
  

Creating a directory of extension and 
skin usability

Yaron Koren
MediaWiki Users and Developers Conference

Portland, Oregon, USA
April 17, 2024



  

Extensions on mediawiki.org, by status

0 500 1000 1500 2000 2500 3000

Archived
Beta
Experimental
Stable
Unmaintained
Unstable



  

Non-archived extensions on 
mediawiki.org, by status

0 100 200 300 400 500 600 700 800 900

Beta
Experimental
Stable
Unmaintained
Unstable



  

Skins on mediawiki.org, by status

0 10 20 30 40 50 60 70 80

Archived
Beta
Experimental
Stable
Unmaintained
Unstable



  

How can MediaWiki administrators know 
which of these (hundreds of) extensions 

and (dozens of) skins to install?



  

One option



  

Needed: a dedicated resource 
that will help people make this 

decision.



  

"Complete" implementation

“I have MediaWiki version ___ installed, on operating 
system ____ version _, with web server ____ version _, 

database system ___ version _, and PHP version _. I 
would like the wiki to do ______. What is the set of 

extensions and skins I can install, and the commit ID 
and required libraries for each, that I can use for this 

purpose?”



  

Minimum implementation

“For the current LTS (long-term support) version of 
MediaWiki, running on the recommended PHP 

version and reasonable versions of MySQL, 
Apache and Linux (Debian or Ubuntu), what are 

the set of recommended skins and extensions, and 
the recommended commit ID and required libraries 

for each?”



  

The "OnWikimedia" template

Denotes which extensions and skins are used on one 
or more Wikimedia sites.



  

The "Used by" template

In use on mediawiki.org since 2022. Currently used for 
information on the following packages:
● BlueSpice
● Canasta
● Debian
● Open CSP
● semantic::core



  

The "Used by" template
...and the following wiki farms:
● Fandom
● Miraheze
● MyWikis
● ProWiki

● ShoutWiki
● Telepedia
● wiki.gg
● WikiForge



  

From bottom of “Timeless” skin page



  



  

Example: CodeMirror extension
● Written by Pavel Astakhov
● Allows for IDE-style editing of wiki pages.
● Used by 8 of the 13 packages and wiki farms, plus 

Wikimedia.
● In my opinion, the strongest current candidate for 

bundling within MediaWiki!



  

Example 2: CookieWarning extension
● Written by Florian Schmidt et al.
● Displays the now-ubiquitous “This site uses 

cookies” popup warning
● Used by 8 of the 13 packages and wiki farms
● Another strong bundling (or maybe even 

integration) contender.



  

Other unexpectedly popular extensions, 
discovered via "Used by":

● Arrays (8 of 13) 
● Loops (8 of 13)
● Maps (8 of 13)
● Page Forms (8 of 13)
● Semantic MediaWiki (9 of 13)
● Variables (10 of 13) 



  

Example 3: DynamicPageList extensions

● DynamicPageList (Wikimedia): 2 “Used by”, + 
Wikimedia

● DynamicPageList (third-party) (AKA DPL2): 0 “Used 
by”

● DynamicPageList3: 6 “Used by”



  

Should there be a public listing of 
extensions and their popularity?

● e.g., "Category:Extensions used in 6 of the 
cataloged MediaWiki packages and wiki farms".

● Pros: Lets people see popularity at a glance
● Cons: The exact popularity is kind of random; could 

lead to "groupthink", i.e. extensions gaining 
popularity as a result of current popularity



  

Special case: Canasta
● In my (biased) opinion, the best MediaWiki package 

to use
● Complete, Docker-based solution
● Fully open source
● Consensus-based methodology for determing 

extension and skin inclusion



  



  

How to choose the best version (down to 
the commit ID) of an extension, or skin?



  

The Canasta approach
● For extensions bundled in with MediaWiki, just go with that 

exact code
● For WMF-maintained extensions, go with the branch for the 

current MW version (e.g., REL1_39), and the latest commit 
in that branch

● For other extensions that have version releases, go with the 
latest released version

● For all other extensions, go with just the latest commit



  

Okay, but what if this version of the 
extension contains bugs?



  

A word about bugs
● The sad truth of software: every piece of software 

that does something useful contains bugs
● Bugs in a MW extension can be inherent to the 

code, or appear in interaction with all the other 
"moving parts" (MediaWiki, LAMP stack, Docker, 
libraries, other extensions and skins)



  

So, what to do about bugs?
● Bugs can range in severity from "Add deprecation 

warnings in logs" to "Delete the entire database"
● Major bugs of course must be dealt with
● In the ideal case, a major bug has already been 

fixed in the extension - and upgrading to that later 
code solves the problem



  

If the bugs are still there...
...and they’re severe enough, there are three main 
options:
● Get the bug fixed in the extension code
● Apply a local patch
● Get rid of that extension



  

Case study: Maps not working with 
VisualEditor

Bug discovered by Pavel Astakhov, while running a 
Canasta-based Docker image
Submitted to the Maps extension GitHub repository, 
and committed by Jeroen De Dauw soon afterwards



  



  

Version of Maps was then updated in 
Canasta.



  



  

Current patches in Canasta

Currently, Canasta contains five patches, all 
related to Composer-based autoloading of 
SMW-related extensions.



  



  



  

Why have these changes not been 
added to the original extensions?

Still waiting.



  



  

What about non-major bugs?
There is a strong case for not trying to fix these in the 
standard release!
Every bug fix is an opportunity for additional bugs - 
both in the fix itself, and in any intermediate code 
changes that may have happened



  

Consistency is an important feature of 
packages

The fewer code changes are made, the more confidence 
users can have that it works as intended - since the code 
they are running will have been run by many others.
Any change to the code - including bug fixes - removes 
some of that confidence.
Thus, many bugs should simply wait for the next major 
release to be fixed.



  

Canasta YAML file



  

Meza has a similar approach (also YAML)



  

Most useful parts (“Phase 2”)
The most useful enhancements, beyond “minimum”, 
would be listing extensions and their versions for:
● Non-LTS MediaWiki versions
● Non-MySQL DB systems (i.e. PostgreSQL and 

SQLite)
● Specific feature needs (e.g. content publishing)



  

Questions / comments


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

