

THE UNIVERSITY

OF ILLINOIS

LIBRARY 630.7 C71b
no.21.33

UNIVERSITY OF ILLINOIS AGRICULTURE LIBRARY

NON CIPCULAMMES
1
CHECK FER U
EIRCULATING COPY

The State Agrieultural College

The Agricultural Experiment Station.

BULLETIN NO. 21.

I. SUGAR BEETS. II. IRISH POTATOES.
 III. FRUIT RAISING.

Approved by the Station Council.
ALSTON ELLIS, President.

FORT COLLINS, COLORADO.

OCTOBER, I892.

Bulletins are free to all residents of the State interested in Agriculture in any of branches, and to others as far as the edition will permit. Acknowledgment will be expected from all non-residents. Newspapers desiring continuation upon the mailing list will please acknowledge by editorial notice and the sending of a marked copy of the issue containing it.

Address the EXPERIMENT STATION,
Fort Collins, Colorado.

The Agricultural Experiment Station,

FORT COLLINS, COLORADO.

THE STATE BOARD OF AGRICULTURE.
hon. George whman, President,
hon. FRANK J. ANNIS, Secretary,
HON. R. A. SOUTHWORTH,
HON. CHARLES H. SMALL,
HON. A. L. EMIGH,
HON. JOHN J. RYAN,
HON. J. E. DuBOIS,
HON. B. S. LaGRANGE,
HIS EXCELLENCY GOV. JOHN L. ROUTT,
IHE PRESIDENT OF THE COLLEGE, $\}$ ex-officio.

executive Committee in Charge.

Messrs. JOHN J. RYAN, B. S. La GRANGE, GEORGE WYMAN, The President of the College and Secretary.

StATION COUNCIL.

ALston ELLis, A. M., Ph. D., LL. D., President.
WALTER J. QUICK, B. S., - - - - Director and Agriculiturist
FRANK J. ANNIS, M. S.,
Secretary
C. S. CRANDALL, M. S., - - - Horticulturist and Botanist DAVID O'BRINE, E. M., D. Sc., M. D., - - - - - Chemist
L. G. CaRPENTER, M. S., - Meteorologist. and Irrigation Engineer
C. P. GiLLETtE, M. S., - - - - - - Entomologist

ASSISTANTS.

SUB STATIONS.

San Luis Valley Station, - - - - Monte Vista. Colorado M. E. BASHOR, Superintendent.

Arkansas Valley Station, - - - - - Rocky Ford, Colorado F. A. HUNTLEY, B. S. A., Superintendent.

Divide Station,
Table Rock, Colorado
G. F. BRENINGER, Superintendent.

United States Grass Station,
Fort Collińs, Colorado
C. S. CRANDALL, M. S., in Charge.

630.7 C71F no.21-33

I.

SUGAR BEET CULTURE.

By FRANK L. WATROUS.

Sugar beets were first grown in the Arkansas Valley for sugar testing purposes, in the year 1890. Most of the work was done on this Station, but there were two or three enterprising farmers who thus early began to investigate the subject.

The work, that season, was altogether experimental. Little was known as to the best varieties for planting, subsequent cultivation, and most of all, nothing was known as to needed amount, or manner of irrigation. This year was spent in groping after facts and the product, though encouraging was not large. However, the work this year with that of the following season, proved among other things, that the Arkansas Valley was well adapted as to soil and climate, to the growing of sugar beets, and with this came a knowledge of the magnitude of the business. The farmers of this section, having already felt the consequences of soil deterioration, through the successive cropping of wheat on the same land, began to see an advantage, providing a market could be secured, in growing a crop not particularly difficult to cultivate, not too tender to be handled by ordinary labor, less deteriorating to the soil than wheat, and less liable than most other crops to suffer from the exigencies of climate or the depredations of insect enemies. A period of drouth in the latter part of the season is just what the sugar beet requires, so that an occasional water shortage at that time is no detriment to the crop.

The ideal sugar beet ground is a sandy loam, porous, warm and easy to cultivate. Topographically, the land should be smooth and nearly level, the better to facilitate proper irrigation.

An experiment made in 1891 , would seem to indicate that in an ordinary season, one irrigation during the growing season is sufficient to produce the best results, both as to tonnage per acre and saccharine matter contained.

TABLE.

No.	Nave.	Area.	Cultivated.	Hoed.	$\begin{aligned} & \text { Irri- } \\ & \text { gat'd. } \end{aligned}$	Tons per A.	Sugar per ct.	Purity, Coef.
1	Vilmorin	1/4A	3 times	Twice	0	9	14.25	80.5
2	"	"	،	،	1	$104-5$	15.2	81.3
3	،	"	"	"	2	9 9-10)	14.22	79.5
4	"	"	"	"	3	9 9-10	13.	76.0

Though it is quite generally understood that the irrigated beet is the best and most profitable, it has become apparent, not only here, but in the practical work in Utah and California, that unless irrigation and cultivation are carried on with a careful relative system, there will always be a lack of harmony between the crop and its environment, which will prevent the assimilation of the maximum amount of saccharine matter.

It will be readily understood, that hilly or uneven land cannot be made to produce equally good results on all portions, from the fact that on hillsides, water will run too fast to soak in well, while if there be low places, here, the water will stand, to the total ruin of the crop.

The season for planting at this Station extends from March 20th to June 20th and for harvesting from August I5th till November 15th. It is this wide range of the planting and harvesting season that, with suitable soil and facilities for proper irrigation, makes the Arkansas Valley especially adapted to beet raising for profit.

A number of experiments have been tried for determining the amount of seed to be sown per acre, depth of planting, proper space between rows, methods of, irrigation, etc.

For field cultivation, the conclusion from many trials, both here and elsewhere, is that not less thain 16 pounds of seed should be sown per acre. It is much better to thin than to plant again.

As to depth of planting, our best results have been obtained from planting from two to three inches deep. In very shallow planting, seed frequently becomes too dry for germination and in extremely deep planting, there may be
danger of the seed lacking sufficient germinating power to force its way up, or a spell of wet weather might cause it to rot.

The following is a table showing results in certain experiments, the past season relating to subjects in hand, which through the courtesy of Professor F. A. Huntley, my successor at the Rocky Ford Station, since July I, . I892, I am permitted to use here :

TABLE.

Test.	Plat.	Name.	How Sown.	Denth. Inches.	Rows Apart, Ins.	Yield, lbs.	No. Beets.	Tons per Acre
A	1	Vilmorin	Drills	1	16	139	193	21.55
A	2	"	Drills	4	16	340	108	17.
B	1	"	1 seed every 2 ins. Drills	2	16	516	269	25.90
B.	2	"	- seeds every 4 ins.	2	16	525	262	26.25
C.	1	"	Hills 8 ins. apart	2	8	439	241	24.95
C.	2	"	Hills 12 ins. apart	2	12	528	191	26.4
D	1	*	Drills	2	12	497	312	24.85)
D	2	"	"	2	16	50.)	251	25.25
Field	1	،	"	3	12 and 24		Good Stand.	21.50
			-					

The size of "test" plats was one, one-hundreth acre each, and as the product of small plats is apt to average above field culture, this accounts for the excess in tonnage per acre, of first experiment over the last tabulated.

The following method of planting was adopted at this Station the past season, for field culture and has been found very satisfactory:

After land had been plowed, harrowed, and made quite smooth, even and free from lumps, stones or trash, seed was sown with an ordinary hand-drill, sowing is pounds to the acre, covering an inch or less in depth, in double rows one foot apart, separated by a space two feet wide. Then, with one horse and a shovel plow, a trench was made in this space, the dirt being thrown both sides to finish covering the seed. The rows are worked over quickly with a rake or hoe and seeding is completed. Beet seed requires considerable moisture to produce germination, hence, in a dry spring, water may be turned in these ditches and beets brought forward, independent of dry weather.

To facilitate proper irrigation, rows should not be more than 300 feet in length, preferably less. It should not be necessary to drench the upper end in order to moisten the lower end.

Proper cultivation, consists in hand hoeing, or working with a fine tooth cultivator, the surface of the ground being
stirred as soon after irrigation as practicable. From experience at this Station it seems safe to state that the more careful cultivation, with a proper amount of water when needed, the more sugar per acre; conversely, the less cultivation, with more irrigation, which necessarily follows, the less sugar per acre and consequently less profit, although yield in tons may be the same, or greater.

Thinning should be done when four or six leaves appear and it is considered best to have no two beets nearer than four inches to each other. This, however, is governed by the distance apart of the rows and the fertility of the soil.

The best varieties of sugar beets, so far as our experiments have determined, are the Vilmorin with its various strains, and Klein Wanzlebener.

As a fertilizer for sugar beet land I would recommend the plowing under of alfalfa.

The crop of sugar beets raised on the Station has been sold each year to different parties and used as feed for cattle, sheep and hogs. In each instance, good results have been reported.

Below will be found a list of beets raised on this Station during each of the past three years, with the chemical analyses of the same.

TABLE.

Year.	Name.	Area.	Sugar, per cent.	Purity coef.	Tons Beets per A.	Pounds Sugar per A.
1890	Red Top.....................................	1/2. A.	11.94		13 1-2	
1890	Dippe's Vilmorin.	Row	14.29		12 1-6	
1890	Florimond Desprez.	"	14.95		10 1-2	
1890	Eimon Le Grande's White Imperial	"	13.44		8 1-3	
1890	Bultean Desprez	،	12.99		12 1-6	
1890	Dippe's Klein Wanzlebener	"	12.69		$151-8$	
1890	French Rose. (Namples sent to A. R. \} Pierce, Pueblo, for analysis; no report. $\}$				9 1-2	
1890	German White......				13 1-3	
1890	Verbesita Rosa				7 1-2	
1890	Late French Rose				171 -10	
1891	Vilmorin	1/4 A.	14.25	80.5	9	
1891	،	"	15.2	81.3	$104-5$	
1891	"	\%	14.22	79.5	9 9-10	
1891	"	‘	13.	76	9 9-10	
1892	Klein Wanzlebener	1-100 A.	13.	76.9	24.829	4256
1892	Vilmorin	"	15.83	85.4	24.393	5673
1892	Lane's Imperial	"	9.66	76.	36.793	4629
1892	Vilmorin, Brabrant Imperial	"	14.24	80.5	34.412	6765

Table-Continued.

	Name.	Area.	Sugar. per cent.	Purity, coef.	Tons per A.	$\begin{array}{\|l\|} \hline \text { Pou'ds } \\ \text { Sugar } \\ \text { per A. } \end{array}$
1892	Dippe's Improved Richest Sugar.	16	14.73	81.4	27.443	5642
1892	Dippe's White Imperial	.	13.82	79.3	23.304	4213
1892	Klein Wanzlebener	"	14.67	81.	33.754	3879
1892	Vilmorin.	1/4 A.	15.18	83.4	25.047	5435
1892	Lane's Imperial.	1-100 A.	8.54	70.	40.293	4126
1892	Klein Wanzlebener	-	13.33	80.8	34.195	6309
1892	Vilmorin, Brabrant Imp	"	15.72	83.6	30.056	6769
1892	Dippe's Imp. Richest Sugar	،	14.92	78.5	27.878	5598
1892	" "White Imperial	"	13.88	81.2	32.888	6354
1892	Vilmorin	1/4 A.	16.69	81.8	20.500	4801
1892	"	"	18.87	85.	18.730	5151
1892	"	"	15.87	84.9	25.700	5937

The excess in yield of the planting of 1892 over that of preceding seasons we believe to be due to different and more satisfactory modes of planting already described.

II. IRISH POTATOES.

By FRANK L. WATROUS.

The first serious problem that presented itself for solution after the Arkansas Valley Experiment Station was ready for work, was that of growing potatoes. All that was known on the subject, was that "potatoes would not grow," and it was impossible, the first season to form any plausible theory on which to base an experiment. The first year's work was to no purpose except as it produced ideas to be tested in the work of the following season.

From forty varieties grown the first season, only eight varieties gave any promise, and these were by no means good. Seed was saved, however, and a more varied system of planting adopted. The following spring, potatoes were planted as early as March 17th, in newly manured ground, which was further enriched by the application of ashes from a lot of sorghum stalks, burned for the purpose. The seed was small, having been stunted, by unfavorable conditions the previous season and the outlook for the experiment was not the best. However, some of these early potatoes produced fairly well, the tubers reaching marketable size.

In June of that seaşon, some seed potatoes from Salt Lake were secured and planted June 20th, in rich soil and wood ashes added to the hills. These potatoes yielded at the rate of 160 bushels per acre and were fine in size and quality.

The above experiments gave us the following points:First, that home grown seed could not be depended upon to produce the best results; second, thereseemed to be a deficiency of some soil element which was needed to produce thrifty growth, or, supposing the soil to be complete, it was thought that the system of irrigation used, in conjunction with the extremely warm weather prevailing in summer, might produce a chemical or mechanical condition of the soil, or both, whereby the element lacking might be locked up in some unavailable form.

The potato resembles every other vegetable, in useful, profitable agriculture, in that it has certain specific, well defined wants, as to the chemical constituents of the soil and their mechanical constitution. Even where the proper plant food exists in the soil, if the plant is hemmed in by a hard, baked surface, there can be no healthy development. To produce healthy crops, soil must be pliable and porous, so that, with the aid of air and moisture, assimilation may take place readily and a hospitable relation exist between the plant and its environment.

With the hope to overcome some of these difficulties, which, it may be said, are common in many Western soils, especially where irrigation is practiced, a half acre was prepared in the following manner: On land occupied by sugar beets the season previous, straw was placed to a depth of eight or ten inches. June 5th the following season, the straw was burned and the ashes plowed under at once. Then on the gth and Ioth one-fourth of an acre was planted to seed of Mammoth Pearl and the other one-fourth acre to Rose Seedling. The seed was cut in large sized pieces, with one and two eyes and planted in furrows four to six inches deep.

As soon as tops appeared above the ground, a light harrow was brought into use and this was continued at intervals of a few days until the tops were so large as to make the work injurious, after which time they were cultivated with a small, fine-tooth cultivator. When the ground was partially shaded by tops, a furrow was run between each two rows from north to south. On August ist, when plants were in blossom, the ground being dry, irrigation was commenced. The water was confined to furrows and allowed to run long enough to moisten the rows quite thoroughly. By this time, the roots were spreading so far that cultivation would have been injurious, so that in order to keep the soil in healthy condition, it was necessary to irrigate about once a week, for the remainder of the season, which was done.

Potatoes were harvested October 7 th. The plat of Rose Seedlings produced at the rate of 108 bushels per acre. The plat of Mammoth Pearl at the rate of 252 bushels per acre. These potatoes, in both instances were of most excellent quality.

During the winter of 1891 , two one-half acre plats were prepared in same manner as described in last experiment. The first one-half acre was burned over and plowed in March and planted with Rose Seedlings potatoes, March 24.

The second one-half acre was burned over and plowed, June 5th, then planted with Mammoth Pearl, June gth. Aftercultivation and irrigation was intended to be the same as in previous year.

Following is a tabulation giving data of the different plats for the past two seasons.

I891.

Name.	Where Secured.	先	When planted	$\left\lvert\, \begin{array}{\|c} \text { Har- } \\ \text { vest'd } \end{array}\right.$	$\begin{aligned} & \text { Yield } \\ & \text { per A. } \end{aligned}$	Expense per A.	Value.	Net.	Fertilizer.
Rose Seeding.	San Luis val.	$1 / 4 \mathrm{~A}$	June 10	Oct. 7	108	$\$ 55.80$	\$ 64.80	\$ 9.00	Straw Ashes
Mammoth Pearl .	"	،	\bullet	.	252	55.80	151.20	\% 9 29.40	-
I892.									
Rose Seedling...	Table Rock	$1 / 2 \mathrm{~A}$	Mar. 10	${ }_{10} \text { Aug. }^{2}$	59	63.90	61.98	- 1.92	"
Mammoth Pearl.	"	"	June 11	Oct.	248	84.50	171.48	86.93	"

I89I-SMALL PLATS.

Name.	Where Secured	Planted	H'rvest'd	$\left\lvert\, \begin{gathered} \text { Yield } \\ \text { per A } \\ \text { bus. } \end{gathered}\right.$	Fertilizer.
Hercules	Station.	Mar. 17	June 25	90	Burned Bones.
California White	"	"	July 10	70	"
Chicago Market.	Monument	June 3	Oct. 1	60	Ashes and rotted manure
California White	Station	"	"	84	"
Late Ohio.	-	"	"	63	"
Hoag's Seedling	،	"	"	40	-
White Star..	-	"	6	50	"
Mammoth Pearl	16	"	16	45	"
52 Seedling.	"	"	"	35	1

1892.

New Early Market...............	Philadelphia	March 28	Oct. 19	152	Potted Manure
Late Ohio....................	Monument	"	"	152	"
Mammoth Pearl	"	"	."	125	".
Rose Seedling.................	"	"	"	115	"
Rural New Yorker No. 2........	Philadelphia	"	"	142	"

In estimating the expense of raising potatoes in the onefourth and one-half acre plats, the regular farm wages were allowed, the value of the crop being estimated at the price it was actually sold for, so that the " net" is the amount gained or lost, after the work of raising the crop was paid for.

The failure of the one-half acre of Rose Seedlings, the past season, to produce a profitable early crop, was due to a very heavy frost in May which cut the vines to the ground, setting them back and making it necessary for the crop to come to maturity in the warmest weather, which has always. proven an unfavorable time.

In explaining the efficacy of straw ashes as a fertilizer, it is not with the understanding that this amount of ashes, in
a strictly chemical sense, could be termed a strong fertilizer. The belief is, that the limited amount of potash salts contained in the ashes, is in a readily assimilative form and this, with the sudden action of the heat, causing friability, with the presence of the ashes in the soil, produces a most salutary condition, both chemically and mechanically.

The management ot the soil may of course, work a great advantage or disadvantage. To grow first-class crops of potatoes, the soil should be in such a state of cultivation that it will yield to several inches beneath the surface, under the pressure of the foot. This condition cannot be secured on ordinary soils, so long as the ground is flooded with water when irrigated.

It is difficult for the ordinary farmer to understand that irrigation is, or should be, a supplement to cultivation; that, stirring the surface soil, obstructs its capillarity and, virtually promotes the existence of an underground reservoir, retained by its mulch, or upper layer.

A proper understanding of the relative needs of plant and soil in connection with irrigation, is destined to make clear, many of the perplexing difficulties, which are met by Colorado agriculturists, and no crop will better repay for the application of the required knowledge, than the potato crop.

The use of straw ashes as a fertilizer is, perhaps, the easiest, quickest and at present, cheapest way in which to supply the mineral elements most needed in the growth of potatoes. However, it must not be inferred that this is the only, or even the best way to raise potatoes in the Arkansas Valley. This is simply, the pioneer work. Its results point to the attainment of a better knowledge of the co-operative and co-relative elements in nature and their nicer dependencies, which may be secured by the careful study of practical agriculture.

It is not improbable that a heavy crop of green alfalfa, plowed under in July or August, with, perhaps, the addition of a small amount of ashes or commercial fertilizer the following spring, may produce a very desirable combination for potato ground.

There is yet much work to be done in this line, but in the meantime, it is believed any farmer may raise potatoes, sufficient at least, for home consumption, by following the methods described in this bulletin and epitomized below:

1st.- Select the best soil.
2nd.-Cover with straw in Winter.
3rd.-Burn just before plowing and plow deep.
4th.-Use seed from higher altitudes.
5th.- Plant very early or very late, five inches deep, in rows north and south.
6 th.-Stir the surface soil frequently when the plants are small.
7th.--Irrigate, if needed, in furrows when plants are in blossom and after they are once wet, never allow them to get thoroughly dry until growth ceases.

III. FRUIT RAISING.

By FRANK L. WATROUS.

A large majority of those who in times of uncertainty and scepticism, had the temerity to plant fruit trees along the valley of the Arkansas, have reason to be much encouraged by the results of their ventures in that direction. There have been, perhaps, fewer than usual of the more serious obstacles met with in new countries, excepting the depredatians of itinerant tree peddlers, whose presence and genius are confined to no locality.

It has been planned by the Station management, to start a good sized orchard of the well known, hardier varieties, and each spring to keep adding the new and promising varieties as they are brought out aiming; by careful discrimination in selections for planting, in manner of setting, in after culture and finally by close observation as to habits and general qualities, to establish a criterion in as many points as possible, thereby making the Station work helpful to the class of orchardists who desire to learn otherwise than by personal experience.

Obtaining trees from various localities, near and far, it was noticed that a decided advantage was gained, where trees were home-grown, being selected, from the nursery, dug and replanted the same day.

Of the various methods of planting, nearly all are good, if properly carried out. Giving ample room for the root system and carefully pulverizing and packing the soil about the roots are the principal points.

Trees need water frequently during the first season. Ordinarily, it has been found good practice, to irrigate young trees once in two weeks until September, then withhold the water till November and give one thorough wetting just before freezing weather. In case of very dry winters, an irrigation in February is beneficial. This applies of course, to well drained land. During the second season, once a month is considered often enough to irrigate if careful and thorough cultivation is given. There is nothing gained and there may be much loss by watering trees too frequently after they have become well established and the same rule applies in filling out and maturing fruit, as would be followed by a sagacious farmer, in perfecting his grain crops.

It was found good practice to seed an orchard, after the second year, to red clover, leaving a space three feet wide each side of the trees for cultivation and irrigation, the furrows being two feet from the trees, as water should never be allowed around the trunks. If needed for fertilizer, the clover may be plowed under and the ground re-seeded the following spring. It is not deemed best to cut hay from orchard grounds, but sheep and swine are often pastured there with good results, it being advisable, however, to watch closely and remove animals before feed becomes short, lest damage is done to the trees.

Many people meet with disappointment from the fact that trees do not come in bearing so soon as the tree agent had given reason to believe. It should be borne in mind that apple trees, according to varieties, require from four to thirteen years to arrive at profitable bearing. Plums require from three to ten years, grapes, three to five years and smaller fruits from one to four years.

As a rule, it pays to thin fruit on all trees until there is no danger of their breaking down without propping.

Conditions in this locality are favorable to early and heavy fruitage and in many instances, both fruit and tree have been injured from excessive bearing.

Trimming and training should be done while trees are young, and the best practice goes to recommend that limbs should not be started less than three feet, nor more than five feet from the ground. There are serious objections to branching beyond these limits in either direction.

As a remedy against the Apple Tree Borer and to promote the vigor of trees, the trunks and lower limbs may be washed in May, with the following mixture:- Take two thirds of a pailful of slaked lime, the same as for whitewash, add one pint of gas tar and one pound of hard soap. Dissolve one pint of lye and put into the mixture, then add enough common soil to produce a proper consistency for applying with a whitewash brush.

The closest attention is necessary in order to preserve fruit from damage by insects. The Codling Moth is destroyed usually, by spraying with the paris green solution, just after the blossoms fall. The proportions generally recommended are 160 gallons of water to one pound of paris green. This also is a remedy for Leaf Rollers and should be applied as soon as the enemy's presence is noticed.

Kerosene emulsion is a remedy for a vast number of insect pests. To make it, dissolve a pound of hard soap in two quarts of boiling water, then remove from the fire and add one pint of kerosene and stir violently with a small force pump, four or five minutes. When emulsified, it resembles rich cream. This emulsion may be used upon stock to kill
lice, but when applied to plants, it must be reduced by adding water until only one-fifteenth is emulsion. When the undiluted emulsion is left standing, it becomes a gelatinous mass, which is readily dissolved by using hot water.

Following is a list of varieties now growing upon the Station, giving such characteristics as were noted with accompanying data, the trees taken just as they. stand in the orchard:

APPLES.

Name.	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \dot{B} \\ & \dot{\Delta} \\ & \dot{Z} \end{aligned}$	Date Set.	\|	Where Secured.	Growth.	Habit.	菦		Season.
Duchess.	10	Apr. ${ }^{\prime} 9$	2	College Nursery	Slow	Close	0	1892	Sum.
Wealthy.	10	،	2	,	Medium	Spreading	0		Aut.
McMahon's White	1	Apr. '91	2	Station Nursery	،	"	0		
McIntosh Red.	1		2		"	"	0		Win.
Ben Davis	11	Apr. '90	3	Rocky Ford Nur.	Fast	،	0		
Pewaukee	11	"	3	"		"	0		Aut.
Fameuse.	11	"	3	"		"	0		"
Mann.	11	"	2	"	Medium	Upright	0		Win.
Early Harvest.	11	"	3	"	Fast	Spreading	0		Sum.
Cooper's Early White.	11	"	3	"	Stocky	"	0	1891	"
Tetofsky	11	- "	3	"	"	Upright	0	1891	"
Whitney No. 20.	11	"	2	"	Sluw	"	0	1892	Aut.
Wealthy	11	*	3	"	Fast	Spreading	0		،
Red Astrachan	11	"	3	"	.	"	0		Sum.
Salome	5	Apr. '89	2	Illinois.	Slow	Upright	0	1892	Win.
Peter	5	"	2			Spreading	0		
Missouri Pippin	5	Apr. '90	2	Rocky Ford Nur.	Fast	"	0	1891	"
Sops of Wine	6	"	1	Station Nursers.	Slow	"	0		Sum.
Eall Winesap	10	Apr. '91	2	"	Fast	"	0	1892	Aut.
Alexander	9	-	2	"		"	0		"
Smith's Cider	10	"	2	"	"	Upright	1		Win.
Wagoner	9	"	2	"	Slow	"	2		"
Baldwin.	10	،	2	،	Fast	Spreading	2		
Utter's Red.	9	.	2	"	Slow	Upright	3		Aut.
20-oz. Pippin	10	،	2	"	Medium	"	0		"
Yellow Belleflower	9	"	2	"	Slow	"	2		Win.
Northern Spy	10	"	2	"		Spreading	3		"
Walbridge	9	"	2	"	Medium	"	0		"
Black Arkansas.	10	Apr. '92	2	"	Fast	"	1		"
Peter	9	"	2	"	Medium	"	1		"
Wolf River.	10	"	2	"	Fast	"	1		Aut.
Yellow Transparent...	9	"	2	"	"	Close	0		Sum.

PEARS．

Name．		Date Set．	蓠	Where Secured，	Growth．	Habit．	－	说	Season．
Clapp＇s Favorite．	16	Apr．＇89	2	College Nursery	Medium	Upright	0		Aut．
Flemish Beauty	4	،	2	＂	＂	،	0	．．．．．	6
Longworth．	5	＂	2	Illinois	＂	Spreading	0		＂
Kiefer＇s Hybrid	14	＂	2	College Nursery	Slo：v	Upright	5		um．

PLUMS．

Name．		Date Set．		Where Secured．	Growth．	Habit．	－	亩	Season．
DeSota	10	Apr．$\stackrel{8}{ } 9$	2	Greeley	Medium	Upright	0	1891	
Forest Garden	10	،	2	،	＊	،	0	1891	
Chícasaw	10	＂	2	‘．	Fast	،	0	1891	

A small experimental orchard of plums，prunes，cherries peaches and apricots was set in the springof 1892．They came from Stark Bros＇．Nursery in Louisiana，Mo．，and were in very poor condition when received．About 20 per cent．of these died．

Small fruits，especially grapes and stawberries have done remarkably well at the Station．Of the latter，Man－ chester and Jesse have given the best results．The follow－ ing table gives data of different varieties of grapes：

GRAPES．

Name．	When Set．	Loss．	Growth．	Beari＇g	Color Fruit．	Size．
Moore＇s Early	1889	1	Slow	1891	Black	Large
Lady	1889	0	Medium	1891	White	Medium
Empire	1889	0	Slow	1891	¢．	،
Worden	1889	0	Medium	1891	Black	Large
Duchess．	1889	0	Rank	1891	White	Small
Concord	1889	1	Medium	1891	Black	Large
Lady Washington	1889	0	Rank	1891，	White	،
Pocklington	1889	0	Medium	1891	،	،
Niagara	1889	0	＂	1891	،	＂
Brighton	1889	0	Fast	1891	Red	،
Delaware	1889	0	Medium	1891	＂	Small
Marthạ	1889	0	＂	1891	White	－
Muscat	1830	0	Fast	1891	$\cdot 6$	Large

$$
-2
$$

9
1.

I

7
0

0

2
-

The State Agriculitural College.

THE AGRICULTURAL EXPERIMENT STATION.

BULLETIN No. 22

PRELIMINARY REPORT ON THE
DUTY OF WATER

Approved by the Station Council. ALSTON ELLIS, President.

> FORT COLLINS, COLORADO.
> JANUARY, 1893.

Bulletins are free to all residents of the State interested in Agriculture in any of its branches, and to others as far as the edition will permit. Acknowledgment will be expected from all non-residents. Newspapers desiring continuation on the mailing list will please acknowledge by editorial notice and the sending of a marked copy of the issue containing it.

Address the EXPERIMENT STATION, Fort Collins, Colorado.

The Agricultural Experiment Station,

```
FORT COLLINS, COLORADO.
```

the State board of Agriculture.Term Expires.
hon. GEORGE WYMAN, President, - - Longmont, 1893
HON. FRANK J. ANNIS, Secretary, - - - Fort Collins, 1895
HON. R. A. SOUTHWORTH, Denver, 1893
HON. CHARLES H. SMALL, - Pueblo, 1895
HON. A. L. EMIGH, Fort Collins, 1897
HON JOHN J. RYAN, - Loveland, 1897
HON. J. E. DuBOIS, Fort Collins, 1899
HON. B. S. LaGRANGE, 1899
THE PRESIDENT OF THE COLLEGE, $\}_{\text {HE }}$ ex-officio.
Executive Committee in Charge.
Messrs. J. J. RYAN, B. S. LaGRANGE, GEORGE WYMAN,The President of the College and Secretary.
Station Council.
ALSTON ELLIS, A. M., Ph. D., LL.D., President.
WALI'ER J. QUICK, B. S., - Director and AgriculturistFRANK J. ANNIS, M. S.,Secretary
C. S. CRANDALL, M. S., - Horticulturist and BotanistDAVID O'BRINE, E. M., D. Sc., M. D., -Chemist
L. G. CARPENTER, M. S., Meteorologist and Irrigation Eng.
C. P. GILLETTE, M. S., - Entonologist

Assistants.

- to. Horticulturist

CHARLES F. BAKER, B. S.,

SUB-StATIONS.

San Luis Valley Station, - - - Monte Vista, Colorado M. E. BASHOR, Superintendent.

Arkansas Valley Station, - - \quad Rocky Ford, Colorado F. A. HUNTLEY, B. S. A., Superintendent.

Divide Station, - -- - - Table Rock, Colorado
G. F. BRENINGER, Superintendent.

United States Grass Station, - - - Fort Collins, Colorado
C. S. CRANDALL, M. S., in Charge.

Preliminary Report on the Duty of Water.

BY L. G. CARPENTER.

In the course of investigations relative to questions relating to irrigation begun by this section of the Experiment Station, the determination of the duty of water as under the conditions of Colorado practice, seemed one of the first questions to be undertaken. Since with us in Colorado-as indeed throughout all of the arid West-the land far exceeds the water supply, the ultimate extent of our irrigated area, and therefore of our profitable agriculture, depends upon the use we make of our water. If lavishly used, our productive area is correspondingly limited; if wisely and economically used, the greater will be the area capable of supporting a population, and consequently the greater will be our public wealth. It is, therefore, a matter of public importance to determine our limitations, either of practice or of necessity. The question is of great financial importance to the public. The current value of water rights indicates the value of the water in the consideration of the community. In most cases the water rights are subject to the uncertainties of the streams, and cannot be absolutely relied upon to furnish water when most needed. Nevertheless, they are currently rated even in the new communities at from $\$ 10$ to $\$ 15$ per acre, and when the rights are certain to furnish the water the value is greater. All recognize that the greater part of the price of the land in farming districts is in the water. Take away the water, or the possibility of getting water, and the land in most cases would bring but little. In the older communities the market value has a constant upward tendency, and there is every reason to think this will continue. As the value of the water is in the product which it assures or produces, rather than in its absolute quantity, any increased duty, due to greater skill in application, improved methods, or from saving of losses in the canals or ditches, or on the farm, will increase the area which may be brought under cultivation with the same amount of water. At present we have something like $1,500,000$ acres under cultivation in this State. A doubling of the duty would increase the public wealth of the State from this source alone by $\$ 20,000,000$ at the present estimates of water rights, and an increase of 25 per cent. would mean an increase of $\$ 5,000,000$ from this source alone. But as the most of the agricultural wealth of the State is possible only with water, the increase of homes and of
the public wealth from production would be only faintly indicated by the above figures.

There are many complex factors involved in the use of water in irrigation and the amount of water that may be necessary. Some water is required for the needs of the plant and is removed with the crop; a greater amount is evaporated from the foliage during the growing season; some is evaporated from the ground, and a certain proportion sinks into the ground and passes away as ground water. In general, there are also losses, so far as the individual is concerned, in the excess water which runs over the surface. But in careful irrigation and under the pressure of necessity this becomes less and less. In a ditch system there are also the losses of carriage from evaporation and from seepage. So far as the plant is concerned some of these losses are unnecessary, but are incident and perhaps necessary to our ways of supplying it to the plant. Could we know the amount of water required in each of these ways, we should know in which direction there would be the greatest chance for improvement. A full investigation of the question would involve a determination of the losses in each of these directions, but the determination is one of great difficulty, and the results are not definite enough to report at present.

The observations and measurements which are here reported are some of those made during the past three years in the Cache-a-la-Poudre Valley, one of the first valleys in the State to be developed. The results are principally from the records of self-recording instruments. These were placed so as to record all the water which passed through weirs, which were so placed as to measure all the water applied to various crops. Instruments have been placed so as to measure the water applied to crops of potatoes, of alfalfa, of clover, of native hay, of wheat, of oats. The depths as used by some of our best farmers are given in the following tables and diagrams. We have the record of three seasons of the amount of water used by the Cache-a-la-Poudre Canal Co. No. 2, one of the original Greeley Colony canals. From the skill of the farmers drawing water from it, and from the fact that it is one of the original Greeley Colony canals, it perhaps best represents what would be the practice of skillful farmers in the valley when water is supplied to them as they desire it. One season's record of the New Mercer could not be definitely reduced, owing to the fact that most of farmers use water from a neighboring canal, and the waters could not be separated.

The experience gained in these measures has shown the difficulties to be encountered, and will enable us to make the determinations of the future more satisfactory. But though confessedly incomplete, the importance of a more general knowledge of the subject makes it desirable to publish such results as we have. It is hoped that it may lead many individual farmers to undertake more careful observations on the amount of water which they use, and measure it with more care. The observations undertaken by this section
have required the use of the self-recording instruments at considerable distances, and the visiting them in one single season has required more than thirteen hundred miles travel with horse and buggy. The work of reduction has been far greater.

WHAT IS THE DUTY OF WATER.

By duty of water is meant the irrigation performed by a given amount of water ; and this may be expressed in various ways. Ordinarily by stating the number of acres which is irrigated by the constant flow of a given quantity of water, as a cubic foot per second. Sometimes the water is expressed in "inches," but as the "inch" varies between wide limits it has none of the characteristics of a unit, and should be avoided.

The duty may also be expressed in terms of the depth of the water which has been applied.

The first method is that commonly used where the water is taken from streams, and as the basis of water rights and water contracts between the canal company and the purchaser. It is in the unit most convenient for their purpose, for in this form the amount which should be delivered to the irrigator when the supply to the ditch is sufficient, is at once found. But as this estimate varies with the assumed length of the irrigation season, it is not convenient as a basis for determining the actual depth of water which has been applied, or for estimating the number of acres which may be irrigated from a reservoir. The duty as expressed in one way may be expressed in the other unit by renembering that there are 86,400 seconds in a day of 24 hours, and since there are 43,560 square feet in one acre, the flow of one cubic foot per second will cover very nearly two acres one foot deep in one day, and in 100 days will cover 200 acres one foot deep, or will furnish, as it is sometimes expressed, 200 acre-feet. The reverse reduction may be applied by remembering that two acre-feet is equivalent to the flow of one second-foot for 24 hours. Thus if the depth on a crop of 100 acres is one foot, it would require the constant flow of one cubic foot per second for 50 days, or onehalf of a second-foot for an irrigation season of a hundred days.

The expression of duty in the two ways may thus be equivalent ways of expressing the same amount of water. In terms of acres per second feet, the stream is supposed to be running constantly. The needs vary from one part of the season to another. No one wants his water for irrigation in as great quantities in May as in the latter part of June, or the same amount in August and September. When the flow of the cubic foot per second is assumed constant throughout this whole period, the duty found is much greater than if the month of June was taken as the basis. But under the conditions of distribution from our streams, the quantity of water received by a ditch fluctuates according to the fluctuations of the streams, and the demands are such that there is rarely any surplus water. A farmer who is economical in one month cannot draw his saving in another
month. Consequently, the basis of his purchase of water must be a duty which will cover his needs in the month of greatest use. Thus it is, that in the same valley one method of determining the duty will give nearly 200 a cres per cubic foot per second, while the basis for the sale of water rights is 55 acres per second foot, or 1.44 secondfeet per 80 acres. It is because of not considering this feature of Colorado distribution that many in, as well as out, of the State have not understood the discrepancy.

The variations of duty reported from different communities or different countries may thus be due to different ways of estimating it, as well as from the difference according to the place where water is measured.

The duty will be different according as we consider the individual farmer, the canal company, or a whole valley. The methods of irrigation and of distribution are such that almost of necessity the individual draws more water than his land needs, in order to secure quick irrigation, and thus there is a surplus which runs away. To the individual this is waste.

The canal company is interested in knowing what the duty of the water is as measured at the headgate of the canal. The water is measured to the canal by the Water Cominissioner, and the duty as based upon the water measured at the headgate would be less than the average duty of the individual by the losses of evaporation and seepage in the transit, and increased by the gain there may be in the average of a number of farmers. Where the canal is of some size, so that there are several users from one lateral, the water lost. by one may be utilized by another, so that the canal gains in duty over the individual.

To the people of a whole valley the duty may be still different. The valley has a stream of water of certain size, and to the public it is desirable to know how much this water will serve. Besides the losses in carriage in the canals, this is subject to the additional losses of transportation in the stream. On the other hand, many losses to the individual are not such to the community. The water which sinks into the soil from seepage from the canals and the laterals, and from the sinking from the irrigation, may reappear again in the stream or in the depressions feeding the stream, and be used again by the canals in the commanity. In the case of the Cache-a-la-Poudre River this total return is nearly one-third of all the water which comes from the canon. Besides, the water wasted by the individual may be caught by another ditch and used again. The result is that the duty of a whole community ought to a verage higher than that of the individual, and measurement bears out the anticipation.

Where the wastes and losses of the individual farmer may be saved by others and used over again, we may then be led to the conclusion that the excessive use of water by the individual is not necessarily in conflict with a high duty in the community as a
whole. It is disadvantageous, for the loss in the large number of channels and in being spread in shallow depths is greater than when kept in more compact masses. Besides, after water has once been used, it can afterward be applied only to a more restricted area; to the land which is lower down the valley. Its reappearance, if it disappears, is only after the lapse of some time, so that it cannot be applied at will.

GENERAL CONSIDERATIONS AFFECTING DUTY.
The amount of water actually needed, as every irrigator knows, varies according to many conditions. The method of irrigation, the slope of the ground, character of the soil, kind and character of subsoil, the crop, amount of rainfall, the use of water in large or small heads, preparation of ground, the skill and knowledge of the irrigator, thorough cultivation.

In general, the more rain the less irrigation needed. This is true for crops of the same character and in the same community It is not neeessarily true of different communities widely separated, nor of different crops where irrigation is carried on not from necessity of drouth, but as a means of furnishing nutriment to the plant. The amount used may be very excessive, as in the hay lands of the Vosges in France, which use over 200 feet in depth per year.

Certain methods will be best adapted to certain slopes and crops. With a given method there is a slope of the ground at which a given amount of water will do the most work. The object being to reach the roots of the plants, unnecessary slowness in the water permits increased evaporation, and perhaps unnecessary absorption. Much more water is needed for a thorough irrigation than one unaccustomed to irrigation would think necessary, but the experience of all countries finds it practically impossible to make an irrigation with a depth of less than three inches of water on sod ground, and from four to six on cultivated crops.

Different crops require different amounts of water and at different periods. Grasses being grown for forage, an increase of water usually means an increase in product. With the cereals, as well as with grasses when grown for seed, there is a limit beyond which irrigation may be detrimental. Different cereals, as well as different vegetables, have different powers of withstanding excessive moisure on the one hand or drouth on the other. Hence irrigation is applied with greater care, and perhaps more frequently in case of scarcity, to the one crop than to the other, and the duties obtained under the conditions of ordinary practice will vary in consequence.

A soil retentive of moisture will need fewer irrigations than a sandy soil, and if the irrigations in the two cases can be made with the same depths of water, will furnish a higher duty.

It is a common observation throughout the irrigated valleys that land requires less water after it has been irrigated a series of years. Though we have no definite measures on this point, the fact
is one of such common observation that there is no reason to question it. Many times land may cease to need water at all, and may require drainage. The cause of the lessened need is connected with the change in the level of the ground water, which is universally observed. After irrigation the soil gradually becomes saturated with water, and the level of water in the wells rises in. the course of a few years sometimes forty feet. After the level has approached the surface, the water which the soil will permit is only that needed by the crops and evaporation, and enough to supply the loss of the ground water by lateral or downward percolation. In the earlier years enough has to be supplied to fill up the sub-soil, and as ordinary soil holds a large percentage of its volume of water, the duty of later years is materially increased.

It is evident that a permeable or impermeable sub-soil, and its distance from the surface of the ground, will affect the duty. If impermeable and close to the surface, there will be little soil to fill, there will be a higher duty, and more care will be necessary on the part of the irrigator, or he will drown out his crop. A very porous sub-soil, as is found in many cases in our river bottoms, and near mountain streams, requires frequent and abundant irrigations in general, as the water passes through it like a sieve. It is because the sub-soil is of this character that the duty in Northern Italy is so small. Lands which naturally sub-irrigate, as in the San Luis Valley in this State, and the San Joaquin Valley in California, are those where the impermeable sub-soil is close to the surface, and lateral percolation may readily take place, because of the character of the surface soil.

The character of the flow of the supplying stream also affects the duty of the water derived from it under the conditions of Colorado and most of the Western States. The streams being fed by the melting snows are high in May or June, and low in late summer. In consequence, while there may be an excess of water in the former month, there may be a deficiency in August and September. In many, if not in most cases, there is not sufficient water in late summer, and the crops do not receive what they should, or what their owners would apply if it were to be had. In consequence, it does not follow that an increase in water in late summer would give an increased acreage, but that the area cropped would give better returns and the duty would be less. The cereals which mature early, frequently receive all that would be given them. But alfalfa and other forage crops would receive in most cases one or more irrigations in addition to the two which are now generally given them. In consequence of this it does not always follow that the duties obtained by dividing the acreage cropped by the water supplied to a canal gives a measure of the relative needs of different communities.

It is partially, if not entirely, due to this that the newest canals will generally give a high duty, for their water supply may be small in proportion to the area underneath, and the early canals with
early water rights may appear to use large quantities of water and thus have small duties. But they will all the more likely represent. the practice where there is water accessible whenever needed.

The water applied to the individual fields was measured over a weir of the trapezoidal pattern, due to Cippoletti of Milan, as described in Bulletin No.13. This form of weir was adopted because of the greater ease in reducing the measures. The maps of the various fields show the location of the weirs which were arranged to fulfill the conditions as described in the bulletin mentioned. In one, that of Mr. McClelland, the crest which was originally 30 inches, was found to be too small for the convenience of the irrigator, and was lengthened to three feet, without, however, widening the box in which it was placed. This would have the effect of slightly lessening the lateral contraction and thus increasing the discharge, but as the error due to this is small, it has not been taken into account in the reduction, as necessary errors do not warrant this degree of refinement.

The instrument for recording the depth of water on the weir was of a pattern made by Richards Bros., of Paris. At one side of the box and above the weir a well for the float to move in was made and connected with still water above the weir. This float rose and fell with the water in the ditch, and was connected with a pen which recorded on a cylinder moved by clockwork the change in the height of water. A copper wire served as the connecting cord between the float and the pen. The first clockworks sent by the manufacturers revolved daily, but as this was inconvenient for our purposes weekly movements were afterwards substituted. When the papers were changed, as they were weekly, the height of water was measured and recorded as a check upon the instrument. Only once or twice was there any reason to suspect a slipping of the wire over the pulley connecting with the clockwork.

In the case of the river and the canals it was impracticable to measure the water over weirs, but each canal is provided with a rating flume some distance below the headgate, which is officially rated by the State Engineer, and is the basis for the distribution of water to the ditch. The instruments were so placed as to record the depths in these flumes. In the case of the river, the water district has provided a gauging station where all ratings are made, and sufficient have been made during the past years at different stages of water to give the quantity of water flowing at any given depth with a fair degree of accuracy.

From the sheets from the recording instrument the depths acre found, reduced to cubic feet per second, and multiplied by thenumber of seconds during which the height could be considered constant. When the height was varying, this time was short. Each day was added separately.

The reductions themselves have been made almost entirely by Mr. R. E. Trimble, assistant in this section of the Experiment Station-

The field of J. H. McClelland, three miles south of the College, and the same distance from the foothills, was given for a test of the measurement of water applied. The field is shown in Fig. 1, the slope as shown by the contour lines being to the north and east at the rate of about 50 feet per mile. The water is supplied from the

Fig. 1.-Field of J. H. McClelland, 160 Acres.
Pleasant Valley and Lake Canal to the west of the tract, the box for measurement being placed in the supplying ditch a few rods to the west of the boundary. The soil is of the same general type as that of much of the Poudre Valley, sand and clay mixed with more or less humus, responding readily to the application of water. There is more or less gravel, varying from the smallest particles to boulders. The field was owned by Hon. J. S. McClelland, and under the immediate charge of J. H. McClelland, formerly a student of the College, who took great interest in the measurement.

The field was divided into several crops, alfalfa, clover, wheat and oats, besides garden and orchard at the southeast corner. The time of turning on and off the water to each plat was furnished by Mr. McClelland. The measurement gives only the gross amount
of water taken into the field. The waste could only be estimated. There was at times considerable which passed on through the field to the east.

The measurement was begun in 1891, but the instrument then used not proving reliable, the reductions have not been used.

The areas of the different plats and the crops in 1892 and preceding years, were as follows.

A-15.75 acres, alfalfa, 1891-2 ; wheat, 1890.
B-20.2 acres, alfalfa, 1892 ; wheat, 1891 ; corn, 1890.
C-38.5 acres wheat, 1892 ; clover, 1891.
D-14.3 acres, clover, 1892 ; clover, 1891, preceded by wheat.
E-13.5 acres, alfalfa, 1891-2.
F-17.4 acres, oats, 1892 ; alfalfa, 1890-1.
G-34.0 acres, wheat, 1892 ; preceded by alfalfa for about 7 years.
The amounts of water used varies according to the height of water in the main canal. That used for garden purposes was not counted in the summation, nor when there was a small amount of water running in the ditch, but too small for irrigation purposes.

Fig. 2 shows the quantity of water entering the field by days, as measured at the weir. The black portion is the water applied

Fig. 2.-Amount of Water Applied by Days, 1892, to 154 Acres, Mixed Crops.
artifically, the light portion represent the number of acre-feet equivalent to the rainfall over the whole 154 acres on the corresponding days. The rain gauge was at the house of Mr. McClelland, in the southeast corner of the field.

As the water was turned on or off each separate piece the sheet was marked by Mr. McClelland. From the records the following table shows the amount of water applied to each crop and the depths. Frequently the irrigation was suspended temporarily, either from lack of water or to supply the needs of another piece.
FORAGE.

NORTH ALFALFA-13.5 Acres. Plat E.					SOUTH ALFALFA-36 Acres. Plats A. B.					CLOVER-14.3			Acres. Plat D.	
Date.	No. of Hours.	Aore $\mathrm{ft} .$	$\begin{aligned} & \text { Depth } \\ & \text { ft. } \end{aligned}$	Remarks.	Date	No. of Hours.	$\begin{aligned} & \text { Acre } \\ & \text { ft. } \end{aligned}$	Depth ft .	Remarks.	Date	No. oi Hours.	$\begin{gathered} \text { Acre } \\ \text { ft. } \end{gathered}$	Depth ft.	Remarks.
May 19	10	3.71	\}. 47	First irrigation.	May 27-28. " 29-31. July 11-17	$\begin{gathered} 12 \\ 563 / 2 \\ 120 \\ \hline \end{gathered}$	$\begin{gathered} 2.74 \\ 15.45 \\ 18.11 \end{gathered}$	$\left\{\begin{array}{r} .51 \\ .50 \end{array}\right.$	From April 1st.	May 28-29.. May 31, J. 1 July 1-2 ... " 3-4 " 9-10 ... Rain Total	$\begin{aligned} & 12 \\ & 16 \\ & 14 \\ & 13 \\ & 17 \end{aligned}$	$\begin{aligned} & 2.93 \\ & 4.82 \\ & 4.38 \\ & 4.14 \\ & 4.34 \end{aligned}$	$\left\{\begin{array}{l} \left\{\begin{array}{l} .54 \\ .60 \\ .30 \end{array}\right. \end{array}\right.$	First irrigation; in night, perhaps one half waste. Second irrigation
" 28	12	2.60												
Júly 6 .	10	4.78	. 36											
	32		. 83			1881/2		1.01						
Rain.			. 81	From Λ pril 1st.	Rain Total									
Total			1.67					1.85			72		1.44	
													. 84	
													2.28	

CEREALS.

OATS-17.4 Acres. Plat F.

突	$\left\lvert\, \begin{array}{ccc} \infty & n & 0 \\ \infty & 0 & 0 \\ & \infty & \infty \\ \hline \end{array}\right.$
$\stackrel{\text { ®ĩ }}{\text { A. }}$	

The first column gives the date on which water was applied to the crop, and the second the number of hours during which the watering lasted. The alfalfa and clover is generally watered once for each cutting. The north wheat was cut about August 16, the first cutting of alfalfa and clover the last week of June, the second cutting a month later, and the third cutting was begun September 23. The rainfall during the growing season was: In April, 1.60 inches; May, 5.22 ; June, 2.02 ; July, 1.04 ; August, 19 ; September, .07, which reduced to feet is added to the depth artificially applied. The duties as obtained for a constant flow of cubic foot per second then varies according to the assumed length of the season, and whether the rainfall is or is not considered, varying from 12 to 400 acres per second-foot.

Fig. 3.-Depths of Water Applied by Months, 1892, by J. H. McClelland.
Fig. 3 represents graphically the depths of water received by each crop by months, that received from irrigation being represented by the black part of the diagram, the rainfall by the light portion.

WHEAT.

The field which was used for measuring the water supplied for irrigation was one some six miles southeast of the Station, and three miles directly east of the field of Mr. McClelland. The field belonged to Mr. Walter Campbell, of the firm of Ames \& Campbell, of Fort Collins and Denver, and an able farmer. The field slopes to the north and east, toward the river, as is shown by the map, Fig. 4, is of friable sandy loam, retentive of moisture, and in a section well-known for the quality of the wheat. The farm buildings stood in the southwest corner of the tract. The main supplying lateral ran to the north along the west side of the tract, and the distributaries to the east at intervals of about 200 feet. The measuring box and the recorder were at A , in the right hand lower corner. The water for the first section of the field, consisting of 3.1 acres, was not measured through this box,
but all the water for the remainder of the field was measured. The waste, if any, from this first portion of 3 acres, would be caught by the next section of the field, but there was little, if any waste, and the result would be inappreciably affected. The area occupied by the farm buildings and barnyard was deducted from the

Fig. 4.-Wheat Field of Waltfr Campbell, 1891-2.
remaining area, leaving 71.5 acres to which the water was applied. This includes a small area of garden and fruit which is not separately taken into account. The total area of wheat thus measured is 70.5 acres. There was little, if any, waste water. None wasted to the north, and very little to the east.

The register was placed in position on its receipt in June, 1891, after the first irrigation. Owing to the scarcity of water, there was no second irrigation given, and in consequence the records are incomplete for that year. In 1892 it was in place during the whole season. The box sometimes became filled with sand, so that the entrance to the pipe supplying the well in which was the float, became filled, and the zero point of the scale was changed during the season. This has caused some doubt regarding the proper point for the record of something over 'one week, but the point as selected from the evidence is thought to be closely correct.

The amount as applied daily from June $\cdot 1$ to July 6, is shown by the diagram 5, the total quantity being 78.5 acre-feet, or a depth of 1.10 feet in two irrigations, an average of 6 inches, very closely, per irrigation. Some 3 inches of rain fell in the same time.

$$
\text { Fig. } 5,
$$

Capt. Wm. M. Post kindly allowed us to measure the water applied to a field represented in Fig. 6, devoted to native hay.. The field is within the foothills, near the gauging station of the Poudre river, and contains below the position of the measuring box, some sixty acres. The portions inclosed by dotted lines were devoted to onions, corn, and an inclosure for hay corral, a total of 1.6 acres, and there

Fig. 6.
were 4.2 acres of wheat at the extreme upper part of the field. The lines of the map show the contours of the field, at two feet differences of level, the double lines representing the ditches, those at the lower part of the map being ditches to catch the seepage water. The lower part of the field is so wet that no irrigation is required, and none is given except with the waste water from the upper ground. The total area of meadow which is irrigated is 32 acres. The field is in an ancient bed of the river, so that gravel sub-soil is close to the surface. The total amount of water measured includes that given to the 32 acres of meadow, and to 4.2 acres of wheat, 1.6 acres of corn, 0.3 acres of onions, or a total of 38 acres. The instrument was put in place in 1891, and measured the water which ran in the latter part of that year, as well as during the whole of 1892. Fig. 7 shows graphically the amount applied expressed in depths over the area mentioned, the light portion representing the rainfall and the dates on which it.fell. This is taken from the record furnished by Chas. Gilkison, five miles southeast of the field. The rainfall at that place is slightly smaller than in the foothills,
but not having a definite record, his is taken. The difference is not great. Some water was running nearly all the time, but in the intervals on the diagram showing none, the quantity was too small to show on this scale, and was generally the leakage from the gates and of no use for irrigation. The custom of Capt. Post in conduct-

ing the irrigation, is to turn the water on a portion of the field and allow it to run for some time, his ditches and gates being so arranged that it may be done conveniently. The excess, when any, runs back to the river. Irrigation is stopped about a week before cutting, one crop being cut per year. In 1891 the total water applied from July 3 to the close of the season, was 100 acre-feet, from which we may deduct at least 6 acre-feet for the other crops, which do not require as much as the meadow, taking the other measures in the valley as the basis. This would leave 92 acre-feet applied to 32 acres of meadow, or a depth of 2.9 feet.

In 1892 the quantity used was not so great as in 1891, the total quantity from May 25 to the time of cutting being 81.4 acre-feet. Six acre-feet of this may be considered as having been applied to the six acres of other crops, leaving 75 acre-feet for the 32 acres of meadow, or a depth of 2.4 feet.

This shows a larger use of water than the cereals and alfalfa, and thus a smaller duty, as is well known, but the quantity used is much less than was anticipated. In European meadows waterings are given at short intervals, and it is expected to cover them to much greater depths. The most careful measurements on the water applied to meadows have been made by Mangon on those in Southern France and in the Vosges. Sometimes the amount applied is sufficient to cover the field to a depth of 1,400 feet (448 metres), measuring the gross amount applied, as in this case, and the net amount absorbed is equivalent to over 160 feet. (Mangon Experiences sur l'Emploi des Eaux dans Irrigation, p. 46, 153, table 12.)

In this case most of the water is applied in the winter, though some 374 feet in depth was applied from April to July, of which 88 feet were absorbed.

For meadows where summer irrigation is more the rule, or for the same meadow during a corresponding season, the amount used is still much greater than is the custom indicated above. In the meadow of Capt. Post, the depth found is, if anything, too great. On the meadow of Saint Die in the Vosges, the water applied from May 8 to August 11, a period nearly the same as on Capt. Post's meadow, was equivalent to a depth of 120 feet (36.7. metres), of which, however, 112 feet ran off (34.2 metres), leaving a depth of 8 feet absorbed by the meadow. Ordinarily, Mangon says, in drier years one or two more irrigations are given. (P. 47.)

Another meadow, that of Taillades in Vaucluse, in Southern France, between June 5 and September 13 received water to a depth of 5.25 feet (1.63 metres), of which .05 feet (. 32 metre) was collected in the waste ditches, leaving 4.20 feet as the net amount of water absorbed. (Mangon, p. 26). This was given in 13 irrigations. Ordinarily 25 are given, each one requiring the same amount of water.

THE NO. 2 CANAL.

It was desirable to find the amount of water used by a whole community under one ditch, and by the kindness of the officers of this canal a self-recording instrument was placed in their measuring flume in 1891, and records continued through 1892. This canal was one of the first planned and built by the Union Colony of Greeley, being laid out by E. S. Nettleton in 1870. It has been several times enlarged, so that now its official rating calls for 585 cubic feet per second. There are three hundred water rights in the canal, each of which is considered sufficient for 80 acres. The area watered is closely 24,000 acres. The last report of the Water Commissioner makes the acreage 26,800 acres, of which 400 is watered by seepage water and 2,500 by reservoirs.

Its early construction, together with the long experience of most of the farmers underneath it, show perhaps better than any other canal easily accessible, the average of good practice in the valley when water is to be obtained at most parts of the growing season. The uncertainties in the amount of water in the river are such that farmers are constantly pressed to use water at times when they otherwise would not for fear there will be scarcity when it is needed. This compulsion of conditions affects the later canals the most, as they are the ones which are the soonest shut down in case of low water. While the pressure causes farmers with small amounts of water to study means of economizing the water to the utmost, the duty is more apt to be abnormally high, though on the other hand it might be contended that their practice would show what could be done with water better than the older ones. Even in the canal under oonsideration, the
duties may be raised from lack of water in the latter part of the season, as when the river falls in August, there may not be sufficient water to bring all the late crops to their best condition of yield. In such a case the comparison of the area with the amount of water which enters the canal will give a duty higher than would otherwise have been the case.

The canal is 35 miles long and passes most of the distance through sandy loam. Its grade is 2.56 feet per mile. The loss from seepage is not definitely known. Much land has been waterlogged since the canal was originally constructed, as has been the case with most canals in the State. From the lowering of the bed of the canal it has been necessary to check the canal in many places to raise the surface of the water for the lateral canals, and the seepage in many places has been lessened if not entirely stopped.

Fig. 8.
The crops raised are principally the cereals, alfalfa and potatoes, the latter of which has become important at the lower end of the canal. The acreage is approximately 7,500 acres of alfalfa, 800 of native grasses, 18,500 of the cereals and potatoes; of this total. nearly 3,000 is irrigated from seepage and water from reservoirs.

Alfalfa is grown in rotation with the other crops. The number of irrigations varies to some extent even in the same year among neighboring farmers ; ordinarily two irrigations are given to each crop. Alfalfa would be given more, undoubtedly, if water were plen-
tiful in late summer. Potatoes receive two or three in late summer. The land slopes from the canal towards the stream, the fall averaging over the best of the area 20 to 25 feet per mile.

In order to make a complete study of the water under these conditions it was desired to make a complete record of the land and the crops under the ditch, with the number of irrigations each was given. Though considerable work was expended in this direction the record is too incomplete from the means available for this work.

In 1890 the intake of the canal was taken from the daily gauge heights at the headgate taken by Mr. Hendrickson. The record being printed in the Annual Report for this Station, as is also that for 1891, will only be summed in this bulletin. In 1892 the headgate was visited weekly, the clock wound and the papers changed: In addition to the record, the company has kindly furnished the gauge heights to guard against possible changes in the zero height of the instrument.

Fig. 8 shows the intake for the years 1891 and 1892. The scale is too small to distinctly separate the individual days, and ${ }^{\prime}$ therefore the discharges of five consecutive days have been averaged for the vertical lines. The record for 1891 is from May 9 to October 3 ; for 1892, from April 17 to August 11, when the water became too low to record. The quantity used after that date is relatively inconsiderable.

The following tables give the amount of water taken into the canal during the various months of the irrigation season. Some water is turned into the ditches early in the season very frequently, and it is kept ruming as late as water is available, but the water is used principally for purposes other than irrigation. In the aggregate the amount is not important, and would not appreciably alter the results of the tables. The second of the two tables shows the difference in the results obtained in the nominal duty according to the period considered as the season for irrigation. Even in the month of June, which, as shown by the intake, andiby the.preceding diagrams, is the month when water is used the most freely, the duty of a cubic foot per. second from the canal has not fallen below 65 acres during the past three years.

Intake in Acre Feet.

Month.	1890.	1891.	1892.
April..	*	*	741
May.	3,582	7.746	7,759
June.	20,850	15,050	22,216
July	12,426	10,932	17,266
August.	6,372	2,848	2,099
September	1,324	1,334	175
October.	\div	296	*
Sums.	44,554	38,206	50,250
Corresponding depths over 24,000 acres, in ieet..	1.86	1.59	2.09

*Intake small, principally for stock or trees.

Duty, Acres per Second-Foot--Cache-a-La-Poudre Canal No. 2.

DUTY IN THE WHOLE POUDRE VALLEY.
This valley being one of the first in the State to feel the necessity of knowledge of the amount of water available for distribution among the canals, is the one in which there is available the longest series of systematic records. The canals drawing water from the river contributed some $\$ 1,500$ to construct a gauging station above the point where the canals divert water from the river, and a plank floor was put in place in 1883 under the direction of State Engineer Nettleton and Water Commissioner B. S. LaGrange. This floor remained until 1889, when having become injured by floods and frost, much of the water passed beneath, and the floor was taken away, leaving the natural bed of the stream. The stream flows through masonry sidewalls, a projecting stone being used as the reference point to measure from. Measurements of the amount of water flowing have been made at various stages of the river from depths of 0.7 foot to 4 feet, by L. R. Hope and E. C. Hawkins of the State Engineer's office, and by this section of the Experiment Station with current meters, and from these gaugings the amount of water for intermediate depths has been determined. Though for the past two years the natural bed of the stream has been exposed at the gauging station, there has been but little change in the cross section.

June 9, 1891, a mountain reservoir broke and discharged its waters through the canon, with the effect of carrying away the instrument house, and slightly altering the cross section of the river, so that more water is now carried for the same depth of water.

A self-recording instrument has been at the gauging station for most of the time, which kept record of the rise and fall of the river. Until June, 1891, the instrument was one furnished by the office of the State Engineer. After the flood already mentioned, which resulted in the destruction of the instrument there, one of the Richards instruments was put in place by this section, and from this the readings for 1892 were made until the river became too low to move the float. The method of reduction, which was done by Mr. Trimble, is shown by the table, page 31.

The general character of the stream, which is typical of the streams flowing down the eastern slope of the Rockies, is shown by Fig. 9, which shows the flow of the river during the years 1891 and 1892. With no living tributaries from the plains, these rivers are

Fig. 9.
fed by the melting snows of the mountains. Low in winter and early spring, they begin to rise as the snows melt, or with the spring rains, and increase with increase of heat, or until there is a lessening in the snow fields, and then decrease until the low stage is reached in the fall and remain low until the rise in the following spring. An understanding of the character of the streams is necessary to understand some of the peculiarities of Colorado practice. The river is usually high in June, sometimes earlier, depending upon the character of the season, and whether a large part of the snow is on the lower or the higher mountains.

The character of the flow of the stream affects both the character of the crops raised and the nominal duty of the valley as a whole. With an abundance of water in June, and little in August,
those drawing water directly from the river, must in a general way grow crops whose needs for water vary somewhat as the stage of the river.

Hence there cannot be a large acreage of crops needing late water without danger of loss. As the late crops are the most profitable, there is a strong temptation to run some risk, especially as the water in early summer is usually in excess of the needs of that period.

Some of the crops do not secure all the water needed. At present it is not possible to determine how much. Some water runs to waste which is counted in the amount entering the valley. There is a rough balancing between the two, and while the results are not so accurate as desired, with these facts in view they will not be misleading and will be useful as a preliminary estimate. It is hoped by the end of another year, by placing a register at the mouth of the Poudre, to have a more definite knowledge of the amount which is not used.

Most of the valley under consideration is retentive of moisture. The crops are the cereals, alfalfa and clover, and especially toward the lower end of the valley, potatoes. The rainfall from 12 years observations at Fort Collins, which is some twelve miles from the gauging station, and about four from the foothills, is 13.80 inches per year. Observations have not been continued at other points in the valley for a period long enough to determine the rainfall, but from the record of two years it seems probable that the average is slightly greater than at Fort Collins.

Table I. gives the average rainfall for the irrigated area, as deduced from the reports of a number of observers who have kindly co-operated by taking observations of precipitation.

Table I. also gives the total amount of water which entered the valley at the gauging station, and shows the number of acres which would be covered to a depth of one foot.

Table I.

Month.	River Flow, Acre Feet.		Rainfall, Av. in Inches ${ }^{\circ}$	
	1891.	1892.	1891.	1892.
April.	8,570	6,450*	1.60	2.00
May	75,090	25,500**	4.50	4.00
June.	113,050	86,750	2.00	2.50
July.	38,260	45,300	1.50	0.75
August	14,000	11,550	0.25	2.00
September.	10,180	6,000*	1.00	1.25
October	7,350	4,650*	0.20	0.15
Totals, April 1-Sept. 1.	243,970	175,550	9.85	11.25
" May 1-Sept. 1.	235,400	169,100	8.25	9.25
* May 1-Nov. 1.	252,930	179,750	9.45	10.65

*Part of month estimated.

- Average for whole valley.

The area' supplied by the water measured at the gauging station is considered as 135,000 acres. The total acreage in the valley is slightly larger, but some is irrigated from the waters of the North Poudre, which is not measured at the gauging station. This acreage is not exact, but is believed to be within 3 per cent.

The totals at the bottom of Table I. show the number of acrefeet which entered the valley for given periods; April to September, May to September, and May to November.

Dividing these totals by the number of acres, and reducing the rainfall to feet, we have Table II. Very little irrigation is given in April, except to trees, but, as much water is run in reservoirs, it is included. The table shows that the rainfall during the periods of irrigation is equivalent to a large fraction of the water of the river.

Table II.

Period.	Depths in Feet over 135,000 Acres.					
	1891.			1892.		
	River.	Rain.	Total	River.	Rain.	Total.
April 1-Sept. 1..	1.81	0.82	2.61	1.30	0.94	2.24
May 1-Sept. 1.	1.74	0.69	2.42	1.25	0.77	2.05
May 1-Nov. 1.	1.87	0.79	2.66	1.33	0.89	2.22

If all the water which passes the gauging station were applied to the 135,000 acres below that point, the land would have been covered to a depth of 1.74 feet, or 21 inches between May 1 and September 1 in 1891, and 15 inches in 1892. The rainfall during the same time would have increased this to over two feet in each case.

If the water from the river alone be considered, the duty of a cubic foot per second flowing constantly will evidently be larger than when the water furnished by the rainfall is considered.

The duty will also vary according to the length of the season assumed. Table III. gives the number of acres which would be served by the constant flow of one cubic foot per second, and covered to the depths indicated in Table II. The first section of the table considers the water furnished by the river alone, the second portion the depths furnished by the river and the rain together.

The table is taken from Table II. by the formula:
Duty $=2$ times the number of days in the irrigation season.

Depth of water required in feet.

This gives a result which is 1-121 too great.
The table, as well as the formula, shows that the duty thas found is greater as the number of days in the irrigation season, with a given depth of water needed, is greater.

Table III.-Duty, Acres per Second Feet.

Period.	No. of Days.	River Alone.		Qiver and Rain.	
		1891.	1892.	1891.	1892.
April 1-Sept. 1	153	170	233	116	136
May 1-Sept. 1.	12:3	141	195	101	119
May 1-Nov. 1.......	184	195	274	137	164

This is equivalent to stating the number of acres which the constant flow of one cubic foot per second will cover to the required depth in the given period. This assumes a condition of things: which is not attained as yet in Colorado. The diagrams of the water as used on the crops of wheat, and alfalfa, and hay, as well as the inflow into the canal, show that the period of need of water is much less than the legal period, which is from May 1 to November 1 , and unless the water which comes when not directly needed for the crops may be stored and saved until needed, the duties as thus found are misleading.

The widely varying results obtained ander the same conditions by different methods of estimating the duty of water, or different lengths of the irrigation season, show that the duty as expressed in acres per cubic feet per second may be very misleading unless the whole circumstances be understood. The better way would be to express the depth of water, or, still better, to determine the depth required for a single irrigation, and the number of irrigafions then would indicate the total depth of water needed, or would strve to measure the duty of water.

From the tables given we may bring together the depths appled to single crops :

Wheat, Walter Campbell, 1892.	1st Irrig. 6	2nd Irrig. 6
Wheat, J. H. McClelland, 1892.	. 12	
Wheat, J. H. McClelland, 1892.	6	4
Oats, J. H. McClelland, 1892	12	7
Clover, J. H. McClelland, 1892.	6	7
Alfalfa, J. H. McClelland, 1892.	6	4
Alfalfa, J. H. McClelland, 1892	,	6
Potatoes, S. Hopkins, 1891. 4.5
Potatoes, S. A. Bradfield.....		

The measurements on potatoes were made on fields of 4 and 7 acres respectively, forming parts of larger fields.

A single irrigation may require from 4 to 12 inches of water over the whole extent of the area irrigated. The number of irrigations may be lessened by the rainfall, but very skillful management as well as perfect preparation of the ground is required to uniformly water a field with less than three inches in depth of water, even if in sod. It was not long since that 12 inches was considered the uniform practice in this valley ; now six would probably be a better estimate when the measures are made at the entrance to the field.

The ultimate duty reached by the individual will depend on the skill with which he can distribute the water, the small depth he can use and make a successful irrigation. As the application of water is generally followed by a temporary checking of the growth of the plant, most Colorado irrigators prefer to give thorough rather than many irrigations. The character of the soil is such as to retain moisture well. Hence the practice of Northern Italy and Southern France and adjacent countries where waterings are given two to four times per month, is rarely followed.

As compared with the duty of water in other countries, that of Colorado is better than is generally supposed. The amount of water applied is in general far greater than with us. Irrigations are given more frequently, but the land being prepared with greater care, the amount of water applied at one watering is generally less.

The duty which is commonly stated in countries using the metric system is one litre per hectare, much as many people in the West are inclined to estimate the amount of water needed as " an inch to the acre," no matter whether the inch is large or small. One litre per hectare is equivalent to 70 acres per cubic foot per second. But as in most of these cases the water is running constantly, the amount of water used is more than is commonly applied under the same nominal rates of duty. On the Cavour Canal system in Piedmont, the association to the west of Sesia uses 136 cubic metres pe: second from all the government canals on 80,252 hectares, or at the rate of 41 acres per cubic foot per second. Much of this land is sandy with gravelly sub-soil, and the crops irrigated are principaly grasses, with some rice.

Reports of very high duties in far off countries are common, and are frequently used to show that the practice in Colorado is wasteful in the extreme, or sometimes to make glowing estimates of the possibilities of a given water supply. Most of these reports, often given on what ought to be good authority, are based on a misunderstanding of the facts. And it is worth while to examine the most persistent reports which are often given, as of a thousand acres per cubic foot per second at Elche in Spain, and of over 2,000 at Lorca.

At Elche some 30,000 acres form the huerta, or irrigated plain, which is irrigated from a small stream, the Vinalopo. But of this area the greater portion, some 23,000 acres, consists of crops like the cereals which can prosper without irrigation and rarely receive irrigation. The only portion which absolutely needs irrigation are the plantations of palms, amounting to about 300 acres. The stream carries 600 litres per second in the lowest period, or 21 cubic feet per second, and 1,000 litres per second at ordinary times. There is a reservoir, the reservoir of Puentes, so that the water used during the season generally exceeds 1,500 litres per second. If all the huerta were cultivated and irrigated, the resulting duty would be about 560 acres per second foot, but as the summer irrigation is confined to less than 7,500 acres, the duty is between 140 and 150 acres per second foot, instead of the 1,000 which is often said.

At Lorca the reports of high dutes are still greater, making it over 2,000 acres per second-foot. This is under similar circumstances to the huerta of Elche, and the basis for high duty is the same. The area of the huerta is, according to Aymard, 27,500 acres, and the flow 340 litres, or 12 cubic feet per second; whence if all is irrigated, the duty would be 2,300 acres per second-foot. But Aymard also says that the large proportion is of cereals which require but one or two irrigations per year, ordinarily, and the irrigations may be entirely omitted.

Zoppi and Torricelli, two Italians who visited Spain for the Italian government in 1886, in Irrigazioni e Laghi Artificiali della Spagna, give the mean winter flow of the stream as 1,000 litres, or 35 cubic feet per second, which gives a duty for the winter season of 780 acres per second-foot. Much of the huerta is devoted to winter crops, which require no more than two irrigations per year. In summer there are small crops and the stream carries 340 litres, or 12 cubic feet per second in low water. But at this time the number of acres irrigated falls short of 2,500 , whence the duty is.only about 200 acres per second-foot, instead of the 2,000 reported.

THE LARIMER \& WELD CANAL.

The Larimer \& Weld Canal is the largest of the canals drawing water from the Poudre river. The farmers drawing water from it have the reputation of using water to great advantage. Daily gauge heights are taken of this canal by the Company, under the direc-
tion of the Water Commissioner. The acreage using water from the different canals is to some extent uncertain, but during the last season, the acreage of the different crops underneath this canal was taken by Hon. A. L. Emigh and from the report of the Water Commissioner, John L. Armstrong, to the State Engineer. The acreage is given as 5,407 alfalfa, 1,540 grasses, 29,547 other crops, almost entirely cereals and potatoes. Total, 36,494 acres. An area of 6,600 acres is reported as irrigated by water from reservoirs and from seepage, which area is included in the above.

From the daily gauge heights, the amount of water entering the canal during the period from May 1 to September 1, is as follows:

Acre-feet.

Some water entered the canal both before and after this period, but the additional amount taken from the river does not appreciably affect the average depths applied, and perhaps should not be considered, inasmuch as but little of that which does enter outside of these months is used for irrigation.

There is, however, a reservoir belonging to a company of farmers drawing their water from this canal. The reservoir being filled from other sources of supply than the canal, increases the depth of water applied correspondingly. The Terry Lake reservoir furnished some 5,500 acre-feet of water during the past season, thus making the total amount applied to the land 55,585 acre-feet approximately. The water from the reservoir was all used for late crops, principally potatoes, in late August. The corresponding duties, if water be considered to flow constantly during the periods as in the preceding tables, would furnish duties in acres per cubic foot per second, as in the following summary:

Period.	No. of Days.	Irrigation.	Irrigation and Rainfall
May 1-Sept. 1	123	165	109
April 1-Sept. 1..	153	205	126
May 1-Nov. 1.	184	246	155
June alone..	30	81	64

THE ULTIMATE DUTY OF WATER.
A large amount of water is needed for carrying on the vegetable processes, and this must fix the ultimate duty to be expected from water even under the most economical methods. Ordinarily it may be estimated that for each pound of dry matter produced, three hun-
dred times as much water has been evaporated from the leaves. Some variation is to be expected in different kinds of plants, and in the same kind under different conditions ; but as a whole, the variation is less than might be supposed. The subject has been experimented upon by many. According to the experiments of Hellreigel, quoted by Storer (Agriculture, 1:14), the cereals require more than the leguminous crops, weight for weight; and of the cereals, oats more than wheat, the amount varying from 376 pounds for oats to 273 for peas, for each pound of dry matter produced. If the ratio be considered as three hundred to one for alfalfa, then to produce three cuttings of 3,000 to 4,000 pounds each per acre during the season, a depth of from 12 to 16 inches must have been available for transpiration from the leaves for the growth of the crop. There is, in addition, some growth of the roots in the soil which would require an additional amount of water. If this growth be considered as confined to five months, say 153 days, as used in some of the preceding tables, the net duty of a cubic foot per second could not exceed 225 acres, even if there was no waste. Such water as the plant secures from other sources than irrigation, as rainfall, from ground water, etc., would lessen proportionately the amount which it would be necessary to supply by irrigation, but when it is considered that this does not allow for any of the losses by evaporation or seepage from the ditches, evaporation from the surface of the soil, or losses by downward filtration, which in the aggregate are large, we may consider such a duty as exhibiting good, if not the best practice.

Bringing these results together for comparison, there results the following table, showing the depths which, on the average, have been applied to the lands under the two canals under consideration, and to the valley as a whole. The second part of the table gives the corresponding duties. There is some water applied once to the lands which returns to the river. In the average it seems to equal to the flow of ninety cubic feet per second between the measuring flume in the canon and the last canal taken from the river, as based on a series of measurements taken in the fall, by the State Engineer's department, and by this section of the Experiment Station, and by one determination in the spring by this section. There are reasons to think it is approximately constant. This water is again taken from the river by the various canals, and should be counted with the water which is applied to the land of the whole valley, for unless this inflow could be utilized, it is evident that a correspondingly greater amount of water would be needed to enter the canon, or else the acreage in crops would be correspondingly less. Counting the return as ninety cubic feet per second for the time covered by the table, the duties of a cubic foot per second as measured at the heads of the canals, is given by the numbers in the line where seepage is included.

For the valley there is given the average duty. When seepage is considered it may be noted that the duties for the whole valley are nearly the same as those of the Larimer \& Weld Canal.

Depths in Feet.

	May 1 to Sept 1 123 days.		Apr. 1 to Sept. 1 153 days.		Apr. 1 to Nov. 1 184 days.		June 30 days.	
No. 2 Canal	2.09	2.86	(2.09)	3.03	(2.09)	2.96	. 925	1.12
Larimer \& Weld Canal .	1.49	2.26	1.49	2.43	1.49	2.36	. 73	93
Valley	1.25	2.02	1.30	2.24	1.33	2.22	. 64	. 84
Valley, seepage included....	1.41	2.18	1.50	2.44	1.57	2.46	. 68	. 88
CORRESPONDING DUTY PER SECOND-FOOT, in adres.								
No. 2 Canal	112	81	146	101	176	124	65	$531 / 2$
Larimer \& Weld Canal......	165	109	205	126	246	155	81	64
Valley	195	122	233	136	274	168	94	713/3
Valley, seepage included.	174	113	204	125	244	151	88	68

The bulletin, intended only as a step towards determining the present practice in Colorado, holds true of other valleys so far as the conditions of the Cache-a-la-Poudre valley are typical.

The duty, as estimated in acres per cubic foot of water per second, may vary between wide limits, according to the method of estimation, and on the same farm and the same depth of water applied. Unless these conditions are taken into account, it is better to estimate the depth of water needed and the time through which it is necessary. There is less difference between different canals and different users than is generally considered true.

The amount of water given at one irrigation depends more upon the preparation of the ground or its conditions than upon the crop. Under Colorado conditions, irrigations of less than six inches in depth are rarely given.

The difference between the nominal rates of duty in Colorado and those in other countries, has been partly because those of Colorado are based upon the use in June, the month of greatest need, while those of others take the whole season or year through. When reduced to the same basis, the practice in Colorado agrees favorably with that of other countries. It would seem as probable from the measures that the average duty of one cubic foot per second flowing constantly, as measured at the head of the canal, is 60 to 65 acres in June, to 175 to 300 for the whole season. The last represents the conditions when a reservoir is available in which water may be stored.

Amount of Water Taken into the Cache-a-la-Poudre Canal No. 2.

DATE. 1892.	4 					
May 9, 5:25 p.m.	16.8	1.30	11	59.0	649.0	
"	. 17.8	1.40	523/2	68.0	3,570.0	
*	18.0	1.42	$51 / 2$	69.8	383.9	5,078,003.8
May 10.	18.0	1.42	18	69.8	1,256.4	
"	18.2	1.44	16	71.6	1,145.6	
"	18.4	1.46	89	73.4	6,622.6	
-	18.2	1.44	50	71.6	3,580.0	
\because	19.0	1.52	62	79.0	4,898.0	
-	19.1	1.53	12	80.0	960.0	6,461,910.0
May 11.	19.1	1.53	58	80.0	4,640.0	
\bullet	19.3	1.55	176	82.0	14,432.0	
*	19.6	1.58	13	85.0	1,105.0	7,061,950.0
May 12.	19.6	1.58	$841 / 2$	-85.0	7,182.5	\ldots
"	19.6	1.58	86	85.0	7,310.0	
\&	19.5	1.57	59	84.0	4,756.0	
-	19.9	1.61	171/2	88.0	1,540.0	7.275,975.0
May 13.	19.9	1.61	90	88.0	7.920 .0
\checkmark	20.4	1.66	38	93.0	3,534.0
-	20.2	1.64	181/2	91.0	1,683.5	
*	20.4	1.66	3	93.0	279.0	
*	20.8	1.70	35	97.0	3,395.0	
"	21.7	1.79	44	106.0	4,664.0	
-	22.9	1.81	19	108.1	2,053.9	8,234,290.0
May 14.	22.9	1.81	28	108.1	3,026.8	
"	22.6	1.88	5	115.8	579.0	
-	24.5	2.07	1061/2	139.8	14,888.7	
¢	23.5	1.97	851/2	126.4	10,807.2	
-	23.4	1.96	22	125.2	2,754.4	11,219,635.0
May 15.	23.4	1.96	158	125.2	19,781.6
-• .	23.2	1.94	46	122.8	- $5,644.8$	
"	22.9	1.91	20	119.2	2,384.0	
-	22.4	1.86	23	113.6	2,612.8	10,648,120.0
May 16.	22.4	1.86	2	113.6	227.2	
\checkmark	22.5	1.87	15	114.7	1,720.5

DIAGRAM.

Knowing the depths which may be necessary during the season and the number of days in which it must be applied, the diagram shows the number of acres which one cubic foot per second flowing constantly during that time will serve, or the duty. Thus if one foot is needed for wheat in forty days, look at the right for the depth required. At the top find the vertical line corresponding to the number of days as forty in which the amount of water is needed, say one foot for wheat. At the intersection of the two lines is the diagonal line showing eighty acres as the corresponding duty :

The State Agriculiural College.

THE AGARICUETURAL EXPERIMENT STATION,

BULLETIN No. 23.

COLORADO WEEDS.

> Approved by the Station Council. ALSTON ELLIS, President.

FORT COLLINS, COLORADO.

APRIL, 1893.

Bulletins are free to all residents of the State interested in Agriculture in any of its branches, and to others as far as the edition will permit. Acknowledgment will be expected from all non-residents. Newspapers desiring continuation on the mailing list will please acknowledge by editorial notice and the sending of a marked copy of the issue containing it.

- Address the EXPERIMENT STATION, Fort Collins, Colorado.

The Agricultural Experiment Station,
 FORT COLLINS, COLORADO.

The State board of agriculture.

Executive Committee in Charge.
Messrs. J. J. RYAN.
GEORGE WYMAN,
The President of the College and Secretary.

Station Council.

alston ELLiS, A. M., Ph. D., LL.D., President.
WALTER J. QUICK, B. S.,
Director and Agriculturist
FRANK J. ANNIS, M. S., - - - - - - Secretary
C. S. CRANDALL, M. S., - - Horticulturist and Botanist

DAVID O’BRINE, E. M., D. Sc., M. D.,
Chemist
L. G. CarPENTER, M. S., - Meteorologist and Irrigation Engineer
C. P. GILLETTE, M. S., - - - - - Entomologist

ASSISTANTS.

FRANK L. WATROUS, - - - - to Agriculturist

San Luis Valley Station, -
FRANK BEACH, B. S., Superintendent.

Arkansas Valley Station, - - . - Rocky Ford, Colorado F. A. HUNTLEY, B. S. A., Superintendent.

Divide Station, - - - - Table Rock, Colorado
G. F. BRENINGER, Superintendent.

United States Grass Station, - - - Fort Collins, Colorado C. S. CRANDALL, M. S., in Charge.

Colorado Weeds.

By Charles S. Crandall.

It is not our present purpose to attempt an exhaustive treatment of the weeds of the State, but by a few brief general considerations, and the mention of a limited number of well-known offenders, to bring the subject to the attention of the farmers, in the hope that they will aid us in the collection of data from which to compile a complete report. Our own observations have thus far been confined to a limited territory. We need detailed information from all portions of the State before we can properly classify our weeds, or draw correct conclusions regarding their distribution, and relative noxious qualities. Hence, for the State as a whole, our statements can only be general.

Every cultivated district has its weeds, and in most districts they are present in great variety ; but the prevalent forms of one district may be widely different from those of another. The region adjacent to the eastern foothills is infested with one series of weeds north of the Divide, and by a greatly different series south of the Divide. The weeds of the plains of the eastern counties are mostly different from those near the foothills, and west of the range we find a class of weeds different from those prevailing on this side.

A plant may be present in two or more districts, but attract notice as a weed only in one; it may even be a very bad weed in one district and harmless in another. Thus our common Thermopsis (Thermopsis montana) is reported as a persistent weed in the San Luis valley, taking possession of moist pasture lands, and gradually extending its area to the detriment of the grasses; while here we would class it as one of the most indifferent weeds-existing, but not spreading to any injurious extent. A few kinds are everywhere present, and are universally classed as injurious. Owing to this diversity in the weeds of different regions, and to the various ratings that may be given particular species in the different districts, it is difficult to form a classification based upon relative badness. Adopting the commonly used division into worst, bad and indifferent, it is plain that conflict would arise in any attempt to adjust a list to all districts; even in a particular district there would be differences of opinion as to the class in which
certain weeds should be placed, and as to the position in the class ; there may even be differences of opinion as to whether a plant should appear in a list of weeds at all or not, and this would demand an answer to the question, What is a weed? The dictionary defines the word weed as "Any plant growing in cultivated ground to the injury of the crop or desired vegetation, or to the disfigurement of the place; an unsightly, useless, or injurious plant." Then we have the old definition, "A plant out of place," which is broad enough, and at the same time has the virtue of brevity. There is evident propriety in including in a weed list, not only the decidedly injurious ones, that cause so much trouble in gardens and fields, but also the unsightly and useless plants that disfigure our road-sides, ditch-banks, pastures, and waste places. We must include, also, some of our most useful plants, because they frequently give trouble by appearing out of place. Alfalfa is invaluable to this Western country as a forage crop, but when it springs up in your strawberry bed you regard it as a weed, and treat it accordingly. A field of alfalfa is broken up and sown to wheat; the roots are imperfectly cut, and we have two crops in competition on the same ground-neither is profitable. It was wheat that was wanted, but the yield was cut short by the alfalfa; in this case the alfalfa is in effect a bad weed. Many other plants may possess this two-faced character-useful or ornamental when in their proper places, but becoming noxious when appearing where they are not wanted.

From observations thus far made, we have included in our list of weeds 228 species of plants. Regarding most of them there is no question-they are plainly weeds; a few, however, are placed in the list provisionally, and our estimate of their position may be changed by further observation. A considerable addition will undoubtedly be made when our study has been extended to include the southern and western portions of the State.

A very natural inquiry concerning weeds is, Where do they come from? Ours are in great part native; they are plants indigenous to the foothills and plains, which, by reason of the favorable conditions afforded them in the irrigated districts, are enabled to develop strongly and multiply rapidly. They are aggressive in the struggle for possession of the land, and thus become pestiferous to our cultivated crops. Sixty-five per cent. of our 228 species of weeds belong to this class ; the balance, or 35 per cent., are introduced. These foreigners are mostly European plants, which firstsecured a foothold on the Atlantic coast, and then, following civilization, gradually migrated westward. A few have come to us from the Southern States and Mexico.

The proportion of native weeds is greater here in the West than it is East. In some of the New England States a majority
are foreign. In New Jersey, as appears from Dr. Halstead's weed list, the foreign and native species are almost equally divided.

That the Eastern States should have a larger proportion of European weeds than the Western, is perfectly reasonable; they have a much older agricultural development, are nearer the ports of entry, and the advantages for the growth and dissemination of plants have been greater. Considering the comparatively short period since cultivation of the soil began in Colorado, we have a remarkably large representation of European weeds, and we are yearly receiving additions. Our large percentage of native weeds may also be accounted for by the nature of the country. Dr. Gray, in an article on weeds, explained that the herbaceous plants native in the forest-covered East, were placed at a disadvantage by the removal of the forests, and could not successfully compete in the struggle for existence with the introduced European weeds. In our Western treeless region the native plants are subject to full exposure, and have become inured to the most adverse conditions. Cultivation and irrigation have given them new vigor ; they no longer merely exist-they assert themselves, and find place among the most aggressive of our weeds.

Arranging our weeds according to their duration, we find that 128 , or more than one-half, are perennials. Of these, 98 are native, and 30 are foreign. The biennials are represented by only 11 species, 7 of which are foreign. The 89 annuals are quite evenly divided, 43 being foreign, and 46 native.

Division according to relative badness is of necessity entirely arbitrary ; an attempt has been made to base the position of each species upon the sum of its bad qualities. There is with many species a single quality which predominates over all others, and determines its position ; one species, by reason of its prolificacy, may be ranked as one of the worst ; another, much less abundant, may take the same rank because it is very persistent and difficult to eradicate. Our present estimate places in the list of worst weeds 56 species; 29 of these are foreign and 27 native. The species falling under the head of bad weeds number 81, 55 of which are native, and 26 foreign. In the list of indifferent weeds, the predominance of native species is still further increased, there being 66 inative and 25 foreign, a total of 91.

Classified botanically, our weeds have a wide distribution. The 228 species and varieties represent 141 genera, belonging to 42 orders. Compositæ has much the largest representation; 55 species and varieties, or very nearly one-quarter of the whole, belong to this order; next come Leguminosæ and Gramineæ, represented by 12 genera and 21 species each; then follows Polygonaceæ, with 16 species; the balance are distributed in numbers varying from 1 to 8 .

In any given locality additions to the number of weeds frequently appear; it may be a plant whose presence in the neighborhood has been noticed, but which has been passed by as inoffensive; suddenly we find it taking possession of our cultivated ground, and possibly the next year it develops into a formidable pest ; another plant, an entire stranger, may from its first appearance be so aggressive as to leave no doubt of its having descended from ancestors that somewhere, by struggles through many generations, had developed those qualities, enabling successful competition with other plants for possession of good ground. The questions, Where did these plants come from? How did they get into our soil? are often difficult to answer. Most of our herbaceous weeds are great travellers ; they migrate from one place to another in a variety of ways. Some are provided with structural features which aid dissemination, as the pappus of the fruits of many Compositæ, the coma of the seed of milkweed, or the hooked prickles of the fruits of our clot-bur and wild licorice; some are carried by animals or birds, or on the surface of streams, but the most effective agent in distribution is man himself. Weed seeds are sent across the country baled up in hay, in the packing about merchandise, with the grain and grass seed raised for market, and in a hundred other ways. This broadcast distribution of weed seeds is all unintentional, and in many cases it, could be avoided by the exercise of a little care. There is no doubt that many of the weeds that are so troublesome are sown with the grain or grass seed. Seeds which from casual observation appear clean, may upon critical examination disclose an astonishing percentage of seeds of noxious weeds. Two years ago we ordered from the East seeds of twenty species of grasses and forage plants for trial and comparison with native species; only the species ordered appeared on the bill, but when the plants came in flower we found a number of species for which we had not bargained. As an example, two species of brome grass (Bromus inermis, Leyss., and Bromus unioloides, Kunth.) were ordered, but we did not order the four poor relations from Europe which accompanied them, namely: Bromus secalinus, L., Bromus racemosus, L., Bromus sterilis, L., and Bromus maximus, Desf. I may here mention another species of chess which appeared for the first time last season, and whose presence seems to trace directly to hay used as packing about some goods that came from the East, Bromus Tectorum, L., a useless importation from Europe, which has been reported from only a few Eastern stations.

The number of plants that make their first appearance on railroad embankments, or about station buildings, confirms the statement that railroads are active agents in disseminating weeds. The Eastern weeds that have found lodgment in our soil have mostly come by rail, and we may confidently expect the arrival of other species that are every year being reported from stations nearer to us.

But the travel of weeds is by no means in one direction; the West is sending some of its worst species in exchange for those contributed from the East; we hear of them in Illinois and Ohio, and even as far East as New York. A few recent introductions that have not yet spread to any extent are mullein (Verbascum Thapsus, L.), seen only along the railroad at Boulder; jimson-weed or thornapple (Datura Stramonium, L.), near Boulder and at Golden along the railroad; Canada thistle (Cnicus arvensis, Hoffm.), seen in one locality only ; ox-eye daisy (Chrysanthemum Leucanthemum, L.), reported from the south and near Denver.

CAPSELLA BURSA-PASTERIS, (L.) Moench. (Plate I.)

(Shepherd's Purse.)

Annual; root leaves clustered, pinnatifid or toothed, stem leaves sagittate clasping; flowers white; racemes elongated; pod obcordate-triangular. This weed has a very wide distribution; it has followed civilization all over the world. With us it is an annoyance in gardens and a pest in fields, doing the greatest injury in fields of alfalfa; it has been sent us from several localities with the report that it was running out alfalfa. That it is capable of doing this I have seen demonstrated in a road-side piece of alfalfa, which in three years has entirely succumbed to the encroachment of the shepherd's purse. The plant is an annual; it may be found in flower and fruit from earliest spring until winter, and even all winter when the cold is not too severe. In size it varies greatly-from 2 inches to 2 feet; in irrigated fields it makes a rank growth and produces an enormous amount of seed. In order to estimate approximately the seed-producing possibilities, a count has been made of two average plants; 60 fruits from one plant gave an average of 30.1 seeds; for the other, 25 seeds; the average for both plants being $27 \frac{1}{2}$ seeds to each fruit. On one plant were 951 fruits, on the other 952 ; this would give over 26,000 seeds to each plant. But this would not fairly represent the possibilities ; the plants were not mature; on one 1,444 buds and flowers were counted, on the other 1,499 ; assuming that all of these reach full development, and we would have an average of over 66,000 seeds to the plant. Allow for accidents and assume 50,000 as the average number of seeds produced ; surely this is enough to account for the rapid spread of the plant: Multiplication is by seed only; it follows that the way to subdiue the plant is by preventing the formation and scattering of seed; the hoe and the cultivator judiciously used will accomplish this. We rate the plant as one of our worst weeds,

(Cow Herb ; Cockle.)

Very smooth throughout; 1 to 2 feet high, branched above. Leaves opposite, connate, lower oblong, upper ovate-lanceolate. Flowers in open cymes, pink. Calyx 5 -angled, enlarged in fruit. Stamens, 10 ; styles, 2. Annual.

This is an introduction from Europe. At one time it was grown in gardens as an ornamental ; its seeds were scattered, it became spontaneous, and is now well naturalized in many localities. It found its way to Colorado certainly as early as 1874 , for on the authority of two collectors it is recorded as "introduced" in the flora published by Porter and Coulter in that year. The plant is now so abundant in grain fields as to rank among our worst pests ; in many places it springs up abundantly in gardens and among hoed crops, but where the ground is cultivated it is easily mastered. When once started among grain, there is no remedy except to destroy when in flower. Seed is no doubt often sown with the grain, but this can be avoided with a little care; the seed is easier to separate than that of the corn cockle (Agrostemma Githago, L.), so troublesome in the Eastern States; it is smaller, nearly globular, very minutely roughened, and can be screened out easily. Plants should not be allowed to mature in waste places; they are not strongly rooted, and in the fall they break off or blow out and go rolling like a tumble weed, carrying their seed with them to considerable distances.

GAURA PARVIFLORA, Dougl. (Plate III.)

(Small Flowered Gaura.)

Annual; 2 to 7 feet high, from a long, slender tap-root. Stem at first simple, at length branching from the axils of the leaves. Leaves sessile, ovate-lanceolate, denticulate, sparsely covered with long villous hairs, and also with short hairs which are somewhat glandular. As the plant matures the leaves fall away, so that in the fall only a few below the spikes remain. The small flowers in long virgate spikes. Calyx tube prolonged beyond the ovary, 4 -lobed. Petals, 4 ; stamens, 8 ; stigma 4 -lobed.

This weed is a native ; it ranges from Washington to Texas, east to the Misouri and westward to Utah. In some localities it is so abundant in grain fields and meadows as to give it rank among the worst weeds. It propagates only by seed, which it produces freely. Preventing seed formation by destruction before or at the time of flowering, is the remedy;

(Gum Plant ; Rosin Weed.)

Annual; branching from the base; 1 to 2 feet high. Leaves sessile, rigid, spatulate to linear-oblong, narrowed at the hase below, broadened and half-clasping above, acutely serrate or denticulate. Heads of yellow flowers rather large, terminating the branches. Involucre strongly squarrose with the spreading and recurving short filiform tips of the bracts; very viscid, especially at time of flowering. Rays narrow, very numerous.

This species is very common in all territory west of the Mississippi ; it is extending eastward, and has been reported from Minnesota, Iowa, Missouri, and Illinois. Here it is most conspicuous along road-sides and on plains that have been broken up and then neglected; it invades cultivated land, and locally is very troublesome in corn-fields. The sum of its pestiferous and undesirable qualities warrants giving it a place among our worst weeds.

IVA AXILLARIS, Pursh. (Plate V. and VI.)

(Poverty Weed.)

Herbaceous, perennial, from woody creeping root-stocks; branching, 6 inches to 1 foot high, equably leafy to the top. Leaves sessile, obovate or oblong, tapering to a narrow base, entire, obtuse, about 1 inch long, minutely appressed pubescent. The small, greenish heads on short recurved pedicels, solitary in the axils of the leaves. Common from the Missouri River to the Pacific, and from New Mexico to British Columbia. The natural home of the plant appears to be in sandy or saline soils, but it adapts itself to all soils, and is everywhere very troublesome. Once established on the farm or in the garden, it spreads rapidly and is difficult to eradicate. Plants produce a moderate quantity of seed, but multiplication is mainly by the extension of the running root-stocks. Like the "quack grass," the breaking up of these root-stocks only increases the number of plants; pieces may be transported across a field on the tools used, and there take root, thus assisting the distribution. Constant cultivation, and the removal of the root-stocks from the soil, is the only remedy.

IVA XANTHIIFOLIA, Nutt. (Plate VII.)

Annual; tall and coarse, 3 to 7 feet high ; pubescent, at least when young; leaves mostly opposite, large, broadly ovate, incisely serrate, acuminate, 3 -ribbed at base, scabrous above. The small heads nearly sessile in crowded, spikelike panicled clusters from the axils of the leaves, and terminal.

A Western plant, ranging from New Mexico to Idaho. It has been reported from Iowa, and from northern Michigan, and is undoubtedly extending eastward. The plant produces seed in considerably quantity, and propagates only by seed. It is in many places a serious pest in cultivated fields, because of its abundance and rapid growth ; being an annual, it is not difficult to destroy, and can be kept down by a little care; the trouble usually comes from delay in cultivation, which allows the weed such a start that it works injury to the crop, and requires much additional labor to eradicate. A mistake is often made in allowing it to grow and produce seed on waste land, or along road-sides. It is a too common sight to see such places covered with a tall, forest-like growth of this plant. From these places seeds are scattered upon our fields, and each year the trouble is repeated. Stop the formation of seed, and the plant will soon cease to be a pest.

SOLANUM ROSTRATUM, Dunal. (Plate VIII.)

(Beaked Horse-Nettle; Buffalo-Bur.)

Annual ; yellowish, with copious stellate pubescence, much branched, 6 inches to 2 feet high. Stems, petioles, and veins of the leaves armed with straight prickles. Leaves 2 to 4 inches long, pinnatifid or sometimes bipinnatifid, the lobes rounded. Peduncles about an inch long, later 3 to 4 inches, bearing several flowers on short pedicels. Flowers yellow, an inch in diameter. Fruit enclosed by the close-fitting calyx, which is thickly beset with prickles.

Ranges from New Mexico to Wyoming, and across the plains. It has migrated eastward, being common in Iowa and Missouri, and is reported from Illinois, Indiana, Ohio, and New York. It is everywhere recognized as a bad weed; here, from its abundance, it ranks as one of the worst. Destroying early enough to prevent the scattering of seed, is an effectual remedy.

FRANSERIA DISCOLOR, Nutt. (Plates IX. and X.)

Perennial ; the erect, slender stems from very slender running root-stocks, 6 inches to 1 foot high, usually somewhat branched. Leaves 2 to 5 inches long, oblong in outline, interruptedly bipinnatifid, the lobes short and broad, silvery white below, green above. Sterile racemes usually solitary, terminating the stem, occasionally small racemes on the lateral branches, fertile flowers few, the involucres ovoid, 2 -flowered, armed with few short conical spines.

Ranges from New Mexico to Wyoming, and east to Nebraska. An aboriginal species that does not appear to have migrated very far eastward. We have no weed so persistent as this ; its thread-
like root-stocks grow very rapidly, and extend through the soil in all directions, forming a close network. By washing out, I have traced them four and five feet beyond the last plant appearing above ground. When plants are hoed up they are very soon replaced by others, which spring from these root-stocks; plowing, which breaks the root-stocks in pieces, only helps to multiply the plant. The only way to eradicate it is to so persistently cut it down that the plants are given no chance to carry on the processes of nutrition; if no leaves are allowed, the plant must soon die for want of them. The species does not spread rapidly from seed, as only a comparatively small number are produced; ten plants counted gave an average of 73 . As the plants multiply mainly by root-stocks, it is important that they be dug out completely as soon as liscovered, and before they become well established.

HORDEUM JUBATUM, L. (Plates XI. and XII.)

(Squirrel-Tail Grass; Fox-Tail; Wild Barley.)

Annual; 6 inches to 2 feet high. Leaves flat, 2 to 4 inches long, margins scabrous. Flowers in a dense spike about 4 inches long, pale green, often purplish. Three florets at each joint of the rhachis, only the central one perfect, lateral florets short awned, central floret with awn 2 inches long, outer glumes 2 inches long, 6 at each joint, rough, upwardly barbed.

This is a Western species, that has become widely distributed over the northern United States. It is one of our worst weeds, spreading rapidly in lands wet from seepage, and also troublesome in cultivated ground. It is especially bad in meadows; its presence greatly lessens the value of hay on account of the injurious effect upon stock of the long, rough awns. When in bloom the grass is ornamental, but its beauty is short-lived; the rhachis soon breaks up, and the parts are scattered by the wind. It should be cut early to prevent seeding.

Plates I., II., VI., VII., VIII., IX. and XI. are from drawings made by Miss C. M. Southworth ; plates III. and IV. from drawings made by Miss Alice Bell. Plates V., X. and XII. are from photographs.

We ask of farmers and others interested that they co-operate with us in the endeavor to designate and classify the weed pests from every agricultural region of the State.

Send us lists of the worst weeds that infest your region, with information as to the general habits of the plants, the kind of soil in which they are most abundant, and the crops most infested.

Where possible, it would be still better to send specimens of the plants; in some cases it will be necessary to have specimens, in order to accurately determine the species, for the reason that there is some confusion in local names. The same plant is frequently known by different names in different sections.

Small plants should be sent entire, roots and all ; they should show blossoms, and, if possible, fruit also. Large plants may be sent in part-a portion of the stem showing leaves, flowers, and fruit. Plants may be dried under pressure, between sheets of blotting-paper, or newspaper; when sent dry, they should be protected from injury in the mails by pieces of heavy paste-board. If sent fresh, they should be slightly moistened, and wrapped in heavy paper.

Always write the name of the sender on the outside of the package. Address,

Department of Botany and Horticulture,
State Agricultural College, Fort Collins, Colorado.

(Plate I.)-Capsella Bursa-pastoris, Mœnch.

HBRAIV
DF TVE
IKTVIATMK OF ILAMEn

(Plate II.)-Saponaria Vaccaria, L.

HINARTV
 of 7 HE

(PEAIE 111.)-Giauka Parviflora, Dougl.

(Plate IV.)-Grindelia squarrosa, Dunal.

$$
\begin{aligned}
& \text { finangy } \\
& \text { DE TME }
\end{aligned}
$$

1HBRASM
OF THE

(Plate VI.) -Iva axillaris, Pursh.

IVRAMY
of TME
Whivent of Himban

(Plate VlI.) -Iva xantimfolia, Nutt.
|10mar
of TKE
whyontit to tuman

(Plate VIII.)-Solanum rostratum, Dunal.

1 limany
if TME
vargrale fritume

(Llate 1X.) - 'ranserla discolor. Nutt.

(Plate X.)-Franseria discolor, Nutt.

The State Agricultural College.

THE AGRICULTURAL EXPERIMENT STATION.

BULLETIN No. 24.

A Feul Common Insect Pests.

> Approved by the Station Council. ALSTO N ELLIS, President.

FORT COLLINS, COLORADO.

$$
\text { JULY, } 1893 .
$$

Bulletins are free to all residents of the State interested in Agriculture in any of its branches, and to others as far as the edition will permit. Acknowledgment will be expected from all non-residents. Newspapers desiring continuation on the mailing list will please acknowledge by editorial notice and the sending of a marked copy of the issue containing it.

Address the EXPERIMENT STATION, Fort Collins, Colorado.

The Agricultural Experiment Station,

 FORT COLLINS, COLORADO.the State board of Agriculture. Term
HON. A. LINDSLEY KELLOGG, Rocky Ford, 1901
HON. JAMES L. CHATFIELD, Gypsum, 1901
HON. JOSEPH S. McCLELLAND, Fort Collins, 1899
HON. J. E. DuBOIS, Fort Collins, 1899
HON. A. L. EMIGH, Fort Collins, 1897
HON. JOHN J. RYAN, Loveland, 1897
HON. FRANK J. ANNIS, Fort Collins, 1895
HON. CHARLES H. SMALL, 1895
HIS EXCELLENCY, GOV. DAVIS H. WAITE, PRESIDENT ALSTON ELLIS,

Executive Committee in Charge.

HON. J. S. McCLELLAND.
HON. JOHN J. RYAN.
HON. A. L. KELLOGG.
The President of the Board and the President of the Collfge.

StATION COUNCIL.

ALSTON ELLTS, A. M., Ph. D., LL.D.,

Daniel W. WORKING, B. S., Secretary.

ASSISTANTS.

FRANK L. WATROUS, M. J. HUFFINGTON, CHARLES F. BAKER, B. S., CHARLES RYAN,
R. E. TRIMBLE, B. S.,
to Agriculturist to Horticulturist to Entomologist to Chemist to Meteorologist and Irrigation Engineer
\qquad

SUB-StATIONS.

A Few Common Inseet Pests.

By C. P. Gillette.

The present paper has been prepared, not because of the original matter that we wish to put into it, but because there seems to be a widespread need of information in the State concerning the insects herein mentioned: There are many other insects equally troublesome that might be mentioned had we time and space to do so. To those who suffer from such pests, we would say that the Entomologist of the Station is always glad to receive and reply to personal letters making inquiry concerning any injurious insect. Specimens of the insect doing the injury should, whenever possible. be sent with the inquiry.

THE IMPORTED CABBAGE WORM.

(Pieris rapce Linn.)

This insect was imported from Europe into Canada about thirty-six years ago. It spread rapidly in all directions, and now is found in injurious numbers from the Atlantic to the Pacific, and, through the Northern States, at least, is the most destructive insect attacking cabbage and cauliflower.

Fig. 1.

Fig. 2.

The mature insect is a white butterfly [Figs. 1 and 2]. It measures: a trifle over $1 \frac{1}{2}$ inches from tip to tip of the front wings when spread, the female being a little larger than the male, as is usually the case: among butterflies and moths. As seen from above, the body, bases of the wings and the tips of the fore wings are black or blackish in both sexes. The female [Fig. 1] has, a little beyond the middle of
the fore wing, two black spots, and there is another spot in line with these on the anterior border of the hind wing. On the under side, the female has two black spots on the fore wing, and the tip of the fore wing and the entire surface of the hind wing are sulphur yellow.

The male [Fig. 2] differs from the female by having but one black spot on the fore wing above, and being a little whiter in color. These butterflies appear early in the spring, and the female is ready to deposit eggs for the first brood of worms as soon as early cabbages are transplanted into the gardens. The eggs are elongate, yellowish white objects, and just large enough to be plainly seen with the naked eye. They are deposited singly during daylight, and nearly always upon the outer surface of the spreading leaves, and not upon the cabbage head. When the butterflies are fliting abundantly over the cabbages, a moment's watehing will be rewarded by seeing one or more of these eggs deposited. In a very few days the eggs hatch, and the little green worms begin to feed upon the leaves. They gradually work inward to the head, and

Fig. 3.
late in the season a large number of worms that are half grown or more may be found eating into the base of the head, often entirely ruining it. In from two to three weeks after hatching the worms become mature [Fig. 3 a], and then change to a green chrysalis [Fig. 3 b], in which stage they eat nothing, and remain quiet unless disturbed. If the worms were very numerous, some of these chrysalids may be found attached to the leaves of the cabbage, but most of the worms will crawl away to undergo their transformations upon other near objects.

In the course of a week or ten days, the chrysalis splits along the back and the butterfly emerges. In a few days more the females begin to deposit eggs for a second brood of worms.

How many rounds of development there are in a year depends upon the length of the summer season. There are probably not
less than three generations yearly in central Colorado. The number of worms increases many fold with each generation, so it is important that the first brood be as largely destroyed as possible. If three-fourths of the first brood were destroyed, there would be only one-fourth as many in the second brood as if none of the first brood were killed.

Food Plants.-Although this insect does its chief injury to cabbage and cauliflower, it also attacks many other cruciferous plants, as kale, radish, turnip, and mustard.

Natural Enemies.-At Fort Collins there are three very important parasites that attack this insect. The most important of these is a minute green fly (*Pteromalus puparum Linn.), belonging to the order Hymenoptera. This little parasite does not kill the larva, or worm, but the chrysalis. The chrysalids lose their green color and become very dark, and, in a short time, instead of butterflies, there will appear from each chrysalis forty or fifty specimens of this parasitic fly.

On the 9 th of September, 1891, a quantity of chrysalids were gathered from the College garden, and in every case they were parasitized hy this insect.

Another small, four-winged parasite (*Apanteles glomeratus Limn.), which is black in color, attacks the larve and destroys many of them. By tearing open nearly mature worms, the maggots of this parasite can often be found in large numbers inside. Before the worm changes to a chrysalis, these maggots eat through the body wall, and each spins about itself a yellowish silken cocoon. Each of these little cocoons is about one-eighth of an inch long, and all together form a mass a half inch or more in length. These masses are usually found upon the leaves of infested plants, and would be liable to be taken by the gardener as some insect enemy in disguise. These little parasites are of great service to the gardener, and should not be destroyed.

Another parasite that is common here, attacking the cabbage worms, is a two-winged fly (**Anthomyia sp.), which closely resembles the common hunse-fly. The flies themselves will seldom be noticed, but among the leaves of the cabbages late in summer will be found numerous barrel-shaped, mahogany-colored objects about one-eighth of an inch in length. These are the pupie-or puparia, as the entomologist would say-of this fly. These puparia should not be destroyed, as each incloses an insect very beneficial to the gardener.

The tine may come when these allies of the gardener will be numerous enough to exterminate the enemy without his assistance,

* Determined by W. H. Ashmead, Dep. of Agr., Washington, D. C.
** Determined by Prof. C. H. T. Townsend, formerly of Las Cruces, N. M.

But as yet he will have to lend a helping hand or fail to gather a bountiful harvest.

REMEDIES.

As the eggs are mostly deposited upon the outer surface of the leaves, and the worms feed for some time before reaching the head, these insects may be nearly all destroyed by the prompt application of any one of several good remedies.

Among the cheapest, most easily applied, and, to our mind, the best of the remedies to destroy cabbage worms, are the arsenites, London purple or Paris green. We have given abundant proof of the harmlessness of such applications to those who eat the cabbages, in Bulletin 12 of the Iowa Experiment Station.

Thoroughly mix one ounce of the poison in six pounds of flour, and dust it very lightly over the plants from a cheese-cloth sack in the evening or early morning, when a little dew is still upon the leaves. The first application should be made soon after the plants are set out. Certainly, no one can think that there would be the slightest danger in making such treatment up to the time that the heads begin to form. After the heads have formed, the poison can be applied mostly to the outer leaves; but if any is put upon the head itself it is almost impossible that it should do harm, as the surface leaves of the head are not eaten, and these leaves in a growing cabbage are continually spreading and becoming outer leaves. Neither can the poison be washed by rain into the cabbage, for the outer leaves do not run into the head. I should not think it advisable to apply the poisons nearer than a week or ten days to the time of harvesting the cabbages, and it would never be necessary to do so.

Patent insecticides, such as Slug Shot and Oxide of Silicates, have been much used by gardeners for the destruction of cabbage worms. The poison in these insecticides is Paris green, but no one ever heard of a person being poisoned from eating cabbages thus treated. These patent insecticides are much more dangerous to use than one a person prepares himself, for he is usually ignorant as to the composition of patent compounds, and is more liable to be careless with them.

For those who prefer not to use the arsenites, there is probably no better remedy than insect powder, or Buhach. This substance kills by coming in external contact with the worms, and is best applied by means of a blower that sends the fine particles of dust down between the leaves of the plants.

This powder is not poisonous to man, and hence is very safe to use or to have in the house. The chief objection to this substance is its expense. Buhach may be purchased directly from the Buhach Manufacturing Co., Stockton, Cal., at 60 cents a pound.

The powder is very light, and a pound will treat a large number of plants.

A remedy much recommended by Dr. Riley is hot water. Water may be poured boiling hot into a watering-pot and applied at once to the caterpillars, and, it the plants are not too thoroughly drenched, the latter will not be harmed, while all the worms touched by the water will be destroyed. Worms that are protected upon the under side of the leaves cannot, of course, be treated.

Kerosene emulsion, if applied in extra strength and with considerable force, will also kill many of the worms, but I have not found this substance of much value in destroying the larve of Pieris rapr.

THE SOUTHERN CABBAGE BUTTERFLY.

(Pieris protodice Bd.)
This insect [Figs. 4 and 5] resembles the preceding in the mature state, and has very similar food habits. It is a native of North America, and does its chief injuries in the Southern States. It is

Fig. 4.

Fig. 6.
quite abundant as far north as Fort Collins, and, only a few *years ago, was said to do more harm to cabbages in Colorado than the preceding species. The markings of this butterfly, both male and

[^0]female, are so well shown in the accompanying illustrations [Figs. 4 and 5] that a description seems unnecessary. The female has more dark markings than the male, and the latter is usually more marked with black than the male of the imported species.

The larva [Fig. $6 a$] is readily distinguished from the larva of the preceding species by having two longitudinal yellow stripes upon either side of the body, and by having the body covered with small black spots.

The remedies are the same as for the preceding species.
THE CABBAGE PLUSIA.
(Plusia brassica Riley.)
This insect in the mature state is a moth [Fig. 7 c], spanning about one and three-eighths of an inch from tip to tip of the fore wings when spread.

The color of the anterior wings above is dark brown, shaded with lighter brown and gray, and with a conspicuous silver patch near the center. Running forward and inward from these white

patches is a light colored stripe on either wing, extending to the anterior border. The wings in the illustration are too black, and the white spot is too small for the specimens of this insect in our collection. The posterior wings are dark brown, lighter towards the base, and are fringed with white scales, in which are dusky patches at the termination of each vein in the wing.

The female moth lays her eggs on the under side of the leaves, and the young larvæ, on hatching, perforate the leaves at first, and if numerous enough will finally eat all but the thick ribs. The larve [Fig. 7 a] are light green in color, with pale, longitudinal stripes, and are peculiar in appearance, being largest at the posterior
end of the body, as is well shown in the figure. They also differfrom any of the preceding larver in looping the body when they travel, like the so-called " measuring worms" and "inch worms." The larva, when mature, unlike the preceding species, spins a slight silken cocoon [Fig. 7 b]. At the end of ten days or two weeks it comes forth as a moth. These cocoons are found among the leaves. near the base of the cabbage head, if the larvac are very abundant.. There are from two to five broods of this insect in a year, the number depending upon the length of the summer season.

The food-plants of this insect, as given by Dr. Riley, are cabbage, kale, turnip, tomato, mignonette, dandelion, dock, clover, and، a few others.

The remedies are the same as for Pieris rapæ.

THE CABBAGE PLUTELLA.

(Plutella cruciferarum Zell.)

This insect, in the mature stage, is also a moth, but a very small, narrow-winged one, that is liable to escape notice. . It meas-ures hardly more than half of an inch from tip to tip of the forewings when they are spread. The moth is shown with wings spread and closed at Fig. $8, f$ and h. The general color of the

Fig. 8.
wing is dark to light brown, and there is a wavy, white line along the posterior margin. When the wings are closed over the abdomen the two white margins meet so as to make a conspicuous whitedorsal stripe, which is continuous, with white upon the thorax and head. These markings are well shown at f and h, Fig. 8.

The winter is probably spent in the chrysalis stage, as the larvæ appear upon early cabbages about as soon as they are set out in this locality. These larvæ [Fig. 8 a] are slender, green in color,. and are very active when disturbed, wriggling themselves quickly off the leaves and dropping on a silken thread.

When mature, the larvæ form delicate white cocoons [Fig. 8 e$]$? pmong the leaves, and in a few days appear as moths. These
cocoons were found abundant in early-set cabbages near Fort Collins on June 10, this year, and the moths began emerging in our breeding cages on June 16. Last fall moths were reared as late as August 3. If the insect hibernates as a chrysalis [Fig. 8 d], there must have been a brood after the last date, so this insect is at least two, and probably three or four brooded, here. This insect seems to be increasing in numbers, and it would not be strange if it should become a serious pest, especially upon young cabbages, unless prompt action is taken to check its increase.

There is one reason, however, for hoping that it will not soon become seriously abundant, and that is, that there are in this locality a number of parasites preying upon it in the preparatory stages. In the Department of Agriculture report for 1883, p. 130, Dr. Riley mentions having bred from this insect a small hymenopterous parasite, Limneria annulipes Cr. From larvac brought into the laboratory here last summer, were reared specimens of *Smicra delira Cr., *Limneria dubitata Cr., *Phrogenes discus Cr., and a species of * Pteromalus.

The remedies are the same as for the preceding species. The applications should be made early, so as to destroy the first brood, and thus prevent the increasing numbers of the succeeding broods.

FLEA-BEETLES.

(The Two-Striped Flea-Beetle, Systenc taniata Say.)

Brbliography and synonymy.-As given by Geo. H. Horn, M. D., in Trans. Am. Lut.
Soc., Vol. XVI., p. 318: Say, Long's Second Expedition, p. 294 ; edit. Lec., i., p. 195.
S. toniata, Say, Long's Second Expedat., p. 164.
S. ligata, Lec., Pacific R. R. Rep., 1857, p. 68.
S. ochracea, Lec., Proc. Acad., 1858, 1 D .87.
S. mitis. Lec., Proc. Acad , 1858. p. 87.
S. bitoeniata, Lec., Col.. Kan., 1859, p. 36.
S. pallidula, Boh., Eugen. Resa, p. 192.

This is one of the worst flea-beetles that gardeners have to contend with in Colorado, and, at the present time (June 24), is doing serious injury to the small potato plants in the College garden. The mature insect is shown much enlarged in Fig. 9. The actual length varies from $1-8$ th to $7-48$ ths of an inch. Viewed with the naked eye, the beetle appears black in color, with a reddish brown head and thorax, and a distinct light yellow line running nearly the entire length of each wing cover.

Prof. Bruner, of the University of Nebraska, speaks of this insect as very variable in its color, some specimens being almost white. The color of those taken here have been very uniform, and as above stated.

This flea-beetle, though widely distributed through the United States, seems to do its chief injuries in the West. The specimens in the collection here were taken by myself at Fort Collins, North

Park, Dolores, and Aspen, of this State. Prof. Webster, formerly of Purdue University, Ind., in the Indiana Horticultural Transactions for 1890, reports this insect as attacking sugar beets, corn, potatoes and beans in that State. Prof. Bruner, of the University of Nebraska, in the Fifth Annual Report of the Nebraska Agricultural Experiment Station, p. 60, speaks of it as being most injurious of all the flea-beetles that attack the sugar beet. Mr. J. F. Wielandy, Santa Fe, N. M., in "Insect Life," Vol. III., page 122, reports this beetle as injurious to beans in his locality, and Dr. Piley, in replying to Mr. Wielandy's letter, states that the beetle is particularly injurious

Fig. 9.
to the Cucurbitacere (melons, squashes, cucumbers, etc.). Prof. James Cassidy, in Bulletin 6 of this Station, reported the same insect as injurious to potatoes, beans, tomatoes, and beets. We have taken this beetle at Fort Collins during the past two summers feeding on potatoes, beets, alfalfa, lettuce, parsnips, egg plant, summer savory, and the following garden weeds: *Iva axillaris (poverty weed), Iva xanthiifolia, Salvia lanceolata, Verbena bracteosa, Solanum triflorum, Solanum rostratum, Helianthus annuus (sunflower), Helianthus petiolaris, Portulaca oleracea (purslane), Amarantus blitoides (tumble weed), Chenopodium spp. (pig weed).

[^1]We have not seen this flea-beetle injuring the vines of cucurbitaceous plants in Colorado.

REMEDIES.

Although the flea-bectles devour the tissues of the plants upon which they feed, the arsenites, London purple and Paris green, have not been very useful in destroying them or preventing their attacks. From our own experience, we would put Buhach at the head of the list of remedies, if properly applied. To be of use, the powder should be applied dry before sunrise in the morning, while the beetles are cold, sluggish and damp with the dew of the night. After the sun is up and the beetles have been warmed into activity they will quickly jump away from any attempted application.

A strong kerosene emulsion, sprayed forcibly and thoroughly upon the plants early in the morning, will also be effectual in destroying the beetles.

As the beetles feed on a great variety of plants, they can usually be driven from cultivated crops by a thorough application of lime, ashes or road-dust in the evening or early morning, while. the dew is still on.

THE COLORADO CABBAGE FLEA-BEETLE.

(Phyllotreta albionica Lec.)

This is one of the smallest of the flea-beetles, measuring from $1-15$ th to $1-16$ th of an inch in. length. It is uniformly black in color, with the first three joints of the antenna pale [Fig. 10].

Fig. 10.
So far as we have been able to observe here, this is the only other flea-beetle that does serious injury to garden vegetables in Colorado.

We have taken this beetle feeding on cabbage, radish, beet, mustard, cauliflower, horseradish, and the Rocky Mountain bee
plant, Cleome integrifolia. The injury is done, as with all the fleabeetles, by eating little holes through the leaves, until the latter turn brown and crisp.

The remedies are the same as for the preceding species.

ONION THRIPS.

(Thrips striatus Osb. ?).
Several inquiries have come to this office concerning a minute fly that is ruining the onion crop, by causing the tops to turn white and die in July and August. The same insect has been noticed by us doing serious harm to onions in this vicinity and in other localities in the State during the past two summers.

The Thripidx are very small insects, the largest measuring only about one-eighth of an inch in length. The mouth parts are rudimentary, and do not seem to be well fitted either for biting or piercing and sucking the juices of plants. Some forms are carniv-

Fig. 11.
erous, but most that have been studied are vegetable feeding. In form they are long and slender; the wings, when present, are four in number, very narrow, and more or less ciliated with long, slender marginal hairs. In many there are also numerous stout hairs or spines on the surface and borders of the fore wings. The mature insects are usually very active, and when disturbed run about, throwing up the tip of the abdomen as if to sting, but they have no power to inflict such injury, and we have found by watching them under a glass that the abdomen is thrown up for the purpose of assisting in spreading the wings. Those studied seemed to have no power to spread the wings in any other way. After the wings
have been spread in this manner, they usually jump and then fly for a short distance.

Limothrips"tritici Fitch, has long been known as an onion pest in the Eastern States, producing what is known as "white blight" of the onion tops. In the 16 th Report of the State Entomologist of Illinois, p. 9, Dr. Forbes speaks of this insect as doing injury to strawberries in that State.

Fig. 11 is a representation of this insect, much enlarged, from a drawing made by Mr. C. F. Baker, and first published in the American Florist, Vol. VII., p. 168. It serves well to illustrate the female of our supposed Thrips striatus, except in the arrangement of the cilia of the wings. Fig. 12 b represents the arrangement of the cilia and spines upon the fore wing of the species that has been doing so much injury to onions in this State.

Fig. 12.

Numerous specimens of this insect were sent to Prof. Osborn, of the Iowa Agricultural College, and to Mr. Pergande, of the Department of Agriculture, Washington, D. C., and were, in both cases, determined as probably Thrips striatus. The mature female may be described as follows, from a quantity of material collected here: Length, 1-24th of au inch (1.1-1.3 mm.) ; color, from pale lemon yellow to brownish yellow, the darkest specimens appearing quite smoky. The only black parts are the compound eyes and the tips of the mouth parts. The antenne are dusky towards the tips; the legs are concolorous with the body; the anterior wings are heavily fringed with slender, wavy hairs on the distal two-thirds of the posterior margin. [See Fig. 12 b.] On the anterior margin of these wings there is a row of short, stout black hairs along the entire length, the largest one being at the extreme tip. There is also on
the outer two-thirds of this margin a second row of somewhat. longer and more slender hairs. On the surface of the wing are two parallel longitudinal veins, set with stout spines, the median oneextending the entire length of the wing. In a favorable light the posterior vein can be seen to arise from the anterior at about onefourth of its length from the base. The entire surfaces of both wings are set with minute spines. The hind wing is heavily fringed along the posterior margin, and sparsely set with short cilia along the anterior margin, and there is a faint median nerve.

The antenna [Fig. $12 a$] appears to have but seven joints, even when viewed under a high power of the microscope. It is only with the most careful focusing and arrangement of the light that a possible minute eighth joint can be seen. In no case has it been as plainly seen as represented in the illustration.

This insect differs from the original description of T. striatus by having two rows of spines on the anterior wings, and by having the row of spines on the costal margin of the wing continued to the base. The paired spines on the last abdominal segnent [see Fig. 12 c] would seem to us to put this insect in genus Limothrips.

Should the species prove to be new, we would suggest for it the name Limothrips allii.

There were certainly many hundreds, if not many thousands, of this insect in all stages of development upon single onion plantsin this vicinity the past two summers. The young are usually found most abundant in the axils of the leares.

Besides attacking the onion, this pest is common in various flowers, where it probably feeds upon the pollen or tender parts of the blossom.

Cucumbers are sometimes severely attacked by Thripida in this State, causing the leaves to turn white and die. From an examination with a hand lens, the species doing this injury appeared identical with that on onions.

(Coleothrips trifasciata Fitch.)

This insect also belongs in the family Thripidr, but to a different genus (Coleothrips) from the preceding. It is black in color, and measures one-eighth of an inch in length. The name trifasciato was given it by Dr. Fitch, because of the bands across the fore wings-one at the base, one at the tip, and one about midway between these. This insect, which Dr. Fitch found common on wheat and in flowers of tanzy, we have found common upon onions in company with the preceding species. It is also common here in blossoms of alfalfa, wild sunflowers, and clover.

REMEDIES.

Several remedies were used against these pests last summer, the one proving most successful being kerosene emulsion, in the usual proportions. It should be thrown forcibly upon the plants, and care should be taken to wet thoroughly the axils of the leaves, where the young congregate. It will be an advantage here also to make the application early in the morning or in the evening, as the mature forms are less active then than in the heat of the day.

The State Agricultural College.

The Agricultural Experiment Station.

BULLETIN NO. 25.

PROGRESS BULLETIN

ox the

LOCO AND LARKSPUR.

Approved by the Station Council,
ALSTON ELLIS, President.

FORT COLLINS, COLORADO, остовеR, 1893.

Bulletins are free to all residents of the State interested in Agriculture in any of its branches, and to others as far as the edition will permit. Acknowledgment will be expected from all non-residents. Newspapers desiring continuation upon the mailing list, will please acknowledge by editorial notice and the sending of a marked copy of the issue containing it.

Address the EXPERIMENT STATION,
Fort Collins, Colorado.

The Agricultural Experiment Station. FORT COLLINS, COLORADO.

The state board of agriculture.

HON. A. LINDSLEY KELLOGG, - - - . Rocky Ford - 1901
HON. JAMES L. CHATFIELD, - - - - - Gypsum, - - 1901
HON. JOSEPH S. McCLELLAND, - - - - Fort Collins, - 1899
HON. J. E. DuBOIS, - - - - - Fort Collins, - 1899
HON. A. L. EMIGH, - - - - Fort Collins, - 1897
HON. JOHN J. RYAN, - - - - - - Loveland, - - 1897
HON. FRANK J. ANNIS, - - - - . Fort Collins, - 1895
HON. CHARLES H. SMALL, = - - - - Pueblo, - - 1895 $\left.\begin{array}{l}\text { HIS EXCELLENCY GOV. DAVIS. H. WAITE } \\ \text { PRESIDENT ALSTON ELLIS, }\end{array}\right\}$ ex officio.

Executive committee in Charge.

HON. J. S. MoCLELLAND.
HON JOHN. J. RYAN
HON. A. L. KELLOGG.
The President of the Board and The President of the College.

STATION COUNCIL.

ALSTON ELLIS, A. M., Ph. D., LL. D.,
Presinent and Director
Agficulturist
C. S. CRANDALL. M. S., - - Horticulturist and Botanist

David O’BRINE, E. M., D. Sc., M. D., - - - - Chemist
L. G. CaRPENTER, M. S., - - Meteorologist and Irrigation Eng.
C. P. GILLETTE, M. S., - - - - - - Entomologist

DANIEL W. WORKING, B. S., Secretary.

ASSISTANTS.
Frank L. Watrous, - . - - - to Agriculturist M. J. HUFFINGTON, - - - - - to Horticulturist

CHARLES F. BAKER, B. S. CHARLES RYAN,
R. E. TRIMBLE, B. S.,
to Entomologist to Chemist to Meteorologist and Irrigation Evgineer

Sub-Stations.
F. A. HUNTLEY, B. S. A.,

Superintendent
Arkansas Valley Station, Rocky Ford, Colorado.
J. H. MoCLELLAND, - - - - - Superintendent Divide Station, Table Rock, Colorado.
FRANK BEACH, B. S. .- . . . - Superintendent San Luis Valley Station, Monte Vista, Colorado.

PROGRESS BULLETIN

ON IHE

LOCO AND LARKSPUR.

By DAVID O’BRINE, Chemist.

The literature of the so-called "loco" weed is quite extensive. In the Agricultural Report of 1874, page 159, we find the following, and as it describes the symptoms of the socalled "loco" poisoning, it is inserted here: "I think very few, if any, animals eat the loco at first from choice ; but, as it resists the drought until other feed is scarce, they are at first starved to it, and after eating it a short time appear to prefer it to anything else. Cows are poisoned by it as well as horses, but it takes more of it to affect them. It is also said to poison sheep. As I have seen its action on the horse, the first'symptom of the poison, apparently, is hallucination. When led or ridden up to some little obstruction, such as a bar or rail lying in the road, he stops short, and if urged, leaps as though it were four feet high. Next, he is seized with fits of mania, in which he is quite uncontrollable, and sometimes dangerous. He rears, sometimes even falling backward, runs or gives several successive leaps forward, and generally falls. His eyes are rolled upward until only the white can be seen, which is strongly injected, and, as he sees nothing, is as apt to leap against a wall or man as in any direction. Anything which excites him appears to induce the fits, which, I think, are more apt to occur in crossing water than elsewhere, and the animal sometimes falls so exhausted as to drown in water not over two feet deep. He loses flesh from the first, and sometimes presents the appearance of a walking skeleton. I'n the next and last stage, he only goes from the loco to water and back again; his gait is feeble and uncertain ; his eyes are sunken, and have a flat, glassy look ; and his coat is rough and lustreless. In general, the animal appears to perish from starvation, with constant excitement of the nervous system,
but sometimes appears to suffer acute pain, causing him to expend his strength in running wildly from place to place, pawing and rolling, until he falls, and dies in a few minutes."

The plants that were said to cause these symptoms are the Astragalus Homiii and Astragalus lentiginosus. Dr. Vasey in speaking of the plant says: "The plant submitted to us as the one in question was the Oxytropis Lamberti, a plant of the pea family, nearly related to the Astragalus, and also to the Lupin. It grows in considerable abundance upon the elevated plains near the mountains, and extends up into the mountains to the elevation of 7,000 to 8,000 feet. It is perennial, and grows in small clumps, the leaves all at the base, and sending up a few erect flower-stalks, seldom over a foot, which have a spike-like raceme of rather showy flowers, varying in color from cream to purple. These are succeeded by short, stiff, pointed pods, which contain a number of small cloverlike seeds. If the statements above given respecting these two or three leguminous plants are substantiated by further experiment and observation, it will be interesting to determine by chemical analysis what is the peculiar poisonous principle which they contain. Plants belonging to this natural order (Leguminosa) have generally been considered as not possessing poisonous properties." The Agricultural Report of 1878 , page 134 , again speaks of the loco and says: "A further examination will be made of the plant, and any facts concerning it are desired by the department. An examination of this weed by Miss Catherine M. Watson, of Ann Arbor, Mich., is reported in the American Fournal of Pharmacy, December, i878. The plant was obtained from Rosita, Colorado, and she reports the presence in small quantity of an alkaloid and a resin. The dried root was taken by way of experiment in four forty-grain doses within one and a half hours, with no other perceptible effect than a slight smarting of the eyelids and slight colic pains. One and one-half ounces of the fluid extract was given to a kitten two months old with no perceptible effect."

In the Report of 1884 , page 123 , the symptoms are in substance again described, and Dr. Vasey says: "After becoming affected, the animal may linger many months, or a year or two, but usually dies at last from the effects of the complaint. This diseased condition has been attributed to various plants, but mainly to a few which belong to the order Leguminosa. Of these, two species of Astragalus have been ascertained in California, and in Colorado and New Mexico another species of Astragalus (A. Mollissimus.) and a closely related species of Oxytropis are generally charged with the

Oxytropis Lamberti.

Hoxair
of. We

trouble in question." Omitting the account from Wheeler's report, he says: "Several analyses have been made of the plants which are said to be the cause of this affection, without satisfactorily ascertaining what is the peculiar poisonous principle. No antidote has been discovered. If the plants can be ascertained and exterminated, the trouble should come to an end; but, even if the plants are recognized, their extermination over large tracts of country will be difficult and expensive." From the same source we give the botanical description and cuts of the plants, Astragalus Mollissimus-loco weed: "A perennial herbaceous plant of the region of the great plains from Colorado to New Mexico, Texas and Arkansas. It belongs to the order Leguminosa, or pea family. There are usually a great many stalks proceeding from a large root stock. They are reclining towards the base and erect above. These stalks are so short that the leaves and flower stalks seem to proceed directly from the root. They are branching at the base and give rise to numerous leaves and long stems bearing the flowers and pods. The leaves are usually from 6 to io inches long, composed of 9 to 15 leaflets (in pairs except the upper one). These leaflets are of oval form, $1 / 2$ to $3 / 4$ of an inch long, of a shining, silvery hue, from being clothed with soft, silky hairs. The flower stalks are about as long or sometimes longer than the leaves, naked below, and at the upper part ($1 / 4$ to $1 / 2$) bearing a rather thick spike of flowers, which are nearly i inch long, narrow, and somewhat cylindrical, the corolla of a velvety or purple color, the calyx half as long as the corolla and softly pubescent. The flower has the general structure of the pea family and is succeeded by short, oblong, thickish pods, $1 / 2$ to $3 / 4$ inch long, very smooth and with about two seeds in each. Oxytropis Lamberti-loco weed: A plant belonging to the same family as the Astragalus Mollissimus. It is about the same height, and like it grows in strongly-rooted clumps; but it differs in having an erect habit, with shorter leaves and longer and stiffly erect flower stalks. The leaflets are longer and narrower, about i inch long by $1 / 4$ to $1 / 3$ inch wide, and hairy, especially on the upper surface. The flower stalks proceed from the root stock, are usually 9 to 12 inches long, and naked except near the top, which has a rather close and thick cluster of flowers, much like those of the Astragalus in general appearance, but differing in some minute characters which separate it into another genus, and are succeeded by erect, lance, oblong, pointed pods, of about I inch long. This plant is very abundant on the high plains and in the mountains ranging from British America to Mexico. The flowers are subject to much varia-
tion in color, some varieties being purple, some yellow, and others white."

From the Agricultural Report of 1886 , page 75, the same description of symptoms are given, and Dr. Vasey again says: "We invite further information from those acquainted with the plant and its poisonous qualities. The plants sent were those of Astragalus lentiginosus, locally called 'rattle weed' and 'loco.' It belongs to the order Legnminosa, and is somewhat similar to lucern in appearance, and produces bladdery pods, in which the seeds rattle when ripe. Hence the name 'rattle weed.' In Colorado and New Mexico the same disease among horses and cattle is produced by Astragalus Mollissimus and other allied plants. The loss of stock from the eating of these plants has been very great." The other accounts of the loco are mostly found in the Foumals of Chemistry and Phamacy. In The Druggists' Circular and Chemical Gazette of October, i888, there is an article by James Kennedy, read at the Austin meeting of the Texas Pharmaceutical Association on the loco weed-Astragahus Mollissimus. The chemical analysis used in the method is described in detail. We have room but for his conclusion: "Our experiments were conducted upon the dog, because horses and cattle were not to us available subjects ; and we believe they have demonstrated conclusively the non-toxic or innocuous character of the drug. If death is produced by the plant at all, it is not dependent on any poisonous principle contained therein, but is perhaps due to the tough, fibrous and indigestible character of the plant acting as a foreign body, producing irritation and symptoms consequent thereupon, or else its action is identical with an overload of green food of any kind. As the observations heretofore reported,were all upon animals feeding in pastures, there seems to be no positive evidence that 'loco' has ever caused the death of any animal, and the immense destruction of stock with which it is charged may have been caused by some poisonous plant heretofore unsuspected. Our conclusions, therefore, are that the 'loco' (Astragalus Mollissimus) is non-poisonous and does not possess any of the properties ascribed to it by popular superstition."

In the Druggists' Bulletin, May, i889, page i45, in an article headed "Loco Weed," by Prof. L. E. Sayre, Department of Pharmacy, Kansas State University, he states his attention has been called to the loco weed since 1885. Cuts of the $O x y$ tropis Lamberti, Astragalus Mollissimus, and Astragalus tridactylicus are given. The chemical examination is described, and also his visits to Indian Territory, No-Man's Land, the western part of Kansas, Colorado, and New Mexico during the

summers of ' 87 and 'SS. When speaking of his journeys through the country, he says: "I was unable to find a single animal with symptoms answering to those ascribed to this weed. Among the few I found suspected of this distemper was one of a herd from Indian Territory, just south of Arkansas City, brought from Texas for pasture. When informed of the case, I was very eager to avail myself of the opportunity, and at once went to the ranch. But on inspecting the animal was very much disappointed to find no symptoms corresponding with my expectations of an ideal locoed animal. On the contrary, the creature was affected with some loathsome disease combined with very old age.
"In the summer of 'S7, I had a good opportunity to kill and make post-mortem examination of a cow said to have been eating the weed for two years, and which was given to me as an example of an animal possessed of the loco habit. She was four years old, though no larger than at tivo years. The loco had not only stopped her growth, but made her quite poor, and gave her a wasted appearance. She seemed stupid, debilitated, unsteady in her movements, the breathing short and rapid, with muscular force very much impaired. Whether walking or standing, it was seemingly beyond her power to so control the muscles as to keep her head perfectly still. Her eyes had exhibited a wild stare, so said, but this had recently disappeared.

POST-MORTEM.

"The blood was light but not normal ; having no instrument at hand it was not microscopically examined. The paunch was in a normal condition ; the reticulum and psalterium softened, and apparently diseased. Throughout the entire length of the intestines there seemed to be degeneration of tissue, being on the inside peculiarly soft. Two or three perforations were observed in the small intestine. Both the large and small intestines were delicate, devoid of elasticity, and even with most careful handling would be torn or broken apart in places ; they appeared to be as one expressed it, rotten in spots. The peritoneum and omentum were inflamed, and presented numerous tumors about the size of a pea, fleshy in appearance and of fibrous nature, The pleura appeared normal, as also did the diaphragm. The pericardium was streaked with red on the inner side, the sac containing about a pint of liquid of a pale color. The heart seemed to be about one third larger than the normal. The mitral and tricuspid valves were inflamed around the edges. The valves of the aorta appeared normal, and just above them the serous coat
was streaked with red ; in other respects, nothing abnormal. The bile was thin and watery, even after standing twentyfour hours. The pancreas and spleen appeared natural; kidneys normal; inner coat of bladder softened. Membranes of the brain congested and adherent; the congestion may have been caused by a blow on the head previous to killing the animal. She was, however, only stunned by a light blow, and then immediately bled to death. The brain itself appeared pale, but the bleeding may have caused this. The membranes of the spinal cord were inflamed and adherent, the cord itself normal.
"Evidently the disease was one of mucous and serous membranes, which would account for the nervous and debilitated condition of the animal. The general diseased condition of the alimentary canal, by interfering with digestion and proper nutrition, would account for stunted growth and weakness in traveling." Here follows a quotation from New Remedies, August, 1882, page 226, where the physiological experiments of Dr. Isaac Ott, of Easton, are described. He goes on to state his own physiological experiments, and says they have given negative resilts:
"So fully have I been impressed with the non-poisonous properties of the drug, that I have tried the effect of concentrated solutions of it upon myself. Comımencing at first cautiously with a dose of 15 minims every three hours, I have increased it from a tablespoonful to two tablespoonfuls (corresponding to one ounce of the drug). This dose, although repeated at short intervals, produced not even the slightest effect upon the nerves, upon the pupil of the eye, and not much other than a stimulating effect upon the stomach and circulation. Similar experiments with the solution of the supposed crude alkaloid as prepared by Dr. Ott, were made. A tablespoonful of this solution gave not the least evidence of narcotism, although several times repeated.
"I do not put forward these results as showing conclusively that this weed is not poisonous to horses and cattle. Thesubject needs further study and close inspection, and is one the State of Kansas can well afford to spend money upon to secure the same. The State Board of Agriculture has done already a very creditable work in this direction, and it is to be hoped they will continue unceasingly until the question is inally settled. I may state incidentally, that I am now making preparations to continue the work, in connection with Dr. Burleigh, during the summer of 1889 , experiments upon herbiverous animals now being proposed.

Astragalus adsurgens.

Of TME
Unavbतith or thkulis
" It might seem an easy matter to reach a conclusion upon this subject which is of such vital interest to the farmer and ranchman of the West; but to do this, and satisfy the exactions of science, requires not only careful chemical investigation, but physiological work of a peculiar kind, and close and long-continued observation. To uproot a prejudice of many years' standing, and confront long-established hearsay evidence, even if possessed of no basis of truth, scientific men must push their investigation to the farthest limit."

The Botanical Gazette, July, i889, contains an article by F. W. Anderson, Great Falls, Montana, in which he calls the attention of botanists and others to the fact that something should be done to help the ranchmen with their stock. Much valuable work has been done in Kansas by Prof. Sayre. In the report of the Kansas State Board of Agriculture, December 3 I , 1887 , a prescription is offered for the diseased mucous and serous membranes and for the nervous and debilitated condition of the animal. Dr. Harding thinks that

> Pulverized extract belladona 10 grains. Corrosive sublimate. to I I $1 / 2$ grains. Licorice .
Mix. Make a thin paste, and give a tablespoonful. The belladonna and mercury may be increased according to the severity of the symptoms. In the Rocky Mountain Druggist, July, i889, page 8r, notes on the so-called loco weeds by Prof. Dr. Frederick B. Power, taken from Hoffmann's Pharm. Rundschau, the work of Prof. Sayre is reviewed and the experiments of Dr. Mary Gage Day are cited as to the toxicity of the loco weed. Prof. Power seems to think that it is clearly established that the loco weed contains some alkaloid that affects cattle and horses. In the Rocky Mountain Druggist, January, I891, pages 5 to 9, and in the Pharmaccutische Rundschau, January, i89ı, page 8 , the same article appears: Chemcal examination of some loco weeds, Astragalus Mollissimus, Torrey and Crotalaria Sagittalis, Lin. by Prof. Dr. F. B. Power and J. Gambier, in which the literature of the subject is first noticed and then the chemical examination of Astragalus Mollissimus is taken up, giving in detail the method and tests used. We have room only for the conclusion: "In concluding this investigation the authors are sensible of the fact that the chemistiy of the plants under notice has not been pursued to its furthest limits, but being unable at present to devote more time to the subject we have thought it proper to record the results thus far obtained. These results
have, however, afforded us the conviction that both the Astragalus and the Crotalaria contain very small amounts of toxic alkaloids, to which we believe the symptons of poisoning produced by these plants may reasonably be attributed. It is only to be regretted that these alkaloids, as well as most of the other constituents of the plants, are of such a character as not to render their further chemical study specially alluring."

In the report of the Veterinary Department of the State Ag ricultural College, by Dr. Faville, issued in January, I885, page 13, he says: "With a view of determining the symptons and post mortcm appearances of the disease, (during the month of August,) President Ingersoll, of the college, visited the ranch of Hon. J. M. Givens, of El Paso county, who set aside for his experiments, a number of sheep that were " locoed." I append the report of the President, made to me upon his return from the investigation. He found the animals showing a very great degree of emaciation, and also showing to its greatest degree, the loco habit. They would wander about in an aimless way, refusing all other food except the loco. President Ingersoll made several post mortem examinations, and found the same condition of things that I shall describe further on. As an experiment he tried the effect of feeding the loco. A young lamb about two months old, that was being raised on a bottle, was selected. Twenty pounds of loco were cut just below the crown, and that contained no seed; in other words, just the portion that the sheep were getting to eat. This was placed in a wash boiler, in seven or eight gallons of water, covered tightly, and boiled for twelve hours. The juice was then expressed and evaporated to the volume of one quart, when it was a thick syrup, with a smell and taste much like glucose. This was then given to the lamb instead of milk, being fed from the bottle, just as the milk had been. It was given as follows: Seven tablespoonfuls at 4:30 p. m.; four tablespoonfuls at 5:30 p. m.; four tablespoonfuls at $7 \mathrm{p} . \mathrm{m}$. The next morning the bowels were slightly loosened, but nothing more could be seen. The next day two tablespoonfuls were given at $6 \mathrm{a} . \mathrm{m}$.; four tablespoonfuls at 7 a. m.; six tablespoonfuls at 12 m .; two tablespoonfuls at I:30 p. m.; four tablespoonfuls at $6 \mathrm{p} . \mathrm{m}$. The next morning two tablespoonfuls at $6 \mathrm{a} . \mathrm{m}$. ; four tablespoonfuls at i2 m., making thirty-nine tablespoonfuls that were given, in the place of the regular allowance of milk, and which constituted all the food it got for forty-three and one-half hours. There were no deleterious effects, that could be noticed, and I saw and very carefully examined the lamb, about two weeks after-

Astragalus Drummondii.

> Itinssh
> of Ta
> Bumberity of luande
ward. The results of chemical examination of a syrup made in the same way, I will speak of further on.
" During the first week in September, I spent a few days at Mr. Givens' repeating the experiments of President Ingersoll. The animals that I had to examine were not so badly locoed as many of the flock had been, and most of them had begun to recover. I noticed a condition of things almost identical with those that are described in the President's report. Upon making post mortem examinations, I found the following conditions: Organs of thorax were normal. In the abdominal cavity, I found the stomach filled with a mass of semidigested loco leaves. The liver was normal in appearance; gall bladder filled with a greenish color bile. In the duct, running from the gall bladder to the small intestines, I found a mass of tape worms (tania expansa). The small intestine I found filled with a mass of these worms, varying in length from six inches to five or six feet. The kidneys were normal in size and color, but, upon section I found the pelvis filled with a gelatinous material (amyloid degeneration). The muscular system was exceedingly flabby and pale in color. The body seemed to be absolutely destitute of fat. The urine was normal. The brain showed a slight, serous effusion about the base, and to a slightly greater extent in the region of the medulla oblongata. There also was a slight effusion into the abdominal cavity. "The only other change that could be found in the brain of these sheep was a slight congestion of the arachnoid membrane. About the middle of October, I received a letter stating that, if I so desired, I could obtain some fine specimens of locoed horses, on the ranch of Mr. J. T. Cheatham, at Lake station, on the Kansas Pacific railroad, about one hundred miles southeast of Denver. I arrived at Lakt, Oct. igth, and at once began my investigation. I found several affected horses. Two of these I killed by bleeding, and made careful post mortem examinations upon them. I found the two cases exactly similar, a description of one answering perfectly for the other.
"The first case examined was a sorrel gelding that had been brought through from Texas. He presented the following conditions: Great emaciation; the horse was found standing apart from the rest, and could not be observed to be eating, to any appreciable degree ; bowels extremely constipated. The animal apparently had lost all muscular control. Whenever he moved it was in an irregular manner, as if he were intoxicated, and frequently he knuckled over at the fetlocks, as if from complete exhaustion. When a motion was made at him, he would throw his head upward, and stagger
to one side. The power to back was completely lost. If the animal were left to himself he would wander about in a listless, aimless manner, or stand for a long time, with head drooped, in a sort of stupor. The mucous membranes were exceedingly pale. When it was desirous to lead him, we found it to be impossible. When the rope was thrown on to him, he reared backward, and it was impossible to get him to move forward. In the attempt to lead him, he fell. I killed him by opening the jugular vein.

POST MORTEM CONDITIONS.

"The organs in the abdomial cavity were in the following conditions: The stomach was empty, except a small quantity of partially chewed grass and weeds, and a small amount of sand and dirt. The small intestines and cæcum were in a normal condition, except that the coats appeared thinner than they should, and the muscular coat was flabby and relaxed. The colon was enormously distended with food, that was undigested and presented a partially chewed appearance. The spleen was somewhat shrunken and much nore dense than normal ; kidneys were normal ; the liver was considerably shrunken and hardened, and extremely adherent to the capsule. The capsule of the liver showed numerous spots of more or less perfectly organized lymph. The liver pulp, granular and friable.

NERVOUS SYSTEM.

"The spinal cord was softened considerably throughout the greater portion of its extent.
"The cerebral hemispheres of the brain appeared normal, except a slight congestion and fibrous hardening of the arachnoid membrane. The middle ventricles were almost filled with serum of a yellowish color. The fourth or cerebellar ventricle was filled with a hemorrhagic effusion, the whole base of the cerebellum being covered with a blood-clot, more or less organized, and a large quantity (three fluid ounces) of serum bathing the base of the brain, and the medulla oblongata. The hemorrhagic effusion, or blood-clot, completely covered the base of the brain, floating in this serum, as well as the fourth ventricle, and was held to the brain substance by well organized tough fibers and also to the meninges of the brain. The blood was deficient in fibrine, only, imperfectly coagulating. All of the serous cavities had an abnormal quantity of serum in them. The second case was a brown three-year-old gelding. The colt showed all the symptoms of the other case, except that he was stronger, and, if possible,

EXPLANATION OF CUT.

$a-a-$ Blood clot in fourth ventricle.
b--Medulla oblongata.
c-Fourth ventricle.
$d-d-d$-Cerebrum.
c-Fissure between cerebrum and cerebellum.
The cerebellum was lifted away from the medulla oblongata by means of the chain hooks, and as the brain is viewed from the posterior aspect, it shows the fourth ventricle.

$$
\begin{aligned}
& 1 \text { trintry } \\
& \text { wivyemite MF } 12 \text { Moinn }
\end{aligned}
$$

showed a greater craziness. The whole system was so run down that, in running and throwing himself, he bled profusely at the nose. The unsteadiness and emaciation were the same as in the first case. The post mortem symptoms were the same, a.description of one answering for the other. I had the brain from this case photographed and a cut made of it, which is appended."

Dr. Faville's conclusion was that the loco contained some poisonous principle "that caused a hemorrhagic effusion into the base of the brain, causing symptoms of craziness and loss of muscular control." During the fall of I889, Dr. McEckran, then of the college, instituted the experiment of feeding the loco to an animal, the property of Hon. B. S. LaGrange, a member of the State Board of Agriculture. I have not been able to obtain the record of the experiment, and can only state the general plan and the conclusion of the experiment. The animal was placed in a stable and the loco ($A s$ stragalus Mollissimus and Oxytropis Lamberti) was cut up fine, and mixed with other food so the animal would eat it. This feeding was continued about two months with no symptoms of the so-called loco disease.

Enough has been given of the history of the loco and also of the symptoms by which the animals are affected. I have made many inquiries of those that stated they had any experience with the loco or locoed animals.

Binford \& Spencer,

COAL DEALERS,

$$
\text { Denver, Colo., September 27, } 1890 .
$$

D. O'Brine, Professor Chemistry, Agricultural College, Fort Collins, Colo.:

Dear Sir.-You will please excuse my apparent neglect in not complying with your request sooner, in giving you my experience with the loco weed in New Mexico. The summer of ' 81 was the most disastrous to stockmen that to my knowledge has ever occured in that Territory, and probably the cattle in Ute Creek Valley suffered more than those on other streams. The loco weed was that bearing purple and white flowers; the conditions were, dry weather and short grass. The stock ate freely of the weed, and at any time one could see horses and cattle in all stages of the disease, caused by eating thereof. The rough examination that we were able to give the stock which died, showed the stomach and sometimes portions of what is commonly called the manifold, to be lined and perforated by a small parasite.

A certain druggist in Springer, whose name 1 cannot recall, had a fair microscope. This we used in examining the plant. We found that almost every plant had one or more leaves that were rolled, indicating that some worm or bug had been at work on it. These leaves, on being unrolled, contained a very small, white parasite. I cannot say that the two, that is the parasite in the stomach and the one in the leaf, had much resemblance to each other, in fact, rather the contrary. But this, if our theory is true, might be due to the growth of the insect. It was the common opinion of those of us who were investigating this matter, that
the loco plant of itself was harmless, and that the effect on animals was the effect of the parasite in their system. The common symptoms, such as near-sightedness, trembling of the limbs, are greatly aggravated by running or any continued quick movement. It is commonly known to be a fact that the loco weed is harmless after severe freezing, and this point will appear to show that there is some other cause than any poison that may be in the plant itself.

From conversation with horsemen in Wyoming, I have heard the same opinion expressed regarding the effect of freezing on the plant. I fear this is not as full a statement as you had hoped for, but at the present day it is about the best I can do.

I should be pleased, at your convenience, to have a summary of the experiments that you are conducting. Hoping that you will be able to get at the bottom of the matter, I am,

Respectfully yours,
Binford \& Spencer.

United States Department of Agriculture, Division of Chemistry.

Washington, D. C., March 11, 1890.
David O'Brine, Fort Collins, Colo.:
Dear Sir.-In regard to the analysis of the "loco weed," I will say that we have made several examinations of this weed for an alkaloid or poisonous matter, and have separated a substance which exists only in small quantities and which has some of the characteristics of an alkaloid, but which we have not yet obtained in large enough quantities for further examination. We use various methods for extracting the alkaloid, among the best of which we find the saturation of the finelyground material with sulphuric acid, the addition in excess of sodium hydrate or ammonium hydrate, and shaking the alkaloid out with ether. Among other methods, those used for the separation of Calycanthine, described by me in the A merican Chemical Journat, Vol. II., No. 8. may also be used.

I should expect the largest yield of the alkaloidal principle from the plants after they had reached maturity. Respectfully, H. W. Wiley,

Chemist.

JOURNAL OF ANALYTICAL CHEMISTRY, Edward Hart, Editor.

Mr. David O'Brine:
Dear Sir.-I worked some time, myself, several years ago with loco weed (.Istragalus Mollissimus), but could not get any alkaloid. I was forced to lay it aside by press of other work, and have not been able to take it up again. If you succeed with it, I wish you would let me know. In the limited time I worked with the weed, I could only get a gummy residue, which refused to crystallize.

Very truly yours,
Edward Hart.
The people of Colorado had great faith that it was the loco weed that caused so much disease and death among horses, sheep and cattle, for the Legislature passed an act, as follows :
"Any person who shall dig up, not less than three inches below the surface of the ground, any loco or poison weed during the months of May, June or July, shall receive a promium of $11 / 2$ cents par pound for each pound of such weed dug up, to be paid out of the state treasury as hereinafter provided; provided, that such weed shall not bo weighed in a green state, but shall be thoroughly dried and weighod."

On writing to Hon. W. H. Brisbane, State Treasurer, I received the following reply:

OFFICE OF
STATE TREASURER,
W. H. Brisbane, Trcas.

Denver, Colo., May 30, 1890.
Prof. David O'Brine, Fort Collins, Colo.:
Dear Sir.-The State has paid out in bounties on loco weed nearly $\$ 200,000$. The law was repealed April, 1885. I should like to know your conclusions when finished.

Yours truly,
W. H. Brisbane,

State Treasurer.
On examining the statute, we find the law was passed March 14, 1881, and repealed February 18, 1885 . It cost the State $\$ 50,000$ a year for bounty.

The plants that we examined on this occasion were identified by Professor Cassidy and later by Professor Crandall. They were dried, ground and sifted, and treated first by the Dragendorff method. The method is described in his work on plant analysis, 1884 , published by J. H. Vail \& Co., New York, or in Wharton and Stille's Medical Jurisprudence, Vol. II. on poisons, page 356, § 348 . It has been thought too technical to be inserted here. In every instance I failed to get anything that would crystallize, only a gummy extract, that gave reactions with Wagner's reagent (iodine in potassium iodide solution), with Mayer's (potassium mercuric iodide), with Sonnenschein's (phosphomolybdate), with Marme's (potassium cadmium iodide), with Dragendorff's (potassium bismuth iodide), with Hager's (picric acid), with Schibler's (Metatungstic acid), with Berzelius' (tannic acid) and also with the chlorides of platinum and gold. Their general action was reducing; when ammonium molybdate was dissolved in strong sulphuric acid it acted like morphine, reduced it to a sapphire blue (Frœhde's reagent) ; with iodic anhydride and bisulphide of carbon free iodine was liberated. These reactions were tried from the chloroform, ether and absolute alcohol extracts, and it seemed to make but little difference which was used, or whether the extract came from an acid or an alkaline solution. After I had thoroughly tried the reaction, I tried alfalfa, treated identi-
cally like the loco and got the same reactions with the reagents above described. I tried treating with sulphuric acid first, and afterwards I tried hydrochloric, then tartaric, then acetic acids. When the sulphuric acid extract was evaporated down, it gave a blacker residue than the other acids. Nearly all the samples when treated with alcohol, there separated out crystals of lime, that were insoluble in the alcohol. At Dr. Wiley's suggestion I obtained a copy of the American Chemical Joumal, Vol. II., No. 8, and carefully followed out the method recommended there, with the same results as before. Prof. Sayre visited me in 1890 and called my attention to what Prof. Power had done, and almost at the same time I saw the article of Profs. Power and Gambier in the Pharmaceutische Rundschau and in the Rocky Mountain Druggist. This year I secured other specimens and carefully followed the method there laid down. The results were the same as in former years. Also tests were made with rabbits by feeding a teaspoonful of the aqueous extract every hour, from 8 to 5 p. m., on Friday, Sept. 2, 892 to Monday, Sept. 5, 1892, with no bad effects. During the summers of 189 m and 1892 , considerable time was spent on the analyses of the loco plant. I visited Livermore or vicinity five times, and made three post mortems. A brief outline of the post mortems is here appended. The first post mortem was made on a 3 -year-old colt, the property of Mr. C. The colt was brought in from the range, and was in very poor condition. When driven around the yard he had the peculiar high step so often described as being a characteristic symptom of loco. He was roped, thrown, and his throat cut. The post mortem appearance was as follows: The heart, lungs and liver were normal in appearance. The stomach was completely covered with bots, and contained, besides, a large number of thread worms. The intestine connected with the stomach (duodenum) was filled with sand. I estimated that about two gallons were in the intestines. (When it is known that the post mortems are held from twenty to thirty miles from the College, and in such conditions as we can obtain the animals, only estimates can be made of some things). The brain had a clot of blood at the base of it. I advised the owner ' because he had twenty horses suffering from' like symptoms) to put the animals on good, green feed, so it might act as a physic, and carry the sand out of the system. I recommended a tonic of nux vomica. He told me the affected animals improved so they were all finally sold. The sand, as I think, comes from the animals not being properly salted, and from eating the alkali soil.

Sophora sericea.

tisneay

of the
ungrempity it "ubulis

The second animal was 2 years old, and in fair condition. He had been taken up, fed and treated for a month in the stable, but he was injured so by throwing himself in the stable that he had to be turned out in the pasture to live or die. I found the liver, heart, kidneys and spleen normal. The lungs were congested, and covered with dark, livid spots about the size of a twenty-five cent piece. The stomach and intestines did not have a normal appearance, but were pale and apparently bloodless. The small intestines were cut with a scissors, and were found filled with spindle-shaped worms about 6 to 8 inches long. About one quart of them, (Ascaris Megalocephala) was obtained. In cutting the intestines, before we came to the worms, I would find a green mucus discharge ; as many as six of them would be found in one place, completely closing up the intestines. Bots were found in large quantities. The reason why so many parasites were found, as I think, is because the animals have to get water wherever they can find it, and in many cases drink stagnant, filthy stuff that is loaded with many forms of animal life. The brain was examined, and the usual clot of blood was found at the base. The colt was owned by Mr. J.

Post mortem No. 3 took place about thirty miles from Fort Collins. The owner, Mr. S., had about ioo head of horses. The colt was 3 years old and had been affected the year before. He had been put up in good pasture about one month before I saw him. The liver, lungs and kidneys were more or less diseased. The liver was tuberculous, the lungs congested, the kidneys were filled with ulcers so the pus could be scraped off when cut into. The clot of blood was found at the base of the brain. As the animal had been on green feed for one month, but few parasites were found. Samples were brought to the laboratory for microscopic examination.

The Bureau of Animal Industry at Washington has kindly consented to assist me in identifying the parasites, and in the miscroscopic examination of the affected parts. "Franks" were sent me to send the specimens to Washington for identification.

In all the examinations thus far made, I have found cause enough to account for the symptoms. The more I examine the loco question, the more I am persuaded that we must look for some other cause besides the loco weed. The loco weed is so common in and about Fort Collins that if it was the cause of the trouble, animals in this vicinity must be affected with the so-called loco disease; but I have not been able to find a single specimen in the neighborhood, while the loco is as abundiant here as in the localities where the animals
are affected. I have had a great deal of trouble in obtaining subjects for post mortem, as the ranchmen do not want it known that they have any animals affected with loco. They say it would interfere with the sale of their stock. I have been unable to form any reliable estimate of the number of animals that yearly die from the so-called loco disease.

METHOD OF ANALYSIS.

There are quite a number of methods of analyses for the detection and estimation of poisons and ptomaines:

The Otto-Stass method; Granteir and Etard's method; Brieger's method ; Luff's method ; Graham's method ; Fischer's method; Sonnenschein's method ; Dragendorff's method. Almost everyone who has had any great experience with this kind of work modifies the method he uses, or adapts the method to his own case. Last year Prof. Sayre called myattention to a method described in Pharmaceutische Rundschan for January, 1891, p. 8, by Profs. Power and Gambier, as they claim to have found alkaloids or something that gives alkaloidal reactions. I have followed their method in detail and in every particular, as follows: One kilogram (2.2 lbs.) of the dried and finely ground powder was extracted with strong alcohol for 5 days. The alcohol was pressed out with a filter press. The alcoholic extract was distilled in a Remington still to recover the alcohol; the concentrated residue was treated with water and a little acetic acid to precipitate the resin. This resin was given to a rabbit and produced no effect. I took it in io grain doses and could feel no effects. The taste was very disagreeable. The aqueous liquid was treated with lead acetate and the precipitate washed with water, and treated with sulphuretted. hydrogen, filtered, boiled down to a small bulk and given to rabbits; it produced no effects. The filtrate, after the lead acetate had been added, was filtered and evaporated to a small bulk and the following tests applied:

> Mayer's (potassio mercuric iodide) gave a...... yellowish white precıpitate Dragendorff's (potassio bismuthic iodide) gave a.reddish yellow precipitate Wagner's (iodine in potassium iodide) gave a....reddish brown precipitate Sonnenschein's (phospho-molybdate) gave a............ellowish precipitate Hager's test (picric acid in alcohol) gave a.... light yellowish precipitate Berzelius (tannic acid in alcohol) gave a............ight brown precipitate

The unused portion of thisliquid was divided into two parts; one half was made acid by a few drops of sulphuric acid, and the other half made alkaline with a few drops of ammonia. These solutions were evaporated to a small bulk on the water bath, and each treated with Prollius' fluid that was made as follows: $70 \mathrm{c} . \mathrm{c}$. of 94 per cent. alcohol, 30 c . c. of 28 per

Astragalus sevicoleucus.

$$
\begin{aligned}
& \text { * Y Y H H * } \\
& \text { K/***** }
\end{aligned}
$$

Crystals of Sulphate of Lime.
cent. ammonia, $300 \mathrm{c} . \mathrm{c}$. of absolute ether, and 300 c . c. of chloroform were mixed in a bottle, and the mixture well shaken before being used. The substance obtained by treating with Prollius' fluid was, in each case, evaporated to dryness on the water bath, redissolved in water and again evaporated to see if any crystalline precipitate could be seen by the microscope; but none could be found. These residues were fed to rabbits and I could not see that they were in the least affected. I tasted the residues and found a bad, pungent taste that would be difficult to describe. Thinking that the quantity used was too small, I tried the method over again, using 3 kilos. (6.6 lbs .) with the same result as to crystalline products and as to effects upon rabbits. 4 kilos. (8.8 lbs .) of the dry and finely-ground powder were treated with distilled water containing $1 / 2$ per cent of sulphuric acid for 6 hours on the water bath. The liquid was strained through a new linen filter and this filtrate evaporated to a small bulk on the water bath. During the evaporation a white cyrstalline salt separated out and was filtered off. This, on examination, I found to be calcium sulphate (see cut). Microscopic drawings were made of these three years ago. The crystals were in the plant as calcium acetate, as I afterwards found.

The liquid above described was evaporated to a soft extract and the extract divided into two parts. One part was made acid with sulphuric acid, and the other part made alkaline with ammonia, and these treated with alcohol, ether and chloroform successively and evaporated to dryness on the water bath. The undissolved residue; as well as the amount dissolved by the ether, alcohol and chloroform, was tested for alkaloids by dissolving in water, and gave reactions with Mayer's and the other reagents before described. The residue was diluted with water to the consistency of molasses and given to rabbits every hour for two days, with no bad results. Last year and this year I tried alfalfa in the same way: i kilo. (2.2 lbs.) was cut fine and pounded in an iron mortar until it became soft and pulpy, and then treated with dilute ($1 / 2$ per cent.) sulphuric acid for three days, then filtered, the filtrate concentrated on the water bath to a syrup; this syrup was divided into two parts. One half was treated with 95 percent. alcohol, and the alcohol extract filtered and allowed to evaporate, the residue dissolved in water and tested for alkaloids, as follows :

> Wagner's test gave a
> Hager's test gave a. .
> 和
> Berzelius' test gave a......................................ight yellow precipitate
> Mayer's test gave a............................. . yellowish white precipitate

The residue that was not treated with alcohol, when diluted with water, also gave reactions with the above reagents. To be sure that the alcohol was not the cause of the trouble, I tried the dilute alcohol with the reagents, but could get no reaction. The results of this year with alfalfa were confirmatory with those of two years ago.

One hundred grams ($\mathrm{I}-5 \mathrm{lb}$.) of the finely-ground plant were digested with water strongly acidulated with sulphuric acid. This was filtered and distilled; the distillate had an acid reaction; barium carbonate was added to form a barium salt. This barium salt was heated with alcohol and sulphuric acid. when acetic ether was given off, showing the presence of acetic acid.

In all my work on the loco, I have never failed to obtain tests for the alkaloids, and I have never succeeded in obtaining any physiological effects upon myself or rabbits. Last year I tried the Dragendorff method as described in his Plant Analysis, 1884, and also the method of Dr. Wiley, as published in the American Chemical Yournal, Vol. II., No. 8, page 557. In either case I did not succeed in eliminating any residue that gave physiological reactions. My attention was called to a paper on the recovery of alkaloids by J. U. Lloyd, of Cincinnati, read at the meeting of the American Pharmaceutical Association, at New Orleans. He kindly sent me two copies. His method consists in treating the fluid extracted with a mixture of equal amounts of dry hydroxide of iron and bicarbonate of soda. The stiff magma is treated with chloroform a number of times. He says: "By this method I now find alkaloids in many drugs that failed to yield them heretofore. Indeed, comparatively few drugs are destitute of organic bases." I tried his plan, as follows: Two kilos. (4.4 lbs.) of the dried and finely-ground plants were packed in a percolator. Percolate it with dilute alcohol (i alcohol to 3 of water) ; evaporate the alcoholic extract to the consistency of thick honey ; thicken this with a mixture of equal amounts of hydroxide of iron and sodium bicarbonate to a thick paste ; exhaust with chloroform and evaporate the chloroform. The chloroform residue is treated with a little dilute sulphuric acid and examined for alkaloids. This residue gave me alkaloidal reactions but no crystalline substance, nor physiological test with rabbits. Prof. Lloyd's letter contained a statement that may be of uise to others who may investigate the subject. "It seems to me from a review of the papers that I have seen concerning the action of this plant, that it is evident that the result of its use is that of an increasing toxic agent, that is, the effect is not such as I would suppose would follow the action

Astragalus caryocarpus.

HBMAC!
गु TE

of a known amount of poisonous ingredient, but is rather that of a substance that becomes increasingly virulent after it has been eaten. It seems to me that the chemical assay of the plant, as far as I have determined, does not at present account for the physiological action of the drug, and I will say that I would not be at all surprised if it would be shown that the plant does not contain a fixed constituent that will produce the craziness that follows after its use as a food. I am rather of the opinion, therefore, that we will have to look for a fermentative poison that results after the plant is eaten, rather than a poison contained in the plant. I would not be at all surprised if, in the study of this plant, it will be shown that under the influence of the digestive agents, a substance is produced which accounts for the subsequent action of the plant. In other words, it is my surmise that the poisonous action of the loco weed is due, perhaps, to a product instead of an educt. It remains to be seen whether this product is of a nature of the microbe or of the ptomaine, whether it is an alkaloid or an organism. I will add that in this surmise I am not carrying myself beyond what has been demonstrated to be true of other substances outside of foods, and will call your attention that in modern medicine we now use a preparation of jequirity, which depends altogether on its action from the swarms of microbes that form in the infusion of the beans, and I will add that it is then a violent poison, while the bean itself does not contain a constituent of that nature. It may be that I am off in my surmise, but at least I think that loco will bear investigation in this direction, and I would suggest that a careful examination be made microscopically, locally, of the parts of the animal affected after the plant has been eaten. You will perceive from the foregoing that while the plant undoubtedly contains an alkaloid, or alkaloids, I do not believe this alkaloid is of the importance some think it will prove to be."

The statement of Prof. Lloyd is worthy of very careful consideration. I have been long persuaded that the best way to study the loco question is to spend the summer where the animals are said to be locoed, to see what the animals eat, how they act, what they drink, and to carefully observe their symptoms and post mortem appearances. The reason why I make these comments is that there are so many contradictory statements made to one, that you can believe but little of what you hear about locoed animals. Many of the ranchmen call the larkspur, or poison weed, the loco. A chemical analysis was also made of the larkspur. It was treated the same as the loco weed by the Dragendorff method. The solution
from Prollius' fluid was in appearance like the loco extract, a thick, molasses-looking mass, soluble in water, and giving it a coffee-colored appearance when diluted. Millon's, Berzelius', Marme's, Hager's, Mayer's, and Wagner's tests, before described, gave precipitates with the solution. Bulletin No. 3, Oregon Station, October, 1889, page 25, contains the following statement in regard to the

LARKSPUR.

"The matter was taken up on account of the numerous letters received at the station during the spring and summer, asking information with regard to plants which were thought to be poisonous to stock. The method of investigation was the following: Two well-developed, healthy, yearling steers were bought for the experiments, which were primarily to discover whether the plants under examination were injurious, and if so, to note the symptoms developed and try various antidotes for the effects produced. That all parts of the plants might be tested, the tops, i. e., the leaves and stem were fed to one animal, the roots to the other. As great a quantity of the plant was fed to each as cattle under ordinary circumstances would be liable to obtain in the pasture. That the plants might be readily eaten they were, in most cases, mixed with some chopped grass and a small amount of oats added. The experiments commenced May 7. and the first plant tried was the common blue larkspur (delphinium exaltatum).
"Twenty-four specimens. were taken. The tops chopped and mixed with about an equal amount of clover grass, were fed to one, the roots prepared in a similar way, were fed to the other animal, in both cases without any apparent ill effect. The larkspur used was mostly in full bloom and the individuals were chiefly good-sized plants."
"White larkspur was next tried. Thirty plants, well developed, in full flower, were fed in a manner similar to that noted with the blue larkspur. No effects noted."

In Bulletin No. 35, December, 1892 , of the Kansas station, page II 5, a cut of the Astragalus Mollissimus is shown. The article is headed, 'Some Observations upon the Loco.' The article contains the usual symptoms and post mortem appearances. The conclusion is especially interesting :
"A careful survey of the experiments performed and observations noted leads me to the opinion that the disease known as 'loco' is the result of mal-nutrition, or a gradual starvation, caused by the animal eating the plants known as 'loco weeds,' either Astragalus Mollissimus or Oxytropis

Astragalus mollissimus-large species,

IBAAITY
(i) THE
(unly

Lamberti. If there is a narcotic principle in the plant chemists have failed to find it, and a fluid extract does not possess it, and a ton of the plant eaten by an animal ought to contain enough of the poisonous properties to destroy an animal.
"It is extremely doubtful, even though there might be a narcotic agent in the plant, that an animal can reason sufficiently to know that eating this plant would produce narcosis. Why they do eat the plant is probably because the plant remains more green and fresh after other plants have dried up, and also because of its peculiar taste, perhaps disagreeable at first, but soon accustomed to and attractive.
"Whether the disease is the result of mal-nutrition or malassimilation, I am unable to say. It is reasonable to suppose that, as the loco plants remain green throughout the year, they would not contain as much nutritious material as other leguminous plants. If they do contain the nutritious material it is not in a form in which it can be assimilated by the animal. The reason why horses have fits of delirium or insensibility may be due to the formation of clots or thrombi in the blood-vessels of the brain, as there is a well-known tendency to their formation during wasting and debilitating diseases.
"The general emaciation of the body, the flaccid atonic condition of the digestive system, the large amount of serum surrounding the brain and in the abdominal cavity, the swollen and dropsical condition of dependent parts (from an enfeebled circulation), and the low temperature of the body, all point to the same cause, mal-nutrition.
"The diseased condition of the brain gives rise to the peculiar 'crazy' symptoms associated with the disease. It is well-known that if an animal suffers from degeneration of brain tissue, even though the animal may recover from the disease which caused it, it does not recover its normal mental faculties. This may account for the fact that a locoed animal never makes a complete recovery.

TREATMENT.

"Prevention, by not allowing animals access to the plant or by furnishing suitable food after the pastures have dried up, is much better than treatment. If an animal has acquired a taste for the plant, it should be placed where it cannot get the weed, and fed upon nourishing food. Some good 'condition powders' may be given, as the following :

$$
\begin{aligned}
& \text { Sulphate of iron, pulverized........... . . ounce, } \\
& \text { Gentian root, pulverized.............. } \\
& \text { Ammonia muriate, pulverized.......... } \\
& \text { Potassium nitrate, pulverized......... }
\end{aligned}
$$

"Mix thoroughly, and give from a heaping teaspoonful to a tablespoonful, according to the size of the animal, in the food three times daily. It will, probably, require considerable time for the animal to recover somewhat of its former vigor, and good nutritious food is to be depended on more than medicine."

The following letters from Dr. Riley explain the parasites that infests the loco.

United States Department of Agriculture, Division of Entomology.

Washington, D. C., July 24, 1890.

Professor David O'Brine, Agricultural Experiment Station, Fort Collins, Colorado.
Dear Sir :-I have your letter of July 14, and the fruit of the "loco weed," with the contained larvæ.

This insect seems to be a weevil of the genus Bruchus, allied to the common Bean and Pea Weevil; but it will be impossible to determine the species without rearing the adult. It is very interesting matter, and I trust that you will send me on more of these fruit from time to time.

Hoping to hear from you again, I remain
Yours truly,
C. V. Riley,

Entomologist.

U. S. Department of Agriculture, Division of Entomology.

$$
\text { Washington. D. C., December 6th, } 1890 .
$$

Dr. David O Brine, Agriciltural Experiment Station, Fort Collins, Colorado.
Dear Sir :-Yours of the 4th inst. has just come to hand. I am thoroughly convinced that the insects which infest the loco weed have nothing whatever to do with the effect of this plant upon live stock. The loco weed has a number of insect enemies in which I have been for some years quite interested. It is a common thing for persons to suppose that the insects might cause the trouble rather than the plant. I shall always be glad to hear from you further and should especially like to get some more specimens of the Bruchus which you sent last year.

> Yours truly,
C. V. Riley,

Entomologist.

The following table gives the ash analyses of the loco and larkspur: It explains itself.

Astragalus bisulcatus.

$$
\begin{aligned}
& \text { HERACT } \\
& \text { UF TME } \\
& \text { valy titity of wamols }
\end{aligned}
$$

ASH ANALYSES OF THE LOCO AND LARKSPUR.

It is quite common to find the loco, that was abundant in a certain locality one year, the next year to be nearly all gone. This is nodoubt due to the ravages of insect parasites. We examined the root and found a larvæ or grub of Tineida. Prof. Riley's letter shows the leaves may contain a weevil, Bruchus, and we have seen a great many snout-beetles, curculionid, on the plants. Coulter's manual of The Rocky Mountain Region gives under Astragalus 64 kinds, and under Oxytropis in kinds, making 75 kinds of the so called loco weeds. The figures of the loco weeds were drawn from nature by Miss Minnie Harrington, a student of the College. During the past year my assissant, Mr. Ryan, helped me in the chemical examination of the plants, and in confirming the tests of former years.

CONCLUSION.

In conclusion we would say we have been unable to find any alkaloid in the plants examined, though we get alkaloidal reactions from the loco and the alfalfa.

We have not been able to produce any physiological action upon rabbits with the extract from the loco in any of its forms. In the case of the sheep in the southern part of the state, said to have been locoed, it has long been known that the disease was caused by parasites in the liver.

The post mortems made showed such a variety of diseased conditions that in our judgment they could hardly be due to one or the same cause.

It has always been noticed that when the feed on the range is good, locoed animals are scarce. The range about Fort Collins contains the loco in large quantities, but I have never seen a locoed animal except upon the mountain range or foothills.

In our experience the animals affected, and the subjects for post mortems, were in every case young animals, mostly under four years old, the great majority yearlings and two year olds,

I have long been persuaded that the person who investigates the subject of loco should spend considerable of his time on the range and notice very carefully the habits of the animals, the food they eat, and the water they drink. The subject has not been investigated to the extent that its importance demands.

It is never wise to draw hasty conclusions from imperfect data, or from a few post mortems. Judgment had better be withheld until the subject is more thoroughly investigated.

The State Agricultural College. THE AGRICULTURAL EXPERIMENT STATION.

BULLETIN No. 26.

I. Farm Notes for 1893. HOME STATION, Fort Collins, Colorado.

II. Garden Notes for 1893. HOME STATION, Fort Collins, Colorado.

III. Seeding, Tillage, and Irrigation. ARKANSAS VALLEY STATION, Rocky Ford, Colorado.

> Approved by the Station Council. ALSTON ELLIS, President.

FORT COLLINS, COLORADO.
FEBRUARY, 1894.
Bulletins will be sent to all residents of Colorado, interested in any branch of Agriculture, free of charge. Non-residents, upon application, can secure copies not needed for distribution within the State. The editors of newspapers to whom the Station publications are sent are respectfully requested to make mention of the same in their columns. Address all communications to the DIRECTOR OF THE EXPERIMENT STATION,

Fort Collins, Colorado.

The Agricultural Experiment Station,

FORT COLLINS, COLORADO.

the state board of agriculture.
TermExpires.
HON. CHARLES H. SMALL, Pueblo, 1895
HON. FRANK J. ANNIS, Fort Collins, 1895
HON. JOHN J. RYAN, 1897
HON. A. L. EMIGH, Fort Collins, 1897
HON. J. E. DuBOIS, 1899
HON. JOSEPH S. McCLELLAND, 1899
HON. JAMES L. CHATFIELD, 1901
HON. A. LINDSLEY KELLOGG, 1901
$\left.\begin{array}{l}\text { GOVERNOR DAVIS H. WAITE, } \\ \text { PRESIDENT ALSTON ELLIS, }\end{array}\right\}$ ex-officio.
executive Committee in Charge.HON. J. S, McCLELLAND.HON. JOHN J. RYAN.HON. A. L. KELLOGG.
The President of the Board and the President of the College.
StATION COUNCIL.
ALSTON ELLIS, A. M., Ph. D., LL.D., - - President and Director
WELLS W. COOKE, B. S., A. M., - - - - Agriculturist
C. S. CRANDALL, M. S., Horticulturist and Botanist
WILLIAM P. HEADDEN, A. M., Ph. D.,L. G. CARPENTER, M. S., - Meteorologist and Irrigation Enginefr
C. P. GILLETTE, M: S., Entomologist
DANIEL W. WORKING, B. S., Secretary.Lathrop M. TAYLor, B. S., Stenographer.
ASSISTANTS.
FRANK L. WATROUS,
Agriculturist M. J. HUFFINGTON, Horticulturist CHARLES F. BAKER, B. S., CHARLES RYAN, R. E. TRIMBLE, B. S.,

SUB-StATIONS.

F. A. HUNTLEY, B. S. A., Superintendent
Arkansas Valley Station, Rocky Ford, Colorado.Superintendent
Divide Station, Table Rock, Colorado.
FRANK BEACH, B. S.;San Luis Valley Station, Monte Vista, Colorado.
J. B. ROBERTSON,

Farm Notes for 1893.

(Home Station, Fort Collins, Colorado.)

By W. W. Cooke and F. L. Watrous.

SANDWICK---A Promising Fodder Crop.

For several years this crop has been grown at various experiment stations in the United States under the name of the Hairy Vetch (Vicia villosus). Sandwick is its German name. In Germany it has long been grown as an important forage crop. It belongs to the pea family, but the leaves are smaller and narrower and the stem not so long but with many branches. Several stems grow from the same root.

The sandwick was grown at this Station in 1893. It was sown in drills, a double row in each 39 inches. About 30 pounds of seed per acre were used. The seed was sown June 10th. The plants were cultivated three times and received one irrigation in July. . The growth was not rapid, but in spite of an exceedingly dry summer and fall the plants kept green and continued their growth. The plant has shown itself, in Nebraska, able to withstand the winter, and it bids fair to do the same here, since it is still green at this writing (the last of December) and sending out new growth, although it has been twice covered with snow. The ground was frozen for two weeks in November.

The amount of the crop is enormous. Its green weight at the present time averages 13,400 pounds per acre, and as it has 43 per cent. of dry matter, this growth is equivalent to $3 \frac{1}{8}$ tons of well-dried hay. This is a much heavier growth than that reported from any of the six States where it has been previously grown and shows that it is particularly adapted to Colorado soil and climate.

It is well relished by cattle and horses. The analysis given below shows that it is rich in the albuminoids or flesh producing elements and, hence, well adapted for the production of milk or for fattening cattle. When sown by itself thinly, it spreads close to the ground,
so low that it cannot be cut with a machine or a scythe. Its special use is as fall, winter, and spring pasture, and as such it bids fair to find a large usefulness in this State.

In Germany it is sown with grain, and after the wheat is harvested it covers the stubble with the finest of feed. In this State, where winter wheat or rye is sown, it should do well, as it does not winter-kill and seems to be able to grow with very little water. It also belongs to the class of plants that can draw from the air part of the nitrogen they need and store some of it up in their roots for the use of a crop of wheat. When sown in the spring with oats, sandwick makes an upright growth and can be cut.and cured for hay. The oats and the sandwick together make a well-balanced feed for a milch cow.

Seed of the sandwick will be distributed next spring to many parts of the State for trial.

ANALYSIS OF HAY OF SANDWICK.

Wat	10.00 per cent		
Ash	8.31		
Crude fibre	. 23.05	"	"
Fat (Ether extract)	3.96	"	"
Albuminoids.	. 15.25	"	"
Starch, sugar, etc.	. 39.43	،	"

This analysis would indicate that sandwick is about a fifth more nutritious than an equal amount of alfalfa hay and also better proportioned, being almost a perfectly-balanced food for a milch cow.

CORN VERSUS ALFALFA.

Throughout the northern half of the Mississippi Valley corn is the great crop. It produces more feeding material per acre than anything else that can be grown. In Colorado it meets a worthy rival in alfalfa. Both these crops were grown side by side in acre plots on the Station farm in 1893. The land was in good condition and in addition a very heavy application of stable manure was given to the corn ground, so as to show it at its best. Colorado is not so well adapted to corn culture as are Kansas and Nebraska, owing to the cool nights that result from its high altitude and the near presence of the mountains. But the crop of corn to be described would compare well with crops of the Eastern and Middle States, being equivalent to one of their crops of 14 tons of green fodder per acre. It is also fully up to the average of the great corn States of Kansas, Nebraska, and Iowa.

The variety was the Golden Beauty, planted May 16th in hills three feet apart each way, harrowed two times, cultivated four times, and irrigated once. It was harvested September 21st and the entire
crop, ears and stalks, weighed 15,500 pounds per acre. The analysis showed 35.62 per cent. of dry matter, so that the crop contained 5,539 pounds of dry matter per acre.

The alfalfa growing on a neighboring plot was not fertilized and was three years from seeding. It was irrigated twice and cut three times, yielding at the first cutting 4,600 pounds of hay per acre, at the second 3,350 pounds, and at the third 3,250 pounds, a total of 5.6 tons of hay, containing 10,304 pounds of dry matter per acre.

The alfalfa therefore yielded almost twice as much dry matter per acre as the corn. But this is not quite a fair comparison, for a pound of dry matter from the corn crop is more digestible and has a higher feeding value than an equal amount from the alfalfa. The corn crop contained 3,605 pounds of digestible feeding material, while the crop of alfalfa contained 5,611 pounds, or a little more than half as much again. The corn crop per acre in feeding value was equivalent to three and a half tons of alfalfa hay.

There is no doubt but that it costs much more to grow and harvest the corn than the alfalfa. Moreover, while the corn crop rapidly exhausts the soil, the alfalfa sends its roots deep into the soil, and gathers stores of plant food from the air, so that it seems, for the present at least, to benefit rather than deplete the land.

It is evident that in the irrigated portions of Colorado, alfalfa is a more profitable crop than corn.

YIELD PER ACRE OF CORN AND ALFALFA.

	TOTAL.		DIGESTIBLE.	
	Corn. 10s.	Alfalfa. \#bs.	Corn. 1bs.	Alfalfa. 10 .
Dry Matter ..	5,539	10,304	3,605	5,611
Albuminoids	405	1,602	296	1,198
Starch, sugar, etc	3,263	4,782	2,186	3,114
Fibre	1,472	2,800 246	1,060	1,198
Ash.	315	829	101

GRAINS.

WHEAT.

BARLEY.

All grains were irrigated twice, once in June and once in July.

SUGAR BEETS.

Plot.	VARIETY.	$\begin{gathered} \text { Date } \\ \text { of } \\ \text { Planting. } \end{gathered}$	$\begin{gathered} \text { Date } \\ \text { of } \\ \text { Harvest. } \end{gathered}$	$\begin{gathered} \text { Yield } \\ \text { per Acre. } \\ \text { Ibs. } \end{gathered}$	Sugar. Per Cent.	$\begin{aligned} & \text { Purity } \\ & \text { Co- } \\ & \text { efficient. } \end{aligned}$	Sugar per Acre. Ibs.
A 7	Dippe's Klein Wanzelbener	May 16	Sept. 10	12,440	12.70	81.1	1,579
A 8	Original Klein Wanzelbener	May 16	Sept. 10	11,390	9.30	60.8	1,059
A 9	Elvoir	May 16	Sept. 10	15,680	9.85	70.6	1,544
A 10	Desprez	May 16	Sept. 11	9,725	9.04	72.3	879
A 11	Vilmorin, Improved	May 16	Sept. 11	15,280	10.40	64.6	1,589
A 12	Knauer's Imperial	May 16	Sept. 11	14,680	10.01	59.4	1,468
A 13	Gov't, Klein Wanzelbener	May 16	Sept. 11	12,690	13.05	60.0	1,650
G 1	Desprez...........	May 22	Sept. 12	24,186	10.12	63.2	2,443
G 2	Klein Wanzelbener	May 22	Sept. 12	27.188	12.97	76.3	3,534
G 3	Originai Klein Wanzelbener	May 22	Sept. 13	26,988	13.06	68.7	3,510
G 4	Elvoir	May 22	Sept. 13	19,632	9.02	61.3	1,771
G 5	Vilmorin, richest	May 22	Sept. 14	18,018	10.90	72.7	1,964
G 6	Klein Wanzelbener	May 26	Sept. 14	37,660	9.70	56.6	3,653
G 7	Klein Wanzelbener	May 26	Sept. 14	33,390	9.03	56.4	3,015
G 8	Desprez	May 26	Sept. 14	38,430	9.25	60.5	3,555
G 9	Elvoir	May 26	Sept. 14	33,644	4.88	44.4	1,642

All the sugar beets were cultivated four times, and all but the last four varieties were irrigated twice. These four kinds were put on ground that was moist enough without irrigation, and it will be noted that they made the largest growth of all. But the abundance of water exerted the usual effect of decreasing the per cent. of sugar.

MISCELLANEOUS FODDER CROPS.

During the season of 1893 quite a large number of crops were tested as to their value for forage under the conditions of Colorado soil and climate.

Both German and Golden millet were raised, but in both cases the amount grown was sinall. Four varieties of Soy Beans were sown May 23rd. The growth was slow, though they were the hardiest varieties of this plant. None of the seeds ripened and but few pods formed. The crop was far too small to be profitable. The same remarks would apply to the crops of Mexican beans and of lentils.

An extensive trial of sorghums was made, principally of the saccharine varieties, fifty-two kinds being tested. Although the frost held off longer than usual, yet when the first freeze came, September 23 rd , only one kind-Haori-had matured seed. The amount of forage from the largest kinds was not equal to an average crop of corn.

Several varieties of non-saccharine sorghums had reached the following stages of growth when they were killed by the frost September 23rd:

Red Millo Maize-Seeds partly mature.
White Millo Maize-Seed heads beginning to show.
Red Kaffir Corn-No seed.
Egyptian Rice Corn-Grain not filled.

White Kaffir Corn-No seed salk.
African Millo Maizo-No seed stalk.
Brown Dhoura-Not quite ripe.
Jerusalem Corn-Fairly well matured.
These crops had all been cultivated and irrigated and had had the advantage of a late fall, and yet the growth was not nearly up to an average corn crop. It was not one-third of what would be considered a fair crop for these fodder plants in Nebraska.

The reason for the failure of all these fodder crops is the same, i. e., the cool nights of summer. They are all hot-weather plants, and there is not much use in Colorado farmers trying to raise them in high altitudes near the mountains.

THE LEAVES AND STEMS OF ALFALFA HAY.

The leaves of alfalfa hay fall off very readily from the stems. A little pounding was sufficient to separate a quantity of the hay into two equal parts, one of which was mostly leaves with a few short stems, and the other mostly stems. Samples of each gave analysis as follows for the dry matter :

It will be seen that the two are about equally digestible. But they are quite different in the proportions of their digestible parts. The stems are properly proportioned for horses at moderate work, while the leaves are well adapted to the needs of growing calves and yearlings.

CURING CORN FODDER.

It has been generally assumed that in the dry climate of Colorado all forage crops would cure rapidly, perfectly, and with little or no loss of feeding value. Experiments during several years at the Vermont Station have shown that, in that damp climate, with frequent fall rains, it is possible to cut corn while still green, set it up in large shocks, and have it dry out and cure with a loss of from 18 to 25 per cent. of its entire feeding value.

A similar test was made during the fall of 1893 at this StationA lot of corn was cut up September 23 rd , and, without pulling off the ears, was set up in a shock. Samples were taken for analysis at the time of shocking, and three months later the whole shock was cut up into quarter inch pieces and again weighed and samples taken.

The weights and analyses showed that the corn had lost 62.50 per cent. of its weight and, what was most important, had lost 34 percent. of its dry matter, and therefore of its feeding value. There was no sign of heating or mouldiness; the leaves were still bright green; but there was a decided smell of fermentation that reminded one strongly of ensilage.

This of course is but one trial, and the first that has been made in the State. Further tests will be made to ascertain more fully what the losses are from drying corn fodder in this climate.

Credit should be given to the Chemical Section of the Station for all the analyses mentioned in this bulletin.

COLORADO

Garden Notes for 1893.

(Home Station, Fort Collins, Colorado.)

By Chas.' S. Crandall and M. J. Huffington.

TOMATOES.

Sowing the Seed.-Seed should be sown in forcing-house or hotbeds by the first of March ; the last week in February would, doubtless, not be any too early. As we generally have a cutting frost in this locality from the 10 th to the 15 th of September, every effort should be made to force the plants as much as possible, so that the bulk of the crop will be off before that time. For the south where the season is longer, we would still recommend giving the plants an early start. To realize the best results we should have strong, stocky plants, and to accomplish this strict attention should be given to regulating the heating, airing, and watering. All the conditions should be as uniform as possible; an even temperature should be aimed at and water should be applied at regular intervals, the forenoon being the best time. The water used should not be too cold; the sudden chill resulting from the application of ice-cold water is very injurious to the plants. On bright, pleasant days the plants should have plenty of air and as the season advances the exposure should be increased, so that when the plants are transferred to the open ground the change will not be felt by them. Care should be taken at all times that the plants do not get chilled from a sudden fall in temperature ; the check in growth resulting from any such sudden change affects the plants for some time and greatly retards their development.

Transplanting once or twice before being taken from the beds to open ground is conducive to a more stocky growth and a better root system. The time for removing plants to open ground must be governed by experience in particular localities. In this latitude plants for extra early fruit may be set between the 15 th and 25 th of May. Do not plant the entire crop so early that a late frost might kill the plants; it is a good plan to hold some plants in reserve for replacing those that may receive injury from frost.

Soil.-Where earliness is aimed at the best soil for the tomato is a light, sandy loam; the ground should not be too rich, or an over luxuriant growth of plant will be the result to the detriment of earliness. A shovel full of well-rotted barn-yard manure thoroughly incorporated with the soil where the plants are to be set will increase their productiveness and hasten maturity. There seems to be an advantage in not manuring the whole surface when earliness is desired. If only a space of 10 or 12 inches is fertilized around the plant, this will be sufficient to stimulate plant growth until the fruit begins to ripen, after which we do not wish the plant to increase in size but bend all its energies toward ripening its fruit. Should the ground be manured broadcast the growth will continue much longer.

Varieties Grown in 1893.-Seed of 15 varieties was sown on March 14th in flats in the forcing-house. The young plants made their appearance in from 9 to 11 days from time of seeding. When three or four inches high they were transplanted to 4 -inch pots, in which they were allowed to grow until set in the open ground. On June 6th, 12 plants of each variety, excepting Royal Red, of which there were 24 , were set in the garden in rows 4×5 feet. Clean culture was given throughout the season. Water was applied four different times as follows: June 15th, July 3 rd and 17 th, and August 8th. Cultivation should cease and water should be withheld after fruit begins to ripen, as further stirring of the soil and the application of water would induce plant growth and thus retard the maturity of fruit.

VARIETIES.

Aristocrat.-A dwarf variety, more erect than the Dwarf Champion, a strong, stocky grower, early-the first fruits being picked August 15th. It possesses the advantage of ripening its fruit rapidly, a desirable feature in a market variety. Fruit medium size, smooth and solid, of a beautiful scarlet color. It greatly exceeds Dwarf Champion in productiveness, but falls considerably below some other varieties, such as Puritan, Ignotum, and Table Queen.

Buckeye State.-Plant vigorous in growth, fruit large, fairly smooth, in color resembling the Mikado or Turner Hybrid. The variety, however, can not be recommended because the fruit ripens slowly and is not solid.

Gold Ball.-A rank-growing variety, very productive for a tomato of its class; fruit small, oval, smooth, a beautiful golden yellow, firm, and solid; fine for preserving or pickling. Its size, shape, and color are against it as a market variety.

Ignotum.-Originated at the Michigan Agricultural College in 1887, introduced in 1889. A strong, healthy grower possessing many points of excellence; fruit ripens medium early, is large, regular in shape, solid and remarkably smooth, of a bright scarlet
color. For slicing and canning it. would be difficult to find its superior.

Large Rose Peach.-Plant a remarkably strong grower, very productive, fruit early, nearly round, rose-peach color, very soft, containing many seeds. This is one of the novelties, but has no qualities that would recommend it as a variety for general culture.

Matchless.-This is a variety of the Ignotum type, possesses vigor of growth, but falls far below Puritan, Potato-leaf, and Ignotum in productiveness. It ripens medium early, is fairly large, very smooth, and has an attractive scarlet color.

Peach.-The fruit of this variety possesses the same general characters as that of the New Rose Peach, except that it is much smaller. The habit of growth of the plant is, however, quite different, being much more compact. It deserves no place in a collection of varieties, except as a curiosity.

Ponderosa.-A variety introduced in 1892 by Peter Henderson \& Co. Plants seem to lack vigor, and the variety appears to be not well fixed; out of 12 plants there were four distinct types. Fruits nearest the introducer's described type were very large, many single specimens weighing over one pound, quite smooth for so large a fruit, a little ridged about the stem, solid, slow in ripening, color as in Mikado. When by further selection the apparent good qualities of this variety become fixed so that their reproduction is assured, it will be valuable.

Potato-leaf.-This is a distinct variety originated by Livingston \& Sons, and introduced by them in 1887. The foliage resembles that of the potato, as the name implies. Plant a strong grower, ripens its fruit rapidly, and is very productive; the fruits are medium large, very smooth and solid, color the same as in Mikado. This is a fine tomato for canning and also a good market sort.

Puritan.-A variety of New England origin, introduced by Rawson of Boston. The plants are strong and stocky. This was the first variety to ripen fruit; fruit large, solid, sometimes slightly furrowed about the stem, ripens very evenly, color a deep scarlet. The Puritan was the most productive desirable variety under test, and is one that will give entire satisfaction.

Royal Red.-Seed from Livingston \& Sons, originators. Plant a remarkably vigorous grower, not as early as some; fruit large, solid, smooth, occasionally slightly furrowed about the stem; color a beautiful cardinal-red. A desirable variety.

Table Queen.-Seed from Peter Henderson \& Co., introducers. A good grower, medium early, productive; fruit large, solid, generally smooth, sometimes slightly ridged, color as in Mikado. A variety that will give general satisfaction.

Trucker's Favorite.-A vigorous variety, productive, ripening fruits as early as Ignotum and Table Queen, but at succeeding pick-
ings falling below those varieties in quantity of fruit ripened; showing a tardiness in the matter of ripening, which makes the variety undesirable, at least for this locality. The fruit is large, very smooth, dark pinkish-purple in color.

Shah.-Seed from Peter Henderson \& Co., introducers. The foliage of this variety is of the Potato-leaf type. The plants were vigorous, and the most productive in our test; fruit begins to ripen early, is of large size, golden yellow, firm and solid; as the season advances the fruit becomes more and more irregular in shape, the late pickings yielding only very ill-formed and undesirable fruits. Its color and poor shape would exclude it from the list of market varieties.

Dwarf Champion.-Seed from Peter Henderson \& Co. This variety did very poorly this season; it was the least productive of those under test. Fruit ripened early, was small, below the usual size, smooth and solid; color as in Mikado. As a dwarf variety Aristocrat is far preferable to Dwarf Champion, producing as much again fruit.

The following table shows the comparative earliness of varieties, number of fruits picked, weight of same, and approximate yield per acre in pounds of ripe fruit, and also the yield of green fruit. The figures in the columns showing yield per acre being derived from so small an area, can be regarded as only approximate.

VARIETIES.						In 0 0 0 0 0 0						
Aristocrat	12	Ang.	15 Sept. 23	216	46.96	3.91	1.1	8,515	562	45.96	3.83	1
Buckeye	12	Aug.	${ }_{12} 22$ Septet. 23	102	30.91 50	13.48	1.7	7,470	- 345	71.73 59	7.97	
Ignotum	11	Aug.	${ }_{23}{ }^{14}$ Sept. 23	183	52.89	94.80	1.5	10,454	$4{ }^{280}$	74.47	4.77	14,745
Large Rose	11	Ang.	${ }_{21}^{17}$ Sept. 23	229	44.81	14.07	1.0	8,8	${ }^{853}$	121.20	11.01	
Matchless	11	Aug.	22 Sept. 23		27.54		1.3	3 5,4	266	$6 \pm .13$	5.83	12,6
New Dwar		Aug. 1	11 Sept. 23	109	18.50			4,464	126	19.98	2.22	4,835
Peach.		Ang. 1	${ }_{2}^{17}$ Sept. 23	${ }^{31} 9$	${ }_{37}^{28.12}$	${ }_{4}{ }_{3}^{2.34}$	5.2	7,	,293	81.36 74.58	6.78 6 78	14,766
Potato-Le	11	Aug. 1	17 Sept. 23	320	78.60		1.4	15,550	- 375	85.91	7.81	17,010
Puritan	12	Aug.	7 Sept. 23	257			1.7	15,790	406	118.30	9.85	21,453
Royal Red		Aug.	${ }_{23}^{23}$ Sept. 23		111.08	4.87	1.7	10,606	957	118.25	10.28	22,399
The Shah..	${ }_{12}^{12}$	Aug.	23 16 16 Sept. Sept 23		75.46 109				243	131.10 78	10.92 6.57	+23,773
Trucker's Favorite	12	Aug. 2	23 Sept. 23	156	141.77	73.48	1.8	7,579	$9{ }^{461}$	117.20	${ }_{9.76}$	21.237

BEANS.

Bush or Shap Beans.-As the bean plant is very tender and easily injured by low temperatures, the seed should not be planted until all danger of the young plants being nipped by late spring frosts is over. It is a good rule to make the first planting about the
same time that corn is planted, which for this latitude is about the 15th of May. By making a succession of sowings at intervals of about two weeks, their season may be prolonged until frost. The bean plant succeeds in a great variety of soils, and will produce a fair crop on land that is only moderately enriched; yet it readily responds to good treatment, and as is the case with most crops is more productive and profitable when grown on ground that is in a high state of cultivation.

While only five varieties of beans were tested at this Station the past season, yet the results, so far as these varieties are concerned, were very satisfactory. No damage was done by the bean weevil or any other insect pest. The main points brought out were those of comparative earliness and productiveness. In the matter of earliness there was but little difference in the time of edible maturity, the first picking of each variety being made on the same date, but as will be seen from the following table there is a wide difference in the quantity of marketable beans gathered from the different varieties at the first picking, a fäct which it seems should decide the earliest variety, or at least the earliest productive one.

On May 16 th, four rows, 93 feet long and 15 inches apart, were planted of Cylinder Black Wax, Golden Wax, Henderson's Earliest Red Valentine, Round Six Weeks, and Yosemite Mammoth Wax. Clean culture was given throughout the growing season with the hand cultivator; water was applied three times on the following dates —June 16 th and July 3 rd and 19th. The first beans of marketable size were picked on July 18th, nine weeks from time of planting.

Cylinder Black Wax.-A wax sort as the name indicates; pod round, somewhat curved, light yellow, $4 \frac{1}{2}$ to $5 \frac{1}{2}$ inches long, seed black; a good variety.

Golden Wax.-Pod flat, beautiful golden yellow, 5 to 6 inches long; this variety is more extensively grown for market than any other, being productive, of fine appearance, and a good shipper; the very best of the wax sorts; seeds white, variously marked with purple.

Henderson's Earliest Red Valentine.-Pod round, light green, $4 \frac{1}{2}$ to $5 \frac{1}{2}$ inches long; a popular variety of the green-podded sorts, and largely grown for pickling; seeds mottled in various shades of red.

Round Six Weeks.-The earliest and most productive variety under test; pods flat, 5 to 6 inches long, of a light green color, an excellent variety ; seeds uniformly of a dull yellowish-white color.

Yosemite Mammoth Wax.-Pods round, very much curved, 7 to 8 inches long, light yellow; this is a mammoth variety, but it can not be recommended as it is not productive, and ripens very slowly ; seed black.

Bush Lima Beans.-With the introduction of the Bush Lima a great event is marked in the history of this popular vegetable ; now
its cultivation is easy and simple, requiring no hills or stakes as with the pole Limas, and they are from a week to ten days earlier. They require a richer soil and more attention than the snap sorts, but well repay the grower for his trouble; as they are more tender than the bush varieties they should be planted a week later; they do best in a warm loamy soil that is highly manured; the plants being somewhat larger more room should be given them than is required by the snap sorts.

Burpee's Bush Lima.-This is indeed a valuable acquisition, possessing, as it does, extreme earliness; productiveness, and large size, and having that bushy habit of growth it requires no poles or stakes whatever for it to run upon; the plant grows from 15 to 24 inches high, branching freely, forming a bush 12 to 18 inches in diameter. The pods are long, producing three or four mammoth beans to each; they are tender and of fine flavor. Seed planted May 16th produced marketable beans (in the green state) August 16 th, three months from the time of planting. One hundred pods green beans weighed 2.7 pounds; these shelled gave 1.1 pounds of beans.

Henderson's Bush Lima.-This is a vigorous and productive variety, though not so rank a grower as Burpee's Bush Lima; the leaves are of a much darker green. The beans are much smaller, and four days later in maturing. One hundred pods, green, weighed 1.2 pounds; these shelled gave .5 pounds of beans.

Willow-leaf.-This novelty was brought before the public in 1891 by W. A. Burpee \& Co. It is a distinct variety ; the divisions of the leaves are long and narrow, resembling the leaves of the willow, whence the name. It is really worthy of growing as an ornamental climbing vine, the rich dark green leaves making a very pretty effect, with the great profusion of bloom that continues throughout the season; aside from its use as an ornamental vine it is very productive, though not so early by ten days or two weeks as the bush Limas; the pods are larger than those of Henderson's Bush Lima, the beans pure white, tender, and of fine flavor.

VARIETIES.												
Cylinder Black Wax ..	July 24	4.37	July 28	11.50	Aug. 2	41.60	Aug. 9	59.10	116.57	10,841	16.31	1516
Golden Wax .	July 24	2.53	July 28	8.30	Aug. 2	37.40	Aug. 9	75.20	123.43	11,478	15.15	1408
Henderson's Earliest Red Valeutine.......	July 24	7.48	July 28	11.30	Aug. 2	32.70	Aug. 9	45.20	96.78	9,000	15.61	1451
Round Six Weeks	July 24	12.92	July 28	36.02	Aug. 2	55.90	Aug. 9	90.00	194.84	18.120	15.55	1446
Yosemite Mammoth Wax	July 24	. 79	July 28	1.12	Aug. 2	8.00	Ang. 9	9.00	18.91	1,758		

EGG-PLANT.

This is a vegetable that is not as well known or as highly appreciated as it should be; especially is this true in the West. When properly prepared and cooked, egg-plants make a very appetizing dish, not much inferior to the world-famed fried oyster. Being natives of tropical America they at all times require a high temperature, and for that reason succeed better at the south than at the north.

For this locality seed should be sown from the first to the middle of March. When grown in hot-beds the plants should be separated from the frames containing plants of a hardier nature by a partition running across the bed; in this way more heating material can be used under the egg-plant beds and each lot of plants can be kept at the proper temperature, which would be hard to regulate were they not separated; more attention should be given to covering sash at night with mats or straw, than is required by the tomato or cabbage. Nothing is gained by transplanting too early to open ground, as the plants will not make any growth until the weather becomes warm. For this latitude, June 1st is about the proper time to set in garden. The egg-plant is a heavy feeder and the soil can not be too rich for its best development; a warm, sandy loam is where it gives the best results. Belonging to the same genus as the potato, it often happens that the potato beetle is quite troublesome; a mixture of paris green and flour-one ounce of the former to six pounds of the latter-dusted through a cheese-cloth bag over the plants while the dew is yet on, will kill the pests.

The egg-fruit is fit for use from the time it is the size of a turkey's egg until it is five or six inches in diameter, or until the seeds begin to harden, which indicates that the fruit is maturing.

March 15th, seeds of Early Long Purple, Black Pekin, and New York Improved were sown in the forcing-house; June 6th the plants were set in open ground, the same distance apart as tomatoes; they were given the same culture, and were irrigated on the same dates as the tomatoes.

Black Pekin.-One of the newer varieties of superior excellence; fruit of a glossy, almost black color, globular in form and solid; this variety is earlier than the New York Improved, and of finer flavor; average weight of ten specimens, $1 \frac{1}{4}$ pounds each.

Early Long Purple.-Early and productive; fruit long, nearly the same size at both ends, of a deep purple color; this variety does not attain the size of either of the others tested. Average weight of ten specimens, $6 \frac{1}{2}$ ounces each.

New York Improved.-This is a leading market variety; the plant is a stronger grower than the early long purple, the leaves and stems are thickly studded with spines, which do not appear to any
great extent on the other varieties. The fruit is pear-shaped, large, purple in color. Average weight of ten specimens, $1 \frac{1}{2}$ pounds each.

PEPPERS.

Seeds should be sown in hot-beds or forcing-house from the first to the middle of March. As peppers are among our most tender vegetable plants, more care should be given them than is required in growing tomato plants; at all times they need a high temperature; strict attention should be given to the details of heating, airing, and watering as recommended for the tomato; every effort should be made to keep the plants in a vigorous growing condition; at no time allowing them to receive a check to their growth. Plants may be set in open ground about a week after tomatoes are planted; a warm, mellow soil that is highly improved is the best for their development. Seeds of the varieties herein described were sown in forcinghouse March 15th; plants transplanted to open ground on June 6th. They received the same culture as tomatoes, water also being applied on the same days. The varieties designated as sweet, and being used in the green state, are a different type from the Cayenne, and while green are sliced and served like tomatoes with vinegar and salt. 'The varieties of the Bell and Bull-Nose type are also used for making mangoes; the large green peppers are cut in half, filled with chow-chow pickles, tied up, and placed in jars or cans containing vinegar, where they remain until wanted for use.

Cardinal.-A variety of recent introduction; pods from 5 to 6 inches long, tapering to a point, color bright cardinal. Sweet when used in the green state. From one plant, 31 peppers were picked which weighed 1.5 pounds; the three best specimens weighed . 4 pound.

County Fair.-A variety resembling somewhat the Cardinal; pods larger, $4 \frac{1}{2}$ to $5 \frac{1}{2}$ inches long, regular in shape, obtusely pointed, of a dark red color; a very showy pepper, used in the natural state and for mangoes. From one plant, 27 pods were picked which weighed 2 pounds; the three best specimens weighed .4 pound.

Black Nubian.-A distinct variety, foliage of a black green color; pods $4 \frac{1}{2}$ to 5 inches long, obtusely pointed, of a glossy black color, making quite a pretty contrast with the fiery red and golden colored varieties. This pepper is mild and may be used in the natural state. From one plant, 24 pods were picked which weighed .7 pounds; the three best specimens weighed .3 pound.

Golden Dawn.-Of the Bell or Bull-Nose type, early, pods $3 \frac{1}{2}$ to 4 inches long, of a beautiful golden yellow color when ripe; mild, used in the green state and for mangoes. From one plant 22 pods were picked which weighed 1.6 pounds; the three best specimens weighed .4 pound.

Long Red Cayenne.-From this, a representative of Capsicum annuum, and also from the shrubby Capsicum, Capsicum frutescens, is manufactured the red or cayenne pepper of commerce. Our seed of this variety was not true to name, there being no less than five types varying from the small pyriform shape, not over an inch long, to the long pointed type 5 to 6 inches long, which is the true cayenne; the color is a bright red. From one plant 80 pods were picked which weighed 1.2 pounds; the three best specimens weighed .3 pound.

Mammoth or Sweet Mountain.-A large sweet pepper of the Bell or Bull-Nose type used in the natural state, and also grown largely for mangoes; pods $4 \frac{1}{2}$ to $5 \frac{1}{2}$ inches long, of a deep red color when ripe. From one plant 13 pods were picked which weighed 1.6 pounds; the three best specimens weighed .8 pound.

Red Cluster.-This is a distinct variety of very showy appearance, producing a profusion of pods which point upward, making a very ornamental plant when the peppers are ripe. Owing to its small size this variety is chiefly grown for pickles. From one plant 460 pods were picked which weighed 1.1 pounds.

Ruby King.-The largest variety of the Bell or Bull-Nose type ; pods 5 to $5 \frac{1}{2}$ inches long, used in the natural state and also for mangoes. From one plant 22 pods were picked which weighed 2.5 pounds; the three best specimens weighed .9 pound.

SWEET CORN.

While our sweet corn the past season did all that we could expect in the way of making a vigorous growth and producing a large number of ears, clearly showing the comparative earliness and productiveness of the varieties under test, yet by far the greater portion of the crop was destroyed by boll or corn worms. These pests are generally supposed to be more destructive at the south than at the north, but it would be hard to imagine their being more numerous, or doing more damage to the corn crop in any other section of the country, than here during the season of 1893. By actual count from $92 \frac{1}{2}$ per cent. to 97 per cent. of the ears had been entered by worms. They have no less than a dozen food plants; attack corn in the growing shoot, the tassel, and the grains in all stages. They seem to prefer sweet corn to the field varieties. There are normally two broods of these worms that feed upon corn, exceptionally three; the eggs are deposited on the leaves of the corn and the newlyhatched larvæ begin feeding at once on the spot of their birth, eating many irregular holes through the leaves. The first brood usually makes its appearance early enough to feed upon the staminate
flowers or tassels, before the ears are formed ; this first brood did but very slight damage the past season, but the second brood was very destructive. The eggs of the second brood were laid upon the ends of the husks or on the silk, the worms attacking the ears, often cutting several grooves the whole length of the ear, thus rendering it unfit for use; they by no means confine themselves to a single ear, during their work of destruction, but go from one to another. As yet no very effective means have been discovered by which we can combat the boll worm; having so many food plants it is hard to exterminate them. For some sections of the country, plowing fields deep in December and January is recommended, as by turning up the soil at that season many of the early moths will be killed; hand-picking may be practiced where the area is small, as in family gardens, but it is a slow means of getting rid of them, and would be too expensive in large fields; building fires in the fields in early spring will attract many of the early moths, and thus destroy them.

For this latitude, from the 15 th to the 20th of May is early enough to make the first planting. By making a succession of plantings of the early, medium, and late sorts, at intervals of about ten days or two weeks, it may be had in the green state until frost. Corn matures more quickly on a sandy loam, but attains a larger size when grown on clay or bottom land; the soil can not be too rich for it.

On May 15 th, four varieties of sweet corn were planted in rows 3 x 3 feet, there being 150 hills of each kind. The ground was cultivated at frequent intervals until the corn was in bloom, after which the ground was not disturbed; water was applied on June 21 st and July 8 th and 22 nd. The first marketable ears pulled were of the Cory Early variety on August 2nd, 77 days from time of planting.

Cory Early.-The earliest variety under test, stalks $4 \frac{1}{2}$ to 5 feet high ; ears 7 to 8 inches long; mostly eight-rowed, kernels flat, large, creamy white; marketable maturity, August 2nd. This variety ranks second in number of ears produced. Ninety-five per cent. of the ears were injured by worms.

Early Minnesota.-The second variety to mature ; stalks $5 \frac{1}{2}$ to 6 feet high, ears 8 to 9 inches long, 8 to 10 -rowed, mostly eight, rows close; kernels large, whiter than those of Cory Early. Marketable size August 11th, ranking first in number of ears produced; $92 \frac{1}{2}$ per cent. of the ears injured by worms.

Crosby's Early.-Third in time of marketable maturity ; stalks $6 \frac{1}{2}$ to $7 \frac{1}{2}$ feet high, ears 7 to 8 inches long, 12 to 14 -rowed, rows close ; kernels small to medium, roundish, white; marketable size August 16th, ranking third in number of ears produced; $95 \frac{1}{2}$ per cent. of ears injured by worms.

Country Gentleman.-A late variety of strong growth, stalks 8 to 10 feet high, ears 8 to 9 inches long, rows irregular, kernels medium size, roundish, white ; marketable size, August 22nd. This variety produced the least number of ears; 97 per cent. of the ears injured by worms.

CABBAGE.

When grown for early use seed should be sown in forcing-house or hot-beds from the first to the middle of February. As cabbage plants, if well grown, will stand considerable frost without injury, they may be set in open ground from the 10th to the 15 th of April; for the late or winter crop seed should be sown in open ground from the 15 th to the 20 th of May. Plants will then be ready to transplant to the field from the 25 th to the last of June. The cabbage is a very heavy feeder and thrives in a deep, rich, loamy soil.

On April 12th, seeds of the ten varieties named in the accompanying table were sown in flats in the forcing-house; plants were set in garden on June 6th, in rows $2 \frac{1}{2}$ feet apart, and 2 feet apart in the rows. Plants were given thorough cultivation with horse cultivator and hand hoes; water was applied on July 5th, 19th, and 31st, and on August 18th. As most of the varieties in our test were of the Flat Dutch type, and there being no very marked difference in habit of growth or form of head of the different kinds, a description of each is not necessary. The two varieties in which there was a readily distinguishable difference from the Flat Dutch type may be mentioned: Burpee's World Bcater and Perfection Drumhead Savoy.

Burpee's World Beater.-A late variety, of very large size, producing the largèst heads of any under test; spreading in habit of growth; leaves of a dark green color, heads round and solid; this is apparently a good late variety, and will prove a good keeper, as it was the latest to mature, and showed no signs of bursting.

Perfection Drumhead Savoy.-This variety is different in type from any others tested; the stems are short, leaves dark green and very much wrinkled; heads small, round, not so solid as those of the other types owing to the peculiar wrinkling of the leaves. The Savoy class deserves more attention than it receives. They are more tender and of finer flavor than the common cabbage.

The following table shows the number of plants set of each variety; the number of heads of marketable size on August 25 th, and also September 20th; the number of marketable heads pulled October 18th; average weight of same, and per cent. of plants set producing salable heads:

VARIETIES.							
Brill's Excelsior Flat Dutch	40					. 2	85
Burpee's All-Head Early....	${ }^{60}$	${ }^{15}$	50 18	Oct. 18	57 28 28	7.9 8.6	95 87 88
Burpee's Safe Crop	32 18 18	$\stackrel{2}{0}$	18	Oct. 18	28 16	8.6 10.3	87 88
Early Flat Dutch	${ }_{30}$	0	18	Oct. 18	${ }_{26}$	${ }_{8}^{8.0}$	86
Fottler's Branswick	34	3	10	Oct. 18	29	8.2	85
Lonisville Extra Drumhead	50	5	30	Oct. 18	45	8.6	90
None Such	30	4	18	Oct. 18	25	7.8	83
Premium Flat Dutch	40	4	15	Oct. 18	36	8.5	90
Perfection Drumhead Savoy	30	0	0	Oct. 18	22	3.2	73

CAULIFLOWER.

Sow seed at the time given for sowing cabbage seed. The cauliflower is somewhat more tender than the cabbage, and the plants require more attention in severe weather, in the way of covering sash at night, than do cabbage plants. The kind of soil recommended for the cabbage is equally well suited to the cauliflower. Seed of the five varieties herein described was sown in forcing-house on March 25th, and the plants were transplanted to the garden on June 6th. They were cultivated the same as cabbage and were irrigated on the same dates.

Early Snowball.-The first variety to produce marketable heads, and one of the best sorts tested ; dwarf in habit. of growth, with short outer leaves; heads large, solid and snowy white; weight of an average specimen, 4 Hbs ., 4 oz .

Extra Early Dwarf Erfurt.-This was the second variety to attain marketable size; the stalks are short, plant a close compact grower, heads medium size, close and solid; weight of an average specimen, 3 Hbs ., 3 oz .

Long Island Beauty.-A medium early variety, maturing five or six days later than Early Erfurt ; plants are taller than those of the varieties above mentioned ; heads large, close, and solid ; color not so good as in Early Snowball; weight of an average specimen, 4 \#bs.

World-beater.-This is a medium late variety ; stems and leaves long, heads of large size though not so solid, or of that snowy white color, as Early Snowball ; weight of an average specimen, 4 Hbs ., 6 oz .

Narrow-leaved Erfurt.-This is a late variety with long narrow leaves; plant a taller grower than Early Erfurt; heads resemble those of that variety, though not so large ; weight of an average specimen, 3 mb .

-23

ONIONS.

Seed should be sown as early in spring as the ground can be worked well, which for this latitude is about the 20th of March. When sown early there is a much better chance of getting a good stand, as at that season the ground is generally quite moist.

On March 28th, seeds of 21 varieties were sown in the garden in rows 18 inches apart. Owing to the very dry spring, and the prevailing high winds during the latter part of March and the month of April, which blew out many of the seeds and young plants, a very poor stand was obtained; with many varieties there was not over 20 per cent. to 40 per cent. of an average stand. As the test was not a satisfactory one, a table showing the productiveness of the different varieties is not necessary; but from the experiment the following points were observed:

1st. . The varieties producing the greatest weight of marketable onions were: Giant White Garganus, Prize Taker, Large Red Italian Tripoli, Extra Early Flat Red, White Bermuda, and Yellow Globe Danvers in the order named.

2nd. The varieties ripening first were: Extra Early Flat Red, Queen, Neapolitan, White Bermuda, Large White Italian Tripoli, and Pale Red Bermuda.

3rd. More scullions were produced by the late varieties than by the early.

SUMMARY.

From the variety tests given in the foregoing we may summarize the following points:

TOMATOES.

1st. The five varieties producing the greatest weight of ripe fruit were: Shah, Puritan, Potato-leaf, Table Queen, and Royal Red in the order named.

2nd. Those yielding the most pounds of ripe and green fruit together were: Table Queen, Puritan, The Shah, Potato-leaf, and Large Rose Peach.

3rd. The varieties giving the largest yield of fruit at the first two pickings were: The Shah, Potato-leaf, Aristocrat, Table Queen, and Large Rose Peach.

4th. As the most desirable early varieties for either home use or market we would recommend: Puritan, Potato-leaf, Ignotum, Aristocrat, and Table Queen.

5th. The smoothest varieties and those best suited for canning are: Ignotum, Potato-leaf, Table Queen, and Royal Red.

BEANS.

1st. As a bean for market or home use, of the wax sorts, we would recommend Golden Wax; of the green podded sorts tested, Round Six Weeks proved the earliest and most productive.

2nd. Of the two varieties of bush Limas tested, Burpee's Bush Lima proved to be the more desirable.

EGG-PLANTS.
While New York Improved was the largest variety grown, yet for this locality we believe Black Pekin will give the best results, being earlier, and of finer flavor.

PEPPERS.

Where peppers are grown for market or home use, to be used in the natural state or for mangoes, the Ruby King variety will give the best satisfaction.

SWEET CORN.

Of the early varieties of corn, Cory Early was one week earlier than Early Minnesota, but the latter variety will give more general satisfaction, being more productive, ears larger and of finer appearance.

CABBAGE.

The varieties combining the most desirable features of any in our test were Burpee's All-Head Early, Premium Flat Datch, and Louisville Extra Drumhead.

CAULIFLOWER.
Of the five varieties of cauliflower grown, Early Snowball gave the best results.

SEEDING, TILLAGE, AND IRRIGATION.

(Arkansas Valley Station, Rocky Ford, Colorado.)

By Fred. A. Huntley.

The profits in crop growing are, as a rule, determined upon the basis of tillage or cultivation without regard to the application of manures or other fertilizers. This is especially true in comparatively new farming sections where the supply of available fertilizers is usually .very limited and skill in the management of a natural soil determines largely the extent of production. That good tillage is everywhere the highest essential in successful farming is not to be denied.

All plants have their own peculiar habits. There are certain conditions of climate, soil, and care best adapted to the production of each. When a plant is introduced into a section differing from that of its nativity, it is but natural to enquire into the conditions of culture under which it has been known to thrive. These conditions are learned and applied to a considerable degree by all, but the highest rewards are attained by the best-adapted energies. As localities differ in characteristics of soil and climate, so must the practices of methods differ to suit the requirements of plant culture.

The climate which is now under consideration is very dry and warm during the summer months and mild at other seasons, with an extreme lack of humidity in the atmosphere generally throughout the year. The average rainfall is very slight, as observations for three consecutive years show but 12.06 inches; and coming, as it does, at irregular intervals can not be depended upon materially to benefit crops. The reliable water supply comes through welldeveloped systems of irrigating canals. The soil of the Arkansas Valley may be described as a sandy loam, containing a small per cent. of clay. The subsoil has nearly the same characteristics as the surface covering, though it is extremely compact in texture. The natural under-drainage needs no improvement.

It is intended by this bulletin to make known the results observed in the general cultivation of farm crops at this Station and for the locality. What follows is by no means claimed to be exhaustive, since it is offered only in the line of progress towards better methods than are in general practice.

CORN CULTURE.

Corn is one of the principal farm crops in the Valley, and in no other section of Colorado are natural conditions found as favorable to its production. Experiments and observations have shown the average yield to be very much below the possibilities, and there is a general demand for better methods and more thorough tillage. The preparation of the soil before planting has, no doubt, more to do with the outcome of the crop than any other operation. It should be borne in mind that our subsoil, though sandy, has a most compact structure. Corn roots have the habit of growing downward as well as branching. They are deep and broad feeders, in consequence of which the soil must be made loose and mellow to a considerable depth to secure full development. Land for corn should be plowed to an average depth of ten inches or more for this and another very important reason. Those familiar with the conditions of irrigation know with what rapidity a compact soil loses moisture. A well-tilled, porous soil collects and retains moisture by a natural law known as capillary attraction. Compact soils have that power to only a very limited extent. A comparative test of deep and shallow plowing was illustrated here in the case of a field of Colorado White field corn. One portion of the field was plowed to an average depth of four and five inches, while an adjacent portion received double the depth of cultivation. The whole planting received uniformly the same culture, including irrigation. A comparison of the yields in measurement upon deep and shallow plowing showed a little over thirty per cent. gain on the greater depth of plowing with grain of superior quality.

Land should always be well irrigated before plowing if not sufficiently moist to leave the work in the best possible condition for after cultivation. Fall plowing, as compared with that done in the spring, has the advantage of exposing the greatest possible amount of surface to the action of prolonged weather changes, which greatly facilitate the breaking up and putting in available form the fertilizing properties of the soil for the food of plants. If done thoroughly it also aids in retaining moisture which comes from natural causes. As irrigation restores the soil to its former compactness, it should never be done upon soils freshly plowed and prepared for planting, unless required to germinate the seed. There are advantages claimed for spring plowing. It enables the farmer to control moisture in making the operations of irrigating, plowing, and planting continuous. Irrigating to germinate seed
after planting should never be practiced, since much of the seed becomes ruined, and feeble growth takes place, which can seldom if ever be overcome by cultivation.

It is my opinion that an improvement in planters is desirable to meet our conditions of soil. The ordinary style of two-horse planter with wide wheels, such as is used in the soft soils of other states, does not seem to be just what is wanted here. Wheels for our use should be made with narrower tires, similar to those of press seed-drills, for making the seed-bed more firm. Since we plant corn to a greater depth than is done in moister climates, wide tires do not accomplish the desired purpose of making the soil compact over the seed.

Usually two waterings are sufficient during the growth of a crop, and often one irrigation is preferable. If soil contains sufficient moisture in the spring to start the crop to a thrifty growing condition, and growth seems not to be retarded for the want of moisture, watering can be delayed until the tassels begin to appear, at which time drouth would cause great injury to the crop. The harrow is the best cultivator for corn until it has attained an average height of at least six inches. Continuous surface cultivation saves moisture, and cross-plowing with a two-horse cultivator, work in both directions, is the least that should be done.

The mistake is often made in the use of a large head of water while irrigating, and in attempting to get it properly distributed over large areas and through long rows. Much of the land thus watered becomes too wet, while other portions receive an insufficient supply. In either case the best results can not be expected. Another very serious objection to irrigating with a very large head of water is, that the water contains much insoluble earthy matter which is ever being deposited as sediment. Water-ways become coated and moisture fails to penetrate to the roots of plants along their course. To irrigate properly, furrows must be well made and as nearly free of obstructions as careful methods will permit. The slope of the land will determine the distance it is practicable to run water for uniform results. No greater quantity should be turned into each furrow than will flow with uniform rate. Seepage is slow at best, and it usually takes many hours to secure the proper amount of moisture to the soil to prove of lasting benefit. Some may disagree with the statement that seepage is more effectual and rapid from a small head of water than from a heavy flow. The reason is that water from the Arkansas river is nearly always thick with earthy matter, and the amount of deposit decreases with the volume. We have tested this thoroughly in the garden as well as in the field. It has been found advisable, while irrigating, to expose the smallest amount of surface possible to the flow of water, and thus protect the porous condition of the soil. Another expen-
sive practice is that of allowing a great amount of overflow or waste water to leave the fields and return to the river or lower ditches. Much fertility necessarily goes with it and is forever lost.

Every farmer should practice economy in saving and applying to his land all matter that will eventually decay. The soil, though rich in mineral fertility, is poor in vegetable matter, due to the barrenness of the country before the advent of agriculturé. The litter of the farm is slow to decay in a dry climate like ours unless the process is assisted by artificial methods. In view of this fact, a pit was recently dug on the farm of this Station, into which all that will make manure is systematically hauled. Here the process of decay is hastened. The pit is conveniently located where water can be turned into it at any time from a ditch near by.

It may be well to describe here the construction of this excavation for saving fertility. One man and team finished the work in a little more than a day by means of plow and scraper. The pit is 30x70 feet, and four feet deep at the center. The sides and ends were left sloping toward the center to allow easy access with team and wagon for hauling in and out. The usefulness of this arrangement has been so well proven that a companion pit will be dug in the same manner near by, thus rendering more convenient the process of handling the varying stages of decay.

WHEAT CULTURE.

A greater acreage is devoted to wheat culture in this section of country than to any other grain. Both winter and spring varieties are produced with equal success when seasons are equally favorable, but as a rule winter grains have superior advantages in respect to climatic conditions. The year 1892 proved an exceptionally good one for spring grains, by reason of an abundance of early moisture. During the spring months of 1893 but very little precipitation occurred and the irrigating waters were unusually late; all of which resulted more favorably to fall-sown seed. Within these two years, yields per acre at this Station have been as follows: Winter varie-ties-Clawson, 29 bushels; Turkish, $28 \frac{1}{2}$ bushels; Red Russian, 28 bushels. Spring varieties-Sonora, 29 bushels; Amethyst, 29 bushels ; Defiance, 24 bushels; Australian Club, $17 \frac{1}{2}$ bushels; and Improved Fife, $13 \frac{1}{2}$ bushels.

There is usually some speculation going on relative to the cost of producing wheat, but the most convincing arguments that can be advanced are downright facts. Through the last season we kept a careful expense account on raising a field of four and one-half acres of Clawson winter wheat, as given in the following summary :
Labor in irrigating land, \$ 35
Plowing, $31 / 2$ days, 785
Harrowing, 1/4 day 55
Seed, 22 pecka, 275
Vitriolating seed, 20
Drilling seed, 6 hours, 75
Winter irrigating 35
Spring harrowing, 55
Irrigating, 50
Harvesting, 400
Twine 112
Shocking, 5 hours 80
Stacking, $1 / 2$ day, two men and team 195
Threshing, 7 cents per bushel, 805
Total, $\$ 2977$
Yield, 115 bushels, at 50 cents per bushel, $\$ 5750$
Expenses, 2977
Net profit, $\$ 2773$
Net profit per acre, 616

No estimate is given on cost of keeping water-right in force, or cost of hauling grain to market; but as the straw has both a feeding and manurial value it should be worth at least enough to cover these two items.

It may be well to add that we do not, as a rule, recommend using five pecks of seed to the acre, as was done in the above experiment, but rather a less quantity. Our reason for using that amount of seed in the test was to determine the value of shriveled seed ; and since much of the grain seemed to lack germinating power, it appeared advisable to use a larger quantity to offset the possibility of a per cent. of loss. From this shrunken, inferior-looking seed came a product of good quality. It may be argued that the area being small the example is not suited to a large field; yet other fields of wheat grew adjacent, which gave results equally as good. There is no doubt that, as a rule, profits are greater on medium-sized areas than on large ones, but it is also true that small areas well tilled at a profit are preferable to large ones handled at a loss. Better and more thorough methods are needed in the production of all grain crops.

Among the various operations necessary to the production of a wheat crop, deep plowing has here been shown the most essential. In the early stages of the crop there should be a never failing resource of moisture. Such cannot be maintained within compact soils. A porous condition of soil saves moisture, while evaporation soon exhausts the limited supply which compact soils have the power to acquire. Manuring land with any kind of decayed vegetable material increases capillarity or looseness of soil. But since improvement of this character can be furnished only by degrees, deep tillage should supply the requirements for a time at least by making available all the natural resources.

Wheat sown in dry soils can never be made to germinate uniformly even if thoroughly irrigated afterwards. The most perfect requirements of a seed-bed, mellowness and moisture, must be complete before planting to secure uniform advantages for the crop.

Many demonstrations have been made in proof that, as a rule, farmers use too much seed. The best results at this Station have come from the use of about four pecks per acre. The press drill is recommended for advantages over other methods of seeding. By its use the soil is made firm over the seed and rapid and uniform germination insured; while the surrounding soil is left mellow and porous, allowing the young and tender roots to reach in every direction for the available fertility and moisture. The advantages of deep rooting are secured by drilling seed to a depth of at least four inches.

Winter wheat usually requires three irrigations, and spring wheat two after growth has been established. We irrigate winter wheat once during the winter, in January, harrow in February, and irrigate in March or April, as the conditions of the season seem to require. After that, and as soon as the surface becomes sufficiently dry to pulverize without becoming cloddy, it is again harrowed for the second and last time. Wheat is benefitted by harrowing the same as other crops are benefitted by cultivation ; and no harm has been found to result from the use of the harrow upon fields after a growth of five and six inches has been established. The final irrigation is required during the stage of forming heads, or not later than the bloom appears. Later watering than this may produce shriveling. While irrigating small grains, water is unavoidably allowed to flow in contact with the stems, by reason of which the application should be made within as short a period of time as possible consistent with thoroughness. Numerous laterals over difficult places facilitate the work.

OAT CULTURE.

The requirements of oat culture do not differ essentially from those of wheat, yet the former grain is found not as well adapted to the various conditions of climate as the latter. Oats attain the highest development in cool climates. They are produced with reasonable success in this valley when the soil is given deep and thorough cultivation. It is important to get the crop started as early in the spring as it is possible to work the soil, after the danger of severe freezing is over. Ripening before the hot weather invariably secures plump grain. The best results at this Station have been an average of $30 \frac{1}{2}$ bushels per acre of Excelsior, a white variety. The grain could hardly be surpassed in quality, anywhere. The land had been in corn the previous season, which had received good culture, after which thorough and early preparation followed for oats.

Owing to advantages being claimed for late sowing, to bring: the harvest as late as the last of September, I was prompted to visit. a number of fields this season, but was disappointed in finding the straw of late grain almost invariably covered with rust, and no indications of improved yields over early sown crops. Some advantages: may be developed later in favor of late sowing, but thus far early sowing is advised.

BARLEY CULTURE.

Barley is but little grown as a farm crop in this section of Colorado. Six varieties in test plats at this Station, including both hull and hull-less kinds, have done well in every particular. Theculture requirements do not differ essentially from those of wheat., except in the rate of seeding, which is about eight pecks for the hull sorts and a little less quantity for the hull-less.

RYE CULTURE.

The value of winter rye as a quick land renovator seems to be but little understood. When a heavy growth of vegetation can bemade, to plow under between regular crops without losing the use of the land for a season, it ought to be encouraged. We have it from experience here that rye can be sown on early fall plowing, which will make two months' pasture and furnish a heavy growth to plow: under in the spring. Besides the benefits from green manuring,. whatever they may be, a fresh crop of weeds is prevented from going to seed by early plowing, and the necessary spring tillage places moisture beneath the surface for later use. The best yield of rye on these grounds the past season gave 19 bushels per acre. If seed raising is to be the object, about 80 pounds should be sown on. an acre, and at least 100 pounds for a matted growth.

The State Agricultural College.

THE RGRICULTURAL EXPERIMENT STATION.

BULLETIN NO. 27.

(Third Edrtion, Revised, of Bulletin No. 13.)

THE

Measurement and Division

of Water.

Approved by the Station Council, ALSTON ELLIS, President.

FORT COLLINS, COLORADO.
AUGUST, 1894.

Bulletins will be sent to all residents of Colorado interested in any branch of Agriculture, free of charge. Non-Residents, upon application, can secure copies not needed for distribution within the State. The editors of newspapers to whom the Station publications are sent are respectfully requested to make mention of the same in their columns. Address all communications to the

DIRECTOR OF THE EXPERIMENT STATION,
Fort Collins, Colorado.

THE AGRICULTURAL EXPERIMENT STATION. FORT COLLINS, COLORADO.

\author{
the state board of Agriculture.
 HON. CHARLES H. SMALL,
 Puebio,
 1895
 HON. FRANK J. ANNIS,
 Fort Collins,
 1895
 HON. JOHN J. RYAN,
 Loveland,
 1897
 HON. A. L. EMIGH,
 Fort Collins,
 1897
 HON. J. E. DuBOIS,
 Fort Collins,
 1893
 HON. JOSEPH S. McCLELLANI,
 Fort Coilins,
 1899
 HON. JAMES L. CHATEIELD, Gypsum,
 1901
 HON. A. LINDSLEY KELLOGG,
 1901
 $\left.\begin{array}{l}\text { GOVERNOR DAVIS H. WAITE, } \\ \text { PRESIDENT ALSTON ELLIS, }\end{array}\right\}$ ex-officio
 executive Committee in Charge.
 HON. J. S. McCLELLAND,
 HON. JOHN J. RYAN,
 HON. A. L. KELLOGG,
 The President of thf Board and the President of the College.
 STATION COUNCIL.
 alston ellis, A. M., Ph. D., LL. D.,
 President and DirectorWells W. COOKE, B. S., A, M., - - - - AgriculturistC. S. CRANDALT, M. S.. - - - Horticulturist and Botanist
 WILliam P. HEadden, A. M., Рh. D.,
 Chemist
 L. G. CaRPENTER, M. S.,
 Meteorologist and Irrigation Evgineer
 C. P. GILLETTE, M. S.,
 Entomologist
 DANIEL W. WORKING, B. S., Secretary,Lathrop M. TAYLor, B. S., Stenographer.
 ASSISTANTS.
 FRANK L. WATROUS,
 Agriculturist M. J. HUFFINGTON, Horticulturist
 Entomologist Chemist Mereorologist and Irrigation Engineer
 SUB-STATIONS
 F. A. HUNTLEY, B. S. A.,
 Superinterdent Arkansas Valley Station, Rocky Ford, Colorado.
 J. H. McCldELLAND
 Superintendent
 Divide Station, Table Rock, Colorado.
 SUPERINTENDENT

 FRANK BEACH, B. S.,

 FRANK BEACH, B. S.,
 San Luis Valley Station, Monte Vista, Colorado.
 J. B. ROBERTSON,
 Supfrintendent
 Rain-Belt Station, Cheyenne Wells. Colorado.

}

ON THE

MEASUREMENT AND DIVIIION OF WATER.*

By L. G. CARPENTER.

Questions concerning the measurement and distribution of water probably give rise to more trouble than all others combined in an irrigated country. While frequently the matter in dispute is of small consequence, it is a source of irritation that causes constant annoyance both between canals and consumers, and between neighbors. The problem of a just distribution of water is one of the most important as well as one of the most difficult problems of irrigation.

In passing over the lines of ditches in Colorado and in other states, and in other countries, I have made their methods a special object of observation and inquiry. In general it may be said that the prevailing methods are exceedingly unreliable. In some canals, even the large ones, there is little attempt save by the eye or the judgment of the ditch rider; in others there are nominal measures which frequently are worse than none at all, because while giving no approach to a proper measurement, they give among the consumers and canal officers a false sense of accuracy and stand in the way of a better system. In others the systems are as good as the present conditions will permit. When water has been plentiful in the streams, there has been no necessity for close division or measurement, for there has been water enough to supply the demands of all. But with the greater demand for water, and the need by each farmer of every drop obtainable, there is greater necessity for closer measurement, and many canal organizations are being led to consider more efficient means of measurement and distribution.

The prevention of waste is a matter of public importance. With more land than water, the agricultural future of Colorado depends on the use of her existing water supply to its fullest capacity. The building of storage reservoirs, the stopping of waste, improved methods in irrigation, together

[^2]with the changes consequent on irrigation, which make less water necessary, will increase our water supply in effect, if not in amount.

It is safe to say that a good system of measurement will save a large amount of water. Every one knows that in financial affairs a close account is the basis of sound economy. It is also true in water matters. The mere fact of measurement makes users more careful about waste, and in the aggregate the saving is considerable, as some cities which measure water to consumers have found. With water plentiful, the system, or lack of system, works without friction. The practice is to give enough to stop complaint, if there is water enough. But as water becomes scarcer and the demand greater, then the system works gross injustice. If some one gets more than his share, it means that some one else gets less. And this may mean ruin to his crops. In many parts of the state the pressure for water is already being felt. It is only a question of time when the other localities will feel the same pressure, and with time, all will feel the demand more. Hence it is that there will never be an easier time for arranging satisfactory measurements than now; for the demand will not be less, and with time and the increase in value of water then there will be many who will feel that they have rights vested in certain methods of measurement which may be intrinsically unjust.

This bulletin is the result of the consideration of the measuring devices forced upon my attention by various trips over the canals of this state. The study has extended, especially since the first edition, to devices in use in other states and in other countries than our own, in the hope of finding a device which should meet all the desirable conditions. It cannot be said that any are free from objection, but there are some which can be recommended, and, since even on some canals with a presumed system of measure I have found discrepancies amounting to as much as 400 per cent., there is much room for improvement. It may be said, with the present knowledge, there is no need for the variation to be more than of or 20 per cent., except in occasional cases, and it is scarcely necessary to except these.

On this subject, as well as on others in the line of irrigation, the experience of Italy is useful. Her physical conditions are not so far different from ours. She has the accumulated experience of six centuries with irrigation; we of scarcely thirty years. While the progress made here by a people who had to rely on themselves for their knowledge of irrigation has been marvelous, it is unquestionably true that we may learn much from her experience. The physical laws
governing the flow of water, the principles involved in distribution and measurement are the same here as there. We are finding the necessity of laws and regulations which they long ago found necessary. We shall find it necessary to take other steps which their experience long ago showed desirable.

The Italian modules have been various, but until recently most of them have been based upon one idea-an erroneous one-which has been introduced into Colorado and the other western states in the form of the various miners' inches.

The need for measurement was felt before there was more than the most limited knowledge of hydraulic laws, and the methods of measurement date back, consequently, before the rise of hydraulic science. That they have been used for several centuries with even a fair degree of satisfaction reflects great credit upon Soldati and the magistrates of Milan who so firmly grasped the conditions of the problem. That these measures are known to be incorrect is shown by the fact that all of the large modern canals have adopted other systems. The Cavour Canal, the Canale Casale, the Canale Villorsi have all adopted systems depending upon the weir. The insufficiency of the old measurement is evidenced by the fact that the Italian government required in one of its acts of concession granting water to a new canal, a plan for a new module for the measure and sale of water. That the old measures are still used, and will be used, is due to the fact that in time the individual users have acquired rights in the water which that particular method allows them, and any change which threatens those rights arouses at once intense opposition The same kind of conservatism is shown in Colorado, and the same varied customs are growing up. There are already numerous canals on which there are several different methods of measurement in use and where water is measured out differently to the early users. The changes affect the new users.

The module proposed and adopted by this canal-the Canale Villoresi-will be especially described, because it seems to dispose of some of the difficulties which have made the weir objectionable.

In the measurement of water there are two distinct classes of measuring boxes, different in their object. One is the dividing box, whose object is to give to each consumer some definite portion of the water flowing in the ditch. This box is found especially in the laterals owned in common by two or three neighbors, or in the smaller canals owned and operated by the stockholders. The other class is the meas-
uring box which has in general for an object to give the consumer a certain definite quantity of water, as one cubic foot per second. These need to be adjustable, so that in times of scarcity the amount may be reduced proportionately as the quantity in the canal decreases. To this last class the Italians give the name of modulo. The French writers on irrigation, and to a limited extent the English, have adopted the word in the form of module, and, as such a word is needed in our irrigation vocabulary, the term is here used. Module will therefore be used to designate those boxes or devices, whatever their form, whose object it is to measure the quantity of water delivered, or to give a constant flow. The word divisor will be restricted to the first class, whose only object is to divide the water. A module may evidently serve as a divisor, for if the amount to be divided is known it is a simple matter to determine the quantity to which each is entitled and to regulate the module accordingly. There will always be cases where divisors will be by all means the most convenient, but these cases will be mostly in the small ditches from which few take water. In all other cases modules of one kind or another will be found the better.

In the case of divisors it is evident that there is no unit of measure, and that none is needed, as the object is to give the consumer some definite portion of the water flowing in the ditch whether there be much or little.

In the module, on the contrary, some unit is needed.
It is unfortunate that a system has grown up in which the professed unit is the "inch." The word is used in such a multitude of meanings that it is an almost hopeless task to convey an exact idea of quantity by the word. It in effect takes into account only the cross-section of the channel or opening, without regard to the velocity of the water. In the same ditch it is attempted to have the velocity the same or nearly the same through the different openings, by keeping the head the same, but in different ditches the heads vary according to convenience or the notions of the original users. In some ditches the head is four inches, in others six, in some eight, and there are others which allow the opening to extend to the surface of the water and no pressure is used. The whole area of the opening in square inches is then counted as inches of water. Also, in common use, a practice has grown up to call the cross-section of the stream in square inches, without regard to the velocity of the water, as so many "inches." Manifestly there is nothing in common in these different inches, so that the term has no definite meaning. The legal utes, and which was defined in 1868, is as follows:
"Water sold by the inch by any individual or corporation shall be measured as follows, to-wit: Every inch shall be considered equal to an inch square orifice under a 5 -inch pressure, and a 5 -inch pressure shall be from the top of the orifice of the box putinto the banks of the ditch to the surface of the water; said boxes or any slot or aperture through which such water shall be measured, shall in all cases be six inches perpendicular, inside measurement, except boxes delivering less than twelve inches, which may be square, with or without slides; all slides for the same shall move horizontally, and not otherwise; and said box put into the banks of the ditch shall have a descending grade from the water in ditch of not less than one-eighth of an inch to the foot."

But in addition to the variation in use, there is another fundamental error in the method which long ago being recognized by the users in Italy caused them to prohibit the use of openings of more than a certain number of oncia. According to this system an opening 6×16, for example, would give .96 "inches;"" one 6×8 would give 48. One should discharge twice as much water as the other. As a matter of fact the one discharges considerably more than twice the other. This is true, even if the conditions of the head are the same. It was noticed by the users of Italy,so that long ago the number of inches which could be drawn through one opening was limited. If one observes the discharges from an opening under good conditions the reason will be seen. As the water passes out, there is a narrowing up of the stream on top and bottom and sides. As ordinarily placed, those on the sides are the most noticeable. Now the total amount of this narrowing is approximately the same whether the opening is long or short, provided the head is the same. Hence the amount is decreased nearly the same in both cases. But relatively, the loss from the smaller one is greater than from the large one, and the consequence is that the large one discharges more than twice as much as the smaller one. The place where the velocity is the same, with the same head, is not at the opening itself, but where the crosssection of the issuing stream is the smallest. To illustrate further: Suppose that with the statute inch the contraction at each side is one inch; then with the opening six inches high, each area loses i2 inches, reducing the effective area of the one from 48 to 36 square inches and of the other from 96 to 84 square inches, and, leaving other considerations out of account, then the ratio between the two is more nearly that between 8_{4} and 36 , or 2.3 , than between 96 and 48 . In this particular case the larger user receives 2.3 as much as the smaller one, though it is considered as only twice as much. This cause is sufficient to make the "inch" differ by more than 50 per cent. With the indefiniteness of the term as used, it is difficult to determine a clear idea of the quantity involved,
unless the statute establishing the ratio between the statute inch and the cubic foot per second in such terms as to make 38.4 statute inches equivalent to one cubic foot per second should be considered as defining the inch. This ratio may be very widely variant if the inch is measured according to statute terms. The cubic foot per second is an absolute unit whose quantity cannot be subject to dispute, though the accuracy of measure may be. The state laws provide that in appropriating water to ditches the quantity shall be estimated in cubic feet per second, or as frequently shorter expressed, as second feet.

D I VISORS.

As ordinarily constructed, the division can rarely be exact, but, frequently, the convenience of an approximate division more than counterbalances any inaccuracy there may be. The larger ditches rarely have occasion to use divisors, for, even if the ditch has to pro rate the water, a better distribution can be effected by means of modules. If the water is to be divided into two equal portions, by placing the two lateral ditches in identical relations to the main ditch, in a straight and uniform channel, the division is exact. Emphasis should be laid on the identical relation, for many divisions are seen where the conditions are not the same, as, e. g., one branch continues straight, the other may make an abrupt turn, one may pass through a covered box, etc. In these cases some advantage is given to the ditch having the freer discharge. The effect of these differences is greater than is generally supposed. It is, however, generally easy to meet these conditions if the parties desire. In the same way the water may be subdivided into four, eight or sixteen equal parts. But where it is required to divide the water into two unequal, or into three or more portions, equal or not, the division becomes one of approximation only. The difficulty arises from the fact that the water has not uniform velocity across the whole channel, the center has greater velocity than that near the banks. If, therefore, equal openings be made across the channel, those near the center have the greater discharge. Making the central openings smaller only partially evades the difficulty, for as the relative velocities of the center and sides differ with different depths, this arrangement would still be inexact for any one depth except that for which the opening is made.

In its most common form the divisor consists of a parti tion dividing the channel into two portions in proportion to the respective claims. This, in effect, assumes that the veloc-
ity is uniform across the whole cross-section, which is not the case, even in a uniform channel, and much less so in one irregular or in poor repair. Such a division is to the disadvantage of the smaller consumer.

The nearer the velocity is uniform across the whole channel, the better this method of division, evidently. Accordingly means are frequently taken, by weir-boards or otherwise, with this object in view, but generally with indifferent success. A screen would accomplish this one object better, but the objections to its use are too many in most places to render it practicable.

Fig, 1.-A Common ford of divisor.
Figure i represents one of the most common forms of divisors. The partition board A is movable, and may be placed at different distances from the side C, so that the user can vary the proportion of water which he receives. A cleat of some kind is often used to prevent the board from being moved beyond a certain limit. Where the ditch is wide and shallow there is sometimes a simple truss used, as in the Lariat ditch, in the San Luis Valley, with a depending cleat. Sometimes a wire or chain restricts the movement. In these cases it is usually assumed that the amount of water going to the side channel is in proportion to the distance the movable partition is from the side, and the ratio is the same to the distance across as the volume is to the volume in the whole ditch. This is not in general true, because the velocity across the cross-section is not uniform.

Sometimes where this is recognized, and it is necessary to make close division, the water is brought to a state of approximate rest, or to a state of approximately equal velocity throughout the channel. In the case of some divisors used on the Farmers' Union Ditch, in the San Luis Valley, a weirboard over which the water drops is placed above the division board. This secures an approximate equality. A fall below the point of division sufficient to prevent the backing up of the water is necessary.

If water is brought to a complete state of rest, or very nearly so, and flows over the weir without lateral contraction,
this method will give as satisfactory results as any divisor with which I am acquainted. An increase in the size of the ditch just at the division box will aid in bringing the water to rest. Boxes of this kind were used by Hon. J. Max Clark, of Greeley, as early as 1867.

The divisor which is in use at Elche, in Spain, is one which has developed from their conditions in that province. At Elche there is a peculiar system of water management. The water is owned independently of the land. The amount available is divided into a certain number of shares, and the use of each of these for twenty-four hours is sold each day in the market place to those who want water. In consequence the amount which enters any lateral varies from day to day, and the method of division requires a convenient way of varying the proportion.

Where the division is to be made, the sides and bottom of the canal are made of cut stone for a distance of about fifteen feet. There are two falls in the canal of twelve and sixteen inches respectively, about five feet apart, the upper one being about seven feet from the upper portion of the masonry. The canal for a distance of 150 or 200 feet above has little or no fall, so that the water reaches the first fall with almost no velocity, and passes over undisturbed and perfectly smooth. Furthermore, there is no contraction at the ends, so that the discharge is nearly in proportion to the length.

The arrangement for making the division consists of a partition which is permanent masonry, and divides the canal below the falls into two channels. At the upper end of this partition is a movable piece of wood coming to a point which is pivoted to the end of the partition, and can be held so that its upper end will include any assigned portion of the channel within certain limits. The length of the beak of wood is' made so that it reaches to the upper drop when in line with the axis of the partition. The beak is set so. as to include the desired portion of the channel and thus remains for twenty-four hours.

At Lorca, for a portion of the area under cultivation, there is a system of sale something like that at Elche, in which the amount which enters any ditch may vary from day to day. A divisor which may be called a needle divisor is used. The same care is used in the preparation of the channel as in the previous one described. A permanent masonry partition is placed in the channel. The proportion which enters the lateral channel is varied by varying the relative width of the main and lateral channels. This is done by inserting or taking out a series of narrow boards placed verti-
cally. These are of uniform width. They are held in place both in top and bottom, and are carefully fitted to prevent leakage. The stream is to be divided so that a certain number of hilas, according to the result of the sale, may enter the channel. No account is taken of the difference introduced by contraction. The discharge is assumed to be proportional to the size of the opening. I have seen a divisor involving the same principle used on a ditch carrying seepage water, near Greeley. The form is not so good as the Elche divisor.

DISTRIBUTION BY TIME.

On small ditches or laterals where the amount of water is not too great for one user to manage, the time method of division may be used and gives a more equitable division than the boxes of the types described, and besides, it accomplishes what is necessary in order to use water economically, it allows of the use of water in large enough quantities during irrigation to make the use much more economical than where used in minute quantities. If water is divided according to the various interests involved, so that each would receive constantly the amount to which he is entitled, and no more, it would often happen that the division would be into such small parts that little good would be done by the small stream of water thus furnished. It thus becomes necessary in almost all localities to exchange water between neighboring users, so that one will use the privileges of several for the time during which he is irrigating, and then the others in like manner will use the water of their neighbor whom they have already accommodated. The time method of division carries this exchange of water to a greater extent and is especially applicable to the small ditches where the amount of water is small. In such case the exchange is systematized, and each one takes the whole stream of water for a time proportionate to his interests in the ditch, and the period is so arranged that the rotation will be completed in some definite time, as a week or two weeks, or such other time as the experience of the locality has shown to be desirable for an irrigation to be repeated. The water will then be given out at night or day according to a schedule, and in order that the inconveniences may be fairly distributed, the period of rotation may be made with a fractional day, so that those who came in the night during the first rotation will come in the day during the second, and vice versa. Thus, suppose the period of rotation be taken as one week, or for reasons above given, $7^{1 / 2}$ days, and the number of shares be fifteen, of which some own one, others two, and some three shares. In this case each share
would give its owner the right to use the water for one half day, or twelve hours; the owner of two shares would be entitled to its use for twenty-four hours, and the owner of three shares to thirty-six hours. Where there are a large number of rights or of users the same method would be carried out but to a greater extent. As carried out in the countries where it is applied, the division may be carried out until the exact number of minutes to which each is entitled to the water is determined. In such case a time table needs to be prepared in advance, usually at the beginning of the season. Each one is furnished with a copy of it, as well as the ditch superintendent and employees, and the water is shut off or turned on the different gates according to schedule. The user must be ready to take it at the proper time or lose the water until his turn at the next rotation.

This method is best applicable evidently in the cases where the amount of water flowing into the lateral is constant. This, under the present conditions of American practice, is rarely the case. The water in the main ditch, and consequently in the smaller laterals, is subject to the fluctuations of the main stream. Where water is distributed from reservoirs, then the flow may be maintained uniform. The necessity for restriction in the use of water to certain assigned times is also distasteful to many. But by common consent, methods are used which are leading to the same system, and with the gradually increasing pressure for the greatest benefit from the amount of water available, there is little doubt that this method will gradually extend in use under the conditions where it is best adapted. With the varying streams and varying flow, with the previously prepared time table, the method is not so equitable as the division of water as it comes. But with the advance of canal administration and with increase in knowledge of the flow of water, it will be possible to adopt a modified time-system of distribution which will be adapted to the varying streams. It is already in ditch administration in Colorado becoming customary to keep records of the amount of water which is taken into the canals. It will become increasingly desirable, and even necessary. For the large ditches taking water from the streams, the amount of water which is taken into the ditch for different depths of water in the ditch, is officially determined by the State Engineer or his deputies. A similar rating of the lateral ditches may be made, or weirs may be used with greater accuracy. As it becomes possible to find men who can use the various methods of measurement to determine the amount of water flowing, it will be possible to use a modified time distri-
bution, so that each will be given the water long enough to give each the same quantity. This would give a short time for the periods when the water is plentiful, and longer times when low. The unit could be varied, so as to bring the irrigations a convenient time apart. The successful operation of such a system would require an intelligent superintendent, and one who had the confidence of the users of the water, or a wide-spread knowledge among the users.

In the distribution of water from small reservoirs, where there are but few interested, and where the different owners do not care to use the water at the same time, some such arrangement is necessary. With the weir measurement it is possible to keep account of the amount used by each person, so that the water may be divided in proportion to the rights of each.

MODULES.

It is not possible to secure a module satisfactory in every respect or to meet all conditions. Where there is fall to spare in the ditch some forms are available which would be excluded if there were no fall to spare.

The features desired in a module may vary under different conditions, so that there are some forms which give excellent satisfaction in some circumstances, which do not in other cases where the conditions emphasize the desirability of some other feature. In the early stage of water measurement, when water is abundant, accuracy is a minor consideration, while with increased demand for water, it is one of the first, if not the first consideration. A second desirable feature, which has been the object toward which many have worked, is a module which is self-regulating and preserves the same discharge of water even with fluctuating depths of water in the canal.

The following may be considered desirable conditions in a module. Most of these conditions were recognized several centuries ago by the magistrates of Milan:
${ }^{\text {* }}$ 1. Its discharge should be capable of being converted into absolute measure-as into cubic feet per second.
*2. The ratio indicated by the module between the discharges from two outlets should be thessame as the actual ratio.
*3. The same module or box should give the same amount of water wherever placed.
4. It should be capable of being used with large or small canals.
*5. It should be capable of being set to discharge any fraction of its capacity, so as to be capable of distributing water pro rata.
6. Surreptitious attempts to alter its discharge should leave traces easy to recognize.
7. It should be simple enough to be operated by ordinarily intelligent men.
8. Calculation ought not to be required in order to regulate the discharge of different modules, or to determine how much they are discharging.
9. It should occupy but small space.

Io. The discharge should not be affected by variations in the level of water in the supplying canal, or, in other words, it should be self-regulating.
*ir. Its cost should be small, and it ought not to require much fall.

These conditions are evidently not of equal importance. The most of the conditions have been recognized for several centuries. Those unmarked are essentially the same as those given some centuries ago.

Condition r , on which depends the accuracy of the measure, becomes day by day increasingly important, and is the one which with the passage of time may be considered the most important. If the first condition is met. Nos. 2,3 , and 4 which are practically included in it are also met.

The question of expense, mentioned in No. in, is a relative one, and may or may not be of importance. It becomes of less importance as the development of the irrigated section becomes greater and the needs for accuracy become more generally felt. But the requirement that the fall required shall be small, is a physical condition which it is often absolutely necessary that modules for special locations must meet.

Condition 8 becomes of less importance, with the increase in intelligence of those whose duty it is to distribute water, and is not objectionable against such modules as the weir, where tables of discharge may be prepared which enables the discharge to be determined without computation by the user.

No. Io is the condition which to the early users is almost always the most important. The reason has been partly one of the stage of hydraulic science, in which it has not been known how to measure the quantity of water passing except by passing the water through orifices. In order to make the velocities through these orifices the same, it has been necessary to make the head of the water equal in these different places, and consequently to secure a measure it has been desirable to keep the heads over the openings constant. The condition is less important with us, both because with the
growth of hydraulic science the amount of water may be measured with more accuracy than the early users knew how, and because our conditions are different. In our practice it is rarely attempted to make the discharges constant. Instead, as the canals usually have largely different quantities of water during the season, it is far more important that the water shall be cut down in each smaller ditch in the same ratio.

The devices for maintaining a constant flow may be divided into two classes:
I. Those which attempt to maintain the pressure of water above the opening constant, the orifice remaining unchanged.
2. Those which vary the size of the opening with different heads of water, in such manner as to keep the discharge constant.

Nearly all modules are of the first class, as the difficulties are simpler. The module of the Isabella Canal of Spain, described in the latter pages, and an excellent module, is of the second class.

But even if the head may be kept constant, the accuracy of the measure in those of the first class depends upon the kind of opening. The module proper consists of the orifice, the remainder being simply accessory.

The old Italian modules are mostly based on an orifice of a determinate size, the head above the orifice remaining constant. The miners' inch of the west and the statute inch of Colorado are such modules. Some of the Italian modules are circular, but most are rectangular of various dimensions. Those of the samt kind had the same height of orifice and the same head. When different quantities of water were to be given, the orifice varied in length. But in all these cases it was assumed that the discharge was in proportion to the length of the opening. The prevailing form of measurement on the older canals of Colorado has essentially the same idea involved. It is generally attempted to deliver water through orifices of the same depths, but with variable widths according to the quantity of water to be furnished. Butin cases where the elevation of the surface is such that the ordinary depth can not be given, it is not uncommon to make the depth less but the width greater, keeping the area uniform. Among these Italian modules, the Milanese module, or sometimes called the Soldati module, has been the most celebrated, as it has been the best. This dates from 1585 . The canals of the province of Milan had no good system of measure, though having been in operation for several centuries. There was much trouble
and complaint. Finally the magistrates of Milan attempted to regulate matters, and called for plans of modules, and gave twelve conditions which a module should satisfy.*

It was in response to this proposal of the Milan rulers that Soldati proposed the module which was adopted and is still in use on the canals of that province.

Figure 2.

The first thing Soldati considered important was to insure that the water should flow with uniform pressure. This he attempted to do by the following principle:

If two chambers are connected, as in the diagram, the water in the second chamber will be lower than that in the first by an amount depending on the relative size of the orifices. But the depths in the two chambers are in a constant ratio. Thus, if the depth in B is 6 inches, and in A inches, if the water in A becomes twice as deep, that in B will also become twice as deep as before. Under these circumstances, an increase in depth of 18 inches in A causes an increase onethird as much in B.

By means of such a regulating chamber, therefore, the variations in the height of the water in the canal are lessened in the regulating chamber, which is intended to furnish the water under constant pressure. While apparently avoiding the difficulty caused by a varying head, this really does not do so. As a matter of fact the flow will increase in the same ratio for a given increase in depth of the main channel, whether the orifice comes direct from the main channel or from the regulating chamber, provided it be at the same level.

The reason for this fact, which is contrary to general opinion of those using water from the ditches under such systems, is this: As the velocity of water flowing from an orifice varies with the square root of the depth, according to the familiar Torricellian principle, the discharge for an opening of constant size will vary with the square root of the

[^3]dtpth or pressure. While the variation is not as much, measured in inches, in the regulating chamber, as in the main channel, it is the same relatively, and the discharge, with a variation of level, will increase in the same ratio as it would from an orifice discharging direct from the main canal and without the regulating chamber. In the latter case, if the orifice gave the same discharge as the one from the regulating chamber it would be smaller, of course.

It follows from this that the value of this as a regulator is apparent rather than real, for the amount of water delivered will vary as much as if the opening was in the canal and subject to the greater variation of water which there is in the canal.

It does afford a means of keeping the variation of head above the orifice within smaller limits, though a larger opening is required, and this is sometimes desirable. But it should be kept clearly in mind that unless regulated with every variation in the level of the supplying canal it does not assure a constant flow, which has been its supposed principal merit. In order that the discharge shall be in proportion to the size of the openings, which this method implies, it is evidently necessary that the water shall pass through with the same velocity, which not only requires that the pressure or head shall be the same, but also that disturbing influences of other causes, as of velocity in the water from its passage through the first opening, waves, etc, shall be eliminated. Accordingly the module consists generally of two parts, that already described for attempting to maintain a constant pressure, and other apparatus intended to still the waves in the regulating chamber and assure that the water shall reach the opening without velocity. A variety of means has been adopted mostly by varying the length and breadth of the regulating chamber. In the case of the Naviglio Grande; the canal where troubles of measurement caused the original introduction of the module, the boxes which I examined when in Italy had also a cover for the purpose of stilling the fluctuations of the surface and insuring that the water should leave with the velocity due to the simple pressure.

This method is used with many variations throughout Italy. The openings in the different provinces have different sizes and shapes, and different pressures are used above the orifice. All are called "oncia" or inches. Some of them are circular. No less than ten are given in Carton \& Marcolongo's "Anuale del Ingegnere Agronomo," is88.

In this State the same principle has been extensively used in the Max Clark box, as it is called, named from its in-
troducer. The box has been extensively used in the older portions of the State, and has fulfilled a useful purpose. It has the same fault as the Milanese module, added to the fact that much less pains are usually taken in Colorado to look after the details, and to secure the best arrangement possible to prevent the influence of other causes.

As the term " oncia" was given to the Italian unit, so the term inch has been used throughout this western country for the corresponding unit. The statutes of Colorado prescribe that water shall be measured through an orifice 6 inches in height, with a pressure of water of 5 inches above the opening, and that the number of inches shall be the same as the number of square inches in the orifice. But the term is not confined to the statute inch. On some ditches water is measured with a pressure of only two inches, on others without any, but the same term is used in all.

An inconvenience which was soon discovered in the use of the Milanese module was that the discharge was not in proportion to the nominal discharge. A person, for instance, who drew ioo oncia, receives more than ten times as much as one who drew io oncia. The difference was so noticeable that it was not long before the discharge from any one orifice was restricted to a certain number of oncia, generally six. The oncia varies from 34 to 47 litres per second, according as the orifice discharges one or six oncia. A similar variation is true of the statute inch of this State. The advantage in such methods is entirely in favor of those who draw the large quantities. The reason for this difference has been shown on pages 7 and δ.

There are other causes of variation, as in the distance the opening is above the bottom of the regulating box, in the thickness of the sides, in the manner of its discharge; all of which render this module, excellent as its service has been in the past, inaccurate and unreliable, and is leading to its abandonment.

A module based on an entirely different principle was used on the Marseilles canal in France for a time, and was described in the earlier editions of this bulletin. This module consisted of a hollow vertical cylinder which waskept at a constant distance below the surface of the water by a float. The water passed over the edge of the cylinder, and passed out through a channel which connected with the interior of the cylinder. The cylinder passed through a water tight packing. In the previous editions attention was called to the probability that the module would be insensitive. On a per-
sonal visit to the Marseilles canal it was learned that this module had been abandoned for that reason.

A simpler device for keeping the orifice a certain distance below the surface was tried on the Montrose canal, in the western part of the State. The orifice rose or fell with the water of the canal, being supported by a float, and was connected with the lateral by a pipe and a flexible joint. The trouble in such an apparatus is to make a joint which shall be water-tight and at the same time fiexible enough to be moved by a moderate-sized float when the water rises or falls. If this can be done it would satisfactorily solve the problem of giving a constant flow.

A modified form of the Marseilles module, without the more objectionable features has recently been invented by an Australian. At a competition under the auspices of the Minister of Water Supply of Victoria this form received the premium of $\$ 500$. The module consists of a cylinder floating vertically, the water passing from the outside to the interior of the cylinder as in the case of the Marseilles module, but the rim of the cylinder is divided into several notches instead of one continuous weir. The cylinder is connected with the channel below by a bellows arrangement of leather which will open or close as the water varies in depth. The amount of water is varied by varying the depth to which the weirs are sunk in the water. The inventor is Chas. A. D'Ebro of Victoria. The durability of the leather may interfere with the success of this module.
H. L. Decker of South Fork, Colorado, has arranged a floating module based on the principle of the siphon, which has some good features and would seem to be adapted to give a constant discharge. The siphon is arranged to float, so that the difference between the level of the water in the canal, and the mouth of the siphon remains the same. There is considerable additional apparatus in connection with it for accomplishing the object.

The only module of the second class is one which was first placed in operation on the Isabella I. canal of Spain, and is due to Senor Ribera. In this one the opening varies in size as the depth of water changes, being larger when the water is low, and smaller as the water is deeper. The method adopted is to allow the water to pass out through a horizontal opening in the bottom of the main canal or the head of a lateral. This hole is circular. Through this hole passes a plug of metal, which is smaller than the hole, the water passing between the plug and the outer circumference of the opening. By varying the diameter of the plug at different
points, it may be so made that the opening will be reduced in such proportion as the head increases.

This module would seem to be satisfactory. There is little or no friction, but it has the disadvantage of requiring considerable loss of fall. If condition II is not important, the module doubtless will be very satisfactory.

For a discharge of 1.44 cubic feet per second, generally estimated in Colorado enough for 80 acres, with a hole 12 inches in diameter, the following would be the diameter of the plug for the given distances from the top of the plug:

SPILL-BOX OR EXCESS WEIR.
Another means of preserving a constant head is due to A. D. Foote of Idaho, Past President of the American Society of Irrigation Engineers.

A cut of this was given in the Engineerng News of November, 1886, and it has been more fully described in the transactions of the Am. Society of Civil Engineers, Vol. XVI.

In Fig 3, A is the main ditch, with a gate forcing a protion of the water through box B. This has a board on the side towards the main ditch, with its upper edge at such a height as to give the required pressure at the orifice. Then if the water be forced through B, the amount in excess of this pressure will spill back into the ditch. If the box B is made long enough, and the spill-board be sharp edged nearly all the excess will spill back into the ditch, thus leaving a constant head at the orifice. Mr. Foote calls this the excess weir. He constructed one for trial purpose. To Mr. W. H. Graves of Monte Vista, is due the credit of its introduction into use on large canals, with the necessary modifications. He terms it the spill-box, a more suggestive name than that proposed

through $A B$
Figure 4-plans of the spill-box.
C is the entrance of water from the ditch; G a gate which serves to admit as much water as is desired; B the outlet furnishing water to the user. The small arrows show where the water spills back into the main ditch.
by Mr. Foote. In use, Mr. Graves constructs a weir in the canal, and places the box at one side, always using two, if possible, one at each side, to save fall and expense. The spill-box is about 16 feet long, i4 inches wide, set perfectly level. The crest next the canal is brought to a sharp edge, and so are the 2×4 pieces on that side of the box. The gate for opening the orifice is of galvanized iron, worked by a rod and wing nut from the end of the box, so that it may be adjusted to any desired size of opening, and locked. The side of the opening is protected by strips of galvanized iron, with the double purpose of protecting the orifice from surreptitious enlargement and furnishing a groove for the gate to slide in. Mr. Foote thinks that the main ditch need not lose more than a few inches fall-enough to have the excess spill back. Mr. Graves prefers at least a foot.

These have been introduced on the canals with which Mr. Graves was connected-the Monte Vista or Citizens, canal, the Rio Grande or Del Norte, the Grand River and the Montrose, which include the largest canals in the State, and it is now, i891, being introduced on the North Poudre canal. The farmers whom I questioned in the San Luis Valley expressed themselves as perfectly satisfied with its fairness.

The success of the device for maintaining the head constant is very good, though it cannot be said to be perfect. It may be made much more sensitive. Under normal conditions

Figure 5-THE SPILL-bOX.
(As usually placed in pars.)
The weir is placed across the ditch, making the ditch lower below than above, giving apportunity for the water to spill back 10 to the ditch. G is a moveable gate to regulate the amount of water admitted at different stages of water in the canal.
the variations in head will be confined within small limits. As the spill-box is especially a device for keeping the head constant it may be used either with the weir or with the inch system, or with any form of opening. It would be very easily adapted to the Cippoletti form of weir. Unfortunately in its adoption by the companies with which Mr. Graves was connected the inch system of measurement was in use. With a single spill-box, when the opening is of different sizes, there will be caused a velocity of approach in the water which will tend still further to the favor of the larger opening. The ef-
fect of this may be lessened by making the width of the box greater for the greater discharges.

By making the box longer, so as to increase the length of the edge over which the water spills the device may be made more sensitive. Mr. J. C. Ulrich, C. E., the successor of Mr. Graves as Chief Engineer of several of the large canals in the San Luis valley, and of the North Poudre Canal, has in some places adopted on the latter canal a form where the box is placed so that it spills on both sides, and the sharp edge is made on both sides of the box.

THE WEIR MODULES.

But of all forms of modules, or that which best satisfies the first condition of accuracy, is the form of opening known as the weir, or overfall (French, Deversoir; Italian, Stramazzo; German, Ueberfall). It is not intrinsically more accurate than many other forms of openings, but as it is so simple that the conditionsfor accuracy may be readily met, and because there is a vast fund of experimental knowledge regarding its behavior under different conditions, no other form of opening can compare with it in accuracy.

Because of these facts and the growing importance of accuracy, the coming module will be based upon the weir. It is gradually displacing other types. Australia is using it, exclusively, we think; India, to a large extent, and in Italy, the originator of most of our measures, the newer canals are using it to the exclusion of the Milanese module. The old canals will probably continue the use of the old module, for rights have become vested in measurement by them, and consumers are jealous of change. A large portion of the newer canals in Colorado provide that measurement shall be made over a weir. So far as learned no canal has abandoned its use. Cippoletti, who was commissioned by the Canale Villoresi to propose a new module in obedience to the requirement of the Italian government, says in regard to the weir:
"It is indisputably demonstrated that in weirs with complete contraction, constructed and observed with the necessary accuracy, the coefficient of contraction. remains constant, and Francis' formula guarantees the exactness of the discharge with an error not greater than one-half of one per cent. for depths of water from 3 to 24 inches; providing the length of the weir is not less than three-or better yet, four-times the depth of water flowing over it."--[Cippoletti, Canale Villoresi, Moduio per la dispensa delle acqua, Milano, 1886, p. 135.

Two forms will be considered, and tables given for their discharge-the rectangular weir, whose sides are vertical, which is the one ordinarily meant when weir is spoken of, and the one which has been the subject of experiment; and the trapezoidal weir proposed by Cippoletti, after a thorough in-
vestigation. Its sides are inclined at a slope of one-fourth horizontal to one vertical.

The most complete experimental investigation of the flow of water over weirs has been made by Americans, and the adopted formula is due to one of them. To the careful experiments of the late Jas. B. Francis, Past President American Society Civil Engineer, Honorary Member American Society Irrigation Engineers, of Lowell, Mass., is due the ordinary form of the equation of the weir, and to his careful work hydraulic science owes much. At Lowell were located a number of manufacturing enterprises drawing their water from the Merrimac river. Their combined capital was over thirteen millions of dollars. It became necessary to determine a more definite measurement of the water, and Francis' experiments were instituted for this purpose. Carried on with all the appliances and conveniences which the capital interested would warrant, the experiments were performed with such care and with such attention to minute sources of error, that they are above criticism.

One difficulty in such experiments is to obtain a suitable basin in which to measure the water. In this case, Francis was fortunate in having one suitable in the Lower Locks, into which the water could be deflected at will after passing the weir. The lock was carefully prepared. Cracks were filled, leaks stopped, even the depressions about nail heads filled up. The remaining leakage was ascertained by exper-

Figure 6.
iment. The slight increase in capacity due to bulging when full was ascertained. The total capacity of the basin when $9^{1 / 2}$ feet deep was over 12,000 cubic feet.

A preliminary set of experiments was made for determining the proper form of the equation of the weir and after this was determined, the main experiments were devoted to finding the numerical value of the coefficient of the formula. The formula indicated by his experiments has since been standard within the limits indicated by him. If one observes the flow of water through an orifice he will notice that the stream becomes narrower at the opening or is subject to lateral contraction. If over a weir, the sheet of water becomes thinner immediately below the crest, as in Fig. 6, or is subject to a vertical contraction. By taking separate account of
these two contractions, Francis succeeded better than previous experimenters in producing a formula which represented the discharge. The form of the equation indicated by theory and agreeing closely with Francis' experiments, is of the form.

$$
\mathrm{Q}=a \mathrm{LH}^{\frac{3}{2}}
$$

Where $Q=$ the quantity of water flowing in cubic feet per second, $\mathrm{L}=$ the effective length of the weir in feet. This is not necessarily the same as the actual length of the weir. It is mentioned more fully on the next page.
$\mathrm{H}=$ the depth of water flowing over the weir, in feet. Because of the contraction shown in Figure 6, this must be measured far enough from the weir to be free from its influence. If the water approaches with a current, this depth needs to be increased by a correction indicated by theory. This correction is troublesome to make. In practice it is better to so reduce the velocity of the current that the correction will be so small that it may be neglected. Table II. in the appendix gives the amount of this correction in different cases.
a is a numerical coefficient which is needed to multiply the result obtained by the indicated operations in the measured quantities, in order to give Q the discharge.

From his experiments, an abstract which cannot convey an idea of the care and skill used in the experimentation, Francis adopted the value of 3.33 for $a ; 3^{1 / 3}$ would agree a little more closely, and is slightly more convenient for independent calculation. The value of 3.33 is almost universally adopted.

The formula of Francis then becomes

$$
\mathrm{Q}=3.33 \mathrm{LH}^{\frac{3}{2}}
$$

where the letters mean the same as above and with the same restrictions.

Q represents the discharge in cubic feet per second.
L and H are both measured in feet and decimals.
Sometimes it is convenient to make measurement of the depth in inches. Scales giving decimal parts of feet are not common. In such case the foliowing formula may be used. Q is the discharge in cubic feet per seeond in both cases.

Where depth is measured in inches, and length of the weir is given in inches, then

$$
\mathrm{Q}(\text { sec. } \mathrm{ft} \text {. })=.0793 \mathrm{~L} \text { (in inches) } \mathrm{H}^{\overline{2}} \text { (in inches.) }
$$

Where depth is measured in inches, but the length is given in feet.

$$
\mathrm{Q} \text { (sec.ft.) } \quad 006675 \mathrm{~L} \text { (in feet) } \mathrm{H}^{2} \text { (in inches.) }
$$

An additional word needs to be said regarding L.
L is the effective length of the weir, which in case of the rectangular weirs, is not necessarily the same as the actual length.

ABSTRACT OF FRANCIS' EXPERIMENTS ON WEIRS.
(Depth has in all cases been corrected for velocity. Supply canal 14 feet wide.)

					COMMENTS
1-4	1.56	3.318	10	2	
5-10	1.25	3.334	10	2	
11-33	1.00	3.322	10	2	SERIES A.
56-61	0.80	3.325	10	2	
72-78	0.62	3.328	10	2	
36-43	1.06	3.353	10	2	SERTES B.
62-66	0.83	3.340	10	2	Same as A, except that crest is only $\overline{2}$ feet above bottom
79-84	0.65	3.326	10	2	of channel.
44-50	0.98	3.341	10		SERIES C.
67-71	0.80	3.339	10	0	Canal made same width as the werr, suppressing contraction, otherwise as in A.
51-55	1.00	3.327	10	0	SERIES D. Water cannot expand after passing weir.
34-5	1.02	3.360	8	4	Water 5 feet deep. SERIES E.
85-8	0.68	3.337	8	4	Water 2 feet deep. In both sets two bays, separated by partition 2 feet wide, giving 4 contractions.

Series C and D correspond to cases of weirs erected in flumes and of samo width as flume, C to weir at lower end, D to weir at middle.

Attention has already been called to the contraction of a stream as it passes through the weir or other opening. This will be especially noticed in cases where the opening is smaller than the channel leading to it. The formula giving the discharge really consists of several factors, one of which is the velocity of the water passing the weir, and another the sectional area of the stream where it has this velocity. Now the effect of the contraction is to lessen the area, not of the weir, but of the stream passing through it in which the water has the velocity given by the other factor. In consequence, the effictive length of the weir is shortened. Hence in this formula, for L is used, not the actual length of the sill, but the effective length, which is found by applying a correction for the contraction to the measured length.

The amount of this contraction depends upon the distance that the sides are from the parallel sides of the weir. When close, the contraction is small, but when the distance
is two or three times the depth on the weir, there seems to be no further change in the contraction with the increased distance. In such case, the contraction is said to be complete. From the case of complete contraction there may be all degrees of contraction down to no contraction.

The amount of this contraction, when complete, increases with the depth of water flowing over the weir. It is difficult and unreliable to measure the amount directly. But we again have recourse to the experiments of Francis, from which it is determined that with complete contraction, and the same formula, that if an allowance be made, equivalent to a shortening of the weir equal to one-tenth of the depth of the water flowing over it, for each complete contraction, the discharge

Figure 7.
will be given, other conditions being correct., within i per cent.
Thus, we may take an example from the abstract of Francis experiments, given on page 26.

In the case where the depth is 1.56 feet, there are two contractions, hence the effective length of the weir, or the length to be taken in the calculation of the discharge, is not ten feet, but ten feet shortened by two (the number of contractions) times one-tenth of 1.56 feet; or .31 feet less than io feet. The effective length is accordingly 9.69 feet. With the same weir, but a depth of 8 o feet, the effective length, or the
value of L to be used in the computation, is . 16 less than io feet or 9.84 feet.

It is seen that the effective length varies with different depths with the same weir. It is because of this, that of two weirs, one twice as long as the other, of the rectangular pattern, the one will not give exactly twice as much as the other, even for the same depths. But if the two have their effective lengths, so that one is twice the other, then the discharge of one will be twice that of the other.

The Cippoletti weir is a form adopted in order that the effective lengths are constantly the same as the measured length of the weir.

The weir here called the Cippoletti weir because of its originator, is one proposed by Cippoletti to meet the conditions which the Italian government laid upon the company which was given a concession of water for the Canale Villoresi, the last of the great Italian canals. This canal was built a few years since as a "high line" canal to water land above the existing canals. It waters about 125,000 acres, between the Ticino and Adda rivers, just north of the city of Milan. In the act of concession to this canal, the government required the company to propose a module for the measurement and sale of water which should be based upon the theory of the weir with free fall, and that the module should be accurate. The problem was put in the able hands of Cesare Cippoletti, the engineer in charge of construction. The problem Cippoletti proposed to himself, was, while preserving the simple and convenient form of the Francis formula, to determine the form and condition of the weir so that the discharge should be proportional to the length of the weir, and so that no single cause should produce an error of more than one half of i per cent.

Taking the experiments made by Francis as a basis, he attempted first to determine a form of the weir in which the contractions at the sides should be automatically overcome.

In the rectangular weir, as already mentioned, the effect of the contraction increases in proportion to the depth. The idea suggested itself to him, that by making the form of the weir so that the area increases by an amount in proportion to the depth on the weir, then if the increase in area can be made so as to exactly balance the loss due to the contraction, the flow through the weir would remain the same as though the weir were rectangular, of the same length of sill, but without contraction. In other words, the effective length would remain the same for all depths. Manifestly, a weir of a trapezoidal shape, like that in Figure 7 presents the
condition wherein the increase in area is in proportion to the depth on the weir. This is the fundamental idea in the Cippoletti weir.

This form is equivalent to the rectangular weir, with a triangle added at each end. In order that the flow through the added triangles shall be equal to the amount lost by the contraction, recourse is had to experiments and from calculation, the inclination of the sides is found to be such that a slope of one horizontal to four vertical would be sufficient, provided the coefficient of contraction remains constant. This is not quite an exact supposition, but the difference is insensible.

The experimentation with water so as to make the results worthy of confidence requires such exceptional facilities, and skill in experimentation, the first of which certainly was not accessible to Cippoletti, that he based his confidence in the constancy of the coefficient of contraction upon the constancy shown in the experiments of Francis and other experimenters. The experiments which have been made upon this weir seem to have been made in this country.

Attention was first called to the weir and its adaptability to purposes of irrigation in the first edition of this bulletin in 1890. Experiments had been previously made on weirs of that shape, such as our limited apparatus allowed, which were limited to weirs of 6 and 12 inches in length. Further experiments were made under direction of Professor Church of Cornell University by T. B. McVickers* but the most complete ones have been made by two students, Messrs. A. D. Flinn and Dyer, of the Worcester Polytechnic School of Worcester, Mass., who took the subject for their graduation thesis. These young men were permitted to use the testing apparatus at Holyoke, Mass., erected under the direction of Clemens Herschel, a well known hydraulic engineer. In their case the experiments could only be made by comparison with the flow over a rectangular weir The measurements were made on weirs $3,4,5,6,7,8$, and 9 feet long. These indicate an error slightly in excess of that expected by Cippoletti, and that the coefficient of contraction is less than .62 which was taken by him in determining the inclination of the sides. But the relation between weirs of different lengths, that their discharge should be in proportion to their length, is closely true. This is the feature for which the weir has been brought forward in the previous editions of this bulletin for irrigation purposes. \dagger

[^4]The weir measurement is accurate, provided the proper conditions are observed, but the conditions for the construction of weirs are not generally known, and less generally observed. It should also be understood that it is safe to apply the formula only within the limits of the experiments on which it is based. The results either by the weir or other orifices, are exact only so far as our experimental knowledge goes. The theory of the flow of water under even the simplest conditions is still too incomplete, and the laws too imperfectly understood to allow of passing much beyond the data with which we are possessed. In order that a weir formula should apply beyond these limits, the value of the coefficient α, in the formula would be a varying one. In the Francis formula the coefficient is given a constant value, the disturbing effect of the side contraction being taken into account by varying the value of L. But if the weir be placed so as to meet the following conditions, the formula above given, and the tables attached to this bulletin, may be used with confidence that the result is correct within I per cent.

CONDITIONS FOR THE WEIR, EITHER RECTANGULAR OR TRAPEZOIDAL.
In nearly all cases, the weirs placed for measurement, are not placed with sufficient care to make the measurement one of great accuracy. The present demand for water, which is to increase, will gradually require more care in every detail. The weirs commonly used are of timber with board sills and sides, not usually made in a wide enough or deep enough channel.

With the more pressing demand for exact measurement which is coming already in Northern Colorado, companies will soon be justified in constructing permanent weirs, with much care. Under the Canale Villoresi where the Cippoletti weir was first used, all the weirs examined by the writer were construced of cut stone, and the crests and sides were made of iron plates, the whole made with care so as to remain useful for generations to come.

If the following conditions are followed in constructing a weir, whether it be rectangular or trapezoidal, the weir formula may be used with confidence that no single cause will produce an error greater than one half of i per cent. The conditions are essentially the same as those either of Francis or of Cippoletti.*
I. That the channel leading to the weir be of constant cross-section, its axis passing through the middle of the weir,

[^5]and perpendicular to it; this straight reach to be of such length that the water flows with uniform velocity, without internal agitation or eddies. This should be not less than fifty or sixty feet, more if possible.
2. Only by making the contraction complete on both sides and bottom can the coefficient a in the formula have a value free from uncertainty, and to secure complete contraction, it is necessary:
(a) that the opening of the weir be made in a plane surface, perpendicular to the course of the water;
(6) that the opening itself have a sharp edge on the upstream face, and its walls cut away so that their thickness at the point of discharge shall not be above i-io the depth for depths below 5 inches, nor above $1 / 4$ the depth for depths from 5 to 24 inches;
(c) that the distance of the sill of the weir from the bottom of the canal be at least three times the depth on the weir;
(d) that the distance of the sill of the weir from the sides of the channel, be at least twice the depth of the water flowing over the weir;
(e) that the lateral contraction remaining undisturbed, the length of the weir shall be three, or better four, times the depth of the water flowing over;
(f) that the depth of water flowing over the weir shall not be less than 3 inches.
3. The velocity of approach must be very small; for weirs three feet long and depth of 12 inches, it ought not to be greater than 6 inches per second; for weirs of six feet long and depth of 24 inches it ought not to be above 8 inches per second. In all these cases the cross-section of the canal of approach ought to be at least seven times that of the weir. Other conditions affecting the velocity of approach are included in c, d, and e, respecting complete contraction.*
4. The layer of falling water should be perfectly free from the walls below the weir, in order that air may freely circulate underneath. For short weirs it is sufficient that the lateral walls of the lower canal be free from the sides of the weir. In such case, when air freely passes underneath, the level of the water in the lower canal has no influence on the discharge of the weir, unless it reaches or exceeds the level of the crest.
5. The depth of the water should be measured with accuracy where the suction of the flow does not affect the

[^6]height and where it is free from influences such as the wind, or the movement of the water, which can affect the true level. The height should be read to within $1-300$ of the depth in order that the error may be within one-half of I per cent.
6. The weir ought to be constructed with care and carefully located. It should not vary more than 4 degrees from being perpendicular to the channel. Its sill should be horizontal.

The disturbing causes may be divided into three classes; those which always tend to to increase the discharge over the computed amount; those which always tend to decrease the amount; and those which may either increase or decrease the amount, one being as likely to occur as the other, and in the long run tending to balance each other.

The measurement of the depth of water is in general as likely to be too great as too small, with careful measurement, and the errors due to this may be neglected.

The effect of obliquity of the weir, or of eddies is to decrease the flow below the computed amount.

The effect of any velocity of the water as it approaches the weir, of the nearness of the sides or bottom to the weir, incomplete contraction, of a crest not perfectly sharp, of air not having accessbeneath the sheet of falling water, etc., the effect of each of these is to increase the discharge.

The causes tending to increase the discharge evidently out number those tending to decrease it, and are, all things being taken into account, more difficult to overcome.

It is frequently not possible to meet all the conditions. But the errors due to the weir not being vertical, or horizontal, or perpendicular to the current, or for crest not being sharp, can be obviated by careful construction.

If the weir is not vertical, the discharge is increased or diminished, according as the inclination may be down or up stream. The correction amounts to 4 per cent for inclinations as great as one horizontal to three vertical, or for angles of about 18 degrees.* For less inclinations the correction would be less.

The effect of nearness of the sides in increasing the discharge, amounts to about one per cent. when the distance is equal to the depth of the water on the weir, about $1 / 3$ of one per cent. when the distance is $11 / 2$ times the depth, and may be neglected when over twice the depth of water on the weir.

[^7]The effect of nearness of floor is to increase the discharge. When the depth below the crest is three times the deptin over the weir the increase is insensible; if 2.5 times the depth, is less than one-half of 1 per cent., if 2 times the depth nearly i per cent., if equal to the depth is 1.5 per cent. and if but one-half the depth, over 2 per cent. The amount of this varies with other conditions.

An increase of temperature seems to increase the discharge, and the presence of sediment has the same effect through action on the surface tension of the liquid. With large openings the effect of the temperature is less than with small. Under present conditions they need to be neglected. Their influence is small.

The velocity of approach is, all things considered, the most difficult to reduce within reasonable limits, and the errors thus introduced in ordinary measurement are the most considerable. It is not possible to entirely prevent velocity in the approaching water, but by properly proportioning the size of the channel to the opening of the weir, the velocity may be reduced to such limits that its effects may be neglected. A comparison of tables I. and II. for allowing for velocity of approach will show this. As the water for irrigation is liable at times to carry sediment, the space in front of the weir under most conditions is liable to fill up. The water being thus confined to a smaller cross-section, the velocity is augmented, increasing the discharge for the same depth over the weir. It is troublesome to make the computation for the allowance for velocity of approach, the better way being to keep within the bounds indicated by the conditions on page 31, or within limits indicated by study of tables I. and II; but where necessary the following method may be used; with velocities of less than 1.5 feet the results will be correct. For greater velocities it seems probable that the correction is not quite sufficient. It should also be remembered that this cor. rection is only for the additional head due to the velocity:

Let $\mathrm{H}=$ the head passing over the weir, measureà in quiet water, several feet from the crest.
$h=$ the head which would give the velocity of the water in the channel of approach. This velocity may be found by determining the quantity passing over the weir, by reference to the tables, without correcting for velocity. Then the velocity is

$$
v=\frac{Q}{\mathrm{~A}}
$$

Where A is the area of the section of the channel above the weir in square feet, and Q is the quantity in cubic feet per second. Then

$$
h=\frac{v^{2}}{64.4}
$$

the denominator being twice the acceleration of gravitation, The correction for velocity is then made by using in the reir formula, $\mathrm{Q}=3.33 \mathrm{LH} \overline{\mathrm{H}^{2}}, \quad \mathrm{H}-1-\frac{3}{2} h$ instead of

H as the depth to be taken. This form of correction is due to Fteley and Stearns.* It gives a much larger correction for velocity than is furnished by the Francis correction, but it agrees much better with measurements I have made for high velocities. The experiments on which it was based were limited to velocities of 2.5 feet per second. Table II. gives the per cent increase in discharge caused by different velocities. It will be seen how great this correction becomes, sometimes causing an increase of several hundred per cent., and, consequently, shows the importance of keeping the velocity within low limits.

To aid in the practical allowance for velocity of approach, two tables have been prepared and are printed as tables I and II of the appendix. Table II shows the increase in per cent. over the quantities given in tables III and IV by various velocities of approach. The increase with a given velocity varies with the depth of water over the weir, being greater for small depths. A velocity of one foot per second increases the discharge over a weir when the water is flowing 3 inches deep, over 14 per cent; if flowing over the weir 1 foot deep, only 3.5 per cent. The table I shows what the average velocity is as the water passes through the weir, or it shows what is the velocity in the channel if the section is the same as that of the weir, as it frequently is. A comparison of the two tables will show the proper section to give the channel in order that the resulting.error shall be within reasonable limits.

As the effect of the causes which tend to increase the discharge cannot be entirely eliminated, the tendency is to increase the discharge. In consequence of this, Cippoletti proposed to increase the amount as computed by the Francis formula by i per cent. making the formula,

$$
\mathrm{Q}=3.362 / 3 \mathrm{LH}^{2} .
$$

But as it seems probable that the coefficient of discharge assumed by him was too large, the ordinary formula will be better to use in the dearth of sufficiency of experimental knowledge.

The Cippoletti form of weir because of the reasons already given has the most advantages of any module known to the writer for measurement of water for irrigation purposes. It is reliable to within 2 per cent. with the Francis formula, if placed according to the conditions given, and probably within i per cent. The ordinary methods of measuring or guessing at the discharge of water vary from 40 to 400 per cent., as usually used. All that may be said of its advantages, save the one of having the effective length of the sill in proportion to the actual length of the sill is true of the rectangular weir also. It meets most of the conditions for a good module. It lacks means of self-adjustment, or of preserving constant heights of water. Where adapted, the spillbox may be used in connection with it, when that condition would be very nearly met. Several canals have introduced essentially this combination, and so far as reports have reached the writer they have been satisfactory.

SUBMERGED WEIRS.

In some cases the water in the lower canal may be higher

[^8]
than the crest of the weir.

 found approximately.Let $\mathrm{H}=$ the depth of water over the weir \quad ge may be in feet; $h=$ the depth below the weir,
up-stream side, measured in still water. The latter sho wove the crest, both which is formed below the weir and p
uld be below the wave
The discharge may be found
ing that the water flows over Aeasured in feet; $d=\mathrm{H}-\mathrm{h}$. though it came through an oppioximately by considerpressure $\mathrm{H}-h$, and the μ. Ifice of that height and under remaining depth $\mathrm{H}-h$ per portion of the stream for the

The discharge of t, or d, flows as over a weir. cording to the tables

The discharge f ne weir portion may be computed acputed by determin per second, which $\sqrt{2 g d}$, where $g=$ of the lower por
That of the w tion would then be $4.8 \mathrm{~h} v a$, approximately. be, for a port eir, $3.33 d^{\frac{3}{2}}$. Hence, the total discharge would on of length L feet,
This is not
correctly correctly likely to vary by 5 per cent. if measurements are dischary made. All dimensions are measured in feet; the a flup e is given in cubic feet per second.
a fluy is better to avoid the submerged weir, and instead use ditc Me placed in the ditch, of the same cross-section as the sar A, which should be rated at the different depths in the fe manner as the measuring flumes near the heads of the canals in Colorado. The methods of the use of these will be described in a future bulletin.

THE TRIANGULAR WEIR.

The triangular notch or weir, proposed by James Thomson, has been strongly recommended, as it has certain advantages due to the fact that the orifice preserves the same shape for all depths, and the ratio of the area to the weir perimeter remains constant. The discharge depends only on the depth as well as the angle, instead of the width which is usually necessary also. The equation for the flow through such an opening may be found without difficulty to be

$$
\mathrm{Q}={ }^{8} \mathrm{~m} \mathrm{~T} \sqrt{2 g} h^{\frac{5}{2}}
$$

where m is the coefficient of contraction, T the tangent of Giving m the value 0.62 , which is about the average uch an orifice, and g its value, the formula becomes

$$
Q=2.65 \mathrm{~T} h^{\frac{5}{2}}
$$

where Q represe
and h is measured nts the discharge in cubic feet per second, feet. For right angle notches it is then $2=2.65 h^{\frac{5}{2}}$.

EXPLANATIO

Tables I and II in the appendix are the errors due to velocities in the approachin culations indicated.

Table I. is an auxiliary table giving the ave rage velocity through the weir for different velocities over the weir. It may be usi the water as it approaches the weir, under known coin second table, to determine the proper conditions of the to determine the velocity of to bring the errors within assigned limits. The vel size of the channel, in order velocity in the plane of the weir. If, then, the cross-secu ion of the channel above the weir is no larger than the weir itself, the velocity of the w would be the same as that of the table. If the section is then the velocity is one-half that of the table.

Table II is computed from the Fteley formula on page 33 , and expresses the increase due to velocity over that given in the tables III-V T. To use, the discharge as given in tables III-VI is determined, and the cor rection is applied according to the given depth over the weir and the velocity of ap proach. The correction is expressed in per cent. The formula is based on exper iments limited to 2.5 feet per second. For greater velocities, therefore, it is possibl, that the quantities given are in error.

Example.-What correction to allow for the velocity of 2 feet per second, the water passing over weir 1 foot deep. Find at top the column with depth 1 foot, and at left find line with velocity of 2 feet per second. Follow the line to the right and in the column with depth 1 foot is found which is the number of per cent, by which the discharge is increased.

Tables III and IV are newly computed for this edition, and gi ve the discharges over weirs with the depths measured in inches and fractions corre sponding to the divisions on the rules ordinarily in use. They are computed from \& modified forms of the Francis formula, the depths being measured in inches.

Table III is computed from the formula, $\mathrm{Q}=.006675 \mathrm{LH} \frac{3}{2}, \mathrm{Q}$ being in feet per second, L and H in inches.

Table IV is computed from $\mathrm{Q}=.080107 \mathrm{LH}^{\frac{3}{2}}$, where Q is in cubic feet per second, L is in feet. H is in inches. It is the Francis formula with the units changed.

Tables V and VI were given in previous editions, but the depths being given in decimals of feet were not so convenient for use with scales which most people possessed which are divided into feet, inches and fractions.

In table III the discharge is given for a weir one inch long, forming a portion of a longer weir, and for all depths up to 30 inches, the depths varying by sixteenths of inches. The even inches are given in the left hand column and fractions at the top of the page. The discharge for the corresponding inch and fraction is found at the intersection of the line of the even inch and the column of the fraction, Where there are contractions, the amounts to be subtracted are given in the second column. These are given for intervals of half inches, the quantities there given being for the even inch or half inch of the adjoining column, and for two complete contractions.

Example.--What is the discharge over a weir 45 inches long and with a depth of $11 / 4$ inches with two complete contractions?

Find 11 inches at the left of the page, and the column headed $1 / 1 /$ inch at the head of the page. Follow this column down until it intersects the line of the 11. At the intersection is the discharge, for a portion of the weir 1 inch long, which is .2519 cubic feet per second., Then for a weir 45 inches long it is 45 times as much, or 11.3315 second feet, if without contraction. The second column gives
the allowance for contraction for 11 inches depth; the eleventh colamn for a depth of $11 \frac{1}{2}$ inches. For $111 / 4$ inches we then take a value intermediate between those for 11 inches and $11 \frac{1}{2}$ inches, obtaining the correction .567 , the amount by which the discharge is reduced. This, then, leaves the total discharge as $11.335-.567=10.77$ second feet.

Table IV is used in exactly the same way. In this table the discharge is given for a portion of a weir 1 foot long, while No. III gives it for a weir 1 in . long.

These two tables are consequently adapted to weirs of any length, but require multiplication.

Tables V and VI give the discharge for weirs of certain lengths, for different depths, and without multiplication. Where companies adopt weirs for measurement it is far more convenient to adopt certain standard lengths and make all weirs conform thereto.

Table V gives the discharge over rectangular weirs for depths varying by $.02 \overline{5}$ of a foot and for various lengths of weir. These tables give the discharge with two complete contractions. In case there is no contraction, then the amount in the right hand column may be added to the amounts given in the table.

The amounts given in the boldface figures are for those cases where the conditions of depth and length of weir are such as to make the results the most reliable.

Table VI is for rectangular weirs without contraction-which may also be found from table V, and for the Cippoletti trapezoidal weirs. It will be noticed here that the discharges given in the various columns are directly proportional to the length of the weir, while in table V they are not. The amounts are 1 per cent greater than given in table V . The quantities in table V were computed with the constant $31 / 3$ instead of 3.33 ordinarily used, making the quantities $1-10$ of 1 per cent. greater than given by most tables. Table VI, intended for trapezoidal weirs is 1 per cent. greater than corresponding discharges of table V .

Depth in all cases in the following tables is measured in still water. See page 25 .

TABLE I.
Auxiliary Table for Approximating to Velocity of Approach.

$\left.$| Depth of water over |
| :---: | :---: | :---: | :---: | :---: |
| weir. |\(\left|\begin{array}{c}Average velocity

in section of

weir.\end{array}\right|\)| Depth of water over |
| :---: |
| weir. | \right\rvert\, | Average velocity |
| :---: |
| in section of |
| weir. |

TABLE II.
Corrections in per cent. for velocity of approach, to be applied to values obtained from Tables III to VI.

Velocity.	Head.*	Depth over weir, in Feetr.											
		. 25	. 50	. 75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00
$\begin{array}{r} .25 \\ .50 \\ .75 \\ 1.00 \\ \hline \end{array}$	$\begin{array}{r} .0010 \\ .0039 \\ .00875 \\ .0155 \end{array}$	$\begin{aligned} & 00.8 \\ & 03.5 \\ & 08.0 \\ & 14.3 \end{aligned}$	00.4 1.8 4.0 7.1	0.3 1.2 2.6 4.7	0.2 0.9 2.0 3.5	0.2 0.7 1.6 2.8	0.1 0.6 1.3 2.3	0.1 0.5 1.1 2.0	0.1 0.4 1.0 1.8	0.1 0.4 0.9 1.6	0.1 0.3 0.8 1.4	0.1 0.3 0.7 1.3	$\begin{aligned} & 0.1 \\ & 0.3 \\ & 0.7 \\ & 1.2 \end{aligned}$
1.25 1.50 1.75 2.00	$\begin{array}{r} .0 \geqslant 43 \\ .0350 \\ .0476 \\ .06222 \\ \hline \end{array}$	$\begin{aligned} & 22.6 \\ & 33.1 \\ & 45.7 \\ & 60.9 \end{aligned}$	11.1 16.1 22.2 29.2	7.4 10.7 14.6 19.2	5.5 8.0 10.9 14.3	4.4 6.4 8.7 11.4	3.7 5.3 7.2 9.5	3.1 4.5 6.2 8.1	2.7 4.0 5.4 7.1	2.4 3.5 4.8 6.3	2.2 3.2 4.3 5.6 5.6	2.0 2.9 3.9 5.1	1.8 2.6 3.6 4.7
$\begin{aligned} & 2.00 \\ & 2.25 \\ & 2.50 \\ & 2.75 \\ & 3.00 \\ & \hline \end{aligned}$	$\begin{array}{r} .0787 \\ .0971 \\ .1175 \\ .1398 \end{array}$	$\begin{array}{r} 78.6 \\ 99.1 \\ 121.8 \\ 149.4 \end{array}$	$\begin{aligned} & \hline 37.4 \\ & 46.7 \\ & 56.9 \\ & 69.1 \\ & \hline \end{aligned}$	24.5 30.5 37.0 44.8	18.2 22.6 27.4 33.1	14.5 18.0 21.8 26.2	12.0 14.9 18.0 21.7	10.3 12.7 15.4 18.5	9.0 11.1 13.4 16.1	8.0 9.9 11.9 14.3	7.2 8.9 10.7 12.8	$\begin{array}{r}6.5 \\ 8.0 \\ 9.7 \\ 11.7 \\ \hline\end{array}$	$\begin{array}{r}6.0 \\ 7.4 \\ 8.9 \\ 10.7 \\ \hline\end{array}$
$\begin{aligned} & 3.00 \\ & \hline 3.25 \\ & 3.50 \\ & 3.75 \\ & 4.00 \\ & \hline \end{aligned}$	$\begin{aligned} & .1541 \\ & .1903 \\ & .2185 \\ & .2486 \end{aligned}$	$\begin{aligned} & 143.4 \\ & \hline 179.6 \\ & 213.5 \\ & 251.3 \\ & 293.1 \end{aligned}$	$\begin{array}{r} 82.3 \\ 96.9 \\ 113.0 \\ 130.7 \\ \hline \end{array}$	53.1 61.7 72.8 82.8	39.1 45.7 53.0 60.9	30.9 36.1 41.8 47.9	$\begin{array}{r} 29.6 \\ 29.9 \\ 34.5 \\ 39.5 \\ \hline \end{array}$	$\begin{array}{r} 21.8 \\ 25.4 \\ 29.4 \\ 33.6 \end{array}$	$\begin{aligned} & 19.0 \\ & 22.2 \\ & 25.6 \\ & 29.2 \end{aligned}$	16.9 19.6 22.6 25.9	15.1 17.6 20.3 23.2	13.7 16.0 18.4 21.0	12.6 14.6 16.8 19.2

*Head $=\frac{\mathrm{v}^{2}}{64.36} \quad \mathrm{v}$ being velocity in feet per second, in first colu mn.
TABLE III.-Discharge Over Weir One Inch Long, in Cubic Feet per Second.

		0	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$		$\frac{1}{2}$	$\frac{9}{15}$	$\frac{5}{8}$	$\frac{11}{10}$	$\frac{3}{4}$	13 -16	$\frac{7}{8}$	$\frac{15}{16}$
3	. 0208	. 0317	. 0358	. 0339	. 0380	. 0391	. 0402	. 0414	. 0425	. 0506	. 0437	. 0449	. 0461	. 0437	. 0485	. 0197	. 0509	.0522
4	. 0427	. 0534	. 05 ± 7	. 0559	. 0572	. 0585	. 0598	. 0511	. 0524	. 0374	. 0637	. 053.3	. 0854	. 0677	. 0691	. 0705	. 0719	. 0732
5	0746	. 0746	. 0760	. 0775	. 0789	. 0803	. 0317	. 0832	. 0816	. 0917	. 0861	. 0976	. 0891	. 0905				0956
6	. 1177	. 0981	. 0997	. 1012	. 1027	. 1043	. 1059	. 1075	. 1030	. 1438	. 1106	. 1122	. 1138	. 1151				
7	. 1732	. 1238	. 1253	. 1270	. 1285	. 1303	. 1321	. 1337	. $135 \frac{1}{4}$. 2057	. 1371	. 1388	. 11408	.1151 .1423	.1 .71	$.1137$	$.1203$.1220
8	. 2417	. 1511	. 1528	. 1546	. 1564	. 1582	. 1600	. 1618	. 1836	. 2812	. 1654	.1588 .1973	. 1691	.1723 .1709	$\begin{array}{r} .1440 \\ .1728 \end{array}$	$.1458$ $.17 \notin 6$. 1475 1765	$\begin{aligned} & .1493 \\ & .1784 \end{aligned}$
9	. 3244	. 1802	. 1821	. 1840	. 1859	. 1878	. 1897	. 1916	. 1935	. 3714	. 1955	. 1974	. 1993	. 2013	$.2032$	$.2052$	2072	2091
10	. 4222	. 2111	2131	. 2151	. 2171	. 2191	. 2211	. 2231	. 2251	. 4770	. 2.271	. 2892	. 2312	. 2332	$.2353$	$.2373$	2391	$.2415$
11	. 5358	. 2435	2456	. 2477	. 2498	. 2519	. 2510	. 2561	. 2588	. 5985	. 2603	. 2525	. 2646	. 2667				
12	. 6660	. 2775	. 2797	2818	. 2840	. 2862	. 2884	. 2906	. 2928	.598 .7376	. 26050	. 2972	. 2640	$.3017$	$\begin{aligned} & .2689 \\ & .3039 \end{aligned}$. 2710	.2732 3081	. 2753
13	. 8135	. 3129	. 3152	. 3174	. 3197	. 3220	. 3213	. 3265	. 3288	. 8940	. 3311	. 3334	2995 .3357	. 3017	. 3039	. 3052	. 3081	. 3105
14	. 9791	. 3497	. 3520	. 3544	. 3567	. 3591	. 3515	. 3538	. 3562	1.0689	. 3586	.334 .3710	.3397 .3734	.3380 .3758	$\begin{aligned} & .3 \pm 04 \\ & .3782 \end{aligned}$	$\begin{array}{r} 3 \pm 27 \\ 3806 \end{array}$	$\begin{aligned} & .3450 \\ & .3830 \end{aligned}$	$\begin{aligned} & .3474 \\ & .3554 \end{aligned}$
15	1.1634	. 3878	. 3902	. 3927	.$^{.3951}{ }^{\circ}$. 3976	. 4000	. 4025	. 4049	1.0689 1.2628	. $4074{ }^{\text {- }}$.3710 .4098	.3734 .4123	$\begin{aligned} & .3 \% 38 \\ & .4148 \end{aligned}$	$\begin{aligned} & .3732 \\ & . \pm 173 \end{aligned}$	$\begin{aligned} & .3306 \\ & .419 S \end{aligned}$	$\begin{aligned} & .3830 \\ & .4222 \end{aligned}$	$\begin{aligned} & .3854 \\ & .4917 \end{aligned}$
16	1.3672	. 4272	. 4297	. 4823	. 4348	. 4373	. 4398											
17	1.5909	. 4679	. 4705	. 4731	. 4757	.4378 .4783	. 4809	$\begin{aligned} & .4423 \\ & .4835 \end{aligned}$.4449 .4861	1.4705 1.7105	.4474 .4887	$\begin{aligned} & .4500 \\ & .4913 \end{aligned}$	$\begin{aligned} & .4525 \\ & .4940 \end{aligned}$	$.450 ๊ 1$ 4966	.4576 4992	.4602 .5019		$\begin{aligned} & .4653 \\ & .5071 \end{aligned}$
18	1.8353	. 5098	. 5125	. 5151	. 5178	. 5205	. 5231	. 58258	.4881 .5285	1.96	. 48312	.4913 .5339	$\begin{aligned} & .4940 \\ & .5365 \end{aligned}$	$\begin{aligned} & .4966 \\ & .5393 \end{aligned}$	$\begin{aligned} & .4992 \\ & .5420 \end{aligned}$	$\begin{aligned} & .5019 \\ & .5447 \end{aligned}$	$\begin{aligned} & .5045 \\ & .5474 \end{aligned}$	$\begin{aligned} & .5071 \\ & 5: 501 \end{aligned}$
19	2.1009	. 5529	. 5555	. 5583	. 5611	. 5638	. 5656	. 5693	. 5721	1.9554 2.2118	. 5748	. 5776	$\begin{aligned} & .5365 \\ & .5804 \end{aligned}$	$\begin{aligned} & .5393 \\ & .5831 \end{aligned}$	$\begin{aligned} & .5420 \\ & .5859 \end{aligned}$	$\begin{aligned} & .5447 \\ & .5887 \end{aligned}$	$\begin{aligned} & .5474 \\ & .5915 \end{aligned}$	$\begin{aligned} & .5501 \\ & .5943 \end{aligned}$
20	2.3883	. 5971	. 5999	. 602%	. 6055	. 6083	.6111	. 6140	. 6168	2.5104	.5748 .6196	. 62.24	.5804 .8253	$\begin{aligned} & .5831 \\ & .6381 \end{aligned}$	$\begin{aligned} & .5859 \\ & .6310 \end{aligned}$	$\begin{aligned} & .5887 \\ & .6338 \end{aligned}$	$\begin{aligned} & .5915 \\ & .6367 \end{aligned}$	$\begin{aligned} & .5943 \\ & .6396 \end{aligned}$
21	2.6982	. 6424	. 6453	. 6482	. 6510	. 6539												
22	3.0309	. 6888	. 6918	. 6947	. 6977	.6539 .7006	$.7033$	$.7065$		2.8614 3.2061				. 6742	. 6771	. 6801	.6830	. 6859
23	3.3872	. 7368	. 7393	. 7 ± 24			. 7031	. 7065	. 7095	3.2061 ,	. 7125	. 7154	. 7181	. 7214	. 7244	. 7274	. 7304	.7333
24	3.3812		. 7398	.7124	. 7451	. 7481	. 7514	. 7544	. 7575	3.5743	. 7605	. 7635	. 7666	. 7696	. 7727	. 7257	.7788	. 7818
		. 7819	. 7880	. 7910	. 7941	. 7972	. 8003	: 8034	. 8064	3.9668	. 8095	. 8126	. 8157	. 8189	. 8220	. 8251	. 8282	. 8313
25	4.1722	. 8345	. 8376	. 8407	. 8139	. 8470	. 8501	. 8533	. 8561	4.3840	. 8659	. 8628	. 8659	. 8691	. 8723	. 8755		. 8818
26	4.6021	. 8850	. 8882	. 8914	. 8946	. 8978												
27	5.0574	. 9360	. 9398	. 9431	.8940 .9463	. .9496	$.9 \tilde{\Sigma} 29$	$.0561$	0.994	$5.29+8$	$\begin{aligned} & .9107 \\ & .9627 \end{aligned}$	$\begin{array}{r} .9139 \\ 0360 \end{array}$	$.91 \% 1$ 9603			. 9268	. 9301	. 933.3
28	5.5388	. 9891	. 9924	. 9957	. 9990	1.0023		1.0501		5.2948	. 9627	. 9500	. 9693	. 9726	. 9759	. 9792	. 9825	. 98 ā8
29	6.0467	1.0425	1.0459	1.0493	- 1.0590		1.0057	1.0090	1.0123	5.78 .4	1.0157	1.0190	1.0224	1.0257	1.0291	1.0324	1.0358	1.0391
30	6.5814	1.0969		1.0493	1.0527	1.0560	$1.059 \times$	1.0628	1.0862	6.3106	1.0696	1.0730	1.0764	1.0798	: . 0832	1.0866	1.0901	1.0935

For discharges for depths less than 3 inches, use Tables V or VI. The absolute error will be small
TABLE IV.-Discharge Over Weir One Foot Long, in Cubic Feet per Second.

		0	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{5}{16}$	3 -8	$\frac{7}{16}$		$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{15}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{10}$
3 4 5	.0208 .0427 .0746	.4163 .6409 .8956	.4293 .6559 .9125	$\begin{array}{r} .4425 \\ .6711 \\ .9294 \\ \hline \end{array}$.4559 . 6864 \qquad	.4693 .7019 .9636	$\begin{array}{r} .4829 \\ .7174 \\ .9809 \\ \hline \end{array}$	$\begin{array}{r} .4967 \\ .7331 \\ .9983 \\ \hline \end{array}$	$\begin{array}{r} .5106 \\ .7483 \\ 1.0157 \\ \hline \end{array}$.0262 .0574 .0947	.545 .7617 1.0333	$\begin{array}{r}.5385 \\ .7807 \\ 1.0510 \\ \hline\end{array}$	$.55 \% 9$ $.79 \%$ 1.068%	$\begin{array}{r} .5672 \\ .8130 \\ 1.0866 \end{array}$	$\begin{array}{r} .5817 \\ .8233 \\ 1.1045 \end{array}$	$\begin{array}{r} .5963 \\ .8457 \\ 1.1227 \end{array}$	$\begin{array}{r} .6110 \\ .8622 \\ 1.1407 \end{array}$	$\begin{array}{r} .6259 \\ .8789 \\ 1.1590 \end{array}$
6	. 1177	1.1774	1.1958	1.2143	1.2330	1.2517	1.2705	1.2894	1.3084	. $14 ¢ 8$	1.3275	1.3467	1.3660	1.3853				
7	. 1732	1.4836	1.5035	1.5235	1.5436	1.5638	1.5810	1.6044	1.6221	. 2057								
8	. 2417	1.8126	1.8339	1.8553	1.8767	1.8982	1.9199	1.9415	1.9633	.2812 .2812	1.6704	1.6660	1.6866	4	1.7283	1.7493	1.7703	1.7914
9	. 3214	2.1629	2.1855	2.2081	2.2303	2.2536	2.2765	2.2995	2.3225	. 3714		2.0071	2.0291	2.0 .112	2.0734	2.095%	2.1180	2.1404
10	. 4222	2.5332	2.5570	2.5809	2.6048	2.6288	2.6529	2.6770	2.7013	.47\%0	2.7256	2.7499	2.7744	2.4151 2.7989	2.4338 2.8235	2.4623 2.8181	2.4859 2.8729	2.5095
11	. 5358	2.9225	2.917	2.9725	2.9976	3.0227	3.0480	3.0733	3.0983	5988	3.1210	3.1						
12	. 6660	3.3300	3.3560	3.3822	3.4083	3.4346	3.4609	3.4873	3.5137	. 7376	3.5403	\bigcirc	3.5935	3.6202	3.6470	3.6738	$\begin{aligned} & 3.2781 \\ & 3.7008 \end{aligned}$	3.3040
13	. 8135	3.7548	3.7819	3.8091	3.8963	3.8636	3.8910	3.918 t	3.9459	. 8940	3.9735	4.0011	4.0288	4	4.0814	4.1122	4.1402	4.1682
14	. 9791	4.1963	4.2244	4.2526	4.2808	4.3092	4.3375	4.3660	4.3945	1.0689	4.4281	4.4517	4.4894	4.5091	4.5379	4.5668	4.59 .97	4.6247
15	1.1634	4.65 .38	4.6839	4.7121	4.7413	4.7706	4.8000	4.8294	4.8589	1.2628	4.8984	t. 9180	4.9477	4.9771	5.0072	5.0370	5.0669	5.0968
16	1.3672	5.1268	5.1569	5.1870	5.2172	5.2475	5.2778	5.3081	5.3386	1.4765	5.3690	5.8936	5.4302	5.4608	. 4915	.5223	5.5531	5.5840
17	1.5909	5.6149	5.6459	5.6770	5.7081	5.7392	5.7705	5.8017	5.8331	1.7105	5.8645	5.8909	5.8274	5.9590	5.9906	. 0222	6.0540	6.0857
18	1.8353	6.1176	6.1495	6.1814	6.2134	6.2455	6.2776	6.3097	6.3420	1.9654	6.3742	6.4663	6.4389	6.4714	6.5039	6.5364	6.55690	6.6017
19	2.1009	6.6344	$6 \cdot 6071$	6.7000	6.7329	6.7658	6.7987	6.8318	6.8648	2.2418	6.8980	6.9812	6.9644	6.9977	7.0311	7.0645	7.0979	7.1311
20	2.3883	7.1650	7.1986	7.2323	7.2660	7.299	7.3336	7.3674	7.4014	2.5404	7.4353	7.4694	7.5035	7.3376	. 7.5718	7.6060	7.6403	7.6746
21	2.6982	7.7090	7.7435	7.7780	7.8125	7.8471	7.8817	7.9164	7.9512	28616	7.9860	8.0208	8.05 .57	8.0907	8.1257	8.1607	8.1958	8.2310
22	3.0309	8.2662	8.3014	8.3367	8.3721	8.4075	8.4429	8.4784	8.5140	3.2061	8.5436	8.5852	8.6209	8.6567	8.6925	8.7283	8.7642	8.8001
23	3.3872	8.8301	8.8722	8.9083	8.9444	8.9805	9.0168	9.0531	9.0894	3.5143	9.1258	9.1623	9.1987	9.2353	9.2718	9.3085	9.3451	9.3818
24	3.7675	9.4185	9.4554	9.4923	9.5292	9.5662	9.6032	9.6402	9.6773	3.9668	9.7145	9.7517	9.7889	9.8262	9.8635	9.9609	0.9384	9.9758
25	4.1722	$10.013 \pm$	10.0509	10.0885	10.1262	10.1639	10.2017	10.2395	10.2774	4.3840	10.3153	10.3532	10.3912	10.4292	10.4673	10.5055	10.5436	10.5819
26	4.6021	10.6201	10.6581	10.6968	10.7352	10.7737	10.8122	10.8507	10.8893	4.8265	10.9280	10.0666	11.005t	$11.044 \pm$	11.0830	11.1.18		
27	5.0574	11.2387	11.2777	11.3168	11.3560	11.3931	11.4344	11.4736	11.5131	5.2948	11.5523	11.5917	11.6312	11.6707	11.7102	11.7493	$11.789 t$	11.8991
28	5.5388	11.8688	11.9085	11.9484	11.983:	12.0581	12.0681	12.1080	12.1481	5.789 圭	12.1881	12.2282	$12.263!$	12.3085	12.3489	12.8891	$12 .+295$	12.4689
9	6.0167	12.5103	12.5507	12.5912	12.6318	12.6724	12.7130	12.7537	12.7944	6.3106	I2.8352	12.8760	12.9169	12.9578	12.9887	13.0397	13.0868	13.1218
3.1	6.5814	13.1629								12.910			13.03	13.086	13.1218

[^9]
TABLE V.

Discharge Over Rectangular Weirs, with and without Contraction.

$$
\text { Formula, } D=3^{1 / 3}(1-.2 H) H^{\frac{3}{2}}
$$

For conditions, see page 31 .

Depth, H, of Water on crest Measured in Still Water. Soe Page 25

Discharge Over Rectangular Weirs.-Concluded.

Denth. H, of Water on Crest Measured in still water.		DISCHARGE IN CUBIC FEET PER SECOND.			
		Weth 'Two Complete Contractions.			Correction to be ADDED to each of the preceding to give discharge with No conuraction.
In Inches.	$\underset{\text { Feet. }}{\text { In }}$	3 Feet Long.	5 Feet Long.	10 Feet Long.	
18.0	1.5		28.7814	59.3999	1.8371
18.3	1.525		29.4729	60.8604	1.9146
18.6	1.55		30.1680	62.3300	1.9940
18.9	1.575	,	30.8681	63.8116	2.0754
19.2	1.6		31.5717	65.3022	2.1588
19.5 19.8	1.625 1.650	31.2809 32.9935	66.8049	2.2441
20.1	1.675		${ }_{33.7093}^{32.9935}$	$\begin{aligned} & 68.3175 \\ & 69.8393 \end{aligned}$	$\begin{aligned} & 2.3314 \\ & 2.4207 \end{aligned}$
20.4	1.7		34.4299	71.3719	2.5121
20.7	1.725	35.1946	72.9146	2.6054
21.0 21.3	1.750 1.775	35.8827	$74.46 \pi 2$	2.7009
21.8	1.775	,	36.6151	76.0286	2.7984
21.9	1.825		37.3510	77.6002	2.8978
22.2	1.85		38.0809 38.8346	79.1814 80.7726	2.9996 3.1034
22.5	1.875		39.5812	82.3717	3.2093
2.8	1.9		40.3321	83.9816	3.3173
23.1	1.925		41.0860	85.6005	3.4276
23.4 23.7	1.95 1.975		41.8436	87.2271	3.5399
24.	2.0			88.8635	3.671
27.	2.25		43.3695	107.44	3.771 5.06
30.	2.50			125.17	6.59
36.	3.00		162.81	10.39

TABLE VI.

Discharge Over Cippoletti's Trapezoidal Weir of Various Lengths and with Various Depths, and Over Rectangular Weirs Without Side Contraction.

$$
\text { Formula, } \mathrm{D}=3.3^{2 / 3} \mathrm{~L} \mathrm{H}^{\frac{3}{2}} \text {. }
$$

For conditions, see page 31.

Depth of Water on Crest.		1)ISCHARGE IN CUBIU FEET PER SECOND						
$\underset{\text { Inches. }}{\text { In }}$	$\underset{\text { Feet. }}{\text { In }}$	1 Foot Long.	$11 / 2 \text { Feet }$ Long.	2 Feet Long.	3 Feet Long.	4 Feet Long.	5 Feet Long.	10 Feet Long.
$\begin{aligned} & .8 \\ & .6 \\ & .9 \end{aligned}$	$\begin{aligned} & .025 \\ & .05 \\ & .075 \end{aligned}$	$\begin{aligned} & .0135 \\ & .0367 \\ & .0699 \end{aligned}$	$\begin{aligned} & .0202 \\ & .0566 \\ & .1035 \end{aligned}$	$\begin{aligned} & .0269 \\ & .0754 \\ & .1380 \end{aligned}$	$\begin{aligned} & .0404 \\ & . .2131 \\ & .2071 \end{aligned}$	$\begin{array}{r} .0589 \\ .1508 \\ .2761 \end{array}$	$\begin{aligned} & .0573 \\ & .1885 \\ & .3451 \end{aligned}$	$\begin{aligned} & .1347 \\ & .3771 \\ & .6902 \end{aligned}$
1.2 1.5 1.8 2.1	$\begin{aligned} & .10 \\ & .125 \\ & .11 \\ & .175 \\ & \hline \end{aligned}$	$\begin{array}{r} .1064 \\ .1488 \\ .1956 \\ .2464 \\ \hline \end{array}$.1596 .2232 .2934 .3697	$\begin{array}{r} .2128 \\ .2976 \\ .3912 \\ .4929 \\ \hline \end{array}$	$\begin{array}{r} .8192 \\ .4464 \\ .5868 \\ .7393 \\ \hline \end{array}$	$\begin{array}{r} .4256 \\ .5962 \\ .7824 \\ .9858 \\ \hline \end{array}$	$\begin{array}{r} .5319 \\ .7440 \\ .9780 \\ 1.2322 \\ \hline \end{array}$	$\begin{aligned} & 1.0638 \\ & 1.4881 \\ & 1.9560 \\ & 2.4644 \\ & \hline \end{aligned}$
$\begin{aligned} & 2.4 \\ & 2.7 \\ & 3.0 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2525 \\ & .225 \\ & .25 \\ & \hline \end{aligned}$	$\begin{array}{r} .3010 \\ .3592 \\ .4208 \\ .4855 \\ \hline \end{array}$	$\begin{array}{r} .4515 \\ .7388 \\ .6312 \\ .7282 \\ \hline \end{array}$	$\begin{array}{r} .6020 \\ .7184 \\ .8417 \\ .9709 \\ \hline \end{array}$.9029 1.0777 1.2625 1.4564	1.2059 1.4369 1.6833 1.9419	1.5049 1.791 2.1041 2.4278	3.1098 3.5924 4.2083 4.8547
$\begin{aligned} & 3.6 \\ & 8.9 \\ & 4.2 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & .30 \\ & .825 \\ & .855 \\ & .875 \\ & \hline \end{aligned}$	$\begin{array}{r} .5531 \\ .6238 \\ .6972 \\ .7730 \\ \hline \end{array}$	$\begin{array}{r} .8297 \\ .9358 \\ 1.0459 \\ 1.1595 \\ \hline \end{array}$	1.1063 1.2477 1.3945 1.5460	$\begin{aligned} & 1.6594 \\ & 1.8715 \\ & 2.0917 \\ & 2.3190 \\ & \hline \end{aligned}$	2.8126 2.4954 2.7890 3.0920	2.7657 3.1192 3.4862 3.8649	5.5314 6.2384 6.3724 7.7259
4.8 5.1 5.4 5.7 8.8	$\begin{aligned} & .40 \\ & .425 \\ & .45 \\ & 475 \\ & \hline \end{aligned}$		1.2777 1.3993 1.5846 1.6534 1.8854	$\begin{aligned} & 1.7035 \\ & 1.8658 \\ & 2.0328 \\ & 2.2045 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5553 \\ & 2.7987 \\ & 8.0492 \\ & 8.3067 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.4071 \\ & 8.7316 \\ & 4.0656 \\ & 4.4089 \\ & \hline \end{aligned}$	4.2588 4.6645 5.0820 5.5112	8.5177 9.3290 10.1640 11.0225
$\begin{aligned} & 6.0 \\ & 6.3 \\ & 6.6 \\ & 6.9 \\ & 7.9 \end{aligned}$	$\begin{aligned} & .50 \\ & .525 \\ & .55 \\ & .575 \\ & \hline \end{aligned}$		1.7854 1.9210 2.0599 2.2018	$\begin{aligned} & 2.3805 \\ & 2.5614 \\ & 2.7465 \\ & 2.9357 \end{aligned}$	8.5708 8.8420 4.1198 4.4036	4.7610 5.1227 5.4980 5.8715	5.9512 6.4034 6.8663 7.8393	
$\begin{array}{r} 7.2 \\ 7.5 \\ 7.8 \\ 8.1 \\ \hline \end{array}$	$\begin{aligned} & .60 \\ & .625 \\ & .65 \\ & .675 \\ & \hline \end{aligned}$		2.8472 2.4955 2.6462 2.8007	8.1293 3.3244 3.5283 3.7343	4.6939 4.9911 5.2924 5.6014	6.2585 6.6548 7.0565 7.4686	$\begin{aligned} & 7.8281 \\ & 8.3185 \\ & 8.9206 \\ & 9.8857 \\ & \hline \end{aligned}$	15.6463 16.6370 17.6413 18.6715

Discharge Over Cippoletti Weirs...Concluded.

Depth of Water on Crest.		DISCHARGE IN CUBIC FEET PER SECOND.					
$\begin{aligned} & \text { In } \\ & \text { Inches. } \end{aligned}$	$\underset{\text { Feet. }}{\text { In }}$	2 Feet Long.	3 Feet Long.	4 Feet Long.	5 Feet Long.	7 Feet Long.	10 Feet Long.
$\begin{aligned} & 8.4 \\ & 8.7 \\ & 9.0 \\ & 9.3 \end{aligned}$	$\begin{aligned} & .7 \\ & .725 \\ & .75 \\ & .775 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.9437 \\ & 4.1563 \\ & 4.3733 \\ & 4.5942 \end{aligned}$	$\begin{aligned} & 5.9156 \\ & 6.2347 \\ & 6.5599 \\ & 6.8912 \end{aligned}$	7.8874 8.2980 8.7466 9.1883 9.188	$\begin{array}{r} 9.8593 \\ 10.9912 \\ 10.9332 \\ 11.4854 \end{array}$	13.8030 14.5557 15.3065 16.0796	
$\begin{array}{r} 9.6 \\ 9.9 \\ 10.2 \\ 10.5 \\ \hline \end{array}$	$\begin{aligned} & .80 \\ & .825 \\ & .85 \\ & .875 \end{aligned}$	$\begin{aligned} & 4.8177 \\ & 5.0453 \end{aligned}$	7.2265 7.5679 7.9154 8.2669	9.6354 10.0906 10.5538 11.0285	$\begin{aligned} & 12.0442 \\ & 12.6132 \\ & 13.1923 \\ & 13.7781 \end{aligned}$	$\begin{aligned} & 16.8619 \\ & 17.6585 \\ & 18.4692 \\ & 19.2893 \end{aligned}$	$\begin{aligned} & 24.0885 \\ & 25.2264 \\ & 26.3846 \\ & 27.5562 \end{aligned}$
$\begin{aligned} & 10.8 \\ & 11.1 \\ & 11.4 \\ & 11.7 \\ & \hline \end{aligned}$	$\begin{aligned} & .90 \\ & .925 \\ & .95 \\ & .975 \\ & \hline \end{aligned}$		8.6234 8.9850 9.3516 9.7233	11.4978 11.9800 12.4688 12.9644	14.3723 14.9749 15.5860 16.2054	20.1212 20.9649 21.8204 22.6876	
$\begin{array}{r} 12.0 \\ 12.8 \\ 12.6 \\ 12.9 \\ \hline \end{array}$	$\begin{aligned} & 1.00 \\ & 1.025 \\ & 1.05 \\ & 1.075 \end{aligned}$		10.1000 10.4808 10.8666 11.2575	13.5667 13.9744 14.4888 15.0100	16.8333 17.4679 18.1110 18.7624	$\begin{aligned} & 23.5667 \\ & 24.4551 \\ & 25.3554 \\ & 26.2674 \end{aligned}$	
$\begin{aligned} & 13.2 \\ & 13.5 \\ & 13.8 \\ & 14.1 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.125 \\ & 1.1 .150 \\ & 1.175 \\ & \hline \end{aligned}$		$\begin{aligned} & 11.6524 \\ & 12.0513 \\ & 12.4553 \\ & 12.8644 \end{aligned}$	15.5365 16.0684 16.6071 17.1525	19.4206 20.0855 20.7588 21.4406	27.1888 28.1198 29.0624 30.0168	38.8412 40.1711 41.5177 42.8812
$\begin{aligned} & 14.4 \\ & 14.7 \\ & 15.0 \\ & 15.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.225 \\ & 1.25 \\ & 1.275 \end{aligned}$		13.2764 13.6936 14.1148 14.5410	17.7019 18.2581 18.8197 19.3880	$\begin{aligned} & 22.1274 \\ & 22.8226 \\ & 23.5246 \\ & 24.2349 \end{aligned}$	30.9784 31.9517 32.9344 33.9289	$\begin{aligned} & 44.2548 \\ & 45.6453 \\ & 47.0492 \\ & 48.9699 \end{aligned}$
$\begin{aligned} & 15.6 \\ & 15.9 \\ & 16.2 \\ & 16.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.325 \\ & 1.35 \\ & 1.375 \\ & \hline \end{aligned}$			$\begin{aligned} & 19.9603 \\ & 20.5894 \\ & 21.1288 \\ & 21.7123 \end{aligned}$	$\begin{aligned} & 24.9503 \\ & 25.6742 \\ & 26.4047 \\ & 26.1404 \end{aligned}$	34.9305 35.9489 36.9666 37.9966	$\begin{aligned} & 49.9007 \\ & 51.3484 \\ & 52.8095 \\ & 54.2808 \end{aligned}$
$\begin{aligned} & 16.8 \\ & 17.1 \\ & 17.4 \\ & 17.7 \end{aligned}$	1.4 1.425 1.45 1.475			$\begin{aligned} & 22.3075 \\ & 22.9082 \\ & 23.5128 \\ & 24.1242 \end{aligned}$	$\begin{aligned} & 27.8844 \\ & 28.6352 \\ & 29.3910 \\ & 30.1552 \end{aligned}$	39.0382 40.0893 41.1474	55.7688 57.2704 58.7820 60.3105
$\begin{array}{r} 18.0 \\ 18.3 \\ 18.6 \\ 18.9 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.525 \\ & 1.55 \\ & 1.575 \end{aligned}$			$\begin{aligned} & 24.7396 \\ & 25.3604 \\ & 25.9866 \\ & 26.6182 \end{aligned}$	30.9245 31.705 32.4833 33.2727		61.8490 63.4011 64.9666 66.5455
$\begin{aligned} & 19.2 \\ & 19.5 \\ & 19.8 \\ & 20.1 \\ & \hline \end{aligned}$	1.6 1.625 1.65 1.675				$\begin{aligned} & 34.0685 \\ & 34.8702 \\ & 35.6782 \\ & 36.4913 \end{aligned}$		$\begin{aligned} & 68.1370 \\ & 69.7405 \\ & 71.3565 \\ & 72.9826 \end{aligned}$
$\begin{aligned} & 20.4 \\ & 20.7 \\ & 21.0 \\ & 21.8 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.725 \\ & 1.75 \\ & 1.775 \\ & \hline \end{aligned}$				$\begin{aligned} & 37.3111 \\ & 38.1876 \\ & 38.9691 \\ & 39.8074 \end{aligned}$		
$\begin{aligned} & 21.6 \\ & 21.9 \\ & 22.2 \\ & 22.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.825 \\ & 1.85 \\ & 1.875 \end{aligned}$	[...... $\cdots \cdots \ldots .$. $\cdots \ldots . .$.		40.6515 41.5609 42.3577 43.2179	56.9121 58.1013 59.3008 60.5031 60.5031	
$\begin{aligned} & 22.8 \\ & 23.1 \\ & 23.4 \\ & 23.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.925 \\ & 1.957 \\ & 1.975 \end{aligned}$				….... $\ldots \ldots .$. $\ldots \ldots$.	61.7211 62.9442 64.1720 65.4116	88.1730 89.9203 91.6743 93.4452
$\begin{aligned} & 24.0 \\ & 25.5 \\ & 27.0 \\ & 28.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.125 \\ & 2.25 \\ & 2.4 \\ & \hline \end{aligned}$					$\begin{aligned} & 66.6560 \\ & 72.999 \\ & 79.541 \\ & 87.619 \\ & \hline \end{aligned}$	95.2228 104.289 113.63 125.18
30.0	2.5		93.156	133.07

GOME PHESECAL CONGTANTS USEFUL IN CONNECRYON WITH THE PIRECEDING TABEES.

1 cu . ft. water weighs 62.416 lbs , at 32 degrees F .
1 cu. ft. water weiphs 62.424 lbs, at 39.3 degrees F. 1 cil. ft . water weighs 62.40 l 1 lbs , at 50 degrees F. 1 cu. ft. water weighs 63.300 lbs at 70 degrees F. $1 \mathrm{cu} . \mathrm{ft} .=7.4805^{2} \mathrm{U}$. S. gallons.
1 acro ft . $=$ an acre 1 ft . deep $-43,5 \mathrm{jte} \mathrm{cu} . \mathrm{ft}$. = :205,851.4.5 gallons.
$1,000,000 \mathrm{U} . \mathrm{S}$, gallons $=133,680.6 \mathrm{cn}$. ft.

$$
=3.07 \mathrm{arce} \mathrm{ft} .
$$

$1,000.000 \mathrm{cu}, \mathrm{ft} .=22.9568$ acre feet.
$11.574 \mathrm{cu} . \mathrm{ft}$. per sec. for 24 hrs .
$1 \mathrm{cu} . \mathrm{ft}$. per sec. $=448.8312$ cals. per min.
$=86,400$ cu. ft. in 24 his. (Nearly 2 acre feet.)
$=2$ acre ft. in 24 hrs., 12 min.
$=1,000,000 \mathrm{cu}$. ft. in 11.574 day s.
$=1.000,000$ gals. in 1.5472 days.
$1 \mathrm{cu} . \mathrm{ft}$. per sec. $=38.4$ Colorado statute inches.
$=50$ California statute inches.
1.44 cu. ft. per sec. covers 80 acres 6 in. deep in 14 days.

The State Agricultural College.

THE Aghicutuanal Experlumeri station.

BULLETIN No. 28.

The Russian Thistle.

Bulletins will be sent to all residents of Colorado, interested in any branch of Agriculture, free of charge. Non-residents, upon application, can secure copies not needed for distribution within the State. The editors of newspapers to whom the Station publications are sent are respectfully requested to make mention of the same in their columns. Address all communications to the

DIRECTOR OF THE EXPERIMENT STATION,
Fort Collins, Colorado.

The Agricultural Experiment Station, FORT COLLINS, COLORADO.

THE State Board of Agriculture.

Term Expires.
HON. CHARLES H. SMALL, - - - Pueblo, - - 1895

HON. FRANK J. ANNTS, - - - - Fort Collins, - - 1899
HON. JOHN J. RYAN, - - - - . Loveland, - - 1897
HON. A. L. EMIGH, - - - - - - Fort Collins, - - 1897
HON. J. E. DuBOIS, - - - - - Fort Collins, - 1899
HON. JOSEPH S. McCLELLAND, - - - - Fort Collins, - - 1899
HON. JAMES L. CHATFIELD, - - - - Gypsum, - - 1901
HON. A. LINDSLEY KELLOGG, - - - - Rocky Ford, - - 1901 $\left.\begin{array}{l}\text { GOVERNOR DAVIS H. WAITE, } \\ \text { PRESIDENT ALSTON ELLIS, }\end{array}\right\}$ ex-officio.

EXECUTIVE COMMITTEE IN CHARGE.

HON. J. S. McCLELLAND.
HON. JOHN J. RYAN
HON. A. L. KELLOGG.
The President of the Board and the President of the College.

Station Council.

ALSTON ELLis, A. M., Ph. D., LL.D, - - President and Director WELLS W. COOKE, B. S., A. M., - - - - - Agriculturist C. S. CRANDALL, M. S., - - - - Horticulturist and Botanist William P. Headden, A. M., Ph. D., - - - - - Chemist L. G. Carpenter, M. S., - Meteorologist and Irrigation Engineer C. P. GiLLETTE, M. S., - - - - - - - Entomologist DANIEL W. WORKING, B. S., Secretary. Lathrop M. TAYLor, B. S., Stenographer.

ASSISTANTS.

SUb-Stations.

F. A. HUNTLEY, B. S. A., - - $-\quad$ - Cuperintendentr
Arkansas Valley Station, Rocky Ford, Colorado.
J. H. McCLELLAND,

Superintendent
Divide Station, Table Rock, Colorado.
CHAS. A. DUNCAN, B. S.,
Superintendent
San Luis Valley Station, Monte Vista, Colorado.
J. B. ROBERTSON,

Superintendena
Rain-Belt Station, Cheyenne Wells, Colorado.

The Russian Thistle.

By Charles S. Crandall.

The list of Colorado weeds, already a formidable one, has recently received an addition, a new-comer which at once falls into the category of worst weeds and which we deem worthy of special mention. We refer to the Russian thistle, or Russian cactus. These two names for the plant are in common use wherever it is known and are too well established to admit of being changed; they are, however, misapplied, because the plant is neither a thistle nor a cactus. The species of which the plant to be considered is a variety is the saltwort, common along the Atlantic coast and reported from a number of stations inland as far west as Nebraska. It is an introduced plant of weedy character, but during its century or more of existence on American soil has never developed as a serious farm or garden pest.

Saltwort, or Russian saltwort, would be correct as common names for our plant, but following custom we will call it Russian thistle.

Botanically the plant is known as Salsola kali tragus (L.) Moq. It belongs to the goosefoot family-Chenopodiacex-and is closely related to several of our most common weeds, among them being the common pigweed, Chenopodium album L.; the winged pigweed, Cycloloma platyphyllum Moq.; the sea-blite, Suæda depressa Watson, which in company with its variety, erecta, is so common on lands moist from seepage ; the greasewood, Sarcobatus maximiliani Nees., and several species of the genus Atriplex. There should also be mentioned as relatives of the Russian thistle three members of the amaranth family, Amaranthus retroflexus L.; Amaranthus blitoides Watson ; Amaranthus albus L.; the latter is our common tumbleweed, and has often been mistaken for the Russian thistle.

origin and history.

The following concerning the origin and history of the Russian thistle, as given by Mr. L. H. Dewey, in bulletin No. 15, from theDivision of Botany of the U. S. Department of Agriculture, will be of interest:
"Nearly a century and a half ago this plant was mentioned by Linneus as growing in eastern Europe, and many botanical writers have since described it among the plants of that region.. The species Salsola kali, or some of its varieties, is found in most of the provinces of eastern Russia and western Siberia. The variety
tragus seems to have developed on the plains of southeastern Russia, where the conditions are very similar to those of the great Plains region of the United States. For many years it has been a destructive weed in the barley, wheat, and flax regions of southeastern Russia, and the cultivation of crops has been abandoned over large areas in some of the provinces near the Caspian Sea. No effectual methods of exterminating the weed are known in Russia. Sheep, pasturing on the young plants, aid materially in keeping the thistle in check, but it is continually growing more troublesome and extending to new territory.
" The plant was first introduced into the United States in 1873 or 1874, in flaxseed brought from Russia and sown near Scotland, Bonhomme County, S. Dak. The land there is somewhat hilly, and corn is the chief crop raised, so that, owing to the wooded ravines and the standing cornstalks, the Russian thistle was at first slow in spreading. In 1877 it first appeared in Yankton County, east of Bonhomme, and five years later it had spread to the counties to the north and west of Bonhomme. It continued gradually to cover new territory until 1888, when it had infested most of the counties between the Missouri and James rivers south of the Huron, Pierre and Deadwood Division of the Chicago of Northwestern Railway. The strong winds during the winter of 1887-88, followed by the dry summer of 1588 , and possibly a fresh importation of seed into the flax fields of Faulk or McPherson Counties, caused the weed to spread, within two years, to nearly all the remaining counties between the Missouri and James rivers in South Dakota, and to infest the southern tier of counties in North Dakota. At about the same time it invaded northern Iowa and northeastern Nebraska."

No definite date can be assigned for the introduction of the Russian thistle into Colorado. We have authentic information of its existence here in 1892 , but it was undoubtedly introduced earliér, and possibly several years earlier. It has attracted no notice and received no attention until within the present year. During the last three months a large number of inquiries have been received by this department, most of them accompanied by specimens of the plant.

From the remoteness of the localities reporting the plant, it is apparent that it has not spread from one point of infection, and the manner of its introduction is a matter of speculation. It is said to have been introduced into Morgan County by a colony of Russians, who brought it as an impurity in seed. At Denver, LaSalle, and Longmont, plants were first discovered upon railroad property, and the development and distribution point to the railroad lines as points of infection, and to passing trains as the means of introduction.

Railroads, as is well known, are very efficient agents in aiding the distribution of plants; trains, and especially freight trains, passing through a district where any particular plant abounds afford convenient lodging places, on the trucks, or among the cargo of open cars, for plants, or parts of plants, or seeds, which are thus transported long distances. The bedding used in stock-cars may abound in weed seeds; it may be carried back and forth, to be finally thrown out at some point far removed from the point of shipment. New plants, strangers in the locality, make their appearance, they multiply and. spread, or die out, according as the conditions are favorable or unfavorable to their growth. It is probable that several localities reporting the presence of the Russian thistle owe its introduction to the agency above mentioned.

The Russian thistle is in itself a good traveler, being one of the most perfect tumble-weeds known, but it is not probable that it came to us unassisted, because of the distance from previously infected sections, and the fact that there are intermediate areas from which the plant has not been reported. From the information now at hand, it appears that seventeen counties in Colorado are infested with the plant in greater or less degree ; these are Weld, Logan, Phillips, Yuma, Washington, Morgan, Boulder, Jefferson, A rapahoe, Elbert, Lincoln, Kit Carson, Fremont, Pueblo, Otero, Bent, and Prowers. It is very probable that it exists in four other counties, namely: Larimer, Sedgwick, Cheyenne, and Kiowa, but we have ás yet no information to confirm this suspicion.

The counties known to be infested are all agricultural counties, and a glance at the list will at once show what a wide distribution the plant already has; it is so widely distributed and has obtained so strong a foothold that it is a serious menace to our agricultural interests. The presence of the plant in Weld County was brought to our notice in a letter from Hon. J. S. Newell, of the Board of County Commissioners. We visited LaSalle, the locality indicated, and traveled over the infested area; from inquiries made it appears that the plant was first noticed in the fall of 1892 , near the Union Pacific tracks; no one who saw it knew what it was and no attention was given to it. In 1893 it appeared in quantity along the bank of the canal, and many plants were seen in adjoining fields. This present season it spread still further; the canal bank was occupied for a half mile east from the point of infection; the lateral ditches were lined with it, affording a striking illustration of the efficacy of the irrigating ditch as an agency in the dissemination of weed seeds; an area of waste land adjoining the main canal was covered with the plant, and numerous specimens were seen in neighboring fields of potatoes and corn.

Mr. Newell had previously visited this locality, and I found the farmers advised as to the nature of the plant. A knowledge
of the damage inflicted in other states, and a present forcible illustration of the ability of the plant to spread, quickly awakened them to the impending danger, and all were resolving to at once engage in a war of extermination. But here arose a question: the right-of-way along the railroad and along the canal was infested; would the railroad and canal corporations take care of the weeds on their property? The opinion seemed to prevail that they would not, and the farmers were awake to the fact that it would give them no permanent relief to exterminate the weed from their farms if the plants on neighboring territory were allowed to ripen and produce their seed. They could care for their own farms, but were neither able nor willing to do more. Immediate action was necessary, because seed would soon be forming. Mr. Newell and his colleagues in this case solved the problem; the County Commissioners of Weld County employed a dozen men and set them at work, under instructions to continue as long as a plant could be found. That the work was thoroughly done I can testify from personal inspection, and I desire to hold up this prompt action of the Commissioners as a shining example that may well be followed by other counties. This energetic action at LaSalle does not, however, free Weld County from the weed; knowledge of its presence came late, and mischief had already been done. Later reports show the plant present on farms several miles south and east of LaSalle, and also northeast on Crow Creek; the presence of the plant on Crow Creek traces directly, as I am credibly informed, to alfalfa hay hauled from near LaSalle in the fall of 1893.

At Longmont the Russian thistle was first noticed this summer in three small areas near the Union Pacific depot; these plants, I am informed, have been pulled and burned under the direction of the Street Commissioner. Later the plant is reported as present on several farms near Longmont; but the warning has come in time, and as there appear to be no extended areas covered, we may reasonably look for its complete extermination from this locality.

In Arapahoe County the Russian thistle appears to be quite well distributed over the eastern portion, and it is very abundant in the suburbs on all sides of Denver. We have seen the plant in quantity along the tracks of the Kansas Pacific Railroad from York street east; on the numerous vacant lots, the roadsides, and ditch banks in the district lying east of Gaylord street, between 28th and 40th avenues; in City Park ; on Capitol Hill, and in several places south of the city. On Gaylord street, along the tracks and about the terminus of the cable line, it is especially abundant.

For our information regarding the Russian thistle in the Arkansas Valley we are indebted to Mr. F. A. Huntley, Superintendent of the Experiment Station at Rocky Ford, in Otero County. Mr. Huntley writes, under date of September 25th :
"So far as known the first specimens seen in the Arkansas Valley were discovered last year in the vicinity of Fowler, in the western part of this county. That they were there last year has been conclusively proven. It is numerous in the vicinity of Pueblo, then beginning near Nepesta, about 26 miles west of Rocky Ford, and extending east as far as 10 miles east of La Junta, making a continuous infested area of about four miles wide by 45 miles long, not counting Pueblo. A county organization has been formed and its members, over 100, are pledged to put forth every effort possible towards the destruction of this pest. Frank Bingham is the President of this society and F. A. Huntley Secretary. The people here are fully awake to the importance of destroying the Russian thistle. The railroads have been doing good work."

Accompanying Mr. Huntley's letter, were letters from officials of the Atchison, Topeka \& Santa Fe, and the Missouri Pacific Railroad Companies, advising him that instructions had been issued to section men to cut and burn all Russian thistles found on the right-of-way. These letters manifest a cordial desire to co-operate with the farmers, and it would seem that everything possible is being done to eradicate the plant from the Arkansas Valley, or at least from Otero County.

Two practical questions appear in most of the letters of inquiry received by this department: First, How can the Russian thistle be distinguished from other plants? Second, How can it be exterminated? In those localities where the plant is abundant, farmers have learned, or will learn this fall by personal contact, the answer to the first question. But there are yet many who have not seen the plant to know it, and it will not be out of place to dwell briefly upon its characteristics. As is the case

Fig. 1.-Twig from plant of compact growth, enlarged $11 / 2$ ttmes. with most of our weeds, the Russian thistle varies greatly, according to the conditions which surround it. Isolation, rich soil, and plenty of water induce large plants; crowding by other plants, poor soil, and extreme drouth produce small plants. With variations in size are also variations in habit of growth; two plants may have the same dimensions as to height and spread, and yet be very different in general aspect ; the one grown under favorable conditions will be oval, or possibly almost globular
in form, with a thick and matted appearance due to the development of a great number of branches; the other, grown under adverse circumstances, will present an open, straggling appearance, because the branches are fewer in number, farther apart, and usually very short. The matter of color seems largely dependant upon water; plants upon ditch banks, or in other moist situations, have a dark green color, which they retain until quite late in the season ; those deprived of water are early tinged with red, and this color deepens as the season advances.

The Russian thistle is an annual. It comes from seed each year, produces seed in its turn, and then dies. The young plants are smooth and succulent, showing none of the characters which mark the mature plant. The early leaves are slender and threadlike, from one to two inches long, each tipped with a spine; on either side, at the base of each leaf, is a short spine, and above the leaves appear branches, which at first seem to be clusters of spines

Fif. 2.-Single flower enlarged 3 times The flower rests in the axil of the leaf, between the divergent bracts; the stem is shown below the flower only and short leaves. These branches are near or remote, long or short, according to circumstances; on vigorous plants the branching continues until growth ceases, and even the late branches may be from three to six inches in length. On dwarfed specimens the late branches remain quite short, an inch or less long. On all plants the leaves produced late in the season are very short, commonly but little longer than the spines, so that the branches appear to bear spines only, and these in clusters of three. [See Fig. 1.] As the plant approaches maturity, these spines become more rigid, imparting that character which evidently suggested the application of the name thistle. The long leaves produced early in the season wither and usually fall away as the plant nears maturity, so that many plants appear to be almost leafless. Immediately above, and close down in the angle, between the clusters of spines and the stem, is borne a single flower. [See Fig. 2.] The number of flowers on a plant is, however, large, because the clusters of spines are near together. We have counted thirty-five on a branch three inches in length, and the average of several brauches counted was nine to the inch. The flowers are in-- conspicuous and vary in appearance on different plants; sometimes they are pale red, but oftener green or greenish. As the fruit begins to mature, the floral envelope surrounding each flower enlarges somewhat and spreads out until it often measures a quarter of an inch across. The fruit which is held within this floral envelope is small, with rough exterior, and of a light-
grey color when ripe ; the outer covering removed shows the seed in spiral form. The root system of the plant is small, giving it but a slight hold on the ground; it can be easily pulled at any time. When the plant dies in the fall the wind may turn it out entire, or break it off at the surface. It is then ready to travel where the winds may take it, distributing its seed as it goes. For further and more minute details of structure, the following technical description given by Mr. L. H. Dewey, in bulletin No. 15, from the Division of Botany of the U. S. Department of Agriculture, may be consulted:
"Technical Description.--Salsola kali tragus (L.) Moq. in DC. Prod., XIII., 2, 187 (1849). A herbaceous annual, diffusely branching from the base, 0.5 to 1 m . ($11 / 2$ to 3 feet) high and twice as broad, smooth or slightly puberulent: tap root dull white, slightly twisted near the crown; leaves alternate, sessile; those of the young plant deciduous, succulent, linear or subterete, 3 to 6 cm . (1 to 2 inches) long, spine-pointed and with narrow, denticulate, membranaceous margins near the base; leaves of the mature plant persistent, each subtending two leaf-like bracts and a flower at intervals of 2 to 10 mm . (about one-twelfith to tive-twelfths of an inch), rigid, narrowly ovate, often denticulate near the base, spine-pointed, usually striped with red like the branches, 6 to 10 mm . (threetwelfths to flve-twelfths of an inch) long ; bracts divergent, like the leaves of the mature plant in size and form ; flowers solitary and sessile, perfect, apetalous, about 10 mm . (five-twelfths of an inch) in diameter; calyx membranaceous, persistent. inclosing the depressed fruit, usually rose-colored, gamosepalous, cleft nearly to the base into five unequal divisions about 4 mm . (one-sixth of an inch) long, the upper one broadest, bearing on each margin near the base a minute tuft of very slender coiled hairs, the two nearest the subtending leaf next in size, and the lateral ones narrow, each with a beak like connivent apex, and bearing midway on the back a membranaceous, striate, erose-margined horizontal wing about 2 mm . (one-twelfth of an inch) long, the upper and two lower wings much broader than the lateral ones; stamens 5 , about equaling the calyx lobes; pistil simple ; styles 2 , slender, about 1 mm . (one twenty-fifth of an inch) in diameter, dull gray or green, exalbuminous, the thin seed coat closely covering the spirallycoiled embryo; embryo, green, slender, about 12 mm . (one half inch) long when uncoiled, with two linear subterete cotyledons. The plant flowers in July or August and the seeds mature in September and October. At maturity the action of the wind causes the root to break with a somewhat-spiral fracture at the surface of the frozen ground, and the plant is blown about as a tumble-weed. The mature flower with the inclosed seed is held in place in the axils of the bracts by the two minute tufts of coiled hairs, preventing the seeds from falling all at once when the plant begins to roll.

The variety tragus differs from the typical form of Salsola kali, which is common along the Atlantic coast, in the following characters: The leaves of the mature plant are very little longer than the leaf-like bracts which they subtend, while in the typical form of the species they are generally two to four times as long. The calyx is membranaceous and nearly always bright rose-colored, and the wings on the backs of the calyx lobes are much larger than the ascending lobes, while in the typical form the calyx is coriaceous and usually dull white or only slightly rose-colored, and the wings are thick, comparatively narrow, and less prominent than the ascending lobes. The species itself is less bushy in habit and less rigid at maturity. It has been known along the Atlantic coast from Massachusetts to Georgia for nearly a century, and has never developed into a troublesome weed."

Three of our native weeds have been mistaken for Russian thistle. These plants do, in some degree, resemble the thistle, but the leaf and spine characters of the latter can hardly fail to readily separate it from the others. The plant bearing the strongest resemblance is the common tumble-weed, Amaranthus albus L. [Plate V.]; its habit of growth is much the same, but its flat leaves, which may
always be found, at least towards the base of the plant, together with the lighter color and early maturity, will serve to distinguish it. The winged pigweed, Cycloloma platyphyllum Moq. [Plate VI.], bears resemblance to the Russian thistle only in its compact, globular form of growth ; its leaves are flat, its branches slender; it has no spines, and the whole plant is light green in color; these characters should separate it without difficulty. The third plant is the sea-blite, Suæda depressa Watson; the large forms of this species, seen at a little distance, show rather a striking resemblance to the Russian thistle, but, as in the other cases, the leaves and spines serve as a ready means of recognition. The sea-blite is not at all spiny, and its leaves, while of the same general shape, are larger and thicker than in the Russian thistle.

How can the Russian thistle be held in check or eradicated? The plant, being an annual, is perpetuated from season to season only through the seed. The crop of any year depends entirely upon the seed produced the previous year. It will, therefore, be apparent that effort must be directed towards preventing the formation and dissemination of seed. It is only a question of how this can best be accomplished. There is no probability that the plant will die out of itself; the growth and multiplication within the short time the plant has been with us shows that our climatic conditions are favorable to its development, and makes it plain that nothing but active and persistent warfare will rid us of it. Work should be commenced at once and continued as long as plants can be found. Later than September 1st, all plants pulled should be burned, in order to insure the complete destruction of such mature seeds as they may bear. Every plant destroyed in the fall will lessen by so much the work that must be done another season. For spring-sown grain the ground should be prepared and the seed sown as early as possible ; having the ground occupied by a crop will, in a measure, check the growth of the weed. Infested grain fields should be harvested early, because the earlier the weed is cut the more succulent it is and the less trouble it will give in handling the grain. Plowing immediately after harvest is recommended as a further means of destruction. Where hoed crops are to occupy the ground there need be no trouble, if reasonable attention is given to cultivation. Clean culture should be given until the first of August, or later, if possible. Weeds springing up after that date will not usually mature seed, and hence are only bad in their effect on the present crop.

Any thrifty farmer can, by a little extra effort, free his cultivated land from the Russian thistle, but, if he stops at this, he must repeat the same effort every year. The borders of fields, fence corners, ditch banks, and waste places which are sure to be found on every farm must, so far as weeds are concerned, receive the same attention he would bestow upon his clultivated land; if they are neglected
they will harbor a sufficient crop of weeds to again seed his fields, and he makes no progress toward their extermination. Attention to the outside localities enumerated is one of the greatest factors in the problem of weed extermination ; very many farmers do not seem to appreciate its importance, as is apparent from the too common sight of well-tilled fields bordered by rank growth of a variety of weeds. In some cases there is a possible reason for the neglect in the want of co-operation on the part of the owners of adjoining property. If a farmer is so unfortunate as to be surrounded by unoccupied lands owned by non-residents, or if his neighbors are of the careless, shiftless class, he is quite likely to confine his own labor to the land he occupies with crops, and considers himself fortunate if he can keep these clean. Co-operation is in many things an advantage; in the matter of weeds it is an absolute necessity. Individual effort amounts to nothing. The residents of a neighborhood must be of one mind, and must act in concert, in order that lasting good may be accomplished. A very few years of concerted, well-directed action will solve the weed problem for any district; but can this voluntary united action be brought about? It may be possible in some districts, but observation and experience indicate that there are many difficulties in the way; difficulties that in some cases would be insurmountable. There are in every irrigated valley tracts of non-resident land; there are areas on occupied farms lying above the ditches, areas useless for cropping but abundantly able to produce weeds; there are railway and canal lines, each with its more or less broad right-of-way. In the aggregate, a considerable area where weeds are, as a rule, totally neglected. It is difficult, if not impossible, to secure the voluntary co-operation of all corporation or non-resident land owners in the destruction of weeds-a matter involving labor or the expenditure of money; but perfectly effective warfare against weeds cannot be carried on until all lands involved are looked after with equal care. There would be manifest injustice in asking or expecting farmers to keep the unoccupied lands of their neighbors free from weeds, and it seems equally unjust to require them to combat on their own lands the weeds which periodically come to them from the neglected lands around them.

Some, at least, of the railway companies operating in Colorado are ready and willing to co-operate in a war against weeds. We have already referred to the action of the Atchison, Topeka \& Santa Fe and the Missouri Pacific Companies in the Arkansas Valley, and we are informed that the Burlington \& Missouri River Company has been taking active measures against the Russian thistle on its line. A railway company, viewing a right-of-way from a business standpoint, would desire it kept clean and made as attractive as possible, but there is no encouragement to pay particular attention to weeds if the line must pass through fields that are entirely neglected. To demand of a corporation the extermination of weeds on a right-of-way
without extending the demand to all bordering lands, would be as unjust as to require a single farmer to keep his land free from weeds while his neighbors were allowed to neglect theirs.

We have but one thing to suggest as a remedy that may give equal justice to all, and that is the enaction of a weed law which shall make the destruction of at least the most obnoxious weeds compulsory upon all land-owners. We are well aware that the mere enactment of such a law would accomplish nothing ; its existence on the statute books would be of no use, unless it were backed up and supported by a public sentiment strong enough to demand its rigid enforcement. At the last session of our Legislature a bill providing for the destruction of weeds was introduced and its passage ably advocated by some of the members ; it, however, failed to become a law, and the sentiment which prompted the bill has until recently remained dormant.

The interest lately awakened in the Russian thistle, and the activity which the people of infested districts have shown in efforts towards its extermination, has so developed the sentiment in favor of a weed law, that we believe there would now be no difficulty in passing such a law, and in securing its proper enforcement. Many States have weed laws which are more or less effective, according as public sentiment demands their enforcement. Onily two States, the Dakotas, legislate distinctively against the Russian thistle. The South Dakota law provides for the destruction of all noxious weeds, with specific mention of Russian thistle, Canada thistle, and cockle burr. The North Dakota law applies to six species only, namely: "Canada thistle, cockle burr, mustard, wild-oats, French weeds (avena fatua), and Russian thistle (Salsola kali tragus)." The Wisconsin law covers eleven species; the Nebraska law only one, the Canada thistle.

A law for Colorado should be comprehensive ; it should include those weeds which are at ipresent giving serious trouble, and be so worded that amendments to corer new introductions are not necessary. The weed question is of vital importance to the farmers of Colorado, and any measure that affords promise of relief should be earnestly supported.

PLate I.-Russian Thistle-Salsola kali tragus (L.) Moq. Twig from plant of open, straggling growth ; enlarged $1 \frac{1}{2}$ times.

4

$$
+
$$

$$
\begin{array}{cc}
\vdots & \ddots \\
\vdots
\end{array}
$$

$$
\begin{array}{ll}
? \\
? \\
\cdots & \\
\cdots & \\
\cdots
\end{array}
$$

The State Agricultural College.

THE AGRICULTURAL EXPERIMENT STATION.

BULLETIN No. 29.

Strawberries and Grapes.

> Approved by the Station Council. ALSTON ELLIS, President.

FORT COLLINS, COLORADO.
NOVEMBER, 1894.

Bulletins will be sent to all residents of Colorado, interested in any branch of Agriculture, free of charge. Non-residents, upon application, can secure copies not needed for distribution within the State. The editors of newspapers to whom the Station publications are sent are respectfully requested to make mention of the same in their columns. Address all communications to the

DIRECTOR OF THE EXPERIMENT STATION, Fort Colins, Colorado.

The Agricultural Experiment Station,

FORT COLLINS, COLORADO.

executive Committee in Charge.

HON. J. S. McCLELLAND.
HON. JOHN J. RYAN
HON. A. L. KELLOGG.
The President of the Board and the President of the College.

StATION COUNCIL.

ASSISTANTS.

SUB-StATIONS.

F. A. HUNTLEY, B. S. A., $-\quad \overline{-}-\quad$ - $-\quad$ Superintendent
Arkansas Valley Station, Rocky Ford, Colorado.
J. H. McCLELLAND,

Superintendent
Divide Station, Table Rock, Colorado.
CHAS. A. DUNCAN, B. S.,
Superintendent
San Luis Valley Station, Monte Vista, Colorado.
J. B. ROBERTSON,

Superintendent
Rain-Belt Station, Cheyenne Wells, Colorado.

Strauberries and Grapes.

By M. J. Huffington.

STRAWBERRIES.

The strawberry is the most delicious and wholesome of all berries, and is more universally cultivated in our gardens than any other fruit. It is a native of the temperate climates of both hemisheres, though the species found in different parts of the world are of distinct habit, and have each, through cultivation, given rise to different classes. In no other fruit, perhaps, has there been greater improvements made over the wild types, by the untiring efforts of the horticulturist, than the strawberry. The great superiority of our varieties of the present time, over those of the original forms, from which they have sprung, is in the size of fruit, greatly increased productiveness, and keeping qualities. Although this fruit has been brought up to such a degree of excellence by man, through cultivation, cross-fertilization, and selection, as regards size and productiveness, yet quality and flavor have not been improved upon, as some would expect, but rather have deteriorated, and in some cases have been almost entirely lost. Some of our mammoth berries, beautiful indeed to the eye, are deficient in flavor, and are often really insipid; but there is a peculiar, pleasant, sprightly flavor about the strawberry, in its native wilds, that will satisfy the most fastidious taste. Perfection, we know, is never attained, yet we believe a berry nearer the ideal will some day be originated-such a one as this, as large as any one of the largest at the present time, productive, a good shipper, and equal in flavor to the wild form. What can be more interesting work, to the true lover of horticulture, than that of originating new varieties of fruit, and especially is this true of the strawberry. Aside from the pleasure derived from such work, it is highly important that there should be, from time to time, worthy new candidates for admission to the already long list. All varieties of strawberries are constantly changing, just as with the potato and all plants propagated by any other method except from seed - the only source from which a new life can be generated. Hence the need of new varieties-seedlings, to take the place of those that were once popular, but have run down, or have degenerated until they are no longer profitable. The strawberry being so generally liked,
of easy culture, and coming into bearing so soon after planting, everyone possessing a piece of land, if only a town lot, should grow sufficient of this wholesume and popular fruit for his own family, at least. A bed 150 feet long and 18 inches wide will furnish berries in abundance for an ordinary family. By planting an early, a medium, and a late variety, the strawberry season may be extended over a period of four or five weeks.

SOIL.

While the strawberry will grow and succeed fairly well on a variety of soils, it reaches its highest degree of perfection when grown on a rich, sandy loam. Light or sandy soils give earlier fruit, but the crop is generally heavier from land partaking of a clayey nature. A southern slope will produce earlier fruit, a northern the reverse, but land level, or nearly so, is more desirable, and especially where irrigation is practiced. It is always best to set strawberries on clean land-land, that has been in some cultivated crop the previous year. Sod ground is not desirable, because it is often infested with the white grub, which in many places is so destructive to strawberry plants. Formerly, it was believed that strawberries flourished best and were most productive when grown on moderately poor soil, and that they must not be manured heavily; but now we know that the plant is a very heavy feeder, and that the crops we get are just in proportion to the amount of plant food we supply them.

MANURES.

The best results are obtained from the use of commercial fertilizers; those high in potash and bone phosphate are the best. Hardwood ashes used as a top dressing are also beneficial. Ordinary barnyard manure contains the seeds of numerous troublesome weeds, which to keep under subjection requires a great amount of labor and expense. In the use of chemical manures, many of these noxious weeds are avoided, and the plants are furnished with just the proper elements for the production of fruit. It has been noted that where mineral manures have been used, the strawberry grub did but little damage. Nitrate of soda applied in early spring, as a top dressing, has been found to greatly increase the yield of fruit. In this State, where commercial fertilizers are high and but little used, well-rotted barnyard manure will have to suffice. If it has been composted and turned several times, all the better, as in the process of fermentation many weed seeds are destroyed. The land should be manured and plowed several months before the time for setting plants, in order that the manure may become well incorporated with the soil ; before planting, plow again, sub-soiling if possible, then harrow until the surface is smooth and fine.

In regions where the rainfall is ample, beds are set in early spring, and from the last of August to the middle of September, though by far the greater partare planted in March and April. Under irrigation, plants may be set at any time from March to October, but even here, where water can generally be had when needed, if a plantation of any size is to be made, we would recommend spring as the best season to set. It is reasonable that all perennials will bear transplanting better early in spring, while in a dormant state, than during the growing period. In March and April the ground is generally quite moist, often to such an extent that it is not necessary to irrigate at time of planting, an item worth considering when a large patch is to be set. In early spring, the weather being cool, the plants never wilt, as they often do when set in summer, but soon take root and grow; furthermore, plants are much stronger and better rooted in the spring than in the summer. For summer or fall planting, it is generally difficult to get enough plants that are well rooted, without a great loss, as many at that time are not sufficiently established to support themsel ves when severed from the older plants, and, as a result, are lost. Of course, pot-grown plants can be procured, but these will be found to be quite expensive when several thousand are required. There are two systems of cultivation practiced in strawberry culture, the matted row and the hill, but the former method is more generally adhered to. Where matted rows are desired, rows are marked off $3 \frac{1}{2}$ to 4 feet apart, and the plants set in the rows 18 to 24 inches apart, requiring 5,500 to 8,700 plants to set an acre. All runners should be cut or pinched off until the first week in July, as the parent plants will be stronger if not allowed to spend their energies in producing runners before they are well established. With such varieties as Crescent and Warfield, rapid plant producers, it would be well to keep the runners cut a week longer. An ideal natted row is one in which the plants are evenly distributed, 4 or 5 inches apart, in beds 18 to 24 inches wide. In hill culture, which is the more intensive method, plants are set 12 inches apart, in rows $2 \frac{1}{2}$ to 3 feet apart, requiring 12,000 to 14,000 plants to the acre. No runners are allowed to form at any time, and, as a result, remarkably strong, healthy plants, with numerous well-developed fruit crowns, are obtained. Picking is more easily done when grown in hills Both systems have strong advocates. Some varieties succeed best when grown in hills, others do best in matted rows. It would be well for growers to test the two systems for themselves.

METHODS OF PLAN'TING.

In the East, where large areas are devoted to growing this fruit, lists or ridges are made with a one-horse plow, by
two furrows being thrown together; the top of this ridge is smoothed off with a small spiked harrow, then follows a man with a stick about four feet long and two or three inches in diameter, sharpened to a point at the lower end; by thrusting this down, a hole is made to receive the plant; with a little practice, one can make the holes rery rapidly, nearly as fast as a person can walk; then, with one to drop, and another to set, the work of planting goes on finely. Here, where level culture is necessary, rows are laid off with any convenient marker; a man with a good sharp spade thrusts it down to a depth of 5 or 6 inches, pressing the handle from him, thus making an opening, into which a helper places a plant, the roots being spread out in fan shape; the soil is then well firmed about it. Care should be exercised that the plants are not set either too deep, or too shallow ; the crowns should be just above ground ; if the bud is covered the plant will likely die, and the same will follow if any roots are exposed. After a few rows are set, shallow furrows should be run on each sidd of the row of plants, and as close as possible without covering any; water is then run through the furrows slowly until the space between is thoroughly soaked. Surface irrigation, or flooding, is never advisable, as the ground will bake and crack, causing many plants to die. Cultivation should commence in about two weeks after planting, and should be frequent and thorough. Keep the middles mellow with cultivator; directly around the plants the ground should not be hoed deeply. As to the number of times strawberries should be irrigated, it depends upon the season, and the kind of soil on which they are grown. Light, sandy soils require more water than stiff or clayey. Ordinarily, they should be irrigated every two weeks, and should be cultivated and hoed after each watering, as soon as the soil is in condition to work. Cultivation should continue until frost. Late in the fall, just before freezing, plants should be well irrigated.

MULCHING.

Mulching, in some cases, is an advantage, while in others it proves a detriment. It nas been clearly demonstrated that mulching retards ripening from a week to ten days, and as early fruit generally commands the highest price, a week in time of ripening often makes a great difference in the growers' returns; and again, unless the mulch is free from weed seeds, it will be the means of giving much extra work the following season, in the way of hoeing. The points in favor of mulching are: That by retarding plant growth there is less danger of the blooms being killed by late spring frosts; and when all the covering is not lifted from the beds it serves to keep the berries clean and free from grit, also helps to retain moisture. Where one is growing berries for market, it would be well to cover a part of his patch, and leave uncovered a portion. If mulching is to be done, during November or December is the proper
time; the materials should be straw or light manure; the plants should not be covered too deep; the mulch should not be removed in spring until after plant growth starts, but it is not safe to let it remain on until the plants begin to bleach. After the covering is removed, they should be irrigated frequently until the fruiting season is over. The strawberry is a heavy drinker, and during the fruiting period should not be allowed to suffer for water. On light or sandy soils they require irrigating twice a week, while on clayey land once a week will be sufficient.

PICKING THE FRUIT.

When the berries are to be shipped, they should be picked every day, and should not be thorougly ripe, as they will reach market in poor condition if allowed to ripen on the vines before being picked. Each berry should be picked with a stem from one-half to three-quarters of an inch long, as the fruit keeps much fresher and better in every way if the cap, or calyx, is undisturbed. We believe if growers would grade their berries they would be handsomely paid for the extra labor. After fruiting, the beds should be barred off-i. e., a furrow thrown from each side of the row; the plants should then be hoed, and where very thick, some should be cut out. After hoeing, the middles should be kept well cultivated. It is not advisable to let a bed fruit more than two years-three at the very outside Some of the most successful growers consider that one year is long enough for a bed to stand, but for the ordinary cultivator, we would not recommend such a system. A new patch should be set every year, so there will always be one at its best.

Strawberry growers under irrigation possess a great advantage over their fellows outside the irrigated districts, for drouth often cuts short the finest of prospects. In this State there is no better field in fruit culture for intensive work than that of strawberry-growing. With a proper soil, good varieties, and a reasonable amount of attention, strawberries are among the most profitable of small fruits grown.

SELECTION OF VARIETIES.

The selection of varieties is a matter of the greatest importance to the grower of strawberries for market. If the bulk of the crop will have to be shipped, the grower should be sure that he plants varieties that are good carriers. For home use, or market close at hand, it is not so important that a berry should be a good shipper-but a variety possesing this quality in connection with other good qualities is all the more desirable. With beginners, the mistake is often made of planting too many sorts, and frequently those that have not been thoroughly tested in that particular section. But few varieties succeed equally well in all parts of the
country, hence the amateur should first ascertain from neighbors those varieties that are grown successfully in his vicinity. Plant these first as your mainstay, and if you want to experiment in a small way testing varieties, all right, but go cautiously on novelties; they are expensive, and often many of them are not any better than the standard sorts. Try a few of the novelties at first, and if better results are obtained from these than from the old varieties, then will be time to plant more largely of the new kinds. In order to keep a variety from degenerating, as far as lies within the cultivator's power, much care should be exercised in the selection of plants for setting new beds. Some persons think that old plants taken from old beds are just as good as young plants taken from new beds, provided the old black root is broken off; but such a practice is wrong, and to it is often traceable the fact that a variety has run out. Only young, strong plants, with well-developed roots, from beds that have never fruited, should be used.

PISTILLATE AND BI-SEXUAL VARIETIES.

In the accompanying table, those varieties marked " H " are perfect flowering kinds, having both stamens and pistils, and are capable of fertilizing themselves. Those varieties marked "P" have pistils only, or the stamens are so poorly developed that they have to be planted with or near a variety that has a perfect flower in order to insure fruitfulness. Some of our best and most productive varieties are pistillate, and when these are grown, success or failure, to a large degree, depends on the sort used as a pollenizer. In selecting a variety for a pollenizer it is not enough that it has a bisexual flower, for many of the sorts termed perfect flowering have such weak stamens that they can not more than fertilize themselves. A pollenizer should have a large bloom, strong, well-formed anthers, which, as a rule, will be prolific in pollen. Time of blooming is also another important consideration in choosing a variety for a pollenizer; both kinds should bloom at or very near the same time; if there is much difference in their blooming periods, small, ill-shaped berries from the pistillate sort will be the result. There is a diversity of opinion among growers as to what proportion of a patch should be of a bi-sexual variety; some claim that one row in four or five is all that is necessary, while others say the best results are obtained from planting half and half. We believe the latter proportion will prove the more satisfactory.

VARIETY TEST FOR 1894.

The soil on which our plants were grown is a heavy, adhesive, bottom land, hard to cultivate, unless taken just at the right time. Plants received good attention during the summer of 1893, and most of them made a good growth. They were irrigated last on October 20th, and mulched with old wheat straw on October 27th;
the covering was allowed to remain on until April 21st, at which time plant growth had commenced ; cultivation was then given, after which water was applied as often as required. The accompanying table gives the date of blooming and date of first ripe fruit of each variety :

	Sex.	Date of First Bloom.	Date of First Ripe Fruit.
Atlantic	H.	May 14	June 18
Belle of La Crosse	P.	" 13	" 17
Bomba	H.	" 16	" 13
Boynton	P.	" 12	11
Bubach	. P .	" 10	12
Captian Jack	H.	" 11	12
Cornelia	H.	" 16	17
Crawford	H.	" 17	14
Crescent.	P.	" 9	" 8
Crystal City	H.	" 4	5
Cumberland	H.	" 14	" 14
Downing	H.	" 14	13
Edgar Queen.	P.	" 18	" 20
Edward's Favorite	H.	" 13	15
Eureka	P.	" 16	18
Gandy	H.	" 14	21
Glendale	H.	" 14	17
Haverland	P.	" 9	11
Ironclad	H.	" 9	11
Jessie	H.	" 14	" 11
Jewel	P.	" 14	17
Jumbo	H.	" 16	15
Lady Rusk	P.	" 14	12
Lida	H.	" 13	14
Loudon	H.	" 14	15
Louise	H.	" 14	13
Manchester	P.	" 9	" 15
Ontario	H.	" 16	" 13
Parker Earle	H.	" 9	" 14
Pearl.	H.	" 14	" 11
Shuster's Gem	P.	" 14	13
Summit	. H .	" 8	15
Thompson	P.		13
Van Deman	H.	" 12	" 9
Warfield.	P.	" 14	" 11
Westlawn	P.	" 14	" 14
Wilson	H.	" 9	" 12
Woolverion.	H.	" 18	" 14

Atlantic-A late variety, not proving very vigorous here. Plants of medium size, leaf stalks long and only fairly strong, leaflets long ovate, light green, trusses long, berry of medium size, regularly conical, colors evenly, firm and of fair flavor. The variety cannot be recommended for general culture, as there are others so much better.

Belle of LaCrosse.-Plants vigorous, leaf stalks long and strong, leaflets of medium size, broad ovate, trusses of medium length and strong. A late variety, productive, berry of medium size and regularly sub-conical, color a light scarlet, of fair quality for home use, but too soft for market.

Bomba.-A variety closely resembling Wilson, both in habit of plant and appearance of fruit. Leaf stalks strong and of medium length, leaflets large, broad ovate, trusses short and stout, blossoms large, stameus well developed. A second early berry of good color and very firm, but is not up to the standard for productiveness.

Boynton.-A variety resembling Crescent in foliage and fruit. Plant vigorous, produces runners freely, early in ripening and productive. Berries of good size, regular in shape and of good color; altogether, we consider this a decided improvement on Crescent.

Bubach.-This variety, which is such a favorite in many sections, proved an entire failure on our heavy land; but grown by parties near here, on a sandy loam, it was a success. Its season is medium early, the plants are productive and the berries large. We would say to all, do not plant the Bubach on heavy land.

Captain Jack.-A well-known standard variety in many sections. Ripens second early; the plant is a strong, healthy grower with very dark-green foliage ; flowers strongly staminate; the variety is extensively used as a pollenizer for pistillate sorts. It is fairly productive, berries of medium size, conical, of an attractive red, firm and a good shipper.

Cornelia.-A late variety of the old Glendale type, possessing only ordinary vigor. Leaf stalks long, erect, leaflets medium size, long ovate, light green, trusses long. Berry of medium size, conical, of poor color, too soft to ship; the variety possesses no special merits which would recommend it to the public.

Crawford.-A poor grower, makes but few plants, seems to lack vigor. Leaf stalks short and strong, leaflets large, broad ovate, dark green; trusses short and stout, stamens well developed. Berry large, conical, firm, seeds very numerous, not productive; the variety can not be recommended.

Crystal City.-This was the first variety to ripen. Plants very vigorous and healthy, but is not productive, fruit small and too soft for shipment; of no value here.

Crescent.-This well known and at one time the most popular variety in cultivation, is being supplanted by some of the newer sorts possessing superior merits, chief among which may be mentioned Warfield. Crescent is second early in time of ripening, plant remarkably vigorous, will grow in a great variety of soils, is productive and a fair shipper. The chief objection to it is that the berries run down so very small after the first few pickings.

Cumberland.-An old variety highly esteemed for family use or near markets, but not firm enough for distant shipping. A close grower, leaf stalks short and stout, leaflets large, broad ovate, of a dull green, trusses short. Berries medium large, sub-conical, remarkably regular in form and holding their size throughout the
season, color light pink, of a mild, pleasant flavor. The variety is not as productive as some, but for home use is a favorite wherever grown.

Downing.-Another of the old sorts, which, like the Cumberland, is desirable only for home use, on account of its poor shipping qualities. Here the plant lacks vigor and productiveness. It is medium in time of ripening, fruit small, conical, regular, color attractive, flavor good.

Edgar Queen.-A late variety of strong, vigorous growth; leaf stalks long, leaflets large, long to broad ovate, light in color, trusses long and strong, productive, berries of large size, somewhat lobed, holds its size well, but is not firm enough for market.

Edward's Favorite.-This variety is said to be a seedling of old Jucunda, which it closely resembles both in plant and fruit. Plant remarkably strong and healthy, produces runners freely, medium in time of ripening. Berries of large size, conical, very even, holding the same throughout the season, of a bright, attractive color, appearing as though they had been varnished, seeds golden and prominent, flavor good. While not so productive as some, this is one of the best varieties tested. We think it would prove a good shipper.

Eureka.-A late variety of strong growth, late in blooming, leaf stalks long, leaflets large, broad ovate, medium light in color, trusses long and strong, productive, berries of the Bubach type, large, sometimes irregular, colors evenly, a light scarlet, of fair flavor, but too soft for shipping.

Haverland.-This is a second early variety, vigorous and productive, but desirable only for home use, the fruit being too soft for shipping. Leaf stalks long and fairly strong, leaflets medium size, long ovate, light green, trusses long, fruit rests on the ground, berries of medium size, conical, slightly necked, color a light scarlet, flavor good, a fine variety for home use.

Gandy.-One of the latest to ripen. Were this variety productive it would stand without a peer as a late sort; plant of medium vigor, makes but few runners, leaf stalks medium long, strong, leaflets long ovate, trusses long. Berries uniformly large, of a bright scarlet, with a very large green calyx, which remains fresh for a long time after being picked, giving the fruit an attractive appearance in market; the regular even size is held throughout the season; the variety is a good shipper.

Glendale.-A late variety with apparently tender foliage for this climate. Plants are tall and of only medium vigor, leaf stalks long, Jeaflets long ovate, light green, trusses long and strong, productive, berries of medium size, conical, of poor color, many having white sides and tips..

Ironclad.-A second early variety resembling Wilson. Plants strong and healthy, but do not produce runners freely, a close grower, leaf stalks short, leaflets medium large, broad ovate, dark green, smooth and glossy, trusses short and strong, stamens well developed. The berries are of medium size, rich dark red, very firm, but not up to the standard for productiveness.

Jessie.-This is a variety of the Sharpless type, medium early in ripening, plant vigorous, leaf stalks long and stout, leaflets large, broad ovate, trusses short and strong, strongly staminate, makes but few plants. Berries large, conical, of uniform size, of better color than Sharpless and firmer. This is a fine variety, good as a pollenizer.

Jewel.-A late variety of no special value. Plant easily affected by heat, foliage very tender, leaf stalks long, leaflets large, long ovate, trusses long, fruit at the very top of the fruit stalks, berries medium large, resembling the Cumberland in shape and color, with a peculiar spicy flavor. The variety can not be recommended.

Jumbo.-Another variety of the Sharpless class, plants large, strong and fairly productive for a large sort, medium in time of ripening, leaf stalks strong, leaflets large, broad ovate, light green, trusses short and very strong, flowers large, with well developed stamens, a good pollenizer. The berries are large to very large, compressed conical, tips and under sides do not color well until fully ripe, fairly firm for so large a berry. This variety is worthy of trial.

Lady Rusk:-Plant and fruit both resemble Crescent, although the fruit is inclined to be more irregular in shape, plant healthy, and produces runners freely, only fairly productive, second early in ripening, color like that of Crescent, fairly firm, worthy of trial.

Lida.-A strong growing variety with large leaves and strong leaf stalks and trusses, produces plants freely which are evenly distributed in the row, medium in ripening, berries large, of uniform size throughout the season, sub-conical, very much like Manchester in color and shape. The variety is hardly productive enough for a market berry, but is desirable for home use.

Loudon.-This variety makes a strong, vigorous growth, leaf stalks of medium length and stout, leaflets large, long ovate, trusses short and strong, blossoms large, stamens well developed, would be a good variety to use as a pollenizer, productive, ripens in mid-season, berries of good size and color, quite firm.

Louisa.-A medium variety in time of ripening, plants healthy and productive, leaf stalks short and strong, leaflets of medium size, broad ovate, medium green, trusses short and stout, berries of large size, regular, conical, flavor good, firm.

Manchester.-A popular mid-season variety, inclined to rust badly in some sections, although entirely free from it here. Plant
and fruit closely resemble Lida. This is a good variety for home ase or near market, but will not stand much handling.

Ontario.-Another variety of the Sharpless type. The plants are large and strong, with stout leaf stalks and large, broad ovate leaflets, and strong trusses. Foliage light green, blooms very large with strong stamens, does not make many plants. The berries are large, somewhat irregular in shape, like Sharpless, but colors better than that variety, sweet and of fine flavor. The variety is below the standard of productiveness.

Parker Earle—For productiveness this variety stands far ahead of any we had under test the past season. We never saw plants more heavily loaded with fruit, the most of which was brought to perfect maturity. To give an idea of the immense productiveness of the variety, a row 100 feet long and 18 inches wide produced 65 boxes of berries; at this rate an acre would have yielded 12,800 boxas, a remarkable crop' under the average cultivation. The soil on which Parker Earle was grown is a very heavy bottom land, and at remains to be seen how the variety will succeed on lighter soils and on heavy soils in different seasons. The plants are remarkably strong and vigorous, make sufficient rumners to form an even bed 18 inches wide. The berries are large, conical, regular in size, of an attractive scarlet, slightly necked, calyx reflexed, quality good. This promises to be a good market berry.

Pearl.-A productive early variety ripening with Crescent. The plant is of strong growth and produces sufficient runners. Leaf stalks short and stout, leaflets large, broad ovate, trusses short and strong, berries large, regular, evenly colored, slightly necked, of a Bright scarlet, flavor equal to any in the list, a good variety.

Shuster's Gem.-This variety is a cross between Crescent and Sharpless. The plant is moderately vigorous, with light green leafIets of medium size, and strong trusses. It is quite productive, berzies of large size, conical, of a light scarlet, flavor good ; too soft for market, but desirable for home use.

Summit.-In foliage and fruit this variety closely resembles Lida. It produces uniformly large fine berries, sub-conical, light scarlet and of good flavor. This is another variety that is desirable only for home use.

Thompson.-There were only a few plants of this variety, but these made a favorable showing; plant and fruit of the Crescent type, second early in time of ripening, berry of good size and color, arm, worthy of further trial.

Van Deman.-In this variety our expectations were not realized; as so many favorable reports were heard of it from all parts of the country, and having grown it in Maryland, when first introduced, with the most satisfactory results, one could not help feeling a special
interest in the variety. The plant is strong and healthy, with a fine, dark green foliage, but here it was not productive. The first two or three pickings gave berries of good size, sub-conical, of an attractive color, fairly firm and of good quality; but afterwards the fruit was of small size. On a different soil we hope the variety will do better.

Warfield.-This is undoubtedly one of our very best all-purpose berries. The plant is of medium size, very vigorous, producing as many if not more runners than Crescent. The foliage is strong and dark green, trusses short and stout, a second early variety, very productive; berries of large regular size, conical, slightly necked, of a rich dark red, firm, and a good shipper. Like the Wilson, it is a little acid. Of all the varieties tested, for a profitable market berry, the Warfield stands at the head.

West Lawn.-A strong, vigorous variety, with long leaf stalks and long ovate, light green leaflets, trusses long and strong, holding the fruit well up from the ground, medium in time of ripening, berries of good size, regular, sub-conical, of a dull scarlet. The tips are inclined to remain green, which feature, with many, would condemn the variety.

Wilson.-No other variety of strawberry has been so widely disseminated and was held in popular favor so long as the Wilson. For more than twenty years it stood pre-eminently as a productive market berry, but now we are sorry to say that this once grand berry has certainly run down, until it is no longer productive, and the fruit is of inferior size after the first few pickings. The plant is a a strong, close grower, with large, dark leaves, flowers strongly staminate, prolific in pollen, berries of medium size, conical, dark red and very firm, one of the best shippers grown.

Wolverton.-A productive variety, ripening in mid-season, that gives promise of becoming a valuable berry, both for home use and for shipping, being a late bloomer it is not likely to be killed by late spring frosts. The plant is a close grower, strong and healthy, leaflets large, long ovate, light green, trusses very strong, berries large, conical, regular in size, color a bright, attractive red, flavor good. We believe this variety will be liked by all who grow it.

SUMMARY.

From the variety test carried on at this station, and from observations made on beds of growers in this vicinity, the following may be summarized:

1st. For an extra early berry, either for home use or market, Mitchell's Early is desirable. The plant is bi-sexual, prolific in pollen and a good pollenizer. The variety does far better the second and third years than the first.

2nd. The most productive sorts were, Parker Earle, Warfield, Boynton, Edward's Favorite, Wolverton, and Pearl.

3rd. The most attractive berry in appearance and also possessing the best flavor, was Edward's Favorite.

4th. For market we would recommend Warfield, Parker Earle, Edward's Favorite, Boynton, and Wolverton. Were but one variety selected we would say, Warfield, fertilized with Edward's Favorite or Parker Earle.

5th. Varieties prolific in pollen and good for pollenizers are Captain Jack, Edward's Favorite, Jessie, Mitchell's Early, Loudon, Parker Earle, Pearl, Van Deman, and Wolverton.

GRAPES.

Commercial grape-growing in Eastern and Northern Colorado does not offer the prospective planter any inducement ; the unfavorable conditions attending the successful and profitable growing of the grape here, are these: East of the range, all varieties must be protected in winter by a covering of earth two or three inches deep, and the same removed in spring, all of which adds to the cost of production; and furthermore, the yield obtained here is not as large as it is in the grape-growing regions of the East. At the present time the prices realized are so very low that local growers can not compete with the grape belts of the east, where the fruit is grown by the hundreds of tons and shipped in car-load lots to our Western markets, where it sells at retail for 25 to 30 cents per 10-pound basket. Were the yield here as large as it is in the East, and could covering be dispensed with, thus lessening the cost of production, the problem of profitable grape-growing here might assume a different aspect.

West of the range; the conditions are different, and altogether favorable to successful grape-growing on a large scale. The vines require no protection whatever ; the yield is large, and fungus diseases are entirely unknown. There is no reason why Western Colorado should not some day be reckoned among the foremost of the grape producing sections of the country. The conditions as regards soil and climate are certainly most excellent, and what is now necessary in order to prosecute the business on a large scale is proper shipping facilities at reasonable rates. While we do not believe that grapegrowing can be carried on profitably on an extensive scale in Northern and Eastern Colorado, we do not mean to discourage the planting of the vine, but would not recommend it as a money crop. To all home owners, we would urge the importance of planting the grape for their own use. A few dozen vines, well cared for, in a few
years will be the source of much enjoyment and satisfaction to any family ; and when the vines are once well established they will last almost a lifetime. Where one is near a town of any size, a vineyard of a few hundred vines may be made to pay, provided the right sorts are planted; early varieties are the ones to plant for profit, the earlier the better; very early grapes of only medium quality are generally more profitable than later ones of good quality ; but a variety possessing extreme earliness in connection with good quality, is what we need. Generally, in the markets of the West, dark grapes sell better than the light ones, while in the East the reverse is the case. With grapes, as with all other fruits when grown for market, too many varieties should not be planted.

SOIL.
Grapes succeed best on a warm, well-drained soil, sloping towards the south. The spring is the best season for planting; vines are usually set 6 to 8 feet apart, in rows 8 feet apart; at these distances, requiring 680 and 900 vines, respectively, to set an acre. One and two-year old vines are generally planted; two-year old vines cost from one-third to onehalf more than one-year old vines, but they are stronger, and, as a rule, will give fruit earlier. When ready to plant, ample holes should be dug to receive the vines; if the roots are very long, say from 18 to 24 inches, they should be shortened, and spread out in all directions, not more than 6 or 8 inches from the surface, in order that they may get more warmth, and also have a richer soil in which to grow ; broken or ground bones, old shoes, rich earth, or any fertilizing material, mixed with the soil when filling in, will be of much benefit. The grape, like the majority of plants, does best when well fed.

After vines are set they should be cut back to within two or three buds of the old wood. For the first two years the method of pruning is practically the same for any system of training that is to be adopted later. The first fall after planting pruning consists in cutting back nearly to the ground again, leaving only a spur of three or four buds; the second season two canes should be allowed to grow ; on good soil and under proper cultivation, strong growing varieties should make a growth of five or six feet the second season; if so, one branch should be cut back to within three buds again, and the other, which is intended to bear, should be cut back to within three or four feet. If vines are not strong enough to produce a good growth of wood, they are too weak to bear fruit; as they grow older and are stronger three to five canes may be left to fruit-those that start within a foot or two of the root are preferable; these shoots are trained out in fan shape on trellis or to posts. This mode of training and trimming is known as the fan system. The following is a plan of trellis which is much used: Durable posts are set 16 to 18 feet
apart, and to these wires are tightly stretched and fastened ; the lowest wire should be a foot or more from the ground, the next 10 or 12 inches above, and the other two each 12 to 16 inches apart; by increasing the distance between the wires three may be made to answer. A system of training and pruning, after the second year, different from the fan system, and one that is generally liked, especially for small vineyards, is as follows: The two canes that have been formed the third year are cut off within three or four feet of the base, and spread out horizontally to form the arms; all shoots nearer than one foot of each other are rubbed off; each shoot should be tied to the second wire as soon as it has grown sufficiently to reach it. If properly trained, each arm ought to produce four or five strong shoots, which are trained to the wires in a vertical position. At four years of age each shoot should yield two or three bunches of fruit. After growing one season each horizontal shoot should be cut down to one or two good buds, these grow and form the bearing wood for next year, and so, from year to year, this method of pruning and training may be practiced with little deviation. Pruning may be done at any time after the leaves fall until the sap starts in the spring.

NOTES ON STATION VINEYARD FOR 1893 AND 1894.

The Station vineyard, which contains 260 vines, representing seventy-five varieties, is on a clay loam, gently sloping towards the south. The rows are 8 feet apart, and the vines 8 feet apart in the rows. A trellis of two wires is used for training. Between the first and middle of November the vines are pruned, laid down and covered with earth to a depth of 2 or 3 inches. Generally, about the first of May, the covering is removed, the vines again tied to the wires and the surface leveled, after which water is applied. One or two irrigations, for such soil, followed by good cultivation until the middle or last of July, is all that is necessary. In the following descriptions of varieties, and from the value placed on each, it should be borne in mind that of many of the kinds only one plant was set, and it is well known that individuals of a variety often differ; so that with some of the sorts, had there been more than one vine planted, the results obtained might have been more satisfactory. In giving the season of ripening of a variety, the Concord has been used for comparison, for the reason that it is more generally known than any variety in cultivation.

BLACK VARIETIES.

Aminia (Roger's No. 39—Hybrid).-Vine a good strong grower, shoots 5 to 6 feet, wood stocky, season after Concord, medium productive, bunches of good size, compact, berry large, black, skin thick and tough, flavor poor.

August Giant (Labrusca-Vinifera-Roger's Hybrid).-Vine an ordinary grower, shoots 2 to 3 feet in length, early in time of ripening -a few days later than Moore's Early, and a week or more in advance of Concord ; bunch of good size, rather loose, berry medium, round, black, with a blue bloom, and of fair quality. The variety is fairly productive, and worthy of trial.

Black Eagle (Labrusca X. Vinifera-Concord Hybrid).-A variety ripening with Concord, and quite productive. The vine did not make as good growth in 1894 as in 1893 ; shoots not over 1 foot long, slender, bunch long, loose, berry some smaller than Concord, black with a deep bloom, sweet and of good quality. Concord is preferable.

Cambridge (Labrusca).-A variety ripening with Concord. Vine a good grower, shoots 3 to 5 feet long, wood stocky, productive, bunch small to medium size, loose, berry smaller than Concord, skin thin, pulp melting, hardly equal to Concord in flavor. Worthy of trial.

Champion (Labrusca).-Only an ordinary grower, shoots 2 to 3 feet, rather slender, productive, one of the very first to ripen, bunch of medium size, compact, berry smaller than Concord, a dull bluish black, inferior to Concord in flavor, though a profitable early market grape.

Concord (Labrusca).-A variety universally known and liked. Here the vine makes a good growth, some shoots 5 to 6 feet long, wood stocky, productive, but hardly early enough for this section; often it barely escapes frost; bunch large, quite compact, frequently shouldered, berry large with a good bloom, flavor good, the standard late black grape for home use and market.

Cottage (Labrusca).--Vine an ordinary grower, some shoots 2 feet long, wood slender, fruit ripens four or five days earlier than Concord, fairly productive, bunch of medium size, berry some smaller than Concord, black with a deep bloom. Concord is the more desirable, though Cottage is worthy of trial.

Creveling (Labrusca X. Vinifera-Concord Hybrid).-A second early variety, ripening considerable in advance of Concord. The vine is a good grower and productive, shoots 2 feet and over, bunch of medium length, rather loose, berry smaller than Concord, black with a deep blue bloom, sweet and melting, not equal to Concord as an all-purpose grape, but on account of its earliness, will prove satisfactory 'where the season is short.

Early Victor (Labrusca).-This is a second early variety, vine a good grower, shoots 4 to 5 feet long, wood stocky, bunch small, compact, berry small to medium, inferior to Concord in flavor. The chief merit of the variety is its earliness, ripening two weeks before Concord.

Essex (Roger's Hybrid No. 41).-This is a rank-growing variety, shoots 6 to 8 feet, wood stocky. It ripens after Concord and is too late for this part of the State ; bunch of good size, fairly compact, berry very large, very dark red or black. Where the season is longer this would be a desirable variety.

Herbert (Roger's Hybrid No. 44-Labrusca X. Vinifera).- The past season the vine of this variety made a small growth; some shoots 2 feet long, wood slender. Its season is some later than Concord ; bunch of medium size, berry large, black, quality good. So far the variety has not proved productive.

Janesville (Labrusca X.).-This is one of the hardiest if not the most hardy variety we have tested. The vine makes a good growth -5 to 6 feet-which is well ripened. Its season is very early, bunches of medium size, compact, occasionally shouldered, berry smaller than Concord, black with a good bloom, very productive, and were it not for the very poor flavor would be a desirable sort. It is fine for preserves and jellies, and in trying localities, for home use, it will prove good.

Merrimac (Labrusca X. Vinifera-Roger's Hybrid).-This is a remarkably strong growing variety, shoots 6 to 8 feet, wood stocky. It is productive, and ripens a little later than Concord, bunch of medium length, loose, berry large, skin thick, quality good; too late for this section.

Moore's Early (Labrusca).-This variety makes but little growth, some shoots 3 feet long. So far it has not been productive. It is early in ripening, and the best in quality of the early varieties, bunch of medium size, generally loose and ill shaped-so many of the berries drop, thus making a straggling bunch ; occasionally there is a fairly compact bunch, berry some larger than Concord. Were this variety more productive, it would be one of the very best early black grapes ; at any rate, it is worthy of trial.

Montefiore (Riparia X. Labrusca).-This variety makes an ordinary growth, some shoots 4 to 5 feet, fairly stocky. Its season is later than Concord, bunch small and loose, berry of medium size and of fair quality, rather late for this section.

Norwood (Hybrid).-This is a good grower, shoots 3 to 4 feet, stocky. The season is a little before Concord, bunch of medium size, fairly compact; berry large, resembling Concord in appearance and flavor; the variety is productive and of merit here.

Oriental (Hybrid).-This variety is a fairly good grower, ripening four or five days after Moore's Early. It is quite productive, bunch of medium size, berry large, very dark red or black, flavor somewhat like the Agawam. The variety is worthy of planting.

Rochester (Labrusca).-For the last two years this variety has made a small, weak growth ; the vine seems to lack vigor here.

There were a few small, poor-shaped bunches ; berry small, black, sweet, pulp melting. In other sections the variety might prove a success.

Senasqua (Hybrid). -This variety makes a fair growth, shoots 2 to 3 feet, wood stocky, ripens after Concord, bunch long, loose, berry large, thick skinned ; too late here.

Telegraph (Labrusca).-Vine a fairly good grower, shoots 4 to 5 feet, stocky. Its season is second early, ripening a few days after Moore's Early, bunch of medium size, compact, berry smaller than Concord, black with a deep bloom, sweet and of fair flavor, though inferior to Concord ; a good variety for home use, where the season is short.

Wilder (Roger's No. 4-Labrusca X. Vinifera-Roger's Hybrid).Vine a slow, weak grower, shoots not over 1 foot long, wood slender. Its season is a few days later than Concord, bunch of good size, berry large, black; so far it has not been productive.

Worden (Labrusca).-A valuable grape of the Concord class, and nearly identical with that variety, but ripens four or five days earlier. The vine is a good grower, shoots 4 to 5 feet, wood closejointed and stocky, productive, bunch of good size, quite compact, often shouldered, berry large, black with a deep blue bloom, quality good ; altogether, the Worden is preferable to Concord.

RED VARIETIES.

Agawam (Roger's No. 15-Labrusca X. Vinifera-Roger's Hy-brid).-By many this is considered one of the best of Roger's hybrids. Here the variety succeeds very well; it is a strong, stocky grower, shoots 2 to 3 feet, ripens a few days after Concord; bunch long, loose, berry large, round; red, quality good. The variety is fairly productive, and should be included in every collection.

Amber (Riparia X. Labrusca).-A medium variety in time of ripening. It is a strong grower, some shoots 8 feet long, stocky, farly productive, bunch long, loose, berry smaller than Concord, sweet, and of good quality. There are others of the class in the list more desirable.

Amber Queen (Labrusca X. Vinifera).-This is a second early variety, ripening a few days after Moore's Early; vine a good grower, some shoots 5 feet, stocky, bunch small, berry smaller than Concord, red or amber, skin thin and tender, sweet and of good quality. This variety is worthy of a place in any collection, but would not recommend it as a profitable sort for market.

Brighton (Labrusca X. Vinifera - Concord Hybrid).-A second early variety, ripening a few days after Moore's Early, and has proved here to be one of the very best red grapes among the varieties under test. The vine is a good grower, ripens its wood well,
and is productive, bunches long, quite compact, berries some smaller than Concord, round, dark purple, sweet, and of good quality. A sort that will give gencral satisfaction.

Barry (Roger's No. 43-Hybrid).-Vine a good strong grower, shoots 4 to 5 feet long, quite productive, ripens about with Concord, bunch long, compact, berry large, red, thick skin, pulp melting, of a very pleasant flavor. The variety is worthy of trial.

Dracut Amber (Labrusca).-This is a poor-growing, unproductive variety, ripening with Concord, bunch of medium length, rather loose, berry smaller than Concord, dark amber, sweet with a very pleasant flavor, pulp meaty; the berries will dry upon the vines before dropping. The variety does not possess any desirable qualities that would recommend it to the public.

Delaware (Labrusca X. Vinifera).-The vine of this variety has made a poor, slender growth the past two seasons, some shoots 2 feet and over, bunch small, fairly compact, berries small, red, of fine flavor, but so far has not proved productive ; worthy of a place in any collection.

Iona (Labrusca X. Vinifera)-This has been a poor, weak grower here, some shoots 2 feet long, but slender. Its season is after Concord, bunch of medium size, loose, berry small, red, sweet, and of good flavor. The variety is not desirable for this part of the State, on account of its lateness.

Norfolk (Labrusca).-This is a remarkably strong growing variety, shoots 6 to 8 feet, very stocky, productive, ripens with Concord, bunch of good size and fairly compact, berry large, red, and of good flavor ; worthy of trial.

Perkins (Labrusca).-A variety ripening with Concord ; this year the vine made a poor, weak growth, and produced only a few illshaped bunches. The berries are smaller than Concord, red or amber, with thick skin. The variety can not be recommended.

Ulster Prolific (Labrusca X. Vinifera).-A variety ripening after Concord, vine a moderate grower, shoots 2 to 3 feet, bunches of medium size, loose, berry smaller than Concord, red, flavor good. The variety is too late for this part of the State.

Vergennes (Labrusca).-Vine a poor grower, not productive, bunches small, loose, berry smaller than Concord, red or amber, sweet, and of good flavor. Its season is a little later than Concord, which makes it too late for this part of the State.

Woodruff Red (Labrusca).-This is only an ordinary grower, but quite productive, ripening after Concord. The season here is not long enough for its perfect maturity ; bunches large, compact, berry about the size of Concord, light red, and of a very pleasant flavor. This variety will no doubt prove valuable where the season is longer.

WHITE OR GREEN GRAPES.

Eldorado (Hybrid).-A variety ripening three or four days after Moore's Early. The vine is a remarkably strong, stocky grower, bunches long, somewhat loose, herry about the size of Concord, of a greenish color with a golden tinge, skin thin, pulp melting, sweet and of good quality. The variety is productive, and altogether a desirable light grape either for home use or for market.

Elvira (Riparia X. Labrusca).-A remarkably strong, vigorous grower, and very productive, some shoots 8 to 10 feet long. It ripens with Concord ; bunches short and very compact, berry smaller than Concord, greenish white, sweet, though of poor flavor. For jellies and preserves the fruit is all right, but for market it has no value.

Empire State (Riparia X.?).-This variety has made a poor, slender growth, some shoots 2 feet long. Its season is about with Concord. The few bunches obtained were small and straggling, berry smaller than Concord, white, and of good flavor. While the variety has not done well here, in more favorable localities, it might prove good.
r. B. Hayes (Labrusca).-A variety ripening a few days before Concord, vine a poor grower, and so far has been unproductive; bunches small and loose, berry sinall, straw-color, sweet, and of fine flavor. There are other white grapes in the list much better.

Grein's Golden (Riparia X. ?) -The vine a strong grower, and fairly productive; bunches long and loose, berry about the size of Concurd, of a rich golden color, skin thin, pulp melting, quite acid. Here the season is too short for the fruit to ripen; further south it might be of value.

Jessica (Hybrid).-This variety has made but little growth the past two seasons-seems to lack vigor. Its season is several days earlier than Concord; bunches small, loose, berry small, straw-color, sweet, and of good quallty. Here the variety has proved unproductive, and has not shown any desirable qualities that would entitle it to a place as a sort worthy of cultivation.

Lady Washington (Hybrid.)-This variety has proved one of the very best light grapes, so far, tested at this Station. The vine is a remarkably strong, healthy grower, producing shoots 8 to 9 feet long, and ripening its wood well. It is very productive, in season a few days later than Concord, bunches very large and showy, generally shouidered, berries a little smaller than Concord, color between a straw-color and a golden, quality good. Here the season is sometimes rather short for the perfect development of the fruit, but where the season is longer it will prove a most valuable white grape.

Martha (Labrusca).-An ordinary grower and not very productive, shoots 2 to 3 feet long. It ripens with Concord ; bunches of medium size and fairly compact and holding the fruit well, berry
smaller than Concord, greenish, sweet, with a rather flat flavor, For home use the variety will give satisfaclion, but is not productive enough for a market sort.

Moore'e Diamond (Labrusca X.)-A variety ripening in midseason, vine a good grower and ripens its wood well, shoots 4 to 5 feet long. So far it has not proved very productive; bunches long and loose, berry smaller than Concord, color a greenish-white with a tinge of yellow when fully ripe, skin thin, pulp melting, of fine quality. This is a desirable variety for home us, and were it more productive would be a profitable market sort.

Niagara (Labrusca).-This widely disseminated variety which has succeeded well over a broad range of country, has been a failure here. Only one vine was planted, and that has been a poor grower, producing only a few ill-shaped bunches. Its season is a little after Concord. It approaches nearer to a white grape than any we have, and is of good quality. As but one vine was planted, it is hardly fair to pass judgment on the adaptability of the variety to this part of the State ; on the western slope it succeeds well.

Prentiss (Labrusca).-A poor growing variety, ripening after Concord; so far, it has not been productive. The past two years it has produced only a few poor bunches, berry small, greedish-white, of a pleasant flavor. The variety has not proved at all a desirable sort.

Transparent (Riparia X). - A variety ripening a week or more after Concord. The vine makes a fine growth, shoots 6 to 10 feet long, bunches of medium size, loose, berry smaller than Concord, color between straw-color and golden ; where the season is longer it would, no doubt, be good.

Triumph (Labrusca X. Vinifera).-This is a fair growing variety, but is decidly too late for this section-its season being much later than that of Concord. The bunches are of good size and fairly compact, berry smaller than Concord, greenish-white. It might be of value for the South.

The following varieties are not desirable table sorts, but in many sections are highly esteemed as wine grapes:

Clinton (Riparia). Taylor's Bullet (Riparia X.).
Cynthiana (AEstivalis). Pearl (Riparia X.).
Marion (Riparia). Noah (Riparia X.).

Norton's Virginia (Astivalis).

Those varieties that have not fruited sufficiently to warrant a report are:

Eaton (Labrusca).	Jefferson (Hybrid).
Eumelan (Astivalis).	Poughkeepsie (Labrusca X. Vinifera).

Eumelan (Astivalis). Poughkeepsie (Labrusca X. Vinifera).
Isabella (Labrusca).
In giving the class or classes from which a variety originated, Labrusca represents the Northern Fox grape; Riparia, the Winter, or Frost grape; Estivalis, the Wild Summer grape; Vinifera, the Wine grape of Europe.

By far the greater number of our valuable American grapes are from the Labrusca class, which succeeds over a wider range of country than any of the others. Varieties of the Riparia and Estivalis class seem better adapted to the South and Southwest, and it is from these two classes that the majority of our native American wine grapes have originated. Roger's hybrids, all of which possess foreign blood, are from Vinifera crossed with our native species, or their descendants. Most of the Roger's family are fine, showy grapes, and where mildew and rot are not prevalent, succeed well.

SUMMARY.

The following varieties may be recommended for the northern and eastern portions of the State. In each class ripening in the order named :

Black Varieties.-Champion, Moore's Early, August Giant, Oriental, Worden.

Red Varieties--Brighton, Norfolk, Delaware, and Agawam. White Varieties.-Eldorado, Moore's Diamond, Martha, and Lady Washington.

THE STATE AGRICULTURẢL COLLEGE.

BULLETIN NO. 30.

I-FARM NOTES FOR 1894.

> Home Station, Fort Collins, Colorato.

II-NOTES ON TOMATOES.

Home Station, Fort Collins, Colorado.

Approved b! the Station Council,
ALSTON ELLIS, President.

FORT COLLINS, COLORADO, FEBRUARY, 1895.

Bulletins will be sent to all residents of Colorado, interested in any branch of Agriculture, free of charge. Non-residents, upon application, can secure copies not needed for distribution within the State. The editors of newspapers to whom the Station pablications are sent are respectfully requested to make mention of the same in their columns. Address all communications to the

Agricultural Experiment Station,

FORT COLLINS, COLORADO.

the state board of agriculture.
Term Expires.
HON. JOHN J. RYAN Fort Collins, 1897
HON. A. L. EMIGH Fort Collins 1897
HON. J. E DuBOIS Fort Collins, 1899
HON. JOSEPH S. MCCLELLAND Fort Collins 1899
HON. JAMES L. CHATFIELD Gypsum 1901
HON. A. LINDSLEY KELLOGG. Rocky Furd, 1901
HON. ALVA ADAMS. Pueblo, 1903
MRS. JOHN L. ROUTT Denver 1903
GOVERNOR ALBERT W. McIN'IIRE, PRESIDENT ALSTON ELLIS. EX-OfFICIO.
executive committee in charge.
HON. J. S. MCCLELLAND, HON. JOHN J. RYAN,HON. A. L. KELLOGG,
The President of the Board and the President of the College.
StATION COUNCIL.
ALSTON ELLIS, A. M., Ph. D., LL.D.,............President and Directior WELLS W. COOKE, B. S., A. M.,.................................... Agriculturist C. S. CRANDALL, M. S , Horticulturist and Botanist WILLIAM P. HEADDEN, A. M., Ph. D.,.................................. Chemist L. G. Carpenter, M. S.,.... Meteorologis r and Irrigation Engineer C. P. GILLETTE, M. S. Entonologist
DANIEL W. WORKING, B. S. SECRETARY LATHROP M. TAYLOR, B. S., Stenographer
ASSISTANTS.
FRANK L. WATROUS, Agriculturist
M. J. HUFFINGTON, Hohticulturist
CHARLES J. RYAN, Chemist
CHARLES F. BAKER, B. S. Entonologist
R. E. TRIMBLE. B. S.,.......... Meteorologist and Irimgation Engineer
sub-stations.
F. A. MUNTLEY, B. S. A., Superintendent,Arkansas Valiey Station, Rocky Ford, Culorado.
J. II. McCLELLAND, Superintendent,
Divide Station, Monument, Culorado.
CMAS. A. DUNCAN, B. S., Superintendent,San Luis Valley Station, Monte Vista, Colorado.
J. B. ROBERTSON, Superintendent,
Rain-Belt Station, Cheyenne Wells, Colorado.

Farm Notes For 1894.

BY W. W. COOKE AND F. L. WATROUS.

WHEAT.

Several varieties of wheat were sown in small plats on April 2d. They were irrigated May 23d and June 20th, and harvested August 11th.

The Polish wheat was sown March 15th, irrigated May 15 th and June 22d, and harvested August 8th.

Polish wheat is more commonly known in this State under the name of Mammoth Spring Rye, but the latter name is misleading. It is a true wheat, but of a different species from ordinary wheat. The Polish wheat was grown this year, under bad conditions of land and water and the yield of twenty-five bushels to the acre was much more than ordinary wheat would have been under the same conditions. It is a very hard wheat and when fed whole to our sheep was largely passed undigested. It does not make good flour but, when cracked, is an excellent stock food.

Variety.	Area of Plat in Acres.	Yield per Plat in Bushels.	Yield per Acre in Bushels.
Saskatchewan Fife.	0.25	6.	24
Velvet Chaff Blue Stem	0.25	5.	20
Marvel	0.25	4.5	18
Belotourka	0.0067	0.11	17
Dur de Medeah	0.0067	0.13	20
Polish.	12.00	304.	25

OATS.

Last season was especially favorable for oats. Copious rains came at just the right time to make thè heads fill well and the oat crop of the Poudre Valley has never before been equalled. Nearly all the kinds raised on the farm did well and most of them very well. The three-acre plot of Silesian
oats was a red clover sod plowed in the fall after being irrigated, but nevertheless it was so dry in the spring that after being sown April 6th it had to be irrigated May 17th to make the seed germinate. When it did come, it made an almost perfect stand.

All the other varieties were sown on unfertilized land that had been cropped with grain the previous year. The oats were sown March 30th, irrigated May 25th and June 20th, and harvested August 11th.

Variety.	Area of Plat in Acres.	Yield per Plat in Bushels.	Yield per Acre in Bushels.
Calgary Gray .	0.10	6.5	65
White Scotch	0.33	12.	36
Badger Queen	0.10	5.	50
White Russian.	0.25	15.	60
Yellow French.	0.25	16.	64
Negro Wonder.	0.33	13.	54
American Banner	0.33	22.	65
Red Rust Proof.	0.33	16.	48
Race Horse.	0.20	10.	50
Great Northern.	0.33	20.	60
White Bonanza	0.40	16.	40
Lincoln	0.40	16.	40
Irish...	0.40	16.	40
Silesian and Excelsior.	1.00	48.	48
Excelsior	4.00	24.1	60
Silesian..	3.00	22.5	75
Totals and Averages.	11.75	70.2	59.75

BARLEY.

While Colorado is not particularly adapted to harley and comparatively little of it is raised, yet the fine crops that are sometimes grown show what may be done with good conditions and good seed.

Barley grows in Colorado with a very short straw, but the heads and the grain compare well with the growths of any country. All the varieties grown the past season were in small test plats. They were sown April 2d and May 12th; the first sowing irrigated May 23d and June 16th, and the last irrigated June 25th, and harvested August 1st to 12th.

The Nepaul and Black barleys are hulless i. e., in threshing, they separate from the hull like wheat. The rest of the kinds retain the hulls in threshing. The California barley deserves special notice for its drouth resisting qualities and its productiveness. It is the only cereal that withstood the severe drouth of last season at the Cheyenne Wells sub-station and the yield of fifty bushels to the acre that we obtained here was re-cleaned, fine seed weighing fifty-six pounds to
the bushel. The California barley was sown May 12th, irrigated June 25th, and harvested August 12th.

Variety.	Area of Plat in Acres.	Yield per Plat in Bushels	Yield per Acre in Bushels.
Champion	0.17	8.5	51
Nepaul.	0.17	8.5	27
Black	0.17	4.0	24
Manshury	0.33	11.5	34
New Zealand.	0.014	0.75	51
California	0.50	2.0	50
Italie	0.0067	0.15	23
Celeste Petite.	0.0067	0.17	23

RYE.

A sixth of an acre of Prolific Spring Rye yielded four bushels, or twenty-four bushels per acre. It was sown, irrigated and harvested at the same times named in connection with the wheat.

BUCKWHEAT.

The farmers of Colorado seem to raise but very little buckwheat, and apparently the reason is not that buckwheat will not grow, but that it shells and wastes so in harvesting.

The small plats raised on the farm this season were cut by hand with great care, carried in a canvas to avoid loss and threshed by hand, and yet it is probable that the amount saved represented not much more than two-thirds of the seed grown by the plants.

Two distinct kinds of buckwheat were grown. The Asiatic and the Angled are like the ordinary Silver-hull or Japanese buckwheat. While the other two varieties have a smaller berry shaped more like a kernel of wheat or rye from which it gets its name of rye-buckwheat. This kind is new to Colorado but has been long raised in New England under the name of India wheat or Nigger wheat. Its special characteristic is that it will grow on soil too poor to raise anything else. All varieties made a rank, vigorous growth, but owing to the losses in harvesting it is doubtful whether any of them would prove profitable on land rich enough to grow other grains.

Some second sowing, made in the middle of summer, proved a complete failure. The varieties reported on below
were sown in drills May 25th, irrigated June 28th, and harvested August 20th.

Variety.	Area of Plat in Acres.	Yield per Plat in Bushels.	Yield per Acre in Bushels.
'Tartarian	0.0067	0.17	26
Rye-Buckwheat.	0.0067	0.18	28
A angled:.	0.0067	0.16	24
Asiatic. .	0.0222	0.16	7

MILLET.

Millet was grown as an early crop for seed and as a late crop for hay. In both cases it did not make a satisfactory growth. Although an abundance of good seed was used on land in good condition and that raised large crops of other grains on neighboring plats, yet the stand of the millet was poor and the growth not vigorous.

The millets grown were of two classes, those with the solid, round head, represented by the Hungarian and California and those with the loose head comprising the remainder of the varieties. These latter varieties are called "broom corn millets" from the resemblance of the head to broom corn and the four varieties grown are apparently the same millet, modified slightly by different conditions of soil -and climate.

Variety.	Area of Pla in Acres.	Yield per Plat in Pounds.	Yield per Acre in Pounds.
Hungarian.	0.033	15	450
California.	0.055	11	220
Manitoba	0.055	30	549
Russian.	0.007	5	755
Hog Millet	0.150	124	704
Red French...	0.100	74	740

BEETS.

Both stock and sugar beets were grown both "with and without irrigation. What is called in the table "west field" is a piece of low land that is coming into alkali from a ditch on the upper side. It was raw sod broken in the spring of 1893 and re-plowed six inches deep in the spring of 1894 . It was so tilled with alkali that scarcely anything would grow on it and yet, under these very bad conditions, we obtained a crop of about thirteen tons per acre of beets.

The "east field" is a piece of land that used to be a cat-
tail swamp but has been reclaimed by tile draining.
The beets were planted with an ordinary Buckeye grain drill, two out of each three holes being stopped up, making the rows twenty-four inches apart. They were sown in the west field May 21st, cultivated June 9th, 27th, and July 2d, and thinned July 14th. Those in the east field were sown May 12th, cultivated June 6th, 18th, and 27th, thinned July 3d, and irrigated August 2d. The west field was not irrigated. All the kinds were stored in the root cellar and have kept remarkably well. They are being fed to steers, sheep, hogs, cows, and horses with satisfactory results, especially in the case of the hogs.

Variety.	Area of Plat Yield per Plat Yield per Acre in Acres. in Pounds. in Tons.		
WEST FIELD			
Yellow Globe Mangel	0.80	19879	12.4
Red Mangel.	0.60	19413	16.2
Mette Sugar	0.48	9069	9.4
EAST FIELI):			
Mette Sugar	1.33	33372	12.7
Lanes Sugar	0.58	21663	18.8
No. 4 Sugar.	0.17	4360	12.6
Total and Average.	3.96	108116	13.6

POTATOES.

The principal work done with potatoes was the testing of the effect of commercial fertilizers on their growth and the results are printed in full, not because they show any large advantage to have come from the use of the fertilizer but because they show in a striking manner what may be expected from such work under irrigation. The fertilizers used were "tankage" and "bone meal," both made by the Armour Packing Company, Kansas City, Missouri. They both consist of the refuse from slaughter and rendering houses, dried and ground. but not dissolved with acid, so that the fertilizing elements exist in a form not soluble in water. The tankage is the richer in nitrogen, the bone meal in phosphoric acid. Neither contains but a small amount of potash. They constitute the only forms of commercial fertilizers that are now for sale in Colorado markets.

The fertilizer was sown in the drill at the rate of 400 pounds per acre and intermediate plats left without fertiliza-
tion. The arrangement of plats and yields are given in the following lists:

	Variety.	Fertilizer.	Yield of larger Potatoes per Plat in tbs.	Yield of small Potatoes per Plat in
Early				

The point that shows most clearly is the great difference between neighboring and similarly treated plats. This can always be expected in irrigated ground. The yield depends very largely on the moisture of the ground and even under the best of irrigation this is much more irregular than where water is supplied by rain.

The second point is that the differences between plats similarly treated are greater than between the average of plats differently treated. This shows the necessity in work of this kind of having duplicate plats.

The fertilizer has on the average, increased the yield but it has not had the large and decided effect that is produced by a soluble fertilizer used in a country where the soil is moist in early summer. Both bone meal and tankage require moisture to allow the acids of the soil to act on them and make them soluble and under Colorado conditions, where there is but little rain and no irrigation water is applied until the middle of summer it is not surprising that they do not prove successful.

NON-SACCHARINE SORGHUMS.

In the eastern part of C'olorado and the western portions of Nebraska and Kansas, the non-saccharine sorghums, such as Kaffir Corn, Jerusalem Corn, Milo Maize, etc., have come to be largely grown because they require so little water to
make a reasonable crop.
A test was made at the College farm to see whether they would yield enough more under irrigation to prove a profitable crop.

Several varieties were sown May 17th in drills thirtysix inches apart on seepage ground near a ditch where they had an abundance of water all the season. They were cultivated and hand hoed. On August 18th, notes were taken of their stage of growth as follows:

Yellow Milo Maize. Three feet high, leafy, stocky, most advanced stems, just heading at four feet.

White Milo Maize. Much the same. Not quite so full of heads.

Evergreen Broom Corn Five to eight feet high; good stand and heavy yield; heads just beginning to show blossoms.

Fapan Broom Corn. Same as the Evergreen but more leafy and not so far advanced.

African Millet. Two and a half to three feet high, very few heads, rather uneven, but pretty good stand.

Ferusalem Corn. Three and a half feet high, a few heads, the most advanced turning down, not yet in blossom.

Red Kaffir Corn. Fairly heavy growth, three to three and a half feet high, no heads showing even in the stalk.

Whate Kaffir Corn. About like the last.
The sorghums were harvested at various times from September 16 th to 27 th . They were put in the silo, heads and stalks. Each of them, even the broom corn, made excellent ensilage.

Yellow Milo Maize. This made the heaviest growth, ripened earliest, and produced the most seed of all varieties, though none of the plats had what would be considered a good yield of grain. The whole plant weighed 19.3 tons per acre, containing 30 per cent. of dry matter or 5.8 tons of dry matter per acre. This 19.3 tons was divided into fifteen tons of stalks and 4.3 tons of heads. The heads contained thirty-four per cent. of dry matter or 1.46 tons of dry matter per acre, and yielded twenty-seven bushels of seed per acre.

African Millet. This seems to be practically the same thing as the White Milo Maize. It produced at the rate of 18.4 tons per acre, divided into 2.7 tons of heads and 15.7 tons of stalks and leaves.

Red Kaffir Corn. Only a few heads, just going out of blossom; stalks short, averaging scarcely three feet high, heads quite large but few. Whole crop, seventeen tons per acre.

White Milo Maize. This gave a total crop at the rate
of eighteen tons to the acre, containing 29 percent. of dry matter, or 5.2 tons of dry matter per acre.

Egyptian Corn. The poorest stand of all, with a few scattering but large heads. The whole crop yielded at the rate of eleven tons to the acre, containing 37.5 per cent. of dry matter, or 4.1 tons of dry matter per acre.

The two Broom Corns did not ripen the brush very well, but they grew an enormous amount of fodder per acre. If this had been dried and fed to stock, it would have been poorly eaten, but being preserved wet in the silo it was eaten readily. The Evergreen Broom Corn yielded twenty tons of fodder per acre, and the Japanese twenty-two tons per acre. They averaged 38.5 per cent. of dry matter, or over seven tons of dry matter per acre.

Such material, with 32 to 38 per cent. of dry matter, is as dry as it is safe to put in the silo.

FORAGE PLANTS.

During the season of 1894 , nearly seventy-five varieties of forage crops were grown in large and small plats on the College farm. Many of them need continued tests to furnish a basis for an intelligent judgment.

Flat Pea. (Lathyrus sylvestris). A great many letters have come to the Station asking about this new forage plant. It has not been tried sufficiently yet to show whether it will ever return a profitable crop, but it is certain that it never will be largely grown in Colorado. It needs to be planted in well prepared soil, carefully hand weeded and cultivated a whole season, and then transplanted the next season to its permanent place. The crop the second year is not enough to pay expenses. So that it is not until the third year, after an investment of as much money as several years crops will be worth, and the loss of the use of the land for two years, that the crop begins to make any return. There has nothing yet come to light in its history at this Station or at any other to indicate that when fully set and grown, it is even as good as alfalfa.

We have a considerable quantity of it sown at the College, but it has not made so large a root growth as it should under the favorable conditions surrounding it.

Sacaline. (Polygonum sachalinense). This plant is getting an immense amount of advertising at the present time
and many inquiries have come to the Station concerning it.
Roots and seed were imported from France by this Station during 1894, and were tried under various conditions. The seed failed entirely to grow, though tried in field culture, garden plats, and by greenhouse methods. Some roots started in the greenhouse during the latter part of winter, were well grown when set out in rich ground the first week in May. They were near a hydrant, where they could be watered abundantly and seemed in vigor all the summer. But the amount of growth was disappointing. The most vigorous plant did not grow two feet tall. For a few days during the hottest part of the summer, the plants seemed to make a vigorous growth, but with the first chilly nights the growth ceased. They blossomed but ripened no seed. The climate is apparently not warm enough for the plant to make a profitable growth.

Rape. For many years rape has been grown in France and Germany for the oil contained in its seeds, and in England as a forage crop. Within the past five years, it has been introduced into Canada, and a few experimental patches have been grown in the United States. The most flattering accounts of it from either England or Canada, do not credit it with a vigor of growth equal to that it displayed on the College Farm the past season. An excellent crop in Canada is considered to be from nine to thirteen tons per acre. Of all the plats grown on the farm none yielded so low as the higher of these numbers. It was sown at different times and by different methods, and several varieties, and the smallest yield of all was twenty-two tons to the acre. One plat doubled this and a spot of special luxuriance gave a yield of fifteen pounds from four square feet or at the rate of serenty-five tons per acre.

There would seem to be no question about the plant's being adapted to Colorado soil and climate, the points now to be worked up are the best methods of planting, harvesting, and feeding. On these the Station is planning to do considerable work, the present season.

For the benefit of those not familiar with the plant, we may say that it looks and grows like a rutabaga turnip with an extra large top and a small tough root. The top is the part eaten. It is sown in drills or broadcast, any time from April 20th to August 5th. The seed is very cheap, costing less than twenty-five cents to seed an acre. The plant is ready to pasture or to harvest at sixty days from planting. Two crops can be grown on the same ground the same season. It takes a hard freeze to injure it. It cannot be dried for hay, but is pastured or cut for a soiling crop or for ensilage. It is
just about as watery as sugar beets and much the same composition as alfalfa. It will bloat an animal if given in too large quantities the first day. By feeding some dry fodder in connection with the rape, it is easy to prevent the bloating, and after the first few days all danger is past. The rape grew well for us last summer on ground so alkaline that even sugar beets could not succeed.

Its best use at present seems to be for sheep pasture in summer and early fall. If ensilage ever is adopted in Colorado this plant will rival corn as an ensilage crop.

CORN.

During the season of 1894 , many varieties of corn were raised on the farm. The particular object in view was the comparison of the large southern corns, with the smaller varieties in common use. This was the first time that large fodder corn had been raised on the College Farm and almost the first ever seen in this vicinity. All the varieties were planted the same day, May 15th, with a hand planter, in hills three feet apart each way, allowing about five kernels to the hill. They were harrowed June 4th, and during the next three weeks were cultivated three times both ways, and the weeds in the hills cut out with hoes. They were irrigated July 2nd, and afterwards cultivated again both ways. Half of each variety was on land freshly manured with stable manure, the other half on fairly good land, the second year from red clover sod. Both fields turned out to be very uneven in character and drainage, so much so that it was deemed best in making comparisons to select one hundred hills of each variety, taken half from the manured and half from the other piece and selected to give as nearly as possible a correct comparison of the different varieties. The yields given in the following tables are calculated from these hundred hills, and represent what any farmer can fairly expect to obtain on medium land, well cultivated and irrigated. These yields are on the average a little less than the crops we obtained the same season from our fields that were planted entirely to large fodder corn, i. e., the land selected for the variety test was not quite so good as the average of our tillable soil.

The varieties were harvested September 25 th, after several moderate frosts. Notes were taken on the growth from time to time.

Each variety will be described by itself, and then the large and small varieties compared.

Samples of each variety were taken at the time of havesting to determine the amount of water and dry matter in the crop. The ears were spread out to dry in the corn house for three months and then shelled and weighed.

Both flint and dent varieties were raised, and both small and large kinds of each. The flint corn varied from the little Wills' Gehu Seventy-Day Corn with some ripe ears at three feet high, to the Giant Long White Flint that at eight feet high had not even by harrest time grown an ear fit to roast. Equal differences existed in the dent corns, the earliest and smallest being represented by the Wisconsin Yellow Dent, while the Brazilian Flour Corn represents the other extreme of no ears at all when killed by frost.

SMALL FLINT CORN.

Golden Dew Drop. This is one of the smaller flint corns, showing the first tassels August 1st, and the first roasting ear, August 25th.

On August 18th it was low and leafy, four to five feet high, small stalks, not well eared, ears just showing cob.

September 25 th it was scarcely ripe. Total crop, 8.4 tons per acre, containing 31.57 per cent. of dry matter, or 2.65 tons of dry matter per acre. The green ears weighed 4,820 pounds, dried down to 2,772 pounds of ear corn, and 34.4 bushels of shelled corn per acre.

Wills' 70-Day Gelur. This is smallest and earliest of all the varieties grown. First tassels appeared July 22d, and by August 14th, some of the ears were ready to roast. On August 18th, only five feet high; very many suckers, heavily eared, some ears being within six inches of the ground; extra good stand, no replanting, very irregular in ripening; most advanced ears already glazing; many ears only showing cob, most of the ears in full milk. Average per hill, thirteen stalks, six tassels and six ears.

September 16 th; ripe and dry. Total crop, 7.1 tons per acre, containing 32.76 per cent. dry matter, or 2.33 tons of dry matter per acre. The ears at harvesting weighed 4,900 pounds, dried down to 2,694 pounds of ear corn, and 37.8 bushels of shelled corn per acre.

King Philip. A red flint corn very early for its size
showing tassel July 29th. On August 1Sth, extra good growth, eight to nine feet high, well eared, very small stalks, almost half the ears at the boiling stage, and a few beginning to glaze. The average hill contained ten stalks, five tassels, and four ears. The ears did not set well, nor fill out, and the yield of shelled corn was much less than would have been expected from its condition in August.

September 16th; ripe and dry. Total crop 9.6 tons per acre, containing 25.06 per cent. of dry matter, or $2.4 I$ tons of dry matter per acre. The ears at harvesting weighed 3,600 pounds per acre, and dried down to 1,639 pounds ear corn, and i8.9 bushels shelled corn per acre.

Sanford. A white flint, with very long ears, medium early. Is almost sweet and makes a nice table corn. It showed the first tassel August 3d: August 18th, very leafy, seven to nine feet high, considerable replanting, only medium earing, small stalks heavily suckered. The average hill contained nine stalks, five tassels, and three ears.

September 25 th, well ripened but poorly eared and badly eaten by worms. Total crop, 11.7 tons per acre, containing 32.07 per cent. dry matter, or 3.75 tons of dry matter per acre. The green ears weighed 5,302 pounds per acre, and dried down to 2,651 pounds ear corn, and 32.3 bushels shelled corn per acre.

Longfollow. A medium yellow flint corn, that is much grown in some parts of the country. First tassel August 1st, and first roasting ear August 28th. On August 18th, fully tasseled at six to seven feet. Ears low, some only ore foot from the ground; well eared, ears showing cob. The average hill contained ten stalks, five tassels, and three and one-half ears, thus being heavily suckered.

September 25 th; ears well ripened, but not well filled; rather poor as a whole, but some nice ears. Total crop, 9.8 tons per acre, containing 31.03 per cent. of dry matter, or 3.04 tons of dry matter per acre. The ears at harvesting weighed 3,856 pounds per acre, which dried down to 1,928 pounds of ear corn, and 23.7 bushels of shelled corm per acre.

Minnesota King. This can be classed as either a flint or a dent corn, as part of the kernels are dented and others are typical fiint shape. On August 18th, poor stand with some replanting, irregular, tasseled at six to eight feet high; the first tassels having appeared July 29th. Well eared, ears long, almost to roasting stage, only a few suckers. The average hill contained three stalks, three tassels, and two ears.

September 25th. Ears fuilly ripe and all the kernels
apparently true flint. Total crop, 7.1 tons per acre, containing 28.30 per cent. of dry matter; or 2.01 tons of dry matter per acre. The green ears weighed 2,892 pounds per acre, and dried down to 1,687 pounds of ear corn, and 21.05 bushels of shelled corn per acre. This is probably not a fair exhibition of the general character of the corn.

LARGE FLINT CORN.

Thorburn's White Flint. One of the late flints that will not ripen in this State. The first tassels did not appear, until August 7th. On August 1Sth, quite low, many tassels at three feet. About half tasseled, leafy, and some suckers six to eight feet high.

September 25 th; fairly well eared, but no ears beyond roasting, ears long and slim. Total crop; 9.3 tons per acre, containing 26.35 per cent. dry matter, or 2.45 tons of dry matter per acre.

Giant Long White Flint. Much like the last, but showing the first tassels six days earlier. On August 18th, small stalks, with a few ears, showing cob, fairly good stand by some replanting. The average hill contained nine stalks, four tassels, and three ears.

September 25th. No boiling ears, large, long cobs. Total crop, 10.2 tons per acre, containing 25.23 per cent. dry matter, or 2.57 tons dry matter per acre.

SMALL DENT CORN.

Quen of the Field. A medium sized yellow dent corn showing the first tassel July 28th, and the first roasting ear Angust 22d. On August 18th, all tasseled, stalks small, six to eight feet high, fairly eared, and showing kernels; corn worm alveady working badly. Average per hill, four stalks, three tassels, and two ears.

September 25 th, ears fairly ripened. Total crop, II. 4 tons per acre, containing 32.2 per cent. of dry matter, or 3.67 tons of dry matter per acre. The green ears weighed 6,266 pounds per'acre, dried down to 2,031 pounds ear corn, and
30.1 bushels shelled corn per acre.

Huron. Quite like the last and ripening at the same time. On August 18th, stalks quite slim, seven feet high, ear medium, extra good stand; average per hill, five and one half stalks, five tassels, and three and one-half ears.

September 25 th; ears fairly ripened. Total crop 9.2 tons per acre, containing 32.2 per cent. of dry matter, or 2.96 tons of dry matter per acre. The green ears weighed 5,423 pounds per acre, dried down to 2,892 pounds of ear corn and 43.0 bushels shelled corn per acre.

White Pearl. A medium sized white dent corn, showing the first tassel July 28th, and the first roasting ear August 22nd. On August 18th, halfway between the two last; ears quite large and chunky, the most advanced almost to roasting; average per hill, four stalks, three tassels, and two ears.

September 25 th, ears nearly ripe. Total crop, 10.7 tons per acre, containing 31.27 per cent. of dry matter, or 3.35 tons of dry matter per acre. The green ears weighed 6,869 pounds per acre, dried down to 3,133 pounds of ear corn, and 43.0 bushels of shelled corn per acre.

Wisconsin Yellow Dent. As small as most of the flint corns showing first tassel August 4th, and first roasting ear August 25 th. On August 18th, it was fully tasseled at six to seven feet high, very small stalk and, not many ears, the ears just showing cob, extra good stand without replanting. The average hill contained five stalks, three tassels, and two ears.

September 25 th. Corn well ripened and ears well filled out. Total crop 10.8 tons per acre, containing 31.03 per cent. of dry matter or 3.35 tons of dry matter per acre. The green ears weighed 5,905 pounds per acre, and dried to 2,772 pounds of ear corn and 38.7 bushels of shelled corn per acre. This indicates a rather small proportion of cob to shelled corn for Colorado.

Pride of the North. A standard dent corn that has been long raised in Colorado. It was one of the first to show tassel July 28th, and to show a roasting ear August 24th. On August 18th, seven feet high, all tasseled, well eared showing kernels, but no roasting ears. The average hill contained five stalks, three tassels, and three ears.

September 25 th. Total crop 12.4 tons per acre, containing $35.5 S$ per cent. of dry matter or 4.45 tons of dry matter per acre. The ears at harvest were nearly ripe and weighed 5,784 pounds per acre. They dried to 2,531 pounds ear corn and 32.3 bushels shelled corn per acre.

Stewart's California Yellow. A medium dent corn, one
of the best. On August 18th, stalks medium, well leafed, tasseling at seven to eight feet, showing silk on one-fourth of the stalks, extra stand with but little replanting. It is a good looking corn now, and looks good for much more growth.

September 25th. Ears fairly well ripened. 'Iotal crop, 11.2 tons per acre, containing 33.98 per cent. of dry matter, or $3.8 I$ tons of dry matter per acre. The green ears weighed 6,250 pounds per acre, anid dried down to 3,374 pounds of ear corn, and 34.4 bushels of shelled corn per acre.

LARGE DENT CORN.

Mastodon. A large, late ensilage corn, showing ino tassel until August Sth. On August 1Sth, nine to eleven feet high, about the best in the field at this date. Very leafy, a little silk, showing a fair stand, with some replanting; a few suckers.

September 25th. Fairly eared, in roasting stage; very large, heavy ears but not many of them. T'otal crop, 12.5 tons per acre, containing 23.91 per cent. of dry matter, or 2.79 tons of dry matter per acre.

Chester County Mammoth. One of the standard large, late corns, showing the first tassel August 10th. On August 1Sth, fairly good stand, with little replanting, extra good growth, nine to ten feet high; heavily eared for an ensilage corn. Ears in silk.

September 25th. Full roasting stage, fairly well eared, large, nice ears, but none ready to glaze. Total crop 10.6 tons per acre, containing 27.42 per cent. of dry matter, or $2.9 I$ tons of dry matter per acre.

Red Cob. This is an excellent corn, but the seed planted on this part of the farm, proved poor. The Red Cob was used as the principal field corn on the farm and gave good results, but the seed used for the main crop was from a different source. On August 18th, poor stand, with much replanting, badly mixed seed, tasseling very low, four to six feet high, to top of tassel, very unsatisfactory looking; only a few large stalks. In the main crop at harvest time many stalks were found with the bottom of the ear seven feet from the ground.

September 25 th. Ears large, a few in the roasting stage. Total crop, 11.6 tons per acre, containing 25.43 per cent. dry matter, or 2.96 tons dry matter per acre.

Champaign County Prolific. Ripening about the same time as the Red Cob and showing no tassel till August 5th. On August 18th, a good stand after much replanting, stalks about medium, seven to ten feet high, no ears.

September 25 th. A few ears, and those, in the roasting stage or earlier, about one tenth beginning to glaze. Total crop, 11.5 tons per acre, containing 24.95 per cent. of dry matter or 2.87 tons of dry matter per acre.

Leaming. One of the best of the medium late fodder corns showing the first tassel August 9th. On August 18th, tasseling at eight to nine feet, leafy, vigorous, not large stalks, showing a few ears and some silk, no boiling ears. The average hill contained four stalks, three tassels, and one ear. There were no suckers; the extra stalks seemed to be from replanting.

September 25 th. Well eared, part of the field almost ripe, but the ears not well filled out, the end third almost bare of corn, badly eaten by worms. Total crop, 15.4 tons per acre; containing 29.31 per cent. dry matter or $4.5 I$ tons of dry matter per acre.

Giant Fodder. One of the latest corns grown. On August 18th, the tassels were just showing on the most advanced; no ears or silk; quite leafy with long, broad leaves; medium stalks for so large a corn, seven to eight feet high, an extra good stand.

September 25th. Ears large, a few just showing kernels. Total crop, 17.5 tons per acre; containing 23.06 per cent. dry matter, or 4.04 tons dry matter per acre.

Virginia Mammoth. A large, late white corn, rather late for Colorado. On August 1Sth, no ears, scarcely tasseled, and seven to eight feet high; at this date a pretty fair corn.

September 25 . No ears but an occasional nubbin. 'Total crop, 10.4 tons per acre, containing 22.16 per cent. of dry m ttter, or 2.30 tons of dry matter per acre

Brazilian Flour Com. The latest variety of all, and also the variety that produced the largest growth of stalk and the most dry matter. On August 1Sth, seven to eight feet high, all leaves, many suckers, no tassels, will make an extra lieavy yield. The first tassel did not appear until Angust 24 th.

September 25th. No ears and scarcely any tassels. Total crop, 18.6 tons per acre, containing 24.87 per cent. of dry matter, or 4.63 tons of dry matter per acre.

In order to give a better idea of the comparative yield of the different varieties, there are given in the tables below, the total yield of the crop for each variety, the amount of dry matter contained. and the yield of shelled corn:

Total Crop per Total Iry Mat-Shelled Corn Acre in Tons. ter per Acre in per Acre in Tons.

Bushels.
Variety.
SMALL FLIN'C COIN:

Golden Dew Drop.	8.4	2.65	34.4
Will's $70-$ Day Gehu	7.1	2.33	37.8
King Philip.	9.6	$\underline{2} .41$	18.9
Sanford	11.7	3.75	38.3
Longfellow	9.8	3.04 2.01	21.5
Minnesota King	7.1		
A verage	8.95	2.70	28.1

LAK(iE FLIN'L CORN:
Thorburn's White Flint.....
Giant Long White Flint....
Average $9.75 \quad 2.51$
SMALI, DENT COIRN:

LAHGE DENT CORN:

Mastodon .	12.5	2.79	none
Chester County Mammoth	10.6	9. 91	
Red Cob	11.6	2.96	
Champaign County Prolific.	11.5	$\stackrel{2}{9} 8$	
Leaming	15.4	4.01	"
(riant Fodder	17.5	- 4.30	"
Virginia Mammoth.	18.4	4.63	"
Brazilian Flour Corn	18.6		
A verage	13.51	3.38	

The average of all the varieties is 11.2 tons of total crop, containing 3.09 tons of dry matter. Those varieties that ripened, a veraged thirty-five bushels of shelled corn per acie.

It is evident on the whole, that the dent corns were more productive than the flint, in total crop, in dry matter, and in shelled corn. When a comparison is made between the small and large kinds of each, the difference is not so great. The large, late flint corns are, evidently, not so well adapted to Colorado conditions as the smaller and earlier kinds, but the choice among the dents is not so apparent. Most of them have done well and some of them very well. Any corn that produces four tons of dry matter per acre has made an excellent growth. According to the figures given above the small dent corns average a trifle more dry matter per acre than the large and later varieties. There has always been a dispute among farmers as to whether this dry matter from mature and immature corn had an equal feeding value,
pound for pound. The careful experiments made by the Maine Experiment Station through' a series of years seem to show conclusively that the dry matter of the mature corn has the higher feeding value. For every one hundred pounds of dry matter in ripe corn they found seventy-three pounds digestible, while from an equal weight of immature corn, but sixty-five pounds were digested.

If we use these figures we find that of the 3.60 tons of dry matter per acre, yielded on the average by the small dent corns, 2.63 tons are digestible, while of the 3.38 tons yielded by the large dents, 2.20 tons are digestible, showing a difference of 0.43 tons, or sixteen per cent. in favor of the smaller varieties.

The Brazilian Flour corn gave the greatest yield of dry matter per acre. If we consider sixty-five per cent. of this as digestible, we get 3.01 tons of digestible matter per acre. The Pride of the North gave 4.45 tons of dry matter per acre, being the largest yield of the small dents. If seventy-three per cent. of this is digestible, it would give 3.25 tons of digestible matter. Thus, the Pride of the North had more feeding value in its crop, and this crop could be harvested with the labor of handling six tons less weight than the Brazilian Flour Corn. It has the added advantage that if used for ensilage, it will occupy less space and usually keep better and be less acid.

The question as to whether it is better to raise the large or medium dents will have to be settled largely by the conditions of climate. These experiments show that the Poudre Valley is at the extreme northern limit of latitude, at this altitude, for making a profitable growth of the larger varieties. At a lower altitude, or farther south, the larger varieties would do much better, while the smaller varieties would not show a proportional gain. If the results of this season's growth, fairly represent average conditions of this vicinity, the farmer who raises corn for fodder or forensilage, would better plant about half and half of the medium and large varieties of dent corn. He will then be reasonably sure of good returns, whether the season be long or short, and the mixture of the two in feeding to steers or cows, is probably better than either separately.

Nothing has been said so far of the growing of corn for the grain. Until this past season Nebraska corn could be brought to Colorado about as cheaply as it could be grown. At this season's price of a cent a pound, corn growing would be profitable in most parts of Colorado, especially if care was taken to save the fodder as well as the grain. In the experiments given above, the dent corns yielded more bushels of
shelled corn to the acre than the flint corns, bat the latter ripened the earlier. In most parts of Colorado where corn can be raised at all, the smaller dents are probably best for ear corn. Attention should be called, however, to the Wills' 70-Day Gehu, for this grew so rapidly and ripened so quickly that it seems adapted to many parts of Colorado that are considered too cold for corn growing. It did not ripen in seventy days, as its name would indicate, and probably would not do so anywhere in this latitude, but it was ripe long before the first light frosts. It is so small that the hills can be planted near together, even thirty inches apart, and still not be crowded. This distance gives twice as many hills to the acre as the ordinary planting of forty-two inches each way. Next to the Wills' 70 -Day Gehu in earliness, come the King Philip, and the Minnesota King. The latter corn shows considerable promise.

ENSILAGE RND THE SILO.

The preservation of green corn by means of the silo has attracted but little attention in Colorado, and yet there is no part of the United States better adapted naturally for its use. The expense of the silo, and labor of filling it, have been the great objections urged against it. Incidentally it has also been claimed that the large corn generally used for enslage could not be grown in Colorado. Most writers have put the cost of building a silo at $\$ 2$ for each ton capacity. This is on the supposition that it is made above ground with double walls to keep out the frost, and a roof to ward off rain and snow. The climatic conditions of Colorado enable a much simpler and cheaper silo to be made and used.

A silo was built on the College Farm the past season to ascertain how cheaply one could be made, and whether such a cheap affair would answer equally as well as the more expensive for the preservation and feeding of ensilage.

Silos in the East are not built below ground because during half the year the ground is saturated with water. No such trouble need interfere with the Colorado farmer. There are many places where a hole eight to twelve feet deep would remain dry the whole year, and such a spot on the College Farm was selected for the silo. It is on a slight slope, and a hole twenty-one feet square and eight feet deep, was dug out with the plow and scraper. The only hand work necessary
was in the corners and on the sides. The dirt was dumped as near as possible to the upper end and the two sides.

Inside this hole a 2×6 sill was laid on the ground, 2×6 studding, twelve feet long, erected every two feet, and a 2×6 plate put on top. This framework was then sheathed on the inside with a single thickness of ummatched, unplaned, rough boards, such as can be bought almost anywhere in the State for $\$ 12$ per thousand.

The inside was lined with a single thickness of tarred building paper, held in place by perpendicular slats. The floor was made by wetting and tramping the clay at the bottom, while the stars of heaven made an excellent and very cheap roof.

The dirt was tilled in against the sides, and banked up to within two feet of the top, except on the lower side, where were doors reaching from near the top to within four feet of the bottom. Thus, our silo consists of a hole in the ground, lined with one thickness of inch boards and building paper, floored with dirt and without any roof.

The labor was done by the farm hands and teams, and could as easily be done by any farmer on his own farm.

The bill for material stands as follows:
240 feet 2×6 for sill and plate.
528 feet 2×6, twelve feet long, for studding.
960 feet rongh boards for sides.

> 1,728 feet lumber@ $\$ 12$ per M., $\$ 20.74$ Nails, lath, and building paper............ $\frac{7.00}{\$ 27.74}$

If the silo had a partition running through the middle, dividing it into two pits, each ten by twenty feet, it would make and additional cost of about $\$ 5$. Our silo has two such partitions, making four pits, each ten feet square, and the entire cost of materials was $\$ 42$.

Such a silo has a capacity of about sixty-four tons of ensilage, so that the cost of materials per ton capacity, varies from 48 to 65 cents, according to the number of partitions. Had the hole been two feet deeper, and the sides two feet higher, with one partition, the two pits would then have been each, ten by twenty feet, and sixteen feet deep, with a total capacity of one-hundred tons of ensilage; while the cost of materials would have been $\$ 44$. Thus, a silo can be built in Colorado for less than 50 cents for each ton capacity.

A silo twenty feet square, and sixteen feet deep, is large
enough for thirty head of cows or steers, from November 15th to April 15th.

The labor of filling the silo will always remain the principal objection to its use. Corn can be put in the silo whole, but the cost of filling the silo with whole corn is no less than with cut, while the feeding out of the cut, is so much less work, and it is eaten so much more readily by the cattle, that most corn is run through a fodder cutter before it is put in the silo. We cut the corn last fall into quarter inch lengths. Most farmers could hire the use of a threshing engine for power to run the cutter, but they would have to buy the cutter. This would represent an outlay of $\$ 50$ to $\$ 75$, or as much as the cost of the silo.

If all the labor and teams are hired, the cost of harvesting corn, cutting it in small pieces, and packing in the silo is about 65 cents per ton.

The ensilage put in the College silo last fall is now being fed out, and proves to have kept very well. When the silo was full it was covered with a small amount of straw and then the dirt from the sides thrown onto the top to form a layer six inches thick. Both the straw and the dirt were soaked with water to make them pack tighter. When the silo was opened, from two to three inches of ensilage were found to be spoiled, under the straw and in the corners, for a little greater depth. Below this the ensilage has kept remarkably well. No eastern silo with double walls of matched lumber could produce any better. The average losses in silos are about twenty to twenty-five per cent. of the weight of the corn put in, while so far, in our feeding, the losses have been but a little more than ten per cent.

THE LOSS OF FODDER CORN IN DRYING.

It is believed by most farmers that, in the diy climate of Colorado, fodder corn, where cut and shocked in good shape, cures without loss of feeding value, and that the loss of weight that occurs is merely due to the drying out of the water. A test of this question was made in the fall of 1893, and the results obtained seemed to indicate that firlyy a third of the feeding value was lost in the curing. This result was so surprising, that the figures were not published, fearing that some error had crept in, though we could not see where there was the possibility of a mistake.

In the fall of 1894, the test was repeated on a larger scale. A lot of corn was carefully weighed and sampled. It was then divided into three portions; one was spread on the ground in a thin layer, the second part was set up in large shocks, containing about 500 pounds of green fodder in each, while the rest was shocked in small bundles. After remaining thus for some months, until thoroughly cured, the portions were weighed, sampled, and analyzed separately. The table gives the losses that occurred in the curing:

Total Weight.			
When Shocked....	952	294	186
After Curing.	258	64	+33
Loss in Weight	169	230	153
Per Cent. of Loss.	73	78	82
DRY MATTER. 88			
When Shocked	217	77	42
After Curing.	150	44	19
Loss in Dry Matter	67	33	23
Per Cent. of Loss	31	43	5

So far as could be told by the eye there had been no loss. The fodder had cured in nice shape, and the stalks on the inside of the bundles retained their green color, with no sign of moulding or heating. And yet the large shocks had lost thirty-one per cent. of their dry matter, or feeding value, the small shocks forty-three per cent., and the corn spread on the ground fifty-five per cent.

On breaking or cutting the stalks, these losses were explained. The juice was acid, and there was a very strong acid odor, showing that an active fermentation was taking place in this seemingly dry fodder. We had noticed this strong odor the fall before and all through this winter. When the fodder corn for the steers is put through the feed cutter, that same strong smell is present.

It can be said, then, that the dryness of the climate in Colorado does not prevent fodder corn from losing a large part of its feeding value through fermentation. Indeed the loss from this source, is fully as great as in the damp climate of New England.

As compared with the losses by fermentation in the silo, the cured fodder shows considerably the higher loss.

GROWTH OF FODDER CORN.

Several of the eastern experiment stations have done considerable work in testing the growth of the corn plant. They find that the corn keeps on growing until cut down by
the frost, and that its growth is most rapid during the month of September. To ascertain whether the same was true for Colorado the following experiment was planned: A plat containing 600 hills of Red Cob corn was divided into halves, September 5th, by cutting alternate hills diagonally across the piece. The 300 hills cut, weighed 1,642 pounds, or thirteen tons per acre. The corn contained 22.80 per cent. of dry matter, or 2.96 tons of dry matter per acre.

On September 29th the other 300 hills were cut, and weighed 1,555 pounds. It contained 23.90 per cent. of dry matter, or 2.94 tons of dry matter per acre. Thus it had dried out a little, and the increase in per cent. of dry matter just balanced the decrease in weight.

During these three weeks, that were expected to show great growth, the plant had practically remained without gain. The days were hot but the nights so chilly that the cold seems to have checked the growth of the corn, although the slight frosts that occurred on several nights scarcely touched the ends of the leaves.

The figures seem to show that, in this part of Colorado, so near to the foothills, corn cannot be depended on to grow after the first week in September, and such varieties should be chosen as will reach the glazing stage by that time.

Notes On Tomatoes.

Hl M. J. IIUFINGTON.

The work carried on with this fruit for the season of 1594, was of the nature of a variety test. Most of the new kinds offered in 1893 and 1894 were tried by the side of the leading standard sorts. Only a few of the novelties tried were equal to such standard sorts as Beauty, Perfection, Acme, or Ignotum. The two varieties, Rose Bub, and Seedling No. 2, sent us for trial by Hoover and Moore, of Antlers, Colorado, showed decided merit.

Seeds of the varieties herein described were sown in flats in the forcing house on March 5th, and on March 27th, when about three inches high were transplanted to plant boxes, six by ten inches, partitioned off so that each box held six plants. On April 21st the plants were transferred to a house where the temperature was not so high as in the forcing
house, proper: here they were allowed to remain until June 1st, when they were set in the garden. After setting, a good shower fell and nearly every plant grew. On June 30th, the plants were manured with well rotted compost, two shovels full being placed around each plant and well worked into the soil. Water was applied on the following dates: June 11th, July 3d, July 15th, and July 27th. The ground was thoroughly cultivated after each irrigation, as soon as in proper condition to work. From this year's experience we believe that one or two applications of water, after the fruit begins to ripen, are necessary in order to get the best results. In. 1893 water was withheld after the first fruits were picked, and the vines did not seem to suffer for lack of moisture at any time; the same course was followed this season, but not attended with the same degree of success as in 1893, as during the latter part of the summer the vines clearly showed the lack of the proper amount of moisture necessary to perfect the fruit. On September 20th, the vines were cut by frost after which they were pulled and the green fruits gathered.

The accompanying table shows the comparative earliness of the varieties:

> Date of First Ripe Fruit.

Date of First Ripe Frut.

Long Keeper. August 15
Meteor July 24
Mansfield I'ree.... August 23
Matchless........ . " 15
Maule's Earliest of All.............. July 21
Mitchell's New August 15
New Stone....... . " 15
Northern Light. . . July 30
Perfection August 15
Picture Rock...... " 20
Potato Leaf....... " " 15
Ponderosa......... " 23
Puritan.............. . . " 20
Red Cross......... . July 30
Rosebud August 15
Royal Red........ " 23
Seedling No. $2 . .$. " 27
Table Queen " 20
Trucker's Favorite " 20
Vaughan's Earliest
of All " 15

VARIETIES.

Acme. Seed from Vaughan. This variety is more generally cultivated for market than any other. It is productive, early, fruits large, smooth, color a dark red, solid, and a good shipper. It is largely grown at the south for the northern markets.

Aristocrat. Seed from Livingston, the originator. A dwarf variety more erect than Dwarf Champion, a strong, stocky grower, and early. It possesses the advantage of ripening its fruit rapidly, a desirable feature in a market sort. The fruits are of a medium size, smooth and solid, and of a beautiful scarlet color. Aristocrat has proven to be the best dwarf variety that we have tested.

Atlantic Prize. Seed from Vaughan. A variety which originated in New Jersey, a few years ago. The chief and only merit of the kind is its earliness, it being one of the very first to ripen; fruits of medium size, generally rough, color, a shade of scarlet; rather tender, will not sell when smooth varieties are offered in competition.

Beauty. Seed from Vaughan. This popular variety was originated and introduced a few years since by Livingston, the tomato specialist of the country. The type is well established. Its season is medium early, fruits large, roundish, smooth, and firm, color, as in Acme; productive, and regarded as one of the very best sorts for market and canning.

Bond's Early Minnesota. Seed from Iowa Seed Co. An early variety, which is only fairly productive; fruits small, roundish, smooth, medium solid, color of Acme. There are other early varieties much better than this.

Buckeye State. Seed from Livingston. This is another of Livingston's productions, though not one that can be recommended for general cultivation, as it is late and ripens very slowly. Where the season is long it would, no doubt, prove very desirable. The fruits are of the largest size, regular, roundish, very smooth, fairly solid, color of Acme.

Chemin Market. Seed from Vaughan. This is a variety of French origin, medium early in ripening, very productive, fruits of medium size, oblong roundish, very uniform, remarkably smooth, fairly solid, of a light scarlet color. This is an excellent variety for home use, but has not been sufficiently tested to be recommended as a market sort.

Comrade. Seed from Gregory \& Son. A variety which originated in New England. Its season is second early, ripening with Beauty; fruits of fair size, roundish, smooth,
light scarlet in color; a good variety for home use, but tender. for distant shipping.

Crimson. Cushion. Seed from Henderson. Originated by Peter Henderson \& Co., and introduced by the same firm in 1894. The variety is of the Ponderosa class, and ripens several days later than that sort; fruits large, furrowed at stem, and also rough at blossom end; a shade of purple, solid, and a good keeper. We cannot see wherein this variety is preferable to Ponderosa.

Cumberland Red. Seed from Gregory \& Son. A medium early variety, which is quite productive; fruits of fair size, smooth, color as in Ignotum. There are other sorts in the list that are more desirable.

Dwarf Champion. Seed from Vaughan. This is an early sort, which in many sections is highly prized for garden culture, being an upright grower, and thus permitting of close planting. The fruits are of medium size, smooth and solid, color as in Beauty. Altogether, for a dwarf rariety, we prefer Aristocrat to Dwarf Champion.

Early Ruby. Seed fron Gregory \& Son. An early variety which originated in Monmouth county, New Jersey, and was introduced by Peter Henderson \& Co., in 1890. The open habit of the plant is a distinctive feature of the variety, and this manner of growth accounts in part for its earliness, as the sun has a better chance to reach and ripen the fruits than with varieties of dense and more upright growth. Fruits are of medium size, generally rough, some fairly smooth, light scarlet in color, rather tender.

Early Michigan. Seed from D. M. Ferry \& Co. This variety was introduced by D. M. Ferry \& Co., in 1894. Its season is early, fairly productive, fruit small smooth, the smoothest of the very early sorts, scarlet in color, not productive or lare enough for a profitable market variet.:

Everett's First of All. Seed from J. A. Everett \& Co. A variety introduced by J. A. Everett \& Co., Indianapolis, Ind. It is early, but not the earliest, medium productive, fruits of fair size, quite smooth, solid, light scarlet in color. The variety is not productive enough for a market sort.

Fordhook First. Seed from W. A. Burpee \& Co. Originated and introduced by W. A. Burpee \& Co., in 1894. It ripens with Acme and Beauty; fruits of good size, roundish, smooth and solid, color as in Beauty; not as early as some, but a sort that will give satisfaction.

Gold Ball. Seed from Henderson \& Co. A rank growing variety, very productive for a tomato of its class; fruit small, nval, smooth, a heautiful golden yellow, firm and solid; fine for preserving or pickling, but its size, shape, and
color are against it as a market variety.
Ignotum. Seed from Michigan Agricultural College, in 1888. This variety originated at the Michigan Agricultural College, in 1887, and was introduced in 1889. It possesses many points of excellence; its season is early, fruits large, regular in shape, solid, and remarkably smooth, of a bright scarlet color; a desirable variety for market and canning.

Improved Chomin or Apple. A variety sent us for trial by Hoover \& Moore, of Antlers, Colorado, which seems to be identical with Chemin Market obtained from Vaughan.

Logan's Giant Scedling. Seed from J. A. Everett \& C'o. A medium variety in time of ripening, fruits very large and the greater part of them very rough; a few fairly smooth, solid, of a pinkish purple color, resembles Ponderosa somewhat, though not so desirable as that variety.

Long Keepor. Seed from Vanghan. A variety ripening as early as any of the desirable market sorts; fruits of medium to large size, very smooth, walls thick and solid; an excellent keeper, color as in Beauty. This is a desirable tomato both for home use and for market.

Mctcor. Seed from J. M. Thorburn \& Co. A dwarf variety introduced by Thorburn \& Co., in 1894, which resembles Aristocrat in habit of growth. The type does not seem to be well fixed; from twelve plants three types of fruit were noted, one of a bright scarlet, another similar to Acme in color, a third, a light scarlet and very much wrinkled. Aristocrat and Dwarf Champion are both preferable to Meteor.

Matchloss. Seed from W. A. Burpee \& Co. This is a variety of the Ignotum type, which was originated and introduced by W. A. Burpee \& Co. It is medium early in time of ripening. fairly productive, fruits of good size, very smooth, of a beautiful scarlet; a good variety, though not as productive as some.

Mansficld Tree. Seed from Vaughan: A variety of the Ponderosa class, medium to late in time of ripening, productive. fruit large, quite firm, very rough, of a purplish color; not at all a desirable kind.

Maul's Earlicst of All. Seed from W. H. Manle. This variety was introduced by W. H. Maule, of Philadelphia, in 1894. It was the first to ripen. It is productive, fruits of medium size, rough, of a light scarlet, rather tender. The variety is desirable only for its earliness.

Mitchall's Neru. Seed from Gregory \& Son. A medium early variety, very much like Ignotum, fairly productive, fruits of good size, smooth and of an attractive scarlet. This is a good variety of the scarlet class.

New Stone. Seed from Vaughan. This is another of Livingston's productions, medium in time of ripening, fairly productive, fruits of good size, roundish, smooth, and very solid, light scarlet, an excellent shipper. Altogether this is a desirable sort.

Northern Light. Seed from J. M. Thorburn \& Co. A dwarf compact growing variety, introduced by Thorburn in 1894. In this as in Meteor, the type does not seem to be well established; two forms of fruit were noted, one very small, smooth, bright scarlet; the other of good size, somewhat wrinkled at the stem, a shade of scarlet.

Perfection. Seed from Vaughan. A variety originated by Livingston, medium early in season, fruits of good size, smooth and solic, color as in Beauty. This is a popular sort wherever grown.

Picture Rock. Seed from lowa Seed Co. This new tomato was introduced by the Lowa Seed Co., in 1894. Its season is early, fairly productive, fruits of medium size, very regular and smooth, color a bright scarlet. The variety is worthy of trial.

Potato Lcaf. Seed from Michigan Agricultural College. This is a distinct variety originated by Livingston \& Son, and introduced by them in 1887. The foliage resembles that of the potato, as the name implies. It is medium early, productive, ripens rapidly, fruits of medium size, very smooth and solid, color as in Beauty; a fine tomato for canning and market.

Ponderosa. Seed from Peter Henderson \& Co., who originated the variety, and introduced it in 1892. In 1893 the variety appeared to be not well fixed, there being four distinct types of fruit, but in 1894 every plant was true to the type. Its season is medium, fruits very large, some specimens weighing over a pound; quite smooth for so large a tomato, somewhat ridged about the stem, very solid, slow in ripening, color a pinkish purple.

Puritan. Seed saved at Michigan Agricultural College, in 1888. I variety of New England origin, introduced by Rawson, of Boston. Its season is early, productive, fruit large, occasionally slightly furrowed about the stem, of a bright scarlet color, a desirable tomato of the scarlet class.

Red Cross. Seed from Gregory \& Son. A variety ripening medium early, fairly productive, fruits of medium size, smooth, of a light scarlet, rather tender for much handling, though good for home use. There are other varieties in the list that are far better.

Rose Bud. Seed sent us for trial by Hoover \& Moore, of Antlers, Colorado, A strong growing variety of the Potato Leaf class, productive, early, ripening as early as Vaughan's Larliest of All, Bond's Early Minnesota, and Atlantic Prize, and before Fordhook First, and Early Ruby, although only a few dlays; the fruits are of good size, remarkably smooth, solid, color as in Acme and lieauty. We consider this a promising variety.

Royal Red. Seed from Livingston \& Son, originators. This variety is medium in time of ripening, very productive, fruits of large size, generally smooth, solid, color a beautiful red. This is a desirable tomato either for home use, market, or canning.

Seedling No. 2. Sent us for trial by Hoover \& Moore, of Antlers, Colorado. The variety ripens a few days later than Beauty, fruits of medium to large size, roundish, free from ridges or furrows, very solid, of an attractive scarlet. A variety that will give satisfaction.

Table Queen. Seed from Peter Henderson \& Co., introducers. A variety ripening in mid season, productive, fruits of large size, fairly smooth, some specimens much wrinkled, color as in Beauty, solid, and apparently a good shipper.

Trucker's Favorite. Seed from Burpee \& Co. This is a medium variety as to season, productive, but ripens slowly, requiring a long season to realize best results; fruits large, roundish, smooth, solid, walls thick, which renders it a good shipper, color as in Beauty.

Vaghan's Earliest of All. Seed from Vaughan, the originator. This is a variety, the only merit of which is earliness; fruits smal!, uniformly rough, of a light scarlet color, tender.

SUMMARY.

First: The six varieties producing the largest amount of fruit by weight, from August 20th to September 1st, were Maules Earliest of All, Vaughan's Earliest of All, Atlantic Prize, Perfection, Rose Bud, and Ignotum. Each of the first three varieties yielded very nearly the same quantity of fruit within the period designated, which was from three and a half to six times as much as that produced by the three latter sorts.

Second: While the extra early varieties are desirable, where extreme earliness is aimed at, yet when the smooth, solid kinds come into market, there is little or no demand for the former which are generally rough and tender; hence those growing tomatoes for market should plant both the extra early and the second early or main crop in order to prolong the season.

Third: For second early, or main crop varieties, we recommend the following: Acme, Beauty, Perfection, Ignotum, P'uritan, and Long Keeper.

Fourth: The best varieties for canning are Beauty, Perfection, Long Keeper, Puritan, Ignotum, and Royal Red. The three former varieties are of a dark red, or purplish color, and the three latter of a bright red or scarlet.

THE STATE AGRICULTURAL COLLEGE.

BULLETIN NO. 31.
TECHNICAL SERIES NO. I.

A PREMMMNARTMST

OF THE
THEMIPTERA OF SOLORADO

BY C. P. GILLETTE AND CARL F. BAKER

Approved by the Station Council, AlSTON ELLIS, President.

FORT COLLINS, COLORADC

THE STATE BOARD OF AGRICULTURE.
HON. A. L. EMIGH, President Fort Collins, 1897
HON. JOHN J. RYAN Fort Collins, 1897
HON. J. E. DuBOIS Fort Collins, 1899
HON. JOSEPH S. McCLELLAND Fort Collins 1899
HON. JAMES L. CHATFIELD Gypsum 1901
HON. A. LINDSLEY KELLOGG Rocky Ford, 1901
HON. ALVA ADAMS Pueblo, 1903
MRS. JOHN L. ROUTT Denver, 1903
GOVERNOR ALBERT W. MCINTIRE, PRESIDENT ALSTON ELLIS \} EX-officio.
EXECUTIVE COMMITTEE IN CHARGE.
HON. J. S. McCLELLAND,HON. JOHN J. RYAN,HON. A. L. KELLOGG:
The President of the Board and the President of the College.
STATION COUNCIL.
ALSTUN ELLIS, A. M., Ph. D., LL.D. President and Director
WELLS W. COOKE, B. S., A. M., Agriculturist C. S. CRANDALL, M. S., Horticulturist and Botanist
William P. HEADDEN, A. M., Ph. D., Chemist
L. G. CaRPENTER, M. S., Meteorologist and Irrigation Engineer
C. P. GILLETTE, M. S. Entonologist
DANIEL W. WORKING, B. S. Secretary
LATHROP M. TAYLOR, B. S., Stenographer
ASSISTANTS.
FRANK L. WATROUS, Agriculturist
M. J. HUFFINGTON, Horticulturist
CHARLES J. RYAN, Chemist
CARL F. BAKER, B. S. Entomologist
R. E. TRIMBLE. B. S., Meteorologist and Iriiggation Engineer

INTRODUCTION.

Probably there is no state in the Union offering a richer field for the student of natural history than Colorado, whether it be in the line of mineralogy, paleontology, zoology, or botany. Its broad stretch of arid plains crossed by streams of living water, its high mountain ranges, broad plateaus, innumerable gulches and deep canons, all combine to give it a most exceptional topography with a consequent diversified fauna and flora.

The macro-lepidoptera of the state are very larsely known. as a result of the extended collecting of Reakirt, Mead, Bruce, Snow and others. Lists of Coleoptera have been published from the collections of LeConte, Schwarz, Wickham, Snow and others. Lists of the Hymenoptera have been published by Cresson and Ashmead. But never before in any one publication has the attempt been made to list the Hemiptera of the state. Indeed, heretofore there have been no large collections of the Colorado species of this order to draw upon. During the past four years we have collected nearly all those previously known from the state and a very large number of additional forms. It has been our plan to make more than a simple record of the species known to occur in the state. With each species is given the bibliography of all published records of its occurence in the state so far as known to us, also the name of the collector, locality, date of collection, and, wherever we have been able to ascertain it, the foodplant. Except in the case of Uhler, the authority for the determination of our specimens is given in the same line with the name. To avoid the repetition of the titles of papers, a numbered list of the papers referred to is given, the
author's name and the number of the paper only being given in the body of the list.

The determinations of specimens have been made by specialists in the different groups, the authors doing a large proportion of the systematic work on the Homoptera. It is hoped that this work will be found reasonably free from errors. In the preparation of the list we have been greatly aided by Mr. E. P. Van Duzee, who has made a large number of determinations for us, has made many helpful suggestions, and loaned us papers from his private library. We are under very special obligations to Dr. P. R. Uhler of Baltimore who has worked over our entire collection of Heteroptera and described the forty-seven new species and five new genera here published. Professor T. D. A. Cockerell of New Mexico, has determined nearly all our Coccidae and sent us many records of captures by himself, as well as valuable notes on species we had sent him for examination. The Membracidae have mostly been determined by Dr. Goding of Rutland, Illinois, and the Psyllidae by Dr. Riley. Professor Herbert Osborn of Iowa, also determined several species in the early part of the work. Mr. J. H. Cowen, a post graduate student, has done the work on the Aphididae, a large proportion of which he collected himself. Prof. W. A. Snow, of Kansas, has sent us a list of the Colorado Hemiptera in the Kansas University collection, which has added several species and many records to our list. Dr. Riley sent us a similar list from the United States National Museum.

It will be noticed that a great many species in the list, and especially of those that are new, are from mountainous localities where but little or no collecting had been previously done. All portions of the state still promise rich harvests to the collector, and especially those parts which have never yet been visited by "bug-net" and cyanide bottle. The list of new species here presented, although large, must be small compared with the forms yet unknown.

Work of a nature similar to this is being done in all orders. In view of this fact we most earnestly solicit correspondence from any quarter relative to the Colorado
insect fauna. Just at this time we especially desire notice of published records not given in this list, and data on correctly determined specimens in collections which have not been accessible to us. As the authors have undertaken a special study of the North American Jassidae, they would be pleased to examine specimens in that group from any portion of the country, and will give determinations for the privilege of retaining desiderata.

WORKS CITED.

Carpenter, W. L.
1-1873-Report on Alpine Insect Fauna of Colorado. U. S. Geol. and Geog. Surv. of Colo., p. 539.

Cockerell, T. D. A.
9-1890-Notes from Colorado. Ent. News. Vol. I., p. 75.
10-1893-Entom. of Midalpine Zone of Custer Co., Colo. Trans. Amer. Ent. Soc. XX., p. 305.

Gillette, C. P.
6-1892-Observ. on Inj. Insects. Bull. 19, Colo. Ag. Exp. Sta.
7-1891-Two Insect Pests. Bull. 15, Colo. Agr. Exp. Sta.
Goding, F. W.
1-1892-Studies in N. A. Membracidae I. Ent. News, Vol. III., p. 108.
2-1892-Studies in N. A. Membracidae II. Ent. News, Vol. III., p. 200.
3-1893-Bibl. and Syn. Cat. Membracidae N. A.

Montandon, A. L.
1-1893-Notes on Amer. Hemiptera-Heteroptera. Proc. Nat. Mus., Vol. XVI., p. 45.
Osborn, H.
1--Notes on Distrib. of Hemiptera. Trans. Iowa Acad. Sci., Vol. I., p. 120.
Packard, A. S.
2-1875-Rep. on Rocky Mt. Locust and other insects now injuring or likely to injure field and garden crops in Western States and Terr. U. S. Geol. and Geog. Surv. of Colo. and Adjac. Terr.. pp. 5-90. Putnam, J. D.

4-1878-Rem. on Habits of Several Western Cicadeae. Davenp. Acad. Sci. Vol. III., p. 67.
Riley \& Monell.
1-1879 - Notes on Aphididae of U. S. with desc. of n. spp. occurring west of Miss. Bull No. I of U. S. Geol. and Geog. Surv. of Terr. Vol. V., p. 1.
Uhler. P. R.
1-1871-Notices of the Hemip. of West. Terr. of U. S. U. S. Geol. Surv. of Mont. and Adjac. Terr., p. 392.

2-1875-Rep. on coll. of Hemip. made in portions of Nev., Utah, Cala., Colo., N. Mex., and Ariz. Wheeler's Explor. west of 100 th Merid., Vol. V., Zool., p. 827.
3-1887-Observ. on N. A. Capsidae with desc. of n. spp. Ent. Amer., Vol. III., p. 67.
4-1888-Prelim. Surv. of Cicadeae of U. S. Ent. Amer., Vol. IV., p. 21.
5-1877-Rep. on Ins. coll. during 1875 incl. Mon. fam. Cydnidae and Saldae, and Hemip. coll. by A. S. Packard, Jr. Bull. U. S. Geol. and Geog. Surv., Vol. III., Nos. 2 and 4.
6-1875-List of Hemip. of Reg. w. of Miss. River incl. those coll. during Hayden Explor. of 1873. Hayden's Surv. Rep., p. 267.

7-1877-Rep. on Hemip. coll. during 1874 and 1875. Appendix NN. in Rep. Chief Engineers, Part II., p. 1322.

8-1894-Observ. on Heter. Hemip. of Lower Cala. Proc. Cala. Acad. Sci. Ser. 2, Vol. IV., p. 223.
9-1893--Summary of a coll. of Hemip. secured by Mr. E. A. Sohwarz in Utah. Proc. Ent. Soc. Wash., Vol. II., p. 366.
Van Duzee, E. P.
1-1889-Review of N. A.sp. of Pediopsis. Ent. Amer., Vol. V., p. 165.
2-1892-New N. A. Homop. V. Lanad. Ent., Vol. XXVI., p. 266.

3-1894-Desc. of New N. A. Homop. Bull. Buff. Soc. Nat. Sci., Vol. V., No. 4, p. 205.
4-1894-Cat. desc. Jassoidea N. A. Trans. Amer. Ent. Soc., Vol. XXI., p. 245.

ALTITUDES OF LOCALITIES MENTIONED IN THIS PAPER.

The altitudes given represent only average heights. Timber line is at about 12,000 feet in Southern and about 10,500 feet in Northern Colorado.
Aspen 8,000
Berthoud Pass 11,300
Idaho Springs 7,400
Lamar
Lamar 4,000 4,000
Big Narrows of Poudre. 6,000
Boulder. 5,300
Cameron Pass 10,000
Canon City 5,200
Cheyenne Canon 6,200
Colorado Springs 6,000
Denver 5,200
Estes Park. 8,600
Fort Collins 5,000
Four-mile Hill 7,000
Garland 7,900
Georgetown. 8,700
Glenwood Springs 7,800
Golden 5,700
Gore Pass 10,000
Grand Junction 6,000
Green Mountain Falls. 8,700
Horsetooth Gulch 5,600
Howe's Gulch 5,500
Lia Veta 7,000
Leadville 10,200
Livermore 6,000
Manitou 6,300
Montrose 6,200
North Park 8,500
Ouray 000
Pueblo 4,600
Rabbit Ears Pass 10,000
Rist Canon 5,500
Rustic 7,000
Silverton 9,400
South Park 7,200
Spring Canon 5,500
Steamboat Springs 6,500
Trinidad 5,900
Veta Pass 9,5,00
West Cliff 7,800

A PRELIMINARY LIST OF THE HEMIPTERA OF COLORADO.

WITH DESCRIPTIONS OF NEW SPECIES, BY DR. P. R. UHLER, J. H. COWEN, AND THE AUTHORS.

Homaemus grammicus Wolff. Colorado Springs (Tucker.)
Homaemus aeneifrons Say.
Colo. (Uhler, 1 and 6). Swept from rank weeds near water courses. West of Denver occurred in swampy spots near South Platte River, and on the high watered table lands near foot-hills. Also beaten from bushes near Beaver Brook Gulch and in Clear Creek Canon (Uhler, 5).

Estes Park, Bailey (Snow). Manitou. Park (Snow and Tucker).

Homaemus bijugis Uhl.

Colo. (Uhler, 1 and 6). Foot-hills, September (Carpenter-see Uhler, b.) Near Denver (B. H. Smith-see Uhler, 6). Not uncommon in Denver, particularly on rank growing plants in damp situations (Uhler, 5). Willow Creek, Cusack Ranch, in midalpine of Custer County, August 21st, on timothy (Cockerell, 9 and 10).

Fort Collins, September 21st to October 15th; Horsetooth Mountain,* July 4th; Steamboat Springs, July 26th; Montrose, June 24th (Gillette), Fort Collins and adjoining foothills, May 13th to October 7th, on alfalfa, wheat, and various grasses (Baker).
Phimoderma torpida Walk.
Colo. (B. H. Smith-see Uhler, 6).
Eurygaster alternatus Say.
Hills of Colo., September (Carpenter-see Uhler, 6). Common in Colorado

[^10]in September in the region of the foot-hills (Uhler, 5). Custer County, midalpine, and Summit County (Cockerell, 10).

Fort Collins, July 4th; North Park, July 20th; Steamboat Springs, July 26th (Gillette). Fort Collins, July 29th, on wheat; Steamboat Springs, July 14th (Baker).

Corimelaena albipennis Say.

Abstract

Of this species Dr. Uhler says: "Prof. Gillette has most kindly sent to me the only specimen of this insect of which there is any record of capture since the time of Mr. Say. It is a species of prominent interest in many respects. In the first place, it is in an undeveloped stage of coloring, showing that oxydation of the outer integuments had not been completed when the insect was captured. It is also a female of unusually large size, in this section of the genus, and it is not in the first stage of exclusion from the skin of the nymph. The body is a little more bloated and consequently more convex above than in the fully dried insect. The contour is fringed all around with slender setae, as in C. ciliata Uhler. Its size is much less than that given by Mr. Say, but it agrees with his descr!'ption in nearly every respect. The hemelytra are not 'white with a small rufous spot,' but white with a spot and tinge of black near the apex, such as occurs in the drying stage of C. lateralis Fab., a few hours after it has left the skin of the nympha. The 'small rufous spot' of Mr. Say suggests a more recently excluded condition or the species, in which the color beginning as white had oxydized to rufo-piceous on its way to the final piceous or black color of the fully matured insect. C. unicolor Pal. Beauv becomes almost uniform castaneous, or rufo-castaneous, as it changes from the milky white of exclusion to the final black."

This specimen was first determined by Osborn, who recorded it as the first specimen found since Say's description (see Osborn, 1). Fort Collins, August 11th, on Glycyrrhiza lepidota (Baker).

Corimelaena anthracina Uhl.

Steamboat Springs, July 13th (Baker). Estes Park, July 12th (Gillette).
Corimelaena atra A. \& S.
Colo. (Gillette-see Osborn, 1).
Rist Canon, April 16th (Gillette). Veta Pass, June 27th (E. A. Schwarz).

Corimelaena ciliata Uhler.

Foot-hills five miles west of Fort Collins, hibernating under stones, March 22d to April 12th (Gillette and Baker).
Corimelaena coernlescens Stal.
Colo. (Ridings, see Uhler, 6).
Corimelaena extensa Uhl.
Horsetooth Gulch,* May 18th (Gillette).
Corimelaena nitiduloides Wolff.
Above timber line in mountains. (Carpenter, see Uhler, 6). A few speci-

[^11]mens taken concealed among roots of Yucca and other plants growing on plains near foot-hills, during August, near Colorado Springs (Uhler, 5) Custer County, midalpine (Cockerell, 10).

Corimelaena lateralis Fab.
Fort Collins, June 4th; foot-hills five miles west of Fort Collins, May 18th to June 14th; Dolores, June 18th; Montrose, June 24th (Gillette). Steamboat Springs, July 26th (Gillette and Baker).

Corimelaena renormata Uhler n. sp.

"Form of C. quadrisignata Stal. Black, polished, ciliate all around but with longer and less blunt corium and no spots on the zonnexivum. Upper surface obsoletely ras-trate-punctate, with the punctures scarcely visible upon the disk of pronotum and scutellum. Head wide, convex near base, roughly, unevenly, rather coarsely, punctate excepting on the base, the anterior margin bluntly obliquely rounded, with the edge reffexed, and the tip notched at end of tylus, the margin inferiorly has a series of coarse setigerous punctures; rostrum rufu-piceous, reaching to middle coxae; antennae long, fulvo testaceous. Pronotum transverse, very moderately convex, with the lateral margins little oblique and very slightly curved next the anterior angle, the surface crossed before the middle by a grooved line, which is very distinct each side and is there surrounded by an erea of very coarse punctures, the ciliae are set beneath the decurved edge in very coarse sunken punctures. Scutellum bluntly rounded, feebly curved, sliorter than the abdomen, with a broad oblique, punctate impression each side above the midde of the corium. The corium about three-fourths as long as the scutellum, with the apical portion of medium width, tapering, and obliquely rounded at tip, with about four lines of coarse punctures, base of both corium and clavus, nearly covered by an ivory white, remotely punctate, spot. Venter highly polished, with transverse remote series of small punctures on nlost of the segments, the apical segment impunctate.

Length to tip of venter nearly 4 nim . Width of pronotum $23 / 4 \mathrm{~mm}$. Unly one specimen, a female, has come to my notice. It will most lizely prove to be the fully colored stage of C. albipennis Say."

Rist Canon*, April 16th (Gillette).

Homaloports congruus Uhl.
Denver (B. H. Smith-see Uhler, j). Near foot-hills west of Denver, August (Uhler, $\overline{5}$).
Fort Collins, March 24th to April 24th (Baker). Foot-hills tive miles west of Fort Collins, April 21st; Trinidad, May 14th (Gillette).
Cydnus obliquus UhI.
West of Denver (Uhler, 5).

Annestus spinifrons Say.

Colo. (Gillette-see Osborn, 1).
Trinidad, May 14th (Gillette).
Amnestus subferrugineus West.
Foot-hills five miles west of Fort Collins, March 15th to
*A canon eight miles north-west of Fort Collins.

April 21st, under stones (Baker).
Perillus confluens H. Sch.
Custer County, midalpine (Cockerell, 10).
Perillus spendidus Uhl.
Colo. (Gillette-see Osborn, 1).
Dolores, June 18th (Gillette).

Perillus exaptus Say.

Colo. (Uhler, 1 and 6). Ula, Custer County, midalpine, November 12th (Cockerell, 10).

Fort Collins, August 4th (Baker). Foot-hills five miles west of Fort Collins, March 15th; under stones (Gillette). Garland, June 29th (E. A. Schwarz).

Perillus claudus Say.
Colo. (Uhler, 1). Colo. (Riley-see Uhler, 6). Near Denver (B. H. Smithsee Uhler, 3). Near Colorado Springs(Uhler, 3). Colo. (Gillette-see Osborn, 1).

Fort Collins, April 10th to October 6th; foot-hills five miles west of Fort Collins, April 9th to August 1st (Baker and Gillette).
Mineus bioculatus Fab.
Colo. (Snow).
Zicrona cuprea Dall.
Southern Colo., June (Carpenter-see Uhler, 7).
Podisus acutissimus Stal.
Colo. (Uhler, 6 .
Podisus bracteatus Fitch.

Det. Ashmead.

Colo. (Cockerell).
Podisus cynicus Say.
Colo. (Gillette-see Osborn, 1). Colo. (Snow-see Van Duzee, 5).
Spring Canon*, Aúgust 1st (Baker). Bailey (Snow).
Podisus gillettei Uhler n. sp.

[^12]and fifth blackish, both longer than the third, the fifth a little longer than the fourth. Rostrum pale testaceous, piceous at tip, reaching upon the middle coxae, the third joint very thick, a little longer than the fourth which is abruptly narrow. Pronotum more remotely punctate on the disk, with the lateral margins very oblique, thick, callous, broadly pale yellow, finely punctate and a little waved; the posterior margin feebly concave, and the humeral angles tumidly rounded. Pectorial areas remotely punctate with brown. Legs minutely pu, ctate with brown, darker above and on tips of tibiae, tarsi piceous above, the nails also piceous. Scutellum long, minutely punctate, with an obsolete pale stripe on the middle, more conspicuous at tip, and with the usual pale callosity in the basal angles. Corium and clavus with bare spots continued on the costal area. Membrane bronze brown. Venter testaceous, remotely punctate with brown. Connexivum polished, testaceous, maried with black scallops inwardly. Ventral spine very short.

Length to end of venter 13.5 mm . Width of case of pronotum 9.5 mm . This species closely resembles a pale variety of Jalla dumosi Fabr. but the head is broader, basal joint of antennae longer, and there are ten longitudinal veins to the membrane. One specimen, a female, was captured in Colorado."

Rist Canon, April 10th (Gillette).

Podisus modestus Dall.

Swept from bushes in Beaver Brook Gulch and Clear Creek Canon during early part of August (Uhler, 5).

Fort Collins, September 27th, on Clematis ligusticifolia (Gillette). May 20th to June 24th, aud September 14th on Solidago (Baker).

Podisus placidus Uhl.

Colo. (Gillette-see Osborn, 1).
Fort Collins, March 24th to May 4th (Gillette), and May 3d on box-elder (Baker).
Podisus serieventris Uhl.
Spring Canon, August 1st (Baker).

Podisus spinosus Dall.

Pueblo. Did not occur on the plains proper, but was swept from a bush in the bed of the river (Uhler, 5),

Liotropis humeralis Uhl.

From bushes near Manitou (Uhler, 5). Colo. (Gillette-see Osborn, 1),
Montrose, June 24th (Gillette),

Prionosoma podopioides Uhl.

Denver (B. H. Smith-see Uhler, 5 and 6). From bushes near Golden in August (Uhler, 5). Colo. (Gillette-see Osborn, 1). Pueblo (Uhler, 9).
Trinidad, May 14th (Gillette).

Podops dubius Pal Beauv.

Colo. (Gillette-see Osborn, 1).
Fort Collins, April 6th (Gillette).

Brochymena quadripustulata Fab.

Colo. (Uhler, 1).

Brochymena annulata Fab.

Colo. (Uhler, 6). Colo. (Gillette-see Osborn, 1).
Fort Collins, June 16th, on willow; Rist Oanon, April 9th; Manitou, September 28th, on oak (Gillette). Fort Collins, September 26th, on ash (Baker).

Brochymena obscura II. Schf.

Pueblo, July (Wilkins-see Uhler, 7).
Canon City, August 31st (Gillette).
Aelia americana Dall.
Steamboat Springs, July 14th (Baker). Veta Pass, June 24th (E. A. Schwarz).
Neottiglossa undata Say.
Colo. (Uhler, 6). Clear Creek Canon, August (Uhler, 5).

Neottiglossa melanocephala.

Fort Collins, May 27th, on currant (Baker).
Cosmopep1a carnifex Fab.
One specimen by sweeping weeds in region of Arkansas River, near Pueblo (Uhler, 5)

Fort Collins, July 2d, on Mentha canadensis, and September 27th; Howe's Gulch*, June 14th (Gillette). Steamboat Springs, July 15th (Baker).

Cosmopepla conspicillaris Dall.

Hills and plains of Colo. September 19th and October 4th (Carpenter--see Uhler, 6). Colo. (Gillette-see Osborn, 1).

Fort Collins, July 2d, on Mentha canadensis; Howe's Gulch, June 14th (Gillette).
Mormidea lugens Fab.
On weeds near Canon City (Uhler, 5).

Euschistas fissilis Uhl.

Colo. (Uhler, 1 and 6). Southern Colorado, June-July (Carpenter-see Uhler, 7). Colo. (Gillette-see Osborn, 1).

Fort Collins, April 23 d to October 24th; Rist Canon, May 14 th, and Spring Canon, June 30th to July 12th; Montrose,

[^13]June 24th (Gillette). Fort Collins, June 10th, at light; Boulder, September 4th (Baker).

Euschistus ictericus L.

Pleasant Valley, June 12th (Gillette.)

Euschistus impictiventris Stal.

Montrose, June 24th (Gillette).
Euschistus servus Say.
Near Arkansas River, August (Uhler, 5).

Euschistus tristigmus Say.

Colo. (Gillette--see Osborn, 1).
'This was probably an erroneous determination.
Euschistus variolarius Pal. Beauv.
Colo. (Uhler, 1 and 6). Denver, August 18th (Uhler, 5). West Cliff, Custer County, May 23d, on Thermopsis (Cockerell, 10). Colo. (Gillette - see Osborn, 1).

Fort Collins, September 30th (Baker). Spring Canon (Gillette).
Coenus delins Say.
Colo. (Snow-see Van Duzee, 5).
Fort Collins, March 24th, and September 2d on Solidago (Baker). Estes Park, Bailey (Snow).
Hymenarcys aequalis Say.
Near West Cliff, Custer County, July 30th (C'ockerell, 10).

Lioderma ligata Stal.

Fort Collins, June 27th to August 1Sth; Rist Canon, May 29 th to July 19th (Baker and Gillette), Golden, April 30th (Gillette). Estes Park, August (E. D. Varney). Steamboat Springs, July 15th , Baker).
Lioderma viridicata Uhl.
Roaring Fork (Rothrock - see Uhler, 6).
Pentatoma congria Uhl.
Foot-hills of Colorado, September (Carpenter--see Uhler, 6).
Steamboat Springs, July 12th (Baker). Denver (Riley).

Pentatoma faceta Say.

Colo. (Uhler, 1).
Pentatoma juniperina L.
Estes Park, July 11th; Rist Canon, July 3Cth (Gillette).

Pentatoma sayi Stal.
Roaring Fork (Rothrock-see Uhler, 2). Foot-hills of Colorado, September (Carpenter-see Uhler, 6). Golden, August 6th (Uhler, 5).

Silverton (Nat. Mus. Coll).

Pentatoma uhleri Stal.

Colo. (Uhler, 6).
Carpocoris 1ynx Fab.
Fort Collins, June 20th to October; Estes Park, July 11thColorado Springs, August 1st (Gillette). Steamboat Springs, July 12th to 26th (Gillette and Baker).

Trichopepla atricornis Stal.

North-east of Denver, August 18th (Uhler, 5).
Trichopepla semivittata Say.
On weeds in vicinity of Arkansas River, August 10th (Uhler, 5).

Peribalus limbolarius Stal.

Colo. (Uhler, 1 and 5) Nymphs moderately common on several kinds of Flowering plants August 6th and 8th, in Beaver Brook Gulch and Clear Creek Canon. A few days later imagos taken near Colorado Springs and at Manitou. August 11th taken sweeping plants in mouth of Arkansas Canon (Uhler, 5). Colo. (Gillette-see Osborn, 1).
Steamboat Springs July 12th (Baker). Bailey (Snow). Veta Pass, June 24th (E. A. Schwarz).

Peribalus piceus Stal.

Rist Canon, July 30th (Gillette)

Holcostethus abbreviatus Uhl.

Colo. (Uhler, 1). Beaver Brook Gulch, August 6th (Uhler, 5).
Fort Collins, June 5th to October 7th (Gillette and Baker). Steamboat Springs, July 26th (Gillette, Rist Canon (Baker).

Thyanta custator Fab.

Colo. (Uhler, 6). Near Manitou, August 16th (Uhler, 3). Colo. (Gillettesee Osborn, 1).

Fort Collins, June 21st to October, (Baker and Gillette). Spring Canon, June 30th; Denver, July 20th; Lamar, May 7th (Gillette). Colorado Springs, Garden of the Gods (Tucker).

Thyanta perditor Fab.

Colo. (Uhler, 6). Pueblo, August 10th (Uhler, 5). Colorado, common (Uhler, 8).

Thyanta rugılosa Say.

Colo. (Uhler, 1). Colo. (B. H. Smith-see Uhler, 6). Southern Colorado, October (Uhler, 7). Moderately common in Clear Creek Canon and in Beaver Brook Gulch. Occurred on wild gooseberry, and several kinds of bushes near running streams ; Uhler, 5).

Fort Collins, June 9th, in electric light globes (Gillette). Murgantia histrionica Hahn.

Colo. (Uhler, 1 and 6). Colo. (Uhler-see Packard, 2). Near Denver, in irrigated region, and also Golden, August 6; none found south of Denver (Uhler, 5). Golden, July Bd (Packard-see Uhler, 5).

Banasa calva Say.
Larva in Clear Creek Canon, August 6th (Uhler, 5). Imagos near Blackhawk, July 2d (Packard-see Uhler, 5).

Fort Collins, September 30th; Ouray, June 22d (Gillette). Big Narrows of Poudre river, Larimer county, July 9th, on willow (Baker).
Banasa dimidiata Say.
Estes Park (Snow-see V anDuzee, 5).
Banasa sordida Uhl.
Glenwood Springs, August 24th (Gillette).
Chariesterns antennator Fab.
Colo. (Uhler, 6). Manitou, August 13th, on a small oak tree (Uhler, 5 Colo. (Gillette-see Osborn, 1).

Horsetooth Gulch, May 18th (Gillette).
Corynocoris distinetıs Dall.
Colo. (Uhler, 1 and 6).
S. Colo. (Nat. Mus. Coll.).

Archimerus calcarator Fab.
Colo. (Uhler, 1). Foot-hills (Carpenter-see Uhler, 6).
Boulder, September 4th (Baker).
Leptoglossus corculus Say.
Colorado-as questionably cinctus (Gillette-see Osborn, 1).
Fort Collins, June 29th, and July 4th in flowers of Yucca; Pueblo, June 13th (Gillette). Boulder, September 4th; foothills 5 miles west of Fort Collins, August 1 (Baker).
Chelinidea vittigera Uhl.
Colo. (Uhler, 6). Beneath a mass of prickly pears on hillside near Colorado

Springs, August 10th (Uhler, 5). Colo. (VanDuzee, 5).
Foot-hills, 5 miles west of Fort Collins, March 15th to May 19th, common under stones and about plants of Upuntia; Fort Collins, April 23 d to May 16th (Baker and Gillette).
Margus inconspicuus H. Schf.
Colo. (Uhler, 1 and 6). Near Manitou, August 13th (Uhler, 5). Near Denver (B. H. Smith-see Uhler, 5). Southern Colorado, June 5th (Carpenter-see Uhler, 7).

Montrose, June 24th (Gillette).
Catorhintha guttula Fab.
Fort Collins, May 7th to October 28th (Baker and Gillette). Foot-hills 5 miles west of Fort Collins, June 4th to August 3d (Gillette).

Catorhintha mendica Stal.

Colo. (Uhler, 1 and 6). Golden, July 3d (Packard-see Uhler, 5). Southern Colorado, June 5th to July 5th (Carpenter-see Uhler, 7).

Colorado Springs (Tucker).
Ficana apicalis Dall.
Manitou, 'July 24th, on Clematis ligusticifolia (Gillette).
Anasa tristis De G.
Colo. (Uhler, 6). Taken beneath rubbish on a farm a few miles west of Denver, August 18th. Not common (Uhler, 5). Colorado Springs, July (Yar-row-see Uhler, 7). Southern Colorado, June (Carpenter-see Uhler, 7).

Known as a common and serious pest almost everywhere squashes are cultivated. Hibernates under boards, stones, and rubbish.

Tollius curtulus Stal.

Horsetooth Mountain, July 4th (Gillette).
Alydus eurinus Say.
Foot-hills of Colo. (Carpenter-se Uhler, 6). Manitou, July 15th (Packard -see Uhler, 5). Near Denver (B. H. Smith-see Uhler, 5). Ula, Custer county, July 30th; also high alpine; in Mesa county, at about 7,000 feet (Cockerell, 10):
Alydus quinquespinosus §ay.
Foot-hills of Colo. (Carpenter-see Uhler, 6).
Fort Collins, September 30th; Boulder, September 4th (Baker).

Alydus pluto Uhler.
Colo. (Uhler, 1). Foot-hills (Carpenter-see Uhler, 6). Near Denver (B. H. Smith-see Uhler, 6). West of Denver, August 9th (Uhler, 5). Colo. (Snow-see VanDuzee, 5).

Spring Canon, July 12th; Estes Park, July 12th (Gillette). Alydus conspersus Mont.

Colo. (Montandon, 1). Colo. (Montandon-see Osborn, 1).
Protenor belfragei Hagl.
Colo. (Uhler, 1 and 6).

Darmistus subvittatus Stal.

Eort Collins, June 25th (Baker). Foot hills five miles west of Fort Collins, March 12th to June 12th (Gillette).
Dasycoris nigricornis Stal.
North-east Colorado (Riley).
Dasycoris humilis Uhler.
Colo. (Uhler, 1 and 6). Near Golden, August 6th (Uhler, 5). Colorado Springs, July (Yarrow-see Uhler 7).

Fort Collins, April 26th; foot-hills 5 miles west of Fort Collins, April 16th to June 13th (Gillette).
Scolopocerus secundarits Uhler.
Colo. (B. H. Smith-see Uhler, 6). Colo. (Gillette-see Osborn 1).
Foot-hills five miles west of Fort Collins, March 15th (G'illette). Fort Collins, May 20th (Baker).
Neides muticus Say.
Colo. (Uhler, 1 and 6). Clear Creek Canon, entrance to Beaver Brook Gulch, August 7th, flying in bright sunlight (Uhler, 5).

Manitou, June 25 th; Montrose, .J une 24th (Gillette). Foothills five miles west of Fort Collins, May 19th and 21st; Steamboat Springs, July 15th to 26th (Gillette and Baker). Fort Collins, March 18th (Baker).
Jalysus spinosus Say.
Pueblo (Yarrow-see Uhler, 7). Not uncommon in the valley of the Arkansas east of Canon City, August 11th. Occurred in places slightly wooded, where wild grape vines abounded (Uhler, 5).

Colorado Springs (Tucker).
Harmostes propinquus Dist.
Fort Collins, August 18th and 26th (Baker). Foot-hills five
miles west of Fort Collins, suiy 12th and 30th (Gillette).
Harmostes serratus Fab.
Manitou, July 15th (Packard-see Uhler, $̄$).
Harmostes reflexulus Stal.
Colo. (Uhler, 1). Foot-hills, July to September (Carpenter-see Uhler, 6). Sweeping weeds on hills west of Denver August 5th. Beyond Canon City, August 11th. (oolorado Springs, August 16th (Chler, 5). Near West Cliff, Custer ${ }^{\text {COunnty }}$, end of July (Cockerell, 10).

Fort Collins, September 30th (Baker). Steamboat Springs, July 14th and 26th (Baker and Gillette). The Rustic, Larimer County, August 11th; Dolores, June 18th; Montrose, June 24th; Glenwood Springs, August 24th (Gillette). Aspen (W. W. Willard). Colorado Springs (Tucker).

Harmostes reflexulus Stal. var. virescens Dall.
Howe's Gulch, June 14th; Dolores, June 17th (Gillette). All variations between this and the typical form occur commonly.

Anteius impressicollis stal.
Swept from bushes in the suburbs west of Denver, August, 18th. Not common (Uhler, 5).
Corizus hyalinus Fab.
Colo. (Uhler, 1). Foot-hills (Carpenter-see Uhler, 6). Pueblo, ' July (Yarrow-see Uhler, 7). Golden, July 3d, and on Arapahoe Peak, 11,000 to 12,000 feet, July 1st (Packard-see Uhler, 5). Widely distributed in Eastern Colorado. Lodges in flowers of various plants, and seems to be common on plains, ${ }^{\star}$ foot-hills, and parks in the mountains. Less abundant in Clear Creek Canon, but found everywhere west of Denver, around Colorado Springs, and near Manitou. Lived singly in crowns of small flowers in Manitou Park. Common on weeds in Arkansas Valley, and near mouth of Canon of Arkansas, August 4th to 19th (Uhler, 5). Ula, Custer County, July 30th; also high alpine (Cockerell, 10).

Howe's Gulch, June 14th; Steamboat Springs, July 26th; Glenwood Springs, August 24th (Gillette). Fort Collins, May 18th to July 14th, on alfalfa, barley, Sisymbrium canescens, and Oenothera biennis (Baker). Colorado Springs, August (Tucker).
Corizus lateralis Say,
Colo. (Uhler, 1 and 6). Swept from weeds on low hills near Colorado

Springs, August 18th (Uhler, ⿹\zh26).
Fort Collins, March 20th to August 25 th, and September 27th on Bigelovia (Baker and Gillette). Foot-hills five miles west of Fort Collins, June 5th and 14th; Steamboat Springs, July 26 th (Gillette).
Corizus nigristernum Sign.
Golden, July 3d (Packard-see Uhler, ${ }^{\text {aj, }}$
Rist Canon, June 13th (Gillette)
Corizus punctiventris Dall.
Colo. (Uhler, 1 and 6).
Fort Collins, September 30th (Baker). Steamboat Springs, July 14th and 26 th (Baker and Gillette). The Rustic, Larimer County, August 11th; Estes Park, July 12th; North Park, July 20; Montrose, June 24th (Gillette).

Corizus validus Uhl.
 Steamboat Springs, July 14th (Baker).

Leptocoris trivittatus Say.
Colorado, common (Uhler, 1). Colo. (Uhler, 6). Southern Colorado, July (Carpenter-see Uhler, 7). Canon City, August 11th, at roots of cacti and yuccas (Uhler, 5). Colo. (VanDuzee, 5).

Canon City, August 31st (Gillette). Very common in Fort Collins and vicinity. Hibernates in large numbers about buildings. Commonly called "brick-bugs" or "box-elder-bugs," although not found commonly on box-elder.
Jadera haematoloma H. Schf.
Colo. (Uhler, 6).
Nysius angustatus Uhl.
Colo. (Uhler, 1). Above timber line in mountains of Colorado in June (Carpenter-see Uhler, 6). Pueblo, July (Yarrow and Wilkin-see Uhler, 7). Fort Garland, July (Hunt-see Uher, 7). Golden, July 3d (Packard-see Uhler, 5). Very abundant on tall weeds in cultivated grounds, near Denver, at Golden, in Manitou Park, and near Canon City, August 6th to 18th (Uhler, 5) Colo. (Gillette-see Osborn, 1).

Estes Park, July 12th; Leadville, August 23d (Gillette). Fort Collins, July 29th; Steamboat Springs, July 15th, on Solidago (Baker). Colorado Springs, Bear Creek Canon (Tucker).
Nysins californicus Stal.
Colo. (Uhler, 1 and 6). Found sparingly on weeds in moist places, as well
on the plains as in canons and parks. Swept from flowers west of Denver, in Clear Creek Canon, near Manitou and Colorado Springs, and more abundantly near Canon City. On a low composite with pale whitish flower, Manitou Park, August 14th (Uhler, 5). Golden, July 3d (Packard-see Uhler, 5).

Nysins minutus Uhler n. sp.

"Grayish fulvo-testaceous, pubescent, punctate with black, narrow, with the outer margin of the hemelytra nearly straight. Head of medium length, comparatively acute, pale dull fulvous, closely punctate, except on the immediate base, the punctures of the sides especially black, a grooved line midway between the eye and tylus; throat black, covered with small punctures, sericeous pubescent, with a white line next the eyes; antennae fulvo-testaceous, the basal joint mostly black, reaching a little beyond the tip of tylus, second joint about one-third longer than the third and both piceous at tip, the fourth long blackish; rostum reaching behind the middle coxae, blackish piceous, sometimes paler at base. Pronotum subquadrate, a little wider than long, coarsely punctate with black, especially on the sides of disk, the fulvous color of the middle of the head carried back as a line between the callosities, the callosities and adjoining sutures and a line each side of the convex posterior lobe black, the humeral callosities and a short line on the middle of the posterior border whitish, humeri nearly surrounded by black. Pectoral areas black, minutely sericeous pubescent, coarsely punctate anteriorly, with a series of large white spots, including the coxae, extending from behind the throat to the metapleura, the outer angle and posterior margin of the metapleura and collar next the throat whitish or white, legs dull fulvo-testaceous, the formora mostly black beneath. Scutellum fulvo-testaceous, coarsely punctate and with a black mark on each basal angle, the middle line black, including the blunt base of the middle carina, which becomes very slender on the depressed apex of the scutellum. Hemelytra whitish, minutely pubescent. obsoletely and min'tely punctate, with the veins and inner and posterior margin interruptedly streaked with brown, the apex of the clavus with a brown dot; membrane long, whitish hyaline, with a few brown flecks near the middle and from thence outwards. Abdomen piceıus or blackish, narrow, polished, closely covered with fine white pubescence. Length to tip of abdomen, male $3-3.5 \mathrm{~mm}$. Width of pronotum, . 75 mm .

This is a common species in many parts of the western states, from Dakota to Colorado, California and Texas. On the eastern side of the continent it inhabits Canada, New England, New York, New Jersey, Maryland, Virginia, and North Carolina."

Fort Collins, June 4th to October 15th, and September 27th on Bigelovia; Pleasant Valley, June 12th; The Rustic, Larimer County, August 11th; Estes Park, July 12th; Grand Junction, August 26th, on sugar beets; Colorado Springs, August 3d; Montrose, June 24th (Gillette). Steamboat Springs, July 14th; Fort Collins, July 29th, on sugar beets, and July 26th, very injuriously abundant on mustard (Baker).

Nysius thymi Wolff.
Estes Park, July 12th (Gillette).

Orsillus scolopax Say.

Fort Collins, August 11th, on Glycyrrhiza lepidota (Baker).

Ischnorhynchus didymus Zett.

Southern Colorado (Yarrow-see Uhler, 7). Denver and Canon City (Uhler,
5). Colo. (Gillette--see Osborn, 1).

Rist Canon, May 29th; Estes Park, July 12th; Montrose, June 24th: Manitou, June 25th to September 29th (Gillette). Fort Collins (Baker). Manitou Park, Cheyenne Canon (Tucker).

Cymus Iuridus Stal.

Swept from weeds near Arkansas river, east of Canon City, August 11th (Uhler, 5). Near West Cliff, Custer county, end of July (Cockerell, 10).

Cymodema tabida Spin.

Fort Collins, March 28th to April 26 th under boards (Baker). Garland, June 18th (E. A. Schwarz).

Blissus leucopterus Say.

Pleasant Valley*, June 12th, a single specimen (Gillette). Dixon's Canon, February 28th, one specimen under a stone (Baker).

Ninyas pallens Stal.
Colo. (Riley).
Geocoris borealis Dall.
Fort Collins, March 24th, under board; Glenwood Springs, August 24th (Gillette).

Geocoris bullatus Say.

Pueblo (Yarrow-see Uhler, 7). Foot-hills, July (Carpenter-see Uhler, 6). Collected around the roots of weeds on foot-hills and plains west of Denver, August 18th. Very pale varieties of this species occur on light colored sand; those from canons and mountain altitudes are darker (Uhler, 5).
Geocoris decoratus Uhler.
Clear Creek Canon, August 3d, in warm, sunny spots on dark sand (Uhler, 5). Ula, Custer County, November 12th (Cockerell, 10).

Geocoris fuliginosus Say.
Denver, August 5th (Uhler, 5).
Geocoris griseus Dall.
Estes Park, July 10th (Gillette).

Geocoris limbatus Stal.

Steamboat Springs, July 26th (Gillette.)
Geocoris pallens Stal.

[^14]Colorado Springs, August 3d; Lamar, May 7th; Glenwood Springs, August 24th; Dolores, June 1Sth (Gillette). Fort Collins, June 29th on sugar beet, and August, 18th; foothills five miles west of Fort Collins, August 1st (Baker).

Geocoris piceus Stal.

Colo. (Uhler, 1 and 6).

Geocoris punctipes Say.

Colo. (Uhler, 6).
Oedancala dorsalis Say.
Valley of Arkansas near Canon City (Uhler, 5).
Crophius bohemani Stal.
Montrose, June 24th (Gillette.)
Crophins disconotus Say.
Foot-hills five miles west of Fort Collins, March 15 th to August 1st, and May 12th abundant on Pinus ponderosa var. scopulorum (Gillette and Baker). Golden, April 30th (Gillette). Fort Collins, May 16th on alfalfa, May 31st on apple, and April 11th very abundant along a fence row, flying in the sunshine (Baker).
Ligyrocoris constrictus Say.
Southern Colorado June and July (Carpenter-see Uhler, 7).
Livermore, Larimer county, August 11th (Gillette).

Ligyrocoris sylvestris Linn.

Foot-hills (Carpenter-see Uhler 6). Near Manitou, August 155th (Uhler, 5.) Colo. (Gillette-see Osborn, 1).

Fort Collins, August 18th (Baker). Steamboat Springs, July 15th and 26th (Baker and Gillette).
Myodocha serripes Oliv.
Valley of Arkansas river, east of Canon City, August 11 (Uhler, 5).
Heraens insignis Uhler.
Colo. (Uhler, 1 and 6). Near Golden, at mouth of Clear Creek Canon, August 7 (Uhler, 5).

Pamera una Say.

Ouray, July 17th; Fort Collins, September 27th (Gillette), Ptochiomera clavigera Uhler n.sp.

[^15]and thicker clavate antenuae. Color dark brown, closely and coarsely punctate with fuscous, pubescent. The head thick, abruptly contracted at tip, clothed with bronze pubescence, closely punctate; the rostrum thick, brown, reaching between the anterior coxae; antennae piceous, pale p : bescent, blackish on the two long and very thick clavate apical joints, the basal joint thick, scarcely longer than the tylus, the second much shorter, more slender, growing thicker towards the tip; the ocelli very large and prominent, coarsely and densely granulated. Pronotum thick, a little longer than wide, almost. flat above; the anterior lobe nearly twice as long as the posterior one, the two separated each side by a deeply incised line; the lateral edge moderately oblique, reflexed, a very little curved; collum distinct, but rather turned up than ridged; the middle of posterior margin indented, the anterior margin as wide as the head to the middle of the eyes; the humeral angles callous, long triangular. Pleural pieces reddish brown, somewhat coarsely punctate. Coxae dull yellow: femora obscure yellow, pale fuscous on the middle; the tibia tinged with brown; tarsi more or less piceous. Scutellum reddish brown, punctate, the apex with a loug thick carina. Hemelytra thick, opaque, coarsely punctate in somewhat longitudinal lines, bare parts of the surface dull fulvous, the costal border testaceous, interrupted by about four black spots; the broad apex almost truncated, sometimes marked with two or three yellow dots; the membrane browin, very small or absent. Abdomen dark dull or brown, closely punctate, spread with minute bronze pubescence; the connexivum wide, sharp edged, with a yellow dot on the apex, and sometimes with testaceous specks at the outer end of the sutures; anal segment of the male large and prominently convex, very dark brown.

Length to end of abdomen 2.5 mm. Width of pronotum. m mm. Three or four specimens are in the Colorado Agricultural College collection. In my own cabinet may be seen specimens from New York, Texas, and the vicinity of Denver and Manitou. Colorado."
Fort Collins, April 6th (Baker). Poudre Canon*, March 16th to April 22nd (Gillette). The specimens taken were found under boards and stones. This is the species recorded from Colorado as P. diffusus Uhler (see Uhler, 1).

Ptochionera pubernla Stal.

Denver, August 8th (Uhler, $\overline{\text { b }}$).
Cnemorlus mavortins Say.
Colorado, August (Riley).
Trapezonatus nebulosus Fall.
Colo. (Uhler, 1 and 6). Southern Colorado, June, July (Carpenter-see Uhler, 7). Moderately common at Denver. also few from plants in Beaver Brook Grulch, August 6 th (Chler, 5). Custer county, mid-alpine (Cockerell, 10).
Fort Collins, February 19th to September 2d Baker and Gillette). The Rustic, Larimer county, August 11th; Foothills seven miles north-west of Fort Collins, March 16th; Manitou, June 25th; Montrose, June 24th; Dolores, June 18th (Gillette). Steamboat Springs, July 14th (Baker). Colorado Springs, Manitou Park (Tucker).

Emblethis arenarius Linn.

Colo., seems to be quite common (Uhler, 6). Quite common in eastern

[^16]Colorado as well on plains and foot-hills as in mountains. Near Denver and also in Clear Creek Canon, August 6th (Uhler, 5). Summit of Arapahoe Peak, 13,000 feet, July 14th (Packard--see Uhler, 5). Custer county, midalpine (Cockerell, 10). Colo. (Gillette-see Osborn, 1).

Fort Collins, February 19th to April 16th; Spring Canon. March 12th (Gillette).

Peritrechus fraternus Uhl.

Ula, Custer county, November 12th (Cockerell, 10).
Rlyyparochromis floralis Uhler n. sp.

Abstract

"Long-elliptical, rusty fulvous, opaque, minutely sericeous pubescent. Head piceous paler or rufo-fulvous at tip, subconic, nodding, smooth, shorter than the pronotum, minutely scabrous, strongly convex above, with the throat pale rufo-fulvous; antennae stout, about as long as the pronotum and corium united, dull fulvous, pale pubescent, with the fourth joint and apex of the third blackish piceous, the basal joint extending a little beyond the tip of the head, second much longer, the third about one-half longer but a little shorter than the second, the fourth about equal to the second; lostrum reaching upon the middle coxae, slender, pale fulvous, with the apical joint black. Pronotum subquadrangular, a very little wider at base than at tip, fulvous or rufo-fulvous, dull testaceous and punctate with black on the basal one-third, the lateral margins a little reflexed, black, slightly convexed next the apical angle, the submargin ivory white, expanding posteriorly where it abuts against a tumid black humeral spot, the inner boundary of this stripe and the anterior submargin finely punctate with blark, disk not distinctly punctate, behind this is a feebly raised whitish line. Scutellum very long and acute fulvous, trinsversely indented on the middle, finely punctate before the middle and corsely punctate with black towards the tip, the middle line more or less black. Corium whitish testaceous, with about nine slender blark oblique lines (including the clavus) which are mostly composed of impressed punctures, the costal border and a transverse spot upon a wide black area, which also covers the cuneus, dull white, exterior reflexed edge of costal border dark brown: membrane smoke brown, with a short white spot next the tip of cuneus, and a double fainter one at tip. Legs pale fulvous, pale on middle of tibiae and base of tarsi. apicrs of tibiae and tarsi piceous. Pectus dark rust brown, paler anteriorly, the segments on the posterior border and a spot above each of the coxae pale yellow. Ventel dull black, bordered above with testaceous or fulvous.

Length to tip of venter, $6-6.5 \mathrm{~mm}$. Width of pronotum, $1.75-2 \mathrm{~mm}$. This seems to be a common species in Colorado, Montana, California, etc."

Abundant at Fort Collins, throughout the season, under stones, etc., usually in company with Formica neoclara Em. (Baker).

Rhyparochromus (Dorachosa) illuminatus Dist.

Dixon's Canon, February 24th, under a stone (Baker).

Eremocoris ferus Say.

Custer county, midalpine (Cockerell, 1C). Colo. (Gillette-see Osborn, 1).
Dolores, June 16th (Gillette).

Eremocoris tropicus Dist.

Fort vollins, March 26th; foot-hills five miles west of Fort Collins, March 15th and 16th (Gillette).

Peliopelta abbreviata Uhl.

Clear Cruek Canon, August 6th (Uhler, 5).

Melanocoryphus admirablis Uhi.

Colo. (Uhler, 6). Ula., Custer Co., Nov. 12 (Cockerell, 10).
Rist Canon, May 29th; Montrose, June 24 (Gillette).
Melanocoryphus bicrucis Say.
Colo. (Gillette-see Osborn, 1).
Horsetooth Gulch, May 18th; Dolores, June 16th; Montrose, June 24th (Gillette).

Melanocoryphins facetus Say.

Foot-hills, July (Carpenter-see Uhler, 6). Swept from yuccas near Denver; most common near Colorado Springs, August 13th to 17th, and were generally in shelter beneath dried dung, chips, stones or about the roots of yuccas (Uhler, 5). In a meadow at Nathrop, Chaffee County, August 14th (Cockerell, 10) Colorado (Gillette-see Osborne, 1).

Fort Collins, June 9th, on alfalfa and in electric lightglobes; foot-hills five miles west of Fort Collins, February 28th to August 1st (Gillette and Baker). Trinidad, May 14th; Grand Junction, August 28th; Leadville. August 23d (Gillette). Denver, at light (R. C. Stephenson).
Lygaetis admirabilis Uhl.
Colorado (Uhler, 1).
Pleasant Valley, June 12th; Fort Collins, June 10th (Gillette).
Lygaeus circumcinctus Stal.
Colorado (Carpenter, 1).
Lygaeus kalmii Stal.
Custer County, midalpine (Cockerell, 10).
Lygaeus melanopleurns Uhl.
Foot-hills five miles west of Fort Collins, June 14th to September, 1st; North Park, July 20th (Gillette). Steamboat Springs, July 16th and 26 th (Baker and Gillette).
Lygaens reclivatus Say.
Found at 14,000 feet in abundance on surface of snow. Found above timber belt from May to October, throughout an area of 20,000 square miles (Carpenter, 1). Colorado (Uhler, 6). Pueblo, July (Yarrow and Wilkin-see Uhler, 7). Boulder, June27th; Arapahoe Peak, 10,000 to 12,000 feet, July 1st;

Manitou, July 15th; summit of Pike's Peak, 13,000 feet, July 14th; Garden of the Gods, July 13th; Gray's Peak, about 14,000 feet, July 7th (Packard-see Uhler, 5). Everywhere, Denver to Canon City, August 6th to 18th. Among roots of yuccas, near Colorado Springs and Manitou. Swept from weeds near bunches of Asclepias in mouth of Arkansas Valley. Dwells on Asclepias (Uhler, 5). Ula, Custer County, November 12th (Cockerell, 10). Fort Collins (Riley and Blount, see Cockerell 10). Colorado (VanDuzee, 5)

Montrose, June 24th (Gillette). Fort Collins, March 20th to April 20th (Gillette and Baker). Manitou Park (Snow). Colorado Springs (Tucker).

Lygaens turcicus Fab.

Lower end of Wet Mountain Valley, just in Fremont County (Cockerell, 10).

Largits cinctıs H. Sch.
Colorado-as succinctus (Gillette-see Osborn, 1).
Lamar, May 7th (Gillette). Cheyenne Canon (Tucker).
Largins succiutus Linn.
Colorado (Uhler, 1). Southern Colorado (Uhler, 6)
Brachytropis calcarata Fall.
Near water, in weedy places on outskirts of Denver, August 4th (Uhler, 5).
Steamboat Springs, July 12th on Carex (Baker).
Megaloceroea debilis Uhl.
Berthoud Pass and other parts of Colorado (Uhler, 1). Colorado (Uhler, 5).
Fort Collins, June 4th to July 24th; Steamboat Springs, July 26th, and July 12th on Carex (Gillette and Baker).
Megaloceroea rubicunda Uhl.
Colorado (Uhler, 1 and 6).

Trigonotylns pulcher Reut.

Fort Collins, October 15th; Pleasant Valley, June 12th; Estes Park, July 12th; Lamar, May 7th; Trinidad, May 14th; (Gillette). Fort Collins, June 13th, on cottonwood sprouts, and July 29th (Baker).

Trigonotylns ruficornis Fall.

Colorado (Uhler 1 and 6). On weeds and grass in damp situations near Denver, and also on hills near water a few miles west of Denver (Uhler, 5). Colorado (Gillette-see Osborn, 1).

The last record perhaps refers to pulcher.
Miris affinis Reut.
Roaring Fork (Rothrock-see Uhler, 2). IIills, July (Carpenter-see Uhler,
6). Southern Colorado, July (Carpenter-see Uhler, 7). Yellow varietes on weeds near water, in suburbs of Denver. Green variety, marked with fuscous, from rank growing plants in Beaver Brook Gulch, August 6th (Uhler, 5). Ula, Custer County, July 30th (Cockerell, 10). Estes Park (Snowsee VanDuzee, ご).

Fort Collins, May Sth to October 7th and June 9th, on alfalfa and barley (Baker). Foot-hills five miles west of Fort Collins, May 11th to 19th; Manitou, June 25 th (Gillette) Veta Pass; June 21st (E. A. Schwarz.

Teratocoris discolor Uhl.
Garland, June 18th (E. A. Schwarz-see Uhler, 3).
Teratocoris longicornis Uhler n. sp.
"Elongated, bright green, resembling a Miris. Head very slightly nodding, green, broad, the front tabulated above and bounded by deep sutures, black anteriorly along the depressed middle line and also each side, the vertex produced in an arch posteriorly, and with a black arc at base; tylus black, rostum reaching midway between the middle and posterior coxae; mostly greenish-testaceous, piceous at tip; antennae long, the basal joint green, the other joints dull reddish, the basal one as long as the vertex and pronetum united, the second as long as the pronotum and clavus united, the third and fourth broken from the specimen. Pronotum trapezoidal, a little longer than wide, flat anteriorly, the sides gradually oblique, with the edge reflexed, a little constricted behind the line of the callosities and crossed there by a black band, the middle line unevenly impressed, black, connected behind with a broad black band across the base, which is obsoletely punctate and wrinkled, the submargin before the humeri tabulated and with the edge not reflexed, posterior margin very slightly sinuated. Sternum whitish along the middle. Legs green, the tibiae and the tarsi more or less yellow, with the nails and apex blackish. Scutellum black, with a large yellow spot near each basal angle. Hemelytra green, long elliptical, minutely rugulose and punctate, the costal border prominently reflexed; membrane long, dull whitish, faintly dusky at base, including the base of vein. Mesosternum, posterior coxae and middle and apex of venter, pale yellowish, the abdomen minutely pubescent.

Length to tip of abdomen 4.5 mm . To tip of membrane 5.5 mm . Width of pronotum 1.25 mm . This is a well marked species of which only a single male was sent to me from Colorado. The genital hook is placed on the left side, and is long, stout and moderately curved. In this specimen the base of the scutellum is broadly exposed. A series of both sexes is greatly desired for comparative study."

Steamboat Springs, July 12th on Carex (Baker).
Leptoterna amoena Uhl.
Steamboat Springs, July 14th and 26th (Baker and Gillette). EstesPark, July 10th; North Park, July 20th; Colorado Springs, August 3d (Gillette).
Resthenia atripennis Reut.
Foot-hills twelve miles west of Fort Collins, June 30th (Gillette).
Resthenia bivittis Stal.
Steamboat Springs, July 26th; North Park, July 20th (Gillette).

Resthenia confraterna Uhl.

Colorado (Uhler, 1 and 6). Beaver Brook, August 6th (Uhler, 5). Idaho Springs, July 6th (Packard-see Uhler, 5). Colorado (Gillette--see Osborn, 1).

Resthenia insignis Say.

Colorado (Uhler, 1 and 6). Colorado, as insignis and as rubrivittata (Gillette--see Osborn, 1).

North Park, July 20th (Gillette). Steamboat Springs, July 15th; Rabbit Ears Pass, July 20th (Baker).
Reatlienia insitiva Say.
Colorado (Gillette-see Osborn, 1).
Resthenia maculicollis Reut.
Foot-hills twelve miles west of Fort Collins, June 30th (Gillette).
Oncerometopus migriclavus Reut.
Colorado (Gillette-see Osborn, 1).
Dolores, June 18th; Estes Park, July 12th (Gillette). Steamboat Springs, July 13th (Baker). Colorado Springs (Tucker).
Oncerometopus ruber Reut.
Foot-hills five miles west of Fort Collins, September 1st (Gillette).
Lopidea confluens Say.
Estes Park (Snow). North-east Colorarlo (Riley).

Lopidea marginata Uhl.

Colorado (Uhler, 8).

Lopidea media Say.

Foot-hills and plains, September 19th and October 4th (Carpenter-see Uhler, 6). Plentiful at Denver, Golden, Colorado Springs, and in the valley of the Arkansas near Canon City, August 5th to 18th. Occured most frequently upon the wild rose bushes (Uhler, 5). August 12th at Cottonwood Creek, Pleasant Valley, Fremont County (Cockerell, 3). West Cliff, Custer County, July 31st on Glycyrrhiza lepidota (Cockerell, 10). Colorado (Gillette--see Osborn, 1).

Lopidea nigridia Uhler n. sp.

[^17]gula black and the tylus shining black, antennae black, moderately stout, the basal joint much longer than the head, the second joint as long as from base of pronotum to front of eye, the third gradually decreasing in thickness, about two-thirds the length of the second, the fourth more slender, acutely tapering, about onethird as long as the third joint; rostrum all black or black at base, rufo-piceous posteriorly, reaching to posterior coxae. Pronotum wide, moderately short, the anterior lobe almost flat, with the front border reflexed, thick, whitish, and sinuated in the middle, callosities large, diagonal, prominent, black, with the deep space between also black, the posterior lobe convexley elevated transversly, faintly rufous on a smoky ground color, wrinkled, the posterior margin a little sinuated, with the edge depressed and thin and the middle of the submargin distinctly indented; the lateral margin reflexed throughout, including the border of the humeri; pleura rufous, a little fuscous anteriorly and on the sternum. Middle and posterior pectus black. Legs shining black. Scutellum dull black, tumid, indented at base. Hemelytra brownish black, irregularly granulated, and hairy, especially upon the clavus, outer border of the corium red, the color becoming wider posteriorly and covering nearly the whole cuneus. Abdomen black, shining, minutely pubescent.

Length to end of abdomen 5 mm . Width of pronotum $1,75 \mathrm{~mm}$. Numerous specimens of this insect are present in the collection of the Colorado Agricultural College. It inhabits also New Mexico and Arizona."
Estes Park, July 12th (Gillette). Steamboat Springs, July 16th on willow and Delphinium occidentale (Baker).

Lopidea obscura Uhl.

Steamboat Springs, July 26th; North Park, July 20th (Gillette). Steamboat Springs, July 12th to 16th, on willow Delphinium occidentale, and Artemisia tridentata (Baker).

Lomatopleura caesar Ruet.

Colorado (Gillette-see Osborn, 1).
Fort Collins, July 24th to August 11th on Glycyrrhiza lepidota, and September 27th on Rhus trilobata (Baker and Gillette). Foot-hills five miles west of Fort Collins, June 5th to 14th; Colorado Springs, August 3d (Gillette).

Hadronema militaris Uhl.

Colorado (Uhler, 1). Roaring Fork (Rothrock-see Uhler, 2). Hills, July to September (Carpenter-see Uhler, 6.) Clear Creek Canon, well up on the mountain side, August 6th (TYhler, 5). Blackhawk, July 2d (Packard-see (Uhler, 5). Smith's Park, Custer County, August 6th; also high alpine (Cockerell, 10). Colorado (Gillette-see Osborn, 1). Colorado (VanDuzee, 5).
Fort Collins, June 4th; Rist Canon, June 12th to July 30th; Estes Park, July 9th; North Park, July 20th; Steamboat Springs, July 26th; Georgetown, July 19th; Colorado Springs, August 3d; Montrose, June 24th (Gillette). Estes Park (Snow). Colorado Springs (Tucker).
Hadronema picta Uhler n. sp.

[^18]the second and third joints nearly of equal length. Head dull black, hairy, short, and transverse above, the vertex transversely impressed, prominently elevated behind; face tumidly convex, marked with a yellow stipe on the middle and a line of the same color on the groove next the inner margin of the eyes; cheeks, throat and bucculae pale greenish yellow; rostrum stout, greenish, black on the two apical joints, reaching upon middle coxae; antennae short, thick, the second not quite as long as the width of the base of pronotum, the third a very little shorter and not much thinner. Pronotum transverse, red or orange, set with erect black hairs, the collum white, and the band including the callosities black; lateral margins sharp, but not very prominent, pleural and sternal areas pale greenish, with the sutures an l the areas between the coxae black. Legs pale fulvous at base, the aper of femora, and the tibiae and t-arsi black. Scutellum pale rufous or yellow with the base blackish. Corium pale yellowish, with a large long black spot running back to tip, clavus nearly or all black, cuneus pale yellowisll, bordered inwardly with black, membrane blackish. Abdomen pale greenish, with the ovipositor, genitalia and some short slender lines on the sutures of the segments black.

Length to tip of abdomen $3.5-3 . \% 5 \mathrm{~mm}$. Width of pronotum $1.12-1.25 \mathrm{~mm}$. Specimens of both sexes were kindly sent to me by Prof. Snow and Prof. Gillette. The first were collected at Colorado Springs, in July, by Mr. E. S. Tucker. Damaged specimens, from alcohol, were obtained for me in Dakota, and I captured a weather-worn specimen west of Denver in the month of August."

Hadronema princeps Uhl.

Fort Collins, June 4th; Rist Canon, June 13th to July 30th; Gore Pass, July 29th; North Park, July 20th (Gillette). Steamboat Springs, July 12th to 16th, on Delphinium occidentale and other low plants (Baker).

Hadronema pulverılenta Uhl.

Colorado (Gillette-see Osborn, 1).
Fort Collins, May 6th, about roots of a rose bush (R. C. Stephenson). Soldier Canon, May 19th; Golden, April 30th (Gillette). Fort Collins, September 26th, on elm (Baker).

Hadronema robusta Uhl.

Colorado (Cockerell--see Ashmead in litt.).

Pachytropis nubilus Uhl.

Steamboat Springs, July 26th (Gillette).

Phytocoris colon Say.

> Colorado (Gillette-see Osborn, 1).

Phytocoris interspersus Uhler n. sp.

[^19]little bristly on the sides and anteriorly, the region of the callosities transversely sunken, lateral margins deflexed, thick, fringed with dark bristles, collum narrow, whitish. Legs long, pale yellowish green, the posterior femora mottled with pale brown, tibial spines long, blackish. Scutellum convexly prominent, bald, polished, with the tip bent down, two black dots just back of it, and the lateral edge a little reflexed. Clavus and corium indented, rugose, set with silvery and dark hairs, the lateral margins gently curved, the costal submargin interrupted with pale brown lines; the membrane very large, faintly smoky, minutely flecked with brown. Venter whitish green, pubescent, polished.

Length to end of abdomen $4 \cdot \mathrm{~mm}$. To tip of membrane 6 mm . Width of pronotum 2 mm . Only one specimen of this neat insect is known to me. It is a female taken in Cheyenne Canon, Colorado Springs, July (Tucker); it is somewhat above the average size of the species in this genus, and it bears a general resemblance to some of the green types of the genus Oncotylus, which might cause it to be confused with some of them."

Phytocoris pallidicornis Reut Colorado (Riley).

Neurocolpus nubilus Say

Near Denver, August 4th (Uhler, 5). Colorado (Snow-see VanDuzee, 5). Colorado (Gillette-see Osborn, 1).

Colorado Springs, Garden of the Gods (Tucker).

Neurocolpus inops Say.

On small plants in Beaver Brook Gulch, next to Clear Creek Canon, August 6 th (Uhler, 5).

Sompsocerocoris annulicornis Reut

Colorado (Snow-see VanDuzee, 5).

Callodemas Uhler n. gen.

"Having the features of a greatly elongated Calocoris. Head vertical, wider than the c ollum, having a short neck, the vertex transverse, front broad tumido-conical, with the eyes reniform, prominent, and placed below the level of the vertex, line between the front and tylus deeply cut, the tylus long, thick, subcylindric, prominently curved at base; superior cheeks quadrangular, wide, almost flat, placed a little obliquely, the base of antennae very thick, deep seated directly above the quadrangular cheeks, against the inferior third of the eyes, lowe: cheeks rhomboidal, placed nearly horizontal beneath the eye; bucculae narrow, short, not extending beyond the inner line of the eye; rostrum quite thick at base, the basal joint reaching upon the anterior coxae. Anterior border of prosternum with a narrow, double, curved fold, mesosternum tumidly elevated. Pronotum transverse, abruptly sloping in front, the front border very narrow, carrying a prominent collum which is but little wider than the base of the head. Scutellum widely exposed at base, deeply incised across the disk, the posterior division triangular and almost equilateral. Hemelytra long and narrow, the costal border almost straight, veins distinct, regular, membrane long and wide, the looped vein fusiform in contour, round at the outer end, slenderly acute at the inner end, the adjoining areole but little shorter. Abdomen almost flat above, widely curving behind the base, with the connexivum broadly reflexed."

Callodemas laevis Uhler n.sp.

"Long-suboval, yellow tinged with green, bald, polished. Head highly polished, eyes dark brown, pale behind; rostrum pale testaceous, piceous on the apical joint, reaching to behind the posterior coxae: antennae filiform, very long, set with black stiff hairs, the basal joint thick, as long as from the front of the eye to the apex of the middle coxae, the second not quite as stout, longer than the corium, the other joints destroyed. Pronotum rapidly narrowing obliquely towards the front, the lateral margins sinuated, with the
humeri rounded, lobate, the posterior margin a little sinuated on the middle, and deeply excavated inwardly from the humeri, middle sometimes with two black dots. scutellum long triangular, acute at tip, obsoletely punctate in parts near base, each side next the pronotum sometimes with a black spot. Clavus a little dusky, corium with a dusky large spot behind the middle which is triangularly forked on the posterior end, the surface remotely spread with minute silky pubescence; membrane dusky at base and apex, omitting the centre of the areoles, the veins pale yellow. Legs yellow, with the femoral and tibial spines darker; tip of tarsi and the nails piceous. Tergum black, excepting the sides and end which are greenish yellow. Venter light clear yellow.

Length to end of abdomen 8 mm . To tip of membrane 9 mm . Width of pronotum 2 mm . One specimen, a female, is in the collection from Colorado, and another from New Mexico."

Glenwood Springs, August 24th (Gillette).

Calocoris palmeri Uhl.

Southern Colorado (Uhler, 6).

Calocoris rapidus Say.

Colorado (Uhler: 1 and 6). Pueblo, August 10th (Uhler, 5). Pueblo, June (Yarrow--see Uhler, 7). Custer County, midalpine (Cockerell, 10).

> Fort Collins, July 14th to August 111h; July 14th on alfalfa and Oenothera biennis; Steamboat Springs, July 14th, on Solidago and other low herbs (Baker). Rist Canon, July 14th; North Park, July 20th; Estes Park, July 12th; Steamboat Springs, July 26th (Gillette).

Calocoris superbis Uhl.

West Cliff, Custer County, July 2 ith (Cockerell, 10). Colorado (Gillettesee Osborn, 1).

Fort Collins, June 23th to A ugust 25th, and September 27th on Senecio douglassi (Baker and Gillette).

Calocoris tinctus Uhler n. sp.

Abstract

"Oblong-oval, olive brownish, moderately pubescent, mostly bald above. Head long nutant, contracted obliquely on the front, the vertex a little sunken, longitudinally incised, bounded behind by a prominent ivory white carina, the front most compressed next the line of the tylus, tylus smooth, dark brown; rostrum reaching behind the posterior coxae, pale rufo-piceous; antennae long and slender, as long as pronotum and corium united, pale dull fulvous, a little darker on the last two joints and tip of second joint, the second joint a little thicker than the following ones, as long as the head and pronotum united, the third and fourth filiform, together a little shorter than the second. Pronotum wider than long, trapezoidal, moderately convex, almost regularly punctate, with the collum, lateral and posterior maryins almost straight, white, the submargin and callosities black, anterior angles a little rounded; pleural flaps deep, black, polished, coarsely remotely punctate and wrinkled, sternum blackish brown, the borders of pleural areas white. Legs brown, paler at base and on the trochanters, nails black. Scutellum moderatelv convex, brown, pale at tip, minutely wrinkled and obsoletely punctate. Clavus and corium covered with close shallow punctures, subcostal area with a broad and long pale almost hyaline stripe; membrane dusky, with a large whitish spot near the base, the veins dark; wings dusky. Venter purplish black, opaque, pale on the middle, fulvous on the last segment, all the incisures margined with white, and with a series of pale dots on the lateral submargin, pubescence hardly distict.

Length to end of abdomen 6 mm . To tip of membrane $\% \mathrm{~mm}$. Width of pronotum 2 mm .

Only one specimen, a female, was taken in Colorado. It is peculiar from the conical and compressed form of the clypeus, and the genital slit for the ovipositor extends bick in a pale line to next base of venter. The male is a great desideratum."

Estes Park, July 15th, on Pinus (Gillette).

Megacoelum fasciatum Uhl.

Near Manitou, August 13th (Uhler, 5). Manitou, July 16th (Packard-see Uhler, 5).

Lygins annexus Uhl.

Colorado (Uhler, 1). Foot-hills (Carpenter-see Uhler, 6). Pueblo, July (Vilkin-see Uhier, 7). Several var. in Beaver Brook Gulch. Pale varieties common near Denver on Euphorbia marginata (Uhler, 5). Denver, July 28th; Idaho Springs, July 6th (Packard-see Uhler, 5). Custer County, midalpine (Cockerell, 10).

Gore Pass, July 29th; Montrose. June 24th (Gillette). La Veta, July 4th (E. A. Schwarz).

Lygus diffusus Uhl.

Custer County, high alpine (Cockerell, 10,

Lygus guttatipes Uhler n.sp.

"Form of L. prasinus Reut., but having a narrower head, the femora on the sides and the tibial spines at base marked with black dots. Ovate, convex, dull pale green, in some specimens obsoletely tinged with brownish around the base of membrane, obsoletely scabrous and effaced punctate, set with silky stiff pubescence which is mixed with dark bristles on the sides of the pronotum. Head polished, strongly convex; eyes large. brown; antennae green, stout, the basal joint thick, a little brownish, somewhat longer than from the eye to tip of tylus, second joint growing gradually thicker towards the tip, much shorter than the base of pronotum; rostrum greenish, broadly black at tip, reaching upon the middle coxae. Pronotum transverse, convex, remotely pubescent, unevenly and finely punctate, lateral margins acute, slightly curved, the pleural piece beneath them short, sunken, having a few punctures on the middle. Legs green, the femora stout, marked with round, black spots; tibial spines black, and with a black dot at the base of each, apex of tibiae and of tarsi also black. Scutellum moderately convex, a little wrinkled. Corium and clavus obsoletely rugose-puntate; cuneus with remote dusky pubescence, the tip sometimes minutely fuscous; membrane moderately long, pale greenish, with paler veins. Abdomen brighter green, minutely pubescent, the genital pieces blackish,

Length to end of abdomen, male 3.25 , female 3.5 mm ; to tip of membrane 4 mm . Width of prouotum 1.5 mm . Four specimens have been sent to me by Prof. Snow for examination. They were collected at Manitou, in August, by Mr. E. S. Tucker."

Lygus invitus Say.

Steamboat Springs, July 16th (Baker).

Lygus plagiatus Uhler n. sp.
"Robust, dull fulvo-griseus, or griseo-'estaceous with fuscous obs ?ure spots, opaque, pubescent. Head olivaceo-testaceous, polished, vertex incised on the middle, indented next the occipital carina, eyes brown, placed perpendicular, front convex, a little obsolete punctate, indistinctly marked with about four brown uneven striprs, cheeks and tylus brown below; rostrum flavo-testaceous, piceous at tip, reaching to the middle coxae, antennae short and moderately stout, the basal joint dark brown, the second joint a little longer than the pronotum, darker and a little thicker towards the tip, the third
and fourth dusky, more slender than the second and together about equal to it in le..gth. Proootum broad, very moderately convex, bald, with coarse uneven punctures separated by wrinkled spaces in somewhat transverse lines, color dull, sometimes marked with a pair of black spots on the middle, a larger black spot in each humeral angle, and some faint, short stripes of brown on the disk, the lateral margins reflexed, whitish, a little curved, anterior angles well rounded and converging towards the elevated, ivory white collure; posterior margin pale, a little sinuated; pleural flap coarsely punctate, blackish on the middle; sternum and coxae pale greenish-testaceous. Leg; testaceous, anterior coxae and sternum black, the usual two brown bands near tip of femora, the tibiae dark at tip and with black spines, tip of tarsi and nails black. Scutellum with an oblong pale spot each side near base, and the apex alsn pale. Corium finely pubescent, flecked with pale dots, more finely and closely punctate than the pronoturi, costa dull testaceous, piceous at tip, inner angle with a pale spot on each wing-cover, tip of the broad cuneus with a dar: brown spot; membrane brown at the outer end of the areole. Venter pubescent, greenish testaceous, with a dark stripe each side, and some pale dots on the connexivum.

Length to end of venter $4.5-5 \mathrm{~mm}$. To tip of membrane $5.5-6 \mathrm{~mm}$. Width of pronotum $2-2.5 \mathrm{~mm}$. One specimen, a male, is in the collection from Colorado, others were sent to me from Indiana, Nebraska, Washington, Mackenzie River region, province of Quebec, and Maine. It is allied to L. pratensis Linn., but it differs in form, length of antennae, and merkings."

Manitou, April 17th (Gillette).

Lygus pratensis Linn.

Colorado (Uhler, 1). Above timber line (Carpenter-see Uhler, 6, and Packard, 2). Common in cultivated districts (Uhler-see Packard, 2). Colorado, common (Packard, 2). During August, around Denver, near Golden, near Colorado Springs, and near Cannon City (Uhler, 5). Golden, July 3d; Blackhawk, July $2 d$ (Packard-see Uhler, 5). West Cliff, Custar County, July 27th; also high-alpine (Cockerell, 10).

Fort Collins and adjoining foot-hills April 6th to Septem-

 ber 30th, very common on alfalfa, sugar beets, and many wild and cultivated plants (Baker and Gillette). Steamboat Springs, July 26th; Trinidad, May 14th; Georgetown, July 19th; Manitou, September 29th (Gillette). Aspen (W. W. Willard). Manitou Park and Colorado Springs (Tucker). La Veta, July 4th (E. A. Schwarz).
Lygus sallei Sign.

Steamboat Springs, July 15th (Baker). Manitou, July (Snow).

Neoborops Uhler n. gen.

Abstract

"Aspect of Neoborus, but with the eyes vertical, more prominent, the vertex and base of front narrower, the lateral margins of pronotum not decurved, and the anterior border of prosternum collum-like, with the inner borders of the pleural flaps carried far inward and leaving only a narrow space for the posternum."

Neoborops vigilax Uhler n. sp.

[^20]by a slightly punctate, impressedline; the fronta little convex, widening beneath; tylus long, of nearly uniform width throughout, curving a little at rip; rostrum reaching to behind middle coxae, wax yellow; antennae of medium length, pale wax yellow, the basal joint moderately thick, longer than the head, the second joint black at tip, tapering slender towards the base, about as long as the clavus, the third joint abruptly more slender, about half the length of the second, also black at tip, the fourth al out equally slender, very short, black from beyond the base to the tip. Pronotum transverse, bluntly subtriangular, moderately convex, but steeply sloping anteriorly, punctate, polished, more or less distinctly marked wilh about four red stripes composed of spots; the humeri lobately rounded, marked with a black dot, the lateral margins callous, not leflexed, the posterior margia pale and slenderly reflexed; the collum prominent, deeply cut, abruptly narrower than the front of the prothorax; pleural flaps deep, subtriangular, spotted with red, white below, slightly wrinkled, and with a few punctures. Legs long, yellowish-testaceous, sh..ded with red, and with a broad brown band on the knee of middle and posterior femora and tibiae in common, tips of tarsi piceous. Scutellum yellow, marked with brown or rufous, or with a round spot on middle and a triangular one at base. Hemelytra testaceous, translucent, obsoletely punctate and wrinkled, marked with irregular, remote spots of brown or red, at base and apex of corium and with vestiges between these points, veins and sutures whitish, cuneus and membrane also with clouded bruwnish spots. Abdomen minute!y pubescent, sprinkled with reū, somewhat in stripes, leaving a linear space of yellow between, the outer submargin sometimes marked with brown spots in the suture, apical border of the last ventral ring yellow, the genital segment also yellow.

Length to end of abdomen 4 mm . To tip of membrane 5.5 mm . Width of pronotum 2 mm . I have examined two specimens from Colorado, and six of both sexes from Arizona. It seems to be common in Arizona and most of the suecimens thus far seen have not been maturely colored."

Steamboat Springs, July 16th on willow (Baker).

Neoborus rubeculus Uhler n. sp.

"Oblong-oval, minutely pubescent, mostly yellowish or greenish-testaceous, marked with chestnut brown. Head normal, bald, polished grooved, between the eyes, the face nearly ver ical, testaceous yellow, with a broad, curved, brown line on either side; tylus long, nariow, with a brown line on the middle; the cheeks yellow, smooth, the sucure and a marik next the antennae rufous; rostrum rufo-testaceous, slender, reaching behind the middle coxae, piceous at base and tip; antennae stout, the basal joint much longer than the head, dark brown, the second joint about is long as the pronotum. and scutellum uniteil, a little thickening towards the tip, fulvous, dark at base and tip, the third and fourth much more slender, filiform, dark brown, conspicuously hairy, the t!ird about one-half as long is the second, the fourth still shorter. Pronotum longer than normal, a little convex, strongly sinuated on the sides, the anterior widih reaching to the middle of the eyes, with a sharply elevated ivory-white collum which currespunds to the space between the eyes; the surface transversely wrinkled, coarsely so and a little punctate on the posterior lobe, the region of the callosities dark, tumidly prominent, with the ex erior submargin widely flattened. yellow, and the outer border strongly reflexed, punctats, the middle line yellow, each side, posteriorly, brown on a rufous ground, the posterior edge yellow; pleural flaps deep, triangular, brown and punctate above, yellow below; the sternum and pleural pieces clear yellow. The coxae and `egs yellowish or greenish white, a little reddish on the posterior femora, the tarsi black at tip. Scutellum brown, feebly convex, pu'jescent, wrinkled, with a few remote punctures, the middle line and base yellow. Clavus coarsely wrinkled, dusky, paler exterioriy, pubescent, corium, clostly wrinkled and punctate, testaceous for two-thirds of its length, red at the costal tip and angularly dark brown on the apical third, the inner border with a yellow line next base of cuneus, the cuncus yellow, margined exteriorly with red; the membrane dusky, paler at base exteriorly, the veins yellow, with the areole smoke brown. Exterior margin of venter with a line of brown spots which continue along the pleura to the stripe on the pleural flap; middle of venter yellowish-testaceous, the genital segment more or less marked with red and brown.

Length to end of abdomen 4.5 mm . To tip of membrane 6 mm . Width of pronotum 2 mm . This insect is quite variable in colors. The red is sometimes replaced by olive-
green or fuscous, and there is sometimes a broad black stripe along the whole submargis: beneath. It inhabits Colorado, and is common in Northern Illinois, in June; it is also found in Michigan."

Steamboat Springs, July 16th on willow (Baker).
Poeciloscytıs basalis Reut.
Sweeping weeds at Colorado Springs, near Fountain Creek, August 16th (Uhler, 5). Colorado (Uhler, 8).

Manitou Park (Snow). Colorado Springs (Tucker.)

Poeciloscytus diffusus Uhl.

North Park, July 20th; Estes Park, July 10th (Gillette). Steamboat Springs, July 12th to 26th, ou Solidago and other low herbs (Baker and Gillette).

Poeciloscytus intermedins Uhl.

Steamboat Sprines, July 13th to 26th (Baker and Gillette). Estes Park, July 12th (Gillette).
Poeciloscytus unifasciatus Fabr.
Smith's Park, Custer County, midalpine, August 6th (Cockerell, 10).
Steamboat Springs, July 12th (Baker) Veta Pass, July 1st (E. A. Schwarz).

Poecilocapsus goniphorus Say.

Fort Collins, June 23d to August 2.5th (Gillette).
Systratiotus americanus Reut.
Colorado (Gillette-see Osborn, 1).
Steamboat Spirings. July 15th to 26th (Baker and Gillette). Systratiotus venaticus Uhl.

Colorado (Uhler, 1 and 6).
Garland, June 19th (E. A. Schwarz).
Camptobrochis grandis Uhl.
Colorado (Snow-see VanDuzee, 5)
Camptobrochis nebulosus Uhl.
Colorado (Uhler, 6). Colorado (Gillette--see Osborn, 1).
Fort Collins, June 9th on alfalfa, May 3d and September 26th on box-elder; Big Narrows of Poudre River, Larimer County, July 9th on Bigelovia (Baker). Foot-hills five miles west of Fort Collins, April 10th to August 1st (Baker

and (iillette). Manitou, September 29th on Salix; Gleuwood Springs, August 24th (Gillette).

Camptobrochis robustus Uhler n. sp.

Abstract

"Short and thick, dusky testaceous, strongly marked with fuscous and black, coarsely, and in part densely pinctate. Head almost vertical, vertex short, transversely grooved. bordered with a broken fulvous line in front, the occipital carina high, fitting into the collum, ivory yellow; front bordered with pale dull yellow, polished, remotely minutely obsolete-punctate and wrinkled, closely freckled with black, the inner border of the eyes also pale dull yellow, the lower part of tylus and the bucculae yellow: rostrum pale at base, piceous at tin. reaching to the middle coxae; antennate long and slender, as long as the corium and cuneus united, mostly pale fuscous, the basal joint dull pale fulvous, obscured with fuscons, the second very longe, a little stouter than the third and fourth, slightly thicker towards the tip, the third and fourth together a little onger than the second, the fourth much the shortest. Pronorum convex, coarsely, deeply, irregularly punctate in somewhat transverse wavy lines, with about four obscure stripes which widen posteriorly, the lateral margins a little curved, the humeral angles broadly rounded, the posterior margin feebly curved and sinuated, and the anterior margin contracted and bordered with a somewhat pale cellum. the callosities tumid, black, polished. Scutellum dark brown, closely and roughly wrinkled and unevenly punctate, convex, olive-fulvous at tip. Legs pale olive-brownish, the femora piceous, rough at a few points, having one or more yellowish dots near the tip, the tibiae spotted with dark brown, closely pale pubescent, with the spines, tip of tarsi and nails dark piceous. Olavus coarsely punctate and wrinkled. dark olivaceo-fuserus. corium a little paler, smoother, more finely punctate, almost bald, with the surface near the costa translucent, punctate with brown, the costal border dark brown, ending in a darker spot before the cuneus, the embolium broad and piceous black, the cuneus dark brown, bordered all around with pale testaceous; the membrane whitish, a little stained with brown at base and tip, and the veins mostly brown. Abdomen olivaceo-testaceous, finely pubescent, dusky at, tip, with a line of black marks on the outer submargin, and a series of yellow dots on the connexivum.

Length to end of abdomen 5 mm . To tip of membrane 6 mm . Width of pronotum 2.5 mm . Three or four specimens have been brought to my notice. One specimen from Colorado is chiefly dark fulvons, others were mostly chestnut brown or nearly black. The pale stripe with black arrest at the end of costal area will go fiar towards quickly distinguishing this species."

North Park, July 20th (Gillette), and .July 10th on Artemisia tridentata (Baker). Learville, August 23d (Gillette). Cameron Pass, at 12,000 feet. on Salix (Baker).

Orthops scutellatus Lhler.

From bushes in Clear Creek Canon, August 7th. Not rare (Uhler, 5). Colorado (Uhler, 8).

Steamboat Springs, July 15th to 26th (Baker and Gillette). North Park, July 20th; Dolores, June 18th (Gillette).

Thyrillus, brachycerus Uhl.

Colorado (Uhler, 6). Near West Cliff, Custer County, end of July (Cockerell, 10).

Estes Park, July 10th (Gillette).
Thyrillus pacificus Uhl.
Weld County (C'hler, 1).

Pamerocoris anthocoroides Uhl.

Near Denver (B. H. Smith-see Uhler, 5).

Monalocoris filicis L.

Swept from a small fern which grows in damp places among the rocks high up in the mountains near Beaver Brook, adjoining Clear Creek Canon, August 6th (Uhler, 5).

Eccritotarsus scabrosus Uhler n.sp.

Abstract

"Compact, thick and short, somewhat resembling E. vestitus Dist., a little pubescent, the general color piceous-brown, with red head and legs, and nearly all of the upper surfare roughly, and coarsely punctate. Head tumidly convex, with a callous ridge against the inner border of the eyes, and this continued along the border of the occiput; surface somewhat coarsely punctate, the frontindented in the middle and grooved each side, a little obscured with brown; tylus a little more prominent than the front, placed almost vertical; the rostrum rufous, a little tinged with piceous; antennae blackish, short, stout, the basal joint shorter than the head, contracted at base, the second longest, growing thicker towards the tip, shorter than the pronotum, the third much more slender, about one-half as long as the second, the fourth much shorter. Pronotum strongly convex, a little longer than wide, steeply sloping towards the head; the anterior lobe abruptly contracted, separated by a transverse and curved series of indented points; surface tinged with rufous, coarsely, roughly punctate; lateral margins sinuated and steeply curved down; the posterior margin a little curved, feebly sinuated, bent down; pleural flaps very coarsely punctate. Legs stout, rufous, covered with pale pubescence. Scutellum small, tumid at tip, punctate basally. Hemelytra broad, thick, coarsely and roughly punctate, the cuneus long, depressed, curved on both sides, the membrane fuliginous, with a pale arc on the middle, the areoles rough and of thick texture. Sternum and venter somewhat rufous, the latter obsoletely punctate, highly polished, minutely pubescent.

Length to end of abdomen 2.5 mm . Width of pronotum 1.25 mm . Described from one specimen, a male, from Colorado"

Estes Park, July 10th (Gillette).

Pycnoderes insignis Reut.

Steamboat Springs, July 26th (Gillette).

Ilnacora chloris Uhl.

On the flowers of a slender pale composite, growing in Manitou Park, August 14th. Also near Colorado Springs, in the low grounds near Fountain Creek (Uhler, 5). West Cliff, Custer C'ounty, sweeping herbage, July 25th (Cockerell, 10).
Estes Park, July 10th; Dolores, June 18th; Steamboat Springs, July 26th (Gillette).
Ilnacora divisa Reut.
Steamboat Springs, July 14th and 26th (Gillette and Baker).

Ilnacora stallii Reut.

Steamboat Springs, July 16th (Baker).

Ilnacora viridis Uhler n. sp.

"Bright grass green, narrow, not highly polished. Head flat as usual, set with black stiff pubescence, with the vertex mure or less broadly impressed before the sharp occipital carina; front prominently convex, wider than long, grooved each side near the eyes; tylus short, inferior, placed much below the lower end of the eyes; rostrum dull green, broad and compressed at base with the basal joint protracted upon the anterior coxae, the tip black, reaching to the middle coxae; antennae dusky greenish, long, growing slender towards the tip, the basal joint thick, black at base and apex, much longer than the head, the second joint rery long, black at base and tip, about equal to the corium in length, the third darker, more slender, less than half as long as the second, the fourth about equally slender, also dark, much shorter than the third. Pronotum trapeziform, almost flat, very gently sloping, set with erect blackish pubescence anteriorly and on the sides; the anterior margin reaching to about the middle of the eyes, with the collum raised in the middle; the callosities large, transverse, separated by a deep excavation, the anterior angles broadly rounded; the lateral margins oblique, reflexed and sinuated posteriorly; the humeral angles a little protracted, forming lobes a little recurved with the tip cut obliquely, surface wrinkled, hardly punctate. Scutellum feebly convex, acute at tip, sometimes a little whitish at base. Legs long, the femora green, somewhat spotted with white; the tibiae dull yellowish, armed with black spines; tip of tarsi piceous. Hemelytra long and ample with the costal border very slightly rurved; surface of clarus and corium Hat, obsoletely scabrous; membrane smoke brown. Coxae and base of venter whitish.

Length to end of abdomen 4.5 mm . To tip of memıbrane 5.5 mm . Width of pronotum 1.33 mm . I have examined four specimens of both sexes, from Colorado. They approach I. (Sthenarops) malina Uhler, but differ in the absence of the indented black dots on the pronotum, and of the black markings of face, in less convex front, and in the color of the antennae and scutellum. The form is somewhat variable, as is also the length of the hemelytra."

Steamboat Springs, July 14tl. (Baker).

Sthenarus rubidus Uhler n. sp.

"Ovate, thick set, dark piceous, polished, covered above with silky yellow, caducous scales and fine pubescence. Head broad, feebly convex, a little fulvo-piceus around the borders and at base and tip, vertex with a feebly impressed line on the middle, occipital posterior ridge distinct; face polished, covered with yellowish prostrate scales; cheeks and inner underside of eyes pale yellowi=h; rostrum piceous, paler rufous at base, reaching to the posterior coxae; antennae, basal joint piceous, thick, scarcely as long as the width of the eye, second joint fulvous or piceous, thick, about as long as the pronotum, the third and fourth abruptly more slender, pale piccous, together scarcely longer than the second. Pronotum convex on the middle and strongly curving down anteriorly, dark piceous. or black, polished, covered with yellow scales and fine pubescence, nearly twice as wide as long, with the callous humeri subacute, the posterior margin sinuated, with the lateral margias curving dowir; the surface minutely wrinkled, and the pleural flaps triangular, sumken, densely covered with scales and the margins raised in relief. Anterior coxae and a spot at tip of mesopleural segment whitish; femora pale rufous, piceous on the middle, tibiae paler, the spines black and placed on black dots, tip of the tibiae and of the tarsi black. scutellum unevenly wrinkled, piceous, rufous towards the tip, invested with the yellow scales. Hemelytra dark brown, fulvous at base, on the suture of clavus and on the embolium, apex of the custal border and the cuneus red; surface roughly, shallow punctate, covered with sellow scales and finely pubescent; membrane fuliginous, white along the border and around the looped rein. Venter fulvous brown, minutely pubescent and spread with bronze-yellow srales.

Length to tip of abdomen $2.75-3 \mathrm{~mm}$. To tip of membrane $3-3.25 \mathrm{~mm}$. Width of pronotum 1.25 mm . One specimen from ('olorado springs, taken in August by Mr. E. S. Tucker, is darker and less rufous than the others that I have examined; it has also more white at the base of membrane. Other specimens have been collected in Illinois by Mr. Bolter and Mr. StromLerg; at Lancaster, N. Y. in August by Mr. VanDuzee; in Cuba by Dr. Gundlach, in San Domingo by myself, as also in Texas and Florida. A form appearing to be a variety of this species is also found in Mexico."

Tinicephalus simplex Uhl.

Colorado (Uhler 1). Foot-hills, July (Carpenter-ste Uhler. 6). Mountains west of Denver, July and August (Uhler, 5).

Garland, June 30th (E. A. Schwarz).

Pilophorus gracilis Uhler n. sp.

Abstract

'Narrower than usual, dark piceous, or nearly black, the pronotum longer than wide, and the corium distended and almost hyaline at the tip. Head depressed subconical, the vertex transversely depressed, with a central carina running back to the thick carina bounding the occiput behind; face convex, pi seous, polished, becoming fulvous below; tylus narrow, pale rufo-fulvous like the cheelis; rostrum dark honey-yellow, darker at tip, reaching upon the middle coxae: antemac moderately long and slender, the basal joint short, dull fulvous, the second a little longer than the pronotum, of the same color, but darker on the gradually thickening tip, the apical joints more slender, but not abruptly decreasing, the two united scarcely longer than the second. Pronotum highly polished, semi-cylindric, with the sides a lirtle sinuated, almost of equal width throughout, dark piceous, minutely wrinkled on the disk and behind, with the humeral angles acute and the anterior ones rounded off. Scutellum depressed behind the middle, black, and minutely scabrous. Hemelytra long, dark brown, sometimes almost black, minutely pubescent, velvety, not banded, distinstly sinuated on the sides, the membrane a little dusky, with a dark brown spot near the base, the inner border of apex of corium with a curved callous line. Legs pale dull piceous, paler on the tibiae. Abdomen black, highly

Length to end of abdomen 3.5 mm . Width of pronotum 1.25 mm . One specimen, a female, lacking the tarsal joints and two apical joints of the antennae, was sent to me from Cocorado. It lives on Pinus inops in summer, June to September, in Maryland, Virginia, New Jersey; and is also found in Massachusetts. Maturely colored specimens do not have the reddish clypeus and cheeks observed in the specimens from Colorado."

Colorado Springs, August 3d (Gillette).

Globiceps anginstata Uhler n. sp.

Abstract

'Black. highly polished, delicate, slender. Head transverse above, convex, having a few remote punctures, the eyes large an I prominent, much elevated above the line of the head, the face nearly vertical, with the front a little convexly prominent, the tylus moderately narrow; rostrum very stout at base, with the basal joint long, stout and blackishpiceous, the middle testaceous and the tip piceous; antennae long. slender, dull black, the basal joint longer than the head, testace sus at base, the se cond barely thicker at tip, nearly as long as the costa and cuneus united, the third a littie more slender, about half as long as the second, the fourth broken off. Pronotu in sub-ciampanulate, highly polished, about twice as long as the eye; the cullum contracted, narrow; the callositites very large, tumid, with a groove between, which is partly occupied by a blunt carina that runs back to posterior lobe; posterior lobe wide, convex, transversely wrinkled, with the anterior slope high, the sides steep, oblique, and gently sinuated, the humeri a little turned up and acute. Scutellum high, almost flat above, with steeply sloping sides, acute at tip. Legs pale fulvous, whitish at base, the ends of tarsi piceous. Clavus dusky, corium whitish-yellow at base, duskv on the remaining two-thirds; the cuneus pale yellowish, dusky at tip; membrane long and wide, pale fuliginous, white at the extreme base, with the looped vein dark brown. Abdomen black, highly polished.

Length to end of abdomen 2.75 mm . To tip of membrane $t \mathrm{~mm}$. Width of pronotum $.8 \pi \mathrm{~mm}$. Described from a single male specimen from Colorado. It is closely related to, if not the same species as one which I found in the Province of Qubec. The female is earnestly desired for study, to complete the description of this species. This insec; might readily be mistaken for one of the small Chalcididae which have black bodies and yellow

Steamboat Springs, July 12th (Baker).

Cyrorrhinus marginatıs Uhler n sp.

"Long and narrow, black, moderately flat absve, pale pubescent, bordered with green on the abdomen and corium. Head black, highly polished, much wider than the front of pronotum, indented and grooved in front of the carina of vertex, the carina sharp and high; face almost vertical, the tylus prominent; eyes large, brown, prominent, placed a little obliquely, the border of their inner side pale yellowish; tylus, bucculae, and rostrum greenish-testaceous, the latter reaching pon the middle coxae, blackish at tip; antennae moderately stout, as lons as the head, pronotum and corium united, the basal joint much longer than the head and stouter than the second, the second joint as long as the clavus, the third more slender and about half as long as the second, the fourth still more slender and much shorter. Pronotum shi ing black, sometimes with a yellow line, the sides gradually contracting, rather strongly sinuated, the callosities large and prominent, the surface transversely wrinkled, convex posteriorly, longitudinally impressed near the humeri, the margin sometimes broadly yellow. Legs pale greenish, the tibiae dark at tip, the anterior pair with stout spines, tarsi piceous at tip. Scutellum black, moderately convex, transversely wrinkled, acute and pale at tip. Olavus dull black minutely pubescent, corium dull black as far as next to the cuneus, also pubescent, broadly margined with greenish yellow, the cuneus mostly yellowish, the surface of the hemelytra granulate throughout; membrane long, smoke brown, with the veins pale yellow at tip. Middle line of the sternum and disk of venter pale greenish-yellow, finely pubescent.

Length to tip of abdomen 4 mm Width of pronotum 1.25 mm . Only males of this insect have been brought to my notice. Should the female prove to be of the inflated type, with the spherical head, this insect will have to be transferred to the genus Globiceps Fiebr. This species is common in the province of Quebec, and it wecurs as far north as Great Slave Lake, in British America."

Steamboat Springs, July 16th, on willow (Baker).

Diaphnidia Uhler n. gen.

"Near Actorhinus Fab., elongate subellintical, tender, onaque. Head gently sloping and curved anteriorly, the face almost vertical, a little longer than the width betwoen the eyes; tylus projecting beyond the line of the face, curving b meath, the upper bounding line placed nearly on the level of the lower end of eyes; eyes prominont, sub-reniform, nearly vertical. with somewhat swollen neck behind their line; occiput with a carina sometimes arched in the middle, and with the surface flattened in front of it, cheeks diagonal, acutaly narrowed at tip; gula almost horizontal, swollen at base; bucculae narrow and short, followed behind by a waved surface, basal joint of rostruin much shorter than the under side of head; antennae longer than the head, pronotum and corium united. Leas long. Pronotum trapeziform, with the lateral margins moderately oblique, the anterior margin forming a narrow, flat, sinuated colium; the transverse impressed line behind the callosities shallow. Hemelytra long and wide, contractingly curving towards the base, semi-diaphanous, with a sharoly reflezed costal margin ; cuneus large and long, with the oater border reflaxel. Ablomen very narrow."

Diaphnidia debilis lher n sp.

"Dslicate green, or greenish-white, indistinctly and very minutely puboscent around the sides of head, pronotum and bencath. Heal a littlo grooved on the middle line, and a little callous each side between the eyes; antemae yellowish, the basal joint much longer than the head, thicker than the second joint and contracted at base, the second of unform thickuess throughout, as long as the outer margin of the corium; rostrum yellowish, black at tip, reaching between the anterior coxae. Pronotum wider than long, almost flat on the disk, gently sloping, with the surface a little wrinkled, the lateral margins a little sinuated in front of the prominent humeri ; the anterior submargin occupied by the transverse ridge of the almost contiguous callosities. Less pale green, more yellow upon the tibiae, upon which the spines are dark, and the base and apex of the tarsi piceous. (lavus, corium and cuneus minutely, remotely and obsoletely scabrous. Abdomen silvery greenish.

Length to end of abdomen 333 mm . To tip of membrane 5.5 mm . Width of pronotum 1.5 mm . Two males from Colorado are the only specimens I have seen."

Steamboat Springs, July 14th (Baker). Later we also

received specimens (which were afterwards determined by Uhler) from Snow, taken by Tucker at Colorado Springs in July.

Diaplinidia pellucida Uhler n. sp.

Abstract

"Elongate, very pale green, delicate, with minute whitish pubescencc on the pronotum and hemelytra. Head short and small, with the eyes nearly globose, very prominent, very pale brownish ; middle of vertex incised, the incision running back to an impressed line which cxtends across to the base of the eyes; base of lead thick, curvedly contracting to base of occiput, surface next to inner line of eyes inciscd; front vertical. forming a rounded lobe as far as to below the middlc of the eyes; tylus short, tapering and curving beneaih, a very little more prominent than the front; rostrum pale green, slender, reaching behind the posterior coxae. Antenuae long and slender, pale green or yellowish, the basal joint longer than the head, sometimes a little dusky at tip, the second joint cylindrical throughout, a little longer than the pronotum and scutellum united, third joint a little more slender and about two-thirds the length of the second, the fourth still more slender, very short, sometimes a little dusky. Pronotum nearly trapeziform, a little wider than long, gently sloping anteriorly; the lateral margins sinuated directly before the prominent humcri; surface a little unrven, the callosities distinct and with an indented space between them, the impressed linc behind them deep and clearly defined, arrested by the thick carinate lateral edge which stops against the end of the callosities; the anterior angles rounded off, the anterior edge a little sinuated, callous, extending to about the middle of the eyes; posterior margin a little yellowish, hardly sinuated. Clavus and corium minutely scabrous, almost transparent, very ample as compared with the abdomen; cuneus long, bordered exteriorly with a thick green line; membrane very thin, whitish green, the vein deeper green. Legs greenish, the tibiae sometimes yellowish, dusky at tip; apex of the tarsi and the nails piceons. "Length to end of abdomen $2.25-2.5 \mathrm{~mm}$. To tip of membraue 3.5 mm . Width of pronotum 1-1.25 mm. Numerous specimens have been brought to my notice. The first of these I found near Montmorency, in the province of Quebec, others were obtained near Washingtun, D. C , by my friend Otto Heidemann, and a male specimen has been sent from Colorado. The specimen from Colorado has the callosities near together on their inner ends."

Fort Collins, September 26th on box-elder (Gillette).

Dacota hesperia Uhl.

Colorado (Uhler 1 and 6).

Diommatus angulatus Unler n. sp.

"Long, almost parallel-sided, ucarly flat abore, black or dark smoke-brown, minutely pubescent, rather broader than D. congrex Uhl., with stouter and longer antennae. Head moderately convex, highly polished bctween and bcfore the eyes, piceous anteriorly and upon the tylus, the latter becoming paler below; the occipital carina pale piceous, bounded in froat by an arcuated, punctate impression; eyes large, prominent, dark brown; rostrum wax-yellow, piceous at tip, reaching to bchind the middle cozae; antennae long and stout, longer and thicker in the male, black or dark brown, the basal joint a little longer than the head in the female, much longer in the malc, the second joint a little thinner than the first, about as long as the corium, the third still more slender, about two-thirds the length of the second, the fourth thinner and much shorter. Pronotum a little wider than long, very slightly convex, with the lateral margin oblique; the surface finely pubescent, very gently sloping, the anterior lobe distinctly defined, with the callosities large, prominent, black; the collum indistinct; posterior lobe large, obsoletely wrinkled and with a few faint punctures, the posterior margin feebly sinuated, with the lumeral angles a little prominent and broadly rounded; the pleural flaps moderately short, grooved vertically. Scutellum small, black, convex, acnte. Coxae and legs yellowish, a little dusky towards the knces, the tarsi morc or less piceous. The clavus pale yellow; corium with a large, triangular, black spot on each wing-cover which covers most of the surface to next the base of cuneus, the cuneus yellowish, but dusky at tip. Abdomen black, polished, the base, disk, and a part of the apcx of venter yellowish.

Length to eud of abdomen $3-3.25 \mathrm{~mm}$. To tip of wing-covers 4.5 mm . Width of pronotum 1.25 mm ."

Fort Collins, June 24th; Montrose, June 24th (Gillette).

Diommatus congrex Uhl.

> Steamboat Springs, July 16th, on willow (Baker).

Tuponia subnitida Uhler n. sp.

"Whitish-green, long oval, minutely pubescent, with the costal margin of the hemelytra very feebly curved. Head broad and very convex, pressed back upon the thorax, smooth, not punctate; front nearly vertical, highly polished; the tylus short, compressed, but little prominent, curved beneath; the rostrum pale fulvous, reaching over the middle coxae, with the tip piceous; antennae long and slender, the basal joint short, blackish, second joint green, dark at base and tip, not much thicker than the following joint, about as long as from the front of the eye to the base of pronotum, the third a little shorter and slightly more slender, the fourth scarcely more than one-third the length of the third, equally slender. Pronotum transverse, uneven, steep, very slightly convex, smooth, impunctate; with the callosities forming an arc, preceded by a semicircular area touching the front margin; the lateral margins very oblique, sharp-edged and deflexed; the posterior margin sinuated at the base of the scutellum; the the humeral angles broad and rounded. Scutellum very moderately convex, the base uncovered, the disk a little wrinkled and the tip acute. Legs greenish-white, the knees, tibial spines, dots at intervals, and the tips of tarsi black. Corium and clavus greenish-white, very minutely scabrous, and remotely effaced-punctate; membrane a little dusky behind the middle to the tip. Abdomen pale green, minutely white pubescent.

Length to end of abdomen 2.5 mm . To tip of membrane 3 mm . Width of pronotum 1.12 mm . Described from two specimens from Colorado."

Steamboat Springs, July 12th (Baker).

Stiphrosoma atrata Uhl.

Fort Collins, July 14th on alfalfa; Steamboat Springs, July 12th on Carex and Artemisia tridentata (Baker).

Stiphrosoma croceipes Uhl.

Big Narrows of Poudre river, Larimer County, July 9th on Bigelovia (Baker).
Stiphrosoma robusta Uhler n. sp.
"Black, polished, shorter, thicker, and more compact than S. stygica Say, with a more convex front. Head thick, convex from the vertex to end of upper cheek, the vertex with a low carina behind against the pronotum, and marked with a shallow impression each side, front highly polished impunctate, tylus narrowing a little towards the tip, deep seated in the cheeks; rostrum stout, a little piceous, reaching to the middle coxae; antennae slender, black, about as long as the head, pronotum and scutellum united, the second joint nearly the same length as the clavus, a little chicker towards the tip, the third more slender, nearly two-thirds the length of the second, the fourth about one-half the length of the second. Pronotum pubescent on the sides. with the lateral margins oblique and more bent down than in S. stygica, the surface scabrous, obsoletely punctate and transversely wrinkled, the callasities large, convex placed diagonally, and separated by a wide depression, the disk convex posteriorly, with the humeri acutely prominent. Pleura a little wrinkled and with a few punctures. Scutellum short, scabrous, a little punctate. Lege with stiff spines on both femora and tibiae. Clavus coarsely, closely scabrous, and obsoletely punctate, the corium a little less coarsely scabrous, and punctate, but with these features almost obliterated behind the middle, the sides and margins pubescent; membrane moderately short, brown. Abdomen broad ovate, highly polished, scarcely punctate.

Length to end of abdomen 4 mm . Width of pronotum 1.75 mm . Described from two specimens. both females, sent to me from Colorado. It inhabits also Texas and New Mexico."

Steamboat Springs, July 26th (Gillette).

Stiphrosoma stygica Say.
West Cliff, Custer County, July 2ith; Ula, July 30th (Cockerell, 10).
Steamboat Springs, July 26th (Gillette). (xarland, June 30th (E. A. Schwarz).
Halticus bractatus Say.
Manitou, July 24th; Colorado Spring*, August 3d (Gillette). Labopidea chloriza Uhl.

Howe's Gulch, June 14th; North Park, July 20th (Gillette). Steamboat Springs, July 13th and 26th (Baker and Gillette). Aspen (W. W. Willard).

Labops hesperins Uhl.

Colorado (Uhler, 1). Foot-hills and mountains, July and September (Car-penter-see Uhler, 6). From bushes growing among rocks on mountainside near Gray`s Peak, August 6th (Uhler, 5).

Estes Park, July 12th (Gillette). Colorado, June, on pine (Riley). Veta Pass, July 1st(E•A. Schwarz).
Dicyphins californicus Stal.
North Park, July 20th; Montrose, June 24th; Colorado Springs, August 3d; Manitou, September 29th on oak and Salix (Gillette). Steamboat Springs, July 16 th and 26 th (Baker and Gillette). Fort Collins. May 20th (Baker).
Dicyphus californicus Stal. var. agilis Uhl.
Beaver Brook Gulch, August 7th (Uhler, 5).
Steamboat Springs, July 16th (Baker).
Dicyphins vestitus Uhler n. sp.

Abstract

"Resembling D. famelicus Uhler, but much less elongated, smaller, having nearly linear blackish antemmae, with the apex of the second joint not thickened, and the colors darker, with a black head and mostly black scutellum. Head subglobose, a little fringed with pubescence, black, polished, with a pale spot on the vertex; rostrum dull testaceous, darker at tip, reaching to the middle coxae; antennae moderately stout, blackish, with the first joint pale towards the base, the second joint about as long as the pronotum, the third a little shorter, and not much thinner than the second, the fourth short, acutely tapering. Pronotum a little longer than wide, subcylindric anteriorly, with the sides sinuated and reflexed; the collum narrow and white; the surface highly polished, dark brown, with the middle broadly orange, which is replaced by dull white on the posterior segment; the humeri are sometimes also pale orange; callosities distinct, prominent, followed exteriorly by a swelling of the sides; posterior lobe wide, broadly sinuated behind. Base of scutellum wide, uncovered, black, the scutellum proper black with a yellow spot on each side at base. Coxae white, legs dull yellowish, with the tip of tarsi piceous. Clavus pale, with the suture dusky, corium long and narrow, obscure whitish, translucent, with a small brownish spot near the base, a dusky streak on the middle, a line of same color on the suture, and a double lobed spot of brown on the tip; cuneus white, bordered more or less with brown at tip; membrane

pale dusky, usually white in the areole and next the tip of the cuneus, also a little whitish next the posterior border. Posterior part of propleura, and upper part of mesopleura whitish. Abdomen fulvo-piceous, testaceous at tip.

Length to end of abomen $3-3.25 \mathrm{~mm}$. To tip of membrane $3 . \pi 5-4 \mathrm{~mm}$. Width of base of pronotum . $50-1 \mathrm{~mm}$. Described from two speciemens, including both sexes, sent to me from Colorado. Mr. Coquillet also sent specimens from Los Angeles, and I have examined other specimens from Dakota and northern New York. It is variable as to the amount of yellow on the antennae, head and pronotum, and as to the brown clozding of the hemelytra."

Fort Collins, May 20th to June 4th (Baker and Gillette). Montrose, June 24th (Gillette).

Orectoderus amoenus Uhl.

Near Denver (B. H. Smith-see Uhler, 5). Colo. (Gillette-see Usborn, 1).

Orectoderus longicollis Uhler n. sp.

"Piceous, opaque, elongate subfusiform, with the head broad subconical, as seen from above, the base abruptly contracted into a short neck, the prothorax campanulate, and the wing-covers widening behind the middle. Head very moderately convex above, much longer than wide, polished, piceous, rather minutely scabrous than punctate, the vertex moderately arched and obsoletely carinate in front, the neck shorter than the corresponding contraction of the pronotum, front broadly depressed each side near the middle of the eyes, upper checks placed superiorly; tylus narrow, moderately short, not separated above by a distinct suture, tip tapering; rostrum set much belew the depressed gula, blackish-piceous, thick at the very base, slender from thence to tip, reaching behind the anterior coxae; eyes low, close-set against the side of the head; antennae of medium length, the basal joint rufo-piceous, shorter than the head, the second rufopiceous, with the apical third moderately clavate, and dull blackish, as long as the middle line of the corium, third abruptly more slender, almost setaceous, testaceous, scarcely more than one-half the length of the second, the fuurth much shorter, dusky, equally slender. Pronotum dull black, minutely granulated and wrinkled, the two lobes of nearly equal length, the callosities large, tumid, separated by a very shallow line, but connected with the swelling of the sides, the line separating the lobes is placed behind this swelling; posterior lobe wide at base, having sinuated sides, and with prominently tubercular humeri; side flaps steep, rounded, coarsely wrinkled. Legs dull fulvo-piceous, with the spines, tip of tibiae and apical portion of tarsi black. Scutellum smooth, dull black, with sinuated sides, and a little tumid at apex. Clavus ivory white, coarsely scabrous, with a piceous band at base which also runs diagonally upon the base of corium; corium also ivory white, less coarsely scabrous, crossed behind the middle with an obliquely bounded piceous spot which covers the entire end; cuneus piceous, with an ivory yellow acute diagonal spot on the basal portion; membrane dark brown at base, gradually paler to almost white posteriorly. Abdomen black, highly polished.

Length to end of abdomen 5 mm . Width of base of pronotum 1.5 mm . Only a single specimen, a male, has thus far been brought to my notice. The iemale is a desideratum requiring the attention of collectors."

Steamboat Springs, July 14th (Baker).
Orectoderus obliquus Uhl.
Hills, June to september (Carpenter-see Uhler, 6). Estes Park.(Snow-see VanDuzee, 5).

North Park, July 20th; Steamboat Springs, July 26th; Montrose, June 24th (Gillette). In mountains south-west of North Park, July 10th, on Artemisia tridentata (Baker).

Coquillettia inisignis Uhl.

Steamboat Springs, July 13th and 26th (Baker and Gillette). Fort Collins, August 11th (Baker). North Park, July 20th; Dolores. June 16th; Howe's Gulch, June 14th (Gillette).

Orthotylus viridicatus Uhler n. sp.

Abstract

"Oblong-ovate, grass green, opaque, minutely pubescent, pale green beneath. Head slightly convex, impunctate, broad between the eyes, the vertex transversely sulcate before the carina; the eyes brownish, moderately prominent, well rounded, placed nearly vertical; front convex, contracting below, the tylus narrow, prominent, separated above by a deep groove; rostrum stout, reaching to the middle coxae, pale green at base, black on apical third; antennae stout, the basal joint pale green, the second dusky, about equal to the clavus in length, the third and fourth joints dusky, more slender than the second, filiform, and together not as long as that joint. Pronotum wider than long, almost flat, with the lateral margins oblique, and the anterior angles a very little rounded, the callosities large and tumid, separated by a deep depression, the collum narrow, and confined to a narrow space of the anterior margin, the transverse impressed line behind the callosities slender, but distinct on the outer margin. behind it the margin of the posterior lobe is distinctly reflexed, the margin before this callous; posterior margin nearly straight, with the humeral angles oblique and a little curved; the pleural flap is deep and nearly triangular. Scutellum little longer than wide, feebly convex, faintly carinate at tip. Clavus faintly scabrous, with a few obsolete punctures next the coarse vein, corium minutely and obsoletely scabrous, the cuneus pale yellowish, smooth; membrane black, with the veins pale yellowish. Abdomen short, minutely pubescent.

Length to end of abdomen 3 mm . To tip of membrane 4 mm . Width of pronotum 1.25 mm . A few specimens of both sexes have been sent to me for examination. They have been mostly shriveled from immaturity at time of collecting. Three specimens are in the collection from Colorado. Others were obtained in the vicinity of Denver, and in New Mexico. The pale color of head, thorax, sides of corium and cuneus, is owing to fading of color after death of the insect."

North Park, July 20th; Dolores, June 18th; Trinidad, May 14th; Estes Park, July 10th (Gillette). Steamboat Springs, July 16th and 26th (Baker and Gillette).

Oncotylus guttulatus Uhl.

 Colorado Springs, August 3d (Gillette).
Oncotylus longipennis Uhler n. sp.

"Elongated, sub-elliptical, pale greenish testaceous, with a long cuneate, dusky stripe on the middle of corium, polished, minutely pubescent. Head moderately convex, bald, highly polished, subconical, sometimes with a semicircle of blackish spots between the eyes; front yellowish, the tylus narrow, black; the vertex with a high carina in the male and a transverse groove before it; eyes brown, large, prominent, placed a little obliquely; bucculae pale; rostrum slender, obscure testaceous, piceous at tip, reaching to the middle coxae; antennae long, moderately slender, black, the basal joint longer than the head, the second as long as the clavus, the third a little more slender, about two-thirds the length of the second, the fourth of the same thickness, much less than half the length of the third. Pronotum subtrapezoidal, polished, obsoletely wrinkled behind, feebly convex, the sides rapidly narrowing towards the front, and a little sinuated, causing the humeral angles to appear prominent, callosities distinct, directly transverse, approximate, lateral edge decurved, the pleural flaps deep, subtriangular, black on the middle. Legs greenish-testaceous, the femora with a black band near tip, and the knees, spines, tip of tibiae, and tarsi blackish. Prosternum each side, and pleura also, with a black stripe which continues back to the posterior segment; the venter each side with a series of diagonal black streaks. Scutellum feebly convex obsoletely wrinkled, usually black at
tip and in each basal angle. (Javus dusks, with the outer vein pale, corium a little granulated translucent, with a dusks tapering spot on the middle, the veins pale, cuneus a little dusky on the inner border: membrane very long, dnsky, with the veins pale sellow.

Length to end of ablomen $t \mathrm{~mm}$. To tip of membrane 6 mm . Width of pronotum 1.33 mm , Described from three specimons from Colorado. It is notable for the extreme length of the wing-covers."
Gore Pass, July 29th; Steamboat Springs, July 26th (Gillette). Rabbit Ears Pass, Routt County, July 20th; Steamboat Springs, July 14th (Baker).

Oncotylus repertus Uhler n. sp.

"Blunter than O. sericatus Uhler, clear bluish green, distinctly pubescent, motlerately flat, with the enstal margin more broadly curved tham in the species cited, with the head. base of scutellum and onter border of corium almost white, yellowish when less freslh. Head broad, subconical, polished, closely white pubescont, vertex feebly convex, the carina low, a littlo curved back of the line of the eyes; grooved in front of the carina; eyes brown, of medium size, moderately prominent, placed nearly vertical; the front transverse, wrinkled, moderately convex, becoming a little narrower below, separated from the tylus by a deep incision, which crosses the entire face; tylus subconical, wide at base, curving beneath; rostrum greenish-white, piceous and acute at tip; the inferior cheeks vers long and wide, incised, a little swollen, bucculae minute; antennae having the basal joint thick, shorter than the head, the second joint very long, much more slender, alınost as long as the clavis the last two joints lost. Pronotum transverse, pubescent, the anterior border almost straight, a little callous and abruptly separated from the head, the surface very uneven, with the anterior angles rounded off, the callosities are oval, flat and far apart, the transverse impressed line sinuous, placed about one-third the way back; the sides diagonal, callous, and the pleural flaps subtriangular, narrow at tip, granular on the middle, a little hirsute; humeral angles with a small knob; posterior margin feebly sinuated in the middle, obliquely curved each side. Scutellum triangular, nearly equilateral, with the base exposed. Legs pale green, the tarsi yellow, piceous at tip, spines dark. Corium, clavus, and cuneus a little hairy, minutely and remotely granulated, the exterior margin strongly reflexed and bristly; cuneus a little longer than wide, pale exteriorly; membrane moderately slort, smokeblackish, whitish on the base and on the margins basally, the veins green. Venter with longer bristles posteriorly.

Leng th to end of abdomen 4 mm . To tip of membrane 5.25 mm . Width of pronotum scant 2 mm . Described from two specimens, both females, sent to me from Colorado. A variety of this species with hyaline membrane occurs near Los Angeles, California."

> Steamboat Springs, July 12th on Artemisia tridentata (Baker). Foot-hills six miles west of Fort Collins, June 14th (Gillette).

Oncotylus sericatus Uhler n. sp.

"Similar to Macrotylus vestitus Uhler, but larger and with a less acute and wider head, the second joint of antennae much sloorter and a little thicker; the color grassgreen above, closely covered with stiff white pubescence, greenish-white beneath. Head closely pubescent, depressed across the vertex in front of the carinate line; the front a little covex; the tylus wide and almost vertical, distinctly pubescent, rostrum slender, reaching midway between the middle and anterior coxae, pale at base, piceous at tip; antennae moderately stout, prominently pubescent, the basal joint clear green, longer than the head, the second dull yellowish, but little longer than the distance from the tip of scutellum to apex of clavus, the third and fourth joints a little dusky, becoming gradually more slender, the fourth quite short. Pronotum very moderately convex, wider than long, finely wrinkled, in front almost as wide as the distance across the eyes, the humeral angles subacutely prominent, a very little rounded, with the outer border callous, white, and sinuated, the transverse impressed line placed just behind the callosities and not reaching the sides; the pleural flaps long triangular, with the apex a little
curved forwards. Scutellum small, moderately convex. Hemelytra very long, the costal margin gently curved, so as to be widest back of the middle, the surface of clavus, corium and cuneus, minutely and remotely granulated, with the exterior margin a little paler than the general surface; the membrane long, very faintly obscured, translucent, with the veins green. Legs pale green, with the nails, spines, and tip of tarsi piceous. Abdumen closely set with white pubescence.

Length to end of abdome. 4 mm . To tip of membrane $6.5-5 \mathrm{~mm}$. Width of pronotum 2 mm . Several specimens have been sent to me from Colorado, where the species appears to be rather common."

Steamboat Springs, July 12th on Artemisia tridentata (Baker). We have also received specimens (determined by Mr. Uhler) taken at Colorado Springs in July by E. S. Tucker.

Macrocoleus coagulatus Uhler.
From wild gooseberry and other bushes in Clear Creek Canon. August 7th (Uhler 5). Colo. (Gillette--see Osborn, 1).

Manitou, September 29th, Lamar, May 7th; Foot-hills five miles west of Fort Collins, June 12th (Gillette). Fort Collins, July 4th to October 7th; mountains south-west of North Park, July 10th on Artemisia tridentata (Baker).
Macrotylus affiguratus Uhler n. sp.

Abstract

"Robust, grayish testaceous, finely pubescent, obscure fuliginous on most of the hemelytra. Head conico-triangular, pale fulvous in front, greenish on the vertex, with a diagonal black line each side converging anteriorly, from this a divaricating black line runs downward each side upon the cheeks below to the eye, cheekヶ and tylus black, polished; rostrum slender, piceous-black, reaching to the middle coxae; antennae stout, black, moderately short, tapering continuously to the tip, the second joint a little longer than the pronotum, the third a little shorter, the fourth very short, acute at tip. Pronotum broad, well rounded off towards the sides on the posterior lobe, the lateral margins oblique, gently curved, broadly pale, the surface greenish, uneven and wrinkled posteriorly, set with short black bristles at remote intervals, the anterior submargin flat, pale with the margin recurved, a little sinuated in the middle, the callosities prominent, surrounded with black and set in a blackish depression, behind the middle is an obscure arc of broken spots, humeri oblique, a little rounded at tip, the posterior margin very gently curving toward the humeri; the pleural flaps deep, sunken, black, excepting the nargins, the flap of prosternum also black bordered with pale yellow; sternum and a long stripe on the outer border of pleura also black. Legs obscure yellowish, with flecks, the spines, knees, tip of tibiae and tarsi black. Scutellum greenish, widely exposed at base, with a few scattered points, a faint middle line and the sparse bristies black. Clavus dull pale greenish, minutely sparsely granulate and puistate, with but few indications of hairs, the corium more obscure, similarly granulate and bristly, with the costal margin and veins pale; the cuneus, its callous inner angle, and thickened short inner margin of the corium and the basal margin of the membrane pale yellowish; membrane short a little dusky, with the veins pale. Venter pale greenish, with the sutures, and border of the ovipositor black.

Length to end of abdomen 4.5 mm . Width of pronotum 1.75 mm . Decribed from one specimen, a female, sent to me from Colorado."

North Park, July 20th (Gillette). Steamboat Springs, July 12th, on Delphinium occidentale and other low herbs (Baker).

Macrotylus moerens Uhl.
Steamboat Springs, July 16th and 26th (Baker and Gillette). Spring Canon, June 30th; Estes Park, July 10th; North Park, July 20th; Manitou, June 25th (Gillette).
Macrotylus verticalis Uhl.
Montrose, June 24th (Gillette).
Bolteria picta Uhl.
North Park, July 20th; Leadville, August 23d (Gillette). On Grizzly Creek, in mountains south-west of North Park, July 10th, on Artemisia tridentata; Steamboat Springs, July 12th (Baker).

Episcopus ornatus Reut.

Colorado Springs, August 3d (Gillette).

Plagiognathus annulatus Uhler n. sp.

"Closely related to P. arbustorum F., but narrower and smaller, brownish-black, longoval, polished, with pal ; yellow legs, having the femora streaked and the tibiae annulated or spotted with black. Head longer than wide, acute in front, convex, highly polished, faintly tinged with brown; vertex concurrently convex with the front; the occiput arched and with the edge obscure fulvous; tylus scarcely more prominent than the front, curved, highly polished; rostrum reaching to the middle coxae, yellow, with the basal joint black and the apex piceous; antennae of medium length, the basal joint black, scarcely longer than the head, the second yellow in the middle, or nearly all yellow but the base, a little longer than from the front of the eye to the base of pronotum, third and fourth more slender, yellow. Pronotum deep black, highly pollshed, growing much narrower anteriorly, minutely, irregularly and obsoletely rugose, more convex posteriorly; the callosities large, very slightly prominent, with an indented space between, and a wavy impressed line forming the boundary between them; the lateral margins oblique, barely sinuated with the edge a little keeled, deflexed; anterior angles a little rounded, callous; posterior margin gently arcuated; the humeri prominent, almost acute, with an impression bounding them inwardly. Scutellum feebly convex, a little unevenly rugulose, the tip acute and set off by a transverse series of punctures placed a little way back. Ccrium deep black, long, highly polished, obsoletely and irregularly rugose over most of the surface, with some punctures on the depressed borders; the clavus obsoletely and coarsely rugose, with series of shallow punctures on the sutures; base of cuneus marked by an obscurely pale sutural line; the outer angle of base of membrane marked by a triangular white spot, remainder of membrane fuliginous black. Legs pale yellow, the base of anterior coxae, the knees, rings and spines of tibiae and the tarsi black.

Length to end of abdomen 3.5 mm . To tip of membrane 4 mm . Width of pronotum 1 full mm . Described from one female specimen sent to me from Culorado. It inhabits also northern Illinois, Canada west, and New England."
Steamboat Springs, July 16th (Baker).
Plagiognathus fraternus Uhler n. sp.
"Larger and more flat above than P. obscurus Uhler, color black, minutely sericeous pubescent. Head triangular, a little longer than wide, acute at tip, with the sides a little sinuated; occipital carina indistinct, pale yeliow, front convex, a little roughened on the middle; the tylus prominent, highly polished, comparatively narrow, a little curved; rostrum reaching upon the middle coxae, basal joint stout, a little longer than the throat, blackish-piceous, the middle joints fulvo-piceous, the apical joint blackish; antennae
black, dull testaceous beyond the base of the third joint, the basal joint shorter than the head, the second rod-shaped, scarcely as thick as the basal one, about as long as the face and pronotum united, the third much more slender, about two-thirds as long as the second, the fourth about equally slender, a little shorter. Pronotum wider than long, with the lateral margins oblique; the front margin with a pale collum, reaching to the middle of the eyes; middle surface behind the collum uneven and depressed between the large oblique callosities; lateral margins reflexed, slender, pale; the humeral angles subacute and pale; disk a little wrinkled, not distinctly punctate; pleural flaps polished, black, with the segment next behind marked with a large greenish spot. Coxae mostly greenish-white, femora flattened, testaceous, more or less piceous towards the tip, but always omitting the apex of the posterior pair; tibiae testaceous with black knees, spines and their bases: tip of tarsi piceous. Scutellum obsoletely scabrous, acute at tip. Clavus black, longhly wrinkled and a little punctate; corium pale testaceons, or ivory white, marked with a large, somewhat ovate, ragged spot from before the middle to next the tip: cuneus pale with a small black spot at tip; membrane dark fuliginous with a large, clear spot on the middle, veins testaceous. Abdomen black, polished, the base more or less gieenish, and the incisures of the connexivum slenderly bordered with greenish.

Length to end of abdomen 4.5 mm . To tip of membrane 5 mm . Width of pronotum $1.5-1 . \tilde{h}^{\circ} \mathrm{mm}$. Described from three specimens, including both sexes, sent to me from Colorado. This species is mole robust and less tender than P. obscurus. It also lacks the yellow marking of the scutel, and has the callosities oblique, widely separated, and the collum yellow or greenish."

Steamboat Springs, July 12th, on Solidago, Delphinium occidentale, and other low herbs (Baker).

Plagiognathins obscurus Uhl.

Colorado (Uhler, 1 and 6). West Cliff, Custer County, July 27 th (Cockerell, 10).

 Fort Collins, September 27th, on Bigelovia (Gillette).
Plagiognathus politus Uhler n. sp.

"Black, narrow, oval, highly polished, the sides of hemelytra but little wider behind than anteriorly. Head short, acute at tip, including the eyes, but little wider than the front of pronotum, base with a pale yellow carina; front moderately convex: tylus wide, prominent; rostrum flaro-piceons, reaching upon the middle coxae; antennae long and slender, black, the basal joint thickest, the second as long as from the front of the eye to the base of the pronotum, the third more slender, about two-thirds the length of the second, pale piceous or yellowish, the fourth equally slender, of the same color as the third, and about one-half the length of the second. Pronotum a little wider than long, faintly wrinkled, with the transverse impression interrupted and faint on the middle continued to a sinus inward from the lateral margin; the lateral margins oblique, turned down, sharply defined, with the interior angles rounded; posterior margin gently curved; the humeral angles subacate. Scutellum convex, a little longer than wide, acute at tip. Femora piceous black, the anterior ones pale at tip, coxae, in part and tibiae testaceous, the spines and their bases black, tip of tarsi piceous. Clavus highly polished, remotely and coarsely punctate and wrinkled; corium more minutely scabrous and obsoletely punctate, very highly polished, the callous linear apex of the inner border testaceous؛ the membrane dusky brown with the vein pale yellowish. Abdomen black, highly polished, obsoletely scabrous.

Length to eud of abdomen 3 mm . Width of pronotum 1.25 mm . Only one specimen, a fenale, was sent to me from Colorado. A variety with yellow face and a pale lunule at base of the cuneus was collected near Buffalo, N. Y., by Mr. VanDuzee. The type from Colorado has also a faint, very narrow, curved band at base of cuneus."

Fort Collins, July 24th (Baker).

Atomoscelis seriatns Reut.

Maurodactylus angulatus Uhler n. sp.

"Mostly pale obscure testaceous above and black beneath, long oval, minutely sericeous pubescent. Head nearly triangular, wider than long, dull black, irregularly testaceous at base, face almost vertical, minutely, sparsely pubescent, feebly convex, not apparently punctate, the occipital edge sharp, nearly straight, not carinate; the tylus narrow, almost acute at tip; rostrum yellow from base to middle, black from thence to tip, reaching to behind the middle coxae, the basal joint reaching to the end of the arehed mucro, swollen at tip; the bucculae slender and pale yellow; antennae blackish, moderately stont, reaching as far as to the middle of the venter, the basal joint projecting little beyond the tip of the head, the second joint stout, of uniform thickness throughout, at little longer than the vertex and pronotum, the following joints shorter and more slender. Pronotum short, trapezoidal, transverse, a little polished, impunctate, minutely and remotely pubescent, pale greenish testaceous, almost flat, with an abbreviated black line crossing the line of the callosities, the anterior and posterior margins almost straight, the lateral margins a very little simated, the pleural flaps deep, obscure black, bordered with testaceous; pleural and sternal areas black, also partly margined with whitish. Legs including the coxae, greenish yellow, the middle of femora, the spines, and apex of tarsi black. Scutellum dull black, uncovered at base, and with a pale fulvous spot in each basal angle. Hemelytia obscure testaceous, minutely pubescent, placed almost flat, with the costal border a very little curved; clavus dusky towards the tip, corium with a double, long, dusky, widening spot runuing back to tip, çuncus with a dusky spot near tip; membrane long, pale dusky, darker in the basal cell. Venter polished, black, narrow, with the edges of the segments olscure whitish.

Legth to end of venter 3 mm . To tip of membrane 3.5 mm . Width of pronotum 1 mm . Only one specimen has thus far been brought to my notice. It is a male, and bears some resemblance to Maurodactylus alutaceus Fieber., of Europe."

Steamboat Springs, July 12th (Baker).

Mantrodactylus consors Uhler n. sp.

"Form narrow, almost parallel sided on the hemelytra, rery slightly pubescent above, black, polished. Head triangular, wider than long, acute at tip; the occipital edge sharp, a little raised at the middle; the face moderately convex, not apparently punctate; eyes prominent, large, placed nearly vertical, set close to the pronotum, dark brown; the tylus prominent, curving beneath; rostrum fulvo-piceous, darker at base and tip. reaching upon the middle coxae; the bucculac pale, narrow; antennae black, long, with the two basal joints stout, the second as long as from the scutellum to inner angle of the corium, the third a little more slender, about three-fourths as long as the second, the fourth scarcely more slender than the third, hardly one-lalf the length of the flisird. Pronotum small, moderately conves, a little wider than long, minutely seabrous and a little wrinkled; the anterior lobe short, tumidy elevated, with the impressed line feebly defined; the lateral margins oblique, hardly sinuated; the anterior margin but very little wider than the space between the eyes, with the collum obsolete, and a slight indentation behind its middle; the forward slope of surface moderately steep; humeral angles wrinkled, a little callous and acute. Scutellum widely exposed at bise, longer than wide, obsoletely and remotely scabrous, acute at tip. Femora broad, black, yellow at tip, the anterior and middle parts. tibia and the tarsi pale piceous, with the spines black. Clavas obsoletely scabrous; the corium a little more finely so; cuneus separated from the corium by a slender angular pale line: membrane dusky, iridescent. With the base next the cuncus and the looped vein pale. Venter black, short, polished.

Length to end of abdomen 3 mm . To tip of hemelytial 4.5 mm . Width of pronotum 1.25 mm . Only one specimen, a male with loug, curved, acute genital looks has been sent to me from Colorado "

Leadville, Augnst 23d (Gillette).

Agalliastes apiatus Uhler n. sp.

"Long-oval. polished, dark brown or black, minutely pubescent. Head short, moderately wide, highly polished, with an indented line on the midde, the vertex prominent, and a little triangular at base; front moderately convox, nea!ly rerital; iylus short,
narrow, prominent, black; rostrum slender, testareous, piceous at tip, reaching to the posterior coxae; antennae dull black, of medium length, the second joint nearly as long as the line from the tip of scutellum to the apex of clavus, the third joint a little shorter and slightly more slender, tapering, the fourth scarcely more than one-third the length of the third, still more slender. Pronotum transverse, polished, minutely pubescent, with a few sparse punctures on a line in front of the low callosities, lateral margins short, oblique, with the edge a little turned down, the collum confined to the middle of the margin, and fading into the raised surface before reaching the line of the eyes; humeral angles prominent, almost acutely callous; the posterior margin almost straight. Scutellum short, almost flat, clothed with pale pubescence, the base usually exposed, sometimes dis losing the yellowish spot at each basal angle. Legs dull yellow, the posterior pair having the femora black, all the tibiae with black spines and dots at base of spines; tirsi piceous at tip. Hemelytra covered with short yellowish pubesence, the clavus wide smoky fuscous; corium with a large fuscous, wedge-shaped spot, closed on the middle, the outer and inner borders and base and tip dull testaceous; the cuneus dusky, bordered all around with dull testaccous; membrane dusky, with the veins, base and sometimes the outer border pale. Abdomen black, polished, with a large greenish spot near the base, and some greenish spots on the pleura.

Length to end of abdomen $2.25-2.5 \mathrm{~mm}$. Width of pronotum $1-1.25 \mathrm{~mm}$. This species inhabits both Colorado and Kansas. It is no doubt quite common, buthitherto only a few less mature specimens have been sent to me for examination. It closely resembles \mathbf{A}. apicalis Uhler, of the Atlantic States, but is a more robust and clumsy style of insect."
Fort Collins. June 4th; Manitou, June 25th (Gillette). Steamboat Springs, July 12th and 26th (Baker and Gillette).

Agalliastes associatus Uhl.

Colorado (Uhler, 6). Pueblo (Yarrow--see Uhler, 7). Various parts of Colorado (Uhler, 9).

Fort Collins, July 24th to August 1Sth; Steamboat Springs, July 12th (Baker). Horsetooth Gulch, May 18th; North Park, July 20th; Trinidad, May 14th; Montrose, June 24th; Glenwood Spring:, A ugust 24th (Gillette). Colorado Springs, July (Tucker).
Agalliastes decolor Uhl.
On Redstone Creek, twelve miles south-west of Fort Collins, August 1st (Baker).

Agalliastes fumidus Uhler n. sp.

"Oblong-oval, pale fusco-olivaceous, clonded with smoke brown. Head narrow, polished, almost vertical, black upon the clypeus and tylus, pale greenish above, vertex strongly convex; rostrum pale towards the base, slender, reaching to the middle coxae; antennae dusky testaceous, almost piceous at base, slender, about three-fourths the length of the body, the basal joint short, piceous black, the second fuscous, nearly as long as the head and pronotum united, pubescent, the third and fourth more slender, pale, much shorter than the second, eyes prominent, dark brown, placed diagonally. Pronotum trapezoidal, transverse, bald, polished, moderately convex, pale olivaceo-testaceous, not distinctly punctate, tinged with fuliginous each side anteriorly, the collum lowerthan the base of the head, a little curved, with a black callous curved transverse line behind its middle; lateral margins a little sinuated, slightly notched at the outer end of the transverse impressed line, the lateral margin acute and reflexed throughout, the humeral angles moderately prominent, pale; posterior margin a little curved. Exposed base of scutellum black in the middle, yellow on either side, the scutellum proper tumid in the middle, sunken and dark at base, pale on the acute apex. Legs smoky testaceous, dark
near the tip of upper side of femora, tibiae testaceous with black dots and spines, tarsi blackish; the coxae pale testaceous, the anterior pair with a black dot at base. Hemelytra pale dull testaceous, the clavus entirely and the corium with a large long diagonal spot reaching to the inner angle, two or three faint traces near the outer border, and the middle of the cuneus, smoke brown; membrane smoke brown, the tip, inner border and veins pale testaceous; a geminate pale short line occupies the point next the tip of the cuneus. Abdomen smooth, piceous black, pale pubescent, the venter with a pale greenish spot on the middle and another next the tip.

Length to end of abdomen 35 mm . To tip of membrane 4 mm . Width of pronotum 1.25 mm . A single specimen of the male was sent to me from Colorado."

Steamboat Springs, July 15th (Baker).

Agalliastes signatıs Uhler n. sp.

"Form closely resembling A. associatus Uhler, black, dull, minutely pubescent. Head short, acute, moderately convex, carinate on the occipital margin; the vertex with a yellow band between the eyes; summit of front indented; tylus prominent, bounded by diep incisions; bucculae and rostrum fulvo-testaceous, the latter reaching to the midale coxae, a little piceous at tip; intennae dull black, stout, tapering, the second joint shorter than the head and pronotum united, the third and fourth together shorter than the second, more slender and pale piceous. Pronotum transverse, feebly convex, pale pubescint, rough in the depressed space between the callosities and behind the anterior margin; middle of the anterior margin carinate; lateral margins oblique and curved down; posterior margin hardly sinu ited, a little hollowed each side near the humeri. Scutellum short, subequilateral, apparently impunctate (damaged). Coxae and femora of the anterior and middle legs fulvo-testaceous, with the tibiae paler, and together with the posterior piir luving black spines placed on black dots; posterior femora blackish; tips of tarsi piceous. Posterior martin of propleura pale, remainder dull black Clavus dull fuscous, pale pubescent, scabrous: corium obsoletely scabrous, pale pubescent, brown, pale at base and along the costal border, with the inner suture a little paler than the adjoining surface; cuneus fuscous, with a pale 'Jand at base, and a small spot at tip; membrane dusky, with the veins pale testaceous. Abdomen black, polished, minutely pubescent.

Length to end of abdomen 2 r 1 m . Width of pronotum .87 mm . The description is derived from a single male specimen sent to me from Colorado. The characters given will no doubt require modification when both sexes are sufficiently studied."
Manitou, June 25th (Gillette).

Agalliastes simplex Uhl.

Steamboat Springs, July 14th (Baker).
Lyctocoris campestris Fab.
Fort Collins, March 2d, under a board (Baker).

Triphleps insidiosus Say.

Suburbs of Denver, August 5th. Doubtless introduced into the west with raspberries, blackberries, and other small fruit (Uhler, 5).
Fort Collins, May 27th to August 22d, and May 18th to June 12th on alfalfa (Gillette and Baker).

Anthocoris antevolens B. White.
Leadville, August 23d; Montrose, June 24th (Gillette).
Anthocoris musculus Say.
Above timber line (Carpenter-see Uhler, 6). On wing and on plants on
steep side of mountain in pine woods, Beaver Brook Gulch; also on Clematis, August 6th (Uhler, 5).

Fort Coliins, March 24th to April 26th; foot-hills five miles west of Fort Collins, April 20th to August 1st; Cameron Pass at 12,000 feet, July 5th on Salix (Baker). Estes Park, July 12th; Manitou, September 29th, on willow; Dolores, June 1st; Montrose June 24th; Leadville, August 23d (Gillette).
Acanthia hirundinis L.
Dolores, June 1Sth, common in swallow's nests (Gillette).

Acanthia lectularia L.

West Cliff, Custer County, too frequent (Cockerell, 10).
Fort Collins and Denver (Gillette). Colorado Springs (Tucker).
Piesma cinerea Say.
West Cliff, Custer County, July 27th (Cockerell, 10). Colorado (Gillette see Osborn, 1).

Fort Collins, March 23d to October 15th, May 7th to June 9 th on alfalfa, and August 18 th on black walnut (Baker). Manitou, June 25th; Montrose, June 24th; Dolores, June 18th (Gillette). Colorado Springs (Tucker).
Agrammodes Uhler n. gen.
"Form conico-ovoid, similar to a bro'd Agrimma, but widely different in renation, and having the head formed nearly as in Piesma. Head much narrower than the pronotum and curving down in continuity therewith, the base wide, with the clypeus abriptly narrower, protructed forwards in two slender tapering lobes in advance of the stonter tylus; eyes large, round, seated close against the pronotum. Antennae short, clarate at tip, the basal joint stout, contracted at tip the second rery short, moniliform, the third longest and most slender, the fourth shorter, contracted on the basal portion. Kostrum tapering, reaching behind the anterior coxae. Pronotum gently curved, somewhat flattened near the anterior angles and depressed behind then, the anterior submargin inflated into a crescentiform low hood which does not extend to the lateral angles; lateral margin sharp cut, a little diagonal; surface coarscly granulated. Scutellum minute, tumid. Legs sliort and thick. Hemelytra broad suboval, granulated, coriaccous throughout, with the veins very coarse ind prominent; clavus formed of one short triangular areole, bounded exteriorly by a long and moderately narrow areole which is oblique at tip, and from this the inner vein runs back to near the tip and forms an arrest for the two discoidal veins which bound wide triangular areas, and curve inward as they. approach this inner vein: the costal area wide, depressed, continued to end of wing-cover, crossed by a few irregular veins, the inner veins are continued across the area which forms a substitute for the membrane."

Agranmodes costatus Uhler n. sp.

[^21]black; rostrum and throat rust-brown. Pronotum fuscous, coarsely granulated, narrower than the base of the wing-covers, and somewhat quadrangular in outline, the lateral margins a little reflexed, the posterior margin distinctly curved, anterior angles a little rounded, the anterior margin wider than the breadth across the eyes. Wing-covers pale greyish-yellow, with irregular patches of dark brown granules aggregated more particularly near the base and along the disk; the large pale spots at base angular and tinged with greenish; veins mostly dark brown, very prominent, the area on the apical bordel pale, crossed by the divaricating inner vein and the one next outside from it, the areoles are continued to near the apex, and the discoidal one is crossed by four oblique veins. Underside rust-brown, obscured by some darker patches, and set with a few small granules, the orifices of the stigmata placed in irnobs.

Length to end of hemelytra : mm. Width of bise of pronotum. .5 mm , Only one specimen has been brought to my notice. It is a male seut to me from Colorado. This is the most remarkable form of the family Tingidae which has yet been placed within my reach for study. It is a synthetic type which unites in itself a structure of wing-covers closely related to Oxycarenus, of the family Lygaeidae, and on the other haud, the characteristic head of Piesma and the granular surface of Agtamma. Tiaken in all its features it is the most pealiar form of Tingid which has yet been discovered in North America. The other sex is unknown to me and it might add further characteristics to the genus if once trought to notice."

Estes Park, July 12th (Gillette).
Corythuca arcuata Say.
Colo. (Gillette-see Osborn, 1).
Fort Collins, July 29th (Baker). Foot-hills five miles west of For't Collins, April 25th to August lst (Gillette and Baker). Steamboat Springs, July 26th (Gillette).

Sorythuca ciliata Say.
Custer County, midalpine (Cockerell, 10).
Fort Collins, May 31st on alfalfa (Baker). Steamboat Springs, July 16 th and 26 th (Baker and Gillette). Montrose, June 24th (Gillettee).
Corythuca fuscigera Stal.
Fort Colllns, July 2d in all stages on Cnicus; Steamboat Springs, uuly 15th (Baker). Colorado Springs, August 3d (Gillette).
Gargaphia tiliae Walsh.
Rist Canon, May 29th (Gillette).
Aradtus acutits Say.
Colo. (Uhler, 6). Roaring Fork (Rothrock - see Uhler, 2).
Fort Collins, March 31st (Gillette).
Aradus affnis Kirb.
Dolores, June 18th: Estes Park, July 9th (Gillette).

Aradns americanus Fab.
Colo. (Carpenter, 1).
Rist Canon, May 29th (Gillette).

Aradus debilis Uhl.

Colo. (Gillette-see Osborn, 1).

Aradus obliquıs Uhl.

Rist Canon, April 9th (Baker).
Aradus rectus Say.
Colo. (Uhler, 1 and 6). From mountains najr Beavar Broox Gulch, August 6th (Uhler, 5). Colo. (Gillette-see Osborn 1).
Fort Collins. August 19th; Steamboat Springs, July 26th; Montrose, June 24th; Dolores, June 18th (Gillette).

Aradus tuberculifer Kirb.

Colo. (Uhler, 6). Far up Beaver Brook Gulch, August 6th (Uhler, 5). Near Idaho Springs, July 6th (Packard--see Uhler, 5).

Phymata fasciata Gray

Colo. (Uhler, 1). Widely distributed over the west. Common around foothills and on plains wherever land is cultivated. Generally found on stems of Euphorbias and sun-flowers (Uhler, 5). Colo. (Uhler, 8).

Rist Canon, August 10th (C. E. Pennock). Foot-hills five miles west of Fort Collins, September 1st (Gillette). Boulder, September 4th (Baker). Colorado Springs (Tucker).

Coriscus ferns Linn.

Colo. (Uhler, 6). Colorado Springs, June (Yarrow-see Uhler, 7. Southern Colorado June to July (Carpenter-see Uhler, 7). Widely distributed on plains and in mountains and foot-hills, especially in settled portions. In damp situations in Beaver Brook Gulch, Clear Creek Canon, in Denver and around it at the lower levels, in the region of Colorado Springs and Manitou, near Canon City, and in the valley of the Arkansas, it is quite common in August (Uhler, 5). Denver, June 27th (Packard-see Uhler, 5). Ula, Custer County, November 12th; West Cliff (Cockerell, 10). Colo. (Gillette-see Osborn, 1).

Fort Collins, September 27th, on Bigelovia and Rhus trilobata, and October 7th (Baker and Gillette). Colorado Springs, Green Mountain Falls (Tucker).
Coriscus inscriptus Kirb.
Colo. (Uhler, 1). August 14th, Nathrop, Chaffee County (Cockerell, 3). West Cliff, Custer County, July 27th; also subalpine; also in Chaffee, Gunnison, and Pueblo Counties (Cockerell, 10).

Coriscus kalmii Reut.
Fort Collins, April 7th to May 13th, September 14th on Solidago, and September 27th on Solidago and Carex (Baker and Gillette).

Coriscus punctipes Reut.
Mesa County (Cockerell).

Coriscus rufusculus Reut.

Fort Collins, May 27th to August 18th, June 9th on alfalfa, September 2d on Solidago, October 7th on grass; Steamboat Springs, July 12th on Carex (Baker). Colorado Springs, August 3d; Montrose, June 24th; Dolores, June 18th (Gillette).
Coriscus sericans Reut.
Steamboat Springs, July 25th; Rabbit Ears Pass, Routt County, July 20th (Baker).

Coriscus subcoleoptratus Kirb.
Colo. (Uhler, 1 and 6).
Sinea diadema Fab.
Colo. (Uhler, 6). From weeds in suburbs of Denver, August 8th (Uhler, 5).
Foot-hills five miles west of Fort 己ollins, March 15th to August llth (Gillette).
Acholla multispinosa DeG.
Colo. (Uhler, 1).
Boulder, September 4th (Baker).
Fitchia nigrovittata Stal.
Colo. (Uhler, 6). Colo. (Gillette--see Osborn, 1).
Common near Fort Collins, and in the adjoining foot-hills, during winter, under stones and boards (Baker and Gillette).
Fitchia spinosula Stal.
Colo. (Uhler, 6).
Repipta taurus Fab.
Southern Colorado (Riley).
Milyas cinctus Fab.
Foot-hills, five miles west of Fort Collins, September 1st
(Gillette).
Diplodus luridus Stal.
Colo. (Uhler, 1 and 6). Colorado Springs, August 10th (Uhler, 5). Manitou and Garden of the Gods, July 13th to 16th (Packard-see Uhler, 5).

Fort Collins, July 4th; foot-hills five miles west of Fort Collins, June 30th (Gillette).

Diploduss socins Uhl.

Estes Park, July 16th (Gillette).

Apiomerns flaviventris II. Schf.

Larva from a bush in Clear Creek Canon, near mouth of Beaver Brook Gulch, August 7th (Uhler, 5). Brown variety on foot-hills at mouth of Clear Creek Canon, July 3d, in Garden of the Gods, and at Manitou, July 13th to 155th (Packard-see Uhler, 5).
Apiomertis pictipes II. Schf.
Foot-hills eight miles south-west of Fort Collins, June 30th to July 12th; Silverton, June 20th (Gillette).

Apiomertus spissipes Say.
Colo. (Uhler, 1 and 6). Valley of Arkansas, near Canon City, August 11th (Uhler, ă). Colo. (Snow-see VanDuzee, 5).
Apiomerns ventralis Say.
Colo. (Gillette--see Osborn, 1). Estes Park (Snow-see VanDizee, 5).
Fort Collins, May 14th on alfalfa (Baker). Foot-hills five miles west of Fort Collins, March 12th to June 12th; Graymont, July 15th (Gillette).
Pygolampis pectoralis Say.
Fort Collins, April 6th under a board in edge of field (Baker).
Spilalonius seniculatus Stal.
Pueblo (Johu Lansing).
Hygrotrechus remigis Say.
Colo. (Uhler, 1). Mountains in July (Carpenter-see Uhler.6). From water on plains of Southern Colorado, June to July (Carpenter-see Uhler, 7). On still water along margin of Sloan's Lake; very abundant on surface of irrigating canal proceeding from ('anon of Arkansas, in August (Uhler, 5). Denver, July 10th; Boulder, June 20th; Manitou, July 15th (Packard-see Uhler, ${ }^{\text {on }}$).

Near Fort Collins and in the adjoining font-hills, common
throughout the summer, especially on water in ditches; during winter hibernates under stones, rubbish, etc. (Baker). Dolores, June 16th (Gillette).

Limnotrechnss marginatıs, Say.

On surface of puddles in western suburbs of Denver in August (Uhler, 5). Near Manitou, July 15th (Packard-see Uhler, 5). Common on Grape Creek, West Cliff, Custer County, May 25th (Cockerell, 10).

Limnotrechns productins Uhler n. sp.

"Larger and somewliat more robust than L. marginatus Say. with long, somewhat flattened, anal processes of a yellow color forming the prolonged ends of the flat, broad connexivum, and is of the same color as the last three segments. Color of the upper surface dark brown with a tinge of fuscous on the pronotum. Head of medium length, fussous, covered with silvery, scaly pubsscence on the lower sides and beneath. The antennae short and stout, rusty brown, the second and third joints a little thicker and darker at tip, the second shorter than the apical, but longer than the third, the basal one a little longer than the superior line of head, the fourth a little shorter, dark in color and tapering towards the tip. Rostrum swollen at base, reaching a little behind the anterior corae, with the tip black. Pronotum with the anterior lobe quadrangular and flat, a very little shorter than wide, the anterior border a little thickened and raised, the middle line behind this depressed and marked with a short, yellow stripe, the posterior lobe evenly rounded off, a little flattened, destitute of a carinate line, lateral morgins narrowly yellow; underside all silvery white. Legs of medium length, pale rusty beneath, the posterior femora as long as from the base of posterior coxae to the end of venter. Veins of corium prominent, two of the oval medio-apical areoles pale. Sutures of connexivum pale, outer half of the connexivum of the last three ventral ssgments including most of the segments themselves and the cerci, yellow, the middle line of venter with four ind inted spots.

Length to end of anal segment 10 mm . Width of pronotum 2 mm . A single female was sent to me from Colorado."

Fort Collins, April 13th (Gillette).

Linnuoporns rufoscitellatus Latr.

From stagnant water above the Rio Grande (Rothrock-see Uhler, 2). Mountains, July (Carpenter--see Uhler, 6). Seems to be common in Colorado, where it attains to full proportions, and puts on its clearest russet-brown coat (Uhler, 6). On surface of small ponds and puddles in depressions of plains west of Denver, August 8th and later (Uhler, 5). Denver, July 2sth (Packard -see Uhler, 5).

Hebras concinnn1s Uhl.

Fort Collins, April 7th to Qctober 15th (Baker).

Hebras sobrinus Uhl.

On margins of ponds west of Denver (Uhler, 5).

Microvelia anericana Uhler n . sp.

Abstract

"Dark brown, velvety above, more or less powdered with plumbeous, body a little tapering behind the curved base of sides. Head short, triangular before the eyes, margined with silvery, prostrate pubescence from behind the eyes and along their inner border forward to the cheeks; the throat testaceous; middle line of head obsoletely callous-carmate; rostrum testaceous, piceous at base and tip, reaching the posterior line of the anterior coxae; antennae slender, obscure testaceous, darker on the tip of the

fiirst and second joints, the second jointshortest, the third and fourth much more slender, the fourth a little longer than the third. Pronotum triangular both before and behind the humeral angles, the anterior division very slightly sinuated on the sides, feebly notched at the end of the scutellum behind the anterior lobe; collum distinct, with an orange band on the middle; the surface rugulose and punctate behind this; the lateral and posterior margin orange, the tip a little rounded; the humeral angles moderately subacute, with the edge a little callous Pleural pieces bordered with rufo-testaceous; the coxae, trochanters, border of sternum, and legs yellowish-testaceous, with the femora, tibiae and tarsi dusky or piceous above. Scutellum fuscous, almost completely concealed beneath the projecting pronotum. Hemelytra pale smoke-brown, narrower than the abdomen, with the veins darker, and a short streak at base of coriun pale yellowish. Tergum rufous along the middle, blackish exterior to this; the connexivum both above and below, orange interrupted with black. The underside dull black with a tinge of plumbeous, a little sericeous, the posterior segments rufous on the middle, and the genital segment yellow.

Length to tip of venter 3 mm . Width of pronotum 1.25 mm . This is a common species in Maryland, and is also found in North Carolina. It has also been collected in. Colorado, and in the vicinity of San Diego, California. In Maryland it occurs on the borders of small streams during summer, and is occasionly found full-winged in the month of June. The male is narrower and more wedge-shaped posteriorly than the female."
Foot-hills five miles west of Fort Collins, March 12th to April 21st (Gillette).

Macrovelia hornii Uhl.

Fort Collins, April 14th; Rist Canon, April 9th (Baker).

Salda coriacea Uhl.

Denver (B. H. Smith-see Uhler, 5).
Salda dispersa Uhl.
Comparatively abundant in various places west of Denver (Uhler, 9.

Salda humilis Say.

West Cliff, Custer County, July 31st (Cockerell, 10).

Salda interstitialis Say.

Roaring Fork (Rothrock-see Uhler, 2). Colorado (Uhler, 6). Ula, Custer County, November 12th (Cockerell, 10 .

Fort Collins, August 27th; foot-hills five miles west of Fort Collins, March 12th to April 9th; Estes Park, July 12th (Gillette).

Salda pallipes Fab.

In western suburbs of Denver may be found in untold numbers on dark, damp, sandy and muddy soil, during August. Also near stream in Beaver Brook Gulch, and in Clear Creek Canon (Uhier, 5). Georgetown, July 8th, 9,500 feet (Packard-see Uhler, 5).

Colorado Springs, July (Tucker).

Galgu1ıs oculatus Fab.
Colorado ; Gillette-see Osborn, 1).

Boulder, September 4th; Fort Collins (Baker).

Ambrysus signoretii Stal.

Fort Collins, August 11th (Baker).
Zaitha micrantula Stal.
Fort Collins, August 27th (Gillette).
Belostoma americanum Leidy.
Occasional about electric lights at Fort Collins (Baker).
Belostoma annulipes H. Schf.
Pagosa, September 5th (Yarrow-see Uhler, 7).
Ranatra quadridentata Stal.
Fort Collins, Auguist 27th (Gillette).

Notonecta insulata Kirb.

Mountains, July (Carpenter-see Uhler, 6). Quite common in several pools of water standing in hollows near bed of creek on outskirts of Denver, August 4th and 5th (Uhler, 5).

Fort Collins, August 27th (Gillete).
Notonecta mexicana A. and S.
Det. by Osborn.

Fort Collins (Gillette).

Notonecta undulata Say.

In several pools of water standing in hollows near bed of creek on outskirts of Denver, August 4th and 5th. Not so common as N. insulata (Uhler, 5). Larva, nymph and imago from Sloan's Lake, west of Denver, July 10th (Packard-see Uhler, 5).

Fort Collins, August 27th; foot-hills five miles west of Fort Collins, April 20th (Gillette).
Corisa calva Say.
Fort Collins, August 27th (Gillette).
Corisa expleta Uhler n. sp.

[^22]finely rastrate, crossed by slender yellow lines, those of the rase nearly straight, of the middle broken and irregular, of the posterior third waved; yellow lines of the corium very short, wavy or irregularly sigmoid, beginning at base in two widely separated series and continued towards tip in about five, partly broken series; marks of the membrane short, uneven, sigmoid or irregularly waved; the embolium (sic Fieber) is broad, whitish, marked at base with a streak, with an oblique stripe on the cross vein, a spot some distance before the tip and another at the tip, black. Beneath whitish yellow; tergum black, excepting the lateral boider and tip, which are yellowish.

Length to end of abdomen $7-8 \mathrm{~mm}$. Width of pronotum $2.25-2.75 \mathrm{~mm}$. Two specimens, females, were sent to me from Colorado. A closely related species occurs in Texas and California, but my series of them is too imperfect to afford accurate deductions. The male is a desideratum."

Fort Collins, June 25th at light (Baker). Spring Canon, April 21st (Gilleitte).
Corisa inscripta Uhl.
Southern Colorado (Uhler, 8).
Corisa interripta Say.
Sloan's Lake, west of Denver, August (Uhler, 5); same place in July (Packard-see Uhler, 5).

Corisa striata L.

Fort Collins, June 13th (Baker).

Corisa sutilis Uhl.

Mountains, July to September (Carpenter-see Uhler, 6), Sloan's Lake, west of Denver, August 5th (Uhler, $\tilde{0}$). Common in the mountains of Colorado (Uhler, 9).

Corisa tunnida Uhl.

Sloan’s Lake west of Denver, July 10th (Packard—see Uhler, 5). Sloan's Lake, in August, and also in several pools of water on the low grounds of suburbs of Denver, August 5̈th and 8th (TThler, 5).

Colorado Springs, August (Tucker).
Cicada dorsata Say.
Colorado (Thomas-see (Uhler, 6).
Cidada marginata Say.
Det. Baker.
Canon City, August 31st (Gillette).
Cicada tibicen L.
Mountains of Colorado (Uhler, 6).
Proarna valvata Uhl.
C'anon City, July 3d (Riley).
Tibicen synodica Say.
Common in eastern Colorado (Thomas and B. H. Smith-see Uhler, 6). Near Canon City, August 11th (Uhler, 5). Southern Colorado, June to July
(Carpenter--see Uhler, 7). Denver and Boulder (Putnam, 4).
Fort Collins, June 21st (Baker), and July 5th (Gillette). Manitou Park (Snow).
Tibicen rimosa Say.
Southern Colorado, June to July (Carpenter--see Uhler, 7). Near Denver (Thomas-see Uhler, 6). On Clear Creek at Floyd's Hill (Putnam, 4).

Spring Canon, July 4th (Gillette).
Tibicen crnentifera Uhl.
Colorado (Riley).

Platypedia putnami Uhl.

Clear Creek Canon (Uhler, 4). Near Clear Creek (Putnam-see Uhler, 5). On Clear Creek, near Floyd’s Hill (Putnam, 4).

Horsetooth Gulch, May 1Sth; Rist Canon, May 29th; Howe's Gulch, June 14th (Gillette).
Melampsalta parvula Say.
Colorado (Snow).

Publilia modesta Uhl.

(Publilia bicinctura Godg. Ent. News, III, p. 200.
Colo. (Thomas-see Uhler, 6). Clear Creek Canon, August 6th; Colorado Springs and Manitou, August 17th, west of Denver, August 18th; Pueblo, August 10th (Uhler, 5). Cusack Ranch, Custer County, on Gymnolomia multiflora (Cockerell, 10). Fort Collins, June and August, on Glycyrrhiza lepidota (Gillette-see Goding, 2).

Foot-hills five miles west of Fort Collins, May 18th to September 1st (Gillette). Fort Collins, May 29th to October 7th on Solidago, Glycyrrhiza lepidota, alfalfa. Helianthus, Iva xanthiifolia, and Artemisia; Steamboat Springs, July 15th (Baker). Colorado Springs, August (Tucker).

Goding's bicinctura must be referred to this species. We have every gradation between the two, and also forms varying to a uniform deep chocolate. Furthermore, we have reared them in abundance together on the same food-plants from nymphs which were indistinguishable. Dr. Uhler, to whom we sent a complete series, corroborates the reference and states that he was previously acquainted with all the forms. Ceresa bubalus Fab.

Det. Goding.
Near Pueblo (I rarrow-see Uhler, 7). Net with at every place affording
sufficient moisture for growth of willows. In Denver found on many weeds in low places as well as willows. Also found at Canon City and in Clear Creek Canon (Uhler, 5). Near Eagle River in August, and in other parts of Colorado, June to September (Carpenter-see Uhler, 6). Colorado (Rileysee Goding, 3).

Colorado Springs (Tucker). Glenwood Springs, August 24th; Canon City, August 31st; Fort Collins, September 27th on Solidago spectabilis and Aster canescens, September 31st female depositing eggs in apple twigs (Gillette). Fort Collins, July 24th on Apocynum androsaemifolium, August 4th on alfalfa, A ugust 11 th very abundant on Glycrrhiza lepidota (Baker). Specimens of apple twigs with egg punctures have been received from several parts of the state, including Rocky Ford, Arvada and Windsor, From the last lot, which were placed in a breeding cage, there emerged on May 19th, numerous specimens of Cosmocoma howardii Ash. (determined by Ashmead). We have often found the imago infested with a minute red mite, Eupalpus echinatus Bks. (determined by Banks). Soft maple twigs in the vicinity of Fort Collins are also considerably infested with the eggs of this insect.

Ceresa turbida Godg.
Det. Goding.
Colorado (Gillette-see Goding, 3).
Steamboat Springs, July 26tn; The Rustic, Larimer County, August 11th (Gillette).
Ceresa diceros Say.
Colorado Springs (Tucker).
Stictocephala festina Say.
Colorado (Riley-see Goding, 3).
Stictocephala franciscana Stal.
Steamboat Springs (Gillette-see Goding, 3).
Steamboat Springs, July 26th; Rist Canon, July 30th (Gillette).
Stictocephala gillettei Godg. Det. Goding.
Colorado (Gillette-see Goding, 1 and 3). Trinidad, May 14th (Gillette-see Goding, 2).

Fort Collins, July 29th, on Psoralea tenuiflora; Four-mile

Hill eight miles south of Steamboat Springs, July 15th (Baker).
Stictocephala inermis Fab.
Det. Goding.
Steamboat Springs, July 26th (Gillette).
Stictocephala viridis Godg.
Det. Goding.
Rist Canon, May 29th (Gillette)
Thelia univittata Harr.
Det. Goding.
Routt Co. (Gillette-see Goding, 3).
Steamboat Springs, July 26th (Gillette).
Telamona monticola Fabr.
Colorado (Goding, 3).

Telamona pyramidata Uhl.

Det. Goding.
Southern Colorado, June to July (Carpenter-see Uhler, 7). Southern Colorado (Uhler-see Goding, 3). Colorado (Snow-see VanDuzee, 5).

Fort Collins, July 20th on cottonwood, and August 14 th on Virginia Creeper (Baker). Colorado Springs, July 27th on cottonwood (Gillette).
Telamona querci Fitch.
Colorado (Carpenter-see Uhler, 6).
Telamona reclivata Fitch.
Det. Goding.
Colorado (Baker-see Goding, 3).
Fort Collins (Baker).
Heliria scalaris Fm.
Det. Goding.
Fort Collins, July 4th (Gillette-see Goding, 2). Colorado (Baker-see Goding, 3).

Fort Collins, July 5th (Baker). La Veta, July 4th (E. A. Schwarz).
Acutalis calva Say.
Colorado (Riley-see Goding, 3).
Cyrtolobus fenestratus Fitch.
Colorado (Thomas-see Uhler, 6). Manitou, on small oak trees, August 16th (Uhler, 5). Colorado (Uhler-see Goding, 3).
Cyrtolobus vau Say. Det. Goding.
Colorado (Gillette-see Goding, 3).
Manitou, June 25th; Montrose, June 24th (Gillette).

Steamboat Springs, July 12th (Baker). Garden of the Gods; Green Mountain Falls (Tucker).
Vanduzea arquata Say.
Det. VanDuzee.
Colorado (Gillette-see Goding, 3).
Dixon's U'anon, five miles west of Fort Collins, September 1st(Gillette).
Vanduzea vestita Godg.
Colorado (Goding, 3).
Campylenchia curvata Fab.
Det. Gəding:
Eagle River, August 29th (Carpenter-see Uhler, 6). Near Boulder, June: 29th (Packard-see Uhler, 5). Denver, near Golden, near Colorado Springs, on: small plants in low ground, and also in the valley of the Arkansas near Canom City in August (Uhler, 5). Colorado (Riley-see Goding, 3).

Steamboat Springs, July 26th; Rist Canon, August Sth; Dixon's Canon, September 1st; Estes Park, July 12th (Gillette). Fort Collins, August 11th on Glycyrrhiza lepidota, July 24th on Psoralea tenuiflora and Apocynum androsaemifolium; Steamboat Springs, July 15th (Baker). Colorado Springs (Tucker).
Scolops angustatus Uhl.
Det. Osborn.
The Rustic, Larimer County, August 11th (Gillette).
Scolops grossus Uhl.
Det. VanDuzee.
Fort Collins, July 24th to August 1Sth (Baker).
Scolops hesperius Uhl.
Southern Colorado (Thomas-see Uhler, 6). Denver (Smith-see Uhler, 6).
Scolops sulcipes Say
Det. Osborn.
On low ground, in suburbs of Denver, August 18th (Uhler, 5). Colorada (Uhler, 6).

Denver, July 21st (Gilleite). Fort Collins, July 24th to August 1Sth (Baker). Colorado Springs (Tucker).
Vixius stigmatus Say.
Det. VanDuzee.
Colorado (Uhler, 6).
Lamar, May 7th (Gillette). Big Narrows of Poudre River, Larimer County, July 9th on Bigelovia; Steamboat Springs, July 14th (Baker). Colorado Springs (Tucker).

Cixitus vicarins Walk.
Swept from weeds in west Denver, August 5th (Uhler, 5).
Oliarus franciscants Stal.
Det. VanDuzee.
Montrose, June 24th (Gillette).
Helicoptera floridae Walk.
Det. VanDuzee.
Dolores, June 16th (Gillette).
Pissonotus pallipes VanD.
Det. VanDuzee.
Fort Collins, August 25th (Gillette).
Stenocranus dorsalis Fitch.
Det. Osborn.
Foot-hills five miles west of Fort Collins, April 25th; Fort Collins, September 27th on Carex; Dolores, June 1sth (Gillette). Fort Collins, May 18th on alfalfa; Steamboat Springs, July 12th on Carex (Baker).
Conomelus tricarinatus Say.
Det. VanDuzee.
Manitou, June 25th; Montrose, June 24th; Glenwood Springs, August 24th (Gillette). Steamboat Springs. July 14th (Baker).
Myndus impunctatus Fitch.
Det. VanDuzee.
Montrose, June 24th (Gillette).
Myndus n. sp.
Det. VanDuzee.
Manitou, July (Tucker). Mr. VanDuzee says, "Differs from all the species I know by the lunate pale area on the front." Delphacinus obesus VanD,

Det. VanDuzee
Fort Collins, May Sth (Gillette).
Delphacinus zonatus VanD.
Det. VanDuzee.
Manitou, June 25th; Montrose, June 24h (Gillette).
Delphacinus vittatus VanI).
Det. VanDuzee.
Dolores, June 1Sth (Gillette).
Liburnia consimilis VanD.
Det. VanDuzee.
Lamar, May 7th; Dolores, June 1Sth (Gillette).
Liburnia gillettei Van .
Det. VanDuzee.
Lamar, May 7th; Dolores, June 18th; Estes Park, July 12th (Gillette).

Lamenia californica VanD.
Montrose, June 24th (Gillette).

Tylana ustulata Uhl.

Colorado (Uhler, 6).
Bruchomorpha oculata Newm.
Det. VanDuzee.
Colorado (Uhler 6).
Steamboat Springs, July 26th (Gillette).
Bruchomorpha pallidipes Stal.
Swept from plants on plains near Colorado Springs, August 13th (Uhler, a).
Colorado Springs, August (Tucker).
Stiroma inconspicua Uhl.
Moderately abundant on small bushes in Clear Creek Canon, August 6th (Uhler, 5).
Philaenus abjectus Uhl.
Colorado (Thomas--see Uhler, 6).

Philaenus lineatus L.

Det. VanDuzee.
In foot-hills near Golden, August 5th. Doubtless widely distributed through the mountain region of Colorado (Uhler, 5). Hills and high mountains (Carpenter-see Uhler, 6). Colorado (Thomas-see Uller, 6).

North Park, July 20th; Gore Pass, July 29th; Steamboat Springs, July 26th; Estes Park, July 16th (Gillette). La Veta, July 4th (E. A. Schwarz).
Clastoptera binotata Uhl.
VanDuzee.
Steamboat Springs, July 26th; Leadville, August 23d (Gillette). Steamboat Springs, July 12th on Artemisia tridentata (Baker).
Clastoptera delicata Uhl.
Det. VanDuzee.
Near Colorado Springs, sweeping rank growths of plants ir damp ground, August 16th (Uhler, 5). Colo. (Thomas and Smith-see Uhler: 6).

Steamboat Springs, July 26th (Gillette).
Clastoptera obtusa Say.
Det. Osborn.
Beaver Creek, Larimer County, August (Gillette). Fort Collins, July 19th (R. C. Stephenson).

Clastoptera osborni n. sp.*

[^23]Female: Face two-thirds wider than Iong, minutely, indistinctly sculptured; clypeus broad at base, gradually tapering to the pointed apex, one-fifth longer than broad, basal suture obsolete; lorae long, nearly as long and half as broad as clypeus; genae narrow, outer margin concave benea h eyes, convex brlow the lorae where they are very narrow, touching the clypeus at the broades part; front but little longer than broad, superiorly very broadly and evenly rounded. Vertex very slightly transversely depressed, anterior margin carinately elevated, not longer at middle than at eyes. Pronotum transversely wrinkled, minutely scabrous, two distinct pits behind anterior margin near the median line, thee-fourths wider than long, anterior curvature three-eights of length. Scutellum finely and transversely wrinkled and minutely scabrous, longer than head and pronotum, twice longer than wide. Elytra with a fine, thickly set, golden pubescence, entirely finely, densely punctured. Color pale rufous througiout, tinged with olive green on pronotum and clavus, beneath more yellowish.

Length 5.5 mm . Described from twn females. Large, but somewhat narrower across the hemelytra than is u ual in this genus.

Manitıu, July 24th on oak (Gillette). Cheyenne Canon, Colorado s'prings, July (Tucker).

Lepyronia angulifera Uhl.
Howe's Gulch, June 14th and Septemlier 1st (Gillette).
Lepyronia quadrangularis Say. Det. VanDuzee.

Canon City, and the irrigated region west of Denver, August 6th to 17th (Uhler, 5). Colorado (VanDuzee, 6).
Fort Collins, September 27th on Solidago, Clematis ligusticifulia, and Carex (Gillette). Fort Coliins, August 26th to September 14th, on Solidago (Baker).

Aphrophora permintata Uhl.
Colorado (Uhler, 6). Colorado (Snow--see VanDuzee, 5).
Manitou Park (Snow).

Pachyopsis laetus Uhl.

At Manitou and near Canon City, upon small bushes near water August 11 th to 16 th (Uhler, $\overline{5}$). Custer County, midalpine (Cockerell, 10). Colorado (Snow-see VanDuzee, 5). Colorado (VanDuzee, 4).

Pachyopsis robustus Uhl.
Det. VanDuzee.
Colorado (VanDuzee, 4).
Dolores, June 18th; Estes Park, July 10th; North Park, July 20th; Steamboat Springs, July 26th; Fort Collins, September 27th on Bigelovia (Gillette). Mountains sonthwest of North Park, on Grizzly Creek, July 10th on Aitemisia tridentata (Baker).
Bythoscopus fenestratus Fitch.
Det. Osborn.
E-tes Park, July 12th (Gillette).
Bythoscopis pruni Prov.
Det. Osborn.
Mountains of Colorado (VanDuzee, 4).
The Rustic, Larimer County, August 11th (Gillette).
Pediopsis bifasciata VanD.
Steamboat Springs, July 15 th on willow (Baker). Montrose. June 24th (Gillette).

Pediopsis erythrocephala n. sp.

Female: Large and robust. Face nearly as long as wide; clypeus short and broad, suddenly broadened and widely depressed before the rounded apex, sides parallel on basal two-thirds; front slightly constricted before antennae, rapidly narrowing towards clypeus. Clypeus, face, vertex, pronotum, and scutellum, feebly rugose. Vertex onethird longer at eyes than at middle, width between eyes nearly twenty times length at middle. Pronotum little more than twice wider than long, curvature nearly the entire length. Last ventral segment with hind margin distinctly notched. Head. pronotum, and scutellum dull red, concolorous. Elytra hyaline. Abdomen greenish. Eyes reddish brown. Legs greenish shading into reddish towards base. I'ropleura with a large black spot.

Length 6 mm . Described from two females.

Fort Cullins, August 11th (Baker). Colorado Springs, August (Tucker).

Pediopsis fumipennis n. sp.
Female: Form of bifasciata. Face little more than one-sixth wider than long; clypeus short and broad, suddenly croadened and widely depressed before the rounded apex, sides nearly parallel on basal two-thirds. but slightly broauentng towards base; front slightly constricted before antennae, rapidly narrowing towards clypeus. Front and vertex finely rugose, with scattered inconspicuous punctures. Vertex one-fifth longer at eyes than at middle, width between eyes nearly eleven times length at middle. Pronotum two and one-fourth times wider than long, curvature three-fourths of length, sculpturing like that of front but coarser. Scutellum finely rugose, basal angles shagreened. Last ventral segment with hind margin slightly emarginate. Head, pronotum, legs and venter green, or yellowish green. Elytra deep smoky brown, costal margin greenish. Propleura
 without a black spot. Valves of ovipositor yellow at base, green at tip.

Length 5.5 mm . Described from one female.
Steamboat Springs, July 15th (Baker).
Pediopsis sordida VanJ.
Det. VanDuzee.
Colo. (VanDuzee, 4).
Estes Park, July 12th; North Park, July 20th; Steamboat Springs, July 26th; Gore Pass, July 29th (Gillette). Steamboat Springs, July 15th on willow (Baker).

Pediopsis viridis Fitch.

Canon City; Clear Creek Canon, on willow (Uhler, 5). Colorado (Uhler--see VanDuzee, 1). Colorado (VanDuzee, 4).

Dolores, June 18th (Gillette). Fort Cullins, August 11th; Steamboat Springs, July 15th on willow (Baker). Colorado Springs, Augnst (Tucker). Some slightly smaller, more yellowish specimens from Montrose, June 24th (Gillette), we had considered distinct, but aside from these differences there are no characters on which they can be separated.
Idiocerus alternatus Fitch.
Colorado (VanDuzee, 4). West Cliff, Custer County, July 31st; a'so high alpine (Cockerell, 10).
Spring Canon. May 11th; Horsetonth Gulch, April 21st to May 18th; Rist Canon, June 12th; Fort Collins, June 14th; Estes Park, July 12th; Steamboat springs, July 26th; Lead-
ville, August 23d; Trinidad, May 14th; Montrose, June 24th (Gillette). Fort Collini, October 7th; Dixon's Canon, May 6th; Steamboat Springs, July 15th, on willow (Baker).
A common species everywhere. There seems to be considerable variation in the form of the last ventral segment in the female.

Idiocerus amoenus VanD.

Det. VanDuzee.
Colorado (VanDuzee, 4).
Horsetooth Mountain, July 4th; Steamboat Springs, July 26th; Montrose, June 24th (Gillette). On Red stone Creek twelve miles south-west of Fort Collins, August 1st (Baker).

Idiocerus interruptus n. sp.

Female; Face about a ninth wider than long; clypeus one-half longer than broad, gradually broader towards the almost truncate apex, basal suture straight; lorae a li,tle longer and almost as broad as the clypeus; genae rather nirrow, the outer margins straight, attaining tip of clypeus, moderately broad below the lorae; frunt ore fourth longer than broad and nearly three times as long as the clypeus. Face, pronotum and scutellum finely shagreened. Vertex finely, transversely wrinkled, about onefourth longer at the eyes than at the middle, distance between the eyes a little less than five and a half times the length at the middle. Pronotum a little more than twice as broad as long, and three and a half times the length of the vertex; the curvature a little more than two-thirds the length of the pronotum; transverse groove of scutellum angularly bent forward and obsolete at the center, appearing as two oblique lunate depressions. Last ventral segment with the hind margin shallowly notched and the posterior angles obliquely cut off. Color pale yellow marked with brown and black; face mottled above with brown; eyes brown. Vertex brown with a yellowish white line next the eyes, and a merlian longitudinal white line, and a small black spot on either side. Pronotum brown with :a broad median longitudinal white band, anterior margin whitish with about four small blackish spots on either side; scutellum whitish with a large black spot just within the basal angles on either side; a median brown line between base and transverse groove, forked beyond and extending nearly to the tip; a small black spot on either side ju-t before the ends of the transverse groove. Ely tra whitish subhyaline, with an oblique brown band on the middle extending down and forward, veins brown interrupted with white, a large white spot on the middle
 of the clavus, with a smoky spot in front and another on the tip; all beneath unicolorous, legs slightly washed with rufous, propleura with a black spot. Length 5 mm .

Male: Differs from female as follows: Below deeper yellow, white lines next the compound eyes obsolete, other light marking on the vertex and pronotum yellowish, most of the dark markinge darker; front margin of anterior coxae with a large black spot, and narrow black lines on the outer sides of all the tibiae; compound eyes jet black; black
spots on propleura much larger. Length 4.75 mm .
Described from two females and one male.
Idiocerus distinctus n. sp.*
Female: Form that of a small and slender alternatus. Face a little less than oneeighth wider than long; clypeus two-fifths longer than broad, broadest at base; lorae a little longer than clvpeus, and two-thirds as broad; genae rather deeply depressed beneath the eyes, lateral margins nearly straight, attaining the tip of the clypeus and broad beneath the lorae. Front but little longer than broad, two times as long as the clypeus, rapidly narrowing below the antennae; face rather coarsely shagreened. Vertex finely transversely wrinkled, length at the middle the same as at the eyes, width between eyes a little less than five times the length at the middle, apex very broadly rounded. Pronotum two times as broad as long, three times as long as vertex, curvature little more than two-thirds of the length; slightly concave behind; disc finely transversely shagreened, transverse groove as in interruptus. Last ventral segment with the hind margin broadly rounded, notched at the center, posterior angles rounded. Color brown and white above, yellowish beneath. Face and vertex pale yellow washed with pale rufous. Vertex with small round black spots on crest. Pronotum pale brown with about eight or ten small pale bluish spots. Scutellum rufous, dark near the posterior angles, with two small spots on the disc, and the apex pale. Elytra white next to szutellum and at tip of clavus deep smoky; two or three lines on the nervures below tip of clavus, and nervures at tip of corium, blackish. Venter yellow. Legs pale yellow, concolorous.

Length 4.75 mm . Described from one female.

Steamboat Springs, July 15th on willow (Baker).

Fort Collins, September 26th on elm (Baker), and September on grass (Gillette).

Variety A. We have a single female, identical in all respects with this species except that it is strongly suffused

[^24]with rufous throughout and has no black on the propleura. Colorado Springs, August 3d (Giillette).

Idiocerns lachrymalis Fitch.

Det. VanDuzee.
Colorado (VanDuzee, 4).
Estes Park, July 12th; Steamboat Springs, July 26th; Rist Canon, July 30th (Gillette).

Idiocerus mimicus n. sp.

Female: Face one-fifth wider thạ long, faintly shagreened; clypeus a little less than two-thirds longer than broad, moderately broadened at the rounded apex; lorae considerably longer and almost as broad as the clypeus; genae moderately depressed beneath the eyes, lateral margins straight, attaining tip of clypeus, broad beneath lorae; front slightly longer than broad, nearly twice as long as the clypeus. Vertex finely transversely wrinkled, length at middle same as next the eyes; width between the eyes five times the length at middle. Pronotum finely transversely shagreened, a little more than two and one-third times broader than long, three times longer than vertex, curvature little more than two-thirds of the length Scutellum finely shagreened and with the transverse groove as in interruptus. Last ventral segment as in rufus. Color pale yellowish brown, unicolorous except two distinct black spots on the crest of the vertex, and the nervures of wings and basal angles of scutellum rufous.

Length 4.5 mm . Described from one female. Form of alternatus but more robust.
Fort Collins, A ugust 1Sth on blackwalnut (Baker).
Idiocerus nervatus VanD. Det. VanDuzee.
Colorado (VanDuzee, 1).
Lamar, May 7th; Trinidad, May
 14th (Gillette). On Redstone Creek, twelve miles southwest of Fort Collins, August 1st; Fort Collins, September 14th on Solidago (Baker). The dark nervures of the wings are not a distinguishing characteristic of this species as certain forms of pallidus also possess them.
Idiocerus pallidus Fitch.
Quite common in Clear Creek Canon, also near the South Platte and its tributaries near Denver, and at Manitou and Colorado Springs, chiefly upon willows, August 6th to 18th (Uhler, 5). Mountains, June (Carpenter-see Uhler, 6). Colorado (VanDuzee, 4).

Female: Face an eighth wider than long, finely shagreened; clypeus one-half longer than broad, broadest near the tip where it is suddenly widened, apex rounded and broadly
depressed within; lorae as long as clypeus and narrower than clypeus at base; genae narrow, narrowly but rather deeply depressed next to the compound eyes and beneath the antennae, lateral margins almost straight, slightly concave, not attaining the tip of clypeus, moderately broad beneath the lorae; front one-third longer than wide, two times the length of the clypeus, sides below the antennae nearly straight but rapidly incurved near the clypeus. Vertex minutely transversely wrinkled, apex very broadly rounded, length at middle slightly less than that at the eyes, width between the eyes four and a half times the length at the middle. Pronotum two and five-sevenths times the length of vertex, two and one-fourth times broader than long, curvature five-ninths of the length, posterior margin slightly concave, dise minutely transversely rugulose. Scutellum finely indistinctly shagreened, transverse groove rather broadly depressed and strongly angled forward. Last ventral segment with hind margin moderately produced at the middle, truncate, the edge either side gently curving to the rounded lateral angles. Color uniform pale green. Eyes brown. Basal angles of scutellum sometimes pale yellow. Nervures of elytra and wings colorless.

Length $5.5-6.5 \mathrm{~mm}$. Described from seven females.

Male: With the greenish color below
 much more pronounced. Spots at basal angles of scutellum sometimes nearly obsolete.

Length 5 mm . Described from five males.
Colorado Springs August 3d (Gillette). Fort Collins August 26th on Helianthus annuus; Steamboat Springs, July 15th on willow (Balier). These specimens were examined by Mr. VanDuzee and said by him to be identical with the eastern form generally known under the name pallidus.

Variety A. We also have numerous males and females which correspond exactly in structure and general coloration with this species, which have the dark uing nervures of nervatus. Steamboat Springs, July 15th on willow (Baker).

Variety B. We have further three females which also correspond in structure, but are quite yellowish and have large spots within the basdl angles of the :cutellum black, and the tips of the elytra smoky. Leadville, August 23d (Gillette).

Idiocerus perplexus n . sp.

Near pallidus, differing from that species as fellows: Genae sharply incurved beneath the eyes, then rounded to clypeus, and the clypeus more broadened out towards the tip. Last ventral segment produced on posterior margin very much as in pallidus, but rounded at extreme tip, not truncate. Color pale yellow, unicolorous throughout. This may prove to be only it variety of pallidus but the specimens we have examined seem quite distinct.

Length of female 6-7.5 mm., of male $5.25-6 \mathrm{~mm}$. Described from two females and one male.

Fort Collins, August 26th on cottonwood, and September 20th ovipositing in box-elder (Gillette). Cheyenne Canon, Colorado Springs, August (Tucker).

We have one male of the same structural characters, quite distinctly greenish. Colorado Springs, August 3d (Gillette).
Idiocerus productus n. sp.
Male: Face as long as wide, finely shagreened; clypeus fourfifths longer than broad, much widened towards the rounded apex, basal suture curved; lorae slightly longer and nearly as wide as the clypeus; genae deeply depressed beneath the eyes, lateral margins straight, not attaining tip of clypeus and narrow below the lorae; front nearly one-half longer than wide, a little less than twice the length of clypeus. Ver-
 tex finely transversely wrinkled, length at middle a half longer than next the eyes, width between the eyes little more than three times the length at the middle, apex rounded, but the angle nearly a right angle. Pronotum slightly more than twice as wide as long and two and one-fifth times as long as the vertex, curvature little less than five-sevenths of the length, disc finely transversely shagreened. Scutellum finely shagreened, transverse groove as in interruptus, except that it is more strongly depressed and with several transverse wrinkles just back of it. Color yellowish below, whitish above. Crest of vertex with a large black median longitudinal spot, dise whitish with a small black spot on either side next the compound eyes. Pronotum black with the posterior margin and a few small spots an disc whitish. Scutellum black with more or less of the lateral margins
and apex, and two small spots next the pronotum whitish. Elytra dark smoky, nervures black, on inner margin at middle of clavus a white spot, on second sector of corium two small white spots, and an indistinct whitish transverse band on the corium just beyond the tip of the clavus. Venter blackish, tips of basal segments and all of the last two segments yellow. Legs sordid yellow, tibiae slightly infuscate, femora having a black line on outer margin, tarsi infuscate.

Length 6 mm . Described from two males. Differs from all other species of the genus in the remarkable form of the head.

Leadville, August 23d (Gillette). Steamboat Springs, July 15th on willow (Baker).
Idiocerus ramentosus Uhl. Det. VanDuzee.
On willows in Denver; also in Clear Creek Canon and at Manitou (Uhler, 5). Colorado (VanDuzee, 4).

Steamboat Springs, July 15th (Baker). Spring Canon, May 11th to June 30th; Estes Park July 12th; Steamboat Springs, July 26th;
 Manitou, September 29th on willow (Gillette).

Idiocertis snowi n. sp.

Face slightly more than one-third wider than long, indistinctly shagreened, and sparsely set with short, white, very weak hairs; clypeus slightly more than one-half longer than broad at tip, nearly as broad at base as at apex, strongly constricted at middle, truncate at the tip, basal suture nearly straight; lorae slightly longer and somewhat narrower than the clypeus; genae broad, outer margin slightly roncave, attaining tip of clypeus and moderately broad below the lorae; front as long as broad. Vertex finely transversely rugose, as long at middle as next eyes, width between the eyes three and five-sevenths times the length at middle. Pronotum very minutely transversely wrinkled, with numerous fine scattered punctures, two and one-third times broader than long, two and one-fourth times the length of the vertex, curvature a little less than two-thirds of the length. Scutellum with the transverse groove as in interruptus. Last ventral segment with the hind
 margin broadly rounded. Color pale green, tips of tibiae, tarsi and pygofers, bluish green. Vertex with two round black
spots on either side near anterior edge, nearer to the compound eyes than to the median line.

Length of female 6 mm ., of male 5 mm . Described from three females and two males. Readily distinguished from pallidus by the two black spots on the vertex.
Idiocerus rufus n . sp .
Female: Face one-fifth wider than long, finely shagreened; clypeus little less than one-half longer than broad, broadened towards the rounded tip; lorae a little longer and nearly as broad as the clypeus; genae slightly depressed beneath the eyes, the lateral margins almost straight, attaining the tip of the clypeus, broad beneath the lorae; front about one-fifth longer than broad and twice the length of the clypeus. Vertex finely transversely wrinkled, length at the middle the same as at the eyes, width between the eyes nearly four times the length at the middle. Pronotum finely transversely shagreened, with numerous shallow, scattered punctures, slightly more than twice as broad as long, two and one-half times as long as the vertex, curvature slightly less than three-fifths of the length. Scutellum finely shagreened, transverse groove as in interruptus. Last ventral segment with hind margin broadly rounded, with a narrow median notch. Color bright chestnut, with the face, three small spots either side of the pronotum, a few spots on the scutellum, venter and all below, except the pygofers and sometimes the legs light yellowish.

Length 5 mm . Described from two females. Form of alternatus.

Rist Canon, September 27th on Solidago; Manitou, September 29th on oak (Gillette).

Colorado Springs, August (Tucker).
Idiocerus suturalis Fitch.
Det. VanDuzee.
Colorado (VanDuzee, 4).
Spring Canon, June 30th; Estes Park, July 12th; Steamboat Springs, July 26th (Gillette). Steamboat Springs, July 12th (Baker). Manitou, July (Tucker).
Idiocertus verticis Say.
Upon willows at Denver, August 9 th to 18th (Uhler, 5). Colorado (VanDuzee, 4).

Estes Park, July 12th (Gillette).
Agallia novella Say.
Colorado (VanDuzee, 4).
Agallia 4-punctata Prov.
Det. Gillette.
Fort Collins, June 4th to 14th (Gillette).

Agallia sangininolenta Prov.
Det. VanDuzee.
Colorado, July 19th to September 6th; Eagle River, August; Denver, June (Carpenter-see Uhler, 6). Inhabits summits of high mountains (Uhler, 6).

Fort Collins, hibernating under boards during March; Spring Canon, March 12th under stones; Fort Collins, October 15th; Montrose, June 24th; Dolores, June i8th (Gillette). Fort Collins, May 16th to June 9th on alfalfa; Steamboat Springs, July 12th, on Solidago (Baker). Colorado Springs (Tucker).
Agallia ulhleri VanD.
Det. VanDuzee.
Fort Collins, May 7th to October 15th, and August 15th at electric light; foot-hills five miles west of Fort Collins, July 12th to September 1st; Colorado Springs, August 2d; Manitou, June 25th; Lamar, May 7th; Trinidad, May 14th; Dolores, June 18th; Grand Junction, August 26th on sugar beet; Glenwood Springs, August 24th (Gillette). Fort Collins, June Sth on Sisymbrium canescens, May 16th to July 14th on alfalfa, and July 29th on cultivated beet (Baker).
Oncometopia costalis Fabr.
Det. VanDuzee.
Widely distributed throughout the region of Colorado less remote from the foot-hills. Extraordinarily numerous near Colorado Springs on low plants August 13th to 17th. On low hills west of Denver, near Golden, in Clear Creek Canon and in Manitou Park, less abundant (Uhler, 5). Larva at Boulder, June 29th (Packard-see Uhler, 5). Colorado (Uhler, 6). Ula, Custer County, November 12th; West Cliff, March 31st; also subalpine (Cockerell, ${ }^{\text { }}$, 10). Manitou Park (Snow-see VanDuzee, 5).

Steamboat Springs, July 26th; Colorado Springs, August 1st; Leadville, August 23d; Minturn, August 24th; Fort Collins, March 20th to May 16th (Gillette). Fort Collins, during winter hibernating under dead leaves, stones, and boards, coming out to bask in the sun on warm bright days; taken copulating on March 2d (Baker).

Oncometopia limbata Say.
Custer County, midalpine (Cockerell, 10). Colorado (VanDuzee, 4).
Tettigonia hiexoglyplica Say. Det. Osborn and VanDuzee.
Beaver Brook Gulch, near Golden, in Denver, abundant near Colorado Springs, at Manitou, in Manitou Park, and less common near the mouth of
the canon of the Arkansas (Uhler, 6). Foot-hilis and plains, August to October (Carpenter-see Uhler, 6).

Horse-tooth Gulch, May 18th to June 5th; Rist Canon, May 19th to August 8th; The Rustic, Larimer County, August 11th; Steamboat Springs, July 26th; Colorado Springs, August 3d; Manitou, June 25th to September 29th on willow and oak; Montrose, June 24th; Dolores, June 1Sth (Gillette). Fort Collins, June 13th to October 7th; on Redstone Creek, twelve miles south-west of Fort Collins, August 1st, exceedingly abundant, flying up in a cloud as one walked through the low herbage (Baker).

Diedrocephala mollipes Say.

Very abundant on grass and weeds in low spots near Denver, and near Golden, August 5th and later in the month (Uhler, 5). Colorado (Uhler, 6). Custer County, midalpine (Cockerell, 10).
Diedrocephala novaeboracensis Fitch.
Det. VanDuzee.
Near East River, August 29th (Carpenter-see Uhler, 6). More particularly a foot-hill and mountain spocies; Clear Creek Canon and Golden, Audust 5th to 7th; west of Denver, August 9th (Uhler, 5). Colorado (VanDuzee, 4).

Glenwood Springs, August 24th; Steamboat Springs, July 26th; Fort Collins, September 27 th on grass and Carex (Gillette). Steamboat Springs, July 12 th on Carex (Baker). Helochara communis Fitch.

Det. VanDuzee.
Very common in grassy marshy spots in the bed of the creek passing through Denver, also in similar situations on farms west of Denver (Uhler, 5).

Fort Collins, April 7th to October 15th; Steamboat Springs, July 26th; Dolores, June 18th (Gillette). Steamboat Springs, July 12th on Carex; Fort Collins and the adjoining foot-hills, during winter, hibernating under stones and boards (Baker). Colorado Springs, August (Tucker).
Xerophloea peltata Uhl.
Det. VanDuzee.
Clear Creek Canon, August 7th (Uhler, 5). Custer County, midalpine (Cockerell, 10). Colorado (VanDuzee, 4).

Fort Collins, June 14th to October 15th; foot-hills five miles west of Fort Collins, March 12th to September 1st; Glenwood Springs, August 24th (Gillette). On Redstone Creek, twelve miles south-west of Fort Collins, August 1st; Fort Collins, August 26th on Helianthus annuus (Baker).

Gypona angulata Spang.
Det. VanDuzee.
Colorado (VanDuzee, 4).
Dolores, June 16th; Rist Canon, June 12th (Gillette.)
Gypona cinerea Uhl.
Near Manitou, August 13th (Uhler, 5).
Gypona flavilineata Fitch.
Det. Osborn.
Colorado Springs, August 3d (Gillette.)
Gypona octolineata Say.
Clear Creek Canon, August 7th; Denver; Manitou, August 13th; in the mouth of the canon of the Arkansas (Uhler, 5). Foot-hills and plains (Car-penter-see Uhler, 6).

Eagle River and Two Elk Creek, Eagle County, September 7th (Cockerell-see Riley, in litt.).

Gypona rugosa Spang.

Det. VanDuzee.
Colorado (VanDuzee, 1).
Fort Collins, September 30th (Baker). Manitou, September 29th, on oak (Gillettte).
Penthimia americana Fitch.
Fort Collins, May 16th (Gillette).
Acocephalus maculatus n. sp.
Female: Face one-tenth wider than long; clypeus rectangular, once and a third as long as broad, round d anteriorly, narrowly depressed before apex, medially elevated on posterior half; lorae as long and two-thirds as broad as clypeus. Entire head and scutellum finely shagreened. Front about one-fifth longer than wide, little less than two times the length of the clypeus, with sides rectilinear and almost parallel, gradually converging towards clypeus. Vertex with anterior margin distinctly elevated, length at middle once and three-fifths that at eyes, wid ${ }^{\dagger}$ h between the eyes little less than two times the length at middle. Pronotum two and one-fifth times broader than long, once and a half the length of the vertex, curvature three-eights of length, finely transversely wrinkled on posterior two-thirds, finely shagreened on anterior third except on the extreme anterior margin which is transversely wrinkled and without punctures, posterior margin broadly emarginate. Scutellum with a distinct transverse groove at middle. Elytra smooth, entirely witho 't rugae. Last ventral segment with the hind margin deeply notched. Entire body, except the venter and elytra, black, irregularly marked with numerous small light yellow spots. Eyes black margined with reddish yellow. Ocelli rufous. Elytra black with tips paler, small white spots along the nervures and paler areas between. Venter black, tip of last segment yellowish Legs less spotted than other portions.

Length 5 mm . Described from two females.
Ouray, June 22d; Dolores, June 1Sth (Gillette).

Paramestrs vitellinus Fitch.

(Paramesus tuiningi Ulu.)
Estes Park, July 12th; Manitou, June 25th; Colorado Springs August 3d (Gillette).

The type of twiningi is a slightly faded male of vitellinus. In this species the second transverse nervure between the first and second sectors of the elytra is sometimes absent.
Paramesuls jucundus Uhl.
(Eutett.x jucundus Uhl.)
Manitou, August 13th (Uhler, 5). Colorado (VanDuzee, 4).
Manitou, June 2āth (Gillette).
Parabolocratus viridis Uhl.
Det. VanDuzee.
Near Golden, and on highlands west of Denver. Apparently rare (Uhler, 5). Coloradlo (VanDuzee, 4).
Lamar, May 7th; Dolores, June 18th; Rist Canon, June 13th (Gillette). Fort Collins, July 29th (Baker).
Platymetopins acutus Say.
Det. VanDuzec.
Manitou, August 13th, swept from herbage near Fountain creek (Uhler, 5).
Rist Canon, June 12th to August 8th; Fort Collins, September 27th on Rhus trilobata; Steamboat Springs, July 26th; Manitou, July 24th on Clematis, and September 29th on oak; Grand Junction, August 26th on sugar beet (Gillette). Fort Collins, August 18th; Steamboat Springs, July 14th (Baker). Deltocephalus affinis n. sp.

Female: Face one-seventh wider than long; clypeus one-third longer than broad, somewhat more than one-half the length of the front, gradually narrowing to the rounded apex, basal sutures nearly straight; lorae subovate, long and one-half as broad as the clypeus, genae broadly obtusely angled below the eye, rather broader than usual below the lorae, attaining the tip of the clypeus; front one-seventh longer than wide, gradually narrowing to clypeus, superior angle a right angle. Face and anterior half of vertex finely shagreened. Vertex onehalf longer on the middle than at the eyes, width between the eyes once and a fourth the length at the middle, disc with the two depressed areas near the hind margin. Pronotum two and onefourth times wider than long, but little longer than the vertex, curvature three-fifths of the length, posterior margin very slightly concave, anterior third glabrous with two distinct pits near the median line, posterior two-thirds indistinctly rugose. Scutellum as usual, transverse groove quite indistinct. Elytra barely exceeding abdomen. Last ventral segment with the hind margin very deeply and broadly notched,

posterior angles subacute and somewhat inclined towards the center. Color pale ashy green. Face slightly dusky with indistinct lighter transverse lines above. Genae with a small black spot near the loral suture. Vertex and pronotum concolorous, with a broad light median stripe and a dark stripe on either side, on the vertex the median light stripe with a median dark line. Scutellum darker on the disc. Elytra ashy subhyaline with a few faint fuscous markings along the middle of the disc and on the median portion of the clavus. Venter pale yellowish. Legs pale yellow.

Length 3.25 mm . Described from one female. Related to melsheimeri.

Leadville, August 23d (Gillette).

We have also a single male which probably belongs to this species. It differs from the female as follows: Front one-fourth longer than wide, two and a haif times as long as the clypeus. Face darker on discs of clypeus and genae, front very light chocolate brown, the light transverse lines above distinct. Elytra with costa and veins more distinctly yellowish, the apical cells faintly margined with fuscous. Venter black. Legs as in monticola.

Length 3.5 mm . Described from one male.

Estes Park, July 12th (Gillette).

Deltocephalus argenteolus Uhl.

Quite common on willows at Colorado Springs and near Manitou (Uhler, 5). Colorado (VanDuzee, 4).

Deltocephalus auratus n. sp.

Female: Face an eleventh wider than long. Clypeus about a third longer than wide, gradually narrowed to the rounded apex. Lorae subovate, as long as the clypeus and half as broad. Genae broadly and very obtusely angled, attaining the end of the clypeus. Front one-eighth longer than wide, about two times the length of the clypeus, sides nearly straight, rapidly narrowing to the clypeus below, superior angle rather strongly produced and rather more than a right angle. Face and anterior third of vertex finely shagreened. Disc of vertex with a de pressed area on either side next the compound eye, length at middle once and a half that next the eye, width between eyes once and a seventh times the length at middle. Pronotum twice wider than long, as long as vertex, curvature two-thirds of length, with the glabrous anterior margin somewhat elevated, posterior margin slightly concave, posterior three-fourths obscurely rugose and sparsely
 and indistinctly punctate. Scutellum broader than long, rery minutely sculptured. Last rentral segment with the hind margin deeply and broadly notched, posterios angles rounded. Color pale yellow throughout. Tip of rostrum, eyes, spots at bases of tibial spines, and ungues, black. Ocelli rufous. Elytra exceeding abdomen by somewhat less than one millimeter, yellowish subhyaline, nervures lighter.

Male: Differs from female as follows:-Color deep golden yellow. Elytra yellowish subhyaline, nervures and costa bright yellow. Genital organs below tipped with black.

Length 3.25 mm . Describe drom two males and one female.

Fort Collins, June 14th (Gillette). Steamboat Springs, July 15th (Gillette).

Deltocephalus bilineatus n. sp.

Face a twelfth wider than long; clypeus long and narrow, one-lialf longer than broad, nearly one-half as long as the front, sides parallel, apex rounded, basal suture straight; lorae subovate, nearly as broad and long as the clypeus; genae very broadly and obtusely angled outwardly, attaining the end of the clypeus; front two-fifths longer than wide,
sides rectilinear, gradually narrowed towards the clypeus, superior angle rather long, and more than a right angle. Face and vertex finely shagreened. Disc of vertex with two distinct pits near the eyes, nearer to the eyes than to each other, length at middle a half longer than that next the eye, width between the eyes equal to the length at middle. Pronotum twice as wide as long, one-seventh longer than the vertex, curvature four-ninths of the length, posterior margin very slightly concave, anterior onefourth glabrous, posterior three-fourths transversely subobsoletely wrinkled and with scattered indistinct punctures. Scutellum broader than long, shagreened more coarsely than the face. Last ventral segment with the hind margin broadly and deeply notched, the sides of the notch slightly sinuated. Color ashy gray sometimes tinged with fuscous. Face light yellow to
 dusky, the sutures sometimes darker. Two broad dark longitudinal lines extending over vertex and pronotum, these bands on the anterior two-thirds of vertex bordered internally with black, and adjoined externally by a black spot. Vertex with a fine black median line on the posterior two-thirds. Scutellum varying from brown-marked to black. Elytra little longer than the abdomen, whitish, nervures white throughout, bordered with dusky or testaceous, apex with three black spots, one internally and two externally, each elytron with seven white spots, two on the external apical border, two in the center, one large one basally and two on the internal border of the clavus. Venter light to dark yellow, sometimes bordered with blackish, the last segment with black spots on the sides of the notch. Legs yellow, tibial spurs arising from black spots, posterior tibiae black tipped internally.

Length of female 4 mm ., of male 3.5 to 3.75 mm . Described from four males and three fercales.

Steamboat Springs, July 12th on Carex (Baker).

Deltocephalus bimaculatus n. sp.

Female: Face about as long as wide; clypeus short and broad, one-seventh longer than broad, not quite half as long as the front, gradually narrowing towards the rounded apex, basal suture straight; lorae subovate, two-fifths as wide and nearly as long as the clypeus; genae broadly rounded outwardly, attaining the end of the clypeus; front oneeighth longer than wide, sides almost straight, superior angle nearly a right angle. Face and vertex roughly shagreened. Disc of vertex slightly transversely depressed, length at middle once and a half that next the eye, width between eyes unce and two-sevenths the length at middle. Pronotum two times wider than long, length slightly less than that of vertex, curvature nearly one-half of length, pesterior margin very slightly concave, anterior fourth glabrous, posterior three-fourths very finely transversely wrinkled. Hind margin of last ventral segment with a broad short tooth, on either side of which is a shallow notch,
 posterior angles rounded, obtuse. Pale yellowish green. Face with sutures black, four or five transverse black dashes on either side of the front above, which may run together form:ng a longitudinal band just within the margin. Vertex with two large oval black spots on the apex nearer the center than the eyes. Elytra greenish, subhyaline. Tergum black. Venter black with lateral and apical margins of segments yellowish. Ovipositor black, pygofers more or less streaked with black longitudinally. Legs light yellow.

Male: Differs from the female as follows: Front without black markings except in some specimens a spot on either side beneath antennae. Front two and a half times as
long as the clypeus. Sutures, other than those bounding the front, lighter. A small black spot on either pygofer.

Length of female 4.5 mm ., of male 4 mm . Described from three females and ten males
Estes Park, July 12th (Gillette). Steamboat Springs, July 13th on Carex and willow (Baker).

Deltocephalus concentricus VanD.
Det. VanDuzee.
Mountains of north-western Colorado (Gillette-see VanDuzee, 3). Colorado (VanDuzee, 4).

North Park, July 20th (Gillette).
Deltocephalus configuratus Uhl.
Det. Osborn.
Steamboat Springs, July 14th (Baker).
Deltocephalus debilis Uhl.
Det. VanDuzee.
Sides of high mountains, and near Fair Play, South Park, July (Carpentersee Uhler, 6). Colorado (Van Duzee, 4).

Horsetooth Gulch, June 5th; North Park, July 20th; Steamboat Springs, July 26th; Estes Park, July 12th; Graymont, July 16th (Gillette). Steamboat Springs, July 13th on Carex and Solidago (Baker).

Deltocephalus flavo-virens n. sp.

Face one-seventh wider than long; clypeus one-fourth longer than broad, about three-fifths the length of the front, gradually narrowing to the rounded apex, basal suture slightly convex; lorae subovate, nearly as long and about one-half as broad as the clypeus; genae broadly rounded at the sides, attaining the apex of the clypeus and broad below the lorae; front nearly as wide as long, sides straight past
 the antemae, narrowing to the clypeus below, superior angle considerably more than a right angle. Face and anterior margin of vertex finely shagreened. Disc of vertex rather strongly depressed on posterior half, length at middle about once and a half that next the eyes, width between the eyes about one and a third times the length at middle. Pronotum nearly twice wider than long, about one and a fourth times the length of the vertex, curvature four-sevenths of the length, posterior margin very slightly concave, anterior fourth glabrous, posterior tbree-fourths very faintly transversely wrinkled. Scutellum faintly scabrous. Last ventral segment with the hind margin greatly produced at the center, ending in two short acute points. Color greenish yellow. Face smoky with lighter concentric lines above, sutures of the front black. Vertex yellow, ocelli with a very small black spot on the sides next the eyes. Pronotum greenish yellow, darker on the disc. Scutellum immaculate. Elytra yellowish hyaline, nervures yellow. Basal segments of venter with apical and lateral margins narrowly yellowish, the apical segments yellow, the last one with the produced part black. Ovipositor black, pygofers very hairy. Legs yellow, except small black spots at base of tibial spines.

Length, female, 4.75 mm ., male, 4.25 mm . Described from one male and one female. \qquad

Steamboat Springs, July 12th on Carex (Baker).

Deltocephalus melsheimeri Fitch.

Det. VanDuzee.

Colorado (VanDuzee, 4).

Fort Collins, June 4th to October 15th; Horsetooth Gulch, June 5th; Rist Canon, April 25th to June 12th; North Park, July 20th; Steamboat Springs, July 26th; Lamar, May 7th; Minturn, August 24th; Montrose, June 24th; Dolores, June 1Sth (Gillette). Fort Collins, May 16 th to June 13th on alfalfa; Steamboat Springs, July 12th on Carex and Solidago (Baker).

Deltocephalus monticola n. sp.

Female: Face nearly as long as wide; clypeus nearly as broad as long, slightly more than three-sevenths the length of the front, rapidly narrowing to the rounded apex, basal suture straight; lorae subovate, nearly as long, and two-fifths as broad as the cly-
 peus; front one-sixthl longer than wide, sides nearly straight above, superior angle obtuse, more than a right angle. Face and anterior half of vertex finely slagreened. Disc of vertex flat, length at middle once and two-tlirrds that next the eye, width between the eyes one-fifth more than the length at middle. Pronotum two and one-eiglth times wider than long, length about the same as that of the vertex, curvature about three-fiftlis of the length, posterior margin very slightly concave, smooth on the anterior third, posterior two-thirds feebby rugose. Scutellum minutely sculptured. Elytra scarcely exceeding the abdomen. Hind margin of last ventral segment with a large median tooth, posterior angles strongly produced, swollen, rounded and somewhat exceeding the tooth: Color yellowish green, about the sanie as in melsheimeri. Face smoky with concentris: broken light lines above. Disc of clypeus, margins of lorae, and genae next the eyes, daris brown. Vertex light, with four short oblique black dashes on the apex. Pronotum darkened on the disc. Elytraa pale greenish subhyaline, nervures lighter. Venter except last segment, with apical and lateral marg ins of the segments yellow. Last ventral segment yellow at the sides and bliack on thie disc. Ovipositor black, pygofers yellowish green and slightly streaked with black. Leess yellowish, anterior and midale femora spotted and annulated with black. Posterior femora with it black line down the outside. Tibiae more or less spotted with black.

Length 3 mm . Described from one female. Near melsheimeri.

Leadville, August 23d (Gillette).

Deltocephalıs sayi Fitch.
Det. VanDuzee.
Colorado (VanDuzee, 4).
Fort Collins, July 4th (Gillette). Steamboat Springs, July 14th (Baker).

Deltocephalus sexmaculatus n. sp.

Female: Face nearly as long as wide; clypeus about a fourth longer than broad, half as long as the front, considerably narrowed towards the rounded apex, basal suture
straight; lorae large, suborate, as long and one-half as broad as the clypeus; genae unusually narrow, narrow below the lorae and attaining the tip of the clypeus. Front two-ninths longer than wide, broad below, the superior angle more than a right angle. Face and anterior third of vertex coarsely shagreened. Disc of vertex deeply depressed, length at middle once and about two-thirds that next the eye, width between the eyes once and a fifth the length at middle. Pronotum two and onesixth times wider than long, length slightly less than that of the vertex, curvature about one-half of the length, posterior margin slightly concave, anterior fourth glabrous, posterior three-fourths obscurely transversely wrinkled with scattered feeble punctures. Scutellum finely scabrous. Last ventral segment with the hind margin very broadly and deeply emarginated, the emargination nearly rectangular at the bottom, posterior angles obliquely sloping backward. Color ash gray, head and pronotum tinged with rufous. Face black, clypeus with one median and two lateral light spots, lorae with one median light spot, and genae with a transverse light spot next the lorae. Front with about six short transverse light lines on each side. Eyes black. Vertex with two large black spots posteriorly, in front of these two smaller black spots on either side, the anterior ones extending nearly to the crest of the vertex and a narrow median line not attaining the apex. Pronotum dusky rufous. Scutellum with four large black spots on the disc. Elytra scarcely exceeding the tip of the abdomen, pattern of coloration the same as in bilineatus, white spots at base very small. Venter dark, marked with yellowish. Legs yellowish, coxae and basal half of anterior and middle
 femora blackish, posterior femora with a longitudinal black stripe beneath. Tibiae all dark with a longitudinal yellowish stripe on the outer margin. Tarsi blackish.

Length 2 mm . Described from one female. Readily separated from weedi by the form of the last ventral segment in the female.

Leadville, August 23d (Gillette).
Deltocephalns signatifrons TanD.
Det. VanDuzee.
Colorado (VanDuzee, 4).
Fort Collins, 'July 2 d on beans; Horsetooth Gulch, June 5th; Estes Park, July 12th; Steamboat Springs, July 26ti; Lamar, May 7th; Trinidad, May 14th; Montrose, June 24th (Gillette). Fort Collins, May 16th on alfalfa; Steamboat Springs, July 14th (Baker).

Deltocephalus unicoloratus n. sp.

Female: Differs from the female of auratus as follows: Face one-twentieth longer than wide; clypeus nearly as wide as long and rapidly narrowing to the rounded tip; front one-fifth longer than wide and two times as long as the clypeus. Vertex greatly produced, the angle in front slightly less than a right angle, once and two-thirds as long at the middle as next the eyes, width between the eyes the same as the length at the middle, with a narrow black median line on the posterior two-thirds. Ocelli jet black, margined on the side towards the eyes by a small black spot. Hind margin of last ventral segment truncate with a median, slightly sunken,
 obtuse tooth, the immediate region of the tooth thin and coriaceous, posterior:angles obduse Color light lemon yellow.

Length 3.25 mm . Described from one female. Distinctly separated from auratus by the last ventral segment and by the proportions of the head.

Pleasant Valley, six miles north-west of Fort Collins, June 12th (Gillette).

Deltocephalus vanduzei n. sp.

Female: Face one-ninth wider than long; clypeus two-fifths longer than broad, threefifths the length of the front, gradually narrowing to a rounded apex; lorae subovate nearly as long and two-thirds as wide as clypeus; genae normal except the outer margin which is strongly obtusely angled, attaining the end of the clypeus. Front as long as wide, sides below the antennae rapidly narrowing to the clypeus, su perior angle more than a right angle, obtusely rounded. Face and vertex coarsely shagreened. Disc of vertex slightly convex, sloping to the margins, length at the middle once and a half that next the eye. Pronotum two and a fourth times wider than long, an eighth longer than the vertex, curvature half of the length, posterior margin slighly concave, anterior fourth finely scabrous and elevated, posterior three-fourths very finely transversely wrinkled, dise with two small distinct pits near the anterior margin. Scutellum finely scabrous. Hind margin of last ventral segment with a broad deep median notch, posterior angles rounded. Color dark smoky above, black below. Eyes black. Face black, above with a row of transverse light dashes on either side, genae mostly margined with yellowish. Vertex yellow with two large black spots behind the apex which is margined with black, a broad black transverse me lian band, produced posteriorly at the sides to near the hind margin, running between ocelli and along the margins of the eyes, and two black spots on either side within the hind margin near to each other, posteriorly a dark median
 sing yellowish margin, two elongate the basal angles ble black dashes. Scutellum with a median spot and two spots within lighter, narrowly margineme posterior point jet black. Elytra smoky, nervures coxae, distal half of a anterior tibiae yellow, infuscated, extreme tips of middle and posterior femora yellow, black with spines yellow, tarsi all dark, tibiae yellow annulate with black, hind tibiae

Male: Differs from female as follows:-Clypeus somewhat longer. Yellow markings on the face much heavier, a small yellow spot on the median line of the front near the clypeus, also two on the clypeus near the basal angles. The parts of the transverse band near the apex of the vertex of the female are here separated as two large rectangular black spots.

Length of female, slightly exceeding 2.5 mm ., of male 2.5 mm . Described from one male and one female. Near weedi.

Leadville, August 24th (Gillette).

Allygus coloradensis n. sp.

Male: Clypeus less than twice as long as broad, constricted in the middle, nearly as broad at apex as at base, half as long as the front, basal suture somewhat curved; lorae subovate, as long and as broad as the clypeus; genaegently and evenly rounded at the sides and attaining the tip of the clypeus; front a fifth longer than wide, sides inwardly curved at the antennae, narrowed towards the clypeus, superior
 angle very obtuse; face and anterior margin of vertex finely shagreened. Disc of vertex slightly transversely depressed, length at middle nearly once and a half that next the eyes; pronotum broadly rounded in front, distinctly concave behind, twice as broad as long, posterior angles very broadly rounded, opaque, not distinctly sculptured. Scutellum broader than long, transverse suture arcuated. Color dull smoky yellow; eyes dark; face somewhat smoky with narrow concentric light lines above; on genae at middle of loral suture a small black spot; vertex smoky yellow mottled with darker shades; two small black spots within hind margin near compound eyes and a narrow black median line; pronotum with anterior fourth lighter, and with four short black dashes on either side, posterior three-fourths heavily and somewhat transversely mottled with dark; scutellum yellowish with basal angles and transverse grwove blackish; elytra subhyaline, nervures dark brown, clavus with cells mottled with blackish and with three distinct pearly white spots on the inside margin, two more indistinct ones on the outside; disc of elytra with scattered black muttling within the cells; transverse veins on costal margin broadly black; elytra pearly, wings brilliantly iridescent; venter yellow with apical margins of segments black; legs light yellow, anterior coxae with a large black spot on anterior portion, anterior femora with numerous small black spots; tibiae with spines arising from black spots, posterior tarsi annulate with black.

Length 4 mm. Described from one male.

Glenwood Springs, August 24th (Gillette).

Athysanus anthracinus VanD.

Det. VanDuzee.
Colorado (VanDuzee, 4).

Montrose, June 24th (Gillette).

Athysanus artemisiae n. sp,
Female: Clypeus one-half longer than broad, broadly and shallowly depressed below the middle, sides nearly parallel, tip truncate; lorae about as long but not quite as broad as the clypeus; genae broad, scarcely depressed beneath the eyes, outer margin broadly angled, attaining the tip of the clypeus and broad beneath the lorae; front one-fifth longer than broad, superior angle rounded and more than a right angle, face and anterior half of vertex finely shagreened; eye with a narrow and acute emargination within near the antennae; disc of vertex not depressed, sloping at sides, length at middle once and a half that at eyes. Pronotum with two small approximate pits near the anterior margin, posterior two-thirds very indistinctly transversely wrinkled; scutellum finely shigreened; hind margin of last ventral segment with posterior angles broadly rounded, slightly produced, with a rather large narrow notch having at its center a small blunt tooth. Color black; front with about six

narrow transverse yellowish lines on either side; clypeus with a small yellow spot on either basal angle; genae laterally margined near the eyes with yellow. Vertex with a broad transverse band on the posterior margin between the eyes, and a narrow band along anterior margin of vertex yellow, the latter having three black spots upon it, one at the middle and one at either end. Pronotum and scutellum yellowish, indistinctly mottled with black; elytra dark smoky with the nervures and central portions of cells paler; abdomen black; legs black, lenees and tibiae yellowish, the tarsi streaked with black.

Length 3 mm . Described from one female.

On Grizzly Creek, in mountains south-west of North Park, July 10th, on Artemisia tridentata (Baker).

Athysantis comma VanD.

Det. Osborn.

Fort Collins, July 4th (Gillette), and July 24th to August 18th (Baker).

Athysanus curtipennis n. sp.

Female: Clypeus about one-fourth longer than broad, transversely depressed before the tip, sides nearly parallel, apex truncate, basal suture slightly curved; lorae as long and nearly one-balf as broad as the clypeus; genae broad, strongly depressed beneath the eyes, outer margin broadly and evenly rounded, attaining tip of clypeus and rather broad beneath the lorae; front one-eighth longer than broad and twice the length of the clypeus; superior angle broadly rounded; face finely shagreened. Disc of vertex smooth and shining, broadly transversely depressed on posterior half, length at middle once and one-third that at eyes. Pronotum short and broad, somewhat shorter than the vertex, anterior one-fourth very finely rugose, posterior threefourths rather coarsely rugose with broad scattered punctures. Scutellum very small, shorter than
 pronotum, transverse groove wanting. Elytra subquadrate, as broad as long, not attaining the tip of the second segment. Hind margin of last ventral segment with posterior angles long and subacute, entire central portion between the angles wanting; ovipositor, beneath, half the length of the whole body; valves a third longer than pygofers, the latter with a row of short stout spines, the former with numerous fine hairs near the tip. Color pale yellowish with dark markings; front with several short transverse darker lines on either side, lower angles each with a black spot; vertex with a large black spot on either side at crest and a small black spot at the apex; disc of vertex with two large black spots near the middle and with a narrow black line next the compound eyes; pronotum almost concolorous, a rather distinct dark spot just back of the compound eye and another outside of the basal angle of the scutellum, two minute approximate black spots close to anterior margin; scutellum concolorous; elytra with about four longitudinal dark lines on corium between the nervures; tergum with three longitudinal black bands on either side, outer ones narrow, inner broadest and containing a row of irregular pale green spots; venter with middle portion of three basal segments black; pygofers with two black lines on sides, valves black, margins brown; legs coucolorous.

Length 5 mm . Described from one female.

Colorado Springs, August 3d (Gillette).

Athysantus gammaroides VanD.
Det. VanDuzee.
Colorado (Gillette-see TanDuzee, 3). Colorado (VanDuzee, 4).
Foot-hills, five miles west of Fort Collins, April 25th (Gillette).

Athysanns instabilis YanD.

Det. Van Duzee.
Colorado (VanDuzee, 4).
Steamboat Springs, July 26th; Leadville, August 23d (Gillette).

Athysannis plintoninis Uhl.

Clear Creek Canon, August 6th (Uhler, 5). Colorado (VanDuzee, 4).

Athysannis relativins n. sp.

Near obsoletus. Female: Clypeus fully one-third longer than broad, sides nearly parallel, apex nearly truncate; lorae as long and nearly as broad as clypeus; genae broad, slightly depressed, outer margin broadly rounded, attaining tip of clypeus and moderately broad beneath the lorae; front as long as broad, less than twice as long as the clypeus, superior angle rather sharply rounded; face and anterior third of vertex rather coarsely shagreened, posterior two-thirds of vertex medially longitudinally wrinkled; disc of vertex nearly hat, at middle nearly two-thirds longer than at the eyes. Pronotum smooth on anterior third, transversely wrinkled on posterior two-thirds, width more that twice the length, anterior margin broadly rounded, posterio. rather strongly concare, posterior angles rounded, sides feebly carinated. Scutellum coarsely shagreened, transverse groove curved forwards. Hind margin of last ventral segment with posterior angles produced, acute, with a broad shallow median notci, having a short blunt tooth at the senter. Color pale sordid yellowish; face with six smoky transverse lines on the front; vertex unicolorous; pronotum without distingt marking; scutellum with two small, mole or less distinet, darker spot- near base; elytra with nervures whitish, areoles more or less distinctly broadly margined with fuscous or blackish; venter yellow; lateral margins and apex of last ventral segment black; legs nearly concolor. ous, spots at bases of tibial spines black, tarsi infuscate. Length 5 mm .

AIale: Clypeus a little narrower than in female; venter sometimes almost entirely black.

Described from two females and one male.

Fort Collins, September 27th on grass (Gillette).
*Athysanus 6-vittanus VanD.
Dat. VanDuzee.
Colorado (VanDuzee, 4).
*In Trans. Amer. Ent. Soc, XIX, AIr. VanDuzer separ"ates Athysianus on "Elytra short, without an appendix," giving no exceptions. In his arrangement of the species of the

Acinopterus acuminatus VanD.
Det. VanDuzee.
Colorado (VanDuzee, 4).
Steamboat Springs, July 26th (Gillette).

Scaphoideus imnistus Say.

Det, VanDuzee.
Fort Collins, August 18th, on black walnut (Baker).
Phlepsius cinereus Vand.
Det. VanDuzee.
Colorado (VanDuzee, 4).
Fort Collins, August 25th (Baker).

Phlepsius excultus Uhl.

Denver, August 18th; Pueblo (Uhler, 5). Colorado (VanDuzee, 4).
Phlepsius irroratus Say.
Suburbs of Denver and Valley of the Arkansas (Uhler, 5).
Phlepsius ovatus Vand.
Det. VanDuzee.
Colorado (VanDuzee, 4).
Horsetooth Gulch, ten miles south-west of Fort Collins, April 25 th to May 18th; Rist Canon, eight miles north-west of Fort Collins, June 13th; Dolores, May 18th (Gillette). Fort Collins, October 7th; foot-hills five miles west of Fort Collins, during the winter hibernating under stones (Baker).
Thannotettix atridorsnm VanD.
Det. VanDuzee.
Colorado (VanDuzee, 4).
Spring Canon and Dixon's Canon, June 30th; Montrose, June 24; Dolores, June 18th (Gillette).
Thamnotettix belli Uhl.
Det. VanDuzee.
Manitou (Uhler, 5). Colorado (VanDuzee, 4).
Fort Collins, May Sth; Soldier Canon, five miles west of Fort Collins, May 19th; Estes Park, July 11th; North Park, July 20th; Steamboat Springs, July 26th; Trinidad, May 14th; Silverton, June 20th; Ouray, June 22d; Dolores, June 1Sth (Gillette). Fort Collins. May 18th to August 18th on alfalfa and July 29th on cultivated beet; Horsetooth Gulch,

[^25]ten miles south-west of Fort Collins, May 21st; mountains south-west of North Park on Grizzly Creek, July 10th, on Artemisia tridentata; Rabbit Ears Pass, Routt County, July 20th; Steamboat Springs, July 12th, on Artemisia tridentata (Baker).

Thamnotettix citrinifrons n . sp.

Face one-ninth longer than broad; clypeus two-thirds longer than broad, constricted at the sides, widened near the apex, basal suture curved; lorae as long and nearly as wide as the clypeus; genae very slightıy depressed be'ow the eyes, feebly rounded at the sides, attaining the tip of the clypeus, moderately wide below the lorae; front one-fourth longer than broad, once and three-fourths the length of the clypeus, gradualiy narrowing below, superior angle very obtusely and evenly rounded. Face and anterior one-half of v rrtex finely shagreened. Disc of vertex slightly depressed, length at middle but little more than at the eyes, width between the eyes two and one-fifth times the length at middle. Pronotum about twice wider than long, length about twice that of the vertex, curvature five-ninths of the length, slightly concave behind, sides short and not carinated. Scutellum shagreened. Color yellow and deep smoky. Face, anterior and middle legs, and posterior femora, deep yellow. Vertex yellow with a transverse black band not attaining the eyes. Pronotum dark smoky, the tip tinged with yellow. Elytra smoky subhyaline, nervures darker. Tergum and venter black with narrow lateral and apical margins yellow. Posterior tibiae and tarsi dark smoky yellow. Sternum black.

Length 4.5 mm , Described from one maie.

Leadville, August 23d (Gillette).

Thamnotettix caricis n. sp.

Female: Face somewhat more than one-eighth wider than long; clypeus about onefourth longer than broad, gradually narrowed to the rounded apex, basal suture nearly straight; lorae one-half as wide and nearly as long as the clypeus; genae broad, hardly depressed beneath the eyes, outer margin evenly rounded, attaining the tip of the clypeus but much wider below the lorae than in longula; front one-eighth longer than broad, twice the length of the clypeus, gradually narrowing below, superior angle obtuse and broadly rounded. Face and anterior third of vertex finely shagreened. Disc of vertex flat, sloping, length at middle once and three-fifths that at eyes, width between eyes a third greater than the length at middle. Pronotum two times wider than long, the length once and a third that of the vertex, curvature threefifths of length, finely transversely wrinkled and with scattered shallow
 punctures on the posterior three-fourths, hind margin very slightly concave, sides short and not carinated. Scutellum coarsely shagreened. Hind margin of last ventral segment with the posterior angles produced, medially but little produced, with two blunt, short and broad, black teeth. Color pale yellowish green. Face slightly dusky with indistinct transverse lines on either side of the front. Vertex pale yellowish with a
median dark line on the posterior three-fourths, and a small more or less distinct dark spot on either side of the zenter close to the posterior margin. Ocelli black. Pronotum greenish on the disc, the margin yellowish. Scutellum yellow. Elytra hyaline, nerrures more or less yellow. Venter and eyes pale yellow. Tibial spines arising from black spots, tips of the tarsi infuscate.

Male: Face, vertex, venter, and legs sulphur yellow.
Length of female, 4.25 mm ., of male 4 mm . Described from four males and one female.

Steamboat Springs, July 12th on Carex (Baker).

Thamnotettix clitellaria Say.

Custer County, midalpine (Cockerell, 10).

Thamnotettix emarginata n. sp.

Face one-seventh wider than long; clypeus one-half longer than broad. sides parallel, apex rounded, basal suture nearly straight; lorae as long as the clypeus and two-thirds as broad; genae strongly depressed below the eyes, the outer margin strongly obtusely angled, attaining the tip of the clypeus, very narrow be-
 low the lorae; front one-fourth longer than broad, once and three-fifths the length of the clypeus, gradually narrowing below, rapidly near the clypeus, the superior angle broadly rounded. Face and anterior half of vertex finely shagreened. Eye distinctly ind narrowly emarginate within at the antennac. Disc of the vertex flat, length at the middle once and a third that at the eyes, width between the eyes one and four-fifths times the length. Pronotum twice wider than long, the length once and three-fifths that of the vertex, curvature one-half of the length, indistinctly transversoly wrinkled posteriorly, hind margin concave, sides short and very feebly carinated. Scutellum finely rugose, transverse groove curved forward. Color pale greenish yellow. Face pale yellow with a small speck on the genae next the lorae and a large spot beneath the antennae, black. Front slightly infuscate, with about six pale dashes on each side. Vertex yellow with a large darkspot near the compound eyes just within the hind margin. Pronotum yellow, disc darker. Scutellum unicolorous. Elytra smoky subhyaline, veins yellowish basally, smoky apically. Venter yellow, with the middle basal portion and narrow lateral margins of each segment, black. Pronotum and meso-sterna black. Legs yellow, bases of tibial spines and tips of tarsi blackish.

Length 5 mm . Decribed from one male.

Steamboat Springs, July 26th (Gillette).

Thamnotettix Havicapitata VanD.

Det. VanDuzee.

Colorado (VanDuzee, 4).
Steamboat Springs, July 26th (Gillette).

Thamnotettix flavomarginata $\mathrm{n} . \mathrm{sp}$.

Pace one-fourth wider than long; clypeus one-half longer than broad, sides concave, apex objusely rounded, basal suture nearly straight, lorae subovate, three-fourths as broad and four-fifths as long as the clypeus; geaae not distinctly depressed beneath the

eyes, nuter margin broadly angled, attaining the tip of the clypeus, unusually broad beneath the lorae; front one-sixth longer than broad, twice as long as the clypeus, gradually narrowing below, superior angle rather broadly rounded. Face and vertex fine:y shagreened. Eyes with a small but distinct emargination at the antennae. Disc of the vertex shallowly and broadly depressed, length at middle once and onethird that at the eyes, width between the eyes once and a third the leng th at the middle. Pronotum about two and two-fifths times wider than long, length one-seventh greater than that of the vertex, curvature two-fifths of the length, feebly wrinkled on the posterior three-forrths, slightly concave behind, sides short and not carinate. Scutellum finely shagreened. Hind margin of the last ventral segment truncate, with a median slit, the hind angles produced and broadly rounded. Color black, with yellow markings. Front with five light dashes on either side and the lower margin yellowish. Crest of the vertex yellow, back of this are two black and two y ellow lines extending from eye to eye, a black median line on posterior one-half. Pronotum with a median transverse band and the hind margin yellow. ccutellum with the sides yellow. Elytra dark smoky, nervures and a broad line on the costal margin bright yellow. middle of the cells paler. Abilomen black. Propleura with a yellow spot. Legs black, distal end of anterior femora and a line on outside of posterior tibiae, yellow.

Leng th 4.5 mm . Described from one female.

Leadville, August 23d (Gillette).

Thamnotettix longula n. sp.

Face one-ninth wider than long; clypeus two-thirds longer than broad, gradually broadening to the apex, sides nearly straight; lorae as wide as the clypeus, and onefourth longer; genae broad, nearly flat beneath the eyes. outer margin sharply rounded, hardly attaining the tip of the clypeus, very narrow below the lorae; front one-fourth longer than broad, twice the length of the clypeus, gradually narrowing below, superior angle obtusely rounded. Face and vertex finely shagreened. Disc of vertex flat, sloping, one-third longer at the middle than at the sides, width between the eyes little less than twice the length at the middle. Pronotum one and three-fourths times wider than long, length two and one-fourth times that of the vertex, curvature about one-half of the length, smooth on anterior one-fourth, finely transversely wrinkled and wilh shallow scattered punctures on posterior three-fourths, hind maryin slightly concave, sides carinate. Scutellum finely thagreened, transverse groove curved forwards. Color fulvous brown, nearly immaculate. Face with about six indistinct transverse bands on either side of the front. Vertex with a median dark brown line, and a dark spot near the compound eyes on cilher side just within the posterior margin. Pronotum with a faint yellow longitudinal line, anterior margin whitish in the center. Scutellun with two longitudinal pale lines running forwards from ends of transverse growe, between these lints are two dark spots, tip pale. Elytra uniform smoky subhyaline with nerves and central portions of cells pale. Venter and legs unicolorous.

Length 5 mm . Described from two males.

Thamnotettix geminata VanD.
Colorado (VanDuzee, 4).
Dolores, June 1Sth (Gillette).
Thamnotettix gillettei VanD.

Det. Var Duzee.

Colorado (Gillette-see VanDuzee, 2). Colorado (VanDuzee, 4).
Steamboat Springs, July 26th (Gillette).

Thannotettix infuscata n. sp.

Face about an eighth wider than long; clypeus one-fourth longer than wide, not at all contracted in the middle, sides parallel, very slightly narrowed towards the tip, basal suture slightly curved; lorae as long and slightly more than one-ha1f as broad as the clypeus; genae broad, somewhat concave below the eyes, outer margin evenly rounded; front scarcely longer than broad, four-fifths longer than the clypeus, gradually narrowing below, superior angle little greater than a right angle and rather pointed. Face and anterior half of vertex shagreened. Disc of vertex with a transverse median depression and with a small pit on either side basally close to the eyes, length at the middle once and two-thirds that next the eyes, width between the eyes once and three-fourths the length at the middle. Pronotum eight-ninths wider than long, length once and two-thirds that of the vertex, curvature five-elevenths of the length, smooth anteriorly, posterior two-thirds finely transversely wrinkled and with numerous scattered subobsolete dark punctures, posterior margin slightly concave,sides little longer than in T. atridorsum, and with a distinct carina. Scutellum finely shagreened, the transverse groove curved forwards. Last ventral segment with hind margin concave, posterior angles subacute, obliquely cut off. Color yellowish. Face and vertex smoky yellow. Pronotum dark with yellow anterior and lateral margins. Scutellum yellow, within the posterior angles smoky, two dark dots before the posterior line. Elytra darix smoky, subhyaline, darker on the shoulders, veins yellowish. Abdomen with segmeuts black, margined apically and laterally with yellow. Venter with two last segments and pygofers yellow. Legs sordid yellow, tips of tarsi infuscate, black spots at base of tibial spines.

Length 6 mm . Described from one female.

Estes Park, July 12th (Gilleite).

Thannotettix kennicotti Uhl.

Det. VanDuzee.
Colorado (VanDuzee, 4).

Fort Collins, May Sth; Spring Canon, May 11th (Gillette).

Thamnotettix laeta Uhl.

From mountains near Beaver Brook, August 6th (Uhler, 5). High mountains, June 19th to September 6th (Carpenter-see Uhler, 6). Colorado (VanDuzee, 4).

Steamboat Springs, July 26th (Gillette).

Thamnotettix longiseta VanD.
Det. VanDuzee.
North-western Colorado (Gillette-see VanDuzee, 2). Colorado (VanDuzee, 4).

Steamboat Springs, July 26th (Gillette).

Thamnotettix montanns VanD.
Det. VanDuzee.
Mountains of South-western Colorado (Gillette-see VanDuzee, 2). Colorado (VanDuzee, 4).
Steamboat Springs, July 26th (Gillette). Steamboat Springs, July 14th on Carex, Solidago and Delphinium occidentale (Baker).

Thamnotettix punctiscuta n. sp.

Face about one-ninth wider than long; clypeus one-third longer than broad, sides almost parallel, broadly rounded at the apex, basal suture nearly straight; lorae twothirds as wide and almost as long as the clypeus; genae moderately depressed beneath the eyes, outer margin evenly rounded, attaining the tip of the clypeus, very narrow below the lorae; front nearly as broad as long, once and three-fifths the length of the clypeus, rapidly narrowing below, superior angle very obtuse. Face and vertex finely shagreened. Disc of vertex flat, sloping, length at the middle once and a half that at the eyes, width between the eyes once and four-fifths the length at the middle. Pronotumtwice wider than long, length once and three-fourths that of the ver-
 tex, curvature three-sevenths of the length, posterior two-thirds finely transversely wrinkled and with scattered shallow punctures, hind margin slightly concave, sides rather long and sarinate. Scutellum finely shagreened, transverse suture nearly straight. Color yellowish and smoky. Face yellow with sutures and a spot beneath the antennae black, a small brown spot on the upper end of the lorae and one on the genae beneath the eyes. Vertex yellow with two small approximate brown spots on the disc. Pronotum with disc dark green, front and lateral margin yellow. Scutellum yellow with two black spots in front of the transverse groove. Elytra smoky tinged with green, nervures yellow. Tergum black, margins yellow. Venter black, segments apically margined with yellow, next to the last segment with two large yellow spots on either side. Genital organs yellowish below. Legs light yellow.

Length 5 mm , Described from one male.
Steamboat Springs, July 26th (Gillette).

Thamnotettix sonorae n. sp.

Hace one-sixth wider than long; clypeus one-half longer than broad, slightly constricted at the middle, basal suture curved; lorae three-fourths as broad as the clypeus and slightly longer; genate broad, hardly depressed beneath the eyes, outer margin broadly rounded; front a third longer than broad, two times the length of the clypeus, grathally narrowing to the clypeus, superior angle rather sharp. Front and anterior half of vertex rather coarsely shagreened. Disc of the vertex scarcely depressed, a third longer at the middle than next the eyes, width between thr eyes twice the length at the middle. Pronotum two times wider than long, length little less than twice that of the vertex, curvature onehalf of the length, scattered shallow punctures on the posterior two-thirds, posterior margin concave, sides short. Scutellum with a small depression just before the apex. Last ventral segment with the hind margin truncate with a deep narrow notch. Color pale yellow. Face pale yellow. Two small transverse spots on the base of the clypeus, and a large spot beneath the antennae, black. Vertex pale yellow with two large approximate black spots on the apex, and a small black spot on either side back of the ocelli. Pronotum greenish yellow washed with sulphur yellow. Scutellum pale sulphurous yellow with transverse groove broadly black. Elytra smoky subhyaline, nervures sometimes darker towards the tip. Venter pale yellow, first segment black. Legs pale yellow, tips of tarsi infuscate.

Length 4.5 mm . Described from two females.
Dolores, June 18th (Gillette).
Thamnotettix (Jassus) tene11a Uhl.

Det. VanDuzee.

Grand Junction, August 26th, common on sugar beet.
This species, the description of which we have not seen, is referred to Thamnotettix on Mr. VanDuzee's suggestion, though it seems to be a Limotettix.

Entettix clarivida Vand.
Det. VanDuzee.
Colorado (VanDuzee, 4).
Montrose, June 24th (Gillette).
Entettix (Limotettix) exitiosa Uhl.
Colorado (VanDuzee, 4).
Colorado Springs, August (Tucker).
Eutettix incerta n. sp.
Fiace one-eleventh wider than long; clypeus fully one-half as long as broad, considerably cons ricted on the basal two-thirds, broadest near the rounded apex; basal suture curved: lorae as long and nearly as broad as the clypeus; genae broad, feebly clepressed

beneath the eyes, outer margin concave near the eyes, broadly rounded below, attaining the tip of the clypeus quite narrow below the lorae: front two-fifths longer than broad, twice as long is the clypeus, superior angle very obtuse and evenly rounded. Face and vertex finely shagrcened. Dise of vertex not depressed, onethird longer on the middle than next the eyes. width between the eyes twice the length at the middle. Pronotum two and one-eight times as hroad as long, length onc: and six-sevenths that of the vertex, curvature three-sevenths of the length, smooth anteriorly, posteriorly with scattering obsolete punctures. Scutellum as in querci Hind margin of the last ventra segment with the tooth more nearly rectangular than in querci. Color iuscous. Vertex, anterior margin of pronotum, and all beneath pale yellowish. Elytua smoky subhyaline with an indistincr darker band extending down and forward from the tip of the clavus. Inner margin of the clavus with two oblique pale spots.

Length 5 mm . Described from one female. Near querci.

Manitou, July (Tucker).

Eutettix querci n. sp.

Female: Face one-sixth wider than long; clypeus fully two-thirds longer than broad, constriced in the middle, broad near the apex, basal suture curved; lorae as long and four-fifths as broad as the clypeus; genae broadly expanded laterally, a broad shallow furrow extending from eyes to lorae, outer margin sharply rounded; front nearly onethird longer than broad, fully twice as long as the clypeus, rapidly narrowing below the antennae, superiorly very obtuse and evenly rounded. Face and vertex finely shagreened. less distinctly on the latter. Disc of the vertex transversely and narrowly depressed just back of the anterior margin, slightly longer on the middle than next the eyes, width between the eyes once and five-sixths the length at the middle. Pronotum little more than twice wider than long, length two times that of the vertex, curvature six-elevenths of the length, anterior one-fourth smooth, posterior three-fourths faintly transversely rugose, posterior margin slightly concave. Scutellum with the black transverse groove curving forward. Hind margin of the last ventral segment with two deep sharp notches, including between them a large blunt median tooth, posterior angles rounded. Color fulvous brown. Face and vertex pale yellow, a small black spot on the genae next to the lorae, vertex with an indistinct brown mottling. Pronotum fulvous brown, yellowish on the anterior margin, with an indistinct pale median line. Scutellum yellowish with the basal angles, two spots between, and apex, fulvous brown. Elytra uniform pale smoky brown, subliyaline. Abdomen except the first ventral segment, yellowish brown, pygofers reddish, pale on the lower margin, with whitish hair arising from black spots. Prosternum with a large black spot. Legs pale yellow, tibial spines arising from black spots, tips of tarsi infuscate.

Male: Differs from the female as follows:-Generally darker colored. Basal joint of antennae distinctly margined internally with black. Vertex more strcngly depressed. Elytra with veins dark brown. Venter black with tips of segments yellowish. Plates yellowish brown streaked with black. Black spots on tibiae larger.

Length of female $6-6.5 \mathrm{~mm}$, of male 5 mm . Described from seven females and one male.

Glenwood Springs, August 24th; Manitou, September 29th

 on oak (Gillette).
Entettix seminuda Say.

Montrose, June 24th; Fort Collins, September 11th on appie (Gillette).

Entettix terebrans n. sp.

Face one-eighth wider than long; clypeus one-sixth longer than broad, narrowing to a truncate a pex, deeply transversely depressed near the apex and broadly and shallowly depressed near the base, the lateral margins curved; lorae as long and one-half as broad as the clypeus; genae slightly depressed near the eyes and toward the lorae, outer margin rounded, strongly margined, and slightly exceeding the clypeus; front scarcely longer than broad, once and four-fifths the length of the clypeus, gradually narrowing to near the clypeus, superior angle obtusely rounded. Face and anterior third of vertex coarsely shagreened with scattering shallow punctures. Disc of the vertex with a small depression at the tip and a broad transverse depression before the tip and between the compound eyes, length at the middle once and a fourth that next the eyes, width between the eyes once and a half the length at the middle. Pronotum considerably more than twice as broad as long, length once and a fourth that of the vertex, curvature about one-half of the length, shagreened on the anterior third, transversely wrinkled on the
 posterior two-thirds, posterior margin slightly concave. Scutellum coarsely shagreened, slightly shorter than the pronotum. Last ventral segment with the hind margin broadly and very deeply notched, the notch with a short, strong, rounded tooth at the center, the lateral angles produced and subacute. Ovipositor extremely long, as long as the body back of the head, exceeding the pygofers by about 1 mm ., and the wings by . 3 mm . Color tawny yellow. Face light brownish yellow, about six transverse dark dashes on either side of the front; genae with a dark spot below the eyes and a dark point near the lorae. Vertex with a large rectangular spot either side next the eyes and a smaller one at the apex, the sunken pitjust back of this spot blackish, and about four indistinct infuscated spots between the eyes near the hind margin. Pronotum with two small transverse black spots near the median line and about one-third of the length back of the front margin, back of the compound eyes on either side are about six small black spots, back of these spots the disc is brownish yellow. Scutellum yellowish, transverse groove black. Elytra yellowish subhyaline. Tergum yellowish with six longitudinal black bands. Venter yellowish with basal segment black. Pygofers yellow streaked with black, valves yellow on the lower margins, black at the sides. Legs dirty yellow, tibial spines brown, tips of tarsi infuscate. Propleura with a black spot.

Length 4.75 mm . Described from one female. This unique form introduces a very novel element into the genus Eutettix.
North Park, July 20th (Gillette).

Eutettix vanduzein. sp.
Face two-elevenths wider than long; clypeus one-third longer than broad, slightly constricted at the middle, nearly as broad before the apex as at the base, basal suture curved; lorae somewhat shorter and much narrower than the clypeus; genae broad, nearly flat, very broadly rounded outwardly; front about one-fourth longer than wide
 almost twice the length of the clypeus, gradually narrowing to the clypeus, superior angle very broadly rounded. Face and vertex finely shagreened. Disc of the vertex flat, two shallow pits immediately back of the large black spots near the anterior edge, once and a half as long on the middle as next the eyes, width between the eyes little more than twice the length at the middle. Pronotum two and a sixth times wider than long, length once and a half that of the vertex, curvature about one-half of the length, posterior two-thirds finely transversely wrinkled, with scattering shallow black punctures, posterior margin shallowly concave. Scutellum finely shagreened. Last ventral segment of the fenale with the hind margin nearly truncate, posterior ang.es o'bliquely cut off. Color pale greenish yellow. Face light yellow, sutures, spot beneath antennae, two transverse spots at the extreme base of the clypeus, two V -shaped marks on the genae, and two large curved spots immediately beneath the crest of the vertex, black. Vertex pale yellow with two large black spots on the disc, a little nearer to the eyes than to each other. Pronotum yellowish, with two more or less distinct transverse black lines, one just before the middle and the other next the posterior margin. Scutellum light yellow, transverse suture black. Ely tra greenish subhyaline with nervures yellowish. Tergum black, with broad lateral and narrow apical margins yellow. Venter pale yellow with median basal portions of first two segments black. Ovipostor black. Legs pale yellow with minute black spots at bases of tibial spines, tips of tarsi infuscate.

Length 5 mm . Described from one female.

Rabbit Ear Pass, Larimer County, July 20th (Baker).

This species may prove to be Thamnotettix (sensu strict.). It is certainly congeneric with E. clarivida.
Chlorotettix unicolor Fitch.
Det. VanDuzee.

Steamboał Springs, July 26th; Colorado Springs, August 3d (Gillette).

Neocoelidia n. gen.
Allied to Tinobregmus. Body short and robust. Head narrower than pronotum, short conical, rather obtuse and tumid; vertex expanded posteriorly behind the eyes, ocelli on extreme front edge, front very broad below, the sides nearly parallel. Antennae as long as head, pronotum, and scutellum together. Pronotum short, length at middle fourfifths that of vertex, anterior and posterior margins nearly parallel. Scutellum large, normal. Elytra semicoriaceous, without an appendix, but extending beyond the tip of the abdomen; the first sector but once forked in the proximal two-thirds, the inner branch connected with the second sector by a single transverse nervure, the latter entering an anteapical cell; apical areoles four. Vings well developed, margined, the nervures very strong, second and third sectors uniting before the marginal nervure, thus forming but one apical cell; a transvarse nervure between second and third sectors forming a single, short, triangular, apical cell. Rostrum longer than the clypeus. Posterior tibiae outwardly with two rows of molerate spines. Type, N. tumidifrons.

Neocoelidia tımidifrons n . sp.

Face a thirteenth wider than long; clypeus two-thirds longer than broad, sides nearly parallel, apex nearly truncate, basal suture strongly curved; lorae nearly as long and two-thirds as broad as the clypeus; genae broad, somewhat depressed
 below the eye-, ou er margin broadly rounded, very broad below the lorae; front tumid, sides nearly parallel, broad below, one-fourth longer than broad, nearly twice the length of the clypeus, superiorly obtusely rounded. Face shagreened. Vertex tumid, el-vated, coarsely shagreened, a shallow longitudinal depression on either side, three-fifths longer on the midalle than next the eyes, width between the eyes once and two-sevenths the length at the middle. Pronotum coarsely transversely rugose, three times as broad as long, four-fifths the length of the vertex, curvature three-sevenths of the lengtin. Scutellum with lateral margins broadly, sharply, and deeply depressed, the scutellar suture subobsolete, nearly straight. Last ventral segment long, narrowing to an acute point, nearly equalling the pygofers. Color light green, unicolorous beluw, except the black tips of the pygofers. J'wo small black sputs within the basal angles on the edge of the elevated portion of the scutellum.

Length 3.5 mm . Described from two males.
Fort Collins, June 6th (Baker). Pleasant Valley, seven miles north-west of Fort Collins, June 12th (Gillette).

Gnathodus abdominalis VanD.
Det. VanDuzee.
Colorado (VanDuzee, 4).
Colorado Springs, August 2d; Glenwood Springs, A ugust 24th; Grand Junction, August 26 th , on sugar beet (Gillette). Fort Collins. June 9th on barley: Steamboat Springs, July 16th (Baker). Colorado City, August (Tucker).
Gnathodus confusus n. sp.

Face one-fifth wider than long; clypeus twice as long as broad, basal suture strongly curved, somewhat constricted near the base, broadest near the tip; lorae about three-fourths as broad and three-fourths as long as the clypeus; genae broadly depressed beneath the eyes, margin beneath the eyes inverted, broadly rounded below, moderately broad below the lorae and attaining the tip of the clypeus; front one-fifth longer than broad, once and twothirds the length of the clypeus, superiorly broadly rounded. Face, vertex, and pronotum finely shagreened. Vertex scarcely longer on the middle than next the eyes, width between the eyes slightly more than four times the length at the middle. Pronotum slightly less than twice as broad as long, length nearly four times that of the vertex, curvature abont one-half of length, consider-
ably wider than the head, hind margin slightly concave. Transverse groove of scutellum black. Hind margin of last ventral segment of female truncate. Color yellowish green. Face sordid yellow, basal angles of the clypeus with an infuscated spot. Vertex of the same color as the face, with three indistinct longi udinal smoky bands, the ocelli in light areas. Pronotum light yellowish green on the anterios and lateral margins, darker green on the middle, two dark brown spots medially just back of the anterior margin, the latter in some specimens entirely obsolete. Scutellum pale y llow, basal angles darker. Elytra greenish subhyaline, slightly maculate with brown near the clavus, somewhat smoky towards the tip. Tergum black with the apical margins of the segments yellow. Venter yellow with the first two or three segments black at the base, $\mathrm{p}_{\mathrm{y}} \mathrm{g}$ gefers yellowish. Sternum black. Legs yellowish throughout, with infuscated lines on the outside of the femora.

Leng th 3.75 mm . Described from seven females.

Pleasant Valley seven miles north-west of Fort Collins, June 12th; Estes Park, July 12th (Gillette). Steamboat Springs, July 12th on Carex (Baker).

We have a single female specimen which seems distinct from this species, but to which at this time we hesitate giving a name. It differs as follows: The color more yellowish. Pronotum distinctly less than twice broader than long. Length 4 mm .

Estes Park, July 12th (Gillette).

Gnathodus manitoun. sp.

Face finely shagreened, a seventh wider than long; clypeus nearly twice as long as broad, rounded at the tip, slightly constricted before the base, basal suture strongly curved; lorae nearly as long and three-fourths as broad as the clypeus; genae moderately broad, rather deeply depressed beneath the eyes, outer margin angularly incised below the eyes, sharply rounded below, attaining the tip of the clypeus; front one-half longer than broad, twice as long as the clypeus, gradually narrowing below, obtusely rounded above. Vertex one-half longer on the middle than next the eyes, width between the eyes two and one-half times the length at the middle. Pronotum five-sixths broader than long, two and three-fifths times longer than the vertex, curvature two-fifthis of the length, posterior margin very slightly concave, anteriorly smooth, posteriorly with scattered feeble punctures, on the posterior median portion finely obliquely rugose, the lines converging backwards. Last ventral segment feebly rounded behind, nearly truncate, pygofers with numerous stout hairs along the whole ¿ength. Color pale green, unicolorous. Ely tra hyaline.

Length 5 mm . Described from one female.

Manitou, July (Tucker).

Cicadula arcuata n. sp.

Female: Face finely shagrenned, one-sixth wider than long; clypeus one-half longer than broad, sides parallel, rounded at the apex, basal suture curved; lorae three-fourths as long and one-half as wide as the clypeus; geniae moderately broad, somewhat depressed beneath the eyes, outer margin angled above, straight below, attaining the tip of the clypeus, moderately broad below the lorae; front one-fourth longer than broad, once and
three-fourths the length of the clypeus, superiorly very obtusely and evenly rounded. Vertex a third longer on the middle than next the eyes, width between the eyes two and one-third times the length at the middle, finely shagreened anteriorly. Pronotum little less than twice as broad as long, and little more than twice the length of the vertex, curvature one-half of the length, posterior margin straight, disc with scattered shallow punctures. The black scutellar suture nearly straight. Hind margin of the last ventral segment nearly truncate, posterior angles obliquely cut off, pygofers with stout hairs on the distal half. Color greenish yellow. Face yellow, sutures of the front and clypeus and sockets of the antennae black, above dusky with several rather indistinct transverse lines. Vertex yellowish to brownish with a fine black median line on the basal half, and two large black spots anteriorly between the compound eyes. Pronotum greenish yellow, anteriorly with a transverse black line nearly parallel with the anterior margin, its lateral ends bent forward. Elytra pale greenish, hyaline, nervures yellowish. Tergum black, segments narrowly margined with yellowish. Venter and pygofers yellow, valves black. Sternum black. Legs pale yellow.

Male: Sutures of the face more heavily biack, the face above
 darker with a small black spot on either side above antennae. Vertex with a black line margining the eyes. Basal angles of the scutellum with black spots within. Venter black, posterior margins of segments broadly yellow. One specimen lacks entirely the black arc on the pronotum.

Length of female 4.75 mm ., of male 4.5 mm , Described from two males and one female. Estes Park, July 12th; Leadville, August 23d (Gillette). Steamboat Springs, July 12th, on Solidago (Baker).

Cicadula divisa Uhl.

Abundant upon low herbage in damp fields near Denver, and near Sloan's Lake, west of Denver, August 17 th (Uhler, 5).

Estes Park, July 12th; Leadville, August 23d; Minturn, August 24th (Gillette). Fort Collins, September 2d, on Solidago; Steamboat Springs, July 12th, on Carex (Baker). Colorado Springs (Tucker).
This species will probably prove to be, at the most, but a form of C. 6-notata.

Cicadula lutea n. sp.

Face one-seventh wider than long; clypeus one-third longer than broad, tapering to the rounded apex, sides nearly straight; lorae a little shorter and about one-half as broad as the clypeus; genae broad, outer edge incurved beneath the eyes, broadly rounded below, moderately broad below the lorae; front one-sixth longer than broad, three-fourth slonger than the clypeus, superiorly broadly rounded. Face finely shagreened. Vertex shagreened, punctured on a small median area, with an oblique pit on either side near the hind margin, one-third longeron the middle than next the eyes, width between the eyes little more than once and a half the length at middle. Pronotum smooth anteriorly, posteriorly finely transversely wrinkled with scattered punctures, four-fifths wider than long, onehalf longer than the vertex, curvature six-tenths of the length

Color deep lemon-yellow. Face and all belox concolorous. Vertex with a narrow median lineand a smallspot in the position of each ocellus black. Pronotumposteriorly dark greenish yellow. Scutellum greenishyellow. Elytra hyaline, nervures yellow, wings iridescent. Tergum black, with narrow apical margins of segments and the whole of the last segment yellow. Extreme tips of valves black.

Length 3.5 mm . Described from one m zle.

Steamboat Springs, July 12th, on Carex (Baker).

Cicadula 6-notata Fall.
Det. Van Duzee.
Montrose, June 24th; Colorado Springs, August 1st (Gillette). Fort Collins, July 24th (Baker).
Cicadula variata Fall.
Leadville, August 23d (Gillette). Steamboat Springs, July 16th (Baker).

Empoasca aspersa n. sp.
Female: Clypeus one-third longer than broad, basal suture straight; lorat half as
 broad and two-thirds as long as the clypeus; genae long and narrow, moderately furrowed beneath the eyes, the furrow extending to the lorae, outer margin somewhat concave; front two-thirds longer than broad, twice as long as the clypeus, superior angle little more than a right angle and broadly rounded. Face and vertex without sculpturing, the latter glabrous. Disc of vertex once and a half as long on the middle as next the eyes;

E Aspersa
 orange on the former and dusky on the latter; scutellum with basal angles dark or yellowish green, median portion whitish mottled with greenish; elytra greenish, hyaline at tip, nervures whitish, basal two-thirds finely spotted with dusky green; tergum black with more or less of sides and apical margins yellowish; venter pale green, pygofers darker; legs pale greenish shading to bright blue at tips. Length 3 mm .

Male: Markings which in the female are dark yellowish green, are dusky here.
Described from six females and two males.
Fort Collins, on Bigelovia, September 27th (Gillette). In mountains south-west of North Park July 10th, and at Steamboat Springs July 12th, on Artemisia tridentata (Baker).

Empoasca anreo-viridis Uhl.

In large numbers at Denver and in Clear Creek Canon, on willows, August 7th to 1 sth (Uhler, 5). Colorado (VanDuzee, 4).

Empoasca clypeata n. sp.

Male: Clypeus one-half longer than broad, basal suture straight; lorae as in T. sanguin"a; ganae very narrow, attaining the clypeus as a very narrow line, lateral margins nearly stra'glit; front nearly twice as long as its greatest widh between the eyes, twice the length of the clypeus, superior angle very broad and obtusely rounded. Fince and vertex finely shagreened. Disc of vertex flat, sloping, scarcely longer on the middle than next the eye. Pronotum slightly wrinkled on posterior two-thirds, glabrous in front, slightly more than twice as broad as long, allterior mirgin broadly rounded, posterior margin concave, posterior angles sharply rounded, sides long. Scutellum normal, trans-
 verse suture straight. Color yellowish; in light specimens, face, vertex, pronotum, and scutellum yellowish, conzolorous; in dark specimens front with a median white line, pronotum dusky on posterior half, scutellum with basal angles and transverse groove dark; elytra in light specimens yellowish subhyaline, in dark specimens shaded into deep smoky subhyaline; venter and legs entirely pale yellow, sometimes tibiae and tarsi slightly smoky.

Length 4.5 mm . Described from six males.

Estes Park, July 10th (Gillette). Steamboat Springs, July 10th on willow (Baker)

Empoasca nigra n. sp.

Male: Clypens about one-half longer than broad, basal suture straight: lorae as in T. sanguinea; genae suddenly broadening close to eye, lateral margin almost straight, attaining the clypeus in a very narrow line; front nearly one-half longer than broad,
 once and two-thirds the length of clypeus, superior angle broadly obtusely rounded. Face coarsely and obsoletely shagreened. Disc of vertex sloping, with a slight median depression on the posterior half olening into a slight depression on the anterior margin of the pronotum, length at the middle slightly more than next the eyes. Pronotum opacue, on anterior third smooth, on posterior two-thirds indistinctly transversely rugose; slightly less than twice as broad as long, anterior margin broadly rounded, posterior margin somewhat concave, posterior angles sharply rounded. Scutellum opaque, with a median pit just in front of the transverse groove, posterior half irregularly wrinkled. Color black; antennae whitish; ocelli surrounded by a narrow pale margin; elytra black, posterior third fading into smoky sublyaline; anterior tibiae, and all the tarsi. smoky.

Length 2.75 to 3 mm . Described from five males.
Mountains south-west of North Park, Tuly 10th, on Artemisia tridentata (Baker).
Empoasca nigroscuta n. sp.

Female: Clypeus minutely transversely rugose, onehalf longer than wide, basal suture straight, apex rather pointed: lorate 1 wo-thirds as long, and one-halfas wide as clypeus, distant from tip of clypeus; genae narrow, a deep sunken furrow beneath the eyes extending to the lorae, not attaining tip of clypeus, outer margin nearly straight, very narrow below lorae; front smooth, nearly twice longer
than wide, once and three-fourths the length of the clypeus, superior angle somewhat greater than a right angle, rather sharply rounded. Disc of vertex smooth, once and a half as long on middle as next eyes. Pronotum very minutely transversely wrinkled on posterior three-fnurths, anterior margin broadly rounded, hind margin nearly straight, sides short. Scutellum broader than long, transverse groove slightly curved backward. Last ventral segment with hind margin nearly truncate, Color pale yellow marked with smoliy; face and vertex pale yellowish, posterior onehalf of latter with a median black line; pronotum pale yellow on anterior and lateral margins, remainder darker; scutellum black. basal angles sometimes yellowish; elytra yellowish, subhyaline, apex smoky, clavus with a large deep smoky blotch at tip; venter blackish, last segment yellow; tergum blackish, with tips and lateral margins of segments more or less yellowish; prosternum black; legs pale yellow.

Length 3 mm . Described from two females.

Dolores, June 1Sth (Gillette).

Empoasca obtısa Walsh.
Fort Collins, June 23d on Virginia Creeper; Estes Park, July 12th; Colorado Springs, August 23d; Manitou, September 29th, on willow; Minturn, Augu-t 24th; Leadville, August 23d (Gillette). Fort Collins, June 9th. on alfalfa, and August 4th on cottonwood: Steamboat, Springs. July 15th, on willow (Baker). Colorado Springs, August (Tucker).
Empoasca pulchella n. sp.
Female: Clypeus a thirdlonger than wide, basal suture
 straight; lorae long and narrow, scarcely grooved, attaining the end of the clypeus; front two-thirds longer than broad, nearly twice the length of the clypeus, superior angle obtusely rounded. Face and vertex without sculpturing, opaque. Disc of vertex scarcely longer on the midale than at the sides. Pronotum twice as wide as long, front margin broadly rounded, hind margin decidedly concave, posterior angles broadly, rounded, sides rather

pulchella
 short, without distinct seulpturing but with two small pits near the median line one-fourth of the distance back from the anterior margin. scutellum broader than long, transverse groove black. Last ventral segment with the hind margin deeply and broadly notehed, posterior angles rounded. Color steel blue varied with smoky and orange; head pale orange, genae and a large triangular mark on front extending onto and across vertex medially, ivory white; disc of vertex with a black median line on posterior twohirds; ocelli rufous and distant from the eyes; pronotum pale blue washed
with white and pale orange on anterior and lateral margins; scutellum orange with whitish mottling; elytra subhyaline, smoky at base across median portion, and at tip, forming three broad indistinct trans verse bands, clavus and corium posteriorly, each with a pale orange stripe, veins whitish apically; last ventral segment almost entirely whitish, pygofers rufous below; legs sordid white.

Length 3 mm . Described from one female.
In mountains south-west of North Park, July 10th, on Artemisia tridentata (Baker).

Although we would think it unadvisable, as a rule, to describe Typhlocybidae from single specimens, we have concluded to do so with a few well marked uniques that we took the past season.

Empoasca pura Stal.

Det. Gillette.
Fort Collins, June 24th, and September 27th on Clematis ligusticifolia; Manitou, September 29th, on oak (Gillette).
Our specimens referred to this species may prove to be new as we-have not seen types. Our specimens answer to the description of pura.
Empoasca (Kybos) smaragdula Fall.
Det. Gillette.

Colorado (VanDuzee, 4).

Spring Canon, eight miles south-west of Fort Collins, June 30 th to July 12th; The Rustic, Larimer County, August 11th (Gillette, Steamboat Springs, July 15 th on willow (Baker). Cheyenne Canon, Colorado Springs, July (Tucker).

The genus Kybos must fall under the older name Empoasca. Specimens of K. smaragdulus received through Mr. VanDuzee from France (Lethierry) show a typical Empoasca wing and elytron and we can find no generic characters to separate it from that genus.
Empoasca typhlocyboides n. sp.
Male: Clypeus subacute at apex, one-fifth longer than broad, basal suture straight; lorat one-half as wide and two-thirds as long as clypeus; genae narrow, not attaining tip of clypeus, furrow shallow, outer margin slightly concave over coxae, slightly convex
 along lorae; front one-fourth longer than broad, nearly twice the length of clypeus, superior angle broadly rounded. Face and vertex nearly smooth. Length of vertex at middle nearly once and a half that next the eyes. Pronotum slightly less than twice as broad as long, posterior two-thirds minutely transversely rugose, front margin broadly rounded, hind margin concave, posterior angles broadly rounder. Scutellum broader than long, transverse groove straight. Color pale bluish or yellowish green; face and vertex pale yellow: pronotum pale yellow
or bluish green, with front and lateral margins yellowish, hind margin sometimes whitish; disc of pronotum sometimes with three faint longitudinal orange lines; scutellum yellowish, sometimes posterior angles bluish, elytra milky subhyaline, clavus with two faint longitudinal orange marks, another near tip, a faint broken longitudinal orange line on corium, veins whitish towards aper; abdomen pale greenish yellow; legs pale yellow at base shading into deep blue at tips.

Length 2.5 mm . Described from three males.

Steamboat Springs, July 12th, on Artemisia tridentata (Baker).

Empoasca viridescens Walsh.
Det. Gillette.
Fort Collins, September 27th, on Solidago spectabilis (Gillette).

Typhlocyba bifasciata n. sp.

Near tricincta. Female: Clypeus once and a quarter as long as broad, basal suture straight; genae long and narrow, with a broad deep groove from eye to clypeus, slightly concave outwardly, broadest at eye, attaining tip of clypeus; lorae as long and somewhat narrower than clypeus; front three-fourths longer than broad between eyes, three times as long as clypeus, superior angle more than a right angle and broadly rounded. Face and vertex very finely and obsoletely punctured, more distinctly on upper part of front. Disc of vertex, flat, sloping, slightly less than one-half longer at middle than at eyes. Pronotum slightly less than twice as broad as long at middle, broadly rounded before, slightity concave behind, posterior angles rather sharply rounded, lateral margins long; disc of pronotum with anterior third smooth, posterior two-thirds
 very indistinctly transversely rugose; scutellum slightly shorter than pronotum, broader than long, transverse groove straight, black, ends bent backwards; last ventral segment with hind margin broadly rounded. Color yellow: İace, vertex, and pronotum, light lemon yellow, concolorous; scutellum dark smoky; elytra light lemon yellow with a broad smoky transverse band just in front of middle, broader on inner margins, another broad smoky band at apex, lighter on middle portion; venter pale yellow; legs pale whitish yellow. Length 4 mm .

Described from one female. Minturn, August 24th, (Gillette). We also have specimens from New York(Lintner) Illinois (Forbes) and Iowa (Osborn).
Typhlocyba comes Say.
Det. Gillette.
Canon City, August 31st, on plum; Manitou, September 29th on oak (Gillette).

Typhlocyba flavomarginata $\mathrm{n} . \mathrm{sp}$.
Female: Clypeus a third longer than broad, basal suture straight, sides nearly
 parallel; lorae and genae as in bifasciatus: frout three times the length of clypeus, one-third broader than long, superior angle greater than a right angle, broadly rounded. Face, vertex, and pronotum, sculptured as in bifasciatus. Proportions of vertex, pronotum and scutellum, same as in bifasciatus. Last ventral segment with posterior angles produced, acute, a broad deep emargination between them, the base of which is

rostrum tinged with flavescent.
Length 4 mm . Described from three females.

Manitou, September 29th, on oak (Gillette).

Typhlocyba obliqua Say.
Det. Gillette.
Foot-hills, five miles west of Fort Collins, April 25th; Canon City, August 31st, on plum; Manitou, September 29th, on oak (Gillette).

Typhlocyba rosae Harr.

Det. Gillette.
Fort Collins, October 11 th, on apple; Denver, September 1st, on apple; Manitou, September 29th, on oak (Gillette). Cheyenne Canon, Colorado Springs, July (Tucker).

Typhlocyba sanguinea n. sp.

Near coccinea. Female: Clypeus one-half longer than broad, basal suture straight; lorae very long and narrow, a haff longer than clypeus, reaching half the distance between base of clypeus and antennae; gende long and narrow, lateral margin concave,
 slightly grooved along sides of lorae. Front nearly twice longer than wide at widest place between eyes, two and one-fifth times as long as clypeus, superior angle greater than a right angle, very obtusely rounded; face and anterior half of vertex very finely rugose; length at middle of disc of vertex one-fourth mort than length at eyes. Pronotum glabrous with obscure transverse wrinkles on posterior one-half, four-fifths broader than long, anterior margin broadly rounded, posterior margin distinctly concave, sides normal; scutellum broader than long; last ventral segment with hind margin broadly produced, very slightly notched at apex. Color pale yellow; face tinged with stnguineous above; vertex, pronotum except at sides, and scutellum, bright sanguineous; elytra hyaline, veins very light yellow; vertex at sides, and tergum, tinged with sang uineous; legs unicolorous.

Length 4 mm . Described from one female.

Maniton, September 29th, on Salix (Gillette).
Typhlocyba tricincta Fh.
Det. Gillette.
Fort Collins, September 27th, on grass (Gillette).
Typhlocyba vitifex Fh.
Det. Gillette,
Eort Collins, September 4th, on Virginia Creeper (Baker). Fort Collins, September 27th, on grass; Spring Canon, eight miles south-west of Fort Collins, May 11th (Gillette).
Typhlocyba vitifex Ifarr. var. coloradensis Gill.
Det. Gillette.
Fort Collins (Gillette, 6).
Fort Collins, March Sth, hibernating under dead leaves in vineyard (Baker). Fort Collins, May 18th to August 19th, on grape (Gillette).

Typhlocyba vitis Harr.
Colorado (Van Duzee, 5̈).
This record is certainly a doubtful one, and probably refers to vitifex.

Typhlocyba vulnerata Fitch.
I et. Gillette.
Spring Canon eight miles south-west of Fort Collins, May 11th; Fort Collins, June 23d on Virginia Creeper (Gillette). Fort Collins, March Sth, hibprnating under leaves in vinejard, and September 4 th on Virginia Creeper (Baker).
Psylla coryli Riley Ms.
Det. Riley.
Steamboat Springs, July 26th (Gillette). Manitou, July (Tucker).

Psylla gillettei Riley Ms.
Det. Riley.
Fort Collins, May 23d; Rist Canon, April 10th (Gillette). Rist Canon, April 20th on willow; Fort Collins, May 7 th on alfalfa; Cameron Pass July, 5th, above timber on a dwarf Salix (Baker).
Psylla negundinis liiley Ms.
Det. Riley.
Fort Collins, June 4th (Gillette). Fort Collins, June 9th on alfalfa (accidental), and September 26th, abundant on box-elder; on the latter date a black ant was found carrying a living specimen from the tree to the ground (Baker).

Psylla purshiae Riley Ms.
Det. Riley.
Rist Canon, May 29th; Steamboat Springs, July 26th; Trinidad, May 14th (Gillette).
Psylla 4-1ineata Fitch.
Det. Riley.
Soldier Canon, five miles west of Fort Collins, May 19th (Gillette).
-Psylla ribis Riley Ms.
Det. Riley.
Spring Canon, May 11th and June 5th; Fort Collins, Octnber 15th and May 9th; Trinidad, May 14th (Gillette). Dixon's Canon, May 6th on Ribes cereum (Baker).
Pachypsylla celtidis-tumbilicus Riley. Det. Riley.
Golden, April 30th (Gillette).
Euphyllura arctostaphyli Riley Ms. Det. Riley.
Spring Canon, July 24th, imagos and nymphs on Arctostaphylos uva-ursi (Cowen).
Aplualara angustipennis Riley Ms.
Det. Riley.
North Park, July 20th; Steamboat Springs July 26th; Montrose, June 24th; Fort Collins, July 4th; Dolores, June 1Sth; Estes Park, July 11th; Colorado Springs, August 2d (Gillette). Fort Collins, June 12th, on alfalfa (Baker).
Aphalara calthae L.
Det. Riley.
Fort Collins, May Sth; Rist Canon, May 29th (Gillette). Fort Collins, May 16th to 31st on alfalfa, and May 7th on gooseberry; Steamboat Springs, July 12th on Carex (Baker). Canon City, October 15th in all stages on tomato (John Gravestock). Green Mountain Falls, Colorado Springs, July (Tucker).
Aphalara epilobii Riley Ms.
Det. Riley.
Ouray, June 22d (Gillette).
Aphalara harrisii Riley Ms.
Det. Riley.
Near West Cliff, Custer County (Cockerell, 10).
North Park, July 19th; Fort Collins, June 14th; Estes Park, July 12th (Gillette).
Aplıalara marģinata Riley Ms.
Custer County, midalpine (Cockerell, 10).

Aphalara occidentalis Riley Ms.
Det. Riley.
Ouray, June 22d (Gillette).
Aphalara solidaginis Riley Ms.
Det. Riley.
Fort Collins, July 4th (Gillette).
Aphalara utahensis Riley Ms.
Det. Riley.
Steamboat Springs, July 12th on Artemisia tridentata (Baker). Green Mountain Falls, Colorado Springs, July (Tucker).
Trioza amelanchieris Riley Ms.
Det. Riley.
Horsetooth Gulch, May 21st (Baker).
Livia vernalis Fitch. Det. Riley.
Trinidad, May 14th; Fort Collins, June 4th (Gillette).

Chermes sp.*

"Winged female: Body very dark brown, about 1 mm . long. Alar extent about 3.75 mm . Antennae about 0.20 mm . long, the third, fourth and fifth joints with about nine annulations each. Wings rather long and narrow. Fore wing with subcostal vein wavy, first and second discoidals steniler, stigmatal obsolete at base, stigma sharp pointed and oblique at base. Hind wings with the discoidal obsolete. Legs short."

Fort Collins, June 19th, winged and wooly apterous individuals on Pseudotsuga douglassi (Cowen).
Pemphigus fraxinifolii Riley.
Fort Collins, July 17th in typical pseudo-galls on Fraxinus americana. Mostly wingless (Cowen).
Pempligus populicaulis Fitch.
Fort Collins, July 12th, in typical galls on Populus monilifera. In several cases Chaitophorus populicola was found associated with this species in the partly open galls (Cowen).

Pemphigus popıli-conduplifolius Cowen n. sp.

Abstract

"Winged viviparous female: Length $1.8-2.2 \mathrm{~mm}$. Alar "expanse 6.85 mm . Nearly black, pruinose. The abdomen is deep green when the glaucous matter is removed by placing the insect in alcohol. Antennae 1 mm . long, joints slender, fifth and sixth with about six or seven annulations each. Stigma short and broad. Unguis usually with a constricted neck. Similar to ramulorum but larger and the antennal joints not nearly so strongly annulated.

Apterous individuals yellowish, with a thick mat of wooly secretion enveloping the abdomen. Eyes black."

[^26]Fort Collinc, July 12th, on Populus monilifera, forming a pseudo gall by causing the upper surfaces of the leaf to fold together along the midrib(Cowen).
Pemphigus populi-monilis Riley and Monell.
In Colorado, on narrow leaved cottonwood (Riley and Monell, 1).
Fort Collins, July 17th, in typical moniliform galls on leaves of Populus angustifolia; Hotchkiss, Delta County, July 14th, on the same host plant. Only one individual was found in each gall (Cowen).

Pemphigus populi-ramulortum Riley and Monell.

On Populus balsamifera, Colorado (Riley-see Riley and Monell, 1).
Fort Collins, July 12th, on Populus monilifera, in galls at base of petiole and on twigs. Sometimes the galls of this species are far enongh up the petiole to be almost distinct from the twig, and are then quite similar to those of P. populi-tramsversus (Cowen).

Pemphigus populi-transversus Riley and Monell.

On Populus monilifera and P. balsamifera, Colorado (Riley-see Riley and and Monell, 1).

Fort Collins, July 12th, in typiral galls with transverse openings, on petioles of Populus monilifera (Cowen).
Pemphigus vagabundus Walsh.
Fort Collins, galls on Populus (Blinn).

Colopha ulinicola Fitch.

Fort Collins, July Sth, in "cockscomb" galls on Ulmus americana. Five of the specimens examined have the: cubital vein of fore wings simple (Cowen).
Schizoneura americana Riley.
Fort Collins, June 17th, on Ulmus americana (Cowen).
Schizoneura lanigera Hausm.
Boulder, Denver, Canon City, Delta, and Grand Junction, on apple, common (Gillette). Hotchkiss, Delta County, August 23d, on young shoots of ciab-apple (Cowen).
Schizoneura querci Fitch.

[^27]coxite. Antennate smooth. No fully develuped individuals were obtained, so that the determation is somewhat questionable."

Hutchkiss, Delta County, August 19th, in wooly patches on young shoots of Quercus undulata (Cowen).

Lachnnis pini L.

"Length 3.15 mm ., width 1.80 mun. Legs and antennae slightly pubescent with short tine hairs. Body scarcely at all pubescent. Rostrum extending beyond middle of abdomen. Lengtles of antennal joints: III, 0.60 mm ; IV, 0.20 mm ; V, 0.25 mm .; VI, 0.15 mm."

Estes Park, July 15th on twigs of Pinus ponderosa var. scopulorum (Gillette). These specimens differ from the description given by C. M. Weed (Art. V. Aphididae, p 118) in the characters given above (Cowen).
Melanoxanthrss bicolor Oestl.
Fort Collins, September 30th on Salix (Baker).

Melanoxanthus salicis L.

Fort Collins, October Sth on Populus balsamiferä var. candicans (Baker).
Chaitophorus negundinis Thos.
Fort Collins, common on Negundo aceroides throughout the season (Cowen).
Chaitophorts nigrae Oestl.
Fort Collins, June 21st on Salix longifolia (Cowen).
Chaitophorus populicola Thos.
Fort Collins, July 5th, on Populus monilifera (Gillette). Fort Collins, June 24 th, on young shoots on Populus angustifolia (Cowen).
Drepanosiphum acerifolii Thom.
Fort Collins, July 2d on under side of leaves of Acer dasycarpum. Flies quickly when disturbed in the warmer part of the day (Cowen).

Aphis albipes Oestl.

Fort Collins, July 12th, on under side of curled leaves of Symphoricarpos occidentalis (Cowen).
Aphis armoraciae Cowen n. sp.

[^28]to black. Beak reaching second coxae. Abdomen plump and obtuse, dark dusky green, with a marginal row of dots and otherwise barred and mottled with black on dorsum and pleurum. Honey tubes cylindrical, slightly larger at base than at apex, length 0.20 mm Style conical. Tibiae and upper portion of tarsi white. Younger individnals of a pale reddish brown. Winged viviparous females: Length 2 mm . Length of wing 2.90 mm . Length of antennae about 1 mm. , joint III $0.25-0.32 \mathrm{~mm}$., IV $0.15-0.16 \mathrm{~mm}$., V 0.15-0.16 mm ., VI $0.12-0.13 \mathrm{~mm}$., VII $0.23-0.27 \mathrm{~mm}$. Head, thorax, and greater part of appendages brownish black. Third joint of antennae with an irregular row of about ten sensoria, fourth joint with fewer sensoria. Lateral tubercles of prothorax sometimes barcly apparent. Wings rather broad, second brunch of cubital nearer tip of wing than to base of first branch. Abdomen rounded and plump, pale yellowish brown, with small spots of black on dorsum and a row of three larger round black spots on each pleurum. Honey tubes about 0.18 mm . long, cylindrical, broadening at base. Style short conical, acute. Tibiae and upper portion of beak white."

Hotchkiss, Delta County, July 13th in large colonies on the petioles of horse-radish (Cowen).

Aphis asclepiadis Fitch.

Hotchkiss, Delta County, August 1st in small colonies on

 under side of leaves of Asclepias speciosa (Cowen.)
Aphis bakeri Cowen n. sp.

"Winged viviparous female: Length 1.80 mm .. to tip of wings 3.30 mm . Antennae with all the joints annulated, third and fourth joints strongly tuberculate and with numerous sensoria, joint III 0.27 to 0.32 mm ., IV 0.16 mm , V 0.14 to 0.15 mm ., VI 0.10 mm . A frontal prominence between the antennac. Head and thorax black, venter green, dorsum darker, appendages dark. Venation of wings normal, second branch of cubital midway, stigmatal curved throughout. Honey tubes short, 0.09 mm . long, and 0.045 mm , thick at the somewhat swollen lower third. Style 0.08 mm ., long, conical.

Apterous female: Length 1.7 to 2 mm . Some of the smaller individuals are of a rusty color. It resembles Aphis marutea Oestl."

Fort Collins, June 20th, on stems of Trifolium pratense in large colonies (Cowen).

Aphis brassicae L.

Custer County, midalpine, on cabbage (Cockerell, 10).
Abundant on cabbage wherever cultivated. Specimens from Hotchkiss, Delta County, differ in being lighter in color (Cowen).

Aphis cephalicola Cowen n. sp.

"Winged viviparous female: Length 1.70 mm ., to tip of wings 3.60 mm . Head, antennae, joints of legs, thorax, spots on abdomen, and honey tubes, dark. A large rquadrangular gray to grecu spot on dorsum. Back part of pronotum and most of abdomen yellowish. Third joint of antennae tuberculate with numerous irregular sensoria, fourth with few irregular sensoria, all joints strongly imbricated, joints III 0.33 mm ., IV $0.14 \mathrm{~mm} ., \mathrm{V} 0.12$ mm ., VI 0.11 mm ., VII 0.24 mm . Beak hardly reaching second coxae. Thorax arched, lateral tubercle present. Second branch of cubital midway. Honey tubes 0.10 mm . Style about 0.06 mm . Tarsi 0.10 mm ."

Fort Collins, June 30th, usually solitary in heads of Trifolium repens (Cowen).

Aphis cerasi Fabr.
Fort Collins, July 16th on under side of leaves of Early Richmond Cherry, not abundant. Hotchkiss, Delta County, July 28th, a single individual on the same host plant (Cowen). Aphis cerasifoliae Fitch.
Rist Canon, July 19th on under side of leaves of Prunus virginiana, causing them to curl (Cowen).

Aphis chenopodii Cowen n. sp.

"Vinged viviparous female: Length, not including style, 1.30 to 1.70 mm . Alar expanse 4.60 to 5.20 mm . Head, thorax, and the larger portion of the appendages black, thorax green. Antennae strongly annulated, with a few short hairs, third joint with numerous irregular sensoria, succeeding joints of conspicuously less diameter and without sensoria except the usual ones at tips of joints V and VI; joints III 0.30 mm ., IV 0.16 mm ., V 0.16 mm ., VI 0.12 mm ., VII 0.24 to 0.28 mm . A frontal elevation occurs between the antennate. Beak about reaching the second coxae. Thorax arched, lateral tubercle small or obsulete. Cubital obsolete for only a very short distance at base, the base of second branch midway. Sigma rounded at apex but attenuate at inner end into the subcostal. Honey tubes 0.12 mm ., distinctly wider two-thirds of distance from base than at base. Style constricted towards the base, with a few long hairs, 0.14 mm . in length. Legs black at joints, shafts mostly lighter, hispid, with short hairs. Tarsi 0.14 mm . Apterous female: Length $1.60-1.80 \mathrm{~mm}$. Oval and plump, green with black eyes. Antennae about 0.70 mm ., third joint longest, the fourth, fifth, and sixth joints subequal."

Fort Collins and Hotchkiss, Delta County, in July, in pseudogalls on Chenopodium album, formed by the Aphids locating on the upper surface of the leaf, causing the edges to curl together.

Aphis eriogoni Cowen n. sp.

"Winged viviparous female: Length of body 1.50 rum ., to tip of wings 2.70 mm . Head and thorax black, abdomen lighter, somewhat hairy, femora mostly black, tarsi white with black joints. Antennae about two-thirds the leng th of the body, joints III 0.40 mm ., IV 0.20 mm ., V 0.14 mm ., V I 0.09 mm ., VII 0.18 mm . Beak reaching third coxae. Second branch of cubital midway. Stigmatal vein curved uniformly. Stigma long, attenuate at basal end and acute at outer end. Border of abdomen nearly completely black, a sub. quadrangular patch of yellow on dorsum. Style short conical. Honey tubes 0.10 mm ., long, slightly incrassate. Apterous individuals: Smaller individuals bright red with dark eyes, larger specimens nearly black, concolorous. Sensoria on third and fourth joints of the antennae quite apparent. Abdomen with honey-comb like reticulations above and below, of cen made more prominent by a white secretion. Interspaces about 0.02 to 0.03 mm , in diameter. Head also finely reticulated. Some parts of the thorax reticulated. The winged individuals show this reticulation, but in much less degree."

Horsetooth Mountain, July 24th, a good sized colony on the stems and inflorescence of Eriogonum altatum. Specimens of apparantly the same species were collected at Steamboat Springs, July 13th on Eriogonum umbellatum (Baker). These are somewhat smaller in size, perhaps due to alcoholic preservation ('cowen).

Aphis gillettei Cowen n. sp.

Abstract

"Winged viviparous female: Length 1.70 mm . Antennal joints annulated, third joint tuberculate with numerous sensoria, joints ILI 0.34 to 0.36 mm ., IV 0.18 to 0.23 mm ., V 0.11 to $0.1: \mathrm{mm}$., VII 0.23 to 0.30 mm . A frontal prominence between the antennac. Beak nearly reaching second coxae, about 0.45 mm . long. Antennae, head, thorax, and greater portion of appendages blatek. Abdomen green, marked with transverse bars and with a marginal row of dots of deeper green or black, shafts of legs light. Litaral tubercle of pronotum small. Insertions of wings yellowish. Second branch of cubita: nearer to apex than origin of firstbranch. Stigm\& pointed. Honey tubes slightly enlarged at base, about 0.35 mm . long. Style 0.12 mm . long. Tarsi 0.14 mm . Apterous viviparous female: Length 1.7 Jmm . Antennae about 1.10 mm . long. Pale green except eyes, tarsi, ind tips of honey tubes, which are black. Dorsum with patches of darker gr sen. Body broad in proportion to the length. Honey tubes about $033 \mathrm{~m} . \mathrm{n}$. long, cylindrical. Style 0 1" mm ."

Fort Collins, June 22d, on Helianthus petiolaris (Gillette). Hotchkiss, Delta County, July 24th, on Helianthus sp. in small colonies on the under side of the leaves (Cowen). The same species was found on the under side of leaves of Amarantus retroflexus, in colonies of one winged and two or three small young, at Hotchkiss, Dalta County, July 26th (Cowen).

Aphis heraclii Cowen n. sp.

Abstract

"Winged viviparous female: Length 1.40 to 1.50 mm . Head and thorax black, abdomen yellowish green with some deeper green spots on the dorsum, causing the whole abdomen to appear deep green. Beak nearly reaching third coxae, 0.50 mm . long. Third joint of antennae tuberculate and with numerous smull sensoria, all the joints annulated. the group of sensoria at apex of fifth joint conspicuously elevated, length of joints III 0.33 to 0.40 mm .. IV 0.21 to 0.23 mm ., V. 0.1δ to 0.20 mm , VI 0.12 , VII 0.2π to 0.31 mm . Thorax archex. lateral tubercte of promstum small. Second branch of cubital vein nearer to the apex o the wing than to the origin of the first branch. Legs light except at the joints, leng th of tarsi 0.14 mm . Honey tubes 0.26 mm . long. Style 0.10 mm ."

Fort Collins, July 9th in colonies in the umbels of Heracleum lanatum. A somewhat larger form of apparently the same species was found in the umbels of Pastinaca sativa at Fort Collins, July 2sth.

Aphis maidis Fitch.

Fort Collins, September 14th on maize (Baker). Hotchkiss, July 27th on all parts of maize (Cowen).

Aphis mali Fab.

Hotchkiss, August 23d, colonies of apterous and winged individuals on young leaves and shoots of apple (Cowen). Fort Collins, on apple (Gillette).

Aphis medicaginis Koch.

Fort Collins, June 27th on Astragalus bisulcatus, principally in the racemes of flowers, and on Glycyrrhiza lepidota
（Cowen）．This may be No． 900 of the Custer County List （see Cockerell，10）．

Aphis menthae－radicis Cowen n．sp．

＂Apterous viviparous female：Length 2 mm ．Head，thorax，and greater portion of appendages black．Beak reaching second coaxe．Antennae about one millimeter long． Tibiac and upper portion of the beak white．Abdomen green，with a marginal row of black spots and barred on the dorsum with black．This Aphis appears to be of a dull lead color unmagnified．Hnney tubes about as long as the tarsi，somewhat elongated at the base．Style short conical．Winged viviparous female：Size somewhat smaller thin in the apterous form．Of the same color and marking except that it is not so heavily barred and dotted with black on the dorsum．Third joint of antennae with an irregular row of sensoria，fourth ind fifth joints with a sensoria，length of jounts III 0.25 to 0.30 mm ．，IV 0.14 to 0.17 mm ．，V 0.13 to 0.14 mm ．，V $[0.10$ to 0.11 mm ．，V［ 0.2$]$ to 0.20. Lateral tubercle of pro－ notum very short．Second branch of cubital midway，leng th of the wing 2.30 to 2.60 mm ． Honey tubes about 0.15 mm ．，slightly incrassate．Style short and conical．＂

Hotchkiss，July 14th，on the roots of Mentha canadensis and on the stems near the ground．
Aphis oenotherae Oestl．
Estes Park．July 1Sth on Oenothera biennis（Gillette）． Fort Collins，August 13 th on Oenothera biennis（Baker）． Hotchkiss，July 27th，on Oenothera biennis；Crawford，July 29th，on Oenothera caespitosa（Cowen）．

Aphis oxybaphi Oestl．

Fort Collins，July 26th on stems of Oxybaphus angusti－ folius（Cowen）．

Aphis rumicis L．

Fort Collins，June 27th on Rumex crispus；Hotchkiss， July 21st on Rumex crispus（Cowen）．Very variable．

Aphis salicola Thos．

Fort Collins，June 20th on young twigs of Salix amygdal－ oides（Cowen）．This may be No． 892 of the Custer County List（Cockerell，10）．
Aphis valerianae Cowen n．sp．＊

[^29][^30]
Aphis veratri n. sp.*

"Winged viviparous female: Length 2.20 mm . Length of wing 3.05 mm . Color black, the thorax somewhat lighter than the rest of the insect. Antennae about 1.35 mm . long, the third joint with numerous rather large sensoria, fourth often with two or three sensoria, fifth and sixth with usual groups of sensoria at the distal ends, length of joints III 0.39 mm ., IV 0.25 mm ., V 022 mm ., VI 0.14 mm ., VII 0.29 mm . Beak about 0.60 mm . long and reaching to the second coxae. Lateral tubercle of the pronotum prominent. Stigma elongate, second branch of the cubital nearer the apex of the wing than to the base of the first branch. Tarsi 0.12 mm . long. Honey tubes cylindrical, 0.28 mm long. Style about 0.12 mm . long. Wingless form very dark."

In south-west corner of North Park, July 22d very abundant on leaves of Veratrum californicum (Baker). This may be No. 895 of the Custer County List (see Cockerell 10).

Aphis yuccae Cowen n. sp.*

Winged viviparous female; Length 2.20 mm . Head. thorax, and greater part of femora, antennae and honey tubes, black; abdomen dull yellow with small.black dots on dorsum and pleurum. Third joint of antennae with numerous small sensoria, length of joints III 0.42 mm ., IV 0.25 mm . V 0.25 mm . V 0.23 mm ., VI 0.15 mm ., VII 0.30 mm . Beak black and nearly reaching the third coxae. Thorax strongly arched. Lateral tubercle of pronotum present. Second branch of cubital nearer the apex of the wing than to the origin of the first branch. Stigmatal vein curved for the first half and straight or recurved for the remainder of the distance. Tibiae white, tarsi dark. Style conical, hairy at the tip, a'jont 0.15 mm . long. Wingless individuals from uniform dark green to reddish yellow in color.
Fort Collins, July 9th on inflorescence and stems of Yucca angustifolia.
This is probably the species found occurring on Yucca at Greeley by Riley (see Riley and Monell, 1). It is also perhaps the same species as that mentioned as Aphis yuccicola n. sp. by T. A. Williams in his "Host-Plant List." Aphis sp.*
"Winged viviparous female: Length 1.60 mm . Length of wing 2.90 mm . Color pale Stigma short. Honey tubes short and broad, about $0.9 . \mathrm{mm}$. long. Style acute aud about as long as honey tubes. Apterous individuals with numerous black dots on the dorsum."

Fort Collins, September 20th on cultivated radish (Baker). This may be A. brassicae.

Aphis sp.*

"Winged viviparous female: Length 1.60 mm . Length of wing 2.70 mm . Pale brown. Veins robust. Honey tubes about 0.22 mm . long. Style slender conical, about 0.11 mm long. Apterous individuals dark brown. Length aboutiz mm. Antennae 1.20 mm . long. Honey tubes 0.30 mm ."

Fort Collins, August 6th, on cultivated radish (Baker).

Hyalopteris arundinis Fab.

Hotchkiss, July 12th, very abundant on Phragmites com-

[^31]munis (Cowen).
Hyalopteris pruni Fab.
Hotchkiss, July 6th, on plum and prune (Cowen).
Siphocoryne xanthii Oestl.
Hotchkiss, July 26th, on underside of leaves of Xanthium canadense(Cowen).
Myzuls ribis L.
Fort Collins, July 9th, on leaves and young shoots of Ribes aureum (Cowen).
Rhopalosiphum dianthi Schrank.
In college greenhouse, February 21st, on leaves and stems of Calla Lily (Cowen).

Rhopalosiphnm nymphaeae L.*?

Abstract

"Winged viviparous female: Length 2.20 mm . Length of wing 3.10 mm . Head and thorax dark, abdomen lighter. Antennae on short frontal tubercles, third joint with numerous irregular sensoria, no sensoria on the fourth joint, length of joints III 0.30 mm ., IV 0.24 mm . Beak ibout 0.55 mm . long. Lateral tubercle of pronotum small. Stigma elongate, widest at the base of the stigmatal vein. The second branch of the cubital near the apex of the wing. Tarsi 0.14 mm . long. Honey tubes clavate, 0.35 mm . long. Style about 0.13 . mm. long."

Fort Collins, September 15th, on Sagittaria variabilis (Baker). This species is doubtfully referred to R. nymphaeae, as a description of that species is not accessible.

Nectarophora artemisiae Cowen n. sp.*
"Winged viviparous female: Length 2 mm . Wing about 3.10 mm . long. Head and thorax black, abdomen somewhat lighter with the upper dorsum marked with four longitudinal rows of black spots. Antennae on distinct frontal tubercles, about 2.90 mm . long, third joint with numerous small sensoria, length of joints III 0.65 mm ., IV 0.55 mm ., V 0.50 mm ., VI 0.15 mm ., VII 0.80 to 0.90 mm . Beak about reaching third coxae. Thorax arched. Stigma dark, elongate. Honey tubes 0.55 mm . long. Style 0.20 mm . long and curved upwards. Tarsi 0.20 mm . long."

Estes Park, July 19th, on Artemisia tridentata (Gillette). More Aphis-like than most members of this genus.

Nectarophora asclepiadis Cowen n. sp.

"Winged viviparous female: Length 3.20 mm ., to the tip of the style. Length of wing 4.50 mm . Head, prothorax, abdomen, and style uniform green. Mesothorax yellow, appendages mostly dusky. Eyes brown black. Antennae longer than the body, third joint with al. out ten or twelve sensora in one row, length of joints III 0.90 mm ., IV 085 mm ., V 0.70 mm ., VI 0.20 mm ., VII 1.10 mm . Beak black tipped, hardly reaching the second coxae, about 0.50 mm . long. Honey tubes about 0.80 mm . long. Style long cylindrical. Apterous viviparous female: Length 3 mm ., to the tip of the style. Uniformly green, eyes brownish-black, honey tubes and style of the same color as the abdomen. Antennae

[^32]about 3.80 mm . long, with a few short capitate hairs, and a few sensoria on the third joint. Beak reaching the second coxae, tip black. Legs and antennae dusky. Style long and fialchion sharp"

Hotchki-s, July 24th, in small colonies on underside of leaves of Asclepias speciosa (Cowen).

Nectarophora exigeronensis Thos.

Fort Collins, July 22d, on Lactuca pulchella (Cowen).

Nectarophora rosae L.

Estes Park, July 16 th, on rose (Gillette).

Nectarophora rudbeckiae Fitch.

Fort Collins, July 18th, on Solidago; Hotchkiss, on an unknown composite (Cowen). No. 896 of the Custer County list may belong here (see Cockerell, 10).

Nectarophora sp.

"Winged viviparous female: Length 2.50 mm . To the tip of the wings 4.75 mm . Color green, thorax yellowish. Third joint of antennae with a slight row of sensoria, remaining joints smooth except for a few short hairs, seventh joint annulated, length of joints III $0.62 \mathrm{~mm} .$, IV 0.48 mm. , V 050 mm ., VI 0.10 mm ., VII 1.00 mm . Stigma short and broad. Honey tubes imbricated, cylindrical, 0.35 mm . long. Style 0.15 mm . long. Apterous viviparous female: Length about 2.5 mm . Mostly green. The eyes, ends of joints of antennae, tip of beak, and tarsi, black. Lower ends of femora, and tips of honey tubes darker than the body."

Fort Collins, July 21st, on Gaura parviflora (Cowen).

Nectarophora sp.

"Only wingless individuals, singly, or in small colonies. Wholly green, except that
eyes, tarsi, and ends of joints of antennae are black. Antennae longer than the body."

Horsetooth Mountain, July 23d on Arctostaphylos uva-ursi (Cowen).

Neetarophora sp.*

"Winged viviparous female: Length 2.60 mm . Color apparently uniform green. Stigma elongate, sharp pointed. Apterous female: Length 3.20 mm . Antennae longer than the body. Beak short, not reaching the second coxae. Honey tubes about 1.00 mm . long. Style 0.45 mm . long."

Estes Park, July 16th on Epilobium spicatum (Gillette).

Nectarophora Sp.*

[^33][^34]
Fort Collins. September i5th on Mentzelia nuda (Baker).

Abstract

"I have also taken a very anomalous Aphid, for which I can give neitlier generic nor specific determination, forming a gall on the leaves of Arctostaphylos uva-ursi. Oneside of the leaf is turned back and thickened for about half its length, thereby forming a smooth oblong gall about 10 mm . long and 3 mm . in diameter, which is often of a reddish color. Only apterous individuals were observed. Length about $1.50-1.80 \mathrm{~mm}$. Beak reaching the second coxae. Antennae six-jointed, the third joint longest, the sixth second in length, all of the joints beyond the third with many fine annulations, sparsely hairy; the antennae would reach a little beyond the base of the wings. Honey tubes very small, broader than long, scarcely elevated above the abdomen. Legs short. Body elongate, dull green, legs a little darker. Individuals examined later in the season, which were evidedently pupae of winged forms, have the body more ovate with numerous short hairs. Antennae distinctly seven jointed and about one-half as long as the body. Honey tubes somewhat longer."

Foothills five miles west of Fort Collins, July 19th (Cowen).

Aleyrodes pyrolae n. sp.

Pupal scale. Length 1.25 mm .; width 1 mm . Color very pule straw yellow, somewhat darker toward the center. Elliptical, slightly broader at the center. Margin entire, without fringe. Within the margin all around, finely and densely wrinkled, the wrinkles extending radially inward about half way to the median
 line along the sides. Central portion with ten more or less well defined horizontal folds. Folds on anterior half, four in number, firstsemilunate, remainder linear. Line separating first and second folds obtusely angled in center, the angle directed caudad; line separating second and third straisht; line separating third and fourth obtusely angled cephalad. Folds on posteri or half of dorsum linear and six in number, the line separating the first and second folds with extremities bent cephalad: last three folds bent caudad at extremities. Anal plate darker than surrounding surface, unequally t riangular, the longest angle directed caudad.

Described from several scales of different ages. Four-mile Hill eight miles south of Steamboat Springs, July 19th on Pyrola rotundifolia (Baker).
Coccus cacti L. var. confusus Ckll.
Det. Cockerell.
Probably this species (Acanthococcus confusus) in the midalpine of Custer County (Cockerell, 10).

Manitou, September 27th on Opuntia (Gillette).

Rhizococcus n. sp.
Under a rock at West Cliff, April 23d. Naked, pyriform, 2.25 mm long, dull lilac, legs clear red-brown. antennae reddish-brown. Caudal filaments short, but distinct (Cockereli, 10).
Dactylopius citri Boisd.
Det. Baker.
On Habrothamnus and Solanum jasimoides in the college greenhouse, September 10th (Baker).

Dactylopins solani Cockerell.
Det. Cockerell.
Fort Collins, August 23d on roots of Solanum rostratum (Baker). Questioniably this species on the crowns of sugar beet roots at Grand Junction, August 26th (Gillette).
Kermes galliformis Riley. Det. Cockerell.
Manitou, November 27th on Quercus undulata (Gillette).
Kermes gillettei Cockerell.
"Scale of female 8 mm . long, 7.5 broad, 7 high. Distinctly segmented; dorsum with rounded tuberosities, not very shiny. Scale covered with minute dark brown specks. General color ivory-white and dark brown mottled, the extent of the white or the brown variable, but usually a distinct white dorsal band, and more or less broken-up subdorsal ones. Derm by transmitted lightreddish brown, with large oval gland-pits. Young larva very elongate, subfusiform, with the greatest breadth anterinr to the middle; pale purplish pink. Caudal tubercles large and broad, each presenting two stout bristles, of which the inner (mesad) one is much the shortest. There is also a moderately long bristle on the outer side of each tubercle, near its base. Segmentation distinct; each segment with a short spine or bristle on lateral margin. Antennae cylindrical, hardly at all tapering, 6 -jointed; 3 and 6 equal and longest; 4 and 5 equal and shortest, these being about as long as broad; 2 very little longer than 4, and very much shorter than 3; : almost as long as 4 plus 5 . Last joint rounded at the tip, bearing several hairs. Antennae colorless. Rostral loop extending beyond base of third pair of legs. Mentumat least twojointed. Legs quite ordinary. Claws long, sharp, and a little curved. Tibia short.

Hab. Manitou, Colorado, U. S. A., on twigs of Quercus undulata. Collected by Prof. C. P. Gillette. Very distinct from K. galliformis, Riley, the only Kermes hitherto described from North America. Its nearest ally is evidently Kermes gibbosus, Signoret, which was found on oaks near Vienna.

The larvae described above were found inside the scale of the female."
We copy the above from a separate of Mr. Cockerell's paper in "The Entomologist," which bears no date. The practice of publishing original descriptions of single American species in foreign journals which are to a large extent inarcessible to American entomologists, cannot be too strongly condemned.

Physokerines coloradensis Cockerell.

[^35]This species was described in "The Entomologist" with the preceding species. A spruce should have been given as
the host plant instead of Pinus edulis.
Orthezia annae Ckll.
Det. Cockerell.
Delta, August 30th on "greasewood" (Gillette). Orthezia occidentalis Dougl.

Det. Cockerell.
Custer County, midalpine, in the nest of a dark brown ant with large head and shiny abdomen (Cockerell).

Near Fort Collins, at various times under stones in company with certain ants (Baker).
Lecaniodiaspis yuccae Twns. var. rufescens Ckll.
Det. Cockerell.
(Prosopophora rufescens Cockerell).
Grand Junction, October 18th, on "greasewood" (Dr. S. M. Bradbury, President West Coiorado Acad. Sci.).
Pulvinaria bigeloviae Cockerell.
West Cliff, Custer County, June 16th, on Bigelovia (Frank Cusack-see Cockerell, 10).
Pulvinaria innumerabilis Rath.
Denver, June 10th on box-elder, locust, and soft maple (John Tobias). Common on soft maple and honey locust at Fort Collins.
Lecaninm (Bernardia) hemisphaericum Targ.
Det. Cockerell.
College green house, May, on Neprolepsis exaltatus and a liliaceous plant (Baker). Denver, November 24th on Cycas in green house (Gillette).

Lecaninn hesperidunn L.

Det. Cockerell and through Howard
College green house, September 10th on Aralia, Abutilon, Ficus elastica, and Rhynchespermum jasimoides; Fort Collins, in open air on Veronica hendersonii (Baker).
Lecanium Iongulum Dougl.
Det. Cockerell.
Denver, November 24 th on rubber tree in green house (Gillette,
Lecanium (Bernardia) oleae Bern. Det. Cockerell and through Howard.
College green house, May, on Solanum jasimoides (Baker). Denver, November 24 th on Platycerium in green house (Gillette).

Lecaninin perforatunu Newstead.
Det. Cockerell.
Denver, November 24th on Raphis in green house (Gillette).

Lecanium sp.

Manitou, September 27th on rose (Gillette). Regarding ${ }^{t}$ his species Mr. Cockerell (in litt.) says: "It seems not to be rosarum, or the Santa Fe species, for its antennae are seven-jointed. In the Santa Fe species the antennae have eight joints. The antennal formula in your Manitou insect is 3 (24) (17) (56)."

Lecanium sp.

Manitou, September 27th on oak (Gillette). Regarding this species Mr. Cockerell says: "The antennae are eightjointed and the antennal formula is 3 (24) (18) (567)." Aspidiotus ancylus Put.

Det. through Riley.
Canon City, April 30th abundant on pear (G. M. DuBois). Aspidiotus camelliae Boisd.

Det. Cockerell.
College greenhouse, September 10th on Japanese Quince, Aralia, and Ficus elastica (Baker).
Aspidiotus dictyospermi Morgan.
Det. Cockerell.
College greenhouse, September 10th on Champaeropsis elegans (Baker).
Aspidiotus ficus Ashm.
1)et. Cockerell.

Denver, November 24 th on Phormium tenax in greenhouse (Gillette).
Aspidiotus howardii Cockerell.
Det. Cockerell.
Canon City, August 31st on fruit of plum (Gillette).
Aspidiotus nerii Bouche.
Det. Cockerell.
On lemons exposed for sale in the shops (Cockerell, 10).
College greenhouse, September loth on oleander and Dracaena (Baker). Fort Collins, December 28th on California lemons and oranges in the market (Gillette).
Aspidiotus perniciosus Comst.
Det. Cockerell.
Fort Collins, December 30 th on Galifornia pears in the

market (Gillette).

Lepidosaphes (Mytilaspis) citricola Pack.
Det. through IIoward.
On lemons exposed for sale in the shops (Cockerell, 10).
Fort Collins, May, common on "rusted" oranges in market (Baker), and December 28th on California oranges and lemons (Gillette).
Chionaspis pinifolii Fitch.
Det. Cockerell.
Fort Collins, October 6th, abundant on spruce; Manitou, September 29th on spruce (Gillette).

Chionaspis ortlolobis Comst. var.

On willow at West Cliff, as C. salicis L. (Cockerell, 10).
Chionaspis ortholobis Comst. var.
Det. Cockerell.

Denver, June 10th on cottonwood (John Tobias).

Abstract

In regard to the above record Cockerell (in litt.) says:-"The Wet Mountain Valley salicis recorded by me, was not true salicis but ortholobis var."

Regarding the spe $i e s$ ortholobis and salicis Cockerell (in litt.) further says:-"If you look at Comstock's descriptions you will find that he alludes to a difference in the position of the median lobes of ortholobis and salicis. Ortholobis has these lobes close together (see figure), whereas salicis has them divergent (see figure). Now we have a specimen of ortholobis from California, from Mr. B. W. Griffith, which shows the loves close together as Comstock describes. But your Denver species show them wide apart, as in salicis. Yet your Denver scales are like the Nebraska ortholobis (see my article in Can. Ent.) to all outward appearance, and are not like salicis. But at this point we prepared some English salicis, from Mr. Newstead, and they have the lobes close together as in ortholobis. All this seems rather to conflrm what I have suspected for some time, that the so-called salicis of this country is not silicis at all, but a distinct species. If so, the synonymy of the species discussed will probably stand thus:

(1.) C. salicis (L). Europe.
(2.) C. ortholobis Comsti. U.S.
(3.) C. salicis-nigrae (Walsh.) U. S. or 'equals 'salicis Comst., not L.

It is by no means clear, however, that your Denver scale is specifically distinct from the Nebraska one, which we are calling otholobis (vide. Catn. Ent.) and as it is certainly not true European salicis, I should advise you to call it C. ortholobis var. for the present."
Aulacaspis boisduvalii Sign.
Det. Cockerell.
Denver, November 24th on palm in greenhouse (Gillette).
Palaeococcus simplex Scudder.
Fossil at Florissant (Scudder, Tert. Ins. N. A.).

SUMMARY.

Number of species previously reported from the state 298
Number of additional species reported in this list 349
Total number of described species known to occur in the state. 647
Genera in the list 261
New genera described 5
New species described 111
ERRATA.
On page 64, in seventh heading for Cidada, read Cicada.
On page 85, in sixth line from bottom, for Gillette read Baker.
On page 118 , line 29 , for marutae read marutea.
On page 119, in fifth line from bottom, insert (Cowen) after Eriogonum alatum (not altatum). In line four from bottom for apparantly read ap)parently.
On page 120 , line 28 , for promotum, read pronotum.
On page 124, sixth species, for Neetarophora, read Nectarophora.

INSECT INDEX

abbreviata.	27
abbreviatus.	16
abdominalis	104
abjectus	70
Acanthia	56
acerifolia	117
Acholla.	59
Acinopterus	94
Acocephalus.	83
acuminatus.	94
Acutalis.	67
acutissimus	12
acutus	57
acutus	84
admirabilis	27
Aelia	14
aeneifrons	
aequalis	15
afliguratus.	50
aflinis	28
athin is	-7
aflinis.	84
Agallia	80-81
Agalliastes	53-54
agilis	46
Agrammodes	56
albipennis	10
Aleyrodes	125)
Allygus	91
alternatus	9
alternatus	73
Alydus	18
Ambrysus	63
amelanchieris	115
americana	14
americana	61
americana	83
americana	116
americanum	133
americanus	38
americanus	58
Amnestus	11
amoena	29
amoenus	47
amoenus	74
antevolens	55
anthracinus	91
Anasa	18
ancylus.	128
angulata.	83
angulatus	44
angulatus	53
angulifera	71
angustata	42
angustatus	21
angustatus..	38
angustipennis	114

annae 127 bifaciata.......... 111
annexus......... 35 bigeloviae........ 127
anmulata 14 bijugis 9
annulatus 51 bilineatus......... 85
annulicornis.... 33 bimaculatus..... 86
annulipes......... 63 binotata.......... 70
antennator...... 17 bioculata......... 12
Anthocoris
$5 \overline{2}$ biocula
anthocorordes... 40 Blissus 23
anthracina....... 10 bohemani 24
Aphalara..........114-11.) beisduvalii. 129
Aphis119-122 Rolteria. 51
Aphrophora. 71 borealis 23
apiatus 53 brachycerus 29
apicalis 18. Brachytropis 28
Apiomerus 60 bractatus 46
Aradus 57-58 bracteatus 12
Archimerus 17 brassica 118
arctostaphyli..... 114 Brochymena 14
arcuata. 57 Bruchomorpha 17
arcuata 105 bubalus 65
argenteolus 85 bullatus 23
arenarius 72
arquata 68
artemisiae 123
artemisiae 91
arundinis 12. cact 125
asclepiadis 118 caesar 31
asclepiadis 123 calcarata 28
aspersit 107 calcarator 17
Aspidiotus 128-129 californicus 21
54 californicus 46
A thysanus 91-!.3 Calodemas 33
Atomoscelis j2 Calocoris 34
atra. 114
10) calthae
atrata. 17
atricornis 63
atridorsum 67
Aufeins 129
Aulacaspis
amritus 85 (amptobrochis 38-39
aureo-viridis.... 118 ('ompylenchia 68
caricis 95
B 14
bakeri118
Carpocoris 16
Banasa 17 celtidis-umbilicus 114
basalis. 38 cephalicolis 118
basalis 38 cerasi 119
19 cerasifolii 119
94 Ceresa 65-66
(i3) Chaitophorus 117
127 Chariesterus 17
65 Chelinidea 17
117 chenopodii 119
27 Chermes 115
72 Chionaspis 129

chloris	40	Corythuca	57	E	
Chloriza	46	Cosmocoma	66		
Chlorotettix.	103	Cosmopepla	14	Eccritotarsus	40
Cicada.	64	costalis	81	echinatus	66
Cicadula	105-107	costatus	56	emarginata	96
ciliata	10	croceipes	45	Emblethis	25
ciliata	57	Crophius	24	Empoasca.	107-111
Cinctus	28	cruentifera	65	epilobii ..	114
cinctus	59	cuprea	12	Episcopus	51
cinerea	50	curtipennis	92	Eremocoris	26
cinerea	83	curtulus.	18	erigonensis	124
cinereus	94	curvata	68	eriogoni	119
circumcinctus	27	custator	16	erythrocephala	72
citri	12.5	Cychus	11	Eupalpus..	66
citricola	129	1 ymodema	23	Euphyllura	114
citrinifions	95	Cymus	23	eurinus ...	18
Cixius	68-69	cynicus.	12	eurygaster	9
clarivida.	100	Cyrtolobus	67	Euschistus	14-15
Clastoptera	70	Cyrtorrhinus	43	Eutettix.	101-103
claudus . . .	12			exaptus.	12
clavigera	24	U		excultus	24
clitellaria	96			exitiosa.	100
clypeata.	108	Dacota	44	expleta..	63
Cnemodus	95	Dactylopius	125-126	extensa.	10
coagulatus.	50	Darmistus	19		
Coccus	12.5	Dasycoris	19	F	
Coenus	15	debilis	43		
coerulescens	10	debilis	58	faceta.	15
colon.	32	debilis	87	facetus	27
Colopha.	116	decolor	54	fasciata.	58
coloradensis	91			fasciatum	35
coloradensis	1215	decoratus	23	fenestratus	67
coloradensis	113	cleilicatia	70	fenestratus	72
comes.	111	delius	15	ferus	26
comma	92	Delphacinus	69	ferus	58
communis	82	Deltocephalus	84-90	festina	66
Compsocerocor	33	cliadema	59	Ficana	18
concentricus.	87	dianthi	123	ficus.	129
concinnus	61	Diaphnid	43-44	filicis	40
configuratus.	87	diceros	$6{ }_{6}$	fissilis	14
contluens.	12	dictyospermi	129	Fitchia	59
confluens	30	Dicyphus .	46	Havicapitata	96
confraterna.	30	didymus...	22	llavilineata	83
confusus.	104	Diedrocephala	8.	Haviventris	60
confusus	12.5	diffusus .	35	Havimarginata	96
congrex .	45	diffusus	38	flavimarginata	111
congruus.	11	dimidiata.	17	flavovirens.	87
Conomelus	69	Diommatus	44-45	floralis.	26
Coquillettia	48	Diplodus.	60	floridae	69
consors	53	discolor.	29	franciscana.	66
consimilis	69	disconotus	24	franciscanus	69
conspersus	19	dispersa	62	fraternus. .	26
conspicillaris	14	distinctus	17	fraternus	51
constrictus..	24	distinctus	75	fraxinifolii	115
corculus	17	divisa.	40	fuliginosus	23
coriacea	62	divisa	106	fumidus.	54
C 'orimelaena	10-11	dorsalis.	24	fumipennis	73
Corisa.	63-64	dorsalis	69	fuscigera. .	57
Coriscus	58-5!	dorsata	64		
Corizus	$20-21$	Dorachosa	26	G	
Coryli.	113	Drepanosiphum	117		
Corynocoris	17	dubius..........	13	Galgulus	62

galliformis	126	I		lanigera	116
gammaroides	93			Largus	28
Gargaphia	57	ictericus	15	lateralis	11
geminata	98	Idiocerus	73-80	lateralis	20
geniculatus	10	illuminatus.	26	Lecaniodiaspis	127
Geocoris.	23-24	Ilnacora.	40-41	Lecanium	7-128
gillettei.	12	immistus	94	lectularia	56
gillettei	169	impictiventris.	15	Lepidosaphes	$1 \because 9$
gillettei	69	impressicollis.....	20	Leptocoris	21
gillettei	48	impunctatus	199	Leptoglossus	17
gillettei.	119	incerta	100	Leptoterna	$2: 1$
gillettei.	113	inconspicua	70	Lepyronia.	71
gillettei	120	inconspicuus	18	leucopterus.	23
gillettei	126	inermis	$6: 1$	Liburnia	$6!$
glubiceps	42	infuscata	98	ligata.	15
Ginathodus	04-105	innumerabilis	127	Ligyrocoris	24
goniphorus	38	inops	33	limbata	81
gracilis	42	inscripta	14	limbatus.	23
grammicus	$!$	inscriptus	58	limbolarius	16
grandis.	38	insidiosus	55	Limnoporus	61
griseus	23	insignis.	24	Limmotrechus	61
grossus	18	insignis.	30	Limotettix	100
guttula	18	insignis.	40	lineatus	711
guttulatus	48	insignis .	48	Lioderma	1.5
guttatipes	35	insitiva	30	Liotropis	13
Gypona	83	instabilis	93	Livia	11 ij
		insulata	63	Lomatopleura	31
H		intermedius	38	longicollis	47
Hadronema	31-32	interruptus	64	longicornis	24
haematoloma	21	interruptus	74	longipennis	81
Halticus.	415	interspersus	32	longiseta	94
Harmostes	19-20	interstitialis.	淐	Jongula	97
harrisii	114	invitus	35	longulum	127
Hebrus	6	irroratus	14	Lopidea	30-31
Helicoptera	69	Ischuorhyuchus	22	lugens..	14
Heliria	67			luridus	23
Helochara	82	J		luridus	10
hemisphaericu	127			lutea.	106
heraclii	120	Jadera	21	Lyctocoris	55
Heraeus	24	Jalysus	19	Lygaeus	27-28
hesperia.	44	Jassus	100	Lygus	$35-36$
hesperidum	127	jucundus	84	lynx	16
hesperius	46	juniperina	15		
hesperius	68			M	
hieroglyphica.	81	K			
hirundinis	51			Macrocoleus	50
histrionica	17	kalmii	27	Macrotylus	50-51
Holcostethus.	16	kalmii	59	Macrovelia.	63
Homaemus	9	kennicottii	! 18	maculatus	83
Homaloporus	11	Kermes	126	maculicollis	30
hornii	62	Kybos	110	maidis	120
howardii	(6)			mali	120
howardii	129	L		manitou	10.
humeralis	13			marginata	30
humilis	19	Labopidea	46	marginata	64
humilis	62	Labops	46	marginata	114
hyalinus	20	Lachnus.	116	marginatus	43
Hyalopteris	122-12:3	lachrymalis	76	marginatus	61
Hygrotrechus	60	laeta	48	Margus.	18
Hymenarcys	15	laetus	71	Maurodactylus	52
		laevis	33	mavortius	20
		Lamenia	70	media....	30

medicaginis 120
Megaloceroea $3 \overline{7}$ 28
Melampsalta 65
melanocephalus
Melanocoryphus.14melanopleurus27
Melanoxanthus27
melsheimeri 88
mendica 18
menthae-radicis 121
mexicana 63
micrantula 63
Microvelia (i1
militaris 31
Milyas 59
mimicus 76
Mineus 12
minutus 22
Miris 28
morlesta 6.
modestus 13
moerens 51
mollipes 82
Monalocoris 40
montanus 99
monticola 67
monticola 88
Mormidea 14
multispinosa 59
Murgantia 17 17
musculus. 55
muticus 19
Myodocha 24
Myndus 69
Mytilaspis 12!
Myzus 123
N
nebulosus 25
nebulosus 38
Nectarophor 123-1
negundinis 113
negundinis 117
Neides 19
Neoborops 36
Neoborus 37
Neottiglossa 14
Neocoelidia 103-10
nerii 129
nervatus 76
Neurocolpus 33
nigra 108
nigrae 117
nigriclavus 30
nigridia30
nigristernum 21
nigroscuta 10x
nigrovittata59
Ninyas 23
nitiduloidesNotonecta
63 Peliopelta 27
novaeboracensis 82 pellucida 44
novella 80 82
nubilus32
nubilusPentuto
15-16
nymphaeae 123 Penthimi 83Nysius.$21-22$
perditor. 16
Peribalus 16
perfoliatum. 128
Perillus 12
Peritrechus. 26
perinutata 71
perniciosus 129
perplexus 78
Philaenus 70
Phimoderma 9
Phlepsius 94
Phymata 58
Physokermes 126
Phytocoris 32-3:3
piceus 16
piceus 24
picta. 31
picta 51
pictipes (60
Piesma 56
Pilophorus 42
pini 117
pinifolii. 129
Pissonotus 69
placidus 13
plagiatus 35
Playiognathus. 51-52
Platymetopius 81
Platypedia 16
pluto 19
plutonius 93
podopioides 13
lodops 13
Podisus 12-13
Poecilocapsus 38
Poeciloscytus 38
politus 52
Pachyopsis 21-72 115
Pachypsylla. 114
Pachytropis 32
paciticus 39
l'alaeococcus 129
pallens 23
pallidicornis 33
pallidipes 70
pallidus 76
pallipes 62
pallipes 69
palmeri 34
Pamera 24
uctus 61
populicola 117
populi-condupii- folius 115
populi-monilis 116
populi-r amulo- rum 116
populi-trans- versus 116
pratensis 36
princens 33
Prionosoma 13
84 productus 8818t propinquas...

pruni.	123	rudbeckiae.	124		13
Psylla.	113-114	rufescens	127	spinosus.	19
Ptochiomera	24-25	ruficornis	28	spissipes.	60
puberula	25	rufoscutellatus....	61	splendidus.	12
Publilia..	65	rufus....	80	stalli.......	12
pulchella............	109	rufusculus	59	Stenocranus	69
pulcher	28	rugosa..	83	Sthenarus...	41
pulverulenta	33	rugulosa	17	Stictocephala	66-67
Pulvinaria.	127	rumicis.	121	stigmatus....	68
punctipes..	24			Stiphrosoma.	45-46
punctipes..	59	S		Stiroma	70
punctiscuta........	99			striata.	64
punctiventris	21	Salda..	62	stygica.	46
pura................	110	sallei	36	subcoleoptrat	59
purshiae.	114	salicis.	117	subferrugineus	11
putnami...	65	salicis-nigrae.	117	subnitida....	45
Pycnoderes.	40	salicola....	121	subvittatus	19
Pygolampis	60	sanguinea	112	succinctus.	28
pyramidata	67	sanguinolenta.	81	sulcipes	68
pyrolae	125	sayi.	16	superbus.	34
		sayi	88	sutilis...	64
Q		scabrosus	40	suturalis	80
		scalaris.	67	sylvestris	24
quadrangularis quadridenatta.	71	Scaphoideus.	94	synodica.	64
quadridenatta. quadrilineata.	138	Schizoneura.	116	Systratiotus.	38
quadripunctata...	114	Scolopax.	19		
quadripustulata...	14	Scolops ...	68		
querci67-10	01-116	scutellatus.	39	tabida	23
quinquespinosus.	18	secundarius	19	taurus.	57
		seminuda..	102	tenella	100
R		semivittata	16	Telamona	67
		seriatus.	52	Teratocoris	29
ramentosus.	79	sericans.	59	terebrans	102
Ranatra	63	sericatus	49	Tettigonia.	81
rapidus.	34	serieventr	13	Thamnotettix.	94-100
reclivata.	67	serratus.	20	Thelia..	67
	27	serripes	24	Thyanta.	16-17
rellexulus	58	servus	15	thymi.	22
relativus.	20	sexmaculatus.	88	I hyrillus.	39
renormat	93	sexnotata.	107	tibicen	64
remigis ...	11	sexvittatus.	93	Tibicen.	65
repertus.	49	signatifrons.	89	tinctus.	34
Repipta.	59	Signatus.	55	tiliae...	57
Resthenia	29-30	simplex..	63	Tollins......	18
Rhizococcus	125	simplex.	45	Toricephalus	42
Rhopalosiphum.	123	simplex.	129	Trapezonatus	25
Rhyparochromus.	26	Sinea ..	59	tricarinatus..	69
ribis.	114	Siphocoryne	123	Trichopepla.	16
ribis	123	smaragdula.	110	tricincta....	113
rimosa	65	snowi	79	Trigonotylus.	28
robusta	32	sobrinus.	61	Trioza......	115
robusta.	45	socius.	60	Triphleps.	55
robustus	39	solani	126	tristis....	18
robustus	72	solidaginis	115	tristigmus	15
rosae	112	sonorae	100	trivittatus	21
rosae.	124	sordida	17	tropicus.	25
rubeculu	37	sordida	73	tuberculifer	58
'uber	30	Spilalonius.	60	tumida	64
ubicunda	28	spinifrons..	11	tumidifrons.	104
rubidus	41	spinosula	59	Tuponia.	45

turbida	66	valerianae	121	viridis.	33
turcicus.	28	validus	21	viridis...	84
twiningi	84	valvata	64	vitellinus	84
Tylana..	70	Vanduzea.	68	vitifex.	113
Typhlocyba	.111-113	vanduzei.	90	vitis	113
typhlocyboides	110	vanduzei	102	vittatus	19
		variata	107	vittigera.	17
U		variolarius	15	vulnerata	13
		vau.	67		
uhleri.	16	venaticus.	38	X	
uhleri.	81	ventralis.	60		
ulmicola	116	veratri.	122	xanthii.	123
una.	24	vernalis..	115	Xerophloea.	8
undata.	14	verticalis	51		
undulata	63	verticis	80		
unicolor	103	vestita.	68		
unicoloratus	89	vestitus.	46	yuccae..	122
unifasciatus	38	vicarius	69	yuccae	
univittata	67	vigilax...	36		
ustulata	70	virescens	20		
utahensis	115	viridescens	111		
		viridicata	15	Zaitha.	63
V		viridicatus	48	Zicrona	12
		viridis	41	zonatus.	69
vagabundus	116	viridis	67		

PLANT INDEX.

Abutilon-127.
Acer- 117.
alfalfa- $9,20,24,27,29,34,36,45,56,57$, 59, ti0, 65, 69, 81, 88, 89, 91, 109, $113,114$.
Amarantas-120.
apple-24, $66,102,112,116,120$.
Apreynum-68.
A ralta-127, 128.
Arctostaphylos-114. 12t.
Artemisia-31, 39, 45, 47. 49, 50, 51, 65, $72,92,9 \overline{3}, 107,108,110,111,115$, 123.

Asclepias-28, 118, 124.
ash-14.
Aster- 16.
Astragalus-120.
barley-20, 29, 104.
beet-81, 94 .
beet. sugar-22, $24,36,81,84,100,104$, 126.

Bigelovia-21, 38, 45, 52, 58, 68, 72, 127.
blackberry - 55.
black walnut-56, 76, 94
boxelder-13, 21, 38, 44, 78, 113, 127.
cabbage-118.
calla lily- 123.
Carex-28, 29, 45, 59, 69, 71, 82, 86, 87, 88, 96, 97, 99, 10.5, 106, 107, 114.
Champaeropsis- 128 .

Chenopodium-119.
Cherry-119.
Clematis-13, 18, 56, 71. 84.
Cnicus-57.
corn- 120 .
cottonwood-28, 67, 78, 109, 129.
currant-14.
Cycas-127.
Delphinium-31, 32, 50, 52, 99.
Dracaena-128.
Epilobium-124.
Eriogonum-119, 120.
Euphorbia-3., 58.
Ficus-127, 128.
Fraxinus-115.
Gaura-124.
Glycyrrhiza- $10,22,30,65,68,120$.
gooseberry-17, 114.
grape-19, 113.
grass-59, 82, 93, 113.
greasewood-127.
Habrothamnus-125.
Helianthus - $65,77,82,120$.
Heracleum-120.
horse-radish-118.
Iva-65.
Lactuca-124.
lemon-128, 129.
locust, black-127.
locust, honey-127
maple-6if.
maple, soft-127.
Mentha-14, 121.
Mentzelia-12.7.
mustard-32.
Negundo-117.
Neprolepsis-127.
oak-14, 17, 80, 82, 8:3, 84, 102, 110, 111, $112,128$.
Oenothera-20, 34, 121 .
oleander-128.
Opuntia-18, 125.
orange $-128,129$.
Oxybaphus-121
palm-129.
Pastinaca-120.
pear-128.
Phormium-128.
Phragmites- 122 .
Pinus - $24,35,46,117,126$.
Platycerium- 127.
plum-111, 112, 123, 128.
Populus-115, $116,117$.
prickly pear - 17.
Prune-123.
Prunis-119
Pseudotsuga -115.
Psoralea-6. 6 ,
Pyrola-125.
Quercus-117, 12:
quince (.Japanese)-128.
radish-1 $1 \geqslant$.
Raphis 128.
maize-120.
raspberry-50.
Rhus-31, 58, 84.
Rhynchespermum - 127.
Ribes--1 14, 123.
rose-30, 31, 124, 128.
rubber-tree - 127.
Rumex-121.
Sagittaria-123.
Salix-39, 56, 113, 117, 121.
Senecio-34.
Sisymbrium-20, 81.
Solanum-125, 126, 127.
Solidago-38, $52,59,65,66,71,76,81,87$, $88,99,106,111,124$.
spruce- 126 .
squash-18.
sunflower-58.
Symphoricarpos-117.
timothy - 9 .
tomato-114.
Trifolium-118.
Ulmus- 116.
Valeriana-121.
Veratrum-122.
Veronica-127.
virginia creeper-67, 109, 113.
wheat- $9,10$.
willow-14, 17, 31, 37, $38,43,45,56,72$, $73,74,75,77,79,80,82,85,87$, $108,109,110,113,129$.
Xanthium-123.
Yucca-122.

$$
x+2 x+2 x+2 x+2
$$

π

$$
\operatorname{lic}_{2}
$$

$$
x=-3 x
$$

$$
\begin{equation*}
\frac{18}{14} \tag{1}
\end{equation*}
$$

$$
\begin{gathered}
n=+m=n \\
i=n \\
i=x
\end{gathered}
$$

THE STAJE AGRIGULJURAL COLLEGE.

THE AGRICULTURAL EXPERIMENT STATION.

BULLETLN NO. 32.

SHEEP FEEDING IN COLORADO.

(N. B. Bulletin No. 31, "Hemiptera of Colorado," was a technical bulletin and was not generally distributed.)

$$
\begin{aligned}
& \text { Approved by the Station Council. } \\
& \qquad \text { ALSTON ELLLS, I'resident. }
\end{aligned}
$$

FOR' COLLINS, COLORADO.
SEPTEMBER, 1895.
Bulletins will be sent to all residents of Colorado, interested in any branch of Agriculture, free of charge. Non-residents, upon application, can secure copies not needed for distribution within the State. The editors of newspapers to whom the Station publications are sent are respectfully requested to make mention of the same in their columns. Address all communications to the

> DIRECTOR OF THE EXPERIMENT STATION, FORT COLLINS, COLORADO.

The Agricultural Experiment Station,

FORT COLLINS, COLORADO.

EXECUTIVE COMMITTEE IN CHARGE.

HON. J. S. McCLELLAND,
HON. JOHN J. RIAN, HON. A. L. KELLOGG,

PRESIDENT ALSTON ELLIS.

THE STATE BOARD OF AGRICULTURE,

ALSTON ELLIS, A. M., Ph. D., LL. D., WELLS W. COOKE, B. S., A. M., C. S. CRANDALL, M. S.

William P. headden, A. M., Ph. D., - - - - Chemist L. G. CaRPENTER, M. S., - Meteorologist anj Irrigation Engineer
C. P. GILLETTE, M. S.,

Entomologist

Daniel W. WORKING, B. S., Secretary. Lathrop M. TAYLOR, B. S., Stenographer.

ASSISTANTS.

FRANK L. WATROUS,
Agriculturist
M. J. HUFFINGTON

JACOB H. COWEN, B. S., Horticulturist Horticulturist CHARLES J. RYAN,
CHARLES F. BAKER, B. S.,
Enfomology
ROBERT E. TRIMBLE, B. S., Meteorologist and Irrigation Engineer

SUB-STATIONS.

PHILO K. BLINN, B. S.,
Superintendent
Arkansas Valley Station, Rocky Ford, Colorado.
J. H. McCLELLAND,

Superintendent
Divide Station, Monument, Colorado.
CHAS. A. DUNCAN, B. S.,
Superintendent
San Luis Valley Station, Monte Vista, Colorado.
J. B. ROBERTSON,

Superintendent
Rain-Belt Station, Cheyenne Wells, Colorado.

Summary.

Colorado has $1,200,000$ sheep, and raises 200,000 lambs per year. Most of her surplus lambs and sheep are sold to local butchers or shipped to Nebraska feeders. Most of the 117,000 sheep fattened for the Chicago market came from without the State.

Lambs, yearling wethers, old wethers, and old ewes are fattened in Colorado from four varieties of sheep: Old Mexican, New Mexican, Merino, and sheep of the improved mutton breeds.

Most of the native sheep of Colorado are raised on the open range, with no shelter, and but little extra feed through the winter. The cost of ranging a sheep for a year varies from 30 to 80 cents. The return is about 50 cents worth of wool, and a lamb worth from 75 to 90 cents.

The wether lambs are usually sold in the fall, but are sometimes kept and sold as yearlings, or even older. The ewes are sold at five to six years old and enough ewe lambs raised to keep the numbers good.

Sheep are bronght to the feeding yards by railroad or by driving. The latter is the cheaper method for large bands of old sheep. The railroad is usually used for lambs and for all small bunches.

The Chicago market is the best for well-fattened sheep. The poorer grades are sold for local consumption, or sent to Nebraska to be fattened. Most of the sheep are fattened for the spring market, a few for the Christmas market, and fewer still are used for the production of early lambs for the spring market.

The Chicago market-price is lowest in November and gradually rises until it reaches the highest point in May. Eastern sheep are marketed first, then those between the Mississippi and Missonri rivers, and lastly those from Colorado and the far West.

The average prices are given for the Chicago market from Novemberto May for the last four years. They show that the best time for the Colorado feeder to sell lambs is from April 15 to June 1; and the best single week about the middle of May. Older sheep are best sold. a month earlier.

Fattening lambs are usually fed nothing but hay for two months; then a small amount of grain, gradually increasing to full feed of one pound per head per day by the middle of March. A lamb eats about 400 pounds of hay and 120 pounds of grain.

It does not pay usually to shear sheep that are being fattened for the Chicago market.

The death losses in feeding sheep in Colorado are very small, both absolutely and as compared with the losses in the states farther east.

It costs a dollar a head to ship sheep from Colorado to Chicago and seventy-five cents for lambs. The shrinkage in live weight during shipping is about seven per cent.

The cost of a well-fattened sonthern lamb laid down in Chicago is about $\$ 4$; the items being $\$ 1.85$ for first cost of lamb and freight, 40 cents for labor of feeding, interest and death losses, and $\$ 1.75$ for cost of feed eaten.

The average price in Chicago the past season for such lambs has been $\$ 4.30$, varying from $\$ 4.90$ to $\$ 2.73$ for large bunches. The small bunch fattened on the College farm brought $\$ 5.32$ per head.

The large western lambs fed in Colorado have scarcely paid expenses, and the same is true of the older sheep, both sonthern and western.

There were fed to sheep sent to the Chicago market from Colorado last season 136,000 bushels of wheat, 95,000 bushels of corn, 840 tons of other grain, and 27,560 tons of alfalfa hay.

List of all feeders in Colorado who fed sheep for the Chicago market the winter of 1894-95.

At The State Agricultural College of Colorado, Fort Collins, four small bunches of sheep were fattened during the winter of 1894-95. They consisted of western yearling wethers, western lambs, Mexican yearling wethers, and Mexican lambs.

Four different feeds were used: Alfalfa hay and wheat; hay and corn; hay and sugar beets; and hay, wheat, and sugar beets.

When on hay alone, they ate quantities nearly proportional to their live weight.

All the sheep made excellent gains. The western lambs grew most rapidly, the Mexican yearlings the least.

The Mexican lambs gave the best net profit of 88 cents per head, the western lambs 71 cents, the western yearlings a loss of 18 cents per head, and the Mexican yearlings a loss of 5 cents per head.

As a return for raising and feeding the hay, the western yearlings returned $\$ 4.5 \%$ per ton for the alfalfa, the Mexican yearlings $\$ 5.22$, the western lambs $\$ 8.00$, and the Mexican lambs $\$ 10.94$. The Mexican lambs fed on alfalfa and cracked wheat returned $\$ 12.34$ per ton for the altalfa.

It is worth about 7 cents per pound for each pound of increase in live weight put on sheep.

Sugar beets proved an acceptable feed to the sheep, and the most rapid growth was made by those that had hay, grain, and beets.

In small quantities as part of a moderate ration, sugar beets made a return of about $\$ 3$ per ton. Fed all the sheep would eat, they re-
turned but $\$ 2$ per ton, too small an amount to pay for raising them.
Wheat and corn fed in equal quantities to like sheep gave just the same amount of growth, the same shrinkage in shipping, and the same dressed weight.

Wheat gave a better growth than corn during the first half of the winter, and the reverse for the latter half.

Probably the best combination is wheat the first third of the time, wheat and corn mixed during the middle of the winter, and corn for the "finishing off."

In each bunch the larger sheep grew faster and proved more profitable than the smaller.

During cold weather the sheep ate more per head than in warm weather; but the cold did not interfere with their growth.

The best gains in weight were made when the average daily temperature was below freezing.

Sheep Feeding in Colorado.

By W. W. Cooke, Agriculturist.

The statistics of the United States Department of Agriculture credit Colorado with having $1,200,000$ sheep, and a lamb crop in 1894 of 200,000 . The lambs saved in the spring of 1895 will be not many less than this number. It would be supposed from these fig. ures that Colorado would fatten many sheep for market. Until within the last two years, very few sheep have been fed for market in this State and even now the number does not nearly equal the number raised. The strange fact has also come to light that most of the fat sheep sent to market from Colorado were not raised in the State. A few feeders raise the sheep they fatten and about an equal number buy Colorado-grown sheep to fatten, but the large majority of the sheep grown in the State are either used for home consumption and home markets, such as Denver, Pueblo, Colorado Springs, Leadville, etc., or are sold for fattening to Nebraska and Kansas feeders.

Out of the 117,000 sheep fattened in Colorado for the Chicago market during 1894-95, only about 17,000 were raised in Colorado. The other 100,000 were divided about equally among sheep from the south and those from the north and west. Nearly all these sheep were fed in two localities: one in the Arkansas Valley, at Rocky Ford and Las Animas, sending out 40,000 ; and the other about twice as many from the region of the Cache-la-Poudre and Thompson rivers, with headquarters at Fort Collins.

VARIETIES OF SHEEP.

The sheep fed in Colorado last winter represent all the kinds grown west of the Mississippi river. They may be considered in four groups: Old Mexican, New Mexican, Merino, and Mutton. Lambs, ewes, yearling wethers, and old wethers of each of these kinds were fed and as each is classed and sells differently in the market, it gives sixteen kinds of sheep handled in Colorado. The principal object of this bulletin is the comparison of these different kinds and the discussion of the question as to which is the best adapted to Colorado conditions.

The Old Mexican Sheep are the direct descendants of the original Spanish-Merino brought over two hundred years ago by the Spaniards
to Old Mexico. They have been bred with scarcely any outcross and are a very distinctly marked breed. They have long legs, a long thin body not very deep, small rather long neck, and a long thin head carried high. The wool is fine and thin. To the eye they appear alinost worthless as mutton sheep and of still less value for wool. Their good points are, that they are hardy, excellent travelers, will keep in good condition on the poorest and dryest of ranges, are fairly prolific, and can be herded in bunches of almost any size. They fatten easily, though never looking plump and fat like the northern sheep. When they reach the Chicago market, if in good condition, they outsell all other sheep, for they shrink very little in dressing, the meat has an excellent flavor, and the hide is so thin, firm, and soft as to command the highest price. A well-fattened bunch of Mexican lambs will weigh on the Chicago market from 78 to 81 pounds. Yearlings, ewes, and old wethers of this breed are in good condition if they weigh 90 pounds in Chicago.

New Mexico Sheep.-These original Mexican sheep have been largely graded with Merino rams in New Mexico and southern Colo. rado, and for some years were run there as grade Merinos for wool. They have not the thick, wrinkly fleece of the typical Merino and show decidedly their Mexican origin, being intermediate in length of leg, body, neck, and head, between the true Merino and the Mexican. They are a small-bodied, quick-maturing sheep, and, although never growing very large, they get very fat. It takes them longer to fatten than the better bred sheep. Never less than five and usually six months elapse from the time they are put on feed until they go to market.

The bunches of lambs brought from New Mexico run quite even in size and appearance. They are all kept under the same condition, and but few of the flocks have as yet been topped with mutton breeds so as to present any great variation from the general type. When brought to Colorado in the fall, about the first of November, the lambs weigh, in bunches, from 48 to 53 pounds. When shipped to Chicago, in May, they weigh from 80 to 84 pounds. Their frames are then not much larger than in the fall, but the body is much deeper, almost touching the ground, and they are almost as thick through, making them very plump. They easily get the highest prices on the Chicago market for the same reasons as the Mexican sheep.

Merinos.-Until within a few years ago, nearly all the sheep of Colorado, Wyoming, Utah, and Idaho were straight Merino sheep, bred for the most part from Merinos brought from the East. Some flocks originated from the Mexican or New Mexican sheep, but they were crossed so many times with such thoroughbred Merino rams as to lose the characteristics of the southern sheep. So long as these flocks were used for wool they were carefully bred by purchasing highpriced rams from the East. As the price of wool fell the profits de-
creased until some seven or eight years ago a point was reached where the sheep for mere wool ceased to be profitable. Many flocks were sold and those sheep men that continued in the business turned their attention to wool and mutton. Many of them still continue to use Merino rams, but the number of these flocks is constantly decreasing and, especially from western Wyoming westward, the use of rams of the mutton breeds has become almost universal. These Merino flocks from the north retain the thick fleece of the original Merino, since the climate is not hot enough to thin out the fleece as it does in New Mexico and Texas. Most of the wrinkles disappear, but a few remain around the shoulders, and the face has the Merino color distinct, being thus easily told from the southern sheep which have no wrinkles and very thin wool around the head. The lambs are short-legged and consequently not such good travelers as the southern sheep, nor do they need to be, for the Wyoming ranges will average much better than the New Mexican. The lambs appear larger than the New Mexican, but will not weigh quite so much. From 42 to 47 pounds is an average weight on the first of December. They grow a little more rapidly when put on feed than southern sheep, and will stand a little heavier feeding. In May they will weigh in Chicago just about the same as the southern lambs; and, although the price is hardly lower than for southern lambs, yet, if equal bunches were put on the market together, the southern would more rapidly find a purchaser. The ewes, yearling wethers, and older wethers of the Merino are heavier than those of the southern sheep. Yearling wethers the first of December should weigh from 80 to 90 pounds; old wethers occasionally go over 100 pounds. They fatten more quickly than the lambs-much more quickly than the southern lambs. Four months' feeding is always sufficient, and many bunches will be ready for market after three months. They should weigh in Chicago from 115 to 125 pounds.

Mutton Sheep.-There are practically no flocks of pure mutton sheep on the range. All the so-called mutton flocks have come from using pure-bred rams on the original flocks. These crosses have usually been mixed, that is, a ram of one breed has been used for two or three years and a change made to another breed. This prevents in-breeding, and is considered by some to make a larger and a hardier sheep.

The Western lambs fed at The State Agricultural College the past winter were sired by a Cotswold ram out of ewes that had one Southdown and two Shropshire crosses on the original Merino, and they are supposed to be out of the finest bunch of sheep on the whole western range.

The Cotswolds give the largest frame of any of the mutton breeds; but if much of this blood is used it gives too large legs and too coarse bones for the best and most rapid fattening, and does not command
the best prices on the Chicago market. If but one breed were to be used, it is probable that the Shropshire comes the nearest to filling the demand.

Great pains have to be taken not to get too far from the original Merino blood lest the sheep do not do well on the range. Pure-bred Shropshire, Cotswold, or Southdown do their best in flocks of less than 100 , and can not be profitably run in bunches of more than 200 . A mixture of a small percentage of Merino blood gives them better grazing habits and enables them to be run in flocks of even five thousand, although from one to two thousand is the more common size. It is not profitable to range sheep in flocks of less than one thousand.

THE RANGING OF SHEEP.

The method of ranging sheep is much the same in the south and in the north. The more common and much safer form is to have the sheep in a corral at night. The most advantageous form is to have the corrals in the shape of a triangle, a day's journey apart, moving from one corral to another and thus not tramping over the ground so much near the corral as would happen if the sheep were herded each night in the same place. In southern Colorado the sheep have no home, but are herded by Mexican herders who camp out summer and winter without corrals and nothing but pinon timber for shelter, staying at one place but a short time, and moving from place to place with burros and dogs to keep the coyotes away at night. A band of sheep will feed from one to three miles wide when on the range. Until a few years ago, almost no feeders provided any winter feed for the sheep. A band of eleven thousand was kept north of Fort Collins for fourteen years, only needing feed once during that time and then for less than two weeks. It is much better for the sheep if they can have a sheltered place for the winter range. It used to be quite common in Colorado to have the sheep range on the plains in the summer and near the foothills in winter. Within the last four or five years it has become quite common in Colorado to bring the entire band of sheep to the home ranch for the winter, and while feeding the lambs for market and some of the old sheep, supplement the range feed with alfalfa. This puts the ewes in a better condition for lambing and gives stronger lambs with a lower death rate. Still another plan is to divide the flock, leaving the stronger sheep on the range and bringing the smaller and weaker ones to the feeding yards. All degrees can be found; from depending on the range the whole year, to ranging six months and feeding the other six. Some flock masters have even gone so far as to feed a little grain to their ewes during the severe storms of late winter, and are well satisfied with the increased vigor of ewes and lambs.

The range in eastern Colorado and in New Mexico is probably as poor as it ever will get and allow the sheep business to continue. But the western valleys of Colorado and a large part of Wyoming and Idaho still furnish good range.

Most lambs in range flocks are dropped in May. The rams are turned into the flock about the tenth of December and allowed to remain until the middle of January. This insures that the lambs shall be dropped within a few days of the same time. Some shepherds allow the rams to remain with the flock all winter and until shearing time in the spring. This saves the labor of keeping the rams penned up or sending them to another range, and is, of course, the cheaper method. It also insures a larger percentage of lambs, but it makes the lambing period extend well into the summer. If the ewes have been well cared for and fed through the summer and fall, as high as ninety per cent. will take the rain in the course of a single month. In a few cases this percentage is increased to ninety-five, though ten per cent. of barren ewes on the range is not far from the average. On poorer range these results will scarcely be reached even if the rams are allowed to run with the ewes all winter. One ram is used for every forty to fifty ewes.

Whether the flocks have been kept on the range or at the farm during the winter, about the first of May the ewes are moved to the lambing ground. This needs to be selected with much care. There should be plenty of fresh grass, running water within easy reach, and some timber for shelter. It is best, also, to have some permanent yards and sheds for an emergency. The weather during these few weeks determines in large measure the percentage of lambs that will be saved. The average of several years is about eighty lambs for each hundred ewes, that is, one hundred ewes drop ninety lambs and ten of those are lost. The variations are large, depending on the feed and care through the winter and the weather and care during lambing. During the spring of 1895 , there was some severe cold storms at the most critical time, occasioning great mortality among the lambs, while hundreds of ewes also perished. Some saved only twenty per cent. of their lambs; others who saved fifty per cent. thought they were doing well.

A month after lambing comes the shearing of the ewes. This usually occurs from the first to the fifteenth of June. The nearly pure-bred Merino range ewes of Colorado shear from six to nine pounds of wool, with eight pounds of wool as about the average. At the prices of wool this season, this would have a value of from fortyfive to sixty cents per head and would go far toward paying all the expenses of the flock. The smaller, thin-fleeced ewes of southern Colorado shear but four pounds of wool. The average for all sheep for the State is about seven pounds per head.

After shearing, the flock is turned out to the regular summer range
for the rest of the season. One herder is required for each 1,000 to 2,500 sheep, according to the season, feed, and location of the range. From 3,000 to 4,000 with two herders is a common size of flock.

The size of the range is quite variable. Of course, the shepherd takes all he can get and, if possible, moves his flock from to time to time to fresh pastures. The range, however, is unfenced and the man who leaves a part unpastured for winter feed is liable to find that another flock has reaped the benefit. In the present condition of the prairie range of Colorado, it is considered doing well if the sheep get all the feed they want on ten sections to the thousand head of ewes with their lambs, or six acres to the head. About double this is considered liberal allowance. In the mountain valleys and parks a half to a quarter this amount is usually sufficient. When we consider that six acres of alfalfa will yield enough to keep fifty-five sheep in plenty through the year, it can be seen how scanty is the growth of vegetation on the open range.

The pure-bred Merino is a slow-maturing animal. The ewes do not drop their first lamb until they are three years old, and they are fattened for market at six years old. So a ewe is kept six years for the sake of three lambs, or, since only eighty per cent. of lambs are raised, there is a product of two hundred and forty lambs from one hundred ewes in six years. The return is about the same if the ewes drop their lambs at two years old, for then they are usually sold for mutton when five years old. The only chance for profit in such a transaction comes firom the fact that the wool of the ewe each year pays nearly all expenses.

Some flockmasters breed their ewes the second December to drop lambs when two years old. On good range with extra feed and care the second winter no harm results from this procedure. An infusion of the blood of any of the mutton breeds-Shropshire, Southdown, or Cotswold-hastens the growth and makes a ewe that is fully mature at two years old. Pure-bred Shropshire ewes will take the buck at six to seven months old, but the lambs from these young dams are apt to be weakly and the dam also stunted in its growth. Whether the ewe lambs are to breed at two or three years old, it is considered advisable to give them extra care and feed the first winter.

From the statements just made it can be judged that the cost of ranging sheep will vary widely. In the South, with cheap Mexican labor and no winter feeding, the cost per year is estimated at from forty to fifty cents per head. In northern Colorado, where consider able winter feed is given, the expenses increase to nearly eighty cents per head. The principal items of these expenses are for labor and interest on investment. In southern Colorado with Mexican herders a liberal estimate of the yearly expenses per head of a band of two thousand sheep would be:

Herding	25 cents.
Interest on Investment.	. 12
Dipping.	2
Shearing.	1
Feeding	4
Loss	3

52 cents.

A common way of ranging sheep in southern Colorado is to let them out on shares. One man buys the sheep and turns them over to the charge and control of the shepherd, only stipulating that he shall receive a certain rental. If it is a mixed bunch of ewes, wethers, and lambs, the renter pays taxes, furnishing rams, makes original number good, and gives the owner two pounds of wool per head per year, delivered in sacks at the railroad. When all the bunch are ewes, the owner receives one-half the lambs and one-half the wool, each party paying one-half the taxes.

> SELLING THE LAMBS.

The common practice in raising sheep is to sell in the fall, the wether lambs and part of the ewe lambs. Enough ewe lambs are retained to fill the places of the old ewes that are sold for mutton. On the average, there would be for each thousand breeding ewes in the flock, four hundred wether lambs to sell, together with one hundred ewe lambs and three hundred old ewes. For reasons to be given later, such exact flgures are seldom reached and the sales each year from each flock are made up of a various mixture of ewe and wether lambs, yearling and older wethers, barren ewes of all ages, and old ewes. Such a mixed lot would not feed well together for fattening and would have to be sorted out in marketing. The man who is feeding on a small scale and has to sell all his surplus to one buyer must expect to receive a low price. The large grower has here the advantage in that he can sort his sheep and still have enough of each kind to make a full lot. It is better to make up into lots of lambs, yearling wethers, older wethers, and old ewes. The wether lambs sell on the range the first of November for 6.5 cents to $\$ 1.10$ and weigh forty to seventy pounds. These prices and weights refer to Colorado-grown Merinos. These lambs, if kept a year longer, would weigh from seventy to one hundred pounds and bring from $\$ 1.25$ to $\$ 1.75$ per head, or an increased price of about 75 cents per head. When sheared at one year old, they produce about 50 cents worth of wool, making $\$ 1.25$ that the yearling brings more than the lamb. As the cost of ranging is abont 75 cents per year, there is a larger net return per head in running the sheep to the second year than in selling them as lambs. On the other hand, it requires that the owner keep his money invested one year longer before he gets any return. Or, putting it in another
way, with a given capital and a given range, he will receive a higher price per head, but have only two-thirds as many sheep for sale. In the end the net profits for the capital invested, the men employed, and for each square mile of range is about the same in the two methods. The number of flocks run in the two ways is about even. In fact, most large flocks are run in each way, the earlier and stronger lambs being sold in the fall as lambs. The later and poorer ones are carried over to the next year.

These remarks do not apply to the southern sheep; for, at a year old, they are only a little larger than as lambs and after running the extra year on the range, they lose much of their aptitude for fattening and will bring as yearlings scarcely any more, and often not so much as they would have done as lambs.

The bulk of the lambs are dropped in May throughout the sheepraising districts from New Mexico to Colorado, Wyoming, Utah, and Idaho. Of course, many lambs are dropped later than this and in the south hot weather comes on so soon that the late lambs are stunted in their growth. When the lambs are sold in the fall, about two per cent. are culled out, including these late lambs. The culls have to be carried over to the next year and sold as yearlings, so that there is always a small supply of yearlings from the south for feeding; but at least six-sevenths of the southern sheep fattened for the Chicago market are lambs.

Where crosses of mutton blood have been made on the original Merino stock, and the feed on the range is good, the lambs grow very rapidly and would make good mutton in the fall without special fattening. Individual lambs sometimes weigh ninety-five pounds when six months old, and whole bunches average over seventy pounds. Such lambs would be $\$ 2$ per head on the range and there would be no profit in carrying them over to a second year. Taking the whole country together, from central Colorado north and west, the practice is aboutevenly divided between selling as lambs and keeping them until older.

'TRANSPORTATION OF SHEEP.

Sheep are brought to the fattening yards for winter feed by railroad and by driving on foot, or, as it is called, trailing. The sheep brought from Wyoming, especially from the two centers, Rawlins and Casper, are principally driven. Farther west, from the country around Soda Springs, Idaho, they are more often brought by rail. It is not uncommon, however, for sheep to be driven from Oregon to Nebraska. One of the principal shipping points for southern sheep is Clayton, New Mexico, and they are always brought by rail from there to northern Colorado points. All shipping by rail is done on what is called a feeding-in-transit rate. The freight from Fort Collins to Chicago is $\$ 95$ per car; the rate from Clayton, N.M., is the same,
but, by paying \$15 extra, the railroads allow sheep or cattle to be shipped from Clayton to Fort Collins, unloaded and fed for any length of time, reloaded, and shipped to Chicago. The freight from Rawlins, Wyoming, to Chicago is $\$ 105$ per car and the railroad charges $\$ 30$ for hauling the car from La Salle to Fort Collins and return. From Soda Springs, Idaho, the rate is $\$ 110$ per car plus the $\$ 30$. These rates are for standard cars thirty feet long. Ten per cent. additional is charged for 36 -foot cars. As the larger car will hold about fifty more than the smaller, it is always used when it can be obtained. A 36 -foot car will hold about 300 small southern lambs.

When driven on foot a band of sheep will travel about eight miles per day and feed on the road enough to keep up their condition. This seems slow as compared with railroad transportation, but in large bands it is much the cheaper method. From either Rawlins or Casper, the drive to Fort Collins would occupy about a month. Threeherders will drive a band of from four to seven thousand, and their entire expenses, including horses, wagon, cook, food, wages, etc., will not exceed two hundred dollars. This makes a cost of four to five cents per head as compared with twenty cents by rail. This saving amounted to over a thousand dollars on a single band trailed to Fort Collins last fall.

A still cheaper way, if one has his plans made long enough before hand, is to buy the sheep in June at the shearing sheds. They can then be purchased at from forty to seventy-five cents less per head than the owners would want for them the first of November. During the summer they can be herded on the range, gradually moving them toward the place where they are to be fattened. A four months drive will cost less than twenty cents per head and deliver them at the feeding sheds in the fall, not only transportation free, but with some additional saving.

It is not advisable to trail lambs, as they ought to remain with the ewes until at least the middle of September, and a few weeks. longer is still better. Still, one small bunch of lambs was driven from Casper, Wyoming, to Fort Collins last fall with no apparent bad results. The lambs from New Mexico have always been brought here by rail.

SHEEP MARKETS.

The Colorado sheep feeder has open to him several markets for his well-fattened product. The Chicago market is the one generally considered the best, but is, by no means, the only one used. The people of Colorado consume a great deal of mutton which is all supplied from within the State. Most of this is inferior mutton. There is a small trade in Denver, Pueblo, and Colorado Springs that is willing to pay a first-class price for a first-class article, but the great bulk of the well-fattened sheep of the State go to the

Chicago market. The home trade is supplied through six months of the year by grass.fed sheep direct from the range, and the rest of the time by old ewes and wethers that have been fed alfalfa with a little grain. Most of this is bought by the butchers at less than three cents per pound, live weight.

A business much the same as this is the raising of sheep to be sold off the range as feeders for someone else to fatten for the Chicago market. The sale takes place in the fall, and the sheep are sold as lambs, wethers and old ewes. Most of these are bought by Nebraska and lowa feeders; but, as already stated, some sixteen thousand head the past winter were either fattened for market by those who raised them for or were sold to Colorado parties for fattening.
'The usual mode of procedure is for the lambs to be dropped in May, then in November, they are put in the feeding yards for fattening to be sold in the late spring. Older sheep are at the same time taken off the range for feeding in the yards all winter.

Variations from these methods are found among those who try to prepare sheep for the Christmas market. There is a limited demand at Christmas time for extra fat sheep. To supply this demand it is necessary to bring the sheep to the feeding pens in September and put them at once on heavy feed. The opposite of this course is carried on by a few feeders, who bring the sheep off the range in November, winter them on nothing but alfalfa, and, when the grass starts in May, drive them slowly through the valleys of the mountains to the mining camps, allowing them to feed by the way and get in good condition. Very good mutton is thus produced at small expense. The prices obtained in the camps are so small as to leave little margin of profit.

The last method of keeping sheep is for the production of early lambs for the spring market. In this case the ewes are served in August, so as to have the lambs dropped in January. The ewes are fed hay with a little grain until they lamb, then they are crowded with the best of feed. As soon as they are old enough to eat grain, it is kept before them all the time in boxes that the ewes cannot reach. April is the best market for early lambs. A January lamb should weigh sixty pounds at three months old, and bring about five dollars if well fattened. From high-grade parents of the best mutton breeds, with the best of care and feed, it is possible to have the lamb weigh as many pounds as it is days old. A registered Shropshire lamb, born last January on the College farm weighed eighty-three pounds when three months old.

As soon as the lambs are sold the ewes are fattened for market and turned off the last of May. The sheep feeder has therefore the choice of feeding lambs, wethers, or ewes, and of feeding them for the Christmas market, for the local State market, for the Chicago market, or of raising early lambs for the spring market.

The time at which it is desired to market the sheep is the principal
factor in determining what kind of sheep shall be fed. In general, the price of sheep is lowest in November. The price gradually rises through the winter, about in proportion to the value of the wool on the sheep. The February price is about twenty-five cents higher than the November price. The market price in the great centers, which is entirely governed by the Chicago price, is also lowest in November. There are almost no lambs marketed in the fall. The old sheep of the eastern states, where there is good pasturage, are easily fattened by November, if fed a little corn in September and October. As there is always a large number of old ewes to be turned off at this time of the year, the market is usually supplied with fat sheep at a low price. The price gradually rises from then to the first of June. The lamb market can hardly be said to open before the first of Jan. uary. During January, February, and March the market is supplied from the East westward. In other words, the country east of the Mississippi and Missouri rivers, sells out its mutton from January 1st to April 1st; inNebraska and Kansas, from March 1st to the middle of April; and Colorado sheep from April 1st to June 1st.

The progression is due to two causes: feeding and weather. Sheep east of the Mississippi river are well fed all the time. The lambs are dropped early, and when taken off the pasture a short period of grain feeding fits them for market. The owners know that the price will be higher later in the winter; yet they can not afford to hold their sheep after they are once fat. Another reason is the weather. A fat sheep will stand cold without inconvenience, but wet weather is hard on them.

Through the sheep-feeding districts of the Mississippi valley east of the Missouri river, February and March are wet, cold, disagreeable, and unhealthy months for sheep. The feeders intend to hold their sheep as long as possible, but they have to dispose of them before the first of April. From Nebraska westward the amount of rain is so small as not to interfere with feeding. So far as weather is concerned, sheep can be carried in Colorado throngh to the first of June. It will be seen that the Colorado sheep feeder is at a disadvantage if he undertakes to raise sheep for the December and January markets; but he has the May markets all to himself.

The prices do not vary much on the Chicago market from Novem. ber 1 st until the eastern sheep are fairly well cleaned out. The eastern men have to sell, and the Chicago buyers know it. As soon as the supply from the east begins to decline, prices rise and reach a high point when Iowa sheep cease to appear on the market. From that time or: until June the market remains nearly stationary for a given grade of sheep: but, as the Colorado sheep are continually getting fatter, the average price received gradually rises to the end of the season. As this point is one of vital importance to the Colorado feeder, the market prices at Chicago for the last four years have been
collected and are given in the following tables. A word of explanation is needed in regard to the meaning of the figures. They represent the "top of the market" through the season. Colorado sheep bring the highest prices and each man feeds with the expectation of getting the best prices. The column marked "high," means the highest price at which the best sheep sold during the period, while "low" means the lowest price at which the best sheep sold. "Average" is the average of the prices for the best sheep. No attempt has been made to ascertain the average prices of the average sheep or the prices at which low-grade sheep sell. There are always poor sheep for sale that will scarcely bring a cent and a half a pound.

It will be noticed that "choice sheep," mostly made up of fat wethers from two to five years old, sell for fifty cents to a dollar a hundred pounds less than lambs. This relation at the present time is quite constant. A few years ago when the export trade was better, there were times when a large fat sheep for export would bring more per pound than a fat lamb. The prices for fat ewes are not given in the tables, but they will average from fifty to seventy-five cents less than the corresponding prices for choice wethers.

Prices are given only from November to June. The trade previous to November is supplied by grass-fed sheep off the range. June first is the top of the market for the year for grain-fed sheep; but by this time the pastures of the south are already supplying many thous and grass-fed "Texans," and the market is unsettled and very uncertain. Prices drop rapidly after the first of June to the summer basis.

Chicago Prices per Hundred Pounds for the Best Grades of Sheep.

		mbs.			ep.	
1891.	High.	Low.	Average	High.	Low.	A verage.
November 16-30	. 5.40	. 5.25	5.31	4.80		4.67
December 1-15	5.50	. 5.00	5.25	. 4.85	4.50	\%
December 16-31	6.39	. 5.50	5.88	. 5.50	4.85	4.97
Jan. 1-15, 1892	6.50	. 5.50	6.00	. 5.65	4.95	5.30
January 16.31	6.75	5.80	6.27	. 5.70	5. 1	5.40
February 1-15.	6.85	.6.05	. 6.42	. 5.75	5. 2	5.46
February 16-29	6.80	.6.25	6.51	. 5.62	5. 10	
March 1-15	7.00	6.50	6.77	5.90		
March 16-31	7.00	.6.65	6.85	.6.35	5.75	6.09
April 1-15	6.95	.6.25	6.64	6.50		
April 16.30	7.05	6.80	6.96	6.75.	6.45	
May 1-15	7.00	. 6.50	6.85	.6.20	6.00	
May 16.31	8.25	6.60	748			

Lambs.			Sheep			
1892.	High.	Low.	Average.	High.	Low	A verage.
November 1-15	6.00	5. 60	5.76	4.75	4.35	4.49
November 16-30.	5.75	5.25	5.55	4.85	4.50	4.69
December 1.15	6.25	5.40	5.90	5.15	4.60	4.83
December 16-31	6.40	6.12	. 6.29	5.05	4.70	4.95
Jan. 1.15, 1893	6.25	6.00	6.12	5.40	5.05	5. 19
January 16-31	6.25	5.75	6.09	5. 40	5.15	5.30
February 1-15	6.45	6.10	6.20	5. 25	5.15	. 21
February 16-28	6.25	6.00	6.21	5.75	5.15	5.37
March 1-15...	6.60	6.10	6.44	5.50	5.30	5.37
March 16-31	6.50	6.15	6.27	5.70	5.10	5.32
April 1-15	. 6.85	6.40	. 6.57	5.85	5.60	5.71
April 16-30	6.85	6.60	6.78	5.90	5.80	5.83
May 1-15	7.25	7.10	7.21	6.30	5.60	5.85
May 16-31	7	7	7.	6.	5.00	ธ. 55
1893.						
November 1-15	4.85	4.50	4.68	3.90	3.	3.67
November 16-30	. 5.00	4.50	4.78	4.00	3.	3.68
December 1-15	4.85	4.45	4.67	3.85	3.	3.38
December 16-31	. 4.85	4.65	4.75	3.50	3.0	3.45
Jan. 1-15, 1894	. 5.00	4.75	4.87	3.75	3.10	3.50
January 16-31	. 4.85	4.65	4.77	3.95		3.66
February 1.15	4.75	4.50	4.61	3.75	3.40	3.53
February 16-28	. 4.70	4.25	4.35	3.75	25	. 48
March 1-15	. $4: 30$	4.00	4.19	4.00	-	3.92
March 16-31	4.85	4.15	4.50	4.50	3.75	4.23
April 1-15	5.75	5.00	. 5.49	5.40	4.65	5.06
April 16.30	5.75	5.00	5.40	5. 20	1.50	. 93
May 1-15	. 6.50	6.00	6.25	4.90	4.50	. 61
May 16.30	. 6.50	5.30	5.84	5.40	4.40	4.82
June 1.15	5.60	4.75	. 5.09	4.65		4.13
June 16-30	5.00	,	4.63	3.75	3.00	3.49
1894.						
November 1.15	4.50	3.90		3.50	. 3.00	3.27
November 16.30	. 4.00	. 3.50	. 3.75	3.25	. 2.85	3.05
December 1.15	4.25	4.00	4.15	3.60	. 3.00	3.38
December 16-31	4.30	. 3.75	4.03	3.65	. 3.25	3.38
Jan. 1-15, 1895.	4.50	. 4.00	4.26	4.00	3.50	3.59
January 16-31	4.80	4.40	4.56	4.00	3.50	. 3.89
February 1-15	5.65	4.65	5.05	4.7	3.85	4.23
February 16-28	5.50	5.20	5.38	4.5	4.25	4.36
March 1-15.	5.60	5.20	. 5.43	5.00	4.3	4.32
March 16-31	. 6.00	5.60	. 5.82	5.00	4.7	4.89
April 1-15	6.10	5.75	5.89	5.00	4.5	4.85
April 16-30	5.85	5.35	. 5.55	5.05		4.68
May 1-15	5.95	5.60	. 5.72	5.00		4.57
May 16-31	6.35	5.40	5.99	5.10		4.83

The highest price of the year is from a cent and a half to two cents a pound above the lowest, but just when this highest price is coming cannot be foretold. Particular attention is called to the variation between the high and low prices. These are on the average half a cent a pound, that is, the :narket price is constantly fluctuating twentyfive cents a hundred each way from the average. These variations are due to the supply and demand, and are beyond the control of the feeder. In this lies the worst feature of all sheep-feeding, and it makes the profit always problematical until the sheep are actually sold. It takes five days to ship from Colorado and sell. When the sheep are loaded in Colorado, no one can tell within twenty-five cents each way as to what they will bring. The fifty cents difference in the price between a good market and a poor one often represents the whole profits of the winter and makes the difference between getting just market prices for the feed, or making in addition good wages for the work of feeding. No way has been devised for overcoming this diffi. culty, and it makes all sheep-feeding more or less a lottery.

The winter of 1891.92 was a time of high prices for all meat products and the prices received for sheep were such as to leave a large margin of profit, even though high prices had been paid for them in the fall and much waste allowed to occur in the feeding. The market the next year was nearly as good, and the feeders began in the fall of 1893 with the idea that their profits were an assured fact. Some feeders paid as high as two dollars a head for small lambs in the fall. The spring market proved to be from a dollar to a dollar and a half a hundred less than the previous winter. The careful buyers and feeders still made money, but some of the less careful and experienced lost heavily.

The average prices for $1894-95$ have been about the same as for 1893-94; but, profiting by previous experience, the sheep were bought more carefully in the fall, fed with less waste, and almost every feeder made good profits, while some made very good.

In order more clearly to bring out the fluctuations in the market prices, the figures for the four years are gathered in the following tables:

A study of the tables will show that the top of the market for lambs has not been belcw five cents a pound during April and May for the last four years, while there has been some time in each year that it has been over six cents and the average of each year has been above five and a half cents. An average price of five cents will pay all expenses and return market prices for hay and grain, provided the lambs have been well bought in the fall and fed without waste. The prices show then that, if the future is to be judged by the past, a feeder who has used good judgment in his buying and feeding so as to have first-quality sheep, is sure of not losing anything on the April or May market, even if he happens to hit the poorest days. His chances are even for finding a market that will give him a fair profit and are good for striking a market that will prove a bonanza.

A noteworthy fact in regard to the prices for $1894-95$ is the high price for March as compared with April and May. The same thing happened in 1891-92. This is just when the eastern sheep are diminishing in supply and before the western sheep are in prime condition. Though it would hardly be safe to feed for this market, yet it shows that it might possibly prove the most profitable of the year.

The prices show conclusively that the May market is the safest of all. Though the last half of the month is so little better than the first that most feeders prefer to begin shipping early in the month and close out their flocks during the latter half. The feeders on a small scale will find May 15 to 20 the safest market of the year.

What has been said of lambs applies in general to older sheep that can be held late in the season. But they fatten so much more quickly than lambs and have wool so much thicker that, in the general run, April had better be substituted for May as the best time for marketing. The time of marketing, therefore, will determine the kind of sheep to get, or, the sheep having been obtained, they will determine for themselves the time at which they should be marketed.

Of everything, except southern lambs, it can be said in general that the sheep should be crowded from the day they are put in the feeding pens and marketed as soon as fat. Southern lambs come here when they are only five or six months old and need to have considerable more growth of frame put on them before they are fattened.

All sheep except the southern lambs can be prepared for market in four months; old ewes and wethers in three months. The southern lambs require at least five months, and it has been found that, on the average, six months is more profitable.

It will be seen that, if a man wants to feed for the May market, which is considered the best market of the year, he has his choice between taking southern lambs in November or waiting until much later and then taking western lambs or old sheep. A bunch of 3,500 western lambs came to Fort Collins from the west in March that had beeh wintered on the range, and, with three months' feeding, were in good condition for the market. This is an exception; the range upon
which they fed was extra good. Three lots of sonthern yearling wethers were brought up in March and crowded for the May market. But these are rare exceptions to the general rule that the May market is supplied by southern lambs that are in extra good condition from six months' feeding.

METHODS OF FEEDING.

In all sheep-feeding east of Colorado, hay is considered of value only as enabling the sheep to consume a large amount of grain and keep in health. A sixty-pound lamb requires just about one pound of digestible matter per day, and this is easily obtained from two pounds of grain which is almost always corn. For roughness to feed with this grain they usually use timothy hay, but good straw is considered about as good.

In Colorado sheep-feeding, hay has a much different use. It is so largely nitrogenous and so palatable that a large part of the growth and fattening comes from the hay.

In feeding southern lambs they are put on hay alone from one to three weeks and then grain feeding begins. In the feeding of sheep on a large scale, the grain is fed in a separate corral. The sheep are kept in bunches of about four hundred, their grain is put in feed troughs, the gates are opened, and they are allowed about ten minutes to eat their grain, then driven back and the next bunch brought in. By this method all the sheep have a chance to get some grain, and even the greediest sheep can not get very much.

The first grain feed is merely a sprinkling in the trough to get the sheep used to it. The principal skill in feeding sheep is in increasing the grain so gradually that the sheep eat it greedily all the time. Most feeders use pails and reckon feed by the number of bucketfuls fed per day. A bucketful of twenty pounds to four hundred sheep twice a day is one-tenth of a pound per day, and this is as much of an increase as it is considered safe to make at any one time, and it is customary to increase only one-half of this.

Lambs put in the pens in November will receive their first grain at the beginning of December and for the first week will get less than one-tenth of a pound per day per head, that is, the feeder will use a week in getting them up from nothing to one-tenth of a pound. The rest of the month to the first of January they will not go over onefourth pound. Some hold through the whole month of January on one-fourth pound, while some gradually increase through the month to one-half pound.

This is all considered preparatory, and real grain feeding begins the first of February. Feeders vary in the speed with which they increase the grain; but by the first of March few will be feeding less than one pound, and the sheep are kept on full feed from then until they go to market. If nothing but wheat is fed, it is hard to get sheep to eat over a pound per day per head. By the addition of some other grain and by feeding three times per day, they can be brought
up to one and a quarter pounds. This extra grain may be corn meal, cotton-seed meal, or linseed meal; in other words, any grain that has considerable oil which seems to help the digestion aud enable the sheep to handle a larger amount of grain.

Most of the whēat fed near Fort Collins the past winter was unground. Considerable of this goes through undigested, and there is apparently no foundation for the claim made by the Nebraska feeders, that much of the nutriment has been taken out of this grain which passes whole. It is practically certain that no nourishment is received from it. It is probable that a very large anount of loss occurred in this vicinity last winter from this whole grain feeding, and that much of the trouble the feeders had from their first shipments of sheep not being fat was due to this cause.

It would be difficult to so say what portion of the wheat passes whole, but probably ten per cent. is a small estimate. When whole wheat was fed at the College Farm, the droppings appeared to have fully half as much wheat as the sheep ate.

There are men with portable mills who will grind wheat on the premises for three cents per hundred pounds, and the probabilities seem to be that the increased value is at least ten cents per hundred. It is a significant fact that the first bunch of sheep that went to the Chicago inarket last spring that had been fed on cracked wheat received a higher price than any other bunch, enough higher to pay for half the grain they had eaten.

The question of the comparative feeding value of wheat and corn for sheep is a long way from being decided. From 1891 to 1894 most of the grain fed to sheep in Colorado was corn, shipped in from Nebraska at about seventy-five cents per hundred. The partial failure of the corn crop of 1894 raised the price to over a cent a pound, while wheat could be bought for sixty-five cents to seventy-five cents per hundred pounds. Consequently, wheat was the principal grain fed from November 1894 to March 1895. Judged by its composition, wheat is well-adapted to making growth on an animal, and feeders were well satisfied with the gain in weight made by their sheep during the earlier part of the season. The first shipments showed that the sheep were not so fat as they seemed to be. They had made a growth in weight, but their flesh was soft and watery. They lacked the hard, solid kidney fat that had been a distinguishing feature of Colorado corn-fed sheep. The shrinkage of weight in shipping was nearly twice as much as in previous years on corn feeding.

So pronounced were these results of exclusive wheat feeding that, during April and May, many carloads of corn were bought, and some feeders claimed that they could afford to pay twenty-five dollars a ton for corn to finish off their sheep for market.

Several thousand old sheep were brought to Fort Collins and put on a heavy feed of wheat to fatten them rapidly for market. But, instead of fattening, the combination of wheat and alfalfa, both rich
in bone and muscle-forming elements, started them growing again and delayed for some weeks their marketing.

The experiences of the past season have shown that, for lambs, it is probably best to feed, wheat the first third of the winter, then half wheat and half corn for the next third, finishing off on clear corn. In feeding older sheep, corn is by far the best grain to use.

The hay fed to sheep in Colorado is all alfalfa. It is fed in racks that are best about fourteen feet wide. These racks are simply low fences enclosing a space fourteen feet wide and any length desired. The fences are made of three 8 -inch boards running lengthwise of the racks, the bottom one resting on the ground; the others above with 8 -inch spaces, making a fence forty inches high. The hay is pitched into the middle by the wagon load, and pushed up to the sides two or three times per day as fast as the sheep need it. There should be rack enough so that most of the sheep can eat at the same time; this will require about one foot per head for lambs and fifteen inches per head for older sheep.

The alfalfa in Colorado is all stacked, without cover, and consequently there is a large amount of poor hay on the top and bottom of the stacks. This is refused by the sheep, together with considerable of the coarser parts of the stalks. Practice varies greatly as to what is done with this refuse and as to how clean the sheep are required to eat the hay before fresh is given.

Southern lambs are rather dainty feeders and it is estimated that, with a fair quality of hay, one-fifth of that given them is not eaten. With older sheep, and especially with large western wethers, not more than half as much is refused. The best feeders clean out the refuse from four to six times a month. It makes the best of horse hay and is excellent to winter colts and range cattle. Under present methods much of it is wasted. Hundreds of tons are thrown out of racks into the spaces between and tramped over by the sheep until in some corrals this mixed layer of hay and manure becomes more than a foot thick. From ten to fifteen two-year-old steers can be wintered on the refuse from a thousand sheep, and it would be still better for all concerned if the hay was cleaned out so often as to furnish feed for twenty head. In counting the cost of feeding sheep, this refuse is not considered, and all the hay taken from the stacks is charged against the sheep.

Sheep do best with running water before them all the time. A large part of the feeding yards in Colorado are located on the banks of streams or near enough to rivers so that ditches can be run through the yards and the surplus water returned to the river. Those on high ground depend on windmills to pump the water into a tank from which it runs into the watering troughs. The troughs are furnished with float-valves that keep the water always at the same height. At night in cold weather the water is shut off by a valve below frost. A few feeders have done good work, though compelled to haul water
several miles in tanks. During the coldest weather, sheep will drink only a quart of water per day a head, but in warm weather five to six quarts is an ordinary amount. It is probable that this fact exerts a large influence on the live weight of sheep at different periods of the year. The sheep on the College Farm gained rapidly during October on a moderate allowance of food. With the first real cold weather in November, they increased nearly half on the amount of food consumed, but the live weight decreased decidedly. Then there was a steady slow gain through the three winter months. When the first warm days of spring came, they made a sudden large gain in weight with no corresponding increase of food. After this the gain was again fairly constant, or at least, in accordance with the food eaten.

Opinions differs widely as to the amount of salt required by fattening sheep. The most common practice is to keep lumps of rock salt where the sheep can lick them. Under these conditions the sheep will scarcely eat two ounces of salt apiece. Some feeders sup. ply the sheep with all the coarsely-ground salt they will eat, which is more than a pound per head. Others never give any salt at all The results seem to be equally good under each method. All the water of Colorado in winter is strongly alkaline and the theory of those who feed little salt is, that the water contains all the salt the sheep need. It is also a fact that alfalfa hay contains enormous quantities of salt.

Another undetermined point in the economy of sheep feeding is the matter of shearing. Southern lambs are so light of fleece that they never need shearing in the fall. But, if they are to be fed until the last of May, they get very fat and their thick fleece at that time makes them suffer from the heat. If they should happen to be shipped during a hot spell there would be danger of large death losses. If sheared six weeks before shipping, they will grow enough more rapidly to make up the weight of the wool, shrink less in shipping, and pack quite a number more in a car, lessening the freight charges per head. The cost of shearing is five cents per sheep, and the wool is about four pounds, worth thirty cents per head. When, however, these shorn sheep reach the Chicago market, they sell for less per pound, even as much as 35 cents per hundred, or about 30 cents per sheep. This is sufficient to take away all the profit of shearing. Therefore, but few southern lambs are shorn before shipment. The same is true of southern wethers and ewes.

With the western sheep the case is quite different. They are larger, the fleece is longer and grows earlier. They have to be sheared if they are to be fed late in the spring. It is probably best to shear them in the fall as soon as they are brought to the yards, so that the wool will start again before cold weather. They then grow more rapidly through the winter, and the wool in the spring will be almost as heary as though they had never been sheared. This fall shearing applies only to good, well grown lambs. Wethers and ewes
do not need shearing if they are to be marketed before April 15. If they are to be held until late in May, they had better be sheared in the spring rather than the fall.

DEATH LOSSES.

Colorado sheep are pre-eminently healthy. Losses from disease after the sheep are in the feeding yards are very infrequent. Moreover, the alfalfa hay is such an excellent fodder fo: producing both bone and muscle that the sheep, even in the last stages of fattening, are still healthy and strong. They stand shipment easily, and it is not uncommorr for a train load of three thousand head to go through to Chicago without a single death. The shipping distance from New Mexico to Colorado is so short that not many head die while beingbrought in. Some train loads brought from Idaho and from southwestern New Mexico had a somewhat higher death loss. With the exception of one band that lost fifty head by an accident, the highest death loss. that has come to light in Colorado the past season was about twentyfive head in a bunch of more than fifteen hundred. This is about one and a half per cent. The next highest is less than one per cent., and from that down to less than a fifth of one per cent. The average for the State is not far from a half of one per cent., or five head per thousand.

This is surprisingly small when compared with the death losses in Nebraska. Where corn is fed there with timothy hay, they finally work the sheep up to two and a half pounds per day per head. Such heavy corn feeding has a tendency to produce weakness and disease, especially impaction. Nebraska feeders calculate on a death loss of from two to five per cent., with an average of about three per cent. This would be three hundred sheep out of the ten thousand that are commonly gathered at a feeding ranch, or just about one thousand. dollars worth of dead sheep.

SHIPPING.

As soon as enough of the sheep to make a few car loads get fat, shipping begins. From a third to a half in the bunch are picked out for the first shipments. The degree of fatness is the test; the size is secondary. The Chicago market pays just as much per pound for a small fat sheep as for a large one if both are equally fat. If ten or more car loads of sheep are shipped at the same time, the railroads will make up a special train and send the stock through on nearly passenger time. Enough sheep are now being fed in Colorado, so that by conference and mutual agreement train-load lots can always be shipped. One train of thirty-three cars, last winter, contained over six thousand sheep. The railroads allow one passenger free transportation one way for each carload. By shipping two cars in charge of one man, he gets free return transportation.

The sheep are usually loaded in the afternoon and start at once upon their journey. Twenty-four hours of fast travelling brings
them to the vicinity of the Missouri river, where they are unloaded, fed, watered, and rested for one day. Another twenty-four hours' ride and they are near Chicago. They are not at once put on the market, but are unloaded a few miles out of Chicago and fed from one day to a week, according to their condition and the condition of the market. When it is desired to sell them they are loaded early in the morning, put in the pens at the Chicago stock yards, where they are so scared that they will neither eat nor drink and are weighed and sold as soon as possible. The shrinkage in weight from Colorado to Chicago is considerable, notwithstanding the two rests and feeds. In past years on exclusive corn feeding, five per cent. was considered a fair shrinkage. Some bunches have gone through with only a three per cent. shrink, while eight per cent. is not uncommon. The wheatfed sheep of 1894-95 have showed some surprising shrinkages. One bunch of extra fine western lambs weighed at the cars 122 pounds per head after a drive of about a mile. In Chicago they weighed out only 104 pounds, a shrinkage of eighteen pounds per head, or over fourteen per cent. Early shipments of fat wethers and ewes showed nearly as great a shrink. Toward the close of the season as the sheep became fatter, the per cent. of shrink was somewhat less.

COST OF SHIPPING.

The freight rate from Colorado common points to Chicago is $\$ 95$ per 30 -foot car, with ten per cent. added for a 36 -foot car. To this is added $\$ 15$ for loading and unloading when feeding in transit. Two car loads in the fall will require three cars to take them to market in the spring, or two cars at $\$ 110$ per car and one at $\$ 95$. Three cents per day per head is charged for feed at each of the two feeding places on the road. A yard fee of five cents per head is exacted by the stock yards in Chicago, and the live-stock broker charges a commission of ten dollars per car for selling. To these items of eost are to be added the wages and hotel expenses of the man in charge for the twelve days occupied by the trip. Most of the men are willing to go for their bare expenses for the sake of the trip.

Sheep are always shipped in double-deck cars. The deck of a 36 foot car holds about ninety large western wethers or one hundred and twenty southern lambs. The expenses of shipping would be then for large sheep, for one thousand head:

> Freight on four cars @ \$119.50
> $\$ 478.00$
> Freight on two cars@ $\$ 104.50$......... 209.00
> Feed two days@6 cents per head...... 60.00
> Yardage at Chicago@ 5 cents per head. . 50.00
> Commission on six cars 60.00
> Expenses of three men @ \$40.
> 120.00

Total
$\$ 977.00$

This is almost exactly a dollar a head.
On a bunch of fifteen hundred southern lambs, the account would stand:

| Freight on four cars @ $\$ 119.50 \ldots . . . \$ 478.00$ | |
| :--- | :--- | ---: |
| Freight on two cars @ $\$ 104.50 \ldots . .$. | 209.00 |
| Feed two days @, 6 cents per head..... | 90.00 |
| Yardage at Chicago @ 5 cents per head.. | 75.00 |
| Commission on six cars............ | 60.00 |
| Expense of three men @ $\$ 40 \ldots$. | 120.00 |

Total.
. $\$ 1,032.00$
This would be sixty-nine cents per head, and represents the least possible cost. It is common to estimate probable expenses for lambs at fifty cents per head in addition to the freight to the Missouri river on two-thirds of the cars and the traveling expenses of the owner. This is the same as about seventy-five cents per head.

EXPENSES OF FEEDING.

The expenses of feeding southern or Mexican lambs can be estimated with a great deal of certainty. The cost does not vary much from year to year and the cost of the various bunches in any given year will differ only a few cents. The fall of 1894 they cost $\$ 1.35$ per head delivered at Fort Collins, with freight paid to the Missouri river. Alfalfa hay costs from $\$ 3.50$ to $\$ 4$ per ton in the stack. The buyer has to do the hauling from the stack to the feed racks. It is customary to add a dollar a ton if the seller does the hauling and also furnishes feeding yards, racks, etc. Wheat has cost on the average the past season $\$ 15$ per ton, cotton-seed meal $\$ 19$, oats and barley $\$ 21$, and corn chop about $\$ 22$.

The expense of caring for the sheep and giving them their feed will vary greatly with the size of the flock and the conveniences for feeding. Six hundred head is the smallest bunch that it is profitable to feed. One man and team will do all the work necessary for such a bunch and have enough spare time to do all the work needed through the winter on a farm large enough to raise the hay for this number of sheep. On a larger scale, three men and one team will haul the hay and do all the feeding for a bunch of four thousand head. Their wages would be not more than $\$ 150$ per month or $\$ 900$ for the six months' feeding period. This is less than twenty-five cents per head, while in bunches of fifteen hundred or less the average cost is not far from thirty-five cents per head.

How much hay will a sheep eat? The amount depends, principally, on the size of the sheep, but also upon the amount of grain fed. When fed on hay alone, the amount eaten is closely proportional to the size. If there is any difference, the larger sheep eat more per thousand pounds of live weight than the smaller. The general expectation among feeders is, that old wethers and ewes will eat about
four pounds of hay a day in addition to their grain, while lambs will eat two and a half pounds. Careful tests were made at the College Farm iast fall and it was found that during the mild weather in the fall, the large western wethers averaging 120 pounds live weight per head, ate 3.6 pounds of hay per day per head. Western lambs of 100 pounds weight, ate 2.3 pounds of hay, while southern lambs weighing 65 pounds ate only 1.3 pounds of hay per day. A few weeks later in cold weather, the wethers increased to 5.0 pounds of hay per day, the western lambs to 4.0 , and the sonthern lambs to 2.2 pounds per day. At the end of the winter, when the sheep were eating a pound of grain and five pounds of sugar beets, apiece per day, the western wethers ate in addition 2.62 pounds of hay and the western lambs 3.0 pounds. By this time the wethers had grown to weigh 159 pounds and the lambs 137 pounds per head. The southern lambs, weighing 87 pounds each, ate six-tenths of a pound of grain, three pounds of sugar beets, and 1.8 pounds of hay. Reduced to digestible matter, all of these sheep were eating close to twenty pounds of digestible matter daily for each thousand pounds of live weight.

During the whole six months of feeding, the western wethers ate 612 pounds of hay in addition to 68 pounds of grain and 330 pounds of beets; the western lambs ate 529 pounds of hay, and the same amount of grain and beets. The southern lambs ate 296 pounds of hay, 58 pounds of grain, and 287 pounds of beets.

All these weights of hay represent the amount eaten, plus the very small amount wasted, but do not include the amount of refuse taken from the racks and fed to our horses and other stock. If this were added, it would bring the total for the southern lambs up to 350 pounds, while the ordinary rule is 200 tons of hay for 1,000 lambs, or 400 pounds per lamb.

The figures given above for western wethers and lambs are above the average per head, since these sheep were extra large. Probably 600 pounds per head, would be sufficient to include the hay eaten and wasted for sheep of average size.

The grain consumed is largely at the option of the feeder. The general attempt is to feed lightly until about the first of February, and after that induce the sheep to eat as much as possible. According as the feeding period is long or short and depending somewhat on the size of the sheep, the amount of grain will vary from 70 pounds per head to 150 pounds. The average is not far from 120 pounds. The tendency from year to year is to feed more and more largely of grain.

The account of feeding southern lambs would stand as follows:

Cost of lamb. $\$ 1.35$

400 pounds hay @ $\$ 4$ per ton................ 80
120 pounds grain @ $\$ 15$ per ton 90
Labor of feeding................................. . . . 35
Interest and death loss.......................... 06
Freight and expenses to Chicago............. . . 50
Total
$\overline{\$ 3.96}$

This $\$ 3.96$ is a liberal allowance, and if the feeder gets this return he has received full market prices for his hay, grain, and time. All above this should be counted as clear profit.

Statistics have been gathered of the full feeding of over ten thousand southern lambs in Colorado the past season and the average feed has been 414 pounds of hay, 71 pounds wheat, 5 pounds cotton-seed meal, 6 pounds barley, 2 pounds oats, and 35 pounds corn; or a total of 119 pounds of grain. The highest amount of hay fed and wasted was 550 pounds per head and the man so reporting vows he will never again hire inexperienced men to feed for him. The lowest amount is 300 pounds of hay per head. The highest amount of grain fed is 146 pounds, and the lowest 97 pounds per head.

The average time of marketing was April 24th, average weight in Chicago 77 pounds, average price in Chicago $\$ 5.58$ per 100 pounds, or $\$ 4.30$ per head. This gives an average profit of 34 cents per head above all expense.

The feeders of Colorado have a peculiar way of never making any profit on their feeding transactions, but of taking out all expenses and counting the remainder as having been obtained for the hay. Figured in this way the sheep feeders netted $\$ 5.70$ a ton for their alfalfa after paying for the labor of hauling and feeding it, or $\$ 7.45$ per ton for the hay delivered at the racks.

Among so many feeders there would be, of course, a great variation in these net profits. The highest price received for any one carload was $\$ 6.35$ per hundred pounds, and the lowest $\$ 5.00$. The highest price for a whole bunch was $\$ 5.90$ per hundred. The highest price per head for a whole bunch was $\$ 4.90$, and the lowest $\$ 2.73$. It would be difficult to figure any profit out of the latter while the former netted the fortunate feeder market prices for his hay and grain, all expenses, and $\$ 100$ a month for his time. Or, it paid all expenses including the cost of feeding and netted him $\$ 9.45$ per ton for his alfalfa.

It is a noteworthy fact that the original stock as put into the feeding yards in the fall was just about the same quality throughout. The difference in results is principally due to care and skill in feeding. The different results of feeding are also apparent in the live weight of the lambs when marketed in Chicago. In the fall the different bunches weighed 48 to 52 pounds per head. On the Chicago market the average was 77 pounds, with a variation of from 56 pounds to 83 pounds. The best feeders made more than twice as much gain in live weight as the poorer.

The average selling date is rather early. Prices rose to a point where the feeders conld see a surety of profit and they wisely took advantage of $i t$.

FEEDING WES'TERN LAMBS.

The figures already given for southern lambs can serve as a basis for comparing the resnlts on feeding the kinds of sheep. Several thousand western lambs were fed near Fort Collins last winter and the
first impressions were quite favorable to them. If preparations for the feeding of 1895-96 had been made in February 1895, most of the feeders would have tried some western lambs.

The lambs fed here were from western Wyoming or Idaho and were graded with Shropshire and Cotswold blood. They were larger than the southern lambs when they were put in the feeding yards and they grew faster. They made a handsomer looking animal, and it seemed that they must give a fine profit. But, when the final test came in the Chicago markets, the buyers refused to pay as much for them as they were eager to give for the inferior looking southern lambs. The lower price of from fifty cents to a dollar per hundred pounds took away the expected profits and few western lambs will be fed in Colorado the coming season.

First-class western lambs in bunches weigh about seventy pounds per head at the feeding pens the first of November. They cost last fall two dollars per head here, or twenty-five cents more with freight paid to the Missouri river. They cost, then, a little over three cents per pound, live weight, as compared with the two and three-quarter cents per pound that the southern lambs cost.
$\square \cdot$ Per head they eat more than the southern lambs, and per thousand pounds of live weight fully as much, if not more. In shipping, the freight per head is more and the freight per thousand pounds about the same as the southern lambs. On the market they bring less per pound and about the same per head as the southern lambs. Under these conditions, it can be seen that the chances for profit are shight

An average statement of receipts and expenditures for western lambs would be as follows:

> Cost of lamb .\$2.2.5

500 pounds hay@ $\$ 4$ per ton. 1.00
120 pounds grain @ \$15 per ton.......... . . 90
Labor of feeding. 35
Interest and death loss 06
Freight and expenses to Chicago......... . . . 60
$\$ 5.16$
Receipts, 96 pounds @ $\$ 5.25$ per hundred. . $\$ 5.04$
The above showing is not very favorable to western lambs. A bunch might possibly be bought for less than the $\$ 2.25$, but if so the chances would be that they would not be good enough to weigh out 96 pounds in Chicago. If cheap corn conld be obtained to feed with the alfalfa, the time of feeding could be shortened to about four months and about fifty cents per head saved on the cost of the feed. One of the greatest objections to the western lambs is their aptitude for growth. If put on ripe timothy hay and clear corn chop, they might fatten without much growth, but on Colorado alfalfa and wheat they grow rapidly in frame and innscle; but are loath to lay on hard fat.

FEEDING OLDER SHEEP.

In general it can be said that old sheep cost more per head than lambs, and when put on the market sell for about the same. The only chance for profit comes from the shorter time required to get them fat. There seems to be a small profit to be made from yearling wethers if one could happen to get some good stock at a reasonable price, fatten it quickly with corn chop at $\$ 15$ per ton, and find a good market in Chicago. Under these extra favorable conditions the account would stand as follows:

$$
\begin{aligned}
& \text { Cost of yearling wether. } \$ 2.25 \\
& 450 \text { pounds hay @ } \$ 4 \text { per ton. } 90 \\
& 100 \text { pounds grain @ \$15 per ton.......... . . } 75 \\
& \text { Labor of feeding. } 35 \\
& \text { Interest and death loss. } 06 \\
& \text { Freight and expense to Chicago } 1.00 \\
& \text { Receipts, } 130 \text { pounds @ \$4.50............ . } \$ 5.85 \\
& \text { Profits per head. } \$.54
\end{aligned}
$$

The fattening of ewes has about the same business basis as of old wethers. They cost less, about a dollar and a half per head, and they sell for enough less fully to over-balance the less cost. Few feeders make a regular business of feeding ewes, but those who raise their own feeders have to fatten and get rid of their old ewes. Often in buying feeders a whole mixed bunch can be bought for about the same price as would be asked if the old ewes were sorted out. In these ways many thousand ewes are fed each year, but without much profit to the grower or feeder.

The question was often asked last winter, as to how much wheat was being fed in place of corn. The best statistics available show that the 117,000 sheep fed for the Chicago market ate about 136,000 bushels of wheat, 95,000 bushels of corn, and 840 tons of other grain.

With this there were consumed 27,560 tons of alfalfa hay. Few of the sheep fed for the Colorado home market received much grain and the same is true of those sold as feeders or shipped to Omaha. The above figures therefore represent, probably, four-fifths of all the grain fed to sheep in Colorado and probably about half of the hay fed. No attempt has been made to ascertain how much wheat was fed to steers, but it was of course a very large amount.

SHEEP STATISTICS.

Much care has been taken to get the facts concerning the sheep fed in Colorado the past season. It is believed that the following list is practically complete for the sheep that were shipped to the Chicago market. It does not include any sheep fed for the home market, sold to feeders, or shipped to Omaha.

FEEDING EXPERIMENTS ON THE COLLEGE FARM.

HISTORY.

The following experiments were undertaken with a view of obtaining some accurate figures in regard to the feeding of sheep in Colorado and more particularly to ascertain the relative chance for profits in feeding southern and western sheep.

The several bunches of sheep were secured in the fall and held on alfalfa hay until all preparations for the tests were completed. A test was made of the relative amounts of food eaten by the different sheep when on the same rations. Then on December 13, they were divided into four lots for the testing of four different feeds, namely, corn, wheat, sugar beets, and sugar beets and wheat, each being fed with alfalfa hay. The feeding test proper closed March 20, when all lots were again put on the same rations to determine their relative capacity for food. The western sheep were sold April 11, while the southern sheep were kept a month longer and used in a test of shrinkage in shipping as between corn and wheat for the grain feed.

The animals used were as follows: Twenty yearling wethers, obtained from L. P. Southworth, Cotswold and Shropshire blood topped on the original Merino. They were selected for size and vigor from a large bunch, and were very heavy sheep. They were raised in southern Idaho.

Seventeen wether lambs and three ewe lambs of the same source and general breeding as the yearling wethers. These were selected from a flock of 2,500 , and represented the western lamb in its best possible form. They weighed nearly a hundred pounds apiece, though only five months old.

Twelve yearling wethers from New Mexico were obtained from C. R. Bullard. They were probably late lambs of the year before, and weighed but little more than the spring lambs.

Eight wether lambs were also obtained from C. R. Bullard and twenty wether lambs from Jerry Beach. All were from New Mexico and all selected from large bunches, so as to be heavier sheep than the average though not much better feeders than are commonly obtained. Since the New Mexican sheep were low in quality the fall of 1894 , it is probable that these tops represent about an average grade of an average year, although ten pounds heavier in weight.

The tests were thus made with eighty sheep: twenty western yearlings, twenty western lambs, twelve southern yearlings, and twentyeight southern lambs.

FEEDING.

As all of the feeding in Colorado has been done on a large scale, with almost no weights of either sheep or feed, and as no records have been made of amount eaten as separated from that wasted, it has been deemed best to print the full records of the feeding. The
sheep were fed in racks fourteen by sixteen feet square, with tight board bottoms. These were filled with a weighed quantity of hay, about four hundred pounds to the rack. As the sheep ate the hay around the sides of the rack, new hay was pushed out from the middle and the coarse butts they refused drawn out of their way. Fresh loads of hay were added from time to time. The sheep were tagged and weighed individually each two weeks, at which time the refuse was all cleaned out of the racks aud weighed, giving by subtraction the amount of hay actually eaten. In the amount credited as eaten is included the small quantity that was thrown out of the racks by the sheep and trampled under foot. By keeping the ground clear around the racks, this was reduced to a minimum and probably does not represent over five per cent. of the total amount actually eaten. Thus the sheep always had the best of hay before them, and the amounts of hay they are credited with eating represent the maximum amounts that sheep will really eat. That these amounts are less than those commonly given for sheep, show how large a proportion of the hay put in the feeding racks is ordinarily wasted.

The grain and beets were fed in separate racks twice a day, and were usually all eaten in about fifteen minutes.

Feeding began October 24, 1894, and for the next twenty-eight days nothing was given but alfalfa hay. On November 13, the twenty western lambs were sheared, yielding four and one-fifth pounds of wool per head. The first snow storm of the season came. November 15, with a high wind and a temperature of one below zero. The newly sheared lambs suffered severely with the cold, but ate so much that they rapidly made up the loss of the weight of their fleece.

FEEDING RECORD OCTOBER 24 TO MOVEMBER 19.

	Weight Oct. 24	Weight Nov. 19	Hay eaten per head per day.	Hay eaten per day per $1000 \mathrm{lb}_{3}$ live weight.	Digestible dry matter per day per 1000 lbs liv weight.
Western yearlings,	118	128	3.6	30	15.0
Western lambs,	101	103*	2.3	23	11.5
Mexican yearlings,	73	75	2.8	38	19.0
Mexican lambs,	63	66	1.3	20	10.0
Average,	89	93	2.5	28	13.9

*To this would be added the four pounds of wool, so that the western lambs really gained six pounds during the four weeks.

It will be noticed that in both cases the older sheep ate more than the lambs, both per head and per thousand pounds of live weight.

From November 20 to December 13, the feed remained alfalfa alone. The sheep ate considerably more, due probably to the increased cold weather. From December 1 to 13 , was steadily cold, freezing
hard every night and not thawing in the shade in the day time. During these three weeks the sheep lost weight, and on December 13 weighed just about the same as when they came in October. It is probable that this loss of weight was merely a shrinkage of the water in the sheep's systern, not a loss of real flesh-a preparation by the sheep for cold weather. During these weeks they decreased in the amount of water drunk, and for the rest of the winter they drank very sparingly.
feeding record november 19 to december 13.

	Weight Nov.	Weight	Digestible dry		
			Hay eaten per	Hay eaten per day per 1000 lb	matter per day per 1000 lbs
		Dec. 13.	head per day. lbs.	live weight. lbs.	live weight. lbs.
Western yearlings,	128	121	5.0	42	21.0
Western lambs,	103	99	4.0	40	20.0
Mexican yearlings,	75	75	3.6	49	24.5
Mexican lambs,	66	61	2.2	35	17.5
	93	89	3.7	41	21.0

In this heavy increase of food the different lots retain the same relative places they did the month previous on lighter feed. The Mexican yearlings still eat the most for their weight, and this relation continues throughout the whole winter's feeding. They also make the least gain in return for their food.

CHANGE OF FEED.

On December 13, they were divided into four groups of twenty each and put in four separate pens. Each pen had a small shed for shelter from the wind and snow, but, as it was always open, it was not much protection from the cold. Nor did they seem to mind the cold in the least, although it was an unusually severe winter. All feeding was done in the open air. Each group consisted of five western yearlings, five western lambs, three Mexican yearlings, and seven Mexican lambs. Care was taken to have the groups as nearly even as possible, and the extremes of variation from the average were less than half a pound in live weight per head.

Pen No. 1, received 1-2 pound cracked wheat and 3 to 5 pounds of beets per day per head, with all the alfalfa hay they wanted.

Pen No. 2, 1-2 pound cracked wheat and alfalfa hay.
Pen No. 3, 1-2 pound cracked corn and alfalfa hay.
Pen No. 4,3 to 5 pounds beets and alfalfa hay.

FEEDING RECORD DECEMBER 13 TO 26.
PER DAY PER HEAD.

	Hay.	Wheat.	Corn. lbs.	$\xrightarrow[\substack{\text { Beets. } \\ \text { 1bs. }}]{ }$	${ }^{\text {dry mat }}$ libs.	Gain per pen. lbs.
Pen No. 1,	3.5	0.5		2.9	2.59	121
Pen No. 2,	3.8	0.5			2.28	76
Pen No. 3,	3.3		0.5		2.02	69
Pen No. 4,	3.8			3.2	2.41	108
Average,	3.6	0.25	0.125	1.5	2.32	93

GAINS IN LIVE WEIGHT DECEMBER 13 TO 26.

The gains agree very closely with the food eaten. The sheep that eat the most, gain the fastest.

The same rations were continued unchanged to February 7. Some variations were shown in the amount of hay eaten with the other feeds as given below:

RECORD OF HAY EATEN DECEMBER 13 TO FEBRUARY 7. Date.

Pen 1.	Pen 2.	Pen 3.	Pen 4.	Average.
3.5	3.8	3.3	3.8	3.6
3.2	3.3	3.4	3.6	3.4
2.2	3.1	3.0	1.7	2.5
2.6	3.5	2.8	3.0	3.0
$\overline{2.9}$	$\overline{3.4}$	$\overline{3.1}$	$\overline{3.0}$	$\overline{3.1}$
$\overline{2.4}$	$\overline{2.1}$	$\overline{2.0}$	$\overline{2.2}$	$\overline{2.2}$

The pen that has both grain and beets eats less hay than any of the others, but the total amount of food per day per head is largest in this pen. As a natural consequence, they gain most in live weight as shown in the following table:

GAINS IN LIVE WEIGHT DECEMBER 13 TO FEBRUARY 7.

Date.
December 13 to December 26, December 26 to January 8, January 8 to January 23 , January 23 to February 7,

Total,

Pen 1.	Pen 2.	Pen 3.	Pen 4.	Total.
121	76	69	108	374
15	30	31	30	106
145	154	144	150	593
75	38	38	43	194
$\mathbf{3 5 6}$	$\overline{298}$	$\overline{282}$	$\overline{331}$	$\overline{1267}$

On February 7, the feed was increased. At first the pens Nos. 2 and 3 that were getting one-half pound per head per day were increased to three-fourths of a pound and the others remained unchanged. This resulted in the grain pens gaining 63 pounds more in the next two weeks than the root pens. At the same time they ate more hay than when on half a pound of grain per day.

For' the next four weeks, the sheep were stuffed all they could eat. Pen No. 1 had half a pound of grain and six pounds of beets; pens Nos. 2 and 3, one pound of grain, and pen No. 4, from six to seven pounds of beets. The weather was so much warmer that they ate much less total food. Thus the grain and roots were a larger proportion of their food than at any other time. They did not gain quite so fast as in the two weeks previous, but they still made a rapid growth.
record of hay feeding february 7 to march 20.

Date.	Pen 1.	Pen 2.	Pen 3.	Pen 4.	Average.
February .7 to February 19,	3.2	3.8	3.4	2.6	3.2
February 19 to March 20,	1.6	2.2	2.1	1.2	1.6
\ldots	$\overline{2.1}$	$\overline{2.7}$	$\boxed{2.5}$	$\overline{1.7}$	-2.2
Average,					

TOTAL DIGESTIBLE.

February 7 to February 19,	2.6	2.4	2.3	2.1	2.3
February 19 to March 20,	2.0	1.8	1.8	1.6	1.8
\vdots	$\overline{2.2}$	$\overline{2.0}$	$\overline{2.0}$	$\overline{1.8}$	$\overline{2.0}$
Average,					

GAINS PER PEN.

February 7 to February 19,	111	148	119	95	485
February 19 to March 20,	194	194	174	181	743
Total,	$\overline{305}$	$\overline{342}$	$\overline{293}$	$\overline{276}$	$\overline{1228}$

This completed the experiment proper, and on March 20, the sheep were separated, each kind by itself and all fed alike to get the relative amounts of food eaten by each. To complete the record, the further feeding will be given before discussing the results.

On March 20, all the sheep were fed on cracked wheat, beets, and alfalfa hay, the feeding continuing to April 10, when the western lambs and yearlings were sold.

FEEDING RECORD MARCH 20 TO APRIL 10.

Western yearlings	Hay.	Per head per day.			Total digestible per day per 1000 lbs	Gain in weight per head.
		Wheat.	Beets.	Total Digestible.		
	2.62	1.00	5.00	3.00	18.4	9.4
Western lambs,	3.00	1.00	5.00	3.13	21.8	12.1
Mexican yearlings,	2.00	0.75	3.00	2.08	21.0	5.0
Mexican lambs,	1.80	0.58	3.00	1.83	20.3	4.4
Average,	2.33	0.83	4.00	2.51	20.4	7.7

The appetites seem to have undergone a change during the winter. The western lambs eat the most per head and per weight, even exceeding the Mexican yearlings that in the fall were far the largest eaters. The western yearlings have fallen to the rear, both in food eaten and in gain in weight. They reached the limit of their rapid growth some weeks before. In fact, old sheep naturally fatten more quickly than lambs, and to be most profitable should be sold as soon as they are ready for market.

The gains in live weight follow closely the amount of food eaten for each class of sheep, i. e., western lambs eat and gain more than western yearlings, while Mexican yearlings eat and gain more than Mexican lambs.

The western lambs and yearlings were sold April 10. It would probably have been better, commercially, to have sold the Mexican sheep at the same time; but they were kept to make a further experiment of the relative value of wheat and corn as foods to "finish off" sheep for market. The lambs were evenly divided: one-half fed cracked wheat and the other half cracked corn, each without beets.

The weather was very disagreeable and the sheep which were already quite fat did not eat much nor make much gain. On May 7, they were shipped to Chicago, to Swift \& Co. With these, as with the western sheep consigned to the same firm, the slaughtering of the two lots was done separately, and full data furnished us of dressed weight, tallow, etc., so that we have the complete records of these four bunches of sheep from the time they left the range until they were hung up in Swift \& Company's refrigerators.

WHAT SHEEP IS THE MOST PROFITABLE TO FEED?

This question is more frequently asked than any other. The figures of these feeding tests furnish a good basis for a satisfactory answer to this question.

The conditions of the test all the way through favored the large western sheep. They were better specimens of their class than the southern sheep. They were bought on little more advantageous terms
and, being larger, when fed in the same pens with the southern sheep, they had the better chance at the best of the feed.

If under these conditions the southern sheep have showed them. selves the more profitable, and if this result is also obtained by other feeders with large bunches, it can safely be concluded that the Colorado feeders had better turn their attention to the southern sheep.

The western lambs cost $\$ 2.77$ per 100 pounds live weight plus the freight from Soda Springs to Chicago, which was 94 cents per head.

The labor of feeding was, of course, the same for each bunch, while owing to the smaller number that can go in a car, the incidental expenses per head of shipping are about one-fifth higher for the large western than for the small southern sheep.

The full account of the western lambs is as follows:

WES'IERN LAMBS.

First cost, 95 pounds @ $\$ 2.77$ cwt. $\$ 2.63$
Freight to Chicago 94
Incidental expenses of shipping 41
Labor of feeding 35
Cost of feed 2.23
Total expense $\$ 6.56$
Sold in Chicago, 135 lbs @ $\$ 5.25$ cwt... $\$ 7.09$
Net receipts from wool, 18
$\$ 7.27$
Net profit per head \$. 71
WESTERN YEARLINGS.
First cost, 119 pounds @ \$2.75 cwt. $\$ 3.27$
Freight to Chicago
Freight to Chicago 1.00 1.00
Incidental expenses of shipping 44
Labor of feeding 35
Cost of feed 2.39
Total expense $\$ 7.45$
Sold in Chicago, 153 pounds @ $\$ 4.75 \mathrm{cwt}$. 7.27
Net loss per head $\$.18$

MEXICAN YEARLINGS.

First cost, 69 pounds @ $\$ 2.82$ cwt $\$ 1.95$
Freight to Chicago and expenses 50
Labor of feeding 35
Cost of feed 2.24
Total expense $\$ 5.04$
Sold in Chicago, 95 pounds @ $\$ 5.25$ cwt 4.99
Net loss per head $\$.05$
MEXICAN LAMBS.
First cost, 60 pounds @ $\$ 2.82$ cwt. $\$ 1.69$
Freight to Chicago and expenses 50
Labor of feeding 35
Cost of feed, 1.90
Total expense $\$ 4.44$
Sold in Chicago, 91 pounds @ $\$ 5.85$ cwt. 5.32
Net profit per head $\$.88$

The Mexican lambs have made the most profit, whether figured per head or per dollar invested or per ton of hay fed. But it should be noted that in the items of cost of feed given above in estimating the total expenses of the sheep, hay has been figured at $\$ 4$ per ton, wheat and corn at $\$ 15$, and beets at $\$ 4$; so that when as in the case of the Mexican yearlings, the debtor and creditor sides balance, the feeder has still marketed his crops on his farm at full value and has also received full pay for his labor. As a farmer doing his own feeding, he has put in a profitable winter. As an outside party, buying all his supplies and hiring the work done, he has lost money.

RETURN FOR ALFALFA.

A common way in Colorado is to figure the returns as so much per ton for the alfalfa fed, and make no account of the labor.

The western yearling ate 612 pounds of hay per head, the western lambs 529, Mexican yearlings 509, and the Mexican lambs 359 pounds of hay. Making no account of the labor, the western yearlings have returned $\$ 4.57$ per ton for the alfalfa eaten; the western lambs $\$ 8$; the Mexican yearlings $\$ 5.22$; and the Mexican lambs $\$ 10.94$. These figures are not far from the proportions in which returns have been received by other feeders on a larger scale. The above figures are the averages for all the kinds of feed given. Some foods proved more profitable than others. The Mexican lambs that were fed on alfalfa
and cracked wheat did the best, financially, and returned $\$ 12.34$ per ton for the alfalfa they ate.

COST OF GROWTH.

A nother method of estimating the comparative value of the different kinds of sheep is by relation to the amount of food required to make a pound of growth and the growth they will make per month. This is not so exact as the former method, because this growth has not the same commercial value. A pound of Mexican lamb is worth more than an equal quantity of western yearling. During the ninety-eight days from December 13 to March 20, when all the bunches were on the same feed, the record stands as follows:

FEED AND GAINS DECEMBER 13 TO MARCH 20.

	Weight.	Weight Gain in Mch 20. Weight.		Total Digestible matter eaten.	Digestible matter eaten for one pound of growth.	Value of Value food eater of food for one lb	
Western yearlings,	121	158	37	242	6.5	\$1.49	4.2c.
Western lambs,	99	137	38	228	6.0	1.43	3.8
Mexican yearlings,	74	95	21	194	9.2	1.30	6.2
Mexican lambs,	61	87	26	156	6.0	1.14	4.4

It would seem at first thought that if the western lambs and the Mexican lambs each ate the same amount of food for a pound of growth, the cost of the growth should be the same. They both ate the same amount of the expensive grain and beets, but the Mexicans ate so much less of the cheap hay that it raises the average cost per pound of their feed.

VALUE OF A POUND OF GROWTH.
During the whole winter the western yearlings gained 49 pounds per head at a cost for care and feed of 5.6 cents per pound. The western lambs gained 54 pounds at a cost af 4.8 cents per pound; the Mexican yearlings 32 pounds at 8.1 cents; and the Mexican lambs 37 pounds at a cost of 6.1 cents per pound. On the average it cost 6.1 cents to put a pound of growth on a sheep and they averaged growing 43 pounds per head during the winter. They gave a net profit of 34 cents per head, which would add 8 cents to the value of each pound of growth, or about 7 cents per pound as its market value. In other words, if a man furnished the sheep and paid seven cents a pound for each pound of growth, he would come out just about even on the trans-action--that is, on a mixed bunch of western and Mexican sheeep. On western sheep alone he would lose money, and on Mexican alone he would be the gainer by the transaction.

WHAT IS THE BEST FEED FOR SHEEP?

No one experiment would be sufficient to offer a complete answer to this question, but some light is thrown on it by the records of this test.

Four combinations of feed were used: wheat and alfalfa, corn and alfalfa, beets and alfalfa, wheat, beets, and alfalfa.

It is necessary to consider the results both from the side of growth, which made the fastest growth, and from the money standpoint, which made the cheapest growth. The test lasted ninety-eight days, and the separate feeding records have already been given. They are summarized below:

FEEDING RECORD DECEMBER 13 TO MARCH 20.

	Hay.	Wheat.	Corn.	Beets. Hay per day per head.	Total digestible per day per head.	
Pen 1,	5009	980		8150	2.55	2.32
Pen 2,	6139	1315			3.13	2.05
Pen 3,	5682		1315		2.90	1.92
Pen 4,	4728			9792	2.41	$\overline{2.03}$
Total,	$\overline{21558}$	$\overline{2295}$	$\overline{1315}$	$\overline{17942}$	$\overline{2.75}$	$\overline{2.08}$

The average feed per sheep for the 98 days was 270 pounds of alfalfa, 46 pounds of grain, and 224 pounds of beets, at a cost per head of $\$ 1.34$. The average gain was 31 pounds, at a food cost of 4.3 cents per pound of gain in live weight.

The palatability of the food as evidenced by the amount eaten, seems to be the governing factor in regard to the rapidity of growth. The larger the amount eaten, the more the gain. This is shown in the following table:

GAIN IN WEIGHT AND COST OF GAIN PER POUND.

Feed. d	Total digestible	Gain in Live Weight.	Pounds digestible to one lb . of gain.	Cost of food.	Cost of gain per pound.
Wheat and Beets,	, 4541	661	6.9	\$33.71	5.1c.
Wheat,	4020	640	6.3	21.86	3.4
Corn,	3802	575	6.6	22.42	3.9
Beets,	3970	607	6.5	29.14	4.8
Average,	4083	614	6.6	26.78	4.3

The gains in live weight do not differ much, scarcely enough to be detected by the eye. The extremes differ about 15 per cent., but even this difference might change loss to profit. The sheep that ate the most gained the most without exception; but it does not follow that those that grew the fastest required the least food to make a pound of growth or made the cheapest growth. There is but little difference in the amount of food required for each pound of growth. The ones that grew the fastest, ate the most for each pound of growth, and the ones that grew the slowest required the next largest amount.

The governing factor in the cost of the growth is the amount of beets eaten. The beets were valued at $\$ 4$ per ton, the same as alfalfa. This is much too high if the relative feeding values of the two are to be taken in to account, but it is closely correct if the cost of production is made the basis of comparison.

Under Colorado conditions at the present time, it costs just about as much to grow a ton of beets as a ton of alfalfa, and if there was an assured market for an unlimited quantity of each at $\$ 4$ per ton, there would still be more alfalfa grown than sugar beets. The same result is obtained if purchase price is considered. In Colorado, a man can buy all the alfalfa he wants for four dollars per ton, or even three dollars and a half, but he could not buy sugar beets for less, nor could he hire them raised at any less figure than he could secure alfalfa under the same conditions. It costs about two dollar's per ton to raise each of them, and the difference between that and the selling price is no more than a fair profit for the grower.

In all the figuring on the beets of these tests, it is necessary to bear in mind that these were below the average in quality. A hard rain came the first week in September, when the beets needed dry weather to ripen them, and kept the ground wet and the beets growing until harvest time. This made watery beets with a very low percentage of sugar.

On the average of the season, it took between four and one-half and five pounds of beets to contain as much digestible feeding material as one pound of the wheat or corn. It is one of the most interesting features of the test to note how the judgment of the sheep as to their feeding value compared with this estimate based on the chemical analysis.

Two comparisons can be made: previous to February 7, when moderate feeds of both grain and beets were given, and after that date when the sheep were crowded to their full capacity. A third comparison can also be made by taking the figures for the whole time.

Up to February 7, all the pens had been getting all the hay they would eat, and pen No. 1, 1-2 pound wheat and 4 pounds of beets; pen No. 2, 1-2 pound of wheat, pen No. 3, 1-2 pound of corn, and pen No. 4, 5 pounds of beets. Pen No. 1 gained 356 pounds, pen No. 2, 298, pen No. 3, 280, and pen No. 4, 331. Thus the pen with the heaviest feed, i. e., pen No. 1, gained the most, beets alone next, wheat next, and corn last. The average of the wheat and corn is 289 pounds gain. Therefore the addition of the four pounds of beets in pen No. 1 to the 1.2 pound of grain had made an extra gain of 67 pounds over the grain alone, or of 58 pounds over the wheat alone. But pen No. 1 also ate some hay less than pens Nos. 2 and 3 that had grain alone. Thus there are 477 pounds of hay less and 3,970 pounds of beets more to be offset by 67 pounds of gain in live weight. Counting the gain in live weight worth seven cents per pound, and hay at $\$ 4$ per ton, leaves $\$ 2.60$ per ton for the beets.

The beets alone in pen No. 4, gave 42 pounds more growth than the average of the grain pens with 378 pounds less of hay. That is, 4,852 pounds beets gave 42 pounds more growth than 508 pounds of
grain and 378 pounds of hay. Or, if gain in weight is worth 7 cents and hay $\$ 4,4852$ pounds of beets are worth $\$ 3.70$ more than 508 pounds of grain. At $\$ 15$ per ton for grain, the beets would be worth $\$ 3.10$ per ton, or 4.8 pounds of beets are worth as much as one pound of grain.

A comparison can be made between pens 1 and 4. Pen No. 1 ate 508 pounds more of grain and pen No. 4,882 pounds more of beets, 100 pounds more of hay, and gained 25 pounds less. With hay and beets at $\$ 4$ per ton each, leaves $\$ 14.60$ per ton for the extra grain.

The results for moderate feeding, therefore, are that beets alone as compared with grain alone give $\$ 3.10$ per ton for the beets. The addition of beets to the grain ration yields only $\$ 2.60$ per ton for the beets, and the addition of grain to the beet rations gives $\$ 14.60$ per ton for the grain.

As between corn and wheat during this part of the test, there is but little difference. The wheat makes 18 pounds of growth at an expense of 325 pounds more of hay.

Put on the basis of digestible matter, the record stands as follows:

	Digestible matter eaten.	Gain.	Pounds of digestible matter to one pound of gain.
Pen 1,	2689	356	7.5
Pen 2,	2374	298	7.9
Pen 3,	2212	280	7.9
Pen 4,	2500	331	7.5

This shows the substantial equivalence in nutritive value of the digestible material of the several rations.

Full feeding commenced February 7th, and the gain in live weight correspondingly increased. The grain was increased two weeks earlier than the beets and during this time the grain pens gained much more rapidly than the others, but after the beets were also increased the gains were not much different.

RECORD FEBRUARY if TO MARCH 20.

	Hay.	IWheat.	Corn.	Beets.	Gain.
Pen 1,	1940	420		4180	305
Pcn 2,	2230	755			342
Pen 3,					295
Pen 4,	1360			4940	276

Figured in the same way as the last, the beets return $\$ 1.76$ per ton compared with the grain, i. e., pen No. 4 as compared with the average of pens Nos. 2 and 3. They give only 85 cents per ton when added to the grain, and the grain gives $\$ 11.40$ per ton when added to the beets. If these comparisons are made with the pen that had wheat alone, they are still less favorable to the beets.
For the last four weeks when both grain and beets were at full feed, the record stands as follows:
record february 19 to march 20.

	Hay.	Wheat.	Corn.	Beets.	Gain.
Pen 1,	918	290			
Pen 2,	14140	194			
Pen 3,	1252	560			194
Pen 4,	700		560	3640	174
					181

The same methods give for these four weeks, beets as worth $\$ 2.77$ per ton when compared with grain both alone; as worth $\$ 2.17$ per ton when added to the grain, and the grain as worth $\$ 10.10$ per ton when added to the beets.

The results show that, as compared with grain, beets are better adapted to light feeding than heavy; that when the amount of grain fed per day rises above one-half pound per head, or the amount of beets above four pounds per day per head, the return for the beets is too small to pay for raising them.

In every case, beets alone have given a less growth than beets and grain, and, on the basis of the comparative market values assumed in these tests, there has been a larger return for the beets when fed alone than when in combination. It is probable, however, that the better and plumper condition of the sheep fed on both grain and beets would have made them still enough better to offset the apparent advantage of the beets alone.

The tests seem to show that if beets are to be fed, not more than three pounds per day per head should be given, and, in addition, the sheep should be given a grain feed gradually increasing, the same as would be done if no beets were fed.

COMPARATIVE VALUE OF WHEAT AND CORN.

From first to last the pen receiving wheat made a little more rapid growth than the corresponding one that. received corn. They ate the same amount of grain and considerable more hay, but they gained enough faster so that they required less digestible matter for each pound of growth and produced the growth at less cost per pound. The wheat pen ate 6,139 pounds of hay, and 1,315 pounds of wheat to make a growth of 640 pounds, at a cost of 3.4 cents per pound; while the corn pen ate 5,682 pounds of hay with 1,315 pounds of corn and made a growth of 575 pounds, at a cost of 3.9 cents per pound. The result is, therefore, 15 per cent. in favor of the wheat over the corn.

Had the experiment stopped here, the evidence would seem to be strongly in favor of wheat, but on March 20, all the sheep were put on to a mixed ration of grain and beets, and so fed for three weeks. Those that had corn immediately began to grow faster than those that had previously been on wheat. At the end of the three weeks, the two bunches were just even as the result of 119 days of feeding. In fact, the total record shows a little more in favor of corn than wheat, since there was the same growth made on a little less hay.

On April 10th the western sheep were sold. The Mexican sheep were then equally divided, and for the next four weeks one-half were fed corn and hay, the other half wheat and hay. The amounts of grain fed were equal, 211 -2 pounds per head, while those on corn ate in all two pounds more of hay per head than those on wheat. The weather was hot and the gains small, but the corn-fed sheep gained one pound more per head. Both bunches were then shipped together
to Chicago, were killed by Swift \& Company, and dressed in the same manner. The corn-fed shrank in shipping just the one pound extra that they had gained in feeding, and both lots dressed out within half a pound of each other, or 53.5 per cent. of their live weight.

Thus it would be difficult to get two lots of sheep on the same feed to agree any closer from the range in the fall to the Chicago refrigerators than these two lots did fed one on wheat and the other on an equal amount of corn.

SHRINKAGE IN SHIPPING AND DRESSING.

The western lambs shrank 14 pounds, or 9.4 per cent. in live weight from Fort Collins to Chicago, and the western wethers 15 pounds or 9.0 per cent. The corn-fed Mexican sheep shrank 7 per cent., and the wheat-fed 6 per cent. The western lambs dressed 56.9 per cent. of their live weight, or 51.6 per cent. of their Fort Collins weight. The western wethers dressed 55.2 per cent. of their live weight, or 50 per cent. of their Fort Collins weight.

The Mexican sheep dressed 53.5 per cent. of their live weight and 49.2 per cent. of their Fort Collins weight.

These figures show that all the sheep were very fat.
The western lambs yielded 12.3 pounds of tallow, or 16 per cent. of their dressed weight; the western wethers 12.8 pounds, or 15 per cent., while the Mexican sheep gave 7.8 pounds, or 12 per cent. of their dressed weight.

EFFECT OF SIZE ON GROWTH.

The question arose at the time the College sheep were bought, as to whether we gained by picking the larger sheep. The results show that there was a decided advantage in taking the heavier sheep. Dividing each of the fuur bunches into two equal parts, one containing the sheep that weighed more than the average when bought, and the other half less, it is found that in every case the ones that were the heavier at the start more than held their own, growing faster than the lighter ones, as shown in the table below:

	Western Yearlings.	Western Lambs.	Mexican Yearlings.	Mexican Lambs.
Weight of heavier half when feeding ended,	179	162	107	101
Weight of heavier half when feeding began,	128	105	78	63
Weight of lighter half when feeding ended,	158	136	95	92
Weight of lighter half when feeding began,	115	93	71	56
Gain in weight of heavier half during feeding,	51	57	29	38
Gain in weight of lighter half during feeding,	43	43	24	36
Heavier half gained more than lighter half.	8	14	5	2
Final weight of heavier half exceeded final weight of lighter half,	21	26	12	9

Even granting that the heavier sheep eat some more than the lighter, and that they sell for no more per pound, there is still a larger profit in them from the larger growth and the greater number
of pounds of original weight, which is sold for two to three cents per pound more than it cost.

EFFECT OF TEMPERATURE OF FOOD AND GROWTH.
It has long been known that animals eat more in cold weather than in warm, and the following table is presented, not as showing any new facts, but as containing more data bearing on the subject:

	Per head per day.					Total Diges- Av'ge tible per 1000 Temperlbs. per day. ature.		Gainin liveweight perhead perday.
	Average				Total			
	Weight.	Hay.	Grain.	Roots	Digestible material.			
Oct. 24--Nov. 5,	86	1.9			0.92	10.6	45.6	. 15
Nov. 5 --Nov. 19,	88	2.5			1.23	14.0	40.1	. 10
Nov. 20--Dec 13,	86	3.3			1.63	18.9	34.1	. 09
Dec. 13--Dec. 26,	90	3.8	0.40	1.50	2.44	27.1	29.8	. 36
Dec. 26--Jan. 8,	92	3.4	0.40	1.75	2.27	24.6	14.2	. 10
Jan. 8--Jan. 23 ,	97	2.5	0.37	2.25	1.89	19.5	30.5	. 49
Jan. 23-Feb. 7 ,	1102	3.0	0.37	2.25	2.14	21.0	16.7	. 14
Feb. 7-Feb. 19,	106	3.2	0.50	2.25	2.34	22.1	9.9	. 46
Feb. 19--March 20,	114	1.6	0.67	3.20	1.82	16.0	31.7	. 33
March 20--April 10,	122	2.3	0.84	4.00	2.45	20.0	44.7	. 37
April 10--May 7,	97	2.3		0.80	1.75	18.0	52.9	. 15
Average,	98	2.8	0.39	1.56	1.95	19.8	31.8	. 23

It will be seen that sheep eat more when the temperature falls, and drop off again as soon as the weather moderates. Special attention is called to the further fact that sheep do not necessarily grow more slowly in cold weather than in warm. They seem to eat so much more in cold weather that they have a fair surplus in the system for growth. During the severest cold of the winter, about the middle of February, the sheep appeared in fine spirits and made nearly the most rapid growth of the season.

The apparent exceptions to the rule of the feed varying with the temperature, found during December 13 to 26, and March 20 to April 10 , are due to changes of feed to fodders that the sheep specially liked, and they filled themselves up so that thev had less appetite during the following period.

The State Agricultural College.

THE ARAICULTUALL EXPERMMENT STATIOH.

BULLETIN No. 33.

Seepage or Return Waters from Irrigation.

> Approved by the Station Council. ALSTON El.LIS, President.

FORT COLLINS, COLORADO.

JANUARY, 8896.
Bulletins will be sent to all residents of Colorado, interested in any branch of Agriculture, free of charge. Non-residents, upon application, can secure copies not needed for distribution within the State. The editors of newspapers to whom the Station publications are sent are respectfully requested to make mention of the same in their columns. Address all communications to the

DIRECTOR OF THE EXPERIMENT STATION, Fort Collins, Colorado.

The Agricultural Experiment Station,

FORT COLLINS, COLORADO.

THE State Board of Agriculture.
Expires.
HON. JOHN J. RYAN, - - - Fort Collins, - 1897
HON. A. L. EMIGH, - - - Denver, 1897
HON. J. E. DuBOIS, Fort Collins, - 1899
HON. JOSEPH S. McCLELLAND, 1899
Fort Collins,
HON. JAMES L. CHATFIELD, - 1901
HON. A. LINDSLEY KELLOGG, - - Rocky Ford, 1901
HON. ALVA ADAMS, 1903
MRS. ELJZA F. ROUTT, 1903
$\left.\begin{array}{l}\text { GOVERNOR ALBER'T W. McINTIRE, } \\ \text { PRESIDENT. ALSTON ELLIS, }\end{array}\right\}$ ex-officio.
executive Committee in Charge.
HON. J. S. McCLELLAND,

Station Council.

ALston ercis, A. M., Ph. D., LL. D., - - President and Director WELLS W. COOKE, B. S., A. M., - - - - - Agriculturist C. S. CRANDALL, M. S., - - - Horticulturtst and Botanist WILLIAM P. HEADDEN, A. M., Ph. D., - - - - - Chemist L. G. Carpenter, M. S., - Meteorologist and Irrigation Engineer
C. P. GiLLETTE. M. S., - - . . . - - Entomologist
DANIEL W. WORKING, B. S., - - \quad - $-\quad-\quad$ - - Secretary
Lathrop M. TaYLor, B. S., Stenographer.

ASSISTANTS.

FRANK L. WATROUS, - - - - - - - Agriculturist JACOB H. COWEN, B. S., - - - - - - - Horticulturist CHARLES J. RYAN, - - - - - - - - - - Chemist CARL F. BAKER, B. S., - - - - - - - Entomologist ROBERT E. TRIMBLE, B. S., - Meteorologist and Irrigation Engineer

SUE-StATIONS.

PHILO K. JBLINN, B. S.,
Arkansas Valley Station, Rocky Ford, $\overline{\text { Colorado. }}$
J. H. McCLELLAND, - - - - - - Superintendent Divide Station, Monument, Colorado.
CHAS. A. DUNCAN, B. S., - - - - - - Superintendent San Luis Valley Station, Monte Vista, Colorado.
J. B. ROBERTSON, - - - - - - - Superintendent

Rain-Belt Station, Cheyenne Wells, Colorado.

SEEPAGE OR RETURN WATERS FROM IRRIGATION.

BY L. G. CARPENTER.

For convenience of reference, the principal paragraphs are numbered:

Economic importance. Attributed to irrigation
Effects due to irrigation Refrenison by ()......... 30
31The phenomena of return water,

The preselt measurements, 6 Direct evidence scarce, 6 Lirect evidence scarce, | 32 |
| :--- |
| 32 |

8 Case at Montrose.... Methods of gaging, 33
Description of the Poudre valley, 34
Crops and irrigation,.... 9 Rate is slow. 35
Principal canals. 10 French experiments, 36
Churacter of the stream 11 Formula 37
Average monthly flow (Table I.). Temperature factor. 38
Conditions affecting measurement, 12 Velocity through soils (Table IX.)
Diagram showing results (Fig. 2),
Diagram showing results (Fig. 2), 13 Losses from a canal, 39-40
Table showing relation between rainfall and 41times of gaging (Table II.)14 Case of the Hoover ditch
Notes on the measurements, 4342
Detailed tables Poudre gagings - Summary Other cases,
Source of the increase,
of Poudre gagings (Table III.) In rainy countries, 45
Description of the Lower Platte, 16 No observations before irrigation 46
Lateral drainage 17 Soil percolation and evaporation, Lawes andBed of Platte18 Gilbert,47
Location of irrigated land 48 19 Conditions in Colorado
Complicating conditions, Charac
49
Methods of irrigation 50
Figure showing results of gagings (Fig. 4) Underfow of lateral streams,Notes of measurements,Detailed tables of, from 18S9-95-Summary,(Table IV.)Irrigation of the Üper Platte
51
23 Measurements to determine,
52
52
Case of the Bijou 5
24 Inflow and irrigation, South Platte, 54
Effect of irrigation at heads of streams on irrigation below, 55
Seepage of Upper Platte (Table V.)
Relation between seepage and area irrigated, 25Distribution of land and water, Poudre valley,1894 (Table VI.)
Comparison of the Lower Platte. 27
Are these resulte applicable elswhere? 56
Italy, Utah, California, 56-58
PlatteOther investigations and references,59
Conclusions, 60
28 Acknowledgments, 61
§ 1. In countries where irrigation is practiced, it is often the case that, though streams may be drained dry by the diversion of the waters into canals, not far below the stream will again be of considerable size, and this without the inflow of visible tributaries.
§2. This may become of considerable conomic importance, as it already has in the valleys whose measurements are here reported. In the valley of the Poudre, the seepage water is worth, at prices at which sales have already been made, from $\$ 300,000$ to $\$ 500,000$ at the least, and the waters of the Platte from two to three million dollars. It is of corresponding importance in the valleys of Clear Creek, St. Vrain, and others. Of such importance al-
ready, it promises, if the deductions of the bulletin are correct, to be of still greater importance in the future and in the development of the State. Certainly it is true that the value of water will steadily increase.

The experience of all irrigation countries shows that their prosperity is largely bound up in the water question-in the certainty of water, in the security of their rights, and the freedom from abuse. They have found themselves often bound by customs and laws, now become fixed, formed as the practice developed gradually. We are in danger of such here, mostly from lack of knowledge of the conditions. This bulletin is a contribution toward a better knowledge of one condition of water supply, which has already given rise to much rexatious litigation, to some harmful divisions, and to some unrest among those affected one way or another.
§3. The increase which is found in such rivers is attributed to the inflow from innumerable springs fed and supplied by the water which has been applied in irrigation upon the higher lands. In irrigation, more water is applied than the crop uses. Of that applied, some is used by the crop and stored in its tissues; more is transpired in the process of growth; some is evaporated from the soil ; a portion is usually lost by surface run-off; a certain amount passes down into the ground and disappears. This varies in amount and depends upon various conditions. Usually concurrent observations show that this water passes directly downwards, with little or no lateral movement except capillary imbibition, until reaching an impervious stratum, when, filling the interstices, it gradually rises in the subsoil, and passes laterally with a slow movement due to the slope of the water surface which is thus formed. When the passage takes place through the interstices of the soil the movement is very slow, much slower than is ordinarily supposed by those first encountering the subject. It is faster as the material is coarser. Where there are perceptible channels, the movement may be relatively rapid.
§ 4. One of the first effects noted in irrigation where tine soil is pervious, is in the filling of the subsoil. The first evidence is found in the gradual rising of the water in the wells which may have been sunk. Throughout the United States where irrigation is practiced, the evidence is ample, for as the application has been made within a single generation, the changes which have ensued from the application of water are within the memory of hosts of living observers. In many places in the Poudre valley, where it was originally forty or fifty fcet to water, water now stands from ten to twenty feet from the surface, the subsoil having been filled to a depth of twenty to forty feet.

There is sometimes a lowering during some seasons of the year, due to the lateral passage of the water. The lateral passage
has had the effect in some places of filling in the ground until in some places the water shows on the surface, water-logging or seeping the ground, rendering it unfit for cultivation and capable of growing only sedges, cat-tails, and other water-loving plants. Sometimes on the evaporation of the water, a deposit of alkali is left, rendering the land unfit for cultivation without draining. These effects are found underneath the lines of ditches, so that many companies insert clauses in their contracts for water or for right-of-way freeing the company from liability for damage of such nature. In other cases where contracts do not prevent, it has given rise to suits for damage from such cause.

The water usually first appears near the canal, and progressively further a way year by year.
§5. The phenomenon has been but little studied. The reason has doubtless been that in most countries irrigation is of such age that there is no record with which to compare the condition noiv and before irrigation, and the changes due to the construction of canals have been lost in the centuries which have elapsed. There is, however, land in Lombardy which is manifestly seeped and water-logged, and has every appearance of being due to irrigation. Pavia Canal, between Milan and Pavia, built in the early part of this century, has damaged much land. There is loss from the canals themselves, as well as from the water which is applied to the soil.

Wherever the conditions before the construction of canals are within the range of memory, the fact has been observed to a greater or less extent.

Year by year the effect is found farther and farther away from the canal, or from the irrigated locality, as the case may be. In course of time, the waters which are percolating through the subsoil reach the thalweg or the depression of a "draw," or a river, and increase the waters passing therein.

It, therefore, happens that the depressions or draws, which in Colorado are usually dry before irrigation is practiced, contain living streams after irrigation has been carried on for some time. While the Poudre river varies during the year from a maximum of 3,000 to 5,000 cubic feet per second to a minimum of 50 to 100 cubic feet per second, or may vary by forty to eighty times the minimun flow, and other streams correspondingly, these seepage waters will not often vary twice their minimum flow. In consequence the water rights in the seepage channels are usually considered more valuable than those in the river waters.

The particular places at which the waters come to the surface will generally be determined by the nearness of the underlying rock. Frequently the water shows in a particular locality, so that there is a
localized gathering area. There may be several on some of the channels, so that different seepage ditches may be supplied.
§ 6. The present measures which are reported, include measurements made on the Cache a la Poudre river and on the South Platte, in Colorado. Most of the measurements have been made on the former, and have been for the object of determining the amount of the increase in the stream; the relation between the increase and the amount of water applied; between the increase and the area irrigated; and to collect data which should give the means of studying these facts and other phenomena of the return of the waters. The measures on the Platte have been for the same purpose and in comnection with the office of the State Engineer of Colorado. To a greater degree, the measures on the Platte were taken because of the light they might show on certain inter-state questions which have, or may arise, and on some points that could not be decided from the Poudre alone.

The present and future importance of the inflow was under estimated. In the course of the measures, the facts determined have led to much wider and more useful application than was anticipated during their progress.

METHODS OF GAGING.

§7. The points at which gagings were made are scattered over a distance of 200 miles by the river, without following its meanderings. The distance to be traveled by road is much in excess of this; and the distance is made longer for the reason that the highway does not follow the river, and at many points the headgates and places of gaging are not easily accessible. Some roads cross fields and, until an intimate acquaintance is gained with the river and the special by-ways, time is lost in passing from one point to another.

The first measurement on the Poudre was usually made at the gaging station in the Canon, about 12 miles from the College, at the point indicated on the map [page 16]. On the way the ditches on one side of the river would be examined and the in-takes measured. Where the water exceeded more than a few inches in depth in the smaller channels, or where there was sufficient to measure by the current meter, the meter was used to determine the velocity and thus determine the amount entering the canal. In cases where the canal was small and the in-take at the time of gaging was litthe, surface floats were often used, and the mean velocity determined in this manner. While not overly accurate, the results obtained can usually be depended upon to within a few per cent., and the absolute error where used is too small to make any appreciable effect in the general result.

In gaging the river at the regular gaging station, which is at a point in the Canon above the headgates of all the principal canals, a tape is stretched across the river between points on the masonry side walls and the depth of the water at each one-foot or two-foot interval measured throughout the entire width, which is very nearly 100 feet. Then observations were taken with the current meter, usually at two-foot intervals, sometimes at less, across the stream. As most of these gagings were made at a time of low water in the spring, or low water in the fall, the meter has been held by hand and the gager has waded the stream. At other mints on the river where gagings were made the method ally the same, although the cross-sections hay been essentiable as at the gaging station. It is not boen as favormaterial error has crept in from thes measurements some individual sources. In the notes on the ources of error are noted. DESCRIPTION OF THE POUD
§ 8. The measy were taken. dre river and also is the river which College is located purpose of this vantage of bein one which has irrigation has any part of of land irrig phenomena gation on this valle a large scale. They are of great economic importance to similar long as conditions, and where irrigation has been practiced as t has here.
standi ae map in the inset [page 16] is intended to give an underthis v hg of the conditions which may affect the return waters in alley. The gaging station is indicated near the left of the below the junction of the north Poudre with the main stream. only canal above this point which needs consideration is the h Poudre canal, shown on the map, irrigating some 4,000 acres, cipally in the valley of the Box Elder.
The main trend of the valley is to the southeast. Near the tream the land is low, the bottom land varying in width from onehalf to two miles. These bottoms have been occupied in times past by the bed of the stream, which is subject to shifting at times of high water. With the decrease of floods, and with the use of wate for irrigation, the changes are less.

As we pass out of the first bottoms, we reach successively two or three terraces, or mesas, which are generally sandier and stretch back for varying distances. On the north side of the stream the watershed extends many miles, and the streams here indicated as Dry creek, Box Elder creek, Lone Tree creek, and several smaller channels, are simply ravines or depressions, which at times after storms are filled with water and may become at such periods raging torrents. Ordinarily their beds are sharply marked and have a clear tributary country ; they are entirely dry, giving almost no indication hatever of water. After their channels cross the lines of the canals and enter the irrigated country, these streams begin to carry rumning tater.

The lines of the canals, which follow approximately contour lines, indicate by their bends the deneral character of the country and the slope. On the north side of te river the land, as a whole, is more uniform than on the south side. Nearly all the irrigation is, therefore, confined to the north side of the river; the exception being in the region near Fort Collins, and a little space near Greeley. Between the two there is a roughr and more broken country on the south side of the stream, not easily reached by canals from the Poudre.

On the south side, the divide which separates the Poudre from the Big Thompson is but a few miles from the matin river, and as we reach range sixty-eight, the location of the divide is indicated closely by the ditch which takes from the stream to the south. Some of the waste of this canal passes into the Poudre river. To the west, the drainage on the south side, even the mo age, does not flow into the Poudre to any great extend the lateral valleys being nearly all tributary to the stream to the so uth.

The foothills are near the western portion of range ixty-nine, following a line a little east of south. The first ranges, generally known as hogbacks, are formed of gray sandstone, and very shortly afterward the granite is met with, forming the foothills of the Rockies. The sandstone appears in ridges, and even on the for miles the same general appearance may be seen in the ridges which traverse the country from north to south, and evident on the map by the intermediate valleys, in which streams like Dry creek, Box Elder creek, etc., approximately parallel for a long distance and separated by pronounced ridges. These ridges sometimes form natural basins, which have largely used for storage purposes. As the amount of water the stored affects, to some extent, the amount of return waters, the prin cipal reservoirs in use are indicated on the map.
§9. As the length of time that irrigation has been practiced, together with the distance of the land from the river, is an important element in the amount of seepage, a fuller description of the
valley is needed with reference to its irrigation. The crops grown in the valley are principally the cereals, alfalfa, and potatoes. Potatoes have been extensively grown only during the last few years, and the greater part of this crop has been grown near the lower end of the valley. The upper end of the valley is confined almost exclusively to alfalfa and grain, with some market gardens. The distribution of the crops affects the application of the water, both in amount and in time of application. The grains receive water early in the season, and rarely any after July 1. Alfalfa receives from one to three irrigations, commonly two, one often in May. Two will be given, then, and if late water be sufficient, a third in August, after the second cutting ; this is by flooding. For potatoes, the ground may be irrigated before plowing. If not, then irrigation will usually be commenced in July or early in Angust, and is practically over by the end of the first week in September, the active period being confined to five or six weeks. With the crops thus grown, irrigation extends from May to September, with minor quantities applied to orchards and gardens both earlier and later. More water is applied in June than in any other month. Until the development of storage capacity by the construction of reservoirs, the amount of water applied in August was necessarily limited by the stage of the river, Since then, more is applied, and this being for potatoes, is largely applied to the section composing the east half of the valley.
§ 10. Of the canals shown on the north side of the river, the Cache a la Poudre No. 2 is the oldest of the large canals, being one of the original Greeley colony canals. The land irrigated under the Cache a la Poudre No. 2 has been almost fully occupied for a number of years. Some of the land near the upper end has become too wet to need water, and the stock representing the water hitherto applied to this land has been sold and the water is now largely applied to land lower down the canal, and largely drains into the Lone Tree creek, which empties into the Platte just below the mouth of the Poudre. The Larimer \& Weld comes next in point of time of construction, dating from 1879-81. It is the largest of the ditches, having an appropriation of 720 cubic feet per second, and a capacity still greater for a portion of its length. The amount of land brought under irrigation from this canal has largely increased during the past few years. The Larimer County canal has been still more recently constructed, and waters the country still farther from the river to the extent of something like 16,000 or 20,000 acres. Owing to the later appropriation of this canal, and the low stage of water in the river for some years, this canal has not been able to apply as much water compared with its land as the others mentioned, until within the last few years. Recently, by the development of their system of storage reservoirs, combined with the
construction of a canal bringing water from the watershed of the Laramie river, this canal has been able in 1894 and 1895 to secure an amount of water more nearly comparable with the others.

On the south side of the river the canals are mostly small, and have irrigated essentially the same land and the same amount for a number of years.

The other canals of the river have not changed to any great extent in the amount or the distribution of the land irrigated, for eight or ten years. It will be shown later that there is reason to suppose that the water passes through the ground at a very slow rate. Hence the amount of the land irrigated and the time when brought under cultivation will make some difference with the return waters. It seems probable that the seepage due to much of the land under the Larimer \& Weld canal, and from the Larimer County, as well as all from the North Poudre canal, has not yet reached the river.

The point where the weir is placed at the canon is in a granite formation inside the foothills. Within a short distance, the Poudre passes out of the granite and cuts across the upturned edges of sandstones of the Jurassic and Cretaceous periods, and its course from this point until it reaches the Plate is across the slightly upturned edges of the strata, which are mostly shale and some sandstone. In some places these form marked ridges across the country, extending slightly northwest. Their effect will be noticed in the map in the case of the drainage on the north side of the Poudre, where many of these small streams extend to the north fur a long distance. The canals show the contours approximately as far up as these go.

CHARACTER OF THE STREAM.

§ 11. The character of the stream is essentially that of all our mountain streams, as its source of water supply is in the snows of the mountains. It is low in the spring, increasing from April to the middle of June, when it reaches its highest stage ; then decreasing, reaching its low stage again in September. It remains low during the winter. Its maximum discharge may vary from 3,000 to 5,000 cubic feet per second. Its average winter flow is from 50 to 100 cubic feet per second. Its average flow is shown in the following table, the averages being made from records of from three to twelve years for the different months:

TABLE I.

January	110 cubic feet per second.				
February	83	"			
March	70	\%	"	"	"
April	237	: 6	"	"	"
May	1,245	"	"	"	"
June.	2,017	"	"	"	،
July	1,018	"	"	"	"
August	362	"	"	"	"
September	173	"	"	"	"
October.	136	"	"	"	"
November.	81	"	"	"	"
December	74	"	"	"	"

CONDITIONS AFFECTING ACCURACY.

§12. The stream itself is subject to fluctuations, which, however, are more noticeable at times of high water during the summer than at low water, or at the times at which measurements were made. When the snow is melting rapidly the effect of the daily heat is to increase the quantity of snow melted and thus increase the height of water in the river. This makes a very perceptible daily tide, the hour at which it reaches the gaging station varying according to the stage of the river and the distance from which the water comes. When the water is low, the daily rise is later than when the water is high. With high water the greatest height occurs at from 4 to 6 o'clock in the morning ; with a low stage of the river it may not be until toward evening. After the principal snow fields are melted the effect of this daily tide is small, so as scarcely to be perceptible upon the self-registering instruments which are located at the gaging station. At the dates at which gagings have been made for the purpose of this investigation, the tide has been very small, the greutest in August, 1894, and has been neglected. Even if not, inasmuch as the greater portion of the river is taken into the canals before many miles, the quantity of return waters found by the measurements would not be affected thereby. It is of small importance, as the greater quantity of the return waters has been found to be near the lower end of the river.

Errors in gaging inight introduce some errors in the results, but the relative values should remain the same. The meters, however, have been rated in still water, and the constants determined often enough to indicate that the constants have been nearly the same. The meter usually used has been the "Lallie Meter," made in Denver, Colo. Sometimes a meter made by Messrs. Buff \& Berger, of Boston, Mass., has been used.

The omission occasionally of some of the ditches drawing water from the stream would induce an error, but it is not believed that such an error has been committed.

If a portion of the returns by the various creeks and sloughs were waste water instead of seepage water, the quantity found would
be reduced correspondingly. The amount found in these streams is here given in parenthesis (though not counted), and the effect can be easily seen.

Without having determined the actual origin of the water in every case, it is believed that in no case is any of the water derived from above the ditches.
§13. The diagram, Fig. 1, shows graphically the amount of return waters as found in the different measurements. The horizontal distances, or abscisere, give the distances in miles from the gaging station. The vertical distances, or ordinates, indicate the amount of return waters in cubic feet per second. The vertical lines are drawn at the principal points of measurement. The distances have been measured, not along the curves of the river, but on the map, taking generally a straight course across the bottoms, because it is thought that the amount of inflow will not be increased by the curves of the river, but rather will depend ufon the straight course of the river, other things being equal. The different lines indicate the different measurements. It is evident that there is a general agreement between them. There are some marked exceptions, which it is difficult to entirely account for. The small amount of inflow in the first ten miles is noticeable in the eighth and ninth measurements, while in all previous ones it had been considerably greater. A decrease between the seventeenth and twentieth miles is noticed twice, and once between the seventeenth and thirty-second mile. Notwithstanding the minor discrepencies, there is a general agreement, especially during the last portion. It may be seen that the total inflow does not vary much.

Several of the measurements were not carried beyond the Ogilvy ditch, which is several miles from the north of the river, aidd, therefore, the values found are less than had they been continued to the mouth.
§14. Table II. shows the rainfall in connection with the gaging, so as to give the means of judging as to the effect of the rainfall of the previous and the current year upon the amount of inflow. The headings of the columns sufficiently indicate the quantities given. Thus, column 3 gives the amount of rain which fell during the calendar year up to the first of the current month of gaging, and the fifth column is the amount of precipitation during the month and previous to the time of gaging. There does not seem to be any particular connection between the wet and dry seasons and the amount of return waters.

With a high river, the amount of water applied is more than when the river is low, because in the latter case there is stinting of water and much land does not secure enough for the needs of the crops, far less than enough to satisfy the owners ; hence, we may

Fig. 1.-Seepage Increase of the Cache a la Poudre River.
expect that the high years of the river will tend to increase the amount of water that is applied, and likewise the amount of water that returns in the form of seepage.

TABLE II.

YEAR.	Iiainfall of Previous Calendar Year.	Rainfall to Time of Gaging. first of Month.	Rain During Month.		Rain During Gaging.
1884.	15.07		\ldots		
1885.	15.95		16		
1889.	9.79	10.88	3.16	0.31	09
1890	14.48	12.42	0.70	0.70 -week before gaging	
1891.	13.58	14.43	0.20	0.19-3 weeks ". ${ }^{\text {a }}$	0
1892. March	15.69	1.84	1.52	0.83 - week "	0
1892, October	15.69	13.94	0.93	None	0
1893. ${ }^{\text {a }}$.....	15.45	6.28 0.85	0.16 0.67	None	0
1894, March..	7.11	0.85 9.17	0.67 1.53	None	0
1894, October		11.46	T.	None	0
1895............	12.36	16.60	1.06	None	0

In the measurement of August, 1894, irrigation was still being carried on quite extensively, especially for potatoes, the most of which are raised toward the lower end of the valley. At this measurement, it is noticed that the total increase is greater than at any previous one, amounting to 118 cubic feet per second. This would seem to show either that a considerable portion of the water returns in a comparatively short time to the river, or that there is some waste which returns directly. During the past few years, there has been an active increase in the use of seepage water for irrigation by the construction of drainage ditches, which in some cases extend back a number of miles. The effect of this is in most cases to cause the water to be applied to the ground nearer the river than where it is cut, and thus the water is developed and hastened in its journey to the river. In some cases the ditches are constructed and deliver the water directly to the river, so that the water returns sooner than it otherwise would. We should expect in consequence a greater development of the inflow during the period immediately succeeding irrigation, and less during the spring following.

NOTES ON THE MEASUREMENTS.

$\S 15$. The first measurement of the river was made by Mr. E. S. Nettleton, when State Engineer, in 1885, with the aid of Hon. B. S. LaGrange, then Water Commissioner of this district. The measurement was made in October, 1885.

This was at a time when most use of water for irrigation had ceased. A special attempt was made to get all ditches to shut their headgates for the period of the measurement, which had been done very generally by the ditches, so that the amount entering them was only the leakage that passed the gates. No account was made
of the water entering the stream by the small channels, which is given in the later measurements. The assumption was made in this, as in several subsequent measurements, that this water was all seepage water, as, in fact, the investigations of later years have seemed to show.

The second measurement was made in October, 1889, under the direction of Mr. E.S. Nettleton, then Supervising Engineer for the U. S. Geological Survey, and Mr. J. S. Greene, State Engineer.

The inflow determined by this measurement was 99 cubic feet per second in the distance from the gauging station to the mouth of the Poudre. This is a little greater distance than measurement No. 1.

Measurement No. 3, was made in October, 1890, by Mr. L. R. Hope and Mr. E. C. Hawkins, representing J. P. Maxwell, State Engineer, and Col. Nettleton, of the U. S. Department of Agriculture. The total amount of inflow is very nearly the same as in the second measurement.

The fourth measurement, made in the latter part of October, 1891, was made by this, Section in co-operation with the State Engineer's measurements of the Platte river, with which the Section also co-operated. During the first day Mr. Trimble assisted and then joined Mr. Hope at Greeley, helping him take the measurement of October 29th, from Greeley to the mouth of the Poudre, and thence going down the Platte, assisting in making these measurements. In this and the subsequent measurements which have been made by this Section, each measurement has shown some features which it has been desirable to avoid, but which it has not been possible to do. In order not to interfere with the use of water for irrigation, in this and the subsequent measurements no attempt was made to regulate the ditches themselves. The time, however, was chosen so that the use of water in any ditch was nearly constant during the few days devoted to the gaging, and the irregularity, if any, is so small as not to affect the results derived from the measurements. There is one measurement, however, to which an exception may be made. This is No. 6, of 1892, during which time the river was constantly affected because of the trading of water between the Larimer \& Weld canal and a mill at Fort Collins. Each had some claims to the water, but not to the full amount, hence it became mutually convenient to the two parties to alternate the water, so that the mill used the water during the day and the canal took the water at night for storage. This, therefore, caused fluctuations in the streams at points below the Larimer \& Weld headgate, and hence caused some of the discrepancies which are evident in this measurement. Thus, on October 6th, at three o'clock p. m., the river below Strauss's bridge had fifty-four second feet, while the next morning, at 11 o'clock a. m., it had but
twenty-one. This is due to the water entering the canal during the night, and the day water in use by the miil has not yet reached this point. It is not thought that this fluctuation materially affects the indicated inflow at lower puints on the river at that date.

The measurements made up to this time indicated that the inflow was approximately the same. Inasmuch as the measurements had been made at only one period of the year, it seemed desirable to know whether or not the amount of return waters was the same at other seasons of the year; hence, begimning with the measurement of 1892 , gagings have been made during the spring, when the conditions were favorable, as well as in the fall.

The fifth measurement was made in March, 1892, at a time before the canals had used much water for irrigation, but still when most of them were drawing some water, either for domestic purposes or for irrigating fruit and garden lands. All streams or ditches which contained water were measured and are indicated in this table, as in subsequent ones. In case the streams were bringing water to the river which seemed to be derived from seepage water, thus finding a way to the stream, the amount of the gaging is inclosed in parenthesis, and is not counted in the sumination, as it is considered only another way of the water returning to the stream. The source of these waters has not at every gaging been investigated, but, in several cases, and at different times, we have traced these sloughs and creeks to their crossing with the outermost ditches, finding in every case that there is not a stream above the ditch. In some instances the quantity here given may include some waste waters. In general, the amount is insignificant, although in the measurements of August, 1894, there may be some to be thus considered.

In some cases the out-takes of ditches are inclosed in parenthesis. These are cases where the water returned almost immediately to the river. Frequently the measurement was made, and the fact of the water returning was discovered afterwards as we passed down the stream.

In several measurements, as in 1895 , it was not possible to complete the gagings without intermission. In these cases the increase was found for each section. In several cases wherever seepage water had been collected in a lateral channel or drainage ditch and was found running into the river, it was measured and noted as a matter of record, and is found inclosed in single parentheses. Where this was caught in another channel, and did not reach the river, it is inclosed in two sets of parentheses. The water is thus found coming from the Big Thompson creek.

GAGINGS OF THE CACHE A LA POUDRE RIVER.

(In cubic feet per second.)
Measurement No. 1-Made by E. S. Nettleton, October 12-15, 1885.

Place of Measurement.	Onttake.		River	Gain.	No. of Miles	$\begin{aligned} & \text { Gain } \\ & \text { per } \\ & \text { Mile. } \end{aligned}$
River at Gaging Station.................			127.609	.	\ldots	
Pleasant Valley \& Lake canal	1.75	\ldots		\ldots	...	
I arimer County canal...................	0.58					\ldots
Jarkson ditch	0.266					
Little Cache la Poudre ditch...........	1.00				\cdots	
New Mercer canal..........	0.228					
Fort Collins canal	1.14			\ldots
Sum	5.498	122.111			\ldots	
River: 23/2 miles above Fort Collins.......		133.973	11.862	7.25	1.64
Larimer \& Weld canal	1.781	\ldots
Ames ditch......................................	0.69	\ldots	\ldots	\cdots
Lake canal.	1.248	\ldots		..		.
Cache la Poudre No. 2	$3.21{ }^{\circ}$					
Sum	9.485	124.488		\ldots	\ldots	
Rirer at the dam below No. 2.............			149.485	25.497	10.10	2.52
The Whitney ditch	1.583				
Greeley No. 3 canal.....................	5.870					
Sum	7.453	142.582				
River ${ }^{1 / 4}$ mile below No.		122.908	161.863	19.331	12.25	1.58
River, $1 / 3$ nile below Ogilvy ditch	38.955	...	153.117	30.209	5.6	5.39
Totals.....		86.90	35.0	2.48

Measurement No. 2-Made by L. R. Hope and E. C. Hawkins, under direction of E.S. Nettleton, October 14-17, 1889.

River at Gaging Station			68.723			
Pleasant Valley \& Lake canal	14.781	\ldots				
Larimer County canal 818			\ldots		
Jackson ditch	5.248	\ldots			
Little Cache la Poudre ditch	6.968				
Taylorand Gill..	2.577		\ldots		
Larimer County No. 2 canal.............	12.42 F	\ldots			\cdots	
Fort Collins Water Works.............	. 875	...				
Arthur Irrigating Co. canal............ Larimer \& Weld canal650 3.040					
Sum	47.422	21.301		\ldots	
River, below IL. \& W. dam			32.571	11.270	7.25	1.55
Pioneer ditch...........	1.746				
Josh Ames ditch	1.378	\ldots	
The Lake canal.	1.500					
The Arthur canal Box Elder ditch	1.497 6.555					
Cache a Youdre Canal No.	55.184					
Sum	67.880	-35.289				
River. below No. 2 dam.......................			1.500	86.789	10.10	8.64
Whitney ditch Eaton ditch	2.285 .300	\ldots		
Eaton ditch. Greeley Canal No. 3		\ldots			
Ogilvy ditch....	30.098					
Sum	42.518	-41.018				
River, below Ogilvy dam			8.480	44.498	17.50	2.54
River, near mouth			9.887	6.407	3.75	17.09
Totals.....	157.800	\ldots	98.964	38.60	2.56

GAGINGS OF THE CACHE A LA POUDRE RIVER.

(In cubic feet per second.)
Measurement No. 3-Made by L. R. Hope and E. C. Hawkins, October
16-18, 1890.

Place of Measurement.	Outtake.	$\begin{aligned} & \text { In. } \\ & \text { flow. } \end{aligned}$		River.	Gain.	No. of Miles.	$\begin{aligned} & \text { Gain } \\ & \text { per } \\ & \text { Mile. } \end{aligned}$
River, at Gaging Station				80.776			
Canon ditch 975		\ldots				\ldots
Larimer County canal.............	2.819 4.125		...				\ldots
Little Cache la Prodre canal...	4.016	\ldots					
Taylor and Gill ditch.	. 700						
Fort Collins Water Works	. 883						
Larimer \& Weld canal.	16.401				\ldots	\ldots	
Sum	29.449	\ldots	51.327		\ldots		\ldots
River, below Larimer \& Weld dam... Riddle ditch.....................	.1006	\ldots	\ldots	77.117	25.79	7.25	3.56
Josh Ames ditch	1.000	\ldots	\ldots		\ldots	\ldots	
The Lake canal.	1.040	\ldots	\ldots		\ldots	\ldots	.
Coy ditch	. 973	\ldots		\ldots	\ldots	
Box Elder ditch	5.730					\ldots
Cache la Poudre Canal No. $2 . .$. .	79.867	\ldots			\ldots		
Sum	88.716	\ldots	-11.599				
River, below No. 2 canal.		\ldots	\ldots	2.060	13.66	10.10	
River, above Greeley (Pump House)		\ldots	\cdots	19.308	17.25.	15.0	1.15
River, at Ogilvy ditch. Ogilvy ditch	30.675	40.180	20.87	2.00	10.43
River, near mouth		\ldots	32.729	23.22	4. ${ }^{\text {(}}$?)	$\ddot{5} .80$
Totals.....	100.79	38.35	2.63

Measurement No. 4-Made by L. G. Carpenter and R. E. Trimble, October 28, and by L. G. Carpenter and J. D. Stannard, October 29-30, 1891.

GAGINGS OF THE CACHE A LA POUDRE RIVER.

(In cubic feet per: second.)
Measurement No. 5 -Made by L. G. Carpenter and J. D. Stannard, March 10, and by L. G. Carpenter and F. DeVotie, March 11-12, 1892.

Measurement No 6-Made by R. E. Trimble and J. D. Stannard, October 5-8, 1892.

	Ootober 5.						
$1 \mathrm{p} . \mathrm{m}$.	River at Gaging Station............	03		62.92	\ldots	
	Jackson ditch.	4.51	\ldots				
	Little Cache la Poudre ditch	. 18	.				\ldots
	Taylor and Gill ditch (est.)..	6.25	\ldots				\ldots
....	Larimer County ditch		\ldots				
....	New Mercer canal	. 35	.		.		
\ldots	Fort Collins Water Works..	. 28		\ldots	\ldots	\ldots
\ldots	Larimer County No. 2 canal		\ldots				
	Sum	11.96	\ldots				
5:30	River 100 yards above L. \& W. canal Lariwer \& Weld conal..	58.86		66.33	15.37	7.25	2.12

GAGINGS OF THE CACHE A LA POUDRE RIVER.

(In cubic feet per second.)
Measurement No. 6 -(Continued).

Time.	Place of Measurement.	Outtake.	In- flow.	River.	Gain.	N(. of Miles.	$\begin{gathered} \text { Gain } \\ \text { per } \\ \text { Mile. } \end{gathered}$
	River below L. \& W. canal........... October 6.			5.95	\ldots	\ldots	
	Pioneer ditch, near Inverness farm						
	The Lake canal.89 2.00					
	Coy ditch......	(.74)					
	Sum	2.90					
Noon.	River, below Lindell Mills. 1)ry ditch Ames slough Cnoper sloagh. Box Elder creek. Spring creek Box Elder ditch. Sum		(.95)$(2.56)$$(2.68)$$(2.90)$$(1.25)$	52.56	*. 60	3.00
					\ldots
						\ldots	
						\ldots	
		2.14					
		2.14					
$3 \mathrm{p} . \mathrm{m}$.	River, below Strauss bridge......... Ootober 7.	. . .	\ldots	53.93	3.51	4.75	0.74
$11 \mathrm{a} . \mathrm{m}$.	River below Strauss bridge. Inflow below Strauss bridge....... Cache la Poudre No. 2 canal Sum		(.02)	21.03	\ldots	\ldots	\therefore …
		1.43					
Noon.		1.93					
	River, below No. 2 canal Fussil creek. Whitney ditch		(1.33)	21.65	2.52	2.40	1.05
		2.72					
$2 \mathrm{p} . \mathrm{m}$.	River, below Eaton ditch Jones ditch Greeley No. 3 Sum	$\begin{array}{r} .1 \mathrm{j} \\ 32.20 \end{array}$		24.90	5.97	300	1.99
$9 \mathrm{a} . \mathrm{m}$.		32.35			21.81	12.00	1.82
	Sum October 8. River, near Gireeley Pump house Ogilyy ditch	29.14					
$3 \mathrm{p} \cdot \mathrm{m}$	River, below O River at mouth.			$\begin{array}{r} 2.53 \\ 31.69 \end{array}$	17.3129.16	$\begin{aligned} & 2.50 \\ & 3.75 \end{aligned}$	$\begin{aligned} & 6.92 \\ & 7.78 \end{aligned}$
					101.65	38.65	2.47

* Estimated.

Measurfafft No. 7-Made by R. E. Trimble and R. Q. Tenney, November 9-11, 1893.

	November 9.						
\ldots	River at Gaging Station............			52.47			
\ldots	Canon ditch	0.48					
....	Pleasant Valley canal............	4.69					
....	Larimer County ditch...............						
	Jackson ditch....................	4.83					
\ldots	Little Cache la Poudre ditch	0.23					
	New Mercer ditch....		\ldots			\ldots
....	Fort Collins Water Works (est.) ..	. 60	\ldots				
	Larimer County No. 2 canal......	1.87					
	Arthur Irrigating canal	0				
\ldots	Larimer \& Weld canal.	(0.54)					
-...	River below L. \& W . canal			69.61	31.25	7.25	4.31
	Pioneer ditch.	0.45					
	Josh Ames ditch	1.39					
....	Lake canal						
....	Coy ditch..	2.00					

GAGINGS OF THE CACHE A LA POUDRE RIVER.

(In cubic feet per second.)
Measurement No. 7-(Continued).

Measurement No. 8-Made by R. E. Trimble and R. Q. Tenner, March 13-15, 1894

GAGINGS OF THE CACHE A LA POUDRE RIVER.

(In cubic feet per second.)
Measurement No. 8-(Continued).

Measurement No. 9-Made by R. E. Trimble and John D. Bloomfield, August 20-23, 1894.

GAGINGS OF THE CACHE A LA POUDRE RIVER.
 (In cubic feet per second.)

Measurement No. 10-Made October 9-14, 1895.

Time.	Place of Measurement.	Outtake.	$\begin{aligned} & \text { In- } \\ & \text { flow. } \end{aligned}$	River.	Gain.	No. of Miles	$\begin{aligned} & \text { Gain } \\ & \text { per } \\ & \text { Mile. } \end{aligned}$
	November 9. River at Gaging Station..............	10		66.47	\ldots		
	Canon canal	${ }_{21.23}$					
	Inflow from Canon canal.........		. 13				
	Larimer Connty canal....				\ldots	
....	Jackson ditch	0					
	River 150 yards above Mercer ditch		.	63.53	18.75	5.50	3.41
	New Mercer ditch................				\ldots		
	Little Cache la Poudre ditch.....	$\begin{aligned} & 6.67 \\ & 4.55 \end{aligned}$...		\cdots	\ldots
	Taylor and Gill ditch............		\ldots	
$\ldots .$.\ldots.\ldots	Larimer County No. 2 canal..	$. \ddot{50} .$	\ldots				
	Fort Collins Water Works (est.).			.	\ldots	\ldots	\ldots
....	Luflow waste from T . \& Gill ditch		3.63.93				
	Inflow waste from T. \& Gill ditch Arthur ditch..................	2.88			\ldots		
	River above Larimer \& Weld..... October 10.	.	\ldots	54.10	1.46	1.75	. 81
\ldots	River below Larimer \& Weld....	U.28		0.55	\ldots	\ldots	\ldots
	Pioneer ditch.		(0.0.0)				
	Seepage ditch			\ldots	\ldots		
\ldots	Ames ditch.	$\begin{aligned} & \dddot{0.21} \\ & 3.068 \end{aligned}$		\ldots	...
\ldots	Sake canal				\ldots	\ldots	\ldots
..	College sewer	$\begin{gathered} 3.06 \\ \ldots \end{gathered}$	\ldots				
	Coy ditch..	. 18	\ldots	\ldots
	No 2 Res. supply c						
\ldots	River below No. 2 Res. Supply canal Dry crerk. Ames slough . Einigh drain. Cooper slough Box Elder creek. Spring creek Box Elder ditch. Seepag ditch from Spring creok. Side Hill ditch from Spring creek Ditch from Cooper slough	$(1.71)$$(0.96)$	26.44	26.63	4.4	6.05$\ldots .$.
				\ldots	\ldots	
							\ldots
		((3.68))		\ldots	\ldots	\ldots	...
			$\begin{gathered} ((0.53)) \\ (3.76) \\ (6.12) \end{gathered}$			\ldots	
				\ldots	\ldots		\ldots
			$\begin{aligned} & ((0.03)) \\ & ((2.53)) \\ & (1.15)) \end{aligned}$		\ldots	\ldots	
						\ldots	
				\ldots			
		...					
....	River at Strauss bridye.............	32.53	6.09	4.2	1.45
\ldots	River at Strauss bridge. Cache la Poudre No.	.02	\ldots	26.24	\ldots	\ldots	\ldots
	River below Cache la P. No. 2 canal Fossil creek. Whitney ditch. \qquad Eaton canal.	$\begin{aligned} & 5.72 \\ & 8.09 \end{aligned}$	(7.63)	33.73	7.51	2.4	3.13
\ldots	River below Eaton canal Seepage ditch. Jones ditch Greeley No. 3 ditch (Oct. 15)	$\begin{array}{r} 1.89 \\ 18.10 \end{array}$	(1.3i)	26.91$\ldots .$.	6.99	3.0\ldots	2.33
					\ldots		\cdots
			(1.34)		\ldots	
	River below Greeley No. 3 ditch.... October 15. Greeley No. 3.	$.61$		19.77	7.35	9.0	. 82
	River below Greeley No. 3 ditch.... Waste into No. 3 Waste into No. 3. Buyd and Freeman ditch	2.77		32.26	\ldots	\ldots	
					\ldots		
	River at Pamp honse. Mill Power canal Ogilvy ditch.	${ }_{0}^{(4.05)}$	(5.40)	62.73	33.85	3.0	11.28
	River b-low Ogilvy dam Camp ditch. River $1 / 2$ mile above mouth.	$\dddot{0}$		$\begin{array}{r} 70.47 \\ 116.87 \end{array}$	$7.7 t$	2.5	3.10

TABLE III.
SUMMARY OF THE PRECEDING TABLES, SHOWING GAIN IN SEEPAGE: OF CACHE A LA POUDRE RIVER.
(In cubic feet per second.)

	1885.	1889.	1890.	1891.	$\begin{aligned} & \text { Mar. } \\ & 1892 . \end{aligned}$	$\begin{aligned} & \text { Oct. } \\ & 189.2 \end{aligned}$	1893.	Mar. 1894.	$\begin{aligned} & \text { Aug. } \\ & 18!4 . \end{aligned}$	1895.
Canon to Larimer \& Weld canal..	11.9	11.8	25.8	18.3		15.4	31.3	1.6	0.8	19.61
Larimer \& Weld to No. 2 canal. .	25.5	36.8	13.7	8.7		12.0	11.9	30.67	17.4	13.6
No. 2 canal to Ogilvy ditch.......	49.5	44.5	38.1	38.3		45.1	38.0	29.8	72.0	55.9
Ogilvy ditch to Mouth of Poudre.		6.4	23.2	19.4		29.2	17.5	20.4	28.0	46.4.
Total Gain	86.9	99.0	100.8	$\overline{81.6}$	96.1	101.6	98.7	82.3	118.2	164.4

DESCRIPTION OF THE PLATTE.

§ 16. The portion of the Platte river which was subjected to measurement consisted of that portion below the junction of the Poudre river with the Platte, to the State line between Colorado and Nebraska, at the point where the Platte enters the western extension of Nebraska. The country traversed by the Platte has still the main characteristics of that nearer the mountains. From the junction with the Cache a la Poudre, the Platte leaves the general northerly course which it has traveled since leaving the foothills above Denver, bends abruptly eastward and crosses the ridges which run approximately parallel to the mountains. The effect of these ridges. in guiding the drainage of the plains is shown by the long lateral channels. On the south these extend nearly parallel to the Platte for 90 miles, extending to the divide between the Platte and Arkansas rivers, east of Colorado Springs. For a portion of the distance, the Box Elder is within a short distance of the Platte, but, confined by these ridges, it does not meet the Platte until the latter cuts through these ridges. These are drainage channels rather than tributaries, for, except in times of freshets or storms, they do not contain water. Near the heads they are living streams. The last drainage channel from the south of any consequence enters the Platte east of Fort Morgan ; for the rest of the distance the drainage of the country on the south side is collected by branches of the Republican river.
§17. On the north the Platte takes the drainage of the country as far north as Wyoming. The three principal lines of drainage-Lone Tree, Crow, and Lodge Pole creeks-each head near Cheyenne, the first two entering the Platte near Greeley, the last passing nearly eastward for 150 miles, forming the line followed by the main line of the Union Pacific Railway between Julesburg and Cheyenne, and enters the Platte 150 miles farther east, just above Julesburg.

None of these, nor any of the other channels to which the name creek is applied, can be spoken of as tributaries. It is rare

that any water reaches the Platte through their channels, the only times being after heavy rains or sudden and violent storms on the higher grounds on either side. In these cases, the plains shed water as a roof, and the channels bring down violent floods, dangerous, it may be, to travelers. The area drained by these channels is great. As in most cases, the channels are confined by ridges of rock, it was thought that there might be some indication of underground increase from these streams, even if no visible surface inflow. Accordingly in 1894 it was tested by measuring the river above and below the points where the creeks debouch into the bottoms, with results given later.

For a portion of the lower course of the stream, it is lined on one or both sides by a strip of sand hills and dunes, molded and blown by the wind, back of which is a country free from sand.
§18. The bed of the stream is a bed of sand, of varying fine-ness-in some places and at some times quicksand-and shifting with the current, which changes from one side to the other. For some miles below the mouth of the Poudre, the stream is in one channel. It is then gradually broken up by sandbars and by small islands into smaller channels, increasing in number. At the State line there were sixteen channels where we measured in 1895. These channels are constantly shifting by bars forming or washing away in the rapid current, so that they change their importance and frequently their position. The general location of the bed seems to be fairly stable. The river requires bridges some 600 to 1,000 feet in length. The slope of the bed of the river averages about eight feet per mile between the mouth of the river and Julesburg, being greater at the upper portion and less at the lower end. When there is much water this fall is sufficient to give the current great velocity, constantly carrying along the sand, depositing, removing and shifting it.
§ 19. The principal ditches along the course of the river are shown on the map (Fig. 3). It will be noted that the area limited by the outermost ditch under irrigation does not cover a wide strip. Many of the ditches are small, some used to irrigate only the bottom lands. Others, like the Fort Morgan, the Weldon Valley, the Platte and Beaver, and Pawnee Canal systems, irrigate considerable areas of excellent land and are almost the only ones passing out of the bottoms.

If the water reaches the river from the land irrigated, it may be expected to drain into the river following the lines of surface drainage, though remaining unseen. It cannot cross the ridges between the channels. As a rule, wherever the facts are known, the ridges are of rock which is higher than the bottoms of the channels. With the system of ditches, there is then some pos-
sibility of separating the drainage of extensive areas of irrigated land from land which receives little or no irrigation.

COMPLICATING CONDITIONS.

§ 20. The bed is almost invariably of sand of unknown depth. In a few places the rock of the ridges cut through by the river shows at the surface. If there is any flow in the sand, it may be expected to be forced to the surface at such places and increase the volume of the stream. Such a place is just above the Bijou creek, above Fort Morgan. And again below the Hardin ditch and above the Corona ditch the bluffs on the south side of the river are prominent, and show evidence of rock outcropping across the river. The sand is porous and has the capacity to hold much water. The results which may be met with in the natural inflow are masked by the effects due to the varying distance to the rock. These may sometimes be more than sufficient to counterbalance the increase from the inflow. This may explain the unusual gains noticed in several places and the losses which are found in certain stretches, even where an area of irrigated land is tributary to that section. The most marked case is at the mouth of Bijou creek. In the measurement of 1894, which was made above and below the Bijou, a gain was looked for in the few miles between the two measurements. The Bijou drains some 1,400 square miles. Besides, there was some water evident on the south side seeping into the river. Nevertheless, a loss was found in 1894, and in 1895 on making another test the gain was so slight that it may be called a loss. In both cases the Platte \& Beaver canal was measured several miles from its head, and the loss for the few miles if considered may make a slight gain. But with all allowance possible for this, the gain is slight, or an actual loss which the measurements show. Moreover, at the last point of measurement, there are practically no bottom lands.
§ 21. The methods of irrigation on the lower Platte are somewhat different from those on the Cache a la Poudre, and this may account for the difference in the relative magnitude of the result. The Poulre being a mountain stream, fed almost solely by melting snow, is low in the autumn and late summer. On the Platte the summer flow is small, being reduced both by the usage above and by the avidity of the sands and atmosphere. In the fall, however, the seepage from all the streams nearer the mountains-Clear creek, Boulder creek, St. Vrain, Big Thompson, and Cache a la Poudrepour the seepage from these channels and the greater part of the flow received from the mountans into the Platte. As a consequence the Platte is higher in the fall and winter. This gives the settlers along the Platte opportunity to irrigate extensively in the fall, and as late as the ditches can well carry water; they thus
each year irrigate their lands. At the time of measurement they were irrigating extensively. It will be noticed in the tables, as in 1895 , that the canals are running nearly, if not quite full, though late in the season. This in itself increases the rapidity of flow from the lower ends of the small tubes extending to the river, and is one reason why the increase of water is more than in the case of the Poudre in proportion to the same area irrigated. The use of water at this time when vegetation is not active, also permits the use of water in greater quantities without damage. We have no measures which determine the amount actually used, but from observation and the conditions, it seems probable that water is used in greater quantities than in the Poudre valley.
$\S 22$. Fig. 4 shows graphically the results of the gagings below the mouth of the Poudre. The distances between the points of measurement are in proportion to the distance between the lines. The amount of gain is indicated by the distance the line is above the base. Hence the steeper the line in any section, the faster is the gain in that section. If the line descends, as it does in some places, it indicates a loss.
§23. The tables show the measurements in detail, and give the results of each. The dates and the observers are also given. The distances given are different from the distances given in the report of the State Engineer, but are believed to be here correct. In some cases the distance between the same points in different years is apparently not the same, the reason being that the place out of gaging was not quite the same.

In gaging the Platte, the trouble to find accommodations caused considerable interference with the best prosecution of the work. Often after the last gaging of the day a drive of some miles would be necessary, and the river would be taken up at another point the next morning. This did not allow a check on any change the river may have undergone during the night. In 1895 a tent and camp wagon was taken as far as Sterling, and the party camped where night overtook them.

The height of the river was observed both night and morning. It was proved that the change was exceedingly small, amounting, usually, to an increase of about one-fourth inch during the night and a corresponding decrease during the day. A loose block of wood placed at the edge of the water the second night out from Greeley was undisturbed a week later and still just at the edge of the water, indicating a very steady condition of the stream.

The ditches were not disturbed. Where streams are not mentioned in some of the measurements, it is because they were found to be dry.

In 1895 several small ditches near Julesburg were found to be drawing water. Their existence had never been reported to the Water Commissioner, so that they had not been looked for in 1894.

The measurement of March, 1892, was interfered with by snow, which prevented carrying the gaging beyond Fort Morgan.

In 1895 where any of the quantities are enclosed in parentheses, they are not to be taken in the summation. In the case of inflow it was known to be seepage, or in case of out-take it returned immediately to the river.

Fif. 4.-Seepage Increase of the South Platte River.

GAGINGS OF THE SOUTH PLATTE RIVER.

(In cubic feet per second.)

Measurement No. 1-Made by L. R. Hope and E. C. Hawkins, October, 1889.

| Place of Measurement. | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

* Estimated portion seepage from mouth of Poudre river to Hoover ditch.

Measurement No. 2-Made by L. R. Hope and E. C. Hawkins, October, 1890.

GAGINGS OF THE SOUTH PLATTE RIVER.

(In cabic feet per second.)
Measurement No. 2-(Continued).

Place of Measurement.	Outtake.	$\begin{aligned} & \text { In } \\ & \text { flow. } \end{aligned}$	River.	Gain.	No. of Miles.	Gain per Mile.
River at Snyder			12.950	17.089	13.75	1.24
Tetsel ditch.	4.250	..				
South Platte ditch	17.661	\ldots			...	
Pawnee ditch.....	3.881	\ldots			\ldots	
Rivar $1 / 4$ mile above Merino.		\ldots	8.444	21.286	18.0	1.18
Schneider ditch	5.063	\ldots			
Springdale ditch...........	18.500	\ldots	\ldots	\ldots	
Smith and Henderson ditch	2.640				
River at Sterling...		\ldots	11.933	29.692	13.75	2.16
Sterling No. 2 ditch	3.827	\ldots				
Arnette ditch.	11.448	\ldots		\ldots	\ldots
didina ditch	7.05t	\ldots			\ldots
River below Midline ditch.	\ldots	\ldots	3.647	14.043	8.0	1.76
Totals......	\ldots	\ldots	\ldots	165.57	98.50

Measurement No. 3-Made by L. R. Hope and R. E. Trimble, October, 1891.

GAGINGS OF THE SOUTH PLATTE RIVER.

(In cubic feet per second.)

Measurement No. 4-Made by L. R. Hope, March, 1892.

Time.	Place of Measurement.	nuttake.	In. flow.	River.	Gain.	No. of Miles.	Gain per Mile.
\ldots	River, abive Cache a la Poudreriver Cache a la Poudre river............		145.56	473.09	\ldots	\ldots
	River, below Hardin $1 / 2$ mile......... Kiowa \& Bijou canal.	0.50	\ldots	687.73	69.08	8.5	8.13
	River, $21 / 2$ miles below Putnam ditch River, below Fort Morgan canal. River, opposite Furt Morgan..	….. $\ldots \ldots$.	\ldots	732.59 762.07 834.72	45.36 29.48 72.65	$\begin{aligned} & 14.25 \\ & 11.25 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 3.18 \\ & 2.62 \\ & 5.38 \end{aligned}$
	Totals......		\ldots	216.57	47.50	.

Measurement No. 5-Made October 30-November 10, 1893.

Measurement No. 6-Made by P. J. Preston and R. E. Trimble, October 16-24, 1894.

${ }_{3: 15}^{2 \mathrm{p} . \mathrm{m} .}$	Ootober 16. River, below Cache a la Poudre river Lone Tree creek.....................		3.01	308.68			
3:50	River, below Lone Tree creek...... October 17.		\ldots	323.85	12.16	1.50	8.11
$\begin{array}{r} 8: 30 \\ 10: 30 \end{array}$	River, below L. T. creek, same place Sterling Seepage ditch	6.60		345.60	\ldots	\ldots	
11:15	Hoover ditch........................ .	11.81				\ldots	
12:30	River, belnw Hoover ditch			389.90	62.74	3.50	17.93
2:35	Hoover ditch (waste)		0.61 10.19			
4:15	River, above Hardin ditch.			349.65	-51.05	3.00	-17.02

GAGINGS OF THE SOUTH PLATTE RIVER.

(In cabic feet per second.)
Measurement No. 6-(Continued.)

Time	Place of Measurement.	Oattake.	$\begin{aligned} & \text { In- } \\ & \text { flow. } \end{aligned}$	River.	Gain.	No. of Miles	$\begin{aligned} & \text { Gain } \\ & \text { per } \\ & \text { Mile. } \end{aligned}$
$\begin{array}{r} 7: 15 \\ 9: 20 \\ 10: 30 \end{array}$	October 18. River, above H'r'n ditch, same place Hardin ditch. Illinois ditch..	5.36 2.58	\ldots	343.29	\ldots		\ldots
11:50	River. at head of Corona ditch.			378.89	43.54	7.00	6.22
$3: 20$ $2: 45$	River, above Putnam ditch Putnam ditch.	27.90		385.87	6.98	5.25	1.33
8:25	October 19. Weldon Valley ditch..	36.98					
$\begin{aligned} & 10 \mathrm{a} . \mathrm{m} . \\ & 12: 20 \end{aligned}$	River, above Kiowa creek River, below Kiowa ereek.			369.81	48.82	8.50	
$\begin{array}{r} 12: 20 \\ 2: 15 \end{array}$	River, below Kiowa creek. Fort Morgan canal.	170.30	\ldots	375.07	5.26	1.75	3.01
2.55	River $31 / 2$ miles below Fort M. canal October 20.		\ldots	219.00	14.23	7.0	2.03
$\begin{array}{r} 9: 15 \\ 11: 55 \end{array}$	River, above Bijou creek Deuel \& Snyder ditch	3.65		278.45	59.45	5.75	10.34
2:35	Platte \& Beaver canal.	77.28					
$12: 05$ $3: 50$	River, below Bijou creek...... Platte \& Beaver Supply canal.	71.90		152.09	-45.43	1.75	-25.96
4:05	River, below P. \& B. Supply canal.. October 21.			131.54	51.35	8.00	6.42
$9: 10$ $10: 05$		4.95 9.06	\ldots				\ldots
10:15	River. at Snyder....................			142.37	24.84	5.75	432
5 $\mathrm{p} . \mathrm{m} . \mathrm{m}$.	River, helow Big Beaver creek..... South Platte ditch...............	60.01	\ldots	149.63	7.26	5.75	1.26
8:25	October 22 Pawnee ditch..........	99.55					
$9: 20$ $10: 50$	River, at Merino. Schneider ditch			41.48	51.41	12.25	4.20
11:40	Springdale ditch	22.66				
1:20 ${ }^{\text {p }}$. m.	River, above Pawnee creek.			20.80	22.31	9.00	
	River, below Pawnee creek. Henderson and Smith ditch	2.08		24.32	3.52	1.75	2.01
$\begin{array}{r} 9: 45 \\ 11: 30 \end{array}$	October 23. River. above Cedar creek. . Iliff \& Platte Valley ditch	4.14	\ldots	30.36	8.12	10.00	0.81
10;35	River, below Cedar creek.						
3:50	River, $21 / 2$ miles above Crook	.	\ldots	36.07	0.71	17.25	$\begin{aligned} & 6.47 \\ & 0.01 \end{aligned}$
8:20	River, at State line....		\ldots	1.90	-34.17	36.00	-0.95
	Totals......	\ldots	301.19	152.25	

Measurement No. 7-Made by L. G. Carpenter and P. J. Preston to Sterling, and by P. J. Preston and R. E. Trimble from Sterling to Julesburg, October, 1895

Cache a la Poudre river...		123.02				
River below the Poudre.						
Lone Tree creek		5.24	826.55		\ldots	
Hoover ditch............	6.07					
River below Hoover ditch Hoover ditch.		4.47	939.95	114.203	3.50	$33_{3} 0^{0}$
Sterling Serpage ditch		(3.86)		\ldots.
Box Elder...					\ldots	\ldots
River above Hardin ditch. Hardin ditch		909.15	-35.27	4.50	
Hardin ditch. OOTOBER 23.	6.74					
Corona ditch.	10.00					

GAGINGS OF THE SOUTH PLATTE RIVER.

(In cubic feet par second.)
Measurement No. 7-(Continued).

Place of Measurement.	Outtake.	$\begin{aligned} & \text { In- } \\ & \text { How. } \end{aligned}$	River.	Gain.	No. of Miles.	Gain per Mile.
River above Putnam ditch			935.36	42.95	12.25	3.5
Lost creek...............		0				
Putnam ditch	14.38					
Kiowa creek.		0				
Weldon Valley ditch	86.85
River at Orchard.......			940.73	106.60	8.25	12.92
Seepage ditch..		(4.10)		106.60	8.25	12.92
Fort Morgan canal	208.28	(4.10)				
River, at Shaffer's ford......		\ldots	778.37	45.92	9	5.10
River, above the Bijou......			861.85	83.48	5.75	14.50
Bijou creek. OCTOBER 26		(4.84)	
Platte \& Beaver canal....	100.39					
Deuel \& Snyder ditch.	14.70	\ldots				
River, at Fort Morgan.			745.21	-3.97	4.25	-0.93:
Pyott ditch..........	15.58	\ldots				
Platte \& Beaver sappl	55.72				
Smith ditch....	2.88	\ldots				
River, at Snyder		685.85	14.82	11	1.35
October 27. River, 5 miles below Sayder			751.23	65.38	5	13.08.
Tetsel ditch...	. 90	\ldots				
Johnson and Edwards ditch	18.06	\ldots		\ldots		
South Platte ditch.	4.80	\ldots				
Pawnee ditch.	129.00	\ldots
River, at Merino........			691.63	93.16	13	7.17
Schnieder ditch	14.60	\ldots				
Springdale ditch	38.59	\ldots				
Sterling No 1 ditch.	10.63					
Smith and Henderson ditch	2.97	\ldots				
River, at Sterling bridge.			671.64	46.80	13.75	3.40
Iliff ditch	0	\ldots				
River, at Iliff			688.63	16.99	9.25	1.84
()ctober 30. Powell and Dillon ditch.	3.04					
McPhee and Mallins ditch	10.42					
River, at Crook.............			626.12	-48.05	19.00	-2.53
November 1. Henry Fuller ditch						
South Side Res. Co. ditch	2.37	\ldots	\ldots	\ldots	\ldots	
Tom Little ditch.........	(2.19)					
River, at Pole creek.		\ldots	633.23	14.75	24	. 61
October 31. River, at State lime..........		...	585.60	-47.63	9.50	-5.01
			152.25	

TABLE IV.

SUMMARY OF PRECEDING TABLES, SHOWING GAIN IN SEEPAGE OF SOUTH PLATTE RIVER.
(In cubic feet per second.)

	No. of Miles.	$\begin{aligned} & \text { Oct. } \\ & 1889 . \end{aligned}$	$\begin{aligned} & \text { Oct. } \\ & 1890 . \end{aligned}$	Oct. 1891.	Mar. 1892.	Oct. 1893.	$\begin{aligned} & \text { Oct. } \\ & 1899 . \end{aligned}$	Oct. 1895.	Ave.
Mouth of Poudre to Hardin ditch	8	49.0	68.7	75.5	69.1	69.0	23.9	79.0	62.0
Hardin ditch to Putnam ditch...	12	4.0	-18.8	11.6	45.4	-33. 7	50.5	43.0	17.2
Putnam ditch to Fort Morgan canal...	14	51.3	27.0	15.3	29.5	${ }^{6} 60.8$	${ }^{6} 88.3$	0152.5	57.8
	11		6.5	38.3	*72.7	50.3	65.4	-	46.6
Snyder to Merino....	18	79.6	${ }_{21.3}^{17.1}$	98.2 -20.3		15.0	${ }^{2} 24.8$	94.3	49.9
Merino to Sterliug	14	32.8	29.7	-33.4		3.348	+ +25.8	158.5 46.8	55.4 33.7
Sterling to Iliff	9	4.4	14.0	28.1		24.8	17.8	17.0	17. 7
Craok to Crork State line	17			-13.1			0.1	-48.1	-20.3
Crook to State	36			3.3			-34.2	-32.9	-21.3
A ${ }^{\text {a }}$ I otals...	151	217.1	165. 5	275.3	216.7	254.7	301.1	510.1	298.7
Average per mile.		2.2	1.7	1.8	1.6	2.6	2.0	3.4	2.0

: Opposite Fort Morgan. ©Schaefer's Ford. \dagger Below Pawnee.
§ 24. We also include the results of the measurements on the Upper Platte, from the canon, 22 miles above Denver, to the mouth of the Cache a la Poudre, a total distance of 74 miles. The measurements were usually made continuous with those of the Lower Platte, though here given separate. In 1895 they were made after the Lower Platte was completed. These measurements were made under direction of the various State Engineers, with the exception of the first, which was made under direction of Col. E. S. Nettleton in connection with the U. S. Irrigation Survey.

TABLE V

SEEPAGE INCREASE OF THE UPPER SOUTH PLATTE FROM CANON.
(In cubic feet per second.)

		$\begin{gathered} \text { Oct. } \\ 18 . \\ 1889 \end{gathered}$	$\begin{gathered} \text { Oct. } \\ 14, \\ 1890 . \end{gathered}$	$\begin{gathered} \text { Oct. } \\ 23, \\ 1891 . \end{gathered}$	$\begin{gathered} \text { Mar. } \\ 7, \\ 1892 . \end{gathered}$	$\begin{aligned} & \text { Oct. } \\ & 300- \\ & \text { Nov. } \\ & 1893 . \end{aligned}$	$\begin{gathered} \mathrm{O} \cdot \mathrm{t} \\ 29- \\ \text { Nov. } \\ 49 . \\ 189 . \end{gathered}$	Nov. 1895.	0 0 0 0 0 4
To head of City ditch.	6		8.95	27.6	26.0	18.4	49.2	19.4	24.9
" Littleton	12	59.30	18.9	83.2	73.9	50.1	84.6	80.4	64.3
" Denver	22	64.1	70.8	105.0	137.4	94.9	221.6	198.2	127.4
" Fulton ditch	$281 / 2$		110.4	146.5	149.4	138.8	256.0	179.0	163.3
	$351 / 2$	91.6	115.8	181.8	124.5	164.6	306.0	214.1	171.6
" Elwood and Wheeler ditc	$441 / 2$ $513 / 2$	133.6 147.9	191.3	${ }^{2228.3}$	145. ${ }^{\text {189.9 }}$	220.4	342.6	272.0	219.1
" Platteville ${ }^{\text {above St. }}$ Vrain	511/2	147.9	172.7	236.5 2429	189.9	230.6	371.0	336.8	252. 1
" Union ditch ...	6012	161.4	172.7						(20.7.8)
" Latham....	68	211.5	192.8	308.8	202.7	291.7	426.6	3575	30.5
- Cache a la Poudre river.	74	260.*	232.1	335.7	226.0	329.9	478.4 501.8	381.1 438.3	20ni 3

*Interpolated.
The sums given in this table will be found to differ from those given in the reports of the State Engineer. In many cases the seepage collects in side channels, and runs to the river. Where there is good reason to know that it is seepage, it seems better to include this as a part of the seepage inflow of the river. The examination
of numerous channels has shown that in almost all cases they are dry above the lines of the ditches. In some cases waste from irrigation and from ditches, not seepage, also reaches these channels. As a rule, along the line of the Platte, there is little wasted, especially at the time of this measurement. To eliminate the waste, the inflow from the same channel was compared in the various years, and in cases where unusually large, the excess is counted as waste. The inclusion of these lateral inflows causes an increase of the amount by about twenty feet on the average to the mouth of the Poudre.

RELATION TO AREA IRRIGATED.

§ 25. If the water returned comes from the water applied in irrigation there should be a relation between the amount of water applied and the amount returning to the river as seepage. There should also be a relation between the area irrigated and the amount of return. There are so many interfering conditions, that we cannot expect to find the relation a very close one, even had we the means to know the total area, or the total amount of water applied, with accuracy. A portion of the water applied raises the water table or the height of the water in the soil. The land newly irrigated gives no material return for several years, as most of the excess of water applied fills the subsoil. If the land is some distance from the river the element of time also enters. In the case of the Poudre river, there have been many seepage ditches constructed for the purpose of taking the seepage water before it reaches the river, and again applying it to the land. In the aggregate they use a considerable number of second-feet. The increase as shown in the tables should be increased by the amount thus used. The relation between the seepage and the area irrigated will be obscured by these and other causes. The return for any one year is not from the water applied in that or in any other one year. It is rather the result of the applications of several different years at different distances. Hence, while the amount varies from year to year, the varjation from one year to another is less necessary to take into account as the strip irrigated becomes of greater width. In the case of the Poudre valley and also in the Platte, the area under irrigation has steadily increased since the first measures were made. The total amount irrigated in the Poudre valley may be considered as between 120,000 and 135,000 acres. The latter sum was used in bulletin No. 22, on the "Duty of Water."

Table VI. gives the data regarding the principal ditches in the valley, and is given in full to show the character of the land devoted to agriculture. In this table, column 3 includes the total amount of land supplied with water rights under the canals. The waste and pasture land includes much that is not irrigated, and some that is. Hence the difference, given in column 11, is really less
than the area irrigated, if the figures are otherwise correct. The area shown by this table as irrigated in 1894, exceeded 116,000 acres. In the previous year it was less. The increase amounted to several thousand acres per annum, principally under the outer ditches, and at the lower end of these canals. The drainage from a portion of this area does not enter the Poudre, but instead it enters the Platte directly, and through the Lone Tree and Crow creek valleys. This seepage has amounted to probably not less than from twelve to twenty second-feet during the past few years, but is included in the seepage of the Platte and cannot be separated. But, considering that all this area is tributary to the Poudre, we have from 116,000 acres a return of $104 \frac{1}{2}$ cubic feet per second on the average, or one cubic foot per second from each 1,100 acres irrigated. The seepage known to be caught and stored in reservoirs is more than enough to make the return one cubic foot per second for less than 1,000 acres. In 1895 it amounted to one cubic foot per second to every 700 acres. In the case of the Platte, one cubic foot per second returns from still fewer acres.

TABLE VI.

	Name of Canal.				$$	$\begin{aligned} & \text { on } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0.0 \end{aligned}$					
(1)	N. Poudre canal	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	
1	N. Poudre canal	9.074	7081	843	795	2.430	6:3,626	3,775	5,687	1.993	18,306
3	Box Elder canal	1,280	1,000	${ }^{50}$		100	1,200	25	200	280	
4	Larimer Co	27,844	11,131	160 4.010	5	1.) 80	427	300	500	300	
5	Jackson diuch	3,160	11,991	1,131	223	12.847 453	120,838	4,075	113,795	16,713	27,830
6	Small ditches. n . side	2,054	453	7,76	145	886	5,246 4,542	100	${ }^{350}$	2,169	7.984
7	Larimer \& Weld.....	59,507	15,123	7.428	878	32.18	390,601		554,303	44.381	
8	Pleasant Valley \& L.	8,221	3,110	1.750	470	3.234	19.746	6.702 1.972	554,303 3,655	44.384 5,111	77.225 17.387
9	New Mercer	4,2ธ5	1,867	1,664	174	1.020	48,01.5	2.032	13,448	2,389	17,387
10	Larimer Co. No. 2	8,623	985	2.751	61	2.680	56.191	280	10.389	7,638	18,545
11	Fort Collins	1,179	374	492	4.5	387	1.914	65	860	802	
12	Brx Elder ${ }^{\text {Wat.... }}$	1.735	1,028	270	144	3.51	3,178	95	3.184	707	
14	Watrous, W. and S.	1.468	75 1,303	20 409		2.5			640	4.5	
15	Lake,..	6,422	2,076	1,007	156	646 1762	17.036	1.755	11,070	165	
16	Cache a la P. No.2..	33,173	11,128	5.032	704	15,065	36.698 236.689	3,875	23,280	4,166	11,262
17	Whitney ...	2,080	68.3	3.78	55	6.52	10.461		602.48 .3	22.045	70,610
18	Eaton and Jones	360	149	75	119	135	1.900	250	2,240	1.311	
19	No. 3	1,275	480	147	103	517	3,015		14,652	795	
20	Boyd and Freeman.	900	158	90	350	300	3,150	300	7,000	742	
21	Ogilvy ..	3,800	1.728	720		1,357	20,755		29,660	2.072	
	Totals	176,848	61,120	29,193	4,722	76,419	1,045,258	29,351	$\overline{1,417,628}$	116,228	260.259

§26. The foregoing table shows the distribution of the irrigated land, and of the water applied in the valley, according to the canals. The record is taken from the figures obtained by Water Commissioner Tenney in 1894, and include the first complete data for the entire valley. The data gives nearly the relative quantities,
and is far better than other records available. Some of the figures will be referred to later.
§ 27. On the Lower Platte the extent of the irrigated area is not so well known as on the Poudre. This portion of the valley includes two districts-Water District No. 1, from the mouth of the Poudre to the east line of Morgan county, just below the head of the Tetsel ditch, and No. 64, from that point to the State line. In the report of the Commissioner for district No. 1, for 1890, the total amount irrigated is given as less than 11,000 acress. In 1892 it is given as $4: 3,730$ acres. This latter is probably excessive. The amount is reported in 1895 as practically the same, distributed among the ditches as follows:

> Acres
> The Hoover and Illinois ditches_------- 720
> The Putnam ditch_---------------------1, 1, 875

> The Platte \& Beaver Supply ---.-.-.-.-. 9,500
> Deuel \& Snyder ---- ------------------ 1,000

In district 64, through the courtesy of Mr. Patterson, the Water Commissioner for that district, we are given the following approximations:

$$
\begin{aligned}
& \begin{array}{l}
\text { South Platte ditch Acres. } \\
3,500
\end{array} \\
& \text { South Platte ditch -----------------------3,000 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Schneider ---------------------------- } 2,600 \\
& \text { Sterling Irrigation Co...------------------ } 4,400
\end{aligned}
$$

$$
\begin{aligned}
& \text {,Sterling No. 2------------------------1,-1, } 800 \\
& \text { Low Line -------------------------------1, } 900 \\
& \text { Springdale ------.----------------------- } 3,200 \\
& \text { Powell and Dillon----------------------- } 930 \\
& \text { Iliff \& Platte Valley ---- ---- --------- - - } 5,000 \\
& \text { Small ditches -------------------------6, } 000 \\
& \text {-35,000 }
\end{aligned}
$$

This makes a total acreage for the valley of about 75,000 to 80,000 acres. With an average inflow of 340 cubic feet per second from the mouth of the Poudre river to Iliff, this is an inflow of one cubic foot per second from 220 to 240 acres irrigated. This is far more than in the case of the Cache a la Poudre. It is to be noticed that in the case of the Platte, a relatively large proportion of the irrigation is given to the bottom lands, which are used for hay. The principal exceptions are in the vicinity of Fort Morgan
and Sterling. The river overflows the bottoms many years, and did so in 1893, 1894 and 1895, and soaks them with water sometimes for a considerable period. More water is applied in the bottom irrigation than in the uplands. The practice of fall irrigation is very extensively followed. The river then having sufficient water, all the lands with few exceptions are soaked. We do not have measurements to show how much water is thus applied, but from what I observed, and from the conditions, the watering seems to be relatively a very profuse one. This land receives more water than an equal area on the Poudre, and is, as a whole, much closer to the river. These conditions tend to give a more profuse and a speedier return to the Platte.

On the Upper Platte, the conditions have not been under observation, and the areas are not well known. The seepage of fully half a million acres drains into this portion of the Platte and the tributaries which flow into it. In the cases of the latter, the construction of numerous seepage ditches have interfered with the natural flow of the water, so that the amount which reaches the river is much less than the total amount of seepage. A portion of the land irrigated from these lateral streams drains directly into the Platte. This is especially the case with Clear creek. According to the reports of the Superintendent of Irrigation of this division to the State Engineer, there have been, using round numbers, 58,000 acres irrigated in district No. 2, including the Platte from Denver to the mouth of the Poudre ; 39,500 in district 8 , which includes the Platte from Denver to the canon. This is a total of 98,000 acres irrigated directly from the Platte. In addition to this there are about 45,400 acres draining into the Platte which are irrigated from Bear creek, Clear creek, St. Vrain and Big Thompson, making a total of 143,000 acres lying along the Platte and tributary thereto. This sum is rather above than below the truth. Comparing with the total inflow, we have an average return of 332 cubic feet per second from 143,000 acres, or one cubic foot per second from 430 acres.

During the first four measurements the average return was 264 second-feet, and during the last three, 423 second-feet. The latter is at the rate of one second-foot for each 238 acres. It is certain that many acres of the land in this valley returns but little water to the stream. Whether the rate of increase noted in the table from year to year will continue, further measurements are necessary to determine.

RELATION BETWEEN SEEPAGE AND AMOUNT OF WATER APPLIED.
§ 29. An attempt was made to determine the amount of land the drainage of which enters each of the lateral channels and enters the river between the points of measurement, thinking that
this might explain some of the exceptional gains. But still better is the amount of water which is applied, if it can be known. A manuscript map was prepared, showing the location of the water rights in the principal canals. A water right usually includes the right to the water for 80 acres. From this map a table was prepared, showing the number of rights draining into the river between the different points of measurement. From the amount of water used by the different ditches during the year, as shown in Table VI., this could be expressed in acre-feet of water, or in the number of acres which would be covered by the water one foot in depth. The inflow can not be expected to be very closely proportional to the area irrigated or the amount of water applied between these points, or not until after a series of years. The return is slow, and there is reason to think that the seepage from some of the cuter ditches has not yet reached the river. The construction of seepage ditches, to drain the seepage water from the water-logged land, or to catch the seepage water, also interferes with the normal distribution. They collect and carry the water sometimes a number of miles from where it appears. The effect of the seepage ditches is to increase the apparent return near the lower end of the stream. The amount of water lost from the canals is much more than from an equal area of irrigated land. An area of one acre forming part of a canal channel loses as much water as 200 to 400 acres of land under ordinary irrigation. The losses near the heads of the canals, especially those near the mountains, is greater than the average. An estimate of the number of acres of canals would be desirable before the study can be completely satisfactory.

From Table VI., we find 260,000 acre-feet of water is applied to 106,000 acres. This includes loss and waste from the canals, and is equivalent to a depth of 2.45 feet over the entire area irrigated. If this depth were applied by the smaller canals ton, we have 284,000 acre-feet applied in the whole valley.

As a rule, the smaller canals have earlier appropriations from the river, and therefore use water more freely ; hence it is safe to assume that at least 284,000 acre-feet of water have been applied to the irrigated area. The amount of water which is applied is affected by the stage of water in the river. When the river is high the canals are full, water is unstinted. If low, the amount used is decreased. In this case the ditches of later construction are the first to suffer. The development of storage reservoirs has increased the amount applied late in the season, especially since 1892 . At present the reservoirs already in use in the valley of the Cache a la Poudre have a storage capacity of about 48,000 acre-feet. Of the 284,000 acre-feet applied to the whole valley, about 35,000 acre-feet is applied so that it drains into the channels running into the Platte. Deducting this, as it does not affect the inflow into the Poudre, we
then have an inflow reaching the Poudre of 104 cubic feet per second, from an application of 250,000 acre-feet, or a constant flow of one cubic foot per second from each 2,400 acre-feet applied. The amount is actually greater than 104 second-feet, because of the amount, at present unknown, which is caught by the seepage ditches. As one cubic foot per second corresponds to 724 acre-feet in the course of a year, there is a seepage return of 724 acre-feet from 2,400 acre-feet of water taken from the river. If the seepage from the outer canals has not yet reached the river, then an actual application of much less than the 2,400 acre-feet gives the observed return. What the exact proportion is cannot be determined in this valley for some years to come, after all the land irrigated furnishes its portion of the seepage to the stream.
§30. Bringing together the amount of increase in different parts of the Cache a la Poudre and the area of irrigated land which drains into the sane section, we have Table VII. In the third column is given the amount of water applied to that portion of the valley whose natural drainage is into the river between the points indicated in the first column In the fourth column is given the per cent. of the total amount applied to the whole valley. In the column headed "Computed inflow" is given the amount of inflow there would be if the inflow were in exact proportion to the amount of water applied. How much land will furnish underflow to a given part of the river cannot be very closely told, even with detailed knowledge of the topography and the location of the farms where water is applied. The course of the underground drainage can be told in most cases, until the river bottom is reached. Thence the channels often end in sloughs, and sometimes follow oid river channels, or the water is collected in seepage ditches, which carry it sometimes for considerable distances. From our present maps the limit of the drainage areas cannot be told with sufficient accuracy to make the areas and the amount of water applied, given in the third column, anything but an approximation. The table shows, however, that the relation is close enough to be more than accidental, and in future years, when the influence of the outer area begins to be felt, may be expected to be closer.

It shows that there is a reason for the large amount of increase observed in the last few miles of the Poudre, before it empties into the Platte.

In the case of the increase from the No. 2 canal to the Pump house, and from the Pump house to the Ogilvy ditch, it may be stated that a portion of the drainage above the Pump house enters the bottoms above that place, and does not enter the river until below that point. While the water applied is counted in the section above the Pump house, the seepage is included in the section below. It has not been possible to estimate this, and it is
therefore noted as a disturbing condition. Likewise, some of the seepage which should enter the next section between the Pump house and the Ogilvy ditch, enters the river lower down.

TABLE VII.

		Water Applied.		Average Inflow from Seepage.			
			$\stackrel{4}{\circ}$ $\stackrel{\Delta}{2}$		$\begin{aligned} & \text { ®i } \\ & \dot{D} \\ & \dot{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Z } \\ & 0 \\ & 0 \\ & \text { a } \\ & 0 \\ & 0 \end{aligned}$	
Canon to L. \& W. canal	7.25	18,400	7	9	15	8	2
L. \& W. to No. 2 canal.	10.10	51,800	21	9	21	21.6	2
Eaton to No. 3......	${ }_{9.0}$	30,300	12
No. 3 to Pump house, Greeley	3.0	46,700	18				
No. 2 to Pump house, Greeley	15.0	114,000	45	7	28.6	48	2
Pump hozse to Ogilvy ditch	2.5	23.100	9	8	19.2	10	8
N.silvy to mouth of Poudre	17.5	137,100	55	9	45.2	57	2.5
Beyond mouth of Poudre...	4.0	42,700 38,000	17	8	23.8	18	6

THE EFFECT OF TEMPERATURE ON THE INFLOW.

§31. The effect which temperature might have upon the amount of inflow was not considered of any importance until the unexplained differences caused a consideration to be given to its possible effect. It is known that low temperatures increase the viscosity of water. The effect is especially noticeable in the flow through small tubes, so much so that five times as much water will pass through a capillary tube at 200° as at $32^{\circ} \mathrm{F}$. The effect has been noticed on the amount collected by drains, and in varying the discharge in cases like those of the gathering pipes of the Denver Water Co., in the bed of Cherry creek. A comparison between the soil temperatures at the Colorado Agricultural College and the inflow into these gathering galleries has been made in bulletin 38 of the Utah Experiment Station. As our measurements of the seepage were nearly all taken in the same month, it was not thought that the difference of temperature would be sufficient to affect the quantity of flow. But it may have a much greater effect than was at first thought probable. The water-carrying stratum lies at different depths, and is of different thicknesses. Its temperature therefore varies. Besides, the descending water carries down the temperature of the surface to some extent. Still, the indications of the soil thermometers may be taken to show the variations in the temperature of the seepage water at the time of gaging, and hence give the means of estimating the effect of temperature.

The readings of the soil thermometers will not be far from the temperatures of the soil at the corresponding depths throughout the Cache a la Poudre and the Platte valleys. There are three sets of
thermometers: One in well-drained irrigated soil; one in low, undrained irrigated soil, the water standing within six feet of the surface; and one in well-drained unirrigated soil. At a depth of six feet the variation during the year is from 20° to 24°, being least in the low ground. At three feet in depth the range is 32°. At six feet the highest temperature of the year is reached early in September, the lowest early in March. Its temperature thus lags six or eight weeks behind the temperature of the surface. At three inches depth the annual range is about 70°. With the range of temperature at the depth of six feet, other conditions remaining the same, one-third more water would flow in August than in March, and at a depth of three feet, nearly one-half more.

But as the gagings of the different years were made at almost the same time, the difference in temperature is comparatively small, and the effect in different years for the same month will be less marked. Nevertheless it is not insignificant.

The table shows the average temperature at three and six feet depth during the time of the gagings of the Poudre river, and the amount of inflow found is shown in the fourth column.

Had the temperature been uniformly 60° instead of that observed, the amount of seepage would have been that given in the last column. This is under the supposition that the temperatures at three and six feet in depth from the surface will be the most influential. The correction is obtained by determining graphically the co-efficients of viscosity from the co-efficients, at $32^{\circ}, 50^{\circ}, 68^{\circ}$, etc. \dagger

TABLE VIII.

TEMPERATURE OF SOIL AT 3 AND 6 FEET BELOW SURFACE, AND ITS EFFECT ON SEEPAGE.

Iear.					
Oct., 1889	57.8	59.4	99.0	101	Set A in dry, well drained irrigated soil.
Oct., 1840.	58.7	56.2	100.8	104.8	Set B in low ground, water standing within six
Oct., 1891.	55.7	54.9	84.6	90.4	feet of the surface.
Mar., 1892.	38.9	40.0	*96.	122.0	
Oct., 1892.	60.4	59.9	101.6	101.4	
Nov., 1893.	51.5	53.4	98.7	108.6	
Aug., 1894.	36.2 64.3	- 6.5	118.2	113.5	
Oct., 1895.	52.2	52.3	164.4	187.4	

* To Ogilvy ditch.

The amount of return throughout the year is sensibly the same, the principal disagreement being the one for March, 1892, when the gain in less than the full distance would have been 122 second-

[^36]feet, and in 1895, when the gain was much greater than in previous years. The large gain corresponding to March, 1892 , is probably due to the fact that this measurement was taken immediately following a storm, which had covered the ground with snow, and, slowly thawing, had filled the surface of the soil. Such a case as has been shown by King, makes its influence felt at once on the underground water, even though the intermediate space be dry. The return for 1891 is less than the average amount. There is a doubt concerning that gaging. The measurements of the lower part of the stream from the Pump house, at Greeley, to the mouth of the Poudre, were made by Messrs Hope and Trimble, who continued down the Platte, while the upper ones were made by other parties. The results of the lower party were taken and compared with those of the upper. It is possible that the interval of one day, or the use of different meters, may have had some effect.

There is a sensible increase after allowing for the effects of temperature.

RAPIDITY OF FLOW OF SEEPAGE OK UNDERFLOW WATER.

§ 32. Inquiries for information regarding the movement of underground waters is so frequent, that though it was not intended to say anything on the subject in this bulletin, it is desirable to give a brief statement of the facts as they appear to be.

Direct evidence of the speed with which water passes through any considerable distance underground is almost entirely wanting. Attention has been awake to evidence bearing upon the question, but in the course of extensive travels over much country for some years almost none has been encountered. Cases where lands have been seeped subsequent to the construction of a ditch have been sought, but most cases have been complicated by other conditions, which make the answer anything but conclusive. Subsequent experience has also led to the conclusion that the appearance of seepage may give very unreliable testimony. For example, on the grounds of the Colorado Agricultural College a well was sunk about 200 feet from a canal and about ten feet lower. In the course of some measurements on the well, it was found that whenever water was turned in the ditch the water began to rise in the well within twelve hours. There is every reason to doubt that water passed that distance in that time. The case is similar to that where water is turned in a hose. If the hose is already full of water, water immediately begins to run from the lower end. If the hose is empty, some time will be required to fill the hose before the water begins to run. If already full, the pressure is transmitted in very short time, and the increase which is seen very often in the flow of seepage when water appears in a neighboring canal may be due to the transmitted pressure, rather than to the direct passage of water.

Where there is a periodical change in the head supplying the water, as in the case of the canals, there may be a series of underground waves affecting the height of the ground water. The rise and fall of such a wave, which started years before, may be mistaken for the rise and fall due to the periodical rise in the canal.

Thus the case of the Natron ponds, which rise in March, and are located thirty-five miles from the Nile, and which Storer (Agriculture, 1:56) attributes to the rise of the Nile of the previous September, is probably such a case.
§33. The best case met with was near Montrose. A deep gulch starts in the mesa below the Montrose canal. Passing across this depression the glistening in the moonlight of the alkaline deposit on the shale at the bottom attracted my attention, and on inquiry it was learned that this began to show slightly two years after the canal was used, and in considerable quantity in three years. The distance from the canal is three miles. This would make the speed about one mile per year.
§ 34. Direct experiment on the rapidity under field conditions have been unsatisfactory or inconclusive. Col. E. S. Nettleton, as Chief Engineer of the U.S. Irrigation Investigation for the Department of Agriculture, aided by W. W. Follett, attempted to determine the rapidity in the sands of Cherry creek, and on the Rio Grande, but with inconclusive results, except to come to the conclusion that the velocity was very slow. *

In the sands of the Fountaine qui Bouille, Mr. D. C. Henny concluded that the water had a velocity of about seven feet per hour. \dagger The method of arriving at this determination is not given. From other evidence it would seem to be excessive.

Water Commissioner J. T. Hurley, of Orchard, reports that under the Weldon Valley canal the seepage has progressed one and one-half miles in five years. In one case under the Larimer County canal, according to Mr. N. C. Alford, it was five years before seepage showed at a distance of forty rods from the canal, though the slope was considerable. In one case near Greeley, according to Mr. S. A. Bradfield, it seems to have taken about ten years to go two and one-half miles.
$\S 35$. The rate is certainly slow, and observers throughout the State whose attention has been called to it now agree upon its small progress. A few years ago most of them believed in a rapid flow, as still do most of the adherents in the belief that there is a great "underflow" under the plains.

Comparison with familiar facts would lead one to expect slow progress. The water in passing through sand and gravel must

[^37]pass through small openings, which form a series of minute, tortuous and long tubes. It is a fact of common observation that the pressure of water is much reduced by attaching a short length of hose or pipe. In the case of flow through sands, the openings are many times smaller, and the length may be very great, hence no matter how great the fall, the effect of the pressure is throttled by the friction.
§ 36. In the lack of direct field evidence, we need to resort to laboratory experiments. An accomplished French engineer in investigating the water supply for the city of Dijon, experimented upon the flow through sand. He used a cast iron tube twelve feet long and twelve inches in diameter filled with sand, measuring the amount of water which passed through under different heads, and determined the relation between the pressure and the velocity.
§37. From the experiments of Darcy developed by Dupuit \dagger, it is found in minute channels the velocity varies directly as the head, and may be expressed by the equation,
$$
v=k i
$$
in which v represents the velocity, i the inclination (being the head or fall in a given distance divided by the distance), and k a factor which varies with the kind of soil, size of interstices, etc. This factor varies widely in different soils. It can be determined by experiment in specific soils, and the results there obtained applied to others of similar character.

Table IX. is an attempt to put into tabular form, which will be practically useful, the value of the factor k for different cases. The table gives the factor by which the rate of inclination or grade (expressed by the fall in feet divided by the distance in feet) is to be multiplied to give the velocity in feet for the unit of time given in the corresponding column. The table is made from data obtained from the filters of London, Paris and Berlin, through Professor Nazzini, of Rome. ||
§ 38. Since water is more viscous at low temperature than at high, the formula given in $\S 37$ should evidently include a factor depending upon the temperature. From the experiments of Poiseulle \ddagger this factor would be $1--.00187\left(t-32^{\circ}\right)-1-.00007\left(t-32^{\circ}\right)$ for any other temporature than freezing.

[^38]
TABLE IX.

TABLE FOR VELOCITY OF FLOW THROUGH PERMEABLE SOILS.
Values of k in formula, $v=k i$, for different units of time $: v$ isvelocity in feet; i is the inclination or fall in feet per foot.

Kind of Material.		$\begin{array}{r} \text { ei } \\ 0.0 \\ 0.0 \\ 0.0 \\ 10 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	Velocity.			
			Per Second.	Per Hour.	Per Day.	$\begin{aligned} & \text { Yer } \\ & \text { Year. } \end{aligned}$
Minute Gravel.	. 08	0.41	. 024	86.47	2075	757520
Coarse Sand...		0.38	. 0026	9.33	224	81730
Fine Sand.	. 008		. 00047	1.69	40.5	14777
Sandy Soil	0.30	. 00022	. 79	18.9	6897
Sandy Clay.	0.25	. 00012	. 42	10.2	3725
Clay	0.20	.00003 .00008	. 12	2.8	1035

Example. - What distance will water pass through coarse sand in a year, inclination about 1 in 100?

Here $i=1-100$. If the sand averages 1-10 inch diameter, without finer particles, it would approach what is here designated as minute gravel. In one year the distance would be the number 757,520 multiplied by the inclination, 1-100, giving a distance of 7,575 feet, or about one mile and a half. If in coarse sand, as bere termed, a distance of about 800 feet.

If the movement is downward, then i is 1 . If there is a head in addition, then i may be greater than 1.
§ 39. An opportunity to measure the loss by seepage, from a canal, and, indirectly, the rapidity of passage of water through the soil, occurred at the time of making the seepage measurements. The Fort Morgan canal is of considerable size. It was measured about three miles below the headgate. Another measurement was made at a point 7.4 miles from the first, at the head of the old flume across Bijou creek. Two small laterals between were withdrawing water. This was measured and taken into account. For much of the distance the canal skirts the bluffs between the bottoms and the up-lands. For part of the way the soil is very sandy. At the first point of measurement the canal was carrying 208.28 secondfeet; at the second point, 183.83 second-feet. The intermediate laterals withdrew 4.37 second-feet. Hence the loss, including seepage and evaporation, amounted to 20.08 second-feet. The evaporation from the surface, averaging forty-five feet wide, under the conditions of temperature of water and air cannot exceed one-fourth of one cubic foot per second, by use of formula in annual report of 1891.*

Practically, therefore, the whole loss is seepage. This stretch of the canal has not been cleaned for some years, except that in

[^39]1895 some material was taken from the bed of the canal to strengthen the banks.
§40. A new section had been built on the same canal to avoid a long flume on the old line. Water had been running in the new portion for three weeks at the time it was visited. The total length of the new portion is 10,100 feet, including 400 feet of flume. A measurement was made of the water of this section, both at the upper and lower ends. Some water was running through the old flume. The amount decreased from 109.15 second-feet, to 97.67 second-feet, in passing through the new channel, or there was a loss of 11.48 second-feet. The new flume was so nearly water tight that its leakage may be neglected.
§41. In these - two cases we may estimate the rapidity of the flow of water through the soil. In the first case, the loss of twenty feet took place in a distance of 7.4 miles. The average width of the channel was 45 feet, hence the area of the canal in this distance was nearly forty-one acres. The loss corresponds to a layer of water of 11.7 inches deep in twenty-four hours. As the water occupies a space of about one-third of the sand, its velocity through the sand is three feet per day. It is unquestionably true that the loss takes place at unequal rates in different portions of this stretch, so that this rate, as in those which follow, is an average one for the section considered.

In the second case, the loss was 11.48 second-feet in a distance of 9,700 feet of channel. The average width was forty feet, giving an area of nine acres covered by the water. This corresponds to the loss of a layer of water 2.53 feet deep over the whole area of the canal. For half of this distance the canal extends along the sand bluffs which line the west side of Bijou creek, and is from thirty to ten feet above the channel of the creek. It is in a compact material, some of which needed to be blasted in constructing the channel. On the east side of the creek, it passes through a loose sandy soil, which slopes about one per cent. toward the creek. From evidence since obtained from the canal superintendent, Mr. Dingman, it seems probable that the loss from the west side is small or is insensible. A hole bored under the channel, and within a few inches of the water, was perfectly dry. If the loss is from the east side only, the rate must by twice as great as if from both sides, or would correspond to a layer five feet in depth per day over this portion of the canal. This would correspond to a velocity through the sand of about fifteen feet per day.
$\S 42$. On the Hoover ditch, running at the base of sandy bluffs, but with the bottom of the ditch covered with a fine silt, the loss in a distance of 1,500 feet was at the rate of 1.2 feet in depth for twenty-four hours, or a velocity of 3.6 feet per day through the sand.
§43. On the Muzza canal, in Italy, the loss is equivalent to a layer 1.7 feet deep per 24 hours. The canal runs through an exceedingly pervious soil, and has a great fall.

The Naviglio Grande, of Italy, loses a layer of water ten inches deep. The Canale Martesana, a layer 1.5 feet deep daily. The three canals above mentioned have been built for some 700 years.

The Centreville and Kingsburg canal, in California, from data given by C. E. Grunsky, of San Francisco, loses an average of five feet in depth, for six miles, in twenty-four hours. In one particular mile, where the loss is excessive, because of porous soil as well as from the location of the canal, near the edge of a bluff, the daily loss amounts to a layer fifteen feet in depth. This is an extreme case. * Another case of a great loss occurred in the Cavour canal, of Italy, at the crossing of the Dora river. This was by an artificial embankment. At first the loss amounted to a layer nearly twenty feet in depth. This was afterward very much reduced by using muddy water and allowing the silt to settle, and fill and cover the surface.

If we consider that in each of these cases the water occupies one-third of the volume of the sand, the distance it flows in twentyfour hours would be three times the thickness of the layers noted above, or from 2.5 feet on the Naviglio Grande to 60 feet in the Cavour instance.

It may be said, in passing, that the amount of loss from the canals may be much reduced by the settlement of fine clay or sediment. In one case, in the Cache a la Poudre Canal No. 2, where the seepage had made a considerable area so wet as to be impassable with teams, a check built for other purposes, by causing the deposition of silt, was sufficient in a few years to lessen the seepage so that the land became passable.

Another instance, illustrating the same effect, was shown in a canal near Greeley. When first built, considerable damage was done from the raising of the ground water and flooding cellars in some parts of town. After a few years the cause of complaint disappeared, silt sealing the bottom of the canal. In 1895 sand was obtained from the bottom of the ditch, where the ditch crossed a ravine, and where there was a good deposit of sand suitable for building purposes. The top layers of the sand were partially cemented. Within a few months after water was turned in complaint arose regarding the influx of water into the cellars. Ten days after the water was turned out of the canal, the water began to

[^40]go down in the cellars, falling about six inches in three weeks, and eighteen inches in a little over two months. A measurement of the amount of water in the ditch was made October 16, at the time of gaging the river, both above and below the point where the great loss was suspected. The quantity in the canal decreased from 25.86 cubic feet per second above the place, to 20.80 a little distance below, or a loss of 5.06 cubic feet per second. The total distance between the two measurements was forty-six rods. The total area of water surface was not noted, but with the increased breadth of the canal at the ravine crossing it is about one-half an acre. This would be equivalent to a depth of twenty feet, over the area wetted by the canal, in twenty-four hours.

SOURCE OF THE INCREASE.

§ 44. Whether the water forming this increase to the streams comes from the rainfall or from the waters applied in irrigation, is important to determine if possible. From the nature of the case, it is not possible to indentify the water, but a comparison of the increase between different regions of greater or less irrigation gives some basis for a conclusion. If the increase is partially or wholly from irrigation, it follows that the inflow will increase from year to year, as the amount of irrigation increases ; that the lower reaches of streams will have a more regular supply; that the increase will show itself farther down stream, making it possible to gradually bring more land under cultivation; that many of the dry streams will become living ones; and that the damage which riparian owners in this and other States have claimed to be done by irrigation on the upper portions of the rivers will become less as time proceeds. If the inflow comes from and is due to the rainfall, then we cannot look for benefits of this kind, and those on the lower reaches cannot hope for a future lessening of the damages.
§ 45. Such gradual increase of the streams is common in countries with considerable rainfall, but the size of the streams and the invisibility of the small sources serve to mask it. The lack of measurements prevents the fact from being noticed. The rainfall in Colorado averages less than fourteen inches per annum. With this amount of rainfall, or with the rainfall of exceptional years, would there be any return to the stream without irrigation?
§46. There was no observation of the phenomenon before irrigation was practiced. But neither was there settlement. Irrigation was practiced for some years on the bottom lands before the use of water was sufficient to dry the stream bed, and thus make it possible to notice a small inflow, either by its effect on the volume of the stream, or by exposing the points of inflow. If there was any such inflow, it certainly was not sufficient to prevent the Platte from going dry in 1863 and other years. At the time of the first
measurement of the Poudre by Col. Nettleton, in 1887, the increase amounted to eighty-seven cubic feet per second.
$\S 47$. Where there is abundant rainfall, there is no question but that it furnishes a supply to the streams through underground passages, with effects similar to those noticed in the measurements of these streams. The amount which thus percolates through the ground is the portion of rainfall remaining after the run-off and the evaporation have been supplied. We have no direct observations under our conditions to determine positively how much, if any, of the rainfall remains to supply the underground water of the soil. Lawes \& Gilbert, of Rothamstead, have maintained a series of drainage gages for a number of years. In the twenty-two years, from 1871 to 1892 , fifteen to sixteen inches of the rainfall passed through forty to sixty inches of soil, and joined the subsoil water. This would be available for springs, and doubtless largely increased the volume of the streams draining the country. This was out of a total rainfall averaging 29.95 inches. Hence it follows that some thirteen inches in the humid atmosphere of England was required for evaporation from the surface of the soil, which was left uncropped and free from vegetation.
§48. With a smaller rainfall, it is not probable that the evaporation would be less. The greater dryness of our climate, the greater amount and intensity of the sunshine, which heats the surface of the soil intensely, are conditions which favor evaporation. The uniform dry condition of the soil shows that there is none too much for the evaporation alone. Our average rainfall is but little more than the amount which was evaporated from the soil in England, and some of this runs directly to the streams. It does not seem probable that there can be any left for percolation into the subsoil, except under unusual circumstances. In 1895, when eighteen inches of rain fell; not much more than usual was available for evaporation and percolation, since with the heavier showers a larger proportion runs off.

That the inflow comes almost entirely from irrigation is shown indirectly by the well-known effect of irrigation upon the height of water in the ground. Before irrigation, the distance to water is generally great, and the quantity frequently scanty. The application of water in large quantities to the surface, as in irrigation, fills the subsoil when porous, and raises the level of the ground water as much as forty to sixty feet in some cases. This establishes a steeper grade to the surface of the water in the soil, and gives the conditions which causes the water to pass through the ground with greater rapidity, and also with larger cross-section, thus increasing the amount of flow from both causes. The great distance to the ground water before irrigation, the scanty supply, the low grade of its surface, would in itself show that the amount received from the nat-
ural rainfall is small, and if this furnishes any inflow at all to the streams, it must be but a small proportion of the amount at present furnished under the conditions introduced by irrigation.
§ 49. From the mountain water-shed of the Poudre river our observations show that from four to six inches of water runs off from the whole area during the course of the year.* From the plains included in the measurements reliable observations are lacking. From the curve shown, by F. H. Newell, in the report of the U. S. Geological Survey for 1892-3, the amount of run-off may be estimated as from two to four inches. The amount varies with the soil, the slope of the ground, and the character of the rainfall.

When the precipitation is in slight showers, nearly all the rainfall evaporates within a short time, without penetrating more than the surface of the soil. It requires a heavy rain to saturate more than the surface, and furnish some water for percolation. In the ordinary condition, a rainfall of two inches will penetrate not over ten or twelve inches. Heavier rainfalls within a short time are needed before there can be any percolation from the rain. On beds of pure sand most of the water immediately soaks in, and very litthe is lost either by evaporation or by run-off, hence it is that water is generally found at moderate distances from the surface in the sand hills. There have been but twenty-two months in eleven years of observation at Fort Collins in which the total rainfall in one month has exceeded two inches, and in only eleven cases has as much as this fallen in one week. If the rain falls rapidly a larger proportion runs off than when there is time to soak into the ground. The case most favorable to percolation which our records show is in 1895, when two rainfalls, each of 2.5 inches, followed each other with only a few days interval. The first one nearly all soaked into the ground. The second fell on a ground already saturated and nearly all ran off, causing unusually high water in the streams in consequence. There are only one or two other cases in which as much as three inches fell within a few days. But even here, the most favorable of the cases, if the ground is dry, which is its ordinary condition, there cannot be much percolation, and it is very doubtful if there is any.

If, however, the ground is already wet, as may be the case with the lands which have been irrigated, and the surface is loose and porous so as to absorb the rain as it falls, as is the case with cultivated lands, there is reason to expect that the rain will cause an increase in the underground flow. The rainfall alone, without the irrigation, would not cause it, and it is a consequence of the artificial conditions introduced by irrigation, and may properly be considered as due to irrigation. A portion of the unusual increase
found in 1895 is probably due to this cause. The inflow for 1895 was sixty second-feet more than the average. The rainfall was over four inches more than the average. Yet the extra sixty feet throughout the year would be given by a depth of one inch over 40,000 acres. If this comes from the rainfall, we must conclude that but very little of the extra rainfall was effective. As irrigation water is applied more freely because the supply in the river is greater, it seems more probable that the larger amount is due rather to the more water used than directly to the greater rainfall, though at present the effects cannot be entirely separated.
§ 50. Direct evidence bearing on the question was sought in the Platte measurement of 1894 , but with negative results. If there be any substantial increase from such source, then the channels which conduct the drainage from a large area should show some indications of it. There are a number of such channels leading into the Platte, each of which drains over 1,000 square miles. This is more than the mountain water-shed of the Poudre river above its exit from the mountains. As the surface of the rock or impermeable surface has the same undulations as the surface of the ground, the underground drainage must follow essentially the same lines of drainage as the surface. This is shown plainly in the excellent sections taken at various points across the plains by Col. Nettleton and Mr. Follett.* One of these sections was across the valley of the Platte at Sterling.

The streams following these drainage lines, while permanent near their upper ends, are almost never flowing near their outlets into the Platte. It has generally been believed that these streams furnish much water to the Platte through the sand of their beds, and it has been a favorite article of belief among the adherents in the underflow idea. If this be the case, it ought to be shown by taking a measurement of the river above the mouth of the stream and below, far enough apart to include the bed of sand forming the channel. Even if the increase is not noticeably great, the rate of increase might well be expected to be greater than for the average of the stream.
§ 51. In order to test the question, I instructed the observers, in 1894, to measure the river above the important drainage channels, and also below. This was done by Messrs. Trimble and Preston, with the results shown in the detailed tables, and brought together in Table X. In most cases the channel spreads out into the bottoms of the Platte, so that it is sometimes necessary to make the measurements several miles apart, in order to include the expected inflow.

[^41]At the time an estimate based on the flow through the sands and the amount which might be expected, had not been made, and the results were so much less than had been expected-in some cases, in fact, showing an actual loss-that it seemed advisable to secure the measurements of another year, to confirm or disprove the results, before reporting them. In 1894 the volume of the river was so small that the errors in the measurement should be small. In 1895 the volume of the river was so great that plans had to be changed, and the number of measurements reduced. Enough, however, were taken to confirm the essential accuracy of those of 1894, and a personal inspection of the channels, with this in mind, indicates that at the best the increase from such sources must be small.
§ 52. The number of cases in which there is a loss instead of a gain is striking ; and even granting that there is no increase from these streams, a loss was not expected. It may be said that the second measurement has been taken too near the outlet to catch the underground flow. In most cases this is not the case. The topographical features-the narrowing of the bluffs or some other feature-usually guided the choice of the second point. The map and the detailed tables of the 1894 and 1895 measurements will give a fair chance to make an independent comparison. In the case of the Bijou, the second gaging in 1894 was taken near the head of the Platte \& Beaver canal but a short ways below the Bijou. In 1895 it was taken over a mile lower down the stream, and where the bottoms were narrow. A third point of measurement was taken in 1894 at the head of the Platte \& Beaver supply ditch. Comparing the gain between the point above the Bijou and this place, we find a slight gain, but it is still less than the average of the river. There is very little irrigated area draining into this section, and it is especially little between the first and second points of measurement. There is some loss for the whole distance from evaporation, but during the time of these measurements it is difficult to account for a loss of more than one cubic foot per second per mile from this cause. It has been suggested that these loses are due to the varying depths of the bed of sand under the Platte, and the nearness of the bed rock in places. There is evidence that the thickness of the layer of sand varies, but definite data is lacking. If this be the cause of the loss, it would suggest that the bed of the Platte is washed out below the entrances of most of the streams, or else is filled with a coarser and more porous sand. The gain due to the nearness of the rock in some places should correspond to the loss at other places. At the measurement above the Bijou creek, there is a reef of rock. It shows for most of the width of the stream, and, at any rate, leaves only a small channel of sand. The gain, however, while more than in many other places, has not been marked enough to give great weight to this cause.

The question needs to be left open for future information. But the result, however, shows that the gain from the natural underground drainage cannot be much at best, and is probably nothing, at least ton small to be measured.

The rainfall given in Table X. as the average for the given water-shed is derived from observations taken at stations on or close to the water-shed. It may be considered as a fair average of the amount falling upon the area draining into the channel. As the stations are few in number and the records not complete, the amounts are approximations of varying degree of reliability.

The drainage areas have been determined with a planimeter by measuring the area tributary to each stream from a map published by the Post-Office Department. They show the extent of the area tributary through these dry streams. Were the run-o ff in the course of a year equivalent to a depth of only 1.4 inches over the water-shed, each 1,000 square miles would give an average flow of 100 cubic feet per second ; or, a run-off of a depth of one inch in a year, from the basin of the Bijou, would give a constant discharge of 100 cubic feet per second.

A calculation by aid of Table IX. shows that the amount derived from the inflow from these streams must be small. The breadth and depth of the beds of sand are unknown. If we assume a bed 80 rods wide and 1 thick, or an area in cross-section of one-half acre, and a fall of thirty feet per mile, then from Table IX. the velocity may be expected to be from 2 to 8 feet in 24 hours. As this is the flow through the interstices of the soil, which are onethird only of the section of the sand layer, the whole amount corresponds to from 1 to 4 acre-feet in 24 hours, or to a constant flow of less than 2 cubic feet per second.

It is not surprising that the measurements do not show any decided gain from such sources.

TABLE X.
INCREASE OF RIVER AT MOUTHS OF STREAMS.
(The negative sign indicates a loss.)

Box Elder creek	627	12.7	-51.05	3	-17.02	-35.27	4.5	-8
${ }^{\text {Crow }}$ Lone Tree ${ }^{\text {a }}$	1,443	11.5 11.5	12.16	1.5	8.11	114.2	3.5	33
Lost "،	$\begin{array}{r}390 \\ \hline 100\end{array}$				172			
Kiowa "،	470 1,425	16.3 14.5	5.26 -45.43	${ }_{2}^{3.8}$	-1.72	- -34.16 -3.97	9 4	${ }_{-1.00}^{-3.8}$
Bijou	1,425	14.5	-4.92	9.8	- 0.60			
Pawnee "،	600 514	3.52 9.71	1.75	$\frac{2.01}{6}$	\cdots	\ldots	...
Lodge Pole ${ }^{\text {c }}$	2.500	13.4	9.7	1.5	6.5	-77.6	9.5	

§53. The fact that, as a whole, the gain is small is a striking one, and even more so that there is in so many places an actual loss.

It, then, seems true that the amount of inflow brought down by these sands is much less than has been believed.

It seems difficult to account for as great losses at such points as is shown by some of the measurements, although the loss can be but little.
§ 54. We have not been able to secure enough detailed information of the location of the irrigated lands along the Platte, to be able to make a comparison in detail of the inflow and the irrigated area. The areas irrigated stretch along the Platte, usually near the river. The area watered near Fort Morgan is, perhaps, the most extensive, and farther from the river than the others. The number of acres which are tributary to each portion is not known closely enough to state in acres. But, making a general comparison, we have the following table. The most that can be said from it is, that the amount of increase bears a relation, in a general way, to the extent irrigated.
§ 54. Comparing the distribution of the inflow on the South Platte river with the irrigated lands, taking the average inflow as given in Table V., the average inflow to the State line is 2 feet per mile.

TABLE XI.

EFFECT OF IRRIGATION ON THE UPPER PORTIONS OF THE STREAM.
$\S 55$. A question which arises in connection with the application of water and which has been warmly disputed, is as to the effect on the lower stream of irrigation on the upper portions of a stream. In the way in which land has been brought under cultivation, it has happened in most cases that lands along the lower portions of the stream have been settled, while lands above have later been brought under cultivation. It follows then that these latter lands will often see the water go by to supply those others which were first improved. In some places it has been contended that the application of water to the upper lands is an actual benefit to the lower lands, and in some cases the contention has been partially granted.

It is evident that the water which returns to the stream returns slowly. It returns sooner when the distance is short and the gravel is coarse. The volume of the stream fluctuates between wide limits, while the effect of passing through the ground is to even the flow, and hold the water until later in the season. Usually the streams are high early in the season, and in June have more water than can be used; they are low in August. If this retention by the upper lands is such as to diminish the height in June and increase the amount in August, the result is evidently a benefit. As the effect of the subtraction of the water from the stream is immediate, while the return is slow, the abstraction of water in low stages will be felt more than the return from the seepage. Hence, for a portion of the time at least, it seems that the use of water on the gravelly plains of the upper parts of our streams will be a benefit to the lower portions, irrespective of the date of their respective rights. Just when the effect of the direct diversion is greater than that of the return could be told by investigation in the particular cases, but would manifestly vary according to the circumstances.

There has been a tacit acknowledgment of benefit of irrigation on the upper portions of the stream in some of the water districts of this State in the fact that the upper ditches have been permitted to withdraw water without interference from the Commissioners or from the ditches with earlier rights. This has doubtless been partly due to the fact that the amount used by them is small. But some weight has been given to the claim that irrigation on the upper grounds stored water which entered the river in other parts of the year, when it was more useful to the lower ditches. The question will doubtless arise in specific cases in this State and others. The length of time during the season when such irrigation will not be injurious to the later rights, can be told by special gagings carried on throughout the year, on the plan followed by Vigan.

WILL THIS INVESTIGATION APPLY TO OTHER VALLEYS?
§56. In the valleys here measured irrigation has been practiced for thirty-five years; to a small extent on the bottoms for twenty or twenty-five years, and extensively for fifteen years. In the case of the Poudre, the lands are some of them twelve or fifteen miles from the stream. On the Platte, they occupy a much narrower strip. The conditions of the subsoil, the amount of water applied, the dip of the impermeable stratum of clay or rocks, the coarseness of the gravel, all affect the time and amount of the return. But given time enough, it seems probable that these results will apply closely to other valleys as well. A certain amount of water is required by the crops for the purposes of growth. In round numbers, 300 to 350 pounds of water is used for every single pound of dry matter produced. On some soils it is possible by skillful irrigation to apply but little more than is required by the crop and evaporated from the soil. Under such economy, there is little water which can pass away by percolation. To the economical irrigation induced by scanty and high-priced water is due the little or no return water noticed in Southern California. This is also influenced by the relatively small acreage. The narrow strip of the lower Platte and the more copious irrigation explain partially, if not entirely, the larger amount returned to the stream per acre, while the remote places of application on the lands of the tributaries of the Upper Platte shows a reason why the inflow there is relatively less. These may not completely explain the difference. Time, and added observations, will be needed to determine.

The same or similar phenomena have been observed to some extent elsewhere.
"When the Ganges canal was constructed, the whole available "cold season supply was taken from the river, yet at a distance of "only a few miles the discharge in the river was found to be very "considerable, and further on it increased to such an extent that the "supply taken by the canal was found to be little missed." *
§57. In Italy the effect of irrigation does not seem to have been noticed in the rivers, but principally in the large number of springs to which irrigation seems to give rise, and which are developed by digging in Lombardy and other provinces, and which the geological conditions do not seem to be sufficient to account for. \|I

The losses from canals is well known, and the damages caused to neighboring lands by the seepage is a fruitful source of suits at law. In the contract of the Cavour canal with the Sesia Associa-

[^42]tion, for instance, the association becomes responsible for all damages from this cause.
§58. "I am inclined to think that the seepage is much "greater and of more importance in Colorado than anywhere in "California, for, while I know that such percolation does exist in "various places in the irrigated districts, I cannot recall a single "place where it takes place in any such volume as in your country.
"The Santa Ana river is affected by seepage from Riverside and "San Bernardino valley, so that the volume of supply for the "Anaheim and Orange canals below is rather increasing than "diminishing, but the extent of this return is conjectural." \dagger
"Some years ago the people owning water rights along the "lower parts of our mountain streams imagined that the use of the " water by parties located some distance above them would seriously "interfere with their water rights and prove very injurious to the "land below. Experience has proved that this fear was groundless "to a large extent. Indeed, it is now found that a large use of water "in the early summer on the upper lands insures a more plentiful "supply in late summer for the lower lands." \ddagger

Hon. Geo. P. Marsh, for a long time our minister to Italy, in The Earth as Modified by Human Action, in commenting on the results of Vigan (§59) states that it is generally estimated that from one-third to one-half of the water applied to the fields is absorbed by the earth, and this, with deduction of the amount evaporated, absorbed by vegetation, and entering into new organic compounds, returns to the streams or descends to greater depths. In Colorado a much smaller proportion of the water applied runs off and a much larger proportion is absorbed, as the system of wet meadows, or marcite and rice irrigation, does not prevail in Colorado. The measurements on the Poudre indicate that at least 30 per cent. of the water taken from the river returns through the seepage. If water is applied as freely until the seepage from the outer lands reaches the river, the amount of return waters will be greater than this amount.

OTHER INVESTIGATIONS.

§59. The phenomenon of return waters has been apparently but little noticed and less written upon. It was the subject of an investigation by the government engineers of France some thirty years ago in the valley of the Tet,* in southeastern France, where the question became important, as it is in some places in Colorado, in the dispute between water users of the lower valleys and those of

[^43]the upper portions of the stream. The earlier canals, some built by the Moors before 1000, A D., were taken out from the lower portions of the stream, the later ditches near the head.

The lower canals desired to close the upper ones. The latter claimed that the water that was applied by them in irrigation returned to the river to a great extent, and thus had the effect of making the stream more constant in its flow, and, therefore, was as a whole advantageous for the lower users. During several years a system of measurements was carried on at different places on the stream and included all the water that came into the stream through the smaller tributaries. Measurements were made daily by the local officers. The valley is one the total length of which is something like fifty or sixty miles, and the total area irrigated is 32,000 acres. The cultivation consists largely of wheat, beans, alfalfa, meadows, and gardens, with small quantities of potatoes and flax. A biennial rotation is practiced which dates from the Moors. Grain is usually watered three times, once at the time of sowing, in November. Irrigation is practiced throughout the whole season. In the upper valley wheat is not watered. Beans are watered from the middle of July to the middle of September. From the data obtained, M. Vigan reached the following conclusions: The return waters are derived from all irrigated lands of the valley, varying according to the crops, amount of water used in each season, thickness of the soil, its composition, and the slope of the impermeable layer. He concludes that, in the bottom lands, which form a bed about a mile wide along the stream, and are abundantly watered, from the first of March, that the return waters from this source are sufficient to compensate for the losses caused by irrigation during the greatest part of the low water. He also concludes that, in the area forming a strip two or three miles wide, with a very deep layer of permeable soil, the return waters come to the surface only in some places; that the greatest part of the springs which are caused flow unused in the subsoil and return frequently to the sea. On these lands irrigation occasions considerable loss; hence he concludes that, in case of an application for water right in the stream for canals, or ditches, which are to be newly constructed, the concession should be refused, except conditionally. In case water is lacking in the other canals, then the new ones should be closed. In general, under the conditions existing in that valley of the Tet, irrigation at the upper portions of the stream with water taken at periods of high water, is beneficial to the lower portions of the stream. The water thus applied gradually returns to the stream in such quantity that the stream is not so low as if the irrigation had not been practiced.

Some of the measurements of the Poudre river have been given in the Colorado Agricultural Experiment Station Report, 1891, p. 45-50.

Also see reports of the State Engineer of Colorado, 1885-6, p. $205-208$; 1889-90, p. $559-570$; 1891-92, p. $51-65$; 1893-4, p. $176-$ 192.

In bulletin No. 38, of Utah Experiment Station, Prof. Fortier has given some measurements for one year, showing the amount on some Utah streams, and leading to essentially the same conclusions as Vigan. Prof. Fortier's study is a valuable contribution to the subject.

A discussion by Senator David Boyd of the applicability to the Arkansas valley of conclusions from the Platte measurements, occupies part of a report of a special committee on the State Canal No. 1, Tenth General Assembly, p. 40-49.

In the Annales des Ponts et Chaussees, 1883, p. 34-60, M. Bazaine has a study on L'Influence des Irrigations sur l'Altitude d'une nappe souterraine occasioned by the observations of the effect of irrigation from the sewage of Paris on the ground water of the sewage farms of Gennevilliers. It has little application to the present discussion, except as it deduces the equation of the surface of the underground water, which is parabolic.

CONCLUSIONS.

We may draw the following conclusions from the observations and considerations shown. The facts are presented in sufficient detail to show the bases of these conclusions, or to enable independent conclusions to be reached, if the reader so desires:

1. There is a real increase in the volume of the streams as they pass through the irrigated sections.
2. There is no such increase in the streams as they pass through the unirrigated sections. On the contrary, there is an actual loss, even when the drainage of a large area enters.
3. The increase is more as the irrigated area is greater.
4. The increase is approximately proportional to the irrigated area, and it seems probable that with more intimate knowledge of the amount of water applied and the features of the drainage, the proportions would be found to be close.
5. The amount of the increase depends very slightly, if at all, upon the rainfall, and, so far as it does, it is influenced principally by the rainfall on the irrigated lands. Only where the lands are already saturated, is the rainfall sufficient to cause seepage.
6. There is no perceptible underflow from the side channels, even where they drain several thousand square miles.
7. The inflow is practically the same throughout the year. It is more in summer, less in winter, principally because of the effect of the temperature of the soil.
8. The passage of the seepage water through the soil is very slow, so that it may take years for the seepage from the outlying lands to reach the river.
9. The amount of seepage is slowly, but constantly, increasing.
10. It may be expected to increase for some years to come.
11. An increased amount of land may be bought under cultivation, with time, more especially on the lower portions of the streams.
12. The seepage being nearly constant throughout the year, while the needs are greatest in summer, the use of storage will best utilize the water from inflow.
13. The seepage from one thousand acres of irrigated land on the Poudre river gives one cubic foot per second constant flow; on the Upper Platte, one foot to about 430 acres; on the Lower Platte, one foot to 250 acres. The difference is due mostly to the greater distance for the seepage to reach the main stream, and to the time and amount of water applied.
14. One cubic foot per second of inflow is obtained on the Poudre river for each 2,400 acre-feet applied, or the inflow is about onethird as much as the water applied.
15. On the Poudre river about 30 per cent. of the water applied in irrigation returned to the river.
16. The use of water on the upper portions of a stream, when water is not immediately needed by prior appropriators, will increase the flow of the stream late in summer and prevent such low stages as it would have without this regulating action.
17. The seepage water is already an important factor in the water supply for the agriculture of the State. The capital value of the water thus received in the valley of the Cache a la Poudre alone is not less than $\$ 300,000$, and perhaps $\$ 500,000$, and for the Platte is from $\$ 2,000,000$ to $\$ 3,000,000$. It is large for the other streams, but of unknown amount.
18. An actual loss is incurred in carrying a stream like the Platte through sandy beds.
19. Ultimately, the returns from seepage will make the lower portions of such valleys as the Platte more certain of water, and probably enable a larger acreage to be grown.
20. The results here shown may be expected to apply with limitations to other valleys similarly situated, where irrigation is
as copious, crops the same in character, subsoil and rock strata of much the same inclination. Where the soil is less pervious, a greater time must elapse for these results to hold good.
21. Measurements are greatly needed in the Arkansas and Rio Grande valleys, for the determination of facts which will soon become of importance. In the Rio Grande, especially, because of the claims made by Mexico that irrigation in Colorado is proving an injury to her people and infringing privileges guaranteed them by treaty. If the results of this investigation apply to the Rio Grande, then any injury must be largely compensated by the return, and the greater regularity in the flow produced in the river.

ACKNOWLEDGMENTS.

§61. Information and aid to a greater or less extent has been received from too many to mention. To the various Water Commissioners, especially to J. L. Armstrong and R. Q. Tenney, of District No. 3, and J. T. Hurley and R. J. Patterson, of Nos. 1 and 64, our thanks are especially due.

By the kindness of G. H. West and D. A. Camfield, of Greeley, a team was furnished us for the measurement of the Platte, in 1895, and we are indebted to Receiver Trumbull, of the Union Pacific \& Gulf Railway, for transportation where necessary during the measurements.

The diagrams have been drawn by Mr. J. D. Stannard, who has also aided the laborious work of reduction of the observations; Mr. Trimble has also aided extensively in the same work, and in the field work, as noted in the detailed observations, and also in preparing and checking the tables.

Through oversight, credit was not given, on page 32, in a part of the edition, to Mr. P. J. Preston, for Measurement No. 5, made under direction of the State Engineer.

\[
7

\] | 8 |
| :--- |
| |
| |

$$
1
$$ -

\square
$+$. -

$$
5
$$

\qquad

$$
2
$$

$$
1
$$

\qquad
\qquad
\qquad
1 \qquad
, \sim ,
.
\square .
\qquad

$$
1
$$

\square
\qquad
\qquad
\qquad
\qquad

+Tirner

$$
2-7=
$$

$$
t+x+\frac{1}{t}+
$$

$$
\begin{aligned}
& \text { if (4) } \\
& 4 \\
& 4
\end{aligned}
$$

$$
\operatorname{lo}
$$

(20. (N)

UNIVERSITY OF ILLINOIS-URBANA $630.7 C 718$ COO1 BULLETIN. FORT COLLINS 21-33 1892-96

[^0]: *Bulletin 6, Colorado Experiment Station, p. 15.

[^1]: * The specific determinations of plants mentioned in this bulletin have been made mostly by Prof. C. S. Crandall, of this Station.

[^2]: * The first edition of this bulletin was issued in October, 1890, the second edition in July, 1891. In preparing the third edition the opportunity has been taken to condense the bulletin in places, make material additions, add new tables, and practically rewrite the whole bulletin. The changes and additions have been too numerous to call attention to them in detail. Tables V. and VI., in the appendix, are the only ones which appeared in the first edition.

[^3]: *The history of this event and the trouble is given in Bruschetti's "Storia del Irrigazione del Milanesi," in his complete works. Vol. II., pp. 118-135. , It is condensed in Buffon's "Des Canaux d'Irrigation d'Italie Septentrionale." The twelve conditions are incluaded in the unmarked conditions on page 14. It is also given briefly in Smith's "Italian Irrigation;" in " Parrochettı's Manuale Pratico di Idrometria."

[^4]: *E'ngineering Record, Aug. 13, 1892.
 \dagger Manuscript of experiments furnished by Mr. Flinn. Results to be published Trans-American Society Civil Engineers, 1894.

[^5]: *Canale Villoresi. Modulo per la Dispensa delle Acqua, etc, Milan 1886, published by the Societa Italiana per Condotte d’Acqua.

[^6]: *Table I. will aid in obtaining proper proportion between the channel of approach and the weir.

[^7]: * From experiments made by M. Bazin. Annales des Ponts at Chaussees. Jan. 1890. Translated in Proc. Engrs. Club, of Phila. by Marichal and Trautwine, Also, Trautwines' Engrs. Pocket Book, 16th ed., p. 2671.

[^8]: * Trans-Am. Soc. C. Eng, 1884.

[^9]: For discharges for denths less than 3 inches, use Tables V or VI. The absolute error will be small.

[^10]: *A mountain about ten miles south-west of Fort Collins. Collecting was done from 5,500 to 6,000 feet.

[^11]: *A gulch about nine miles south-west of Fort Collins.

[^12]: "Nearly ovate, dull pale brownish made fnscous by the bronze-black clo-e punctures on the head, fore part and sides of pronotum, base of scutellum and base and end of corium. Head finely and closely punctate with black, the tylus with a broad groove on each -ide, lateral lobes broad, rounded off on the outside of tip, a little longer than the tylus. Antennae a little longer than the head and pronotum united, the basal joint very short, not reaching the tip of the head, greenish yellow, a little dusky at base and tip, the second joint about three times as long as the basal, testaceous, a little dusky above, the third scarcely more than half as long as the second, blackish, paler at base, the fourth

[^13]: *A gulch six miles west of Fort Collins

[^14]: *Six miles north-west of Fort Collins.

[^15]: "Similar in form to P. nodosa, Say, but shorter and thicker, with a dull dark surface

[^16]: *The canon of the Poudre river, 10 miles north-west of Fort Collins.

[^17]: "Thicker and more compact than L. media Say, mostly dull black, pubescent, narrowly margined with rufo-fulvous or rufous on the outer border of the corium, including most of the cuneus. Head a little thicker than typical, dull black, pubescent, with a yellow spot on each side of the vertex next the eye, continued slenderly downward, a red spot on each side of the tylus, and the cheeks and sides below also red, with black sutures, the

[^18]: "Form nearly the same as in H. militaris. Having the antennae a little shorter, with

[^19]: "In form similar to P. eximus Reut., but larger, and almost flat on the hemelytra Pale delicate green, mottled with very pale brown all over the hemelytra, which are almost hirsute and the hairs interspersed with dark bristles. Head of medium size, convex, smooth, pubescent in front and on the sides; the eyes brown, prominent, reniform, placed almost vertical; front feebly grooved to near the back line of the eyes; rostrum thick at base, reaching well behind the posterior legs, dusky at tip; the antennae longer than the body, whitish, set with long bristles, the second joint longer than from the front to the posterior coxae, less hairy than the basal joint, the third a little more slender, about two-thirds the length of the second, the fourth much shorter and equally slender, the basal joint of medium thickness, about as long as the fore femur. Pronotum smooth, much wider than long, obsoletely veined with fulvous, contracted before the middle, a

[^20]: "Bright fulvous or fulvo-testaceous, oblong-oval, scabrous and obsoletely, minutely punctate on most of the upper surface. Head nearly vertical, narrow cetween the very prominent brown eyes, with a broad yellow line on the middle which is bounded each side

[^21]: "Dull pale greyish-brown, with the pronotal submargin and a large spot on the base of each wing-cover white. Head blacki-h-brown, uncrenly scabrous and granulated, the clypeus prolonged, acute and cleft: antennate honey-yellow, the apical joint piceous

[^22]: "Olivaceo-fuscous above, form of C. alternata Say. Head strongly and bluntly carinate above, the carina produced posteriorly on the base of the vertex; face moderately convex, a little peaked above in front of the blunt carina, marked with a line of punctures each side, a little hollowed beneath the eyes, and witn a few shallow punctures there as well as towards the front; clypeus deuressed, covered with long coarse, white bristles. Pronotum subcordate, wider than long, convex, obsoletely and minutely rastrated, with the transverse bands bounded in part by scratched lines, the black bands slender, bent anteriorly, about thirteen in number, the lateral margin and anterior angles broadly yellow, the middle behind the produced occiput marked with a short carina, the apex of posterior margin obliquely curved. Palae of female moderately slender, long, cultrate, strongly curved, subacute, with long bristles, the trochanter stout and moderately long, the coxae long, stout, compressed inwardly and growing wider towards the base. Clavus

[^23]: *All the illustrations are magnified 20 diameters unless otherwise marked.

[^24]: *The lines drawn on the accompanying figure indicate where the measurements which are given in these descriptions are made. For example, a-b would be the length and $\mathrm{c}-\mathrm{d}$ thr breadth of the face; a-o the length and $e-f$ the breadth of the front, \&c. The width of the clypeus is always taken at its base, and the width of the lorae
 where they are widest measured at right angles to the median line of the front. By length of vertex at the eye, we mean the shortest distance across the vertex at this point. By curvature is meant the distance w-z. The width of the front is always given where it is greatest. In Idiocerus the length of the front is taken from base of clypeus to the ocelli.

[^25]: genus in Can. Ent. XXV, p. 285, one division is stated as having "longer elytra with well developed appendix." It would seem that in the former paper the genus is properly characterized while, between those species which have elytra as long as abdomen or longer and with a well developed appendix, such as anthracinus, bicolor, striatulus, instabilis and obtutus, and some species of the genus Thamnotettix, we find no good generic d:fferences.

[^26]: *In the Aphididae all the determinations were made by Mr. Cowen, who also wrote all the decriptions and collated the records. The undetermined and undescribed species mentioned in the Custer bounty List (see Cockerell, 10) are not referred to except in cases where there is a probability of their being identical with species mentioned in this list.

[^27]: "Wingless form: Largest a little over 1 mm . long, very wooly, uniformly pale sreen, except eyes which are red, and black tip of beak. Beak reaching slightly bejond second

[^28]: "Apterous viviparous female: Length of body 1.90 mm . Length of antennae about 1.10 mm . Antennae, head, extremity of beak, femora, tarsi, and honey tubes, deep dusky

[^29]: ＂Winged viviparons female：Length $1.80-1.90 \mathrm{~mm}$ ．Body black．J．hi id to fifth joints of the antennae with numerous irregular warty sensoria，lengi h of joints III 0．39．，IV $0 . ⿰ 冫 欠$ ．，mm． V 0.21 mm ．，VI 0.18 mm ．，V $1 I$ 0．12－0．21 mm．Beak nearly reaching the third coxae．Lateral tubercle of the pronotum prominent．Tarsi about 0.15 mm ．Honey tubes about 0.19 mm ． Style 009 mm ．Apterous female：Black；younger，half grown，with about six pairs of white circular spots on the dorsum．＂

 Foot－hills five miles west of Fort Collins，July 19th，on stalks of Valeriana edulis（Cowen）．

[^30]: ＊Measurements from specimens preserved in alcohol．

[^31]: * Measurements from alcoholic material.

[^32]: *Description from alcoholic materal.

[^33]: "Winged viviparous female: Length $2.20-2.40 \mathrm{~mm}$. Wing about 3.40 mm . long, uniformly pale, perhaps green, in life. Beak short, about reaching second•coxae. Third joint of antennae with a number of round sensoria, length of joints III 0.60 mm ., IV 0.48 $\mathrm{mm} ., \mathrm{V} 0.43 \mathrm{~mm}$., VI 0.16 mm . First branch of the cubital closer than usual to the origin of the cubital. Honey tubes 0.65 mm . long. Style about 0.25 mm . long."

[^34]: *Descriptions from alcoholic material.

[^35]: "Female scale with the same general shape as P. abietis and attached in the same way to the twigs. Diameter \% mm., smooth, shiney, rather pale brown, inflated, subreniform, with a median constriction. Derm yellowish brown, reticulate, the reticulations hexagonal. Lirge gland-pits looking like perforations. Mouthparts small, rostral loop short. Legs not to be found, apparently absent in the adult. Antennae small, sixjointed, but the joints obscure. Last joint with several hairs. Joints subequal, except the second and fifth, which are shorter; the second shortest, bearing a long hair; fourth perhaps a very little longer than thild, and longest; fiftlo constricted, simulating second joints, the second of them shortest.

 Habitat Manitou, Colorado, November 26th, 1894, on Pinus edulis. Collected by Prof. C. P. Gillette. It is attacked by a brownish Chalcidid parasite.

 From European P. abietis it is distinguished by its size and by the antennae. No species of the genus has hitherto been found in America."

[^36]: \dagger Daniell's Physics, p. 306.

[^37]: * Final report Artesian and Underflow Investigation ; Pt. 2, p. 34.
 \dagger Quoted by J. D. Schuyler, report as consulting engineer to the Pueblo Gravity Water Co.

[^38]: * Darcy, Les eaux publiques de la ville de Dijon.
 \dagger Traite de la conduite et de la distribution des eaux. Darcy and Dupuit I have not had the opportunity to consult at first hand.
 || Idraulica pratica, 1:608.
 \ddagger Recherches experimentales sur le mouvement des liquides dans les tubes de tres petite diametre. Quoted, Jamin et Bouty, Physique, tome 1, pt. 2, p. 100 ; also see Daniell's Physics, p. 308.

[^39]: * Annual report, Section Meteorology and Irrigation Enginearing, Report Colorado Experiment Station, 1891, p. 51.

[^40]: * Since the above was in type, additional data, obtained through the courtesy of Mr. Grunsky, indicate losses of depths of $1.5,1.7$, and .6 feet, from stretches of the Kings River and Fresno canal ; of $2.8, .25$, and .4 from portions of the Fresno canal, and $1.2,1.9,3,7$ and 6.4 feet from certain laterals, the velocity through the soil being about three times as great.

[^41]: * Reports Artesian and Underflow Investigation, 1890-1, 1892, U. S. Department Agriculture.

[^42]: * H. G. McKinney, Irrigation in Upper India, paper before the Royal Society, Now South Wales, 1883.
 || Cagnassi, Irrigazione nella Provincia di Novara.

[^43]: \dagger Manuscript letter from J. D. Schuyler, Consulting Engineer, Los Angeles, California.
 \ddagger Extract from manuscript letter from President Geo. Q. Cannon, of Utah.

 * Vigan, Annales des Ponts et Chaussees, 1867.

