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Resolving the phylogeny of sea turtles is uniquely challenging
given the high potential for the unification of convergent
lineages due to systematic homoplasy. Equivocal
reconstructions of marine turtle evolution subsequently
inhibit efforts to establish fossil calibrations for molecular
divergence estimates and prevent the accurate reconciliation of
biogeographic or palaeoclimatic data with phylogenetic
hypotheses. Here we describe a new genus and species
of marine turtle, Asmodochelys parhami, from the Upper
Campanian Demopolis Chalk of Alabama and Mississippi,
USA represented by three partial shells. Phylogenetic analysis
shows that A. parhami belongs to the ctenochelyids, an extinct
group that shares characteristics with both pan-chelonioids and
pan-cheloniids. In addition to supporting Ctenochelyidae as a
sister taxon of Chelonioidea, our analysis places Protostegidae
outside of the Chelonioidea crown group and recovers
Allopleuron hofmanni as a stem dermochelyid. Gap excess ratio
(GER) results indicate a strong stratigraphic congruence of our
phylogenetic hypothesis; however, the highest GER value is
associated with the phylogenetic hypothesis of marine turtles
which excludes Protostegidae from the Cryptodira crown
group. Ancestral range estimations derived from our phylogeny
imply a European or North American origin of Chelonioidea in
the middle-to-late Campanian, approximately 20 Myr earlier
than current molecular divergence studies suggest.
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1. Introduction

Recent studies have demonstrated that the incorporation of palaeontological data improves forecasts of
biodiversity responses to climate change [1–3]. Refining these predictions for any particular taxon
therefore relies upon a firm understanding of its evolutionary history. With an extensive fossil record
spanning more than 90 Myr, sea turtles (Chelonioidea) are the oldest living marine tetrapod lineage [4],
and with modern species being focal taxa for global conservation efforts, chelonioids provide a prime
model for this type of integrative approach to biodiversity risk assessment. Unfortunately, the
phylogenetic positions of many fossil chelonioids remain poorly justified, resulting in a lack of definitive
fossil calibrations for molecular divergence estimates [5]. The subsequent uncertainty surrounding the
evolution of chelonioids hinders efforts to produce well-resolved phylogenetic hypotheses that can be
coupled with marine geochemical proxies for palaeoclimatic shifts (e.g. C, Sr and O isotope records).

The most problematic group with regard to the composition of total group Chelonioidea is
Protostegidae [6]. Often recovered as highly derived chelonioids [7–9], the fossil occurrence of the oldest
protostegid, Desmatochelys padillai, pre-dates that of the earliest unambiguous non-protostegid total
group chelonioid, Toxochelys latiremis, by approximately 30 Myr [10,11]. The inclusion of the protostegids
into Chelonioidea also necessitates the existence of a nearly 50 Myr ghost lineage for the earliest fossil
chelydroid, as molecular evidence strongly supports a sister relationship between chelonioids and
Chelydroidea [12,13]. It has been argued that the recovery of protostegids as crown group chelonioids in
many phylogenetic analyses is the result of homoplasy due to the inclusion of characters tied to
convergent marine specializations in turtle character-taxon matrices and that protostegids represent an
earlier, distinct radiation of marine-adapted turtles [11,14]. More recent studies have indicated that
protostegids may be stem chelonioids [15,16], a scenario that would significantly reduce the implied
ghost lineages for the clades comprising the chelonioid crown group. The true relationship between
protostegids and crown chelonioids can only be resolved through the further refinement of turtle
character-taxon matrices and the inclusion of additional fossil chelonioids into global phylogenetic studies.

Here we describe a new genus and species of fossil chelonioid, Asmodochelys parhami, from the Upper
Campanian Demopolis Chalk (79–74.5 Ma [17]) of the Gulf Coastal Plain, USA. This new taxon is
included in an expanded phylogenetic analysis of turtles which indicates that Asmodochelys belongs to
the extinct Ctenochelyidae, a pan-chelonioid group characterized by a laterally serrated shell,
extensive costal and plastral fontanelles, and the presence of epineurals positioned at various intervals
along the neural series. Our analysis also recovers a novel phylogeny for marine turtles that, when
combined with stratigraphic and biogeographic evidence, supports a North American or European
origin of crown group Chelonioidea in the middle-to-late Campanian.
2. Material and methods
Three specimens of the new stem chelonioid are known, all from the Upper Campanian Demopolis
Chalk of Alabama and Mississippi, USA. Bayesian and parsimony phylogenetic analysis were used to
establish the phylogenetic position of the new taxon. Our matrix was constructed using a modified
version of the Evers & Benson [9] character-taxon matrix, which greatly expanded on previous
matrices [11,18–20] and samples marine turtles the most densely by far (see electronic supplementary
material for complete character list). The scorings and character definitions follow those of Evers &
Benson [9] with the following exceptions:

(1) The addition of six fossil species: Toxochelys latiremis, Ctenochelys stenoporus, Ctenochelys acris,
Prionochelys matutina, Peritresius ornatus, Euclastes wielandi and Asmodochelys parhami (see
electronic supplementary material for sources of character scoring; electronic supplementary
material, table S1).

(2) The creation of two new characters: ch. 203: the presence of epineurals; ch. 309: maximum width of
coracoid posterior process.

(3) Nine revised character definitions: ch. 55, ch. 65, ch. 93, ch. 103, ch. 119, ch. 212, ch. 213, ch. 314,
ch. 325.

(4) We rescore three characters forAllopleuron hofmanni (ch. 211, ch. 218, ch. 314), one character for Protostega
gigas (ch. 211), three characters for Lepidochelys olivacea (ch. 182, ch. 201, ch. 202), one character for
Caretta caretta (ch. 314), and two characters for Chelonia mydas, Lepidochelys kempii and Natator
depressus (ch. 201, ch. 202). See electronic supplementary material for sources of character scoring.
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Thesemodifications resulted in amatrix of 87 species and 347 characters (electronic supplementarymaterial,

data S1). The matrix was edited usingMESQUITE v. 3.6 build 917 [21]. Of the 347 total characters, 24 multistate
characterswere treated as ordered. Parsimonyanalyseswere conducted in PAUP� v. 4.0a build 165 [22] using
the heuristic search algorithmwith 10 000 random addition sequence replicates of starting trees obtained by
simple stepwise addition and the tree bisection and reconnection method of branch swapping. Characters
scored as multiple states for any species were treated as polymorphisms, and branches with a maximum
length = 0 were set to collapse. Bremer decay index (BDI) values were calculated by retaining trees with
sequentially higher step values than the most parsimonious trees (MPTs) until all but the most well-
supported bipartitions (BDI≥ 6) had collapsed. Bayesian analysis was conducted in MRBAYES v. 3.2 [23]
using a general-time reversible substitution type and an Mk model of rate variation with ascertainment
bias correction. Model parameters, posterior distribution and branch lengths were estimated with Markov
chain Monte Carlo, using four chains of 10 000 000 generations with sampling every 1000 generations.
Analyses were run until the average standard deviation of the split frequencies was below 0.01. The first
25% of samples were discarded as burn-in. In both the parsimony and Bayesian analyses, Proganochelys
quenstedti was set as the outgroup and the positions of extant species were constrained using a molecular
‘backbone’ (electronic supplementary material, figure S16) derived from a global phylogenomic analysis
of turtles [13]. To reduce the potential for chimaeric operational taxonomic units (OTUs), supraspecific
OTUs were excluded. Phylogenetic nomenclature follows Joyce et al. [24]. Ancestral biogeographic areas
of nodes within Pan-Chelonioidea were inferred using probability calculations following the rules of
multiplication and addition (see electronic supplementary material). Ancestral area probabilities were
successively calculated from the tip to the base of the strict consensus tree derived from weighted
parsimony analysis. Ancestral areas for each species-level taxonomic unit were restricted to the continent
where the oldest material confidently assigned to that species was recovered.
3. Systematic palaeontology
Testudines [25]
Cryptodira [26]
Pan-Chelonioidea [24]
Ctenochelyidae [27]
Asmodochelys parhami n. gen. et sp.
urn:lsid:zoobank.org:act: 147C2B3C-F3A2-4818-879E-452ADE2C4DE3
urn:lsid:zoobank.org:act: EFADE61D-7F5E-4074-8B5F-D0AC7D470E4F

3.1. Etymology
Asmodo from the Greek ‘Asmodaios’, the horned deity and Master of the Sea who, according to Islamic
legend, was entombed in stone on the ocean floor [28] and chelys from the Greek word for turtle. The
species name honours James F. Parham, former Curator of Palaeontology at the Alabama Museum of
Natural History for his contributions to Alabama palaeontology and the study of marine turtle evolution.

3.2. Holotype
MSC (McWane Science Center, Birmingham, AL) 35984. A single individual preserving the nuchal, four
neurals, two epineurals, eight left peripherals, five right peripherals, a partial first suprapygal, two
costals of the left side, two costals of the right side, approximately half of the left hyoplastron and one
cervical vertebra (figure 1).

3.3. Type locality and horizon
Town of Alberta, Wilcox County, AL, USA. ‘Muldrow’ Member of the Demopolis Chalk, Upper
Campanian (see electronic supplementary material for detailed locality information).

3.4. Paratypes
MMNS (Mississippi Museum of Natural Sciences, Jackson, MS) 3958, site MS.53.017, Oktibbeha County,
Mississippi, USA, ‘Muldrow’ Member of the Demopolis Chalk, Upper Campanian. This specimen
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Figure 1. Representative elements and composite reconstruction of Asmodochelys parhami. (a) Nuchal, first and second left
peripherals, and first right peripheral (MSC 35984) in dorsal view. (b) Third right peripheral (MSC 35984) in dorsal view. (c)
Second right costal (MSC 35984) in dorsal view. (d,e) Fourth neural and second epineural (MSC 35984) in dorsal (d ) and left
lateral (e) views. ( f ) First and second neural (MSC 35984) in dorsal view. (g) Fourth right costal (MSC 35984) in dorsal view.
(h,i) Fifth right peripheral in posterior (h) and dorsal (i) views. ( j,k) Fourth left peripheral (MSC 35984) in dorsal ( j ) and
posterior (k) views. (l,m) Seventh right peripheral (MSC 35984) in posterior (l ) and dorsal (m) views. (n,o) Fifth left peripheral
(MSC 35984) in dorsal (n) and posterior (o) views. ( p,q) Sixth neural and third epineural (MSC 35984) in dorsal ( p) and right
lateral (q) views. (r,s) Sixth left peripheral (MSC 35984) in dorsal (r) and posterior (s) views. (t) Fifth left costal (MSC 35984)
in dorsal view. (u) Seventh neural (MSC 35984) in dorsal view. (v) First suprapygal (MSC 35984) in dorsal view. (w) Sixth right
costal (MSC 35984) in dorsal view. (x) Suprapygals and pygal (MMNS 3958) in dorsal view. ( y) Tenth left peripheral (MMNS
3958) in posterior view. (z) Eighth–tenth right peripherals (MMNS 3958) in dorsal view. Dashed lines represent scute sulci.
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preserves two left peripherals, one neural, one epineural, both suprapygals and a complete pygal

(figure 1). MSC 40935, site ASu-14, Sumter County, Alabama, USA, Bluffport Marl Member of the
Demopolis Chalk, Upper Campanian. This specimen consists of one complete costal, three medial
peripherals, four posterior peripherals, three neurals, two epineurals, the first suprapygal and the left
xiphiplastron (electronic supplementary material, figure S7; see electronic supplementary material for
additional locality and specimen information).

3.5. Diagnosis
Thick shell with a deep nuchal embayment; nuchal fontanelles absent; horn-like protuberance on the
anterodorsal edge of the first peripheral; concave dorsal plates of peripherals 4–8 resulting in the
formation of a pronounced peripheral gutter; extreme reduction in height and width of posterior
peripherals; anterior and posterior neurals wider than long; four neural keel elevations with epineurals
dorsal to the junctions of neurals 1–2, 2–3, 4–5, 6–7; single keel elevation dorsal to the first suprapygal
terminating immediately anterior to the second suprapygal; dorsal facet of the pygal considerably longer
than the ventral facet; distinct notch at the posterior margin of the pygal.

3.6. Comparative diagnosis
Asmodochelys parhami can be distinguished from all previously described ctenochelyid turtles by the
following carapacial characteristics: (i) The nuchal embayment of Ctenochelys and Peritresius receives only
minimal contributions from the medial margins of the left and right first peripheral, whereas more than
half of the nuchal embayment of Asmodochelys is formed by the first peripherals. (ii) Nuchal fontanelles
are present in Ctenochelys, Prionochelys and Peritresius, whereas these features are absent in Asmodochelys.
(iii) The lateral peripherals of Asmodochelys are widest at the level of the suture between the second and
third costal plate differing from the condition observed in Ctenochelys and Prionochelys where the
peripherals are widest along the posterior edge of the carapace. (iv) The epineural dorsal to the contact
between the first and second neural of Asmodochelys is absent in Ctenochelys, Prionochelys and Peritresius.
(v) Additional characters from the diagnosis are unknown in Ctenochelys, Prionochelys and Peritresius
such as the extreme reduction in the size of the posterior peripherals, the horn-like protuberance on the
anterodorsal edge of the first peripheral, and the varying length of the dorsal and ventral facets of the pygal.

4. Description
The carapace of Asmodochelys is strongly cordiform and is much longer than wide (maximum carapace
length =∼1.0–1.5 m) with the widest point being at the level of the fifth peripheral (figure 1). Due to the
posterior convexity of the nuchal, the suture between the nuchal and first peripheral lies at a 100°–110°
angle with the sagittal midline of the carapace, differing from other known ctenochelyids, including
Ctenochelys [29], Prionochelys [10,27] and Peritresius [30]. A raised pedestal preserved on the visceral
surface of the nuchal probably served as an articulation site for the dorsal process of the eighth cervical
vertebra, a trait proposed as an apomorphy of pan-chelonioids [14,31]. The nuchal bears a slight ridge
running along the dorsal midline beginning immediately posterior to the posteromedial edge of the
cervical scute which increases in camber as it progresses posteriorly towards the sutural articulation with
the first neural. The costo-nuchal sutures span the majority of the posterolateral margins of the nuchal
and extend anterolaterally, terminating immediately posterior to the contact between the nuchal and first
peripheral. Based on the extent of the costo-nuchal sutures and morphology of the articulation between
the nuchal and first neural, there is no indication that nuchal fontanelles were present, differing from the
condition seen in other ctenochelyid marine turtles (e.g. Ctenochelys, Prionochelys and Peritresius) where
these fontanelles are found in all ontogenetic stages [27]. The cervical scute of Asmodochelys roughly
resembles that of Ctenochelys stenoporus [29], forming an irregular heptagonal polygon. However, the
cervical scute of Asmodochelys is proportionally longer and covers a much larger percentage of the dorsal
surface of the nuchal. The nuchal bears a pronounced medial embayment which extends laterally
approximately half of the total width of the nuchal and receives significant contributions from the
anteromedial edge of both the left and right first peripherals (figure 1a) similar to the condition observed
in Allopleuron hofmanni from the Maastrichtian of Europe [32]. The anterior margin of the first peripheral
bears a dorsally oriented, horn-like protuberance (a distinctive character of Asmodochelys) that forms
the lateral-most extent of the nuchal embayment (figure 1a). The presence of this feature is unknown
among the Late Cretaceous chelonioids of North America but has been noted to a lesser extent in



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:191950
6
Al. hofmanni. The dorsolateral and ventral surfaces of the medial peripherals are widely separated

(figure 1h–o,r,s), forming a high, proximally facing sulcus which runs from the posterior half of the third
peripheral to the anterior half of the eighth, resembling the condition observed in Peritresius [30]. Dorsally,
the anteromedial peripherals bear a ventrally convex trough which terminates on the dorsal surface of the
eighth peripheral. The dorsoventral height and mediolateral width of the posterior peripherals are greatly
reduced (figure 1y,z), similar to those of Al. hofmanni [32]. The reduction in width of the posterior
peripherals distinguishes Asmodochelys from other ctenochelyids such as Ctenochelys and Prionochelys,
whose peripherals widen posteriorly along the series and continue to increase in width during ontogeny.
Based on the estimated size of the carapace and the presence of laterally expanded costal plates
(figure 1c,g,t,w) in both of the most complete specimens of Asmodochelys (MSC 35984 and MSC 40935),
it is likely that these specimens represent mature individuals and that the relative proportions of the
peripheral series would not differ significantly in a more ontogenetically advanced individual.

The neural series of Asmodochelys comprises nine neurals and four epineurals (figure 1d–f,p,q,u).
The morphology of the generally hexagonal, dorsally keeled neurals of Asmodochelys resembles that of
the pan-chelonioids Ctenochelys and Prionochelys but differs in that the width of each neural often equals
or exceeds its length, similar to those of Peritresius ornatus [30]. Vertebral scale sulci are visible on the
dorsal surface of neurals two and six (figure 1f,p). The neurals of Asmodochelys lack the distinctive dermal
sculpturing of Pe. ornatus although the external surface is marked by numerous vascular innervations,
though somewhat less prominent than those observed in both modern cheloniids [33] and on the costal
plates of an unnamed Oligocene pan-cheloniid [34]. In ventral aspect, the neurals of Asmodochelys
possess an extensive layer of notably osteoporotic trabecular bone. The epineurals dorsal to the neural
series form four distinct elevations along the midsagittal keel of the carapace (figure 1), somewhat
similar to the epineurals of Ctenochelys and Prionochelys. However, the presence of an epineural between
the first and second neural distinguishes Asmodochelys from other ctenochelyids.

The first suprapygal is roughly triangular, tapering in width posteriorly (figure 1v,x), resembling the first
suprapygal ofPeritresius. The first suprapygal ofMMNS 3958 bears a dorsally rounded keel elevation possibly
comprising one or more episuprapygals (a feature observed in other ctenochelyids), but due to poor
preservation, this arrangement cannot be determined with any confidence. The second suprapygal is much
narrower than the first and contacts the pygal posteriorly along a broadly concave transverse suture
(figure 1x). The dorsal plate of the pygal is remarkably long (approx. 1.5 times the length of the ventral
plate; electronic supplementary material, figure S5), differing from the equally long ventral and dorsal pygal
surfaces of the Santonian-Campanian pan-chelonioids (e.g. Toxochelys, Ctenochelys) and the equally short
pygal surfaces observed in the predominantly Maastrichtian pan-chelonioids such as Allopleuron and
Peritresius. Overall, the carapacial elements of Asmodochelys are remarkably robust in their general
construction owing primarily to a 3–5 mm thick layer of dense external cortical bone (electronic
supplementary material, figure S8). The reduction of the compact external cortex and the homogenization
of cortical and interior trabecular bone found in Ctenochelys and Toxochelys [33] is absent in Asmodochelys.
The compact, well-vascularized external cortex of Asmodochelys more closely resembles the condition seen in
Al. hofmanni and may be indicative of a near-shore marine ecology [33,35]. One procoelous cervical vertebra
is preserved with MSC 35984 (electronic supplementary material, figure S6) bearing a pronounced
longitudinal keel along the ventral surface of the centrum, a previously proposed synapomorphy of
pan-chelonioids [11].
5. Phylogenetic analysis
The phylogenetic position of Asmodochelys was tested with both parsimony and Bayesian phylogenetic
inference. The unweighted parsimony analysis retrieved 281 MPTs with a length of 1595 steps,
consistency index of 0.29, retention index of 0.67 and homoplasy index of 0.73. The strict consensus of
these MPTs places Asmodochelys as a basal member of Ctenochelyidae with Ctenochelys, Prionochelys and
Peritresius, together forming a sister clade to Chelonioidea (electronic supplementary material, figure
S17). Ctenochelyidae is supported by five unambiguous synapomorphies: (i) a moderate contribution to
the upper triturating surface by the palatine (ch. 55), (ii) shallow ridge on the ventral surface of the
vomer (ch. 65), (iii) a domed shape contribution of the vomer to palate roof (ch. 66), (iv) the presence of
epineurals (ch. 203), and (v) the lateral process of the humerus being slightly separated from the caput
humeri (ch. 325). Certain ctenochelyids have historically been recovered as sister taxa to Toxochelys on
either the stem of Chelonioidea [8,36] or within Pan-Cheloniidae [7,32,37–40]. Toxochelys was recovered
here as a stem chelonioid and sister taxon to the clade formed by Ctenochelyidae and crown group
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Figure 3. Stratigraphic fit of competing hypotheses for the arrangement of americhelydian lineages. (a) GER calculations for the
topology recovered by Evers & Benson [9]. The fossil occurrence of Eosphargis breineri is used as the maximum age constraint for
Pan-Dermochelys. (b) GER calculations for the topology recovered by Evers et al. [16]. The fossil occurrence of Eosphargis breineri is
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Chelonioidea. In contrast with many previous analyses [8,9,11,37,41,42], Protostegidae is recovered as a
clade of stem chelonioids supported by five unambiguous synapomorphies: (i) the presence of a medial
contact of the palatines (ch. 62), (ii) pterygoids contact the medial edge of the mandibular condyle facet
(ch. 103), (iii) strongly serrated lateral and medial margins of the plastron (ch. 237), (iv) expansion of the
lateral process onto the ventral surface of the humerus (ch. 330), and (v) lateral process of the humerus
with prominent anterior projection (ch. 331). Our analysis also recovers Allopleuron as a basal member of
Pan-Dermochelys, the sister clade to Pan-Cheloniidae, that together form Chelonioidea. Pan-
Dermochelys is supported by three unambiguous synapomorphies: (i) contact between the jugal and
squamosal (ch. 25), (ii) no contact between the postorbital and quadratojugal (ch. 42), and (iii) an absence
of plastral scutes (ch. 257). Chelonioidea is supported by five unambiguous synapomorphies: (i) contact
between the parietal and squamosal (ch. 15), (ii) the absence of a parasagittal ridge on the palatal surface
of the pterygoid (ch. 104), (iii) rod-like rostrum basisphenoidale (ch. 138), (iv) vertical median ridge on the
anterior surface of the dorsum sellae (ch. 140), and (v) humerus with a V-shaped lateral process (ch. 329).

A growing body of evidence is available which suggests that implementing mild implied weighting
improves the results of cladistic analyses using parsimony [43–45]. To test the influence of implied
weighting, a second tree search was conducted using mild weighting with a k factor of 12. This
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analysis retrieved tree topologies very similar to those obtained in the unweighted analysis, with the only
exceptions being the removal of the macrobaenid Judithemys from the crown of Cryptodira and Solnhofia
being recovered as a member of Thalassochelydia (figure 2). As we use only a mild weighting and as the
placement of these taxa in the overall topology recovered by the weighted analysis is more consistent
with previous cladistic studies of Thalassochelydia [19,46] and Macrobaenidae [47], we consider the
weighted topology to be preferable. Additionally, branch support of clades recovered in the weighted
parsimony analysis, evaluated using Bremer support, were generally higher than those recovered in the
unweighted analysis. Bremer values higher than one were recovered for Angolachelonia (3), Protostegidae
(3), the clade formed by Toxochelys and more derived pan-chelonioids (5), Pan-Dermochleys (3) and
Chelonioidea (5).

Overall, the tree topologies recovered by the Bayesian analyses were similar to those of the parsimony
analyses, with Protostegidae outside of crown group Chelonioidea and Angolachelonia sister to a clade
consisting of Toxochelys latiremis and the more crownward members of Pan-Chelonioidea in the 50%
majority-rule consensus tree (electronic supplementary material, figure S18). However, the
relationships within Pan-Chelonioidea are somewhat less resolved, with the Cenozoic stem cheloniids
Puppigerus, Eochelone and Argillochelys forming a large polytomy. Peritresius martini is recovered as a
sister taxon to Allopleuron hofmanni on the stem of Dermochelyidae and the clade formed by Archelon
and Protostega is separated from the other members of Protostegidae. Support values are relatively
high, with more than 60% support for almost all resolved nodes.

Gap excess ratio (GER) values [48] were calculated to assess the stratigraphic congruence of
americhelyidan lineages within our preferred topology (figure 3c) relative to that of the marine turtle
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phylogenetic hypothesis of Evers & Benson [9] (figure 3a), Evers et al. [16] (figure 3b), and Joyce [14]

(figure 3d ). To calculate GER, we first subtracted the theoretical minimum sum of the ghost lineages
in a phylogeny purely based on stratigraphic occurrence (minimum gap =Gmin) from the implied
ghost lineages in an actual topology (minimum implied gap =MIG). We then subtracted Gmin from
the summed differences between the origination time of the oldest included taxon and every other
included taxon (maximum gap =Gmax). The first value was divided by the second and a ratio was
created by subtracting the resulting value from 1. A GER of 1 indicates the best possible fit
of topology and stratigraphic occurrence while a GER of 0 is indicative of the least congruent scenario
(=oldest taxon highly nested within the phylogeny). Our analysis recovered a high GER score despite
the odd recovery of the Late Jurassic thalassochelydians within Pan-Chelonioidea and the resulting
increase in the implied ghost lineages for Chelydroidea and Protostegidae. This result is primarily due
to the exclusion of Protostegidae from crown group Chelonioidea and the consequent reduction in the
implied ghost lineages for both Pan-Cheloniidae and Pan-Dermochelys. The position of Allopleuron in
our analysis supports the findings of Rabi & Kear [49] and further reduces the implied ghost lineage
for Pan-Dermochelys by replacing Eosphargis as the earliest stem dermochelyid. Of all the hypotheses
examined, the one that resulted in the highest stratigraphic congruence was that of Joyce [14], in
which protostegids are removed from the Cryptodira crown group. It should be noted, however, that
our examination of stratigraphic congruence was limited to only americhelydian lineages and that a
more global approach might yield different results.
191950
6. Discussion
Our phylogenetic analyses provide strong support for the placement of angolachelonians, protostegids
and ctenochelyids as stem chelonioids. The placement of protostegids as stem chelonioids supports the
conclusions of the most recent phylogenetic analyses of chelonioids [15,16] and is more congruent with
the fossil record than other recent hypotheses of marine turtle evolution while still supporting the
proposed singular origin of a pelagic ecology among non-pleurodiran turtles [9]. As almost all known
Late Cretaceous non-protostegid chelonioids are North American, the exclusion of protostegids from
crown group Chelonioidea resolves the biogeographic issues associated with the placement of
protostegids as derived dermochelyoids (figure 4). Furthermore, the diversification of non-protostegid
sea turtles during the Campanian took place following the extinction of most species of protostegid
[37]. This scenario supports the previously hypothesized pattern of ecological replacement following
the extinction of similarly adapted forms within the Pan-Chelonioidea lineage [50]. Our analyses
indicate that the youngest stem chelonioids are probably North American taxa (62.5% probability),
which partially supports the hypothetical biogeographic origin of crown chelonioids proposed by
both fossil [5,11] and molecular [12] studies of turtles. However, we calculate a 75% probability of a
European ancestral area for crown Chelonioidea. Despite this, the sister taxa relationship between
Allopleuron and Peritresius martini suggested by our Bayesian analysis means that we cannot rule out
the possibility that certain Late Cretaceous ctenochelyids from North America may be early stem
dermochelyids. Since these inferences are based entirely on the topology of the strict consensus tree
and sampled taxa, it is likely that the inclusion of additional Late Cretaceous and Palaeogene marine
turtles in future studies will dramatically alter interpretations of the ancestral areas of crown
Chelonioidea lineages.
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