TH 5675 . S44

Пonpareli sysuefr or ManD RaIHIn

LIBRARY OF CONGRESS.
Cryat.

UNITED STATES OF AMERICA.

The Nonpareil System

IIAnd Railing.

ORIGINAL IN CONCEPTION,
SLMIPLE IN THEORY, and
UNIVERSAL IN ITS APPLICATION.
路

By John V. H. Sidecar,
Practical Stair Builder.

OFFICE PUBLISHING COMPANY.

$$
1889
$$

Entered, according to act of Congress in the year 1888, by John V. H. Secor, in the office of the Librarian of Congress at Washington, D. C.

INTRODUCTION.

IHAVE been a practical Stair Builder for many years, and in my daily work have come in contact with many of the different systems of Handrailing that are in use. I have thus been able to learn in what repute they are held by the trade. For the most part, they are considered abstruse and difficult of application in practical work. A number of my fellow-workmen, being somewhat familiar with the peculiarities of my own practice, have long desired me to publish a book by which it should be given to the world. They have urged, in support of this request, that the utility of my method would secure for such a volume preference over others which have preceded it. I have, however, hesitated to act upon this suggestion. I began teaching the system as far back as 1863 , and in the interval have given instruction to a large number. Meanwhile a book has been published, in which parts of my system are explained. This circumstance would seem to be calculated to leave in the minds of some persons the impression that the author of the book referred to originated the lines he has used, but which, in fact, are mine. In support of this, I have the signatures of a number of those whom I have taught-a precaution taken against just such an infringement of my rights as has occurred. It would now seem that the time has arrived when, in justice to myself, and as the best service I can render to my fellow-workmen, I should publish my system. This I do in the following pages, choosing as a name for the work the "Nonpareil."

In presenting a system of Handrailing, original in its general features, it is necessary to give careful attention to each problem in course. By this means alone can the principles underlying the system be fully defined. Accordingly, my aim in the pages following has been to lead the learner, step by step, from the simplest problems to those of the most complex character, so defining principles and illustrating methods as to make him competent for any emergency that may arise in practical work.

A leading feature of this work is the mode of ascertaining the length of mould. It is a simple method, and the resulting dimension is called the major length. The lengths of tangents are then applied to produce the mould. The minor length is found in the same manner, forming the parallelogram, giving a point from which to set up the various hights and differences in hights and to find the width of the moulds on the minor length.

The system of bevels illustrated herein, I believe, will at once commend itself to the student as being simple as well as universal in application. The use of the trammel in drawing the curves of the moulds, and also the method of finding the length of the trammel rod, it is thought will be found easy, and something to be appreciated by those who desire to acquire efficiency in the art of describing elliptical curves with the trammel. An original mode of locating the minor axis is another point. The "sub-normal," or parallel to normal or minor axis, is also original, and will be found to be an easy mode of locating the minor axis on moulds of other than right angle bases. As will be observed, it does away with many lines which have heretofore been used, but which are, in reality, superfluous.

In order to make the system of easy comprehension, I have first introduced the simplest problems, using the fewest lines for illustration. Following are problems with a gradually increasing number of lines, presented for the purpose of fully illustrating the principles of the work. Following these in turn are problems again decreasing in
the number of lines to the close of the book, finishing with those with as few lines as it is possible to use in Handrailing.

The work is also arranged in such a manner as is believed will make the study of the various problems comparatively easy. The diagrams and letter press are arranged in a way to render reference from one to the other quite convenient.

This book is not intended to teach the art of stair building, but rather to enable anyone in the line of joinery to draw the moulds for any kind of stairs, however unscientifically they may have been constructed. It is no uncommon occurrence to be called upon to put the rail on stairs that have been built by some one that has never given a thought to the rail-how it is to be put on. This work, it is believed, will be of positive help in all such cases.

After the necessary pages devoted to Glossary and Simple Geometrical Problems, there are presented eighteen problems which, in effect, constitute the key to the system. In these problems the portion of cylinder to be covered by a rail, and the tangents in elevation, are given. Following these problems there are a number of others, selected on account of their frequent occurrence in practical work, and which still further illustrate the principles under discussion.

With these introductory remarks, I present to my fellow-workmen the system on its merits, believing that if they will give it careful attention, the most satisfactory results will follow.

> JOHN V. H. SECOR.

New York, February, 1889.

Table of Contents.

PAGE
Introduction, iii
Glossary, viii
Simple Geometrical Problems and Definitions, I
The Principles of Drawing Hand Railings, 8
Illustrative Problems, II
General Practice, 31
Splayed Work, 66
Bevels and Mitres, 68
Determining Width of Mould in Special Cases, - 69
Sliding the Mould, 70
The Nonpareil System in its Briefest Form, 72

GLOSSARY.

PITCH.-Rake or hypothenuse, as the inclined side of the pitch board.
NORMAL or LEVEL.-As the minor axis is always level, there being no twist or cant on this line.

SUB-NORMAL.-Parallel to normal, used in this work to direct the minor axis for acute and obtuse angle, ground plan having two pitches.

MAJOR LENGTH.-Greatest length from which the mould is drawn.

MINOR LENGTH.-Crossing major, but not necessarily the shortest; in a full easement over a ground plan of more than a quarter, it is the longest ; a term peculiar to this work.

MAJOR AXIS.—Longest or transverse.
MINOR AXIS.-Shortest or conjugate, never changing its length from that of the ground plan, and crossing the major axis at right angles.

STRAIGHT-WOOD.-That portion which is added to a mould or rail outside of the curve and parallel to the tangent.

OVER-WOOD.-The portion of material to remove in the operation of squaring up the twist to form a handrail.

TWIST.-A curved piece of wood used in handrailing. It is formed by applying bevels at the ends, giving the plumb line through the centre to form a twist.

BUTT JOINT.-A square joint to connect handrails to each other, as the centre but joint.

PARALLELOGRAM.-A figure having its opposite sides parallel and of the same length.

RIGHT ANGLE.-Base or ground plan; a quarter cylinder is a right angle base and from this all angles are measured or reckoned.

OBTUSE ANGLE.-Base or ground plan. In this the curve of the cylinder is less than a quarter circle, so the angle is formed obtuse on the line of the tangents and is said to cover less than a quarter circle, while the angle is greater than a right angle.

ACUTE ANGLE.-Base or ground plan. In this the curve of the cylinder passes the right angle or quarter, so that the angle on the line of tangents is acute and is said to be more than a quarter circle, while the angle is less than a quarter or right angle. Thus, if we draw a circle and inclose it within tangents, there will be four right angles ; if acute, then three ; if obtuse, then an indefinite number.

EASEMENT.-A full cylindrical easement is formed by a level and a pitch tangent. The starting and landing piece would be a full easement.

HALF EASEMENT.-An easement formed when the tangents are of different pitches.

RAMP.-A piece of rail connecting two pitches, forming a curve up and down, while its sides remain straight.

OVER-EASEMENT.-The piece connecting the flight or pitch with the level rails. The top of a platform stairs would be an overeasement, while the starting from the level or from a Newel would be a simple easement.

SIMPLE GEOMETRICAL, PROBLEMS AND DEFINITIONS.

The inclination of two lines meeting one another, or the opening between them, is called an angle. Fig. I is called an equilateral triangle, all sides being of one length, forming three acute angles-A, B and c. This figure is als called a trigon.

Fig. 2 is a right angle triangle, having

Fig. i.-Equilateral Triangle. three unequal sides, forming one right angle, D ,

Fig. 2.-Right Angle Triangle. and two acute angles, as at E and F . This figure is also called a scalene triangle.

Fig. 3 is an obtuse angle triangle, having two of its sides equal, forming an obtuse angle, G ; also two acute angles, H and J .

Lines may be straight or curved, having length without breadth or thickness. A line may be composed of points or dots, or it may be a conitinuous line, yet its ends will be points. A straight line is the shortest distance between any two points. A vertical line is a plumb line, and at right angles to the horizon. A horizontal line is a level line and parallel to the horizon. A line may be perpendicular to a given line without being in a vertical position.

Fig. 3.-Obtuse Angla Triangle.

Fig. 4.-To erect a Perpendicular upon the End of a given ioine.

A point has position without magnitude and is represented by a dot, or by two lines meeting at an angle, or crossing each other. A, B and c, Fig. I, and A, Fig. 6, are points.

To draw a perpendicular upon the end of a line. Let a b in Fig. 4 be the given line and b the given end. With radius less than $A B$, set one foot of the compasses in B and then in A; strike short curves intersecting at D . Then with D
as centre and \boldsymbol{A} в as radius, describe a portion of à circle, а в $с$; indefinitely. Then from A through D draw a line, cutting the circle at c. Connect с в. Then в с will be the perpendicular sought.

To erect a perpendicular at the end of a given line. Let h J in Fig. 5 be the given line. Set one foot of the compasses in J, and with J н as a radius, describe the arcs h L equal to H J . Draw a line through h L indefinitely ; make l m equal h L. Connect m J, which will be the perpendicular sought.

Fig. 5.-Another methol) of erecting a Perpendicui.ar at the end of a given line.

To find the length or stretchout of a semi-circle. Let a, Fig. 6 , be the centre of the semi-circle BCD. Set one foot of the compasses in D, extending the other to B, and describe the arc be. Then setting one foot in B in the same manner, describe De. Draw a line from E through D and another from E through B indefinitely. Draw n m parallel to B D, touching the semi-

Fig. 6.-Finting the stretch-out of a Semi-circle. circle at c. Then $\mathrm{N} M$ will be the stretch-out of the semi-circle, or so nearly equal to it as to answer all practical uses. We may find the

Fig. 7.-Another methon of doing THE SAME. stretcll-out of any portion of a circle by the same means. For example, take D o upon the semi-circle as the curve, the stretch-out of which we wish to find. Draw a line from \mathbf{E} through o , cutting the line N m at G . Then $G M$ is the length of the curve from O to D and $G N$ equals o c b.

To find the stretch-out of a cylinder in another way. Let н J, Fig. 7, be the radius, or half of the diameter and equal to A C of Fig. 6. Make H D three times the length of H J. Connect d J. Then D J will be the stretch-out or a line in length equal to N m of Fig. 6.

To bisect a line is to divide it in two

 equal parts. In Fig. 8 the line $w x$ is bisected

Fig. 8. - Bisecting a given LINE.

Fig. 9.-Describing A Circifr. TO FASS THROUGH ANY THREE GIVEN YOINTS.
by L m at right angles to it. Let $w \mathrm{x}$ be the given line to bisect. Take any distance greater than x D for a radius and w and x for centres, and describe the arcs intersecting at I. and m. Connect L m, which will then bisect \mathbb{x}.

To find the radius to describe the circle which will pass through any three given points not in a straight line, as x y z in Fig. 9, procced as follows: From x and y as centres with any convenient radius longer than onehalf the distance from X to y , describe short arcs intersecting at H and K . Draw $\mathbf{H} \mathrm{K}$. In the same manner describe arcs from y and z as centres, intersecting at I and J. Draw L J , and prolong it until it mects H k , thus establishing the point B ; then with B as a centre and $\mathrm{B} X$ as a radius, describe the circle which will cut x, y, and z.

A circle may be defined as a round figure, bounded by a single line in every point equally distant from a point which is called the centre. In Fig. $10, \mathrm{c}$ is the centre of the circle.

The circumference or boundary line of a circle is supposed to be divided into 360 equal parts called degrees; each degree, in turn, is divided into 60 equal parts called minutes, and each minute into 60 equal parts called seconds. A

Fig. ro.-Showing circumference, diameter, RADIUS, CHORD, SEGMENT AND TANGENT. degree is the 360 th part of the circumference of any circle, without regard to the size of the circle. The radius of a circle is a line drawn from the centre to the circumference, as c o, Fig Io. The diameter of a circle is a line drawn through the centre terminating at the circumference, as 0×180, Fig 10 . A semi-circle is a half circle, as o $x 90$ x 180 , Fig 10 .

A chord is a line crossing a circle, cutting off a portion, as a b, Fig. 10. A segment is the portion cut off by a chord, as A B, 270. The rise
of a segment is the distance from the chord to the circumference; for example, D, 270, Fig ro, is the rise of the segment just described.

A tangent to a circle is a line drawn outside of the circle touching the curve at a single point, as the line G H which touches the circle at the point 40 in Fig. 10.

To find the tangent to a circle, proceed as follows: From c as centre, draw c F , passing through the circle at the point to which the tangent is to be drawn. Take any distance, as F 40 for radius, and with one foot of the compasses in the point 40 , set off the points E and F, then with E and F as centres, strike short arcs intersecting, as shown at G and H. Draw G H. Then G H will be the tangent sought. It will also be a line at right angles to the radius produced, touching the circle at the required point.

Fig. if.-Draining the Ellipse.

We will next consider the ellipse, which may be drawn by a string as shown in Fig. Ir. The ellipse is described from points located on lines called the "axes" of the ellipse, and which cross each other at right angles. The line running through the figure lengthwise, as A B, Fig. II, is known as the major or transverse axis. The shorter one or C D of Fig. I I, is known as the minor or conjugate axis. To draw the ellipse A, D, B, C, with string and pencil, we proceed as follows: Take the length of one-half the major axis, aS E B, and with one foot of the compasses in D strike a short arc, cutting the major axis in F, also in G. Then the points F and G, called foci, are the places in which pins are to be placed; also drive a pin at D. Stretch a string around the points $F D$ and G, remove the pin at D and put in place of it a pencil, and keeping the string drawn tight against the pins, F and G, describe the curve A D B C.

To find the tangents to a given ellipse determine, first, at which point a joint is to be made: for example, H, Fig II. Then draw the dotted lines G H and F I.. With one foot of the compasses in H, with any convenient radius, make points on the lines intersecting at H , as indi-
cated by 1, 2, 3 and 4 . With same radius, using 1, 2, 4 and 3 as centres, describe short arcs intersecting at 5 and 6 . Connect 5 and 6 . Then the line 56 will be the tangent sought. Nake the joint at right angles to the tangents passing through H .

Fig. Ir. To find the joint first, and afterward to draw the tangent from the joints, proceed as follows: Let к be the point at which the joint is to be made. From the foci g and f draw lines intersecting at k , as shown. Then with k as centre, with any convenient radius, establish the points L, N, T and x. With L and x as centres, describe short arcs, intersecting at 7 , and from N and T as centres, describe short arcs, intersecting at 8 . Draw the line 78 , which will be the joint sought. In this case the tangent may be drawn by erecting a line perpendicular to 78 , and cutting it in the point k.

A spiral may be defined as a single continuous curved line between two points, as from a to s, Fig. 13. It can be constructed by segments of circles to answer all practical purposes, as laid down in Figs. 12 and 13. A scroll may be defined as formed by two spiral lines, as the outside and inside of a hand-rail. The outside line is called the convex spiral, and the inside line the concave spiral. The two lines completing the scroll terminate at a point called the ball, or the eye. The reader will ob-

Fig. 12.-Spiral and Close Scroll. serve that the two scrolls illustrated in Figs. 12 and 13 are drawn in the same general manner. Fig. 12 may be described as a close scroll, and Fig. 13 as an open scroll.

To construct the scroll shown in Fig. I3, proceed as follows: Determine the size or spread you wish to have the scroll between outside lines, as A b. Draw b c at right angles to A B. Connect A c by the diagonal line, which will pass through the eye. Divide a binto two equal parts. With one foot of the compasses in A and B, with any convenient radius more than half of $A B$, describe arcs intersecting at D. Perpendicular to A B draw the line D F. Divide B C in a similar manner

Fig. 13.-Spiral. and Ofen Scroll.
and draw e f parallel to A B, cutting the diagonal line at the point F . From H as centre, with H F as radius, describe the arc F J. Draw Jk l at right angles to A b. With k as centre, and $k J$ as radius, describe the semicircle J L, which will pass through the eye. Draw the diagonal line from J, passing through the eye. From l also draw a diagonal line through the eye, as shown, terminating in the point r on the line fe. From l drop the perpendicular l c. Proceed in like manner from the points $\mathrm{R}, \mathrm{S}, \mathrm{v}$, \&c. With this done, to draw the spiral, take J as centre and JA as radius, describing the arc a I . Then from L as centre, with L I as radius, describe the arc I c. Then from P as centre, with P c as radius, describe the arc c 2 and proceed in like manner with R s, \&c., as centres. For the inside or dotted line, proceed as follows: From J as centre, with 6 as radius, describe the arc 67 ; and from L as centre, with L 7 as radius, describe the arc 78 , and so on.

It is to be observed that the line BC in both Figs. 12 and 13 govern the proportions of the scroll. As this line is lengthened the scroll will be made open; if it is shortened the scroll will be closed ; compare Figs. 12 and 13. Matters of this kind are always left to the taste of the stair builder.

In Fig. 14 is illustrated the method of describing an ellipse with a trammel and rod. The trammel consists of two pieces of wood or metal crossing each other at right angles, and having a groove running the entire length of each piece. The rod is made to carry a pencil at

Fig. 14.-Ellipse draifn with trammel. and ron.
one end and is provided with two movable heads, with pins on the under side to fit in the grooves so as to slide easily. The trammel is secured in place on lines representing the major and minor axes of the ellipse, as A C and D B. E is the pencil. In setting the trammel make E fequal to $B \mathrm{~J}$, and E hequal to $A \mathrm{~J}$. Then move the rod, letting the pins slide in the grooves : the result will be an ellipse, as shown.

Fig. 15 illustrates a method of finding the radius by which to describe a segment to a given chord and rise. Let a b be the given chord, and C D the rise. Bisect A B, establishing the points D , and erect the perpendicular D C. Extend c dindefinitely in the direction of 0 . Bisect a c, establishing a point J. From J as centre, with any convenient radius, longer than J A, strike short arcs intersect-

Fig. 15.-Finding a required radius. ing in the points K and H , as shown. Draw k H and produce it until it intersects C D produced in the point o; then o will be the centre and o c the radius of the arc a c b. In the second case, illustrated in Fig. 15, let A b be the given chord and ed the given rise. Proceed in the same manner as shown, which will establish the centre at L .

Fig. 16.-Original method for setting the gauge to EIGHT-SQUARE TIMBER

In Fig. 16 is shown an original method for finding the distance to set a gauge to eight-square any sized timber. Let a b c D be a square of 12 inches. From a as centre, describe the quadrant D B, also the quadrant G o, having the radius A G, which must be $31 / 2$ inches in length. Lay down the size of timber to octagon as at 4 E . Extend 4 E , touching the quadrant at P. Then draw from P toward A, cutting the inner circle at
R. Draw R s parallel to A G. Then the required distance to set the gauge is from A to S , as shown by D T at the right.

In like manner any piece may be octagoned from I to 24 inches. Example: Using a scale of 3 inches to the foot, for 12 inches the gauge will be $\mathrm{A} B$, or $31 / 2$ inches; for 24 inches it will be 7 inches, and so on. The size of material to octagon is on the

Fig. 17.-Another methol of Eight-Squaring. line D to c, and the gauging is found at A 0 .

Another way to find the gauging is shown in Fig. I7. Let A b be 24 inches long, and $B C 7$ inches. Let $A D$ be the size of timber, touching the diagonal line at E . Then E D will be the gauging, as shown at E F D.
Fig. 18. To draw an Octagon from a given side. Let $A B$ be the given side. Draw the square A B C D. With a as a centre, describe the quadrant $A B D$. Connect A c, and where the diagonal line touches the circle at E . will be one angle of the octagon. Extend A D indefinitely and make a L equal to A B. Parallel to A D, make EF equal to E. A. Draw EK and F J at right angles to EF. With the compasses set equal to a e, space F G, H J, and k L. Connect them, completing the octagon.

Fig. x.-To draw an Octagon from a given side.

THE PRINCIPLES OF DRAWING HAND=RAILINGS.

Problems showing the mode of Ascertaining the Length of Mould, the Stretch-out of Tangents, Forming the Mould and Drawing the Curve Line by the use of the Trammel.

Fig. 19. From a quarter circle, ground plan, to draw three moulds. Let $A B C D$ be the ground plan ; A B and $B C$ the tangents ; D the centre from which the curve is drawn. Extend D A and C B indefinitely. From в as centre, describe the dotted line c g. Extend the line

G G parallell to C B, which is the stretch-out of tangents. From F to G draw the pitch. To find the major length of the mould, takea as the centre and A C as the radius and describe the dotted line с $\boldsymbol{\text { h. Con- }}$ nect H and E, which is the length required from which to draw the mould.

In drawing the mould we will draw tangents and centre curved line only, giving the trammel rod for the curve. The mould completed will be shown further on. As we gradually lead the way, the reader will be able the better to comprehend.

To draw outline of mould from plan and elevation. Draw I 3, Fig. 20, equal to $\mathrm{E} H$; $\mathbf{I} 2$ equal to $\mathrm{E} F$, and 23 equal to F G. At right angles to 12 and 23 , make 4 , which gives the parallelogram, and is also a quarter of an ellipse. Extend I 4 for the major axis, and extend 34 , which will be the minor axis. To find the length of trammel rod to draw the curve. Make 56 equal to 34 , and 57 equal to 14 . As the points 67 are moved along the lines of axes, the point 5 will describe the curved line as required, and when set up in position will be plumb over ground plan A BCD, I 53 covering a o c.

Figs. 19, 20, 21 and 22.-Showing methon of ascrrtaining length of mould and stratch-out of tangents.

The minor axis is a level line, and is the point at which the bevels change their inclinations. As Fig. 20 requires but one bevel, it is applied at the point I , as will be explained hereafter.

Fig. 21. Elevation for a mould having tangents of equal pitches to cover the ground plan. From the base line, a h G, set up the hight to E . The major length is found in the same manner as in Fig. 19. The pitch line, EG, is the two tangents, x being the centre. Draw x o parallel to $\mathrm{GH} A$, which is the minor length and the minor axis.

Fig. 23. To draw the outline of mould, make ${ }^{1} 3$ equal to eh, Fig. 2 I. With the compasses at 3 , make the points 24 equal to ex. From I bisect at 24 ; connect these points as shown, forming the parallelogram 1234. Connect 2 4, extended, which will be the minor axis. Draw 67 parallel

Fig. 23.-To nraiv outline of mould. to I 3, touching at 4 , which will be the major axis. Make 45 equal D o of ground plan, then 5 will be the centre of curve line and I 2 and 23 the tangents.

Fig. 24.-To draw outline of mould.

To find the length of trammel-rod, make 38 equal to 4 5. Extend this line to the minor axis, which will be the length of rod. 89 are the pins and 3 the pencil, which will describe the curve.

Fig. 22. Elevation for a mould having tangents of unequal pitches. Let A E be the hight, $\mathrm{E} x$ one pitch and XG the other. Connect $\mathrm{E} H$ for the major length. Draw the minor x o parallel to the base line A H G.

Fig. 24. To draw the outline of mould, make I 3 equal to EH, Fig. 22, I 4 and 23 equal Ex; and 12 and 34 equal x G. Connect these points and form the parallelogram as shown at 1234 .

To find the position of the axis. Let i 6 equal eo. Connect 6 , which will be the minor axis. At right angles to $6+$ draw 78 , touching at 4 , which will be the major axis.

To find the centre of curve on the major axis. Let 49 equal D o of ground plan, then 9 will be the point required.

To find length of trammel-rod. Let 35 equal 49 , crossing the major axis. Extend this line to the minor axis, then 350 is the length required, O and 5 being the pins, and 3 the pencil, which will describe the curve.

ILLUSTRATIVE PROBLEMS.

The following eighteen problems embrace all the different forms of cylindrical hand-railing, drawn to a scale of $3 / 4$ inch to the foot, and having straight wood on both ends, which, in practice, is sometimes required. They are intended to fully illustrate the principles, and will be referred to, occasionally, in some of the other problems.

Fig. 25. To draw the stretchout and pitch of tangents. Let $A B$ C d be the ground plan, with ABC the tangents, E the centre of curve line, A to \mathbf{F} the full hight. From B, as centre, describe the dotted line C G. Connect G F, which will be the tangents.

To find the major length.

Fig. 25.-Showing quarter-cylinder, GKOUN: PLAN AN゙D ELEVATION. With a as centre, describe the dotted line \mathbf{C} н and connect $\mathrm{H} F$, which will be the length required. Extend с в , touching the tangents at J. Draw J к parallel to base line, as the minor length, and it will stand plumb over the base, B X D.

Fig. 26. To draw outlines. Let I 3 equal Fh. From points I 3 draw tangents equal to F J and J. G. Connect 24 extended, which
is the minor axis. At right angles from 24 draw the major axis. For the centre of mould let 45 equal d e. From 5, lay off half the width of rail on each side as 67 . Draw the dotted line 5 I and parallel to it draw 60 and 50 touching the cord line at ou. The outer dotted lines are the width of rail. Draw the straight wood parallel to the tangent 12 and the other end of mould will be the same width. To find the
bevel to square
up the rail. Draw
the dotted line at
right angles from 2 3, touching at 4. Take this length and place it from b to L, when the angle at L will be the bevel for both ends.

To find the length of tram-

Fig. 26.-Sifowing outline of mould, mode of finding bevel and TRAMMEL ROD FOR CURVES; ALSO, WIDTH OF MOULD AT ENDS. mel-rod for outside curve. Let 89 equal $6+$ and extend to 10 . For inside, let ox equal 74 and extend to 12 , which will be the lengths required.

Fig. 27.-Showing mould completed.

A very easy way to make the curve is to take a small rod and mark the point upon the edge to correspond to those already described. Operation : Let 9 io be placed at different points along the axis, and at the end of rod at 8. Make a mark, using as many points as desirable, and then trace the curve through the points thus formed, or use a flexible strip holding it in such a manner as to touch all the points, and mark the curve along its face, completing the mould.

Fig. 27 is the mould completed and will not need explanation.

Fig. 28 shows a quarter cylinder, ground plan and elevation, with tangents of unequal pitch, requiring two bevels for squaring up the rail. The position of trammel is also changed, as will be seen at Fig. 29.

To find the major length, tangents and bevels. Proceed as per directions, Fig 26.

Fig. 30 shows the mould complete, also points from which to get the bevels. Let Abcd, Fig. 28, be the ground plan, with E as the centre of curve. From a to F set up the hight. From F to J draw pitch, and from J to G will be the other pitch. Fromf to H will be the major length. Draw J к parallel to base line, a b g.

Fig. 29. To draw out-lines, let 13 equal FH . With the compasses take the length of tangent F J, and place one foot in I. Describe the arc at 2 , then with one foot in 3 describe 4. Next take length J G, and from I describe the arc bisecting at 4. Then from 3, bisecting at 2 , connect 12 and 23 for the tangents. Connect 14 and 34 , which will be the chord line, 4 being the point or centre of axis. To find position of axis let 35 equal FK , and draw the minor axis through 4 and 5. Draw major axis at a right angle to 45 ; touching at 4 .

To find centre of mould on minor axis, let 47 equal D E. Find width of rail from 7 as the centre to 68 . To find the width of mould at the ends,

Fig. 28.-Quarter cylindek, ground plan and elevation, and tangents of UNEQUAL PITCH. draw the parallel dotted lines 678 , touching the chord line 14 . Draw the straight wood parallel to tangents from the points 00 , and repeat the operation at 3 .

To find length of trammel rod for outside curve, let 912 equal 4^{5}; extend touching at I 3 , which will be the length required.

For inside let 014 equal 48 ; extend touching at 15 , which will be the length required.

To find bevels. At right angles to 1 2, Fig. 30, from 5 draw the dotted line touching 4. From 23 at 6 in the same manner draw 64 . Upon the elevation let Bm equal 45 ; then the angle m will be the bevel
for the wide end of mould. For the other end, let b Lequal 46 , then the angle at L will be the bevel required for the other end.

Ground plan and elevation of a quarter cylinder, having a single pitch line, the other being a level line. Fig. 32 is a mould such as is used in starting or in landing, as in connection with winders. Fig. 33 is a mould similar to Fig. 32, except that the straight wood is on the opposite end. This is used in starting and landing for a straight flight of stairs.

Fig. 3I. Let A B C D be the ground plan of a quarter-cylinder, E centre of curve as described from D . From a set up the hight required to F. Connect F D, which will be the pitch, and also the length of tangent to draw the mould. The angle at F gives the bevel to be applied at the wide end of mould. No bevel is requir-

Figs. 29 and 30. -Sifowing outline and mould complete. ed for the opposite end, as the rail is there taken square through the centre.

Fig. 32. Let 12 equal F D, and 23 equal b c. Square from or at right angles to 12 and complete parallelogram at 4 . Let 56 be the width of rail. Draw dotted lines, as indicated, parallel to I 3 , giving width of mould as required.

To find length of trammel rod to describe the curve. This being a quarter ellipse, 14 is the minor and 34 the major axis. For outside length let 9 o equal 48 , and 012 equal 64 ; then 912 are the pins and o the pencil to describe the curve.

Find the inside in the same manner. Let 13 14 equal 47 , and I 4 I5 equal 45 . This applies to Fig. 33 as well. All numbers in Fig. 33 correspond with those of Fig. 32.

Fig. 3t-Ground plan OF QUARTER - CYLINDER, single pitch line.

Fig. 34. An obtuse base, or less than a quarter, having tangents of one pitch. Lat $\triangle B C E$ be the ground plan, with D forming parallelogram, and E the centre from which the curve is described. Find the stretch-out of tangents. From в as a centre, and c as a radius, describe the curve c g. From a to f set up full hight, and connect f g, giving the length of tangents required. At right angles from $A B$ draw в J, bisecting the tangents at J. From a as a centre, and cat as the radius, draw the curve $\mathbf{C H}$, and connect F н, for the major length of mould. Draw J к parallel to в A, giving the normal point and minor

Fig. 33.-Monld used in starting and LANDING STRAIGHT. axis, as will be seen at Fig. 35 .

Fig. 35. To draw the mould. Let ${ }^{1} 3$ equal FH , I 2 and I 4 equal f , and 32 and 34 equal JG. Let $25^{\text {equal } \mathrm{e} \text { e, }}$ then 5 will be the centre of the axis. Connect 5 I and 53 for the chord lines. For the centre of rail upon the normal and minor axis, let 56 equal e e, and 78 the width of rail. Draw the parallel dotted lines to find the width of mould at the ends, as described at Fig. 29. Make the straight wood parallel to the tangents. Find the length of trammel rod for outside, and let 912 equal 85 . Extend to minor axis at 13 , giving length required.

For inside, let o 14 equal 57 , extend to minor axis at 15 , giving length required, and this setting will describe the curves. For bevel take length of dotted line 4 x , and make Dm on ground plan equal ; then the angle at m will be the bevel required for both ends.

Fig. 36. An obtuse base or ground plan having tangents of unequal pitch, requiring two bevels. Let $A \quad B \quad$ C be the base, with E as the centre, from which the curve is described. To find the stretch-out of tangents from B as centre, describe the curve c G. To find pitch and length of tangents: From A to F set up the full hight required. From fapply the

Fig. 34 -Obtuse base with Tangents of one Pifch. pitch, touching the vertical line at K , then from K to F will be the long tangent. Connect K , giving the short tangent.

To find the major length of mould with a as centre: Describe the curve C н, and connect $\mathrm{H} F$, giving length required. From k draw κ J parallel to $\boldsymbol{\text { в }}$ as the point for the sub-normal. The normal proper is on the minor axis, as will be explained further on.

Fig. 35.-Showing manner of Drawing Mould.

To find the minor length of mould: Extend the tangent $G \mathrm{~K}$ to to m , as indicated by the dotted line; then from an to F is what is called the difference in hight. For example: we will suppose the hight of the long tangent to be 12 inches, and that of the short tangent 8 inches; then the difference between the two is 4 inches, which is found in this problem at $m f$. On the minor base line E b, erect perpendiculars from the points e and D, make D N equal to mp, and connect b N , extended to 0 ; then from \boldsymbol{b} to o is the minor length. For the width of mould on
this line, lay down width of rail from L as the centre to p b. Erect the perpendiculars touching at s R.

Fig. 37. To draw the mould. Let I 3 equal FH ; let I 2 and $3+$ equal F , and I 4 and 32 equal G K , completing the parallelogram. Connect 24 extended, making 45 equal to No; then 25 is the minor length, 5 being the corresponding point over E of the ground plan. For the chord line, connect 5 I and 53 .

To find the position of the axis. Make I 6 equal JH, and connect 64 , giving the subnormal line. Draw 57 parallel to 46 , then 57 is the minor axis

Fig. 36.-Obtuse base with unequal pitch TANGENTS. and the normal proper. Draw the major axis at right angies to 75 .

For width of mould on minor length. Let 289 equal вs r. Draw parallel dotted lines to give the width at the ends described in the previous problems.

For the bevels, square from the tangents as indicated by the dotted lines, touching at 410 and 412 . Let $D U$ on the ground plan equal 4 I 2 , then the angle at U is the bevel for the wide end of mould. Let D T equal 410 , then the angle at T is the bevel for the narrow end.

Fig. 37.-Showing manner of drawing mould.

To find the length of trammel rod for inside curve. Let 1314 equal 50 , and extend to minor axis at 15 , giving length required. The outside will be found in the same manner as already described in the previous problems.

Fig, 38. An obtuse base or ground plan having one pitch and one level tangent, requiring two bevels. The normal line of
this kind of mould will be outside of the parallelogram; consequently the bevels will both be applied from one side.

Fig. 38.-Obtuse base with one pitch and one level tangent.

Fig. 38. Let A b c d be the base or ground plan, with E as the centre from which the curve is described. A to F will be the hight, F B the length and pitch of tangent. Find major length of mould, with A as centre ; describe the curve C G, and connect G F, which gives the length required. Let $\mathrm{L} k$ be half the width of rail, and raise the perpendiculars to the points MN . Let DH equal A F. Connect в H extended to J, which will be the minor length, J being the centre of the axis.

Fig. 39. Let i 3 equal f G, I 2 equal f b, and 32 equal b c. Find the point 4 in the same manner as at 2 , finishing the parallelogram. Connect 24 extended to 5 . Then the points on this line from 25 will correspond with those from B J. Connect 35 extended, giving the major axis. From 5 at right angles to 35 draw the minor axis.

To find the bevels,

Fig. 39.-Showing manner of drawing mould. draw the dotted lines at right angles to the tangents : 223 , terminating at 4 , as indicated at 8 and 9. Let O D on ground plan equal 48 , when the angle at o will be the bevel for the narrow end of mould. Let PD equal 49 , then the angle at P will be the bevel for the wide end of mould. For the width of mould on minor length, let 26 equal $m \mathrm{~N}$, and 67 equal m b. Draw dotted lines, terminating at the chord lines 15 and 35 , giving width of mould at the chord line.

For length of trammel-rod. Let 712 equal E к, and extend to minor axis at 13 , which will be the length required, 713 being onehalf of the major axis 5 It , and will describe the inside curve of mould. Find outside length in the same manner.

Fig. 40. An acute base, or more than a quarter, having tangents of equal length, requiring one bevel to be used on both ends. Let abcd be the base of tangents, and ecentre from which the curve is described. Let af be the hight. From b as centre, and B C as the radius, describe the curve, touching base line at g . Connect f g, giving length and pitch of tangents. From B draw the perpendicular, touching pitch at J.

For major length of mould, with a as centre, and a c as radius, describe the curve, touching base line at $\boldsymbol{\mathrm { h }}$. Connect F H, giving length required.

Fig. 4I. Let I 3 equal

Fig. 4o.-Acute base, Tangents of equal length. F H, I 2 and I 4 equal F J, and 32 and 34 equal J G. Let 25 equal B E, giving centre of axis. From 5 draw the chord lines through I and 3. Let 5678 equal EKLm L ; then 678 is the width of rail on the minor axis. Draw through 5 the major axis at right angles to the minor axis. For the bevel, let N D equal 4 3, as indicated by the dotted line, then the angle

Fig. 4r. - Showing manner of drawing mould. at N will be the bevel.

Find the width of mould at the ends by parallel lines already described, for tram-mel-rod. Let 9 II equal 65 , extend to minor axis at 12 , giving length required, which will describe the inside curves. Find the outside length in the same manner.
Fig. 42. An acute base having unequal pitches, requiring two bevels. Let \AA b $C D$ be the base or ground plan, and E
centre from which the curve line is described. From a to r set up the full hight. From \quad erect the perpendicular indefinitely. From fapply the pitch, cutting the perpendicular at J. From в as centre and в c as the radius, describe the curve C G. Connect G J, giving the length of short tangent. For major length, take a for a centre and Ac as the radius, describe the curve C н, and connect H F, giving length required.

To find the point for sub-normal, from J draw the line $\mathrm{J} k$ parallel to $A \mathrm{~B}$, cutting the major length at k .

For minor length of mould, extend the tangent $G \mathrm{~J}$, as indicated by the dotted line, cutting the perpendicular at Y . Then erect the perpendiculars from DEOPR. Let DM equal FY, and connect $M B$,

Fig. 42.-Acute base with unequal fitches.
Fig. 43.-Manner of draiwing mould.
which gives the minor length of mould as required. Then S T U will be the width of mould as applied at Fig. 43.

Fig. 43. Let I 3 equal F H, 12 and 34 equal f J, and 32 and 14 equal JG, completing the parallelogram. Nake all points on the minor length from 24 , equal all points from B M. To find the subnormal, let I 9 equal H к, and connect 9 4, giving sub-normal. From 5 draw the minor axis parallel to 49 , and at right angles draw the major axis. The minor axis is the normal point of mould as explained in Figs. 37-39. Again the points 4 and 5 are reversed from those in Figs. $37-$ 39, etc. 4 in each case forms the parallelogram, and 5 corresponds to the
ground plan at E , and from which the curves are described. Then 5 will be plumb over the point E , when in position, and must be the centre of axis. The chord lines are drawn from 5 to 1 and 5 to 3 . For the width of mould at ends, proceed in the manner already described,

Fig. 44.-Acute base with one pitch and one LEVEL TANGENT. no further explanation being required.

For bevels in like manner as described. Dx equals 40 ; then the angle at x is the bevel for the long tangent. Let v D equal 4 I ; then the angle at v is the bevel for the short tangent.

For length of tram-mel-rod. Let 13 I4 equal Eo, extend to minor axis at 15 , giving length required. Find outside length in the same manner.

Fig. 44. An acute base or ground plan having one pitch and one level tangent, requiring two bevels. Let A B C D be the ground plan of tangents, with E as the centre from which the curve is described. From a to F, set up the hight, connect F b, giving pitch and length of tangent. For major length, with A as centre and Ac as radius, describe the curve C G and connect F G, giving the

Fig. 45.-Manner of drawing mould. length required to draw the mould. From dek l m erect perpendiculars. Let D н equal A F, connect н в. H B will be the minor length and N O F the width of mould required.

Fig. 45. Let I 3 equal F G; 12 and 34 equal F B; 32 and I 4 equal B c, completing the parallelogram. Connect 24 , and make 45 equal H J. 5 is the centre of axis, and the lines 5 I and 53 will be the chord lines. 53 is also the major axis. Draw minor axis at right angles. For width of mould, let 678 equal P N. For the width at the ends, find in the usual way by parallel lines. For trammelrod, let 69 equal E , extend to minor axis at 0 , giving length required.

For bevels, let E R equal 5 I 2 ; the angle at R will then be the bevel for the long tangent. Let es equal 35 , when the angle at s will be the bevel for the short tangent.

Fig. 46.-Quarter ellifse with tangents of equal pitch.

Having completed the nine problems as including all those of a true circle, we will now take those employing the Elliptical form, following in the same order and treating them in the same manner, viz: That the base or ground plan must have the short sides or tangents made equal to the long sides, because in hand-railing it is necessary to cross the curve as nearly square as possible. By connecting b D, Fig. 46, we

Fig. 47.-Manner of draiwing the mould. cross the curve line at 0 .

Fig. 46 shows a quarter Ellipse with tangents of equal pitch. Letabre be the portion to draw the mould, C D being added. From A to G set up the hight. From B as centre and $\mathrm{B} C$ as radius, describe the curve, touching at J . Connect G J, giving the pitch and length of tangent. Extend C F b, cutting the tangent elevation at \boldsymbol{H}. From \boldsymbol{B} describe the curve F к, erect a perpendicular from K , cutting the tangent elevation at l . For major length of mould, with a as centre, and a c as radius, describe the curve cm . Connect Gm , giving length required. It will require
additional hight in proportion as the short tangent has been lengthened ; this will be found at K L as the hight added. For the width of mould from 0 as the centre make N P equal to the width required.

Fig. 48.-Quarter eillipse, tangents of UNEQUAL PITCH.

Fig. 47. To draw the mould. Let I 3 equal gm , 12 and I 4 equal G H, 32 and 34 equal H J; then complete the parallelogram. To make the joint on short tangent, let 28 equal H L and make the joint square from tangent 23 . For the width of mould in centre, let 4567 equal D N o p. From 567 draw the dotted parallel lines in the usual manner. From 90 draw back parallel to the tangent, cutting the joint at 1415 . For outside curve use the flexible strip, letting it touch the points 15713 . The inside curve is found in the same manner from 14512 , completing the mould.

For bevel, let D r equal 4 i 6 , the angle at r being the bevel for both ends.

Fig. 48. A quarter ellipse with tangents of unequal pitch, requiring two bevels. Let а b F e be the position to draw the mould, with CD added. A to G is the hight. From G apply the pitch for the long tangent, cutting the perpendicular в н at h . With в as a centre, describe the curves f K and C J. Connect J H, giving length and pitch of short tangent. With A as a centre describe the curve c m, and connect $G \mathrm{~m}$,

Fig. 49 - Manner of drating moutd. giving the major length of mould. From k draw the perpendicular k L, cutting tangent line at L. Extend JH to N, as inclicated by the dotted
line. For minor length, from D erect the perpendicular D o equal to NG; connect OB, giving length required. Let ps be the width of the rail.

Fig. 49. Let i 3 equal gm ; I 2 and $3+$ equal $G H$; 32 and 14 equal J H, and 28 equal h L. At 8 make the joint square from the tangent 23 . Let 45 67 equal o т uv. From 567 draw the parallel lines for width of mould at the ends, as explained in Fig. 45. Draw curves in like manner through 137 I5, also through 14512. Find the bevels in manner explained in all previous problems.

Fig. 50.-Quarter Ellipse, Singie pitch, Level. TANGENT, ONE BEVEL.

Fig. 50. A quarter ellipse having a single pitch with a level tangent requiring one bevel. Let A bFe be the portion to draw the mould, with c D added. From a to g set up the hight. In this figure there is no extra hight required, as it takes in the long tangent only. Connect G B, giving pitch and length of tangent required.

Fig. 5i.-Minner of drawing mould. For major length, with a as centre and Ac as radius, describe the curve с $\boldsymbol{\text { H. Connect }}$ G H, giving length required. For minor length, let D m equal A G, as required.

Fig. 5I. Let I 3 equal G H ; I 2 and 34 equal G b, and complete the parallelogram. Connect 24 as the minor length. Let 4567 equal M N O P, and make 9 I o equal to Jk . For the width on the wide end at 3 , draw the parallel lines in the usual manner. For length of short tangent let 28 equal в \mathbf{F}; draw curved lines through the points indicated 1270 and I3 59. The angle formed at G is the bevel to be applied at the wide or level end, as at 3 .

Fig. 52. An obtuse base with Elliptical curve, having tangents of equal pitch, requiring one bevel. Let a brebe the portion to draw the mould, with C D added. From a to g set up the full hight as required for extra length from Fc , for length of tangents. With b as centre and b c as radius, describe the curves cm. Connect (i M, giving length and pitch of tangents. With \boldsymbol{B} as a centre describe F J, draw the perpendicular J L, cutting the tangent line at L . With a as a centre describe ск and connect G K , giving major length of mould. From в erect the perpendicular в N , cutting the tangent line at κ.

Fig. 53. Let r 3 cqual g k ; I 2 and I 4 equal GN; 32 and 34 equal $\mathrm{N} M$, and complete the parallelogram. For joint, let 27 cqual N L, and make joint at 7 square from tangents. For width of mould on minor line, let 46 equal D o, and from 6 as the contre make 52 equal to the width required. For the width at end draw the parallel lines in the usual manner.

Fig 52.-Obtusf base with elliptical CURVE TAN'jENTS OF EQUAL PITCH, ONE BEVEL. For the bevel, let D pequal 4 8. The angle a.t P gives the bevel for both ends.

Fig. 54. Form of base similar to Fig. 52, tut with tangents of two pitches, requiring two bevels. Let ABFE be the portion to draw the mould for with c s added. Find iength and pitch of tangents. From A G as the

Fir. 5\%.-Manner of Drawing mould. hight, apply the pitch from G, cutting the perpendicular в н at H , and connect H J . Thengh is the long tangent and $\mathrm{H} J$ the short one. With a as centre and Ac as a radius, find the point m ; connect Gis for major length. For the minor length, from D erect the perpendicular D o equal to N G, and connect O B , giving the length required. From P as the centre of mould and R as half the width, erect the

Fig. 54.-Base similar to 50, with two bevels.
perpendiculars, cutting the minor length O bat s and T.

Fig. 55. Let I 3 equal gm; 12 and 3 +equal GH; I 4 and 32 equal J , and complete the parallelogram. Let 27 equal H L, and at 7 make joint square from tangent. For centre and width of mould, let 4562 equal o s т b. For the width at ends, draw the parallel lines as indicated and complete the mould by drawing the curves.

For the bevels, let nuequal bevel for long tane Let r equal 4 , when v ives the bevel bevel for long tangent. Let D r equal 49 , when v gives the bevel for the short tangent.

Fig. 56 shows a base similar in form to Figs. 52 and 54, but with a simple pitch tangent, and a level tangent requiring two bevels, the same as for a turnout easement. Let AbFe, Fig. 56 , be the portion to draw the mould, with C d added. From a to G set up the full hight and connect G b, giving the length and pitch of tangent. For major length, from a as centre and a c as radius, describe the curve $\mathbf{C} \mathrm{H}$, and connect GH , giving length required. For minor length, from D erect the perpendicular D L equal to $A G$, and connect L B, giving length required. For width of mould on minor length. From J as centre of mould, and $\mathrm{J} K$ as half the width, erect the perpendiculars, cutting the line $B L$ at O and p.

Fig. 57. Let I 3 equal G H ; I 2 and 3 +

Fili. 55-Manner of drawing moult. equal GB; I 4 and 32 equal B C, and complete the parallelogram. Connect 24 as the minor length. For width of mould, let 4562 equal L P O B. For width at the ends, draw the parallel lines as
indicated. For joint on short tangents, let 27 equal 13 F, make joint square from tangent, and complete the mould by drawing the curved line in the usual manner. For the bevels, let 48 equal dr; the angle at R will then be the bevel for the long tangent. Let 47 equal D ; the angle at s will then be the bevel for short tangent.

An acute angle base with an elliptical curve, having tangents of equal pitch, and requiring one bevel to be applied at both ends.

Fig. 58. Let A B F E be the portion to draw the mould, with c D added. From a to g set up the full hight. With radius в с, describe c H, connect G H, giving length and pitch of tangents. With radius a с, describe с к, and connect G k, giving major length. From Ј в erect the perpendiculars, cutting the tangents at m and L. Draw s t parallel to $A \quad$ b, the distance between to be equal to the width of mould

Fig. 56 -Base similar to Figs. 52 and 54, Single PITCH AND LEVEL TANGENT, TWO BEVELS. at its normal point, and where the bevel D P crosses this line will be the width of the mould at the ends P and r.

Fig. 59. Let i 3 equal GK ; I 2 and 34 equal GL; 32 and i 4 equal L H, and complete the parallelogram. Connect 24 as the minor length. Let 4569 equal D U O R. Let 8 i2 equal p v as the width at both ends.

Fig. 57-Manner of drawing mould. Complete the mould by drawing the curved line through the points indicated. For joints on short tangent, let 27 equal L m , and draw square from tangent, giving point required. For the bevel, let D pequal 40 ; the angle at P will then be the bevel required for both ends of the mould.

An acute angle base with an elliptical curve, having tangents of unequal pitches, requiring two bevels.

Fig. 60. Let A bre be the portion to draw the mould, with C D added. From A to g, set up the hight. From B erect the perpendicular

Fig. 58.-Acute angle base, elliftical curve, tangent OF EQUAL PITCH. B m, and at G apply the pitch, cutting the perpendicular at ar for long tangent. From B as contre describe the curve F J . From J erect the perpendicular, cutting the tangent at L . For major length of mould, from a as centre, describe the curve c к, connect a k , giving length required. Extend H m to n , as indicated by the dotted line. Forminor length, from D erect the perpendicular d o equal to N G; connect $O \quad B$, giving length required. Let R P S be the width of rail, and crect perpendiculars, cutting the minor length at $\mathrm{V} \boldsymbol{U}$ and T . Draw $\mathrm{w} x$ parallel to $A 13$ and equal to R s .

Fig. 61. Let I 3 equal GK ; 12 and 34 equal Gm . Let 14 and 32 equal hm ; complete the parallelogram and connect 24 as the minor length. For joint on short tangent, let 28 equal m L. For width on minor length, let 4567 equal ovut. For bevels, let D Z equal 414 , then the

Fig. 59-Manner of draiwing mould. angle at $\%$ is the bevel for long tangent. Let $\mathrm{D} Y$ equal 415 , then the angle at Y is the bevel for the short tangent. For width of mould at the ends, let 09 equal $\mathrm{y} w ; 1213$ equai $\times 2$, and complete the mould by drawing the curves through the points indicated.

An acute angle base with an elliptic curve, having one pitch and one level tangent, requiring two bevels.

Fig. 62. Let a b fe be the portion to cover with the mould, c d added. From a to g set up the hight ; connect G B, giving length and pitch of tangent. From a as centre, describe the curve с н and connect G H, giving major length of mould. For minor length, from D erect the perpendicular D J equal to A G and connect J B, giving the length required. Let к L m equal the width of rail, erect the perpendiculars, cutting the minor length at N o and P . Draw T U parallel to $A \quad \mathrm{~B}$ and equal to k m .

Let I 3 equal GH; I 2 and $3+$ equal GB; I 4 and 32 equal CB , and complete parallelogram. Connect +2 as the minor length. For the joint on short tangent, let 28 equal B F. For width on minor length, let 4567 equal J N o P. For

Fig. 6 - Manner of drawing mould. the bevels, let D s equal 4 It, then the angle at s is the bevel for long tangent. Let D R equal 415 , then the angle at R is the bevel for short tangent. For width of mould at the ends, let 9 o equal Tr, and I2 I3 equal u s. Complete the mould by drawing the curves through the points indicated.
The plan of a straight flight of stairs, drawn to a scale of $3 / 4 \mathrm{inch}$ to the foot. . The landing-rise is placed at the chord line, the cylinder
being 8 inches in the clear. The centre of the rail is drawn $1 / 2$ inch on, as indicated by the dotted line. The risers are $71 / 2$ inches and the treads 10 inches, which is the size of the pitchboard.

Fig. 62.-Acute angle base tangents, single
PITCH AND LEVEL.

Fig. 64 is the plan of stairs. A, centre of cylinder; B B, centre of rail and tangent line; c, joint through centre of the cylinder. AI and A2 are the risers; D, centre of the short baluster, at which point the bottom line of the rail must rest.

Fig. 65 shows the piece from which the rail is to be made placed in position, and with the bevel applied at e.

Fig. 66 shows the level mould drawn over the ground plan of cylinder from the centre at a. в \boldsymbol{x} is the straight wood, which may be varied as to length, according to circumstances, and will be made from $31 / 2$ or 4 inch plank.

Fig. 67 is the piece as it will be when squared up. F G shows the centre line or tangent, from which the mould is to be drawn.

Draw the chord line в в, extended indefinitely. Draw from c as the centre of mould parallel to в в indefinitely. From the line F c apply the pitch at F , giving the inclination of tangent F G through centre of plank, which must be $31 / 2$ or 4 inches thick.

Fig. 68. To draw the mould, let 12 equal F (i, Fig. 67, and 23 equal a c, Fig. 64. From the parallelo-

Fig. 63 . Manner of irawing mould. grams, with 4 as the centre of the axis, let 68 equal the width of rail, $3^{1 / 2}$ inches. Let 57 equal н J, Fig. 67.

Fig. 69. To find the length of rods to strike the ellipsis. For the outside curve, let 90 equal 48 , Fig. 68 ; and let 912 equal
+7 , Fig. 68. For inside, let 13 it equal +6 , Fig. 68 ; and let 1315 equal +5 , Fig. 68. The rods as applied are shown at Fig. 68, and for fuller explanations refer to Figs. 31-33.

GENERAI, PRACTICE.

Fig. 70 shows the level piece of rail squared up, having an easement. A B, thickness of plank; C D, thickness of rail ; e, the floor line ; c, the under side oif rail, + inches from the floor, and at $\mathrm{F}, 31 / 2$ inches, giving an easement of $1 / 2$ inch, completing the turn. A plan of stairs starting with a curve, commonly called a turn- A1 out or offset, showing how to calculate the hight of the newel.

Fig. 69.

Fig. 64 -Plan of stairc.
Fig. 6 j.-Piece from which rail is made.
Fig. 66.-Level muuld on giroun Fig. 67.-Section of rail squarel). Fig. 69.-Scale.

In this case the hight is made to agree with the rail, and will give a full easement in the rail. Scale, $3 / 4$ inch to the foot.

Fig. 7I. Let ABCD be the ground plan, with e as the point from which the curve is described; the lines i 234 represent the rise lines, and the broken lines the ends of tread. The dotted lines are the centre of rail, and the points as described on this line are the centre of balusters. In locating the position of the rail, the short baluster is used as the point of contact for the bottom of the rail, oo being the width of rail.

The centre of the newel is located on the face of the first rise. The mitre is drawn first to determine the end of the rail or point of the mitre. The line н н, crossing at the intersection of the rail and cap, is called the cheek line, and is used to make the mitre in the cap as the guide to square into the centre.

For length and pitch of tangent. From the base line $A B$ apply the pitch-board, and from the point touching at $в$ extend the pitch, cutting the perpendicular line A F at F; then $\mathrm{B} F$ is the length of tangent and AF the hight. $B C$ is the

Fig. 68.-Manner of drawing mould. length of level tangent. For major length of mould, with a as centre, and A C as radius, draw C G, and connect F g, giving length required. For minor length, from D erect the perpendicular D J, equal to AF ; connect b J, extended to K , cutting the perpendicular erected from e. From o o erect the perpendiculars, cutting the line BJK at L L. Having made all the lines from which to draw the mould, draw it on the board or paper, which is to be cut out for use, thereby saving time.

Fig. 72. Let I 3 equal FG ; I 2 and 34 equal F b; I 4 and 32 equal в с. Connect these points, completing the parallelogram. Connect 2 4, extend to 5, equal to в к. From 5 as the centre, draw lines crossing at 1 and 3 , which will be the chord line ; 3 and 5 is also the major axis. Having fully explained the axis in the previous problems, hereafter we will give the points through which to draw the curves, using the flexible strip as the most convenient to accomplish the desired end.

For the bevels, set the compasses equal to D N , place one foct in 4 , describe the segment 6 , draw a line parallel to 13 , touching the segment at 6 . For the bevel at I , set the compasses in 4 , extend to the tangent line 1 2 , as indicated by the dotted line ; describe it until it touches the line at

Fig. 70.-Sholiting level. piece squared.

For the other end, extend the compasses to 8 , as indicated by the dotted line, describe the curve, touching at 9 , and draw back to 4 ; then the angle at 9 is the bevel for the end at 3 . For the width of mould at the ends, let 60 equal the width of the rail, draw the dotted line as indicated parallel to

79 , cutting the bevel lines at 1213 . For the end at I , make it equal to 7 I 3 ; and for 3 , make it equal to 9 I 2 . For centre, let $4 \times \mathrm{x}$ equal J L L. Then through the points thus made draw the curve, completing the mould.

Fig. 71. For the hight of Newel, let m be the under side of the rail, over the short baluster s, on the third step from m. Drop a perpendicular to the floor equal to three risers, as shown at P. Add 2 feet 2 inches as the hight of the rail over the short baluster to the hight ps, less half the thickness of the rail, which will be the hight of the newel from the floor to the underside of cap, making in this case 3 feet 6 inches.

Fig. 7x.-Plan of stairs with turnout cifrve.
Fig. 72. For the mitre line or cheek, draw it 14 parallel to the joint 35 , and the same distance from 3 as it is on the ground plan from c. In squaring the rail, the mitre is left until ready to put on the cap, leaving the under side at the end flat and square from the joint, in order to set the cap on a line, after which the surplus wood can be removed, and the easement finished. The sections of rail 1516 show the bevels as applied. The stock of the bevel is on the top or face side.

Fig. 73 shows the ground plan of stairs starting with winders, and having a newel located same as in Fig. 71. The pitch line is on the same inclination as the straight rail, no romp being required. The
plan of this is more than a quarter, and forms an acute angle or the line of tangents. Let $A B C D$ be the ground plan of tangents, E the centre from which the curve is described. From is apply the pitch-board

Fig. 72.-Manner of drawing mould. extending to the perpendicular at f. Find the major length in the same manner as described in other problems as at a F , and produce the minor length in the usual manner from the hight A F ; apply at D J, B J being the minor length. For the hight of newel, set off halt the thickness of rail from pitch line Fb at m , over short baluster ats. From a drop the perpendicular through the centre of short baluster, equal to five risers, to the floor at P. Add 2 feet 2 inches to the hight p s, less half the thickness of rail, which will be the hight from floor to under side of the cap, which in this case will be + feet.

Fig. 74. To draw the

 mould in the usual manner. Let i 3 equal Fi ; I 2 and 34 equal FB ; I 4 and 32 equal вc. Complete the parallelogram. Connect 24 , and let 45 equal J к. From 5 find width of mould, also the bevels from the same point. Let 56 equal EA a and let 6 o equal the width of rail, the width at the ends being shown at 8 I3 and 9 12. Sections 15 16 show the bevels as applied. It will be seen that they do not apply in the same manner as in Fig. 72, but cross each

Fig. 73.-Ground plan. starting with winders. other, because the angle is acute.

Easements of this kind-that is, having one pitch and one bevel, have the bevels applied in the following manner : A right angle has one bevel applied on the level end, the opposite end being square. The obtuse base, as in Fig. 7I, has the bevels applied from one side, as in Fig. 74. The bevels cross each other, because the minor axis is within the parallelogram, while the axis of the obtuse angle is outside. This will be so easily understood as to need no further explanation.

The four following figures exhibit a plan of 8 inch cylinder stairs, with the landing rise $23 / 4$ inches in the cylinder; rise $71 / 2$ inches, tread 9

Fig. 74.-Manner of meawing mould. inches. This will require two pitches in the lower picce, and is what is known as a half easement, while the top or landing piece is a full easement. Rail, $23 / 8$ inches thick, by $31 / 2$ wide. Scale $11 / 2$ inch to the foot.

Fig. 75.-Plan of 8-inch cylinder staiks.

Fig. 75. Proceed to find the length and pitch of tangents, and the major length of the mould. The dotted curve line is the centre of the rail, with the points showing the location of the balusters. Let a b C D be the quarter to draw the mould, with a half easement, and cefd
the portion for a full easement. Let $\mathrm{x} \times$ be the risers as drawn on the plan. Extend A b indefinitcly for the base line. Extend the tangent lines on plan ec b indefinitely, also f d A. Stretch out the tangents by placing one foot of the compasses at B extended to C , and describe the curve CG, also EH, from the same point. Erect perpendiculars from

Fig. 76.-Manner of drawing mould. G and H indefinitely: Draw the elevation as shown by the double lines at any convenient distance from the base line A b. From oo as the location of the short balusters on plan, let J J represent the same on elevation, and connect J J for the bottom line of the rail. From J J set off half the thickness of the rail ; extend this line until it cuts the perpendicular é c B. On the perpendicular h, set up 4 inches to the under side of the rail ; add half the thickness of the rail as at L ; connect k L ,

Fig. 77.-Showing flexible strip cf Rattan.
giving the length and pitch of the short tangents, which will correspond to the plan be. N к m will be the tangents for the mould at Fig. 76 .

From n draw n p parallel to $A G$. The full hight contained in the mould will be found at P m. Let Prequal A c on the plan Fig. 75, and connect m R, which will be the major length of the mould, Fig. 76. From k draw K s parallel to B G, cutting the major length at s.

To draw the mould, let I 3, Fig. 76, equal $\mathrm{Rm}, \mathrm{I} 2$ and 34 equal $\mathrm{K} \mathrm{m}, 23$ and I 4 equal N K , and complete the parallelogram. Let I 5 equal RS and connect 45 extended indefinitely, which will be the minor axis and normal line. Draw the major axis at right angles to

Fig. 78. - Manner of drailing mouid. 45 through 4. For the centre of the rail let 46 equal D A. From 6 set off half the width of rail as 78 . Find the width at the end by the parallel dotted lines. For the bevels,
with the compasses, take the length 49 and place it on the plan F T ; the angle at T will then be the bevel for section A A as applied. Let $\mathrm{F} \mathbf{v}$ equal 40 ; the angle at v will be the bevel at section B B as applied. Add whaterer straight wood is required from 3 parallel to the tangent. Complete the m:uld by drawing the curve through the points as given

Figs. 79, 80 and 85 .-Two top portions of landing-elevation.
by the dotted lines, using a flexible strip or the trammel rod, as may be most convenient.

The best flexible strip for all moulds is a piece of rattan planed down at one end to $1 / 8$ of an inch and the edge squared, leaving the other end about $1 / 2$ inch thick, as shown at Fig. 77. This will naturally form an elliptic curve as it is bent, using the thin end at the short tangent.

Fig. 78. Let 12 equal F E (Fig. 75) and 23 equal L m. At right angles to tangent from I and 3 draw the lines crossing at 4 , giving the
axis, 34 being the minor axis and normal line, and i 3 the major axis. At 3 lay off the width of rail, draw the parallel lines to find width on the opposite ends, add the straight wood and complete the mouid by drawing the curve. The bevel is found at L , the pitch being the bevel and applied at section C c. At section D D the rail is taken square through the centre. The stock of the bevel is shown as applied from the top or face of the stuff in all cases.

A plan of two top portions of stair landing with four and five winders-Figs. 79 having five, and 80 , four winders. The straight portion is the s.me for both, using the same ramp-scale, $3 / 4$ inch

Fig. 8i.-The mould. to the foot, $71 / 2$ inches rise, Io inches tread, 12 inches cylinder. Rail $21 / 2 \times 31 / 2$ inches. The dotted line shows centre of rail on which the balusters are spaced off, as shown at Fig. 79 , and represented by dots. The centre of rail will be regulated by the size of balusters ; in this case the centre of rail is I inch on.

Draw the elevation by setting off from the chord line A b three spaces equal to $C D$ as D C ef. This line will also be the floor line, from which drop down three risers to the point G; then draw the elevation of the steps outside of the cylinder, as н J к. At Jk will be the bottom of the rail, as it cuts the treads at the centre of the short balusters. From f set up $51 / 2$ inches to the centre of the rail on the landing, as at L , and connect $\mathrm{L} H$, giving the length of the

Fig. 82.-The mould. tangents for Figs. 8_{1} and 8_{2}. From F drop down one rise to m , which

Fig. 83 -The mould. will be the floor line for plan, Fig. So. From m set up $5 \frac{1 / 2}{2}$ inches to the centre of the rail at N , connect N o for the tangents of Figs. 83 and 84. At the interscction of the tangents with the chord at z, square off, touching the perpendicular at P . From P to S is the hight contained in

Fig. 81, and will cover the plan, Fig. 79. a t c and p r will also cover the same portion at Fig. 80. From p, Fig. 79, set off to U, equal to A c. Connect U R, giving the major length to draw Fig. 83, and su the major length for Fig. 81.

Fig. 81. Let I 3 equal $\mathrm{s} u$, and form the parallelogram from the tangent $s o$, all sides being equal. Connect 24 , giving the normal line and minor axis. Let 45 equal DC as the centre of the mould. Mark the width of rail 67 ; through 5 draw a line parallel to I 3, and let 58 equal the width of the rail ; draw parallel to 13 , cutting the bevel lines for the width of the mould at the ends. Find the bevel 49 to 0 , when 0 I 2

Fig. 84. The mould. will be the width for the ends. Complete the mould by drawing the curve, sections A A and B B showing the bevel applied.

Fig. 82. To draw the parallelogram. Let 12 and 34 equal

Fius. 86 - Plan with four kisers in cylinder.
A T, Fig. 79, and I 4 and 23 equal Ls. Let F w equal the width of the rail, cutting the tangent at x. Then x L will be the width of the
mould at 1 ; at 3 make it the width of the rail, and complete the mould by drawing the curve. For the bevel, take the length of tangent 23 , placing it from I to 5 ; then the angle at 5 will be the bevel for the end at I . The angle at L of the elevation is also the berel ; section c c as the bevel is applied, section D D as the rail is taken square through centre of the staff.

Fig. 87.-The mould.

Fig. 83. Let 13 equal U R, Fig. 79, 12 and 34 equal o z, and complete the parallelogram. The normal line is not given on the mould, but will find the width required on minor length. At Fig. 80, let ef equal RS, and connect F with the centre; this line will then equal 24. On this line mark off the points 257 , as they are shown at Fx , Fig. 8o. For the bevels, from 4 describe the arc 8 , equal to $D c$. Draw a line touching at 8 , and let 89 equal the width of the rail, drawing it parallel to 8 , crossing the bevels at 60 . Find the bevels as indicated from the dotted line 4 to 12 i3. The width of the mould at 3 will be equal to 013 , and at 1 equal to 6 I 2 . Complete the mould by drawing the curve. Sections E E and F F show the bevels as applied.

Fig. 84. From the tangents e b, Fig. 80 , and $\mathrm{N} R$ of the elevation, draw the mould as before described, finding the bevel in like manner.

Fig. 85. The ramp is drawn as shown by transferring the tangent lines with a bevel to the board, to be used for the pattern. Let v be the end and joint at which the mould, Figs. 81 and 83, will join, as the straight wood equals v z .

Fig. 88.-The mould. Always working on the centre line as the tangent, draw the rise line J across the face of the pattern as taking in all the winders. The length of straight rail may be measured off with the pitchboard.

A plan of stairs with winders at the landing, having four risers in the cylinders, to which straight treads run. In this case there will be no ramp, but the mould will have two pitches forming a half easement. Scale, $3 / 4$ inch to the foot.

Fig. 86. Let abcerbe the line of tangents. From d stretch out the tangents as shown, making three spaces equal to D C, D H being the floor line. From D drop 4 risers contained in the cylinder at κ. From k draw the elevation of steps and risers outside the cylinder. Locate the short balusters as shown at $\mathrm{L} m$ by the dotted line. From this line set off half the thickness of the rail, and draw the tangent from these points extending to n. From the floor line at H , set up $5 \mathrm{I} / 4$ inches to the centre of the rail on the landing at J , and connect o J, giving the length of tangents. For major length of mould, let $\mathrm{S} R$ equal E D and connect R , giving length re-

Fig. 89.-Starting with one step to a quarter platfora. quired. For the minor length, proceed in the usual way as shown at DEF; this needs no further explanation.

Fig. 87. Let I 3 equal tr; I 2 and 34 equal Po; I 4 and 3 ?

Fig. go.-The mould. equal o т, and complete the parallelogram. For the bevels take the length 45 and 46 , and place them on the elevation from w to u y. Lay off the width of the rail as shown below the bevels, and extend the line at the side, cutting the bevels at $\mathrm{x} v$. For the width of the mould at the ends, x w for the long tangents at 3 , and w v for the short tangent at I ; nake the points on minor length 24 , the same as from D to F . Draw the curve and complete the mould. Let the straight
wood i 7 equal p z. Sections at 8 and 9 showing the end of the twist as squared from the plank.

Fig. 88. Draw this mould the same as described at Fig. 82. Let I 2 equal A b, and 23 equal J т. Find the width for the end from the bevel at J, and complete the mould by drawing the curve. Section showing the end of the twist as taken from the plank at 4 and 5 .

A plan of stairs starting with one step to a quarter platform in the cylinder : no ramp needed for this, as the rail will have two pitches, forming a half easement. Scale $3 / 4$ inch to the foot, $7^{1 / 2}$ inch rise, Io inch tread, 12 inch cylinder, $21 / 4 \times 31 / 2$ inch rail.

Fig. 89. From the tangent A B, drop the perpendiculars to H J , which will be the floor line. Stretch out the tangents equal to a b с e, and at L set up $5 \mathrm{I} / 4$ inches to the centre of the rail at M . From H to N set up the three risers contained in the cylinder. At s draw elevation of one step, and locate the short balusters N o. Draw the dotted line for bottom of rail; set off half the thickness of rail, draw the tangent extend-

Fig. 91.-The mould. ing to P , and connect m U. From r draw r s parallel to $\mathrm{K} \boldsymbol{H}$, let S т equal D E , and connect v t, giving major length of mould. For minor length, let E G equal R P, and connect G D, giving length required. Mark the width required for the rail on this line in the usual way.

Fig. 90. Let I 3 equal t v, Fig. 89; let I 2 and 34 equal $u v$, $I 4$ and 32 equal $u r$, and complete the parallelogram. On the minor length from 24 mark the points equal to those on G D. For the bevels, take 45 and 46 , and place them from w, as indicated at z y. Mark the width of the rail, letting the side cut the bevels on the line w y. This gives the width for the end of mould at 7, Fig. 90, and on $w z$ is found the width for 3 . For the straight wood, from 1 , make 17 equal vx , and complete the mould by drawing the curve. Sections 8 and 9 show the end at joint as squared from the plank.

Fig. 91. Draw same as Figs. 82 and 88. Let 12 equal m r, and 23 equal EF. The bevel and width of mould is found at m. Apply in the usual way, draw curve and complete the mould. Sections 4 and 5 show the end of the twist as squared from the plank.

A plan of quarter platform stairs having the risers at the cylinder placed in such a manner that the rail will run on a continuous pitch, requiring no easing. Scale, $1 \mathrm{I} / 2$ inches to the foot.

Figs. 92 and 94. Plan and elevation. Let A в с be the line of tangents, with D as centre and E and F the risers. It will be seen that E is outside of the cylinder, while F is inside. The location of E must govern the location of F . Let E be located anywhere on the tangent line ; then to find where F will come, take the distance E b, as here shown to be 5 inches ; then the distance from B to F will be 4 inches, making the length of one tread from E to F. Extend A D and BC indefinitely, and draw the elevation of one rise and tread, letting а в be the base line. From the location of the short baluster H on plan, produce it on the elevation at J. From J apply the pitch board, as shown by the dotted line J к, as the bottom line of the rail. Set off half the thickness of the rail and draw the tangent line L m N . For the major length of the mould, from A as centre,

Figs. 92 and 94.-Quarter platform, risers so placed as to give kAIL ONE PITCH. CENTRE OF RAIL SHOWN BY LOTTED LINE. describe the curve c o, and connect lo, giving length required.

Fig. 93. Let I 3 equal L. o, and I 2 and 34 equal m. m. Produce 4 in like manner, as all the lines in the parallelogram are one length.

For the centre of the curve, let 45 equal D g. Find the width of the mould at the ends by the parallel lines, as shown, the width at 27 being $31 / 2$ inches. For the bevel, let D P equal 46 ; then the angle at P is the bevel for both ends. From I and 3 add whatever straight wood is

Fig. 93-The mould.
required-usually 3 to 4 inches is sufficient. Complete the mould by drawing the curve in the usual manner. Sections 8 and 9 show the bevel applied.

Fig. 94. To draw the mitre on the rail to intersect a turned cap. Let a be the centre of the cap at the intersection of the rise and centre line of the rail. Describe the outside circle в c as the size of the cap. Draw the arc D E equal to the depth of the turning. Let G н be the width of the rail, $3^{1 / 2}$ inches; draw the depth of the mould on the rail, as shown at J K , and extend these lines, intersecting the line of the cap ; then through the intersec-

[Fig. 95-Cap easement with mitre. tion draw the line of the mitre as $\mathrm{m} x$ o , and through m N draw the cheek line. Draw the elevation of two risers, and from the top of the first step set up 5 inches as the hight ; the cap will rise as from l P. Through the point of short baluster R apply the pitch board for the bottom line of the rail, produce the mitre lines on the pattern, $\mathrm{T} s$ as the cheek and $J v$ as the point of the mitre. For the hight of the newel, add 2 feet 2 inches to $\mathrm{P} w$, giving the hight from the floor to the under side of the cap.

Fig. 95. Shows an elevation of the pitchboard with the easement, having the top curve drawn, also the second rise line extended across the pattern, to be used in measuring the length of straight rail.

A plan of stairs commonly called a full turn of winders, having three pieces in the rail to complete the cylinder. Scale, $3 / 4$ inch to the foot.

Fig. 96. Plan. Let ABCDEFG be the tangents, and H the centre from which the curve is described. To locate the joints c e, set the compasses in A, extend to H and make the point c. Then in G make the point E , connect C and E to H ; at right angles to C H draw the tangent BCD ; then at E , in the same manner, draw the tangent Def. Extend the centre line of rail, completing the tangent $A \quad B$ and G F. Extend G F indefinitely, and stretch out the tangents from G to H on the line thus made. From F as a centre describe E I and D J.

Fig. 97. Elevation.

 Drop perpendiculars from GFiJ indefinitely. From any convenient point outside of the plan, make the hight of the risers on the perpendicular G, the six risers which is in the cylinder as at k L. Then at K L draw the elevations

Figs. gó and 97.--Full turn of windeks threk pieces IN CYLINDERS.

Fig. 98.-The mould.
of the steps and risers outside of the cylinder over which the ramp is drawn. Let m N of the elevation be the centre of the short balusters, also the bottom line of the rail, and draw the centre line for the ramp. From m in the lower elevation, draw a line cutting the centre line of the rail at 0 ; locate a point at P which will be plumb over o , but not the short baluster in this case. This is done for the purpose of making both ramps the same, requiring only one ramp pattern, and one mould for the cylinder, to be used for the three twists, thereby saving time in drawing. From o and P as centres, bisect the hight at R ; from R draw RS at right angles to $\mathrm{K} L$, and connect S P and S o, giving the lengths of tangents required. To find the major length of the mould. From g as centre, draw e t, and drop the dotted line indefinitely. From uvdraw parallels to Rs , cutting the dotted line from T at w and x . Connect $w \mathrm{y}$ and x y , giving the major lengths. Draw the ramp pattern as shown, making the joint at z , allowing $3^{1 / 2}$ inches from Y to be added on the mould, Fig. 98.

Figs 99 and rox.-Turnout and quarter platform.

Fig. 98. Let 13 equal w к, 12 and 32 equal $\cup Q$, and connect $I 2$ and 3 indefinitely, as the tangents. Let 24 equal $\mathrm{H} F$, and connect 4 I and 43 , giving the chord line. For the centre of the mould on the normal, let 45

Fig roo.-The mould. equal HE , and mark the width of the rail on this line, from the centre at 5. Find the width at the ends, in the usual way, and draw the straight wood 30 equal to Y . . The point 4 is the centre of the axis. Draw the major axis at right angles to 24 . For the bevel, let 57 equal

Fig. ioz.-The mould. 64 ; the angle at 7 is the bevel for all the pieces as applied at the sections 8 and 9. Complete the mould by drawing the curve with a flexible strip or the trammel as may be desired. Fig. 98, as it is drawn, will be the two pieces to join the ramps for the centre piece on the plan, Fig. 96. C D E will be found at the elevation, Fig. 97, as USvfor the tangents. Make the joint at 3, cutting off the straight wood, which gives the required mould to complete the cylinder.

A plan of stairs starting with a turnout and having a quarter platform. The rail to be in two pieces for the quarter, forming half easements, requiring but one mould which will reverse, as the hight will be

Fig. ro4.-The mould. $11 / 2$ risers in each piece. Scale, $3 / 4$ inch to the foot.

Fig. 99. Turnout. Let the face of the first rise be the centre of the newel. To find the end of the mould, draw the cap with the mitre in the usual way, as the lines indicate at c. From c as the end of the mould, draw the dotted line to

Fig. 106.-The mould e, at right angles to E C. Draw c \quad, cutting the base line as the centre of the rail from A . Then а в \mathbf{c} will be the tangents of equal length. Produce D in the parallelogram as indicated. Place the point of the pitch-
board at в and draw the pitch, cutting the perpendicular-e a at f. For the major length of the mould, from A as centre, describe $\mathrm{C} G$, and connect $G f$, giving the length required. For the minor length, at right angles from B D, set the hight D H equal to A F, and connect H B, giving length required. Let J be the centre line of the rail, κ one-half the width, and erect the perpendiculars, cutting the minor length at L m.

Fig. 1o3.-Obtuse angles, tangents of ONE PITCH.

Figs. 105, 107.-Ramp, and two pitches to cylinder.

Fig. 100. Let I 3 equal g F; I 2 and 34 equal fri ; and i 4 and 32 equal c в. Complete the parallelogram, and connect 24 . Let 4562 equal н L м b, then 52 will be the width of the mould. Find the width at the ends from the bevels, and extend $\mathrm{c} D$ indefinitely. Let PN equal 47 , and Po equal 48 . Draw S R paralle! to N o equal to the width of the rail. Then 0 R will be the width of the mould at 3 , and N s will be the width for end at I . Add the straight wood from I ,
mark the joints at the ends square from the tangents, and complete the mould by drawing the curve in the usual manner.

Fig. roi. From t, the point from which the curve is described, draw the square TABC, and connect T b, cutting the curve at E. At right angles to $\mathrm{E} B$, draw the tangent lines F G, thus making all the tangents of one length. Form the parallelogram at U; from G as centre, describe E J, and drop the perpendiculars G k and J L. From d set up

Fig. rog.

Figs. 108 and 1og.-Acute angle for both winders and platform.
three risers to M. From m and D bisect the hight at N, and from N draw parallel to $\mathrm{T} A$, cutting the perpendicular J Lat 0 . Place the point of the pitchboard at D , draw the pitch to P , and connect $\mathrm{P} O$, giving the tangents for the mould. From m draw m Ro in the same manner. For major length, let s lequal c e, and connect so, giving length required. For minor length, extend opto T; let HU equal d T, and connect \boldsymbol{H} G, giving the length required. Find the width of the mould in the same manner as described in Fig. 99, viz : from bevels.

Fig. 102. Let 13 equal so ; 12 and 34 equal D P ; I 4 and 32 equal po, and connect 24 . Find the width of the mould 52 in the same manner as explained in Figs. 99 and ror. To find the bevels, let x w equal 48 and y w equal 47 . Parallel to $y x$, and the width of the rail, draw $v z$, cutting the bevels; then $\mathrm{x} z$ will be the width of the monld at 3 , and v y for the end at I . Add the straight wood and complete the mould by drawing curve. This mould reverses and completes the quarter, 3 being the centre joint over E .

The amount of the straight may be left on the moulds, so as to join them together, or there may be a straight piece put between them. This is left to the judgment of the workman.

A plan of stairs having two obtuse angles, or less than a quarter cylinder. Fig. 103 is a platform with risers so placed as to have the pitch of the tangents on the same inclination as

Fig. ito, -The mould the straight rail. Fig. 105 has winders at the lower portion, with one outside of the cylinder and requiring a ramp; the upper portion has the straight treads running to the chord line. Scale, $3 / 4$ inch to the foot.

Fig. 103. A bCD is the portion to draw the mould D , the corresponding point to B , forming the parallelogram, and E the centre from which the curve is described ; set F B G on the line of the tangents, which equals one straight tread. From в as centre, describe с \boldsymbol{H}, giving the stretchout of the tangents. From a as centre, describe c j to get the major length. At H J drop perpendiculars indefinitely. For the length of tangents, place the point of the pitchboard at B , draw to K and extend to L ; then Kbl is the length. From l draw parallel to H J, cutting the perpendicular from J at n ; connect K m , giving the major length.

Fig. 104. Let I 3 equal Km ; 12 and 34 equal k, and $1+$ and 23 equal bi. For the width of the mould in the centre, let 45 equal n n. From 5 as the centre of the mould, mark the width equal to the rail, $3^{1 / 2}$ inches. For the bevel, let po equal +6 , and parallel to 0 F draw S R equal to the width of the rail, cutting the bevel and giving
the width for the mould at the ends. Add whatever straight wood is required, and complete the mould by drawing the curve.

Fig. 105. From the rise at F drop a perpendicular indefinitely, and from any convenient point set the hight required as from G H, six risers. Draw the elevation of the two treads outside of the cylinder, over which the ramp is to be drawn. From b as centre, describe c J. From a b J drop perpendiculars indefinitely. At the hight of five risers

Fig. ifi.-Two quarter cylinders, one circular, one elliptical, with elrvation.
draw one straight tread as K L, place the pitchboard with the point at the centre of the short baluster as at к. Draw the dotted line for the bottom of the rail, set off half the thickness of the rail from κ, and draw the centre line for the tangent m N , extended to 0 . From Pr as the centre of the short balusters, draw the dotted line for the bottom line of the rail, set off half the thickness of the rail, and draw the centre line of the ramp. From the short baluster at s, set off half the thickness of the rail, as
shown at U , and draw N V , touching at U . Then m N vare the tangents for the mould. For major length of the mould, let $w x$ equal ac, and connect ma, giving the length required. For the minor length, let $D y$

Fig. ifi.-The moulf.
equal ov, and connect y b, giving the length required. From z as the centre of the rail, draw the perpendiculars equal to the width of the rail, touching the minor length $\mathrm{B} Y$, as shown at 0 o o.

Fig. 1o6. Let I 3 equal mx ; I 2 and 34 equal m N , and 14 and 32 equal N v . Connect 24 and make the points for the width of the mould same as from в y. For the bevels, let I Q equal 45 , and let I o o equal 4 6. Then the angle at Q is the bevel for the end at 3 , and the angle at I is the bevel for the end at I . Find the width at the ends in the same manner as already described from bevels. Add the straight wood required, and complete the mould by drawing the curve.

Fig. 107. Draw the ramp from the centre line, as shown; make the length $\mathrm{T} U$ so as to join to Fig. 104.

A plan of stairs having acute angles, or more than a quarter cylinder. Fig. 108 is a platform with the risers so placed as to have the inclination of the tangents on the same pitch as the straight rail. Fig. 109 is the same angle as Fig. 108, but having winders with a portion of a tread outside of the cylinder, requiring ramps. The mould for the cylinder has tangents of equal length, and will be drawn the same as for Fig. io8. Scale, $3 / 4$ inch to the foot.

Fig. ro8. Let A B C be the portion to draw the mould, with D as the corresponding point to B, forming the parallelogram with E as the centre, from which the curve is described. Let a J equal one tread, cutting

Fig. 113. Landing mould.
the plan on the tangent line. Extend с в indefinitely. From в as centre, describe Jк; make к l equal to one tread. The risers $\mathrm{J} \kappa$ will have to be bent so as to finish on the string nicely. In this case the treads and platform are the same width from a to P. The centres to draw the curve of the risers are at R R. For length of the tangents, with в as centre, describe c G. From g drop a perpendicular indefinitely.

Fig. 134.-Thumb ellipse, acute and obtuse angles.
From в apply the pitchboard, extending the line to F and m , giving the length of the tangents. For the major length of the mould, with a as centre, describe $\boldsymbol{с} \boldsymbol{H}$, and from $\boldsymbol{н}$ drop a perpendicular indefinitely. From m draw m n parallel to H g, and connect N f, giving the required length. Draw the mould as shown, Fig. ino, using F n for major length and $\boldsymbol{F} \boldsymbol{m}$ for the tangents. This figure will require no further explanation.

Fig. Iog. Let A l c be the portion to draw the mould, D as the corresponding point to L , forming the parallelogram, with E as the centre from which the curve is described. From P A L drop perpendiculars indefinitely. From any convenient point below P , let K K equal five risers as contained in the winders from p s. From k k draw the

Fig. in 5.-The mould. elevation of the treads outside of the cylinder. Locate the centre line of the rail from k k as the centre of the short balusters. At any convenient point on the pitch, as at G G, bisect the hight at J. Draw J B parallel to A L, cutting the perpendicular from L. At b connect $B G$; then $B G, B M$ and $B F$ are the tangents for the mould. For the major length of mould, from A as centre, describe с H. From h drop a perpendicular indefinitely. Draw m N parallel to A H , and connect N F, giving the required length.

Fig. iro. Let 13 equal f of Fig. iog. Let 12 and 32 equal $\boldsymbol{m}_{\mathrm{B}}$ and $\mathrm{M} F$; produce 4 in the same manner, to complete the parallelogram, as all sides are equal. Let 265 equal lo e, 5 being the point from which to draw the chord line through I 3. Let 49 equal D P, draw parallel to 13 , and make 48 equal 47 . The angle at 8 will then be the bevel. Find the width of the mould at the ends on the bevel in the usual

Fig. if6. The mould. manner.

Draw the ramps from the angles at G, as indicated, \boldsymbol{T} т being the joints.

Draw the mould for Fig. io8 from the major length N f, as shown.
A plan of stairs having a cylinder constructed of two quarters, the landing portion being that of a circle, the lower or flight being an ellipse. This is called a "Thumb Ellipse," and is preferable to a true cylinder. It has five winders, but requiring no ramp in the rail, as the lower piece will be a half easement, forming a graceful, easy turn. Scale $3 / 4$ inch to the foot.

Fig. iri. Plan. Let abcef be the plan of the tangents, with G and D as the centres. At the rise I extend a perpendicular indefinitely. Let H J equal the hight of sis risers as contained in the winders. Draw the elevation of straight step and winder outside of the cylinder. Let $\mathrm{m} N$ be the short baluster, also the bottom line of the rail. Set off half the thickness of the rail, and draw the pitch line cutting the perpendicular line с в at o. Let в L on the base line equal в A, and erect a perpendicular at L , as indicated by the dotted line, indefinitely. From B as centre describe the dotted line, c s, also E P. At S P erect perpendiculars indefinitely. Locate the floor line $\mathrm{x} \times$ from the hight at J on the left. From $\mathrm{x} x$ set up four inches to the bottom of the rail, with half the thickness of the rail, as at r. Draw level tangent R t equal to E F, and connect Ro, giving tangents required. For the major length of mould, from Y , draw parallel to step line indefinitely. From the perpendicular $\mathrm{L} v$ set off w equal to B K , and connect v w for the length required. Extend the tangent line R o to z . For minor length at right angles from в к set up K Q equal to $\mathrm{y} z$, and connect Q в for length required. Find the width of mould on minor length in the usual way, as at $A^{5} B^{2}$

Fig. II2. Let 13 equal wv, and I 2 and 34 equal ov; 14 and 32 equal $o \mathrm{y}$; and connect 24 . For the bevels let 45 equal a b, and draw parallel to I 3, touching the tangents. From 4 describe 67 , also 8 9. Then 7 and 9 are the bevels. Let 4 IO II equal Q A2 B2 for the width on minor length. Find the width for the ends by the bevels-at 712 for the end at 00 and at 913 for the end at 3 . Let 200 equal $0 u$ for the joint, add the required straightwood from 3, and complete the mould by drawing the curve.

Fig. II3. Let I 2 and 34 equal r t; and I 4 and 23 equal R U. For the bevel let 56 equal 23 , the angle at 5 being the bevel. Let the end at 3 equal the width of the rail. Find the width of the other end by the bevel in the usual way; add the straight wood and complete the mould by drawing the curve.

A plan of stairs starting with four winders, the cylinder being a Thumb Ellipse. The flight piece of rail will be an obtuse base. The starting or easement will be acute. The straight treads start from the chord line-no ramp required. Scale $3 / 4$ inch to the foot.

Fig. II4. Let a bebe the portion for the flight or upper piece. Draw the parallelogram, all sides equal, to AB. Then ABCD is the parallelogram. The starting will be EFGH, with I as the centre from

preceding. Let U F 6 equal E G, and connect $\mathbf{U} \mathrm{v}$, giving length required. For the minor length from h , set up J 7 equal to F 6 v ; connect J 7 F for the length required. Find the width of the mould on minor length in the usual way as at 00 and P P.

Fig. II5. Let 13 equal z в 2 , 12 and 34 equal s x, 14 and 23

Fig. ir8.-The monld. equal S в 2 , and connect 24 . Let 456 equal C 3, D 4 and e 5. For the bevels draw a line parrallel to I 3 , the distance from 4 to be the same as from \boldsymbol{b} to the nearest point $\mathrm{x} x$ on the line AD. Let 48 equal 47 , touching the parallel line. The angle at 8 will be the bevel for the end at 13 . Let 412 equal 49 , touching the parrallel line. The angle at 12 will be the bevel for the end at 3 . For the joint at 13 let 1 ${ }^{13}$ equal v y as the borrowed length; mark the joint at right angles to the tangent ; add the straight wood required. Find the width of the mould for the ends by the bevels in the usual way, and complete the mould by drawing the curve.

Fig. 116. Let I 3, equal U v, 12 and 34 equal T w, I 4 and 32 equal T v, and connect 2 4. Let 456 equal J 7, 0 o, P P. From 4 draw the parallel line equal to the distance from G to the tangent EF ; in this instance it is over the line I 3 ; or in other words, the line 13 is the required line. Let 48 equal 47 , then the angle at 8 will be the bevel for the level end. Let 412 equal

Fig. ifg.-The mould 49 , then the angle at 12 will be the bevel for the end at 3 . Add the required straight wood from 1, find the width of the mould for the ends by the bevel in the usual way, and complete the mould by drawing the curve.

A plan of Elliptical stairs showing the mode of producing the tangents on the ground plan from the foci. The starting and landing is made the same, having two risers past the major axis, but requiring different moulds for the rail, as will be seen by the following explanations. Scale $3 / 4$ inch to the foot. The centre line of rail only is drawn in this figure.

Fig. Ir7. Plan. Let A b be the major and C d the minor axis. The points EF upon the major axis are the foci, and are found thus: Take half of the major length, making $D E$ and D F equal to G B.

Locate the joints in the rail at whatever point is desired (in this instance

Fig. izo.-The mould. A H I B) leaving the other two joints on the level to be determined hereafter from the elevation. At A, as the point of the first joint occurs on the major axis, draw the tangents at right angles to the same indefinitely, and at B in like manner. Draw lines from each focus through H indefinitely, and with the compasses take any distance on the extended lines, as J and K ; place one foot of the compasses in each of these points and describe the arcs bisecting at L; connect $L H$, which is the joint required. Draw the tangents at right angles to the joint; through I draw lines from each focus in the same manner. With the compasses set off $\mathrm{m} N$, and from these points describe the arcs bisecting at 0 , and connect 0 , giving the joint required. Draw the tangent at right angles to the joint. Draw the elevation with the spaces corresponding to A PH QIRB. At any convenient point locate the second rise, as at s on the bottom to the left for a starting point, also locate the seventh and twelfth risers as indicated at $T \mathrm{U}$. From the centre of the short balusters at s T describe the arcs, through which draw the tangents indefinitely. At the point of intersection V , which is the corresponding point to R of the

Fig. i2i-The mould. ground plan, Fig. II7, place one foot of the compasses in v, extending to w; describe the dotted line $w x$, connect $v x$, extending until it touches the centre line of the rail on the landing, as at y. From the perpendicular, v, set off z equal to R B of the ground plan, Fig. II7. Erect a perpendicular extending to the level tangent line, as at A I. Let $\begin{gathered} \\ 2\end{gathered}$ on the ground plan equal y a i of the elevation. From 2 draw the tangent touching the curve at 3 , giving the point at which to make a joint on the level. Proceed in the same manner as described for H I. For the bottom easement extend the tangent downward until it touches the centre line of the rail $5 \mathrm{I} / 2$ inches above the floor, as at B 2 , from which erect a perpendicular. Let AD 4 of the ground plan equal B 2 C 3 of the elevation. From D 4
draw the tangent touching the curve at E 5 , which will be the point at which to make the joint. Proceed in the same manner as described for H I 3. Let F 6 в 2 equal D 4 E 5 on the ground plan. Complete the parallelograms on the ground plan in the usual way by extending the short tangent equal to the long one, as before described in the elliptical problems. They will be marked without any further explanation in this respect.

Fig. I18. Bottom mould.
For the major length of the mould let c 3 G 7 equal a 6 on the ground plan. At G 7 erect a perpendicular, extending to tangent line H 8 . Let G 7 I 9 equal 6 E 5 on the ground plan, and connect I 9 H 8, giving the length required. For the minor length, let 9 io on the ground plan equal G 7 H 8 of the elevation, and connect IO D 4, giving length required. Mark the width of the mould on this line in the usual way, as $\mathrm{x} \times 00$.

To draw the mould, let 13 equal i 9 н 8 , 12 and 34 equal в 2 н 8 , and 14 and 32 equal в 2 and F 6 . Connect 24 , making 456
equal to $10 \times x$ oo. For the bevels, from 4, draw the parallel line equal to A 9 E 5 on the ground, and 48 equal 47 . The angle at 8 will be the bevel for the upper end. Let 4 io equal 49 . The angle at io will be the bevel for the wide or level end. Find the width of the mould at the end by the bevels in the usual way. To joint the mould at its proper point let 2 I 2 equal B 2 J 9 , and complete by drawing the curve.

Fig. IIg. This will also be for the opposite end, and will cover the ground plan at I R B. From k o draw the dotted line at right angles to the perpendiculars indefinitely. Let i3 if equal i3 ko . From 14 drop a perpendicular cutting the tangent line at 15 . For the major length of the mould, let 14 i 6 equal 5 H on the ground plan, and connect 1516 , giving length required. Let 13 equal 15 I6, I 2 and I 4 equal ko if, 32 and 34 equal 15 I7, and connect 24 . Let 45 equal 12 i 8 , and mark the width of the mould from 18 as the centre. For the bevel, from 4 draw the parrallel line equal to the distance between 12 and the tangent line A P, and let 46 equal 4 7. The angle at 6 will be the bevel for both ends. To joint the mould at its proper point let 28 equal 17 J 9 . Find the width of the mould at the ends in the usual way by the bevel. Complete by drawing the curve.

Fig. 120. Draw this from the minor length. Let 24 equal $\& 19$ of the ground plan. Let 2 I and 23 equal $\mathrm{T} w$, and 4 I and 43 equal

Fig. 125.-Tie mould. Fig. 123 - The plan. Fig. 126 -The elevarion. т K o. From 4 draw the parallel line 56 equal to the distance between 19 and the tangent I Q on the ground plan. Find the bevel in the usual manner. Also the width for the mould at the ends. Complete the mould by drawing the curve.

Fig. I2I. Find the major length for the mould at the top of plan, Fig. II7. Let y 20 equal y b 2. From 20 drop a perpendicular touching the tangent line at 2 I . Let 2022 equal 34 on the ground plan, and connect 2122 , giving length required. For the minor length let 78 equal 202 I , and connect 28 , giving length required. Mark on this line the width of the mould in the usual manner, as indicated at 2324 . To draw the mould, let 13 equal 2 I 22 , I 2 and 34 equal 23 , I 4 and 32 equal y 2 I and connect 24 . Let 456 equal 82324 . From 4 draw the parallel line equal to the distance 7 , and the tangent line 42 . For the bevels let 48 equal 47 . The angle at 8 will be the bevel for the level or wide end of the mould. Let 49 equal 4 Io. The angle at 9 will be the bevel for the
small end. Joint the mould at its proper place, letting 2 I 2 equal $₹ 25$. Find the width of the mould for the ends by the bevels in the usual manner. Complete by drawing the curve.*

Circular plan with seventeen risers, giving the centre line of rail, requiring five pieces in the rail, and three moulds to be drawn. Scale $3 / 4$ inch to the foot.

Fig. 122. Plan. With x as centre describe the curve for the face of the string, also the dotted line as the centre of the rail. Let m be the centre of the newel to describe the cap, draw the mitre, as described in Fig. 94. Let a be the point of the mitre, at right angles to $x A$, draw the tangent A b, and draw c B in the same manner. From c to I mark off for as many spaces as it is desired to have pieces in the rail ; in this case we have three, as the joint occurs at c e g i. Through these joints draw the tangents. With the square at $\mathrm{E} \times$ draw $\mathrm{E} D$, then at $\mathrm{x} C$ draw c D. In like manner draw the other tangents. The location of J and the joint k will be found after the elevation is drawn, as in Fig. II7.

Proceed to draw the elevation thus: Draw the perpendicular at the left with ten risers in hight, and draw at the bottom the horizontal line as the floor line. Space off from the perpendicular m m as many divisions as there are on the plan, Fig.

fig. 127. -The mould, covering plan from C to i. 122, from A to F, erecting perpendiculars at each division as indicated. Locate the 4 th and the 10 th risers. From the centre of the short baluster, as the bottom line of rail, set off half the thickness of the rail, and through these points draw the tangent line 26. Draw i 2 level equal to a b, Fig. 123, Plan. From 1 to 6 gives the length and pitch of the tangents, equal to A F, Fig. 122. At the perpendicular 47 , locate the 12 th rise, also locate the 16 th. From the centre of the short baluster set off half the thickness of the rail and draw the tangent 6 a to 9 extended. From the floor line set up four inches to the bottom of the rail and half the thickness of the rail added, as 120 . At the intersection at o is the length for the tangents, I J, on the plan. Draw J k at Fig. I24, Plan, equal to 0 I 2 , completing the location and the length of all the tangents.

* Note.-On the margin at the left is the hight of 13 risers contained in the plan of stairs, with the floor lines and the center line of rail on the levels as shown on the elevation.

Fig. 125. To draw the mould, Plax, Fig. 123, Elevatiox, Fig. 126, let o o equal a C , and connect 0 3, giving the major length required. Let 1 3, Fig. 125, equal 30 ; 12 and 34 equal 32 , 14 and 32 equal 1 2, in Fig. 126, and complete the parallelogram. For the width of the mould on the minor length proceed as foilows: From the point x, Fig. i23, erect a perpendicular xo equal to 0 3, Fig. 126, and connect o b, giving the minor length. At PQ erect perpendiculars, cutting the minor length at R s. Let 465 , Fig. 125, equal osR, 57 equal 56 ; then 67 is the width for the mould. To find the bevels, let 40 equal the distance between x and the tangent A B , which, in this instance, is on the major length. Let 4 II equal 48 ; then the angle at II is the bevel for the joint at I. Let 412 equal 49 , the angle at 12 , which is the bevel for the end at 3 . For the

Fig. $128 .-$ The motild covering llan, Fig. i24, And elevation, FIG. 129. width at the ends draw 13 i4 parrallel to I 3 and equal to P Q, and at the cutting with the bevels, giving the width for the ends, let I 15 and I I6 equal II 13, and 317 and 318 equal 1214 . Complete the mould by drawing the curve through the points thus indicated.
Fig. 127. To draw the Mould. Plan, Fig. I30. This mould is drawn from the minor length thus: Draw the horizontal line indefinitely, also draw the vertical line. Let 56 and 57 equal 0 F, Fig. I30. From 6 and 7 let all sides of the parallelogram equal the taigents 45 and 56 , as shown, 89 being the major length, as produced from the minor length. For the centre and the width of the mould, let 5 II equal 0 p, and from II as the centre of the mould mark off the width 1213 . For the bevel let 715 equal F R, draw parallel to 89 , and let 7 I7 equal 7 16; the angle at 17 is the bevel for both ends. For the width at the ends, from II as the centre, draw II I9, parallel to 89 ; then 1719 is half the width at the ends, as 800 and 900 . Complete the mould by drawing the curve.

Fig. 128. For the mould. Plan, Fig. 124. Elevation, Fig. 129. For the major length let 9 x elevation equal $\mathrm{I} k$ of Fig. 124. From x erect a perpendicular cutting the centre line of rail 0 I 2 at 13 , and connect 913 , giving the length required. Find the minor length at Fig. $12+$ by producing the point L in the parallelogram. At L drop a perpendicular L m equal to X i3, elevation, and connect m J, giving the length required. From p as the centre of the rail and o
as half the width, drop perpendiculars, cutting the minor length at r S. Let i 3, Fig. 128, equal 9 13, Fig. 129. Let 12 and 34 equal 0 i2, complete the parallelogram and connect 24 as the minor length equal to m J. For the width on minor length, let 456 equal mes, and 67 equal 65 , giving 57 as the width required. For the bevels let 48 equal the distance from L to the tangent J K, and draw parallel to 13 . Let 4 io equal 49 ; then the angle at 10 is the bevel for the end at 3 . Let 412 equal 4 II ; then the angle at 12 is the bevel for the end at I . For the width of the mould at the ends draw 13 14 parallel to 1012 , the distance between to equal half the width of the rail as op, Fig. 124. Let loo equal 12 I4, $3 \times x$ equal 10 I 3 , and complete the mould by drawing the curve.

We now show the principles of Forced Easements, which it is necessary to employ under certain conditions, where, if the mould were drawn in the usual way, the proper hight would not be retained. Figures 131 to 137 illustrate the text and make the principle plain. Scale, $3 / 4$ inch to the foot.

Fig. I3I. Ground plan for an easement having two pitches. The full lines in both, this figure and the elevation, are used. Fig. I33 shows the easement as it appears in position, as drawn from the mould, Fig. 134. Fig. 132 will accomplish the same result. The dotted lines in this figure are used, as also in the elevation. Fig. 135 is the mould, and when applied and worked will be the same as shown at Fig. 133. Fig. I 36 shows the landing

FIGS. I3I, 132 AND 133.-GROUND PLAN AND ELEVATION POR BOTTOM FORCED EASEMENTS.
of a straight flight, with a quarter cylinder, and the landing rise placed near the back of the cylinder. In order to get up to the proper hight this figure has been introduced. Fig. I 37 shows the mould as drawn.

Fig. 132. Let e be the centre from which to describe the curve F a as the centre line of rail; A B C D, the location of the risers ; connect G D, extended, as a base line. At D erect a perpendicular equal to four risers, as at I. At G also erect a perpendicular indefinitely. From the centre of the short baluster at I find the centre of the rail as at J, and apply the pitchboard, cutting the perpendiculars from G at k. From G as centre describe AL, and at lerect a perpendicular, cutting the line x . At m connect m k and k, giving the length and pitch of tangents, to draw the mould, Fig. i 34 . Extend $\mathrm{m} k$ to o, and from F as centre describe AP. At P erect a perpendicular, cutting the line $x \times$ at Q, and connect $\mathrm{N} Q$, giving the major length. Find the minor length, draw the paralleiogram producing H , connect H G , and at н erect a perpendicular hs, equal to o N . Connect s g, giving the minor length. Let t be the centre of rail, U v the width, and erect perpendiculars cutting the minor length at w y z.

Fig. 134. Let I 3 equal NQ, I 2 and 34 equal κ N, I 4 and 32

Fig. 134.-Mould Covering plan, fig. 131. equal M K , and connect 24. Draw 56 parallel to I 3 , and let the distance from 4 equal the distance from H to the tangent line G F. To find the bevels, let 46 equal 47 , when the, angle at 6 will be the bevel for the end at r . Let 45 equal 48 , when the angle at j will be the bevel for the end at 3 . For the width of the mould on the minor length, let 490 II equal swyz; then 911 is the width. For the width at the ends draw 1213 parallel to 65 and equal to half the width of rail. Let 1415 and 1416 equal 613 , and 317 and 3 IS equal 512. Complete the mould by drawing the curve. Fig. 33 will be squared on the inside, after which the end will be cut to make the joint by applying the bevel at r . This bevel is found by drawing at right angles to the pitch $m \kappa$ and the perpendicular m L, giving the bevel as at m , and applied at R .

Fig. 132. Let f 123 be the parallelogram. From F as centre describe 24 , at 4 erect a perpendicular, cutting the line $x \times$ at 5 , and connect 5 N , giving the major length. For the minor length, at 3 erect a perpendicular, 36 equal to N x , and connect 6 I , giving the length
required. At I erect a perpendicular to 7 , connect 7 N , giving length and pitch of tangent. Find the width on the minor length, as shown at 890 .

Fig. 135. Let AC equal $5 \mathrm{~N}, \mathrm{AB}$ and $\mathrm{C} D$ equal N 7 , AD and CB

Fig. 135 -Mould covering plan fig. 132. equal i 2 , and connect b D. Let defg equal 6890 , draw i i parallel to A c, and from 4 equal to the distance 3 and tangent I 2. For the bevel let I D equal D J ; then the angle at I is the bevel for the end at a . Let $\mathrm{I}: \mathrm{H}$ equal D к; the angle at H is then the bevel for the end at L . Let b L equal I A, and make joints. Find the width at the ends in the same manner as for Fig. 134. Complete the mould by drawing the curve.

Fig. 136. From A, centre of the quarter, describe the curve в с. Let DCE be the risers. The centre line of rail only is shown here. From a and b erect perpendiculars indefinitely. Draw the elevation of steps and risers, and from the floor at F set up four inches and a half, the thickness of the rail, as at G. At D, the centre of the short baluster, locate the position of the rail. From the centre of G draw the tangent to any point desired to form the ramp, as at H . This is left to the judgment of the workman. At right angles to G H make the joint or cut for the

Fig. 136.-Forced easement over a landing quarter. twist as I J. At right angles to D H mark the joint proper, as K L.

Fig. 137. For the mould. Let 12 equal g m, and 23 equal ac. Add the straightwood 14 equal to m \boldsymbol{m}. Let 56 equal J L, as the distance to mark the joint in the operation of squaring the twist. The
thickness required for the twist is found at 1 J . The bevel for squaring is at o. In working the twist mark the joint k L ; also mark the thickness

Fig. 137.-The mould. for the rail and square in from the joint, giving the direction for the straight rail. Mark the top end and apply the mould for the curve on the inside. Dress the inside out, then take it to a width, after which form the easement, squaring the top side first, using taste in the execution, so as to give it the appearance of an ogee. This will be found to give a graceful appearance, and is better than making it in two pieces, as is generally done.

SPLAYED WORK.

The seven figures following have been introduced for the purpose of showing how to find the mitres of splayed work, such as sills, boxes and hoppers, the mitering of timbers in stairs at any angle or pitch, rafters, \&c.; also to cut the front string of stairs, applying the bevel to cut the mitre from the pitch.

Fig. 138. A right angle plan with splayed sides, giving the side cut, butt and mitre. Let a B be the line of bottom, extended, D the angle in plan, B c the incline or splay of sides, C F the thickness of the sides, and D a the mitre in plan. From b as centre describe C L. From ldraw parallel to B D, cutting the line of the side $E m$ at R, and connect $R D$. The angle at R is the bevel to cut the sides. Draw J G parallel to $A \mathrm{~B}$, cutting the outside edge of side at F. From F draw parallel to L r, cutting the line of mitre in plan at H . From if erect the perpendicular н o. Draw g n par-

Fig. i3 8 -rigit angle, ground plan, with splayed siles. allel to F H, cutting the perpendicular at O , and connect o s. The angle at o is the bevel for the mitre. From J draw parallel to b d, cutting the line of mitre in planat k. From k erect the perpendicular, cutting the line G o at N , and connect Ns . The angle at s is the bevel for the butt joint.

Fig. 139. Another method, producing the same result from plan, the same as that of Fig. 138. Let a b be the line of bottom, B C the splay of sides, and C F the thickness of the sides. From

B as centre erect the perpendicular and describe c D. From c erect the perpendicular c r, draw d R parallel to G C, and connect R B. The angle at R is the bevel to cut the sides. Draw J G parallel to b D. From C as

Fig. I39.-RIGHT ANGLE, GROUND PLAN, in DIFFERENT FORM. centre describe Gs, cutting the splay of side b c, and at s connect S F. The angle formed at s is the bevel of the butt joint. From f as centre describe $\mathrm{j} o$, and connect o s. The angle at o is the bevel for the mitre.

Fig. 140. An obtuse angle in plan with splayed sides, giving the side cut, butt and mitre for the same. Let A B be the line of bottom, and $\bar{C} C$ the splay of the sides, c F the thickness of the sides, and D the angle in plan. Draw C m parallel to $B D$, and $E M$ parallel to $D U$, being equal to the splay. Connect dm , extended, for the mitre in plan. From b as centre describe c L. From m erect a perpendicular. From L draw parallel to c m, cutting the perpendicular from in at R , and connect $R D$. The angle at R is the bevel for the sides. From F as centre describe c g. From h erect a perpendicular. From g draw parallel to fs, cutting the perpendicular from H at o ,

Fig. 140.-obtuse angle, ground plan, With splayed sides. and connect $o \mathrm{~s}$. The angle at o is the bevel for the mitre. The butt

Fig. 141.-acute angle, ground ilan, with splayeij sides. joint will be found as indicated by the dotted lines thus: Extend g f to J, then draw to K , as it cuts the mitre in plan. From k draw parallel to the side me, cutting the line F h at p , then square over to N , connect N s , and the angle at s will be the butt joint as required.

Fig. 141 is an acute plan with corresponding points to Fig. 140, and will need no further explanations.

BEVELS AND MITRES.

Fig. 142. To find the mitre or bevel for timbers on the rake over a right angle, base or ground plan. Let A B and ef be the thickness of the timber to be cut. Let $C D$ be the mitre or angle in plan, D L the hight and D A the run. Connect A L, giving the length and pitch. Let m nequal g d, and connect ln. The angle at l is the top bevel giving the mitre. The angle at m is the plumb or side cut, and at

Fig. 142.-RIGHT ANGLE GROUND PLAN. TO FIND MITRE FOR TIMBERS ON RAKE. A is the bevel for the foot. In like manner let $\mathrm{D} O$ be hight and $\mathrm{D} F$ the run. Connect O F, giving the length and pitch. Let $\mathrm{I}_{\boldsymbol{J}}$ equal I K , connect o J, and giving the top or mitre bevel. The angle at I is the plumb or side bevel. At F is the bevel for the foot, and when cut will. stand plumb over the ground plan B Ge.

Fig. 143 is an obtuse angle plan: one side only is shown in the elevation, as the opposite side will be the same. Let ΛB and $k L$ be the thickness of timber to be cut, $\mathrm{H} G$ the line of cut in plan. At G erect a perpendicular the hight required as G I, and connect I L, giving the length and pitch. Draw h J parallel to GI, and let J K equal sh. Connect I k, giving bevel for the top or mitre. The angle at J is the plumb or side bevel, and L is the bevel for the foot.

Fig. 147 is an acute angle in plan. Let ef and R L be the thickness and CD the angle or mitre in plan. At D erect a perpendicular the hight required, as D P. Connect P L, giving the length and pitch. From c erect a perpendicular parallel to $D P$.

Fig. i43-obtuse angle and ground plan.
Fig. i44.-Acute angle, ground plan. to find mitre for timbers on rake. Let $\mathrm{m} N$ equal Co , and connect P n, giving the top or mitre bevel. At m is the side or plumb bevel, and at L the bevel for the foot.

DETERMINING WIDTH OF MOULD IN SPECIAL CASES.

Figs. 145 and 146, showing how to find the width for the mould at the normal point. It is usual to make the mould the width of the rail, but in practice it is found necessary to have the mould wider, and the question arises, how much will be required ? That will depend on the size of the cylinder and the thickness of the rail. For the smaller the cylinder and the thicker the rail, the wider will be the mould.

Fig. 145. Let A be the centre to describe the curve lines, and b G as the width of rail in plan. Draw the perpendicular through a and set off on each side half the width of rail, as at D E. At any convenient point apply the pitch of the major length. Through the point $\mathrm{F}^{\text {d }}$ draw the thickness of the rail, and at right angles to the pitch, draw the line cutting the thickness of the rail at н i. From the points thus established drop perpendiculars cutting the inside of the rail as at JLK ; then Lm will be the width required at the normal point. Let N o be the thickness for the plank, and P R will be the width for the ends.
Note.-Draw the mould as explained in the previous problems, and add whatever is necessary to accomplish the desired result in width. After the twist is laid out on the plank, reduce the mould to its proper size ready to be applied in squaring the twist. It will be understood, by referring to L k , that the extra width is on the inside only at the normal line, but at the ends it must be on the outside as well.

Fig. 146 is drawn in the same manner as Fig. 145, being the same in plan, width and thickness of rail equal ($3^{1 / 2} \times 3^{1 / 2}$). L_{m} is the width necessary for the mould at the normal line, N o-the thickness for the plank, and PR the width for the ends. It will be seen that a $31 / 2$ plank will not do to get out the rail for Fig. 146, while it is sufficient

FIGS. 145 AND 146 . -TO FIND WIDTH OF MOULD WHEN THICKNESS IS GREATER THAN WIDTH. or Fig. 145, but it must be about $3 / 4$ of an in ch more, or $41 / 4$ thick.

SLIDING THE MOULD.

Fig. 147 shows how to apply the bevels and slide the

Fig. 147.-application of bevels and sliding of mould for quarter TURN, WITH BOTH PITCH TANGENTS. mould. In this case the bevels are alike, the tangents being of one length.

Fig. 148. Sliding the
mould and applying the bevels. This is a quarter with tangents of unequal length; consequently it has two bevels as well. The explanations for these two pieces are the same, both being lettered alike, and are laid out for right-hand stairs.

Note.-Dress the top side out of wind, and make the joints to the pattern. This is an important feature in rail working, for if it is done carelessly the rail will not be as it should, and no matter how well the moulds are drawn the draughtsman is sure to be blamed for carelessness or neglect in the working after the rail is hung.

Operation.-Lay the mould on the piece, keeping the joints even. Let I 234 be the size of the mould and twist at 9 square through, as 99 . With the stock of the bevel in the left hand, the blade to the right and the concave side of the twist also to

Fig. 148. landing over an obtuse angle. the right, apply the bevel at A through the centre. Now turn the twist, letting concave side be to the left, but keep the bevel in the same position, applying it at B. In the same manner then mark the square of the rail as shown. Now at o, where the bevel touches the face, square over on the twist as the tangent, and show by the dotted lines. Then slide the mould along the tangent line as shown, until it covers the same points on the opposite end. Now the mould, as it is lying on the twist, is shown by 56 and 78 . Mark the inside and outside along the edge of the pattern as shown by the dotted lines, and the overwood is shown by the shaded portion along the face and at the end, sections D and C. Now turn the twist over and repeat the operation from the
opposite end, and $\mathrm{x} x$ will be the section to cut off. Now put the piece in the vise and with the ax or gouge and mallet remove the surplus wood, then with a plane dress out the inside, finishing up with a spoke shave. The outside will be done in the same manner. Now, having the twist to a width, mark the top line, using a strip of paste board, letting it lie close to the wood.

Note.-Fig. 147 has straightwood on both ends and Fig. 148 on one end, and must be squared in from the joint equal to the amount of straightwood intersecting with the line of the paste board, and forming an angle which must be eased. This is done according to the taste of the workman, and blending with the piece on which it will be jointed. A little practice will soon make the workman understand what is needed to make a good and graceful rail. Short and quick easements and too much straightwood are to be avoided, as they cripple the rail to the eye.

Now having the line for the top marked on the inside and outside, remove the overwood and finish off with a spoke shave ; after which guage to thickness, using your fingers as calipers through the centre, as it is quite certain to be thick in the centre, and when moulded giving a clumsy appearance, which is to be avoided.

Fig. 149 is a starting easement or turnout piece. This is laid out for the left hand and the overwood is marked on the back edge. Both bevels are applied from the same side, and the stock to the back or outside of the piece. A B CD is the twist, and the mould 55 is the centre line of the stuff and tangent. E F is the section of the size of rail, o o the tangent as marked on

Fig. 149.-TURNout,
the piece from the bevel as it comes to the face, and is shown by the dotted lines. This mould will slide on the bottom joint as A B, giving its new position as shown by I 2 and 34 . On the upper end 50 is the distance the mould has moved. Repeat the operation on the other side, and J L will be the inside portion to remove. After the inside is dressed out the easement will be formed by its own lines, as they occur along its face, and will need no further explanation.

THE NONPAREIL SYSTEM IN ITS BRIEFEST FORM.

Fig. 150. A quarter circle ground plan, with tangents in elevation of one pitch. Let ABCD

Fig. 150 - Right angle, ground plan, elevation tangents of mould AND BEVEL. be the ground of tangents, and $\triangle B F$ the stretchout of the tangents on the base line. Let a I be the hight and I 2 F the tangents in elevation. From a as centre and A C as a radius, produce E , and connect E I, giving the major length. Now find the position of the tangents for the mould. From I as centre and I E as a radius, describe the curve indefinitely; then from 2 as a centre and 2 F as a radius, describe the curve touching at 3 . Connect 2 3, giving the required form for the mould. Produce the point 4 in the usual way. To find the bevel, set the compasses the length of the dotted line $O O$, set one foot in 4 and describe the segment. Then square from the tangent, touching the point 4. Now, from the intersection with the tangent draw a line touching the segment, and the angle thus formed is the bevel to be applied at both ends of the twist.

Fig. 151 is drawn from the same base line as that of Fig. 150, this having tangents of different pitches. Find all points in this in the same manner as for Fig. 150, all letters and numbers being the same. The two bevels will be found from the two tangents by drawing a line touching the segment.

Fig. 152. A segment of a

Fig. i5x.-mlevation to cover ground PI.AN OF FIG. I50, WITH TANGENTS AND BEVELS FJR SAME.
circle with tangents of different pitches in elevation. Let $\boldsymbol{A} \boldsymbol{b}$ c D be the ground plan, A b F the stretchout of the tangents on the

Fig. 153.-elevation, Rake and level tangents, and bevel. to cover GROUND PLAN OF FIG. 152.

Fig. 154.-elevation, bevel and tanGENTS OF ONE PITCH, TO COVER GROUND PLAN OF FIG. 15^{2}.
base line, A I the hight, and I 2 F the tangents in elevation. From A as centre and A C as a radius, produce e. Connect Ei, giving the major length. Now find the position of the tangents for the mould. From

Fig. 152.-obtuse plan bevels, and hiffelient pitcht angents.

Fig. 155.-ACUTE PLAN, BEVEL AND TANGENTS OF DIFFERENT PITCH.

1 as a centre and $I E$ as a radius describe the curve indefinitely; then from 2 as centre and 2 F as a radius describe the curve touching
at 3 , and connect 23 , giving the required form for the mould. Find the point 4 in the usual manner. For the bevels set the compasses the length of the dotted line 00 , set one foot in 4 and describe the segment. Find the bevel by squaring from the tangents, touching at 4 . From the intersection with the tangents draw a line touching the segment, and the angles thus formed give the bevels.

Fig. 153 is drawn from the same base line as Fig. 152, having one pitch and one bevel tangent. Find all points and

positions in the same manner as in Fig. 152. 13 is the length of the mould and I в 3 the position of the tangents in the mould.

Fig. 154. This also is drawn from the same base line, having its tangents of the same pitch, requiring but one bevel, and will be found in the same manner as Figs. 152 and 153.

Figs. 155, I56 and 157. These figures are drawn in the same manner as those already described, and will all stand over the ground plan (Fig. I55). All descriptive letter press being the same, it will need no further explanation, as the system is universal-Nonpareil in Minimum.

I N D E X

GEOMETRICAL PROBLEMS.

PAGE
Triangles I
Perpendiculars 2
Stretch-out of cylinder 2
Bisecting a line. 2
Finding the radius to describe a circumference through any three points not in a straight line. 3
Circumference, diameter, radius, chord, segment and tangent. 3
Drawing the ellipse with a string 4
Tangent to a circle 4
Tangent to an ellipse 4
Spirals 5 \& 6
Ellipse drawn with a trammel and rod 6
Finding radius 7
Finding the octagon of any square 7
To draw an octagon on a given side 8
HAND-RAILING.
Length of mould 8
Stretch-out of tangents 8
Forming the mould 8
Drawing the curve line by the use of trammel 8
Three elevations from one plan-namely, one pitch and one level; one with equal pitches and one with unequal pitches 9
Finding the position of the axis I I
Finding the centre of curve on the major axis I I
Finding the length of trammel rod I I
ILLUSTRATIVE PROBLEMS.
Quarter circle with equal pitches I I
Quarter circle with unequal pitches 13
Quarter circle with one pitch and one level tangent I 5
Obtuse angle base with equal pitches
PAGEI 6
" " " " unequal " 17
" " " one pitch and one level tangent 18
Acute angle base with equal pitches 19
" " " " unequal " 20
" " " " one pitch and one level tangent 2 I
Right angle elliptical base with tangents of equal pitch 22
" " " " " " unequal " 23
" " " " single pitch; level tangent 24
Obtuse angle elliptical base with tangents of equal pitch 25
" " " " " unequal tangents 26
" " " " " single pitch and level tangent. 27
Acute angle elliptical base with tangents of equal pitch $2 S$
" " " " " " unequal pitch 29
" " single pitch and level 30
GENERAL PRACTICE.
Plan and elevation of string and position of rail on a straight flight of stairs 3 I
Starting easement from a cap, obtuse 33
" " " " " acute 34
Landing with one rise in cylinder 35
" " winders and a ramp in the rail 37
" " " without 1 amp in the rail 39
Platform at bottom with two risers in the cylinder and without ramp in the rail. 4 I
Quarter turn platform with newel cap and easement 43
Full turn of winders with three pieces in the cylinder, with ramps in the rail 45
Starting easement and platform with rail of two pitches, obtuse angle 46
Obtuse angle platform; also obtuse angle winders with ramp in the rail 48
Acute angle with winders ; also acute angle platform 49
"Thumb" elliptic; right angle base with two pitches and without ramp in the rail 5 I
"Thumb" elliptic; acute and obtuse angle bases with winders and two pitches, without ramp in the rail 53
Elliptical stairs ; plan and elevation, all obtuse angles 55 \& 56
Circular stairs with location of joints and elevation 59 \& 61
Forced easement at bottom 63
" " quarter landing 65
SPLAYED WORK.
Right angle ground plan with splayed sides 66
Obtuse 67
Acute 67
BEVELS AND MITRES.
To find the mitre for timber on rake with right angle ground plan 68
" " " " " " " " " obtuse " 68
" " " " ، " ، " " ${ }^{\text {" }}$ acute 68
DETERMINING WIDTH OF MOULD IN SPECIAL CASES.
To find width of mould when thickness is greater than width 69
SLIDING THE MOULD.
Application of bevels and sliding of mould for quarter turn with tangents of equal pitch 70
Landing over an obtuse angle 70
Turn-out 71
THE NONPAREIL SYSTEM IN ITS BRIEFEST FORM.
Right angle ground plan, elevation tangents of mould and bevel. 72
Obtuse plan, bevels and tangents of different pitches 73
Acute 73

