Digitized by the Internet Archive in 2018 with funding from Getty Research Institute

$$
f
$$

THE

Author's Preface.

T Tx ${ }^{\circ} M_{3}^{2}$ U Study of Architecture, I began from (6. my Youth to apply my Self to that Science; and baving always been of Opinion, that the Antient Romans, had not only greatly furpaffed thofe wwho are come after them in feveral Arts, but alfo in Building, Itook Vitruviusfor my Mafter and Guide; he being the only antient Writer upon this Subject, wbofe Works bave been tranfmittedto us. Iafterwards fought out for all fuch Ruins of antient Edifices, as bave refifted the wafte of Time, and the wild bavock of Barbarians; when finding them much more zworthy of ObJervation than I at firft imagived, I began to meafure their Several Members quith the utmof Accuracy and Diligence. Perceiving afterwards that even their mof mimute Parts weve performed with the juftest Reafon, and in a moft beautiful Proportion; the Defire I bad of purfuing my Enquiries, zuas So much increafed thereby, that I travelled Several times to different parts of Italy, and out of it, purpofely to find, by the Remains of antient Structures, robat the Whole muft once bave been, and to give A the

The Author's PREFACE.

the Defigns of them. When finding bow muct the common Method of Building, differs from the Obfervations I bad made upon the abovementioned Edifices, and wobat I had read in Vitruvius, Leo Alberti, andother excellent Writers fince Vitruvius's time; as well as thofe Imy felf bave lately practifed, wuith no fmall Applaufe, and to the Satisfaction of th. fe who were pleafed to employ me: I thought it an Undertaking Suitable to the Nature of Man, who is not borm merely for his own Sake, but likewiJe for that of others, to publifh the Defigns of thofe Edifices, in collecting of which I bave employed fo many rears, and expofed my felf to fo many Dangers; and compendioully to fet down whatever I thought most worthy of Confideration; as alfo thofe Rulles Imy felf bave always, and fill make ufe of, in Building. My Defign herein, was, to the end that all thoofe who fball read my Books, may know bow to make ufe of fuch things as may be juftly laid down in them; and Supply, as probably may be necelfary, whatever may bave been omitted. Thus, Men wvill learn by degrees to lay afide the extravagant Abufes, the barbarous Inventions and fuperfluous Expence, and zwhat is of greater Confequence, to prevent the various and continual Ruin, to which many Fabricks bave been Jubject. And what prompted me the more to this Undertaking, was, the great Number of Perfons wwho at this time apply themfelves to this Study; many of whom bave been bonourably mentioned in the Works of

The Author's PREFACE.
Georgio Vafari Aretino, that rare Painter as well as Architect; whence we may juflly hope, that Building will foon be brought into fuch a Method, as may be of general Adviantage, and alfo carried to that Perfection, wwhich in all Arts is chiefly fought after. We feem to have made great Adrances towards it, in this part of Italy, fince not only in Venice, (where all the polite Arts flourifb, and which City is the only Example, as it were, now remaining, of the Roman Grandeur and Magnificence,) Some Buildings are now erected in a good Tafte, from the time that James Sanfovino, a famous Carver and Architect, firft introduced the beautiful Manner, as is evident from the Palace nella nuova Procuratia, (not to mention Several other of bis excellent Performances) wwhich is perbaps the richeft and moft fumptuous Edifice, that has been erected fince the Antients; but alfo in Several other Places of lefs Note, and particularly in the City of Vicenza, nwbich though of no great Extent, is yet full of Men of excellent Parts, and abounds Jufficiently with Riches. It was here I first had occafion of putting in Practice, wwhat I now publifb to the World for general ufe. In this Place are a great Number of beautiful Fabricks, as well as Gentlemen, Jiudious of this Art, who for their bigh Birth, and Superiour Talents, may juftly be ranked among the moft Illuffrious; fuch as John George Triffino, the glory of our Age; the Counts Mark Anthony, and Adrian

The Authors PREFACE.

de Thieni, Brothers, Sig. Antenore Pagello, to omit Several others, who bave acquired immortal Fame, by the beautiful and magnificent Edifices they bave left behind them. There are noww living in the Same City, Fabio Monza, a Gentleman of univerfal Knowledge ; Elio de Belli, Son of Valerio, fo famous for painting in (*) Brooch, and cutting of Chryftal; Anthony Francis Oliviera, wubo befides bis Skill in Several Sciences, is an excellent Architect and Poet; a Proof of which be has given in bis Poem entitled Alemana, written in Heroick Verfe; and in bis Houfe at Bofchi di Nanto, in the Territory of Vicenza; and laftly, to omit many more wubofe Names migbt jufly be cited in this Place, Valerio Barbarano, a curious Enquirer into the Several Parts of Architecture.

BUT to return to our Subject. It being my Intention to publifs the Fruit of that Study and Labour, in which I bave been employed from my Toutb to this Time, in Searching out, and meafuring with the utmoft Accuracy, all fuch antient Structures as came to my Knowledge; and being defirous upon this Occafion to write a Summary Treatife of Architecture, in as diftinct and methodical a Manner as pofible; I thought it neceffary to begin with Private Houfes, it being reafonable to fuppofe that the fe firt

[^0]
The Author's PREFACE.

first gave rife to Publick Edifices. It is moreover probable that Men lived at first apart, and in a Solitary Mainer; zuben afterwards finding that they wanted the Afiftance of their FellorvCreatures, in order to obtain thofe things wobich might make them happy, (if there be fuch a thing as Happine(s in this World) they naturally fought after, and loved the Company of other Men; qubence of Several Houfes, Villages weve made, and in Procefs of Time of Villages, Cities; and in thefe they built Squares and Publick Edifices. And as of the feveral parts of Architecture, none is more ufeful, or more generally practifed than this, I fball therefore first treat of Private Houfes, and afterwards of Publick Edifices. I flall likervife touch briefly on Streets, Bridges, Squares, Prifons, Bafilica's or Courts of Juftice, Xifti and Palæftra's or Places in which Men perform Bodily Exercijes; on Temples, Theatres and Amphitheatres, Arches, Baths, Aqueducts, and in fine on the Method of fortifying Cities and Sea-Ports. In all thefe I wwill endeavour to avoid Prolixity; and will only give fuch InAructions, as to me flsall appear mof neceflary, employing thofe Terms of Art as are now in iffe among Architects. And as all I my folf can boaft, is the great Diligence and Pains I bave beftowed, and the Affection and frong Paflion woith which I bave purfued both the Theory and Practice of whbat I now make publick; if it pleafe God that I fball not have laboured invain,

The Author's PREFACE.

I woill thank bim zvith all the Powers of my Soul; acknowledging at the Same time my Obligations to thofe, who by their beautiful Inventions and Experiments, bave left us the Precepts of this Art; fince they bave thereby opened a more eafy, as avell as expeditious Path to the making of new Difcoveries; and that by their means, we have attained to the knowvedge of feveral things, avbich perhaps bad otherwije been bid.

THIS first Part will be divided into two Books. In the first I fhall difcourfe on the feveral Materials to be provided, and woben got, how and in what Manner they are to be employed, from the Foundation to the Roof; for allwbich I fball give general Rules, that viell Serve both for Publick and Private Buildings. In the fecond I Jball treat of the Qualities of Buildings, Suitable to the different Ranks and Conditions of Men, and first of thofe of Cities; and foall afterwards Speak of Such Situations as are proper and convenient for thofe of Villa's or Country-Houfes, and the manner in wobich they are to be difpofed. And as we have but very feww antient Originals of this kind to copy after, I fball infert the Plans and Uprights, of feveral Noblemen's Houfes built by me in different Places; tosether with the Defigns of thole of the Antients, and of the principal Parts in them, in the Manner Vitruvius bas taugbt, and in whbich they themselves built them.

Chap.

CHAPTERI.

Of the feveral Particulars to be obferved; and the Preparations to be made, before we begin to build.

VERY Man before he begins to build, ought carefully to examine the feveral Parts of the Plan, and Uprights of the whole Edifice. Vitruvius tells us, that in every Building, three things are to be confidered, viz. Conveniency, Strength, and Beauty; and that without them no Building can deferve our Applaufe.

Firft, That Edifice could not be called a perfect one, which, tho never fo Commodious, fhould be defective in Strength, or having both thefe Qualities, fhould be wanting in Beauty. It will be Commodious, if every Part or Member ftands in its due Place; a juft Regard being had to Dignity and Ufe; as for Inftance, when the Galleries, Halls, Chambers, Cellars, and Garrets, are artfully difpofed.

Secondly, A due Regard will be had to Sirength, when all the Walls fhall be carried up directly plum; thicker below than above, and their Foundations ftrong and folid: Care muft alfo be taken, to place the upper Columns directly perpendicular over thofe beneath; and to make all the Openings, as Doors and Windows, exactly over one another; fo that the
folid may be over the folid, and the void over the void.

Thirdly, The Beauty will refult from the Harmony and Correfpondence between the Whole and its Parts, and of the feveral Parts between themfelves; for then the Edifice will appear one entire and perfect Body, in which one Member anfwers to the other, and all of them together to the whole; fo that it may feem abfolutely neceffary to the Being of the fame.

After thefe feveral Particulars have been duly examined upon the Model or Draught ; an exact Computation muft be made of the whole Expence, and a timely Provifion made of the feveral Materials neceffary, in order that the Building may be carried on briskly: For if Materials are got in time, the Builder will be commended, and it will likewife be of the utmoft advantage to the whole Edifice; and if the Walls are worked up equally, they will fettle in the fame proportion; and this will be a means of preventing thofe Crannies which are found in Buildings that were built by ftarts.

Next, after having made choice of the moft skilful Artifts, in order that the work may be well carried on under their Direction; you muft then get a fufficient Quantity of Timber, Stones, Sand, Lime, and Metals; on which it may be proper to make fome Obfervations.

Firft, For the framing of the Floors of Halls and Chambers; fo many Joyfts muft be provided, that the whole Frame being laid, the Space between the Joyfts may be the breadth of one Joyft and an half; then as to Stones, the Jaumbs of the Doors and Windows muft not be bigger than one fifth, nor lefs than one fixth of the Vacuity orOpening. If the Edifice is to be embellifhed with Columns or Pilafters; the Bafes, Capitals and Architraves may be of Stone, and the other Parts of Brick. With refpect to the Walls, you muft take Care that as they rife, they may diminifh pro-por-
portionably in Thicknefs; which Obfervations will be of great Service, as they will enable you to make a juft Eftimate of the Quantity of Materials to be provided. But as I fhall treat more at large of thefe feveral Particulars, under their refpective Heads, let it fuffice that I have here given thefe general Hints, and as it were a kind of Sketch of the whole Building.

But as the fame Regard is to be had to the Quality and Goodnefs of the Materials, as to the Quantity; the Experience of thofe who have built before us, will be of great Ufe upon this Head: And notwithftanding Vitruvius, Alberti, and other excellent Writers, have laid down very ufeful Rules with refpect to the choice of Materials, I fhall neverthelefs take Notice of fuch as are moft effential, in order that nothing may be found wanting in the enfuing Treatife.

C н a P. II.

Of Timber.

TImber, as Vitruvius tellsus, in the ninth Chapter of his fecond Book, ought to be felled in Autumn, and during all the Winter; for in thofe Seafons Trees. have a Strength and Vigour conveyed to them from the Roots, which in Spring and Summer was diffufed among the Leaves and Fruits; they muft be felled in the Wane of the Moon, for then a certain Moifture, very apt to engender Worms and rot Timber, is fpent and dried up. Timber fhould at firft be cut no further than the Pith, when it muft be left till it be thoroughly dry, for then the Moifture which engenders putrefaction will all fweat away. Being felled, it muft be laid up in a Place where it may be fheltered from warm Suns, high Winds and Rain; particularly thofe Trees which rife out of the Ground without being planted; and to prevent its fplitting, your muft daub it over with Cozu-dung. It muft never be drawn in the Morning, the Dew then falling,
but in the Afternoon; nor muft it be worked, if very wet or very dry; for in the former Cafe it will be fubject to rot, and in the latter will make very clumfy Work; nor will it be dry enough, to be wrought into Planks, Doors, and Windows, under three Years. Perfons who build, would do well to advife with thofe who are skilled in Timber, by enquiring into the Nature thereof, and what kind of it is fit for fuch and fuch Ufes. Vitrwoins in the above-cited Chapter gives very ufeful Inftructions upon this Head, not to mention feveral others who have written copioully on the fame Subject.

C h a P. III.

Of Stones.

OF Stones, fome are fomed by Nature, others by Art; the former are dug out of the Quarry, and are ufed either in making Lime, or in raifing Walls; we fhall take Notice of the former hereafter. Thofe Stones which are to be employed in building Walls, are either very hard, as Marble and Live-Stone; or foft, as Free-Stone. The former muft be wrought immediately after they are dug up, which may then be done with lefs 'Trouble; for all Stones, the longer they are expofed to the Air, the harder they grow. But for thofe of a foft Kind, particularly if their Nature and Qualities are not known; as when Stones are raifed out of a Quarry that was never opened before; they fhould be dug in Summer, and be fheltered from Winds, Rain, and Mifts, whereby they will harden by degrees, and refift all inclemencies of the Wea. ther. Another Reafon for keeping them fo long, is, that you may pick out fuch as you find damaged, in order to lay them in the Foundations, and employ thofe which are not fo, in thofe Parts of the Building that are in View, for thefe will laft a long 'Time.

Artificial

ARCHITECTURE.

Artificial Stones, from their Shape, generally go by the Name of Quadrelli, or Bricks, and are made of a chalky, whitifh and foft Earth, which muit be purged from Clay and Sand. The Earth muft be opened in Autumn, and be tempered in the Winter; and the Spring following be made into Bricks. But if Neceffity obliges you to mould them in Winter or Summer, you muft cover them with dry Sand during the former, and with Strazv during the latter. Being made, they muft be fet to dry a confiderable time, for which purpofe a fhady Place is beft, for then the Outfide and Infide will be equally dried, and this will take up full two Years. They are to be made larger or fimaller, according to the Quality of the Building, and the Ufes to which they are to be employed, and this was the Practice of the Antients. Thofe which are pretty thick, fhould have Holes bored in them in feveral Places, for then they will both burn and dry the better.

C H a P. IV.
 Of Sand.

THER E are three Sorts of Sand, viz. Pit-Sand, River-Sand, and Sea-Sand. Of thefe the beft of all is Pit-Sand, and is either of a Black, White, Red, or Afh Colour, which laft is a kind of Earth burnt by Fire, pent up in the Cavities of Mountains, and is found in Tufcany. There is alfo found in Terra di Lavoro, in the Territories of Baia and Cuma, a kind of Sand, called by Vitruvius, Pozzolana, which being thrown into Water, immediately cements, and makes very good Mortar. Long Experience has taught us, that among the feveral kinds of Pit-Sand, the White is the worft ; and of RiverSand, the beft is that which is found in rapid Streams, and under Water-falls, becaufe it is moft purged.

Sea-Sand is the worft of all, but muft be of a blackifh Colour, and thine like Glafs; but that whofe Particles are biggeft, and lies neareft the Shore, is to be preferred. Pit-Sand being fatter than the reft, makes for that reafon a more tenacious Cement, and is therefore employed in Walls and long Vaults, but then it is apt to crack. River-Sand does very well for rough-cafting of Walls; Sea-Sand, as it is foon wet and foon dry, and melts away prefently becaufe of its Salt, is therefore unfit to fuftain any confiderable Weight. That Sand is beft in its kind, which being bruifed between the Fingers, makes a crackling Noife; or if being laid upon any white Subftance, neither ftains; or makes it foul. On the contrary, that Sand is bad, which mixed with Water, makes it dirty and muddy, or that which has been a long time expofed to the Weather ; becaufe it will retain much Earth and rotten Moifture, that is very apt to bring forth Shrubs and other fpontaneous Plants, which are of great prejudice to a Building.

С H А P . V.

Of Lime, and the Method of working it.

STONES, whereof Lime is made, are either dug out of Hills, or taken out of Rivers. Thofe Stones of the Hills are good, which are dry, free from Moifture, and brittle; and that have no mixture of any Subftance in them, which being wafted away in the Fire, fhall leffen the bulk of the Stone; the beft Lime is made of the hardeft, foundeft and whiteft Stone, and which, after being burnt, remains a third part lighter than the Stones of which it was made. There are alfo others of a fpungy nature, which make very good Lime for rough-cafting of Walls. Certain fcaly Stones are alfo dug out of the Hills of Padua, which make a kind of Lime, that is of very great Service to fuch

Buildings

ARCHITECTURE.

Buildings as are expofed to the Weather, or in the Water, for it immediately grows hard, and is very ftrong and lafting. All Stones dug newly out of the Quarry, are better to make Lime, than thofe which are gathered up and down, and have lain a long time expofed to the Weather; from a fhady and moift Pit, rather than from a dry one, and the white better than the brown. Thofe Pebbles which are found in Rivers and rapid Streams, are excellent for Lime, and make very white, neat and fimooth Work, for which Reafon it is chiefly ufed in the rough-cafting of Walls. All Stones, whether of the Hills or of Rivers, burn quicker or flower, in proportion to the Fire which is given them, but they are generally burnt in threefcore Hours. After they are burnt and turned to Lime, this latter muft be wetted in order to flack it, obferving not to pour the Water on all at once, but at feveral times, to prevent its burning before it be well tempered. It muft afterwards be laid in a moift and fhady Place, taking care not to mix any thing with it, only covering it lightly with Sand, and the more it is bruifed and mixed with the Sand, the better it will cement, except that which is made of a fcaly Stone like that of $\mathcal{P a}$ dua, becaufe it muft be worked immediately after it is kiln'd, to prevent its burning and confuming away, for then it loofes its cementing Quality, and is good for nothing.

In making Mortar, the proportion of Sand to be mixed with it is as follows; if it be Pit-Sand, you muft take three Parts of it and one of Lime; if of River or Sea-Sand, two Parts of Sand, and one of Lime.

С н a p. VI.

Of Metals.

THE Metals employed in building are Iron, Lead, and Copper. Of Iron are made Cramps, Nails, Hinges, Bolts, Gates, Bars, and fuch like Works. 'Tis no where found pure, but when the Oar is dug out of the Earth, it muft be purged with Fire, when it becomes liquid, fo that it may be eafily cleared of its foulnefs before it cools; after it is purged and cool, it fhines, is foft and yields to the Hammer. But it cannot eafily be melted a fecond time, unlefs it be thrown into a very hot Furnace made for that purpofe; and it muft be beat when red-hot, otherwife it confumes and waftes away. One mark of the goodnefs of Iron, is when being worked into Bars, its Veins are found to run ftrait and unbroken, and that the ends of the Bars are clean and without foulnefs; for thefe Veins are a proof that the Iron is free from Knots and Flaws; by its Ends we may know the goodnefs of the Middle; if its Sides, after it is wrought into fquare Plates or any other Shape, are found to be ftrait, we may pronounce it equally good in all its parts, as it has equally endured the Hammer.

Lead is made ufe of to cover magnificent Palaces, Churches, Towers, and other publick Edifices, as alfo for Pipes and Gutters to convey Water; it is alfo employed to faften all kinds of Iron-work in Stone. There are three kinds of Lead, viz. White, Black, and of a Colour between both, whence it is called by fome Afh-Colour. The Black, though fo called, is not really of that Colour, but has only a few black Spots in it, wherefore the Antients, to diftinguifh it from the other, gave it not improperly the Name of Black. The White is more perfect, and of greater

ARCHITECTURE.

greater: Value than the Black; and the Afh-Colour is next. Lead is either dug in great natural Lumps, or in leffer Pieces, that fhine with a blackifh caft; or it is found in very thin Leaves, that cleave to Stones, Marbles, and Flints. Every kind of Lead is eafily meited, becaufe the heat of the Fire makes it liquid before it is red-hot; but if it be thrown into an extreme hot Furnace, it lofes its Subftance, for one part turns to Litharge, and the other to Drofs. Of thefe three forts of Lead, the Black is foft, and for that reafon is eafily beat, and is heavy and weighty ; the White is harder and lighter; the Afh-Colour is much harder than the White, and is of a middle weight between both.

Copper is fometimes employed to cover Publick Edifices, and the Antients ufed to make a kind of Cramps or Hooks with it, which being fixed in the Stones, keeps them tight together, fo that they never loofen; by means of thefe Cramps, a Building, which muft neceffarily be made of a great Number of Stones, is fo joined and fixed together, that it appears to be but one entire Piece, which for that Reafon is much ftronger and more durable. Thefe Cramps or Hooks are now made of Iron, but the Antients chofe rather to make them generally of Copper; becaufe as that Metal is not fubject to ruft, it therefore lafts much longer. They likewife employed this Metal in the making Letters for Infcriptions that were placed in the Freezes of Buildings; and Hiftory informs us, that the famous Hundred Gates of Babylon were made of it; as alfo the two Pillars of Hercules, eight Cubits high, in the Ifland of Gades. That Copper is efteemed the beft of all, which when drawn out of the Mine, and purged by Fire, is of a Red Colour inclining to Yellow, and full of little Holes or Pores; for this is a mark that it is thoroughly purged, and has not the leaft Drofs remaining. Copper may be heated like lron, and ren-
dred liquid, and by that Means may be caft; but if it be thrown into too hot a Furnace, it yields to the ftrength of the Fire, and quite confumes in it. This Metal though hard, may yet be rendred fo foft and pliable, as to be wrought into very thin Leaves. The beft way to preferve it, is to lay it in Tarr; and though it does not ruft like Iron, it neverthelefs gathers a Ruft peculiar to it felf, which is called Werdigreafe, efpecially if it touch any thing that is fharp and moift. This Metal being mixed with Tin, Lead, or Liatten, which laft is another kind of Copper, but coloured with Lapis Calaminaris, makes a Metal called Brafs, which is often employed by Architects in making of Bafes, Columns, Capitals, Statues, and fuch like Ornaments. There are in the Church of San Giovanni Lateranno in Rome, four Brafs Columns, one of which only has its Capital; thefe were made by Order of Auguftus, of the Metal that was found in the Prows of thofe Ships, he took from Mark Anthony in Epirus. There are four antient Gates made of this Metal ftill remaining at Rome, viz, that of the Rotunda, before called the Pantheon; that of St. Adrian, once the Temple of Saturn; that of S.Cofmo and St. Damian, formerly the Temple of Caftor and Pollux, or perhaps that of Romulus and Remus; and that of St. Agnes without the Gate Viminalis, now called St. Agnes, fu la Numentana. But the moft beautiful of all thefe Gates is that of Santa Maria Rotunda, wherein the Antients imitated by Art, that Species of the Corinthian Metal in which the Colour of Gold prevailed: For we read, that when Corinth was burnt and deftroyed, all the Gold, Silver and Copper that were in the City, being melted down, and mixed together in fe^{-} veral Lumps, Chance tempered varioully thofe three different Metals, and compofed thefe three forts of Copper, which were afterwards called Corinthian. That in which Silver preyailed, retained the white-
nefs thereof; where Gold, it had a yellow calt; and the third was that in which all the three Metals were pretty equally mixed; and Workmen have fince attempted to imitate varioufly all thefe three Metals.

Hitherto I have taken Notice of fuch Particulars as are to be confidered, and the feveral Materials that are to be provided, before we begin to build; we muft in the next place difcourfe upon the Foundations, fince thefe are firtt laid before we begin the Building.

C H A P. VII.

Of the Quality of the Ground in swbich the Foundations are to be laid.

THE Foundation, i. e. that Part which is under Ground that fuftains the whole Edifice, is property called the Bafis thereof. Of all the Errors that may be committed in building, thofe are the moft fatal that are made in the Foundation, becaufe they at once endanger the whole Fabrick, nor can be rectified but with the utmolt Difficulty; for which Reafon the Architect muft take great Care to pitch upon a good Foundation, fince in fome Places they are naturally ftrong and folid, and in others Art muft be employed to make them fo. A natural Foundation is when the Soil is rocky, or of a foft, fandy Stone or Gravel, which is a kind of Earth inclining to the rocky; for thefe, without digging, or any other affiftance from Art, are of themfelves very ftrong Foundations, and capable of fuftaining the greatef Edifice, either on Land or Water. But when Nature does not furnifh a Foundation, Art muft be made ufe of; and here the Place to build on, is either a folid Earth or Clay; a fandy, foft and moift Ground, or marfhy Land. If the Earth be firm and folid, the Foundation may be made

12

 Palladiósof fuch a depth, as to a judicious Architect may ap. pear requifite, for the largenefs of the Building, and the ftrength of the Soil; and if there are to be no Cellars nor fubterraneous Offices, it will be fufficient to dig a fixth Part of the Height of the Building. The folidity and firmnefs of the Earth may be known, by digging of Wells, Cifterns, and fuch like; and alfo by the Herbs that grow upon it, if they are fuch as fpring up only in a hard and firm Soil. Another Mark of the ftrength and firmnefs of the Earth, is, when any great Weight being thrown upon it, it neither thakes nor refounds; which may cafily be obferved by the Help of a Drumi, if when being fet upon the Ground, and lightly touched, it does not refound again, nor fhake the Water in a Veffel fet near it. The ftrength and folidity of the Ground, may likewife be known by the firmnefs of the Earth, in the Places adjacent. But if it be a fandy or gravelly Spot, Regard is to be had whether it be on Land, or in the Water; becaufe if it be on Land, we need only obferve what has been already mentioned concerning firm Ground. If we build in the Water, the Sand and Gravel will be altogether ufelefs, becaufe the Water by Reafon of its continual Current and Flood, is ever fhifting its Bed; we muft therefore dig till we find a firm and folid Bottom; or if this cannot eafily be done, we muft then dig a little in the Sand and the Gravel, after which Piles made of Oak, muft be drove in, till their Ends reach the good Ground, and on thefe we may build. But if we are obliged to build upon moffie and loofe Earth, we muft then dig till we find found Ground, and that in Proportion to the thicknefs of the Walls and the greatnefs of the Fabrick. This found and firm Earth, fit to fuftain a Building, is of various kinds; for, as Alberti well obferves, in fome Places it is fo hard, that Iron can hardly force its way into it, and fometimes harder than Iron it felf;
in fome Places it is blackifh, in others whitifl (which is looked upon as the weakeft) in fome it is like Cbalk, and in others foft and fandy. Of thefe feveral kinds, that is the beft which is cut with moft Labour and Difficulty, or when wet, does not diffolve away in Mud and Dirt. We muft never build upon an old Foundation, before we know its Depth, and if fufficient to fuitain the Fabrick. But if the Earth you build upon be very foft, as in moorifh Grounds, in this Cafe you muft ftrengthen it with Piles, whofe length muft be the eighth Part of the height of the Walls, and their Diameter the twelfth Part of their length. Thefe Piles muft be drove in fo clofe to one another, as not to leave Space for others to be fet between them; and care mult be taken to ramm them in with Blows rather frequently repeated than violent, for by this Means the Earth will better confolidate. Piles muft be drove, not only under the Out-Walls, but alfo under the Inner or PartitionWalls. For if the Foundations of the Inner Walls, are weaker than thofe of the Outer-Walls; when you come to lay the Girders and the Joyfts, you will find by Experience, that the Inward Walls will fink, while thofe on the Out-fide will ftand firm, becaufe they were raifed on Piles; then all the Walls will crack, and ruin the whole Edifice; not to mention that thefe Crevaffes are very difagreeable to the Eyc. As therefore the Expence for Piles, will be of lefs Confequence, than the endangering of the whole Fabrick, you muft not be fparing, but diftribute them according to the Proportion of the Walls; taking Care that thofe within, be placed fomewhat thinner than thofe on the outfide of the Building.

Chap. VIII.

Of Foundations.

THE Foundation mult be twice as thick as the Wall to be raifed thereon; and here regard muft be had to the quality or goodnefs of the Ground, and the weight of the Edifice; obferving to make the Foundation wider in foft and loofe Ground, and on which a very large Fabrick is to ftand. The Plan of the Trench muft be exactly level, in order that the weight may preis equally in all Parts, and not lean more to one fide than the other, which occafions the cleaving and dividing of the Walls. For this reafon the Antients ufed to pave the Plan with Tivertine, but we lay Planks or Beams, and on thefe we build. The Foundations muft be made floping, that is to fay, they muft diminifh in Proportion as they rife, yet in fuch a Manner, that there may be as much left on one fide, as on the other; fo as the middle of the Wall above, may be directly perpendicular over the middle of that below, which muft be alfo obferved in the diminifhing of Walls above Ground; for this will make the Building much ftronger, than if the diminutions were made any other way. Sometimes, in order to leffen the Expence, and particularly in moorifh Grounds, where we are obliged to make ufe of Piles, the Foundations muft be arched, and on this the Building muft be raifed. In large Edifices, it is very proper to make Vents, or Holes, through the Body of the Walls, from the Foundations to the Roof, which will let out the Winds and Vapours, that are very prejudicial to the Building, Jeffen the Charge, and will likewife be found extremely

Architecture.

convenient, if winding Stairs are to be made from the Bottom to the Top.

C H'A P. IX.

Of the various kinds of Walls.

THE Foundations being laid, we are next to treat of the Walls that are to be raifed above Ground. There were fix Sorts of Walls among the Antients: The firft called Reticolata or Net-Work; the fecond of Quadrels or Bricks; the third of Cement, compofed of Flints or Pebbles; the fourth of irregular and various Stones, and called Rufick; the fifth of Free-Stone; and the fixth or laft of Riempiuta or Cof. fer-zvork. The Net or Checquer-work is not practiced by the Moderns, but as Vitruvines relates that it was very common in his Time, I thought proper to infert a Defign thereof. It was their Cuftom to make the Angles, or Corners of the Building of Bricks, and to lay between every two Foot and a half, three Courfes of Bricks, which ferved as a kind of band to the whole Work.

A. Angler made of Brick.
B. Courfer of Bricks that bind the whole Wall.
C.The Net-work.
D. Counfes of Bricks through the thicknefs of the Wall.

E Middle of the Wall made of Cement.
2. Brick-
2. Brick-Walls, that furround Cities, or that are des figned for any great Edifice, ought to be faced on both Sides with Brick, and the middle filled with Ce ment, rammed together with Brick-bats; and to every three Foot in height, there muft be three Courfes of Bricks, of a larger Size than the reft, to bind the whole breadth of the Wall; obferving to lay the firft Courfe, fo that the leffer Side of the Brick may be outward; the fecond length-way, that is, with its largeft Side on the outfide, and the third as the firt. The Walls of the Rotunda at Rome, thofe of the Baths of Dioclefian, and of the other antient Edifices there, are all after this Manner.
3. Cement-IV alls, muft be made in fuch a Manner; that to every two Foot at leaft, there may be three Courfes of Brick, and difpofed as above. - Of this kind are the Walls of Turin in Piedmont, that are made of large River-Pebbles fplit in the middle, and fet in the W all with the fplit-fide outwards, which makes very neat Work, and is agreeable to the Eyc. The Walls of the Ampbitheatre of Verona are alfo of Cement, and have three Courfes of Brick to every three Foor, as in feveral other antient Buildings, which may be feen in my Book of Antiquities.
4. The Walls made of irregular Stones, were called Rufick; and in the raifing of thefe they ufed a Leaden Rule, which being bent according to the Place were the Stone was to be fet, flewed how it was to be fquared; fo that when it was once cut, they immediately fixed it in its Place. Of this Kind are the Walls of Prenefte, and the Antients ufed to pave their Streets after the fame Manner.

E. Courfas of Bricks that bind the whole Wall.
F. The innvard part of ${ }^{\text {e }}$ "Wall. made of Cement, between the feveral Courfor, and the ountrard Bricks.

G.Cement or RiverPebbles.
H. Courges of Bricks that bind the whole Wall.

I.Irregular or Rough Stones.

K. Courges of leforer Stones.
L.Counges of larger Stones.

M.Planks Laid Edge-nay.
N.Inn ard Part of the Wall .
O. Face of the Wall, the Planks being taken anaur.

P. Walls faced with Stone.
Q. Crods binding Counges of Stone.
R.Coffers filledurith Stones and Eartli.

ARCHITECTURE。

5. Walls of Free-Stone may be feen at Rome, in the Place where formerly ftood the Piazza and Temple of Augufus, and here the leffer Stones were inclofed wihh fome Courfes of larger ones.
6. The Antients ufed to make W alls called Riempiuta or Coffer-Work, by taking Planks laid Edge-Way, according to the Thicknefs of the Walls, filling the Void with Cement and all kind of Stones mixed together, and continued in this Manner from Courfe to Courfe. Walls of this Kind are found at Sirmion, upon the Lake di Garda.
7. The antient Walls of Naples may alfo be faid to be of this Kind; for they have two Walls of Free-Stone, four Foot thick, and fix Foot diftant from one another. Thefe W alls are bound together with others that run crofs them, or Crofing-Rows; and the Coffers that are between thefe Croffing-Rows and outward Walls are fix Foot fquare, and are filled with Stones and Earth.

In fine, thefe are the feveral Walls the Antients made, Foot-fteps of which ftill remain to this Day, by which we find, that all kinds of W alls muft have fome Bonding Courfes, as fo many Sinews, to faften together all the other Parts; and this muft be particularly obferved in Brick-Walls, in order that if the middle of the Wall fhould fink through Length of Time, the reft may not be fubject to Ruin, as we fee in many Walls, particularly on that Side that looks towards the North."

C H A P. X.

The Method practifed by the Antients, in erecting Stone Edifices.

AS it frequently happens that an Edifice is to be built entirely, or a good Part of it, of Marble, or other large Stones, it may be very proper to relate in this Place, what the Antients obferved on this Head; becaufe we find they were fo very nice and exact in joining the Stones together, that one can farce difcern the Joynts in a great many Places, which I think of very great Confequence, as it contributes not only to the Beauty, but to the Strength and Solidity of the Fabrick. And as far as I could underftand, they firft fquared and wrought thofe Sides of the Stones, that were to be laid one above the other, leaving the other fides rough, after which they were employed in the Building; fo that the Angles or Edges of the Stones being not fo fharp, they could better move them up and down till fuch Time as they joyned well, and were not in the leaft Danger of breaking, than if all the Sides had been fquared, for then the Angles being too thin, are the more apt to break. In this manner they ufed to make all their Stone Edifices rough, and as it were Rufick, and when thefe were finifhed, they continued to work and polifh thofe fides of the Stones that were expofed to Sight. It is true indeed, that as the Rofes between the Modilions, or other Ornaments of the Cormice, could not be conveniently worked after the Stones were fixed, they made them while they lay on the Ground. This is manifeft by many antient Edifices, wherein feveral Stones are found, that were left mowrought and unpolifhed. The Arch near the old Caftle in Verona, and all the other Arches and

Architecture.

antient Edifices in that Place, were made after the fame Manner; this we eafily difcover, by the Marks of the Tools, they fhewing in what Manner the Stones were wrought. The Columns of Trajan and Antonin at Rome were thus wrought, otherwife it would have been impoffible to have fixed the Stones, fo as to make the Joynts meet fo clofe together crofs the Heads, and other Parts of the Figures. The fame I fay of thofe Triumphal Arches that are found there; for when they had any very large Fabrick to erect, as the Amphitheatre of Verona, that of Pola, and fuch like; to fave Time and Expence, they only wrought the Impofts of the Arches, the Capitals and Cornices, leaving the reft Ruftick, having regard only to the Beauty of the whole Edifice. But in Temples, and other magnificent Fabricks that require great Delicacy, they were not fparing of their Labour in working them, but glazed and polifhed even to the very Flutes of the Columns with the utmoft Care and Exactnefs. In my Judgment therefore, Brick-Walls fhould not be made Ruftick, much lefs the Mantle-trees of Cbimneys, which require very neat and curious Workmanfhip; for befides its being mifapplyed in that Place, it would follow that a Work, which ought naturally to be one entire Piece, would appear to be divided into feveral Parts. But it may be made either Ruffick, or in an elegant Tafte, according to the Greatnefs and Quality of the Fabrick; for what the Antients practifed with Judgment, forced to it as it were by the greatnefs of their Edifices, mult not be imitated by us in Buildings, in which Neatnefs is particularly required.

CHAP.

Chap. XI.

Of the Diminution of Walls, and their Several Parts.

W$A L L S$ as they rife, mult diminifh proportionably in thicknefs, and thofe which appear above Ground muft be half as thick as the Walls in the Foundations; thofe of the fecond Story half a Brick thinner than the Walls of the firt, and in this manner to the top of the Building, obferving however not to make the upper Part too weak. The middle of the Walls above, muft be directly perpendicular over the middle of thofe beneath, which will give the whole Wall a Pyramidal Form. Moreover, when you are obliged to make the Superficies of the upper Wall directly over that beneath, it muft be done inwardly; for the Floors, the Beams, the Vaults, and-other Supports of the Fabrick, will keep the W alls from falling inward. The difcharged parts or Sett off on the outfide, muft be covered with a Fafcia and a Cornice, which furrounding the whole Building, will be both an Ornament and a kind of binding to it. As the Angles of a Building are common to two Sides or Faces, to keep them upright and tight together, Care muft be taken to make them very ftrong and folid, and to hold them with long and hard Stones, as it were with Arms. Wherefore the Windows and other Openings, ought to be as far diftant from the Angles as poffible; or at leaft fo much Space muft be left, as is the breadth of the faid Opening. Having thus treated of plain Walls, we fhall next confider their Ornaments, among which none are more confiderable than Columns, when they are properly placed, and in a juft Proportion to the whole Edifice.

CHAP.

C h a p. XII.

Of the five Orders of Architecture ufed by the Antients.

TH E Antients had five Kinds or Orders of Architecture, viz. the Tufcan, Dorick, Ionick, Cormthian, and Compofite; which muft be difpofed in fuch a manner, that the moft frong and folid may be always undermoft, for then it will be the better able to fuftain the whole Weight, and the Fabrick will ftand on a firmer $B a s / i s$; for which reafon the Dorick muft always be fet under the Tonick, the Ionick under the Corintbian, and the Corintbian under the Compofite. The Tufcan being a very plain and fimple Order, is therefore very feldom ufed above Ground, except in thofe Buildings where one Order only is employed, fuch as rural Edifices; or very large Fabricks, as Amphitheatres, ofc. in which, as feveral Orders are made ufe of, this may be fet under the Tonick inftead of the Dorick. And if the Architect is defrous of leaving out one of thefe, as for Inftance to fet the Corinthian immediately over the Dorick, this may be done, provided the moft ftrong and folid Part be loweft, for the Reafons abovementioned. I fhall fet down the Meafures of each of thefe Orders feparate1 y , not fo much according to the Method Vitruvius has taught, as purfuant to the Obfervations I my felf have made on antient Edifices; but firf I fhall mention fuch Particulars as relate to all of them in general.

Chap. XIII.

Of the Swelling and Diminution of Columns; of the Intercolumniations and Pilafters.

TH E Columns in each Order are to be made in fuch a manner, that the Diameter of the upper part of the Column, may be fmaller than at the Bafe, and have a little Swelling in the middle. In the Diminution of thefe we muft obferve, that the longer the Columns are, the lefs thiey muft diminith, and that, becaufe the height has the effect of Diminution, by reafon of the Diftance. Wherefore if the Column be fifteen Foot high, the Diameter at Bottom flall be divided into fix Parts and a half, and five and a half flall be the thicknefs at Top; if from fifteen to twenty Foot, the Diameter at the Bottom muft be divided into feven Parts, and fix and a half thall be the Diameter at Top; the fame muft be obferved in thofe that are from twenty to thirty Foot high, where the Diameter at the Bottom muft be divided into eight Parts, feven of which flall be the Diameter at Top; and thus thofe Columus that are of a greater Altitude, will diminifh in the abovefaid manner, as Vitruivius tells us in the fecond Chapter of his third Book. But in what manner the Swelling in the Middle is to be made, of this he has only left us a bare Promife; which is the Reafon why Writers differ fo much from one another upon that Head. The Method I ufe, in making the Profil of the abovementioned Swelling is as follows. I divide the Fuft of the Coluinn into three equal Parts, and leave the lower part exactly perpendicular, to the extremity of which I apply a thin Rule, of the fame length, or a little longer than the Column;

ARGHITEGTURE. 23 and bending that part of the Rule which comes forward, till fuch Time as the End of it touches the Point of Diminution, of the upper Part of the Column under the Colarino, I then mark as that Curve directs; thus I have the Column fiwelling a little in the Middle, and projecting forward with great Beauty and Gracefulners. And although I could not find a more concife and expeditious Method than this, yet a Circumftance that gave me a better Opinion of it, was Signior Pietro Cattaneo's being fo well pleafed therewith, as to give it a Place in his Treatife of Architecture, a Work that greatly illuftrates our Profeffion.

A B. The third Part of the Column, which is directly perpendicular.
B C. The two thirds that diminifh.
C. The Point of the Diminution under the Collarino.

The Intercolumniations, or Diftances between the Columns, may be of one Diameter and a half of the Co lumn, the Diameter being always taFen at the loweft part of the Column; or of two Diameters, of two and a quarter, of three, and even more; but the Antients never exceeded three Diameters, except in the Tufcan Order, where the Architraves being of Timber, they made the Intercolumniations very large; but then they never made them lefs than

a Diameter and a half, which Space or Diftance they particularly obferved, when the Columns were very high. But they chiefly approved thofe Intercolumniations, that were of two Diameters and a quarter, and looked upon them as moft beautiful and elegant. We muft obferve very carefully, to keep a due Proportion and Harmony between the Intercolumniations or Spaces, and the Columns; becaufe if fimall Columns are made with large Intercolumniations, it will very much leffen the gracefulnefs of the former; for the too great Quantity of Air, in the void Spaces, will diminifh their thicknefs confiderably: And on the contrary, if we make large Columas and fmall Intercolumniations, the too little Vacuity will make them look thick and heavy, and without the leaf Grace. Therefore if the Spaces be upwards of three Diameters, the thicknefs of the Column muft be a feventh Part of its Altitude, as will be hereafter obferved in the Tufcan Order. But if the Spaces are three Diameters, the length of the Columns muft be feven Diameters and a half, or eight, as in the Dorick Order; if two and a quarter, the Column mufk be nine Diameters in length as in the Tonick; and if no more than two, the Columns muft be nine Diaméters and a half in length as in the Corinttian; and lafty, if of one Diameter and a half, the length of the Columns muft be ten, as in the Compofite. I have been thus careful in making my Obfervations upon thefe fevexal Orders, to the end that they may ferve for Examples for that variety of Intercolumniations mentioned by Vitruvius in the above-cited Chapter. In the Front of Buildings the Columns muft be an even Number, that there may be an opening in the middle, which thould be larger than the other Intercolumniations, for the better receiving the Doors and Entries; fo much for fingle Pillars or Collonades. But if Galleries are to be made with Pilafters, they muft be dif. pofed in firch a manoner, that the thicknefs of the Pi-
lafters or Pires be not lefs than one third of the Void from Pire to Pire, and to thofe in the Anglestwo thirds; which will make the Angles of the Building more frong and folid. And when thefe Pires are to fupport a very great weight, as in confiderable Edifices, then they muft have half the thicknefs of the Vacancy, as thofe of the Theatre of Vicenza, and of the Amphitheatre of Capuia; or elfe two thirds, as thofe of the Theatre of Marcellus in Rome, and that of Ogubius, now in the Poffeffion of Signior Ludovico de Gabrielli, a Gentleman of that City. But the Antients fometimes made them as thick as the whole Vacancy, as in that Part of the Theatre of Verona which does not ftand on the Hill. But in private Buildings they muft not be lefs in thicknefs, than the third Part of the Opening, nor more than two thirds, and fhould be fquare; but to fave Expence, and make more room for People to pafs, they need not be fo thick in Flank as in Front; and to embellifh it, half Columns or Pilafters may be placed in the middle, to fupport the Cornices over the Arches of the Gallery, whofe thicknefs muft be proportionable to their height, according to each Order, as will be fhewn in the following Chapters and Defigns. For the underftanding of which, and to prevent frequent Repetitions, the Reader is to know, that in the dividing and meafuring the above-mentioned Orders, I have not made ufe of any fixt and determinate Meafure peculiar to any Place, as a Cubit, a Foot, or a Span; the feveral Meafures being asdifferent as the Countries; but imitating Vitruvius, who divides the Dorick Order with a Meafure taken from the Diameter of the Column, common to all, and by him called a Module, I fhall likewife ufe the fame Meafure in all the Orders. This Module is the Diameter of the Column at Bottom, and is divided into fixty Minutes, except in the Dorick, in which the Module is half the Diameter of the Column, and is divided into thirty Minutes, this being more commodious in the Divifions of that Order. One may there-
fore divide the Module into more or lefs parts, according to the Quality of the Building, and make ufe of the Defigns of the Proportions and Profils fuitable to each Order.

С н a p. XIV.

Of the Tufcan Order:

THE Tufcan Drder, according to Vitruvius, and what indeed it appears in effect, is the moft plam and fimple of all the Orders of. Architecture; as it retains more of the old Simplicity, and is devoid of all thofe Ornaments, which give fo great a Grace and Beauty to the others. It was firf invented in Tufca$n y$, a very confiderable Part of Italy, whence it derives its Name. The Column, together with its Bafe and Capital, muft be feven Modules in length, and its Diminution a fourth Part of its bignefs. If a Work is to be made of this fimple Order, the Intercolumniations may be very wide, and that becaufe the Architraves are made of Timber, which will therefore be very commodious for Country Buildings, by reafon of the eafy Paffage for Carts and other Country Conveniences, not to mention that it will be a much lefs Expence.

But if there are to be Gates, or Galleries with $A r$ ches, then they muft make ufe of the Meafures, which I have marked in the Defign; wherein we fee the Stones difpofed and joined together in fuch a manner as appeared to me beft, when the whole Edifice is to be of Stone. I have already obferved the fame, in the Defigns of the four other Orders, and have borrowed this Manner of difpofing and joyning the Stones, from many antient Arches, as will be feen in my Treatife of Arches, in the Defigns of which I have employed the utmoft Care and Diligence.
> A. The Architrave of Timber.
> 13. The Foy/ts which fupply the Place of the Guttre.

The

Pa. 27.

III.

11
15

16

The Pedeftals, under the Columns of this Order, muft be very plain and a Module in height. That of the Bafe of the Column muft be half its Diameter. This height is to be divided into two equal Parts, one of which muft go to the Plinth, which is made round; the other is fubdivided into four Parts, one of which is for the Liftella or Fillet, which may fometimes be made a little lefs; the Lifella makes a Part of the Baje, in this order only, in all the others it is Part of the Column; the other three Parts are for the Torus. This Bafe muft project a fixth Part of the Diameter of the Column. The height of the Capital is half the Diameter of the lower Part of the Column, and is divided into three equal Parts; one is given to the Abacus, which from its Shape is ufually called Dado or a Dye; the other to the Ovolo, and the third is fubdivided into feven Parts: Of one of thefe the Liffella under the Ovolo is made, and the remaining fix are for the Collarino or Neck of of the Column: The height of the Aftragal is double that of the Liffella under the Ovolo; and its Center is made on the Line, which falls perpendicular from the forefaid Liftella; the Projecture of the Cincture falls plum upon the Liffella, which is as thick as the Liftella. The Projecture of this Capital anfwers to the Sbaft of the Column below. Its Architrave is made of Timber, the height of which muft be equal to its breadth, and its breadth muft not be greater than the Shaft of the Column at Top; the Foyfts which fupply the place of the Guttee or Drip, project a fourth part of the length of the Column. Here follows the Meafures of the Tufcan Order, according to Vitruvius.

A. Abacus.	F. The Shaft of the Co-
B. Ovolo. C. Collarino. G. Cincture. D. Altragal. H. Torus. E. The Shaft of the Co- I. Orlo. lumn at Top.	K. Pedeltal.

The Profils by the fide of the Plan of the Bafe and Capital, are the Impofts of the Arches.

But if the Architraves are made of Stone, what I before mentioned with refpect to the Intercolumniations muft be obferved. There ftill exift fome antient Edifices, which as they partly retain the fame Meafures, may be faid to have been of this Order; fuch as the Arena of Ferona, the Arena and Theatre of Pola, and many others that might be mentioned, from which I have taken the Profils of the Bafe, Capital, Architrave, Freeze, and Cornice, as may be feen in the laft Plate of this Chapter; as alfo thofe of the Impofts of the Arches.

I fhall infert the feveral Defigns of all thefe Edifices, in my Book of Antiquities.
A. Cima recta.
B. Corona.
C. Guttce é Cima recta.
D. Cavetto.
E. Freeze.
F. Architrave.
G. Cymatium, of the
H. Abacus, $\}$ Capi-
I. Cima recta, S tal.
L. Aftragal.
M. Shaft of the Columrs under the Capital.
N. Sbaft of the Column at Bottom.
O. Liftella of the Cohumn.
P. Torus. 2 of the
Q. Orlo. $\}$ Bafe.
K. Collarino.

On the Right Hand of the Profil of the Archio trave marked F. the Reader will find the Profil of another, performed with greater accuracy.

C HAP. XV.

Of the Dorick Order.

HE Dorick Order owes both its Name and Original to the Dorians, a Greek People inhabiting If thefe Columns are infular without Pires, they

Mo. $5 \cdot \frac{1}{2}$

Mo. $5 \cdot \frac{1}{2}$

ARGHITECTURE.

they mult be feven Diameters and a half, or eight in length. The Intercolumniations are fomething lefs than three Diameters of the Column, which Manner is called by Vitruvius, Diaflylos. But in cafe they are joyned to Pires, their Altitude muft be feventeen Modules and one third, including the Bafe and Capital; and we mult remember, as was before obferved in the thirteenth Chapter, that the Module in this Order, is but half the Diameter of the Column, divided into thirty Minutes; and that in all the other Orders, it is the whole Diameter divided into fixty Miniutes.

We do not find that the Antients made any \mathcal{P}_{c} deftal to this Order, in which they have not been imitated by the Moderns. When therefore a Pedefal is to be joyned to them, the Dado or Dye muft be fquare, whence the Meafure of its Ornaments muft be taken; for it muft firft be divided into three equal Parts, two of which fhall be for the Bafe with its Plinith, and the third for the Cymatium, to which the Plinth of the Bafe of the Column muft be joyned. Some of thefe Pedeftals are found alfo in the Corintbian Order, as in the Arch in Verona called the Arch de Leeoni. I have inferted feveral kinds of Profils, that may be fitted to the Pedeftals of this Order, all of them beautiful, and taken from the Antients, and meafured with the utmoft Exactnefs. This Order has no Bafe peculiar to it, whence it is that thefe Columns are found without Bafes in feveral Edifices; as the Theatre of Marcellus in Rome, the Temple de la Pietà near the fame Theatre; the Theatre of Vicen$z a$, and in feveral other Places. But the Attick Bafe is fometimes joyned to it, and is very Ornamental; the Meafures thereof are as follows: lts height muft be half the Diameter of the Column, and is divided into three equal Parts; one goes to the Plinth; the other two are fubdivided into four equal Parts, one of which is for the upper Torus, the remaining three are again

$$
I \quad \text { lib- }
$$

fubdivided into two equal Parts; one of which is the lower Torus, and the other the Cavetto with its $L i-$ /fellas; thefe have alfo their peculiar Meafures, and muft be divided into fix Parts; the firft is for the upper Lifeclla, the fecond for the lower, and the four remaining for the Cavetto. The whole Projecture is the fixth Part of the Diameter of the Column: The Cincture is half the upper Torus; if it is divided from the Bafe, its Projecture mult be one third of that of the Baje. But if the Bafe and part of the Column make one entire Piece, the Cincture muft be made fimall, as may be feen in the third Defign of this Order, in which I have likewife drawn two different kinds of Impofs of Arches.

$$
\begin{array}{ll}
\text { A. Fuft of the Collsmn. } & \text { F. Plinth. } \\
\text { B. Liftelia. } & \text { G. Cymatium, } \\
\text { C. Lpper Torus. } & \text { H. Dado the } \\
\text { D. Cavetto with its L.i- } & \text { I. Bale, } \\
\text { Jella. } & \text { K. Impofs of Arches. } \\
\text { E. Lover Torus. } &
\end{array}
$$

The Capital muft be half the Diameter of the Column, and is divided into three Parts; the firft is divided into five Parts, whereof three are for the Abacus, and two for the Cymatium, which being fubdivided into three Parts, one goes to the Liffella, and the other two to the Cymatium. The fecond principal Part is fubdivided into three equal Parts; one is for the Annulets or Squares, which three are equal; the other two are for the 0 volo, whofe Projecture is two thirds of its height: The third principal Part is for the Collarino. The whole Projecure, is the fifth Part of the Diameter of the Column. The height of the Aftragal is equal to the three Lifellas, and projects to the lower Part of the Shaft of the Column. The Cincture is half the height of the Afragal, and its Projecture is plum with the Center thereof. Upon the Capital is raifed the Architrave, whofe

height muft be half the Diameter of the Colimn, and is divided into feven Parts; one is for the Tenia or Fillet, whofe Projecture is equal to its height; we afterwards divide the whole into fix Parts; one of thefe is for the Gutte, which muft be fix in Number, and the Lifella under the Tenia, which is a third Part of the faid Guttce. From the Tenia downwards, the remainder is again divided into feven Parts; three whereof are for the firft Fafcia, and four for the fecond. The Freeze is a Module and a half in height; the breadth of the Triglyph is one Module, and its Capital the fixth Part of a Module. The Triglyph is divided into fix Parts; two of which are for the two Channels in the Middle, one for the two half Channels at the Ends or Extremities, and the other three for the Spaces between the faid Channels. The Mietope that is the Interval between the Triglypbs, ought to be a perfect Square. The Cornice muft be a Module and one fixth in height, and is divided into five Parts and a half; two of which are for the Cavetto and Orolo. The Cavetto is lefs than the Ovolo, juft as much as is its Liffella; the remaining three and a half are for the Corona and both the Cimas, the Recta and the Reverfa. The Projecture of the Corona muft be two thirds of a Module; and in its Face that looks downward, and has a Projecture along the Triglypls, fix Guitice in length, and three in breadth with their Lifellas, and fome Rojes over the Metope. The Gutte are round, and flaped like Bells, and anfwer to thofe under the Tenia. The Body of the Cymatium, muft be an eighth Part larger than the Corona, and is divided into eight Parts; two whereof are for the Plinth, and the other fix for the Cymatium, whofe Projecture is feven Parts and a half. So that the height of the Architrave, the Freeze and Cornice, are a fourth Part of the Altitude of the Column. Thefe are the Meafures of the Cornice according to Vi truvius, from which I have deviated, by altering
fome Members thereof, and making the whole a little larger.

Parts of the Capital.
A. Cima reita.
N. Cymatium.
B. Cima reverfa.
O. Abacus.
C. Corona.
P. Ovolo.
D. Ovolo.
E. Cavetto.
F. Capital of the Triglyph.
Q. Liftellas, or little Mouldings.
R. Collarino.
S. Aftragal.
T. Cincture.
G. Triglyph.
H. Metope.
I. Tenia or Fillet.
K. Guitta.
L. Firft Fa/cia.
M. Second Fafcia.
U. Fuft of the Column.
X. Plan of the Capital; and the Module divided into Tbirty Parts or Minutes.
Y. Soffit of the Cornice.

C н a p. XVI.

Of the Ionick Order.

THE Ionick Order had its origin from Ionia, a Province in $A /$ ia; and Hiftory informs us that the celebrated Temple of Diana at Ephefus was of this Order. The Column with its Capital and Bafe, muft be nine Modules in height; a Module, as was before obferved, is the Diameter of the Column below. The Architrave, Freeze, and Cornice, are a fifth part of the Altitude of the Column; in the Defign of fingle Columns, the Intercolumniations are two Diameters and a Quarter, which are the moft commodious and beautiful, and is called Eufylos by Vitruvius. In the Defign of the Arches, the Pires are a third part of the Void, and the Arches have two Diameters in height.

 s
人ूपन隹
隹

$$
\therefore \cdots-\cdots
$$

ARCHITECTURE.

If Pedefals are to be given to the Tonick Collumas, as in the Defigns of the Arches, their Altitude muft be equal to half the breadth of the Opening of the Arch, and is divided into feven Parts and a half; two whereof are for the Bafe, one for the Cymatiuni, and the remaining four and a half for the Dado. The Bafe of the Tonick Order, muft be half a Module in thicknefs, and is divided into three Farts; one is given to the Plinth, whofe Projecture is the fourth, and an eighth Part of the Module; the other two are divided into feven Parts, three of which are for the Torus; the other four are again fubdivided into two Parts; of one is made the upper Cavetto, and of the other the lower, which mult have the greateft Projecture: The A /fragals mult be the eighth of the Cavetto; the Cincture of the Column is the third Part of the Torns of the Bafe; but if the Bafe be joyned to the Column, the Cincture muft be fimaller, as was before obferved in the Dorick Order. The Projecture of the Cincture is half of that abovementioned. Thefe are the feveral Meafures of the Tonick Bafe, according to Vitruvius.

But as we find the Attick Bafe, placed under this Order in a great many antient Edifices, which indeed I think better; I have therefore drawn the faid Bafe over the Pedeftal, with a little Torus under the Cinfure; but at the fame Time have not omitted the Defign which Vitruvius has given us. The De/igns marked L, are two different Profils to make the Im pofts of the Arcbes, and on each of them the Meafures are fet down in Numbers, denoting the Minutes of the Module, as has been obferved in all my other Defigns. Thefe Impofs are half as high again, as the thick. nefs of the Pilafter that fupports the Arch.

A. Shaft of the Column.	C. Upper Torus.	
B. AftragalwithitsCin-,	D. Cavetto.	
Cure, which are	E. Lower Torus.	
Members of the	F. Piinth joyned to the	
Column.		Cymatium of the Pedefal.
	K.	G.

To make the Capital, the Diametcr at the Foot of the Column is divided into eighteen Parts, and nineteen of fuch parts make the length and breadth of the Abacu; ; half of which is the height of the Capital with its Volutes, whence its Altitude will be nine parts and a half; one and a half of which is given to the Abacus with its Cymatium, and the remaining eight to the Volute, which is made in this Manner. From the Extremity of the Cy matium inward, one of the nineteen Parts is taken, and from the Point made, a plum Line is let fall, which divides the Volute in the Middle, and is called Catheto. Where the Point falls upon this Line, that feparates the four Parts and a half above, from the three and a half below, the Center of the Eye of the Volute is made, whofe Diameter is one of the cight Parts; and from the abovementioned Point, a Line is drawn, which cutting the Catheto at right Angles, divides the Volute into four Parts. In the next place a Square is made in the Eye of the Volute, as big as the Semi-Diameter of the faid Eye; and Diagonal Lines being drawn, on them the Points are marked, where the fixed Foot of the Compafs is to ftand, to make the Volute; which Points or Centers, including that of the Eye, are thirteen in Number; and in what manner thefe are to be performed, will appear by the Numbers marked in the Defign. The A/Eragal of the Column, is in a direct Line with the Eye of the Volute. The thicknefs of the Polutes in the middle, muft be equal to the Proiecture of the

Owolo,

P 35.
XVI.

ARCHITEGTURE.

Ovolo, which muft come forward beyond the Abacus, juft as much as is the Eye of the Volute. The Channel of the Volute, is even with the Shaft of the Colimmn. The Aftragal of the Column goes under the Volute, and is always expofed to fight, as appears by the Plan; and indeed it is natural that fo thin and weak a Member, as the Volute is fuppofed to be, fhould give way to a ftronger one fuch as the A/fragal, from which it muft be equally diftant. In the Angles of Colonnades, or Portico's of the Ionick Order, we generally make Capitals with Volutes, not only in the Front, but alfo in that part, which if the Capital were to be made as ufual, would have been the Flank; by which means they have the Front on two Sides, and are called Angular Capitals; how thefe are made, will be fhewn in my Book of Temples, which is the Fourth of this Work.
A. Abacus.

In the Plan of the Capital, the faid Meninbers are marked with the fame Letters.
S. Eye of the Volute on a large Scale.

Members of the Bafe according to Vitruvius.
K. Fuft of the Column.
O. Aftragal.
L. Cindure.
P. Second Cavetto.
M. Torus.
Q. Plinth.
N. Firft Cavetto.
R. Projecture.

The Architrave, Freeze, and Cornice, mult be, as was before obferved, a fifth part of the height of the Column, and is divided into twelve parts; four of which are for the Architrave, three for
the Freeze, and five for the Cornice. The Aichitrave is fubdivided into five parts; one of which is for the Cymatium, and the reft are again divided into twelve parts; three whereof are for the firft Fafcia and its Aftragal, four for the fecond and its Afragal, and five for the third. The Cornice is divided into feven parts and three fourths; two are for the Cavetto and Ovolo; two for the Modilion, and three and three fourths for the Corona and the Cymatiun ; the Projecture of the whole Cornice is equal to its height. I have defigned the Front, Flank, and Plan of the Capital; as alfo the Architrave, Freeze, and Cornice, with their proper Ornaments.
A. Cima recta.
G. Cavetto.
B. Cima rever $\int a$.
H. Freeze.
C. Corona.
D. Cymatium of the Modilions.
I. Cymatium of the Architrave.
K. Firft Fafcia.
E. Modilions.
L. Second Fa/cia.
F. Ovolo.
M. Third Fafcia.
Members of the Capital.
N. Abacus. \quad Q. Aftragal of the Co-
O. Hollow of the Volute.
P. Ovolo.

The Plan marked S, wherein we fee the Rofes, reprefents the Soffit of the Cornice between each Modilion.

CHAP. XVII.
Of the Corinthian Order.

IN Corinth, a celebrated City of Peleponnefus, the Corinthian Order was invented, which is more beautiful and elegant than the foregoing. The Columns thereof are like thofe of the Tonick, and are nine

Modules

 -

ARCHITECTURE.
 37

Modules and a half in height, including their Bafe and Capital. If they are to be fluted, they mult be made with twenty four Flutes or Hollows, whofe depth is equal to half their breadth. The Plans or Spaces between two Flutes, muft be one third of the breadth of the faid Flutes. The Architrave, Freeze and Cornice, are a fifth of the height of the Column. In the Defign of a Colonnade or fingle Columns, the Intercolumniations are two Diameters, as in the Portico of Santa Maria" Rotunda in Rome, which manner of diftancing the Columns, Vitruvius calls Sy fylos: And in that of the Arches, the Pires are two fifths of the Opening of the Arch, whofe Opening is in height, two Squares and a half, including the thicknefs of the faid $A r c h$.

The height of the Pedeftal in this Order, múft be one fourth of the Altitude of the Column, and is divided into eight Parts; one is for the Cymatium, two for the Ba/e, and the remaining five for the Dado. The Bafe being divided into three Parts; two go to the Plinth, and one to the Mouldings. This Column has the Attick Ba/e, but differs from that which is fet under the Dorick Order, in that its Projecture is one fifth Part of the Diameter of the Column. Some other little Variations may be made, as is feen in the Defigns, wherein the Impofts of the Arches are alfo profild, whofe height is half as much again as the thicknefs of the Alett, or Pire that fupports the Arch.
A. Sbaft,
B. Cincture and of the
Co-
lumn.
joyned to the Cyma. tium of the Pede. fal.
C. Upper Torus.
D. Cavetto with its AJtragals.
E. Lower Torus.
$\left.\begin{array}{l}\text { G. Cymatium, } \\ \text { H. Dado, } \\ \text { I. Cornice of the } \\ \text { Bafe, }\end{array}\right\} \begin{aligned} & \text { Pedee } \\ & \text { Atal. }\end{aligned}$
F. Plinth of the Bafe K. Plinth of the Bafe.

The Impofts of the Arches is by the fide of the Column.

The Altitude of the Corintbian Capital, muft be the Diameter of the Columni below, and a fixth part more, which is allowed to the Abacus; the remainder is divided into three equal parts; the firft is for the firft Row of Leaves, the fecond for the middle Row, and the third is again fubdivided into two parts; of that part which is neareft the Abacus, are made the Caulicoli or Stalks, with their Leaves, which feem to be fupported by them, and out of which they grow; for which reafon the Fuft or Stalk whence they fpring fhould be thick, and diminifh by fmall degrees in their foldings; thereby imitating Plants, which are thicker at the Bottom than at the Extremities of their Branches. The Campana or Bell, that is the Fuft of the Column under the Leaves, muft be perpendicular to the Bottom of the Flutes of the Columns. To give the Abacus a proper Projecture, a perfect Square muft be made, the Side of which is a Module and a half; and Diagonal Lines being drawn in it, the Point of their Interfection will be in the Middle or Center; here the fixed Foot of the Compafs mult be placed, and a Module marked towards each Angle of the Square; and where thefe Points meet, Lines are drawn that cut the faid Diagonals at right Angles, and fo as to. touch the Sides of the Square, and thefe flall be the bounds of the Projecture, whofe length gives the breadth of the Horns of the Abacus. Its Curvature or Diminution, is made by drawing a circular Line from one Horn to the other, and in marking the Point; by which an Equilateral Triangle is made, whofe Bafe is the Diminution. Afterwards a right Line is drawn from the Extremities of the abovementioned Horns, to the Extremity of the Aftragal of the Column, which muft be made in fuch a man. ner, as to be touched by the Tips, or Extremities of the Leaves, or elfe come a little more forward; and this will be their Projecturc. The Rofe muft

be a fourth part as broad, as the Diameter of the Column at the Foot. The Architrave, Freeze and Cornice, as was before obferved, are a fifth part of the height of the Column, and the whole is divided into twelve parts as in the Ionick, but differs from it in this, viz, that the Cornice of the Corinthian is divided into eight parts and a half; the firft is allowed to the Cima Reverfa, the fecond to the Denticles, the third to the Ovolo, and the fourth and fifth to the Modilion, and the remaining three and a half to the Corona and the Cymatium. The Projecture of the Cornice is equal to its height. The Pannels of the Rofes between the Modilions muft be fquare, and the Modilions half as broad as the Plan of the faid Rofes. The Members of this Order, are not marked by Letter's as the foregoing, becaufe by them, thefe may be eafily known.

C н a p. XVIII.

Of the Compofite Order.

THE Compofite Order, which is alfo called Reman, from its having been invented by the antient Romans, is fo named, becaufe it partakes of two of the foregoing Orders. The moft regular and beautiful is that which is compounded of the Ionick and Corintbian. It is made more flender and difengaged than the latter, and may refemble it in all its Parts, the Capital excepted. The Columns muft be ten Modules in length. In the Defigns of Colonnades, the Intercolumniation is one Diameter and a half, which Vitruvius calls Pycnofyyle; and in thofe of the Arches, the Pires are half the Void of the Arch, and the height of the Arches, under the Key/tone is two Squares and a half.

And as I before obferved, this Order muft be more flender and difengaged than the Corinthian; its P e-
defal is one third of the height of the Columnt, and muft be divided into eight parts and a half. Of the firft the Cymatium of that Bafe is made, and five and a half remain for the 'Dado. The Bafe of the Pedeftal is fubdivided into three parts; two are for the Plinth, and one for the Torus's with its Cymatium.

The Bafe of this Column may be Attick as in the Corintbian, and alfo be compounded of the Attick and Ionick, as appears by the Defign.

The Profils of the Impo/ts of the Arches, are by the fide of the Plan of the Pedeftal, and its height is equal to the thicknefs of the Membretto.

The Compofite Capital has the fame Meafures as the Corinthian, but differs from it in the Volute, the Ovolo, and Aftragal cut into Beads, which Members are borrowed from the Ionick, the way of making which is as follows. From the Abacus downward, the Capital is divided into three parts, as in the Corintbian; the firft is given to the firft Row of Leaves, the fecond to the middle Row, and the third to the Volute, which is made in the fame manner, and with the fame Points, as that of the 10 nick; and takes up fo much of the Abacus, that it feems to go out of the Ovolo, near the Flower which is put in the middle of the Curvature of the Abacus; and it is as thick in Front, as the breadth of the Horns thereof, or a little more. The thicknefs of the Ovolo is three fifths of the Abacus; its lower part begins parallel to the Eye of the Volute; its Projecture is three fourths of its height, and with its Projecture is perpendicular to the Curvature of the Abacus, or a little more outwards. The Afragal is one third part of the height of the Uvolo, and its Projecture a little more than half its thicknefs, and turns about the Capital under the Volute, and is always feen. The Gradetto or Lifteila which is under the Aftragat, and forms the Plint

ARCHITECTURE.

of the Campana, or Bell of the Capital, is half the Aftragal. The Body of the Campana, muft be perpendicular to the Bottom of the Flutes of the Column. 1 faw one of this kind in Rome, from whence I borrowed the abovementioned Meafures, becaufe I thought it extremely beautiful, and performed with great Judgment. We alfo fee Capitals, made in a different manner, that may be called Compofite; but thefe will be taken Notice of hereafter, and the $\mathcal{D} e$ figns of them inferted in my Books of Antiquities. The Architrave, Freeze and Cornice are together a fifth of the height of the Column; and by obferving what was before mentioned of the other Orders, and the Numbers marked in the $\mathcal{D e} f i g n$, their Proportions and Divifions may eafily be known.

Chap. XIX.
 Of Pedeftals.

HItherto I have taken Notice of whatever appeared to me effential, with refpect to plain Walls and their Ornaments; and have touched particularly upon the feveral Pedeftals that may be given each Order. But as the Antients did not obferve to make them bigger or fimaller in the different Orders, notwithftanding that this Member gives fo much Beauty and Ornament to the whole, when it is made with Judgment, and in a due Proportion to the other Farts; in order that Architects may have a perfect knowledge thereof, and ufe them upon occafion, they are to underftand that the Antients made them fometimes fquare, that is to fay their Height equal to their Breadth, as in the Arch de Leoni in Verona, and thefe I have given to the Dorick Order, becaufe it requires folidity. They fometimes regulated their Proportions by the Meafure of the Openings or Voids, as in the Arch of Titus at Santa Maria Nova in

Rome, and that of Trajan over the Gate of Ancona, where the height of the Pedeftal is half of the Void of the Arch, which kind of Pedeftals I my felf have employed in the lonick Order. They alfo fometimes took the Meafures from the height of the Column, as we fee in the City of Suza, fituated at the foot of the Mountains that divide Italy from France, in an Arch erected in Honour of Augufius Caefar; in the Arch of Pola a City of Dalmatia, and in the Amphitheatre in Rome in the Ionick and Corintbian Orders, in all which Edifices the Pedeftal is one fourth of the height of the Column, as I obferved in the Corinthian Order. In Verona, in the beautiful Arch called di Caftel Vecchio, the Pedeftal is one third of the height of the Column, as 1 have made it in the Compofite. All thefe various kinds of Pedefals are very beautiful, and bear the moft juft Proportion to the other Parts. By the Word Poggio, which Vitruvius mentions in his fixth Book, where he fpeaks of Theatres, we are to underftand the fame as Pe deftal, which he makes one third part of the Altitude of the Columns made to adorn the Theatre. But of thefe Pedefals that exceed one third of the Columns, there is an Example in the Arch of Conftantine in Rome, the Pedeftals being of two parts and a half the height of the Column. The Antients ufed to make the Bafe in almoft all their Pedeftals, twice the thicknefs of the Cymatium, as will be dhewn in my Book of Arches.

C н a p. XX.

Of the Errors and Abufes in Architecture.

HAving thus far laid down the feveral Ornaments of Architecture, i.e. of the five Orders thereof; fhewn the manner of making them, and given the Profils of their feveral Members, agreeable

ARCHITECTURE.

grecable to the Practice of the Antients; I think it not improper to take Notice in this Place of feveral Abufes, that were firft introduced by the Barbarians, and are ftill practifed; in order that the fudious in this Art may avoid them in their Works, and be able to know them in thofe of others. I fay therefore that Architecture, being as all other Arts an Imitation of Nature, will not for that Reafon, admit of any thing either oppofite or foreign to that Order and Harmony, which Nature obferves in all her Operations; whence the antient Architects, who firft began to make their Buildings of Stone, that till then had been of Timber, gave it for a Rule, that Colmmens fhould be thicker at the Bottom than at the Top; wherein they borrowed an Example from Trees, which are lefs at the Top, than at the Trunk and near the Roots. In like manner, as it is natural for thofe things on which any great Weight is laid, to fink down, under the Columns they put Bafes, which with their Torus's and Cavetto's, feem to be the Swellings caufed by the Burthen they fuftain: To the Cornice's they likewife added Trygliphs, Modilions, and Dentecles, to reprefent the Ends of thofe Foy/ts, that fupport the Cielings and Roofs. If we examine ferioully, we fhall find that the fame was obferved in all the other Parts; for which Reafon one cannot but difapprove of that Form of Building, which departing from thofe Rules that Nature herfelf points out, and that fimplicity which appears in all her Productions; form to themfelves a new kind of Nature, by deviating from all that is good, true and beautiful in Architecture. Wherefore, we muft not, inftead of Pilafters or Columns that are to fuftain any Burthen, place Cartouches, which are certain Scrolls that appear very difagreeable in the Eye of Judges; and fo far from adminiftring any Satisfaction or Pleafure to fuch as are not, gives them only a confufed Idea of Ar cbiteciure,
chitecture, and ferves only to put the Buiider to more Expence. For the fame Reafon, none of thefe Cartouches ought to come out of the Cornice; for it being requifite that all the Parts thereof fhould be made to fome end, and fhew as it were what it would be, if the whole Edifice had been framed of Timber; and as it is likewife natural, that a great Weight fhould be fuftained by fomething folid and ftrong enough to fupport it ; it is certain that thefe Cartouches would be altogether fuperfluous, fince it is impoffible that Foy/ts, or any Timber whatever, fhould perform the Effect the Cartouches reprefent; and as they are fuppofed to be flender and weak, I do not conceive how they can with any fhew of Reafon, be put under any thing grofs and weighty. But that which appears to me the greateft Abule of all, is the making of Fronti/pieces of Gates, Windows and Galleries, divided and open in the Middle, fince thefe Fronti/pieces were firft made to defend thefe parts of the Building from Rain, orc. Neceffity having taught the antient Architects to cover them, and to give them the form of a Roof; for which Reafon I think nothing can be more ridiculous, than to open that part, which was invented for no other end, than to fhelter the Inhabitants of the Hoilfe, and thofe who go into it, from Rain, Snow, Hail, and other Inclemencies of the Weather. And though Variety and Novelty fhould naturally pleafe all Men, yet they are not to be introduced in oppofition to the Precepts of Art, and the Dictates of Reafon; and indeed we find that the Antients in their feveral Inventions, never departed from any general and neceffiry Rules of Art, as I fhall thew in my Book of Antiquities. As for the Projectures of the Cornice and other Ornaments, it is no tmall Abufe to make them very great; becaufe when they exceed a juft and reafonable Proportion, particularly if they are in a clofe Place, they make it ftill clofer, and more difagreeable to the Eye, and frighteri
thofe
thofe who ftand under them, who think they are going every moment to fall upon their Heads. Nor ought we to be lefs careful to make the Cornices in a juft Proportion to the Columns; becaufe if great Cornices are placed over little Columns, or upon great Columns, little Cornices, the whole muft needs have a very unpleafing Afpect. Moreover, the feigning or fuppofing of the Columns to be compofed of feveral Pieces, and jointed together by certain Annulets and Garlands round them, that feem to keep them tight together, ought fo much the more to be avoided, fince the more folid and entire the Columns appear to the Eye, the better they perform that for which they were erected, which is to make the whole Edifice ftronger and more fecure. I might take Notice of feveral other Abufes of the fame Nature, as of fome Members in the Cornice which are made difproportionate to the reft, but thefe things may be eafily difcovered by what was before obferved, and what I mentioned in this place. It remains next to confider the difpofing of the particular and principal Parts of a Building.

C H a p. XXI.

Of Galleries, Entries, Halls, Rooms, and the manner in which they are to be contrived.

GAlleries were generally made in the fore or backfront of a Building, and are likewife placed in the middle of it if only one; or in the Wings if there are to be two Galleries. Thefe Galleries are ufeful on feveral Accounts; for walking, eating, Goc. and are made either large or finall, as conveniency, and the quality and greatnefs of the Edifice may require; but they fhould never exceed twenty Foot in breadth, nor be lefs than ten. Befides every Houfe that is built N
with Judgment, ought to have in the middle, and the principal Parts thereof, certain Places, with which all the other Parts of the Houfe have a Communication. Thefe in the lower Part of the Houfe, are ufually called Entries, and in the upper, Halls; and are as fo many publick Places. In thefe Entries Perfons attend, till fuch time as the Mafter of the Houfe comes out, in order to tranfact Bufinefs with him, or to pay their Compliments to him, and are, after the Galleries, the firft Places that prefent themfelves to thofe who enter into the Houfe. Halls ferve for the celebration of Weddings, Balls, Banquets, Plays and fuch like Diverfions, and for that Reafon mult be made much more fpacious than any of the other Apartments; and be fo contrived, that a great Company may be commodioufly entertained in them, and fee every thing that paffes. In the length of Halls, I never exceed twice their breadth; but the nearer they are to a fquare, the more beautiful and commodions they will be.

The Rooms muft be equally. diftributed on each fide of the Entry and the Hall, obferving that thofe on the Right Hand, correfpond, and be of the fame bignefs with thofe on the Left, by which means there will be a juit Harmony and Proportion in the feveral parts of the Building, and the Walls will be equally preffed by the Roof. For if the Apartments are made larger on one fide of the Building than on the other; in the former cafe they will eafily refift the Weight, becaufe of the thicknefs and folidity of the Walls; but in the latter they will be too weak, which will occafion great Inconveniencies, and at laft ruin the whole Fabrick. The moft beautiful Proportions in the defigning of Rooms are feven in Number; for cither they are made round, (which form is now very feldom ufed;) or fquare; or their length is the Diagonal of their Square ; or of one Square and a third; or a Square and a half; or a Square and two thirds; or laftly of two Squares.

Chap. XXII.

Of Floors or Pavements, and Cielings.

HAving thus feen the Form and Conftruction of Galleries, Halls and Rooms, we proceed to their Floors and Cielings. Floors are made either of Terazzo or Mortar, as at Venice, of Bricks, or of natural Stones. Thoie of Mortar are exceeding good which is made of Brick-Batts, fine Sand, Lime made of River-Pebbles, or of Paduan Stone, the whole well mist together. Thefe Floors muft be made either in the Spring or in the Summer, in order that they may be very dry. Brick Pavements are very beautiful and agreeable to the Eye, as well becaufe of the variety of Colours, which they borrow from the different kinds of Earth of which they are made, as from the different Shapes which may be given them. The Floors of Chambers are very feldom of natural Stone, they making them very cold in Winter; but they do very well in Galleries, and Apartments for publick Reception. We are to obferve that thofe Chambers upon the fame Story, muft have their Pavement level, and in fuch a manner, that the Threfholds of the Doors may not be higher than the reft of the Plan of the Rooms; and if any little Room or Clofet fhould not come up to that Height, the remainder muft be fupplied with a Mezonin or falfe Cieling. There are likewife feveral ways of making Cielings, for many like to have them of handfome and well-wrought Foy/ts; in which cafe we muft take Care that the diftance between the $\mathcal{F o y} / \mathrm{s}$, be once the thicknefs and a half of the faid Foyfs, for fuch a diftribution will make the Cieling very handfome, and fo much of the Wail will be left between the ends of the Yoy/ts, as is fufficient to fupport the Weight over it; but if they are made at a greater diftance
diftance they will look ill; and if at a leffer, they will divide as it were the upper Wall from the lower; and in cafe the Foy/ts fhould rot, or happen to be fet on fire, the upper Wall mult be ruined of courfe. Others are for having Compartments of Stucco-work, or of Timber; thefe they fill with Pictures, fo that they may be varioully adorned, which is the reafon why no fixed and determinate Rules can be given upon this Head.

C н a P. XXIII.

Of the Height of Rooms.

R$O O M S$ are made either with an arched or a flat Cieling; if with the latter, the height from the Floor to the Foyfts muft be equal to their breadth, and the Rooms over them muft be a fixth part lefs in height than thofe beneath. If the Rooms are to be arched, as they generally are in the firft Story, (this giving them a graceful Afpect, and making them lefs fubject to Fire, their height in fquare Rooms, is a third part more than the breadth of the Room. But in thofe whofe length exceeds their breadth, a height muft be fought proportionable to their length and breadth, which may eafily be found, by joining the two Lines of the length and breadth, and dividing the whole into two equal Parts, one of which will be the exact height of the Arch; as for Example; let $E C$ be the Place to be arched; add the breadth $A C$ to the length $A B$ and we have the Line $E B$; which being divided in-
 to two equal parts in the Point F, gives $F B$ the height required. Or if the Chamber to be arched be twelye Foot long and fix wide;
wide; add the two Numbers together, and the Sum is Eighteen, which divided by two, gives Nine; and this is the height of the Arch required.

Another height proportionable to the length and breadth of a Room is found in this manner. $B C$ being the Room to be arched; join the length to the breadth, and it gives the Line $B F$; this muft afterwards be divided into two equal parts at the Point E, which making a Center, defcribe thereon the Se-mi-Circle $B G F$; then continuing theLine $A C$, till it touches the Circumference of the Point $G, A G$ fhall be the height of the $\operatorname{Arch} B C$. The way to find it in Numbers is as follows.
 The length and breadth of the Room being given, a Number muft be found, that bears the fame proportion to the breadth, as the length does to it, which is done by multiplying the leffer Extreme by the greater, and the fquare Root of the Prodact will be the height. As for Example, Let the Place to be arched be nine Foot long and four Foot broad; the height of the Arch will be fix Foot; and the fame proportion that Nine has to Six, Six has to Four; that is the Se fquialtera Proportion. But it is to be obferved, that we cannot always find this height by Numbers.

Another height may be likewife taken, which though lefs, will notwithftanding be proportionate to the Room, and is as follows; having drawn the Lincs $A B, A C, C D$ and $B D$, reprefenting the length and bradth of the Room, and found the height thereof according to the firft Method, which will be $C E$, join it to $A C$; then draw the Line $E D F$, and prolonging $A B$, till it touches $E D F$ in the Point F;

the Line $B F$ fhall be the height of the Arch. But to find it in Num ${ }^{-}$ bers the Method is thus. Having by the length and breadth of the Chamber, found the height thereof according to the firft Method, which in the foregoing Example was Nine; firlt add together the length, breadth, and height, as in the Figure; then multiplying the Nine by Twelve, and afterwards by Six; fet the Product made by Twelve under Twelve, and the Product made by Six under Six; when this is done, multiply Six by Twelve, and fet the Product thereof, which is Seventy Two, under Nine; laftly, having found a Number that multiplied by Nine, produces Seventy Two, which in this Example would be Eight, I fay that eight Foot is the height of the Arch. Thefe feveral heights have this relation between themfelves, viz. that the firft exceeds the fecond, in the fame Ratio or Proportion that the fecond exceeds the third. Each of thefe heights may then be made ufe of, according to the conveniency they give for contriving; that feveral Rooms of different Dimenfions may be fo made, as to have all their Arches of an equal height, and be at the fame time in a juft Proportion. By this means the Chamber will look handfome, and be very commodious for the Floor above, which will be upon a level. There are other Proportions for the height of Arclies, which do not come under any Rules, and are therefore left to the Judgment of the Architect, to make ufe of them as Neceffity fhall require.

CHAP。

C н а p . XXIV.

Of the feveral kinds of Arches.

THERE are fix forts of Arches, viz. Croffed, Fafciated, Flat, (for fo thofe Arcbes which are but the Segment of a Circle, and are lefs than a Semi-Circle, are called) Circular, Grinded and ShellLike, all which are in height one third of the breadth of the Room. The four firft were ufed by the Antients, but the two laft are of modern Invention. Round Arches are made in fquare Chambers, and the manner of raifing them is as follows. In the Angles of the Room we leave certain Mutules, or Modilions, that fupport the Semi-Circle of the Arch, which in the middle is flat, but more circular the nearer it comes to the Angles. We have an Example of one of this kind in the Baths of Titus in Rome, part of which when I faw it, was moulder'd away. I have here given the Defigns of all thefe different Methods of arching, adapted to the various Figures of the Rooms.

С н a P. XXV.

Of the Meafures, or Proportions, of Gates, Doors, and Windows.

IT is impoffible to give any fixed and determinate Rules, for the height and breadth of the Gates of large Fabricks, nor for the Doors and Windows of Rooms; and that, becaufe that in making Gates, the Architect is obliged to fuit them to the Greatnefs of the Edifice; to the Quality of the Mafter, and the Conveniency of whatever is to go in or out of the fame. The Method I beft approve of is as follows; divide the Space from the Ground to the Superficies of the Foy fts into three parts and a half, as Vitruvius teaches Book 4. Chap. 6, two of which give to the height of the Void or Opening, and one to the breadth, lefs the twelfth of the height. The Antients ufed to make their Gates narrower at Top than at Bottom, as we fee in the Temple at Tivoli; and Vitruvius has given the fame Rule, probably becaufe it would give a greater folidity. The Gates and principal Doors muft be placed in fuch a manner, that an eafy accefs may be had to them from all parts of the Houfe. The Doors of Rooms muft not be more than three Foot wide, and fix and a half high; nor lefs than two Foot wide and five Foot high. In making the Openings for Windows, we muft obferve to make them in fuch a Proportion, as not to let too much, nor too little Light into the Room; and likewife not to make the Windows themfelves too clofe, nor too far diftant one from the other. In this cafe therefore a particular Regard is to be had to the Dimenfions of the Chamber, fince it is natural, that a large Room fhould receive much more Light than a fmall one; and if the Windows are made either lefs in Number,
or fimaller than is requifite, the Apartments will be dark; as on the contrary, if they are too large, or too many in Number, they will fcarce be habitable, becaufe of the great Quantity of Air they will let in, which will make them either very hot or very cold, in the different Seafons of the Year, unlefs they face fuch a fide of the Heavens, as is foft and temperate. For thefe Reafons the breadth of the Windozus muft not exceed a fourth part of that of the Room, nor be lefs than a fifth part; they muft have in height two Squares, and a fixth part of their breadth. And as in a Houfe, although it be compofed of feveral Rooms, (fome of which are large, fome finall, and others between both,) we yet are obliged to make the feveral Windows in the fame Story equal; in the meafure of the faid Windows, I regulate my felf by the Dimenfions of thofe Rooms, whofe length is two thirds more than their breadth, that is, if the breadth be eighteen Foot, the length muft be thirty, and I divide the breadth into four parts and a half, one of which I allow to the Opening of the Window, and two to the height, with a fixth part of the breadth, obferving the fame Proportion in all thofe of other Rooms. The Windows of the fecond Story, muft be a fixth part lefs, than the length of the Opening of thofe of the firft, and if there are more Stories, they muft diminifh in the fame Proportion. The Windows on the Right Hand muft anfwer to thofe on the Left, and thofe above be exactly perpendicular over thofe below; and in like manner the Doors muft be directly over one another, in order that the void may be over the void, and the folid over the folid; and laftly, they muft all be upon the fame level, by which means one may fee at once from one end of the Houfe to the other, which is very beautiful, and likewife cool in Summer, not to mention feveral other Conveniencies. . It is ufual for Strength, and in order that the Lintels or Architraves of the Doors and Windows may not be preffed by too great a Weight,

Palladiós

to raife certain Arches, generally called Flat Arches, that contribute very much to the duration of the Fabrick. The Windows, as has been already obferved, muft be as far diftant from the Angles, or Corners of the Building as poffible; for as that part was made to faften and bind together all the reft of the Fabrick, it mult not for that Reafon be open and weak. The Pilafters, or Fambs of the Doors and Windows, are not to be thicker than a fifth Part of the breadth of the Opening, nor lefs than a fixth. It remains in the next Place to fpeak of their Ornaments.

Chap. XXVI.

Of the Ornaments of Doors and Windows.

THE Manner how to beautify and adorn the Gates of Buildings may be eafily known, from the inftructions Vitruvius has given in the fixth Chapter of his fourth Book; from the Explanations and Defigns which the mof Reverend Barbaro has given to illuitrate that Chapter; and from what I my felf have already obferved and de/igned upon all the five Orders; but waving thefe Matters, I fhall only prefent my Reader with fome Profils of the Ornaments of the Doors and Windows of Chambers, according as they may be varied; and will fhew how to De/ign each Member with Grace, and to give it its due Projecture. The Ornaments of Doors and Windows are the Architrave, the Freeze and Cornice. The Architrave turns about the Door, and muft be as thick as the Jambs or Pilafters, which as I faid before muft not be leis than a fixth Part of the breadth of the Opening, nor more than a fifth; and the thicknefs of the Freeze and Cornice are taken from the fame Opening. Of the two following Inventions, the firft, i. e. the uppermoft, has thefe Meafures. The Architrave is divided into four Parts, three of which are for the height

ArChitecture.

height of the Freeze, and five for that of the Cornice. The Architrave is again divided into ten Parts; three whereof go to the firft Fafcia, four to the fecond, and the remaining three are fubdivided into five Parts; of thefe two are for the Regolo or Orto, and the remaining three for the Cima Reverfa, which is alfo called Cimatium; its Projecture is equal to its height. The Fillet projects lefs than half its Thicknefs. To defign the Cimatizm is as follows; a right Line muft be drawn from underneath the Fillet, to the upper Part of the fecond Fafcia; this Line muft be divided into two equal Parts, each of which is made the Ba/e of an Ifoceles Triangle, or that has two Sides equal; then placing the fixed Foot of the Compals, in the Angle oppofite to the Bafe, draw the Curve Lines, and they give the Cimatium abovementioned.

The Freeze is three fourths of the Arcbitrave, and is formed by the Segment of a Circle lefs than a SemiCircle, and with its Convexity or Swelling is perpendicular to the Cymatium of the Architrave. The five Parts that are given to the Cornice, are diftributed to its Members in manner following; one is allowed to the Cavetto with its Liffella, which is the fifth Part of the Cavetto, whofe Projecture is two thirds of its height; and to defign it an Ifoceles Triangle is drawn, whofe Angle C is the Center; fo that the Cavetto will be the Bafe of the Triangle. Another of the faid five Parts is given to the Ovolo, whofe Projecture is two thirds of its lreight, and is formed by drawing an Ifoceles Triangle, the Point H being its Center. The other three are fubdivided into feventeen Parts; eight of which are for the Corona with its Liftellas, of which that above takes one of the faid cight Parts, and that which is below and makes the Hollow of the Corona, has but a fixth Part of the Ovolo. The other nine are for the Cima Reita and its Fillet, which is one third of the faid Cima. To form it with beauty and juftnefs, the right Line $A B$ is drawn, which is
divided
divided into two equal Parts in the Point C; one of thefe two Parts is fubdivided into feven Parts, fix of which being taken in the Point \mathcal{D}, we afterwards defrribe the two Triangles $A E C$ and $C B F$, then fetting the fixed Foot of the Compa/s in the Points E and F, we defrribe the Segments of Circles $A C$ and $C B$, and they form the faid Cima Recta.

The Architrave of the fecond Invention, is in like Manner divided into four Parts, three of which are for the height of the Freeze and five for that of the Cornice. The Architrave is again divided into three Parts, two of which being fubdivided into feven, three thereof go to the firft Fafcia and four to the fecond: The third Part is fubdivided into nine Parts; two are for the Aftragal, and the other feven being again fubdivided into five; three are allowed to the Cymatium or Ogee, and two to the Fillet. The height of the Cornice is divided into five Parts and three fourths, one of which being fubdivided into fix; five of them are given to the Bedmoulding over the Freeze, and the other to the Liftella. The Projecture of the Bedmoulding is equal to its height, as is that of the Li/fella. One is allowed to the Ovolo, whore Projecture is three fourths of its height. The Gradetto or Fillet over the Ovolo is the fixth Part of the Ovolo, and projects juft as much. The other three Parts are fubdivided into feventeen; eight are for the Corona, whofe Projecture is one third more than its height, the other nine being fubdivided into four; three are given to the Cymatium, and one to the Fillet: The three remaining are fubdivided into five Parts and a half; of one whereof the Gradetto or Fillet is made, and of the remaining four and a half the Cymatium over the Corona. The Projecture of this Cornice is equal to its height.

Members of the Cornice of the firft Invention.
I. Cavetto.
N. Cymatium.
K. Cuolo.
o. Fillet.
L. Corona.

Members

Members of the Architrave.
P. Ogee or Cima Rever- S. Convexity or Sivelling of the Freeze.
Q. Firft Fafcia.
V. Second Ea/cia.
R. Orlo or Fillet.
T. Part of the Freeze that goes into the Wall.

By the Members here fet down, thofe of the fecond Invention may be eafily known.
In the two following Inventions, the Architrave of the firft marked F, is in like manner divided into four Parts, whereof three and a fourth go to the height of the Freeze, and five to that of the Cornice. The Architrave is again divided into eight Parts, of which five are for the Fafcia, and three for the Cymatium, which is again fubdivided into eight Parts; three of which go to the Ogee, three to the Cavetto, and two to the Fillet. The height of the Cornice is divided into fix Parts; two of which go to the Cyma Recta and its Fillet, and one to the Ogee. This Cima is again fubdivided into nine Parts, eight of which are for the Corona and its Gradetti or Liftellas. The Aftragal over the Freeze has but a third of one of the faid fix Parts, and that which is left between the Corona, and the Aftragal, is given to the Cavetto.

In the other Invention, the Architrave marked H, is divided into four Parts, three and a half of which are for the height of the Freeze, and five for that of the Cornice. The Architrave is divided into eight Parts, five whereof go to the Fafcia, and three to the Cyman tium. The Cymatium is divided into feven Parts; one of which is for the Afragal, and the reft are again fubdivided into eight Parts; of which three go to the Cima Reverfa, three to the Cavetio, and two to the Fillet. The height of the Cornice is divided into fix parts and three fourths; three are given to the Ogee, the Dentile, and the Ovolo. The Ogee projects juft as much as its thicknefs; the

Dentile have two thirds of its height, and the Ovolo three fourths; of the three fourths, the Ogee between the Cymatium and the Corona is made, and the other three parts are fubdivided into feventeen; nine are for the Cymatium and the Fillet, and eight for the Corona. The Projecture of this Cornice, as thofe abovementioned, is equal to its thicknefs.

C н а p. XXVII.

Of Chimnies.

THE Antients ufed to heat their Apartments in the following Manner. They built the Cbimnies in the middle, with Columns or Confoles to fupport the Architraves, over which the Piramidal Funnel was fixed, and through this the Smoak was conveyed. One of thefe kind of Chimnies was to be feen at Baia, near Nero's $\bar{P} i f$ cina or Filh-Pond, and another not very far from Civita Vecchia. But if there were to be no Chimnies, they then made in the thicknels of the Wall certain Tubes or Pipes, through which the heat of the Fires made under thofe Cbambers afcended, and iffiued out through certain Vents or Mouths, at the Top of the faid Tubes or Funnels. The Trenti, (a Vicentine Family) ufed to cool the Rooms of their Villa at Cofloza during the Summer, much after the fame Manner. For there are in the Hills on which that Villa ftands, feveral deep Caverns, called by the Inhabitants of the Place Covali, that were formerly Quarries. Thefe I believe Vitruvius means in his fecond Book, where treating of Stones, he fays that in Marca Trevigiana a kind of Stone is dug that may be fawed like Timber. In thefe Caverns certain very cool Winds are generated, which thefe Gentlemen convey to their Houfes through certain fubterraneous Paflages, called by them V entidotti or Wind-Pipes; and by means of Funnels like to thofe abovementioned, they
they aftert:ards let thefe refrefhing Winds into every Room of the Houfe; opening and fhutting thofe Paffages at Pleafure, to take more or lefs Air, according to the Seafons. And although this fingular Conveniency renders this Place very remarkable, yet that which makes it fill more fo, and worthy of being feen, is another Place called il Carcere de Veniti, or the 'Prifori of Winds, which is a Chamber under Ground, contrived by the moft worthy Sig. Francefco Trento and by him called $E O L I A$, (as it were the Palace of the God Æolus) where many of thefe Ventidotti or WhindPipes difcharge themfelves; and to beautify it, and make it worthy of the Name, he has fpared neither Care or Expence. But to return to the Chimnies, the Moderns make them in the thicknefs of the Wall;, and raife their Funnels above the Roof, in order that they may carry off the Smoak quite away into the Air. But Care muft be taken not to make the Tubes either too wide or too narrow, for in the former Cafe, the Wind by having too much Room to play in, will by that means drive the Smoak downward, and not fuffer it to afcend, or go out free and undifturbed; and if they are made too narrow, the Sinoak, for want of a free Paffige, being fiffled, will revert or fly back again : For which Reafon in the Chimnies of Rooms, the Fumnels muft not be narrower than half a Foot, nor wider than nine Inches, nor above two Foot and a half in length. The Mouth of the Pyramid where it joins to the Funnel muft be made a little narrower, in order that the Smoak driving downward, it may keep it from going into the Room. Some make the Fumels crooked, in order, by their finuofity or winding, and the flrength of the Fire that forces it upward, to prevent the Smoak from reverting or flying back into the Room. The Funnels, or Openings at Top, through which the Smoak is to be conveyed, ought to be wide, and fet far from any combuftible Subftance. The Mantle-Tree over which the Pyramid of the Chimney is placed, muft be very neatly wrought, and not the leafl Ruefick;

Ruftick; this being proper only for very great Edifices, for the Reafons already mentioned.

С н А Р. XXVIII.

Of Stair-Cafes, and the feveral Methods of building them, and of the Number and Dimenfions of the Steps or Stairs.

IN placing of Stair-Cafes the utmoft Care ought to be taken, it being not a little difficult to find a Place convenient for them, that will not at the fame time prejudice the reft of the Building. We muft therefore affign them a proper Situation, to the end that they may not interfere with the other Parts of the Houfe, nor receive the leaft Inconveniency from them. Stair-Cafes muft have threeOpenings, the firft whereof is the \mathcal{D} oor by which we go up to them, which the lefs it is hid from thofe who enter into the Houfe, the more graceful it will appear; and I very much approve the placing of it in fuch a Manner, as before our coming at it, may give us a fight of the beft Part of the Houfe; for then the Building, though little in it felf, will appear very large; wherefore it muft be obvious, and eafy to be found. The fecond Opening is the Windows, neceffiary to light the Stair-Cafe; thefe muft be fituated in the middle and be made high, whereby they will diffufe the Light equally. The third Opening is the Landing-Place, through which we enter into the Apartments of the firft Story; and muft lead into handfome, fpacious, and well furnifhed Parts of the Houfe. Stair-Cafes to be complete, mult be light, large, and eafy to afcend; which will invite as it were People to go up them: To make them lightfome, they muft receive a ftrong Light, which, as was before obferved, muft be equally diffufed upon all Parts of them. They will be /pacious enough, provided they be not made to narrow in Proportion to
the largenefs and quality of the Fabrick; buit they muft never be narrower than four Foot, to the end that when two Perfons meet upon them, there may be Room enough for them to pafs. They will be convenient with refpect to the whole Building, if Arches large enough to hold Goods, orc. are made under the Steps; and if they are made wide, and of an eafy Afcent, it will be more convenient to thofe who go up and down; for which Reafon their tread muft be double their height. The Steps are not to be more than fix Inches fteep; and if they fhould be made fomething lefs, particularly if the Stair-Cafes are long, and have no Landing-Places, it will render them ftill more commodious, becaufe they will tire lefs, by not obliging one to lift the Foot fo high; but then they muft not be lefs than four Inches fteep. The breadth of the Steps muft not exceed one Foot and a half, nor be lefs than a Foot. The Antients in the Steps of their Stair-Cafes, always made their Number odd; in order that having begun to afcend with the Right Foot, they might end with the fame, which they looked upon as a good Omen, and a mark of more religious Refpect, when they entred into their Temples. However, eleven or thirteen Steps at moft will be fufficient to a flight; and if when we are got fo far, we muft ftill go higher, then a Landing-Place muft be made, as well for the eafe of fuch Perfons who may be either weary or tired; as in cafe any thing fhould happen to fall from above, thereby to ftop it, and prevent its rolling any lower. Stair-Cafes are either made frait or winding. The former may be divided into two Branches, or Pa/fages; or elfe Jquare which turn in four Branches. To make thefe, the whole Space muft be divided into four Parts; whereof two mult be given to the Steps, and the other two to the Void in the middle, whence the Stair-Cafe would receive the Light, in cafe it were left open. They may be made with the Wall inward, and then the Wall it felf is inclofed in the two Parts which are given to the

Steps, but there is no neceffity of cooing this. There two kinds of Stair-Cafes were invented by S. Lewis Cornaro, a Nobleman of a fuperior Genius, as one may judge by the $\mathcal{D e} e$ figns he drew of a very beautiful Gallery, and of a magnificent Palace which he built at Padua for himfelf to refide in. Winding-Stairs, which are alfo called Cockle Stairs, are fometimes made Circular, and fometimes Eliptical; at other Times with a Colunn, or Newel in the middle; or open, efpecially if there be little Room, becaufe they take up lefs Space than the /trait; but they are not quite fo eafy to aficend. Thofe which are open in the middle are found to be handfome, not only from their receiving the Light from above, but becaufe that whoever is at the Top of the Stair-Cafe, may fee, and be feen by all thofe who go up and down them.

Thofe which wind round a Newel are made in the following manner: The Diameter being divided into three Parts, two are given to the Steps and one to the Nequel, as in the Def/ign marked A; or the Diameter fhall be divided into feven Parts, whereof three muft be given to the Newel in the middle, and the remaining four to the Steps, which has been exactly obferved in the Stair-Cafe of the Pillar of Trajan: And if the Stair-Cafes are made Circular as in the Defign B, they will look extremely beautiful, and be of a greater length than if they had been made ftrait. But in open Stair-Cafes, the Diameter is divided into four Parts, two whereof are for the Steps, and two for the Space in the middle.

Befides the feveral kinds of Stair-Cafes commonly made, the ingenions Mark Anthony Barbaro, a Venetion Gentleman, hath invented another fort of Winding Stair-Cafe, which is wonderfully well fuited to narrow Places. This has no Nequel in the middle, and as the Stairs are Circular, they become by that means very long.

It is divided in the fame manner as that before mentioned.

Eliptical

F. $5 \cdot 6$

Eliptical Stair-Cafes are divided in the fame Manher as the Circular, and are very beautiful and graceful, becaufe all the Windows and \mathcal{D} oors are at the head, and in the middle of the Elip/sis, and thefe are very commodious. I my felf have made one of this lort, which is open in the middle, in the Monaftery della Carita', or of Charity, in Venice, with very good Succefs.
A. Winding Stair-Cafe, with a Newel in the Middle.
B. $\begin{aligned} & \text { with a Newel and Circh- } \\ & \text { cular Steps. }\end{aligned}$ C. open in the Middle.
D. _open in the Middle, and with Circular Steps.
E. ElipticalStair-Cafe, with a Newel in the Middle.
F. without a Neivel.
G. Strait Stair-Cafe, with the Wall on the infide.
H. _____ without a Wall.

Another beautiful kind of Winding Stair-Cafe, was made by order of the magnanimous Monarch, Francis the Firft, King of France, at Chambor, in a Palace built in a Wood, which Stair-Cafe is as follows. There are four Stair-Cafes, with four Entrances to them, riz. one to each, which go up the one over the other in fuch a manner, that being made in the middle of the Building, they may ferve for four Apartments; fo that the Inhabitants of one Stair-Cafe, need not go down thofe of the other; and being open in the middle, they all fee one another go up and down Stairs, without incommoding one another. As this Invention is new and beautiful, I have inferted a Defign thereof, and marked the feveral Stair-Cafes with Letters in the Plan and Profil, purpofely to fhew where each of them begins, and how they go up.

There are alfo in the Portico's of Pompey at Rome, in the Way that leads to the fews Quarter, three

Winding Stair-Cafes of a very beautiful Invention; for being placed in the middle of the Edifice, whence it would have been impoffible for them to receive any Light but from above, they were fet upon Columns; to the end that the Light might be diffufed equally on all Parts. In imitation of which Bramante, a moft excellent Architect in his Time, made one in the Belvidera, but without Steps, and compofed it of the four following Orders, viz. the Dorick, Ionick, Corintbian and Compofite. This kind of Stair-Cafe is made by dividing the whole Space into four Parts; two whereof are for the void in the middle, and one for each fide of the Steps and Columns.

Several other forts of Stair-Cafes are to be feen_in antient Edifices, as Triangular, of which kind are thofe by which we go up to the Cupola of Santa Maria Rotunda, that are open in the middle and receive the Light from above. Thofe of the Church of Santo Apoftolo in the fame City, near Monte Cavallo, are alfo very magnificent; thefe Stair-Cafes which were double, have been imitated by feveral Architects; they led to a Temple fituated at the Top of the Mountain, as I fhall fhew in my Book of Temples; and this is the laft Defign of this kind of StairCajes.

C hap. XXIX.
 Of Roofs.

HAving carried the Walls as high as they are to go, made the Vaults, laid the Foyfts of the Floors, brought up the Stair-Cafes, and in a Word done all thofe Things of which we have already fpoKen; we are in the next place to raife the Roof, which as it embraces every part of the Building, and with its weight preffes the feveral Walls equally, is by that means a kind of Band. to the whole Work; and ferves not only to fhelter fuch as dwell in the Houfe,

Houfe, from Rain, Snow, the fcorching Rays of the Sun, and the moift Vapours that rife in the Night; but is alfo of great advantage to the whole Building, by carrying off the Rain from the Walls, which though fuppofed to be but of little Prejudice to the Building, will neverthelefs, in procefs of Time, be found to be very detrimental to it. Vitruvius tells us, that in the Infant Ages of the World, Men made the Roofs of their Houfes flat, when afterwards finding that this did not fhelter them from Rains, neceffity obliged them to raife them in the middle, and make them with a Slope. There Roofs muft be made more or lefs fhelving, according to the Climate. Wherefore in Germany, by reafon of the great quantity of Snow that fails there, the Roofs are made very acute or fharp, and are covered with Shingles, which are little thin Pieces of Wood; or elfe with very thin Tiles, for otherwife they would be crufhed by the weight of the Snow. But thofe who live in mild and temperate Climates, fhould raife their Roofs with Beauty and Elegance, and to fuch a height, that the Rain may eafiy run off. Therefore the breadth of the Place to be rooffed, mult be divided into nine Parts, two of which thall be the Pitch; for if it were made of one fourth of the breadth, the Roof would be too acute, fo that the Tiles would hardly cleave; and if they were made but of a fifth Part, the Roof would be too flat, by which Means it would be too much preffed by the fuper-incumbent weight of the Tiles, Sbingles and Snows. Gutters are generally made round the Houfe, into which the Water falling from the Tiles, is carried off by Spouts at a great diftance from the Walls. The Gutters ought to have a Foot and a half of Wall over them, which will not only keep them in ftronger, but alfo preferve the Timber in the Roof, from any Damage that might otherwife be occafioned by the Rains.

There

There are various Methods of framing the Timber in the Roof; but when the middle Walls fupport the $\mathcal{F o y} / t s$, they are eafily raifed: I very much approve of this Method, becaufe the outward Walls are thereby very little preffed, and alfo that in cafe the end of any Foyfs fhould happen to rot, the Roof would be in no manner of Danger upon that Account.

$$
\begin{aligned}
& 4187 \\
& 2 \mathrm{MH}^{4} \\
& +854
\end{aligned}
$$

SPECIAL $89-B$

[^0]: (*) Defigns wherein one Colour only is employed, and the Lights and Shades difpofed on a Gold or Azure Ground, and is generally an imitation of Bafo Relievo.

