrivance is taken from De la Hire, Traiti de Mecaniqut, prop. 114.

t From Thiout, Traite Horlogerie, t. i. p. 85.

N
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piece, and so arranged that as one tooth escapes from the recipro-

cating piece, the other shall begin its action, whence this group
of combinations receives the term of escapements. Escapements
are most largely employed in clock and watch-work * to com-

municate the action of the moving power to the pendulum or

balance ;
but when so employed they receive many delicate

arrangements, which have for their object the distribution of the

power in such a manner as will the least interfere with the due

action of the pendulum. Such arrangements being governed by

dynamical principles, are excluded from our present plan. Es-

capements are, however, employed in Pure Mechanism to convert

rotation into reciprocation, as for example, in the bell of an

alarum-clock. In the two forms already given the reciprocation

is communicated to a sliding bar
;
in those which follow it is

given to an axis, which may be either perpendicular or parallel

to the revolving wheel.

244. When the axes are at right angles the crown-wheel escape-

ment, fig. 157, is commonly employed.
A is the revolving axis, to the extremity of which is fixed a

crown-wheel with large saw-shaped teeth
;
Cc the vibrating axis

or verge. This carries the two pieces or pallets b and a, which

are set in planes making an angle with each other to allow of

the escaping action. When the wheel revolves in the direction

Fig. 157. f the arrow, one of its teeth pressing against
the pallet a will turn the verge in the same

direction, until, by the circular motion of a,

its extremity is lifted so high that the crown-

wheel tooth passes under it, or, in other words,
this tooth escapes from the pallet. By the

same motion of the verge the pallet b is

brought into a vertical plane, and the tooth c

now presses it in the contrary direction, and turns the verge
back again until c escapes from under b, when a new tooth begins
to act upon a, and so on. Thus the rotation of the crown-wheel

produces the vibration of the verge, the crown-wheel being the

driver.

245. The anchor-escapement, fig. 158, is adapted to parallel

axes.

The revolving wheel has pins 1, 2, 3, ... and turns in the

direction of the arrow. The vibrating axis B has a two-armed

piece carrying the pallets at its extremities, and resembling some-

what the form of an anchor ; whence the name of the combination.

* Vide Chapter on Trains below.
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The pin 1 is shown in the act of pressing against the pallet sur-
iace ab. Now as the normal of the point of contact passes on
the same side of the two axes A and B, the pin, which acts uponthe pallet by sliding contact, will tend
to turn the pallet in the same direc-
tion as the wheel (Art. 31). aB will

therefore revolve upwards, and the pin
will slide towards b and there escape
from the pallet. At this instant the

pin 3 will reach the second pallet-surface
cd, of which the normal passes between
the two axes ; the action of this pin will

therefore turn the axis B in the reverse

direction; the second pallet-arm Bd will rise, and the pin 3
escape from the pallet at d, when a new pin will act upon ab as
before

; and thus the vibration be maintained.
246. This escapement has received a great variety of forms.

The teeth of the wheel are more commonly long and slender-

pointed spur-teeth, of which many examples may be found in the
treatises of Horology.
A very simple arrangement is shown at the lower part of fig.

158, in which D is the verge, pn, nm, the pallets; these are
fixed against the face of an arm which lies parallel to the plane
of the wheel, and so far from it as to clear the tops of the pins.
The pin 6 is shown in the act of pressing the pallet mn, and
therefore of depressing the arm; when this pin reaches n it

escapes from mn, and begins to act upon pn, by which it raises

the arm and escapes at the lower end of the second pallet, when
5 begins to touch and depress the first pallet mn y and so on.

247. In all these escapements the verge may be made the

driver, and thus a reciprocating motion be made to produce a
rotation. The wheel will always revolve the contrary way to

that in which it turns when itself drives (Art. 241).
Thus in fig. 158, let the arm Ba be depressed, the pallet ab

will then drive the pin 1 backwards (that is, contrary to the

arrow), until pin 4 has passed under the point of d. If the arm
Bdbe now depressed dc will act upon pin 4, and continue the back-

ward rotation until 2 has passed under the point b. Ba being

again depressed will repeat the former action upon 2, and so on.

But the rotation of the wheel will be necessarily intermittent, for

at each change of direction in the pallet-arm the pallet must pass

through a short space before it begins to touch the pin, above

which it must have been previously raised to allow the same pin
N 2
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Fig. 159.

to pass under it. This will also be true of the crown-wheel

escapement.
248. In fig. 159 the axes are parallel, but the action is more

direct than in the common anchor-escapement.
As in the former contrivance, either the wheel

or the pallets may drive. I will describe it

under the latter action.*

C is the axis of the pallets G and F. If the

pallet-arm be moved to the left, F will en-

counter a, and at the same moment G will

have passed beyond b, therefore F continuing its

motion will turn the wheel, in the direction of the arrow, so that

when G returns it will enter the next space cb, and striking the

tooth b will thus continue the rotation of the wheel, and so on.

* This contrivance, by Meynier, is to be found in the Machines Approuvees, 1724.



DIVISION C. BY WRAPPING CONNECTORS. 181

CHAPTER VIII.

ELEMENTARY COMBINATIONS.

DIVISION C. COMMUNICATION OF MOTION BY WRAPPING CONNECTORS.

CLASS A DIRECTIONAL RELATION AND
VELOCITY RATIO CONSTANT.

Fig. 161.

249. ANY two curves revolving in the same plane whose

wrapping connector (vide p. 24) cuts the line of centers in a con-

stant point, will preserve a constant an-
Fi(y 160

gular velocity ratio. In practice, how-

ever, circles or rather cylinders only are

employed, which are fixed to revolving

axes, and manifestly possess the required

property. To enable the rotation to

proceed in the same direction indefinitely,
the band which serves as a wrapping
connector has its two ends joined so as to

form an endless band, which embraces a

portion of the circumference of each circle

or pully, and is stretched sufficiently

tight to enable it to adhere to and com-

municate its motion to the edge.
The band may be direct, that is, with

parallel sides, as in
fig. 160, or it may be crossed, as in fig. 161.

In the first case the axes or pullies will both revolve in the same

direction, in the latter case in opposite directions.

250. Motion communicated in this manner is remarkably

smooth, and free from noise and vibration, and on this account,

as well as from the extreme simplicity of the method, it is always

preferred to every other, unless the motions require to be conveyed
in an exact ratio.

For, as the communication of motion between the wheels and

band is entirely maintained by the frictional adhesion between them,



182 ELEMENTARY COMBINATIONS.

it may happen that this may occasionally fail, and the band will

partially slip along the surface of the pully. This, if not excessive,

is an advantageous property of the contrivance, because it enables

the machinery to give way when unusual obstructions or re-

sistances are opposed to it, and so prevents breakage and accident.

For example, if the pully to which the motion is communicated

were to be suddenly stopped, the driving pully, instead of re-

ceiving the shock and transmitting it to the whole of the machi-

nery in connection with it, would slip round until the friction of

the band upon the two pullies had gradually destroyed its motion.

But if motion is to be transmitted in an exact ratio, such, for

example, as is required in clock-work, where the hour-hand must

perform one exact revolution while the minute-hand revolves

exactly twelve times, bands are inapplicable ; for, supposing it

practicable to make the pullies in so precise a manner that their

diameters should bear the exact proportion required, which it is

not, this liability to slip would be fatal.

But in all that large class of machinery in which an exact ratio

is not required to be maintained in the communication of rotation,

endless bands are always employed, and are capable of trans-

mitting very great forces.

251. Bands may be either round or Jlat, and the materials of

which they are foi-med are various. The best but most expensive
is catgut; but its durability and elasticity ought to recommend
it in every case where it can be obtained of sufficient strength.
It acquires by use a hard polished surface, and it may be pro-
cured of any size, from half an inch diameter to the thickness of

a sewing needle.

The ends of a catgut band may either be united by splicing
*

* The splice employed for catgut bands differs from that which is used to join the

ends of ropes, and is formed as follows :

Make a hole near one end of the gut with a sharp-pointed pricker, and pass the

[Fig. 162.

other end through the hole. Make another hole through this other end, and similarly
pass the first through it, as in fig. 162.

To secure the ends, make other holes in succession in one part of the gut, and then
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or by a peculiar kind of hook and eye which is made for that

purpose. Both hook and eye have a screwed socket into which
the ends of the gut are forced by twisting, having been previously
dipped into a little rosin. The hook and eye may be warmed to

keep the rosin fluid while the band is being forced in, and the
ends of the band that come out through the socket may, for

further security, be seared with a hot wire.

Hempen ropes are only used in coarse machinery, but in the
cotton factories a kind of cord is prepared, of the cotton-waste,
for endless bands, which is tolerably elastic and soft, and is

peculiarly adapted for driving a great quantity of spindles.
Also the soft plaited rope, termed patent sash-line, answers very
well for these purposes. All these bands must have their ends

neatly spliced together, so as to avoid as much as possible the
increased diameter at the place of junction, because the periodic

passage over the pullies of the lump or knot so formed gives rise

to a series of jerks, that interfere with the smooth action of the

mechanism.*

Common iron chains are also used, but only in very rough and

slow-moving mechanism.

Flat leather belts appear to unite cheapness with utility in the

highest degree, and are at any rate by far the most universally

employed of all the kinds. This they owe partly to the superior
convenience of the form of pully which they require, over that

which is employed for round bands and chains. Belts vary in

width from less than one inch up to fifteen inches, and their

extremities may be united by buckles, but are best joined by

simply overlapping the ends and stitching them together with

strips of leather passed through a range of holes prepared for the

purpose, or they may be glued or cemented at the ends ; in which

case, by carefully paring and adjusting the parts that overlap,

they will be perfectly uniform in thickness throughout; but

they thus lose the power of being adjusted in length, and must

therefore be provided with stretching pullies.

pass the end of the other part backward and forward through them, gradually dimin-

ishing the thickness of the end by scraping and splitting after passing through each

successive hole, fig. 163.

Perform the same operation for the other end, drawing it all tight as you proceed,

then cut off the loose ends close and roll the splice between two boards to polish it and

lay the fibres close.

* Vide Transactions of Society of Arts, vol. xlix. part i. p. 99, for some practical

directions by Mr. Varley, who sajs,
' I have used twine as much as gut for the small

lathe bands. I splice the ends together and smooth it with a cement of wax, resin,

and whiting in equal parts, and then wax the string and it runs as smooth a* gut."
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Belts, on account of their silent and quiet action, are very
much employed for machinery in towns, to avoid nuisance to

neighbours. It appears also that the use of belts is greatly
extended in the American factories.* In Great Britain the

motion is conveyed from the first moving power, to the different

buildings and apartments of a factory, by means of long shafts

and toothed wheels; but in America, by large belts moving

rapidly, of the breadth of 9, 12, or 15 inches, according to the

force they have to exert.

Both flat belts and round bands have been manufactured of

caoutchouc interwoven with fibrous substances, in various ways ;

and under peculiar management may be made to answer very
well. But changes of temperature occasion great variations of

length and elasticity in this material
;
nevertheless in this latter

quality it is greatly superior to catgut, and, like that substance,

it requires no stretching pullies, which must always be employed
for rope-bands. Gutta percha makes excellent bands, both flat

and round, and its ends are united by heat, so as to avoid knots

at the junction. Belts are also made of woollen felt., and round

bands are cut out of thick leather. In small machinery an

endless band may even be cut out, in one piece, of a skin of

leather, in the manner of the well known parcel bands of vul-

canised caoutchouc, by cutting them in the form of flat narrow

concentric rings, so as to avoid the necessity of joining the ends,

and thus the jerks occasioned by the passage of the knot over the

pully are entirely avoided.

252. The form of the pully upon which an endless band is to

act is of importance, as the adhesion of the band is greatly

Fig. 164.

: L U L

influenced thereby. Fig 164 exhibits the principal forms.

Round bands of catgut, rope, or other material, or even chains,

require an angular groove (as A}, into which their own tension

wedges them, and thereby enables them to grasp more firmly the

edge of the pully.

* Cotton Manufacture of America, by J. Montgomery, 1840, p. 19.
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Fig. 165.

But when ropes or soft bands are used, the bottom of the

groove is sometimes furnished with short sharp spikes (as B), or

else its sides are cut into angular teeth (as C), which help to

prevent the band from slipping, but at the same time are apt

gradually to wear it out.

A pully for chains is sometimes formed by fixing Y-formed
irons ,at equal distances in the circumference of a cylindrical

disk, as at G, or straight irons driven into the circumference,
with a diagonal inclination to the right and left alternately.
When the pully over which the band passes is used merely as

a guide-pully (Art. 202), there is no need to provide against

slipping, and the groove or gorge is made simply of a semicircular

section as D, to keep the band in its place.

253. When great smoothness and lightness of motion is re-

quired in foot- lathes it is better to arrange the band so as to

embrace the whole circumference of the

wheels. This arrangement, employed by
Mr. Varley, is shown in the figure, in which

the supporting framework is omitted. A is

the great foot-wheel, duly mounted in a

frame as usual. B the pully of the man-

dril. The grooves of these wheels are not

angular, but of a semicircular section, and

the round band is arranged so as to em-

brace the entire circumference of each, and

carried round the guide pullies C and D as

shown in the figure. These pullies are

mounted in carriages that admit of being

clamped to the frame of the machine oppo-

site to any of the pully grooves that are

convenient, and the upper one can be raised

or depressed so as to give proper tension

to the band. By embracing the whole cir-

cumference less tension is required to enable

the band to grasp the wheels without slip-

ping, and the friction of the axles is di-

minished, not only for this reason, but be-

cause the tension of the band acts vertically

in opposite directions upon its tangent points

to the circumference instead of pressing the mandril downwards,

as in the ordinary arrangement.*

* A lever acting upon the tipper guide pully may be employed to increM* and

diminish the tension of the band so as to admit of stopping and starting the mandril
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254. An endless band of any kind is easily shifted during the

motion to a new position on a cylindrical drum or pully, if the

.p. 16g
band be pressed in the required direction on its

advancing side, that is, on the side which is travel-

ling towards the pully ;
but the same pressure

on the retiring side of the belt will produce no

effect on its position.

For example, if the belt AB has been running
over the drum in the position B, and this belt be

drawn a little aside, as at A, those portions of the

belt which now come successively into contact

with the drum, as at a, will begin to touch it at

a point to the left of the original position, and in one semi-revo-

lution the whole of the belt in contact with the drum will thus

have been laid on to it, point by point, in a new position ab, to

the left of the original one B ; but if the direction of the motion

were from B to A, the portions of belt drawn aside are those

which are quitting the drum, and consequently produce no effect

on its position thereon.

Therefore, to maintain a belt in any required position on a

cylindrical drum, it is only necessary that the advancing half of

the belt should lie in the plane of rotation of that section of the

drum upon which it is required to remain, but the retiring side of

the belt may be diverted from the plane, if convenient, without

affecting its position,

If the machinery be at rest it is very difficult to shift the

position of a belt of this kind, on account of the adhesion of its

surface; but by attending to the simple principle just explained
it becomes very easy to shift the belt by merely turning the

drum round, and pressing the advancing side of the belt at the

same time. The same principle applies to round bands running
on grooved pullies ;

if it be required to slip them out of the groove,
the advancing side of the band must be pressed to one side, so as

to make it lay itself over the ridge of the pully, when half a revo-

lution will throw it completely off.

255. If an elastic flat belt run on a revolving sphere or cone, as

in figs. 167 and 168, it will advance gradually towards the largest
diameter of the sphere or to the base of the cone, instead of sliding
towards the smaller diameter as might be expected at first sight.

This property was first indicated by Dr. Young (' Nat. Phil.'

vol. ii. p. 183).

without stopping the motion of the foot-wheel. For the details of this device vide Mr.
Varley's paper in the Transactions of the Society of Arts, vol. xlix. p. 96.
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256. Let a flat elastic endless belt CcD be made to embrace a

spherical pully S as in the figure, touching its surface at a point

Fig. 168.

S r. e

C, and passing from D downwards to embrace a cylindrical pully
on an axis parallel to that of the sphere.

If the tension of the belt be small its bearing edge Cc will be

parallel to the axis of the sphere, and consequently cannot coincide

with its surface along its breadth Cc, but the belt will simply
touch the upper half of the sphere along that edge CD which is

nearest to the center. But if the tension of the belt be increased,

the edge CD will be stretched in a greater degree than cd, so as

to bring the whole under surface of the belt into coincidence with

the spherical surface. But the consequence of this will be that

the belt will be bent into the form shown by the dotted lines, by
which the lower portions are thrown into a plane nearer to the

larger diameter of the pully.

Now we have seen that if the advancing side of a belt be pressed
in any direction it will shift its position on the pully accordingly.
Hence (supposing DC in the figure to be the advancing side) the

effect of this twisted form will be to cause the whole belt to take

up a position nearer to the central diameter Ss of the pully. It

will thus gradually travel until it places itself directly over the

central diameter, where it will remain. For if it were moved

either to the right or left of that position, it would immediately be

brought back to it by the above described process.

Belt pullies are therefore always made in this spherical form,

but containing only a narrow segment of the sphere as in F
fig. 164

which may be described as a cylindrical pully a little swelled in

the middle. This slight convexity is more effective in retaining
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the belt than if the pully had been furnished with edges as at E\
and the form, besides its greater simplicity, enables the belt to be

shifted easily off the pully. In fact, when a pully of the latter

form E is employed, the belt will generally make its way to the

top of one of the lateral disks, and remain there, or else be huddled

up against one or other of them, but will never remain flat in the

center of the rim, if there be the slightest difference of diameter

between the two extremities of the cylinder.

It is only necessary to swell the edge of one of the pullies of a

pair connected by a belt. The other may be a plain cylinder.
This facilitates the removal or shifting of the belt.

257. In order to bring the belt into contact with as much as

possible of the circumference of the pully, it is better to cross it

Fig. 169. (Art. 249) whenever the nature of the ma-

chinery will admit of so doing. Because when
a flat belt is crossed, it necessarily follows that

at the place where the two sides cross, the

belts lie flat against each other ; for since the

belt at each extremity where it joins the pully
is perpendicular to the plane of rotation, and

it is twisted half round in its passage, it must
be parallel to the plane of rotation half way
between the pullies, where the two sides of

the belt cross. Hence they pass with very
little friction.

258. The band moves with the same velo-

city as the circumference of the pully with

which it is in contact, and consequently the

circumferences of the two pullies which it connects move with

equal velocities
;

A_ r
''

a~R'
where A, a are the angular velocities, R, r the radii.

But practically when a thick belt is wrapped over a pully its

inside surface is compressed and its outside surface extended, and

the center, or nearly so, of the belt alone remains in the same
state of tension as its straight sides, and therefore moves with the

velocity of the sides. Hence the radius of the circle to whose

circumference the velocity of the belt is imparted, virtually ex-

tends to the center of the belt, and half the thickness of the belt

must be added to the radius of the pully, in computing the angular
velocities.

Similarly, to find the acting radius of a pully with an angular
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groove, as at A, fig. 164, the distance of the center of the section
of the band from the axis of the pully must be taken, and this in
a given pully will be greater the thicker the band employed.

259. Let aa, 0b, be two shafts, neither parallel nor meeting in
a point, and let it be required to connect them by a pair of pullies
and an endless band. Recollecting that the advancing side of the
band must remain in the plane of rotation of each pully, find the
line MN, which is the common perpen-
dicular to the shafts. Fix the pullies

upon the respective shafts, so that a line

mn parallel to MN shall be a common
tangent to them, which is done by making
the distance AM of the upper pully
from the pointM equal to the radius Bn
of the lower pully, and vice versa, BN

Arrange the belt in the manner shown
in the figure, the arrows indicating the 6

direction of motion
; then the portion np

which is advancing to the upper pully is

plainly in the plane of rotation of that

pully, and will therefore retain its posi-
tion thereon, and similarly, the portion

mq which is advancing to the lower pully, is also in the plane of

rotation of the latter.

If, however, the motion be reversed the belt will immediately
fall off the pullies, for in that case the portion pn will advance

towards the lower pully in a plane pn, making an angle with that

of the pully. The belt will therefore begin to shift itself towards

N, and, by so doing, will be thrown off the pully, and a similar

action will take place between the belt qm and the upper pully.
This property manifestly excludes this arrangement from all

machinery that is required to revolve in either direction, or even

to be occasionally turned backward in adjustments.
The appearance of this arrangement in practice is very curious ;

for the retiring belts being twisted at a very considerable angle
from the planes of the pullies, at the moment of quitting them

appear as if they were slipping off at every instant, which how-

ever they never do. The only fault is, that this violent twist at

m and n is apt to wear out the leather, especially if the shafts are

pretty close together. For which reason it may be better to

employ guide pullies to conduct the belt from one wheel to the

other, as in Art. 263.
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If it be required to cross the belts, the arrangement for so doing
will be found by drawing a figure similar to 170, but in which qm
shall be the intersection of the planes of rotation, mn the descend-

ing belt, and a common tangent from p towards q the ascending
belt.

260. TVTien round bands are employed for shafts which are

neither parallel nor meeting, the following arrangement may be

used. In fig. 171 Aa, pb, are the two shafts drawn in perspective,

Fig. 172.

Let AB be their common perpendicular. The upper pully
Amp must be fixed so that its central plane contains the common
normal AB, and is necessarily perpendicular to its shaft Aa;
similarly, the central plane Bnq of the lower pully must be per-
pendicular to its shaft Ip and contain the common normal. But
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the projections of the shafts on a plane perpendicular to this
normal as at a^, b^ may make any angle, but must necessarily
intersect at the seat of the normal.

The band passed over the upper half of the upper pully, must
have its two sides conducted downwards and passed under the
lower pully in the direction of the letters m q np. The two straight
portions are manifestly not in the same plane, and the portions of
the circumference embraced by the band, are greater than semi-
circles, being included by two normals Am, Ap on the directions
of the band. This is more distinctly shown in

fig. 172, which is

an elevation of the combination drawn on a plane parallel to that
of the upper pully and to the common perpendicular AB of the
axes.

Fig. 173. Fig. 174.

261. The exact mode in which the band embraces the pullies
is shown in figs. 172, 173, and 174. The first is an elevation on

a plane parallel to the common normal of the shafts and to the

lower axis b(3, but perpendicular to the upper axis A. Fig. 173

is an elevation of the pully on a plane, parallel to the direction of

the advancing band rq ; fig. 1 74 a section through the common

normal, and therefore through the bottom of the gorge.

The pully is composed of two similar frusta of equal e>

edc, set in opposite contact so as to form the groove of the pully.

Now rq, the advancing band, is by its tension retained in a plane

rqf which cuts the cone parallel to its axis in the curve gqf, which

i* an arc of an hyperbola whose vertex is q.
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Assuming the combination to be at rest, and the end of a

flexible cord kept in contact at n, and then passed under the pully

from n to o and upwards by g and g to r, it will plainly embrace

the groove until it arrives at the normal q, figs. 1 73 and 1 74. From

q the band, which is confined by its tension to the plane rqf of

which Bq is the normal, may be moved to any position in that

plane which is tangent to the hyperbola gq.

Now it has been shown above that if a cord running towards a

pully is drawn aside from the normal plane of the axis so far as to

come into contact with the outer edge of the groove as at grul it

will be dragged onwards and thrown off the pully. But so long
as it is within the edge so as to be in contingence with the hyper-
bolic section as at gr^ it will remain in the groove. Draw there-

fore grn in the plane of the section and tangent to it at the point

g of the base. Evidently any direction within the angle formed

by the lines ruq and rq will be retained in the groove. But if

within the lines r^g and ring will be thrown off.

By the above arrangement the axes may revolve in either

direction without throwing off the band. Also, the relative rota-

tive directions of the axes may be changed, for supposing the

upper wheel Ap to revolve as shown by the arrows, the side pn of

the band may be shifted so as to pass from p to q and similarly
the side mq transferred to the position mn. This will evidently
transfer the upward motion of the circumference of the lower

wheel from n to q and the downward from q to n.

Fig. 175. 262. Pullies are sometimes employed
for the purpose of altering the course or

path of a band, in which case they are

termed guide pullies. Their position and

number may be determined in the follow-

ing manner :

A band moving in the line Ab is re--

:B quired to have its path diverted into the

direction bJB by guide pullies.

If these lines meet in the point b, one

pully is sufficient ;
the axis of which must be placed perpendicu-

larly to the plane which contains the two lines Ab, bB, and its

mean diameter adjusted so that it may touch these lines. If this

diameter be too great for convenience, or the point of intersection

b too remote, or if the lines do not meet in a point, then two

pullies are required, whose positions are thus determined.

Draw a third line^, meeting the two former lines in any con-

venient points/ and g respectively, and let this line be the path
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of the band in its passage from one line of direction to the other
1 lace, as before, one guide pully at the intersection /, and the
other at the intersection 9 , the axes of these pullies beino- re-
spectively perpendicular to the plane that contains thetwo
directions of the band.*

263. Let A, B be two pullies whose axes are neither parallelnor meeting m direction, as in Art. 259, and let the line cd be
the intersection of the two planes of these pullies.

In this line assume any two convenient

points c and d-, and in the plane of A draw
ce, df, tangents to the opposite sides of this

pully ; also in the plane of B draw eg, dh,

similarly tangents to the pully B.
This process gives the path of an endless

band e eg h df, in which it may be retained

by a guide pully at c in the plane e c g, and
another at d in the plane / d h. In this

band both the retiring and advancing sides

lie in the planes of each pully. The pullies
will therefore turn in either direction at

pleasure, and the band is not liable to

the twisting wear already deprecated in the arrangement of

fig. 170.

In other cases that may present themselves, the position and
least number of the requisite guide pullies may be determined by
similar methods.f

264. If the bands are not made of elastic substances they re-

quire stretching pullies ; that is, pullies resembling guide pullies,
whose axes can be shifted in position, so as to increase the tension

of the band as required ; or else their axes are mounted in frames

so that a weight or spring may act upon them, to retain the band
in the proper state of tension

;
but as the operation of these con-

trivances involve considerations of force, they do not fall under
the plan of this portion of the present work. Neither do certain

arrangements by which the quantity of circumference embraced

*
Poncelet, Mec. Ind. part iii. art. 24.

t The rigging of ships and machinery for hoisting loads present examples of guido

pullies in combinations termed blocks, because they are commonly contained in the

parallel mortises of a block of wood. But such pulley blocks when employed in mr-

chinery are composed of parallel iron or brass plates. The pully or pullies of this

class are always less in diameter than that of the mortise, the projecting edges of

which are required to prevent the rope from being dragged off the pully. More par-

ticulars of this class of mechanism will be found under the head of Reduplication.

O
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by the bands are increased or multiplied, for the purpose of

improving the adhesion.*

265. We have seen that a common iron-chain with oval links

may be employed as an endless band ; using the form of groove

A, fig. 164. If the chain be formed with care, and the wheels

between which it works be provided with teeth, the spaces

between which are accurately adapted to receive the successive

links, then the chain will take a secure hold of the circumference

of each wheel ; and its action upon these teeth will resemble that

of one toothed wheel upon another, or rather of a rack upon a

toothed wheel, the successive links falling upon and quitting the

teeth without shocks or vibration, so that the motion of one toothed

circumference will be conveyed to the other without loss from

slipping. A chain of this kind is termed a geering chain.,

and various forms have been given to its links to ensure smooth-

ness of action. But these chains are expensive and troublesome,
and are not much in use, as, generally speaking, the communi-
cation of motion to a distance can be as completely effected by
a long shaft with bevil-wheels at each end ;

and the geering
chain, in all its forms, is liable to stretch, by which the spacing
or pitch of its links is increased, so that they no longer fit the

teeth of the wheels.

Fig. 177 shows the geering chain which was proposed by the

celebrated Vaucanson, about 1750.= The links of the chain are

made of iron-wire and adapted to lay hold of

the teeth of a wheel in the manner shown by
the figure.*}*

Geering chains had been, however, employed

long before this period, as for example, by Ra-
inelli in 1588 ; | and the very chain of Vau-
canson is represented by Agricola, in 1546,
as an endless chain, to carry buckets in a

machine for raising water from a mine.

Fig. 178 is another form, from Hachette,
in which the links are made of plates rivetted

together, somewhat after the manner of a

watch-chain ; and 179 is a third modification^
in which a plate-chain is also employed ;

but

the teeth of the wheel are much better disposed for grasping the

successive links. Nevertheless, in all these cases, when the rivets

* Vide Chapter on Friction below.

t Vide Kncyc. Method. '

Manufactures,' torn. ii. p. 132.

J Vide his Figs, xxxix. and xciii. Used in Morton's patent slip.
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enlarge the holes by wearing, the pitch of the chain is increased,
and each link enters its receptacle on the wheel with a jerk,
producing vibration and accelerated deterioration.

Fig. 179.

Fig. 178.

266. If the axes be required to make only a limited number
of rotations in each direction, the slipping of the band may be

entirely prevented by fixing each end of it to one of the pullies
or rollers, and allowing it to coil over them as many times as

may be required ; as in fig. 180, where rotation is conveyed from

one roller A to the other B by the cord a, one end of which is

fastened to the surface of A, and the other end to that of B.

To enable the motion to be conveyed in both directions a similar

cord b may be coiled in the opposite direction round each roller,

so that while b coils itself round A, a will uncoil itself, and vice

versa.

Fig. 180. Fig. 181.

The carriage B, fig. 181, runs back and forwards upon the

rollers /, e, and derives its motion from the roller or barrel A,
which is mounted on an axis above it. A cord c is tied to one

end of B, and another cord d to the other end ;
these cords are

passed as many times round the roller as is necessary, in opposite

directions, and their ends fastened to its surface. When the

roller revolves the carriage will travel along its path, preserving

a constant velocity ratio, provided the circumference of the roller

o 2
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nearly touch the line dc. Otherwise the variation of the angle

Acd, during the motion of the carriage, will cause the velocity

ratio to change.* If, however, pullies be fixed to the frame of

the machine beyond d and c, and the cords be carried from the

barrel over these pullies and then brought back again to d and c,

the axis A may be fixed at any required height above B. Either

piece may be the driver.

Sometimes a single line is employed, which being fastened

at d is coiled three or four times round the roller, and then

carried on to c
; the coiling is sufficient to enable the cord to lay

hold of the roller in most cases, as for example, in the common
drill and bow.

267. But the constancy of the ratio is interfered with in both

these contrivances, by the varying obliquity of the straight parts
of the cords which connect the pieces, as well as by the tendency
to heap up the successive coils in layers upon each other, thereby

increasing the effective diameter of the rollers. The latter defect

is remedied by cutting a screw upon the surface of each roller,

which guides the cord in equidistant coils as it rolls itself upon
the cylinder.

Thus, fig. 182, let A give motion to B by a cord cd, in the

manner already shown in fig. 180, but let screws be cut upon the

pj Ig9
surface of the rollers ; then during the motion

of A the extremity c of the straight portion of

the cord will be gradually carried to the right
as it is wound up, and vice versa ; and this

motion will be constantly proportional to the

rotation, and at the rate of one pitch of the

screw to each complete turn of the cylinder.
To cause the straight portion cd to move

parallel to itself, the screw cut upon B must

be of such a pitch that the endlong motion of

d may be the same as that of c. Now since the velocity of the

surfaces of the two cylinders are equal, and every revolution of

either screw carries the cord endlong through the space of one

pitch, let m x circumferences of A n x circumferences of B, and
let C, c be the respective pitches of their screws

; R, r their

radii, then we must have mC= nc,

or
c

* For the line Ac acts as a link jointed at c, and therefore ;

vol. of Ac : vel. of B : : cos A c d : 1. (Art. 30. Cor. 6.)
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Fig. 183.

268. In the combination of fig. 181, the screw roller will pre-
vent the irregular heaping up of the cord on the barrel, but will

not correct the varying obliquity of the cord. This may be got
rid of thus.

Let B, fig. 183, be the sliding carriage, CD, HK the sides of

the frame which supports the roller, E the roller formed into a

screw.' This roller has a screw F
cut on its axis, of the same pitch as

that of E, and passing through a nut

in the frame CD ; the other extremity
of the roller is supported by a long

plain axis G, passing through a hole

in the frame HK\ the cord being tied

at b to the carriage, and at the other

end to the screw-barrel E\ it follows,

that when the latter is turned round,
it will travel at the same time endlong

by means of the screw and nut F, exactly at the same rate, but

in the opposite direction, as the end of the cord is carried along
the barrel by its coiling ; consequently the one motion exactly
corrects the other, and the cord b will always remain parallel to

the path of the slide B.*

A similar and contrary cord being employed to connect the

other end of the slide with the barrel, will enable the roller to

move the slide in either direction.

269. A well made chain of the common form, with oval or square

links, will coil itself with great regularity upon a revolving barrel,

if a spiral groove be formed upon the surface, of a width just

sufficient to receive the thickness of the Fig. i4.

links. As shown in fig. 184, the links

will alternately place themselves edge-

wise in the groove and flat upon the sur-

face of the barrel.

270. When the rotating piece is re-

quired to move only through a fraction

of a revolution, the combination is made

more simple.

Thus let^4, Fig. 185 represent a piece

or quadrant, whose axis is B, b, and whose edge is made con-

centric to it, and let CD be the sliding piece, represented as an

open frame for clearness only, but supposed to be guided so as

to move in either direction along the line CD produced.

* From a machine by Mr. Holtzapfel.

If
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cords or chains be attached at c, d, to the quadrant and at e,

Fig. 185.

C

j, to the sliding frame; and a third intermediate cord be attached

contrariwise to the quadrant at h and the frame at g, then either

the motion of the quadrant or the frame will communicate motion

to the other in a constant ratio, and in either direction at

pleasure. Bands of flexible metal, e.g. of watch-spring, may
be employed in cases where the flexure is small and of limited

extent, as in this figure.
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CHAPTER IX.

ELEMENTARY COMBINATIONS.

DIVISION C. COMMUNICATION OF MOTION BY WRAPPING CONNECTORS.

CLASS B.
DIRECTIONAL RELATION CONSTANT.
VELOCITY RATIO VARYING.

Fig. 186.

271. IF the varied motion is required to be limited to a small

arc, the combination assumes the form of fig. 5 (page 16), but if

the limits of the varied motion extend to more than a complete
revolution a spiral groove is employed, as in the fusee of a watch,

represented in fig. 186.

Aa, Bb are parallel axes, one of which carries a solid pully,

or fusee, as it is termed, upon whose surface is formed a spiral

groove, extending in many convolutions from one end to the

other. The axis Bb carries a plain cylinder ; a band, a cord, or

chain, is fastened as at m
to one end of the fusee,

and coiled round it, follow-

ing the course of the spiral ;

the other end of the cord is

fixed to the barrel at n. If

the cord be kept tight by
the action of a weight or

spring upon one of the

axes, the rotation of the

other axis will communi-

cate by means of the cord a rotation to the first axis, the

velocity ratio of which will vary inversely as the perpendiculars

from the axes upon the direction of the cord. And the motion

may be continued through as many revolutions as there are con-

volutions in the spiral.

In like manner a pair of fusees may be employed instead of a

fusee and cylinder.
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272 If the fusee be required to communicate motion in both

directions without the use of the re-acting weight or spring, a

double cord will answer the purpose. Thus let it be required to

employ the fusee in the manner of the barrel A, fig. 181 (p. 195),
to give motion to a carriage B. The fusee will enable us to

obtain a varying velocity ratio between A and B. In fig. 187

Aa is the axis of the fusee, which in this example is made to

diminish at both ends. One cord is fastened at m, and being
coiled round the fusee is carried away at n, and attached to the

carriage, as at c, fig 181. The other cord is fixed at p to the

fusee, and being coiled in the opposite direction, leaves the fusee

at the same point at which the first cord is carried off. But this

cord is taken in the opposite direction, as at q, and fixed to the

end d (fig. 181) of the carriage (or, which is better, both cords

are carried over pullies and brought back to the carriage).

When the axis Aa revolves, one cord will unwrap itself from

the fusee, while the other wraps upon it, and vice versa. But

they will always leave its surface in opposite directions at the

same point.

Since the fusee (fig. 187) is small at each end and large in the

middle, it will, if turned with a uniform angular velocity, have

the effect of gradually accelerating the motion of the carnage,
till it has reached the middle of its path, and then of gradually

retarding it to the end. It is employed in this manner in the

self-acting mule of Mr. Roberts, of Manchester.
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CHAPTER X.

ELEMENTARY COMBINATIONS.

DIVISION C. COMMUNICATION OF MOTION BY WRAPPING CONNECTORS.

Fig. 188.

CLASS C. VARYING VELOCITY RATIO AND CONSTANT OR
VARYING DIRECTIONAL RELATION.

273. THIS is obtained by employing circular or curvilinear pullies

revolving about excentric centers. The diagrams which follow

represent my apparatus by which these transformations of motion

can be effected, and exhibited in the lecture room.

C is a plain circular disk fixed to the end of an axis A, which

is mounted in a socket carried by a vertical board or frame, so as

to leave the face of the disk

perfectly free. A handle at

the hinder end of the axis

enables it to be rotated at

pleasure.

prs is a smaller disk of cur-

vilinear outline, having an an-

gular groove sunk round its

circumference in the manner

of a pully. This, from its

form, may be termed a cam

pully. A simple thumb-screw

at the back is arranged so as

to enable this cam pully to be

secured against the face of the

disk in any required position

as shown in the figures. In fig.
188 the center of rotation

of the disk is contained within the circumference of the cam pully.

In figure 189 the cam pully is fixed to the disc in a position

beyond the center. In fig. 190 the center of rotation of the disc

touches the circumference of the cam pully. I? is a plain circular
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pully Avhich receives the varied motion from the uniformly rotating

cam pully, which is the driver of the combination, as B is the

follower.

This pully receives the varying motion from the constant

uniform rotation of the cam pully by means of an endless band,

pqtsr, and is therefore the follower pully. The disk C being sup-

posed to revolve clockwise, the portion of band pq will pull the

lower circumference of B, and the velocity ratio will be equal to

P, where Ap and Bq are the respective perpendiculars upon the

Bq
direction of the band, which is always a common tangent to the

cam pully and the follower pully B. But as the former turns,

the length of Ap varies, while that of Bq is constant. It is there-

fore impossible to employ an ordinary endless band. The bard

is therefore carried over the upper parts of the two pullies, and

brought down as shown by the dotted lines, and carried under a

pully attached to the end of an arm, ht, which swings on a pin at

h, and carries a weight W to stretch the band.

It is apparent, therefore, that the position of the dotted part of

the band has no influence on the velocity ratio, and also that the

perpendiculars Ap, Bq, being always in the same direction,

although varying in length, the directional relation is constant*

In this figure the direction of the perpendiculars are both down-
wards on the band. But by carrying the band tangentially over

A and B instead of under, the perpendiculars would be both

upwards, and the part pq would become the loop over t.

Otherwise the band pq might

pass under A and over B, or vice

versa. But whichever course

has been given to the band, the

directional relation remains con-

stant.

274. In fig. 189 the cam pully
is fixed to the disk in a position

entirely beyond the center of ro-

tation A. Hence in each revolu-

tion the entire cam pully is car-

ried over and under the center, as

shown in the positions 1 and 2.

In the first the whole cam pully
is travelling to the left, and the band j) lq l pulling the follower

pully B clockwise with velocity ratio= - ?- 1
. But as the cam pully
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is carried upwards, the perpendicular Ap l diminishes, and when it

has risen so far that the common tangent of the circle B and the

pully passes through A, Ap }
vanishes for an instant, and the

velocity ratio= 0. .But the motion of the cam pully to 2 now
obtains a perpendicular Apn \n the opposite direction, which gives
out cord to the follower Bq. The cord, however, is kept tight by
the stretching pully below, and thus the motion produced is, that

each revolution of the great disk communicates one back and

forward motion to the follower Bq. . In this case, therefore, the

velocity ratio and directional relation both vary.

275. In fig. 190, three positions of the cam are shown, num-
bered 1, 2, 3. The angle of the salient point is measured by that

of its tangents qr, rv, and the cam is so fixed to the disk that the

point r coincides with the center of rotation of the disk.

Beginning with position 1, the velocity ratio is -^ As the

motion of the disk goes on, the cam turns upon its salient point r,

and the perpendicular rp l
dimi- ^

nishes, and finally vanishes, when

the common tangent qs of the

cam and follower is brought into

coincidence with qr, and the

cam into the position 2, in which -vl

the salient tangents are rv
lt rqr

The cam now turns on the center

of the disk r, and therefore gives

out no cord to B, until it reaches

the position 3, where the tangent

rq of the salient angle qrv coin-

cides with the direction of the

cord. The cam proceeding from

the position 3 towards 1 will now

press with its lower edge upon

rq, and communicate motion to the follower, gradually increasing

as the common tangent of the cam and follower is removed from

the diametral direction Aq, and the angle Aqp x
increased.

The motion in one revolution of the disk of this arrangement

has an interval of perfect rest of the follower, succeeded by an

oscillation, which begins gradually, reaches its maximum, and

ends gradually. The angle of rest is measured by the passage of

the tangent Aq }
to the position Aq. Let 0=the angle of salience

and $= angle of rest . *. < = TT 0.
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By this adjustment, therefore, we have directional relation con-

stant, with intermission of motion.

270. In the above figures it is evident that by the rotation of

the curvilinear pully A the stretching pully D receives a varied

Fig. 191.
motion upwards and downwards. If, there-

fore, this pully be attached to a sliding

piece or to an oscillating arm, a varied or

intermittent motion will be communicated

to this piece or arm by the rotation of the

curvilinear pully.

For example, if the pully be an excen-

tric circle whose center is m, mb will be

constant, and the motion the same as that

produced by a crank with radius Am and link btn.

If the pully have straight parallel sides and be terminated by
semicircles whose centers are e and/, and radii the same as that

of the small pully d; and if C the center of motion of the large

pully be midway between e and/, then Cd will be the radius of

the ellipse whose foci are e and f, and center the center of motion

of the pully ; so that the vertical sliding motion of d will be

determined by the equation of this ellipse round its center.
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CHAPTER XI.

ELEMENTARY COMBINATIONS.

DIVISION D. COMMUNICATION OF MOTION BY LIXK-WOKK.

CLASS A.
DIRECTIONAL KELATION CONSTANT.
VELOCITY RATIO CONSTANT.

Fig. 192.

277. WE have seen that when two arms revolving in the same

plane about fixed centers are connected by a link (Art. 30), their

angular velocities are inversely as the segments into which the

link divides the line of centers. This relation is constantly

changing, as the arms revolve, unless the point of intersection T
(fig. 6), can be thrown to an infinite distance, by making PQ
parallel to AB, in all positions, which can only be effected by

making the arms equal, and the link equal in length to the

distance between the centers. In this case the angular velocities

will become equal, and their ratio consequently constant.

278. This produces the arrangement of fig. 192. D, E arc

centers of motion, Bd=Df the arms, df (=BD)
the link. If Bd be carried round the circle, BdfD
will always be a parallelogram, and consequently
the angular distances of Bd and Df from the line

of centers the same, and their angular velocity the

same.

But as in any given position of one of the arms

Bd, there are two possible corresponding positions

of the arm Df, found by describing with center d,

and radius df, an arc which will necessarily cut the

circular path of f round D in two points f and A
(Fig. 8, p. 19); therefore AD is also a position

of the arm corresponding to Bd, in which the link

dA intersects the line of centers in a point GT

; and

if Bd be moved, the point C will shift its place, and

consequently the angular velocity of AD will not preserve a

constant ratio to that of Bd.
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It appears, then, that this system is capable of two arrange-

ments, one in which the angular velocity ratio is constant, and

the other in which it is variable, according as the link is placed

parallel to the line of centers, or across it.

But if the motion of this system in either state be followed

round the circle, it will be found that when the extremity d of

the arm Bd comes to the line of centers, either above or below,
at a or s, the extremity of the other arm will also coincide with

that line, since the link is equal to BD, and therefore to ap or

st, and we have two simultaneous dead points. In these two phases
of its motion the two positions fd, Ad of the link coincide,

and at starting from either of these phases, the link has the

choice of the two positions If, for example, the arms be at Ba
and Dp, then as a moves towards d, p may either move towards

/, in which case the link will remain parallel to BD, until the

semicircle is completed, or else p may move towards A, and

then the link will lie across BD, until the semicircle is com-

pleted by d coming to s, when a new choice is possible. But
in any given position of Bd intermediate between Ba and Bs, it

is impossible to shift the link from one position to the other with-

out bending it.

279. When this contrivance is employed to communicate a

constant velocity ratio, some provision must be made to prevent
the link from shifting out of the parallel position into the cross

position, when the arms reach the dead points.

There are three ways of passing the link parallel to itself

across the line of centers. First, by introducing a third arm, as

Fig. 193.
at c

> f tne same length as the others, with its center

^^^ placed on the line of centers, and its extremity jointed to

if ^' the link, so as to divide the latter in the same proportion
as the line of centers is divided by the center of the new
arm. This new arm may be placed either between or

beyond the others, and plainly renders any position of the

link, except that of parallelism to the line of centers,

impossible. It is not even necessary that the centers

of the three equal arms shall lie in one line, for if the

three joint-holes, a, b, c, of the link, be the points of an

/ J z equal and similarly placed triangle to that formed by the

B( ^ three centers of motion, the arms will all revolve alike.

280. The second way requires only two axes of motion,
but has two sets of arms.

Aa, Bb, fig. 194, are the two parallel axes. At one end of

each are fixed the equal arms AP, B Q, connected as before by
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a link PQ= AB-, at the other end of each are fixed arms ap, bo,
also connected by a link, pq ab.

Now since the separate effect of each of these systems is to

produce equal rotation in the axes, it is plain that the action of
the second will conspire with that of the first to produce this

effect, whatever be the angle which AP makes with ap. Let
ap thert be set at right angles, or nearly so, to AP\ therefore
when either system arrives at the dead points, the other will be
half way between them, and by communicating at that moment
the equal rotation to the axes, will thus carry the link of the
former system over the dead points, without allowing it the
choice of the second set of positions ; which second set of posi-
tions is besides rendered geometrically impossible by this combi-
nation of the two sets of arms.*

Fig. 194.

Fig. 195.

281. The form of the piece to which the joint-pin is fixed is

indifferent; thus (fig. 194) the pin P is carried by an arm AP,
and the pin p by a disk ; but the motion produced by each is

precisely the same ; the effective length of the arm being in

every case measured in the plane of rotation in a right line from

the center of the pin to the center of motion of the piece which

carries it, whatever be the form given to the latter.

* This contrivance is universally employed to connect the axes of locomotive

engines so as to enable the cranked axle that is driven by the engine to commuiiicato

its rotation to the other axes.

The links are placed outside the wheels, one on each side, as may be seen by
referring to any treatise on the steam-engine, or examining the locomotives themselves

on the railroads.
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Fig. 196.

However, if either axis be carried across the plane of motion

of the link, the latter will strike against it, and thus prevent the

completion of a single revolution. If the axes be required to

revolve continually in the same direction, either the piece which

carries the pin must be fixed to the extremity of the axis, as in

fig. 194, or else the axis must be bent into a loop or crank as it

is termed, as in fig. 195, by which the axis is also removed from

the plane of rotation of the link
; but the axis may thus be ex-

tended indefinitely on either side.

282. The third method of passing the links over the dead

points consists, like the latter, in employing two or more sets of

arms and links, so disposed as that

only one set shall be passing the

dead point at the same moment.
But in this method, fig. 196, the

axes A a, Bb are parallel but not

opposite, and a disk of any conve-

nient form, as C, D, being attached

to the free end of each, pins are

fixed in the faces of the disks at

equal distances from the centers of

motion, and at equal angular dis-

tances from each other respectively,
and links each equal to the distance

of the centers are jointed to them
in order, as shown in the figure.

The planes of rotation of these disks are removed from each

other by a distance sufficient to throw the connecting links into

a slightly oblique position, which enables them each to clear

the others, during the rotation, by passing alternately above and

below them.

The number of the links is indifferent. Two are sufficient, as

in the former case, and the radii of their pins must be nearly at

right angles ;
but if three or more be employed, the pins may be

at equal angular distances round the circle; and it is hardly

necessary to add, that in determining the length of the links

allowance must be made for the oblique position into which they
are thrown by the nature of the contrivance.*

283. It appears (Art. 277 ), that by link-work, rotation in a

constant velocity ratio can only be communicated between two
axes when they are parallel, move in the same direction, and

By T. Bcehm, of Bavaria, communicated to Soc. Arts, vol. 1. p. 83.
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revolve in equal times. If, however, only a motion through a

small angle is required, it may be communicated with an ap-

proximately constant velocity ratio, whatever be the magnitude
of that ratio, the relative position of the axes, or the directional

relation.

For if the axes be parallel, it is shown in Art. 277, that if a

pair of arms AP, BQ, fig. 197, be connected by a link PQ, and

Fig. 197.placed in such a position
that the intersection T of

the link and line of centers

shall coincide with the per^

pendicular KT upon the

link from the intersection

of the arms produced, then

will the angular velocity be

momentarily constant, and

will be sufficiently near to

constancy, if the motion of

the links be confined to a

small angle on each side of

the mean position.

Now the arms AP, BQ
will revolve in opposite di-

rections ; but if they be

required to revolve in the

same direction, the centers of motion must lie on the same side of

the link. AP, Bq, are a pair of arms connected by a link Pq,
which will fulfil this latter condition, and Kt the corresponding

perpendicular upon the link produced, and intersecting it in t in

the line of centers produced.
The angular velocities of the arms have been shown to be

inversely as the segments AT, BT, or At, Bt.

The simplest mode of arranging the proportions is to make the

link perpendicular to the arms in the mean position, as shown in

AP, CD', PD being the link; and in this case, the angular

velocities are inversely as the length of the arms themselves,

(Art. 175).

284. If the axes be not parallel, let Ae, #/(fig. 198), be the

axes whose directions do not meet, find their common perpen-

dicular ef, and draw eg parallel tofB. In the plane Aeg draw eh

dividing the angle Aeg into two, Aeh, heg ;
whose sines are in-

versely as the angular velocities of the axes Ae, Bf respectively

(Art. 41). From any point h drop perpendiculars hA, kg,
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upon Ae and eg ; make/I? equal to eg, draw Bl equal and parallel

to f/h, and join hl\ which being parallel to ef, is plainly perpen-

dicular both to Ah and to Bl.

If Ah, Bl be arms, and hi

the link, then by the con-

struction the link is perpendi-
cular to the arms

;
and if the

angular motion be small and

the figure represent the mean

position, the angular velocity

ratio of the axes will not differ

sensibly from that which would

be communicated if the axes

were parallel, and the arms

and link in one plane, and will therefore be nearly constant, and

equal to the inverse ratio of the length of the arms.

If the axes be required to revolve with the opposite directional

relation to that shown in the figure, one of the arms must be

placed on the opposite side of the axis. In fact, as each arm

admits of two positions (thus h may be above the axis or below

it), so there are four ways in which these arms may be combined,
two of which will make the axes revolve one way with respect to

each other, and the other two the opposite way.
285. The mechanism of organs, pedal-harps, bell-hanging, and

various other portions of machinery, generally called bell-crank

work, fall under this class of small sensibly equable angular
motions. The same kind of mechanism requires the change of

the line of direction of these small motions. This may generally
be effected by a single axis with two arms

;
and by the same

combination the velocities may be changed in any required ratio,

whether the motions be in the same or in different planes, as

follows.

286. If the motions be in one plane, let ab, da (fig. 199) be

Fig. 199.
the lines of direction of the motions meeting
in a. . Draw Ca dividing the angle bad

into two, whose sines are in the ratio of

the given velocities in ab, da (vide the con-

struction in Art. 41). In a C take any con-

venient point C for a center of motion, from

which drop perpendiculars Cb, Cd upon the

respective directions. If these be taken for

arms moving round C, and links be jointed
to them in the lines of direction ab, da, then

a small motion given to ab will turn the two-armed piece bCd
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round its axis C, but will not remove its extremities sensibly
from the directions ab, da, which are the tangents to the circles

described by those extremities in the mean position of the axes.
But these extremities will move with velocities which are directly
as the length of the arms. (Art. 11.)

In practice it is better to make the lines ab and ad bisect the
versines of the arcs of excursion, in which case each link will be
carried to the right and left of its mean position, as in the figure,
instead of deviating wholly towards the center of motion.

287. Since the arcs of excursion of the extremities d, b are

given, we can, by removing the center C to a sufficient distance

from a, reduce the angular motion of the piece as much as we

please, and thereby diminish the deviations of a, b from the mean

positions.*

A two-armed piece or bent lever of this kind is termed a crank,
or more properly a bell-crank, to distinguish it from the looped
axis to which the term crank is also applied (Fig. 195), but which

differs from it considerably; the object of the former being to

change the direction of motion of a link when that motion is

limited in extent ;
whereas the latter is expressly formed to allow

of unlimited rotation in the same direction. The bell-crank is

analogous to the guide pullies of wrapping bands (Art. 262), and

accordingly these are sometimes employed in lieu of bell-cranks,

to change the direction of motion of a link, by inserting at the

place where the motion is diverted a piece of chain which passes
over a guide pully.

288. If the given directions of motion intersect, as in
fig. 199,

we obtain four angles round the point of intersection, in two of

which the directions of motion both approach the point, in another

they both recede from it
;
and in the two remaining angles one

motion approaches and the other recedes. The axis C may be

placed in either of the two latter angles. If the directions of

motion are parallel and opposite, the axis will lie between them,

and if parallel and similar, the axis will lie beyond them, on one

side or the other, but if also equal, then the axis is removed to

an infinite distance, and the crank becomes practically impossible ;

but the change of motion may be effected by the next Article.

* If the links be not perpendicular to the arms in the mean position, but if the

angle adC made by one link with its arm be equal to the supplement of the angle af>C

made by the other link with its arm, then it can be shown that during a small angular

motion of the system the ratio of the velocities of the links will still remain constant,

and be equal to the ratio of the respective perpendiculars from C upon the link*.

This, however, supposes that the links in their deviations are not sensibly removed

from parallelism to the mean positions, and it would rarely be of any practical service.

p 2
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Fig. 200.

289. If the two directions of motion be not in one plane, let

ad, cb, fig. 200, be these lines ;
find their common perpendicular

dc ;
draw ce parallel to ad, and in the plane

bee construct the required crank, as in Art.

286, of which let B be the center, Bb, Be the

arms respectively perpendicular to be and ce.

Draw BA a common perpendicular to Bb
and Be, and equal to dc. Draw Aa parallel

and necessarily equal to Be, then will AB be

the axis, Aa and Bb the arms required to

change the small motion in ad into the requi-
site motion in cb.

By a similar construction we can effect the

<e change of a small motion in a given direc-

tion, into another equal motion in the same

direction parallel to the first; which has

been shown to be impossible by the bell-

crank in one plane, although the motions

themselves are in one plane.

In the mechanism of organs, in which the transmission of such

small motions is of frequent occurrence, the crank is termed a

backfall when its arms are in one horizontal straight line, and a

square when they are at right angles.

An armed axis like fig. 200 is a roller, and the links are stickers

when they act by compression or pushing, and trackers when by
tension or pulling.



DIVISION D. BY LINK-WORK. 2 | 3

CHAPTER XII.

ELEMENTARY COMBINATIONS.

DIVISION D. COMMUNICATION OF MOTION BY LINK-WORK.

/ DIRECTIONAL RELATION AND VELOCITY RATIO
.

-\

I CONSTANT OR VARYING.

290. THE general definition of link-work, given above in the first

chapter, Art. 29, has shown that it derives its name from the em-

ployment of an intermediate piece termed a f

link,'
* which is a

rigid bar connected to each of the pieces, between which it acts

as a transmitter and modifier of motion at a constant point of

itself and of the piece. In the majority of cases these pieces
rotate on parallel axes, and thus the varieties of motion may be

investigated by assuming that the pieces and the connecting link

are simple radii turning on fixed points at one end and jointed to

the respective extremities of the link at the other ; the entire

combination being thus reduced to four lines in a plane, forming
a trapezium ABPQ with variable

angles but constant sides, of which AB
fixed in the plane is termed the '

line

of centers,' AP, B Q the * radii
'

capa-

ble of rotating in the plane about the

fixed points A and B, and PQ the
'

link,' which is compelled to move

in the plane so that its extremities

P and Q can only travel in the circles described about A B by
the extremities P and Q of the radial arms to which they are

jointed. In the formulae by which the laws of motion of these

movable parts are expressed, the length AB of the line of

centers is designated by d, the link by /, the greater and smaller

radii by R and r respectively.

It has been already shown that the angular velocities of the

* Bulk, Fr.
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radii are inversely as the perpendiculars from the fixed centers

upon the link.

The most general motion for which link-work is used is to

enable the rotation of one axis to communicate a reciprocating

motion to the other. The path of the reciprocating piece is very

commonly rectilinear, and this case is brought under the general

pi-inciple by supposing the rectilinear path to be an arc of a circle

of infinite radius. The motion of piston-rods for pumps, steam-

engines, &c., or the travelling platforms of printing presses,

planing machines, the tool bars of slotting machines, and so on,

may be quoted as examples of rectilinear reciprocation.

The axes may be required to revolve continuously with con-

stant or varying velocity ratios, or finally, they may be connected

so as to admit only of alternate reciprocations.

We may now proceed to examine these four cases in detail,

taking them in the order of (1) Rectilinear reciprocation. (2)
Rotative reciprocation. (3) Alternate reciprocation. (4) Continu-

ous rotation.

(1) Rectilinear reciprocation. In the four following diagrams,
the bar, table, or other sliding piece is omitted, as its motion is a

Pig. 202.

simple translation in which every point moves in a path parallel to

that of the extremity of the link, and with a velocity equal to that

Fi 203 extremity, the direction of whose

path usually passes through the axis

or center of rotation of the driving

radius, as in figs. 202, 203, 204.

In these figures, that radius is

shown in two positions, AP, Ap, and

the portion of the path KL to

which the course of the extremity

Q is limited, is determined by setting off from A, in opposite
directions distances AK, Ak=lr and AL, Al=l+r.

In fig. 202 the distance of Q from A= QdAd= VP r2sm2

+ r cos 6. ( 1) ; where the positive sign is used when d is between

Q and A, and the negative when d is beyond QA.
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In the small triangle Prs, Ps, rs are respectively perpendicular

to AP,Pd, therefore we have velocity of^jt^^P
velocity of d rs Pd

Consequently, if P travel uniformly, the velocity ofp vanishes

at the extremities of its course gG ; is at a maximum at the point
where Pd=AP; and is the same at any two points taken at equal
distances from A on opposite sides.

If the link be very long with respect to AP, its inclination may
be practically neglected, and the distance Qd be supposed equal
to PQ. Therefore the motion of Q will be the same as the

motion of d, arriving at the middle point M of its course KL
when P is at the middle of its semi-rotation from g to G, and

having its velocities symmetrically equal on opposite sides of the

center point of KL.
But the effect of the inclination of the link is to draw the point

Q nearer to A than it would be if I were infinitely long, by a

space=PQ - Qdl JPr*s\rfd. (2) which when P is at

the middle of its semi-rotation as at Ap (figs. 202, 203) becomes

mq= l */P r*. (3) The segments of the course lq, qh, de-

scribed by the motion of the radius through the respective quad-

rants ^p, pG, near and remote, are lmqm= r+ (l^/l'
i r2

) (4).

In
fig. 204 the link PQ is equal to the radial arm AP, and

consequently AP and PQ
constitute in all positions an

isosceles triangle, of which the

base A Q is the line of motion

or groove of the pin which

connects the radial arm with

the sliding bar or piece.

Produce AP to R, making
PR = AP, and with that

radius describe a circle, LRwl,
which is plainly twice the

diameter of the inner circle.

If the rotating radius AP be pinned at P to the link PQ it

will move the pin Q in the line or groove A Q until it arrives

at A, the isosceles triangle APQ gradually becoming more and

more acute at the apex P until Q is brought into coincidence

with A, after which AP, PQ, being folded into a single r:uliu>

will rotate about A. But if the link PQ be produced to IV, we

have PW=PQ, and QW=AR. Also the figure AQ.RW is a

rectangle, of which AR and QJFare equal diagonals and P the

center.



216 ELEMENTARY COMBINATIONS.

Thus the link PQ is extended from P to W, and when P its

center, is rotating, the respective extremities travel in the crossed

diameters IL, wx, like the pencil bar of a trammel.

Each revolution will cause the point or joint pin Q to travel

from L to I, and the point W from x to w. And thus the radial

arm AP will move the bar through a course of twice the length
due to its radius.

Now as A Q= 2Ad in all positions, it follows that the law of the

motion of Q in the line AL is the same as the motion of d, with

twice its velocity, and thus the point Q and the bar to which it

is attached move with velocities symmetrically equal on opposite
sides of the center point A. The left side of the figure shows that

the radius Ap makes an acute angle Apq with the vertical diameter

which compels the link pq to push the slide point q at an obtuse

angle pqA, which would generate jamming friction of a magnitude
that would prevent the motion of the bar from taking place (vide

Chapter on Friction). To overcome this difficulty short grooves
icS, xs, are fixed to the frame of the machine to receive a pin
fixed to the extremity W, of the prolonged link. Thus, as W
is carried upwards by the rotation of P and its lower end Q
guided horizontally by the sliding piece, so, when the angle PQA
has nearly reached a degree of obliquity that generates injurious

friction, the tipper end IP of the link enters the guide groove.
Its pin acts as a fulcrum against the side of the groove as at to,

and the joint pin p of the radius acts transversely on the link so

as to press the sliding piece in the direction of the longitudinal
motion required.
PROB. To determine the motion of a slide when the path

of the end of the link travels in a line that does not meet the

axis.

Fig. 205.

Let A be the center of motion of a revolving driving arm AP
(r\ PQ a link (/) jointed to AP &t P. Its extremity Q is com-
pelled to move in a right line LK, which for comparison with the

previous formulae may be considered as a circle of infinite radius.
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A C, perpendicular from A upon IL, will therefore be a portion
of the line of centers. The link may either be directed to the

right as at PQ, or to the left as gl. Let an arc with center A
and radius AKlr intersect the rectilinear path at k and K.
This is the shortest possible distance of the extremity of the link

from A, and gives inward dead points. Similarly an arc struck

from A with radius AL r -f I gives two outward dead points L
and /. The motion of the outer end of the link is limited to

either of the right lines KL or kl, in which it travels back and

forward when r revolves.

The position of Q corresponding to any given angular position

of AP can be found as follows: let CAP==0, and AC=e, Pp
being drawn parallel to A C, we have the distance of Q from

= r. sin 6+ ^^-

r. sin 0+ VP
(
e r~GO6~0fi

&r Pp*=ACr cos 6.

Let #1 2 be the values of 6 that belong to the dead points.

AC AC
At these points cos 0j

= ---
, and cos 2

= -- .

Also Cl= V-A* and CK

If AKAC, the radius Af and link/& will coincide with the

line of centers, and the extremity k with the point C. As the

link is now perpendicular to the path of the sliding point, and the

infinite radius lies beyond the link, we have an outward dead

point at C simultaneous with an inward dead point at /, which is

a point of helplessness. But if this be overcome by any extra-

neous contrivance, the sliding point will move to and fro between

L and /.

The preceding pages have shown that when an excentric pin,

crank, or other equivalent contrivance is employed to produce

back and forward motion in a sliding bar or plane surface, the

length of the link, or connecting rod as it is usually termed, com-

pared with the radius is a very important element, and therefore

its influence on the motion of the reciprocating piece must be

developed by formula; and construction.

Generally speaking, the radius being supposed to revolve

uniformly, the sliding piece, beginning from one of the extremi-

ties of its course, will move slowly, but its velocity will increase

as it approaches the middle part of the course, and then decrease

to the end, where with a slight pause it will begin to return, and
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so on continually. The position of the maximum velocity is not

necessarily in the middle of the course, and there are other

irregularities which have been developed above by diagrams and
formulae.
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To illustrate these varieties of motion practically, I will

explain the construction of a piece of lecture apparatus devised

by me in 1857, and employed ever since.

These figures represent the side and end aspects of the

apparatus in question. Fig. 206 is the front and fig. 207 the

end view of the machine. On a base board Dd a standard piece
Cc is fixed, in the middle of which, at A, a socket is implanted,
which receives an axis rotateable by a handle aB (fig. 207) at

the back and carries in front the radial arm AP, whose revolu-

tions communicate the reciprocations, which the machine is in-

tended to exhibit, to a sliding rod Rr. This rod is best supplied

by a straight piece of brass tube three-fourths of an inch in

diameter, which is sustained by two iron, standards S, S (fig. 206),
that allow it to slide endlong. The form of these appears in

fig. 207 at SH. An iron bar of sufficient length is bent at right

angles at^f and g, the lower end is thus provided with a foot
/",

by which it can be screwed to the base board, the upper end g is

furnished with an angular notch, in which the tube lies and

slides, and is kept in its place by a rectangular strip or cap of

metal Hh, attached to the front vertical face of the standard by
screws in slits, which allow the pressure on the tu.be to be regu-
lated so that it may slide freely without looseness.

The radial arm AP carries a joint pin P at its extremity,

which is inserted, into a hole at the end of the link, and secured

by a spring cotter of wire placed in the eye of the joint pin, as

shown in fig. 207.

Link rods PL of wood are provided of several lengths, distin-

guished in the figures by accents, J.L\, P".JF , Pl".P.Pl

.L.,

selected to show the variations of motion;. Each link has at one

end one or more holes P to receive the joint pin of the radial

arm as explained above. At the other end a piece of brass wire

is fixed normally into the vertical face of each link at Z, and con-

nected with the sliding brass rod by simply inserting it into one

of the holes drilled through the rod, which bears the same accent

as the link.

In fig. 207 the link PL is seen with the joint pin P and spring

cotter at its upper end, which connects it with the radial arm,

and at the lower end of the link L the wire projects from its face

and is passed through the brass tube.

To withdraw the link the arm AP must be set pointing up-

wards, as in fig. 206, the spring cotter must then be removed,

and the upper end of the link drawn outwards to release it from
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the pin. The cylindrical form of the tube allows of this motion

by rotating upon its own axis.

On the face of the standard CD, a circle or dial is described

with center A, and is divided into four quarters, indicated by the

cross diameters, and each of the quadrants bisected by a short

line distinguished by a circular spot, which for distinctness is in

the actual machine coloured red. The end of the radial arm

being pointed serves as an index by which the radius can be

placed at eight equidistant points of the circle, which are sufficient

to show the general nature of the inequalities of motion produced
in the sliding points by varying the lengths of the link.

The motion of the sliding rod is exhibited by means of a

graduated scale on the face of a vertical board EF, fixed to

the base immediately below the sliding rod. An index / fixed to

the rod slides along its edge and shows the distances through
which the rod travels.

The scale is simply divided into two equal parts by a line, and

each of these parts is again divided unequally by a line marked

with a red spot. These spots being placed so that when the

longest link PVL7 is employed, the index of the radial arm and

that of the sliding rod will coincide simultaneously on the

respective scales with the rectilinear graduating line and with the

red spot lines. When shorter links are substituted this coinci-

dence fails, for in describing fig. 202 it has been shown that when
the link is very long the selected point or index / of the sliding

rod (fig. 206) will arrive at the middle of its course when the

radial end of the link is on the vertical diameter of the dial, and

that the positions of the sliding index corresponding to the octant

points of the dial are much nearer to the extremities of the slide

scale than to the center of the scale, to which, however, they are

placed symmetrically.
If short links are used, this symmetry is destroyed. The

whole length of the course remains unaltered, but the inter-

mediate graduations of the slide scale corresponding to the eight

points of the radial dial are all drawn towards that dial.

By putting in turn into their respective places the three links

fig. 208 (beginning with the longest) P\U, Pl\Llv
, Plll

.L,
and exhibiting for each the positions of the sliding index when
the radial index is placed opposite the eight points of the dial

in succession, the increasing deviations from symmetry will be

made apparent very strikingly.
Three links are provided, but the shortest has three holes,

Pl

, Pll

3 PU1
} by which it is enabled to perform the functions ot
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three links. The shortest LP1 when the hole P< is placed on the
radial pin is equal to the radius AP of the excentric drivina armA double link QPL, fig. 208, and sideways in

fig. 207, has
a hole Pin the middle fitting the exceutric pin P, and two' pinsQ and I turned in opposite directions, of which one is placed
in the hole 71 of the sliding rod and the other received in the short
vertical grooves formed above and below the dial, and corre-
sponding to w$, xs (fig. 204). By this combination the rod is
carried by the rotation through a trip equal to the diameter of the
dial instead of the radius.

(2) Rotative Reciprocation. =In
fig. 209 let r revolve clock-

wise from a position AP towards AG. The link PQ will push R
from B Q and cause it to rotate in the same direction toward L

Fig. 209.

^ ._

until r and / coincide in one right line A GL, forming a dead point,
when the farther progress of r towards AF will cause R to retro-

grade from L towards Q, the link now pulling R. When r has
reached AF, r and / again form a dead point by coinciding in

one right line FAK. When r has passed this position, R will

retrograde from BK towards BQ and BL.
Thus the continuous rotation of r produces an oscillation of

R between the positions BK and BL, the link alternately pushing
and pulling.
But at the instant of passing a dead point, as AGL, a small

motion of AG on either side of the right line AGL produces
little or no motion in the arm BL, for it has been shown (Art.

30) that the angular velocities of the anns are inversely as the

perpendiculars from the center upon the link, and the perpen-
dicular from the center A upon the link being nil, it follows that

the arm BL receives no motion at the instant of passing, and

very small motion when nearing or quitting the dead point,

whence the name dead is given to the positions in question.

At the dead point G the link extends outward from the driving
arm r, and at the dead point F the link is folded inwards
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the driving arm. To distinguish these positions, I term the

first an outward dead point, and the second an inward dead point.
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As two sides of the varying quadrilateral are thus composed
into one, it is converted into a triangle at the moment of forming
a dead point. At the outward dead point the compound side
=l+r or l+ R. At the inward dead point the side=/ r, or

lR. The base of the triangle is always the line of center, and
the remaining side that radius which is not employed in the

compound side.

In the series of diagrams which occupy the opposite page, and
are numbered from 210 to 216, the magnitudes of the radii R, r

are the same throughout the series, also the length of the link / is

the same.

The purpose of the series is to show the nature of the motions

produced by altering the length of the line of centers.

It is evident that the greatest length of this line (AB} is

attained in
fig. 210, where the radii and link are extended into

one straight line and the system is immovable, and has two
outward dead points.

The shortest length of the line of centers is when the two radii

are folded upon the link (as in fig. 216), and this system is simi-

larly immovable, having two inward dead points. There are also

two intermediate lengths of the line of centers, which allow the

radii and link to form one straight line, namely, fig. 212, which
has an inward dead point for r, simultaneous with an outward for

R. Lastly, fig. 214 has an outward dead point for r, and an in-

ward for R. These two systems are not immovable.

The dead point triangles ALB, AKB (vide fig. 213) are

therefore easily constructed when R r and / are given, for an

arc (a) described with center A and radius AL= r + / will intersect

the larger circle at L and another arc (a) with radius AK=lr
will intersect it at K, and thus the respective angles L, K of the

dead point triangles ALB, AKB, are obtained. But those arcs

will also meet the circumference in two points /, k respectively

equidistant from the line of centers and opposite. The system
therefore admits of two inward dead points and two outward

dead points, and the continued rotation of the lesser arm will

either produce an oscillation of R from K to L or from k to

Z, according as the system is previously arranged, which can

only be done by detaching the link at one end.

As Aa l-\-r and Aa= lr, .'. aa= Aa Aa= 2r.

Consequently as the continuous rotation of r can only produce
oscillations of R when the arcs aa both intersect the circumference

of the large circle, it follows that, for this oscillatory motion the
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lengths of the arms must be unequal or r < R, for if equal, the

distance of a from a being equal to the diameter of the circle

they could not both intersect the circumference.

(3) Alternate Reciprocation In fig. 211 let the small arm

which is at an outward dead point at AG be moved by hand

towards F, thus drawing the longer arm from BL to BK,
where the link and arm R come into one straight line. This

limits the motion of r and forms an outward dead point for R at K.

The downward motion of R must now be continued by shifting

the hand from r to R, and moving the latter to BL
This movement will cause r to return on its path from AF to

Ag. But the motion of R is now arrested by the straight line

Agl, formed by a second outward dead point of r. The hand

now shifted to r will continue its motion upwards from Ag to Af,

drawing after it R from Bl to Bh where the motion is arrested

by an outward dead point formed by R at Bk. The motion of

R must now be continued by hand upwards, drawing r with it

upwards until itself is stopped at BL by the outward dead point

of r at AG. Thus the motion of each arm of the system consists

in an oscillation through an angle limited by two outward dead

points formed by the other radius. The extremities of each

oscillation correspond to medium points of the opposite one

reciprocally.

In fig. 215 the length of the link is also such as to compel
the system to perform alternate oscillations, r moving from AG by
F, f, to Ag and back, while R oscillates between BK and Bk,

But this motion differs from the former, in that the arcs of

oscillation in fig. 211 are turned inwards towards each other and

the four dead points are outward dead points, while in fig. 215

the arcs of oscillation are turned outwards from each other, and

there are four inward dead points. It is unnecessary to trace

this motion in detail as it may be derived from the description of

that of fig. 211 by counterchanging the terms inward for outward,

drawing for pushing, upwards for downwards and vice versa.

If the link be snorter than the least distance as sb, fig. 217,
an arc about B with radius Bb R l will intersect the small

circle in two points F, f, and give an inward dead point to R
at BK and another opposite to it at Bk. Also, an arc about
A with radius Aa= r-\-l, will intersect the great circle at L
and I, and give an outward dead point for r at AGL, and
another at AL. This system moves with alternate oscillations

of the arms through the angles indicated by the black portions of

the circumferences.
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If the link be longer than the least distance we obtain alter-

nate reciprocations, but with inward dead points for both arms.

These three
systems

are only employed in tracing the curves

known as Watt's curves for parallel motions, in which the tracing

point is attached to the link or link plane. For they can only per-
form their motions by having each arm in turn guided by hand or

complex mechanism and are therefore unfitted for the modification

of motion in trains.

(4) Continuous rotation of both arms with varying velocity ratio.

Fig. 218.

Let there be two circles (figs. 218, 219) with radii R, r, equal

or of any relative magnitude, and let their centers A, D be within

the area common to the two circles, and consequently AM and

Q
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BN both greater than AB, i.e. 7 d and r ~7 d. Continuous

rotation implies the absence of dead points, for at every dead

point the rotating radius is brought into coincidence of direction

with the link and the other radius has its motion reversed.

For continuous rotation of both radii, it follows that the ex-

tremities P, Q of the link must travel in their respective cir-

cumferences of the circles in such a manner that no straight line

can be formed by either radius with the link. Therefore its

length I must be such that an arc with radius / and center taken

at any point of either circumference must intersect the other in

two points. For if this arc touched the other circumference in

one point only, that would be a dead point.

Now NL being the line of centers, ML is the greatest outside

radial distance from the circumference of the lesser circle to the

other and MN the longest. If, therefore, the link GL be greater
than ML the radius AG and GL can never come into one

straight line as an outward dead point. Also if GL be less than

MN the link folded back upon AG will fall short of N, and
therefore can never form an inward dead point. The condition

of continuous rotation is consequently that the link / must be less

that MN and greater than ML. But ML BL-MB and

MN=BL+ MB, which gives J < ^~^~1
}
.

If the link= ML, AM and ML will coincide on the line of
centers with BL and give simultaneous dead points, inward for

BL, and outward for AM.
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If the link=MN we have simultaneous dead points inward for
both radii.

In practice the arms must be fixed, as in the figure, at the free
ends of the two axes, and the link in a

plane intermediate with the arms. Fiff- 22 -

If An, Cm be perpendiculars from the
centers of motion upon the link, we have

ang. vel. of AP_ Cm
ang. vel. of CQ~ ~An>

by Art. SO, Cor. 1
; which perpendiculars

continually changed uring the motion of the system.
PROB. Given d, I, R,rofa piece of link-work, to find the posi-

tions in which the arms are parallel.
With centerB and radiusBq=

R r describe an arc and another

with radius Bq= R + r. With
center A and radius = I intersect

the first arc in q, and the second

in qr Draw BqQ meeting th

larger circle in Q. Make AP pa-
rallel to BQ andjoin PQ. Mani-

festly by construction AyPQ is a

parallelogram and PQ=Aq= / is

in the position which coiTesponds to the parallel arms on the same

side of the liae of centers. Similarly, join Bq^ and draw AP
{

parallel to it, and join Pl Q l
, which gives the position of the link

when the parallel arms are on opposite sides of the line of centers.

If the length of Aq be greater than AB-\-Bq or less than AB
Bq, the intersection at q and the consequent parallelism of the

Fig. 221.

arms is impossible, i.e. we must have
d+R-r

Also ford-R + r

the contrary position of the arms we must have /
,/_/_r"

Fig. 222.

Q2
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Fig. 224.

pROB> To find the two positions of the system in which the

link is parallel to the line of centers.

In Figs. 222 (p. 227), and 223 given
Fig. 223. AB d, and the radii R, r. Set off

on the line of centers Aa l, and with

center a and radius ap AP, describe

an arc meeting the circumference in

Q, make QPAa and draw AP,
join BQ.

Since Aa = PQ and a Q = AP,
APQa is a parallelogram, and PQ
parallel to Aa and .-. BQ, AP, are

the required positions when the link is parallel to line of centers.

PROB. To produce a slow advance and quick return. AB,
fig. 224, is a line of centers of which A is the axis of the driving
arm AF, which revolves continually and communicates an oscil-

lation to the follower arm Bk by means of a link FK.

Supposing the rotating arm AF to revolve clockwise beginning
with the position AF, which corresponds to BK of the follower

arm, it is evident that the

advance of the follower from

BK to Bk is performed

during the rotation of the

driver from the inward dead

point FAK to the outward

dead point Afk, which dead

point positions of the ro-

tating arm are distant from

each other by nearly three-

quarters of a revolutkm, and

the return of the follower

from Bk to BK occupies
the remaining quarter.

To set out this diagram, the circle Ff from center A and radius

the given arm AF must be drawn, and radii AF, Af, making an

angle FAf which divides the entire circumference into the two

angles which correspond to the required proportion between the

advance and return. On the radii AF, Af, produced, set off from
F and/any convenient equal distances FK,fk, and join Kk by a

right line, which is the chord of the angle through which the

oscillating arm travels. The center of rotation of the arm will

necessarily be on the perpendicular which bisects the chord.

Figs. 225, 226, show apiece of apparatus which I devised for the
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purpose of exhibiting the various motions of link-work with two

parallel axes, which are demonstrated in the preceding pages and
diagrams. Fig> 225 .

Fig. 225 is a perspective view of

the complete machine, which consists

of a base board which carries two
standards for the support of the two

parallel axes. The short standard Bb
is of iron and terminates upwards with

a fixed cylindrical tube socket B, in

which the horizontal follower axis de-

signated by B in the previous diagrams
of this division is inserted. To the

wooden arm BL, which requires no

alteration in length, the axis B is

fixed, projecting outwards. From the

other extremity of BL, a pin LI

projects inwards, to be received in a

hole I at the end of the link.

The high standard MN is of wood,
and carries the axis A a. As the nor-

mal distance of the two parallel axes

Fig. 226.

varies, the tube socket Aa is formed and supported so as to allow

of being fixed at any required height above the plane of the axis 1>.

Fig. 226 is a horizontal section of this socket through the axis,

showing the rebated groove on the face of the standard, and the

narrower slit which is cut through to the back of it, so as to

allow the tube to receive the handle ah, by which the combina-

tions are put in motion. This handle is riveted to a hollow axis,

through the center of which a slender bolt is passed, with a square

head at A, and a fly nut at the back a.

As the length of the arm AG requires to be adjusted to suit

the various motions, it is furnished with a slit of sufficient length,

as shown in the figure. The bolt is passed through this slit and
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through the hollow axis. The fly-nut of this bolt binds the arm

against the end of the hollow axis in front. The hollow axis is

carried by a larger tube which slides in the vertical rebated

groove and projects backwards so as to receive a fly-nut Ff,
shown in fig.

226.

This larger tube has in front a flange with its vertical sides

parallel, so as to fit easily in the rebated groove of the standard,

and allow the axis Aa to be adjusted at its required height.

Link rods with a hole at one end L and notches at the required
distance as shown at gG are provided.

291. To the different forms under which the rotating arm and

link appears in Art. 279, may be added the excentric, fig. 227.

p- 227
Let A be the axis or center of

motion, to which is fixed an ex-

centric circular pully of which B is

the center ; a hoop abc is made to

embrace this pully so as just to

allow the pully to turn freely within

its circle, for which purpose, as well

as to allow the machine to be put

together, the hoop is generally made
n two halves capable of being separated at a and b

; a frame adb

connects this hoop with the extremity d of the arm dD, to which

it is jointed in the manner of a link. When A revolves the dis-

tance Bd from the center of the excentric to the extremity of the

arm remains constant, and therefore the motion communicated is

precisely the same as that which would be given by an arm AB,
and a link Bd. But this contrivance allows the axis to be con-

tinued straight through the excentric, whereas when an arm is

employed the axis must be cut short, or else bent into a crank,
as explained in Art. 280. On the other hand, the magnitude of

the hoop and excentric is so great with respect to the radius of

motion AB, that this contrivance is necessarily limited to the

production of vibrations of small extent. The dotted circle

radius Ak includes the space required for the rotation of the ex-

centric, the radius of which is equal to the sum of the radius of

the excentric and of AB, and the former must be greater than

the latter. A common crank or pin would occupy a circle of

about half this radius.

292. The excentric, arm, or crank, under the different forms
thus described, is by far the most simple mode of converting
rotation into reciprocation, and it has the valuable property of

beginning the motion in each direction gently, and again gra-
dually retarding it, so as to avoid jerks. Nevertheless the law of
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variation in the velocities is not always the best adapted to the

requirements of the mechanism; but the reciprocation is pro-
duced so simply that it is often worth while to retain the crank,
and correct the law of velocity by combining other pieces with it

in a train. By trains of link-work very complex laws of motion

may be derived from a uniformly revolving driver. This will be

best illustrated by the examples which follow.

293. Ex. 1. If the crank, instead of being fixed to the uni-

formly revolving axis, be carried by a second axis, and these two
axes connected by one of the previous combinations for the pro-
duction of varying velocity ratio with constant directional relation,

the inequality of velocity in the reciprocating piece may be almost

entirely got rid of. Thus, let these two axes be connected by a

pair of rolling curve wheels (Art. 89), let A
l
be the constant

angular velocity of the first axis, A^ the angular velocity of the

second axis, upon which is also fixed the crank, let r be the

radius of the crank, and 6 the angle it makes with the path of

the reciprocating piece ; then if V be the linear velocity of this

piece, we have^=
J|=^=r.sin0(fig. 202), .-. F=r. sin (9. A

lt

which is to be constant by hypothesis. Let r^ and r
2
be the radii

of contact of the rolling curves which connect the first and second

axis respectively ;

A z_r x _c r
a

' A~r~ r
2

if c be the distance of the axes.

a constant by hypothesis ; therefore V and A are in the propor-

tion of the spaces described by the reciprocating piece and the point

whose radius is unity upon the first axis ;
and as one revolution

of the latter corresponds to a complete double oscillation of the

V 2r cr. sin 6 IT sin 6

former, we have _=_ = *, whe eiy*-^^;

- !

*^-^+2
whence the follower curve may be laid down. Again, by Art. 81,

if 0, be the corresponding value of in the driving curve, we have

sin 0rf0=
C-^cos

0,

and when 0=0, and?, 0,
=
0,and|,

respectively, whence C=?,

also 0!
= -. versin 0, and r,

= c -r
2 ,
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will give the driving curve. In the following Table a sufficient

number of values are computed to enable these two curves to be

laid down by points.

FOLLOWER
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229.

To set out the second rolling curve, which is the driver, it must
be remarked that each of its radii is the remainder Oa, li, 2n,
3ui which has been cut from
the lines already drawn in equal division

from the center of the quadrant bac.

Also that the distances of the respective
contact points measured on the circum-

ference of the upper curve 0, 1, 2, 3 * .

are equal to those of the lower curve

0, 4, 5, 6. ....
This curve is easily laid down as fol-

lows. On the first radius Oa as a base,
construct the triangle 04a of which the

side 04= 01 and the side a4= il. Simi-

larly, on a4 construct the triangle ao4
whose side a6= n2 and 4> 5= 1, 2, and
so on.

Thus a series of points is obtained

through which the curves can be drawn
as in Fig. 228 and theoretically they

satisfy the condition of equalising the

velocity of the reciprocating piece. If

the lower curve, which is the driver, be

rotated counter-clockwise its increasing
radii will enable it to press against the

decreasing radii of the follower until the

concave salient point which terminates

the long diameter of the driver is brought
into contact with I. But as this point

coincides with the axis of rotation of the

follower, it is plain that no pressure can

be excited by the projecting cusp upon
the hollow cusp at b, because their points

of cuspidation coincide with each other

and with the center of rotation of the

crank wheel. These points of the action

correspond to the passage of the crank

over the dead points, where, as it com-

municates for the moment no velocity

to the reciprocating piece, the velocity of i

the crank must become infinite to main-

tain the conditions of the problem, which

requires a constant velocity in the reel-
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procatlng piece, and therefore no loss of time in the change of

direction. All which being practically impossible, it is necessary

to alter the figure of the curve at these points, and reduce it to

the form <x>, shortening the points of the driver accordingly ;

teeth may then be added to these curves in the usual manner.

Fig. 229 represents the model which I derived from my inves-

tigation given above. A is the driving wheel, the form of which

is obtained by shortening the points of the driving curve in Fig.

228, and providing the circumference with teeth projecting inwards

and outwards upon the pitch curve so altered. B is an elliptic

board, into the face of which pins are driven in the line which is

produced from the form of the follower in fig. 228 by adapting it

to the change of the driving curve.

A projecting stud C is jointed to the lower end of the link CF.

Its upper end F communicates the reciprocating motion to the

sliding piece in the direction of the line of centers AB produced.

Any contrivance, however, that produces two equal periods of

variation in the angular velocity in each revolution 'will serve to

correct the velocity of the crank-follower sufficiently for practice.
The rolling curves, as just described, are used in some silk-

machinery ; but their figure is not so completely formed upon
principle.

If the axis of the crank be connected to the uniformly revolving
axis of the driver by means of a Hooke's joint, and these axes

meet at a sufficient angle, the rotation of the crank will have two
maximum and two minimum velocities in each revolution, which,
if carefully opposed to those produced by the crank, will nearly
correct the unequal motion of the reciprocating piece.

294. Ex. 2. To equalise the velocity by link-ivork. The velo-

city of the reciprocating piece may be also nearly equalised by a

Fig, 230.

train of link-work only. Thus let A, fig. 230 be the axis of the

crank Aa, which by means of a link aC communicates in the usual

way a reciprocating motion to a point C, which travels in the line

Ab between B and b. A second link Cd connects C with an
arm Dd, moving on a center D, and the motion of C between B
and b thus moves d between q and r

;
so that the rotation of the

crank Aa causes the arm Dd to reciprocate between the positions

Dq and Dr.
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In any given position of this system draw perpendiculars Am,
Dn from the centers of motion upon the links

;
then if A

l
A

2 be
the angular velocities of Aa, Dd respectively, and V the velocity
of C, we have very nearly

A, . Am= V=AZ . Dn (Art. 30); .-.
A*= Arn

:

A
l

Dn.
IfAa and Dd both reach the position perpendicular to the link

at the same time, then Am and Dn will reach their maximum
values together, and will decrease and increase together, so that

the ratio -^ may be made nearly constant ; and thus, if Aa re-

volve uniformly, the reciprocating piece Dd will move in each

direction with a velocity much more nearly uniform than that of

the piece C.

This latter piece may either slide or may be fixed to a long
arm so as to make Bb an arc of large radius

;
or the intermediate

piece C may be even omitted, and ad connected by a single link ;

*

but this is not so good.
295. Ex. 3. To produce a rapidly retarded velocity. A, B, D,

fig.
231 are centers of motion, Aa an arm revolving round A, bBC

an arm revolving round B, and Dd an arm revolving round D ;

these arms are connected by links ab and Cd, by which the motion

of Aa is communicated to Dd. Let Aa move only through an arc

of a circle al, 2, 3, and let the three points 1, 2, 3 be at equal

angular distances from each other, and so placed that the line bA,

which is a tangent to the small

arc described by b, shall bisect

the angle 2A3, described by a

in its passage from 2 to 3. Now
since the motion given to the

arm Bb will vary as the versed

sine of the angular distance of

Aa from the line bA, the motion

which b receives while a moves

from 1 to 2 will be very much

greater than that which it re-

ceives while a moves from 2 to 3.

The corresponding positions of a

and b are numbered with the

same figures. In fact, practi-

cally, the second motion is so small that this combination may be

* Hornblower in 1795 applied this latter method to the steam-engine. (Rees' Cyc.

Steam-Engine, PL v., fig. 7.)

Fig. 231.
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employed when the arm Bb is required to remain at rest during
the second motion of Aa from 2 to 3, as well as when the arm Bb
is required to receive a rapidly retarded velocity from the uniform

velocity of Aa.*

But the third arm Dd is so placed with respect to BC that the

tangent to the arc described by its extremity d shall bisect the

small angle 2B3 described by C in its passage between the second

and third positions ;
the motion therefore which Dd receives during

the second motion of Aa from 2 to 3 is very much less than the

small motion given to Bb. This third arm is therefore added

when a more perfect repose is required.
296. Ex. 4. To multiply oscillations by link-work. If a

common crank, Aa, fig. 232, be jointed by a link ab to an arm

Fig. 232.

moving round a center B, We have seen that every revolution of

the crank will produce one complete double oscillation f of the

arm Bb, and therefore of an arm BC upon the same axis.

Let an arm D2 moving round a center D be joined by a link

to the arm B C in such a relative position to it that the tangent
to the arc described by the extremity of D'2 may bisect the angle
described by the arm BC. The figures 123 upon the circular

path of the crank, upon the arc of motion of the arm BC, and

upon that of the arm D2, show the corresponding positions of

these pieces. The motion of BC from B\ to B3 in either direc-

tion will produce one complete double oscillation of D2 from the

position Dl to Z>2 and back again, as shown in the figure ;
and

therefore one double oscillation of BC, or one revolution of the

crank will produce two complete double oscillations of the arm

* This principle was first employed by Watt in the mechanism for opening the

valves of the steam-engine (vide his patent, 1784,"in Muirhead's Mechanical Inventions

of Jamts Watt, v. iii. p. 109), and subsequently applied to the printing press by Lord

Stanhope in 1800. These mechanists only employed the two arms, Aa, b. The
third arm Dd was introduced by Erard into his patent harp action, 1809.

t In pendulums and other vibrating bodies one oscillation includes the motion from
one end of the path to the other, in either direction. A double oscillation, therefore,
is the motion from one end to the other atid back again, and thus contains all the

phases of the periodic motion.
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Fig. 233.

D2. If another arm be connected with D2 in the same manner
as the latter is connected with BC, then one revolution of the
crank will produce four double oscillations of the last arm, and
thus with the train of n axes, one revolution of a crank may pro-
duce 2 n a

complete double oscillations of an arm.
297. Ex. To produce an alternate intermitting motion by

link-work. A, fig. 233, is the center of motion of a common
crank which by means of the

link 2, 2, causes an arm Bb
to oscillate between the posi-
tions B\ and B3. The ex-

tremity b of this arm is also

jointed to two other links be

and bd. The link be connects

it with an arm Cc whose
center of motion is C, and the

tangent to the path of itg

extremity passes through B,
and bisects the angle 2B3 ; therefore by Ex. 3, when b moves from

1 to 2, Cc will move from Cc\ to C\t but when b moves from

2 to 3, Cc will remain nearly at' rest in the position C\. On the

other hand, the link bd, which is shown by a dotted line, is

jointed to an arm Dd, the tangent of whose path passes through
B, and bisects the angle blB2 ; so that while b passes from

1 to 2, Dd remains nearly at rest in the position Dd\ ; but when
b passes from 2 to 3, Dd receives a motion from Dd\ to D3.

The effect of this arrangement is, that when the crank A revolves,

the arms Cc and Dd oscillate with intervals of rest, the one

moving when the other rests, and vice versd: which may be

traced by the corresponding figures, if we follow the motion of

the crank at A round its circle, as thus :

crank moves from

{1

to 2 Cc

2 to 3

3 to 2

2 to 1

1 to 2 Cc rises and Dd rests

rests falls

rests rises

falls ,, rests.

298. But for showing the exact nature of the motion

produced in this manner, graphic representations are the best

(Art. 14). Thus in fig. 234, Bb is the vertical axis of a curve

which represents the motion of the arm Bb ; Cc and Dd the

axes of curves which represent the cotemporaneous motions of

the arms Cc, and Dd respectively. The circle described by the
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Fig. 234.

C D

crank is divided into twelve equal angles, and the axes of ab-

scissa? are divided into equal parts corresponding to these twelve

positions and numbered accordingly from

to 12. The figure represents one revo-

lution and a half, for the better exhibition

of the motion ;
and supposing the crank

to revolve uniformly, the vertical abscissas

of the curves will be proportional to

the time. The ordinates of these curves

are proportional to the spaces or arcs

described by the extremities of the arms

respectively. Thus the ordinates of the

curve Bb are proportional to the distance

of the extremity b of Bb from the extreme

position Bb\. These curves are easily ob-

tained by drawing the figure 233 upon a

large scale, and setting out upon it the

twelve relative positions of all the arms of

the system, in the same way as the three

principal positions are there shown. To re-

turn to fig: 234. It appears that the double

oscillation of Bb from to 12 is converted in Cc into two double

oscillations, one of which extends from 2 to 10, and is large,

while the other from 10 to 2 is so small that it may be considered

as a state of rest. The oscillation of Dd is similar, but the large
wave of the latter is opposed to the small wave of the former,

and vice versa. Now if these small waves be required to be

reduced, a second arm (as Dd fig. 231) must be attached to each

of the arms Cc, Dd of the present system. The curve Ee

represents the motion of this second arm, supposing it to be

attached to Dd, and from this it appears that while the oscillation

of the large wave is rendered more nearly constant in its velocity,
the small wave is obliterated and reduced to a line coinciding
with the axis of the abscissae.

299. These examples may serve to show that very complex
motions may be produced by combining link-work in trains, and
the mechanism thus obtained is so simple and certain in its

action, that it is always desirable, if possible, to employ it.

Curves should always be used as a test for the motions, because
in these intricate combinations formulas would not, even to the

best mathematicians, give the same clear notion of the cotem-

porary action of the various pieces of the train that is conveyed
in this manner.
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300. "When a reciprocating and revolving piece are connected

by a single crank and link, the revolving piece must be the

driver, unless it be heavy ; for if the reciprocating piece be made
the driver, it is evident that at the dead points (Chap. XII.) of
the system it could communicate no motion to its follower. But
if th,e revolving piece be heavy, it will by its inertia be carried
across the dead points, and thus allow the reciprocating piece to

continue its action in the reverse direction. This mode of opera-
tion belongs to Dynamics, and therefore will not be examined in

the present Work. In fact, in l^ure Mechanism, the only
methods by which a reciprocating driver can be made to give
continuous rotation to a follower, are by Escapements, for which
see Sliding 'Contact in the present Chapter; and by clicks and
ratchet-wheels, which, as they properly belong to Link-work, I

shall proceed to explain.
301. The driver is an arm whose center 'of motion is A

fig. 235. The follower F is a wheel termed a ratchet- wheel,

having teeth formed like those of a

saw. Fi - 235 -

The piece BC is freely jointed to

the driving arm at B, so that it rests

by its weight upon the teeth of the

wheel. If the arm be moved in the

direction of the arrow into the position

Abe, the extremity C will abut a'gainst

the radial sides of the teeth, and push
the wheel as if BC were a link jointed
to its circumference at C. But when
the arm is moved backwards towards

AB, the point C will rise over the sloping sides of the teeth, and

communicate no motion to the wheel.

If a continuous reciprocation be given to the driver, the

follower will advance a few teeth during every motion of the

driver in the direction of the arrow, and will remain at rest during
its return in the opposite direction.

To ensure the wheel against an accidental motion in the

reverse direction, an arm DE similar to SCis jointed to a fixed

center of motion D, and by abutting against the teeth in a

similar way to BC, only allows the wheel to be moved in the one

direction required. A detaining arm of this kind is termed a

detent or latch, and the arm BC which communicates motion a

click, or ratchet, or paul ; but these latter names are frequently
used in common for both the moving and detaining pieces BC
and DE.
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302. This is a very useful and practical combination,* and

admits of great variety of arrangement. Thus the arm AB may
be made to move concentrically to the ratchet-wheel. This

method, when practicable,
is to be preferred, for the arm, ratchet,

and wheel then move together as one piece during the advance

of the latter.

Or the crown-wheel form may be given to the ratchet-wheel,

as in fig. 236, in which case, the click B may be either jointed

to an arm Aa, which moves concentrically to the wheel, or to an

arm cd, which is attached to an axis Cc at right angles to that

of the wheel.

Fig. 238.

303. The reciprocating arm may also be made to drive the

wheel both during its approach and recess. Thus, let A,

fig. 237, be the center of motion of the arm, D that of the

ratchet-wheel, and let the arm have two clicks ab, ac, jointed to

its extremity a, and engaged with the opposite sides of the

wheel.

When a is depressed the click b will push the teeth, but the

click c will slide over them. On the other hand, when a is

raised, the click c will act upon the teeth, but b will now slip

over them, so that whether a rise or fall

the wheel is made to move in the direction

of the arrow.

304. A similar contrivance is shown in

fig. 238, where A is the center of motion of

the arm, and clicks ab, dc are jointed at

equal distances on each side of A. When
a rises, the click ab slips over the teeth,

and dc pushes them
; but when a falls, the

click ab pushes the teeth and dc slips over them. These two

It first appears in Kamelli, fig. 136.
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latter arrangements are called the levers of Lagarousse, from
the name of their inventor.*

305. Levers either of this latter kind with two clicks, or with
a single click accompanied by a detent, are also employed to

move racks.

306. Instead of jointing the clicks and detents to their levers
or centers of motion, they are sometimes made in the form of a
slender spring. Thus if ab instead of hanging loose from a, or

being pressed by a spring into contact with the teeth, be itself a
slender spring fixed to the lever at a, it will act

precisely in the
same manner as it does in the figure, merely giving way from its

elasticity when it is required to slip over the teeth, instead of

turning upon the joint for that purpose.
307. The shape of the extremity either of the detent or click,

as well as of the teeth against which they act, may be determined
as follows :

If we examine the action of the de-

tent and wheel, it appears that the two

conditions which determine the form are

these. If the wheel be urged in one di-

rection, the action of its teeth shall have

no effect in raising the detent, but shall

rather tend to keep it in its place. If

the wheel be urged in the opposite direction, the contrary shall

happen.
Xow the tooth and detent act upon each other by sliding

contact. Let A, fig. 239, be the center of motion of the wheel,
B of its detent, and let pq be the normal of contact between the

tooth and the end of the detent, and let Ap, Bq be perpendiculars

upon this normal from the centers of motion. Then if the wheel

be urged in the direction from p to q, this normal is the line of

action upon the detent (Art. 31), which therefore tends to turn

the detent round B in the direction pq, that is, to press it more

closely into contact with the teeth.

If, on the contrary, the center of the detent were at B', on the

other side of the normal, the action of the teeth would be to turn

it in the direction pq round B', that is, to raise it out of the

teeth. To make the detent hold, therefore, its acting extremity

and the teeth must be of such figures that the normal of contact

shall pass between its center and that of the wheel. If the wheel

be urged in the opposite direction, then it can be shown in like

* Machines App. 1702.

*K
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manner, that to enable the wheel to lift the detent, the normal of

contact in this new direction rs must also pass betAveen the two

centers of motion.

If, however, the hook form be given to the detent, as at ke,

fig. 235, then the normals of contact in both directions must pass

on the same side of the two centers of motion as el.

308. By attending to this principle, which applies equally to

the detents and the clicks, we may make them and the teeth of

different forms, as in fig. 240, where B
is a detent adapted to act with a pin-

wheel, and A with a common spur-
wheel : the dotted lines show the nor-

mals of contact.

A pin projecting from the face of a

bar which lies behind the wheel makes

an excellent detent.

When the detent requires to be re-

leased by hand from the teeth, it may
be provided with a tail, as at m, fig. 235 ; the usual form of a

detent when it is urged by a spring against the wheel, as in clock

and watch-work.

309. But a detent is sometimes required to act in a different

manner, that is, to hold the teeth of a wheel in a sort of stable

equilibrium, so that they admit of being disturbed either to the

right or left of the position of rest, but will still return to it if

left to the action of the detent. This is effected by forming the

detent as at C fig. 240, so that its normals of contact shall pass
on the opposite sides of its center of motion, and at the same
time providing the detent with a spring or a weight by which it

is pressed against the teeth. This pressure will always hold the

teeth in such a position that both sides of the detent shall be in

contact, but at the same time the teeth of the wheel, whether

urged to the right or left, will raise the detent, and pass under

it, which is shown by the direction of the normals.

If the end of the detent carry a roller, and act upon a pin-
wheel as at D, the same effect will be produced. It is evident

that the detention of the wheel in these latter arrangements is

entirely effected by the pressure of the spring or weight by
which the detent is kept in contact with the teeth, and not by
the form of the detent, as in the first examples at A and B
fig. 240, or in fig. 235.

310. In
fig. 235 the oscillating arm moves the wheel through

an arc equal to its own motion. If the arm be required to move
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through an indefinite arc, and yet to move the wheel a con-

stant quantity in each of its oscillations, the click must be

arranged as in fig. 241. AD is the arm,
the extremity of which moves in the arc

be ; the click is mounted on a center D
at the end of the arm, and urged by a

spring/ against a pin or stop e. The
ratchet-wheel G has a detent F, which
must also have a spring or weight to keep
it in contact. When the arm moves from b towards e, the click

encounters a tooth of the wheel, and having thus carried the

wheel through the space of one or more teeth, leaves it and

passes onwards towards c. The pressure against the end of 'the

click tends to turn it round its center Z>, but the stop e prevents
this action ; on the contrary, when the arm returns from c

towards b, the click D again strikes against a tooth of the wheel,

but the pressure now being in the opposite direction, the click

gives way by turning round its center D, and the wheel is held

fast by its detent F ; when the click has passed the wheel the

spring/ restores it to its first position.

Thus whatever be the extent of the motion of the arm
from b to c and back, the wheel will receive only a constant

motion.

311. In all click-work the slipping of the clicks and detents

over the teeth occasions a disagreeable noise or clicking, whence

the former probably derive their name. This moreover tends to

wear out the teeth.

To avoid this inconvenience silent clicks or ratchets are em-

ployed, which are arranged in various ways, one of the simplest

of which is shown in fig. 242. D is the ratchet-wheel whose

teeth in this method may be made with sides nearly radial, B is

Fig. 242.the ratchet-arm concentric with

the wheel, and carrying the ratchet

gh jointed to it at g, AC an arm

also concentric with the wheel,

and moving very freely upon the

center A. This arm is joined by
a link ef to the ratchet, and lies

between two pins which project

from the face of the ratchet-arm.

The action of the contrivance is

as follows. If the arm A C be

moved upwards towards Ac, it will at the beginning of its motion

E 2
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raise the ratchet gh out of the teeth of the wheel by means of

the link
; proceeding still farther it will then encounter the upper

pin of the ratchet-arm, and will therefore carry this latter arm

with it, the two arms and ratchet now moving as one piece in the

direction from f towards g, but without disturbing the wheel,

because the ratchet is disengaged from its teeth, as shown by the

dotted lines.

On the other hand, when the arm A C is moved in the opposite

direction, that is from c towards C, it first passes through the

small space c.C without moving the ratchet-arm B, and thus by
the link ef depresses the ratchet and engages it with the teeth,

the arm A C then strikes the lower pin of the ratchet-arm, and

the
'

two arms, ratchet, and wheel now move as if in one piece,

so long as the motion of AC continues in this direction.*

The action of this combination is perfectly silent
; the arm A C

is moved back and forwards just as the ratchet-arm of fig. 235,
but at every change of direction it begins by either engaging
or disengaging the ratchet from the teeth, and thus prevents
the disagreeable and mischievous noise of the common ar-

rangement.
312. An intermittent motion may be produced from link-work,

by making a slit in either end of the link. Let B, fig. 243, be

the center of motion of a crank, which by means of a link gives

F
.

243
oscillation to a swinging arm Am ;

at the end of the link is a slit mn,
which nearly fits a pin m projecting
from the end of the arm Am. This
arm may either move with friction

upon the center A so that it will

\ remain where it is left, or it may
'p

be urged by a spring or weight in

a constant direction, as for example,
towards the crank-axis, so as to

press it against a stop k if left to
itself. In the first case, if it remains where it is left, then when
the link moves from left to right, the left end m of the slit will

push the pin and arm from m towards p ; but when the link

changes its direction, the arm will receive no motion until the
other end n of the slit has reached the pin ; the arm will then be

* Clicks of this kind are employed under different forms by Mr. Roberts in his

Belf-acting mule, and by Mr. Donkin. Vide also White's Century of Invention pi. 6,
fig. 18. Other forms of detent work will be found below under the head of Differential
and Aggregate Motions.
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carried from right to left together with the link, and at the next

change of direction will again rest until the end m of the slit has
reached the pin.

The motion of the arm will thus be intermitted at each end of
its course for a time which will be greater or less according to
the length of the slit. Thus as 1 and 3 are the points where the

changes of direction of the liuk occur, let 2 and 4 be the points
at which the ends of the slit come into action, then the arm
Am will remain at rest while the crank moves from 1 to 2,
and from 3 to 4, and will move during the intermediate motion,
thus:

{1

to 2...arm rests at p
2 to 3... moves from p to m
3 to 4... rests at m
4 to 1... moves from m to p.

But in the second case, if the arm be pressed by a force towards

the center of the crank, the slit will not come into operation
unless a stop k be provided, then the pin m will be always in

contact with the extremity m of the slit in both directions of its

motion; but when the arm Am reaches the stop the link will

proceed without it by means of the slit to the end of its course,

and will take it up on its return. Take 3 5 equal to 3 4 upon
the circular path of the crank, then the motion will be as

follows,

{1

to 5...arm moves from p to m
5 to 4... rests

4 to 1... moves from m to p.

PRISMATIC LINK-WORK.

313. In investigating the phases of motion in link-work, we

have considered it as a plane trapezium of which the angles are

jointed, so that one side being fixed in the plane, as a base or

line of centers, the two which meet its extremities are capable of

revolving radially about those extremities, and their opposite ends

are similarly pointed to the side which is opposite to the base,

and is termed the link.

But in the actual construction of link-work the points of the

component parts move in parallel planes, about parallel axes per-

pendicular to those planes, so as to enable the link and arms to
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pass clear of each other during the motions of the system. In

the following pages I have endeavoured to exhibit link-work

under this aspect, whether employed to connect parallel axes,

convergent axes, or axes neither parallel nor meeting.

The parallel lines Aa, Bb, Pp, Qg are the edges of a right

prism whose ends AB QP, abqp, are the quadrilaterals already

Fig. 244.

examined. The system of four lines in a plane is in this view re-

presented as a system of four rectangular planes, united at their

neighbouring edges, which may be termed the axial, radial, and

link planes. The axial plane ABab, fixed in position is bounded

by the axes Aa, Bb. The radial planes AaPp, Bb Qq, rotate

about the axes Aa, Bb, respectively. The link plane, Pp, Qq, is

hinged by its sides Pq, Qq to the corresponding sides of the

radial planes. These hinge-like lines may be termed ' lines of

flexure.' This prism, considered geometrically, is capable of

taking up all the phases of the plane quadrilaterals by which it is

terminated. But in the motions of the system it has been shown
that the sides of the quadrilateral in certain positions overlap or

intersect each other, and similar interpenetrations will necessarily
take place between the planes that form the sides of the prismatic

figure we are now considering.
At a dead point of either radial plane the link plane is neces-

sarily brought into coincidence of direction with that plane by

overlapping it if the dead point be inward or by extension if out-

ward.

At a double dead point the link plane must coincide with both
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radial planes simultaneously, which can only happen when these

planes also coincide with the axial plane. The angle aQb will

consequently be equal to the suras or differences of the angles of

the link plane and radial plane, according as the dead points are

respectively outward or inward.

To make this possible, when the parts of the machine have
material thickness, the positions assigned to the arms and link in

their respective planes are selected so as to place these elements

side by side (fig. 244). In this figure the actual construction of

the link-work is delineated between the two ends of the prism.
hKis a shaft whose axis coincides with the geometrical axis Aa.
This is mounted in bearings attached to the fixed frame of the

machine, which are omitted in the figure.
mN is a second shaft coinciding similarly with the geometrical

axis Bb, and also supposed to be mounted in bearings. Thus the

linear axes of these shafts are fixed in position. Hh is a handle

fixed to the end of the first shaft which also carries an arm Kk,
the outer end of which is bored to receive a fixed stud whose axis

coincides with the line of flexure Pp and enters a hole bored

truly in the same line at one end of the link LI.

The other end I of this link is jointed by a similar hole to a

pin fixed to the arm Mm, which is attached to the shaft mN.
In this construction the arms Kk, Mm coincide with and are

portions of the radial planes to which they belong, but they have

necessarily a material thickness instead of the infinitesimal thick-

ness of a geometrical plane.

Similarly the link LI is a strip of the link plane provided with

material thickness.

Thus the right side of the arm Kk coincides with the left side

of the link LI, and the right side of the link with the left side of

the arm Mm. It thus becomes possible to bring the link into, the

same plane with either or both the arms, without which the in-

ward dead points of the system would be practically impossible.

The end of the link is for greater steadiness sometimes em-

braced between two arms Kk, K^kv fig. 245, whose shafts both

coincide with the axis line Aa.

These arms are united by the joint pin at k^, which is made in

one piece with them.

It is manifest that the discontinuity of the shaft between the

arms allows them to revolve, as it permits the link to pass freely

over the geometrical flexure line Aa between K and Kv at the

inward dead point.

This combination of two arms with a joint pin and two seg-
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ments of shaft is termed a crank, and being supported by a

bearing on each side of the link admits of great steadiness in the

transmission of motion and pressure.

The form of the discontinuing shaft and arms shown in the

diagram is that which is adopted in machinery when such a

steady motion is required.

The cylindrical hole at each end of the link fits the solid joint

pin and must be constructed of two pieces each containing half of

this hole, one piece being a part of the link, the other capable of

being detached and refixed at pleasure so as to enable the link to

be attached to the joint pin. By this construction the link is

capable of pushing or pulling alternately.
But when the link acts by pulling only vertically at the crank,

which is the case when the cranked shaft has a fly wheel and the

link connects the crank with a treadle, the crank is simply formed

by bending the shaft into the form of fig. 246. The link is

jointed below by a simple pin, passing through a hole at its lower

extremity, and also through holes in the sides of a mortise

formed through the treadle for the reception of that extremity.
The upper end of the link is shaped into a long hook, which is

kept by the weight of the treadle in contact with the crank.

When the link only communicates an oscillation to an arm
without an inward dead point, there is no need for the discon-

tinuity of the shaft N. The outer end of the arm has a slit cut

into it as at MmM^, fig. 245, for the reception of the end I of the

link. The joint pin is simply supported at each end in holes, and

kept in its place by a head at one end and a cotter or spring pin
at the other. The shaft BN of the arm admits of a bearing at

each end.

It is not necessary that the arms and link should be straight
and flat. The essential condition for these elements is that the
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directions of the two axes or flexure lines which they each carry
shall be parallel and rigidly connected. The pins or holes which

represent these axes must therefore be parallel. But the inter-

mediate solid portion which furnishes their rigid connection may
be of any shape that may suit the framing of the machine or the

fancy of the maker.

Fig. 247 represents forms that are frequently given to the arms,

Tig. 24;.

handles, and links of this class of machinery, especially in the last

century, and even still in clockwork or ornamental mechanism.

This machine is identical in its motions with that of fig. 244, as

the lines which indicate the form of its prismatic diagram show.

SOLID-ANGULAR LINK-WORK.

314. Link-work for two axes meeting in a point. Let aa
lt bb^

fig. 248, be two axes whose directions meet in a point 0; ap, bg

two arms respectively perpendicular to the axes ; pq a link jointed

to the extremities of the arms. The arms rotating about the axes

will describe circular planes respectively perpendicular to them

and therefore not parallel to each other. But, as in the previous

diagram of link-work with parallel axes (fig. 244), the short arm

ap (if it be a crank) revolving will cause the longer arm to oscil-

late, and will have outward and inward dead points, or (if the

magnitude of the given distance ab be suitable) either continuous

rotation of both axes or alternate oscillations will be obtained.
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From O draw right lines to a, p, q and b. As these lines are

constant in all positions of the system, and also the lines ab, ap, bq,

248. P<1 which subtend the angles
made by the former lines at O,
we have a solid angle at O
formed of four constant plane

angles. But as the angle
made by each triangular plane
with its adjacent one at the

edges of the solid angle varies

by the motion of the system,
so the form of the solid angle
varies.

We have thus obtained a

system of four triangular planes analogous to the prismatic

system of fjg< 244. Employing the same nomenclature, we have

a fixed axial plane a Ob, radial planes a Op, bOq rotating about

axes aO, bO, and connected by means of flexure lines Op, Oq,
with a link plane p Oq.

Every prism is, in fact, the limiting form of a solid angle,

whose apex is removed to an infinite distance from its base.

It is manifest that the dead points of the radial plane Oap
happens when the radial plane Oap and the link plane Opq coin-

cide in one plane. These dead points are therefore unaffected by
the distances of the points p, q, a, b from O, and depend solely

upon the relative magnitudes of the four plane angles at O.

For convenience, therefore, let the lines of flexure, Op, Oq,
that radiate from O be each produced to any convenient equal
distance from that point, as at A, B, Q, P. Join their extremi-

ties, in each plane of the plane angles, by arcs of circles described

from O with that constant distance, These arcs will be seg-
ments of the great circles of a sphere whose radius is the constant

distance OQ.
Let this radius be unity, then the bounding arcs of the plane

angles will represent those angles respectively and may be desig-
nated by the same letters as those employed for the sides of the

trapezia which bound the prism employed in prismatic link-work
and which here represent the spherical quadrilateral ABQP.
We thus have, AB^d, PQ= l, AP=r, BQ= R.
When a dead point happens by the coalescence into a common

plane of a radial plane with the link plane, as of A OP with POL,
by the motion of AP to AG, where AGL is one continuous seg-
ment of a great circle, we obtain a spherical triangle ALB.
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This is an outward dead point) and the side AL= r -f /. If this

radial plane revolve so as to come into the position A OF, the

link plane will be superposed upon the radial plane. We have

now an inward dead point, and the side FL-=-l r.

Continuous motion in solid-angular link-work. To pro-
duce continuous motion in both radial planes, the conditions

Fig. 249.

are obtained by analogous reasoning to that given for plane or

prismatic link-work, namely : The axes (fig. 249) AO, BO, of

the respective radial planes must be contained within the space

which is common to the two cones that are respectively described

by the revolutions of the two

lines of flexure OP, O Q. Con- y;g . 250.

sequently we must have AB
(
= d) less than either AP

(
= Ap) or BQ (=zBg). Also

PQ (
=

J) >R- (r-rf) and

If both R and r= 7r
, fig. 250,

both cones become disks, and if

the link-plane angle / also =-

the combination coincides with that of the simple Hooke's joint.

When a revolving arm produces reciprocation in another, as

in fi". 251, the former must be less than the latter, therefore

the devolving radial-plane angle r (A OP} must be less than the

reciprocating angle R (BOQ). Also r must be less than d.
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Fig. 252 shows the forms of the cranks and arms in solid-angular

link-work.

Fig. 252.

Fig. 521.

This figure represents the model which I employ for showing
some of the varieties of motion in solid-angular link-work. It is

simply constructed of wood and wire.

Fig. 253.

The lettering corresponds to that of the diagram fig. 250, and

the machine is adjusted to produce reciprocation from rotation

accordingly.
A horizontal base C has a vertical standard E, which is pro-

vided with a horizontal socket, in which the driving axis aA is

grasped. A similar frame carries the follower axis Bb, by means
of a standard F. The two frames are connected by a bolt d,

fixed to the lower or base board C and passed through a hole in
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the upper frame board D. The axes must be so adjusted that

they are in one and the same horizontal plane a Ob, and that

their meeting point O is contained in the vertical axis of adjust-
ment represented by the dotted line dO. The fly nut d serves

to fasten them to any angle required by the axes. The driving
axis aA is terminated inwards by a clamp A which grasps an arc

of stiff wire Pp, which has an eye formed at its extremity P.

The follower axis Bb terminates inwards with a quadrantal
wooden piece BOQ right angled at O. This piece is split so as

to embrace the side OQ of a right-angled triangle of wire POQ,
so as to allow of a hinge-like rotation between that side of the

triangle and the radial side O Q of the wooden quadrant.
The side OP of the wire triangle is produced beyond the acute

angle next to P and is received in the eye of the wire arc at P.

Comparing this machine with fig. 251 it will be seen that AOB
is the axial plane, A OP, BOQ the two radial planes, POQ the

link plane, O Q, OP the lines of flexure.

The driving axis aO is provided with a handle ah, and the

follower axis with an index be, which in the adjustment given to

the apparatus in the figure will oscillate when the driving axis is

rotated by the handle, provided that the wire arc Pp is set so as

to subtend an angle less than BOQ. But if it be adjusted to a

right angle and the horizontal axes of rotation set at an angle

greater than
'7r

, the rotation of the driving axis will communicate

a continuous rotation to the follower axis with varying velocity

ratio as in Hooke's joint.

315. To connect two axes which are neither parallel nor meeting

by solid-angular link-work so that the rotation or oscillation of one

will communicate an oscillation to the other (fig. 254).

Let AB, CD, be the given axial lines. In these assume two

convenient points B, C, and join them. Assuming this line B C to

be the direction of an intermediate axis, we have only to connect

each extremity with the axial line that it meets, assuming each

meeting point to be the apex of the pyramid of a system of solid-

angular link-work.

Thus at B, two axial lines BA, BC meet. From B draw two

flexure lines Ba, Bb which completes the construction of the

solid quadrangular apex of the first pyramid to connect the

extremity C of the intermediate axis with the given axis CD.

Draw tAvo flexure lines Cc and Cb radiating from C, and for

convenience let the latter intersect the flexure line Bb of the

first pyramid. The system is now completed, the chain of
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triangles of which it is composed is set in motion by the first

radial plane ABa whose angle at B is acute because the axis AB
Fig. 254,

is compelled to rotate, and is therefore provided with a handle at

H, and its opposite end bent into a crank, the excentric

extremity of which is inserted freely into a hole bored through
the lower end of the link L^ in the direction coincident with the

flexure line Ba of the planes E lf
Lv The upper end b of the

link plane bBa is connected to the second radial plane BbC (r^

by the flexure line Bb, and thus the rotation of ABa is converted

into an oscillation of the flexure line and of the entire triangle

BbC about the intermediate axis BC. The triangle bCc (7>2)
is

a link plane and is joined to the triangle cCD (R^) by the flexure

line Cc which conveys the oscillation of BbC to that triangle.
In this combination the drawing represents the complete triangles
in dotted lines. In each triangle the side which subtends the

apex is indefinite in form. Also the entire triangle is not neces-

sarily retained. The figure shows for example the primary link

plane L lt
reduced to a strip. Also the connection of the plane

7?
2
with the post CD enables it to support the link L

2
and the

plane CbB which rotates upon the geometrical line BC, but is

sufficiently braced by the two hinges which represent the flexure

lines bC, bB, to allow it to be cut into the form r
v
shown in the

figure.
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In the same manner the oscillations of the intermediate axis

may be transmitted to any number of axial lines, in any direction

in space, provided that direction meets the intermediate axis.

Fig. 255 shows that axis in connection with two others, and is

sufficient to Explain the principle.

Fig. 255.

J

On a base board PQWX five vertical standards K, E, F, G,
H, are fixed for the support of the moving parts.

Bb is the direction line of the intermediate axis, which is

supported in bearing holes C and b in the standards F, H. AH
is the primary transverse axis sustained by the standards K, E\
DC, Kk the direction of two others which meet the primary axis

in points C and K\ they are purposely placed so as to meet that

axis in oblique directions and not in planes perpendicular to it.

We have, therefore, three points B, C, K, in the intermediate axis,

each of which is the apex of a solid angle. In this model the

constituent triangular planes are supposed to be simply united at

the flexure lines by leather. The first and second solid-angular

systems are precisely similar to fig. 254 and their triangular

.planes denoted by the same letters. The handle # communi-

cating by the triangular crank and oblique link L
r
an oscillation

to the radial plane r
t
and the long primary axis BCb to which

it is fixed. The plane r, also transmits its oscillation through Lt

to R
2 ,
which is hinged upon the line DC. K is the apex of

another solid-angular system, in which Kb, Kk are the axial lines,

and Ks, Kn the flexure lines. The triangle Knp is rigidly fixed

to the primary axis and thus transmits its oscillations to the

radial plane mKs by means of the link plane sKn.
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CHAPTER XIII.

TRAINS OF ELEMENTARY COMBINATIONS.

316. THE elementary combinations which have been the sub-

ject of the preceding chapters consist, for the most part, of two

principal pieces only, a driver and a follower
;
and we have shown

how to connect these so as to produce any required constant or

varying velocity ratio, or constant directional relation, whatever

may be the relative position of the axes of rotation. There are

many cases, however, in which, although theoretically possible, it

may be practically inconvenient, or even impossible, to effect the

required communication of motion by a single combination ;
in

which case a series or train of such combinations must be em-

ployed, in which the follower of the first combination of the train

is carried by the same axis or sliding piece to which the driver of

the second is attached ; the follower of the second is similarly

connected to the driver of the third, and so on.

317. In all the combinations hitherto considered the principal

pieces either revolve or travel in right lines. In a train of revol-

ving pieces, the first follower and second driver being fixed to

the same axis, revolve with the same angular velocity ; and this

is true for the second follower and third driver, and generally for

the mtb follower and m + 1 I

th
driver, which will also, if the piece

which carries them travel in a right line, move with the same
linear velocity. But, for simplicity, let us consider all the pieces
in the train to revolve (Art. 36), and let the synchronal rotations

of the axes of the train in order be

m being the number of axes ;

.
L
lx L_ x L_3 ........ ^i=A.

jLj X>j jL/4 J^m Lm
that is ; the ratio of the synchronal rotations of the extreme axes of
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the train is found by multiplying together the separate synchronal
ratios of the successive pairs of axes. Also if A

l
A

z
...Am be the

angular velocities of the axes, we have

318. And since the values of any one of these separate ratios

will be unaffected by the substitution of any pair of numbers that

are in the same proportion, we may substitute indifferently in any
one the numbers of teeth (A"), the diameters (D), or radii ( J?), of

rolling wheels, pitch-circles, or pullies, the periods (P) in uniform

motion
; or express the value of the ratio in any other equivalents

that may be most easily obtained from the given machine or train

whose motions we wish to calculate, recollecting that

LA n r

319. Ex. 1. In a train of wheel-work let the first axis carry
a wheel of JVj teeth driving a wheel of w

2
teeth on the second

axis ; let the second axis carry also a wheel ofNt teeth driving a

wheel of n
3 teeth on the third axis, and so on.

Am Lm_N N Nm_,or --- x x .........-
A\ L

l
n

z
n
3

nm

that is, to find the ratio of the synchronal rotations, or angular

velocity of the last axis in a given train of wheel-ivork to those of
the Jirst, multiply the numbers of all the drivers for a numerator,

and of all the followers for a denominator.

It is scarcely necessary to remark that the number of drivers

and of followers in a train of this kind is less by one than the

number of axes.

320. Ex. 2. The ratios may each be expressed in a different

manner : thus in a train of five axes, let the first revolve once

while the second revolves three times ;

,
1

r
2

3-

Let the second carry a wheel of 60 teeth driving a pinion of 20

on the third ;

. 2̂= 6
'

w
3

20
'

Let the third axis drive the fourth by a belt and pair of pullies

of 18 and 6 inches diameter respectively;
s
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And let the fourth perform a revolution in ten seconds, and the

last in two, when the machinery revolves uniformly;

P
4=i= 10.

therefore we have,

Z, 1 20 6 2 _ 1

Z
5
-3

X
60

X
18

X
10~135'

that is to say, that the first axis will perform one revolution while

the last revolves 135 times.

321. In this manner the synchronal rotations of the extreme

axes in any given machine may be calculated; their directional

relation may also be found, by examining in order the connection

of the axes, and by help of the few remarks which follow.

In a train of wheel-work consisting solely of spur-wheels or

pinions with 'parallel axes, the direction of rotation will be alter-

nately to right and left. If, therefore, the train consist of an even

number of axes, the extreme axes will revolve in opposite direc-

tions, but if of an odd number of axes, then in the same direction.

If an annular wheel be employed, its axis revolves the same way
as that of the pinion (Art. 61).

322. If a wheel A (fig. 34, page 45) be placed between
two other wheels C and B, it will not affect the velocity ratio of

these wheels, which is the same as if the teeth of B were imme-

diately engaged with those of (7, but it does affect the directional

relation ; for if B and C were in contact, they would revolve in

opposite directions, but in consequence of the introduction of the

intermediate axis of A, B and C will revolve in the same direc-

tion. Such an intermediate wheel is termed an idle wheel.

323. When the shafts of two wheels A and B, fig. 256 lie so

F
. close together that the wheels cannot be

placed in the same plane without making
them inconveniently small, they may be
fixed as here shown, so as to lie one behind
the other, and be connected by an idle

wheel C, of rather more than double the

thickness of the wheels it connects. Such
a thick idle wheel is termed a Marlborough
wheel, in some districts. It is employed in

the roller frames of spinning machinery.



TRAINS OF ELEMENTARY COMBINATIONS. 259

324. When the axes in a train are not parallel, the directional

relation of the extreme axes can only be ascertained by tracing
the separate directional relations of each contiguous pair of axes in

order.

By intermediate bevil-wheels parallel axes may be made to re-

volve either in the same or opposite directions, according to the

Fig. 257.relative positions of the wheels
;
for

example, in
fig. 257 the wheel A

drives B, upon whose shaft is fixed

the wheel E. Now if the wheel C
be fixed on the same side of the in-

termediate axis as A, the parallel

axes of A and C will revolve in op-

posite directions; but if the wheel

be fixed as at D, on the opposite
side of the intermediate axis, then the axes of A and D will re-

volve in the same direction, the same number of wheels being

employed in both cases.

Endless screws may be represented in calculation by a pinion
of one or more leaves, according to the number of their threads

(Art. 217), but their effect upon the directional relation of rota-

tion will be different, according as they are right-handed or left-

handed screws. (Art. 211.)
325. Two separate wheels or pieces in a train may revolve

concentrically about the same axes, as for

example, the hands of a clock. Also, in

fig. 258, the wheel B is fixed to an axis Cc,

and the wheel A to & tube d or cannon,

which turns freely upon Cc. If these

wheels may revolve in opposite directions, a

single bevil-wheel E will serve to connect

them, if the three cones have a common

apex as in the figure; and since E is an

idle wheel (Art. 322), the velocity ratio of B to A will depend

solely upon the radii of their own frusta.

But if the wheels B, A are to revolve in the same direction,

they must be made in the form of spur-wheels, and connected by
means of two other spur-wheels fixed to an axis parallel to Cc.

326. Millwrights imagine that in a given pair of toothed

wheels it is desirable that the individual teeth of one wheel

should come into contact with the same teeth of the other wheel

as seldom as possible, on the ground that the irregularities of

s 2

Fig. 258.



260 TRAINS OF ELEMENTARY COMBINATIONS.

their figure are more likely to be ground down and removed by

continually bringing different pairs of teeth into action.

This is a very old idea, and is stated nearly in the above

words by De la Hire. It has also been acted upon up to the

present time. Thus Oliver Evans tells us, that *

great care

should be taken in matching or coupling the wheels of a mill,

that their number of cogs be not such that the same cogs will

often meet ;
because if two soft ones meet often, they will both

wear away faster than the rest, and destroy the regularity of the

pitch ;
whereas if they are continually changing they will wear

regular, even if they be at first a little irregular.'*

The clockmakers, on the other hand, think that the wearing
down of irregularities will be the best effected by bringing the

same pair of teeth into contact as often as possible.f

Let a wheel of M teeth drive a wheel of N teeth, and let

=m when m and n are the least numbers in that ratio ;N n

.-. nM=mN,
and n is the least whole number of circumferences of the wheel

M that are equal to a whole number of circumferences of the

wheel N.

If, therefore, we begin to reckon the circumferences of each

wheel that pass the line of centers, after a given pair of teeth

are in contact, it is clear that after n revolutions of M, and m of

N, the same two teeth will be again in contact. Neither can

they have met before ; for as the entire circumference of one

wheel applies itself to the entire circumference of the other tooth

by tooth, and as the numbers m and n are the least multiples of

the respective circumferences that are equal, it follows that it is

only after these respective lengths of circumferences have rolled

past each other that the beginnings of each can again meet.

If we act on the watchmaker's principle, by which the contacts

of the same pair are to take place very often, the numbers of the

wheels M and N must be so adjusted that m and n may be the

smallest possible, without materially altering the ratio -
;
and

this will be effected by making the least of the two numbers m, n

equal to unity, and therefore M a multiple of N.
But if the millwright's principle be adopted, m and n must be

* 0. Evans, Young Millwrights Guide, Philadalphia, 1834, p. 193. Vide also

Buchanan's Essays, by Rennie, p. 117.

t Francceur, Mecaniqne Efementaire, p. 143,
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as large as possible, that is, equal to M and N, or in other words,M and N must be prime to each other. The millwrights employ
a hunting cog for this purpose. Suppose, for example, that a

shaft is required to revolve about three times as fast as its driving
shaft, 72 and 24 are a pair of numbers for teeth that would pro-
duce this effect and would suit a watchmaker, one being a

multiple of the other
;
but the millwright would add one tooth to

the wheel (the hunting cog), and thus obtain 73 and 24, which
are prime to each other, and very nearly in the desired ratio.*

327. Sometimes also the nature of the mechanism requires
that the wheels shall come as seldom as possible into the same
relative positions, and in that case the principle may be applied
to a train of several axes. For example, in a train of three axes,

in which the drivers have each 22 teeth, and the followers 25 and

35 teeth, we have

L 25x35 484

which numbers are prime to each other, and therefore the extreme

wheels of the train will not return to the same relative position,

until one has made 484, and the other 875 revolutions. These

are the numbers of the old Piemont silk-reel (1724), which is an

excellent example of this principle. f

328. We are now able to calculate the relative motions of the

parts in a given machine in which the velocity ratios are constant.

The inverse problem is one of considerable importance in the

contrivance of mechanism ; namely, Given the velocity ratio of
the extreme axes or pieces of a train, to determine the number of
intermediate axes, and the proportions of the wheels, or numbers of
their teeth. For simplicity we may suppose the train to consist

of toothed wheels only ;
for a mixed train, consisting of wheels,

pullies, link-work, and sliding pieces, can be calculated upon the

same principles. Let the synchronal rotations of the first and

last axes of the train be L^ and Lm respectively, and let JVj N^ ...

&c. be the numbers of teeth in the drivers, and n n^ ... in the

followers: then by Art. 319,

nv w
3

* In a pair of wheels whose numbers are so obtained, any two teeth which meet in

the first revolution are distant by one in the second, by two in the third, and so on
;

so that one tooth may be said to hunt the other, whence the phrase, a hunting cog.

t Encycl Methodique,
' Manufactures et Arts,' tome ii. p. 20.
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and by hypothesis the value of f
m

is given, and we have to find

i

an equal fraction whose numerator and denominator shall admit

of being divided into the same number of factors of a convenient

magnitude for the number of teeth of a wheel. Also to find the

value of m.

Synchronal rotations are preferred to angular velocities in

stating the question, because it is generally in this form that the

data are supplied.

329. In any given train of wheel-work the drivers may be

placed in any order upon the axes as well as the followers ; for

N N N
the value of the fraction !- 2- ^-1* will be unaffected by any

n
t. nr n3 ...

change of order in the factors, and therefore N
t may be placed

either upon the first, second, or third axes
; and similarly for the

others.

330. Let w be the greatest number of teeth that can be conve-

niently assigned to a wheel, and p the least that can be given to

a pinion. The train may be either required for the purpose of

reducing or increasing veloeity. In the first case, Lm will be

less than L
I}
and the pinions the drivers ; but in the second case,

Lm will be greater than L
I}
and the wheels the drivers.

Let .'. v 1 or -^"=
( )

where k may be a whole number, or aLn Li \.p*
fraction. Take m equal to A+l (Art. 319) if a whole number,
or to the next greatest whole number to k + 1 if a fraction. This

will plainly be the least value that can be given to m.

For m must be a whole number, and if it be taken less than

k + l then the values of will be greater; that is, either w will

become a greater number than can be assigned to a wheel, or p a

less than can be given to a pinion, which is absurd.

No general rule can be given for determining the values of w
and

/>,
which are governed by considerations that vary according

to the nature of the proposed machine ; also, it will rarely happen
that the fraction will admit of being divided into factors so nearly
equal as to limit the number of axes to the smallest value so

assigned.

The discussion of a few examples will best explain the mode of

proceeding in particular cases.

331. Fig. 259 is a diagram to represent the arrangement of
the Avheel-work of a clock of the simplest kind, for the pur-



TEAINS OF ELEMENTARY COMBINATIONS. 263

what follows upon trains of wheel-work in

259.

pose of illustratin

general.
The weight W is attached to the

end of a cord, which is coiled round;

the barrel A. Upon the same axis or

arbor * as the barrel is fixed a toothed

wheel B, and this wheel drives a

pinion b, which is fixed to, the second

arbor Cb of the train, which also

carries a wheel C. This wheel drives

a pinion c upon the third arbor, and

upon this arbor is also fixed a toothed

wheel D of a peculiar construction,

termed an escapement wheel or swing-
wheel. Above this wheel is an arbor

ed termed the verge, which is con-

nected with the pendulum ef of the

clock, and vibrates together with it

through a small arc. The verge also

carries a pair of teeth which are

termed pallets, and are engaged wi;th

the teeth of the swing-wheel D in

such a manner, that every vibration

of the pendulum and verge allows one tooth of the wheel to

escape and pass through a space equal to half the pitch. With
the nature of this connection we have at present nothing to do ;

for, as the motion of the clockwork is our only object, it is

sufficient to know that one tooth of the swing-wheel passes the

line of centers for every two vibrations of the pendulum.
Let the time of a vibration of the pendulum, be t seconds,

where t is a whole number or a fraction, and let the swing-wheel
have e teeth, then the period or time of a complete rotation of

this wheel is 2te". To take a simple case, let the pendulum be a

seconds' pendulum ; .-. t=\, and if e= 30, the swing-wheel will

revolve in a minute ;
and if B have 48 teeth, and C 45, and the

pinions 6 leaves each, we have for the train

7,
3_48x45

6x6 ;60;

therefore A will revolve in an hour
;
and supposing the cord to

be coiled about sixteen times round the barrel, the weight in its

descent will uncoil it and turn the barrel round, communicating

* Arbor is the watchmaker's term for an axis; vide note p. 47.
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motion to the entire train until the cord is completely uncoiled,

which it will be after sixteen hours.

This train of wheel-work is solely destined to the purposes of

communicating the action of the weight to the pendulum in such

a manner as to supply the loss of motion from friction and the

resistance of the air. But besides this, the clock is required to

indicate the hours and minutes by the rotation of two separate

hands, and accordingly two other trains of wheel-work are em-

ployed for this purpose.

The train just described is generally contained in a frame con-

sisting of two plates, show edgewise at kl, mn, which are kept

parallel and at the proper distance by means of three or four

pillars, not shown in the diagram. Opposite holes are drilled in

these plates, which receive the pivots of the axes or arbors already

described. But the axis which carries A and B projects through
the plate, and other wheels E and F are fixed to it.

Below this axis and parallel to it a stout pin or stud is fixed to

the plate, and a tube revolves upon this stud, to one end of which

is fixed the minute-hand M, and to the other a wheel e engaged
with E. In our present clock E revolves in an hour, consequently
the wheels E and e must be equal.

A second and shorter tube is fitted upon the tube of the

minute-hand so as to revolve freely, and this carries at one end

the hour-hand H, and at the other a wheel f, which is driven by
the pinion F; and because f must revolve in twelve hours, it

must have twelve times as many teeth as F.

332. To exhibit the ramifications of motion in a machine, and

the order and nature of the several parts of which the trains are

composed, it is convenient to employ a notation. This notation

should be of such a form as not only to exhibit these particulars,

but also to admit of the addition, if necessary, of dimensions and

nomenclature, as well as to allow of the necessary calculations by
which the velocity ratios may be deduced. To exhibit in this

way the actual arrangement of the parts is out of the question ;

this can only be done by drawings, and the very object of a nota-

tion is to unravel the apparent confusion into which the trains of

motion are thrown by the packing of the parts into the frame of

the machine, and to place them in the order of their successive

action.

Clock and watchmakers have long employed a system which con-

sists simply in representing the wheels by the numbers of their

teeth, and writing these numbers in successive lines, placing the

wheels which are fixed on the same arbor on the same horizontal
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line, with the sign interposed, and writing the numbers of the

wheels that are in geer vertically over each other. The first

driver in the train is always placed at the top of the series.

Thus in the principal train of the clock, fig. 259, if the letters

represent the wheels we should write down the train thus :

B

c-D;
or, employing the numbers already selected,

48

6--45

6-= 30,

and adding the names, which is sometimes done,

Great wheel 48,

Pinion 6-45 second-wheel,

Pinion 6-30 swing-wheeL*

333. This method requires very little addition to make it a

very convenient system for mechanism in general. Thus the

entire movement of the clock, fig. 259,

Barrel 48-25- 4
645

6 30 Swing-wheel i

25 minute-hand
48 hour-hand

may be thus represented, and by which is shown very clearly the

*
Farey in Rees' Cyclopaedia, art.

'

Clockwork,' calls this the ordinary mechanical

method of writing down the numbers. Oughtred in his Opuscula, 1677, proposes
another method in which the wheels which are on the same axis are written vertically

over one another, and those which are in geer are placed in the same line with

the character ) between; thus, (the first driver being at the bottom, and all the

drivers to the right of the followers):

30

6)45

6)48

He employs, however, letters in lieu of figures, and introduces other artifices which

are scarcely worth dwelling upon. Derham (Artificial Gockmaker, 1696) follows this

method, and also uses another which consists in writing all the numbers in one line,

thus, 48)6 45)6 30, where the character ) implies that the wheels between which it

lies geer together, and that they are fixed on the same axis. Allexandre, Traiti

general dee Horloges, 1735, writes the numbers thus, 48.645.630; and Derham
also gives the ' usual way of watchmakers in writing down their numbers,' thus,

48

456
306

which, to use his own words,
'

though very inconvenient in calculation, representeth a

piece of work handsomely enough, and somewhat naturally.'



266 TRAINS OF ELEMENTARY COMBINATIONS.

three trains of mechanism from the barrel to the swing-wheel, the

minute-hand, and the hour-hand ; as. well as the distinction of the

pieces into drivers and followers, and the nature of their con-

nection ; namely, whether they be permanently united by being
fixed upon the same axis, or connected by geering. If, however,

other connections are introduced, as by wrapping- bands, or links,

this must be written in the diagram, or expressed by a proper

sign. I shall have occasion to return to this subject in a future

page.*
334. In the explanation of the clock, fig. 259, I have assumed

the numbers of the wheel-work and of the axes
;

let us now exa-

mine whether these are the best for the purpose, or generally
how such numbers would be determined.

If the arbor of the swing-wheel revolve in a minute, and that

of the barrel in an hour, we have -=^= 60 ; or if D be the pro-
*!

duct of all the drivers, and F of the followers, Z>= 60 . F, an

indeterminate equation, for the solution of which any numbers

may be employed that are proper for the teeth of wheels. Now
in common clocks six is the least number of leaves that is ever

employed in a pinion, and 60 teeth the greatest number that can

be given to a wheel ;

-^sslO
1 '8

, therefore by Art. 330, 3 is the least number of
,/*l

axes ; and there will be two pinions of six each, .. JD= 60 x 6 2=
2160, which is the product of two wheels.

We are at liberty to divide this into any two suitable factors.

The best mode of doing it is to begin by dividing the number
into its prime factors, writing it in this form :

= 2 4 x3 3 x5.

For this enables us to see clearly the composition of the

number
; and it is easy to distribute these factors into two groups ;

as for example,

2 4 .3 x 32 .5=^48 x 45, or 2 3 .5 x 2 . 3 3 =?40 x 54,
or 2* . 3 2 x 2 2

. 3 .5= 36 x 6.0,

* Mr. Babbage is the only one who has endeavoured to extend Notation to

Mechanism in general. His elaborate and complete system is fully explained in his

paper on ' A method of expressing by signs the action of Machinery,' in the Philoso-

phical Transactions, 1826 ; vide below, Chap. XIV., on Mechanical Notation.
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The nearest to equality is the first, 48 and 45 ; and these will

probably be selected for the train, which will stand thus :

Z>= 48 x 45

F 6x6'

This is the best form in which to exhibit the numbers for a

trainSvhen they have been merely divided into proper factors for

teeth. If the distribution of the wheels and pinions upon the

several axes is also settled, the train may then be written in the

form 48

6-45

6.

335. Six is, however, too small a number of leaves to ensure

perfect action in a pinion, for it appears in the Table (p. 108)
that a pinion of 6 will only work with a wheel of 20 when the

o

receding arc of action is equal to - x pitch, and that if this arc
O

be greater the pinion becomes impossible. A pinion of 8 will be

better, but 10 or 12 should be employed if a very perfect action

is required. If 8 be selected, we have ^=8 2=64, and Z)= 64

x 60, which will form a good train.

But in well-made clocks we may allow more than 60 teeth to

the wheel : 100 or even 120 is very admissible. If we begin,

then, with the wheels, and assume that three arbors are to be

employed,

60 J .-.;?:= 13, nearly,

Assume, therefore, F= 12 x 14 ; .-. Z>=*60 x 12 x 14

= 96x105;

which gives the train 105

14-96

12.

336. In a train of k + 1 . axes of which every wheel has w

teeth, and every pinion p. leaves, we have

p

Now xp ( w) is the number of teeth in each wheel, and It

+ x is the entire number of teeth in the train.
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Let [ 1 or x*= constant= C;\J

1(7
and number of teeth = ,- J9

. (1 4- *)

= a minimum.

Differentiating we obtain in the usual manner3

Lr= lif; whence X^3 . 59.
x

If therefore a given angular velocity ratio is to be obtained with

the least numbe? vf teeth, we rrnist make - =3 . 59. This theo-

P
rem is due to Dr-. Young.*
As a practical rule this is not of much value, for it proceeds

on the assumption that simplicity is best consulted by reducing
the number of

1

teeth only as much as possible ; but, in fact, it is

necessary in doing this to avoid also increasing the number of

axes in a trauu For example, in our clock --^=60, which being
1

greater than the cube of 3 .59 would require for the least number
of teeth at least three wheels ; and, in fact, if we compute the

number of teeth required in the case of one, two, three, arid four

wheels, assuming the number of leaves in the pinions to be six,

we find, putting D for the denominator, and dividing it into con-

venient factors t

Wheels Total Number of Teeth

one wheel D= 6 x 60= 360 360+6 = 366

two wheels D=62 x 60 = 45 x 48 45 + 48+2x6 = 105

three wheels D = 6s x 60 = 20x27x24 20 + 27 + 24 + 3x6= 89

four wheels J? = 6' x 60= 15 x 16 x 18 x 18 15 + 16+18 + 18 + 4x6=91
five wheels 2) = 65 x 60 = 12* x Id * 18 3 x 12+ 15 + 18 - 5 x 6= 99

So that, as the theorem has already taught us, the least number
of teeth, 89, is required when three wheels are employed. But
the universal practice is to employ two wheels and pinions only
in the train between the hour-arbor and swing-wheel arbor, for,
in fact, the increase in the number of teeth does not occasion so

great a loss of simplicity as the additional arbor with its wheel
and pinion would do. Some mechanicians have fallen into the

opposite errof of supposing that the simplicity of the clock would

*
Young's Nat. Philosophy, vol. ii. JH 56>.
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be still more improved by reducing the train to a single wheel
and pinion, and hence increasing inordinately the number of teeth

in the wheel. Of this nature are Ferguson's and Franklin's

clocks.*

337. If a clock has no seconds' hand there is no necessity for

the arbor of the swing-wheel to perform its revolution in a minute,
which when the pendulum is short, would become impracticable,
from the great number of teeth required. Now from Art. 331,
if t be the time of vibration of the pendulum in seconds, and e the

number of teeth of the swing-wheel, 2te is the time of rotation of

the swing-wheel.
But the vibrations of small pendulums are commonly expressed

by stating the number of them in a minute. Let p be this

number, .*. is the time of one rotation of the swing-wheel in

P
minutes, and the hour-arbor revolves in 60 minutes; the train

between them is represented by = .

Ex. The pendulum of a clock makes 170 vibrations in a

minute, and there are 25 teeth in the swing-wheel, and eight

leaves are to be given to the pinions ; to find the wheels :

Z)_30xl70.
64 25

whence D^ 13056= 128 x 102.

338. In a watch the vibrations of the balance are much more

rapid than in any pendulum-clock, varying in different construc-

tions from 270 to 360 in a minute. Also, from the small size of

the machinery it becomes impossible to put so many teeth into

the wheels. The escapement-wheel, termed in a watch the

balance-wheel, has from 13 to 16 teeth, instead of having, as in a

clock, from 20 to 40, and the numbers of teeth in the wheels vary

from 40 to 80, or in chronometers and larger work are sometimes

carried as high as 96, whereas in large clocks, 130 may even be

employed. Now as the number of leaves in the pinions do not

admit of reduction, the consequence is, that an additional arbor

must be employed in watches, and the train of wheel-work

between the hour-arbor and the arbor of the balance-wheel con-

sists of 3 wheels and 3 pinions, instead of the two pair employed

in a clock.

Ex. The balance of a watch makes 360 vibrations in a minute,

* Vide Ferguson's Mechanical Exercises, or any Encyclopedia.
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and there are 15 teeth in the balance-wheel, and eight leaves in

the pinions ;
to find the wheels c

Here ^=8x8x8,

and D= 8 3 30 x 36
*= 368640 ^80 x 72 x 64.

15

339. The examples of clock-trains already given, refer merely
to the connection between the hour^arbor and the swing-wheel,
and it has been assumed throughout that the barrel for the

weight is carried by the hour-arbor ; but in this case the clock

will not go for more than sixteen hours, and must therefore be

wound up every night and morning. If it be required to go

longer the barrel must be fixed to a separate axis, and this con-

nected by wheel-work with the hour-arbor, so that the barrel

may revolve much more slowly, and consequently allow the

weight to occupy
;a longer time in its descent.

Now the cord, as we have seen, is wound spirally round the

barrel, and by making the barrel of the requisite length, we could

of course make it hold -as many coils 'as we please.

But in practice it is found that if more than abotit sixteen coils

are placed on it, it becomes inconveniently long. So that if the

clock be required to go for eight days without fresh winding up,
each turn of the barrel will occupy twelve hours. As the arbor

of the hour-hand revolves in one hour, any pair of wheels whose

ratio is 12 will answer the purpose of connecting them; 96 and 8

,are the numbers usually employed, which will produce this

train :

Train for Eight-day 'Clock
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which numbers being small we are at liberty to employ larger

pinions ; for example, if we take twelve and sixteen,

Z>= 12x16x48= 96x96;

whence the following train :-^-

Train for Month-Clock
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and if *= 1,

5 27
, *= 5, numbers are

^-
and -

g

either of which may be adopted.

Train of Eight-day Clock
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where E must be taken as small as possible, but so as to obtain

for FaE a numerical value decomposable into factors. There

will be in this case an error of E revolutions in the last axis
i

-pi

during F of the first, or of r revolutions during one of the first.

If the pinions be the drivers, then in the same manner assume
=tE

and there will be an error of^=- revolutions in the

first axis during one of the last

343 Ex. Let it be required to make - = 269 nearly. Now

if the nearest whole number 270 be taken, a train may be

formed, but with an error of one revolution in 270. But suppose

tliat from the nature of the machine, a ratio of - is the greatest
8

that can be allowed between wheel and pinion, then since 269 lies

between 8 2 and 8 3
,

it appears that three pairs of wheels and

pinions are necessary.

If pinions of 10 are employed, =

= , will make a very good train,

with an error of- of a revolution only in 269.
1000

344. Ex. 2. Let it be required to find a train that shall

connect the twelve-hour wheel of a clock with a wheel revolving

in a lunation, =29d
. 12h. 44' nearly, for the purpose of showing

the moon's age upon a dial. Reducing the periods to minutes,

we have
Z
1_42524

L~m
~

720
'

of which the denominator (
= 2 2 x 10631) contains a large prime,

but
42524+1 945 3^7

720 ~T6 2*
'

is well adapted to form a train of wheel-work, with an error of

one minute in a lunation.

345. This method is sufficient for ordinary purposes, but if

T
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greater accuracy be required, or if the terms of the fraction,

although divisible into proper factors, should require so many
wheels and pinions as to make it necessary to find a fraction

which shall approximate to the value in smaller terms, then con-

tinuedfractions must be resorted to.

l being given in the form of a fraction with large terms,

must be treated in the usual manner * to obtain the series of

principal and intermediate fractions, which must be separately
examined until one is found that will admit of a convenient

division into factors, and at the same time approximate with suffi-

cient accuracy.
346. Ex. Tofind an annual train.

Let it be required to find a train of wheel-work for a clock, by
means of which a wheel may be made to revolve in an exact year,
that is, in 365 days, 5 hours, 48 minutes, 48 seconds.f

If the hours, minutes, and seconds, be reduced to decimals of a

day, the period becomes 365*242 days ;
and supposing the pinion

from which the motion is to be derived to revolve in one day, the

required ratio becomes
'

, which by the common rule for
1 *(J(JO

circulating decimals is equal to

365242-36524_ 328718 __ 164359

900
' '

900 450
'

when in its lowest terms.

Now as the nearest whole number to this is 365, it appears
that three axes, at least, would be required to produce this

variation of motion, and therefore the fraction itself would not be

in terms too great, provided it were manageable. Now

164359_269x47xl3.
450

"

10x9x5 '

which has an inconveniently large number, 269, but has been

actually employed to form a train, in Mr. Pearson's Orrery for

Equated Motions \> in this form,

269 x 26 x 94

10x10x18'

* Vide Euler's Algebra, Barlow on Numbers, or Bonnyeastle's Algebra, &c,

t The length of the year determined by different astronomers varies in the number
of seconds from 47"'95 to 51"'6

;
the mean of five results is 49"77.

\ Rees' Cyclopedia, art. Orrery.
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If the ratio be treated by the method of continued fractions,

we obtain in the usual manner,

Quotients
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into a series of principal converging fractions, and let
"

be the

last but one, then it can be shown * that the following expressions

will include all the solutions of this equation that are possible in

integer numbers : xpk + ma, y= qk + mb,

, x pk+- maand - =-=
y qk-+ mo

will be the approximate fraction required, in which m may be

any whole number, positive or negative, as well as A, but k must

be small with respect to by or ax. Thus a multitude of values of

- may be obtained, from whence the one may be chosen that

best admits of decomposition into factors. The only part of this

process which is left to choice is the selection of values for k and

m. The numbers obtained from them for x and y must neces-

sarily be small, for we are seeking numbers less than a and b,

and therefore k and m must have different signs, but even with

this limit there is an infinite latitude given to the choice.

Assume k= 0, 1, + 1, 2, and so on; and in each case take

such values of m as will make the values of x and y not too great
for the purpose, trying always whether the pair of results are

decomposable into factors, and if they be, then proceeding to cal-

culate the consequent error. In this way a pair of numbers will

at last be found, that will give sufficient exactness without em-

ploying too much wheel-work.f Tables of factors will greatly
assist in these operations. J

348. For example, to find a fraction - very near to ,

(Art, 350.) the last fraction but one of the series of principal

converging fractions is , and putting these numbers in the ex-
o

pression for -, we have
y

I6k + m 45

~5k-\-m 14'

* Euler's Algebra, p. 530. Barlow on Numbers, p. 317. Francceur, Cours de Ma-
thematiques, Art. 565. Par. 1819.

t Francceur, Diet. Tcchnologique, torn. xiv. p. 423, and Traite de Mecaniqw, p. 146.

} Such as Barlow's New Mathematical Tables, 1814. Chernac. Cribrum Arithme-
tic-um, Davent. 1811. Burckhardt, Table des Divisev.rs. Par. 1817.

Barlow's Table extends only to 10,000, Chernac's to 1,019,999, and Burckkardt's to
3,035,999.
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Letm=l k=-l, .\
X= 29

-.

y 9

= 1 fe-2 5=1?.
y 4

*

m= 2 A=-3 -= .

y 13

Two of these have already been obtained from the series of

converging fractions, but the third, , is a new one. In fact,
lo

since the expression ^ - includes the whole of the principal

and secondary converging fractions, as well as many other ap-

proximate values of the original fraction, it must be expected
that some assumed values of m and k will reproduce these already
calculated approximations.
But the coexisting values of m and p that belong to the con-

verging fractions, may be obtained at once, to save this useless

trouble. For this purpose, write the quotients obtained from the

original fraction in a reverse order, and proceed to deduce con-

verging fractions from them in the usual manner, both principal
and intermediate. Then will the numerator and denominator of

each fraction of this new set be the coexisting values of m and 7e,

that belong to a corresponding fraction in the first set, supposing

it to be represented by the formula - *-_. the principal frac-
mb qh

tions in one set corresponding reversely to those of the other set,

and likewise the intermediates to the intermediates. It is useless,

therefore, to try a pair of values of m and k so obtained, but any
other pair will give new fractions.

349. For in the series of converging fractions,

A B
C^ D^ E

A\' Bj G; D{ E{

in which a, /3, 7, $, s are the quotients, it is known that
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(Euler's Algebra, p. 476.)

Whence we obtain

C=E-sD,

In which the coexisting values of the coefficients of E and D,
the last and last but one of the series of numerators, are 1 and e,

& and 8e+ 1, 78+ 1 and (8s + 1) 7 + s, and so on, which manifestly
follow the same law as the corresponding values of A

l
and A, B l

and J5, &c., if we substitute e&yfta for afty8s respectively. Also

the same may be similarly shown for the denominators A
lt
B

lf

C,,... &c., as well as for the intermediate fractions. The co-

efficients of E and D will therefore be obtained from these

quotients, if we treat them in this reverse order in the same

manner as when we obtain from them the values of the successive

converging fractions. And since E and D correspond to a and

p, their coefficients are the values of m and k in the formula

=-. which belong to the continued fractions.
mb qk

350. To show this more clearly take this example, -
--, which

treated in the usual manner gives the following set of quotients
and converging fractions.

Quotients
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Quotients
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the decimals serve to show the closeness of the approximation for

the original fraction, =3*214.

351. If we apply this method to the example (Art. 346) of an

annual movement, the approximate fraction becomes

164359 x k- mx 58804

450 x k wxl61

in which k and m may have any values ; for example,

7x164359-22x58804_ 143175_25x69x83
7x450-22x161

=

~~392~~
: =

8x7x7 '

corresponding to a period of 365 d
. 5b . 48'. 58"'6944 (error

10"'39). This is the annual train which has been calculated by
a different method by P. Allexandre, in 1734, and afterwards by
Camus and Ferguson.

However, the expression,

3x164359-10x58804 ^_94963^11 x 89 x 97

3x450-10x161 260 2 2 x5xl3*

which corresponds to a period of 365 . 5h
. 48'. 55"'38, is quite as

convenient, and rather more accurate.

In a train of this kind one or more endless screws may be in-

troduced, by way of saving teeth ; for example, in the fraction

last cited the numerator does not admit of being divided into less

than three wheels; but the denominator may be distributed

between two pinions and an endless screw (remembering that the

latter is equivalent to a pinion of one leaf) thus, 1 x 20 x 13, or

1x10x26. If the endless screw be not convenient, then the

terms of the fraction must be multiplied by 4, to make the

numbers of the denominator large enough for three pinions, and

the train will stand thus,
44 x 89 x 97

8 x 10 x 13"'

352. Ex. To find a lunar train that shall derive its motion

from the twelve-hour arlor of a clock.

The mean synodic period of the Moon is 29d
. 12h

. 44'. 2"'8032,
which is exactly equal to 29h<

530588, or nearly 29d>
5306, and

since twelve hours is equal to Od
*5, the ratio will be , or,

5000

dividing each term by 2, - ! -; from which the following2500

quotients and fractions may be obtained.
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Quotients
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Vain

k
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Huyghens employed for the first time continued fractions in the

calculation of this kind of wheelwork.*

354. Let it be required to connect an arbor with the hour

arbor of an ordinary clock, in such a manner that it may revolve

in a sidereal day; so as to indicate sidereal time upon a dial,

while the ordinary hands of the clock show mean time upon their

own dial.

Twenty-four hours of sidereal time are equivalent to 23h
. 56'.

4" '0906 of mean solar. Neglecting the decimals and reducing to

seconds, we obtain 86400" of sidereal time, equivalent to 86164"

of mean time, and therefore one wheel must make 86400 turns

while the other makes 86164, or dividing by the common factor

4, we get

$ 21600 ,, ,. ..

-J^= , an unmanageable fraction.
o 21541

Approximating as before, we obtain the expression

3651 A+ 21541. m
3661 k + 21600. m

in which k= 4, 7w= 7, gives

1096_8xl37
1099 7x157'

with a daily sidereal error of 0"-0586, or 21" $ in the year.f

355. Another mode of indicating sidereal and solar time in the

same clock, consists in placing behind the ordinary hour hand a

movable dial concentric with and smaller than the fixed dial. J

Both dials must in this case be divided into twenty-four hours.

The hand of the clock performs a revolution in twenty-four solar

hours, and therefore indicates mean solar tune upon the fixed

dial as usual, but a slow retrograde motion is given to the mov-

able dial, so that the same hand shall point upon the latter to

the sidereal time which corresponds to the solar time shown

upon the fixed dial. For this purpose it is evident that during

each revolution of the hour hand, the moving dial must retrograde

through an angle corresponding to the quantity which sidereal

time has gained upon solar time in twenty-four hours ;
which is

3'.56"'555 = 236"-555, and as the entire circumference of the

dial contains 86400", we have

* Hugenii Op. posth. 1703. t This is Francceur's result.

J This method is due to Mr. Margett, the details of his mechanism may be found

in Rees' Cyclopedia, art,
' Dialwork.
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Ang. vel. of hour hand_ 86400000_
fi

288000

Ang. vel. of dial
"

236555 47311*

From this fraction approximate numbers may be obtained, by
which the proper wheel-work for the motion of the dial can be

set out.

288000
The fraction -r^- reduced to continued fractions gives47 oil

Quotients
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CHAPTER XIV.

ON MECHANICAL NOTATION.

356. IN complex machines, of which the parts move according
to different laws, and with continually varying relations of

velocity and direction, it becomes exceedingly difficult to retain

in the mind all the cotemporaneous movements
; and a notation

is in such cases of almost indispensable service. I have already
shown how in this manner the trains of machines that move with

a constant velocity ratio and directional relation may be con-

veniently represented ;
and shall now proceed to explain how the

more complicated connections and motions of the last two chapters

may be reduced to notation. The only writer who has en-

deavoured to form a system for this purpose is Mr. Babbage.
His method is not a mere hypothetical device framed to meet an

imaginary difficulty ; but actually arose from the necessity of the

case, during the construction and arrangement of one of the most

involved and complicated engines that was ever devised; and

having been thus applied to practice, has been found to answer

its purpose perfectly. Some parts of this notation belong to

mechanical combinations of which we have not yet spoken ; I

shall therefore, in this place, give an account of the system only
so far as it applies to the contrivances hitherto explained.*

Dr. Hooke mentions in several places of his printed discourses,
* a Method I had made for myself for Mechanick Inventions,' or

as in another place he calls it
* a Mechanick Algebra for solving

any Probleme in Mechanicks, as easily and certainly as any geo-
metrick by Algebra ;

' and says that by this, his method, he

could readily determine whether any such problem was possible,

and if so, which was the nearest and easiest way of solving it.f

357. Every one who has been engaged in the construction and

invention of complex machinery, or who attempts to examine the

* Vide ' A Method of Expressing by Signs the Action of Machinery,' by C. Babbage,

Esq., Phil. Tr. 1826, from which paper the following account of the method is derived,

f Waller's Life, p. iv.
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various motions of an existing machine which is presented to him

for the first time, must have experienced great inconvenience

from the difficulty of ascertaining from drawings the state of

motion or rest of any individual part at any given instant of

time ; and if it becomes necessary to enquire into the state of

several parts at the same moment, the labour is much increased.

In the description of machinery by means of drawings, it is

generally only possible to represent an engine in one particular

state of its action. If, indeed, it is very simple in its operation, a

succession of drawings may be made of it in each state of its

progress, which will represent its whole course ; but this rarely

happens, and is attended with the inconvenience and expense of

numerous drawings.
The difficulty of retaining in the mind all the cotemporaneous

and successive movements of a complicated machine, and the still

greater difficulty of properly timing movements which had already
been provided for, led at length to the investigation of a method

by which at a glance the eye might select any particular part,

and find at any given time its state of motion or rest, its relation

to the motion of any other part of the machine, and, if necessary,
trace back the sources of its movement through all its successive

stages, to the original moving power. The forms of ordinary

language being far too diffuse to be employed in this case, and

experience having shown the vast power which analysis derives

from the great condensation of meaning in its notation, the

language of signs was resorted to for the present purpose.
358. To make the system more easily intelligible, it will be

better to apply it as we go on to some machine. The example
taken for this purpose in the original paper is a complete eight-

day clock with going and striking parts ; but this machine is so

complex as to require a large folio plate for its notation, as well

as other plates to explain its construction. I shall therefore take

a simpler machine, a common saw-mill. Although this machine
is so easily understood as not to require the assistance of a nota-

tion, it will answer the purpose of exemplifying the method
as well, and perhaps better, than a more complicated arrange-
ment.

Fig. 260 is a diagram to explain the connection of parts in the

saw-mill, but is not drawn with any attention to the exact pro-
portion or arrangement, which may be found in any encyclopaedia
or elementary book of machinery. A is a toothed wheel which

may be supposed to be driven either by a water-wheel, or steam-

engine, and its teeth are engaged with those of a second and
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smaller wheel B, on whose axis is fixed a crank Cand an excentric

E. The crank is connected by a link c with the saw-frame D,
this is fitted between vertical guides, and therefore when the
crank revolves receives a vertical oscillating motion.

The timber IFwhich is submitted Kg. 260.

to the action of the saw is clamped to

a carnage which moves upon rollers

m, N, in a horizontal direction. While
tire saw is in motion as above des-

cribed, the carriage and timber are

made to advance in the following
manner. The eccentric /v communi-
cates an oscillating motion to a lever

ef, whose center of motion is f, this

lever carries a dick F. which acts

upon the teeth of a ratchet-wheel G,
to which an intermittent rotation is

thus given. Upon the axis of G is a

pinion H, which geering with a rack fixed to the wood-carriage,
causes the latter to advance towards the saw with the same inter-

mittent motion. This intermission is adjusted to the motion of

the saw-frame, so that when the saw rises the wood shall advance,
and when the saw descends, and therefore cuts, the wood shall

remain at rest. The cut is made by the inclined position of the

saw, the toothed edge of which is not vertical but slightly inclined

forwards, so as to bring the teeth into successive action during
the descent of the frame. The detent L serves to hold the

ratchet-wheel, and therefore the wood-carriage, firm in its posi-

tion during the cut. Xow all these conditions of motion are

very easily represented by the notation which we shall proceed
to explain, and which is exhibited on the next page.

359. The first thing to be done in reducing any machine to the

notation, is to make an accurate enumeration of all the moving

parts, and to appropriate, if possible, a name to each ; for the

multitude oi different contrivances in various machinery precludes

all idea of substituting signs for these parts. They must there-

fore be written down in succession, only observing to preserve

such an order that those which jointly concur for accomplishing

the effect of any separate part of the machine may be found

situated near to each other, or in other words, that the succession

of parts in each train may be observed as much as possible. Thus

in the saw-mill, against the word * Xante*
*

in the first column

will be found written in order, first the parts constituting the
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train from the primary axis to the saw, next those which form
the train to the wood-carriage.
Each of these names is attached to a faint line which runs

longitudinally down the page, and which may for the sake of
reference be called its indicating line.

To connect the notation with the drawings of the machine, the

letters which in the several drawings refer to the same parts are

placed upon the indicating lines immediately under the names of

the things. If there be more drawings than one of the machine,
the same letters should always refer to the same parts.
A line immediately succeeding that which contains the refer-

ences to the drawings, is devoted to the number of teeth on each

wheel or sector, or the number of pins or studs on each revolving
barrel.

Three lines immediately succeeding this are appropriated to

the indication of the velocities of the several parts of the machine.

The first must have on the indicating line of all those parts which

have a rectilinear motion, numbers expressing the velocity with

which those parts move ; and if this velocity is variable, two
numbers may be written, one expressing the greatest, the other

the least velocity of the part. The second line must have

numbers expressing the angular velocity of all those parts which

revolve ; the time of revolution of some one of them may be

taken as the unit of the measure of angular velocity; or the

same may be expressed in the usual method by the number of

turns per minute.

If a wheel communicate an intermitting motion to another, the

ratios of their angular velocities and comparative velocities will

differ ;
for example, if the two wheels have the same angular

velocity when they both move, but one of them remain at rest

during half a revolution of the other. In this case their angular
velocities are equal, but their comparative velocities as 1 to 2, for

the latter wheel makes two revolutions while the other makes

only one. A line is devoted to the numbers which thus arise,

and is entitled '

Comparative Angular Velocity.' No example,

however, of this occurs in our Saw-mill.

360. The next compartment of the notation is appropriated to

showing the origin of motion of each part, that is, the course

through which the moving power is transmitted, and the parti-

cular modes by which each part derives its movement from that

immediately preceding it in the order of action. The sign chosen

to indicate this transmission of motion (an arrow) is one very

generally employed to denote the direction of motion in mechani-

u
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cal drawings; it will therefore readily suggest the direction in

which the movement is transmitted. As there are various ways

bv which the motion is communicated, the arrow is modified so

as to exhibit them as far as is necessary. Our author reduces

them to the following :

One piece may receive its
motion^ This mav be indicated by an arrow

from another by being permanently at- 1 ^^ R bar
"

at thc end _

tached to it, as a pin on a wheel, or a + >
wheel and pinion on the same axis. j

One piece may be driven by another
in"j

such amanner thatwhen the driver moves
[

An arrow without any bar.

the other also always moves; as happens
J

>

when a wheel is driven by a pinion. J

One thing maybe attached to another! ^"f T /
rmed f & Hne intet

by stiff friction. I

ruPted b?^ >

One piece may be driven by
another^ an ^ ^ ^ rf

and yet not always move when the wh4 is a full d the second
latter moves

;
as is the case when a stud v , , f A ,. ,

.,..,1.1. .
,-, \

nali a dotted one.
or pin lifts a bolt once in the course 01

its revolution. j

One wheel or lever may be
connected] By a dotted arrow with a ratchet

with another by a ratchet, as the great 1- tooth at its end.

wheel of a clock is attached to the fusee.
J

....rs -.,

Each of the vertical indicating lines must now be connected

with that representing the part from which it receives its move-

ment, by an arrow of such a kind as the preceding table indicates.

Thus in the Saw-mill Notation, the cog-wheel A is connected

with the cog-wheel B by a plain arrow : the wheel B, upon
whose axis is fixed the crank C and the excentric E, is accord-

ingly connected with them both by barred arrows ;
F with G by

a ratchet-arrow ; and G with K by an interrupted arrow.

361. The last and most essential circumstance to be repre-
sented is the succession of the movements which take place in

the working of the machine. These movements are generally

periodic, for almost all machinery after a certain number of suc-

cessive operations recommences the same course which it had

just completed, and the work which it performs usually consists

of a multitude of repetitions of the same course of particular
motions.

One of the great objects of the notation in question, is to

furnish a method by which at any instant of time in this course
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or cycle (Art. 17) of operations of any machine we may know the

state of motion or rest of every particular part ; to present a

picture by which we may on inspection see not only the motion

at that moment of time, but the whole history of its movements,
as well as that of all the contemporaneous changes from the

beginning of the cycle. In order to accomplish this, the com-

partment termed Comparison of Motion contains adjacent to each

of the vertical indicating lines, which represent any part of the

machine, other lines drawn in the same direction ; these accom-

panying lines denote the state of motion or rest of the part to

which they refer, according to the following rules, and may be

called the motion lines.

1. Unbroken lines indicate motion.

2. Lines on the right side indicate that the motion is from right to

left.

3. Lines on the left side indicate that the direction of the motion ia

from left to right.

4. If the movements are such as not to admit of this distinction,

then when lines are drawn adjacent to an indicating line and on

opposite sides of it, they signify motions in opposite directions.

(Thus in the Sato-mill A and B revolve opposite ways, and their

motion lines are accordingly drawn on opposite sides of their indi-

cating lines.)

5. Parallel straight lines denote uniform motion.

/ 6. Curved lines denote a variable velocity. It is convenient as far as

possible to make the ordinates of the curve proportional to the

different velocities (Art. 13). (The motion of the saw-frame D,

and of the lever and click F, are examples of this rule.)

7. If the motion may be greater or less within certain limits
;
then if

the motion begin at a fixed moment of time, and it is uncertain

when it will terminate, the line denoting motion must extend

from one limit to the other, and must be connected by a email

cross line at its commencement with the indicating line. If the

beginning of its motion is uncertain, but its end determined,

then the cross line must be at its termination. If the commence-

ment and the termination of any motion are both uncertain, the

line representing motion must be connected with the indicating

line in the middle by a cross line.

8. Dotted lines imply rest. It is also convenient sometimes to

denote a state of rest by the absence of any line whatever.

(This rule, combined with No. 6, it employed in exhibiting the

intermittent motion of the ratchd-wlwd G, pinion H, and rack I.)

u 2
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9. The thing indicated may be of such a nature that instead of

motion it may be required to exhibit rather the periods of its

being in action or out of action, opened or closed, bolted or un-

bolted, and so on
;
as in the case of clicks, bolts, or valves

;
in

which cases lines may be used in the above manner, but words

must be added in explanation of thia new employment of the

signs. The line should be on the right side when the piece is

f out of action, unbolted, or open, and on the left side when in the

reverse state. Dotted lines will be employed if the piece rests

in both states
;
and if it be necessary to exhibit the time occu-

pied by the motion of transition from one state to the other, this

can be done by a short continuous line at the beginning of each
;

thus if a valve fly open suddenly and close gently, it will be re-

presented as in the margin. (The detent K is an example of this

rule.")

If any other modifications of movement should present them-

selves, it will not be difficult for any one who has rendered him-

self familiar with the symbols and method just explained, to con-

trive others adapted to the new combinations which may present
themselves.

362. As an example of the way in which very minute circum-

stances of motion are shown in this manner, it may be remarked,
that the motion of the saw-frame, excentric, and click-lever, is

necessarily continuous ;
but that the motion given to the ratchet-

wheel by the click does not begin at the instant the change of

motion in the click takes place. The click must first move

through a small space until it abuts against the tooth of the

ratchet-wheel which is ready to receive it. On the other hand,
it is evident that the ratchet-wheel and the click will both cease

their motion in that direction together. When the click moves
backwards the ratchet-wheel with the pinion and wood-carriage
will remain at rest until the saw begins its cut, when they will be

driven slightly backwards until the ratchet-tooth abuts against
the end of the detent. All these accidents of motion in the

ratchet-wheel and its connected pieces are exhibited by the nota-

tion, as will appear by comparing the motion lines of G with

those of F. It is true, that in the actual machine these small

motions are reduced exceedingly by giving a great number of

teeth to the ratchet-wheel ; but I have exaggerated them to show
the susceptibility of the notation, which when applied to complex
machinery is of the very greatest service

; more especially in

assisting in the invention or improvement of machines.

363. The system of motion lines is not intended to exhibit

accurately the law of motion of the pieces, as in the graphic
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representation of Art. 13, although it is founded upon the same

principle ; but merely its general phases.
When the simultaneous motions are required to be precisely

exhibited, their motion curves may be, however, exactly laid

down and compared, by placing them side by side ; their parallel
axes 6f abscissas then become the indicating lines of Babbage's
system. In this case, however, I am inclined to think the second

method (Art. 14) is preferable, in which the ordinates are propor-
tional not to the velocities but to the spaces ; of the use of which
I have already given an example in Art. 298.

364. I have found some advantages in the amalgamation of the

system of Babbage with that of which an explanation has been

given in Art. 332.

For in defining trains of mechanism in the present work, I

have shown that they consist of principal pieces moving each

according to a given path, and connected one with the other in

succession by means of drivers and followers, which are attached

to these moving pieces. Now. the drivers and followers carried

by any one of these pieces must all move according to the same

law, since they move as one piece ; and a single indicating line

with its velocity numbers and motion curves is quite sufficient for

every such piece : whereas, as we have seen, in the notation just

exhibited, every part of the machine has such an indicating line

and figure attached to it, and consequently all the parts that are

united together merely repeat the same indication as B, C and

E ;
or G and If, in page 288. In the next page I have shown

the Saw-mill under the form of Notation which I have been in

the habit of employing, and which it will be seen at once differs

only from that of page 288 by being united with the old clock-

makers' form already explained ; by which means the genealogy,

so to speak, of the motion is perhaps more clearly perceived, and

the number of indicating lines reduced.

365. To represent a machine in this form, rule as many

parallel lines as there are principal moving pieces in the train,

writing the name or nature of each in the first column. Upon
each line write all the followers and the driver which are carried

by the piece to which it belongs; taking care to place every

follower vertically under its own driver, if possible. Every fol-

lower may be connected with its driver by an arrow formed

according to the rules in Art. 360, or by a simple line. The

arrow is only necessary if the nature of the machine renders it

necessary to place some of the followers above their drivers. The

connecting lines might also receive additions, by which the nature
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of the connection, as by sliding, wrapping, link-work, &c. might
be shown ; but the names of the parts are generally sufficient for

this purpose ; and there is a great mischief in unnecessarily mul-

tiplying symbols. Numbers attached to toothed wheels are their

numbers of teeth, to pullies their diameters in inches, to cranks

and excentrics their throw in inches, unless otherwise stated. In
the column of Velocity the numbers attached to revolving pieces
show their angular velocity in turns per minute, and to sliding

pieces their linear velocity in inches per minute, unless otherwise

stated in words. In the column of Comparison of Motion, the

rules in Art. 361 are followed, but that when two or more pieces

move together in a system, one indicating line is made to serve

for them all by connecting those to which it applies by a bracket.

Thus the variation of motion in the ratchet-wheel spindle and the

wood-carriage being the same, one line is used for them both.

Columns may be added for the pitch of the wheels, or any other

particulars that may be required.

It rarely, however, happens that the whole notation is necessary.

For some machines the table of the origin of motion is required,

for others that of the comparison of the motion ; and of the sys-

tem of the latter, and of its utility when properly applied, it is

impossible to speak too highly.
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CHAPTER XV.

REDUPLICATION.

366. THIS term I ventured, in my first edition, to apply to a

mode of modifying motion which depends upon a totally different

principle
from the sliding, rolling, and wrapping connections to

which our previous pages have been devoted. It is principally

employed in the construction of tackle of all sorts, used on shore

for raising weights, and in the rigging of ships.

367. If an inextensible string AfgB be passed over any
number of fixed pins or pullies, as/and g, and if the extremities

A,B of the string be compelled to move
Fig. 261.

^ eacn
-

n tke ^^011 of its own portion,

Af, gB of the string, then the motion

of one of these extremities will evi-

dently be communicated unaltered to

the other, and every intermediate por-

tion of the string will move with the

same velocity. This is unaffected by
the form of the pins over which the

string passes, and they may therefore

be fixed cylinders or else pullies, that

is to say, wheels mounted on revolving axes, which are generally
substituted for fixed pins, for the mere purpose of reducing the

friction of the string in passing over them.

If however some of the pins (or axes of the pullies) be attached

to a piece capable of motion, and the string be passed back and

forwards over the fixed and movable pins alternately, this re-

Fig. 262.

2 Q

duplication will cause the several intermediate portions of the

string to move with different velocities, and the movable piece
will receive a velocity compounded of these in a manner which

we will proceed to investigate. Thus let the string, fig. 262, be
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attached to a fixed point M, and P be a pin attached to a piece

capable of sliding in the direction PM. If the string be passed
over P and brought to Q, and Q be moved to q, it will draw P
after it to a point p.

Now as the length of the string is unaltered by this motion, we
have $fP+PQ= Mp+pq, or (Mp + Pp) + (Pp + pQ)-=Mp +

Fig. 264.

>= 2Pp, and the velocity of the point Q is double that of

the point P. If the string be passed over M, and again over P
to Q, the velocity of the extremity will be quadrupled, and so

on. This may be ex-

plained and demon-

strated by the follow-

ing machine and the

subsequent investiga-
tion.

368. A long upright
board attached to a

foot has a rectangular

opening at its lower

extremity, in which a

panel B is capable of

sliding freely in the

vertical direction

through a given height

pq, which is limited

by the contact of the

upper and lower edges
of the panel with the

top and bottom of the

opening. The surface

of the panel coincides

with that of the long

board, and it carries

three smooth brass

knobs, b, d, f, of the

kind that are em-

ployed for the handles

of drawers. Three

similar brass knobs B JH
are fixed at a, c, e to 225JI
the long board.

Between these knobs the board is graduated by transverse

Ff
frE---

5

A- -41-

5

2

1
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lines into a series of equidistant vertical spaces equal to the

distance pq, through which the panel rises and falls.

A string is attached by a loop to the fixed knob a, and passed

over the lower and upper knobs alternately, as shown in the

figure. Its upper extremity at r is tied to a pin which is in-

serted in a hole of the board when the machine is at rest. The

panel B is loaded with sufficient lead to keep the string mode-

rately tight.

A set of wooden beads, g hiklm, are attached to the string,

each one by means of a small peg, which, being made slightly

conical, is passed through the hole in the bead, and thus wedges
it on the string with sufficient firmness to keep it in its place, and

yet admit of an adjustment when the tension of the string is

accidentally altered.

The beads must be so adjusted, that when the panel is in its

lower position they shall rest in the horizontal line Y Z, marked
as the zero of the scales.

Let the end of the string at r (fig. 263) be now drawn up-
wards, the panel B will rise, and the beads will travel from the

zero line upwards and downwards alternately and with different

velocities, until, when the panel has arrived at the top of its

course, each bead will be in the position indicated by the charac-

ter x , placed vertically above or below its zero position in the

figure.

Thus the bead g being immediately suspended from the fixed

knob a, remains on the zero line, h, k and m rise respectively
and simultaneously to 2, 4, and 6, while the alternate beads i and
/ fall to 2 and 4

; and these numbers represent the respective
ratios of the velocities of the beads to the motion of the panel.

If the loop at a be detached from that knob, and the end of

the string be secured to the lower knob b (as in fig. 264), then

the motion of the beads will be as follows : as indicated by the

character + , h being attached to the panel B directly by the

string bh, will rise through the same space with it to the line 1,

k and m to 3 and 5, while i and / will descend to 1 and 3.

The string may be passed over one, two, or three of these

knobs, and the velocity of its upper extremity will vary accord-

ingly, being always equal to the number of strings attached to

the sliding panel, which can be shown as follows.

369. Tofind the velocity ratio of the strings and slide. It must
be remarked that the velocity of any string, as dke, which proceeds
from the slide to a fixed knob (as e~]

is the same in magnitude
after it has passed over the knob, but is reversed in direction ;
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thus the velocity of ke upwards is equal to the velocity of el

downwards. But the velocity of a string as id which passes over

a moving knob d is not the same after it has passed over the

knob, because it is compounded with the velocity of the rising

panel.
Let the space pq through which the slide moves = u, and the

corresponding distance through which the upper end r of the

string travels = w. The initial position of r being for con-

venience assumed at the same level as the upper row of knobs

e, c, a.

Let n be the number of strings by which the slide is suspended.
Then the length of the string when B is at the lowest position=
nxef. And when B is at the highest position=w + w (cfpg),

and these are equal .*. =n, or the distance (w} through which

the end r of the string rises = the distance (u) through which the

block rises, multiplied by the number of strings (n). When the

end of the string is fixed to the knob a, n is an even number.

But if fixed to the movable knob b, n is an odd number.

These velocities of the strings and slide are with respect to the

fixed frame. To find the velocities of the respective convolutions

of the string to the moving slide B, we must suppose that fixed

and the board to be moved, inverting the machine, and making
the number of strings at the knobs , c, e=n1}

and w
l
the space

through which the free end of the string moves. Thus we have

-JsBTij, which is an odd number when the end of the string is

fixed to the frame at a, and an even when fixed to the slide at b.

Thus n is even when Wj is odd, and vice versa, and when the

machine is in the position of the figure, and the string r is raised,

drawing with it the slide B, the velocities of the string with

respect to the knobs a, c, e of the fixed frame are 0, 2, 4, and

with respect to the knobs b, d,f of the moving slide as 1, 3, 5.

When b is the point of attachment, the velocities at c, e, n are

1, 3, 5, and at d,/are 2, 4.

370. In practice the friction of the fixed knobs is diminished by

substituting pullies, excepting in the case of the dead-eyes, which

are employed in adjusting the tension of the shrouds of ships.

As the velocity ratio of the free extremity of the string to the

moveable piece is due solely to the reduplication, it is wholly un-

affected by the diameter of the pully or pin, and by the relative

position of these in their respective frames or blocks.

The disposition of the pullies on parallel axes in a horizontal
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line, as in figs. 263 and 264, is very rarely used except for de-

monstration, and from the form in which the string is disposed

it is termed lacing. The commonest arrangement is to place

the pullies or sheaves* as they are termed, side by side on a

common axis in a series of parallel mortices formed in a wooden

block. One of these, called the fixed block, is suspended from a

fixed point, and corresponds to the fixed knobs a, c, e. The

other, called the movable block, which corresponds to the panel

B, swings freely, suspended by the ropes, and is attached to the

weight or other piece which is to receive the slow motion. As
it is generally inconvenient to apply the power which gives
motion to the free extremity r of the rope in the direction from

below upwards, that extremity is usually passed over a pully,

which is added to the fixed series ace for the mere purpose of

bringing the free end downwards. This pully does not affect the

velocity ratio, for that depends solely on the number of strings at

the movable block. The free portion of rope is called the fall.

When the pullies are arranged in the above manner side by
side on a common axis, the cord assumes a spiral form, winding

upwards and downwards continuously, and the entire assemblage
is termed a winding tackle, for tackle f is the general term for a

fixed movable block or blocks with their cord or cords.

The strings can be brought into one plane by arranging the

sheaves on parallel axes, one below the other, as in the

figure. But the sheaves, in order to separate the strings
and keep them parallel, require to be made of diminishing
diameters. This arrangement is termed long tackle, and

the wooden blocks that contain these sheaves assume

a form which gives them the name of fiddle blocks.

The sheaves may be arranged upon a common axis,

and made of gradually increasing diameters, as in
fig.

266. This in a diagram is convenient for the purpose
of showing the number of sheaves and the course of the

string as it winds upwards and downwards upon them.

But the diameters admit of being so arranged as to

allow of the whole series of sheaves in each block

being made in one piece.
For by Art. 369, as the lower block in the figure is suspended

by five strings, the velocity of the strings marked 1, 2,. ..3, 4,...

5, 6 with respect to the upper block are as 1, 3, 5.

* From Scheibe. Germ.

t This term appears to have been derived thus : rpoxoAta, Gr. ; Trochlca, Lat. ;

Taglia, Ital.
; TaaM, Dutch. In French, Mouffle is used either for the block alone,

or for the block and its sheaves
;
and fully (Eng.), as well as Povlie (Fr.), is used

either for the sheave or for the complete block and its sheaves.
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Fig. 266.

But the velocity of the string 1 with respect to the lower block
to which it is fixed is 0, and those of the pairs 2, 3. ..4, 5, with

respect to the lower block, are as 2 and 4. Now, since the

velocity of the circumference of a wheel varies

directly as the radius, it follows that if the

radii of the sheaves in the upper block be
as 1, 3, 5, and the three be in one piece,
their circumferences will move with velocities

exactly proportional to those of the strings,
and similarly if the radii of the lower sheaves

be as 2 and 4. Blocks so fitted up form what
is termed White's Tackle, from the name of

the inventor.*

The practical difficulty in this elegant de-

vice is that, unless the grooves in the com-

pound pullies are turned with mathematical

accuracy in respect of their diameters, the

rope will slide on the defective circumferences,

and an injurious friction be introduced. But
as the acting radius of a pully is measured by
the real radius plus the radius of the rope, it is

hardly possible to fulfil the condition of making the acting
diameter in true arithmetical progression, -f-

371. It must be observed that in any given tackle the velocity
ratio is different according as one or the other is made the fixed

block, which is possible with tackle not permanently attached as

a part of the rigging, but composed of two blocks, each furnished

with a hook, so as to admit of being temporarily attached to

anything that requires to be moved. Thus in fig. 265 the block

from which the fp.ll proceeds is made the fixed block, and w= 5 ;

but if this block were employed as the movable block, we should

have w= 6; for the fall has now become one of the strings

which suspend the movable block. The number of sheaves is

always less by one than the number of strings at the fall-block.

Blocks are termed single, double, treble, and so on, according

to the number of sheaves they carry. The sheaves in a block

in ships' tackle never exceed two, except in the case of the cat-

head and cat-block, which contain three each, and constitute the

tackle which serves to hoist the anchor.

A luff-tackle consists of a single block and a double block, and

its velocity ratio is therefore 3 or 4, according as the single or

* White's Century of Inventions, p. 33.

f The real forms, constructions, and uses of tackle, may be learnt from the various

books on seamanship, of which the latest and best is Nare's Seamanship.
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double block is the movable one, or, in other words, as the fall-

block is fixed or movable.

A gun-tackle consists of two double blocks, and its velocity-

ratio is 4 or 5, according as the fall-block is fixed or movable.

A whip is a single fixed block.

372. Several tackles may be combined, as shoAvn in fig. 267.

Thus let A be the fixed block, a the movable block of a tackle

in which there are n\ strings at a, and of which AB is the fall
;

Fig. 267. I6* the extremity of this fall be tied to

|

c H
j

the movable block B of a second tackle

of which b is the fixed block, and n
2
the

number of strings at B. Also, let the

fall be of the second tackle be tied to the

movable block C of a third tackle of

which c is the fixed block, and cD the

fall, and n
3
the strings at (7; let a velo-

city V
4
be given to D, and let Fj, F

2 ,

F3 be the velocities of W, B and C
respectively ;

If there be m tackles in this series or train, and they have all

the same number of strings, we should find in a similar way

Now the total number of strings in this combination=n x m ;

whence the following problem.

373. Given the velocity ratio
m + l

.= nm of the train of tackles,

to find the number and nature of the separate tackles that will

require the fewest strings.

Here n = constant= C suppose ;

1 C
.. m= - and the number of strings

/ *#
which is at a minimum when hyp. log. w=l, and w= 2'72 ; the

nearest whole number to which being 3, it appears that a series

of luff-tackles will produce a given velocity ratio with fewer

strings than any single tackle or combination of equal tackles.

In fact, sailors combine two luff-tackles in this manner, which

they term luff upon luff.

If, however, instead of attaching each tackle to a fall from the

fixed block of the previous one, it be tied to a fall from the
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movable block, one sheave will be saved out of each tackle
without altering the velocity ratio, and the total number of
sheaves will be (n l).w; which will be at a minimum when
n-1. =2-72, and .-. = 3-72. F 268 .A combination of this kind in which
n= 2, and therefore each pully hangs
by a separate string, is commonly
represented in mechanical treatises.

374. As an example of the applica-
tion of the principle of reduplication
to increase the range of motion of a

piece, we may take the hydraulic
crane of Sir W. Armstrong.*
A is a closed cylinder, into the

upper extremity of which water at a

high pressure obtained from an ele-

vated source can be admitted through
a pipe k, so as to drive the piston B
downwards. The upper end of the

piston-rod carries a pully a. A chain,

also fixed to the top of the piston-rod,

passes over a pully b, mounted on a

bracket attached to the wall inside of

the warehouse. It then descends,

passes under the pully a and upwards,
to be fixed to the block of a pully c.

From the top of this block, a second

chain passes over a second pully d,

carried by a bracket attached to the

wall, and then descending passes under

the pully c and upward to e, whence it is carried horizontally
outwards to the pullyfof the crane-jib J, and thus downwards
to be affixed to the load W. When the rod of the piston B
descends, the block and pully c travel downwards with a velocity
three times greater than the piston-rod and pully a, and the rope

cef travels with a velocity threefold that of the pully c. Conse-

quently the stroke of the piston-rod is multiplied ninefold, and a

piston with a stroke of twelve feet raises the load W to & height
of 108 feet.

* This crane is fully described in Glynn's
'

Rudimentary Treatise on Cranes, $c ;

and ite construction minutely illustrated by detailed drawings. Fig. 268 is derived

from his fig. 20, by omitting all details of construction, for which I beg to refer my
readers to the excellent monograph above quoted, which forms vol. xxxiii of the series

of Rudimentary Treatises originally published by Weale, and now by Virtue and Co.
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375. The following diagram
* exhibits the principle upon which

cranes termed traversing-cranes are constructed, by which heavy

Fig. 269.

goods or materials in warehouses or buildings in course of erec-

tion can be lifted and conveyed to their proper positions. All

detailed constructions of framework are omitted in this figure.

The crane is sustained by two triangular frames of timber, seen

edgewise at AB, CD. These frames support two parallel beams
of timber, as JEF, trussed underneath. On these beams is laid a

railway, upon which travels a carriage GH containing the pullies

1,K for the chain, which passes between the two beams to the

lower block N. The ends of the chain pass from the carriage
in opposite directions along and above the beam to the fixed

pullies at each end M and O, and thence down to the barrels of

winches L and P. By winding one of these winches and un-

winding the other at the same time at the same rate, the carriage
and the load suspended from it travels from one end of the beam
to the other, the load remaining at the same level.

But by winding or unwinding one of the winches only, the load

is simply raised or lowered, so that the pully N can be placed at

any point of the vertical plane AEFC. But in the complete tra-

versing-crane, each triangular frame AB,CD is mounted upon
two waggon-wheels resting on rails, which enable the entire frame

ABD C to be moved to any part of the length of the building or

warehouse, and therefore its load to be transferred to any position
in the space bounded by the length of the rails and the area

ACEF.
* Vide Glynn. On Cranes, p. 43, as in the last note, for ample details and figures.
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Fig. 270.

The so-called *

parbuckle
'
is an example of direct reduplication

employed by sailors to lower casks from a quay into a barge, and
vice versa, and also by draymen.

In the diagram A is the sur-

face of the quay, B its vertical

face.

Two parallel planks e and f
rest below upon the barge, and
above upon the edge of the quay.
The middle of a rope of suffi-

cient length is made fast to the

timber-head g by a round turn,
the ends of the rope are passed
under and over the cask, em-

bracing it as shown, and the two

hands of the operator grasping
the two free ends of the rope, the

cask is kept steady during its

motion. This apparatus is a

combination of the inclined plane and single hanging pully e. If

the diagram, Art. 367, Fig. 262, were inverted and inclined down-
wards to the right, it would represent the half of the parbuckle,M being attached to the timber-head andPrepresenting the cask.

376. In the examples of reduplication already considered, the

strings and the motion of the follower are all parallel, and the

velocity ratio constant. If the strings and the

paths make angles with each other, a varying

velocity ratio will ensue ; as in the following

example. Let the string be fixed at A, fig.

271, and passing over a pin B, let it be at-

tached to a point C; let Bb be the path of

the pin, Cc that of the extremity of the string,

and when C is moved to e, very near to its

first position, let B be carried to b ; draw perpendiculars bm
t bn,

Cp, upon th^ vwo directions of the string in its new position.

Then since the length of the string is the same in both po-

sitions, we have AB+ BC= Ab + be, that is,

Am +mB + Bn + nC-Ab + bp +pc,
But ultimately,

Ab= Am, and bp= nC; .'. mB + Bn=pc,
or Bb (cos bBA + cos bB C}-Cc. cos cCB ;

Bb cos cCB .

Fig. 271.
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where the angles are those made by the direction of the string
with the respective paths of the pin B and of the extremity C.

But by the motion of the system these angles alter, and thus the

velocity ratio varies.

If the strings and the path of B become parallel, the cosines

become unity, and as before (Art. 367).



PAET THE SECOND.

OX AGGREGATE COMBINATIONS.

CHAPTER I.

GENERAL PRINCIPLES OF AGGREGATE MOTION.

377. THE motion of a point with respect either to its path or

velocity may be considered as the resultant of two or more com-

ponent motions. If it happen that the latter taken separately
are more simple and more easily communicated than the resultant

motion, it is evident that this may be advantageously obtained by
communicating simultaneously to the given point the component
motions. For an example of an aggregate path, let it be re-

quired to make a point describe an epicycloid. Every epicycloidal

path may be resolved into two circular paths, one of which

represents the base of the epicycloid, and the other the describing
circle. And if the point be attached to a disc or arm which
revolves uniformly round its own center, while at the same time

that center revolves uniformly round the center of the base in a

plane parallel to that of the first revolution, the point will describe

an epicycloid, the nature and proportions of which will depend

upon the proportion of the radii of the two circular component

paths, and upon the relative time and directions of their re-

volutions. In this example a very complex path is referred to

two paths of the simplest nature, and the question is one case of

a general problem that may be thus enunciated : To cause a

point to move in a required path by communicatiny to it simul-

taneously two or more motions in space.

378. As an example of motion complex in velocity, but simple
with respect to its path, let a body be required to travel in a

right line by a reciprocating motion, but always making its

x 2
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forward trip through a space greater than its backward trip, and

thereby gradually advancing from one end of the path to the

other. This motion may be resolved into a reciprocating motion

of equal advance and retreat, combined with a simple slow forward

motion.

If therefore the body be mounted on a carriage or frame

which advances slowly in the required direction, and if at the

same time an ordinary reciprocating motion of constant extent be

given to the body with respect to the carriage ; the question will

be answered by referring the given compound motion to two of a

simple and practicable nature.

, 379. Again, let a body be required to move so very slowly in

a right line, that in the ordinary methods a long train of wheel-

work or of other combinations would be required to reduce suffi-

ciently the velocity of the original driver. But if this small

velocity be considered as the difference of two velocities in

opposite directions, then it may be obtained by mounting as

before the body on a carriage which proceeds with any convenient

velocity in one direction, while the body moves with respect
to the carriage with a nearly equal velocity in the opposite
direction.

These examples belong to a second problem which may be thus

stated: To produce the motion of a piece in a given path by com-

municating to it simultaneously two or more motions in that path,
either in the same or in opposite directions.

380. In these examples, however, it appears that the frame or

part of the machine which determines the path of one of the

component motions is itself in motion. In the first example, the

center of motion of the revolving piece which carries the de-

scribing point itself travels in a circle
;
and in the second example,

the slide upon which the point that receives the aggregate motion

is made to move, is itself also in motion. And this, from the

nature of Aggregate Combinations, will always be the case ;
and

as these bodies which travel in moving paths have to derive their

motion from a driver whose path is in the usual manner stationary,
it appears that to carry this aggregate principle into effect,

requires that we should have the means of communicating motion

from a driver to a follower, when the respective position of their

paths is variable.

I shall therefore begin by giving examples of the methods by
which this may be effected.
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To connect a Driver and Follower, the relative position of whose

paths is variable.

381. If the center of motion of a toothed wheel itself travel in

a circle parallel to the plane of rotation, then a second wheel

concentric with the circular path and in geer with the travelling

wheel will remain in geer with it in all positions of its center;

or if the center of the wheel travel in a right line parallel to the

plane of rotation, a rack parallel to its path will always remain in

geer with the wheel, and communicate a motion to it; as will

also an endless screw, as in
fig. 272, where Aa is a long endless

screw, B the travelling wheel whose Fig. 272.

center of motion moves in the path yB b, parallel to the axis of the screw. s

The screw will therefore act upon
the wheel whatever be the position
of its center upon this line, and will

also allow the center to be moved into any position upon the

surface of the cylinder that would be generated by the motion of

B b round A a, the plane of the wheel of course always passing

through the axis A a.

Again, if the wheel be required to travel in the direction of its

own axis, as from A to a, fig. 273, a long pinion B b will retain

its action upon it in all its positions.

Fig. 273. Fig. 274.

But if the center of the wheel is to travel in any other curve

in a plane perpendicular to its axis, let A, fig. 274, be a fixed

center of motion, B the travelling center of motion, and let

A C, CB be a frame jointed at C ;
then if B be moved into any

position within the circle whose radius is AC+CB, the frame

will follow it, the angle A CB becoming greater or less according

to the radial distance of B from A. Let a center of motion be

placed at C, then will three wheels whose centers are A, C, and

B, remain in geer in all these positions of the frame, and thus

allow B to travel in any curve without losing its connection with

the central wheel at A.

382. The same principles also apply to centers of motion con-



310 AGGREGATE COMBINATIONS.

nected by sliding contact or wrapping connectors ;
for generally,

it is evident, that if two parallel axes be connected by any of the

contrivances for communicating unlimited rotation, one axis may
travel round the other in the circle whose radius is the per-

pendicular distance of the axes, without disturbing their con-

nection. Other expedients are also employed, which belong
rather to constructive mechanism. Thus, instead of the long

pinion B b, fig. 273, a short pinion may be used which can slide

along its axis, but not turn with respect to it, and this pinion may
be made to follow the wheel A in its motions. But, in fact, as

we advance in our subject, the combinations necessarily increase

in number and complexity under each head to such a degree, that

it becomes impossible to include them all in the limited space of

such a treatise as this. I shall, therefore, merely give examples of

one or two of the least obvious arrangements ; others will occur

during the calculations of Aggregate Motion in the succeeding

chapters.

383. A travelling pully which derives its rotation from another

pully with a fixed axis of motion, may have its own axis cai-ried

about to any relative position with the first, provided the

wrapping band have a suspended stretching pully to keep it tight
in all these changes of distance, and that the pully travel only in

Fig. 275. its own plane, and consequently its axis always re-

mains parallel to that of the other pully. For if it

move out of that plane the wrapping band will be

thrown off the pully (Art. 254). Fig. 275 is one

arrangement by which the pully may be also allowed

to move in the direction of its axis.*

B is the pully whose axis is mounted in a frame

AC, to whose sides are fixed the axes of guide-

pullies n, p ;
the wrapping band is passed over these

pullies as at m n p q, making one turn round the

pully B in its passage : the ends m n, p q of the

band are carried parallel to the axis of B, and passed
over proper guide-pullies to the driving wheel. The

frame A C may evidently be moved into any other position ac, in

the plane m q, without disturbing either the tension of the band or

its connection with B.

384. Two arms AP, CD (fig. 197, p. 209), being connected

by a link PD, the center of motion C of one of them may be

shifted into various positions with respect to A, without breaking
the connection of the system ; but the velocity ratio of the arms

* Lanz and Betancourt (Anal. Essay, D. 20) have a somewhat similar arrangement.
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will necessarily be different in every new position. If the arms

have only a small angular motion, as in the Article referred to,

the center C may receive a small travelling motion in a direction

perpendicular to PD, without materially altering the velocity
ratio.

Fig. 276 is an expedient by which this communication can be

maintained between shifting centers without affecting the velocity
ratio.

AB is the arm whose center of motion A is fixed, CD the arm
whose center of motion travels in the line Cc\ guide-pullies C, D
are mounted, one concentric to C, and the other at the extremity
D of the arm. A line is fixed at m,

passed over the pullies C and Z), and

attached to B. If B be moved to b it

will, by means of this line, communicate

the same motion to CD round C as if it

were a link jointed in the usual way at

D and B. But the peculiar arrangement
of the line allows the center of the arm to be removed to any
other point in O, as to c, without interrupting the connection

of B with its extremity. The arm is supposed to be returned by
a spring or weight.
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CHAPTER II.

ON COMBINATIONS FOR PRODUCING AGGREGATE
VELOCITY.

385. I SHALL in this chapter proceed to show the principal

methods of obtaining the complex motion of a body in a given

path by the simultaneous communication to it of two or more

simple motions in that path ; arranging the solutions under the

same divisions as in the first part of this work, but taking them

in a somewhat different order, for the sake of convenience.

BY LINK-WORK.

386. Let a bar ABC, fig. 277, be bisected in B, and let a

small motion Aa perpendicular to the bar be communicated to the

Fig. 277.

extremity A, C remaining at rest ; then will the central point B

move through a space Bn = -- On the other hand, had A re-

mained at rest, and a small transverse motion Cc been given to

the other extremity C, the central point B would have moved

through a space Bm ~. If these two motions are communi-

cated either simultaneously or successively to the two extremities.

the center B will be carried through a space Bb= a Cc
. Or,

if starting from the position Ac, the two motions had been com-
municated in the opposite directions, so as to carry the bar into

the position a C, then the center of the bar would receive a motion
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mn - __^TL_f. The length of the bar being always supposed so

great, compared with the motions, that its inclination in the differ-

ent positions may be neglected, and therefore the lines Cc, Bb,
Aa, be all considered perpendicular to AC. Hence two small

independent motions being communicated to the extremities of a
bar ; its center receives half their sum or difference, according as

the motions are in the same or in opposite directions.

If the motions be communicated to A and B, then C will re-

ceive the whole motion of A in the opposite direction, and twice

the motion of B in the same direction. The bar A C has been

divided in half at B for simplicity only, for it is evident that by
dividing it in any other ratio we can communicate the component
motions in any desired proportions. But in general it is the law

of motion which is to be communicated, and the quantity is of

less consequence, especially if reduced for both motions in the

same proportion.
387. Let FG, fig. 278, be a bar whose center is E, and to

whose extremities are fixed pins F and G, upon which the centers

of other bars, AB, CD turn. Fig. 278.

Then if four independent motions

be communicated to the points r

A, B, C, D, the motions of A
and B will be concentrated upon F, and those of C and D upon
G, and the motions of -F and G being concentrated in like

manner upon E, this point will receive the four motions. By
jointing other levers to the extremities of these, and so on, any
number of independent motions may be concentrated upon the

point E.*

BY WRAPPING CONNECTORS.

388. If a bar Bb, fig. 279, be capable of sliding in the direc-

tion of its length and carry a pully A round which is passed a

cord DE, then it can be shown in the same manner, that the bar

will receive half the sum of independent motions communicated

to the extremities D, E, the bar being supposed to be urged in

the direction bB, by a weight or spring. This is a more compen-
dious contrivance than the former, as the motions may be of

considerable extent. If the component motions be communicated

* Another example of aggregate velocity by Link-work is the well-known reticulated

frame termed Lazy tongs, which resembles a row of X's, thus xxxxx. It is too weak

from its numerous joints to be of much practical service. It first occurs in Valturius

de re militari, 1. x. 1483.
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to one extremity of the string D and to the bar, then will the

other extremity E receive the entire motion of D in the reverse

direction, and also twice the motion of Bb in the same
Fig. 279. direction.*

389. If a second similar combination be placed at

the side of this, with its bar parallel to that of the first,

and if a cord whose ends are tied to the upper extre-

mities of each bar be passed over a third intermediate

pully, the center of this latter pully will receive the

aggregate motion of the cords of the two systems, as

shown for the lever in Art. 387.

390. As an example of the employment of these

E combinations, let C, fig. 280, be an axis of motion

i i upon which is fixed a small barrel round which

the cord e is rolled, and also a disk with an excentric

pin c, which by means of a link cb communicates a recipro-

cating motion to an arm Aa, whose center of motion is A.

The extremity of this arm carries a revolving pully D, and the

cord which is coiled round the band is laid over this pully and

fixed to a heavy piece -E", which moves in the vertical -path Ef.
Now when C revolves, the center a of the pully D moves up and

down through a small arc which is nearly a right line parallel to

fE, and by virtue of this motion the stringf and the body E will

receive a reciprocating motion of double its extent. But the

string e will be also slowly coiled upon the barrel by which it, as

well as E, will receive a slow travelling motion in a constant di-

Fig. 280. Fig. 281.

rection upwards. By what has preceded, therefore, the body E
receiving these motions simultaneously, will, as in the example of

* The first application of this principle appears to be the Eouet de Lyon, for winding
*ilk. Vide Enc. Meth. Manufactures, t. ii. p. 44.
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Art. 378, move vertically with a reciprocating motion, of which

the downward trip is shorter than the upward one.

391. Let Aa, fig. 281, be an axis to which are fixed two cy-
linders B and C, nearly of the same diameter, and let a cord be

coiled round B, passed over a pully Z>, and then brought back

and coiled in the opposite direction round C. When Aa revolves,

one end of the cord will be coiled and the other uncoiled, and if

R be the radius of B, and r of C, A the angular velocity of the

axis, the velocities of the two extremities of the cord will be AR
and Ar; and by Art. 388, the center of the pully D will travel

with a velocity equal to half the difference of these velocities,

since they are in opposite directions, or to ^
. This velo-

city is the same as would be obtained if the center of the pully D
were suspended from the axis Aa by a cord wrapped round a

single barrel whose radius = .

392. This combination belongs to a class which has received

the name of differential motions, their object being to communicate

a very slow motion to a body, or rather to produce by a single

combination such a velocity ratio between two bodies that under

the usual arrangement a considerable train of combinations would

be required practically to reduce the velocity, for, theoretically, a

simple combination will always answer the same purpose. Thus

in the above machine, although theoretically a barrel with a radius

~ r
would do as well as the double barrel, yet its diameter in

practice would be so small as to make it useless from weakness.

Whereas each barrel of the differential combination may be made

as large and as strong as we please.

If a considerable extent of motion, however, be required, this

contrivance becomes very troublesome, on account of the great

quantity of rope which must be wound upon the barrels. For by
one turn of the differential barrel the space through which the

pully is raised =TT (R r), but the quantity of rope employed is

the sum of that which is coiled upon one barrel, and of that which

is uncoiled from the other = 2ir (R + r).
Now in the equivalent

simple barrel the quantity of rope coiled is exactly equal to the

space through which the body is moved, and therefore in this case

= TT (R r), so that for a given extent of motion

rope for differential barrel _ 2 ^"!~
r

rope for common barrel JK r
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when R r is by hypothesis very small. This inconvenience has

been sufficient to banish the contrivance from practice, for although
it is represented in all mechanical books under the name of the

Chinese windlass, it is never actually employed.

BY SLIDING CONTACT.

393. Aa, fig. 282, is an axis upon which are formed two screws

B and D, whose pitches are C and c re-

spectively. B passes through a nut b fixed

to the frame, and D through a nut d, which

is capable of sliding parallel to the axis of

the screw.*

Now when a screw is turned round it travels with respect to

its nut through a space equal to one pitch for each revolution,

consequently one turn of Aa will cause it to move with respect
to b through the space C. But the same motion will cause the

nut d to move with respect to its screw through a space c. The
nut rf, therefore, receives two simultaneous motions, for by the

advance of the screw Aa through the fixed nut b, the nut d is

carried forwards through the space C, but by the revolving action

of the screw Aa it will be at the same time carried backwards

through the space c : its motion during one rotation of the screw

Aa is therefore equal to the difference of the two pitches = C c.

If C be greater than c this will be positive, and the nut will

advance slowly when the screw Aa advances ; but if c be greater
than (7, the nut will move slowly in the opposite direction to the

endlong motion of the screw. If C=c then C c= 0, and the

nut d receives no motion, which is indeed obvious. All this sup-

poses that the threads of the two screws are both right-handed or

both left-handed. If one be right-handed and the other left-

handed, each revolution of the screw Aa will cause the nut d to

advance through a space= C+c.
394. In

fig. 283,f Ffis a screw which passes through a nut g,
this nut is mounted in a frame so as to be capable of revolving
but not of travelling endlong in the direction of the axis of the

screw. So that if the nut were turned round, and the screw itself

prevented from revolving, this screw would receive an endlong
motion in the usual manner, at the rate of one pitch for each

revolution of the nut. A toothed wheel E is fixed to the nut,

* This contrivance is claimed by White (Century of Inventions, p. 84), and also for

M. Prony, by Lanz and Betancourt (Essay, D. 3).

t This combination occurs in White's Century of Inventions.
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and engaged with a pinion C, which is fixed to the axis Aa,
parallel to the screw. To the screw is also fixed a toothed wheel

D, which engages with a long pinion B
upon the same axis Aa which carries the

pinion C. When Aa revolves, therefore, it

communicates rotation both to the screw

and to the nut. If B and C, D and E
were respectively equal, it is plain that the

nut and screw would revolve as one piece,
and consequently no relative motion take

place between them ; but as these wheels are purposely made to

differ, the nut and screw revolve with different velocities, and
thus a motion arises between the nut and its screw, which causes

the latter to travel in the direction of its length, with a velocity
ratio that may be thus calculated.

Let the letters B CD E applied to the wheels, represent their

respective numbers of teeth, and let P be the pitch of the screw.

Also, let the synchronal rotations of the axis Aa, the nut and the

screw, be LLn) and Ls respectively,

T- L C j T LB

But the endlong motion of the screw depends upon the relative

rotations of the screw and nut, and not upon their absolute rota-

tions. Now it is obvious, that if the screw make L rotations,

and the nut Ln rotations in the same direction, that the screw

and nut will have made L Ln rotations with respect to each

other, and therefore that the screw will have advanced endlong

through a space

which may be made very small with respect to L.

This combination is applied to machinery for boring, for the

motion of a boring instrument consists of a quick rotation com-

bined with a slow advance in the direction of its axis, which is

precisely the motion given to the screw Ff. Nothing more is

therefore required than to fix the boring tool to one end of this

screw.

The long pinion B (Art. 381) is employed for the obvious

purpose of maintaining the action of B upon D during the end-

long motion of the screw, and this endlong motion is in fact the

difference of two motions that are simultaneously given to the
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screw. For A a revolving, if B and D were removed the rota-

tion of the nut would cause the screw to travel endlong with one

velocity, and if C and E were removed instead of B and D, then

the rotation of the screw in its fixed nut would cause it to travel

endlong with another velocity ;
but these two causes operating

simultaneously, the screw travels with the difference of these

velocities.

395. A slow relative motion of two concentric pieces may be

produced, as in
fig. 284, in which D d is a fixed stud, B an end-

less screw-wheel revolving upon the stud, and C a second endless

screw-wheel revolving upon the tube which carries the preceding
wheel B. A is an endless screw so placed as to act at once upon

Fig. 284. both wheels.* Now if these wheels had the same

number of teeth they would move as one piece,

but if one of them has one or two teeth more or

less than the other, this will not disturb the pitch
of the teeth sufficiently to interfere with the action

of the endless screw. And as the revolutions of

this screw will pass the same number of teeth in

each wheel across the plane of centers, it follows

that when one wheel has thus made a complete

revolution, the other will have made more or less than a com-

plete revolution by exactly the number of deficient or excessive

teeth.

Let B have ^V teeth, and C, N+m teeth, then since the same

number of teeth in_each wheel will simultaneously pass the plane
of centers, NX. N+m teeth of each will pass during N rotations

of (7, and N+m of B, which are therefore their synchronal
rotations, and their relative rotations in the same time are

N+m N=m.
This contrivance is used in counting the revolutions of

machinery, for by attaching an index to the tube which carries

B, and graduating the face of C into a proper dial-plate, b

revolves so slowly with respect to (7, that it may be made to

record a great number of rotations of A before it returns again to

the beginning of the course. Thus if B have 100 teeth, and C
101, the hand Mill make one rotation round the dial during the

passage of 100 x 101 teeth of either wheel across the plane of

centers, that is, during 10,100 rotations of the screw. Also the

same hand b may read off sub-divisions upon a small dial attached
to the extremity of the fixed axis d.

* From Wollaston's Odometer, for registering the number of turns made by a

carriage-wheel.
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396. This contrivance does not strictly belong to the problem
we are at present considering, but it has a kind of natural affinity

with it that induced me to give it a place here. Similarly, a

thick pinion upon an axis parallel to D d may be employed to

drive the two wheels in lieu of an endless screw, but the relative

motion will not be so slow.* But by employing two pinions of

different numbers of teeth to drive the two wheels a very slow

relative motion may be obtained ; thus, if in fig. 283 the screw

and nut be suppressed, and the wheel E be the dial-plate, and

the wheel D carry the index, as in fig. 284, then we have found

-= =, _, which may be made very small.
Jj jfc D

BY EPICYCLIC TRAINS.

397 A train of mechanism the axes of which are carried by an

arm or frame which revolves round a center, as in figs. 285, 286,

287, is termed in this work an Epicyclic train.

Fig. 285. Fig. 286. Fig. 287.

The two wheels which are at each end of such a train, or

at least one of them, will be always concentric to the revolving

frame.

Thus in fig. 285, CB is the frame or train-bearing arm, a

wheel A concentric to this frame geers with a pinion b, upon
whose axis is fixed a wheel E that geers with a wheel B. And
thus we have an epicyclic train A (Art. 332),

b E
B,

of which if the first wheel A be fixed, and a motion be given to

the arm, the train will then revolve round the fixed wheel, and

the relative motion of the arm to the fixed wheel will communi-

cate rotation through the train to the last wheel B ;
or the first

* This combination occurs in a clepsydra, by Marcolini, described in the notes to

the ninth book of Vitruvius, by Dan. Barbaro, 1556. Vide also Art. 355.
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wheel as well as the arm may be made to revolve with different

velocities, in which case the last wheel B will revolve with a

motion that will be presently calculated.

If the wheel E, instead of geering with B, be engaged with a

wheel D, which, like the wheel A, is concentric to the arm, then

we have an epicyclic train A
b E

D,
of which both the extremities are concentric to the arm. In such

a train we may either communicate motion to the arm and one

extreme wheel in order to produce an aggregate rotation in the

other extreme wheel, or motion may be given to the two extreme

wheels A and B of the train, with the view of communicating the

aggregate motion to the arm.

Fig. 286 is a simple form of the epicyclic train, in which the

arm A D carries a pinion B, which geers at once with a spur-
wheel A and an annular wheel C, both concentric with the train-

bearing arm.

Fig. 287 is another simple form in which F G is the arm, A a

the common axis ; D, C, two bevil-wheels moving freely upon it,

and E a pinion carried by the arm, and geering at once with the

two bevil-wheels. These two arrangements contain the least

number of wheels to which an epicyclic train can be reduced, if

its two extreme wheels are to be concentric to the arm
; and, as

in fig. 285, motion may either be given to the two wheels in

order to produce aggregate motion in the arm, or else to the arm
and one wheel, in order to produce aggregate motion in the other.

Or very commonly, one of the concentric wheels is fixed, and
motion being then given to the arm, will be communicated to the

other wheel, or vice versa, according to a law which we shall

proceed to investigate. In these examples toothed wheels only
are employed, but the subsequent formulae will

apply as well to epicyclic trains in which any
of the combinations of Class A are used.

398. To find the velocity ratios of Epicyclic
trains. Let AB, fig. 288, be the train-bearing
arm revolving round A, and carrying a train of

which the first wheel A is concentric to the

arm, and the last wheel B may either be con-

centric with A or not. These two wheels are

connected by a train of any number of axes

carried by the arm or frame AB. Now the
revolutions of the wheels of the train may be estimated in two
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ways : First, with respect to infixed frame of the machine, that
is, by measuring the angular distance of a given point on the
wheel from the fixed line Af\ or, if the wheel be excentric as B,
from a line Bk parallel to Af, Secondly, they may be measured
with respect to the arm which carries them. The first may be
termed the absolute revolutions, and the second the relative re-

volutions, or motions relative to the train-bearing arm.
Let the arm with its train move from the position Af to AB,

and during the same time let a point m in the wheel A move to n
from any external cause, and the point r in the wheel B move to

s by virtue of its connection with the wheel A, all being supposed
for simplicity to revolve in the same direction as the arm. Then
mAn, rB* are the absolute motions of the wheels A and B, and

pAn, tBs their relative motions to the arm,

but mAn=mAp+pAn, and rBs=

where mAp is the motion of the arm.

If, on the other hand, the wheels had moved in the opposite
direction to the arm, then

mAn=pAn mAp } and rBs= tBs mApy

and these are true whatever be the magnitude of the angles

described, and are therefore true for entire revolutions, for the

angular velocity ratios in these trains are constant. Hence it

appears that the absolute revolutions of the wheels of epicyclic
trains are equal to the sum of their relative revolutions to the

arm, and of the revolutions of the arm itself, when they take

place in the same direction, and equal to the difference of these

revolutions when in the opposite direction.

399. Let a, m, n, be the synchronal absolute revolutions of the

train-bearing arm, of the first wheel of the train, and of the last

wheel respectively ;
and let s be the epicyclic train, that is, let

it represent the quotient of the relative revolutions of the last

wheel divided by those of the first ; e is therefore the quantity

which is represented by ~, or by- -in Chapter XIII, the motions

of the wheel-work being estimated with respect to the train-

bearing arm alone. Also, the first and last wheel of the epicyclic

train are included in the expression s, although one or both of

them may be concentric to the arm.

Then the relative revolutions of the first wheel with respect to

y
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the arm= 7/1 a, and of the last wheel= a, and as the motions

of the train, considered with respect to the arm, will be the same

as those of an ordinary train, we have n a= s.m a.

, ins n .

whence a = , n a t- m a.e,

-, ,
n a

and m= a +

If the first wheel of the train be fixed, which is a common case,

its absolute revolutions=0 ; ._*. m= Q, and we have

a = U
, and n = 1 s. a.

1

If the last wheel of the train be fixed, then n= 0, and we have

me j f-. \\
a = , and m= [

1 la.e1 \ /

But when these wheels are not fixed,

wze n me n

e-l e-l l-i

that is, the revolutions of the arm are equal to the sum of the

separate revolutions which it would have received from the train,

supposing its extreme wheels to have been fixed in turn.

In the formulae of this Article the rotations of the first and last

wheel and of the arm are all supposed to be in the same direction :

if either of them revolve in the opposite, the sign of m, n, or a

must be changed accordingly. With respect to the sign of s, see

Art. 403.

400. But in trains of this kind it often happens that if neither

the first nor last wheel of the epicyclic train be fixed, then either

motion is communicated from some original driver to the two

extreme wheels of the epicyclic train with a view to produce an

aggregate motion of the arm, or else the original driver com-
municates motion to one of these extreme wheels and to the arm,
for the purpose of producing the aggregate motion of the other

extreme wheel.
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Fig. 289 is an example of the first case, mn is an axis to

which is fixed the train-bearing arm kl, which carries the two
wheels d and e united together and

revolving upon the arm itself. The
wheels b and c are united and revolve

together upon the axis win, but are

not attached to it. Likewise the

wheels/and g are fixed together, and
revolve freely round the axis mn.
The wheels c, d, e, and / constitute

an epicyclic train, of which c is the

first, and/the last wheel. An axis A
is employed as a driver, and carries two wheels a and h, the first

of which geers with the wheel b, and thus communicates motion

to the first wheel c of the epicyclic train, and the wheel h drives

the wheel g, which thus gives motion to the last wheel/ of the

epicyclic train. When the axis A is turned round it thus com-

municates motion to the two ends of the epicyclic train, through
which the train-bearing arm kl receives an aggregate rotation,

which we shall presently calculate.

As an example of the second case, we must suppose the wheels

g and / to be disunited, g being now fixed to the axis mn, and /
only running loose upon it. The driving axis A will thus com-

municate, as before, rotation to the first wheel of the epicyclic

train c by means of the wheels a and b, and will also by h cause

the wheel g, the axis mn, and the train-bearing arm kl to revolve,

by which the compound rotation will be given to the loose wheel

/. In this second combination, however, the last wheel / of the

train is not necessarily concentric to the train-bearing arm, which

it must be in the first case.

401. To obtain a formula adapted to this first case. Let the

driving axis be connected with the first wheel of the train by a

train ft, and with the last wheel by a train v ; and let the syn-
chronal rotations of this driver with these wheels be p ;

.*. t =/*./?, and n= v .p;

e

The first part of which is due to the action of the train /*, and

the second to that of the train v.

For suppose the train /* removed then would the first wheel of

the epicyclic train remain fixed, and m = /a/>
=

;

T 2
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v

'rf=if

and in like manner, if the train v were removed,

The arm moves, therefore, with the sum or difference of the

separate actions of the two trains from the original driving axis.

402. In the second case, let the driving axis be connected with

the first wheel of the epicyclic train by a train /i, and with the

arm by a train a,

then m= ftp, and a= ap ;

The revolutions, therefore, of the last wheel of the epicyclic

train are the aggregate of those due to the train a, which pro-
duces the motion of the arm, and of those due to the train p,

which produces the motion of the first wheel of the epicyclic

train.

403. The only difficulty in the application of these formulae

lies in the signs which must be given to the symbols of the trains.

But these it must be remembered, are each of them the repre-
sentatives of a fraction, whose numerator and denominator are

respectively equal to the synchronal rotations of the last follower

and first driver of the train.

One direction of rotation being assumed positive, the opposite
one will be negative, and therefore if the extreme wheels revolve

in the same direction, whether that be back or forwards, the

symbol of the train will be positive ; and if they revolve in the

opposite direction it will be negative. The rotations of the train

fit v are absolute ;
and those of e relative to the arm. To find the

sign of e, we must suppose the arm to be for the moment fixed,

and then analyse the train in the usual manner to find whether

the motions of its extreme wheels are in the same or in opposite

directions, and the directions of rotation must be estimated

accordingly. In a similar way, the signs of
/j,
and v are easily

determined by considering them separately, and observing whe-
ther their extreme wheels move in the same or in opposite direc-
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tions. If in the same, then p and v have the same signs ; and if

in opposite, then different signs. In the formulae the symbols
are all supposed positive, and therefore in every particular case

positive trains retain the signs which are already given to them
in these formulae, but negative trains take the opposite signs.

And although the term epicyclic train strictly implies that all the

axes of the train are carried excentrically round the centre of the

arm, yet I must repeat that the first and last wheel must be

included in it, although one or both may happen to be concentric

with the arm.

404. Let, for example, these principles and formulae be applied
to the simple epicyclic trains in figs. 285, 286, 287, and suppose
the letters to represent the numbers of teeth. The epicyclic

train formed by the wheels A, B, C, in fig. 286, is of such a

nature that the extreme wheels A and C revolve in opposite

directions, therefore s is negative, and so also in the train C, -",

D, in
fig. 287, but in the train A or A of fig. 285,

b-E b-E
D D

the extreme wheels revolve the same way, and therefore e is

positive. Also in fig. 285,

and in fig. 287 e= --?=-!.

Let the first wheels of these trains be fixed, then when the arm

revolves we have

for 285. n= l ~

286. n=

287. n= 2a,

where n and a are the synchronat rotations of the last wheel of

the train and of the arm respectively.

In fig. 287, therefore, it appears that when one wheel C is

fixed, the other revolves twice as fast as the arm in the same

direction.

In fig. 289, inks first case = and if the arm were fixed, c.
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and / would revolve opposite ways, therefore e- is negative ;

/x= - and v= -, also g and i revolve opposite ways, and therefore

fj,
and v must have different signs, and thus the formula becomes

p l+s bdf g_aceg hbdf

!
, '<*_ bg(df+ce)'

df

But under the second case, s is negative, as before ;

a h

"==?
and these have different signs ;

n n A- \
^

( \ 4-
ce

\ 4-
ace

'

P 9 >> df) bdf

405. Epicyclic trains are employed for several different pur-

poses, each of which will be exemplified in turn.

(1.) For the representation of planetary motion, and for all

machinery in which epicyclic motion is a part of the effect to be

produced, as in the geometric pen and epicycloidal chuck, where

real epicycloids are to be traced, or in the machinery for laying

ropes. Some of these effects more properly belong to the next

chapter.
In all these cases a frame containing mechanism is carried, by

the action of machinery, round other fixed frames, and the motion

can only be communicated to the machinery in this travelling
frame upon the principle of epicyclic trains.

(2.) When a velocity ratio is required to be accurately esta-

blished between two axes whose centers are fixed in position,

and this ratio is composed of unmanageable terms when applied
to the formation of a simple train, the epicyclic principle will

generally effect the decomposition required, as we shall presently
see.

(3.) For producing a small motion by what is termed the

Differential principle, of which examples by other aggregate
combinations have been already given.

(4.) To concentrate the effect of two or more different and

independent trains upon one wheel or revolving piece, when one
or both of them are variable in their action.

This was first applied to what are termed Equation clocks,
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in which the minute-hand points to true time, and its motion

therefore consists of the equable motion of an ordinary minute-

hand, plus or minus the equation, or difference between true and
mean time.

The same principle has been applied with the greatest success

to the bobbin and fly-frame.

406. The train which is carried on the arm, and the arm itself,

receive various forms
;
the train should be as light as possible,

and consist of few wheels, especially when it revolves in a

vertical plane ; because being excentric its weight interferes with

the equable rotation of the arm or wheel which carries it, unless

it be balanced very carefully. When the excentric train is

necessarily heavy, this difficulty is in some degree got over by
making the train-bearing axis vertical, as in planetary machinery
and in rope-laying machinery.

EXAMPLES OF THE FIRST USE OF EPICYCLIC TRAINS.

407. Ex. 1. Ferguson's Mechanical Paradox. This was

contrived to show the properties of a simple epicyclic train, of

which the first wheel is fixed to the frame of the machine.

Fig. 290.

It consists of a wheel A, fig. 290, of 20 teeth, fixed to the top

of a stud which is planted in a stand that serves to support the

apparatus. An arm CD can be made to revolve round this

stud, and has two pins m and n fixed into it, upon one of which

is a thick idle wheel B of any number of teeth, which wheel

geers with A and also with three loose wheels E, F, and G,

which lie one on the other about the pin n.

When the arm CD is turned round, motion is given to these

three wheels which form respectively with the intermediate

wheel B and the wheel A three epicyclic trains.

Now in this machine the extreme wheels of each epicyclic train

revolve in the same direction, and therefore e is positive, and the

formula applicable to this case is -ls, where n and a are
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the absolute synchronal rotations of the last wheel and of the

arm. But the object of this machine is only to show the direc-

tions of rotation.

If =1 ^= 0, and the last wheel of the train will have no
a

absolute rotation. If s be less than unity
n

will be positive,

and the last wheel will revolve absolutely in the same direction

as the arm. But if e be greater than unity
- will be negative,

and the absolute rotations of the arm and wheel will be in op-

posite directions.

Let E, F, G have respectively 21, 20, and 19 teeth, then in

A 20
the upper train f= -- =

S^ L

is less than unity, and E will revolve the same way as the arm :

xi -JJT L A 20
in the middle tram e= -~=

.r 20

equals unity,
- = and F will have no absolute revolution :

A of)
and in the lower train =_^=

(JT 19

is greater than unity, and G will revolve backwards.
A

The principle of the middle train, , is employed in the me-
r

chanism of an elaborate rotary book-desk by Ramelli, fig. 188,

published in 1588.

It follows from this that when the arm is turned round, E will

revolve one way, G the other, and F will stand still, or rather

continually point in the same direction. Which being an ap-

parent paradox, gave rise to the name of the apparatus, which is

well adapted to show the more obvious properties of trains of this

kind. But Ferguson was not the first who studied the motions

of epicyclic trains
; Graham's orrery in 1715, appears to be the

original of this curious class of machinery, but for which no

general formula appears to have been hitherto given.*
408. Ex. 2. The contrivance termed sun and planet-wheels

was invented by Watt as a substitute for the common crank in

* In Rees' Cyclopedia, Art. '

Planetary Numbers,' are a few arithmetical rules for

the calculation of planetary trains, given without demonstration.
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Fig. 291.

converting the reciprocating motion of the beam of the steam

engine into the circular motion of the fly-wheel. The rod DB>
fig. 291, has a toothed wheel B fixed

to it, and the fly-wheel has a toothed

wheel A also attached to it, a link

BA serves to keep these wheels in

geer. Now when the beam is in x^^T/f^-^x
action the link or arm BA will be

made to revolve round the center

A, just as a common crank would,

but as the wheel B is attached to

the rod DB so as to prevent it from

revolving absolutely on its own
center B, every part of its circum-

ference is in turn presented to the

wheel A, which thus receives a rotatory motion, the propor-
tionate value of which is easily ascertained by the formula already

given.
The wheels AB with the arm constitute an epicyclic train

=.s, in which e is negative, since the wheels revolve in opposite

directions considered with respect to the arm, and in which the

last wheel B has no absolute rotation, being pinned to the rod

DB ; the formula

becomes-
f making n =

and e=

In Watt's engine the wheels were equal and therefore m-

and the fly-wheel revolved twice as fast as the crank-arm.

Fig. 292.

f!

409. Ex. 3. Planetary Mechanism. mn is a fixed central
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axis, upon which a train-bearing arm fg turns, carrying two

separate epicyclic trains e,
and sr

One of these, e
l , has a first wheel D, and a last wheel F, con-

nected by any train of wheel-work, and the axis of this last

wheel passes through the end of the arm fg, and carries a second

arm pq.
The other train <-

2
has a first wheel A connected to its last wheel

/?, by any train of wheel-work, but this last wheel is united to

the first wheel of an epicyclic train s
3 borne by the arm p q, of

which train the last wheel is C. The question is, to find the

absolute rotations of this last axis. The arrangement is one that

occurs in some shape or other in most orreries, for the purpose of

representing the diurnal rotation of the Earth's axis, in which

casefg is the annual bar, and E a ball representing the Earth.

Let the absolute synchronal rotations of the bar fg= a, those

of D= m
l ;

of .F (and therefore of the arm p q] ^ ; of A=w
2 ;

of B (and therefore of the first wheel of the train 3 )
= n

2 ; and of

C (and therefore of the Earth)= ny

Then W = a . 1 s + ms

In an orrery by Mr. Pearson for equated motions, described

in Rees' '

Cyclopaedia,' the arm or annual \>a,rfcf, is carried round

by hand, and the wheels A and D are fixed to the central axis.

In this case m
l
and m

2 vanish, and we obtain the formula

But the arm p q which carries the Earth's axis must preserve
its parallelism, and therefore having no absolute rotation ^,=0.
The train s

t
will therefore = + 1

;

(1.) and
n
'=g3

- V3=g3
. i^,

which must be positive, since the Earth performs its daily and
annual revolutions in the same direction. The train s

3
in

Mr. Pearson's orrery consists of three wheels of 40 each en suite ;

also his train S
,
=

92

10x10x18'
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in which the extreme wheels revolve in opposite directions, there-

fore s
2

is negative ;

^3 = 1-.-
269 x 26 x94_ 164809

'

a
'

10x10x18 ~45~6~'

In making these calculations it must be remembered that the

absolute period of E is a sidereal day and its period relative to

the wmifg is a solar day, also the period offg is a year. Now
from Art. 398 it appears that the absolute revolutions of any
wheel or piece of an epicyclic train are equal to the sum of its

relative revolutions and the revolutions of the arm when they
revolve in the same direction, and the same reasoning shows that

the number of sidereal days in a year is equal to the number of

solar days + 1.

Also n
3
and a are the synchronal absolute rotations of the arm

or annual bar f g, and Earth's axis CE\ therefore 3= number

of sidereal days in a year ; but the fractions in Art. 346 repre-
sent the number of solar days in a year, and we may therefore

employ them for ^ by adding unity as above. We may thus

obtain other and simpler trains than that already given. The
train e3 being carried by a small arm should be as simple and

light as possible. But it may be reduced to only two wheels by

making s
3 negative, and at the same time e2 positive, since- 3

must be positive.

For example, employing the fraction -_ - -
(vide p. 280) and re-

membering that the rotations n
3
are sidereal days, we have

w
3 _, 94963_95223_3 /7 x 29x157 ,

a
=

'"260' 260 2V 2x5x13

which compared with (1.), gives

V
Otherwise,

3 _7 x 29*57_203 x 157
-,ande2

10 x 164809- 27 x 58965

10x450-27x161

_ 56035 _ 5_x
7x1601

15,'J 3a xl7
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_7 8005 _ 7 /8056_,
~~3

x
~5r~3

x
v~5T

"

_ 7 /2 3

19.53_ 1

with an error of 33" -9 in defect.

Ao-
' 7 x 164809- 18 x 58965_ 92293_ 17x61x89

7x450-18xl6l~~
=

252 22 x3 2^xT

= 61 /23x67_ 1

with an error of 13" '7 in defect.

410. Ex. 4. In the ordinary construction of a planetarium,

difficulty arises on account of the number of concentric tubes

which are required to communicate the motion of the wheels to

the arms which carry the planets. This is avoided in a planet-
arium by Mr. Pearson. By interposing an epicyclic train between

each pair of planetary arms he makes them each derive their

motion from the next one in the series, so that the tubes are

entirely dispensed with. Referring to Rees' *

Cyclopaedia,' Art.

Planetary Machines, for an elaborate description and drawings of

this machine, I shall quote one portion as an example of the use

of our formulae.

A fixed stud m n, fig. 293, carries the whole of the arms in

order, of which the arms of Mercury and of Venus are only shown

Fig. 293.

in this diagram, the others being disposed in the same manner.
Between these arms a wheel A is fixed to the stud, and the arm
of Venus carries an epicyclic train, of which A is the first wheel,
and the last wheel D is fixed to the arm of Mercury. If, then,
the period of Venus

=<J> and of Mercury= $ , we have

since by virtue of the intermediate idle wheel b is negative,
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, n 1553
where

a
=-=

6()
-, nearly;

_ A C^ 945 _63x30~
BD

~
608

~
f6~x76

'

which are Mr. Pearson's numbers.
If on the other hand e/were the Earth's arm, and g h that of

Venus, we should have

_32T7 = , AC
. .

AC_ -
$ 1261 _ 13x97

9~016
=

BD'"''BD~ ~20T6~2 5.32.7'

To examine whether the idle wheel b cannot be dispensed with,

it must be observed that it is introduced to make s negative, and

that if it were removed s would be positive, and
n= 1 e. Now,

because the two arms must revolve in the same direction, - is
a

positive, therefore s if positive must be less than unity, which

makes n less than a, and the train-bearing arm revolve quicker
than the other. If, then, the arm of Mercury were to carry the

train instead of the arm of Venus, the idle wheel would be got
rid of.

Supposing, therefore, in the figure, that Mercury is changed
for Venus, the whole being inverted, we have

t

.AC ,$ AC 608nd= -^=1553'

AC . 9 945 2x5x53 ,

whence^i^^^- nearly,

2016 AC
or on the second supposition

=
3277

= ~"

BJ)>

13x97
*

BD~~ 3277 29x113'

EXAMPLES OF THE SECOND USE OF EPICYCLIC TRAINS.

411. The second use which I have mentioned of epicyclic

trains is for the establishment of an exact ratio of angular velocity

between two axes when the terms of the ratio are unmanageable

if applied to the arrangement of the ordinary trains of wheel-

work, and when an approximation (Art. 342) is not admissible.
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In Art. 401 we have shown that if s be an epicyclic train,

and if a driving axis be connected with the first wheel of the

train e by a train
//,,

and with the last wheel of the train s by a

train v, we have

when a and p are the synchronal rotations of the train-bearing
arm and of the driving axis respectively.
As the epicyclic train is in this case employed merely to con-

centrate the effect of the two trains /JL and v upon the axis of the

train-bearing arm, the epicyclic train itself may be employed in

Fig. 294.

the simplest form, as in
fig. 294, which shows one form of the

mechanism which results.

Bb is the axis of the train-bearing arm Gg, this arm carries a
wheel G which geers with two equal crown-wheels F and H
which are concentric to the axis Bb, but are each fixed to tubes
or cannons which run freely upon it.

The epicyclic train consists therefore of these three wheels,
F, G, and H, of which F may be considered to be the first

wheel, and H the last wheel.

Aa is the driving axis, and this carries two wheels D and L
;D serves to connect the axis with the first wheel F of the

epicyclic train by means of the train of wheel-work d, E and e
;

and Z, together with /, K and k, constitute a train of wheel-
work which connects the axis Aa with the last wheel H of the

epicyclic train. We have therefore

Ik

If the motion of the epicyclic train be considered with respect
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to the arm, it is clear that its extreme wheels F, H move in op-

posite directions, therefore s is negative and equal to = 1,GH

If therefore a ratio of angular velocity be given, of which the

numerator or denominator, or both, are not decomposable, we
must endeavour to find two manageable fractions whose sum
shall be equal to the proposed fraction, and employ them to form

a train of wheel-work similar to that shown in fig. 294.

This employment of epicyclic trains is given by Francoeur,*
from whom I have derived the calculations in the following
articles. He attributes the mechanism to Messrs. Pequeur and

Perrelet, about 1823, but the first idea of this method appears
due to Mudge, who obtained an exact lunar train by epicyclic
wheels before 1767.f

412. First case. Let - be a fraction of which the denominator
P

is decomposable into factors, but not the numerator.

Let the denominator p=fgh, therefore the fraction which

represents the ratio of the velocities will be . The denomina-
fffh

tor may often be susceptible of a division into three factors in

various manners, each of which will furnish a distinct solution of

the problem, subject to a condition which will presently appear.

To decompose - - into two reducible fractions, assume
#*

JL^fi.+ SL,
f(Jh f9h f9h

'

that is to say, afx+gy. It is easy to resolve this equation in

prime numbers for x and y, and obtain an infinity of values for

x and y that will satisfy the problem, and give

-_= .+
fgh gh^fh'

f and g must however be prime to each other, since a is prime,

which is the condition already alluded to.

For example, let be the fraction proposed. Since 216 =

* Diet. Technologique. t. xiv. p. 431.

t Vide Mudge On the Timekeeper, or Reid's Horology, p. 70.
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4 x 9 x 6 we may assume 27 1 = 9x + 4y,f= 9, g= 4. The ordinary-
methods employed in equations of this kind will give x= 31 4t,

y 9t2, where t is any whole positive or negative number,

yh= 24,fh= 54:. Hence we have

*=27, 23, 19... 31, 35, 39,

y= 7, 16, 25... -
2, -11, -20,

corresponding to t 1, 2, 3... 0, 1, 2,

271
The fraction - - is therefore equal to

27
_7_

23 16 19,25
24 54' 24 54' 24 54'

orto
3-1
-!, 35_11 39_20 oon<

24 54 24 54 24 54'

The first set referring to the case in which the crown-wheels

turn in the same direction, the second to that in which they turn

different ways.
But since 8 and 3 have no common factor, the denominator

216 might have been decomposed into 8 x 3 x 9, whence assuming
, we should have had

*=3 ],y= 93 8t, and

x= 2, 5, 8 ...... -1, -4, -7...

y=85, 77, 69, ...... 93, 101, 109...

whence the new decompositions

?L+^ A+Z1 A^ 6^ ?__!
27 72' 27 72' 2/72' 72 27'

and so on, all of which are solutions of the question.

Generally the proposed denominator must be resolved into

prime factors under the form ma
. n?.p

y ......and any two of the

divisors of this quantity may be assumed for f and g, provided

they be prime to each other. Thus if the equation afx-\-gy
be resolved in whole numbers, the component fractions will be

7 + W'
w^ere ^ ^s ^e Pro^uct f &U tne remaining factors of the

denominator, afterf and g have been removed.

413. Ex. 1. A mean lunation= 2 9d . 12h . 44r
. 3

// = 2551443//

,

therefore the ratio of a lunation to twelve hours= -
, of

14400
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which the numerator is a prime. But this fraction may be by
the above method resolved into two :

thus
850481 _40x 50 71x79
14400 6x6 50x32'

And if these fractions be employed for the trains

axes Aa, Bb will revolve with the required ratio,

and v, the

f a
for -=

And the periods are inversely as the synchronal rotations. If,

therefore, a period of twelve hours be given by a clock to the axis

Bb, Aa will receive a period accurately equal to a lunation.

The mechanism may be thus represented in the notation

already explained.

Axes



AGGREGATE COMBINATIONS.

Axes



AGGREGATE VELOCITY. 339

whence the trains
*-|

and
|I,

as in the first method. (Art. 412.)

For the second train,

8J*0 729_83 81

5040 633
^
720

~
63
+
80'

whence the trains
6
and .

63 40

If we represent the wheels which in the left-hand train corre-

spond to F, G and ff, by/, g and h, we have the following nota-
tion of the resulting machine.

Axes



340 AGGEEGATE COMBINATIONS.

and in this expression the two terms of the numerator having no

common divisor, may be so assumed as to differ by unity, by
which an enormous ratio may be produced.

For example, put a, c, e, g each equal 83,

6=106, d=84,/=65, A= 82,

and we get
a 834 -82x106x84x65 1

p 1 06 x 83 (83
2 + 84 x 65) 108646502

If in this machine we suppress the wheels h and e by making a

turn both b and g, and d turn bothy and c, we have*

a_ a cff-bf= 20 101x99-1002
1

P ty c+f 100x99 101 + 100 99495

417. If on the contrary we wish to make the shaft, whose re-

volutions are p, revolve slowly with respect to the arm ; then the

numerator of the fraction - must be a sum, and the denominator

Ct LL& ~ V
a difference ; therefore s must in the expression

- =- .- be posi-

tive, and nearly equal to unity, and /t and v must have different

signs.

Fig. 295 is a combination that will answer the present purpose:

mp is a fixed axis upon which turns a long tube, to the lower end

Fi 295
of which is fixed a wheel D, and to the

upper a wheel E; a shorter tube turns

upon this, which carries at its extremities

the wheels A and H. A wheel C is en-

gaged both with D and A, and a train-

bearing arm mn, which revolves freely

upon mp, carries upon a stud at n the

united wheels F and G. The epicyclic
train therefore is formed of the wheels

EFG and H, and is plainly positive, the

extreme wheels EH revolving in the

same direction.

Let H be the first wheel; .-. g=
F

,GE
C C

also ^~A
and v-- with different signs, since A and D revolveA D

different ways ;

*
Putting a= 20, 6 = 100, e=101, #= 99, and /=100. This latter combination is

given with these numbers by White (Century of Inventions).
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C HF C
A GE D

GE

put ^=10, (7=100, Z>=10, = 61, F=49, =41, #=51, and

we shall obtain- =25000, that is, 25000 rotations of the train-

P

bearing arm mn will produce one of the wheel C.

418. Generally, however, the first wheel of the epicyclic train

is fixed, in which case the formula becomes -=1 e. If e be
a

positive and very near unity, this will be very small, or n small

Avith respect to a, that is, the motion of the last wheel of the train

slow with respect to that of the arm. In the simple forms of

epicyclic trains, figs. 285, 286, and 287, the two latter are ex-

cluded, because s is negative, but the former with the train

A is usually selected, A being a fixed wheel, and

b-E
D

?= 1 _ is made as small as possible; which is effected by
a oD

making AEbD= =t 1.

Thus ifg= - be the Ambers of the wheels,

but as these large numbers are inconvenient for the wheels that

are carried upon the arm,

, ,111x9 . . n__l
"TOO x 10'

'

'a~1000'

31x129 n 1

419. This combination is used for registering machinery for the

same purpose as the contrivances in Arts. 395 and 396 ;
and since

the concentric wheels A and D (fig. 285) are very nearly of the

same size, the pinions b and E carried by the arm may be made

of the same number of teeth, or in other words, a thick pinion
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substituted for them which geers at once with the fixed wheel A
and the slow-moving wheel D*

Let M, M\, and K be the numbers of teeth of D, A, and

the thick pinion respectively, then

n_,Jg'x(Af-l)_ 1

a~ KxM M'

where M is the number of teeth of the slow-moving wheel.

EXAMPLES OF THE FOURTH USE OF EPICYCLIC TRAINS.

420. The fourth employment of epicyclic trains consists in con-

centrating the effects of two or more different trains upon one re-

volving body when these trains move with respect to each other

with a variable velocity ratio. I have already shown how this

may be .effected when the extent of motion is small, as in Arts.

386, 38 9j but by epicyclic trains an indefinite number of rotations

may be produced.
As an example of this application I shall take the equation

clock, as it is the earliest problem of this class which presents

itself for solution in the history of mechanism, and actually occu-

pied the attention of mechanists for a long period.f The object

of this machine is to cause the hands of a clock to point on the

usual dial, not to mean solar time, but to true solar time. For

this purpose w may resolve its motion as astronomers resolve the

motion of the sun ; namely, into two, one of which is the uniform

motion which belongs to the mean time, and the other the differ-

ence between mean and true time, or the equation. If, then, two

trains of mechanism be provided, one of them an ordinary clock,

and the other contrived so as to communicate a slow motion cor-

responding to the equation of time, and if we then concentrate

the effects of these separate trains upon the hands of our equation
clock by means of an epicyclic train, we shall obtain the desired

result. There are three possible arrangements, as in Art. 397,

(1) the equation may be communicated to one end of the train,

and the mean motion to the other, the arm receiving the solar

motion
; J (2) the equation may be given to one end of the train,

and the mean motion to the arm, the other end of the train will

then receive the solar motion; (3) the equation may be commu-

* In Roberts' self-acting mule.

t Vide the Machines Approuvets of the Aead. des Sciences.

| Employed in the equation clock of Le Bon, 1722.
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nicated to the arm, and the mean time to one end of the train,

when the other end of the train will receive the solar motion.* I

shall describe the mechanism of the latter arrangement.
421. Fig. 296 is a diagram which will serve to show the

wheel-work of that part of an equation clock by which the motion

Fig. 296.is given to the hands. This

wheel-work is commonly
called the dial-work. G is

the centre of motion of the

epicyclic train, GDethe train-

bearing arm. The wheels /
and C turn freely upon the

axis G, and the axis I)

carried by the arm has two
wheels D and c fixed to it,

which geer with / and C
respectively.

The epicyclic train con-

sists, therefore, of the four wheels (7, c, D and /, of which let C
be the first wheel. In this arrangement the equation is to be

communicated to the train-bearing arm, and the mean motion to

the first wheel C of the epicyclic train. Now for this purpose C
is driven by the wheel B, dotted in the figure, which derives its

motion from a wheel A connected with an ordinary clock, and as

the minute-hand M of the clock is fastened to the axis of B, this

minute-hand will show mean time upon the dial in the usual

manner.

The equation is communicated to the train-bearing arm GDe,
as follows. E is a cam-plate, which by its connection with the

clock is made to revolve in a year (Art. 346). A friction roller

e upon the train-bearing arm rests upon the edge of the cam-plate,
and is kept in contact with it by means of a spring or weight.
The cam-plate is shaped so as to communicate the proper quantity
of angular motion to the arm. We have seen how one end of

the epicyclic train receives the mean motion, and f, which is the

other extremity of the train, geers with a wheel g concentric to

the minute-wheel #, and turning freely upon it ; the solar hand

S is fixed to the tube or cannon of g, and thus receiving the

aggregate of the mean motion and the equation, will point upon
the dial to the true time which corresponds to the mean time

indicated by M.

* In the clocks of Du Tertrc, 1742, and Enderlia.
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The formula which belongs to this case is, (Art. 402),

n= a. l

in which e is positive and=y^.. Now if the synchronal rotations

of the minute-hand M and of C be M and m respectively, we

have m= M,
,,
and if those of / and g be n and s, we have

M== $. ff_. substituting these values in the formula, we obtain

Df-Cc ,

,, Be
s=a.-^ -- + M.J-,Dg Dg

of which the first part belongs to the equation, and the second to

the mean motion.

Now the mean motion of S must be the same as that of

M\ . =!. And for that part of the motion of S which is

D9
due to the equation, the expression a. J shows the pro-

/

portion between the angular motion of the train-bearing arm and

of the hand s, synchronal rotations being directly proportional to

angular velocity (Art. 20). If the arm is to move with the same

angular velocity as the hand,

and this is readily effected by makingf=c=g and C=2Z); also,

since Bc=Z)y where c=g) we must have J9=Z>, and these are

the actual proportions employed by Enderlin. But if it be

required that the arm move through a less angle than the hand,

through half the angle, for example, then C= 3D, and so on.

422. In the treatises on Horology, and in the machines of the

French Academy, may be found a great number of contrivances

for equation clocks, which was a favourite subject with the

mechanists of the last century. The machine itself is merely

curious, and the desired purpose may be effected in a much more

simple manner, if indeed it be worth doing at all, by placing

concentrically to the common fixed dial a smaller movable dial,

and communicating to the latter the equation, by which the

ordinary minute-hand of the clock will simultaneously show mean
time on the fixed, and true time on the movable dial, without

the intervention of the epicyclic train.*

* This is done in the early equation clocks of Le Bon, 1714, Le Roy, &c:
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Nevertheless, I have selected this machine as the best for the

purpose of explanation, as being easily intelligible. The most

successful machine of this class is undoubtedly the Bobbin and

Fly-frame, in which, by means of an epicyclic train, the motions

of the spindles are beautifully adjusted to the increasing diameter

of the bobbins and consequent varying velocity of the bobbins

and flyers. But this machine involves so many other considera-

tions, that the complete explanation of it cannot be given in the

present stage of our subject.



346 AGGREGATE COMBINATIONS.

CHAPTER III.

ON COMBINATIONS FOR PRODUCING AGGREGATE PATHS.

423. I HAVE already stated in the beginning of this work

that pieces in a train may be required to describe elliptical,

epicycloidal, or sinuous lines, and that such motions are pro-

duced by combining circular and rectilinear motions by aggre-

gation. The process being, in fact, derived from the well-known

geometrical principle by which motion in any curve is resolved

into two simultaneous motions in co-ordinate lines or circles.

If the curve in which the piece or point is required to move be

referred to rectangular co-ordinates, let the piece be mounted

upon a slide attached to a second piece, and let this second piece
be again mounted upon a slide attached to the frame of the ma-
chine at right angles to the first slide. Then if we assume the

direction of one slide for the axis of abscissae, the direction of the

other will be parallel to the ordinates of the required curve. And
if we communicate simultaneously such motions to the two sliding

pieces as will cause them to describe spaces respectively equal to

the corresponding abscissas and ordinates, the point or piece which

is mounted upon the first slide will always be found in the re-

quired curve.

This first slide, being itself carried by a transverse slide, falls

under the cases described in the first Chapter of this Part, and
the motion may be given to it by any contrivance for maintaining
the communication of motion between pieces the position of whose

paths is variable, as, for example, by a rack attached to the slide

and driven by a long pinion. For the purpose of communicating
the velocities to the two slides, any appropriate contrivance from
the first part of the work may be chosen.

424. If the curve in which the point is to move be referred to

polar co-ordinates, these may be as easily translated into mechan-

ism, by mounting the point upon a slide and causing this slide to

revolve round a center, which will be the pole. Then connecting
these pieces by mechanism, so that while the slide revolves round
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its pole the point shall travel along the slide with the proper ve-

locity, this point will always be found in the given curve.

425. Fig. 297 is a very simple arrangement,

by which a short curve may be described upon
the above principles.

E is the center of motion of an arm Ee which

is connected by a link with the describing point
s ;
D is the center of motion of a second arm Dd

which is connected by a link ds with the same

describing point s. If now Ee be made to move

through a small arc, it will communicate to * a

motion round d which will be nearly vertical, and

if Dd be made to move through a small arc, it will communicate
to s a motion round e, which will be nearly horizontal

; and as the

motion of the describing point s is solely governed by its con-

nection with these two links, these motions may be separately or

simultaneously communicated to it. A is an axis, upon which

are fixed two cam-plates, the lower of which, C, is in contact

with a roller e at the end of the arm Ee, and the upper, B, in

contact with a roller m at the end of an arm Dm, fixed at right

angles to the arm Dd.

When the axis A revolves the cams communicate simultaneously
motions to the two arms, which motions are given to the describing

point, one in a direction nearly perpendicular to the other ; the

point will thus describe a curve of which the horizontal co-ordin-

ates are determined by the cam B, and the vertical by the cam C.

In practice the shape of the cams may be obtained by trial :

the machine must be previously constructed, and plain disks of a

sufficient diameter substituted for the cams, then if the required

path of s be traced upon paper, and it be placed in succession

upon a sufficient number of positions upon this path, the cam-

axis being also shifted, the corresponding positions of the rollers e

and m may be marked upon the disks, and the shape of the cams

thus ascertained.

426. If the object of the machine be merely to trace a few

curves upon paper or other material, the principle of relative

motion * will enable us to dispense with the difficulties that are

introduced by the necessity of maintaining motion with a piece

whose path itself travels. For since every complex path is re-

solvable into two simple paths, let the describing point move in

one component path, and the surface upon which it traces the

curve move in the other component path with the proper relative

*
Already employed in Arts. 3a5, 395, 396.
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velocity, then will the curve be described by the relative motion

of the point and surface.

Thus to describe polar curves, the surface upon which the

curve is to be described may be made to revolve while the de-

scribing point travels with the proper velocity along a fixed slide,

in a path the direction of which passes through the axis of motion

of the surface. And as in this arrangement the axis of motion of

the surface and the path of the describing point are both fixed in

position, the simultaneous motions may be communicated to them

by any of the contrivances in our first Part, without having re-

course to the principle of Aggregate Motion. And thus, in

general, a firmer and simpler machine will be obtained.

Also the tracing of curves upon a surface is sometimes accom-

plished under the Aggregate principle by causing the surface

to move with the double motion, while the describing point is at

rest.*

427. Screw-cutting and boring machines are reducible to this

head. For the cutting of a screw is in fact the tracing of a

spiral upon the surface of a cylinder, and the motion of boring is

also the tracing of a spiral upon the surface of a hollow cylinder ;

the tool being in both cases the describing point, and the plain

cylinder the surface. Now as the tracing of this spiral is re-

solvable into two simultaneous motions, one of revolution with

respect to the axis of the cylinder, and the other of transition

parallel to that axis, we have in the construction of machines for

boring and screw-cutting the choice of four arrangements.

(1) The cylinder may be fixed and the tool revolve and travel. This is the

case in all simple instruments for boring and tapping screws, in

machines for boring the cylinders of steain engines, and in engineers'

boring machines.

(2) The tool may be fixed and the cylinder revolve and travel. Screws are

cut upon this principle in small lathes, with a traversing mandrel, as it

is called.

(3) The tool may revolve and the cylinder travel. The boring of the cylin-
ders of pumps is often effected upon this principle.

(4) The cylinder may revolve and the tool travel. Guns are thus bored, and

engineers' screws cut in the lathe.

428. But motion in curves may be often more simply obtained

by means of some geometrical property that may admit of being
employed in mechanism, as the ellipse is described by the trammel,

* The motion which must be communicated to a plane to enable it to receive

a given curve from a fixed describing point, is not the same as that which would
cause a point, carried by the moving plane, to trace the same curve upon a fixed

plane. Vide Clairaut, Mem. de FAcad. des Sciences, 1740.
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fig. 298. This consists of a fixed cross abed, in which are formed
two straight grooves meeting in C, and perpendicular to each

other; a bar PGH has pins
attached to it at G and H, which
fit and slide in these grooves, and
a describing point is fixed at P.
When the bar moves it receives

simultaneously the rectilinear

motion of the pin Hiu the groove
ab, and that of the pin G in the

groove cd, by which the describ-

ing point P traces a curve MPB,
which can be shown as follows to be the ellipse.
When HP coincides with ab, G comes to C, and therefore

GPBC, and when HP coincides with Cd, H comes to C and
therefore HP- CM.
With center C and radius CQ equal to HP, describe a semi-

circle AFM, and through P draw QPN perpendicular to cd

produced, join CQ, then QP is parallel to CH, also HP CM=
CQ, .'. CHPQ is a parallelogram.

' GP PN'

But CQ=C^and GP=BC,

' PN BC'
and the curve is an ellipse.

429. Thus also epicycloids or hypocycloids are described me-

chanically in Suardi's pen,*, by fixing the describing point at the

end of a proper arm upon the extreme axis B, fig. 285, of an

epicyclic train in the manner already explained in the first

Chapter (Art. 377). And in this instance we may also avail

ourselves of the principles of Art. 426, and describe these curves

by causing the plane and the arm which carries the describing

point to revolve simultaneously with the proper angular velocity

ratio, round parallel axes fixed in position.

430. But the most extensively useful contrivance of this class

is that which is termed a parallel motion, by which a point is

made to describe a right line by the joint action of two circular

motions, and as this is a contrivance of great practical importance,

it is necessary to examine it in detail.

* Adams' Geometrical and Graphical Eetayt.
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ON PARALLEL MOTIONS

431. A parallel motion is a term somewhat awkwardly applied

to a combination of jointed rods, the purpose of which is to cause

a point to describe a straight line by communicating to it simul-

taneously two or more motions in circular arcs, the deviations of

these motions from rectilinearity being made as nearly as possible

to counteract each other.

The rectilinear motion so produced is not strictly accurate, but

by properly proportioning the parts of the contrivance, the errors

are rendered so slight that they may be neglected.
432. Let Aa, Bb, fig. 299, be rods capable of moving round

fixed centers A and B, and let them be connected by a third rod

or link a b jointed to the extremities of the first rods respectively.

Fig, 299.

The rods Aa, Bb are termed radius rods, and the combination

is simply a piece of link-work, so proportioned as to be capable

only of performing alternate reciprocations.'
3*' This system may

be moved in succession through a series of positions, the princi-

pal ones of which are indicated by the figures 1, 1, 2, 2, 3, 3,

4, 4, a, ft, 6, 6, 1, 1, and so on repeatedly. If a tracing point c be
attached to some part of the link near its center, it will describe

a curve mcesnkbm, somewhat resembling the figure 8. If the

position of the tracing point be properly assumed, a very con-
siderable length of the intersecting portion of this curve will be
found to approximate so nearly to a right line, that it may, for

all practical purposes, be considered and employed as such.

* Vide above, p. 224, and figs. 211, 215, 217 at p. 222.
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Fig. 300.

433. For example, let Ee, fig. 300, be a crank or excentric,

which, by its revolution is intended to communicate a reciprocating
motion to the piston P through a link ec,

jointed to the top of the piston-rod PC*
In the common mode the upper end c of

the piston-rod would be guided in a verti-

cal line, either by sliding through a collar

or in a groove. If, however, the end c

be jointed to the center of a link a b con-

necting two equal radius rods ACL, Bb,
whose centers of motion B, A are at-

tached to the frame of machine; then

the path of c will be a certain segment cd
of the curve described in Art. 432

;.
and

if the motion of c be not too great with

respect to the length of the radius rods,

this curve will vary so slightly from a

right line that it may be safely employed
instead of a sliding guide. An algebrai-

cal equation may be found for the entire

curve,* but it is exceedingly involved and complex, and of no use

in obtaining the required practical results, which are readily de-

duced by simple approximate methods, as follows.

434. Let A, C, fig. 301, be the centers of motion, AB, CD
the radius rods, BD the link, and let the link be perpendicular to

the two radius rods in the mean position of the system ABD C.

Let AB be moved into the position Ab, and Cc, be the corre-

sponding positions of the other rod and the link. Draw bf

Fig. 301.parallel to BD. Now in the

first position the link BD is

perpendicular, and in the se-

cond position this link is

thrown into the oblique posi-

tion be, by which the upper
end is carried to the left, and

the lower to the right of the

vertical line BMd, through

spaces be, dc, which are re-

spectively equal to the versed

sines of the angles described

by the radius rods AB, DC in moving to their second positions

Ab, Cc. But as the ends of the link move different ways, there

* This is completely worked out by Prony, Architecture Hydraulique, Art. 1478.
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will be one point M between them that will be found in the

vertical line BMd, and its place is determined by the proportion

bM : Me:: be: dc.

Let AB=R, CD-r, BD= l,

= 6, DCc=(j>, and

x _R versin

lx~r. versing

Now as the angle BAb never exceeds about 20 in practice the

inclination cbf of the link is small, and Bb
(
= R6) very nearly

equal to DC (
=

r</>) ;
and as these angles are small we may

f) (h

assume without sensible error R sin _ = r sin ? ;

which is the usual practical rule.

This rule may be simply stated in words, by saying that the

segments of the link are inversely proportional to their nearest

radius rods.

Ex. Let R=7 feet, r=4 feet, 1=2 feet.

.-.x=
2-^=- ='727 feet= 8'72 inches.

435. The deviation of the point M from the line BD may be

measured with sufficient accuracy as follows, and it is necessary
to know it in order to ascertain how great a value of the angle 6

may be safely employed. For simplicity I shall confine myself
to the case in which the radius rods AB, CD are equal in length,
and taking their length equal to unity, let the link BD= l, draw

bf, re parallel to BD, and let the inclination fbc of the link to

the vertical=7;
' 7= -? sincere is small,

versin 6+ versin <f> 2 versin 9=-
j

--

-|
-

, very nearly.

Now rnf=rc, that is, sin 0+ 1 cos 7= Z+ sin
<j> ;

.-. sin <=sin I versin 7= sin 6 ^L =sin 6 x (versin 0)
2

.
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From this expression the value of < corresponding to any given
value of 9 may be calculated.

When the radius rods are inclined upwards, we have (fig. 302),
retaining the same notation,

Fig. 302.

I

bm + */*= re+ en, that is, sin + 1=1 . cos 7 + sin
(j> ;

o
.'. sin < = sin 6+ - x (versin 0)

2
.

Let the link be half of the radius rods ; therefore

sin < = sin 04 (versin 0)
2
,

where the upper sign is taken when the radius rods are above the

horizontal line, and the lower sign when below.

Also the deviation of the central point M of the link from a

vertical right line is equal to

versin Q_versin <ft__cos <ft
cos

2 2 2

The actual values of <, and of the deviation which correspond
to the principal values of 0, are given in the following table.
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deviation at 25 amounts to -0086 x 36 inches ='31 inches, and at

20 to '097 inch ; generally the entire beam is made equal to

three times the length of the stroke, and therefore describes an

angle of about 19 degrees on each side of the horizontal line.

436. Even this error may be greatly reduced by a different

mode of arranging the rods. Supposing the rods to be of equal

length and equal to unity, let Ab, fig. 303, be the extreme

Fig. 303.

A m-ftB TT-
1

angular position of the rod AB, let BAb= 6, and let the hori-

zontal distance AK of the centers of motion A, C, be made equal
to AB+ CD versin 6, instead of being equal to the sum of the

radii AB, CD, as in the former case. In this arrangement the

radii being supposed parallel in the first position AB, CD, it is

clear from the mere inspection of the figure, that the link is

inclined to the left in one position as far as it is inclined to

the right in the other very nearly ; and therefore the central

point of the link in the lowest position bd will be in the vertical

line which passes through the place of its central point in the

position BD.
But as the link is continually changing its inclination in the

intermediate positions between these two, there will be in these

intermediate positions a deviation of the central point from this

vertical line, which it is easy to see will be at a maximum when
the link is vertical. Let this happen when the radius rod is at

an angle BAe=6t,

and let DCf=<j>,, and mDB=dbs=<y ;

then we have mD+ Ds=pe+ ef,

that is, /.cos 7+ sin 0,:=sin 0, + l;

.-.sn versin 7= ^
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Bm versin 6
;T= '

also the deviation of the middle point=
cos ^~ cos

^.

The following table exhibits the corresponding values of the

angles and deviation, supposing as before that 7= -
; and also

that versin 0=2 versin 6
t
which is very nearly true.

e
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438. The complete parallel motion which is most universally

adopted in large steam-engines is shown in fig. 305.

Fj 305 When so employed the

E beam of the engine becomes

one of the radius rods of the

system. Ab is half this beam
whose center of motion is A.

It has two equal links ed, bf

jointed to it, of which bf is

termed the main link, and ed

the back link, and these are

connected below by a third

link df, termed the parallel

rod, and equal to be. The radius rod or bridle-rod Cd is jointed

to the extremity d of the back link ed, and its center C is fixed at

a vertical distance below A equal to ed or bf. The length of the

rods are so proportioned that f shall be the point to which the

rectilinear motion is communicated, or parallel point as it is

termed. To find the proportions let

Ae=R,be( =fd)=R/}
Cd= r,

draw Kd parallel to AB
;

.-. Kdf=BAb (
=

0), and let MCd=$,
then, as before, the point d is carried towards K through a space

equal to Cd versin
<j>
= r versin

<f>,
and the pointy receives simul-

taneously this motion towards K, and a motion in the opposite
direction arising from the inclination of the parallel rod df, which

motion is equal to df versin fdK=Et
versin Q. If these two

motions be equal the point /will remain in the vertical line Bf,
as required ;

sin2 ?

.'. r . versin
(f>
= R, versin 6, or-^-=__.

"/ -00Sm
2

But the rods Ae, Cd, connected by the link ed, form a system
similar to that of Art. 434, and, as before, we may assume

/J i /)

^e.sin-=G2sin|,or,Rsin 2
= r. sin * very nearly;

.. _'

^
& R,' -R;

that is, Ae is a mean proportional between cd and df.
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439. Since the joints Ae, ed, Cd, considered separately, form a

system similar to the first simple arrangement, it follows that if

the proper point be taken between d and e an additional parallel
motion is obtained

; so that this form combines two parallel
motions in one, and is commonly so employed in steam-engines,

by suspending the great piston-rod from/ and the lesser air-pump
rod from the link ed. The three parallel motions described (figs.

303, 304, and 305) are all due to Mr. Watt, and are to be found
in his patent of 1784.

440. Let AbfedC, fig. 306,
be an arrangement similar to

the last ; produce bf, and make

A j^b %
bp= ed--.*

Join AC and produce it

to G, making AG=AC . ^,Ae i

join Gp.

Suppose Gp to be a new radius rod, moving round a fixed

center G, it is clear in all positions of this arrangement that the

lines Gp and Cd, bp and ed will remain parallel, on account of the

fixed proportion of these lines respectively, therefore the pointy
would describe its straight line if fd were removed. But in that

case the arrangement Ab, bp, pG- considered separately forms a

simple parallel motion of the first kind, and it appears that the

more complex arrangement is equivalent to a simple one, occu-

pying a greater space in the proportion of AN : AM :: Ab : Ae.

Hence the convenience of the complex system.
441. There are various modifications of the latter arrange-

ments, but the proportions of the rods may always be found in a

similar manner to those already given. For example, in steam-

boats the beam is placed below the machinery, and the entire

arrangement of the parallel motion inverted and otherwise altered

to accommodate it to the necessity of compressing the entire

machine into the smallest possible space.

Fig. 307 represents an arrangement of the parallel motion for

steam-boats, in which Ab is the beam, A its center of motion ; a

short bridle-rod, Cd, is employed, and the parallel rod dm is

jointed to the main link bf below the parallel point/.

Let Ae = R,eb= dm = R
t ,
Cd- r, DCW= <, BAb= 0. Draw

* From Prony, Arch. Hyd. Art. 1481.
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AB, Kd horizontal, and fB vertical ; then the point d is carried

towards//? through a horizontal space

= Cd versin DCd=2r . sin
2

1.

Fig. 307.

And the point m is carried horizontally to the left by this move-

ment of d, and at the same time to the right through a space
=

a
dm x versin Kdm = 2R, sin8

-, since dm= eb and Kdm BAb.

The horizontal deviation of m from the verticalfB is therefore
/\ I

equal to mn= 2R, sin2 2rsin2 ?.

Also the deviation of b from the vertical fB, is equal to bg=

Ab x versin BAb- 2 . R+ R, . sina

|,

and since f is the parallel point, we have

But in the system Cd, de, eA, we may assume

r sin =R sin
|,

. sin2

|
=
^sin

2

|
;

.\ putting fm x, and mb= l, and arranging the terms,

we have -Ji ^"^/and^ 7 *=*.-
R' R+r
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If 7?
/
r=^2

, x= and the parallel point coincides with m, as

in Art. 438. If R
/r<lP, x becomes negative and the parallel

point will fall between m and b.

442. Let an isosceles triangle GFE, fig. 308, be suspended by
two equal radius rods CE, AF, moving on fixed centers A and C,
and jointed to the two extremities of the base FE respectively.

If now this triangle be swung from its central position (that is.

when the apex is equidistant from the points of suspension A and

C), so as to carry its apex G to a little
Fig 30g

distance on either side, as for example
to the position g, and to a similar one

on the opposite side /, then a describing

point at G will draw a curve which will

be found to vary very little from a right
line whose direction is parallel to the

base of the triangle when in its central

position GFE, provided the proportions
of the system be so arranged, that the three points gGtf are

situated in a right line. This arrangement, which is the inven-

tion of Mr. Roberts of Manchester, furnishes a parallel motion

which is in many cases more convenient than the former ones,

especially if the path required be horizontal.

To investigate the proportions, draw the arcs FB, DE, make

AB, CD perpendicular to FE and join BD. Let the extreme

position be that in which the radius rod AF becomes perpen-
dicular and coincident with AB, and the middle position that in

which the base FE of the triangle is horizontal, and therefore

parallel with BD. Then it remains to find such an altitude for

the point G, that its vertical distance above BD may be the

same in the middle and in the extreme position, in which case as

the two extreme positions are symmetrical to the middle one, a

right line parallel to BD will pass through the three positions

of the apex G, as required.

Let AB= CD= r, FE=b, BD= d, GK-h,
DCE=BAF=0, DCe=(j>, eBD= +,

Then in the middle position, we have

2r.sin 6+ b-d, (1)

in the extreme position,

b cos -fr+r. sin < = rf, (2)

and also b . sin i/r= r . versin $, (3).
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Again, in the middle position, the altitude of G above BD is

h -f r . versin 0,

and in the extreme position the altitude ofg above BD is

h . cos
>|r + - sin ^r,

and these are equal by the conditions of the problem ;

.-. h + r . versin Qh. cos
i|r +-sini|r. (4;.

In these four equations we are at liberty to assume three of

the quantities <j>, ty, 6, r, d, b, h, and the others may be deter-

mined ; the most convenient is to assume values for r, d, and b.

If r=d=l, then the following table shows a few corresponding
values of b and h.

b
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443. Let the lever AB, fig. 309, be jointed at the extremity A
to a rod or frame EA moving round a fixed center E, and so long
that the small arc Aa, through which _.

the extremity of the lever A moves, may
be taken for a right Hue in the direction D
of the line AF. CD is a bridle rod

whose fixed center of motion C is in the

line AF. Let CD=r, AD-E, DB
=R

t,
DCA=

<f>,
DA C 6, then, suppos-

ing as before for convenience that the

machine is in a vertical plane and the

line AF horizontal, the point D is car-

ried horizontally to the right through a space=r versin
<f>,

and

the point B receives this motion, and is also carried to the left-

horizontally by means of its inclination through a space=R/

versin 6, and if these be equal, the horizontal distance of B from

A will be the same as when the rods coincided with the horizontal

line AF ;
therefore we must have

R
/
versin 0=r versin <, (1)

also Dm= R sin 6r , sin < (2).

From these two equations the value of R, may be obtained for

any given values of R, r and 6 ; also,

n t

since R
/

. sin2

o
= rsin2

^, by (1);

/I j

and R sin . - = r . sin
^ very nearly, we obtain

If the distances AD, DC, DB be equal, and the point A be

made to travel in an exact straight line by sliding in a groove
instead of the radial guide, then the parallel point will describe a

true straight line perpendicular to AF, instead of the sinuous

line which in all the other arrangements is substituted for it.

For in this case the angle DAF is equal to DCA in all positions,

and since DB=DC, a perpendicular from B upon AC will

always pass through the same point C. In this respect this

parallel motion has the advantage over all others.

If the friction of a sliding guide at A be considered objection-

able, a small parallel motion of the first kind (Art. 434) may be

substituted for it.
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Fig. 310.

444. Toothed wheels are sometimes employed in parallel mo-

tions ;
their action is necessarily not so smooth as that of the

link-work we have been considering, but

on the other hand the rectilinear motion is

strictly true, instead of being an approxi-

mation, as will appear by the two examples
which follow.

445. Ex. 1. In fig. 310 a fixed annular

wheel D has an axis of motion A at the

center of its pitch-line. An arm or crank

AB revolves round this center of motion,

and carries the center of a wheel B, whose

pitch line is exactly of half the diameter of

the annular wheel with whose teeth it geers.

By the well-known property of the hypocy-
cloid any point C in the circumference of the pitch-line of B will

describe a right line coinciding with a diameter of the annular

pitch-circle. If then the extremity C of a rod Cc, be jointed to

this wheel B by a pin exactly coinciding with the circumference

of its pitch-circle, the rotation of the arm AB will cause C to de-

scribe an exact right line Cf, passing through the center A.

This is termed White's parallel motion, from the name of its

inventor ;
* and the law of its motion is exactly the same as that

described above (p. 215, fig. 204), which is known as Booth's

motion (patented in 1843).
446. Ex, 2. Two equal toothed wheels, A and B, fig. 311,

carry pins c and d at equal radial distances ; and symmetrically

placed with respect to the common

tangent of the pitch-circles fe. If two

equal links ce, de, be jointed to these

pins and to the extremity of a rod eE,
the point e will plainly always remain

in the common tangent, by virtue of

the similar triangles formed by the

rods, the tangent Je, and the line cd.

The velocity ratio of e to the

wheels is not however the same as

that produced by the common crank

and link of fig. 202, p. 214, for the

path of e does not pass through the

center of motion of the crank.

* Vide White's Century of Inventions.
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If however r be the radius of the crank ac or bd, R the radius

of the pitch-circles of the wheels, / the length of the link ce or ed,

and the angle cab= + 0, then it can be easily shown that the

distance of e from the line of centers ab is equal to

' (7?rsm^)8 =tr . cos 6.



PAET THE THIED.

ON ADJUSTMENTS.

CHAPTER I.

GENEEAL PRINCIPLES.

447. IN the elementary combinations which have occupied the

two previous Parts of this subject, the angular velocity ratio and

directional relation in any given combination are determined by
the proportion and arrangement of the parts, and will either

always remain the same, or their changes will recur in similar

periods. But it is necessary in many machines that we should

have the power of altering or adjusting these relations. These

adjustments may be distributed under three heads.

(1.) To break off or resume at pleasure the communication

of motion in any combination.

(2) To reverse the direction of motion of the follower with

respect to that of the driver ; that is, to change their directional

relation.

(3.) To alter the velocity ratio either by determinate or by
gradual steps.

These changes may be either made by hand at any moment,
or they may be effected by the machine itself, by means of a

class of organs especially destined for that purpose ; and which
are in fact a kind of secondary moving powers to the machine.

448. The communication of motion may be broken off by
detaching pieces that remain united during the action of the

combination, and therefore move as one. Thus wheels and

pullies are connected with their shafts for this purpose, by means
of catches or bolts

; and shafts are connected endlong with each

other by couplings, or other contrivances which admit of being
released or put in action at pleasure. Otherwise the communi-
cation may be broken off by disengaging the driver from the
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follower, which in the two kinds of contact action is effected by
withdrawing the pieces from each other ;

in wrapping connections,

by either slackening the belt or by slipping it off the pully ; and

in link-work, by disengaging the joints of the links.

449. But the whole of these contrivances as well as those by
which the directional relation is changed, belong to constructive

mechanism, and as they involve no calculations relating to the

velocity ratio, which is the principal object of the present work, I

shall not enter into any details respecting them, referring in the

mean time to the Encyclopaedias and other treatises on machinery,
in which they are fully explained.* The case is different with

respect to the third kind of adjustments, in which the velocity

ratio is the subject of alteration, and I shall therefore give

examples of the principal methods of effecting this purpose.

The adjustments of the velocity ratio may consist either of (1)

Determinate changes, which for the most part require the

machine to be stopped, or of (2) Gradual changes, which do not

require the machine to be stopped.

* Vide especially Buchanan's Essays on Mill-work by Rennie, in which these com-

binations are very fully treated of.
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CHAPTER II.

TO ALTER THE VELOCITY RATIO BY DETERMINATE
CHANGES.

450. LET there be two axes A, B, whose position in the

machine is fixed; and let it be required to connect these by
toothed wheels in such a manner that the velocity ratio may
assume any one of a given set of values. The simplest method

is to provide as many pairs of wheels as there are to be values,

and let the sum of the pitch-radii of each pair equal the distance

AB of the centers. Then to obtain any one of the required

ratios, we have only to screw the proper pair of wheels to the

ends of the axes. Sets of wheels for this purpose are commonly
termed Change-wheels. It is generally convenient that all the

change-wheels should be of the same pitch, and the numbers may
be calculated as in the following example. Let the given set of

1
O Q 4 Q K

values for the velocity ratio or the change-ratios be -, -
, -, -

, -, -.

Then, since the pitch and distance of the centers are the same in

every pair, the sum of their numbers of teeth must be the same
;

and this sum must also be divisible by the sum of the numerator
and denominator of each of the above fractions, or by 2, 3, 4, 5, 9.

The number required is therefore a multiple of 22
. 3 2

. 5= 180, and
if 180 be taken as the least possible number, we have the following

pairs of wheels, which manifestly fulfil the conditions :

Eatios
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451. To save the trouble of screwing and unscrewing the wheels,
the entire set may remain fixed upon their respective axes, if

arranged upon the principle of fig. 312.

Fig. 312.

D

Mm, Nn are the two axes ; A, a . B, b . C, c . &c. the respec-
tive pairs of change-wheels, and the sum of the radii of every
such pair being equal to the distance of the axes, the teeth of any

pair that are set opposite to each other will work. For this pur-

pose the upper axis is capable of sliding endlong, and is retained

in any required position by a bolt k, which enters into a groove
m turned upon the axis. In the figure A and a are shown in

action, but i any other pair, as D, d, are required to work

together, the bolt k must be removed, and the axis shifted endlong
until D and d come into geer. The same motion will bring the

groove n opposite to the bolt by which the shaft may be secured

in this new position, and similarly for any other pair of wheels.

The wheels must be, however, so placed upon the shafts, that

only one pair will come opposite to each other at the same time.

To effect this, the wheels are arranged in the order of their

magnitudes, placing the smallest at each end of the upper group,
and the others in alternate order with the largest in the middle,

and the wheels of the lower shaft in the reverse order, for a

reason which will presently appear.
Let m be a quantity rather greater than the thickness of each

wheel. Then, A and a being in contact, let the lateral distance

of B from b=m, that from C to c=2m, from D to d=3m
and that from the nth wheel to its fellow =(n l).m.
But as every successive wheel B or C\s too great to be pushed

past the previous wheel a or b of the lower group, these upper

wheels, to make the axis as short as possible, must each lie close
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to the previous wheel when the upper group is in its extreme

position to the left; and therefore the smallest distance between the

wheels of the upper set will be from A to B= ) from B to C=m,
from C to D=2m } and so on; between the lowest set from a to

b= m, from b to c= 2m... and so on; and if the wheels were each

arranged in one conical group, as from A to D, and from a to d,

the length of shaft required for n wheels would be the sum of the

thickness of all the wheels + their distances, which, for the upper

shaft, is equal to

[n + {0 + l+2 + ...(rc-2)}]m=|(rc-l).^-
) +n

Jm
and for the lower shaft equal to,

By arranging the wheels in two conical groups, as in the figure,

they occupy a much shorter length upon the shafts; for the

central wheel D can be pushed past its own wheel d, and the

same reasoning will then be true for the conical group DEFG
and defy.

Thus the length of shaft required for n wheels in two groups

of
n

each, will be for the lower shaft,

(where
n
- m is the space between the two groups),

which is much less than the former, and similarly for the upper
shaft.

In our example, the wheels on the upper and lower shafts

occupy spaces of 13m and 19m respectively, and if they had been

arranged each in one conical group would have occupied spaces

equal to 22m and 28m.

Similar arrangements to this are adopted in cranes for raising

weights, in which the choice of three or four velocity ratios is

required between the handle and chain-barrel.

452. But it is often inconvenient to make the sum of the radii

of change-wheels equal to the distance of the centers, and requires

moreover, as many different pairs of change-wheels as there are

to be changes in the velocity ratio, unless indeed some of these
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ratios be merely the inverse of others. The more usual method
therefore is, to screw a pair of wheels of the proper numbers to

the end of the axes, without regard to their radii, and afterwards
to connect them by an idle wheel. Art. 322.

Thus let a and b, fig. 313, be the axes upon which a pair of

change-wheels A and B have been fitted.

C is the idle-wheel, which may revolve upon a pin or stud

fitted to the end of a piece Cc, which has a long slit at its ex-

tremity. A slit Dd in the transverse Fig. 313.

direction is formed in the frame of

the machine, and the piece Cc which

carries the idle wheel is fixed in its

place by a bolt passing through the

two slits at their intersection.

By this method of fixing the idle

wheel it admits of being shifted about

so as to be put in geer with the two

change-wheels whatever be their dia-

meters.

There are various other methods of

shifting and fixing the variable center of the idle wheel, but the

effect is the same in all. If it be required also to have the

power of changing the directional relation, another piece like Cc

must be provided, upon which two idle wheels in geer are

mounted, and this piece must be brought into such a position

that one of these wheels shall geer with B and the other with

A ; A and B will therefore turn in opposite directions, whereas

in fig.
313 they turn in the same direction.

The number of change-wheels is greatly reduced in this

manner, because they admit of being combined in any pairs ;

thus, in the example (Art. 450), six change-wheels will be

sufficient instead of twelve, thus :

Ratios



370 ADJUSTMENTS.

Fig. 314.

453. On Speed Pullies. Let there be two parallel axes, Aa,

Bb, fig. 314, upon each of which is fixed a group of pullies

adapted for belts or bands, and of dif-

ferent diameters. A ready mode is thus

provided of changing the angular ve-

locity ratio of the shafts by merely

shifting the belt from one pair of pullies

to another. Such groups of pullies are

termed Speed Pullies. The diameters of

every pair of opposite pullies ought to be

so adjusted that the belt shall be equally

tight upon any pair. If the belt be

crossed, it is easy to show that this ob-

ject will be attained by making the sum
of the diameters of every pair of oppo-
site pullies the same throughout the set.

For let DK, FG be the radii of any pair, make GK a common

tangent to the pullies, draw FE parallel to GK and describe a

circle with radius DEDK^FG.
Then \ length of beli=mK+KG+ Gp,

and mK+ Gp Dm . mDK+FG . GFp
=DE x mDK for mDK GFp

.'.\ length=nE+EF,
which is constant for any pair of pullies of which the sum of the

radii equals DE.
454. In any group of speed-pullies if D be the diameter of

any follower, and K the constant sum of the diameters,KD
will be the diameter of its driver. And if L, I be the synchronal
rotations of the driver and follower respectively,

I _K-D_K
L~~D-- IT"

1 '

-,
in which equation putting for L and I the required series of

values, the corresponding diameters of the speed-pullies may be
obtained.

455. To save founders' patterns it is usual in practice to make
the two groups of speed-pullies exactly alike, placing the small
end of one opposite to the large end of the other.
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A regular geometrical series of values of -' may be obtained

for such a pair of similar pullies, as follows : Let r be the

common ratio of this series, n the number of terms, then the

extreme terms of the series must evidently be the reciprocals of

each other, therefore the series will be (putting m = - - for
n I

convenience) of the form,

But if K be the constant sum of the diameters, and D
l

....the diameters of the pullies in order, the same series will be

D, D, K-Dj K-D
l

K-D? K-DJ Z>
2 D,

and comparing the corresponding terms we have

A=r -, similarly 0,=^,
and so on.

456. Ex.1. To find the diameters of a set of speed-pullies

that shall give four values for , with a common ratio of 1-38 ;

j

the sum of the diameters of the corresponding pullies being

25 inches.

Here JT=25, r=l-38, w

D^-K-D^= 13-6; and D
4
=K D^lfci,

are the diameters in inches.

Ex. 2. Let there be a set of six speed-pullies in each group,

of which the diameters of the extremes are 13 in. and 4 in. : to

find the intermediate diameters.

The first and last terms of the geometrical series of six velocity

ratios is and !?, hence the common ratio being found by
13 4

logarithms as usual, gives r=l*61.

Also 7Sf=17, 01=
5

',
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whence the successive diameters are 4, 5'6, 7*5, 9*5, 11*4, 13, in

inches.

457. If a great number of changes of velocity be required

either in the case of speed-pullies or toothed wheels, a train

of axes must be employed, with the power of introducing a

given number of changes between each, in which case the total

number of changes in the system will be the continual product
of the numbers of changes that can take place between each

pair. Considering only a set of four shafts for the sake of

simplicity, let A
ls
Av A3, A4 , be the angular velocities of the

axes in order, and let the series of changes in the value of -
A '

form a geometrical series whose common ratio is r, and first term
A

a; .'.
* = arn

~ 1
is the wth term of this series. Similarly, let

^2

the mth term of'the series of values of *=bsm~
l

, and the &th

^3

term of the series of values of 3= c^ -1
. .*. Angular velocity

4
.

ratio of the extreme axes of the train when the wth
, nth

, and A
th

values of the respective ratios are employed

=^ = abc. rn
~ l

'.s
m -

l .t
k- l= Crn

~
l

. s
n~ l

. t*~
l

suppose.A
4

Let the number of changes or terms of which each of these

series consists be m, n, and k respectively, then may the entire

set of changes in the system be arranged in a con-

C tiuuous geometrical series with a common ratio t, as

in the margin ; provided we have

G* And also

If however we had counterchanged the values by
/7~m-lyX-_l , . A, -k-\A^ _, -. .

Cr making -isscr ~^ arK l

, and so on, the same value

Crt
A

*
A

*

C^ i^_i^-i
would have been obtained for i. It appears there-

fore that to form a regular geometrical series of

changes whose velocity ratio shall be t, the separate series of

change-values of the velocity ratios 1-

}
? &c., must be so ar-

^2 ^3
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ranged that the common ratio of some 'one of these series must
be t, and if there be k changes or terms in this series, then the
common ratio of a second must be **; also if this have m
changes, the common ratio of a third set must be t

km
, and so on.

458. Ex. 1. Change-wheels are employed in lathes for cutting
screws of any required pitch, and also in self-acting lathes. The
diagram, fig. 315, represents the general arrangement of this

mechanism.

Ab is the spindle or mandrel of the lathe, to which is united
in the usual way a cylindrical rod la upon which the screw is to

be cut. Cc is a long screw revolving Pig . 315>

in bearings fixed to the frame of the

lathe, and giving motion by means of

the nut n to a sliding table or saddle

upon which is clamped the pointed tool
B

/, which is intended to cut the screw.*

Every revolution of the screw Cc

will therefore advance the tool through the space of one pitch,

and if the spindle Aa revolve with the same velocity as the screw,

the tool will trace upon the surface of ba a screw exactly of the

same pitch as Cc. But if Aa revolve with a less velocity than

the screw, ba will have a greater pitch.

If Aa and Cc be connected by a set of change-wheels P, S, as

in fig. 313, we can, by properly choosing the numbers of these

wheels, obtain any desired pitch for the screw ba.

B is an intermediate axis supported by a slit piece as in fig.

313, and either carrying an idle wheel or two additional change-
wheels Q and R. The pitch of screws is commonly defined by

stating the number of threads in an inch. Let the screw Cc have

n threads in the inch. Then one turn of Cc advances the tool

through the space of
mc

, and one turn of Aa advances the tool
n p*ff

through the space which corresponds to
-^

turns of Cc, that is,

PR
through . -..- inches. The pitch of the screw Aa is therefore

/^ o N& *^^

** threads in the inch. Thus by providing the proper change-
Pit

wheels, a screw of any required pitch can be cut. The pitches

usually cut upon these lathes extend from about four to fifty

threads in the inch, and a set of twenty change-wheels will be

* This construction of a screw-cutting engine was first employed, I believe, by

Eamsden, and is at present universally followed. Vide Dcsc. (tf the Engine Jcr

Dividing Math. Inst, by Eamsden.
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r\ or

generally sufficient to supply all the values required for
-j~

These should be arranged in a table, and the wheels correspond-

ing to each written opposite to them, to save the trouble of com-

putation during the work.

459. If the apparatus, fig. 315, is used for turning cylinders

instead of for cutting screws, the arrangement will not essentially

differ, for the motion by which a tool traces a cylinder is pre-

cisely the same as when it cuts a screw, only that the spiral

thread is much closer. In a lathe for turning, the number of

cuts will be from 50 to 1,000 in an inch.

In computing the change-wheels for this purpose, we may
employ the principle of Art. 457, as in the following Example.

460. Ex. 2. Let it be required to compute a set of change-
wheels for a self-acting turning lathe, that shall have a choice of

twelve different pitches for the cuts, varying from about 50 to

1,000 in the inch.

The motion to be produced in the tool / is very slow, and an

endless screw may be therefore substituted for the wheel P, and

as this will place the axis B at right angles to Cc, the wheels

R and S must be bevil wheels.

Let the screw Cc have 9 threads to the inch, therefore n= 9,

and P=l, being an endless screw, therefore the number of cuts
Of

in the inch= 9 . Q . -=.R
This quantity by the conditions of the problem is to have

twelve values, forming a geometrical series of which the first and

last terms are 50 and 1,000, and therefore the common ratio

= 20TT= !.31 3 by logarithms.

By Art. 457, it appears that if we give to Q four values, and
Of

to three values, these sets must each form a geometrical series,

of which if the common ratio of the first =#=1-313, that of the

second must= 4= 2'972,= 3 very nearly.
o

Let the intermediate change of be made by employing two
o 1

equal wheels, then the three values of- will stand thus, -, 1, 3,R 3

and the same pair of wheels will serve for the two extreme values

by merely reversing their positions as driver and follower ; thus
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60' 40' 20'

four wheels only.

values of ' are obtained by

Geometrical
Series
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of the values of ~
S

will now be 2-26, and these values may be
R

obtained by four wheels thus,

20 32 48 68

68* 48' 32' 20-

Let the screw Cc have ten threads in the inch, then \ve easily

find the numbers for the endless screw-wheel Q to be 29, 22, 17,

and the table for this second system will stand as follows, em-

ploying only seven wheels, namely, two pair of bevil-wheels, and

three screw-wheels.

Geometrical
Series
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!D^

enable Aa to drive Bb. Cc is the mandrel of the lathe, upon
which is fixed a toothed wheel Pi a group of four or more speed-
pullies K runs loose upon the mandrel, Fig . 31(5.

but may be locked fast to the Avheel P, at F
pleasure, by a bolt/.

Opposite to K a similar group of speed-
A

pullies is fixed at H to the counter-shaft

Bb, so that if K be locked fast to the

mandrel motion is given to the latter from

the counter-shaft, by means of an endless

band placed upon any pair of the speed-

pullies. But if the pullies K be loosed

from the wheel P by withdrawing the , , u

bolt /, their motion is conveyed to the

mandrel by means of a pinion L which

is attached to the end of the speed-pullies.
In this case the spindle Dd is pushed

endlong through a small space, so as to

bring its toothed-wheel Minto geer with

L, and at the same time its pinion N
into geer with P, so that the mandrel and

its wheel P now derive their motion from

the shaft Dd which is turned by the ^L ""U|p
speed-pullies. In this latter arrange-
ment the motion of the mandrel Cc is

very much slower than that of the

pullies.

In this system then we have two changes between Aa and JSb,

Tf

or two values of *
; four between Bb and the speed-pullies K,

(jr

TT

or four values of
j=.;

and two changes between the speed-pulliesK

and the mandrel ; that is unity and p \ making the total number

of changes of the velocity ratio between Aa and Cc equal to

2x4x2= 16; and we may arrange them (by Art. 457) in a

geometrical series whose common ratio is t. Thus let the com-
T7

mon ratio of the series of four values of =
t, and that of the two

Ji.

values of = t
4
, then will that of

7
= <*.

(jr />1V

* The letters of reference opposite to each group of change wheels are here used to

represent the pair which is in action.
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For example, let the shaft Aa revolve at the rate of sixty

turns in a minute, and let it be required that the mandrel Cc

shall revolve from 2 to 270 in a minute. A geometrical series of

sixteen terms of which 2 and 270 are the extremes, would have

a common ratio of

1-38 =t-, .-. f
4 = 3*7, and **=: 13*68.

The diameters of the speed-pullies with the ratio of 1*38 have

been already obtained in Ex. 1, Art. 456, and are 9*6, 11/4,

13 '6, 15 '4, and as the quick ratio between the speed-pullies and

mandrel is unity, we have, when the mandrel revolves at its

extreme ratio of 270 in a minute,

270_15*4 .P.
~60~~ 976"

X
G'

f f
whence ~= 2*8 is the quick value of ;

Cr Or

2*8 2*8
and its second value = = = *75.

t* 3*7

If the diameters of the pullies at F be 15 in. and 28 in., those

at 67 must be 20 in. and 10 in.

Again, to find the numbers of the train of toothed wheels, we
have

~LN~ "TOO
--5~

Now the pinions L and N ought not to have less than twelve

leaves, and it appears from this fraction that they must be

multiples of five, we may therefore give them fifteen leaves each ;

whence the convenient train

MP__54x57
ILN 15 x 15"

The following table shows the result of these arrangements.
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Geometric
Series of

Turns per
min. of Co.
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be diminished by assigning a greater number of changes to that

series whose common ratio is t
km

; that is, by giving a higher
value to n which does not enter into the common ratios, than to

h and m which do; thus in the last example, the respective

values of k, m, n, are 4, 2. 2
;
if we take for these, 2, 2, 4, we

obtain =1'38,
2
=1'904,

4= 3'7, which avoids the great common
ratio 13'68, but here the ratio 3'7 is too great for a set of four

speed-pullies.

Again, if the respective values of k, m, n were made 3, 3, 2,

the number of component changes would be the same as before,

that is, 3 + 3 + 2= 8, but the total number of changes would be

increased to 3x3x2 = 1 8, and the common ratios would be

#=1-33, ^= 2-37, *
9 = 13-42, so that by putting three pair of

speed-pullies at F, G, and three at H, K, with the common ratios

of 2*37 and 1*33 two more changes are added to the system
without increasing the number of speed-pullies, and the great
ratio 13'42 rather lessened. However, it is plain that the nature

of the mechanism that admits of being conveniently employed
and the amount of changes required must always be taken into

account in every particular case, and a number of different trains

calculated to choose from. When change-wheels are employed,
as in Art. 450, their number may sometimes be reduced by com-

puting their teeth upon the principles of Art. 455, which plainly

apply as well to tooth-numbers as to the diameters of speed-

pullies. Thus every pair of the series is used twice, since every
two terms equidistant from the ends are the inverse of each

other.

463. In link-work adjustments are very simply made by drill-

ing holes in the arms and shifting the joint-pins from one to

another, or by more elaborate constructive devices for altering
the efficient lengths of the arms of the links ; the details of which

do not fall within the plan of our present work.
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CHAPTER III.

TO ALTER THE VELOCITY RATIO BY GRADUAL
CHANGES.

464. Ix the methods of the last Chapter it is obviously neces-

sary that the machines should be stopped in order to effect the

necessary changes of the wheels, or in the position of the bolts,

and so on
;
and besides, the series of changes themselves are not

continuous, and we have only the choice of a few given inter-

mediate ratios between the extremes. We have now to consider

how the velocity ratio may be altered by gradual changes, so as

to enable us to take any value for it between the extremes. The
same constructions will generally enable the changes to be made
without interrupting the motions of the machine.

465. Let Aa, Bb, fig. 317, be parallel axes, C, D solids of

revolution or long pullies connected by an endless strap. If this

Fig. 317.strap be crossed and the sum of every

opposite pair of diameters of these

solids be constant, the strap will be ,

tight in any position upon them. A c^

bar rs slides in the direction of its

own length, and is provided at t with

a loop or with friction rollers, be-

tween which the belt passes, and

which serve to retain it in its place.

In Art. 254 it is shown that a belt

may be guided by its advancing side

to any point of the surface of a re-

volving cylinder ; and this guide-loop

embracing the sides of the belt which are advancing to the two

pullies is sufficient to retain them in any position upon their

surfaces, provided the tangents to the generating curves of the

solids do not make too great an angle with the axis. If the bar

were removed, the two ends of the belt would be drawn each

towards the large end of its pully, by Art. 256 ;
but the loop is

sufficient to prevent this action. By sliding the bar and belt to

different points the velocity ratio will be gradually changed as
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the acting diameters of the driver and follower are thus both

gradually altered.

466. The solids are easily formed to suit the condition of the

constancy of their added diameters; for draw AM, ab, fig. 318,

parallel and at a distance equal to the

given sum of the radii, and let CPq
be the generating curve of one pully
round AM, then will the same curve

generate the other pully by revolving
round ab.

467. Let AN=x, NP=y, nP=y,,
A and a be angular velocities of the

axes AM, ab, respectively.

a y'

Now if the strap is to remain equally tight in every position,

we must have y + y /
= c

;

A_cy

If the solids be cones, of which AM= I, and Mq= r,

r

we have = -
r

- ' -- ~^ ---xvey
j

, ..
^

_

^

If equal shifts of the belt between A and M are to produce

equal differences in the velocity ratios, we have

a y
If equal shifts of the belt are to produce a geometrical series

of velocity ratios, then

and when #=0, NP=nP; therefore the origin of x is at the

point^, if AC=aC,

is equation to curve.

Also, c-y= c- _/_ =
x
c

;
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which shows that if we set off from the point A equal abscissa;

AN, A Q, in opposite directions the ordinates NP, sR will be

equal.
468. But in practice it is more usual to make the solid pullies

into cones, because the strap is apt to slip when the inclination

is great. In this case the desired succession of velocity ratios is

obtained by making the shifts of the belt unequal.
When cones are employed,

from which the shifts or values of x can be computed for any

required succession of values in .

a

Sometimes a cone and cylinder are employed for the two

solids, but in that case a stretching pully is required for the belt,

because the sum of the corresponding diameters is no longer con-

stant. If the cone be the driver the velocity ratio ~ will varyA
directly as the distance of the belt from the apex of the cone.

469. Variable velocity ratios are also obtained from wrapping
connectors by means of pullies so contrived as to expand and

contract their acting diameters, the structure of which belonging
to constructive mechanism, may be found in Rees' '

Cyclopaedia ;

'

they are termed Expanding Riggers.
470. The disk and roller is often used for the purpose of

obtaining an adjustable velocity ratio by rolling contact.

Aa the driving axis, to which is fixed a plain disk C. Bb the

following axis whose direction meets that of Aa. A plain roller

D, whose edge is covered with a narrow Fig. 319.

belt of soft leather, is mounted upon the

axis Bb, so that it can be made to slide

at pleasure to different distances from

the point of intersection of the axes, but

yet is prevented from turning with re-

spect to Bb. This roller and its axis

will therefore receive from the disk a

rotation by rolling contact ; and if r be

the radius of the roller, R the adjustable radius of its point
of contact with the disk, A and a the respective angular velocities

of Aa and Bb, we have
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=_ varies directly as R.
A r

But the rolling contact of the surfaces is imperfect, for perfect

contact in the case of intersecting axes can only take place be-

tween cones whose apex coincides with the point of intersection.

The following combination is more perfect in its action, but not

so simple in construction.

471. Let AB, fig. 320, be the axis of the driver, which is a

solid of revolution whose generating curve is Nn. The follower

is a conical frustum KM, whose axis A C must be mounted in a

Fig. 320.

frame in such a manner that the apex A of the cone may travel

in a line Aa coinciding with the axis of the driver, and that the

axis AC shall have the power of turning in position about the

point A, so as to enable the frustum to rest upon the surface of

the solid pully in every position of A C, and thus to receive

motion from it by rolling contact. Thus km is a position of the

frustum in which it touches the solid at m, and its apex has moved
from A to a, still remaining in the line AaB. If now the line

AM touch the generating curve Nn in all these positions of A C,

the portion of the solid in contact with the frustum is so small

that it will nearly coincide with the corresponding frustum of a

cone whose apex would be at A, and therefore coincide with that

of the follower. The contact action therefore will in this case be

complete.
But AM the tangent of Nn is thus shown to be of a constant

length, Nn is therefore the equHangential curve or tractory
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(Peacock's Ex. p. 174), to find the equation to which, we have,
if AB be the axis of x,

y Vdx* + dy* .

tan=^ --__^_ = a constant.

dy

=-- \/t
2

7

equation to curve ;

which integrated gives

* y
2

o

vvhence from assumed values of y the curve may be constructed

by points.

A/*2 y
2
is the subtangent= 5 suppose;

;-., i kg ittl.O -f& t " 6

y
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removed, and the cam may then be shifted at pleasure so as to

bring any section of into action upon the follower Dd ;
and also

this section may be allowed to continue its action as long as we

please ; thus we may, by properly forming the successive sections

of the solid, retain at pleasure the law of motion that belongs to

any one of them, or gradually change it into that which is ap-

propriated to any other section, by shifting the cam so as to

bring that section under the follower.

473. In link-work gradual changes of the velocity ratio are

effected by fixing the pins upon the arms in slits or sliding pieces,

that thus allow of gradual changes in the effective lengths of

these arms upon which the velocity ratio depends. This may be

managed in various ways. I shall conclude this Part Avith a

piece of link-work by which such changes may be effected with-

out the use of these adjustable pins.
This I contrived and constructed in 1840, and inserted a

description of its action with a diagram in the first edition of the

present work, but afterwards I gave it the more complete form

which is represented in the subsequent figure.

Fig. 321.

The parts of the link-work are sustained by a flat vertical board
standing upon a horizontal base of wood indicated by the parallel
lines GH.

The parts of the mechanism are disposed in four vertical layers
ickomng from the back-board outward, as will appear below.
A, fig. 321, is the fixed center of a crank or excentric Am,
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which by means of a link mn communicates in the usual way a

reciprocation of constant extent to the arm Dn, whose center of
motion D is sustained by a metallic piece in the form of a square,
the horizontal branch of which is carried under the base-board,
into whose lower surface it is housed and fixed with screws. The
vertical branch D is in front of the four layers, and sustains

the arm Dn by an axial pin or stud. This arm is in the fourth
layer.

Behind Dn a lever ECe is jointed to the vertical back-board

by a stud or screw C. This lever is in the first layer. At its

lower part it is jointed to a triangular board hef in the second

layer by a stud or screw e. At the opposite angle /, a joint pin
or stud receives the end of the link fg in the third layer, which
at its upper end g is jointed to the back of the oscillating

piece Dn.
When the crank is rotated, Dn oscillates, and by communi-

cating that oscillation to the angle/ of the triangle causes it to

oscillate about the angle e. But the oscillation .thus communicated

by Dn to hef is not constant in extent, for the motion given to

the point/is that which it would receive if Df were an arm fixed

at right angles to Dn. But by turning the handle EC, the

center pin e by which the triangle ehf'is jointed to the piece ECe,
is moved so as to alter the distance Df. The handle EC has a

feather edge on the left side which is in contact with the graduated
scale behind it, indicating five positions. When the handle is

placed at zero the joint pin / is brought behind and coincident

with D) the link gf therefore moves as one piece with nD and no

oscillation is given to the triangle about e. On the other hand
when the edge of CE is moved to 4 the center e comes behind

D and the whole oscillation of Dn is communicated to the triangle

lief. The oscillation of hef about its shifting center e is conveyed

by the link hk to an arm BF moving on a fixed center screw at

B and provided with a graduated scale to show the extent of its

motion, which is always limited by zero on the left hand, and by
1, 2, 3, or 4 on the right hand, according as the fiducial edge of

E is fixed at the number which corresponds to the extent of

angular motion required.
As the travelling of the center e does not stop the motion of

the system, this combination affords a ready method of adjusting

the relative velocity in link-work, or of entirely cutting off the

motion of the follower BF without stopping the motion of the

driver Am.
cc 2
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I will conclude this part with a few examples of combinations

for which I neglected to find a place in the previous pages.

DIFFERENTIAL DETENTS.

474. Hatchet wheels * are sometimes employed in machinery

;hich requires them to be moved through very small angles, or

Fi 392 angles with very small differences.

Thus the teeth become weak. But

this defect can be remedied by the

arrangement shown in fig. 322. A
is an ordinary ratchet wheel with

strong teeth, Bb, Cc, Dd are three

detents, of which Bb is holding the

wheel by butting against the radial

side of the tooth at b. The weight

^suspended by a cord coiled round

a pully E is merely introduced to

represent the direction of the force

acting to resist the rotation of the

wheel. The graduations by which

the upper teeth are each divided

into three equal angles are also given to facilitate the explana-
tion of the principle of this peculiar mechanism.

It will be seen that Bb abuts as already said against the radial

side of the tooth at b\
; the second detent Cc is resting on the

upper part of the tooth 2c at a distance of one-third of its pitch,

from the radial side of the tooth 2c
; the third detent Dd rests

at a distance of two-thirds of the pitch from the radial side of the

tooth 3d. Neither Cc nor Dd are employed for holding the

wheel.

If the wheel be now turned by grasping the lever EF or pull-

ing the small weight w in the direction for raising the weight W
through a space of one-third of the pitch of the teeth, the butting-
end c of the detent Cc will drop into the space 1,2, behind it and

abut against its radial side 2c. If the wheel be again moved, the

butting side d of Dd, which was brought by the last motion within

one-third of the pitch towards the radial side 3d, will now drop
into the space 2, 3, and hold the wheel. A third motion will

bring the end b of the detent Bb to drop over the radial side of

the tooth marked o. The result is that this wheel, with 20 teeth,
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can be held fast in positions that are measured by three times
that number of small angles. The size of the teeth gives strength
to resist heavy strains.

By employing more detents, e.g. five, which is readily effected

by arranging their butting sides at distances equal to one-fifth of
the pitch, instead of one-third as in the figure, smaller angular
motions are obtained. These arrangements are employed in

power looms.

SAXTON'S DIFFERENTIAL FULLY.*

475. This contrivance was intended to enable a team of

horses travelling on an ordinary highway to drive a coach at a

rate of 30 miles an hour. It was proposed in 1833 by an

Fig. 323. Fig. 324.

American engineer named Saxton, in the infancy of railroads ;

but the only journeys it performed were in the Adelaide Gallery,
where a working model was exhibited for a considerable time.

Like many really valuable kinematic combinations, this contri-

vance, wholly inapplicable to the purpose that its inventor in-

tended it to fulfil, may be applied with good effect to other

machinery. The diagrams, figs. 323 and 324, represent elevations

of the face and end of a model of the parts on which the action

depends.
A long narrow horizontal board VQ fig. 323, PQ fig. 324, to

which a vertical board ST is jointed, sustains the moving parts.

These are 1st, the cylindrical wheel W, whose circumference rolls

in a groove sunk in the base-board at , fig. 324, and indicated

by the dotted line above VQ in fig. 323. A double-grooved

* Vide Art. 386.
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pully is attached to the face of the wheel W. In this model the

acting radii AB, A C, of the grooves are as 2 to 3.

At the ends of the vertical board pullies E and F are fixed, of

such a diameter as will enable their upper tangent line EF to

touch the acting diameter of the small carriage-pully YB, and

the lower tangent line GHto touch the diameter XC of the large

carriage-pully.
The four pullies, EG, BYB, FH, CXC, are connected by the

endless band which is supposed to be extended along the road,

upon which the carriage is to be drawn. Suppose now that a

force is applied at K to pull the rope band in the direction Kk,

the pully at FH causes the lower portion HG to travel in the

opposite direction.

At every instant, therefore, the vertical radius A C of the great

double pully being solicited by two equal and opposite forces

applied to B and C, the radius A C turns about an instantaneous

centerD bisecting the line B C. Thus the point A is carried in the

AD
direction of the radial motion with a velocity =-7r_. x velocity of

BJJ

B. Evidently the point A moves with the velocity ( V) of the

carriage, and the point B with the velocity (u) of the horse. Let

the larger radius AC of the double pully s=R, and the lesser

m, teL of carriage V AD
radius AB-r. Then-- --s = _

vel. of horse v BD R r

for BD= R

7? *^ 77~

In the diagram == .. 5 and the carriage travels five times

as fast as the horse.

This principle may be conveniently applied to the communica-

tion of motion to various parts of machinery which are mounted

on travelling frames, as for example in the manner of the mule

carriages of spinning and weaving mechanism. In the footnote *

* ' An Investigation of the Principle of Mr. Saxton's Locomotive Differential Pulley
and Description of a Mode of Producing Kapid and Uninterrupted Travelling by
Means of a Succession of such Pulleys set in Motion by Horses or by Stationary Steam

Engines,' by John Isaac Hawkins (Third Report of British Association, p. 424, 1833).
He concludes by stating that ' in this way 388 horses, each acting, at their most effective

or walking pace of two miles and a half per hour, on a mile of rope, might easily drive

a coach containing eight persons from London to Edinburgh in 13 hours at the rate of
30 miles an hour, the coach passing from truck to truck without stopping, and the truck

returning to take another coach every five minutes : 500 passengers a day for the whole
distance would be very moderate labour for that number of horses.'
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I quote from the third Keport of the British Association (1833) a

paper written by Mr. J. H. Hawkins, then a leading engineer,
which will show the wild ideas concerning travelling by steam
which were entertained by the inventors of that day.

Fig. 325.

TROUGHTON'S DIFFERENTIAL FOOT-SCREW.

476. The portable astronomical instruments which rest upon a

flat tripod require, for the purpose of levelling them, that each arm

(or rather foot) should be provided with a foot-screw. These
screws are vertical and are tapped with fine-threaded screws,
each received in a hole near the extremity of one of the feet.

The lower end of the screw is flat and rests in a small cup sunk
on the top of the table or support, which is placed on the ground
or floor on which the apparatus rests.

The foot-screws are employed to level the instrument, for

which purpose the thread must be fine and accurately true in

every, part.

Troughton's differential screw enables the fineness of the thread

to be dispensed with, in the manner shown by fig. 325, which re-

presents a vertical section through the axis of

one of the screws made transversely to one of

the feet CD.
Each screw is double, consisting of an outer

and inner one, each having a milled head.

The outer screw, whose head is A, is tapped
into the hole of the tripod foot. The inner

screw is finer than the outer one, and is

tapped into a hole bored in the axis of the

latter. In the instrument described in the
* Memoirs of the Astronomical Society,' vol. i.,

p. 37, the exterior screw A has 30 turns, and

the inner screw B 40 turns in the inch. The action of the con-

trivance is as follows.

(1.) If we turn A and B together, the effect in raising or de-

pressing the end of the tripod is that which is due to the natural

range of the screw A.

(2.) If we turn B alone, it is that which is due to the range of

the screw B.

(3.) If we turn A alone, the friction of the foot of B in the cup
of the support will prevent B from moving, and the effect upon
the foot of the tripoa is equal to the difference of the ranges of

the two screws.
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One complete revolution of A clockwise will cause it to descend

into its nut, which is the end of the tripod, through -^ of an inch,

which, if A rested on the support, would raise the tripod by that

quantity. But A, in descending one revolution, is carried down-

wards by the thread of B through -fa of an inch, and this motion

is also communicated to the tripod, consequently the combined

result raises the tripod-end through (5*0 4*o)=TJTr ^ an "lcn "

AMERICAN WINDING STOP.

477. The principle of the hunting cog* is employed in Ameri-

can clocks to prevent the over-winding of the spring.

Fig. 326. For this purpose the winding arbor

C has a pinion A of 19 teeth fixed

to it close to the front plate. A
pinion B of 18 teeth is mounted on

a stud so as to be in geer with the

former. A radial plate CD is fixed to

the face of the upper wheel A, and a

similar plate FE to the lower wheel B.

These plates terminate outward in

semicircular noses D, E, so propor-
tioned as to cause their extremities to

abut against each other as shown in

the figure when the motion given
to the upper arbor by the winding has

brought them into the position of con-

tact. The clock being now wound up.
the winding arbor and wheel A will

begin to turn in the opposite direction.

When its first complete rotation is

effected the wheel B will have gained one tooth distance from
the line of centers, so as to place the stop D in advance of E
and thus avoid a contact with E, which would stop the motion.
As each turn of the upper wheel increases the distance of the

stops, it follows from the principle of the hunting cog, that after
18 revolutions of A and 19 of B the stops will come together
again and the clock be prevented from running down too far.

The winding key being applied, the upper wheel A will be rotated
in the opposite direction, and the winding repeated as above.

478. The following property of numbers is susceptible of appli-

*
Yidep. 261, above.
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cation to various purposes and should be known to mechanists.

It may be enunciated as follows. To arrange the thicknesses of
a set of blocks which will allow them to be combined so as to form
a pile of any height included in a given arithmetical progression,
whose first term and common difference is the thickness of the

least block, and its sum necessarily that of the entire set.

Let the least thickness =1, and the next = 2. 3 is obtained

by setting 2 upon 1. 4 requires a new block (
= 2 2

) and by
combining it with the previous ones we obtain

5= 4 + 1

6=4 + 2

7=4 + 2 + l = 2 3-l

Thus the combinations of three blocks \vhose thicknesses are

1, 2, 2 2
, give an arithmetical series of thicknesses from 1 to 7

(
= 2 3

~1).

Generally, the number of combinations of m different things
taken by ones, twos, and threes up to m, 2m 1.

But every number less than 2" is compounded of some number
of terms in the series 1, 2, 2 2

, 2
3

2", for if any given number
be transformed into the binary scale it will assume the form

Na2n+ b2n
~ l + .j02

2 + 9'2 + w> where a, b, c, are each less

than 2 and consequently either or 1.*

Hence if we have m blocks whose respective thicknesses are

the terms of the series 1, 2 2m
~

l their combinations will

supply 2
m

1 thicknesses, including every arithmetical number

from 1 to 2m 1, e.g. let ?w= 4, the thicknesses of the blocks will

be 1, 2, 4, 8, and their combination will supply all the numbers

from 1 to2 4-l
(
= 15).f

Having occasion, some years ago, to arrange a spindle to carry

a pair of circular saws to cut mortises or the sides of grooves, this

principle appeared to me to be applicable to my purpose.

The saws were necessarily kept apart by one or more washers,

determined by the width of the groove or mortise, and by the

above rule four washers whose respective thicknesses are T̂ , ,

^, and of an inch gave me 15 distances with a common difference

of -^ inch. The width of the mortise is manifestly equal to the

sum of the thicknesses of the two saws and that of the selected

group of washers.

* Vide Barlow On Numbers, p. 238.

t This proposition is usually illustrated by a series of weights corresponding to the

series 1 to 2", by which any number of pounds can be made up by selection.



PART THE FOURTH.

ON MECHANISTIC COMBINATIONS FOR THE ACTION OF

WHICH PROPERTIES OF FRICTION ARE EMPLOYED.

CHAPTER I.

ON FRICTION IN GENERAL, AND THE MODES OF
DEMONSTRATING ITS PROPERTIES.

479. I HAVE in the preface to the present work stated that I

have omitted altogether the consideration of the resolution and

composition of forces and pressures, confining myself to combina-

tions for the modification of motion only. Yet there is a numerous

class of kinematic devices, the action of which depending upon

properties of frictional pressures ought not to be excluded from

a treatise on the modification of motion.

In the following chapter I have described and classified these

frictional combinations, but have avoided the introduction of

complex analytical formulae, which are in several of the modes
of employing friction necessary for the precise calculations of

the magnitude of the pressures which are due to the nature of

the mechanism, but not required for the explanation of its mode
of action. In such cases I have referred to authors who have

already published such calculations.*

480. Let the upper surface of a fixed solid body be wrought into

a horizontal plane, and let a second solid have its lower surface

wrought into a horizontal plane, which is to be placed in contact

with the former fixed plane.
Now let a pressure be applied to move the upper solid, usually

* The list begins with Amontons, 1699, and continues with Parent, 1700, 1704,
Sauveur, Varignon, Leupold, Desaguliers, Euler, &c. &c., and extending to our time
includes the names of most of the writers on mechanics and experimentalists on
mechanical properties of materials, e.g. Morin, Moseley, Whewell, &c. &c. &c.
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by weights placed in a scale suspended to a cord which proceeds

horizontally from the upper solid to a pulley which turns it

vertically downwards, so that weights may be suspended from it.

Thus we have a force variable at pleasure by which we can

measure the resistance opposed to its motion, which is partly due

to the pressures which keep them in contact, and partly to the

constitution of the bodies and the state of the surfaces in respect
to smoothness or roughness, dryness or lubrication. The resis-

tance is termed friction.

The constitution of the bodies cannot be defined by laws, but

must be expressed by coefficient numbers obtained by experi-

ments, in the same manner as specific gravities, elasticities, &c.

Experiments made with great care, and repeated by different

persons, have shown the proportional magnitude of the friction in

different substances. These results are recorded in two manners.

The first, by writing down the fraction which, for each pair of

substances, expresses the ratio of their friction to the pressure by
which the bodies are kept in contact. This ratio is usually noted

- friction
S.fssi --

pressure

481. The second method is by the employment of oblique

abutting pressures, as follows.*

Let EF be a fixed plane unpolished surface, supposed for

convenience horizontal, on which the similar lower plane surface

of a block DB rests, and let a force

applied to the upper extremity of

a rod CB be exerted to press this

upper block upon the fixed surface

below it by abutting obliquely upon
it. It should terminate below with

a blunted point. From any point
in the rod let fall a normal CD to

the surface of the loose block.

Thus we have a triangle right-

angled at D. If CB represent

the butting force in the direction of the rod, we may resolve that

force into CD which presses the surfaces normally together, and

DB parallel to the surfaces, which is exerted in the production of

* This elegant and accurate method was discovered by M. Parent, and is the sub-

ject of his Essay in the Memoirs of the Academy of Paris. ( Vide Mem. Acad. Par.

1704, p. 173.)
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a direct push of the movable block upon the fixed surface EF in

opposition to that resistance.

Thus the oblique or butting force produces by its normal or

pressing component, a force which governs the magnitude of the

frictional resistance, and by its horizontal or pushing component
a force which is in direct opposition to that passive resistance.

Let the angle BCD made by the butting force with the

normal pressing force CD be such that the pushing component
DB be exactly equal to the frictional resistance. No motion of
the movable block will take place however the magnitude of the.

butting force be varied, because the ratio of the pressing component
to the pushing component remains the same. This particular

value of the butting angle was termed the angle of equilibrium

by Parent, but is now named the limiting angle of resistance.

If this angle be diminished by inclining the rod forward as at

B (7 the pressing component CD is increased as at CD* and the

pushing component diminished to D/B and thus the frictional

resistance is increased by the greater pressure and the pushing
force diminished. Hence the block cannot be made to slide Avhat-

ever effort be exerted at C". On the other hand if the limiting

angle be increased by inclining the rod backward, the pressing

component is diminished to C" D" and the pushing component
increased to BDV So that the block cannot be prevented from
sliding whatever be the amount offorce applied to C".

The passages in italics are the translated words of Parent*
from his paper in the * Memoirs of the Academy of Paris,' 1704,

p. 173.

The butting rod or piece CB (fig. 328) may be terminated

below by a convex surface resting either on a fixed plane BD or

a curved surface GBF.
In the first case the point of contingence B of the two surfaces

must be joined by a right line BC with the point of application

* The Rev. H. Moseley was the first to perceive that this limitation of the space
within which the force rod CB pressing on a given point of a substance in frictional

contact with a fixed surface acts without producing motion, is not confined to one
normal plane but may radiate in all directions from this point B, and is exerted in an

infinity of different directions included within a certain angle, CB D, to the normal.
a B, or rather within the surface of a certain right cone, having the normal for its axis

and the point of resistance B, for its vertex. Moseley on the Equilibrium of the Arch :

Camb. Phil. Tr., 1835, vol. v. p. 302. In his Mechanical Principles of Engineering;
1843, p. 149, he claims to have first given in the above paper, not only the properties
of the cone of resistance but also those of the limiting angle of resistance, which latter

1 have shown above to have been discovered and demonstrated a century and a half

before, by Parent.
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Fig. 328.

C of the pressure at the other extremity of the rod, and the angle
which this right line makes with the normal Ba will be that

which is equivalent to <.

If the lower extremity of the rod be a

curved surface resting on another curved

surface, the angle of the rod with the

common tangent plane of these surfaces

passing through the point of contingence
must be taken.

When experiment has shown us the

limiting angle <f>
which belongs to a

given pair of materials we can express
the value of the three sides of the triangle
CDB thus

Let butting force or total reaction (CS}=R
.-. normal pressure N=(CD)=R cos <

friction F=(DB)= R sin
<p

, friction (DB\f= = tan d>

pressure V CDJ

The triangle formed for any given pair of surfaces by the

friction F (
=DB\ the normal pressure N (= CD\ and the total

reaction R (
= CB\ which is their resultant, remains similar to

itself however the magnitude of the reaction R may vary, for by
the fundamental law it has a right angle included between sides

of given proportion. The angles are therefore constant, and it

may be said that the total reaction makes with the normal a

constant angle, which is termed the friction angle and will be

designated by </>,
and we obtain

482. The following table is a summary in numbers of the average
results of the numerous experiments made by the investigators

named above for determining the constants or values off obtained

by putting the different classes of materials in frictional contact.
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Materials in contact
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with each other given by that excellent experimentalist. In the

above figure I have confined the lines to the expression of the ex-

treme and mean values that appertain to the combination of ma-
terials of any one class with each other, as metals on metals,

woods on woods, bricks and stones together. For each class the

least a/id greatest angles are drawn and the two lines connected

by a bracket, from the central cusp of which a light double line

drawn to join the scale points to the mean value of DB which

belongs to the class in question.

484. The magnitude of the friction between a pair of plane
surfaces the one fixed and the other movable, is governed by three

principal laws which follow, and have been confirmed by in-

numerable experiments.
The 1st law is that the magnitude of the frictional resistance

between a given pair of surfaces of any materials is proportional
to the pressure that keeps them in contact.

This is easily exhibited by placing weights in the scale until

the upper surface begins to move. Then doubling the pressure

by added weights it will be found that the weights in the scales

must also be doubled to produce motion, and so on, remembering
that part of the frictional pressure is due to the weight of the

movable block.*

The 2nd law is that the frictional resistance is unaffected by the

area of contact, which is shown by first exhibiting the movable

piece with its largest surface in contact and then placing it on

edge upon the fixed plane, f

The 3rd law is that the frictional resistance is wholly unaffected

by the relative velocity of the rubbing surfaces.

The first law being admitted, the second law can easily be

proved by reasoning alone, when the pressure which produces
friction is equally distributed over the area of contact. For

* The metal blocks should be made of a definite number of ounces in weight, and

the multiplication of the weight which produces the frictional pressure can be easily

effected by adding one, two, &c., of weight equal to the unit ; wooden blocks are so

light that their weight may be neglected in estimating the amount of the frictional

pressure.

f The two first simple laws may be illustrated roughly by the following homely

experiments. Firstly, a brick laid upon the horizontal surface of another brick will

require the same force exerted parallel to that surface to move it whether it be laid

flat or set on edge. Secondly, if a third brick be laid on the moving brick the force

required to more the two will be doubled because the weight of the moving mass is

doubled. The first experiment exemplifies the second law, the second experiment the

first law. These two laws were discovered and stated by Amontons, the first experi-

menter on the subject. Mem. of the Academy of Sciences at Paris, December 29, 1699,

p. 206.
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if this area be doubled, every element of the area will have to

bear half the pressure that it sustained before the change ; and

as the friction on each element is proportional to the weight,

we have twice the number of elements each sustaining half the

friction, and the total resistance of the friction is therefore un-

affected.

485. In addition to these laws it must be mentioned that the

friction of two surfaces which have been for some time in contact

is not only increased, but is subject to causes of variation and

uncertainty from which the friction of motion is exempt. Also

it is well known that if the surfaces in contact are subjected to

vibrations impressed on the bodies in question by blows or other

causes the friction is diminished. Thus, when carpenters wish to

loosen the wedge which fixes the cutting iron of their planes they
strike the end of the plane smartly, and the vibrations thus im-

pressed upon the wood immediately unlock the wedge by dimin-

ishing the friction so as to allow it to be properly adjusted.

Also the vibrations generated in wheel carriages by travelling

over rough roads or pavements are apt to loosen the nuts by
which the parts of such carriages are united, by diminishing the

frictional adhesion of the nut to the surface upon which it is

screwed down, which surface by its elasticity reacts upon the nut

and repels it, thereby necessarily compelling it to rotate slightly
on the screw thread. This loosening of a nut can be prevented

by adding another nut, which must be screwed hard down upon
the first, to increase the pressure upon the screw thread.

The construction of the coupling links of railway carriages
offers another device by which the unscrewing of the connecting
screws from their nuts from the above cause is wholly prevented.
The instrument in question is so familiar to railway travellers

that a short description will suffice to explain its action.

Its object is to connect railway carriages with each other and
with the engine so as to form a train. From a central cylindrical
block two screws extend in opposite directions, one being right-
handed the other left-handed.

The nuts of these screws are each attached to a long staple.
As the opposite screws have opposite inclinations the effect of

turning the central connecting block is either to cause both screws
to enter their nuts and thus to draw the nuts and their attached

staples closer together, or if turned in the opposite direction to

cause the nuts and staples to diverge. When the apparatus is to

be employed, the staples, set at their greatest distance, are applied
at each end to the respective hooks of the two carriages which



FRICTION. 401

require to be coupled, the compound screw is then turned in the

direction which causes the staples to approach and draw the car-

riages together so that the buffers may come into proper contact.

The central block has an arm fixed to it, terminated by a ball,

which hangs downwards and is employed as a handle to enable

the block and its two screws to be rotated.

If the double screw were simply turned by a spanner when
thus regulating the distance of the staples, the vibration of the

carriages when in motion would gradually loosen the nuts, and

cause the double screw piece to revolve on its axis in the direc-

tion of the strain which tends to increase the distance of the

Fig. 330.

staples. But this effect is completely stopped by the heavy ball,

for the jolting and vibration of the moving carriages is never able

to throw the ball over the coupling link.

486. Figs. 330 and 331 represent the apparatus I employ for

D D
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the exemplification of the two first laws of friction. It is also pro-

vided with an additional portion to show the phenomena of butting

Fig. 331.

friction. This portion, which is marked with the Greek charac-

ters a(3y&r)0p, is removed when the apparatus is in use for the

first-named purpose.
ABCD is a back-board, to which a piece E is framed which

serves as a leg to connect it with a cast-iron foot F when in use.

GH is a horizontal shelf projecting from the face of the back -board

and employed to support the surfaces which are operated upon.
It is terminated at each end by fixed blocks LM, each of which

has a vertical slit for the passage of the cords which proceed from

the scale-pans WV. A set of prisms of wood and metal must be

prepared, of which the lower ones as Tt may be nearly as long as

the distance between the blocks L and M and a little narrower

than the shelf GH. They may be fixed by small wedges.
The upper or moving blocks, as K, must be much shorter and

nearly as broad as the lower block.

The brass and iron upper blocks may be 3 inches long, 2

inches broad, and f of an inch thick. Those of wood 8 inches

long for the lower and 5 for the upper, the same breadth of 3

inches, and
f-
of an inch thick.

The experiments are performed by placing weights upon the

movable block, and then others in the scale until the block

begins to slide. The former weights, including that of the block,
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represent the pressing force, and the latter the pushing or pulling
force that is equal to the frictional resistance.

To ascertain the value of the limiting angle for any pair of sur-

faces, blocks as above described must be prepared, and the weights
which just produce motion in the moving body be measured.
This being compared with the weight of the moving block will

give the ratio .,/,.*,^. where/is the co-CD pressing force
*

efficient of friction for the bodies employed, and < the limiting

angle of resistance,

The results of butting friction given above may be shown by
the apparatus in figs. 330, 331. This consists of a radial arm

&d, which is attached to the back of the board A C by a center

bolt at 8, and clamped fast at any desired angle by a second bolt

p which grasps the circumference of the lower edge of the arm.

The latter is expanded into an arc of a circle, Avhose center is &
and radius /3p, A second arm Or] is horizontal in its mean posi-

tion, and turns en a pivot stud at 6, and terminates outward in a

circular segment, grooved to receive a line and weights. At a

another pivot projects from the face of the second arm. and sup-

ports the upper end of a butting bar a/3, which turns freely upon
it and is finished below with a blunted hemispherical termination

which is received into a hollow sunk; in the face of one of the

upper friction blocks already described. This bar represents CB
in fig. 327 above, and admits of being set at any angle to the face

of the moving block. As shown at a/8, fig. 331, it presses the

block vertically (as at aB, fig. 327). But if the arm 06 be

removed to the position /SO* (drawn in dotted lines) the butting
bar is brought into the direction a'/3, corresponding to CB in

fig. 327. It will be seen that this bar can in fact be set at any

required angle from the perpendicular outwards by fixing the

arm &Q accordingly.
Also that the butting pressure conveyed by the butting bar and

generated by the weight is constant and equal to ^ For

as the adjusting motion of the bar pd takes place about an axis

87, fig. 330, the direction of which contains the hollow in which

the blunt end of the butting bar is received, the triangle 6af3 re-

mains constant, and therefore the bar a/3 receives a perpendicular

thrust in all positions as at 0V/3, until the butting bar is carried

beyond the limiting angle, when the movable block will be

pushed out of the first position. The projecting blocks at P
and G are placed to prevent the block from slipping too far.

D D 2
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487. Fig. 332 is a piece of apparatus which I constructed in 1840,

principally to exemplify the third law of friction, which declares

it to be unaffected by the velocity with which the rubbing sur-

faces move in contact.* The figure shows the machine in its

simplest form.

Fig. 332.

On a base-board AR an upright board CD is fixed, for the sup-

port of the apparatus. The measure of the frictional resistance

is obtained by a Marriott's spring dynamometer. This convenient

instrument is constructed to show the weight of goods or parcels,

and consists of a spiral cylindrical spring contained in a case

which has a ring at the top to suspend it from a fixed hook. A
slender rod affixed to the lower end of the spring hangs down-

ward and is terminated by another hook. When a body is to be

weighed it is hung on the latter hook, and its weight extends the

spiral spring downwards, until the increasing resistance of its

elasticity equals the weight. The rod is provided with an index

protruding through a vertical slit in the case which indicates the

weight on an engraved scale. In a larger form of the instrument,
which is the most applicable to our purpose, the rod in its motion

communicates rotation to an axis which protrudes from the center

of a cylindrical dial and carries a hand like a clock face. The
scale of weights is engraved on its circumference.

* No apparatus had been previously contrived to exhibit this law to an audience ; for

it had been proved by observing the motion of a sledge along a long horizontal bar,
for the purpose of ascertaining whether or no its motion be uniformly accelerated, thus

requiring care and time, with a solid and exact apparatus wholly incompatible with
the arrangements of lecture rooms.
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In the figure one of these dynamometers is affixed to the up-
right standard CD in such a manner that the rod OF, to which
the pressure is applied, is horizontal instead of vertical.

A cylinder H of hard wood is mounted on a horizontal axis

carried by two standards / and K, and furnished with a handle L.

An iron lever MN, is jointed at M to the standardD C, by means
of a strong stud, and is terminated at N by a hook. Vertically
above the axis of the great cylinder H a strong stud is rivefted

to the lever, and a small cylinder P revolves upon it.

A slip } QR, of wood or other material is compressed between

the rollers H and P, and connected by a wire link RF with

the end of the rod FG of the dynamometer.
The action of the machine is as follows. If the handle be

turned, the bar QR is drawn between the cylinders H and P
by the frictional adhesion produced by the weight of the iron

lever and its appended weight W. But this motion of the bar

draws out the rod GF of the dynamometer, and extends the

spring until it reaches the position in which the force exerted by
its tension exactly balances the friction of the lower surface of

the wooden bar upon the top of the cylinder //. The dyna-
mometer index therefore shows the magnitude of the friction.

If the cylinder H be turned further in the same direction the

bar will remain in the same position, with small variations due to

the inequalities of the rubbing surfaces of the cylinder and bar.

But the index will, with this exception, point to the same number
of pounds whether the cylinder be turned slowly or rapidly ;

thus showing that the amount of friction is unaffected by the

magnitude of the velocity with which the moving surface travels

in contact with the fixed surface.

The pressure which maintains the frictional contact of the bar

QR with the cylinder H, is produced by the weight of the iron

lever, the cylinder P, and the weight of the bar QR, but the

latter is so small that it may be neglected.

Let the hook of a small Marriott's dynamometer in its cylin-

drical form be applied to the hook N, and that end of the lever

raised.

Let R be the number of pounds indicated. This will be the

pressure which maintains the frictional contact estimated at the

point N. Let R=7. An additional weight of 7 Ibs. appplied

to the hook will double the pressure, and accordingly upon turn-

ing the lower cylinder, the index of the great dynamometer will

show a result double that of the first experiment
In my apparatus, when no additional weight is put on, the
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index stands at about 1^ Ib. ; 7 Ibs., 14 Ibs,, &c., raise the friction

to 3 Ibs., 4^ Ibs. and so on, exemplifying the first law, which

declares it to be proportional to the pressure.

The wooden bar is provided with a narrow fillet projecting

upwards on which the roller rests, and the lower surface is in

contact with the great cylinder along the whole breadth of the

bar.

If the bar be reversed, so as to place the fillet in contact with

the friction cylinder H, the quantity of friction under each

pressure will be found to remain the same as before.

Thus the second law is exemplified.
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Fig. 333.

CHAPTER II.

EMPLOYMENT OF BUTTING FRICTION.

488. THE instrument shown in
fig. 333, invented by M. Per-

rault before 1699, is termed by him a hand.
It is employed to govern

the course of a vertical rope
GH, which passes upward
and is carried over a pully

above, then brought down and
attached to any heavy load

that requires to be hauled up.
The construction of the me-
chanism allow the rope's end

to be hauled downwards but

holds it fast when it is let go.
The effect is similar to that of

a ratchet bar and detent, which

allows the bar to slide in one direction, but prevents it from

moving in the opposite.

The rope GH is passed through two holes, the one at the upper

part of the frame, and the other at the lower, which are some-

what larger in diameter than the rope. Two arms, or rather

jaws, A, B, move on center pins C, C, and are inclined down-

ward, their inward ends are cut obliquely, and bite the rope by
abutting upon it with their pointed extremities. A metal plate

R, is rivetted to the left jaw B, and projects beyond it, and, as

shown in the figure, is pierced with a slit. A pin projecting from

the jaw A is passed through this slit, so that if either jaw be

moved about its center the other will also be moved by this con-

nection.

The drawing shows that the arm B is urged upwards by a

spring Q, and that on the contrary the jaw A has a cord / at-

attached to it to pull it downwards at pleasure. The action of

the machine will now be understood.
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The jaw B being urged upwards carries with it the jaw A, by
means of the slit and pin, and the rope is therefore pressed
between the two, because the points which touch the rope lie

below the line of centers CC of the jaws, and therefore if a force

be applied to the upper part of the rope G to draw it up, the

biting points will approach each other as they move upward, and

press more and more powerfully upon it ; and if the angle CRG
be less than the limiting angle of the materials the sliding of the

rope upwards is impossible, but when the rope is pulled down-

wards, its friction upon the biting points carries them downwards

and outwards.

When it becomes necessary to draw the rope upward, the

cord Al must be pulled downwards, which will cause the biting

points to retire from the rope and leave it free.

The spring Q, when the machine is left, always preserves the

biting position of the jaws.
This principle was laid aside and forgotten for more than a

century, until 1815, when M. Dobo, a French mechanist, ap-

plied it to a ratchet-wheel.*

489. This wheel is a plain circular disk with a hoop rising up
round the circumference as shown in the section at n. A cylin-

334 _

drical shaft which is fixed to the disk

passes through a tubular socket, and a

transverse piece EC is attached to the

front end of the shaft. The tubular

socket being fixed to the frame of the

machine behind, the wheel and the

shaft with its attached arms are so

far free to revolve in either direction

independently of each other.

But a connection is established be-

tween them by means of the pieces
or pauls EC, EF, which are jointed
to the arm, and terminate outwards
with convex surfaces that bear against
the concave inside rim of the hoop,

and are pressed into contact with it by springs ; for it will be seen
that the radius AC and the line BC, which connect the hinge
pin C with the contact point B, make a considerable angle, and
therefore the arm A C and the piece BC are together greater than
the radius of the disk. Joining AB it is plain that the tangent

* Vide Bulletin de la Societe tfEncouragement, torn. xiv. p. 12.
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of the great circle at B is perpendicular to AB, and that the

pressure of the curved piece CB meets that tangent at an angle=
CBD. If this angle be greater than the frictional angle of the
substances in contact, the clicks BC, EF will not be able to slide

along the inner surface of the hoop, and will therefore carry it

along as the click or paul of a ratchet pushes the circumference
of a wheel by pushing against the radial sides of the angular
notches. As the transverse arm EC carries a friction paul at

each end the action is doubled.

If the rotation of this arm is made in the opposite direction, the

pauls BC, EF would simply turn the hoop backwards by virtue of

the pressure produced by the springs upon the pauls. But a piece
or detent cbd turning on a center c fixed to the frame is pressed

by the spring at s into contact with the outer rim of the hoop
wheel by its convex edge bd. Thus the pressure at b reacting

upon the axis or center c of the detent, causes a pushing force to

be exerted in the direction c b which makes an angle cbd with

the tangent of the outer circumference of the hoop wheel ; and, as

already shown, if this angle be greater than the limiting angle
6 of the surfaces of the detent and hoop, it will be impossible to

move the circumference in the direction that would diminish that

angle (namely clockwise), but if it be pressed in the opposite
direction from d towards b the angle cbd will be diminished and

the pressure at b relieved so as to allow the wheel to be turned.

This pressure has the advantage of preventing the wheel from

being carried by the momentum of its own weight beyond the

position in which the force which has moved it has left it.

In fact the action of this apparatus is equivalent to an ordinary
ratchet wheel with a detent. The difference being that in the

latter case the angles through which the wheel can be moved are

limited to whole numbers of teeth, and in the friction detents and

pauls the beginning and end of the angles depend solely on the

will of the operator.

Instead of applying the motion or ' live
'

pauls to the inside

of the wheel, a paul similar to the detaining paul cbd which

presses on the outer circumference may be mounted on a lever

AH whose axis A coincides with that of the wheel. The oscilla-

tion of this lever will push the wheel in the same manner as the

inside pauls of M. Dobo, and thus a wheel with spokes and a

plain cylindrical circumference can be used.

Messrs. Worssam have constructed a ratchet wheel in this

manner, which they term a < silent feed.' The circumference of

the wheel has an angular groove turned in it and the curved
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Fig. 335.

circumference of tke paul is made with the same angle outward,

and therefore grasps the circumference with greater firmness.

490. The principle of abutting friction has been applied to the

construction of lifts and hoists for mines, buildings in progress, &c.,

by providing them with contrivances to stop the descent of the

load when the suspending rope breaks. The earliest device for

this purpose is due to Dr. Hooke, and is described below (p. 416).

A modern patented machine represented in the diagram fig. 355

may serve as a specimen of this class of frictional apparatus.

AS, AB, are posts between which the case or vessel C, which

contains the load or persons, is guided. A cross-head df is

attached to the case by bars de, fg, and a rod

terminated upwards by an eye at b, and capable
of sliding through the socket in the middle of the

cross-head is fixed to a block at its lower end,

which block sustains the whole weight of the case

C. Two levers h k jointed to the block at their

upper ends and diverging downward, pass through
mortises in the suspending bars, as shown in

section, and a strong spring m connects the block

with the top of the case.

The rope ab supports the weight of the case,

which rests upon the block to which the butting
levers are jointed. If the rope break, the spring
will immediately draw the block downwards, and

the butting levers will be compelled to spread outward, and thus

to jam their lower extremities against their lateral posts AB, AB,
and thus prevent the farther descent of the case C.*

* This example is the arrangement patented as Bunnett's safety apparatus for lifts

and hoists, &c.
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CHAPTER III.

EMPLOYMENT OF JAMMING OB TWISTING FRICTION.

491. ONE of the earliest examples of this class is the car-

penter's
'
holdfast,' which is an old contrivance, being figured

and described in Moxon's ' Mechanick Exercises,' 1677.

This instrument consists of a cylindrical shank AB and a beak

A D of a peculiarly curved form as shown in the figure, which

exhibits it with its shank inserted into the cylindrical hole LM,

Fig. 336.

bored vertically through the bench* The end D of the beak

terminates with a flat kind of paw of a circular form, which presses

on the upper surface of the work H which is to be * held fast.'

I have introduced the dotted lines and the clamping screw at F,

to show a modern improvement to this instrument which will be

described below.

The mode in which this holdfast is enabled to press down the

work fast upon the bench is well described in the quaint words

of Moxon as follows.

' It performs this office with the knock of an Hammer or
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Mallet upon the head (A)
* of it; for the Beak (D) of it being

made crooked downwards, the end of the Beak falling upon the

flat of the Bench f keeps the Holdfast, above the flat of the

Bench, and the hole in the Bench the Shank is let into being
bored straight doAvn and wide enough to let the Holdfast play

a little, the Head of the Holdfast being knockt, the point of

the Beak throws the Shank aslope in the hole in the Benck and

presses its back-side (Z) hard against the edge of the Hole on the

upper superficies of the Bench, and its Foreside (M) hard against

the opposite side of the under superficies of the Bench, and so by
the point (D) of the Beak the Shank of the Holdfast is wedged
between the upper edge (L) and its opposite edge of the round

hole in the Bench.'

Our author has omitted to mention that the Avedging or jamming

pressure of the shank in the hole produced by the vertical blow

upon the head A of the holdfast is immediately unlocked by a

horizontal blow upon the back of the head A, which drives it in a

direction that relieves the pressure at L ; a blow upwards on the

lower end of the shank at B will produce the same effect.

Instead of constructing the beak AD in one piece with the

shank, it is in the best holdfasts now made separate, in the form

shown by the dotted lines at CEF. The stem is finished at the

top by a short branch A C, which is bored traversely at C, and

split so as to embrace the beak ED, which is attached to it by a

joint pin C.

The end E of the beak is cylindrical in form, and furnished

with a strong screw F having a lever passing through its head.

When the screw is turned so as to make it descend, its lower

end pressing upon A causes E to rise and carry up the joint pin

C, at the same time pressing AB downwards. For as the beak

ED rests upon D, the effect of the motion described is to cause

the angle DEB to become more acute, and thus to place the stem

in the oblique position with respect to the cylindrical hole LM
which produces the jamming or twisting friction on which the

action of the instrument depends, and which in the simple form of

the hook was obtained by blows, which are liable to jar or displace
the work by their vibrations.

In the improved form the effect results from the quiet steady

application of screw pressure ; and if the screw F be turned in

the opposite direction, the jamming friction is unlocked. The
forces acting on the shank are the two reactions of the opposite

* The capital letters in parenthesis refer to my figure,

t Query
' the flat of the work:
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sides of the cylindrical hole at L and M; La, Mb, being the

normals to the surfaces in contact at the opposite sides of the

shank, and LI, Mm, the reactions when the shank is at the point
of moving upwards, < being the limiting angle. These reactions

meet at the point K, and their resultant is a force acting
downward.

The reaction at D acts upwards, and forms with the resultant

at K, a ample of forces in opposite directions, which tend to turn

the hook clockwise, and thus to increase the pressure at L and M.
The linear direction of a force applied for the purpose of un-

locking the jamming friction at L and M must pass upwards on

the opposite side of Jtfrom D, or in any direction that will tend

to turn the holdfast contrary to that impressed on it by the

reaction at D.*

492. The same principle has been applied to screw hammers
and to clamps, of which the figure of Weston's patent clamp is an

Fig. 337.example. It consists of a stem AB (fig. 337)
with an arm AD, through the outer extremity
of which the clamping screw E is tapped.

The lower or movable arm slides freely on

the stem, the section of which is given at

fig. 338.

When two pieces C, F have to be clamped

together, the clamp is so placed that its

pressing washer d rests on the selected part

of the piece C. The piece F being then ad-

justed in position, the lower arm GH is now

slid upwards into contact with F, and the

clamping screw put in action. Its pressure at

H upon the arm GH being opposed by the

jamming friction of its socket on the stem at

G, which is similar to the friction of the stem of the carpenter's

holdfast in the cylindrical hole of the bench, it generates two

diagonally opposite points of contact, the one at the lower part of

the socket at h, and the upper one at g.

* The Holdfast (Valet, Fr.) has been selected as an example in the excellent 'laite

des Mecanismes of M. J. N. Haton Delagoupilliere, Paris, 1864, p. 381, and pi. xvi.

fig. 256, from which I have extracted the description of the action of the pressures in

the above article.
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ROD-RATCHET WORK.

493. Fig. 339 is a lecture model by which the principle and

action of a ratchet motion invented by M. Saladin of Mulhouse in

1839* can be shown.

The model, fig. 339, is wholly constructed with wood and

hinges.
The purpose of it is, to give to a vertical cylindrical rod GFan

intermittent rising motion, through indefinite steps, the extent of

which are only limited by the will of the operator

and the dimensions of the machine.

The standard AB supports the mechanism.

The rod is sustained by passing through holes

k, n, and D. The latter hole is bored ver-

tically through the bracket CD, and is of a

magnitude that allows the rod to move through
it with ease.

The lower hole k is bored transversely

through a bar HK, which is hinged to the

frame at H, and has a lump of lead fixed on

its extremity K. The hole is larger than the

diameter of the rod, which therefore passes

through it easily. A second bar PN, like the

last, has a loose hole at n, and a lead weight
at N. But this bar is hinged to a piece L
which is itself hinged to a vertical bar Mm,
surmounted by a knob at M, which is sup-

ported by passing through a square opening
at C in the upper bracket at C, and by a

band of metal at E. The loaded bars PN,
HK hang in a position which enables them
to grasp the round rod as the hole in the car-

penter's bench grasps the stem of the holdfast

in the last example. If the hand be applied
at G, and drawn upwards, the rod will rise

through the two holes nk, as the grasp of the

carpenter's holdfast is unlocked by striking it at its lower ex-

tremity. But a pressure downwards on G wil 1 only jam the rod
more firmly in n and k.

On the contrary, when the knob M is raised by hand, the bar

* Bulletin de Mulhouse, torn, xii, p. 296, 1839, or Delagoupilliere, p. 302.
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PN will retain its grasp and raise the rod, and the latter will rise

easily through the hole at A, because the rod itself is drawn

through the lower hole k in the direction which unlocks the jam.
Thus by raising and depressing the knob M through distances

varying at pleasure, these motions are communicated to the bar,

which thus rises by unequal steps.

To lower it it is only necessary to raise by hand the outer ends

N, K, of the bars PN, UK, which will thus loosen their grasp
and the bar will descend.

The upper bar PN manifestly corresponds to the click, and

the lower HK to the detent of ordinary ratchet-work.

The intermediate piece L is necessary to allow the bar PN
freedom of motion, to enable the hole at n to ensure its grasp on

the rod.

494. Another example of the employment of diagonal jamming
is supplied by the so-called '

hitch-stick,' universally employed
for adjusting the tension of tent-ropes.

Fig. 340 shows my lecture model for exhibiting its properties,

the arrangement of which was suggested to me by a figure in the

excellent
' Traite de Charpenterie

'

of Emy Fig. 340.

(1841).* He terms it
*

Amarrage variable.'

It is shown in the act of sustaining a weight

W, which by the property of the contrivance

can be easily fixed at any height from the base

of the machine.

The hitch-stick is a piece of wood e'f, with

two holes bored through it near its extremities.

The cord which is to sustain the weight has a

knot at its end f, and is passed through the hole

f in the stick, thence under the lower pully C
and through the other hole e and over the upper

pully d to the weight W. The tension thus

given to the string acts upwards through the

hole a and by means of the pully downwards

upon the knot /. Thus the outer end of the

stick is pulled downwards and exerts a twisting

or jamming grip upon the diagonally opposite

ends of the hole e, as in the carpenter's holdfast,

which fixes the weight at the desired height.

But if the hitch-stick is brought into the J t==-

horizontal position by depressing its end a, the vertical cord deb

will pass through the axis of the hole, and the hitch-stick may
* Tom. ii. p. 593, and fig. 42, pi. 162.
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be shifted up or down the rope, thus raising or depressing the

weight W to the required position. When the hand is removed

from the stick, the upward tension of the rope will enable it to

pull down its outer end /, and thus renew the grip on the rope

at a.

When this contrivance is employed for tent ropes, a stake is

driven obliquely into the ground, and the loop bcf passed over it.

The pully C is introduced into the model to enable the action of

the contrivance to be shown more conveniently.

495. Dr. Hooke communicated to the Royal Society (July 11,

1683) a ' Contrivance to stop great Weights falling,' of which he

exhibited a model which acts upon the principle of the diagonal
friction of the shank of the holdfast, or rather that of the grip of

the hitch-stick.

His description is printed in Derham's work *

Philosophical

Experiments and Observations of the late eminent Dr. Robert

Hooke, &c.' (1726), p. Ill, accompanied by a coarse wood-

cut, apparently copied from a rough sketch, as it contains some

palpable errors. For the purpose of studying the action of the

machine, I constructed a rough model, which enabled me to

discover the connections necessary to ensure the success of the

contrivance, and subsequently to put it into a form which has

provided me with a most amusing and interesting experiment for

the lecture room.
" The Experiment

"
(in Hooke's own quaint words)

" was a

vei'y plain and easy way, how to stay a weight from falling,

when the Rope, or Chain by which it is drawn up or let down,
shall chance to break. This was effected by a small Arm ex-

tended out from the top of the Weight to the Side, with a Hand
or Pipe, at the End thereof, which grasped or inclosed, another

Rope or Chain, extended from the Top to the Bottom ;
which

Hand or Pipe was so wide, as to slip freely upon the said Rope
so long as the Weight was suspended by its own Rope ; but so

soon as that in any way fail'd, the Hand grasped the Side Rope
fast, and hindered the Weight from descending to the Bottom."

" The explicating it by a Scheme* makes it the more intel-

ligible, / represents the Weight, ab the Arm, moving with a joint
ate upon the other Part of it k,fast into the Weight, ef represents
the Rope, by which the Weight is either drawn up or let down,

*
Fig. 341 is traced from Hooke's cut, with the corrections necessary to allow the

action to take place, as will appear below. Fig. 342 is an additional sketch added by
myself to illustrate the result of the fracture of the rope.



JAMMING OR TWISTING FKICTION. 417

fasten'd to the Elbow f\ by which Means the Wrist, and Hand
of the Arm, is kept at Right Angles with the Part fast in the

Weight, and so the Hand slips freely upon the greater Rope gh,

extended from the Top to the Bottom, to which the Weight can

Fig. 341. Fig. 342.

descend
; d represents a spring, by which, so soon as the Rope

of the Weight, which holds by the Elbow /, fails, the Arm is

extended straight; by which the Hand b, presently holds fast

the Rope, or Chain gh, by being made oblique to the Perpen-
dicular, and, so creeking the Rope, and so hinders it from falling;

as by the Experiment shewn, plainly appear'd."
Our Author then proceeds to enumerate the applications of

this contrivance to clock or chime weights in towers, to the

buckets employed in mines for drawing up and letting down
men, or ores, stones, and other things, or for men and materials

when constructing high buildings.
In Hooke's woodcut the direction of the vertical line ef of the

E E
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suspending rope, which ought manifestly to pass through the

center of gravity of the weight when produced, is made to pass

considerably to the left of it, which is absurd, and evidently the

result of the draughtsman's or wood-engraver's carelessness.

In my construction of the machine, I introduced a change in

the articulation of the arm joint with the part K which is 'fast

into the Weight? by constructing it with a stop in the hinge,

which ensures the horizontal position of the arm, which is

essential to the free sliding of the ring b upon the safety-rope

as it may be termed.

The part K fast in the weight, in my diagram is inclined up-
wards to the right, so as to bring the line of the suspending

rope ef perpendicularly above the center of gravity of the weight.
The arm fb is a lever whose fulcrum is c, from which the

weight /is suspended, and the elbow f is sustained in opposition
to that weight by the tension of the rope fe, and also by the

action of the spring d, which tends to turn the arm ab upwards,
in opposition to the upward tension of fe upon the short lever

arm cf. When ef breaks, the spring d immediately throws up
the arm as seen in fig. 342.

496. It often happens that when the knobs of a drawer are

grasped to open it, it will after coming out a little way stick fast

all of a sudden, and after much pulling and pushing in different

directions, will unexpectedly give way suddenly under a desperate

effort, and perhaps tumble out, strewing its contents at the feet of

the operator.
A drawer rests^ and slides upon a wooden bar at each end,

fixed against the sides of the chest, and is in the same condition

as the shank of the holdfast, namely, that its sliding sides are

in loose contact with the sides of the chest. If, therefore, the

drawer is pulled in a direction parallel to these sides, it will come

freely out ; but if a twist is given to it, it will immediately be

placed in the condition of diagonal jamming, which will be dis-

covered by the front or face of the drawer becoming out of

parallelism with the front of the chest, and may be unlocked by

judicious pressure at the more prominent end of the face.

It must be remembered that the contents of a drawer are

rarely distributed so as to cause the center of gravity of the

moving mass to be in the central transverse vertical plane.
Hence the pressures which produce the frictions upon the two
bars which support the drawer are unequal, and the knobs being
at equal distances from the ends, it follows that, supposing the
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two pulls to be made with equal force, their resultant will be in

the central transverse plane, and will thus form Avith the re-

sultant of the unequal frictions and excentric center of gravity a

couple of forces, which will cause the small rotation of the

drawer which jams it fast.

EE 2
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CHAPTER IV.

EMPLOYMENT OF FRICTION WHEELS.

497. THE substitution of rolling contact for sliding by the

wheels of carriages is a simple and direct application of the three

laws of friction already investigated (vide Art. 484 above).

Let AB be the frame of a carriage supported on three wheels.

Let R be the radius of the wheel and r of the axles.

Fig. 343.

The machine rests therefore upon three points, and the weight

(= W} may be assumed to be equally distributed upon them.

Suppose the wheels to be prevented from revolving on their

axles, and let the machine be drawn along the ground through a

distance equal to the circumference of the wheel =7rfi. The
amount of friction == 3 KfWirR.

If, however, the wheels are left free to revolve, the rubbing
friction is transferred to the contact of the cylindrical axes with

their boxes, and the amount of rubbing in each revolution is the

length of the circumference of the axle, and . .
= 3/7F7tr. Thus

the ratio of friction of a sledge and a wheel carriage of equal
~T\

weight drawn through any given distance =
, and this is

increased by the fact that the friction of the sledge on the ground
is greater than that of the axles, which admit of lubrication.

That the application of wheels to carriages is of great antiquity
is shown by the mention of them in the first books of the

Scriptures*
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498. Another device to facilitate the conveyance of irregularly-

shaped heavy bodies, such as cubical masses of stone intended for

buildings, was to enclose the mass in a wooden case of a cylindrical

form, so that it could be rolled along the ground by men, or if

furnished with pivots at each end, could be drawn by horses.

This method is described in the tenth book of Vitruvius, who
attributes it to Ctesiphon, but it must in all probability have
occurred much earlier.

A more direct and complete substitution of rolling for sliding
is commonly employed when heavy packages have to be moved

Fig. 344..

from one place to another on flat or inclined ground, by placing

long cylindrical rollers beneath the heavy case. As the load is

pushed forward the cylinders travel in the same direction, but

(as is easy to see) with a velocity of half that of the load, from

under and behind which they therefore escape in turn, and are

taken up by the assistants and transferred to the front in order.

499. The friction of the shafts or axes of machinery in their

bearings may be diminished by the employment of friction wheels,

or rather anti-friction wheels. These are arranged in the manner

shown in the diagram (fig. 345), which represents the wheels

of Atwoods' machine, invented about F
-

34
_

1780 for the purpose of making ex-

periments on the rectilinear motion of

bodies, which are performed by sus-

pending unequal weights to the two

ends of a string which is earned over

a pully, and observing the times of

their descent. As the friction of the

axis of the pully might interfere with

the results, each extremity of the axis

is supported by a pair of wheels or

rollers, mounted in a suitable frame, so

that their neighbouring surfaces overlap and nearly touch each

other. Their axes are short and parallel to that of the principal

wheel. Thus by the overlapping of the rollers an angular trough

or notch is formed at each end of the machine, by which the long

axis of the pully is supported as shown in the figure. When
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the pully revolves, its axis, pressed into contact with the rollers

by the weight of the great wheel and that of its suspended load,

causes them to rotate, and thus the sliding friction of the principal

axis is transferred to the axes of the friction rollers.

If the principal axis rested in bearings at each end the quantity

of friction in each revolution would be measured by the length

of the circumference of the axis. But each revolution of the

principal axis produces a fraction of a revolution = -_-, where R

and r are the radii of the friction rollers and their axes.

The ends of the principal axis terminate in points which rest

against a part of the frame of the friction rollers at each end.

Friction wheels were about the beginning of this century

applied to heavy machinery. But it was found that the axes of

these wheels were liable to stick fast in their bearings from the

accumulation of dust and thick oil. When this happens, the axis

of the principal wheel rotating upon the fixed circumference of

the friction wheel thus prevented from moving, begins to wear a

notch at the point of the circumference upon which it rests, and

thus prevents it from revolving. "This, and the additional com-

plication caused by the employment of these wheels drove them

out of practice, and finally the introduction of cast-iron and

machine tools into the construction of mechanism rendered the

surfaces of the cylindrical axes so much more perfect in form as

to reduce the friction to an amount that was no longer injurious.

500. Mr. Whitwcrth's chain-link for the treadle of lathes is a

remarkable and thoroughly practical application of the principle
of substituting rolling contact for sliding, to prevent the wearing
out of the surfaces. In the ordinary lathe the axis of the fly-

wheel is bent into the crank form, and the link which connects it

with the treadle terminates upward in a hook, which is simply

kept in its place by the weight of the treadle
;
but the crank has

an angular groove sunk in its circumference to receive and steady
the hook laterally. Without great care in oiling and cleaning,
the friction of the hook is apt to grind itself and the crank groove,
and eventually to break the hook or the axle, which necessitates

an expensive repair.

But in Mr. Whitworth's treadle-link the crank AB is provided
with a strong cylinder A to receive a broad endless chain of metal
constructed on the principle of watch chains. The lower loop of
the chain passes over a cylindrical pully roller D which turns
on an axis carried by the treadle. Thus the crank-pin and the

treadle-pully are connected like two pullies with an endless
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band. The crank cylinder being in one piece with the axis of

the fly-wheel, revolves with it, and the chain rolls upon its surface,

Fig. 346.

rising and falling with it and with the treadle, of which C is the

axis and E the tread. The grinding friction which destroys the

ordinary crank is therefore removed.
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CHAPTER V.

EMPLOYMENT OF COIL FRICTION.

Fig. 347.

501. WHEN a cord is coiled about a cylinder, for example, in the

manner of fig. 347, with weights attached to its extremity, the

friction of the cord upon the surface

increases with great rapidity, and

can be shown to be independent of

the magnitude of the diameter of

the cylinder, and to depend solely on

that of the angle embraced. This

is best shown by fixing the cylinder
so as to prevent its rotation, and

suspending unequal weights to the

two pendent ends of the cord re-

spectively. If the cord be simply

passed over the upper surface of

the fixed cylinder it will be in

contact with the upper half of its

circumference, and the tension pro-
duced in the cord by the weights
will generate friction throughout

that portion of its length. If the difference of the weights is

greater than this frictional resistance the heavier weight will

descend and draw up the smaller one. But if the difference be

less than the frictional resistance, the weights will remain at rest.

Taking the mean value of friction at one-third of the pressure
which generates it, it can be shown that any weight tied to one

end will support a weight about three times as great at the other

end.

If an additional coil of the cord is taken over the cylinder the

small weight will support one twenty-seven times as great, and

every additional coil multiplies the friction about nine times (in
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round numbers), and the half coil three times. For it is manifest
that if a cord be coiled round a horizontal cylinder with its ends

hanging down, a half coil is necessarily included in the sum of
the coils. But if the ends are from the nature of the mechanism

supported in a horizontal direction the half coil is not formed.
Thus we obtain the following series of multiples of the smaller

weight that give the values of the larger weight that correspond
to the number of coils.

Coils
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The ancients were perfectly acquainted with the grasping

power of a series of coils, which seems to have been one of the

first properties of friction that was introduced into practice. In

the early turning lathe of the thirteenth century the material

was made to revolve by a cord attached to a spring pole above

and a treadle below ;
the cord being coiled several times round

the work. In the sketch book of Wilars de Honecort a

coiled cord is employed in several machines to communicate

rotation.

Another early application was to the raising of water from

deep wells, which was effected by taking three or four coils round

a long cylindrical barrel, like our figure, and attaching a bucket to

each end. By turning the barrel one bucket descends, reaches

the water, and is finally immersed, while the other, already filled,

ascends to the top, where it is emptied by the person who is

employed to draw water* The barrel is now turned in the

reverse direction, the full bucket drawn up to be emptied, and

the empty one let down to be filled.

By the property of coil friction the empty bucket will, like the

small weight in our figure, enable the coils to grasp the cylindri-

cal surface so firmly as to sustain the full bucket. But the

rotation of the barrel causes the cord to wind itself in a spiral

direction, so that the group of coils are compelled to travel from

one end of the cylinder to the other. The diameter of the well

must be of sufficient dimension to allow of this motion being

performed without bringing the buckets in contact with the sides

of the well alternately.
This arrangement may be seen in use for the purpose of

drawing up or lowering materials or rubbish when the repairs of

sewers or underground works are carried on.

If the small weight be removed and the end of the cord be
attached to the frame, the -weight JFwill, by the frictional adhe-

rence of the coils to the cylinder, produce a tension in aw= W,
neglecting the friction of the axis of the cylinder, and the machine
will be in the same condition as if both ends of the cord were

hanging down with a weight W at each end. But if one end of

the cord is attached to the frame and force be applied to the
handle of the cylinder which tends to rotate it within the coils,

in opposition to the fixed side of the cord, this force, estimated by
its moment on the surface of the cylinder, must be greater than
the frictional resistance of the coils on that surface. On the
other hand, if the force applied to the handle acts in the same di-

rection as the tension of the fixed side, the rigidity of the cord
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will diminish the pressure of the coils and reduce it to a smooth

resistance which prevents acceleration, or running loose, as already

explained.
Thus the cylinder is in the condition of a ratchet wheel with an

infinite number of very small teeth which admit of rotation in one

direction but forbid it in the opposite. This is applied in practice
to reels upon which cords or threads are wound. A pully being
turned upon one end of the reel, a cord tied to the frame is passed
round the pully two or three times and a small weight hung to

the end, or a spring applied to keep it tight. This acts as a drag
to prevent the wheel from acquiring a too rapid rotation when

portions of thread are drawn off from it.

502. This principle is employed in the hand-loom for weaving
cloth. The diagram shows the two rollers, or beams as they are

called, between which the longitudinal threads which are to be

knit together into cloth are stretched.

Aa is the warp beam, Bb the cloth beam. The weaver is

seated in front of the cloth beam. The sheet of warp threads ex-

tends about two-thirds of the distance between the beams to the

line Hh, where the action of the treadles and other machinery

receives it to convert it into cloth. When a few inches of cloth

have been completed by the weaver it is necessary for him to roll

it up on the cloth beam Bb, which is provided with a handle Dd,

and a ratchet wheel C and click to retain its tension.
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Fig. 349.

When he turns the handle at D the cloth and warp AE travel

in the direction of the arrow, and thus rotation is communicated

to the warp beam Aa. This raises the great weight W, and

lowers the small weight w, until it touches the floor Ff, when the

rigidity of the rope wa acts upwards to slacken the spiral friction

coils and thus allow the cylindrical roller to turn within them.

When the winding up of the cloth is stopped the great weight W
descends through a small space, which is sufficient to renew the

grasp of the spiral and also to raise the weight w from the

floor.

The tension of the warp is equal to W w . r, where r is the

radius of the warp beam.

This periodical winding up of the woven portion of the warp is

termed pacing the web, and the above mode of effecting it is

called the friction pace.

503. In the combination shown in
fig. 349 the cylinder is bored

with a smooth hole in the direction of its axis, which enables it to

rotate freely on a fixed horizontal axis, which is

supported by the vertical post AB attached to a

base E. The post sustains a projecting bracket

BD, and the cylinder is provided with an

index by which its motions are shown when the

apparatus is in action.

A small cord is fixed to a button G, passed

through a hole in the bracket, taken one or

more turns round the cylinder, and carried

downwards to be attached to a weight V.

A second cord is passed through the hole at

D near the front of the bracket, secured by a

knot, and carried downwards in the same
manner as the former to be taken the same
number of turns round the cylinder and at-

tached to an equal weight W.
If we now draw upwards the knob G the

coils of its cord embracing the cylinder will cause it to turn on

its axis.

We have already seen that the arrangement of the cord DW
prevents the cylinder from revolving counter-clockwise, and leaves

it free to be turned the reverse way, while on the other hand the

motion given by raising and lowering the knob G grasps the cy-
linder and communicates rotation to it. As this rotation is in

the direction of the clock, when the knob is raised the cord DW
serves merely to steady the motion. When the knob is lowered
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the weight V maintains the tension of the cord G V. But the ri-

gidity of the portion which is pushed downward enables the coils

at C to relax and turn about the surface of the cylinder (fixed by
the portion DH\ Thus we obtain another combination equiva-
lent to ratchet-wheel work in which the angles through which the

revolving cylinder or axis are moved are indefinite.

In the capstan of a ship the axis is vertical, and the rope or

messenger by which the cable is hauled in is coiled two or three

times round it. The capstan is turned in the direction which will

cause the group of coils to travel downwards, and when it is thus

brought to the bottom of the machine the rotation is stopped and
levers or handspikes employed to force or prize up the group of

coils. To facilitate this operation the capstan is made of a conical

form narrowing upwards. The operation is termed *

surging the

messenger.'*
504. But the necessity of interrupting the process when these

travelling coils are employed in machinery is completely got rid of

by an arrangement which was first suggested by Sir Christopher

Wren, and exhibited to the Royal Society on May 5, 1670. The

Register of the Society (vol. iv. p. 99) contains a figure of his

model and his own account of it, of which I subjoin a copy which

I have transcribed verbatim et literatim, and a reduced fac-simile

of the drawing or * scheme
'

as Wren terms it.

" A Description and Scheme. Of D r Wrens Instrument for

Drawing up Great Weights from Deep places." Read May 5,

1670.

"
Having considered, that the ways hitherto used in all Engins

for winding up Weights by Roaps have been but two, Viz. the

fixing one end of a roap upon a cylinder or Barril, and so winding

up the whole coyle of roap; the other by having a Chain or a

loose roap catching on teeth, as is usual in clocks ; but finding

withall that both these wayes Avere inconvenient the first, because

of the riding of much roap in winding one turn upon another ;

the other, because of the wearing out of the Chain or roap upon
the teeth, I have, to prevent both these inconveniences, devised

another, to make the weight and its counterpoyse bind on

the cylinder, which it will doe if it be wound three times

about.
" But because it will then in turning, scrue on like a worm, and

will need a Cylinder of a very great length, therefore if there be

* This is well described, with an excellent figure, in Lever's Seamanship, p. 109.
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two cylinders, each turned with three notches and the notches be

placed alternately, the convex edges to the concave as in the

figure here adjoyned, the roap being wound three times about both

cylinders, will bind firmly without slyding and work up the weight
with a proportionable counterpoyse at the other end of the Roap."

This being thought applicable to clocks Mr. Hooke was

ordered to make a trial of it.

This description was copied by Birch (Hist. Roy. Soc., vol. ii.

435), but, as usual with him, translated into modern spelling and

in some cases the phraseology interfered with. In one part es-

pecially where the original contains the expression
* / have, to

prevent inconvenience, devised, &c.,' which identifies the writer

of the description with Wren himself, Birch substitutes the words
'
He, to prevent .... devised, &c.' He also omits the figure,

Elmes, in his * Life of Sir Christopher Wren,** copies Birch.

Fig. 350 is an exact fac-simile of ( The Scheme,' which I have

reduced to one half the size (carefully preserving the peculiarities

of drawing) of the original, which plainly represents the model

Fig. 350.

that was exhibited to the Society, but is now lost. A square
frame,f in a horizontal position, carries two parallel axes, of which
one projects outward and is bent into the form of a handle. Each

* P. 274.

t Wren's draughtsman has drawn the junction of the lines of this frame at the two
lower angles of the figure carelessly. I have, however, carefully copied the course cf
his lines in fac-simile.
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axis carries a long cylinder with four notches, or rather grooves,
turned in it, instead of the three mentioned in the description.

As the arrangement of the cord is not very clearly shown

in the original diagram (fig. 350), which omits the parts that are

passed winder the rollers, I have drawn a restored plan of this

model (fig. 351), and a perspective view of the rollers and cord

(fig. 352), with slight changes of proportion, and letters of re-

Fig. 351. Fig. 352.

ference to facilitate the explanation. In this figure the parts of

the cord that pass above the rollers are designated by full black

lines, and those that pass below and are omitted in Wren's figure
are drawn with intermitted lines. The notches of one roller are

placed each opposite to the spaces of the other, and the disposition

of the cord is indicated by the order of the letters. A is the cord

which has the weight which is to be drawn up, tied to it. The
course of the cord is over the back roller from A to B, under the

rollers a,tBC and over them at CD and so on to E, F, G, over at

GH, but after passing under H, the end of the cord is taken, not

under, but over at /, whence the end is allowed to hang down

vertically, and has a small weight tied to it of sufficient magni-
tude to keep the cord in contact with the surface of the notch.

By the happy device of two grooved rollers, the two ends of the

cord which respectively carry the counterpoise and the load to

be raised remain in the same vertical lines during the action of

the machine, and the property of frictional adhesion produced by
successive coiling is perfectly effectual, for although each coil is

received on one side by a semicircular groove and on the other

by an opposite and similar groove, the accumulation of frictional
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resistance is produced precisely as if entire circular grooves were

employed.
Thus the increase of diameter in the cylinder produced by the

accumulation of successive layers of coiled rope and the travelling

motion of the hanging cords are entirely got rid of.

The contrivance has been reproduced several times, as by M.

Boulogne in a machine for towing boats, in 1702 ;

*
by J. Ber-

nouilli the younger; and by Ludot, both in 1741 ; and by Mr.

Boswell, rewarded by the Society of Arts in 1805, principally
with reference to the capstan ;

and by other inventors. But Sir

Christopher Wren's claim has never been mentioned.

Wren applies his contrivance to the raising of weights, but if it

is required for producing the back and forward motion of a hori-

zontal sliding carriage, as, for example, a mangle, the horizontal

axes of the grooved rollers must be sustained by a frame, which

supports their axes in one horizontal plane, above and transverse

to the direction of the moving carriage.
The ends of the rope must be brought down and their direc-

tions respectively turned to right and left from the vertical plane
to that of a horizontal central line in the mid-plane of the car-

riage, by passing them over guide pullies, so that they can be

attached to its two ends.

By turning the handle attached to the axis of one of the

grooved rollers, motion is given to the sliding carriage. But this

handle requires to be turned alternately to the right and left.

But by the intervention of certain contrivances described above

(Chap. IV., p. 78), this reversal of direction is dispensed with, and
the reciprocation communicated by turning the handle constantly
in the same direction.

* Machines Approuves, t. ir.
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Fig. 354.

CHAPTER VI.

SUBSTITUTION OF WINDING COILS FOR RUBBING
FRICTION.

505. Ix 1699 M. Perrault introduced a crane for raising heavy
weights, in which the rubbing friction

of the axles of pullies was dispensed
with.

Figs. 353, 354 represent the model
which I have constructed for lectures,
and are sufficient to show the principle
of the machine.

Fig. 354 is a perspective sketch,
and fig. 353 an elevation.

A pully P, grooved in its circum-

ference, is fixed to a plain cylinder Qg.

Fig. 353.

A pair of cords Ee, Dd attached to the

right side of the cylinder serve to sus-

pend it from a frame above, which in

my model consists of a bar of wood
DE which is bolted when used to one

of the brackets F that I habitually

employ in my lectures, and the latter

attached to a post.

Another pair of cords hH, gG are

fixed to the left side of the cylinder
and hooked below to the load which i s

F F
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to be raised, which in the model is represented by a single weight
W. The peculiar form of the hook GHis required for the purpose

of obtaining two separate suspending eyes at G and //; for if the

cords were brought down to a single hook above the weight, the

latter would, by increasing the tension of the cords, compel them

to twist round each other.

Fig. 353 shows that if the pully be made to rotate clockwise

the cords Ee, hH will be simultaneously wound about the cylinder,

and also as they are suspended from points D, E, h, g \vhich are

wider apart above than below, the winding will be in spirals

upon the cylinder, and no superposition will occur.

The weight w is placed in equilibrium by a cord kK coiled

about the large pully P as shown in the figures.

Neglecting the weight of the pully and cylinder, it is evident

that the parallel cords, of which the middle one eE is fixed at its

upper extremity and the outer ones pendent, will hold the cylinder
in equilibrium at all altitudes if Wxhe=.w. ek. In the figure

= 3, and a weight of three pounds balances one, and a small

power acting upon 10 will cause the pully and cylinder with the

attached load to mount upwards or descend at the pleasure of the

operator. Let the weight of the pully and cyUnder= 6T

, their

center of gravity is in the axis of the cylinder, and if Z= the

weight tnat will counterbalance them we have

- - = l
-

S 2ek
~

6
'

This elegant contrivance is manifestly unsuited to the purpose of

a crane for lifting heavy weights. But its quiet and steady action

in a model shows that it may be applicable to instruments for the

frictionless communication of motion in mechanism which is not

exposed to great strains.

DIFFERENTIAL PULLY FOR RAISING WEIGHTS.

506. This pully is formed in one piece, with two pully grooves
turned in its circumference whose radii are Aa=R and Ab= r.

The pivot or axis of this pully is fixed to it, and the whole
sustained by a staple Ak which embraces the pully and receives

the axis in its eyes as at A. Let the radius of the pivot= p.

The load W is suspended from a single pully B.
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Fig. 355.

An endless cord or chain connects the upper pully with the

lower pully, and is applied to the pullies in the following order.

Beginning at a it passes over the large pully to b, then downward to

c under the small pully B, then up to d and over

the small upper pully to e and thence hangs
down in a loop PQ.
The load W is therefore sustained by the two

parts cb, cd of the endless cord, and is only pre-

vented from running down by the friction of the

pivot A.

The grasp of a workman's hands at P is suffi-

cient to turn the pully. But when the pully is thus

turned it will draw the weight upwards on the

side be, and let it down on the side dc. But as it

is drawn up from the side of the larger pully
at b and let down by the smaller pully at d, it is

really raised by the difference of these motions.

Let R, r, p be the respective radii of the large

pully the small pully and the pivot, and /=
friction of the pivots in the eyes, we have the

moment of friction= Wfp,
W

and the action of the weight \V-=.-
(.ff r).

If be equal to or less than f, the weight
P

JFwill be supported whatever be its magnitude,
'

x
-_-''

fout if greater the weight will descend.

But the peculiar convenience of this machine is that any heavy
load within the strength of its construction may be hauled up and

sustained at any height when the raising force is withdrawn, by
applying hands to the rope at P, and similarly be let down by

pulling at the other side at Q. This pully appears to have been

invented in 1830 by Mr. Moore of Bristol, an amateur mechanic ;

the principle is identical with that of the Chinese windlass * (vide

fig. 281, p. 314 above), but is freed from the inconvenience of

requiring a great quantity of rope, which is inseparable from that

machine.

The differential pullywas afterwards described in Dr. Carpenter's

* ' The Chinese windlass has remained in an incomplete form for ages, like most

other Chinese inventions. It is not perhaps generally known, that a windlass of this

kind was seen by the Allies to be in use for raising one of tbe drawbridges of the city

of Pekin.' Extract from The Engineer, December 2, 1865.
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' Mechanical Philosophy &c.,' 1844, and patents taken by Mr.

Weston in 1859, and by others, as appears from a law-suit tried

in December 1865, and fully reported in ' The Engineer,' p. 409,
of that year.

The cord must not be allowed to slide in the pully grooves,
and therefore in Weston's construction, chains acting on pins or

hollows in the grooves are employed.



PART THE FIFTH.

ON UNIVERSAL JOINTS.

CHAPTER I.

HISTORY AND APPLICATIONS.

507. DR. JOHNSON gives seven different definitions of the word
1

joint,' of which the second is that which is applicable to me-
chanism ; namely,

'

Hinge ; junctures which admit motion of the

parts ;

'

or rather, of parts that are connected.

But in scientific language I prefer to employ the term '
lines

of flexure
'

for hinge-joints. Such joints were termed in Old Eng-
lish, gimmals or gimbals.

* The derivation of these words is

doubtless from the French gemeaux (gemella, Lat.), twins
;

which is applied properly not only to a hinge composed of two

portions of exactly similar form and size jointed together, but to

anything else which is formed of twin pieces of like dimensions

united in any manner.' *

The contrivances which bear the name of ' universal joints
'

have been employed for two different purposes.

First, to connect any object, such as a lamp, mariner's compass,

chronometer, or wheel-carriage, with its base or support, in such

a manner that when the support is moved into different angular

positions the object shall remain parallel to its normal position.

The connection must have the property of compelling the two

parts, object and base, to preserve one constant point in common,
about which their relative motions are performed.

Secondly. As a point of flexure to connect in such a manner,

two rods or shafts whose directions meet in a constant point, as to

enable one to bend or incline in all aspects with respect to the

* Vide Promptorium, p. 194, by A. Way; published by thp Camden Society.

London, 1843.
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other about this intersection point, but so that a rotation of the

one rod about its length, will compel the other also to rotate

about its own length.
For the first purpose this contrivance has been used from

remote antiquity. In the manuscript sketch-book of Wilars de

Honecort, an architect of the thirteenth century,* there is a draw-

ing, and coeval explanatory inscription. Fig. 356 is a reduced

fac-simile of the drawing, accompanied by a literal translation

of the inscription.!
f

If you desire to make a chauferette (calefactoriurn) or hand-

warmer, yon must construct a kind of apple of brass in two halves

which fit together, inside the apple place six brazen circles, let each

circle have two pivots* and in the middle place a little brazier ivith

two pivots. The pivots must be placed in contrary directions, so

Fie. 356.

that in all positions the brasier may remain upright for evert/
circle supports the pivots of the next. Ifyou make this contrivance

exactly as the description and drawing shews it, you may turn it

about in any way, and the cinders ivill never fall out. It is excellent

for a bishop, for he may boldly assist at high mass, and as long as
he holds it in his hands they will be kept warm so long as thefire
remains alight. This machine requires no farther explanation."

1

" Published at Paris in fac-simile in 1858, with notes, by Lassus, and afterwards by
myself in 1859 in London, with many additionarcomments.
t Plate xyi. p. 54.
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It must be remarked that one intermediate ring between the

object which is to be kept in a horizontal position, and the outer

case which may be inclined in any direction, is sufficient, as will

be seen in the next chapter.
The last purpose of this class to which the gimbals were em-

ployed was in the fifteenth century, for the construction of wheel-

carriages that when overturned would nevertheless preserve the

body of the vehicle and its occupants in their level position
without injury.

It is remarkable that when Hooke was appointed Curator of

the Koyal Society in 1662, and engaged to supply at every

meeting three or four of his own experiments, one of the first

things was a Chinese cart with one wheel ; and in the next year
he showed a scheme of an engine or carriage which goes on one

wheel and with one horse, and will not fall but be kept perpen-
dicular, even on the declivity of a hill. In one of these carriages
a man was once overturned, and as he afterwards related,

' I knew
it not till I lookt up and saw the wheel flat over my head.'

Hooke continued his projects for carriages of this kind in suc-

ceeding years, and took a patent for several new-fashioned

chariots August 31, 1664.

We may now consider the history of the universal joint in its

application to the connection of rods whose directions meet in a

point.*
The earliest representation of this connection is to be found in

the ' Technica Curiosa' of the Jesuit Schottus, published in 1664,

where we find in plate vii. the drawing which I have given in

fac-simile (fig. 357). It occurs in the ninth book, entitled * Mira-

bilia Chronometrica,' which, as Schottus informs us in the preface,

is composed of extracts from an unpublished manuscript entitled

' Chronometria Mechanica Nova,' the work of a writer whom he

terms Amicus,f and in a manner which intimates that he was no

longer alive.

The universal joint, therefore, as represented in the engraved

figure, might have been invented many years before the publi-

* The universal joint is attributed by French writers to Cardan, who lived in the

sixteenth century (1501-1575). But the only trace of such a machine that I have

been able to discover in his voluminous works (10 vols. folio), is a diagram of three

hoops joined to each other in succession by diametral axes, as above described. Cardan

tell us, that he saw it in the house of a friend, and is unable to assign a use for it.

It appears to me to be a portion of a rolling lamp or brasier, like that of W. de

Honecort. (Op. Cardani, t. x. p. 488. De Armillarum Instrument.)

t Pp. 618, 727.
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cation of the ' Technica Curiosa,' and not necessarily by this

*
Amicus,' whose account of it I subjoin.

' In clock towers it frequently happens that from want of room

it is impossible to place the dial in the same part of the building
as the wheel-work of the clock. Therefore the motion must be

communicated from the mechanism in various directions obliquely,

upwards, downwards, or sideways, to the hands of the dial plate.
' This can be effected by means of axes provided with conical

(bevel) wheels, but much more simply by the following wonderful

device "
paradoxum." It must be premised that there is a well-

known combination of concentric rings, each one connected to the

next by pivots, which is employed for the construction of lamps
which can be rolled upon a plane surface without spilling the oil.

Our paradox is not unlike this, but is rather its twin brother, as

the subsequent description and figure will show.'
' ABCD is a cross consisting of four arms united by a

small ball or any convenient connection. The opposite arms

Fig. 357. AB, are inserted in holes at the ends of the

prongs of a fork (fuscinulo) ABF. The other

pair of arms CD are similarly received by the

fork CDH, and the forks are supported by
fixed rings, GE?

' If the extremity H of one fork receive rota-

tion from the clock, the other fork, by virtue of

the connection described will necessarily revolve

with exactly the same velocity. Therefore if one

fork receives a uniform circular motion, the other

fork will also be compelled to rotate uniformly.*
I must here observe that this unfortunate

remark, which the next chapter will show to be

quite contrary to the truth, proves that the writer

had not accurately examined the laws of the combination.
But he states truly that the prongs of one fork will not strike

against those of the other, if the angle made by the axes is greater
than a right angle.'
Our author also adds that ' a series of axes may be arranged,

each connected to the next by a joint of this kind. These axes

may be disposed in a zigzag course, or along the sides of a poly-
gon, or gradually rising in a spiral form against the sides of a

* ... nccesse est sequatur et altera fuscimila parique cum priore ilia feratur veloci-
tate

; umle si fuerit unius fuscinulfe motus regularis circularis, erit similis et alterius
ac omnium quotquot artificio simili connexarum.
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polygonal prism so as to convey motion from the bottom to the

top of a tower. They may also be disposed in an endless chain.'

Three years after this publication of the joint of Amicus,

namely, March 14, 1667, at the meeting of the Royal Society,
Mr. Hooke produced a contrivance to make a motion of a clock

Fig. 358.

to go along with the shadow on a wall, for which he offered a

demonstration ; affirming that the same instrument would be ap-

plicable to all planes, to make all sorts of dials, &c. He had pre-

viously announced (in November 1663) that he was occupied with

the contrivance of a machine to describe all kind of dials, and he
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now brought in at the next meeting, March 21, 1667, his descrip-

tion of this machine, with a drawing, ofwhich fig. 358 is a reduced

fac-simile. The original is in the Register of the Society, from

which I traced my copy, preserving all its characteristics with its

letters of reference.

The original paper is printed at length in Birch's '

History of

the Royal Society,' but with modern spelling.

This instrument ia essentially the same in principle as that of

Amicus, but the forms of the arms and connecting medium are

altogether different, and Hooke's demonstration is derived from

the purpose of the machine.* But in his * Animadversions '

in

1674, and in his '

Description of Helioscopes,' 1676, he employs
universal joints in which the semicircular form of the branches

are the same as those of Amicus, and the medium similarly a

disk with four pivots, or a cross as in fig. 359, below. We may
suppose that in the interval of six or seven years the work of

Schottus must have reached England, and suggested the improved
form of his joint. It is difficult to discover from his writings
whether Hooke imagined himself to be the inventor of the uni-

versal joint, or whether he took it up as a well-known device, and

improved the construction to adapt it to his purposes. Amicu>
affiliates the joint with the gimbals of the rolling lamps, and

Hooke, as I have already mentioned, was engaged, from the be-

ginning of his curatorship in 1662, for several years in the con-

trivance of uninvertible carriages, all of which involved the

principle of gimbals, which led him to the first form of his uni-

versal joint, as given in the dial machine in 1667.

This is certain, however, that whereas Amicus, in 1664, has

told us that the velocity communicated through this joint was

uniform, Hooke, on the contrary, shows by his applications and

peculiar construction of it that he was thoroughly acquainted, not

only with the existence of variations in the velocity ratio, but
with their geometrical laws. He, whose life extended from 1635
to 1703, was a complete master of the mathematics of his period ;

educated at the University of Oxford, and also skilled in practical

mechanism, constructing habitually his own contrivances and

apparatus.
The favourite subjects of his period were the construction of

sun-dials and of quadrants, armillary spheres, and other devices

containing graduated arcs and lines for the graphic solution of the

problems of spherical trigonometry and dialling.
In the next chapter it will be shown that the relative motion

* Vide Art. 511.
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of the axes of the universal joint is identical with the relative

rotation of the earth to that of the shadow of a style parallel to

the earth's axis upon a dial plate in any given position, at any
place of the earth's surface.

In July, 1683, sixteen years after the publication of his first

form >f the universal joint, he communicated to the Royal Society
a mode of connecting two axes by a double universal joint, so that

the uniform motion of the one should produce an equally uniform
motion in the other, the axes being in any relative positions.

This was effected by an intermediate piece or axis connecting
the horizontal axis with the perpendicular or otherwise inclined

axis.

He tells us that this intermediate piece must be a double cross

(or medium), so formed that the semicircular arms of the inter-

mediate piece between the two axes shall be in the same plane,
and that its axis shall lie equally inclined to both the other axes.

This property of the combination is simply stated without de-

monstration, but is easily derived from the velocity ratio of the

single Hooke's joint.

After Hooke, no more was published concerning the joint until

Gray gave drawings of the single and double joint in his 'Experi-
enced Millwright

'

in 1804, the former of which was copied by
Imison about the same time. Jervas Wright employed a uni-

versal joint (with a ring medium) in a machine for sowing wheat

and other grain, patented July 30, 1784. '

Repertory of Arts,'

voL xv. 1801.

MM. Betancourt and Breguet employed it in a telegraphic

machine in 1808,* and gave the old formula in the modern fashion

of their time, stating also the geometrical property that ' the

angles about the axes are those which would be described, start-

ing from the vertical, by two radii, of which one is the orthogonal

projection of the other on its own plane of motion.' This, as I

have explained below, was shown by the ancient elliptical dialling

diagrams.
M. Poncelet demonstrated the same formula by spherical tri-

gonometry, and supplied the differential expressions for the

velocity ratio, which had not previously been considered.

.MM. Lanz and Betancourt also introduced the joint brise

into their * Essai sur le Composition des Machines
'

(O. 8, pi.

No. 6), 1808, referring to Schottus, and adding that M. Droz had

applied it to a laminoir of his invention.

* Bulletin de la Soc. Philomatique, No. 16; also Borgnis, Theorie de la Mtcaniquc

nouvdh, p. 283 (joint brise ou vniversel), 1821.
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In the first edition of the present work I gave many details of

this contrivance and its theoretical properties, which had escaped

previous notice, and have endeavoured in this second edition to

fill up the sketch given in the first.

The joint brise is said by Lanz and Betancourt to be greatly

employed on a large scale in Holland, for changing the inclina-

tion of the Archimedean screws turned by windmills for drainage,

p. 60.



CONSTRUCTIONAL FORMS AND THEORY. 445

CHAPTER II.

CONSTRUCTIONAL FORMS AND THEORY.

508. IN the preceding chapter I have endeavoured to give the

history of the * Universal joint.' In the present I propose to

describe its various forms, and to develope the formula by which
the laws of the motion communicated from one axis to the other

are defined.

509. Fig. 359 represents one of the simplest forms of the uni-

versal joint for the communication of rotation. But every form of it

may be described, in the nomenclature

of Hooke, as consisting of five several

parts, namely, two axes Aa, Bb, to

the respective ends of which are fas-

tened two arms CAc, DJBd, which

embrace and take hold of the four

points or pivots at (7, c, D, d, of the

medium CDcd. Each of the semi-

circular arms has two center holes,

into which the sharp ends of the medium are put, which center

holes Hooke calls the hands of the arms* The two points (7, c

taken hold of by the hands of the driving axis Aa, Hooke terms

the points. The other two points Dd taken hold of by the second

pair of hands he terms the pivots.

He proceeds to insist that *

great care must be had that the

pivots and points lie exactly in the same plane, and that each two

opposite ones be equally distant from the center, that the middle

lines of them cut each other at right angles, and that the axes of

the two rods may always cut each other in the center of the

medium cross or plate, whatever change may be made in their

inclination.
' The shape of this medium may be either a cross (as in

fig.

359), whose four ends hath each of them a cylinder, which is the

weakest way ; or secondly, it may be made of a thick plate of
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brass, upon the edge of which are fixed four pivots, which serve

for the hands of the arms to take hold of (as in fig. 357). This

is much better than the former, but hath not that strength and

Fig. 360. Fig. 361.

steadiness that a large Ball hath, which is the way I most ap-

prove of, as being strong, steady, and handsome.' The four figs.

360, 361, 362, and 363, are forms employed by myself.

Fig. 362.

*

Fig. 363.

In the last I have substituted thin boards for the arms and medium,

hingeing them in the manner shown in the figure, where O is the

intersection of the linear axes, Bb, Aa the axes, JBOQ, AOQ
triangular boards fixed to the axes and connected by a quadrantal
board and hinges. The triangular boards correspond to the arms,

and the quadfantal board to the medium of Hooke's nomenclature.

But I prefer to term them radial planes and link plane, of which

more above.*

510. Fig. 364 is reduced from Hooke's tab. ii. fig.
10 of his

'

Description of Helioscopes,' p. 14, to show his complete form of

the joint, when applied to astronomical mechanism. This consists

in constructing the arms so as to enable their lines of flexure as

* Vide p. 250.
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CC to be inclined and fixed at any required angle to the axis of the

shaft, the line CC always remaining in the plane which contains

Fig. 364.

the axis and arms. This adjustment is required to set the axis

1 1 of the medium cross to the inclination of the sun's declination,
* so that the arms CC at the end of the first axis, may by their

revolution make the line 1 1 of the cross describe such a cone

about the first axis, as the motion of the Sun doth about the axis

of the Earth, making the center of the Earth the Apex of that

cone, which will be done if the said semicircular arms be moved,

and set to the declination of the Sun for that day.' This adjust-

ment is employed, for example, in describing an elliptical dial

by the orthographical projection to obtain ' the lines that divide

the Ellipsis of either Tropick,'* also when the joint is employed
in carrying round the hand of a clock in the shadow of a style

perpendicular to its face, when the inclination of the arms is made

to vary daily, by the clockwork alone, in correspondence with the

sun's declination.!

But modern science has entirely banished *

Dialling,' in which

the philosophers of Hooke's period revelled, and the only employ-
ment of the ' universal joynt' in a modern observatory, is for the at-

*
Helioscopes, pp. 17, 21 and 16. t P. 20.
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tachment of long pendent handles to the adjusting screws of large

instruments which would otherwise be inaccessible without ladders
;

thus employing it as a joint of flexure. It is also used in connect-

ing a series of shafts in machinery, so as to transmit their rotations

uniformly from one part of the frame or machine to another, as

will be shown below.

511. Hooke's first application of his form (fig. 358 above) of the

universal joint was to the construction of a machine to graduate

Fig. 365.

sun-dials, as we have seen, and was founded upon the theorem,

that if two axes A O, OB, that meet at a point O are connected

by that joint, and mounted in a frame, that is so adjusted in posi-

tion that one of the axes, A O, shall be parallel to the direction

of the style of the proposed dial, and that the other, OB, shall

be perpendicular to the plane D of that dial, then if the first be

moved by a clock once round in twenty-four hours, the other

shall move its index on the plane of the dial to which it is

adapted, in the same velocity with the shadow of the sun in

that plane. Consequently, to graduate a dial-plate the first axis

must have an index travelling over the surface of the twenty-
four hour plate H, and by setting the index in turn to each of

the hours, and at each hour marking the place of the lower
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index h on the blank dial-plate D, it will be accurately and easily

completed.
In the diagram I have employed my own solid-angular form of

the universal joint (Fig. 365 above, and page 249). It is com-

posed of a driving radial plane A OP fixed to the horal axis A O,
a follower radial plane OQB fixed to the dial axis BO, and a

link plane PO Q connected to the respective radial planes by lines

of flexure OP, OQ. The angles A OP, AOQ, POQ are right

angled at O. OQ is perpendicular to the axis OB, and travels

in a plane parallel to the dial D.
Let the axis A O be the edge of the style, therefore the plane

AOQ produced contains the sun, and OQ is the shadow of that

edge, and indicates the hour line on the dial. The index h which

is fixed to the axis OB, and travels over the blank dial D, is

parallel to OQ. I have extracted this method of proving the

identity of the laws which express the velocity ratio of the two
rods connected by the universal joint with the velocity of the

shadow of the style over the dial plate, from Hooke's paper
' On

an Instrument for Describing all Kind of Plane Dials ;

'

but have

translated it into modern English, and illustrated it with a new

diagram.
512. Having shown that the velocity ratios of the universal

joint are the same as those of the sun-dial, we may employ for the

Fig. 366.

former a simple construction for the delineation of the relative

successive angular positions of the horary lines of a sun-dial which

was first employed by Clavius in 1581,* for dials whose style was

Gnomonices, 1581. pp. 02, 149. Ferguson reproduced as his own the construction

G G
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parallel to the Earth's axis, and next by Foster, 1654, in his

'

Elliptical or Azimuthal Horologiography.'
About the center C describe two circles with radii Cb, CB.

Divide their circumferences into the same number of equal parts

by points B I, n, in, and b 1, 2, 3, &c.

Through the former points draw lines parallel to BC, and

through the latter points lines parallel to CN, and let them in-

tersect in the points n, o, p, &c. These points are plainly in the

circumference of an ellipse whose major and minor semi-axes are

the respective radii of the two circles, for _^ =-^ =_
PN qC be

Hence for a sun-dial, if bC=BC. Y! and the outer circle
radius

be divided in twenty-four equal parts, the lines Cb, Cn, Co, will

be the hour lines. Also for Hooke's joint by fig. 365. If radii

cB, Cn, Co, be drawn to the points on the circumference of the

ellipse, they represent the angular positions of the driver's radius

which respectively correspond to the positions CB, Ci, Cu, Cm,
of the follower's radius. It is evident that the ellipse and the

radii that are directed to its circumference form the orthographical

projection of the semicircle and its radii on a plane which inter-

sects the circle on the diameter AN, and makes an angle with it

of which b C is the cosine.

Therefore, when Hooke applies this joint to the construction

of the dialling machine (p. 441 above) he manifestly shows that

he knew the formula, and also that his contemporaries were fami-

liar with it, for when he moves by means of this joint, a quadrant
about a vertical axis by clockwork, so as to keep its vertical face

in the azimuth of a celestial object, he declares that this motion <
is

geometrically and strictly such as it ought to be to keep the Plain

of the quadrant exactly in the Azimuth of the celestial object, as

any one ever so little versed in geometry will easily find; and I shall

hereafter more at large demonstrate, when I come to shew what

use I have made of this Joynt, for a universal Instrument for

Dialling, for equalling of Time, for making the Hand of a Clock
move in the shadow of a Style, and for performing a multitude of

other Mechanical operations.'

for dialling in the Appendix to his Treatise Lectures
; Select Mechanical Exercises,

1790, p. 95, as 'A new geometrical method of constructing sun-dials;' as he alsodid

with the Dialling cylinder which had been previously given by Schoner, in 1562.

Ferguson also claims the Universal Dialling Cylinder in these words following :

' The
best machine I ever contrived is the Eclipsareon, &c. My next best contrivance is the

Universal Dialling Cylinder, of which there is a figure on the eighth plate of the Sup-
plement to my Mechanical Lectures'
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He also employs the joint
e for dividing and describing all

manner of Ellipses in any Analemmatical projection, and for

making all manner of Elliptical Dials in Mr, Foster s way]
plainly alluding to the method given in this article, which I have

traced to Clavius. Samuel Foster, who died in 1652, was Pro
fessor of Astronomic in Gresham College, when Hooke was made
Curator of the Royal Society in 1662. Of this treatise the con-

struction which I have given Fig. 366, is the basis, and is evidently
the origin of the expression employed by Hooke, when he says
that the motion of one axis is communicated to the other ( accord-

ing to a proportion which for distinction sake I call Elliptical or

Oblique? p. 14, 'Description of Helioscopes,' 1676.

In p. 22 he mentions other uses of this (

Joynt, for drawing

Ellipses, drilling and boring of bending Holes, for turning Elliptical

and swashwork ; but has given no details of the actual mechanism

which he employed or proposed to employ.
513. The analytical formula for the velocity ratios of the

Hooke's joint may be directly obtained from the following con-

struction, which is a simplified form of the last.

Tofind the angular velocity ratio of axes connected by a HookSx

joint. Let C be the intersection of

the axes, the circle ABDL that de-

scribed by the extremities of the

driver's arms, the plane of the paper

being supposed perpendicular to the

driving axis. Let the plane which

contains the two axes intersect the

paper in BCL, and let the ellipse

AID be the projection of the circle

described by the extremities of the

follower's arms. If 6 be the inclina-

tion of one axis to the direction of the other produced, we have

bC=BC.cos0.

Let FCG be that branch of the medium cross which is jointed

to the driver ; then as this branch is always in the plane of the

circle ADD, the projection of the other arm which is jointed to

the follower will be perpendicular to it. Draw HCI at right

ano-les to FCG, passing through the center C and terminating at

//In the circumference of the ellipse.
This will be the projection

of that branch of the cross which is jointed to the follower, and

H the position of its extremity.

If, therefore, the motion of the driver's branch CG of the cross

o o 2
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be reckoned from the position CL, L CG is the angle which it

has described in passing to CG, and as the follower's branch of

the cross was at the beginning of this motion at CD, CH is the

projection of its position when CL has moved to CG, and we
have to find the magnitude of the projected angle DCH. Now
in the projected circle AbD, all lines parallel to the major axis

A CD are unaltered in length by the projection .. Hm drawn

parallel to CD represents the real magnitude of the sine of

the projected angle HCB to the radius CD. Draw through H
the line hk perpendicular to CD. Then will BCh be the true

value of the projected angle BCH.
Consequently, DCh is the angle through which the follower's

branch of the cross, therefore the follower axis, has been moved

by the motion of the driver from CL to CG.
As CH is perpendicular to CG the angles LCG, DCH are

i-ii i ,. r- CL the driver
equal, and .'. we have total angular motion of -

CD the follower

DCH = suppose
\

).

But Hk, hk are the tangents of these angles to radius Ck
tan DCH _ tan a _ H%_ bC _

'*

tan DCh
~~

tan/3
~

hk
~
BC

~

The above expressions give the entire angles described simul-

taneously from the common starting point D by the respective

axes, and thus also the simultaneous positions of indexes attached

to those axes.

To find the velocity ratio of the axes we must differentiate the

expression, tan a= cos 6. tan /3 . . . 1

which gives^=^. cos 2
dp cos2p

= .

l+tan?a

Eliminating in turn a and /3 from (3) by means of (1) we
obtain,

da cos

cos2a . sin2

These give a maximum value (
= cos 0) for the ratio, when

sin /3= 0, which happens when /8= 0, TT, 2?r, &c.,
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and .'. sin $=0 and (4) becomes -^=cos 6.

dp

The minimum value=- happens when a= -, ,
-

-,

and therefore cos a=0.

(3) and (!) we a,s

when the angular velocities are equal.*

.'. cos2 #+ tan2a= cos + cos 6 . tan2
a.

cos2 cos 0=cos 6 (cos 6 l)=(cos 6 1) . tan2a and tan2a=
cos 6.

Again (eliminating a)=cos B .

*

.
= 1. at the

points when velocities are equal.

.-. tan2
/3= --

^, consequently the equality of velocities

happens when the driving arm has described an arc whose

tangent= Vcos 6, and the follower arm one whose tangent is

-, where 6 is the inclination of one axis to the direction of
x'cos B

the other produced.
The construction of the former demonstration, however, has

the advantage of exhibiting graphically the relative positions of

the driver and follower by means of the ellipse and circle

(fig. 367), where if HCB be the angular distance of any given
radius HC of the driver from its position at the beginning of the

motion at JB, reckoned as above at (1), then will hCB be the

corresponding angular distance of the radius hC of the follower,

which coincided with it at starting from B.

If we follow these radii round the circle, it appears that they
coincide at four points B, D, L, and A ; that at starting from

B, where the follower's branch of the medium cross is in the

plane of the axes, the follower moves slower than the driver at

first, and falls behind it, and then accelerates, until it overtakes

it at D, where the driver's branch is in that plane, beyond which

it takes the lead through the next quadrant DL, first moving
quicker than the driver, and then retarding ;

so that the driver

overtakes it at L, and passes it. The motion through LA is

similar to that through BD ; and that from A to B the same as

that from D to L. The amount of retardation and acceleration

depends upon the value of 6
; and therefore if a single joint be

* Poncelet, Traiti de Mecanique appliquie aux Machines. Bnixelles, 1845. Art. 74,

p. 122.
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emp'oyed, the axes must be inclined to each other sufficiently to

produce the desired variation of velocity.

514. By means of two joints, however, the axes may be placed

parallel or inclined to each other at any angle, and a greater

Fig. 368. variety of motion be procured.

A ^B m Tlms let AB> fiS' 368 > be the Driving

axis, and let it be connected to the first

following axis BC by a Hooke's joint at

B, and let this be similarly jointed to a

second axis CD at C. The plane of ABC
may be different from that of BCD, so

that the axes AB, CD will be neither

parallel nor meeting.

First, let the angular motion of the second joint at C be

reckoned like that of the first, from the position in which the fork

of the follower lies in the plane of the two axes. Then for the

motion of the joint B we have, as before,

tan a
tan/3= -\

cos 6

and if 7 be the corresponding angles of the axis CD, and 0, its

inclination to BCb,
tan /3 tan a

tan 7=
cos 6

/
cos . cos

t

If there be a series of similar axes, whose successive mutual

inclinations are 6, 6,, 6
//

. . .6n , 8 the angular distance of a radius

of the last corresponding to a,

tan a
then, tan 8= ^

cos 6 . cos 6
/
cos a^.-.cos n

In a system of this kind any desired amount of variation may
be obtained, and the last follower may be set at any given angle
to the first driver, or even in its own direction produced, by
three Hooke joints only.

In the system just described the shafts may lie in different

planes, but it is supposed that the joints are all so adjusted that

when the following arms of the first joint B lie in the plane ABC
of its two axes, that the following arms of every other joint also

lie in the plane of their two axes.

Let there be a system of three axes with two joints, as

fig. 368, but let the driving arms of the second lie in the plane
BCD, when the following arms of the first lie in the plane ABC,
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or, which is the same thing, let the first articulating axis B of

BC, be in the plane ABC, when the second articulating axis C
of BC is in the plane BCD. The angles of the second are

therefore now reckoned from a fixed radius distant one quadrant
from those of the first.

If tan /3=
an a

be the equation to the first,
cos

tan
(f+/3).

tan 7= \? is the equation to the second.
COS0,

But tan
[
- -f } ;

V2 / tan ft*

cos
' tan 7= 7-

tan a . cos 0,

'

Let 0=0.; .-. tan 7=
1

;

tan a

which shows that if the forks be set as above, and if the angles

of inclination of the axes be equal, then the variations of motion
will counteract each other, and the angular velocity ratio of the

extreme axes AB, CD, remain constant.

When the double Hooke's joint is thus employed, it is com-

monly for this purpose of correcting the varying ratio of angular
velocity, and the intermediate piece may F
therefore be made short, as in fig. 369.

If the axes all lie in one plane, the

directions of the outer ones meet in a

point of that plane, and the setting of

the forks is reduced to the simple rule of

making those of the intermediate axis in

one plane as in the figure.

Care must be taken, however, that the

angles which the extreme axes make
with the intermediate piece are the same.

It is thus shown that by this double Hooke's joint a constant

velocity ratio is maintained between two shafts, whose, directions

are neither parallel nor meeting.
515. For the exhibition of these properties, I employ a model on

the plan of the diagram (fig. 368), in which the driving and

following axes are mounted independently on bases, which rest

upon a board beneath, in which two holes are pierced at a



456 UNIVERSAL JOINTS.

distance equal to B C, for the reception of two screw-bolts with

fly nuts, by which the separate bases are fixed to the board.

These holes are bored vertically below the points B and C.

Thus the axes AB, DC, can be set at any required horizontal

angles to the direction of the connecting shaft B C.

One of the two forks or pairs of arms, as (B), which terminates

that shaft is fixed to it. The other (C) is fitted to it by a collar

and binding screw, so that the forks may be set at pleasure in the

same plane or in different planes. Each outward extremity, as

A and D, is furnished with a circular dial plate, which is fixed to

it, and is simply graduated into quadrants by black radial lines,

and each quadrant bisected by a round red spot, like the dial in

fig. 206, p. 218. These degrees are read off by an index, fixed

to each of the pedestals which sustain the axes in such a manner

that they project upwards above the circumference of their

respective dials. As the apparatus is presented to the spectator
in the end-long position, the two dials and indexes are seen

simultaneously, and thus it can be shown that when the driving
axis and following axis are set at equal angles with the inter-

mediate axis and the forks or arms of the latter in the same

plane, the revolving dials will bring their black lines and red

spots simultaneously under the re-

spective indexes ; but if the forks

of the intermediate axis are set so

as not to lie in the same plane, the

black lines will be brought under the

axes simultaneously ;
but the red

spots will exhibit the variations

shoAvn in fig. 367 above.

516. To connect t^vo parallel axes

so that the rotation of one shall be

communicated to the other in the re-

verse direction.

Let two parallel axes Bn, Em,
Fig. 370, be mounted in a frame

(omitted in the diagram), and their

respective extremities BE be con-

nected by joint pieces BA, JED

( V w itn a snaft AD. The joint pieces

~0>^r
must be in the form shown in fig.

369. The upper axis is provided
at its outward extremity with an index, as at n, and the lower
also with a handle H. By the property of the double Hooke's
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joint (Art. 514 above), it is shown that when the handle H is

turned about, the rotation of mE will be conveyed by the double

joint ED to DA, and by the double joint AB to En.

But the direction of the rotations of the parallel axes will be

opposite, as shown by the arrows, and may be explained as

follows. Let the chain of axes be supposed to be laid out in a

straight line, as shown by the dotted lines at /<?, be. If now ef
be rotated in the direction of the arrow, the whole chain, and

therefore be will rotate in the same direction.

Let us now bend Abe into its proper position, b moves to JB,

c to C, and the arrow which marks the direction of the rotation

will point upwards towards C as it pointed towards c in the first

position.

Similarly when Def is bent into the position DEF,f is carried

to the lowest point of the disk at F, and the arrow point, which

in the straight position pointed horizontally to the right to _/, is

made to point downwards to F, which proves the reversion.

Thus we obtain a method of communicating rotation from one

axis to a parallel one, so that the direction of rotation is reversed,

but the velocity of rotation of the driving arm or handle Hm
exactly communicated to the follower index nC.
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CHAPTER III.

UNIVERSAL FLEXURE-JOINTS AND SWIVEL-JOINTS.

517. WE may now proceed to investigate the universal joint

considered with respect to its property of connecting the ends of

two rods in such a manner that, supposing one to be fixed in

position and the other placed so as to coincide with the produced
direction of the first, the connection of the ends shall allow the

movable rod to be flexed at any angle with the fixed rod and

in any given plane which contains that rod.

Manifestly the flexure of the movable rod is performed about

an axis of flexure, which passes through the point of intersection

of the two rods, and is normal to that given plane. Conse-

quently, we must examine the theory of th^ composition and

resolution of small angular motions about axes which meet in a

point, which may be directly demonstrated as follows :

Let CA^ CA* be two axes meeting at C at any given angle,
Ca their common normal at the

point of intersection.

Let the body rotate about CA
l

through a small angle, by which

the normal Ca is carried to Cav and

subsequently about CA 2 through a

small angle by which Ca
l
is carried

to Cay As the angles are small,

these motions take place in a plane

parallel to the plane which contains

the axes CA
lt
CAr

The effect of these successive

motions is to place Ca in the same

position as if a had been carried
direct to o

2 along the third side of the triangle, of which the other
sides represent the separate motions. Also the two sides having a
common radius Ca are respectively proportional to the angular

Fig. 371.
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velocities about CA
19
CA

2 by which they were described, and the

third side to the resultant angular velocity. In the plane CA^A^
draw CA perpendicular to the plane Caa

2
and A

2
A parallel to CAV

Now because the lines CA, CAV CA
2
are respectively perpen-

dicular in direction to the planes Caav Caa
l} Ca\av the triangle

CA^A is similar to the small triangle a^a, and in a parallel

plane, therefore, its sides are respectively proportional to the

angular velocities described about the axes represented in direc-

tion by these lines.

Hence, if two lines radiating from a point represent in direc-

tion and magnitude the axes and angular velocities of two small

rotations, the diagonal of the parallelogram constructed within

the two lines, whose rotations are in the same direction, will re-

present in direction and magnitude the resultant rotation.

In the above form of the junction of two rods by two axes of

flexure, the joint is termed a universal flexure-joint. But when
a third axis of flexure is introduced which is not contained in the

plane of the other two, we obtain a connection of the rods, by
which not only transverse bendings in all directions are possible,

but also rotations of one rod about the point of connection, after

the manner of a ball and socket, as will appear from the follow-

ing proposition. Such a joint is termed a 'universal sicivel-

joint,' and its theory is the subject of the following article.

Fig. 372.

518. A small rotation about an axis CP in any given position

can now be resolved into three component rotations upon three

axes meeting in one of its points C, and respectively parallel to

three given lines Co,, Ca2 , C03 ,
not in the same plane.

Let the line CP represent the given rotation in direction and

magnitude, and let a plane parallel to that of two of the lines, as
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Cfl,, CV/2 pass through C. From P draw PQ parallel to 3 C,

and meeting this plane in Q. Join CQ and construct upon it

as a diagonal the parallelogram CA
l QA 2 , whose sides are res-

pectively parallel to Ca
l}
Cav

The rotation CP can now be resolved into CQ, QP, of which

the former can be resolved into CAV A 2 Q,

We thus obtain a parallelopipedon, the diagonal of which

representing the rotation in position and magnitude, the com-

ponent rotations are respectively represented by the edges of the

solid.

Fig. 373.

519. Fig 373 represents my apparatus, by which the nature of

the resolutions and composition of axes of flexure in general can

be readily illustrated.

A circular base has a piece of upright brass tube inserted

firmly into its centre. This tube is employed for the support of

a combination exactly similar to fig. 363 (p. 446 above), consist-

ing of a rod Cc affixed to a quadrantal radial plane r, which, by
a similar link plane L, is connected to a second quadrantal radial

plane R, the rod of which is inserted into the brass tube, which
it fits freely, so as to allow it to revolve steadily when required.
But this rotation can be prevented by a wire pin p passed

through a transverse hole drilled through the tube and rod.
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In this condition the upper rod Cc can be flexed upon the

plane L by the hinge CA^ so as to bring the point m, which
is in the axis of the rod produced, to the position n, so that

mn is a small arc of a circle contained in a plane perpen-
dicular to the axis CAV If now the rod and quadrant r be
flexed about the axis CA

L , without disturbing the angle mCA^,
the point n may be moved through a small arc no of a circle,

whose radius is a perpendicular dropped upon CAr In these

motions the extremity m travels in the surface of a sphere with

radius Cm, and the arc mo is the arc of a great circle of that

sphere, which if described by moving the rod Cm directly from
Cm to Co, would cause it to rotate upon an axis passing through
C and normal to the triangle Cmo.

If it be required to rotate the rod Cc upon its own axis, that

axis not being in the plane of the other two A
l a,, A 2

a
2 , we must,

by the last article, introduce a third axis CA
3 into the system, by

removing the pin p, which will leave the cylindrical rod which is

fixed to R, free to revolve in the tube. Grasp the rod Cc in

the hand and twist it round without disturbing its inclination,

and it will cause the entire system to rotate about the vertical

axis. During the motion, the combination will of itself by virtue

of its connections resolve the rotation of Cc into the three axes,

flexing by A^ and A^, and rotating CAy
520. The joints by which the members of crustaceous animals

and insects are united, furnish many beautiful examples of these

principles. These formed the subject of a communication made

by me to the Philosophical Society of Cambridge in March 1841,
of which the following paragraphs give the substance.

Every separate joint in these animals is a hinge-joint very

curiously constructed, but of course possessing but a single axis

of flexure ; these axes, however, are grouped so as to produce

compound joints having two or three axes of flexure, and there-

fore either forming universal flexure-joints, or swivel-joints, in

the manner explained in the previous article.*

As an example of this we may take the front claw of the

common crab, represented in fig. 374. This consists, in fact, of

five separate pieces, A, B, C, D, E, not including the movable

jaw F of the actual claw ; each piece is jointed to the next by a

hinge-joint. But upon our principles the entire limb may be

* In this class of combinations if the axes of the joints pass each other without

meeting, it can easily be shown that the moving piece has still the unlimited choice of

direction for the resultant axis, and that it will lie somewhere between the component
axes.
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considered to consist of two principal members C and E
; of

which the first is jointed to the body of the animal by a universal

swivel joint of three axes of flexure, and the second to the first

by a flexure joint of two axes, or Hooke's joint.

For the piece C is united to the claw E by means of an inter-

mediate piece D, and the axes of the joints which connect them

Fig. 374.

X

are shown by the line 5, 5 between E and D, and 4, 4 between

D and C. These axes meet in a point k, and therefore by what

has preceded, it appears that E moves with respect to C about

the point k, and that it is at liberty to turn round any axis of

flexure passing through that point and in the plane 5, k, 4. So

that this is in fact a natural Hooke's joint. The swivel joint

which connects the piece C with the body of the animal is more

complex ; and to exhibit its arrangement, two projections are

given, one upon a plane perpendicular to the other, and inter-

secting it in the line mn.

We may suppose the claw to be laid down on the table in the

upper figure, in which case this becomes the plan and the lower

the elevation, although the figures are drawn without any rela-

tion to the position of the claw with respect to the body of the

animal, but only so as best to exhibit the joints, as will appeal-

presently.
A ring A or a is attached to the body of the animal by a joint

whose axis is 1, 1, in the plan, and I, I, in the elevation. This

is jointed to a second ring B, or b, by an axis 2, 2, or II, II
;
and

B is jointed to C by a third axis vertical in the plan, whose pro-

jection is therefore a point 3. It is shown at in, in, in the

elevation. C is therefore connected to the body of the animal
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by a compound joint of three axes, whose directions nearly meet,
but of which no two are parallel, neither are they in three parallel

planes, and therefore, by foot note p. 461, C is at liberty to move
about an axis situated at any angle with respect to the body. The

compound joint, in fact, corresponds to the ball and socket joint

employed for the shoulder of vertebrate animals. Its motions in

different directions are of course limited by the extent of angular
motion of which each separate hinge is capable.

The diagram is reduced from a very careful drawing. I found

that the axis 2, 2 was as nearly as possible in a plane perpen-
dicular to 3, and that when the ring A was placed in its mean

position, the axis 1 , 1 was also in a plane perpendicular to 3.

This determined the choice of the position of the planes of pro-

jection.

That of the plan is parallel to the joints 1,1, 2,2, and therefore

perpendicular to the joint 3, which thus becomes a point. The

plane of the elevation is parallel to the point 3.

As to the joints 4,4, 5,5, the joint 4,4 is in the drawing a little

overstrained to allow 5,5 to come into parallelism with the plane
of the paper ;

and 4,4 is also not in reality exactly perpendicular
to 3. However, it must be understood that my object here is

not to show the relation of the limb to the body of the animal,

but merely the principle of arrangement of the joints.

The claw E is shown in its extreme outward position with

respect to C ;
in its mean position it would be at right angles

to the paper ; and in the extreme inward position E and C
would come into contact, to allow of which the shape of the

intermediate piece and position of the hinges are beautifully

adapted.
Thus my series of mechanistic combinations has conducted me

to an example from the numerous and marvellous constructions

which characterise the machinery of the animated forms, with

which the world has been peopled by its Beneficent, All-wise, and

Merciful Creator, from the careful and reverent study of whose

wondrous works, we derive all our practical science, under His

Almighty guidance and protection, which is never withheld from

those who humbly ask it, in the spirit of faith and truth.
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