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Batch experiments were conducted to test the effects of
various solution properties, such as pH, temperature, initial
concentration and anoxic and aerobic atmosphere, on Cd
removal by nanoscale zerovalent iron (nZVI) supported on
industrial coal fly ash. Cd (II) could be removed by adsorption
on fly ash-nZVI in a very short time (5 min) with high
removal rates (greater than 99.9%) over a wide range of
concentration (5–100 mg l−1). Cd (II) was physically adsorbed
on the surface of fly ash-nZVI. The preparation of fly ash-nZVI
can incorporate the use of waste media, making the overall
adsorbent more removal efficient and low cost.

1. Introduction
Heavy metal pollution of wastewater is one of the most important
environmental problems throughout the world. Cd and Cd
compounds, which were classified as potent carcinogens by the
International Agency for Research on Cancer in 1983, can cause
damage to the lungs, kidneys, liver and reproductive organs. Cd
is ranked as the seventh most important hazardous substance
in the USA [1] and has resulted in serious contamination of
soils, water, sediments and organisms in China. Cd is commonly
found in effluents from a wide range of industries, such as non-
ferrous metals production, electroplating, and manufacturing of
electronic products. Consequently, great attention is required for
the removal of Cd from wastewater before it reaches water bodies.
In recent years, various methods (chemical precipitation, ion
exchange, adsorption, membrane filtration and electrochemical
treatment) for Cd removal from wastewater have been studied to
meet the increasingly stringent environmental regulations [2–4].
Adsorption is a recognized method for heavy metal removal
from low-concentration wastewater, which has been developed
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as a simple, efficient and cost-effective treatment for removing heavy metals. A number of adsorbents
have been used for Cd removal including activated carbon adsorbents, zeolites, nano zerovalent iron
(nZVI), carbon nanotube adsorbents, low-cost adsorbents and bioadsorbents. Adsorption by low-cost
adsorbents, as an alternative to activated carbon, is recognized as an effective and economical method
for low-concentration heavy metal wastewater treatment. Industrial coal fly ash is a low-cost and better
adsorbent due to its abundance and environmental friendliness. The primary compositions of industrial
coal fly ash are silica (SiO2) and alumina (Al2O3). Fly ash and Bayer residue can successfully adsorb
TOC, nutrients and Cu [4]. Sorbents synthesized from coal fly ash and geopolymer are efficient for
lead removal [5]. However, coal fly ash removes heavy metal ions with low efficiency. Zerovalent iron
nano particles have been investigated as a new material for the treatment of contaminated water. The
equilibrium cadmium adsorption with 0.5 g l−1 nZVI can reach up to 213 mg g−1 at 285 K and 225 mg g−1

at 333 K [6]. Li et al. reported that the average Cu (II) removal efficiency was greater than 96% with
0.20 g l−1 nZVI and an agitation time of 100 min [7]. Nevertheless, the application of nZVI presents some
limitations such as rapid oxidation, rapid aqueous aggregation, production costs and recovery of the
nano materials (with associated contaminants) [8,9]. There is a need for more detailed and systematic
studies on the removal mechanism of contaminants and technical improvements in nZVI synthesis [9].
In the present study, nanoscale zerovalent iron supported on fly ash (fly ash-nZVI) is prepared and tested
for its ability to remove Cd from aqueous solutions.

The main objectives of the present study are to (i) determine the effect of fly ash-nZVI on heavy metal
remediation in wastewater, (ii) characterize fly ash-nZVI and its reaction products using microscopy and
(iii) investigate the different environmental factors on Cd remediation and the removal mechanism using
spectroscopy.

2. Material and methods
2.1. Chemicals
Industrial coal fly ash was provided by Dagang Coal-fired Power Plant (Tianjin, China). The primary
compositions of industrial coal fly ash are 62.1% SiO2, 25.8% Al2O3, 1.2% Fe2O3, 4.16% CaO, 1.02%
MgO and 3.02% loss on ignition (LOI) by weight. CdCl2 solution (1 g l−1, GBW08612) was provided
by National Center for Certified Reference Materials (Beijing, China). Iron (III) chloride hexahydrate
(FeCl3 · 6H2O) and sodium borohydride (NaBH4) were purchased from Tianjin Fuchen Chemicals
Reagent Factory (Tianjin, China). All chemicals were of analytical grade purity.

2.2. Preparation of fly ash-nZVI
Fly ash-nZVI was prepared using a conventional liquid-phase method via the reduction of ferric ion
(FeCl3 . 6H2O) by NaBH4 with industrial coal fly ash as the support material. A detailed preparation of
nZVI was provided in [10]. Briefly, a 1.0 M FeCl3 aqueous solution was added dropwise into industrial
coal fly ash at ambient temperature with magnetic stirring. Next, a 1.6 M NaBH4 aqueous solution was
added dropwise into the suspension with magnetic stirring. The wet Fe was precipitated on the surface
of industrial coal fly ash. Coal fly ash-nZVI was stored in brown bottles and coated with ethanol for
protecting from oxidation.

2.3. Batch experiments
The effects of different experimental conditions on the removal efficiency and kinetics of Cd were studied
in the procedure, as described below. Different dosages of fly ash-nZVI were added into the wastewater
with different initial Cd concentrations at different temperatures (288–308 K) with magnetic stirring for
more than 1 h. Then wastewater was extracted in 5 min and then every 10 min using a 10 ml dispensable
syringe and filtered through a 0.22 µm filter for further analysis. All experiments were performed in
triplicate.

2.4. Characterization and analytical methods
The morphological analyses of coal fly ash and fly ash-nZVI were performed using a scanning electron
microscope (SEM, S4800, Hitachi). The morphological analyses of coal fly ash and fly ash-nZVI was also
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performed using a transmission electron microscope (TEM, Tecnai G2 F20, FEI). X-ray photoelectron
spectroscopy (XPS, 250 Xi, Thermo) analysis was conducted on coal fly ash and fly ash-nZVI before and
after reacting with Cd. The concentrations of Cd in aqueous samples were determined using inductively
coupled plasma optical emission spectroscopy (ICP–AES, Optima 7300 V, PE), or inductively coupled
plasma mass spectrometry (ICP–MS, Elan 9000, PE) for more sensitive metal determination.

2.5. Calculation of removal rate and adsorption capacity
The removal rate (η, %), the amount of Cd (II) adsorbed per unit mass of adsorbent at time t (qt, mg
Cd per g nZVI) and the amount of Cd (II) adsorbed per unit mass of adsorbent at equilibrium (qe) were
calculated from the following equations [3]:

η = C0 − Ce

C0
× 100%, (2.1)

qt = V × C0 − Ct

ms
(2.2)

and qe = V × C0 − Ce

ms
, (2.3)

where C0 and Ce (mg l−1) are the initial and the final concentrations of Cd (II) in the solution, respectively,
and Ct (mg l−1) is the concentration of Cd (II) at time t. V is the volume of the solution (l) and ms is
the mass of dry adsorbent (nZVI) used (g).

2.6. Kinetic models
The sorption kinetics of Cd (II) was tested using pseudo-second-order sorption equations. The pseudo-
second-order equation can be written as [3]:

t
qt

= 1

k2q2
e

+ t
qe

, (2.4)

where k2 (g(mg min)−1) is the rate constant of the pseudo-second-order sorption.

3. Results and discussion
3.1. Surface analysis of fly ash-nZVI
The adsorbent shape and size impact the adsorption capacity of the adsorbent. SEM and TEM
measurements were conducted on fly ash, fly ash-nZVI, and fly ash-nZVI after Cd adsorption (figure 1).
SEM images of fly ash particles indicated that the material is composed of individual, spherical particles
that form aggregates (figure 1a). The size of the spherical particle was approximately 0.5–10 µm. The
main compositions of industrial coal fly ash were 62.1% SiO2 (the spherical particle) and 25.8% Al2O3
(the floccus) by weight. This small particle size provides a larger surface area for contaminant adsorption.
SEM analysis was conducted to evaluate the adsorption of Cd (II) on fly ash-nZVI particles (figure 1b),
which showed that spherical particles with flocculent were present as well as the presence of larger flocs,
possibly from aluminium oxide formation. TEM analysis showed that nZVI particles, which were nearly
spherical in shape and uniform in size with a mean diameter of 80–120 nm, were distributed dispersedly
on the surface of coal fly ash (figure 1c). The TEM image of coal fly ash-nZVI after Cd adsorption
(figure 1d) showed that the spherical particles were not present but also indicated the presence of larger
flocs. Many changes took place due to the combined effects of co-precipitation, adsorption and other
complex cooperation between coal fly ash-nZVI and wastewater.

3.2. Effect of pH
Adsorption experiments of Cd (II) on fly ash-nZVI were performed at different pH values (3.0–9.0), three
different temperatures (288–308 K), different initial Cd (II) concentrations (5–200 mg l−1) and oxygen
concentrations in order to investigate their influence. The effect of pH (3.0–9.0) on the adsorption of
Cd (II) (20 mg l−1) on fly ash-nZVI was first investigated (figure 2a). It could be seen that the removal
rates of Cd (II) increased with an increase in the initial pH (3.0) and the removal rates were invariant
above pH 7.0. Below pH 8.0 Cd is present as Cd (II). And yet above pH 8.0, various Cd hydroxide species
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Figure 1. Particle size distribution of (a) fly ash particles; (b) fly ash-nZVI particles after Cd adsorption; (c) TEM image of fly ash-nZVI
and (d) TEM image of fly ash-nZVI after Cd adsorption.

(i.e. CdOH+, Cd2(OH)3+, Cd(OH)2, Cd(OH)3− and Cd(OH)4
2−) start to form. Cd hydroxide species

are stable colloids and are transported into the pores of fly ash particles. Consequently, Cd hydroxide
precipitation might have contributed to its removal from solution at pH greater than 8.0. Cd (II), Fe0,
FeO, Fe2O3 and other iron oxides (e.g. Fe(OH)2) are present in the aqueous solution and the interactions
of Cd (II) and Fe (III) particularly, promote the formation of cadmium ferrite (CdFe2O4). The aggregation
of fine particles of CdFe2O4 has two kinds of shapes, fibrous and granular in high-resolution TEM [11].
Co-precipitation with coal fly ash-nZVI is among the main mechanisms responsible for Cd removal.
Boparai et al. reported that Cd removal increased with solution pH and reached a maximum at pH 8.0
[12]. In the present study, the removal rates were all more than 99.9% in the pH range of 7–9. Initially, the
adsorption was fast (i.e. first 5 min), and finally approached equilibrium. The initial fast adsorption might
be due to the large amount of adsorptive sites available. The effect of pH on Cd sorption is also related
to the changes in the surface charge and can be explained in terms of point of zero charge. At pH above
7.9, the nZVI surface acquires a net negative charge making the surface electrostatically favourable for
higher adsorption of Cd (II) [12]. Most of the Cd (II) was adsorbed at pH 7 (figure 2). The results indicate
that the non-specific sorption due to electrostatic attractions between Cd (II) and nZVI surface is unlikely
to be the major mechanism for Cd (II) adsorption and Cd (II) ions are adsorbed on the nZVI surface by
specific sorption rather than non-specific sorption.

3.3. Effect of temperature
Temperature is an important parameter that can influence the sorption process. The effect of temperature
on the adsorption of cadmium by nano zerovalent iron was studied from 288 to 308 K at initial Cd
concentration of 5 mg l−1 and nZVI dosage = 0.5 g l−1. The results showed that the adsorption rate
of Cd (II) ions was very fast initially, and approximately 99.9% of total Cd (II) was removed within
5 min. An increase in the temperature resulted in a slightly increased cadmium adsorption rate initially
(5 min) (figure 2b). Nevertheless, the removal rate and equilibrium cadmium adsorption were relatively
insensitive to temperature. The result was consistent with a previous study [12]. Higher removal rates
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Figure 2. Kinetics of Cd (II) adsorption: (a) the effect of pH on removal rate, (b) the effect of temperature on removal rate, (c) the effect
of initial concentration on removal rate and (d) the effect of initial concentration on adsorption capacity.

Table 1. Pseudo-second-order kinetic parameters of Cd (II) removal under different temperatures.

temperature (K) qe (mg g−1) k2 (g mg−1 min) h (mg g−1 min) r2

288 322 0.0138 1430.8 0.996
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

298 316 0.0349 3484.9 0.998
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

308 316 0.0654 6535.2 0.999
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(99.9%) were found even at low initial Cd (less than 5 mg l−1) and low pH value (pH = 5.6). Wang et al.
reported that approximately 40.0% of total Cd (II) from aqueous solution by a new low-cost adsorbent-
Bamboo charcoal [3]. Soto Hidalgo et al. exposed nZVI to 6 mg l−1 of Cd (II) and found that the nZVI
remediation efficiency of cadmium ions was between 80% and 90% in aqueous media [11]. The results
showed that the nZVI remediation efficiency of Cd can be improved when nZVI is coated by fly ash.
Boparai et al. reported that an increase in the temperature resulted in an increased cadmium adsorption
rate, and the adsorption of Cd (II) by nZVI was endothermic [12].

Previous research has investigated that Cd adsorption follows pseudo-second-order kinetics and the
pseudo-second-order kinetic model assumes that one cadmium ion is absorbed onto two sorption sites
on the nZVI surface [12]. The effect of temperature on the adsorption kinetics of Cd (II) was studied
in a previous study and an expression of the pseudo-second-order rate based on the solid capacity
was presented for the kinetics of sorption [12,13]. Kinetic parameters, including the second-order rate
constant (k2), calculated equilibrium adsorption capacity for Cd (II) (qe), the initial adsorption rate (h)
and regression coefficients (r2), were investigated in the present study (table 1). The results were in
accordance with the previous studies [12,13].

3.4. Effect of initial concentration
Experiments were performed to determine the effect of initial concentration of Cd (II) on the removal rate
and adsorption capacity of fly ash-nZVI (figure 2c,d). Cadmium adsorption was significantly influenced
by the initial concentration of cadmium in aqueous solutions. The removal rate of Cd decreased from
100% to 80% with an increase in the initial Cd (II) concentration from 20 mg l−1 and 100 to 200 mg l−1

(figure 2c). The adsorbed amounts were 40.1, 200.0 and 316.0 mg g−1 for 20, 100 and 200 mg l−1 Cd (II),
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Figure 3. Comparison of Cd adsorption: (a) at different amounts of fly ash-nZVI, (b) on activated carbon, nZVI and coal fly ash-nZVI.

Table 2. Comparison of adsorption capacities of Cd (II) ions with different adsorbents.

adsorbent initial Cd (mg l−1) time (min) removal rate (%) adsorption capacity (mg g−1) references

bagasse fly ash 14 60 90 1.20 [14]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

coconut charcoal 100 300 62.8 3.14 [15]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bamboo charcoal 100 360 >40 18.20 [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fe NPs 10 60 41.7 2.09 [16]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CS-nZVI 100 60 >65 130 [13]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fly ash-nZVI 100 5 99.9 200 in the present study
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

respectively (figure 2d), indicating that the adsorption capacity to Cd (II) was raised with an increase in
the initial concentration of Cd (II).

Gaseous nitrogen was not employed to achieve the anoxic atmosphere in the present study. However,
the removal rate and adsorption capacity did not increase significantly compared to when gaseous
nitrogen was employed to achieve an anoxic atmosphere, which may be because coal fly ash-nZVI is
deposited in aqueous solution and adsorption occurs in aqueous solution. The results indicate that nZVI
on coal fly ash was better protected against fast oxidation.

Cd (II) sorption at different amounts of coal fly ash-nZVI is shown in figure 3a. The removal rates
increased progressively with the amount of fly ash-nZVI. The high removal rates might be due to the
large amount of adsorptive sites available at 5 g l−1 coal fly ash-nZVI (10% nZVI); as the adsorption
sites gradually increased, the removal rates became larger. Coal fly ash was found to successfully adsorb
Cd (II) in the very low initial concentration (0.10–0.15 mg l−1) under alkaline condition (pH > 8.5). The
Cd (II) adsorption performances of different adsorbents (activated carbon, nZVI and coal fly ash-nZVI)
were also investigated in the present study. The removal rates of different types of adsorbents used for
the removal of Cd (II) was compared (figure 3b) and it was found that fly ash-nZVI may be a highly
efficient adsorbent for the removal of Cd (II) ions from wastewater.

3.5. Adsorption capacities of Cd
Numerous studies have investigated Cd (II) adsorption by various adsorbents, and the adsorption
capacity (mg Cd per g nZVI) of some adsorbents used for the removal of Cd (II) was compared
(table 2). Bagasse fly ash and bamboo charcoal may be highly efficient low-cost adsorbents for the
removal of Cd (II) ions from water, and the maximum Cd (II) adsorption capacities were 6.19 and
12.08 mg g−1, respectively [3,14]. Chitosan nanoscale zerovalent iron (CS–nZVI) and green synthesis
of iron nanoparticles (Fe NPs) were used for the remediation of Cd (II) from aqueous solutions; the
maximum Cd (II) adsorption capacity was 120 mg Cd (II)/g CS–NZVI [15]; the Cd (II) removal capacity
of Fe NPs synthesized by Ilex latifolia leaf extracts was 108 mg Cd (II)/g Fe [13]. From the results of
control experiments, it can be seen that a higher adsorption capacity is mainly due to the contribution
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of nZVI particles. Fly ash-nZVI has the highest adsorption capacity, which may be explained by the fact
that nanoscale iron particles were better dispersed on fly ash than bulk nano iron. Soto Hidalgo et al.
reported that from high-resolution TEM images, nanofibre formation of a mixture of Fe0, oxyhydroxides
and oxides of iron occurred after interacting with cadmium ions, possibly forming CdFe2O4 and FeOOH
shell and other iron oxides in nZVI, which could enhance Cd (II) removal [11]. The oxidation of nZVI on
coal fly ash did not occur for the adsorption of Cd (II). Maybe the formation of CdFe2O4 occurred after
the adsorption of Cd (II). The higher adsorption capacity for Cd (II) in the present study may be due to
the complex cooperation between fly ash and nZVI, which could cause a change of the initial structure
of nZVI to nanofibres due to the possible formation of CdFe2O4 as a waste product.

3.6. Removal mechanisms of Cd
The results of XPS characterization of fly ash-nZVI before and after Cd (II) adsorption are shown in
figure 4. The XPS spectrum of fresh fly ash indicated the presence of O, Si, Al and Fe in the structure
(figure 4a) but did not show the characteristic signal of Cd (II) ions on the surface of fresh fly ash. A new
peak at the binding energy of 405 eV appeared after 1 h exposure of fly ash-nZVI to Cd (II) (figure 4b),
which was assigned to the photoelectron peak of Cd. The results of XPS characterization showed that
before Cd (II) adsorption, the mass ratio of SiO2, Al2O3, Fe2O3 and Cd was 62.1%, 25.8%, 1.2% and 0%,
respectively. After Cd (II) adsorption with initial Cd concentrations of 100 and 200 mg l−1, the mass ratio
of Cd to Fe increased from 0 to 6.4 and 8.0, respectively. The phenomena indicated the uptake of Cd
on the surface of fly ash-nZVI.

Detailed XPS surveys on the region of Cd 3d and Fe 2p are shown in figure 5. The peak of Fe 2p
before adsorption was observed in high-resolution XPS survey (figure 5a), and the photoelectron peak
for Cd after adsorption was centred at 405 and 412 eV (figure 5b). The peak positions for the different
Cd 3d XPS features are relatively invariant and the 405 eV peak position associated with the Cd 3d5/2
level is in accordance with prior XPS-based work of Cd (II) in the literature [12,16]. Cd 3d3/2 and Cd
3d5/2 peaks were observed in the present study through high-resolution XPS, which is in accordance
with the results in a previous study [11]. The results indicated that Cd (II) is captured within coal fly ash-
nZVI by adsorption or surface complex with no apparent reduction on the nZVI surface. XPS analysis
confirmed that Cd (II) was adsorbed onto the fly ash-nZVI particles and Cd (II) was physically adsorbed
without being oxidized on the surface of fly ash-nZVI. Owing to a high removal rate (more than 99.9%),
the reaction went on for only 5 min in the present study. The high-resolution Fe 2p spectra indicated the
presence of different valence of iron (figure 5c). A prominent peak at 711 eV corresponding to the binding
energy of Fe 2p3/2 indicated the presence of Fe3+ in the coal fly ash-nZVI particles after Cd adsorption.
However, no peak at 724 eV was found, which may be present as Fe 2p1/2, indicated the absence of
Fe2+ in the fly ash-nZVI particles. The findings indicated that the oxidation of nZVI on coal fly ash
occurred after the adsorption of Cd (II). The results of the present study showed that Cd was removed
as Cd (II) ions by adsorption on the fly ash-nZVI surface, and fly ash-nZVI was an efficient material for
the treatment of Cd.
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Figure 5. High-resolution XPS survey of (a) Fe 2p before adsorption, (b) Cd 3d and (c) Fe 2p after adsorption. Initial concentration of Cd
(II): 100 mg l−1, fly ash-nZVI: 1 g l−1 (10% nZVI), pH: 7.0, temperature: 298 K, time: 60 min.

The compositions of coal fly ash are usually dependent on the raw coal. It should be noted that
the variable composition of coal fly ash may influence the capacity of stabilization of cadmium. The
components of coal fly ash are SiO2, Al2O3 and Fe2O3, CaO, K2O, Na2O, MgO and LOI. Alkalinity may
increase with more CaO, K2O, Na2O and MgO contained in coal fly ash-nZVI. The experimental results
indicated that the adsorption capacity increased with the increase of pH values accordingly. The capacity
of Cd stabilization increased with the increase of the content of alkaline earth metal oxide in coal fly ash.
The results suggested that coal fly ash-nZVI, which contained high CaO, K2O, Na2O and MgO, was
much more efficient than other coal fly ash-nZVI, and Cd(II) could be easily recovered from wastewater
using this coal fly ash-nZVI.

The coal fly ash-nZVI process presented was designed for electroplating wastewater treatment. A
pilot test was conducted using 2.0 kg coal fly ash-nZVI to treat a total of 5000 l wastewater containing
a high level of Cd (II). Low (0.1 mg l−1) and high (100 mg l−1) concentrations of Cd (II), Pb (II), Cu (II)
and Zn (II) can be easily adsorbed on coal fly ash-nZVI due to the combined effects of co-precipitation
and adsorption. Coal fly ash-nZVI was chemically stable in its chemical property as Cd concentration
was below 0.01 mg l−1 all along and the concentration of released iron ion was below 0.02 mg l−1. After
remediation coal fly ash-nZVI contained heavy metals, which belong to hazardous wastes in China, and
should be disposed by a company that specializes in the disposal of hazardous wastes.

4. Conclusion
Nano zerovalent iron supported on industrial coal fly ash was successfully prepared. Coal fly ash-nZVI
was an effective adsorbent to capture low-concentration Cd (less than 100 mg l−1) in wastewater. Coal fly
ash could promote the formation of flocculent and the separation of Cd (II), even at low concentrations.
XPS analysis confirmed that Cd (II) was adsorbed onto the fly ash-nZVI particles. nZVI on industrial
coal fly ash can better protect against aggregation and oxidation, and Cd (II) could be effectively removed
from contaminated water sources by adsorption on fly ash-nZVI in a very short time at a lower pH value.
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It is significant to note that the recovery of fly ash-nZVI (with associated contaminants) is practical and
feasible. The results suggest that fly ash-nZVI can be effectively used for the removal of cadmium from
contaminated water sources.
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