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Citation networks of scientific publications offer fundamental
insights into the structure and development of scientific
knowledge. We propose a new measure, called intermediacy, for
tracing the historical development of scientific knowledge.
Given two publications, an older and a more recent one,
intermediacy identifies publications that seem to play a major
role in the historical development from the older to the more
recent publication. The identified publications are important in
connecting the older and the more recent publication in the
citation network. After providing a formal definition of
intermediacy, we study its mathematical properties. We then
present two empirical case studies, one tracing historical
developments at the interface between the community detection
literature and the scientometric literature and one examining the
development of the literature on peer review. We show both
conceptually and empirically how intermediacy differs from
main path analysis, which is the most popular approach for
tracing historical developments in citation networks. Main path
analysis tends to favour longer paths over shorter ones, whereas
intermediacy has the opposite tendency. Compared to the main
path analysis, we conclude that intermediacy offers a more
principled approach for tracing the historical development of
scientific knowledge.
1. Introduction
Citation networks provide invaluable information for tracing
historical developments in science. The idea of tracing scientific
developments based on citation data goes back to Eugene
Garfield, the founder of the Science Citation Index. In a report
published more than 50 years ago, Garfield et al. [1] concluded
that citation analysis is ‘a valid and valuable means of creating
accurate historical descriptions of scientific fields’. Garfield also
developed a software tool called HistCite that visualizes citation
networks of scientific publications. This tool supports users in
tracing historical developments in science, a process sometimes
referred to as algorithmic historiography by Garfield et al. [2–4].
More recently, a software tool called CitNetExplorer [5] was
developed that has similar functionality but offers more flexibility
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in analysing large-scale citation networks. Other software tools, most notably CiteSpace [6] and CRExplorer

[7,8], provide alternative approaches for tracing scientific developments based on citation data.
Main path analysis, originally proposed by Hummon & Doreian [9], is a widely used technique for

tracing historical developments in science. Given a citation network, main path analysis identifies one or
more paths in the network that are considered to represent the most important scientific developments.
Many variants and extensions of main path analysis have been proposed [10–16], not only for citation
networks of scientific publications but also for patent citation networks [17–21]. However, despite the
large body of literature in which main path analysis is used, we question whether the technique is
really suitable for tracing historical developments in science. We show that main path analysis has the
tendency to favour longer citation paths over shorter ones. In our view, this is an undesirable property
that leads to counterintuitive results.

As an alternative to main path analysis, we introduce a new approach for tracing historical
developments in science based on citation networks. This approach is based on a measure that we call
intermediacy. Given two publications dealing with a specific research topic, an older publication and
a more recent one, intermediacy can be used to identify publications that appear to play a major role
in the historical development from the older to the more recent publication. These are publications
that, based on citation links, are important in connecting the older and the more recent publication.

Like main path analysis, intermediacy can be used to identify paths between publications in a citation
network. However, as we show both conceptually and empirically, there are fundamental differences
between intermediacy and main path analysis. Most significantly, whereas main path analysis tends to
favour longer citation paths over shorter ones, intermediacy has the opposite tendency. For the
purpose of tracing historical developments in science, we argue that intermediacy yields better results
than main path analysis.

Intermediacy might seem similar to centrality, but there is an essential difference. Centrality measures
[22], such as degree centrality, closeness centrality, betweenness centrality and eigenvector centrality,
indicate how central a node is in a network. Intermediacy is different because it is defined relative to
a specific source and target node, not relative to a network as a whole. This is why centrality
measures cannot be used to capture the idea of intermediacy.
2. Intermediacy
Consider a directed acyclic graph G = (V, E), where V denotes the set of nodes of G and E denotes the set
of edges of G. The edges are directed. We are interested in the connectivity between a source s∈V and a
target t∈V. Only nodes that are located on a path from source s to target t are of relevance. We refer to
such a path as a source-target path. We assume that each node v∈V is located on a source-target path.

Definition 2.1. Given a source s and a target t, a path from s to t is called a source-target path.

In this paper, our focus is on citation networks of scientific publications. In this context, nodes are
publications and edges are citations. We choose edges to be directed from a citing publication to a
cited publication. Hence, edges point backward in time. This means that the source is a more recent
publication and the target an older one.

Informally, the more important the role of a node v∈V in connecting source s to target t, the higher
the intermediacy of v. To formally define intermediacy, we assume that each edge e∈ E is either active or
inactive. An edge is active with a certain probability p, where p∈ (0, 1). This probability is the same for all
edges. We exclude the possibility that this probability equals 0 or 1, since this would not yield useful
results. Based on the notion of active and inactive edges, we introduce the following definitions.

Definition 2.2. If all edges on a path are active, the path is called active. Otherwise, the path is called
inactive. If a node v∈V is located on an active source-target path, the node is called active. Otherwise, the
node is called inactive.

For two nodes u, v∈V, we use Xuv to indicate whether there is an active path (or multiple active paths)
from node u to node v (Xuv= 1) or not (Xuv= 0). The probability that there is an active path from node u to
node v is denoted by Pr (Xuv ¼ 1). We use Xst(v) to indicate whether there is an active source-target path
that goes through node v (Xst(v) = 1) or not (Xst(v) = 0). The probability that there is an active source-target
path that goes through node v is denoted by Pr (Xst(v) ¼ 1) ¼ Pr (Xsv ¼ 1) Pr (Xvt ¼ 1). This probability
equals the probability that node v is active.

Intermediacy can now be defined as follows.
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Figure 1. (a) Illustration of the limit behaviour of intermediacy. For p→ 0, intermediacy favours nodes located on shorter paths and
therefore node u has a higher intermediacy than node v. For p→ 1, intermediacy favours nodes located on a larger number of
edge-independent paths and therefore node v has a higher intermediacy than node u. (b) Illustration of the choice of the parameter
p. Nodes u and v are connected by a single direct path in the left graph and by k indirect paths of length 2 in the right graph. For
different values of k, the bar chart shows the values of p for which the probability that there is an active path from node u to node v
is higher (in orange) or lower (in grey) in the left graph than in the right graph.
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Definition 2.3. The intermediacy ϕv of a node v∈V is the probability that v is active, that is,

fv ¼ Pr (Xst(v) ¼ 1) ¼ Pr (Xsv ¼ 1) Pr (Xvt ¼ 1): (2:1)

In the interpretation of intermediacy, we focus on the ranking of nodes relative to each other. We do
not consider the absolute values of intermediacy. For instance, suppose the intermediacy of node v∈V is
twice as high as the intermediacy of node u∈V. We then consider node v to be more important than node
u in connecting the source s and the target t. However, we do not consider node v to be twice as
important as node u.

We now present an analysis of the mathematical properties of intermediacy. The proofs of the
mathematical results provided below can be found in appendix A.
2.1. Limit behaviour
To get a better understanding of intermediacy, we study the behaviour of intermediacy in two limit cases,
namely the case in which the probability p that an edge is active goes to 0 and the case in which the
probability p goes to 1. In each of the two cases, the ranking of the nodes in a graph based on
intermediacy turns out to have a natural interpretation. The difference between the two cases is
illustrated in figure 1a.

Let ℓv denote the length of the shortest source-target path going through node v∈V. The following
theorem states that in the limit as the probability p that an edge is active tends to 0, the ranking of nodes
based on intermediacy coincides with the ranking based on ℓv. Nodes located on shorter source-target
paths are more intermediate than nodes located on longer source-target paths.

Theorem 2.4. In the limit as the probability p tends to 0, ℓu < ℓv implies ϕu > ϕv.

The intuition underlying this theorem is as follows. When the probability that an edge is active is
close to 0, almost all edges are inactive. Consequently, almost all source-target paths are inactive as
well. However, from a relative point of view, longer source-target paths are more likely to be inactive
than shorter source-target paths. This means that nodes located on shorter source-target paths are
more likely to be active than nodes located on longer source-target paths (even though for all nodes
the probability of being active is close to 0). Nodes located on shorter source-target paths, therefore,
have a higher intermediacy than nodes located on longer source-target paths.

We now consider the limit case in which the probability p that an edge is active goes to 1. Let σv
denote the number of edge-independent source-target paths going through node v∈V. Theorem 2.5
states that in the limit as p tends to 1, the ranking of nodes based on intermediacy coincides with the
ranking based on σv. The larger the number of edge-independent source-target paths going through a
node, the higher the intermediacy of the node.
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Theorem 2.5. In the limit as the probability p tends to 1, σu > σv implies ϕu > ϕv.

Intuitively, this theorem can be understood as follows. When the probability that an edge is active is
close to 1, almost all edges are active. Consequently, almost all source-target paths are active as well, and
so are almost all nodes. A node is inactive only if all source-target paths going through the node are
inactive. If there are σ edge-independent source-target paths that go through a node, this means that
the node can be inactive only if there are at least σ inactive edges. Consider two nodes u, v∈V.
Suppose that the number of edge-independent source-target paths going through node v is larger
than the number of edge-independent source-target paths going through node u. In order to be
inactive, node v then requires more inactive edges than node u. This means that node v is less likely
to be inactive than node u (even though for both nodes, the probability of being inactive is close to 0).
Hence, node v has a higher intermediacy than node u. More generally, nodes located on a larger
number of edge-independent source-target paths have a higher intermediacy than nodes located on a
smaller number of edge-independent source-target paths.
R.Soc.open
sci.7:190207
2.2. Parameter choice
The probability p that an edge is active is a free parameter of intermediacy for which one needs to choose
an appropriate value. The results presented above are concerned with the behaviour of intermediacy in
the limit cases in which the probability p tends to either 0 or 1. Figure 1b provides some insight into the
behaviour of intermediacy for values of the probability p that are in between these two extremes. The
figure shows two graphs. In the left graph, there is a direct path (i.e. a path of length 1) from node u
to node v. There are no indirect paths. In this graph, the probability that there is an active path from
u to node v equals p. In the right graph, there is no direct path from node u to node v, but there are k
indirect paths of length 2. Each of these paths has a probability of p2 of being active. Consequently,
the probability that there is at least one active path from node u to node v equals 1− (1− p2)k. The bar
chart in figure 1b shows for different values of k the values of p for which the probability that there is
an active path from node u to node v is higher (in orange) or lower (in grey) in the left graph than in
the right graph. For instance, suppose that k = 5. For p < 0.22, the probability that there is an active
path from node u to node v is higher in the left graph than in the right graph. For p > 0.22, the
situation is the other way around. If the probability p that an edge is active is set to 0.22, a direct path
between two nodes is considered equally strong as five indirect paths of length 2. Based on figure 1b,
one can set the probability p to a value that one considers appropriate for a particular analysis.
2.3. Path addition and contraction
Next, we study two additional properties of intermediacy, the property of path addition and the property
of path contraction. We show that both adding paths and contracting paths lead to an increase in
intermediacy. Path addition and path contraction are important properties because they reflect the
basic intuition underlying the idea of intermediacy. (Of course, in practice, paths cannot simply be
added or contracted in a citation network. However, we can have two regions in a citation network
that are topologically identical except for a path addition or a path contraction. Our theoretical
analysis can be interpreted as an analysis comparing the intermediacy of the nodes in the two regions
of the citation network.)

We start by considering the property of path addition. We define path addition as follows.

Definition 2.6. Consider a directed acyclic graph G = (V, E) and two nodes u, v∈V such that there
does not exist a path from node v to node u. Path addition is the operation in which a new path from
node u to node v is added. Let ℓ denote the length of the new path. If ℓ = 1, an edge (u, v) is added.
If ℓ > 1, nodes w1,…, wℓ−1 and edges (u, w1), (w1, w2),…, (wℓ−2, wℓ−1), (wℓ−1, v) are added.

This definition includes the condition that there does not exist a path from node v to node u. This
condition ensures that the graph G will remain acyclic after adding a path. The following theorem
states that adding a path increases intermediacy.

Theorem 2.7. Consider a directed acyclic graph G = (V, E), a source s∈V, and a target t∈V. In addition,
consider two nodes u, v∈V such that there does not exist a path from node v to node u. Adding a path from
node u to node v strictly increases the intermediacy ϕw of any node w∈V located on a path from source s to
node u or from node v to target t.
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Theorem 2.7 does not depend on the probability p. Adding a path always increases intermediacy,
regardless of the value of p. To illustrate the theorem, consider figure 2a,b. The graph in figure 2b is
identical to the one in figure 2a except that a path from node u to node v has been added. As can be
seen, adding this path has increased the intermediacy of nodes located between source s and node u
or between node v and target t, including nodes u and v themselves. While the intermediacy of other
nodes has not changed, the intermediacy of these nodes has increased from 0.17 to 0.23. This reflects
the basic intuition that, after a path from node u to node v has been added, going from source s to
target t through nodes u and v has become ‘easier’ than it was before. This means that nodes located
between source s and node u or between node v and target t have become more important in
connecting the source and the target. Consequently, the intermediacy of these nodes has increased.

We now consider the property of path contraction. We use Vuv to denote the set of all nodes located on a
path from node u to node v, including nodes u and v themselves. Path contraction is then defined as follows.

Definition 2.8. Consider a directed acyclic graph G = (V, E) and two nodes u, v∈V such that there
exists at least one path from node u to node v. Path contraction is the operation in which all nodes in
Vuv are contracted. This means that the nodes in Vuv are replaced by a new node r. Edges pointing
from a node w � Vuv to nodes in Vuv are replaced by a single new edge (w, r). Edges pointing from
nodes in Vuv to a node w � Vuv are replaced by a single new edge (r, w). Edges between nodes in Vuv

are removed.

The following theorem states that contracting paths increases intermediacy.

Theorem 2.9. Consider a directed acyclic graph G = (V, E), a source s∈V, and a target t∈V. In addition,
consider two nodes u, v∈V such that there exists at least one path from node u to node v and such that nodes
in Vuv do not have neighbours outside Vuv except for incoming neighbours of node u and outgoing neighbours
of node v. Contracting paths from node u to node v strictly increases the intermediacy ϕw of any node w∈V
located on a path from source s to node u or from node v to target t.

Like theorem 2.7, theorem 2.9 does not depend on the probability p. Theorem 2.9 is illustrated in
figure 2b,c. The graph in figure 2c is identical to the one in figure 2b except that paths from node u to
node v have been contracted. As a result, there has been an increase in the intermediacy of nodes
located between source s and node u or between node v and target t, including nodes u and v
themselves (which have been contracted into a new node r). While the intermediacy of other nodes
has not changed, the intermediacy of these nodes has increased from 0.23 to 0.34. This reflects the
basic intuition that, after paths from node u to node v have been contracted, going from source s to
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target t through nodes u and v has become ‘easier’ than it was before. In other words, nodes located on a
path from source s to target t going through nodes u and v have become more important in connecting
the source and the target, and hence the intermediacy of these nodes has increased.
207
2.4. Alternative approaches
How does intermediacy differ from alternative approaches? We consider three alternative approaches.
One is main path analysis [9]. This is the most commonly used approach for tracing the historical
development of scientific knowledge in citation networks. The second alternative approach is the
expected path count approach. Like intermediacy, the expected path count approach distinguishes
between active and inactive edges and focuses on active source-target paths. While intermediacy
considers the probability that there is at least one active source-target path going through a node, the
expected path count approach considers the expected number of active source-target paths that go
through a node. The third alternative approach is resistance [23–25]. Resistance is a measure of the
distance between nodes in a graph. We use it to define an alternative to intermediacy.

Consider the graph shown in figure 3a. To get from source s to target t, one could take either a path
going through nodes u and v or the path going through node w. Based on intermediacy, the latter path
represents a stronger connection between the source and the target than the former one. This follows
from the path contraction property.

Interestingly, main path analysis gives the opposite result, as can be seen in figure 3b. For each edge,
the figure shows the search path count, which is the number of source-target paths that go through the
edge. There are two source-target paths that go through (s, u) and (v, t), while all other edges are included
only in a single source-target path. Because the search path counts of (s, u) and (v, t) are higher than the
search path counts of (s, w) and (w, t), main path analysis favours paths going through nodes u and v over
the path going through node w. This is exactly opposite to the result obtained using intermediacy.
Figure 3b makes clear that main path analysis yields outcomes that violate the path contraction
property. Main path analysis tends to favour longer paths over shorter ones. For the purpose of
identifying publications that play an important role in connecting an older and a more recent
publication, we consider this behaviour to be undesirable. There are various variants of main path
analysis, which all show the same type of undesirable behaviour.

Instead of focusing on the probability of the existence of at least one active source-target path, as is
done by intermediacy, one could also focus on the expected number of active source-target paths going
through a node. This alternative approach, which we refer to as the expected path count approach, is
illustrated in figure 3c. As can be seen in the figure, nodes u and v have a higher expected path count
than node w. Paths going through nodes u and v may, therefore, be favoured over the path going
through node w. Figure 3c shows that, unlike intermediacy, the expected path count approach does
not have the path contraction property. Depending on the probability p, contracting paths may cause
expected path counts to decrease rather than increase. Because the expected path count approach does
not have the path contraction property, we do not consider this approach to be a suitable alternative
to intermediacy.
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Finally, in figure 4, we illustrate the difference between intermediacy and resistance [23–25]. To get
from source s to target t, one could take either a path going through node u or a path going through
node v. Based on intermediacy, node v offers a stronger connection between the source and the target
than node u (figure 4a). This follows from the path addition property. On the other hand, based on
resistance, nodes u and v offer equally strong connections between the source and the target (figure
4b). Resistance is a measure of the distance between two nodes in a graph. Our interest focuses on the
resistance between the source and the target. We define the resistance of a specific node as the
resistance between the source and the target when only paths going through the node of interest are
taken into account. Nodes u and v both have the same resistance of 2. According to the path addition
property, node v should have a lower resistance than node u. (A lower resistance corresponds to a
higher connectedness of the source and the target.) The equal resistance of nodes u and v shows that
resistance does not have the path addition property.
3. Empirical analysis
We now present two case studies that serve as empirical illustrations of the use of intermediacy. Case 1
deals with the topic of community detection and its relationship with scientometric research. This case
was selected because we are well acquainted with the topic and because we expect many readers of
the present paper to be familiar with the topic as well. Case 2 deals with the topic of peer review.
This case is of interest because it was examined using main path analysis in a recent paper by Batagelj
et al. [26]. We consider this paper to be representative of the state of the art in main path analysis.
Case 2, therefore, is well suited for demonstrating the differences between intermediacy and main
path analysis.

In both case studies, the intermediacy of publications was calculated using the Monte Carlo algorithm
presented in appendix B.
3.1. Case 1: community detection and scientometrics
We analyse how a method for community detection in networks ended up being used in the field of
scientometrics to construct classification systems of scientific publications. In particular, we are
interested in the historical development from Newman & Girvan [27] to Klavans & Boyack [28]. These
are our target and source publications. Newman & Girvan [27] introduced a new measure for
community detection in networks, known as modularity, while Klavans & Boyack [28] compared
different ways in which modularity-based approaches can be used to identify communities in citation
networks.

Our analysis relies on data from the Scopus database produced by Elsevier. We also considered the
Web of Science database produced by Clarivate Analytics. However, many citation links relevant for our
analysis are missing in Web of Science. There are also missing citation links in Scopus, but for Scopus the
problem is less significant than for Web of Science. We refer to van Eck & Waltman [29] for a further
discussion of the problem of missing citation links.

In the Scopus database, we found n = 64 223 publications that are located on a citation path between
our source and target publications. In total, we identified m = 280 033 citation links between these
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Figure 5. Results for case 1. (a) Probability of the existence of an active source-target path as a function of the parameter p and (b)
cumulative distribution of intermediacy scores for different values of p. Spearman (c) and Pearson (d ) correlations between
intermediacy scores for different values of p, citation counts and reference counts. (e) Citation network of the top 10 most
intermediate publications for p = 0.1. (Only the name of the first author is shown.)
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publications. This means that on average each publication has k = 2m/n≈ 8.72 citation links, counting
both incoming and outgoing links.

Figure 5a shows how the probability of the existence of an active path between the source and target
publications depends on the parameter p. This probability increases from zero for p = 0 to almost one
starting from p = 0.25. The vertical line indicates the value p = 1/k. At this value, traditional
percolation theory for random graphs suggests that the probability that the source and target
publications are connected becomes non-negligible [22]. When searching for a suitable value of p, the
value p = 1/k suggested by percolation theory may serve as a reasonable starting point. In our case,
this yields p≈ 1/8.72≈ 0.11, resulting in a probability of about 0.40 for the existence of an active
source-target path.

For five different values of the parameter p, figure 5b shows the cumulative distribution of the
intermediacy scores of our n = 64 223 publications. As is to be expected, when p is close to zero,
intermediacy scores are extremely small. On the other hand, when p is getting close to one,
intermediacy scores also approach one.

Figure 5c,d shows Spearman and Pearson correlations between the intermediacy scores obtained for
five different values of the parameter p. We consider intermediacy scores to be most useful from an
ordinal perspective. From this point of view, Spearman correlations are more relevant than Pearson
correlations, but for completeness, we report both types of correlations. The Spearman correlations
show that values of 0.3, 0.5, 0.7 and 0.9 for p all yield fairly similar rankings of publications in terms
of intermediacy. However, the ranking obtained for p = 0.1 is substantially different. Pearson
correlations tend to be lower than Spearman correlations. Hence, even when different values of p
yield similar rankings of publications, there usually does not exist a clear linear relationship between
the intermediacy scores.

Figure 5c,d also shows correlations of intermediacy scores with citation counts and reference counts.
The term citation count refers to the number of incoming citation links of a publication, while the term
reference count refers to the number of outgoing citation links of a publication. Only citation links
located on a citation path between the source and target publications are counted. Regardless of the
value of p, intermediacy scores are not very strongly correlated with citation counts or reference counts.

Based on our expert knowledge of the topic under study, we found that the most useful results were
obtained by setting the parameter p equal to 0.1. Table 1 lists the 10 publications with the highest
intermediacy for p = 0.1. For each publication, the intermediacy is reported for five different values of
p. In addition, the table also reports each publication’s citation count and reference count. Figure 5e
shows the citation network of the 10 most intermediate publications for p = 0.1.



Table 1. Top 10 most intermediate publications in case 1 for p = 0.1.

p

0.1 0.3 0.5 0.7 0.9 cit. ref.

t Newman & Girvan [27] 0.301 0.992 1.000 1.000 1.000 468 0

s Klavans & Boyack [28] 0.301 0.992 1.000 1.000 1.000 0 24

1 Waltman & van Eck [30] 0.061 0.376 0.656 0.878 0.988 2 27

2 Waltman & van Eck [31] 0.060 0.695 0.964 0.999 1.000 15 22

3 Hric et al. [32] 0.052 0.300 0.499 0.700 0.900 1 29

4 Fortunato [33] 0.037 0.629 0.972 1.000 1.000 73 154

5 Newman [34] 0.035 0.736 0.979 1.000 1.000 221 8

6 Ruiz-Castillo & Waltman [35] 0.024 0.360 0.624 0.847 0.981 2 24

7 Blondel et al. [36] 0.022 0.836 0.998 1.000 1.000 78 21

8 Newman [37] 0.021 0.851 0.999 1.000 1.000 138 18

9 Newman [38] 0.020 0.296 0.501 0.700 0.900 246 1

10 Rosvall & Bergstrom [39] 0.020 0.803 0.994 1.000 1.000 70 10
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Using our expert knowledge to interpret the results presented in table 1 and figure 5e, we are able to
trace how a method for community detection ended up in the scientometric literature. The two
publications with the highest intermediacy [30,31] played a key role in introducing modularity-based
approaches in the scientometric community. Waltman & van Eck [31] proposed the use of modularity-
based approaches for constructing classification systems of scientific publications, while Waltman &
van Eck [30] introduced an algorithm for implementing these modularity-based approaches. This
algorithm can be seen as an improvement of the so-called Louvain algorithm introduced by Blondel
et al. [36], which is also among the 10 most intermediate publications. Most of the other publications
in table 1 and figure 5e are classical publications on community detection in general and modularity
in particular. The publications by Newman all deal with modularity-based community detection.
Rosvall & Bergstrom [39] proposed an alternative approach to community detection. They applied
their approach to a citation network of scientific journals, which explains the connection with the
scientometric literature. Fortunato [33] is a review of the literature on community detection. The
intermediacy of this publication is probably strongly influenced by its large number of references.
Hric et al. [32] is a more recent publication on community detection. This publication focuses on the
challenges of evaluating the results produced by community detection methods. This issue is very
relevant in a scientometric context, and therefore the publication was cited by our source publication
[28]. Finally, there is one more scientometric publication in table 1 and figure 5e. This publication [35]
is one of the first studies presenting a scientometric application of classification systems of scientific
publications constructed using a modularity-based approach. The publication was also cited by our
source publication.

The citation counts reported in table 1 show that some publications, especially the more recent ones,
have a high intermediacy even though they have been cited only a very limited number of times. This
makes clear that a ranking of publications based on intermediacy is quite different from a citation-
based ranking of publications. The publications in table 1 that have a high intermediacy and a small
number of citations do have a substantial number of references.

Finally, we compare the results obtained using intermediacy to the results given by main path
analysis. The latter results, obtained using the original version of main path analysis [9] and using a
more recent variant [12], can be found in electronic supplementary material, figures S1 and S2.
Intermediacy and main path analysis provide completely different results. As shown in figure 5e,
intermediacy yields a number of short paths between Newman & Girvan [27] in the community
detection literature and Klavans & Boyack [28] in the scientometric literature. These paths go through
well-known publications. On the other hand, main path analysis yields an extremely long path, going
through more than 50 publications, most of which are not particularly well known. Despite our expert
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understanding of both the community detection literature and the scientometric literature, there are
many publications that we are not familiar with. Unlike the results obtained using intermediacy, we
believe that the results given by main path analysis do not provide much insight into the historical
development from Newman & Girvan [27] to Klavans & Boyack [28].

Case 2 presented next offers another comparison between intermediacy and main path analysis.
3.2. Case 2: peer review
In case 2, we analyse the literature on peer review. The analysis is based on data from the Web of Science
database. We make use of the same data that was also used in a recent paper by Batagelj et al. [26].

We started with a citation network of 45 965 publications dealing with peer review. This is the citation
network that was labelled CiteAcy by Batagelj et al. [26]. We selected Cole & Cole [40] and Garcia et al.
[41] as our target and source publications. The main path analysis carried out by Batagelj et al. [26]
suggests that these are central publications in the literature on peer review. For the purpose of our
analysis, only publications located on a citation path between our source and target publications are
of relevance. Other publications play no role in the analysis. We, therefore, restricted the analysis to
the n = 615 publications located on a citation path from Garcia et al. [41] to Cole & Cole [40]. These
publications are connected by m = 3420 citation links, resulting in an average of k = 2m/n≈ 11.12
citation links per publication.

As can be seen in figure 6a, percolation theory suggests a value of 1/k≈ 1/11.12≈ 0.09 for the
parameter p. This is close to the value of 0.11 obtained in case 1. However, the probability of the
existence of an active path between the source and target publications equals 0.03, which is much
lower than the probability of 0.40 in case 1. Intermediacy scores tend to be higher in case 2 than in
case 1. This can be seen by comparing figure 6b to figure 5b. We note that the former figure has a
linear horizontal axis, while the horizontal axis in the latter figure is logarithmic. The Spearman and
Pearson correlations are somewhat higher in case 2 (figure 6c,d ) than in case 1 (figure 5c,d ).

Table 2 lists the 10 publications with the highest intermediacy, where we use a value of 0.1 for the
parameter p, like in table 1. Figure 6e shows the citation network of the 10 most intermediate
publications. There are numerous paths in this citation network going from our source publication
[41] to our target publication [40]. We regard these paths as the core paths between the source and
target publications.



Table 2. Top 10 most intermediate publications in case 2 for p = 0.1.

p

0.1 0.3 0.5 0.7 0.9 cit. ref.

t Cole & Cole [40] 0.048 0.841 0.995 1.000 1.000 14 0

s Garcia et al. [41] 0.048 0.841 0.995 1.000 1.000 0 8

1 Lee et al. [42] 0.018 0.510 0.865 0.986 1.000 5 71

2 Zuckerman & Merton [43] 0.016 0.336 0.622 0.847 0.981 73 2

3 Campanario [44] 0.013 0.592 0.967 0.999 1.000 23 35

4 Crane [45] 0.009 0.270 0.498 0.700 0.900 34 1

5 Campanario [46] 0.009 0.517 0.952 0.999 1.000 15 30

6 Gottfredson [47] 0.008 0.320 0.622 0.847 0.981 26 2

7 Bornmann [48] 0.008 0.333 0.776 0.975 1.000 6 71

8 Bornmann [49] 0.007 0.259 0.500 0.700 0.900 1 20

9 Bornmann [50] 0.007 0.275 0.500 0.700 0.900 1 17

10 Merton [51] 0.005 0.243 0.497 0.701 0.901 29 1
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The core paths shown in figure 6e can be compared to the results obtained by Batagelj et al. [26] using
main path analysis. Different variants of main path analysis were used by Batagelj et al. [26]. Both using
the original version of main path analysis [9] and using a more recent variant [12], the paths that were
identified are rather lengthy, as can be seen in figs 9 and 10 in Batagelj et al. [26]. The shortest main paths
include about 20 publications.

The above findings, together with the observations made in case 1, confirm the fundamental
difference between intermediacy and main path analysis. Main path analysis tends to favour longer
paths over shorter ones, whereas intermediacy has the opposite tendency.

Using the results presented in table 2 and figure 6e, experts on the topic of peer review could discuss
the historical development of the literature on this topic. Since our own expertise on the topic of peer
review is limited, we refrain from providing an interpretation of the results.
4. Conclusion
Citation networks provide valuable information for tracing the historical development of scientific
knowledge. For this purpose, citation networks are usually analysed using main path analysis [9].
However, the idea of a main path is not very well understood. The algorithmic definition of a main
path is clear, but the underlying conceptual motivation remains somewhat obscure. As we have
shown in this paper, main path analysis has the tendency to favour longer paths over shorter ones.
We regard this as a counterintuitive property that lacks a convincing justification.

Intermediacy, introduced in this paper, offers an alternative to main path analysis. It provides a
principled approach for identifying publications that appear to play a major role in the historical
development from an older to a more recent publication. The older publication and the more recent
one are referred to as the target and the source, respectively. Publications with a high intermediacy
are important in connecting the source and the target publication in a citation network. As we have
shown, intermediacy has two intuitively desirable properties, referred to as path addition and path
contraction. Because of the path contraction property, intermediacy tends to favour shorter paths over
longer ones. This is a fundamental difference with main path analysis. Intermediacy also has a free
parameter that can be used to fine-tune its behaviour. This parameter enables interpolation between
two extremes. In one extreme, intermediacy identifies publications located on a shortest path between
the source and the target publication. In the other extreme, it identifies publications located on the
largest number of edge-independent source-target paths.

We have also examined intermediacy in two case studies. In the first case study, intermediacy was
used to trace historical developments at the interface between the community detection literature and
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the scientometric literature. This case study has shown that intermediacy yields results that make sense

from our viewpoint as domain experts. In the second case study, intermediacy was applied to the
literature on peer review. Both cases studies have demonstrated the strong preference of main path
analysis for long paths.

There are various directions for further research. First of all, a more extensive mathematical analysis
of intermediacy can be carried out, possibly resulting in an axiomatic foundation for intermediacy.
Intermediacy can also be generalized to weighted graphs. In a citation network, a citation link may,
for instance, be weighed inversely proportional to the total number of incoming or outgoing citation
links of a publication. Another way to generalize intermediacy is to allow for multiple sources and
targets. The ideas underlying intermediacy can also be used to develop other types of indicators for
graphs, such as an indicator of the connectedness of two nodes in a graph. In empirical analyses,
intermediacy can be applied not only in citation networks of scientific publications but for instance
also in patent citation networks or in completely different types of networks, such as human mobility
and migration networks, world trade networks, transportation networks, and passing networks in
sports. Also, more comprehensive comparisons between intermediacy and main path analysis can be
performed. The results of the two approaches can be evaluated in a systematic way based on input
from domain experts.
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Appendix A. Proofs
Below we provide the proofs of the theorems presented in the main text. We first need to introduce some
additional notation. We use Pr (Xuv) as a shorthand for Pr (Xuv ¼ 1). To make explicit that this probability
depends on a graph G, we write Pr (Xuv j G). Furthermore, we use Ae to indicate whether an edge e is
active. Hence, Ae = 1 if edge e is active and Ae = 0 if edge e is not active.
A.1. Limit behaviour

Proof of theorem 2.4. Let m = |E| denote the number of edges in the graph G. Suppose that the m
edges are split into two sets, one set of M edges and another set of m−M edges. The probability that
the edges in the former set are all active while the edges in the latter set are all inactive equals

PM ¼ pM(1� p)m�M:

Consider a node v∈V. The shortest source-target path that goes through node v has a length of ℓv. This
means that at least ℓv edges need to be active in order to obtain an active source-target path that goes
through node v. Hence, the probability that there is an active source-target path that goes through
node v can be written as

fv ¼
Xm

i¼‘v

nviPi,

where nvi > 0 for all i = ℓv,…, m. Note that this probability equals the intermediacy of node v. Now
consider two nodes u, v∈V with ℓu < ℓv. In the limit as p tends to 0, ϕu and ϕv both tend to 0.

https://www.elsevier.com/solutions/scopus
https://www.elsevier.com/solutions/scopus
https://clarivate.com/products/web-of-science
https://clarivate.com/products/web-of-science
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However, they do so at different rates. More specifically, in the limit as p tends to 0, we have

lim
p!0

fv

fu
¼ lim

p!0

Pm
i¼‘v

nviPiPm
i¼‘u

nuiPi

¼ lim
p!0

Pm
i¼‘v

nviPi=P‘uPm
i¼‘u

nuiPi=P‘u

¼ lim
p!0

Pm
i¼‘v

nvipi�‘u (1� p)‘u�i

Pm
i¼‘u

nuipi�‘u (1� p)‘u�i

¼ 0
nu‘u

¼ 0:

Hence, in the limit as p tends to 0, ϕu > ϕv. ▪
Proof of theorem 2.5. Let m = |E| denote the number of edges in the graph G, and let q denote the

probability that an edge is inactive, that is, q = 1− p. Suppose that the m edges are split into two sets,
one set of M edges and another set of m−M edges. The probability that the edges in the former set
are all inactive while the edges in the latter set are all active equals

QM ¼ qM(1� q)m�M:

Consider a node v∈V. There are σv edge-independent source-target paths that go through node v. This
means that at least σv edges need to be inactive in order for there to be no active source-target path that
goes through node v. Hence, the probability that there is no active source-target path that goes through
node v can be written as

Fv ¼
Xm

i¼sv

nviQi,

where nvi > 0 for all i ¼ sv, , m. Note that the intermediacy of node v equals 1 minus this probability,
that is, ϕv = 1−Φv. Now consider two nodes u, v∈V with σu > σv. In the limit as p tends to 1, Φu and
Φv both tend to 0. However, they do so at different rates. More specifically, in the limit as p tends to 1,
we have

lim
p!1

Fu

Fv
¼ lim

p!1

Pm
i¼su

nuiQiPm
i¼sv

nviQi

¼ lim
p!1

Pm
i¼su

nuiQi=QsvPm
i¼sv

nviQi=Qsv

¼ lim
p!1

Pm
i¼su

nuiqi�sv (1� q)sv�i

Pm
i¼sv

nviqi�sv (1� q)sv�i

¼ 0
nvsv

¼ 0:

Hence, in the limit as p tends to 1, Φu <Φv, which implies that ϕu > ϕv. ▪
A.2. Path addition and path contraction

Proof of theorem 2.7. Suppose that node w is located on a path from source s to node u. Let H denote the
graph obtained after the path from node u to node v has been added, and let Euv denote the set of newly
added edges. The intermediacy of node w in graph G can be factorized as fw(G) ¼ Pr (Xsw j G) Pr (Xwt j G).
Similarly, for graph H, we have fw(H) ¼ Pr (Xsw j H) Pr (Xwt j H). Clearly, Pr (Xsw j G) ¼ Pr (Xsw j H), since
the paths from node s to node w are identical in graphs G and H. Furthermore,
Pr (Xwt j G) ¼ Pr (Xwt j H and 8e [ Euv :Ae ¼ 0). Since Pr (Xwt j H and 8e [ Euv :Ae ¼ 0) , Pr (Xwt j H), it
follows that Pr (Xwt j G) , Pr (Xwt j H). This means that ϕw(G) < ϕw(H ).

An analogous proof can be given if node w is located on a path from node v to target t. ▪
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Proof of theorem 2.9. Suppose that node w is located on a path from source s to node u. Let H denote the
graph obtained after paths from node u to node v have been contracted, and let Euv denote the set of all
edges between nodes in Vuv. The intermediacy of node w in graph G can be factorized as
fw(G) ¼ Pr (Xsw j G) Pr (Xwt j G). Similarly, for graph H, we have fw(H) ¼ Pr (Xsw j H) Pr (Xwt j H). Clearly,
Pr (Xsw j G) ¼ Pr (Xsw j H), since the paths from node s to node w are identical in graphs G and H.
Furthermore, because nodes in Vuv, except for nodes u and v, do not have neighbours outside Vuv, we have
Pr (Xwt j H) ¼ Pr (Xwt j G and 8e [ Euv :Ae ¼ 1). Since Pr (Xwt j G and 8e [ Euv :Ae ¼ 1) . Pr (Xwt j G), it
follows that Pr (Xwt j H) . Pr (Xwt j G). This means that ϕw(H ) > ϕw(G).

An analogous proof can be given if node w is located on a path from node v to target t. ▪
Appendix B. Algorithms

Intermediacy depends on the probability that there exists a path between two nodes in a graph.
Determining this probability is known as the problem of network reliability. This problem is NP-hard
[52]. Below we provide an outline of an exact algorithm for calculating intermediacy. Because of its
exponential run-time, the exact algorithm can be used only in relatively small graphs. We, therefore,
also propose a Monte Carlo algorithm that approximates intermediacy.
B.1. Exact algorithm
The exact algorithm, illustrated in figure 7a, is based on contraction and deletion of edges [53]. Suppose
we have a graph G = (V, E). The probability that there exists a path between two nodes u, v∈V can be
written as

Pr (Xuv j G) ¼ pPr Xuv j G=eð Þ þ (1� p) Pr (Xuv j G� e), (B 1)

where G/e denotes the contraction of an edge e∈ E and G− e denotes the deletion of an edge e∈ E. Edge
contraction must respect reachability [54]. Equation (B 1) yields a recursive algorithm for calculating
Pr (Xuv). For a node v∈V, this algorithm can be used to calculate Pr (Xsv) and Pr (Xvt). The
intermediacy ϕv of node v is then given by equation (2.1). We are usually interested in calculating the
intermediacy of all nodes in a graph G, not just of one specific node. This can be performed efficiently
by calculating Pr (Xsv) and Pr (Xvt) for all nodes v∈V in a single recursion.

The run-time of the exact algorithm is exponential in the number of edges m. The algorithm has a
complexity of O(2m). In the special case of a so-called series–parallel graph, the run-time of the
algorithm can be reduced from exponential to polynomial [55].
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B.2. Monte Carlo algorithm

The Monte Carlo algorithm, illustrated in figure 7b, is quite straightforward. Suppose we have a graph
G = (V, E) and we are interested in the intermediacy ϕv of a node v∈V. A subgraph H can be obtained
by sampling the edges in the graph G, where each edge e∈ E is sampled with probability p. Given a
subgraph H, it can be determined whether in this subgraph node v is located on a path from source s
to target t. We sample N subgraphs H1,…, HN. We then approximate the intermediacy of node v by
fv � 1

N

PN
i¼1 Ist(v j Hi), where Ist(v| Hi) equals 1 if there exists a path from source s to target t going

through node v in graph Hi and 0 otherwise.
The Monte Carlo algorithm can be implemented efficiently by simultaneously sampling subgraphs

and checking path existence. To do so, we perform a probabilistic depth-first search. We maintain a
stack of nodes that still need to be visited. We start by pushing source s to the stack. We then keep
popping nodes from the stack until the stack is empty. When a node v has been popped from the
stack, we determine for each of its outgoing edges whether the edge is active. An edge is active with
probability p. If an edge (v, u) is active and if node u is not yet on the stack, then node u is pushed to
the stack. At some point, target t may be reached, resulting in the identification of nodes that are
located on a path from source s to target t. This implementation of the Monte Carlo algorithm is
especially fast for smaller values of the probability p. The run-time of the Monte Carlo algorithm is
linear in the number of edges m.

In this paper, we use a Java implementation of the Monte Carlo algorithm. The source code is
available at https://github.com/lovre/intermediacy [56].
 07
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