
An introduction to
Rust language

V4 - Benoît Prieur - CC0
BarCamp Yerevan
24-25 June 2023

Philosophy of Rust

● Integrate mature and experienced features
from other languages

● Reason of the name “Rust”
● Mozilla Research: goal to invent a system

language, reliable, speed, with simple and
reliable concurrency

Rust as a Multi-paradigms Language

Rust as:
● Functional Language, evaluation and

no-variable destruction
● Actor’s Model (Concurrency)
● Procedural
● Object-Oriented

Improvements - Memory Management &
Concurrency - Comparaisons with C++

● Runtime errors related to Memory
Management (Allocation etc.) &
Concurrency (Mutual Exclusion, Mutex etc.)

● Rust proposes to manage these aspects at
compiling, goal to have a much reliable
runtime

Memory Management

● Stack and Heap
● Type safety
● Memory Overflow at Runtime, IRL:

○ Ariane flight V88 (June 1996)

Usage: some examples

● Servo: HTML rendering (Firefox).
● Cargo: package management (Rust).
● Redox : Operating system Unix-like.
● Deno : new evolution of Node.js.
● Libra Core & Solana: crypto.
● Discord: messenger & VoIP.

Performance comparison, Rust, C++, C,
Python etc.

● Rust
○ Energy 1.03
○ Time 1.04
○ Memory 1.34

● Python
○ Energy 75
○ Time 71
○ Memory 2.8

● https://hal.science/hal
-04083140

● Microservices

https://hal.science/hal-04083140
https://hal.science/hal-04083140

Package manager Cargo able to
do…everything

● Command line

> cargo new --bin myproject

● Create Cargo.toml & Main.rs

Syntax quite close to C Language

● First example
let x = if n < 10 { n } else { n - 10 };

● Similar to C, conditions (if…else), loops
(while) etc.

Generated Cargo.toml file

[package]

name = "myproject"

version = "0.1.0"

edition = "2021"

See more keys and their definitions at https://doc.rust-

lang.org/cargo/reference/manifest.html

[dependencies]

chrono = "0.4"

Crates.io repository

● https://crates.io/
● https://crates.io/crates/rand

> cargo add rand

● The line: rand = "0.8.5", added to [dependencies] in
Cargo.toml file

https://crates.io/
https://crates.io/crates/rand

Cargo commands
> cargo --version

> cargo new --bin [name]

> cargo new --lib [name]

> cargo clean

> cargo build

> cargo build –-release

> cargo run

> cargo test

Immutable by default

● Mutable vs Immutable.
● Mastery of what you want to do exactly.

No guess by the compiler.

The mut keyword

fn main() {

 let mut a = 5; // a is mutable

 let b = a * 2; // b is not mutable

 const c: u32 = 5; // constant

 c = 3; // Error at compiling

 b = 3; // Error at compiling

 a = 2; // Ok at compiling

 let a = a + 5; // Ok at compiling (shadowing)

}

Ownership & borrowing

● A value always has a owner which is unique
● Compiling error otherwise
● Owner can be a variable, an object, a function, a data

structure, a piece of code (loop etc.)

Ownership & Borrowship example

fn take_ownership(v: Vec<i32>) {

 println!("{:?}", v);

}

fn main() {

 let mut a = vec![1, 2, 3]; // a is the owner of the vector

 let mut b = a; // b is the new owner

 a.push(4); // error at compiling, a is not the owner

 take_ownership(b);

 b.push(5); // error at compiling, b is not the owner

}

Immutable and Mutable references

● Something owned by an owner can have
reference on it:
○ Immutable reference: &
○ Mutable reference: & mut

● Exclusively one way or the other

Enumeration & Filtering

enum Shape {
 Point,
 Rectangle(f64, f64),
 Circle(f64),
}

Enumeration & Filtering (II)

fn area(f: Shape) -> f64 {
 match f {
 Shape::Point => 0.0,
 Shape::Circle(radius) => 3.14 * radius * radius,
 Shape::Rectangle(a, b) => a * b,
 }
}

Enumeration & Filtering (III)
fn main() {
 let point = Shape::Point;
 let circle = Shape::Circle(2.0);
 let rectangle = Shape::Rectangle(3.0, 4.0);
 let area_point = area(point);
 let area_circle = area(circle);
 let area_rectangle = area(rectangle);
}

Notion of Trait in Rust

● Equivalent to a C++ abstract class (kind of Interface)

// Define a trait named `Shape` with an `area` method

trait Shape {

fn area(&self) -> f64;

}

Notion of Trait in Rust (II)

// Implement the `Shape` trait for a Circle struct
struct Circle {
 radius: f64,
}
impl Shape for Circle {
fn area(&self) -> f64 {

3.14 * self.radius * self.radius
}

}

Notion of Trait in Rust (III)

fn print_area(shape: &dyn Shape) {
println!("Area: {}", shape.area());

}

fn main() {
let circle = Circle { radius: 2.0 };
print_area(&circle);

}

Closure in Rust, an aspect of Functional
Programming (lambda expression)

fn main() {

 let add = |a, b| a + b;

 let result = add(2, 3);

 println!("Result: {}", result);

}

Thank you :)

