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Quantum computers are expected to have a dramatic impact on
numerous fields due to their anticipated ability to solve classes
of mathematical problems much more efficiently than their
classical counterparts. This particularly applies to domains
involving integer factorization and discrete logarithms, such
as public key cryptography. In this paper, we consider the
threats a quantum-capable adversary could impose on Bitcoin,
which currently uses the Elliptic Curve Digital Signature
Algorithm (ECDSA) to sign transactions. We then propose a
simple but slow commit–delay–reveal protocol, which allows
users to securely move their funds from old (non-quantum-
resistant) outputs to those adhering to a quantum-resistant
digital signature scheme. The transition protocol functions even
if ECDSA has already been compromised. While our scheme
requires modifications to the Bitcoin protocol, these can be
implemented as a soft fork.

1. Introduction
Bitcoin is a decentralized digital currency system, which was
introduced by the pseudonymous Satoshi Nakamoto [1]. It
leverages a peer-to-peer distributed network characterized by the
lack of a central authority governing the state of transactions. Each
consensus participant maintains a list of all historic transactions,
grouped together in blocks, in a distributed public ledger called
the blockchain.

Blocks are chained together via the hashes of their predecessors,
thereby providing strong guarantees for the immutability of
the transaction history. Agreement on the current state of
the system in the dynamically changing and pseudonymous
set of participants is achieved by requiring nodes to solve
difficult cryptographic puzzles, known as proof-of-work (PoW).
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Consensus participants are known as miners and upon finding a valid solution to the PoW puzzle, they
are rewarded with new units of the underlying cryptocurrency and fees associated with the transactions
included in the respective block.

Even though quantum computers (QCs) have been studied theoretically for about 40 years, relatively
recent breakthroughs have placed the idea in the public eye once again. One such breakthrough, with
a direct impact on Bitcoin’s security, is Peter Shor’s polynomial time quantum algorithm [2] that can,
in its subsequently generalized form, break ECDSA. While more players enter this growing research
area, it appears increasingly likely that powerful QCs will emerge in the near future. Although the early
generations of QCs do not have enough qubits to solve problems large enough to affect Bitcoin, different
alternatives for the architecture of QCs are being considered, tested and implemented [3–5] so a sudden
improvement in the approach might lead to a powerful QC appearing virtually overnight.

In this paper, we provide an overview of the potential impacts the emergence of QCs could have
on Bitcoin. As such, we describe how a quantum-capable adversary (QCA) is in the position of
stealing funds from users who have revealed their public keys. Consequently, we propose a commit–
delay–reveal protocol for the secure transition from Bitcoin’s current signature scheme to a quantum-
resistant signature scheme, applicable even if ECDSA has already been compromised. In contrast
to existing proposals, we emphasize the necessity of a substantial delay phase to provide sufficient
protection against accidental and, especially, adversarial chain reorganization. We assume that the
Bitcoin community has agreed on and deployed a quantum-resistant signature scheme, either as a
measure of precaution or as a reaction to the appearance of a (fast) QCA. Independent of quantum
computing, our protocol can be generally applied to react to the appearance of vulnerabilities rooted
in Bitcoin’s public key cryptography. The transition can be implemented as a soft fork using a similar
approach as, for example, SegWit [6].

The remainder of this paper is organized as follows. In §2, we outline the workings of Bitcoin and
provide an introduction on quantum computing. In §3, we examine the threats a QCA could pose for
Bitcoin. In §4, we propose a protocol for the transition from Bitcoin’s current signature scheme to a
quantum-resistant one, while discussing the implementation details in §5. We discuss a related work
in §6 and conclude our paper in §7.

2. Background
In the following sections, we provide relevant background on the workings of Bitcoin, its underlying
cryptographic principles, as well as core quantum computing concepts, relevant for this paper. However,
due to space limitations, we do not aspire to provide a complete description and hence recommend
readers unfamiliar with these research fields to consult the existing literature, such as [1,7] for Bitcoin
and [8,9] for quantum computing.

2.1. Bitcoin and blockchain
In Bitcoin, every transaction consists of inputs and outputs.1 Each input references some unspent
transaction output (UTXO) and provides a spending script (scriptSig) which will be used to authorize
the transfer of funds. Each output is secured by a challenge script (scriptPubKey) which must be
solved by the spending script of an input that wants to consume the funds. Based on the challenge script,
one can distinguish different types of outputs2:

— pay-to-pubkey (P2PK) outputs were used before the concept of an address appeared. The
challenge script contains the public key (pk) associated with the secret key (sk). An input wishing
to consume such an output has to provide a digital signature of the transaction. If the signature
can be verified against pk, this means that it was indeed created by sk, so the transfer of funds is
valid.

— pay-to-pubkeyhash (P2PKH) outputs (presented in user interfaces as ‘addresses’) are 160-bit
hashes of the public keys [10]. This has the advantage of saving some space as addresses are
shorter than public keys. To consume this type of output, an input needs to provide both the

1With exception of the first transaction in each block in which new units of Bitcoin are released, termed coinbase transaction.

2There are actually many more types of challenge scripts and in §5 we briefly discuss how to make our transition protocol general
enough to secure them all.
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public key that hashes to the address and a digital signature that can be verified with the public
key.

— pay-to-scripthash (P2SH) outputs (presented to the users as a new type of ‘address’) are the
hash of a script in which the user can specify different conditions to be satisfied by the input
scriptSig. One use for this type of addresses is to achieve a compact UTXO format for multi-
signature transactions.

Hence, a transaction takes some UTXOs as the source of funds and outputs new UTXOs, associated
with the same or a different public key.3 As part of Bitcoin’s underlying consensus mechanism, termed
Nakamoto consensus, a miner is asked to find the header of a block which includes some random input,
or nonce, along with entities such as the hash of the previous confirmed block, such that its hash h is
below a difficulty threshold. The network difficulty is dynamically adjusted every 2016 blocks such that
the average block interval is approximately equal to 10 min. As finding a valid nonce is a memoryless
process, the best-known strategy for generating a PoW solution is the enumeration of all possible inputs
and is therefore very computationally expensive. On the other hand, other nodes of the network can
verify the PoW criterion trivially with a single hash.

2.2. Elliptic Curve Digital Signature Algorithm
ECDSA is an implementation of the Digital Signature Standard (DSS) based on elliptic curve
cryptography (ECC) [11]. The purpose of such signatures is to allow third parties to determine the
legitimacy and integrity of a signed message, while the signer cannot reasonably deny the act of signing.
In Bitcoin, transactions are digitally signed using ECDSA, thus securing the transfer of ownership of
bitcoins [12].

ECC is a form of public-key cryptography that uses the mathematical properties of elliptic curves
over finite fields [11]. More specifically, to define an elliptic curve cryptosystem one chooses a curve C
and a public point P on the curve. To generate a pair of keys, one chooses a random number sk as the
private key and uses elliptic curve point multiplication [11] to multiply the point P with itself sk times
thus obtaining the public key pk which is itself another point on C. ECDSA or, in general, ECC, relies on
the assumption that it is intractable to solve the elliptic curve discrete logarithm problem (ECDLP) [13],
which would allow for deducing the private key from the public key. Like integer factorization [14],
ECDLP has no known reasonably fast (e.g. polynomial-time) solution on a classical computer [15].

2.3. Quantum computing
Quantum computing makes use of various quantum phenomena, such as superposition and
entanglement, to represent classical data in a quantum context and to manipulate it in ways that produce
interpretable results [16]. Just like the state of classical computers is made of bits, QCs use qubits that
have two fundamental (basis) states (0 and 1). However, while the computation is running, the state is a
linear combination (superposition) of basis states, each having an associated probability to be measured.

To extract information about the state of a QC, the system is measured collapsing the superposition to
one of the possible basis states. This means a QC with n qubits can represent internally the whole range
of n-bit numbers and can perform calculations on all of them simultaneously; however, when measured,
the state will collapse to just one of the basis states, thus returning only one of the results to the performed
calculation. Instead, quantum algorithms try to make use of the underlying structure of the problem in
order to amplify (or otherwise home in on) certain basis states, to increase their probability, and thus to
make the result obtained repeatable and conclusive. For some problems, quantum algorithms can yield
a significantly improved runtime complexity over their classical equivalents, thus offering a speed-up.

2.3.1. Shor’s algorithm

Shor’s algorithm for integer factoring is a quantum algorithm with a runtime complexity of
O((log N)2(log log N)(log log log N)) [2], which is exponentially faster than all known classical algorithms.
In fact, the integer factorization problem can be reduced to finding the period of f (x) = ax mod N where
a is a random integer and N is the number to be factored [17]. The algorithm works by preparing a

3Using a different public key is recommended for security and privacy reasons.
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superposition of basis states where each basis state is formed by concatenating x with the value of f (x).
When the qubits that store f (x) are measured, the superposition will collapse leaving some value v on
the qubits measured, while the qubits on which x was stored will be in a superposition of different
x’s with f (x) = v. To obtain the period of the function, the remaining algorithm needs to extract the
difference between any of the states in the superposition. The quantum Fourier transform circuit can
be used to achieve exactly this [17]. Shor’s algorithm drastically weakens the security of some public-key
cryptographic systems such as RSA, but Proos and Zalka show how it can be adapted to solve ECDLP
with even fewer steps [18], offering a polynomial-time attack against ECDSA [2].

2.3.2. Grover’s algorithm

Grover’s algorithm is another efficient quantum computation. It aims to solve the problem of searching
unstructured data by computing with high probability a unique (or very rare) solution x for which f (x)
equals v, some desired value [19]. The time complexity is O(

√
N/t), where N is the size of the domain

of f and t is the number of solutions [20]. The algorithm works by first arranging a superposition of all
possible input states, each having equal probability of being measured. Then, it uses some techniques to
iteratively increase the probability amplitude of the states that represent the solution [19]. Given N and
t, the number of iterations after which the probability amplitudes of the correct states become maximal
can be mathematically computed [20]. In case t is unknown, there exists a scheme which will produce a
solution in O(

√
N/t) steps [20].

Note that it is not possible to measure the state after each iteration as this would collapse the
superposition and the computation would end. Grover’s algorithm is particularly interesting for mining
as it theoretically offers a quadratic speed-up when guessing a nonce. However, in practice, it is believed
that early generations of QCs will be slower than optimized ASIC miners [21,22].

2.4. Post-quantum cryptography
Post-quantum cryptography is a new branch of cryptography interested in a suite of algorithms which
are believed to be secure even against attackers equipped with QCs [23]. There have been multiple
proposals of cryptographic systems which are not yet broken by quantum computing. Some examples
are:

(i) code-based cryptography relies on the intractability of decoding unknown linear error-
correcting codes [24]. McEliece used the algebraic properties of Goppa codes and proposed the
first such system [25], which took his name;

(ii) hash-based cryptography is based on the security of hash functions which, as mentioned, are
not drastically weakened by QCs. Merkle [26] was the first to propose hash-based digital
signatures by building on the concept of one-time signature schemes such as Lamport’s signature
scheme [27]; and

(iii) lattice-based cryptography is based on the hardness of lattice problems such as approximating
the closest vector problem in a lattice [28].

For the purposes of our paper, it is important that the Bitcoin community agrees on and implements an
appropriate alternative (or perhaps more than one) to replace ECC as the basis for digital signatures of
transactions.

3. Bitcoin in a post-quantumworld
Given that we assume a powerful QC could appear at any time, where does this leave Bitcoin? As
presented in §2, in a post-quantum world, miners could gain an unfair advantage by mining blocks
using Grover’s algorithm. This provides a quadratic speed-up in the number of operations compared to
a classical computer, which should lead to an increased hashrate. However, current miners use parallel
computations on optimized hardware (ASICs) and it is hence difficult to predict if and when QCs will be
reliable and fast enough to outperform them. To this end, we assume that early generations of QCs
will not be capable of outperforming classical miners in terms of hash rate. Furthermore, once QCs
reach a state of development acceptable for mining, a quick adoption among miners can be expected,
establishing an equilibrium as the network difficulty adjusts.
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In this paper, we do not aim to address potential vulnerabilities rooted in Bitcoin’s PoW but rather to

examine the risks QCAs could pose for the embedded transaction processing mechanism. Once efficient
QCs with internal states comprising many qubits are implemented, the underlying cryptographic
guarantees of Bitcoin can be challenged. As briefly mentioned in §2, an attacker with a QC of about
1500 qubits [18,22] can use Shor’s algorithm to solve the ECDLP and compute an ECDSA private key
given the public key, and is thus able to plant fake transactions and perform double-spending attacks. In
the following sections, we highlight why Bitcoin users should be concerned about exposing their public
keys and describe a potential attack scenario whereby a QCA engages in (live) transaction hijacking.

3.1. Public key unveiling
Under the assumption that QCs are being employed for malicious intent by some adversary, previously
revealed public keys pose a direct threat to Bitcoin users. As outlined, a QCA is capable of deducing the
private key from a formerly revealed public key with little effort. Such a scenario could arise from the
following instances of public key unveiling:

(i) Bitcoin transactions with P2PK UTXOs, as these display the public key in the output of the
transaction. As soon as such a transaction has been included in the blockchain, or even just
broadcast to the network, a slow QCA can compute the corresponding private key and thereby
essentially gain control over the respective funds. An initial analysis of the UTXO set in Bitcoin
shows that about 1.77 million BTC fall into this category.4 This problem can be mitigated by
using, for example, P2PKH and P2SH addresses. However, when consuming such an UTXO, the
owner of the address must reveal her public key and digital signature in the scriptSig of the
respective input. Once this transaction is broadcast to the network for confirmation and inclusion
in a block, the attacker can compute the private key from the revealed public key. Furthermore,
the attacker could then look for any additional UTXOs associated with the same address and
consequently consume them, now that she is in control of the private key. We find that about
3.9 million BTC reside in UTXOs that can be compromised by such attacks. In total, at least 33%
of all BTC are currently vulnerable to attacks by a QCA. At the time of writing, this amounts to
approximately 50 billion USD.5

(ii) Bitcoin users publishing their public key on a Bitcoin fork, e.g. Bitcoin Cash [31] or Bitcoin
Gold [32]. As Bitcoin forks share the same transaction history prior to the fork point, such
behaviour may allow a QCA to gain control over a user’s Bitcoin funds using the exposed public
key. Furthermore, a QCA could then also exert control over funds on the blockchain where the
public key was initially obtained.

(iii) Any other revealing of public keys, such as part of signed messages to ensure integrity, in forums,
or in payment channels (e.g. Lightning Network [33]).

Regardless of how a public key is revealed, given the presence of a QCA, the owner is at risk of losing
control over her funds. Except for P2PK, one can prevent against the aforementioned scenarios (so long
as the QCA is slow to deduce a private key) by using addresses only once. Reusing addresses is not
recommended, neither by Bitcoin developers nor the community, while numerous studies identifying
privacy risks have been conducted [34–38]. Hence, we assume appropriate protective mechanisms are
already employed by the majority of Bitcoin users.

3.2. Transaction hijacking
We assume that a fast QCA is characterized by the ability to perform (live) transaction hijacking. Thereby
an attacker attempts to compute the private key corresponding to a public key revealed in the input of
a transaction published to the network and sitting in nodes’ memory pools. Consequently, just like in a
double-spending attack [39–42], she creates a conflicting transaction spending the same UTXOs6 (or the
subset the QCA has gained control over), thus stealing the victim’s funds. As the attacker must not only
create, sign and broadcast the conflicting transaction, but also first run Shor’s algorithm to derive the

4The empirical analysis was conducted using BlockSci [29] and considers data up to Bitcoin block 514877 (24 March 2018).

5Calculated using a BTC/USD exchange rate of $9369 [30].

6Possibly with a higher fee to incentivise inclusion in the blockchain over the victim’s transaction
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private key, timing is essential for such attacks. Hence, the performance of QCs plays a central role for
the success probability of transaction hijacking. Note that this form of transaction hijacking differs from
the more conventional notion of double spending as the attacker is the sole beneficiary rather than the
original transaction initiator.

We do not discuss the possibility of using Grover’s algorithm to retrieve the public key from an
address here, as the achieved speed-up is merely quadratic and can be mitigated by increasing the key
size [21]. However, an attacker could potentially use Grover’s algorithm to gain an unfair advantage
when mining.

An extension to the described attacks is to combine transaction hijacking with selfish mining
strategies [38,43–45]. Assuming the QCA is also a miner, she could employ her computational power
to attempt to build up her own secret chain and, when in the lead, selectively publish blocks to cause a
reorganization of the public chain. In contrast to traditional selfish mining attacks, the feasibility of such
strategies under the presence of a QCA is expected to improve significantly, as the adversary can now
also perform transaction hijacking as described above. The prospectively gained revenue consists not
only of block rewards and transaction fees, but also of all funds contained in (non-quantum-resistant)
UTXOs spent in the overwritten transactions.

4. Transition to quantum resistance
In this section, we describe a scheme that allows a secure transition from Bitcoin’s current signature
scheme to a quantum-resistant one. We assume a quantum-resistant signature scheme has already been
agreed upon by the community, and deployed as a protocol update in Bitcoin. However, it is presumably
unreasonable to hope that all Bitcoin users will have moved their coins from non-quantum-resistant to
quantum-resistant outputs; inevitably, some people (perhaps even a majority) will still be storing some
or all of their currency units in non-quantum-resistant outputs, especially the most popular P2PKH. The
protocol described in the following sections is designed to allow such users to transition securely, if
rather slowly, to quantum-resistant outputs even in the presence of a fast QCA. It is based on a simple
commit–delay–reveal mechanism with a long security delay, and can be deployed in Bitcoin using a
soft fork. Bitcoin-specific implementation details as well as discussion on parametrization and necessary
data structures are considered separately in §5. Note that once the protocol is deployed, classic ECDSA
signatures will no longer be accepted and clients will only be allowed to spend UTXOs based on the
previously introduced quantum-resistant signature scheme or the transition scheme described in this
paper. Furthermore, if one uses an old client and spends from a non-quantum-resistant public key, the
respective funds will be lost, as the public key is revealed, and no protective mechanism can be applied
effectively.

4.1. Protocol overview
Assume a user, Bob, is in possession of units of Bitcoin stored in a non-quantum-resistant output, the
public key of which has not yet been revealed, i.e. funded by an unspent P2PKH or P2SH output.7 We
shall denote Bob’s public key as pk and the corresponding secret key as sk. Furthermore, assume Bob
has already generated a quantum-resistant keypair (pkQR, skQR), which will be used as a surrogate for
his current keypair (during any future spending) as part of the transition. To convince the network, he
is the rightful controller of both keypairs and this way regain the ability to safely spend the funds at a
future date in any way he pleases (e.g. to pay user Carol), Bob publishes a commitment H(pk|pkQR), i.e.
the hash of his concatenated public keys, and leaves the funds on pk untouched for a sufficiently long
security period tsec. Once the period has passed, Bob creates a second transaction Treveal signed by skQR

which consumes all UTXOs attributed to (pk, sk) and reveals both public keys pk and pkQR, proving to the
network that he is the controller of both keypairs and signalling the transition of funds. We illustrate this
process in figure 1 and detail each step in the following paragraphs.

4.2. Commit
As a first step, to mark the commitment of the funds in (pk, sk), Bob publishes the hash of both public
keys pk and pkQR concatenated: H(pk | pkQR). This is achieved by creating a transaction Tcommit, which

7Our protocol actually caters for spending any number of such UTXOs in one transaction, but for simplicity we will consider here the
spending of only one.
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Tcommit
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Treveal

pk, pkQR

t

Figure 1. Simplified visualization of the commit–delay–reveal transition scheme.

includes the hash commitment as an output. In Bitcoin, this can be achieved, for example, by using the
OP_RETURN opcode, which allows us to store up to 80 bytes of arbitrary data in a transaction [46].8

Note that as Bob cannot spend any non-quantum-resistant coins to fund the creation of the
OP_RETURN, he will have to either already possess, or acquire through trade, some quantum-resistant
currency units—sufficient to fund the creation of an OP_RETURN on the blockchain.

4.3. Delay
After publishing the hash commitment, Bob leaves the funds in (pk, sk) untouched for a sufficiently long
security period tsec. Any further attempted use of this keypair, which would fail in accordance with the
new protocol rules, puts Bob’s funds at risk of theft. A long delay is necessary to ensure no blockchain
reorganization could have occurred accidentally or have been caused intentionally by an adversary.
While the specific choice of delay may be subject to follow-up scientific work and discussion in the
community, we propose an initial period of six months. A more detailed discussion is provided in §5.

4.4. Reveal
Once the security period has elapsed, Bob proceeds to safely spend the coins to any destination(s) he
pleases, by revealing his public keys pk and pkQR, proving to the network he is the rightful controller
of both keypairs. To this end, Bob creates a transaction Treveal signed by the secret key skQR of the new
quantum-resistant keypair, which consumes the UTXOs of (pk, sk) and in which he

(i) gives his ‘old’ non-quantum-resistant public key pk,
(ii) gives the public key of the new quantum-resistant keypair pkQR ,

(iii) reveals (via Merkle-tree proof) that he has published H(pk | pkQR) in a transaction older than the
security period tsec, and

(iv) provides a quantum-resistant signature of the transaction against pkQR.

Miners, adhering to the new protocol rules, will then be able to verify the funds that have been
committed for a sufficient period to require a new quantum-resistant public key for their eventual
spending. Hence, Bob will be allowed to spend his funds by providing a valid signature against his new
quantum-resistant public key. Unupgraded consensus participants will simply believe Treveal is a normal
transaction consuming the UTXOs of (pk, sk). The necessary implementation specifics are provided in §5.
As a result, the protocol update P → P′ can be deployed as a soft fork, as the set of blocks valid under
new rules P′ is a proper subset of blocks valid under current Bitcoin rules P, i.e. P′ ⊂ P.

8There may be other ways; we leave it up to the developers and/or the community to choose an appropriate format.
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5. Discussion
In this section, we discuss selected implementation details of the introduced commit–delay–reveal
transition scheme, including the choice of the delay period and the structure of the commit and reveal
transactions.

5.1. Necessity for a long delay phase
The correct choice of the security period tsec, used as protection against accidental and adversarial chain
reorganizations, has a significant impact on the security properties of the proposed transition protocol. In
contrast to previous proposals and discussions [47–50], we emphasize the necessity of a sufficiently long
delay phase, substantially longer than the standard confirmation period of approximately six blocks in
Bitcoin. While the exact duration of tsec may be subject to future discussion, we propose to require hash
commitments to be older than six months, i.e. the UTXOs used as input to Treveal must remain unspent
during this period.

As explained in §3, we assume that the feasibility of block reorganization attacks, such as 51%
attacks or selfish mining attacks requiring a smaller fraction of the overall computational power, is
significantly increased for QCAs. In contrast to traditional reorganization attacks, the prospective gains
in this scenario are not only composed of block rewards and transaction fees but also include any funds
whose public keys have been revealed in one of the blocks overridden by the attacker. Hence, relying on
a short security period of a few blocks (or no delay at all) provides insufficient protection against chain
reorganizations in the presence of a QCA.

We note that in theory an adversary controlling a significant portion of the overall computational
power could successfully rewind the chain further than tsec, thereby altering the transaction history, and
attempt to steal funds from all non-quantum-resistant outputs which were spent from during this period.
However, we argue a fork overriding the block history of such substantial period as six months would be
classified as a catastrophic failure of the system, forcing out-of-band measures to be undertaken by the
majority of honest consensus participants. Specifically, we assume clients and miners will have incentive
to manually reject the conflicting branch of the attacker.9

However, by intuitive continuity arguments, there must exist a point between short- and long-ranged
attacks, where the community is unable to find even out-of-band consensus on how to proceed, i.e.
whether to perform a manual invalidation (override of attacker’s fork) soft fork or accept the conflicting
branch of the adversary, as visualized in Figure 2. While under different circumstances, similar disputes
have been observed in other cryptocurrencies and have led to permanent chain splits, as in the case of
Ethereum [52] and Ethereum Classic [53]. Hence, a QCA may have the incentive to attempt to exploit
this ‘sweet-spot’ to her advantage, as a destabilization or split of the chain could yield a higher success
probability of an attack.

By implementing a long delay phase, sufficient to trigger out-of-band actions in case a longer fork is
created by an adversary, the probability of a malicious chain reorganization interfering with the transition
protocol can be minimized.

5.1.1. Arguments against parametrization by users

Instead of defining the delay phase tsec as part of the consensus rules, a naive approach would be to allow
each user to declare their own security period. However, we emphasize the necessity of a global fixed
delay phase, as allowing individual parametrization by users leaves the transition scheme vulnerable to
attacks, as described in the following.

5.1.1.1. Declare tsec during Reveal

A straightforward approach would be for users to declare their own security period tsec during the reveal
phase, i.e. in Treveal. The problem with this approach, however, is that a QCA can then derive the user’s
secret key sk from the now revealed public key pk. The attacker will then attempt to revert the public chain
so that Treveal is no longer included in the blockchain, and create a new hash commitment H(pk, pk′

QR) for
her own quantum-resistant public key pk′

QR by publishing T′
commit. After waiting for a minimal period to

be sure, the majority of consensus participants have accepted the attacker’s chain, she moves on to reveal

9Note that this does not require any changes to the reference client implementation, as Bitcoin’s JSON-RPC API provides a
invalidateblock call, which permanently marks a specific block as invalid, as if it had violated a consensus rule [51]. (There
are of course many other clients available, some of which may require code changes to manually reject a branch.)
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potential
‘sweet-spot’

???
short-range forks

potentially not
handled

out of band

long-range forks
rejected manually

by majority of nodes

Figure 2. While long-range forks are expected to be manually rejected by the majority of nodes, this may not be possible with short-
range chain-splits due to the limited time frame. There may exist a ‘sweet-spot’ which causes a dispute whether to accept or reject the
conflicting branch, destabilizing or even permanently splitting the network to the benefit of the adversary (red).

the victim’s (non-quantum-resistant) and her own (quantum-resistant) public key in T′
reveal, declaring a

very short security period. As a result, the victim’s funds in (pk, sk) will be transferred to the attacker’s
control. Note that it is sufficient for the adversary to be able to revert only a few blocks for this attack to
be successful.

5.1.1.2. Declare tsec during Commit:

A possible way of mitigating the attack described above is to require users to declare tsec as part of the
hash commitment and employ a ‘first-seen’ rule, i.e. only consider the first commitment included in
the blockchain for each public key as valid. However, at reveal time, validators (consensus participants)
need to be able to verify that the linked commitment is indeed the first commitment associated with this
public key. For this, users are required to make their hash commitments publicly verifiable, i.e. include
a hash of the public key in Tcommit. While this approach prevents an attacker from overriding a user’s
reveal transaction, it also enables griefing (overriding the commit transaction). As such, an adversary
could easily listen for commit transactions, grab the hash of the public key used in them and publish
fake commitments before the original is included in the blockchain, thus preventing the transition of
funds altogether.

5.2. Structure of the hash commitment
During the commit phase of the protocol, a transaction Tcommit containing the hash commitment for pk
and pkQR is created. As mentioned, the Bitcoin OP_RETURN script operation allows up to 80 bytes of
arbitrary data to be pushed onto the stack [46], which is sufficient to, for example, persist a SHA-256
hash. However, there may also be alternatives to this way of publishing the hash commitment.

The exact format of the hash commitment, having little impact on the introduced transition protocol,
is expected to be subject to an open discussion in the community. For simplification, we propose to use
the concatenation of the public keys pk and pkQR as input to the hash function. This, however, assumes
that agreement on the quantum-resistant signature scheme has been reached beforehand.

5.3. Reveal structure and backward compatibility
During the reveal phase of the transition protocol, users must prove to the network they are the
rightful controllers of the non-quantum-resistant keypair (pk, sk) and the quantum-resistant keypair
(pkQR, skQR), and provide evidence that there exists a hash commitment for the public keys of these
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keypairs older than the security period tsec. Note that Treveal is signed with skQR, thus proving control
of the quantum-resistant keypair. The commitment proof is achieved by providing a SPV (simplified
payment verification) proof [54,55], i.e. including the path to Tcommit in the Merkle tree transaction
structure of the respective block, dating back tsec or more, in the reveal transaction Treveal. To enable
the deployment of the transition scheme as a soft fork, i.e. without requiring a permanent split of the
blockchain, we propose a scheme similar to that used in SegWit [6]. As such, the data witnessing the
new rules are being obeyed are held in a segregated area, termed QRWitness, which new clients receive
and check but old clients remain oblivious to. To make sure the witness structure is committed to by (the
header of) the block it is contained in, the root of a Merkle tree consisting of all QRWitness-es is inserted
in the respective coinbase transaction. While the original transaction txid remains the same as before,
a new qrtxid is defined as the double SHA256 hash over the traditional transaction format and the
QRWitness. Thereby, a possible format for QRWitness could be the following:

<oldPubkey><pubkeyQR><merklepath><signatureQR>

where oldPubkey denotes the non-quantum-resistant public key pk, pubkeyQR is the quantum-
resistant public key pkQR, merklepath represents the path to the hash of the Tcommit transaction and
signatureQR denotes the signature of the traditional transaction format using skQR.

To achieve backward compatibility, the scriptSig field remains such that it satisfies the consensus
rules of old clients, e.g. the non-quantum-resistant signature and the corresponding public key. This way,
just like SegWit, our transition protocol can be deployed as a soft fork in Bitcoin. Note however, that as
usual with soft fork attempts, if the majority of the mining power does not upgrade and continues to
accept transactions spending non-quantum-resistant outputs without adhering to the commit–delay–
reveal structure, the soft fork will cause a potentially permanent split of the blockchain.

The extension to more diverse challenge scripts than are covered by the usual address types should
now be clear; namely, provide in the QRWitness as many instances of <oldPubkey><pubkeyQR>

<merklepath><signatureQR> as are necessary, i.e. one for each act of checking a non-quantum-
resistant signature under the old rules. Thus, all patterns of ECDSA signature verification (including
multi-sig and puzzle-type scripts) will require the appropriate associated post-quantum signature
check(s) as a matter of course.

6. Related work
The possibility of QCs emerging in the near future is increasingly appreciated by members of the Bitcoin
community and hence a number of approaches to make Bitcoin resilient against QCAs have recently
been discussed.

As discussed briefly in §4, a first step towards maintaining Bitcoin’s security properties in a post-
quantum world is seen in replacing ECDSA with a signature scheme believed to be quantum resistant,
which can be implemented on classical computers [56–58]. Other proposals rely on quantum hardware
to exploit quantum effects to guarantee the security of the cryptocurrency against QCAs [59–61]. An
alternative research direction focuses on identifying alternatives to PoW, as a countermeasure to possible
unfair advantages in mining through Grover’s algorithm [62,63].

However, the aforementioned works do not consider the issue our paper is most interested in, i.e.
transitioning to post-quantum Bitcoin in the presence of an already-fast QCA. While our methods were
developed independently, we provide an overview of relevant discussions, papers and articles we have
become aware of, which attempt to solve this problem.

A first brief public mention of a scheme transitioning Bitcoin to quantum resistance is made by
Back, referring to an informal proposal by Lau [47,64–66]. The discussed approach leverages on a two-
phase commit mechanism, similar to the one described in this paper, i.e. users commit H(pk, pkQR) in
the OP_RETURN field of a transaction and, after waiting for confirmations, create a transaction which
reveals (pk, pkQR). However, the scheme is not discussed in detail and the requirements for the security
delay tsec between commit and reveal phase, necessary to mitigate transaction reordering attacks by
QCAs potentially benefiting from Grover’s algorithm, are left open.

An alternative scheme described by Ruffing in the Bitcoin-dev mailing list [48–50] requires users to
create the transaction spending the non-quantum-resistant UTXOs in advance, as it must be part of the
commitment. The transaction is thereby encrypted with a symmetric key k derived from the challenge
chal used to generate the address associated with the transitioned UTXOs. Once the commitment
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transaction is confirmed, the user finalizes the transition by publishing chal, which allows the network
to derive k and decrypt the spending transaction. However, similar to Back’s proposal, the scheme does
not discuss the duration of tsec. Specifically, while it appears feasible for a user to predict the target of the
spending transaction in case tsec is equal to a few blocks, this does not necessarily hold if circumstances
require longer delays.

Fawkescoin [67] is a cryptocurrency which relies only on secure hash functions, avoiding the use of
asymmetric cryptography. While not aiming at transitioning to a quantum-resistant signature scheme, it
introduces a commit–reveal scheme to move funds from an owner (OX) of secret X to the owner (OY) of a
secret Y. Thereby, OY sends a hash H(Y) of her secret to OX, who proceeds to include a hash commitment
H(X, H(Y)) in the underlying blockchain, thereby guaranteeing to send the funds linked to X to whoever
can provide the secret Y. After a pre-defined confirmation period, OX publishes the input to the hash
commitment (X, H(Y)), revealing X to the network. Consequently, (only) OY can now spend the funds
linked to X, using her secret Y. Note in Fawkescoin, users must know the destination of the transfer at
the time of commitment, while our scheme is flexible and imposes no such requirements by construction.

7. Conclusion
In the light of the emerging threat of QCAs in Bitcoin, we have outlined how Bitcoin could become
subject to theft of funds rooted in the exposure of public keys. Thus, we have proposed a commit–delay–
reveal scheme to allow for the secure transition to a quantum-resistant address scheme in Bitcoin, the
underlying protocol modifications for which can be implemented as a soft fork. For the security of the
transition scheme we emphasize the need for a sufficiently long delay period and propose an initial
period of six months in order to prevent possible blockchain reorganization. The proposed time frame
should suffice for allowing honest clients and miners to reach consensus on manually rejecting long-
range forks that exceed the delay period. However, we suggest that by intuitive continuity arguments
there must exist some length of chain-rewind time where the community would be indecisive on how to
proceed given that a conflicting branch created by an adversary exists. Hence, we note that the optimal
duration of the delay period may be subject to future discussion and analysis.
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