THENEWS LTTER OF THE BUREAU OF PUBLIC ROADS

VOL. 3 , NO. 10

AUGUST, 1928
A. C. ROSE, EDITOR

CONTENTS

Six Spans Of Arkansas Federal-Aid Bridge Floated 1 nto Position -1
Corrugated Metal Tracks Facilttate Trucking Over Soft Subgrades - - - - - - 5
Current Condition Of Federal-Aid Road Work, As Of July 31, 1928 7
Existing State Highway Mileage, As Of January 1, 1928 8
State Highway Mleage Bult During 1927 9
Grinding Machine Developed For Smoothing Uneven Concrete-Pavement Surface 10
1926 Lucal Road Income 13
1926 Local Road Disbursements 14
Ingenous Water-Supply Device Used 0n Small Concrete Mixer In Kansas -15
Iron Mules Prove Their Usefulness On Grand Canyon National Park Project - 16
Modern Equipment Faciltates Construction Of Oil-Processed Federal-Aid Project In New Mexico 21

3

SIX SPANS OF ARKANSAS FEDERAL-AID BRIDGE FLOATED INTO POSITION

```
Compiled from a report submitted by
C. T. Nitteberg of District 6 (Not for release)
```

The floating into place of six $2 \left\lvert\, 4 \frac{1}{2}\right.$-foot steel-truss spans in the construction of the Federal-aid bridge (F.A.p. No. 244-A) across the Arkansas River at Dardanelle, Ark., A hazariouls undertaking under the best of conditions, has been accumpl!shed without great difficulty. The success of the WORK IS ATtributed to the high degree of skill used by the CONTRACTOR in EXECUTING AN EXtREMELY EFFECTIVE METHOD OF FLOtation.

The bridge, when completed, will consist of seven steel-truss spans each 214 feet 6 inches in length, one 362FOOT SWING SPAN, TWO 60-FOOT REINFORCED-CONCRETE DECK-GIRDER approach spans at the north end, and one relnforced-concrete deck girder of 40-foot span at the southern extremity. The ENTIRE STRUCTURE ! S dESIGNED TO CARRY A ROADWAY 20-fEET WIDE in the clear with a 5-foot sidewalk on the downstream side. The concrete floor of the simple-truss spans 18 increased in TH!CKNESS SUFF!CIENTLY SO AS TO ACT AS A WEARING SURFACE FOR the traffic. The swing span is surfaced with a creosoted LAMINATED FLOOR, S INCHES THICK, TOPPED WITH A $1 \frac{1}{2}-1 N C H$ THICKness of modified Topeka mix. All of the main piers, and the ONE PIER SUPPORTING THE NORTH APPROACH SPANS, ARE BEING CONSTRUCTED BY THE PNEUMATIC PROCESS WJTH THE FOUNDATIONS SUNK WELL INTO SOLID ROCK.
in order that the flood hazard might be reduced to a minimum, the contractor elected to erect six of the main trusses on the shore and float them into place. The first SPAN WAS PLACED IN POSITION SUCCESSFULLY IN THIS MANNER ON June 11 , and the remainder from June 30 to July 4, 1928, inclusive. The first step in the operation was the construction OF A BOSOING DOCK OF SUFFICIENT LENGTH TO HOLD 6 SPANS, AND LOCATED ABOUT 400 FEET UPSTREAM FROM THE BRIDGE SITE. THIS CONSISTED OF TWO TIMBER-TRESTLE RUNWAYS EXTENDED FAR ENOUGH out into the Arkansas River so as to permit the entrance of two barges. The trusses were fabricated on a single set of FALSE WORK, AND then successively moved out upon the loading dock as they were completed.

Two barges，shown in Figure I，were required to float THE SPANS FROM THE LOADING DOCK TO THE BRIDGE SITE．EACH OF THESE， 40 FEET WIDE BY 90 FEET LONG EY 6 FEET DEEP，WAS BUILT AND LAUNCHED BY THE CONTRACTOR AT THE SITE OF THE WORK．A 3－BENT TRESTLE WAS CONSTRUCTED ON EACH EARGE SO AS TO BE CA－ PABLE OF SUPPORTING THE TRUSS SPANS AT PANEL POINTS L－2，L－3， AND L－4．THE BARGES，BY PARTIAL SCUTTLING，WERE LOWERED INTO POSITION BENEATH THE TRUSSES ON THE LOADING DOCK．THE WATER WAS THEN PUMPED FROM THE BARGE，THUS RAISING THE TRUSS CLEAR OF THE DOCK．

Probaely the most interesting feature of the construc－ TION WAS THE COMPLETE CONTROL OF THE EARGES，FROM ABOAMDTTHE GARGES THEMSELVES，WITH CABLES ATTACHED TO PILE DOLPHINS DRIVEN AT APPROPRIATE INTERVALS ACROSS THE RIVER，UPSTREAM FROM THE LOADING DOCK AND ABOUT 400 FEET ABOVE THE BRIDGE SITE．ONE BARGE，USED AS THE CONTROL UNIT，WAS EQUIPPED WITH TWO BOILERS AND TWO 3－DRUM HOISTS．ONE HOIST OPERATED THE TWO MAIN CONTROL CABLES WHICH WERE CROSSED AND ATTACHED TO THE INSHORE DOLPHINS AT THE BEGINNING OF THE FLOTATION WORK AS SHOWN IN FIGURE 2 ． AS THE 日ARGES SUPPORTING THE SPAN，MOVED OUT INTO THE RIVER， AN ANCHORAGE CAELE WAS ATTACHED TO THE INTERMEDIATE DOLPHIN， AND THE CROSS CABLES WERE CHANGED OVER TO THE TWO OFFSHORE DOLPHINS．THE SECOND HOIST，ON THE CONTROL GARGE，OPERATED THE AUXILIARY CONTROL CABLES WHICH WERE ATTACHED TO ANCHORAGES gelow the bridge site．THESE ANCHORAGES WERE USED IN CONJUNO－ TION WITH THE MAIN CONTROL CABLES TO SHIFT THE POSITION OF THE BARGES SO AS TO BRING THE TRUSSES INTO EXACTLY THE PROPER LOCA－ TION OVER THE PIERS．THE EARGES WERE UNDER PERFECT CONTROL AT ALL TIMES AND NO DIFFICULTY WAS EXPERIENCED IN MANEUVERING THE SPANS INTO THE CORRECT POSITION WHERE THE BARGES WERE AGAIN PARTIALLY SCUTTLED AND THE TRUSSES LOWERED ONTO THE TIMEER BLOCKING PLACED ON THE PIERS．THE BARGES WERE THEN PUMPED FREE OF WATER AND RETURNED TO THE LOADING DOCK FOR ANOTHER TRUSS LOAD．THE TIMEER ELOCKING ON THE PIERS WAS MADE NECES 9 SARY BY THE UNFORESEEN STAGE OF HIGH WATER IN THE ARKANSAS River at the time of the flotation．

THE ENTIRE OPERATION WAS ACCOMPLISHED WITHOUT ANY DIFFI－ CULTY AND IN RAPID．TIME．IT REQUIRED I $\frac{1}{2}$ HOURS TO LOAD THE SPAN aND PUMP OUT THE BARGES，I $\frac{1}{2}$ HOURS TO FLOAT THE SPAN INTO PLACE， I HOUR TO SET THE BLOCKING ON THE PIERS，I $\frac{1}{2}$ HOURS TO PARTIALLY SCUTTLE THE EARGES AND BRING THE SPAN TO REST ON THE BLOCKING， AND TWO HOURS TO 日RING THE BARGES 日ACK TO THE LOADING DOCK．

The Dardanelle federal-aif eiridge is eeing euilt by the Arkansas State Highway Commission at an estimated cost OF $\$ 588,000.00$ OF WHICH FEDERAL FUNDS ARE OELIGATED TO THE AMOUNT OF $\$ 293,775$. THE FINISHED STRUCTURE WILL REPLACE A PONTOON ERIDGE ON WHICH TOLLS ARE NOW EEING COLLECTED.

THE BRIDGE WAS DESIGNED UNDER THE DIRECTION OF N. B. CARVER, BRIdGE ENGINEER FOR the State highway departMENT, AND IS BEING BUILT UNDER THE SUPERVISION OF C. A. DUNN AS RESIDENT ENGINEER, ASSISTED by R. E. HILES. THE CONTRACT Is held by the Lakeside Bridge and Steel Company; the work IS EEING CARRIED OUT UNDER THE PERSONAL DIRECTION OF ITS PRESIdENT - S. C. CODDINGTON - WITH S. C. WALLER AS SUPERINTENDENT.

CORRUGATED METAL TRACKS FACILITATE TRUCKING OVER SOFT SUBGRADES

COMPILED FROM A REPORT SUBMITTED BY
G. L. Campen of District 5 (Not for release)

The corrugated metal tracks used to facilitate the TRUCKING OF ROAD-EUILDING MATERIALS, OVER SOFT PORTIONS OF the subgrade on Iowa federal-ald projectino. 276-B are IllusTRATED BY THE ACCOMPANYING PHOTOGRAPH. THE TRACKS, MANUFACtured in St. Paul, Minn., under the trade name of "Metal Rut" ARE PARTICULARLY USEFUL IN IOWA IN THE SPRING WHEN ALL GRAVEL ROADS BECOME IMPASSABLE UNLESS THE SOFT SPOTS IN THE SUEGRADE are planked or otherwise made travellable. The "metal rut" sections are 10 feet long and cost \$l9 apiece. The diameter OF THE SEMI-CIRCULAR TRACK IS 15 INCHES AND THE THICKNESS OF the corrugated metal is I/8 of an inch. Three 8-Inch cross PIECES HOLD EACH SECTION TOGETHER. THESE EXTEND TO THE OUTSIDE EDGE OF EACH TRACK AND ARE HELD IN PLACE BY 4 RIVETS TO EACH TREAD. THE TREADS ARE SPACED AT THE STANDARD GUAGE OF 4 FEET $8 \frac{1}{2}$ INCHES FROM CENTER TO CENTER. THIS SPACING WILL ACCOMMODATE SATISFACTORILY ALL TRUCKS EXCEPT THOSE WITH DUAL PNEUMATIC OR WIDE SOLID TIRES. A LAP OF 4 INCHES IS MADE BETWEEN THE SECTIONS. .

THE MAIN ADVANTAGE OF THIS TYPE OF TEMPORARY SURFACING IS THE FACILITY WITH WHICH IT MAY BE INSTALLED, OR REMOVED TO ANOTHER LOCATION. AS MAY BE SEEN IN THE ILLUSTRATION, THERE IS CONSIDERABLE SAG IN THE TRACKS between the JOINTS.

t

ε

GRINDING MACHINE DEVELOPED IN KANSAS FOR SMOOTHING UNEVEN CONCRETE-PAVEMENT SURFACE

COMPILED FROM A REPORT SUBMITTED BY
D. D. MICKEY OF DISTRICT 5
(Not For release)

A UNIQUE GRIND:NG MACHINE FOR REMOVING THE UNDULATIONS FROM THE UNEVEN SURFACE O:- A RECENTLY CONSTRUCTED CONCRETE PAVEMENT WAS DEVELOPED BY THE CONTRACTOR FOR USE ON KANSAS Federal-aio project No. 334-A. Four-tenths of a mile of the PROJECT, WHICH CONSISTED IN ALL OF 2.3 MILES OF CONCRETE PAVEMENT OF A 9-6-9 CROSS SECTION AND 18 FEET WIDE, WAS REPORTED UNSATISFACTORY ON OCTOBER 14,1927 because OF THE UNEVEN SURFACE BETWEEN STATIONS 103 AND 124.

THE MACHINE IS CONSTITUTED ESSENTIALLY OF A ROTARY DRUM, WITH ATTACHED CUTTERS, MOUNTED ON A MOVABLE FRAME WHICH IS IN TURN FIXED TO AN OITS:DE FRAMEWORK. THE ROTARY DRUM WAS MADE OF A $19-1 N C H$ LENGTH OF OII-WELLL CASING 12 INCHES :N DIAMETER. THE 2-INCH STEEL SHAFT WHiCH SERVED AS AN AXLE FOR THE DRUM WAS PASSED THROUGH APPROPRIATE HOLES IN THO ROUND PLATES $\left\lvert\, \frac{1}{2}\right.$ iNCHES THICK BY $|\mid$ INCHES IN DIAMETER WHICH WERE FIXED ON THE INSIDE OF EACH END OF THE CASING. TEN plates, 19 'nChes in diameter and $1 \frac{1}{2}$ INCHES thick WERE THEN CUT FROM pLATE STEEL. AFTER THE CENTRAL AREA (12 INCHES IN D: AMETER) WAS REMOVED, THREE SETS OF HOLES ($\frac{1}{4}, 3 / 8$, AND | $\frac{1}{2}-3 N O H!$ WEF: D ! ! LLED NEAR THE OUTER EDGE OF THE PLATES. THE three sizes of holes were made to permit the use of three DIFFERENT DIAMETERS OF CUTTER AXLES, BUT IN THE SUBSEQUENT USE OF THE MACHINE ON PROJECT NO. 334-A ONLY THE 3/8-1NCH holes were used. Each plate was next cut on a radial line AND THEN SPRUNG APPRCXIMATELY I INCH, G!VING THEM THE APPEARance of large look washers. The plates were then welded SUCCESSIVELY TO T'HE DRUM AND TO EACH OTHER IN SUCH A MANNER THAT VHEN THEY WERE ALL IN POSITION, THEY FORMED A CONTINUOUS SPIRAL MBOUT THE DRUM.

THE CUTTERS CONSISTED OF CAST STEEL WHEELS $3 / 8$ INCHES THICK BY $2 \frac{1}{3}$ INCHES IN DIAMETER, OF THE KIND ORD:NARILY USED TO DRESS EMERY WHEEILS. A TOTAL OF 342 CUTTERS WERE ATTACHED TO THE DRUM, 18 CUTTERS EEING MOUNTED ON EACH $3 / 8-1 \mathrm{NCH}$ AXLE.

ε

It was found that one cutter would wear off to $1-5 / 8$ inches IN DIAMETER, AND BECOME UNSERVICEARLE, FDR EVERY 2 SQUARE FEET OF PAVEMENT GROUND I INCH DEEP. THE AVERAGE DEPTH OF THE PAVEMENT CUT WAS ABOUT $\frac{1}{3}$ INCH. A GUARD, SHOWN LIFTED IN THE ACCOMPANYING PHOTOGRAPH, WAS PLACED OVER THE CUTTING DRUM AS A PROTECTION FOR THE WORKMEN AGAINST DUST AND EROKEN CUTTERS.

THE OUTSIDE FRAME OF THE GRINDING MACHINE WAS || FEET LONG AND 4 FEET WIDE, AND WAS BUILT OF 6 BY 4-INCH OAK TIMBERS, STIFFENED ON EACH SIDE BY $3 / 4-I N C H$ STEEL TRUSS RODS. THE INNER FRAME, CARRYING THE CUTTING DRUM, 4 FEET LONG EY 2 FEET WIDE, WAS CONSTRUCTED OF 4 EY $4-I N C H$ OAK MEMEERS. THIS INNER FRAME WAS HINGED TO THE OUTER ONE, BY A PIPE HINGE FIXED TO A 4 EY $4-I N C H$ CROSS BRACE SUPPORTJNG THE ENGINE. TWELVE-INCH PULLEY WHEELS WERE USED ON THE DRUM AND THE ENGINE. THE DRUM WAS RAISED EY A LIFTJNG LEVER AT ONE END OF THE INSIDE FRAME. T-SHAPED ADJUSTING SCREWS, AT THIS END OF THE FRAME, REGULATED THE DEPTH OF CUT. THE POWER WAS DELIVERED BY A 6 HORSE-POWER FAIRBANKS~MORSE GASOLINE ENGINE OPERATING AT A SPEED OF 450 REVOLUTIONS PER minute.

THE MACHINE WAS MOVED ALONG THE PAVEMENT ON FOUR 3INCH CASTORS, MOUNTED NEAR THE ENDS OF THE OUTER FRAME. FOR THE PURPOSE OF OILING THE CUTTER AXLES, A NUMEER OF PIN HOLES WERE DRILLED IN THE DRUM, AND THE DRUM WAS FILLED WITH WASTE AND ENGINE OIL. THE TWO MEN REQUIRED FOR THE OPERATION OF THE MECHANISM, MOVED THE DEVICE ALONG THE PAVEMENT.

THE PAVEMENT, GROUND DOWN BY THE MACHINE, CONSISTED OF A SAND-ROCK MIX FROM WHICH CYLINDERS, AT THE END OF 28 DAYS, TESTED 4,000 POUNDS PER SQUARE INCH IN COMPRESSION.

LCon roao incone No fnnos avaluale, 1936.

(COMPILEO FROW Reporte or Loch Authoortite)

$$
\{
$$

UNITED STATES DEPARTMENT OF ARBICULTURE
SUEAU OF PUELIO ROADS
LOCAL ROAD ANO ERIDGE DIBEYREENENTS, 1926

ON LOCAL ROMOS AMO ERIDRES; MNO FUNDS FOR STATE RONDB ALSO SHOWN (COMPILEO FROM REPONT: OF LOONL AUTMORETAES)

					PAYMENTS	80 NOS		OUNTY FUNOS	UNEXPENDED	
STATES	TOTAL DISEURSENENTS	OONBTRUCTION	mainteraice	OVERHEAO	INTEREST	RETIREMENTG \& SINKING FUNDS	$\begin{aligned} & \text { MI SCELLANEOUS } \\ & \text { PAMENTS } \end{aligned}$	TRANGFERRED TO BTATE \qquad	BALANCE ENO OF YEAR	States
Alasama	- 8,716,426	- 1,266,083	4,896,621	3 76,843	(396,920	(1,270,501	219,460	160,611	796,178	AMAEAM
arizona	1,794,034	410,599	849,048	68,888	224,409	170,947	79,149	7,250	116,746	Arizona
arkanaas	8,876,558	881,656	1,922,816	24,804	3,313,472	2,704,200	48,710	185,600	230,917	Aakansas
Calitornta	28,689,864	8,488,624	12,485,976	683,064	2,668,762	2,356,208	2,113,230	47,235	12,861,934	Cabifornia
Coloraoo	4,978,398	1,420,267	2,917,148	203,938	24,691	46,900	366, 464	296,163	314,388	Coloraoo
Conneotic	3,055,725	709,940	2,146,377		121,666	73,000	4,042		81,956	Comescticur
Delamare	1,607,698	403,673	438,434	26,704	480,760	180,000	78,126	1,061,231	42,655	Delamare
Florica	46,337,672	27,376,383	6,333,771	1,706,783	6,867,865	2,300,776	1,763,104	2,760,046	32,662,558	Florioa
Georala	11,010,850	3,239,619	6,234,763	349,285	1,081,332	678,405	527,646	2,567,923	2,299,724	OEOMOta
loano	3,768,544	1,113,972	1,116,880	140,842	687,672	576,944	133,234	646,189	1,002,604	loamo
Illinots	26,185,626	7,692,854	16,072,010	746,203	987,206	1,763,998	34,255		2,500,005	Illinois
Indiana	37,381,697	10,274,866	11,067, 742	703,792	3,724,489	11,676,896	35,024	39,203	10,821,124	Inotana
10wa	19,248,463	7,274,739	9,263,106	492,659		1,090,197	1,127,762		3,936,613	Iowa
Kaneas	13,636,024	7,376,848	3,441,493	584,839	131,676	726,904	1,374,264	7,011,507	8,692,692	kanaab
Kentuoky	6,463,833	964,604	3,119,876	182,663	869,949	916,415	420,326	2,164,976	1,665,298	Kentuoky
Louisiana	9,347,833	4,281,398	1,301,018	73,716	2,144,240	1,613,306	34,166	1,154,172	6,613,137	Loutbiana
Matne	2,643,762	352,569	2,012,937	194	50,894	62,436	154,733		0. -86,527	maine
Marylano	3,615,650	1,208,666	1,627,809	26,494	369,490	261,249	121,943	1,136,466	0. $-61,769$	marylano
Maseaohueette Miohioan	$14,350,000$ $36,519,684$	$7,700,000$ $14,636,238$	$6,650,000$ $8,962,051$							Maseaon
Minnebota	19,836,437	$14,636,238$ $10,658,864$	8,962,051	1,401,179	2,409,208	6,856,667	2,255,261	1,545,611	10,496,669	michigan
Misetsatpp	17,693,945	3,711,901	4,863,491	844.192	1,181,010	983,912	1,314,968	92,609	0. $-810,634$	minuesota
Mis souri	10,216,733	1,217,402	6,702,083	322,011	744,714.	1,216,877	13,6	37,749	13,693,095	M1estselpal
Montana	4,805,871	1,163,636	2,062,633	124,636	683,990	'733,657	147,310	96,834	1,133,390	Montana
RAEKA	8,048,940	4,996,168	2,394,932	187.415	191,914	97,695	181,926	227,132	893,800	Nebraba
Va	655,484	126,300	324,313	33,327	73,940	86,600	11,004	1,647	221,411	Nevad
New Hmparimire	1,951,031	223,260	1,505,004	78, 854			144,513			New Hampent
Nam Jeroey	26,338,881	9,135,548	7,018,009	440,805	2,349,486	7,029,066	365,967	733,760	1,008,794	New Jeraer
New Mexiou	27,761,965	64,911	310,894	20,608	14,816	4,277	47,689	126,007	86,919	NEw Mex 100
Nem York North Camolina	27,401,603	20,374,502	4,336,983	634,979	168,408	160,310	2,197,773	695,616	4,246,614	New Yon
North Daxota	4,361,837	3,715,087	4,833,746	436,157	4,867,053	4,644,904	1,006,427	10,876,807	3,649,042	North Carol
0×10	63,647,598	18,679,611	9,639,794	1,604,245	6,714,133	17,483,913	12,000		1,581,821	North Dakota
Oxlahoma	14,147,963	4,275,876	6,971,228	293,154	1,239,850	934,136	433,760		2,051,681	OHIO
Oreaon	13,059,917	7,956,314	2,165,827	163,231	1,089,281	1,429,263	256,001	203,877	1,547,342	Oregon
Pennaylvania	54,926,649	23,745,303	11,401,492	2,706,868	6,174,915	8,344,947	3,663,134	8,663,736	18,844,013	Pewnorlyania
Rhooe Islano	- 1,011,986	361,816	491.003	-	48,141	94,600	16,527	-	D. $-1,344$	frode liglano
Bouth Carolina	7,214,861	2,623,522	1,962,510	137,535	1,489,276	1,047,077	54,941	3,622,412	1,719,313	South Caroli
South Davota	7,476,540	3,669,311	3,648,790	167,439				1,409,277	0.-1,752,402	South Dakota
TENNESBEE	9,316,626	2,228,800	3,342,008	185,075	2,198,137	973,452	389,164	2,412,284	6,839,351.	temmesbee
TEXAB	24,565,637	4,679,700	8,783,919	307,965	5,525,500	4,700,752	667,711	1,034,383	8,292,320	Texas
UTA	1,345,202	424,679	563,30	63,099	108,837	83,123	112,154	36,197	162,695	
VEnmont	992,382	381,022	607,979				3,393	69,933	14,554	
Whatimeatom	$\frac{10,216,613}{5,995,778}$	2, 872.867	3,916,203		1.268,225	2,008,357	153;0961	454:226	4.110:123	Viroinia
Wist Vireinia	14,537,874	7,789,051	3,146,709	$\begin{gathered} 292,177 \\ 94,153 \end{gathered}$	$\begin{array}{r} 798,034 \\ 1,807,920 \end{array}$	$\begin{array}{r} 833,169 \\ 1,469,178 \end{array}$	$\begin{aligned} & 83,746 \\ & 210,863 \end{aligned}$		3,358,144	Mabhinaton
Wisoonsin	23,687,560	12,918,501	7,061,816	,001,439	1,610,304	$1,469,178$ 648,453	1,547,047	2,541,239	3,358,144	West Viroin
Omine	897,786	241,039	679,441	27,266	40,500		1,5,539		2,430,406 1,248	- 1 coonstin Hrowins
TOTALS	$\begin{gathered} 378,801,489 \\ 2] \end{gathered}$	\$285,718,219	\$213,236,069	\$17,620,484	\$68,685,149	\$91, 070,298	\$24,471,203	872,769,230	$\begin{array}{\|} 184,832,819 \\ 0,-2,701,566 \\ \hline \$ 182,131,253 \end{array}$	

INEENIOUS WATER-SUPPLY DEVICE USED ON SMALL CONCRETE MIXER IN KANSAS

Contributco by The Divibion of Construction,
 ANO COMPILEO FROM A REPORT EURNITTED EV H. B. WRIAHT of Distriot 5
 (NOT FOR RELEAEE)

AM INGENIOUS ANO EIMPLE OEVICE FOR SUPPLYING A UNIFORN QUANTITY OF WATER TO THE ORUN OF A GMALL CONORETE MIXER WAE PERFECTED GY TWE FOREMAN IN OHARAE OF OULVERT CONBTAUOTION OM Kansas FEDERAL-AIO PROJEOT NO. $250-A$. THIS WATER-MEANURING EQUIPMENT, WHICH HAS BEEN PATENTEO, CONEISTE ESSENTIALLY OFF. A ETEEL EOX BOLTEA TO THE BIDE OF THE MOPPER. AN OUTLET PIPE LEAOINO FROM THE WATER BOX, AB EHOWH IV THE ACOOMPANYING ILLUS:. TRATIONS, OONVEVE THE WATER IWTO THE ORUM WHIEN THE MIXER HOFFEF HAS 日EEM ELEVATEO TO A BUFFIOIENT HEIGHT. THE DIAMETER OFF THE OUTLET PIFE IS MADE LAREE ENOUGH TO PERMIT THE EMPTYING OF THE gOX EY THE TIME THE LABT OF THE AOCREGATE HAE PASEED INTO THE ORUA. THE TOF OF THE BOX, TOWARDS THE MIXER, IA COVERED WITH A ETEEL PLATE TO PREVENT THE OVERFLOW OF THE WATER WHEN THE HOPPER IE RAIEEO. THE DEVIOE EEEMO TO EE MUCH EIMPLER THAN THE USUAL ARRANGEMENT FOR SMALL WIXERS WHERERY THE WATER IS SUPPLIED OIREOTLV TO THE ORUN.

IRON MULES PROVE THEIR USEFULNESS ON GRAND CANYON NATIONAL PARK PROJECT

COMPILED FROM A REPORT SUBMITTED by William L. Eager of the Division of Management (Not for release)

Abstract

"|ron Mules" - Fordson tractors equipped with steel DUMP BODIES, AS SHOWN IN FIGURE I - PROVED TO BE A USEFUL TYPE OF EQUIPMENT FOR MAKING SHORT HAULS FROM A GASOLINE shovel on the Cape Royal road in the Grand Canyon national Park, Ariz. The slow speed attalnable under average condiTIONS IS SUCH AS TO PLACE THIS TYPE OF EQUIPMENT IN COMPETITION ONLY WITH HORGE-DRAWN DUMP WAGONS FOR SHORT HAULS ON GRADING WORK. EVEN IN THIS CASE, AS SHOWN BY THE GRAPH IN Figure 2, It is cheaper to use dump wagons. There are other FACTORS, HOWEVER, THAT ARE NOT INDICATED BY THE COSTS WHICH SEEM TO FAVOR THE IRON MULES. FOR EXAMPLE WITH THIS TYPE OF HAULING EQUIPMENT, MATERIAL CAN BE DUMPED OVER THE END OF THE FILL WHERE WAGONS COULD NOT BE USED. PROVIDED THE DUMP BODIES ARE SUITABLY REINFORCED, LARGE ROCKS MAY BE HANDLED BY THE IRON MULES THAT COULD NOT BE ACCOMMODATED IN DUMP WAGONS. ALSO, EECAUSE NO TURNING IS REQUIRED, THE IFON MULES REQUIRE LESS SPACE THAN ANY OTHER TYPE OF HAULING EQUIPMENT, AND, THEREFORE, MAY BE USED IN CRAMPED QUARTERS WHERE THERE WOULD NOT BE SUFFICIENT ROOM FOR WAGONS. FOR LONG HAULS, HOWEVER, THE HORSE-DRAWN DUMP WAGON, THE MOTOR TRUCK, AND THE TRACTOR ATTACHED TO DUMP WAGONS, ALL TRANSPORT THE MATERIAL AT A COST CONSIDERABLY BELOW THAT possible with iron mules.

A time study was made on the grading of the cape ROYAL ROAD ON TWO IRON MULES HAULING MATERIAL FOR A DISTANCE OF 95 FEET FROM A KOEHRING 3/4-CUBIC-YARD GASOLINE SHOVEL. The actual distance the material was hauled was, in reality, 125 FEET BECAUSE THE SHOVEL WAS SWINGING THROUGH AN ANGLE OF APPROXIMATELY 180 DEGREES. THE ENTIRE OUTFIT SEEMED TO BE WORKING AT NEARLY MAXIMUM EFFICIENCY, WITH LITTLE DELAY TO EITHER THE SHOVEL OR THE IRON MULES.

The iron mules are designed to travel when loaded in WHAT IS NORMALLY THE REVERSE GEAR FOR A FORDSON TRACTOR, AND TO MAKE THE RETURN TRIP IN LOW OR POSSIBLY HIGH GEAR. THE

1
1

DRIVER IS SEATED BESIDE THE MOTOR AND FACES THE LOAD, AN ARRANGEMENT WHICH HAS SEVERAL ADVANTAGES BECAUSE THE DRIVER IS ABLE TO SEE WHERE TO DUMP THE LOAD, AND THEN MAY CONTINUE AHEAD IF NECESSARY, USING THE DUMP BODY AS A BULLDOZER TO PUSH THE MATERIAL OVER THE EDGE OF THE FILL. ALSO, WITH THE POWER APPLIED TO THE FORWARD AXLE, THE STEERING OF THE UNIT IS MADE EASIER, ESPECIALLY ON THE HARD PULLS. ANOTHER ADVANTAGE IS THAT THE HIGH SPEED IS IN THE DIRECTION WHERE IT IS OF THE GREATEST VALUE - THAT IS ON THE UNLOADED RETURN TRIP. HOWEVER, DURING THE TIME THAT THE STUDY WAS MADE THE RETURN TRIP WAS MADE ALWAYS IN THE NORMAL LOW GEAR SO THAT THE OPPORTUNITY OF DETERMINING THE REDUCTION IN COSTS MADE POSSIELE WITH THE HIGH GEAR, WAS LACKING.

The Iron mules were loaded with 2 heaping dippers FROM THE $3 / 4$-CUBIC-YARD KOEHRING SHOVEL, MAKING AN AVERAGE TOTAL LOAD OF 1.6 CUEIC YARDS. THE AVERAGE SPEED OF THE LOADED IRON MULES (IN REVERSE GEAR) WAS 154 FEET PER MINUTE, AND THE AVERAGE RETURNING SPEED (IN LOW GEAR) 199 FEET PER MINUTE, MAKING AN AVERAGE SPEED THROUGHOUT THE ROUND TRIP OF 176 FEET PER MINUTE. ON LONG HAULS, WHERE THE ROAD IS IN FAIR CONDITION, IT IS BELIEVED THAT A RETURN SPEED OF 5 MILES PER HOUR, IN HIGH GEAR, MIGHT BE EXPECTED. THIS CORRESPONDS TO A SPEED OF 440 FEET PER MINUTE, AND UNDER THESE CONDITIONS, FOR THE GIVEN LENGTH OF HAUL, THE AVERAGE ROUND TRIP SPEED WOULD BE 297 FEET PER MINUTE.

AN ESTIMATE OF THE COST PER WORKING HOUR OF EACH IRON MULE FOLLOWS:

An estimate of the cost of the entire outfit per 8HOUR DAY FOLLOWS:

Shovel	\$30.00
Operator	10.00
Pitman	3.50
DUMPMAN--2-3.50	7.00
Iron mules - 2 (3) \$14.00	28.00
Overhead at 10 peir cent	7.85
Total estimated cost per 8-hour day	\$86.35 OR \$90

The shovel observations indicated an average of 98 dipPER LOADS PER HOUR OR A TOTAL OF 626 CUBIC YARDS OF MATERIAL moved per 8-hour day. The entire cost per cubic yard of the material (as measured in the dippers) is estimated at $\frac{\$ 90}{626}=\$ 0.14$
per cubic yard. The contract price of the unglassified mateRIAL (IN EXCAVATION) WAS $\$ 1.35$ per cubic yard. At the time of the study the contractor seemed, therefore, to average a profit on the entire outfit of over $\$ 700$ per day.

As indigated in Figure I, the subgrade was rather soft, but in spite of this adverse condition, the iron mules lacked, apparently nelther power nor tractive force.

MODERN EQUIPMENT FACILITATES CONSTRUCTION OF OIL-PROCESSED FEDERAL-AID PROJECT IN NEW MEXICO

CONTRIBUTED by the Division of Construction AND COMPILED FROM A REPORT SUEMITTED BY A. V. Williamson of District 3
(Not for release)

MODERN EQUIFMENT: AS SHOWN IN FIGURES I AND 2, FACILITATED THE OIL pROCESSING OF THE 11.2 MILES OF GRAVEL SURFACING ON FEDERAL-AID PROJECT NO. 150, BETWEEN LOS LUNAS aND I sleta, N. MEX. THE Equipment consisted of a I, 259-gallonCAPACITY GILMORE DISTRIBUTOR, 2 SPEARWELL ROAD MAINTAINERS, ONE DOUBLE-DISC HARROW PULLED BY A CLETRAC TRACTOR, AND ONE LIGHT GRADER FOR SMOOTHING AND FINISHING THE SURFACE. C. C. CASH, SUPERINTENDENT OF OIL-SURFACE CONSTRUCTION FOR THE STATE HIGHWAY DEPARTMENT WAS IN CHARGE OF THE WORK WHICH WAS ACCOMPLISHED APPARENTLY IN A VERY SATISFACTORY MANNER. THE OIL WAS FURNISHED AND SPREAD AT A CONTRACT PRICE OF 7 CENTS PER GALLON EY THE GILMORE OIL COMPANY AND THE PROCESSING OF THE SURFACE AND THE FINAL FINISHING OF THE SHOULDERS WAS accomplished by the state forces.

WHEN THE OILING OPERATIONS WERE BEGUN, ONLY ONE ? Spearwell maintainer, and one Russel IO-FOOT blade grader PULLED BY A MONARCH TRACTOR, WERE BEING USED FOR THE PROCESSING. IT WAS FOUND THAT BETTER WORK COULD BE DONE WITH THE Spearwell malntainer whlch, because of its higher speed, MIXED THE MATERIAL BETTER, AND IN LESS TIME. MR. CASH STATED THAT THE DEPARTMENT PLANNED TO OBTAIN ANOTHER SPEARWELL MAINTAINER, AND ONE MORE HARROWING UNIT. THIS ADDITIONAL EQUIPMENT WOULD MAKE IT POSSIBLE FOR THE OILING FORCE TO PROCESS ON THE SAME DAY PRACTICALLY THE ENTIRE LENGTH OF SURFACE OVER WHICH OIL COULD BE SPREAD CONVENIENTLY BY THE CONTRACTOR.

ACCORDING TO MR. CASH, FROM 5 TO 6 HOURS WERE REQUIRED FO HEAT PROPERLY A RAILROAD TANK CAR OF OIL, ALTHOUGH THE FIRST 2 CARS DELIVERED HAD TO BE HEATED FOR 12 HOURS BECAUSE THE STEAM COILS WERE BROKEN. THE LOADING OF THE DISTRIBUTOR TRUCK FROM THE TANK CAR AVERAGED A TOTAL TIME OF FROM 4 TO 5 MINUTES.

THE ORIGINAL GRAVEL SURFACING ON THIS PROJECT CON TAINED A VERY HIGH PERCENTAGE OF FINE MATERIAL BUT, BECAUSE OF THE EXTREMELY DRY CLIMATE AND THE HIGH WINDS, MUCH OF THIS MATERIAL HAD BEEN LOST; SO THAT THE TESTS MADE BY THE STATE INSPECTOR, DURING THE PROCESSING, SHOWED 6 TO 12 PER CENT OF THE SURFACING PASSING A 2OO-MESH SIEVE. A MINIMUM OF 6 INCHES OF GRAVEL WAS ORIGINALLY PLACED ON THE ENTIRE PROJECT, BUT DURING THE PROCESSING, THE SURFACING AT A FEW PLACES WAS SCARIFIED CLEAR THROUGH TO THE SUBGRADE - THE GRAVEL AT THESE LOCATIONS BEING APPROXIMATELY 4 INCHES THICK, LOOSE MEASUREMENT.

THE WORKING FORCE AT THE TIME OF THE INSPECTION OF THE PROJECT CONSISTED OF 12 MEN. THE USUAL ROUTINE OF OILPROCESSING WORK WAS FOLLOWED. THE ORIGINAL GRAVEL SURFACING WAS SCARIFIED TO THE DEPTH ESTIMATED NECESSARY TO OBTAIN THE REQUIRED THICKNESS OF THE SCARIFIED GRAVEL AT THE RATE OF APPROXIMATELY ONE-HALF GALLON PER SQUARE YARD. THE DISTRIBUTION WAS FOLLOWED IMMEDIATELY BY THE DISC-HARROWING, AND THIS OPERATION WAS CONTINUED UNTIL THE SECOND APPLICATION OF THE OIL. THIS SECOND COATING OF OIL WAS MIXED WITH THE HARROW, AND A THIRD APPLICATION WAS FOLLOWED BY A REPETITION OF THE SAME PROCESS. THE FINAL PROCESSING WITH THE BLADE GRADERS WAS CONTINUED UNTIL THE DESIRED COLOR OF THE SURFACING WAS OBTAINED, WHEN A STAIN TEST WAS MADE ON A SELECTED SAMPLE OF THE PROCESSED GRAVEL TO DETERMINE WHETHER THE PROPER AMOUNT OF OIL HAD BEEN ADDED.

AT THE BEGINNING OF THE WORK, THROUGH THE TOWN OF LOS LUNAS, $1-3 / 8$ GALLONS OF OIL WERE USED PER SQUARE YARD OF SURFACING AND A 4-INCH DEPTH OF TREATED ROADWAY WAS OBTAINED. THIS AMOUNT OF OIL WAS REDUCED LATER ON TO PROVIDE ONLY FOR A $3-1 N C H$ COMPACTED THICKNESS OF SURFACE. THIS TREATMENT REQUIRED APPROXIMATELY 1.3 GALLONS PER SQUARE YARD. IN GENERAL, AT THE TIME OF THE INSPECTION, THAT PORTION OF THE PROJECT ALREADY PROCESSED SEEMED TO HAVE AN EXCESS OF OIL, ALTHOUGH THE STATEIS SUPERINTENDENT OF CONSTRUCTION WAS OF THE OPINION THAT THE MIX WAS JUST ABOUT RIGHT, WITH THE EXCEPTION OF A FEW SHORT STRETCHES. THE STAIN TESTS, HOWEVER, INDICATED A SLIGHT EXCESS OF OIL. THE OIL FOR THE PROJECT WAS KNOWN AS GILMORE 60-70, MEDIUM GRADE.

IT WAS OBSERVED THAT THE NARROW-TIRED VEHICLES OF the local mexican population were cutting up the edges of THE UNCOMPACTED SURFACE. THE SUPERINTENDENT OF CONSTRUCTION SIGN!FIED HIS INTENTION OF HALTING THIS RAVELLING BY COMPACTING THE EDGES OF THE SURFACING WITH A LIGHT ROLLER.

At the time the project was inspected it was estiMATED THAT THE COST OF THE WORK WOULD AVERAGE FROM 12 TO 13 CENTS PER SQUARE YARD.

$$
\{1
$$

