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Philosophy of Rust

e Integrate mature and experienced features
from other languages

e Reason of the name “Rust”

e Mozilla Research: goal to invent a system
language, reliable, speed, with simple and
reliable concurrency



Rust as a Multi-paradigms Language

Rust as:

e [Functional Language, evaluation and
no-variable destruction

e Actor’s Model (Concurrency)

Procedural

e Object-Oriented



Improvements - Memory Management &
Concurrency - Comparaisons with C++

e Runtime errors related to Memory
Management (Allocation etc.) &
Concurrency (Mutual Exclusion, Mutex etc.)

e Rust proposes to manage these aspects at
compiling, goal to have a much reliable
runtime



Memory Management

e Stack and Heap

e [ype safety

e Memory Overflow at Runtime, IRL:
o Ariane flight V88 (June 19906)



Usage: some examples

Servo: HTML rendering (Firefox).
Cargo: package management (Rust).
Redox : Operating system Unix-like.
Deno : new evolution of Node.js.
Libra Core & Solana: crypto.
Discord: messenger & VolP.
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Package manager Cargo able to
do...everything

e Command line

> cargo new --bin myproject

e C(Create Cargo.toml & Main.rs



Syntax quite close to C Language

e First example

letx=ifn<10{n}else{n-10}

e Similar to C, conditions (if...else), loops
(while) etc.



Generated Cargo.toml file

[package]

name = "myproject”

version ="0.1.0"

edition ="2021"

# See more keys and their definitions at https://doc.rust-
lang.org/cargo/reference/manifest.html

[dependencies]

chrono ="0.4"



Crates.io repository

e https://crates.io/
e https://crates.io/crates/rand

> cargo add rand

e Theline:rand ="0.8.5", added to [dependencies] in
Cargo.toml file



https://crates.io/
https://crates.io/crates/rand

Cargo commands

> cargo --version

> cargo new --bin [name]

]

> cargo new --lib [name
> cargo clean

> cargo build

> cargo build —release

> cargo run

> cargo tes



Immutable by default

e Mutable vs Immutable.
e Mastery of what you want to do exactly.
No guess by the compiler.



The mut keyword

fn main() {
let mut a = 5; // ais mutable
letb =a* 2;//bis not mutable
const c: u32 = 5; // constant
c = 3; // Error at compiling
b = 3; // Error at compiling
a = 2; // Ok at compiling

let a = a + 5; // Ok at compiling (shadowing)



Ownership & borrowing

e A value always has a owner which is unique

e Compiling error otherwise

e Owner can be a variable, an object, a function, a data
structure, a piece of code (loop etc.)



Ownership & Borrowship example

fn take_ownership(v: Vec<i32>) {
println!("{:?}", v);

}

fn main() {

let mut a = vec![1, 2, 3]; // a is the owner of the vector
let mut b = a; // b is the new owner

a.push(4); // error at compiling, a is not the owner

take_ownership(b);

b.push(5); // error at compiling, b is not the owner



Immutable and Mutable references

Something owned by an owner can have
reference on it:

o Immutable reference: &

o Mutable reference: & mut

Exclusively one way or the other




Enumeration & Filtering

enum Shape {
Point,
Rectangle(f64, f64),
Circle(f64),



Enumeration & Filtering (ll)

fn area(f: Shape) -> f64 {
match f {
Shape::Point => 0.0,
Shape::Circle(radius) => 3.14 * radius * radius,

Shape::Rectangle(a, b) => a * b,



Enumeration & Filtering (lll)

fn main() {
let point = Shape::Point;
let circle = Shape::Circle(2.0);
let rectangle = Shape::Rectangle(3.0, 4.0);
let area_point = area(point);
let area_circle = area(circle);
let area_rectangle = area(rectangle);



Notion of Trait in Rust

e Equivalent to a C++ abstract class (kind of Interface)

// Define a trait named 'Shape’ with an ‘area’ method

trait Shape {
fn area(&self) -> f64;



Notion of Trait in Rust (ll)

// Implement the 'Shape’ trait for a Circle struct

struct Circle {
radius: f64,
}
impl Shape for Circle {
fn area(&self) -> f64 {
3.14 * self.radius * self.radius

}



Notion of Trait in Rust (lll)

fn print_area(shape: &dyn Shape) {
println!("Area: {}", shape.area());

}

fn main() {
let circle = Circle { radius: 2.0 };

print_area(&circle);

}



Closure in Rust, an aspect of Functional
Programming (lambda expression)

fn main() {
let add = |a, b| a + b;
let result = add(2, 3);
println!("Result: {}", result);



Thank you :)



