An introduction to
Rust language

V4 - Benoit Prieur - CCO
BarCamp Yerevan
24-25 June 2023



Philosophy of Rust

e Integrate mature and experienced features
from other languages

e Reason of the name “Rust”

e Mozilla Research: goal to invent a system
language, reliable, speed, with simple and
reliable concurrency



Rust as a Multi-paradigms Language

Rust as:

e [Functional Language, evaluation and
no-variable destruction

e Actor’s Model (Concurrency)

Procedural

e Object-Oriented



Improvements - Memory Management &
Concurrency - Comparaisons with C++

e Runtime errors related to Memory
Management (Allocation etc.) &
Concurrency (Mutual Exclusion, Mutex etc.)

e Rust proposes to manage these aspects at
compiling, goal to have a much reliable
runtime



Memory Management

e Stack and Heap

e [ype safety

e Memory Overflow at Runtime, IRL:
o Ariane flight V88 (June 19906)



Usage: some examples

Servo: HTML rendering (Firefox).
Cargo: package management (Rust).
Redox : Operating system Unix-like.
Deno : new evolution of Node.js.
Libra Core & Solana: crypto.
Discord: messenger & VolP.



Performance comparison, Rust, C++, C,
Pyt h o ] etc . ';‘;l:rllz ;ly Normalized global results for Energy, Time, and

[ Total

. R u St Energy Time Mb
(c) C 1.00 () C 1.00 (c) Pascal 1.00

(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05

O Energy 1-03 (c) C++ 1.34 (c) C++ 1.56 ©C 117

_I_ . 1 O 4 (c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24

' r ' (v) Java 1.98 (v) Java 1.89 (c) C++ 1.34

O I e ¢ (c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 1.47

(c) Chapel 2.18 (c) Go 2.83 (c) Rust 1.54

O M emo ry 1 . 3 4 () Lisp 227 () Pascal 3.02 () Lisp 192

(c) Ocaml 2.40 (c) Ocaml 3.09 (c) Haskell 245

(c) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57

o yt on (c) Swift 2.79 (v) Lisp 3.40 (c) Swift 271
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80

(v) C# 3.14 (c) Swift 4.20 (c) Ocaml 2.82

o Energy /75 o | | |8 |08

o (i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34

T m 7 1 (v) F# 4.13 (i) JavaScript 6.52 (v) Racket 3.52

O I e (i) JavaScript 445 (i) Dart 6.67 (i) Ruby 3.97

(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00

O M e [ T ] O ry 2 . 8 (i) TypeScript | 21.50 (i) Hack 26.99 (v) F# 4.25

(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4.59

. . (i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript | 4.69

. httD S B //h a l.. S CI e n Ce/h a l (v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript | 46.20 (i) Perl 6.62

_ O 4 O 8 3 1 4 O (i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72

(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20

. . (i) Python 75.88 (i) Python 71.90 (i) Dart 8.64
® Microservices () Perl 7958 | | )Lua 8291 | | @ Jruby 19.84



https://hal.science/hal-04083140
https://hal.science/hal-04083140

Package manager Cargo able to
do...everything

e Command line

> cargo new --bin myproject

e C(Create Cargo.toml & Main.rs



Syntax quite close to C Language

e First example

letx=ifn<10{n}else{n-10}

e Similar to C, conditions (if...else), loops
(while) etc.



Generated Cargo.toml file

[package]

name = "myproject”

version ="0.1.0"

edition ="2021"

# See more keys and their definitions at https://doc.rust-
lang.org/cargo/reference/manifest.html

[dependencies]

chrono ="0.4"



Crates.io repository

e https://crates.io/
e https://crates.io/crates/rand

> cargo add rand

e Theline:rand ="0.8.5", added to [dependencies] in
Cargo.toml file



https://crates.io/
https://crates.io/crates/rand

Cargo commands

> cargo --version

> cargo new --bin [name]

]

> cargo new --lib [name
> cargo clean

> cargo build

> cargo build —release

> cargo run

> cargo tes



Immutable by default

e Mutable vs Immutable.
e Mastery of what you want to do exactly.
No guess by the compiler.



The mut keyword

fn main() {
let mut a = 5; // ais mutable
letb =a* 2;//bis not mutable
const c: u32 = 5; // constant
c = 3; // Error at compiling
b = 3; // Error at compiling
a = 2; // Ok at compiling

let a = a + 5; // Ok at compiling (shadowing)



Ownership & borrowing

e A value always has a owner which is unique

e Compiling error otherwise

e Owner can be a variable, an object, a function, a data
structure, a piece of code (loop etc.)



Ownership & Borrowship example

fn take_ownership(v: Vec<i32>) {
println!("{:?}", v);

}

fn main() {

let mut a = vec![1, 2, 3]; // a is the owner of the vector
let mut b = a; // b is the new owner

a.push(4); // error at compiling, a is not the owner

take_ownership(b);

b.push(5); // error at compiling, b is not the owner



Immutable and Mutable references

Something owned by an owner can have
reference on it:

o Immutable reference: &

o Mutable reference: & mut

Exclusively one way or the other




Enumeration & Filtering

enum Shape {
Point,
Rectangle(f64, f64),
Circle(f64),



Enumeration & Filtering (ll)

fn area(f: Shape) -> f64 {
match f {
Shape::Point => 0.0,
Shape::Circle(radius) => 3.14 * radius * radius,

Shape::Rectangle(a, b) => a * b,



Enumeration & Filtering (lll)

fn main() {
let point = Shape::Point;
let circle = Shape::Circle(2.0);
let rectangle = Shape::Rectangle(3.0, 4.0);
let area_point = area(point);
let area_circle = area(circle);
let area_rectangle = area(rectangle);



Notion of Trait in Rust

e Equivalent to a C++ abstract class (kind of Interface)

// Define a trait named 'Shape’ with an ‘area’ method

trait Shape {
fn area(&self) -> f64;



Notion of Trait in Rust (ll)

// Implement the 'Shape’ trait for a Circle struct

struct Circle {
radius: f64,
}
impl Shape for Circle {
fn area(&self) -> f64 {
3.14 * self.radius * self.radius

}



Notion of Trait in Rust (lll)

fn print_area(shape: &dyn Shape) {
println!("Area: {}", shape.area());

}

fn main() {
let circle = Circle { radius: 2.0 };

print_area(&circle);

}



Closure in Rust, an aspect of Functional
Programming (lambda expression)

fn main() {
let add = |a, b| a + b;
let result = add(2, 3);
println!("Result: {}", result);



Thank you :)



