“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

2004-09

A formal application of safety and risk
assessment in software systems

Williamson, Christopher Loyal

Monterey, California. Naval Postgraduate School, 2004.

http://hdl.handle.net/10945/9959

Downloaded from NPS Archive: Calhoun

ﬂmﬂi DUDLEY

W) | LiRARY

hitp://www.nps.edu/library

Calhoun is a project of the Dudley Knox Library at MPS, furthering the precepts and
goals of open government and government transparency. All information contained
herein has been approved for release by the NP5 Public Affairs Officer.

Dudley Knox Library / Maval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

‘ DRAESTANTIA PER SCIENT 44 ,

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

A FORMAL APPLICATION OF SAFETY AND RISK
ASSESSMENT IN SOFTWARE SYSTEMS

by
Christopher Loyal Williamson

September 2004

Dissertation Supervisor: Luqi

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE OV N 07040185

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the
time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202—4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704—0188)
Washington DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2004 Ph.D. Dissertation

4. TITLE AND SUBTITLE: A Formal Application of Safety And Risk Assessment 5. FUNDING NUMBERS
in Software Systems)

6. AUTHOR(S) Williamson, Christopher L.

8. PERFORMING
ORGANIZATION
REPORT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /
N/A MONITORING
AGENCY REPORT
NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this dissertation are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION
Approved for public release; distribution is unlimited. CODE
13. ABSTRACT

The current state of the art techniques of Software Engineering lack a formal method and metric for
measuring the safety index of a software system. The lack of such a methodology has resulted in a series of highly
publicized and costly catastrophic failures of high—assurance software systems. This dissertation introduces a formal
method for identifying and evaluating the weaknesses in a software system using a more precise metric, counter to
traditional methods of development that have proven unreliable. This metric utilizes both a qualitative and
quantitative approach employing principles of statistics and probability to determine the level of safety, likelihood of
hazardous events, and the economic cost—benefit of correcting flaws through the lifecycle of a software system. This
dissertation establishes benefits in the fields of Software Engineering of high—assurance systems, improvements in
Software Safety and Software Reliability, and an expansion within the discipline of Software Economics and
Management

14. SUBJECT TERMS

15. NUMBER OF
Software Safety, Software Failure, Software Engineering, Software Quality, High—Assurance PAGES
System, Software Economics, Software Development, Reliability, Risk Assessment, Safety 01
Management, Risk Management, Project Management, Formal Models, and Software Metrics.

16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20.
CLASSIFICATION OF CLASSIFICATION OF CLASSIFICATION OF | LIMITATION
REPORT THIIS P?GdE ABSTRACT OF ABSTRACT
Unclassified Unclassifie Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

i

Approved for public release; distribution is unlimited

A FORMAL APPLICATION OF SAFETY AND RISK ASSESSMENT IN
SOFTWARE SYSTEMS

Christopher Loyal Williamson
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1991
M.S., United States Naval Postgraduate School, 2000

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR IN PHILOSOPHY IN SOFTWARE ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL

September 2004
Author:
Christopher Loyal Williamson
Approved by:
Luqi John Osmundson
Professor of Computer Science Professor of Information
Dissertation Supervisor and Chair Sciences
Michael Brown William G. Kemple
Professor of Computer Science Professor of Information
Sciences
Mikhail Auguston
Professor of Computer Science
Approved by:
Peter Denning, Chairman, Department of Computer Science
Approved by:

Julie Filizetti, Associate Provost for Academic Affairs

i1

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

The current state of the art techniques of Software Engineering lack a formal
method and metric for measuring the safety index of a software system. The lack of such
a methodology has resulted in a series of highly publicized and costly catastrophic failures
of high—assurance software systems. This dissertation introduces a formal method for
identifying and evaluating the weaknesses in a software system using a more precise
metric, counter to traditional methods of development that have proven unreliable. This
metric utilizes both a qualitative and quantitative approach employing principles of
statistics and probability to determine the level of safety, likelihood of hazardous events,
and the economic cost—benefit of correcting the flaws through the lifecycle of a software
system. This dissertation establishes benefits in the fields of Software Engineering of
high—assurance systems, improvements in Software Safety and Software Reliability, and

an expansion within the discipline of Software Economics and Management.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

INTRODUCTION.....cuuiiiiiiiisninnsninssenssseissssssessssssssssssssssessssssssssssassssssssssssssssssssns 1
A. PROBLEM AND RESULTS ..cccoviierniinssnicssnnicsssrecsssssssssssssssssssssssssssssanss 1
B. LEARNING AT THE EXPENSE OF FAILUREinuennnes 2
1. Failure Due to a Factor of 4.45ouevveeiuenvrennnensnccsnecsnecnnns 2
2. Premature Shutdown 4
C. A HISTORICAL TREND OF FAILURE.........iinrrincrressnercsssencnes 5
D. QUESTIONING SOFTWARE SAFETY 8
1. Software is Prone to Failure..........cieeenneennensennsnenseecseensnncenne 8
2. How Can Software Be Determined Safe?ccocvvereecccnnrcccccnnnes 9
3. What Can Be Done to Make Software Safer?cccceeevuernnene 11
E. GENERAL APPROACHucuiiiriiticninsnnnsnisssnesssnsssessssessssssssssssassans 12
F. THE FOCUS OF SOFTWARE SAFETY ..cccevvrininnrissnrcssnncssnnncssnsncses 17
G. CONTRIBUTIONSctiiiictinniinninseicssnsssnsssssssssssssnsssssssssssssssssssssasnns 19
H. ORGANIZATION OF DISSERTATION ...cccovvrerenrcscnrcssnnncssssncsnsecses 21
I CHAPTER ENDNOTEScuuiiiiiiitinntinstennninssesssesssnssssisssessssssssessns 23
1. Software Failure Cost.....cieneenreniseenseccsnenssnecsensseecssecsssecsanes 23
2. NATO Software Engineering Definition.........cccccvceveecccneeccscnnnns 26
THEORETICAL FOUNDATIONccooviiiiniinssnnissssnessssncsssnesssssosssssessssssssssscses 27
A. DEFINING SOFTWARE SAFETY ...uiiiviniinninneicsiisnnssnecsssncsseesnnns 30
B. THE PHILOSOPHY OF SOFTWARE DEVELOPMENT................. 33
1. Software as INtelliencCe.......ccuvueeicervvnricnssnnrecsssnnnccssssnsncssssnsseces 33
2. The Motivation to Buildcccueeeveeneiisueniecisnensennseenseecssnecanes 36
C. THE ANATOMY OF FAILUREcvveienvercnenns 39
1. SOftWAre FIAWS ...ccovvvueiiciisnniicicsnnicssssansecssssssessssssssssssssssssssssssesss 42
2. SOftware Faults......coeieiveicirnicisnncnssnncsssnncsssnncsssnssssssssssssssssssssanns 44
a. Reactionary Type FAUILS..........euueeeneeennnerisnercssuencssnenenns 45
b. Handling Type FAUILSuuueeeonerossneresseresserossserosssesones 46
3. Software Failure........eiicniininiccssncnssnnccssnnensssncsssncssssnesene 47
a. Resource Based FAilUFesuuueeooueressnerossnerossnesosssesone 48
b. Action BasSed FAIIUTeS....uccoeeueereosssrerieosssansecsssanssosssassaces 49
4 Software Malfunctions.........cceeveecccvercsssencsssnncssnncssnsssssssssssssssanes 50
5 Software Hazards and Mishaps..........ceeneenneensenneenseecsnecnnes 52
6. Controls of Unsafe Elements.........ccccceeeveecssnnicssnnncssanscssnssssnsesens 54
7. RT3 11E:D T TA TUSINT1E 11111 F:1 o) O 55
D. DEGREES OF FAILUREccouuiiiniiiinnninnsnnicssnnesssanessssssssssssssssssssssses 59
1 Failure SeVerityueceenniennennsensecssnensenssnessecsssessansssassssncnns 60
a. Failure Severity DefilitiONsS........ecceeeeeosseressserssserosssesosnns 60
b. Failure Severity SUMMATYuconeeecuvensuerssuensaeessaensseesaenns 65
E. STANDARDIZED FOUNDATION OF SOFTWARE SAFETY 67
1. Software Safety Standards.........ceeeneeineenseensencsnenssnenssecssneeanes 67

a. AECL CE-1001-STD — Standard for Software
Engineering of Safety Critical Software...............ccueeen.... 67

Vil

b. NASA-STD-8719.134 — NASA Software Safety Technical
N 1 O RN 68
c. MOD 00-56 — The Procurement of Safety Critical
Software in Defence Equipment Part 2: Requirements ..69
d. MIL-STD-882C/D — System Safety Program

Requirements / Standard Practice for System Safety......70
e. IEC 1508 — Functional Safety: Safety—Related Systems
(DFQJE) ceueeoenerninvinssnennsnnnsssnnnsssssisssssesssssssssssssassssssssssssssses 71
f Joint Software System Safety Handbook 71
g Standards CONCIUSIONSeeueeeenerossneressnerossnerossnerosssenones 72
2. Traditional Methods to Determine Software Safety................. 73
a. COVErage TeSUNG....uueeeeevveeossaresssuressssrsssssrssssnssssssssssssoses 75
b. Requirements Based Testing (RBT).........ccouueeeeevcuneeecnane 76
c. Software Requirements Hazard Analysis (SRHA) 78
d. Software Design Hazard Analysis (SDHA)uueeeeee.. 79
e Code—Level Software Hazard Analysis (CSHA).............. 82
f Software Change Hazard Analysis (SCHA)uueeeeee.. 83
g) o 0 1N 84
h. Software Fault Tree Analysis (SFTA)......couuueeeeeevuerecsanns 87
i Conclusions of the Estimation of Software Safety 90
F. CONCLUSIONS cuutiitiitinsninsntessicssessssssssessssssssssssssssssssssssssssssassssssssss 93
G. CHAPTER ENDNOTEScoouiinirnninsinnsnensnncsssesssnssssesssnssssecssesssassssasasse 95
1. Comparisons of Safety Definitionsccocvveeeecsccnnrrcsscnnreccssnnnes 95
III. COMMON TRENDS TOWARDS FAILURE 101
A. INCOMPLETE AND INCOMPATIBLE SOFTWARE
REQUIREMENTS...uiiiiiniinsninnnensnnnsnesssnsssnesssesssnssssessssssssesssasssssssanss 104
1. The Lack of System Requirements Understanding................. 104
2. COMPIELENESS c.cuuveeueeirrenseensaensnnssaenssnesssnsssnessaesssnesssasssssssassssassns 105
B. SOFTWARE DEVELOPED INCORRECTLYcccververruecrersecsaccnnes 106
1. Political Pressure.........ccceeceeessneecssenccscneecsnneens 106
2. The Lack of System Understandingcccccceeeeerercnercscnescsnnnes 108
3. The Inability to Developcoeeeeeeneenruennnensenssnensnecssnecsanesnenns 111
4 Failures in Leadership = Failures in Software.........cccccceeeueee. 112
S. Building With One Less Brick — Resources..........cceeeeeerueecnneee 114
C. IMPLEMENTATION INDUCED FAILURESccoceevvenrurcrensuncnns 116
1. Software Used Outside of Its LIMitsccccceeerveecicnnecsceeccsnnennns 116
2. User Over—Reliance on the Software Systemccceeuererennees 121
D. SOFTWARE NOT PROPERLY TESTED..........ccuvieviinveicsnicsserccneens 123
1. Limited Testing Due to a Lack of Resources.......c..cccceeuererunnee. 123
2. Software Not Fully Tested Due to a Lack of Developmental
KNOWIEAGEcuuvrivnrniinnneicsinnicssnnncssnnscssanssssnsessssssssssssssssssssssssssses 125
3. Software Not Tested and Assumed to Be Safe.............ccceuuee.. 127
E. CONCLUSIONS cuuiiiitiintinsnensnesssncsssessssssssesssassssessssssssssssassssasssssssases 129
IV. CONCEPTUAL FRAMEWORK AND DEVELOPMENT.........cccccceeuverunrens 131
A. SAFETY DEVELOPMENT GOAL......ienneicnenseensnecssnnsssecssenens 133
B. METRIC DEVELOPMENTcuuiiniinninsinssnncsncssssssssssssssssssssssssssssasss 134

viil

VL.

1. N LS 1LY ¥/

2. Time t0 DeveloP.....ccceiccrvricisrrcssercssnicssnnicsssnncssssesssssesssssessnns

3. Effort to Developccoeeiiciccnnniccsisnnricsssnnnccssssssnsssssssssssssnsens

4. System Defects.....cicueicrceicssnicssnrcsssnncssnrcssnnessssicssssscssssssssnses

5. System COmMPIEXity....ccccreeserressssnrecsssasesssssassessssssssessssssassssnnss

C ASPECTS OF SOFTWARE SAFETY ..ccoievernruensennsnecsesssnccssecsanes
D. DEPICTING SAFETY .uuucoiiiiiiiceinnninsniisnesssessssscsssssssssssesssssessssns
E. SUMMARY ...utiiiiiisnensnensnenssnesssessssscssnssssssssessssessssssssssssassssessasssssssses
DEVELOPING THE MODELiiniiirinsnrcsnnisencssesssncssessssssssessass
A SAFETY REQUIREMENT FOUNDATION.......ccccceerueeruecsuensancne
1. Requirement Safety ASSESSMENTSccccvuvreccrccnnrrcssssnnrecsssnnnes

a. Level 1 ReqUIFEMERLS.......ueneeerernerossnerossnesossassossssesnns

b. Level 2 ReqUITCHENLS.....cueeneereossvevessssassossssssssosssssssens

c. Level 3 ReqUIFEMIERLS......uueeeneeeresnerescnerossrerosssnsossasesnns

d. Level 4 ReqUITCHERLS.....cneeeeereossveresssssassossssssssosssssssens

2. Requirement Safety Assessment QOutcomecoeueeeneeneeene

3. Safety Requirement ReUSEccccevenericsssnnrecsisnnnncsssnssacssnnns

B. THE INSTANTIATED ACTIVITY MODEL.........cccveevvueeruensunene
1. Formal Safety Assessment of the IAM.........cccceeeevvcnneiccccnnnees

2. Composite TAMccovvericivenicisnnicssnnicsssnissssnesssssessssssssssesssssesens

C. INITIAL IDENTIFICATION OF THE HAZARDccccerueeueenee
D. INITIAL SAFETY ASSESSMENT......cconninninnecnsnecsannssncsssecssnecsaces
E. SOFTWARE DEVELOPMENT AND DECISION MAKING.......
1. Process Flow Mapping
2. Initial Failure to Process Identificationccccceevuvecnencunenns
3. Assessing the System Process.........cceeeenceecssneccssnnicscnncssnnenes
a. Failure SEVerity ...eiceseviossavissserssssarssssesssssssssasssssanes
b. Application of ASSESSMENLuueeueeeeesueresseressreressannen
4. Decision Making
a. Variables to Safety DeCiSIONSeeeueeerueecvecsaersanennne
b. Hazard CONtrols.......uuacnnecnneennnensneensnensnecsnenssecsaenes
c. Making the Difficult DecCiSiONS.......c.uevervueressueressaveeens
5. Developmenteiicicvvericcissnnnicssssnncssssssnncsssssescsssssssssssssssees
6. Subjective Factors to Safety.......ueieeensecsenssnensnensnecsanncnnees

SUPERVISION OF SAFETY CHANGES........uuieerenreerenraesnnnes

COMPARISON TO PREVIOUS WORKS.........

F.

G. ASSESSMENT OF VALIDITY / EFFECTIVENESS OF THE
H

I

CONCLUSIONS ..uuiiiiinnennesnnsnessscssssssessasssssssssssessessasssssssssssssssssaess

APPLICATION OF THE FORMAL METHOD FOR EVALUATION

OF SOFTWARE SYSTEMS

A. A SAFETY KIVIAT MODEL......cininirnnenrneessnncsaenssnesssecsnecannes
B. EFFECTIVENESS OF THE METHODiineineecnnecnnnn.
C. AUTOMATION ...uuuirrrinnennrensnnnssnesssecsssesssesssscsssassssssssssssassssassssessasses
D. METRIC

E. MANAGEMENTcouiirieniinnuinnsnensecssnessnssssssssncsssesssssssassssassssessasess

182
182
186
188
190
193
207

241
243
245
246
249

1. System MAnAGET'S c...eeeeeercrrnrecsssssnrecssssssresssssssssssssssssssssssssssssssssss 251

2. Metric Management.......c.eceevveeccsrrcssnnncssasecssssecsssesssssssssssssssnes 252
F. COMPLETENESS.....cooiiitintiintinninneisssesssssssessssssssssssssssssssssessens 254
G. PERSPECTIVE CLIENTELEcouininenniinnensneecsnecsescssesssecssnes 256
H. CONCLUSIONS cuutiittineinnenssesssnssssissses 258
VII. SOFTWARE DEVELOPMENT DECISIONSccceoievtinensuecsensncssrceessecsaee 261
A. SOFTWARE NEGLIGENCEuiiieiinenseicsneisnnssnecssncssesssnnens 261
B. SOFTWARE MALPRACTICEcuuieuirneenrnensnecsnenssnesssecssnecssesssacens 263
C. NEGLIGENT CERTIFICATION.......ucccviiniinrninnnencsnecsnenssnncsseesssnenaens 264
D. SAFETY ECONOMICS.....coiininneinnecsnnssaensensssecssnssssesssacsssesssssssasens 265
E. CONCLUSION ..uiiiiitiinninsninsnisssissssisssases 268
VIII. SUMMARY AND CONCLUSIONS ...ccotinriirninsnncsnensnssssecssessssscssesssasssssessases 269
A. CONTRIBUTIONS....ctiiiitinneinnncsnicssnnsssnssssssssesssssssssssssssssssssssssaens 271
1. Six Factors of Safety Failure........c.cccoveieevverccvnicscencscnercssnnnenes 271
2. LD 223 711108 10 1 N 272
3. IMEELTIC couuuerrunecnensnecsnensanccsnensanesssesssnssssesssnssssesssnssssnsssassssessaasssasens 273
4. Process IMpProvementcccceeicccscnnnccsssnnsscsssssssesssssssssssssnses 273
5. Contributing Benefitsccoeeeevericcsercscsnncsssnrcssssncssssncsssncsssanes 274
B. CHANGES TO LEGAL PROTECTIONS........cccviivirnrurnnnncsnecsencnees 275
C. MANAGEMENTcuiiiiiiiinenntennennnesssesssesssesssesssessssssssssssassssesssaes 275
D. HANDLING FRAGILITY 276
E. SUGGESTIONS FOR FUTURE WORK........uucineisircrnenseccsnecsannsanens 277
APPENDIX A. DEFINITION OF TERMS.......coiiniinirnnensenssnncssessssccssesssnnens 281
APPENDIX B. INCIDENTS AND MISHAPScoouinirirenrnennnensnenseecsaensannens 299
1. ARIANE 5 FLIGHT 501 FAILUREiiiieinnenneensnecsnncnnens 299
2. THERAC-25 RADIATION EXPOSURE INCIDENTccccceeevreuneee 300
3. TITAN—4 CENTAUR/MILSTAR FAILUREccocceenveinrurcnnensercsaees 302
4. PATRIOT MISSILE FAILS TO ENGAGE SCUD MISSILES IN
DHAHRANcoitittittinninstnntesstissessseessissssssssesssesssssssssssssssssessssssssass 304
5. USS YORKTOWN FAILURE......iiiiiinnninsninsnicssisssnssssssssosanene 306
6. MV-22 OSPREY CRASH AND SOFTWARE FAILURE 307
7. FAA — AIR TRAFFIC CONTROL FAILURE........iinnerinrcnees 308
8. WINDOWS 98 CRASH DURING THE COMDEX 1998
CONVENTION ...uuiiiiiiuiinninsnicssnississssissssssssssssssssssssssssssssssssssssesssssssses 309
9. DENVER AIRPORT BAGGAGE SYSTEMucovvvecvurcrensuecsncsancnns 310
10. THE LONDON AMBULANCE SERVICEuinninscercsnensnnens 312
APPENDIX C. ABBREVIATIONS AND ACRONYMS....ccovericrensuncsnrsancanens 317
APPENDIX D. DISSERTATION SUPPLEMENTS......ccccenviinvuinnncssercsancsnnens 321
1. SOFTWARE SAFETY STANDARD TECHNIQUES REVIEW321
2. COVERAGE TESTING MEASURESiiirnninnennsnecsessnnes 324
3. DEFINITION OF SOFTWARE ENGINEERING..........cccceeveerueruenane 332
APPENDIX E. DISSERTATION METRIC...........cccceevuvieuenenee 333
1. INITIAL HAZARD IDENTIFICATIONucconieninssercsnnesasssssossasssases 333

2 INITIAL PROCESS IDENTIFICATIONcoouteviersuensnnnssnessancsanesanes 336
3 INITIAL PROCESS MAPuurrinrrnecnennennnnnesnsssesssesnessesssesssenns 339
4. INITIAL FAILURE PROCESS MAPuutrrreerrensnnnnnesssnnsnesanes 342
S. PROCESS ASSESSMENTcuuiniininiinnnnnessnesnnsnessssssesssesnsssessasssssnns 343
6 OBJECT EXECUTION PROBABILITYccccuervueernnnsuensnessnnesanesnnnes 345
7 OBJECT FAILURE PROBABILITYcccucestenennnennnsuensnnsanessesncssessnes 347
8. SYSTEM HAZARD FLOW AND PROBABILITYcccceevvueeruvrsunenne 350
9. PROBABILITY SUMMATION.....uucuiniinrennesnnsnessanssecssesasssessacssssnns 377
10. SAFETY ASSESSMENT INDEX SUMMATION RESULTS........... 380
11. PROCESS PROCEDURES...........ccutrrurreerrinrnesrinsnessansaesssessasssesncsssesns 389
INITIAL DISTRIBUTION LIST ..ouuconuinniinrinninnsnensnnsssesssnsssanssncsssssssssssassssssssssssasses 395

X1

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28

LIST OF FIGURES

Mars Climate Orbiter Failure..........ccocooiiiiiiiiiiiiieeeee e 4
Dual Impressions of Safety..........cccieriieiiiiiieieeeee e 32
Software Failure FIOW.........c.coiiiiiiiiiie e 39
Degrees Of FAllure.......cc.ooiiiiiieiiiiecececee e 66
Petri Net EXamMPIEcooouiiiiiiecieeceeee ettt 85
Fault Tree SymbOLOZY........cooouiiiiiiiieiieciiesie ettt s 88
System Fault Tree Example..........cooovieiiiiiiiiiiiieeeeeeeeeee e 89
Software Fault Tree EXampleocceviiiiiiiiieiiiiicee e 89
The Composite Pallet of Software Engineering...........coeccveevevveeeciiencieeenieeenen. 111
Time to Develop vs. Complexity and Error Detectionc.ccocevvenieneniicnnnen. 137
Safety in the Spiral Modelcooeeiiiiiiieeee e 144
Basic Instantiated Activity Model Exampleccccooceeviiiiiniininiiniiiciienee 160
Essential Graphic Elements for IPO BlocK..........cccoeevieiiinciiiniiciicieciceeeen 162
TAM Safety Analyses NOTAtiONcouerueevieriirienenieneeieereseeie e 167
Composite TAM Representations...........oecueeeeceieeriieeniieenieeesieeesieeesveeesvee s 169
Conjunctive IAM split into Individual TAMScccccociiniiiiniiniiinicneece 169
Firewall Control Example FIgUIeccccoeviiiiiiniiiiieieeieeee e 221
Redundant Control Example Figurecccccoceiiiiiniiniiiiniincccicee 222
Filter Control Example FIgUIe..........cccevviiiviiiiiieiieiii et 223
Kiviat Depictions of Safety Related Elements...........ccccoceriiniininiininncncnen. 244
WACSS Initial Process FIow Depiction..........c.cccveeieerieeniienienieeieeveene e 339
WACSS Initial Failure Depictionccceeviriiieriineenienieneeieseenieeieeeeniene 342
WACSS Object Execution Probability Map..........cccceeevveniieciienieeiieieeieeieans 345
WACSS M; Malfunction Process FIOW.......cooovviviviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeene 350
WACSS M; Malfunction Process FIOW.....ooovvveeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 353
WACSS M; Malfunction Process FIOW.......cooovviviviiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeenn 361
WACSS My Malfunction Process FIOW.....ooovvveveen 366
WACSS M5 Malfunction Process FIOW.......cooovviviviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeene 374

Xiil

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36

LIST OF TABLES

Quantitative and Qualitative Factors of Safety........cccccevvivenciienciiecieeee e 17
Code Complexity and Size COMPATISON.coerviriireeriirienieeieeteneeee e 34
Failure TYPeS LISt ..c.veeiiieiieeiiieiieeie ettt ettt e te e e esbe e e eneessae e 40
Software Failure Cause and Effects..........cccoooiiiiiiiiiiiiiiiieeeee 104
TAM Safety System ObJECES......c.eeiiieiiieiiieiierie ettt ettt eve e eve e 165
IAM Basic Notation Definitions...........cccueevuieriiiiieniiieiiesieeee e 166
Basic Consequence Severity CateZOTIeS......uuveuuierruieeeieieeriieenieeenireenreeenveeenns 178
OPNAYV Mishap Classification MatriX.........ccocereererieneenenieneenieeieneenieneenne 179
Failure SEVEIILYveeviieiiieiieiie ettt ettt aeebeessaeennaens 191
Example Probability Definition Table..........cccceviiiiiiniiiiiicieeeen 195
Example System Failure Definition Table...........c.ccceeviiiiiiniiiiiecieeiieeieee 204
Example Probability vs. Severity Table..........ccccooveeniiiiniiniiniiiinicccceee 205
Example Hazard to Safety Tableccccoeviieiiiniiiiiieceeeeeeeeeeee e 209
Hazard Control Effect on System Safetyccccoocerieiiiniiiiniiniieeeee 214
Failure Control PrOPEIti€s........cccveevieriiiiiieiiieieerie ettt 227
Developmental Effects to Safetycoceviriiniininiiniiiiicceccecee 229
SEI's Taxonomy Of RISKS.......ccceeiuiiiiieiieiiieiieciece et 231
Quantitative and Qualitative Factors of Safety.........ccceveriiniiiiniininninens 236
Software Safety Standard Techniques RevVieWcccoooeevviiiniiniieniiiiiie, 323
WACSS Initial Hazard Identification Table..........cccccooeiiiiiiniiniiiieeieee, 333
WACSS Consequence Severity Categories........evuerurerreerveeneeeireerieeereeneneenens 334
WACSS Initial Safety Assessment Table..........ccccevieniiiiniiiniininiiiniceccnee 335
WACSS Initial Process Identificationcccceceveenieniiniieneeniesenieeieeenieene 336
WACSS Initial Input Identificationcoceeverieriininiinienicenceceeeee 337
WACSS Initial Output Identification.............cccueeeierieeiiieniieieeie e 338
WACSS Initial Limit Identification..........cocceevieiiieniiiiiiesiecieeeeeeeceeee e 338
WACSS Initial Failures to Malfunction Identification............cccceeevevienienienncn. 340
WACSS Execution Probability Definition Tablec.ccccceeveriiniininincnnn. 343
WACSS Object Failure Probability Definition Tableccccccoveeiieviiiniennnn. 344
WACSS Failure Probability Table..........ccccociviiiiniiniiiiiiiniccceccecee 347
WACSS Conditional Failure Probability Table............c.ccccevviirviieniiniieiene. 349
WACSS Probability SUmmation.............ccoeevuirieneniinienieiieneeeeeceeceeeeneene 377
WACSS System Failure Definition Tablecccooveiviieiiiiiiiieeieciecieee 378
WACSS Probability vs. Severity Table.......cc.coceriiniiiiniiniiiiniinecciceeee 379
WACSS System Failure Probability Letter Designation.cccceevveeeeveennenns 380
WACSS Malfunction to Safety ASSESSMENt.......ccceevuerveriieneeiienienienieniereennens 388

XV

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

Equation 1
Equation 2
Equation 3
Equation 4

LIST OF EQUATIONS

SYSEM SATELY....ecviiieiie et e e 150
Loop Probability EQUation..........ccccuieiiiiiiiiiiiieieecee e 161
TAM SUMMATION ..ottt 171
Legal Definition of the Cost—Benefit Equationccoceveevinieninninicncenen. 262

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7

LIST OF EXAMPLES

IAM Safety Analyses Mathematical Representation...........cccceeevveeeiveernneennee. 167
Malfunction Representation of the JAM Analysesccccceevveiriieniiniienneennen. 167
Conjunctive IAM Mathematical Representationccceeeveeeiverieenienieenenns 170
Failure within an ObjJect.........ccooiiiiiiiriiiiiiiieeccee e 201
Failure of an Object with throughput to a Malfunction.............ccccecveevienieennnn. 201
Example Probability of Failure Equationccoceeiiiiiiiniiiiiieieeeee, 202
Error Handler EXample.........c.oooiiiiiiiiiiiiieiiecieeeece e 226

Xix

THIS PAGE INTENTIONALLY LEFT BLANK

XX

ACKNOWLEDGMENT

I wish to express my sincere gratitude to the United States Navy for affording me
the opportunity to pursue this and other degrees while simultaneously serving an
operational tour in the Forward Deployed Naval Forces. In the days of dwindling budgets
and resources, opportunities to pursue advanced educational opportunities are rare. [am
gracious that the Navy and the Naval Postgraduate School have the foresight to offer this

degree program to those who are called to serve at the tip of the spear.

Additionally, I wish to express my gratitude to Dr. Luqi, my advisor, for sharing
her knowledge and experience with me. Despite the miles and continents that sometimes
separated us, she was still there to offer her insight and advice on this research. To her,
and to the many other members of the Software Engineering Department of the Naval
Postgraduate School, I owe a great debt; and to Mr. Michael L. Brown and Prof. Mikhail
Auguston who contributed greatly to the refinement of the dissertation through their

experience with System Safety.

This dissertation is dedicated to the airmen and seamen who served with me,
protected me, guided me, encouraged me to strive for greater things, and who gave me the
experience to write this dissertation; and finally to my wife who patiently waited for my

return from many a distant voyage. No man alone can accomplish such an endeavor.

xxi

THIS PAGE INTENTIONALLY LEFT BLANK

xxii

EXECUTIVE SUMMARY

Despite significant efforts to improve the reliability and success of software
system development, there exists an inherent level of failure within all software based
systems. A decision to select one software system over another must be made considering
the level of failure and its consequences. Due to the proliferation in technological
requirements and control, government and private organizations increasingly require
high—assurance software development that cannot be satisfied by standard techniques. I
introduce in this dissertation a stepwise method for measuring and reporting the potential
safety of a software system, based on an assessment of the potential for event failure and

the corresponding potential for that failure to result in a hazardous event.

The lack of such a methodology and assessment has resulted in a series of
unforeseen, highly publicized, and costly catastrophic failures of high—assurance software
systems. This dissertation introduces a formal method for identifying and evaluating the
weaknesses in a software system using a more precise metric, counter to traditional
methods of development that have previously proven unreliable. This metric utilizes both
a qualitative and quantitative approach employing principles of statistics and probability
to determine the level of safety, likelihood of hazardous events, and the economic cost—

benefit of correcting flaws through the lifecycle of a software system.

From this dissertation, the state of the art of Software Safety and Software
Engineering benefits from a review of the faults and complexities of software
development, a formal model for assessing Software Safety through the development
process, the introduction of a common metric for evaluating and assessing the qualitative
and quantitative factors of a Software System, improvements and awareness of the facets
of Software Safety Economics, and a formal study of the state of the art of Software
Safety. This dissertation serves as a primer for future research and improvements to the
development process and to increase awareness in the field of Software Safety and

Software Engineering.

xxiii

THIS PAGE INTENTIONALLY LEFT BLANK

XXiv

I. INTRODUCTION

“To err is human, but to really foul things up requires a computer””

The Farmers’ Almanac for 1978

A. PROBLEM AND RESULTS

When the first modern computer based systems were deployed, just a mere fifty
years ago, they were designed to make simplistic calculations at a processing speed

23 In their initial

greater then those possible by man and at a higher rate of reliability.
stages, their operators would manually verify calculations and procedures to ensure
accuracy and compliance with established standards. Today, software based computer
systems are no longer used exclusively to simply make radiometric calculations — they
are developed to monitor, process, and control a wide variety of complex operations

whose failure could result in significant danger and damage to the operators, the general

public, and to the environment.

Despite significant efforts to improve the reliability of software system
development, there exists an inherent level of failure within all software based systems.
A decision to select one software system over another must be made considering the level
of failure and its consequences. The research of this dissertation has failed to identify a
viable measure of software safety in the current state of the art. It is the purpose of this
dissertation to establish a method for measuring and reporting the potential safety of a
software system, based on an assessment of the potential for event failure and the

corresponding potential for that failure to result in a hazardous event.

From this dissertation, the state of the art of Software Safety and Software

Engineering will benefit from a review of the faults and complexities of software

! Capsules of Wisdom, The Farmers’ Almanac for 1978, Yankee Publishing; 1977.

Computer History Collection, The Smithsonian Institute; 2003.

War Department, Branch of Public Relations, Press Release, Ordnance Department Develops All-
Electronic Calculating Machine, War Department, United States Government; 16 February 1946.

1

development, a formal model for assessing Software Safety through the development
process, the introduction of a common metric for evaluating and assessing the qualitative
and quantitative factors of a Software System, the improvements and awareness of the
facets of Software Safety Economics, and a formal study of the state of the art of
Software Safety. It is the intent that this dissertation serves as a primer for future
research and improvements to the development process and to increase awareness in the

field of Software Safety and Software Engineering.
B. LEARNING AT THE EXPENSE OF FAILURE

1. Failure Due to a Factor of 4.45*

On December 11, 1998 at 18:45:51 UTC’ (13:45:51 EST), the Mars Climate
Orbiter (MCO) departed the Cape Canaveral Air Force Station aboard a Delta II Launch
Vehicle on a six year mission to collect information on the Martian climate and serve as a
relay station for future Mars Missions.’ After nine months of interplanetary travel, the
MCO was scheduled for Mars orbital insertion on the morning of September 23, 1999.
At 09:00:46Z the MCO’s main engines commenced a preplanned 16 minute and 23
second aerobreaking maneuver to slow the craft prior to entry into the Martian
atmosphere. At the time of main engine burn, the vehicle was traveling at over 12,300
mph or 5.5 km/sec. Four minutes later, as the vehicle passed behind the Martian Planet,
signal reception from the MCO was lost. Signals were lost 49 seconds earlier than
predicted due to planetary occultation.” After 09:04:52Z, no signal was regained. For 48
hours, NASA and JPL made exhaustive attempts to reacquire the signal and locate the

MCO. On September 25, 1999, the Mars Climate Orbiter was declared lost.

The figure 4.45 is analogous to the metric to pounds force conversion factor that was overlooked
during the mathematical processing of the Mars Climate Orbiter navigational algorithm, referenced
later in this sub-chapter.

Also referred to as “Z” or “ZULU” Time Zone, Coordinated Universal Time, The Merriam-Webster's
Collegiate Dictionary, Tenth Edition, Merriam Webster, Incorporated; Springfield, Massachusetts;
1999.

Mars Climate Orbiter Mission Overview, Jet Propulsion Laboratory, Mission Overview, National
Aeronautics and Space Administration and Jet Propulsion Laboratory; 1998 — 1999.
http://mars.jpl.nasa.gov/msp98/orbiter/launch.html

Def: The phenomenon that occurs when a vehicle passes behind another celestial body, obscuring the
vehicle from view and reducing its ability to communicate with other receivers in line of sight.

2

Investigations into the loss of the Mars Climate Orbiter revealed that the orbiter
was over 170 km below its planned entry altitude at the time of main engine firing. The
MCO Mishap Investigation Board found the cause of the mishap to be a failure to use
Metric (Newton) units in the coding of the ground software file of the trajectory models,
in direct contradiction of system development requirements.®*® 1In contrast, thruster
performance data was reported and stored in the system’s database in English (pounds
force) units. The lack of a conversion factor placed the orbiter in too low a trajectory to
be sufficiently slowed prior to entry into the atmosphere. At its estimated rate of entry,
the Mars Climate Orbiter most likely burnt up on orbital insertion, skipped off the
atmosphere and reentered space with catastrophic damage, or impacted the Martian
surface and was destroyed (see Figure 1). None of the planned mission objectives were
achieved. Mission expenditures totaled $327.6 million with $193.1 million for spacecraft
development, $91.7 million for launch, and $42.8 million for mission operations. In
addition, future Mars missions were placed in jeopardy without a dedicated radio orbiter;

a mission that would have been filled by the MCO.

Mars Climate Obiter Mishap Investigation Board Report, Phase I Report, National Aeronautics and
Space Administration and Jet Propulsion Laboratory; 10 November 1999.

Note: English thrust units are in Pounds—Force — Second, while Metric thrust units are in Newton —
Second. The conversion factor is 1 Pound Force = 4.45 Newton.

Actual Approach\v Anticipated Approach
Trajectory Trajectory

Burn Up, Surface
Impact, or Atmospheric

29 Hr Orbit

Figure 1 Mars Climate Orbiter Failure

2. Premature Shutdown

Just three months after the loss of the MCO, on the morning of December 3rd,
1999, the Mars Polar Lander, the second in a series of Mars Planetary Explorers,
experienced a premature shutdown of its main engines and deployment of its lander legs
during its terminal decent propulsion phase to the Martian Planet.'” The premature
shutdown and deployment was attributed to a loss of system telemetry data. The
premature shutdown resulted in the lander free—falling to the planet’s surface and
eventual destruction. Investigation revealed an inability in the software system’s base

logic to correct for the loss of telemetry data or execute a failsafe maneuver.

Mishap Investigation Boards determined the fault in both spacecraft mishaps to be
poor project management practices and oversight, improper development techniques, the

failure to completely test the control systems, the failure to properly detect potential

" Mars Polar Lander Mishap Investigation Board Report, National Aeronautics and Space

Administration and Jet Propulsion Laboratory; Washington D.C.; 28 March 2000.

4

hazards and faults, and the failure to take precautions to prevent such catastrophic
mishaps. Both systems were developed under the NASA principle of “Better, Faster,
Cheaper.”"" The second failure resulted in the total loss of over half a billion dollars of
sophisticated space equipment and the failure to establish the deployed base

infrastructure for future Mars missions.

C. A HISTORICAL TREND OF FAILURE

At the end of the 20™ Century, Software Failure has proven one of the greatest
detractors of public confidence in the technology.'? A 1995 study by the Standish Group
noted that over 31.1% of the projects sampled were cancelled before they were ever
completed.”” Of the remaining 68.9%, 52.7% exceeded projected costs by a staggering
189%. It was estimated that American companies and the Federal Government lost over
$81 billion to cancelled projects in a single year, and an additional $59 billion to software
systems that were delayed or were completed past their expected delivery time. It is
inappropriate to use the term “expense”, as was referred to in the study, but rather to the
term “lost”, as organizations received no additional reward or gain for additional money
spent.'* While the phrase may be a matter of semantics, it is essential that researchers
and evaluators of Software Safety do not attempt to soften or mitigate their vocabulary at

the cost of hiding the significant dangers that lurk within software system failures.

Through the end of the decade, the statistics failed to improve. A large sampling
of over 8,000 software systems revealed that over 40% of the Information Technology
(IT) projects end in failure. Of the remaining 60%, 33% were either over budget,
completed past their expected delivery date, or lacked primary features specified in

system requirements, or both. The total cost in lost productivity and material, lost

" Goldin, Dan; Public remarks to JPL Employees, NASA Public Affairs, National Aeronautics and

Space Administration; Washington, D.C.; 28 May 1992.

Interagency Working Group (IWG) on Information Technology Research and Development (IT R&D),
Information Technology: The 21% Century Revolution, Overview, High Confidence Software and
Systems, National Coordination Olffice for Information Technology Research and Development,
www.ccic.gov/pubs/blue0l/exec_summary.html.

Chaos, The Standish Group, The Standish Group International; West Yarmouth, Massachusetts; 1995.
See Chapter Endnote 1.1.1. — Software Failure Cost

12

5

revenue, and legal compensatory damage due to failed or flawed software was beyond
computation. Some estimates put the total American loss well in excess of $150 billion
annually, ”* '® an amount greater then the GDP of Hong Kong, Greece, Israel, or
Ireland."” '® One of most disturbing consequences of Software Failure is the increasing

trend in deaths and human maiming."’

Despite over 50 years of software development, the discipline of Software
Engineering (SE) has failed to improve in cadence with the technology that it marches
alongside of. Statistically speaking, software development is a failing industry, buoyed
up only by the demand and requirement for systems to control the same technology that it
fails to keep pace with. Consumers have grown callous to the fact that the software they
have purchased will be flawed, require updates and service packs, and will crash at the
most inopportune moment. Businesses budget for and expect to pay for extended delays
and faults, take out insurance against the inevitable failure, and develop manual
contingency plans to continue operations in the event that automation fails. Due to the
complexity of some high—assurance systems, there is no manual contingency to fall back

upon in the event of a loss of automated control.

Software Engineering is often confused and misconstrued with the simplistic
discipline of software programming; where software programming is the basic process of
putting code to keyboard, Software Engineering is the complex process of developing
and implementing the logic and methodology behind the code. The Software

Engineering discipline encompasses the study of:

Note: It is estimated that the American public spent over $250 billion on application development in
1995, according to the 1995 Chaos study by The Standish Group — The Standish Group International;
West Yarmouth, Massachusetts; 1995.

Neumann, Peter G.; Moderator, Risks — Forum Digest, Forum On Risks To The Public In Computers
And Related Systems, ACM Committee on Computers and Public Policy, Published weekly, SRI Inc.
7" CIA World Factbook, 2000 Edition, United States Central Intelligence Agency (CIA); 2000.

Note: In addition to the countries listed, there are over 195 countries with GDPs less then $150
Billion, according to the CI4 World Factbook, 2000 Edition.

Neumann, Peter G.; Moderator, Risks — Forum Digest, Forum On Risks To The Public In Computers
And Related Systems, ACM Committee on Computers and Public Policy, SRI Inc.

6

o Efficiency and practicability of code,
o Modernization techniques,

o Reusability,

o The compiling processes,
J Process assurance,
o Technological management of information,

o The applied psychology of the developers,
o The management and maturity of the design process,

o The ultimate integration of the software product into the final system.”

The IEEE Standard simply defines Software Engineering as “the application of a
systematic, disciplined, quantifiable approach to the development, operation, and

521, 22

maintenance of software. What Software Engineering has not mastered is the

discipline of Software Safety.

Since the 1960, when the term was first coined, Software Engineers have
attempted to design and develop safe and reliable systems that are cost effective and
technologically advanced to control and manage sophisticated systems. Despite valiant
efforts, history has demonstrated that software fails to remain economical, efficient,
reliable, or safe, and that a vast number of projects fail to use systematic and disciplined
approaches to design. The results are evident by the growing number of failures and

faults that are recorded annually (see APPENDIX B — INCIDENTS AND MISHAPS).

20
21

Weinberg, Gerald; The Psychology of Computer Programming, Dorset House Publishing; 1999.
def: Software Engineering, IEEE Standard Glossary of Software Engineering Terminology, IEEE
Standard 610.12, Institute of Electrical and Electronics Engineers, Inc.; 1990, 1991.

22 See Chapter Endnotes I.1.2 — NATO Software Engineering Definition

7

D. QUESTIONING SOFTWARE SAFETY

1. Software is Prone to Failure

Failure is an inevitability that must be anticipated, investigated, and compensated
for. The current state of the art of Software Development has failed to solve the problem
of quantifying Software Safety and reducing Software Failure. The statistics of Software
Failures are well documented in academic and industry literature, as well as in the public
press. Previous efforts have been made at quantifying the risks of software development
as well as identifying the procedures for dealing with these risks.”> While these efforts
have made great strides at categorizing development risks,** they have failed to identify a
common criterion for development risk and system safety. Coincidental with the absence

of'a common risk criterion is the lack of a common safety or quality assurance criterion.

Due to the proliferation in technological requirements and control, government
and private organizations increasingly require high—assurance software development that
cannot be satisfied by standard techniques. According to the Defense Advanced
Research Projects Agency's (DARPA) Joint Technology Office Operating System
Working Group, comprised of DARPA, NSA, and the Defense Information Systems
Agency (DISA), many critical government applications require a high—assurance for
safety, security, timeliness, and reliability.”> Examples of such applications include
nuclear power plant control systems, biomedical devices, avionics and flight control
systems, systems that protect classified information, and command, control, computers,
communications, and intelligence (C4I) systems.*® Due to rapidly changing development
techniques, little work has been done in the development and integration of high—

confidence systems. Currently, interactions and integrations are poorly understood and

3 See Chapter IL.E — STANDARDIZED FOUNDATION OF SOFTWARE SAFETY

Nogueira de Leon, Juan Carlos; 4 Formal Model for Risk Assessment in Software Projects, Naval
Postgraduate School; Monterey, California; September 2000.

» Bury, Lawrence; Software Engineering Tools, A Technology Forecast, NSA Office of INFOSEC

Research and Technology; February 1999,

http://www.nsa.smil.mil/producer/forecast/reports/set/set.html.

Note: For this dissertation, Command, Control, Computers, Communications, and Intelligence (C4I) is

analogous to Command and Control (C2); Command, Control, and Communications (C3); and

Information Warfare (IW).

26

analytic tools for specifying and decomposing complex properties are flawed or non—
existent. Formal methods and specifications typically are used in developing high—
assurance type systems. Formal methods must also be integrated to include Software
Safety and assurance techniques.”” To enhance the process, the U.S. Government is

attempting the integration of “program understanding” tools.

A DARPA/NSA/DISA Joint Technology Office (JTO) working group has stated
that, “mission—critical systems are subject to a number of stringent design and operation
criteria, which have only recently begun to emerge as significant requirements of
commercial systems.” These criteria, which include dependability, security, real-time
performance and safety have traditionally been addressed by different communities
yielding solutions that, at best, fail to meet constraints imposed by other criteria and, at
worst, may interact to degrade the overall level of confidence that the system can fulfill
its mission. While little work has been done to integrate high—confidence systems, it has
become clear that these constraints are not orthogonal and cannot be jointly met through
simple layering or the composition of independently derived services. Interactions are
poorly understood and analytic tools for specifying and decomposing complex properties

are non—existent.

Software is prone to failure. While no system can ever be 100% safe and fool
proof, every effort should be made to identify and reduce the number or potential for

unsafe incidents.

2. How Can Software Be Determined Safe?

Increasingly, the fields of military defense and commercial industry require
technologically complex software tools to maintain and manage their critical systems.
These critical systems have become far too intricate to be maintained by humans or by
simple and easily proven hardware. Historically, the failure of such systems has resulted

in the detrimental loss of essential military components, weakening our national defense;

T Research Challenges in Operating System Security, DARPA/NSA/DISA Joint Technology Office
Operating System Security Working Group; August 1998.

9

of governmental support systems, sending our national data stores and operations into
chaos; and of manufacturing and fabrication units, directly affecting productivity and our
country’s gross national product. Far too many lives have been lost and far too many
resources have been wasted on untested and unproven software that failed at the most

critical and inopportune moments.

Presently, Software Safety and the development of critical software systems focus

on four principles of hazard control, namely:

. Eliminating the potential hazard from the software system.
. Prevent or minimize the occurrence of the hazard.

. Control the hazard if it occurs.

. If the hazard occurs, minimize the severity of the damage.

Despite the best efforts to manage system hazards, software cannot be developed
and referred to as safe unless the spark that resulted in the hazard can be identified and

isolated, and the system can be judged against an accepted criterion for safety.

QUESTION: Is it possible to develop a common assessment criterion that can

determine if software is safe?

The needed assessment criterion must be cost effective, efficient, and easy to
implement. This assessment criterion must be structured and well defined, and easily
integrated into the development process. This assessment criterion must include
techniques for evaluating potential safety flaws from the requirements level through the
implementation and use. The assessment criterion must identify the potential
catastrophic consequences of the Software Failure. Additionally, this assessment
criterion must include a safety investigation and determination process for regression
testing necessary after software requirement changes. While it is popular to simply rely
on a single assessment to determine the safety of a system, such an assessment is not cost
effective. A complete assessment requires analysis and test data that supports the

conclusion of the analysis.

10

Chapter II and III outline many of the failures in software testing and assessments
that are crucial to the success of a safety related software system. Chapter IV and V
describe the principle elements of successful assessment process and the data necessary

to certify the validity of the assessment.

3. What Can Be Done to Make Software Safer?

In parallel with determining the safety of a software system, it is essential to
improve techniques for the continual development of safe software. The field of
Software Safety is no more in its infancy than the field of Software Engineering.
Software Engineering is based on general principles of logic, rooted in mathematics and
science. While the application of software to electronics is only half a century old, the
fundamental core of software operation is rooted in the timeless concepts of logic and
reasoning. Such concepts can be related or traced to early schools of philosophy and
applied psychology.” Due to the increasing rate in technological advancements in
computer science and Software Engineering, and the heavy reliance on automated
management systems, software failures have become increasingly costly and pronounced.
As automation reliance increased, the ability for existing safety measures to prevent an
accident has decreased. As technology advances and broadens its scope of control, the
numbers of catastrophic events that can be triggered from a single software failure

become near limitless.

The method must be applicable to traditional and new types of development
techniques. This method must be able to identify and prevent the new types of accidents
and failure modes that can arise with automated assurance systems. This method must be
capable of detecting, tracking, and indicating trends in unsafe programming and
development to prevent future mishaps through a change in procedures and environment.
This method must span the entire lifecycle of the development and integration, and
include using integrated systems, software, and human task models to analyze the safety

of the complete system. This method must review system-level requirements for

2 Young, Norman; Computer Software Cannot Be Engineered, Private papers; 1999,

http://the2ndcr.mg1.net/cscbe.html.

11

completeness and constraints control, including examining the ramifications of
automation and human task design decisions on overall system safety. This method
should devise design techniques and tools for performing integrated hazard analyses on
formal system, software, and operator task models. For the benefit of mishap reviews
and software forensics, this method must permit backward tracing of hazardous states to
determine what human errors and software behaviors are most critical with respect to

hazardous system states.
E. GENERAL APPROACH

Software or System Safety is traditionally defined as a system’s ability to operate
within the accepted and expected parameters of its requirements.” Additionally, safety
includes a system’s ability to prevent an unacceptable act, hazardous condition, or mishap
from occurring. To the contrary, risk can be defined as the frequency or probability that
an unacceptable act or hazardous condition could occur; “How risky is the system?” Risk
can also be quantified with a measure of the consequences of the unfavorable action or
severity of the mishap, or as an expression of possible loss in terms of severity and
probability.*® “Is the system safe to use?” “What is the risk of something going wrong
with the system?” FEach of these viewpoints contributes to the overall concept of

software system safety, despite their somewhat contradictory principles.

A thorough study and investigation of subject matter literature has revealed a

series of definitive factors that lead to degradations in Software Safety, including:

o Lack of experience in software development and assessments,

o Disjointed educational emphasis and training in the field of Software
Safety,

o Proprietary software development practices, definitions, requirements

towards Software Safety,

¥ Nesi, P.; Computer Science Dictionary, Software Engineering Terms, CRC Press; 13 July 1999,

http://hpen.dsi.unifi.it/~dictionary.

12

o A lack of understanding of the relationship between Software
Development and Software Safety,
o The over emphasis of quantifying failure while lacking appropriate

emphasis to qualifying failure.
We present a format to address or resolve these shortcomings through or by:

o Establishing a knowledge base of Software Safety and risk management,
as it applies to safety through the lifecycle of a system,
J The introduction of a generalized series of practices and definitions for

defining Software Safety,

o The presentation of metrics for determining the safety index of a software
system,
o The review of the relationship between developmental actions and

operational failures,

o Improving efforts and practices towards identifying potential failures of
Software Safety and methods for improvement,

o The study of the quantitative and qualitative factors of Software Safety,

J The development and introduction of the Instantiated Activity Model for
depicting failure logic flow to determine the potential for malfunction.
o The development and introduction of mathematical equations for

the computation of the probability of occurrence of a malfunction.

J The development and introduction of a computation of a software

system’s Safety Index.

o The discernment between developmental risk and software safety,
o The ability to depict software safety mechanics in a common graphical
format.

3 Draft Reference Guide for Operational Risk Management, Naval Safety Center, Department of the

Navy; 09 September 1999.

13

In current practices, Software Safety and Risk Management consists of a checklist
and metric—based practice that requires a formal detailed and documented process that
relies on human subject matter expertise and automated investigation systems.>' % 33343
The goal of any measure would be to make it as intuitive as possible to eliminate any
variable or chance that the user would deviate from the measure’s practice and

procedures. It would be essential that measures be refined sufficiently to ensure that

users could objectively observe the variables of a system.

The following chapters present a foundation for establishing a knowledge base of
Software Safety and risk management, as it applies to safety through the lifecycle of a
system. Included are outlines and details for creating methods and metrics to determine

the safety index of a software system.

Investigation reveals the relationship between the development process and
Software Safety. A detailed investigation has been made on the methods of software risk
management and software development, to determine the commonality and conflicts
between the two as well as where refinements can be made to ultimately enhance
Software Safety. Efficiency and productivity dictate that Software Engineers must strike
a delicate balance between the needs to reduce development risk and increase product
safety, while inflicting as small as possible an impact on the engineering timeline and

expense of development.

Previous studies and efforts have concentrated on quantifying the risks associated

with software development,’® and the actual evaluation of the development process to

31
32

Cigital Solutions and Cigital Labs, Cigital, Inc, Dullas, Virginia; 2004

Kaner, Cem; Software Negligence and Testing Coverage, Software QA Quarterly, vol. 2, num. 2, pg.
18; 1995/1996.

Support Capabilities of the Software Engineering and Manprint Branch, Systems Performance and
Assessment Division, Materiel Test Directorate, White Sands Missile Range; September, 2000.
Newsletter: from Risknowlogy, Risknowlogy, Schinveld, The Netherlands; 14 January, 2004
Safety Hazard Analysis and Safety Assessment Analysis (Probabilistic Software), Reliability
Engineering at the University of Maryland, Department of Mechanical Engineering, College Park,
Maryland.

Nogueira de Leon, Juan Carlos; 4 Formal Model for Risk Assessment in Software Projects, Naval
Postgraduate School; Monterey, California; September 2000.

33
34

35

36

14

determine the optimal method for creating the software. While these previous methods
benefited the development process and worked to ensure the successful completion of the
project with minimal risk of exceeding planned budgets and schedules, they failed to
detail the hazards of operating the product or the events that could cause specific hazards,
either during the development or implementation process. These previous studies have
also failed to study the implications of unsafe incidents or hazards. Addressed within this
Dissertation are the development processes and risks to development, with the intent to
design a method to efficiently engineer software with the greatest assurance of success
and safety. Also included is a review and study of the software development process’’,
concentrated on the identification of potential failures related to Software Safety and

probable methods for improving the overall safety of the system.*®

Software Safety encompasses the study of the potential hazards of a software
system, the subsequent consequences of the hazard, and the prevention of these hazards
to ensure a safe product. Software Safety comprises all of the phases of a software
product’s lifecycle, from conception to implementation, re—composition, cross integration,
and eventual retirement. Software Safety is a subset of the greater System Safety concern

that includes all causes of failures that lead to an unsafe state such as:

o Hardware failures

o Software failures

o Failures due to electrical interference or due to human interaction
o Failures in the controlled object.

For the purpose of this dissertation, the study and methodology are restricted
solely to Software Safety. While many equate Risk Management to a quantifiable
science,”” Software Safety is both quantitative and qualitative. There are many intangible

aspects of Software Safety that are not found on a spreadsheet or checklist, but are

7 See Chapter III.

* See Chapter V.E.4.

¥ Nogueira de Leon, Juan Carlos; A4 Formal Model for Risk Assessment in Software Projects, Naval
Postgraduate School; Monterey, California; September 2000.

15

learned and mastered by understanding the principles of safety and fundamentals of
software design. This dissertation outlines, quantifies, and qualifies the factors of

Software Safety as they apply to high—assurance systems.

Software Safety can be pictorially and textually depicted in a rational fashion with
many logic based development methods including Fault Tree Analysis (FTA), Petri Nets,
Failure Modes Effect and Criticality Analysis (FMECA), HAZOP, Impact Analysis, and
Cigital's Safety Net Methodology based on a technique called Extended Propagation
Analysis.* T have reviewed and included a study of applicable methods of hazard and
safety analysis and their relationship to Software Development and Safety. Where
necessary, I have modified common methods to specifically apply to the unique

characteristics of Software Engineering, Development, and Safety.

0 Software Safety, Resources — Definitions, Citigal Labs, Citigal; Dulles, Virginia; 2001.

16

Complexity
Veritability of Inputs
Cleanliness of Inputs (Quality)
Dependability / Reliability Factor of Inputs
Ability to Sanitize Inputs (Correction)
Consequences of Sanitization
Ability to Filter Inputs (Prevention)
Consequences of Filtering
Permeability of the Requirements
Permeability of the Outputs
Veritability of Outputs
Ability to Verify Outputs (Quality)
System quality control
Ability to Sanitize Outputs (Correction)
Consequences of Sanitization
Ability to Filter Outputs (Prevention)
Consequences of Filtering
Probability of a Fault
Consequence of Fault
Probability of Failure
Consequence of Failure
Product Safety or Dependability Index.

Table 1 Quantitative and Qualitative Factors of Safety

The shortcomings of Software Safety can be improved upon by equating and

assessing of quantitative and qualitative point values.

Further chapters investigate and define the above factors of safety. These
quantitative values are demonstrated for independent, modular, and composite software

systems.
F. THE FOCUS OF SOFTWARE SAFETY

The field of Software Safety has been understudied and underrepresented in
literature until late due to the fact that, historically many of the previous software systems
were controlled and protected by mechanical firewalls and human intervention. Today’s
technology can no longer be controlled by yesterday’s antiquated system techniques. The
current rate of decision—making processes demands an automated system beyond the
capabilities of systems designed just a decade ago. The logic complexities of today’s

software systems overshadow the abilities of earlier languages and processor limitations.
17

The impacts of today’s Software Failures are magnified by the complexity and cost of the
systems for which they control. The primary focus of this study is on identifying factors

that create the unsafe conditions through all phases of the software’s lifecycle.

History has demonstrated that most mistakes and hazards are based on actions and
occurrences that could have been prevented if proper methods and procedures were
followed, or if well based and proven precautions and measures were implemented
through the lifecycle of a system. This study focuses on the methods and procedures that,
if followed, would increase Software Safety and in turn decrease the failure rate of high—
assurance systems. Additionally, this study identifies the measures and precautions that
historically have proven successful in improving system safety in other disciplines and

can be readily adapted to Software Engineering.

Once the methods and practices that create a safer software product are
understood, this dissertation outlines and describes a formal method for developing safe
software, through the expansion and refinement of existing development methods and
metrics. Safety is not something that occurs, it is something that is developed and
achieved — A system reaches a level of safety by preventing some factor of undesirable
actions and not by the absence of all hazards. Once there is an understanding of why
software fails and the potential hazards of that failure, a formal metric and methodology
can be designed that depicts the measure of that safety and appropriate procedures for
improving the measure through development. A product of this study includes a formal
metric and methodology for measuring Software Safety and the processes for potentially

improving the resulting product.

The success of Software Safety relies on solving the dilemma of hazard

avoidance through the entire lifecycle of the software system.

As previously stated, Software Safety is a subset of System Safety and the
associated failures and hazards. For the purpose of this dissertation, this research and
model are limited to and encompass the effects of Software Safety as it applies to the

overall system. This dissertation limits its research up to the point of software integration

18

into the complete software—hardware—human system. A brief discussion is included to
address hardware failures as they relate to software systems and the safety mechanisms
that should prevent harmful incidents from such failures. Included is an addressing of the
effects of human interaction and interference as part of the investigation of potential

software faults and failures.

Risk management is a fundamental aspect of software development. A significant
number of studies, dissertations, and articles have delineated the constructive properties
of risk management in the development process. The concept of a risk—based approach
to development has been proven to reduce or prevent procedure—based flaws and increase
software development efficiency.*' This study reviews the concepts of risk and risk
management as it applies to Software Engineering, and its applicability to Software

Safety.
G. CONTRIBUTIONS

The contribution of this dissertation and study to the state of the art of Software

Engineering include, but are not limited to:

. A review of the faults and complexities of software development resulting
in potential failures. These potential failures are then evaluated to
determine their contributory affect on hazard occurrence.

° A formal model for assessing Software Safety through the development
process to reduce or eliminate hazard occurrences.

° The introduction of a common metric for evaluating and assessing the
qualitative and quantitative factors of a Software System and development

process.

*1' Hughes, Gordon; Reasonable Designs, The Journal of Information, Law and Technology (JILT),

Safety Systems Research Center, Computer Science Department, University of Bristol; Bristol, United
Kingdom; 1999.

19

. Improvements and awareness of the facets of Software Safety Economics,
based on accepted practices and principles.

. A formal study of the state of the art of Software Safety.

The first contribution of this dissertation to the state of the art of Software
Engineering is the identification and classification of software events, faults, and
complexities in the development process, potentially resulting in a system failure.
Hazardous events can then be related the potential failures for determining cause and
effect. This dissertation outlines methods for controlling or mitigating the effect of

system failures to prevent hazardous events.

The second contribution of this dissertation to the state of the art of Software
Engineering is the formalization of a model to incorporate Software Safety into the
development process. This formal model directly impacts and improves the state of the
art by refining current methods of development to better identify unsafe practices and

methodologies through the software lifecycle that could lead to failure.

The third contribution of this dissertation is the introduction of a common metric
for evaluating software and the development process to qualitatively and quantitatively
determine a safety index of a particular software system. This value can then be
evaluated against potential hazards and faults to determine the cost-benefit ratio of

efforts to remedy or prevent the hazard.

A fourth contribution of this dissertation is an introduction and improvement of
Software Safety economics, based on accepted practices and principles of statistics and
probability. Software economics are directly affected by the cost and ability of a
software system to prevent or mitigate hazardous events. This study will address the

factors related to changes in the economic benefits of the system.

The overall contribution of this dissertation to the state of the art of Software
Engineering is the formal study and research in the under—represented field of Software

Safety. The success of this software development methodology is the increased

20

awareness of safety in high—assurance software systems, the reduction of risk through the
software lifecycle, with corresponding increases in efficiency, decreases in overall

software system costs, and a decrease in occurrence of hazards in a software system.
H. ORGANIZATION OF DISSERTATION

This dissertation is organized in eight chapters. The introduction is included in

the present chapter.

Chapter II develops the theoretical foundation of the dissertation by defining the
practice of Software Safety, and safety and risk as it applies to software development and
engineering; by summarizing relevant works, literature, and studies on the field of
Software Engineering. Chapter II includes a review of the current state of the art of
Software Safety Assurance, applicable standards, and safety assessment. Chapter II also
includes a refinement and introduction of definitions of Software Safety based on

personal observations and the consolidation of existing designations.

Chapter III characterizes the common flaws and faults of software development,
referencing examples of failed systems derived from observation and investigation. This
chapter includes failures related to implementation and developmental failures,
development requirements, testing methods, and assumptions. A review is made of
development requirements and testing methods as they pertain to Software Safety.
Specific examples are given for each of the failure method types as well as efforts

possible to amend the failure probabilities.

Chapter IV outlines the conceptual framework for the evaluation of a software
system and development of a safety assessment metric. The conceptual framework
includes the introduction of the goal of a safety development and metric development.
Chapter IV will introduce a discussion of the aspects of software safety, incorporating
definitions and potential techniques. Finally, the chapter will discuss the efforts

necessary to graphically and textually depict Software Safety and Hazard Probability.

21

Chapter V depicts the application of the framework as a formal method for
evaluating a software system. Introduced is a presentation of an Instantiated Activity
Model (IAM) that supports a formal approach for system safety analysis and risk
assessment (SARA).* This chapter details the development and implementation of a
criterion that can be used to assess the stability and validity of a software system, as it
applies to Software Safety. The formal method for assessing software safety is
introduced and demonstrated against a notional software system. Through the
development of the assessment method, this chapter discusses factors and controls

capable of mitigating hazard probabilities.

Chapter VI discusses the applicability of the formal method towards advancing
Software Safety. Special effort is given towards outlining efforts and factors of
development automation, metric introduction, software management, and requirement
completeness. A discussion of perspective clientele for the safety assessment is
introduced, as well as the applicability of the software assessment towards other safety

engineering disciplines.

Chapter VII discusses the justification for Software Safety Assurance,
concentrating on legal responsibilities, certification, and economics. A portion of this
chapter’s concentration is on the legal, moral, and ethical requirements of software safety.
Additional emphasis is placed on the cost-benefit of Software Safety and the

applicability of the formal model to software development decisions.

* Lugi; Liang, Xainzhong; Brown, Michael L.; Williamson, Christopher L.; Formal Approach for

Software Safety Analysis and Risk Assessment via an Instantiated Activity Model, Software
Engineering Automation Center, Naval Postgraduate School; Monterey, California.

22

Chapter VIII presents the conclusions and recommendations for integration of the
model and metric into general practice. Specific contributions are addresses and
reviewed, including the factors of safety failures, definitions, metrics, and process
improvements. Suggestions for future work and perspective changes to legal protections
are concluded within this chapter. Finally, Chapter VIII presents a dissertation

conclusion to briefly summarize and complete the intent of this study.

Appendix A lists applicable definitions as they refer to Software Engineering and
Software Safety. Appendix B summarizes recent public and private software
development efforts that have failed, their associated consequences, and historical
background where applicable. Appendix C lists abbreviations referred to in this
dissertation. Appendix D provides supplemental material beneficial to understanding
Software Safety. Appendix E provides an example of code sizes contrasting against

various logic statements.

For the purpose of brevity, this dissertation omits or summarizes some topics that
are obvious to individuals familiar with the practices of software development and

Software Engineering.
I. CHAPTER ENDNOTES

The following endnotes are included as part of the research document, and may or

may not be included in the final dissertation submission.

1. Software Failure Cost

The dissertation uses the term “Lost” when describing the expense of funds to
correct failures, software defects, management oversights, and compensatory costs. The
terms “Lost” or “Loss” directly contradict the commonly used term of “Expense” or
“Spend” used in various management documentations. A “Loss” is defined as the act of

failing to gain, win, or obtain something for a said effort; while “Lost” is the past

23

participle of “Loss.”* An “Expense” is defined as something being expended to secure a
benefit. Simply stated, an expense implies that something of value was received in turn
for the transfer of some monetary unit. In the case of the additional cost of a software
failure, it is inappropriate to assume that something was gained by expending more
resources, because the resource expense was unplanned. The consumer gains no
additional return for the additional fee, but rather he received what he was originally

expecting to receive for an additional cost. Economically this is corrupt.

In the case of software development, a software system is contracted to be
developed for a specific price. That price should include all foreseen expenses,
developmental issues, and forecasted lifecycle costs. The recipient of the product should
be safe to assume that the product will be delivered at the agreed upon rate, on time, free
of defects, and with a reasonable level of assurance of the safety of the product. It
perpetuates a great disservice to the software industry when a customer accepts an
incomplete or defective product and then agrees to make compensatory compensation to
the developer to correct the developer’s flaw. Additionally, it robs the process when a
customer agrees to pay for the research and development of an unproven software
technique or methodology, or pays to train a developer to do his job. Such a practice

would rarely be tolerated in other fields of industry.

Could a patient imagine first paying to train a doctor to perform for a heart
surgery, then pay for the surgery, and then finally to have to pay an additional fee when
the doctor fails to do the surgery properly or in a timely manner? The patient should be
given the reasonable expectation that the doctor has been properly trained before being
presented with the case, and that the doctor would perform the case properly the first time.
Failure to properly perform such a case would result in the malpractice prosecution and
disbarment of the doctor from the practice. In the field of Software Engineering, such

practices are commonplace.

B The Merriam-Webster’s Collegiate Dictionary, Tenth Edition, Merriam Webster, Incorporated;

Springfield, Massachusetts; 1999.

24

In the automotive industry, a defective vehicle is recalled and repaired at the
expense of the developing company. In 2000, over 39,424,696 vehicles and automotive
accessories in the United States were recalled for defective components or systems in

445 The owner of the vehicle bears no responsibility for the defective

over 250 recalls.
product, nor is he required to pay for the required repairs. This process is only made
possible by an aggressive legislative effort, government regulation and oversight, and
through the ability of the consumer to find alternative automobiles if the primary choice

has demonstrated a history of failure.

Historically, software customers have not had the luxury of a large selection of
software products to meet specific high—assurance needs. Many safety based software
products are developed real time to meet a specific need of the consumer and are not
easily re—marketed to other consumers without modification. The level of modification
constitutes the difference between properly defined COTS and non—COTS products.
There are few developers for a consumer to select from that have the specific subject

matter expertise required for specific projects.

An increase in Software Safety can only be accomplished through a three—fold
process of training, supply, and accountability. Software developers need to properly
train and educate themselves with the proper techniques and methods for high—assurance
software development. The market needs to be expanded to support more competition.
This may require governmental regulation to disestablish monopolistic practices or
through grants and benefits for new companies that demonstrate success. Finally, the
software developer needs to be held accountable for software failures. Customers need to
no longer bear the cost of software failures and poor development techniques. If a

software project fails, the developer has to be held liable for the failure.

* Compilation of various National Highway Transportation Safety Administration Press Releases,

National Highway Transportation Safety Administration, Department of Transportation; 2000 — 2001.
Note: The sum reflects the total of all NHTSA Recall Bulletins. Some vehicles and accessories may
be counted twice if referenced in separate and unrelated recalls during the annual period. The actual
number of vehicles and accessories may be lower.

45

25

2. NATO Software Engineering Definition
In 1967, the NATO Science Committee referred to the state of the art of Software

(13

Engineering as the discipline of “..promoting the establishment of theoretical
foundations and practical disciplines for software, similar to those found in the
established branches of engineering.”*® Two years later, NATO refined its defin