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ABSTRACT

This dissertation examines three methods of recovering signals cheaply from one class of

highly sensitive Optical Fiber Interferometric Sensors (OFIS). This class of sensors consists of

a laser light source; a 2x2 optical fiber coupler to split the beam in two; a differential transducer

which converts a signal of interest into optical phase shift in the laser light transmitted through

the two optical fibers in the interferometer; and a 3x3 optical fiber coupler which recombines

the two beams, producing interference which can be detected electronically. The ihree outputs

can be operated on symmetrically or asymmetrically to recover the signal ^[ interest. The use

of the 3x3 coupler permits Passive Homodyne Demodulation ai the phase-modulated signals

provided by the interferometer without feedback control or modulation o( the laser itself and

without requiring the use of electronics within the interferometer. One o\' the three methods

discussed in this dissertation performs symmetric demodulation with analog electronics. Another

uses analog-to-digital conversion of the signals and performs asymmetric demodulation in digital

hardware. The third method discussed uses asymmetric fringe-rate demodulation. The three

methods are characterized by their harmonic distortion, minimum detectable signal, bandwidth.

dynamic range, noise, complexity, and approximate cost.
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FABLE OF SYMBOLS

In this dissertation we use units from the Systime International d'Unite's, or SI.

For a good description of this system, see Appendix B in Hayt [Ref. 1, pp. 501-

506]. A table of prefixes to units in this system is given at the end of the table of

symbols. Generally we use italics to denote scalar variables, bold to denote vector

variables, and ordinary type to denote units. For example, x is a scalar variable, x is a

vector variable, and s is the abbreviation for "second".

Symbol Definition

A

The amplitude o{ the signal oi' interest when it is a simple sinusoid

of the form

A sin(u>0-

Its units vary with the context: it may be measured in units of the

signal o( interest, or in radians of phase shift created in the optical

fiber interferometric sensor when the signal o( interest impinges

on the sensor. For example, in an acoustic sensor it could be

measured in pascals (Pa). After demodulation of a phase-modu-

lated signal, A could be measured in volts.

B

The magnetic tlux density. It is measured in Lesla (T) or. equiva-

lently, webers per square meter (W / m :
). In fundamental SI

units, one tesla is the ratio of kilograms to the product of cou-

lombs and seconds, or 1 T = 1 kg / (C s).
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Symbol Definition

c

The speed of light, which was redefined in 1983 to have the value

2.99792458 x Iff meters per second (m / s).

C One coulomb, the fundamental unit of charge in SI units.

D

The central value around which the output of the optical fiber

interferometric sensor fluctuates. Its units vary with the context:

it may be measured in watts of optical power, or. after the light

strikes a photodiode, in amperes of current, or, alter passage of

that current through a transimpedance amplifier, in volts.

D
The electric flux density, measured in units o\' coulombs per square

meter.

E

The amplitude o( the output of the optical fiber interferometric

sensor. Its units vary with the context in the same manner as the

units o[ D described above.

E

The electric field intensity, measured in units o( volts per coulomb

(V / C). In fundamental SI units, this is equivalent to kilogram

meters per coulomb per second squared (kg m / C s
:
).

/
The conventional frequency of the signal of interest, measured in

hertz (Hz).

F,

The scale factor of the Optical Fiber Interferometer with a power

amplifier of gain 10 providing the input voltage signal. This is the

conversion factor between the peak input to the power amplifier

in volts and the output in radians of peak phase shift.
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Symbol Definition

Fs.tFF

The scale factor of the Analog Interferometric Simulators. This is

the conversion factor between the peak input in volts and the

output in radians of peak phase shift.

r S.iD

The scale factor of the Symmetric Analog Demodulator. This is

the conversion factor between the input in radians of phase shift

and the output in volts.

F

One farad, the SI unit of capacitance. One farad is equal to one

volt per coulomb (V / C), or. in fundamental units, the product of

kilograms and cubic meters divided by the product oi' seconds

squared and coulombs squared [(kg nr ) / (s
: C2

)].

H

One henry, the SI unit of inductance. One henry is equal to one

weber per ampere (Wb / A), or, in fundamental units, the product

of kilograms and meters squared divided by coulombs squared

|(kgm :)/C :

]

H
The magnetic field intensity measured in units o( amperes per

meter (A / m).

Hz

One hertz, the SI unit of frequency. One hertz is defined to be

one cycle per second (s
_l

). Since one cycle comprises 2tt rad.

1 Hz = 277 rad/s.
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Symbol Definition

J

The imaginary number usually called / by mathematicians and

physicists. It is called j by electrical engineers in order to avoid

confusion with the conventional use of the symbol /' for electrical

current.

j = ^

J

The current density, measured in amperes per square meter

(A/nr).

k Boltzmann's constant, with a value of 1.38x10""'' J/K.

K

One kelvin. the unit o( thermodynamic temperature. Until the

13th General Conference on Weights and Measures changed the

name in 1967, this was called the degree Kelvin (°K). The degree

Celsius measures the same interval of temperature, but the Celsius

scale has a different origin: ()°C = 273.16 K. [Rcf. 2.

p. F-100]

kg One kilogram, the fundamental SI unit ol' mass.

m One meter, the fundamental SI unit of length.

rad One radian. There are 2tt rad in a circle.

Re

The real part o\' the quantity which follows. For example, if 2 is a

complex quantity, then

Re[z] - Re[x + ;>] = x.
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Symbol Definition

One second, the fundamental SI unit of time.

One siemen. the ratio of amperes to volts (A / V). (Formerly the

siemen was often called a mho and either the symbol 13 or ft"
1

was used to represent it.) In fundamental SI units, one siemen

equals the product of seconds and coulombs squared divided by

the product of kilograms and cubic meters [(s C :

) / (kg m 3

)].

The time in seconds (s).

The period of one oscillation of the signal o( interest. T is mea-

sured in units of seconds (s). It is related to the conventional

frequency / by

T-l
f

The Alh output of the optical fiber interferometric sensor. In an

interferometer using 3x3 optical fiber couplers at the output, k

can take on the values 1. 2. or 3. In such an interferometer.

-DE cos|$ - (k-l)— + 4)

The other symbols in this expression are defined elsewhere in this

table.

The permittivity of a given substance, measured in farads per

meter (F / m). In isotropic materials, it is a scalar constant. In

anisotropic materials, it is a tensor. [Ref. 1, p. 149]
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Symbol Definition

Co

The (dielectric) permittivity of free space. This physical constant

has the value 8.854xl()"
i:

farads per meter (F m).

V

The permeability oi' a given substance, measured in henrys per

meter (H i m). In isotropic materials, it is a scalar constant. In

anisotropic materials, it is a tensor. [Ref. 1. p. 315)

Uo

The permeability of free space. This physical constant is defined

to have the value 4-x\()~ henrys per meter (H / m).

IT

The ratio between the circumference o( a circle and its diameter.

There are 2- rad in a circle.

z

This symbol represents a signal o\' interest. It is a function of

time, and so can also be written as <f(/). Frequently in this disser-

tation we assume <f is a simple sinusoid with amplitude A and

natural frequency w. so

$(r) = A sin(u)f)

This assumption simplifies certain mathematical manipulations, but

in general, if <f is periodic, it may be represented as a Fourier

series consisting of many frequencies of various amplitudes.

a
The (electrical) conductivity, measured in units o( Siemens per

meter (S / m).
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Symbol Definition

4>

The phase shift in the output of the optical fiber interferometric

sensor due to various, miscellaneous causes excluding the cause

which the sensor was designed to detect. For example, in an

acoustic sensor, fluctuations in phase due to changes in tempera-

lure would be lumped in with </>. Although written as a constant.

4> is not necessarily fixed. If it is not fixed, we generally write it as

</>(/). Often, however, its frequency of variation is well below the

frequency range of the signal of interest. In this case, we call <b

"quasi-static". For example, temperature and pressure usually

vary much more slowly than acoustic waves and so the changes in

phase induced by changes in temperature or pressure are quasi-

static compared to changes in phase induced by acoustic waves.

*

The phase shift in a general sinusoid. We use this symbol rather

than only to avoid the impression that some phase shift under

discussion is necessarily a phase shift induced in an interferometer.

0)

The natural frequency in units of radians per second (s~
l

). It is

related to the conventional frequency /in hertz (Hz) by

a) = 2nf.

*

Used as a superscript to indicate the complex conjugate of a

quantity. For example, if z = x + Jy, then z' = x - Jy.

t

Used as a superscript to indicate that a quantity is a spectral

density. For example. ef could symbolize a voltage spectral

density in volts per root hertz (V//Hz).
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Symbol Definition

1

Used to signify the parallel combination of two impedances. For

example, the impedance of Z, and Z_, taken in parallel can be

computed as

1
Z

1
Z

27 117 - -

_L + _L zrz2

z
x

z
2

A

Used to signify the logical AND o( two logical quantities. For

example, the AND oi A and B is written A A B. The result of the

operation A A B is TRUE iM=£ =TRUE and FALSE otherwise.

V

Used to signify the logical OR o( two logical quantities. For

example, the OR o[' A and 5 is written A V #. The result of the

operation A V B is TRUE unless ,4 =5 = FALSE, in which case the

result is FALSE.

e

Used to signify the logical EXCLUSIVE-OR o( two logical quanti-

ties. For example, the EXCLUSIVE-OR of.-t and B is written

A 5. The result a( the operation /I © 5 is TRUE ifA*B and

FALSE otherwise.

~
Used to signify that one quantity is approximately equal to anoth-

er. For example, i(A~B, then A and B are roughly the same.
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Symbol Definition

Used to signify that one quantity is very much less than another.

For example, if A «B. then A is very much less than B. This is a

somewhat vague expression; it simply means that in a comparison,

A is negligible compared to B. Some authors interpret A«B to

mean that /l<£/10.
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STANDARD PREFIXES USED WITH SI UNITS

This table is adapted from Hayt [Ret'. 1. p. 506].

Prefix

Abbrev-

iation

Meaning Prefix

Abbrev-

iation

Meaning

atto- a- l0
-I8 deka- da- 10'

femto- 1- io-
,s hecto- h- 10

:

pico- P- io-
i:

kilo- k- 10
3

nano n- lO'" mega- M- 10
6

micro- V- nr h
giga- G- 10'

J

milli- m- io*
3

tera- T- 1()
1:

centi- c- 10" :

peta- P- 10' 5

deci- d- 10" 1

exa- E- I0
,s
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GLOSSARY

AC Alternating current.

AC Coupling Electronic devices can be connected to one another either by AC coupling

or by DC coupling. In AC coupling, the lowest frequencies are removed from a signal

before it is passed to the following stage. Some instruments, the HP3561A Dynamic

Signal Analyzer for example, have a selectable option to permit the user to select the

mode of coupling he prefers.

A/D Analog-to-digital converter. AD converters generate an analog signal from a

sequence of digital words. An analog signal can assume a continuous range of

amplitudes, whereas a digital word can represent only a discrete number of amplitudes.

Consequently, only some of the possible analog signal levels can be generated. The

abrupt changes in output level which result from changes in the magnitude of the input

word generate high-frequency noise in the output, which is usually filtered by a low-pass

filter in order to mitigate this effect. A/D converters are characterized by the range of

analog voltages over which they can operate, by the number of bits which they use to

represent the voltage, and by the time it takes them to perform a conversion.

D/A converters generate a digital word representing the magnitude of an analog signal.

An analog signal can assume a continuous range of amplitudes, whereas a digital word

can represent only a discrete number of amplitudes, so the conversion process introduces

quantization errors. D/A converters are characterized by the range of analog voltages

which they can generate, by the number of bits which they use to represent the voltage,

and by the time it takes them to perform a conversion.
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AM Amplitude modulation. The amplitude o\' a sine wave can he changed as a function

of time, i.e., it can he modulated.

Application-Specific Integrated Circuit (ASIC) It is increasingly common for many

complex electronic functions to he comhined onto a single integrated circuit on a silicon

(or other) substrate. These custom-designed circuits are known by the acronym ASIC.

The digital implementation o\' the demodulator, in particular, would benefit greatly from

the use of application-specific integrated circuits since it requires the largest numher of

interconnections, and. so. is the most complicated of the demodulators considered in this

dissertation.

Coherent light The coherence of a source of electromagnetic radiation is a measure

of how pure its wavelength is. or equivalently. how narrow its bandwidth is. In reality,

there are no perfectly coherent sources: all sources have a finite (non-zero) band of

component wavelengths. However, it is convenient to compare a real source to an ideal

(coherent) one. There are two aspects to coherence. Firstly, we generally require that

any two photons coming from the source have the same frequency. Secondly, we require

that the phase of a photon depend only on its distance from the source. To measure

coherence, we can split light from the source into two beams, permit each beam to travel

along separate paths of known length, and then permit these two beams to recombine.

The electric fields oi each of the two beams add vectorially. If they happen to he o\

equal magnitudes and opposite directions, then they sum to zero, and the result is zero

optical power. Conversely, if they point in the same direction, then the sum o{ their

amplitudes and the corresponding power is non-zero. In general, the sum will be

intermediate between these.

The only optical detectors currently available detect optical power, not electric field

strength and direction, because optical frequencies are too high lor current electronics

to keep up with. Now if the difference in the two path lengths is large enough, then the

two beams are no longer synchronized, which is another way oi saying that they are no
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longer coherent. Upon recombination, no recognizable pattern of bright and dark

"fringes" is detectable. All that appears is a smear of essentially constant brightness.

The minimum path difference necessary to produce this effect is called the coherence

length of the light source. The amount of time it takes light to propagate over this path

difference is called the coherence time of the light source. The light from the sun and

from incandescent and fluorescent lamps is incoherent: there is no path difference so

small as to permit an interference pattern to be visible. Laser light, in contrast, exhibits

some coherence. Different laser sources have different degrees of coherence, that is,

different coherence lengths. The semiconductor lasers used in the research described in

this paper have coherence lengths on the order of a few centimeters.

D/A Digital-to-analog converter. D/A converters generate a digital word representing

the magnitude of an analog signal. An analog signal can assume a continuous range of

amplitudes, whereas a digital word can represent only a discrete number of amplitudes.

Consequently, the conversion process introduces quantization errors. It is possible for

signals of more than one frequency to generate the same output sequence, a phenome-

non known as aliasing. To eliminate this effect, frequencies exceeding the Nyquist

frequency (half of the sampling frequency) must be removed prior to conversion. This is

generally done by passing the analog signal through a low-pass filter before sending it to

the D/A converter. D/A converters are characterized by the range of analog voltages

which they can generate, by the number of bits which they use to represent the voltage,

and by the time it takes them to perform a conversion.

DC Direct current.

DC Coupling Electronic devices can be connected either by AC coupling or by DC

coupling. With DC coupling, all frequency components of a signal (even those of zero

frequency) are passed to the following stage.
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Decade In the expression per decade increase of frequency, we mean for every ten-fold

increase in frequency.

DQPMS (Digital Quadrature Phase Modulation Simulator) This is an interfero-

metric signal simulator we designed and built using a mixture of analog and digital

circuitry. It produces in-phase and quadrature signals which resemble the outputs of an

optical fiber interferometric sensor terminated with a 2x2 optical fiber coupler, rather

than a 3x3 coupler. However, the waves are squared-off, not smoothly varying. (As is

the case with all digital signals, some overshoot always exists, and it lakes some time for

the signal to settle at the new level after a transition, but these effects can usually be

neglected.)

DSP Digital Signal Processor. These are integrated circuits which perform a dedicated

signal-processing function. They are similar to the more general-purpose microprocessor.

EG&G Princeton Applied Research Model 5210 Lock-In Amplifier This lock-in

amplifier permits very small signals to be detected synchronously. It provides variable

time constants, sensitivities, and filter skirts with either -6 Db or -12 Db per octave

change in frequency.

EMI Electromagnetic interference. Electric and magnetic fields can propagate through

space. As a consequence, despite the fact that these fields are attenuated as they

propagate, and even though their sources may be quite some distance away, electrically

responsive elements can be affected by them. EMI can also penetrate through to a

system through power supplies, if they are connected to the power mains, and from other,

less obvious, mechanisms. The latter include optical effects (such as the noise induced

in diodes by fluorescent lighting), acoustic coupling, vibration, and even thermal

fluctuations.
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Fringe The output of an interferometric sensor is a sequence of bright and dark light.

It" the recombined waves undergo a shift of 2ir radians (one wavelength), a complete cycle

from bright to dark and back to bright will occur. This is called one fringe. To obtain

one fringe, the amplitude of the stimulus must be rr radians, which results in a total

excursion in phase of ±rr radians. It is possible for the direction of the phase shift to

change in the middle of such a cycle, and in this case we speak of a sub-fringe. A sub-

fringe is a shift of less than 2tt radians (phase amplitude less than 77 radians), or less than

one wavelength of light. For example, if the wavelength X of the light in a vacuum is 830

nm and the change 11 in relative path lengths within the two legs of the interferometer

is 3 pm, then the interferometric output will undergo IirnlllX = 33.6 rad of phase shift,

which is 5.4 fringes. Here, we have taken the index of refraction n = 1.48, which is a

typical value for glass.

HP3314A Function Generator This device can generate sinusoids, triangular waves,

or square waves, as well as more complicated waveforms. The user can command a

desired signal amplitude, frequency, phase shift relative to some reference, and a DC

offset. We found that the commanded signal amplitude was inaccurate at low levels.

Using the Gertsch Model 480 Ratio Standard to reduce a strong output from the

HP3314A to the desired low level was much more accurate.

HP3456A Digital Voltmeter This digital voltmeter provides up to six digits of accuracy.

It has an averaging capability. The number N specifies the number of readings which the

HP3456A takes before computing an average. Individual readings are averaged over a

number of intervals of the power line cycle. With 60 Hz operation, one cycle is 1/60 s

= 16.7 ms. We typically specified either 10 or 100 power line cycles per reading in

making noise measurements, depending on how erratic the measured signal was. As the

period of observation lengthens, the variance of the average computed by the instrument

diminishes, although the variance in the signal itself (which the instrument also computes)

is unaffected.
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HP3561A Dynamic Signal Analyzer This device is capable of performing a Fast

Fourier Transform (FFT) on its input. The resultant display of amplitude vs. frequency

makes analysis of the spectral content of a signal quite straightforward. The device has

a mode for computing noise on a basis which is normalized for the bandwidth. This

means that the measured amplitude is divided by the square root of the bandwidth in

which that amplitude was measured. Unfortunately, the display does not make this fact

highly evident. The device can measure frequencies o[' up to 100 kHz. It adjusts its

dynamic range as needed. It can perform averages, too.

HP4194A [MPEDANCE-Gain/Phase ANALYZER This instrument makes the measurement

of gain and phase of a electronic system very easy. The range of frequencies one wishes

to have applied to the system under test can be specified. The output signal is applied

to the system under test and the output of that system is applied to the test input of the

HP4194A. The difference in magnitude and phase can be plotted with either linear or

logarithmic scales. This device can generate similar plots o( the impedance oi' a system

under test, and can calculate the equivalent parameters o( resistance, capacitance, and

inductance for a variety of models such as a series connection of a resistor, capacitor and

inductor.

INCOHERENT LIGHT Incoherent light is that in which the phase o( one wave o( light is not

related to the phase o\' another wave except by some random difference. The most

common example o[' incoherent light is that from the sun. Of course, if the two waves

do not have the same frequency, then they arc generally not regarded as coherent even

if their frequencies are commensurate: they have to have equal frequencies 67k/ their

phases must not bear a random relationship to one another before they can be regarded

as coherent waves.

Input Phase Shift A demodulator o( interferometric sensor outputs is a device which

senses optical phase shift and generates a voltage proportional to the phase shift. In

sensing-applications. the quantity o( interest is more apt to be a measure of pressure (in
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pascals), distance (in meters), temperature (in kelvins) and so on. The function of the

transducer is to convert this physical phenomenon, the signal of interest, into an

equivalent differential phase shift of the light within the two legs of the interferometer.

In the case of optical fiber sensors, this usually is done by causing the signal of interest

to strain the glass fibers in direct proportion to the amplitude o[' the signal. This makes

the amount of phase shift directly proportional to the amplitude of the phenomenon

being measured. This in turn means that the output of the demodulator is directly

proportional to the amplitude of the signal of interest. In short, the phase shift is a

measure of the signal of interest, no matter what that signal might be.

JFET Junction Field-Effect Transistor. A unipolar transistor in which the current

flowing between two terminals of the device is controlled by the electric field applied to

a third terminal.

Laser This is an acronym standing for Light Amplification by the Stimulated Emission of

Radiation. The essence o( laser operation is that the atoms in a substance are excited

by some form o( "pumping" action so that there are more of them in an excited state

than in the usual, relaxed state. When any such atom relaxes into the state of lower

energy, it emits a photon. Such emission occurs spontaneously, by chance. When this

photon interacts with another excited atom, it can cause this second atom to relax to the

lower state too, during which process the second atom also emits a photon. This process

is known as stimulated emission. The significant fact is that the original photon is not

absorbed in the interaction, but continues onward, and the new photon has the same

frequency, phase, and direction of propagation as the first photon. Because the supply

of excited atoms is kept artificially high by pumping, the process can repeat itself over and

over again. A resonant cavity usually partly or completely surrounds the emissive

material, and it ensures that the process occurs often enough for a useful level of

amplification to occur. (Some lasers provide sufficient amplification without a resonator.)

The consequence is an intense beam of coherent photons. A partially transmissive
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element, such as a partially silvered mirror, permits the beam to escape from the resonant

cavity, if one is used. The term laser has come to refer to the process itself, to the device

in which the process takes place, and to the beam produced by the device.

Maser This is an acronym standing for Microwave Amplification by the Stimulated

Emission of Radiation. Apart from the fact that the electromagnetic radiation emitted

by the maser process is in the microwave region ol' the spectrum, rather than in the

visible region, the process is exactly the same as was described above under the heading

LASER. Historically, the maser was invented before the laser.

Maximum Permissible Signal (MPS) The largest amplitude of the signal of interest

which can be processed by a demodulator without introducing undue distortion. Some

latitude exists in establishing the amount o( distortion which is regarded as acceptable.

Minimum Detectable Signal (MDS) The smallest amplitude of the signal of interest

which can be distinguished from noise. This is the level of signal which provides a signal-

to-noise ratio of 1 (0 dB). For a particular purpose, a higher or lower ratio of signal-to-

noise ratio may be appropriate. For example, communications systems typically need

more than 10 or 20 dB between signal and noise.

OPTICAL FIBER COUPLERS These devices take the place o{ partially silvered mirrors and

prisms, which were the only means of splitting light beams and recombining them in

interferometers in the days before optical fibers had been invented. They are

manufactured by laying two or more fibers parallel to one another and fusing them

together. The geometry o( the arrangement and the length of the fused section both are

crucial in determining the characteristics o( the coupler. Two common examples of these

couplers are 2x2 couplers and 3x3 couplers. The 2x2 coupler brings two fibers into

close contact; hence it has two inputs and two outputs. Either end ol' the coupler can

function either as input or as output; in other words, the 2x2 coupler is bidirectional.
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The 3x3 coupler brings three libers into close contact. Hence it has three inputs and

three inputs, and it, too. is bidirectional.

PLA (PROGRAMMABLE LOGIC Array) An integrated circuit which contains flip-Hops for

storing bits of data and which has programmable logic. In the variant of this that we use,

an Altera EP310, one can designate which pins are inputs, which are outputs, and how

the outputs should be derived from the inputs. One can also make this particular PLA

operate in a synchronous (clocked) or asynchronous (unclocked) mode. Using a PLA is

a convenient way to reduce numerous discrete-logic integrated circuits to a single chip.

The EP310 can be erased (by exposure to ultraviolet light) and reprogrammed, making

it an excellent choice for prototype systems.

Phase Rate The multiplicative product of the phase of the output of an interferometric

sensor and its frequency. It is measured in radians per second and is an indication of the

highest frequency components present in the interferometric output. The chief limitation

on acceptable phase rate is the bandwidth of the demodulator. If the signal is

differentiated, the phase rate appears as a factor in the magnitude of the derivative, and

so the possibility of saturating amplifiers also arises if phase rate is too high. This is the

second principal limitation on acceptable phase rate.

Polarization Angle The light from many lasers is linearly polarized. As it passes

through an interferometric sensor, the polarization direction changes due to several

uncontrollable factors. One of these is twisting of the fibers themselves. As a result, the

light which is recombined at the output of the interferometer often does not have the

optimum polarization. The optimum polarization occurs when both in; erfering beams are

polarized in a parallel direction, the specific direction being irrelevant.

When two beams of light have entirely orthogonal polarizations and no components of

parallel polarization, no interference results. This would result in an output of uniform

intensity. In practice, we have never observed this. The implication is that the light in
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our interferometer is not purely linear in its polarization. The Sharp LT015 laser diode

is linearly polarized in a ratio of 5:1 for 1 mW output power, 100:1 for 10 mW output

power, and 250:1 for 30 mW output power (Ref. 3], which is consistent with our

observations. So even though the visibility oi the interference pattern does indeed

wander with time, it never vanishes totally. This has a beneficial effect on all the

demodulators we consider in this dissertation, for it means that there always is some

signal to process, which would not be the case if the interference pattern were wholly

absent.

RMS Root-mean-squared. In general, the root-mean-square o[' a function v(t) is

VRMS
\

lim - / v(t) at.

When v(t) is a periodic signal with period T, then we obtain the same result without

taking the limit, and the RMS value is given by

VRMS
\

1 CT
dt.

-,

If v(t) = A sin( <*>/), or v(t) - A cos(a)f), then its RMS value is A\\j2

SPST Single pole, single throw. A type of switch which can connect two terminals

together or leave them open.

TEK2430 Digital Oscilloscope This device has two input channels. It digitizes the

inputs and stores them in memory. This means that a display can be frozen, and the

scales of time and amplitude can be altered to provide increased resolution. It has a

mode in which Channel 1 can be displayed along the horizontal axis and Channel 2 can

be displayed along the vertical axis, permitting the display o{ Lissajous patterns. This
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makes accurate measurements of the phase angle between two signals possible, since a

•• iriety of measurement functions is provided, including voltage, time, and frequency.

I'll (Transistor-transistor logic) A particular family of digital logic integrated

circuits. Signals can take on only two valid voltage levels. The low state is at roughly

V. The high state is at roughly 3.3 V. The supply voltage is at 4-5 V. [Ref. 4]

VCO (Voltage Controlled Oscillator) A circuit which outputs a sinusoidal, square

wave, or triangular wave whose frequency is directly proportional to the input voltage.

The EXAR Archer XR2206 is an example of a VCO, and is the one we employed in the

uesign of the Digital Quadrature Phase Modulation Simulator (DQPMS).
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I. OPTICAL FIBER SENSORS

A. APPLICATIONS OF OPTICAL FIBER SENSORS

That anything at all can be detected with strands of glass fiber comes as a complete

surprise to the average person. One readily thinks o[' glass as a useful substance for

windows and for beverage containers. That silicon, the raw material from which glass is

made, is now the most widely-used substance in fabricating integrated circuits is known

to many. The widespread introduction of optical fibers into the telecommunications

industry has of course made the existence o[' optical fibers a matter of common

knowledge. Many consumers even have seen their use by artists to make exotic lamps.

Their use as sensors, however, is largely unknown to the ordinary citizen and seldom

mentioned in the popular press.

Yet optical fiber sensors have attracted considerable interest in the scientific and

technological community since 1977. They have been used successfully to sense a variety

of phenomena, including acoustic fields, temperature, magnetic fields, displacement, fluid

level, torque, current, strain, pressure, acceleration, rotation, and seismic activity.

[Ref. 5, p. 626] Apart from the apparent versatility oi~ application o[' optical fibers

as sensors, a number o[ other reasons for this great interest are shown in the list oi their

advantageous characteristics presented in Table I. Some disadvantages to the use o{

optical fibers are also given in the table.

B. THE NEED FOR LOW-COST SENSORS

Of particular interest to the United States Navy is the possibility of using optical

fiber sensors as highly sensitive underwater hydrophones. This interest has been a

principal, underlying motivation behind the research into optical fiber sensors currently

in progress at the Naval Postgraduate School, as vvell as at the Naval Research

Laboratory. In a time of great fiscal constraint, indeed, at any time, the Navy is very



Table I Advantages and disadvantages of optical fibers sensors.

Advantages

l

Optical fibers are lighter in weight than metal. Therefore a length of optical fiber require much

less structural support than a comparable length of metal wire.

2
Optical fibers are made from sand, which potentially could make them much cheaper than metal

wires.

3 Losses in optical fiber are very low.

4
Optical fibers are immune to electromagnetic interference (EMI). This makes them suitable for

use in "noisy" environments.

5
Optical fibers are geometrically versatile. They can be stretched out. coiled up. and embedded in

epoxy, plastic, or composite materials very readily.

6
Glass is immune to the effects of many chemicals which corrode metals. Consequently optical

fibers can sometimes be used in emironments which would be harmful to metal wires.

7 Sensors made from optical fibers are compatible with optical fiber communications systems.

8 Power consumption is very low in optical fibers.

9 Large separations between sensor and detector are feasible.

Disadvantages

l

As of the time of writing (1991). optical signal processing is not as highly developed as electronic

signal processing, so conversion of optical signals to electronic form is usually required. Thus a

purely optical system is generally impractical. One could expect costs to be lower if mixed

processing were unnecessary.

2

Connecting optical fibers together requires splicing, and reflections and losses invariably occur at

the splices. These effects may be small if slices are performed by fusing the glass strands

together, but joining glass fibers together by this means is much less convenient than soldering

metal wir:s together.

3

Tapping into an optical fiber requires the ase of optical fiber couplers, and these devices are

more costly, less convenient, larger, and heavier than the soldered connections permissible with

metal wires.

4

Optical fibers are more delicate than metal wires. Although glass is an amorphous crystal and
can be stretched to a limited degree, it will break much more readily than metal wires of

comparable diameter if its radius of curvature is made too small.
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concerned about the immense cost of much of the modern technology used in military

applications. In particular, it is infeasible to deploy large numbers of underwater

hydrophones if their price is exorbitant.

In addition to the cost o[' the sensor itself, there is a cost associated with extracting

information from it about the phenomenon it has detected. It is o[~ little utility to have

inexpensive sensors if the means to recover the signals o( interest is not correspondingly-

cheap.

The purpose oi this research is to describe three inexpensive ways to recover signals

from very sensitive optical liber interferometric sensors. Whether the signals are derived

from acoustic sensors, accelerometers. seismometers, or any other kind o( optical

interferometric sensor, the signals can be recovered in the identical, inexpensive manner

presented in this dissertation.

C. PRINCIPLES OF OPERATION OF OPTICAL FIBER SENSORS

Since awareness of optical fiber sensing is not yet widespread, it is the purpose of

this section to examine in general terms the means by which optical fibers can be made

to act as sensors o( physical phenomena. The phenomenon under consideration may

have a natural origin, as in the case of seismic waves, or it may have a man-made origin.

as in the case of noises emitted by a submarine. In either case, we shall refer to the

phenomenon which we want to delect as the "signal of interest".

Detection of some signal of interest by an optical fiber sensor can be done if we

transmit light through the fiber and if we somehow modify the light within the fiber. This

step is called the modulation of the optical (light) wave by the signal of interest. Of

course, merely altering the light within the fiber may be necessary, but it is hardly

sufficient. Our goal is to examine the modified light when it finally emerges from the

optical fiber and to infer from it what must have been the stimulus, that is. the quantity

of interest to us. This latter step is the demodulation o( the optical wave.
1 A general

1 We often speak loosely of demodulating the signal since it is the signal which

interests us, not the optical wave itself. This is not strictly accurate, however.



goal in the design oi sensors is to ensure that only the signal of interest induces the

modulating effect. As this is a matter pertaining to the design of transducers for specific

applications, we shall not discuss this in detail.

There are three fundamental aspects of light which can he modified to encode the

information we are interested in detecting. These are amplitude, polarization, and phase.

While it is possihle to modulate all three aspects of light simultaneously, typically only one

of them is modulated. Some workers in this field also speak o[' modifying the wavelength,

the length of the delay in receiving a response to a pulse, or the spatial position of the

received radiation [Ref. 6. p. 596]. We shall regard these latter three as essentially

the same as modifying the phase of the light.

1. Amplitude Modulation

The quantity being sensed can be made to modulate the amplitude of coherent

or incoherent light transmitted through the fiber. (Recall that the amplitude of light is

the amplitude of the continually changing electric and magnetic fields that comprise light.)

In one example of this method, external pressure is applied to the fibers and induces

small bends in it. These so-called micro-bends change the transmission characteristics

within the fiber, and this, in turn, changes the amplitude of the light within the fiber.

Upon the emergence of the light from the optical fiber, the change in amplitude is

manifested as a change in intensity. [Ref. 6: pp. 600-601] Standard methods of

electronic amplitude demodulation permit recover)' of the signal inducing the changes in

intensity, e.g., the acoustic field being measured.

A primary drawback to the use of amplitude modulation is the variation in the

intensity of the output of the light source with variations in temperature, aging, and other

causes. Compensation for changes in temperature is feasible, but it adds to the

complexity and the cost o{ these systems. Compensation for other causes of the

variations in the intensity of the light is not so easy. In any case, the variations distort

the output, as anyone who has ever listened to AM radio during a thunderstorm will

attest.



2. Polarization Modulation

The quantity being sensed can be made to modulate the polarization of the

light within the fiber. By detecting the change, it is possible to recover the signal. As an

example of the use of this form of light modulation, quartz will rotate the plane of

polarization of a beam of light [Ref. 6, p. 614]. The amount of rotation is linearly

dependent on temperature, as shown in Figure 1. One could therefore design a sensor

of temperature by taking advantage of this effect and observing the amount of rotation

of the polarization which a light wave underwent. A disadvantage of this particular
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Figure 1 Variation o( the angle o\' rotation of polarization in quartz as a function of

temperature. Adapted from Busurin, et ai [Ref. 6. p. 61 4|



example is that the light must leave the liber and then enter it once more. The optical

fiber is reduced to being a mere conduit for the signal and is not really itself a sensor.

A more general disadvantage of polarization modulation is the tendency of the

optical fibers to get twisted, altering the polarization of the light emitted from the fiber.

To counter this, one can use polarization-preserving optical fiber, but it costs more than

ordinary fiber. The use of polarization controlling devices is another possible solution,

but these operate by twisting the fiber by an amount which corrects an error in

polarization. Simple polarization controllers do not detect the amount of the error, nor

do they prevent the fibers from twisting further and so spoiling the corrective effect.

More elaborate controllers do detect the error and attempt to keep it constant, but they

are correspondingly more costly to use.

3. Phase Modulation

The field being sensed can be made to modulate the phase of the light within

the fiber. This is most easily done by arranging the fibers so that they are stretched or

relaxed by changes in the signal of interest. If the length of a fiber changes by one

wavelength A, there will be 2tt radians of phase shift in the light reaching the furthest end

of the fiber. Since a wavelength of light is very small (830 nm in a vacuum or 560 nm in

the glass for the infrared laser diodes used in this research), measuring phase shifts of

one radian is equivalent to measuring changes of length of only

k 560 nm ^ <i\— = = 90 nm. UJ

It is possible to measure considerably less than 1 radian without great difficulty, and with

care, phase shifts on the order of as little as 1 jjrad [Ref. 7, p. 1652] can be

detected during an observation lasting one second. Clearly, one does not need to stretch

the glass very much to create an easily observable effect. Since there are many

phenomena of nature which can be induced to stretch the optical fibers, even a little bit,



by applying a strain to them, optical libers make very sensitive and versatile detectors of

a great many different phenomena.

D. OPTICAL FIBER INTERFEROMETRIC SENSORS

Of the three general methods of modulation applicable to the design of optical fiber

sensors, one stands head and shoulders above the others in its ability to detect small

signals. This is the method of phase modulation. For this method to be useful, a method

of measuring the phase shift must be found. This section discusses how this can be done.

1. Principles of Operation

The difference in phase between two coherent beams o( light can be detected

by interferometric techniques, which are the most sensitive techniques known for

measuring changes in distance (optical path length) [Ref. 6. p. 606: and Ref. 5, p. 661].

No sensors exist for directly measuring the electric or magnetic fields o( an optical signal.

The reason for this is that visible, and even infrared, radiation have frequencies much

higher than those sustainable in any electronics available today. For example, the slightly

infrared light emitted by the laser diodes used in our research has a wavelength o( 830

nm. The frequency of this light is 361 THz (3.61 xlO 14
Hz), well beyond the maximum

bandwidth of our fastest electronic components.

We do, however, have detectors which can measure the intensity of light, and.

if the intensity varies with time, they can detect this variation, provided that it does not

vary too fast. For example, photodiodes with bandwidths of many GHz (
10" Hz) are now

available.

The oscillating phase shifts created by many phenomena have a sufficiently low

frequency content to be easily detectable by photodiodes if they can only be converted

to variations in the intensity of the light. To perform such a conversion, coherent light

is passed through two fibers. Together, the two fibers constitute the arms of an

interferometer. The field being measured is made to induce a difference in the phase of



the light in each arm by applying a strain to them, but in opposite directions.
2 When the

light waves are recombined, they interfere both constructively and destructively. The

resulting pattern of light and dark "fringes" contains information about the original

signal.

Whether the output contains enough information to recover the signal depends

on the means by which the light is recombined. We shall elaborate on this key point

presently.

2. Schemes for Recovering Signals

Numerous schemes have been devised for recovering signals from optical fiber

interferometric sensors. Several of these are described here.

a. Phase Generated Carrier Homodyne Demodulation

One method of demodulating a phase-modulated interferometric output

is that called Phase Generated Carrier Homodyne Demodulation [Ref. 8]. This

scheme is also known as Pseudo-Heterodyne Demodulation. In this technique, the

current which drives the laser source is modulated in amplitude. The result of this is to

create a modulation oi' the laser's output power and wavelength. If there is a difference

in the length of the two legs of the interferometer, the change in wavelength manifests

2
It is possible to arrange matters so that only one fiber is affected by the field of

interest. This is an inferior approach since in practice it is impossible to avoid having

extraneous effects such as temperature or pressure create length differences between the

two fibers. The result is a sensor which detects both the quantity of interest and other

quantities which one would prefer to have suppressed. The rejection of these unwanted

quantities is best achieved by using a push-pull arrangement in which unwanted effects

are applied equally to each arm, whereas the desired effect induces opposite effects in

each arm. The output yields enhancement of the desired quantity and rejection of the

unwanted quantities.



itself as a change in phase at the output/ This guarantees the presence of a fundamen-

tal frequency in the received signal, namely, the frequency of the current modulation.

The modulation frequency and its harmonics each carry in their sidehands

a replica of the phase-modulated signal created when the signal of interest impinges on

the sensor. Two of these replicas are isolated hy the use of handpass filters. Proper

control of the strength of the modulation also guarantees that each o[ these replicas has

the same strength. The receiver uses these tones as inputs to two mixers. The output

of this signal processing is a pair o[' signals. One contains a voltage signal proportional

to the trigonometric sine o( the signal o( interest. The other contains that signal's

cosine. That is, iis(l) is the signal of interest expressed in units of induced optical phase

shift, the two outputs are

.x,(r) = i4,sin[5(r)] (2)

and

.t
2
(r) - A

2
cos[s(t)}. (3)

One can sum these signals, obtaining a signal like a conventional phase-

modulated signal, namely

x
x
(t) + x

2
(t) = JaI+A; sin|5(r) + tan

JAA

\
Am

(4)

This signal can be demodulated using techniques which are standard in the communica-

tions field, the goal being to extract the varying phase term s(t). Usually the fixed phase

term, the one dependent on ,4, and/l
: , would be discarded. However, in forming the sum

of x,(t) and x2(t), we effectively discard one signal, since we are left with only a single

3
In the absence of a difference in the path lengths, this is not the case. The larger

the difference in path length, the larger the phase shift caused by a modulated wave

length. [Ref. 7, p. 1652]



sinusoid. The absence of an orthogonal signal (the cosinusoid) causes an ambiguity in

trying to recover the phase, which, alter all, is simply the argument of the sine function.

For example, if the sine given in Equation (4) has the instantaneous value

1/2, we cannot tell whether the phase angle is 30° or 150°. If we knew the cosine, it

would either be fell for a phase angle ol' 30° or -y/3/2 for a phase angle of 150°.

Even with both the sine and the cosine, however, we need more information to

distinguish between the four primary quadrants (-180° to +180°) and all other

quadrants. If the phase amplitude can fall outside this range, we must keep track of the

history of the wanderings of the phase angle in order to know in which quadrant it

presently lies.

Keeping track of these wanderings still does not eliminate the need for

both the sine and the cosine. The reason for this is that, in general, we do not know the

waveform in advance. Suppose we have only the sine. Then it becomes impossible to

distinguish between a signal of interest which, after rising in phase amplitude, hesitates

briefly at 90° before continuing to grow, and one which hesitates briefly at this same

point before beginning to diminish in amplitude.

As an alternative to the standard methods of phase recover)', one can use

a method which will be explained in Chapter VII. In this method, the sine and cosine

information can both be used in such a way as to recover their mutual argument, i.e.. the

signal of interest. This method implicitly keeps track of the wanderings of the phase

angle outside the four primary quadrants, and so it is capable of demodulating very large

phase amplitudes.

There are three principal drawbacks to Phase-Generated Carrier

Demodulation.

1. A mismatch in the lengths of the two legs of the interferometer is mandatory.

Without the mismatch, the fluctuations in the output wavelength of the laser do

not induce fluctuations in phase shift at the output of the interferometer. The
inclusion of a mismatch in length has an adverse effect on the coherence of the

light emerging from each leg, which shows up as a reduction in fringe visibility,

the contrast between bright and dark at the output. This is equivalent to a

reduction in the ratio of signal-to-noise. Also, phase noise from the laser source,

10



already present in both legs of the interferometer, is effectively enhanced by a

mismatch in length into differential phase noise upon recombination of the two

beams into an interference pattern. Thus it contaminates the interference

pattern created by the signal of interest.

2. The phase modulated signal generated by the signal of interest appears as

sidebands around the modulation frequency and each of its harmonics. The

separation of these harmonics places a limit on the bandwidth of the signal of

interest which can be sustained. In fact, only half o( the modulation frequency

is available as signal bandwidth. If this frequency limitation is exceeded, the

upper sideband around the modulation frequency mixes with the lower sideband

around its second harmonic, creating distortion in the demodulation process.

Since the amplitude of the signal of interest determines its bandwidth, there is

therefore a limit on its strength due to the choice of modulation frequency. The

demodulator itself must operate over a bandwidth at least five times larger than

this permissible signal bandwidth, in order to encompass the upper sidebands of

both the modulation frequency and its second harmonic. In Dandridge [Ref. 7],

a peak of about one radian in the signal of interest was permissible. In 1982.

there were no optical fiber interferometric sensors capable ol' creating much

bigger phase shifts than this, so the use of the Phase Generated Carrier scheme

was convenient. The situation is now different. Sensors capable of generating

very large phase shifts are available. A demodulator whose entire bandwidth is

devoted to handling the signal of interest is preferable to one which needs

additional bandwidth due to the choice of demodulation scheme.

3. To achieve large dynamic range with a sensor which is limited to peak phase

shifts of less than about one radian requires successful processing of peak phase

shifts far below one radian. To achieve a dynamic range oi\ say. 100 dB when

the peak signal is on the order of one radian requires that signals of under 10

/jrad be demodulated. Such small phase shifts correspond to very small changes

in intensity of the interference pattern at the output of the interferometer. Such

small intensity changes are contaminated by noise, so much attention must be

paid to the demodulator in order that it may separate the signal from the noise.

This tends to make such demodulators expensive. It also makes necessary the

use of more costly laser sources with small amounts of phase noise in order to

reduce the severity of the effect. At the end of its travel down a fiber, the

beam's phase oscillates because the number of wavelengths which fit into the

fiber keeps on changing. To increase the operating range with phase-generated

carrier demodulation, the modulation frequency must be increased with the

consequent adverse effect on bandwidth mentioned in the previous paragraph.

11



b. Synthetic Heterodyne Demodulation

This techniques bears a great resemblance to the Phase Generated

Carrier Demodulation scheme just discussed. It differs principally in that rather than

creating a phase shift in the carrier by modulating the laser current, the phase shift is

modulated with a piezoelectric cylinder around which one leg of the interferometer is

wrapped and to which a sinusoidal voltage signal is applied [Ret. 9. p. 695].

The principal drawback to this scheme is the need to introduce electronics

into the interferometer. Since a primary objective in using optical fiber sensors is to

eliminate electronics from the sensor, this requirement defeats the purpose.

Another drawback is the different treatment oi each leg of the

interferometer. This loss of symmetry reduces the rejection of unwanted signals such as

changes in pressure or temperature since they are likely to act differently on that leg of

the interferometer which contains the piezoelectric cylinder. Once two complete

sidebands of the interferometric output have been isolated, the demodulation proceeds

as with the Phase Generated Carrier method.

c. Fringe-Rate Demodulation

When large amounts of phase shift are provided by an interferometric

sensor, another technique becomes feasible. This technique comes in two variants. One

is called fringe-counting, the other is called fringe-rate demodulation

[Ref. 10, 11]. These approaches rely on the transitions of interferometric

outputs across some central value.

In the fringe-counting variation, the transitions are counted digitally in

a given period of time. The instantaneous ratio of count to time is the frequency of the

phase-modulated interference pattern. By integrating this number over time, the phase

can be recovered. Of course, it is impossible to obtain an instantaneous count, so one

must in practice wait a short time to produce at least one count.

In the fringe-rate variation, the transitions are used as inputs to a

frequency-to-voltage converter. In a sense, the converter is itself a counter. However,

it does not perform a precise count of crossings per unit time. Instead, each transition

12



triggers a boosting of the output by causing an increment of charge to be pumped onto

a capacitor. The passage of time, conversely, causes the output to droop since the

capacitor is drained of its accumulated charge through a resistor. The combination of

these two tendencies is a voltage which is proportional to the frequency. Again,

integration of the result permits recovery of the phase information.

When signals are weak, however, there are no transitions at all. The

minimum detectable signal is that necessary to create at least one transition. This signal

is on the order of n radians peak phase shift. When signals are still only a little stronger

than this threshold, an erratic output from the charge pump due to the incremental

nature of the charge which is added to the capacitor whenever a transition occurs can be

objectionable. This noise is lessened when large signals of interest are present.

d. Homodyne Demodulation

Whereas the synthetic heterodyne technique has generally been limited

to less than n radians peak phase shift, the fringe-counting and fringe-rate techniques

stop working below rr radians peak phase shift. To bridge this region, we can use a

number of homodyne demodulation techniques.
4 These methods all are predicated on

the use of orthogonal components of the phase-modulated signal obtained from the

interferometer without using heterodyne methods.

Normally, an interferometer has only one output. Optical fiber

interferometric sensors usually have two, since they employ 2x2 optica! fiber couplers to

combine the two legs of the interferometer into an interference pattern. From the law

of conservation of energy, it is easy to see that the two outputs must be 180° out o(

phase from one another: when one is dark, the energy must all be present in the other

output and vice versa. There are no orthogonal components in the outputs, and for this

4 The word homodyne literally means "similar power". That is. there is no mixing

with a reference frequency in the receiver, as with heterodyne ("different power")

techniques. The term homodyne is more commonly used to mean that only one

frequency is present, whereas heterodyne usually means that more than one frequency is

present. Since photons of different frequencies contain different quantities of energy, the

two meanings for each term are completely consistent with one another.
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reason, heterodyning in the various forms described above has been used to obtain

orthogonal components artificially as sidebands to the carrier frequency.

3. The Use of 3x3 Couplers to Facilitate Signal Recovery

There is a way to modify the output stage of the interferometer to obtain

orthogonal components directly. To achieve this, we can use a 3x3 optical fiber coupler

to create the outputs of the interferometer. The two legs of the interferometer now are

used to generate three interferometric outputs which do contain orthogonal components.

The details of this will be discussed extensively in Chapter III. Methods of extracting the

amount of optical phase shift present in the interferometric outputs will then occupy our

attention throughout the rest o( this dissertation. Suffice it to say, for the present, that

with a 3x3 optical fiber coupler at the output, recovery of the signal is feasible without

the drawbacks listed for the other techniques of demodulation already discussed.

14



II. SCOPE OF THE RESEARCH

A. OBJECTIVES OF THE RESEARCH

In the previous chapter, we considered the motivation behind the general research

into optical fiber sensors. We staled that the use of optical fiber inierferometric sensors,

in particular, which apply the techniques of interferometry to the use of phase-modulating

optical fiber sensors, could produce extremely sensitive sensors. The use of 3x3 couplers

at the output of the interferometer, we said, could permit us to obtain orthogonal signals

from which the signal of interest could be recovered, without elaborate modulation oi'

laser current on the one hand and without inserting modulating elements into one leg of

the interferometer.

It was the goal oi our research to investigate three methods o\' recovering signals

of interest from optical fiber inierferometric sensors with 3x3 couplers at the output.

It is the goal of this dissertation to present the results of this research.

The sensors we are interested in are capable of generating phase shifts of thousands

of radians and more. In principle, a sensor producing even greater phase shifts should

permit recovery of smaller and smaller signals, until thermal and other sources of noise

become significant. The phenomena sensed by the sensor are of secondary importance

in this research. The chiel requirement is that the phase shift they induce in a sensor be

linearly proportional to their amplitude.

B. ORGANIZATION OF THE DISSERTATION

In this section, we outline the organization oi' the rest o{ this dissertation in order

to help the reader grasp the results ol the research. To explain this sensibly, it will be

useful to consider the situation at the outset of the research.
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In the summer of 1989, when we hegan this research, we did not yet have any

optical fiber interferometric sensors with 3x3 optical fiber couplers at the output for the

simple reason that they were not yet commercially available. Their appearance was then

imminent, but in order not to be dependent on their arrival to commence the research,

we resorted to simulating interferometric signals in order to begin to address the

requirements of demodulation. We used two such simulators, one of which was of our

own design and construction. These are described in the appendices to this dissertation.

In Appendix B. we present relevant portions of the theory of optical fiber couplers.

This lays the foundation for Chapter III. in which we show how 3x3 couplers can be

incorporated into a Mach-Zender optical fiber interferometric sensor. The purpose of

this is to make it clear how the use o{~ 3x3 couplers produces interferometric outputs

which contain both the sine and the cosine of the optical phase shift induced by signal of

interest. Dandridge [Ret. 7| showed how one could recover the signal of interest, once

its sine and cosine had been isolated. In Chapter VII we explain his method, which we

refer to as asymmetric demodulation.

By the summer oi~ 1990. the 3x3 couplers had arrived and we quickly sought to

produce an optical interferometer to replace the simulators. Although parallel research

was going on by other members o\~ our research group into the design of hydrophones,

there were still no practical sensors with 3x3 couplers at the output. Consequently, the

author designed an optical fiber interferometer to sense voltage signals, as these could

easily be generated in the laboratory. The construction of this sensor is described in

Chapter IV.

The easiest demodulation method investigated in this research is the Fringe-Rate

Demodulation scheme described by Crooker [Ref. 10] and Crooker and Garrett [Ref.

11]. The design of the Fringe-Rate Demodulator is the subject of Chapter V. Some

modifications have been made to the scheme originally discussed in Crooker. and these

are detailed here. In Chapter VI, we present experimental measurements of the

performance of the Fringe Rate Demodulator.

To demodulate interferometric outputs with peak phase shifts of magnitudes

extending both above and below - radians, we have invented a new demodulation
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technique which we call symmetric demodulation. The author wishes to give credit to Dr.

Rohert Keolian and to Dr. Steven Garrett tor the discussions that made this invention

possihle. The method of this new demodulation scheme is explained in Chapter VIII.

In Chapter IX we describe the design of an analog implementation of this new algorithm,

the Symmetric Analog Demodulator.

A key difference between the Symmetric Analog Demodulator and the Fringe Rate

Demodulator is that the latter cannot properly handle phase shifts of less than

approximately tt/2 radians (more, in practice). The former can handle signals all the way

down to the demodulator's noise level. In order to describe the performance o( the

Symmetric Analog Demodulator, then, we must consider its noise floor. Therefore, in

Chapter X we digress briefly to describe how we measure low signal levels and noise in

the laboratory. We also describe some of the theory that permits us to predict noise.

The close match between theory and observation provides a high degree o\ confidence

in the noise measurements included in the next chapter. Chapter XI, which describes the

performance of the Symmetric Analog Demodulator using all the criteria mentioned

earlier in Chapter VI on the performance o( the Fringe Rale Demodulator, as well as

its noise level. The noise ol the Fringe Rate Demodulator was not quantified because

signals of less than tt/2 radians in amplitude cannot successfully be demodulated by it

anyway.

The use of digital signal processing techniques has become increasingly common in

recent years because ol' the continuing reductions in cost and increasing capabilities oi'

microprocessors. Such techniques can be applied to signals recovered from optical fiber

interferometric sensors, too. To demonstrate this, we describe in Chapter XII the design

of an Asymmetric Digital Demodulator which implements the asymmetric demodulation

scheme of Dandridge [Rel. 7|, described in Chapter VII of this dissertation. Our design

employs discrete digital logic with digital signal processing integrated circuits and a pipe-

lined architecture which exhibits an ability to process signals at a speed limited only by

that of the analog-to-digital converters it uses. The performance o( the Asymmetric

Digital Demodulator is described in Chapter XIII. The performance is characterized in
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the same manner as was done in Chapters VI and XI dealing with the performance of

the Fringe Rate Demodulator and the Symmetric Analog Demodulator, respectively.

The final chapter in this dissertation. Chapter XIV, presents a synopsis of the

results and discusses areas lor further research and improvements in the demodulation

schemes presented earlier.

In the appendices we provide mathematical details omitted from the main hody of

the dissertation in an attempt to make it somewhat more readable, although there is

ample mathematics in the body of the dissertation already! We also include analyses of

both the interferometric simulators we used early in the course of our research: analysis

of a simple analog circuit capable of performing integration, differentiation, and bandpass

filtering (a circuit which we used repeatedly in the design of the Symmetric Analog

Demodulator); and a detailed analysis of the noise in the Symmetric Analog

Demodulator.

C. MEASURES OF THE PERFORMANCE OF THE DEMODULATOR

As mentioned above, three chapters o\~ this dissertation are devoted to presenting

measurements of the performance of the demodulators we have built, namely the Fringe

Rate Demodulator, the Symmetric Analog Demodulator, and the Asymmetric Digital

Demodulator. For the sake o{~ completeness, we complete this chapter on the scope of

the research with a list o[ the criteria by which we assessed the performance of the

demodulators. These are:

1. the stability of the scale factor, which expresses the voltage out o[' the

demodulator per radian of input optical phase shift:

2. the small-signal bandwidth:

3. the maximum permissible signal (MPS), which is the greatest phase shift which

can be demodulated correctly without an unacceptable level of total harmonic

distortion:

4. the minimum delectable signal (MDS). which is the smallest peak phase shift

which can be detected. It is defined as being equal to the noise threshold (in a
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one hertz bandwidth) which is output by the demodulator. This noise threshold

is expressed in terms of input phase shift. This definition of minimum detectable

signal is inappropriate lor the Fringe Rale Demodulator, since il cannot handle-

signals of less than rr/2 radians:

5. the dynamic range, which is the difference between MDS and MPS:

6. complexity of the circuit: and

7. component cost.

We have attempted to account tor differences between the predicted and observed

performance.



III. THEORY OF 3x3 MACH-ZENDER OPTICAL FIBER INTERFEROMETERS

A. KEY RESULT OF THE THEORY

In this chapter we derive a mathematical prediction of the performance of an

optica] fiber interferometer in the Mach-Zender configuration. The Mach-Zender

configuration is distinguished from the Michelson configuration in that the two optica!

paths in the interferometer are only traversed once by light, rather than twice. The

implication of this for an optical fiber interferometer is that there must be two optical

fiber couplers: one for the input and a second for the output.

In general. Mach-Zender interferometers produce more output power than do

Michelson interferometers because they do not rely on reflection for light to be output.

On the other hand. Michelson interferometers are twice as sensitive as Mach-Zender

interferometers because the light is twice subject to the phase shift induced by the

transducer, once for each pass through the interferometer. They are cheaper, too. since

only one optical fiber coupler is required, instead of two.

Figure 2 is a schematic drawing of a Mach-Zender optical fiber interferometric

sensor with 2x2 optical fiber couplers at both the input and the output. Figure 3 is a

schematic drawing o\' a Michelson optical fiber interferometric sensor with a single 2x2

optical fiber couplers serving as both the input and the output. The drawback to the use

of 2x2 couplers is that the two interferometric outputs are 180° out of phase from each

other, and so there is insufficient information in them faithfully to reconstruct the signal

of interest. In the case oi' the 2x2 Michelson configuration, there is only one output,

and the inability to reconstruct the input is more blatant, although no more real.

To take advantage ol passive homodyne demodulation techniques, we can use a

3x3 coupler at the output. Figure 4 shows a Mach-Zender optical fiber interferometric

sensor with a 2x2 optical fiber coupler at the input and a 3x3 optical fiber coupler at

the output. Figure 5 shows a Mach-Zender optical fiber interferometric sensor with a
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Figure 3 Michelson Optical Fiber Interferometer with a single 2x2 optical fiber coupler

for input and output.

3x3 optical fiber coupler at the input and a 3x3 optical fiber coupler at the output. One

could also construct a Michelson interferometer with a 3x3 coupler serving both as input

and output. In this case, there would be only two outputs available, since one of the

three strands of glass in the coupler is devoted to the input. This situation is depicted in

Figure 6.

The purpose of the derivation in this chapter is to obtain a theoretical model of the

optical power in the output generated by a Mach-Zender optical fiber interferometnc

sensor like those in Figure 4 and Figure 5. Of these two. that using the 2x2 coupler at
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Figure 4 Schematic of a Mach-Zender optical fiber interferometer with a 2x2 coupler

at the input and a 3x3 coupler at the output.
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Figure 5 Schematic of a Mach-Zender optical fiber interferometer with a 3x3 coupler

at the input and a 3x3 coupler at the output.

the input is more efficient. As we shall show, this yields a 1.76 dB improvement in

output power.

The model we derive in detail in the balance of this chapter is given by Equa-

tion (5).

°W I

2

D + Ecosm * m - (*-i)|* (5)

We shall complete the derivation of the model described in Equation (5) for the

interferometer whose input is a 2x2 coupler, that of Figure 4. The completion of the

model for the interferometer whose input is a 3x3 coupler, that of Figure 5. proceeds
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upon very similar lines, most o( which are supplied in this chapter.

In Equation (5). k is an index which can take on the values 1, 2. or 3. It specifies

which of the three outputs is being considered. D represents a central value, around

which the outputs of the interferometer can fluctuate by ±E, at most. Whether or not

they actually reach the two extrema at D+E and D—E depends on the signal ((t). If it

has a very small amplitude, then the cosine will not vary much and so the extreme values

will not, in general, be achieved. On the other hand, if <f has a very large amplitude,

more than ±— radians, in particular, then the signals are guaranteed to reach both

extrema, possibly many times for each cycle of <f. The term 4>(t) is contributed to the

phase by phenomena which are o( no interest to us.

In an acoustics application, for example, we would prefer that acoustic waves

impinging on the interferomelric sensor be the only phenomena to induce a phase shift

in the light within the interferometer. Acoustic waves are the signals oi' interest in this

application, and we represent them by £{i). Temperature changes also can induce phase

shifts within the interferometer, although we do not desire this effect. Thus they

contribute to the unwanted phase shift. <t>(U. We often find that the frequency o(6(n

is much less than the frequency band of the signal of interest, which makes its elimination

somewhat easier. With proper construction of the transducer, unwanted effects can be



made to produce the same effect on both legs of the interferometer, and this helps to

suppress <f>(t). too. In any event, we shall often suppress this term for mathematical

convenience, and because it can be removed by filtering, but it is never truly absent.

In Figure 7 we show graphs of three samples of the kind of outputs described by

Equation (5). These graphs were drawn by computer. Superimposed over the three

interferometric outputs is a plot of the stimulus itself, £(t) =A sin(2 nft) . This graph is not

to the same scale as the other three; it is centered vertically over the middle output for

convenience. For the purpose of illustration, we chose to let the signal of interest be a

pure tone (a sinusoid) with phase amplitude A = 5tt radians. The plot does not show the

scale of time along the horizontal axis, and so the choice of the frequency / is not

specified. By suitable scaling oi' the time axis, the plot will look the same no matter what

/might be. The three plots are offset from one another vertically only to make them

easy to see. The model specifies that they will all really be centered around the same

central value D.

The choice o\' amplitude A dictates the amplitude oi £. of course, but it also

dictates the number oi' fringes (complete cycles o\~ 2— radians, or multiples of - in A) in

the three outputs between each successive extremum of <f.

As the stimulus passes through zero (its midpoint), it changes at its most rapid rate.

Simultaneously, the outputs achieve their highest instantaneous frequencies. When the

stimulus stops changing (when it reaches an extremum). the outputs also stop changing

and their instantaneous frequency drops to zero. The phase shift is directly proportional

to
<f. The instantaneous frequency oi' the interferometric outputs is given by the rate of

change of <f. A Fourier scries for the interferometric outputs is presented in Equa-

tion (282) on page 177.

In Figure 8 we show another set of sample graphs. They differ from those of

Figure 7 only in the different choice for the amplitude of the stimulus. A = 10.5-77 radians.

Note that there are more fringes in this second example than in the first. Yet the

locations of the points where the instantaneous frequency reaches its maximum and

where it reaches zero have not changed, since these depend only on the frequency /of

the stimulus.
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figure 7 Simulation of an interferometric output with a peak phase amplitude of 5tt

radians.

It is worth discussing the units of <f at this point. In the previous paragraph, we

treated <f as measured in radians. <f is indicative o( the amount of strain on the glass in

the optical fiber interferometer. The signal of interest, no matter what its natural units,

produces differential strain in the two legs of the interferometer, with a consequent

differential optical path length. The number of wavelengths of differential path length

corresponds to the number of multiples of 2- radians oi phase shift induced in the

interferometric output.
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7igure 8 Another simulation of interferometric output tor a sinusoidal stimulus of

amplitude ,4 = 10.5- radians.

B. DERIVATION OF THE KEY RESULT OF THE THEORY

The differential equations which describe the amplitudes of the phasors within the

2x2 and 3x3 couplers are given in Sheem [Ref. 12, p. 3865: and Ref. 13,

p. 869]. Before presenting the differential equations themselves, we first establish some

notation.

The fibers will be denoted bv numbers 1 and 2 for the 2x2 case and 1, 2, and 3 for

the 3x3 case. We shall denote electrical field intensities by phasor amplitudes. The

electrical field phasor ak(z) within fiber k is a function of position : measured from the

point where light enters the coupler. For instance. a,(z) is the electric field in optical

26



fiber 1 at a distance z from the entry point. The differential equations include coupling

coefficients K, between fibers / and j." For example. K- is the coupling coefficient

between optical fibers 1 and 2 within a coupler. For the 2x2 case, the differential

equations given by Sheem are

+ jKna 2
(z) = (*)

and

dz

-4-: + jKna x
(z) ~- 0. (7)

For the 3x3 case, thev are very similar:

— l— -jKna 2
(z) +JK13

a,(z) = < 81

dz

da-,{z) / 0|
- ;X

23
a

3(z)
+ ^,,0,(2) = 0,

dz

and

dz
- jKna x

{z) + ;X
32

fl
2
(z) = 0.

(10)

If we compare these equations with the general result given in Equation (420) in

Appendix B on page 279. we may note two differences. Firstly. Sheem [Rets. 12 and 13]

renames Snyder's [Ret. 20] coupling coefficients C
js
and brings them to the left-hand side

of the equations as A'
ir

This is a minor difference in notation, which we shall nonetheless

adopt in order to keep this chapter's developments similar to Sheem's.

A more important difference is the dropping of the term jfi a in Equation (420)

on page 279. The effect o( the missing term is zero in the case where the three fibers

are identical. [Ret. 14] That they all are identical is a reasonable approximation in a

5 We assume thai K = K tor all combinations oi i and;.

27



3x3 optical fiber coupler. This chapter provides details oi' the solution of the differential

equations where this approximation is valid.

It will be noted that in equations (6) and (7) there is little point in appending

subscripts to the coupling coefficient K
i: . so we shall replace it with coupling coefficient

A' and rewrite these equations as

—— + jKa
2
(z) = UU

dz

and

jKa
x
(z) = 0. d2)

dz

Also, in equations (S) through ( 10) there are three distinct coupling coefficients. A
;: . K23 .

and Kn . Strictly speaking, the coupling between each pair of optical fibers in a 3x3

coupler may be different. However, in order to make the mathematics tractable, we shall

assume that the coefficients all are equal to the same value. A." This would obviously

be a valid assumption lor three fibers arranged equidistant from each other, as if at the

vertices of an equilateral triangle. However, it is not valid for three fibers aligned in a

plane. As it turns out. this assumption leads to a good description oi the actual behavior

of the interferometers we have built in the laboratory. A more elaborate theory' could

be created treating the coupling coefficients as random variables dependent on the

position z. something we have not found necessary to get useful results, but which might

assist in optimization of a practical system.

Replacing all coefficients A', by A. equations (8) through (10) simplify to

—j jKa
2(z)

+ jKa
3(z)

= 0, < 13 )

dz

6
Not necessarily equal to the A in equations (11) and (12).

28



dafc)
+ jKa,(z) +jKa.(z) = 0, ( J 4j

dz

and

da^iXi mc,—5- ^(z) + ;ifo
2
(z) = 0. (")

dz

Shecm [Ret. 13, p. 3865] gives the solutions to equations (11) and (12) as

a,(z) - a,(0)cos(/:z) - ;a
2
(0)sin(£z) (16)

and

a
2
(z) - a

2
(0)cos(A:z) - ;a,(0)sin(/fe). (17)

We can verily thai these are indeed solutions by differentiating equations (16) and

(17) and substituting into equations (11) and (12). Because this is straightforward, we

omit this verification.

The solution to equations (13) through (15) is also given by Sheem [Ret. 12.

p. 869]:

fl,(z) = c
x

e
jKz

+ de
j2K: U8)

a
2(z)

= c
2
e>

Kz
+ de-J2Kz ,

< 19)

and

a
3
(z) = c,e

)Kz
+ de-/2& ^2°)

where

c
i

+ c
:

+ c
3

= °- (21>

We can verify that equations (18) through (20) are indeed solutions of differential

equations (13) through (15) by taking their derivatives and substituting them into the
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differentia] equations. Because this is straightforward, we omit the verification. Note,

however, that Equation (21 ) is useful in performing the verification.

Equations (11) and (12) for the 2x2 coupler and Equations (18) through (20) for

the 3x3 coupler are general. Particular solutions depend on the initial conditions. At

the input to our Mach-Zender interferometer, we have

c,(0) - A (22)

c
2(0)

= a
3
(0) = 0. (23)

This represents the situation where a laser of constant amplitude A injects light into one

leg of the fiher and the other leg (in the case of a 2x2 coupler) or hoth other legs (in

the case of a 3x3 coupler) are unilluminated.

We shall analyze hoth these situations hefore moving on to the next stage, which

entails taking the outputs from either a 2x2 coupler or a 3x3 coupler and using them

as inputs to a second coupler, a 3x3 coupler. Either of these configurations comprises

a Mach-Zender interferometer with a 3x3 coupler as an output.

First we consider the case where the input to the interferometer consists o[ a 2x2

coupler. Evaluating Equations (16) and (17) we get

ajCz) - Acos(Kz) (24)

and

a
2(z)

= -jAsiniKz). (25)

At the outputs oi the coupler. z=L and so the average power represented by these

two outputs is given by

P.
a^ I' (26)

P
out ,

= WWiW (27)

2
1
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2
\M - ^cosHKL) (28)

and

p = 1

fl2^> f (29)
ou/

ifl-CD^d) (30)

p
oull

= h-j)Asm(KL)][jAsm(KL)} (3D

/> = ^sin2
(A'L). (32)

The sum of the average power emitted by each output of the coupler is a constant, as

should be expected from the law of conservation of energy if the couplers are assumed

to be lossless. (Although couplers are not 100 f
f lossless, this approximation is quite

good.)

We next consider the case where the input to the interferometer consists o\ a 3x3

coupler. We shall suppose that laser light of amplitude A is injected into input 1: inputs

2 and 3 will be left dark. Evaluating equations (IS) through (20) at z=0 we get

0,(0) - A = c, - d (33)

a^O) -- - c
2

+ d '34i

and
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a
3(0)

= - c
3

+ d. (35)

So

c, = A - d (36)

and

c
2

= c
3

= -d. (37)

If we sum the three equations (33) through (35) we get

A - Cj + c, + c
3

+ 3d

= 3d

and

fj - A -d

-A-*
3

3

c
2

= c
3

; -d

(38)

where we once again have used equation (21 ). From this, we see that

d = - (39)

3

and substituting this into equations (36) and (37). we get

(40)

A (4D
3'

Substituting equations (39) through (41 ) into equations (18) through (20) yields the

particular solutions
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fl.(z) = -Ae lKz - -Ae'i2Kz (42)
1

3 3

fl (Z) = -±Ae jICz + -/i*"'
2*2 (43)

2
3 3

and

fl,(z) = -~Ae lKz + -Ae'j2Kz
3 3 (44)

Note that outputs 2 and 3 arc identical, which intuitively thev should be. since they have

not yet been distinguished from one another in any way except by the arbitrary

assignment of index numbers to them.

The average power contained in output 1 is given by

P . I

°.w
l

1

oui
x 2

(45)

a,{L)al(L)

Substituting! = L into Equation (42) and rewriting Equation (45) yields

P = iAi2eiKL +e^KL)-(2e-^L +ei2KL
)ou!

> 2 3 3

= ^(4 + i^2ejAV2A
'

z
-+2e"

j2A
'

i
-e"

jA
'

i
-) (46)

18

= ^[5+2(^^-^)1
18

We can replace the complex exponentials with trigonometric functions as follows:

33



18

.
A*

18

5*4 ^e
j3KL +€ -j3KL^]

5+4cos(3£L)l

Similarly, the power in outputs 2 and 3 is given by

p - p
out-, out-.

a.(L)a^ (L)

Substituting : = L into Equation (44) gives

P =P \-e
ouu out

i
~ o

-jO..,-]HKL\i _^-jKL.^JHKL\

3

= ^ri+l-e^-e-^l
18

l

(47)

(48)

(49)

We can replace the complex exponentials with trigonometric functions as follows:

A 2

P =P = —
out

2
0«f

3
-I o

2-2 (
eJ3H+e -j3jq)

(50)

l-cos3^r

We now have obtained expressions for the output of both a 2x2 coupler and a 3x3

coupler when they are provided with a laser input on only one optical fiber. These are

the conditions at the input of the interferometer. Both outputs of the 2x2 coupler will

comprise a leg of the interferometer. In the case of the 3x3 coupler, we arbitrarily pick

two of the three available outputs of the coupler for the two legs of the interferometer.

The third output is not used. To eliminate back reflection into the laser (a cause of

instability in the laser and consequent phase noise), we can put the end of the unused

fiber into some index matching fluid. Any light emitted from this strand of the output
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of the coupler will he transmitted into the fluid, from which it will he more difficult for

it to reflect hack into the fiber.

We next derive the conditions under which the couplers split the input power evenly

over the outputs. To gel an even split, we require that the power out of each leg of the

interferometer be equal. For a 2x2 coupler, this means that

P = P . (51)
our, out}

Substituting Equations (28) and (32) into Equation (51 )
yields

*1 cos
2KL = — sm2KL (52)

42
The common tactor — can be divided into both sides, so

cos
2KL = siirAX. (53 ^

This equation is true only when

KL = * + n
n

(S4)

where n is an arbitrary integer. For example, n might be 0, in which case the condition

is that KL = 45°. Equations (24) and (25) can he rewritten with this choice of n and with

2 = L as

"•» =

i
and
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.A
a

2,oUl
= -J—

ft
(56)

Other choices for n will result in different signs, and the net effect will be that almil
will

either lead a2ou , by 90° or vice versa. This is tantamount to inverting the choice of labels

for the two legs of the coupler. When these two signals are shifted in phase by some

differential transducer in the arms of the interferometer, this initial static phase

difference will cease to be of any consequence at all since it will be augmented by other

sources of phase shift. These other sources include a quasi-static phase shift due to

temperature, pressure, and other effects, and by a dynamic phase shift due to the physical

quantity we really want to measure with our transducer.

Turning now to the question of how to obtain even splitting from a 3x3 coupler,

we must have

P = P = P (57)
out

]

oui
2

OUly

Note from Equation (49) thai the power in output legs 2 and 3 is equal since the electric

fields in these legs are identical. Setting Equations (47) and (50) equal to one another.

we get

—(5 + 4cos3AX) = — (1 - cos3AX). (58 )

18 9

Dividing through on both sides by the common factor A 2
/9 and multiplying both sides by

2 gives

5 + 4cos3AX - 2(1 - cos3KL). <59)
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Gathering like terms, we gel

2 - 5 = 4cos3AX + 2cos3KL <60)

6cos3AX = -3 (61)

cos3AI = -- (62)
2

Equation (62) can only he satisfied when

SKL = -jr ± — + n2n (63!

ICL = - ± ^ + /3 (64)

9 3

where /? is an arbitrary integer. For example. /; might he 0. in which case the conditions

are that KL = 4Q° or KL = H()°.

Summarizing what we have to this point, the electric fields from the 2x2 coupler

are given by Equations (24) and (25). The corresponding expressions for the power

contained in each output are given in Equations (28) and (32). The electric fields from

the 3x3 coupler are given by Equations (42) through (44). The corresponding expressions

for the power contained in each output are given in Equations (47) and (50).

We shall now consider what happens when the light from the input coupler (either

2x2 or 3x3) travels through the two legs o{ the interferometer to the output coupler

(which is a 3x3 coupler, always). We shall refer to the input to leg k o{ the output

coupler as a
k
{z) where z is the distance from the point where leg k enters the output

coupler. Note that we have redefined the origin o[ the z-axis. Earlier. r = () defined the

input to the first optical fibei coupler in the interferometer. Now it defines the input to

the second coupler, the one which terminates the interferometer.

First let us consider what happens when the laser light is spin by a 2x2 input

coupler. After travelling along the two legs oi the interferometer, the electric fields in
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each leg will have undergone some amount o\' phase shift. Let us suppose that we have

configured the interferometer as shown in Figure 4 on page 21.

Output 1 of the input coupler is fed to input 2 of the output coupler. Output 2

of the input coupler is led to input 3 oi the output coupler. Input 1 of the output

coupler is left dark. No matter whether the phase in input 2 of the output coupler

initially led that in input 3 by 90° or vice vena, at the point where the two optical signals

enter the 3x3 coupler, we can say that the light in the input to leg 2 o[ the 3x3 coupler

has been shifted through an angle 4> and that in the input to leg 3 has been shifted

through an angle 17. Thus, the light waves in these two legs have phasor representations

and

a,(0) - AcosiKLy*

- v*

aJO) = -jAsm(KL)ei '>

= B^

(65)

(66)

where

B
2

= Acos(KL) (67)

and where

B
2

= -jAsm(KL). (68)

Now let us consider the output from a 3x3 input coupler. After travelling along

the two legs of the interferometer, the electric fields in each leg will have undergone

some amount of phase shift. Let us suppose that we have configured the interferometer

as shown in Figure 5 on page 21. Output 2 of the input coupler is fed to input 2 of the

output coupler. Output 3 o( the input coupler is fed to input 3 of the output coupler.

Output 1 of the input coupler is left disconnected and input ] of the output coupler is left

38



dark. The light in inpul 2 of the output coupler initially was in phase with that in input

3, but at the point where the two optical signals enter the 3x3 coupler, their relative

phases have been shitted. We can say that the light in the input to leg 2 ol the 3x3

coupler has been shifted through an angle <$> and that in the inpul to leg 3 has been

shifted through an angle r?. These shifts are partly due to the quasi-static phase

difference induced by temperature, pressure, and other effects and partly due to the

dynamic phase shift which we are trying to measure. Multiplying Equation (43) by the

phase shift e** gives us the input to the 3x3 coupler. Input 2 o[ the output coupler thus

has phasor representation

aJO) - --AejKL + -Ae'l2KL \e
3 'p

3 3
J

(69)

We can remove a complex exponential factor thus

!
kl\

a
2(0)

= --[e
J—r- ')

2 ^

KL
.1A "'T= -;

—

e -

3

3A.7, 3A7.

?

e " -e

J2

e>*.

(70)

Finally, we can simplify this by replacing the difference o\ the two complex exponentials

by a trigonometric function.
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KL

aJO) -j™srJme-
J

-e»
3 { 2 )

- B
2
e».

(71)

In this equation we define

KL

D .1A . (3KL\ 'J-?

-;—sin|- — \e
(72)

3 \ 2

which is a different definition than the one we used when a 2x2 coupler served as the

input coupler of the interferometer.

In a very similar manner, we can multiply the equation for input number 3

(Equation (44)) by the phase shift which affects it. eJn . This gives us

tf
3
(0) = -lAeJKL+±Ae -j2KL

3 3
e"

2A /

-1— sin
3 \

KL
3KL\ "J-*

2 )

\e ' e>*

B^.

From this equation, we see that

B
3

- B
2

(73)

(74)

If we compare Equation (65) to Equation (71) and Equation (66) to Equation (73).

we see that the form oi' the inputs to the second optical fiber coupler is the same whether

we use a 2x2 coupler or a 3x3 coupler at the input to the interferometer. The only

difference is in the definitions of B2
and 5. in each case. For the 2x2 coupler at the

input, these are defined by Equations (67) and (68); for the 3x3 coupler, they are

defined by Equations (72) and (74). In fact, if the input coupler is a 3x3 coupler, then

B, = £,.
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Our next goal is lo find the outputs of the 3x3 coupler when tv\o inputs receive-

light (legs 2 and 3) and one is left dark (leg 1 ). as illustrated in Figure 4 on page 21 and

in Figure 5 on page 21. We will find this output in terms of B: and £ so that the results

may readily be applied lo either of two cases: a 2x2 couplet at the input lo the

interferometer or a 3x3 coupler at the input. Earlier, in discussing what happens at the

input coupler, we used L lo denote ihe length of the coupler. We shall continue to use

this notation here, hut one should not infer lhai the length ol the various couplers in a

system must be the same. Later, when we combine equations that include the length o\

more than one coupler, we shall take care to use symbols that distinguish one length from

another.

Because the output coupler is a 3x3 coupler, the electric field phasors are specified

by Equations (18) through (20). We would like to find the constants c, and d in these

equations, for then we could evaluate the equations at z=L. where the light leaves the

terminating 3x3 coupler. Evaluating each of these equations at the point z=0, where

signals are injected into the coupler and are known, we gel

a,(0) = ^ + d = 0, (75)

a
2(0)

- c
2

+ d = B
2
e>*.

(76)

and

a
3
(0) = c

3
+ d = B

3
e'\

Summing Equations (75) through (77) gives

(77)

2>t
(c» = 3d * j>

*=1 *=1

3

(78)

= B^* - B^".

Making use of Equation (21
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(79)J> A
(0) - 3d - B^* + B

3
e">.

So

d = -[V + V']- (80j

Using Equation (80) in Equations (75) through (77) lets us calculate the constants ck .

c, + d = r, - -[B
2
e>* + £

3^] = 0. (81)

So

Also

so

Finally,

So

', = -^[V* + V}

= -[2B
2
e>* - B^-].

42
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c. + d = B^ (83 )

(84)

c
3

+ J - V7
.

(85)



r
3

= B,e" W' + B,e"}

-{B^* - 2B^'

(86)

We now have obtained expressions lor all the constants in Equations (18) through

(20). Replacing the constants by these expressions gives us ihe abiliu to compute the

output power at the end ol the coupler, where z = L.

a
x

{L) = --[£,^' - B^y*1
+ -[B^* + B^Y'2*1 (87,

This can be rearranged to eive

B,
KL 3A'L "SKL

aXL) = -—^e 2

1

3

- -j^B.e10 + B^\sm

D .JO. 3KL 3KL

—e n e \e - e

KL

2 J

(88)

The complex conjugate ol this is

2r„.
a[(L) -j^Ble-'* + B^^jsinl^

A.7.

3/:l i

J
—

e
(89;

We get the power in strand 1 al the output point z =L by multiplying the complex

conjugates and dividing by 2.

«,tt>
I

2

1

2 '

2 3
'3"3 "2"3 '2 "3 C

I 2 J

(90)

The same procedure applied to output 2 gives
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aJL) = c/Ai
+ de'J2KL

-[2B
2
^ - B^yKL - -[b^* + B^y J2KL

(91)

This can be rearranged a little to give a marginally improved form.

B B
a
2
(L) = -^ei\leiKL + e~

J2KL
]

- -±<i\tP- - e~J2KL
]

(92)

The complex conjugate of this is

al{L) = h.e-tfy-m - e>
2KL

]
- —e-"[e~>KL - e*

2KL
]

(93)

The power in this output is

a
2
(L) I

2
i

a
2
(L)a

2
{L)

= -)(-) B
2
B

2
4 + 1 +2eJ3KL ~2e

~

j3KL
]

)2

B
3
B;[1 + \-e>

3KL-e-i3KL
]

3

^B
2Bl^^\2-\-2e>

iKL^3KL
)

(-] BlB^-^-^l-l + e>
3KL

-2e-
j3KL

}

\ 3
j

(94)

We can simplify this expression by replacing certain pairs of complex exponentials with

trigonometric equivalents.
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fl->(^)
I

2

1 I

\B
2
B

2
5 +4cos(3KQ] + 2£

3
J9

3
[1 -cos(3KI)_

2 1!

- B
2Ble

j(*- r>\\-2e>3KL+e-i3KL
]

B'
1
B,e-1{ * r

>\\+e
}3KL

-2e~>
3KL

}\.

Now wc turn lo the hist of the three outputs, number 3.

(95)

[fl^* - 25^"]^ + -[B^* +
^"J*"'

2*1
.

(96)

We can rewrite this as

ajL ) = ~—e>* y*1 - e~J2KL]
+ ^V" [2^ + e^l. (97 >

3 3

Comparing this with Equation (92). we see that they are identical except that B_ and B-

are interchanged, and d> and -q also are interchanged. This permits us lo write the power

in output leg 3 by performing the same interchange on Equation (95).

I ( I \ \-

- —{2B
2
B:\-cos(3KL)} + fl

3
fl;[5~4cos(3£Z.);

2 1!

(98)

B
2
Ble>

l

*-''{l+e>
3KL -2e-J3KL

]

B'1 B,e-
M-

ti\\-2ei3KL^-i3KL
]

Equations (90). (95). and (98) are general solutions to the power in the three

outputs of an optical fiber interferometer with one dark input. Knowing the values of

B, and £,. as well as the product of A' and L permits one to find specific solutions as

functions of 4> and 77.

As mentioned before, once we start to combine results o( the analysis oi more than

one coupler, we must be careful lo distinguish between the coupling coefficients K and
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the coupling interaction lengths L of each. Our next task is to perform this comhination

for the two cases where the output 3x3 coupler gets signals from an interferometer with

either a 2x2 coupler or a 3x3 coupler at its input. We shall designate as K, and L, the

parameters which apply to the input coupler, and we shall designate as K and L
t

, the

parameters which apply to the output coupler. We shall denote by z, the position in the

input coupler, and as z
tl
the position in the output coupler.

For the 2x2 coupler at the input to the interferometer, we can therefore rewrite

Equations (65) and (66) ;is

B
2
e» = a,(z )\. =0

= AcosiKW* (99)

and

B,e" = a
3cy |. =0

= -jAsmi^y. (100)

We now compute the various products of B
k
which appear in Equation (90). (95), and

(98). By using the trigonometric identity

cos(20) = 2cos2
(0)-l. (101)

we get

B
2
B

2
= ^-cos^A',.!,)

A 2

(102)

^
[cos(2Ay,,) + l]

By using the trigonometric identity

cos(2<9) = l-2sin
2
(0).

(103 ^

we get
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B^B, = A'sin^KL)

= y[l-cos(2^,L)].

(104)

By usinu the trigonometric identity

sin(20) = 2sin(0)cos(0). (105)

we get

B
2Bl = >l 2

sin(A'.L.)cos(
l̂
X

|
.)

= ;ysin(2AI).

(106)

Finally, we can use the same trigonometric identity to get

B^B, = jAhiniKLJcosiKL,)

-;ysin(2tf,.l
£
.).

(107)

Substituting them into Equation (W) gives

«w If 2
2

2 3

y[cos(2A'
(

L,)-l]

+ y[l-cos(2^.L.)]

+j—sm(2K
l

L)eJ^ n)

- j—sm(2K
i

L)e-J<<p ^

fsin'

'3A-L

2 I

108)

In this expression, the braces do not denote a matrix of values. They are used in order

to keep the length} summation within from sprawling across the page. We shall use

braces in this manner whenever it lends clarity to the expressions. We can rewrite the

expression as
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«i(V \ eK4>-i)-.e -K4>-l)

-A 2
\\ - sm(2K,L)

1

9 ' '[ j2
^sin

2
*

o o

A^

9
1 -sin(2^.)sin(0-f7)][l -cos(3tf/

e)].

109)

For the power in the second output leg. we get

MM2

. a*

2 18

1

[cos(2A
/
^) + l][5+4cos(3A'

o
I

>)]

l2[l-cos(2A:
i

l
(

)][l-coS(3A'
o
I
a)]

- ^sin(2^L,)^*-" )
[l-2f•+€***.]

(110)

We can remove the factor of 1
'2 from within the admittedly forbidding-looking expression

within the brackets, multiply out the terms within the brackets, and get ready to replace

the complex exponential functions with trigonometric functions.

5cos(2A:X.) +4cos(3A' L ) +5

+4cos(2£
f
I.)cos(3Ay, ) +2 -2cos(2A7.

(
)

-2cos(3K
o
L
o
)^2cos(2K

i

L
i

)cos(3K
o
L
o )

2 36

+2sin(2Ay,)

-4sin(2A
/

L
/
)

-2sin(2tf.I.)

eJ«l>-r))_e
-j(4>-t])

(111)

M4>-
e

1 3*A> -e
-j(4>- 1 3K .Lo>

2/

€
1*W -e

-j(4>- 1 -3KA>

J J

Summing like terms within the brackets and factoring some terms gives a simpler,

though still quite formidable, form

fegjg A*\ 1^3cos(2K
i

L)^2cos(3K
o
Lo)^6cos(2Ki

L
i

)cos(3K
o
L
o) \

2 36 J
+2sin(2^L

/
)[sin(^-»7)-2sin(^-77+3^

o
L
o)
+sin(0-»7-3^I

o)]J

This can be further rewritten as

(112)
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HLot _ A

36

36

7 -3 cos(2A,I ) +2 cos(3K
(t
L

<
) +6cos(2KL)cos(3Ko

Lj

s\n(<p-7i)

-2sm((p-Tj)cos(3K
o
L
o)

-2sm(2K
i

L) ^cos^-^sinOAy.^)

+sin(<p-T])cos(3K
o
L
o)

-cos(4>-tj)

-cos((p-r])sm(3KL)

l+3cos(2KL) +2 cos(3K
o
L
o)
+6cos(2KL)cos(3K

o
L
o )

[
sin(0-r7)

+2sin(2/W -sin^^cos^Ay^cos^r^sin^A^)

(113)

Now finding the power in the third output leg is just as tedious as it was to find the

power in the second output leg. We start with Equation (98). using the products found

in Equations (102) through (107).

a
3
(L)

I

2

36

2[cos(2KL) + \][\-cos(3K
o
L
o)]

* [l-cos(2AZ)][5+4cos(3A
o
I
o)]

- ;sin(2AL
(

)^"(l +e
i3K°L°-2e~

J3K°L'

4 jsm(2K
i

L)e-}(<f
'- r

'\\ -2e
i3K

<
,L

°+e~
i3K"L ''

(114)

Multiplying this out and replacing the complex exponentials with equivalent trigonometric

functions eives

aJL) I

2

A*

36

2cos(2A L ) - 2 -2cos(3K
o
L ) -2cos(2KL

i

)cos(3K
c
L
o )

+ 5 -5cos(2AI )
+4cos(3A/

p
) -4cos(2A,I)cos(3A/

o )

+sin(2A.I.)[2sin(#- r,) -2sin(0- 77 -3^1^ -4sin(</> t]~3K
p
L)

(115)

This can he further simplified t(
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am A?

36

7 - 3 cos(2K L) + 2 cos(3K L^ -6cos^L )cos(3AT/^

sin(</>-77)

+ sin^-r^cos^A^)

+25111(2^1,)
+ COS^-T^sin^A:/^
- 2sin(<£-r?)cos(3A:/

o)

+ 2cos(^-»7)sin(3^L
<))

(116)

Finally, we get the equation

aJL)

36

7-3 cos(2 AT,!,) +2 cos(3AT/,) -6 cos(2K£)cqs@KJLJ

sin(tf>-T7)

+2sin(2A:
(

L) - sin(</>-r;)cos(3A' L
C)
)

+ 3cos(4>~t])sin(3K
o
L )

(117)

At last we are in the position we have been struggling toward so patiently. We have

three expressions for the power from each ol' the three output legs o\' the 3x3 coupler

at the output of the interferometer. These very complicated expressions are given in

Equations (109). (112). and (117). We can apply the conditions derived earlier for

couplers which provide even splitting of the power to find several of the sines and cosines

in these expressions. First we use Equation (54).

cos(2ATL) = cos 21* + «*

~- COS— + /27I

=0.

(118)
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From Equation (62

sin(2A'Z.
(

) - sin 2
71 71

- n—
4 2

= sin — + nn
2

= ±1.

(119)

cosOKL) = (120)

From Equation (64;

sin(3A'
o
L
p

) = si
\Jtz 7t 2tt
3 — ± — + n—
T 3 9

= sin TX ± - + n27t

3

(121

v/3

If we did not use couplers with evenly split power, or ii we used couplers with

imperfections that prevented even splitting from occurring, then these lour trigonometric

quantities would differ, hut they still would he fixed numhers and so could he used to find

equations descrihing the output ol' the interferometer. A useful piece of research would

he to investigate the effects o\' uneven splitting on the equations developed in this

chapter.

In order to keep our notation consistent with that ol Crookcr [Rel. 10. p. 30], we

shall define two new ancles <f, and <f„. We shall define

L = 4> v
- (122)

and
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f> = 4> (123)

These two definitions amount lo two different ways of specifying the origin of the phase,

the point where the phase is zero. The reason for adopting these definitions should

become clear presently. Substituting Equations (119) and (120) into Equation (109) for

the case sm(2K
t

L) = +1 gives

aXL) I

2

A 2—[l-sm((f)-T])]

l-sm(<p-Tj)}

6

1- --

(124)

,f
« 2

- ^[ 1+cos^ a)}

If sin^X,.) = -1. then

a
x

{L) I

2

6

A 2

[1 + sm(4>-r}))

-f
li

sin

cos

r "• (125)

(«]

The definitions oi' £a and £b were rigged to make sure that the same equation

results no matter what the sign of woJQKJL). This causes Equations (124) and (125) to

match Equation (2.8a) in Crooker [Ref. 10, p. 30J except that where she had a factor of

1/9, we have a factor of 1/6. This represents the 1.76 dB advantage that results from

using a 2x2 coupler at the input to the interferometer, rather than a 3x3 coupler.
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We can go through the same process for outputs 2 and 3. also. In addition to the

two possible signs of cos(2A'
(

I ) that can occur, we must also account tor the two possible

signs of s'm(3K
o
L
o) which can occur, since this expression appears in Equations (112) and

(117). First we consider the case where sin(2A:X) - +1 and sin(3A: L ) = ±±
. For the

power from output 2. we substitute Equations (118) through (121) into Equation (112).

{6 + 2sin(</>-77) + sm(cp-ri) - j^cos(<p-r)}
a

2
(L)

I

2

36

— Sl + -SW.(<p-r>) - —COS(d>-ri)\
6 [ 2 2

J (126j

A n— {\ + cos t 2
)

\

a
3 I

For the power from output 3. we substitute (118) through (121) into Equation (117).

I aJL) |- a}
= —{7 - 1 + 3sm(4>-ri) + 3 v 3cos(0-i7

2 36

1 . A—si + -sin(</>-n) - — cos^-n),
6 2 2

ff |cos(y + ^Wa)

^ 2

d (a 2— /l + cosl 5 -— 71

6-t
a

3

(127)

Next we consider the change to Equations (126) and (12") when s'mOK^^ = ^



a,a)
i A— \\ - —cos(<f) + — sin(£ ),

6 2 ° 2
°

— {1 + cos £,— it

6 1

fl

3

(128)

^f A 2
1 1 ,-, ,/3 . ,_J

= —V ~ —cos(fJ - — sin(£ )

2 6 2 ° 2
c

t i

1 +

*i*<
+
b]

(129)

By comparing these two equations with Equations (126) and ( 127). we see that the effect

of this change is equivalent to interchanging legs 2 and 3 in its effect on the outputs.

Next we consider the ease where smilKjL) = -1 and sin(3K
o
L
o)

= +— . For the

power from output 2. we substitute Equations (118) through (121 ) into Equation (112).

a
2
(L) I

2

A 2

36
{6 - 2sin(</>-T7) - sm(<p-ri) - 3 v

/3cos(0-r;)}

— 1 - -sin(0-r7) - ^-cos(^-T7)j

(130)

^ 1 - icos(« + ^sin(^jv/5 •

+ -*— Sll

= —u + cos
6

&-=*

For the power from output 3. we substitute (118) through (121) into Equation (117).
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am A~_

36
7 - 1 - 3sin(<p-ri) + 3 v

/3cos(#-T7}

— 1 - -sw(4>-r)) + -^-cos^-rj).

Y f " 1
C0S(^ " fsin(^

,4
:

1 + cos
h

3

(131)

By comparing these two equations with Equations (126) and ( 127). we see that the

effect of this change is equivalent to interchanging legs 2 and 3 in its effect on the

outputs. However, we had to redefine the phase origin (the point where phase is deemed

to be zero). This should not disturb us. since the choice of origin is entirely arbitrary to

begin with. A signal exhibiting periodic characteristics will take on every possible value

of phase over time, so redefining the phase origin is akin to waiting a while before

looking at a signal, and it does not affect the appearance of any oi the signals.

Bv this time, it should he clear that the final condition. nameK

sin(2A'L
(

j = -1 and sm(3K L )

/3 132)

will not change matters, but for completeness, we provide the equations anyway,

j

«
2W I'

A 2
1 1 ,-, i/3 ,J

— <1 + COS <f,+-TI

6) [

b
3 J

(133!
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6(2 2
J

( i34)

;1 + cos <>-%**

This exhaustive consideration of all possible conditions which meet the criteria for

couplers with even split ratios shows that a reasonable model for the three outputs of the

Mach-Zender optical fiber interferometer constructed with a 2x2 coupler at the input

and a 3x3 coupler at the output can be given by the following equation. In this

equation, the index k is an index to one of the three output legs. It can take on the

values 1. 2. or 3.

a^ I' A 2
f, , _J, /;. , X 2J]
1 + cos { - (k-l)-n

2 6\
[

3 j

This equation represents the culmination of this very lengthy chapter of tedious

mathematics. Even so. this model is not quite right. That is. it does not describe the

actual behavior o[' a real optical fiber interferometric sensor precisely. Wherein lie the

differences?

Firstly, this equation is based on the presumption that there are no losses in the

couplers or libers. Since there are losses in a real Interferometer, the leadinii coefficient —
2

should be replaced by whatever amount of power docs arrive at the output. We shall call

this amount D. As slated in the Table of Symbols at the beginning of this dissertation,

the units of D will vary, depending on the context. When we are speaking of optical

power, D will be measured in watts. When the received optical power has been

converted to a current by its action on a photodiode. D will be measured in amperes.

When the current has been converted to a voltage through the action of a transimped-

ance amplifier, then D will be measured in volts. However, the jonn ol' the modified

model we are developing here will not be altered.
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A second reason for (he inaccuracy of the model considered here is our failure to

include a consideration ol the polarization of the recomhined light in our equations. We

have assumed that the two combining beams can be fully parallel or fully anti-parallel,

which implies that they both have the same amplitudes. (If the polarizations are anti-

parallel, an additional phase shift of 77 radians occurs.) In practice, due to different

degrees of attenuation in each leg o\' the interferometer, imperfections in the couplers,

and rotation of the polarization of each beam, this will not be the case. The result of this

is that the intensity o\ the interleromelric output will not wander through the lull range

from to A but from somewhat above to somewhat less than D. Put another way, the

coefficient of the cosine in the above equation needs to be reduced from 1 to some lesser

value. We shall define a new quantity, E. measured in the same units as D. This new

quantity is defined implicitly by the following modified model.

ak^ I

2

I E \ 2

2 ) D \ 3

We call the fraction ED the fringe depth. Multiplying this out gives

a
k
(L)

I

2

[ 2
• = D + £cos <f

- {k-l)-Ti
2 I 3

(136)

(137)

The three signals represented by this equation vary around a central value, D. by ±£. at

most. Whether or not they actually reach the two extrema at D + E and D-E depends

on the signal <f. 11 it has a very small amplitude, then the cosine will not vary much and

so the extreme values will not. in general, be achieved. On the other hand, if <f has a

very large amplitude, more than ±77 radians, in particular, then the signals are guaranteed

to reach both extrema.

It is worth discussing the units of <f at this point. As we tacitly assumed in the

previous paragraph. <f is measured in radians. It represents the amount of optical phase

shift due to strain on the glass in the optical fiber interferometer. So the signal o{

interest, no matter what its natural units, produces differential stretching of the two legs

Note that other authors ma\ apply this terminology to different quantities.
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of the interferometer. The number of wavelengths of differential stretching corresponds

to the number of multiples of 2- radians of phase shift induced in the interferometric

output.

In the equation as written, there are only two contributors to the phase shift. One

is the signal ol' interest. The other is the choice of an output leg. However, as the

earlier lengthy discussion of shifting the phase origin made plain, we are free to choose

any origin we like, and only the difference in phase between the output of one leg and

another is of importance.

There are other contributors to the phase. For example, changes in temperature

and pressure may stretch the glass or permit it to relax, even if they are not the

phenomena we want our sensor to detect. These additional factors usually vary slowly

with time, although this is not necessarily so. If we lump them together into a single term

$(/), then we can write the equation which describes our complete model.

aJL) I

2
r 2

- D + £cos <f(r) + 4it) - (ik-l)-n (138)

2 [ 3

This use of the symbol d> is not be confused with its earlier use to describe the shift in

phase of the light in one o! the two legs o( the interferometer (the other was r\).

One final observation about this model is in order. It is assumed that D and E are

equal for any choice o\ output leg (1.2. or 3). In practice, each output leg has its own

value of D and E. Having noted this fact, we shall continue to use the approximation

that they all are equal because o[ the simplicity this assumption entails, and the fact that

it is a fairly good approximation.

C. SUMMARY

In this chapter we have applied Sheem's methods of analysis to the particular case

where an optical fiber interferometric sensor has either a 2x2 coupler or a 3x3 coupler

at the input and a 3x3 coupler at the output. We have derived a mathematical model

which will allow us to design demodulators to recover the signal of interest. We have left

numerous quantities in the equations as parameters so that further research might more

readily ascertain their importance. For example, the degree to which the interferometric
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outputs depart from a 120° phase difference from each other as the product of coupling

coefficients and interaction length varies from the ideal. In the next chapter. v\v describe

the construction oi an optical fiber interlerometric sensor suitable for providing inputs

to experimental demodulators in the laboratory.
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IV. CONSTRUCTION OF A 3x3 OPTICAL FIBER INTERFEROMETRIC SENSOR

In this chapter, wc discuss the construction of an optical fiber interferometric sensor

which we built in the laboratory for the purpose of providing signals with which to

operate the three demodulators we investigated in our research.

Up to the time when we built this optical interferometer, we had been constrained

to using simulations of interferometric outputs. One simulation was provided by a set of

three Analog Interferometric Simulators. These were limited in the amount of peak

phase shift they could deliver to around 2 rad. although the Analog Devices AD639 on

which they depend permit ±500°. Exceeding about 2 rad led to increasingly apparent

distortion in the waveforms delivered by the simulators. Since the newest class of

interferometric sensors can easily generate optical phase shifts far in excess of this small

value, these simulators were only suitable for the most rudimentary work.

A second simulation was provided by a Digital Quadrature Phase Shift Modulation

Simulator. This simulation could easily achieve phase shifts of several hundreds of

radians. Unfortunately, it was only able to produce square waves at its output. Thus the

outputs were not very good replicas o[' the output o( an optical interferometer, which can

generate a continuous range of output amplitudes, not just two of them.'
s

A. APPLICABILITY OF THIS SENSOR

One of the chief purposes of building optical fiber interferometric sensors is to

avoid the need to have electrical signals in inaccessible locations. Eliminating the need

for electrical signals permits reductions in weight, cost, and susceptibility to electromag-

netic interference (EMI). The sensor we have built for experimental purposes is a

voltage sensor. Clearly there is no avoidance of the presence o\ electrical signals in a

sensor which detects electrical signals! However, the benefit of great sensitivity is still

For the Fringe Rate Demodulator, square waves were no limitation at all. since this

demodulator makes interferometric outputs square before it processes them anyway.
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present in our sensor: very small changes in the size o\ the piezoelectric cylinders create

a noticeable optical phase shift in the sensor's interf'erometric output, so quite small

voltages can be detected. When we discuss the performance of the Symmetric Analog

Demodulator, for example, we shall see that it can detect voltages of 2.2 yV in a 1 Hz

bandwidth and has a dynamic range oi 1 15 dB (in the same bandwidth) at a frequency

of 600 Hz. The most attractive feature of our sensor is its ease of operation. Voltage

sources are easily controlled, so we can generate optical phase shift o( controllable

amounts with this sensor. It is an excellent tool for the kind o\ research we conducted

into demodulation.

B. DETAILS OF CONSTRUCTION

Our interferometer was physically laid out as shown in the diagram in Figure 9. A

single voltage signal is applied in opposite polarities to each of two Channel 5500

piezoelectric cylinders. This causes one cylinder to expand while the other contracts, and

vice versa. The fibers are wrapped around each cylinder with constant tension. There

are 9.099 m o( 125 jjm single-mode optical fiber in each leg. as measured from the 2x2

coupler's output to the 3x3 coupler's input. The actual length is not critical, so long

as the two lengths are within a lew centimeters oi~ being the same. As one cylinder

expands, it applies a strain to its fiber. At the same time, the other cylinder is contracting

and its fiber is relaxing. The first fiber experiences an increase in its optical path length:

the other fiber experiences a reduction in the optical path length.

Figure 10 shows the details oi how the cylinder was clamped onto the mounting

brackets in such a way thai it could still respond to the applied voltage without undue

mechanical interference from the mounting hardware.

To apply a constant tension to the fibers wrapped on each cylinder, we used the

apparatus shown in Figure 11." For our purposes, the amount of tension was not

significant. Our desire was simph to ensure that the tension was a constant so that

uniform expansion and contraction oi the cylinders would produce uniform increases and

The author would like to thank Dr. David Gardner for showing him this technique

of ensurinc constant tension in the fibers.
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rigure 9 Physical layout of an optical fiber interferometric sensor of voltages.

decreases in the strain on the optical fiber wrapped around them.

The 2x2 optical fiber coupler we used was an Amphenol Model 945-122-1002. It

is specified for a wavelength of 820 nm. although we operated it at 830 nm. As we said

in Chapter III. the split ratio of the coupler is equal in both legs (measured by the

manufacturer as 47%-53%), and the coupler is bidirectional. The excess loss is specified

at below 1.0 dB (measured by the manufacturer as 0.59 dB).

The 3x3 coupler is a Sifam Model Special 33S 82C. It is specified for a wavelength

of 830 nm. It also has equal splits in all three legs, if only one leg is used for input. Of

course, in an interferometer this condition is not met, and so each output is different, as

discussed in detail in Chapter III. The manufacturer measured the split ratio as shown

in Table II. Our own measurements are shown in the same table. We made our
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igure 10 Detail ol' the assembly of the piezoelectric cylinders with fiber wrapped arounc

them.

Table II Split-ratios of the Sifam Model Special 33S S2C 3x3 optical fiber coupler

(S/N 01150).

Input

Output Output

1 2 3 1
2

->

1 31% 34% 1 27% 37% 36%

2 :>5
c
"c 31% 34% 2 34% 27% 39%

33 c
c 34% 33% 3 33% 23% 44%

Sifam's Measurements Our Measurements

measurements by applying a known current to the laser diode, a Sharp LT-015 whose

wavelength in a vacuum is 830 nm laser (560 nm in glass). This laser was repackaged by

Seastar as a Model PT-450. To measure the power from each leg. we fused the laser
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Figure 11 Apparatus used to obtain constant tension in the fiber wrapped on the

cylinders. The fibers were wrapped by hand.

diode to each input leg in turn. For each input, we successively placed a different output

leg into a slotted cylinder which we then inserted into a UDT Model 255 Photodiode with

a barrel receptacle. A BNC connector on one end of the Photodiode was then mounted

directly into the mating BNC connector on a UDT Model 550 Fiber Optics Power Meter.

We did not calibrate the meter for operation at 830 nm. Since we were only interested

in measuring the relative transmissivity of each leg, this omission is not a tlaw in our

technique. The chief elements of variability in this technique are:

1. The transmission of the fusion splice in each case is different, but since the total

power is measured for each splice, this is not significant:

2. The insertion of an output into the slotted cylinder and its placement in the

detector barrel is imprecise, but the UDT Model 550 is a large-area detector

and hence does not require precise alignment.
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The measurements ;ti each of several laser diode currents were averaged together

to yield the results shown in the left-hand hall of the tahle. The agreement is only fair

with the manufacturer's measurements. Hopefully the manufacturer's technique was

somewhat less variahle than was ours.

The 2x2 coupler had about 10 m of fiber attached on two leads: the other two

leads had only about a meter o( fiber attached. The 3x3 coupler had only about 1 m of

fiber on each end of its three legs. We recommend obtaining them with as much fiber

already attached to them as will be needed in the sensor where they will be used. This

will permit the number o\ fusion splices to be reduced. Since each splice raises the

possibility of more reflections, more transmissive loss, and more of a nuisance generallv.

this is a very useful reduction.

We used a Sumitomo Type 11X Fusion Splicer to splice our fibers together. It

provides a microscope for precise positioning of the bared fiber prior to fusion bv electric

arc. This particular splicer does not permit a very large range of adjustment in the

position of the fibers laterally and vertically, so if placement is not quite good in advance,

it is very difficult to get it right without starting over again. As a consequence, splicing

can consume a large amount oi time (and did so).

A good way to check on the success o( a splice is to shine light (we used laser light)

through it before the fusion occurs. The far end of the receiving liber can be connected

to a photodetector and thence to either a power meter or an oscilloscope. By adiusting

the position of both ends of the fiber to be fused, we can maximize the received power.

We found that alternating between adjusting lateral position and vertical position enabled

us to find the optimum position fairly quickly, if the optimum position could be reached

at all by the adjustment controls on the fusion splicer. Alter fusion occurs, there should

be more power received than before the fusion (by 0.5 to 1.0 dB). If this is not the case.

then the fusion splice was poor. The fiber should be broken, the buffer should be

stripped again, the ends should be cleaved once more, and the fusion splice should be

repeated.

To make Mach-Zender interferometer with legs properly matched in length requires

considerable care. Suppose enough fiber has been attached to the input coupler to form
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the two legs of the interferometer. One of the two legs can be spliced to an input leg

of the output coupler without too much trouble if we monitor the power transmitted

through the leg both before and after splicing it to the output coupler. The connection

of the remaining leg to the output coupler is considerably more difficult. Light passing

through it also passes through the already-completed leg. since they are effectively

connected together at the input coupler. When we bring the remaining leg close to the

output coupler in order to splice it to the coupler, two coherent beams recombine,

producing interference. No longer is there a constant power level from the coupler. This

complicates the task of finding the optimal position of the remaining fiber prior to

completing the second fusion splice. However, one can still search for the placement of

the fibers which generates the maximal fringe depth.

A bigger problem occurs if this second fusion splice fails. In this case, the second

leg will be shorter than the first. It generally is necessary to break the first leg again in

order to ensure the lengths are equal (or nearly so). We recommend acquiring some

practice and skill in performing fusion splices before tackling this tedious task.

Upon the completion of the construction of our interferometer, we placed the three

output fibers of the terminating 3x3 optical fiber coupler into three slotted cylinders.

Each of these was in turn inserted into a mounting barrel with a photodiode within it.

We had two CLD42163 photodiodes and one CLD41461 photodiode available, and so we

used them. Without calibrating the UDT Model 550 Fiber Optics Power Meter for

operation at 830 nm. we measured the rcsponsivity of these photodiodes as 370 mA/W

for the two identical photodiodes and 362 mA/W for the odd one. Since we did not

perform a calibration, these results are not likely to be accurate, but accuracy here was

not crucial to our development of the demodulators. Our purpose was to develop an

understanding of the factors which affected performance, not to optimize the perfor-

mance. For fine tuning of the performance, however, the responsivity of the photodiodes

is an important parameter of operation because it determines the amount of current

delivered to the receiver stage.
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C. SCALE FACTOR OF THE INTERFEROMETER

Our interferometer produces a very highly linear optical phase shift for an applied

voltage. We used an HP6S24A DC Power Amplifier to boost the output of an

HP3314A Function Generator from an amplitude of 10 V maximum to an amplitude o['

60 V maximum. For convenience, we adjusted the gain of the power amplifier to

approximately 10. This amplified signal was then applied in opposite polarities to each

of the piezoelectric cylinders in the interferometer. The upper photograph in Figure 12

shows the three outputs of our interferometer for a sinusoidal input with amplitude

2.79 rad. The lower trace shows the elliptical Lissajous figure which results when two of

these are fed to the X and Y inputs of an oscilloscope.

The Lissajous figure closes on itself, retracing the same elliptical pattern, if an

optical phase shift amplitude in excess o\' — radians is generated by the interferometer:

otherwise it is open. We found that after closure had occurred, it was easy to see the

ends of the traces and so count the number o\' closures as the applied voltage was

increased. We noted the voltage lor each such closure, which represented an additional

77 radians of optical phase shift. A summary oi our observations is shown in Table III and

Table IV.

If we apply a linear least-squares lit to these data, we find the relationship between

nominal voltage displayed on the front panel of the HP3314A and the optical phase shift

delivered by the inlerferometric sensor is given by the following equation:

34.29^0.02 — \V
INlOUT

We shall make extensive use of this highly linear relationship in further chapters in order

to infer the output optical phase shift from a selected nominal input voltage.

D. SUMMARY

In this chapter, we described in detail the construction o\ an optical fiber

interferometric sensor suitable for providing inputs to experimental demodulators. We

found that this sensor generates output optical phase shifts dependent on an input

voltage with a high degree of linearity. In the next chapter, we describe the design ol the
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Figure 12 Upper trace: oscilloscope display of three intert'erometric outputs resulting

from a sinusoidal stimulus (also shown) of amplitude 2.79 rad. Lower trace: two

intert'erometric outputs on an XY plot generate a Lissajous tlgure.
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Table III Measurements Lo determine the amount of optical phase shift output by the

interferometer for a given voltage on the signal generator (one through 40 closures of

the Lissajous pattern.)

Number of

( 'Insures of

the Lissajous

Figure

Nominal lnpui

Voltage

Peak Ouipui

Voltage

Number of

Closures of

the Lissajous

Figure

Nominal lnpui

Voltage

Peak Output

Voltage

1 91 mV 880 mV 21 1.95 V 18.65 V

2 182 m\ 1.758 V ->->
2.04 V 19.52 V

3 276 mV 2.66" V 23 2.14 V 20.4S V

4 368 mV 3.557 V 24 2.23 V 21.34 V

S 459 mV 4.439 V 25 2.32 V 22.25 V

6 552 m\ 5.33 V 26 2.41 V 23.11 V

7 644 mV <>.22 V 27 2.50 V 23.97 V

8 "34 mV ".10 V 28 2.59 V 24.83 V

9 82" mV 8.00 V 2V 2.6S V 25.70 V

10 920 mV 8.90 V 30 2.78 V 26.60 V

11 1.02 V 9.73 V 31 2.S"7 V 27.52 \

12 1.12 V 10." V \-y 2.^0 V 28.38 V

13 1.21 V 11.6 V 33 3.05 V 2w 2^ \

14 1.3d V 12.4 V 34 3.14 V 30.09 V

15 1.40 V 13.4 V ^s" 3.23 V 30.90 V

16 1.49 V 14.24 V 36 3.33 V 31.93 V

17 1.58 V 15.10 V 37 3.42 V 32.78 V

18 ].(>" V 15.97 V 38 3.51 V 33.64 V

19 1."" V 16.93 V 34 3.60 V 34.51 V

20 1.86 V 17.79 V 40 3.69 V 35.3" V
1
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Table IV Measurements 10 determine the amount of optical phase shift output hy the

interferometer for a given voltage on the signal generator (41 through 79 closures of the

Lissajous pattern).

Number of

Closures of

the LLssajoas

Figure

Nominal Input

Voltage

Peak Output

Voltage

Number of

Closures of

the Lissajous

Figure

Nominal Input

Voltage

Peak Output

Voltage

41 3.7s V 36.23 V 61 5.61 V 53.6 V

42 3.87 V 37.09 V 62 5J0 V 54.4 V

43 3.97 V 38.06 V 63 5.79 V 55.3 V

44 4.06 V 38.92 V 64 5.89 V 56.3 V

45 4.15 V 39.77 V 65 5.97 V 57.1 V

46 4.24 V 40.63 V 66 6.06 V 58.0 V

47 4.33 V 41.49 V 6" 6.16 V 58.8 V

48 4.42 V 42.36 V 68 6.25 V 59.7 V

44 4.51 V 43.22 V 69 6.33 V 60.5 V

50 4.60 V 44.08 V 70 6.42 V 61.4 V

51 4.64 V 44.94 V 71 6.51 V 62.2 V

52 4.78 V 45.85 V 72 6.61 V 63.2 V

53 4.88 V 46.7 V 73 6.69 V 63.9 V

54 4.9" Y 47.5 V 74 6.78 V 64.8 V

55 5.06 V 48.4 V 75 6.88 V 65.8 V

56 5.15 V 44.2 V 76 6.9" V 66.6 V

57 5.25 V 50.1 V 77 7.06 V 67.5 V

58 5.34 V 51.1 V 78 7.15 V 68.3 V

59 5.42 V 51.8 V 79 7.25 V 69.3 V

60 5.51 V 52.6 V
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first of three demodulators which we consider in detail in this dissertation, a fringe-rale

demodulator.
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V. DESIGN OF A FRINGE-RATE DEMODULATOR

A. INTRODUCTION

The method of fringe-rate demodulation was discussed at some length in Crooker

[Ref. 10] and Crooker and Garrett [Ret. ] 1 ]. The fundamental idea is to take two of the

outputs of an optical fiber interferometric sensor terminated by a 3x3 optical fiber

coupler, convert them to two square waves, and measure the frequency of the modulation

of the optical wave with a frequency-to-voltage converter. By integrating this result over

time, we can recover the signal. An ambiguity results from the use of this scheme. We

shall explain presently how this can be eliminated. A limitation inherent to the technique

is that phase amplitudes of less than one half fringe (±77 rad) cannot be recovered

successfully.

B. THEORY

When the signal of interest is strong, it induces a large peak phase shift in the light.

At the moment that the signal peaks, however, the instantaneous frequency of the output

is zero. Conversely, when the signal is zero, the output is changing most rapidly. This

corresponds to a large instantaneous peak frequency of the interferometric output.

To see this, consider the mathematical form of the interferometric output x(t) for

a single input tone of frequency/. That is. if {(t) represents a signal of interest

((t) = A sin( a>t) = A sin(27r/r), (140)

then we may use Equation (5) of Chapter III to obtain
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x(t) = £> + £cos[Asin(27r/r) + 4>).
d 41 >

In this expression, the phase 4> includes the phase terms due to choosing a particular

output of the interferometer as well as all the extraneous influences on phase mentioned

in Chapter III. Recall that D is the central value around which the output waveform

varies. E is the peak departure o\ the interferometric output from D, A is the phase

amplitude of the input, /is the frequency o{ the signal of interest, and / is the time. The

instantaneous frequency of the output in hertz is defined as the derivative of the

argument of the cosine function with respect to time, divided by 2~.

flNSTANWEOVS = J~~ = / = #«»&*&' ^
2ii at 2 7i

Here, we assume that the derivative o\' the phase term d> is small and can he

neglected. Whenever the extraneous contributions to the phase shift are of a quasi-static

nature, this is a reasonable assumption. The instantaneous frequency is maximal when

the cosine in the derivative given by Equation (142) reaches a peak, that is. when

2nft = nn < 143 >

where n is an integer. This occurs when the sine in the interferometric output of

Equation (141) is zero, since

sin(wTi) = 0, < 144 >

that is, when the signal ol interest passes through zero.

If we can convert the instantaneous frequency to a voltage, then we need only

integrate it over time to recover the signal <f(r). in effect, reversing Equation (142). The

chief difficulty in this scheme is not the conversion oi frequency to voltage, since

integrated circuits to perform this function are readily available. Rather, it is the fact

that a high instantaneous frequency occurs both when £(t) is rising and when it is falling.

Yet frequency-to-voltage converters do not give different outputs for these two situations.

We alluded to this problem in the introduction to this chapter.
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We would like our converter to give, say. a rising output when the instantaneous

frequency is high and when £(t) is rising. With this choice, we would also like it to give

a falling output when <f(r) is falling. Succinctly, we need to distinguish between two

distinct situations, both o\' which give rise to high voltages from a frequency-to-voltage

converter. If the voltage from the frequency-to-voltage converter can range from V

to, say, VMAX, then wc would like to invert this range on alternate cycles to V to — V^^.

Crooker's method calls for the use of an optional inverter to do this.

The use of a 3x3 coupler at the interferometer's output provides enough

information to make it possible to distinguish between a high instantaneous frequency due

to a rising signal of interest and a high instantaneous frequency due to a falling signal oi'

interest. In its simplest form, the method uses two of the three available outputs and

determines which one leads and which one lags the other. From Equation (5) in

Chapter III. the 3x3 coupler generates three outputs of the form

x
k
(t) = Z> + Ecos[$(0-(*-l)!* (145)

where <f(/) is the signal o\ interest and k is a index which can be 1. 2. or 3. Here, we are

ignoring the additional phase shifts due to extraneous influences such as pressure and

temperature.

Figure 13 is a block diagram of a Fringe Rate Demodulator. Without any loss of

generality, we can arbitrarily select two of the three outputs of the interferometer, say

Xj(t) and x2{t), as two channels of input to the Fringe Rate Demodulator. With this

choice. Equation (145) implies that when £(/) is increasing. x,(t) leads .v^/) by 120°. But

when £(t) is decreasing. x,(i) leads Xj(t) by 120°. A comparable situation obtains no

matter which pair o\ outputs we select.

We shall put both of these signals through comparators so that the result is either

a logical (0 volts) or a logical 1 (5 volts). One of these logical signals we now label /

(for in-phase) and the other Q (for quadrature). This terminology is somewhat

anachronistic, since the term "quadrature" generally refers to 90°, not 120°. Crooker

[Ref. 10, p. 54] discovered that fringe-rate demodulation is largely insensitive to this fairly
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Figure 13 Block diagram of a Fringe Rate Demodulator.

large difference in phase angles. So although the fringe-rate method originally was

conceived of as operating when a 90° phase difference were present, phase differences

of 120° work perfectly adequately.

We now develop the Boolean logic which permits the determination of whether /

leads Q, or vice versa. The resultant logic is different from that given in Crooker

[Ref. 10] and Crooker and Garrett [Ref. 1 1]. Our purpose in altering her equations is

to facilitate the programming o[' a programmable logic array (PLA) to contain all the

logic, rather than using discrete logic integrated circuits. We made use of an Altera

EP310 Erasable Programmable Logic Device (EPLD), a form o( PLA which can be

erased under ultraviolet light and reprogrammed. This characteristic is useful in the

design of prototype systems.

We also modified Crooker's approach from one using synchronous, clocked logic

to one using asynchronous logic. This permitted more rapid transitions oi the outputs to
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new states, which reduces the lag in recognizing that the signal which was leading before

is now lagging, and vice versa.

We assume that / and Q cannot both make a transition simultaneously. That this

is true is implied by Equation (145), lor there is no angle 4> such that

cos(#) = cos ^-jt\ - 0. (146)

The goal of the circuit is to produce a lead-lag decision signal LL which will take on the

value 1 when / leads Q and the value otherwise. The PLA will store the most recently

computed value of LL in an internal flip-flop, present it as an output to the circuit, and

use it to determine the next value of LL.

In addition to computing LL. the circuit must store the most recent values of/ and

Q internally, since these have a bearing on the determination o[ the next value o\' LL.

These values we shall call Ioin and QulI) . Like LL. they will be stored in Hip-Hops

internal to the PLA. The EP310 requires that all computed values be presented as

outputs to the circuit, so LL. InLD, and QnlD will be available as outputs.
10 Of course,

we want LL as an output in any case so that it can provide the lead-lag decision to the

optional inverter.

If we were using synchronous logic, LL. I()lD and QnLn would only change when the

clock signal permitted them to do so. Because we are using asynchronous logic, however,

this is not the case. Instead, they swiftly take on new values in response to changes in

the inputs. For the brief interval during which the old and new values differ, transitions

must be taking place. Therefore we must take care that transitions in the outputs never

give wrong results, even momentarily. In this case, there are two desired outputs. One

is the signal LL (for lead-lag) which will be 1 if / leads Q and which will be if Q leads

/. The second output is a pulse train whose state changes whenever / or Q changes state.

This pulse train provides the frequency input to a frequency-to-voltage converter. Since

one cycle of/ corresponds to the passing of one fringe (2tt radians), and likewise for Q.

We do not show /, ///; and Q, )in in the block diagram of Figure 13.
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we can generate two cycles of output lor each fringe in this manner. This has the

advantage of permitting slightly smaller phase shifts to he resolved hy the fringe-rate

demodulator. Theoretically, one can accept an inlerferometric output with as little as

±7t72 radians of phase shift with this method. If the third output ol' the interferometer

were incorporated in the logic, a more rapid pulse train could he generated, and this

would lead to a minimum resolution o( ±tt/3 radians o[ phase shift. In practice, these

minima are not sufficient: one needs a numher of fringes before reasonahlc fidelity in

the reconstructed wave can be achieved.

Figure 14 contains a Karnaugh map of the digital logic necessary to generate LL.

IOLD is the value ol' the in-phase channel which was observed most recently. Qnin is the

value of the quadrature channel which was observed most recently. / is the current

(incoming) value o[ the in-phase channel. Q is the current (incoming) value oi the

quadrature channel. LL (1U) is the last computed value o( the lead-lag signal which the

circuit generated. The new value o( the lead-lag signal. LL. is determined by looking up

in the Karnaugh map thai value which corresponds to the five inputs: LLOLn , IOLD, Qnn> -

/, and Q.

For example, suppose that the circuit's most recent output for LL was 0, which

means that at the time when LL last was determined, the in-phase channel was lagging

the quadrature channel." If it so happened that lnLD=0 and <2o/. =l. then, since the

in-phase channel was lagging before, we expect it to follow the quadrature channel to 1

very soon. If this happens, then /= 1 and Q=\ after the transition occurs. As the table

shows, this implies that the in-phase channel still lags the quadrature channel, so the new

output LL should remain 0. But suppose, instead, that Q reverts to without / ever

having gone to 1. This means that the quadrature channel is now lagging the in-phase

channel. Since the new values of the channels are /=() and (2 = 0. the Karnaugh map

shows that the next value ol LL should be 1.

11

This means that the in-phase channel changed after the quadrature channel

changed.
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' i >l l)'\l<H I)

00 01 11 10

LLffl^ IQ

00

01

11

10

1 X

1 X

X 1

1 X

LL, ii.u=; UQ

00 01 11 10

00 1 1 X

01 1 1 X

11 X 1 1

10 1 X 1

figure 14 Karnaugh map oi' logic needed to generate LL.

All other entries in the Karnaugh map were filled out in a similar manner. The

symbol X shows transitions which we do not expect ever to occur. The underlying

supposition is that the in-phase and quadrature channels cannot both change at the same

time, an assumption we have already discussed. The four logical equations of the EPLD

are as follows.

LL = (/ A JOLD A Q) V (/ A LL A QOLD )

V
(
/A(? A ^) V M^A(? J

V (' A IOLD A Q) V
(

IOLD ALLAQ)

V (TOLD ML A Q)W (I A Q A QOU}),
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four "'©ft " 48 >

'ou> - '. (149 »

and

O = O (150)

The symbol A mean logical AND: the symbol V means logical OR; and the symbol

© means logical EXCLUS1VE-OR. These logical operations are defined more precisely

in the Glossary.

C. DESIGN

We shall deter until Chapter IX the specifics o[ the design of a receiver to convert

the interferometric outputs into voltage signals. For the time being, suffice it to say that

these signals will be in the lorm o[' Equation (145). and that the units ot'D and E will be

volts. The receiver will deliver signals in the range D±E. with D = () V and £"=10 V.

Figure 15 is a schematic of a comparator which we use to convert Lhis bipolar signal

to a unipolar (binary) signal. The LF31 1 comparator is made by National Semiconductor

[Ref. 15, p. 5-194]. The databook uses the symbol for the open-collector output

shown in Figure 15. The analysis oi' this circuit is given in Appendix A. The design

equations derived there are repeated here. Provided that the conditions

*,«*,, (152)

R^R^, (153)

and
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rigure 15 Comparator circuit used to convert bipolar interferometric outputs to binary

levels of or V H .

R,<R,. (154)

are met, then the lower switching threshold of the comparator is given by

—

—

-v<THRESHOLD ' D . D
r S

K
\

+K
2

and the upper threshold is higher than this by

(155)

RJR,
INCREMENTAL

(156)

How much hysteresis we want is dependent on the amount o( noise we expect to

see. For our purposes, we chose to set VThreshold-~^ mV and VINcrex{entai.— + ^Q m ^-

This means that switching of the output from high to low will only take place when the

input goes below -50 mV, and switching from low to high will only take place when the

input goes above +50 mV. We picked /?,= !.00 kH. Suppose that R.^aR^ for some

number a. Then from Equation (155) we have
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iU ' l)R
W; - <L±y; = -50 mV. (157)

(tf+l)K, a+1

We shall select K
y

+ = + I5V. Solving tor a, we find

(a-l)(15 V) = -(a + l)50 mV

a(15 V+50 mV) = 15 V-50 mV
(158)

14 95
a = J_t££ = 0.993.

15.05

If we choose R, = 10.0 kl 2 + 66.5 Ct (a series combination) and R
2
= 10.0 kfl. then we

find VTHRESHOld
= ~49.7 mV, which is reasonably close to the desired value, 50 mV.

Next we can apply Equation ( 156) to the desired amount of hysteresis, which is the

difference between the upper and lower threshold levels, or 100 mV. The value of Vu

is +5 V in our digital logic circuitry. So

-^VH
- 100 mV (159)

R.]R
2

R, = —L-^-(5 V)
^ 100 mV

5.017 kQ (160)

100 mV

= 251 kQ.

(5 V)

As it happens, standard \
c
c resistors do not come in values o[ 251 kfl: the nearest value

is 249 kfl for /?,. Using the chosen resistor values, we expect to see lower and upper

switch threshold levels of -48. 7 mV and 49.6 mV. both of which are close enough to the

desired values. To gel smaller values would be difficult with \

c
'c resistors without

carefully choosing them for accuracy. Note that the 66.5 Ct resistor (which, with 10.0 kfl,

makes up R,) is less than \

(
c ol' the 10.0 kfl resistor as it is. This means that a resistor

which has a nominal resistance oi' 10.0 kfl might actually have as little as l).9 k£2 and as
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much as 10.1 kfi. Adding 66.5 fl to this docs not guarantee that we get 10.0665 ft. In

the laboratory, we did not need to pick the 10.0 kCl resistor specially, as it happened, but

it could easily have been necessary. This is an unattractive feature o( the design of this

comparator which really arises because we want such a small level o( hysteresis. If we

relaxed this need, the inaccuracies of 1 % components would cease to be a constraint.

Two of these comparators are used, one for each of the two interferometric outputs

we choose to use in the Fringe Rate Demodulator. In Figure 16 we show the schematic

of the rest of the Fringe Rate Demodulator. The unipolar outputs of the two

comparators become the inputs to the / and Q inputs of the EP310 Erasable Program-

mable Logic Device (EPLD) described earlier in this chapter.

FRINGE-RATE DEMODULATOR
• 15V

IN-PHASE I

O'JADRaT jer
J

U
I wrrLl*

•5V

i

1 |
116 Ii2

i !5V

i

EP310
I FC'JTL

V
N0O»«n." CLOSED
.;i» •« at
P]N 1 6 L *

:5v I,

L « 29 1 7N

=d !_'>
:

...-L

i

si -
I

1 I I 1

» 1

T
1 -I5V

eseof
| 1 I Ik ( MtkS

• S9

•:5v i o
-

i: - j.<:

ijv' u5
LF ««4

T
• • 5V

Figure 16 Schematic drawing o( the Fringe Rate Demodulator. The receivers,

transimpedance amplifiers, and comparators are omitted from this drawing.

The LL output of the EP3 10 causes the LF13333 Quad SPST JFET Analog Switch

to alternate between connecting its D4 input at pin 15 to the ground at pin 14 and

leaving D4 open. When D4 is grounded, the non-inverting input to the optional inverter
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built around the LF356 Monolithic JFET-Input Operational Amplifier is grounded. This

causes the LF356 to function as an inverting amplifier of gain 1. When D4 is left open.

the voltage at the input to the LF356 is the same as that from the output of the

LM2917N Frequency-to- Voltage Converter Because an operational amplifier with

negative feedback tries to keep both its inputs at the same voltage level, there will be no

current flowing through the feedback network, and so the output will not be inverted

when D4 is left open.

The EP310 generates a frequency signal at its pin 16 which serves as the input to

the LM2917N. which is often loosely referred to as a tachometer chip. This signal is

formed from the exclusive-or ol its two inputs, so the output frequency is roughly twice

that of the input frequency. We cannot say it is precisely double, since the instantaneous

frequency of a phase-modulated signal is not a constant. The voltage level provided to

pin 11 of the LM2917N by a resistive divider comprising resistors R. and /?, is around

2 V.

Our design differs in another respect from that in Crooker | Ret. 10. p. 53 J.

Crooker used a high-pass filter at the input to the frequency-io-voltagc converter and a

comparator threshold o( zero. We used no filter, just a threshold about midway between

the upper and lower voltage levels generated by the EP310. An advantage to avoiding

the use of the filter is that, potentially, the absence o[ a capacitor could provide the

ability to handle higher frequencies. Since the frequency input can be either V or 5V.

the input comparator ol the LM2917N will not change unless the frequency input

changes. Because this signal is derived from the interferometric outputs, its frequency

is high when the phase in the interferometer is shifting most rapidly, and it is low when

the phase shift reaches an extremum.

From the data sheet for the LM2917 [Ref. 15, p. 5-194], an equation describing the

output voltage of the frequency-to-voltage converter is

V = V f C R K (161)Y OUT v CCJlNy-\ lK
l
r>~

R_, and C, are the external components attached to the charge pump within the converter.

Vcc is 15 V, the voltage supplied to the output transistor within the converter. K is the
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gain of the converter: it is roughly 1 . The zener diode in the LM291 7N limits the voltage

from the operational amplifier which controls the transistor at its output to 7.56 V at

most. We could include some gain in its feedhack loop, hut it is just as easy to apply the

gain in the following stage, which is what we chose to do. We would like Vom to reach

this maximum when the maximum input frequency occurs. What is this frequency?

For a signal of interest of the form

Z(t) = Asm(2nft), ( ,62 >

recall that the interferometric output is o[' the form

x(t) = D + Ecos[i4sin(2 */*)].
(163 >

We shall design the circuit to handle the case where A = iOQ rad and /= 200 Hz. The

peak instantaneous frequency in the interferometric output is roughly equal to the

numher of complete cycles in interferometric output in one second. In a quarter of a

period of the signal of interest. 774. there are A/2— cycles of the interferometric output.

So the frequency is roughly

\-\
\2n)

=
2A

= W (164)

f)

*T
*

However, the EP310 has logic which roughly douhles the frequency delivered Lo the

LM2917N, so the actual frequency is therefore estimated as

J IN
= W (165)

K

Therefore we expect the EP310 to see a peak frequency of

. 4(100 rad)(200 Hz)
. (|66)

J IN'IN
It

Now from the specifications for the LM2917N [Ref. 15. p. 5-198], a restriction on the

input frequency is
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flN *
C K

(167)

In this expression, /, is the current delivered to the timing capacitor C ,. fls is the

frequency delivered to the input of the LM2917N. and Vcc is the supply voltage. We can

use this expression to determine the value of C, because I, is specified in the data book.

We have chosen Vu =15 V. and we have just found that fls
~25.5 kHz at most.

C, = = <

fisKIN' CC

140/iA

(25.5 kHz)(15 V)

240/iA

(25.5 kHz)(15 V)

= 367 pF for the minimum I
{

= 140/iA

= 630 pf for the maximum /. = 240/iA

(168)

Unfortunately, the databook recommends keeping C
7
>500 pF for accuracy. Whether or

not we can handle the maximum frequency for this choice ol C
:

depends on the current

Ij, and this is dependent on the characteristics of the particulai device we end up using.

We can calculate the peak frequency we can handle, however. We have

flN *

140/iA

C V*-r cc

(500 pF)(15 V)

240/iA

(500 pF)(15 V)

= 18.7 kHz if J, = 140/iA

= 32.0 kHz if /, = 240/iA

(169)

In the worst case. /,= 14() /l/A and //v
< 18.7 kHz. If/=20() Hz. then we must have

fjN*
=

(18.7 kHz)^
= ?3 3 ra(J (170)A <>

4/ 4(200 Hz)

If we lower C, slightly to 470 pF. we can raise this to 78.0 rad. Although the accuracy

of the output will suffer a little, we only need one capacitor to achieve this value, whereas

it would take two to obtain 500 pF. The elimination of one component with a

consequent increase in the permissible phase amplitude A is a satisfactory compensation

for the sacrifice in accuracy.
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By using the optional inverter, we create a bipolar output which is negative when

/ lags Q and positive otherwise. However, this signal is proportional to the derivative

((t) of the signal o( interest. <f(/) in Equation (140). We must integrate this to recover

((t) itself.

The LF444 Quad Low Power JFET Input Operational Amplifier performs the

integration function. In Appendix A we derive equations to permit the design of this

integrator. Equation (401 ) in the appendix shows that the output of our integrator circuit

is

G(/) = Ym. = __!—

L

(i7i)

Vm R
x

C
2 j2nf

provided that the input frequency/ is much greater than the pole frequency/,. There are

actually two poles in this circuit. A design goal is to set them equal to each other. From

Equation (397) in the appendix, we have

/ =/, = = />
= • (172)

p { 2nR
x
C

x

- lnKfz

We want to choose /, so that the error in the phase is small in the frequency range of

interest to us. We would like to have reasonable accuracy in both phase and gain when

/>20 Hz (a design choice). From Equation (407) in the appendix, the error eP in the

phase is given by

ep
= -2tan (173)

Jp,

If we choose ^=0.5 Hz. then this error will be only 3° for /=20 Hz: it will fall to 0.3°

for /= 200 Hz. From Equation (410) in the appendix, the error eM in the gain is given by
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e xl =M
( f \

2 (174)

So for this same choice of//* the error in magnitude will he less than 0.06%, and it will

be even less significant at higher frequencies.

Our choice o\ [,,
=0.5 Hz determines the two products R,C, and /?

: C_>.

rtjC, - /^C, - -i- - 318 ms. (175)

We also have to select the desired gain factor. \R,C
:

. For an input lo the interferometer

of ±100 rad at/=200 Hz. the output oi the frequency-to-voltage converter is measured

as 3.8 V. To get an amplitude oi 7.56 V out o[ the integrator under these conditions, the

gain must be 7.56 V/3.8 V. or 2.0. So

1 l
=2.0

R
{
C

2 2Kf (176)

R,C, = — - 398 (is.
1 2

2^(200 Hz)(2.0)

In the end. we increased the gain lo about 3 by lowering R,C:
to around 265 jjs.

By trial and error, we find combinations oi' R,. /?,. C,. and C, which meet these

conditions and which are available or are easily produced from available components. A

viable solution is

/?, - 392kQ, ft, - 475 MQ,

(177)

C, = 800 nF, C
2

= 680 pF.

The above discussion explains how the component values in the integrator in Figure 16

were chosen. To get the large resistance R
:

in the feedback network, we used a Tee-

network. The values used in this network were obtained by applying Equations (416) and

(418) of Appendix A. The form of the network illustrated there is repeated here in
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igure 17 A Tee-network can be used to obtain large resistances

Figure 17. Resistors R n R
:

. and R, in Figure 17 on page 88 correspond to resistors R i: .

R 13 , and 7?;v in Figure 16 on page 82.

The effective resistance of our Tee is given by

REFF
*A (no kQ) 2

. 475
l
13

25.5 Q
(178)

which is just the value of R
:
which we sought for the integrator.

There are two subsystems in the Fringe Rate Demodulator which could be modified

to change its operating regime. The frequency-to-voltage converter is configured by the

choice of R
}
and C, in Figure 16 to achieve its peak output voltage for a specified peak

input frequency. This frequency is dependent on both the amplitude and the frequency

of the signal of interest, and therefore changes in these two components could be made

to accommodate a different set of signal parameters.

The integrator is the other subsystem which would need to be modified to

accommodate such changes. The methods used in this chapter can be easily applied to

make these changes, if needed.
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D. SUMMARY

In this chapter we have considered a modification lo a method proposed by

Crooker [Ret". 1()| and Crooker and Garrett [Ret. 1 1
]
which uses a frequency-to-voltage

converter, an optional inverter, and suitable control logic to recover a signal of interest

from the outputs of an optical fiber interlerometric sensor terminated with a 3x3 optical

fiber coupler. This method is very inexpensive, as we shall see in the next chapter, and

takes up very little space physically. It is capable o[ operating with large phase

amplitudes, provided that the bandwidth limitations of the converter are not exceeded.

Its primary limitation is its inherent inability to recover signals oi' less than one half (or.

if pushed, one third) o[' a fringe. For extremely sensitive optical fiber interferometric

sensors, where large dynamic range can be achieved without dropping below this lower

limit, this type of demodulator is excellent. In the next chapter, we consider the

performance of the Fringe Rate Demodulator.
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VI. PERFORMANCE OF THE FRINGE-RATE DEMODULATOR

A. OVERVIEW

In this chapter we examine the performance of a Fringe Rate Demodulator. The

aspects of its performance which we consider are:

1. scale factor, which relates the phase amplitude in the modulated signal to the

voltage amplitude in the demodulated signal;

2. small signal bandwidth;

3. maximum acceptable signal:

4. minimum detectable signal;

5. dynamic range:

6. complexity: and

7. approximate cost.

B. SCALE FACTOR

The scale factor is defined as the ratio oi the demodulator's output voltage to the

input phase. If the phase signal provided by the interferometric sensor is <£(/) and the

output provided by the Fringe Rate Demodulator is i (/). then we define the scale factor

FFRI) {t) of this demodulator by the equation
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(dv(t)\

{ dt J

(179)

_ dvjt)

d<pit)'

Ideally the scale factor would be constant. In practice, it is not. We shall call the

multiplicative product AJ ol' the phase shift ,-1 and the frequency / the phase rate, since

the product is measured in radians per second. When the phase rate is too large.

saturation of the frequency-lo-voltage converter's output at the level o( the high voltage

power supply (or slightly below it) takes place.

The reason saturation occurs is clear if we consider the mathematical expressions

for the output of the interferometer. Let a signal oi interest <f(/) be applied to the

interferometric sensor. If £{i) is a sinusoid of amplitude A and frequency o) = l-j\ then

{(t) = Asm(a)t). (180)

After conversion o( the interferometric output into its voltage analog. <f(/) is converted

into the phase-modulated signal

x(t) = Z)+£cos[<f(?) + 01^ J

(181)

= D+£cos[/4sin(a)f) +
4>\.

The term <t> represents an additional phase shift which accounts for the choice o( one oi

the three outputs of the 3x3 coupler at the output o[' the interferometric sensor, as well

as the effects of temperature, pressure, and other factors.

The instantaneous natural frequency of this interferometric output is given by the

derivative of the argument o\' the cosine function. To get this in conventional frequency

units (hertz), we divide bv 2~. So the instantaneous frequency is given by

We assume that the derivative o\' d> is negligible, which is valid if 6 is quasi-static.

Now the EP310 Erasable Programmable Logic Device (EPLD) generates a square

wave as input to the LM2VH7N Voltage-to-Frequency Converter. This square wave has



'INSTANTANEOUS ~"
~,

(Asm((t)t))
LK at

A<o
, ,

H82)

lit

= Afcos(cot).

twice the frequency

/

/vv/ IW iSlfH v approximately. We have configured the LM2917N to

provide a maximal output voltage for an instantaneous input frequency of 25.5 kHz. In

Figure 18 is a graph showing the measured output of the LM2917N. The same data also

are graphed in Figure 19. but each axis in that plot is logarithmic. A summary of the

observations is given in Table V. The data were obtained by use ai' the instrumentation

shown in Figure 20. We used an HP3314A Function Generator to create a square wave

with a 50^ duty cycle, ranging between V and 5 V. The output oi' the LM2917N was

averaged on an HP3456A Digital Voltmeter. A least-squares linear fit to the data gives

the relationship

v OUT (97.0±0.2 ^-\f + (14±4) mV, (183)

I Hz;

and the correlation coefficient in this linear fit is /=().999976. The LM2917N is very

linear, but the log-log plot shows the deviation from linearity at the low and high ends

of the frequency scale: the output voltage reaches a floor ^i around 12.5 mV and a

ceiling at around 5.30 V. The relatively large voltage offset o\ 12.5 mV limits the

dynamic range of the device. We can calculate this ratio by the following method.
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,. n Maximum output voltage
Dynamic Range - —

Minimum output voltage

5.29 V
=
n. v (184)
12.5 mV

= 423

= 52.5 dB

This is a fairly poor dynamic range. It could be increased if we could lower ihe voltage

offset, raise the voltage ceiling, or both. The voltage offset could be reduced by using

a trim network with the output operational amplifier and transistor, though care would

be required to avoid a high coefficient of change in the offset with temperature and time.

The specification for the LM2917N states that the voltage offset typically is 3 mV. and

is 10 mV at most. Since we measured more than 12 mV. a reduction in the offset should

be easy to obtain. Getting the offset down to 3 mV would provide an increase in

dynamic range of 12 dB.

The upper voltage limitation is due to the use of the LM2917N with its built-in

zener diode. This diode limits the voltage to 7.56 V nominally: we measured the voltage

as 7.47 V. The LM2907N could be substituted for the LM2917N. It has no zener diode

built in. To obtain the same degree ol' stability, one could insert a discrete zener diode

with a voltage higher than the 7.56 V of that in the LM2917N. With the 15 V power

supplies we used, this would permit nearly double the dynamic range (an extra (> dB).

The two changes that have been suggested here should provide an extra 18 dB ol

dynamic range without much effort. Replacing the frequency-to-voltage converter with

one of greater inherent dynamic range is another approach to expanding the dynamic

range.

Another way to view the dynamic range is not as the ratio ol maximum to minimum

output voltages but as the ratio ol' maximum to minimum input frequencies. This is not

really suitable, however, since we could use as low an input frequency as we like. One

could achieve as high a dynamic range as desired by this approach, but the resultant

number would not be a helpful measure o( performance.
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LM2917N Voltage Output vs. Frequency Input
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igure 18 Graph of the output voltage of the LM2917N Frequency-to-Voltage

Converter as a function of input frequency.

There is, however, a limit to the maximum input frequency of the LM2917N. and

it was discussed in the last chapter. It is

fiMAX C V
(185)

Since /, may be as little as 140 jjA, C2 must be at least 500 pF (we have shaded this

number a little, using only 470 pF) for accuracy. Vcc typically would be at least 5 V (but

is 15 V in our demodulator), so the frequency input really should not exceed 19 kHz if

we assume the "worst case" for I
:

. That we obtained successful results up to 55 kHz

must be regarded as due to having been lucky enough to obtain a superior sample of the

LM2917N.

To measure the scale factor, we used the instrumentation illustrated in Figure 21.

Our observations of input voltage, equivalent input phase, peak output voltage, and

computed scale factor are shown in Table VI and Table VII. The equivalent phase
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LM2917N Voltage Output vs. Frequency Input

102 10J

Frequency Input .[Hz]

Figure 19 Graph of the output voitage of the LM2917N Frequency-to-Voltage

Converter as a function on input frequency. This figure shows the same data as in

Figure 18, but here it is plotted logarithmically on both axes.

HP3314A
Function

Generator
>

LM2917N
Frequency-

to-

Voltage

converter

> HP3456A
Digital

Voltmeter

Figure 20 Instrumentation used to obtain the output voltage of the LM2917N
Frequency-to-Voltage Converter as a function of input frequency.

amplitude shown in the tables was computed from the linear relationship found in

Equation (139) on page 67 between voltage from the HP3314A Function Generator
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Table V Summary of observations showing the output voltage ol' the LM291 7N Voltage-

to-Frequency Converter as a function of input frequency.

fis Vom IV]

1 Hz 12.5±0.1

2 Hz 12.6±0.1 mV

5 Hz 12.80±0.10mV

10 Hz 13.1 ±0.1 mV

20 Hz 13.9±0.1 mV

50 Hz 16.2±0.1 mV

100 Hz 19.9±0.1 mV

200 Hz 27.44±0.09 mV

500 Hz 49.9±0.1 mV

1 kHz <S7.44±0.08 mV

2 kHz 208.89 ±0.02 mV

5 kHz 505.49±0.02 mV

10 kHz 997.33 ±0.03 mV

15 kHz 1.48674 ±0.00003 V

20 kHz 1.97469 ±0.00005 V

25 kHz 2.46907 ±0.00005 V

30 kHz 2.9371 6± 0.00005 V

35 kHz 3.41 41 4 ±0.00007 V

40 kHz 3.89596 ±0.00009 V

45 kHz 4.3 769 ±0.0001 V

50 kHz 4.8569 ±0.0008 V

54 kHz 5.2288±0.0001 V

55 kHz 5.2901 9±0.00006 V

56 kHz 5.2955 ±0.0001 V
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HP3314A
Function

Generator
>

HP6824A
Power

Amplifier
9>

OptJcaJ

Fiber

Interfer-

ometer
>

Fringe

Rate
Demodulator

T>

HP3561A
Dynamic
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Figure 21 Instrumentation used lo measure the scale factor o( the Fringe Rate

Demodulator.

when routed through the HP6S24A Power Amplifier with gain 10. This relationship is

repeated here:

'OUT
'34.29=0.02 —| (186)

No attempt has been made in these two tables to exclude some data from the

averages. A cursory examination of these averages will reveal that the scale factor is

between 105 and 120 mV./rad, and that it declines with increasing frequency as well as

with increasing phase amplitude. As we have already discovered, increases in either of

these quantities cause an increase in the instantaneous frequency of the input to the

LM2917N Frequency-to- Voltage Converter. Thus the scale factor drops off with an

increase in the phase rate, and this suggests that the slew rate limitation at the output

of the LM2917N may be a factor. The slew rate of the LM2917N is not a published

specification, however.

C. BANDWIDTH

The Fringe Rate Demodulator is inherently incapable of demodulating phase

amplitudes of less than tt/2 rad (or ir/3 rad if all three outputs of the interferometer are

used). This makes it impossible to define the bandwidth of the Fringe Rate Demodulator

in the same manner that we shall use when we discuss the Symmetric Analog Demodulat-

or. That is, we cannot speak of a small signal bandwidth: the demodulator does not
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Table VI Measurements to obtain

if=50, 100, and 150 Hz).

the scale factor of the Fringe-Rate Demodulator

f
(V, peak)

Equivalent

Phase

(rad)

Knn
(V. peak)

Scale

Factor

(mV/rad)

Average

Scale

Factor

(mV/rad)

50

1.00 33.7 4.2 125

120

1.50 50.8 6.1 120

2.00 68.0 8.1 119

2.50 85.1 10.1 119

3.00 102 12.1 118

100

1 .00 33.7 4.0 119

118

1.50 50.8 6.0 118

2.00 68.0 8.0 118

2.50 85.1 10.0 118

3.00 102 12.0 117

150

1.00 33.7 4.03 120

117

1.50 50.8 5.96 117

2.00 68.0 7.95 117

2.50 85.1 9.91 117

3.00 102 11.9 116

respond to small signals. However, we can get an idea of the failure of the demodulator

properly to respond at high frequencies if we consider the effect of increases in frequency

on the scale factor, which we discussed in the previous section. If we fix the input phase

amplitude, we can measure the scale factor over a range of frequencies. We find that

eventually it drops to a level which is 1//2 times the size of the scale factor at low

frequencies. This is the frequency which we will define as the upper limit on bandwidth.

Of course, we expect it to he a function of the phase amplitude. The truth o[ the matter
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Table VII Measurements to obtain the scale factor of the Fringe-Rate Demodulator

{/=200, 250, and 300 Hz).

f

(Hz) (V,peak)

Equivalent

Phase

(rad)

1/
' oil

(V. peak)

Scale

Factor

(mV/rad)

Average

Scale

Factor

(mV/rad)

200

1.00 33.7 4.00 119

116

1.50 50.8 5.93 117

2.00 68.0 7.88 116

2.50 85.1 9.85 116

3.00 102 11.5 113

250

1.00 33.7 3.92 1 16

111

1.50 50.8 5.89 116

2.00 68.0 7.86 116

2.50 85.1 9.34 110

3.00 102 10.16 100

300

1.00 33.7 3.90 116

106

1 .50 50.8 5.87 116

2.00 68.0 7.53 111

2.50 85.1 S.52 100

3.00 102 9.09 89

is that it is the phase rate which is limited by various limitations on bandwidth within the

Fringe Rate Demodulator, especially by that of the LM2917N Frequency-to-Voltage

Converter. The frequency at which the scale factor dropped to this level and the scale

factor itself are shown in Table VIII. The product of phase modulation amplitude and

frequency, Af, is constant lo within ±5 r
c, as one would expect from the characteristic

limitation due to phase rale which is associated with this approach. The average value

of 31 krad/s is consistent with the design goal of 25.5 kHz (see Equation (166)) and

within the spread of typical device values for the LM2917N. The fact thai it is greater
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Table VIII These data show the handwidth of the Fringe Rate Demodulator at various

levels of input phase amplitude.

Input

Voltage

(V)

Equivalent

Phase

Amplitude

(rad)

Output

Voltage

V (HI

(V)

Scale

Factor

** FRO

(mV/rad)

Band-

width

(Hz)

Af
(krad/s)

1.00 33.7 3.02 89.61 850 28.6

1 .50 50.8 4.34 85.43 610 30.9

2.00 67.9 5.70 83.95 460 31.2

2.50 85.1 7.20 84.61 360 30.6

3.00 102 8.52 83.53 320 32.6

Average 30.8 ±1.4

than the design-value is not significant since the value depends on the choice of maximum

acceptable distortion. When it is defined as the level giving 4 c
c total harmonic distortion,

the product Af is approximately 21 krad/s. as shown in Table IX.

D. MAXIMUM ACCEPTABLE SIGNAL

In Chapter XI we explain the performance of the Symmetric Analog Demodulator.

There, we consider in detail how one can best assess the maximum phase amplitude that

a demodulator can handle. For now. we shall simply state that our criterion for

acceptability is that the total harmonic distortion induced in a sinusoidal signal be less

than or equal to 4 (
c after demodulation. On an oscilloscope, this level of distortion is

barely perceptible. A series of graphs illustrating this assertion also are presented be

presented in Figure 49 on page 186 in Chapter XI.

The harmonic distortion o( the output of the Fringe Rate Demodulator is affected

by several factors. The choice of an integrating capacitor in the LM2917N is one o[' the

most significant. If it is too big. then the LM2917N cannot respond rapidly enough when

its input frequency is high. Conversely, if the capacitor is too small, then the outputs are

very noisy, and this is manifested in the harmonic distortion. The presence of a sizable
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voltage offset at the output also leads to an abrupt change in the output of the optional

inverter whenever the LL lead/lag signal changes state. This abrupt change is somewhat

softened by the integrator which follows, but it still contributes some distortion. Also,

because the Fringe Rale Demodulator is inherently unable successfully to demodulate

excessively small phase amplitudes, we find that total harmonic distortion becomes very

large for very small signals, too.

In Figure 22 we show a contour plot connecting combinations of input frequency

and phase amplitude which result in equal levels of total harmonic distortion from the

Fringe Rate Demodulator. The same data are plotted in Figure 23 in a surface plot,

viewed in perspective. Both these plots were generated by computer programs which

interpolated between data collected by a computer program operating our experimental

apparatus on an IEEE-49h bus. In Table IX we show the results of interpolation on the

same data to obtain the highest phase amplitude which will not cause the Fringe Rate

Demodulator to exceed 4 f
«r total harmonic distortion. We do this calculation at all of the

observed frequencies where interpolation was possible.

It is worth noting a lew points about the data presented in Figure 22. Figure 23.

and Table IX. The lowest distortion always occurs in the range between 100 Hz and

500 Hz. At both high and low frequencies, distortion goes up. This implies that it is not

merely the phase rate which determines the level o( distortion. If it were, we would

expect the data to depend only on the product/-! of frequency /and phase amplitude A.

which it does not. The peak acceptable phase amplitude is roughly constant from 10 Hz

to 100 Hz. It then begins lo decline roughly in proportion to [A until the frequency

reaches 1000 Hz. At higher frequencies, the distortion always exceeds the <\
c
c level.

We can understand the behavior of the Fringe Rate Demodulator by considering

what happens at the various extremes of input phase amplitude and frequency. When

the product/^ is low. then the frequency applied to the LM2917N Frequency-to-Voltage

Converter is low. Under these conditions, the converter seldom outputs any charge from

its charge pump. When it does, the charge is quickly drained from the integrating

capacitor. The reason for this is that the charge pump only puts charge onto the

capacitor in response to ;i transition o\' its frequency input from low lo high or high to
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Contour Plot of Harmonic Distortion

Fringe Rate Demodulator

100

Frequency [Hz]

1000

Figure 22 Contour plot o\' the total harmonic distortion in the Fringe Rate Demodulator
as a function of frequency and phase amplitude.
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Surface Plot of Harmonic Distortion

Fringe Rate Demodulator
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Figure 23 Perspective view of a surface plot of the total harmonic distortion in the

Fringe Rate Demodulator as a function of frequency and phase amplitude.
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Table IX Interpolation to determine the maximum phase amplitude resulting in Vc total

harmonic distortion from the Fringe Rate Demodulator tor several frequencies.

/
(Hz)

Lower

voltage

(V)

Lower

THD
(%)

Upper
voltage

(V)

Upper

THD
(%)

Interpolated

Voltage

(V)

Equi-

valent

Phase

(rad)

Af
(krad/s)

10 3.5 3.9412 4.0 7.6147 3.508 120 1.2

20 3.5 3.3095 4.0 7.6276 3.580 j
">->

2.4

30 3.5 3.317 4.0 7.4295 3.583 122 3.6

50 3.5 2.7395 4.0 7.2526 3.640 124 6.2

100 3.5 2.2206 4.0 6.7416 3.697 126 12.6

200 Total harmonic remained below 4 cc for all voltages ap :>lied (1 V max.)

300 2.5 3.636 3.0 4.5001 2.711 92 27.6

500 1.0 2.4485 1.5 4.4076 1 .396 47 23.5

750 0.6 2.9334 O.S 4.2590 0.7609 25 18.7

1000 0.6 3.7165 0.8 6.2645 0.6223 20.7 20.7

1500

2000
1 otal h cirmonic u isioruon remaineu ac ovl -+ c ioi an vuuugcs a ppncu.

low. The charge is not added in anything like a continuous manner. Even if the product

jA is high, if/ is low. there will be relatively long periods during which no transitions of

the converter's input occur. These take place whenever the phase amplitude reaches an

extremum. During these periods, the pulsating nature of the converter's output again

becomes evident, with an adverse effect on fidelity. It is little wonder, therefore, that one

cannot simply increase the phase amplitude to compensate for a falling frequency. This

pulsating current does not lend itself to a smoothly varying, distortionless output. A

change in the frequency regime of the LM2917N (that is, a change in the value oi' the

integrating capacitor and its resistive drain) would be required to reduce this effect. Even

though the LM2917N shows a highly linear relationship between input frequency and

output voltage, this is on an averaged basis. On an instantaneous basis, the noise-like
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fluctuations in the current are significant. At high values o\' the product JA. the

LM2917N saturates and distortion is the inevitable consequence. We find that the phase

rate is 22.4 krad/s in the frequency hand from 300 Hz to 1 kHz. based on a criterion of

4% total harmonic distortion.

E. MINIMUM DETECTABLE SIGNAL

For the Fringe Rate Demodulator to function requires transitions of its input from

low to high and from high to low. Absent these transitions, there is no output. As the

product /4/ of amplitude ,4 and frequency f falls, the frequency input to the LM2917N

becomes lower. As discussed in the previous section, this results in a pulsating current

from the output of the LM2917N. The minimum detectable signal is one which just

manages to create one transition, it only infrequently. Of course, faithful reproduction

of this signal requires a much larger product ,4/. But provided that at least one transition

occurs, the presence o( the signal can be detected. Because the programmable logic

generates two transitions for each complete cycle o( the inputs, an output transition is

guaranteed to occur if .4 is greater than tt/2 rad. If this logic were modified to process

all three interferometric outputs, the minimum detectable signal would drop to tt/3 rad.

Note that /does not enter into the determination o( the detectability o( the signal. It

only affects the fidelity of the reconstruction oi' the signal ol' interest.

F. DYNAMIC RANGE

The dynamic range is the ratio between the maximum acceptable signal and the

minimum detectable signal. The latter quantity is tt/2 rad. The former is dependent on

frequency, and was shown in Table IX on page 101. The ratio o( these two as a function

of frequency is tabulated in Table X.

By comparing the tabulated values of dynamic range to the maximum dynamic

range of the LM2917N which is at the core oi the Fringe Rate Demodulator, given in

Table V, we can see that the demodulator fails to achieve this maximum. Why is this?

105



Table X Dynamic range ^[ the Fringe Rate Demodulator.

/

Maximum
Acceptable

Signal

Minimum
Detectable

Signal

Dynamic Range

As a Fraction In dB

10 Hz 1 20 rad

n/2

76.4 37.7

20 Hz 122 rad 77.7 37.8

30 Hz 1 22 rad 77.7 37.8

50 Hz 1 24 rad 70.9 38.0

100 Hz 1 26 rad 80.2 38.1

200 Hz
4 c

'c Total Harmonic Distortion was never reached, so maximum
acceptable signal was undetermined.

300 Hz 92 rad

77/2

58.6 35.4

500 Hz 47 rad 29.9 29.5

750 Hz 25 rad 15.9 24.0

1000 Hz 20.7 rad 1 3.2 22.4

1500 Hz Total harmonic distortion remained above 4 (
"c so maximum accept-

2000 Hz able signal was iindetermined.

It is because we used averaging oi' the pulsating output of the LM2917N in measuring its

dynamic range, but we relied on a criterion of 4 c c total harmonic distortion in

determining the maximum acceptable signal. It is not surprising, then, that the LM2917N

appears to have a different dynamic range, since we assessed its performance in a

different way. In Table VIII we found that the average phase rate was 30.8 krad/s; we

would infer a peak amplitude of (30.8 krad/s)/(100 Hz) = 308 rad when the frequency

/=100 Hz. Using the criterion on which that table was based, the maximum dynamic-

range would be computed as (308 rad)/(7r/2 rad)=46 dB.

An investigation into ways to reduce the total harmonic distortion from the Fringe

Rate Demodulator should be undertaken to stretch its dynamic range. An examination
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of different frequency-to-voltage converters or designs lor converters built from discrete

components may permit the dynamic range o( the converter lo be raised, too.

G. COMPLEXITY

The Fringe Rate Demodulator is easily the least complicated o[' the three

demodulators evaluated in this dissertation. Apart from the receiver section, which each

of the three schemes have in common, there are only seven integrated circuits in all.

although the Altera EP310 Erasable Programmable Logic Device (EPLD) is admittedly

a complicated one. However, the logic contained in it is quite simple.

H. APPROXIMATE COST

In Table XI we show the cost of the Fringe Rate Demodulator. In our implemen-

tation of the Fringe Rale Demodulator, we used an LF356 Operational Amplifier as the

optional inverter and we used one ol the four operational amplifiers within an LF444

Quad Operational Amplifier lo perform the integration function. The only reason we did

not use the LF444 lor both functions is because we were using it lor something else in

another circuit. If one examines the receiver section (see Chapter IX). one discovers that

the summing amplifier used in the receiver to remove D (the fixed offset oi the

interferometric output from V) is one of the two operational amplifiers within an

Analog Devices AD712. The LF444 could provide all three oi the operational amplifiers

needed in the Fringe Rate Demodulator, saving $4.56. or roughly 5
c
c o\ the cost.

The EP310 and the three low-noise receiver amplifiers (OPA-111) together

comprise around 80% o( the whole cost o( the demodulator. Therefore, finding less

costly replacements is an attractive idea, since a low-noise receiver is not required to

generate the requisite square waves. If we used combinational logic gales, two LF444

quad operational amplifiers, and a quad comparator would reduce the cost Lo less than

$30.00.
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Table XI Calculation of the cost

Demodulator.

o[ the integrated circuits used in the Fringe Rate

Part ID Description
Quantity

Required
Price

Source

of

Price

Total

Cost of

Part

EP310
Eraseable Pro-

grammable Logic

Device (EPLD)
1 $44.70

Altera

Corporation
$44.70

LM2917N
Frequency-to-

Voltage

Converter

1 $1.95
Digi-Key

Corporation
$1.95

LF13333
Quad SPST JFET
Analog Switch

1 $8.30
Marvac

Electronics
$8.30

LM311
(similar

to LF311)

Voltage

Comparator
j $0.32

Mouser

Electronics
0.64

LF356

Monolithic JFET
Input Operational

Amplifier

1 $0.96
Digi-Key

Corporation
$0.96

OPA-111
Low-noise Op
Amp

3 $11.80 Burr-Brown $35.40

AD712
General Purpose

Op Amp
>

$3.60
Analog

Devices
$7.20

LF444

Quad Low Power

JFET Input

Operational

Amplifier

1 $1.65
Digi-Key

Corporation
$1.65

TOTAL 15 $100.80
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I. SUMMARY

In this chapter we have seen that the Fringe-Rate Demodulator is inexpensive, and

is appropriate for sensors which generate large amounts of optical phase shift (more than

77/2 rad in amplitude). We saw areas in which the performance might be improved. The

inability of this sensor to handle signals below rr/2 radians without gross distortion

remains a serious drawback in some applications, however. In the next two chapters, we

consider two other demodulation schemes that do not share this limitation.
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VII. ASYMMETRIC DEMODULATION

In this chapter wo describe a method of passive homodyne demodulation presented

by Koo et al. [Ret". 16]. Koo's method requires the sine and the cosine of the

signal of interest. These are obtainable from the output of an interferometer which uses

a 3x3 coupler at its output, the kind in which we are interested. However, as is clear

from Equation (5) on page (5). which is

2 3

(187)

the outputs of this coupler are not the sine and the cosine: they are three cosines

separated not by 90° but by 120°. We shall ignore the "static" phase shift d> (or.

equivalently, consider it to be absorbed into the signal o\' interest. (.)

A. OBTAINING HIE SINE OF THE SIGNAL OF INTEREST

To obtain the sine and cosine one could pick two oi~ the three outputs arbitrarily,

say outputs 1 and 2, and manipulate them as follows.

x. = D+£cos<<f). (188)

x
2

= D+£cos
>-A

(189)

- D--cos(0+£-^sin(£).
2 2

We first subtract D from each term. How to compute D is not made clear by Koo. but

we present a method in Chapter VIII.
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Let

>•, = xrD = £cos(0. (190 >

Subtracting D from x2 removes the constant offset from zero:

x,-D = --cos(<f)+£— sin(£)- < 191 >

2 2

If we add twice this quantity to the expression given by v
;

, we obtain

(xrD)+2(x
2
-D) = Ey/3sm(£)- < 192 )

By suitable rescaling. we can obtain the sine o( the signal of interest. Let

(xrD)+2(x
2
-D)

?2

V^

= Esin({). (193)

We call this method of demodulation asymmetric because before the demodulation

process can begin, we must lake one output o( the interferometer more or less as is.

perform algebra on this and another output to gel the sine, and totally disregard ihe

third. In Chapter VIII we develop a new technique of passive homodyne demodulation

which uses all three outputs in a similar manner, a symmetric manner, whence the name

of both the chapter and the method.

B. THE ALGORITHM

In the asymmetric method oi' demodulation given by Koo, we first lake the

derivative of the sine and cosine.

y,-^ - -Ez*m). < 194)

dt

We multiply V; by the derivative o[' \\ and we multiply v, by the derivative o( y,.
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y2
= *1 - Efcosif). (195)

2
dt

y xy2
= E2fros\a (196 >

y2y,
= -£2&n2

(0. d97 )

(198)
y^2-3^i

= £2
<f[cos

2
(<f)+sin

2
(0]

-EH.

We can integrate the result to get

- E2 (**dt d»)

= £2f

This method produces a result which depends on the square o[' the number E. This

number depends on the performance of the interferometer, reflecting the contrast

between bright and dark fringes. It is desirable to eliminate this multiple. Again. Koo's

paper does not address this detail o{ implementation: in fact, in his models. E and D both

are tacitly treated as being 1. In Chapter VIII. we present a method for measuring E,

too, which permits its removal from the result.

In discussing Koo's method. Giallorenzi points out that

All real four quadrant analog [sic] multipliers have inaccuracies which will corrupt

the detected signal and limit the minimum detectable signal S(t). [Ref. 5. p. 658]

This is an egregious matter if large dynamic range is required but, at the same time, the

peak phase shift which can be demodulated is on the order of 1 radian or so. When the

peak rises to the level o\ thousands of radians, this becomes less problematic, for the

lowest phase shifts which need to be demodulated are now higher, and so a higher noise

floor can be tolerated.
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C. SUMMARY

Recall that an interferometer terminated by a 3x3 coupler provides signals which

are 120° out of phase from each other. The asymmetric demodulation algorithm

described in this chapter requires two signals which are 90° out of phase from each

other. To use this method oi' demodulation, we use one of the three outputs as is.

regarding it as the cosine of the signal of interest. We must obtain the sine of the signal

of interest in the manner described in this chapter. Obtaining the inverse sine or inverse

cosine is ambiguous: with both the sine and the cosine available, the ambiguity vanishes.

The ability to track the phase angle through more than just the four basic quadrants

(-180° to +180°) is implicitly handled by the integration step.

Perhaps the least appealing feature of this algorithm is its asymmetry, that is. the

discarding of a perfectly good output, and the different processing oi' the two remaining

outputs. This objection is not a purely aesthetic one. for intuitively we suspect that a

higher ratio of signal to noise could be achieved if no outputs were thrown away.

However, there is another important drawback to the asymmetric demodulation

algorithm: the output depends on the quantity E, which itself depends on the power in

the output of the interferometer. This is a highly undesirable state o( affairs because E

varies, and we do not want the output of the demodulator to vary with it. In the next

chapter, we develop a new method of passive homodyne demodulation which addresses

both these deficiencies. We shall return to the asymmetric method oi demodulation later

when we describe a digital electronic implementation o( it.
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VIII. SYMMETRIC DEMODULATION

In Chapter VII we described the method of asymmetric demodulation, also called

sine-cosine demodulation, which was presented by Koo el al. [Rcf. 16). In this chapter,

we present a new method which uses all three outputs of the optical interferometer in

a symmetric manner.
1 ' Figure 24 is a block diagram showing how symmetric demodula-

tion is accomplished. The rest o\' this chapter is devoted to showing that this diagram

correctly illustrates how to recover the signal <f(/) from the interferometric outputs.

A. THE INTERFEROMETRIC OUTPUTS WITH AND WITHOUT DISTORTION

From Equation (5) in Chapter III. we have

a
k
(L) I

2

x
k

= J L = D + £cos <f(0 + <Kt) ~ (k-l)-Ti (200)

This gives the power from output k o[' the 3x3 coupler which terminates the optical fiber

interferometric sensor, where k can be 1. 2. or 3. For the moment, we shall neglect the

"static" phase shift <b(t). regarding it as part o[ the signal oi' interest <f(/). for example.

The form of the three equations was given graphically in Figure 7 of Chapter III. which

we repeat here in Figure 25. To make this plot, we used a sinusoidal stimulus

^{t) = Asin((ot) = 5 7rsin(27r/f). (201)

All three interferometric outputs look similar, but they are shifted by 120° from each

other. In the plot, the three outputs also are separated from each other vertically so that

they can be seen individually, and the sinusoidal stimulus is superimposed on the plot (to

a different scale) so that the relationship between the stimulus and the interferometric

12 The author is indebted to Dr. Robert Keolian and Dr. Steven Garrett for

discussions which led to the idea described in this chapter.
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Figure 25 Simulation o( an interferometric output with a peak phase amplitude of 5~

radians.

outputs can be readily seen.

The simulated waveforms oi' Figure 25 are free of distortion. However, these

images were drawn by computer on a video screen with only moderate resolution (dots

per unit length), and so staircase-like jagged edges can be discerned in the curves.

In Figure 26, the upper traces show undistorted outputs o( the interferometer we

described in Chapter IV when stimulated by a sinusoidal waveform inducing an optical

phase shift of tt radians. The lower traces show distortion which we believe was due to

reflections back into the laser, causing it to operate in an unstable manner. We were

able to eliminate the distortion easiiy by adjusting the current through the laser.

However, we believe that long-term stability will require either a temperature controller

on the laser to prevent mode-hopping from occurring, or a optical fiber isolator to
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Figure 26 Interferometric outputs for A=— rad. Upper traces: no distortion. Lower
traces: distortion present. Lett side: amplitude v. time. Right side: Lissajous figure.

prevent reflections by rotating their polarization. The left-hand side of the figure shows

two of the three intert'erometric outputs plotted vertically against lime on the lower axis.

The right-hand side of the figure shows one of these outputs plotted against another to

yield a Lissajous figure. Because we chose a phase-amplitude of — radians, the elliptical

shape is just closed. With smaller phase amplitudes, the figure is not closed; with larger

phase amplitudes, it remains closed and retraces the same path repeatedly.
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B. MEASURING THE PHASE ANGLE BETWEEN INTERFEROMETRIC OUTPUTS

Before going on Lo explain how to recover the signal oi interest, we shall digress

at this point to explain a technique of measuring the actual phase difference between two

outputs of the interferometer, using the Lissajous figure. At present. 3x3 optical fiber

couplers are made by monitoring the ratio of power in each of the three outputs during

fabrication to ensure the desired amount of power in each. This method is entirely

suitable in the communications industry, but for interferometric applications, it would be

preferable to monitor the phase difference between adjacent outputs and adjust it to be

120°.

In our technique oi measuring the actual phase difference, we use a digital

oscilloscope such as the Tektronix TEK2430. The plots in Figure 26 were displayed on

and printed by a TEK.2430. This oscilloscope has the useful feature of permitting

measurements of the Lissajous figure's dimensions on the screen. Two separate

measurements of the Lissajous figure permit us to compute the phase angle between any

two interferometric outputs. We can show this by first considering the two waveforms.

For generality, we need not assume that both waveforms have equal amplitudes, and so

they take on the form

u
x
(t) = £,cos(£(r)) and u

2
(t) = £

2
cos(£(r)~tf>). (202)

In these equations, the amplitudes are E, and E: . £(t) is the signal o[' interest, and 4> is

the phase angle between the two outputs. We first measure u,{i) at some time /„ when

«_,(/) = 0. We can readily solve for the phase angle of u,{i) at this instant:

£(t) = ±cos

*i J

+n2n
,

(203)

where n is an arbitrary integer. Knowing that w,(/)=0 and that its phase must contain

the same phase component <f(/). we can find the phase difference fr.
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<p
--

It

n

n

-mn

mn-^{t) (204)

— +mn-n2n+cos
2

( u,\

V 1/

where m, like n, is an arbitrary integer.

Thus we only require two measurements to obtain the phase angle <b. We need the

peak amplitude E, o[' the signal u,(i) and we need its amplitude at a time when the

second signal u2(t)
is zero. From their ratio and simple trigonometry, the phase angle can

be obtained.

The oscilloscope we used makes it very easy to measure E,. Actually, it is easier

to measure IE,, which is the greatest width of the elliptical Lissajous figure. We then

measure the amplitude of the same signal along the axis where the second signal is zero.

Actually, it is easier to measure the entire breadth of the Lissajous figure along this axis.

which gives 2a,{t) at time i=i„. The ratio (2u,{t ))/{2E,) is. o( course, the same as

u,{t )/Ej.

As an example o[ how to use this technique, we measured IE =93.2 mV and

2w
;
(f

())
= 74.0 mV. For these values, the phase difference is

4> = 90° +COS"
1

(2uA

2E
- 127

c (205)

Notice that we have neglected the arbitrary integers m and // in this expression. This

calculation give a phase difference which is 7° away from the 120° which we would have

preferred the couplers to deliver. On the other hand, this difference is good empirical

evidence for the robustness o\' the technique which we shall now describe, for we still

managed to recover signals with excellent fidelity from this imperfect 3x3 coupler.
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C. RECOVERING THE SIGNAL OF INTEREST

Our first goal in the processing of the three interferometric output signals is to

eliminate the constant D from the three outputs by subtraction. An easy way to compute

D in a circuit is to add up all three signals and divide by 3. A typical implementation of

an adder has some gain factor k, associated with it. We will arrange matters so that

/c
;
=-l/3. If we add up the three signals, we get

s
i

- *i£*, = k£lp+Eco^-(k-l)±n
1=1

(206)

= 3k
l
D+k

l
E^2 cos

/=i 3
J

On page 255 in Appendix A we prove the theorem given there as Equation (342), which

is

N-l j\e-k
lit\ jV-1

»!^U-l|).^
*=0

1

e-k—\
N

(207)

The real part of this expression can only be zero if

AM /

y ccJo-fc— = o.
(208)

This is geometrically obvious since vectors comprising the sides o[' an equilateral, regular

polygon must sum to zero because the polygon is closed. Applying this to Equation (206),

we see that

S
1

- 3^D - D. (209)

Because we have a way of computing D (or, rather, its negative), we can subtract

it from the interferometric outputs. This is akin to removing a constant offset from a

signal by the use of lowpass filtering, except that using such a filter would preclude the

correct processing of low frequency components in the signal o[' interest. What is worse,

however, is that signals o\ interest with very small amplitude produce signals x
k
which do
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not vary much. This does not mean that they are always close to D. however: it only

2
means that cos £-(k-l)-n

3
is nearly constant. However, this constant multiplies E to

produce different levels of signal in each of the three signal paths. Putting these signals

through lowpass fillers merely changes the constant offset, rather than eliminating it

totally.

In Figure 24. three adders are used to perform the subtraction. Let their outputs

be called xlh x
:! , and v,,. Because these adders have some gain. k

A
. we have

x., - k. £cos Z-(k-l)±n (210)

The next step is to differentiate each o( the.v
A ,. The differentiators, too. have their

own gain. kD . The outputs o\' the three differentiators are

x
k2

= kDx ki
= -k Â E{smt;-(k-l)-7:\. 211)

The three derivatives are simulated in the plots oi Figure 27 for the same case as

in Figure 25. Again, the sinusoidal stimulus is shown for reference, although still not to

the same vertical scale as the derivatives. In the plots, we have dropped the second

subscript, as if D were zero in xk .

In the last chapter we described asymmetric demodulation and we went to some

trouble to obtain the sine and cosine o[~ the signal of interest from a set o( three

interferometric outputs, each 120° out of phase from the other. From the sine and

cosine we obtained the derivative o[' each. It was an easy matter to cross-multiply,

subtract, and integrate the result to obtain a scaled replica of the signal o[' interest. How

can we extend this idea so that all three signals might be used? In discussions with the

author, Dr. Robert Keolian had the insight to apply phasor techniques to this problem.

Now phasors are a tool which only apply to linear systems: processing which entails

multiplication is non-linear. One can add two phasors together and get another phasor.

One cannot multiply two phasors together at all. When two sinusoids are multiplied
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7igure 27 Simulations of the derivatives of the three interferometric outputs.

together, the result consists o[' the sum of two sinusoids. One o( these has a frequency

which is the sum of the input frequencies: the other has a frequency which is the

difference between the input frequencies. If the two inputs have the same frequency,

which is the case for two signals represented by two phasors, their product contains a

term at twice the input frequency and a constant term. In what follows, we shall ignore

the constant term and focus our attention on the sinusoidal term at twice the input

frequency. The output at twice the input frequency could be represented as a phasor,

too, but it would normally not be shown on the same phasor diagram because of the fact

that its frequency is different.

We shall take the liberty of breaking the rule that phasors at different frequencies

never be discussed in the same sentence or drawn on the same diagram. However, the
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"phasor" representing the output signal at twice the frequency of the input signals is not

a phasor in the conventional sense. Although in the figures which follow we show this

output signal as an arrow in the complex plane, superimposed on a phasor diagram, the

reader must be mindful that its frequency is different from that of the phasors in the

diagram and the phase relationships between the various phasors and the output

"phasor" are not constant. We shall be careful to use quotation marks around the word

phasor whenever this output signal is being referred to. If the reader rebels at the heresy

of using phasor techniques in non-linear signal processing, he may be somewhat mollified

to know that without this highly unorthodox approach we would never have discovered

the algorithm which we explain in this chapter.

In Figure 28 we show the phasor approach applied to asymmetric demodulation.

The small, black arrows show the two signals, sine and cosine, that the asymmetric

method uses. The cosine leads the sine, so it is the arrow labelled jE; the sine is labelled

E. The derivatives are the intermediate-sized arrows with white interiors. The derivative

of the E phasor is the jcjE phasor; the derivative o[' the jE phasor is the - a>E phasor.

The large, diagonally-striped arrows shows the cross-product "phasors" which the

asymmetric method produces. Both cross-products are the same. The product of £ and

the derivative oijE is -<y£*. The product of/£ and the derivative o( E also is equal to

— (oE~

At this point, the phasor approach collapses, for according to the asymmetric

demodulation technique, the difference between these two cross-products is the derivative

of the signal of interest. But the difference between these two "phasors" is zero: only

their sum would yield a non-zero, real result. This problem evaporates if we stick to a

trigonometric description o\ the signal processing; it only occurs because we have used

the wrong tool, the phasor tool. Yet the geometric interpretation provided by the phasor

methods made the discovery of the method a reality. Dr. Keolian's insight was to apply

the method to the symmetric demodulation idea despite the obvious error in doing so.

Figure 29 uses phasors to depict the idea behind symmetric demodulation. As was

the case in Figure 28 where we used phasors to explain asymmetric demodulation, the

small, black arrows represent the outputs o( the interferometer, but now there are three.
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Figure 28 Phasor diagram depicting the operation of the asymmetric demodulation

technique.

each separated by 120° from the other. (We use the notation Mzd to denote the

complex number of magnitude M and phase angle 9.) The derivatives of these three

signals are shown in the intermediate-sized, white arrows. In dotted outlines, we show

the negatives of these three derivatives, too. Note how the derivative of one signal and

the negative of the derivative of a second signal bracket the third signal in a symmetric

manner. By taking the difference of the two derivatives, a phasor parallel to the third

signal is formed.

In asymmetric demodulation, the effect of cross-multiplication of signals and

derivatives was to create product "phasors" along the real axis. In symmetric

demodulation, the product "phasors" line up along the 0°, 120°. and -120° axes, but

because they contain E2
. their sum is not zero, as it would be if phasor addition of

multiplied phasors were strictly correct, but the real constant 1.5. In fact, in general, one

can divide 360° evenly into N pieces and add the squares of either the sines or the

cosines to arrive at a total of N/2. Formally, we have the theorem
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rigure 29 Phasor diagram depicting the operation oi the symmetric demodulation

technique.

n-\ , .. , am

y cos2 <t>

+

& {

0/ t &2* \ N
2

= V sin
2

(b +

h { n )

(212)

from Equation (344) in Appendix A. where we also provide a proof.

Now that we have arrived through graphical ideas at the basic method of combining

derivatives and signals in the method of symmetric demodulation, we can show in

mathematical terms what is going on.

We start by combining signal xn with the derivatives of a\, and ,r„.

Vii^r^i) = *A£cos^
-*A££ sinK"f *

+k£A EiwU+-n

This simplifies to

(213)
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*l#*U<*21-*3l)
= *W^,^2

^COS(<f) -sinj<f-— n\ + siW<f+— n (214)

We can apply to this the trigonometric identity

sin(i4+B)-sin(i4-B) = 2cosG4)sin(£) (215)

to obtain

Vn^2i _i
3i)

= kjcl kDE
2
?cos(£)

(2
2cos(<f)siiJ — n

= j3kJ%kDP
2 (cos

l

({).

Next we combine signal v with the derivatives of x
3l

and x,

(216)

kifril**r*id
''- k^Eco&\^-^ 7t

k
IJtA EZsxrU+-n

+kDkA EZsin(()

(217)

This simplifies to

2 U . („ 2
kMx2l

(xM -xu ) = *M***^
2 /cosl£--;r

|

-sinf

4"+-^J
+ sin(fl (218)

If we rewrite this as

2 . r*l
kMx21(x31 -xn )

-- kMk~A kDE-{cos\{--n

7

f-|-sin!

+sinj j£-~7r

2 \
•— 7r

3

2

3

2+— 7r

3

(219)

then we can apply the same trigonometric identity to get
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kMx2l
(xn -xn ) - kM kj

i
kDE

2 Zco!l{--n) 2cos[f-^jsin
/? V

n

'- fikji
x

kiF
2
Z c<x?\S-^ n

(220)

Finally we combine signal v
v/
with the derivatives oix

ll
and x

:i

kMx3l
(xn -x2l) - kMkA EtcctU+-it)

k^i
A Efsin(£)

+k£
A EZs\^Z--n\

This simplifies to

kMXil&U.-*ld
= kMkXkD

El ^ COS\^^ 7Z -sini^) - sin
/ o ^

'Vj

If we rewrite this as

(221)

1222]

kMX-iM\\ X
2

2 \Vi^/H^^,
sin

+sin|

2 2 \

E +— TV Tt

3 3

r 2 2

3 3

then we can once again apply the same trigonometric identity to get

^i^h _i
2i)

= V^
1
V lfcosK +

3
7r 2C°1 *~3 n

) [I*

= v
/3^

1
^^cos

p
+

3
7r

(223)

(224)

Visualizing a plot corresponding to the manipulations which have been described

here without using a computer is no easy feat. In fact, a plot of the difference between

two derivatives is very similar to the plots of the derivatives themselves. Figure 30 shows

a simulation of these differences in the derivatives for the case A=5tt.
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rigure 30 Simulations of the differences between the three possible pairings of

derivatives of the interferometric outputs. The stimulus has amplitude A=5ir radians.

When we sum the three expressions of Equations (216). (220), and (224), using the

gain constant k. , we obtain

V%
3*XW COS2 (<f) +COS

2
[ <f"-7T +COS2 <f+— TZ

-
Â kMklkDE^.

(225)

We have applied Equation (212) here.

The three plots in Figure 31 arc simulations of the three formulas of Equa-

tion (225). Once again, we include the sinusoidal stimulus in order to make clear the

relation of the complicated expressions o^ Equation (225) to the stimulus. Note that the
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envelope of the three signals is itself now sinusoidal. How 60 we extract just the

envelope?

If we wanted to, we could simply integrate the expressions in Equation (225) and

get a fair replica of the original signal of interest, <f(/). However, there is a factor o!\' E2

in the expressions, which implies that the derivatives still depend on the contrast between

the dark and light extrema o[' the interference pattern. Since this is a number which

wanders due to changes in laser intensity (which itself depends on the temperature) and

due to changes in the polarization angle of the light within the optical fiber interferomet-

ric sensor, it would be useful to eliminate this factor.

We can do this by squaring each o( the signals xk} and adding them up. The

squaring operation can be performed with another multiplier of gain kM and the addition

can be performed with another adder of gain k
A

. That is

^eUv^-^-^I*]}
2

~- fw^ 2
-

(226)

We have again applied Equation (212) in computing the sum.

In Figure 32 we illustrate the result of the summation for the example we have

been using throughout this chapter in which the amplitude oi the stimulus is A=5—

radians. It should be clear from the figure that the sum o[~ products is indeed

proportional to the derivative oi the sinusoid displayed with it. In the figure, the

amplitudes of each waveform have been scaled for convenience, and so they are not

labelled.

Both Equations (225) and (226) include the factor E2
. We can eliminate this factor

by dividing Equation (226) into Equation (225). Any practical divider has a gain which

we shall call kd
(not to be confused with kn . the gain of the differentiators discussed

above). Division yields
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rigure 31 Plots of the products of one signal with the difference between the derivatives

of the other two signals.

-fikMkA klkDE
2 nk k k

2 a? M *l

z =
V JKA*D K

d
(227)

We can integrate this with an integrator of gain k, to get

-$dt =

\ k
I

A,

(228)

Obtaining this expression has been the goal of this entire chapter. By the

processing algorithm developed here, we have the ability to recover a scalar multiple of
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Figure 32 The result of adding up the three products of signals with differences of

derivatives. Superimposed on it is the original stimulus of amplitude A =5tt radians.

the signal of interest. <(/). It is important to recognize that neither D nor E appear in

this final expression. This means that the scale factor of the demodulator is independent

of the average power in the laser, and it is also independent of the fringe depth.

The scalar multiple consists of factors which we can control in implementing the

algorithm. They include the gains oi' two adders, the gain of three identical differen-

tiators, and the gain of the final integrator. These factors can be chosen within certain

constraints to provide £(t) scaled to whatever level is desired. In an analog implementa-

tion of this scheme, clipping of signals constrains the selection of these parameters at the

high-frequency limit, and the noise o( the circuit constrains their selection at the low-

frequency limit.
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In the next chapter, we describe our implementation o( this algorithm with analog

electronics. In Chapter XI. we measure the performance of this implementation.
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IX. DESIGN OF A SYMMETRIC ANALOG DEMODULATOR

In the last chapter we analyzed a new method of passive homodyne demodulation

which we call symmetric demodulation, due to the fact that all three outputs ol the

optical fiber interferometric sensor are processed in the same (symmetric) manner. In

this chapter we apply the analysis to the implementation of the technique in analog

electronics.

Figure 33 is a schematic drawing of the circuit. The three inputs are shown at the

left-hand side where three photodiodes convert the interferometric outputs into current

signals. These currents are converted to voltage signals by three transimpedance

amplifiers built around operational amplifiers Ul. U2. and U3. The summation of the

'hree voltage signals to compute D in Equation (200) in Chapter VIII is performed by the

inverting scaling adders built around operational amplifier U4A. This sum is subtracted

from the outputs of the transimpedance amplifiers by operational amplifiers U5A. U6A,

and U7A.

The outputs o[ U5A. U6A. and U7A are described by Equation (210) in

Chapter VIII. Their derivatives are computed in the differentiators built around

operational amplifiers U5B. U6B. and U7B. The Analog Devices AD534 Multipliers

I'll, U12, and U13 have differential inputs. We apply one signal and a ground to one

differential input in each. To the other, we apply the derivatives o[ the other two signals

according to Equations (216), (220), and (224) in Chapter VIII. Each signal is multiplied

internally by the difference between the two derivatives of the other two signals. These

Lhree outputs are added in the inverting scaling adder built around operational amplifier

U14A to yield the result modelled in Equation (225) in Chapter VIII. In order to remove

the factor of E2
in that result, another expression with E" in it is computed by the

inverting adder built around operational amplifier U4B. which gets its own input from

three more AD534 Multipliers. U8, U9, and UK). These multipliers are configured to

square their inputs, which are the interferometric outputs stripped o( D. The sum o[~
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figure 33 Schematic diagram of an implementation of the symmetric analog

demodulation technique in analog electronics. Power-supply bypass capacitors are

omitted in this diagram.
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these squares is of the form given in Equation (226) of Chapter VIII. The Burr-Brown

DIV100 Divider U 15 lakes the ratio of the output of UNA and that of U4B. This result

is proportional to the derivative of the signal of interest, but without dependence on D

or E, as shown in Equation (227) in Chapter VIII. The final step in the circuit is to

reconstruct from this the signal of interest as shown in Equation (228) of Chapter VIII.

The integration is performed by the integrator built around operational amplifier U14B.

We now turn to a detailed discussion of each of the several stages in the Symmetric

Analog Demodulator.

A. THE RECEIVERS

The receivers comprise the three pholodetectors CR1. CR2. and CR3 together with

the three transimpedance amplifiers built around operational amplifiers Ul, U2. and U3.

These three amplifiers are Burr-Brown OPAllls. They feature very low bias currents

of, at most, 2 pA. which contribute only 130 nV to the output offset voltage when passed

:hrough the 64.9 kH feedback resistors Rl. R2. and R3. I? The input voltage offset is

less than 500 jjW. This offset voltage appears with gain 1 at the output o[' the

transimpedance amplifier. The maximum drift in input offset current is 5 /jV/K: over

50 K of temperature drift, this amounts to no more than a 250 y\;

drift in the 500 juV

figure previously mentioned for a total of no more than 750 juV. Although this amount

is far larger than thai due to ihe bias current, it is nonetheless very small. The unity gain

bandwidth of the OPA1 1 1 is 2 MHz.

The OPA111 also provides very low voltage noise, no more than 40 nV /Hz at a

frequency of 100 Hz. and typically only 15 nV'/Hz. Since this is the input stage o( the

entire circuit, we wish to minimize the contribution of the receiver to the overall noise.

so the OPA111 makes a uood choice.

13 As is the case in nearly all the work described in this dissertation, we used resistors

with 1% tolerance. This was largely for convenience, because they were available. In

many cases, resistors of lower tolerance could have been used. The main exceptions to

this statement are the active sub-circuits such as integrators and differentiators.

1 35



When the laser's monitor current was 58.2 fu.4 (indicating that the laser diode was

emitting 7.1 mW optical power), the three photodiodes produced measured voltages

Z)=26.3 mV, 25.9 mV. and 29.0 mV across transimpedance amplifiers with 500 H in the

feedback path. The fluctuation in these voltages was E = 9 mV. 10 mV. and 10 mV. We

increased the resistances to 64.9 kfl in order to raise the peak voltages to around 5 V

under these conditions. The value 5 V was about half-way through the range in which

we desired to work. -10 V to +10 V. This allowed room for fluctuations of the laser

power to higher levels without saturating the transimpedance amplifiers. These changes

altered the voltages from the transimpedance amplifiers to

D « (150 uW)[370 —1(64.9 kQ)
(229)

= 3.6 V.

and

E = (55 |iW)[370 —1(64.9 kQ)
(230)

= 1.3 V.

In the laboratory-, we used fairly lengthy (
= 1 m long) coaxial leads to transmit the

currents from the photodiodes to the transimpedance amplifiers. The capacitance

presented by these leads was sufficient to act as a differentiator o\' the interferometric

signals, enhancing their high frequencies. We compensated for this empirically by placing

10 pF capacitors Cl, C2. and C3 across the feedback. We believe these could be reduced

or eliminated if more attention were paid to lead capacitances by placing the photodiodes

in close proximity to the amplifiers.

The choice o\~ operational amplifiers throughout the rest of the circuit was not as

critical. We selected Analog Devices AD712 dual precision operational amplifiers. These

have a higher unity-gain bandwidth than the OPA1 1 Is, 4 MHz. Their voltage noise is

typically 45 nV//Hz at 100 Hz. higher than the typical value o[ 15 nV /Hz for the
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OPA111, but still respectably small. Their input offset voltage is at most 3 mV. Their

input bias current has a maximum of 75 pA. These are good, general-purpose

operational amplifiers.

In Chapter VIII. Equation (209) implied that the averaging circuit implemented

around operational amplifier U4A needs to have gain k,= - 1/3. We can achieve this by

picking 102 kH input resistors R4. R5. and R6 and a 34.0 kH feedback resistor R7. The

design of summing amplifiers is explained in numerous books on operational amplifiers

(for example, see Sedra and Smith |Rel. 17]) and so will not be further discussed

here, except to say that we also added a 1 pF feedback capacitor CIS in parallel with the

34.0 kH resistor R7 to eliminate the ripple in the output. The ripple was due to the fact

that although each interferometric output is assumed to have equal central values D and

peak deviations E from this value: in fact ihese values are not all equal to one another.

Furthermore, the phase differences between different legs are not exactly 120°. As a

result, the sum is not a constant. The capacitor masks the variation in the result.

Although it only produces an approximation of the theoretical constant D. we found that

the amount of constant offset left after the subsequent addition stage in U5A. U6A. and

U7A was not so severe as to render the technique of symmetric demodulation useless.

The summing circuits U5A, U6A. and U7A are designed to provide the summing

gain kA of Equation (210) in Chapter VIII. Again we want to let these amplifiers have

peak outputs o[ 5 V to permit fluctuations in laser power without causing saturation o(

the amplifiers. Since these summers remove D from the signal, the amplitudes coming

out oi them is dependent on E and the gain of the summers. From Equation (230) we

know that £=1.3 V. So we should pick the gain to be

kA = J-Z- = 3.8. (231)
M|

1.3 V

We can achieve roughly this level of gain (precision is not important here because the

signal levels are so highly variable) by selecting 13.7 kO input resistors and 51.1 kfl

feedback resistors. For this choice, we actually achieve
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=
511 kO

= 3 ?3 (232)
*' 13.7 kQ

The next step in the demodulation technique is to differentiate the outputs o[' the

summing amplifiers U5A. U6A, and U7A. Operational amplifiers U5B. U6B, and U7B

are configured to do this. Figure 70 in Appendix A shows a generalized circuit to

perform differentiation. We present a detailed analysis of the circuit in that appendix.

The key results are given in Equations (399), (405), and (407). The first of these

equations gives the transfer function G(f) of the differentiating circuit if the two pole

frequencies are equal to one another and if the operating frequency is well below this.

G(f) = ^!L - -Rf.jlnf - kD .
(233)

'in

The second of these equations gives the relative error in the magnitude o( the gain, which

depends on how far away from the pole frequency f we elect to operate.

1

eM
(f\

2 (234)

{/)

The third of these equations gives the error in the phase o[' the gain, which, likewise,

depends on how far away from the pole frequency we elect to operate.

ep
= -2tan 'r

vp!

(235)

We designed the circuit to handle peak phase shifts o[ 100 radians when the signal of

interest had a frequency o[ 200 Hz. The time for the signal o( interest to change from

zero to its peak amplitude is a quarter of a cycle, or ~/2 radians. So if the peak phase

shift is A, there are
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2

(236)

cycles of the interferometric output in a quarter cycle of the signal of interest. The

period of a cycle is T, so ;i rough approximation of the peak frequency present in the

signal of interest is

I 2

24/"

n (237)

Thus we expect frequencies up to

2(100 rad)(200 Hz)
= ^ ? ^ (238)

TT

We can use this value, along with our desire to keep the phase error less than 2° at this

peak frequency, to choose the pole frequency.

e p = -2tan

V < 2tan

Jp

12.7 kHz

/.

(239)

From this, we conclude that we must pick fr=12S kHz. This means lhat

/?!<:, - /^C
2

= - = 219 ns,

J n

(240)

which we get hy applying Equation (397) in Appendix A.

In picking the gain of the differentiator, we have a conflict between what we would

like the gain to be and what the AD712 can deliver. We still want a 5 V margin between

the expected peak signal and the upper limit o[ 10 V we want to impose. For a simple,

sinusoidal signal of interest of the form
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«f
- Asm(2nft), (241)

the derivative o[' the interferometric outputs (after passing through the summers) is

<f
- kD

—k
A Ecos[Asin(2nft)]

dt '

(242)

= - 2 nfkJcA y4£cos(2 nfi) sin|/4 sin(2 nft)\

To ensure that, when f=200 Hz and A- 100 rad. we still do not gel more than 5 V from

the circuit, we set

5 V = 2nfkJtAAE = 2nfRf
{

k
A AE

(243)

2nfkA AE

We sought a peak output of 5 V from the adders U5A, U6A. and L' 7A. so we will treat

5 V
f4 5 V. (244)

Hence

1

RjC,
2*4/

1
(245)

2;r(100rad)(200Hz)

- 7.96 us.

But at high frequencies, the AD 7 12 will is not guaranteed to sustain more than a 3 MHz

gain-bandwidth product. That is
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Gain x Bandwidth - 3 MHz

(2^/t,C,/)x Bandwidth - 3 MHz

Bandwidth =

(246)

3 MHz
{2nKf

xf)

The maximum permissible bandwidth is dictated by the maximum frequency / in this

equation. Setting the bandwidth equal to the maximum frequency, we get

/
3 MHz

\J
2nR

2
C

l

(247)
3 MHz

\| 2^(7.96 us)

= 245 kHz.

But earlier we decided we needed 72S kHz lor the pole frequency. Figure 34 is a Bode

plot of the gain o( the AD712 and o( the differentiator gain characteristic we want to

achieve. As long as we demand less gain than the operational amplifier can provide, the

feedback control loop is closed, and our desired gain is the actual gain o( the circuit. But

if the gain we want gets loo big. the operational amplifier no longer has enough excess

loop gain to keep control: the amplifier's own transfer characteristic becomes dominant.

As the figure makes clear, we must compromise by lowering the gain of the differentiator

until its characteristic peaks at the pole frequency, 728 kHz, where it intersects the gain

characteristic of the operational amplifier. The new value of the gain is

^ ' 2nf

3 MHz (248)

[2;r(728kHz)
2

;

- 901 ns.

By trial and error, we find combinations ot R,. R : . C and C, which correspond to
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rigure 34 Design of a Differentiator. A compromise is necessary in setting the gain of

the differentiator to avoid exceeding the gain-bandwidth product oi' the amplifier, an

AD712 in this case.

available values o( the components and which meet the conditions we have derived in

Equations (240) and (248). A suitable combination is

R, = 464 Q C. = 470 pF
(249)

#2 = 1.91 kfl C
2

= 100 pF

and these are the values in the schematic in Figure 33 on page 133. The gain constant

for the differentiator thus is
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kD
= -Rf = -901 ns. (250)

The multipliers Ul 1. U12, U13, U8, U9, and U10 in the schematic are very easy

to use. Three of them are used to compute the cross-product of interferometric signals

with the difference in the derivatives o\' the other two signals. These are the multipliers

Ull, U12, and U13.

One differential pair of inputs is one interferometric output (with D subtracted off)

and ground (zero). The other pair consists o[' the outputs oi' two differentiators. Their

difference is computed internally to these AD534 multipliers and the product is produced

at the output.

The squares of the interferometric outputs (with D subtracted off) are computed

by U8, U9, and UK). Later on in the circuit, the denominator input to the DIVKH)

(U15) must be positive. To guarantee this, we connected these three multipliers to

produce negative squares. So the inputs were provided to a non-inverting terminal of one

of the differential inputs and to an inverting terminal on the other differential input. The

remaining input terminals were connected to ground.

The AD534 has a built-in multiplicative scale factor of 0.1 V" 1

. Thus two lull scale

inputs (10 V is full scale) will produce an output of (0.1 V"')(10 V)(10 V) = 10 V.'
4

Since we have been assuming that peak signal levels o( 5 V are present at the outputs

of all stages, we expect to see (0.1 V"')(5 V)(5 V) = 2.5 V. The small signal bandwidth

of the AD534 is 1 MHz. Its noise spectral density is large compared to that associated

with good operational amplifiers: 800 nY7/Hz at 10 kHz: it is larger at 100 Hz. about

900 nV//Hz.

The adder in UI4A is very similar to that in U4A described earlier. To compute

the required gain, we make use of Equation (225) in Chapter VIII. It gives the output

of this adder as

14 The scale factor can be adjusted, but we have not used this feature. Analog

Devices has a new multiplier, the AD734. which has a scale factor which can vary

dynamically. By varying the scale factor in a suitable manner, division is made possible.

in addition to multiplication.
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-J3k k k
2
k E2 £ (251)

We want this to peak at 5 V when A = 100 rad and /=200 Hz. So

-fikA kMklkDE
2
( = --fikA kuklkDE

2A2nfsw{Asm(2nft)]

5 V > -i/IJL(0.1 V' 1)^)2^ ns)(1.3 V)2
/12^/

2 3

2(5 V)

(252)

k

- 7.0

*
3

3^/3(0.1 V l

)(3.8)
2
(901 ns)(1.3 V)2

(100 rad)2^(200 Hz)

We later decided to lower this value in order to accommodate input phase shifts of

239 rad. more than the 100 rad used in this calculation, so our final choice for input

resistors to U14A was 14.0 kfl with a 4.99 kH feedback resistor, giving

__
4.99 kQ

= (253)
Ai

14.0 kQ

We now turn to the summer U4B which adds together the squares o{ the

interferometric outputs (with D subtracted off) which are produced by U8, U9. and U10.

From Equation (226) in Chapter VIII.

—k k k
2 E2

< 5 V

K ,
2(5 V)

Al
3*„**£2

(254)

2(5 V)

3(0.1 V _1
)(3.8)

2
(1.3 V)2

- 1.37.

We selected input resistor R26. R30, and R35 to be 10.5 kf> and the feedback resistor

R37 to be 14.0 kQ. iiivine an actual value of
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k. = 1.33. (255)

The outputs ol the two adders U14A and U4B form the numerator and

denominator inputs respectively to the Burr-Brown DIV100 (U15). The DIV100 has a

small signal handwidth oi' 350 kHz. The denominator needs to he greater than 250 mV

for reasonable accuracy, and it must he positive. As mentioned above, this was easily

arranged by causing the multipliers US. U9, and UK) to generate negative squares.

Subsequently U4B inverted the sum. so this constraint was met.

The DIV100 has a scale factor

k
d

= 10 V. (256)

In the range 10 Hz to 10 kHz. the DIV100 generates voltage noise between 370 \i\ /Hz

and 1 mV//Hz. This is greater than the noise of the AD534 multipliers, and it is vastly

bigger than the noise o( the operational amplifiers we have used so far. We will examine

the consequences of this fact in Appendix F.

We use the DIVi'lM to remove the effects of E from the demodulated signal.

Recall that E is affected by laser power and the fringe depth of the interference pattern.

which varies as the polarization o{ the light within the interferometer wanders.

The output oi the divider is given by Equation (227) in Chapter VIII. which is

^kA k^d . ,257)

Upon integration by UI4B. Equation (22S) o[ Chapter VIII shows that the

demodulator's output is

v**Ai*A

.

,258)

K
i

The final uain constant is that o( the integrator:
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kj = —— - 6.89xl03 si. (259)

*51C 17

We can now substitute all the constants into Equation (258):

y3(6.89x!03
s'

1

)(0.356)(901 ns)(10 V)
= ^ mV (260)

1.33
"

rad
'

which is very close to the value 31 mV/rad measured in Chapter XI.

B. WAVEFORMS

In the last chapter we showed computer simulations of the waveforms which would

exist at various stages of the symmetric demodulation process if the signal of interest

were a sinusoid. In this section we present photographs o( an oscilloscope display oi the

waveforms actually present in the Symmetric Analogue Demodulator for sinusoidal inputs.

Figure 35 shows two photographs o[' the interference patterns generated by the

interferometer we built. Both patterns were generated by a 100 Hz stimulus. In the

upper photograph, the phase amplitude A =33.7 rad: in the lower trace. .-1=67.9 rad.

Note that the amplitude o( the interference pattern is the same in each photograph, and

the points of minimum frequency in the interference pattern always correspond to the

extrema of the stimulus.

Figure 36 shows the outputs of the differentiators U5B, U6B. and U7B. The

frequency of the stimulus is 100 Hz as before, and the upper and lower traces still

correspond to phase amplitudes of 33.7 and 67.9 rad. respectively. Note how high-

frequency noise is very evident in the photographs. Noise was completely absent in the

computer simulations. The differentiators amplify the high frequencies, so any noise

which is already present in the interferometric outputs is enhanced. This also explains

why the amplitude of the derivatives is largest in the region where the interferometric

outputs are oscillating most rapidly.

In the last chapter, we were able to show computer simulations of the differences

between each of the two derivatives. We cannot show photographs of the differences

because the differences are computed inside the AD534 differential-input analog
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Figure 35 Three outputs of the optical fiber intert'erometric sensor with the 100 Hz

sinusoidal stimulus superimposed. Upper photograph: /4=33.7rad. Lower photograph:

A =67.9 rad.
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Figure 36 Derivatives of three outputs of the optical fiber interferometric sensor with

the 100 Hz sinusoidal stimulus superimposed. Upper photograph: ^ =33.7 rad. Lower

photograph: A =67.9 rad.
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Figure 37 Products of each output with the difference between the derivatives o( the

other two; the 100 Hz sinusoidal stimulus is superimposed. Upper photograph:

/I =33.7 rad. Lower photograph: ,4=67.9rad.
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Figure 38 Symmetric Analogue Demodulator output, /= 1 00 Hz. ,-4 = 137 rad. Upper

photograph, upper trace: undistorted input; lower trace, demodulator output. Lower

photograph: FFT of demodulator output with 5% THD present.
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multipliers. The results of the multiplication, however, are shown in Figure 37. The

frequency of the stimulus and the phase amplitudes are the same as before. The

envelope of the traces now is a sinusoid with the same frequency as the stimulus, but

shifted in phase by 90°. Noise is still rather severe in these photographs, and one begins

to wonder if a faithful replica oi the stimulus can be reconstructed.

Figure 38 shows that after summing the three products and integrating them, we

do indeed get a good replica of the stimulus. The upper trace in the upper photograph

is the undistorted sinusoid generated by the HP3314A Function Generator. The lower

trace in the upper photograph is the output of the demodulator. In the lower photograph

is a Fast Fourier Transform (FFT) o( the demodulator's output. The photographs in

Figure 38 correspond to a stimulus of frequency 100 Hz and the phase amplitude

,4 = 136.5 rad. At this high phase amplitude, the distortion has reached the 5
c
c level

(
— 25.79 dB), but this is hard to discern from the oscilloscope trace alone.

We have also used triangular waves to excite the sensor: the demodulator outputs

a triangle wave, just as ii .should.

C. SUMMARY

This chapter and the previous one have described the most innovative aspect o( the

work described in this dissertation. We developed a new algorithm for demodulating the

outputs of an optical fiber interferometric sensor terminated by a ?>x?< optical fiber

coupler. Unlike the asymmetric demodulation method described in Chapter VII, the

symmetric demodulation method processes all outputs o( the interferometer in a similar

fashion. None is discarded. The algorithm was arrived at in a semi-intuitive manner by

the entirely unorthodox application o( phasor techniques to a non-linear process. Its

correctness could not be demonstrated, however, by such ill-chosen (but intuitively

helpful) methods. We had to rely on the use of trigonometry (or the equivalent use o(

complex exponentials and their complex conjugates).

The symmetric demodulation method has an additional advantage (apart from

symmetry) over the asymmetric method. The dependence of the output oi the

demodulator on the central value D of the output o( the interferometer and on the
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amplitude E of the fluctuations around D is absent from the final result. The asymmetric

demodulation method achieves independence from D, but not from E.

In the next chapter we digress briefly to discuss the measurement of noise. Upon

the completion of this digression, we shall be in a position to measure the performance

of our implementation of the symmetric demodulation algorithm in the presence of noise.

152



X. MEASURING NOISE

In this chapter we present the methods we have used to measure noise and the

results of measurements of the noise of our instruments. The purpose of doing this is to

be sure that when we measure the noise of the Symmetric Analog Demodulator and the

Asymmetric Digital Demodulator we do not inadvertently measure the noise of

instruments. If the noise introduced by the instruments is less than that observed from

the demodulators, then it is reasonable to infer that this inadvertency has not occurred.

All measurements were taken at 590 Hz. This value was chosen slightly offset from

600 Hz in order to avoid contamination by the abundant sources of 60 Hz harmonics

which existed in our laboratory.

A. HOW TO MEASURE NOISE

We generally used two independent techniques to measure noise. The easiest

entailed the use o( an HP356I A Dynamic Signal Analyzer. This device has 400 frequency

bins which it uses in performing a Fast Fourier Transform on the input wave form. The

bandwidth of each bin is dependent on the user's choice n\' frequency span (the lowest

and highest frequencies o\' interest). It also depends on the user's choice o( "window"

function. The instrument offers a selectable option to present the root-mean-squared

voltage in each bin divided by the square root o\' the bandwidth. Thus, the units o\

measure become V//Hz rather than V. This instrument is attractive because it is so easy

to use.

B. HP3561A DYNAMIC SIGNAL ANALYZER

The HP3561A measured its own noise tloor. The instrument has a 1 MH input

impedance, and we placed a matched 50 Cl load across its two inputs. The inputs were

AC coupled by a selection on the front panel of the instrument. The HP3561 A displayed

its own measurement o\' the noise as 56.2 nV /Hz (
- 145 dBV /Hz). This cannot be due
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to the presence of the 50 ft load, whose noise spectral density e,/ can be computed from

the expression

e\ = sfikTR (261)

where k= 1.381 Xl0~y J/K is Boltzmann's constant. T is the temperature, and R is the

resistance. If we lake the temperature as 300 K (room temperature) and use 50 Cl for

R, then the load would only generate 910 pV/VHz (-181 dbV/-v/"Hz). considerably less

than that measured for the HP3561 A. Our measurement of the noise compares well with

the value specified lor the HP3561A, at most -141 dBV//Hz.

C. EG&G PRINCETON APPLIED RESEARCH MODEL 52 10 LOCK-IN AMPLIFIER

This device, like the HP3561A Dynamic Signal Analyzer, can measure its own

noise floor. Like the HP3561 A. it has a 1 Mfi input impedance. It is calibrated only for

source impedances much smaller than this. We simply shorted the differential inputs

together. We set the lock-in amplifier's sensitivity scale factor set to 1()\ time constant

t to 1 s. and the filter skirts to decline at -12 dB per decade o{ increase of frequency.

The output of the lock-in amplifier was averaged on an HP3456A Digital Voltmeter, and

was VOUT—0.53±0A9 V. We can convert this to a voltage noise spectral density e5:n?

referred to the input from the formula

OUT
'5210

= 15
nV_

Hz
157 ^X)

(262)

This compares well with the noise floor specified for the Model 5210. 5 nV/V"Hz

(-166 dBV//Hz) at 1 kHz (we measured the noise floor at 590 Hz).

D. ANALOG INTERFEROMETRIC SIMULATORS

We made two measurements of the noise of each of the Analog Interferometric

Simulators, one with open inputs, the other with shorted inputs. These results were

within a standard deviation of each other, as shown in Table XII. The standard

deviations were divided by the sensitivity setting o( the lock-in amplifier (10 ) and by
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Table XII Measurements of'lhe noise of the Analog Interlerometric Simulators, taken

on the Model 5210 Lock-In Amplifier.

Simulator Inputs
Output Voltage (VRMS ) ±

Standard Deviation

Noise Spectral Density

nV/Hz dBV/Hz

1

Open

3.4 ±1.9 960 -121

2 3.3 ±1.7 920 -120

3 2.5 ±1.3 700 -
1 23

1

Shorted

3.6±1.7 1000 -120

2 2.7±1.4 780 -122

3 3.0±1.7 860 -121

1/^(8 v) , the square root of the equivalent noise bandwidth, with a time constant 7=1 s.

These values are almost two orders oi' magnitude larger than the noise floor oi the lock-

in amplifier itself, so we can be fairly confident that they are not an artifact of the

instrumentation.

E. AN INVERTING AMPLIFIER

As a final check on the correctness both o{ our measuring techniques and our

ability theoretically to predict the noise of an electronic circuit, we consider a simple

inverting amplifier built around the same operational amplifier, the OPA-1 1 1. that we use

in the optical receivers of each o( the three demodulators considered in this research.

The circuit we shall consider is diagrammed in Figure 39.

There are five spectral noise sources shown in the figure. The noise from the

preceding stage is e
f

. The two resistors R, and R
:
have voltage noise spectral densities

eR? and ?R2- The operational amplifier provides noise modelled by the voltage noise

spectral density c„
+ and the current noise spectral density z,,

1" at the inputs. We will

regard the operational amplifier as ideal (having infinite gain), so with all noise sources

suppressed, the voltage at both the inverting and non-inverting inputs o\ the operational

amplifier must be zero. We consider the effects o[ each noise source separately: the
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Figure 39 Noise sources in an inverting amplifier.

Pythagorean sum of each of them gives the total output noise voltage spectral density

ej. We shall assume that each noise source is uncorrelated to any other. This implies

that the Pythagorean sum. by which we specifically mean the square root of the sum of

the squares of the effects due to each noise source individually, is an appropriate method

for combining the various contributions of the noise together.

1. Noise sources e* and eK/

We can lump these two noise sources together. Both are operated upon by

the inverting amplification characteristic o( the amplifier, just as any ordinary voltage

input would be. If we assume that the source resistance is negligible, then each noise

source is simply multiplied by the factor -R
2
/R,. The two contributions to the noise then

are

-

—

e r and
ft,
2 _t

K,

j'ki - ~^™v
(263)

The negative sign is unimportant in the final analysis because noises add as the square

root of the sum of the squares of the contributions to the noise.
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2. Noise source eR?

When noise sources e? and c,/ are suppressed, there can he no currents

flowing through the system. Thus the voltage source

el - ^AhR, (264)

contrihutes to the output noise voltage spectral density with gain one.

3. Noise source e,?

Inputs to the non-inverting terminal of the operational amplifier are amplified

hy gain 1 +/?_,//?,, and this is the case with this noise source, too. The contribution to the

noise from this source then is

i3>
R,

(265)

4. Noise source in

f

If any of the noise from this source were to (low through resistor /?,. then

there would be a non-zero voltage at the inverting terminal oi the operational amplifier.

An ideal operational amplifier maintains the inverting terminal and the non-inverting

terminal at equal potentials, namely zero, so the current flowing through R must be zero.

All the current must flow through resistor R. and so this source's contribution to the

noise is

i% (266)

5. Total noise

The sum of all these contributions to the noise can be expressed as
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\

V
R

i /

4*77*. +4*77?,
'I« (267)

A comparison of ihc predicted noise and ihe measured noise lor this circuit

is shown in Tahle XIII. The entries with zero noise from the source were made with no

source connected, that is. with the input resistor /?, grounded. The last column shows a

measurement taken with the input resistor connected to the output of one of the Analog

Interferometric Simulators. Notice the excellent agreement hetween the predicted and

the ohserved values. More than any other measurement cited so tar, this consistency

between theory and observation gives us confidence both in our ability

theoretically to analyze noise and practically to observe it.

Now that we have briefly discussed the instruments with which we can measure

noise and have performed a detailed analysis on a particular circuit, we are ready to

incorporate these techniques in measuring the performance of the Symmetric Analog

Demodulator so that we can determine its minimum detectable signal.
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Table XIII Comparison of predicted and observed noise levels from an inverting

amplifier.

Ri 10 kP_ 49.9 kil

R2
2.00 Mil 1.00 Mil 100 kil 10.0 kil 64.9 kil

Noise source

and its effect

e? V7/Hz (short circuit to ground)
1.23

<R?
2.57 1.29

/iV//Hz

129

nV//Hz

12.9

nV//Hz

37.4

nV//Hz
•~ «-'j"-'

<R*
182

nV//I Iz

129

nV//Hz

40.7

nV/Hz
12.9

nV/Hz
32.8

nV//Hz

Burr-

Brown

OPA-
111

, t

15 nV/Hz
3.02

/iV//I Iz

1.52

/jV//Hz

165

nV//Hz

30.0

nV/Hz
34.5

nV,/Hz

500 aA /Hz
1.00

nV.'/Hz

500

pV/Hz
50.0

pV /] Iz

5.00

IV /Hz
32.5

p\'/Hz

Predicted

Output

Noise

Spectral

Density

, t
4.0

^V//Hz

2.0

/jV'/Hz

210

nV/Hz
35

nV/Hz
1.2

/iV//Hz

Parameters

of the Lock-

in Amplifier

Sensitivity 10" 33.3x10" 10
s

lo"

Time

constant
1 s

Filter

skirls
-12 dB per decade

Output voltage ±
Standard Deviation

1.5 ±0.7 V 1.0 ±0.5 V 2.2 ±1.2 V l.2±0.6 V 4.4 ±2.3 V

Output noise spectral density
4.2 2.8

/A' /I Iz

190

nV/Hz
33

nV/Hz
1.2

^V//Hz
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XI. PERFORMANCE OF THE SYMMETRIC ANALOG DEMODULATOR

A. OVERVIEW

In this chapter we examine the performance of the Symmetric Analog Demodulat-

or. The aspects of its performance which we consider are:

1. scale factor, which relates the phase amplitude in the modulated signal to the

voltage amplitude in the demodulated signal;

2. small signal bandwidth:

3. maximum acceptable signal:

4. noise floor:

5. dynamic range:

6. complexity: and

7. approximate cost.

These are the same characteristics we examined in assessing the performance of the

Fringe Rate Demodulator, plus one new one: the noise floor. This did not arise in the

case of the Fringe Rate Demodulator because its principle of operation made it incapable

of demodulating signals with less than half a fringe (an optical phase shift o( — 2 radians)

and so the useful signals were always very much stronger than the noise anyway. The

Symmetric Analog Demodulator is capable of demodulating signals both above and below

the one-half fringe level. In fact, at the lower end it is only the noise that prevents it

from recovering arbitrarily small signals.
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B. SCALE FACTOR

As with the Fringe Rate Demodulator, the scale factor is defined as the ratio o( the

demodulator's output voltage lo the input phase. If the phase signal provided by the

interferometric sensor is <b(t) and the output provided by the Symmetric Analog

Demodulator is v(t). then we define the scale factor FSAD(t) ni the demodulator by the

equation

(dm

_ dvit)

d<Kt)'

Ideally the scale factor would be constant. In practice, it is not. We shall call the

multiplicative product o\' the phase shift A and the frequency /the phase rate, since the

product is measured in radians per second. When the phase rate is too large, saturation

of the electronics at the level of the power supplies (or slightly below them) takes place.

The reason saturation occurs is clear if we consider the mathematical expressions for the

output of the interferometer and its derivative. Let a signal o( interest £(t) be applied

to the interferometric sensor. If <f(/) is a sinusoid o( amplitude A and frequency cj = 2—/.

then

at) - As'm(iot) ,269)

After conversion o\ the interferometric output into its voltage analog. <f(/) is converted

into the phase-modulated signal



x(t) = D + £cos[£(r)+0]

= D + £cos[/i sin( w?) + </>].

The term represents an additional phase shift which accounts for the choice of one o['

the three outputs of the 3x3 coupler at the output of the interlerometric sensor, as well

as the effects of temperature, pressure, and other factors.

The derivative of v(/) with respect time is

x = —— = -AEo)cos(a>t)svD[Asin(a)t)+<t>). (271)

dt

Since the product AEo is a voltage limited to the level o{ the supply voltage (or possibly

a little less), this product must not exceed some specific value or saturation results.
1

"'

On the other hand, when this product is very low. the noise produced by the

differentiators in the demodulator dominates the product AEo and so the outputs no

longer adequately approximate the derivatives of the inputs.

In either of these limits, the scale factor o( the demodulator deviates from the

constant level desired. It drops o(\ sharply in the former case, since further increases in

the value of the amplitude A o{ the signal of interest cannot increase the outputs o[ the

differentiators past their limit. In the latter case, the scale factor rises as ,-1 get smaller.

This occurs because the outputs o( the differentiators, which are now noisy and very

small, are multiplied by one oi' the undifferentiated signals. While this signal continues

to decline, its product with the ostensible derivative does not decline as rapidly as it

should. In other words, the circuit provides too much output for the input it receives.

In the intermediate range, where the scale factor is roughly constant, the

combination of optical fiber interferometer and Symmetric Analog Demodulator is

15
In general, the product AEo> will also be multiplied by one or more other

multiplicative constants k, which depend on the specific choices of components in the

design. It is the complete product of all the k
t
and AEu> which is limited. However, in

the design there is some latitude available in picking these various constants to achieve

the performance desired.
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essentially linear in operation. This means that the output frequency is that of the input

to the sensor, namely o>. and the output amplitude is proportional to the amplitude of the

input to the sensor.

Two other reasons lor the departure of the scale factor from a constant are the

limited bandwidth and the limited slew rate of the components of the Symmetric Analog

Demodulator. These create distortion of the waveforms, and the distortion becomes

more severe when high frequencies are significant.

To measure the scale factor in the region where it is a constant, we used an

HP3314A Function Generator to generate a sinusoidal lest signal. To create the phase-

modulated signals used by the Symmetric Analog Demodulator, we can apply this test

signal either to the optical interferometer described in Chapter IV or to the Analog

Interferometric Simulators described in Appendix C. Because the use oi the optical

interferometer introduces the added complications o( laser phase noise and wandering of

the direction of polarization of the optical waves in the interferometer, we chose Analog

Interferometric Simulators lor performing our measurements of scale factor.

We discovered thai to rely on the HP3314A to provide outputs o( the same

amplitude as the setting on the front panel is unwise when the amplitudes are very small:

the outputs are inaccurate. The data on which we based this conclusion are shown in

Table XIV. V
IS is the voltage selected on the front panel o\ the HP3314A Function

Generator. Von is the voltage observed on the HP3561A Dynamic Signal Analyzer,

expressed in root-mean-squared logarithmic form (dBV)."
1

Because it is a root-mean-

squared measurement, we can multiply it by V"2 to get the equivalent peak amplitude of

the observed output, and we can then take the ratio <{2Vnri i\

'

ls . This ratio should equal

the constant 1, which would be the case if the actual output were always equal to the

observed output. The ratios shown in Table XIV are graphed against input voltage V1S

in Figure 40. Clearly, the ratios deviate more and more from 1 when f A <l rnV.

lh One decibel is defined as 10 times the logarithm of the power in a signal. Since

voltage squared divided by resistance equals power through the resistance, a decibel also

is 20 times the logarithm o[ the voltage across the resistance, if the resistance is taken

as 1 H. This is the conventional definition of 1 dBV. even if the resistance is not equal

to 1 n.
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To compensate for this deficiency, we kept the output voltage of the HP3314A

Function Generator above this level but interposed a Gertsch Model 480 Ratio Standard

between the HP3314A and the inputs to the Analog Interlerometric Simulators. The

output of the HP3314A could then be kept close to the value selected on its front panel

by keeping it higher than I mV. The ratio selected on the front panel of the Model 480

was then used to attenuate the output of the HP3314A to the low level needed for noise

measurements. While the data we consider here are above the noise, we generally used

the Model 480 Ratio Standard anyway, once we had found that the amplitude of the

output of the HP3314A was not reliable at small signal levels.

That the use o\ the Model 480 Ratio Standard provides accurately reduced signal

levels, down to the level o[' I jjV is clear from the data in Table XV. To obtain these

data, we used the instrumentation shown in Figure 41. The outputs of the HP3314A

Function Generator had an amplitude of 10.00 mV. were attenuated by the Gertsch

Model 480 Ratio Standard, and were measured in two ways. The HP3561A Dynamic-

Signal Analyzer provided one measurement. The combination o( the EG&G Princeton

Applied Research Model 5210 Lock-In Amplifier and HP3456A Digital Voltmeter

provided a second measurement.

The HP3561 A normally provides measurements in RMS form. However, this time

we used the arithmetic capability o( the device to multiply this value by V"2 and so convert

the readings into peak amplitudes. The Model 5210 Lock-In Amplifier likewise provides

its measurements in RMS form. After first averaging the outputs of the Model 5210 on

the HP3456A, we provided the /2 factor ourselves.

In Table XV. /is the frequency of the signal applied by the HP3314A: Ratio is the

reduction ratio selected on the front panel of the Model 480: VEFF is the effective output

of the Model 480. computed by taking the product Vlx xRatio. where V,s = 10.00 mV; VFFT

is the effective peak output of the Model 480 measured on the HP3561A Dynamic Signal

Analyzer; 5 is the scale factor of the Model 5210 Lock-In Amplifier in volts/volt: N is the

number of samples averaged by the HP3456A; VDV is the average ± the standard

deviation of the output oi the Model 480 Ratio Standard as measured with the HP3456A

Digital Voltmeter: and VIU is the average ± the standard deviation of the voltage
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Table XIV Inaccuracies in the output of the HP3314A Function Generator when small

amplitudes are specified.

'a iV oil S2Vai:i <Vls

6.00 V 12.52 dBV 0.996

.1.00 V 6.49 dBV 0.995

2.00 V 2.95 dBV 0.993

1.00 V -2.% dBV 1.01

600 mV -7.40 dBV 1.01

300 mV -13.44 dBV 1.00

200 mV -16.98 dBV 1.00

100 mV -22.98 dBV 1.00

60.0 mV -27.42 dBV 1.00

3o.o mV -33.46 dBV 1.00

20.0 mV -37.00 dBV 0.999

10.0 mV -43.01 dBV 1.00

6.00 mV -4^.42 dBV 1.00

3.00 mV -5.3.46 dBV 1.00

2.00 mV -57.00 dBV 0.999

1.00 mV -63.0^ dBV 0.991

600 (iV -67.49 dBV 0.995

300 MV -73.62 dBV 0.983

200 pV -77.27 dBV 0.968

100 MV -83.65 dBV 0.929

60.0 nV -88.89 dBV 0.847

30.0 pV -95.30 dBV 0.810

20.0 nV -100.2 dBV 0.691

10.0 pV -113.0 dBV 0.317
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HP3314A Peak Output Voltage / Input Voltage

:p*

I

1—I-

10'

V,n M

Figure 40 Graph o( the ratio Vnv̂ Vls shown in Table XIV.

detected by the Model 5210 Lock-in Amplifier, computed as

JlV
L1A

(272)

to express the output of the Model 480 Ratio Standard in terms of peak amplitude rather

than RMS amplitude.
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Figure 41 This instrumentation was used to verity that the Gertsch Model 480 Ratio

Standard could provide accurately scaled replicas of the signals from the HP3314A

Function Generator.

We used the HP3561A Dynamic Signal Analyzer in a mode which averages

successive readings with 16 exponentially decaying weights.
1

' Where the average

fluctuated to an excessive degree, a dash is shown in Tahle XV. The exponential

averaging mode would not give results of less than 121.6 nV during our observations,

although smaller numbers were observable if RMS averaging were used instead.

However, the RMS values at higher levels did not appear to be much different from

those obtained with exponential averaging.

We operated the Model 5210 Lock-In Amplifier with a time constant r = 1 s and

a Filter skirt which dropped off at 12 dB per octave of frequency. We selected a mode

which provides both the magnitude and the phase of its input.

The magnitude output of the Model 5210 Lock-In Amplifier was provided as an

input to an HP3456A Digital Voltmeter. This device was set to average N samples.

Each sample was performed by integrating the input over 10 power line cycles, or 167 ms.

The error shown in Table XV for VDV is the square root of the sample variance provided

17 The HP3561 A Dynamic Signal Analyzer permits one to specify the number of such

weights, but no control over the size of the weights is provided. In this mode, the

averaging gives greatest emphasis to the most recent data. Therefore, the HP3561 A can

follow a mean which is ;i function o( time, provided the mean does not wander too

rapidly.
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Table XV These cl;il;i show lhal the Gertsch Model 480 Ratio Standard can accurately

scale an input voltage ol 10 mV to as little as 1 jjV.

/ Ratio Vm Vm s N Vm K.u

20

1.000000 lllllli m \ HUM ni\ III'

128

7.16464 ± 0.00060 V 10.13233 ± 0.00085 mV

0.100000 i non m\ 1
MIIH „,V 10

4
7.1447 ± 0.0022 V 1.0 104 1 ± 0.00031 mV

0.010OO0 100.(1 m v HHi 1 M \ 10' 7.1314 ± 0.0048 V 100.853 ± 0.068 pV

0.001000 lllllli u \ 10.01 ii\ 10" 7.1307 ± 0.0026 V 10.0843 ± 0.0037 ^ v

O.OOOIOO I 000 |i\ I 020 M v 10' 7.130 ± 0.02.S V 1.0084 ± 0.0039 ^V

(UMXX)IO lllllli ll\ I
»5 • n\ 10

x
7.16 ± 0.18 V 101.2 ± 2.(i nV

0.000001 lllllli ii V i 'i ii n\ 10
h

1.80 ± 0.17 V 25.5 ± 2.4 nV

KM)

1.000000 |U mi mV HUH iiil 1()
(

256

7.12552 ± 0.00085 V 10.0770 ± 0.0012 mV

0.100000 1
nun mV 1 HOI m\ I0

4 ".1 \m ± o.oo 12 V 1.00677 ± 00017 mV

0.010000 100.0 (i\ 100 ! pV 10
s

7.0760 ± 0.0085 V 100.07 ± 0.12 ^V

0.001000 10.00 >i\ 10.03 mV 1(1" 7.1001 ± 0.0092 V 10.041 ± 0.013 \i\'

0.000100 1 (Hill
t
,V 1 nn '

M \ III 7.16 ± 0.21V Ml 12 ± 0.030 ^V

O.(MMM)K) inn ii nV 1
'1 i,V 10

s ".4 ± 1.8 V 104 ± 2f> nV

O.OOOOOI III mi nV 1
'1 h n\ 10" 2.62 ± 0.85V 37 ± 12 nV

1000

MM MM II III lllllli ni\ inn' ,,,\ II)
1

7.18008 ± 0.00030 V 10.15416 ± 0.00043 mV

0.100000 1 huh m\ i 002 mV I0
1

7.174.3 ± 0.000 IS V 1.01460 ± 0.00025 mV

0.010OOO llilin M \ 1(1(1 t p V 1(1" 7.1458 ± 0.00029 V 101.056 ± 0.041 MV

0.001000 III llll Ji\ 10.05 p\ 10" 7.0813 ± 0.0029 V 10.0144 ± 0.0041 |iV

0.000100 1 (Mill ^\ 10 7.070 ± 0.022 V 1.0007 ± 0.0031 M V

0.000010 Iiiiiii n\ 1 !l fi n\ nr 6.87 ± 0.17 V l>".2 ± 2.4 nV

0.000001 10.00 nV 1
'1

1) n\ 10
s

0.86 ± 0.2 IV 12.2 ± 2.9 n\'

by the HP3456A Digital Voltmeter.

To measure the scale factor FD of the demodulator, we applied the outputs of the

Model 480 Ratio Standard to the inputs of three Analog Inlerleromelric Simulators as

shown in Figure 42. This setup is very similar to that in Figure 41. The difference is the

presence of the simulators and the demodulator, and the absence of the HP3561A

Dynamic Signal Analyzer. The outputs of the simulators were provided to the Symmetric
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Figure 42 Setup used to measure the scale factor fD of the Symmetric Analog

Demodulator.

Analog Demodulator.

The output of the HP33MA Function Generator was set to have an amplitude of

1.00 V. This is a value well within the ahility of the HP3314A to output an accurate

amplitude, as established by the data in Table XIV. The smallest ratio set on the

Gertsch iModel 480 Ratio Standard was 0.000500. This resulted in a signal amplitude of

500 /jV, well above the minimum reliable signal level of about 1 ^V established by the

data in Table XV.

We again used an EG&G Princeton Applied Research Model 5210 Lock-In

Amplifier to make measurements of the outputs o( the demodulator. The filter time

constant set on the front panel o( the lock-in amplifier was 1 s. The filter had a roll-off

of 12 dB per octave increase in frequency. The equivalent noise bandwidth B of the

lock-in can be computed from the formula
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B = — (273)

8 r

where r is the filter time constant. This formula is derived in Appendix A.

We fed the output oi the lock-in amplifier to an HP3456A Digital Voltmeter, which

averaged 768 samples of the lock-in amplifier's output. Each such sample is actually itself

an average of the input, conducted over an integral number of cycles o\' the power lines.

We chose 10 cycles for this integration process. This resulted in averaging for a little

over two minutes. The output scale factor FD of the demodulator is computed from the

formula

F =
fivouT (274)

S<t>EFF

where S is the sensitivity o{ the lock-in amplifier in volts/volt. Voul is the average voltage

from the lock-in amplifier as calculated by the HP3456A Digital Voltmeter, and 4>EFF is

the phase from the analog simulators. The quantity <bFAF is computed from the formula

4>eff
= V

in
X"tio Fw (275)

In this expression. Ratio is the ratio set on the Gertsch Model 4cS() Ratio Standard, VIS

is the output level o{ the HP3314A Function Generator, and FSEFF is the average scale

factor for the Analog Interferometric Simulators. As shown in Chapter IV. this is 918±4

mrad/V.

The observations are summarized in Table XVI. As was mentioned earlier, the

scale factor is not constant for all possible inputs. When the multiplicative product of

signal amplitude and frequency is too small, the outputs of the differentiators cease to

be proportional to that product, and so the scale factor rises. Conversely, when the

product of the two is too big, saturation of the outputs of various components within the

demodulator occurs, and so the scale factor drops. Both these trends are evident in the

data of Table XVI. In between the two extremes, however, we must conclude that the

scale factor FD is approximately 31 mV/rad.
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DC Control of Simulator Output Amplitude

igure 43 Instrumentation for an experiment to test whether the increase in scale factor

at low combinations of amplitude and frequency could be due to a failure of the

DIVlOO's divider input to stay within acceptable limits.

The increase in scale factor for low combinations of amplitude and frequency led

us to hypothesize, at first, that the denominator voltage input into the Burr-Brown

DIV100 divider integrated circuit was becoming dominated by noise, so that it stopped

decreasing as the numerator input decreased. We devised an experiment to test this

theory, and concluded that it is untenable. Figure 43 shows the instrumentation we used

to test this hypothesis. We used one HP3314A Function Generator to create a sine

wave. This was attenuated by a Gertsch Model 480 Ratio Standard and then applied to

the three main inputs of the Analog Electronic Simulators. This created a simulated

interferometric sensor output. The amplitude of the output could be adjusted by setting

a DC offset on a second HP3314A and applying this to the AM input o( the simulators.

In mathematical terms, the output of simulator k was
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x.(t) = Ecos[Asm(o>t)-(k-\)- n\. (276)

3

In this expression, A and o> arc controlled by the first HP3314A whereas E is controlled

by the second one.

The results of our measurements are given in Table XVII and in Table XVIII. The

primary signal generator provided a frequency /=100 Hz and a peak voltage output

VGEN= 10.00 V. This signal was scaled down by a factor of 0.500000 by the Gertsch

Model 402 Ratio Standard lo create an effective output voltage of 5.00 V. The DC signal

applied to the AM input (if the Analog Interferometric Simulator is VASi in Table XVII.

E is the peak amplitude o! the output of the simulator. VCostrol is lhc voltage supplied

to the denominator of the DIV100 divider in the Symmetric Analog Demodulator as a

control. Vqutrms iS lnc RMS voltage provided by the Symmetric Analog Demodulator.

As the value o[ E increases, the control voltage continues to climb at just the right

rate to hold the output constant. However, when E surpasses 1.74 V. the control voltage

is saturated and so the output voltage begins to grow due to the absence of any control.

So from Table XVII we see that the maximum amplitude E from the simulators that can

still be accepted by the Symmetric Analog Demodulator is around 1 .74 V peak and that

control is maintained as long as V((WTROL does not saturate, i.e., remains below about

13.77 V.

To obtain the data in Table XVIII, we applied a 1 kHz sine wave with a peak

amplitude of 3.00 V to the ratio standard. We then lowered the output of the ratio

standard to apply progressively weaker signals to the inputs of the Analog Interferometric

Simulators. The DC signal applied to the AM input of the simulators was held constant

at 897 mV to keep the peak voltage out of the simulator to a nominal 1.50 V. the level

which was set to be present when the AM input was left open. The actual amplitude

from the simulator was measured as 1.49 V. The data show that the drop in phase shift

from the simulators did not have any effect on VCOntrol> lne control voltage, but of

course the demodulator's output continued to drop as the input peak phase shift

dropped. In view o[ the data in Table XVII, we must infer that the change in scale
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Table XVI Measurements to obtain the scale factor of the Symmetric Analog

Demodulator.

/
[Hz]

Ratio '///
•

(hHI
s

[V/V]
*',./.<

I'd

[mV/radJ

23

0, 10000(1 Kill m\ 'M X mr.id

Kr'

2 ol i U055 V 31

050000 Mill m\ 45 '» mr.ij ] (III £ llllTh \ 3d
•

025000 25 I' m\ 23.0 mr.id ii >| * ii (its, \ 31 4

0.012500 12 - mV 1 1 5 mrnd ii 2M * 0.055 V 32 1

35

1 00000(1 1.011 \ "IN mr.id \tr 2 33*i £ iiomi \ >r> 11

100000 KKi ni\ " 1 N mr.id Kr
f

2 N(i| i no33 \' 43 2

010000 Kin m\ " IN mr.id

|0
J

2"l ± 0.42 \ u .

0.005000 5 OH m\ 4 5" mr.id 1 55 ± 40 V 4" ;

65

1 000000 1
(in \ "IN mrad 33 3 3 7 S236 ± ooo"'" \'

3<> '

100000 10H m\ "i N mr.id

3.33 x Kr
?

"2"5 ± 0.072 \ 45

010000 1 n\ ".IN mr.id "N3 £ "1 mV 45 4

0.0051 ii 10 5 no m\ 4.54 mr.id 512 i NO mV 4" 3

110

1 000000 I

.Ml \ "IN mr.id

333 3

" IMII £ (1 004"

0.100000 loo mN "1 N mr.id ""4
1 ir 3 4 mV 36

"

0.010000 l(io mV " IN mr.id 7N.2 ± 4.6 mV 36 1

00500(1 5.00 mV 4 51 mr.id y 2 £ 3
* mV 34 4

200

1 000000 1 mi \ "IN mr.id 6 "21" ± o 002" V 31 1

0.100000 Kin m\ "1 N mr.id "T <• ± 2.6 mV 33
">

0.010000 10.0 m\ " IN mr.id i." 4+1.') m\ '•
'

1

005000 5 ii mV 4 59 mrjd 33 N £ 2 5 mV 31 2

300

1 000000 1 no \' "IN mrud 6.7175 i OU024 V 31 1

100000 ion m\ "1 N mr.id 3.33 x K>
? " INh ± (1.026 V 33 1

010000 inn mV " IN mrad 33.3x10"' "
31 ± o 20 V 3 3 .s

(KHIMKI 1.0(1 m\ "IN nr.id 10
5

2.S4 i 6" V 43..S

590

1.000000 1 (in \ "IN mr.id 333 3 b.5 138 £ 0.001 2 \ -
:

100000 100 mV "1 N mr.id 3.33x10^ h """h £ 0.006^ V 31 4

010O00 10.0 mV " IN mr.id 33.3x 10-' <>N] ] £ II Oh" V 31 5

0001000 1 00 m\ "IN jirad I0
5 2d" £ 0.21 V 32 2

1000

1.000000 1 (in \' "IN mrad 333 3 6 4731 £ 0021 V 2" 1

100000 100 \K "1 N mrAD 3.33x 10"' h "374 £ 0.0035 V 31 1

0010000 10 li m \ " IX mr.id 33 3x llr' (1 "60 £ 04^ V 31 .3

001000 1 00 mV "IN ^ rad 10* 2.05 £ 0.13 \ 31 6
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Table XVII These data show some examples of combinations of frequency and

amplitude which cause the divisor input to the DIV100 to saturate, resulting in a loss of

control of the output amplitude.

Vam E Kc ONTROl *Ol.T.RMS

2.00 V 1.19 V 6.29 V 97.33 mV

1.50 V 1.33 V 7.94 V 97.72 mV

1.00 V 1.47 V 9.79 V 97.72 mV

897 mV 1.49 V 9.84 V 97.78 mV

500 mV 1.61 V 11.83 V 97.72 mV

60 mV 1.74 V 13.77 V 98.12 mV

V 1.75 V 13.78 V 100.0 mV

-500 mV 1 .90 V 13.78 V 117.2 mV

-1.000 V 2.03 V 13.77 V 135.8 mV

-1.500 V 2.17 V 13. 77 V 155.8 mV

factor for small input phase shifts cannot he due to a loss o( control. Note that in

Tahle XVIII, a decrease in the input phase shift o[~ a factor o( 10 is matched by a similar

decrease in the output o[ the demodulator.

It is likely that the output o\' 65.24 mVRMS when the nominal output of the

simulators was 2.75 rad peak phase shift was due to the fact that the AD639 is

increasingly inaccurate as the input gets larger than about 2 radians.

It must be emphasized that there is considerable latitude in choosing the scale

factor during the design process. Gains can be set at various stages ol' the Symmetric

Analog Demodulator to achieve the overall, desired scale factor. Specifically, the gains

of the differentiators, the two summing amplifiers which sum the outputs of the two sets

of six multipliers, and the integrator in the output o( the demodulator all can be varied

from the values we chose.

The gains chosen for the differentiators and the integrators are perhaps the most

influential, since their effects are a function of frequency. By a judicious choice o( these

gains, not only can the scale factor be varied, but so can the envelope of the dynamic
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Table XVIII These data rule out the hypothesis that the rise in scale factor with small

combinations of amplitude and frequency can be due to a failure oi the denominator

input of the DIV100 to stay within range.

Ratio Vm <t>EFf * ( (JSTRiH * (ill liMS

1.000000 3.00 V 2.75 rad 10.42 V 65.24 mV

0.100000 300 mV 275 mrad 10.46 V 7.129 mV

0.010000 30 mV 27.5 mrad 10.49 V 715 jjV

0.001000 3 mV 2.75 mrad 10.4° V 71 ^V

0.000100 300 ^V 275 prad 10.49 V

range.

A comparison between the measured scale factor (31 mV'rad) and the predicted

scale factor (29 mV rad) is good evidence that the theoretical models provide a good

description of the real system.

C. BANDWIDTH

The bandwidth o( a system is the range of frequencies in which input signals can

lie and still be processed usefully. In the case of linear systems, the frequency into the

system is the same as the frequency out ol the system. Therefore it is sensible to speak

of the gain of the system at Lhat frequency. In such systems, some frequency fpl iK
will

have the highest gain through the system. At some higher frequency j\-mR . the gain in

power will only be one half lhat at /^ IA
.

IX
If fpl IA

^0. then there may also be a lower

frequencyfLOu-ER w ' tn on lv na " l ^c gain in power. If there is no such frequency, then we

specify fLOwER~^ Hz. If

/

/7 lK
=0, then we define the bandwidth B by

18 The frequency frrPiR is often called fiilB, since the power is 3 dB lower at this

frequency than at/w Ak . II a signal's level is measured in volts or amperes, the power is

half its maximum when the voltage or current is down bv a factor of 1 /2 = 0.7071.
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B = f (277)° J UPPER'

lffPEAK*Q, then we define B by

B = /" - /" (278)** J UPPER J LOWER'

Unfortunately, interferometric sensors are not linear systems, inasmuch as they can

generate many frequencies
10

for each input frequency. Likewise, interferometric

demodulators are not linear systems, inasmuch as they can generate one output frequency

for many input frequencies. The straightforward definitions of bandwidth just given for

linear systems do not apply in an obvious way for these non-linear systems. How does

one characterize the bandwidth of such a system?

As we have seen in earlier chapters, the interferometric output from output k can

be modelled as

xAt) - D + E cos
2

A sin(wf) + (p(t) - {k-\)-n (279)

Here. E is the amplitude of the interference fringes and D is their central value. It is

convenient for our present purposes to lump the two additional contributors to the phase

together as one term <b. We shall treat this as a quasi-static term, neglecting its variation

over time. In this case, we get the simplified expression

x(0 = D + E cos[A sm.{o>t) -
<p)

(280)

for the form of an unspecified output of the interferometer. This can be expanded using

a well-known trigonometric identity.

19 A countably infinite number oi' harmonics of the input frequency is generated,

although most of the higher frequencies are completely negligible.
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x(t) = D + E cos((f>)cos[A sin(wr)^

- E sin(</>)sin[/l sin(a>Oj

This has a Fourier expansion, given by Abramowitz (Ret. IS, p. 361

1

x(t) - D + cos(<p)\ J (A) + 2£/uG4)cos[2*wf]l

- sin(tf>) 2]£y^ 1
(A)cos[(2*H)<yf] .

(281)

(282)

*=o

The function /*(/!) is the Bessel function of order k. The dependence of the Bessel

function on k and A is illustrated graphically in Appendix E.

If we examine Equation (282), we see that there are two sources of constants. One

of these is D and the other is J„(A ) attenuated by the factor eos(#). There also are even

harmonics attenuated by the same factor. cos(0), and oi.\i\ harmonics attenuated by a

different factor. sin(<i>).

In this equation, we see clearly the manner in which the interferometer generates

a multiplicity of output frequencies for a single input frequency. Notice, however, the

dependence of the amplitude o[ the klh harmonic on Jk(A). As A varies, so does the

strength of this harmonic. When A is smaller than 1. J, [A) is bigger than Jk{A) for all

k>\. So in this small-signal regime, the system is not too unlike a linear system in that

the fundamental frequency is dominant. The smaller,-! becomes, the more accurate this

statement becomes.

In the small-signal regime, therefore, the bandwidth both of the interferometer and

the demodulator can be defined in a manner similar to that in which it is defined for

simple linear systems. Experimentally, we find that there is a maximum frequencyfi:pPER

where the gain in power is half that aty/7 1A
. This frequency increases as A declines, but

eventually reaches a limit at which it stops increasing. The interferometer is a lowpass

system, so there is no lower frequency o[ half the gain in power. Therefore we will define

the small signal bandwidth B as

177



B = f (283)° J UPPER'

Now the Symmetric Analog Demodulator was designed to have a low-frequency

roll-oft in gain, so it is actually a handpass system. However, as we shall see, the high-

frequency cutoff fvpPER is so much higher than the low-frequency cutoff fLOWER that the

difference

" =
J UPPER ~ JLOWER ~ J UPPER'

The situation is different in the large-signal regime. When A>>\, the graphs in

Appendix E show that the dominant frequencies are near j'A. If too many of these

dominant frequencies are attenuated hy the system, it is impossible for the demodulator

correctly to reproduce a signal oi' the form given in Equation ?. A better way to

characterize the system in this regime is by the total harmonic distortion in the output.

This is an indirect measure o{ the extent to which these high-frequency components are

disproportionately altered by the system.

To measure the bandwidth of the Symmetric Analog Demodulator in the small-

signal regime, we want only the fundamental at frequency f=o),j2—=fll
to be present.

Equation (282) implies that, unless we control 6. we cannot guarantee that the

fundamental will be present at all, nor can we be sure that the second harmonic at/=2/„

will be suppressed. To arrange this, we want

<P
= * + kit (285)

2

where k is an integer, so that

and

sin(</>) = 1
(286 >
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rigure 44 Instrumentation used to measure the small-signal bandwidth of the Analog

Electronic Simulators.

cos(0) = 0. (287)

Now if we keep A small, then no odd harmonics above the fundamental will be present

in strength, and likewise for all the even harmonics.

These conditions guided our selection of the analog electronic simulators rather

than the optical interferometer to provide test inputs to the demodulator. They have a

separate input to which a voltage dictating the "static" phase d> can be provided, in

addition to the usual input to which a voltage dictating A can be given. This is the input

labelled "PZT". The value of D can be set to zero by adjustment of the DC offset at

the output through a control labelled "STATIC" on the front panel of the simulator.

The effect of these settings, provided ,4 is small enough, is to change the interferometric

signal to this much simpler form:

x(t) = -IE JAA) cos(wr). 1 288)

We can now vary o> and so determine the small-signal bandwidth by finding the frequency

fuppER where the scale factor decreases by 1//2. Before measuring the small-signal
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bandwidth of the Symmetric Analog Demodulator itself, however, we first measured the

small-signal bandwidth o\ the Analog Electronic Simulators. Figure 44 shows the

instrumentation we used lo measure the small-signal bandwidth of the analog electronic-

simulators. The HP3561A Dynamic Signal Analyzer was used to establish what DC level

needed to be applied to the PZT input in order to eliminate the even harmonics, i.e., the

level needed to set cos(<£)=0 in Equation (282) and so generate the simple interferomet-

ric signal of Equation (288). We found that a DC voltage o\' 954 mV. corresponding to

a phase shift of 876 mrad. was suitable. We set the output of the simulator to have no

static offset, i.e., D = () in Equation (279). The elimination oi the even harmonics by

proper adjustment al d> also made the static offset cos(<£ )/,,(/! )=0. The harmonic

distortion from the simulator was measured at only -65 dB or 0.06?£ total harmonic

distortion when the input to the simulators was f'/v =l()() mV. Converting this to the

equivalent phase shift produced by the simulators. A was set to

" ::

"in JS£FF

= (100 mV) [918 5^]
(289)

= 91.8 mrad.

This distortion rose to I % for f'/v =5()() mV, which we took as an acceptable level for the

experiment.

Figure 45 shows a graph of the bandwidth of the Analog Interferometric Simulators.

This plot was generated by the HP4194A Impedance-Gain/Phase Analyzer, set to cover

a frequency span of 5 MHz. The measured bandwidth of the simulators is 1 MHz.

Knowing the bandwidth of the simulators permits us to consider the bandwidth oi the

Symmetric Analog Demodulator. If its bandwidth is less than 1 MHz. then we can be

sure that we shall have measured the bandwidth of the demodulator itself, and not that

of the simulators.

Figure 46 shows the instrumentation we used to measure the bandwidth o[' the

Symmetric Analog Demodulator. It is only slightly modified from that used to measure

the bandwidth oi' the Analog Interferometric Simulators, shown in Figure 45. We have
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SIMULATOR SMALL SIG BW
A: T/P (dB) B: 8 O MKR
,' MAX 10. 00 < !H GAIN

360. deq PHASE

711. 484 Hz
3. 21610 dB
179. 872 deq

_&i LL
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360.
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dgg STOP

10. 000 Hz
5 000 000. 000 Hz

7 igure 45 Small-signal bandwidth of the Analog Interferometric Simulators. The upper

trace is the magnitude of the gain: the lower trace is its phase. The gain is down by 3dB

at / = 1 MHz.

provided two additional simulators in order to provide simulations of the remaining two

outputs of an optical fiber interferometer with a 3x3 output coupler.

We also performed measurements n( the bandwidth of the Symmetric Analog

Demodulator with larger inputs to the simulators. To get larger inputs still, we replaced

the simulators with the combination of the HP6824A Power Amplifier and optical fiber

interferometric sensor. In Figure 47 are plots of the magnitude of the gain of the

combination of simulator (or interferometer) with demodulator. The five traces shown

here indicate decreasing bandwidths when larger signals are provided to the simulators

or interferometer. The four highest bandwidths are with the Analog Interferometric

Simulators as inputs; the lowest is with the power amplifier and interterometer instead

of the simulators. In decreasing order of bandwidth, the inputs had peak phase shifts of

219 mrad, 690 mrad. 2.17 rad, 5.54 rad, and 9.28 rad. We found that the small signal

bandwidth was 113 kHz.
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Figure 46 Block diagram of instrumentation tor determining the small-signal bandwidth

of the Symmetric Analog Demodulator.

The higher the input phase, the less accurate is Equation (288), so the usefulness

of these plots is more open to question. In the next section, we shall characterize the

performance of the Symmetric Analog Demodulator for large phase shifts at the input

by considering the resultant total harmonic distortion. However, the plots make it clear

that bandwidth and signal amplitude are inversely proportional. The small signal

bandwidth of the Symmetric Analog Demodulator is 113 kHz. This is well below the

1 MHz bandwidth of the Analog Interferometric Simulators, so we can be sure we really

are measuring the effect of the demodulator, not the simulators.

D. MAXIMUM ACCEPTABLE SIGNAL

We considered the small-signal bandwidth in the previous section. When the

interferometer is subjected to signals with large phase amplitudes, this is no longer an

effective measure of the performance of the demodulator. The reason, as we have seen,

is that there is a multiplicity of frequencies present in the output of the interferometer

and they all are important to the reconstruction of the input signal, modelled in

Equation ?.
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7igure 47 Measured bandwidth of the Symmetric Analog Demodulator (113 kHz for

small signals). In descending order of bandwidth, the phase inputs to the demodulator

were 219 mrad, 690 mrad. 2.17 rad, 5.54 rad. and 9.28 rad.

There is no precise amplitude of the signal of interest beyond which the

demodulator fails to perform properly. The degradation in the quality of the output is

gradual. What is more, both the amplitude and the frequency o\' the signal o( interest

have a bearing on this degradation.

The amplitude A oi the signal of interest is what determines the amount of phase

shift delivered to the demodulator by the interferometric sensor. If the signal of interest

has frequency /and creates a peak phase shift of A radians, then in one period T = 1//

of the signal of interest, the interferometric output undergoes Al{2-) cycles (fringes).

Thus, in one second, the interferometric output undergoes up to [Af)l{2—) transitions.

It is obvious from this reasoning, therefore, that the interferometric output has frequency

components at higher frequencies than/, and this is true even itA is less than 2~.

The Fourier series of Equation (282) gives this statement a more precise meaning

inasmuch as it quantifies the relative strengths of the various harmonic components. The
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Figure 48 Block diagram of instrumentation for measuring the bandwidth of the

Symmetric Analog Demodulator when the input is from the combination of power supply

and optical fiber interferometer.

bandwidth of the demodulator is limited, and the frequency content of the interferometric

output is affected by this limit. So there is a relationship between the bandwidth of the

demodulator and the amplitude and frequency of the signal of interest. The limited

bandwidth of the demodulator which we examined in the previous section has the effect

of distorting its output because it attenuates higher frequency components more than

lower frequency components. This is not the only distorting influence, however.

We have called the multiplicative product of phase shift and frequency the phase

rate, since the product is measured in radians per second. When the received signal is

differentiated, a signal results whose magnitude is proportional to the phase rate. A

second mechanism for creating distortion is saturation of any of the demodulator's
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internal amplifiers.
2" Saturation occurs when the amplifier receives excessively large

inputs. So an excessively large phase rate can cause saturation. At the onset of

saturation at any internal amplifier, distortion of the output begins to grow. As the

degree of saturation intensifies, so does the consequent distortion.

To quantify the gradual loss of output quality due to limited bandwidth and limited

phase rate, we can measure the total harmonic distortion present at the output of the

demodulator when a single-frequency test signal is applied. When the signal of interest

applied to the interferometer has frequency /. its harmonic overtones have frequencies

kf for k>2. The output o\ the Symmetric Analog Demodulator will also contain these

overtones. If the RMS amplitude at frequency kf is A k , then the total harmonic distortion

is defined as

THD
v
5>* (290)

N k--2

\H

For our purposes, we are not very concerned with how one might determine an

acceptable level of total harmonic distortion. For audio applications, figures as low as

0.01 c
c total harmonic distortion often are bandied about for amplifiers, although the

linearity of speakers and the ability o[' the human ear to detect distortion below \

c
c is

questionable. If one's objective is simply to determine that a particular frequency is

present, considerably more distortion than this is permissible.

We have found experimentally that for distortion to be easily seen when a sinusoid

is displayed on an oscilloscope, the level of total harmonic distortion must be between 4 c
"c

and 10% or higher. Because of this fact, we have made measurements of the peak phase

shift required to exceed 4 c
c total harmonic distortion, and we have done so over a range

of frequencies. We illustrate the fact that distortion of less than 1 % is barely perceptible

visually in the series of oscilloscope traces shown in Figure 49.

:o An amplifier is saturated when its output is at the limit dictated by the power

supplies or when it is slew -rate limited.
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Figure 49 Five oscilloscope traces of increasingly distorted sinusoidal waveforms (lower

traces) with an undistorted waveform for comparison (upper traces).
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To measure the total harmonic distortion, we used the instrumentation depicted in

Figure 50. The HP3561A Dynamic Signal Analyzer permits the user to designate the

fundamental frequency and up to 20 harmonics. It automatically computes the harmonic

distortion that these overtones represent.

The data are shown in Table XIX and graphed in Figure 51. In the table. VIS is

the voltage from the HP33I4A Function Generator. The HP467A Power Amplifier was

adjusted to give a gain o[ approximately 10 V/V. With this combination, the relationship

between the phase generated by the interferometer and the voltage shown on the front

panel of the HP3314A was found in Chapter IV by a least-squares lit to be

A = (34.29±0.02 — |kw + (-0.64±0.08 rad) (291)

Table XIX These are the peak input phase shifts required lo force the Symmetric

Analog Demodulator output to exceed 4 cc total harmonic distortion.

J1S y,s

(rad)

JIS ^1S
(krad/s)

10 Hz 5.8 V 200 1.3

20 Hz 5.1 V 170 3.5

30 Hz 6.1 V 210 6.3

60 Hz 5.6 V 190 12

100 Hz 6.6 V 230 23

200 Hz 6.7 V 230 46

300 Hz 6.4 V 220 66

600 Hz 4.2 V 140 86

1 kHz 1.7 V 58 58

2 kHz 1.1 V 37 74

3kHz 700 mV 23 70

6kHz 360 mV 12 70

10 kHz 177 mV 5.4 54
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and this is the equation used to compute A ls
in Tahle XIX. The product flsA ls also is

shown in the table. The voltage selection on the front panel of the HP3314A was varied

until the HP3561A indicated that the total distortion was 4%.

Gradual drift of the direction of polarization of the light in the interferometer alters

HP3314A
Function

Generator
->

HP6824A
Power

Amplifier

>
Optical

Fiber

Interfer-

ometer

->
Symmetric
Analogue

Demodulator
>

HP3561A
Dynamic
Signal

Analyzer

Figure 50 This instrumentation was used to measure the phase shift required to exceec

4% total harmonic distortion in the output of the Symmetric .Analog Demodulator.

the fringe visibility and appears related to increases in laser noise which we observed to

occur whenever fringe visibility declined markedly. These problems both can easily be

corrected as necessary by varying the laser current, and we made these corrections in the

course of this experiment in order to ensure that the demodulator had an undistorted

interferometric waveform on which to operate. Consequently, the values ofD and E in

Equation (279) could not be held constant during this experiment. Undoubtedly this

affected our measurements of the peak phase shift needed to exceed 4^ total harmonic

distortion. To obtain improved measurements would require the use ol' an interferometer

with a reduced propensity to generate such noise, or a feedback controller to regulate the

temperature of the laser and so keep it away from combinations of current, temperature,

and back-reflection which cause such noise. (An alternative way to eliminate back-

reflections would be to incorporate an optical isolator.) It is comforting to know,

however, that even in the presence of this noise, the demodulator was generally able to

recover the signal, albeit in a degraded manner. Of course, it was designed to counter

the effects of changes in D and E in the model of Equation (279).

There are two distinct regions to the graph in Figure 51. For frequencies of up to

about 300 Hz, the graph is horizontal. This reflects a limitation on the peak optical

phase shift we could achieve through the use of the HP6824A Power Amplifier, which
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7igure 51 Peak phase shift into the Symmetric Analog Demodulator necessary to exceed

4% total harmonic distortion. The straight line extrapolates the region of constant phase

rate to low frequencies.

saturated at around 60 V. The phase is so linear with voltage up to this limit that there

is no reason to suppose that higher voltages applied to the piezoelectric cylinders in the

optical interferometer would not continue to generate greater phase shifts. However, this

was the most powerful amplifier we had available and so we could neither verify this

supposition, nor obtain phase shifts in excess of about 250 radians.
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For frequencies above about 300 Hz the graph begins to fall at roughly 20 dB per

decade of frequency. ' We have seen that it is the product of phase shift and frequency,

the phase rate, which is crucial to the correct operation of the Symmetric Analog

Demodulator. This product cannot exceed a value which is approximately constant over

the range in which the demodulator operates with constant scale factor. For the

demodulator, we have Af on the order of 65 krad/s. Recall that in the design, we sought

voltage levels of 5 V at the output of each internal amplifier when the peak input phase

A was 100 radians and the frequency of the signal of interest was 200 Hz. If the actual

saturation voltage is 13.5 V, then we would expect a maximum phase rate of

T

trnxfrnx = ^dOO rad)(200 Hz)
wr ^ MAX 'MAX. c
DESIGN D

(292)

ca krad
= 54

which is close to what we achieved.

Further insight into the performance of the Symmetric Analog Demodulator can

be gleaned from two further plots of harmonic distortion. Figure 52 shows a contour plot

of the harmonic distortion as a function of the frequency and the phase amplitude of the

signal of interest. The contour lines join points with equal harmonic distortion. The data

were taken by a computer operating our apparatus on an IEEE-496 bus. The contour

plot represents interpolation between the points where measurements were taken.

The same data are displayed in a different form in Figure 53. which is a perspective

view of a three-dimensional plot o[ the total harmonic distortion above the plane of

frequency and phase amplitude of the signal of interest.

From these two plots, we can see that there is a large region in the center of the

plots where distortion is quite low. Not surprisingly, distortion becomes severe where the

phase rate (the product oi' phase amplitude and frequency) is high, for under these

circumstances, high frequencies are present in the interferometric output, and they are

21
This appears to be a linear decline on a log-log plot and is a rectangular hyperbola

on a linear-linear plot.
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Figure 52 Contour plot o( the Harmonic Distortion in the output of the Symmetric

Analog Demodulator as a function of frequency and amplitude of the signal of interest.

adversely affected by the limited bandwidth of the demodulator.

In the opposite corner, distortion due to noise from the differentiators is evident.

The other two corners also show increased total harmonic distortion, although for high

frequencies and low phase amplitudes, it still is below 4%. For low frequencies and large

phase amplitudes, the low-frequency roll-off of the integrators distorts the output.

To modify our design to set a different maximum acceptable signal, it is necessary

to ensure that the gains within the demodulator are altered so that when this phase rate

is present, no amplifier reaches saturation. It is also necessary that no amplifier be

expected to change its outputs faster than its specified slew rate (measured in volts per

second). Some increase in the maximum permissible phase rate can be achieved by
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limiting the outputs of the internal amplifiers to small enough levels. However, this

measure has an adverse effect on dynamic range since the ratio of peak signal-to-noise

declines if the peak output signal must he smaller hut the noise is fixed in magnitude.

E. NOISE FLOOR

We have now seen that in the small-signal regime, the demodulator has a

handwidth of around 113 kHz. We have also examined the peak phase shifts (as a

function of frequency) which can he demodulated with less than 4 c
c total harmonic

distortion. Let us now turn to the performance when only very small phase shifts are

present.

To measure the noise floor, we used the same instrumentation shown earlier in

Figure 42. At that time, we were interested in measuring the scale factor of the

Symmetric Analog Demodulator. Here, we use the same measuring technique, hut

hecause the inputs are small, we are actually measuring the noise. We measure the mean

voltage delivered hy the demodulator and its standard deviation. The ratio of the mean

to the standard deviation is defined as the ratio of signal to noise. S/N. To ohtain the

noise floor, we simply measure S/N while gradually decreasing S. When S/N= 1 (0 dB).

the signal and the noise are of equal strengths. The only difficulty is that as the signal

vanishes, the lock-in amplifier becomes progressively less able to detect anything. So we

shall try to extrapolate to the noise floor without actually reducing 5 all the way to it.

We set the HP3456A Digital Voltmeter to perform 10 integrations per cycle of the

power line, and to take 768 such samples. The effect of this was to give over two

minutes of averaging. The HP3314A Function Generator was set to provide a peak

output voltage of 1.00 V. This signal was reduced hy the Gertsch Model 480 Ratio

Standard to maintain a precise peak. We applied the effective scale factor for the

Analog Interferometric Simulators which is shown in Appendix C to he is FSEFF =

918±4 mrad/V to calculate the effective peak phase A from the simulators. The EG&G

Princeton Applied Research Model 5210 Lock-In Amplifier was operated with a time

constant t=1 s and with a filter roll-off of 12 dB per octave. The equivalent noise

bandwidth resulting from these settings can be computed from the formula
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Table XX Measurements to obtain the noise floor of the Symmetric Analog

Demodulator (23-110 Hz). Data marked with an asterisk
(

:;

)
were not included in the

least-squares fit.

/ Ratio 1 ).H AEFF .V YoUTJiMS S/N

23

Hz

0.100000 100 mV 91.8 mrad

I0
3

2.01 ±0.055 V 31 dB

0.050000 50.0 mV 45.9 mrad 1.00± 0.076 V 22 dB

0.025000 25.0 mV 23.0 mrad 0.5 1 ±0.066 V 18 dB

0.012500 12.5 mV 1 1.5 mrad 0.261 ±0.055 V 13 dB

0.006250 o.2> mV 5.74 mrad 0.1 47 ±0.048 V
10 dB

35

Hz

1.000000 1.00 V 918 mrad 10
:

2.3340 ±0.0041 V 55 dB

0.100000 100 mV 91.8 mrad 10' 2.801 ±0.033 V 38 dB

0.010000 10.0 mV 9.18 mrad

to
4

2.91 ±0.42 V 17 dB

0.005000 5.00 mV 4.59 mrad 1.55 ±0.40 V 12 dB

0.002500 2.50 mV 2.30 mrad 1.02 ±0.34 V
10 dB

65

Hz

1.000000 1.00 V 918 mrad 333.3 ".8236±0.0079 V 00 dB

0.100000 100 mV 91.8 mrad

3.3 xlO3

9.293 ±0.072 V 42 dB

0.010000 10.0 mV 9.18 mrad 983 ±71 mV 23 dB

0.005000 5.00 mV 4.59 mrad 512±80 mV 16 dB

0.002500 2.50 mV 2.29 mrad 289±58 mV 14 dB

110

Hz

1.000000 1.00 V 918 mrad

333.3

7.0990±0.0047 V 64 dB

0.100000 100 mV 91.8 mrad "94.1 ±3.4 mV 47 dB

0.010000 10.0 mV 9.18 mrad 78.2 ±4.0 mV 25 dB

0.005000 5.00 mV 4.59 mrad 37.2±3.7 mV 20 dB

0.002500 2.50 mV 2.29 mrad 19.9±3.5 mV 15 dB
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n = _L = 125 mHz (293)
EVN

gr

The experimental observations are shown in Table XX and Table XXI. It will be

noticed that when signal levels are strong, the signal-to-noise ratio drops roughly 6 dB for

every halving of the effective voltage Vlty, as it should. This is somewhat inaccurate.

which is not too surprising inasmuch as the standard deviation of each set of measure-

ments is not always the same at a single value of the frequency /'. It also becomes grossly

inaccurate for the lowest signal levels. 5.74 mrad and 2.30 mrad. at 23 Hz and 35 Hz

respectively. These data show that the standard deviation does not change too much at

these low levels, and if the standard deviation truly measures the noise, this is to be

expected. However, the mean fails to decline by one half at these low levels. Doubtless

this is due to the fact that the mean and the noise are now of comparable values.

To extrapolate the declining ratio o\' signal to noise to the level where signal and

noise are equal, i.e.. where the signal-to-noise ratio is 1 (0 dB). all the data except those

marked with an asterisk ( ) in Table XX and Table XXI were subjected to a least

squares linear curve lit. The signal-to-noise ratio in dB was regarded as the independent

variable and the logarithm to the base 10 o\' the effective peak input phase shift was

regarded as the dependent variable. Table XXII shows the linear equations which result

from this procedure. To find the noise floor, it is only necessary to let S'.V be in each

equation. This gives the logarithm o[ the phase shift A which would produce an output

voltage equal to the noise. Thus, by this procedure, we can regard all o\' the output noise

as due to phase noise at the input.

The great utility of the lock-in amplifier is its ability synchronously to detect less and

less signal if it examines a narrower and narrower bandwidth. In order to isolate the

performance of the Symmetric Analog Demodulator from that o\' the lock-in amplifier.

we should normalize the noise floor found by this extrapolation process by dividing it by
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Table XXI Measurements to obtain the noise floor of the Symmetric Analog

Demodulator (200 Hz - 1.00 kHz).

/ Ratio '/.// *tn .S 1

tit l RMS .V \

200

Hz

1.000000 1.00 V MIS mrad

333.3

(>.7219±0.0027 V 68 dB

0.1 000(H) Kid mV ^1.8 mrad ^17.0±2.(> mV 49 dB

0.010000 lo.o mV 9.18 mrad (>4.4±1.4 mV 31 dB

0.005000 5.0 mV 4.59 mrad 33.8 ±2.3 mV 23 dB

0.002500 2.5 mV 2.24 mrad K>.4±2.3 mV 17 dB

300

Hz

1.000000 1.00 V 418 mrad 6.7 17S ±0.0024 V 64 dB

0.100000 loo mV 91.8 mrad 3.33 xlO3
7. 186 ±0.026 V 49 dB

0.01000(1 10.0 mV 4.18 mrad 33.3 xl0?
7.31 ±0.20 V 31 dB

0.001000 5.00 mV 4.54 mrad

10
s

2.84 ±0.64 V 12 dB

0.000500 500 |i\ 2.24 mrad 1.37±0.62 V
6.4

dB

590

Hz

1.000000 1.00 V 418 mrad 333.3 6.5 138 ±0.00 12 V 75 dB

0.100000 100 mV 91.8 mrad 3.33 xl0?
6. 7976 ±0.0067 V 60 dB

0.010000 HUl mV 9.18 mrad 33.3 xlO3
6.811 ±0.069 V 40 dB

0.001000 1.00 mV 4.59 mrad
10

s

2.09±0.21 V 20 dB

0.000500 500 \iV 2.29 mrad 1.07±().21V 14 dB

1.0

kHz

1.000000 1.00 V 418 mrad 333.3 6.4731 ±0.0021 V 70 dB

0.100000 100 mV 91.8 mrad 3.33 xlO3
(>. 7374 ±0.0035 V 66 dB

0.010000 lo.o mV 4.18 mrad 33.3 XlO3
6.760 ±0.045 V 44 dB

0.001000 l.oo mV 4.54 mrad
10

?

2.05 ±0. 13V 24 dB

0.000500 500 \i\' 2.24 mrad 1.03 ±0.1 4 V 18 dB
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Table XXII Least squares lit of the logarithm of phase input to the Symmetric Analog

Demodulator to achieve a eiven ratio S/N oi sitinal to noise.

Frequency

23//z

Least -squares fit

log
(A \n zrrcrEFF

with r=0.983

= f(50±7)xlO"
3l- ~ (-2.6±0.1)
Nn dB

35Hz log
^EFF

\rad

,

with r=0.9989

- [(53±2)xl0~ 3p - (-2.96±0.06)
" dB

65//z log

1 A \ <:

- [(53±l)xlO-
3]- - (-3.22±0.05)

" dB\rad
t

with r =0.9994

110Hz log
I A \AEFF 31 S

Irad

with r=0.9986

= [(52±2)xl0" 3]- ^ (-3.39±0.06)

" dB

200Hz log
(A \n EFF

lrad
/

with r -0.9990

= [(51±l)xl0"
3]- - (-3.55±0.06)
N dB

300Hz log
^EFF

,
Irad

with r =0 9998

[(53.3±0.6)xl0- 3l- - (-3.69*0.02)

590Hz log
A**\ = [(53 ± 2)xl0"

3]^
Irad

with r -0.998

(-4.12±0.08)

dB

IkHz log
'A NAEFF 31 5

with r =0.979

= f(57±7)xl0"
3j- + (-4.4±0.3)
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Table XXIII Computation of the phase noise spectral density tor the Symmetric Analog

Demodulator.

Frequency

f

Logarithm ol Phase

Floor

log10f/i'7Kj

Phase

A
Bandwidth

Phase Spectral

Density

A*
'

23 Hz -2.55 2.88 mrad

125 mHz

8.0 mrad//I tz

35 Hz -2.962 1 .09 mrad 3.09 mrad//Hz

65 Hz -3.218 606 |jrad 1.71 mrad//Hz

110 Hz -3.386 410 urad 1.16 mrad/Hz

200 Hz -3.547 284 M rad 803 urad//Hz

300 Hz -3.686 210 prad 583 prad//Hz

590 Hz -4.117 42 urad 220 urad /Hz

1 kHz -4.41 72 urad 110 urad,/Hz

the square root of the bandwidth. :: The bandwidth ot" the lock-in amplifier can be

computed from Equation (293).

Table XXIII shows the computation of the phase noise spectral density from the

equations of Table XXII. It is important to note that the generation of a linear curve-fit

from logarithmic data is not as reliable as doing so from linear data. While the data

shown in Table XXII show the standard deviation of the error in both the mean and the

variance of the logarithmic data, taking the corresponding linear data to the same number

of decimal places is inappropriate. In Table XXIII we have contented ourselves with

quoting the resulting phase noise spectral density A f to two or three decimal places.

Figure 54 presents the data of Table XXIII in graphical form. Note that the

spectral density is not constant with frequency, as it would be if the noise were white.

Instead, it declines at the rate of about 20 dB per decade of increase in frequency, i.e.,

the noise voltage spectral density is proportional to the reciprocal of the frequency, l/f.

If we were considering the power spectral density, we could simply divide by the

bandwidth in hertz. Since the phase shift (or, for that matter, the voltage) are

proportional to the square root of the power, we divide either of them by the square root

of the bandwidth. The resultant units are rad//Hz or V//Hz.
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Symmetric Analogue Demodulator

Noise Floor vs. Frequency

100

Frequency [Hz]

igure 54 Plot of the phase noise spectral density of the Symmetric Analog Demodulator

as a function of frequency of the signal of interest. The spectral density indicates the

minimum discernible signal in a one hertz bandwidth.

Consequently, its noise power spectral density declines at a rate proportional to lif. This

is a form of "pink" noise, for the lower frequencies are noisier. It is not to be confused

with that variety of noise usually called pink or 1// noise and whose power declines at the

rate 1//. The voltage spectral density of that kind of noise declines at the rate of 1///.
::

Pink noise is what one would expect from the Symmetric Analog Demodulator since

its output stage is an integrator. An integrator has a 1// voltage gain characteristic. If

white noise were present at its input, pink noise should be present at the output, at least

23 The term "pink" is applied by analogy with visible light, in which the lowest

frequencies are red and the highest frequencies are blue.
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until the intrinsic noise of the output stage itself becomes significant. Generally speaking,

operational amplifiers can be modelled as generating white noise at their outputs when

the frequency is above about 100 Hz. If the input noise is greater, however, then this

noise is not noticeable until very high frequencies are reached, for only then does the

gain characteristic o\' the amplifier attenuate the input noise sufficiently for it to be less

than the amplifiers own noise. We show in the detailed noise analysis in Appendix F that

the demodulator's output noise is indeed due to the effect of integration of white noise

from the analog divider.

Now the input to the Symmetric Analog Demodulator as a whole may be white, but

the differentiation that lakes place early in the demodulation process would convert this

white noise to "blue" noise, i.e., noise with more high frequency content than low

frequency content. Yet this noise is largely dwarfed by the noise inherent to the Analog

Devices AD534 multipliers. This, in turn, is swamped by the white noise output o\' the

Burr-Brown DIV100. When the white noise reaches the integrator, a characteristic

decline in power proportional to \lf results.

F. DYNAMIC RANGE

The dynamic range of the Symmetric Analog Demodulator is the difference

between the smallest and the largest phase shift it can successfully demodulate. As we

have seen, we can characterize the largest phase shift as that which produces the most

harmonic distortion that we can tolerate. We can characterize the lowest phase shift as

that which is equal to the noise of the demodulator. The upper limit is essentially fixed

in character. The lower limit, however, is a function of the bandwidth under consider-

ation, for we have expressed the noise floor in phase noise spectral density.

We shall choose this spectral density as the lower limit. Implicit in using this as the

lower end of the dynamic range is the assumption that we are looking in a 1 Hz

bandwidth. We can increase the dynamic range of the Symmetric Analog Demodulator

by narrowing the bandwidth in which we view the output. Likewise, if we widen the

bandwidth, diminished dynamic range is the consequence.
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figure 55 The dynamic range of the Symmetric Analog Demodulator when the output

is viewed in a 1 Hz bandwidth.

Of course, changing the bandwidth in the frequency domain is tantamount to

varying the duration o( observation in the time domain. To achieve a narrower

bandwidth, we observe the output of the demodulator for a longer period of time.

Conversely, to widen the bandwidth, we shorten the period of observation.

In Figure 55. we show plots of the maximum acceptable signal (that which induces

4% total harmonic distortion) and the phase noise in a 1 Hz bandwidth. These data were

shown separately when we considered these two characteristics of the performance of the

Symmetric Analog Demodulator previously. Here they are superimposed on the same

scale. The dynamic range is the ratio of the upper limit at a frequency to the lower limit.
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Since this plot is logarithmic, the dynamic range in a 1 Hz bandwidth can be obtained by

subtracting the lower limit from the upper limit in decibels.

For example, at a frequency /= 590 Hz, the dynamic range ot the Symmetric Analog

Demodulator in a 1 Hz bandwidth is

Maximum acceptable phase (4% THD) 140 rad

Phase noise in a 1 Hz bandwidth 260 \irad (294)

- 5.38 xlO5 = 115 dB.

G. COMPLEXITY

The Symmetric Analog Demodulator is of only moderate complexity. The chief

difficulty is understanding the principles of its operation. This is essentially just an

exercise in mathematics. Of course, the beauty of the mathematical models is not

entirely matched by that o( the real signals. They are noisy: those of the models have no

noise. More significantly, the models we have used, those on which the algorithm are

based, assume that all three outputs of the 3x3 coupler have the same constant offset

D, the same amplitude E (see Equation (279) on page 176). and precisely 120° phase

shift between each output and any other output. In reality, these assumptions are more

or less wrong. Despite this fact, the demodulator works quite well.

As far as the circuit itself is concerned, it does not consist o( very many parts. It

could be integrated onto a single (or possibly a very few) application-specific integrated

circuits (ASIC) for some reduction in the amount of space, weight, and power required.

As it is, it could fit onto a single printed circuit board without much difficulty.

H. APPROXIMATE COST

Table XXIV provides a calculation of the cost of the integrated circuits in the

Symmetric Analog Demodulator. The parts are identified by their part numbers. The

quantity of each part required is listed, along with prices from recent price lists. (The
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Table XXIV Calculation o! the cost ot the integrated circuits used in the Symmetric

Analog Demodulator.

Part ID Description
Quantity

Required
Price

Source

of

Price-

Total

Cost ot

Part

AD534
Analog

Multiplier
6 $29.95

Analog

Devices
$179.70

DIV100 Analog Divider 1 $36.60 Burr-Brown $36.60

OPA-111
Low-noise Op

Amp
->

5 $11.80 Burr-Brown $35.40

AD712
General Purpose

Op Amp
5 $3.60

Analog

Devices
$18.00

TOTAL 15 $269.70

source of the price is provided.) The total price of under $269.70 is very modest lor a

demodulator with more than 110 dB dynamic range, extending from hundreds oi

microradians to hundreds of whole radians. A practical demodulator would include some

additional items, such as the printed circuit board, passive components, connectors,

packaging, and the like. Also, any commercially available demodulator would have some

level of profit built into the price, too.

Subsequent to the construction o[' this demodulator. Analog Devices released the

AD734 integrated circuit multiplier. At $14.77 for a single chip, it is cheaper than the

AD534 at $29.95 by a factor o\' 2. Us bandwidth is 10 MHz. versus 1 Mhz for the

AD534. Finally, its scale factor is programmable, whereas on the AD534 it is essentially

fixed. This change lets the new chip perform division as well as multiplication. If it were

used, the DIV100 chip used in our demodulator could be replaced by this new device.

I. SUMMARY

In this chapter we have considered the performance o[' a passive homodyne

demodulator which employs a new algorithm for demodulation, namely, symmetric

demodulation. We have seen that the dynamic range achieved is 115 dB. and this was

without pushing the design to handle low levels o( signal. The phase rate is 65 krad s.
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and this, too, could be improved. This demodulator permits handling of signals both

below and above the level of — rad of optical phase shift, which gives it a very decided

advantage over fringe-rale demodulators. Its cost is low. less than $270, and we

mentioned that the cost and performance both could be improved by the use of a new

integrated circuit multiplier whose bandwidth is greater than that o[' the AD534 by a

factor of 10 and whose cost is ;i factor of two lower.

In the next chapter, we return to the asymmetric demodulation algorithm,

describing its implementation in digital, rather than analog, electronics.
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XII. DESIGN OF AN ASYMMETRIC DIGITAL DEMODULATOR

A. BACKGROUND

In this chapter we consider the design of a digital circuit to implement the

asymmetric demodulation scheme discussed in Chapter VII. The purpose is to prove that

a digital implementation is feasible. Many techniques of sophisticated signal processing

are more easily done with digital electronics, and so a system which recovers the signals

in a digital form and furnishes them to following circuits in the same form is useful in

some applications.

Any digital technique requires that an incoming analog signal first he sampled and

digitized. Since the optical fiber interferometric sensors which we consider in this

dissertation have three outputs, one for each output fiber o\' the interferometer, there

are three analog signals available. The symmetric method described in Chapter VIII uses

all three, but the asymmetric method can discard one of these.
:4 and this is how we

implemented it. We can use an analog-to-digital converter (AD) to convert the analog

signals to two binary numbers representing their values.

Of course, one could provide a digital output to following circuits from the output

of an analog demodulator. However, we chose to attempt to demonstrate the feasibility

of doing the whole demodulation in digital circuitry. For the purpose ol showing that the

scheme works, we terminate it with a conversion from digital back lo analog. This would

not typically be required in an application. However, it makes it quite easy to see the

wave form output by the demodulator on an ordinary oscilloscope.

It is desirable that the range of voltages across which the A/D can operate match

the range of voltages across which the signal ranges. This takes full advantage of the

resolution which the A/D possesses. This is especially important when the number oi' bits

24
It is possible to use all three interferometric outputs in fabricating the in-phase and

quadrature components required by the asymmetric demodulation method, but there is

no clear advantage to doing so. There is a drawback, in that more circuitry is needed to

do so.
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in the digital representation is small, for there are fewer numbers available for

representing all possible voltages. It is wasteful to use. say, only one third of the full

range of an A/D.

Matching the range ol' the signals to that of the A/D is not easy. It is particularly

difficult with the signals output by an optical fiber interferometric sensor because they are

modelled by the equation

x
k
(t) = D+Ecos ftf)+#0-(*-l)|* (295)

Recall that in this equation. D is a central value around which the outputs vary: E is the

peak variation o( the signals from this value: <f(/) is the signal ol' interest, a reconstruction

of which we want the demodulator to provide: <b{t) is an additional phase shift due to

extraneous factors; and the final multiple o[ 2~/3 is due to the particular choice of output

from the interferometer. Now D and E both vary in an uncontrollable way. Changes in

laser power and changes in polarization both have an effect on these parameters. So the

A/D must be able to handle signals in the range D±E. and since this range is variable,

it must be able to handle the greatest possible range that this can have. On average, we

do not expect the signals to have this maximal range, and so some mismatch between the

range of the signals and the range o[ the A/Ds is inescapable.

The earliest point where digitization can be performed is just after the receiver

section, where the signals have been converted for the first time to voltage signals

described by Equation (295). However, we shall postpone the digitization until after D

has been subtracted from each of the two signals in analog circuitry. This is not strictly

necessary since some A/Ds can handle a voltage range which is not centered around V

(we say its range is offset from zero). Many of them, however, and in particular the ones

we used, require that the offset voltage be known. To measure it entails adding all three

outputs together, as shown in the discussion of symmetric demodulation in Chapter VIII.

This means that we must have a receiver for each of the three outputs, even though in

the asymmetric method only two are needed for the algorithm. Since it takes little extra

effort to perform the subtraction of D in analog circuitry, we elected to do this.
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Ideally, one would he able to eliminate the effects of variability of £. the peak

deviation of the signal from D. In the symmetric demodulation scheme, this is done by

a ratiometric technique. There unfortunately is no way to measure E prior to digitization

of the signals without fairly elaborate analog processing, in which case the question must

arise, why not use an analog demodulator? If a digital signal is needed for later

processing, then the analog demodulator's output could be digitized. Only one A/D

would be required, and strict control over the output amplitude would be available for

a given phase amplitude. One could measure E in digital circuitry, but this would have

to occur after the digitization, and so the benefit o{ being able to match the range of the

analog to digital conversion to the peak values oi' the signal would not be available. So

we shall live with the wastefulness o( resolution inherent in not being able to control E.

and shall digitize the signals once the average value has been subtracted o((. This must

be seen as a major flaw in the use of a digital demodulator.

There are several approaches we could have taken in implementing an asymmetric

digital demodulator. An obvious one would have been to use either a microprocessor or

a dedicated Digital Signal Processor (DSP) integrated circuit to perform the calculations

required by the algorithm. We considered this, but found that the number o( instructions

needed to complete all the processing necessary on each pair ol' samples oi' data would

take longer to process than the 2.5 ps required by the A/D we chose to use. the Analog

Devices AD7769. To take full advantage o( the speed til the AD. we would have

needed two DSPs in parallel. This is feasible, but we elected a different course.

We decided to implement the algorithm with a purely hardware circuit. We used

dedicated multipliers, adders, subtractors. and registers. The registers permit the use of

a pipe-lined architecture in which different samples o( data are being processed

simultaneously at various stages of the circuit. The result of this approach is a

complicated circuit (especially on a breadboard), but the processing is so fast that the

A/Ds remain the limiting factor on speed, which was what we had in mind.

207



B. DETAILED DESIGN

The schematic diagrams lor the Asymmetric Digital Demodulator are given in

Figure 56 through Figure 59. The majority of the integrated circuits in the demodulator

operate on a single +5 V power supply. However, the A/D and the D/A have special

requirements. The A/D requires a + 12 V power supply. Its absolute peak supply voltage

is +15 V, but we felt that to push the operation to this limit was unwise, even though we

were already using +15 V commonly for analog circuits, and despite the need for an

additional power supply. The D/A requires a -5 V power supply for its negative analog

output reference. Unlike the AD7769 A/D. it can handle up to ±17 V for its main

power supplies, so running il on the standard ±15 V was not a problem.

As we mentioned earlier, the AD7769 has an input to specify the offset voltage, the

voltage around which the inputs fluctuate. This value is restricted to staying between

+2 V and +6.8 V. Because +5 V is already available, and is within this range, we shall

use it for the VB]AS input to the AD7769. For greater accuracy, one should use a

precision voltage reference at this input, a precaution we have ignored.

The variation from this offset is specified as a voltage at the Kvuy.vf; input o\' the

AD7769. It can be between +2.0 V and +3.0 V. We shall specify it to be +3.0 V: a

voltage divider composed o\' 10.0 kfi and 30.1 kH resistors divides the +12 V power

supply down to +3.0 V to provide this reference. Strictly speaking, this voltage, too.

should be provided with a precision reference, but again, we have ignored this.

Our interferometric signals have had D removed from them. The offset voltage

specified at the VBIAS input requires that we add +5 V back in to the signal. Also, the

deviation E of the signals from the central value must be scaled so that it never exceeds

Ksw/.vg in magnitude.

The AD7769 requires a clock signal which can have a frequency of up to 400 kHz,

thus providing a conversion period of 2.5 ps. The clock signal must be a square wave

from to +5 V. We generated this using an HP3314A Function Generator. This signal

functions as a strobe to cause conversion to begin. There actually is an internal clock,

too. However, the external clock is the one which we use to svnehronize the entire

208



-tjtaa

aaaaoaaa — >—

u

Trtfrttl

R
~

7>t= r r h

,

[">>>•>

igure 56 Schematic of the Asymmetric- Digital Demodulator. This section converts two

of the interferometric outputs to digital form and creates an in-phase and a quadrature

signal from them.
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"igure 57 Schematic of the Asymmetric Digital Demodulator. This section finds

differences between consecutive samples, cross-multiplies one signal with the difference

from the other signal, and subtracts one from the other.
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rigure 58 Schematic of the Asymmetric, Digital Demodulator. This section performs an

integration of the derivative of the signal of interest which was created in the preceding

section.
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ASYMMETRIC DIGITAL DEMODULATOR
CONVERSION OF DIGITAL OUTPUT TO ANALOGUE
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Figure 59 Schematic drawing of the Asymmetric Digital Demodulator. This section is

the digital-to-analog converter which creates an analog reconstruction of the output of

the digital circuitry.

pipeline processor.

At the end of the conversion, an unsigned 8-bit binary quantity appears on the data

lines. To facilitate subsequent arithmetic, this is converted to a signed quantity by logical

inversion of its high-order bit 7. Before conversion, the bits can be regarded as having

the following weights:

Bit 7 6 5 4 3 2 1

Weight 2" 1 2"2 2" 3 2"4 2" 5 2"6 2"7 2"8

After conversion, the bits should be re-interpreted to mean
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Bit 7 6 5 4 3 2 1

Weight -2° 2"! 2" 2 T> 2 -4 2"5 2"6 2
-7

The effect of this is to devote the first bit to the function of carrying the sign of the value

held in the other 7 bits. These bits can give values between and 1
-2" =0.9922. The

result of using all 8 bits then is a signed number in the range -1 to 0.9922. The

conversion then has created an unsealed cosine function, but, if the value of the input has

a variation of less than I

'

vll
-

AVr; . then the output is scaled by a factor less than one.

The inversion o\' the high-order bit is performed by L'l A. a 76LS04 hex-inverter.

We can regard one o( the two outputs as the cosine. From it and the cither input (with

its 120° phase shift) we want to construct the sine. This is equivalent to saying that a

120° phase shift is not correct: we want it to be 90°.

How can we accomplish this? The two digitized signals now have the form

/ 2
\

.v,(f) = cos(<f) and x
2
(t) = coa<f--^ (296)

We can make use of the trigonometric identity

cos(A-B) = cos04)cos(#)+sin(/i)sin(.6) (297)

to rewrite x2 (t) as

xJt) = cos(<f)cos
2

)-IT
3 J

-sin(<f)sHM ^osCO-^sirKO-
2

From this we can obtain sin(£) bv the linear combination

(298)

1—x,(f)+—*,(0 - — --cos(0 +V sin(^)
1 v^ +—cos(<f) = sin(f) (299)

In digital electronics, as in analog, we must take care that quantities remain within

specific limits. In our case, the interpretation we have placed on the bits of an S-bit word

is such that quantities must remain within the range -
1 to 0.9922. Does the computation
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-> cos( 4"

)

>sin( 4")

igure 60 Block diagram showing how to obtain the in-phase and quadrature wave forms

without overflow.

shown in Equation (299) cause any intermediate results to be outside this range? That

depends on the specific manner in which we implement the equation. The obvious way

to integrate it is with two multipliers to do the scaling and one adder to perform the

summation. However, the scale factor 2//3=1.155>l, so this method can indeed cause

an overflow. If we perform the scaling in two steps, however, as illustrated in the block

diagram in Figure 60. then overflow cannot occur.

To see that this method avoids overflow, we can rewrite Equation (299) as

( 1 1

[ft
"

ft

-—x2(t).

ft

(300)

We have already shown that this sum yields sin(«f). We now digress briefly in order to

see how to rewrite the first term in a manner that makes its magnitude clear.

In general, the expression A cos( if/) +Bsm(ijr) can be rewritten as

/4cos(^)+5sin(^) = Dcos(^+0) (301)

where D and 4> are values which we would like to determine. To do so, we use the

trigonometric identity
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uB\
d> - tan

1

A

Applying Equation (301) to Equation (300) gives

cos(A+B) = cosG4)cos(£)-sin04)sin(fl) ,302 ^

to give

Dcos(if/+(f>) = Dcos((f>)cos(i//)-Dsm((p)sm(ip). ,303)

We can equate the coefficients oi' the sine and cosine to yield

A ~ Dcos(4>) and B = Dsm(<f>). (304)

From the trigonometric identity

sin
2(0)+cos2

(0) - 1
(305)

we have

A 2 +B 2
= D 2

cos
2
(<j>)+D

2sw2

(<P) = D\cos\<P)+sm\4>)] = D 2 (306 >

Hence

(307)D = ^A 2 +B 2
.

We can solve for the angle 6 by taking the ratio o( the two coefficients:

B
__

Dsin(4>)
__ ^i4>)

,308)

A Z>cos(0)

So

(309)
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x
2
(t) x.(t)

\ i i

+ = cos(<f) +— sin(<f) +— cos(<f)

y/3 fi 2^3 2
y/3

1

:
cos(£)+-sin(£) <31 °)

2fi 2

= —cos[^+tan
_1

v/3].

\/3

From this, we see that by breaking up the method into two parts, as in Equation (300),

we avoid overflow, since 1//"3<1.

We implemented the scaling with two Analog Devices ADSP-1080A 8-Bit

Multipliers, labelled U5 and U6 in the schematic of Figure 57 on page 208. They

generate a 16-bit result: at this point, however, we retain only the most significant 8 bits

and ascribe to them the same meaning as before. The signed 8-bit numbers are in the

range -1 to 0.9922.

The inputs to the multipliers arrive one conversion time after the clock signal

arrives at the AD7769 A/D Converters. Since the multipliers use the same clock, they

start multiplying the previous cycle's words at this point: the new words must wait for

another cycle. To keep the word in the cosine path synchronized with this process, we

have inserted a 74LS374 Octal Latch (U4) which delays the word in the cosine path by

one cycle, too. The outputs o( the multipliers are released on the opposite cycle ot the

clock. This means that the multiplier takes a full half-cycle before it releases its output.

Latch U4 has no such delay: its outputs arrive at latch U13 quite soon after the normal

clock occurs. The word released by the multipliers, in contrast, takes a more tortuous

path through two stages of three 74LS83 4-bit adders, which perform the two additions

of Figure 60 on page 214. They are quite fast, however, compared to the 1.25 ys for half

of a clock cycle, so their outputs have no trouble catching up at latch U14 with the

corresponding word at L'13. At this point. U13 holds an 8-bit cosine of the signal of

interest and U14 holds an 8-bit sine of it.

Figure 61 is a block diagram of the asymmetric demodulation algorithm. Note that

the data are not continuous either in time or in magnitude. They are equally spaced
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igure 61 Block diagram showing the asymmetric demodulation algorithm when the data

are digital words taken at successive sampling instants t-1, i. t+1, etc.
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digital words corresponding lo sample times /-/. /,/ + /, etc. The difference between two

successive words is computed by saving the current word in a register and subtracting it

from the next word to come along. A digital multiplier finds the product between the

current sample word and the difference between the current sample word in the other

signal path and its previous value. When the difference between these products is taken,

we obtain

cos(£,)[sin(<f,) - sin(<f,_
; )]

- sin(£
f
)[cos(^

r
) - cos(^.

;)]

= sin(^)cos(^_
7
)

- cos(£,)sin(£
f _,)

(311)

- sin
K<

" £,-/]

If the sample interval is sufficiently small (i.e., if the sample frequency is sufficiently high),

then the argument of the sine in Equation (311) is very small. In this case, we can use

the small-angle approximation. The output o( the subtractor is

>*{{, ~ f,-i]
= ^ ~ St-v

(312)

We can integrate this first-order difference to recover a sequence corresponding to the

signal of interest. <f.

The integration amounts to weighting these differences by the multiple k, and

adding them into a running sum. The running sum. however, is also added in on itself.

It would swiftly grow without bound if k2
were not less than one. We shall explain how

to pick these two constants presently.

From the schematics o[' Figure 57 and Figure 58. it can be seen that two successive

words in each data path are subtracted by the 74LS181 4-Bit Arithmetic Logic Units

(ALUs) U15 and U16 (for the cosine path) and U17 and U18 (for the sine path) to yield

first-order differences. These differences are analogous to the derivatives of the

continuous-time algorithm. The current data words and the differences are cross-

multiplied by two more ADSP-1080A multipliers U19 and U20. As with U5 and U6.

these accept data on the normal clock and release the products on the inverted clock.

Shortly after the inverted clock triggers this release, the difference between the two cross-
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products is produced by four more 74LS1S1 ALUs. These ALUs comprise a 16-bit

subtractor circuit; all 16 output bits of each multiplier are used. The outputs of 121

through U24 are digital words representing the first difference (analogous to the

derivative) of the signal of interest.

The 16-bit difference is then processed by a digital integrator in order to recover

the signal of interest. Of course, a true integrator would have infinite gain at frequency

0, so what we really want is a low-pass filter which approximates an integrator at high

frequencies. An analog filter which has a low-pass characteristic and a cut-off""

frequency /=/, has a Laplace transform

H(s) - — l— (313)

If we let the complex variable s be purely imaginary, then

s = jco = jlnf. (314 >

If f»f(
„ then this transfer I unction becomes

H{j2nf) = ! * —
,

(315)

j2nf+2nfQ jlnf

which is the transfer characteristic of an integrator.

The impulse response //(/) of the system is given by the inverse Laplace transform

of the transfer function.

h(t) = T l
[H(s)] = e'

2Kfo' {M6)

25 The cut-off frequency is the frequency at which the magnitude of the gain has

declined by 3 dB from the peak.
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Taking the right-sided Z-translonrr' of this, we get

Z[h(nT)} - z[c"
Won7

]

e

= E (,-WoVly

(317)

Sum of a

2n/ 7 _! geometnc senes

The advantage to having obtained this equation is that the necessary filter coefficients

for a digital filter to implement this function can be read right from the equation. Strum

and Kirk [Ref. 19. pp. 350-351] show that a difference equation

-V L

k=\ i=0

has a Z-transform

26 The right-sided Z-lransform is useful in converting difference equations into

algebraic equations. Since a sampled-data system uses finite differences rather than

infinitesimal differences, the Z-transform can be used with sampled systems just as the

Laplace transform can be used with continuous-time systems. The definition of the right-

sided Z-transform is

Z[x(nT)} = 2>(n7)Z
-''

n=0

where T is the time between successive (regularly spaced) samples.
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H(z)
._ m =

Z[y(n)
] = k* (319)

X(z) 2[x(n)\ "

We want to implement a difference equation corresponding to the Z-transform function

in Equation (317). Noting that the coefficients b = 1 . a =e °
. and all the other ak

and bk are zero, the required difference equation is

« = e
'2nfJ

y + x
(320 >

n •'n-l n'

We chose to set the cutoff frequency /„= 10 Hz. and the sampling interval T=2.5 jjs is the

maximum which the AD7769 A/D converters can sustain. Thus the difference equation

becomes

yn
= 0.9998429>„_ 1+x„. (321)

We now check for the gain of the transfer function at a frequency/= 200 Hz. We would

like the gain to he 1 at this frequency, that is, we would like a signal oi amplitude 1 to

create an output oi' the same magnitude at this frequency. To find the gain, we must first

find the digital frequency corresponding to the real frequency /= 200 Hz. The digital

frequency can take on values from to 2- and is given by

d = 2n£ (322)

where /, = 400 kHz is the sampling frequency. So with /= 200 Hz. the frequency response

is

H(d) = ^— = = 318/88°. (323)

l-0.9998429e 400kHz

To reduce the gain to 1. we divide h„ by 318, yielding 0.00314. The difference equation

now takes the form
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yn
- 0.9998429>„_, +0.003 14x„. (324)

The coefficients in this equation are inconvenient in our hardware implementation. So

we will round the gain down to the next lowest power o[ two. The coefficient 0.9998429

can be rewritten as I
-

1 .570673 x HP 4
. By doing this, we can build the integrator by

adding in the value yH _, accumulated so far. and subtracting oli' a small fraction of it.

When we round off (in binary) we obtain a = 1 - 2~ 13 and />„ = 2"''. Using these values

to check the frequency response when /= 200 Hz, we find it is 0.621/88°. Since the

magnitude of the gain is below 1. this integrator should be stable.

We shall implement the difference equation

yn - ^- 1

+ (2-9 )-x
n
-(2- 13

)yn .
1

(325)

which is quite easy to do in digital hardware. However, because we are using 16-bit

numbers x„, we need a large number oi bits in the accumulator.

The schematic in Figure 58 on page 208 shows the most significant 15 bits of x„

entering the accumulator shifted down by nine bit positions. However, as we are dealing

with signed binary numbers, the high-order bit must be provided to all high bit locations

to avoid the loss oi' this sign information. The most significant 16 bits y„_, o[ the output

registers U37. U38. and U39 are added in with the scaled-down multiple of x„ in adders

U25 through U30. The sums are then reduced by 2~'\„_. in the Arithmetic Logic Units

(subtractors) U31 through U36. The difference represents the next output of the

demodulator.

At this point, one could simply pass the digital output to any succeeding circuits that

required it. We used an Analog Devices AD7846 Digital-to-Analog Converter in order

to display the resultant wave form on an oscilloscope and to permit measurements on the

performance of the system.

The AD7846 requires ± 15 V and +5 V power. In order to provide bipolar outputs

of ±10 V, it also needs ±5 V reference voltages. As before, we ignored the precaution

of using precision voltage references here, but better performance would result if we did

so.
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Unfortunately, the design of the digital integrator proved to be easier than its

implementation. Alter repeated checks to see that the analysis and the wiring both were

right, we finally abandoned the attempt to make it work and substituted an analog

integrator in its place. In view of the fact that the main thrust of the research was into

demodulation, not digital integration, this expedient seemed reasonable, albeit somewhat

embarrassing. We took the inputs to the digital integrator as inputs to the AD7846

Digital-to-Analog Converter instead and puts the analog output from the AD7846 into

an analog integrator. The performance measurements in the next chapter therefore do

not reflect a fully-digital implementation o( the asymmetric demodulation scheme. This

deficiency needs to be investigated and corrected in follow-on research. Extensive

simulation has confirmed that the design is valid, and so the error must be in the wiring

of the integrator.

C. SUMMARY

In this chapter we described an implementation of the asymmetric demodulation

algorithm in digital hardware. The complexity a( this circuit is very high. This is partly

due to the use of hardware multipliers and adders, as opposed to a microprocessor or a

digital signal processing (DSP) integrated circuit, and partly due to the use oi multiple

four-bit and eight-bit integrated circuits in places where more bits were required (up to

24 at the end).

The use of 8-bit analog-to-digital converters at the input and a lb-bit digital-to-

analog converter at the output is quite unusual in digital circuitry. At the input, the

dynamic range of the signal o( interest is contained not in the amplitude of the

interferometric outputs, but in their phase, so we can gel away with using an 8-bit

converter without sacrificing dynamic range. The demodulation process converts the

phase modulation into fluctuations in amplitude. Along the way. the 8-bit quantities are

multiplied together to generate 16 bits, making the use of a 16-bit digital-to-analog

converter at the output an appropriate and worthwhile expense. Of course, if succeeding

circuitry did not require an analog replica oi' the signal of interest, the digital-to-analog

converter could be omitted altogether.
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In the next chapter, we consider the performance o\' the Asymmetric Digital

Demodulator we have just described.
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XIII. PERFORMANCE OF THE ASYMMETRIC DIGITAL DEMODULATOR

A. OVERVIEW

In this chapter we examine the performance of the Asymmetric Digital Demodulat-

or. The aspects oi its performance which we consider are:

1. scale factor, which relates the phase amplitude in the modulated signal to the

voltage amplitude in the demodulated signal;

2. small signal bandwidth:

3. maximum acceptable signal:

4. noise floor:

5. dynamic range:

6. complexity: and

7. approximate cost.

These are the same characteristics we examined in assessing the performance of the

Fringe Rate Demodulator and the Symmetric Analog Demodulator. : The Asymmetric

Digital Demodulator is capable a( demodulating signals both above and below the one-

half fringe level.

The techniques used to measure the performance o[' the Asymmetric Digital

Demodulator were essentially the same as those described in Chapter XI. where we

presented the results o\' measurements of the performance o{ the Symmetric Analog

Demodulator. Rather than repeat the information here, we will simply present the

In the case of the Fringe Rate Demodulator, measurement of the noise did not

arise because its principle of operation made it incapable o( demodulating signals o\' less

than half a fringe (±77/2 radians) and so the useful signals were always very much
stronger than the noise anyway.
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results. In the description of the Symmetric Analog Demodulator's performance, simply

substitute the Asymmetric Digital Demodulator in its place.

B. SCALE FACTOR

Table XXV. Table XXVI. and Table XXVII contain summaries of our measure-

ments of the scale factor o[ the Asymmetric Digital Demodulator. To assist in the

understanding of these data. Figure 62 is a graph of the scale factor for frequency

200 Hz. It is clear from the data that the scale factor is not a constant, as we would

prefer. However, in the horizontal region of the graph it is approximately 35 mV/rad.

At low levels of optical phase shift (phase amplitude) the scale factor begins to climb.

This is due to the increasing significance oi' noise in the output: this has the effect of

providing a steady average signal output even though the phase amplitude continues to

drop. Since the scale factor is calculated as the ratio of output to input, it appears to

rise. If we narrowed the bandwidth, the noise would be less severe and so the apparent

rise in scale factor would occur at a lower phase amplitude. A similar effect was observed

when we measured the scale factor of the Symmetric Analog Demodulator.

It should be noted thai implicit in quoting the scale factor in volts per radian is the

fact that the output o[~ the Asymmetric Digital Demodulator has been converted to a

voltage. So we are. in effect, quoting a combination o[~ the results of the digital

demodulation as well as the scale factor o\i the analog output stage. A more suitable way

to quote the scale factor would be as a magnitude of a binary number per radian of

optical phase shift. Because we took the output o( the Asymmetric Digital Demodulator

before the final integration required by the asymmetric demodulation algorithm had been

performed, we cannot quote this value. It would, however, be a function of the gain of

the digital integrator, just as in our case it is a function o\' the gain of the analog

integrator.

C. BANDWIDTH

When we measured the bandwidth of the Symmetric Analog Demodulator, we

applied very small signals from the Analog Interferometric Simulators. This permitted us
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Table XXV Determination of the scale factor o[ the Asymmetric Digital Demodulator

for frequencies of 50 Hz and 100 Hz.

Frequency

[Hz]

Inpui Voltage

(peak)

Inpui Phase

[rad]

Ouipui Voltage

(peak)

Scale Factor

[mV rad]

50

3.00 V 102 1.84 V 18.0

2.50 V 85.1 1.52 V 17.9

2.00 V 67.9 1.24 V 18.3

1.50 V 50.8 970 mV 19.1

1.00 V 33.7 650 mV 19.5

500 mV 16.5 300 mV 18.2

400 mV 13.1 27 mV 20.7

300 mV 4.6 190 mV 19."

200 mV 6.2 140 mV 22.5

100 mV 2.8 70 mV 25.1

50 mV 1.1 SO mV 74.5

100

3.00 V 102 2.80 V 27.4

2.50 V 85.1 2.40 V 28.2

2.00 V 67.9 2.00 V 29.4

1.50 V 50.8 1.31 V 25.8

1.00 V 33.7 940 mV 27.9

500 mV 16.5 500 mV 30.3

400 mV 13.1 410 mV 31.4

300 mV 9.6 290 m\ 50.1

200 mV 6.2 195 mV 31.4

100 mV 2.8 100 mV 35.9

50 mV 1.1 90 mV 83.8

to obtain the small-signal bandwidth of the demodulators very easily. The Asymmetric

Digital Demodulator ouipui such distorted wave forms for the small phase shifts

generated by the simulators that we could not effectively measure its small-signal

bandwidth. Any phase amplitude below 2 rad created more than A c
c total harmonic
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Table XXVI Determination of the

for frequencies of 150 Hz and 200

scale factor of the Asymmetric Digital Demodulator

Hz.

Frequency

[Hz]

Inpui Voltage

(peak)

Inpui Phase

[rad]

Output Voltage

(peak)

Scale Factor

[mVrad|

150

3.00 V 102 3.11 V 30.4

2.50 V 85.1 2.66 V 31.3

2.00 V 67.9 2.21 V 32.5

1.50 V 50.8 1.70 V 33.5

1.00 V 33.7 1.15 V 34.2

500 mV 16.5 600 mV 36.4

400 mV 13.1 490 mV 3".

5

300 mV 9.6 380 mV 39.4

200 mV 6.2 230 mV 37.0

100 mV 2.8 115 mV 41.3

50 mV 1.1 65 mV 60.5

200

3.00 V 102 3.24 V 31.7

2.5H V 85.1 2.86 V 33.6

2.00 V 67.9 2.29 V 33.

1.50 V 50.S 1.73 V 33."

1.00 V "1*1 "7

1.20 V 35.7

500 mV 16.5 60"" mV 36.8

400 mV 13.1 470 mV 35.9

300 mV 9.6 380 mV 39.4

200 mV 6.2 250 mV 40.2

100 mV 2.8 115 mV 41.3

50 mV 1.1 60 mV 55.9

distortion at all frequencies. We suspect that the situation could be improved with a less

conservative design. We set the digitization reference levels high enough to preclude an

input signal from ever exceeding them, an unhappy situation which would have damaged

the analog-to-digital converters. Had we included voltage-protection circuitry, we could
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Table XXVII Determination of the scale factor of the Asymmetric Digital Demodulator
for frequencies of 250 Hz and 300 Hz.

Frequency

[Hz]

Input Voliage

(peak)

Inpul Phase

[rad|

Ouipui Voltage

(peak)

Scale Factor

[mV/rad]

250

3.00 V 102 3.00 V 35.2

2.50 V 85.1 3.10 V 30.4

2.00 V o7.y 2.50 V 36.8

1.50 V 50.8 1.90 V 37.4

1.00 V 33.7 1.16 V 34.5

500 mV 16.5 500 mV 33.4

400 mV 13.1 500 mV 38.2

300 mV 9.6 370 mV 38.4

200 mV 0.2 250 mV 40.2

loo mV 2.8 70 m\' 25.1

50 mV 1.1 30 mV 2V

300

3.00 V 102 2.33 V 22.8

2.50 V 85.1 1.M4 V 22.8

2.00 V 67.9 i .oo v 23.6

1.50 V 50.8 1.20 V 23.6

1.00 V 33.7 780 mV "* ^ **

500 mV 16.5 400 mV 24.2

400 mV 13.1 340 mV 26.0

300 mV 9.6 250 mV 25.9

200 mV 6.2 170 m\'
>- i

100 mV 2.8 90 mV 32.3

50 mV 1.1 35 mV 32.6

have decreased the reference levels, effectively using more o[' the dynamic range o[ the

digitizers, and this would very likely have permitted the bandwidth measurements we were

unable to obtain with the present design. This is an area for more investigation in the

future.
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Figure 62 Graph of the scale factor of the Asymmetric Digital Demodulator at 200 Hz

as a function of input phase amplitude.

230



D. MAXIMUM ACCEPTABLE SIGNAL

As in our assessment of the performance both of the Fringe Rate Demodulator and

the Symmetric Analog Demodulator, we shall regard the maximum acceptable signal as

the highest signal amplitude which creates no more than 4 fV total harmonic distortion.

Observations of the total harmonic distortion (in
cc) for various combinations ot input

optical phase amplitude and frequency are presented in Table XXVIII. Table XXIX. and

Table XXX. We have shown the phase amplitude in radians. The odd values are due

to our having actually used round numbers for the voltage amplitude from the HP3314A

Function Generator. The phase amplitudes were computed from the command voltage

by the linear least squares lit

Phase amplitude 1 34.29 — Vm - 0.64 mrad (326)

A contour plot derived from these data is given in Figure 63. The contours join

combinations o( input optical phase shift and frequency which yield equal levels of total

harmonic distortion. An alternative view a( the same data is provided in the surface plot

of Figure 64.

By studying the two plots and the data from which they were derived, we can draw

a number of useful conclusions. When the phase rale (the product ol phase shift and

amplitude of the signal o\ interest) is high, distortion becomes extremely severe. It is

fairly large at each of the other three corners in the plots, loo. Where both frequency

and phase shift are low. the adverse effects of quantization noise are responsible for the

harmonic distortion. In one of the other two corners of the plots, frequency is low but

phase amplitude is high. In the other, phase amplitude is low but frequency is high. At

low frequencies, quantization noise is significant at the extrema o\ the signal ai interest.

This is true even if the phase amplitude is high, because the instantaneous frequency gets

so low at these points. Conversely, at high frequencies, if the phase amplitude A is not

very big, very few quantization levels are used, and distortion again ensues. In the central

area of the plots, where the surface plot shows deep, crinkly valleys, the harmonic
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Figure 63 Contour plot showing combinations of input optical phase shift and frequency

which yield the same amount of total harmonic distortion in the Asymmetric Digital

Demodulator.

distortion is low, but not very even. In this regime, the Asymmetric Digital Demodulator

provides a useful output.

We used linear interpolation between the observations in Table XXVIII,

Table XXIX, and Table XXX to obtain the maximum acceptable phase amplitude as a

function of frequency. The results are shown in Table XXXI in tabular form and they

are plotted in Figure 65. At frequencies above 300 Hz, the maximum acceptable

frequency drops off at roughly 20 dB per decade of frequency increase. This is to be

expected when the phase rate limit is the dominant effect on harmonic distortion.
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"igure 64 Surface plot showing the total harmonic distortion in the Asymmetric Digital

Demodulator as a function of various combinations of input optical phase shift and

frequency .

There is an anomaly in the data at 200 Hz. For large phase amplitudes, the

harmonic distortion at 200 Hz is higher than that at the next lowest frequency (100 Hz)
f

and at the next highest frequency (500 Hz). This is true around the level o( 4% total

harmonic distortion, but at even higher phase amplitudes, it no longer is the case. In any
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Table XXVIII T
as a function ot

33.7 rad).

otal harmonic distortion (in
c
c ) of the Asymmetric Digital Demodulator

input optical phase shift and frequency (phase shift from 6.22 rad to

Optical Phase Shift [rad

6.22 13.1 16.5 19.9 26.8 33.7

F
r

e

q

u

e

n

c

y

[Hz]

10 48.9 23.8 19.8 34.4 17.8 11.4

20 19.8 9.3 11.0 15.8 4.66 3.96

30 1 8.3 8.85 7.58 12.6 5.42 3.29

50 5.41 2.58 2.94 8.52 2.87 4.10

100 4.26 3.36 2.92 6.17 4.75 3.24

200 4.07 4.60 4.65 6.25 2.72 2.20

300 4.48 3.40 3.85 5.39 10.3 3.23

500 5.54 6.66 10.1 8.18 2.38 1.74

750 4.89 7.32 5.35 6.67 1.40 1.14

1000 6.23 10.8 8.03 6.43 5.80 1.15

1500 20.7 11.7 8.97 9.13 10.5 3.89

2000 8. 1

6

7.19 10.2 3.61 5.21 5.86

event, this fact, combined with the absence o{ points exceeding 4 rc total harmonic

distortion at 50 Hz and 100 Hz makes it impossible to determine whether the maximum

acceptable signal continues to increase at 20 dB per decade as the frequency drops lower.

The most phase shift our interferometer could generate was around 250 rad. and so an

investigation of higher phase shifts at low frequencies was not feasible.

E. NOISE FLOOR

We performed noise measurements on the Asymmetric Digital Demodulator using

the same technique as we used with the Symmetric Analog Demodulator. The

observations are summarized in the data of Table XXXII and Table XXXIII. Recall that
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Table XXIX Total harmonic distortion (in
c

'c ) of the Asymmetric Digital Demodulator

as a function of input optical phase shift and frequency (phase shift from 50.8 rad to

137 rad).

Optical Phase Shift [rad

50.8 67.9 85.1 102 1 19 137

F

r

e

q

u

e

n

c

y

[Hz]

10 6.13 5.45 8.97 5.29 6.51 9.90

20 2.66 3.17 3.26 3.16 3.81 4.14

30 2.86 2.77 2.65 3.10 2.84 2.73

50 4.96 4.30 6.01 4.19 2.50 2.32

100 4.32 1 .80 1.18 2.83 2.03 1.44

200 2.83 2.05 1.08 .833 1.25 2.07

300 2.00 .856 .986 .853 .596 3.70

500 1.54 1 .63 4.00 3.91 4.01 7.65

750 1.14 1.34 3.25 6.40 12.9 15.7

1000 4.09 (x 1

5

24.5 39.7 35.7 40.7

1500 9.58 24.7 19.9 29.d 190 105

2000 22 2 33.4 103 108 ll 7 65.1

when we discussed the performance of the Symmetric Analog Demodulator, a clear trend

was evident that allowed us to extrapolate to the point where the ratio o( signal to noise

reached dB. This is much more difficult in the case o\ the Asymmetric Digital

Demodulator, especially at the lower frequencies. We have halved the input optical

phase shift for each successive ohservation. yet we do not always see a 6 dB decline in

the ratio of signal to noise, as we expect. In some cases, the decline is nowhere near

6 dB. We may, however, follow the extrapolative procedure for the data when the

frequency is 195 Hz and up.

In Table XXXIV we show the results of a linear curve lit on some of the data

given in Table XXXIII. We have excluded some of the data points, as indicated, because

they do not appear to be consistent with the hypothesis o( a 6 dB decline in the ratio oi
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Table XXX Total harmonic distortion (in %) of the Asymmetric Digital Demodulator as

a function of input optical phase shift and frequency (phase shift from 154 rad to

239 rad).

Optical Phase Shift [rad

154 171 188 205 ~>~>2 239

F

r

e

q

u

e

n

c

y

[Hz]

10 7.21 8.82 11.1 8.02 7.68 29.4

20 4.20 4.09 3.02 3.26 3.58 4.70

30 2.65 2.61 2.81 4.67 6.82 8.32

50 2.70 2.88 1.55 1.45 1.58 1.56

100 0.971 1.17 1.14 1.85 1.96 1.90

200 2.06 3.08 4.58 5.79 6.66 6.27

300 0.816 1.36 1.72 2.91 6.03 6.65

500 20.6 36.4 48.6 33.5 33.3 49.9

750 10.4 15.5 19.3 32.3 96.0 228

1000 42.6 185 183 428 133 127

1500 112 97.0 105 152 95.2 51.1

2000 72.1 56.4 73.8 45.8 76.3 85.5

signal-to-noise with every halving of the phase amplitude. We also have omitted doing

a curve fit for the data in Table XXXII because no clear trend of this sort is evident

upon inspection.

We can easily evaluate these expressions for the case where the ratio of signal to

noise S/N = dB. Converting these intercepts to a phase amplitude in radians gives the

values shown in Table XXXV. The observations were made with the time constant of

the lock-in amplifier set to 1 s, and the amplifier's filter skirts had a 12 dB/decade roll-

off. The resultant bandwidth is 125 mHz. Dividing the floor in radians by the square

root of the bandwidth gives the phase noise spectral density in the last column of

Table XXXV. These values are also plotted in Figure 66.
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Table XXXI Maximum phase amplitude acceptable to the Asymmetric Digital

Demodulator, given as a function o\' input frequency, based on accepting A c
c total

harmonic distortion.

Frequency

[Hzl

Maximum Acceptable

Phase Amplitude

[rad]
(krad/s)

10
Total harmonic distortion remained above 4 c

'c for

all phase amplitudes.

20 129 2.5

30 199 5.9

50 Total harmonic distortion never exceeded 4% for

high phase amplitudes.100

200 IcSl 36.2

300 211 63.3

500 117 58.5

750 89 66.7

1000 50 50.0

1500 34 51.0

2000
*>>

44.0

Note that the decline in the noise floor that is evident from 195 Hz to 1 kHz seems

to reverse somewhat at 2 kHz. The reason for this is not clear. Further investigation

may permit this anomaly to be cleared up. In the meantime, however, we must

emphasize that the method o\' extrapolation we have used here is somewhat rough.

F. DYNAMIC RANGE

The dynamic range is the ratio of the maximum acceptable signal to the noise floor.

We have combined the results of the last two sections in the plot of Figure 67. At a

frequency of 500 Hz, the dynamic range is 86 dB. This compares very favorably with the
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Figure 65 Maximum phase amplitude acceptable to the Asymmetric Digital Demodulator

as a function of input frequency. The straight line extrapolates the region of constant

phase rate to low frequencies.

30 dB dynamic range of the Fringe Rate Demodulator at this frequency, but it is

considerably less than the 115 dB oi' the Symmetric Axialog Demodulator at 590 Hz.

which is not too far removed in frequency. On the other hand, the most dynamic range

one could achieve with a 16-bit digital-to-analog converter is 96 dB. so 86 dB does not

seem too bad, compared to that. Considering the problems discussed earlier in

238



Table XXXII Measurements of the noise floor of the Asymmetric Digital Demodulator

for frequencies from 19 Hz to 97 Hz.

Frequency

[Hz]
Ratio Phase Amplitude

Output Voltage

IV 1

l

V RMsl

Signal-to-Noise

Ratio

[dB]

19

1.000000 4.59 rad 1.1 5 ±0.22 14

0.500000 2.30 rad 1.121 ±0.031 31

0.250000 1.15 rad 2.24±0.52 13

0.1 25000 574 mrad 1.93 ±0.1

3

24

0.050000 230 mrad 1.07±0.12 19

0.025000 1 15 mrad 1.19±0.60 (>

28

1.000000 4.59 rad l.046±0.091 21

0.500000 2.30 rad 0.725 ±0.025 2^

0.250000 1.15 rad 0.5685 ±0.0076 38

0.125000 574 mrad 1.233 ±0.0r 37

0.050000 230 mrad 0.36±0.22 4.1

0.025000 1 1 5 mrad 0.52±0.50 0.2

49

1.000000 4.59 rad 1.076±0.037 29

0.500000 2.30 rad 0.7623±0.00S9 39

0.250000 1.15 rad 0.478±0.012 32

0.125000 5 "4 mrad 1.1 24 ±0.025 33

0.050000 230 mrad 0.158±0.015 20

0.025000 1 15 mrad 0.478 ±0.095 14

97

1.000000 4.59 rad 0.7974 ±0.0098 38

0.500000 2.30 rad 0.712±0.084 19

0.250000 1.15 rad 0.3041 ±0.002" 41

0.115000 574 mrad 0.1915±0.0023 38

0.050000 230 mrad 0.2066 ±0.005 5
"> t

0.025000 1 15 mrad 0.2528±0.004 36
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Table XXXIII Measurements of the noise floor o\' the Asymmetric Digital Demodulator

for frequencies from 195 Hz to 2 kHz.

Frequency

[Hz]
Ratio Phase Amplitude

Ouipui Volume

[VrmsI

Signal-10-Noise

Ratio

[dB]

195

1 .000000 4.59 rad 1.1 7585 ±0.00072 64

0.500000 2.30 rad 0.67958 ±0.00061 61

0.250000 1.15 rad 0.3936±0.0012 50

0.125000 574 mrad 0.156X±0.0013 42

0.050000 230 mrad 0.1624 ±0.0042 32

0.025000 1 15 mrad 0.0740 ±0.0035 26

500

1.000000 4.5M rad 1.07708 ±0.00065 (.4

0.500000 2.30 rad 0.6066 ±0.0049 42

0.250000 1.15 rad 0.42597 ±0.00061 57

0.125000 5 74 mrad 0.1 9987 ±0.00061 50

0.050000 230 mrad 0.10867 ±0.00079 43

0.025000 1 15 mrad 0.04209 ±0.00065 36

1000

1.000000 4.5^ rad 1.03983 ±0.00057 65

0.500000 2.30 rad 0.55 12 ±0.0040 43

0.250000 1.15 rad 0.4 1987 ±0.00049 59

0.125000 574 mrad 0.2 12 10 ±0.00063 51

0.050000 230 mrad 0.095 19 ±0.00046 46

0.025000 1 1 5 mrad 0.03782 ±0.00034 41

2000

1.000000 4.59 rad 0.47067 ±0.00026 65

0.500000 2.30 rad 0.3231 ±0.0031 40

0.250000 1.15 rad 0.1742±0.0016 41

0. 1 25000 574 mrad 0.09427 ±0.00042 47

0.050000 230 mrad 0.04804 ±0.00032 43

0.025000 115 mrad 0.03574 ±0.00042 39

0.006250 28.7 mrad 0.01278±0.00061 26
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Table XXXIV Least squares fit of the logarithm of the phase input A LH to the

Asymmetric Digital Demodulator to achieve a given ratio SIN of signal to noise.

Frequency

195 Hz

500 Hz

1000 Hz

2000 Hz

(' A \
, ™EFF
log =

\ 1 rad;

with r =0.994

( A \1 * vc-c

Least squares curve fit

[0.0392 ±0.002 11- + 1.92+0.10)

log
l EFF

\ 1 rad
= [0.0485 ±0.0019]- + (-2.696*0.091

N
dp

with r =0.998 (excluding the first two data points)

log
(Am \EFF

1 rad
[0.0565 ±0.0063]- + (-3.22-0.31j

dB

with r =0.988 (excluding the first two data points)

log
I A EFF

\ 1 rad
,0.0592 ±0.0078]

N
+ (-3.13-0.31

JH

with r =0.983 (excluding the first three data points)

Table XXXV The noise floor of the Asvmmetric Digital Demodulator.

Frequencv

[Hz]
i|

Noise floor

[rad]

Noise tloor

(normalized for

bandwidth)

195 12 mrad 34 mrad '/Hz

500 2.0 mrad 5.7 mrad//Hz

|
1000 600 jjrad 1.7 mrad//Hz

2000 740 pirad 2.1 mrad /Hz

connection with the harmonic distortion and the scale factor, it is gratifying to see such

a large dynamic range result.
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Figure 66 The noise floor of the Asymmetric Digital Demodulator as a function of

frequency.

Further research should investigate causes of the difference in dynamic range

between the Asymmetric Digital Demodulator and the Symmetric Analog Demodulator.

How much of the difference is due to the use of digital as against analog hardware?

How much is due to the use of asymmetric demodulation as against symmetric

demodulation?
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Figure 67 The dynamic range of the Asymmetric Digital Demodulator. The upper limit

is taken to be where 4% total harmonic distortion results. The lower level is the noise

floor in a one hertz bandwidth.

G. COMPLEXITY

The asymmetric demodulation scheme is even simpler than the symmetric

demodulation scheme. However, the implementation we have chosen is much, much

more complex. The use of 4-bit integrated circuits was dictated by the ease of obtaining

them. Yet the wiring required to use them on a bread-board is quite staggering, as a

glance at the breadboard circuit shown in Figure 68 will make abundantly clear. On the
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Figure 68 Breadboard implementation of the Asymmetric Digital Demodulator. The

circuit on the right-hand side of the upper photograph is the same as that on the left-

hand side in the lower photograph.
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other hand, this scheme is highly suitable to integration on an application-specific

integrated circuit (ASIC) or. possibly, a lew of them.

The pipeline architecture is easily adaptable to ASIC. It has the very strong

advantage of permitting the analog-to-digital (A/D) converter to operate as rapidly as

possible. As mentioned in the previous chapter, a simpler implementation o( the

algorithm in digital hardware would entail the use o[ a microprocessor or a digital signal

processor integrated circuit. II this could be made to operate last enough to keep the

A/D operating at full capacity, then it would be much more attractive than the brute-

force approach we adopted.

Our failure to get the digital integrator working is a convincing illustration ol the

complexity of the circuit. Given more time, no doubt this problem could be resolved.

The fact that it is a problem at all is a striking demonstration that our implementation

of the Asymmetric Digital Demodulator is the most complicated of the demodulator's

examined in the course of this research.

H. APPROXIMATE COST

The cost o( the integrated circuits used in the construction of the Asymmetric

Digital Demodulator is shown in Table XXXVI. At just over $300. it is the most costly

of the demodulators considered in this research, but it is simply not as good as the

Symmetric Analog Demodulator. Nearly half o( the cost is due to the expensive

multipliers. A fully integrated version of this algorithm, with a greater measure of success

in using the full dynamic range o\' the A/D converters, would almost certainly result in an

improved ratio of performance to price.

I. SUMMARY

In this chapter we considered the performance of a digital electronic implementa-

tion of the asymmetric demodulation algorithm. Of the three demodulators considered

in this chapter, this was the most expensive and the most complicated in circuitry.

Despite this fact, this circuit was able to operate over a broader dynamic range than our

Fringe Rate Demodulator could. In fact, it was within 10 dB of the best performance
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Table XXXVI. Calculation of the cost of the integrated circuits used in the Asymmetric

Digital Demodulator.

Part ID Description
Quantity

Required
Price

Source

of

Price

Total

Cost of

Part

AD7769
LC 2MOS Analog

I/O Port
2 $15.00

Analog

Devices
$30.00

ADSP-
1080A

8-Bit Multiplier 4 $37.00
Analog

Devices
$148.00

AD7846
LC :MOS 16-Bit

Voltage Output

DAC^
1 $31.35

Analog

Devices
$31.35

74LS04 Hex Inverter 1 $0.33
Digi-Key

Corporation
$0.33

74LS83
4-Bit Binary Full

Adder
12 $0.60

Digi-Key

Corporation
$7.20

74LS374
Tri-State Octal D
Flip-Flop

6 $0.60
Digi-Key

Corporation
$3.60

74LS181
4-Bit Arithmetic

Logic Unit
14 $2.84

Marvac

Electronics
$39.76

OPA-111 Low-noise Op Amp .1 $11.80 Burr-Brown $35.40

AD712
General Purpose

Op Amp
2 $3.60

Analog

Devices
$7.20

TOTAL 15 $302.84

a 16-bit digital-to-analog converter can deliver. We have also shown how pipe-lining can

be used to provide a high rate of throughput in a digital demodulator. While this is a

more complicated approach than the use of a digital signal processing (DSP) integrated

circuit would entail, it is generally taster, too. Where high speed is mandatory, this

approach shows considerable promise.
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In the next and final chapter, we conclude this dissertation with a summary of what

we have found, a comparison of the three demodulators we built and tested, and we

provide some recommendations for future research.
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XIV. CONCLUSION AND RECOMMENDATIONS

In this dissertation we began by looking closely at the theory of optical fiber

interferometric sensors terminated with 3x3 optical fiber couplers. We considered in

some detail both the workings of couplers as predicted by Maxwell's equations and their

employment at the output ol interferometric sensors to produce interferometric signals

containing in-phase and quadrature components of the cosine o\' a signal o( interest, the

signal which impinged on the sensor in the first place. The symmetry of the operation

of the couplers is such that each output is similar to the next, but with a 120° optical

phase shift between them. We derived equations that will permit a study of the effects

on the interferometric output of other than exactly 120° phase difference between the

outputs.

We described how to build an interferometric sensor for laboratory work. We

noted that the laser exhibited instabilities from time to time, and we suggested that these

could be eliminated by introducing temperature control or by using an optical isolator to

preclude reflections back into the laser. A sensor with more fiber wrapped on the

piezoelectric cylinders and with a more powerful amplifier to drive them would permit the

evaluation of the three demodulators described in this dissertation, as well as others, at

higher phase amplitudes than we could achieve.

We then discussed a refinement to the Fringe Rate Demodulator proposed by

Crooker [Ref. 10] and Crooker and Garrett [Ref. 1 1]. We found that the scale factor

of this demodulator was between 105 and 120 mV/rad. The demodulator cannot function

in the presence of signals generating less than tt/2 rad of optical phase shift, so we were

unable to express its bandwidth in the small-signal regime. For an optical phase shift of

51 rad, we found the bandwidth was 460 Hz, inasmuch as the scale factor changed by a

factor of /2 at this frequency. The phase rate of the demodulator averaged 22.6 krad/s

between 300 Hz and 1 kHz. The dynamic range peaked at a little over 38 dB at 100 Hz.

This demodulator was both the simplest and the least expensive of the three we
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investigated. However, its performance was limited. We discussed several ways in which

the performance might be improved

We could use all three interferometric outputs, instead of just two. to generate the

frequency signal which drives the frequency-to-voltage converter. This would reduce the

minimum detectable signal to tt/3 rad from 7r/2 rad for an extra 3.5 dB of dynamic range.

The zener diode in the frequency-to-voltage converter we used could be replaced by one

of 15 V. The 12 mV we measured could be reduced to the 3 mV specified as typical for

the converter. These three changes would increase the dynamic range by 22 dB. The

possibility of finding a heller Irequency-to-voltage converter than the LM2917N we used

should be investigated. Very possibly a phase-locked converter would yield superior

linearity.

We next turned our attention to the theory oi' asymmetric and symmetric passive

homodyne demodulation. We considered the asymmetric scheme first, because it was

simpler, and because the symmetric scheme was a natural extension o\' it. The symmetric

scheme has the aesthetically pleasing feature that no output is discarded, as is the case

in asymmetric demodulation, and all outputs are treated equally. The algorithm also

automatically eliminates any dependence o[ the output on the optical power received, a

feature not shared by the asymmetric demodulation scheme.

A detailed explanation of our analog implementation of the symmetric demodula-

tion scheme followed next. We examined its performance and found its scale factor was

31 mV/rad, very close to the predicted value o( 29 mV/rad. This agreement gave us

confidence both in the theory and in the practical performance o{' the demodulator. The

small-signal bandwidth oi the Symmetric Analog Demodulator we found to be 1 13 kHz.

The maximum acceptable signal and the noise floor both declined at the rate o\' 20 dB

per decade of increase in frequency, as we expected them to do. This demodulator had

a maximum phase rate oi 65 krad/s. the highest o[' the three demodulators considered.

The dynamic range was measured as 115 dB in a one hertz bandwidth with Vc total

harmonic distortion considered acceptable at 600 Hz. This dynamic range is quite large.

This demodulator was moderately complex. It cost $270.00 in integrated circuits. We

suggested that the use ol' the new AD764 Analog Multiplier in place o( the AD534
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Analog Multiplier could achieve a ten-fold increase in bandwidth for a reduction in price

by one hall".

With its excellent performance over a broad envelope oi frequencies and signal

amplitudes, this new demodulator was the most successful of the three we implemented.

Its price was in the middle o\ the prices of the other two. Its performance far surpassed

the others. We included a detailed noise analysis in an appendix. We were able to

identify the analog divider and the analog multipliers as the noisiest components in our

implementation of the symmetric demodulation algorithm. As a result, we concluded that

the receivers do not require the expensive, low-noise operational amplifiers we used. This

analysis will make possible the intelligent selection of components to minimize cost and

maximize performance in the future.

Our implementation of the Asymmetric Digital Demodulator was the least

successful. We failed to gel a digital integrator working and resorted in the end to doing

the integration in analog electronics. This unappealing result needs further investigation.

The performance and price o( this demodulator also were arguably the worst. It had a

lower minimum detectable signal than the Fringe Rate Demodulator, in that it could

detect signals oi less than tt/2 rad optical phase shift. However, the mixture of

frequencies and voltages over which it would function adequately was quite irregular.

Improved performance could be obtained by using precision voltage references for the

analog-to-digital and digital-to-analog converters in the Asymmetric Digital Demodulator.

The scale factor oi' the Asymmetric Digital Demodulator was 35 mV/rad, but this

number is not particularly helpful in view o\ the fact that the output was produced by an

analog, not a digital, integrator. The high level of distortion generated by this

demodulator made a meaningful measurement of its bandwidth impossible. With further

work, we believe the distortion could be reduced by taking better advantage of the

dynamic range of the analog-to-digital converters. The maximum phase rate of the

demodulator averaged 54 krad/s in the range from 500 Hz to 2 kHz. higher than that of

the Fringe Rate Demodulator, but lower than that o\' the Symmetric Analog

Demodulator.
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In view of the increasing popularity of digital signal processing techniques, we

recommend that a digital implementation of the symmetric demodulation algorithm be

undertaken using very-large-scale integration (VLSI). This would greatly reduce the

external circuit complexity o\' such a demodulator, and it should lower the cost both ol'

construction and of components considerably. The use o\' pipeline-processing has been

shown by our Asymmetric Digital Demodulator to be an effective way to keep the

processing going as rapidly as the conversion rate will permit, and it should be a feature

of a VLSI implementation. An implementation of the Asymmetric Digital Demodulator

or a Symmetric Digital Demodulator should be undertaken with digital signal processing

integrated circuits replacing the pipeline-processing hardware. This would help in

assessing whether the reduced processing speed would be compensated lor by the reduced

complexity oi' the circuit. The large differences between the performance o( the

Symmetric Analogue Demodulator and the Asymmetric Digital Demodulator could be

due to the difference between analog and digital processing on the one hand or

symmetric and asymmetric demodulation on the other hand. This issue bears further

research.

We also recommend that a new implementation of the Symmetric Analog

Demodulator be built with the AD764 Analog Multiplier integrated circuit. In building

this new demodulator, some trim potentiometers can be removed. Improved noise

reduction should also boost the performance of this circuit at low phase rates.

The Fringe Rate Demodulator is attractive because of its low cost and its simplicity.

However, it is only feasible to use it when large phase amplitudes are always present

(much greater, say. than the minimum tt/2 rad). The symmetric demodulation technique

is superior to the asymmetric demodulation technique because dependence on received

optical power is eliminated. The analog implementation o{ this is simple and yields a

large dynamic range. However, if succeeding processing requires digital signals, then a

digital implementation of the symmetric demodulation algorithm would be attractive.

especially if implemented as an application-specific integrated circuit.

We conclude this dissertation with Table XXXVII. which summarizes the

performance of the three demodulators we built and tested.

251



Table XXXVII Summary of the performance of each of the three demodulators

described in this dissertation.

Fringe

Rate

Demodulator

Asymmetric

Digital

Demodulator

Symmetric

Analogue

Demodulator

Phase Rate

[krad/s]
23 54 65

Scale Factor

[mV/rad)
105-120 35 31

Minimum
Detectable Signal

77/2
4.2 mrad//Hz

(a 600 Hz
220 prad//Hz

(a 600 Hz

Dynamic Range
46 dB

@100 Hz
86 dB

(a 500 Hz
115 dB

(a600 Hz

Complexity Low High Moderate

Cost $100 $303 $270
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APPENDIX A. MISCELLANY

In this appendix, wc provide a number of lemmas, theorems, derivations, and

observations which are used in the body of the dissertation. These details are placed here

for the sake of completeness.

A. LEMMA

Proof:

Let

AM ,**!

t=o

- 0.
(327)

S = Se
fc=0

k4n

(328)

N-l

a
fc=0

4^
(329)

am
5 = 2 a*

*=0

(330)

where

a

,4ff
(331

This sum is the well known geometric series, and it can be expressed in closed form as

follows.

2^



N-i.

aS = S or*'
; (332)

(333)

N N-l

(a-l)5 = 2 #*-2 a* (334)

(a-l)S - ff"-* (335;

Therefore

Now

So

S(a-l) - aM

<r
v
-l

5 =

a-1

5 =

An
-N

-1

An

s =

e
N
-l

e
±j4K

-l

Ak

e
±j4n = cos(±4/r)+/'sin(±4;r)

= l+;0

= 1.

(336)

(337)

(338)

(339)

(340)
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1-1

4n
(341)

= 0.

This completes the proof of the lemma in Equation (327).

B. THEOREM

N-\

*=0

j\e-k- N-\

sH"^M^ r°-
(342)

Proof:

N-l .
Jk ll

ej0^ e
N

i=0 *=0

- e> {

-JN-
N
-l

In
[Geometric series]

(343)

= j e\
1-1

2 it

This completes the proof of the theorem.
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C. THEOREM

Proof:

Let

N-\ N-\
k2n\ N

Vcos210+ = Vsinn0+ (344)

5 = "Lead**—
*=o N

(345)

AM
s = s

'(**fl>f) (346)

5 = - 2
4t=o

^nj*-%i*'%e

-
Ji^ (347)

rv-i
S = -S

4jt=o

*4,T _ *4_£

e>
2V w -2+^V " (348)

5 = -
4

AM *4rr AM A'-l
Wi

^*S« " + 2 2+^*2 e
A'

A=0 k=Q A=0

(349)

Now using the lemma in Equation (327). we can write
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S = Ifi^tyO^AMe-'^KO)] (350)

4
(351)

S-£ (352)

This completes the proof of the theorem as far as the cosine is concerned. The proof of

the part concerning the sine could he proved in a similar manner, but here is a shorter

proof, using a well known trigonometric identity, namely

s'm
2
(f)+cos

2
4>^l.

^53)

So

A'-l

2
k=0

sin' 4> +
kin'

N
,

+COS 0+
kin

N
£ 1

it=0

= N.

In view of that part of Equation (344) proved so far. we can also write

(354)

,v-ir

S
4=0

kin

^7
sinn q>^ +cos <p +

( A klnV

N )\

A_1 J
Ssin'|0+
A=0 N i

.V

Comparison o( Equations (354) and (355) permits us to write

N = 2 sin
2

L*=0

4> +

N
N
2

1 355

(3561

N JV-I /

Ssin2*

2 t=o

0-
£2*

JV J

This completes the remainder o( the proof of the theorem ol' Equation (344).

(357)
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D. EQUIVALENT NOISE BANDWIDTH

The equivalent noise bandwidth of a lowpass filter is the bandwidth of a

hypothetical filter with total transmission below the cut-off frequency and zero

transmission above it. It is a useful concept for considering the amount of white noise

which a lowpass filter will permit to pass.

For a single-pole filter, the magnitude of the gain of the filter declines at the rate

of 20 dB per decade o\' increase in frequency, e.g.. the gain in going from 100 Hz to 1

kHz might decline from 30 dB to 10 dB. The equivalent noise bandwidth B can be

derived as follows.

The Laplace transform H,{s) of a filter with a single pole is

HAs) = -!_. (358)
l+ST

The frequency response o\' this filter can be found by setting s=ja>=j2-f. so

H
x
U2nf) - —^—- (359 >

The noise power experiences a transfer function given by

\HA)2nff = - *—.

-

(360)

To find the total noise power transferred by the filter, we must integrate this

expression over all frequencies. If we let // = 277/7 and dit = 2-T df, and call the integral

B, then

B - r\HAj2nffdf = —r-^—du. (361)

If we now make the substitution ;/ = cot 8. du=-csc :
6 d9. then we have
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B
A 2

fO -esc'
!

0</0

2nT J */2 csc2q

2*r[ { 2)

A 2

4r

(362)

Now the point at which the gain in Equation (360) is down hy one half, the -3dB

frequency /MB , is given hy

/
1

IdB
2nx

(363)

Also, the time constant r is usually specified as the product of a resistance R and a

capacitance C in a simple, analog filter, so

r = RC

Hence we can write the following equivalent forms of Equation (362;

(364)

B
A 2 A 2

irf_

4r

ydB A~

Jrc
(365)

For a two-pole filter, ihe magnitude of the gain of the filter declines at the rate of

40 dB per decade of increase in frequency, e.g., the gain in going from 100 Hz to 1 kHz

might decline from 30 dB to - 10 dB. The equivalent noise bandwidth B is given hy the

following derivation.

The Laplace transform H
:
{s) of a filter with a double pole is

1H
2
(s) -

(1+5T)
2

The frequency response o[ this filter can be found by setting \=/a)=/2:rf. so

(366)
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HJ.f2.nf) =

(lv2nfv)
2

(367)

The noise power experiences a transfer function given by

|"2(;2*/)|
2 (368)

[l+(2;r/r)
2
]

2

To find the total noise power transferred by the filter, we must integrate this

expression over all frequencies. If we let u = 2Trfr and elu = Ittt df. and call the integral

£, then

b -- r \H2u2irffdf = r—-

—

-df

(369)

If we now make the substitution w=cot 6. di<=-csc :
6 d#. then we have

B =
A 2

r*i2 esc
2 Odd

2ntJo csc
4
d

-^r\m2ddd.
2tzt j o

By a simple trigonometric substitution, we can rewrite this and integrate it:

A 2

B = -^-P/2

[l-cos201rf0
4nr J o

(370)

(371;

47ZT
e-

sin20 */2

JO

Evaluating the integral at the limits yields
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B = ^*-*
4/rr 2

(372)

.
A?

8r

Now the point at which the gain in Equation (368) is down hv one half, the -3dB

frequency /w is given by

/-** = ^- (373 >

Also, the time constant - is usually specified as the product of a resistance R and a

capacitance C in a simple, analog filter, so

r = RC (374)

So we can write the following equivalent forms of Equation (362):

B = — _
A nf-UB _ _A^ (375)

8r 4 %RC

E. ANALYSIS OF A COMPARATOR WITH HYSTERESIS

In Figure 69 we show ;i schematic diagram ol' a comparator circuit. This circuit

provides hysteresis and so gives some noise immunity, that is. the output will not switch

state unless the input changes hy more than the amount o\' hysteresis provided. The

analysis given here is sufficiently general that the circuit can he applied to a system with

any voltage levels.

Resistors R, and R_. form a resistive divider which determines the threshold level.

When the input V
ls

crosses this level, the output o{ the LF31 1 comparator changes slates.

However, resistor /?
v
provides a small level of positive feedback to the non-inverting input

of the LF311, so the threshold level is changed slightly from its nominal value by an
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Figure 69 Schematic diagram of a comparator with hysteresis.

amount which varies with the output VQ.

Pin 7 of the LF311 is connected to an internal transistor wiih an open colle-ctor.

Resistor R
4
tends to pull V

(}
to the positive voltage VH when the transistor is cut off. The

transistor pulls VQ to ground through pin 1 when it is saturated. The transistor is cut off

if the voltage V
l}4

is lower than that at the non-inverting terminal of the LF311: it is

saturated otherwise.

To analyze the performance o( the circuit, we shall apply the principle of

superposition. When the output is nearly (when the transistor is saturated), the non-

inverting input sees a voltage which is due to the combined effects of V/ and Vf. This

voltage is given by

y _ jW y^ ,

W y- (376)

If we multiply this out. we get
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,L

f
^3 '

i
7" +

V f

*A V

K
5

*: +

[VK3I

5

This can be simplified to

R^Rj, ^jft,

A./V-, + /\./c, + /l,/v, a./c, +/v. /t, +/u,a.

By removing the common factor /?,.. we get

-./.

(377)

(378)

(379)

When the transistor in the output ol' the LF31 1 is cut off. then R enters ihe picture and

modifies the voltage l'
+

to

/U(/Vtf4)
R^iR^RJ

Vs
~'H RrR2

KR
i
+R

4 )
R2+R

l
KR^R4)

(^3*^4)"^Ji^2
//

(3801

Expanding this yields
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M

v
^5 +

R
l
+R

3
+R

4

*2

(R.jR^R,)

RA
V*2

R
l
+

>V f
^ 1

1*1"

R2)}

rfl

This simplifies to

^2^3 +^2^4
^s

+
^1^3 + ^1^4

(381)

•" R
]

R
2
+R

]
R

i
+R

l
R

4
+R

2
R

i
+R

2
R

4
R

1
R2+R l

R,+R
l
R4+R2R3

+R2R4 (382)

/?
1

/2
2
+/?,/?3+/?

1
/?

4
+/?

2
/?3*/?

2
/?

4

^

Collecting common terms reduces this to

-,// R
x
R2+R

l

R^R
l
R4+R2

R
3
^R

2
R

4

!383)

If we set

*s = -Vj, ^i<^3> *2<*3» and ^
4
«^

3 »

then we can approximate I-'+/ as

** "

(R^RJRi R^Rj
S

(384)

(385)

and we can approximate V+ H as
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v „ H^Ws + RA vh

=
V*2-R l> v *

+ ^2y (386)

/?,+&,
S

Rj
H

- L
R] "

From these two expressions. \vc can see that under the given assumptions, the threshold

for the switching operation is

V = ^ R
'

v: (387)r THRESHOLD R +R

and that this threshold rises when the output goes high by

V «
* lll% (388)Y INCREMENTAL D //'

Rj

Equations (387) and (388) are design criteria by which we may pick values of the

four resistors which will achieve a desired lower switching level and amount of hysteresis.

These equations are valid approximations only when the conditions in Equation (384) are

met.

F. ANALYSIS OF A CIRCUIT FOR INTEGRATION AND DIFFERENTIATION

In Figure 70 we show a schematic lor a generalized circuit which, with proper

choices for the components, can function as a differentiator, an integrator, or a bandpass

filter.

If we consider a signal o( the form

s(t) = Ae"1* = Ae111*, (389)

with amplitude .4 and frequency g> = 2t7/'. then it has a derivative
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dt

Its integral is

m = ^ =jA<oei*" = jA2nfej2^. (390)

Utydt = —e"<" = -^-e> 2j*. (391)
J ja> jlnf

Neither the derivative nor the integral is a truly realizable function because, as the

formulas show, they both become infinite in magnitude if the frequency goes to infinity

(in the case of the derivative) or to zero (in the case oi the integral). The best we can

do is to approximate them over a specified band of frequencies. So what shall we do

outside the region in which the approximation is acceptable? The best thing often is to

let the magnitude o\' the approximation go to zero at extremely high and extremely low

frequencies.
28

This, o{ course, is just what a bandpass filter does. So if we can construct a

bandpass filter whose gain characteristic has a section in which the increase in gain with

frequency looks like the magnitude of the expression in Equation (390) and with a section

in which the decrease in gain with frequency looks like the magnitude oi' the expression

in Equation (391), we can make reasonable approximations to these functions.

As a bonus. o( course, we will have a bandpass filter for any other purpose we

might have in mind. The emphasis in this section, however, is on approximating

derivatives and integrals.

Note that the capacitors in Figure 70 have been annotated with their impedances

in the .s-domain. After completing the analysis in this domain, we shall be interested in

letting 5=/6>, which will give us the steady-state response of the circuit to a sinusoidal

input of frequency a>.

An alternative at low frequencies is to let the gain become a constant. This is not

feasible at high frequencies, since it would require an infinite amount of energy: an

impossibility.
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figure 70 A general circuit lor differentiation, integration, and bandpass filtering

We can obtain the transfer function for this circuit by regarding R. and C, in series

as being a single impedance and R
:
and C

:
in parallel as another impedance. At

combinations oi' gain and frequency well below the gain-bandwidth product of the

operational amplifier, the transfer function is approximately

H>\

OUT

IN

1

sC,

R,
sC,

1 392)

Simplifying this, we get

267



OUT

IN

1

*2
2

*2 1

1 +s^C
2

sC,

1 +5C^,

sCfo

R
x
Hf

]

C
2

\(

+s
R.C,

)

+s

K
R

i
C

> J

(393)

This reduces to

OUT

IN
R,C

2

( 1

R
2
C

2
j[R^C

i

+Sj

(394)

Letting s=jo>, we get

OUT

IN

(/'«) = JO)

Rf2

1 .
V

+JCO
[R

2
C

2 J^CsJio}

R^CJco

1 +
yw

'

1 |

1^2 J

JCO

(395)

Expressing this in terms (if the conventional frequency f=co/2-.
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OUT

IN

ijlnf) = -27rft,C.
Jf

1+- if

1

InKf2)

1 + ;/

i

This expression is more easily grasped if we let

1

tor then we get

/,
~-

2nR
x

C
x

and /, =

2nRX
7

^U2nf) - /tc,
j2nf

IN
l+y-

(396)

(397)

(398)

Let us set //=/>=/',. For frequencies /</, we have

Ol/7
(y2/r/) - -R>C

x

jlnf.

IN

From Equations (389) and (390),

5(0

(399)

400)

So our circuit produces -R,C, times the derivative ot the input, provided that f«fp .

Now let us see what happens lor frequencies/"/,. We gel
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^(jlxf) - -Kf.
j2nf

IN

Vi

1,

y2^

p]

f

1

)2nf

(401

/

- -*£x
(2n)2

(2tt)^
1
R

2
C

1
C

2

1 1

y2*/

R
x
CJ2nf

From Equations (389) and (391).

fs(t)dt
l (402)

5(0 ;2«f

So our circuit produces - \/R,C: times the integral of the input, provided that f»f

.

Any time approximations are used, one is interested in knowing how good the

approximation is. We have simply assumed that the frequency /is so far ahove f (in the

case o( the derivative) or so tar helow it (in the case of the integral) that errors are

negligible. We can be more precise than this, however.

Let f=af. The constant a may be more or less than l. We are interested in

letting it be more than I in our consideration of the accuracy of our circuit for calculating

derivatives and less than l in our consideration of the accuracy for calculating integrals.

There are two sources oi error. Either the magnitude o[' the result may be in error, or

the phase may be in error.

First we will consider derivatives. The magnitude oi' the gain of the circuit is
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OUT
(J2nf)

2nfR
2
C

l

IN

\

tf)
2

u
1 +7

V2,

(403)

The fractional error in the magnitude of the gain is 1 less than the ratio of this quantity

to our approximation in Equation (399). Calling this error e v/ , wc have

1

M
-1

N U
i '4

If we still have equal pole frequencies {Jr -f,-f:)- then

1

1

1 +7

/;

f>f
2

-
1

(404)

(405)

L +

I//

In Tahle XXXVII! we have tabulated the error e v/
in the magnitude of the gain.

As is clear from the tahle. less than 1

- '

c error results if we cause the pole frequency
_/J,

to

be less than 1/10 the lowest frequency of interest.

The phase of the gain of the circuit is

*_out)

v
* 2tan

hi

(406)

The error in the phase of the gain is the difference between this angle and the phase

angle of our approximation in Equation (399). Calling this error e,„ wc have
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Table XXXVIII Error in ihc magnitude of the gain of the differentiating circuit as a

function of the ratio of signal frequency to pole frequency.

fjjf €M

1.00 -0.5000

5.00 -0.0385

10.00 -0.0099

50.00 -0.0004

100.00 -0.0001

ep
= -2tan

v4
(407)

The negative sign indicates that the magnitude of the derivative will always he

understated slightly by the circuit.

In Table XXXIX we have tabulated this function in degrees for several values of

the ratio of the frequency /'of the signal to the pole frequency^,.

From Table XXXVIII and Table XXXIX. we can see that the cost of acquiring

greater accuracy is a necessity to restrict the frequencies / of the signal to a range well

below the chosen pole frequency f . Generally speaking, in designing a circuit we will

have in mind some specification for the accuracy in phase or magnitude of the gain. The

equations developed in this section can be used to place constraints on the necessary

value of f to meet the specifications. In addition to choosing fp such as to meet

constraints on accuracy over the range of frequencies expected, we must also choose a

value for the product R
2C, so that the desired multiple of the derivative is obtained from

the circuit. This number cannot be too big. for the amplifier will not permit it. The gain

at a given frequency cannot exceed the ratio of the gain-bandwidth product of the

amplifier (a published specification) and the particular frequency. For example, if we let
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Table XXXIX Error in the phase of the gain of the differentiating circuit as a function

of the ratio of signal frequency to pole frequency.

flfp *r

1 .00 -90°

0.50 -53.1°

0.10 -11.4°

0.05 -5.7°

0.01 -1.1°

GBW represent the gain-bandwidth, then at a frequency/, the gain cannot exceed GBWij.

For a differentiator, since we must operate well below the pole frequency /„. the gain

near the pole frequency will always he considerably higher than that at the frequencies

we are interested in. This is just the region in which the gain-bandwidth product is likeh

to impose a constraint. The upshot o[ this is that the gain of the differentiator may need

to be kept down in order to avoid driving the amplifiers too hard. The consequence ot

ignoring this point is reduced accuracy in the gain.

The equations for the fractional error in the magnitude o( the gain oi our circuit

when it is used as an integrator are not quite as simple as was the case tor the

differentiator. In this case, we find

2itfR2C ]

\

1 + i+
^'1

(408)

M

Rf^nf

We can simplify this to
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eM =

Qnf)%R2Cl
C
2 - 1.

1 +
' f)

2

A).
1+

(409)

N

From the definitions of/
;
and/,, this can be further simplified to

M

u
\

(A2

i+ J-

\f\)

1+ i-

f -1

/[/?+/] fl+f

f
2

--i

- 1

(410)

f'f2

1 + /

VP/

The negative sign indicates that the magnitude of the integral will always be understated

slightly by the circuit. This is a very similar expression to that for the error in the gain

of the differentiator. However, the ratio in the denominator here \sf/f, whereas it was

fp/f in the case of the differentiator. Table XL looks almost identical to Table XXXVIII,

except for this difference. The degree to which the frequency /' of interest is far away

from the pole frequency f , expressed as a ratio, is the key to determining the accuracy

of the output.

The absolute value of the phase error is exactly the same as for the differentiator,

so Table XXXIX is correct for the integrator, too.

As with the differentiator, the equations and tables in this section permit one to

design an integrator if one has a required error criterion in mind and can pick

components to satisfy all equations, all restraints, and the limitations on gain-bandwidth
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Table XL Error in the magnitude of the gain of the integrating circuit as a function of

the ratio of signal frequency to pole frequency.

•

flfp eu

1.00 -0.5000

5.00 -0.0.385

10.00 -0.0099

50.00 -0.0004

100.00 -0.0001

product imposed by the operational amplifier. An attractive feature of this circuit to

perform integration is that the gain at zero frequency is zero. Offsetting this, however,

is the fact that there is high gain at frequencies just above zero, and yet there is so much

phase distortion in that vicinity that the output does not look, anything like a derivative.

Also, to get adequate gains in an integrator, one often has to use large impedance in the

feedback path, which has the effect of magnifying the effect o\ the operational

amplifier's offset currents. These produce voltage drops across the feedback impedances

that may tend to spoil the advantage o( low DC gain.

G. OBTAINING LARGE RESISTANCES WITH A TEE-NETWORK

Often one needs a larger resistance than is readily available in off-the-shelf

components. This is especially true in constructing integrators. It is useful, therefore, to

find a way to obtain large resistances from a number of smaller resistors. In Figure 71

we show a network which achieves this. We can understand the working oi' this circuit

by supposing that we inject a current /, into it and calculate what the output voltage Va

must be. The effective resistance ol' the network is given by
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Figure 71 A Tee-network can be used to obtain large resistances.

REFF
(411)

We shall assume thai the current I, comes from a current source at zero volts. This

is the case, for example, when the network receives its current from the virtual ground

of an operational amplifier. The voltage at the junction of the Tee is given then by

V = -LRV (412)
a 1 1

Thus the current /, through resistor R
:

is given by

V R,

The remaining current /,. through resistor R3
is given by

7
3

= /r/
2

= 7,

Knowing this, we can compute the output voltage

(413)

(414)
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v a 5 ^ v
1 1'

R-m
(415;

^ R^R.R^R,
EFF

h *>

Now if we choose the resistances such that

/?,&, < fl,/^ and R
2
R

i
< R^ (416)

then the first and third terms in the numerator can he neglected and we have the

approximation

REFF - *&. (417,
EFF R

2

We have dropped the minus sign, preferring to regard it as due to the inverting action

of the amplifier in which this resistive network commonly is used. If we set R, = R.= R.

then we get the particularly easily remembered approximation

REFF .
* (4181

As an example, suppose we need a resistance of 3.5 Gil. II we use a Tee-network

with # = 300 kH and R:
=25.5 Q. then the equivalent resistance is

=
tf

__
(300 kQ) 2

= 35 QQ (419)
EFt

/v\ 25.5 Q

In summary, a Tee-network can provide the equivalent o[' a single large resistor.

At first glance, one might also suppose that the noise contributed by each resistor in the

Tee could be added together (square root of the sum of squares) to get the total noise,

and that there would be less noise from this combination than from a single larger

resistor. This is wrong, however, because the noise from resistor R,=R is multiplied

approximately by the ratio RR
:

. This is a fairly large multiple if the conditions in
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Equation (416) arc met: certainly it is bigger than the multiple /2 which would apply

(roughly) if this approach were valid.
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APPENDIX B. THEORY OF OPTICAL FIBER COUPLERS

In this appendix wc consider the results of applying Maxwell's equations to the

operation of 2x2 and 3x3 optical liber couplers. This material was presented in Snyder |Rel. 20|

in a highly condensed form. In order to make it more comprehensible, we include many

of the steps omitted in his paper. Some minor errors in Snyder's work arc pointed out

and corrected. Most of this chapter is highly mathematical and requires more than a

passing familiarity with Maxwell's equations, calculus, and vector algebra. However, the

key result is presented in the first section. This result is necessary to the analysis oi the

operation of 2x2 and 3x3 optical fiber couplers under specific conditions, which is in

Chapter III.

A. KEY RESULT OF HIE THEORY

da,

-J-
+ JPkak

= £>/?* (420)

S*k

This differential equation gives the connection between the amplitude coefficients

of the light in each o( the n fibers in an optical fiber coupler where the libers are laid

parallel to each other. We consider only single-mode optical fiber. In Equation (420). fik

is the propagation constant o\ the light in fiber k. a
k

is the amplitude oi the light in fiber

k. Cto
is the coupling coefficient between fibers k and s. The amplitude a

k
actually is a

function of the position z within the coupler, so ak(z) would be a more correct notation.

If we apply /; initial conditions, then there is a solution to the // differential

equations. Typically we shine a known amount o( light into one or more o[' the inputs

to an optical fiber coupler. This amounts to specifying the values o[ the ak(z) when

279



z = 0, and these specifics depend on how the coupler is to be used. We shall examine

various possibilities in the next chapter.

B. MAXWELL'S EQUATIONS

Here are Maxwell's equations in point form, taken from Hayt [Ref. 1, pp. 358-359]

VxE = -— (421)
dt

VxH = J + *? (422)
dt

V-D = p (423)

VB = (424)

The following two auxiliary equations relate the electric flux density D to the electric field

intensity E and the magnetic flux density B to the magnetic field intensity II.

D = eE (425)

B = /iH (426)

We also need two further auxiliary equations for the current density J. There are two

sources of current density. One is conduction current density, due to the motion of

charges past a point with zero net electric charge density. This is given by

J = oE. <427 >

The other source of current density is the motion of volume charge density at a velocity

v. This is given by
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J = pv. < 428 >

In a glass fiber, we assume lhat the conductivity a - and that there is no net motion

of the volume charge density. Therefore J = in Equation (422).

In general, the electric field intensity E and the magnetic field intensity II both are

functions of time, so we would write them as E(/) and II(/). We now consider the

restricted case in which the variation with time is sinusoidal. Since they both are vector

quantities, we write their amplitudes in vector notation as simply E and II. separate from

their dependence on time. These amplitudes may be functions of position and frequency,

but not of time. E(/) and 1I(/) each may have some phase shift ip, and ^/y
. too. and these

also may be functions o[ position and frequency, but not of time. So we have

E(0 - E cos(o>f + ij/E)
(429)

and

H(f) = H cos(cot - \jrH).
(430)

These two formulas can also be written as

A"< - *e)} (431)
E(t) = R^EX

and

H(r) =Re[H/
wr+ H (432)

To simplify the notation in what follows, we shall suppress the Re. This simplification

leaves

E(f) = Ee^"^ (433)

and
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H(f) = H/ wr
* '->. (434)

Some authors use a different convention in Equations (431) and (432). They use

-jo> instead of +jo>. This makes absolutely no difference in these two equations, since

in taking the real part of the function in brackets, the part which depends on

sin(d>f + iff) is the imaginary part, and it is discarded. It makes considerable difference

in Equations (433) and (434), since we no longer discard anything in these formulations.

It would appear that -jo is used in Snyder's paper, although he does not explicitly so

state. For if we substitute Equations (433) and (434) into Equations (421) and (422),

then we obtain the following:

VxE(r) -
dB

dt

=
<3H

= -ju/iEit)

(435)

and

<3D(f)
VxH(f) - J

= + e

dt

dE(t) (436)

dt

= ja>eE(t).

Snyder [Ref. 20, p. 1268] gives these equations with opposite signs, which is what one

would get if the substitution of -y'a> had been made for +jo>.

C. APPLICATION OF MAXWELL'S EQUATIONS TO AN ARBITRARY MEDIUM

Snyder now introduces the notation E and H to refer to solutions to Maxwell's

equations in a medium with permittivity e = e{x,y£) . This permittivity is a function o['
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space. Snyder does not say so. but it also is generally a function of frequency. The

material also has permeability fj. Non-magnetic materials have a value of \i which is

nearly equal to p„. the permeability of free space, so Snyder tacitly treats the value of \i

as known. Because the subject under consideration now is optical fiber, the z-axis is

regarded as being along the axis of the fiber, which corresponds to the axis of

propagation of light.

Snyder's goal is to find solutions for E and H in the material with permittivity

e - e(x,y\z) if solutions for E and II are known lor a uniform lossless system with

permittivity € = e(x,y). This known permittivity is assumed to be independent o( z. In

other words, no matter where along a length of optical fiber you chance to look, you find

the same permittivity.

To achieve this goal. Snyder defines a new quantity. F.

F = Exfi* - £%H <437)

Hayt [Ref. 1. p 499| gives the following vector identity:

V-(AxB)^ B-(VxA) - A-(VxB). (438 >

Another useful vector identity is that the divergence of the sum of two vectors is the sum

of their divergences taken separately. In mathematical form, this says that

V-(A + B)= V-A + VB (439 >

Snyder uses these two facts 10 obtain the divergence of Equation (437).

1440)

V-F = V-(Exfl') - V-(£*xH)

- fl'-(VxE) - E-(Vxfl')

+ H-(Vx£*) - £'-(VxH).

It is easy to show that the curl oi' the complex conjugate is equal to the complex-

conjugate of the curl, or
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VxA*^ (VxA)\ (441)

Applying this tact to Equation (440), we get

V-F = fi'-(VxE) - E-(VxH)*
(442)

- H-(Vx£)* - £*-(VxH).

We can replace the factors VxE and VxH in Equation (442) by the equivalents easily

obtain from Equations (435) and (436), where the presence of tildes (
~

) continues to

signify quantities having to do with the unknown medium. This yields

V-F - H*-(-j(otiH) - E-(jG)eEY (443)

+ H-(-)6>/ifl)* - t*-(jcoeE).

The constant factors can be removed from within the brackets because, for any constant

k,

\-(k B)^ kAB < 444 >

So

V-F - -jcjfiW-E + jue'E-E' (445)

- ;6>/iH-fi* - ywe£*-E.

The first and third terms in this expression are equal but of opposite signs, so they vanish.

Gathering common factors, we are left with

V-F - y6>[e'-e]E-£'.
(446)

This is Equation (2) in Snyder [Ret*. 20, p. 1268]. but with opposite sign, for the reasons

we discussed above.
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Next Snyder presents a formidable-looking identity without proof. Here is its

derivation. The divergence theorem is

J
V-FdV = j FdS. (447)

If we consider the volume I ' to be a infinitesimally thin slab of area A and thickness dz.

then the slab has a differential volume element dV = dA dz. This allows us to

decompose the left hand integral into two parts: a surface integral over the area of the

slab, and an ordinary integral over its thickness.

The right hand integral in Equation (447) also can be decomposed into two parts.

One is a surface integral o! the projection of F onto the unit vector i. perpendicular to

the surface A. This surface has a. differential element o( area dA. The other part is a

surface integral o\' the projection of F onto the unit vector ft. perpendicular to the rim

of the slab. The circumference oi this slab has a differential element of length dL. and.

so, the rim as a whole has a differential element o( area dL dz. The result is

f fv-FdAdz = f F-zdA + ( FhdLdz.
J Z J A J A Ja„u

(448)

The integral over the closed surface 5 is replaced here by two integrations over open

surfaces. We can differentiate both sides o( this equation by z. The left-hand side o( the

equation becomes a mere surface integral. The second term on the right-hand side is

converted to a line integral along the closed contour L
t

. which follows the rim til the slab.

This gives us

f v-FdA = — f F-zdA + 6 FndL. (449)
J A dz J A Jl

a

This is Equation (4) in Snyder. [Ret. 20. p. 1269| After some further development.

which we provide here in detail, Snyder applies this identity.
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If the electrical permittivity characterizing a uniform, lossless material is e, then

electromagnetic fields are supported in various modes with modal propagation constants

B . These fields are of the form

E,0W) = e,(*o0«
'

'A* (450)

and

H
p
(x,yj) = h

p
(x,y)^. <451 >

In these equations, e and h are vector functions found by solving the transverse wave

equation, and they are independent of z. Also, different modes are mutually orthogonal.

That is,

fA
£-(e

p
xh'

q
)dA = ±6

pq

(452)

±1 if p=q
otherwise.

In this expression. A^ represents integration over an infinitely extensive cross-section, and 8

is the Kronecker delta function, whose definition is included in the equation. When/? or

q is positive, then the mode is one which propagates in the positive z direction.

Conversely, when p or cj is negative, then the mode is one which propagates in the

negative z direction. The cross product of e^ and h
;
, is the Poynting vector P = e„ xh

p
-

and by a homophonous coincidence, it gives the direction o[' power How across the cross-

sectional area. So by convention, we regard e
;)
as unaffected by a change in sign of/;.

In contrast, h^ and fip
both change sign when /; does. That is,

e = e ,
(453)

-p />'

h = -h ,
(454)

-p p'

and
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B = -B .
(455)

(If e also changed sign, then the Poynting vector would not. and so would incorrectly

describe the flow of power in the negative direction along the optical fiber.)

Since e and h
;

, both are known solutions to Maxwell's equations, it is reasonable

to substitute them for E and II respectively in Equation (437). It we do this, then we get

F = Exfl* + E*xH

= e
jP> z

(e
p
xW + E'xh

p )

(456)

Now if we define

rtr (457)F = F/*r,

then we can divide both sides of Equation (456) by e
J

"" and so get

F, = e,xH" - Exh
p

.

(458)

If we substitute Equation (450) into Equation (446). then

V-F = Mr-e)e
p
e
j^t\ (459>

Now we can take the integral of this expression over the cross-sectional area /I and apply

the identity in Equation (449).
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f
JG>(e'-e)e

p
e
jPpZ

-%'dA

= Af e
jP>zF-zdA + i e

jP" zF-ndL (460)
dzJA p nA

p

JPJWe can divide through on both sides of this equation by e " and rearrange terms to get

(;/>, !)/>,<«
(461)

= jo( {e-F)e -ft'dA - i F -ndL.
J A p J LA

This is essentially the same as Equation (9) in Snyder [Ret'. 20. p. 1269). However, the

difference in convention over the sign o(jo> mentioned previously shows up here, too:

the first term in the right hand side is the negative of that given by Snyder.

D. FINDING THE TRANSVERSE FIELDS IN AN ARBITRARY MEDIUM

Snyder next goes on to consider how to represent the transverse fields of the

unknown system with permittivity e' . since the transverse fields of the lossless cylindrical

uniform system with permittivity e are known. The fields within a uniform optical fiber

are very well described by these solutions.

The transverse fields of the known (lossless, cylindrical, uniform) system form a

complete set of orthogonal functions, so the transverse fields of the unknown system can

be expressed as a linear combination of these. Hence

and
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a; = $> (z)h;u,;y). (463)

The subscript / is meant Lo indicate the transverse Held quantities. The coefficients a in

these two equations are identical.

Snyder next substitutes these two equations into the left side of Equation (46) ) and

integrates over the infinite cross-section A^. This yields

' d

(464)

— + JPB \( F
n
idA

Now we can take the summations and the factor c/
(/

(r) outside the integral, since the

integral is only over the cross-section in the x—y plane. Thus

dz
JP^JridA

(|
+ ^)e^/j-k^;i^ + (j-^^dA

(465)

In this form, it is easy to see thai we can apply the orthogonality condition expressed in

Equation (452). If we do so. we get the much simplified result

(fr j^)L
¥>' idA jz +jp

P p~°fi)
(466)

This takes care of the left side of Equation (461). As for the right-hand side, the line

integral evaluated at an infinite radius is zero. Dividing both sides by 2. we obtain

da
p
(z)

dz
jpa(z) = ±

J—[ [e-e')t
n
t'dA.

(467)
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The positive sign in the right hand side takes effect tip > and the negative sign takes

effect tip < 0. This equation is essentially the same as Equation (1 1
) in Snyder [Ref. 20,

p. 1269|. As usual, though, there is a difference in sign in the right-hand side.

To obtain a solution to the series expressions of Equations (462) and (463) requires

finding the coefficients a (z). These can be obtained by solving the differential Equation

(467) when the perturbing field £* in the unknown medium is specified.

E. Z-COMPONENT OF THE FIELD IN AN ARBITRARY MEDIUM

We have confined our attention so far to the transverse fields o( the unknown

system. It is time to include the component along the z-axis. too. We can represent the

complete field as a linear combination of components in the transverse plane and along

the z-axis:

e- . e; e;
,468 »

and

a . a; a;.
(469)

We already have the expansions for the first term, the transverse term, in each o^ these

equations from Equations (462) and (463). We need to find the second term in each o(

Equations (468) and (469). We can get the z-componenl o( E* by projecting it onto a

unit vector z in the z-direction. But we can relate E* to fl* by the use of Equation

(436). The z-component of the curl of a vector A is given by
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[VxA], = [VxA]-£

(470)

=
d*y

_
d*,

dx dy

We define the transverse divergence by

V-A-^3 (471)

dx dy

If we take the transverse divergence of the cross-product of the unit vector in the z

direction and the transverse component o{ A. we get

V,-(£xA
f
) = V,-(-i4 x + A

xy)

dA
y

dA
x

~dx~ ~dy~ (472)

= -z-(VxA)

- -(VxA)..

Combining Equations (43d) and (472) gives

~, (Vxfl").
£. =

-J*>e
'

(473)

V
r
-(ixfl

t

')

j(x>e'

This expresses the c-component of the electric field in the unknown medium in terms ol

the transverse component of the known magnetic field. We can substitute Equation

(463) into Equation (473) to get
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e; -

VW*x£a,(z)h*
(474)

JCJ6

We can expand this equation by applying Equation (438) to it.

e; =

E«,fc)N»W*a - sf^E <Vz)h* (475)

J0>€

The first term in the numerator is zero, tor the unit vector is a constant and has no curl

of any kind, let alone a transverse curl. In the second term in the numerator, we can

bring the transverse curl operation inside the sum and right past the coefficient a (z),

since a function of z is a constant with respect to taking the transverse curl. Thus we

have

E
:

=
~

:-£*Wx*g
(476)

j(oe

The transverse curl is parallel to £. so the dot product o{ i with it is a nonzero scalar.

By applying Equation (436) to this expression, we get

Y,aq
(z)jaee

qi (477)

jcoe

Note that the transverse curl operation extracted only the r-component of e
(/

. Dividing

this out yields

e q

(478)

since, for a lossless system.
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e - e.
(479)

This is different from Equation (12a) in Snyder | Ret. 20. p. 1270). Although the

difference in sign we have consistently mentioned has mysteriously evaporated. Snyder's

version of this equation has the permittivities inverted, i.e.. his version o[ the equation is

E = +-tEVz>v
(480)

e
i

This is, presumably, a typographical error.

F. COMPLETE FIELD IN AN ARBITRARY MEDIUM

We can now substitute Equation (478) into Equation (46<S;

E- = e; + e:

q 6 q

Es(z)
i

ei
+ 4 ei

The corresponding expression for fl* is almost identical, but because the magnetic

permeabilities in glass and in free space are nearly equal, the leading ratio of permeabil-

ities is one, and so can be suppressed.
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a- - a; a;

- e*MK + h;

(482)

This expression is identical lo Equation (12b) in Snyder [Rel. 20. p. 1270].

We now can substitute Equation (481) into the right side of Equation (467).

dalz)

3P
' 1P/W - *ffA^rK-fdA

*fj>£-)vE a,« "qt

e

(483)

J£ aJ® 7 J A2Ja V V ~, pt 9'
€

dA

Again, this differs from Snyder's formulation in sign, and now. too, by the inversion of

the ratio of permittivities, which we discussed earlier. We now adopt the usual expedient

in dealing with a troublesomely complex equation: we define a new symbol for most of

it! In keeping with Snyder's notation, we shall call everything within the square brackets

C , the coupling coefficient. The resultant differential equation is

^ JWz) - J£ a(z)C
dz

/><?

(484)

This is identical to Equation (13) in Snyder [Ref. 20. p. 1270]. but o( course, our

definition of C
pq

differs as already discussed. This differential equation is applicable when

the optical fiber is either irregular or only slightly lossy, that is. when the perturbation to

the electric fields is slight.
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G. SOLUTION IN PARALLEL UNIFORM OPTICAL FIBERS

In an optical fiber coupler, we no longer have just one liber to consider. Several

nearly identical fibers are laid alongside one another and fused together. For n fibers,

the modal expansion method will lead to n equations like Equation (484). Because of the

similarity of the fibers and the orthogonality of the modes expressed in Equation (452),

the plh mode of fiber k can only couple with the pth mode ol fiber v. The coupling

between fiber k and fiber v is then given by the following set of differential equations.

We continue to use subscripts to denote the modes of the waves, but introduce

superscripts in parentheses to denote the fiber under consideration.

dz s

This is identical to Equation ( IS) in Snyder [Ref. 20. p. 1271 ]. except vve use / for \f-l.

where Snyder uses /: and we use k in place of Snyder's index /. The coupling coefficient

is

CT = -( ie
(s) - e)t^-ef'dA. <486)

PP 7 J aIsV ' P P2 J a'

The difference in permittivities that appears in this expression is that between the

permittivity in fiber / and that of the surrounding medium, namely the cladding o\' the

fiber. Because coupling is limited to the same modes p. there is no strict necessity to

retain the subscripts/;. (If we restrict our attention to single-mode optical fiber, which

is the case under consideration, then there are no other modes anyway.) The superscripts

can be moved down and become subscripts, and the result of this notational shift is
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da

~fz
+
JPfr =jL a

s
C

js- (487)

s*k

This is the key result of Snyder's work, and it is used in Chapter III Tor the analysis of

2x2 and 3x3 optical fiber couplers in optical fiber interferometers.
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APPENDIX C. AN ANALOG INTERFEROMETRIC SIMULATOR

In this appendix, we describe an analog electronic simulator which can be used to

generate a facsimile of one of the outputs of an optical fiber interferometric sensor. The

idea for this simulator came from Tvelen ei al. |Ref. 21 1. The implementation

in this appendix is based very closely on one designed by Litton Industries. A block

diagram for the simulator is shown in Figure 72. A schematic diagram for the simulator

is shown in Figure 73.

A. CIRCUIT DESCRIPTION

The heart o\' the circuit is integrated circuit U2, which is an Analog Devices AD639

Universal Trigonometric Function Converter. It is configured in the simulator to furnish

the sine of its input. An input i)l 1 V is treated as the equivalent o\ a 50° angle. To put

this another way. the input scale factor of the AD639 is 50°/V = 0.873 rad/V. It is

somewhat more convenient in interferometric work that the simulator have a scale factor

which is an integral number of radians per volt, and 1 rad V is the number which was

chosen by Litton's designer. To obtain this scale factor we must multiply the inputs by

gain 1/0.873 = 1.15.

An approximation to this necessary gain is provided by operational amplifier U1B

to the main inputs to the simulator, marked SENSOR 1 and SENSOR 2. The choice ol

resistors R8 , /?„. and R,„ shown in the schematic drawing actually provides a gain oi

5.6 kft/5.1 kfl = 1.10. a little less than the level needed. With these values, we can

predict that the scale factor will be

[

5.6 kfl V50M/' nnd \ _ 95g
mrad (488)

I 5.1 kQ){ V )\ 180
c

J
V

The simulators we used averaged 918 mrad/V. The measurements on which we based

this conclusion will be given later in this appendix.
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Figure 72 Block diagram of the Analog Interferometric Simulator.

Typically, one generates a test signal by applying a sine wave to one of the two

sensor inputs and leaves the other one unconnected. If both inputs are used, their effects

are additive, for applying a voltage to either input generates a current through either Rs

or R9 and these currents are added at the virtual ground of operational amplifier U1B.

A third current input also is added in at this node. It is a "static phase"

contribution dictated by the setting of potentiometer R16. The name was chosen by

analogy with the static phase contribution in a real optical fiber interferometric sensor,

which is caused by variations in temperature, pressure, and other factors. The difference

is that the static phase in a real interferometer tends to drift with time, but the setting

of the potentiometer in the simulator is generally set at a desired position and left there.

The size of the resistors R_, and R5
was 1.5 kCt in the Litton design; we reduced them to

250 H in order to increase the range over which the static phase might be varied. This
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?igure 73 Schematic drawing of the Analog Interferometric Simulator.

static voltage can range between - 10 V and +10 V with these smaller resistors. The DC

gain of the summing amplifier for this input is 5.6 kfi/(10 W. + 10 kCl) = 0.2S. Thus the

output from the summing amplifier can vary between -2.8 V and +2.8 V due to changes

in the setting of the static phase potentiometer. These extremes correspond to

±(2.8 V)(50°/V) = ±140° = ±2.44 rad adjustment in the static phase. This level of
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variability is sufficient to permit three simulators to provide three facsimiles of an

interferometric output, each one separated by 120° in phase from the next. With 1.5 kfl

resistors tor R, and /?,. the voltage from the potentiometer is limited to ±3.75 V. which

leads to ±1.05 V from the amplifier U1B, or ±52.5°. which is sufficient to provide two

interterometric outputs 90° from each other, but not three outputs 120° from each

other.

The other signal input to the simulator is the one marked PZT MOD on the

schematic. This input is applied to operational amplifier U1A. which is configured to

provide a non-inverting gain o\ (1+ (750 fi/1.5 kfl))= 1.15. This, of course, is the gain

we computed above to convert I V to the equivalent of a I rad input to the AD639.

This signal is then provided to pin 1 of the AD639.

The AD639 actually computes the function

W - u^lR (489,

sm(Yr Y
2)

when Z, (pin 13) and J^' (pin 14) are connected together, with Z
:
(pin 12) left grounded.

Because Y, (pin 7) is connected to VR (pin 6) at 1.8 V and >'_. (pin 8) is grounded, the

denominator in Equation (489) is 1. Input U
}

(pin 3) receives a variable voltage-

depending on the setting o\' potentiometer R,,. and input U
:

is grounded, so this

potentiometer functions as an amplitude control for the interterometric simulation. If the

final input to the simulator, the one marked AM. is left open, then operational amplifier

U3A operates as a buffer of gain one. so the maximum voltage on the potentiometer Ru

then is fixed and equal to the l.S V supplied by VR (pin 6).

If the AM input is not left open, then U3A no longer functions as a unity-gain

buffer. Instead, it operates on the reference voltage VR (pin 6) with gain \-\-RvJRu =

1.18 and it operates on the AM input with gain -R12IRU = -0.18. Thus, with the AM

input in use, the signal applied to potentiometer R,, is
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1.18^-0.18^ = 2.12-0.181^. '490)

We can interpret this lo mean thai a 1 V change in VAM induces a -0.18/2.12 = -N.5 f
<r

change in the voltage applied lo resistor Rn , which, recall, is the maximum voltage

delivered by the AD639.

The output of the AD639 is buffered by operational amplifier U3B. whose purpose

is to provide current drive capability to the simulator. A 47 Q. resistor /?,, provides

roughly a 50 CI output impedance lo the circuit, lo make it compatible with standard

instrumentation interlaces.

B. MEASUREMENT OF THE SCALE FACTOR

The easiest way to measure the phase shift in an inlerleromelric output is to apply

two of them to the X and Y inputs of an oscilloscope. The resultant waveform is an

elliptical Lissajous figure whose aspect ratio is determined by the phase shift between the

two outputs. For 120° phase shift, the major axis is inclined along the 135°/— 45° axis.

When more than ±~ lad o[' phase shift is present, the ellipse is closed because

sin(.r) retraces itself if A" spans at least 2t7 rad. The ellipse is open with less phase shift

than this present. By noting how many volts we must apply lo the inputs of the

simulators to achieve an integral number ol' closures o^ the ellipse, we can easily obtain

the scale factor oi the simulator.

If we average the three slopes shown in the table, we find that the average scale

factor is 918±4 mrad/V. which is the value we use in the rest ol' this dissertation when

inferring the phase shift generated by the Analog Inlerleromelric Simulators for a given

input voltage.

The simulators proved very helpful to us before we had a real interferometer

available. Generally speaking, if one's interest is confined lo demodulators, the

simulators are a satisfactory substitute for an interferometric source of signals only if

phase shifts below around ±2 rad are required. The AD639 cannot generate phase shifts

beyond this level. For measuring demodulator noise, however, where signals of small

amplitude are desired anyway, the simulators are very helpful, particularly since, by
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Table XLI Measurements to determine the scale factor (it the three Analog

Interferometric Simulators we used.

Simulator

#
Number oi

Closures

Phase

Shift

Required

Input

Voltage

I.east-squares fit

and

correlation coefficient r.

1

V
(925±2 mrad/V) V

IS +(-4±10 mrad)

/• = 0.99997

1 77 3.41 V

>
2jt 6.79 V

2

V
(921.3 mrad/V) V,s

r = 1 exactly

1 77 3.41 V

1
277 0.82 V

3

(906.7±0.8 mrad/V) 1 A + |2±3 mrad)

r = 0.9999997

1 77 3.46 V

T )_
6.93 V

varying the static phase adjustment, the even harmonics of the fundamental frequency

can be eliminated from the output.
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APPENDIX D. A DIGITAL INTERFEROMETRIC SIMULATOR

In this appendix we describe briefly a new simulator of interferometric outputs. We

developed this simulator in order to make interferometric signals available to a fringe-rate

demodulator before we had built a real optical fiber interferometric sensor. This

simulator outputs an in-phase and quadrature signal (separated by 90°. not 120°). and

the waveforms are square pulses, not smoothly-rounded waves oi the sort emitted by real

interferometers. For a fringe-rate demodulator, this is not a limitation, since it only

responds to transitions of its input (the interferometric output) through zero anyway.

Crooker [Ret. 10. p. 45] also used a simulator to produce square waves, 90° apart

in phase. Hers was based on the use o\' a pendulum and an optical shaft encoder. Her

design was limited to frequencies of one or two hertz, but could generate phase shifts of

up to 100 or so radians. To get large phase shifts with this apparatus requires large

displacements of the pendulum. The motion o[~ a pendulum only approximates simple

harmonic motion when the angle of displacement is very small. For large displacements,

the motion becomes more complex, even chaotic. Non-linearities are introduced into the

phase shift under these circumstances. A phase shift which is linear with the amplitude

of the stimulus is a much more desirable characteristic o{ a simulator, since real sensors

are designed to produce a linearly increasing phase shift with increasing amplitude of the

signal of interest.

The alternative we describe here uses digital logic to produce the same effect.

Central to its operation is a voltage controlled oscillator ( VCO) whose output frequency

is proportional to the input voltage. Figure 74 shows a block diagram o( the simulator.

The derivative of the signal n( interest is proportional to the rate oi' change ol' the desired

output phase shift. However, an interferometric output is the same whether the signal

of interest is rising or falling, so we use an absolute value circuit removes the information

about the direction of change. This information is required later in the circuit, however,

in order to allow the digital quadrature pulse generator to decide whether the Q output
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Signum

(>0?)

Lead/Lag Signal

Absolute

Value

Signal

of

Interest

vco

Offset

1

Digital

Quadrature
Pulse

Generator

Figure 74 Block diagram of a Digital Quadrature Phase Modulation Simulator.

should lead the / output or vice versa. Consequently a signum circuit outputs a TRUE

signal level when the derivative is positive and a FALSE signal when it is negative.

The Fixed offset shown in the figure must only be added in if the VCO (such as the

EXAR XR2206 that we used) requires unipolar inputs. Adding in this offset ensures that

this is the case. The output of the VCO thus has a high frequency when the signal of

interest is rising or falling through zero, and it has a low frequency when the signal of

nterest reaches an extremum. An optical fiber interferometric sensor terminated with

a 2x2 optical fiber coupler produces an output whose frequency varies in this manner.

The digital quadrature pulse generator uses the frequency output o( the VCO and

Lhe lead/lag information from the signum circuit to create two square pulse trains, / (in-

phase) and Q (quadrature). / leads Q (that is, changes from high to low. or vice versa

before Q changes) when the lead/lag signal is TRUE and it lags Q otherwise.

Not shown in the block diagram, but present in our implementation of it was some

ievel-shifting and buffering circuitry following the digital quadrature pulse generator.

Since its presence is not essential to understanding the technique, it is omitted in our

discussions here.
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While we shall nol detail the implementation of the DQPMS. we shall show the

logic of the digital quadrature pulse generator. This circuit was implemented with an

Altera EP310 Erasable Programmable Logic Device (EPLD). Internally, the previous

state of the / and Q outputs was preserved in a flip-flop. When the current state of the

lead/lag signal also is present, this is enough information to generate the next / and Q

data. Figure 75 shows a Karnaugh map for the generation of / and Q.

'old

1

1

Q<>! D

l

i

LEAD/LAG

1

'nil)

1

1

1

1

LEAD/LAG

1

1 1

1 1

1 1

I) 1 1

/ Q

Figure 75 Karnaugh map o{ logic needed to generate in-phase / and quadrature Q data

for the Digital Quadrature Phase Shift Modulator.

For example, suppose / presently leads Q and the old values oi I and Q were and

1 respectively. The LEAD LAG signal was 1 before. If it stays at this level, then Q must

follow / to before anything else happens. We see in the Karnaugh map that the new

outputs are /= () and Q-{). But if the LEAD/LAG signal switches to 1. then / should

follow Q now. We see in the Karnaugh map that the new outputs are /= 1 and Q=\.

The other values in the map were completed in the same way. Two logical

equations describing the outputs are

(491)
/ = LL Q and Q = LL /

The DQPMS is a useful simulator for testing fringe-rate demodulation schemes.

It is not suitable for testing other demodulators because its outputs are square, not

smooth. However, it is a very simple circuit and provides a much larger range o(
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frequencies of the signal of interest than were feasible with Crooker's pendulum-based

simulator.

306



APPENDIX E. BEHAVIOR OF THE BESSEL FUNCTION

In this appendix, we present graphs which give some intuitive grasp of the Bessel

function Jk(A). Since the interferometric output resulting when a simple sinusoidal

stimulus impinges on an optical fiber interferometric sensor can be expressed as a Fourier

series whose coefficients are Bessel functions, it is useful to develop some feeling for how

they vary with k and A.

Generally speaking, the Bessel functions are significant in magnitude only for values

of k less than A. As A increases, this implies that there are more and more Bessel

function coefficients which matter. In other words, there are more and more harmonics

of the fundamental frequency contained in the interferometric output. In deciding how

much bandwidth is required within a demodulator, then, a choice of A SLiX and / U1V

dictates the highest significant frequency components present in the interferometric

output.

For example, -if A were 100 rad at most, and /were 200 Hz at most, then

frequencies which were integral multiples o{ the fundamental frequency at 200 Hz would

be present, up to around 200x100=20 kHz.
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Bessel Function with an Argument of 10

1

j | | i I I I L
ISO

Bessel Function with an Argument of 50
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Figure 76 The Bessel functions /„( 10) and /„(50) as functions of/?.
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Bessel Function with on Argument of 90

1 | | u J I I L

Bessel Function with on Argument of 100

150

200

i i L
20O

rigure 77 The Bessel functions /„( 90) and /,(100) as functions of/?.
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Bessel Function with on Argument of 150

Bessel Function with an Argument of 200

vA

* 11
,

it

TO
I

100 200

200

300

7igure 78 The Bessel functions /„( 150) and/„(200) as functions of//.
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APPENDIX F. NOISE ANALYSIS, SYMMETRIC ANAL()(, DEMODULATOR

In this appendix, we present a detailed analysis of the noise levels within the

Symmetric Analog Demodulator and at its outputs. The noise sources are assumed to

be Gaussian. Johnson (thermal) noise from resistors and shot noise from diodes are

assumed to be white noise over the frequencies of interest. The noise sources associated

with integrated circuits are generally not white. The specifications of some such circuits

provide graphs, giving the noise spectral density over a continuous range of frequencies.

Those for other circuits quote the noise spectral density at discrete frequencies, usually

irequencies which are integral powers oi' 10. The operation o( the demodulator itself

changes what white noise there is according to the characteristics of the transfer functions

which it comprises. For example, white noise is converted lo "pink" noise (in which

lower frequencies are enhanced and higher frequencies are attenuated) upon passing

ihrough an integrator.

The reader should refer 10 the schematic diagram o[' the Symmetric Analog

Demodulator on page 134 for a complete view of the demodulator. However, we shall

show each stage separately as we conduct the analysis. In the following sections, we

perform general algebraic analyses o( the noise performance oi each o\' the various

classes of circuits which exist in the Symmetric Analog Demodulator. After collecting the

results, we apply them to the Symmetric Analog Demodulator specifically by replacing the

algebraic symbols with actual values.

A brief explanation of our method of analysis generally is in order here. To avoid

'.he cumbersome expressions associated with working with the integro-ditterential

equations by which lumped-parameter circuits may be modelled, we work in the Laplace

iransform domain, the v-domain. We shall only work with resistances and capacitances.

To find the quantity in the Laplace domain which is analogous to a resistance R we can

take the Laplace transform o\' the implicit definition of R given by v(t)=i<t)R:
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9£[v(r)] - V(s) =
r
J[i(t)R] = f"i(t)Re

st
dt = K/(.s). (492)

Jo

Wc see that in the Laplace domain, R is defined implicitly by the equally simple relation

R=V(s)/I(s).

Similarly, wc can oblain the quantity in the Laplace domain which is analogous to

a capacitance C by taking the Laplace transform oi' the equation which defines a

capacitor:

M = C^-. (493)
dt

The Laplace transform F(s) o[ a wave form f(t) is defined by

F(s) = f

m
fLQe-*dt. (494)

jo

Applying this definition to the definition of i(t) we find

Ks) = 8E[i(0] = rc^-e st
dt.

Jo dt

This expression can be integrated by parts if we let

Differentiating/; and integrating dq yields

dp = -se^dt and q = v(0-

So we find

(495)

p ~- e
st

and dq =^-dt =dv(t). (496)

dt

(497)
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7(5) - pq-('qdp
/

- c\v(t)e-*\Z+sf\(t)e-
a
dt

o

(498)

= C[v(0)+sK(s)].

Ultimately our interest is in steady-state solutions, i.e., in the Fourier-transformed

variables. These are obtained by assuming all effects clue to the initial conditions v(0)

eventually die away, and by replacing the complex Laplace variable s by the purely

imaginary' frequency/ <o =j2 irf. For now, we shall retain the variable s and drop the initial

conditions. If we then lake the ratio of V{s) to 7(.v), we obtain

V(s)
= ±

I(s) sC
(499)

So far, we have been careful to use lower case letters to signify variables o\' time

/ and upper case letters to signify variables of the complex frequency s. From here on.

we shall not maintain this distinction. All o( our analysis will be in the Laplace domain

s or in the Fourier domain s=jo>. so we shall feel free to use lower case letters for

variables in these domains.

We also shall usually assume that the operational amplifiers are ideal. An ideal

operational amplifier has infinite input impedance, zero output impedance, and has

infinite gain. As a result, it will draw no current, will supply as much current as required.

and keeps both its inputs at the same voltage by the operation o[' negative feedback. The

assumption of infinite gain is fairly accurate at the low frequencies considered in this

dissertation. In reality, the gain is on the order of several hundred thousand or so. and

begins to decline at the rate of 20 dB per decade increase in frequency at frequencies

above 10 Hz or so. The decline increases at even higher frequencies, on the order of

500 kHz to a few MHz.

Several times in this appendix, these simplifying assumptions do not make obvious

the output of a circuit. When this occurs, we shall call the gain of the operational
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amplifier A, ignoring its frequency dependence, and we shall express the amplifier's

output as

v0UT
- AiT-V) (500)

where V* is the voltage applied to the non-inverting terminal of the operational amplifier

and V is the voltage applied to its inverting terminal. When we have finished doing this,

we shall always let ,-1 be very large, and it invariably vanishes from the results.

A. RECEIVERS WITH LOWPASS FILTERING

In Figure 79 is a schematic drawing of a receiver consisting of a photodiode with

a transimpedance amplifier built around an operational amplifier. Together, they

constitute a receiver with u lowpass characteristic. There are two noise voltage sources

and two noise current sources in this figure.

The source i
f

is a noise current due to shot noise in the photodiode ol' the receiver

(we neglect additional effects due to dark current). Its current spectral density is given

by

C = ffi.
(501 >

In this expression. / is the current flowing through the diode, the current which gives rise

to the shot noise in the first place, and q— 1.602 x lO
-1 " C is the charge on an electron.

The current / can be expressed in terms of the responsivity fft of the photodiode. given

in units of amperes per watt of incident optical power (A/W), and the incident optical

power P, given in units of watts (W). So we can rewrite Equation (501 ) as

if = J2JXP. (502 >

The noise source ij models the current noise at the inputs of the operational

amplifier. We show it as acting at the inverting input.

The voltage noise source t'„
f models the voltage noise at the inputs of the

operational amplifier. We show it as acting at the non-inverting input.
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Figure 79 General schematic of an optical receiver using a photodiode and a

transimpedance amplifier with lowpass filtering.

The voltage noise source eK
f

is due to the Johnson (thermal) noise o( resistor R.

It has noise voltage spectral density

el = JAkTR. (503)

The constant k is Boltzmann's constant. 1.381 x 10" 1,
joules per kelvin (J/K). The

temperature T is measured in kelvins and we shall take it as 300 K throughout this

appendix. The resistance R is measured in ohms (Cl).

We shall perform Lhe analysis in this and all subsequent sections by suppressing

every source but one. deducing the output voltage spectral density e,
T due to the

remaining source, and summing all these individual contributions as the square root o(

the sum of the squares of the individual contributions. This is appropriate if we assume

all the noise sources arc independent of each other and that the noise spectral density

is the standard deviation (square root of the variance) of the underlying probability

distribution function, for the variance of the sum o( uncorrected random variables is the

sum of their individual variances.
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That is, if the kih of /; random variables has variance o
k
\ then the variance a of the

sum of all n random variables is

The standard deviation of the sum of the random variables is just the square root of this

sum. (This is not the same as the standard deviation of a sampling from a single random

variable.)

If we take the shot noise current source first, then we see that for an operational

amplifier with very large input impedance, essentially all the noise current Hows through

the feedback network consisting oi' resistor R in parallel with capacitor C. Since the

operational amplifier is in an inverting configuration, it attempts to keep the inverting

terminal and the non-inverting terminal at the same voltage. With the amplifier's noise

voltage source ?„
+ suppressed, this voltage is zero. Therefore the shot noise contribution

to the output noise is

.: -k

'

sC

,

R

\l+sCR f

:t (
R

1 1+sCR
fijWP (505)

Note that while we retain the negative sign here, it will be of no account when we square

this noise term in computing the overall output noise due to all the noise sources.

Next we consider the noise due to the amplifier's voltage noise source acting alone.

Since there is now no current available to How through the feedback network, the voltage

at the inverting terminal and the output terminal must be identical, and since the

inverting and non-inverting terminals are held at essentially the same voltages by the

amplifier, the output noise spectral density is

€
t = t_ (506)

For the operational amplifier's noise current source acting alone, all the current

must pass through the feedback network. Since the voltage at both input terminals of

the operational amplifier are held equal to each other at V, the output noise spectral
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rigure 80 Noise from the transimpedance amplifier considering just the thermal noise

from the feedback resistor.

density from this contribution is

eo3
= R\

sC
,

R

1-sCR
(507)

There is no negative sign here, as there was when the signal source provided a noise

current, by virtue of our definition of the direction of noise current How. Again,

however, the later squaring of this contribution would eliminate a negative sign resulting

from a different choice of current direction.

Finally we consider the noise due to resistor R acting alone. To do this analysis.

we shall redraw the schematic as in Figure SO with just this source acting.

Here we have interchanged the positions o( the resistor and its voltage source to

make it clear that the resistor and capacitor form a voltage divider. The output noise

voltage spectral density is thus given by
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J_
sC

R+
sC

(508)

1

1+sCR

fikTR

1 +sCR

When we add the effects of all four independent noise sources together, we get the

total output noise voltage spectral density

'•"N

\

E<2

^p<i^h'\

(509)

B. INVERTING SCALING ADDERS

In Figure (SI is a generalized summing amplifier with // inputs. As before, we shall

consider the effects o[' each noise source in isolation. Note that the resistance of the

source of input k is assumed to be negligible. However, if this assumption were wrong,

it could be lumped in with R. in computing transfer functions (although not in computing

the thermal noise attributable to Rk
itself.)

The noise due to source k is amplified by the feedback resistance R, divided by the

input resistance R
k

. The sum of all such contributions is

\ *=i

R
f (510)

When only the amplifier's current noise source is present, there is no voltage

across any of the input resistors R
k
because both inputs o[' the operational amplifier are
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Figure 81 Schematic drawing o( a summing amplifier with noise sources included.

held at zero by the amplifier's feedback. Thus all the noise current flows through the

feedback resistor and the contribution to the output noise voltage spectral density is

= R
f C

511)

When only the amplifier's input voltage noise is present, the amplifier is configured

as a non-inverting amplifier. The input resistance then is the parallel combination of all

n input resistors. The contribution to the output noise is then

\

R,

fc-i

R
k

(512)

We have used here a shorthand notation for the parallel combination of all n input

resistors, namelv
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V
IN

k = l

R
k

(513)

It is common to take all the input resistances as equal to each other and to the value R.

We shall do this in all applications of this analysis, so the parallel resistance reduces

simply to R/n and we can rewrite the noise contribution more simply as

\
1 +

nR
f

~R

(514)

When only the thermal noise due to the input resistors is present, that noise is

amplified in the same manner as the source noise voltage, giving

' \
E «™,
<t=i R

D \2 n

= |4*7K,
2£—

.

(515)

If, as before, we let R
k
-R for all k. then this can be simplified to

el - .14*77?;-.

\ R

(516)

The final contribution to the output noise comes from the feedback resistor. No

current Hows through the feedback network, so this noise contribution is felt directly at

the output:

el
s

- fkfRf
(517)

Summing all five contributions to the noise as the square root of the sum of squares

yields
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\

nR
f

nR
f (518)

C. INVERTING SCALING ADDERS WITH LOWPASS FILTERING

In Figure cS2 is a schematic drawing very similar Lo the one discussed in the previous

section. This one has a capacitor in parallel with the feedback capacitor, however. Its

function is to provide lowpass filtering. A development similar to those in the previous

two sections allows us to write the following expression for the output noise oi this circuit

by inspection:

N

/

R(l+sCR
f )r

)

SX2
R

f ff
1-sCR

AkTRs

f )

1+-
nR, \

R(\+sCR
f)

2

j

nR,
1 +

R( 1 +sCR
f
)

j

(519

D. DIFFERENTIATORS AND INTEGRATORS

The circuit we shall use both for differentiation and integration was discussed in an

earlier appendix. It is reproduced in Figure 83 with noise sources shown. We shall

commence our analysis by defining two functions which will be useful in the course ol the

analysis. The first o[~ these is the same transfer function we derived earlier for the entire

sub-circuit. It is

*>l

H
{

(s) =
sC^

ft,

1 +sC,#, sC
{

R
2

D 1 (\+sC,R.\ (\+sC.R.)(\'sCM

sC, sC,

(520)

The second transfer function is just the parallel combination oi R
:
and C,:
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HJS) - » |_L = _A_. (521)
2 ^ SC

2
l+5C

2/?2

The noise e/ from ihe inpul and that from the input resistor R, both are amplified

by the transfer function H,(s). Thus their contributions to the noise are

e
0]

= HJide] (522)

and

e\ - fikTRfl^s) (523)

respectively.

The noise source c
/

t
is amplified by a non-inverting configuration of an amplifier,

and so the resultant contribution at the output is

e
0s

- ^UH^ylf .

<524,

As we have seen in the last three sections, the noise from the feedback resistor /?>

shows up at the output without amplification:

e, = ,f4kT%. (525)

The remaining contribution to the output noise is due to the operational amplifier's

input current noise, /„
t

. When this is the sole source of noise, the inputs to the

operational amplifier both are zero, so no current tlows through the input network

consisting of R, and C,. All the noise current Hows through the feedback network and

this network has the forward transfer function H2(s), so the contribution due to the noise

current source is

322



Figure 82 Schematic diagram of a scaling inverting adder with lowpass filtering.

'o, - #W- (526)

When we sum all five of these uncorrelated noise contributions, we find the output

noise voltage spectral density is

el - /(^(s)e,Y ^7^,^(5)+ (l^^WJe^+^rRj^^Cs)!;).
:t\2 (527)
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Figure 83 Schematic drawing of the standard circuit we use tor differentiation and

integration with noise sources shown.

E. INTEGRATORS WITH TEE-NETWORKS IN THE FEEDBACK

The output noise derived in the last section applies to integrators with a simple

resistor in the feedback, as shown in Figure 83. In order to get a low-frequency cut-off

characteristic, however, we often would rather use a Tee-network in the feedback, as

shown in an earlier appendix, in order to get large values of effective feedback resistance

without having to use other than off-the-shelf resistor values. This more elaborate

version of the integrator is illustrated in Figure 84.

Two extra noise voltage spectral densities, ea

f and eh
f are shown in the diagram.

These are not sources; rather, they are the spectral densities present at the nodes shown

by the arrows.

When R
2
=Rj=R»R n then the feedback resistance is approximately R2

IR 4
. Thus we

can modify the transfer function H,(s) of the last section to
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rigure 84 Schematic of an integrator with a Tee-network in the feedback and with ai

noise sources shown.

HAs)

RJL
i

/?
4

sC,
sC

~r~

R,
sC,

(1 +SC& 1+sC,
~*7

(528)

Similarly, we can modify H: (s) o( the last section to
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*2*3

HM =

sC
2

*4

2

*4

(529)

The noise contributions from the source signal and the input resistors are still given

by Equations (522) and (523). but of course these change upon expansion. We shall not

perform the expansions, preferring to substitute numerical values for H,(s) later.

Similarly, the contribution to the noise at the output due to the input voltage noise

spectral density e„
f of the operational amplifier still is given by Equation (524). (526) and

the contribution due to the input current spectral density /„
+

is still given by Equa-

tion (527).

A difference arises, however, in considering the thermal noise in the feedback

network. To analyze this, we shall make explicit use o( the gain A a[' the operational

amplifier. Upon completion o[' the necessary algebraic manipulations, we shall use the

knowledge that A is very large to simplify the results.

First we consider the thermal noise e
Ii:

from resistor /?,. The voltage spectral

density ej at the inverting input o[ the operational amplifier induces a current /,
+ noise

through resistor R- and capacitor C,:

t
el sC/a

1 sC
{

(530)

The potential difference between the output noise voltage spectral density t\
f and

that at the inverting input also induces a noise current /\
+ through the feedback capacitor

C:
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e
f
-e

f

( 1

sC
2

[el-(-Ael)]sC
2

= (lM)^.
(531)

We have taken the direction of each of these currents to be away from the inverting

terminal of their operational amplifier. So their sum must How into that terminal through

the Tee-network. Cullinti this current /'/. we have

i tUC -
sC,

1 -sC,/?,
H\+A)sC„ (532)

This current induces a voltage noise spectral density across resistor R, which, when added

to the thermal noise spectral density caused by R, gives the voltage noise spectral density

eh
f
at the junction of the Tee-network:

el - elnt^el -- 1+ft,
sC,

1+sC,/?,
-(lM)sC >e„+e,

(533)

Note that since the only random signal present here is due to the thermal noise i!C
f

.

these spectral densities add directly, not as the square root of the sum of squares, which

would be the case for uncorrected noise sources acting in concert.

Knowing the voltage spectral density at the junction permits calculation of the

current noise spectral density / / down through resistor /?.:

'4 ^
el

R t

1

1+ft,
sC

l+sC t R,
+(lvl)sC (534)

The current noise spectral density / 5

+ (lowing through resistor /?, into the junction

of the Tee is given by
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it - ihil -
sC,

1 -sC^
+(1M)sC, +— +

1
5C1*2

R
4

R
4
(l+sC

x
R

x
)

+(l^)f^lt +^. (535)

R.
J

fl„

We can calculate the output noise voltage spectral density ej from

el = eX*, " "^I-

So

(536)

-Ae

1 + - r-=- + (l +A)sC
2
R

2
^

1 +5C
1
/?

1

1 +5^/?,

R-, sC ,R*R-, sC~,R^Ri
+(1 +A)sCJL+— +-_J_12_ + (i ^4)

tf
4

jyi+aC,*,) 7?.

r! + ^el (537)

Gathering the terms in c-,
+ on one side and that in e^ on the other side, then

multiplying by —A lets us write the contribution of the thermal noise of/?, at the output

as

R.

sC.R,
1 +A+ — +(1 +A)sC~R, +

UsC~R
{

R-, sC,R,R^ sC^R^R,
+(l+A)sC

2
R-+—+ _ - ' 1 _ :

+(1M)

-*,

(538)

3
tf

4
/?

4
(l +sC,/?,) R

4

Now we divide numerator and denominator by A, let A tend to a large number, and

neglect any numbers in which A appears only as a denominator, obtaining
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R 1 +sC,R
2
+sC

2
R
3
^s
C^/t,

'*2

* )

(539)

Inasmuch as /?, and R- both arc much smaller than their product, we can further simplify

this to

( sC
y
R~R~\

' (540)

We now go through a similar exercise to obtain the output noise contributed by the

thermal noise of resistor /?,. The development is the same up until Equation (533). which

must be modified because the noise source now is in the stem of the Tee.

4 ;= el+1%
sC^

1 •

1+sC,/?,
+ (l+A)sC,R,

The current noise spectral density down through R, must be

eWR
x

'

1
sCj/t,

R,
(l+i4)-

sC,R,

R
4

R/l+sC^) R
A

R.

(541)

5421

The current noise spectral density [lowing left through R. toward the junction ol the Tee

then is

4 - $<
sC,

1 +sC^
+(1M)sC, +— +

1
sCjft,

4 ,
sC

z
R

2 t
e/f

4 (543

*
4

/^(1+sC,*,)
(1M)—^<

*
4 r *<

The contribution o[' the thermal noise voltage spectral density cKl
f

o\' resistor R, to the

output voltage noise spectral density is
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-Ael = el+fa

5C.1v, sC./tj
l + _ -+(l+A)sC

2
R
21+sC^ l+sC

l

R
]

/v, SL,,R*I\~ 5C-,/v,/v,

+(l +A)sC
2
R

i
+—+ - - 1 „ :

+(l+/4)
/v
4

fl/l+sC,*,)

ivj
t

(544)

e: - — eK

As before, we gather the terms in t',
+ on the left side, that in eRf on the right,

multiply by -A and rearrange the equation to obtain

R,

sC.ft, sC.R-
1+A+- -2-+(l+A)sC

2
R
2
+ -

l+sC
l

R
l

\+sC,R

a, sC,R~R-> sC,/v,/?,

+(l+/4)sC
2
/g, +— + _ - - '„ 1 ,

-d+A)
*

4
/^(1+sC,*,) tf.

^
(545)

Once more, we divide numerator and denominator by ,4. and then neglect any term

in which A only appears in the denominator. This yields the approximation

*3

R. 1 +sC^R, +sC,R
}

+sC,
R
2
R^
<

R.

(546)

We can also neglect the terms in R
2
and /?

;
individually, since their product is so much

larger, and this gives the final approximation

RA \ 1 +sC
R
2
R
3
%

R* )

(547)

The final contribution to the output noise voltage spectral density with which we

must grapple is that from the thermal noise of /?,. The analysis is the same as that for
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the thermal noise from resistor ft, down to Equation (541). The current /,
t

is different,

however, since the noise source now is in the right-hand side of the lop of the Tee:

1 sCfc

ft
4

R
A
(\+sC

{

R
}
)

ft,

+ (\+A)sC
?
—
-R t

(548)

The current noise spectral density /\
+
flowing left through resistor ft, is

5C
i- +(i^)^ + -L +

l
5 = l

3
+l

5

1+sC.ft, ft
4

ft
4
(l +*(?,/?,

+(l+i4)5C,
ft.

"ft.

>
f (549)

Gathering like terms, multiplying by —A, and rearranging gives us

el = -Ael = el+iRt+et

sC.R, sC.R,
1+A+- -Hl-A)sC& + -

1 ~sC
x

R
x

l+sC,ft

ft, sC.R-tR, R^Ri
+(l-/4)sCft, +— +-

, 11, +(lvl)sC,
ft

4
ft.d+sC,/?,) ' ft.

(550)

Dividing numerator and denominator by A and neglecting terms with .-1 only in the

denominator, we find

1

1 +sC
2
R, +sC,ft, +sC

2

ft^ft, (551)

ft,

We also can neglect the terms in R
:
and ft. since their product is so much larger than

either of them individually:
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1+sC
*2*3

R,

(552)

Wc can combine all the contributions to the output noise voltage spectral density

as the square root of the sum of the squares of each component:

e n =

^(s){eT +«£) +
[(1 -H^elJ +(H

2(s)C)

'H
2
(s)\

2

{ *2 )

(R
4
H

2
(s)

t
\

e
R
2
R

3

(553)

We can expand this lo explicitly give the thermal noise due to the resistors:

el-

H](s)[e? +4*7^) +
(1 +H

x
{s)Y^ -(H

2(s)C
t\2l

'i *
4 *T

+ HUs)4k7 — +—

+

^ *2

2 *&,

(554)

F. ANALOG MULTIPLIERS

The analog multipliers we used produce a noise voltage spectral density at the

output which is additional to that caused by multiplying the two inputs together. We shall

neglect this contribution at first and add it in later. The function performed by the

multiplication function is

Z-k^Y (555)

where kM is the scale factor (assumed to be a constant) of the multiplier and A' and Fare

the random variables being multiplied. We shall assume that the means of A' and Y are
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p v and ]a y respectively, and lhat their variances are a v
: and <7V

:
. The expectation of the

output is

E[Z] = E[yi1 = kM E[X]E[Y].
(556)

The separation of the mean of the products into the product o[' the means is valid if AT

and V are statistically independent o[' one another, which we shall assume to be true. So

E[Z] = kmfixfi Y
- nz .

(557)

Next we compute the variance o[ the product. From the definition of the variance.

Var[Z] = E[(Z-/i
z)

2

]

= e[z2-2^ +^ = E[Z
2
}-»

2

Z .

<558 )

Expanding this, we obtain

This separation, too. is justified if the random variables are statistically independent.

Using the identity

E[X 2
]

= Vai[X}+E
2
[X} = o£+/iJ

<56°)

we can expand this to

VaifZ] = k
2^a2

x + /4)(<4
+/4)~*w4/4

,1\ 2 2 2 2 2 2 2 2 2 2} (561)= k^oxoY+axfi Y+oYiJx -nx fJ Y -fJ x ti Y
\

. 2 T - - 2 2 2 1

If the noise is small compared to the signal, then we can approximate this as

Now that we have seen how the analysis proceeds with a simple multiplier, let us

turn our attention to a multiplier with differential inputs, like the Analog Devices AD534.

It implements the function
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Z - kMV(V-W) (563)

where we assume that the means and variances are known, as before. First we shall

compute the mean of this product.

/iz
= E[Z] = E[kMU(V-Wj]

= kM{E[UV\ -E[UW]}
.

(564)

We used the statistical independence of the three quantities U. V. and IT to convert the

mean of the products from the product o[ the means.

Next we compute the variance of the product. Z.

Var[Z] = E[(Z -»zf]
= E[Z2]-£

[ °u
+ fit°

2

v* li)
~2

(

°
2

u
+ tijPvPw+i^ +

Pvi "w+fir,

-fiHy+lfiyfiyfiy-fiyfl^

(565)

-kl\

Multiplying this out and canceling equal terms with opposite signs leaves

o
z

= Var[Z] - ^{o^y-Livfy^i+ol^o^o
2

^}.

Now we can add in the output noise which is specified in the data sheets:

(566)

°MO
=
^kk°li»V-»w)

1+
[ti

+ °
2

uX°V+0i)\
+

l.

(567)
Ki-

ln general, we can relate the noise voltage spectral density eY
+ ^ a random voltage

variable X to the variance a v
:
of X by the equation
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e v -

N B xB

(568)

Thus the output noise spectral density of Z is

MO tyl\» v
-» wfiSu<-Bl*?^)H-

(569)

To get the output noise spectral density o{ a squaring device whose function is

described by

Z = kMU
2 (570)

we shall use a slightly different approach. We shall assume that the mean oi' U is zero.

as is the case in the Symmetric Analog Demodulator at the input to the squaring circuit.

Taking U as, U - (J
L
,±oLr we have

~ kM^U ±2kM °LJ^U
+kMal-

571)

The first term in this result is what we would expect the output to he if noise were not

present. We shall identify the second two terms as a reasonable approximation to the

standard deviation, that is.

a
z

= mlnlo^k
2^. (572)

Because we have assume that the mean o[ U is zero, this can be simplified t<

°Z * kM°
2

V * V^ (573)

Expressing the output as a voltage noise spectral density, and including the noise added

by the multiplier, we have the following expression for the output voltage noise spectral

density of a squaring device:
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eio - J(k*?fB+e« ^

G. ANALOG DIVIDERS

In general, a divider will provide some voltage spectral noise density at the output

in addition to that caused by the operation of division on the two inputs. We shall

approximate the standard deviation as follows.

The operation we want to compute with the divider is

Z = k,~ (575)dy

where

X = k
}
E 2 Z±ox ,

(576)

Y = k
2
E2 ±o

Y ,

(577)

*i = \fiK$hkD •
™* (578)

h-^XK- (579)

Recall that the definitions of k, and k
:
arose in the body of the dissertation in the

development of the symmetric demodulation algorithm. These constants depend on the

choice of scaling constants at each stage of the demodulator.

We can write the product, then, as roughly

336



z = kA = *

2 r
k

x

E'£±o

k
2
E ± aK

- Jfc

k
x
EH

1 ^
2\2

l*2
£ M2

) /J
(580)

)L£2
1±

*,£
2
£

(7.

k. . a Y

k
2
E2

k
x

£o
Y

*
2 *2

£" k~£ 2

In the last line, we have dropped the products of variances as they can he assumed to be

negligible. We therefore can approximate the standard deviation as

Ki°X ,2(M) 2 581)

\J
(k

2E'f (k
2
E?

Now we can include the noise of the divider itself, and convert all the standard

deviations into voltage noise spectral densities:

e z
=

\

k
d
e x

LE2

nY I

kXE2

t2 r
(5821

+e,

H. CALCULATING HIE NOISE: RECEIVERS

To calculate the actual noise voltage spectral density output by the receivers, we

apply Equation (509). Since we are using Burr-Brown OPA-1 1 Is in the receivers, the

input noise voltage spectral density for the operational amplifier is



40 —for /=40 Hz;

v/Hz

nV
15 -^for/=100 Hz;

Hz
nV

(583)

for /= 1 kHz; and

v Hz
nV

Hz
for/=10 kHz.

The noise current spectral density for this operational amplifier is given as 500 aAAfHz.

Resistor/? in the equation is resistor R, =R=R> = 64.9 kfl in the schematic drawing shown

in Figure 33 on page 133 and capacitor C in the equation is capacitor C^C^C^ 10 pF

in the schematic. We shall take the responsivity $=370 mA/W. and the optical power

/>=150^W. The optical power used here is an average value around which the

instantaneous power fluctuates. We find that

52 -n^-for/=10 Hz;

vHz
nV

36 4=r f°r/= 100 Hz;

v'Hz (584)

34 i^-for/=l kHz; and

eREC ~
'

^/Hz

33 -^for/=10 kHz.

The capacitors have no appreciable effect on the noise at these low frequencies. We

ignored the fluctuations in power around the central value D=P. This proved reasonable,

for the noise was totally dominated by the contributions from the input noise voltage

spectral density of the operational amplifier and the thermal noise voltage spectral density

from the feedback resistor. The shot noise and the noise from the input noise current

spectral density of the operational amplifier were entirely negligible.
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I. CALCULATING HIE NOISE: SUMMING AMPLIFIER U4A

To calculate the actual noise voltage spectral density output by integrated circuit

U4A in the Symmetric Analog Demodulator, we apply Equation (519). The feedback

resistor R
t
in the equation is resistor /? 7=34.8 kCt in the schematic. The input resistors

whose magnitude is R in the equation are R^=R5=R6=\02 kfl in the schematic. We

switched to using Analog Devices AD712s tor all the sub-circuits except the receivers.

These devices have a specified noise voltage spectral density at their inputs of

e =

45 J^X.for /=40 Hz;

X/Hz

22 —for/=100 Hz:

VT^ [585]

IS
nV

for /= 1 kHz; and

v Hz

16 -5^- for /= 10 kHz
\Hz

Their noise current spectral density is specified as 10 IA/Hz at I kHz: no data is given

for other frequencies, so we shall apply this same specification at each of the four

frequencies we use in our calculations. Using the results already found for the noise from

the receivers in Equation (584). we find

U4A

54
nVn

for/- 10 Hz;

v'Hz

22 — for /= 100 Hz;

vliz

18
nV
—for /=1 kHz; and

V/Hz

16 -^for/=10 kHz

v Hz

(5861

The noise from this circuit was entirely dominated by the input noise voltage

spectral density oi' the AD 7 12 operational amplifier: all other sources were negligible by

comparison.
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J. CALCULATING THE NOISE: SUBTRACTORS U5A, U6A, U7A

To calculate the actual noise voltage spectral density output by integrated circuits

U5A, U6A, and U7A in the Symmetric Analog Demodulator, we apply Equation (5 IS).

(Recall that the purpose of these Tour sub-circuits is to remove the offset D from the

interferometric outputs.) The feedback resistor R, in the equation is equal to resistors

R
lt
>=Rn=R lf

,=5\.\ kn in the schematic diagram. The input resistors R
k

in the equation

are all the same; in the schematic they are R„, /?„, Rlh R i: , Rn . and R l% . with the value

13.7 kH. We still are using the AD712 here, with values for input noise voltage and

current given above. The inputs come from one of the receivers and from the summing

amplifier U4A. The results o\' the computations are

480 —for/- 10 Hz;

t

USA-'

t
' = <

,t

U7A

VHz

260 — for /= 100 Hz;

230

210

v'Hz

nV

nV

Hz

(587)

for /= 1 kHz; and

for/=10 kHz.

As in the previous sub-circuits considered, most of the noise was contributed by the

operational amplifier's voltage noise input. The next largest contributors were the noise

from the previous stages and the thermal noise from the feedback resistors. The current

noise had a negligible effect.

K. CALCULATING THE NOISE: DIFFERENTIATORS L5B, L6B, U7B

To calculate the actual noise voltage spectral density output by integrated circuits

U5B, U6B, and U7B in the Symmetric Analog Demodulator, we apply Equation (527).

The input resistor /?, in the equation corresponds to resistors /?,-. R,„, and R
2]

in the

schematic, all with the value 464 Cl. The input capacitor C, in the equation corresponds

to capacitors C4 , C„, and C\ in the schematic, all with the value 470 pF. The feedback

resistor R: in the equation corresponds to resistors R .. /?.„. and R:: in the schematic
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diagram, and they all have ihe value 1.91 kft. The feedback capacitor C, in the equation

corresponds to capacitors C\. C-, and Cq in the schematic diagram. The operational

amplifier is an AD712 with the noise specifications given above. The results of the

computations are

1/5B'

U6B>

U7B

> = S

45

23

19

21

nV

VHz
nV

v^Hz

nV

for/=10 Hz;

for /= 100 Hz;

for /= 1 kHz; and

(588)

v/Hz

nV

Hz
for/=10 kHz.

All noise sources except the voltage noise spectral density o\ the operational

amplifiers were complete!} negligible in these calculations, except lor the thermal noise

in the feedback resistors, which was still a factor o( four smaller than the noise injected

by the operational amplifier.

L. CALCULATING THE NOISE: CROSS-MULTIPLIERS 111, U12, L'13

To calculate the actual noise voltage spectral density output by integrated circuits

Ull, U12, and U13 in the Symmetric Analog Demodulator, we apply Equation (569).

Because of the operation of integrated circuits U5A, U6A. and L: 7A in removing the

fixed offset D from the signals, the means of all the inputs in the equation are zero when

the signal of interest generates significantly more than 77 rad of optical phase shift.
I
In

the case of the differentiated signals, this is always true. It is not generally true for

smaller undifferentiated signals, however.) The gain constant o[' the AD534 multipliers

is A'w =0.1 V" 1

. Their own contribution to the output noise is specified as between

1.1 yV//Hz at 10 Hz and 800 nV//Hz at 10 kHz.

For the bandwidth B in the equation, we used 1.3 MHz. This figure was arrived

at by taking the gain (3.73) oi the subtractor circuits U5A, U6A, and U7A whose gain-

bandwidth product is 3 MHz. The ratio o\ these two gives a 3 dB bandwidth o[ 804 kHz.
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When multiplied by tt/2 to yield the equivalent noise bandwidth, the result was 1.3 Mhz.

The results of the calculations are

1.1 n——for/=10 Hz;

v/Hz

nVt
1

uw>

t

U12>
• = '

,t

U13

900

800

800

v/Hz

nV

for /= 100 Hz;

for /= 1 kHz; and

(589)

v/Hz

nV

Hz
for/=10 kHz.

The output noise is entirely dominated by the multiplier noise. One implication of

this fact is that there was no need to use very-low-noise operational amplifiers in the

receivers. Since these low-noise amplifiers are expensive, this is an area of potential

savings if quieter multipliers cannot be found.

M. CALCULATING THE NOISE: SQUARING MULTIPLIERS U8, U9, U10

To calculate the actual noise voltage spectral density output by integrated circuits

U8, U9, and UK) in the Symmetric Analog Demodulator, we apply Equation (574). The

multipliers are the same AD534s just described. The results of the computations are

1.1 -i^-for/=10 Hz;

U8>

U9>

U10

900

v/Hz

nV

> = \

800

800

v/Hz

nV

for /= 100 Hz;

for /=! kHz; and

(590)

^Hz
nV

Hz
for/=10 kHz.

The noise from these circuits is exactly the same as the noise from the cross-

multiplying circuits. The input noise contributions are totally negligible by comparison.
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N. CALCULATING THE NOISE: SCALING ADDER LT4A

To calculate the actual noise voltage spectral density output by integrated circuit

U14A in the Symmetric Analog Demodulator, we apply Equation (518). The feedback

resistor R
f

in the equation now corresponds to resistor /?<„ in the schematic and is

4.99 kfl. The input resistors Rk =R in the equation correspond to resistors R n , R,^. and

R 4<) in the schematic diagram and they all are equal to 14.0 kH. We again are using an

AD712 operational amplifier with noise specifications mentioned above.

The results of the calculations are

690 -HX.for/=10 Hz;

v'Hz

560 -^for/MOO Hz;

UNA
- <

500

;Hz
nV

(591)

for /= 1 kHz; and

v Hz

500 -^for/=10 kHz
v'Hz

The multiplier noise from the previous sub-circuit still is dominant, although its

magnitude has been reduced somewhat. The reason for this is that the gain of the adder

is less than one.

O. CALCULATING THE NOISE: SCALING ADDER U4B

To calculate the actual noise voltage spectral density output bv integrated circuit

U4B in the Symmetric Analog Demodulator, we apply Equation (519) again. The

feedback resistor R, of the equation corresponds to resistor /?,--= 14.0 kf! in the schematic

diagram. The feedback capacitor C o\' the equation corresponds to capacitor C,„= 1 .0 pF

in the schematic diagram. The input resistors R
k
=R in the equation correspond to

resistors R26 , R ilt
, and R„ in the schematic diagram, each o[ which provides 10.5 kd

resistance. Again we are using the AD712. The results o[ the calculations are
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CU4B = {

1.9-^for/=10 Hz;

v/Hz

240 —for/=100 Hz;

V/Hz

28 —for/=l kHz; and

(592)

Hz

16 —for/=10 kHz.

Hz

An interesting aspect of these numbers is the way the noise drops off with

increasing frequency. The feedback capacitor was used in order to achieve this effect.

The very large noise at low frequencies is due to the noise of the three multipliers which

precede this sub-circuit. At the high frequencies, the noise oi' the operational amplifier

U4B finally dominates the multiplier noise, which is attenuated at these frequencies by

the capacitor.

P. CALCULATING THE NOISE: THE DIVIDER LT5

To calculate the actual noise voltage spectral density output by integrated circuit

U15B in the Symmetric Analog Demodulator, we apply Equation (582). The constants

implicit in the equation are k. = 10 V, kA =3.73. kA =7.2. fe. =1.33,^=0.1 V _,
,£=1.3 V.

itD=901 ns. /I = 100 rad. and /= 200 Hz. Recall that A is the optical phase amplitude of

a simple sinusoidal test signal and /is the frequency of the test signal. The derivative <f

will never exceed A2tt)\ which is the upper limit we use in the calculations. The divider

has its own contribution to the output noise voltage spectral density. This is

e/=8.0 /jV//Hz. a number an order of magnitude large than that of the multipliers,

which up to this point have been the noisiest components in the demodulator. The

results of the calculations are
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8.7 i^for/=10 Hz;

8.1

1/75

v'Hz

for /= 100 Hz;

for /= 1 kHz; and

(593)

8.1 -^for/=10 kHz

V/Hz

These results show very clearly that, to this point at least, the divider creates the

largest contribution to noise o( any sub-circuit in the Symmetric Analog Demodulator.

Q. CALCULATING THE NOISE: THE INTEGRATOR L14B

To calculate the actual noise voltage spectral density output by integrated circuit

U14B in the Symmetric Analog Demodulator, we apply Equation (553). using the

definitions o( H,(s) and H,(s) of Equations (52S) and (529). The input resistor R and

capacitor C, of the equations correspond to resistor /?
5/
= 309 kfi and C, = 1.0 pF in the

schematic diagram. The feedback capacitor C, in the equations corresponds to capacitor

Cr=470 pF in the schematic. The three resistors /?_. /?,.. and /?. in the equations

correspond to resistors /? v = 76.8 kil. /?<;>. = 76.S kfl. and /?<=10.2 il respectively in the

schematic. The noise spectral densities ol' the operational amplifier are those ai the

AD712 given earlier. The results o[' the calculations are

U15
= <

15.7 -^for/=10 Hz;

V/Hz

1.57 -^for/=100 Hz;

594)

158
nV

for /= 1 kHz; and

v'Hz

15.8 J!X.for /=10 kHz.

\/Hz

By dividing these voltage noise spectral densities by the scale factor 31 mV rad. we

can infer the equivalent phase noise which would have to appear at the input to the

demodulator to produce this effect. Doing so yields
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510 H*!for/=10 Hz;

Hz

v'Hz (595)

51 ^^for/=100 Hz;

5.1 Jf£^!for/=l kHz; and

v'Hz

510 ^for/=10 kHz.

v/Hz

Equivalent

input

phase

noise

spectral

density

The noise declines hy 20 dB per decade increase in frequency, jusl as we would expect

from the integration oi white noise. However, a comparison with Table XXIII on

page 198 reveals that the observed noise is an order of magnitude higher than the

predicted noise. Although the reasons for this are unclear, it suggests that considerable

improvement in the noise performance of the Symmetric Analog Demodulator should be

possible without a major redesign. The possibility o( contamination from nearby circuits,

ground loops, or other causes should be investigated.

R. SUMMARY

In this appendix, we have performed a detailed noise analysis o( the Symmetric

Analogue Demodulator. This rather tedious exercise has revealed that the most

significant sources of noise, in descending order of importance, are the analog divider and

the six analog multipliers. If these could be replaced by quieter equivalents, then it might

become possible to justify the use of expensive, low-noise operational amplifiers in the

receivers of the circuit. However, as matters stand presently, these amplifiers deliver

much quieter signals than necessary. In the absence of a reduction in the noise from the

divider and multipliers, this is a needless expense.

The equations derived in this appendix also make it feasible to compute a new

prediction of the noise if different components are substituted into the circuit. In fact,

the equations make it possible to explore various strategies for lowering the noise floor--

with a consequent increase in dynamic range-without implementing them in a circuit.

Thus it should be possible to fine-tune the performance o\' the Symmetric Analogue

Demodulator by applying these equations.
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